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Leon Ehrenpreis (1930–2010)



Preface

This is a volume of papers dedicated to the memory of Leon Ehrenpreis. Although
Leon was primarily an analyst, whose best known results deal with partial differen-
tial equations, he was also very interested in and made significant contributions to
the fields of Riemann surfaces (both the algebraic and geometric theories), number
theory (both analytic and combinatorial), and geometry in general.

The contributors to this volume are mathematicians who appreciated Leon’s
unique view of mathematics; most knew him well and admired his work, character,
and unbounded energy. For the most part the papers are original contributions to
areas of mathematics in which Leon worked; so this volume may convey a sense of
the breadth of his interests.

The papers cover topics in number theory and modular forms, combinato-
rial number theory, representation theory, pure analysis, and topics in applied
mathematics such as population biology and parallel refractors. Almost any mathe-
matician will find articles of professional interest here.

Leon had interests that extended far beyond just mathematics. He was a student
of Jewish Law and Talmud, a handball player, a pianist, a marathon runner, and
above all a scholar and a gentleman. Since we would like the readers of this volume
to have a better picture of the person to whom it is dedicated, we have included
a biographical sketch of Leon Ehrenpreis, written by his daughter, a professional
scientific journalist. We hope that all readers will find this chapter fascinating and
inspirational.

Jerusalem, Israel H.M. Farkas
Princeton, NJ R.C. Gunning
Philadelphia, PA M. Knopp�
Ann Arbor, MI B.A. Taylor

�Marvin Knopp (of blessed memory) passed away on December 24, 2011, after almost the entire
volume was edited by the four of us. Without him, this volume would not have appeared.
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A Biography of Leon Ehrenpreis

By: Yael Nachama (Ehrenpreis) Meyer

Dr. Leon Ehrenpreis (b. May 22, 1930; d. August 16, 2010), a leading mathematician
of the twentieth century, proved the Fundamental Principle that became known
as the Malgrange–Ehrenpreis theorem, a foundation of the modern theory of
differential equations that became the basis for many subsequent theoretical and
technological developments.

He was a native New Yorker who taught and lectured throughout the USA,
as well as in academic institutions in France, Israel, and Japan. Ehrenpreis made
significant and novel contributions to a number of other areas of modern mathe-
matics including differential equations, Fourier analysis, Radon transforms, integral
geometry, and number theory. He was known in the mathematical community for
his commitment to religious principles and to his large family, as well as for his
contributions to the essence of modern mathematics.

Leon Ehrenpreis published two major works: Fourier Analysis in Several
Complex Variables (1970) and The Universality of the Radon Transform (2003),
authored many papers, and mentored 12 Ph.D. students in New York, Yeshiva, and
Temple Universities over the course of a mathematical career that spanned over half
a century. What follows is his story.

Leon Ehrenpreis was born on May 22, 1930. His mother, Ethel, née Balk, was
born in Lithuania; his father, William, a native of Austria, had changed his last
name from that of his own father (Kalb) to that of his mother, in order to escape the
Russian draft. And so “Ehrenpreis,” the German word for “prize of honor,” became
the family surname.

Leon, whose parents also gave him the Hebrew name “Eliezer,” was born just
at the close of the era during which millions of Eastern European Jews had left
behind the homes where their families had lived for generations and survived eras
of persecution, in order to reach the land that promised to take in all of “your tired,
your poor, your huddled masses yearning to breathe free. . . ” and give their children
the opportunity to become Americans. Coming ashore in New York City, many of
these new immigrants settled in Manhattan’s Lower East Side, in Brooklyn, and the
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xiv A Biography of Leon Ehrenpreis

Bronx. Leon’s family was no exception; over the course of his childhood, he lived
in all three of these boroughs. Initially, Ethel and William, their baby Leon, and
his older brother Seymour, settled in a home in the Marine Park neighborhood of
Brooklyn.

When Leon was 10, the family moved to the Lower East Side, a neighborhood
with a large Jewish community. Leon’s home was one in which the kitchen was
kosher, and the Sabbath recognized, and their Jewishness the defining personal,
family, and communal identity, though without knowledge or emphasis on the subtle
details of religious observance. So it was only there that Leon came into contact
with boys of his own age whose families were strictly observant, an introduction to
religious life that started Leon on his trajectory towards full-scale observance. He
also attended a Jewish studies after-school program to prepare for his bar mitzvah,
his entry into Jewish adulthood. Soon after his bar mitzvah, Leon stopped attending
his after-school studies, though he continued to attend Sabbath services at the local
synagogue as a result of his friends’ influence.

The majority of New York’s Jews at that time were aiming to raise their children
to be successful, high-achieving Americans, with academic success and intellectual
pursuits an important priority for many, including the Ehrenpreis family. So it was
that soon after his bar mitzvah, Leon followed his brother into the prestigious
Stuyvesant High School in Manhattan. Leon had skipped two grades in elementary
school and then skipped his initial year of high school, beginning Stuyvesant in the
tenth grade.

When Leon was 16, the family moved to the Bronx. Now more interested in
learning about his Jewish heritage, Leon attended the Young Israel of Clay Avenue
and joined Hashomer Hadati, a youth group that would be the forerunner of the
religious Zionist Bnei Akiva movement. He now traveled downtown each day to
Stuyvesant, where he continued to excel in his studies, though not in his class
conduct! He recalled having the highest grades in French, but failing to be awarded
the French medal because of his poor behavior. He also scored the highest on the
chemistry medal qualifying exam (though a teacher’s error meant that he never
actually received it), and he was also awarded the mathematics medal—though
most of these were won by his new best friend Donald Newman, whom Leon
credited with influencing him to become a mathematician. His mother, he recalled,
considered the choice of mathematics a “cop out” to avoid having to do the serious
lab work that a physics major would require.

Leon initially met Donald Newman on his first day at Stuyvesant, where his
classmate was seated just on the other side of the aisle in their first class of the day.
Almost immediately, Donald handed a clipboard to Leon with the order to “solve
this problem.” The board read “Sierpnerhe”—Ehrenpreis backwards. Already in
ninth grade, Leon said, Donald’s reputation foreshadowed his greatness. The same
was said about Leon from the tenth grade onward. “He was the great man of
Stuyvesant—we already knew he would be a mathematical star.” The two created
lifelong nicknames for each other, and “Flotzo-Flip” (Donald) and “Glockenshpiel”
(Leon) formed a friendship that would last forever. “I felt like a real mathematician
when Flotz and I discussed mathematics together,” Leon recalled. The two friends,
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who were considered the best mathematicians in the class, would ultimately follow
much the same path throughout their mathematical lives, remaining close personal
friends throughout.

At the age of 20, Leon joined the National Guard, which involved training for
2 hours each week and 2 weeks in the summer. His youthful military duty provided
him with a lifelong repertoire of “war stories.” He was fond of recalling for his
children how, to maintain a kosher diet, he subsisted on thrice-a-day meals of ice
cream, and how his commanding officer, who initially refused his request for time
off on Saturdays, finally told him to “disappear on Friday night—and don’t come
back until Sunday.” Leon also liked to describe how his superiors eventually worked
out what his strong points were—and weren’t—and so assigned him to calculate
the trajectory of the shots being fired instead of actually firing them. His speedy
calculation ability made him popular among his fellow reservists as well, as he
would finish all the work assigned to his group within the first hour of the morning—
and then the entire troop would go to sleep for the rest of the day.

By this time, Leon had nearly completed his university studies, having been in
college since the age of sixteen-and-a-half. Leon was enrolled at City College, the
“Jewish Harvard,” as it was known during those years when the Ivy League still
maintained a quota of Jewish students, leaving many of the best and brightest to
attend New York City’s public university. In addition to his old friend Donald New-
man, the class included Robert “Johnny” Aumann, Lee Rubel, Jack Schwartz, Allen
Shields, Leo Flatto, Martin Davis, and David Finkelstein, a group of individuals
who would go on to change the face of mathematics, computer science, and the
sciences for decades to come. This high-powered group of students formed a math
club and had their own table in the cafeteria—the “mathematics table”—where,
Aumann recalled, the group would sit together, eating ice cream, discussing the
topology of bagels, and enjoying “a lot of chess playing, a lot of math talk. . . that
was a very intense experience.”

In addition to his university studies (where handball and weightlifting competed
with his mathematics major for his attention; he was the handball champion of New
York City during his early college years), and his military activities, Leon expanded
his Jewish education by enrolling in an evening Jewish studies program, where Bible
and Talmud, as well as Hebrew language and literature, were taught entirely in He-
brew. This represented Leon’s first formal attendance in an academic Jewish studies
program. “It was the first time I ever studied a page of Talmud!” Leon recalled.

While attending City, Leon audited a series of lectures on probability theory
given by Professor Harold Shapiro at NYU’s Courant Institute. He identified an
event that occurred during the course of these lectures as a “turning point” in his
development into a “true” mathematician. Professor Shapiro wrote a statement on
the board that he thought was obvious. Then he began writing out the proof—until
he came to a step of the proof that he couldn’t carry out. “You’ve learned more from
my not knowing how to do it than by my presenting a proof,” Shapiro told them.
So Leon became determined to correct the proof himself. “I ate, breathed and slept
correcting that step and. . .

Sunday: nothing.
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Monday, late afternoon: Eureka! I can’t fix that step in the proof because the
theorem itself is wrong! So I corrected the theorem itself. Then I returned to Shapiro
to inform him—it’s wrong! Erdös and Chung had stated the theorem incorrectly.
Although I was only eighteen, I was convinced that I was right. I showed Shapiro a
counterexample to demonstrate without question that I had created the correct proof.
I beat Erdös and Chung! I’m a mathematician!! No doubt anymore—I am the real
thing.”

That same year, Leon registered in joint mathematics–physics graduate programs
at both Columbia and NYU simultaneously. He actually had not yet completed his
Bachelor’s degree at CUNY, during the course of which he had also “illegally” taken
several advanced classes before completing the relevant prerequisites, and so for
years to come would have “nightmares” that the university powers-that-be would
suddenly discover his crimes and come to take away his B.S.—and his Ph.D.

Between 1952 and 1953, he worked on his doctorate with Claude Chevalley
(whom Leon termed “the best in the world”) as his thesis advisor. He completed
his thesis, entitled, “Theory of Distributions in Locally Compact Spaces,” in 1953,
earning a Ph.D. from Columbia University at the age of 23.

Nearly 20 years later, Alan Taylor would ask Leon how, as a student of Chevalley,
he had come to work on problems that led to what would ultimately be called the
“fundamental principle.” Leon explained to him that Chevalley had suggested that
Leon write to Laurent Schwartz for thesis-problem suggestions. Schwartz, in turn,
had responded with a list of questions about partial differential operators, along with
the details he knew about them at the time, including the fundamental questions. The
answers given by Leon and others, in the 1950s, would form the basis of the modern
theory of linear constant-coefficient partial differential operators.

After Leon earned his doctorate, Chevalley arranged a first teaching position
at Johns Hopkins University in Baltimore, Maryland, for him. It was there that
Leon met Shlomo Sternberg, later a mathematics professor at Harvard, then a Johns
Hopkins student, who reminisced:

“Thinking back through the years, I can’t recall a single time, no matter how trying the
circumstances may have been, whether casual or serious, that his voice, his eyes, his
whole demeanor conveyed less than deep warmth, profound generosity, an optimism, a
hopefulness that was pure Leon. When we were young, ‘pure Leon’ might include a dash of
madcap charm, a directness, a boyish whimsy, a ruefulness, that belied his distinguished
mathematical achievements. His style was not professorial. He was not into style or
image—then or ever. Leon retained and presented an honesty, a disarming forthrightness,
a genuineness, a profound generosity and sheer vitality that he carried with him all of his
life. . . ”

Soon afterwards, Leon went on to the first of what would be four sabbaticals at the
Institute for Advanced Study, where he remained for 3 years (1954–1957) as an
assistant to Arne Beurling, a permanent professor at the Institute and the man who
took over Einstein’s office. Leon also renewed a friendship from his City College
days with Robert Aumann, who was also doing a postdoctorate at Princeton at that
time.
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It was during his first 2 years at Princeton, from 1954 to 1955, that Leon
proved the fundamental theorem that would forever bear his name and later that of
Malgrange as well, after French mathematician Bernard Malgrange independently
proved the same theorem in 1955-1956. The Malgrange–Ehrenpreis theorem, which
states that every nonzero differential operator with constant coefficients has a
Green’s function, was a foundation of the modern theory of differential equations
that would serve as the basis for a range of theoretical and technological advances
in the years to come.

Leon’s presence in Princeton during these years proved to be crucial for the
career of a younger friend, Hillel Furstenberg, who was a graduate student then,
and some years later, took a position at the Hebrew University. At that time the
graduate math department was a bulwark for the prevailing mathematical currents,
with a clear inclination for the fashionable. Someone not entirely attuned to this
would be less than comfortable pursuing his own line of research. Furstenberg
describes his experience: “I was then experimenting with certain ideas which were
later to prove fundamental for my work, but these deviated from the main thrust of
activity in Fine Hall. Like every other mathematician, I needed someone to bounce
ideas off, and Leon turned out to be the ideal partner—someone open to everything,
willing to think deeply about just about anything, and having the ability to contribute
with intelligence and insight to other people’s problems. I think of Leon as my
mathematical ‘big brother.”’

In 1957, Leon went on to a 2-year teaching stint at Brandeis, followed in 1959
by his joining the teaching staff at Yeshiva University for 2 years. Then it was back
to the Institute for another year (1961–1962), followed by his appointment in 1962
to full professor of mathematics to the Courant Institute at New York University.
During his tenure at Courant, Leon lived on the NYU campus in Washington Square
Village.

His NYU colleague, Sylvain Cappell, a raconteur of “Leon stories,” recalled
one particular moment during Leon’s time at Courant Institute, when Institute
administrator Jay Blaire, who had heard about the brilliance of this member of the
mathematics faculty, headed over to meet him. He knocked on Leon’s office and
when a voice said, “please come in,” Jay opened the door to behold a nearly empty
office in which all the furniture was piled on itself in a corner. He later learned that
this was because Leon had converted his new office into a handball court—driving
Professor Donsker in the next office nuts with the ping! In the midst of this otherwise
empty office was Leon standing on his head, a position he maintained during their
entire meeting. At its end, Leon extended an upside-down arm to shake hands and
asked Jay to kindly let himself out of the office and please close the door behind
himself.

The year 1970 saw the publication of what Leon considered his “best work,”
his first major volume, Fourier Analysis in Several Complex Variables, in which he
developed comparison theorems to establish the fundamentals of Fourier analysis
and to illustrate their applications to partial differential equations. Leon began the
volume by establishing the quotient structure theorem or fundamental principle of
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Fourier analysis, then focused on applications to partial differential equations, and
in the final section, explored functions and their role in Fourier representation.

Alan Taylor in his memorial essay, “Remembrances of Leon Ehrenpreis,”
recalled following Leon’s suggestion to attend Courant for a postdoctoral year,
which he did in 1968. That year, which Taylor described as “the most interesting and
fun year of my professional life,” Leon’s student Carlos Berenstein was completing
his doctoral thesis at Courant while helping Leon with the final editing of his Fourier
Analysis volume. Meanwhile, Leon had moved to Yeshiva University, where he was
giving a course on the book, so each Thursday,

“Carlos and I would take the A train uptown to spend the day with Leon, attending his
class and talking about mathematics. I really saw Leon’s style of doing mathematics in that
class. He was always interested in the fundamental reasons that theorems were true and
in illustrative examples, but less interested in the details. It seemed to me that he could
look at almost any problem in analysis from the point of view of Fourier analysis. Indeed,
his book on Fourier analysis, in addition to presenting the proof of his most important
contribution, the fundamental principle, contains chapters on general boundary problems,
lacunary series, and quasianalytic functions. . . Leon was doing mathematics 100% of the
time I spent around him and I think it was true always, especially when riding the train and
in his jogging. . . .”

While his appointment at Courant had been intended as a lifetime position, Leon
received a “summons” from Dr. Belkin, president of Yeshiva University, to educate
the “next generation” of Jewish academics. So, in 1968, 6 years after joining the
NYU faculty, Leon returned to YU, where he would remain a member of the Belfer
Graduate School faculty for 18 years—riding his bicycle through the dignified
halls of academia, reuniting with his old friend “Flotz,” after Leon encouraged
Newman to join him on the YU mathematics faculty, and impacting upon hundreds
of students—until the doors of the university’s graduate school of arts & sciences
were shut in 1984.

As a Jewish institution, Yeshiva also provided a fertile environment for Leon’s
synthesis of Talmudic and mathematical concepts. He taught a class entitled,
“Modern Scientific and Mathematical Concepts in the Babylonian Talmud,” and
also introduced his calculus class with a page from the Talmud discussing the area
of a circle as it relates to the size of a sukkah, a temporary booth built annually
for the Jewish holiday of Sukkot. One of the students for his “Mathematics and the
Talmud” class was undergraduate student Hershel Farkas. Hershel and his wife Sara,
who would host both Leon and Ahava’s first date and their wedding, would become
among their dearest friends, the “family” waiting to welcome them home when
their oldest child was born, to celebrate their greatest joys and share their major
life moments. Indeed, over 40 years later, it was Hershel, just off the plane from
Israel, whom Leon would plan to meet on August 15, 2010—a final mathematical
conversation that never took place.

Yeshiva’s new faculty member was also known for his rather laid-back attitude
to the course schedule: One of Leon’s students recalled his professor informing
his class on the first day that while the course was scheduled for Tuesdays and
Thursdays, he couldn’t make it on Thursdays—and actually Tuesdays didn’t work
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for him either. They settled on Sunday afternoons for their weekly study of
differential equations, complex analysis, and number theory.

There was the time that Leon informed his class that he would be running the
New York City marathon that coming Sunday, so he might be a little late for
class. True to his word, he completed the race, took a taxi uptown, showered in his
nephew’s dorm room and came to lecture. Leon also used to tell the story of his stint
as a teacher of an undergraduate math class at Stern College, YU’s women’s college.
This “favorite Leon story,” which Peter Kuchment, of Texas A&M University, likes
to relate often to his students, describes him teaching a calculus class to this new
group of students. “As any good teacher would do,” Kuchment tells, “he tried to
lead his students, whenever possible, to the discovery of new things. So, he once
said: ‘Let us think, how could we try to define the slope of a curve?’ ‘What is there
to think about?’ was the reply from one smart student, ‘it says on page 52 of our
textbook that this is the derivative.’ ‘Well,’ replied Leon, ‘I haven’t read till page 52
yet.’ The result was that the class complained to the administration that they were
given an unqualified teacher. So much for inspiring teaching; it can backfire!”

Meanwhile, in 1954, Leon’s brother Seymour had gotten married, Leon himself
had headed back to the Institute, and their parents had moved again, this time to
the Brighton Beach section of Brooklyn. Leon described himself as “always in
search of new vistas of knowledge,” so now, at the age of 24, he took advantage
of the opportunities in his family’s new neighborhood to expand his Jewish textual
knowledge. He bought himself a copy of the English translation of the Talmud.
Leon used to read the English side of the page—and viewed himself as the very
personification of a Torah scholar because he could quote from the Talmud—
in English!—with ease. But he was still searching for a more intensive learning
experience.

It was his mother who found the way. She asked the local kosher butcher who
could teach her son and received the response that if he wanted to “study seriously”
he should go to Brighton resident Rabbi Yehudah Davis. Leon headed off to Rabbi
Davis, and upon seeing the long-bearded rabbi, assumed he would speak only
Yiddish. But in fact, the American-born rabbi spoke perfect English, and upon
hearing Leon’s background, addressed him with a simple question: “Why does a
negative times a negative equal a positive?” “Here I was,” Leon would later tell
Dr. Yitzchak Levine, a member of the Department of Mathematical Sciences at
New Jersey’s Stevens Institute of Technology, “a mathematician at the Institute for
Advanced Study at Princeton and I could not answer his question. I still do not
know why conceptually a minus times a minus is a plus—and this was not the only
question about mathematics he asked which I could not answer!”

Teacher and student, renaissance men both, began to study together regularly,
taking long walks on the boardwalk to discuss Jewish philosophy and the lessons to
be learned from the lives of the great men of Jewish history. Three years later, when
Leon took a position in Brandeis, Rabbi Davis had just been appointed as dean
of a yeshiva in Boston. Leon lived in the yeshiva, and the two continued to study
together. Then, when Leon returned to the Institute for the 1961–1962 academic
year, he invited his Jewish studies mentor for a visit to the Faculty Tea Room,
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introducing him to some of the greatest mathematicians and scientists of the day,
including André Weil, with whom the rabbi conversed at great length. Later, Leon
hosted a group of the yeshiva’s students at the Institute as well.

Leon would later credit Rabbi Davis for having had “a great influence on me
and my life,” establishing the foundation to his approach to Torah learning. Certain
concepts in Rabbi Davis’s philosophy of analysis became well-known facets of
Leon’s own way of viewing Biblical texts, including the idea that no two Biblical
terms are synonymous; rather, each apparently similar term actually carries with it
an entirely unique connotation.

During the 1960s, after Leon had begun teaching at Courant, a friend suggested
that for Jewish studies on the highest intellectual level, he should attend a class by
Rabbi Moshe Feinstein. Rabbi Feinstein, considered the leading rabbinic authority
of the twentieth century, had established his yeshiva, Mesivta Tiferes Jerusalem
(MTJ), where the highest level of intellectual study took place in the least preten-
tious of environments, in the nearby Lower East Side neighborhood of Manhattan.
It was the perfect study environment for Leon, who was described by many as
having infinite patience for academic achievement but zero patience for bureaucratic
convention.

Leon attended these classes with supreme dedication, even driving to New York
from Princeton when he returned for additional semesters at the Institute. Within a
few years—legend has it as a mere 5 years later—Leon had received his rabbinic
ordination from Rabbi Feinstein, and remained his de facto advisor on scientific and
technology issues until the famed authority on Jewish law passed away in 1986.

During his first marriage, to Ruth née Bers, daughter of the renowned mathe-
matician and human rights activist Lipman Bers, Leon became the father of Ann
(b. 1962) and Naomi (b. 1965, in Boston, during her father’s sabbatical at Harvard;
Naomi was the only one of Leon’s children not born in New York City). Leon
and Ruth had been introduced by Bers at a Jerusalem mathematics conference in
1960. They were married in June 1961, spending their first year of marriage at
the Institute for Advanced Study. At Princeton, Leon developed close friendships
with colleagues Bernie Dwork and Eli Stein, during a period Ruth later described
as one in which “we all spoke freely about our families, laughed at ourselves and
shared our concerns about the conditions of the world.” They subsequently returned
to NYU, with an intervening 1964–1965 sabbatical at Harvard, a year, Ruth recalled,
that “was exciting. Leon was delighted to be surrounded by the mathematicians at
Harvard and MIT whose families welcomed us warmly and shared their love of
music and good food.” The marriage ended in divorce in 1968.

In January 1972 Leon met Ahava Sperka, a native of Detroit, Michigan, the
daughter of the Polish-born Rabbi Joshua and Canadian-born Yetta Sperka. Both
Leon and Ahava were fond of recalling the immediate “kinship” of their first
meeting: Leon picked up his date, and the two headed out to the event to which
they had been invited, a “math party” at the Brooklyn home of Hershel and Sara
Farkas. Leon commented, “you know, I’ve never actually been on time to any party
before,” to which Ahava replied, “neither have I.” So they got out of the car to pass
the time drinking tea until they could head to the event, comfortably late.
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Thus began a “mathematical courtship,” one that consisted primarily of evenings
at “math parties,” at which, Ahava would often reminisce, Leon would “wander
off to ‘talk math,’ leaving me to fend for myself.” It was a good preparation for
a marriage in which “vacation” would come to mean “trip to another city, state,
or country, where Leon would head off to his seminar, lecture, or conference, and
leave me to entertain our growing family in yet another new place.” Happily, Leon
had found his soulmate, a kindred spirit who shared his dedication to principle, his
love of adventure, and his yearning to explore new horizons.

As their mathematical social life continued, Ahava came to know many of the
academics who played a role in Leon’s life, including Lewis Coburn, graduate
mathematics departmental chairman at YU, where Leon had begun teaching, and
his wife, Charlene—who then discovered that their wedding had been officiated by
Ahava’s father. Then one day, as a change from the math party scene, Leon invited
Ahava to New York’s Metropolitan Museum of Art—and did she mind if they were
joined by his coauthor on a new paper who had come in from Paris to work with
him? Ahava’s new “date” turned out to be, as she recalled, “a charming gentleman
by the name of Paul Malliavin, a fifth-generation French aristocrat.”

Leon, having done his Ph.D. at Columbia with French mathematician Chevalley,
continued to be highly involved with the French school of mathematics. He spoke
a fluent French and for many years spent several weeks each spring lecturing at the
University of Paris, as well as at the Institut des Hautes Études Scientifiques (IHÉS)
in Bures-sur-Yvette—invariably with a visit to the Malliavin home on the exclusive
Isle de Paris, where one locked cabinet, nicknamed “Leon’s kosher kitchen,” would
be opened upon their arrival.

It was Paul Malliavin as well who accompanied Ahava on a date with Leon in
November of 1972, to the third-ever New York City marathon. This competition had
begun as Central Park’s “Earth Day Marathon” in 1970, a small race around Central
Park that attracted few participants and even less media attention. After that first
marathon, Leon recalled, “I said to a fellow runner ‘I’ll never do this again!’ I had
a mathematics conference at Princeton University the next day, and I was in such
excruciating pain that I had to crawl out of bed to soak in the bathtub before I could
get down the steps. . . ”

The marathon grew substantially each year to become a global phenomenon
that now attracts over 35,000 runners and two million spectators and turns all of
the city’s five boroughs into parts of the race track. Meanwhile, the group that
gathered to watch Leon run would expand to include ever more of his growing
family, as his wife and children—and in later years, his sons- and daughters-in-law,
and grandchildren—would stand behind the barricade at their designated stop near
the end of the marathon in Manhattan’s Central Park, cheering wildly for “Aba”
(in the spirit of the day, nearby spectators would eagerly join them in the call), as
they peered at the thousands of runners passing by, eyes seeking that one familiar
figure. . . who would suddenly appear, wave, pause long enough to be photographed,
and then continue on to the finish line.

He would train throughout the year—“I find that I can train without wast-
ing time,” Leon once explained, “because I think about mathematics while I’m
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running”—and in 37 years, he never missed a single marathon, despite a broken
arm one year, a baby’s due date another (he ran with a beeper that year, promising
his wife that if summoned he would ‘meet her at NYU’s emergency room—after
all it’s right on the marathon route!’), and the commitment—which he kept—to
officiate at the wedding of a fellow mathematician that same evening, completing
his final 26-mile, 385-yard run at the age of 77.

A year after they met, Leon offered a romantic proposal to the woman he hoped
would become his wife: “I’d really like to marry you,” he explained, “but I just
don’t want the fuss and bother of preparing for a wedding.” “So then let’s just get
married,” his now-fiancée replied. And 10 days later, on January 25, 1973, in the
Farkas home that had been the venue for their first date, they did.

The romantic times continued, as they headed off a few months later for a several-
month-long honeymoon in the city of Kyoto, a distant setting in which the new
couple, while eschewing the nonkosher Japanese cuisine (they subsisted there on
bananas, rice, and peanut butter), thoroughly enjoyed Japanese cultural, botanical,
and mathematical offerings. It was also the city in which a local physician informed
Leon, in his best English, that “Mrs. Ehrenpreis would ‘not, not’ be giving birth in
February of the following year” to the couple’s first child.

It would be a number of years before they would return. Indeed it was only when
that eldest child turned 15 that Leon and Ahava would take four of their children, five
suitcases of clothing, and six boxes of matzah, granola, tuna fish, pasta, and other
staples sufficient to feed six kosher-only individuals for 4 weeks, and fly across the
horizon to the Land of the Rising Sun.

Takahiro Kawai, professor emeritus at Kyoto University, later described that
first meeting between him and the man whose “fundamental principal” had been
“a guiding principle for many young analysts, including me. . . When I first met
Leon. . . I got the impression that he was a kind man of sincerity. The impression
has continued until now.. . . I cannot forget the warm atmosphere full of intellectual
curiousity, which led to our [joint] paper. Another incident. . . is that I once happened
to notice that he had not taken anything [to eat] for two days and that the reason was
that he was dubious about the date of the [Jewish] fast day in Kyoto due to the effect
of the International Date Line. . . .”

One of the hallmarks of Leon’s uniqueness was the fact that while he remained
dedicated to every detail of his religious observance, he never saw that as an obstacle
to being open to all; indeed his friends, colleagues, even those who met him only
briefly, would reflect on the broad spectrum of his interests—from classical music
to the great works of Western literature to Aramaic grammar—and of his openness
to new ideas, new people, and new experiences within the consistent framework of
his steadfast principles. As his close friend Hershel Farkas would later write about
him, “Ehrenpreis’s diversity extended way beyond mathematics. He was a pianist, a
marathon runner, a talmudic scholar, and above all a fine and gentle soul.”

Over the first two decades of their marriage, Leon, the man who had told Alan
Taylor that he wished to have “as many children as a baseball team,” would, in part-
nership with his wife, Ahava, raise their three girls and three boys: Nachama Yael
(b. 1974), Raphael David (b. 1975), Akiva Shammai (b. 1977), Bracha Yehosheva
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(Beth, b. 1983), Saadya (b. 1984), Yocheved Yetta (b. 1986). Their gang of eight—
these six children along with their two older sisters—believed that summer and
semester itineraries were built around sabbaticals, university schedules, and AMS
conferences in Berkeley, Bowdoin, Jerusalem, and Japan, and were bewildered
to discover that their elementary-school peers did not categorize their playdate
options as “commutative,” count to a “google” (that was before the Internet!), or
dismiss errors as “trivial” in casual conversation. Each one went through the third-
grade experience of informing his or her science teacher that her explanation of
Copernican heliocentrism failed to take into account new perspectives on the solar
system achieved by Einstein’s Theory of Relativity.

The closing of Yeshiva University’s graduate arts and science school in 1984
left Leon in a quandary: What would become his new mathematical “home”? His
old friend Donald Newman rose to the occasion, encouraging Leon to join him
at Temple University in Philadelphia, whose faculty Newman had joined in 1976.
Leon formally accepted the offer of a position at Temple, where he remained for
what would be his longest period in a single university: 26 years, until his death in
2010. So Flotz & Glock were back together again, each with his own style in their
shared commitment to mathematics. Jane Friedman later recalled that

“Dr. Newman paid more attention to the little details, so Dr. Ehrenpreis might be lecturing
and say something like “the answer is this, or maybe this plus or minus one” and Dr.
Newman would be in the back of the room yelling at him to get it right. You don’t often
think of professors yelling at each other over the heads of the students, but those two did it,
with affection.”

The two friends, who had been born just two months apart in 1930, would ultimately
travel along the same path through high school, university, and their academic
positions, their lives remaining intertwined until Newman’s death on March 28,
2007, a loss greatly mourned by “Glockenspiel,” who eulogized his lifelong friend
at Newman’s memorial service.

One of the Leon’s Ph.D. students at Temple, Tong Banh, recalled the details of
his mentor’s years at Temple, depicting him best as “a person who preferred ‘soft’
solutions to human problems. . . I remember one day when we were approached
by a beggar in the street. Leon immediately drew out a handful of quarters and
handed them to him. . . ” On the other hand, Banh emphasized, Leon was not at all
“soft” when it came to mathematics, reviewing papers for potential publication and
writing student letters of recommendation with a characteristic intellectual integrity
and perfectionism that demanded the highest standards of academic achievement.

“But at Temple University,” Banh described, “people mostly saw only the
‘soft’ part of his personality. He was extremely flexible in trying to accommodate
everybody who ever needed anything from him.”

Sylvain Cappell once asked Leon whether by usually taking the local train from
NY to Philadelphia he didn’t risk arriving late. Leon replied that, “in all the years
I’ve been teaching at Temple, I’ve never arrived late.” Sylvain couldn’t help but
wonder how it was that Leon, not known for his impeccable promptness, had
achieved such a stellar punctuality record. Replied Leon: “Because class starts when
I arrive.”
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In 1987, Leon and Bob Gunning of Princeton University directed the American
Mathematical Society Theta Functions conference, which was held at Maine’s
Bowdoin College. Gunning later recalled their work together in a eulogy he wrote
for Leon:

The opportunity I had to work most closely with him was in organizing and managing
the Theta Functions conference at Bowdoin College in the summer of 1987. I had
experienced Leon’s energy and enthusiasm before, and was not too surprised, although a bit
overwhelmed, by the intensity with which he threw himself into organizing the conference
schedules and the participants, as well as the AMS and NSF and who knows what foreign
organizations for the participants coming from abroad; but it was an exhausting effort even
to keep track of what we were doing. What did surprise me, although really it should not
have, was the remarkable breadth of Leon’s interests, and the depth with which he really
understood what was going on in so many areas that the conference covered. I could not
have found a better colleague to join in running a conference on that topic; and I am sure
that I learned much more from Leon about so many aspects of theta functions than he did
from me. Like so many other friends and colleagues, I shall miss his wild, but surprisingly
often successful, ideas about how to approach problems, and his eagerness to talk about,
and think about, a wide range of mathematics.

Two years later, in June 1989, Leon’s student, Carlos Berenstein, and “grand-
student,” Daniele Struppa, organized a 60th birthday conference for him in the
southern Italian coastal town of Cetraro. At the conference, entitled, “Geometrical
and Algebraical Aspects in Several Complex Variables,” Leon gave the keynote
speech and a beautiful presentation on extension of solutions of partial differential
equations, a topic that he had investigated for many years, and to which he made
lasting contributions.

Struppa, who is today chancellor of California’s Chapman College, recalled how
Leon used to dine in his room, since the picturesque Calabria region did not have
an available source for kosher food. So, the night that the participants wished to
surprise the “birthday boy” with a formal dedication of the conference to him, they
had to lure him down on a pretext to the dining room where the celebration awaited.
He also remembered the conference as the time Leon asked Struppa’s mother for
help in having a uniquely designed candelabra, with ten branches (one for each
member of the family), crafted as a gift for Ahava. The result, a one-of-a-kind—
immensely heavy—Italian silver showpiece, was carried by Leon from Milan back
to Brooklyn, to take a place of pride as his wife’s Sabbath candelabra.

That same year, Leon attended the integral geometry and tomography conference
in Arcata, California, where for the first time he met Peter Kuchment, who later
recalled:

It was my very first trip outside the former USSR, and it felt like being in a dream. . .
Another shock during my first visit and my emigration soon afterwards, was that names
like Leon Ehrenpreis. . . which obviously existed only on book covers, or at least referred
to semi-gods somewhere well above this Earth, corresponded to mere mortals. . . Meeting
Leon in Arcata was my first experience of this kind. . . Just like everyone else, I loved
Leon from the first encounter. His unfailing cheerful disposition and his abundant eagerness
to discuss any kind of mathematics at any time made every occasion we met feel like a
holiday. . . Leon always liked to crack or to hear a good joke. He was smiling most of the
time that I saw him. It was a joy to discuss with him not only mathematics, but also religion,
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music, or anything else. What made this even more enjoyable, was that in my experience he
never imposed his opinions, beliefs or personal problems (and he unfortunately had quite
a few) on others. It was relaxing to talk to him. He must have been a wonderful Rebbe
[teacher/spiritual guide]. . .

He was indeed “a wonderful Rebbe,” asserted Temple colleague and dear friend
Marvin Knopp, recalling how, “when Leon arrived at our department, he walked
into each person’s office and asked what work he or she was doing. If he didn’t
find it interesting, he never returned—but if he did, he kept coming back over and
over again.” Throughout his years at the university, Leon—always with a mug of
tea in his hand—could constantly be found encouraging, inspiring, talking, and
teaching, playing a formative role in the development of his own department and
the mathematical community of his time. “He was our mentor,” Knopp described,
“giving us projects to do and problems to solve, spreading enthusiasm and ideas
every day, and inspiring our research. That’s the kind of effect of he had—and not
too many people have that kind of impact.

“Leon had a quality of walking in halfway through a lecture—and rapidly
understanding the material far better than the lecturer himself. This happened to
me once: he came into my talk after I had already covered the board with figures,
saying something about the train being late—and within two minutes he was asking
me questions I couldn’t answer!”

Jane Friedman, one of the Leon’s Ph.D. students at Temple, later eulogized her
advisor, writing:

“I have the career and the life that I do, only because of his help, his kindness and his
support. And I am truly grateful to him. As we all know, he was a brilliant mathematician.
I feel tremendously privileged to have studied with him and to have had the benefit of his
deep insights. Dr. Ehrenpreis was not only an inspiration to me as a mathematician, he was
inspirational as a person.”

Later on, Jane described Leon as someone who

“had an amazing gift for seeing the big picture, how concepts fit together in a deep way.
He was able to understand mathematics in a way which could be transformative. This
was a gift he gave his students—a vision of what it was to understand deeply, to see the
forest and not the trees. I was inspired by him to always try to understand deeply, not
superficially, and to get beyond the details. I was also inspired by him as a person, by his
evident love for his wife and children, by his commitment to his community and by his
joy in his family. . . Nonmathematicians and beginning students have a superficial view of
mathematics; they have mostly experienced math as computation and symbol manipulation.
Professor Ehrenpreis helped me grow beyond this beginner’s view of math. I will never
understand as much and as deeply as he does, but because of him I understand more and
more deeply than I would otherwise.”

Jane told his daughter that “your father got all the important things right and many
of the nonimportant things wrong. He always knew which was which.”

In March of 1992, Leon officiated at the wedding of his eldest daughter, the first
of three daughters at whose weddings he would officiate. Immediately afterwards,
he was confronted with what would become the long-term illness of his son Akiva,
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a medical situation that would represent a major challenge to Leon and his family
for years to come—although Leon, with his consummate optimism, never gave up
hoping for his son’s full recovery.

Peter Kuchment recalled Leon’s frequent visits:

It is well known that he was an avid runner and had run the NY marathon every year since
its inception in 1970 till 2007. He also liked to run during his visits, so when he visited me
in Wichita, Kansas, I would sometimes pick a room for him in a hotel seven miles away
from the campus, with a sufficiently attractive route to run between the two. So, after his
lecture, or just a working day, he would give me his things to take back to the hotel, while
he would run. Every time I would meet him after the run, he would have some new ideas
(and he had so many great ideas!) about the problem we were working on at the time. Once,
when he came back and I was waiting for him in the hotel’s lobby, the receptionist at the
front desk asked him: “Did you really run all the way from the campus?” Leon’s reply was:
“What else could I do? He refused to give me a ride”—and he pointed at me. I think I lost
all the receptionist’s respect at that time. . .

On April 6 and 7, 1998, “Analysis, Geometry and Number Theory: A Conference
Celebrating the Mathematics of Leon Ehrenpreis” took place in Philadelphia, under
the auspices of Temple University and the National Science Foundation. The 2-day
event culminated in an honorary banquet with Leon’s entire family in attendance.
The proceedings of the conference were published by the American Mathematical
Society 2 years later.

During the decade from 1993 until its publication in 2003, Leon devoted himself
to the writing of his second major work, The Universality of the Radon Transform.
The title, his choice after deep consideration, was one he felt reflected his profound
belief that “mathematics is poetry,” as were the words he composed to his wife for
the book’s dedication:

Many are the
Inspirations of the heart
But that borne by love
Surpasses all the rest

In this volume, he expanded upon the concept of the Radon transform, an area
with wide-ranging applications to X-ray technology, partial differential equations,
nuclear magnetic resonance scanning, and tomography. In covering such a range of
topics, Leon focused on recent research to highlight the strong relationship between
the pure mathematical elements and their applications to such fields as medical
imaging.

Eric Todd Quinto, a friend and collaborator, referred to the book, to which he
and Peter Kuchment wrote an appendix, as reflecting Leon’s “emphasis on unifying
principles.” Quinto explained that in the book, Leon “developed several overarching
ideas and used them to understand properties of the transforms, such as range
theorems and inversion methods. . . The book draws connections between several
fields, including complex variables, PDE, harmonic analysis, number theory, and
distribution—all of which benefitted from his contributions over the years.”
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Leon was diagnosed with prostate cancer in 2003. However, he chose to reveal
this information to no one outside his immediate family, because, he stated firmly,
“I don’t want people to view me as a sick person.” Indeed, over the next few years,
he maintained his regular routine: He continued to commute on the train to Temple,
3 hours each way; he traveled to conferences and seminars; he enjoyed the births of
his grandchildren. He continued running the marathon until 2007, completing this
26-mile, 385-yard race for the last time at the age of 77.

In the summer of 2008, he was invited to attend the conference in honor of Jan
Bowman’s birthday in Stockholm. At the age of 78 he was an honored guest who
was surrounded throughout the week by young scientists eager to hear his ideas.
Two months later, he took what would be his last overseas trip, to Israel, where he
found opportunities for mathematical tête-à-têtes while celebrating the birth of a
granddaughter. So it was that Leon continued to live life to the fullest, reflecting,
as Shlomo Sternberg would later describe, that “vitality that perhaps for us best
describes Leon. The years passed; life transpired with its joys and sorrows. For
Leon and his family, the sorrows were of such immensity that would otherwise
crush anyone. But Leon bore his with unimaginable courage and responsibility.
Courage that, we dare say, none of us could have possibly comprehended, let alone
mustered. But despite it all, and no matter what transpired, Leon retained every bit
of the vitality of our earlier years. His mathematical work continued. His, along with
Ahava’s, loving care and unstinting dedication to his family continued. His kindness
and loyalty to us, his friends, continued. It was who he was.”

Leon spent the Fall 2008 semester on sabbatical at Rutgers University, where he
had, in the words of faculty member Steve Miller, “a big fan base,” with students
and faculty alike affording him a deep respect. Both before and after his sabbatical
term, he spent quite a bit of time at Rutgers, working primarily with both Miller and
Abbas Bahri. He was active in the nonlinear analysis and PDE seminars as well as
in the number theory seminar that Miller ran.

Two years later, on Tuesday, April 20, 2010, at 1:40 pm, Leon was presenting
what would ultimately be his final lecture, in Rutgers mathematics department room
705, giving a continuation of earlier talks in that seminar on analytically continuing
complex functions in a strip in the complex plane. A few minutes into the talk, Leon
collapsed: he had suffered a stroke. Bahri and Miller rushed him to the hospital,
where, as Steve Miller recalled, “many of us waited hours even without a chance to
see him, just to be near this great man.”

Subsequently, with his usual optimism and force of character, Leon devoted
himself to restoring his health, all with his characteristic good humor. Even then
he continued to “talk math” and to challenge the idea of giving up teaching,
determined to “never retire.” Indeed he had not yet formally retired from his position
as professor of mathematics at Temple University when, on August 16, 2010, having
suffered heart failure, he passed away, at Sloan-Kettering Memorial Hospital in
New York City.

Six years before Leon’s death, his son, Akiva, whose lifetime of ill-health,
beginning with the discovery of a brainstem tumor at the age of 14, remained a
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relentless challenge which Leon consistently faced with the greatest optimism, had
suffered a catastrophic choking episode that left him in a long-term coma. Leon,
along with the entire family, had remained devoted to Akiva throughout this painful
period. One year and two months after Leon’s death, on October 23, 2011, Akiva
too passed away.

One month after Leon’s passing, Abbas Bahri of Rutgers knocked on the door of
the home in Brooklyn that had been his primary residence for 30 years. In his hand
was a copy of the newest issue of the journal Advanced Nonlinear Studies with the
entry for an article, entitled “Microglobal Analysis,” by Dr. Leon Ehrenpreis. To his
very last day he had continued to think, to create, to develop new ideas, and to write
and transmit those ideas for future generations; he would truly be, as Hershel Farkas
later wrote, “sorely missed by the mathematical community as both a scholar and a
gentleman.”

Several months later, paying tribute to Leon at the Memorial Conference at
Temple University held during the year after Leon’s death, Bahri wrote:

“There are several good mathematicians, as well as there are several important mathemati-
cians. But the fundamental ones are few. Leon is one of them. . . Leon has passed away; but
the influence of his mathematical work is just at its beginning. Leon, I felt, was different
because he clearly has longed to be a deeper person, a person with a soul and with a quest
for another world, for a better and different world. . . . As Leon Ehrenpreis starts to find his
final place in history, these are the two fundamental facts that make him stand out among us:
the importance and depth of his work in mathematics and, beyond this work, the constant
search for another, a better and more moral world.”

“Leon Ehrenpreis: A Mathematical Conference in Memoriam” took place at
Temple University on November 15 and 16, 2010. The panel of speakers throughout
the 2-day event included Charles Epstein, University of Pennsylvania; Erik For-
naess; University of Michigan; Rutgers faculty Xiaojun Huang, Henryk Iwaniec,
and Francois Treves; Joseph Kohn and Eli Stein of Princeton; Temple professors
Igor Rivin and Cristian Gutierrez, and Peter Sarnak of the Institute for Advanced
Study. Perhaps the most powerful testament to all that he had been, as mathematician
and as mentor, was expressed by one Ph.D. student: “The joy of solving a problem
is gone,” Tong Banh mourned, “because I cannot share the solution with Professor
Ehrenpreis.”

There is much more that could said about Dr. Leon Ehrenpreis, more elements to
portray, more anecdotes to relate, more tales to tell. This man, who touched so many
lives and shaped so much of modern mathematics, lived a personal and professional
life that continues to impact, to inform, and to inspire. He truly was—and remains—
the “stuff of stories,” for the reason that, as Sylvain Cappell described:

Part of what makes “Leon Stories” so memorable – and why mathematicians delight in
them—is that Leon juggled two quite opposite approaches to rule and structures. To the
common, nuisance strictures and structures of quotidian life, Leon paid singularly little
attention. But he accorded unbounded respect and love for the structures of mathematics
and Judaism, and combined these with unbounded human insight and responsiveness. We
will treasure our “Leon Stories” and tell them to our students, but they can hardly convey
the unbounded joy he’d shared with us.



Differences of Partition Functions:
The Anti-telescoping Method

George E. Andrews

Dedicated to the memory of the great Leon Ehrenpreis.

Abstract The late Leon Ehrenpreis originally posed the problem of showing that
the difference of the two Rogers–Ramanujan products had positive coefficients
without invoking the Rogers–Ramanujan identities. We first solve the problem
generalized to the partial products and subsequently solve several related problems.
The object is to introduce the anti-telescoping method which is capable of wide
generalization.

1 Introduction

At the 1987 A.M.S. Institute on Theta Functions, Leon Ehrenpreis asked if one
could prove that
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has nonnegative coefficients in its power series expansion without resorting to the
Rogers–Ramanujan identities.

In [4], Rodney Baxter and I answered this question “sort of.” Actually, the point
of our paper was to show that if one begins trying to solve Ehrenpreis’s problem,
then there is a natural path to the solution which has the Rogers–Ramanujan
identities as a corollary. Indeed, as we say there [4, p. 408]: “It may well be objected
that we presented a somewhat stilted motivation. Indeed if [the Rogers–Ramanujan
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2 G.E. Andrews

identities] were not in the back of our minds, we would never have thought to
construct [the path to the solution of Ehrenpreis’s problem].” Subsequently in 1999,
Kadell [9] constructed an injection of the partitions of n whose parts are � ˙2

.mod 5/ into partitions of n whose parts are � ˙1 .mod 5/. Finally in 2005,
Berkovich and Garvan [6, Sect. 5] improved upon Kadell’s work by providing
ingenious, injective proofs for an infinite family of partition function inequalities
related to finite products (including Theorem 1 below).

In this chapter, we introduce a new method which mixes analytic and injective
arguments. We illustrate the method on the most famous problem, Theorem 1. We
note that Theorem 2 is also a direct corollary of [6, Sect. 5].

Theorem 1 (The Finite Ehrenpreis Problem, cf. [6]). For n � 1, the power series
expansion of

nY

j D1

1

.1 � q5j �4/.1 � q5j �1/
�

nY

j D1

1

.1 � q5j �3/.1 � q5j �2/

has nonnegative coefficients.

We should note that the original question can be answered trivially if one invokes
the Rogers–Ramanujan identities [5, p. 82] because

1Y

nD1

1

.1 � q5n�4/.1 � q5n�1/
�

1Y

nD1

1

.1 � q5n�3/.1 � q5n�2/

D
 

1 C
1X

nD1

qn2

.1 � q/.1 � q2/ � � � .1 � qn/

!

�
 

1 C
1X

nD1

qn2Cn

.1 � q/.1 � q2/ � � � .1 � qn/

!

D q C
1X

nD2

qn2

.1 � q/.1 � q2/ � � � .1 � qn�1/
; (1.1)

which clearly has nonnegative coefficients.
However, there is no possibility of proving Theorem 1 in this manner because

there are no known refinements of the Rogers–Ramanujan identities fitting these
finite products. A new method is required.

Our method of proof might be called “anti-telescoping.” Namely, we want to
write the first line of (1.1) as

nX

j D1

.Pj � Pj �1/ (1.2)
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where each Pi is a finite product with

P0 D
nY

j D1

1

.1 � q5j �3/.1 � q5j �2/

and

Pn D
nY

j D1

1

.1 � q5j �4/.1 � q5j �1/
:

We construct the Pi so that they gradually change from P1 to Pn. The proof then
follows from an intricate, term-by-term analysis of (1.2).

In Sect. 2, we construct (1.2) and provide some analysis of the terms. In Sect. 3,
we provide an injective map of partitions to show that each term of the constructed
(1.2) has at most one negative coefficient. From there the proof of Theorem 1 is
given quickly in Sect. 4.

We wish to emphasize that anti-telescoping is applicable to many problems of
this nature. To make this point, we provide three further examples.

Theorem 2 (Finite Göllnitz-Gordon). For n � 1, the power series expansion of

nY

j D1

1

.1 � q8j �7/.1 � q8j �4/.1 � q8j �1/
�

nY

j D1

1

.1 � q8j �5/.1 � q8j �4/.1 � q8j �3/

has nonnegative coefficients.

This theorem falls to the anti-telescoping method much more easily than the finite
Ehrenpreis problem (Theorem 1).

Theorem 3 (Finite little Göllnitz). For n � 1, the power series expansion of

nY

j D1

1

.1 � q8j �7/.1 � q8j �3/.1 � q8j �2/
�

nY

j D1

1

.1 � q8j �6/.1 � q8j �5/.1 � q8j �1/

has nonnegative coefficients.

This theorem requires a rather intricate application of anti-telescoping. We have
chosen it to illustrate the breadth of this method.

We note that the partial products in Theorem 2 are from the Göllnitz-Gordon
identities [2, (1.7) and (1.8) pp. 945–946] and the partial products in Theorem 3 are
from identities termed by Alladi, The Little Göllnitz identities, [7, Sätze 2.3 and 2.4,
pp. 166–167] (cf. [3, pp. 449–452]).

We conclude our applications of anti-telescoping by proving a finite version
of differences between partition functions from the Rogers–Ramanujan–Gordon
theorem ([8], cf. [1]). Again, the proof goes without difficulty; however, a few cases
must be excluded including the result in Theorem 1.
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Theorem 4 (Finite Rogers–Ramanujan-Gordon). For k
2

> s > r � 1 and
n � 1, the power series expansion of

knY

j D1
j 6�0;˙s .mod k/

1

1 � qj
�

knY

j D1
j 6�0;˙r .mod k/

1

1 � qj

has nonnegative coefficients except possibly in the case s prime and s D r C 1 and
k D 3r C 2.

The final section of this chapter provides a number of open problems.

2 Anti-telescoping

In this short section, we construct the telescoping sum (1.2). Namely,

Pj D 1

.q; q4I q5/j .q5j C2; q5j C3I q5/n�j

(2.1)

where

.aI q/s D .1 � a/.1 � aq/ � � � .1 � aqs�1/;

and

.a1; a2; : : : ; ar I q/s D
rY

iD1

.ai I q/s:

Clearly,

Pn D 1

.q; q4I q5/n

and

P0 D 1

.q2; q3I q5/n

:

So,

1

.q; q4I q5/n

� 1

.q2; q3I q5/n

D
nX

j D1

.Pj � Pj �1/: (2.2)

We let

T .n; j / WD Pj � Pj �1:
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So for 1 � j � n,

T .n; j / D .1 � q5j �2/.1 � q5j �3/ � .1 � q5j �4/.1 � q5j �1/

.q; q4I q5/j .q5j �3; q5j �2I q5/nC1�j

D q5j �4.1 � q/.1 � q2/

.q; q4I q5/j .q5j �3; q5j �2I q5/nC1�j

D q5j �4.1 � q2/

.q6I q5/j �1.q4I q5/j .q5j �3; q5j �2I q5/nC1�j

(2.3)

and for 2 � j � n

T .n; j / D q5j �8

�
q4

1 � q4
� q6

1 � q6

�

� 1

.q11I q5/j �2.q9I q5/j �1.q5j �3; q5j �2I q5/nC1�j

: (2.4)

So for n � 1

T .n; 1/ D q

.1 � q3/.1 � q4/.q7; q8I q5/n�1

; (2.5)

for n � 2

T .n; 1/ C T .n; 2/ D q C q4 C q5 C q6 C q9

.1 � q6/.1 � q7/.1 � q8/.1 � q9/.q12; q13I q5/n�2

; (2.6)

for n � 3,

T .n; 1/ C T .n; 2/ C T .n; 3/

D q C q11 C q21

.1 � q8/.1 � q9/.1 � q11/.1 � q14/.q12; q13I q5/n�2

C q4 C q11

.1 � q/.1 � q9/.1 � q11/.1 � q14/.q12; q13I q5/n�2

; (2.7)

and for n � 4

T .n; 1/ C T .n; 2/ C T .n; 3/ C T .n; 4/

D q C q12

.1 � q3/.q12I q/3.q16I q/4.q22; q23I q5/n�4

C .2q11 C q21/.1 C q3 C q6 C q9 C q12 C q15 C q18/

.q11I q/4.q16I q/4.q22; q23I q5/n�4
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C q5 C q13

.1 � q3/.q11I q/4.1 � q16/.q18I q/2.q22; q23I q5/n�4

C q6 C q9 C q10 C q15 C q16 C q19 C q20

.1 � q3/.q11I q/4.q16I q/2.1 � q19/.q22; q23I q5/n

: (2.8)

Lemma 5. For n � 4, the first terms of the power series expansion are given by

T .n; 1/ C T .n; 2/ C T .n; 3/ C T .n; 4/ D q C q4 C q5 C q6 C q7 C q8 C 2q9 C � � �

and the remaining coefficients are all � 2.

Proof. By direct computation, we may establish that the assertion of Lemma 5 is
valid through the first seventeen terms.

Next, we note that the coefficients in question must all be at least as large as
those of

q C q12

.1 � q3/
C q5 C q6 C q9 C q10 C q15 C q19 C q20

.1 � q3/

D q C q4 C q5 C q6 C q7 C q8 C 2q9 C 2q10 C q11 C 3q12 C 2q13 C q14

C4q15 C 2q16 C q17 C 2q18

1 � q
C q18.2 C q/

1 � q3
;

and the coefficients in this last expression are all � 2 beyond q17 owing to 2q18

.1�q/
.

3 The Injection

Our first goal is to interpret T .n; j / as given in (2.4) as the difference between two
partition generating functions.

First, we define a set of integers for n � j � 5

S.n; j / :D f9; 11; 14; 16; 19; : : : ; 5j � 4; 5j � 1g
[ f5j � 3; 5j � 2; 5j C 2; 5j C 3; : : : ; 5n � 3; 5n � 2g

We say that 4-partitions are partitions whose parts lie in f4g [ S.n; j / with the
condition that at least one 4 is a part.

We say 6-partitions are partitions whose parts lie in f6g [ S.n; j / with the
condition that at least one 6 is a part.

We let p4n;j .m/ (resp. p6n;j .m/) denote the number of 4-partitions (resp. 6-
partitions) of m.
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Thus, by (2.4) and the standard construction of product generating functions [2,
p. 45], we see that for n � j � 4

T .n; j / D q5j �8
X

m�0

�
p4n;j .m/ � p6n;j .m/

�
qm (3.1)

Lemma 6. For m � 0, n � j � 5,

p4n;j .m/ � p6n;j .m/ D
(

�1; if m D 6

� 0 if m ¤ 6:

Proof. Clearly for m � 6, p4n;j .m/ D 0 except for m D 4 when it is 1, and
p6n;j .m/ D 0 except for m D 6 when it is 1. Hence, Lemma 6 is proved for m � 6.
From here on, we assume m > 6.

We now construct an injection of the 6-partitions of m into the 4-partitions of m

to conclude our proof.

Case 1. There are 2k 6’s in a given 6-partition. Replace these by 3k 4s.

Case 2. There are .2k C 1/ 6s in a given 6-partition (with k > 0). Replace these by
.3k � 2/ 4s and one 14.

Case 3. The given 6-partition has exactly one 6. Since m > 6, there must be a
smallest summand coming from S.n; j /. Call this summand the second summand.
We must replace the unique 6, the second summand, and perhaps one or two other
summands by some fours and some elements of S.n; j / that are (except in the
instances indicated with .�/) no larger than the second summand with the added
proviso that either

1. The number of 4s is � 2 .mod 3/ or
2. The number of 4s is � 1 .mod 3/ and no 14 occurs in the image

The table below provides the replacement required in each case. The first column
describes the pre-image partition; the single 6 and the second summand are always
given explicitly as the first two summands. After the few summands that are to be
altered are listed, there is a parenthesis such as (�11, no 14s) which means that the
remaining summands are taken from S.n; j /, all are �11 and there are no 14s. The
second column describes the image partition. The parts indicated parenthetically are
unaltered in the mapping.

pre-image partition �! image partition
.�/ 6 C 9 C .� 11; no 14’s) �! 4 C 11 C .� 11; no 14’s)
.�/ 6 C 9 C 9 C .� 11; no 14’s) �! 4 C 9 C 11 C .� 11; no 14’s)

6 C 9 C 9 C 9 C 11 C .� 9/ �! eleven 4’s C.� 11/

6 C 9 C 9 C 9 C 16 C .9’s or � 16) �! ten 4’s C9 C .9’s or � 16)
6 C 9 C 9 C 9 C .9’s or � 16) �! 4 C 9 C 9 C 11 C .9’s or � 16)
6 C 9 C 14 C .� 9/ �! 4 C 4 C 4 C 4 C 4 C 9 C .� 9/

6 C 11 C .� 11/ �! 4 C 4 C 9 C .� 11/
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.�/ 6 C 14 C .� 16/ �! 4 C 16 C .� 16/

6 C 14 C 14 C .� 14/ �! 4 C 4 C 4 C 4 C 4 C 14 C .� 14/

6 C 16 C .� 16/ �! 4 C 4 C 14 C .� 16/

6 C 19 C .� 19/ �! 4 C 4 C 4 C 4 C 9 C .� 19/

6 C 21 C .� 21/ �! 4 C 4 C 19 C .� 21/

6 C 24 C .� 24/ �! 4 C 4 C 11 C 11 C .� 24/

6 C 26 C .� 26/ �! eight 4’s C.� 26/

6 C 29 C .� 29/ �! 4 C 4 C 4 C 4 C 19 C .� 29/

Now for j � i > 6

6 C .5i � 4/ C .� 5i � 4/ �! 4 C 4 C .5i � 6/ C .� 5i � 4/

6 C .5i � 1/ C .� 5i � 1/ �! 4 C 4 C 11 C .5i � 14/

C.� 5i � 1/

(remember that j � 5)

.�/ 6 C .5j � 3/ C .� 5j � 3/ �! 4 C .5j � 1/ C .� 5j � 3/

6 C .5j � 2/ C .� 5j � 2/ �! 4 C 4 C .5j � 4/ C .� 5j � 2/

6 C .5j C 2/ C .� 5j C 2/

if j D 5 �! 4 C 4 C 11 C 14 C .� 5j C 2/

if j D 6 �! 4 C 9 C 9 C 16 C .� 5j C 2/

if j > 6 �! 4 C 4 C 16 C .5j � 16/

C.� 5j C 2/

6 C .5j C 7/ C .� 5j C 7/ �! 4 C 4 C 4 C 4 C .5j � 3/

C.� 5j C 2/

and for i � j C 3

6 C .5i � 3/ C .� 5i � 3/ �! five 4’s C.5i � 17/ C .� 5i � 3/

6 C .5j C 3/ C .� 5j C 3/

if j D 5 �! 4 C 4 C 4 C 4 C 9 C 9

C.� 5j C 3/

if j � 6 �! five 4’s C.5j � 11/ C .� 5j C 3/

6 C .5i C 8/ C .� 5j C 8/ �! 4 C 4 C 4 C 4 C .5j � 2/

C.� 5j C 8/

6 C .5j C 13/ C .� 5j C 13/ �! five 4’s C.5j � 1/ C .� 5j C 13/

and for i � j C 4

6 C .5i � 2/ C .� 5i � 2/ �! 4 C 4 C 9 C 9 C .5i � 22/

C.� 5i � 2/

The important points to keep in mind in checking for the injection are (A) every
possible pre-image is accounted for and (B) there is no overlap among the images.

Point (A) follows from direct inspection of the construction of the first column
where each line accounts for every possible second summand.

Point (B) requires serious scrutiny. We note that if two partitions have a different
number of 4’s, then they cannot be the same partition. There are single lines where
the image has 11, 10, 8, 7 fours, so these are unique. There are five lines with five
4s, and inspection of these reveals they are all different. There are five lines with
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four 4s, and they all are clearly different in the explicitly given parts. There are ten
lines with two 4s, and inspection of these reveals only two lines of possible concern,
namely,

6 C .5j � 2/ C .� 5j � 2/ �! 4 C 4 C .5j � 4/ C .� 5i � 2/

and at j > 6

6 C .5j C 2/ C .� 5j C 2/ �! 4 C 4 C 16 C .5j � 16/ C .� 5j C 2/

Here, the upper line if j were 4 would be 4 C 4 C 16 C .� 18/ while the bottom
line is 4C4C16C.5j �16/C.� 5j �2/, and so we would have a possible identity
of images if j were 4. Fortunately, j is specified to be � 5. There are seven lines
with a single 4. These seven can be displayed with their smallest parts in evidence

4 C 11 C � � �
4 C 9 C 11 C � � �
4 C 16 C � � �
4 C .5j � 1/ C � � �
4 C 9 C 9 C 16 C � � �
4 C 9 C 16 C � � � I

so clearly, all of these lines are distinct. Thus, we have constructed the required
injection.

4 Proof of Theorem 1

For n D 1,

1

.1 � q/.1 � q4/
� 1

.1 � q2/.1 � q3/
D q

.1 � q3/.1 � q4/
: (4.1)

For n D 2,

1

.1 � q/.1 � q4/.1 � q6/.1 � q9/
� 1

.1 � q2/.1 � q3/.1 � q7/.1 � q8/

D q C q4 C q5 C q6 C q9

.1 � q6/.1 � q7/.1 � q8/.1 � q9/
: (4.2)
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For n D 3,

1

.q; q4I q5/3

� 1

.q2; q3I q5/3

D T .3; 1/ C T .3; 2/ C T .3; 3/: (4.3)

For n D 4,

1

.q; q4I q5/4

� 1

.q2; q3I q5/4

D T .4; 1/ C T .4; 2/ C T .4; 3/ C T .4; 4/: (4.4)

The nonnegativity of the power series coefficients in (4.1) and (4.2) is obvious by
inspection. The nonnegativity for (4.3) follows directly from (2.7) and that in (4.4)
follows directly from (2.8).

So for the remainder of the proof we can assume n � 5. Hence,

1

.q; q4I q5/n

� 1

.q2; q3I q5/n

D T .n; 1/ C T .n; 2/ C T .n; 3/ C T .n; 4/ C
nX

j D5

T .n; j /

D T .n; 1/ C T .n; 2/ C T .n; 3/ C T .n; 4/

C
nX

j D5

q5j �8

1X

mD0

�
p4n;j .m/ � p6n;j .m/

�
qm:

With the T .n; 1/ CT .n; 2/ CT .n; 3/ CT .n; 4/ term, we know by Lemma 5 that
all coefficients are �2 from q9 onward. The j -th term in the sum has exactly one
negative coefficient which is �1 and occurs as the coefficient of q5j �2 .5 � j �
n/, and these single subtractions of 1 occur against terms in T .n; 1/ C T .n; 2/ C
T .n; 3/ C T .n; 4/ where the corresponding coefficient is �2. Hence, all terms have
nonnegative coefficients.

Corollary 7. In the power series expansion of

1

.q; q4I q5/n

� 1

.q2; q3I q5/n

the coefficient of qm is positive except for the cases n D 1 with m D 0, 2, 3, and 6

and n � 2 with m D 0; 2; 3.

Proof. For n D 1

1

.1 � q/.1 � q4/
� 1

.1 � q2/.1 � q3/
D q C q4 C q5 C q7

1 � q
C q13

.1 � q3/.1 � q4/
;

and clearly the only zero coefficients occur for q0, q2, q3 and q6.
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For n D 2

1

.1 � q/.1 � q4/.1 � q6/.1 � q9/
� 1

.1 � q2/.1 � q3/.1 � q7/.1 � q8/

D q C q4

1 � q
C q9 C q10 C q13 C q14 C q15

.1 � q6/.1 � q7/.1 � q8/.1 � q9/
C q11

.1 � q/.1 � q8/.1 � q9/

� q12.1 C q5 C q7 C q12/

.1 � q6/.1 � q8/.1 � q9/
C q13

.1 � q/.1 � q8/.1 � q9/
;

and now the only zero coefficients occur for q0, q2, and q3.
For n D 3, the assertion follows from (2.7).
For n � 4 we see that the proof of Theorem 1 shows that all the coefficients are

positive for qm with m � 9, and Lemma 5 together with the proof of Theorem 1
proves the result for m < 9.

5 Proof of Theorem 2

We define

gn D .q; q4; q7I q8/n

and

hn D .q3; q4; q5I q8/n:

Then Theorem 2 is the assertion that

1

gn

� 1

hn

has nonnegative coefficients. So

1

gn

� 1

hn

D 1

hn

�
hn

gn

� 1

�

D 1

hn

nX

j D1

�
hj

gj

� hj �1

gj �1

�

:D
nX

j D1

U.n; j /
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where

U.n; j / D hj �1

gj hn

�
.1 � q8j �5/.1 � q8j �4/.1 � q8j �3/

.1 � q8j �7/.1 � q8j �4/.1 � q8j �1
�

D q8j �7.1 C q/

.q9; q12I q8/j �1.q7I q8/j .q8j �5; q8j �3I q8/nC1�j .q8j C4I q8/n�j

and U.n; j / clearly has nonnegative coefficients.

6 Proof of Theorem 3

We have chosen this third theorem to illustrate some of the problems that can arise
using the anti-telescoping method and to show how to surmount arising difficulties.

If we were to follow exactly the steps in the proof of Theorem 2, we would
replace gn with .q; q5q6I q8/n and hn with .q2; q3; q7I q8/n. The resulting U.n; j / is
fraught with difficulties. U.n; 1/ has no negative coefficients, but for j > 1 U.n; j /

has scads of negative coefficients, many of which are not just �1 or �2. Thus, the
smooth ride of Sect. 5 or the “6’s�! 4’s” injection of Sect. 3 seems to become a
nightmare.

The secret is to adjust the anti-telescoping. Namely, we let

Gn D .q6; q9; q13I q8/n; (6.1)

and

Hn D .q7; q10; q11I q8/n; (6.2)

with

W.n; j / D
8
<

:

1
Hn�1.1�q/.1�q5/.1�q8n�2/

�
Hj

Gj
� Hj �1

Gj �1

�
; 1 � j < n

1
Hn�1

�
1

.1�q/.1�q5/.1�q8n�2/
� 1

.1�q2/.1�q3/.1�q8n�1/

�
if j D 0:

(6.3)

Then,

n�1X

j D0

W.n; j / D 1

.1 � q/.1 � q5/.1 � q8n�2/Gn�1

� 1

Hn�1.1 � q/.1 � q3/.1 � q8n�1/
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C 1

Hn�1

�
1

.1 � q/.1 � q5/.1 � q8n�2/

� 1

.1 � q2/.1 � q3/.1 � q8n�1/

�

D 1

.q; q5; q6I q8/n

� 1

.q2; q3; q7I q8/n

(6.4)

The advantage of this altered anti-telescoping is that the denominator factors .1�q/

and .1 � q5/ help reduce the terms with negative coefficients to at most one for the
W.n; j /.

Indeed,

W.1; 0/ D q.1 C q4/

.1 � q5/.1 � q6/.1 � q7/
; (6.5)

W.2; 0/ D 1

H1

�
q.1 C q4/

.1 � q14/.1 � q15/
C q7.1 C q4/

.1 � q3/.1 � q14/.1 � q15/

�
; (6.6)

and for n � 3,

W.n; 0/ D 1

Hn�1

�
q.1 C q4/.1 C q8n�3/ C q7.1 C q3/

.1 � q10/.1 � q8n�2/.1 � q8n�1/

C q13.1 � q8n�14/

.1 � q3/.1 � q10/.1 � q8n�1/.1 � q8n�2/

�
(6.7)

and the numerator factor .1 � q8n�14/ cancels with the same factor in Hn�1. Hence,
the nonnegativity of the coefficients of W.n; 0/ is clear upon inspection.

Next for n � 2,

W.n; 1/ D q6.1 C q3 � q5 � q6 � q9 � q10 C q12 C q15

Hn�1.1 � q5/.1 � q6/.1 � q9/.1 � q13/.1 � q8n�2/
(6.8)

and

1 C q3 � q5 � q6 � q9 � q10 C q12 C q15

D .1 � q5/.1 � q6/.1 � q9/ C q3.1 � q7/.1 � q13/ C q12.1 � q5/.1 � q9/

1 C q11
:

(6.9)

So

W.n; 1/ D q6
˚
.1 � q5/.1 � q6/.1 � q9/ C q3.1 � q7/.1 � q13/ C q12.1 � q5/.1 � q9/

�

Hn�1.1 � q5/.1 � q6/.1 � q9/.1 � q13/.1 � q8n�2/.1 C q11/
(6.10)
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and in light of the facts that (1) each factor 1 � qi in the numerator also appears
either explicitly in the denominator or in Hn�1 and (2) the factor of 1 � q11 from
Hn�1 combines with 1Cq11 to leave 1�q22 in the denominator, we see that W.n; 1/

has nonnegative coefficients for n � 2.
Now for n > j � 2,

W.n; j / D Hj �1q
8j �2

˚
.1 � q5/.1 � q8j C2/ C q3.1 � q3/.1 � q8j �2/

�

Hn�1.1 � q5/Gj .1 � q8n�2/

D q8j �2

.q8j �1; q8j C3I q8/n�j .q8j C10I q8/n�j �1Gj .1 � q8n�2/

Cq8j �5

�
q6

1 � q6
� q9

1 � q9

�
1

.q8j �1; q8j C2; q8j C3I q8/n�j

� 1

.1 � q5/.q14I q8/j �2.q17I q8/j �1.q13I q8/j

:D W1.n; j / C W2.n; j / (6.11)

Now it is immediate that W1.n; j / has nonnegative coefficients. Also because
1 � q6 is in the denominator, we see that the coefficient of q8j C4 is � 1. In addition,
because the only factors in the denominator with exponents � 11 are .1 � q6/ and
.1 � q9/, we see that the coefficient of q8j C9 in W1.n; j / is zero.

We are now in a position to show via an injection involving W1.n; j / that
W.n; j / has only one negative coefficient which is �1 and occurs for q8j C9. This
requires an analysis analogous to that in Sect. 3.

We define for n > j � 2

˙.n; j / :D f5; 13; 14; 17; 21; : : : ; 8j � 10; 8j � 7; 8j � 3; 8j � 1; 8j C 1; 8j C 2;

8j C 3; 8j C 5; : : : ; 8n � 9; 8n � 6; 8n � 5; 8n � 2g

In other words, the elements of ˙.n; j / are the numbers that appear as exponents
in the factors 1 � qx making up the denominator of W1.n; j / (excluding 6 and 9).

We shall say that 6-partitions (a new definition from that in Sect. 3) are partitions
whose parts lie in f6g [ ˙.n; j / with the condition that at least one 6 is a part.

We shall say that 9-partitions are partitions whose parts lie in f9g[˙.n; j / with
the condition that at least one 9 is a part.

We let P 6n;j .m/ (resp. P 9n;j .m/) denote the number of 6-partitions (resp. 9-
partitions) of m. We use capital “P ” so that this P 6 will not be confused with the
p6 of Sect. 3. Thus, by (6.11) and the standard construction of product generating
functions [2, p. 45], we see that for n > j � 2

W2.n; j / D q8j �5
X

m�0

�
P 6n;j .m/ � P 9n;j .m/

�
qm: (6.12)
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Lemma 8. For m � 0, n > j � 2,

P 6n;j .m/ � P 9n;j .m/ D
(

�1 if m D 9 or 14

� 0 if m ¤ 9 or 14

Proof. Clearly for m � 14, P 6n;j .m/ D 0 except at m D 6 and m D 11 (D 6 C 5)
when it is 1, and P 9n;j .m/ D 0 except for 9 and 14 (D 9 C 5). Thus, Lemma 8 is
proved for m � 14. From here on, we assume m > 14.

We now construct an injection of the 9-partitions into the 6-partitoins of m to
conclude our proof.

Case 1. There are 2k 9s in a given 9-partition, replace these by 3k 6s.

Case 2. There are 2k C1 9s in a given 9-partition (with k > 0). Replace these with
.3k � 2/ 6’s and one 21. (Note that there is 21 present in ˙.n; j / because j � 2).

Case 3. The given 9-partition has exactly one 9. Since m > 14, there must either
be at least two 5s in the partition or else a second summand (i.e. the least summand
other than the one 9) coming from ˙.n; j /.

As in Sect. 3, we must replace the unique 9, the second summand (or the 5s), and
perhaps one or two other summands by some 6s and some elements of ˙.n; j / that
are (except in the instances indicated with (�)) no larger than the original second
summand with the added proviso that either

1. The number of 6’s is � 2 .mod 3/

or
2. The number of 6’s is � 1 .mod 3/ and no 21 occurs in the image.

The table below provides the replacement in each case. As in Sect. 3, the first
column describes the pre-image partition; the single 9 and the second summand
are given explicitly as the first two summands. After the few summands that are
to be altered are listed, there is a parenthesis such as (�14, no 21) which means
that the remaining summands are taken from ˙.n; j /, all are �14 and 21 does
not appear. The second column describes the image partition. The parts indicated
parenthetically are unaltered by the mapping.

pre-image partition �! image partition
9 C 5 C 5 C .� 5; no 21) �! 6 C 13 C .� 5; no 21)
9 C 5 C 5 C 21 C .� 5) �! 6 C 6 C 6 C 6 C 6 C 5 C 5 C .� 5)

(�) 9 C 14 C .� 14; no 21) �! 6 C 17 C .� 14; no 21)
9 C 14 C 21 C .� 14) �! 6 C 6 C 6 C 6 C 6 C 14 C .� 14)
9 C 17 C .> 21) �! 6 C 5 C 5 C 5 C 5 C .> 21)
9 C 17 C 21 C .� 21) �! 6 C 6 C 6 C 6 C 6 C 17 C .� 21)
9 C 21 C .� 21) �! 6 C 6 C 6 C 6 C 6 C .� 21)

now for i � 4

9 C .8i � 7/ C .� 8i � 7/ �! 6 C 6 C .8i � 10/ C .� 8i � 7/
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9 C .8i � 3/ C .� 8i � 3/ �! 6 C 6 C 5 C .8i � 11/ C .� 8i � 3/

(�) 9 C .8i � 2/ C .� 8i � 2/ �! 6 C .8i C 1/ C .� 8i � 2/

9 C .8j � 1/ C .� 8j � 1/ �! 6 C 5 C .8j � 3/ C .� 8j � 1/

9 C .8j C 2/ C .� 8j C 2/ �! 6 C 6 C .8j � 1/ C .� 8j � 2/

9 C .8j C 3/ C .� 8j C 3/ �! 6 C 5 C .8j C 1/ C .� 8j C 3/

now for i > j

9 C .8i � 1/ C .� 8i � 1/ �! 6 C 6 C 5 C .8i � 9/ C .� 8i � 1/

9 C .8i C 2/ C .� 8i C 2/ �! 6 C 5 C 5 C .8i � 5/ C .� 8i C 2/

9 C .8i C 3/ C .� 8i C 3/ �! 6 C 6 C 5 C .8i � 5/ C .� 8i C 3/

finally

9 C .8n � 2/ C .more 8n � 2’s) �! 6 C 6 C .8n � 5/ C .more 8n � 2’s)

The comments that followed the table in Sect. 3 are again relevant here. However,
the task here is simpler. The subtle aspect treated in Sect. 3 was the concern with
overlapping images. The two lines marked (�) clearly do not coincide with each
other nor with the other five lines that have a unique 6 in the image. This concludes
the proof of Lemma 8.

We are now positioned to conclude the proof of Theorem 3.
The case n D 1 follows directly from (6.4) and (6.5). The case n D 2 follows

from (6.4), (6.6) and (6.10).
Now suppose n > 2. Then by (6.4),

1

.q; q5; q6I q8/n

� 1

.q2; q3; q7I q8/n

D
n�1X

j D0

W.n; j / D W.n; 0/ C W.n; 1/ C
n�1X

j D2

W.n; j /

D W.n; 0/ C W.n; 1/ C
n�1X

j D2

.W1.n; j / C W2.n; j // : (6.13)

By examining (6.7), we see that the coefficients of W.n; 0/ (for n > 2) are at
least as large as those of

q13

.1 � q3/.1 � q10/
D q13 C q16 C q19 C q22 C q23 C q25 C q26 C q28 C q29

C q31

1 � q
C q43

.1 � q3/.1 � q10
: (6.14)

In particular, this means that the coefficient of q25 in W.n; 0/ is positive and all
coefficients of q31 and higher powers are positive.
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In addition, we know that the coefficients of W.n; 1/ are nonnegative. We have
also established that the coefficient of q8j C4 in W1.n; j / is at least 1. Lemma 6
establishes W2.n; j / has its only negative coefficients at q8j C4 and q8j C9 and that
these negative coefficients are both �1. Thus, W.n; j / (D W1.n; j /CW2.n; j /) has
at most one negative coefficient which occurs at q8j C9 and is, at worst, �1. These
occur for j � 2, i.e. the sum in (6.13) has possibly �1’s as a coefficient of q25,
q33, q41,. . . . However, the comments following (6.14) show that these �1s are all
cancelled out by positive terms in W.n; 0/.

Hence, there are no negative coefficients on the right-hand side of (6.13).
Therefore, Theorem 3 is proved.

7 Proof of Theorem 4

We proceed as in Sect. 5 where injections were unnecessary. We define

Jn :D
knY

j D1
j 6�0;˙s .mod k/

1

1 � qj
D .qs; qk�s; qk I qk/n

.qI q/kn

an

Kn :D
knY

j D1
j 6�0;˙r .mod k/

1

1 � qj
D .qr ; qk�r ; qk I qk/n

.qI q/kn

;

where k
2

> s > r � 1, and we exclude the case where s is prime and s D r C 1 and
k D 3r C 2 hold.

The object is to prove that Jn � Kn has nonnegative power series coefficients.
Thus,

Jn � Kn D Kn

�
Jn

Kn

� 1

�

D Kn

nX

j D1

�
Jj

Kj

� Jj �1

Kj �1

�

D Kn

nX

j D1

Jj �1

�
1 � qjk

�

Kj

��
1 � qkj �kC5

� �
1 � qkj �5

�

� �1 � qkj �kC5
� �

1 � qkj �5
��

D Kn

nX

j D1

Jj �1

�
1 � qjk

�

Kj

qjk�kCr .1 � qs�r /
�
1 � qk�s�r

�
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D 1

.q/kn

nX

j D1

�
qs; qk�sI qk

�
j �1

�
qjkCr ; qjkCk�r ; qk

�
n�j

qjk�kCr

� .1 � qs�r /
�
1 � qk�s�r

�
:

There are 2n binary factors of the form 1 � qi in the numerator where 1 � i < kn.
If all of the numerator factors are distinct for each j , they will cancel with the
corresponding terms in the denominator and the nonnegativity of the coefficients
will follow.

For every j , we see that all the factors of

.qs; qk�s I qk/j �1.q
jkCr ; qjkCk�r I qk/n�j

are distinct. So our only worry is whether .1 � qs�r / and .1 � qk�s�r / can overlap
with other terms.

We note that s � r ¤ k � s � r because k
2

> s.
If j D 1, then .1 � qs�r / and .1 � qk�s�r / are the only terms with exponents <k

and so all coefficients in the j D 1 term are positive.
Next, we note that

s � r < s < k � s;

and for j > 1 the terms with exponents less than k are

.1 � qs�r /; .1 � qs/; .1 � qk�s/; and .1 � qk�s�r /:

The only possible equality here occurs when s D k � s � r . So if k ¤ 2s C r ,
then we have distinct factors in the numerator, and the j th term has nonnegative
coefficients.

Suppose that k D 2s C r so that there are now two factors .1 � qs/ in the
numerator. Noting

.1 � qs/2

.1 � q/.1 � qs/
D 1 C q C � � � C qs�1;

we see that if the .1 � q/ has not been cancelled from the numerator, then the
coefficients are again nonnegative.

Thus, the only way that we are in danger of having negative coefficients in any
term is if k D 2s C r and .1 � q/ is cancelled from the denominator by .1 � qs�r /,
i.e. the cases that cannot be handled occur when both k D 2s C r and s � r D 1, or
k D 3r C 2 and s D r C 1.

This latter case can be handled if s is composite. Because then there is a t j s

with 1 < t < s so that

1 � qs

1 � qt
D 1 C qt C � � � C qs�t :
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Thus, cancellation can still be managed in the s D r C 1, k D 2s C r case if s

is composite. Hence, the only situation not accounted for is where s is prime, and
s D r C 1 and k D 2s C r D 3r C 2.

8 Conclusion

The method of anti-telescoping should be applicable in a variety of further problems.
The obvious first extension would be the Gordon generalization of Rogers–
Ramanujan [1, 8]:

Conjecture 9. For each n � 1 and 1 � j < i < k
2

,

.qi ; qk�i ; qk I qk/n

.qI q/kn

� .qj ; qk�j ; qk I qk/n

.qI q/kn

has nonnegative power series coefficients.

The case k D 5, i D 2, j D 1 is Theorem 1. Theorem 4 takes care of most cases.
The only open cases are for i prime and i D j C 1 with k D 3j C 2.

To make the method more easily applicable to results like Theorems 1 and 3, it
would be of value to explore the following question:

Suppose that S is a set of positive integers and i and j are not in S . Let

T1 D fig [ S

T2 D fj g [ S

with i < j . Let p.S; n/ denote the number of partitions of n whose parts are
in S . Under what conditions can we assert that p.T1; n/ � p.T2; n/ except for
an explicitly given finite set of values for n?
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The Extremal Plurisubharmonic Function
for Linear Growth

David Bainbridge

Dedicated to the memory of Leon Ehrenpreis

Abstract The purpose of this chapter is to study the properties of the linear ex-
tremal function, �E.z/, which is the upper envelope of plurisubharmonic functions
in Cn that grow like jzj C o.jzj/ and are bounded by 0 on E � Rn. The function
�E.z/ is an analogue of the well-known extremal plurisubharmonic function of
logarithmic growth obtained when jzj is replaced by log z in the definition. It arises
in the study of Phragmén–Lindelöf conditions on algebraic varieties, and the interest
is how the growth of �E.z/ depends on the geometry of the set E . We prove that the
linear extremal function can have a linear bound (�E.z/ � A jzjCB), or a nonlinear
bound (e.g., �E.z/ � A jzj3=2 C B), or it can be unbounded (�E.z/ � C1).
Examples of all three cases are provided. When E is a two-sided cone in Rn, an
exact formula for �E.z/ is given.

1 Introduction

A subset E of Rn is said to satisfy the linear bound property if there exist positive
constants A and B such that each plurisubharmonic function u on Cn that satisfies
the upper bounds,

u.z/ � jzj C o.jzj/ as jzj ! 1; and u.z/ � 0; z 2 E (1)

also satisfies

u.z/ � Ajzj C B:
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Equivalently, introduce the extremal function for linear growth, �E.z/, defined by

�E.z/ D sup fu.z/ W u 2 PSH.Cn/ and satisfies .1/g� (2)

where the superscript � means the upper semicontinuous regularization of the
function defined by the supremum. �E is plurisubharmonic on any open set where
it is locally bounded. The linear bound condition is the growth condition �E.z/ �
Ajzj C B for all z 2 Cn.

The definition of ��
E is analogous to the Lelong-Siciak-Zaharajuta extremal

function, LE.z/, that is defined in the same way except that the upper envelope
is over the class of all plurisubharmonic functions on Cn of logarithmic growth, that
is, plurisubharmonic functions that satisfy instead of (1), the conditions

u.z/ � log.1 C jzj/ C O.1/ as jzj ! 1; and u.z/ � 0; z 2 E:

The analogy suggests investigating which properties of L�
E are also valid for

��
E . For example, L�

E is either identically C1 or else is again of logarithmic
growth, L�

E.z/ � log.1 C jzj/ C O.1/. Could something similar be true for
��

E? Unfortunately, this is not the case. Even when ��
E.z/ is finite for all z, it

need not have linear growth (see Sect. 5). And, when it does have linear growth
�E.z/ � Ajzj C B , it is rare that the constant A will be equal to 1. Many of
the important properties of L�

E seem to be connected to the fact that log jzj is the
minimal growth rate for plurisubharmonic functions, whereas jzj seems to be one of
many different growth functions one could consider, e.g., other powers of jzj.

Our interest in ��
E comes from its connection to the study of Phragmén–Lindelöf

conditions on varieties in Cd , in particular the condition SRPL introduced in [2].
It is clear that the same definition �E.z/ WD �E.z; V / can be made for subsets
E of an algebraic variety V in Cd ; the upper envelope is over all the functions
that are plurisubharmonic on V , � 0 on E and bounded by jzj C o.jzj/. In this
context, the variety V is said to satisfy the condition SRPL if and only the real points
of V satisfy the linear bound condition. That is, �Rd \V .z; V / � Ajzj C B . The
classification of algebraic varieties in Cd that satisfy SRPL is an unsolved problem.
The connection with �E onCn comes by considering coordinate projections of V . If
V has pure dimension n, then there are coordinates so that the coordinate projection
�.z; w/ D z mapping C d D Cn �Ck to Cn is a proper analytic covering of Cn such
that .z; w/ 2 V implies jwj � C.1 C jzj/. If

Ehyp WD fx 2 R
n W .x; w/ 2 V H) w 2 R

kg
denotes the projection of the “hyperbolic points” in V , and if E has the linear
bound property, then it easily follows from considering the “max over the fiber
function” Qu.z/ D maxfu.z; w/ W .z; w/ 2 V g that V satisfies the condition SRPL.
For example, if V denotes the variety in C3 defined by the equation y.y2 �x2/ D z2

and is projected onto the .x; y/ variables, then

Ehyp D f.x; y/ W y.x2 � y2/ � 0g
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is the union of three cones with vertex at the origin, two of opening 45ı and one
of opening 90ı. It is a consequence of our main Theorem 4.3 that this set has the
linear bound property, so this variety V does have the SRPL property. On the other
hand, if

Ere WD ˚
x 2 R

n W there exists .x; w/ 2 V with w 2 R
k
�

and if Ere fails the linear bound property, then V will fail SRPL. While the linear
bound property for the set Ehyp is sufficient for SRPL to hold, it is not necessary.
And while SRPL is sufficient in order that Ere have the linear bound property, we
do not know if it is necessary. Therefore, our results here provide only some partial
results for the SRPL characterization problem.

Our goal has been to investigate which subsets of Rn have the linear bound
property. Our main result, Theorem 4.3, gives a characterization of this property
for a very special class of subsets of Rn, namely, those of the form

E D fx 2 R
n W P.x/ � 0g

where P is a homogeneous polynomial in n variables. We show that E has the linear
bound property if an only if E is not contained in a half-space. We also investigate
several natural questions, such as

(a) If �E.z/ is finite for all z 2 Cn, does it necessarily have a linear bound?
(b) If E fails the linear bound condition, does there necessarily exists a plurisub-

harmonic function that is � 0 on E and satisfies u.z/ D o.jzj/?
(c) Can �E.z/ be finite only on a proper subset of Cn and infinite at other points

of Cn?

There are also very interesting particular sets E for which we do not know whether
or not E has the linear bound property. We will discuss some such examples at the
end of Sect. 4.

In Sect. 2, we discuss some easy and/or known properties of the extremal
function. In particular, it is pretty clear that no bounded set or half-space can have
a finite extremal function. We also discuss the known fact that a 2-sided cone in
Rn has the linear bound property. In fact, we will give an explicit formula for
�E when E is a 2-sided cone. In Sect. 3, we will show that question (b) has a
negative answer by proving that sets that are “slightly larger than a half-space,” e.g.
f.x1; x2/ 2 R2 W x1 � �jx2j2=3g have �E.z/ infinite at many points; however,
there are no nonconstant plurisubharmonic functions on C2 that are o.jzj/ and � 0

in this set. In Sect. 4, we prove our main result, that the set fP.x/ � 0g where P

is a homogeneous polynomial has the upper bound property except in the trivial
case when it is contained in a half-space. Finally, in Sect. 5, we will show that the
answer to question (a) is also no by giving an example of a set E for which �E is
continuous and bounded but has superlinear growth.
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2 First Properties of �E .

Definition 2.1. A subset E of Cn has the:

(i) Upper bound property if �E.z/ < C1 for all z 2 Cn;
(ii) Linear bound property if there exist constants A; B such that �E.z/ � AjzjCB .

For a set E � Rn to have either of these properties, it needs to be fairly large. For
example, it is clear that no bounded set E can have the upper bound property since
if E � fjzj � Rg, then all the functions c logC jzj

R
WD c maxflog jzj

R
; 0g satisfy (1) for

any c > 0, so by letting c ! 1, one sees that �E.z/ D C1 if jzj > R. Similarly,
if E is a half-space in Rn, for example, E D fx D .x1; : : : ; xn/ 2 Rn W x1 � 0g,
then the family of functions cj Im

p
z1j D O.jzj1=2/ D o.jzj/ also has an infinite

upper bound at any point z except those with z1 D x1 � 0. In fact, because of the
upper semicontinuous regularization of the envelope, �E.z/ � C1 in this case.

On the other hand, that E D Rn has the linear bound property is a well-known
result.

Theorem 2.2 (Phragmén–Lindelöf ). For any choice of norm j � j on Cn, �Rn .z/ �
j Im zj.
Proof. This follows directly from the classical Phragmén–Lindelöf theorem in
one variable. When n D 1, this is the classical Phragmén–Lindelöf theorem: A
subharmonic function u on the complex plane that satisfies u.z/ � jzj C o.jzj/ that
is bounded above by 0 on the real axis satisfies u.z/ � j Im zj. And, the case n > 1

follows from this by the following argument. Choose a point z D x C iy 2 Cn,
and consider the subharmonic function of one variable '.�/ WD u.x C �y/ where
u 2 PSH.Cn/ satisfies (1). This function clearly is � 0 for real � and

'.�/

jyj � j�j C o.j�j/:

Therefore, the one-variable result shows that '.�/ � jyjj Im �j D j Im �yj. Apply
this estimate for � D i to obtain u.x C iy/ � jyj D j Im zj. ut

This estimate also illustrates the fact that �E really does depend on the choice of
norm on Cn. We will always use the usual Euclidean norm.

There are much smaller sets than all of Rn that have the upper bound property.
For example, the cones

E D Cı WD fx 2 R
n W x2

1 � ı2.x2
2 C � � � C x2

n/g:

This is a direct consequence of the Sibony–Wong Theorem [6] that shows that any
u 2 PSH.Cn/ that satisfies the uniform upper bound u.z/ � jzj for all z in a
nonpluripolar set of complex lines in Cn satisfies a uniform bound u.z/ � Ajzj
where the constant A depends only on the set of lines, not the choice of u. To see
that our assertion is a consequence of this theorem, associate to each x 2 Cı, the
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complex line Lx WD f�x W � 2 Cg � Cn. If u 2 PSH.Cn/ satisfies (1), then on
each of these lines, the subharmonic function of one complex variable

'x.�/ WD u.�x/ � j�jjxj C o.j�j/; and u.�x/ � 0; � 2 R:

so we get the upper bound

u.z/ � j Im �jjxj D j�xj D jzj; z 2 Lx:

Since the collection of lines fLx W x 2 Cı; jxj � 1g is a nonpluripolar set of
lines in the projective space of all lines in Cn, the Sibony–Wong theorem shows that
�E.z/ � Ajzj.

In fact, it is possible to give the exact formula for the extremal function of these
cones.

Theorem 2.3. Let ı � 0 and let E D fx 2 Rn W x2
1 � ı2hx0; x0i � 0g, where

x0 D .x2; : : : ; xn/. Then

�E.z/ D
sˇ

ˇ
ˇ
ˇIm

q
z2
1 � ı2hz0; z0i

ˇ
ˇ
ˇ
ˇ

2

C .1 C ı2/ jIm z0j2: (3)

Proof. Consider the multivalued mappings of Cn to Cn given by

F˙.z1; z0/ D
�

˙
q

z2
1 � ı2.z2

2 C � � � C z2
n/;

p
1 C ı2z0

�
(4)

and

G˙.w1; w0/ D
0

@˙
s

w2
1 C ı2

1 C ı2
.w2

2 C � � � C w2
n/;

1p
1 C ı2

w0
1

A : (5)

Since these functions are multiple-valued, we will use the “˙” subscript to denote
the two values. We will drop the subscript when both values give the same result, as
in (ii) and (iii).

The functions F˙ and G˙ have the following properties:

.i/ F˙.E/ D R
n; G˙.Rn/ D E

.ii/ F˙.G.w// D .˙w1; w0/; G˙.F.z// D .˙z1; z0/

.iii/
1p

1 C 2ı2
jwj � jG.w/j � jwj for all w 2 C

n

.iv/ For every a 2 R
n; jG.w C a/j D jG.w/j C O.1/

.v/ G.ix/ D iG˙.x/ for all x 2 R
n

.vi/ jG.x/j D jxj for all x 2 R
n (6)
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Let u.z/ be a competitor for the linear extremal function. Then u.z/ is plurisub-
harmonic, u.z/ � jzj C o.jzj/, and u.z/ � 0 for all z 2 E . Define a new
plurisubharmonic function v.w/ by

v.w/ D maxfu.GC.w//; u.G�.w//g:

Then, v.w/ is plurisubharmonic on Cn. Property (iii) of 6 shows that v.w/ � jwj C
o.jwj/, and property (i) implies that v.w/ � 0 for all w 2 Rn. The Phragmén–
Lindelöf theorem (Theorem 2.2) shows that v.w/ � j Im wj: Property (ii) of 6 shows
that u.z/ � j Im F.z/j and therefore �E.z/ � j Im F.z/j.

Now, let Oz 2 Cn and define a plurisubharmonic function by

u.z/ D max
˙

fjIm G .F˙.z/ � Re FC.Oz//jg: (7)

Even though the value of FC.Oz/ depends arbitrarily on which branch of the square
root is used, this will not affect the proof. We will show that u.Oz/ D jIm F.Oz/j
regardless of which value of FC.Oz/ is used. Property (i) of 6 shows that u.z/ D 0

for all z 2 E . Since Re FC.Oz/ is constant, properties (ii) and (iv) imply that u.z/ �
jzj C O.1/ as jzj ! C1. Properties (v) and (vi), however, show that

u.Oz/ � jIm G .FC.Oz/ � Re FC.Oz//j
D jIm G .i Im FC.Oz//j
D jIm ŒiG.Im FC.Oz//�j
D jG.Im FC.Oz//j
D jIm FC.Oz/j :

Therefore, we have �E.z/ D jIm F.z/j. By definition of F , this is the same formula
as in (3). ut

3 The “No Small Functions” Condition

We saw in the previous section that a half-space in Rn does not satisfy the upper
bound property; in fact, its extremal function is � C1. The proof used the fact that
there was a plurisubharmonic function u.z/ that was bounded above by 0 on the half-
space and satisfied u.z/ D o.jzj/. When there are no such “small” plurisubharmonic
functions that are bounded above on E , we say that it satisfies the no small functions
condition.

Definition 3.1. E � Rn satisfies the no small functions condition if there are no
nonconstant plurisubharmonic functions on Cn that are bounded above by 0 on E

and satisfy u.z/ D o.jzj/; jzj ! 1.
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Since, by Liouville’s theorem, bounded plurisubharmonic functions on Cn are
constant, the no small functions condition for a set E is equivalent to

supfu.z/ 2 PSH.Cn/ W u.z/ D o.jzj/; u.z/ D 0 for all z 2 Eg D 0:

The proof that a half-space fails the upper bound property can be generalized to
the following stronger result:

Proposition 3.2. If E fails the no small functions conditions, then E fails the upper
bound property. In particular, there exists z0 2 Cn such that �E.z0/ D C1.

Proof. If E fails the no small functions condition, then there exists u.z/ plurisub-
harmonic with u.z/ D o.jzj/ � jzj C o.jzj/, u.z/ D 0 on E , and u.z/ > 0 for some
z0 2 Cn. Thus, for all C > 0, the function C u.z/ is a competitor for the linear
extremal function. For any integer k, however, C can be chosen large enough so
that C u.z0/ > k. Therefore, �E.z0/ D C1. ut
Remark. Clearly, if E � Rn fails the no small functions condition, then �E.z/ D
C1 somewhere. We do not know if this implies that �E.z/ � C1 everywhere.

The next proposition shows that if E is asymptotically a half-space, then �E is
unbounded.

Proposition 3.3. If E � Rn is such that there exist a 2 Rn and an increasing,
unbounded function f W RC ! RC such that f .r/ D o.r/ and E � fx 2 Rn W
a � x C f .jxj/ � 0g, then �E.z/ � C1.

Proof. Without loss of generality, we may assume that E � fx1 C f .jxj/ � 0g.
Since f is increasing, we have E \ fjzj � Rg � fx1 C f .R/ � 0g. Therefore, the

function
ˇ
ˇ
ˇIm

p
z1 C f .R/

ˇ
ˇ
ˇ is plurisubharmonic and identically 0 on E \ fjzj � Rg.

Notice that for any R > 0,

sup
jzj�R

ˇ
ˇ
ˇIm

p
z1 C f .R/

ˇ
ˇ
ˇ D

p
R � f .R/:

The maximum is where z1 D �R. Hence, for jzj � R,

R

2
p

R � f .R/

ˇ
ˇ
ˇIm

p
z1 C f .R/

ˇ
ˇ
ˇ � R

2
:

For every R > 0, define a plurisubharmonic function uR.z/ on Cn by

uR.z/ D
(

maxfjIm zj ; R

2
p

R�f .R/

ˇ
ˇ
ˇIm

p
z1 C f .R/

ˇ
ˇ
ˇ C RH

�
z
R

�g W jzj < R

jIm zj W jzj � R
; (8)
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where

H.z/ D 1

2

nX

j D1

.Im zj /2 � .Re zj /2: (9)

This pluriharmonic function was used in [4], Lemma 2.9 and it has the following
properties:

.i/ H.z/ � jIm zj for jzj � 1

(ii) H.z/ � jIm zj � 1

2
for jzj D 1

(iii) H.z/ D O.jzj2/ as jzj ! 0 (10)

Property (ii) implies that uR is plurisubharmonic on Cn, and property (i) shows that
uR.z/ D 0 for all z 2 E . Since uR.z/ D j Im zj C O.1/ � jzj C o.jzj/, each uR is a
competitor for the linear extremal function, �E .

To complete the proof, we need to show that the sequence fuR.z/g is unbounded
for almost all z. Let z be an element of Cn with Im z1 ¤ 0. In order to estimate uR.z/
as R goes to infinity, we need the following formula:

ˇ
ˇ̌Im

p
�
ˇ
ˇ̌ D

r
j�j � Re �

2
: (11)

This can be easily shown using the half-angle formula for the sine. Using (11) and
(8), we get a lower bound for uR.z/:

uR.z/ � R

2
p

R � f .R/

r jz1 C f .R/j � Re z1 � f .R/

2
C RH

� z

R

�
: (12)

For fixed z with jzj << f .R/, we can estimate jz1 C f .R/j with a power series:

jz1 C f .R/j D
q

.x1 C f .R//2 C y2
1

D f .R/

s

1 C 2x1

f .R/
C x2

1 C y2
1

f 2.R/

D f .R/

"

1 C 1

2

�
2x1

f .R/
C x2

1 C y2
1

f 2.R/

�
� 1

8

�
2x1

f .R/
C x2

1 C y2
1

f 2.R/

�2

CO.1=f 3.R//

#

D f .R/ C x1 C y2
1

2f .R/
C O.1=f 2.R//:
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Therefore,

r
jz1 C f .R/j � Re z1 � f .R/

2
D

s
y2

1

4f .R/
C O.1=f 2.R// (13)

Now, we can use (13) and (12) to estimate uR.z/:

uR.z/ � R

2
p

R � f .R/

s
y2

1

4f .R/
C O.1=f 2.R// C RH

� z

R

�

D
p

Rj Im z1j
4
p

f .R/

s
1 C O.1=f .R//

1 � f .R/=R
C O.1=R/

D
s

R

f .R/

� j Im z1j
4

C o.1/

�
: (14)

Since f .R/ D o.R/ as R ! C1, the right hand side of 14 is unbounded as
R ! C1. Therefore, �E.z/ D C1 for all z 2 Cn with Im z1 ¤ 0. Upper semi-
regularization forces �E.z/ D C1 for all z. ut

In the proof of Proposition 3.3, we used the fact that f .R/ is unbounded in order
to expand jz1Cf .R/j as a power series. If f .R/ is bounded, however, E is contained
in a half-space so we still have �E.z/ � C1.

Proposition 3.3 shows that, for example, the set E D f.x1; x2/ 2 R2 W x3
1 C x2

2

� 0g D fx1 C x
2
3

2 � 0g fails the upper bound property.
Let us also note that these asymptotic half-spaces satisfy the no small functions

condition.

Proposition 3.4. Let f W R
C ! R

C denote an increasing, unbounded function
and

E D fx D .x1; x0/ 2 R
n W jx1j � �f .jx0j/g:

Then, E satisfies the no small functions condition and in fact �E.z/ � C1.

Proof. For the proof, we use the fact that if '.�/ is a subharmonic function on the
complex plane C that satisfies '.�/ � j�j C o.j�j/ and '.x/ � 0 for all x 2 R with
jxj � a, then '.�/ � j Im

p
�2 � a2j. That is, in one complex variable, the extremal

function for the set .1; �a� [ Œa; C1/ is j Im
p

�2 � a2j. This result is proven in
Sect. 5 as a Corollary of Theorem 5.1.

In the proof of the proposition, it is no loss of generality to assume that E D
fx D .x1; x0/ 2 Rn W x1 � �f .x0/g. If u.z/ D o.jzj/, then for every constant
M > 0 and each fixed value of x0 2 Rn�1, we have z1 ! M u.z1; x0/ D o.jz1j/
and u.x1; x0/ � 0 if jx1j � f .x0/. The preceding paragraph’s formula for the one-
dimensional extremal function for the real line with a hole implies M u.z1; x0/ �
j Im

q
z2
1 � f .x0/2j. Since this holds for every value of M > 0, we conclude that
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u.z1; x0/ � 0 so that z1 ! u.z1; x0/ must be a constant plurisubharmonic function,
u.z1; x0/ D u.x0/. But then, by the Phragmén–Lindelöf estimate, Theorem 2.2, we
conclude that M u.z1; z0/ � j Im z0j. And since this holds as well for every value of
M , we conclude u.z/ � 0 for all z 2 Cn. Consequently, E satisfies the no small
functions condition.

The last conclusion of the Proposition, that �E.z/ � C1 follows from the pre-
ceding proposition. ut
Corollary 3.5. There exists a set E � Rn that satisfies the no small functions
condition but fails the upper bound property; i.e., �E.z0/ D C1 at some point
of Cn. In fact,

E D f.x1; x2/ 2 R
2 W x1 � �jx2j2=3g

is such a set.

Proof. The set E has �E.z0/ D C1 for some z0 by Proposition 3.3. It satisfies the
no small functions condition by Proposition 3.4. ut

4 The Linear Extremal Function for the Positivity
Set of a Real Homogeneous Polynomial

In this section, we will show that if P is a real homogeneous polynomial, then
E D fx 2 Rn W P.x/ > 0g satisfies the linear bound property if and only if E is
not contained in a real half-space. Since we already know that subsets of half-spaces
fail the upper bound property, it then follows that the three conditions, i.e. the upper
bound property, the no small functions condition, and the linear bound property, are
equivalent for fP.x/ > 0g, P real and homogeneous.

The following lemma shows that adding or removing a pluripolar set does not
affect the linear extremal function:

Lemma 4.1. If E � Rn and X � Cn is a pluripolar set, then �E[X D �E .

Proof. Since E � E [ X , we have �E[X .z/ � �E.z/. To complete the proof, we
must show that �E[X .z/ � �E.z/.

If X is pluripolar, then Theorem 5.2.4 of [5] gives the existence of a plurisubhar-
monic function v.z/ such that v.z/ � log.1 C jzj/ and vjX � �1. Without loss of
generality, we may assume that X D fv D �1g. Also, Lemma 2.2 of [3] shows
that there exists a plurisubharmonic function '.z/ and a constant C > 0 such that

�C log.1 C jzj/ � '.z/ � j Im zj � log.1 C jzj/:
Let u.z/ be plurisubharmonic, u.z/ � jzj C o.jzj/, and u.z/ � 0 for every z 2 E .

For every " > 0, define u".z/ as

u".z/ D .1 C "/�1Œu.z/ C ".'.z/ C v.z//�: (15)
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With this definition, we have u".z/ � jzj C o.jzj/, u".z/ � 0 on E , and u".z/ D �1
for every z 2 X . Hence, we have u".z/ � �E[X .z/. Solving (15) for u.z/ gives

u.z/ � .1 C "/�E[X � ".'.z/ C v.z//:

In the limit as " ! 0, this inequality becomes

u.z/ � �E[X .z/ for all z 2 C
n n X: (16)

Since �E[X .z/ is plurisubharmonic and upper semicontinuous and X is a set of
measure 0, the bound in (16) must hold for all z 2 Cn. The fact that u.z/ is a
competitor for �E gives �E.z/ � �E[X .z/, thus completing the proof. ut
Corollary 4.2. For a real polynomial P , fx 2 Rn W P.x/ � 0g satisfies the linear
bound property if and only if fx 2 Rn W P.x/ > 0g also satisfies it.

Corollary 4.2 shows the linear extremal function for the set fxy2 � 0g, for
example, is equal to that of the set fxy2 > 0g. The former is not contained in a
half-space, while the latter is. Since the function j Im

p
z1j D o.jzj/ equal to 0 on

the set fxy2 > 0g, this set does not satisfy the no small functions condition. Hence,
it fails the linear bound property. The set fxy2 � 0g, even though it is not contained
in a half-space. It is contained in a half-space plus a pluripolar set.

Theorem 4.3. Let E D fx 2 Rn W P.x/ > 0g, where P is a real homogeneous
polynomial. E satisfies the linear bound property if and only if E is not contained
in a real half-space.

In the proof, we will use the fact that P is a homogeneous polynomial. If P is
homogeneous of degree m and P.x/ > 0, then for all r > 0, P.rx/ D rmP.x/ > 0.
Hence, the set fP.x/ > 0g consists of rays extending out to infinity. This property
is called outward radial and it is essential to the proof.

Definition 4.4. A set E is called outward radial if for all x 2 E and r � 1, rx is
also an element of E .

Before beginning the proof of Theorem 4.3, we need a couple of lemmas.

Lemma 4.5. If E is outward radial and satisfies the upper bound property, then E

satisfies the linear bound property.

Proof. Let u.z/ be a plurisubharmonic function with u.z/ � jzjCo.jzj/ and u.z/ � 0

for all z 2 E . Since E satisfies the upper bound property, there exists a constant
A > 0 such that u.z/ � A for all jzj � 1.

Let z0 2 Cn such that jz0j > 1. If we let r D jz0j, then the function ur .z/ D
1
r
u.rz/ is plurisubharmonic and satisfies ur .z/ � jzj C o.jzj/. Also, the fact that E

is outward radial implies ur .z/ � 0 for all z 2 E . Hence, ur is also a competitor for
the linear extremal function, �E.z/ and so we must have ur .z/ � A for all jzj � 1.

Since jz0=r jD1, we have A�ur .z0=r/D 1
r
u.z0/ and therefore, u.z0/�ArDAjz0j

for all jzj�1. Finally, the bound for jzj � 1 gives u.z/ � Ajzj C A. ut
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Lemma 4.6. Let P.x/ be a real polynomial in n variables. If the variety f.z; �/ 2
Cn � C W P.z/ � �2 D 0g satisfies SRPL, then the set fx 2 Rn W P.x/ � 0g satisfies
the upper bound property.

Proof. Let u.z/ � jzj C o.jzj/, u.x/ � 0 for x 2 fx 2 R
n W P.x/ � 0g. Let V be

the variety fP.z/ � �2 D 0g � C
nC1. This variety is defined so that on real points of

V , we must have P.x/ � 0. Therefore, the function u.z/ can be lifted to a function
Qu.z; �/ D u.z/ with Qu.z; �/ � j.z; �/j C o.j.z; �/j/, and Qu.z; �/ � 0 on V \ R

nC1.
If V satisfies SRPL, there exist constants A and B independent of u such that

Qu.z; �/ � Aj.z; �/j C B . Therefore, we have

u.z/ � A
p

jzj2 C j�j2 C B

D
p

jzj2 C jP.z/j C B:

Thus, fP.x/ � 0g satisfies the upper bound property. ut
Proof of Theorem 4.3. Since E D fP.x/ > 0g is outward radial, Lemma 4.5 shows
that E satisfies the linear bound property if and only if E satisfies the upper bound
property.

If E satisfies the upper bound property, then E also satisfies the no small
functions condition and therefore Proposition 3.3 shows E is not contained in a
half-space. To prove the other direction, we will classify the real homogeneous
polynomials P.z/ into five categories. In each category, the set E is either contained
in a half-space and therefore fails the upper bound property, or E satisfies the upper
bound property and therefore is not contained in a half-space.

Case I. If P.x/ � 0 for all real x, then E is empty. Hence, E fails the upper bound
property and E is contained in a half-space.

Otherwise, P.x/ > 0 for some real x. After a change of coordinates, we may
assume that x D .1; 0; : : : ; 0/. By multiplying P by a positive constant, we may
assume that P.z/ D zm

1 C other terms. If Q1; : : : ; Qc are the irreducible factors of
P over C, then

P.z/ D
cY

j D1

.Qj .z//rj ;

and each Qj is unique up to multiplication by a constant. Since P is monic in z1,
we may assume that each Qj is also monic in z1, and therefore the Qj ’s are unique.

Order the Qj ’s so that Q1; : : : ; Qa have non-real coefficients, QaC1; : : : ; Qb

have real coefficients but dimRfx 2 Rn W Qj .x/ D 0g � n� 2 (a and b could be 0),
and QbC1; : : : ; Qc have real coefficients and dimRfx 2 Rn W Qj .x/ D 0g D n � 1.
Define polynomials R1; : : : ; R4 by

R1.z/ D Qa
j D1.Qj .z//rj ; R2.z/ D Qb

j DaC1.Qj .z//rj ;

R3.z/ D Qc
j DbC1.Qj .z//

j
rj
2

k

; R4.z/ D Q
bC1�j �C

rj odd
Qj .z/:

Then, P D R1 � R2 � .R3/2 � R4.
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Obviously, R2
3.x/ � 0 for real x. Also, the factors Qj .z/ for 1 � j � a

come in conjugate pairs because P has real coefficients and each Qj has non-real
coefficients. Therefore, R1.x/ D j OR1.x/j2, for some complex polynomial OR1. Thus,
we also have R1.x/ � 0 for real x.

Consider the sets ˝C D fx 2 R
n W R2.x/ > 0g and ˝� D fx 2 R

n W R2.x/ < 0g.
If neither ˝C nor ˝� are empty, then fx 2 R

n W R2.x/ D 0g is the boundary
between them. This is impossible, however, because dimRfx 2 R

n W R2.x/ D 0g <

n�1. Hence, either ˝� or ˝C must be empty. The fact that R2 is homogeneous and
monic in z1 implies that R2.1; 0; : : : ; 0/ D 1. Therefore, ˝� D ; and so R2.x/ � 0

for all x 2 R
n.

Since R1, R2, and R2
3 are all nonnegative on real points, fP.x/ > 0g �

fR4.x/ > 0g and fR4.x/ � 0g � fP.x/ � 0g. These inclusions and Lemma 4.2
imply that one of these four sets satisfies the upper bound property if and only if
they all do. Now, we are ready to examine the other four cases:

Case II. If deg R4 D 0, then R4 is constant. Since R4.1; 0; : : : ; 0/ D 1, we have
R4.z/ � 1. Therefore, fR4.x/ > 0g D Rn, which satisfies the upper bound property.
Since fP.x/ > 0g D Rn n fP.x/ D 0g, E is not contained in a half-space.

Case III. If deg R4 D 1, then fR4.x/ > 0g is contained in a half-space. Hence,
fP.x/ > 0g is also contained in a half-space and it does not satisfy the upper bound
property.

Case IV. If deg R4 D 2, then the fact that R4 is homogeneous and R4.1; 0;

: : : ; 0/ D 1 implies that fx2
1 � ı2.x2

2 C � � � C x2
n/ > 0g � fR4.x/ > 0g for some

ı > 0. Theorem 3 and Corollary 4.2 show that fR4.x/ > 0g satisfies the linear
bound property. Hence, fP.x/ > 0g also satisfies the linear bound property and
therefore it is not contained in a half-space.

Case V. If deg R4 � 3, then Theorem 1.1 of [2] implies that V D fR4.z/ � t2 D 0g
satisfies SRPL. Lemma 4.6 implies that fP.x/ > 0g satisfies the upper bound
property and therefore it is not contained in a half-space.

Corollary 4.7. The linear bound property, the upper bound property, and the no
small functions condition are equivalent for sets of the form fP.x/ > 0g, where P

is a real homogeneous polynomial.

While Theorem 4.3 classifies the linear bound property for all sets of the form
fP.x/ � 0g, where P is real and homogeneous, a general classification for nonho-
mogeneous polynomials is still unknown. The next section gives examples which
illustrate the differences between homogeneous and nonhomogeneous polynomials.
Also, very little is known about the linear bound property if E is the set where two or
more polynomials are positive. For example, the set f.x; y/ 2 R2 W y.x �y/.x Cy/

� 0; x.x � 2y/.x C 2y/ � 0g consists of three wedges with vertices at the origin.
This set is outward radial and it is not contained in a half-space, yet it is not known
if it satisfies the linear bound property. Each of the sets fy.x � y/.x C y/ � 0g
and fx.x � 2y/.x C 2y/ � 0g satisfy the linear bound property, but it is not
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true in general that if E1 and E2 satisfy the linear bound property, then E1 \ E2

satisfies it also. For example, the sets E1 D f.x C y/.x C 2y/.2x C y/ � 0g and
E2 D f.x � y/.x � 2y/.2x � y/ � 0g each satisfy the linear bound property, yet
E1 \ E2 is contained in a half-space and so it fails the linear bound property.

5 The Linear Extremal Function for Nonhomogeneous
Real Varieties

This section explores the difficulties in extending Theorem 4.3 to nonhomogeneous
polynomials. We will show that, in general, the linear bound property, the upper
bound property, and the no small functions condition are not equivalent. We will
begin by proving a generalization of Theorem 2.3.

Theorem 5.1. Let c; ı � 0 and let Ec D fx 2 Rn W x2
1 � ı2hx0; x0i � c2 � 0g,

where x0 D .x2; : : : ; xn/. Then

�Ec .z/ D
sˇ̌

ˇ
ˇIm

q
z2
1 � ı2hz0; z0i � c2

ˇ̌
ˇ
ˇ

2

C .1 C ı2/ jIm z0j2: (17)

Proof. Theorem 2.3 gives the result for E0. We will prove Theorem 5.1 by using a
multiple-valued polynomial transformation of Ec into E0.

Assume that u.z/ is a competitor for �Ec . If we define

v.z/ D max
˙

	
u

�
˙

q
z2
1 C c2; z2; : : : ; zn

�

;

then v.z/ is a competitor for the linear extremal function �E0.z/. Hence, we have

�Ec .z/ � �E0

�
˙

q
z2
1 � c2; z2; : : : ; zn

�
:

On the other hand, if v.z/ is a competitor for �E0 , then the function

u.z/ D max˙

	
v

�
˙

q
z2
1 � c2; z2; : : : ; zn

�


is a competitor for the linear extremal function �Ec . Hence, we have

�E0

�
˙

q
z2
1 � c2; z2; : : : ; zn

�
� �Ec .z/:

Therefore, �Ec .z/ D �E0 .˙
q

z2
1 � c2; z2; : : : ; zn/. Using the formula for �E0 in 3

completes the proof. ut
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Corollary 5.2. In C1, let E D R n .�c; c/ for c > 0. Then

�E.z/ D j Im
p

z2 � c2j:

Corollary 5.3. Let P.x/ be a real nonhomogeneous polynomial of degree m, even.
If Pm.x0/ > 0 for some x0 2 Rn, then the set fP.x/ � 0g satisfies the linear bound
property.

Proof. With a change of coordinates, x0 D .1; 0; : : : ; 0/. Since Pm is the highest
degree part of P , m > 0, and P.1; 0; : : : ; 0/ > 0, there exist ı; c > 0 such that
fx2

1 � ı2.x2
2 C � � � C x2

n/ � c2 � 0g � fP.x/ � 0g. Theorem 5.1 then implies that
fP.x/ � 0g satisfies the linear bound property. ut

When P.x/ is an odd degree polynomial, it is more difficult to decide whether
or not fP.x/ � 0g satisfies the linear bound property. Consider, for example, the set
E D f.x; y/ 2 R2 W xy.x � y/ � 1 � 0g. This region does not contain a subset of
the form fx2

1 � ı2.x2
2 C � � � C x2

n/ � c2 � 0g, and therefore it is impossible to apply
Theorem 5.1 directly. We do, however, have the following theorem:

Theorem 5.4. Let P.x/ be a nonhomogeneous real polynomial of degree m � 3,
odd. Let Q1; : : : Qr be the irreducible factors of Pm. If Pm has no repeated
irreducible factors and each Qj has the property

dimRfx 2 R
n W Qj .x/ D 0g D dimCfz 2 C

n W Qj .z/ D 0g;

then the set E D fx W P.x/ � 0g satisfies the linear bound property.

Proof. Note that P.x/ � Pm.x/ is a polynomial of degree at most m � 1, which is
even. Hence, there exists C > 0 such that P.x/ � Pm.x/ � �C.1 C jxj2/ m�1

2 . If
we let QP .x/ D Pm.x/ � C.1 C jxj2/

m�1
2 , then QP is a polynomial of degree m with

P.x/ � QP .x/ for all x 2 Rn. Since P � QP , f QP .x/ � 0g � fP.x/ � 0g. Therefore,
it is sufficient to show that f QP .x/ � 0g satisfies the linear bound property.

The advantage of defining QP this way is that, while fP.x/ � 0g is not outward
radial in general, the set f QP .x/ � 0g is. If QP .x/ � 0 and r � 1, then

QP .rx/ D Pm.rx/ � C.1 C jrxj2/ m�1
2

� rmPm.x/ � rm�1C.1 C jxj2/ m�1
2

� rm�1.Pm.x/ � C.1 C jxj2/ m�1
2

D rm�1 QP .x/ � 0:

Lemma 4.6 and Theorem 1.1 of [2] imply f QP .x/ � 0g satisfies the upper bound
property. Since this set is outward radial, Lemma 4.5 implies that it satisfies the
linear bound property. Hence, fP.x/ � 0g satisfies the linear bound property, too.

ut
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Fig. 1 The set E in
Example 5.6

Theorem 5.4 shows that, for example, the set fxy.x � y/ � 1 � 0g satisfies the
linear bound property. In the case where the highest degree homogeneous part of
P.x/ has repeated factors, e.g. fx3y.x�y/�1 � 0g, Theorem 5.4 cannot be applied.
Even though Theorem 4.3 implies fx3y.x � y/ � 0g satisfies the linear bound
property, it is not known whether or not the same holds for fx3y.x � y/ � 1 � 0g.

One of the consequences of Theorem 4.3 is that, for homogeneous polynomials,
the linear bound property, the upper bound property, and the no small functions
condition are equivalent for the set fP.x/ > 0g. The next pair of examples shows
that this equivalence is not true in general.

Example 5.5. The set E D fx3
1 C x2

2 � 0g fails the upper bound property but
satisfies the no small functions condition.

This was proven earlier in Corollary 3.5.

Example 5.6. The set

E D ˚
.x1; x2/ 2 R

2 W jx1j � 2
� \

.f0 � x2 � 1g [ f�x1 � 1 � x2 � �x1g [ fx1 � 1 � x2 � x1g/

satisfies the upper bound property but fails the linear bound property.

The set E is not contained in a half-space nor is it outward radial. It consists of
three strips with portions missing near the origin (see Fig. 1 above). The union of
these three strips, including the parts with fjx1j < 2g, also satisfies the upper bound
property but fails the linear bound property. The proof is less complicated, however,
if we do not have to consider the intersection of these strips. Therefore, we restrict
the set E to the region outside of fjx1j < 2g.
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To prove this, we first need the following lemmas. The first is used to show that
�E.z/ is bounded. The second is used to show that �E.z/ does not have a linear
bound.

Lemma 5.7. If .x1; t/ 2 E2 D ˚
.x1; t/ W jx1j � 2 and t2 � x2

1 � 1
�

and z2 is a root
of z3

2 � z2
1z2 C t2 D 0, then .x1; z2/ 2 E .

Lemma 5.8. If .x1; x2/ 2 E , then 0 � x2
1x2 � x3

2 � .2 jx1j C 1/2.

Proof (Proof of Lemma 5.7). For .x1; t/ 2 E2, define q.x1;t/.z2/ D z3
2 � x2

1z2 C t2.
Evaluating this polynomial on the boundaries of E gives:

q.x1;t/.�x1/ D t2 q.x1;t/.�x1 � 1/ D �2x2
1 � 3x1 � 1 C t2

q.x1;t/.0/ D t2 q.x1;t/.1/ D 1 � x2
1 C t2

q.x1;t/.x1/ D t2 q.x1;t/.x1 � 1/ D �2x2
1 C 3x1 � 1 C t2 (18)

Since t2 � x2
1 � 1, we have q.x1;t/.1/ � 0. We also have q.x1;t/.0/ D t2 � 0.

Therefore, q.x1;t/.z2/ has a real root with 0 � z2 � 1.
Also note that for jx1j � 2,

q.x1;t/.�x1 � 1/ D �2x2
1 � 3x1 � 1 C t2

� �2 jx1j2 C 3 jx1j � 1 C t2

� �2 jx1j2 C 3 jx1j � 1 C jx1j2 � 1

D � jx1j2 C 3 jx1j � 2

D � .jx1j � 1/ .jx1j � 2/ � 0

We also have q.x1;t/.�x1/ D t2 � 0. Therefore, q.x1;t/.z2/ has a real root with
�x1 � 1 � z2 � �x1. A similar calculation shows that the third root of q.x1;t/.z2/

is a real value with x1 � 1 � z2 � x1. Since 0 � z2 � 1 or x1 � 1 � z2 � x1 or
�x1 � 1 � z2 � �x1, we must have .x1; z2/ 2 E . ut
Proof of Lemma 5.8. Figure 1 shows that E is bounded by the lines fx2 D 0g,
fx1 C x2 D 0g, and fx1 � x2 D 0g. Because of this, it is easy to see that

E � ˚
.x1; x2/ 2 R

2 W 0 � x2
1x2 � x3

2

�
:

Since E consists of portions of three strips in the plane, we have three cases:

Case I. 0 � x2 � 1, so x1 � 1 � x1 � x2 � x1 and x1 � x1 C x2 � x1 C 1.
Therefore, x2

1x2 � x3
2 � jx1 � x2j jx1 C x2j jx2j � .2 jx1j C 1/2.

Case II. �x1 � 1 � x2 � �x1, so 2x1 � x1 � x2 � 2x1 C 1 and �1 � x1 C x2 � 0.
Therefore, x2

1x2 � x3
2 � jx1 � x2j jx1 C x2j jx2j � .2 jx1j C 1/2.
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Case III. x1 � 1 � x2 � x1, so 0 � x1 � x2 � 1 and 2x1 � 1 � x1 C x2 � 2x1.
Therefore, x2

1x2 � x3
2 � jx1 � x2j jx1 C x2j jx2j � .2 jx1j C 1/2.

In all three cases, when .x1; x2/ 2 E , 0 � x2
1x2 � x3

2 � .2 jx1j C 1/2.

Proof of Example 5.6. First, we will use Lemma 5.7 to show that E2 satisfies the
upper bound property.

The roots of z3
2 � z2

1z2 D 0 are z2 D 0; ˙z1. Therefore, the roots of q.z1;�/.z2/ D
z3
2 � z2

1z2 C�2 D 0 behave like jz2j � jz1jCo.j.z1; �/j/. Hence, there exist constants
k1; k2 > 0 such that the roots of z3

2 � z2
1z2 C �2 D 0 satisfy jz2j � k1j.z1; �/j C k2.

Let u.z1; z2/ be plurisubharmonic with u.z1; z2/ � jzj C o.jzj/ and u.z/ � 0 for
z 2 E . Define a plurisubharmonic function v.z1; �/ by

v.z1; �/ D max
z2

fu.z1; z2/ W z3
2 � z2

1z2 C �2 D 0g:

Then, v.z1; �/ � k1j.z1; �/j C o.j.z1; �/j/ and Lemma 5.7 gives v � 0 on the set

E2 D f.x1; t/ 2 R
2 W jx1j � 2; 1 � x2

1 C t2 � 0g:

From Theorem 5.1, we have �E2 .z1; �/ � Aj.z1; �/j C B . Hence, v.z1; �/ �
k1Aj.z1; �/j C k1B , and therefore,

u.z/ � k1A

q
jz1j2 C jz2

1z2 � z3
2j C k1B;

where k1, A, and B are independent of u. Therefore, E satisfies the upper bound
property.

Next, we show that �E does not have a linear bound. Consider the function
ua.z1; z2/ for a > 0:

ua.z1; z2/ WD max˙

( ˇ
ˇ
ˇ
ˇ
ˇ
Im

r

z2
1 ˙ a

q
z2
1z2 � z3

2 C a2 C a

ˇ
ˇ
ˇ
ˇ
ˇ

)

:

Notice that ua.z1; z2/ � jz1j C o.jzj/. Also, for .x1; x2/ 2 E , Lemma 5.8 gives

x2
1x2 � x3

2 � 0, so ˙a

q
x2

1x2 � x3
2 2 R. Lemma 5.8 also gives bounds for the outer

square root in the definition of ua.z1; z2/:

x2
1 ˙ a

q
x2

1x2 � x3
2 C a2 C a � x2

1 � a
p

.2 jx1j C 1/2 C a2 C a

D jx1j2 � a.2 jx1j C 1/ C a2 C a

D jx1j2 � 2a jx1j C a2

D .jx1j � a/2 � 0:
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Therefore, ˙
r

z2
1 ˙ a

q
z2
1z2 � z3

2 C a2 C a 2 R, so ua.x1; x2/ D 0 on the region

E . Hence, ua.z1; z2/ is a competitor for the linear extremal function, �E.z1; z2/.
For y > 0, consider the functions uy3=2.z1; z2/ evaluated at .0; y/.

uy3=2.0; y/ D max˙

	ˇ
ˇ
ˇ
ˇIm

q
0 ˙ y3=2

p
0 � y3 C .y3=2/2 C y3=2

ˇ
ˇ
ˇ
ˇ




D max
˙

	ˇ
ˇ
ˇ
ˇIm

q
y3 C y3=2 ˙ iy3

ˇ
ˇ
ˇ
ˇ




D O.jyj3=2/

Therefore, �E.z/ does not have a linear bound.
Examples 5.5 and 5.6 show that the linear bound property, the upper bound

property, and the no small functions conditions are not equivalent in general. The
sets in these examples, however, are not outward radial. Theorem 2.3 shows that
these three properties are equivalent for outward radial sets of the form E D
fP.x/ > 0g, where P is a homogeneous real polynomial, but this might not describe
all outward radial sets. This leads us to ask the following questions:

Problem 5.9. Which outward radial sets satisfy the upper bound property?

Problem 5.10. Are the upper bound property and the no small functions condition
equivalent for outward radial sets?

Problem 5.11. If E � R2 is the union of three cones with vertex at the origin but
not contained in a half-space, does E satisfy the linear bound property?
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Abstract In a series of papers, George Andrews and various coauthors successfully
revitalized seemingly forgotten, powerful machinery based on MacMahon’s ˝
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set P of integer partitions � D .�1; : : : ; �n/. Our goal is to geometrically prove and
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as the set of integer lattice points in a certain polyhedron.
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generating functions of the form

fP .z1; : : : ; zn/ WD
X

�2P

z�1

1 � � � z�n
n and fP .q/ WD fP .q; : : : ; q/ D

X

�2P

q�1C���C�n;

for some set P of partitions � D .�1; : : : ; �n/; i.e., we think of the integers �n �
� � � � �1 � 0 as the parts when some integer k is written as k D �1 C � � � C �n.
If we do not force an order onto the �j ’s, we call � a composition of k. Below is a
sample of some of these striking results.

Theorem 1 (Andrews [2]). Let

Pr WD
8
<

:
� W

tX

j D0

.�1/j

 
t

j

!

�kCj � 0 for k � 1; 1 � t � r

9
=

;

(where we set undefined �j ’s zero). Then

fPr .q/ D
1Y

j D1

1

1 � q.j Cr�1
r /

:

In words, the number of partitions of an integer k satisfying the “higher-order
difference conditions” in Pr equals the number of partitions of k into parts that
are r’th-order binomial coefficients.

Theorem 2 (Andrews–Paule–Riese [3]). Let n � 3 and

� WD f.�1; : : : ; �n/ 2 Z
n W �n � � � � � �1 � 1 and �1 C � � � C �n�1 > �ng ;

the set of all “n-gon partitions.” Then

f�.q/ D qn

.1 � q/.1 � q2/ � � � .1 � qn/
� q2n�2

.1 � q/.1 � q2/.1 � q4/.1 � q6/ � � � .1 � q2n�2/
:

More generally,

f�.z1; : : : ; zn/ D Z1

.1 � Z1/.1 � Z2/ � � � .1 � Zn/

� Z1Zn�2
n

.1 � Zn/.1 � Zn�1/.1 � Zn�2Zn/.1 � Zn�3Z2
n/ � � � .1 � Z1Zn�2

n /
;

where Zj WD zj zj C1 � � � zn for 1 � j � n.

The composition analogue of Theorem 2 was inspired by a problem of Hermite
[18, Ex. 31], which is essentially the case n D 3 of the following.
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Theorem 3 (Andrews–Paule–Riese [4]). Let

H WD
n
.�1; : : : ; �n/ 2 Z

n
>0 W �1 C � � � Cc�j C � � � C �n � �j for all 1 � j � n

o
:

Then

fH .q/ D qn

.1 � q/n
� n

q2n�1

.1 � q/n.1 C q/n�1
:

A natural question is whether there exist “full generating function” versions of
Theorems 1 and 3, in analogy with Theorem 2; we will show that such versions
(Theorems 6 and 7 below) follow effortlessly from our approach. (Xin [21, Example
6.1] previously computed a full generating function related to Theorem 3.)

Our main goal is to prove these theorems geometrically, and more, by realizing a
given family of partitions as the set of integer lattice points in a certain polyhedron.
This approach is not new: Pak illustrated in [16, 17] how one can obtain bijective
proofs by realizing when both sides of a partition identity are generating functions
of lattice points in unimodular cones (which we will define below); this included
most of the identities appearing in [2], including Theorem 1. Corteel et al. [13]
implicitly used the extreme-ray description of a cone (see Lemma 4 below) to derive
product formulas for partition generating functions, including those appearing in [2].
Beck et al. [7] used triangulations of cones to extend results of Andrews et al. [5]
on “symmetrically constrained compositions.” However, we feel that each of these
papers only scratched the surface of a polyhedral approach to partition identities,
and we see the current paper as a further step towards a systematic study of this
approach.

While the ˝-operator approach to partition identities is elegant and powerful
(not to mention useful in the search for such identities), we see several reasons
for pursuing a geometric interpretation of these results. As discussed in [11],
partition analysis and the ˝ operator are useful tools for studying partitions and
compositions defined by linear constraints, which is equivalent to studying integer
points in polyhedra. An explicit geometric approach to these problems often reveals
interesting connections to geometric combinatorics, such as the connections and
conjectures discussed in Sects. 6 and 7 below. Also, one of the great appeals of
partition analysis is that it is automatic; Andrews discusses this in the context of
applying the ˝ operator to the four-dimensional case of lecture-hall partitions in [1]:

The point to stress here is that we have carried off the case j D 4 with no effective
combinatorial argument or knowledge. In other words, the entire problem is reduced by
Partition Analysis to the factorization of an explicit polynomial.

As we hope to show, the geometric perspective can often provide a clear view of
sometimes mysterious formulas that arise from the symbolic manipulation of the ˝

operator.
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2 Polyhedral Cones and Their Lattice Points

We use the standard abbreviation zm WD zm1

1 � � � zmn
n for two vectors z and m. Given

a subset K of Rn, the (integer-point) generating function of K is

�K.z1; : : : ; zn/ WD
X

m2K\Zn

zm :

We will often encounter subsets that are cones, where a (polyhedral) cone C is
the intersection of finitely many (open or closed) half-spaces whose bounding
hyperplanes contain the origin. (Thus, the cones appearing in this chapter will not all
be closed but in general partially open.) A closed cone has the alternative description
(and this equivalence is nontrivial [22]) as the nonnegative span of a finite set of
vectors in R

n, the generators of C .
An n-dimensional cone in R

n is simplicial if we only need n half-spaces to
describe it. All of our cones will be pointed, i.e., they do not contain lines. The
following exercise in linear algebra shows how to switch between the generator and
half-space descriptions of a simplicial cone.

Lemma 4. Let A be the inverse matrix of B 2 R
n�n. Then

fx 2 R
n W A x � 0g D fB y W y � 0g ;

where each inequality is understood componentwise.

The (integer-point) generating function of a simplicial cone C � R
n can be

computed from first principles when C is rational, i.e., its generators can be chosen
in Z

n. A closed cone C is unimodular if its generators form a basis of Z
n; for

unimodular cones, which is all we will need in what follows, we have the following
simple lemma (for much more general results, see, e.g., [8, Chap. 3]).

Lemma 5. Suppose C D Pk
j D1 R�0vj CPn

iDkC1 R>0vi is a unimodular cone in
R

n generated by v1; : : : ; vn 2 Z
n. Then

�C .z1; : : : ; zn/ D
Qn

iDkC1 zvi

Qn
j D1 .1 � zvj /

:

3 Unimodular Cones

Recall from Theorem 1 that

Pr D
8
<

:
� W

tX

j D0

.�1/j

 
t

j

!

�kCj � 0 for k � 1; 1 � t � r

9
=

;
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(where we set undefined �j ’s zero). Let

P n
r WD

8
<

:
.�1; : : : ; �n/ 2 Z

n W
tX

j D0

.�1/j

 
t

j

!

�kCj � 0 for 1 � k � n; 1 � t � r

9
=

;

consist of all partitions in Pr with at most n parts. As a warm-up example, we will
compute the (full) generating function of P n

r :

Theorem 6.

fP n
r
.z1; : : : ; zn/

D 1

.1 � z1/
�
1 � zr

1z2

�
�

1 � z
.rC1

r�1/
1 zr

2z3

��

1 � z
.rC2

r�1/
1 z

.rC1
r�1/

2 zr
3z4

�

� � �
�

1 � z
.rCn�2

r�1 /
1 z

.rCn�3
r�1 /

2 � � � zr
n�1zn

�

:

Note that Theorem 1 follows upon setting z1 D � � � D zn D q, using the identity
 

r C j � 2

r � 1

!

C
 

r C j � 3

r � 1

!

C � � � C r C 1 D
 

r C j � 1

r

!

;

and taking n ! 1.

Proof. It is easy to see that the inequalities

tX

j D0

.�1/j

 
t

j

!

�kCj � 0 for 1 � k � n; 1 � t � r ;

which define P n
r , are implied by the inequalities for t D r . Thus, the cone containing

P n
r as its integer lattice points is

K WD
8
<

:
.x1; : : : ; xn/ 2 R

n W
rX

j D0

.�1/j

 
r

j

!

xkCj � 0 for 1 � k � n

9
=

;

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

2

6
6
6
6
6
6
6
6
4

1 r
�

rC1
r�1

� �
rC2
r�1

� � � � �rCn�2
r�1

�

0 1 r
�

rC1
r�1

� � � � �rCn�3
r�1

�

0 0 1 r � � � �rCn�4

r�1

�

:::
: : :

: : :
: : :

:::

0 0 1 r

0 � � � 0 1

3

7
7
7
7
7
7
7
7
5

y W y1; : : : ; yn � 0

9
>>>>>>>>=

>>>>>>>>;

(whose generators we can compute, e.g., with the help of Lemma 4). Thus, K is
unimodular and, by Lemma 5,
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�K.z1; : : : ; zn/

D 1

.1 � z1/
�
1 � zr

1z2

�
�

1 � z
.rC1

r�1/
1 zr

2z3

��

1 � z
.rC2

r�1/
1 z

.rC1
r�1/

2 zr
3z4

�

� � �
�

1 � z
.rCn�2

r�1 /
1 z

.rCn�3
r�1 /

2 � � � zr
n�1zn

�

:

The idea behind this approach towards Theorem 1 can be found, in disguised
form, in [13, 16]. See also [10, 12] for bijective approaches to Theorem 1 and its
asymptotic consequences. We included this proof here in the interest of a self-
contained exposition and also because none of [2, 13, 16] contains a full generating
function version of (analogues of) Theorem 1.

4 Differences of Two Cones

The key idea behind the proof of Theorem 2 is to observe that the nonsimplicial
cone

K WD f.x1; : : : ; xn/ 2 R
n W xn � � � � � x1 > 0 and x1 C � � � C xn�1 > xng ;

whose integer lattice points form Andrews–Paule–Riese’s set � of n-gon partitions,
can be written as a difference K D K1 n K2 of two simplicial cones. Specifically,
set

K1 WD f.x1; : : : ; xn/ 2 R
n W xn � � � � � x1 > 0g

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

2

6
6
6
6
6
6
6
6
4

1 0 0 � � � 0 0

1 1 0 � � � 0 0

1 1 1 � � � 0 0
:::

:::
:::

: : :
:::

:::

1 1 1 � � � 1 0

1 1 1 � � � 1 1

3

7
7
7
7
7
7
7
7
5

y W y1 > 0 ;

y2; : : : ; yn � 0

9
>>>>>>>>=

>>>>>>>>;

and

K2 WD f.x1; : : : ; xn/ 2 R
n W xn � � � � � x1 > 0 and x1 C � � � C xn�1 � xng

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

2

6
6
6
6
6
6
6
6
4

1 0 0 � � � 0 0

1 1 0 � � � 0 0

1 1 1 � � � 0 0
:::

:::
:::

: : :
:::

:::

1 1 1 � � � 1 0

n � 1 n � 2 n � 3 � � � 1 1

3

7
7
7
7
7
7
7
7
5

y W y1 > 0 ;

y2; : : : ; yn � 0

9
>>>>>>>>=

>>>>>>>>;
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(whose generators we can compute, e.g., with the help of Lemma 4). One can
see immediately from the generator matrices that both K1 and K2 are unimodular.
(In a geometric sense, this is suggested by the form of the identity in Theorem 2.
A similar simplification-through-taking-differences phenomenon is described in the
fifth “guideline” of Corteel et al. [11], which inspired our proof.) By Lemma 5

�K1.z1; : : : ; zn/ D z1 � � � zn

.1 � zn/.1 � zn�1zn/ � � � .1 � z1 � � � zn/

and

�K2.z1; : : : ; zn/

D z1 � � � zn�1zn�1
n�

1 � z1 � � � zn�1zn�1
n

� �
1 � z2 � � � zn�1zn�2

n

� �
1 � z3 � � � zn�1zn�3

n

� � � �
.1 � zn�1zn/ .1 � zn/

D Z1Zn�2
n

.1 � Zn/.1 � Zn�1/.1 � Zn�2Zn/.1 � Zn�3Z2
n/ � � � .1 � Z1Zn�2

n /
;

and the identity �K.z1; : : : ; zn/ D �K1.z1; : : : ; zn/ � �K2.z1; : : : ; zn/ completes the
proof. �

5 Differences of Multiple Cones

The “cone behind” Theorem 3 is

K WD ˚
.x1; : : : ; xn/ 2 R

n
>0 W xj � x1 C � � � C bxj C � � � C xn for all 1 � j � n

� I
Theorem 3 follows from the following result upon setting z1 D � � � D zn D q.

Theorem 7.

�K.z1; : : : ; zn/ D z1 � � � zn

.1 � z1/ � � � .1 � zn/
�

nX

kD1

z1 � � � zk�1zn
kzkC1 � � � zn

.1 � zk/

nY

j D1
j ¤k

.1 � zkzj /

:

Proof. Let �j denote the j th unit vector in R
n. Observe that the nonsimplicial cone

K is expressible as a difference K D O nSn
kD1 Ck ; where O WD Pn

j D1 R>0 �j and
Ck is the cone

Ck WD ˚
.x1; : : : ; xn/ 2 R

n
>0 W xk > x1 C � � � C bxj C � � � C xn

�

D R>0 �k C
nX

j D1
j ¤k

R>0

�
�j C �k

�
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Note that if i ¤ j , then Ci \ Cj D ;. Thus, the closure of K is “almost” the
positive orthant O , except that we have to exclude points in O that can only be
written as a linear combination that requires a single ek (as opposed to a linear
combination of the vectors ej C ek). (A similar simplification-through-taking-
differences phenomenon appeared in the original proof of Theorem 3.) In generating
function terms, this set difference gives, by Lemma 5,

�K.z1; : : : ; zn/ D �O.z1; : : : ; zn/ �
nX

kD1

�Ck
.z1; : : : ; zn/

D z1 � � � zn

.1 � z1/ � � � .1 � zn/
�

nX

kD1

z1 � � � zk�1zn
kzkC1 � � � zn

.1 � zk/
Qn

j D1
j ¤k

.1 � zkzj /
: ut

Three remarks on this theorem are in order. First, as already mentioned, Xin
[21, Example 6.1] previously computed a different full generating function related
to Theorem 3; Xin’s generating function handles nonnegative, rather than positive,
k-gon partitions. Second, the cone K is related to the second hypersimplex, a well-
known object in geometric combinatorics (see Sect. 7 for more details).

Third, K is a suitable candidate for the “symmetrically constrained” approach
in [7]; however, one should expect that this approach would give a different form
for the generating function �K.z1; : : : ; zn/ from the one given in Theorem 7. The
symmetrically constrained approach produces a triangulation of the cone K that
is invariant under permutation of the standard basis vectors in R

n and then uses
this triangulation to express �K.z1; : : : ; zn/ as a positive sum of rational generating
functions for these cones (after some geometric shifting). The terms in this sum will
all have 1

1�z1z2���zn
as a factor, as each of the simplicial cones in the triangulation of K

will have the all-ones vector as a ray generator; this will clearly produce a different
form from that in Theorem 7.

6 Cayley Compositions

A Cayley composition is a composition � D �
�1; : : : ; �j �1

�
that satisfies 1 � �1 �

2 and 1 � �iC1 � 2�i for 1 � i � j � 2. Thus, the Cayley compositions with j � 1

parts are precisely the integer points in

Cj WD
n
.�1; : : : ; �j �1/ 2 Z

j �1
>0 W �1 � 2 and �i � 2�i�1 for all 2 � i � j � 1

o
:

Our apparent shift in indexing maintains continuity between our statements and [6],
where Cayley compositions always begin with a �0 D 1 part. Let fCj

�
z1; : : : ; zj �1

�

be the generating function for Cj . The following theorem is quite surprising.
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Theorem 8 (Andrews–Paule–Riese–Strehl [6]). Let

Cj WD
n
.�1; : : : ; �j �1/ 2 Z

j �1
>0 W �1 � 2 and �i � 2�i�1 for all 2 � i � j � 1

o
:

Then for j � 2,

fCj .1; 1; : : : ; 1; q/ D
j �2X

hD1

bj �h�1.�1/h�1q2h�1

.1 � q/.1 � q2/.1 � q4/ � � � .1 � q2h�1
/

C .�1/j q2j �1�1.1 � q2j �1
/

.1 � q/.1 � q2/.1 � q4/ � � � .1 � q2j �2
/

where bk is the coefficient of q2k�1 in the power series expansion of

1

1 � q

1Y

mD0

1

1 � q2m :

Theorem 8 is derived as a consequence of the following recurrence relation
obtained via MacMahon’s ˝ calculus.

Theorem 9 (Andrews–Paule–Riese–Strehl [6]).

fCj

�
z1; : : : ; zj �1

� D zj �1

1 � zj �1

�
fCj �1

�
z1; : : : ; zj �2

�

�fCj �1

�
z1; : : : ; zj �3; zj �2z2

j �1

��
:

Once this formula is obtained, the proof of Theorem 8 in [6] proceeds by
repeatedly iterating the recurrence, specialized to fCj .1; : : : ; 1; q/. The final step is
to argue that the sum of rational functions in Theorem 8, as analytic functions, must
exhibit cancellation. We remark that Corteel et al. [11, Sect. 3] gave an alternative
proof of Theorem 9.

Via geometry, we can shed light on the initial recurrence relation from three
perspectives. First, we recognize that the recurrence reflects expressing Cj as a
difference of two subspaces of Rj �1 defined by linear constraints.

Proof (First proof of Theorem 9).
As a subspace of Rj �1, Cj D K1;j n K2;j where

K1;j WD ˚
.x1; : : : ; xj �1/ 2 R

j �1 W 1 � x1 � 2;

1 � xiC1 � 2xi for 1 � i � j � 3; and 1 � xj �1

�
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and

K2;j WD ˚
.x1; : : : ; xj �1/ 2 R

j �1 W 1 � x1 � 2;

xiC1 � 2xi for 1 � i � j � 3; xj �1 > 2xj �2

�
:

If we distribute the leading multiplier in the right-hand side of the recurrence for
fCj , the first term is the generating function of K1;j , as there are no restrictions
on the size of xj �1. On the other hand, the integer points m 2 K2;j are precisely
those in K1;j satisfying xj �1 > 2xj �2, which is equivalent to the condition that zm

be divisible by zj �2z2
j �1. The second term of the recurrence records precisely these

integer points.

Our second proof amounts to a simple observation regarding the integer-point
transform of Cj .

Proof (Second proof of Theorem 9). Since for any � 2 Cj \ Z
j �1 we have 1 �

�j �1 � 2�j �2,

fCj .z1; : : : ; zj �1/ D
X

�2Cj \Zj �1

z�

D
X

�2Cj �1\Zj �2

z�
�

zj �1 C z2
j �1 C � � � C z

2�j �2

j �1

�

D zj �1

X

�2Cj �1\Zj �2

z�
1 � z

2�j �2

j �1

1 � zj �1

D zj �1

1 � zj �1

X

�2Cj �1\Zj �2

z� � z�z
2�j �2

j �1

D zj �1

1 � zj �1

�
fCj �1 .z1; : : : ; zj �1/

�fCj �1 .z1; : : : ; zj �3; zj �2z2
j �1/

�
: ut

Following their statement of Theorem 8, the authors of [6] make the following
comment:

It hardly needs to be pointed out that [this formula] is a surprising representation of a
polynomial. Indeed, the right-hand side does not look like a polynomial at all.

Such a statement suggests that Brion’s formula [9] for rational polytopes is lurking
in the background; our third proof of Theorem 9 is based on this formula. Given a
rational convex polytope P , we first define the tangent cone at a vertex v of P to be

TP .v/ WD fv C ˛.p � v/ W ˛ 2 R�0; p 2 P g :
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Theorem 10 (Brion). Suppose P is a rational convex polytope. Then we have the
following identity of rational generating functions:

�P .z/ D
X

v a vertex of P

�TP .v/.z/ :

Note that the sum on the right-hand side is a sum of rational functions, while the
left-hand side yields a polynomial.

Proof (Third proof of Theorem 9). To interpret the recurrence as a consequence of
Brion’s formula, we first assume that the fCj �1’s are expressed in the form of the
right-hand side of Brion’s formula, i.e., as a sum of integer-point transforms of the
tangent cones at the vertices of Cj �1. We next rewrite the recurrence as

fCj

�
z1; : : : ; zj �1

� D zj �1

1 � zj �1

fCj �1

�
z1; : : : ; zj �2

�

C 1

1 � z�1
j �1

fCj �1

�
z1; : : : ; zj �3; zj �2z2

j �1

�
:

The polytope Cj is a combinatorial cube; this can be easily seen by induction on j

after observing that in Cj �1 � R, the hyperplanes xj �1 D 1 and xj �1 D 2xj �2 do
not intersect. Thus, the tangent cones for vertices of Cj can be expressed in terms of
the tangent cones for vertices of Cj �1. Given a vertex v D fv1; : : : ; vj �2g of Cj �1,
the two vertices of Cj obtained from v are .v; 1/ and .v; 2vj �2/. For the vertex .v; 1/

in Cj , it is immediate that

�TCj �1 ..v;1//.z/ D 1

1 � zj �1

�TCj �2 .v/.z/ :

Our proof will be complete after we show that for the vertex .v; 2vj �2/ in Cj ,

�TCj �1 ..v;2vj �2//.z/ D 1

1 � z�1
j �1

�TCj �2 .v/.z1; : : : ; zj �3; zj �2z2
j �1/ :

This follows from the fact that the edges in Cj emanating from .v; 2vj �2/ terminate
in the vertex .v; 1/ and in the vertices .w; 2wj �2/ for vertices w of Cj �1 that are
connected to v by an edge in Cj �1. Thus, Theorem 9 follows from Brion’s formula
and induction.

There is an interesting remark about Theorem 8 and Brion’s formula; while one
might hope that the expression in Theorem 8 is obtained by directly specializing
Brion’s formula to z1 D � � � D zj �2 D 1 and zj �1 D q, this is not the case.
This specialization is not actually possible, as some of the rational functions for
tangent cones in Cj have denominators that lack a zj �1 variable, and hence, this
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specialization would require evaluating rational functions at poles. The authors of
[6] use the recurrence in Theorem 9 in a more subtle way, in that they first specialize
the recurrence to

fCj .1; : : : ; 1; q/ D q

1 � q

�
fCj �1 .1; : : : ; 1/ � fCj �1

�
1; : : : ; 1; q2

��

and then iterate the recurrence. In doing this, they simultaneously use the inter-
pretation of fCj .z/ as a polynomial (for the all-ones specialization) and also the
interpretation of fCj .z/ as a rational function (for the specialization involving q2).
Thus, while Theorem 8 looks similar to a Brion-type result, it is obtained differently.
We remark that by specializing z1 D � � � D zj �1 D q in Brion’s formula for Cj , one
would obtain a representation of the polynomial fCj .q; : : : ; q/ as a sum of rational
functions of q.

7 Directions for Further Investigation

7.1 Cones Over Hypersimplices

We can view the cone K of Section 5 as a cone over a “half-open” version of the
second hypersimplex

�.2; n/ WD
(

.x1; : : : ; xn/ 2 Œ0; 1�n W
nX

iD1

xi D 2

)

;

in the following manner. The linear inequality xj � x1 C � � � C bxj C � � � C xn is

equivalent to
Pn

iD1 xi

2
� xj . When

Pn
iD1 xi D 1, we are considering the “slice” of

K that is constrained by 0 < xj � 1
2

and
Pn

iD1 xi D 1, which is 1
2

of �.2; n/ with
the condition that 0 < xj for all j . From this perspective, we can view the n-gon
compositions of t as

H.t/ WD
(

.�1; : : : ; �n/ 2 Z
n�0 W �1 C � � � C �n D t ;

�j � �1 C � � � C b�j C � � � C �n for all 1 � j � n

)

D
(

.�1; : : : ; �n/ 2 Z
n W �1 C � � � C �n D t ;

0 � �j � t
2 for all 1 � j � n

)

:

The second hypersimplex is a well-studied object; for example, in matroid theory
�.2; n/ is the matroid basis polytope for the 2-uniform matroid on n vertices, while
in combinatorial commutative algebra, �.2; n/ is the subject of [20, Chap. 9].
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It would be interesting to consider analogues of Theorem 3 for the general case
of the kth hypersimplex �.k; n/ WD f.x1; : : : ; xn/ 2 Œ0; 1�n W Pn

iD1 xi D kg. The
associated composition counting function has a natural interpretation: in

	

.�1; : : : ; �n/ 2 Z
n W �1 C � � � C �n D t ;

0 � �j � t
k

for all 1 � j � n




are all compositions of t whose parts are at most t
k

(i.e., the parts are not allowed to
be too large, where “too large” depends on k).

7.2 Cayley Polytopes

We refer to the polytopes Cj from Sect. 6 as Cayley polytopes. By taking a geometric
view of Cayley compositions as integer points in Cj , we may shift our focus from
combinatorial properties of the integer points to properties of Cj itself. Recall that
the normalized volume of Cj is

Vol.Cj / WD .j � 1/Š vol.Cj / ;

where vol.Cj / is the Euclidean volume of Cj . Based on experimental data obtained
using the software LattE [14] and the Online Encyclopedia of Integer Sequences
[19], we make the following conjecture:

Conjecture 11. For j � 2, Vol.Cj / is equal to the number of labeled connected
graphs on j � 1 vertices.1
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1 Introduction

The systematic study of higher-order forms was originally motivated by two main
objects, Eisenstein series with modular symbols [6, 9] and certain probabilities
arising in the context of percolation theory [8]. In this note, we discuss how the
classification of holomorphic second-order forms given in [4] can be extended
to become more relevant for the latter object. This requires the introduction of
characters in second-order forms. An appropriate definition of the corresponding
spaces is the focus of the next section.

The dimensions and bases of weight k > 2 second-order forms are given in
Sects. 3 and 4. These dimensions and bases are of interest for possible applications
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representation theoretic approach initiated by Deitmar in [2, 3]. On the other hand,
the method of constructing the actual bases mainly parallels that of [4].

The higher-order objects from percolation theory investigated so far [5,8] include
weight 2 forms and forms with poles at the cusps. The former is one of the subjects
of work in progress by the first author [1]. There are various directions one can take
in the investigation of the latter kind of object, and we intend to study it, guided by
possible applications in percolation.

2 Definitions

Let � � PSL2.R/ be a Fuchsian group of the first kind acting in the usual way
on the upper half plane H with non-compact quotient � nH. Let F be a fundamental
domain. Fix representatives a; b, etc., of the inequivalent cusps in F and let �a; �b 2
SL2.R/ be the corresponding scaling matrices. Specifically, �a.1/ D a and

�a
�1�a�a D �1 D ˚˙ �

1 m
0 1

� ˇˇ m 2 Z
�
:

where �a is the set of elements of � fixing a. We let �a denote a generator of �a

and T WD �
1 1
0 1

�
: (We assume that T 2 � )

We shall also require the generators of the group � . Suppose � nH has genus
g; r elliptic fixed points and p cusps. Then there are 2g hyperbolic elements �i ;
r elliptic elements �i and p parabolic elements �i generating � and satisfying the
r C 1 relations:

Œ�1; �gC1� : : : Œ�g; �2g��1 : : : �r�1 : : : �p D 1; �
ej
j D 1 (1)

for 1 � j � r and integers ej � 2: Here, Œa; b� WD aba�1b�1 (cf. [7] (10)).
Let � be a (unimodular) character of � . Fix k 2 2Z. The slash operator jk;�

defines an action of PSL2.R/ on functions f W H 7! C by

.f jk;��/.z/ D f .�z/.cz C d/�k�.�/

with � D . � �
c d / in PSL2.R/. Extend the action to CŒPSL2.R/� by linearity. We

set j.�; z/ D cz C d for later use. Finally, we set jk for jk;1, where 1 is the trivial
character.

Let z D x C iy. We will say that “f is holomorphic at the cusps” if for each
cusp a, .f jk�a/.z/ � yc as y ! 1 uniformly in x for some constant c. We will
say that “f vanishes at the cusps” if for each cusp a, .f jk�a/.z/ � yc as y ! 1
uniformly in x for every constant c.

Definitions Let k 2 2Z, �; be two characters of � and let f W H ! C be a
holomorphic function:



Second-Order Modular Forms with Characters 57

1. We call f a modular (resp. cusp) form of weight k with character  if

(i) f jk; .� � 1/ D 0 for all � 2 � .
(ii) f is holomorphic (resp. vanishes) at the cusps.

Their space is denoted by Mk.�; / (resp. Sk.�; /).

2. We call f a second-order modular form of weight k and type �; if

(i) f jk;�.� � 1/ 2 Mk.�; /, for all � 2 � .
(ii) There is a f0 2 Mk.�; / such that for all parabolic � 2 � , f jk;�.��1/ D

.. �/.�/ � 1/a�f0 for a a� 2 C.
(iii) f is holomorphic at the cusps.

Their space is denoted by M2
k .� I�; /.

The meaning of condition (ii) is that f jk;�.��1/ is equal to 0 whenever �.�/ D
 .�/ and, otherwise, it equals c�f0 for some f0 independent of � and a c� 2
C n f0g: We formulate it in the way we do to make it more suggestive for later
uses.

3. We call f a second-order cusp form of weight k and type �; if

(i) f jk;�.� � 1/ 2 Sk.�; /, for all � 2 � .
(ii) There is a f0 2 Sk.�; / such that for all parabolic � 2 � , f jk;�.� � 1/ D

.. �/.�/ � 1/a�f0 for some a� 2 C.
(iii) f vanishes at the cusps.

Their space is denoted by S2k .� I�; /.
Remark 2.1. The percolation crossing formulas � Nb; �b and n studied in [5] are
“almost” in M2

0 .� .2/I 1; �/, where � is the character of 	.z/4, (	 is the Dedekind
eta function). They are not because they fail to be holomorphic at all cusps. This
justifies the comment made in the Introduction about the need to extend the study
of second-order forms to the case of poles at the cusps.

3 Cohomology Associated to S2
k
.� I�; / andM2

k
.� I�; /

We recall the definition of parabolic cohomology as it applies to our setting. Let
� be a character of � . We consider the representation 
� of � such that 
�.�/;
(� 2 � ) is defined by


�.�/.v/ D �.�/v for all v 2 C

Then set

Z1
par.�; 
�/ WD ff W � ! CIf .�1�2/ D 
�.�1/.f .�2//C f .�1/;8�1; �2 2 �;

f .�i / D .
�.�i /� 1/.ai / .i D 1; : : : ; p/ for some ai 2 Cg
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B1
par.�; 
�/ WD B1.�; 
�/

WD ff W � ! CI 9a 2 CI 8� 2 �; f .�/ D .
�.�/ � 1/ag:

Then

H1
par.�; 
�/ WD Z1

par.�; 
�/=B
1
par.�; 
�/:

To simplify notation, we write H1
par.�; �/ instead of H1

par.�; 
�/ and so on.
For characters �; in � , fix a basis of Mk.�; / ffi gdiD1 where d WD

dim.Mk.�; //. Let f 2 M2
k .� I�; /. Then

f jk;�.� � 1/ D
dX

iD1
ci .�

�1/fi (2)

for some ci .��1/ 2 C. (The reason for the inversion of � in the notation is that we
want the induced cocycle to be in terms of a left action).

Since f 2 M2
k .� I�; /, this implies

f jk;�.� � 1/ D f jk;�.� � 1/jk; ı D f jk;�..� � 1/ı/ .ı/�.ı/

D �
f jk;�.�ı � 1/� f jk;�.ı � 1/

�
 .ı/�.ı/:

Therefore, for i D 1; : : : ; d , ci .��1/ D �
ci .ı

�1��1/� ci .ı
�1/
�
 .ı/�.ı/; or upon

replacing ��1 by � and ı�1 by ı,

ci .ı�/ D  .ı/�.ı/ci .�/C ci .ı/:

Further, by condition (ii) in the definition of M2
k .� I�; /, ci .�j / 2 .
 ��.�j / �

1/C .j D 1; : : : ; p/ and thus ci induces an element Œci � of H1
par.�;  � �/.

Therefore, the map sending f 2 M2
k .� I�; / to

dX

iD1
Œci �˝ fi

induces a linear map

� W M2
k .� I�; / ! H1

par.� I � �/˝Mk.�; /:

An analogous formula induces a map

�0 W S2k .� I�; / ! H1
par.� I � �/˝ Sk.�; /:



Second-Order Modular Forms with Characters 59

Proposition 3.1. The kernel of the map � (resp. �0) is isomorphic to the image of
Mk.�; �/CMk.�; / (resp. Sk.�; �/CSk.�; /) under the natural projection into
M2
k .� I�; / (resp. S2k .� I�; /).

Proof. It is easily seen that Mk.�; �/CMk.�; / �ker.�/.
In the opposite direction, suppose that f 2 ker.�/. Then we have ci 2 B1.�; �

�/ or ci .�/ D ai . .�/ � �.�/ � 1/ for some constants ai 2 C. Equation (2) then
implies

f jk;�.� � 1/ D
 

dX

iD1
aifi

!

. .�/ � �.�/� 1/:

SinceF WD Pd
iD1 aifi 2 Mk.�; /, the RHS equals�.�/F jk��F D F jk;�.��1/:

Therefore, f � F 2 Mk.�; �/ which implies the assertion.
The proof of the statement for the cuspidal case is similar.

Let � be a character in � . In order to estimate the dimension of H1
par.�; �/, we

associate to each F D .f; Ng/ 2 S2.�; �/˚ S2.�; �/ and a 2 H [ cusps .� / a map
LF .a; �/ W � ! C given by

LF .a; �/ D
Z �a

a

f .w/ dw C
Z �a

a

g.w/ dw:

A computation using the easy to verify identity
Z �z1

z1

f .w/ dw D
Z �z2

z2

f .w/ dwC.�.�/�1/
Z z1

z2

f .w/ dw 8z1; z2 2 H[ cusps .� /

(3)

shows that LF .a; �/ 2 Z1
par.�; �/ and that it depends on a only up to coboundaries.

According to a special case of the Eichler–Shimura isomorphism (cf. [11], Chap.
8), the map

S2.�; �/˚ S2.�; �/ ! H1
par.�; �/

sending F to the cohomology class ŒLF � of LF .a; �/ is an isomorphism. As a
consequence of this and Proposition 3.1, we deduce that

dimM2
k .� I�; / � d0 dimMk.�; /C dim

�
Mk.�; �/CMk.�; /

�
: (4)

where d0 WD dim.S2.�;  � �//C dim.S2.�; � �  //: In particular,M2
k .� I�; / is

finite dimensional. Likewise,

dimS2k .� I�; / � d0 dimSk.�; /C dim
�
Sk.�; �/C Sk.�; /

�
: (5)

To fix a basis of H1
par.�; �/, suppose that ffi g with i D 1; : : : ; dim.S2.�; �// is

a basis of S2.�; �/ and that ffjCdim.S2.�;�//g, j D 1; : : : ; dim.S2.�; �// is a basis
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of S2.�; �/. Consider the basis of the space S2.�; �/˚ S2.�; �/ formed by Fi WD
.fi ; 0/ (i D 1; : : : ; dim.S2.�; �//) and FjCdim.S2.�;�// WD .0; f jCdim.S2.�;�/// (j D
1; : : : ; dim.S2.�; �//). Then the set

fŒLi �I i D 1; : : : ; dim.S2.�; �//C dim.S2.�; �//g

with

Li WD LFi .ai ; �/ (6)

for a choice of ai 2 H [ cusps .� / is a basis ofH1
par.�; �/:

We note that it will be sometimes useful to express LF .a; �/ in terms of
antiderivatives

�h.aI z/ WD
Z z

a

h.w/ dw where h 2 S2.�; �/

for an arbitrary z 2 H [ cusps .� /.

Lemma 3.2. Let F and LF be as above. For each z 2 H [ cusps .� / and � 2 �

LF .a; �/ D �f .a; �z/C�g.a; �z/ � �.�/
�
�f .a; z/C�g.a; z/

�

Proof. Let z 2 H [ cusps .� /,

Z �a

a

f .w/ dw D
Z �a

�z
f .w/ dw C

Z �z

a

f .w/ dw

Upon a change of variables, the first integral equals

Z a

z
f .�w/ d.�w/ D ��.�/

Z z

a

f .w/ dw

Since we can decompose
R �a
a
g.w/ dw (g 2 S2.�; N�/) similarly, we deduce the

result.

4 Bases of S2
k
.� I�; / andM2

k
.� I�; / for k > 2

Let k � 4 be even, p > 0, a 2 cusps .� / and a character � in � . Suppose that
�.�a/ D e2� iya for some 0 � ya < 1. We will call a singular if ya D 0 and non-
singular otherwise. Let p� denote the number of inequivalent cusps singular in �.
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For each fixed cusp a, the space Sk.�; �/ is spanned by the Poincaré series

Pam.zI�/ D
X

�2�an�
�.�/j.�a

�1�; z/�ke..mC ya/�a
�1�z/ (7)

as m ranges over the positive integers [10], Th. 5.2.4 or [7], Sect. 2. Here, e.z/ WD
e2� iz:

A basis for the spaceMk.�; �/ (k � 4) is comprised of the above Poincaré series
together with the p� linearly independentPa0.z; �/ as a varies over p� inequivalent
singular cusps.

Whenm D 0 and a is non-singular in �, the series (7) are called the holomorphic
Eisenstein series. If we let Ek.�; �/ denote the space spanned by these Eisenstein
series, then we have the direct sum

Mk.�; �/ D Ek.�; �/˚ Sk.�; �/: (8)

To prove that the dimensions of S2k .� I�; / and M2
k .� I�; / attain the upper

bounds (4) and (5), we consider

Pam.z; LI�/ D
X

�2�an�
L.a; �/j.�a

�1�; z/�ke..mC xa/�a
�1�z/�.�/ (9)

form � 0 and L 2 Z1
par.�; � � / where  .�a/ D e2� ixa :

To show that these series are absolutely convergent and holomorphic for k � 4,
we need to bound L. Tothis end, we prove:

Lemma 4.1. Let � be a character of � . For any f in S2.�; �/, z0 2 H[ cusps .� /
all z 2 H and any cusp a,

Z z

z0

f .w/ dw � Im.�a�1z/" C Im.�a�1z/�" C 1

uniformly in x, with an implied constant depending on f , F, a, " but independent
of z.

Proof. By a change of variables

Z �az

1
f .w/dw D

Z z

�a�11
.f j2�a/.w/dw

However, f j2�a 2 S2.�a�1� �a; �0/ for some character �0 ([10], Th. 4.3.9). Further,
for every Fuchsian group of the first kind G, a character � in G, f 2 S2.G; �/

and z 2 H, jyf .z/j � 1. Indeed, this holds, by compactness, in the closure of
a fundamental domain of GnH. On the other hand, jIm.�z/f .�z/j D jyf .z/j for



62 T. Blann and N. Diamantis

all � 2 G, and thus, the bound holds on the entire H. Therefore, .f j2�a/.w/ �
Im.w/�1 for all w 2 H. This implies

Z z

�a�11
.f j2�a/.w/dw D

Z 1

�a�11
.f j2�a/.w/dw C

Z z

1
.f j2�a/.w/dw

D
Z 1

�a�11
.f j2�a/.w/dw C

Z nCxCiy

1
.f j2�a/.w/dw

for some n 2 Z and 0 � x < 1. The last integral equals

Z xCiy

1
.f j2�aT n/.w/dw D e2� inya

Z xCiy

1
.f j2�a/.w/dw

for some ya 2 R since f j2�a 2 S2.�a�1� �a; �0/. This implies that

Z z

�a�11
.f j2�a/.w/dw D

Z 1

�a�11
.f j2�a/.w/dw C e2� inxa

�Z 1

1
.f j2�a/.x C i t/dt

C
Z y

1

.f j2�a/.x C it/dt

�

� 1C
Z y

1

j.f j2�a/.x C it/jdt

� 1C
Z y

1

1

t
dt D 1C logy

uniformly in x, with the implied constant depending on a, f and F. Since for all ",
log.y"/ < y" C y�" for all y > 0, we deduce that

Z �az

1
f .w/dw � 1C y" C y�"

with the implied constant further depending on ". Upon replacing z with �a�1z, the
result follows immediately.

Proposition 4.2. Let 4 � k 2 2Z and characters �; in � . For each a2 cusps .� /
andLi.a; �/ 2 Z1

par.�; � � / as in (6), with i D 1; : : : ; d0 (d0 D dim.S2.�; � � //C
dim.S2.�;  � �//), we have

Pa0.z; Li .a; �/I�/; 2 M2
k .� I�; / if a is singular in  

Pam.z; Li .a; �/I�/; 2 S2k .� I�; / if m > 0:

Proof. We first show that each term of the series is independent of the rep-
resentative in �an� . The cocycle condition of Li.a; �/ implies Li.a; �a�/ D
�.�a/ .�a/Li .a; �/ because clearly Li.a; �a/ D 0. Using the identity �a�1�a D
T �a

�1, we deduce
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Li.a; �a�/j.�a
�1�a�; z/�ke..mC xa/�a

�1�a�z/�.�a�/

D Li.a; �/�.�a/ .�a/j.T �a
�1�; z/�ke..mC xa/T �a

�1�z/�.�a�/

D Li.a; �/j.�a
�1�; z/�ke..mC xa/�a

�1�z/�.�/:

To prove the convergence, we first note that by Lemmas 4.1 and 3.2,

Li.a; �/ � Im.�a�1�z/" C Im.�a�1�z/�" C Im.�a�1z/" C Im.�a�1z/�" C 1

for i D 1; : : : ; d0. Therefore

Pam.z; Li .a; �/I�/ �
X

�2�an�

�
Im.�a�1�z/" C Im.�a�1�z/�" C Im.�a�1z/"

CIm.�a�1z/�" C 1
�jj.�a�1�; z/j�k

D y�k=2 X

�2�an�
.Im.�a�1�z/k=2C" C Im.�a�1�z/k=2�"/

Cy�k=2.Im.�a�1z/" C Im.�a
�1z/�" C 1/

�
X

�2�an�
Im.�a�1�z/k=2 (10)

for any " > 0. (The implied constant depends on ":) Since the non-holomorphic
Eisenstein series

Ea.z; s/ D
X

�2�an�
Im.�a

�1�z/s; (11)

is absolutely convergent for s with Re.s/ > 1, (10) implies the absolute and uniform
(for z in compact sets in H) convergence of Pam.z; Li I�/ for k=2�" > 1 and hence
for k > 2.

To determine the growth at the cusps, we recall that Ea.z; s/ has the Fourier
expansion at the cusp b

Ea.�bz; s/ D ıaby
s C �ab.s/y

1�s C
X

m¤0
�ab.m; s/Ws.mz/

D ıaby
s C �ab.s/y

1�s CO.e�2�y/ (12)

as y ! 1 with an implied constant depending only on s and � . Here, Ws.z/ is the
usual Whittaker function.

This and Li .a; I / D 0, for I the identity element of � , yields

j.�b; z/
�kPam.�bz; Li .a; �/I�/

D
X

�2�an�
Li .a; �/�.�/j.�a

�1��b; z/�ke..mC xa/�a
�1��bz/
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� y�k=2 X

�2�an�;�¤�a
jLi.a; �/jIm.�a�1��bz/k=2

� y�k=2� ˇ̌Ea.�bz; k=2� "/� ıabyk=2�"
ˇ̌C .Im.�a�1�bz/"

CIm.�a�1�bz/�" C 1/
ˇ
ˇEa.�bz; k=2/� ıaby

k=2
ˇ
ˇ
�

Since Im.gz/ 	 y�1 for g 2SL2.R/ n ftranslationsg, this is � y1�kC" as y ! 1
uniformly in x. Therefore, Pam.z; Li .a; �/I�/ vanishes at the cusps for m > 0 as
well asm D 0.

To verify the transformation law, we rewrite Pam.�; Li .a; �/I�/ in the form

Pam.�; Li I�/ D
X

�2�an�
�.�/Li .a; �/e..mC xa/�/jk�a�1�

and thus

Pam.�; Li .a; �/I�/jk;�ı D
X

�2�an�
�.�ı/Li .a; �/e..mC xa/�/jk�a�1�ı

D
X

�2�an�
�.�/Li .a; �ı

�1/e..mC xa/�/jk�a�1�:

This and the cocycle condition of Li .a; �/ imply

Pam.�; Li .a; �/I�/jk;�.ı � 1/ D
X

�2�an�

�.�/Li .a; ı
�1/�.�/ .�/e..mC xa/�/jk�a�1�

D Li .a; ı
�1/Pam.�;  /: (13)

Therefore, condition (i) of the definition of S2k .� I�; / (resp. M2
k .� I�; /)

holds for the series Pam.z; Li .a; �/I�/, if m > 0 (resp. Pa0.z; Li .a; �/I�/, if a is
singular in  ).

Equation (13) also shows condition (ii) of the definition of second-order forms:
By (3) applied with � D � parabolic, z1 D a and z2 Dfixed point of � , we deduce
that Li.a; �/ D .�.�/ .�/ � 1/a� for some constant a� 2 C: Since the cocycle
condition of Li.a; �/ implies that Li .a; ��1/ D � .�/�.�/Li .a; �/, we deduce
that Pam.�; Li .a; �/I�/jk;�.� � 1/ has the form stipulated by (ii) of the definition.

Theorem 4.3. For 4 � k 2 2Z and d0 WD dim.S2.�;  � �//C dim.S2.�; � �  //,
we have

dimS2k .� I�; / D d0 dimSk.�; /C dim
�
Sk.�; �/C Sk.�; /

�
(14)

dimM2
k .� I�; / D d0 dimMk.�; /C dim

�
Mk.�; �/CMk.�; /

�
(15)
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Proof. To obtain a basis for S2k .� I�; /, we fix a cusp a and we consider the
set A of series Paj .z; Li .a; �/I�/, as j > 0 runs over integers yielding a basis
Paj .zI / for Sk.� I�/ and as i runs over integers in f1; : : : ; d0g inducing a basis
ŒLi � ofH1

par.�; �� /. With (13), these series are all linearly independent because the
linear independence of ŒLi � implies the linear independence of Li.a; �/. We further
consider a basisB of Sk.�; �/CSk.�; /. As such a basis, we may choose the union
of bases of Sk.�; �/ and Sk.�; /, if  6
 �, or, otherwise, a basis of Sk.�; �/. The
cardinality of the linearly independent set A [ B equals the upper bound in (5), so
A[ B is a basis of S2k .� I�; /. This proves (14).

A similar argument, using the fact that Pa0.z;  / with a running over the
inequivalent cusps of � nH which are singular in terms of  form a basis for
Ek.�; /, yields (15).

Remark 4.2. The dimensions appearing in Theorem 4.3 can be evaluated explicitly
using the formulas for the dimensions of modular forms for k > 0 as presented, for
instance, in [7]: If � is a character in � , then, with the notation used in (1), set
q D pCPr

jD1.1�1=ej /, �.�i / D e.xi / and �.�i / D e..kCaj /=.2ej // for some
xi 2 Œ0; 1/, aj 2 Œ0; ej � 1�. Then

dimMk.�; �/ D k.g � 1C q=2/�
pX

iD1
xi �

rX

jD1
aj =ej � g C 1

and

dimSk.�; �/ D k.g � 1C q=2/�
pX

iD1
xi �

rX

jD1
aj =ej � g C 1 � p� C ı

where ı D 0 unless k D 2 and � 
 1.
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Disjointness of Moebius from Horocycle Flows
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Abstract We formulate and prove a finite version of Vinogradov’s bilinear sum
inequality. We use it together with Ratner’s joinings theorems to prove that the
Moebius function is disjoint from discrete horocycle flows on �nSL2.R/, where
� � SL2.R/ is a lattice.

Key words Moebius function • Randomness principle • Vinogradov’s bilinear
sums • Entropy • Square-free flow • Disjointness of dynamical systems
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1 Introduction

In this note, we establish a new case of the disjointness conjecture [Sa1] concerning
the Moebius function �.n/. The conjecture asserts that for any deterministic
topological dynamical system .X; T / (that is a compact metric space X with a
continuous map T of zero entropy) as N ! 1,

X

n�N
�.n/f .T nx/ D o.N / (1.1)

where x 2 X and f 2 C.X/.
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If this holds, we say that � is disjoint from .X; T /. The conjecture is known
for some simple deterministic systems. For .X; T / a Kronecker flow (that is a
translation in a compact abelian group), it is proven in [D] using the methods
introduced in [V], while for .X; T / a translation on a compact nilmanifold, it is
proved in [G-T]. It is also known for some substitution dynamics associated with
the Morse sequence [M-R].1 In all of these, the dynamics is very structured, for
example, it is not mixing. Our aim is to establish the conjecture for horocycle flows
for which the dynamics is much more random being mixing of all orders [M].

In more detail, let G D SL2.R/ and � � G a lattice, that is, a discrete subgroup

of G for which �nG has finite volume. Let u D
�
1 1

0 1

�
be the standard unipotent

element in G and consider the discrete horocycle flow .X; T /, where X D �nG
and T is given by

T .�x/ D �xu: (1.2)

Theorem 1. Let .X; T / be a horocycle flow, then � is disjoint from .X; T /, that is
given x 2 X and f 2 C.X/ (if X is not compact, then f is continuous on the
one-point compactification of X ), as N ! 1

X

n�N
�.n/f .T nx/ D o.N /:

Note 1. We offer no rate in this o.N / statement. For this reason, we cannot say
anything about the corresponding sum over primes2 (which the treatments in the
cases of Kronecker and nilflows certainly do). The source of the lack of a rate is that
we appeal to Ratner’s theorem [R1] concerning joinings of horocycle flows, and her
proof yields no rates.

As pointed out in [Sa1], Vinogradov’s bilinear method for studying sums, over
primes or correlations with �.n/, has a natural dynamical interpretation in the
context of the sequences f .T nx/ belonging to flows. That is, the so-called type
I sums [Va] are individual Birkhoff sums for .X; T d1 /, and the type II sums are
such Birkhoff sums for joinings of .X; T d1 / with .X; T d2/. The standard treatments
[Va, I-K] assume that one has at least a .logN/�A rate for those dynamical sums in
setting up the sieving process. Our starting point is to formulate a finite version of
the bilinear sums method. It applies to any multiplicative function bounded by 1.

Theorem 2. Let F W N ! C with jF j � 1 and let � be a multiplicative function
with j�j � 1. Let � > 0 be a small parameter and assume that for all primes
p1; p2 � e1=� , p1 6D p2, we have that for M large enough

1Also related to this last case is the orthogonality of � to AC0 functions, see [K, G, B].
2see [S-U] for some results on sums on primes in this case.
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ˇ̌
ˇ̌
ˇ
X

m�M
F.p1m/F.p2m/

ˇ̌
ˇ̌
ˇ � �M: (1.3)

Then for N large enough
ˇ̌
ˇ̌
ˇ
X

n�N
�.n/F.n/

ˇ̌
ˇ̌
ˇ � 2

p
� log 1=�N: (1.4)

Note 2. There are obvious variations and extensions which allow a small set of
p1; p2 for which (1.3) fails, but for which the conclusion (1.4) may still be drawn.
We will note them as they arise.

Theorem 2 can be applied to flows .X; T / with F.n/ D f .T nx/ as long as we
can analyze the bilinear sums f .T p1nx/f .T p2nx/. In Sects. 3 and 4, we use Ratner’s
theory of joinings of horocycle flows to compute the correlation limits

lim
N!1

1

N

X

n�N
f .T p1nx/f .T p2nx/

when .X; T / is a horocycle flow. This correlation is determined by a subgroup of
R

�
>0 denoted by C.�; x/ which is defined in terms of the point x 2 X and the

commensurator, COM.�/ of � in G (see Sect. 3). After removing the mean of f
(with respect to dg onX ) and determining the correlation limits in (1.4), we find that
for T -generic x 2 X , namely, a point x for which the orbit fT nxg is equidistributed
inX , (1.3) holds for � as small as we please except for a limited number of p1; p2’s.
This leads to Theorem 1 if x is generic, while if it is not so, then thanks to Dani’s
theorem [Da], Theorem 1 follows from the Kronecker case.

The method used to handleG D SL2.R/ has the potential to apply to the general
Ad -unipotent flow in �nG, with G semisimple and � such a lattice. For these,
the correlations are still very structured by Ratner’s general rigidity theorem [R2].
However, the possibilities for the correlations are more complicated, and we have
not examined them in detail. There are other deterministic flows for which we can
apply Theorem 2 such as various substitution flows [F] and rank one systems [Fe1].
We comment briefly on this at the end of this chapter, leaving details and work in
progress for a future note.

2 A Finite Version of Vinogradov’s Inequality

We prove Theorem 2. The basic idea is to decompose the set of integers in the
interval Œ1; N � into a fixed number of pieces depending on the small parameter � .
These are chosen to cover most of the interval and so that the members of the pieces
have unique prime factors in suitable dyadic intervals. In this way, one can use the
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multiplicativity of �, and after an application of Cauchy’s inequality, one can invoke
(1.3) in order to estimate the key sum in the theorem.

Let ˛ > 0 (small and to be chosen later to depend on the parameter �) and set

j0 D 1

˛

�
log

1

˛

�3
; j1 D j 20 ; D0 D .1C ˛/j0 and D1 D .1C ˛/j1 : (2.1)

In order to decompose Œ1; N � suitably, consider first the set S given as

S D fn 2 Œ1; N � W n has a prime factor in .D0;D1/g: (2.2)

In what follows N ! 1 with our fixed small ˛ and A . B means that
asymptotically asN ! 1,A � B . From the Chinese remainder theorem, it follows
that (here and in what follows Œ1; N � consists of the integers in this interval)

jŒ1; N �nS j .
Y

D0 < ` < D1

` prime

�
1 � 1

`

�
N: (2.3)

We can estimate the product over primes in (2.3) using the prime number theorem
and the fact that ˛ is small and hence D0 large,

Y

D0<`<D1

�
1 � 1

`

�
� logD0

logD1

D 1

j0
: (2.4)

It follows that
jŒ1; N /nS j . ˛N; (2.5)

that is, up to a fraction of ˛; S covers Œ1; N /.
Let Pj be the set of primes in Œ.1C ˛/j ; .1C ˛/jC1� for j0 � j � j1 and define

Sj by

Sj D
8
<

:n 2 Œ1; N /In has a single divisor in Pj and no divisor in
[

i<j

Pi

9
=

; : (2.6)

The sets Sj are disjoint, and appealing again to the prime number theorem with
remainder and ˛ small, we have

jPj j D .1C ˛/jC1

.j C 1/ log.1C ˛/
� .1C ˛/j

j log.1C ˛/
CO

�
.1C ˛/j e�p

j̨
�
; (2.7)

with an implied constant that is absolute.
Hence, for ˛ small and j0 � j � j1,

jPj j � .1C ˛/j
�
1

j
C 1

j̨ 2
CO.e�p

j̨ /

�
: (2.8)
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Now from the definition of S , we have that

Sn
[

j0�j�j1
Sj �

[

j0�j�j1

˚
n 2 Œ1; N /I with n having at least

two prime factors in Sj
�
:

(2.9)

Hence,

jSn
[

j0�j�j1
Sj j .

X

j0�j�j1

X

`1;`22Pj

N

`1`2

� N
X

j0�j�j1

� jPj j
.1C ˛/j

�2
: (2.10)

From (2.8), this gives for ˛ small enough

jSn
[

j0�j�j1
Sj j . N

X

j0�j�j1

�
1

j
C 1

j̨ 2
CO

	
e�p

j̨

�2

� N

�
1

j0
C 1

j 30 ˛
2

CO

�
1

˛
.1Cp

j̨0/e
�p

j̨0

��

� ˛N: (2.10’)

So at this point, we have covered Œ1; N � up to a fraction of ˛ by the disjoint
sets Sj ; j0 � j � j1. Finally we decompose Sj in a well-factored set and its
complement. For j0 � j � j1, let

Qj D
8
<

:m 2
�
1;

N

.1C ˛/jC1

�
I m has no prime factors in

[

i�j
Pj

9
=

; : (2.10”)

Clearly the product sets PjQj satisfy

PjQj � Sj for j0 � j � j1: (2.11)

Moreover, for each such j

Sjn.PjQj / � Pj :

�
N

.1C ˛/jC1 ;
N

.1C ˛/j

�
: (2.12)

Hence,
X

j0�j�j1
jSjn.PjQj /j �

X

j0�j�j1
jPj j: ˛N

.1C ˛/j
:

Applying (2.8) yields that the right-hand side above is

� N

�
˛ log

j1

j0
C 1

j0
CO.1Cp

j̨0e�p
j̨0 /

�
:
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Hence, for ˛ small enough
X

j0�j�j1
jSjn.PjQj /j � 2˛N: (2.13)

This leads to the basic decomposition of Œ1; N / into disjoint setsPjQj ; j0 � j � j1
with only a small number of points omitted. Namely, from (2.5), (2.10’), and (2.13),

jŒ1; N /n
[

j0�j�j1
PjQj j . 4˛N: (2.14)

Note that the map Pj �Qj ! PjQj is one-to-one and since jF j � 1 and j�j � 1,
we have that

ˇ̌
ˇ
X

n�N
�.n/F.n/

ˇ̌
ˇ .

X

j0�j�j1

ˇ̌
ˇ

X

x 2 Pj
y 2 Qj

�.xy/F.xy/
ˇ̌
ˇC 4˛N: (2.15)

For x 2 Pj ; y 2 Qj ; .x; y/ D 1 so that the �.xy/ in (2.15) can be factored as
�.x/�.y/, and hence,

ˇ̌
ˇ
X

��N
�.n/F.n/

ˇ̌
ˇ .

X

j0�j�j1

X

y2Qj

ˇ̌
ˇ
X

x2Pj
�.x/F.xy/

ˇ̌
ˇC 4˛N: (2.16)

The inner sum may be estimated using Cauchy:

X

y2Qj

ˇ̌
ˇ
X

x2Pj
�.x/F.xy/

ˇ̌
ˇ

�
0

@
X

y2Qj

1

1

A
1=20

@
X

y2Qj

ˇ̌
ˇ
X

x2Pj
�.x/F.xy/

ˇ̌
ˇ
2

1

A
1=2

� jQj j1=2
0

@
X

y�N=.1C˛/j

ˇ̌
ˇ
X

x2Pj
�.x/F.xy/

ˇ̌
ˇ
2

1

A
1=2

D jQj j1=2
0

@
X

y�N=.1C˛/j

X

x1;x22Pj
�.x1/�.x2/F.x1y/F.x2y/

1

A
1=2

� jQj j1=2
0

@
X

x1;x22Pj

ˇ̌
ˇ

X

y�N=.1C˛/j
F .x1y/F.x2y/

ˇ̌
ˇ

1

A
1=2

; (2.17)

where we have used j�j � 1.
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Note that here

x1; x2 < .1C ˛/j1 < e1=˛
2

: (2.18)

The diagonal contribution in (2.17), that is, x1 D x2 for each j , yields at most

jQj j1=2jPj j1=2
p
N

.1C ˛/j=2
; (2.19)

by using that jF j � 1 and the definition ofQj . Hence, summing over j and Cauchy,
it is

� p
N

0

@
X

j0�j�j1
jPj j jQj j

1

A
1=20

@
X

j0�j�j1

1

.1C ˛/j

1

A
1=2

:

Now jPjQj j � jSj j and
P jSj j � N ; hence, the full diagonal contribution is

at most

N

0

@
X

j0�j�j

1

.1C ˛/j

1

A
1=2

� ˛N: (2.20)

For x1 6D x2, the hypothesis in the theorem may be applied in view of (2.18), that is,
ˇ̌
ˇ̌
ˇ̌

X

y�N=.1C˛/j
F .x1y/F.x2y/

ˇ̌
ˇ̌
ˇ̌ � �N

.1C ˛/j
:

Hence, the off-diagonal contribution is at most

p
�N

X

j0�j�j1
jPj j jQj j1=2.1C ˛/�j=2

� p
�N

0

@
X

j0�j�j1
jPj j jQj j

1

A
1=20

@
X

j0�j�j
jPj j.1C ˛/�j

1

A
1=2

� p
�NN1=2

�
log

j1

j0
C 1

j0˛
C 1

˛
.1Cp

j̨0/e�p
j0

�1=2

� N
p
�
p

log 1=˛ (2.21)

(for ˛ small).
Putting all of these together, we have

ˇ̌
ˇ
X

n�N
�.n/F.n/

ˇ̌
ˇ . N

	
5˛ Cp

� log 1=˛


:

Taking ˛ D p
� yields the theorem.
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3 Commensurators and Correlators

As in the introduction, G D SL2.R/ and � is a lattice in G. The commensurator
subgroup, COM.�/ of � in G, is defined by

COM.�/ D fg 2 G W g�1�g \ � is finite index in both � and g�1�gg: (3.1)

It plays a critical role in determining the ergodic joinings of .�nG; T a/ with

.�nG; T b/, where a; b > 0 and T a D
�
1 a

0 1

�
. Let z be a point on the projective line

P
1.R/ and let Pz be the stabilizer of z in G, with G acting projectively. If z D 1,

then

P1 D
��
˛ ˇ

0 ı

�
W ˛ı D 1

�
: (3.2)

If � 2 G and �.z/ D 1, then

Pz D ��1P1�: (3.3)

Define the character � of P1, and hence of Pz for any z, by

�

��
˛ ˇ

0 ı

��
D ˛ı�1 D ˛2: (3.4)

� is valued in the multiplicative group R
�
>0. If 	z is a subgroup of Pz, we define

the correlation group C.	z/ to be the image of 	z under �z, that is, C.	z/ is the
subgroup of R� given as �z.	z/. We denote by C.�; z/ the group C

�
.COM �/ \

Pz/, and our aim is to determine this group for � and z as above. Its relevance to the
unipotent element u is that for ˇ 2 P1,

ˇuˇ�1 D
�
1 �.ˇ/

0 1

�
D u�.ˇ/: (3.5)

The explicit computation of these groups C.�; z/ depends on the nature of � , so
we divide it into cases.

Case 1. In which � is nonarithmetic. In this case, it is known [Ma] that
COM.�/=� is finite, and hence, COM.�/ is itself a lattice in G. Hence, for
z 2 P

1.R/; COM.�/ \ Pz is cyclic (either trivial or infinite), and hence, what is
important for us is that C.�; z/ is finitely generated. In particular it follows that the
set of p=q with p 6D q and both prime which lie in C.�; z/ is finite. We record
this as

Lemma 1. If � is nonarithmetic, then for any z 2 P
1.R/,

�
p

q
W p; q prime p 6D q

� \
C.�; z/

is finite (in fact consists of at most one element).
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Case 2. In which � is arithmetic and �nG is compact. In this case, it is known
[We] that � is commensurable with a unit group in a quaternion algebra A defined
over a totally real number field. For simplicity, we assume that A is defined over Q
(the general case may be analyzed similarly). Thus,A D . a;b

Q
/ is a four-dimensional

division algebra (since �nG is compact) generated linearly over Q by 1; !;
; !
.
Here !2 D a;
2 D b with a; b 2 Q and say a > 0 and a and b square-free. ! and

 obey the usual quaternionic multiplication rules. For

˛ D x0 C x1! C x2
C x3!
 (3.6)

with xj 2 Q

˛ D x0 � x1! � x2
 � x3!
; (3.7)

N.˛/ D ˛˛ D x20 � ax21 � bx22 C abx23 (3.8)

and

trace .˛/ D ˛ C ˛ D 2x0: (3.9)

A=Q being a division algebra is equivalent to the statement

N.˛/ D 0 iff ˛ D 0, for ˛ 2 A.Q/: (3.10)

Let A1.Z/ be the integral unit group:

A1.Z/ D f˛ 2 A.Z/ W N.˛/ D 1g: (3.11)

We embed A.Q/ intoM2.R/ by

˛ ! �.˛/ D
�
� �

b� �

�
(3.12)

where � D x0 � x1w; � D x2 C x3!, and ! D p
a 2 R.

Note that

det�.˛/ D N.˛/ (3.13)

trace�.˛/ D � C � D trace .˛/: (3.14)

Now ƒ D �
�
A1.Z/

�
is a cocompact lattice in G, and we are assuming that our �

is commensurable with ƒ. Hence, the commensurator of � (or of ƒ, they are the
same) consists of the Q points [P-R]:

COM.�/ D
�

�.˛/

.det˛/1=2
I˛ 2 AC.Q/

�
; (3.15)
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where AC.Q/ consists of all ˛ 2 A.Q/ with N.˛/ > 0.

Hence, up to scalar multiples of

�
1

1

�
, that is, up to the center of GL2.R/,

ı 2 COM.�/ iff ı D
�
� �

b� �

�
with � C �
 2 AC.Q/. (3.16)

Our interest is in C.�; z/, and from the description (3.16), one can check that
for certain algebraic z’s, this group can be an infinitely generated subgroup of K�,
whereK is the corresponding algebraic extension of Q.

What is important to us are the rationals in this group, and this is given by

Lemma 2. For � as in case 2 and any z 2 P
1.R/

C.�; z/
\

Q
� D f1g:

Proof. Let Oı 2 Pz
T
COM.�/, then Oı D �.ı/, and hence, N.ı/1=2 Oı in GL2.R/

satisfies

trace .N.ı/1=2 Oı/ D s 2 Q

det.N.ı/1=2 Oı/ D t 2 Q
�
>0

9
=

; (3.17)

Also, N.ı/1=2 Oı is conjugate in G to ˇ with

ˇ D
�
 �
0 �

�
;

where
� D t and C � D 2s: (3.18)

Now, �. Oı/ D =�, and if this number is in Q, then from (3.17) and (3.18), we see
that both  and � are in Q. Now, ı 2 AC.Q/, so ı D x0 C x; ! C x2
 C x3!


with xj 2 Q, and from (3.17), we have that

�
C �

2

�2
� ax21 � bx22 C abx23 D �;

that is,
�
 � �

2

�2
� a1x21 � bx22 C abx23 D 0: (3.19)

Now,  � �; x1; x2; x3 2 Q, and since A is a division algebra, it follows from
(3.19) that

 � � D x1 D x2 D x3 D 0:
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That is,  D � and hence =� D 1 as claimed.

Case 3. In which � is arithmetic and �nG is noncompact. This time � is
commensurable with a quaternion algebra that is split over Q, and hence, �
is commensurable with SL2.Z/. Its commensurator subgroup is given by

COM.�/ D ˚
A=.detA/1=2 W A 2 GLC

2 .Q/
�
:

Now, if z 2 P
1.Q/, then since

COM.�/\ P1 D
�

1p
˛ı

�
˛ ˇ

0 ı

�
W ˛; ˇ; ı 2 Q; ˛ı > 0

�
;

we have that

C.�; z/ D C
�
COM.�/ \ Pz

� D Q
�: (3.20)

So in this case, the correlator subgroup contains every rational p=q.

If z 62 P
1.Q/ and z does not lie in a quadratic number field, then .az C b/=

.cz C d/ D z has no solutions for

�
a b

c d

�
2 GL.2;Q/ other than

�
a b

c d

�
D 11 in

PGL2. Hence, for such a z,

C.�; z/ D C
�
COM.�/\ Pz

� D f1g: (3.21)

This leaves us with z quadratic in which case we have that up to scalar multiples
of I :

COM.�/\ Pz D f� 2 GLC
2 .Q/ W �z D zg: (3.22)

If z satisfies az2CbzCc D 0with a; b; c integers .a; b; c/D 1 and d D b2�4ac > 0
and not a square, then one checks that

COM.�/\ Pz D
��

tCbu
2

cu
�au t�bu

2

�
W t2 � du2 2 Q

C t; u 2 Q

�
:

Hence,

�

 �
tCbu
2

cu
�au t�bu

2

�!
D t C u

p
d

t � u
p
d

(3.23)

and so

C.�; z/ D
�
�

�0 I � 2 Q.
p
d/�; N.�/ > 0

�
(3.24)

where �0 is the conjugate of � in Q.
p
d/.
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While this group is infinitely generated, its intersection with Q
� is 1 (if . �

�0 /
0 D

�

�0
, then �2 D .�0/2 or � D ˙�0, and since N.�/ > 0; � D �0).
We summarize this with

Lemma 3. If � is commensurable with SL2.Z/, then

C.�; z/\ Q
� D

( f1g if z 62 P
1.Q/

Q
� if z 2 P

1.Q/:

4 Ratner Rigidity and Moebius Disjointness

The correlator group C.�; z/ enters in the analysis of joinings of horocycle flows
when applying Ratner’s theorem [R1, R2]. According to these, we have that for
1; 2 > 0, and � 2 �nG,

lim
N!1

1

N

NX

nD1
f
�
�.u1/n

�
f
�
�.u2/n

�
(4.1)

exists. Here f 2 C.�nG/ is continuous on the one-point compactification of �nG
(if it is not compact), and u D

�
1 

0 1

�
.

The limit in (4.1) is given by

Z

�nG��nG
F. Q�h/d�.h/; (4.2)

where Q� D .�; �/ 2 X � X;F.x1; x2/ D f .x1/f .x2/, and � is an algebraic
Haar measure supported on an algebraic subgroup H of G � G and for which
.� � �/ Q�H is closed in X � X . The support of � is the closure of the orbit�
�.u1/n; �.u2/n

�
; n D 1; 2; : : :.

Consider first the case that X is compact. Then any point � is u generic (the
flow .X; T / is uniquely ergodic, and every point is dg equidistributed in X [Fu]).
It follows that the measure � projects onto dg on each factor Xj of X1 � X2 .
That is, � is a joining ofX1 withX2 . Applying the Ratner rigidity theorems, either
d� D dg1 � dg2 or it reduces to a measure on subgroupsH D  .G/ where  is a
morphism  W G ! G �G of the form

 .g/ D �
 1.g/;  2.g/

�

with

 1.u/ D u1 ;  2.u/ D u2 (4.3)
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and
�
�� 1.g/; �� 2.g/

�
is closed inX �X . That is, there are ˛1; ˛2 2 G such that

˛1u˛
�1
1 D u1 ; ˛2u˛

�1
2 D u2

and

 .g/ D �
˛1g˛

�1
1 ; ˛2g˛

�1
2

�
: (4.4)

In particular ˛1; ˛2 2 P1.R/ and

�.˛1/ D 1 and �.˛2/ D 2: (4.5)

Now .�˛1g˛
�1
1 ; �˛2g˛

�1
2 /Ig 2 G is closed in �nG � �nG iff

.h˛�1
1 ; �˛2˛

�1
1 �

�1h˛�1
2 /; h 2 G (4.6)

is closed �nG � �nG.
The latter is equivalent to

ı D �˛2˛
�1
1 �

�1 2 COM.�/: (4.7)

In this case,
ı 2 P�.˛/ \ COM.�/ and �.ı/ D 2=1: (4.8)

Thus, we have

Lemma 4. There is a nontrivial joining (in particular � is not dg1dg2) in (4.2) iff
2=1 2 C ��; �.1/

�
.

So if 1 D p and 2 D q with p 6D q primes, then from Lemmas 1, 2, and 4,
we have

Corollary 5. For � 2 �nG with �nG compact, there are most finite number of
pairs of distinct primes p; q (depending only on �) for which the following fails:

1

N

NX

nD1
f .�upn/f .�uqn/ !

�Z

�nG
f .g/dg

�2
:

If X is noncompact and � is nonarithmetic, then as long as � is generic for
.X; T; dg/, then the joinings analysis coupled with Lemma 1 leads to Corollary 5
holding for such � and �. The remaining case is that of � being commensurable
with SL2.Z/. In this case, by [Da], � is generic for .X; T; dg/ iff �.1/ 62 P

1.Q/.
Thus, again, we can apply the joinings analysis coupled with Lemmas 3 and 4 to

conclude

Corollary 6. If X is noncompact and � is generic for .X; T; dg/, then there are at
most a finite number of pairs of distinct prime p; q, depending only on �, for which
the following fails:
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1

N

NX

nD1
f .�upn/f .�uqn/ !

�Z

�nG
f .g/dg

�2
:

We can now complete the proof of Theorem 1. If X is compact, then every � is
generic for dg. Write

f .x/ D f1.x/C c (4.9)

where
R
�nG f1.x/dx D 0 and c is a constant. Then

1

N

NX

nD1
�.n/f .��un/ D 1

N

NX

nD1
�.n/f1.��un/C o.1/ (4.10)

by the prime number theorem.
As far as the sum against f1 is concerned, according to Corollary 5 (noteR

�nG f1.x/dx D 0), the conditions of Theorem 2 are met for F.n/ D f1.�un/
except for finitely many pairs p; q. This causes no harm as far as concluding that
the first sum in (4.10) is o.1/. One can certainly allow a finite number of exceptions
(independent of N ) in Theorem 2; in fact the proof only involves the condition for
primes p � D0 which gets large as � gets small.

If �nG is not compact and � is generic for dg, then according to Corollary 6,
everything goes through as above, and Theorem 1 follows. If � is not generic, then
by [Da], the closure of the orbit of � in X is either finite or is a circle, and in the
latter case, the action of u is by rotation of this circle through an angle of � . Thus,
in the first case, Theorem 1 follows from the theory of Dirichlet L-functions, while
in the second case, it was proven in [D].

Note 4. The case of richest joinings of X �X of the form .�g˛�1
1 ; �ıg˛�1

2 /, with
� D SL2.Z/ and ı 2 COM.�/, is not one that we had to consider directly in our
analysis (since it corresponds to �.1/ 2 P

1.Q/ so that � is not generic). For this
joining, if det ı D pq (taking ı 2 GLC

2 /, the joining is

1

Œ� W 	�
Z

	nG
f .g˛�1

1 /f .ıg˛�1
1 /dg (4.11)

where	 D ı�1�ı \ � .

By the theory of correspondences (Hecke operators), if f is a Hecke eigenform
(and

R
�nG f dg D 0/ which we can assume here, the joining in (4.11) becomes

f .pq/

.p C 1/.q C 1/

Z

�nG
f
�
g˛�1

1

�
f
�
g˛�1

1

�
dg (4.12)

where f .n/ is the nth Hecke eigenvalue.
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So while in this case the correlation need not be zero, it is small if pq gets large.
This follows from the well-known bounds for Hecke eigenvalues [Sa2]. One would
expect that this would be useful in an analysis of this type, but apparently for this
ineffective analysis, it is not needed.

5 Some Further Comments

The Moebius orthogonality criterion provided by Theorem 2 has applications to
other systems of zero entropy. One can use it to give a “soft” proof of the qualitative
Theorem 1 for Kronecker and nilflows. In what follows we will only briefly
review some new consequences that are essentially immediate from a number
of classical facts in ergodic theory,3 leaving details and further research in this
direction for a future paper. Some unexplained terminology below may be found
in [Ka-T]. First, we mention a result due to Del Junco and Rudolph ([D-R],
Cor. 6.5) asserting the disjointness of distinct powers T m and T n for weakly mixing
transformations T with the minimal self-joinings property (MSJ). This provides
another general class of systems for which Theorem 1 holds. More precisely, the
disjointness statement of Theorem 1 applies to any uniquely ergodic topological
model for such transformations; these exist by Jewett [J]. Next, restricting ourselves
to rank-one transformations, J. King’s theorem [Ki] states that mixing rank-one
implies MSJ (well-known examples include the Ornstein rank-one constructions and
Smorodinsky-Adams map, see [Fe1]). The condition of mixing may be weakened
to “partial mixing”; see [Ki-T]. While it seems presently unknown whether any
mildly mixing rank-one transformation has MSJ, this property was established in
certain other cases, such as Chacon’s transformation [D-R-S] (which is mildly but
not partially mixing). It was shown that “typical” interval exchange transformations
are never mixing [Ka], rank-one [Ve2], uniquely ergodic [Ve1, Mas], and weakly
mixing [A-F]. Whether they satisfy Theorem 1 is an interesting question, especially
in view of the fact that they are the immediate generalization of circle rotations. For
further results on correlation of the Moebius function with rank-one systems, see
this follow-up paper of Bourgain [B1].

Finally, the Moebius (and Liouville sequence) orthogonality with sequences
arising from substitution dynamics has its importance from the perspective of
symbolic complexity (see [Fe2] for a discussion). Our approach via Theorem 2 is
applicable for sequences produced by an “admissible q-automation” (see [Quef] for
definitions), provided its spectral type is of intermediate dimension. The spectral
measure is indeed known to be .xq/-invariant, and disjointness of T p1 and T p2 for
p1 6D p2 may in this case be derived from [Ho].

3We are grateful to J-P. Thouvenot for a detailed account of the “state of the art” of various aspects
of the theory of joinings.
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Duality and Differential Operators
for Harmonic Maass Forms

Kathrin Bringmann, Ben Kane, and Robert C. Rhoades

In memory of Leon Ehrenpreis

Abstract Due to the graded ring nature of classical modular forms, there are many
interesting relations between the coefficients of different modular forms. We discuss
additional relations arising from duality, Borcherds products, and theta lifts.

Using the explicit description of a lift for weakly holomorphic forms, we realize
the differential operator Dk�1 WD . 1

2� i
@
@z /k�1 acting on a harmonic Maass form for

integers k > 2 in terms of �2�k WD 2iy2�k @
@z acting on a different form. Using this

interpretation, we compute the image of Dk�1. We also answer a question arising
in recent work on the p-adic properties of mock modular forms. Additionally,
since such lifts are defined up to a weakly holomorphic form, we demonstrate
how to construct a canonical lift from holomorphic modular forms to harmonic
Maass forms.

Mathematics Subject Classification (2000): 11F37, 11F25, 11F30

1 Introduction and Statement of Results

Fourier coefficients of automorphic forms play a prominent role in mathematics
(see, for instance, [26]). Kloosterman sums arise naturally in the analytic theory of
such coefficients. For instance, the Kuznetsov trace formula [29] relates a certain
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infinite sum related to the Fourier coefficients of automorphic forms to an infinite
sum involving Kloosterman sums. The classical Poincaré series at infinity of weight
2 < k 2 1

2
Z on �0.N /, denoted by P.m; k; N I z/ (see (2.2) for the definition) with

m 2 Z, N 2 N, and z 2 H, play an important role in such trace formulas.
The Poincaré series P.m; k; N I z/ are elements of M Š

k.N /, the space of weakly
holomorphic weight k modular forms for �0.N /, i.e., those meromorphic modular
forms whose poles lie only at the cusps. Furthermore, if m � 0, then P.m; k; N I z/
has bounded growth toward all cusps and so is in Mk.N /, the subspace of M Š

k.N /

of holomorphic modular forms. For k > 2, m 2 Z with m < 0, and n 2 N, the nth
coefficient of P.m; k; N I z/ equals (e.g., see [23], Chap. 3)

2�ik
ˇ
ˇ
ˇ

n

m

ˇ
ˇ
ˇ

k�1
2

X

c>0
c�0 .mod N /

Kk.m; n; c/

c
Ik�1

 

4�
pjmnj

c

!

; (1.1)

where Ik�1 denotes the usual I -Bessel function and Kk.m; n; c/ denotes a certain
Kloosterman sum (see (2.4) for the definition). For negative weights, certain
(possibly) non-holomorphic Poincaré series F.m; 2 � k; N I z/ are natural (see (2.3)
for the definition). Denote by Hw.N / the space of harmonic Maass forms of weight
w on �0.N / (see Sect. 2 for the definition) and let H 1

w .N / be the subspace of those
elements of Hw.N / that are bounded at all cusps other than 1. The nth Fourier
coefficient of F.m; 2�k; N I z/ is a sum involving Kloosterman sums K2�k.m; n; c/

with a shape similar to (1.1). Series with Fourier expansions of this type play a
prominent role in the works of Knopp, Rademacher, Zuckermann, and many others.
See, for instance, [33].

Due to the obvious symmetry j˙mnj D j˙nmj and the simple relation
ˇ
ˇ˙m

n

ˇ
ˇ D

ˇ
ˇ˙ n

m

ˇ
ˇ
�1

, (1.1) reveals that several important results about coefficients of modular
forms and harmonic Maass forms manifest themselves through the symmetries
of the Kloosterman sum. Firstly, whenever k 2 Z, the Kloosterman sum is
symmetric in m and n. As a result, the nth Fourier coefficient of F .m; 2 � k; N I z/

equals
ˇ
ˇm

n

ˇ
ˇ
k�1

times the mth Fourier coefficient of F .n; 2 � k; N I z/ (see [19],
Theorem 3.4).

For k 2 1
2
Z n Z, a slightly more complicated symmetry exists. Namely, (for a

proof, see, e.g., Proposition 3.1 of [8])

Kk.m; n; c/ D .�1/kC 1
2 iK2�k.n; m; c/:

Consequentially, the nth Fourier coefficient of F .m; 2 � k; N I z/ is essentially
equal to the negative of the mth Fourier coefficient of P .n; k; N I z/. The resulting
identities among Fourier coefficients are referred to as duality. Duality, in this
context, was studied by Zagier [39], who showed that the traces of singular moduli
are Fourier coefficients of a weight 1

2
weakly holomorphic modular form and then

related these traces to Fourier coefficients of weight 3
2

modular forms. Zagier’s
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work gave a new perspective on a result of Borcherds [5], relating what are now
known as Borcherds products to coefficients of weakly holomorphic modular forms.
To illustrate this famous result, consider the weight 4 Eisenstein series for SL2 .Z/,
(q D e2�iz)

E4 .z/ WD 1C240
X

n�1

0

@
X

djn
d 3

1

A qn D .1�q/�240
�

1�q2
�26760 � � � D

Y

n�1

.1�qn/
c.n/

:

Borcherds related the exponents c.n/ to the Fourier coefficients a certain weight 1
2

weakly holomorphic modular form.
The proof through Kloosterman sums of the duality shown by Zagier outlined

here is due to Jenkins [24]. This was later generalized by the first author and Ono
[8] to a duality in the more general setting of harmonic Maass forms.

Duality has continued to be a central theme in the literature surrounding
automorphic forms. For example, Bruinier and Ono [12] have shown a natural way
to map the Borcherds exponents to coefficients of a p-adic modular form through a
certain differential operator. Duality was extended by Folsom and Ono, and Zwegers
[20,43] to relate coefficients of different mock modular forms. Duality has also been
extended by Rouse [35] to Hilbert modular forms and to Maass-Jacobi forms by the
first author and Richter [10].

For every k 2 1
2
Z, a trival change of variables (namely, d ! �d , see (2.4))

yields

K2�k .m; n; c/ D Kk .�m; �n; c/; (1.2)

from which one obtains a natural relation between the nth Fourier coefficient of
F .m; 2 � k; N I z/ and the �nth Fourier coefficient of P .m; k; N I z/. This relation
plays a prominent role in the theory of harmonic Maass forms. In particular, it
governs the image of F .m; 2 � k; N I z/ under the weight 2 � k antiholomorphic
differential operator:

�2�k WD 2iy2�k @

@z
:

Since �2�k is essentially the Maass weight-lowering operator (see (2.5) in Sect. 2.3),
if M 2 H 1

2�k.N /, then �2�k.M/ is a weight k modular form. In particular,
from (1.2), we may deduce that �2�k .F .m; 2 � k; N I z// equals a certain nonzero
constant times P .m; k; N I z/ (see (2.8) for a precise statement). The surjectivity of
�2�k , first proven by Bruinier and Funke [11], follows.

Remark. We exclude the cases when the weight is 0 � k � 2. In such cases,
the convergence of the Poincaré series is delicate (see, e.g., [30] and the expository
survey [15]). Moreover, the Fourier expansions of modular forms of small weight
are handled by Knopp [27] and for harmonic weak Maass forms of small weight by
Pribitkin [31, 32].
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1.1 Differential Operators via Kloosterman Sum Symmetries

We exploit another simple relation between Kloosterman sums. Whenever k 2 Z

there is an additional symmetry which occurs because the Kloosterman sum is
independent of the weight k 2 Z. In particular,

Kk .�m; �n; c/ D K2�k .�m; �n; c/ (1.3)

so that (1.2) leads to a relation between the coefficients of F .m; 2 � k; N I z/ and
F .�m; 2 � k; N I z/. We define the flipping operator F on Poincaré series by

F.m; 2 � k; N I z/ 7! F.�m; 2 � k; N I z/:

Since fF.m; 2 � k; N I z/ W m 2 Zg is a basis for H 1
2�k.N /, we may extend the oper-

ator F to all of H 1
2�k.N / by linearity. Moreover, when k > 2 and M 2 H 1

2�k.N /,
the growth of M.z/ as z ! i1 uniquely determines M as a linear combination of
Poincaré series, and hence it is simple to determine the representation by this basis.
Alternatively, for f 2 H 1

2�k.N /, one may define F in terms of the weight raising
operator by

F.f / D yk�2Rk�2
2�k.f /;

where Rk�2
2�k is the .k � 2/-fold Maass raising operator, as defined in (2.6).

We investigate this connection in Sect. 2.3:

Remarks. 1. After completion of this chapter, the authors learned that the flipping
operator is independently studied from a different perspective by Fricke and
will be included in his forthcoming thesis [21] advised by Zagier. Moreover,
the referee pointed out that the flipping operator appears in another context in
the work of Knopp [25] and Knopp–Lehner [28].

2. Denote by M 1
w .N / � M Š

w.N / the subspace of those forms that are bounded at
all cusps other than 1. In this notation, the operator F gives a mapping

F D Fk;N W H 1
2�k.N / ! H 1

2�k.N /=M2�k.N /:

3. Although we restrict ourselves in this chapter to forms with bounded growth at
cusps other than 1, the general case would follow similarly after examining
Poincaré series with growth only occurring in one of the other cusps. The cusp
1 plays a prominent role here based on the fact that recent applications have
emphasized forms with this property (see, e.g., [8, 13, 14]).

The operator Dk�1, where D WD 1
2�i

@
@z , serves as a counterpart to �2�k for k 2

2N. The role of Dk�1 in questions involving the algebraicity of Fourier coefficients
is investigated in [14, 22]. Here, we exploit the symmetries given in (1.2) and (1.3)
in order to relate the operators Dk�1 and �2�k through F .
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Theorem 1.1. For k > 2 an integer and M 2 H 1
2�k.N /, we have

Dk�1 .M/ D .�4�/1�k � .k � 1/ �2�k .F .M// :

Remark. If M.z/ D P

n2Z cn.y/e2� inx 2 H 1
2�k.N /, then the operator �2�k may

(essentially) be viewed as extracting those coefficients with n < 0 while those with
n > 0 are extracted by Dk�1.

The above discussion suggests that we could proceed by directly calculating the
Fourier expansions of Poincaré series. Computing the derivatives on the Fourier
expansion and using the symmetries of the Kloosterman sums then yields the
theorem. Instead, we compute the derivatives on the Whittaker functions which are
averaged to form the Poincaré series. This is possible because Dk�1 and �2�k are
related to the Maass weight raising and lowering operators which commute with the
action of �0.N /. In fact, Bol’s famous identity ([4], see also [18]) equates Dk�1 to
the .k � 1/-fold repeated application of the weight raising operator. The technique
presented here does not directly use the symmetry given in (1.3) but rather works
through the raising and lowering operators.

1.2 Applications of Flipping

We revisit some existing results and some results known to experts with the fresh
perspective engendered by Theorem 1.1.

In Ramanujan’s last letter to Hardy (see pages 127–131 of [34]), he introduced
17 examples of functions which he called mock theta functions. For example, he
defined

f .q/ WD 1 C
1X

nD1

qn2

Qn
rD1 .1 C qr/2

:

He noted that they satisfied properties similar to modular forms (although he
referred to modular forms as “theta functions”) and also stated that certain linear
combinations of his mock theta functions were indeed modular forms. Although
many of these properties were proven over the course of the next 80 years (e.g., see
[1–3, 36, 37]), however, even a rigorous definition of Ramanujan’s mock theta
functions failed to present itself. Zwegers [41,42] finally placed Ramanujan’s mock
theta functions into a theoretical framework. In particular, if h is a mock theta
function, then he constructed an associated harmonic Maass form Mh such that
the function

gh WD � 1
2
.Mh/ D � 1

2
.Mh � h/

is a unary theta function of weight 3=2. Following Zagier [40], we call gh the
shadow of h.
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By work of Bruinier–Funke [11], for any weakly holomorphic modular form g

of weight k, there exists a “mock-like” holomorphic function h with shadow
g. Following Zagier, we will call h a mock modular form. More precisely, there
is a harmonic Maass form Mh naturally associated to h for which �2�k .Mh/ D
�2�k .Mh � h/ D g. For each modular form g, we call the resulting harmonic
Maass form a lift of g.

The existence of a lift or, equivalently, the surjectivity of �2�k W H 1
2�k.N / !

M 1
k .N /, combined with Theorem 1.1, implies that the operator Dk�1 is also

surjective. Let H
cusp
w .N / be the subspace of H 1

w .N / that maps to S2�w.N /, the
subspace of weight 2 � w cusp forms, under �w. This gives the following theorem
which is essentially contained in Theorems 1.1 and 1.2 of [14]. In [14], Nebentypus
is allowed and the restriction that growth only occurs at the cusp 1 is not made, but
the image under �w is restricted to S2�w.N /.

Theorem 1.2. If 2 < k 2 Z and M 2 H 1
2�k.N /, then Dk�1.M/ 2 M 1

k .N /.
Moreover, in the notation of (2.1),

Dk�1 .M.z// D .�4�/1�k .k � 1/Šc�
M.0/ C

X

n��1
n6D0

cC
M.n/nk�1qn:

The image of the map

Dk�1 W H
cusp
2�k .N / �! M 1

k .N /

consists of those h 2 M 1
k .N / which are orthogonal to cusp forms (see Sect. 3 for

the definition) which also have constant term 0 at all cusps of �0.N /. Furthermore,
the map

Dk�1 W H 1
2�k.N / �! M 1

k .N /

is onto.

Implicit in the previous theorem are lifts of weakly holomorphic modular forms.
Lifts of weight 3=2 unary theta functions were given by Zwegers [42]. He gave
explicit constructions in terms of Lerch sums, yielding mock modular forms of
weight 1=2. Lifts of weight 1=2 modular forms were constructed by the first author,
Folsom, and Ono [6]. The forms they construct are related to the hypergeometric
series occurring in the Rogers–Fine identity. Lifts of general cusp forms in Sk.N /

were treated by the first author and Ono in [9], using Poincaré series. Duke et al.
[17] recently constructed lifts of the weight 3

2
weakly holomorphic modular forms

that are Zagier’s traces of singular moduli generating functions [39].
The flipping operator extends the lift in [9] to a lift for all weakly holomorphic

modular forms. Given g.z/ D P

n��1 cg.n/qn 2 M 1
k .N / with k > 2, define

P.g/.z/ WD .k � 1/�1cg.0/yk�1 � .4�/1�k
X

n¤0

cg.�n/jnj1�k� .k � 1I �4�yn/ qn;
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where �.˛I x/ WD R1
x e�t t˛�1dt is the incomplete gamma function. We note that

for g 2 Sk.N /, our definition matches that of 41�kg� given by Zagier [40]. The
following theorem describes the lifts of interest, which will be given in terms of
Poincaré series.

Theorem 1.3. For any k 2 1
2
Z, k > 2, N 2 N, and g 2 M 1

k .N /, the following
are true:

1. There exists a harmonic Maass form L.g/ 2 H 1
2�k.N / such that

L.g/ � P.g/

is a holomorphic function on H.
2. We have

�2�k .L.g// D �2�k.P.g// D g:

Remark. The holomorphic functionL.g/�P.g/ is typically not modular but mock
modular. Theorem 1.3 allows us to deduce its transformation properties rather easily
since the transformation properties ofP.g/ may be deduced from the transformation
properties of g.

The interrelation between weakly holomorphic modular forms and their lifts have
led to better understanding of arithmetic information of both modular forms and
harmonic Maass forms. The forms constructed by Duke et al. [17] are related to
certain cycle integrals of modular functions. Bruinier, Ono, and the third author
[14] showed that the vanishing of the Hecke eigenvalues of a Hecke eigenform g

implies the algebraicity of the coefficients of an appropriate lift of g. In other work,
Bruinier and Ono [13] proved that the vanishing of the central value of the derivative
of a weight 2 modular L-functions is related to the algebraicity of a certain Fourier
coefficient of a harmonic Maass form.

Theorem 1.1 shows that for each g 2 Sk.N /, one may find M; M � 2 H 1
2�k.N /

so that
�2�k.M / D g and Dk�1.M �/ D g:

Recent work of Guerzhoy et al. [22] and the first two authors and Guerzhoy [7]
shows that certain linear combinations of these two “lifts” are p-adic modular forms.
These works lead naturally to the following question: Let M be a harmonic Maass
form and set g WD �2�k.M / and h WD Dk�1.M /. From Theorem 1.3, we know that
a harmonic Maass form M � exists such that h D �2�k.M �/. Is g D Dk�1.M �/?

Corollary 1.4. Suppose that k > 2 is an integer, M 2 H 1
2�k.N /, and g and h are

defined as above. If M � 2 H 1
2�k.N / satisfies �2�k .M �/ D h, then the projection

of Dk�1 .M �/ onto the space of cusp forms is g.
Furthermore, there exists a choice of M � such that Dk�1 .M �/ D g.

Remark. In light of Theorems 1.1 and 1.2, we may write Dk�1 .M �/ D g Ceg

with eg 2 Dk�1
�

M 1
2�k.N /

�

. The subspace Dk�1
�

M 1
2�k.N /

�

has a number of
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exceptional properties. For example, the coefficients of a weakly holomorphic
modular form in that space, when chosen to be algebraic, have high p-divisibility
([22], Proposition 2.1). Therefore, it is natural to factor out by M 1

2�k.N /, and the
statement of Corollary 1.4 may be taken to say that M � � F.M / .mod M 1

2�k.N //.

1.3 Choosing a Lift

As is suggested in Corollary 1.4, lifts are not unique because the kernel of �2�k

is nontrivial. In fact, Bruinier and Funke [11] have shown that the kernel of �2�k

is M Š
2�k.N /. The lift described in [9] is defined on Poincaré series, and relations

between the classical holomorphic Poincaré series make our lift unique up to a
choice of a weakly holomorphic modular form. We present a procedure to make
a choice of one such lift which is independent of the realization of g 2 M 1

k .N / as
a linear combination of Poincaré series.

In order to describe the framework for our lift, we will need to introduce some
notation. For M , a harmonic Maass form with Fourier expansion as in (2.1), there
is a polynomial GM .z/ D P

n�0 cC
M .n/qn 2 C

�

q�1
�

such that M C.z/ � GM .z/ D
O
�

e�ıy
�

as y D Im .z/ ! 1 for some ı > 0. Here and throughout, we denote
z D x C iy with x; y 2 R (y > 0). We call GM the principal part of M at infinity.

Let Mk WD Mk.1/ and define Hk , Sk , and M Š
k similarly. Given a weakly

holomorphic form g 2 M Š
k, we explicitly define a harmonic Maass form G 2 H2�k

such that �2�k.G/ � g 2 Sk. Since the principal part of g determines g modulo
forms in Sk , we will obtain a lift which is explicit and well defined if for every
g 2 Sk , we construct a unique, explicit lifteg 2 H2�k with �2�k .eg/ � g D 0. The
difficulty in this task lies in finding a lift which commutes with the algebra of Sk

so thateg Ceh D Ag C h for g; h 2 Sk. In particular, if one has two different bases
for Sk , the lift must be independent of the basis representation. We call such a lift
canonical.

Additionally, the lifts used in many applications are good choices of lifts (see
Sect. 2 for the definition). We demonstrate a canonical lift for weakly holomorphic
forms, which, in the case of normalized Hecke eigenforms, is good. To state our
theorem, we introduce some notation. For g 2 Sk , we denote the norm with respect
to the usual Petersson scalar product by jjgjj. For M 2 H2�k , let

A.M / WD inffn 2 Z W cC
M .n/ ¤ 0g: (1.4)

Theorem 1.5. Let k > 2 and g 2 M Š
k be given. Choose M 2 H2�k with A.M /

maximal among all M 2 H2�k with �2�k.M / D g. Then M is a canonical lift of g.
Moreover, if g 2 Sk is a normalized Hecke eigenform, then jjgjj�2M is good for g.
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Remark. For simplicity, we have constrained ourselves to the case of level 1 forms
when considering canonical lifts. We will discuss the differences in the general level
case briefly at the end of Sect. 4.

This chapter is organized as follows: In Sect. 2, we recall some basic facts
concerning harmonic Maass forms and Maass-Poincaré series and the relations
between weight 2 � k and weight k Poincaré series given by the operators �2�k

and Dk�1 (when k 2 N). In Sect. 3, we prove Theorems 1.1 and 1.2 as well as
Theorem 1.3 and its corollaries. In Sect. 4, we prove Theorem 1.5.

2 Harmonic Maass Forms

In this section, we recall the definition of harmonic Maass form and the properties of
harmonic Maass forms which are necessary to prove our results. A good reference
for much of the theory recalled in this section is [11].

2.1 Basic Notations and Definitions

As usual, it is assumed that if k 2 1
2
Z n Z, then N � 0 .mod 4/. We define the

weight k hyperbolic Laplacian by

�k WD �y2

�
@2

@x2
C @2

@y2

�

C iky

�
@

@x
C i

@

@y

�

:

Moreover, for � D �
a b
c d

� 2 SL2.Z/ when k 2 Z, respectively, for � 2 �0.4/

when k 2 1
2
Z n Z, and any function g W H ! C, we let

g jk �.z/ WD j.�; z/�2kg

�
az C b

cz C d

�

;

where

j.�; z/ WD
(p

cz C d if k 2 Z; � 2 SL2.Z/;
�

c
d

�

"�1
d

p
cz C d if k 2 1

2
Z n Z; � 2 �0.4/;

where for odd integers d , "d is defined by

"d WD
(

1 if d � 1 .mod 4/;

i if d � 3 .mod 4/:
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Definition 2.1. A harmonic Maass form of weight k on � D �0.N / is a smooth
function g W H ! C satisfying:

(i) g jk �.z/ D g.z/ for all � 2 � .
(ii) �k.g/ D 0.

(iii) g has at most linear exponential growth at each cusp of � .

We note that M 2 Hw.N / for w � 1
2

has a Fourier expansion of the shape

M.z/ D c�
M.0/y1�w C

X

n�C1
n¤0

c�
M.n/� .1 � wI �4�ny/ qn C

X

n��1
cC
M.n/qn:

(2.1)

We call MC.z/ WD P

n��1 cC
M.n/qn the holomorphic part of M and M� WD

M � MC the non-holomorphic part of M.
Following [14], one says that a harmonic Maass form f 2 H2�k.N / is good for

a normalized Hecke eigenform g 2 Sk.N / if it satisfies the following properties:

1. The principal part of f at the cusp 1 belongs to Fg

�

q�1
�

, with Fg the number
field obtained by adjoining the coefficients of g to Q.

2. The principal parts of f at the other cusps of �0.N /, defined analogously, are
constant.

3. We have �2�k.f / D jjgjj�2g.

One sees immediately by the second condition that f 2 H 1
2�k.N /.

2.2 Poincaré Series

We describe two families of Poincaré series. Let m be an integer, and let 'm W RC !
C be a function which satisfies 'm.y/ D O.y˛/, as y ! 0, for some ˛ 2 R. With
e.r/ WD e2�ir , let

'�
m.z/ WD 'm.y/e.mx/:

Such functions are fixed by the translations, elements of �1 WD ˚˙ �
1 n
0 1

� W n 2 Z
�

.
Given this data, define the generic Poincaré series

P.m; k; 'm; N I z/ WD
X

A2�
1

n�0.N /

'�
m jk A.z/:

We note that the Poincaré series P.m; k; 'm; N I z/ converges absolutely for k >

2 � 2˛, where ˛ is the growth factor of 'm.y/ as given above and by construction
satisfies the modularity property P.m; k; 'm; N I z/ jk �.z/ D P.m; k; 'm; N I z/ for
every � 2 �0.N /. In this notation, the classical family of holomorphic Poincaré
series (see, e.g., [23], Chap. 3) for k � 2 is given by

P.m; k; N I z/ D P.m; k; e.imy/; N I z/: (2.2)
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The Maass-Poincaré series (see, e.g., [19]) are defined by

F.m; 2 � k; N I z/ WD P.�m; 2 � k; '�m; N I z/; (2.3)

where

'�m.z/ WD

8

ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂

:̂

M1� k
2
.�4�my/ if k < 0 and m ¤ 0;

jmj1�k M k
2
.�4�my/ if k > 2 and m ¤ 0;

1 if k < 0; m D 0;

.4�y/k�1 if k > 2; m D 0:

Here, for complex s,

Ms.y/ WD jyj k
2 �1M.1� k

2 /sgn.y/; s� 1
2
.jyj/;

where M�; �.z/ is the usual M -Whittaker function.
Since '�

m is annihilated by the hyperbolic Laplacian and �2�k commutes with
the weight 2 � k group action of �0.N /, a consideration of the growth of '�

m at all
of the cusps shows that F.m; 2 � k; N I z/ 2 H 1

2�k.N /. In the case k < 0, one has

F.m; 2 � k; N I z/ D P.�m; 2 � k; N I z/:

In order to describe the coefficients of the Poincaré series, we define the
Kloosterman sums

Kk.m; n; c/ WD
8

<

:

P

d .mod c/�

e
	

mdCnd
c




if k 2 Z;
P

d .mod c/�

�
c
d

�2k
"2k

d e
	

mdCnd
c




if k 2 1
2
Z n Z (and 4 j c);

(2.4)
where

�
c
d

�

denotes the Jacobi symbol. Here, d runs through the primitive residue

classes modulo c, and d is defined by the congruence dd � 1 .mod c/:

A calculation analogous to that for Theorem 3.4 of [19] yields the following
result.

Lemma 2.2. If k > 2 and m 2 Z, then the principal part of F.m; 2 � k; N I z/ is

ım>0�.k/ jmj1�k q�m C c.m; k; N /;

where ım>0 D 1 if m > 0 and 0 otherwise, and c.m; k; N / is a constant depending
on k, m, and N . When k 2 2Z, we have

c.m; k; N / D �.2�i/k
X

c>0
c�0 .mod N /

K2�k.�m; 0; c/

ck
:

The principal part of P.m; k; N I z/ is ım�0q
m.
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Remark. For m 2 Z and k 2 2Z, we have c.m; k; N / D .�1/kc.�m; k; N /.

Moreover, the full Fourier expansion of F.m; k; N I z/ is computed in Theorem 3.4
of [19]. We omit the full Fourier expansion, however, because it is not needed for
our purposes.

2.3 Raising and Lowering Operators

The Maass raising and lowering operators are given by

Rk WD 2i
@

@z
C ky�1 and Lk WD �2iy2 @

@z
: (2.5)

For a real analytic function f satisfying the weight k modularity property f jk
�.z/ D f .z/ for every � 2 �0.N / which is an eigenfunction under �k with
eigenvalue s, Rk.f /.z/ (respectively Lk.f /.z/) satisfies weight k C 2 (resp. k � 2)
modularity and is an eigenfunction under �kC2 (resp. �k�2) with eigenvalue s C k

(resp. s � k C 2). This follows by the commutator relation

��k D LkC2Rk C k D Rk�2Lk:

Define for a positive integer n

Rn
k WD RkC2.n�1/ ı � � � ı RkC2 ı Rk (2.6)

and let R0
k be the identity. If f 2 H 1

2�k.N /, then f � WD yk�2Rk�2
2�k.f / 2 H 1

2�k.N /,
as noted in Remark 7 in [14]. Furthermore, by Bol’s identity ([4], see also [18]),
that is

Rk�1
2�k D .�4�/k�1Dk�1; (2.7)

one has (for f 2 H
cusp
2�k .N / see Remark 7 in [14]) that

�2�k.f �/ D y�kLk.f �/ D Rk�1
2�k.f / D .�4�/k�1Dk�1.f /:

So, up to a constant factor, M � behaves as F.f / under �2�k . On the other hand,
one may compute the Fourier expansion of f � and see that it is the same as that
for F.f /. In this chapter, we proceed differently and come about F on the level of
Poincaré series.
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2.4 Derivatives of Poincaré Series

The following relations, derived in the lemma below, are important for deducing the
theorems of this chapter.

Lemma 2.3. For m 2 Z, the action of the operators �2�k and Dk�1 on
F.m; 2�k; N I z/ is given by

�2�k .F.m; 2 � k; N I z// D .k � 1/ .4�/k�1 P.m; k; N I z/; (2.8)

Dk�1 .F.m; 2 � k; N I z// D �.k/.�1/k�1P.�m; k; N I z/; (2.9)

where in (2.9) we require k to be an integer.

Proof. For m > 0, the relation (2.8) is noted (up to the constant) in Remark 3.10 of
[11], while the constant is explicitly computed in Theorem 1.2 of [9]. The m > 0

case of (2.9) is given in (6.8) of [14].
The lemma follows from the following relations. For k > 2, we have

�2�k

�

'�
m

� D .k � 1/ .4�/k�1 qm: (2.10)

Additionally, whenever k is an even integer, we have

Dk�1
�

'�
m

� D ��.k/q�m: (2.11)

The relations (2.10) and (2.11) together with the fact that �2�k and Dk�1 commute
with the group law will immediately imply (2.8) and (2.9). Since the six calculations
(m < 0, m D 0, and m > 0 for each) to establish (2.10) and (2.11) are all similar,
we include only the case of Dk�1.'�m.z// with m < 0. In this case, we have

'��m.z/ D jmj1�k e�2� imx.4�jmjy/
k
2 �1M1� k

2 ; k�1
2

.4�jmjy/:

Applying the change of variables 2�jmjy ! y and 2�jmjx ! x and relations
between the W -Whittaker and M -Whittaker functions (see page 346 of [38]), we
consider

jmj1�k eix.2y/
k
2 �1

�

.k � 1/ exp

�

�i

�

1 � k

2

��

W k
2 �1; k�1

2
.�2y/

�.�1/k�.k/W1� k
2 ; k�1

2
.2y/

�

;

for which we denote the two terms as f1.z/ C f2.z/. Direct computation gives

@

@z
.f2/.z/ D 0 and

@

@x
.f2/.z/ D if2.z/:
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Hence, using @
@z D @

@x
� @

@z , we obtain

Dk�1.f2/.2�z/ D f2.2�z/:

Thus a change of variables and using W1� k
2 ; k

2 �1.2y/ D .2y/1� k
2 e�y yields

Dk�1.f2/ .2�jmjz/ D .�1/k�1 �.k/q�m:

It remains to show that Dk�1.f1/.z/ D 0: For this, let

gr .z/ WD jmj1�k eix.�2y/
k
2 �rW k

2 �r; k�1
2

.�2y/:

From the third three-term recurrence relation

yW 0
k;m.y/ D

	

k � y

2




Wk;m.y/ �
 

m2 �
�

k � 1

2

�2
!

Wk�1;m.y/

for the Whittaker function (see pages 350–352 of [38]) giving a relation for the
derivative of the W -Whittaker function, we obtain

@

@z
gr .z/ D � i

2y
.k � 2r/gr.z/ C i

�

r2 � r.k � 1/
�

grC1.z/

Hence,

R2r�k.gr /.2�z/ D �

r2 � r.k � 1/
�

grC1.2�z/:

Using this for r D k � 1 and applying Bol’s identity (2.7), we have

Dk�1.f1/.2�z/ D .k � 1/Rk�1
2�k.g1/.2�z/ D 0;

as desired.

2.5 Bol’s Identity

Bol’s identity (2.7) states that Dk�1 is essentially (up to a nonzero constant multiple)
equal to Rk�1

2�k . The calculations of the previous section give the action of Rk�1
2�k on

the Whittaker functions which define the Poincaré series that span the spaces of
forms of interest in this chapter, and then we use the commutation relation

�

Rk�1
2�k.f /

� jk � .z/ D Rk�1
2�k .f j2�k �/ .z/
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between Rk�1
2�k and the slash operator, valid for every real analytic function f .

Alternatively, we can proceed by computing the Fourier expansion of the Maass-
Poincaré series, obtaining an expansion as in (2.1). Differentiating term by term
yields (2.8) and (2.9). This approach does not rely on the fact that the differential
operator Dk�1 commutes with the group action (which would follow from Bol’s
identity). Additionally, for integral k we have

qm�.k � 1I �4�my/ D qmQk;m.y/

where Qk;m is a polynomial of degree at most k � 2. Thus a direct computation of
Dk�1 avoids an application of Bol’s identity.

3 Proof of Theorems 1.1–1.3 and Corollary 1.4

Having established the necessary preliminaries, we are now ready to prove
Theorem 1.3.

Proof (Proof of Theorem 1.3). Since the Poincaré series fF.m; k; N I z/gm2Z span
M 1

k .N / and the series fF.m; 2�k; N I z/gm2Z span H 1
2�k.N /, it is enough to prove

the result on the level of Poincaré series. Part (1) follows from (2.8) together with
(2.1) and the fact that

�2�k.P.P.m; k; N I z/// D P.m; k; N I z/:

In particular,

.4�/1�k

k � 1
F.m; 2 � k; N I z/ � P .P.m; k; N I z//

is the desired holomorphic function associated to the modular form P.m; k; N I z/.
Part (2) follows from (2.8).

Having established the image of the Poincaré series under the operators Dk�1

and �2�k in Sect. 2.4, the fact that the Poincaré series form a basis will suffice to
prove Theorem 1.1.

Proof (Proof of Theorem 1.1). The proof of this result follows immediately from
(2.8) and (2.9).

Borcherds [5] has defined a regularized inner product .g; h/reg for g; h 2
M 1

k .N / from which one can define orthogonality in the more general setting of
weakly holomorphic modular forms. For cusp forms g and h, the regularized inner
product reduces to the classical Petersson inner product. For M 2 H

cusp
2�k .N /, we

define
h WD �.k � 1/F.M / 2 H 1

2�k.N /:
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By Lemma 2.2 and the remark following it, the constant terms of h and M satisfy

cC
h .0/ D �.k � 1/.�1/kcC

M .0/:

Combining this with Theorem 4.1 of [14] immediately leads to the following lemma
(with the factor �.k � 1/ correcting a typo from the original statement of Theorem
4.1), which is the most important computation toward calculating the image of
Dk�1.

Lemma 3.1. If g 2 Mk.N / and M 2 H
cusp
2�k .N /, then

.�4�/k�1
�

g; Dk�1.M /
�reg D .�1/k�.k � 1/

ŒSL2.Z/ W �0.N/	

X


2�0.N /nP 1.Q/

w
 �cg.0; 
/cC
M .0; 
/;

where cg.0; 
/ (resp. cC
M .0; 
/) denotes the constant term of the Fourier expansion

of g (resp. M ) at the cusp 
 2 P 1.Q/, and w
 is the width of the cusp 
.

Proof (Proof of Theorem 1.2). The first part of the theorem follows from The-
orem 1.1 and (2.9). The surjectivity of Dk�1 on H 1

2�k.N / follows from the
surjectivity of �2�k (see Theorem 3.7 of [11]) and Theorem 1.1.

Additionally, if M 2 H
cusp
2�k .N /, it follows from the first part of the theorem and

(2.8) that there exist ˛m 2 C so that

M.z/ D
X

m>0

˛mF.m; 2 � k; N I z/:

Thus, from Lemma 3.1 and the first part of the theorem, Dk�1.M/ is orthogonal to
cusp forms, and the constant term at each cusp of �0.N / vanishes.

Conversely, assume that h 2 M 1
k .N / has vanishing constant term at any cusp

of �0.N / and is orthogonal to cusp forms. From (2.9), we may take

f .z/ D
X

m2N
˛mF.m; 2 � k; N I z/ 2 H

cusp
2�k .N /

such that the principal parts of Dk�1.f / and h at the cusps agree. Consequently,
h � Dk�1.f / 2 Sk.N /: In view of Lemma 3.1, the hypothesis on h and (2.9), we
find that h � Dk�1.f / is orthogonal to cusp forms. Hence it vanishes identically.

We conclude with the proof of Corollary 1.4.

Proof (Proof of Corollary 1.4). Writing M 2 H 1
2�k.N / in terms of Poincaré series,

we have

M.z/ D
X

m2Z
˛mF.m; 2 � k; N I z/:
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Then Theorem 1.1 implies that .�4�/1�k�.k � 1/F.M / is a lift of h D
Dk�1.M / and

M � � .�4�/1�k�.k � 1/F.M / 2 M 1
2�k.N /;

where M � 2 H 1
2�k.N / is any harmonic Maass form satisfying �2�k .M �/, as given

in the statement of Corollary 1.4. Applying Theorems 1.1 and 1.2, we obtain the
assertion concerning Dk�1 .M �/.

4 A Canonical Lift

When N D 1, we use the abbreviations P.m; kI z/ WD P.m; k; 1I z/ and
F.m; kI z/ WD F.m; k; 1I z/. For fixed k > 2 integral, let ` WD dim Sk and define
f2�k;m 2 M Š

2�k to be the unique weakly holomorphic modular form satisfying

f2�k;m.z/ D q�m C O
�

q�`
�

:

Such weakly holomorphic modular forms were explicitly constructed in [16] as

f2�k;m.z/ WD
�

Ek0.z/�.z/�`�1Fm.j.z// if m > `;

0 if m � `:
(4.1)

Here, k0 2 f0; 4; 6; 8; 10; 14g with k0 � 2�k .mod 12/, Ek0 is the Eisenstein series
of weight k0, � is the unique normalized Hecke eigenform of weight 12, and Fm is
a generalized Faber polynomial of degree m�`�1 constructed recursively in terms
of f2�k;m0 with m0 < m to cancel higher powers of q. Finally, for m 2 Z, define

Gm;2�k.z/ WD F.m; 2 � kI z/ � ım>0�.k/ jmj1�k f2�k;m.z/:

Here, ım>0 is defined as in Lemma 2.2. From Lemma 2.2 and the definition of
f2�k;m, the holomorphic part GC

m;2�k.z/ of Gm;2�k.z/ satisfies

GC
m;2�k.z/ D O

�

q�`
�

: (4.2)

The following explicit theorem implies Theorem 1.5.

Theorem 4.1. Suppose that 2 < k 2 2Z and g 2 M Š
k and write g.z/ D

P

m2I amP.m; kI z/ for some index set I � Z. Then the �2�k-preimage choice

L.g.z// D LI .g.z// WD 1

k � 1

X

m2I

am

.4�/k�1
Gm;2�k.z/
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defines a canonical lifting from M Š
k to H2�k . Moreover, when g 2 Sk is a normalized

Hecke eigenform, the lift L.g/=jjgjj2 is good for g.

Proof. One directly obtains that �2�k .L.g.z/// D g from (2.8). Consider

G .z/ WD
X

m2I
m�0

amP.m; kI z/;

Then g � G 2 Sk. Set

H.z/ WD L .G .z// D 1

k � 1

X

n�0

an

.4�/k�1
F.n; 2 � kI z/:

The following lemma, which is proved after we conclude the proof of Theorem 4.1,
shows that H 2 H2�k is the unique lift of G with H

C having minimal growth at the
cusp 1.

Lemma 4.2. With g as in Theorem 4.1, the function H is the unique h 2 H2�k

whose holomorphic part exhibits subexponential growth at the cusp 1 and satisfies

g � �2�k .h/ 2 Sk: (4.3)

Applying Lemma 4.2, we may assume that g is a cusp form in order to prove
Theorem 4.1. We write g.z/ D P

m2I amP.m; kI z/ with some index set I � N.
From (4.2), we obtain

LI .g.z// D 1

k � 1

X

m2I

am

.4�/k�1
Gm;2�k.z/ D O

�

q�`
�

:

To show that the lift is independent of the choice of the index set, let J � N be
given such that g.z/ D P

m02J am0P.m0; kI z/. Then

LI .g.z// � LJ .g.z// D O
�

q�`
�

(4.4)

and

�2�k .LI .g/ � LJ .g// D g � g D 0:

Hence

LI .g/ � LJ .g/ 2 ker .�2�k/ D M Š
2�k: (4.5)

By the valence formula, we know that a weakly holomorphic modular form h that
satisfies h.z/ D O.q�`/ must be 0. Therefore, combining (4.4) and (4.5) yields

LI .g/ D LJ .g/

This finishes the proof of the first statement of the theorem.
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To prove the second statement, assume that g 2 Sk is a normalized Hecke
eigenform and h 2 H2�k is a harmonic Maass form which is good for g. Thus
the principal part of h is

P

n�0 cnqn with cn 2 Kg. By comparing principal parts,
we have

h.z/ D
X

n>0

c�nnk�1

�.k/
F.n; 2 � kI z/

since the difference has bounded principal part and maps to a cusp form under �2�k .
We have

�2�k.h/.z/ D
X

n>0

c�n

�.k/
.k � 1/ .4�n/k�1 P.n; kI z/ D g.z/

jjgjj2 :

Set I WD fn � 0 W cn ¤ 0g. By definition,

L
�

g

jjgjj2
�

.z/ D LI

�
g

jjgjj2
�

.z/ D
X

n>0

c�nnk�1

�.k/
F.n; 2�kI z/�

X

n>0

c�nf2�k;n.z/:

It follows that
�

h � L
�

g

jjgjj2
��

D
X

n>0

c�nf2�k;n:

Since Ek0 , ��1, and Fm.j.�// all have rational (furthermore, integer) coefficients,
the weakly holomorphic modular forms f2�k;n have rational coefficients by (4.1). It
follows that h�L �g=jjgjj2� has coefficients in Kg. Therefore, since the coefficients
of the principal part of h and the principal part of h � L �g=jjgjj2� are both in Kg,
it follows that the coefficients of the principal part of L �g=jjgjj2� are contained in
Kg. Hence L �g=jjgjj2� is also a good lift for g.

Proof (Proof of Lemma 4.2). Using (2.8) together with the fact that P.m; kI z/ 2 Sk

for m � 1 immediately implies (4.3). To show uniqueness, let h 2 H2�k satisfy
(4.3). Since the Poincaré series P.n; kI z/ span the space M Š

k , it follows that

�2�k .h.z// D
X

n2Z
bnP.n; kI z/

for some bn 2 C. By (4.3), we have that

g.z/ �
X

n2Z
bnP.n; kI z/ 2 Sk: (4.6)

Comparing the principal parts of both summands in (4.6), one sees that bn D an for
every n � 0. It follows that

h.z/ � H.z/ D .4�/1�k

k � 1

X

n>0

bnF.n; 2 � kI z/:
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This has principal part (up to the constant term) equal to

�.k � 1/
X

n>0

.4�n/1�kbnq�n

and hence exhibits exponential growth at 1 unless bn D 0 for every n > 0. This
establishes the uniqueness of H.

Remark. We now briefly discuss the canonical lift for nontrivial level. For G such
that g � G 2 Sk.N /, one merely defines L .G / by replacing F.n; 2 � kI z/ with
F.n; 2 � k; N I z/. In order to obtain a lift for g 2 Sk.N /, we choose mN > 0 to be
minimal such that there exists j �

N 2 M 1
0 .N / with j �

N .z/ D q�mN C O
�

q�.mN �1/
�

.
The condition that (1.4) is maximal among all lifts M of a form g 2 Sk will be
further refined to the condition that

A.M; r/ WD inffn 2 Z W n � r .mod mN /; cC
M .n/ ¤ 0g

is maximal for every r 2 f0; : : : ; mN � 1g.
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Function Theory Related to the Group PSL2.R/

R. Bruggeman, J. Lewis, and D. Zagier

Abstract We study analytic properties of the action of PSL2.R/ on spaces of
functions on the hyperbolic plane. The central role is played by principal series
representations. We describe and study a number of different models of the principal
series, some old and some new. Although these models are isomorphic, they arise
as the spaces of global sections of completely different equivariant sheaves and thus
bring out different underlying properties of the principal series.

The two standard models of the principal series are the space of eigenfunctions
of the hyperbolic Laplace operator in the hyperbolic plane (upper half-plane or disk)
and the space of hyperfunctions on the boundary of the hyperbolic plane. They are
related by a well-known integral transformation called the Poisson transformation.
We give an explicit integral formula for its inverse.

The Poisson transformation and several other properties of the principal series
become extremely simple in a new model that is defined as the space of solutions
of a certain two-by-two system of first-order differential equations. We call this the
canonical model because it gives canonical representatives for the hyperfunctions
defining one of the standard models.
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Another model, which has proved useful for establishing the relation between
Maass forms and cohomology, is in spaces of germs of eigenfunctions of the Laplace
operator near the boundary of the hyperbolic plane. We describe the properties of
this model, relate it by explicit integral transformations to the spaces of analytic
vectors in the standard models of the principal series, and use it to give an explicit
description of the space of C1-vectors.

Key words Principal series • Hyperbolic Laplace operator • Hyperfunctions
• Poisson transformation • Green’s function • Boundary germs • Transverse
Poisson transformation • Boundary splitting

Mathematics Subject Classification (2010): 22E50, 22E30, 22E45, 32A45,
35J08, 43A65, 46F15, 58C40

1 Introduction

The aim of this article is to discuss some of the analytic aspects of the group
G D PSL2.R/ acting on the hyperbolic plane and its boundary. Everything we
do is related in some way with the (spherical) principal series representations of the
groupG.

These principal series representations are among the best known and most basic
objects of all of representation theory. In this chapter, we will review the standard
models used to realize these representations and then describe a number of new
properties and new models. Some of these are surprising and interesting in their
own right, while others have already proved useful in connection with the study of
cohomological applications of automorphic forms [2] and may potentially have
other applications in the future. The construction of new models may at first sight
seem superfluous, since by definition any two models of the same representation
are equivariantly isomorphic, but nevertheless gives new information because the
isomorphisms between the models are not trivial and also because each model
consists of the global sections of a certain G-equivariant sheaf, and these sheaves
are completely different even if they have isomorphic spaces of global sections.

The principal series representations of G are indexed by a complex number s,
called the spectral parameter, which we will always assume to have real part
between 0 and 1. (The condition Re .s/ D 1

2
, corresponding to unitarizability, will

play no role in this chapter.) There are two basic realizations. One is the space Vs of
functions on R with the (right) action of G given by

.' j g/.t/ D jct C d j�2s '
�
at C b

ct C d

� �
t 2 R; g D

�
a

c

b

d

�
2 G

�
:

(1.1)
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The other is the space Es of functions u on H (complex upper half-plane) satisfying

� u.z/ D s.1 � s/ u.z/ .z 2 H/; (1.2)

where � D �y2� @2
@x2

C @2

@x2

�
(z D x C iy 2 H) is the hyperbolic Laplace operator,

with the action u 7! u ı g. They are related by Helgason’s Poisson transform (thus
named because it is the analogue of the corresponding formula given by Poisson for
holomorphic functions)

'.t/ 7! .Ps'/.z/ D 1

�

Z 1

�1
'.t/ R.t I z/1�s dt; (1.3)

where R.t I z/ D Rt.z/ D y

.z�t /.Nz�t / for z D xC iy 2 H and t 2 C. The three main
themes of this chapter are the explicit inversion of the Poisson transformation, the
study of germs of Laplace eigenfunctions near the boundary P

1
R

D R [ f1g of H,
and the construction of a new model of the principal series representation which is
a kind of hybrid of Vs and Es . We now describe each of these briefly.

� Inverse Poisson Transform. We would like to describe the inverse map of Ps
explicitly. The right-hand side of (1.3) can be interpreted as it stands if ' is a smooth
vector in Vs (corresponding to a function '.x/ which is C1 on R and such that t 7!
jt j�2s'.1=t/ is C1 at t D 0). To get an isomorphism between Vs and all of Es , one
has to allow hyperfunctions '.t/. The precise definition, which is somewhat subtle
in the model used in (1.1), will be reviewed in Sect. 2.2; for now we recall only that a
hyperfunction on I � R is represented by a holomorphic function on U X I, where
U is a neighborhood U of I in C with U \ R D I and where two holomorphic
functions represent the same hyperfunction if their difference is holomorphic on
all of U . We will show in Sect. 4 that for u 2 Es , the vector Ps

�1u 2 Vs can be
represented by the hyperfunction

hz0 .�/ D

8̂̂
<
ˆ̂:

u.z0/ C
Z �

z0

�
u.z/;

�
R�.z/=R�.z0/

�s	
if � 2 U \ HZ z0

N�
��
R�.z/=R�.z0/

�s
; u.z/

	
if � 2 U \ H�

(1.4)

for any z0 2 U \ H, where H� D fz D x C iy 2 C W y < 0g denotes the lower
half-plane and Œu.z/; v.z/� for any functions u and v in H is the Green’s form

Œu.z/; v.z/� D @u.z/

@z
v.z/ dz C u.z/

@v.z/

@Nz dNz; (1.5)

which is a closed 1-form if u and v both satisfy the Laplace equation (1.2).
The asymmetry in (1.4) is necessary because althoughR.�I z/s tends to zero at z D �

and z D N�, both its z-derivative at � and its Nz-derivative at N� become infinite, forcing
us to change the order of the arguments in the Green’s form in the two components of
U X I. That the two different-looking expressions in (1.4) are nevertheless formally
the same follows from the fact that Œu; v�C Œv; u� D d.uv/ for any functions u and v.
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� Boundary Eigenfunctions. If one looks at known examples of solutions of
the Laplace equation (1.2), then it is very striking that many of these functions
decompose into two pieces of the form ysA.z/ and y1�sB.z/ as z D x C iy
tends to a point of R � P

1
R

D @H, where A.z/ and B.z/ are functions which
extend analytically across the boundary. For instance, the eigenfunctions that occur
as building blocks in the Fourier expansions of Maass wave forms for a Fuchsian
group G � G are the functions

ks;2�n.z/ D y1=2 Ks�1=2.2�jnjy/ e2� inx .z D x C iy 2 R; n 2 Z; n ¤ 0/;

(1.6)
where Ks�1=2.t/ is the standard K-Bessel function which decays exponentially as

t ! 1. The functionK�.t/ has the form
�

sin��

�
I�.t/ � I��.t/

�
with

I�.t/ D
1X
nD0

.�1=4/n t2nC�

nŠ � .nC �/
;

so ks;2�n.z/ decomposes into two pieces of the form ys�(analytic near the bound-
ary) and y1�s�(analytic near the boundary). The same is true for other elements
of Es , involving other special functions like Legendre or hypergeometric functions,
that play a role in the spectral analysis of automorphic forms. A second main theme
of this chapter is to understand this phenomenon. We will show that to every analytic
function ' on an interval I � R, there is a unique solution u of (1.2) in U \ H
(where U as before is a neighborhood of I in C with U \ R D I , supposed simply
connected and sufficiently small) such that u.xCiy/ D ys ˚.xCiy/ for an analytic
function ˚ on U with restriction ˚ jI D '. In Sect. 5 we will call the (locally
defined) map ' 7! u the transverse Poisson transform of ' and will show that it can
be described by both a Taylor series in y and an integral formula, the latter bearing
a striking resemblance to the original (globally defined) Poisson transform (1.3) :

.P�s'/.z/ D �i� .s C 1
2
/

� .s/� . 1
2
/

Z z

Nz
'.�/R.�I z/1�s d�; (1.7)

where the function '.�/ in the integral is the unique holomorphic extension of '.t/
to U and the integral is along any path connecting Nz and z within U . The transverse
Poisson map produces an eigenfunction u from a real-analytic function ' on
an interval I in P

1
R

. We also give an explicit integral formula representing the
holomorphic function ' in U in terms of the eigenfunction u D P�s'.

As an application, we will show in Sect. 7 that the elements of Es corresponding
under the Poisson transform to analytic vectors in Vs (which in the model (1.1) are
represented by analytic functions ' on R for which t 7! jt j�2s'.1=t/ is analytic
at t D 0) are precisely those which have a decomposition u D P�s'1 C P�1�s'2
near the boundary of H, where '1 and '2, which are uniquely determined by u, are
analytic functions on P

1
R

.
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� Canonical Model. We spoke above of two realizations of the principal series,
as Vs (functions on @H D P

1
R

) and as Es (eigenfunctions of the Laplace operator
in H). In fact Vs comes in many different variants, discussed in detail in Sect. 1, each
of which resolves various of the defects of the others at the expense of introducing
new ones. For instance, the “line model” (1.1) which we have been using up to
now has a very simple description of the group action but needs special treatment
of the point 1 2 P

1
R

, as one could already see several times in the discussion
above (e.g., in the description of smooth and analytic vectors or in the definition of
hyperfunctions). One can correct this by working on the projective rather than the
real line, but then the description of the group action becomes very messy, while
yet other models (circle model, plane model, induced representation model, . . . )
have other drawbacks. In Sect. 4, we will introduce a new realization Cs (“canonical
model”) that has many advantages:

• All points in hyperbolic space, and all points on its boundary, are treated in an
equal way.

• The formula for the group action is very simple.
• Its objects are actual functions, not equivalence classes of functions.
• The Poisson transformation is given by an extremely simple formula.
• The canonical model Cs coincides with the image of a canonical inversion

formula for the Poisson transformation.
• The elements of Cs satisfy differential equations, discussed below, which lead to

a sheaf Ds that is interesting in itself.
• It uses two variables, one in H and one in P

1
C

X P
1
R

, and therefore gives a
natural bridge between the models of the principal series representations as
eigenfunctions in H or as hyperfunctions in a deleted neighborhood of P1

R
in P

1
C

.

The elements of the space Cs are precisely the functions .z; z0/ 7! hz0 .z/ arising
as in (1.4) for some eigenfunction u 2 Es , but also have several intrinsic descriptions,
of which perhaps the most surprising is a characterization by a system of two linear
differential equations:

@h

@z
D �s � � Nz

z � Nz h
�;

@h�

@Nz D s

.� � Nz/.z � Nz/ h; (1.8)

where h.�; z/ is a function on
�
P
1
C

X P
1
R
/ � H which is holomorphic in the first

variable and where h�.�; z/ WD .h.�; z/� h.z; z//=.� � z/. The “Poisson transform”
in this model is very simple: it simply assigns to h.�; z/ the function u.z/ D h.z; z/,
which turns out to be an eigenfunction of the Laplace operator. The name “canonical
model” refers to the fact that Vs consists of hyperfunctions and that in Cs we have
chosen a family of canonical representatives of these hyperfunctions, indexed in a
G-equivariant way by a parameter in the upper half-plane: h. � ; z/ for each z 2
H is the unique representative of the hyperfunction '.t/R.t I z/�s on P

1
R

which is
holomorphic in all of P1

C
X P

1
R

and vanishes at Nz.

� Further Remarks. The known or potential applications of the ideas in this chapter
are to automorphic forms in the upper half-plane. When dealing with such forms,
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one needs to work with functions of general weight, not just weight 0 as considered
here. We expect that many of our results can be modified to the context of general
weights, where the group G D PSL2.R/ has to be replaced by SL2.R/ or its
universal covering group.

Some parts of what we do in this chapter are available in the literature, but
often in a different form or with another emphasis. In Sect. 4 of the introduction
of [6], Helgason gives an overview of analysis on the upper half-plane. One finds
there the Poisson transformation; the injectivity is proved by a polar decomposition.
As far as we know, our approach in Theorem 4.2 with the Green’s form is new,
and in [2], it is an essential tool to build cocycles. Helgason gives also the asymptotic
expansion near the boundary of eigenfunctions of the Laplace operator, from which
the results in Sect. 7 may also be derived. For these asymptotic expansions, one may
also consult the work of Van den Ban and Schlichtkrull, [1]. A more detailed and
deeper discussion can be found in [7], where Section 0 discusses the inverse Poisson
transformation in the context of the upper half-plane. Our presentation stresses the
transverse Poisson transformation, which also seems not to have been treated in the
earlier literature and which we use in [2] to recover Maass wave forms from their
associated cocycles. Finally, the hybrid models in Sect. 4 and the related sheaf Ds

are, as far as we know, new.

This chapter ends with an appendix giving a number of explicit formulas,
including descriptions of various eigenfunctions of the Laplace operator and tables
of Poisson transforms and transverse Poisson transforms.

Acknowledgements The two first-named authors would like to thank the Max Planck Institute in
Bonn and the Collège de France in Paris for their repeated hospitality and for the excellent working
conditions they provided. We thank YoungJu Choie for her comments on an earlier version.

Conventions and Notations. We work with the Lie group

G D PSL2.R/ D SL2.R/=f˙Idg:
We denote the element ˙� a

c
b
d

�
of G by

�
a
c
b
d

	
. A maximal compact subgroup is

K D PSO.2/ D ˚
k.	/ W 	 2 R=�Z



, with

k.	/ D
�

cos 	

� sin 	

sin 	

cos 	

�
: (1.9a)

We also use the Borel subgroup NA, with the unipotent subgroup N D ˚
n.x/ W

x 2 R



and the torus A D ˚
a.y/ W y > 0
, with

a.y/ D
�p

y

0

0

1=
p
y

�
; n.x/ D

�
1

0

x

1

�
: (1.9b)

We use H as a generic letter to denote the hyperbolic plane. We use two concrete
models: the unit disk D D ˚

w 2 C W jwj < 1



and the upper half-plane
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H D ˚
z 2 C W Im z > 0



. We will denote by x and y the real and imaginary

parts of z 2 H, respectively. The boundary @H of the hyperbolic plane is in these
models: @H D P

1
R

D R[f1g, the real projective line, and @D D S
1, the unit circle.

Both models of H [ @H are contained in P
1
C

, on which G acts in the upper
half-plane model by

�
a
c
b
d

	 W z 7! azCb
czCd and in the disk model by

�
a
c
b
d

	 W w 7! AwCB
NBwC NA ,

with
�
ANB
BNA
	 D �

1
1

�i
i

	�
a
c
b
d

	�
1
1

�i
i

	�1.
All the representations that we discuss in the first five sections depend on s 2 C,

the spectral parameter; it determines the eigenvalue 
s D s � s2 of the Laplace
operator �, which is given in the upper half-plane model by �y2@2x � y2@2y and in
the disk model by �.1 � jwj2/2 @w @ Nw. We will always assume s … Z and usually
restrict to 0 < Re .s/ < 1. We work with right representations of G, denoted by
v 7! vj2s g or v 7! v j g.

2 The Principal Series Representation Vs

This section serves to discuss general facts concerning the principal series represen-
tation. Much of this is standard, but quite a lot of it is not, and the material presented
here will be used extensively in the rest of the chapter. We will therefore give a self-
contained and fairly detailed presentation.

The principal series representations can be realized in various ways. One of
the aims of this chapter is to gain insight by combining several of these models.
Section 2.1 gives six standard models for the continuous vectors in the principal
series representation. Section 2.2 presents the larger space of hyperfunction vectors
in some of these models, and in Sect. 2.3, we discuss the isomorphism (for 0 <
Re s < 1) between the principal series representations with the values s and 1 � s

of the spectral parameter.

2.1 Six Models of the Principal Series Representation

In this subsection, we look at six models to realize the principal series representation
Vs , each of which is the most convenient in certain contexts. Three of these models
are realized on the boundary @H of the hyperbolic plane. Five of the six models
have easy algebraic isomorphisms between them. The sixth has a more subtle
isomorphism with the others but gives explicit matrix coefficients. In later sections
we will describe more models of Vs with a more complicated relation to the models
here. We also describe the duality between Vs and V1�s in the various models.
(Note: We will use the letter Vs somewhat loosely to denote “the” principal series
representation in a generic way or when the particular space of functions under
consideration plays no role. The spaces V1

s and V!s of smooth and analytic vectors,
and the spaces V�1

s and V�!
s of distributions and hyperfunctions introduced in
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Sect. 2.2, will be identified by the appropriate superscript. Other superscripts such
as P and S will be used to distinguish vectors in the different models when needed.)

� Line Model. This well-known model of the principal series consists of
complex-valued functions on R with the action of G given by

'
ˇ̌
2s

�
a

c

b

d

�
.t/ D jct C d j�2s '

�
at C b

ct C d

�
: (2.1)

Since G acts on P
1
R

D R [ f1g, and not on R, the point at infinity plays a special
role in this model, and a more correct description requires the use of a pair .'; '1/
of functions R ! C related by '.t/ D jt j�2s'1.�1=t/ for t ¤ 0, and with the
right-hand side in (2.1) replaced by jat C bj�2s'1

�� ctCd
atCb

�
if ct C d vanishes,

together with the obvious corresponding formula for '1. However, we will usually
work with ' alone and leave the required verification at 1 to the reader.

The space V1
s of smooth vectors in this model consists of the functions ' 2

C1.R/ with an asymptotic expansion

'.t/ � jt j�2s
1X
nD0

cn t
�n (2.2)

as jt j ! 1. Similarly, we define the space V!s of analytic vectors as the space
of ' 2 C!.R/ (real-analytic functions on R) for which the series appearing on the
right-hand side of (2.2) converges to '.t/ for jt j � t0 for some t0. ReplacingC1.R/
or C!.R/ by Cp.R/ and the expansion (2.2) with a Taylor expansion of order p,
we define the space Vps for p 2 N.

� Plane Model. The line model has the advantage that the action (2.1) of G is
very simple and corresponds to the standard formula for its action on the complex
upper half-plane H, but the disadvantage that we have to either cover the boundary
R [ f1g of H by two charts and work with pairs of functions or else give a special
treatment to the point at infinity, thus breaking the inherentG-symmetry. Each of the
next five models eliminates this problem at the expense of introducing complexities
elsewhere. The first of these is the plane model, consisting of even functions ˚ W
R
2 X f0g ! C satisfying ˚.tx; ty/ D jt j�2s˚.x; y/ for t ¤ 0, with the action

˚
ˇ̌ �a
c

b

d

�
.x; y/ D ˚.ax C by; cx C dy/: (2.3)

The relation with the line model is

'.t/ D ˚.t; 1/; '1.t/ D ˚.�1; t/;

˚.x; y/ D
(

jyj�2s '.x=y/ if y ¤ 0;

jxj�2s '1.�y=x/ if x ¤ 0;

(2.4)
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and of course the elements in Vps , for p D 0; 1; : : : ;1; !, are now just given by
˚ 2 Cp.R2Xf0g/. This model has the advantage of being completelyG-symmetric,
but requires functions of two variables rather than just one.

� Projective Model. If .'; '1/ represents an element of the line model, we put

'P.t/ D
(

.1C t2/s '.t/ if t 2 P
1
R

X f1g D R ,

.1C t�2/s '1.�1=t/ if t 2 P
1
R

X f0g D R
� [ f1g.

(2.5)

The functions 'P form the projective model of Vs , consisting of functions f on the
real projective line P

1
R

with the action

f
ˇ̌
P

2s

�
a

c

b

d

��
t
� D

�
t2 C 1

.at C b/2 C .ct C d/2

�s
f

�
at C b

ct C d

�
: (2.6)

Note that the factor
�

t 2C1
.atCb/2C.ctCd/2

�s
is real-analytic on the whole of P

1
R

since

the factor in parentheses is analytic and strictly positive on P
1
R

. This model has the
advantage that all points of P

1
R

get equal treatment but the disadvantage that the
formula for the action is complicated and unnatural.

� Circle Model. The transformation � D t�i
tCi in P

1
C

, with inverse t D i 1C�
1�� , maps

P
1
R

isomorphically to the unit circle S
1 D ˚

� 2 C W j�j D 1



in C and leads to the
circle model of Vs , related to the three previous models by

'S.e�2i	 / D 'P
�
cot 	

� D ˚.cos 	; sin 	/ D j sin 	 j�2s '.cot 	/: (2.7)

The action of g D �
a
c
b
d

	 2 PSL2.R/ is described by Qg D �
1
1

�i
i

	
g
�
1
1

�i
i

	�1 D �
ANB
BNA
	

in PSU.1; 1/ � PSL2.C/, with A D 1
2
.aC ib � ic C d/; B D 1

2
.a � ib � ic � d/ :

f
ˇ̌
S

2s
g
�
�
� D jA� C Bj�2sf

�
A� CB

NB� C NA
�

.j�j D 1/: (2.8)

Since jAj2 � jBj2 D 1, the factor jA� C Bj is nonzero on the unit circle.
Note that in both the projective and circle models, the elements in Vps are simply

the elements of Cp.P1
R
/ or Cp.S1/, so that as vector spaces these models are

independent of s.

� Induced Representation Model. The principal series is frequently defined as the
induced representation from the Borel groupNA to G of the character n.x/a.y/ 7!
y�s , in the notation in (1.9b). (See for instance Chap. VII in [8].) This is the space
of functions F on G transforming on the right according to this character of AN ,
with G acting by left translation. Identifying G=N with R

2 X f.0; 0/g leads to the
plane model, via F

�
a
c
b
d

	 D ˚.a; c/. On the other hand, the functions in the induced
representation model are determined by their values on K , leading to the relation
'S.e2i	 / D F.k.	// with the circle model, with k.	/ as in (1.9a).
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We should warn the reader that in defining the induced representation, one
often considers functions whose restrictions to K are square integrable, obtaining
a Hilbert space isomorphic to L2.K/. The action of G in this space is a bounded
representation, unitary if Re s D 1

2
. Since not all square integrable functions are

continuous, this Hilbert space is larger than V0s . For p 2 N, the space of p times
differentiable vectors in this Hilbert space is larger than our Vps . (It is between
Vp�1
s and Vps .) However, V1

s and V!s coincide with the spaces of infinitely-often
differentiable, respectively analytic, vectors in this Hilbert space.

� Sequence Model. We define elements es;n 2 V!s , n 2 Z, represented in our five
models as follows:

es;n.t/ D .t2 C 1/�s
�
t � i

t C i

�n
; (2.9a)

eR
2

s;n.x; y/ D .x2 C y2/�s
�
x � iy

x C iy

�n
; (2.9b)

ePs;n.t/ D
�
t � i

t C i

�n
; (2.9c)

eSs;n.�/ D �n; (2.9d)

eind repr
s;n

��
a

c

b

d

��
D �

a2 C c2
��s� a � ic

aC ic

�n
: (2.9e)

Fourier expansion gives a convergent representation 'S.�/ D P
n cnes;n.�/ for

each element of V0s . This gives the sequence model, consisting of the sequences
of coefficients c D .cn/n2Z . The action of G is described by c 7! c0 with
c0
m D P

n Am;n.g/cn, where the matrix coefficients Am;n.g/ are given (by the
binomial theorem) in terms of Qg D �

ANB
BNA
	

as

Am;n.g/ D .A=B/m .A= NB/n
jAj2s

X
l� max.m;n/

� n � s
l �m

� ��n � s
l � n

� ˇ̌̌
ˇBA
ˇ̌̌
ˇ
2l

; (2.10)

which can be written in closed form in terms of hypergeometric functions as

Am;n.g/

D
8<
:

AnCm NBm�n

jAj2sC2m

��s�n
m�n

�
F
�
s � n; s CmIm � nC 1I ˇ̌B

A

ˇ̌2 �
if m � n;

AnCmBn�m

jAj2sC2n

��sCn
n�m

�
F
�
s C n; s �mIn �mC 1I ˇ̌B

A

ˇ̌2 �
if n � m:

(2.11)
The description of the smooth and analytic vectors is easy in the sequence model:

V!s D
n
.cn/ W cn D O

�
e�ajnj� for some a > 0

o
;

V1
s D f.cn/ W cn D O ..1C jnj/�a/ for all a 2 Rg : (2.12)
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The precise description of Vps for finite p 2 N is less obvious in this model, but
at least we have .cn/ 2 Vps ) cn D o.jnj�p/ as jnj ! 1, and, conversely,
cn D O.jnj��/ with � > p C 1 implies .cn/ 2 Vps .

� Duality. There is a duality between V0s and V01�s , given in the six models by the
formulas

h'; i D 1

�

Z
R

'.t/  .t/ dt; (2.13a)

h˚; i D 1

2�

Z 2�

0

˚.cos 	; sin 	/ .cos 	; sin 	/ d	; (2.13b)

h'P;  Pi D 1

�

Z
P
1
R

'P.t/  P.t/
dt

1C t2
; (2.13c)

h'S;  Si D 1

2�i

Z
S1

'S.�/  S.�/
d�

�
; (2.13d)

hF;F1i D
Z �

0

F
�
k.	/

�
F1
�
k.	/

� d	

�
; (2.13e)

˝
c;d

˛ D
X
n

cnd�n: (2.13f)

This bilinear form on V0s � V01�s is G-invariant:

h'j2s g;  j2�2s gi D h'; i .g 2 G/: (2.14)

Furthermore we have for n;m 2 Z:

he1�s;n; es;mi D ın;�m: (2.15)

� Topology. The natural topology of Vps with p 2 N[ f1g is given by seminorms
which we define with use of the action ' 7! 'jW D d

dt 'jetWˇ̌
tD0 where W D�

0
1

�1
0

�
is in the Lie algebra. The differential operator W is given by 2i� @� in the

circle model, by .1C t2/ @t in the projective model, and by .1Cx2/ @x C 2sx in the
line model. For p 2 N, the space Vps is a Banach space with norm equal to the sum
over j D 0; : : : ; p of the seminorms

k'kj D sup
x2@H

ˇ̌
'jWj .x/

ˇ̌
: (2.16)

The collection of all seminorms k � kj , j 2 N, gives the natural topology of V1
s DT

p2N Vps . In Sect. 2.2 we shall discuss the natural topology on V!s .
Although we have strict inclusions V1

s � � � � � V1s � V0s , all these
representation spaces of G are irreducible as topological G-representations due to
our standing assumptions 0 < Re s < 1, which implies s 62 Z.
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� Sheaf Aspects. In the line model, the projective model, and the circle model, we
can extend the definition of the G-equivariant spaces Vps for p D 0; 1; : : : ;1; ! of
functions on @H to G-equivariant sheaves on @H. For instance, in the circle model,
we can define V!s .I / for any open subset I � S

1 as the space of real-analytic
functions on I . The action of G induces linear maps f 7! f j g, from V!s .I / to
V!s .g�1I /, so that I 7! V!s .I / is a G-equivariant sheaf on the G-space S

1 whose
space of global sections is the representation V!s of G. For the line model and the
projective model, we proceed similarly.

2.2 Hyperfunctions

So far we have considered Vs as a space of functions. We now want to include
generalized functions: distributions and hyperfunctions. We shall be most interested
in hyperfunctions on @H, in the projective model and the circle model.

� V!s and Holomorphic Functions. Before we discuss hyperfunctions, let us first
consider V!s . In the circle model, it is the space C!.S1/ of real-analytic functions
on S

1, with the action (2.8). Since the restriction of a holomorphic function on a
neighborhood of S1 in C to S

1 is real-analytic, and since every real-analytic function
on S1 is such a restriction,C!.S1/ can be identified with the space lim�!O.U /, where

U in the inductive limit runs over all open neighborhoods of S1 and O.U / denotes
the space of holomorphic functions on U .

� Hyperfunctions. We can also consider the space H.S1/ D lim�!O.U X S
1/

(with U running over the same sets as before) of germs of holomorphic functions
in deleted neighborhoods of S1 in C. The space C�!.S1/ of hyperfunctions on S

1 is
the quotient in the exact sequence

0 �! C!.S1/ �! H.S1/ �! C�!.S1/ �! 0I (2.17)

see, e.g., Sect. 1.1 of [11]. So C�!.S1/ D lim�!
U

O.U n S
1/=O.U / where U is as

above and where restriction gives an injective map O.U / ! O.U X S
1/. Actually,

the quotient O.U XS
1/=O.U / does not depend on the choice of U , so it gives a

model for C�!.S1/ for any choice of U . Intuitively, a hyperfunction is the jump
across S1 of a holomorphic function on U X S

1.

� Embedding. The image of C!.S1/ in C�!.S1/ in (2.17) is of course zero. There
is an embedding C!.S1/ ! C�!.S1/ induced by

�
' 2 O.U /� 7! �

'1 2 Hs.S
1/
�
; '1.w/ D

(
'.w/ if w 2 U; jwj < 1;
0 if w 2 U; jwj > 1: (2.18)
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� Pairing. We next define a pairing between hyperfunctions and analytic functions
on S

1. We begin with a pairing on H.S1/� H.S1/. Let ';  2 H.S1/ be represented
by f; h 2 O.U XS

1/ for some U . Let CC and C� be closed curves in U X S
1

which are small deformations of S1 to the inside and outside, respectively, traversed
in the positive direction, e.g., C˙ D ˚jwj D e�"
 with " sufficiently small. Then the
integral

h';  i D 1

2�i

�Z
CC

�
Z
C�

�
f .w/ h.w/

dw

w
(2.19)

is independent of the choice of the contours C˙ and of the neighborhood U .
Moreover, if f and h are both in O.U /, then Cauchy’s theorem gives h'; i D 0.
Hence, if  2 C!.S1/, then the right-hand side of (2.19) depends only on
the image (also denoted ') of ' in C�!.S1/ and we get an induced pairing
C�!.S1/ � C!.S1/ ! C, which we also denote by h �; � i. Similarly, h�; �i gives
a pairing C!.S1/ � C�!.S1/ ! C. Finally, if ' belongs to the space C!.S1/,
embedded into C�!.S1/ as explained in the preceding paragraph, then it is easily
seen that h'; i is the same as the value of the pairing C!.S1/ � C!.S1/ ! C

already defined in (2.13d).

� Group Action. We now define the action ofG. We had identified V!s in the circle
model with C!.S1/ together with the action (2.8) of G D PSL2.R/ Š PSU.1; 1/.
For Qg D �

ANB
BNA
	

and � 2 S
1, we have jA� C Bj2 D .AC B��1/. NAC NB�/, which is

holomorphic and takes values near the positive real axis for � close to S
1 (because

jAj > jBj). So if we rewrite the automorphy factor in (2.8) as
�
. NA C NB�/.A C

B=�/
	�s

, then we see that it extends to a single-valued and holomorphic function
on a neighborhood of S1 (in fact, outside a path from 0 to �B=A and a path from 1
to � NA= NB). In other words, in the description of V!s as lim�!O.U /, the G-action

becomes

'j2sg .w/ D �
. NAC NBw/.AC B=w/

	�s
'. Qgw/: (2.20)

This description makes sense on O.U XS
1/ and hence also on H.S1/ and C�!.S1/.

We define V�!
s as C�!.S1/ together with this G-action. It is then easy to check

that the embedding V!s � V�!
s induced by the embedding C1.S1/ � C�!.S1/

described above is G-equivariant and also that the pairing (2.19) satisfies (2.14) and
hence defines an equivariant pairing V�!

s � V!1�s ! C extending the pairing (2.13d)
on V!s � V!1�s .

Note also that if we denote by Hs the space H.S1/ equipped with the action
(2.20), then (2.17) becomes a short exact sequence

0 �! V!s �! Hs

��! V�!
s �! 0 (2.21)

of G-modules and (2.19) defines an equivariant pairing Hs � H1�s ! C.
The equivariant duality identifies V�!

s with a space of linear forms on V!1�s ,
namely (in the circle model), the space of all linear forms that are continuous for the
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inductive limit topology on C�!.S1/ induced by the topologies on the spaces O.U /
given by supremum norms on annuli 1 � " < jwj < 1 C ". Similarly, the space
V�1
s of distributional vectors in Vs can be defined in the circle model as the space

of linear forms on Vps that are continuous for the topology with supremum norms
of all derivatives as its set of seminorms. We thus have an increasing sequence of
spaces:

V!s .analytic functions/ � V1
s .smooth functions/ � � � �

� V�1
s .distributions/ � V�!

s .hyperfunctions/;
(2.22)

where all of the inclusions commute with the action of G.

� Hyperfunctions in Other Models. The descriptions of the spaces V�!
s and V�1

s

in the projective model are similar. The space of hyperfunctionsC�!.P1
R
/ is defined

similarly to (2.17), where we now let U run through neighborhoods of P1
R

in P
1
C

.
The formula (2.6) describing the action of G on functions on P

1
R

makes sense on a
neighborhood of P1

R
in P

1
C

and can be rewritten

f jP2s
�
a

c

b

d

�
.�/ D �

a2 C c2
��s � � � i

� � g�1.i/

�s �
� C i

� � g�1.�i/
�s
f

�
a� C b

c� C d

�
:

(2.23)

where the automorphy factor now makes sense and is holomorphic and single-
valued outside a path from i to g�1.i/ and a path from �i to g�1.�i/. The duality in
this model is given by

h';  i D 1

�

�Z
CC

�
Z
C�

�
'.�/  .�/

d�

1C �2
(2.24)

where the contour CC runs in the upper half-plane H, slightly above the real axis in
the positive direction, and returns along a wide half circle in the positive direction
and the contour C� is defined similarly, but in the lower half-plane H�, going
clockwise. Everything else goes through exactly as before.

The kernel function

k.�; �/ D .� C i/.� � i/

2i.� � �/ (2.25)

can be used to obtain a representative in Hs (in the projective model) for any ˛ 2
V�!
s : if we think of ˛ as a linear form on V!1�s , then

g.�/ D ˝
k.�; � /; ˛˛ (2.26)

is a holomorphic function on P
1
C

XP
1
R

such that �.g/ D ˛. Cauchy’s theorem implies
that g and any representative  2 Hs of ˛ differ by a holomorphic function on a
neighborhood of P1

R
. The particular representative g has the nice properties of being

holomorphic on H [ H� and being normalized by g.�i/ D 0.
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If one wants to handle hyperfunctions in the line model, one has to use
both hyperfunctions ' and '1 on R, glued by '.�/ D .�2/�s'1.�1=�/ on
neighborhoods of .0;1/ and .�1; 0/. For instance, for Re s < 1

2
, the linear form

' 7! 1
�

R1
�1 '.t/ dt on V01�s defines a distribution 1s 2 V�1

s . In Sect. A.2 we use
(2.26) to describe 1s 2 V�!

s in the line model. The plane model seems not to be
convenient for working with hyperfunctions.

Finally, in the sequence model, there is the advantage that one can describe all
four of the spaces in (2.22) very easily since the descriptions in (2.12) applied to
V!1�s and V1

1�s lead immediately to the descriptions

V�!
s D

n
.cn/ W cn D O

�
eajnj� for all a > 0

o
;

V�1
s D f.cn/ W cn D O ..1C jnj/a/ for some a 2 Rg (2.27)

of their dual spaces, where a sequence c corresponds to the hyperfunction repre-
sented by the function which is

P
n�0 cnwn for 1 � " < jwj < 1 and �Pn<0 cnwn

for 1 < jwj < 1 C "; the action of G still makes sense here because the matrix
coefficients as given in (2.11) decay exponentially (like .jBj=jAj/jnj ) as jnj ! 1
for any g 2 G. Thus in the sequence model, the four spaces in (2.22) correspond
to sequences fcng of complex numbers having exponential decay, superpolynomial
decay, polynomial growth, or subexponential growth, respectively. (See (2.12)
and (2.27).)

2.3 The Intertwining Map V�!
s ! V�!

1�s

The representationsV�!
s and V�!

1�s , with the same eigenvalue s.1�s/ for the Casimir
operator, are not only dual to one another but are also isomorphic (for s 62 Z).
Suppose first that F 2 Cp.G/ is in the induced representation model of Vps with
Re s > 1

2
and p D 0; 1; : : : ;1. With n.x/ D �

1
0
x
1

	
as in (1.9b) and w D �

0
1

�1
0

	
,

we define

IsF.g/ D 1

b.s � 1
2
/

Z 1

�1
F.gn.x/w/ dx; b

�
s
� D B

�
s;
1

2

� D �
�
s
�
�
�
1
2

�
� .s C 1

2
/
;

(2.28)

where the gamma factor b
�
s � 1

2

�
is a normalization, the reason of which will

become clear later. The shift over 1
2

is chosen since we will meet the same gamma

factor unshifted in Sect. 5. From n.x/w 2 k.�arccot x/a
�p
1C x2

�
N , we find

IsF.g/ D b

�
s � 1

2

��1 Z 1

�1
F .gk.�arccotx// .1C x2/�s dx;
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which shows that the integral converges absolutely for Re s > 1
2
. By

differentiating under the integral in (2.28), we see that IsF 2 Cp.G/. From
a.y/n.x/w D n.yx/wa.y/�1 , it follows that IsF.ga.y/n.x0// D ys�1F.g/. The
action of G in the induced representation model is by left translation; hence, Is is
an intertwining operator Vps ! Vp1�s:

.IsF / j1�s g1 D Is.F js g1/ for g1 2 G: (2.29)

To describe Is in the plane model, we choose for a given .�; �/ 2 R
2 X f0g the

element g�;� D �
�

�

��=.�2C�2/
�=.�2C�2/

	 2 G to obtain

Is˚.�; �/ D b

�
s � 1

2

��1 Z 1

�1
˚

�
g�;�

�
x

1

�1
0

��
dx

D b

�
s � 1

2

��1 Z 1

�1
˚

�
x .�; �/C 1

�2 C �2
.��; �/

�
dx: (2.30a)

By relatively straightforward computations, we find that the formulas for Is in the
other models (still for Re s > 1

2
) are given by

Is'.t/ D b

�
s � 1

2

��1 Z 1

�1
jt � xj2s�2 '.x/ dx; (2.30b)

Is'
P.t/ D b

�
s � 1

2

��1 Z
P
1
R

�
.t � x/2

.1C t2/.1C x2/

�s�1
'P.x/

dx

x2 C 1
; (2.30c)

Is'
S.�/ D 21�2s

i
b
�
s � 1

2

��1 Z
S1

.1 � �=�/s�1.1 � �=�/s�1'S.�/
d�

�
; (2.30d)

.Isc/n D � .s/

� .1 � s/

� .1� s C n/

� .s C n/
cn D .1 � s/jnj

.s/jnj
cn; (2.30e)

with in the last line the Pochhammer symbol given by .a/k D Qk�1
jD0.a C j / for

k � 1 and .a/0 D 1. The factor .1 � s/jnj=.s/jnj is holomorphic on 0 < Re s < 1.
Hence, Ises;n is well defined for these values of the spectral parameter. The
polynomial growth of the factor shows that Is extends to a map Is W Vps ! Vp1�s for
0 < Re s < 1 for p D !;1;�1;�!, but for finite p, we have only IsVps � Vp�1

1�s
if 0 < Re s < 1. See the characterizations (2.12) and (2.27). The intertwining
property (2.29) extends holomorphically. The choice of the normalization factor in
(2.28) implies that I1�s ıIs D Id, as is more easily seen from formula (2.30e). From
this formula we also see that hI1�s'; Is˛i D h'; ˛i for ' 2 V!1�s , ˛ 2 V�!

s and that
I1=2 D Id.



Function Theory Related to the Group PSL2.R/ 123

For ' 2 Vps , p � 1, we have in the line model ' 0.x/ D O.jxj�2s�1/ as jxj ! 1.
For Re s > 1

2
, integration by parts gives

Is'.t/ D �� .s/
2
p
� � .s C 1

2
/

Z 1

�1
sign .t � x/ jt � xj2s�1 ' 0.x/ dx; (2.31)

and this now defines Is' for Re s > 0 and shows that IsV1s � V01�s .
We can describe the operator Is W V�!

s ! V�!
1�s on the representatives of

hyperfunctions in Hs by sending a Laurent series
P

n2Z bnwn on an annulus ˛ <

jwj < ˇ in C
� to

P
n2Z

.1�s/jnj

.s/jnj
bnwn converging on the same annulus. One can check

that this gives an intertwining operator Is W Hs ! H1�s . (Since G is connected, it
suffices to check this for generators of the Lie algebra, for which the action on the
es;n is relatively simple. See Sect. A.5.)

3 Laplace Eigenfunctions and the Poisson Transformation

The principal series representations can also be realized as the space of eigenfunc-
tions of the Laplace operator � in the hyperbolic plane H. This model has several
advantages: the action ofG involves no automorphy factor at all; the model does not
give a preferential treatment to any point; all vectors correspond to actual functions,
with no need to work with distributions or hyperfunctions; and the values s and 1�s
of the spectral parameter give the same space. The isomorphism from the models
on the boundary used so far to the hyperbolic plane model is given by a simple
integral transform (Poisson map). Before discussing this transformation in Sect. 3.3,
we consider in Sect. 3.1 eigenfunctions of the Laplace operator on hyperbolic space
and discuss in Sect. 3.2 the Green’s form already used in [10].

Finally, in Sect. 3.4, we consider second-order eigenfunctions, i.e., functions
on H that are annihilated by

�
� � s.1 � s/

�2
.

3.1 The Space Es and Some of Its Elements

We use H as general notation for the hyperbolic 2-space. For computations, it is
convenient to work in a realization of H. In this chapter, we use the realization as
the complex upper half-plane and a realization as the complex unit disk.

The upper half-plane model of H is H D fz D x C iy W y > 0g, with boundary
P
1
R

. Lengths of curves in H are determined by integration of y�1p.dx/2 C .dy/2.
To this metric are associated the Laplace operator� D �y2�@2xC@2y

� D .z�Nz/2@z@Nz
and the volume element d� D dx dy

y2
. The hyperbolic distance d.z; z0/ between two

points z; z0 2 H is given in the upper half-plane model by

cosh dH.z; z0/ D �H.z; z0/ D 1 C jz � z0j2
2yy0 .z; z0 2 H/: (3.1)
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The isometry group of H is the group G D PSL2.R/, acting as usual by fractional
linear transformations z 7! azCb

czCd . The subgroup leaving fixed i is K D PSO.2/.
So G=KŠH. The action of G leaves invariant the metric and the volume element
and commutes with �.

We use also the disk model D D fw 2 C W jwj < 1g of H, with boundary S
1.

It is related to the upper half-plane model by w D z�i
zCi , z D i 1Cw

1�w . The corresponding

metric is
2
p
.d Re w/2C.d Im w/2

1�jwj2 , and the Laplace operator � D ��1 � jwj2�2@w@ Nw.
The formula for hyperbolic distance becomes

cosh dD.w;w0/ D �D.w;w0/ D 1 C 2jw � w0j2�
1� jwj2��1 � jw0j2� : (3.2)

Here the group of isometries, still denoted G, is the group PSU.1; 1/ of matrices�
ANB
BNA
	

(A; B 2 C, jAj2 � jBj2 D 1), again acting via fractional linear
transformations.

By Es we denote the space of solutions of �u D 
s u in H, where 
s D
s.1�s/. Since� is an elliptic differential operator with real-analytic coefficients, all
elements of Es are real-analytic functions. The group G acts by .ujg/.z/ D u.gz/.
(We will use z to denote the coordinate in both H and D when we make statements
applying to both models of H.) Obviously, Es D E1�s . If U is an open subset of H,
we denote by Es.U / the space of solutions of �u D 
su on U .

There are a number of special elements of Es which we will use in the sequel.
Each of these elements is invariant or transforms with some character under the
action of a one-parameter subgroup H � G. The simplest are z D x C iy 7! ys

and z 7! y1�s , which are invariant under N D ˚�
1
0
x
1

	 W x 2 R


, and transform

according to a character of A D ˚�p
y

0

0
1=

p
y

	 W y > 0


. More generally, the

functions in Es transforming according to nontrivial characters of N are written
in terms of Bessel functions. These are important in describing Maass forms with
respect to a discrete subgroup of G that contains

�
1
0
1
1

	
. The functions transforming

according to a character of A are described in terms of hypergeometric functions.
(The details, and properties of all special functions used, are given in Sect. A.1.)

If we choose the subgroupH to beK D PSO.2/, we are led to the functionsPs;n
described in the disk model with polar coordinates w D rei	 by

Ps;n.rei	 / WD P n
s�1
�
1C r2

1 � r2
�

ein	 .n 2 Z/; (3.3)

where Pn
s�1 denotes the Legendre function of the first kind. Note the shift of the

spectral parameter in Pn
s�1 and Ps;n. If n D 0, one usually writes Ps�1 instead of

P0
s�1, but to avoid confusion, we will not omit the 0 in Ps;0.

Every function in Es can be described in terms of the Ps;n: if we write the
Fourier expansion of u 2 Es as u.rei	 / D P

n2ZAn.r/ein	 , then An.r/ has the

form an P
n
s�1
�
1Cr2
1�r2

�
for some an 2 C, so we have an expansion
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u.w/ D
X
n2Z

an Ps;n.w/; an 2 C: (3.4)

Sometimes it will be convenient to consider also subgroups ofG conjugate toK .

For a given z0 D x0 C iy0 2 H, we choose gz0 D �p
y0

0

x0=
p
y0

1=
p
y0

	 2 NA � G to

obtain an automorphism of H sending i to z0. If we combine this with our standard
identification of H and D, we get a new identification sending the chosen point z0 to
0 2 D, and the function Ps;n on D becomes the following function on H � H :

ps;n.z; z
0/ WD Ps;n

�
z � z0

z � z0

�
: (3.5)

This definition of Ps;n depends in general on the choice of gz0 in the coset gz0K .
In the case n D 0, the choice has no influence, and we obtain the very important
point-pair invariant ps.z; z0/, defined, in either the disk or the upper half-plane, by
the formula

ps.z; z
0/ WD ps;0.z; z

0/ D Ps�1
�
�H.z; z0/

�
.z; z0 in H/; (3.6)

with the argument �.z; z0/ D cosh d.z; z0/ of the Legendre function Ps�1 D P0
s�1

being given algebraically in terms of the coordinates of z and z0 by formulas (3.1)
or (3.2), respectively. This function is defined on the product H � H, is invariant
with respect to the diagonal action of G on this product, and satisfies the Laplace
equation with respect to each variable separately.

The Legendre function Qn
s�1 in (A.8) in the appendix provides elements of

Es.D X f0g/:

Qs;n

�
rei	

� D Qn
s�1
�
1C r2

1 � r2
�

ein	 .n 2 Z/: (3.7)

The corresponding point-pair invariant with Q0
s�1 D Qs�1

qs.z; z
0/ D Qs�1

�
�H.z; z0/

�
.z; z0 in H/ (3.8)

is the well-known Green’s function for � (integral kernel function of .� � 
s/
�1),

has a logarithmic singularity as z ! z0, and grows like the sth power of the
Euclidean distance (in the disk model) from z to the boundary as z ! @H with
z0 fixed. This latter property will be crucial in Sect. 5, where we will study a space
W!
s of germs of eigenfunctions near @H having precisely this boundary behavior.
The eigenfunctionR.t I � /s , given in the H-model by

R.t I z/s D ys

jt � zj2s .t 2 R; z D x C iy 2 H/; (3.9)

is the image under the action of
�

0
�1

1
t

	 2 G on the eigenfunction z 7! ys . This
function was already used extensively in [10] (Sects. 2 and 5 of Chap. II). For fixed
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t 2 R, the functions R.t I � /s and R.t I � /1�s are both in Es . For fixed z 2 H, we
have R. � I z/s in the line model of V!s . The basic invariance property

jct C d j�2sR.gt Igz/s D R.t; z/s
�
g D

�
a

c

b

d

�
2 G

�
(3.10)

may be viewed as the statement that .t; z/ 7! R.t I z/s belongs to .V!s ˝ Es/G . The
functionR. � I � /1�s is the kernel function of the Poisson transform in Sect. 3.3.

We may allow t to move off R in such a way that R.t; z/s becomes holomorphic
in this variable:

R.�I z/s D
� y

.� � z/.� � Nz/
�s

.� 2 C; z D x C iy 2 H/: (3.11)

However, this not only has singularities at z D � or z D N� but is also many-valued.
To make a well-defined function, we have to choose a path C from � to N�, in which
case R.�I � /s becomes single-valued on U D H X C and lies in Es.U /. (Cf. [10],
Chap. II, Sect. 1.) Sometimes it is convenient to write Rs� instead of R.�I � /s .

Occasionally, we will choose other branches of the multivalued function
R. � I � /s . We have

@zR.�I z/s D s

z � Nz
� � Nz
� � z

R.�I z/s; @NzR.�I z/s D � s

z � Nz
� � z

� � Nz R.�I z/s;

(3.12)

provided we use the same branch on the left and the right.

3.2 The Green’s Form and a Cauchy Formula for Es

Next we recall the bracket operation from [10], which associates to a pair of
eigenfunctions of � with the same eigenvalue1 a closed 1-form (Green’s form).
It comes in two versions, differing by an exact form:

Œu; v� D uz v dz C u vNz dNz; fu; vg D 2i Œu; v� � i d.uv/: (3.13)

Because Œujg; vjg� D Œu; v� ı g for any locally defined holomorphic map g (cf. [10],
lemma in Sect. 2 of Chap. II), these formulas make sense and define the same

1More generally, for any differentiable functions u and v on H we have

dfu; vg D 2i dŒu; v� D
�
.�u/ v � u .�v/

�
d�;

where d� ( D y�2 dx dy in the upper half-plane model) is the invariant measure in H.
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1-form whether we use the H- or D-model of H, and define G-equivariant maps
Es � Es ! ˝1.H/ (or Es.U / � Es.U / ! ˝1.U / for any open subset U of H). The
fu; vg-version of the bracket, which is antisymmetric, is given in .x; y/-coordinates
z D x C iy 2 H by

fu; vg D
ˇ̌
ˇ̌̌
ˇ
u ux uy
v vx vy
0 dx dy

ˇ̌
ˇ̌̌
ˇ (3.14)

and in .r; 	/-coordinates w D rei	 2 D by

fu; vg D
ˇ̌̌
ˇ̌
ˇ
u r ur u	
v r vr v	
0 dr=r d	

ˇ̌̌
ˇ̌
ˇ : (3.15)

We can apply the Green’s form in particular to any two of the special functions
discussed above, and in some cases, the resulting closed form can be written as
the total differential of an explicit function. A trivial example is 2i Œys; y1�s � D
s dz � .1 � s/ dNz, fys; y1�sg D .2s � 1/ dx. A less obvious example is

ŒRsa; R
1�s
b �.z/ D 1

b � a
d

�
.Nz � a/.z � b/

z � Nz Rsa.z/ R
1�s
b .z/

�
; (3.16)

where a and b are either distinct real numbers or distinct complex numbers and
z 62 fa; b; Na; Nbg. On both sides we take the same branches of Rsa and R1�sb . This
formula, which can be verified by direct computation, can be used to prove the
Poisson inversion formula discussed below (cf. Remark 1, Sect. 4.2). Some other
examples are given in Sect. A.4.

We can also consider the brackets of any function u 2 Es with the point-pair
invariants ps.z; z0/ or qs.z; z0/. The latter is especially useful since it gives us the
following Es-analogue of Cauchy’s formula:

Theorem 3.1. Let C be a piecewise smooth simple closed curve in H and u an
element of Es.U /, where U � H is some open set containing C and its interior.
Then for w 2 H X C , we have

1

�i

Z
C

Œu; qs. � ;w/� D
(

u.w/ if w is inside C;

0 if w is outside C ,
(3.17)

where the curve C is traversed is the positive direction.

Proof. Since Œu; qs. � ;w/� is a closed form, the value of the integral in (3.17) does
not change if we deform the path C , so long as we avoid the point w where the
form becomes singular. The vanishing of the integral when w is outside of C is
therefore clear, since we can simply contract C to a point. If w is inside C , then we
can deformC to a small hyperbolic circle around w. We can use theG-equivariance
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to put w D 0, so that this hyperbolic circle is also a Euclidean one, say z D "ei	 . We
can also replace Œu; qs. � ; 0/� by fu; qs. � ; 0/g=2i, since their difference is exact. From
(3.15) and the asymptotic result (A.11), we find that the closed form � i

2
fu; qs. � ; 0/g

equals
�

i
2
u.0/C O." log "/

�
d	 on the circle. The result follows. �

The method of the proof just given can also be used to check that for a contour
C in D encircling 0 once in positive direction, we have for all n 2 Z

Z
C

ŒPs;n; Qs;m� D �i .�1/n ın;�m: (3.18)

Combining this formula with the expansion (3.4), we arrive at the following
generalization of the standard formula for the Taylor expansion of holomorphic
functions:

Proposition 3.2. For each u 2 Es:

u.w/ D
X
n2Z

.�1/n
�i

Ps;n.w/
Z
C

Œu;Qs;�n�: (3.19)

If u 2 Es.A/, where A is some annulus of the form r1 < jwj < r2 in D, there is a
more complicated expansion of the form

u.w/ D
X
n2Z

�
anPs;n.w/C bnQs;n.w/

�
: (3.20)

For fixed w0 2 D, the function w 7! qs.w;w0/ has only one singularity, at w D w0.
So both on the disk jwj < jw0j and on the annulus jwj > jw0j the function qs. � ;w0/
has a polar Fourier expansion, which can be given explicitly:

Proposition 3.3. For w;w0 2 D with jwj ¤ jw0j:

qs.w;w
0/ D

( P
n2Z.�1/n Ps;�n.w0/Qs;n.w/ if jwj > jw0j;P
n2Z.�1/n Ps;�n.w/Qs;n.w0/ if jwj < jw0j: (3.21)

Proof. Apply (3.20) to qs. � ;w0/ on the annulus A D fw 2 D W jw0j < jwjg. Since
qs. � ;w0/ represents an element of W!

s , the expansion becomes

qs.w;w
0/ D

X
n2Z

bn.w
0/Qs;n.w/ .jwj > jw0j/:

From qs.ei	w; ei	w0/ D qs.w;w0/, it follows that bn.ei	w0/ D e�in	bn.w/. For w 2
D X f0g, we have qs.w; � / 2 Es.B/ with B D fw0 2 D W jw0j < jwjg. Then
the coefficients bn are also in Es.B/. Since Qs;�n has a singularity at 0 2 D, the
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coefficients have the form bn.w0/ D cn Ps;�n.w0/. Now we apply (3.17) and (3.18)
to obtain with a path C inside the region A:

Ps;m.w
0/ D 1

�i

Z
C

�
Ps;m; qs. � ;w0/

	 D 1

�i

X
n2Z

cnPs;�n.w0/
Z
C

�
Ps;m;Qs;n

	

D c�m Ps;m.w0/ .�1/m:

Hence, cm D .�1/m, and the proposition follows, with the symmetry of qs . �

3.3 The Poisson Transformation

There is a well-known isomorphism Ps from V�!
s to Es . This enables us to view

Es as a model of the principal series. We first describe Ps abstractly and then
more explicitly in various models of V�!

s . In Sect. 4.2 we will describe the inverse
isomorphism from Es to V�!

s .
For ˛ 2 V�!

s and g 2 G
.Ps˛/.g/ D h˛j2s g; e1�s;0i D h˛; e1�s;0j2�2s g�1i (3.22)

describes a function on G that is K-invariant on the right. Hence, it is a function
on G=K Š H. The center of the enveloping algebra is generated by the Casimir
operator. It gives rise to a differential operator on G that gives, suitably normalized,
the Laplace operator � on the right-K-invariant functions. Since the Casimir
operator acts on V�!

1�s as multiplication by 
s D .1 � s/s, the function Ps˛ defines
an element of Es . We write in the upper half-plane model

Ps˛.z/ D Ps˛
�
n.x/a.y/

�
; (3.23)

with the notation in (1.9b). The definition in (3.22) implies that the Poisson
transformation is G-equivariant:

Ps.˛j2sg/.z/ D Ps˛.gz/: (3.24)

The fact that the intertwining operator Is W V�!
s ! V�!

1�s preserves the duality
implies that the following diagram commutes:

V�!
s

Is

��

Ps

����
���

��

Es D E1�s

V�!
1�s

P1�s ���������

(3.25)
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If ˛ 2 V0s , we can describe Ps˛ by a simple integral formula. In the line model,
this takes the form

Ps˛.z/ D ˝
es;0; ˛j2sn.x/a.y/

˛ D 1

�

Z 1

�1
es;0j2�2s

�
n.x/a.y/

��1
.t/ ˛.t/ dt

D 1

�

Z 1

�1
y�1Cs

 �
t�x
y

�2
C1
!s�1

˛.t/ dt D 1

�

Z 1

�1
R.t I z/1�s˛.t/ dt;

(3.26)

so that R1�s is the kernel of the Poisson transformation in the line model. If ˛ is a
hyperfunction, the pairing in (3.22) has to be interpreted as discussed in Sect. 2.2 as
the difference of two integrals over contours close to and on opposite sides of @H
((2.19) in the circle model), withR. � I z/1�s extended analytically to a neighborhood
of @H.

In the projective model and the circle model, we find

Ps˛.z/ D hR. � I z/1�s ; ˛i; (3.27a)

with R. � I z/1�s in the various models given by

RP.�I z/1�s D ys�1
�
� � i

� � z

�1�s�
� C i

� � Nz
�1�s

D
�
R.�I z/

R.�I i/
�1�s

; (3.27b)

RS.�I w/1�s D
�

1 � jwj2
.1� w=�/.1 � Nw�/

�1�s
: (3.27c)

By R. � ; � /1�s , without superscript on the R, we denote the Poisson kernel in the
line model (as in (3.11)). We take the branch for which argR.�I z/ D 0 for � on R.

In the circle model, we have for each ˛ 2 V�!
s :

Ps˛.w/ D .1� jwj2/1�s
2�i

�Z
CC

�
Z
C�

�
g.�/

�
.1 � w=�/.1 � Nw�/�s�1 d�

�
; (3.28)

with CC and C� as in (2.19), adapted to the domain of the representative g 2 Hs of
the hyperfunction ˛.

For the values of s we are interested in, Helgason has shown that the Poisson
transformation is an isomorphism:

Theorem 3.4. (Theorem 4.3 in [5]). The Poisson map Ps W V�!
s ! Es is a bijection

for 0 < Re s < 1.

The usual proof of this uses the K-Fourier expansion, where K ( Š PSO.2/ ) is the
standard maximal compact subgroup of G. One first checks by explicit integration
the formula

Pses;m D .�1/m � .s/

� .s Cm/
Ps;m .n 2 Z/; (3.29)



Function Theory Related to the Group PSL2.R/ 131

with es;m and Ps;m as defined in (2.9d) and (3.3) respectively. (Indeed, with (3.27b)
and (3.28), we obtain the Poisson integral

Pses;m.w/ D .1� jwj2/1�s
2�i

Z
j�jD1

�m
�
.1 � w=�/.1 � Nw�/�s�1 d�

�
:

Since jw=�j < 1 and j Nw�j < 1, this leads to the expansion

.1�jwj2/1�s
X

n1;n2�0;�n1Cn2Dm

.1 � s/n1 .1 � s/n2
n1Š n2Š

wn1 Nwn2

D .1 � jwj2/1�s .1 � s/jmj
jmjŠ

X
n�0

.1�s/n .1�s C jmj/n
.1C jmj/n nŠ jwj2n �

(
wm if m � 0;

Nw�m if m 	 0:

This is .�1/m� .s/=� .s Cm/ times Ps;m as defined in (A.8) and (A.9).) Then one
uses the fact that the elements of V�!

s are given by sums
P
cn es;n with coefficients

cn of subexponential growth ((2.27)) and shows that the coefficients in the expansion
(3.19) also have subexponential growth for each u 2 Es . This is the analogue of
the fact that a holomorphic function in the unit disk has Taylor coefficients at 0
of subexponential growth and can be proved the same way. An alternative proof of
Theorem 3.4 will follow from the results of Sect. 4.2, where we shall give an explicit
inverse map for Ps .

Thus, Es is a model of the principal series representation V�!
s , and also of V�!

1�s ,
that does not change under the transformation s 7! 1 � s of the spectral parameter.
It is completely G-equivariant. The action of G is simply given by u j g D u ı g.

As discussed in Sect. 1, the space V�!
s (hyperfunctions on @H) contains three

canonical subspaces V�1
s (distributions), V1

s (smooth functions), and V!s (analytic
functions on @H), and we can ask whether there is an intrinsic characterization
of the corresponding subspaces E�1

s , E1
s , and E!s of Es . For E�1

s , the answer is
simple and depends only on the asymptotic properties of the eigenfunctions near
the boundary, namely,

Theorem 3.5. ([9], Theorems 4.1 and 5.3) Let 0 < Re s < 1. The space E�1
s D

Ps
�V�1
s

�
consists of the functions in Es having at most polynomial growth near the

boundary.
(“At most polynomial growth near the boundary” means 
 �

1 � jwj2��C for some

C in the disk model and 
 ��jz C ij2�=y�C in the upper half-plane model.)

The corresponding theorems for the spaces E1
s and E!s , which do not only

involve estimates of the speed of growth of functions near @H, are considerably
more complicated. We will return to the description of these spaces in Sect. 7.

� Explicit Examples. One example is given in (3.29). Another example is

Psıs;1.z/ D RP.1I z/1�s D y1�s ; (3.30)
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where ıs;1 2 V�1
s is the distribution associating to ' 2 V1

1�s , in the projective
model, its value at 1. As a third example, we consider the element R. � I z0/s 2
V!s . For convenience we use the circle model. Then a.w;w0/ D �

PsRS. � I w0/s
�
.w/

satisfies the relation a.gw0; gw/ D a.w0;w/ for all g 2 G, by equivariance of
the Poisson transform and of the function Rs . So a is a point-pair invariant. Since
a.w; � / 2 Es , it has to be a multiple of ps . We compute the factor by taking w0 D
w D 0 2 D:

PsRS. � I 0/s.0/ D 1

2�i

Z
S1

RS.�I 0/sRS.�I 0/1�s d�

�

D 1

2�i

Z
S1

1 � 1 d�

�
D 1:

Thus we have

PsR. � I w0/s.w/ D ps.w
0;w/: (3.31)

With (3.25) and the fact that P1�s;0 D Ps;0, this implies

Is R. � I w0/s D R. � I w0/1�s: (3.32)

3.4 Second-Order Eigenfunctions

The Poisson transformation allows us to prove results concerning the space

E 0
s WD Ker

�
.� � 
s/

2 W C1.H/ �! C1.H/
�
: (3.33)

Proposition 3.6. The following sequence is exact:

0 �! Es �! E 0
s

��
s�! Es �! 0: (3.34)

Proof. Only the surjectivity of E 0
s ! Es is not immediately clear.

Let 0 < Re s0 < 1. Suppose we have a family s 7! fs on a neighborhood of s0
such that fs 2 Es for all s near s0, and suppose that this family is C1 in .s; z/ and
holomorphic in s. Then

.� � 
s0/
�
@sfs jsDs0

� � .1 � 2s0/fs0 D 0:

For s0 ¤ 1
2
, this gives an element of E 0

s0
that is mapped to fs0 by�� 
s0 . If s0 D 1

2
,

we replace fs by 1
2
.fs C f1�s/ and differentiate twice.

To produce such a family, we use the Poisson transformation. By Theorem 3.4,
there is a unique ˛ 2 V�!

s0
such that fDPs0˛. We fix a representative g 2 O.U XS

1/
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of ˛ in the circle model, which represents a hyperfunction ˛s for all s 2 C.
(The projective model works as well.) We put

fs.w/ D Ps˛s.w/ D 1

2�i

�Z
CC

�
Z
C�

�
RS.�I w/1�sg.�/

d�

�
:

The contours CC and C� have to be adapted to w but can stay the same when w
varies through a compact subset of H. Differentiating this family provides us with a
lift of f in E 0

s0
. �

This proof gives an explicit element

Qf .w/ D �1
2�i

�Z
CC

�
Z
C�

�
RS.�I w/1�s0 .logRS.�I w// g.�/

d�

�
(3.35)

of E 0
s with .�� 
s/ Qf D .1 � 2s/f . Note that for s D 1

2
, the function Qf belongs to

E1=2, giving an interesting map E1=2 ! E1=2. As an example, if f .z/ D y1=2, then
we can take g.�/ D �

2i as the representative of the hyperfunction ˛ D ı1=2;1 with
P1=2˛ D h, and by deforming the contours CC and C� into one circle j�j D R with
R large, we obtain (in the projective model)

Qf .z/ D �1
�

Z
j�jDR

RP.�I z/1=2
�

logy C log
�2 C 1

.� � z/.� � Nz/
�
�

2i

d�

�2 C 1

D �y1=2 logy: (3.36)

In part C of Table A.1 in Sect. A.2, we describe the distribution in V�1
1=2 correspond-

ing to this element of E1=2 .

Theorem 3.5 shows that the subspace E�1
s corresponding to V�1

s under the
Poisson transformation is the space of elements of Es with polynomial growth.
We define .E 0

s/
�1 as the subspace of E 0

s of elements with polynomial growth.
The following proposition, including the somewhat technical second statement, is
needed in Chap. V of [2].

Proposition 3.7. The sequence

0 �! E�1
s �! .E 0

s/
�1 ��
s�! E�1

s �! 0 (3.37)

is exact. All derivatives @lw@
m
Nwf .w/, l; m � 0, of f 2 .E 0

s/
�1, in the disk model,

have polynomial growth.

Proof. We use the construction in the proof of Proposition 3.6. We use

fs.w/ D hRS. � I w/1�s; ˛i;
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with ˛ 2 V�1
s0

. For � 2 S
1 we obtain by differentiating the expression for RS

in (3.27c)

.�@�/n@lw@
mNw RS.�I w/1�s 
n;l;m .1 � jwj2/s�l�m�n:

With the seminorm k � kn in (2.16), we can reformulate this as

k@lw@mNwRS. � I w/1�skn 
n;l;m .1 � jwj2/s�l�m�n: (3.38)

Since ˛ determines a continuous linear form on Vps for some p 2 N, this gives an
estimate

@lw@
mNwf .w/ 
˛;l;m .1 � jwj2/Re s�1�l�m�p

for f 2 E�1
s0

.
Differentiating RS. � I w/1�s once or twice with respect to s multiplies the

estimate in (3.38) with at most a factor
ˇ̌
log.1 � jwj2/ˇ̌2. The lift Qf 2 E 0

s0
of fs0

in the proof of Proposition 3.6 satisfies

@lw@
mNw Qf .w/ 
˛;l;m;" .1 � jwj2/Re s�1�l�m�p�"

for each " > 0. �

4 Hybrid Models for the Principal Series Representation

In this section we introduce the canonical model of the principal series, discussed
in the introduction. In Sect. 4.1 we define first two other models of Vs in functions
or hyperfunctions on @H � H, which we call hybrid models, since they mix the
properties of the model of Vs in eigenfunctions, as discussed in Sect. 3, with the
models discussed in Sect. 2. The second of these, called the flabby hybrid model,
contains the canonical model as a special subspace. The advantage of the canonical
model becomes very clear in Sect. 4.2, where we give an explicit inverse for the
Poisson transformation whose image coincides exactly with the canonical model.

In Sect. 4.3 we will characterize the canonical model as a space of functions
on .P1

C
X P

1
R
/ � H satisfying a certain system of differential equations. We use

these differential equations to define a sheaf Ds on P
1
C

� H, the sheaf of mixed
eigenfunctions. The properties of this sheaf and of its sections over other natural
subsets of P1

C
� H are studied in the remainder of the subsection and in more detail

in Sect. 6.

4.1 The Hybrid Models and the Canonical Model

The line model of principal series representations is based on giving 1 2 @H a
special role. The projective model eliminated the special role of the point at infinity
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in the line model at the expense of a more complicated description of the action
of G D PSL2.R/, but it also broke the G-symmetry in a different way by singling
out the point i 2 H. The corresponding point 0 2 D plays a special role in the
circle model. The sequence model is based on the characters of the specific maximal
compact subgroupK D PSO.2/ � G and not of its conjugates, again breaking the
G-symmetry. The induced representation model depends on the choice of the Borel
group NA. Thus none of the one-variable models for Vs discussed in Sect. 2 reflects
fully the intrinsic symmetry under the action of G.

To remedy these defects, we will replace our previous functions ' on @H by
functions e' on @H � H, where the second variable plays the role of a base point,
with e'. � ; i / being equal to the function 'P of the projective model. This has the
disadvantage of replacing functions of one variable by functions of two, but gives a
very simple formula for the G-action, is completely symmetric, and will also turn
out to be very convenient for the Poisson transform. Explicitly, given .'; '1/ in the
line model, we define e' W P

1
R

� H ! C by

e'.t; z/ D

8̂
ˆ̂<
ˆ̂̂:

� jz � t j2
y

�s
'.t/ if t 2 P

1
R

X f1g;
� j1C z=t j2

y

�s
'1

�
�1
t

�
if t 2 P

1
R

X f0g
(4.1)

(here y D Im .z/ as usual), generalizing (2.5) for z D i. The functione' then satisfies

e'.t; z1/ D
� jz1 � t j2=y1

jz2 � t j2=y2
�se'.t; z2/ D

�
R.t I z2/

R.t I z1/

�se'.t; z2/ (4.2)

for t 2 P
1
R

and z1; z2 2 H. A short calculation, with use of (3.10), shows that the
action of G becomes simply

e'jg.t; z/ D e'.gt; gz/ .t 2 P
1
R
; z 2 H; g 2 G/ (4.3)

in this model. From (4.1), (2.5), and (4.2), we find

'P.t/ D '.t; i/; e'.t; z/ D
�
.t � z/.t � Nz/
.t2 C 1/ y

�s
'P.t/; (4.4)

giving the relation between the new model and the projective model. And we see
that only the complicated factor relatinge' to 'P is responsible for the complicated
action of G in the projective model.

We define the rigid hybrid model to be the space of functions h W P1
R

� H ! C

satisfying (4.2) withe' replaced by h. The G-action is given by F 7! F ı g, where
G acts diagonally on P

1
R

� H. The smooth (resp. analytic) vectors are those for
which F. � ; z/ is smooth (resp. analytic) on P

1
R

for any z 2 H; this is independent
of the choice of z because the expression in parentheses in (4.2) is analytic and
strictly positive on P

1
R

. These spaces are models for V1
s and V!s , respectively, but

when needed will be denoted V1;rig
s and V!;rigs to avoid confusion. We may view
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the elements of the rigid hybrid model as a family of functions t 7! e'.t; z/ in
projective models with a varying special point z 2 H. The isomorphism relating the
rigid hybrid model and the line (respectively projective) model is then given by (4.1)
(respectively (4.4)).

In the case of V!;rigs , we can replace t in (4.2) or (4.4) by a variable � on a
neighborhood of P

1
R

. We observe that, although R.�I z/s is multivalued in �, the

quotient
�R.�I z1/

R.�I z/

�s
in (4.2) is holomorphic in � on a neighborhood (depending

on z and z1) of P1
R

in P
1
C

. In the rigid hybrid model, the space Hrig
s consists of germs

of functions h on a deleted neighborhood U X .P1
R

� H/ which are holomorphic in
the first variable and satisfy

h.�; z1/ D
�
R.�I z2/

R.�I z1/

�s
h.�; z2/ .z1; z2 2 H; � near P1

R
/; (4.5)

where “near P1
R

” means that � is sufficiently far in the hyperbolic metric from the
geodesic joining z1 and z2. This condition ensures that .�; z1/ and .�; z2/ belong
to U and the multiplicative factor in (4.5) is a power of a complex number not in
.�1; 0� and is therefore well defined. The action ofG on Hrig

s is given by h.�; z/ 7!
h.g�; gz/. In this model, V�!

s is represented as Hrig
s =V!;rigs . The pairing between

hyperfunctions and test functions in this model is given by

˝
h; e ˛ D 1

�

�Z
CC

�
Z
C�

�
h.�; z/ e .�; z/ R.�I z/ d� (4.6)

with the contours CC and C� as in (2.24). Provided we adapt the contours to z, we
can use any z 2 H in this formula for the pairing.

The rigid hybrid model, as described above, solves all of the problems of the
various models of Vs as function spaces on @H, but it is in some sense artificial,
since the elements h depend in a fixed way on the second variable, and the use of this
variable is therefore in principle superfluous. We address the remaining artificiality
by replacing the rigid hybrid model by another model. The intuition is to replace
functions satisfying (4.5) by hyperfunctions satisfying this relation.

Specifically, we define the flabby hybrid model as

M�!
s WD Hs=M!

s ;

where Hs is the space of functions2 h.�; z/ that are defined on U X �
P
1
R

� H
�

for
some neighborhoodU of P1

R
� H in P

1
C

� H, are holomorphic in �, and satisfy

2Here one has the choice to impose any desired regularity conditions (C0 , C1, C! , . . . ) in the
second variable or in both variables jointly. We do not fix any such choice since none of our
considerations depend on which choice is made and since in any case the most interesting elements
of this space, like the canonical representative introduced below, are analytic in both variables.
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� 7! h.�; z1/�
�
R.�I z2/

R.�I z1/

�s
h.�; z2/ 2 O.Uz1;z2 / for all z1; z2 2 H; (4.7)

where Uz1;z2 D f� 2 P
1
C

W .�; z1/; .�; z2/ 2 U g, while M!
s consists of functions

defined on a neighborhood U of P1
R

� H in P
1
C

� H and holomorphic in the first
variable. The action of G in Hs is by h j g .�; z/ D h.g�; gz/. The pairing between
hyperfunctions and analytic functions is given by the same formula (4.6) as in the
rigid hybrid model.

An element h 2 Hs can thus be viewed as a family
˚
h. � ; z/


z2H of represen-
tatives of hyperfunctions parametrized by H. Adding an element of M!

s does not
change this family of hyperfunctions. The requirement (4.7) on h means that the
family of hyperfunctions satisfies (4.5) in hyperfunction sense.

Finally, we describe a subspace Cs � Hs which maps isomorphically to
V�!
s under the projection Hs � V�!

s and hence gives a canonical choice of
representatives of the hyperfunctions in M�!

s . We will call Cs the canonical hybrid
model, or simply the canonical model, for the principal series representation V�!

s .
To define Cs , we recall that any hyperfunction on P

1
R

can be represented by a
holomorphic function on P

1
C

X P
1
R

with the freedom only of an additive constant.
One usually fixes the constant by requiring h.i/ D 0 or h.i/C h.�i/ D 0, which is
of course notG-equivariant. Here we can exploit the fact that we have two variables
to make the normalization in a G-equivariant way by requiring that

h.Nz; z/ D 0: (4.8)

We thus define Cs as the space of functions on
�
P
1
C

X P
1
R

� � H that are holomorphic
in the first variable and satisfy (4.7) and (4.8). We will see below (Theorem 4.2) that
the Poisson transform Ps W V�!

s ! Es becomes extremely simple when restricted
to Cs and also that Cs coincides with the image of a canonical lifting of the inverse
Poisson map Ps

�1 W Es ! V�!
s from the space of hyperfunctions to the space of

hyperfunction representatives.

Remark. We will also occasionally use the slightly larger space CC
s (no longer

mapped injectively to Es by Ps) consisting of functions in Hs that are defined on
all of

�
P
1
C

X P
1
R

� � H, without the requirement (4.8). Functions in this space will
be called semicanonical representatives of the hyperfunctions they represent. The
decomposition h.�; z/ D �

h.�; z/ � h.Nz; z/� C h.Nz; z/ gives a canonical and G-
equivariant splitting of CC

s as the direct sum of Cs and the space of functions on H,
so that there is no new content here, but specific hyperfunctions sometimes have a
particularly simple semicanonical representative (an example is given below), and
it is not always natural to require (4.8).

� Summary. We have introduced a “rigid”, a “flabby”, and a “canonical” hybrid
model, related by

V�!
s Š Hrig

s =V!;rigs Š M�!
s D Hs=M!

s Š Cs � Hs : (4.9)
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In the flabby hybrid model, the space Hs consists of functions on a deleted
neighborhood U X .P1

R
� H/ that may depend on the function, holomorphic in the

first variable, and satisfying (4.7). The subspace M!
s consists of the functions on

the whole of some neighborhoodU of P1
R

� H, holomorphic in the first variable.
For the elements of Hs and M!

s � Hs , we do not require any regularity in the
second variable. In the rigid hybrid model, the spaces Hrig

s � Hs and V!;rigs � M!
s

are characterized by the condition in (4.5), which forces a strong regularity in the
second variable. The canonical hybrid model Cs consists of a specific element from
each class of Hs=M!

s that is defined on .P1
C

� H/ X .P1
R

� H/ and is normalized
by (4.8). In Sect. 4.3 we will see that this implies analyticity in both variables jointly.

� Examples. As an example we represent the distribution ıs;1 in all three hybrid
models. This distribution, which was defined by 'P 7! 'P.1/ in the projective
model (cf. (3.30)), is represented in the projective model by hP.�/ D 1

2i �, and hence,
by (4.4), by

eh.�; z/ D �

2i
y�s

�
.� � z/.� � Nz/
.� � i/.� C i/

�s
(4.10)

in the rigid hybrid model. Since the difference �

2iys

��
1�z=�
1�i=z

�s� 1�Nz=�
1Ci�

�s � 1

�
is

holomorphic in � on a neighborhood of P1
R

in P
1
C

for each z, we obtain the much
simpler semicanonical representative

hs.�; z/ D �

2i ys
; (4.11)

of ıs;1 in the flabby hybrid model. Finally, subtracting hs.Nz; z/, we obtain the
(unique) representative of ıs;1 in the canonical hybrid model:

hc.�; z/ D � � Nz
2i

y�s : (4.12)

We obtain other elements of Cs by the action of G. For g 2 G with g1 D a 2 R

we get

hcjg�1.�; z/ D � � Nz
z � Nz

z � a

� � a
R.aI z/1�s : (4.13)

Here property (4.8) is obvious, and (4.7) holds because the only singularity of (4.13)
on P

1
R

is a simple pole of residue .i=2/R.aI z/�s at � D a.

� Duality and Poisson Transform. From (2.24) we find that if h 2 Hs and f 2
M!

1�s are defined on U X .P1
R

� H/, respectively U , for the same neighborhood U
of P1

R
� H, then

hf; hi D 1

�

�Z
CC

�
Z
C�

�
f .�; z/ h.�; z/ R.�I z/ d�; (4.14)
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where CC and C� are contours encircling z in H and Nz in H�, respectively, such that
CC � fzg and C� � fzg are contained in U . The result hf; hi does not change if we
replace h by another element of hC M!

s � Hs .

We apply this to the Poisson kernel f P

z .�/ D RP.�I z/1�s D �
R.�Iz/
R.�Ii /

�1�s
, for

z 2 H. The corresponding element in the rigid pair model is

Qfz.�; z1/ D
�
R.�I z/

R.�I i/
�1�s �

R.�I i/
R.�I z1/

�1�s
D
�
R.�I z/

R.�; z1/

�1�s
:

Applying (4.14), we find for z; z1 2 H:

Psh.z/ D 1

�

�Z
CC

�
Z
C�

��
R.�I z/

R.�I z1/

�1�s
h.�; z1/R.�I z1/ d�

D 1

�

�Z
CC

�
Z
C�

��
R.�I z1/

R.�I z/

�s
h.�; z1/ R.�I z/ d�; (4.15)

where CC encircles z and z1 and C� encircles Nz and z1. Since this does not depend
on z1, we can choose z1 D z to get

Psh.z/ D 1

�

�Z
CC

�
Z
C�

�
h.�; z/ R.�I z/ d�

D 1

2�i

�Z
CC

�
Z
C�

�
h.�; z/

.z � Nz/
.� � z/.� � Nz/ d�: (4.16)

The representation of the Poisson transformation given by formula (4.16) has
a very simple form. The dependence on the spectral parameter s is provided by
the model, not by the Poisson kernel. But a really amazing simplification occurs
if we assume that the function h 2 Hs belongs to the subspace Cs of canonical
hyperfunction representatives. In that case, h.�; z/ is holomorphic in � in all ofCXR,
so we can evaluate the integral by Cauchy’s theorem. In the lower half-plane, there
is no pole since h.Nz; z/ vanishes, so the integral over C� vanishes. In the upper half-
plane, there is a simple pole of residue h.z; z/ at � D z. Hence, we obtain

Proposition 4.1. The Poisson transform of a function h 2 Cs is the function

Rsh.z/ D h.z; z/; (4.17)

defined by restriction to the diagonal.

As examples of the proposition, we set � D z in (4.12) and (4.13) to get

u.z/ D y1�s ) �
Ps

�1u
�

can.�; z/ D � � Nz
2i

y�s

u.z/ D R.aI z/1�s ) �
Ps

�1u
�

can.�; z/ D � � Nz
z � Nz

z � a
� � a

u.z/:

(4.18)
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Finally, we remark that on the larger space CC
s introduced in the Remark above,

we have two restriction maps

RC
s h.z/ D h.z; z/; R�

s h.z/ D h.Nz; z/ (4.19)

to the space of functions on H. The analogue of the proposition just given is then
that the restriction of Ps to CC

s equals the difference Rs D RC
s � R�

s .

4.2 Poisson Inversion and the Canonical Model

The canonical model is particularly suitable to give an integral formula for the
inverse Poisson transformation, as we see in the main result of this subsection,
Theorem 4.2. In Proposition 4.4 we give an integral formula for the canonical
representative of a hyperfunction in terms of an arbitrary representative in Hs .
Proposition 4.6 relates, for u 2 Es , the Taylor expansions in the upper and lower
half-plane of the canonical representative of Ps

�1u to the polar expansion of u with
the functions ps;n.

To determine the image Ps
�1u under the inverse Poisson transform for a given

u 2 Es , we have to construct a hyperfunction on @H which maps under Ps to u. A first
attempt, based on [10], Chap. II, Sect. 2, would be (in the line model) to integrate
the Green’s form fu; R.�I � /sg from some base point to �. This does not make sense
at 1 since R.�I � / has a singularity there and one cannot take a well-defined sth
power of it, so we should renormalize by dividingR.�I � /s by R.�I i/s , or better, to
avoid destroying the G-equivariance of the construction, byR.�I z/s with a variable
point z 2 H. This suggests the formula

h.�; z/ D

8̂
ˆ̂<
ˆ̂̂:

Z �

z0

˚
u; .R�. � /=R�.z//s



if � 2 H;

Z N�

z0

˚
u; .R�. � /=R�.z//s



if � 2 H�;

(4.20)

in the hybrid model, where z0 2 H is a base point, as a second attempt.
This almost works: the fact that the Green’s form is closed implies that the
integrals are independent of the path of integration, and changing the base-
point z0 changes h. � ; z/ by a function holomorphic near P

1
R

and hence does
not change the hyperfunction it represents. The problem is that both integrals
in (4.20) diverge because R.�I z0/s has a singularity like .� � z0/�s near � and
like .� � z0/�s near N� and the differentiation implicit in the bracket f � ; � g turns
these into singularities like .� � z0/�s�1 and .� � z0/�s�1 which are no longer
integrable at z0 D � or z0 D N�, respectively. To remedy this in the upper half
plane, we replace fu; .R�. � /=R�.z//sg by Œu; .R�. � /=R�.z//s �, which differs from
it by a harmless exact 1-form but is now integrable at �. (The same trick was
already used in Sect. 2, Chap. II of [10], where z0 was 1 .) In the lower half-plane,
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Œu; .R�. � /=R�.z/s � is not small near z0 D N�, so here we must replace the differ-
ential form fu; .R�. � /=R�.z//sg D �f.R�. � /=R�.z//s; ug by �Œ.R�. � /=R�.z//s ; u�
instead. (We recall that f � ; � g is antisymmetric but Œ � ; � � is not.) However, since the
differential forms Œu; .R�. � /=R�.z//s � and �Œ.R�. � /=R�.z//s ; u� differ by the exact
form d.u .R�. � /=R�.z//s/, this change requires correcting the formula in one of the
half-planes. (We choose the upper half-plane.) This gives the formula

h.�I z/ D

8̂
ˆ̂<
ˆ̂̂:

u.z0/

�
R.�I z0/

R.�I z/

�s
C
Z �

z0

�
u;

�
R.�I � /
R.�I z/

�s�
if � 2 H;

Z z0

N�

��
R.�I � /
R.�I z/

�s
; u

�
if � 2 H�:

(4.21)

We note that in this formula, h.z0; z/ D 0. So we can satisfy (4.8) by choosing
z0 D z, at the same time restoring the G-symmetry which was broken by the choice
of a base point z0. We can then choose the continuous branch of

�
R�=R�.z/

�s
that

equals 1 at the end point z of the path of integration. Thus we have arrived at the
following Poisson inversion formula, already given in the Introduction (1.4):

Theorem 4.2. Let u 2 Es . Then the function Bsu 2 Hs defined by

.Bsu/.�; z/ D

8̂
<̂
ˆ̂:

u.z/C
Z �

z

�
u;
�
R�=R�.z/

�s	
if � 2 H;Z z

N�
��
R�=R�.z/

�s
; u
	

if � 2 H�
(4.22)

along any piecewise C1-path of integration in H X f�g, respectively H X fN�g, with
the branch of

�
R�=R�.z/

�s
chosen to be 1 at the end point z, belongs to Cs and is a

representative of the hyperfunction Ps�1u 2 M�!
s D Hs=M!

s .

Corollary 4.3. The maps Bs W Es ! Cs and Rs W Cs ! Es defined by (4.22) and
(4.17) are inverse isomorphisms, and we have a commutative diagram

Hs
�� �� V�!

s

Ps
��

Cs
��

��

Rs

��

Š �����������
Es

Bs
��

(4.23)

Proof. Let u 2 Es . First we check that h D Bsu is well defined and determines an
element of Cs . The convergence of the integrals in (4.22) requires an estimate of the
integrand at the boundaries. For � 2 H X fzg, we use
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�
u.z0/;

�
R�.z

0/=R�.z/
�s	

z0 D
�
R.�I z0/
R.�I z/

�s�
uz.z

0/ dz0 C is

2y0 u.z0/
� � z0

� � z0 dz0
�
:

(4.24)

The factor in front is 1 for z0 D z and O
�
.� � z0/�s

�
for z0 near �. The other

contributions stay finite, so the integral for � 2 H X fzg converges. (Recall that
Re .s/ is always supposed to be < 1.) For � 2 H� X fNzg, we use in a similar way

��
R�.z

0/=R�.z/
�s
; u.z0/

	
z0 D

�
R.�I z0/
R.�I z/

�s� is

2y0 u.z0/
� � z0
� � z0 dz0 C uNz.z0/ dz0

�
:

We have normalized the branch of
�
R.�I z0/=R.�I z/

�s
by prescribing the value 1

at z0 D z. This choice fixes
�
R.�I z0/=R.�I z/

�s
as a continuous function on the paths

of integration. The result of the integration does not depend on the path, since the
differential form is closed and since we have convergence at the other end point �
or N�. Any continuous deformation of the path within H X f�g or H X fN�g is allowed,
even if the path intersects itself with different values of

�
R.�I z0/=R.�I z/

�s
at the

intersection point.

�

�

�

z

�

�

�

z�
�

If we choose the geodesic path from z to �, and if � is very near the real line, then
the branch of

�
R�.z0/=R�.z/

�s
near z0 D � is the principal one (argument between

�� and �).

The holomorphy in � follows from a reasoning already present in [10], Chap. II,
Sect. 2, and hence given here in a condensed form. Since the form (4.24) is
holomorphic in �, a contribution to @N�h could only come from the upper limit of

integration, but in fact vanishes since O
�
.� � z0/�s

�
.� � z0/ D o.1/ as � ! z0.

Hence, h. � ; z/ is holomorphic on H X fzg. For � near z, we integrate a quantity
O
�
.� � z0/�s

�
from z to �, which results in an integral estimated by O

�
.� � z/1�s

�
.

So .Bsu/.�; z/ is bounded for � near z. Hence, h.�; z/ D .Bsu/.�; z/ is holomorphic
at � D z as well. For the holomorphy on H�, we proceed similarly. This also shows
that h.Nz; z/ D 0, which is condition (4.8) in the definition of Cs .

For condition (4.7), we note that

h.�I z/�
�
R.�I z1/

R.�I z/

�s
h.�I z1/ D u.z/� u.z1/

�
R.�I z1/

R.�I z/

�s
C
Z z1

z

�
u;

�
R.�I � /
R.�I z/

�s�
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if � 2 H X fz; z1g and

h.�I z/ �
�
R.�I z1/

R.�I z/

�s
h.�I z1/ D

Z z

z1

��
R.�I � /
R.�I z/

�s
; u

�

if � 2 H� X fNz; Nz1g. The right-hand sides both have holomorphic extensions in � to a
neighborhood of P1

R
, and the difference of these two extensions is seen, using (3.13)

and the antisymmetry of f � ; � g, to be equal to

u.z/� u.z1/

�
R.�I z1/

R.�I z/

�s
C
Z z1

z
d

�
u.z0/

�
R.�I z0/
R.�I z/

�s�
D 0:

In summary, the function Bsu belongs to Hs , is defined in all of
�
P
1
C

X P
1
R

� � H,
and vanishes on the antidiagonal, so Bsu 2 Cs , which is the first statement of the
theorem. The second follows immediately from Proposition 4.1, since it is obvious
from (4.22) that RsBsu D u and the proposition says that Rs is the restriction of Ps
to Cs . �

The corollary follows immediately from the theorem if we use Helgason’s result
(Theorem 3.4) that the Poisson transformation is an isomorphism. However, given
that we have now constructed an explicit inverse map for the Poisson transformation,
we should be able to give a more direct proof of this result, not based on polar
expansions, and indeed this is the case. Since PsBsu D RsBsu D u, it suffices to
show that Rs is injective. To see this, assume that h 2 Cs satisfies h.z; z/ D 0 for
all z 2 H. For fixed z1; z2 2 H, let c.�/ denote the difference in (4.7). This function
is holomorphic near P1

R
and extends to P

1
C

in a multivalued way with branch points
of mild growth, .� � �0/

˙s with 0 < Re s < 1, at z1, z1, z2, and z2. Moreover, c.�/
tends to 0 as � tends to z1 or z1 (because Re s > 0) and also as � tends to z2 or z2
(because h.z2; z2/ D h.z2; z2/ D 0 and Re s < 1). Suppose that c is not identically
zero. The differential form d log c.�/ is meromorphic on all of P1

C
and its residues

at �0 2 fzz; z2; z1; z2g have positive real part. Since c is finite elsewhere on P
1
C

, any
other residue is nonnegative. This contradicts the fact that the sum of all residues of
a meromorphic differential on P

1
C

is zero. Hence, we conclude that c D 0. Then the
local behavior of h.�; z1/ D h.�; z2/

�
R�.z2/=R�.z1/

�s
at the branch points shows

that both h. � ; z1/ and h. � ; z2/ vanish identically.

Remarks.

1. It is also possible to prove that BsPs' D ' and PsBsu D u by using complex
contour integration and (3.16), and our original proof that Bs D Ps

�1 went this
way, but the above proof using the canonical space Cs is much simpler.

2. Taking z D i in formula (4.22) gives a representative for Ps
�1u in the projective

model, and using the various isomorphisms discussed in Sect. 2, we can also
adapt it to the other @H models of the principal representation.
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We know that each element of V�!
s has a unique canonical representative lying

in Cs . The following proposition, in which k.�; �I z/ denotes the kernel function

k.�; �I z/ D 1

2i .� � �/
� � Nz
� � Nz ; (4.25)

tells us how to determine it starting from an arbitrary representative.

Proposition 4.4. Suppose that g 2 Hs represents ˛ 2 V�!
s . The canonical

representative gc 2 Cs of ˛ is given, for each z0 2 H by

gc.�; z/ D 1

�

�Z
CC

�
Z
C�

�
g.�; z0/

�
R.� I z0/

R.� I z/

�s
k.�; �I z/ d�; (4.26)

with contours CC and C� homotopic to P
1
R

inside the domain of g, encircling z
and z0, respectively Nz and z0, with CC positively oriented in H and C� negatively
oriented in H�, and � inside CC or inside C�.

Note that this can be applied when a representative g0 of ˛ in the projective model is
given: simply apply the proposition to the corresponding representative in the rigid
hybrid model as given by (4.4).

Proof. Consider k. � ; �I z/ as an element of V!s in the projective model. Then
gc.�; z/ D h˛; k. � ; �I z/i. Adapting the contours, we see that gc. � ; z/ is holomorphic
on H [ H�.

For a fixed � 2 domg, we deform the contours such that � is between the new
contours. This gives a term g.�; z/ plus the same integral, but now representing
a holomorphic function in � on the region between CC and C�, which is a
neighborhood of P1

R
. So g and gc represent the same hyperfunction. Condition (4.8)

follows from k.�; NzI z/ D 0. �

Choosing z0 D z in (4.26) gives the simpler formula

gc.�; z/ D 1

�

�Z
CC

�
Z
C�

�
g.�; z/ k.�; �I z/ d�; (4.27)

(which is, of course, identical to (4.26) if g belongs to V!;rigs ). In terms of ˛ 2 V�!
s

as a linear form on V!1�s , we can write this as

gc.�; z/ D ˝
f�; ˛

˛
with f�.�; z/ D .� � Nz/.� � z/

.z � Nz/.� � �/
: (4.28)

The integral representation (4.26) has the following consequence:

Corollary 4.5. All elements of Cs are real-analytic on .P1
C

X P
1
R
/ � H.
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� Expansions in the Canonical Model. For u 2 Es , the polar expansion (3.4) can
be generalized, with the shifted functions ps;n in (3.5), to an arbitrary central point:

u.z/ D
X
n2Z

an.u; z
0/ ps;n.z; z0/ .z0 2 H arbitrary/: (4.29)

Let h D Bsu 2 Cs be the canonical representative of Ps
�1u 2 V�!

s . For z0 2 H
fixed, h.�; z0/ is a holomorphic function of � 2 C X R and has Taylor expansions in
��z0

��z0
on H and in ��z0

��z0 on H�. Since h.Nz; z/ D 0, the constant term in the expansion

on H� vanishes. Thus there are An.h; z0/ 2 C such that

h.�; z0/ D

8̂
ˆ̂<
ˆ̂̂:

X
n�0

An.h; z
0/
�
� � z0

� � z0

�n
for � 2 H;

�
X
n<0

An.h; z
0/
�
� � z0

� � z0

�n
for � 2 H�:

(4.30)

(We use a minus sign in the expansion on H� because then

.�; z0/ 7!
X
n�n0

An.h; z
0/
�
��z0

��z0

�n
for � 2 H; �

X
n<n0

An.h; z
0/
�
��z0

��z0

�n
for � 2 H�;

represents the same hyperfunction Ps
�1u for any choice of n0 2 Z.) From g��gz0

g��gz0
D

cz0Cd
cz0Cd

��z0

��z0
for g D �

a

c

b

d

	 2 G, it follows that

An.h j g; z0/ D
�
cz0 C d

cz0 C d

�n
An.h; gz0/: (4.31)

Similarly, we have from (3.5) and (3.3):

an.u j g; z0/ D
�
cz0 C d

cz0 C d

�n
an.u; gz0/: (4.32)

In fact, the coefficients An. / and an. / are proportional:

Proposition 4.6. For u 2 Es and h D Bsu 2 Cs, the coefficients in the expansions
(4.29) and (4.30) are related by

an.u; z
0/ D .�1/n � .s/

� .s C n/
An.h; z

0/: (4.33)

Proof. The expansion (4.30) for z0 D i shows that the hyperfunction Ps
�1u has the

expansion
P

n An.h; i/ es;n in the basis functions in (2.9). Then (3.28) gives

u.z/ D
X
n2Z
.�1/n � .s/

� .s C n/
An.h; i/ Ps;n.z/:
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This gives the relation in the proposition if z0 D i , and the general case follows from
the transformation rules (4.31) and (4.32). �

The transition s $ 1 � s does not change Es D E1�s or ps;n D p1�s;n. So the
coefficients an.u; z0/ stay the same under s 7! 1� s. With the commutative diagram
(3.25), we get

Corollary 4.7. The operator Cs ! C1�s corresponding to Is W V�!
s ! V�!

1�s acts
on the coefficients in (4.30) by

An.Ish; z0/ D .1 � s/jnj
.s/jnj

An.h; z0/:

We remark that Proposition 4.6 can also be used to give an alternative proof of
Corollary 4.5, using (3.19) with u replaced by u ı gz0 to obtain the analyticity of
an.u; z0/ in z0 and then (4.33) to control the speed of convergence in (4.30).

4.3 Differential Equations for the Canonical Model
and the Sheaf of Mixed Eigenfunctions

The canonical model provides us with an isomorphic copy Cs of V�!
s Š Es inside

the flabby hybrid model Hs . We now show that the elements of the canonical model
are real-analytic in both variables jointly and satisfy first-order differential equations
in the variable z 2 H with � as a parameter.

The same differential equations can be used to define a sheaf Ds on P
1
C

� H.
In Proposition 4.10 and Theorem 4.13, we describe the local structure of this sheaf.
It turns out that we can identify the space V!;rigs of the rigid hybrid model with a
space of sections of this sheaf of a special kind. There is a sheaf morphism that
relates Ds to the sheaf Es W U 7! Es.U / of 
s-eigenfunctions on H. For elements
of the full space Es D Es.H/, the canonical model gives sections of Ds over .P1

C
X

P
1
R
/ � H.

Theorem 4.8. Each h 2 Cs and its corresponding eigenfunction u D Psh D Rsh 2
Es satisfy, for � 2 P

1
C

X P
1
R

, z 2 H, � 62 fz; Nzg, the differential equations

.z � Nz/ @zh.�; z/ C s
� � Nz
� � z

�
h.�; z/ � u.z/

� D 0; (4.34a)

.z � Nz/ @Nz
�
h.�; z/ � u.z/

� � s
� � z

� � Nz h.�; z/ D 0: (4.34b)

Conversely, any continuous function h on .P1
C

X P
1
R
/� H that is holomorphic in the

first variable, continuously differentiable in the second variable, and satisfies the
differential equations (4.34) for some u 2 C1.H/ belongs to Cs , and u is Psh.



Function Theory Related to the Group PSL2.R/ 147

The differential equations (4.34) look complicated but in fact are just the dz- and
dNz-components of the identity

�
R.�I � /s; u.�I � /	 D d

�
R.�I � /sh.�I � / � (4.35)

between 1-forms, as one checks easily. (The function R.�I z/s is multivalued, but if
we take the same branch on both sides of the equality, then it makes sense locally.)

Proof of Theorem 4.8. The remark just made shows almost immediately that the
function h D Bsu 2 Cs defined by (4.22) satisfies the differential equations (4.34):
differentiating (4.22) in z gives

dz
�
h.�; z/R.�I s/s� D

(
d
�
u.z/R.�I z/s

� � Œu.z/; R.�I z/s�z if z 2 H,

C ŒR.�I z/s ; u.z/�z if z 2 H�,

and the right-hand side equals ŒR.�I z/s; u.z/� in both cases by virtue of (3.13).
An alternative approach, not using the explicit Poisson inversion formula (4.22),

is to differentiate (4.7) with respect to z1 (resp. z1) and then set z1 D z2 D z to see
that the expression on the left-hand side of (4.34a) (resp. (4.34b)) is holomorphic in
� near P1

R
. (Here that we use the result proved above that elements of the canonical

model are analytical in both variables jointly.) The equations h.z; z/ D u.z/,
h.Nz; z/ D 0 then show that the expressions in (4.34), for z fixed, are holomorphic
in � on all of P1

C
and hence constant. To see that both constants vanish, we set � D Nz

in (4.34a) (resp. � D z in (4.34b)) and use

@z
�
h.�; z/

�j�DNz D @z
�
h.Nz; z/� D @z.0/ D 0; @Nz

�
h.�; z/

�j�Dz D @Nz
�
h.z; z/

�D @Nzu.z/:

This proves the forward statement of Theorem 4.8. Instead of proving the
converse immediately, we first observe that the property of satisfying the differential
equations in the theorem is a purely local one and therefore defines a sheaf of
functions.

We now give a formal definition of this sheaf and then prove some general
statements about its local sections that include the second part of Theorem 4.8.

We note that the differential equations (4.34) make sense, not only on .P1
C

X
P
1
R
/�H but on all of P1

C
�H, with singularities on the “diagonal” and “antidiagonal”

defined by

�C D f .z; z/ W z 2 H g; �� D f .Nz; z/ W z 2 H g: (4.36)

We, therefore, define our sheaf on open subsets of this larger space.

Definition 4.9. For every open subset U � P
1
C

� H, we define Ds.U / as the space
of pairs .h; u/ of functions on U such that:

(a) h and u are continuous on U .
(b) h is holomorphic in its first variable.
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(c) Locally u is independent of the first variable.
(d) h and u are continuously differentiable in the second variable and satisfy the

differential equations (4.34) on U X .�C [��/, with u.z/ replaced by u.�; z/.

This defines Ds as a sheaf of pairs of functions on P
1
C

� H, the sheaf of mixed
eigenfunctions. In this language, the content of Theorem 4.8 is that Cs can be
identified via h 7! .h;Rsh/ with the space of global sections of Ds

�
.P1

C
XP

1
R
/�H

�
.

The following proposition gives a number of properties of the local sections.

Proposition 4.10. Let .h; u/ 2 Ds.U / for some open set U � P
1
C

� H. Then

(i) The functions h and u are real-analytic on U . The function u is determined
by h and satisfies �u D s.1 � s/u.

(ii) If U intersects �C [ ��, then we have h D u on U \ �C and h D 0 on
U \��.

(iii) If u D 0, then the function h locally has the form h.�; z/ D '.�/R.�I z/�s for
some branch of R.�I z/�s , with ' holomorphic.

(iv) The function h is determined by u on each connected component of U that
intersects �C [��.

Proof. The continuity of h and u allows us to consider them and their derivatives
as distributions. We obtain from (4.34) the following equalities of distributions on
U X .�C [��/:

@z@Nzh D @z

�
@Nzu C s

z � Nz
� � z

� � Nz h
�

D @z@Nzu � s

.z � Nz/2 h � s2

.z � Nz/2 .h� u/;

@Nz@zh D @Nz
� �s

z � Nz
� � Nz
� � z

.h � u/

�
D �s

.z � Nz/2 .h � u/� s2

.z � Nz/2 h:

The differential operators @z and @Nz on distributions commute. In terms of the
hyperbolic Laplace operator� D .z � Nz/2 @z@Nz, we have in distribution sense�

� � 
sC1
�
h D .�C s2/u D su: (4.37)

Since u is an eigenfunction of the elliptic differential operator � � 
s with real-
analytic coefficients, u and also h are real-analytic functions in the second variable.
To conclude that h is real-analytic in both variables jointly, we note that it is also a
solution of the following elliptic differential equation with analytic coefficients��@�@N� C� � 
sC1

�
h D su:

Near 1 2 P
1
C

, we replace � by � D 1=� in the last step.
Since u is locally independent of �, we conclude that u is real-analytic on the

whole of U and satisfies �u D s.1� s/u on U . Then (4.37) gives the analyticity of
h on U . Now we use (4.34a) to obtain

u.�; z/ D h.�; z/C z � Nz
s

� � z

� � Nz @zh.�; z/:
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So h determines u on U X �� and then by continuity on the whole of U .
Furthermore, u D h on �C. Similarly, (4.34b) implies h D 0 on U \ ��. This
proves parts (4.10) and (4.10) of the proposition.

Under the assumption u D 0 in part (4.10), the differential equations (4.34)
become homogeneous in h. For fixed �, the solutions are multiples of z 7! R.�I z/�s ,
as is clear from (4.35). Hence, h locally has the form h.�; z/ D '.�/R.�I z/�s ,
where ' is holomorphic by condition b) in the definition of Ds . It also follows that h
vanishes on any connected component of U on which R.�I z/�s is multivalued and,
in particular, on any component that intersects �C [ ��. Part 4.10) now follows
by linearity. �

Proof of Theorem 4.8, converse direction. Functions h and u with the properties
assumed in the second part of the theorem determine a section .h; u/ 2 Ds

�
.P1

C
X

P
1
R
/ � H

�
. Proposition 4.10 shows that u 2 Es . By the first part of the theorem, we

have .Bsu; u/ 2 Ds

�
.P1

C
X P

1
R
/ � H

�
. Since this has the same second component as

.h; u/, part (4.10) of the proposition shows that h D Bsu 2 Cs , and then part (4.10)
gives u D Rsh D Psh. �
� Local Description of h Near the Diagonal. Part (4.10) of Proposition 4.10 says
that the first component of a section .h; u/ of Ds near the diagonal or antidiagonal
is completely determined by the second component, but does not tell us explicitly
how. We would like to make this explicit. We can do this in two ways, in terms of
Taylor expansions or by an integral formula. We will use this in Sect. 6.

We first consider an arbitrary real-analytic function u in a neighborhood of a point
z0 2 H and a real-analytic solution h of (4.34a) near .z0; z0/ which is holomorphic in
the first variable. Then h has a power series expansion h.�; z/ D P1

nD0 hn.z/.� �
z/n in a neighborhood of .z0; z0/, and (4.34a) is equivalent to the recursive formulas

hn.z/ D

8̂̂
ˆ̂<
ˆ̂̂̂
:

u.z/ if n D 0;
1

1 � s

@h0.z/

@z
if n D 1;

1

n � s

�
@hn�1.z/
@z

C s

z � Nz hn�1.z/
�

if n � 2;

which we can solve to get the expansion

h.�; z/ D u.z/ C y�s
1X
nD1

@n�1

@zn�1

�
ys
@u

@z

�
.� � z/n

.1 � s/n
; (4.38)

where .1 � s/n D .1 � s/.2 � s/ � � � .n � s/ as usual is the Pochhammer symbol.
Conversely, for any real-analytic function u.z/ in a neighborhood of z0, the series
in (4.38) converges and defines a solution of (4.34a) near .z0; z0/. Thus there is
a bijection between germs of real-analytic functions u near z0 and germs of real-
analytic solutions of (4.34a), holomorphic in �, near .z0; z0/. If u further satisfies
�u D 
su, then a short calculation shows that the function defined by (4.38)
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satisfies (4.34b), so we get a bijection between germs of 
s-eigenfunctions u near
z0 and the stalk of Ds at .z0; z0/. An exactly similar argument gives, for any 
s-
eigenfunction u near z0, a unique solution

h.�; z/ D � y�s
1X
nD1

@n�1

@Nzn�1

�
ys
@u

@Nz
�
.� � Nz/n
.1 � s/n

; (4.39)

of (4.34a) and (4.34b) near the point .Nz0; z0/ 2 ��. This proves:

Proposition 4.11. Let u 2 Es.U / for some open set U � H. Then there is a unique
section .h; u/ of Ds in a neighborhood of f .z; z/ j z 2 U g [ f .Nz; z/ j z 2 U g, given
by (4.38) and (4.39).

The second way of writing h in terms of u near the diagonal or antidiagonal is
based on (4.22). This equation was used to lift a global section u 2 Es to a section
.Bsu; u/ of Ds over all of

�
P
1
C

X P
1
R

� � H, but its right-hand side can also be used
for functions u 2 Es.U / for open subsets U � H to define h near points .z; z/ or
.Nz; z/ with z 2 U . This gives a new proof of the first statement in Proposition 4.11,
with the advantage that we now also get some information off the diagonal and
antidiagonal:

Proposition 4.12. If U is connected and simply connected, then the section .h; u/
given in Proposition 4.11 extends analytically to

�
U [ NU � � U .

� Formulation with Sheaves. Proposition 4.10 shows that the component h of a
local section .h; u/ of Ds determines the component u, which is locally independent
of the second variable and satisfies the Laplace equation. So there is a map from
sections of Ds to sections of Es . To formulate this as a sheaf morphism, we need
to have sheaves on the same space. We denote the projections from P

1
C

� H on P
1
C

,
respectivelyH, byp1. We use the inverse image sheafp�1

2 Es on P1
C

�H, associated to
the presheafU 7! Es.p2U /. (See, e.g., Sect. 1, Chap. II, in [4].) The map p2 is open,
so we do not need a limit over open V � p2U in the description of the presheaf.
Note that the functions in Es.p2U / depend only on z, but that the sheafification of
the presheaf adds sections to p�1

2 Es that may depend on the first variable. In this
way, .h; u/ 7! u corresponds to a sheaf morphism C W Ds ! p�1

2 Es . We call the
kernel Ks .

We denote the sheaf of holomorphic functions on P
1
C

by O. Then p�1
1 O is also a

sheaf on P
1
C

� H. The following theorem describes Ks in terms of p�1
1 O and shows

that the morphism C is surjective.

Theorem 4.13. The sequence of sheaves on P
1
C

� H

0 �! Ks �! Ds

C�! p�1
2 Es �! 0 (4.40)

is exact. If a connected open set U � P
1
C

� H satisfies U \ .�C [ ��/ ¤ ;, then
Ks.U / D f0g. The restriction of Ks to

�
P
1
C

� H
�X��C [��� is locally isomorphic

to p�1
1 O where holomorphic functions ' correspond to .�; z/ 7! �

'.�/R.�I z/�s; 0
�
.
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The inductive limit of Ks.U / over all neighborhoods U of P1
R

� H in P
1
C

� H is

canonically isomorphic to the space V!;rigs .

Proof. For the exactness, we only have to check the surjectivity of C W Ds !
p�1
2 Es . For this we have to verify that for any point P0 D .�0; z0/ 2 P

1
C

� H, any
solution of �u D 
su lifts to a section .h; u/ 2 Ds.U / for some sufficiently small
neighborhood U of P0. If P0 2 �C [ ��, then this is precisely the content of the
first statement of Proposition 4.11. If P0 62 �C [ ��, then we define h near P0 by
the formula

h.�; z/ D
Z z

z0

��
R�. � /=R�.z/

�s
; u
	

(4.41)

instead, again with
�
R�.z1/=R�.z/

�s D 1 at z1 D z. The next two assertions of the
theorem follow from Proposition 4.10. The relation with the rigid hybrid model is
based on (4.5). �

We end this section by making several remarks about the equations (4.34) and
their solution spaces Cs and Ds.U /.

The first is that there are apparently very few solutions of these equations that
can be given in “closed form.” One example is given by the pair h.�; z/ D ��Nz

2i y
�s ,

u.z/ D y1�s (cf. (4.12)). Of course one also has the translations of this by the action
of G, and in Example 2 after Theorem 5.6, we will give further generalizations
where h is still a polynomial times y�s . One also has the local solutions of the
form .'.�/R.�I z/�s; 0/ for arbitrary holomorphic functions '.�/, as described in
Theorem 4.13.

The second observation is that the description of Cs in terms of differential
equations can be generalized in a very simple way to the space CC

s of semicanonical
hyperfunction representatives introduced in the Remark in Sect. 4.1: these are
simply the functions h on

�
P
1
C

X P
1
R

� � H that satisfy the system of differential
equations:

@z
�
h.�; z/ � u�.z/

� D �s � � Nz
.z � Nz/.� � z/

�
h.�; z/ � uC.z/

�
;

@Nz
�
h.�; z/ � uC.z/

� D s
� � z

.z � Nz/.� � Nz/
�
h.�; z/ � u�.z/

�
(4.35)

for some function uC and u� of z alone. This defines a sheaf DC
s which projects to

Ds by .h; uC; u�/ 7! .h; uC � u�/, and we have a map from CC
s to the space of

global sections of DC
s defined by h 7! .h;RC

s h;R
�
s h/ with R˙

s defined as in (4.19).
In some ways, CC

s is a more natural space than Cs, but we have chosen to normalize
once and for all by u�.z/ D 0 in order to have something canonical.

The third remark concerns the surjectivity of C W Ds ! p�1
2 Es . We know from

Theorem 4.13 that any solution u of the Laplace equation can be completed locally
to a solution .h; u/ of the differential equations (4.34). We now show that such a lift
does not necessarily exist for a u defined on a non-simply connected subset of H.
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Specifically, we will show that there is no section of Ds of the form .h; q1�s.z; i //
on any open set U � P

1
C

� H whose image under p2 contains a hyperbolic annulus
with center i .

Now the disk model is more appropriate. We work with coordinates � D i 1C�
1�� 2

C
� and w D i z�i

zCi 2 D. The differential equations (4.34a) and (4.34b) take the form

.1 � r2/ @whC s
1 � Nw�
� � w

.h� u/ D 0; (4.36a)

.1 � r2/ @ Nw.h � u/C s
� � w

1 � Nw� h D 0; (4.36b)

with r D jwj, and (4.35) becomes

�
RS.�I � /s; u.�; � /	 D d

�
RS.�I � / h.�; � /�; (4.36c)

with the Poisson kernel RS in the circle model, as in (3.27c).

Proposition 4.14. Let A � D be an annulus of the form r1 < jwj < r2 with
0 	 r1 < r2 	 1, and let V � C

� be a connected open set that intersects the
region r1 < j�j < r�1

1 in C
�. Then Ds.V � A/ does not contain sections of the form

.h;Q1�s;n/ for any n 2 Z.

Proof. Suppose that such a section .h;Q1�s;n/ exists. Take � 2 .r1; r2/ such that V
intersects the annulus A� D f� < j�j < ��1g. Let C be the contour jwj D �. Then
the function f given by

f .�/ D
Z
C

�
RS.�I � /s;Q1�s;n

	

is defined and holomorphic on A�. For � 2 V \ A� we know from (4.36c)
that the closed differential form

�
RS.�I � /s;Q1�s;n� on A has a potential. Hence,

f .�/ D 0 for � 2 V \ A�, and then f D 0 in A�. In particular, f .�/ D 0

for � 2 S
1. In view of (3.19), this implies that the expansion RS.�I � /s DP

m2Z am.�/ Ps;m (with � 2 S
1) satisfies a�n.�/ D 0. The function RS.�I � /s

is the Poisson transform P1�s ı1�s;� of the distribution ı1�s;� W 'S 7! 'S.�/ on
V!1�s . This delta distribution has the expansion ı1�s;� D P

m2Z ��me1�s;m. Hence,
RS.�I � /s D P

m2Z ��m .�1/m� .1�s/
� .1�sCm/ P1�s;m, in which all coefficients are nonzero.

Since P1�s;m D Ps;m, this contradicts the earlier conclusion. �

This nonexistence result is a monodromy effect. In a small neighborhood of a
point .�0;w0/ 2 S

1 �A, we can construct a section .h;Q1�s;n/ of Ds as in (4.41):

h.�;w/ D
Z w

w0

��
RS.�I w0/=RS.�I w/

�s
;Q1�s;n.w0/

	
w0 : (4.37)
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If we now let the second variable go around the annulus A, then h.�;w/ is changed
to h.�;w/Ch0.�;w/, where h0 is defined by the same integral as h but with the path
of integration being the circle jw0j D jw0j. Using

��
RS.�I w0/=RS.�I w/

�s
;Q1�s;n.w0/

	
w0 D RS.�I w/�s

�
RS.�I w0/s;Q1�s;n.w0/

	
w0

and the absolutely convergent expansion RS.�I w0/s D P
m2Z ��m .�1/m � .1�s/

� .1�sCm/
Ps;m.w0/ from the proof above, we find from the explicit potentials in Table A.3
in Sect. A.4 that only the termm D �n contributes and that h0 is given by

h0.�;w/ D �i
.�1/n � .1 � s/
� .1 � s � n/

RS.�I w/�s : (4.38)

(Here we have also used (3.13) to replace Œ ; � by f ; g.)

5 Eigenfunctions Near @H and the Transverse
Poisson Transform

The space Es of 
s-eigenfunctions of the Laplace operator embeds canonically into
the larger space Fs of germs of eigenfunctions near the boundary of H. In Sect. 5.1
we introduce the subspace W!

s of Fs consisting of eigenfunction germs that have the
behavior ys � .analytic across R/ near R, together with the corresponding property
near 1 2 P

1
R

, and show that Fs splits canonically as the direct sum of Es and W!
s . In

Sect. 5.2 the space W!
s is shown to be isomorphic to V!s by integral transformations,

one of which is called the transverse Poisson transformation because it is given by
the same integral as the usual Poisson transformationV!s ! Es , but with the integral
taken across rather than along P

1
R

. This transformation gives another model W!
s of

the principal series representation V!s , which has proved to be extremely useful in
the cohomological study of Maass forms in [2]. In Sect. 5.3 we describe the duality
of V!s and V�!

1�s in (2.19) in terms of a pairing of the isomorphic spaces W!
s and

E1�s . In Sect. 5.4 we construct a smooth version W1
s of W!

s isomorphic to V1
s

by using jets of 
s-eigenfunctions of the Laplace operator. This space is also used
in [2].

5.1 Spaces of Eigenfunction Germs

Let Fs be the space of germs of eigenfunctions of�, with eigenvalue 
s D s.1� s/,
near the boundary of H, i.e.,

Fs D lim�!
U

Es.U \ H/; (5.1)
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where the direct limit is taken over open neighborhoodsU of H in P
1
C

(for either of
the realizations H � P

1
C

or D � P
1
C

). This space canonically contains Es because
an eigenfunction in H is determined by its values near the boundary (principle of
analytic continuation). The action of G in Fs is by f j g.z/ D f .gz/. The functions
Qs;n and Q1�s;n in (3.7) represent elements of Fs not lying in Es . Clearly we have
F1�s D Fs .

Consider u; v 2 Fs , represented by elements of Es.U \H/ for some neighborhood
U of @H in P

1
C

. Then the Green’s form Œu; v� is defined and closed in U , and for a
positively oriented closed path C in U which is homotopic to @H in U \ .H[ @H/,
the integral

ˇ.u; v/ D 1

�i

Z
C

Œu; v� D 2

�

Z
C

fu; vg (5.2)

is independent of the choice of C or of the set U on which the representatives of u
and v are defined. This defines a G-equivariant antisymmetric bilinear pairing

ˇ W Fs � Fs �! C: (5.3)

If both u and v are elements of Es , we can contract C to a point, thus arriving at
ˇ.u; v/ D 0. Hence, ˇ also induces a bilinear pairing Es � .Fs=Es/ ! C.

For each z 2 H, the element qs. � ; z/ of Fs is not in Es . By .˘su/.z/ D
ˇ
�
u; qs. � ; z/� we define a G-equivariant linear map ˘s W Fs ! Es . Explicitly,

uin.z/ WD ˘su.z/ is given by an integral 1
� i

R
C
Œu.z0/; qs.z0; z/�z0 , where z is inside

the path of integration C . By deforming C , we, thus, obtain uin.z/ for all z 2 H,
so uin 2 Es . We can also define uout.z/ WD �1

� i

R
C
Œu.z0/; qs.z0; z/�z0 where now z is

between the boundary of H and the path of integration. For u 2 Es we see that
uout D 0. More generally, Theorem 3.1 shows that

u D uout C uin .8 u 2 Fs/: (5.4)

The G-equivariance of Œ�; �� implies that the maps˘s and 1�˘s are G-equivariant.
This gives the following result.

Proposition 5.1. The G-equivariant maps ˘s W u 7! uin and 1 � ˘s W u 7! uout

split the exact sequence of G-modules

0 �� Es �� Fs ��
˘s

		 Fs=Es ��
1�˘s

		
0 (5.5)

We now define the subspace W!
s of Fs. It is somewhat easier in the disk model:

Definition 5.2. The space W!
s consists of those boundary germs u 2 Fs that are of

the form

u.w/ D 2�2s.1 � jwj2/sAS.w/

where AS is a real-analytic function on a two-sided neighborhood of S1 in P
1
C

.
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In other words, representatives of elements of W!
s , divided by the factor

.1 � jwj/s , extend analytically across the boundary S
1. (The factor 2�2s is included

for compatibility with other models.)

The next proposition shows that W!
s is the canonical direct complement of Es

in Fs .
Proposition 5.3. The kernel of ˘s W Fs ! Es is equal to the space W!

s , and we
have the direct sum decomposition of G-modules

Fs D Es ˚ W!
s ; (5.6)

given by u $ .uin; uout/.

Notice that all the spaces in the exact sequence (5.5) are the same for s and 1 � s,
but that ˘s and ˘1�s give different splittings and that W!

1�s ¤ W!
s (for s ¤ 1

2
).

Proof. In view of Proposition 5.1, it remains to show that W!
s is equal to the image

of u 7! uout.
The asymptotic behavior of Qs�1 in (A.13) gives for w0 on the path of

integration C and w outside C in the definition of uout.w/

qs.w;w
0/ D

�
2

�D.w0;w/C 1

�s
fs

�
2

�D.w0;w/C 1

�
;

where fs is analytic at 0. With (3.2),

2

�.w0;w/C 1
D .1 � jw0j/2

jw � w0j2 C .1 � jw0j2/.1 � jwj2/ .1 � jwj2/:

We conclude that if w0 stays in the compact set C , and w tends to S
1, we have

uout.w/ D .1 � jwj2/s �analytic function of 1 � jwj2/:

So uout 2 W!
s .

For the converse inclusion, it suffices to show that Es \ W!
s D f0g. This follows

from the next lemma, which is slightly stronger than needed here. �

Lemma 5.4. Let u be a solution of �u D 
su on some annulus 1 � ı 	 jwj2 < 1

with ı > 0. Suppose that u is of the form

u.w/ D .1 � jwj2/sA.w/C O
�
.1 � jwj2/sC1�; (5.7)

with a continuous function A on the closed annulus 1 � ı 	 jwj2 	 1. Then u D 0.

Proof. On the annulus the function u is given by its polar Fourier series, with terms

un.w/ D
Z 2�

0

e�2in	f .ei	w/
d	

2�
:
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Each un satisfies the estimate (5.7), with A replaced by its Fourier term An.
Moreover, the G-equivariance of � implies that un is a 
s-eigenfunction of �. It
is the term of order n in the expansion (3.19). In particular, un is a multiple of Ps;n.
In Sect. A.1.2 we see that Ps;n has a term .1 � jwj2/1�s in its asymptotic behavior
near the boundary, or a term .1 � jwj2/1=2 log.1 � jwj2/ if s D 1

2
. So un can satisfy

(5.7) only if it is zero. �

Remark. The proof of the lemma gives the stronger assertion: If u 2 Fs satisfies
(5.7), then u 2 W!

s and ˘su D 0.

Returning to the definition of W!
s , we note that the action g W w 7! AwCB

NBwC NA in D

gives for the function AS

ASjg.w/ D ˇ̌ NBw C NAj�2sAS

�
Aw C B

NBw C NA
�
; (5.8)

first for w 2 D near the boundary and by real-analytic continuation on a
neighborhood of S1 in P

1
C

. On the boundary, where jwj D 1, this coincides with
the action of G in the circle model, as given in (2.8). In (2.20) the action in the
circle model of V!s is extended to holomorphic functions on sets in P

1
C

. That action
and the action in (5.8) coincide only on S

1, but are different elsewhere. This reflects
that AS is real-analytic, but not holomorphic.

The restriction of AS to S
1 induces the restriction map

�s W W!
s �! V!s ; (5.9)

which is G-equivariant.
Examples of elements of W!

s are the functionsQs;n, represented by elements of
Es.D X f0g/, whereas the functionsQ1�s;n belong to Fs but not to W!

s .
We note that the factor 2�2s.1 � jwj2/s corresponds to

� y

jzCij2
�s

on the upper
half plane. So in the upper half-plane model, the elements of W!

s are represented by
functions of the form u.z/ D �

y

jzCij2
�s
AP.z/withAP real-analytic on a neighborhood

of P1
R

in P
1
C

. The transformation behavior for AP turns out to coincide on P
1
R

with
the action of G in the projective model of V!s in (2.6). Outside P1

R
it differs from the

action in (2.23) on holomorphic functions. The restriction map �s W W!
s ! V!s is

obtained by u 7! APj
P
1
R

.

In the line model, we have u.z/ D ysA.z/ nearR and u.z/ D .y=jzj2/sA1.�1=z/
near 1, with A and A1 real-analytic on a neighborhood of R in C. The action on
A is given by

A
ˇ̌
ˇ
�
a

c

b

d

�
.z/ D jcz C d j�2s A

�
az C b

cz C d

�
; (5.10)

coinciding on R with the action in the line model. Restriction of A to R induces
the description of �s in the line model. The factors 2�2s.1 � jwj2/s , �y=jz C ij2�s ,
ys , and

�
y=jzj�s have been chosen in such a way that AS, AP, A, and A1 restrict
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to elements of the circle, projective, and line models, respectively, of V!s , related by
(2.8) and (2.5).

The space W!
s is the space of global sections of a sheaf, also denotedW!

s , on @H,
where in the disk model W!

s .I / for an open set I in S
1 corresponds to the real-

analytic functions AS on a neighborhood of I in P
1
C

such that .1 � jwj2/sAS.w/ is
annihilated by � � 
s . Restriction gives �s W W!

s .I / ! V!s .I / for each I � S
1. In

the line model, W!
s .I / for I � R can be identified with the space of real-analytic

functions A on a neighborhoodU of I with ysA.z/ 2 Ker .� � 
s/ on U \ H; for
I X P

1
R

X f0g, we use .y=jzj2/sA1.�1=z/. The function z 7! ys is an element of
W!
s .R/, but not of W!

s D W!
s .P

1
R
/.

Another example is the function z 7! y1�s , which represents an element of
W!
1�s.R/, but not of W!

1�s D W!
1�s.P1R/. It is the Poisson transform of the distribution

ıs;1, which has support f1g.
The support Supp .˛/ of a hyperfunction ˛ 2 V�!

s is the smallest closed subset
X of @H such that each g 2 Hs representing ˛ extends holomorphically to a
neighborhood of @H X X .

Proposition 5.5. The Poisson transform of a hyperfunction ˛ 2 V�!
s represents an

element of W!
1�s
�
@H X Supp .˛/

�
.

This statement is meaningful only if Supp .˛/ is not the whole of @H. In The-
orem 6.4, we will continue the discussion of the relation between support of a
hyperfunction and the boundary behavior of its Poisson transform.

Proof. Let g 2 Hs be a representative of ˛ 2 V�!
s . In the Poisson integral in (3.28),

we can replace the integral over CC and C� by the integral

Ps˛.w/ D .1� jwj2/1�s
2�i

Z
C

g.w/
�
.1 � w=�/.1 � Nw�/�s�1 d�

�
; (5.11)

where C is a path inside the domain of g encircling Supp .˛/. For w outside C ,
the integral defines a real-analytic function on a neighborhood of @D, so there the
boundary behavior is .1 � jwj2/1�s � .analytic/. Adapting C , we can arrange that
any point of @D X Supp .˛/ is inside this neighborhood. �

� Decomposition of Eigenfunctions. We close this subsection by generalizing the
decomposition (5.4) from Fs to Es.R/, whereR is any annulus 0 	 r1 < jwj < r2 	
1 in D. For u 2 Es.R/ we define

uin 2 Es
�fjwj < r2g

�
and uout 2 Es

�fjwj > r1g
�
;

by uin.z/ D 1
� i

R
C
Œu; qs. � ; z/� and uout.z/ D �1

� i

R
C
Œu; qs. � ; z/�, where C � R is a

circle containing the argument of uin in its interior, respectively the argument of uout

in its exterior. Then (5.4) holds in the annulus R. Explicitly, any u 2 Es.R/ has an
expansion of the form

u D
X
n2Z

.anQs;n C bnPs;n/ on r1 < jwj < r2; (5.12)



158 R. Bruggeman et al.

and uin and uout are then given by

uin D
X
n2Z

bnPs;n; uout D
X
n2Z

anQn;s: (5.13)

5.2 The Transverse Poisson Map

In the last subsection, we defined restriction maps �s W W!
s !V!s , and more gener-

ally W!
s .I / ! V!s .I /. We now show that these restriction maps are isomorphisms

and construct the explicit inverse maps. We in fact give two descriptions of ��1
s ,

one in terms of power series and one defined by an integral transform (transverse
Poisson map); the former is simpler and also applies in the C1 setting (treated in
Sect. 5.4), while the latter (which is motivated by the power series formula) gives a
much stronger statement in the context of analytic functions.

� Power Series Version. Let u 2 W!
s .I /, where we work in the line model and

can assume that I � R by locality. Write z as x C iy and for x 2 I expand the
real-analytic function A such that u.z/ D ysA.z/ as a power series

P1
nD0 an.x/yn

in y, convergent in some neighborhood of I in C. By definition, the constant term
a0.x/ in this expansion is the image ' D �s.u/ of u under the restriction map. The
differential equation�u D 
su of u translates into the differential equation

y
�
Axx C Ayy

� C 2s Ay D 0: (5.14)

Applying this to the power series expansion of A, we find that

a00
n�2.x/ C n.nC 2s � 1/ an.x/ D 0

for n � 2 and that a1 � 0. Together with the initial condition a0 D ', this gives

an.x/ D

8̂<
:̂
.�1=4/k � .s C 1

2
/

kŠ � .k C s C 1
2
/
'.2k/.x/ if n D 2k,

0 if 2 − n,

(5.15)

and hence a complete description of A in terms of '. Conversely, if ' is any
analytic function in a neighborhood of x 2 R, then its Taylor expansion at x
has a positive radius of convergence rx and we have '.n/.x/ D O.nŠ cn/ for any
c > r�1

x . From Stirling’s formula or the Legendre duplication formula, we see that
4�k=kŠ � .k C s C 1

2
/ D O

�
k�Re .s/=.2k/Š

�
, so the power series

P
n�0 an.x/yn

with an.x/ defined by (5.15) converges for jyj < rx . By a straightforward uniform
convergence argument, the function A.x C iy/ defined by this power series is real-
analytic in a neighborhood of I , and of course it satisfies the differential equation
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Axx CAyy C2sy�1Ay D 0, so the function u.z/ D ysA.z/ is an eigenfunction of�
with eigenvalue 
s . This proves:

Theorem 5.6. Let I be an open subset of R. Define a map from analytic functions
on I to the germs of functions on a neighborhood of I in C by

.P�s'/.x C iy/ D ys
1X
kD0

'.2k/.x/

kŠ
�
s C 1

2

�
k

.�y2=4/k; (5.16)

with the Pochhammer symbol
�
1
2

C s
�
k

D Qk�1
jD0

�
1
2

C s C j
�
. Then P�s is an

isomorphism from V!s .I / to W!
s .I / with inverse �s .

Of course, we can now use the G-equivariance to deduce that the local restriction
map �s W W!

s .I / ! V!s .I / is an isomorphism for every open subset I � P
1
R

and
that the global restriction map �s W W!

s ! V!s is an equivariant isomorphism. The
inverse maps, which we still denote P�s , can be given explicitly in a neighborhood
of infinity using the functions '1 and A1 as usual for the line model or by the
corresponding formulas in the circle model. The details are left to the reader.

Example 1. Take '.x/ D 1. Then (5.16) gives P�s'.z/ D ys in W!
s .R/. More

generally, if '.x/ D ei˛x with ˛ 2 R, then P�s' is the function is;˛ defined in (A.3b).

Example 2. We can generalize Example 1 from ' D 1 to arbitrary polynomials:

'.x/ D
��2s
m

�
xm ) P�s'.z/ D ys

X
kC`Dm

��s
k

� ��s
`

�
zk Nz`: (5.17)

This can be checked either from formula (5.16) or, using the final statement of
Theorem 5.6, by verifying that the expression on the right belongs to Es and that

its quotient by ys is analytic near R and restricts to
��2s

m

�
xm when y D 0.

Example 3. Let a 2 C X I . Then (5.16) and the binomial theorem give

'.x/ D .x � a/�2s ) P�s'.z/ D ys
1X
kD0

��s
k

� y2k

.x � a/2sC2k D R.aI z/s ;

(5.18)
(Here the branches in .x�a/�2s and R.aI z/s have to be taken consistently.) Again,
we could skip this calculation and simply observe that R.aI � /s 2 W!

s .I / and that
'.x/ is the restriction y�sR.aI x C iy/s

ˇ̌
yD0. If jaj > jxj, then expanding the two

sides of (5.18) by the binomial theorem gives another proof of (5.17) and makes
clear where the binomial coefficients in that formula come from.

Example 4. Our fourth example is

'.x/ D R.xI z0/
s ) P�s'.z/ D b.s/�1 qs.z; z0/ .z0 2 H/; (5.19)
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where the constant b.s/ is given in terms of beta or gamma functions by

b.s/ D B
�
s;
1

2

� D � .s/ � . 1
2
/

� .s C 1
2
/
: (5.20)

Formula (5.19) is proved by remarking that the function on the right belongs to W!
s

and that its image under �s is the function on the left (as one sees easily from the
asymptotic behavior of the Legendre function Qs�1.t/ as t ! 1). Obtaining it
from the power series in (5.16) would probably be difficult, but we will see at the
end of the section how to get it from the integral formula for P�s given below.

Remark. Equation (5.15) shows that the function y�s � P�s'.x C iy/ is even in y
(as is visible in Examples 1 and 2 above). In the projective model, AP.z/ D�

y

jzCij2
��s

u.z/ D jz C ij2sA.z/ is not even in y. In the circle model, related to the

projective model by w D z�i
zCi , the reflection z 7! Nz corresponds to w 7! 1= Nw (or r 7!

r�1 in polar coordinates w D rei	 ), and the function AS.w/ D 22s.1� jwj2/�su.w/
satisfies AS.1= Nw/ D jwj2sAS.w/. For example, (A.8) and (A.9) say that the function
in W!

s

�
D X f0g� whose image under �s is wn (n 2 Z) corresponds to AS.w/ D

Nw�nF
�
s � n; sI 2sI 1 � jwj2�, and this equals wnjwj�2sF �s � n; sI 2sI 1 � jwj�2�

by a Kummer relation. Note that if we had used the factor
�
1�jwj
1Cjwj

�s
instead of

2�2s.1 � jwj2/s in Definition 5.2, we would have obtained functions AS that are
invariant under w 7! 1= Nw.

� Integral Version. If ' is a real-analytic function on an interval I � R, then we
can associate to it two extensions, both real-analytic on a sufficiently small complex
neighborhood of I : the holomorphic extension, which we will denote by the same
letter, and the solution A of the differential equation (5.14) given in Theorem 5.6.
The following result shows how to pass explicitly from ' to A, and from A to ',
and show that their domains coincide.

Theorem 5.7. Let ' 2 V!s .I / for some open interval I � R, and write P�s'.z/ D
ys A.z/ with a real-analytic function A defined in some neighborhood of I . Let
U D NU � C be a connected and simply connected subset of C, with I D U \ R.
Then the following two statements are equivalent:

(i) ' extends holomorphically to all of U .
(ii) A extends real-analytically to all of U .

Moreover, the two functions define one another in the following way.

(a) Suppose that ' is holomorphic in U . Then the function u D P�s' is given for
z 2 U \ H by

u.z/ D 1

i b.s/

Z z

Nz
R
�
�I z
�1�s

'.�/ d�; (5.21)

where b.s/ is given by (5.20) and the integral is taken along any piecewise C1-
path in U from Nz to z intersecting I only once, with the branch of R.�I z/1�s
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continuous on the path and equal to its standard value at the intersection point
with I .

(b) Suppose that u.z/ D P�s®.z/ D ysA.z/ with A real-analytic in U . Then the
holomorphic extension of ' to U is given by

'.�/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2 b.s/ sin�s

�

Z �

�0

�
u. � /; ��R.�I � /�s	 if � 2 U \ H;

A.�/ if � 2 I ,

2 b.s/ sin�s

�

Z N�

�0

���R.�I � /�s; u. � /	 if � 2 U \ H�,

(5.22)

where the integrals are along piecewise C1-paths in U\H from any �0 2 I to �,
respectively N� , with the branch of

��R.�I z/
�s

fixed by j arg
��R.�I z/

�j < �

for z near �0.

We note the formal similarity between the formula (5.21) for P�s' and the
formula (3.26) for the Poisson map: the integrand is exactly the same, but in the
case of Ps the integration is over P1

R
(or S1), while in the formula for P�s it is over a

path which crosses P1
R

. We therefore call P�s the transverse Poisson map.
We have stated the theorem only for neighborhoods of intervals in R, but because

everything is G-equivariant, they can easily be transferred to any interval in P
1
R

.
(Details are left to the reader.) Alternatively, one can work in the projective or the
circle model. This will be discussed after we have given the proof.

Proof of Theorem 5.7. First we show that (5.21) gives A on U \H starting from a
holomorphic ' on U . Define P�s' locally by (5.16). For x 2 I we denote by rx the
radius of the largest open disk with center x contained in U . Using the identity

.2k/Š

4k kŠ � .k C s C 1
2
/

D � .k C 1
2
/

� . 1
2
/ � .k C s C 1

2
/

D 1

� .s/ � . 1
2
/

Z 1

0

.1�t/s�1 tk� 1
2 dt

(duplication formula and beta function), we find for x 2 I and 0 < y < rx the
formula

b.s/ .P�s'/.x C iy/ D ys
Z 1

0

.1 � t /s�1 t�1=2
� 1X
kD0

'.2k/.x/

.2k/Š
.�ty2/k

�
dt

D 1

2
ys
Z 1

0

.1 � t /s�1 t�1=2
�
'.x C iy

p
t / C '.x � iy

p
t /
�

dt

D ys
Z 1

�1

.1 � t 2/s�1'.x C iyt/ dt
�
t D t 2

�

D ys
Z y

�y

�
y2

y2 � �2

�1�s
'.x C i�/ y�1 d�

�
t D �=y

�
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D �i
Z xCiy

x�iy

�
y

.� � z/.� � Nz/
�1�s

'.�/ d�; (5.23)

where the path of integration is the vertical line from x � iy to x C iy. The integral
converges at the end points. The value of the factor

�
y=.� � z/.� � Nz/�1�s is based

on the positive value y�1 of y=.� � z/.� � Nz/ at � D x. Continuous deformation of
the path does not change the integral, as long as we anchor the branch of the factor�
y=.� � z/.� � Nz/�1�s at the intersection point with I . (This holds even though that

factor is multivalued on U X fz; Nzg. We could also allow multiple crossings of I , but
then would have to prescribe the crossing point at which the choice of the branch of
the Poisson kernel is anchored.) This proves (5.21) for points z 2 U \H sufficiently
near to I , and the extension to all of U \ H is then automatic since the integral
makes sense in the whole of that domain and is real-analytic in z.

To show that (5.22) gives ' on U if we start from a given A, we also consider
first the case that � D X C iY 2 U \H and that the vertical segment fromX to � is
contained in U . Since we want to integrate up to z D �, we will use the green’s form
!�.z/ D �

u.z/;
��R.�I z/

�s	
rather than

���R.�I z/
�s
; u.z/

	
or
˚
u.z/;

��R.�I z/
�s


,
which would have nonintegrable singularities at this end point. (The minus sign is
included because R.�I z/ is negative on the segment.) Explicitly, this Green’s form
is given for z D x C iy 2 U \ H by

!�.z/ D ��R.�I z/
�s �@u

@z
dz C is

2y

z � �

Nz � �
u dNz

�

D ��y R.�I z/s
� �@A

@z
dz � is

2y
A dz C is

2y

z � �
Nz � � A dNz

�

D ��y R.�I z/
�s ��@A

@z
� s

Nz � � A
�

dx C
�

i
@A

@z
C s

y

x � �

Nz � �
A

�
dy

�
:

(5.24)

If we restrict this to the vertical line z D X C itY (0 < t < 1) joining X and �, it
becomes

!�.X C itY / D
�

iY

2
Ax.X C itY / C Y

2
Ay.X C itY / C s

t.1C t/
A.X C itY /

�

t2s dt

.1 � t2/s

D
1X
kD0

� .s C 1
2
/

kŠ � .k C s C 1
2
/

�
'.2kC1/.X/

�
iY=2

�2kC1

C
�
k

t
C s

t.1C t/

�
'.2k/.X/

�
iY=2

�2k�
t2k

t2s

.1 � t2/s
dt;

where ' is the holomorphic function near I with ' D A on I .
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Now we use the beta integrals

Z 1

0

t2k
t2s

.1 � t2/s
dt D 1

2

Z 1

0

t
kCs� 1

2 .1 � t/�sdt D � .k C s C 1
2
/ � .1 � s/

2 � .k C 3
2
/

D � .s C 1
2
/ � .1 � s/

2 � . 1
2
/

� kŠ � .k C s C 1
2
/

� .s C 1
2
/

� 22kC1

.2k C 1/Š
;

Z 1

0

�
k

t
C s

t.1C t/

�
t2k

t2s

.1 � t2/s
dt D

Z 1

0

�
k
t2kC2s�1

.1 � t2/s
Cs t

2kC2s�1 � t2kC2s

.1 � t2/sC1
�

dt

D k

2

Z 1

0

tkCs�1.1 � t/�sdtC s

2

Z 1

0

�
tkCs�1 � t

kCs� 1
2
�
.1 � t/�s�1 dt

D k

2

� .k C s/ � .1 � s/
� .k C 1/

C s

2

�
� .k C s/ � .�s/

� .k/
�� .k C s C 1

2
/ � .�s/

� .k C 1
2
/

�

D � .s C 1
2
/ � .1 � s/

2 � . 1
2
/

� kŠ � .k C s C 1
2
/

� .s C 1
2
/

� 22k

.2k/Š

(the second calculation is valid initially for Re .s/ < 0, Re .k C s/ > 0, but then
by analytic continuation for Re .s/ < 1, Re .k C s/ > 0, where the left-hand side
converges) to get

Z �

X

!� D � .s C 1
2
/ � .1 � s/

2 � . 1
2
/

1X
nD0

'.n/.X/
.iY /n

nŠ
D �

2 b.s/ sin�s
'.�/: (5.25)

Furthermore, we see from (5.24) that the dx-component of the 1-form !�.x C iy/

extends continuously to U \H and vanishes on I , so
R X
x0
!� vanishes for any �0 2 I

and we can replace the right-hand side of (5.25) by
R �
�0
!� . On the other hand, the

fact that the 1-form is closed means that we can integrate along any path from �0 to �
inside U \H, not just along the piecewise linear path just described, and hence also
that we can move � anywhere within U \H, thus obtaining the analytic continuation
of ' to this domain as stated in (5.22).

If � D X � iY (Y > 0) belongs to H� \ U , then the calculation is similar. We
suppose that the segment from X to N� is in U , and parametrize it by z D X C itY .
The differential form is

���R.�I z/
�s
; u
	

D ��y R.�I z/
�s��@A

@Nz .z/C
s

� � z
A.z/

�
dxC

�
�i
@A

@Nz .z/C
s

y

� � x

� � z
A.z/

�
dy

�
;

which leads to the integral
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Z N�

X

!� D
Z 1

0

t2s

.1 � t2/s
�

� iY

2
Ax.X C itY /C Y

2
Ay.X C itY /

C s

t

1

1C t
A.X C itY /

�
dt

D
X
k�0

� .s C 1
2
/

kŠ � .s C 1
2

C k/

�
'.2kC1/.X/ .�iY=2/2kC1

C
�
k

t
C s

t.1C t/

�
'.2k/.X/ .�iY=2/2k

�
t2sC2k

.1 � t2/s
dt;

which is the expression that we obtained in the previous case with Y replaced by
�Y . We replace Y by �Y in (5.25) and obtain the statement in (5.22) on U \ H�
as well. �

It is not easy to find examples that illustrate the integral transformation (5.22)
explicitly, i.e., examples of functions in W!

s for which the Green’s form
Œu. � /; R.�I � /s� can be written explicitly as dF for some potential function F. � /.
One case which works, though not without some effort, is u.z/ D ys D P�s .1/
(Example 1). Here the needed potential function is given by Entry 6 in Table A.3
in Sect. A.4, and a somewhat lengthy calculation, requiring careful consideration
of the branches and of the behavior at the end points of the integral, lets us
deduce from (5.22) that the inverse transverse Poisson transform of the function
ys 2 W!

s .R/ is indeed the constant function 1.

� Other Models. The two integral formulas above were formulated in the line
model. To go to the projective model, we consider first U � C as in the theorems
not intersecting the half-line i Œ1;1/. In that case we find by (2.5) and (3.27b)

P�s'
P.z/ D 1

i b.s/

Z z

Nz
RP.�I z/1�s 'P.�/

d�

1C �2
.z 2 U \ H/; (5.26a)

'P.�/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

2 b.s/ sin�s

�

Z �

�0

�
u. � /; ��RP.�I � /�s	 if � 2 U \ H;

AP.�/ if � 2 U \ R D I ,

2 b.s/ sin�s

�

Z N�

�0

���RP.�I � /�s; u. � /	 if � 2 U \ H�,

(5.26b)

with u.z/ D �
y

jzCij2
�s
AP.z/, where the paths of integration and the choices

of branches in the Poisson kernels are as in the theorems, suitably adapted.
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These formulas then extend by G-equivariance to any connected and simply
connected open set U D NU � P

1
C

Xfi;�ig and any �0 2 U \ P
1
R

, giving a local
description of the isomorphism V!s Š W!

s on all of P
1
R

. Note that the integrals
in (5.26) make sense if we take for U an annulus 1�" < ˇ̌ z�i

zCi

ˇ̌
< 1C" in P

1
C

, which
is not simply connected, but the theorem then has to be modified. We will explain
this in a moment.

In the circle model, we have

P�s'
S.w/ D 1

2 b.s/

Z 1= Nw

w
RS.�I w/1�s 'S.�/

d�

�
.w 2 U \ D/; (5.27a)

'S.�/ D

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

2 b.s/ sin�s

�

Z �

�0

�
u. � /; ��RS.�I � /�s	 if � 2 U , j�j < 1;

AS.�/ if � 2 U \ S
1,

2 b.s/ sin�s

�

Z 1= N�

�0

���RS.�I � /�s; u. � /	 if � 2 U , j�j > 1,

(5.27b)

with u.w/ D 2�2s.1 � jwj�s AS.w/, for w 2 U \ D, with U open in C X f0g,
connected, simply connected, and invariant under w 7! 1= Nw, and with �0 2 U \ S

1,
with the paths of integration and the choice of branches of the Poisson kernel again
suitably adapted from the versions in the line model.

If U is an annulus of the form " < jwj < "�1 with " 2 .0; 1/, we still can
apply the relations in (5.27), provided we take in (5.27a) the path from w to 1= Nw
homotopic to the shortest path. If we change to a path that goes around a number
of times, the result differs from P�s'.w/ by an integral multiple of � i

b.s/
Ps'S.w/. In

(5.27b) we can freely move the point �0 in @D, without changing the outcome of the
integral.

Let us use (5.27a) to verify the formula for P�s
�
R. � I z0/s

�
given in Example 3.

By G-equivariance, we can suppose that z0 D i. Now changing to circle model
coordinates, we find with the help of (3.27c) that the function '.x/ D R.xI i/s

corresponds to 'S.�/ D 1 and that the content of formula (5.19) is equivalent to the
formula

Z 1=r

r

��
1 � r=�

��
1 � r�

�
1 � r2

�s�1 d�

�
D �

1 � r2
�s Z 1

0

.1 � t/s�1 t s�1 dt�
1 � t.1 � r2/

�s

D .1� r2/s
� .s/2

� .2s/
F.s; sI 2sI 1 � r2/ D 2Qs�1

�
1C r2

1� r2

�
;

where in the first line we have made the substitution � D .1 � t/r�1 C t r .
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5.3 Duality

We return to the bilinear form ˇ on Fs defined in (5.2). We have seen that ˇ is zero
on Es � Es . The next result describes ˇ on other combinations of elements of Fs in
terms of the duality map h ; i W V!s � V�!

1�s ! C defined in (2.19).

Proposition 5.8. Let u; v 2 Fs .
(a) If u 2 Es and v 2 W!

s , then

ˇ.u; v/ D b.s/�1 h'; ˛i (5.28)

with b.s/ as in (5.20), where u D P1�s˛ with ˛ 2 V�!
1�s and v D P�s' with

' 2 V!s .
(b) If u; v 2 W!

s , then ˇ.u; v/ D 0.
(c) If u 2 W!

1�s and v 2 W!
s , then

ˇ.u; v/ D
�
s � 1

2

�
h'; i; (5.29)

with ' 2 V!1�s ,  2 V!s such that u D P�1�s' and v D P�s .

Proof. The bijectivity of the maps P1�s W V�!
s ! E1�s D Es and P�s W V!s !

W!
s implies that we always have ' and ˛ as indicated in (5.8). All transformations

involved are continuous for the topologies of V�!
1�s and V!s , so it suffices to check

the relation for ' D es;m and ˛ D e1�s;m. Now we use (3.29), the result for P�s es;n in
Sect. A.3, and (3.18) and (2.15) to get the factor in (5.28).

For part (5.8) we write u D .1 � jwj2/sA.w/ and v D .1 � jwj2/sB.w/ with A
and B extending in a real-analytic way across @D. If we take for C a circle jwj D r

with r close to 1, then

Œu; v� D 1

2i
r.1 � r2/2s .ABr � BAr/ d	:

It follows that the integral is O
�
.1 � r2/s

�
as r " 1 and hence vanishes.

In view of b), we can restrict ourselves for c) to the case s ¤ 1
2
. As in part 5.8), it

suffices to consider the relation for basis vectors. We derive the relation from (A.14):

ˇ.Q1�s;m;Qs;n/ D ˇ .� cot�s Ps;m CQs;m; Qs;n/ D � cot�s .�1/nın;�m: �

5.4 Transverse Poisson Map in the Differentiable Case

The G-module W!
s , which is isomorphic to V!s , turns out to be very useful for

the study of cohomology with coefficients in V!s , discussed in detail in [2]. There
we also study cohomology with coefficients in Vps , with p D 2; 3; : : : ;1, and for
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this we need an analogue Wp
s of W!

s related to p times differentiable functions.
In this subsection, we define such a space and show that there is an equivariant
isomorphism P�s W Vps ! Wp

s . To generalize the restriction �s W W!
s ! V!s , we

will define Wp
s not as a space of boundary germs but as a quotient of G-modules.

In fact, we give a uniform discussion, covering also the case p D ! treated in the
previous subsections.

Definition 5.9. For p D 2; 3; : : : ;1; ! we define Gps and N p
s as spaces of

functions f 2 C2.D/ for which there is a neighborhood U of @D D S in C such
that the function Qf .w/ D .1 � jwj/�s f .w/ extends as an element of Cp.U / and
satisfies on U the conditions

p For Gps For N p
s

2 Z�2
Q�s

Qf .w/ D o
�
.1� jwj2/p� Qf .w/ D o

�
.1� jwj2/p�

1 The above condition for all p 2 N The above condition for all p 2 N

! Q�s
Qf .w/ D 0 Qf .w/ D 0

where Q�s is the differential operator corresponding to � � 
s under the
transformation f 7! Qf .

In the analytic case p D !, the space G!s consists of C2-representatives of germs
in W!

s , and N !
s consists of C2-representatives of the zero germ in W!

s , i.e., N !
s D

C2
c .D/. Any representative of a germ can be made into a C2-germ by multiplying

it by a suitable cutoff function. Thus W!
s as as in Definition 5.2 is isomorphic to

G!s =N !
s . We take C2-representatives to be able to apply � without the need to use

a distribution interpretation.
In the upper half-plane model, there is an equivalent statement with f S replaced

by f P, and 2�2.1 � jwj2/ by y

jzCij2 . The group G acts on Gps and N p
s for p D

2; : : : ;1; !, by f j g.z/ D f .gz/, and the operator corresponding to � � 
s is
Q�s D �y2�@2y C @2x

� � 2sy @y (cf. (5.14)).
The definition works locally: Gps .I / and N p

s .I /, with I � @H open, are defined
in the same way, with ˝ now a neighborhood of I in P

1
C

. In the case that I � R in
the upper half-plane model, we have f .z/ D ys Qf .z/ on ˝ \ H with Qf 2 Cp.˝/.
On can check that Gps and N p

s are sheaves on @H.

� Examples. The function z 7! ys is in G!s .R/. The function Qs;n in (3.7) has the
right boundary behavior, but is not defined at w D 0 2 D. We can multiply it by
rei	 7! �.r/ with a smooth function � that vanishes near zero and is equal to one
on a neighborhood on 1. In this way we obtain an element of G!s .

� Restriction to the Boundary. For f 2 Gps the corresponding function f S on ˝
has a restriction to S

1 that we denote by �sf . It is an element of Vps . In this way,
restriction to the boundary gives a linear map

�s W Gps �! Vps (5.30)
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that turns out to intertwine the actions ofG and that behaves compatibly with respect
to the inclusions Gps ! Gqs and Vps ! Vqs if q < p. This restriction map can be
localized to give �s W Gps .I / ! Vps .I / for open intervals I � @H.

Lemma 5.10. Let I � @H be open. For p D 2; : : : ;1; ! the space N p
s .I / is a

subspace of Gps .I /. It is equal to the kernel of �s W Gps .I / ! Vps .I /.
Proof. The sheaf properties imply that we can work with I ¤ @H. The action of G
can be used to arrange I � R in the upper half-plane model.

Let first p 2 N, p � 2. Suppose that f .z/ D ys Qf .z/ on ˝ \ H for some
Qf 2 Cp.˝/, with ˝ a neighborhood of I in C. The Taylor expansion at x 2 I

gives for i; j � 0, i C j 	 p

@ix@
j
y

Qf .x C iy/ D
pX

nDiCj

.n � i/Š
.n� i � j /Š

a
.i/
n�i .x/ y

n�i�j C o
�
yp�i�j � (5.31)

on ˝ , with

an.x/ D 1

nŠ
@ny

Qf .x/:

The differential operator � � 
s applied to f corresponds to the operator Q�s D
�y2@2x � y2@2y � 2sy@y applied to Qf on the region˝ \ H. Thus we find

Q�s
Qf .x C iy/ D �2sa1.x/ �

pX
nD2

�
a00
n�2.x/C n.nC 2s � 1/an.x/

�
yn C o.yp/:

(5.32)

If f 2 N p
s .I /, then an D 0 for 0 	 n 	 p, and Q�s

Qf .z/ D o.yp/. So f 2
Gps .I /, and �sf .x/ D Qf .x/ D a0.x/. Hence, N p

s .I / � Ker �s .
Suppose that f 2 Gps .I / is in the kernel of �s . Then a0 D 0. From (5.32) we

have a1 D 0 and a00
n�2 D n.1 � 2s � n/an for 2 	 n 	 p. Hence, an D 0 for

all n 	 p, and f 2 N p
s .I /.

The case p D 1 follows directly from the result for p 2 N.

In the analytic case, p D !, the inclusions N !
s .I / � G!s .I / and N p

s .I / �
Ker �s are clear. If f 2 G!s .I / \ Ker �s , then Qf is real-analytic on ˝ , and instead
of the Taylor expansion (5.31), we have a power series expansion with the same
structure. Since .Ker �s/ \ G!s .I / � N1

s .I /, we have an D 0 for all n; hence, the
analytic function Qf vanishes on the connected component of˝ containing I . Thus,
f 2 N !

s . �

Relation (5.32) in this proof also shows that any f 2 Gps .I / with I � R has the
expansion

f .xC iy/ D
X

0�k�p=2

.�1=4/k � .sC 1
2
/

kŠ � .sCkC 1
2
/
'.2k/.x/ ysC2kCo.ysCp/ .y # 0; x2I /;

(5.33)
with ' D �sf 2 Vps .I /.



Function Theory Related to the Group PSL2.R/ 169

� Boundary Jets. For p D 2; : : : ;1 we define Wp
s as the quotient in the exact

sequence of sheaves on @H

0 �! N p
s �! Gps �! Wp

s �! 0: (5.34)

In the analytic case, p D !, we have already seen that W!
s is the quotient of

G!s =N !
s .

In the differentiable case p D 2; : : : ;1, an element of Wp
s .I / is given on a

covering I D S
j Ij by open intervals Ij by a collection of fj 2 Gps .Ij / such

that fj � f 0
j mod N p

s .Ij \ Ij 0/ in Gps .Ij \ Ij 0/ if Ij \ Ij 0 ¤ ;. To each j is
associated a neighborhood ˝j of Ij in P

1
C

on which f S

j is p times differentiable.

Add an open set Ő � H such that H � Ő [ S
j ˝j . With a partition of unity

subordinate to the collection f Ő g [ f˝j W j g, we build one function f on H such
that f S D .1 � jwj2/�sf .w/ differs from f S

j on ˝j by an element of N p
s .Ij /. In

this way we obtain Wp
s .I / D Gps .I /=N p

s .I / in the differentiable case as well.
We have also

0 �! N p
s .@H/ �! Gps .@H/ �! Wp

s .@H/ �! 0

as an exact sequence of G modules. We call elements of Wp
s boundary jets if p D

2; : : : ;1. The G-morphism �s induces a G-morphism �s W Wp
s .I / ! Vps .I / for

p D 2; : : : ;1; !. The morphism is injective by Lemma 5.10. In fact it is also
surjective:

Theorem 5.11. The restriction map �s W Wp
s .I / ! Vps .I / is an isomorphism for

every open set I � @H, for p D 2; : : : ;1; !.

The case p D ! was the subject of Sect. 5.2. Theorem 5.7 described the inverse
P�s explicitly with a transverse Poisson integral, and Theorem 5.6 works with a
power series expansion. It is the latter approach that suggests how to proceed in
the differentiable and smooth cases. We denote the inverse by P�s or by P�s;p if it is
desirable to specify p.

Proof. In the differentiable case p 2 N [ f1g, it suffices to consider ' 2 C
p
c .I /

where I is an interval in R. The obvious choice would be to define near I

f .z/ D
X

0�k�p=2

.�1/k
4k kŠ

�
s C 1

2

�
k

'.2k/.x/ ysC2k : (5.35)

However, this is in general not in Cp.H/ because each term '.2k/.x/ ysC2k is only
in Cp�2k . Instead we set

f .z/ D ys
Z 1

�1
!.t/ '.x C yt/ dt D ys�1

Z 1

�1
!
� t � x

y

�
'.t/ dt; (5.36)
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where ' has been extended by zero outside its support and where ! is an even
real-analytic function on R with quick decay that has prescribed moments

M2k WD
Z 1

�1
t2k !.t/ dt D .�1/k. 1

2
/k

.s C 1
2
/k

for even k � 0: (5.37)

(For instance, we could take ! to be the Fourier transform of the product of the

function u 7! � .s C 1
2
/
� juj
2

� 1
2�s

Is�1=2.juj/ and an even function in C1
c .R/ that is

equal to 1 on a neighborhood of 0 in R. This choice is even real-analytic.) Replacing
' in (5.36) by its Taylor expansion up to order p, we see that this formally matches
the expansion (5.35), but it now makes sense and is C1 in all of H, as we see from
the second integral. The first integral shows that

Qf .z/ D y�sf .z/ D
Z 1

�1
!.t/'.x C yt/ dt (5.38)

extends as a function in C!.C/.
Inserting the power series expansion of order p of ' at x 2 I in (5.38),

we arrive at Q�s
Qf .z/ D O.yp/. This finishes the proof in the differentiable and

smooth cases. �

In the proof of Theorem 5.11, we have chosen a real-analytic Schwartz function
! with prescribed moments. In the case p D 2; 3; : : :we may use the explicit choice
in the following lemma, which will be used in the next chapter:

Lemma 5.12. For any s 62 1
2
Z and any integer N � 0, there is a unique

decomposition

.t2 C 1/s�1 D dN˛.t/

dtN
C ˇ.t/ (5.39)

where ˛.t/ D ˛N;s.t/ is .t2 C 1/s�1 times a polynomial of degree N in t and
ˇ.t/ D ˇN;s.t/ is O.t2s�N�3/ as jt j ! 1.

We omit the easy proof. The first few examples are

.t2 C 1/s�1 D d

dt

�
t.t2 C 1/s�1

2s � 1

�
C 2s � 2

2s�1 .t
2C1/s�2;

.t2 C 1/s�1 D d2

dt2

�
.t2 C 1/s�1

.2s�1/.2s�3/ C .t2C1/s
2s.2s � 1/

�
C 4.s�1/.s�2/
.2s�1/.2s�3/ .t

2C1/s�3;

.t2 C 1/s�1 D d3

dt3

�
2t.t2 C 1/s�1

.2s C 1/.2s � 1/.2s � 3/
C t.t2 C 1/s

2s.2s C 1/.2s � 1/

�

C 4.s � 1/.s � 2/
.2s C 1/.2s � 1/

�
2s C 3

2s � 3 C 3t2
�
.t2 C 1/s�4:
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In general we have

˛N;s.t/ D 1

2N

N=2X
jD0

�
N � j � 1

N=2 � 1

�
.t2 C 1/s�1Cj

.s/j .s � NC1
2

C j /N�j

ifN � 2 is even, where .s/j D s.sC1/ � � � .sCj�1/ is the ascending Pochhammer
symbol, and a similar formula if N is odd, as can be verified using the formula

1

nŠ

dn

dtn
.t2 C 1/s�1 D

X
0�j�n=2

�
n � j
j

��
s � 1

n � j
�
.2t/n�2j .t2 C 1/s�nCj :

Let us compute the moments of ˇ D ˇN;s as in (5.39). For 0 	 n < N , we have

Z 1

�1
tn ˇ.t/ dt D

Z 1

�1

�
.t2 C 1/s�1 � dN˛.t/

dtN

�
tn dt:

This is a holomorphic function of s on Re s < 1. We compute it by considering
Re s < � n

2
:

Z 1

�1
tn.t2 C 1/s�1 dt D

( R 1
0
x
n�1
2 .1 � x/�s� nC1

2 dx if n is even;

0 if n is oddI

D p
� tan�s

� .s/

� .s C 1
2
/

�
8<
:
.�1/k . 12 /k

.sC 1
2 /k

if n D 2k is even;

0 if n is odd:
(5.40)

So a multiple of ˇN;s has the moments that we need in the proof of Theorem 5.11.

6 Boundary Behavior of Mixed Eigenfunctions

In this section we combine ideas from Sects. 4 and 5. Representatives u of elements
of W!

1�s have the special property that
�
1 � jwj2�s�1 u.w/ (in the circle model) or

ys�1u.z/ (in the line model) extends analytically across the boundary @H. If such an
eigenfunction occurs in a section .h; u/ of the sheaf Ds of mixed eigenfunctions,
we may ask whether a suitable multiple of h also extends across the boundary.
In Sect. 6.3 we will show that this is true locally (Theorem 6.2), but not globally
(Proposition 6.5).

In Sect. 6.1 we use the differential equations satisfied by y�su for representatives
u of elements of W!

s to define an extensionAs of the sheaf Es from H to P
1
C

. We also
extend the sheaf Ds on P

1
C

�H to a sheaf D�
s on P

1
C

�P
1
C

that has the same relation to
A1�s as the relation of Ds to Es D E1�s . In Sect. 6.2 we show that the power series
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expansion of sections of As leads in a natural way to sections of D�
1�s , a result which

is needed for the proofs in Sect. 6.3, and in Sect. 6.4 we give the generalization of
Theorem 4.13 to the sheaf D�

s . Finally, in Sect. 6.5 we consider the sections of Ds

near P1
R

� H.

6.1 Interpolation Between Sheaves on H and Its Boundary

In this subsection we formulate results from Sect. 5.2 in terms of a sheaf on P
1
C

that
is an extension of the sheaf Es . This will be used in the rest of this section to study
the behavior of mixed eigenfunctions near the boundary P

1
C

� P
1
R

of P1
C

� H and to
extend them across this boundary. We also define an extension D�

s of the sheaf Ds

of mixed eigenfunctions.
For an open set U � C, let As.U / be the space of real-analytic solutions A.z/

of (5.14) in U . For U � P
1
C

containing 1, the definition is the same except that the
solutions have the form A.z/ D jzj�2sA1.�1=z/ for some real-analytic function
A1 near 0 (which then automatically satisfies the same equation). The action (5.10)
makes As into a G-equivariant sheaf: A 7! Ajg defines an isomorphism As.U / Š
As.g

�1U / for any open U � P
1
C

and g 2 G.
For any U � P

1
C

, the space As.U / can be identified viaA.z/ 7! u.z/ D jyjsA.z/
with a subspace of the space Es

�
U X P

1
R

�
of 
s-eigenfunctions of the Laplace

operator� D �y2.@2x C@2y/ in P
1
C

XP
1
R

(up to now we have considered the operator
� and the sheaf Es only on H), namely, the subspace consisting of functions which
are locally of the form jyjs � .analytic/ near R and of the form jy=z2js � .analytic/
near 1.

If U � P
1
C

X P
1
R

, then the map A 7! u is an isomorphism between As.U / and
Es.U /. (In this case, the condition “real-analytic” in the definition of As.U / can be
dropped, since C2 or even distributional solutions of the differential equation are
automatically real-analytic.) At the opposite extreme, if U meets P1

R
in a nonempty

set I , then any section of As over U restricts to a section of V!s over I , and for
any I � P

1
R

, we obtain from Theorem 5.6 an identification between V!s .I / and
the inductive limit of As.U / over all neighborhoods U � I . The sheaf As , thus,
“interpolates” between the sheaf Es on P

1
C

X P
1
R

and the sheaf V!s on P
1
R

. At points
outside P

1
R

, the stalks of As are the same as those of Es , while at points in P
1
R

, the
stalks of the sheaves As , V!s , and W!

s are all canonically isomorphic. At the level of
open sets rather than stalks, Theorem 5.7 says that the space As.U / for suitable U
intersecting P

1
R

is isomorphic to O.U / by a unique isomorphism compatible with
restriction to U \ R, the isomorphisms in both directions being given by explicit
integral transforms. Finally, from (5.15) we see that if U is connected and invariant
under conjugation, then any A 2 As.U / is invariant under z 7! Nz. In the language
of sheaves, this says that if we denote by c W P1

C
! P

1
C

the complex conjugation,
the induced isomorphism c W c�1As ! As is the identity when restricted to P

1
R

.
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We now do the same construction for the sheaf Ds of mixed eigenfunctions,
defining a sheaf D�

s on P
1
C

� P
1
C

which bears the same relation to Ds as As has
to Es . (We could therefore have used the notation E�

s instead of As , but since
As interpolates between two very different subsheaves Es and V!s , we preferred
a neutral notation which does not favor one of these aspects over the other. Also,
Es D E1�s , but As ¤ A1�s .)

Let .h; u/ be a section of the sheaf Ds in U \�C�H
�
, whereU is a neighborhood

in C � C of a point .x0; x0/ with x0 2 R. The function u.z/ is a 
s-eigenfunction
of �, and we can ask whether it ever has the form ys A.z/ or y1�s A.z/ with A.z/
(real-)analytic near x0. It turns out that the former does not happen, but the latter
does, and moreover that in this case, the function h.�; z/ has the form y�s B.�; z/
where B.�; z/ is also analytic in a neighborhood of .x0; x0/ 2 C � C. To see this,
we make the substitution

u.z/ D y1�s A.z/; h.�; z/ D y�s B.�; z/ (6.1)

in the differential equations (4.34) to obtain that these translate into the differential
equations

.� � z/ @zB D �s B � is

2
.� � Nz/ A; (6.2a)

.� � Nz/ @Nz
�
B � yA� D �s B � is

2
.� � Nz/ A; (6.2b)

for A and B , in which there is no singularity at y D 0. (This would not work if we
had used u D ysA, h D y�B instead.)

As long as z is in the upper half plane, the equations (6.1) define a bijection
between pairs .h; u/ and pairs .B;A/, and it makes no difference whether we study
the original differential equations (4.34) or the new ones (6.2). The advantage of the
new system is that it makes sense for all z 2 C and defines a sheaf D�

s on C � C

whose sections over U � C � C are real-analytic solutions .B;A/ of (6.2) in U
with B holomorphic in the first variable and A locally constant in the first variable.
This sheaf is G-equivariant with respect to the action .B;A/jg D .Bjg;Ajg/ given
for g D �

a
c
b
d

	
by

Bjg.�; z/ D jcz C d j2sB.g�; gz/; Ajg.z/ D jcz C d j2s�2A.gz/; (6.3)

so it extends to a sheaf on all of P1
C

� P
1
C

by setting D�
s .U / D D�

s .g
�1U /jg if U is

a small neighborhood of a point .�0;1/ or .1; z0/ and g is chosen with g�1U �
C � C.

In (4.38) and (4.39), we give a formula for h in terms of u near the diagonal and
the antidiagonal where .h; u/ is a section of Ds . In terms of A D ys�1u and B D
ysh, this formula becomes

B.�; z/ D

8̂
ˆ̂<
ˆ̂̂:

� i

2
.� � Nz/

X
n�0

@nA

@zn
.z/

.� � z/n

.1 � s/n for � near z;

� i

2
.� � z/

X
n�1

@nA

@Nzn .z/
.� � Nz/n
.1 � s/n

� i

2
.� � Nz/A.z/ for � near Nz:

(6.4)
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Now inspection shows that the right-hand side of (6.4) satisfies the differential
equations (6.2), whether z 2 H or not, so .B;A/ with B as in (6.4) gives a section
of D�

s on neighborhoods of points .z; z/ and .Nz; z/ for all z 2 C. From (6.4) it is not
clear that for z 2 R both expressions define the same function on a neighborhood
of z. In the next subsection, we will see that they do.

6.2 Power Series Expansion

Sections of As are real-analytic functions of one complex variable and hence can
be seen as power series in two variables. In this subsection, we show that the
coefficients in these expansions have interesting properties. They will be used in
Sect. 6.3 to study the structure of sections ofDs andD�

s near the diagonal of P1
R

�P
1
R

.
Let U � C be open, and let z0 2 U . We write the expansion of a section A of

As at a point z0 in the strange form (the reason for which will become apparent in a
moment)

A.z/ D
X
m;n�0

�
mC s � 1

m

� �
nC s � 1

n

�
cm;n.z0/ .z � z0/

m .z � z0/
n: (6.5)

Then we have the following result.

Theorem 6.1. Let U � C, A 2 As.U /, and for z0 2 U define the coefficients
cm;n.z0/ form; n � 0 by (6.5). Let r W U ! RC be continuous. Then the series (6.5)
converges in jz � z0j < r.z0/ if and only if the series

˚A.z0I v;w/ WD
X
m;n�0

cm;n.z0/ vmwn (6.6)

converges for jvj; jwj < r.z0/. The function defined by (6.6) has the form

˚A.z0I v;w/ D B.z0 C v; z0/� B.Nz0 C w; z0/

y0 C .v � w/=2i
(6.7)

for a unique analytic function B on

U 0 D ˚
.�; z/ 2 C � U W j� � zj < r.z/
 [ ˚

.�; z/ 2 C � U W j� � Nzj < r.z/


satisfying B.�; z/ D y A.z/ and B.Nz; z/ D 0 for z 2 U , and the pair .B;A/ is a
section of D�

1�s over U 0.

Proof. The fact that
�
mCs�1
m

�
D mO.1/ as m ! 1 implies the relation between

the convergence of (6.5) and (6.6). (We use here that a power series
P
cmn;nvnwm

in two variable converges for jvj; jwj < r if and only if its restriction to w D Nv
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converges for jvj < r .) The differential equation (5.14) is equivalent to the very
simple recursion

2iy0 cm;n.z0/ D cm;n�1.z0/ � cm�1;n.z0/ .m; n � 1/ (6.8)

for the coefficients cm;n.z0/. (This was the reason for the choice of the normalization
in (6.5). ) This translates into the fact that .2iy0 C v � w/ ˚A.z0I v;w/ is the sum of
a function of v alone and a function of w alone, i.e., we have

˚A.z0I v;w/ D LA.z0I v/ �RA.z0I w/

y0 C .v � w/=2i
; (6.9)

where, if we use the freedom of an additive constant to normalize RA.z0I 0/ D 0,
the functions LA and RA are given explicitly in terms of the boundary coefficients
fcj;0.z0/gj�0 and fc0;j .z0/gj�1 by

2iLA.z0I v/ D .v C 2iy0/
X
m�0

cm;0.z0/ vm;

2iRA.z0I w/ D c0;0.z0/w C .w � 2iy0/
X
n�1

c0;n.z0/wn: (6.10)

(Multiplied out, this says that coefficients cm;n.z0/ satisfying (6.8) are determined
by their boundary values by

cm;n.z0/ D
mX
jD1

.�1/n
.2iy0/mCn�j

�
m�jCn�1

m�j
�
cj;0.z0/

C
nX

jD1

.�1/n�j

.2iy0/mCn�j

�
n�jCm�1

n�j
�
c0;j .z0/; (6.11)

which of course can be checked directly.)
We define B on U 0 (now writing z instead of z0) by

B.�; z/ D
(
LA.z; � � z/ if j� � zj < r.z/;
RA.z; � � Nz/ if j� � Nzj < r.z/: (6.12)

These two definitions are compatible if the disks in question overlap (which happens
if r.z/ > jy0j) because the convergence of (6.6) for jvj, jwj < r.z/ implies that the
fraction in (6.9) is holomorphic in this region and hence that its numerator vanishes
if z0 C v D Nz0 C w.

Surprisingly, the function B thus defined constitutes, together with the given
section A of As , a section .B;A/ of D�

1�s for � near z or Nz. To see this, we apply
the formulas (6.4), with s replaced by 1 � s, and express the derivatives of A in the
coefficients cm;n.z/ with help of (6.5). We find that the first expression in (6.4) is
equal to LA.zI � � z/, and the second one to RA.zI � � Nz/. �
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Example 1. Let A.z/ 2 As

�
C X f0g� be the function jzj�2s . For any z0 ¤ 0 the

binomial theorem gives cm;n.z/ D .�1/mCn jz0j�2s z�m
0 Nz�n

0 and

˚A.z0I v;w/ D jz0j2�2s
.z0 C v/.Nz0 C w/

D 1

2iy0 C v � w

� jz0j2�2s
Nz0 C w

� jz0j2�2s
z0 C v

�
;

(6.13)

in accordance with (6.7) with the solution B.�; z/ D i
2

jzj2�2s ���1 � Nz�1�, defined
on z ¤ 0, � ¤ 0. (The regions j� � zj < jzj and j� � Nzj < z do not overlap.)

Example 2. If z0 2 R, then (6.8) says that cm;n.z0/ depends only on n C m, so the
generating function ˚A has an expansion of the form

˚A.z0I v;w/ D
1X
ND0

CN .z0/
vNC1 � wNC1

v � w
:

Hence, in this case, we have A.z/ D P
N�0 CN .z0/PN .z � z0/ where PN is the

section of As defined by

PN .z/ WD .�1/N
X

m;n�0;mCnDN

��s
m

� ��s
n

�
zm Nzn; (6.14)

a polynomial that already occurred in (5.17).

Example 3. Let A.z/ D y�sps;k.z; i/, defined in (3.5), with z0 D i and k � 0. We
describe A.z/ D � .sCk/

kŠ � .s�k/ QA.w/ first in the coordinate w D z�i
zCi of the disk model.

Taking into account (A.8) and (A.9), we obtain

QA.w/ D wk
� 1 � w Nw

j1� wj2
��s

.1 � w Nw/s F �s; s C kI 1C k;w Nw�:
Set p D .z � i/=2i, so that w D p=.p C 1/. Then

QA.w/ D .1 � w/s .1� Nw/s
X
l�0

.s/` .s C k/`

.1C k/` `Š
wkC` Nw`

D
X
`�0

��s
`

� ��s � k

`

� �
`C k

`

��1
pkC` Np` .1C p/�s�k�` .1C Np/�s�`

D
X
`;i;j�0

��s
`

���s � k
`

��
`C k

`

��1��s � k � `

i

���s � `
j

�
pkC`Ci Np`Cj

D
X

m�k; n�0
pm Npn

��s � k

m � k
� ��s

n

� �nC k

k

��1 nX
lD0

�
m � k

`

� �
nC k

n � `

�
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D
X

m�k; n�0

� z � i

2i

�m � Nz C i

�2i

�n ��s � k
m� k

� ��s
n

� �nC k

k

��1 �
mC n

n

�
:

Hence, A has an expansion as in (6.5) with

cŒk�m;n.i/ WD cm;n.i/ D .�1/m .2i/�m�n .1 � s/k
�
mC n

nC k

�
(6.15a)

(D 0 if m < k), which satisfies the recursion (6.8).
The analogous computation for k < 0 gives

cŒk�m;n.i/ D .�1/m.2i/�m�n .1 � s/k
�
mC n

m � k

�
(6.15b)

(D 0 if n < �k).3

In this example we can describe the form of the function B up to a factor
without computation by equivariance: since z 7! ps;n.z; i/ transforms according
to the character

� cos 	
� sin 	

sin 	
cos 	

	 7! e2ik	 , the function h D ys�1B should do the same
near points of the diagonal or the antidiagonal. Thus, for k � 0, we know that

B.�; i/ is a multiple of
� ��i
�Ci

�k
near � D i and vanishes near � D �i, while for

k < 0, we have B.�; i/ D 0 for � near i, and B.�; i/ is a multiple of
�
��i
�Ci

�k
for

� near �i. The explicit computation using (6.12), (6.10), and (6.15) confirms these

predictions, giving B.�; i/ D .�1/k .1 � s/k
�
��i
�Ci

�k
if k � 0 and � is near i, and

B.�; i/ D �.�1/k � .kC1�s/
� .1�s/

�
��i
�Ci

�k
if k < 0 and � is near �i.

Note that since any holomorphic function of � near i (resp. �i) can be written
as a power series in ��i

�Ci (resp. �Ci
��i ), we see that this example is generic for the

expansions of A and B for any section .B;A/ of Ds near .�; z/ D .˙i; i/, and hence
by G-equivariance for z near any z0 2 H and � near z0 or Nz0.
Remark. We wrote formula (6.5) as the expansion of a fixed section A 2
As.U / around a variable point z0 2 U . If we simply define a function A.z/
by (6.5), where z0 (say in H) is fixed, then we still find that the differential
equation .� � 
s/

�
ys A. � ; z0/

� D 0 is equivalent to the recursion (6.8) and to
the splitting (6.9) of the generating function ˚A defined by (6.6). In this way, we
have constructed a very large family of (locally defined) 
s-eigenfunctions of �:
for any z0 2 H and any holomorphic functions L.v/ and R.w/ defined on disks
of radius r 	 y0 around 0, we define coefficients cm;n either by (6.9) and (6.6) or
by (6.10) and (6.11); then the function u.z/ D ys A.z/ with A given by (6.5) is a

s-eigenfunction of � in the disk of radius r around z0.

3The Pochhammer symbol .x/k is defined for k < 0 as .x � 1/�1 � � � .x � jkj/�1, so that .x/k D
� .x C k/=� .x/ in all cases.
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6.3 Mixed Eigenfunctions Near the Diagonal of P1
R

� P
1
R

Parts (4.10) and (4.10) of Proposition 4.10 show that if .h; u/ is a section of Ds near
a point .z; z/ 2 H�H of the diagonal or a point .Nz; z/ 2 H� �H of the antidiagonal,
then the function h and u determine each other. Diagonal points .�; �/ 2 P

1
R

� P
1
R

are not contained in the set P1
C

� H on which the sheaf Ds is defined. Nevertheless,
there is a relation between the analytic extendability of h and u near such points,
which we now study.

Theorem 6.2. Let � 2 P
1
R

. Suppose that .h; u/ is a section of Ds over U \ �H�H
�

for some neighborhood U of .�; �/ in P
1
C

� P
1
C

. Then the following statements are
equivalent:

(a) The function ys�1u extends real-analytically to a neighborhood of � in P
1
C

.
(b) The function ysh extends real-analytically to a neighborhood of .�; �/ in P

1
C

�
P
1
C

.
(c) The function ysh extends real-analytically to U 0 \ �P1

C
�H

�
for some neighbor-

hood U 0 of .�; �/ in P
1
C

� P
1
C

.

The theorem can be formulated partly in terms of stalks of sheaves. In particular,
the functions u in a) represent elements of the stalk .W!

1�s/� , and the pairs
.ysh; ys�1u/ with ys�1u as in a) and ysh as in b) represent germs in the stalk�D�

s

�
.�;�/

. The theorem has the following consequence:

Corollary 6.3. For each � 2 P
1
R

the morphism C W Ds ! p�1
2 Es in Theorem 4.13

induces a bijection

lim�!
U

Ds

�
U \ .P1

R
� H/

� Š �W!
1�s
�
�
;

where U runs over the open neighborhoods of .�; �/ in P
1
C

� P
1
C

, and�W!
1�s
�
�

Š �D�
s

�
.�;�/

:

Proof of Theorem 6.2. We observe that since U \ .H � H/ intersects the diagonal,
the functions h and u in the theorem determine each other near .�; �/ by virtue of
parts 4.10) and 4.10) of Proposition 4.10. Hence, the theorem makes sense.

Clearly (b) ) (c). We will prove (a) ) (b) and (c) ) (a). By G-equivariance
we can assume that � D 0.

For (a) ) (b) we write u D y1�sA with A real-analytic on a neighborhood
of 0 in C. We apply Theorem 6.1. The power series (6.5) converges for jz0j 	 R,
jz�z0j < r for some r; R > 0. (Choose r to be the minimum of r.z0/ in jz0j 	 R for
R small.) The theorem gives us an analytic function B on the regionW D ˚

.�; z/ 2
C�C W jzj < R; j��zj < r
 such that .B;A/ 2 D�

s .W /. By the uniqueness clause
of Proposition 4.11, the restriction of B to W \ �

C � H
�

is ysh. Since .0; 0/ 2 W

this gives (b).
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For c) ) a) we start with a section .ysB; y1�sA/ of Ds

�
UR � UC

R

�
for some

R > 0, where UR D fz 2 C W jzj < Rg and UC
R D UR \ H. Then A 2

A1�s.UC
R /. We apply Theorem 6.1 again, with z0 2 UC

R . By the uniqueness clause
in Proposition (4.11), the function B appearing in (6.7) is the same as the given B
in a neighborhood of

˚
.z; z/ W z 2 UC

R


 [ ˚
.Nz; z/ W z 2 UC

R



. Since B. � ; z0/ is

holomorphic in UR for each z0 2 UC
R , the right-hand side of (6.7) is holomorphic

for all v;w with jz0 C vj; jNz0 C wj < R. (The denominator does not produce any
poles since the numerator vanishes whenever the denominator does.) Hence, the
first statement of Theorem 6.1 shows that the series (6.5) represents A.z/ on the
open disk jz � z0j < R � jz0j. For jz0j < 1

2
R, this disk contains 0, so A is real-

analytic at 0. �
In Proposition 5.5 we showed that the Poisson transform of a hyperfunction

represents an element of W!
1�s outside the support of the hyperfunction. With

Theorem 6.2 we arrive at the following more complete result.

Theorem 6.4. Let I � @H be open, and let ˛ 2 V�!
s . Then Ps˛ represents an

element of W!
1�s.I / if and only if I \ Supp .˛/ D ;.

Proof. Proposition 5.5 gives the implication (. For the other implication, suppose
that Ps˛ represents an element of W!

1�s.I /. Let gcan be the canonical representative
of ˛, defined in Sect. 4.1. Then .gcan;Ps˛/ 2 Ds

�
.P1

C
X P

1
R
/ � H

�
by Theorem 4.8

and Definition 4.9. The implication (a) ) (b) in Theorem 6.2 gives the analyticity
of ys gcan on a neighborhood of .�; �/ in P

1
C

� P
1
C

for each � 2 I . It follows that for
z0 2 H sufficiently close to �, the function gcan. � ; z0/ is holomorphic at �. It then
follows from the definition of the mixed hybrid model in Sect. 4.1 that gcan. � ; z/ is
holomorphic at � for all z 2 H. Thus � cannot be in Supp .˛/. �

Theorem 6.2 is a local statement. We end this subsection with a generalization
of Proposition 4.14, which shows that the results of Theorem 6.2 have no global
counterpart. For convenience we use the disk model.

Proposition 6.5. Let A � D be an annulus of the form r1 < jwj < 1 with
0	 r1 < 1, and let V � P

1
C

be a connected open set that intersects the region
r1 < jwj < r�1

1 . Then Ds.V � A/ does not contain nonzero sections of the form
.h; u/ where u 2 Es.A/ represents an element of W!

1�s .

Proof. The proof is similar to that of Proposition 4.14. Suppose that .h; u/ 2
Ds.V � A/ where u represents an element of W!

1�s . By (4.36c) the holomorphic
function � 7! R

C

�
RS.�I � /s ; u	 is identically zero on some neighborhood � <

j�j < ��1 of the unit circle. We have the absolutely convergent representation
u D P

n bnQ1�s;n on A for a sequence .bn/ of complex numbers. Combining this
with the expansion RS.�I � /s D P

m
.��/�m
.1�s/m P1�s;m and (3.18), we obtain

X
n

bn
.��/n
.1 � s/m D 0

for all � 2 S
1. Hence, all bn vanish, so u and hence also h are zero. �
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Corollary 6.6. If V is a neighborhood of @D in P
1
C

, then Ds

�
V � .V \ H/

� D f0g.

Proof. Let .h; u/ 2 Ds

�
V � .V \ H/

�
. Corollary 6.3 implies that u 2 Es.B \ D/

represents an element of W1�s
! . The neighborhood V contains an annulus of the

form r1 < jwj < r�1
1 , and Proposition 6.5 shows that .h; u/ D .0; 0/. �

6.4 The Extended Sheaf of Mixed Eigenfunctions

In Sect. 6.1 we defined an extension D�
s of the sheaf of mixed eigenfunctions from

P
1
C

�H to P
1
C

�P
1
C

. We now prove an analogue of Theorem 4.13, the main result on
the sheaf Ds , for D�

s .
We denote by O the sheaf of holomorphic functions on P

1
C

, by pj W P1
C

� P
1
C

!
P
1
C

the projection of the j th factor (j D 1; 2), and put �˙ D ˚
.z; z/



z2P1

C

[˚
.z; Nz/


z2C. We define K�
s to be the subsheaf of D�

s whose sections have the form
.B; 0/.

Theorem 6.7. The sheaf K�
s is the kernel of the surjective sheaf morphism C W

D�
s ! p�1

2 As that sends .B;A/ 2 D�
s .U / (U � P

1
C

� P
1
C

open) to A. The
restriction of K�

s to �˙ vanishes, and its restriction to
�
P
1
C

� P
1
C

� X �˙ is locally
isomorphic to p�1

1 O.

This theorem gives us the exact sequence

0 �! K�
s �! D�

s

C�! p�1
2 A1�s �! 0

generalizing the exact sequence in Theorem 4.13.

Proof. By G-equivariance we can work on open U � C � C. The differential
equations (6.2) imply that sections .B; 0/ of D�

s on U have the formB.�; z/ D '.�/

.� � z/s .� � Nz/s for some function '. The analyticity of B implies that ' D 0

near points of �˙, and the holomorphy of B in its first variable implies that ' is
holomorphic. Thus K�

s is locally isomorphic to @�1
1 O outside �� and its stalks at

points of�� vanish.
Let .h; u/ be a section of D�

s over some open U � C � C. Denote by D.a/ and
D.b/ the expressions in the left-hand sides of (6.2). A computation shows that

�
.� � Nz/@Nz C s

�
D.a/ � �

.� � z/@z C s
�
D.b/

is 1
2i .� � z/ .� � Nz/ times .z � Nz/AzNz � .1 � s/ Az C .1 � s/ ANz. The vanishing of

the latter is the differential equation defining A1�s . So A is a section of A1�s on
p2U X ��. By analyticity it is in A1�s.p2U /. Hence, C W .B;A/ 7! A determines
a sheaf morphism between the restrictions of D�

s and p�1
2 A1�s on C � C, and by

G-equivariance on P
1
C

� P
1
C

.
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To prove the surjectivity of C , we constructed for each .�0; z0/ 2 C�C and each
A 2 As.U / for some neighborhood U of z0 a section .B;A/ of D�

s on a possibly
smaller neighborhood of .�0; z0/. This suffices by G-equivariance.

For .�0; z0/ 2 ��, this construction is carried out in (6.4). Let .�0; z0/ 62 ��. The
integral in (4.41) suggests that we should consider the differential form

! D ys
��
R.�I z1/=R.�I z/

�s
; y1�s1 A.z1/

	
z1

D
�
.��z/.��Nz/
.��z1/.��Nz1/

�s�
s.��Nz1/
2i.��z1/

A.z1/ dz1C
�
i

2
.1 � s/A.z1/Cy1 ANz.z1/

�
dNz1
�
:

Choosing continuous branches of
�
.��z/.��Nz/
.��z1/.��Nz1/

�s
near .�0; z0/, we obtain B.�; z/ DR z

z0
! such that .B;A/ satisfies (6.2) near .�0; z0/, which can be checked by a direct

computation, and follows from the proof of Theorem 4.13 if z0 2 H. �

Remark. We defined D�
s in such a way that the restriction of D�

s to P
1
C

� H is
isomorphic to Ds . Let c W .�; z/ 7! .�; Nz/. An isomorphismD�

s ! c�1D�
s is obtained

by QB.�; z/ D B.�; Nz/C yA.Nz/, QA.z/ D A.Nz/. So the restriction of D�
s to P

1
C

� H� is
isomorphic to c�1Ds . New in the theorem is the description of D�

s along P
1
C

�P
1
R

. In
points .�; �/ with � 2 P

1
R

, the surjectivity ofC is the step (a) ) (b) in Theorem 6.2.

6.5 Boundary Germs for the Sheaf Ds

In Sect. 6.3 we considered sections of Ds that extend across @H and established a
local relation between these sections and the sheaf W!

1�s . In this subsection we look
instead at the sections of Ds along the inverse image p�1

1 P
1
R

, where p1 W P1
C

� H !
P
1
C

is the projection on the first component. The proofs will be omitted or sketched
briefly.

A first natural thought would be to consider the inductive limit lim�!Ds

�
U \

.P1
C

�H/
�
, where U runs through the collection of all neighborhoods of P1

R
�P

1
R

in
P
1
C

� P
1
C

, but Corollary 6.6 shows that this space is zero. Instead, we define

ds D lim�!Ds

�
U X .P1

R
� H

��
; hs D lim�!Ds

�
U
�
; (6.16)

where the open sets U run over either:

(a) The collection of open neighborhoods of P1
R

� H in P
1
C

� H , or
(b) The larger collection of open neighborhoods of P1

R
� H0 in P

1
C

� H0 with H0 the
complement of some compact subset of H

It turns out that the direct limits in (6.16) are the same for both choices. Clearly
ds contains hs and the group G acts on both spaces. The canonical model Cs is a
subspace of the space ds .
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In Theorem 4.13 we considered the sheaf morphism C W Ds ! p�1
2 Es that sends

a pair .h; u/ to its second coordinate u D u.�; z/, which is locally constant in �
and a 
s-eigenfunction in z. This morphism induces a surjective map C W hs ! Es
whose kernel is the space V!;rigs introduced in Sect. 4.1. It also induces a map (still
called C ) from the larger space ds to Es ˚ Es by sending .h; u/ to the pair .uC; u�/,
where u˙. � / D u.�˙; � / for any �˙ 2 H˙. This map is again surjective and its
kernel is the space Hrig

s studied in Sect. 4.1. Moreover, the results of that subsection
show that the kernels of these two maps C are related by the exact sequence

0 �! V!;rigs �! Hrig
s

Ps�! Es �! 0;

where the Poisson map Ps is given explicitly by

Psh.z; z1/ D 1

�

�Z
CC

�
Z
C�

��
R.�I z1/

R.�I z/

�s
h.�; z1/ R.�I z/ d� .z; z1 2 H/;

(4.15). Here CC (resp. C�) is a closed path in H (resp. H�) encircling z and z1
(resp. Nz and Nz1), and the right-hand side is independent of z1. Now consider an
element of hs represented by the pair .h; u/ 2 Ds

�
U X .P1

R
� H/

�
for some open

neighborhood U of P1
R

� H in P
1
C

� H and define Psh.z; z1/ by the same formula,
where CC and C� we now required to lie in the neighborhood

˚
� 2 P

1
C

j .�; z1/ 2
U



of P1
R

and to be homotopic to P
1
R

in this neighborhood. The right-hand side is
still independent of the choice of contoursC˙ and is also independent of the choice
of representative .h; u/ of Œ.h; u/� 2 ds , but it is no longer independent of z1. Instead,
we have that the function Psh. � ; z1/ belongs to Es for each fixed z1 2 H and that its
dependence on z1 is governed by

dz1

�
Ps.h; u/.z; z1/

� D �
ps. � ; z/; uC � u�

	
(6.17)

with the Green’s form as in (3.13) and the point-pair invariant ps. � ; � / as in (3.6).
We therefore define a space EC

s consisting of pairs .f; v/ where v belongs to Es
and f W H � H ! C satisfies

f . � ; z1/ 2 Es for each z1 2 H; (6.18a)

d
�
f .z; � /� D Œps. � ; z/; v� on H for each z 2 H: (6.18b)

The groupG acts on this space by composition (diagonally in the case of f ). By the
discussion above, we can define an equivariant and surjective map PC

s W hs ! EC
s

with kernel hs by Œ.h; u/� 7! �
Psh; uC � u�

�
. Finally, the space EC

s is mapped to
Es by .f; v/ 7! v with kernel Es (because f . �; z1/ is constant if v D 0). (In fact,
the space EC

s is isomorphic to Es � Es as a vector space, though not as a G-module,
by the map sending .f; v/ to

�
f . �; i /; v�.) Putting all these maps together, we can

summarize the interaction of the morphismsC and Ps by the following commutative
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diagram with exact rows and columns:

0

��

0

��

0

��
0 �� V!;rigs

��

��

hs
C

��

��

Es ��

diag
��

0

0 �� Hrig
s

��

Ps��

ds
C

��

PC
s��

Es ˚ Es ��

.1;�1/
��

0

0 �� Es
��

�� EC
s

��

pr2
�� Es

��

�� 0

0 0 0

7 Boundary Splitting of Eigenfunctions

In the introduction we mentioned that eigenfunctions often have the local form
ys � .analytic/ C y1�s � .analytic/ near points of R. Here we consider this
phenomenon more systematically in both the analytic context (Sect. 7.1) and the
differentiable context (Sect. 7.2). This will lead in particular to a description of both
E!s D Ps.V!s / and E1

s D Ps.V1
s / in terms of boundary behavior.

As stated in the introduction, results concerning the boundary behavior of
elements of Es are known (also for more general groups; see, eg., [1, 7]). However,
our approach is more elementary and also includes several formulas that do not
seem to be in the literature and that are useful for certain applications (such as those
in [2]).

7.1 Analytic Case

In Proposition 5.3 we showed that the space Fs of boundary germs is the direct sum
of Es (the functions that extend to the interior) and W!

s (the functions that extend
across the boundary). We now look at the relation of these spaces with E!s , the image
in Es of V!s under the Poisson transformation.

If s ¤ 1
2
, we denote by F!

s the direct sum of W!
s and W!

1�s . (That this sum
is direct is obvious since for s ¤ 1

2
, an eigenfunction u cannot have the behavior

ys � .analytic/ and at the same time y1�s � .analytic/ near points of R.) For s D 1
2
,

we will defineF!
1=2 as a suitable limit of these spaces in the following sense. If s ¤ 1

2
,

an element of F!
s is locally (near x0 2 R/ represented by a linear combination of
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ys and y1�s with coefficients that are analytic in a neighborhood of x0. Replacing
ys and y1�s by 1

2

�
ys C y1�s

�
and 1

2s�1
�
ys � y1�s�, we see that an element of F!

1=2

should (locally) have the form A.z/ y1=2 logy C B.z/ y1=2 with A and B analytic
at x0. We, therefore, define F!

1=2 (now using disk model coordinates to avoid special
explanations at 1) as the space of germs in F1=2 represented by

f .w/ D .1 � jwj2/1=2
�
A.w/ log.1 � jwj2/C B.w/

�
; (7.1)

with A and B real-analytic on a neighborhood of S1 in C. We have a G-equivariant
exact sequence

0 �! W!
1=2 �! F!

1=2

��! W!
1=2 �! 0 (7.2)

where � sends f in (7.1) toA. The surjectivity of � is a consequence of the following
proposition, which we will prove below. This proposition shows that for all s with
0 < Re s < 1, the space F!

s is isomorphic as a G-module to the sum of two copies
of V!s .

Proposition 7.1. The exact sequence (7.2) splits G-equivariantly.

The splittings Fs D Es ˚ W!
s D Es ˚ W!

1�s show that nonzero elements of Es
cannot belong to W!

s or W!
1�s . The following theorem shows that they can be in F!

s ,
and that this happens if and only if they belong to E!s .

Theorem 7.2. Let 0 < Re s < 1. Then

E!s D Es \ F!
s ;

and F!
s D E!s ˚ W!

s D E!s ˚ W!
1�s .

So for s ¤ 1
2
, the space F!

s is the direct sum of each two of the three isomorphic
subspaces E!s , W!

s , and W!
1�s . For s D 1

2
, two of these subspaces coincide.

We discuss the cases s ¤ 1
2

and s D 1
2

separately.

Proposition 7.3. Let s ¤ 1
2
. For each ' 2 V!s , we have

Ps' D c.s/P�s' C c.1 � s/P�1�sIs'; (7.3)

where, with b.s/ as in (5.20), the factor c.s/ is given by

c.s/ D tan�s

�
b.s/ D 1p

�

� .1
2

� s/
� .1 � s/ : (7.4)

Proof. Since ' is given by a Fourier expansion which converges absolutely
uniformly on the paths of integration in the transformation occurring in (7.3),
it is sufficient to prove this relation in the spacial case es;n (n 2 Z). We have
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Pses;n D .�1/n � .s/

� .sCn/Ps;n and P�ses;n D .�1/n � .sC 1
2 /p

� � .sCn/ Qs;n. See Sect. A.2. The

relations (A.14) and (2.30e) give the lemma for ' D es;n for all n 2 Z. �

Remark. One can also give a direct (but more complicated) proof of (7.3) for
arbitrary ' 2 V!s , without using the basis

˚
es;n


, by writing all integral transforms

explicitly and moving the contours suitably.

The proof of Theorem 7.2 (for s ¤ 1
2
) follows from Proposition 7.3. The

inclusion E!s � F!
s is a consequence of the more precise formula (7.3). For the

reverse inclusion we write an arbitrary u 2 F!
s in the form c.s/P�s' C v with v 2

W!
1�s and ' 2 V!s . If u 2 Es , then u�Ps' D v�c.1�s/P�s�1Is' 2 Es \W!

1�s D f0g,
so u D Ps' 2 E!s . This completes the proof.

We can summarize this discussion and its relation with the Poisson trans-
formation in the following commutative diagram of G-modules and canonical
G-equivariant morphisms

V!s
Is





P�s

��

Ps

���
��

��
��

��
��

�
V!1�s

I1�s



P1�s

����
��
��
��
��
�� P�1�s

��
W!
s

�s

��

Š E!s D E!1�s
Š W!

1�s

�1�s

��

together with the fundamental examples (and essential ingredient in the proof):

R. � I z0/s �� ��
��

����
��
��
��
��
� ��

���
��

��
��

��
��

��
�

R. � I z0/1�s

��

��		
		
		
		
		
		
		

��

��























b.s/qs . � ; z0/ �� �� ps. � ; z0/ D p1�s. � ; z0/ D
��1 tan�s

�
qs. � ; z0/C q1�s. � ; z0/� b.1� s/q1�s. � ; z0/����

We now turn to the case s D 1
2
. We have to prove Proposition 7.1 and

Theorem 7.2 in this case.
To construct a splitting � W W!

1=2 ! F!
1=2 of the exact sequence (7.2), we put

�Q1=2;n D ��2

2
P1=2;n 2 Es for n 2 Z. Since P1=2;n 2 P1=2V!1=2, we have �Qn;1=2 2

E!s . Further, ��Q1=2;n D Q1=2;n by (A.13) and (A.15). The Q1=2;n 2 W!
1=2 with

n 2 Z generate a dense linear subspace of W!
1=2 for the topology of V!1=2 transported

to W!
1=2 by P�1=2 W V!1=2 ! W!

1=2. Hence, there is a continuous linear extension
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� W W!
1=2 ! E!1=2. The generators EC and E� of the Lie algebra of G act in the

same way on the system
�
Qs;n

�
n

as on the system
�
Ps;n

�
n
. (See Sect. A.5 and use

case G in Table A.1 of Sect. A.2 and case a in Table A.2 of Sect. A.3.) So � is an
infinitesimal G-morphism and since G is connected, a G-morphism. The splitting
� W W!

1=2 ! F!
1=2 also gives the surjectivity of � and hence the exactness of the

sequence (7.2).
Since �Q1=2;n belongs to E!1=2, we have �.W!

1=2/ � E!1=2. Since E!1=2 is an
irreducible G-module, this inclusion is an equality. This gives F!

1=2 D E!1=2 ˚ W!
1=2

and E!1=2 � E1=2 \F!
1=2. The reverse inclusion then follows by the same argument as

for s ¤ 1
2
. �

Remark. The case s D 1
2

could also have been done with explicit elements. For
each s with 0 < Re s < 1 and each n 2 Z, the subspace F!

s;n of F!
s in which the

elements
� cos 	

� sin 	
sin 	
cos 	

	
act as multiplication by e2in	 has dimension 2. In the family

s 7! F!
s;n, there are three families of nonzero eigenfunctions: s 7! Ps;n 2 E!s ,

s 7! Qs;n 2 W!
s , and s 7! Q1�s;n 2 W!

1�s . For s ¤ 1
2
, each of these functions can

be expressed as a linear combination of the other two, as given by (A.14), which is
at the basis of our proof of Proposition 7.3. At s D 1

2
, the elementsQs;n andQ1�s;n

coincide. This is reflected in the singularities at s D 1
2

in the relation (A.14). The
families s 7! Ps;n and s 7! Qs;n provide a basis of F!

s for all s, corresponding to
the decomposition F!

s D E!s ˚ W!
s . Relation (A.14) implies

P1=2;n D �2
�2

d

ds
Qs;n

ˇ̌̌
sD1=2;

which explains the logarithmic behavior at the boundary.

7.2 Differentiable Case

In the previous subsection, we described the boundary behavior of elements of
E!s D PsV!s in terms of convergent expansions. In the differentiable case, the spaces
Wp
s consist of boundary jets, not of boundary germs. So a statement like that in

Theorem 7.2 seems impossible. Nevertheless, we have the following generalization
of Proposition 7.3:

Proposition 7.4. (i) Let p 2 N, p � 2, and s ¤ 1
2
. For each ' 2 Vps there are b 2

Gps representing c.s/P�s' 2 Wp
s and a 2 Gp�1

1�s representing c.1�s/P�1�sIs' 2
Wp�1
1�s such that

Ps'.w/ D b.w/C a.w/C O
�
.1 � jwj2/p�s� .jwj " 1/: (7.5)

(ii) Let s ¤ 1
2
. For each ' 2 V1

s there are b 2 G1
s and a 2 G1

1�s representing

c.s/P�s' and c.1 � s/P�1�s', respectively, such that for eachN 2 N

Ps'.w/ � b.w/C a.w/C o
�
.1� jwj2/N � .jwj " 1/: (7.6)



Function Theory Related to the Group PSL2.R/ 187

Proof. The proof of Proposition 7.3 used the fact that the es;n generate a dense
subspace of V!s and that the values of Poisson transforms and transverse Poisson
transforms are continuous with respect to this topology. That reasoning seems
hard to generalize when we work with boundary jets. Instead, we use the explicit
Lemma 5.12.

A given ' 2 Vps can be written as a sum of elements in Vps each with support in a
small interval in @H. With the G-action, this reduces the situation to be considered
to ' 2 C

p
c .I / where I is a finite interval in R. Proposition 5.5 shows that Ps'

represents an element of W!
1�s
�
P
1
R

X I
�
. So we can restrict our attention to Ps'.z/

with z near I and work in the line model.
We take ˛ and ˇ as in Lemma 5.12 with N D p. Then

Ps'.z/ D ��1 y1�s
Z 1

�1
.t2 C y2/s�1 '.t C x/ dt

D 1

�
ys
Z 1

�1
.t2 C 1/s�1 '.x C yt/ dt D ysA.z/C y1�sB.z/;

with

B.z/ D ��1
Z 1

�1
ˇ.t/ '.xCyt/ dt; A.z/ D ��1y2s�1

Z 1

�1
˛.p/.t/ '.xCyt/ dt:

We considerB.z/ andA.z/ for x 2 I and 0 < y 	 1. The decay of ˇ implies that

B.z/ D 1

�

pX
nD0

'.n/.x/

nŠ
yn
Z 1

�1
tn ˇ.t/ dt C o

�
yp
�
:

In (5.40) we have computed the integrals. We arrive at

B.z/ D c.s/

Œp=2�X
kD0

.�1=4/k� .s C 1
2
/

kŠ � .k C s C 1
2
/
'.2k/.x/ y2k C o.yp/: (7.7)

A comparison with (5.33) shows that ys B.z/ has the asymptotic behavior near I of
representatives of c.s/P�s'.

In the second term, we apply p-fold integration by parts:

A.z/ D .�1/p��1y2s�1Cp
Z 1

�1
˛.t/ '.p/.x C yt/ dt:

For fixed ', this expression is a holomorphic function of s on the region Re s > 0.
In the computation we shall work with Re s large.

The function h 7! .1 C h/s�1 has a Taylor expansion at h D 0 of any order R,
with a remainder term O.hRC1/ that is uniform for h � 0. This implies that ˛.t/
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has an expansion of the form ˛.t/ D PR
nD0 bnjt jpC2s�2�2n C O.jt jpC2s�2R�4�,

uniformly for t 2 R X f0g. We take R D Œp=2� and use the relation @pt ˛.t/ D
.1C t2/s�1 � ˇ.t/ and the decay of ˇ.t/ to conclude that

˛.t/ D
X

0�n�p=2

�
s � 1

n

�
.sign t/p jt j2s�2nCp�2

.2s � 2n � 1/p
C O

�jt j2s�3�: (7.8)

We compute this with Re s > 1. The error term contributes to A.z/:

y2s�1Cp
Z 1

tD�1
O
�jt j2s�3� '.p/.x C yt/ dt D O

�
ypC1�: (7.9)

(We have replaced t by t=y in the integral.) The term of order n contributes

.�1/py2n
�

�
s � 1

n

�
y�2s�pC2nC1

.2s � 2n � 1/p
Z 1

�1
.sign t/pjt j2sCp�2n�2 '.p/.x C t/ dt

D .�1/py2n � .s/ � .2s � 2n � 1/
� nŠ � .s � n/ � .2s � 2n � 1C p/

.�1/p�2n.2s � 1/p�2n

�
Z 1

�1
jt j2s�2'.2n/.x C t/ dt .partial integration p � 2n times/:

In (2.30b) we see that the holomorphic function
R1

�1 jt j2s�2'.2n/.xCt/ dt continued
to the original value of s gives us b.s � 1

2
/ .Is'/

.2n/.x/, provided 2n < p. We have

IsVps � Vp�1
1�s , but not necessarily Is' 2 Vps . For even p, we move the contribution

O.yp/ to the error term. The terms of order n < p=2 give

y2n � .s/ � .2s � 2n � 1/
� nŠ� .s � n/ � .2s � 1/

p
� � .s � 1

2
/

� .s/
.Is'/

.2n/.x/

D tan�.1 � s/p
�

� .1 � s/

� . 3
2

� s/

.�1=4/k � . 3
2

� s/

nŠ � . 3
2

� s C n/
.Is'/

.2n/.x/ y2k:

Thus we arrive at

A.z/ D c.1 � s/
X

0�n<p=2

.�1=4/n � . 3
2

� s/
nŠ � . 3

2
� s C n/

.Is'/
.2n/.x/y2k C O

�
y
2
�
pC1
2

	�
:

(7.10)
Again we have arrived at the expansion a representative of Wp�1

1�s should have
according to (5.33). This completes the proof of part (4.10).

In view of Definition 5.9, the estimate (7.5) holds for all representatives b 2 Gps
and a 2 Gp1�s of c.s/P�s', respectively c.1 � s/P�1�s'. In particular, for ' 2 V1

s ,
this estimate holds for each p 2 N, p � 2, for representatives b1 2 G1

s of c.s/P�s'
and a1 2 G1

1�s of c.1 � s/P�1�s'. This implies part (4.10) of the proposition. �
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Appendix: Examples and Explicit Formulas

We end by giving a collection of definitions and formulas that were needed in the
main body of this chapter or that illustrate its results. In particular, we describe a
number of examples of eigenfunctions of the Laplace operator (in A.1), of Poisson
transforms (in A.2), of transverse Poisson transforms (in A.3), and of explicit
potentials of the Green’s form fu; vg for various special choices of u and v (in A.4),
as well as some formulas for the action of the Lie algebra of G (in A.5).

A.1 Special Functions and Equivariant Elements of Es

Let H � G be one of the subgroupsN D fn.x/ W x 2 Rg, A D fa.y/ W y > 0g
or K D fk.	/ W 	 2 R=Zg with

n.x/ D
�
1

0

x

1

�
; a.y/ D

�p
y

0

0

1=
p
y

�
; k.	/ D

�
cos 	

� sin 	

sin 	

cos 	

�
:

(A.1)

For each character � ofH , we determine the at most two-dimensional subspace EHs;�
of Es transforming according to this character.

A.1.1 Equivariant Eigenfunctions for the Unipotent Group N

The characters of N are �˛ W n.x/ 7! ei˛x with ˛ 2 R. If u 2 ENs;˛ (we write ENs;˛
instead of ENs;�˛ ), then u.z/ D ei˛xf .y/, where f satisfies the differential equation

y2f 00.y/ D .s2 � s C ˛2y2/f .y/: (A.2)

This can also be applied to ENs;˛.U / for any connected N -invariant subset U of H.
For the trivial character, i.e., ˛ D 0, this leads to the basis z 7! ys , z 7! y1�s of ENs;0
if s ¤ 1

2
, and z 7! y1=2, z 7! y1=2 logy if s D 1

2
. For nonzero ˛, we have

ks;˛.z/ D p
y Ks�1=2.j˛jy/ ei˛x

D 2s� 3
2 � .s/p

� j˛js� 1
2

ei˛x
Z 1

�1
ei˛t ys dt

.y2 C t2/s
; (A.3a)

is;˛.z/ D �
�
s C 1

2

�
j˛=2js� 1

2

p
y Is�1=2.j˛jy/ ei˛x; (A.3b)

with the modified Bessel functions
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Iu.t/ D
1X
nD0

.t=2/uC2n

nŠ � .u C 1C n/
; Ku.t/ D �

2

I�u.t/ � Iu.t/

sin�u
: (A.4)

The element i˛;s represents a boundary germ in W!
s .R/. The normalization of is;˛

is such that the restriction �si˛;s.x/ D ei˛x in the line model.
The elements ks;˛ and is;˛ form a basis of ENs;˛ for all s with 0 < Re s < 1. For

s ¤ 1
2

another basis is is;˛ and i1�s;˛. The element ks;˛ is invariant under s 7! 1� s,
and

ks;˛ D �
�
1
2

� s
�

j˛j1=2�s2sC1=2 is;˛ C �
�
s � 1

2

�
j˛js�1=223=2�s i1�s;˛ (A.5)

gives (for s ¤ 1
2
) a local boundary splitting as an element of W!

s .R/˚ W!
1�s.R/.

For the trivial character, ks;˛ may be replaced by

`s.z/ D ys � y1�s

2s � 1
for s ¤ 1

2
; `1=2.z/ D y1=2 logy: (A.6)

A.1.2 Equivariant Eigenfunctions for the Compact Group K

The characters of K are k.	/ 7! ein	 with n 2 Z and k.	/ as in (A.1). If u.rei	 / D
f .r/ein	 is in EKs;n.U /, with a K-invariant subset U � H, then f satisfies the
differential equation

� 1

4

�
1� r2

�2 �
f 00.r/C r�1f 0.r/ � n2r�2f .r/

� D s.1 � s/f .r/: (A.7)

For general annuli in H, the solution space has dimension 2, with basis

Ps;n.rei	 / D P1�s;n.rei	 / D Pn
s�1
�
1C r2

1 � r2
�

ein	 ;

Qs;n.rei	 / D Qn
s�1
�
1C r2

1� r2

�
ein	 ; (A.8)

with the Legendre functions

Pm
s�1

�
1C r2

1 � r2

�
D � .s Cm/

jmjŠ � .s � jmj/ r
jmjF

�
1 � s; sI 1C jmjI r2

r2 � 1
�

D � .s Cm/

jmjŠ � .s � jmj/ r
jmj .1 � r2/s F

�
s; s C jmjI 1C jmjI r2�

D � .sCm/
jmjŠ � .s�jmj/ r

jmj .1�r2/1�s F �1�s; 1�s C jmjI 1CjmjI r2�;
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Qm
s�1

�
1C r2

1 � r2

�
D .�1/m

2

� .s/� .s Cm/

� .2s/

.1 � r2/s

rm
F
�
s �m; sI 2sI 1 � r2

�

D .�1/m
2

� .s/� .s Cm/

� .2s/

.1 � r2/s

r2s�m
F
�
s �m; sI 2sI 1 � r�2�;

(A.9)

and the hypergeometric function F D 2F1 given for jzj < 1 by

F
�
a; bI cI z

� D
X
n�0

.a/n.b/n

.c/n

zn

nŠ
; with .a/n D

n�1Y
jD0

.a C j /: (A.10)

(See [3], 2.1, 3.2 (3), 3.3.1 (7), 3.3.1 (1), 3.2 (36), and 2.9 (2) and (3).) The space
EKs;n.H/ is spanned by Ps;n alone, since Qs;n.r/ has a singularity as r # 0:

Qs;n.r/ D

8̂̂
<̂
ˆ̂̂:

� log r
�
1C r � .analytic in r/

�C .analytic in r/ if n D 0;
1

2
.jnj � 1/Š

� .s C n/

� .s C jnj/ r
�jnj.1C r � .analytic in r/

�
C log r � .analytic in r/ otherwise.

(A.11)

See [3], 3.9.2 (5)–(7) for the leading terms, and 2.3.1 for more information. Directly
from (A.9), we find for r # 0

Ps;n.r/ D � .s C n/

jnjŠ � .s � jnj/ r
jnj �1C r � .analytic in r/

�
: (A.12)

The solution Qs;n is special near the boundary S
1 of D. As r " 1:

Qs;n.r/ D .�1/n
p
� � .s C n/

� .s C 1
2
/

2�2s.1 � r2/s�1C .1 � r/ � .analytic in 1 � r/�:
(A.13)

Thus,Qs;n 2 W!
s , and �sQs;n.�/ D .�1/n

p
� � .sCn/
� .sC 1

2 /
�n on S

1.

For s ¤ 1
2
, we have

Ps;n D 1

�
tan�s .Qs;n �Q1�s;n/ : (A.14)
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(The formula in [3], 3.3.1, (3) gives this relation with a minus sign in front of 1
�

.)
This relation confirms that P1�s;n D Ps;n and forms the basis of the boundary
splitting in (7.3). It shows that in the asymptotic expansion of Ps;n.r/ as r " 0,
there are nonzero terms with .1 � r/s and with .1 � r/1�s . At s D 1

2
, we have

as r " 1

P1=2;n
�
rei	

� D � .�1/
n � . 1

2
C n/

�3=2
.1 � r2/1=2 log.1 � r2/C O.1/: (A.15)

So Ps;n is not in W!
s .I / for any interval I � S

1.

A.1.3 Equivariant Eigenfunctions for the Torus A

The characters of A are of the form a.t/ 7! t i˛ with ˛ 2 R. We use the coordinates
z D �ei� on H, for which a.t/ acts as .�; �/ 7! .t�; �/. If u.�ei�/ D �idf .cos�/ is
in EAs;˛ , then f satisfies on .�1; 1/ the differential equation

� �1 � t2
�2
f 00.t/C t

�
1 � t2

�
f 0.t/C �

˛2.1 � t2/� s.1 � s/� f .t/ D 0: (A.16)

This leads to the following basis of the space EAs;˛:

f C
s;˛.�ei�/ D �i˛.sin�/sF

�
s C i˛

2
;
s � i˛

2
I 1
2

I cos2 �

�
;

f �
s;˛.�ei�/ D �i˛ cos� .sin�/sF

�
s C i˛ C 1

2
;
s � i˛ C 1

2
I 3
2

I cos2 �

�
: (A.17)

The C or � indicates the parity under z 7! �Nz. In particular

f C
s;˛.i/ D 1;

@fCs;ff
@�

.i/ D 0; f�s;ff .i/ D 0;
@f�s;ff
@�

.i/ D �1: (A.18)

Relation (2), Sect. 2.9 in [3] shows that f C
1�s;˛ D f C

s;˛ and f �
1�s;˛ D f �

s;˛ .
For the boundary behavior, it is better to apply the Kummer relation (33) in

Sect. 2.9 of [3] to the following function in Es .H X iRC/

�i˛.sin�/sF

�
s C i˛

2
;
s � i˛

2
I s C 1

2
I sin2 �

�
: (A.19)

One has to choose
p

cos2�. Denote by f R
s;˛ the restriction to 0 < � < �

2
and by

f L
s;˛ the restriction to �

2
< � < � . The Kummer relation implies the following

equalities:
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f R
s;˛ D

p
� �

�
s C 1

2

�
�
�
sCi˛C1

2

�
�
�
s�i˛C1

2

� f C̨
;s � 2

p
� �

�
s C 1

2

�
�
�
sCi˛
2

�
�
�
s�i˛
2

� f �̨
;s ;

f L
s;˛ D

p
� �

�
s C 1

2

�
�
�
sCi˛C1

2

�
�
�
s�i˛C1

2

� f C̨
;s C 2

p
� �

�
s C 1

2

�
�
�
sCi˛
2

�
�
�
s�i˛
2

� f �̨
;s : (A.20)

Thus, we see that f R
s;˛ and f L

s;˛ extend as elements of Es; that f R
s;˛ represents

an element of W!
s .RC/ with, in the line model, �sf R

s;˛.x/ D xi˛; and that f L
s;˛

represents an element of W!
s .R�/ with �sf L

s;˛.x/ D .�x/i˛ . Inverting the relation
in (A.20) one finds, for s ¤ 1

2
, the following expressions for f C

s;˛ and f �
s;˛ as a linear

combination of f R
s;˛ and f R

1�s;˛ ,

f C
s;˛ D

p
� �

�
1
2

� s
�

�
�
1�sCi˛

2

�
�
�
1�s�i˛

2

�f R
s;˛ C

p
� �

�
s � 1

2

�
�
�
sCi˛
2

�
�
�
s�i˛
2

�f R
1�s;˛ ;

f �
s;˛ D

p
� �

�
1
2

� s
�

2�
�
1 � sCi˛

2

�
�
�
1 � s�i˛

2

�f R
s;˛ C

p
� �

�
s � 1

2

�
2�

�
sCi˛C1

2

�
�
�
s�i˛C1

s

�f R
1�s;˛;

(A.21)

and similarly of f L
s;˛ and f L

1�s;˛ , showing that each of these elements belongs to the
direct sums W!

s .RC/˚W!
1�s.RC/ and W!

s .R�/˚W!
1�s.R�/, but not to W!

s .I /˚
W!
1�s.I / for any neighborhood I of 0 or 1 in P

1
R

; in other words, just as for the
Bessel functions is;˛ and ks;˛ , we have a local but not a global boundary splitting.

A.2 Poisson Transforms

Almost all of the special elements in Sect. A.1 belong to Es and hence are the
Poisson transform of some hyperfunction by Helgason’s Theorem 3.4. Actually in
all cases except one, the function has polynomial growth and hence is the Poisson
transform of a distribution (Theorem 3.5). In Table A.1 and the discussion below,
we give explicit representations of these eigenfunctions as Poisson transforms of
distributions and/or hyperfunctions.

A. In (3.30) we have shown that y1�s is the Poisson transform of the distribu-
tion ıs;1. See (3.30) for an explicit description of ıs;1 as a hyperfunction.

B. The description of ys as a Poisson transform takes more work. For Re s < 1
2

the linear form 1s W ' 7! 1
�

R1
�1 '.t/ dt is continuous on V01�s , in the line

model. Note that the constant function 1 is not in V!s since it does not satisfy the
asymptotic behavior (2.2) at 1. Application of (3.26) gives the Poisson transform
Ps1s indicated in the table.
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Table A.1 Poisson representation of elements of Es
u 2 Es Ps

�1u 2 V�!
s Model

A y1�s ıs;1 W 'P 7! 'P.1/ Proj.

B
� . 12 �s/

p
� � .1�s/

ys
1s D integration against 1 for Re s < 1

2
;

with meromorphic continuation
Line

C
�2 � . 32 �s/

p
� � .1�s/

`s.z/

`s as in (A.6)

' 7! �1
2

R1

�1.'.t/� '1p
1Ct2

/ dt

with '1 D limt!1 jt j2s�2'.t/
Line

D R.t I z/1�s .t 2 R/ ıs;t W ' 7! '.t/ Line

E
2
sC 1

2 j˛j
1
2 �s

p
� � .1�s/

ks;˛.z/

.˛ 2 R X f0g/

Integration against ei˛t for Re s < 1
2
,

or integration of �'0 against ei˛x

i˛

for 0 < Re s < 1

Line

F
i1�s;˛.z/

.˛ 2 R X f0g/
Support f1g; representative near 1:

� i
2
� .1C ��2/sF

�
1I 2� 2sI i˛�

� Proj.

G .�1/n� .s/

� .sCn/
ps;n es;n Circle

H ps.w0; � / RS. � I w0/s Circle

I � .1Ci˛�s/� .1�i˛�s/

� � .2�2s/
f L
1�s;˛ Integration against x i˛�s on RC Line

J � .1Ci˛�s/� .1�i˛�s/

� � .2�2s/
f R
1�s;˛ Integration against .�x/i˛�s on R� Line

To describe 1s as a hyperfunction in the line model (and also to continue it in s),
we want to give representatives gR and g1 of 1s on R and P

1
R

X f0g, related
by g1.�/ D ��2s gR.�1=�/ up to a holomorphic function on a neighborhood
of R X f0g.

Formula (2.26) gives a representative gP in the projective model:

gP.�/ D 1

2�i

Z 1

�1
� C i

t � � .t � i/s.t C i/s�1 dt .� 2 P
1
C

X P
1
R
/:

(The factor .t2C1/s�1 comes from passage between models.) This function extends
both from H and from H� across the real axis. An application of Cauchy’s formula
shows that the difference of both extension is given by .�2 C 1/s , corresponding to
the function 1 in the line model. See (2.5).

To get a representative near 1, we write

�
1C e2� is

�
gP.�/ D 1

2�i

Z
C

� C i

.z � �/.z C i/
.z2 C 1/s dz; (A.22)
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where C is the contour shown below. The factor .z2 C 1/s is multivalued
on the contour and is fixed by choosing
arg
�
z2 C 1

� 2 Œ0; 2�/. On the part of the con-
tour just above .0;1/, the argument of z2C1 is
approximately zero, and just below .0;1/, the
argument is approximately 2� . Near .�1; 0/,
the argument is approximately 2� just above
the real line and approximately 0 below the
real line. We take the contour so large that
� 2 H [ H� is inside one of the loops of C .
If we let the contour grow, the arcs in the upper
and lower half planes give a contribution o.1/.
In the limit, for Re s < 1

2
, we are left with twice

�

�

i

�i

����

� �

� �

�

�

the integral along .0;1/ and along .�1; 0/, both once with the standard value and
and once with e2� is times the standard value. This gives the equality (A.22) and the
continuation of gP as a meromorphic function of s.

Now consider � 2 H˙ with j�j > 1. Moving the path of integration across �,
we obtain with Cauchy’s theorem that

�
1 C e2� is

�
gP.�/ is equal to ˙.�2 C 1/s

plus a holomorphic function of � on a neighborhood of 1. The term ˙.�2 C 1/s

obeys the choice of the argument discussed above. To bring it back to the standard
choice of arguments in .��; ��, we write it as �2s

�
1 C ��2�s for � 2 H and as

�.��/2s�1C ��2�s for � 2 H�. The factor .1 C ��2�s is what we need to go back
to the line model with (2.5). Thus we arrive at the following representatives in the
line model.

gR.�/ D
(
1 on H;

0 on H�I g1.�/ D ˙��2s �1C e�2� is/�1 on H˙: (A.23)

Finally one checks that gR.�/ � .�2/�sg1.�1=�/ extends holomorphically across
both RC and R�, thus showing that the pair .gR; g1/ determines the hyperfunction
1s . These representatives also show that 1s extends meromorphically in s, giving
1s 2 V�!

s for all s ¤ 1
2

with 0 < Re s < 1.

For the relation between the cases A and B, we use (3.25) to get

PsI1�sı1�s;1.z/ D P1�sı1�s;1.z/ D ys:

The fact that the Poisson transformation is an isomorphism V�!
s ! E s implies

1s D � .1
2

� s/p
� � .1 � s/

Isıs;1: (A.24)



196 R. Bruggeman et al.

C. For Re s < 1
2

we have

˝
'; 1s

˛ D 1

�

Z 1

�1

�
'.t/ � 'P.1/.1C t2/s�1

�
dx C � .1

2
� s/p

� � .1 � s/ ıs;1.'
P/:

So the distribution Ls given by

Ls W ' 7! 1

�

Z 1

�1
�
'.t/ � 'P.1/.1C t2/s�1

�
dt;

which is well defined for Re s < 1, is equal to 1s � � . 12�s/p
� � .1�s/ ıs;1 for Re s < 1

2
. The

results of the cases A and B give the expression of PsLs as a multiple of `s defined
in (A.6). Going over to the line model, we obtain the statement in the table.

D. This is simply the definition of the Poisson transformation in (3.22) and (3.23)
applied to the delta distribution at t . It also follows from Case A, using the G-
equivariance.

The latter method involves a transition between the models. We explain some of
the steps to be taken. In the projective model, ıPs;t W 'P 7! .1 C t2/s�1 'P.t/. We
have


ıPs;t
ˇ̌
2s

�
t

1

�1
0

�
; 'P

�
D


ıPs;t ; '

P
ˇ̌
2�2s

�
0

�1
1

t

��
D � � � D ıPs;1

�
'P
�
:

Hence,

Ps
�
ıs;t
�
.z/ D Ps

�
ıs;1

ˇ̌� 0

�1
1

t

��
.z/ D �

Psıs;1
��
1=.t � z/

� D
� y

jt � zj2
�1�s

:

E. For ˛ ¤ 0, we need no complicated contour integration. When Re s < 1
2
,

the distribution ' 7! 1
�

R1
�1 '.t/ei˛t dt in the line model is equal to ' 7!

�1
� i˛

R1
�1 ' 0.t/ei˛t dt . The latter integral converges absolutely for Re s < 1.

F. Since is;˛ has exponential growth, we really need a hyperfunction. The
representative in the table does not behave well near 0. However it is holomorphic
on a deleted neighborhood of 1, and represents a hyperfunction on P

1
R

X f0g in the
projective model. We extend it by zero to obtain a hyperfunction on P

1
R

.
The path of integration

R
CC

� R
C�

can be deformed into a large circle j� j D R,
such that we can replace � by � � x in the integration. We obtain

1

�

Z
j� jDR

i�

�2.1C ��2/sF
�
1I 2 � 2sI i˛�

�� y.1C �2/

.� � z/.� � Nz/
�s�1 d�

1C �2

D 1

2�i
y1�s

Z
j� jDR

�
1C x

�

�1�2s �
1C y2

�2

�s�1
F
�
1I 2 � 2sI i˛.� C x/

� d�

�
:
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Expand the factors
�
1 C x

�

�1�2s
and

�
1 C y2

�2

�s�1
and the hypergeometric function

into power series and carry out the integration term by term. In the resulting sum,
we recognize the power series of ei˛x and, after some standard manipulations with
gamma factors, also the expansion of the modified Bessel function I1=2�s.j˛jy/.
G. See the discussion after Theorem 3.4.

H. See (3.31).

I and J . Integration against x 7! xi˛�s on .0;1/ and against x 7! .�x/i˛�s , in
the line model, defines distributions. For �ei� 2 H, the Poisson integral leads to

�i˛.sin �/1�s

�

Z 1

0

t i˛�s�t2 C 1C 2C t
�s�1

dt;

with C D  cos�. Let us consider this for small values of C , i.e., for points near
iRC in H. Expanding the integrand in powers of C gives a series in which one may
separate the even and odd terms and arrive at

�i˛
p
1� C2

1�s

2�� .1� s/

�
�

�
1� i˛ � s

2

�
�

�
1C i˛ � s

2

�
F

�
1� i˛ � s

2
;
1C i˛ � s

2
I 1
2

IC2
�

�2C �
�
1� i˛ C s

2

�
�

�
1C i˛ � s

2

�
F

�
1� i˛ C s

2
; 1C i˛ � s

2
I 3
2

IC2
��

:

Now take C D � cos�, respectively C D cos�, and conclude that we have a
multiple of f L

1�s;˛ , respectively f R
1�s;˛ .

A.3 Transverse Poisson Transforms

In Table A.2 we give examples of pairs u D P�s', ' D �su, where ' 2 V!s .I / for
some I � @H.

In Cases c, d, f, g, and h in the table, the eigenfunction u is in Es D Es.H/; hence,
it is also a Poisson transform. If we write u D P1�s˛, then entries A, D, F, J, and I,
respectively, in Table A.1 (with the s replaced by 1� s in most cases) show that the
support of ˛ is the complement of the set I in @H for each of these cases, illustrating
Theorem 6.4.

A.4 Potentials for Green’s Forms

If u; v 2 Es.U / for some U � H, then the Green’s forms fu; vg and Œu; v� are closed.
So if U is simply connected, there are well-defined potentials of Œu; v� and fu; vg in
C!.U /, related according to (3.13). We list some examples of potentials F of fu; vg
in Table A.3. Then 1

2iF C 1
2
uv is a potential of the other Green’s form Œu; v�.
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Table A.2 Transverse Poisson representations of boundary germs

u D P�s' 2 W!
s .I / ' D �su 2 V!s .I / I Model

a Qs;n .�1/n
p
� � .sCn/

� .sC 1
2 /

es;n S
1 Circle

b qs. � ;w0/
p
� � .s/

22s � .sC1=2/

.1�jw0j2/s

j��w0j2s
S
1 Circle

c ys 1 R Line

d R.t I z/s .t 2 R/ jt � xj�2s
R X ftg Line

e R.�I z/s .� 2 C X R/ .� � x/2s .multivalued/ R Line

f is;˛ ei˛x
R Line

g f R
s;˛ x i˛�s .0;1/ Line

h f L
s;˛ .�x/i˛�s .�1; 0/ Line

We found most of these potentials by writing down fu; vg, guessing F , and
checking our guess.

Case 3 is essentially (3.16). In Case 6 we needed the following function:

Fs.r/ D 2s

Z 1

r

.1C q2/�s�1 (A.25)

have used that .Imgz/s D R.t I z/s and R.0Igz/s D jp � R.t I z/s and R.0Igz/s D
jp � t j2sR.pI z/s with g D � �1

p�t

�1
p
p�t

t

	
with t; p 2 R. So 6 leads to the potential in 7

if p ¤ t are real. We write
�
.p � t/2

��s
and not jp � t j�2s to allow holomorphic

continuation in p and t . For Case 8 we use that if u.z/ D ei˛xf .y/ and v.z/ D
ei˛xg.y/, then

fu; vg D e2i˛x.f 0g � fg0/ dx;

and that the Wronskian fg0 � f 0g is constant if u; v 2 Es . Cases 9–12 are obtained
in a similar way. In 9 and 11 the potentials are multivalued if U is not simply
connected.

Cases 3–5 are valid on H if t and p are real. Otherwise fu; vg and F are
multivalued with branch points at t and at p in 3. We have to chose the same branch
in fu; vg and F . Also in 7, the branches have to be chosen consistently. In 4 there
are singularities at t D z and t D Nz, but fu; vg and F are univalued.

A.5 Action of the Lie Algebra

The real Lie algebra of G has H D �
1
0

0
�1
�
, V D �

0
1
1
0

�
, W D �

0
�1

1
0

�
as a basis. Any

Y in the Lie algebra acts on V1
s by f j2s Y D @tf j2s etY

ˇ̌
tD0. Note that for right

actions, we have f j ŒY1;Y2� D .f j Y2/ j Y1 � .f j Y1/ j Y2.
In the projective model,



Function Theory Related to the Group PSL2.R/ 199

Table A.3 Potentials for Green’s forms

u v F such that dF D fu; vg Domain

1 ys y1�s .2s � 1/x H

2 y1=2 y1=2 logy �x H

3
R.t I z/s

t 2 R

R.pI z/1�s

p 2 R X ftg
.t�x/.p�x/Cy2

y.p�t/
R.t I z/sR.pI z/1�s H

4
R.t I z/s

t 2 R

R.t I z/1�s s
t�z C s�1

t�Nz � iR.t I z/ H

5 ys
R.t I z/1�s

t 2 R

�.iys C .t � z/ys�1/R.t I z/1�s H

6 ys R.t I z/s �Fs..x � t /=y/; Fs as in (A.25) H

7
R.t I z/s

t 2 R

R.pI z/s

p 2 R X ftg
�
.p � t /2

��s
Fs
�
.p�x/.t�x/Cy2

y.p�t/

�
H

8 ks;˛ is;˛
i� .sC1=2/

23=2�s˛j˛js�1=2 e2i˛x H

9 Ps;0.rei	 / Qs;0.rei	 / �	
U � D X f0g

simply

connected

10
Ps;n.rei	 /

n 2 Z X f0g Qs;n.rei	 / � .�1/n � .sCn/

2in� .s�n/
e2in	

D X f0g

11
Ps;�n.rei	 /

n 2 Z X f0g Qs;n.rei	/
�2in

R
Ps;�m.r/Qs;n.r/

dr
r

� .�1/n	

U � D X f0g
simply

connected

12
Ps;m.rei	 /

m 2 Z

Qs;n.rei	 /

n 2 Z X f�mg
ei.mCn/	/r

�
Qs;n.r/ @rPs;m.r/

� Ps;m.r/ @rQs;n.r/
�
=i.mC n/

D X f0g

f j2s H.�/ D
�
2s
1 � �2
1C �2

C 2�@�

�
f .�/;

f j2s V.�/ D
�

�4s �

1C �2
C .1 � �2/@�

�
f .�/;

f j2s W.�/ D .1C �2/@�f .�/: (A.26)

For the elements EC D H C iV and E� D H � iV in the complexified Lie algebra,
we find
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f j2s EC.�/ D
�

�2s � C i

� � i
� i.� C i/2@ø

�
f .ø/;

f j2s E�.�/ D
�

�2s � � i

� C i
C i.� � i/2@�

�
f .�/: (A.27)

In particular

es;nj2s W D 2in es;n; es;nj2s E˙ D �2.s  n/ es;n�1: (A.28)

By transposition, these formulas are also valid on hyperfunctions.
The Lie algebra generates the universal enveloping algebra, which also acts

on V1
s . The center of this algebra is generated by the Casimir operator ! D

� 1
4
ECE� C 1

4
W2 � i

2
W. It acts on Vs as multiplication by s.1 � s/.

For the action of G by left translation on functions on H:

W D .1C z2/@z C .1C Nz2/@Nz; E˙ D i.z ˙ i/2@z  i.Nz ˙ i/2@Nz;

! D .z � Nz/2@z@Nz D �;
(A.29)

and on D:

W D 2iw@w � 2i Nw@ Nw; EC D 2@w � 2 Nw2@ Nw;

E� D �2w2@w C 2@ Nw; ! D �.1 � jwj2/2 @w@ Nw:
(A.30)

A counterpart of (A.28) is

Ps;n j W D 2inPs;n; Ps;n j EC D 2.s � n/.s C n � 1/ Ps;n�1;

Ps;n j E� D 2Ps;nC1; Qs;n j EC D 2.s � n/.s C n � 1/Qs;n�1;

Qs;n j E� D 2Qs;nC1; Qs;n j W D 2inQs;n:

(A.31)
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Analysis of Degenerate Diffusion Operators
Arising in Population Biology

Charles L. Epstein and Rafe Mazzeo

This paper is dedicated to the memory of Leon Ehrenpreis, a
giant in the field of partial differential equations

Abstract In this chapter, we describe our recent work on the analytic foundations
for the study of degenerate diffusion equations which arise as the infinite population
limits of standard models in population genetics. Our principal results concern ex-
istence, uniqueness, and regularity of solutions when the data belong to anisotropic
Hölder spaces, adapted to the degeneracy of these operators. These results suffice
to prove the existence of a strongly continuous C0-semigroup. The details of the
definitions and complete proofs of these results can be found in [8].

Key words Wright-Fisher process • Diffusion limit • Degenerate diffusion •
Hölder estimate

1 Introduction

In natural haploid population, three principal forces govern the evolution of the
frequencies of different types within the population:

1. Genetic drift: The manifestation of the randomness in the number of
offspring/generation each individual produces
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2. Mutation: The possibility of an individual spontaneously changing from one type
to another

3. Selection: The fact that some types are better adapted to their environment than
others and hence have more offspring

R.A. Fischer and Sewall Wright were among the first to model and quantify
these effects. The simplest form of their model considers a population, of fixed
size Q; with two variants (alleles) a and A at a single locus. In this model, the
entire population reproduces at once, with the generations labeled by a nonnegative
integer. Let Xj denote the number of individuals of type A at time j: The model is
a Markov chain, with transition probabilities:

Prob.XjC1 D kjXj D l/ D pkl.�0; �1; s/; (1)

where �0 is the rate of mutation from type a to type A; �1 the rate of mutation
from type A to type a; and s the selective advantage of type A over a: If
�0 D �1 D s D 0; then only the randomness of mating remains and we see that:

pkl D
�
Q

k

�
lk.Q � l/Q�k

QQ
: (2)

This model has variants, for example, there can be multiple alleles at a single locus
as well as many loci with several alleles.

As discrete models are difficult to analyze, the Markov chain models are often
replaced, following Feller and Kimura by limiting, continuous in time and space,
stochastic processes; see [13]. There is a precise sense in which the paths of the
limiting process are limits of those of the discrete processes; see [10]. This limit
is achieved by allowing the population size to tend to infinity and rescaling both
the state space and the time variable. In the simple 1-site, 2-allele model described
above, one may take the limit of the rescaled process Q�1X�Qt�; as Q ! 1; to
get a Markov process on the unit interval Œ0; 1�: The formal generator of this process
(the “forward” Kolmogorov operator) is the second-order operator:

L D 1

2
@2xx.1 � x/ �m0@x.1 � x/Cm1@xx � �@xx.1 � x/I (3)

herem0;m1; � are scaled versions of �0; �1, and s:
If there are N C 1 possible types, then a typical configuration space for the

resulting continuous Markov process is the N -simplex

SN D f.x1; : : : ; xN / W xj � 0 and x1 C � � � C xN � 1g: (4)

It is possible to obtain different, and sometimes noncompact, domains if the limit is
taken with a different scaling. For example, using a different scaling, we consider
the sequence< Q� 1

2 X�
p
Qt� >;whose limit is a process on Œ0;1/ used in the study

of “rare” alleles.
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The limiting operator of the Wright-Fisher process with N C 1 types, without
mutation or selection, is the Kimura diffusion operator with formal generator:

LKim D
NX

i;jD1
xi .ıij � xj /@xi @xj : (5)

This is the “backward” Kolmogorov operator for the limiting Markov process.
This operator is elliptic in the interior of SN , but the coefficient of the second-
order normal derivative along each codimension one boundary component vanishes
simply. We can introduce local coordinates .r; y1; : : : ; yN�1/ near the interior of
a point on one of the boundary faces so that the boundary is given locally by the
equation r D 0; and the second-order part of the operator then takes the form

r@2r C
N�1X
`D1

c`r@r@y` C
N�1X
`;mD1

c`m@ym@y` ; (6)

where the matrices c`m.r; y/ are positive definite. The key feature here is the fact
that the coefficient of @2r vanishes to order exactly 1: This leads to a further difficulty
in applications to Markov processes since the square root of the coefficient of
the second-order terms is not Lipschitz continuous up to the boundary—indeed,
this square root is Hölder continuous of order 1

2
: It is therefore impossible to

apply standard methods to obtain uniqueness of solutions to either the forward
Kolmogorov equation or the associated Martingale problem.

As a geometric object, the simplex is fairly complicated; its boundary is not a
smooth manifold, but is instead a union of boundary hypersurfaces

˙1;l D fxj D 0g \ SN for l D 1; : : : ; N; and

˙1;0 D fx1 C � � � C xN D 1g \ SN ; (7)

which meet along higher codimension edges. Components of the edge of codimen-
sion l are the intersections

˙1;i1 \ � � � \˙1;il ; (8)

for any choice of integers 0 � i1 < � � � < il � N . The simplex is an example of
a manifold with corners, which seems to be the most natural setting for this class
of operators. This singular structure of the boundary significantly complicates the
analysis of differential operators on such spaces.

The basic existence theory for the operator LKim on SN was initially obtained by
Karlin and Kimura. Their analysis rests on the fact that LKim preserves the space of
polynomials of degree less than or equal to d for each d: This is used to show the
existence of a complete basis of polynomial eigenfunctions for this operator, which
leads in turn to the existence of a polynomial (in space) solution to the initial value
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problem for .@t � LKim/v D 0 with polynomial initial data. Using the maximum
principle, this suffices to prove the existence of a strongly continuous C0-semigroup
and to establish many of its basic properties; see [14].

To include the effects of mutation and selection, one typically adds a vector field
of the form:

V D
NX
iD1

bi .x/@xi ; (9)

where V is inward pointing along the boundary of SN : In the classical models, when
including only the effect of mutation, the coefficients fbi.x/g can be taken as linear
polynomials, but if selection is included, then these coefficients are at least quadratic
polynomials and can be quite complicated; see [5]. Using the Trotter product
formula and the fact that V is inward pointing, Ethier [9] showed that LKim C V

is the generator of strongly continuous semigroup on C0: Various extensions of
these results have been obtained in the intervening years, e.g., by Sato, Cerrami
and Clément, and Bass and Perkins; see [1–4], but these all place fairly restrictive
assumptions on the domain and the operator. For example, Cerrai and Clément
consider diffusions of this type acting on C0.Œ0; 1�N / assuming that the coefficients
aij of @xi @xj have the form

aij .x/ D m.x/Aij .xi ; xj /; (10)

where m.x/ is strictly positive. Bass and Perkins considered a similar class of
operators to those considered herein, but restricted their attention R

nC: Before the
work reported here, very little was known about the true regularity of solutions, or
the basic existence theory, outside of these special cases.

We have not yet said anything about boundary conditions. This would seem to be
a serious omission since, in the absence of boundary conditions, an elliptic PDE
on a manifold with boundary has an infinite dimensional null space. Somewhat
remarkably, in this setting, a seemingly innocuous requirement that solutions have
a certain regularity at the boundary is tantamount to imposing a boundary condition
and ensures uniqueness of solutions of the parabolic problem with given initial data.
We illustrate this in the simplest 1-dimensional case,

@tv � Œx.1 � x/@2x C b.x/@x�v D 0 and v.x; 0/ D f .x/; (11)

with b.0/ � 0; b.1/ � 0. If we simply assume that @xv.x; t/ extends continuously
to Œ0; 1� � .0;1/ and in addition that

lim
x!0C

x.1 � x/@2xv.x; t/ D lim
x!1�

x.1 � x/@2xv.x; t/ D 0; (12)

then a simple argument using the maximum principle shows that (11) has a unique
solution. We explain this in slightly more detail below.
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2 Generalized Kimura Diffusion Operators

In his seminal work [11], Feller analyzed the most general closed extensions of
one-dimensional operators of the form (11) which generate Feller semigroups.
However, as already noted, despite Ethier’s abstract existence theorem, until now
very little has been determined about the finer analytic properties of the solution to
the initial value problem for the heat equation

@t v � .LKim C V /v D 0 in .0;1/ � SN with v.0; x/ D f .x/ (13)

in higher dimensions. Indeed, if one replacesLKim by a qualitatively similar second-
order operator, not of one of the forms described above, then even the existence of
a solution had not been established. To address these issues, we introduce in [8] a
very flexible analytic framework for studying a large class of equations of this type,
including all the standard models appearing in population genetics, and the SIR
model for epidemics, as well as many models that arise in Mathematical Finance.
This approach extends our work in [7] on the one-dimensional case.

We allow the configuration space P to be any manifold with corners, and we
study a class of generalized Kimura diffusion operators @t � L, where L is locally
of the form given below in (15)–(18). Working in this generality is not just a
convenience or an idle generalization, but is actually indispensable for the proofs
of our basic estimates and existence results.

As part of our approach, we introduce nonstandard Hölder spaces naturally
adapted to this class of operators. On this scale of spaces, we establish sharp
existence and regularity results for the solutions to the inhomogeneous and ho-
mogeneous heat equations, as well as for the corresponding elliptic operators.
The Lumer-Phillips theorem then gives the existence of a strongly continuous
semigroup on C0.P / with the given formal generator (backward Kolmogorov
operator). As consequences of this, we conclude the uniqueness of the solution to
the forward Kolmogorov equation, and this in turn establishes the uniqueness-in-
law for associated SDE and the existence of a strongly continuous Markov process
with paths confined to P:

An example of a manifold with corners is a subset of RN defined by inequalities:

P D
K\
kD1

fx 2 B1.0/ W pk.x/ � 0g; (14)

where the pk are smooth functions, k D 1; : : : ; Kg, with fdpik W 1 � k � ng
linearly independent at each point p where pk.p/ D 0, k D 1; : : : ; n. (Note that
this last condition implies that K � N:) More generally, a manifold with corners
P is a topological space for which every point has neighborhood diffeomorphic to
a model orthant RnC � R

m, with n C m D N . The boundary hypersurfaces of P
(in the example above, these are the sets ˙k D P \ fpk.x/ D 0g) are themselves
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manifolds with boundary or corners. Their connected components are called faces.
As in (8), the codimension ` stratum of bP is formed from intersections of ` faces.

The formal generator of a generalized Kimura diffusion operator is a degenerate
elliptic operator

L D
NX

i;jD1
aij .x/@xi @xj C

NX
jD1

bj .x/@xj (15)

satisfying certain conditions. The coefficients are all smooth; .aij .x// is a symmet-
ric matrix-valued function on P which is positive definite in the interior of P and
degenerates along the hypersurface boundary components in a rather specific way.
Again using the notation of the example, we require that

NX
i;jD1

aij .x/@xi pk.x/@xj pk.x/ / pk.x/ as x approaches˙k; (16)

while
NX

i;jD1
aij .x/vivj > 0 for x 2 int˙k and v ¤ 0 2 Tx˙k: (17)

The first-order part of L is an inward pointing vector field

Vpk.x/ D
NX
jD1

bj .x/@xj pk.x/ � 0 for x 2 ˙k: (18)

We call a second-order partial differential operator on P which satisfies all of these
conditions a generalized Kimura diffusion operator.

Let P be a manifold with corners and L a generalized Kimura diffusion operator
on P: Our goal is to prove the existence, uniqueness, and regularity of solutions to
the equation

.@t � L/u D g in P � .0;1/

with u.p; 0/ D f .p/; (19)

where we specify certain boundary conditions along bP � Œ0;1/ and for all data g
and f satisfying appropriate regularity conditions.

3 Model Problems

The problem of proving the existence of solutions to a class of PDEs is essentially a
matter of finding a good class of model problems, for which existence and regularity
can be established, more or less directly, and then finding a functional analytic
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setting in which to do a perturbative analysis of the equations of interest. The model
operators for Kimura diffusions are the differential operators, defined onRnC�R

m by

Lb;m D
nX

jD1
Œxj @

2
xj

C bj @xj �C
mX
kD1

@2yk : (20)

Here b D .b1; : : : ; bn/ is a vector with nonnegative entries. This class of model
operators was also considered in [1].

The boundary conditions imposed along bRnC � R
m can be defined by a local

differential expression on bP which is of a generalized “Neumann” type. We explain
the one-dimensional case. Suppose that b > 0; b 62 N; then the one-dimensional
model operator Lb D x@2x C b@x has two indicial roots

ˇ0 D 0; ˇ1 D 1 � b: (21)

These are, by definition, the values of ˇ determined by the equation Lbxˇ D 0. A
general regularity theorem states that any solution of Lbu D 0 has the form

u D u0.x/x
ˇ0 C u1.x/x

ˇ1 D u0.x/C u1.x/x
1�b; (22)

where u0 and u1 are smooth down to x D 0. To exclude the second term on the right,
we require that u satisfy the boundary condition

lim
x!0C

Œ@x.x
bu.x; t// � bxb�1u.x; t/� D 0: (23)

This condition ensures that u1 D 0 and hence the solution has the maximum
regularity allowed by the data: for example, if g D 0 and f ism-times continuously
differentiable at x D 0, then the same is true when 0 � t for the solution u satisfying
(23), and furthermore u is infinitely differentiable up to x D 0 when t > 0.

A convenient way to encode this boundary condition uses the function space
C2WF.RC/. By definition, the function f belongs to C2WF.RC/; if f 2 C1.RC/ \
C2..0;1// and in addition

lim
x!0C

x@2xf .x/ D 0: (24)

The boundary condition (23) is equivalent to the requirement that u.�; t/ 2 C2WF.RC/
for t > 0. We call this solution, or its analogue in higher dimensions, the regular
solution to the generalized Kimura diffusion operator.

Following [11], there is another natural boundary condition:

lim
x!0C

Œ@x.xu.x; t// � .2 � b/u� D 0I (25)



210 C.L. Epstein and R. Mazzeo

this one is associated to the adjoint operator. Solutions of the adjoint problem
satisfying this boundary condition are not smooth up to the boundary, even when the
data is. Because of the application to Markov processes, the adjoint Lt is naturally
defined as an operator on M1.P /; the space of finite Borel measures on P; which
explains why one is interested in the semigroup generated by L on C0. In any case,
the study of regular solutions of L is naturally approached using the tools of PDE
and is considerably simpler than the study of solutions to the adjoint problem, which
is more naturally approached using techniques from probability theory; see [15].
For example, the null space of L is represented by smooth functions on P; whereas
the null space of Lt is represented by nonnegative measures supported on certain
components of the stratification of bP:

The solution operators for the one-dimensional model problems are given by
simple explicit formulæ. If b > 0; then the heat kernel is

kbt .x; y/dy D
�y
t

�b
e� xCy

t  b

�xy
t2

� dy

y
; (26)

where

 b.z/ D
1X
jD0

zj

j Š� .j C b/
: (27)

If b D 0, then

k0t .x; y/ D e� x
t ı0.y/C

�x
t

�
e� xCy

t  2

�xy
t2

� dy

t
: (28)

Notably, the character of the kernel changes dramatically as b ! 0; but nonetheless,
the regular solutions to this family of heat equations satisfy estimates which are
uniform in b even as b ! 0C: This is essential for the success of our approach.

For the higher dimensional model problems .@t �Lb;m/v D 0, the solution kernel
is the product of one-dimensional kernels:

nY
iD1

k
bi
t .xi ; x

0
i / � 1

.4�t/
m
2

e� jy�y0j2

4t : (29)

In [8] we obtain the existence of a strongly continuous semigroup on the space
C0.RnC � R

m/ generated by Lb;m (and then, more generally, to any general Kimura
diffusion operator L on C0.P /). To study the refined mapping properties of this
semigroup and its adjoint, however, we consider the problem (19), specialized to
the model operator Lb;m, with f and g belonging to a certain family of anisotropic
Hölder spaces associated to the singular, incomplete metric on R

nC � R
m

ds2WF D
nX

jD1

dx2j
xj

C
mX
kD1

dy2m: (30)
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The use of function spaces associated to a certain singular metric in the study
of a class of degenerate operators has been used in many other settings; see in
particular [6, 12]. In the latter of these sources, Goulaouic and Shimakura obtain
a priori estimates in similar Hölder spaces, and for an operator with the same
type of degeneracy we are studying, but assuming that the boundary is smooth.
As in these earlier works, we introduce two separate families of anisotropic Hölder
spaces, Ck;�WF.P /; and Ck;2C�WF .P /; for k 2 N0; and 0 < � < 1: It turns out that

Ck;2C�WF .P / � CkC1;�
WF .P /; but CkC2;�

WF .P / ª Ck;2C�WF .P /; which explains the need for
considering both families of spaces.

In the passage from this family of model problems to the general problem, we
must patch together these model problems with smoothly varying parameters b.
Thus it is necessary to prove estimates for solutions of the model problems with
data in these Hölder spaces, uniformly for b � 0, and notably, it is possible to do
this. These estimates are obtained using the explicit formulæ for the fundamental
solutions; the required analysis is time consuming but elementary. The solution of
the homogeneous Cauchy problem

.@t �Lb;m/u D 0 in P � .0;1/

with u.p; 0/ D f .p/; (31)

has an analytic extension to Re t > 0; which satisfies many useful estimates. To
obtain a gain of derivatives in a manner that can be extended beyond the model
problems, one must address the inhomogeneous problem, which has somewhat
simpler analytic properties. By this device, one can also estimate the Laplace
transform of the heat semigroup, which is the resolvent operator:

.� �Lb;m/
�1 D

1Z
0

etLb;me��tdt: (32)

The estimates for the inhomogeneous problem show that for each k 2 N0; the
operator .� � Lb;m/

�1 maps Ck;�WF.P / to Ck;2C�WF .P /; gaining two derivatives in the
scale of spaces above. It is analytic in � 2 C n .�1; 0�; and one can resynthesize
the heat operator from the resolvent operator via contour integration:

etLb;m D 1

2�i

Z
C

.� � Lb;m/
�1e�td�: (33)

Here C is of the form j arg�j D �
2

C ˛; for an 0 < ˛ < �
2
: This shows that for t

with positive real part, etLb;m also maps Ck;�WF.P / to Ck;2C�WF .P /:
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4 Perturbation Theory

The next step is to use the analysis of the model operators in a perturbative argument
to prove existence and regularity for a generalized Kimura diffusion operator L on
a manifold with corners P: There are several difficulties in doing so:

1. The principal part of L degenerates at the boundary.
2. The boundary of P is not smooth.
3. The “indicial roots” of L vary with the location of the point on bP:
4. The character of the solution operator is quite different at points where the vector

field V is tangent to bP:

Let us expand on some of these further.
The boundary of a manifold with corners is a stratified space. To handle this, we

use an induction on the maximal codimension of the strata of bP: It is for this reason
that we need to consider domains that are not simply polyhedra in R

N :

An additional complication when studying a generalized Kimura diffusion
operator in dimensions greater than 1 is that the coefficient of the normal first
derivative typically varies as one moves along the boundary. This behavior turns
out to be mostly invisible in the study of L, but leads to the thorny issue of a
smoothly varying indicial root when studying the adjoint operator. This places
the analysis of this problem beyond what has been achieved using the detailed
kernel methods familiar in geometric microlocal analysis. This means that we must
carefully analyze the dependence of the model kernels on b and, in particular, must
include the case where some of the bi vanish on some portion of bP . The uniformity
of the estimates in b plays a role precisely here.

The induction starts with the simplest case where bP is a manifold (and P is
a manifold with smooth boundary). In this case, we can use the model operators
to build a parametrix bQb

t for the solution operator to the heat equation in a
neighborhood of the boundary. Using classical arguments and the ellipticity of L in
the interior of P , there is an exact solution operator bQi

t defined on the complement
of a neighborhood of the boundary. We then “glue these together” using a partition
of unity to define a parametrix, bQt for the solution operator. The Laplace transform

bR.�/ D
1Z
0

e�t bQtdt (34)

is then a right parametrix for .� � L/�1: Using the estimates and analyticity for
the model problems, and the properties of the interior solution operator, we can
show that

.�� L/bR.�/ D Id CE.�/; (35)

whereE.�/ is analytic in Cn.�1; 0� with values in the space of bounded operators
on Ck;�WF: For any ˛ > 0; the Neumann series for .Id CE.�//�1 converges in the
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operator norm topology for � in sectors j arg�j � � � ˛; provided j�j sufficiently
large. This allows us to show that

.� �L/�1 D bR.�/.Id CE.�//�1 (36)

is analytic and satisfies certain estimates in

T˛;R D f� W j arg�j < � � ˛; j�j > Rg; (37)

for any 0 < ˛ and R depending on ˛:
For t in the right half plane, we can now reconstruct the heat semigroup acting

on the Hölder spaces:

etL D 1

2�i

Z
bT˛;R˛

.� � L/�1e�td� (38)

for any choice of ˛ > 0: This allows us to verify that etL has an analytic continuation
to Re t > 0; which satisfies the desired estimates with respect to the anisotropic
Hölder spaces defined above.

The proof for the general case now proceeds by induction on the maximal
codimension of the strata of bP: In all cases we use the model operators to
construct a boundary parametrix bQb

t on a neighborhood of the union of these
maximal codimensional strata. By the induction hypothesis, we also obtain an exact
solution operator bQi

t on the complement of a neighborhood of these same maximal
codimensional strata. We glue these together as before to obtain a parametrix bQt :

A crucial point in this argument is to verify that the heat operator we eventually
obtain satisfies a set of hypotheses which allow the induction to be continued. The
representation of etL in (38) is a critical part of this argument.

5 Main Results

We can state our main results. The sharp estimates for the operators etL and .� �
L/�1 are phrased in terms of the two families of Hölder spaces mentioned earlier.
For k 2 N0 and 0 < � < 1; we define the spaces Ck;�WF.P /, Ck;2C�WF .P /; and their

“heat-space” analogues, Ck;�WF.P � Œ0; T �/; Ck;2C�WF .P � Œ0; T �/: For example, in the
one-dimensional case, f 2 C0;�WF.Œ0;1// if f is continuous and

sup
x¤y

jf .x/ � f .y/j
jpx � p

yj� < 1: (39)

It belongs to C0;2C�WF .Œ0;1// if f; @xf; and x@2xf all belong to C0;�WF.Œ0;1//; with

lim
x!0C

x@2xf .x/ D 0:
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For k 2 N; we say that f 2 Ck;�WF.Œ0;1//; if f 2 Ck.Œ0;1//; and @kxf 2
C0;�WF.Œ0;1//: A function g 2 C0;�WF.Œ0;1/� Œ0;1//; if g 2 C0.Œ0;1/� Œ0;1//; and

sup
.x;t/¤.y;s/

jg.x; t/ � g.y; s/j
Œjpx � p

yj C pjt � sj�� < 1; (40)

etc.
To describe the uniqueness properties for solutions to these equations, consider

the geometric structure of the boundary of P: This boundary is a stratified space,
with hypersurface boundary components f˙1;j W j D 1; : : : ; N1g: A boundary
component of codimension n is a component of an intersection

˙1;i1 \ � � � \˙1;in ; (41)

where 1 � i1 < � � � < in � N1: A component of bP is minimal if it is an isolated
point or a positive dimensional manifold without boundary. We denote the union
of minimal components by bPmin: Fix a generalized Kimura diffusion operator L:
Let f�j W j D 1; : : : ; N1g be defining functions for the hypersurface boundary
components. We say that L is tangent to ˙1;j if L�j �˙1;j D 0; and transverse if
there is a c > 0 so that

L�j �˙1;j > c: (42)

If ˙ D ˙1;i1 \ � � � \˙1;ik ; then L is transverse to ˙ if there is a c > 0 so that

L�ij �˙1;ij > c for j D 1 : : : ; k: (43)

We say that a stratum ˙ of the boundary is terminal if ˙ 2 bPmin and L is
tangent to ˙; or L is tangent to ˙ and L˙; its restriction to ˙; is transverse to b˙:
We denote these components by bPter.L/: Using a variant of the Hopf maximum
principle, we can prove

Theorem 5.1. Suppose thatL is either tangent or transverse to every hypersurface
boundary component of bP: The cardinality of the bPter.L/ equals the dimension of
the null space of L acting on C2.P /:

Much of [8] is concerned with proving detailed estimates for the model problems
with respect to these Hölder spaces. We state the results for the general case.

Theorem 5.2. Let P be a manifold with corners, L a generalized Kimura diffusion
operator on P; k 2 N0 and 0 < � < 1: If f 2 Ck;�WF.P /; then there is a unique
solution

v 2 Ck;�WF.P � Œ0;1//\ C1.P � .0;1//

to the initial value problem

.@t �L/v D 0 with v.p; 0/ D f .p/: (44)

This solution has an analytic continuation to t with Re t > 0:
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Theorem 5.3. Let P be a manifold with corners, L a generalized Kimura diffusion
operator on P; k 2 N0; 0 < � < 1, and T > 0: If g 2 Ck;�WF.P � Œ0; T �/; then there
is a unique solution

u 2 Ck;2C�WF .P � Œ0; T �/
to

.@t �L/u D g with u.p; 0/ D 0: (45)

There is a Ck;� so that this solution satisfies

kukWF;k;2C�;T � Ck;� .1C T /kgkWF;k;�;T : (46)

We also have a result for the resolvent of L acting on the spaces Ck;2C�WF .P /:

Theorem 5.4. Let P be a manifold with corners, L a generalized Kimura diffusion
operator on P; k 2 N0; 0 < � < 1: The spectrum, E; of the unbounded, closed
operator L; with domain

Ck;2C�WF .P / � Ck;�WF.P /;

is independent of k; and �: It lies in a conic neighborhood of .�1; 0�: The
eigenfunctions belong C1.P /:

Remark 5.3. Note that Ck;2C�WF .P / is not a dense subspace of Ck;�WF.P /:

Using the Lumer-Phillips theorem, these results suffice to prove that the C0.P /-
graph closure of L acting on C2.P / is the generator of a strongly continuous
contraction semigroup. This in turn suffices to prove that the solution to the adjoint
problem is unique; thereforeL� is the generator of a strongly continuous semigroup,
and the associated Martingale problem has a unique solution. A standard argument
then shows that the paths for associated Markov process remain, almost surely,
within P: From this we can deduce a wide variety of results about the forward
Kolmogorov equation. The precise nature of these results depends on the behavior
of the vector field V along bP:

We refer to the monograph [8] for detailed definitions, explanations, and proofs
of these theorems.
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A Matrix Related to the Theorem of Fermat
and the Goldbach Conjecture

Hershel M. Farkas

Dedicated to the Memory of Leon Ehrenpreis

Abstract In this chapter, we show how converting a Lambert series to a Taylor
series introduces a matrix similar to the Redheffer matrix, whose inverse is
determined by the Mobius function. A variant of the Mobius function which
generalizes the Littlewood function along with this matrix allows one to count the
integral solutions to the equation xl C yl D r . Similar ideas hold for the Goldbach
conjecture.

Key words Fermat’s theorem • Goldbach conjecture • Mobius function • Little-
wood function
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1 Introduction

In this chapter, we show how a matrix which is a “variant” of the Redheffer matrix
[B,F,P], [V1] is connected to the theorem of Fermat and the Goldbach conjecture.
A generalization of the classical Liouville function, which itself is a “variant” of the
Mobius function [H,W], appears and allows a reformulation of Fermat’s theorem.
We hasten to admit that we do not give a new proof of Fermat or prove Goldbach
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here but hope that there is some possibility of using the ideas here presented to do
so. In order to motivate what we shall be doing in the sequel, we begin with a simple
example.

Let us begin with a function defined by the Lambert series

f .z/ D
1X

kD1

akzk

1 � zk
:

For the sake of simplicity, we assume that this series is uniformly convergent in
the unit disc and therefore defines therein a holomorphic function which vanishes
at the origin. This assumption is of course unnecessary since we will be treating
these as formal series. This is explained in the book by Stanley [S] in Chap. 1 where
generating functions are discussed. The Taylor series of this function centered at the
origin is easily seen to be

1X

kD1

akzk.1 C zk C z2k C � � � C znk C � � � / D
1X

kD1

ak.zk C z2k C � � � /

D a1.z C z2 C z3 C � � � / C a2.z2 C z4 C z6 C � � � / C a3.z3 C z6 C z9 C � � � /
C � � � C al .z

l C z2l C � � � / C � � �

D
1X

nD1

0

@
X

d jn
ad

1

A zn D
1X

nD1

cnzn

where

cn D
X

d jn
ad :

We have thus written a formula which converts the Lambert series to a Taylor series
and have given the Taylor coefficients around the origin in terms of the coefficients
ak of the Lambert series.

The above calculation can be put into matrix form. We denote by A the matrix
whose first row has a 1 in the first place and all other entries 0, whose second row
has a 1 in the first and second place and the remaining entries 0, whose kth row has
a one in every place which is a divisor of k and zeros elsewhere. This matrix has
an infinite number of rows and columns and clearly, by construction, satisfies the
matrix equation

0

BBBBBBB@

c1

c2

c3

: : :

cn

: : :

1

CCCCCCCA

D A

0

BBBBBBB@

a1

a2

a3

: : :

an

: : :

1

CCCCCCCA

:



A Matrix Related to the Theorem of Fermat and the Goldbach Conjecture 219

The matrix A will be our starting point in this discussion, and we have here tried
to motivate its discussion. In the final section of this note, we shall show that this
matrix A is a “close relative” of the Redheffer matrix mentioned above.

2 Properties of the Matrix A

A closer look at the matrix A shows that the matrix can alternatively be defined in
the following way. The first column consists of a 1 in each row. The second column
has a 1 in each row which is a multiple of two and 0 elsewhere, while the kth column
has a 1 in each row which is a multiple of k and 0 elsewhere. If we cut the matrix off
after n rows and n columns obtaining a square matrix with n rows and n columns,
since the matrix is lower triangular with ones on the major diagonal, it is clear that
for each n, the determinant of the matrix is 1 and thus, that for each n, the matrix is
nonsingular and has an inverse. Let us denote the finite square matrix with n rows
and n columns by An so that for n D 5, we have

A5 D

0
BBBBB@

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 1 0 1 0

1 0 0 0 1

1
CCCCCA

:

The inverse is easily computed to be

B5 D A�1
5 D

0
BBBBB@

1 0 0 0 0

�1 1 0 0 0

�1 0 1 0 0

0 �1 0 1 0

�1 0 0 0 1

1
CCCCCA

:

In fact, it is not hard to see that the infinite matrix A has an inverse whose
description is most easily given using the classical Mobius function. We recall
that the classical Mobius function �.n/ is defined as follows: �.1/ D 1 and if p

is a prime �.p/ D �1. If n is a positive integer whose prime decomposition is
p

n1

1 ; : : : ; p
nk

k , then if each ni D 1, we define �.n/ D Qk
iD1 �.pi /, while if any ni

is greater than 1, we define �.n/ D 0. We can thus say that if n is not square free,
�.n/ D 0, while if n is square free, �.n/ D 1 if n has an even number of prime
factors and = �1 if n has an odd number of prime factors. From this description, we
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see that the matrix B5 above can be described as follows:

B5 D

0

BBBBB@

�.1/ 0 0 0 0

�.2/ �.1/ 0 0 0

�.3/ 0 �.1/ 0 0

�.4/ �.2/ 0 �.1/ 0

�.5/ 0 0 0 �.1/

1

CCCCCA
:

From the above, it is not hard to guess that the inverse to the general matrix A
should be the matrix whose first column has the value �.n/ in the nth row, whose
second column has the value 0 in all odd numbered rows and the value �.k/ in the
2kth row, and whose l th column has the value �.k/ in the lkth row and all other
values 0.

If we extend the definition of the Mobius function to be zero on the positive
rationals which are not integers, then the picture we have given above is very easy
to describe. The element Bmn of the matrix B is simply �. m

n
/.

Lemma 1. Let Bmn D �. m
n

/. Then

A � B D I:

Proof. Clearly, the element

.A � B/ij D
X

k

AikBkj D
X

k

Aik�

�
k

j

�
:

It is clear that if j > i , then since �.l=j / D 0 for each l � i , the result vanishes. It
is also clear that if j D i , the sum is just equal to 1. Hence, we need only show that
for j < i , the sum vanishes. The reason this will be true is the well-known property
of the Mobius function which asserts

X

d jn
�.d/ D 0

for all n � 2 and equals 1 when n D 1.
Let us denote the j th column of the matrix B by Bj . It is then clear from the

above that A � B1 D e1 where e1 is as usual the vector with a 1 in the first place
and zeros elsewhere. Let us note immediately that if j does not divide i, Ai;lj D 0

for all l. Since these are the only terms which appear in the sum, the sum vanishes.
We can therefore assume that j does divide i and that in fact i D mj . Our sum now
reduces to

Ai;j �.1/ C Ai;2j �.2/ C � � � C Ai;mj �.m/:

The expressions Ai;kj do not vanish precisely when k divides m. Hence, the above
can be rewritten as X

d jm
�.d/
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which vanishes for all m � 2. This concludes the proof showing that indeed
B D A�1.

The matrix A has some interesting properties which are worth mentioning at this
point. For all integers k, let us denote the vector .1k; 2k; 3k; : : : ; nk; : : :/ by Nk . Then

A � N t
k D .�k.1/; �k.2/; : : : ; �k.n/; : : :/ D ˙k

where �k.n/ is the sum of the kth powers of the divisors of n. In particular,
�0.n/ D d.n/ the number of divisors of n.

The interest in this is from the fact that we now have the following relation
between Lambert series and Taylor series:

1X

nD1

nkzn

1 � zn
D

1X

nD1

�k.n/zn:

More important for what we wish to do here is the fact which follows from the
above lemma that A � Bk D ek . From this, we can conclude that

z D
1X

kD1

�.k/zk

1 � zk

z4 D
1X

kD1

�. k
4
/zk

1 � zk

z8 D
1X

kD1

�. k
8
/zk

1 � zk

and in general that for any positive integers m, l we have

zml D
1X

kD1

�. k

ml /z
k

1 � zk
:

If we now fix l � 1, we have z C z2l C z3l C � � � C znl C � � � can be written as

1X

nD1

�.n/zn

1 � zn
C

1X

nD1

�. n

2l /z
n

1 � zn
C � � � C

1X

nD1

�. n

kl /z
n

1 � zn
C � � �

D
1X

nD1

�l .n/zn

1 � zn
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where

�l.n/ D
1X

kD1

�
� n

kl

�
:

It turns out that the case l D 1 is exceptional here, so we shall at this point assume
that l is at least 2.

With the hypothesis l � 2 in force, it is clear that there is at most one nonzero
term in this sum. This is the term �. n

ml / where ml is the largest l th power which
divides n. Every other term will have to vanish either because the quotient is not a
positive integer or because the integer is not square free.

There is another way to define this function �l.n/ which we now describe.

Definition 1. For p a prime and l and ˛ positive integers with l at least 2, we define

�l.p
˛/ D

�1 ˛ � 1 mod l

0 ˛ � 2; : : : ; l � 1 mod l

1 ˛ � 0 mod l

Extend �l.n/ to be a multiplicative function on the positive integers with as usual
�l.1/ D 1.

It is clear that for l � 2, the above definition of �l .n/ coincides with the original
definition.

If we wish to also consider the case l D 1, which we probably should, then the
appropriate definition is �1.1/ D 1 and �1.n/ D 0 for all n � 2.

The case l D 2 is the function defined by Liouville and called the Liouville
function. It is generally denoted by �.n/ and, as we have already seen, satisfies

1X

nD1

zn2 D
1X

nD1

�2.n/zn

1 � zn
D

1X

nD1

�.n/zn

1 � zn
:

In fact, the Mobius function and Liouville functions also satisfy identities related to
the zeta function. The identities in question are [H,W, Chap. 17]

1X

nD1

�.n/

ns
D 1

�.s/
;

1X

nD1

�.n/

ns
D �.2s/

�.s/
:

While the following is not important for our discussion, here we point out the not
too surprising fact that

Proposition 1. For l � 2, we have

1X

nD1

�l .n/

ns
D �.ls/

�.s/
:
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Proof. Begin by recalling that

�.s/ D
Y

p;prime

1

1 � p�s
:

Hence, we have

�.ls/

�.s/
D
Y

p

1 � p�s

1 � p�ls
D
Y

p

.1 � p�s/

 1X

nD0

p�lsn

!

D
Y

p

 1X

nD0

p�lsn � p�.nlC1/s

!
D
Y

p

1X

nD0

�l .p
n/p�ns D

1X

nD1

�l .n/

ns
:

The last equality is just the uniqueness of representations of integers as a product of
primesand the multiplicativity of the function �l.n/.

We remarked previously that the case l D 1 is exceptional but note that if we
would take l D 1 here, the correct definition for �1.n/ is as given previously. The
Mobius function can be thought of also as the limit of �l as l tends to 1.

As a consequence of the above, we observe once again that

Proposition 2.
P

d;d jn �l .d/ D 1 if n is an l th power and vanishes otherwise.

Proof.
1X

nD1

�l .n/

ns
�

1X

nD1

1

ns
D �.ls/ D

1X

nD1

1

nls
:

In this chapter, we think of the matrix A as an operator on the space of Lambert
series transforming them to power series. However, the above suggests that we can
also think of A as an operator on the space of Dirichlet series taking the Dirichlet
series

1X

nD1

an

ns
!

1X

nD1

cn

ns

where cn D P
d jn ad . If one does this, then one immediately sees that the operator A

is simply multiplication by �.s/ and explains the above formula
P1

nD1
�.n/

ns D 1
�.s/

.
This point of view shows the following: If we recall Euler’s � function, �.n/, the
number of positive integers less than n which are relatively prime to n, and the fact
that X

d jn
�.d/ D n

we see two things. The first from the point of view of Dirichlet series that

1X

nD1

�.n/

ns
�.s/ D

1X

nD1

n

ns
D �.s � 1/
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and the second that 1X

nD1

�.n/zn

1 � zn
D

1X

nD1

nzn

the Koebe function expressed as a Lambert series.
In general, we also observe that if we let

P1
nD1

nk

ns D �.s � k/, then �.s/�.s � k/

D P1
nD1

�k.n/

ns .

3 Sums of l th Powers

We now ask the following question!
Let N and l be positive integers. How many nontrivial representations does N

have as a sum of two l th powers. By nontrivial we mean N D xl C yl with x; y

positive integers. For example, if N D 4 and l D 2, the representation 02 C 22 is
trivial and is not counted. The answer to the above question is remarkably easy in
the sense that there is a simple algorithm for the solution.

We construct a vector in ZN �1 which consists of zeros and ones. We put a 1 in the
first place and in every other place that is an l th power. Put zeros in the remaining
places. Let us denote this vector by �l .N /. As an example, take l D 3, N D 5; 10 so
that �3.5/ D .1; 0; 0; 0/; �3.10/ D .1; 0; 0; 0; 0; 0; 0; 1; 0/. Let DN �1 be the square
N � 1 by N � 1 matrix satisfying

.DN �1/k;l D 1 k C l D N

0 otherwise
:

We now consider the quadratic form �l .N /DN �1�t
l .N /.

Theorem 1. The number of nontrivial representations of N as a sum of two l th
powers is given by

�l .N /DN �1�t
l .N /:

Proof.

�l .N /DN �1�t
l .N / D .a1; a2; : : : ; aN �1/DN �1.a1; a2; : : : ; aN �1/t

D
N �1X

i;j D1

ai aj .DN �1/i;j D
N �1X

kD1

akaN �k :

The summands akaN �k are equal to 0 or 1 with the value 1 assumed only when both
the indices k and N �k are l th powers. If this occurs, we have k D ml; N �k D rl

and ml C rl D N . The above sum counts the number of times this happens.

Fermat’s theorem says that when l � 3 and N D cl , we have
�l .N /DN �1 �t

l .N / D �l .c
l /Dcl �1�

t
l .c

l / D 0.
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There does not seem to be any simple way to conclude Fermat’s theorem from the
above even though we have an explicit formula for the number of representations.
The geometric statement is that if we write down the vector �l .N / as a vector in
ZN �1 and then write it down backwards as a vector in ZN �1, the inner product of
these vectors must vanish when N is an l th power.

The fact that we know almost everything when l D 2 allows us to conclude many
things. For example, if N � 3 mod 4, then we clearly have

�2.N /DN �1�
t
2.N / D 0:

Since there are also exact formulas for the number of representations in terms of
the number of divisors congruent to 1 and 3 mod 4 (although these formulae do
not demand nontrivial representations), we can also get formulas for the above
expression in those cases. Finally, we make the point that we at least understand
that l D 2 is different than l > 2 in the sense that when l D 2, �l .k/ never
vanishes. This is not true for l larger than 2. It is of course not clear how to use this
to conclude Fermat.

4 Sums of Two Primes

In the preceding section, we asked the question whether a number N is the sum
of two l th powers. In this section, we ask the question whether a given number
N is the sum of two primes. The famous Goldbach conjecture is that every
even number larger than 2 is the sum of two primes. The same ideas of the
previous section apply only now we use the vector �prime.N / which is a vector
with a 0 in the first place and a 1 in every place that is a prime. All other
entries are 0. Hence, the vector �prime.10/ D .0; 1; 1; 0; 1; 0; 1; 0; 0/. It is clear
that the number of representations of N as a sum of two primes is now given
by �prime.N /DN �1�t

prime.N /. This formula gives the number of representations
of 12 as 2 with 12 D 5 C 7 D 7 C 5. Geometrically, we take the inner product of
(0,1,1,0,1,0,1,0,0,0,1) with (1,0,0,0,1,0,1,0,1,1,0). It is clear that the inner product
in general is positive only when there is at least one prime p in the kth place and
also one companion prime p0 in the N � k place. In this case, we get p C p0 D N .
In this language, the assertion of the Goldbach conjecture is that if N D 2m with
m � 2, then there is at least one prime p with 2 � p � m such that 2m�p is also a
prime. In fact, there is another way to say this which is maybe more suggestive. It is
that given any positive integer N at least two, there is a nonnegative integer x such
that N � x and N C x are primes. In other words, that every integer lies equidistant
between two primes. If N is itself a prime, then x D 0. If x D 1, then N is an even
integer which lies between a pair of twin primes.

Once again, there does not seem to be any simple way of deducing Goldbach
from the above simple (in some sense) explicit formula. Namely, to conclude that
when N D 2m the quadratic form does not vanish.
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5 Return of the Mobius Function

In Sect. 2 above, we have introduced the Mobius function �.n/ and saw that it was
intimately related to the matrix B D A�1. We have already also seen above that

1X

nD1

znl D
1X

nD1

�l .n/zn

1 � zn

thus concluding that if for each N we denote the vector

.�l .1/; �l .2/; : : : ; �l .N � 1//

by ˚l.N /, we clearly have the relation

AN �1 � ˚l.N / D �l.N /:

We now return to our matrix A and use it to define a new finite square matrix
with N � 1 rows and columns. We define a matrix

PN �1 D At
N �1DN �1AN �1

where AN �1 is the matrix A cut off after N � 1 rows and columns. It is clear that
PN �1 is a symmetric matrix with positive integer entries.

Theorem 2. The quadratic form

˚l.N /PN �1˚t
l .N /

counts the number of nontrivial representations of N as a sum of two l th powers.

Proof.

˚l.N /PN �1˚t
l .N / D ˚l.N /At

N �1DN �1AN �1˚t
l .N / D �l .N /DN �1�t

l .N /

and this, as we have already seen above, counts the number of nontrivial represen-
tations of N as a sum of two l th powers.

In particular, we see that if we take N D cl , the quadratic form vanishes by
Fermat’s theorem. We of course would like to show that the form vanishes and thus
prove Fermat this way.

The matrix PN is easily constructed from the matrix AN . Since DN � AN is
simply the matrix A written upside down, i.e., with the last row of AN being the
first row of DN � AN , we will denote DN � AN by QAN . It thus follows that we can
write P as At � QA. As an example, consider the case N D 6. we have
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A5 D

0
BBBBB@

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 1 0 1 0

1 0 0 0 1

1
CCCCCA

; At
5 D

0
BBBBB@

1 1 1 1 1

0 1 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA

; QA5 D

0
BBBBB@

1 0 0 0 1

1 1 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1
CCCCCA

:

It thus follows that

P5 D At
5 � QA5 D

0
BBBBB@

5 2 1 1 1

2 2 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1
CCCCCA

:

Let us note the following about the matrix P5.
The element P11 D 5 and is equal to the number of representations of 6 as

x � 1 C y � 1 with x and y positive integers. The element P12 D 2 and is equal
to the number of representations of 6 as x � 1 C y � 2 again with x and y positive
integers. The element P22 D 2 and is equal to the number of representations of 6 as
x � 2 C y � 2 again with x and y positive integers. In fact, the reader can easily check
that the entry Pij of the matrix is the number of representations of 6 as x � i C y � j

with x and y positive integers. This is a general fact about the matrix PN .

Theorem 3. The entry Pij of the matrix PN �1 is the number of representations of N

as x � i Cy �j with x and y positive integers. In particular, the elements Pk;N �k D 1

for all k D 1; : : : ; N � 1 and Pij D 0 for all pairs i; j with i C j � N C 1.

Proof. We recall that we have already seen that

1X

nD1

znl D
1X

nD1

�l .n/zn

1 � zn
:

It thus follows that
 1X

nD1

znl

!2

D
1X

nD1

rl .n/zn

where rl .n/ is the number of nontrivial representations of n as a sum of two l th
powers. It is easy to see that

 1X

nD1

znl

!2

D
1X

nD1

�l .N /DN �1�l .N /t zn
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which we have already seen is the same as

1X

nD1

˚l .n/PN �1˚l.N /t zn:

We now simply compute

1X

kD1

�l .k/zk

1 � zk
�

1X

mD1

�l .m/zm

1 � zm
D

1X

k;mD1

�l .k/�l .m/zkCm

.1 � zk/.1 � zm/

D
1X

k;mD1

�l .k/�l .m/.zk C z2k C � � � /.zm C z2m C � � � /

D
1X

N D1

0

@
N �1X

k;mD1

�l .k/�l.m/. QPN �1/kmzN

1

A

with . QPN �1/kl the number of representations of N as stated. Finally, though we see
that QPN �1 D PN �1 by uniqueness of power series coefficients.

In fact, returning now to our remarks at the end of Sect. 2, we see that if we define
˚.N / D .�.1/; �.2/; : : : ; �.N � 1// with � Euler’s function, we see that

˚.N /PN �1˚.N /t D .1; 2; : : : ; N � 1/DN �1.1; 2; : : : ; N � 1/t D N 3 � N

6
:

Our final remarks in this section are that Fermat’s claim was that the equation

xn C yn D zn

has no nontrivial integer solutions when n is at least 3. This claim took a very long
time to prove. There are easier claims though which have very simple proofs.

Proposition 3. Let n be a positive odd integer at least 3. Let p be any odd prime.
Then the equation

xn C yn D p

has no positive integer solutions.

Proof. Suppose there were a solution .x0; y0/ with both x0; y0 positive integers.
Then we would have

p D xn
0 C yn

0 D .x0 C y0/.x
n�1
0 � xn�2

0 y C xn�3
0 y2

0 � : : : � x0yn�2
0 C yn�1

0 /

and thus x0 C y0 would have to divide p and therefore since p is prime would
have to equal p. We are, however, given that xn

0 C yn
0 D p and clearly unless

.x0; y0/ D .1; 1/ and p D 2

x0 C y0 < xn
0 C yn

0

which is a contradiction.
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An immediate corollary is

Corollary 1.
�n.p/Dp�1�t

n.p/ D 0

˚n.p/Pp�1˚t
n.p/ D 0

for every odd n � 3 and odd prime p.

Note that for every n, it is true that 1n C 1n D 2.
In particular, we see that the number p�1 for an odd prime p can never be an l th

power when l is at least 3. Of course, when l D 2, it can be and in fact the question
of whether there are an infinite number of primes of the form n2 C 1 is still open.
The answer to the same question for n2kC1 C 1 with k at least 1 is much easier.
There are no such primes.

There is another case of Fermat’s theorem which is easy to prove.

Proposition 4. Let n be a positive odd integer at least 3 and let p be any prime.
Then there are no nontrivial solutions to

xn C yn D pn:

Proof. The proof is very similar to the proof of the previous proposition. Suppose

pn D xn
0 C yn

0 D .x0 C y0/.xn�1
0 � xn�2

0 y C xn�3
0 y2

0 � � � � � x0y
n�2
0 C yn�1

0 /:

Then .x0 C y0/ must divide pn and since the divisors of pn are 1; p; p2; : : : ; pn,
x0 C y0 D pk for some k D 1; : : : ; n.

If k D n, then .x0 C y0/ D pn, and this contradicts xn
0 C yn

0 D pn since unless
.x0; y0/ D .1; 1/

.x0 C y0/ < xn
0 C yn

0 :

The reader easily sees though that (1,1) is not a solution so we have a contradiction.
If k D 1, then x0 C y0 D p and therefore

pn D .x0 C y0/
n D xn

0 C yn
0 C �.x0; yo/

with �.x0; yo/ positive and thus xn
0 C yn

0 < pn which is again a contradiction.
Finally, if k D 2; : : : ; n � 1, we have x0 C y0 D pk . This, however, is already a

contradiction since if xn
0 C yn

o D pn, it must be the case that x0 < p; y0 < p. This
implies that

x0 C y0 < 2p < pk

unless p D k D 2. However, in this case, we have xn
0 C yn

0 D 2n which clearly has
no solutions.

Thus, Fermat’s theorem is simple also when the right-hand side is an nth power
of a prime. This of course yields the following result:
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Corollary 2.
˚l.p

l /Ppl �1˚
t
l .pl / D 0:

The same ideas just used also give us a way of converting the quadratic form

�prime.N /DN �1�t
prime.N /

into a form involving the matrix PN �1. The only issue is what is the vector we
need to use to replace the vector �prime. If we denote the components of the vector
�prime.N / by �.j /, then the sought after vector is just A�1

N �1 � �prime.N /. Denoting
the above by the vector .a1; : : : ; aN �1/, it is clear that

ak D
N �1X

j D1

�

�
k

j

�
�.j / D

X

pjk
�

�
k

p

�

where p of course is a prime.
Let us take an example to see how this works: Recall that we have already

computed

P6 D

0
BBBBB@

5 2 1 1 1

2 2 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1
CCCCCA

:

It thus follows that A�1
6 � �prime.6/ D .a1; : : : ; a5/

t with ak defined above. We
therefore have

a1 D 0; a2 D �.2=2/ D 1; a3 D �.3=3/ D 1; a4 D �.4=2/ D �.2/ D �1;

a5 D �.5=5/ D 1:

We therefore find that

.0; 1; 1; �1; 1/ � P6 � .0; 1; 1; �1; 1/t

D .0; 1; 1; �1; 1/ �

0

BBBBB@

5 2 1 1 1

2 2 0 1 0

1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

1

CCCCCA
� .0; 1; 1; �1; 1/t

D .3; 1; 1; 1; 0/ � .0; 1; 1; �1; 1/t D 1:

This gives the fact that 6 is representable as a sum of two primes in precisely one
way, namely, 6 D 3 C 3.
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We also point out that in the statement of Theorem 3 above, there was no reason

to stop with the computation
P1

kD1
�l .k/zk

1�zk � P1
mD1

�l .m/zm

1�zm . We could just as well
computed the product of r sums and obtained

X

i1;:::;ir

�l .i1/; : : : ; �l .ir /Pi1;i2;:::;ir .N /

where Pi1;:::;ir .N / is the number of representations of N as x1 � i1 C� � �Cxr � ir with
all xi positive integers as the number of nontrivial representations of N as a sum of
r l th powers. In fact, even for a simple product of two sums

P �l .n/zn

1�zn � P �m.n/zn

1�zn

we can obtain ˚l.N /Pn�1˚
t
m.N / is the number of solutions to

xl C ym D N:

6 Concluding Remarks

In this section, we will show two things: The first a quadratic identity for the Mobius
function and then why there is some possibility that one could prove either Fermat
or Goldbach from these considerations. In addition, as promised in the introduction,
we point out how the Redheffer matrix is also easily constructed from the matrix A.
We begin with the quadratic identity.

Let us denote the vector .�.1/; : : : ; �.N � 1// by �.N /. Then it is clear that

�.N / � PN �1 � �t .N / D 0:

This is so because we have already seen that AN �1 � �t .N / D e1. It thus follows
that �.N / � PN �1 � �t .N / D .e1/t � DN �1 � e1 which clearly vanishes.

It is also clear that for any l with l � 2, we have whenever �.k/ ¤ 0 that
�l.k/ D �.k/. It thus follows that

�.N / � PN �1 � �t .N / D
N �1X

i;kD1

�.i/�.k/.PN �1/ik

D
N �1X

m;nD1

�l .m/�l.n/.PN �1/mn

where the sum is taken over all m,n with �.m/ and �.n/ both ¤ 0. It thus also
follows that

N �1X

p;qD1

�l .p/�l.q/.PN �1/pq
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where at least one of �.p/; �.q/ equals zero counts the number of nontrivial
representations of N as a sum of two l th powers. For example, when l D 2 and
N D 5, we would get that the number of representation of 5 as a sum of two
squares is given by

2�2.1/�2.4/.P4/14 C 2�2.2/�2.4/.P4/24 C 2�2.3/�2.4/.P4/34 C �2
2.4/.P4/44:

All terms but the first vanish so the result as expected is 2.
Our final remarks concern the relation of our matrix A to the Redheffer matrix.

We remark that the fact that the Mobius function is related to the Riemann
hypothesis and prime number theorem has been known for a long time. The
connection is via estimates on

P
k �.k/. The Redheffer matrix is a square n by

n matrix whose determinant equals
Pn

kD1 �.k/. It is defined see [V2] as follows:
The Redheffer matrix Bn D .bij /i;j D1;:::;n is defined by bij D 1 when i divides j

and is zero otherwise. Our final remark here is that our matrix AN can easily be
converted into a matrix with the same property.

We define a matrix QR by changing all the zeros in the first row of AN to ones.
It is then evident that the product QR � A�1

N D C , where C is a matrix with C11 DP
k �.k/ and Ck1 D 0 for all k � 2. Striking out the first row and column of C

leaves the N � 1 by N � 1 identity matrix so clearly det.C / D PN
kD1 �.k/. Finally,

since
detC D det QR � detA�1

N D det QR
because detA�1

N D 1, we are done.
While we have not been able to prove either Fermat or Goldbach from the above

considerations, we have at least shown that the Mobius function, or perhaps more
correctly a “variant” of the Mobius function, is also enmeshed in their solution.
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Continuous Solutions of Linear Equations

Charles Fefferman and János Kollár

Abstract We provide necessary and sufficient conditions for existence of contin-
uous solutions of a system of linear equations whose coefficients are continuous
functions.

1 Introduction

Consider a system of linear equations A � y D b where the entries of

A D �
aij .x1; : : : ; xn/

�
and of b D �

bi .x1; : : : ; xn/
�

are themselves continuous functions on R
n. Our aim is to decide whether the system

A � y D b has a solution y D �
yj .x1; : : : ; xn/

�
, where the yj .x1; : : : ; xn/ are also

continuous functions on R
n.

More generally, if the aij and the bi have some regularity property, can we chose
the yj to have the same (or some weaker) regularity properties?

There are two cases when the answer is rather straightforward. If A is invertible
over a dense open subset U � R

n, then y D A�1b holds over U . Thus, there is a
continuous solution iff A�1b extends continuously to R

n. The case when rankA is
constant on R

n can also be treated by standard linear algebra.
By contrast, if the system is underdetermined and rankA varies, the problem

seems quite subtle. In fact, the hardest case appears to be when there is only one
equation in many unknowns. It can be restated as follows.

Question 1 Let f1; : : : ; fr be continuous functions on R
n. Which continuous

functions � can be written in the form
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� D
X

i

�ifi (1.1)

where the �i are continuous functions? Moreover, if � and the fi have some
regularity properties, can we chose the �i to have the same (or some weaker)
regularity properties?

If the fi have no common zero, then a partition of unity argument shows that
every � 2 C0.Rn/ can be written this way and the �i have the same regularity
properties (e.g., being Hölder, Lipschitz, or Cm) as � and the fi . By Cartan’s
theorem B, if � and the fi are real analytic, then the �i can also be chosen real
analytic.

None of these hold if the common zero set Z WD .f1 D � � � D fr D 0/ is not
empty. Even if � and the fi are polynomials, the best one can say is that the �i can
be chosen to be Hölder continuous; see (30.1). Thus, the interesting aspects happen
near the common zero set Z.

The C1-version of Question 1 was studied extensively (see, e.g., [Mal67,
Tou72]) and it played a rôle in the work of Ehrenpreis (see [Ehr70]). The continuous
version studied here is closer in spirit to the following question for L1

loc:
Which functions can be written in the form

P
i  ifi where  i 2 L1

loc?
The answer to the latter variant turns out to be rather simple. If � is such, then

�=
P

i jfi j 2 L1
loc. Conversely, if this holds, then

� D
X

i

�ifi where �i WD �
P

j jfj j �
Nfi

jfi j 2 L1
loc:

Equivalently, the obvious formulas

X

i

jfi j D
X

i

Nfi
jfi jfi and � D �

P
i jfi j

X

i

jfi j (1.2)

show that L1
loc.R

n/ � .f1; : : : ; fr / is the principal ideal generated by
P

i jfi j.
For many purposes, it is even better to write � as

� D
X

i

 ifi where  i WD � NfiP
j jfj j2 2 L1

loc: (1.3)

Note that if � is continuous (resp. differentiable), then the  i given in (1.3) are
continuous (resp. differentiable) outside the common zero set Z; again indicating
the special role of Z.

The above formulas also show that the discontinuity of the  i along Z can be
removed for certain functions.
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Lemma 2 For a continuous function �, the following are equivalent:

(1) � D P
i �ifi where the �i are continuous functions such that limx!z �i D 0

for every i and every z 2 Z.
(2) limx!z

�P
i jfi j D 0 for every z 2 Z. �

Similar conditions do not answer Question 1. First, if the  i defined in (1.3) are
continuous, then � D P

i  ifi is continuous, but frequently, one can write � DP
i �ifi with �i continuous yet the formula (1.3) defines discontinuous functions

 i . This happens already in very simple examples, like f1 D x; f2 D y. For � D x

(1.3) gives

x D x2

x2 C y2
� x C xy

x2 C y2
� y

whose coefficients are discontinuous at the origin.
An even worse example is given by f1 D x2; f2 D y2 and � D xy. Here, �

cannot be written as � D �1f1 C �2f2, but every inequality that is satisfied by x2

and y2 is also satisfied by � D xy. We believe that there is no universal test or
formula as above that answers Question 1. At least it is clear that C0.Rn/ � .x; y/ is
not a principal ideal in C0.Rn/.

Nonetheless, these examples and the concept of axis closure defined by [Bre06]
suggest several simple necessary conditions. These turn out to be equivalent to each
other, but they do not settle Question 1.

The algebraic version of Question 1 was posed by Brenner, which led him to
the notion of the continuous closure of ideals [Bre06]. We learned about it from
a lecture of Hochster. It seems to us that the continuous version is the more basic
variant. In turn, the methods of the continuous case can be used to settle several of
the algebraic problems [Kol10].

3 (Pointwise Tests). For a continuous function � and for a point p 2 R
n, the

following are equivalent:

(1) For every sequence fxj g converging to p, there are  ij 2 C such that
limj!1 ij exists for every i and �.xj / D P

i  ij fi .xj / for every j .

(2) We can write � D P
i  

.p/
i fi where the  .p/i .x/ are continuous at p.

(3) We can write � D �.p/ C P
i c
.p/
i fi where c.p/i 2 C and limx!p

�.p/P
i jfi j D 0.

If � D P
i �ifi where the �i are continuous functions, then we obtain the

 ij ;  
.p/
i by restriction and � D �P

i .�i � �i.p//fi
� C P

i �i .p/fi shows that

� satisfies the third test. Conversely, if � satisfies (3), then �p WD � � P
i c

.p/
i fi is

continuous and limx!p
�pP
i jfi j D 0. By Lemma 2, we can write

� D
X

i

 
.p/
i fi where  

.p/
i WD c

.p/
i C �p NfiP

j jfj j2
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and the  .p/i .x/ are continuous at p. Thus, (2) and (3) are equivalent. One can
see their equivalence with (1) directly, but for us, it is more natural to obtain it by
showing that they are all equivalent to the finite set test to be introduced in (26).

If the common zero set Z WD .f1 D � � � D fr D 0/ consists of a single point p,
then the  .p/i .x/ constructed above are continuous everywhere. More generally, if
Z is a finite set of points, then these tests give necessary and sufficient conditions for
Question 1. However, the following example of Hochster shows that the pointwise
test for every p does not give a sufficient condition in general.

3.4 Example. [Hoc10] Take ff1; f2; f3g WD fx2; y2; xyz2g and � WD xyz.
Pick a point p D .a; b; c/ 2 R

3. If c ¤ 0, then we can write

xyz D 1
c
xyz2 C 1

c
.c � z/xyz and lim

.x;y;z/!.a;b;c/

.c � z/xyz

jx2j C jy2j C jxyz2j D 0;

thus (3.3) holds. Note that if a D b D 0, then 1
c
xyz2 is the only possible constant

coefficient term that works. As c ! 0, the coefficient 1
c

is not continuous; thus, xyz
cannot be written as xyz D �1x

2 C �2y
2 C �3xyz2 where the �i are continuous.

Nonetheless, if c D 0, then

lim
.x;y;z/!.a;b;0/

xyz

jx2j C jy2j C jxyz2j D 0:

shows that (3.3) is satisfied (with all c.a;b;0/i D 0).

One problem is that the coefficients c.p/i are not continuous functions of p.
In general, they are not even functions of p since a representation as in (3.2) or
(3.3) is not unique. Still, this suggests a possibility of reducing Question 1 to a
similar problem on the lower dimensional set Z D .f1 D � � � D fr D 0/.

We present two methods to answer Question 1.
The first method starts with f1; : : : ; fr and � and decides if � D P

i �ifi is
solvable or not. The union of the graphs of all discontinuous solutions .�1; : : : ; �r /
is a subset H � R

n � R
r . Then we use the tests (3.1–3) repeatedly to get smaller

and smaller subsets of H. After 2r C 1 steps, this process stabilizes. This follows
[Fef06, Lem.2.2]. It was adapted from a lemma in [BMP03], which in turn was
adapted from a lemma in [Gla58]. At the end, we use Michael’s theorem [Mic56] to
get a necessary and sufficient criterion. The dependence on � is somewhat delicate.

The second method considers the case when the fi are polynomials (or real-
analytic functions). The method relies on the observation that formulas like (1.2)
and (1.3) give a continuous solution to � D P

i �ifi , albeit not on R
n but on some

real algebraic variety mapping to R
n. Following this idea, we transform the original

Question 1 on R
n to a similar problem on a real algebraic variety Y for which the

solvability on any finite subset is equivalent to continuous solvability.
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The algebraic method also shows that if � is Hölder continuous (resp. semialge-
braic and continuous) and the (1.1) has a continuous solution, then there is also a
solution where the �i are Hölder continuous (resp. semialgebraic and continuous)
(29). By contrast, if can happen that � is a continuous rational function on R

3, (1.1)
has a continuous semialgebraic solution but has no continuous rational solutions
[Kol11].

Both of the methods work for any linear system of equationsA � y D b.

2 The Glaeser–Michael Method

Fix positive integers n, r and let Q be a compact metric space.

4 (Singular Affine Bundles). By a singular affine bundle (or bundle for short), we
mean a family H D .Hx/x2Q of affine subspaces Hx � R

r , parametrized by the
points x 2 Q. The affine subspaces Hx are the fibers of the bundle H. (Here, we
allow the empty set ; and the whole space R

r as affine subspaces of Rr.) A section
of a bundle H D .Hx/x2Q is a continuous map f W Q ! R

r such that f .x/ 2 Hx

for each x 2 Q. We ask:

How can we tell whether a given bundle of H has a section? (2.1)

For instance, let f1; : : : ; fr and ' be given real-valued functions on Q. For x 2 Q,
we take

Hx D f.�1; : : : ; �r / 2 R
r W �1f1.x/C � � � C �rfr.x/ D '.x/g: (2.2)

Then a section .�1; : : : ; �r / of the bundle (2.2) is precisely an r-tuple of continuous
functions solving the equation

�1f1 C � � � C �rfr D ' on Q: (2.3)

To answer Question (2.1), we introduce the notion of “Glaeser refinement.”
(Compare with [Gla58], [BMP03], [Fef06].) Let H D .Hx/x2Q be a bundle. Then
the Glaeser refinement of H is the bundle H0 D .H 0

x/x2Q, where, for each x 2 Q,

H 0
x D f� 2 Hx W dist.�;Hy/ ! 0 as y ! x .y 2 Q/g: (2.4)

One checks easily that

H0 is a subbundle of H, i.e.,H 0
x � Hx for each x 2 Q (2.5)

and
the bundles H and H0 have the same sections. (2.6)
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Starting from a given bundle H, and iterating the above construction, we obtain
a sequence of bundles H0;H1;H2; : : :, where H0 D H and HiC1 is the Glaeser
refinement of Hi for each i . In particular, HiC1 is a subbundle of Hi , and all the
bundles Hi have the same sections.

We will prove the following results.

Lemma 5 (Stabilization Lemma) H2rC1 D H2rC2 D � � �
Lemma 6 (Existence of Sections) Let H D .Hx/x2Q be a bundle. Suppose that H
is its own Glaeser refinement and suppose each fiber Hx is nonempty. Then H has
a section.

The above results allow us to answer Question (2.1). Let H be a bundle, let
H0;H1;H2; : : : be its iterated Glaeser refinements, and let H2rC1 D .eHx/x2Q.
Then H has a section if and only if each fiber eHx is nonempty.

The bundle (2.2) provides an interesting example. One checks that its Glaeser
refinement is given by H1 D .H1

x /x2Q, where

H1
x D

n
.�1; : : : ; �r / 2 R

r W ˇ̌Pr
1�ifi .y/ � '.y/ˇ̌ D o

�Pr
1jfi.y/j

�
as y ! x

o
:

Thus, the necessary condition (3) for the existence of continuous solutions of (2.3)
asserts precisely that the fibersH1

x are all nonempty.
In Hochster’s example (3.4), (2.3) has no continuous solutions, because the

second Glaeser refinement H2 D .H2
x /x2Q has an empty fiber, namely,H2

0 .
We present self-contained proofs of (5) and (6), for the reader’s convenience.

A terse discussion would simply note that the proof of [Fef06, Lem.2.2] also yields
(5) and that one can easily prove (6) using Michael’s theorem [Mic56], [BL00].

7 (Proof of the Stabilization Lemma) Let H0;H1;H2; � � � be the iterated Glaeser
refinements of H and let Hi D .H i

x/x2Q for each i .
We must show that H`

x D H2rC1
x for all x 2 Q, ` � 2r C 1. If H2rC1

x D ;, then
the desired result is obvious.

For nonemptyH2rC1
x , it follows at once from the following.

Claim 7.1k. Let x 2 Q. If dimH2kC1
x � r � k, then H`

x D H2kC1
x for all

` � 2k C 1.
We prove (7.1k) for all k � 0, by induction on k. In the case k D 0, (7.1k)

asserts that
If H1

x D R
r , then H`

x D R
r for all ` � 1. (2.7)

By definition of Glaeser refinement, we have

dimH`C1
x � lim inf

y!x
dimH`

y : (2.8)

Hence, if H1
x D R

r , thenH0
y D R

r for all y in a neighborhood of x. Consequently,

H`
y D R

r for all y in a neighborhood of x and for all ` � 0. This proves (7.1k)
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in the base case k D 0. For the induction step, we fix k and assume (7.1k) for all
x 2 Q. We will prove (7.1kC1). We must show that

If dimH2kC3
x � r � k � 1, thenH`

x D H2kC3
x for all ` � 2k C 3. (2.9)

If dimH2kC1
x � r � k, then (2.9) follows at once from (7.1k). Hence, in proving

(2.9), we may assume that dimH2kC1
x � r � k � 1. Thus,

dimH2kC1
x D dimH2kC2

x D dimH2kC3
x D r � k � 1: (2.10)

We now show that

H2kC2
y D H2kC1

1 for all y near enough to x: (2.11)

If fact, suppose that (2.11) fails, i.e., suppose that

dimH2kC2
y � dimH2kC1

y � 1 for y arbitrarily close to x: (2.12)

For y as in (2.12), our inductive assumption (7.1k) shows that dimH2kC1
y � r �

k � 1. Therefore, for y arbitrarily near x, we have

dimH2kC2
y � dimH2kC1

y � 1 � r � k � 2:

Another application of (2.8) now yields dimH2kC3
x � r � k � 2, contradicting

(2.10). Thus, (2.11) cannot fail.
From (2.11), we see easily that H`

y D H2kC3
y for all y near enough to x and for

all ` � 2k C 3.
This completes the inductive step (2.9) and proves the Stabilization Lemma. �

8 (Proof of Existence of Sections) We give the standard proof of Michael’s
theorem in the relevant special case. We start with a few definitions. If H � R

r

is an affine subspace and v 2 R
r is a vector, then H � v denotes the translate

fw � v W w 2 H g. If H D .Hx/x2Q is a bundle, and if f W Q ! R
r is a continuous

map, then H � f denotes the bundle .Hx � f .x//x2Q. Note that if H is its own
Glaeser refinement and has nonempty fibers, then the same is true of H � f .

Let H D .Hx/x2Q be any bundle with nonempty fibers. We define the norm
kHk WD supx2Q dist.0;Hx/. Thus, kHk is a nonnegative real number or C1.

Now suppose that H D .Hx/x2Q is a bundle with nonempty fibers and suppose
that H is its own Glaeser refinement.

Proposition 9 kHk < C1.

Proof. Given x 2 Q, we can pick wx 2 Hx since Hx is nonempty. Also,
dist.wx;Hy/ ! 0 as y ! x .y 2 Q/, since H is its own Glaeser refinement.
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Hence, there exists an open ball Bx centered at x, such that dist.wx;Hy/ � 1 for
all y 2 Q \ Bx . It follows that dist.0;Hy/ � jwx j C 1 for all y 2 Q \ Bx . We can
cover the compact space Q by finitely many of the open balls Bx .x 2 Q/; say,

Q � Bx1 [ Bx2 [ � � � [ BxN :

Since dist.0;Hy/ � jwxi j C 1 for all y 2 Q \ Bxi , it follows that

dist.0;Hy/ � maxfjwxi j C 1 W i D 1; 2; : : : ; N g for all y 2 Q:

Thus, kHk < C1.

Proposition 10 Given " > 0, there exists a continuous map g W Q ! R
r such that

dist.g.y/;Hy/ � " for all y 2 Q;

and

jg.y/j � kHk C " for all y 2 Q:
Proof. Given x 2 Q, we can find wx 2 Hx such that jwxj � kHk C ". We know
that dist.wx;Hy/ ! 0 as y ! x (y 2 Q), since H is its own Glaeser refinement.
Hence, there exists an open ball B.x; 2rx/ centered at x, such that

dist.wx;Hy/ < " for all y 2 Q \ B.x; 2rx/:

The compact space Q may be covered by finitely many of the open balls B.x; rx/
(x 2 Q); say

Q � B.x1; rx1/ [ � � � [ B.xN ; rxN /:

For each i D 1; : : : ; N , we introduce a nonnegative continuous function e'i on R
n,

supported in B.xi ; 2rxi / and equal to one on B.xi ; rxi /. We then define 'i.x/ D
e'i .x/=.e'1.x/ C � � � C e'N .x// for i D 1; : : : ; N and x 2 Q. (This makes sense,
thanks for (8).)

The 'i form a partition of unity on Q:

• Each 'i is a nonnegative continuous function on Q, equal to zero outside Q \
B.xi ; 2rxi /.

•
PN

iD1 'i D 1 on Q.

We define

g.y/ D
NX

iD1
wxi 'i .y/ for y 2 Q:
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Thus, g is a continuous map from Q into R
r . Moreover, (8) shows that

dist.wxi ;Hy/� " whenever 'i .y/ ¤ 0. Therefore,

dist.g.y/;Hy/ �
NX

iD1
dist.wxi ;Hy/'i .y/

� "

NX

iD1
'i .y/ D " for all y 2 Q:

Also, for each y 2 Q, we have

jg.y/j �
NX

iD1
jwxi j'i .y/ �

NX

iD1
.kHk C "/'i .y/ D kHk C ":

The proof of Proposition 10 is complete.

Corollary 11 Let H be a bundle with nonempty fibers, equal to its own Glaeser
refinement. Then there exists a continuous map g W Q ! R

r , such that kH � gk �
1
2
kHk, and jg.y/j � 2kHk for all y 2 Q.

Proof. If kHk > 0, then we can just take " D 1
2
kHk in Proposition 10. If instead

kHk D 0, then we can just take g D 0.

Now we can prove the existence of sections. Let H D .Hx/x2Q be a bundle.
Suppose the Hx are all nonempty and assume that H is its own Glaeser refinement.
By induction on i D 0; 1; 2; : : : , we define continuous maps fi ; gi W Q ! R

r .
We start with f0 D g0 D 0. Given fi and gi , we apply Corollary 11 to the bundle
H�fi , to produce a continuous map giC1 W Q ! R

r , such that k.H�fi /�giC1k �
1
2
kH � fik, and jgiC1.y/j � 2kH � fik for all y 2 Q.

We then define fiC1 D fi C giC1. This completes our inductive definition of the
fi and gi . Note that f0 D 0, kH � fiC1k � 1

2
kH � fik for each i , and jfiC1.y/�

fi .y/j � 2kH � fik for each y 2 Q, i � 0. Therefore, kH � fik � 2�ikHk for
each i , and jfiC1.y/� fi .y/j � 21�ikHk for each y 2 Q, i � 0. In particular, the
fi converge uniformly onQ to a continuous map f W Q ! R

r , and kH � fik ! 0

as i ! 1.
Now, for any y 2 Q, we have

dist.f .y/;Hy/ D lim
i!1 dist.fi .y/;Hy/

D lim
i!1 dist

�
0;Hy � fi .y/

� � lim inf
i!1 kH � fik D 0:

Thus, f .y/ 2 Hy for each y 2 Q. Since also f W Q ! R
r is a continuous map, we

see that f is a section of H. This completes the proof of existence of sections. �
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12 (Further Problems and Remarks) We return to the equation

�1f1 C � � � C �rfr D ' on R
n; (2.13)

where f1; : : : ; fr are given polynomials.
LetX be a function space, such asCm

loc.R
n/ orC˛

loc.R
n/ .0 < ˛ � 1/. It would be

interesting to know how to decide whether (2.13) admits a solution �1; : : : ; �r 2 X .
Some related examples are given in (30). If ' is real analytic, and if (2.13) admits a
continuous solution, then we can take the continuous functions �i to be real analytic
outside the common zeros of the fi . To see this, we invoke the following

Theorem 13 (Approximation Theorem, see [Nar68]) Let �; � W ˝ ! R be
continuous functions on an open set ˝ � R

n and suppose � > 0 on ˝ . Then
there exists a real-analytic function Q� W ˝ ! R such that j Q�.x/��.x/j � �.x/ for
all x 2 ˝ .

Once we know the Approximation Theorem, we can easily correct a continuous
solution �1; : : : ; �r of (2.13) so that the functions �i are real analytic outside the
common zeros of f1; : : : ; fr . We take ˝ D fx 2 R

n W fi .x/ ¤ 0 for some ig and
set �.x/ D P

i .fi .x//
2 for x 2 ˝ .

We obtain real-analytic functions Q�i on ˝ such that j Q�i � �i j � � on˝ . Setting
h D P

i
Q�ifi � ' D P

i .
Q�i � �i /fi on˝ and then defining

(
�#
i D Q�i � hfi

f 21 C���Cf 2r on ˝

�#
i D �i on R

n n˝

)

;

we see that
P

i �
#
i fi D ', with �#

i continuous on R
n and real analytic on ˝ .

3 Computation of the Solutions

In this section, we show how to compute a continuous solution .�1; : : : ; �r / of the
equation

�1f1 C � � � C �rfr D �; (3.1)

assuming such a solution exists. We start with an example, then spend several
sections explaining how to compute Glaeser refinements and sections of bundles,
and finally return to (3.1) in the general case.

For our example, we pick Hochster’s equation

�1x
2 C �2 y

2 C �3 xyz2 D � on Q D Œ�1; 1�3; (3.2)

where � is a given, continuous, real-valued function on Q. Our goal here is to
compute a continuous solution of (3.2), assuming such a solution exists.



Continuous Solutions of Linear Equations 243

Suppose �1; �2; �3 satisfy (3.2). Then, for every positive integer �, we have

�1

�
1

�
; 0; z

�
� 1
�2

D �

�
1

�
; 0; z

�
;

�2

�
0;
1

�
; z

�
� 1
�2

D �

�
0;
1

�
; z

�
; and

�1

�
1

�
;
1

�
; z

�
� 1
�2

C �2

�
1

�
;
1

�
; z

�
� 1

�2
C �3

�
1

�
;
1

�
; z

�
� z2

�2
D �

�
1

�
;
1

�
; z

�

for all z 2 Œ�1; 1�: Hence, it is natural to define

�1.z/ D lim
�!1 �2 � �

�
1

�
; 0; z

�
; (3.3)

�2.z/ D lim
�!1 �2 � �

�
0;
1

�
; z

�
and (3.4)

�3.z/ D lim
�!1 �2 � �

�
1

�
; 1
�
; z

�
for z 2 Œ�1; 1�. (3.5)

If (3.2) has a continuous solution
�!
� D .�1; �2; �3/, then the limits (3.3) exist,

and our solution
�!
� satisfies

�1.0; 0; z/ D �1.z/; �2.0; 0; z/ D �2.z/; and (3.6)

�1.0; 0; z/C �2.0; 0; z/C z2�3.0; 0; z/ D �3.z/ (3.7)

for z 2 Œ�1; 1�, so that

�3.0; 0; z/ D z�2 � Œ�3.z/� �1.z/� �2.z/� for z 2 Œ�1; 1� X f0g: (3.8)

To recover �3.0; 0; 0/; we just pass to the limit in (3.8). Let us define

� D lim
�!1 �2 � �3

�
1
�

� � �1
�
1
�

� � �2
�
1
�

�
: (3.9)

If (3.2) has a continuous solution
�!
� , then the limit (3.9) exists, and we have

�3.0; 0; 0/ D �: (3.10)

Thus,
�!
� .0; 0; z/.z 2 Œ�1; 1�/ can be computed from the given function �. Note

that �3.0; 0; 0/ arises from � by taking an iterated limit.

Since we assumed that
�!
� is continuous, we have in particular

the functions �i .0; 0; z/ .i D 1; 2; 3/ are continuous on Œ�1; 1�: (3.11)
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From now on, we regard
�!
� .0; 0; z/ D .�1.0; 0; z/; �2.0; 0; z/; �3.0; 0; z// as known.

Let us now define

�!
� #.x; y; z/ D �!

� .x; y; z/ � �!
� .0; 0; z/ D .�#

1.x; y; z/; �
#
2 .x; y; z/; �

#
3 .x; y; z//

(3.12)
and

�#.x; y; z/ D �.x; y; z/�Œ�1.0; 0; z/�x2C�2.0; 0; z/�y2C�3.0; 0; z/�xyz2� (3.13)

on Q. Then, since
�!
� is a continuous solution of (3.2), we see that

�# and all the �#
i are continuous functions on QI (3.14)

�#
i .0; 0; z/ D 0 for all z 2 Œ�1; 1�; i D 1; 2; 3I and (3.15)

�#
1.x; y; z/ � x2 C �#

2.x; y; z/ � y2 C �#
3 .x; y; z/ � xyz2 D �#.x; y; z/ on Q: (3.16)

We don’t know the functions �#
i .i D 1; 2; 3/ , but �# may be computed from the

given function � in (3.2), since we have already computed �i .0; 0; z/.i D 1; 2; 3/:

(See (3.13).)

We now define
�!̊#.x; y; z/ D .˚#

1 .x; y; z/; ˚
#
2 .x; y; z/; ˚

#
3 .x; y; z// to be the

shortest vector .v1; v2; v3/ 2 R
3 such that

v1 � x2 C v2 � y2 C v3 � xyz2 D �#.x; y; z/: (3.17)

Thus,

˚#
1 .x; y; z/ � x2 C˚#

2 .x; y; z/ � y2 C˚#
3 .x; y; z/ � xyz2 D �#.x; y; z/ onQ: (3.18)

Unless x D y D 0, we have

˚#
1 .x; y; z/ D x2

x4 C y4 C x2y2z4
� �#.x; y; z/;

˚#
2 .x; y; z/ D y2

x4 C y4 C x2y2z4
� �#.x; y; z/;

˚#
3 .x; y; z/ D xyz2

x4 C y4 C x2y2z4
� �#.x; y; z/ (3.19)

If x D y D 0; then ˚#
i .x; y; z/ D 0 for i D 1; 2; 3: (3.20)

Since �# may be computed from �, the functions ˚#
i .i D 1; 2; 3/ may also be

computed from �.

Recall that
�!
� # D .�#

1 ; �
#
2 ; �

#
3/ satisfies (3.16). Since

�!̊
.x; y; z/ was defined as

the shortest vector satisfying (3.17), we learn that

ˇ
ˇ �!̊#.x; y; z/

ˇ
ˇ � ˇ

ˇ �!
� #.x; y; z/

ˇ
ˇ for all .x; y; z/ 2 Q: (3.21)
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Since also
�!
� # satisfies (3.14) and (3.15), it follows that

˚#
i .x; y; z/ ! 0 as .x; y; z/ ! .0; 0; z0/; for each i D 1; 2; 3: (3.22)

Here, z0 2 Œ�1; 1� is arbitrary.
We will now check that

˚#
1 ; ˚

#
2 ; ˚

#
3 are continuous functions onQ: (3.23)

Indeed, the ˚#
i are continuous at each .x; y; z/ 2 Q such that .x; y/ ¤ .0; 0/,

as we see at once from (3.14) and (3.19). On the other hand, (3.20) and (3.22) tell
us that the ˚#

i are continuous at each .x; y; z/ 2 Q such that .x; y/ D .0; 0/:

Thus, (3.23) holds.
Next, we set

˚i.x; y; z/ D ˚#
i .x; y; z/ C �i .0; 0; z/ for .x; y; z/ 2 Q; i D 1; 2; 3: (3.24)

Since ˚#
i .x; y; z/ and �i .0; 0; z/ can be computed from �, the same is true of

˚i.x; y; z/.
Also, (3.11) and (3.23) imply

˚1;˚2; ˚3 are continuous functions on Q: (3.25)

From (3.13), (3.18) and (3.24), we have

˚1.x; y; z/ � x2 C ˚2.x; y; z/ � y2 C ˚3.x; y; z/ � xyz2 D �.x; y; z/ on Q: (3.26)

Note also that the ˚i satisfy the estimate

max
x�Q; iD1;2;3

ˇ̌
˚i.x/

ˇ̌ � C max
x�Q; iD1;2;3

ˇ̌
�i .x/

ˇ̌
(3.27)

for an absolute constant C , as follows from (3.13), (3.21), and (3.24).
Let us summarize the above discussion of (3.2). Given a function � W Q ! R,

we proceed as follows:

Step 1: We compute the limits (3.3), (3.4), (3.5) for each z 2 Œ�1; 1�, to obtain the
functions �i .z/ .i D 1; 2; 3/.

Step 2: We compute the limit (3.9), to obtain the number �.
Step 3: We read off the functions �i .0; 0; z/ .i D 1; 2; 3/ from (3.6), (3.7),

(3.8), (3.10).
Step 4: We compute the function �#.x; y; z/ from (3.13).
Step 5: We compute the functions ˚#

i .x; y; z/ .i D 1; 2; 3/ from (3.19)
� � � (3.20).

Step 6: We read off the functions ˚i.x; y; z/ .i D 1; 2; 3/ from (3.24).
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If, for our given �, (3.2) has a continuous solution .�1; �2; �3/, then the limits
exist in Steps 3 and 3, and the above procedure produces continuous functions
˚1;˚2; ˚3 that solve (3.2) and satisfy estimate (3.27).
If instead (3.2) has no continuous solutions, then we cannot guarantee that the limits
in Steps 3 and 3 exist. It may happen that those limits exist, but the functions
˚1;˚2; ˚3 produced by our procedure are discontinuous.

This concludes our discussion of example (3.2). We devote the next several
sections to making calculations with bundles. We show how to pass from a given
bundle to its iterated Glaeser refinements by means of formulas involving iterated
limits. After recalling the construction of “Whitney cubes” (which will be used
below), we then provide additional formulas to compute a section of a given Glaeser
stable bundle with nonempty fibers. These results together allow us to compute a
section of any given bundle for which a section exists. Finally, we apply our results
on bundles, to provide a discussion of (3.1) in the general case, analogous to the
discussion given above for example (3.2).

3.1 Computation of the Glaeser Refinement

We use the standard inner product on R
r . We define a homogeneous bundle to be

a family H0 D .H0
x /x2Q of vector subspaces H0

x � R
r , indexed by the points x

of a closed cube Q � R
n. We allow f0g and R

r , but not the empty set, as vector
subspaces of Rr . Note that the fibers of a homogeneous bundle are vector subspaces
of Rr , while the fibers of a bundle are (possibly empty) affine subspaces of Rr .

Any bundle H with nonempty fibers may be written uniquely in the form

H D .Hx/x2Q D .v.x/CH0
x /x2Q; (3.28)

where H0 D .H0
x /x2Q is a homogeneous bundle, and v.x/ ? H0

x for each x 2 Q:
Let eH be the Glaeser refinement of H, and suppose eH has nonempty fibers. Just

as H may be written in the form (3.28), we can express eH uniquely in the form

eH D .ev.x/C eH0
x/x2Q; (3.29)

where eH0 D .eH0
x/x2Q is a homogeneous bundle, andev.x/ ? eH0

x for each x 2 Q:
One checks easily that eH0 is the Glaeser refinement of H0. The goal of this

section is to understand how the vectors ev.x/.x 2 Q/ depend on the vectors
v.y/.y 2 Q/ for fixed H0.

To do so, we introduce the sets

E D f.x; �/ 2 Q � R
r W � ? H0

x g; and (3.30)

	.x/ D fe� 2 R
r W .x;e�/ belongs to the closure of Eg for x 2 Q:: (3.31)
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The following is immediate from the definitions (3.30), (3.31).

Claim 14 Given e� 2 	.x/; there exist points y� 2 Q and vectors �� 2 R
r .� > 1/;

such that y� ! x and �� ! e� as � ! 1; and �� ? H0
y� for each �: �

Note that E and 	.x/ depend on H0, but not on the vectors v.y/; y 2 Q. The
basic properties of 	.x/ are given by the following result:

Lemma 15 Let x 2 Q. Then:

(1) Each e� 2 	.x/ is perpendicular to eH0
x:

(2) Given any vectorev 2 R
r not belonging to eH0

x; there exists a vector � 2 	.x/

such that � �ev ¤ 0:

(3) The vector space .eH0
x/

? � R
r has a basise�1.x/; : : : ; e�s.x/ consisting entirely

of vectors e�i .x/ 2 	.x/:
Proof. To check (15), let e� 2 	.x/ and letev 2 eH0

x . We must show that e� �ev D 0.
Let y� 2 Q and �� 2 R

r .� > 1/ be as in (3.9). Since ev 2 eH0
x and .eH0

y/y2Q is
the Glaeser refinement of .H0

y /y2Q, we know that distance .ev;H0
y / ! 0 as y ! x.

In particular, distance .ev;H0
y� / ! 0 as � ! 1. Hence, there exist v� 2 H0

y� .v > 1/

such that v� !ev as � ! 1. Since v� 2 H0
y� and �� ? H0

y� , we have �� �v� D 0 for

each �. Since �� ! e� and v� !ev as � ! 1, it follows that e� �ev D 0, proving (15).
To check (15), suppose ev 2 R

r does not belong to eH0
x . Since .eH0

y/y2Q is the
Glaeser refinement of .H0

y /y2Q, we know that distance .ev;H0
y / does not tend to

zero as y 2 Q tends to x. Hence, there exist � > 0 and a sequence of points
y� 2 Q .� > 1/, such that

y� ! x as � ! 1; but dist.ev;H0
y� / > � for each �: (3.32)

Thanks to (3.14), there exist unit vectors �� 2 R
r .� > 1/, such that

�� ? H0
y� and �� �ev > � for each �. (3.33)

Passing to a subsequence, we may assume that the vectors �� tend to a limit e� 2
R
ras � ! 1.
Comparing (3.33) to (3.30), we see that .y�; ��/ 2 E for each �. Since y� ! x

and �� ! e� as � ! 1, the point .x;e�/ belongs to the closure of E; hence,
e� 2 	.x/. Also, e� �ev D lim

�!1�� �ev > � by (3.16); in particular, e� �ev ¤ 0. The proof

of (15) is complete. Finally, to check (15), we note that

\

e�2	.x/
.e�?/ D eH0

x; thanks to (3.10) and (3.11) .

Assertion (15) now follows from linear algebra. The proof of Lemma 15 is complete.
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Let e�1.x/; : : : ;e�s.x/ be the basis for .eH0
x/

? given by (15) and let e�sC1.x/; : : :,
e�r.x/ be a basis for eH0

x: Thus,

e�1.x/; : : : ; e�r.x/ form a basis for Rr : (3.34)

For 1 � i � s, the vector e�i .x/ belongs to	.x/. Hence, by (14), there exist vectors
��i .x/ 2 R

r and points y�i .x/ 2 Q .� > 1/, such that

y�i .x/ ! x as � ! 1; (3.35)

��i .x/ ! e�i .x/ as � ! 1; and (3.36)

��i .x/ ? H0
y�i .x/

for each �: (3.37)

For s C 1 � i � r , we take y�i .x/ D x and ��i .x/ D 0 .� > 1/. Thus, (3.19) holds
also for s C 1 � i � r , although (3.36) holds only for 1 6 i 6 s.

We now return to the problem of computingev.x/.x 2 Q/ for the bundles given
by (3.28) and (3.29). The answer is as follows.

Lemma 16 Given x 2 Q, we have e�i .x/ � ev.x/ D lim
�!1 ��i .x/ � v.y�i .x// for

i D 1; : : : ; r: In particular, the limit in (16) exists.

Remarks. Since e�1.x/; : : : ;e�r.x/ form a basis for Rr , (16) completely specifies
the vector ev.x/. Note that the points y�i .x/ and the vectors e�i .x/; ��i .x/ depend
only on H0, not on the vectors v.y/ .y 2 Q/:
Proof. First, suppose that 1 � i � s. Sinceev.x/ belongs to the fiberev.x/C eH0

x of
the Glaeser refinement of .v.y/CH0

y /y2Q, we know that dist.ev.x/; v.y/CH0
y / ! 0

as y ! x .y 2 Q/. In particular, dist.ev.x/; v.y�i .x//C H0
y�i .x/

/ ! 0 as � ! 1.

Hence, there exist vectors w�i .x/ 2 H0
y�i .x/

such that v.y�i .x// C w�i .x/ ! ev.x/

as � ! 1. Since also ��i .x/ ! e�i .x/ as � ! 1, it follows that e�i .x/ �ev.x/ D
lim

v!1 ��i .x/ � Œv.y�i .x// C w�i .x/�: However, since w�i .x/ 2 H0
y�i .x/

and ��i .x/ ?
H0
y�i .x/

, we have ��i .x/ � w�i .x/ D 0 for each �.

Therefore, e��i .x/ �ev.x/ D lim
�!1 ��i .x/ � v.y�i .x//, i.e., (3.20) holds for 1 � i � s.

On the other hand, suppose s C 1 � i � r . Then since e�i .x/ 2 eH0
x andev.x/ ?

eH0
x , we have e�i .x/ � ev.x/ D 0. Also, in this case, we defined ��i .x/ D 0. Hence,

��i .x/�v.y�i .x// D 0 for each �. Therefore,e�i .x/�ev.x/ D 0 D lim
�!1��i .x/�v.y�i .x//,

so that (16) holds also for s C 1 � i � r . The proof of Lemma 16 is complete.

3.2 Computation of Iterated Glaeser Refinements

In this section, we apply the results of the preceding section to study iterated Glaeser
refinements. Let H D .v.x/ C H0

x /x2Q be a bundle, given in the form (3.28). We
assume that H has a section. Therefore, H and all its iterated Glaeser refinements
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have nonempty fibers. For ` � 0, we write the `th iterated Glaeser refinement in
the form

H.`/ D .v`.x/CH0;`
x /x2Q; (3.38)

whereH0;` D .H0;`
x /x2Q is a homogeneous bundle, and v`.x/ ? H0;`

x for each x 2
Q: (Again, we use the standard inner product on R

r .) In particular, H.0/ D H, and

H0;0 D .H0
x /x2Q; with H0

x as in .3:1/: (3.39)

One checks easily that H0;` is the `th iterated Glaeser refinement of H0;0. Our goal
here is to give formulas computing v`.x/ in terms of the v.y/.y 2 Q/ in (3.1).

We proceed by induction on `. For ` D 0, we have

v0.x/ D v.x/ for all x 2 Q: (3.40)

For ` � 1, we apply the results of the preceding section, to pass from .v`�1.x//x2Q
to .v`.x//x2Q.

Claim 17 We obtain points y`;�i .x/ 2 Q.� � 1; 1 � i � r; x 2 Q/I and vectors
e�`i .x/ 2 R

r .1 � i � r; x 2 Q/;e�`;�i .x/ .1 � i � r; � � 1; x 2 Q/ with
the following properties:

(1) The above points and vectors depend only on H0;0; not on the family of vectors
.v.x//x2Q,

(2) e�`1.x/; : : : ;e�
`
r .x/ form a basis of Rr ; for each ` � 1; x 2 Q:

(3) y`;�i .x/ ! x as � ! 1 for each ` � 1; 1 � i � r; x 2 Q:
(4) Œe�`i .x/ � v`.x/� D lim

�!1Œ
e�`;�i .x/ � v`�1.y`;�i .x//� for each ` � 1; 1 � i � r;

x 2 Q:
The last formula computes the v`.x/ .x 2 Q/ in terms of the v`�1.y/ .y 2 Q/

for ` � 1, completing our induction on `.
Note that we have defined the basis vectors e�`1.x/; : : : ;e�

`
r .x/ only for ` � 1. For

` D 0; it is convenient to use the standard basis vectors for Rr , i.e., we define

e�0i .x/ D .0; 0; : : : ; 0; 1; 0; : : : ; 0/ 2 R
r ;with the 1 in the i th slot. (3.41)

It is convenient also to set

�`i .x/ D e�`i .x/ � v`.x/ for x 2 Q; ` � 0; 1 � i � r; (3.42)

and to expand e�`;�i .x/ 2 R
r in terms of the basis e�`�11 .y/; : : : ;e�`�1r .y/ for y D

y
`;�
i .x/. Thus, for suitable coefficients ˇ`;�ij .x/ 2 R .` � 1; � � 1; 1 � i � r;

1 � j � r; x 2 Q/, we have

e�`;�i .x/ D
rX

ij

ˇ
`;�
ij .x/ � e�`�1j

�
y
`;�
i .x/

�
for x 2 Q; ` � 1; � � 1; 1 � i � r:

(3.43)
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Note that the coefficients ˇ`;�ij .x/ depend only on H0;0; not on the vectors v.y/
.y 2 Q/.

Putting (3.42) and (3.43) into (17.4), we obtain a recurrence relation for the
�`i .x/:

�`i .x/ D lim
�!1

rX

jD1
ˇ
`;�
ij .x/ � �`�1j

�
y
`;�
i .x/

�
for ` � 1; 1 � i � r; x 2 Q:

(3.44)

For ` D 0, (3.40)–(3.42) give

�0i .x/ D Œi th component of v.x/�: (3.45)

Since ˇ
`;�
ij .x/ and y`;�i .x/ are independent of the vectors v.y/.y 2 Q/, our

formulas (3.44), (3.18) express each �`i .x/ as an iterated limit in terms of the vectors
v.y/.y 2 Q/. In particular, the �`i .x/ depend linearly on the v.y/ .y 2 Q/.

We are particularly interested in the case ` D 2r C 1, since the bundle H2rC1 is
Glaeser stable, as we proved in section X.

Since e�2rC11 .x/; : : : ;e�2rC1r .x/ form a basis of Rr for each x 2 Q, there exist
vectors w1.x/; : : : ;wr .x/ 2 R

r for each x 2 Q, such that

v D
rX

iD1
e�2rC1i .x/ � vwi .x/ for any vector v 2 R

r ; and for any x 2 Q: (3.46)

Note that the vectors w1.x/; : : : ;wr .x/ 2 R
r depend only on H0;0; not on the

vectors v.y/.y 2 Q/.
Taking v D v2rC1.x/ in (3.46), and recalling (3.42), we see that

v2rC1.x/ D
rX

iD1
�2rC1i .x/wi .x/ for each x 2 Q: (3.47)

Thus, we determine the �`i .x/ by the recursion (3.44), (3.45), and then compute
v2rC1.x/ from formula (3.47). Since also .H0;2rC1

x /x2Q is simply the .2r C 1/rst .
Glaeser refinement of H0;0, we have succeeded in computing the Glaeser stable

bundle .v2rC1.x/CH0;2rC1
x /x2Q in terms of the initial bundle as in (3.28).

Our next task is to give a formula for a section of a Glaeser stable bundle. To carry
this out, we will use “Whitney cubes,” a standard construction which we explain
below.

3.3 Whitney Cubes

In this section, for the reader’s convenience, we review “Whitney cubes” (see
[Mal67, Ste70, Whi34]). We will work with closed cubes Q � R

n whose sides are
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parallel to the coordinate axes. We write ctr.x/ and ıQ to denote the center and side
length of Q, respectively, and we write Q� to denote the cube with center ctr.Q/
and side length 3ı.

To “bisect”Q is to write it as a union of 2n subcubes, each with side length 1
2
ıQ,

in the obvious way; we call those 2n subcubes the “children” of Q.
Fix a cube Qo. The “dyadic cubes” are the cube Qo, the children of Qo, the

children of the children of Qo, and so forth. Each dyadic Q is a subcube of Qo. If
Q is a dyadic cube other than Qo, then Q is a child of one and only one dyadic
cube, which we call QC. Note that QC � Q�.

Now let E1 be a nonempty closed subset of Qo. A dyadic cube Q ¤ Qo will be
called a “Whitney cube” if it satisfies

dist.Q�; E1/ � ıQ; and (3.48)

dist..QC/�; E1/ < ıQC : (3.49)

The next result gives a few basic properties of Whitney cubes. In this section, we
write c; C; C 0, etc. to denote constants depending only on the dimension n. These
symbols need not denote the same constant in different occurrences.

Lemma 18 For each Whitney cube Q, we have:

(1) ıQ � dist.Q�; E1/ � CıQ:

(2) In particular,Q� \ E1 D �:

(3) The union of all Whitney cubes is Qo X E1:

(4) Any given y 2 Qo X E1 has a neighborhood that meets Q� for at most C
distinct Whitney cubesQ.

Proof. Estimates (1) follow at once from (1) and (2), and (4) is immediate from (3).
To check (3), we note first that each Whitney cube Q is contained in Qo X E1,

thanks to (2) and our earlier remark that every dyadic cube is contained in Qo.
Conversely, let x 2 QoXE1 be given. Any small enough dyadic cube bQ containing
x will satisfy (3.48). Fix such a bQ. There are only finitely many dyadic cubes Q
containing x with side length greater than or equal to ıbQ. Hence, there exists a
dyadic cube Q 3 x satisfying (3.48), whose side length is at least as large as
that of any other dyadic cube Q0 3 x satisfying (3.48). We know that Q ¤ Qo,
since (3.48) fails for Qo. Hence, Q has a dyadic parent QC. We know that (3.48)
fails forQC, since the side length ofQC is greater than that ofQ. It follows thatQ
satisfies (3.49). Thus,Q 3 x is a Whitney cube, completing the proof of (3).

We turn our attention to (4). Let y 2 QoXE1. We set r D 10�3 distance .y;E1/,
and we prove that there are at most C distinct Whitney cubesQ for whichQ� meets
the ball B.x; r/.

Indeed, let Q be such a Whitney cube. Then there exists z 2 B.y; r/ \ Q�.
By (3.55), we have

ıQ � dist.z; E1/ � CıQ: (3.50)



252 C. Fefferman and J. Kollár

Since z 2 B.y; r/, we know that jdist.z; E1/ � dist.y;E1/ j � 10�3 dist.y;E1/.
Hence

.1 � 10�3/ dist.y;E1/ � dist.z; E1/ � .1C 10�3/ dist.y;E1/: (3.51)

From (3.50), (3.51) we learn that

c dist.y;E1/ � ıQ � C dist.y;E1/: (3.52)

Since z 2 B.y; r/ \Q�, we know also that

dist.y;Q�/ � dist.y;E1/: (3.53)

For fixed y, there are at most C distinct dyadic cubes that satisfy (3.52), (3.53).

Thus, (3.6) holds and Lemma 18 is proven.

The next result provides a partition of unity adapted to the geometry of the
Whitney cubes.

Lemma 19 There exists a collection of real-valued functions 
Q onQo, indexed by
the Whitney cubesQ, satisfying the following conditions:

(1) Each 
Q is a nonnegative continuous function on Qo:

(2) For each Whitney cube Q; the function 
Q is zero on Qo XQ�:
(3)

P
Q
Q D 1 on Qo X E1:

Proof. Let e
.x/ be a nonnegative, continuous function on R
n, such that e
.x/ D 1

for x D .x1; : : : ; xn/ with max fjx1j; : : : ; jxnjg � 1
2

and e
.x/ D 0 for x D
.x1; : : : ; xn/ with max fjx1 j; : : : ; jxnjg � 1.

For each Whitney cube Q, define e
Q.x/ D e

�
x�ctr.Q/

ıQ

�
; for x 2 R

n. Thus,
e
Q is a nonnegative continuous function on R

n, equal to 1 on Q and equal to
0 outside Q�. It follows easily, thanks to (3) and (4), that

P

Q0

e
Q0 is a nonnegative

continuous function on Qo X E1, greater than or equal to one at every point of
Qo X E1.

Consequently, the functions 
Q, defined by 
Q.x/ D e
Q.x/�
P

Q0

e
Q0.x/ for

x 2 Qo X E1, 
Q.x/ D 0 for x 2 E1, are easily seen to satisfy (1)–(3).

Additional basic properties of Whitney cubes and sharper versions of Lemma 19
may be found in [Mal67, Ste70, Whi34].

The partition of unity f
Qg onQoXE1 is called the “Whitney partition of unity.”
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3.4 The Glaeser–Stable Case

In this section, we suppose we are given a Glaeser-stable bundle with nonempty
fibers, written in the form

H D .v.x/CH0
x /x2Q; (3.54)

where H0 D .H0
x /x2Q is a homogeneous bundle, and

v.x/?H0
x for each x 2 Q: (3.55)

(As before, we use the standard inner product on R
r .) Our goal here is to give a

formula for a section F of the bundle H. We will take

F.x/ D P

y2S.x/
A.x; y/v.y/ 2 R

r for each x 2 Q; where (3.56)

S.x/ � Q is a finite set for each x 2 Q and (3.57)

A.x; y/ W Rr ! R
r is a linear map, for each x 2 Q;y 2 S.x/: (3.58)

Here, the sets S.x/ and the linear maps A.x; y/ are determined by H0I they do not
depend on the family of vectors .v.x//x2Q:

We will establish the following result.

Theorem 20 We can pick the S.x/ and A.x; y/ so that (3.57), (3.58) hold, and the
function F W Q ! R

r , defined by (3.56), is a section of the bundle H. Moreover,
that section satisfies:

(1) max x2Q jF.x/ j � C supx2Qjv.x/j; where C depends only on n and r:
(2) Furthermore, each of the sets S.x/ contains at most d points, where d depends

only on n and r:

Note: Since v.x/ is the shortest vector in v.x/ C H0
x by (3.55), it follows that

sup x2Q jv.x/j D sup x2Q distance .0; v.x/ C H0
x / Dk H k< 1; see our earlier

discussion of Michael’s theorem.

Proof. Roughly speaking, the idea of our proof is as follows. We partition Q into
finitely many “strata,” among which we single out the “lowest stratum” E1. For
x 2 E1, we simply set F.x/ D v.x/. To define F on Q X E1, we cover Q X E1
by Whitney cubes Q�: Each Q�

� fails to meet E1, by definition, and therefore has
fewer strata than Q. Hence, by induction on the number of strata, we can produce
a formula for a section F� of the bundle H restricted to Q�

� . Patching together the
F� by using the Whitney partition of unity, we define our section F onQ XE1 and
complete the proof of Theorem 20.
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Let us begin our proof. For k D 0; 1; : : : ; r; the kth “stratum” of H is defined by

E.k/ D fx 2 Q W dim H0
x D kg: (3.59)

The “number of strata” of H is defined as the number of nonempty E.k/; this
number is at least 1 and at most r C 1. We write E1 to denote the stratum E.kmin/,
where kmin is the least k such that E.k/ is nonempty. We call E1 the “lowest
stratum.”

We will prove Theorem 20 by induction on the number of strata, allowing the
constants C and d on (1), (2), to depend on the number of strata, as well as on
n and r . Since the number of strata is at most r C 1, such an induction will yield
Theorem 20 as stated.

Thus, we fix a positive integer	 and assume the inductive hypothesis:

(H1) Theorem 20 holds, with constants C	�1; d	�1 in (3.8), (3.9), whenever the
number of strata is less than 	:

We will then prove Theorem 20, with constants C	; d	 in (1), (2), when-
ever the number of strata is equal to 	. Here, C	 and d	 are determined by
C	�1; d	�1; n and r . To do so, we start with (3.54), (3.3) and assume that:

(H2) The number of strata of H is equal to 	:

We must produce sets S.x/ and linear maps A.x; y/ satisfying (3.57) � � � (2),
with constants C	; d	 depending only on C	�1; d	�1; n; r: This will complete our
induction and establish Theorem 20.

For the rest of the proof of Theorem 20, we write c; C; C 0, etc. to denote constants
determined by C	�1; d	�1; n; r . These symbols need not denote the same constant
in different occurrences.

The following useful remark is a simple consequence of our assumption that the
bundle (3.54) is Glaeser stable. Let x 2 E.k/ and let

v1; : : : ; vkC1 2 v.x/CH0
x (3.60)

be the vertices of a nondegenerate affine k-simplex in R
r : Given � > 0;

there exists ı > 0 such that for any y 2 Q \ B.x; ı/; there exist v0
1; : : : ; v

0
kC1 2

v.y/CH0
y satisfying jv0

i � vi j < � for each i . Here, as usual, B.x; ı/ denotes the
ball of radius ı about x.

Taking � small enough in (3.60), we conclude that v0
1; : : : ; v

0
kC1 2 v.y/ C H0

y

are the vertices of a nondegenerate affine k-simplex in R
r . Therefore, (3.60) yields

at once that if x 2 E.k/, then dim H0
y � k for all y 2 Q sufficiently close to x.

In particular, the lowest stratumE1 is a nonempty closed subset ofQ. Also, for each
k D 0; 1; 2; : : : ; r , (3.60) shows that the map

x 7! v.x/CH0
x (3.61)

is continuous from E.k/ to the space of all affine k-dimensional subspaces of Rr .
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Since each H0
x is a vector subspace of Rr , we learn from (3.55) and (3.61) that

the map x 7! v.x/ is continuous on each E.k/. In particular,

x 7! v.x/ is continuous on E1: (3.62)

Next, we introduce the Whitney cubes fQ�g and the Whitney partition of unity
f
�g for the closed set E1 � Q. From the previous section, we have the following
results. We write ı� for the side length of the Whitney cube Q� . Note that

ı� � dist.Q�
� ; E1/ � Cı� for each �: (3.63)

Q�
� \E1 D � for each �: (3.64)

S

�

Q� D Q X E1: (3.65)

Any given y 2 Q XE1 has a neighborhood that meets
Q�
� for at most C distinctQ�:

(3.66)

Each 
� is a nonnegative continuous function onQ;
vanishing outsideQ \Q�

� :
(3.67)

P

�


�.x/ D 1 if x 2 Q XE1; 0 if x 2 E1: (3.68)

Thanks to (3.19), we can pick points x� 2 E1 such that

dist.x�;Q�
� / � Cı�: (3.69)

We next prove a continuity property of the fibers v.x/CH0
x .

Lemma 21 Given x 2 E1 and � > 0, there exists ı > 0 for which the following
holds. Let Q� be a Whitney cube such that distance .x;Q�

� / < ı. Then:

(1) jv.x/ � v.x�/j < �, and
(2) dist.v.x/; v.y/CH0

y / < � for all y 2 Q�
� \Q:

Proof. Fix x 2 E1 and � > 0. Let ı > 0 be a small enough number, to be picked
later. Let Q� be a Whitney cube such that

dist.x;Q�
� / < ı: (3.70)

Then, by (3.19), we have

ı� � dist.E1;Q
�
� / � dist.x;Q�

� / < ı; (3.71)
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hence, (3.69) and (3.70) yield the estimates

jx � x� j � dist.x;Q�
� /C diameter .Q�

� /C dist.Q�
� ; x�/ � ı C Cı� � C 0ı:

(3.72)

Since x and x� belong to E1, (3.72) implies (1), thanks to (3.62), provided we take
ı small enough. Also, for any y 2 Q�

� \Q, we learn from (3.70), (3.71) that
jy � xj � diameter .Q�

� /C dist.x;Q�
� / < Cı� C Cı � C 0ı.

Since the bundle .v.z/ C H0
z /z2Q is Glaeser stable, it follows that (3.26) holds,

provided we take ı small enough.
We now pick ı > 0 small enough that the above arguments go through.

Then (3.25) and (3.26) hold. The proof of Lemma 21 is complete.

We return to the proof of Theorem 20. For each Whitney cube Q� , we prepare to
apply our inductive hypothesis (H1) to the family of affine subspaces

H� D .v.y/� v.x�/CH0
y /y2Q�

� \Q: (3.73)

SinceQ�
� \Q is a closed rectangular box, but not necessarily a cube, it may happen

that (3.73) fails to be a bundle. The cure is simply to fix an affine map �� W Rn ! R
n,

such that ��.Qo/ D Q�
� \Q, where Qo denotes the unit cube.

The family of affine spaces

LH� D �
v.�� Ly/ � v.x�/CH0

�� Ly
�

Ly2Qo is then a bundle. (3.74)

We write (3.73) in the form

H� D �
v�.y/CH0

y

�
y2Q�

� \Q; where (3.75)

v�.y/?H0
y for each y 2 Q�

� \Q: (3.76)

The vector v�.y/ is given by

v�.y/ D ˘yv.y/ �˘yv.x�/ for y 2 Q�
� \Q; where (3.77)

˘y denotes the orthogonal projection from R
r onto the orthocomplement of H0

y .

Passing to the bundle LH� , we find that

LH� D
�

Lv�. Ly/CH0
�� Ly

�

Ly2Qo
; with (3.78)

Lv�. Ly/?H0
�� Ly for each Ly 2 Qo: (3.79)

Here, Lv�. Ly/ is given by

Lv�. Ly/ D v�.�� Ly/: (3.80)
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It is easy to check that LH� is a Glaeser-stable bundle with nonempty fibers.
Moreover, from (3.12) and (21), we see that the function y 7! dimH0

y takes at

most 	� 1 values as y ranges overQ�
� \Q. Therefore, the bundle LH� has at most

	� 1 strata.
Thus, our inductive hypothesis (3.11) applies to the bundle LH� . Consequently,

we obtain the following results for the family of affine spaces H� .
We obtain sets

S�.x/ � Q�
� \Q for each x 2 Q�

� \Q; (3.81)

and linear maps

A�.x; y/ W R
r ! R

r for each x 2 Q�
� \Q;y 2 S�.x/: (3.82)

The sets S�.x/ each contain at most C points. (3.83)

The S�.x/ and A�.x; y/ are determined by .H0
z /z2Q�

� \Q: (3.84)

Moreover, setting

F�.x/ D
X

y2S�.x/
A�.x; y/v�.y/ for x 2 Q�

� \Q; (3.85)

we find that
F� is continuous on Q�

� \Q; (3.86)

F�.x/ 2 v�.x/CH0
x D v.x/ � v.x�/CH0

x for each x 2 Q�
� \Q; (3.87)

and

max
x2Q�

� \Q
ˇ̌
F�.x/

ˇ̌ � C sup
y2Q�

� \Q

ˇ̌
v�.y/

ˇ̌
: (3.88)

Let us estimate the right-hand side of (3.88). For anyQ� , formula (3.77) shows that

sup
y2Q�

� \Q

ˇ
ˇ v�.y/

ˇ
ˇ � 2 sup

y2Q
ˇ
ˇ v.y/

ˇ
ˇ : (3.89)

Moreover, let x 2 E1; � > 0 be given, and let ı be as in Lemma 21. Given any Q�

such that distance .x;Q�
� / < ı, and given any y 2 Q�

� \Q, Lemma 21 tells us that

ˇ
ˇ v.x/ � v.x�/

ˇ
ˇ < � and distance .v.x/; v.y/CH0

y / < �:

Consequently,

dist.0; v.y/� v.x�/CH0
y / < 2� and

ˇ
ˇ v.x/ � v.x�/

ˇ
ˇ< �: (3.90)

From (3.73), (3.75), (3.76), we see that v�.y/ is the shortest vector in v.y/�v.x�/C
H0
y . Hence, (3.90) yields the estimate

ˇ
ˇ v�.y/

ˇ
ˇ < 2�.
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Therefore, we obtain the following result. Let x 2 E1 and � > 0 be given. Let ı
be as in Lemma 21. Then, for anyQ� such that distance .x;Q�

� / < ı; we have

sup
y2Q�

� \Q

ˇ
ˇ v�.y/

ˇ
ˇ � 2�; and

ˇ
ˇ v.x/ � v.x�/

ˇ
ˇ< �: (3.91)

From (3.88), (3.89), (3.91), we see that

max
x2Q�

� \ Q

ˇ
ˇ F�.x/

ˇ
ˇ� C sup

y2Q
ˇ
ˇ v.y/

ˇ
ˇ (3.92)

for each � and that the following holds. Let x 2 E1 and � > 0 be given. Let ı be as
in Lemma 21 and let y 2 Q�

� \Q \ B.x; ı/. Then

ˇ
ˇ F�.y/

ˇ
ˇ � C�; and

ˇ
ˇ v.x/ � v.x�/

ˇ
ˇ< �: (3.93)

We now define a map F W Q ! R
r , by setting

F.x/ D v.x/ for x 2 E1; and (3.94)

F.x/ D
X

�


�.x/ � F�.x/C v.x�/ for x 2 Q X E1: (3.95)

Note that (3.95) makes sense, because the sum contains finitely many nonzero terms
and because 
� D 0 outside the set where F� is defined.

We will show that F is given in terms of the .v.y//y2Q by a formula of the
form (3.56) and that conditions (3.57) � � � (20) are satisfied. As we noted just
after (H2), this will complete our induction on	 and establish Theorem 20.

First, we check that our F.x/ is given by (3.56), for suitable S.x/; A.x; y/. We
proceed by cases. If x 2 E1, then already (3.94) has the form (3.56), with

S.x/ D fxg and A.x; y/ D identity. (3.96)

Suppose x 2 Q XE1. Then F.x/ is defined by (3.95).
Thanks to (3.67), we may restrict the sum in (3.95) to those � such that x 2 Q�

� .
For each such �, we substitute (3.77) into (3.85) and then substitute the resulting
formula for F�.x/ into (3.95). We find that

F.x/ D
X

Q�
� 3x


�.x/ � v.x�/C
X

y2S�.x/
A�.x; y/ � �

˘yv.y/ �˘yv.x�/
�

(3.97)

which is a formula of the form (3.4).
Thus, in all cases, F is given by a formula (3.4). Moreover, examining (3.96)

and (3.97) (and recalling (3.81) � � � (3.84) as well as (3.20), we see that (3.5)–(3.7)
hold and that in our formula (3.4) for F , each S.x/ contains at most C points.
Thus, (3.9) holds, with a suitable d	 in place of d .
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It remains to prove (3.8) and to show that our F is a section of the bundle H.
Thus, we must establish the following.

F W Q ! R
r is continuous. (3.98)

F.x/ 2 v.x/CH0
x for each x 2 Q: (3.99)

ˇ̌
F.x/

ˇ̌ � C supy2Q
ˇ̌
v.y/

ˇ̌
for each x 2 Q: (3.100)

The proof of Theorem 20 is reduced to proving (3.98)–(3.100).
Let us prove (3.98). Fix x 2 Q; we show that F is continuous at x. If x … E1,

then (3.66), (3.67), (3.86), and (3.95) easily imply that F is continuous at x.
On the other hand, suppose x 2 E1. To show that F is continuous at x, we must

prove that
lim

y!x;y2E1
v.y/ D v.x/ and that (3.101)

lim
y!x;y2QXE1

X

�


�.y/F�.y/C v.x�/ D v.x/: (3.102)

We obtain (3.101) as an immediate consequence of (3.62). To prove (3.102), we
bring in (3.93). Let � > 0 and let ı > 0 arise from �; x as in (3.93). Let y 2 QXE1
and suppose

ˇ
ˇy � x

ˇ
ˇ < ı. For each � such that y 2 Q�

� , (3.93) gives

ˇ
ˇ
�.y/ � ŒF�.y/C v.x�/� v.x/�

ˇ
ˇ � C�
�.y/: (3.103)

For each � such that y … Q�
� , (3.103) holds trivially, since 
�.y/ D 0. Thus, (3.103)

holds for all �. Summing on �, and recalling (3.68), we conclude that
ˇ
ˇ
X

�


�.y/ � F�.y/C v.x�/ � v.x/
ˇ
ˇ � C�:

This holds for any y 2 Q X E1 such that
ˇ
ˇy � x

ˇ
ˇ < ı. The proof of (3.102) is

complete. Thus, (3.98) is now proven.
To prove (3.99), we again proceed by cases. If x 2 E1, then (3.99) holds trivially,

by (3.94). On the other hand, suppose x 2 Q X E1. Then (3.87) gives ŒF�.x/ C
v.x�/� 2 v.x/CH0

x for each � such that Q�
� 3 x.

Since also 
�.x/ D 0 for x … Q�
� , and since

P

�


�.x/ D 1, it follows that

X

�


�.x/ � ŒF�.x/C v.x�/� 2 v.x/CH0
x ; i:e:;

F .x/ 2 v.x/CH0
x . Thus, (3.99) holds in all cases.

Finally, we check (3.100). For x 2 E1, (3.100) is trivial from the defini-
tion (3.94). On the other hand, suppose x 2 Q X E1. For each � such that
Q�
� 3 x, (3.92) gives

ˇ
ˇ
�.x/ � ŒF�.x/C v.x�/�

ˇ
ˇ � C
�.x/ � sup

y2Q
ˇ
ˇv.y/

ˇ
ˇ: (3.104)
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Estimate (3.104) also holds trivially for x … Q�
� , since then 
�.x/ D 0.

Thus, (3.104) holds for all �. Summing on �, we find that

ˇ
ˇF.x/

ˇ
ˇ �

X

�

ˇ
ˇ
�.x/ � ŒF�.x/Cv.x�/�

ˇ
ˇ � C sup

y2Q
ˇ
ˇv.y/

ˇ
ˇ �

X

�


�.x/ D C sup
y2Q

ˇ
ˇv.y/

ˇ
ˇ;

thanks to (3.68) and (3.95).
Thus, (3.100) holds in all cases. The proof of Theorem 20 is complete. �

Let eF be any section of the bundle H in Theorem 20. For each x 2 Q, we have
jv.x/j � jeF .x/j, since eF .x/ 2 v.x/CH0

x and v.x/?H0
x . Therefore, the section F

produced by Theorem 20 satisfies the estimate maxx2QjF.x/j � C �maxx2QjeF .x/j,
where C depends only on n; r .

3.5 Computing the Section of a Bundle

Here, we combine our results from the last few sections. Let

H D .v.x/CH0
x /x2Q be a bundle, where (3.105)

H0 D .H0
x /x2Q is a homogeneous bundle, and (3.106)

v.x/?H0
x for each x 2 Q: (3.107)

SupposeH has a section. Then the iterated Glaeser refinements of H have nonempty
fibers and may therefore be written as

H` D .v`.x/CH0;`
x /x2Q where (3.108)

H0;` D .H0;`
x /x2Q is a homogeneous bundle, and (3.109)

v`.x/?H0;`
x for each x 2 Q: (3.110)

Let �`i .x/ 2 R; y
`;�
i .x/ 2 Q; ˇ`;�ij .x/ 2 R; wi .x/ 2 R

r be as in Sect. 3.2. Thus,

�0i .x/ D i th component of v.x/; for x 2 QI (3.111)

�`i .x/ D lim
�!1

rX

jD1
ˇ
`;�
ij .x/ �

`�1
j

�
y
`;�
i .x/

�
(3.112)

for x 2 Q; 1 � ` � 2r C 1; 1 � i � r , and

v2rC1.x/ D
rX

iD1
�2rC1i .x/wi .x/ for x 2 Q: (3.113)
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Recall that ˇ`;�ij .x/; y
`;�
i .x/ and wi .x/ are determined by the homogeneous bundle

H0; independently of the vectors .v.z//z2Q: The bundle H2rC1 D .v2rC1.x/ C
H0;2rC1
x /x2Q is Glaeser stable, with nonempty fibers. Hence, the results of Sect. 3.4

apply to H2rC1. Thus, we obtain a section of H2rC1 of the form

F.x/ D
X

y2S.x/
A.x; y/v2rC1.y/ .all x 2 Q/; (3.114)

where S.x/ � Q and #.S.x// � d for each x 2 Q and A.x; y/ W Rr ! R
r is a

linear map, for each x 2 Q;y 2 S.x/: Our section F satisfies the estimate

max
x2Q

ˇ
ˇF.x/

ˇ
ˇ � C max

x2Q
ˇ
ˇeF .x/

ˇ
ˇ; for any section eF of H2rC1: (3.115)

Here, d and C depend only on n and r I and the S.x/ and A.x; y/ are determined
by H0;2rC1, independently of the vectors v2rC1.z/ .z 2 Q/.

Recall that the bundles H and H2rC1have the same sections. Therefore, substi-
tuting (3.113) into (3.114), and setting

Ai.x; y/ D A.x; y/wi .y/ 2 R
r for x 2 Q; y 2 S.x/; i D 1; : : : ; r; (3.116)

we find that

F.x/ D
X

y2S.x/

rX

1

�2rC1i .y/Ai .x; y/ for all x 2 Q: (3.117)

Moreover, F is a section of H, and

max
x2Q

ˇ
ˇF.x/

ˇ
ˇ � C max

x2Q
ˇ
ˇeF .x/

ˇ
ˇ for any section eF of H: (3.118)

Furthermore, the Ai.x; y/ are determined by H0; independently of the family of
vectors .v.z//z2Q.

Thus, we can compute a section of H by starting with (3.111), then computing
the �`i .x/ using the recursion (3.112), and finally applying (3.117) once we know
the �2rC1i .x/. In particular, we guarantee that the limits in (3.112) exist. Here, of
course, we make essential use of our assumption that H has a section.

3.6 Computing a Continuous Solution of Linear Equations

We apply the results of the preceding section, to find continuous solutions of

�1f1 C � � � C �rfr D � on Q: (3.119)
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Such a solution .�1; : : : ; �r / is a section of the bundle

H D .Hx/x2Q; where (3.120)

Hx D fv D .v1; : : : ; vr / 2 R
r W v1f1.x/C � � � C vrfr .x/ D �.x/g: (3.121)

We write H in the form

H D .v.x/CH0
x /x2Q; where (3.122)

H0
x D fv D .v1; : : : ; vr / 2 R

r W v1f1.x/C � � � C vrfr .x/ D 0g; and (3.123)

v.x/ D �.x/ � .e�1.x/; : : : ;e�r .x//I here, (3.124)

e�i .x/ D
�

0 if f1.x/ D f2.x/ D � � � D fr.x/ D 0

fi .x/=
�
f 2
1 .x/C � � � C f 2

r .x/
�

otherwise.
(3.125)

Note that
v.x/?H0

x for each x 2 Q: (3.126)

Specializing the discussion in the preceding section to the bundle (3.108)
� � � (3.112), we obtain the following objects:

• Coefficients ˇ`;�ij .x/ 2 R; for x 2 Q; 1 � ` � 2r C 1; � � 1; 1 � i; j � r ;

• Points y`;�i .x/ 2 Q; for x 2 Q; 1 � ` � 2r C 1; � � 1; 1 � i � r ;
• Finite sets S.x/ � Q; for x 2 Q; and
• Vectors Ai.x; y/ 2 R

r ; for x 2 Q;y 2 S.x/; 1 � i � r .

These objects depend only on the functions f1; : : : ; fr .
We write Aij .x; y/ to denote the i th component of the vector Aj .x; y/.
To attempt to solve (3.119), we use the following

Procedure 22 First, compute �`i .x/ 2 R; for all x 2 Q; 0 � ` � 2rC 1; 1 � i �
r; by the recursion:

�0i .x/ D e�i .x/ � �.x/ for 1 � i � r I and (3.127)

�`i .x/ D lim
�!1

Pr
jD1 ˇ

`;�
ij .x/ � �`�1j .y

`;�
i .x// (3.128)

for 1 � i � r; 1 � ` � 2r C 1:

Then define functions ˚1; : : : ; ˚r W Q ! R , by setting

˚i.x/ D
X

y2S.x/

rX

jD1
Aij .x; y/ � �2rC1j .y/ for x 2 Q; 1 � i � r (3.129)

If, for some x 2 Q and i D 1; : : : ; r , the limit in (3.128) fails to exist, then our
procedure (22) fails. Otherwise, procedure (22) produces functions ˚1; : : : ; ˚r W
Q ! R. These functions may or may not be continuous.
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The next result follows at once from the discussion in the preceding section. It
tells us that, if (3.105) has a continuous solution, then procedure (22) produces an
essentially optimal continuous solution of (3.105).

Theorem 23 (1) The objects e�i .x/; ˇ
`;�
ij .x/; y

`;�
i .x/; S.x/; and Aij .x; y/, used in

procedure (22), depend only on f1; � � � ; fr , and not on the function �.
(2) For each x 2 Q, the set S.x/ � Q contains at most d points, where d depends

only on n and r .
(3) Let � W Q ! R and let �1; : : : ; �r W Q ! R be continuous functions such that

�1f1 C � � � C �rfr D � on Q: Then procedure (22) succeeds, the resulting
functions ˚1; : : : ; ˚r W Q ! R are continuous, and ˚1f1 C � � � C ˚rfr D �

on Q. Moreover,

max
x2Q
1�i�r

ˇ
ˇ˚i.x/

ˇ
ˇ � C � max

x2Q
1�i�r

ˇ
ˇ�i .x/

ˇ
ˇ

where C depends only on n; r .

For particular functions f1; : : : ; fr , it is a tedious, routine exercise to
go through the arguments in the past several sections and compute the
e�i .x/; ˇ

`;�
i .x/; y

`;�
i .x/; S.x/ and Aij .x; y/ used in our procedure (22). We invite

the reader to carry this out for the case of Hochster’s equation 3.4 and to compare
the resulting formulas with those given in Sect. 3.

So far, we have dealt with a single equation (3.119) for continuous functions
�1; : : : ; �r . To handle a system of equations, we simply take f1; : : : ; fr and � to be
vector valued in (3.119). In place of (3.124), (3.125), and (3.127), we now define
v.x/ D �

�01 .x/; : : : ; �
0
r .x/

�
to be the shortest vector in R

r that solves the equationP
i �

0
i .x/fi .x/ for each fixed x. (If, for some x, this equation has no solution, then

(3.119) has no solution.) We can easily compute the �0i .x/ from f1.x/; : : : ; fr .x/

and �.x/ by linear algebra. Starting from the above �0i .x/, we can repeat the proof
of Theorem 23, with trivial changes.

4 Algebraic Geometry Approach

The following simple example illustrates this method.

Example 24 Which functions � on R
2
xy can be written in the form

� D �1x
2 C �2y

2 (4.1)

where �1; �2 are continuous on R
2? (We know that the pointwise tests (3) give an

answer in this case, but the following method will generalize better.)
An obvious necessary condition is that � should vanish to order 2 at the origin.

This is, however, not sufficient since xy cannot be written in this form.
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To see what happens, we blow up the origin. The resulting real algebraic variety
p W B0R2 ! R

2 can be covered by two charts: one given by coordinates x1 D
x=y; y1 D y and the other by coordinates x2 D x; y2 D y=x. Working in the first
chart, pulling back (4.1), we get the equation

� ı p D .�1 ı p/ � x21y21 C .�2 ı p/ � y21 : (4.2)

The right-hand side is divisible by y21 , so we have our first condition

(24.1) First test. Is .� ı p/=y21 continuous?

If the answer is yes, then we divide by y21 , set  WD .� ı p/=y21 , and try to solve

 D  1 � x21 C  2: (4.3)

This always has a continuous solution, but we need a solution where  i D �i ı p
for some �i . Clearly, the  i have to be constant along the line .y1 D 0/. This is
easily seen to be the only restriction. We thus set y1 D 0 and try to solve

 .x1; 0/ D r1x
2
1 C r2 where ri 2 R. (4.4)

The original 2-variable problem has been reduced to a 1-variable question.
Solvability is easy to decide using either of the following.

(24.2.i) Second test, Wronskian form. The following determinant is identically
zero ˇ

ˇ
ˇ
ˇ̌
ˇ

1 1 1

a2 b2 c2

 .a; 0/  .b; 0/  .c; 0/

ˇ
ˇ
ˇ
ˇ̌
ˇ

(24.2.ii) Second test, finite set form. For every a; b; c 2 R, there are ri WD
ri .a; b; c/ 2 R (possibly depending on a; b; c) such that

 .a; 0/ D r1a
2 C r2;  .b; 0/ D r1b

2 C r2 and  .c; 0/ D r1c
2 C r2:

(In principle, we should check what happens on the second chart, but in this case, it
gives nothing new.)

Working on R
n, let us now consider the general case

� D P
i �ifi :

As in (24), we start by blowing up either the common zero set Z D .f1 D � � � D
fr D 0/ or, what is computationally easier, the ideal .f1; : : : ; fr /. We get a real
algebraic variety p W Y ! R

n.
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Working in various coordinate charts on Y , we get analogs of the first test (24.1)
and new equations

 D P
i igi :

The solvability again needs to be checked only on an .n � 1/-dimensional real
algebraic subvariety YE � Y . One sees, however, that the second tests (24.2.i–ii)
are both equivalent to the pointwise tests (3), thus not sufficient in general.

Instead, we focus on what kind of question we need to solve on YE . This leads to
the following concept.

Definition 25 A descent problem is a compound object

D D �
p W Y ! X; f W p�E ! F

�

consisting of a proper morphism of real algebraic varieties p W Y ! X , an
algebraic vector bundle E on X , an algebraic vector bundle F on Y , and an
algebraic vector bundle map f W p�E ! F . (See (31) for the basic notions related
to real algebraic varieties.)

Our aim is to understand the image of f ı p� W C0.X;E/ ! C0.Y; F /.

We have the following analog of (24.2.ii).

Definition 26 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem and

�Y 2 C0.Y; F /. We say that �Y satisfies the finite set test if for every y1; : : : ; ym 2
Y , there is a �X D �X;y1;:::;ym 2 C0.X;E/ (possibly depending on y1; : : : ; ym)
such that

�Y .yi / D f ı p�.�X/.yi / for i D 1; : : : ; m.

Definition 27 A descent problem D D �
p W Y ! X; f W p�E ! F

�
is called

finitely determined if for every �Y 2 C0.Y; F /, the following are equivalent:

(1) �Y 2 im
	
f ı p� W C0.X;E/ ! C0.Y; F /



.

(2) �Y satisfies the finite set test.

28 (Outline of the Main Result) Our Theorem (34) gives an algorithm to decide
the answer to Question 1. The precise formulation is somewhat technical to state,
so here is a rough explanation of what kind of answer it gives and what we mean by
an “algorithm.” There are three main parts:

Part 1. First, starting with R
n and f1; : : : ; fr , we construct a finitely determined

descent problem D D �
p W Y ! R

n; f W p�E ! F
�
. This is purely

algebraic, can be effectively carried out and independent of �.
Part 2. There is a partially defined “twisted pull-back” map p.�/ W C0.Rn/ Ü

C0.Y; F / (32) which is obtained as an iteration of three kinds of steps:

(1) We compose a function by a real algebraic map.
(2) We create a vector function out of several functions or decompose a

vector function into its coordinate functions.
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(3) We choose local (real analytic) coordinates fyig and ask if a certain
function of the form  jC1 WD  j � Q

i y
�mi
i is continuous or not where

mi 2 Z.

If any of the answers is no, then the original � cannot be written asP
i �ifi and we are done. If all the answers are yes, then we end up with

p.�/� 2 C0.Y; F /.
Part 3. We show that � D P

i �ifi is solvable iff p.�/� 2 C0.Y; F / satisfies the
finite set test (26).

By following the proof, one can actually write down solutions �i , but
this relies on some artificial choices. The main ingredient that we need is
to choose extensions of certain functions defined on closed semialgebraic
subsets to the whole R

n. In general, there does not seem to be any natural
extension, and we do not know if it makes sense to ask for the “best
possible” solution or not.

Negative Aspects. There are two difficulties in carrying out this procedure in
any given case. First, in practice, (28) of Part 28 may not be effectively doable.
Second, we may need to compose  jC1 with a real algebraic map rjC1 such that
 j vanishes on the image of rjC1. Thus, we really need to compute limits and work
with the resulting functions. This also makes it difficult to interpret our answer on
R
n directly.
Positive Aspects. On the other hand, just knowing that the answer has the above

general structure already has some useful consequences.
First, the general framework works for other classes of functions; for instance,

the same algebraic setup also applies in case � and the �i are Hölder continuous.
Another consequence we obtain is that if � D P

i �ifi is solvable and � has
certain additional properties, then one can also find a solution � D P

i  ifi where
the  i also have these additional properties. We list two such examples below; see
also (12). For the proof, see (50) and (37).

Corollary 29 Fix f1; : : : ; fr and assume that � D P
i �ifi is solvable. Then:

(1) If � is semialgebraic (31), then there is a solution � D P
i  ifi such that the

 i are also semialgebraic.
(2) Let U � R

n n Z be an open set such that � is Cm on U for some m 2
f1; 2; : : : ;1; !g. Then there is a solution � D P

i  ifi such that the  i are
also Cm on U .

Examples 30 The next series of examples shows several possible variants of (29)
that fail.

(1) Here � is a polynomial, but the �i must have very small Hölder exponents.
For m � 1, take � WD x2m C .x2m�1 � y2mC1/2 and f1 D x2mC2 C y2mC2.

There is only one solution,

�1 D x2m C .x2m�1 � y2mC1/2

x2mC2 C y2mC2 :
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We claim that it is Hölder with exponent 2
2m�1 . The exponent is achieved along

the curve x2m�1 � y2mC1 D 0, parametrized as
�
t .2mC1/=.2m�1/; t

�
.

(2) Here � is Cn, there is a C0 solution but no Hölder solution.
On Œ� 1

2
; 1
2
� � R

1 set f D xn and � D xn= log jxj. Then � is Cn and
� D 1

log jxj � f . Note that 1
log jxj is continuous but not Hölder. (These can be

extended to R
1 in many ways.)

(3) Question: If � is C1 and there is a C0 solution, is there always a Hölder
solution?

(4) Let g.x/ be a real-analytic function. Set f1 WD y and � WD sin
�
g.x/y

�
. Then

�1 WD �=y is also real analytic and � D �1 � f1 is the only solution. Note that
j�.x; y/j � 1 everywhere, yet �1.x; 0/ D g.x/ can grow arbitrary fast.

(5) In general, there is no solution � D P
i  ifi such that Supp i � Supp� for

every i . As an example, take f1 D x2 C x4; f2 D x2 C y2 and

�.x; y/ D
�
x4 � y2 if y2 � x4 and
0 if y2 � x4.

Note that � D f1 � �2f2 where

�2.x; y/ D
(

1 if y2 � x4 and
x2Cx4
x2Cy2 if y2 � x4.

Let � D �1 � .x2 C x4/ C  2 � .x2 C y2/ be any continuous solution. Setting
x D 0, we get that �y2 D  2.0; y/ � y2; hence,  2.0; 0/ D �1. Thus, Supp 2
cannot be contained in Supp�.

On the other hand, given any solution � D P
i �ifi , let � be a function

that is 1 on Supp� and 0 outside a small neighborhood of it. Then � D �� DP
.��i /fi . Thus, we do have solutions whose support is close to Supp�.

4.1 Descent Problems and Their Scions

31 (Basic Setup) From now on,X denotes a fixed real algebraic variety. We always
think of X as the real points of a complex affine algebraic variety XC that is defined
by real equations. (All our algebraic varieties are assumed reduced, i.e., a function
is zero iff it is zero at every point).

By a projective variety over X , we mean the real points of a closed subvariety
Y � X � CP

N . Every such Y is again the set of real points of a complex
affine algebraic variety YC � XC � CP

N that is defined by real equations. For
instance,X �RP

N is contained in the affine variety which is the complement of the
hypersurface .

P
y2i D 0/ where yi are the coordinates on P

N .
A variety Y over X comes equipped with a morphism p W Y ! X to X , given

by the first projection of X � CP
N . Given such pi W Yi ! X , a morphism between

them is a morphism of real algebraic varieties � W Y1 ! Y2 such that p1 D p2 ı �.
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Given pi W Yi ! X , their fiber product is

Y1 �X Y2 WD ˚
.y1; y2/ W p1.y1/ D p2.y2/

� � Y1 � Y2:

This comes with a natural projection p W Y1 �X Y2 ! X and p�1.x/ D p�1
1 .x/ �

p�1
2 .x/ for every x 2 X . (Note, however, that even if the Yi are smooth, their fiber

product can be very singular.) If X is irreducible, we are frequently interested only
in those irreducible components that dominateX , called the dominant components.

R.Y / denotes the ring of all regular functions on Y . These are locally quotients
of polynomials p.x/=q.x/ where q.x/ is nowhere zero.

By an algebraic vector bundle on Y , we mean the restriction of a complex
algebraic vector bundle from YC to Y . All such vector bundles can be given by
patching trivial bundles on a Zariski open cover X D [iUi using transition
functions in R.Ui \ Uj /. (Note that the latter condition is not quite equivalent
to our definition, but this is not important for us, cf. [BCR98, Chap. 12].)

Note that there are two natural topologies on a real algebraic variety Y , the
Euclidean topology and the Zariski topology. The closed sets of the latter are exactly
the closed subvarieties of Y . A Zariski closed (resp. open) subset of Y is also
Euclidean closed (resp. open).

A closed basic semialgebraic subset of Y is defined by finitely many inequalities
gi � 0. Using finite intersections and complements, we get all semialgebraic
subsets. A function is semialgebraic iff its graph is semialgebraic. See [BCR98,
Chap. 2] for a detailed treatment.

We need various ways of modifying descent problems. The following definition
is chosen to consist of simple and computable steps yet be broad enough for the
proofs to work. (It should become clear that several variants of the definition would
also work. We found the present one convenient to use.)

Definition 32 (Scions of Descent Problems) Let D D �
p W Y ! X; f W p�E !

F
�

be a descent problem. A scion of D is any descent problem Ds D �
ps W Ys !

X; fs W p�
s E ! Fs

�
that can be obtained by repeated application of the following

procedures:

(1) For a proper morphism r W Y1 ! Y , set

r�D WD �
p ı r W Y1 ! X; r�f W .p ı r/�E ! r�F

�
:

As a special case, if Z � X is a closed subvariety, then the scion DZ D�
pZ W YZ ! Z; fZ W p�

Z.EjZ/ ! F jYZ
�

(where YZ WD p�1.Z/) is called
the restriction of D to Z.

(2) Given Yw, assume that there are several proper morphisms ri W Yw ! Y such
that the composites pw WD p ı ri are all the same. Set

.r1; : : : ; rm/
�D WD �

pw W Yw ! X;
Pm

iD1r�
i f W p�

wE ! Pm
iD1r�

i F
�
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where
Pm

iD1r�
i f is the natural diagonal map.

(3) Assume that f factors as p�E
q! F 0 j

,! F where F 0 is a vector bundle and
ranky j D ranky F 0 for all y in a Euclidean dense Zariski open subset Y 0 � Y .
Then set

D0 WD �
p W Y ! X; f 0 WD q W p�E ! F 0�:

(The choice of Y 0 is actually a quite subtle point. Algebraic maps have constant rank
over a suitable Zariski open subset, and we want this open set to determine what
happens with an arbitrary continuous function. This is why Y 0 is assumed Euclidean
dense, not just Zariski dense. If Y is smooth, these are equivalent properties, but not
if Y is singular. As an example, consider the Whitney umbrella Y WD .x2 D y2z/ �
R
3. Here, Y n .x D y D 0/ is Zariski open and Zariski dense. Its Euclidean closure

does not contain the “handle” .x D y D 0; z < 0/, so it is not Euclidean dense.)
Each scion remembers all of its forebears. That is, two scions are considered the

“same” only if they have been constructed by an identical sequence of procedures.
This is quite important since the vector bundle Fs on a scion Ds does depend on the
whole sequence.

Every scion comes with a structure map rs W Ys ! Y .
If � 2 C0.Y; F /, then r�� 2 C0.Y1; r

�F / and
Pm

iD1r�
i � 2 C0.Yw;

Pm
iD1r�

i F /

are well defined. In (32) above, j W C0.Y; F 0/ ! C0.Y; F / is an injection; hence,
there is at most one �0 2 C0.Y; F 0/ such that j.�0/ D �. Iterating these, for any
scion Ds of D with structure map rs W Ys ! Y , we get a partially defined map,
called the twisted pull-back,

r.�/s W C0.Y; F / Ü C0.Ys; Fs/:

We will need to know which functions � are in the domain of a twisted pull-back
map. A complete answer is given in (43).

The twisted pull-back map sits in a commutative square

C0.Y; F /
r
.�/
sÜ C0.Ys; Fs/

" "
C0.X;E/ D C0.X;E/:

If the structure map rs W Ys ! Y is surjective, then r.�/ W C0.Y; F / Ü C0.Ys; Fs/

is injective (on its domain). In this case, understanding the image of f ı p� W
C0.X;E/ ! C0.Y; F / is pretty much equivalent to understanding the image of
fs ı p�

s W C0.X;E/ ! C0.Ys; Fs/.

We are now ready to state our main result, first in the inductive form.

Proposition 33 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem. Then

there is a scion Ds D �
ps W Ys ! X; fs W p�

s E ! Fs
�

with surjective structure map
rs W Ys ! Y and a closed subvariety Z � X such that dimZ < dimX and for
every � 2 C0.Y; F /, the following are equivalent:
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(1) � 2 im
	
f ı p� W C0.X;E/ ! C0.Y; F /



.

(2) r.�/s � is defined and r.�/s � 2 im
	
fs ı p�

s W C0.X;E/ ! C0.Ys; Fs/


.

(3) (a) r.�/s � satisfies the finite set test (26) and
(b) �jYZ 2 im

	
fZ ı p�

Z W C0.Z;EjZ/ ! C0.YZ; FZ/


, where the scion

DZ D �
pZ W YZ ! Z; fZ W p�

Z.EjZ/ ! FZ
�

is the restriction of Ds

to Z (32.1).

We can now set X1 WD Z, D1 WD DZ apply (33) to D1 and get a descent problem
D2 WD �

D1

�
Z

. Repeating this, we obtain descent problems Di D �
pi W Yi ! X; fi W

p�
i E ! Fi

�
such that the dimension of pi .Yi / drops at every step. Eventually, we

reach the case where pi .Yi / consists of points. Then the finite set test (26) gives the
complete answer. The disjoint union of all the Yi can be viewed as a single scion;
hence, we get the following algebraic answer to Question 1.

Theorem 34 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem. Then

it has a finitely determined scion Dw D �
pw W Yw ! X; fw W p�

wE ! Fw
�

with
surjective structure map rw W Yw ! Y .

That is, for every � 2 C0.Y; F /, the following are equivalent:

(1) � 2 im
	
f ı p� W C0.X;E/ ! C0.Y; F /



.

(2) The twisted pull-back r.�/w � is defined, and it is contained in the image of fw ı
p�

w W C0.X;E/ ! C0.Yw; Fw/.

(3) The twisted pull-back r.�/w � is defined and satisfies the finite set test (26). �

The proof of (34) works for many subclasses of continuous functions as well.
Next, we axiomatize the necessary properties and describe the main examples.

4.2 Subclasses of Continuous Functions

Assumption 35 For real algebraic varieties Z, we consider vector subspaces
C ��

Z
� � C0

�
Z

�
that satisfy the following properties:

(1) (Local property) If Z D [iUi is an open cover of Z, then � 2 C ��
Z

�
iff

�jUi 2 C ��
Ui

�
for every i .

(2) (R.Z/-module) If � 2 C ��
Z

�
and h 2 R�

Z
�

is a regular function (31), then
h � � 2 C ��

Z
�
.

(3) (Pull-back) For every morphism g W Z1 ! Z2, composing with g mapsC ��
Z2

�

to C ��
Z1

�
.

(4) (Descent property) Let g W Z1 ! Z2 be a proper, surjective morphism, � 2
C0

�
Z2

�
and assume that � ı g 2 C ��

Z1
�
. Then � 2 C ��

Z2
�
.

(5) (Extension property) Let Z1 � Z2 be a closed semialgebraic subset (38). Then
the twisted pull-back map C ��

Z2
� ! C ��

Z1
�

is surjective.

Since every closed semialgebraic subset is the image of a proper morphism (38),
we can unite (35) and (35) and avoid using semialgebraic subsets as follows.
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(4+5) (Strong descent property) Let g W Z1 ! Z2 be a proper morphism and
 2 C ��

Z2
�
. Then  D � ı g for some � 2 C ��

Z2
�

iff  is constant on
every fiber of g.

The following additional condition comparing 2 classes C �
1 � C �

2 is also
of interest.

(6) (Division property) Let h 2 R�
Z

�
be any function whose zero set is nowhere

Euclidean dense. If � 2 C �
1

�
Z

�
and �=h 2 C �

2

�
Z

�
, then �=h 2 C �

1

�
Z

�
.

Example 36 Here are some natural examples satisfying the assumptions
(35.1–5):

(1) C0
�
Z

�
, the set of all continuous functions on Z

(2) Ch
�
Z

�
, the set of all locally Hölder continuous functions on Z

(3) S0
�
Z

�
, the set of continuous semialgebraic functions on Z

Moreover, the pairs S0 � C0 and S0 � Ch both satisfy (35.6). (By contrast, by
(30.2), the pair Ch � C0 does not satisfy (35.6).)

37 (Proof of (29.1)) More generally, consider two classes C �
1 � C �

2 that satisfy
(35.1–5) and also (35.6). Let D be a descent problem and � 2 C �

1 .Y; F /. We claim
that if � D f ıp�.�X/ is solvable with �X 2 C �

2 .X;E/, then it also has a solution
� D f ı p�. X/ where  X 2 C �

1 .X;E/.
To see this, let Dw be a scion as in (34). By our assumption, the twisted pull-back

r
.�/
w � is in C �

2

�
Yw; Fw/, and it satisfies the finite set test. For the finite set test, it does

not matter what type of functions we work with. Thus, we need to show that r.�/w � is
in C �

1

�
Yw; Fw/.

In a scion construction, this holds for steps as in (32.1–2) by (35.3). The key
question is (32.3). The solution given in (43) shows that it is equivalent to (35.6).�

38 (C �-Valued Functions over Semialgebraic Sets) Let S � Z be a closed
semialgebraic subset. We can think of S as the image of a proper morphism
g W W ! Z (cf. [BCR98, Sect. 2.7]). One can define C �.S/ either as the image
of C �.Z/ in C0.S/ or as the preimage of C �.W / under the pull-back by g. By
(35.4+5), these two are equivalent.

We also have the following:

(1) (Closed patching condition) Let Si � Z be closed semialgebraic subsets. Let
�i 2 C �.Si / and assume that �i jSi\Sj D �j jSi\Sj for every i; j .

Then there is a unique � 2 C ��[iSi
�

such that �jSi D �i for every i .

To see this, realize each Si as the image of some proper morphism gi W Wi ! Z. Let
W WD qiWi be their disjoint union and g W W ! Z the corresponding morphism.
Define  2 C �.W / by the conditions  jWi D �i ı gi .

The patching condition guarantees that  is constant on the fibers of g. Thus, by
(35.4+5), D � ı g for some � 2 C ��[iSi

�
.

These arguments also show that each C �.Z/ is in fact a module over S0.Z/, the
ring of continuous semialgebraic functions.
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Definition 39 (C �-Valued Sections) By Serre’s theorems, every vector bundle on
a complex affine variety can be written as a quotient bundle of a trivial bundle
and also as a subbundle of a trivial bundle. Furthermore, every extension of vector
bundles splits.

Thus, on a real algebraic variety, every algebraic vector bundle can be written
as a quotient bundle (and a subbundle) of a trivial bundle and every constant rank
map of vector bundles splits.

Let F be an algebraic vector bundle on Z and Z D [iUi an open cover such
that F jUi is trivial of rank r for every i . Let

C ��
Z;F

� � C0
�
Z;F

�

denote the set of those sections � 2 C0
�
Z;F

�
such that �jUi 2 C ��

Ui
�r

for every
i . If C � satisfies the properties (35.1–2), this is independent of the trivializations
and the choice of the covering.

If C � satisfies the properties (35.1–6), then their natural analogs also hold for
C ��

Z;F
�
. This is clear for the properties (35.2–4) and (35.6).

In order to check the extension property (35.5), first note that we have the
following:

(1) Let f W F1 ! F2 be a surjection of vector bundles. Then f W C ��
Z;F1

� !
C ��

Z;F2
�

is surjective.

Now letZ1 � Z2 be an closed subvariety and F a vector bundle onZ2. Write it as a
quotient of a trivial bundle CNZ2 . Every section �1 2 C ��

Z1; F jZ1
�

lifts to a section
in C ��

Z1;C
N
Z1

�
which in turn extends to a section in C ��

Z2;C
N
Z2

�
by (35.6). The

image of this lift in C ��
Z2; F jZ2

�
gives the required lifting of �1.

4.3 Local Tests and Reduction Steps

Next we consider various descent problems whose solution is unique, if it exists.

40 (Pull-Back Test) Let g W Z1 ! Z2 be a proper surjection of real algebraic
varieties. Let F be a vector bundle on Z2 and �1 2 C ��

Z1; g
�F

�
. When can we

write �1 D g��2 for some �2 2 C ��
Z2; F

�
?

Answer: By (35.4), such a �2 exists iff �1 is constant on every fiber of g. This
can be checked as follows.

Take the fiber product Z3 WD Z1 �Z2 Z1 with projections i W Z3 ! Z1 for
i D 1; 2. Note that F3 WD �

1 g
�F is naturally isomorphic to �

2 g
�F . We see that

�1 is constant on every fiber of g iff

�
1 �1 � �

2 �1 2 C ��
Z3; F3

�
is identically 0.
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Note that this solves descent problems D D �
p W Y ! X; f W p�E Š F

�
where f

is an isomorphism. We use two simple cases:

(1) Assume that there is a closed subset Z � X such that p induces an
isomorphism Y n p�1.Z/ ! X n Z and �Y 2 C0

�
Y; p�E

�
vanishes along

p�1.Z/. Then there is a �X 2 C0
�
X;E

�
such that �Y D p��X (and �X

vanishes along Z).
(2) Assume that there is a finite group G acting on Y such that G acts transitively

on every fiber of
�
Y n .�Y D 0/

� ! X . Then there is a �X 2 C0
�
X;E

�
such

that �Y D p��X .

41 (Wronskian Test) Let �; f1; : : : ; fr be functions on a set Z. Assume that the fi
are linearly independent. Then � is a linear combination of the fi (with constant
coefficients) iff the determinant

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

f1.z1/ � � � f1.zr / f1.zrC1/
:::

:::
:::

fr .z1/ � � � fr.zr / fr .zrC1/
�.z1/ � � � �.zr / �.zrC1/

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

is identically zero as a function on ZrC1.

Proof. Since the fi are linearly independent, there are z1; : : : ; zr 2 Z such that
the upper left r � r subdeterminant of is nonzero. Fix these z1; : : : ; zr and solve the
linear system

�.zi / D P
j �j fj .zi / for i D 1; : : : ; r .

Replace � by  WD � � P
i �ifi and let zrC1 vary. Then our determinant is

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

f1.z1/ � � � f1.zr / f1.zrC1/
:::

:::
:::

fr .z1/ � � � fr.zr / fr .zrC1/
0 � � � 0  .zrC1/

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

and it vanishes iff  .zrC1/ is identically zero. That is, when � 	 P
j �j fj .

42 (Linear Combination Test) Let Z be a real algebraic variety, F a vector
bundle on Z and f1; : : : ; fr linearly independent algebraic sections of F .

Given � 2 C ��
Z;F

�
, when can we write � D P

i �ifi for some �i 2 C?
Answer: One can either write down a determinantal criterion similar to (41) or

reduce this to the Wronskian test as follows.
Consider q W P.F / ! X , the space of 1-dimensional quotients of F . Let u W

q�F ! Q be the universal quotient line bundle. Then � D P
i �ifi iff

u ı q�.�/ D P
i�i � u ı q�.fi /:
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The latter is enough to check on a Zariski open cover of P.F / where Q is trivial.
Thus, we recover the Wronskian test. �

43 (Membership Test for Sheaf Injections) Let Z be a real algebraic variety,
E;F algebraic vector bundles, and h W E ! F a vector bundle map such that
rankh D rankE on a Euclidean dense Zariski open set Z0 � Z. Given a section
� 2 C ��

Z;F
�
, when is it in the image of h W C ��

Z;E
� ! C ��

Z;F
�
?

Answer: Over Z0, there is a quotient map q W F jZ0 ! QZ0 where rankQZ0 D
rankF � rankE and im

�
hjZ0

� D ker q. Then the first lifting condition is:

(1) q.�/ D 0. Note that, in the local coordinate functions of �, this is a linear
condition with polynomial coefficients.

By (39.3), hjZ0 has an algebraic splitting s W F jZ0 ! EjZ0 . Note that s is
not unique on E but it is unique on the image of h. Thus, the second condition
says:

(2) The section s
�
�jZ0

� 2 C ��
Z0;EjZ0

�
extends to a section of C ��

Z;E
�
.

In order to make this more explicit, choose local algebraic trivializations
of E and of F . Then � is given by coordinate functions .�1; : : : ; �m/, and s is
given by a matrix .sij / where the sij are rational functions onZ that are regular
onZ0. We can bring them to common denominator and write sij D uij =v where
uij and v are regular on Z. Thus,

s
�
�jZ0

� D
�X

j

s1j �j ; : : : ;
X

j

snj �j

�
D 1

v

�X

j

u1j �j ; : : : ;
X

j

unj�j
�
:

Let ˚ denote the vector function in the parenthesis on the right. Then ˚ 2
C �.Z;E/, and we are asking if ˚=v 2 C �.Z;E/ or not. This is exactly one of
the questions considered in Part 2 of (28).

Also, if we are considering two function classes C �
1 � C �

2 , then (43.3) and
the assumption (35.6) say that a function � 2 C �

1 .Z; F / is in the image of h W
C �
2

�
Z;E

� ! C �
2

�
Z;F

�
iff it is in the image of h W C �

1

�
Z;E

� ! C �
1

�
Z;F

�
. �

44 (Resolution of Singularities) Let D D �
p W Y ! X; f W p�E ! F

�
be

a descent problem. By Hironaka’s theorems (see [Kol07, Chap. 3] for a relatively
simple treatment), there is a resolution of singularities r0 W Y 0 ! Y . That is, Y 0
is smooth and r0 is proper and birational (i.e., an isomorphism over a Zariski
dense open set). Note however, that r0 is not surjective in general. In fact, r0.Y 0/
is precisely the Euclidean closure of the smooth locus Y ns . Thus, Y n r0.Y 0/ �
Sing.Y /.

We resolve SingY to obtain r1 W Y 0
1 ! Sing.Y /. The resulting map Y 0 q

Y 0
1 ! Y is surjective, except possibly along Sing.Sing.Y //. We can next resolve

Sing.Sing.Y // and so on. After at most dimY such steps, we obtain a smooth,
proper morphism R W Y R ! Y such that Y R is smooth and R is surjective. R is
an isomorphism over Y ns but it can have many irreducible components that map to
Sing.Y /.

We refer to Y 0 � Y R as the main components of the resolution.



Continuous Solutions of Linear Equations 275

Proposition 45 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem.

Assume that X; Y are irreducible, the generic fiber of p is irreducible and smooth,
and h.x/ W E.x/ ! C0

�
Yx; F jYx

�
is an injection for general x 2 p.Y /. Then D

has a scion Ds D �
ps W Ys ! X; fs W p�

s E ! Fs
�

with surjective structure map
rs W Ys ! Y such that:

(1) Ys is a disjoint union Y hs q Y v
s .

(2) dimps
�
Y v
s

�
< dimX .

(3) fs is an isomorphism over Y hs .

Proof. Set n D rankE and let Y nC1
X be the union of the dominant components

(31) of the nC 1-fold fiber product of Y ! X with coordinate projections i . Let
Qp W Y nC1

X ! X be the map given by any of the p ı i . Consider the diagonal map

Qf W Qp�E ! PnC1
iD1�

i F

which is an injection over a Zariski dense Zariski open set Y 0 � Y nC1
X by

assumption. By (32), these define a scion of D with surjective structure map.
We want to use the local lifting test (43) to replace

PnC1
iD1 �

i F by Qp�E . For this,
we need Y 0 to be also Euclidean dense. To achieve this, we resolve Y nC1

X as in (44)
to get Ys . The main components give Y hs but we may have introduced some other
components Y v

s that map to Sing.Y /. Since the general fiber of p is smooth, Y v
s

maps to a lower dimensional subvariety of X .

Proposition 46 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem.

Assume that X; Y are irreducible and the generic fiber of p is irreducible and
smooth. Then there is a commutative diagram

NY �Y! Y

Np # # p
NX �X! X

where �X; �Y are proper, birational and there is a quotient bundle ��
XE � NE such

that Np���
XE ! ��

Y F factors through Np� NE and the descent problem

ND D � Np W NY ! NX; Nf W Np� NE ! NF WD ��
Y F

�

satisfies the assumptions of (45). That is, Nf .x/ W NE.x/ ! C0
� NYx; ��

Y F j NYx
�

is an
injection for general x 2 Np. NY /.

Moreover, if a finite group G acts on D, then we can choose ND such that the
G-action lifts to ND.

(Note that, as shown by (48), the conclusions can fail if the general fibers of p
are not irreducible.)
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Proof. Complexify p W Y ! X to get a complex proper morphism pC W YC ! XC

and set

E 0
C

WD im
	
EC ! �

pC

�
�FC



:

Let x 2 p.Y / be a general point. Then Yx is irreducible and the real points Yx are
Zariski dense in the complex fiber

�
YC

�
x
. Thus,H0

��
YC

�
x
; FC

� D H0
�
Yx; F

�
.

So far, E 0
C

is only a coherent sheaf which is a quotient of EC. Using (47) and
then (45), we obtain �X W NX ! X as desired.

47 Let X be an irreducible variety q W E ! E 0, a map of vector bundles on
X . In general, we cannot write q as a composite of a surjection of vector bundles
followed by an injection, but the following construction shows how to achieve this
after modifying X .

Let Gr.d;E/ ! X be the universal Grassmann bundle of rank d quotients
of E where d is the rank of q at a general point. At a general point, x 2 X ,
q.x/ W E.x/ � im q.x/ � E 0.x/ is such a quotient. Thus, q gives a rational map
X Ü Gr.d;E/, defined on a Zariski dense Zariski open subset. Let NX � Gr.d;E/
denote the closure of its image and �X W NX ! X the projection. Then �X is a proper
birational morphism, and we have a decomposition

��
Xq W ��

XE
s� NE j

,! ��
XE

0

where NE is a vector bundle of rank d on NX , s is a rank d surjection everywhere,
and j is a rank d injection on a Zariski dense Zariski open subset.

4.4 Proof of the Main Algebraic Theorem

In order to answer Question 1 in general, we try to create a situation where (46)
applies.

First, using (44), we may assume that Y is smooth. Next, take the Stein
factorization Y ! W ! X ; that is, W ! X is finite and all the fibers of Y ! W

are connected (hence, general fibers are irreducible).
After some modifications, (45) applies to Y ! W ; thus, we are reduced to

comparing C0.W; p�
WE/ and C0.X;E/.

This is easy if W ! X is Galois, since then the sections of p�
W E that are

invariant under the Galois group descend to sections of E .
If p W W ! X is a finite morphism of (smooth or at least normal) varieties

over C, the usual solution would be to take the Galois closure of the field extension
C.W /=C.X/ and let W Gal ! X be the normalization of X in it. Then the Galois
groupG acts on W Gal ! X and the action is transitive on every fiber.

This does not work for real varieties since in general, W Gal has no real points.
(For instance, take X D R and let W � R

2 be any curve given by an irreducible
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equation of the form ym D f .x/. Ifm D 2, thenW=X is Galois, but form � 3, the
Galois closure W Gal has no real points.) Some other problems are illustrated by the
next example.

Example 48 LetW � R
2 be defined by .y5�5y D x/ with p W W ! R

1
x DW X the

projection. Set E D C
4
X and F D CW with f W p�E ! F given by f . .x/ei / D

yi .x/jW .
Note that p has degree 5 as a map of (complex) Riemann surfaces, but p�1.x/

consists of 3 points for �1 < x < 1 and of 1 point if jxj > 1. Therefore, the kernel
of f ı p�.x/ W C4 D E.x/ ! C0

�
Wx; F jWx

�
has rank 1 if �1 < x < 1 and rank 3

if jxj > 1. Thus, ker
�
f ıp�� � E is a rank 1 subbundle on the interval �1 < x < 1

and a rank 3 subbundle on the intervals jxj > 1.
These kernels depend only on some of the 5 roots of y5 � 5y D x; hence, they

are semialgebraic subbundles but not real algebraic subbundles.

As a replacement of the Galois closure W Gal, we next introduce a series of
varieties W .m/

X ! X . The W .m/
X are usually reducible, the symmetric group Sm

acts on them, but the Sm-action is usually not transitive on every fiber. Nonetheless,
all the W .m/

X together provide a suitable analog of the Galois closure.

Definition 49 Let s W W ! X be a finite morphism of (possibly reducible) varieties
and X0 � X the largest Zariski open subset over which p is smooth.

Consider the m-fold fiber product W m
X WD W �X � � � �X W with coordinate

projections i W W m
X ! W . For every i ¤ j , let �ij � W m

X be the preimage

of the diagonal � � W �X W under the map .i ; j /. Let W .m/
X � W m

X be the
union of the dominant components in the closure of W m

X n [i¤j�ij with projection

s.m/ W W .m/
X ! X . The symmetric group Sm acts on W .m/

X by permuting the factors.

If x 2 X0 then
�
s.m/

��1
.x/ consists of ordered m-element subsets of s�1.x/.

Thus,
�
s.m/

��1
.x/ is empty if js�1.x/j < m and Sm acts transitively on

�
s.m/

��1
.x/

if js�1.x/j D m. If
ˇ
ˇs�1.x/

ˇ
ˇ > m, then Sm does not act transitively on

�
s.m/

��1
.x/.

We obtain a decreasing sequence of semialgebraic subsets

s.1/
�
W

.1/
X

� 
 s.2/
�
W

.2/
X

� 
 � � � :

Set

X0
W;m WD X0 \

�
s.m/

�
W

.m/
X

� n s.mC1/�W .mC1/
X

��
:

The X0
W;m are disjoint,

S
m X

0
W;m is a Euclidean dense semialgebraic open subset of

p.Y / \ X0, and the Sm-action is transitive on the fibers of s.m/ that lie over X0
W;m.

Thus, s.m/ W W .m/ ! X behaves like a Galois extension overX0
W;m and together the

X0
W;m cover most of X .
Let now p W Y ! X be a proper morphism of (possibly reducible) normal

varieties with Stein factorization p W Y q! W
s! X . Let Y mX denote them-fold fiber

product Y �X � � � �X Y with coordinate projections i W Y mX ! Y .
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Let Y .m/X � Y mX denote the dominant parts of the preimage of W .m/
X under the

natural map qm W Y mX ! W m
X with projection p.m/ W Y .m/X ! X . Note that,

for general x 2 X ,
�
p.m/

��1
.x/ is empty if p�1.x/ has fewer than m irreducible

components and Sm acts transitively on the irreducible components of
�
p.m/

��1
.x/

if p�1.x/ has exactly m irreducible components. Thus, we obtain a decreasing
sequence of semialgebraic subsets p.1/

�
Y
.1/
X

� 
 p.2/
�
Y
.2/
X

� 
 � � � .
Let F be a vector bundle on Y . Then ˚i

�
i F is a vector bundle on Y mX . Its

restriction to Y .m/X is denoted by F .m/.

Note that the Sm-action on Y .m/X naturally lifts to an Sm-action on F .m/. If E is
a vector bundle on X and f W p�E ! F is a vector bundle map, then we get an
Sm-invariant vector bundle map f .m/ W �

p.m/
��
E ! F .m/. For each m, we get a

scion of D

D.m/ WD �
p.m/ W Y .m/X ! X; f .m/ W �

p.m/
��
E ! F .m/

�
:

Below, we will use all the D.m/ together to get a scion with Galois-like properties.

50 (Proof of (33)) If Ds is a scion of D with surjective structure map rs W Ys ! Y ,
then (33.1) , (33.2) by definition and (33.2) ) (33.3) holds for any choice of Z.

Assume next that we have a candidate for Ds and Z such that. How do we check
(33.3) ) (33.2)?

Pick ˚s 2 C ��
Ys; Fs/ and assume that there is a section �Z 2 C ��

Z;EjZ
�

whose pull-back to YZ equals the restriction of ˚s . By (39), we can lift �Z to a
section �X 2 C ��

X;E
�
. Consider next

�s WD ˚s � fs
�
p�
s �X

� 2 C ��
Ys; Fs

�
:

We are done if we can write �s D fs ı p�
s . X/ for some  X 2 C ��

X;E
�
.

By assumption, �s satisfies the finite set test (26), but the improvement is that �s
vanishes on YZ . As we saw already in (2), this can make the problem much easier.
We deal with this case in (51).

Note that by [Whi34], we can choose �X to be real analytic away from Z and
the rest of the construction preserves differentiability properties. Thus, (29.2) holds
once the rest of the argument is worked out. �

Proposition 51 Let D D �
p W Y ! X; f W p�E ! F

�
be a descent problem. Then

there is a closed algebraic subvariety Z � X with dimZ < dimX and a scion
Ds D �

ps W Ys ! X; fs W p�
s E ! Fs

�
with surjective structure map rs W Ys ! Y

such that the following holds.
Let  s 2 C0.Ys; Fs/ be a section that vanishes on p�1

s .Z/ and satisfies the finite
set test (26). Then there is a  X 2 C0.X;E/ such that  X vanishes on Z and
 s D fs ı p�

s . X/.

Proof. We may harmlessly assume that p.Y / is Zariski dense in X . Using (44), we
may also assume that Y is smooth.
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After we construct Ds , the plan is to make sure that Z contains all of its
“singular” points. In the original setting of Question 1, Z was the set where the
map .f1; : : : ; fr / W C

r ! C has rank 0. In the general case, we need to include
points over which fs drops rank and also points over which ps drops rank.

During the proof, we gradually add more and more irreducible components toZ.
To start with, we add to Z the lower dimensional irreducible components of X , the
locus where X is not normal and the (Zariski closures of) the p.Yi / where Yi � Y

is an irreducible component that does not dominate any of the maximal dimensional
irreducible components of X . We can thus assume that X is irreducible and every
irreducible component of Y dominatesX .

Take the Stein factorization p W Y q! W
s! X and set M D deg.W=X/. For

each 1 � m � M , consider the following diagram

� Nq.m/�� NE.m/ Š NF .m/ F .m/ F

# # #
�
t
.m/
W ı s.m/W

��
E � NE.m/ NY .m/X

t
.m/
Y! Y

.m/
X


.m/
i! Y

& # Nq.m/ # q.m/ # p
NW .m/

t
.m/
W! W .m/ s.m/! X

(51.m)

where W .m/ and its column is constructed in (49) and out of this NW .m/, its column
and the vector bundle NE.m/ are constructed in (46). Note that the symmetric group
Sm acts on the whole diagram.

The Ds we use will be the disjoint union of the scions

ND.m/
s WD � Np.m/ W NY .m/X ! X; Nf .m/ W � Np.m/��

E ! NF .m/
�

for m D 1; : : : ;M .

By enlarging Z if necessary, we may assume that Y .m/X ! X is smooth over

X nZ and each t .m/W is an isomorphism over X nZ. Note that, for everym,

X0
m WD p.m/

�
Y
.m/
X

� n
�
Z [ p.mC1/�Y .mC1/

X

�� � X

is an open semialgebraic subset of X n Z whose boundary is in Z. Furthermore,
p.Y / nZ is the disjoint union of the X0

m and the fiber Yx has exactly m irreducible
components if x 2 X0

m.
Let �s 2 C0.Ys; Fs/ be a section that vanishes on p�1

s .Z/. We can then uniquely
write �s D P

m �
.m/
s such that each �.m/

s vanishes on Ys n p�1
s

�
X0
m

�
. Moreover,�s

satisfies the finite set test (26) iff all the �.m/
s satisfy it.

Thus, it is sufficient to prove that each �.m/
s is the pull-back of a section  .m/X 2

C �.X;E/ that vanishes on X n X0
m. For each m we use the corresponding diagram

(51m).
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Each �.m/
s lifts to a section N�.m/

s of
� Nq.m/�� NE.m/ that satisfies the pull-back

conditions for NY .m/ ! NW .m/. Thus, N�.m/
s is the pull-back of a section N�.m/

W of NE.m/.

By construction, N�.m/
W is Sm-invariant and it vanishes outside

�
t .m/ ı s.m/��1�

X0
m

�
.

Using a splitting of
�
s
.m/
W t

.m/
W

��
E � NE.m/, we can think of N�.m/

W as an Sm-

invariant section of
�
t
.m/
W ı s.m/W

��
E . By the choice of Z, t .m/ is an isomorphism

over X0
m; hence, N�.m/

W descends to an Sm-invariant section �.m/
W of

�
s
.m/
W

��
E that

vanishes outside
�
s
.m/
W

��1�
X0
m

�
. Therefore, by (40.2), �.m/

W descends to a section

 
.m/
X 2 C0

�
X;E

�
that vanishes on X nX0

m.

4.5 Semialgebraic, Real, and p-Adic Analytic Cases

52 (Real-Analytic Case) It is natural to ask Question 1 when the fi are real-
analytic functions and R

n is replaced by an arbitrary real-analytic variety. As
before, we think of X as the real points of a complex Stein space XC that is
defined by real equations. Our proofs work without changes for descent problems
D D �

p W Y ! X; f W p�E ! F
�

where Y and f are relatively algebraic overX .
By definition, this means that Y is the set of real points of a closed (reduced but

possibly reducible) complex analytic subspace of some XC � CP
N and that f is

assumed algebraic in the CPN -variables.
This definition may not seem the most natural, but it is exactly the setting needed

to answer Question 1 if the fi are real-analytic functions on a real-analytic space.

53 (Semialgebraic Case) It is straightforward to consider semialgebraic descent
problems D D �

p W Y ! X; f W p�E ! F
�

where X; Y are semialgebraic sets;
E;F are semialgebraic vector bundles; and p; f are semialgebraic maps. (See
[BCR98, Chap. 2] for basic results and definitions.) It is not hard to go through the
proofs and see that everything generalizes to the semialgebraic case.

In fact, some of the constructions could be simplified since one can break up any
descent problem D into a union of descent problems Di such that each Yi ! Xi is
topologically a product over the interior of Xi . This would allow one to make some
noncanonical choices to simplify the construction of the diagrams (51.m).

It may be, however, worthwhile to note that one can directly reduce the
semialgebraic version to the real algebraic one as follows.

Note first that in the semialgebraic setting it is natural to replace a real algebraic
descent problem D D �

p W Y ! X; f W p�E ! F
�

by its semialgebraic reduction
sa-red.D/ WD �

p W Y ! p.Y /; f W p��
Ejp.Y /

� ! F
�
.

We claim that for every semialgebraic descent problem D, there is a proper
surjection r W Ys ! Y such that the corresponding scion r�D is semialgebraically
isomorphic to the semialgebraic reduction of a real algebraic descent problem.

To see this, first, we can replace the semialgebraic X by a real algebraic variety
Xa that contains it and extend E to semialgebraic vector bundle over Xa. Not all
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semialgebraic vector bundles are algebraic, but we can realizeE as a semialgebraic
subbundle of a trivial bundle CM . This in turn gives a semialgebraic embedding of
X into X � Gr.rankE;M/. Over the image, E is the restriction of the algebraic
universal bundle on Gr.rankE;M/. Thus, up to replacing X by the Zariski closure
of its image, we may assume that X and E are both algebraic. Replacing Y by the
graph of p in Y �X , we may assume that p is algebraic. Next write Y as the image
of a real algebraic variety. We obtain a scion where now p W X ! Y;E; F are
all algebraic. To make f algebraic, we use that f defines a semialgebraic section
of P

�HomX.p
�E;F /

� ! Y . Thus, after replacing Y by the Zariski closure of its
image in P

�HomX.p
�E;F /

� ! Y , we obtain an algebraic scion with surjective
structure map.

54 (p-Adic Case) One can also consider Question 1 in the p-adic case and the
proofs work without any changes. In fact, if we start with polynomials fi 2
QŒx1; : : : ; xn�, then in Theorem 34, it does not matter whether we want to work
over R or Qp; we construct the same descent problems. It is only in checking the
finite set test (26) that the field needs to be taken into account: if we work over R,
we need to check the condition for fibers over all real points; if we work over Qp ,
we need to check the condition for fibers over all p-adic points.
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Math. 532, 1–28 (2010)], we prove a version of multiple recurrence for sets of
positive measure in a general stationary dynamical system.
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Introduction

The celebrated theorem of E. Szemerédi regarding the existence of long arithmetical
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to be equivalent to a statement involving “multiple recurrence” in the framework
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Theorem 0.1. Let .X;B; �; T / be a measure preserving dynamical system; i.e.,
.X;B; �/ is a probability space and T W X ! X a measure preserving mapping
of X to itself. If A 2 B is a measurable subset with �.A/ > 0, then for any k D
1; 2; 3; : : : , there exists m 2 N D f1; 2; 3; : : : g with

�
�
A \ T �mA \ T �2mA \ � � � \ T �km

�
> 0:

The case k D 1 is the “Poincaré recurrence theorem” and is an easy exercise
in measure theory. The general case is more recondite (see, e.g., [2]). In principle,
recurrence phenomena make sense in the framework of more general group actions,
and we can inquire what is the largest domain of their validity. Specifically, if
a group G acts on a measure space .X; �/ (we have suppressed the �-algebra
of measurable sets) with .g; x/ ! Tgx by non-singular maps fTgg, and A is a
measurable subset of X with �.A/ > 0, under what conditions can we find for large
k an element g 2 G, g 6D identity, with

�
�
A \ T �1

g A \ T �2
g A \ � � � \ T �k

g A
�

> 0 ‹

Some conditions along the line of measure preservation will be necessary. Without
this, we could take G D Z; X D Z [ f1g; 8 t; n 2 Z; Tt n D n C t; n 6D 1;

Tt1 D 1, and �.fng/ D 1

3�2jnj , �.f1g/ D 0. Here no t 6D 0 will satisfy
Tt.fng/ \ fng 6D 0.

The present work extends an earlier paper on “stationary” systems [3]. Here we
shall show that quite generally, under the hypothesis of “stationarity,” which we shall
presently define, one obtains a version of multiple recurrence for sets of positive
measure.

We recall the basic definitions here, although we will rely on the treatment in
[3] for fundamental results. Throughout, G will represent a locally compact, second
countable group, and �, a fixed probability measure on Borel sets of G. We consider
measure spaces .X; �/ on which G acts measurably, i.e., the map G � X ! X

which we denote .g; x/ ! gx is measurable, and so the convolution of the measure
� on G and � 2 P.X/; � � �, is defined as the image of � � � on X under
this map; thus � � � is again a probability measure on X , an element of P.X/.
We will always assume that G acts on .X; �/ by non-singular transformations; i.e.,
�.A/ D 0 implies �.gA/ D 0 for a measurable A � X and g 2 G.

Definition 0.2. When � � � D �, we say that .X; �/ is a stationary .G; �/ space.

This can be interpreted as saying that � is invariant “on the average.” It is also
equivalent to the statement that for measurable A � X

�.A/ D
Z

G

�
�
g�1A

�
d�.g/: (0.1)

Associated with the space .G; �/, we will consider the probability space

.�; P / D .G; �/ � .G; �/ � � � �
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where we will denote the random variables representing the coordinates of a point
! 2 � by f�1.!/; �2.!/; : : : ; �n.!/; : : : g. We will draw heavily on the “martingale
convergence theorem” which for our purposes can be formulated:

Theorem 0.3 (Martingale Convergence Theorem (MCT)). Let fFn.!/gn2N be a
sequence of uniformly bounded, measurable, real-valued functions on � with Fn

measurable with respect to �1; �2; : : : ; �n and such that

Fn .�1; �2; : : : ; �n/ D
Z

G

FnC1 .�1; �2; : : : ; �n; �/ d�.�/: (0.2)

(Such a sequence is called a martingale.) Then with probability one, the sequence
fFn.!/g converges almost surely to a limit F.!/ satisfying:

E.F / D
Z

F.!/ dP.!/ D
Z

G

F1.�/ d�.�/: (0.3)

The theory of stationary actions is intimately related to boundary theory for
topological groups and the theory of harmonic functions. For details, we refer the
reader to [1].

1 Poincaré Recurrence for Stationary Actions

A first application will be a proof of a particular version of the Poincaré recurrence
phenomenon for stationary actions.

Theorem 1.1. Let G be an infinite discrete group and let � be a probability
measure on G whose support S.�/ generates G as a group. Let .X; �/ be a
stationary space for .G; �/ and let A � X be a measurable subset with �.A/ > 0.
Then there exists g 2 G; g 6D identity, with �.A \ g�1A/ > 0.

We start with a lemma.

Lemma 1.2. If †.�/ is the semigroup in G generated by S.�/, there exists a
sequence of elements ˛1; ˛2; ˛3; : : : 2 †.�/ such that no product ˛i1˛i2 � � � ˛in with
i1 < i2 < i3 < � � � < in equals the identity element of G.

Proof. The semigroup †.�/ is infinite since a finite subsemigroup of a group is a
group. We proceed inductively so that having defined ˛1; ˛2; : : : ; ˛n where products
do not degenerate, we can find ˛nC1 2 †.�/ so that no product

˛i1˛i2 � � � ˛is ˛nC1 D id;

there being only finitely many values to avoid.
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Proof (Proof of the Theorem 1.1:). The proof is based on two ingredients. First, if
we define functions on � by

Fn.!/ D �
�
��1

n ��1
n�1 � � � ��1

1 A
�

then by (0.1), the sequence fFng forms a martingale. The second ingredient is
the fact that in almost every sequence �1.!/; �2.!/; : : : ; �n.!/; : : : , every word in
the “letters” of S.�/ appears infinitely far out, and then every element in †.�/

appears as a partial product. Now let f .!/ D lim Fn.!/, which by the MCT is
defined almost everywhere, then E.f / D R

�.g�1A/ d�.g/ D �.A/ > 0. So, if
ı D �.A/=2, there will be a random variable n.!/ which is finite with positive
probability so that for n > n.!/

�
�
��1

n ��1
n�1 � � � ��1

1 A
�

> ı:

Now choose ˛1; ˛2; ˛3; � � � 2 †.�/ as in the foregoing lemma, and let N > 1=ı.
With positive probability, there is l � n.!/ and 0 D r0 < r1 < r2 < � � � < rN so
that in †.�/,

�lCri�1C1.!/�lCri�1C2.!/ � � � �lCri .!/ D ˛i ;

for i D 1; 2; : : : ; N � 1. By definition of n.!/,

�
�
˛�1

i � � � ˛�1
l ˇ�1A

�
> ı i D 1; 2; : : : ; N;

where ˇ D �1�2 � � � �l�1. But this yields N sets of measure > 1=N in X , and we
conclude that for some i < j ,

�
�
˛�1

i � � � ˛�1
l ˇ�1A \ ˛�1

j � � � ˛�1
l ˇ�1A

�
> 0:

This however implies that for a conjugate � of the product ˛�1
j ˛�1

j �1 � � � ˛�1
iC1, we

have �.A \ �A/ > 0. Here � 6D id since by construction, ˛iC1˛iC2 � � � ˛j 6D id.

2 Multiple Recurrence for SAT Actions

Our main result is a multiple recurrence theorem for stationary actions. We proceed
step by step proving the theorem first for the special category of actions known as
SAT actions. These were introduced by Jaworski in [4].

Definition 2.1. The action of a group G on a probability measure space .X; �/

is SAT (strongly approximately transitive) if for every measurable A � X with
�.A/ > 0, we can find a sequence fgng � G with �.gnA/ ! 1.

We now have a second recurrence result:
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Theorem 2.2. If .X; �/ is a probability measure space on which the group G acts
by non-singular transformations and the G action is SAT, then for every measurable
A � X with �.A/ > 0 and any integer k � 1, there is a � 2 G; � 6D id with

�.A \ ��1A \ ��2A \ � � � \ ��kA/ > 0 : (2.1)

Moreover, if F is any finite subset of G, � can be chosen outside of F .

We use the following basic lemma from measure theory.

Lemma 2.3. If � W X ! X is a non-singular transformation with respect to a
measure � on X , then for any " > 0, there exists a ı > 0 so that �.A/ < ı implies
�.�A/ < ".

Proof. If such a ı did not exist, we could find B � X with �.B/ D 0 and
�.�B/ � ".

Proposition 2.4. Assume G acts on .X; �/ by non-singular transformations and let
�1; �2; : : : ; �k 2 G. There exists ı > 0 so that if �.B/ > 1 � ı, then

�.�1B \ �2B \ � � � \ �kB/ > 0:

Proof. The desired inequality will take place provided the measure of each �iB
0

is less than 1=k, where B 0 D X n B . By Lemma 2.3, this will hold if �.B 0/ is
sufficiently small.

Proof (Proof of the Theorem 2.2). Let � 6D id be any element of G. Apply
Proposition 2.4 with �0 D id, �i D ��i ; i D 1; 2; : : : ; k and find ı > 0 so that
�.B/ > 1 � ı implies

�.B \ �B \ �2B \ � � � \ �kB/ > 0 :

Use the SAT property to find g 2 G with �.g�1A/ > 1 � ı. Then

�.g�1A \ �g�1A \ �2g�1A \ � � � \ �kg�1A/ > 0:

Applying g to the set appearing here, we get:

�.A \ g�g�1A \ g�2g�1A \ � � � \ g�kg�1A/ > 0:

Letting � D g��1g�1, we obtain the desired result.
We turn now to the last statement of the theorem. One sees easily that if G has a

nontrivial SAT action, then G is infinite. Let H be a finite subset of G with greater
cardinality than F . Now in the foregoing discussion, we consider a sequence fgng
in G with �.g�1

n A/ ! 1; then for any � , if n is sufficiently large if we take � D
gn�g�1

n for large n, we will get (2.1). We claim that � can be chosen so that for an
infinite subsequence fnj g, we will have gnj �g�1

nj
… F . For this, we simply consider

the sets fgnHg�1
n g each of which has some element outside of F . fnj g is then a

sequence for which there is a fixed � 2 H with gnj �g�1
nj

… F . This completes the
proof.
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3 A Structure Theorem for Stationary Actions

In order to formulate our structure theorem, we will introduce a few definitions and
some well-known basic tools from the general theory of dynamical systems.

3.1 Factors and the Disintegration of Measures

Definition 3.1. Let .X; �/ and .Y; 	/ be two .G; �/ spaces. A measurable map 
 W
.X; �/ ! .Y; 	/ is called a factor map, or an extension, depending on the view
point, if it intertwines the group actions: for every g 2 G, g
.x/ D 
.gx/ for �

almost every x 2 X .

Definition 3.2. If .Y; 	/ is a factor of .X; �/, we can decompose the measure � as
� D R

Y

�yd	.y/, where the �y are probability measures on X with �y.
�1.y// D 1

and the map y 7! �y is measurable from Y into the space of probability measures
on X , equipped with its natural Borel structure. We say .X; �/ is a measure
preserving extension of .Y; 	/ if for each g 2 G; g�y D �gy for almost every
y 2 Y . Note that a stationary system .X; �/ is measure preserving (i.e., g� D � for
every g 2 G) if and only if the extension 
 W X ! Y , where the factor .Y; 	/ is the
trivial one-point system is a measure preserving extension.

Topological Models. We begin this subsection with some remarks regarding
stationary actions of .G; �/ on .X; �/ in the case that X is a compact metric space.
We then speak of a topological stationary system. In this case, we can form the
measure-valued martingale

�n.!/ D �1�2 � � � �n�:

The martingale convergence theorem is valid also in this context by the separability
of C.X/, and so we obtain a measure-valued random variable �.!/ D lim

n!1 �n.!/.

Definition 3.3. A topological stationary system .X; �/ is proximal if with probabil-
ity 1, the measure �.!/ is a Dirac measure: �.!/ D ız.!/.

Definition 3.4. A stationary system .X; �/ is proximal if every compact metric
factor .X 0; �0/ is proximal.

Definition 3.5. Let .X; �/ and .X 0; �0/ be two .G; �/ stationary systems, and
suppose that X 0 is a compact metric space. We say that the stationary system .X 0; �0/
is a topological model for .X; �/ if there is an isomorphism of the measure spaces
� W .X; �/ ! .X 0; �0/ which intertwines the G actions.

The following proposition is well known and has several proofs. We will be
content here with just a sketch of an abstract construction.

Proposition 3.6. Every .G; �/ system .X; �/ admits a topological model. More-
over, if A � X is measurable, we can find a topological model � W .X; �/ ! .X 0; �0/
such that the set A0 D �.A/ is a clopen subset of the compact space X 0.
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Proof. Choose a sequence of functions ffng � L1.X; �/ which spans L2.X; �/,
with f1 D 1A. Let G0 � G be a countable dense subgroup and let A be the G0-
invariant closed unital C �-subalgebra of L1.X; �/ which is generated by ffng. We
let X 0 be the, compact metric, Gelfand space which corresponds to the G-invariant,
separable, C �-algebra A. Since f 2

1 D f1, we also have Qf 2
1 D Qf1, where the latter

is the element of C.X 0/ which corresponds to f1. Since Qf1 is continuous, it follows
that A0 WD fx0 W Qf1.x

0/ D 1g is indeed a clopen subset of X 0 with Qf1 D 1A0 . The
probability measure �0 is the measure which corresponds, via Riesz’ theorem, to the
linear functional Qf 7! R

f d�.

Proposition 3.7. If .X; �/ is a proximal stationary system for .G; �/, then the
action of G on .X; �/ is SAT.

Proof. Let A be a measurable subset of X with �.A/ > 0. There is a topological
model .X 0; �0/ of .X; �/ such that A is the pullback of a closed-open set A0
with �0.A0/ D �.A/. As in Sect. 1, we form the martingale � 0.��1

n ��1
n�1 � � � ��1

1 A0/
which converges to �.!/.A/ D ız0.!/.A

0/, since by the proximality of .X; �/, the
topological factor .X 0; �0/ is proximal. Now the latter limit is 0 or 1, and since the
expectation of �0.��1

n ��1
n�1 � � � ��1

1 A/ is �.A/ > 0, there is positive probability that
z0.!/ 2 A0. When this happens,

�.��1
n ��1

n�1 � � � ��1
1 A/ D �0.��1

n ��1
n�1 � � � ��1

1 A0/ ! 1:

This proves that the action is SAT.

The Structure Theorem. We now reformulate the structure theorem (Theorem
4.3) of [3] to suit our needs. (The theorem in [3] gives more precise information.)

Theorem 3.8. Every stationary system is a factor of a stationary system which is a
measure preserving extension of a proximal system.

Alternatively, in view of Proposition 3.7:

Theorem 3.9. If .X; �/ is a stationary action of .G; �/, there is an extension
.X�; ��/ of .X; �/ which is a measure preserving extension of an SAT action of
G on a stationary space .Y; 	/.

This is the basic structure theorem which we will use to deduce a general multiple
recurrence result for stationary actions.

4 Multiple Recurrence for Stationary Actions

We recall the terminology of [3]:

Definition 4.1. A .G; �/ stationary action of on .X; �/ is standard if .X; �/ is a
measure preserving extension of a proximal action.
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Since proximality implies SAT, we can extend this notion and replace “proximal”
by SAT. Theorem 3.8 asserts that every stationary action has a standard extension.
The nature of recurrence phenomena is such that if such a phenomenon is valid
for an extension of a system, it is valid for the system. Precisely, if 
 W X ! X 0
and A0 � X 0 and for the pullback A D 
�1.A0/ and a set g1; g2; : : : ; gk , we have
�.g�1

1 A \ g�1
2 A \ � � � \ g�1

k A/ > 0, then �0.g�1
1 A0 \ g�1

2 A0 \ � � � \ g�1
2 A0/ > 0.

It follows now from Theorem 3.8 that for a general multiple recurrence theorem
for stationary actions, it will suffice to treat standard actions. Using the definition
of a standard action, we will take advantage of the multiple recurrence theorem
proved in Sect. 2 for SAT actions and show that this now extends to any standard
action. For this, we use a lemma which is based on Szemerédi’s theorem. By the
latter, there is a function N.ı; `/, for ı > 0 and ` a natural number, so that for
n � N.ı; `/, if E � f1; 2; 3; : : : ; ng with jEj � ın, then E contains an `-term
arithmetic progression. We now have:

Lemma 4.2. In any probability space .�; P /, for n � N.ı; `/, if A1; A2; : : : ; An

are n subsets of � with P.Ai / > ı for i D 1; 2; : : : ; n, then there exist a and d

so that

P.Aa \ AaCd \ AaCd \ � � � \ AaC.`�1/d / > 0:

Proof. Set fi .x/ D 1Ai .x/; i D 1; 2; : : : ; n, and let E.x/ D fi W fi .x/ D 1g.
jE.x/j D †n

iD1fi .x/ and the condition jE.x/j > ın is implied by F.x/ D
†fi .x/ > ın. But

R
F.x/ dP.x/ D †P.Ai / > ın, and so for some set, B � �

with P.B/ > 0; F.x/ > ın. Thus, for each x 2 B , we have jE.x/j > nı and
there is an `-term arithmetic progression Ra;d .x/ � E.x/, so that x lies in the
intersection of the Ar , as r ranges over the arithmetic progression Ra;d .x/. There
being only finitely many progressions, we obtain for one of these P

� T

r2Ra;d

Ar

�
> 0.

We will need an additional hypothesis to obtain a general multiple recurrence
theorem.

Definition 4.3. A group G is OU (order unbounded) if for any integer n we have
for some g 2 G; gn ¤ id .

For an OU group, we can find, for any given k, elements � 2 G so that none
of the powers �; �2; : : : ; �k give the identity. Note that in our proof of multiple
recurrence for SAT actions, Theorem 2.2, we obtain, for any subset A � X of
positive measure, an element id ¤ � 2 G with:

�
�
A \ ��1A \ ��2A \ � � � \ ��kA

�
> 0;

where for an OU group we can demand that each �j ¤ id; j D 1; 2; : : : ; k. In
fact, in that proof, we show that the element � can be found within the conjugacy
class of any nonidentity element � of G.

We can now prove:
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Theorem 4.4. Let .X; �/ represent a stationary action of .G; �/ with the elements
of G acting on .X; �/ by non-singular transformations and where G is an OU group.
Let A � X be a measurable set with �.A/ > 0 and let k � 1 be any integer; then
there exists an element � in G with �j ¤ id; j D 1; 2; : : : ; k and with

�
�
A \ ��1A \ ��2A \ � � � \ ��kA

�
> 0:

Proof. We can assume .X; �/ is a measure preserving extension of .Y; 	/ where the
action of G on .Y; 	/ is SAT. Let 
 W X ! Y and decompose � D R

�yd	.y/.
Let A � X be given and let ı > 0 be such that B D fy W �y.A/ > ıg has
positive measure. Set N D N.ı; k/ in Theorem 2.2 and find � with �j ¤ id for
j D 1; 2; : : : ; N , and with

	
�
B \ ��1B \ ��2B \ � � � \ ��N B

�
> 0:

For y 2 B \ ��1B \ � � � \ ��N B and j D 1; 2; : : : ; N , we will have

�y

�
��j A

� D �j �y.A/ D ��j y.A/ > ı:

We now use Lemma 4.2 to obtain for each y 2 B \ ��1B \ � � � \ �N B a k-term
arithmetic progression R of powers of � with �y

� T

j 2R

��j A
�

> 0. In particular,
T

j 2R

��j A ¤ ; for some arithmetic progression R D fa; a C d; a C 2d; : : : ; a C
.k � 1/d g so that with � 0 D �d ,

A \ � 0�1A \ � 0�2A \ � � � \ � 0�k ¤ ;:

Obtaining a nonempty intersection suffices to obtain an intersection of positive
measure, and so our theorem is proved.
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1
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@
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d 5

1

A qn
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�.�/ D q
1
24

Y

n>0

.1 � qn/

be Dedekind’s eta function.
For a prime p, denote by U Atkin’s Up operator. We say that a function � with a

Fourier expansion � D P
u.n/qn is congruent to zero modulo a power of a prime p,

� D
X

u.n/qn � 0 mod pw;

if all its Fourier expansion coefficients are divisible by this power of the prime;
u.n/ � 0 mod pw for all n.

In this chapter, we prove the following congruences.

Theorem 1. (i) If p > 3 is a prime, then for all integers l > 0,

�
E6.6�/

�.6�/4

�
jU l � 0 mod p3l :

(ii) Let p be a prime such that p � 1 mod 3. There exists an integer Ap � 0 such
that for all integers l � 0

�
E4.6�/

�.6�/4

�
jU l � 0 mod pl�Ap :

(iii) Let p > 3 be a prime such that p � 2 mod 3. There exists an integer Ap � 0

such that for all integers l � 0

�
E4.6�/

�.6�/4

�
jU l � 0 mod pŒl=2��Ap :

These congruences were first observed by Masanobu Kaneko several years ago
as a result of numerical experiments. In a recent paper by Honda and Kaneko [6], the
congruences of Theorem 1 (i) and (ii) were proved in the case l D 1 with Ap D 0.
Their result in this case is thus sharper than ours. They also conjecture that these
congruences are true for all l � 0 with Ap D 0. The techniques which they use in
their proof are quite different from ours.

As the author was informed by Professor Kaneko, the function E4.6�/=�.6�/4

was considered by him in relation to his study with Koike [7–10] of a differential
equation of second order that first arose from the work of Kaneko and Zagier
[11] on supersingular j -invariants. This differential equation is also related to
the classification of 2-dimensional conformal field theories. The current author
falls short of being an expert in these areas and knows nothing about possible
interpretations of the congruences above. It seems, however, interesting that an
understanding and a proof of these congruences are far from being obvious and
requiring the theory of weak harmonic Maass forms which was developed very
recently (see [13] for details and a bibliography).
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The author is very grateful to Masanobu Kaneko for many valuable communica-
tions. The author would like to thank Marvin Knopp for his deep and interesting
comments. The author is thankful to the referee for remarks which allowed the
author to improve the presentation.

The three congruences in Theorem 1, although they look similar, are quite
different in their nature: Theorem 1 (i) is pretty easy (see Proposition 1 below) while
Theorem 1 (ii), (iii) are more involved. In particular, the conditions p � 1 or 2

mod 3 indeed make a difference and are related to complex multiplication for
the elliptic curve X0.36/. Our proof is easily generalizable and indicates that
congruences of this type are far from being isolated. Similar congruences may
be related to all weakly holomorphic modular forms which may be produced by
means of differentiation from the mock modular forms whose shadows are complex
multiplication cusp forms (see, e.g., [13] for the basic definitions related to weak
harmonic Maass forms and mock modular forms). In particular, let g D P

b.n/qn

be the weight two normalized cusp form which is the pullback of the holomorphic
differential on X0.36/ (incidentally, g D �.6�/4). If a prime p is inert in the CM
field (in this case, the CM field is Q.

p�3/, and inert primes are the odd primes
p � 2 mod 3), then b.p/ D 0. The congruences of Theorem 1 (ii) are, in a sense,
tightly related to this fact. A general theory which indicates how to produce similar
congruences is developed in [1]. In this chapter, however, we concentrate only on
the case of X0.36/ in order to obtain a clean and specific result.

Denote by D the differentiation

D WD 1

2�i

d

d�
:

We write M Š
s D M Š

s.N / for the space of weakly holomorphic (i.e., holomorphic in
the upper half plane with possible poles at the cusps) modular forms of weight s on
�0.N / of Hauptypus (i.e., having the trivial character). Bol’s identity implies that
for an even positive integer k,

Dk�1 : M Š
2�k ! M Š

k: (1)

For a weakly holomorphic modular form f 2 M Š
2�k , which has rational q-

expansion coefficients, the bounded denominator principle allows us to claim the
existence of an integer T such that all q-expansion coefficients of Tf are integers.
The following fact follows from this observation.

Proposition 1. Let p be a prime. If f 2 M Š
2�k has rational q-expansion coeffi-

cients, then there exists an integer A � 0 such that for all integers l � 0

.Dk�1f /jU l � 0 mod pl.k�1/�A:

In particular, if f 2 M Š
2�k has p-integral q-expansion coefficients, then A D 0.
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As an example, we apply Proposition 1 to prove Theorem 1 (i). Indeed, it is easy
to check that

E6.6�/

�.6�/4
D �D3

�
�.6�/�4

�
; (2)

and Theorem 1 (i) follows from Proposition 1 and this identity. Being an identity
between two modular forms, (2) can be verified, for example, by a straightforward
computer calculation of their sufficiently many Fourier coefficients. Note that these
are weakly holomorphic modular forms, and their principal parts at all cusps
coincide. One cannot prove Theorem 1 (ii), (iii) in a similar way because the map
(1) is not surjective. Specifically, E4.6�/=�.6�/4 2 M Š

2.36/ does not belong to the
image of this map.

The rest of the chapter is devoted to the proof of Theorem 1 (ii), (iii). We obtain
our results as an application of the theory of weak harmonic Maass forms. We refer
to [2, 4] for definitions and detailed discussion of their properties. The extension of
(1) to the space H2�k � M Š

2�k of weak harmonic Maass forms Dk�1 : H2�k ! M Š
k

is still not surjective. We, however, have the following proposition.

Proposition 2. There exists a weak harmonic Maass form M of weight zero (on
�0.36/ of Haupttypus) such that

E4.6�/

�.6�/4
D D.M / C ��.6�/4

for some � 2 C.

Proof. The existence of M with any given principal parts at cusps and in particular
such that the principal parts of D.M / and E4.6�/=�.6�/4 at all cusps coincide
follows from [2, Proposition 3.11]. Note that the constant terms of the Fourier
expansion of E4.6�/=�.6�/4 at all cusps vanish. This follows from the fact that
E4.�/=�.�/ has no constant term at infinity combined with the modularity of E4

and the transformation law of the Dedekind �-function. Since the constant terms
of the Fourier expansion of E4.6�/=�.6�/4 at all cusps vanish, the difference
D.M / � E4.6�/=�.6�/4 2 S2.36/ is a cusp form. However, dim S2.36/ D 1, and
this space is generated by the unique normalized cusp form �.6�/4.

We will later show that in fact, � D 0. But first investigate some properties of M .
It is well known (see [13, Sect. 7.2], [2, Sect. 3] for the details) that being a weak
harmonic Maass form M has a canonical decomposition

M D M C C M �

into a sum of a holomorphic function M C and a non-holomorphic function M � (in
the case under the consideration that is simply a decomposition of a C 1 function
into the sum of a holomorphic and an anti-holomorphic functions). The holomorphic
part M C has a Fourier expansion
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M C D
X

n��1
a.n/qn:

Proposition 3. The Fourier coefficients a.n/ of M C are algebraic numbers. More
specifically, there is a cyclotomic extension K of Q such that a.n/ 2 K for all n.

Proof. Let g WD �.6�/4 2 S2.�0.36// be the unique normalized cusp form of

weight 2 and level 36. Let � D x C iy. The differential operator 	 WD 2i @
@N�

takes weight zero weak harmonic Maass forms to cusp forms. In particular, since
dim S2.36/ D 1, we conclude that

	.M / D tg

for some t 2 C. Since Fourier coefficients of M at all cusps are rational, we derive
from [2, Proposition 3.5] that t jjgjj2 2 Q, where jjgjj2 denotes the Petersson norm
of g. At the same time, it follows from [4, Proposition 5.1] that there exists a
weak harmonic Maass form Mg which is good for g. That means (see [4]) that,
in particular, 	.Mg/ D jjgjj�2g, and Mg has its principal part at i1 in QŒq�1� and
is bounded at all other cusps. Since the rational linear combination M � t jjgjj2Mg

obviously satisfies
	.M � t jjgjj2Mg/ D 0;

we conclude that it is a weight zero weakly holomorphic modular form

M � t jjgjj2Mg 2 M Š
0.36/:

Since Mg is good for g, the modular form M � t jjgjj2Mg has principal parts with
rational Fourier expansion at all cusps and, therefore, rational Fourier coefficients
at i1. Proposition 3 now follows from a theorem of Bruinier, Ono, and Rhoades
[4, Theorem 1.3] which tells us that the Fourier expansion coefficients of the
holomorphic part M C

g belong to a cyclotomic field K , because g is a CM-form.

We now prove that in Proposition 2, in fact, � D 0.

Proposition 4. There exists a weak harmonic Maass form M of weight zero (on
�0.36/ of Haupttypus) such that

E4.6�/

�.6�/4
D D.M /:

Proof. We begin with an argument which is closely related to the proof of [4,
Theorem 1.2] (and could actually be expanded to an alternative proof of our
Proposition 3). Following [13, Lemma 7.2], we write the Fourier expansion of
M D M C C M � as

M C D
X

n��1
a.n/qn; M � D

X

n<0

a�.n/�.1; 4�jnjy/qn D
X

n<0

a�.n/ exp.2�in N�/;
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where �.a; x/ is the incomplete �-function. We thus have that

tg D 	.M / D �4�
X

n�1

a�.�n/nqn:

Since g has complex multiplication by Q.
p�3/, we conclude that a�.n/ D 0 if

n � 0; 2 mod 3. (Alternatively, this follows, of course, from the definition g D
�.6�/4, which implies immediately that the nonzero Fourier coefficients of g are
supported on n � 1 mod 6.) Let 
 D ��3

�
�
. As in [4], we conclude that the weak

harmonic Maass form

u WD M C M ˝ 
 WD M C
X

n��1
a.n/
.n/qn C

X

n<0

a�.n/
.n/ exp.2�in N�/

has the property 	.u/ D 0 and is therefore a weakly holomorphic weight zero
modular form. It follows that the denominators of its Fourier coefficients are
bounded. Namely, there exists a nonzero T 2 K� such that the coefficients of

T u D T .M C M ˝ 
/ D T .M C C M C ˝ 
/ D
X

n��1
T .a.n/ C 
.n/a.n// qn

all belong to the ring of integers OK � K . In particular, for a prime p � 1 mod 3,
we conclude that the p-adic limit of the coefficients pma.pm/ of qpm

of D.M / D
D.M C/ as m ! 1 is zero. Since all coefficients of qpm

in E4.6�/=�.6�/4 are zero,
and the coefficients of qpm

in g are not divisible by p, we conclude that � D 0.

Remark. There is an alternative way to prove Proposition 4: observe that M C is a
generalized abelian integral of the second kind (see [12] for a definition), and derive
the proposition from the results of Knopp [12].

Proposition 4 allows us to assume further that the Fourier coefficients of M C are
rational numbers.

We now need the Hecke operators action on M . For a prime p, let T .p/ WD
U C pk�1V be the p-the Hecke operator at weight k. Let

g D
X

n�1

b.n/qn:

The form g is, of course, a Hecke eigenform. Using the same argument as in [3,
Lemma 7.4], we have that

M j0T .p/ D p�1b.p/M C Rp;

where Rp 2 M Š
0.36/ is a weakly holomorphic modular form with coefficients in

Q. We apply the differential operator D to this identity and use the commutation
relation

pD .H j0T .p// D .D.H// j2T .p/;
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valid for any 1-periodic function H . We obtain that

.D.M // j2T .p/ D b.p/D.M / C pD.Rp/: (3)

Let ˇ; ˇ0 be the roots of equation

X2 � b.p/X C p D 0;

such that ordp.ˇ/ � ordp.ˇ0/. Note that g is a complex multiplication cusp form,
and the complex multiplication field is Q.

p�3/. In particular, if p � 1 mod 3,
then ˇ; ˇ0 2 Qp by Hensel’s lemma, and ordp.ˇ/ D 0 while ordp.ˇ0/ D 1. If p � 2

mod 3, then b.p/ D 0, and we have that ˇ D �ˇ0. Thus, ˇ; ˇ0 2 F D Qp.
p�p/

and ordp.ˇ/ D ordp.ˇ0/ D 1=2 in this case.
Our next proposition is closely related to calculations made in [1] and [5]. Let

R � F be the ring of p-integers. We consider the topology on F ˝ RŒŒq�� �
Qp ˝ ZpŒŒq�� (the tensor products are taken over Z throughout) determined by the
norm ˇ̌

ˇ̌
ˇ̌
X

n�0

u.n/qn

ˇ̌
ˇ̌
ˇ̌ D p� infn.ordp.u.n///:

Proposition 5. (i) Let p � 1 mod 3 be a prime. We have that in Qp ˝ ZpŒŒq��

lim
l!1 ˇ�l .D.M //jU l D 0:

(ii) Let p � 2 mod 3 be a prime. We have that in F ˝ RŒŒq�� the limits

lim
l!1 ˇ�2l .D.M //jU 2l

and
lim

l!1 ˇ�2l�1.D.M //jU 2lC1

exist.

Proof. Abbreviate
F D D.M /; rp D pD.Rp/;

and note that it follows from (3) that the Fourier coefficients of rp are rational
integers since those of F are rational integers. We firstly prove that all limits exist.

We put

G.�/ D F.�/ � ˇ0F.p�/ and G0.�/ D F.�/ � ˇF.p�/;

and rewrite (3) as

.F jU /.�/ C ˇˇ0F.p�/ D .ˇ C ˇ0/F.�/ C rp:
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We obtain that
GjU D ˇG C rp; G0jU D ˇ0G0 C rp;

and

F jU D ˇ

ˇ � ˇ0 .ˇG C rp/ � ˇ0

ˇ � ˇ0 .ˇ
0G0 C rp/:

It follows that

.ˇ � ˇ0/ˇ�l F jU l D
�

ˇG C rp C 1

ˇ
rp

ˇ̌
ˇ̌U C � � � C 1

ˇl�1
rp

ˇ̌
ˇ̌U l�1

�

� .ˇ0=ˇ/l

�
ˇ0G0 C rp C 1

ˇ0 rp

ˇ̌
ˇ̌U C � � � C 1

ˇ0l�1
rp

ˇ̌
ˇ̌U l�1

�
:

(4)

The existence of the limit in part (i) follows from (4) since .ˇ0=ˇ/l ! 0, and the
second expression in parenthesis has bounded denominators by Proposition 1, while
ˇ1�l rpjU l�1 ! 0 as l ! 1 again by Proposition 1. In order to prove the existence
of the limits in part (ii), we rewrite (4) in this case, taking into the account that
ˇ D �ˇ0, as

2ˇ�2lC1F jU 2l D ˇG C ˇG0 C 2
1

ˇ
rpjU C 2

1

ˇ3
rpjU 3 C � � � C 2

1

ˇ2l�1
rpjU 2l�1

and

2ˇ�2lF jU 2lC1 D ˇG � ˇG0 C2rp C2
1

ˇ2
rpjU 2 C2

1

ˇ4
rpjU 4 C� � � C2

1

ˇ2l
rpjU 2l ;

and Proposition 5 (ii) follows since we still have that ˇ�mrpjU m ! 0 as m ! 1
by Proposition 1.

We now prove that the limit in Proposition 5 (i) is actually zero. Write

lim
l!1 ˇ�l .D.M //jU l D

X

n>0

c.n/qn:

Obviously,
 
X

n>0

c.n/qn

!
jU D ˇ

 
X

n>0

c.n/qn

!
;

and we derive from (3), Proposition 1, and the fact that the operators U and T .m/

commute for any integer m not divisible by p that
 
X

n>0

c.n/qn

!
jT .m/ D b.m/

 
X

n>0

c.n/qn

!
:
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A standard inductive argument now allows us to conclude that
P

c.n/qn must
be a multiple of g.�/ � ˇ0g.p�/. However, c.1/ D 0 (simply because F D
E4.6�/=�.6�/4, and therefore c.pl / D 0 for all l). Thus, the series

P
n>0 c.n/qn

must be a zero multiple of g.�/ � ˇ0g.p�/.

We are now ready to prove Theorem 1 (ii), (iii).

Proof (Proof of Theorem 1 (ii), (iii)). Recall that F D D.M / D E4.6�/=�.6�/4.
Theorem 1 (iii) follows immediately from Proposition 5 (ii) since ordp.ˇ/ D 1=2

for p � 2 mod 3.
Assume that p � 1 mod 3. Proposition 1 allows us to pick Ap � 0 such that

ordp

�
pAp rpjU m

� � m (5)

for all m � 0. Since F has p-integral Fourier coefficients, so has G0, and in view of
(5) and the fact that ordp.ˇ0/ D 1, it now follows from (4) that

.ˇ�ˇ0/ˇ�lpAp F

ˇ̌
ˇ̌
ˇU

l � pAp ˇG C pAp rp C pAp

ˇ
rp

ˇ̌
ˇ̌
ˇU C � � � C pAp

ˇl�1
rp

ˇ̌
ˇ̌
ˇ U l�1 mod pl :

Let s � 1 be an integer. Pick l > s large enough such that F jU l � 0 mod ps ,
take into the account that both .ˇ � ˇ0/ and ˇ are p-adic units, and rewrite the
previous congruence as

0 � pAp
ˇ � ˇ0

ˇs
F jU s C pAp

ˇs
rpjU s C � � � C pAp

ˇl�1
rpjU l�1 mod ps:

It now follows from (5) that all terms on the right in this congruence except possibly
the first one vanish modulo ps , and we conclude that pAp F jU s � 0 mod ps as
required.
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Some Intrinsic Constructions on Compact
Riemann Surfaces

Robert C. Gunning

Abstract For any prescribed differential principal part on a compact Riemann
surface, there are uniquely determined and intrinsically defined meromorphic
abelian differentials with these principal parts, defined independently of any choice
of a marking of the surface or of a basis for the holomorphic abelian differentials,
and they are holomorphic functions of the singularities. They can be constructed
explicitly in terms of intrinsically defined cross-ratio functions on the Riemann
surfaces, the classical cross-ratio function for the Riemann sphere, and natural
generalizations for surfaces of higher genus.

Key words Riemann surfaces • Abelian differentials • Cross-ratio function
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1 Introduction

The vector space of holomorphic abelian differentials is intrinsically defined on
any compact Riemann surface M; but whether there is an individual uniquely
and intrinsically defined holomorphic abelian differential on an arbitrary Riemann
surface is a rather different matter. Of course, there is the familiar standard basis
for holomorphic abelian differentials on a marked Riemann surface, a surface with
a standard homology basis [4, 6], and there is an individual single holomorphic
abelian differential on any pointed Riemann surface determined uniquely and
intrinsically up to a constant factor, as will be demonstrated here; but in each
case, some other normalizing property of the surface is involved. The situation is
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quite different for meromorphic abelian differentials. There is a single uniquely and
intrinsically defined meromorphic abelian differential with a specified singularity
on any Riemann surface, fully independent of any choice of basis for the homology
group or for the space of holomorphic abelian differentials; and the periods and
other properties of this differential can be expressed quite simply in terms of any
basis for the homology or space of holomorphic abelian differentials on M . This
intrinsic differential will be discussed for meromorphic abelian differentials of the
second kind in Sect. 2, the simple case in which the integrals of the differentials are
well-defined meromorphic functions on the universal covering surface, and for the
basic meromorphic abelian differentials of the third kind in Sect. 3, the case in which
the integrals of the differentials are well-defined meromorphic functions only on the
complements of paths joining the singularities on the universal covering surface.
The complications caused by the multiple-valued nature of the integrals are avoided
by considering the intrinsic cross-ratio function on M , a uniquely and intrinsically
defined basic analytic entity on any Riemann surface. The proofs are perhaps a bit
novel, since the point of this note is to show that the constructions involved are quite
intrinsic and that all the invariants can be calculated by essentially the same formulas
in terms of any bases for the homology and the holomorphic abelian differentials on
the surface. Some standard properties of meromorphic abelian differentials and of
the cross-ratio function with more standard proofs on marked Riemann surfaces can
be found in [9], where the cross-ratio function was introduced but called the prime
form for its role in the factorization of meromorphic functions onM ; the possibility
of intrinsically defined meromorphic abelian differentials was not discussed there.

As background for the discussion here, on a compact Riemann surface M of
genus g > 0, let !i .z/ be a basis for the holomorphic abelian differentials and
�j 2 H1.M/ be a basis for the first homology group. The intersection matrix of M
in terms of these bases is the 2g � 2g skew-symmetric integral matrix P describing
the intersection numbers of the homology basis �j ; so the entries of the matrix
P are the integers pjk D �j \ �k . If �i .z/ are the dual differential forms to the
homology basis �j , the closed differential 1-forms on M for which

R
�j
�i .z/ D ıij ,

then equivalently pij D R
M
�i .z/ ^ �j .z/. The period matrix of M is the g � 2g

complex matrix � with the entries !ij D R
�j
!i .z/ for 1 � i � g; 1 � j � 2g.

Riemann’s equality [8, 10] for the period matrix� is

i

�
�

�

�

P
t ��
�

�

D
�
H 0

0 �H
�

(1)

where H is a g � g complex matrix and tX denotes the transpose of the matrix X ;
and Riemann’s inequality for the period matrix� is that the matrixH D i�P t� is
positive-definite Hermitian. It is convenient also to introduce the auxiliary matrices

G D tH�1 D H
�1

(2)
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and
�
…

…

�

D
t ��
�

��1
; (3)

so that the g � 2g complex matrices � and … satisfy

� t… D 0; � t… D I2g; and t�…C t�… D I2g (4)

where I2g is the 2g � 2g identity matrix. It follows from (4) that there is the direct
sum decomposition

C
2g D t�…C

2g ˚ t�…C
2g D t�C

g ˚ t�C
g: (5)

The subspace t�Cg � C2g in this decomposition can be described more in-
trinsically as the subspace spanned by the period vectors of the holomorphic
abelian differentials, where the period vector of the holomorphic abelian differential
!i .z/ is the column vector in C2g with the entries

R
�j
!i .z/ for 1 � j � 2g;

correspondingly, the subspace t�C2g � C2g is the subspace spanned by the period
vectors of the complex conjugates of the holomorphic abelian differentials !i .z/.
A straightforward calculation shows that under changes of bases

!i .z/ D
gX

kD1
cik!

�
k .z/ and �j D

2gX

lD1
qlj �

�
l (6)

for any matricesC D fcikg 2 Gl.g;C/ andQ D fqlj g 2 Gl.2g;Z/, the intersection
and period matrices are changed by

P D Q�1P � tQ�1; � D C��Q and G D tC�1G�C�1
: (7)

This note is dedicated to the memory of Leon Ehrenpreis, among whose many
mathematical interests were special functions [1, 2] and Riemann surfaces [3], so
who might have been amused by these observations.

2 Meromorphic Abelian Differentials of the Second Kind

The singularities of meromorphic abelian differentials on M are described by
differential principal parts p D fpai g associated to finitely many distinct points
ai 2 M , where pai is a finite Laurent expansion of a local meromorphic differential
form in an open neighborhood of the point ai in terms of a local coordinate centered
the point ai . A meromorphic abelian differential on M having the differential
principal part p is a meromorphic abelian differential �.z/ on M that differs from



306 R.C. Gunning

the local differential principal part pai by a local holomorphic differential form in a
neighborhood of the point ai for each ai 2 M ; so �.z/ is determined uniquely by
its principal part p up to the addition of an arbitrary holomorphic abelian differential
on M . The general existence theorem for meromorphic abelian differentials [6, 11]
asserts that there is a meromorphic abelian differential on M with the differential
principal part p D fpai g if and only if the sum of the residues of the Laurent
expansions pai at all of the points ai is zero. A differential principal part of the
second kind is a differential principal part p D fpai g such that the residue of each
Laurent expansion pai is zero; so any differential principal part of the second kind
on M is the differential principal part of a meromorphic abelian differential on
M , called a meromorphic abelian differential of the second kind. These differential
forms frequently are called just differentials of the second kind, and holomorphic
abelian differentials are called differentials of the first kind. A meromorphic abelian
differential that is of neither the first nor the second kind is called a meromorphic
abelian differential of the third kind, or just a differential of the third kind.
A holomorphic abelian differential !.z/ or a meromorphic abelian differential �.z/
on M can be identified with a holomorphic or meromorphic abelian differential
on the universal covering surface fM of M that is invariant under the action of
the covering translation group �; the induced differential form on fM generally
will be denoted by the same symbol as the differential form on M . The integrals
w.z; a/ D R z

a
! and u.z; a/ D R z

a
� of holomorphic abelian differentials and

meromorphic abelian differentials of the second kind are well- defined holomorphic
or meromorphic functions of points z; a 2 fM and are determined uniquely by the
conditions that if a 2 fM is viewed as a fixed point, then dw.z; a/ D !.z/ and
du.z; a/ D �.z/ while w.a; a/ D 0 and u.a; a/ D 0, assuming of course that
a is not one of the points ai . If the base point a is irrelevant, the integral may
be denoted just by w.z/ or u.z/. The period classes of these differentials are the
group homomorphisms ! 2 Hom.�;C/ and � 2 Hom.�;C/ from the covering
translation group � of M to the additive group of complex numbers defined by
!.T / D w.T z; a/ � w.z; a/ and �.T / D u.T z; a/ � u.z; a/ for any T 2 � ,
where !.T / and �.T / are constants since dw.z; a/ and du.z; a/ are �-invariant
functions of z 2 fM . Alternatively, since C is abelian, these period classes can be
viewed as homomorphisms ! 2 Hom.H1.M/;C/ and � 2 Hom.H1.M/;C/ from
the homology group H1.M/ of M , the abelianization H1.M/ D �=Œ�; �� of the
covering translation group�; and the values of these homomorphisms coincide with
the usual period integrals !.�/ D R

�
!.z/ and �.�/ D R

�
�.z/ of these differential

forms along closed paths � 2 M representing the given homology classes, provided
of course that the paths � avoid the singularities of �.z/. By de Rham’s theorem,
two closed C1 differential 1-forms �.z/ and  .z/ on M have the same periods
on all 1-cycles � 2 H1.M/ if and only if they differ by the exterior derivative of
a C1 function on M ; such differential forms are called cohomologous, and that
�.z/ and  .z/ are cohomologous differential forms will be indicated by writing
�.z/ �  .z/. The following probably quite familiar observations about differential
forms are inserted here for convenience of reference in the subsequent discussion.
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Lemma 1. If �0.z/; �00.z/;  0.z/;  00.z/ are closed C1 differential 1-forms on a
compact Riemann surface M , where �0.z/ � �00.z/ and  0.z/ �  00.z/, then

Z

M

�0.z/ ^  0.z/ D
Z

M

�00.z/ ^  00.z/: (8)

Proof. If �0.z/ � �00.z/ so that �0.z/ � �00.z/ D df .z/ for a C1 function f .z/ on
M , then by Stokes’s theorem,

Z

M

�
�0.z/� �00.z/

� ^  0.z/ D
Z

M

df .z/ ^  0.z/ D
Z

M

d
�
f .z/  0.z/

�

D
Z

@M

f .z/ 0.z/ D 0

since @M D ; for the compact manifoldM . The obvious iteration of the preceding
equation yields (8), and that suffices for the proof.

Lemma 2. For any bases !i .z/ of holomorphic differential forms and �j 2 H1.M/

for the first homology group of a compact Riemann surfaceM ,

i

Z

M

!j .z/ ^ !k.z/ D hjk (9)

where H is the matrix defined in (1).

Proof. That !jm are the periods of the differential form !j .z/ can be restated as the
condition that !j .z/ � Pg

mD1 !jm�m.z/ where �m.z/ are the dual differential forms
to the homology basis �j , so

i

Z

M

!j .z/ ^ !k.z/ D i

gX

m;nD1
!jm!kn

Z

M

�m.z/ ^ �n.z/

D i

gX

m;nD1
!jm!knpmn D hjk

by definition of the matrixH , and that suffices for the proof.

Theorem 1. (i) For any differential principal part of the second kind p on a
compact Riemann surfaceM of genus g > 0, there are a unique meromorphic
abelian differential of the second kind�p.z/ and a unique holomorphic abelian
differential !p.z/ such that �p.z/ has the differential principal part p and has
the same period class as the complex conjugate differential !p.z/.

(ii) The holomorphic abelian differential !p.z/ is characterized by

Z

M

!.z/ ^ !p.z/ D 2	i
X

a2M
resa .w.z/ p/ (10)
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for all holomorphic abelian differentials !.z/ on M , where dw.z/ D !.z/ and
resa.w.z/ p/ is the residue of the local meromorphic differential form w.z/ p
at the point a 2 M .

(iii) In terms of any bases !i .z/ and �j , the differential form !p.z/ is given by

!p.z/ D �2	
gX

i;jD1

X

a2M
gji resa.wi .z/ p/!j .z/ (11)

where G D fgij g is the matrix (2) and dwi .z/ D !i .z/, and
(iv) the period class of the meromorphic abelian differential �p.z/ is given by

�p.T / D �2	
gX

i;jD1

X

a2M
gij resa.wi .z/ p/ !j .T / (12)

for any T 2 � .

Proof. (i) If �.z/ is an abelian differential of the second kind with the differential
principal part p, then �.z/C !.z/ is an abelian differential of the second kind
with the principal part p for any holomorphic abelian differential !.z/, and all
the abelian differentials of the second kind with the differential principal part
p arise in this way. There is a unique holomorphic abelian differential !.z/
such that the period vector f�p.�j /g D f�.�j /C !.�j /g of the meromorphic
differential form �p.z/ D �.z/ C !.z/ is contained in the linear subspace
t�Cg � C2g in the direct sum decomposition (5), hence such that �p.�/ D
!p.�/ for a uniquely determined holomorphic abelian differential !p.z/.

(ii) If the differential principal part is explicitly p D fpal g, choose points Qal 2 fM
such that 	. Qal / D al for the covering projection 	 W fM �! M ; the inverse
image 	�1.al / D � Qal then is a �-invariant set of points on fM . The integral

up.z/ D
Z z

z0

�p (13)

for a fixed point z0 2 fM disjoint from the set � Qal is a well-defined
meromorphic function of the variable z 2 fM with poles just at the points
� Qal and up.T z/ D up.z/ C �p.T / for any covering translation T 2 � .
Choose disjoint coordinate discs
l about each of the points al and a connected
component e
l of the inverse image 	�1.
l/ containing the point Qal , so
	�1.
l/ D �e
l . Let Qup.z/ be a C1 modification of the function up.z/
in e
l , the result of multiplying the function up.z/ by a C1 function in e
l

that vanishes in an open neighborhood of Qal and is identically equal to 1
near the boundary of e
l , and extend this modification to all the discs �e
l

so that Qup.T z/ D Qup.z/ C �p.T / for any covering translation T 2 � . Then
Q�p.z/ D dQup.z/ is a C1 closed �-invariant differential form of degree 1 on
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fM , so it can be viewed as a C1 differential form on M ; moreover, Q�p.z/ is
equal to �p.z/ outside the discs �
l and has the same periods as !p.z/ by (i)
of the present theorem, so it follows from Lemma 1 that

Z

M

!.z/ ^ !p.z/ D
Z

M

!.z/ ^ Q�p.z/ (14)

for all holomorphic abelian differentials !.z/. The exterior product !.z/ ^
Q�p.z/ vanishes outside the discs
l since the differential forms !.z/ and Q�p.z/
are both holomorphic 1-forms there, and the differential forms�p.z/ and Q�p.z/
agree on the boundaries @
l of the discs 
l . Then if dw.z/ D !.z/, it follows
from Stokes’s theorem and the Cauchy integral formula on fM that

Z

M

!.z/ ^ Q�p.z/ D
X

l

Z


l

!.z/ ^ Q�p.z/ D
X

l

Z

e
l
d
�
w.z/ Q�p.z/

�

D
X

l

Z

@e
l
w.z/ Q�p.z/ D

X

l

Z

@e
l
w.z/ �p.z/

D 2	i
X

l

resQal
�
w.z/ �p.z/

� D 2	i
X

a2M
resa .w.z/ p/ :

(15)

It then follows from (14) and (15) that the differential form !p.z/ satisfies
(10). For any choice of bases !i .z/ and �j and for any holomorphic abelian
differential !.z/ D Pg

lD1 cl!l .z/, it then follows from Lemma 2 and (2) that

i

gX

kD1
gkj

Z

M

!k.z/ ^ !.z/ D i

gX

k;lD1
gkj cl

Z

M

!k.z/ ^ !l.z/

D
gX

k;lD1
gkj clhkl D

gX

lD1
ı
j

l cl D cj I (16)

consequently, (10) fully determines the differential form !p.z/.
(iii) In particular, if !p.z/ D Pg

jD1 cj!j .z/ and dwk.z/ D !k.z/, it follows from
(16) and (10) that

cj D i

gX

kD1
gkj

Z

M

!k.z/ ^ !p.z/ D �2	
gX

kD1

X

a2M
gkj resa.wk.z/ p/ (17)

and consequently that

!p.z/ D �2	
gX

j;kD1

X

a2M
gjk resa.wk.z/ p/!j .z/: (18)
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(iv) Finally, if !p.z/ D Pg
jD1 cj!j .z/, then for any homology class � 2 H1.M/,

it follows from (18) that

�p.�/ D !p.�/ D
gX

jD1
cj !j .�/

D �2	
gX

j; kD1

X

a2M
gkj resa .wk.z/ p/ !k.�/;

which is equivalent to (12), and that suffices to conclude the proof.

It is evident from (12) that

�c1p1Cc2p2 D c1�p1 C c2�p2 (19)

for any differential principal parts p1 and p2 of the second kind and any complex
constants c1; c2. By construction, the meromorphic abelian differential �p.z/ and
the holomorphic abelian differential!p.z/ are determined intrinsically and uniquely
by the differential principal part p, independently of the choice of bases for the
holomorphic abelian differentials or the homology of the surface M ; it is easy
to verify that directly, and it suffices to do so just for the holomorphic abelian
differential (18). It is convenient to use matrix notation, so let w.z/ be the column
vector with entries wk.z/ and !.z/ be the column vector with entries !j .z/, and then
the effect (7) of a change of bases (6) is w.z/ D Cw�.z/ and !.z/ D C!�.z/ while
G D tC�1 G� G�1. Therefore,

!p.z/ D �2	
X

a2M
t!.z/G resa t.w.z/p/

D �2	
X

a2M
t!�.z/ tC � tC�1G�C�1 � C resa t.w�.z/p/

D �2	
X

a2M
t!�.z/G� resa t.w�.z/p/;

exhibiting the invariance of the formula for the holomorphic abelian differential
!p.z/ under changes of the bases.

On a pointed Riemann surfaceM , a Riemann surface with a specified base point
a 2 M , a differential principal part pa having a double pole with zero residue at the
point a is determined uniquely up to a constant factor by the point a alone; hence,
the meromorphic abelian differential of the second kind �pa .z/ and the associated
holomorphic abelian differential !pa .z/ are determined uniquely up to a constant
factor by the base point a, independently of the choice of bases for the homology
or the holomorphic abelian differentials on M , so with that understanding they
can be denoted by �a.z/ and !a.z/. By Theorem 1 (iii), the holomorphic abelian
differential !a.z/ is



Some Intrinsic Constructions on Compact Riemann Surfaces 311

!a.z/ D �2	
gX

i;jD1
gj iw0

i .a/!j .z/ (20)

for the matrix G D fgij g in terms of any bases �j for the homology of M , where
!i .z/ D dwi .z/ for the holomorphic abelian differentials on M . The derivative
w0
i .a/ depends on the choice of a local coordinate near the point a, but only up to

a constant factor. The holomorphic abelian differential !a.z/ is thus a conjugate
holomorphic function of the point a 2 M , and the mapping that associates
to the point a 2 M the conjugate holomorphic abelian differential !a.z/ is a
well-defined holomorphic mapping from M to the .g � 1/-dimensional projective
space associated to the space of conjugate holomorphic differentials on M ; indeed,
since the matrix G is nonsingular, it is evident from (20) that this is equivalent to
the canonical mapping of M into the .g � 1/-dimensional projective space. Some
further properties of this special case will be discussed in Sect. 4.

3 Meromorphic Abelian Differentials of the Third Kind

The differential principal part paC;a�
is defined as having a simple pole at the point

aC 2 M with residue C1 and a simple pole at the point a� 2 M with residue
�1, so it is described uniquely by the ordered pair of points .aC; a�/ in M . The
residues at these two points are nonzero, so paC;a�

is a differential principal part
of the third kind; but the sum of the residues at these two points is zero, so there
are meromorphic abelian differentials on M having the principal part paC;a�

. It is
possible to determine one of these differentials uniquely and intrinsically through
its period class, just as for the meromorphic abelian differentials of the second
kind, but to do so requires a bit of care even to define the period class. If �.z/ is
a meromorphic abelian differential onM with the differential principal part paC;a�

,
and if ı is a simple path on M from the point a� to the point aC, then �.z/ when
viewed as a �-invariant differential form on fM is a holomorphic differential form
on the inverse image fMı D 	�1.M � ı/ � fM of the complement of the path
ı � M . The integral of this holomorphic differential form around any closed path
in fMı is zero, since the image of any such path on M is a closed path on M � ı,
hence a path that has the same winding number around the point a� as around the
pole aC; therefore, for any fixed point z0 2 fMı, the integral v.z/ D R z

z0
� is a

well- defined holomorphic function on fMı . For any covering translation T 2 � ,
the difference v.T z/ � v.z/ D �.ı; T / is a constant since dv.z/ is �-invariant; the
mapping that associates to the covering translation T the complex number �.ı; T /
is a group homomorphism �.ı/ W � �! C that is defined as the period class of the
meromorphic abelian differential �.z/ with respect to the path ı. The period class
can be viewed alternatively as a homomorphism �.ı/ W H1.M/ �! C, and the
period �.ı; �/ for a homology class � 2 H1.M/ can be identified with the integralR
� v.z/ along any path in M � ı that represents that homology class.
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Theorem 2. (i) For any simple path ı from a point a� to a point aC on a
compact Riemann surfaceM of genus g > 0, there are a unique meromorphic
abelian differential of the third kind �ı.z/ and a unique holomorphic abelian
differential !ı.z/ such that �ı.z/ has the differential principal part paC;a�

and
the period class of �ı.z/ with respect to the path ı is equal to the period class
of the complex conjugate differential !ı.z/.

(ii) The holomorphic abelian differential !ı.z/ is characterized by

Z

M

!.z/ ^ !ı.z/ D 2	i
Z

ı

!.z/ (21)

for all holomorphic abelian differentials !.z/ on M .
(iii) In terms of any bases !i .z/ and �j , the differential form !ı.z/ is given by

!ı.z/ D �2	
gX

i;jD1
gj i

�Z

ı

!i .z/

�

!j .z/ (22)

where G D fgj ig is the matrix (2).
(iv) The period class of the meromorphic abelian differential �ı.z/ with respect to

the path ı is given by

�ı.ı; T / D �2	
gX

i;jD1
gij

�Z

ı

!i .z/

�

!j .T / (23)

for any T 2 � .

Proof. (i) If �.z/ is a meromorphic abelian differential with the differential princi-
pal part paC;a�

, then �.z/C!.z/ is a meromorphic abelian differential with the
differential principal part paC;a�

for any holomorphic abelian differential!.z/,
and all the meromorphic abelian differentials with the differential principal part
paC;a�

arise in this way. There is a unique holomorphic abelian differential
!.z/ such that the period vector �ı.ı; �j / D f�.ı; �j / C !.�j /g of the
meromorphic differential form �ı.z/ D �.z/C!.z/ with respect to the path ı is
contained in the linear subspace t�Cg � C2g in the direct sum decomposition
(5), hence such that �ı.ı; �j / D !ı.�j / for a uniquely determined holomorphic
abelian differential !ı.z/.

(ii) Choose a connected component eı � fM of the inverse image 	�1.ı/ � fM ,
which must be a simple path from a point Qa� 2 fM to a point QaC 2 fM
where 	. Qa�/ D a� and 	. QaC/ D aC. In addition, choose a contractible
open neighborhood U of the path ı in M and let eU � fM be that connected
component of 	�1.U / � fM containingeı. Then 	�1.ı/ D � Qı and 	�1.U / D
�eU are �-invariant subsets of fM . Let Qvı.z/ be a C1 modification of the
function vı.z/ D R z

z0
� in eU , the result of multiplying the function vı.z/ by

a C1 function that vanishes in an open neighborhood of eı and is identically
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equal to 1 in an open neighborhood of the boundary of eU , and extend this
modification to all the subsets �eU so that Qvı.T z/ D Qvı.z/ C �.ı; T / for all
T 2 � . The differential form Q�ı.z/ D dQvı.z/ then is a C1 closed �-invariant
differential 1-form on fM , so it can be viewed as a C1 differential 1-form on
M . This differential form has the same periods as �ı.z/ with respect to ı, so
has the same periods as !ı.z/, as was demonstrated in the proof of part (i);
hence, by Lemma 1,

Z

M

!.z/ ^ !ı.z/ D
Z

M

!.z/ ^ Q�ı.z/ (24)

for all holomorphic abelian differentials!.z/. The exterior product!.z/^ Q�ı.z/
vanishes outside the open set U � M since the differential forms !.z/ and
Q�ı.z/ are both holomorphic 1-forms there; and the differential forms �.z/
and Q�ı.z/ agree on the boundary @U of the set U � M . Then if w.z/ is a
holomorphic function on fM such that dw.z/ D !.z/, it follows from Stokes’s
theorem and the Cauchy integral formula on fM that

Z

M

!.z/ ^ Q�ı.z/ D
Z

U

!.z/ ^ Q�ı.z/ D
Z

eU
d
�
w.z/ Q�ı.z/

�

D
Z

@eU
w.z/ Q�ı.z/ D

Z

@eU
w.z/ �ı.z/

D 2	i
X

p2eU

resp.w.z/ pQaC;Qa�
/ D 2	i

�
w. QaC/ � w. Qa�/

�

D 2	i
Z

eı
!.z/ D 2	i

Z

ı

!.z/: (25)

It then follows from (24) and (25) that the differential form !ı.z/ satisfies
(21). For any choice of bases !i .z/ and �j and for any holomorphic abelian
differential !.z/ D Pg

lD1 cl!l .z/, it follows from Lemma 2 and (2) that

i

gX

kD1
gkj

Z

M

!k.z/ ^ !.z/ D i

gX

k;lD1
gkj cl

Z

M

!k.z/ ^ !l.z/

D
gX

k;lD1
gkj clhkl D

gX

lD1
ı
j

l cl D cj I (26)

consequently, (21) fully determines the differential form !ı.z/.
(iii) In particular, if !ı.z/ D Pg

jD1 cj !j .z/, it follows from (26) and (21) that

cj D i

gX

kD1
gkj

Z

M

!k.z/ ^ !ı.z/ D �2	
gX

kD1
gkj

Z

ı

!k.z/ (27)
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and consequently that

!ı.z/ D �2	
gX

k;lD1
gjk

�Z

ı

!k.z/

�

!j .z/: (28)

(iv) Finally, if !ı.z/ D Pg
jD1 cj !j .z/, then for any homology class � 2 H1.M/,

it follows from (28) that

�ı.ı; �/ D !ı.�/ D
gX

jD1
cj!j .�/ D �2	

gX

j;kD1
gkj

�Z

ı

!k.z/

�

!j .�/;

which is equivalent to (23), and that suffices to conclude the proof.

By construction, the meromorphic abelian differential �ı.z/ and the holomorphic
abelian differential !ı.z/ are determined intrinsically and uniquely by the differ-
ential principal part paC;a�

and the path ı from a� to aC; that can be verified
directly, just as for the meromorphic abelian differential of the second kind. These
differentials though actually depend only on the homotopy class of the path ı. To
see that, for any choice of a point z� 2 fM such that 	.z�/ D a�, there is a
unique choice of a connected component eı of 	�1.ı/ � fM that begins at the
point z�, and the path eı will end at a point zC 2 fM for which 	.zC/ D aC.
If ı0 2 M is another path from a� to aC and is homotopic to ı, and if eı0 is
the component of 	�1.ı0/ � fM that begins at the point z�, then as is no doubt
quite familiar eı0 also will end at the point zC; and conversely, the image under the
covering projection 	 of any path from z� to zC in fM will be a path in M that
is homotopic to ı, since fM is simply connected. Thus, a homotopy class of paths
from a� to aC is determined uniquely by a pair .zC; z�/ of points in fM for which
	.zC/ D aC and 	.z�/ D a�. Moreover, for any covering translation T 2 � ,
the pair of points .T zC; T z�/ determines the same homotopy class as the pair of
points .zC; z�/. Altogether then, the set of homotopy classes of paths ı from a� to
aC on M can be identified with the set of equivalence classes of pairs (zC; z�/ of
points in fM such that 	.zC/ D aC and 	.z�/ D a�, under the equivalence relation
.zC; z�/ � .T zC; T z�/ for any T 2 � . With this in mind, it is easy to see that
the differentials �ı.z/ and !ı.z/ depend only on the homotopy class of the path ı;
indeed, if wi .z/ is any holomorphic function on fM such that dwi .z/ D !i .z/ and if
the homotopy class of the path ı 2 M is described by the pair of points .zC; z�/,
then

R
ı
!i .z/ D R

Qı dwi .z/ D wi .zC/� wi .z�/ and consequently (22) can be written

!ı.z/ D �2	
gX

i;jD1
gj i

�
wi .zC/ � wi .z�/

�
!j .z/; (29)

showing that the holomorphic abelian differential !ı.z/ and consequently the
meromorphic abelian differential �ı.z/ both depend only on the homotopy class



Some Intrinsic Constructions on Compact Riemann Surfaces 315

of the path ı. Since these differentials are determined uniquely and intrinsically by
the pair of points .zC; z�/, they can be denoted alternatively by

�ı.z/ D �zC;z�
.z/; and !ı.z/ D !zC;z�

.z/I (30)

and it is clear from the preceding discussion that

�T zC;T z�
.z/ D �zC;z�

.z/ and !T zCT z�
.z/ D !zCz�

.z/ for all T 2 �: (31)

The period class (23) also depends only on the pair of points .zC; z�/ rather than
on the path ı, so it can be denoted alternatively by �ı.ı; T / D �zC;z�

.T / and is
given by

�zC;z�
.T / D �2	

gX

i;jD1
gij

�
wi .zC/� wi .z�/

�
!j .T /: (32)

On the other hand, for any base point z0 2 QM for which 	.z0/ 2 M � .aC; a�/,
the integral

vı.z; z0/ D
Z z

z0

�zC;z�
(33)

still is defined just in the open subset fMı � fM , where for any point z 2 fMı

it is calculated by integration along any path from z0 to z in fM that is disjoint
from 	�1.ı/, but its exponential is well defined on the entire Riemann surface fM ,
independently of the choice of the path ı.

Theorem 3. (i) For any choice of distinct points z0; zC; z� in the universal
covering space fM of a compact Riemann surface M of genus g > 0, the
function

q.z; z0I zC; z�/ D exp vı.z; z0/ (34)

of the variable z 2 fMı extends to a uniquely and intrinsically defined function
of the variable z 2 fM that has simple zeros at the points �zC, simple poles at
the points �z�, takes the value 1 at the point z0 and is otherwise holomorphic
and nonvanishing on fM , and that satisfies

q.T z; z0I zC; z�/ D q.z; z0I zC; z�/ exp �zC;z�
.T / (35)

for all T 2 � .
(ii) The extended function q.z; z0I zC; z�/ is characterized completely by its divisor,

its value at z0, and the functional equations (35).

Proof. (i) The function q.z; z0I zC; z�/ is a uniquely and intrinsically defined
holomorphic and nowhere vanishing function in the open subset fMı � fM ,
since the integral vı.z; z0/ is a uniquely and intrinsically defined holomorphic
function in fMı , and q.z0; z0I zC; z�/ D 1 since vı.z0; z0/ D 0. For any point,
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z 2 fMı by definition vı.z; z0/ D R
�
�zC;z�

where � is a path from z0 to z
that is disjoint from 	�1.ı/. If �� is another path from z� to z that avoids
the singularities �z� [ �zC but may not be disjoint from 	�1.ı/ otherwise,
the integral v�

ı .z; z0/ D R
�� �z�;zC

still has a well-defined value. The difference
v�
ı .z; z0/�vı.z; z0/ is the integral around a closed path in fM , the value of which

is 2	i times the sum of the residues of the meromorphic abelian differential
�zC;z�

at the singularities inside that closed path and hence is 2	in for some
integer n since the differential form �z�;zC

has residues ˙1 at each pole;
consequently

exp v�
ı .z; z0/ D exp vı.z; z0/; (36)

showing that the function q.z; z0I zC; z�/ is really independent of the choice of
the path of integration defining the function vı.z; z0/ and hence is a well-defined
holomorphic and nowhere vanishing function on fM � .�zC [�z�/. Since the
meromorphic abelian differential �zC;zC

.z/ has the periods �zC;z�
.T /, it follows

that vı.T z; z0/ D vı.z; z0/ C �zC;z�
.T / for any covering translation T 2 �

and consequently that the function q.T z; z0I zC; z�/ satisfies (35). In a local
coordinate z in an open neighborhood of aC and centered at the point aC, the
differential form �aC;a�

.z/ has the differential principal part z�1dz so its integral
vı.z; z0/ differs from the local multiple-valued function log z by a holomorphic
function and consequently q.z; z0I zC; z�/ D exp vı.z; z0/ is holomorphic and
has a simple zero at the point aC. Correspondingly, in a local coordinate z
in an open neighborhood of a� and centered at the point a�, the differential
form �aC;a�

.z/ has the differential principal part �z�1dz so its integral differs
from the local multiple-valued function � log z by a holomorphic function
and consequently q.z; z0I zC; z�/ D exp vı.z; z0/ is meromorphic and has a
simple pole at the point a�. It then follows from (35) that q.z; z0I zC; z�/ is
meromorphic on the Riemann surface fM , has simple zeros at the points �zC,
has simple poles at the points �z�, is nonzero at the other points of fM , and
takes the value 1 at the point z0.

(ii) If q�.z; z0I zC; z�/ is any meromorphic function of the variable z 2 fM that
has the same divisor as q.z; z0I zC; z�/ and also satisfies (35), then the quotient
q�.z; z0I zC; z�/=q.z; z0I zC; z�/ is a holomorphic and nowhere vanishing func-
tion on fM that is invariant under the covering translation group and is therefore
a nonzero constant, and if q�.z0; z0I zC; z�/ D q.z0; z0I zC; z�/ D 1, that
constant is 1. Consequently, the function q.z; z0I zC; z�/ is uniquely determined
by its divisor, its value at z0, and the functional equations (35). That suffices for
the proof.

The functional equations (35) exhibit the function q.z; z0I zC; z�/ as a relatively
automorphic function of the variable z 2 fM for the action of the covering translation
group � on the universal covering space fM , for a factor of automorphy that has the
form of a group homomorphism T �! exp �zC;z�

.T / in Hom.�;C�/, and that
factor of automorphy is uniquely and intrinsically defined by the pair of points
.zC; z�/, since the period class �zC;z�

.T / is uniquely and intrinsically defined by
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those points. If the Riemann surface M is not hyperelliptic (ii) of the preceding
theorem can be strengthened to the assertion that the function q.z; z0I zC; z�/ of
the variable z 2 fM is characterized completely as a meromorphic relatively
automorphic function for the factor of automorphy exp �zC;z�

.T / that takes the
value 1 at the point z0 and has as its singularities simple poles on fM that represent a
single point on the Riemann surface M , but where that point is not specified; for if
there were another function q�.z; z0I zC; z�/ with the same properties, the quotient
q�.z; z0I zC; z�/=q.z; z0I zC; z�/ would be a meromorphic function of order 2 on
M and hence M would be hyperelliptic. The factor of automorphy exp�zC;z�

.T /

describes divisors of degree 0, or equivalently line bundles of characteristic class
0, on the Riemann surface M . There are other uniquely and intrinsically defined
factors of automorphy describing divisors of nonzero degree, or equivalently line
bundles of nonzero characteristic class, on M , leading to other uniquely and
intrinsically defined functions on compact Riemann surfaces; the classification
of these factors of automorphy and their relatively automorphic functions is a
somewhat more complicated matter that is discussed in [10].

4 Duality

The holomorphic abelian differential !p.z/ depends rather simply, explicitly, and
analytically on the differential principal part p as in (11), while the holomorphic
abelian differential !zC;z�

.z/ depends even more simply, explicitly, and analytically
on the points zC; z� 2 fM as in (29). As might be expected, the meromorphic abelian
differentials�p.z/ and�zC;z�

.z/ also depend rather simply and analytically, if not so
explicitly, on the differential principal part p and the pair of points .zC; z�/, and that
can be seen quite directly through natural dualities satisfied by these meromorphic
abelian differentials.

Theorem 4. If ı0 is a simple path from a point a0� to a point a0C and ı00 is a disjoint
simple path from a point a00� to a point a00C on a compact Riemann surface M of
genus g > 0, then

Z

ı00

�ı0.z/ D
Z

ı0

�ı00.z/ (37)

and therefore

q.a0C; a0�I a00C; a00�/ D q.a00C; a00�I a0C; a0�/: (38)

Proof. For a fixed point z0 2 fMı0 \ fMı00 � fM , the integral vı0.z; z0/ D R z
z0
�ı0 is

a holomorphic function of the variable z 2 fMı0 , and correspondingly, the integral
vı00.z; z0/ D R z

z0
�ı00 is a holomorphic function of the variable z 2 fMı00 . Choose

connected components eı0 and eı00 of the inverse images 	�1.ı0/ and 	�1.ı00/ in
fM and disjoint contractible open neighborhoods U 0 and U 00 of ı0 and ı00, and
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let eU 0 and eU 00 be the components of the inverse images 	�1.U 0/ and 	�1.U 00/
in fM that contain the paths eı0 and eı00, respectively. Let Qvı0.z; z0/ be a C1
modification of the function vı0.z; z0/ in � QU 0 and Qvı00.z; z0/ be a C1 modification
of the function vı00.z; z0/ in �eU 00, as in the proof of Theorem 2, and introduce
the C1 differential forms Q�ı0.z/ D dvı0.z; z0/ and Q�ı00.z/ D dvı00.z; z0/. Both are
holomorphic differential forms of degree 1 outside the open subset �eU 0 [ �eU 00 of
fM so Q�ı0.z/ ^ Q�ı00.z/ D 0 there. Then as in the proof of Theorem 2

Z

M

Q�ı0.z/ ^ Q�ı00.z/ D
Z

U 00

Q�ı0.z/ ^ Q�ı00.z/C
Z

U 0

Q�ı0.z/ ^ Q�ı00.z/

D
Z

eU 00

d
�Qvı0.z; z0/ Q�ı00.z/

� �
Z

eU 0

d
�Qvı00.z; z0/ Q�ı0.z/

�

D
Z

@eU 00

Qvı0.z; z0/ Q�ı00.z/ �
Z

@eU 0

Qvı00.z; z0/ Q�ı0.z/

D
Z

@eU 00

vı0.z; z0/ �ı00.z/�
Z

@eU 0

vı00.z; z0/ �ı0.z/

D 2	i
�
vı0.z00C; z0/ � vı0.z00�; z0/

�

� 2	i
�
vı00.z0C; z0/� vı00.z0�; z0/

�

D 2	i
Z

ı00

�ı0 � 2	i
Z

ı0

�ı00 (39)

since vı0.z; z0/ is a holomorphic function in the contractible set eU 00 and vı00.z; z0/ is
a holomorphic function in the contractible set eU 0. The closed C1 differential forms
Q�ı0.z/ and !ı0.z/ have the same periods, as do the closed C1 differential forms
Q�ı00.z/ and !ı00.z/; therefore, by Lemma 1

Z

M

Q�ı0.z/ ^ Q�ı00.z/ D
Z

M

!ı0.z/ ^ !ı00.z/: (40)

The differential forms !ı0.z/ and !ı00.z/ are both conjugate holomorphic differen-
tials, so their wedge product vanishes identically, and consequently,

Z

M

!ı0.z/ ^ !ı00.z/ D 0: (41)

It then follows from (39), (40), and (41) that (37) holds. The functions vı0.z; z// and
vı00.z; z0/ are defined by the integrals (33); hence, it follows from (37) that

vı0.a00C; a00�/ D
Z

ı00

�ı0 D
Z

ı0

�ı00 D vı00.a0�; a0C/ (42)
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and consequently, in view of the definition (34), it follows further that

q.a0C; a0�I a00C; a00�/ D exp vı00.a0C; a0�/

D exp vı0.a00C; a00�/ D q.a00C; a00�I a0C; a0�/; (43)

which suffices for the proof.

Corollary 1. The function q.z1; z2I z3; z4/ is a uniquely and intrinsically defined
meromorphic function on the complex manifold fM4 such that

q.z1; z2I z3; z4/ D q.z3; z4I z1; z2/ D q.z2; z1I z3; z4/
�1I (44)

it has first-order zeros along the subvarieties z1 D T z3 and z2 D T z4 and first-order
poles along the subvarieties z1 D T z4 and z2 D T z3 for all T 2 � and is otherwise
holomorphic and nonvanishing on fM4.

Proof. By Theorem 3, the function q.z1; z2I z3; z4/ is a uniquely and intrinsically
defined meromorphic function of the variable z1 2 fM for any choice of points
z2; z3; z4 2 fM that represent distinct points of M . By Theorem 4

q.z1; z2I z3; z4/ D q.z3; z4I z1; z2/I

and since vı.z; z0/ D R z
z0
�zC;z�

by (33), then vı.z; z0/ D �vı.z0; z/, so in view
of (34)

q.z1; z2I z3; z4/ D q.z2; z1I z3; z4/
�1;

showing that (44) holds. It follows from these symmetries that q.z1; z2I z3; z4/ is a
meromorphic function of each of its variables, so by Rothstein’s theorem [12, 13],
it is a meromorphic function on the complex manifold fM4. Since this function has
the zeros and poles in the variable z1 as in Theorem 3 (i) and the symmetries (44),
it follows that as a meromorphic function of the 4 variables .z1; z2; z3; z4/ 2 fM4 it
has the zeros and singularities as in the statement of the present corollary, and that
suffices for the proof.

The function q.z1; z2I z3; z4/ is called the intrinsic cross-ratio function of the
Riemann surface M , since it is uniquely and intrinsically defined on M and its
analytic properties correspond to those of the classical cross-ratio function

q.z1; z2I z3; z4/ D .z1 � z3/.z2 � z4/

.z1 � z4/.z2 � z3/

on the Riemann sphere P1. There are other normalizations of this function that are
useful in various circumstances but that are not intrinsic to the Riemann surface
M ; the cross-ratio function with a standard normalization for a marked Riemann
surface as in [9] was used by Farkas in [5] and Grant in [7], for instance. The
function q.z1; z2I z3; z4/ is in many ways the basic uniquely and intrinsically defined
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meromorphic function on the Riemann surface M , for the intrinsically defined
meromorphic abelian differentials on M described in the preceding discussion can
be expressed quite simply in terms of the cross-ratio function. Indeed, it follows
immediately from the definition (34) of the cross-ratio function and (33) that

@

@z
log q.z; z0I zC; z�/dz D @

@z
vzC;z�

.z; z0/dz D �zC;z�
.z/; (45)

showing that the meromorphic abelian differential �zC;z�
.z/ also is a meromorphic

function of the variables .zC; z�/ 2 fM2. The corresponding result holds for differ-
entiation with respect to the other variables z0; zC; z�, in view of the symmetries
(44); for instance

@

@z0
log q.z; z0I zC; z�/dz0 D @

@z0
log q.z0; zI zC; z�/�1dz0 D ��zC;z�

.z0/: (46)

Further results follow from a duality theorem between meromorphic abelian
differentials of the second and third kinds.

Theorem 5. If p D fpal g is a differential principal part of the second kind on a
compact Riemann surface M and ı is a simple path on M from a point a� to a
point aC that avoids the points al , then for any point z0 2 fM that is disjoint from
the points 	�1.al / and 	�1.ı/,

Z

ı

�p.z/ D
X

l

resal
�
vı.z; z0/ pal

�
: (47)

Proof. Choose disjoint coordinate discs 
l centered at the points al and a con-
tractible open neighborhood U of the path ı that is disjoint from the discs 
l and
choose points Qal 2 	�1.al / and a connected componenteı � 	�1.ı/, soeı is a path
from a point Qa� to a point QaC in fM where 	. Qa�/ D a� and 	. QaC/ D aC. Let
e
l be the connected component of 	�1.
l/ containing the point Qal and eU be the
connected component of 	�1.U / in fM containing eı. The integral up.z/ D R z

z0
�p

is a well-defined meromorphic function of the variable z 2 fM with poles at the
points 	�1.al / as in the proof of Theorem 1, and the integral vı.z/ D R z

z0
�ı is a

well-defined holomorphic function of the variable z in the open subset fMı D 	�1
.M � ı/ � fM defined by integrating from z0 to z along any path in fM � ı, as
in the proof of Theorem 1. Let Qup.z/ be a C1 modification of the function up.z/ in
the discs �e
l as in the proof of Theorem 1 and let Qvı.z/ be a C1 modification of
the function vı.z/ in the set �eU as in the proof of Theorem 2. By this construction,
Q�p.z/ has the same periods as �p.z/, which in turn has the same periods as !p.z/,
and correspondingly, for the differential forms Q�p.z/, �p.z/ and !ı.z/; therefore, it
follows from Lemma 1 that

Z

M

Q�p.z/ ^ Q�ı.z/ D
Z

M

!p.z/ ^ !ı.z/ D 0 (48)
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since !p.z/ and !ı.z/ are holomorphic differential 1-forms on M so their exterior
product is identically zero. The exterior product Q�p.z/ ^ Q�ı.z/ vanishes identically
outside the sets U and 
a, where the two differentials are both conjugate holomor-
phic differential forms, so it follows as before that

Z

M

Q�p.z/ ^ Q�ı.z/ D
Z

U

Q�p.z/ ^ Q�ı.z/C
X

l

Z


l

Q�p.z/ ^ Q�ı.z/

D
Z

eU
d

�Qup.z/ Qvı.z/
� �

X

l

Z

e
l
d

�Qvı.z/ Q�p.z/
�

D
Z

@eU
Qup.z/ Qvı.z/�

X

l

Z

@e
l
Qvı.z/ Q�p.z/

D
Z

@eU
up.z/ vı.z/�

X

l

Z

@e
l
vı.z/�al .z/ (49)

since the C1 modifications of the differentials and their integrals coincide with the
original differentials and their integrals on the boundaries of the sets eU and e
l .
The function up.z/ is holomorphic in eU , while the abelian differential �ı has the
principal part pQaC;Qa�

in eU , so

Z

@eU
up.z/ �ı.z/ D 2	i

�
up. QaC/� up. Qa�/

�
D 2	i

Z

Qı
�p.z/ D 2	i

Z

ı

�p: (50)

On the other hand, the abelian differential of the second kind �p.z/ is �-invariant,
while the function vı.z; z0/ changes only by an additive constant under the action
of the group � , so resQal

�
vı.z; z0/�p.z/

� D resT Qal
�
vı.z; z0/�p.z/

�
for any covering

translation T 2 � and consequently this residue can be calculated at the point al 2
M ; therefore

Z

@e
l
vı.z/�al .z/ D 2	i resal

�
vı.z/�p.z/

�
: (51)

It follows from (48)–(51) that (47) holds, and that suffices for the proof.

For example, if ı is a path in fM from a point z0 to the point T z0 for a covering
translation T 2 � , the integral

R
ı �p.z/ is just the period �p.T /, so (47) yields

an expression for these periods involving the residues of the meromorphic abelian
differential �ı.z/, as an alternative to (12). The simplest special case of a differential
principal part of the second kind is one with a nontrivial double pole at a single point
a 2 M , so has the form

p D pa;t D 1

t2
dt (52)

in terms of a local coordinate t in M centered at the point a. The description of
this differential principal part specifies not just the point a 2 M but also the local
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coordinate t ; a change in the local coordinate changes the differential principal part
by a constant factor. For this principal part (11) takes the form

!p.z/ D �2	
gX

i;jD1
gj i w0

i .a/!j .z/; (53)

which involves the derivative w0
i .t/ of the function wi .t/ with respect to the local

coordinate t evaluated at the point a so depends not just on the point a but also
on the local coordinate t . The associated differential form !.t/ D w0.t/dt though
is independent of the choice of the local coordinate t , so when the meromorphic
abelian differential !p.z/ is viewed as a meromorphic differential form both in the
variable z 2 M and in the variable a 2 M , so as the differential 2-form !t .z/ ^ dt
on M2, the preceding equation can be written

!t .z/ ^ dt D �2	
gX

i;jD1
gj i!j .z/ ^ !i .t/: (54)

There is a corresponding interpretation for the duality relation (47); for the
differential principal part (52) again and for a path ı from a� to aC that avoids
the point a, it follows from (47) that

up.aC/� up.a�/ D
Z aC

a�

u0
p.z/ dz D

Z

ı

�p.z/

D resa
�
vı.z; z0/ p

�
D @

@t
vı.t; z0/

ˇ
ˇ
ˇ
tDa: (55)

When the meromorphic function up.z/ of the variable z 2 fM is viewed also as a
differential form ut .z/dt in the variable t 2 fM , this can be rewritten

ut .tC/ dt � ut .t�/ dt D @

@t
vı.t; z0/ dt D �tC;t�.t/ (56)

where the points aC and a� in fM are described by the local coordinates tC and
t� in fM . Here ut .tC/ dt is a meromorphic function of the variable tC 2 fM and
a meromorphic differential form in the variable t 2 fM , and consequently, the
meromorphic abelian differential �tC;t�.t/ in the variable t 2 fM is a meromorphic
function of the variables tC; t� 2 fM . What is also interesting is that as function
of the variables tC; t�, the abelian differential �tC;t�.t/ can be decomposed into
the sum of differential forms that are functions of the separate variables tC and
t�, as in (56). The exterior derivative of the function ut .z/ of the variable z is the
meromorphic abelian differential of the second kind with the differential principal
part (52), which can be denoted correspondingly by �t .z/; consequently, it follows
from (56) that

�t .tC/ ^ dt D @

@tC

�
up.tC/ � up.t�/

�
dtC ^ dt D � @

@tC
�tC;t�.t/ ^ dtC; (57)
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a relation between these two intrinsic meromorphic abelian differentials onM . This
can be expressed in terms of the intrinsic cross-ratio function by using (45), so that

�t.tC/ ^ dt D � @

@tC

� @

@t
log q.t; t0I tC; t�/

�
dt ^ dtC (58)

or after a change of notation

�t .z/ ^ dt D @2

@z@t
log q.t; t0I z; z0/ dz ^ dt: (59)

From the symmetry (38) of the cross-ratio function, it follows that

�t.z/ ^ dt D ��z.t/ ^ dz: (60)

This differential form is called the intrinsic double differential on the Riemann sur-
face M , since it is uniquely and intrinsically defined as a meromorphic differential
form on M2 with a double pole along the diagonalD D f .z; t/ 2 M2 j z D t g; as
a function of one variable for the other variable fixed, it is the meromorphic abelian
differential of the second kind with a single double pole, as in Theorem 1. Any
meromorphic abelian differential can be written as the sum of basic meromorphic
abelian differentials of the third kind and meromorphic abelian differentials of the
second kind associated to the singularities, thus providing an intrinsic meromorphic
abelian differential with the specified singularities.

The explicit invariant forms of the intrinsic meromorphic abelian differentials
suggest an alternative normalization of the holomorphic abelian differentials.
A change (6) of the basis !i .z/ by a matrix C 2 Gl.g;C/ has the effect (7) on
the matrix G, so it is possible in this way to choose a basis !j .z/ for which G and
H are normalized to have the form

G D H D I; the g � g identity matrix; (61)

that normalization is not unique but is preserved by further changes (6) in the basis
!j .z/ by arbitrary unitary matrices C 2 U.g/ � Gl.g;C/. By Lemma 2, this
normalization of the holomorphic abelian differentials amounts to the condition that

Z

M

!j .z/ ^ !k.z/ D �i ıjk : (62)

With this normalization, the explicit formulas derived for the intrinsic meromorphic
abelian differentials are simplified by replacing gij by ıij throughout.
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The Parallel Refractor

Cristian E. Gutiérrez and Federico Tournier

Dedicated to the memory of Leon Ehrenpreis

Abstract Given two homogenous and isotropic media I and II with different
refractive indices nI and nII , respectively, we have a source� surrounded by media
I and a target screen † surrounded by media II . We prove existence of interface
surfaces between the media that refract collimated radiation emanating from� into
† with prescribed input and output intensities.

Key words Geometric optics • Optimization • Refraction
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1 Introduction

The problem considered in this chapter is the following: Suppose we have a domain
� � R

n�1 and a domain † contained in an n � 1-dimensional surface in R
n; †

is referred to as the target domain or screen to be illuminated (for the practical
application, one can think that n D 3). Let n1 and n2 be the indexes of refraction
of two homogeneous and isotropic media I and II, respectively, and suppose that
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from the region � surrounded by medium I radiation emanates in the direction
en with intensity f .x/ for x 2 �, and † is surrounded by media II. That is, all
emanating rays from � are collimated. We seek an optical surface R interface
between media I and II, such that all rays refracted by R into medium II are
received at the surface †, and the prescribed radiation intensity received at each
point p 2 † is g.p/. Of course, some conditions on the relative position of †
and � are needed so rays can be refracted to †, see conditions (A) and (B) below.
Assuming no loss of energy in this process, we have the conservation of energy
equation

R
�
f .x/ dx D R

†
g.p/ dp.

The purpose of this chapter is to show the existence of the interface surface R
solving this problem under general conditions on � and †, and also when g is a
Radon measure inD. This implies that one can design a lens refracting a collimated
light beam emanating from � so that the screen † is illuminated in a prescribed
way. The lens is bounded by two optical surfaces, the “upper” surface is R and the
“lower” one is a plane perpendicular to en.

From the reversibility of the optical paths, we obtain that the surface R refracts
radiation emanating from a surface in R

n into collimated rays hitting �. In
particular, we construct an optical surface that refracts radiation emanating from
a finite number of sources into a beam of collimated rays.

Our construction uses ideas from [GH09] involving ellipsoids of revolution
and where the far field problem is solved when radiation emanates from a source
point. However, the method used in the present chapter is different from the mass
transportation methods used in [GH09]. We first solve the case when the target
is a finite set of points and then construct the solution in the general case by
approximation. An essential fact used is that an ellipsoid of revolution separating
media I and II, and of eccentricity related to the indices of refraction of the media,
refracts all radiation emanating from a focus into a collimated beam parallel to the
axis of the ellipsoid. This is a consequence of the Snell law of refraction written in
vector form, see [GH09, Sect. 2].

Throughout the chapter, we assume that media II is denser than media I , that

is, � WD n1

n2
< 1. The case when � > 1 can be treated in a similar way but

the geometry of the surface changes. One needs to use hyperboloids of revolution
instead of ellipsoids as it is indicated in detail in [GH09].

2 Definitions and Preliminaries

We work with ellipsoids of the form jxj D �kxn C b which can be written as

jx0j2
b2

1 � k2
C

�

xn C kb

1 � k2

�2

b2

.1 � k2/2

D 1;
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where x D .x0; xn/. This is the equation of an ellipsoid of revolution about the
xn-axis with foci .0; 0/ and .0;�2�b=.1 � �2//. If the focus at .0; 0/ is moved to
the point p D .p0; pn/, then the corresponding ellipsoid can be written as

jx0 � p0j2
b2

1 � k2

C

�

xn �
�

pn � kb

1 � k2

��2

b2

.1 � k2/2
D 1I (2.1)

let us denote this ellipsoid by Ep;b .
We consider the lower part of the ellipsoid as the graph of the function �p;b , that

is, we let

�p;b.x
0/ D pn � kb

1 � k2 �
s

b2

.1 � k2/2
� jx0 � p0j2

1 � k2 :

The reason to look at the lower part of the ellipsoid is that this is the only part that
refracts rays parallel to en into the point p, see [GH09, Sect. 2.2]. �p;b.x0/ is defined
for jx0 � p0j � b=

p
1 � �2, that is, on the ball B

b=
p
1��2.p

0/.
We fix two constants 0 < C1 < C2 and we consider a target set† � R

n such that

† � ˚
.p0; pn/ W C1 � pn � C2

�
: (2.2)

We also consider a domain� � R
n�1 D f.x0; xn/ W xn D 0g.

For p 2 †, we will consider �p;b with pn.1�k2/
k

� b � C2.1�k2/.1Ck/2
k3

.
We make two assumptions regarding† and �.

(A) We assume that there exists 0 < ı < 1 such that � � B
ıpn

p
1��2=k.p

0/ for all

p 2 †. This hypothesis implies that for all p 2 † and b � pn.1�k2/
k

, �p;b is
defined and �p;b � 0 in N�.

(B) This is a visibility condition. SetM D C2
�
1Ck
k

�3 �C1. We assume that for all
x 2 N� � Œ0;�M� and for all m 2 Sn�1, the ray fx C tm W t > 0g intersects †
in at most one point.

We remark that the first condition is equivalent to the assumption that there exists

0 < ˇ < 1 such that
D
�en; x�p

jx�pj
E

� ˇ for all p 2 † and for all x 2 N�.

We now define a parallel refractor with respect to † and �.

Definition 2.1. We say a function u W N� �! R is a parallel refractor if for all Nx 2
N�, there exists p 2 † and b � pn.1�k2/

k
such that �p;b. Nx/ D u. Nx/ and �p;b.x0/ �

u.x0/ for all x0 2 N�. That is, �p;b touches u from above at Nx in N�. In this case, we
say p 2 Nu. Nx/ or that Nx 2 Tu.p/.
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We first notice the following:

Lemma 2.2. If u is a parallel refractor, then u is Lipschitz in N�.

Proof. Let x; Nx 2 N� and let p 2 Nu. Nx/. There exists b � pn.1�k2/
k

such that
u.x/ � �p;b.x/ for all x 2 N� with equality at Nx. It follows that

u.x/� u. Nx/ � �p;b.x/ � �p;b. Nx/

D
s

b2

.1 � k2/2
� jx � p0j2

1� k2
�
s

b2

.1 � k2/2 � j Nx � p0j2
1 � k2

D jx � p0j2 � j Nx � p0j2

.1 � k2/

 s
b2

.1 � k2/2 � jx � p0j2
1 � k2 C

s
b2

.1 � k2/2
� j Nx � p0j2

1 � k2

!

D 2 h� � p0; x � Nxi

.1 � k2/

 s
b2

.1 � k2/2 � jx � p0j2
1 � k2 C

s
b2

.1 � k2/2
� j Nx � p0j2

1 � k2

!

� 2j� � p0jjx � Nxj

.1 � k2/

s
b2

.1 � k2/2 � j Nx � p0j2
1 � k2

for some � 2 Œx; Nx�. By assumption (A), x; Nx 2 B
ıpn

p
1��2=k.p

0/ � B
ıb=

p
1�k2.p

0/
and hence, we have j� � p0j � ıbp

1�k2 and also j Nx � p0j2 � ı2b2

1�k2 , and therefore, we

get u.x/� u. Nx/ � 2ı

.1�k2/p1�ı jx � Nxj. Interchanging the roles of x and Nx yields the

result.

Definition 2.3. Given a parallel refractor u.x/ for x 2 �, the refractor mapping of
u is the multivalued map defined for x0 2 � by

Nu.x0/ D
�

p 2 † W �p;b touches u from above at x0 for some b � pn.1 � k2/

k

�

:

Given p 2 †, the tracing mapping of u is defined by

Tu.p/ D N�1
u .p/ D fx 2 � W p 2 Nu.x/g:

The singular set of u is defined by

Su D fx 2 N� W there exist p; q 2 † such that p ¤ q and p; q 2 Nu.x/g;
and as usual, this set has Lebesgue measure zero [Gut01, Lemma 1.1.12]. To see this
in the present case, we observe first that if Ep;b and E Np; Nb are two ellipsoids given
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by (2.1) such that E Np; Nb � Ep;b , and they touch at some point x, then it follows that

v WD x�p
jx�pj D Nv WD x� Np

jx� Npj , and hence, p; Np, and x are on a line. Indeed, from the
equation of the normals at x, we have that v C � en D � .Nv C � en/ for some � > 0.
So v D �Nv C .�� 1/�en, taking norms, and since � < 1, we obtain that � D 1, and
we are done. This together with Lemma 2.2 and the visibility condition (B) yields
that jSuj D 0 as desired. Then as in [GH09, Lemma 3.5], this implies that the class
of sets C D fF � † W Tu.F / is Lebesgue measurableg is a Borel �-algebra in †.

Given a nonnegative f 2 L1.�/, we then obtain as in [GH09, Lemma 3.6] that
the set function

Mu;f .F / D
Z

Tu.F /

f dx

is a finite Borel measure defined on C, which we call it the parallel refractor measure
associated with u and f .

Lemma 2.4. Let G � † be open and NG � †. Assume um �! u uniformly in N�,
where um; u are parallel refractors. Then Tu.G/ n Su � lim infm!1 Tum.G/.

Proof. Suppose not and let Nx 2 Tu.G/nSu such that Nx … lim infm!1 Tum.G/. Since
Nx … Su, there exists a unique Np 2 Nu. Nx/, Np 2 G, and u � � Np;b in N� with equality
at Nx for some b.

Since Nx … lim infm!1 Tum.G/, there is a subsequence mk such that Nx …
Tumk

.G/. Hence, Nx … Tumk
.q/ for all q 2 G or, equivalently, q … Numk

. Nx/ for
all q 2 G and for all mk’s.

Let pmk 2 Numk
. Nx/, then pmk 2 † nG, which is a compact set. Hence, we may

assume, passing through a subsequence, that pmk ! p0, p0 2 † n G, and we may
also assume bmk ! b0, as k ! 1. But, since um �! u uniformly in N�, we will
have u � �p0;b0 in N� with equality at Nx. This means that p0 2 Nu. Nx/, but p0 ¤ Np
since Np 2 G, a contradiction with the uniqueness of Np.

3 Main Results

We construct in this section the surfaces that refract collimated radiation in a
prescribed way.

Lemma 3.1. Let pi 2 † be distinct points, pi D .pi1; : : : ; p
i
n/ D .p0

i ; p
i
n/, and

b1; : : : ; bN be such that bi � pin.1�k2/
k

, i D 1; : : : ; N , and � � TN
iD1 Bıpin

p
1��2=�

.p0
i /.

1 Define u in � by

u.x/ D min
1�i�N �pi ;bi .x/:

1This inclusion follows from condition (A).
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Then

Mu;f .fp1; : : : ; pN g/ D †NiD1Mu;f .fpi g/ D
Z

�

f .x/ dx:

Proof. Let Si D fx 2 N� W 9 q ¤ pi ; q 2 Nu.x/g, 1 � i � N , and Su D fx 2
N� W 9p; q 2 Nu.x/; q ¤ pg. We write N� D SN

iD1 Tu.pi / D SN
iD1.Tu.pi / n

Si/
SSN

iD1.Tu.pi / \ Si /. We have
SN
iD1.Tu.pi / \ Si / � Su and .Tu.pi / n Si / \

.Tu.pj / n Sj / for i ¤ j . The result then follows since jSi j D 0, i D 1; : : : ; N , and
jSuj D 0.

Lemma 3.2. Let pi 2 † be distinct points, pi D .pi1; : : : ; p
i
n/ D .p0

i ; p
i
n/,

and b1; : : : ; bN be such that bi � pin.1�k2/
k

, i D 1; : : : ; N , and � � TN
iD1

B
ıpin

p
1��2=�.p

0
i /.

Let 	 > 0 and define u and u	 in � by

u.x/ D min
1�i�N

�pi ;bi .x/; and u	.x/ D min
˚
�p1;b1C	.x/; �pi ;bi .x/ W i D 2; : : : ; N

�
:

Then Tu	 .pi / n Su	 � Tu.pi / for i ¤ 1, and lim sup	!0 Tu	 .p1/ � Tu.p1/.
Similarly, if b1 is replaced by bj , then the first conclusion holds for i ¤ j and the
second for pj instead of p1.

Proof. Let Nx 2 Tu	 .pi /nSu	 , i ¤ 1, then u	. Nx/ D �pi ;bi . Nx/. Since �p1;b1C	 � �p1;b1 ,
we have u	.x/ � u.x/, and so �pi ;bi . Nx/ D u. Nx/.

If Nx 2 lim sup	!0 Tu	 .p1/, then for all 	 > 0, there exists 0 < ˇ < 	 such that
Nx 2 Tuˇ .p1/. That is, there exists bˇ such that uˇ.x/ � �p1;bˇ .x/ with equality at

Nx. Passing through a subsequence ˇˇ ! Nb > 0 as ˇ ! 0, and so u.x/ � �p1; Nb.x/
with equality at Nx, that is, Nx 2 Tu.p1/.

We are now in a position to prove the existence theorem when the target is a set
of points.

Theorem 3.3. Let pi 2 †, i D 1; : : : ; N be distinct points as in Lemma 3.2 and
ai > 0 such that †NiD1ai D R

�
f .x/ dx.

Then there exists u W N� ! Œ�M;0� a parallel refractor such that Mu;f .fpig/ D
ai for i D 1; : : : ; N and such that if E � † and E \ fp1; : : : ; pN g D ;, then
Mu;f .E/ D 0.

Proof. For simplicity in the notation, we write Mu instead Mu;f .

We say b D .b1; : : : ; bN / is admissible if bi � pin.1�k2/
k

for i D 1; : : : ; N . For
each admissible b define

ub.x/ D min
1�i�N �pi ;bi .x/;

and set

Nb1 D 1 � k2

k

�

p1n C 1

k
max
2�i�N p

i
n

�

: (3.3)
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Clearly, . Nb1; b2; : : : ; bN / is admissible when .b1; b2; : : : ; bN / is admissible. Define
the set

W D
�

.b2; : : : ; bN / W bi � pin.1 � k2/

k
; Mub .fpig/ � ai ; i D 2; : : : ; N

�

;

where ub is defined with b D . Nb1; b2; : : : ; bN /.
Claim 1: W ¤ ;.

Indeed, with the choice bi D pin.1�k2/
k

, i D 2; : : : ; N , we have that

maxf�p1; Nb1 .x/ W x 2 N�g � p1n�
� Nb
1 � �2

� � bi
1��2 D �pi ;bi .p

0
i / D minf�pi ;bi .x/ W

x 2 B
b=

p
1��2 .p

0
i /g for each i D 2; : : : ; N . Therefore, �p1; Nb1 .x/ � �pi ;bi .x/

in �, and hence, ub.x/ D �p1; Nb1.x/ for all x 2 N�, which implies that
Mub .fpig/ D 0 for i D 2; : : : ; N .

Claim 2: W is bounded
We shall prove that if bj � .1�k2/.1Ck/2C2

k3
, for some 2 � j � N , where C2 is the

constant in (2.2), then .b2; : : : ; bN / … W . We have that

bj � .1 � k2/.1C k/2C2

k3
D 1 � k2

k

�

C2 C .1C k/

k2
C2 C 1

k
C2

�

�
�
1 � k2
k

��

pjn C .1C k/

k2
max
2�i�N p

i
n C 1

k
p1n

�

;

which implies that

max
˚
�pj ;bj .x/ W x 2 N�� � pjn � kbj

1 � k2
� p1n � .1C k/ Nb1

1 � k2

D �p1; Nb1.p
0
1/ � min

n
�p1; Nb1 .x/ W x 2 N�

o
:

Therefore, ub.x/D min2�i�N �pi ;bi .x/, and so Mub .fp1g/D 0. Suppose by
contradiction that .b2; : : : ; bN / 2 W . Then Mub .fpig/ � ai , for i D
2; : : : ; N . But, by Lemma 3.1, we have

R
� f .x/ dx D Mub .fp1; : : : ; pN g/ D

†NiD1Mub .fpig/ D †NiD2Mub .fpig/ � †NiD2ai <
R
� f .x/ dx, a contradiction.

Claim 3: W is closed
Let .bm2 ; : : : ; b

m
N / 2 W such that .bm2 ; : : : ; b

m
N / ! . Nb2; : : : ; NbN / as m ! 1. Set

bm D . Nb1; bm2 ; : : : ; bmN / and Nb D . Nb1; Nb2; : : : ; NbN /.
We have that ubm �! u Nb uniformly in N�. We claim that MuNb

.fpig/ � ai , for
i D 2; : : : ; N . Without loss of generality, we may assume i D 2. Let G be open in
† such that p2 2 G and pi … G for i ¤ 2. Then Mubm .G/ D Mubm .fp2g/ � a2
for all m. From Lemma 2.4, we have that TuNb

.G/ n SuNb
� lim infm!1 Tubm .G/, and

so MuNb
.fp2g/ � MuNb

.G/ D MuNb
.G n SuNb

/ � lim infm!1 Mubm .G/ � a2 and
Claim 3 is proved.
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Define the function W W �! Œ0;1/ by  .b2; : : : ; bN / D b2C� � �CbN . Since
W is a compact set,  attains its maximum at some point . Nb2; : : : ; NbN / 2 W . Set
Nb D . Nb1; Nb2; : : : ; NbN /, with Nb1 from (3.3). We shall prove that MuNb

.fpig/ D ai for
i D 1; 2; : : : ; N .

Since . Nb2; : : : ; NbN / 2 W , we have MuNb
.fpi g/ � ai for i D 2; : : : ; N .

Suppose that for some i � 2, MuNb
.fpig/ < ai , say MuNb

.fp2g/ < a2. Let Nb	 D
. Nb1; Nb2C	; : : : ; NbN /. Then, by the second assertion of Lemma 3.2, MuNb	

.fp2g/ < a2
for 	 sufficiently small. Also from the first assertion of Lemma 3.2, we have
TuNb	

.fpi g/ n SuNb	
� TuNb

.fpig/ for i ¤ 2. Therefore, MuNb	
.fpig/ � ai for

i D 2; : : : ; N , and hence, . Nb2 C 	; : : : ; NbN / 2 W , contradicting that  has a
maximum at . Nb2; : : : ; NbN /. Therefore, MuNb

.fpig/ D ai for i D 2; : : : ; N . By
Lemma 3.1, we have †NiD1MuNb

.fpig/ D R
� f .x/ dx D †NiD1ai , and therefore,

we get MuNb
.fp1g/ D a1. This proves the claim.

We also notice that if E � † such that E \ fp1; : : : ; pN g D ; and x 2 TuNb
.E/,

then either x 2 @� or u Nb is not differentiable at x. Since u Nb is Lipschitz in N�, we
have that MuNb

.E/ D 0.
We also notice that u Nb � 0 in N�.

Also, recall that from the proof of Claim 2 above, if bi � .1�k2/.1Ck/2C2
k3

, for
some 2 � i � N , then .b2; : : : ; bN / … W . Notice that for such bi , we have that

minf pi ;bi .x/ W x 2 N�g D pin � .kC1/bi
1�k2 � C1 � �

kC1
k

�3
C2 D �M, the constant

defined in condition (B) at the outset. Hence, u Nb � �M in N�.

For the general case when the distribution of energy to receive is given by a
measure, we have the following:

Theorem 3.4. Let 
 be a Borel measure on † and f 2 L1.�/ such that 
.†/ DR
�
f .x/ dx. There exists a function u W � �! Œ�M;0� that is a parallel refractor

and Mu;f D 
.

Proof. Let 
m ! 
 weakly such that 
m D †
Nm
iD1aimıpim and such that†NmiD1aim DR

�
f .x/ dx for all m.
From Theorem 3.3, let um be a solution of Mum;f D 
m. From Lemma 2.2,

the sequence fumg is uniformly Lipschitz in N�, and �M � um � 0 in N� for all
m. Therefore, there exists a subsequence umj �! Nu uniformly in N�, and hence,

mj D Mumj ;f

! MNu;f weakly, and also 
mj ! 
 weakly. Hence, MNu;f D 
.

Lemma 3.5. Let ub and u Nb be two solutions as in Theorem 3.3 with b D
.b1; : : : ; bN / and Nb D . Nb1; : : : ; NbN /. If b1 � Nb1, then bi � Nbi for i D 2; : : : ; N .
Moreover, if ub.x0/ D u Nb.x0/ at some x0 2 �, then ub 	 u Nb.

Proof. Let J D fj W bj > Nbj g and I D fi W bi � Nbig. Suppose J ¤ ;. For j 2 J ,
we have �bj ;pj < � Nbj ;pj in N�, and for i 2 I , we have �bi ;pi � � Nbi ;pi in N�.

Fix j 2 J and let Nx 2 TuNb
.pj /. It follows that u Nb. Nx/ D � Nbj ;pj . Nx/. And hence,

� Nbj ;pj . Nx/ � � Nbi ;pi . Nx/ for all i 2 I which implies that �bj ;pj . Nx/ < � Nbj ;pj . Nx/ �
� Nbi ;pi . Nx/ � �bi ;pi . Nx/ for all i 2 I . By continuity, there exists 	 > 0 such that for all
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x 2 B	. Nx/, �bj ;pj .x/ < �bi ;pi .x/ for all i 2 I , and this implies that for x 2 B	. Nx/,
ub.x/ D minf�bj ;pj .x/ W j 2 J g. This means that B	. Nx/ � Tub .fpj W j 2 J g/. So
we have shown that TuNb

.fpj W j 2 J g/ � .Tub .fpj W j 2 J g//ı. Since TuNb
.fpj W

j 2 J g/ is closed, then we obtain that .Tub .fpj W j 2 J g//ı nTuNb
.fpj W j 2 J g/ is a

nonempty open set. Since ub and u Nb are solutions, we have
R
TuNb

.fpj Wj2J g/ f .x/; dx D
R
Tub .fpj Wj2J g/ f .x/ dx D †j2J aj , a contradiction.

If b1 D Nb1, then bj D Nbj for all j > 1 from the first part, and we are done. We
claim that if b1 > Nb1, then bj > Nbj for all j > 1. Indeed, if bj D Nbj for some
j ¤ 1, then bk D Nbk for all k ¤ j by the first part, a contradiction. Therefore,
ub.x0/ D min1�i�N �pj ;bj .x0/ < min1�i�N �pj ; Nbj .x0/ D u Nb.x0/, a contradiction.

Theorem 3.6. There exists a constant �ˇ < 0 depending on C1; C2, and k such
that if x0 2 N� and t � �ˇ, then there exists a parallel refractor u as in Theorem
3.3 satisfying u.x0/ D t .

Proof. To obtain a solution passing through a given point, we can modify the proof
of Theorem 3.3 as follows.

We consider Nb1 � .1 � k2/
k

�
p1n C 1

k
max2�i�N pin

�
and we assume the visibility

condition (B) holds on N� � .�1; 0�.
We claim that for each such Nb1, we can obtain a solution denoted u Nb1 with the

property that

.1C k/

k
p1n C min

2�i�N p
i
n � .1C k/

k
max
2�i�N p

i
n � .1C k/2

k.1 � k2/
Nb1

� u Nb1.x/ � �p1; Nb1.x/

in N�. This follows just as in the proof of Theorem 3.3 defining the set W in the

same way and noticing that if bi � .1�k2/
k

	
max2�i�N pin � p1n C .1Ck/

1�k2 Nb1



, for

i D 2; : : : ; N , then .b2; : : : ; bN / … W . Since the solution is of the form ub with
b D . Nb1; b2; : : : ; bN / and .b2; : : : ; bN / 2 W , it follows that min2�i�N �pi ;bi .x/ �
ub.x/ � �p1; Nb1.x/, where bi D .1�k2/

k

	
max2�i�N pin � p1n C .1Ck/

1�k2 Nb1



, and since

min2�i�N �pi ;bi .x/ � .1Ck/
k
p1n C min2�i�N p1n � .1Ck/

k
max2�i�N pin � .1Ck/2

k.1�k2/ Nb1,
the claim follows.

With Nb1 D .1�k2/
k

�
p1n C 1

k
max2�i�N pin

�
, let �ˇ D .1Ck/

k
p1n C min2�i�N pin �

.1Ck/
k

max2�i�N pin � .1Ck/2
k.1�k2/ Nb1. That is, �ˇ D � .1Ck/

k2
p1n C min2�i�N pin �

.1Ck/
k2

max2�i�N pin.
Given a point .x0; t/ with x0 2 N� and t � �ˇ, we use continuity of the solution

u Nb1 in the parameter Nb1 to show that for some Nb1 � .1�k2/
k

�
p1n C 1

k
max2�i�N pin

�
,

we have u Nb1.x0/ D t . Indeed, if Nb1 D .1�k2/
k

�
p1n C 1

k
max2�i�N pin

�
, then u Nb1.x0/ �

�ˇ � t ; while if Nb1 is large enough, then we will have u Nb1.x0/ � �p1; Nb1 .x0/ � t .



334 C.E. Gutiérrez and F. Tournier

Acknowledgements The first author was partially supported by NSF grant DMS–0901430. The
second author was supported by CONICET, Argentina.

References

[GH09] C. E. Gutiérrez and Qingbo Huang, The refractor problem in reshaping light beams, Arch.
Rational Mech. Anal. 193 (2009), no. 2, 423–443.

[Gut01] C. E. Gutiérrez, The Monge–Ampère equation, Birkhäuser, Boston, MA, 2001.



On a Theorem of N. Katz and Bases
in Irreducible Representations

David Kazhdan

Dedicated to the memory of Leon Ehrenpreis

Abstract N. Katz has shown that any irreducible representation of the Galois group
of Fq..t// has unique extension to a special representation of the Galois group
of k.t/ unramified outside 0 and 1 and tamely ramified at 1. In this chapter,
we analyze the number of not necessarily special such extensions and relate this
question to a description of bases in irreducible representations of multiplicative
groups of division algebras.

1 A Formula for the Formal Dimension

Let k D Fq; q D pr be a finite field, Nk the algebraic closure of k; F WD k..t//

and NF be the algebraic closure of F . The restriction to Nk � NF defines a group
homomorphism

Gal. NF =F / ! Gal. Nk=k/ D OZ;

and we define the Weil group of the field F as the preimage G0 � Gal. NF =F / of
Z � OZ under this homomorphism.

We denote by P
1 the projective line over k, set E WD k.t/, and denote by S

the set of points of P1. For any s 2 S , we denote by Es the completion of E at s.
Using the parameter t on P

1, we identify the fields E0 and E1 with F and therefore
identify G0 with the Weil groups of the fields E0 and E1.
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Let QE be the maximal extension of the field E unramified outside 0 and 1 and
tamely ramified at 1. We denote by G � Gal. QE=E/ the Weil group corresponding
to the extension QE=E. We have the imbedding

G0 ,! G; and the homomorphism G1 ,! G
defined up to conjugation. Therefore, for any complex representation � of G, the
restrictions to G0;G1 define representations �0; �1 of the corresponding local
groups. The group G has a unique maximal quotient NG such that the Sylow
p-subgroup of NG is normal. As shown by Katz [5], the composition G0 ! NG is
an isomorphism.

Remark. A finite-dimensional irreducible representation �0 of G is called special if
it factors through a representation of the group NG. One can restate the theorem of N.
Katz by saying that for any irreducible representation �0 of G0 there exists a unique
special representation �sp of the group G whose restriction to G0 is equivariant to �0.

Let D0 be a skew-field with center F; dimF D0 D n2, G0 WD D�
0 be the multi-

plicative group of DF and �0 be an n-dimensional indecomposable representation
of the group G0.

Definition 1.1. (a) We denote by Q�.�0/ the irreducible discrete series representa-
tion of the group GLn.F / which corresponds to �0 under the local Langlands
correspondence ( see, e.g., ([3]) and by �.�0/ the irreducible representation of
the group G0 which corresponds to Q�.�0/ as in [1].

(b) We denote by r.�0/ the formal dimension of the representation Q�.�0/ where
the formal dimension is normalized in such a way that the formal dimension of
the Steinberg representation is equal to 1. Analogously, for any indecomposable
representation �1 of the group G1, we define an integer r.�1/.

(c) We denote by A. Q�0/ the set of equivalence classes of n-dimensional irreducible
representations � of the group G whose restriction to G0 is equivalent to �0 and
the restriction to G1 is indecomposable.

Theorem 1.2. For any n-dimensional irreducible NQl -representation of the group
G0, the sum

P
�2A.�0/ r.�1/ is equal to r.�0/.

Proof. Let A D Q0
s2S Es the ring of adeles of E , D be a skew-field with center

E unramified outside f0; 1g; D0 WD D ˝E E0 and D1 WD D ˝E E1. Then
D0; D1 are local skew-fields. Let G be the multiplicative group of D considered
as the algebraic E-group.

We denote by N W D0 ! F the reduced norm and define

� WD � ı N W G0 ! Z; K0 WD ��1.0/;

where � W F � ! Z is the standard valuation. Then K0 � G0 is a maximal compact
subgroup. We define the first congruence subgroup K1

0 by
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K1
0 WD fk 2 K0j�.k � Id/ > 0g

As is well known, K1
0 is a normal subgroup of D�

0 such that K0=K1
0 D F

�
qn and

D�
0 =K1

0 D Z Ë F
�
qn , where Z acts on F

�
qn by .n; x/ ! xqn

.
For any s 2 S � f0; 1g, we identify the group GEs with GL.n; Es/ and define

Ks WD GL.n;Os/. We write GA WD D�1 � GLn.A1/, where

GLn.A1/ WD G0 �
Y

s2S�f0;1g
GL.n; Es/;

and define

K0 WD
Y

s2S�f0;1g
Ks � KE1

; K1 WD
Y

s2S�f0;1g
Ks � K1

E1

;

where K11 � K1 � D�1 is the first congruence subgroup of G1.

Lemma 1.3. (a) For any irreducible complex representation � W D�
0 =K1

0 !
Aut.W / and any character � W K0=K1

0 ! C
�, we have

dim.W �/ � 1;

where W � D fw 2 W j�.k/w D �.k/w; k 2 K0g.
(b) For any irreducible representation � of the group G0, the formal dimension of

Q� is equal to the dimension of � .

Proof. Part a) follows from the isomorphism G0=K1
0 D Z Ë F

�
qn :

Part b) follows from [1].
It follows from [6] that we can identify the set A. Q�0/ with the set of automorphic

representations Q� D ˝0
s2S Q�s of the group GLn.A/ such that the representation

Q�0 is equivalent to Q�.�0/ and the representation Q�1 is of discrete series. Then it
follows from [1] that we can identify the set A. Q�0/ with the set A. Q�0/ of automorphic
representations � D ˝0

s2S �s of the group G.A/ such that the representation �0 is
equivalent to �.�0/. The restriction of the representation �1 on K11 is trivial and
the representations �s;s in S � 	; 1 are unramified. We will use this identification
for the proof of the Theorem 1.2.

We see that the following equality implies the validity of the Theorem 1.2.

Claim 1.4. For any n-dimensional irreducible NQl -representation �0 of the group
G0, the sum

P
�2A.�0/ dim.�1/ is equal to dim.�.�0//.

The proof of Claim is based on the following result.

Proposition 1.5. The product map G0 � K1 � GE ! GA is a bijection.
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Proof of the Proposition. The surjectivity follows from Lemma 7.4 in [4]. To show
the injectivity, it is sufficient to check the equality

.G0 � K1/ \ GE D feg
which is obvious.

We denote by C.GA=GE/ the space of locally constant functions on GA=GE

with compact support, by C.G0/ the space of locally constant functions on G0 with
compact support, and by L � C.GA=GE/ the subspace of K1-invariant functions.
The group G0 � D?1=K11 acts naturally on L.

Let �0 be an indecomposable representation of the group G0. We denote by
.�.�0/; V .�0// the corresponding representation of the group G0 and identify the
set A.�0/ with the set of automorphic representations �a D ˝0

s2S�a
s of the group

G.A/ such that the representation �a
0 is equivalent to �.�0/ and the representation

�a1 is trivial on K11. Let

H WD ˝s2S�f0;1gHs;

where Hs is the spherical Hecke algebra for G.Fs/ D GL.n; Fs/. By construction,
the commutative algebra H acts on the G0 �D?1=K1-module L. For any a 2 A.�0/,
we define

La WD HomG1

A
.�a;C.GA=GE// D HomG0�H.�.�0/; L/ � HomG0 .�.�0/; L/

Lemma 1.6. (a) The restriction r W L ! C.G0/ is an isomorphism of G0 -modules
where G0 acts on C.G0/ by left translation.

(b) HomG0 .�.�0/; L/ D V _ where V _ is the dual space to V.�0/.
(c) V _ D ˚La; a 2 A.�0/ where the algebra H acts on La; a 2 A.�0/ by a

character �a W H ! NQ?
l ; �a ¤ �a0 for a ¤ a0, and the representations �a1 of

the group D?1=K1 on Ma are irreducible.
(d) The representations �a1 are associated with the restriction �.a/1 by the local

Langlands correspondence.

Proof. The Lemma follows immediately from the Proposition and the strong
multiplicity one theorem ([1] and [7]).

This Lemma implies the validity of Claim and therefore of Theorem 1.2. Indeed,
we have

dim.V /D dim.V _/D
X

a2A.�0/

dim.La/D
X

a2A.�0/

dim.�a1/D
X

a2A.�0/

r.�.a/1/ �

One can ask whether one can extend Theorem 1.2 to the case of other groups.
More precisely, let G be a split reductive group with a connected center and LG be
the Langlands dual group. Consider a homomorphism �0 W G0 ! LG such that the
connected component of the centralizer Z�0 WD ZLG.Im.�0// is unipotent. Let ŒZ�


be the group of connected components of the centralizer Z�0 . Conjecturally, one
can associate with �0 an L-packet of irreducible representations ��0 .�/ of the group
G0 WD G.F / parameterized by irreducible representations � of ŒZ�
, and there exists
an integer r.�0/ such that the formal dimension of ��0 .�/ is equal to r.�0/ dim.�/.
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We denote by AG.�0/ the set of conjugacy classes of homomorphisms � W
G ! LG whose restriction on G0 is conjugate to �0 and such that the connected
component of the centralizer of the restriction on G1 is unipotent.

Question. Is it true that r.�0/ D P
a2A.�0/ r.�1/, where r.�1/ is defined in the

same way as r.�0/?

2 A Construction of a Basis

Let G be a reductive group over a local field. As is well known, one can realize the
spherical Hecke algebra H of G geometrically, that is, as the Grothendieck group of
the monoidal category of perverse sheaves on the affine Grassmannian. Analogously
in the case when G be a reductive group over a global field of positive characteristic,
the unramified geometric Langlands conjecture predicts the existence of a geometric
realization of the corresponding space of automorphic functions.

Let C be a smooth absolutely irreducible Fq-curve, q D pm, S be the set of
closed points of C , � WD �1.C/. For any s 2 S , we denote by F rs � � the
conjugacy class of the Frobenius at s.

Let E be the field of rational functions on C . For any s 2 S , we denote by Es

the completion of E at s and we denote by A be the ring of adeles of E . Fix a prime
number l ¤ p.

Let G be a split reductive group, and OK WD Q
s2S G.Os/ � G.A/ be the standard

maximal compact subgroup. An irreducible representation .�; V / D ˝0
s2S .�s; Vs/

of G.A/ is unramified if V
OK ¤ f0g. In this case, dim.V

OK/ D 1. So for any
unramified representation .�; V / of the group G.A/, there is a special spherical
vector vsp 2 V defined up to a multiplication by a scalar.

Let LG be the Langlands dual group and � a homomorphism from � to LG. NQl /,
such that for any s 2 S , the conjugacy class s WD �.F rs/ � LG. NQl / is semisimple.
In such a case, we can define unramified representations .�s ; Vs/ of local groups
G.Es/ and the representation .�.�/; V�/ D ˝s.�s ; Vs/ of the adelic group G.A/.
According to the unramified geometric Langlands conjecture, the homomorphism �

defines [at least in the case when � is tempered] an imbedding

i� W V� ! NQl .KnG.A/=G.E//

and a function f� WD i�.vsp/ which is defined up to a multiplication by a scalar.
We can identify the set KnG.A/=G.E/ with the set of Fq-points of the

stack BG of principal G-bundles on C , and the unramified geometric Langlands
correspondence predicts the existence of a perverse Weil sheaf F.�/ on BG such
that the function f� is given by the trace of the Frobenius automorphisms on stalks
of F.�/. (See [2].)

If one considers ramified automorphic representations .�; V / D ˝0
s2S .�s; Vs/

of G.A/, then there is no natural way to choose a special vector in V . So on the
“geometric” side, one expects not an object F.�/ but an abelian category C.�/
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which is a product of local categories C.�s/ such that the Grothendieck K-group
of the category ŒC.�s/
 coincides with the subspace V 0

s of the minimal K-type
vectors of the space Vs of the local representation. Such geometric realization of
the space V 0

s would define a special basis of vector spaces V 0
s which would be a

non-Archimedean analog of Lusztig’s canonical basis. Here, we consider only the
case of an anisotropic group when the minimal K-type subspace V 0

s coincides with
the space Vs of the representation of G. Moreover, we will only discuss a slightly
weaker data of a projective basis where a projective basis in a finite-dimensional
vector space T is a decomposition of the space T in a direct sum of one-dimensional
subspaces. So one could look for a special basis of vector spaces Vs which would be
a non-Archimedean analog of the Lusztig’s canonical basis.

Let as before F WD k..t//; D0 be a skew-field with center F; dim0 D0 D n2; G0

be the multiplicative group of D0 and � W G0 ! Aut.V / a complex irreducible
continuous representation of the group G0.

Theorem 2.1. For any irreducible representation � W D�
F ! Aut.T / of the group

D�
F , there exists a “natural” projective basis D ˚aTa of T .

Remark 2.2. The construction is global. In particular, I do not know how to define
a projective basis in the case when F is a local field of characteristic zero. It would
be very interesting to find a local construction of a projective basis.

The construction. As follows from Lemma 1.6(c), we have a decomposition
V _ D P

a2A.�0/ Ma where the group D?1=K11 acts irreducibly on Ma. Therefore,
the group F

?
qn D K1=K11 acts on Ma, and we have a decomposition of Ma into

the sum of eigenspaces for the action of the group F
?
qn . As follows from Lemma 1.3

these eigenspaces are one dimensional.
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Abstract We characterize all logarithmic, holomorphic vector-valued modular
forms which can be analytically continued to a region strictly larger than the upper
half-plane.
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1 Introduction

Let � D SL2.Z/ be the modular group with standard generators

S D
�

0 �1

1 0

�
; T D

�
1 1

0 1

�
;

and let � W � ! GL.p;C/ be a p-dimensional representation of � . A holomorphic
vector-valued modular form of weight k 2 Z associated to � is a holomorphic
function F W H ! C

p defined on the upper half-plane H which satisfies

F jk�.�/ D �.�/F.�/ .� 2 �/ (1)
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and a growth condition at 1 (see below). As usual, the stroke operator here is
defined as

F jk�.�/ D .c� C d/�kF.��/

�
� D

�
a b

c d

�
2 �

�
:

We generally drop the adjective ‘holomorphic’ from holomorphic vector-valued
modular form unless there is good reason not to. We also refer to the pair .�; F /

as a vector-valued modular form and call p the dimension of .�; F /. We usually
consider F as a vector-valued function1 F.�/ D .f1.�/; : : : ; fp.�//t and call the
fi .�/ the component functions of F .

Given a pair of vector-valued modular forms .�; F /; .�0; F 0/ of weight k and
dimension p, we say that they are equivalent if there is an invertible p � p matrix
A such that

.�; F / D .A�0A�1; AF 0/:

In particular, the representations �; �0 of � are necessarily equivalent in the usual
sense.

Suppose that .�; F / is a vector-valued modular form. The purpose of this chapter
is to investigate whether F.�/ has a natural boundary. If f .�/ is a nonconstant
(scalar) modular form of weight k on a subgroup of finite index in � , then it is well
known that the real axis is a natural boundary for f .�/ in the sense that there is no
real number r such that f .�/ can be analytically continued to a region containing
H [ frg. In this chapter, we say that .�; F / has the real line as a natural boundary
provided that at least one component of F does. Note that if we replace .�; F / by
an equivalent vector-valued modular form, the component functions are replaced by
linear combinations of component functions. In particular, the existence of a natural
boundary is a property that is shared by any two vector-valued modular forms that
are equivalent.

In [KM2], the authors extended the classical result on natural boundaries to
the case in which the matrix �.T / is unitary. Replacing .�; F / with an equivalent
vector-valued modular form if necessary, we may assume that �.T / is both unitary
and diagonal. A .�; F / such that �.T / is unitary and diagonal is called normal,
and we proved (loc. cit.) that a normal vector-valued modular form has the real
line as natural boundary. Here, we study the same question for the larger class
of polynomial, or logarithmic, vector-valued modular forms introduced in [KM3],
where one assumes only that the eigenvalues of �.T / have absolute value 1. This
case is more subtle for several reasons, not the least being that the existence of a
natural boundary no longer obtains in general.

We recall some facts about polynomial vector-valued modular forms (loc. cit.).
Replacing .�; F / by an equivalent vector-valued modular form if necessary, we may,
and shall, assume that �.T / is in (modified) Jordan canonical form.2 Let the i th

1Superscript t means transpose of vectors and matrices.
2A minor variant of the usual Jordan canonical form. See [KM3] for details.
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Jordan block of �.T / have size mi and label the corresponding component functions
of F.�/ as '

.i/
1 .�/; : : : ; '

.i/
mi .�/. By [KM3], they have polynomial q-expansions

'
.i/

l .�/ D
l�1X
sD0

 
�

s

!
h

.i/

l�1�s.�/ .1 � l � mi/; (2)

each h
.i/
s .�/ having a left-finite q-series

h.i/
s .�/ D e2� i�i �

1X
nD	i

an.s; i/e2� in� .0 � s � mi � 1; 	i 2 Z/: (3)

Here, e2� i�i is the eigenvalue of �.T / determined by the i th block and 0 � �i < 1.
(It is here that we are using the assumption that the eigenvalues of �.T / have
absolute value 1.) F.�/ is then called a holomorphic vector-valued modular form
if, for each Jordan block, each q-series h

.i/
s .�/ has only nonnegative powers of q,

i.e., an.s; i/ D 0 whenever n C �i < 0.
Setting q D e2� i� .� 2 H/ so that � D .2�i/�1 log q, we find from (2) and (3)

that '
.i/

l .�/ may alternatively be expressed in the form

'
.i/

l .�/ D
l�1X
sD0

.log q/sg
.i/

l�1�s .q/

with q-series g
.i/

l�1�s .q/. It is this formulation that gives rise to the name logarithmic
vector-valued modular form. We find it convenient to use the polynomial variation
encapsulated by (2) and (3) in this chapter.

The most accessible examples of polynomial vector-valued modular forms that
are not normal are as follows (cf. Sect. 2 for more details). If we set

C.�/ D .�p�1; �p�2; : : : ; 1/t ;

then C.�/ is a vector-valued modular form of weight 1 � p associated with a
representation 
 equivalent to the .p�1/th symmetric power Sp�1.	/ of the natural
defining representation 	 of � . The canonical form for 
.T / is a single Jordan block,
and .
; C / is equivalent to a vector-valued modular form for which the q-series
corresponding to the h

.i/
j .�/ in (3) are constants.

Obviously, .
; C / is a p-dimensional vector-valued modular form that is analytic
throughout the complex plane. The main result of this chapter is that these are
essentially the only examples of polynomial vector-valued modular forms whose
natural boundary is not the real line. We give two formulations of the main result.
As we shall explain, they are essentially equivalent.
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Theorem 1. Suppose that the eigenvalues of �.T / have absolute value 1, and let
.�; F / be a nonzero vector-valued modular form of weight k and dimension p. Then
the following are equivalent:

(a) F.�/ does not have the real line as a natural boundary.
(b) The component functions of F.�/ span the space of polynomials of degree l � 1

for some l � p. Moreover, k D �l .

Theorem 2. Suppose that the eigenvalues of �.T / have absolute value 1, and let
.�; F / be a vector-valued modular form of weight k and dimension p. Suppose
further that the component functions of F.�/ are linearly independent. Then the
following are equivalent:

(a) F.�/ does not have the real line as a natural boundary.
(b) .�; F / is equivalent to (
; C ) and k D 1 � p:

This chapter is organized as follows. In Sect. 2, we consider the basic example
.
; C / introduced above in more detail and explain why Theorems 1 and 2 are
equivalent. In Sect. 3, we give the proof of the theorems.

2 The Vector-Valued Modular Form .�; C /

The space of homogeneous polynomials in variables X; Y is a right �-module such

that � D .
a b

c d
/ 2 � is an algebra automorphism with

� W X 7! aX C bY; Y 7! cX C dY:

The subspace of homogeneous polynomials of degree p � 1 is an irreducible �-
submodule which we denote by Qp�1. The representation of � that it furnishes is
the .p � 1/th symmetric power Sp�1.	/ of the defining representation 	.

For � 2 H, let Pp�1.�/ be the space of polynomials in � of degree at most p � 1.
Since

�j j1�p� D .c� C d/p�1

�
a� C b

c� C d

�j

D .a� C b/j .c� C d/p�1�j ;

it follows that Pp�1.�/ is a right �-module with respect to the stroke operator j1�p .
Indeed, Pp�1.�/ is isomorphic to Qp�1, an isomorphism being given by

Xj Y p�1�j 7! �j .0 � j � p � 1/:
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Since 1; �; : : : ; �p�1 are linearly independent and span a right �-module with
respect to the stroke operator j1�p , we know (cf. [KM1], Sect. 2) that there is a
unique representation 
 W � ! GLp.C/ such that


.�/C.�/ D C j1�p�.�/ .� 2 �/:

This shows that .C; 
/ is a vector-valued modular form of weight 1 � p and that the
representation 
 is equivalent to Sp�1.	/.

We can now explain why Theorems 1 and 2 are equivalent. Assume first that
Theorem 1 holds, and let .�; F / be a vector-valued modular form of weight k

with linearly independent component functions and such that the real line is not
a natural boundary for F.�/. By Theorem 1, the components of F.�/ span a space
of polynomials of degree no greater than p � 1, and by linear independence, they
must span the space Pp�1.�/. Moreover, we have k D 1 � p. Now there is an
invertible p � p matrix A such that AF.�/ D C.�/, whence .�; F.�// is equivalent
to .A�A�1; C.�//. As explained above, we necessarily have A�A�1 D 
 in this
situation, so that .�; F / is equivalent to .
; C /. This shows that (a) ) (b) in
Theorem 2, in which case Theorem 2 is true.

Now suppose that Theorem 2 holds, and let .�; F / be a nonzero vector-valued
modular form of dimension p and weight k such that the real line is not a natural
boundary for F.�/. Let .g1; : : : ; gl / be a basis for the span of the components of F .
Setting G D .g1; : : : ; gl /

t , we again use ([KM1], Sect. 2) to find a representation
˛ W � ! GLl .C/ such that .˛; G/ is a vector-valued modular form of weight k.
Because the components of G are linearly independent, Theorem 2 tells us that they
span the space Pl�1.�/ of polynomials of degree at most l and that k D �l . Thus
the conclusions of Theorem 1(b) hold, and Theorem 1 is true.

The reader familiar with Eichler cohomology will recognize the �-module
Pp�1.�/ as a crucial ingredient in that theory. This points to the fact that Eichler
cohomology has close connections to the theory of vector-valued modular forms,
connections that in fact go well beyond the question of natural boundaries that we
treat here. The authors hope to return to this subject in the future.

3 Proof of the Main Theorems

In this section, we will prove Theorem 2. As we have explained, this is equivalent
to Theorem 1.

In order to prove Theorem 2, we may replace .�; F / by any equivalent vector-
valued modular form. Thus we may, and from now on shall, assume without loss
that �.T / is in (modified) Jordan canonical form. We assume that �.T / has t Jordan
blocks, which we may, and shall, further assume are ordered in decreasing size
M D m1 � m2 � � � � � mt . Thus m1 C � � � C mt D p, and we may speak, with an
obvious meaning, of the component functions in a block. The i th. block corresponds
to an eigenvalue e2� i�i of �.T /, and we let the component functions of F.�/ in that
block be as in (2), (3).
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Let

� D
�

a b

c d

�
2 �: (4)

Because .�; F / is a vector-valued modular form of weight k, we have

�.�/F.�/ D .c� C d/�kF.��/:

So if 'u.�/ D '
.i/
v .�/ is the uth component of the i th block of F.�/ (so that u D

m1 C � � � C mi�1 C v), then

.c� C d/�k'u.��/ D
tX

j D1

mjX
lD1

˛
.j /

l '
.j /

l .�/;

where .: : : ; ˛
.j /
1 ; : : : ; ˛.j /

mj„ ƒ‚ …
j th block

; : : :/ is the uth row of �.�/. Using (2), we obtain

.c� C d/�k'u.��/ D
tX

j D1

mjX
lD1

l�1X
sD0

˛
.j /

l

 
�

s

!
h

.j /

l�1�s.�/

D
M�1X
sD0

 
�

s

!0
@ tX

j D1

mjX
lDsC1

˛
.j /

l h
.j /

l�1�s.�/

1
A

D
M�1X
sD0

 
�

s

!
tX

j D1

 
˛

.j /
sC1h

.j /
0 .�/ C

mjX
lDsC2

˛
.j /

l h
.j /

l�1�s.�/

!
:

(Here, ˛
.j /
sC1 D 0 if s � mj .)

Because the component functions of .�; F / are linearly independent, 'u.�/ is
nonzero and the previous display is not identically zero. So there is a largest integer
B in the range 0 � B � M � 1 such that the summand corresponding to

�
�

B

�
does

not vanish. Now note that '
.j /
1 .�/ D h

.j /
0 .�/. Because the component functions are

linearly independent, then in particular the h
.j /
0 .�/ are linearly independent, and we

can conclude that

˛
.j /
sC1 D 0 .1 � j � t; s > B C 1/;

˛
.j /
BC1 are not all zero .1 � j � t/: (5)

It follows that

.c� C d/�k'u.��/

D
 

�

B

!
tX

j D1

˛
.j /
BC1h

.j /
0 .�/ C

B�1X
sD0

 
�

s

!
tX

j D1

mjX
lDsC2

˛
.j /

l h
.j /

l�1�s.�/ (6)
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and the first term on the right-hand side of (6) is nonzero. Incorporating (3), we
obtain

.c� C d/�k'u.��/

D
 

�

B

!
tX

j D1

˛
.j /
BC1e2� i�j �

1X
nD	j

an.0; j /e2� in�

C
B�1X
sD0

 
�

s

!
tX

j D1

mjX
lDsC2

1X
nD	j

˛
.j /

l e2� i�j � an.l � 1 � s; j /e2� in� : (7)

Let Q�1; : : : ; Q�p be the distinct values among �1; : : : ; �t . Then we can rewrite (7)
in the form

.c� C d/�k'u.��/

D
 

�

B

!
pX

j D1

e2� i Q�j �g
.j /
B .�/ C

B�1X
sD0

 
�

s

!
pX

j D1

e2� i Q�j � g.j /
s .�/; (8)

where the first term in (8) is nonzero and each g
.j /
m .�/ is a left-finite pure q-series,

i.e., one with only integral powers of q.
Consider the nonzero summands

e2� i Q�j �g
.j /
B .�/ D

1X
nD	.j;B/

bn.j; B/qnC Q�j

D b	.j;B/.j; B/q	.j;B/C Q�j .1 C positive integral powers of q/ (9)

that occur in the first term on the right-hand side of (8). Let J be the corresponding
set of indices j . Because the Q�j are distinct, there is a unique j0 2 J which
minimizes the expression

	.j; B/ C Q�j :

Let J 0 D J n fj0g. Hence, there is y0 > 0 such that for I.�/ > y0, we have

ˇ̌
ˇe2� i Q�j0 �g

.j0/
B .�/

ˇ̌
ˇ > 2

ˇ̌
ˇ̌
ˇ̌
X
j 2J 0

e2� i Q�j �g
.j /
B .�/

ˇ̌
ˇ̌
ˇ̌ :

Taking into account the terms e2� i Q�j �g
.j /
B .�/ that vanish, we obtain for I.�/ > y0:ˇ̌̌

ˇ̌
ˇ

pX
j D1

e2� i Q�j �g
.j /
B .�/

ˇ̌̌
ˇ̌
ˇ >

ˇ̌
ˇe2� i Q�j0 �g

.j0/
B .�/

ˇ̌
ˇ�

ˇ̌̌
ˇ̌
ˇ
X
j 2J 0

e2� i Q�j �g
.j /
B .�/

ˇ̌̌
ˇ̌
ˇ

> 1=2
ˇ̌̌
e2� i Q�j0 �g

.j0/
B .�/

ˇ̌̌
> 0: (10)
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In (10), for N 2 Z, we have I.� C N / D I.�/ > y0. So (10) holds with �

replaced by � C N . Because g
.j /
B .� C N / D g

.j /
B .�/, we see thatˇ̌̌

ˇ̌
ˇ

pX
j D1

e2� i Q�j .�CN /g
.j /
B .�/

ˇ̌̌
ˇ̌
ˇ > 1=2

ˇ̌
ˇe2� i Q�j0 �g

.j0/
B .�/

ˇ̌
ˇ > 0 .N 2 Z; I.�/ > y0/: (11)

At this point, we return to (8). Replace � by � C N to obtain

.c� C cN C d/�k'u.�.� C N //

D
 

� C N

B

!
pX

j D1

e2� i Q�j .�CN /g
.j /
B .�/ C

B�1X
sD0

 
� C N

s

!
pX

j D1

e2� i Q�j .�CN /g.j /
s .�/:

(12)

Set

†1.�/ D †1.� I �/ D
BX

sD0

 
�

s

!
pX

j D1

e2� i Q�j .�/g.j /
s .�/;

†2.�; N / D †2.�; N I �/ D †1.� C N /:

Thus (12) reads

'u.�.� C N // D .c� C cN C d/k†2.�; N /: (13)

Next, we examine the powers of N that appear in †2.�; N /. Now 
� C N

s

!
D 1

sŠ
.� C N /.� C N � 1/ : : : .� C N � s C 1/

D N s

sŠ
C O.N s�1/; N ! 1:

Therefore, the highest power of N occurring with nonzero coefficient in †2.�; N /

is N B , the coefficient in question being

1

BŠ

pX
j D1

e2� i Q�j .�CN /g
.j /
B .�/: (14)

Hence, we obtain

†2.�; N / D N B

BŠ

pX
j D1

e2� i Q�j .�CN /g
.j /
B .�/ C O.N B�1/; N ! 1; (15)

with nonzero leading coefficient (14).
So far, the component function 'u.�/ of F.�/ has been arbitrary. Now we claim

that there is at least one component such that the integer B occurring in (15), and
thereby also in (13), is equal to M � 1. Indeed, because the first block has size



Vector-Valued Modular Forms with an Unnatural Boundary 349

M , the M th component '
.1/
M .�/ of F.�/ has the polynomial

�
�

M�1

�
occurring in

its logarithmic q-expansion (2) with nontrivial coefficient h
.1/
0 .�/. Because �.�/ is

nonsingular, at least one row of �.�/, say the uth, has a nonzero value ˛
.1/
M in the

M th column. Thanks to (5), we must have B C 1 D M , as asserted.
With 'u.�/ as in the last paragraph, we have for N ! 1,

'u.�.� C N //

D .c� C cN C d/k

0
@ N M�1

.M � 1/Š

pX
j D1

e2� i Q�j .�CN /g
.j /
M�1.�/ C O.N M�2/

1
A: (16)

Lemma 3.1. Let 'u.�/ be as before, and suppose that there exists a rational number
a=c; ..a; c/ D 1; c 6D 0/ at which 'u.�/ is continuous from above. Then k � 1�M .

Proof. First note that

�.� C N / D a C b=.� C N /

c C d.� C N /
! a=c as N ! 1 within H:

By the continuity assumption of the Lemma, 'u.�/ remains bounded as N ! 1.
Choosing y0 large enough, we see from (11) that

ˇ̌
ˇ̌̌
ˇ

pX
j D1

e2� i Q�j .�CN /g
.j /
M�1.�/

ˇ̌
ˇ̌̌
ˇ

is bounded away from 0 as N ! 1. Because c 6D 0, we deduce that the right-hand
side of (16) is � ˛.N /N kCM�1 with ˛.N / 6D 0. If k > 1 � M , this implies that the
right-hand side is unbounded as N ! 1. This contradiction proves the Lemma.

Lemma 3.2. Let 'u.�/ be as in (16), and suppose that 'u.�/ is holomorphic in a
region containing H [ I with I a nonempty open interval in R. Then k � 1 � M .

Proof. Choose rational a=c as in the last Lemma so that a=c 2 I. The argument
of the previous Lemma shows that the right-hand side of (16) is � ˛.N /N kCM�1

with ˛.N / 6D 0. Indeed, we easily see from (16) that ˛.N / has an upper bound
independent of N for N ! 1. Then if k < 1 � M , the right-hand side of (16) ! 0

as N ! 1.
On the other hand, the left-hand side of (16) ! 'u.a=c/ as N ! 1. We

conclude that 'u.a=c/ D 0, and because this holds for all rationals in I, then
'u.�/ is identically zero, thanks to the regularity assumption on 'u.�/. Because
the components of F.�/ are linearly independent, 'u.�/ cannot vanish, and this
contradiction shows that k � 1 � M , as required.
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Proposition 3.3. Assume that the regularity assumption of Lemma 3.2 applies to
all components of F.�/. Then k D 1 � M and each component is a polynomial of
degree at most M � 1.

Proof. Because of the regularity assumptions of the present proposition, we may
apply Lemmas 3.1 and 3.2 to find that k D 1�M . If, for some component 'u.�/, the
integer B that occurs in (15) is less than M � 1, the argument of Lemma 3.1 yields
a contradiction. Since, in any case, we have B � M � 1, then in fact B D M � 1

for all components. As a result, (16) holds for every component '.�/ of F.�/.
Differentiate (8) (now with B D M � 1) M times and apply the well-known

identity of Bol [B]:

D.M/
�
.c� C d/M�1'.��/

� D .c� C d/�1�M '.M/.��/:

We obtain (using Leibniz’s rule) for j� j ! 1 that

'.M/.��/

D .c� C d/MC1D.M/

0
@M�1X

sD0

 
�

s

!
pX

j D1

e2� i Q�j � g.j /
s .�/

1
A

D .c� C d/MC1

0
@ �M�1

.M � 1/Š
D.M/

0
@ pX

j D1

e2� i Q�j �g
.j /
M�1.�/

1
AC O.j� jM�2/

1
A :

Therefore, for N ! 1,

'.M/.�.� C N //

D .c� C cN C d/MC1

 
.� C N /M�1

.M � 1/Š
D.M/

 
pX

j D1

e2� i Q�j .�CN /g
.j /
M�1.�/

!

CO.N M�2/

!
: (17)

Take c 6D 0 with � as in (4) and a=c 2 I, and apply the regularity assumption
to '.�/. Then the left-hand side of (17) has a limit '.M/.a=c/ for N ! 1. On

the other hand, we know that
ˇ̌
ˇPp

j D1 e2� i Q�j .�CN /g
.j /
M�1.�/

ˇ̌
ˇ is bounded away from

zero. So if D.M/
�Pp

j D1 e2� i Q�j .�CN /g
.j /
M�1.�/

�
does not vanish identically, then the

right-hand side of (17) is � ˛.N /N 2M for N ! 1, with ˛.N / bounded away
from zero. This contradiction shows that in fact

D.M/

0
@ pX

j D1

e2� i Q�j .�CN /g
.j /
M�1.�/

1
A � 0
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From (9), we have

D.M/

0
@ pX

j D1

e2� i Q�j .�CN /g
.j /
M�1.�/

1
A

D
pX

j D1

e2� i Q�j N

1X
nD	.j;M�1/

bn.j; M � 1/.2�i.n C Q�j //M qnC Q�j ;

so that
pX

j D1

e2� i Q�j N bn.j; M � 1/.n C Q�j /M D 0 .n � 	.j; M � 1//:

This implies that bn.j; M � 1/ D 0 whenever n C Q�j 6D 0. Because b	.j;M�1/

.j; M � 1/ 6D 0, we must have

Q�j D 0 .1 � j � p/; (18)

which amounts to the assertion that all �j D 0 .1 � j � t/. Moreover,
bn.j; M � 1/ D 0 for n 6D 0, so that

g
.j /
M�1.�/ D b0.j; M � 1/

is constant. Now (8) reads

.c� C d/M�1'.��/ D
 

�

M � 1

!
pX

j D1

b0.j; M � 1/ C
M�2X
sD0

 
�

s

!
pX

j D1

g.j /
s .�/: (19)

We now repeat the argument M � 1 times, starting with (19) in place of (8). We
end up with an identity of the form

.c� C d/M�1'.��/ D
M�1X
sD0

 
�

s

!
pX

j D1

b0.j; s/;

where of course the right-hand side is a polynomial p.�/ of degree at most M � 1.
Then

'.�/ D .c��1� C d/1�M p

�
d� � b

�c� C a

�

D .c� C d/M�1p

�
d� � b

�c� C a

�

is itself a polynomial of degree at most M � 1. This completes the proof of
Proposition 3.3.
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It is now easy to complete the proof of Theorem 2. It is only necessary to establish
the implication (a) ) (b). Assuming (a) means that Proposition 3.3 is applicable, so
that we have k D 1 � M and the components of F.�/ are polynomials of degree at
most M � 1. Because the components are linearly independent, it must be the case
that the maximal block size M is equal to the dimension p of the representation �.
Thus k D 1 � p, and the component functions span the space of polynomials of
degree at most p � 1. The fact that .�; F / is equivalent to .
; C /, then follows from
the discussion in Sect. 2.

Acknowledgements Supported by the NSF and NSA.

References

B. Bol, G., Invarianten linearer Differentialgleichungen, Abh. Math. Sem. Univ. Hamburg 16
Nos. 3–4 (1949), 1–28.

KM1. Knopp, M., and Mason, G., On vector-valued modular forms and their Fourier coefficients,
Acta Arith. 110.2 (2003), 117–124.

KM2. Knopp, M. and Mason, G., Vector-valued modular forms and Poincaré series, Ill. J. Math.
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Loss of Derivatives
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Dedicated to the memory of Leon Ehrenpreis
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Abstract In 1957, Hans Lewy (see Lewy [L]) obtained a remarkable result.
Namely, he found a first-order partial differential operator L such that there exists a
function f 2 C 1.R3/ so that the equation Lu D f does not have any distribution
solutions u on any open set, equivalently the associated laplacian Eu D LL�u D f

does not have any distribution solution. This operator comes from the study of
the induced Cauchy-Riemann equation on the sphere in C

2. Roughly speaking,
nonexistence of distribution solutions means that no derivative of u can be uniformly
estimated by some derivatives of f , that is, “E loses infinitely many derivatives.”
In Kohn (Ann. Math. 162:943–986, 2005), the operator E was approximated by
a sequence of operators fEkg, each of which loses exactly k � 1 derivatives but
nevertheless is locally solvable and hypoelliptic. Here we study these phenomena
for operators of the form

P
X�

i Xi , where the Xi are complex-valued vector fields
and the corresponding approximating operators lose a finite number of derivatives.

1 Introduction

Operators on boundaries of domains in C
n, associated with the Cauchy-Riemann

equations, sometimes exhibit the kind of behavior studied here. The loss of deriva-
tives phenomenon has been studied by Parenti and Parmeggiani; see [PP]. In [KR],
H. Rossi and I studied the induced tangential Cauchy-Riemann equations and the
associated laplacians on .0; q/-forms, with q > 0, strongly pseudoconvex domains
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in C
n with n > 2. In those cases, in contrast with the case n D 2, the laplacians

are hypoelliptic. The Lewy operator and its associated laplacian on the sphere in C
2

motivate the paper [K]. This work was generalized to operators on boundaries of
certain weakly pseudoconvex domains in C

2 in [BDKT]. Further generalizations of
these operators were treated by G. Zampieri and various coauthors; see, for example,
[KPZ].

Let S be the hypersurface in C
2 given by

S D ˚
.z1; z2/ 2 C

2 j Re.z2/ D jz1j2� :

Let L denote the .1; 0/ vector field tangent to S given by

L D @

@z1

� 2Nz1

@

@z2

:

We identify S with R
3 � C�R

2 by means of the coordinates z D z1 and t D Im.z2/;
in terms of these coordinates, we have

L D @

@z
� i Nz @

@t
:

This is the Lewy operator. The same nonexistence theorem holds for the operator
E D L NL� D �L NL. The operators Ek , defined below, near the origin are
approximations of �L NL. The Ek do have local existence and are hypoelliptic, but
in order to estimate s derivatives of u, we need s C k � 1 derivatives of Eku. The
operator �L NL locally is the limit, as k ! 1, of the operators Ek defined by

Ek D �L NL � NLjzj2kL;

in the sense that the limits of the coefficients Ek are the corresponding coefficients
of E when jzj < 1. In [K], it is shown that the operators Ek “lose” k �1 derivatives.
That is, if f 2 H s

loc.R
3/ and Lu D f , then u 2 H s�kC1

loc .R3/ and further that there
exists f 2 H s

loc.R
3/ such that there does not exist a solution u 2 H s0

loc.R
3/ when

s0 > s � k C 1. In [BDKT], this result is generalized, and it is proved that if L, for
positive m, is defined by

L D @

@z
� i Nzjzj2.m�1/ @

@t
;

then the operators Ek “lose” k�1
m

derivatives. These results are proved by means of
the following optimal estimates, for each s 2 R and k 2 Z

C, there exists C D
C.k; s/ such that

kuks� k�1
m

� C kEkuks;
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for all u 2 C 1
0 .Rn/. The estimates are optimal in the sense that for any s, k, and a

bounded U � R
3, there exists a sequence fu�g with u� 2 C 1

0 .U /, kEku�ks D 1,
and when � ! 1 then ku�ks0 ! 1, whenever s0 > s � k�1

m
.

To discuss this problem in a more general setting, let X1; : : : ; Xl be complex
vector fields on R

n, that is,

Xi D
nX

j D1

a
j
i

@

@xj

;

for i D 1; : : : ; l with a
j
i complex valued and a

j
i 2 C 1.Rn/.

Definition. The vector fields X1; : : : ; Xl satisfy the bracket condition at x0 2 R
n if

the Lie algebra generated by X1; : : : ; Xl evaluated at x0 equals CTx0.R
n/.

Let F1.X1; : : : ; Xl/ denote the vector space consisting of all vector fields that
are linear combinations, with C 1 coefficients, of the X1; : : : ; Xl . Inductively, we
define Fp.X1; : : : ; Xl/ by

F j .X1; : : : ; Xl/ D F j �1.X1; : : : ; Xl/ C ŒF1.X1; : : : ; Xl/;F j �1.X1; : : : ; Xl/�:

Note that the bracket condition at x0 is equivalent to the condition that there
exists m such that

Fm.X1; : : : ; Xl/jx0 D CTx0.R
n/: (1)

Definition. If fX1; : : : ; Xlg satisfy the bracket condition at x0, then the type of
fX1; : : : ; Xlg at x0 is the smallest m for which (1) holds.

Here we are concerned with existence and hypoellipticity for the operator:

E D
lX

iD1

X�
i Xi :

Suppose that the vector fields fX1; : : : ; Xlg are real, then Hörmander has
obtained the following result (see [H]).

Theorem. Suppose that the fX1; : : : ; Xlg are real and satisfy the bracket condition
at x0. Then, there exists a neighborhood U of x0 and " > 0 such that if f and u are
distributions on U such that Eu D f and if f jV 2 H s.V /, then ujV 2 H sC2"

loc .V /.

Hörmander’s proof depends on the following subelliptic energy estimate.

Theorem (Hörmander). Suppose that the fX1; : : : ; Xlg are real and satisfy the
bracket condition at x0. Then, there exists a neighborhood U of x0 and constants C
and " > 0 such that

kuk2
" � C

lX

iD1

kXi uk2; (2)

for all u 2 C 1
0 .U /.
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Existence

The estimate (2) for " > 0 implies that for any s 2 R, there exists Cs such that

kuk2
sC2" � Cs

�
�
�
�
�

lX

iD1

X�
i Xiu

�
�
�
�
�

2

s

; (3)

for all u 2 C 1
0 .U /. Then, (3) implies that if f 2 H s

loc.U /, then there exists a

u 2 H sC2"
loc .U / such that

Pl
iD1 X�

i Xi u D f .
When (2) holds with " > 0, then (3) is proved by substituting ƒsC"u for u in (2).

This substitution is justified, despite the fact that ƒsC"u is not supported in U , as
follows. If � 2 C 1

0 .U / with � D 1 in a neighborhood of supp.u/, then

ƒsC"u D ƒsC"�u D �ƒsC"u � Œ�; ƒsC"�u:

Thus, the symbol of Œ�; ƒsC"�u is zero on supp.u/, and therefore, the operator
Œ�; ƒsC"� is of order �1 on all u with � D 1 in a neighborhood of supp.u/.
When " > 0, the derivation of (3) proceeds in a straight forward way. The operators
ŒXi ; ƒsC"� are of order s C ", and when " > 0, we have

kuksC" � small const:kuksC2";

when supp.u/ has small diameter. Thus, error terms of the form kŒXi ; ƒsC"�uk can
be absorbed in the left-hand side. This is not the case when (2) holds with " � 0.
Here we overcome this difficulty by restricting ourselves only to the special complex
vector fields defined below, although (2) holds in greater generality.

Definition. The complex vector fields X1; : : : ; Xl on R
nC1 D R

n
x � Rt are called

special vector fields if they satisfy the following:

� X�
i D � NXi .

�� Xi D Pn
j D1 a

j
i .x/ @

@xj
C bi .x/ @

@t
with a

j
i ; bi 2 C 1.Rn

x/.

� � � For each x, the l vectors .a1
i .x/; : : : ; an

i .x//, with i D 1; : : : ; l , span an
n-dimensional vector space over C.

In order to study the estimates (2) and (3) for the special vector fields, we
will microlocalize as follows. Denote by f�1; : : : ; �n; �g, the coordinates dual to
fx1; : : : ; xn; tg. Let �; �0 2 C 1.RnC1 with �.c�; c�/ D �.�; �/ and �0.c�; c�/ D
�0.�; �/ when j�j2 C j� j2 � 1 and c � 1. Further, assume that a; b 2 .0; 1/ and
that �.�; �/ D 0 when j�j > aj� j and j�j2 C j� j2 � 1 and that �0.�; �/ D 0 when
j�j < bj� j and j�j2 C j� j2 � 1. Define �u and �0u by

c�u.�; �/ D �.�; �/Ou.�; �/

and

b�0u.�; �/ D �0.�; �/Ou.�; �/;
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respectively. Denote by G and by G0 the sets of symbols � and �0. The sets of
the corresponding operators will be denoted by G and by G0, respectively. Then,
j��0j � b�1j�j when j�j2 C j� j2 � 1 so that

 
nX

iD1

j�i j2 C j� j2 C 1

! 1
2

�0.�; �/ � C

 
nX

iD1

j�i j2 C 1

! 1
2

�0.�; �/;

when j�j2 C j� j2 � 1. Then, since the @
@xi

are combinations of the Xi and @
@t

, we
have

k�0uk2
1 � C

X
kXi �0uk2 C kRuk2;

where R is a pseudodifferential operator whose symbol has compact support and
hence is of order �1. Therefore,

k�0uk2
1 � C

X
kXi �0uk2 C O.kuk2�1/;

and for any s 2 R,

k�0uk2
sC1 � C

X
kXi �0uk2

s C O.kuk2�1/:

Let � 0
0 2 G0 be an operator with symbol � 0

0.�; �/ D 1 in a neighborhood of supp � \
f.�; �/ j j�j2 C j� j2 � 1g. Then, since the operator ŒXi ; �0�.1 � � 0

0/ is of order �1,
we have

kŒXi ; �0�uk2
s � C k� 0

0uk2
s C O.kuk2�1/ � C k� 00

0 uk2
s�1 C O.kuk2�1/;

where the symbol � 00
0 .�; �/ D 1 in a neighborhood of supp � 0

0\f.�; �/ j j�j2 Cj� j2 �
1g. Hence, proceeding inductively, we obtain

k�0uk2
sC1 � C

X
kXi �0uk2

s C O.kuk2�1/ � C
X

kXi uk2
s C O.kuk2�1/: (4)

Lemma. If X1; : : : ; Xl are special vector fields as above and if (2) holds for some
" 2 R, then (3) holds.

Proof. Choose � 2 G and �0 2 G0 such that �.�; �/ C �0.�; �/ D 1 when j�j2 C
j� j2 � 1. Then, substituting s C " � 1 for s and ƒ"u for u, we get

k�0ƒ"uk2
sC"u � C

X
kXi �0ƒ

"uk2
s�1 C O.kuk2�1/

� C j
�X

ƒs�0
NXiXi u; �0ƒ

sC2"�2u
�

j C O.kuk2�1/;

and since

k�0ƒsC2"�2uk � k�0uksC2"�2 C k� 0
0ƒ

"uksC"�2 C O.kuk�1/;
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we obtain by induction

k�0uk2
sC2" � C k

X NXi Xiuk2
s C O.kuk2�1/:

Let � 2 G with �.�:�/ D 1 in a neighborhood of f.0; �/ j � � 1g. Let ƒt denote
the operator with symbol .1 C j� j2/ 1

2 and substitute �ƒsC"
t �u for u in (2), where

� 2 C 1
0 .U / with � D 1 on a neighborhood of supp.u/. Then, we obtain

k�ƒsC"
t �uk2

" � C
X

kXi �ƒsC"
t �uk2:

Since the symbol of Œ�; ƒsC"
t �� is zero on supp.u/, we have

k�ƒsC"
t �uk2

" 	 k�uk2
sC2" C O.kuk2�1/:

Next, we have

ŒXi ; �ƒsC"
t �� D ŒXi ; �ƒsC"

t �� C �ƒsC"
t ŒXi ; ��:

The symbol of the first operator on the right is zero on supp.u/. Let W � R
nC1 be

the interior of the set on which � D 1, where � is the symbol of � . Let Q�0 D 1 on
a neighborhood of RnC1 � W and Q�0 2 G0. Then, if 	.�ƒsC"

t ŒXi ; ��/ is the symbol
of �ƒsC"

t ŒXi ; ��, we have

	.�ƒsC"
t ŒXi ; ��/ D 	.�ƒsC"

t ŒXi ; ��/ Q�0:

Hence,

k�ƒsC"
t ŒXi ; ��/uk2

" D k�ƒsC"
t ŒXi ; ��/ Q�0uk2

" C O.kuk2�1/

� C k Q�0uk2
sC2" C O.kuk2�1/

� C k
X NXiXi uk2

s C O.kuk2�1/:

Then, we obtain

k�uk2
sC2" � C

�
�
�
X NXi Xiu

�
�
�

2

s
C O.kuk2�1/:

Therefore, since
kuksC2" � k�uksC2" C k�0uksC2";

we conclude that (3) holds, thus completing the proof.

Theorem 1. If X1; : : : ; Xl are special vector fields as above and if (3) holds on
U � R

nC1 for some " 2 R, then if f 2 H s.Rn/ there exists a u 2 H sC2".RnC1/

such that on U we have Eu D f .
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Proof. Let QE" denote the operator on C 1
0 .U / defined by

. QE"v; w/ D .v; Eƒ�2"w/;

for all distributions w on R
nC1. So that QE" D ƒ�2"E . Then, substituting �s � 2"

for s and v for u in (3), we get

kvk�s � C kEvk�s�2" D C k QE"k�s ;

for all v 2 C 1
0 .U /. Let S be the subspace of H �s.Rn/ given by

S D fg 2 C 1.Rn/ j 9v 2 C 1
0 .U / such that g D QE"vg:

Given f 2 H s.Rn/ let T W S ! C be the linear functional defined by T . QE"v/ D
.v; f /. Then, we have

jT . QE"v/j D j.v; f /j � kvk�skf ks � C k QE"vk�s :

Hence, T is bounded in the �s norm and hence can be extended to a bounded
functional on H �s.RnC1/ so that there exists w 2 H s.RnC1/ such that T . QE"v/ D
. QE"v; w/. Therefore, .v; Eƒ�2"w/ D .v; f / for all v 2 C 1

0 .U / so setting u D
ƒ�2"w, we have u 2 H sC2".RnC1/ and Eu D f on U . Concluding the proof of the
theorem.

The Energy Estimate

When the vector fields X1; : : : ; Xl are real, Hörmander in [H] proved that a
necessary and sufficient condition for the energy estimate (2), with " > 0, is that the
bracket condition hold for X1; : : : ; Xl . In the case of complex special vector fields
and " 2 R, the bracket condition is still sufficient (2), but it is not necessary. To see
this, consider the vector field X D @

@z on C � R
2. We have here kXuk � kuk1, for

u 2 C 1
0 .U /, even though the bracket condition does not hold.

Observe that the subelliptic energy estimate (2) holds for complex vector fields
whenever it holds for the vector fields X1; : : : ; Xl ; X�

1 ; : : : ; X�
l and if

lX

1

kX�
i vk2 � C

 
lX

1

kXi vk2 C kvk2

!

; (5)

for all v 2 C 1
0 .U /.

Theorem 2. If X1; : : : ; Xl ; NX1; : : : ; NXl are complex vector fields satisfying the
bracket condition at x0 and if ŒXi ; NXi � 2 F2.X1; : : : ; Xl/ in a neighborhood of
x0, then there exists U 3 x0 and " > 0 such that the subelliptic energy estimate (2)
holds.
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Proof. We have

ŒXi ; X�
i � D

X
ahk

ij ŒXh; Xk� C
X

bh
ij Xh C cij :

Then,

kX�
i vk2 D kXi vk2 C .ŒXi ; X�

i �v; v/

D kXi vk2 C
X

.ahk
ij ŒXh; Xk�v; v/ C

X
.bh

ij Xhv; v/ C .cij v; v/

and

j.ahk
ij ŒXh; Xk�v; v/j D j.ahk

ij .XhXkv; v/j C j.ahk
ij XkXhv; v/j

CO
�X

kXhvk2 C kvk2
�

:

Furthermore,

j.ahk
ij .XhXkv; v/j � l:c:kXkvk2 C s:c:k NXhvk2 C s:c:kvk2:

Hence, combining the above and summing, we obtain

X
k NXi vk2 � C

�X
kXi vk2 C kvk2

�
C s:c:

X
k NXivk2:

Thus, choosing the small constant l:c: small enough, we obtain (5) concluding the
proof.

Conjecture. Suppose that X1; : : : ; Xl are complex vector fields on R
nC1. Suppose

that X1; : : : ; Xl ; NX1; : : : ; NXl satisfy the bracket condition of type m, that is, m is the
least integer such that

CT0.R
nC1/ D Fm

0 .X1; : : : ; Xl ; NX1; : : : ; NXl/:

Further suppose that q is an integer such that

ŒXi ; NXi �0 2 Fq.X1; : : : ; Xl/;

for i D 1; : : : ; l . Then, there exist a neighborhood U of 0 and C > 0 such that

kuk2
3�q
mC1

� C

lX

1

kXi uk2

when q � 2 and for all u 2 C 1
0 .U /.

Note that when the X are real, then when can take q D 2, and the conjecture
gives " D 1

mC1
which was proved by Rothschild and Stein (see [RS]). For the
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deformations of the Lewy operators discussed at the beginning of this chapter, we
have q D k C 2. The conjecture holds for the special complex vector fields defined
above. Here we will prove it for the following vector fields.

In R
2, let

X1 D @

@x
C ixm�1 @

@t
and X2 D xk NX1: (6)

When m is odd then, as proved in [M], both operators X1 and E are subelliptic with
gains of 1

m
and 2

m
, respectively. However, when m is even, the estimate proved below

(i.e., with a loss of 2.k�1/

m
derivatives for E) is optimal as proved in the following

section.
Note that we have

CT0 D Fm.X1; X2; NX1; NX2/

and
ŒX1; NX1� 2 FkC2.X1; X2/

so that q D k C 2.
The subelliptic estimate proved in the lemma below is a special case of the result

proved by Rothschild and Stein in [RS] mentioned above.

Lemma. If U is a neighborhood of the origin, then there exists C such that

kuk2
1
m

� C.kX1uk2 C k NX1uk2/; (7)

for all u 2 C 1
0 .U /. Furthermore,

�
�
�
�xm�2 @u

@t

�
�
�
�

2

� 1
m

� C.kX1uk2 C k NX1uk2/; (8)

for all u 2 C 1
0 .U /.

Proof. Since NX1 D � @
@x

C ixm�1 @
@t

, we have

@

@x
D 1

2
.X1 � NX1/

and

xm�1 @

@t
D �i

2
.X1 C NX1/:

Thus, Fh.X1; NX1/ D Fh. @
@x

; xm�1 @
@t

/. Hence, for 0 � h � m � 1, Fh.X1; NX1/ is
spanned by @

@x
and xm�h�1 @

@t
. In particular, when h D 0, we have

kX1uk2 C kX�
1 uk2 �

�
�
�
�

@u

@x

�
�
�
�

2

C
�
�
�
�xm�1 @u

@t

�
�
�
�

2

: (9)
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Thus, when m D 1, the right sides of (7) and (8) equal kuk2
1, and the lemma is

proved. When m > 1, suppose that " � 0 and that

kuk2
" � C.kX1uk2 C k NX1uk2/;

for all u 2 C 1
0 .U /. Then,

kuk2
" D

�
@x

@x
ƒ"u; ƒ"u

�

D �
�

x
@

@x
ƒ"u; ƒ"u

�

�
�

xƒ"u;
@

@x
ƒ"u

�

� 2

ˇ
ˇ
ˇ
ˇ

�

xƒ"u;
@

@x
ƒ"u

�ˇ
ˇ
ˇ
ˇ�kxƒ2"uk2C

�
�
�
�

@u

@x

�
�
�
�

2

Cl:c:kŒƒ"; x�ƒ"uk2Cs:c:kuk2
" :

The pseudodifferential operator Œƒ"; x�ƒ" is of order 2" � 1 so that if " < 1 and if
the diameter of U is sufficiently small, we have

kŒƒ"; x�ƒ"uk2 � C kuk2
2"�1 � s:c: kuk2

" :

Hence, inductively, we obtain

kuk2
" � C

�
�xƒ2"u

�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2

� C

 
ˇ
ˇ.x2ƒ3"u; ƒ"u/

ˇ
ˇC �

�Œx2; ƒ"�ƒ2"u
�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2
!

� C
�
�x2ƒ3"u

�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2

C “error2”

:::
:::

� C

 
�
�xm�2ƒ.m�1/"u

�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2
!

C “errorm�2”

� C

 
�
�xm�1ƒm"u

�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2
!

C “errorm�1”;

where

“errorh” � C kxh�1ƒ.hC1/"�1uk2 � s:c:kxh�1ƒh"uk2;

when " < 1. Therefore, if " D 1
m

, we have

kuk2
1
m

� C

 
�
�xm�1ƒ1u

�
�2 C

�
�
�
�

@u

@x

�
�
�
�

2
!

� C

 

kxm�1uk2
1 C

�
�
�
�

@u

@x

�
�
�
�

2

C s:c:kuk2

!

:
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Then,

�
�xm�1u

�
�2

1
D �
�xm�1u

�
�2 C

�
�
�
�

@

@x
.xm�1u/

�
�
�
�

2

C
�
�
�
�

@

@t
.xm�1u/

�
�
�
�

2

� kuk2 C
�
�
�
�

@u

@x

�
�
�
�

2

C
�
�
�
�xm�1 @u

@t

�
�
�
�

2

:

which proves (7) since kuk2 � s:c:kuk2
1
m

when the diameter of U is small. Similarly,

we obtain

kxhƒ
hC1

m uk2 D kxhuk2
1 C O.kuk2/:

Then, since xh @
@t

2 Fm�h�1.X1; NX1/, we obtain (8) with the same argument as the
proof of (7) completing the proof of the lemma.

Note that if ˛ > 0 and if

k NX1uk2�˛ .
X

j D1;2

kXj uk2 C kuk2�˛

then

kuk2

�˛C 1
m

.
X

j D1;2

kXj uk2:

Proposition. If U has small enough diameter so that the above lemmas hold and if
s 2 R, then

kuk2

s� k�1
m

� C
X

j D1;2

kXj uk2
s ; (10)

for all u 2 C 1
0 .U /.

Proof. Since NX1 D @
@x

� ixm�1 @
@t

, we have

xm�1 @

@t
D i

2
. NX1 � X1/:

Hence,

�
� NX1u

�
�2

�˛
�
�
�
�
�xm�1 @u

@t

�
�
�
�

2

�˛

C kX1uk2
�˛ � j

�

ƒ�˛ xm @u

@t
; ƒ�˛ xm�2 @u

@t

�

j C kX1uk2
�˛

�
ˇ
ˇ
ˇ
ˇ

�

ƒ�˛ x NX1u; ƒ�˛ xm�2 @u

@t

�ˇ
ˇ
ˇ
ˇC kX1uk2

�˛

�
ˇ
ˇ
ˇ
ˇ

�

ƒ�˛C 1
m x NX1u; ƒ�˛� 1

m xm�2 @u

@t

�ˇ
ˇ
ˇ
ˇC �

�X1uk2�˛
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� l:c:kƒ�˛C 1
m x NX1uk2 C s:c:

�
�
�
�ƒ�˛� 1

m xm�2 @u

@t

�
�
�
�

2

C kX1uk2�˛:

From (8), we get
�
�
�
�xm�2 @u

@t

�
�
�
�

2

�˛� 1
m

� C.kX1uk2�˛ C k NX1uk2�˛/:

Therefore, using the Schwarz inequality and induction, we obtain

k NX1uk2�˛ � C.kx NX1uk2

�˛C 1
m

C kX1uk2�˛/

� C.kx2 NX1uk2

�˛C 2
m

C kX1uk2�˛/ � 
 
 


� C.kxk NX1uk2

�˛C k
m

C kX1uk2�˛/ � C.kX2uk2

�˛C k
m

C kX1uk2�˛/:

Then, setting ˛ D k
m

, we get

k NX1uk2

� k
m

� C.kX1uk2

� k
m

C kX2uk2/:

Hence,

kuk2

s� k�1
m

� C.kX1uk2

s� k
m

C kX2uk2
s / � C

X

j D1;2

kXj uk2
s :

This concludes the proof of the proposition.

Note that the proposition implies

kuk
s�2
�

k�1
m

	 � C kEuks; (11)

for all u 2 C 1
0 .U /.

Optimal Estimates

For X1; X2 defined by (6), when m is even, then the estimate (11) is optimal, as
proved below. However, if m is odd, then E is subelliptic with a gain of 2

m
derivatives

as is shown in [M].

Proposition. Given a small neighborhood, U of .0; 0/ and C; s; s0 2 R such that

kuk2
s0 � C

2X

j D1

kXj uk2
s ; (12)

for all u 2 C 1
0 .U /. When m is even, we have s � s0 � k�1

m
for all s.
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Proof. When m is even, we define for each 
 >> 0 the function u
 2 C m
0 .U / as

follows. Let ' 2 C 1
0 .U / such that ' D 1 in a neighborhood of the origin and then

set
u
 D 'e�
hm;

where hm is given by

hm.x; t/ D 1

m
xm C it �

�
1

m
xm C it

�2

(13)

Then, X1hm D 0, and for jxj small, we have

Re.hm/ � jxjm C t2:

Hence, when j˛j > 0 we have .D˛'/u
 D O.
�N / for every N , since D˛'

vanishes in a neighborhood of the origin. Let .x; t I �; �/ be coordinates of the
cotangent space and let � , as above, have support in a cone containing the � axis but
not the � axis. Then, in the support of � , we have 1Cj�j2 Cj� j2 � const:.1Ck�k2/.
Hence,

k�vks � kƒs
t �vk;

for all v 2 C 1
0 .U /, where ƒs

t is the operator with symbol .1 C j� j2/ s
2 . Using the

change of variables
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

x0 D 

1
m x

t 0 D 
t

� 0 D 
� 1
m �

� 0 D 
�1�

we obtain 
s � const:
s0� k�1
m for large 
 so that s � s0 � k�1

m
, which concludes the

proof.

Hypoellipticity

Definition. An operator E is hypoelliptic if for any distributions u and f, satisfying
Eu D f with f jU 2 C 1.U / then ujU 2 C 1.U /.

This definition implies the following estimate. If �; Q� 2 C 1
0 .U / with Q� D 1 on a

neighborhood of supp.�/, then for each s there exist s0 and C 2 R such that

k�uks � C kQ�Euks0 C O.kuk�1/; (14)

for all u 2 C 1.U /. Conversely, if for each x0 2 U there exist �; Q� 2 C 1
0 .U /

such that � D 1 in a neighborhood of x0 and Q� D 1 on a neighborhood of supp.�/,
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then (14) implies hypoellipticity whenever there exists an appropriate smoothing
operator as described below.

Next, we will outline the proof of hypoellipticity when the vector fields are given
by (6) and when m is even. To simplify matters, we will replace m by 2m and (6) by

X1 D @

@x
C ix2m�1 @

@t
and X2 D xk NX1: (15)

Here we outline the proof of the following:

Theorem 3. The operator E D � NX1X1 � NX2X2, where X1 and X2 are given by
(15), is hypoelliptic.

The main step is the a priori estimate

k�uks � C kQ�EuksC k�1
2m

C O.kuk�1/; (16)

The proof involves an additional microlocalization as follows. Let

GC D f� 2 G j �.�; �/ D 0; when j�j2 C j� j2 � 1 and � � 0

and let G� D G�GC. The corresponding sets of operators are then denoted by GC
and G�, respectively. If �� 2 G� then, since � D �j� j on supp.��/

.ix2.m�1/��
�

@w

@t

�

; ��w/ � .�ƒt x
2.m�1/��

�
@w

@t

�

; ��w/ � �kxm�1��wk2
1
2

I

hence, since

kX1�
�wk2 D ��Œ NX1; X1��

�w; ��w
	C k NX1�

�wk2

D
�

�2ix2.m�1/��
�

@w

@t

�

; ��w

�

C k NX1�
�wk2;

then

kxm�1��wk2
1
2

C k NX1�
�wk2 . kX1�

�wk2

and since

k��wk2
1

2m

. kX1�
�wk2 C k NX1�

�wk2

we have

k��wk2
1

2m

C k NX1�
�wk2 . kX1�

�wk2 (17)

and similarly

k�Cwk2
1

2m

C kX1�
Cwk2 . k NX1�

Cwk2; (18)
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for all w 2 C 1
0 .U /. Then, it follows that

k��wk2
1
m

. kEwk2 C k�0wk2I

hence, replacing w by ƒ
s� k�2

m
t �u, we get, inductively, the following estimate that

“gains” 1
m

derivatives

k���uk2

s� k�1
m

. k�� Q�Euk2

s� k�2
m

C kQ��0uk2

s� k�2
m

C O.kwk2�1/;

therefore

k���uk2

s� k�1
m

. kQ�Euk2
s C kQ��0uk2

s� k�2
m

C O.kuk2�1/; (19)

Note that in a neighborhood of .x; t/ with x ¤ 0, the operator E is elliptic; hence,
it suffices to treat the case x0 D .0; t0/. Let '; Q'; �; Q� 2 C 1

0 .R/ with '.x/ D 1

in a neighborhood of 0, �.t/ D 1 in a neighborhood of t0, let Q'.x/ D 1 in a
neighborhood of supp.'/ , Q�.t/ D 1 in a neighborhood of supp.�/, let �.x; t/ D
'.x/�.t/, and let Q�.x; t/ D Q'.x/ Q�.t/. Then,

X1.�u/.x; t/ D ' 0.x/�.t/u.x; t/ C ixm�1'.x/� 0.t/u.x; t/ C �.x; t/X1.u/.x; t/

and

X2.�u/.x; t/ D ' 0.x/�.t/u.x; t/ C ixkCm�1'.x/� 0.t/u.x; t/ C �.x; t/X2.u/.x; t/:

First, we observe that ' 0 D 0 in a neighborhood of the t-axis and Q' D 1 in a
neighborhood of supp.'/ then, since E is elliptic in supp.' 0/, we have

k' 0uks � C kE.'u/ks�2 � C.k'Euks�2 C k Q' 0uks�1 C kuk�1;

where Q' 0 is a function that vanishes in a neighborhood of the t-axis and Q' 0 D 1 in a
neighborhood of supp.� 0/. Then, applying the above to the last term recursively, we
obtain

k' 0uks . k Q'Euks�2 C kuk�1;

Similarly, since E is elliptic on �0u, we obtain

k��0uks . kQ�Euks�2 C kuk�1: (20)

Thus, to prove (16), it suffices to prove it in the case when u is replaced by
uC D �C.'u/ and � by � . The main difficulty is the localization in space; one
cannot have a term with the cutoff function � between u and X1, or NX1, unless
the terms also contains suitable powers of x. We will give brief description of the
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method used in [K], a variant is given in [BDKT]. Substituting �ƒs
t X1uC for �Cw

in (18), we have

kX1�ƒs
t X1uCk2 C k�ƒs

t X1uCk2
1

2m

. k NX1�ƒs
t X1uCk2 C k�ƒs

t X1uCk2 C kuk2�1;

so that

k� NX1X1uCk2
s C k�X2

1 uCk2
s C k�X1uCk2

sC 1
2m

. j.�X1
NX1X1uC; �X1uC/sj C k� 0X1uCk2

s C k Q�uCk2
s�1 C kuk2�1:

Then,

X1
NX1X1 D �X1E � X2

1 x2k NX1

and using integration by parts, as in [K] pp. 971–972, we obtain

k� NX1X1uCk2
s C k�X1uCk2

sC 1
2m

. k� 0EuCk2
s C kx2k�2� 0uCk2

s C kx2k�1� 0uCk2

sC 1
2m

C kuk2�1:

The estimate (16) is then obtained by following the arguments in [K] pp. 973–978.
Alternately, a somewhat different derivation of this estimate is given in [BDKT]
pp. 4–10.

To prove that (16) implies that E is hypoelliptic, we will show that if u is a
distribution solution of Eu D f in U , if � and Q� are in C 1

0 .U / with Q� D 1 in a

neighborhood of supp.�/, and if Q�f 2 H sC k�1
m , then �u 2 H s . To do this, we will

use smoothing operators Sı and SC
ı having the property that for any distribution

u, we have Sıu; SC
ı �Cu 2 C 1 and that if k�Sıuks � C , with C independent of

ı, then �u 2 H s . Similarly, if k�SC
ı �Cuks � C , with C independent of ı, then

��Cu 2 H s . Since E is elliptic on �0u, it follows, using a standard smoothing
operator Sı, that if Q�f 2 H s�2 and Q��u 2 H s , then �0u 2 H s . Similarly, since E

is subelliptic on ��u, then if Q�f 2 H s� 1
m and Q��Cu 2 H s , then �0u 2 H s . Let

� 2 C 1
0 .R/ such that �.0/ D 1 and let SC

ı be a pseudodifferential operator whose
symbol 	.SC

ı / satisfies

�C	.SC
ı /.�; �/ D �C.�; �/�.ı�/:

Then, the support of the symbols of ŒXi ; �CSı� lies in the support of some �0 2 G0.
Substituting SC

ı �Cu for u in (16), we obtain

k�SC
ı �Cuks . kQ�f ksC k�1

m
C kQ��0uksC k�1

m
C O.kuk�1/;
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and by the above, the left-hand side is bounded independently of ı. Therefore,
��Cu, ���u, and ��0u are in H s . It then follows that �u 2 H s which concludes
the proof of hypoellipticity.

Remark. M. Christ in [C] has proved the following. If X1; : : : ; Xl are
complex-valued vector fields on R

n and the corresponding operator E D P
X�

i Xi

is hypoelliptic with loss of derivatives, then the operator

E 0 D E � @2

@x2
nC1

on R
nC1 is not necessarily hypoelliptic. For more examples of this phenomenon, see

[BMT].
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On an Oscillatory Result for the Coefficients
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1 Introduction

Let .an/n�1 be a sequence of real numbers. Then we say that .an/n�1 is oscillatory
if there exist infinitely many n with an > 0 and infinitely many n with an < 0.

Recall that a general Dirichlet series is a series of the form
X

n�1

ane��ns;

where the an .n � 1/ are complex numbers, the exponent sequence .�n/n�1 is real
and strictly increasing to 1, and s is a complex variable.

In [3] the second author proved the following general result.
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Theorem. Let .an/n�1 be a sequence of real numbers, not all of the an being zero,
and suppose that the general Dirichlet series

F.s/ D
X

n�1

ane��ns

is convergent for � WD R.s/ > �0. Suppose further that F.s/ has an analytic
continuation to an open connected subset of C containing the real line and that
F.s/ has infinitely many real zeros. Then .an/n�1 is oscillatory.

In [3] this result was deduced by combining two classical results in number
theory, namely Landau’s well-known theorem on general Dirichlet series with
nonnegative coefficients (see, e.g., [1]) and secondly Laguerre’s rule concerning
the sign changes of coefficients of general Dirichlet series [2].

From the above theorem one can establish immediately the oscillatory behavior
of the coefficients of many important families of Dirichlet series occurring in
number theory and the theory of automorphic forms. For a variety of such examples,
see [4].

The purpose of this note is to point out another very simple proof of the above
theorem, based only on Landau’s result coupled with some completely elementary
arguments.

2 A Very Simple Proof

First note that F.�/ ¤ 0 for � 2 R; � � 0. Indeed, this is well known, but we
want to give the short argument for the reader’s convenience. Let n0 be the smallest
index n � 1 with an ¤ 0 and write

F.s/ D e��n0 s
X

n�n0

ane�.�n��n0 /s .� > �0/: (1)

Suppose that F.��/ D 0 for a sequence .��/��1 of real numbers with �� ! 1 and
�� > �0 for all �. On the one hand, we see from (1) that

X

n�n0

ane�.�n��n0 /�� D 0 .8� D 1; 2; : : : /: (2)

On the other hand, because of uniform convergence on f� 2 R W � > �0g and the
fact that �n > �n0 for n > n0, the left-hand side of (2) has the limit an0 ¤ 0 as
� ! 1, a contradiction.

Since F.s/ has an analytic continuation to an open connected set D (containing
R), the set of zeros of F.s/ in D is discrete in D, i.e., contains no accumulation
point of D. By hypothesis F.s/ has infinitely many real zeros; therefore we see that
there is a sequence .r�/��1 of negative real numbers with r� ! �1 and F.r�/ D 0

for all �.
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Now assume that .an/n�1 is not oscillatory. Then by Landau’s theorem, either
F.s/ must have a singularity at the real point of its abscissa of convergence or
must converge for all s 2 C. By hypothesis F.s/ is analytic on R; hence the first
alternative cannot hold.

Therefore, in particular F.s/ must converge at r� for all �, and we obtain

X

n�1

ane��nr� D 0 .8� D 1; 2; : : : /: (3)

Now choose N large enough so that aN ¤ 0 and either an � 0 for n � N C 1 or
an � 0 for n � N C 1. Then (3) implies that

X

n�N C1

ane.�n��N /jr� j D �
N �1X

nD1

ane.�n��N /jr� j � aN : (4)

On the one hand, the right-hand side of (4) has the limit �aN ¤ 0 as � ! 1.
On the other hand, either the left-hand side of (4) is identically zero (if an D 0 for
n � N C 1) or it grows without bound as � ! 1. This gives a contradiction and
concludes the proof of the theorem.

3 Two Remarks

1. It is also possible to give a Laguerre-style proof of the following: If the general
Dirichlet series F.s/ converges everywhere and has infinitely many real zeros,
then its coefficient sequence is oscillatory. (As before, we assume that the
coefficients are real but not all zero.) This follows largely from Rolle’s theorem,
as did Laguerre’s original rule. The key observation here is that if F.s/ has
infinitely many real zeros, then so does the first derivative of e�1sF .s/. By using
this idea repeatedly, we may annihilate as many terms as we please. So if we
suppose from the outset that the coefficient sequence is not oscillatory and if we
restrict our attention to real values of s, then we are faced eventually with the
absurdity that a sum of functions, all positive or all negative, has infinitely many
real zeros. Although this approach circumvents the use of the uniqueness theorem
for real analytic functions, the notion of analyticity is obviously required for the
application of Landau’s result.

2. Let .an/n�1 be a sequence of complex numbers, not all of the an being zero. In
[3] such a sequence is called oscillatory if, for each real number � 2 Œ0; �/;

either the sequence .R.e�i�an//n�1 is oscillatory or all of its terms are zero.
Then the theorem proved above remains valid in this broader setting. In fact,
as demonstrated in [3], the case of complex-valued coefficients follows without
difficulty from the real-valued case.
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Abstract We estimate the dimension of varieties of the form Hom.�; G/ where
� is a Fuchsian group and G is a simple real algebraic group, answering along the
way a question of I. Dolgachev.
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Let G be an almost simple real algebraic group, i.e., a non-abelian linear algebraic
group over R with no proper normal R-subgroups of positive dimension. Let � be a
finitely generated group. The set of representations Hom.�; G.R// coincides with
the set of real points of the representation variety X�;G WD Hom.�; G/. (We note
here, that by a variety, we mean an affine scheme of finite type over R; in particular,
we do not assume that it is irreducible or reduced.)

Let X
epi
�;G denote the Zariski closure in X�;G of the set of Zariski-dense homo-

morphisms � ! G.R/, i.e., homomorphisms with Zariski-dense image. Our goal
is to estimate the dimension of X

epi
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To formulate our results more precisely, we need some notation and definitions.
A cocompact oriented Fuchsian group � (and all Fuchsian groups in this chapter
will be assumed to be cocompact and oriented without further mention) always
admits a presentation of the following kind: Consider nonnegative integers m and g

and integers d1; : : : ; dm greater than or equal to 2, such that

2 � 2g �
mX

iD1

.1 � d �1
i / (1.1)

is negative. For some choice of m, g, and di , � has a presentation

� WD hx1; : : : ; xm; y1; : : : ; yg; z1; : : : ; zg j x
d1

1 ; : : : ; xdm
m ;

x1 � � � xmŒy1; z1� � � � Œyg; zg�i; (1.2)

and its Euler characteristic �.� / is given by (1.1). If g D 0 in the presentation
(1.2), we sometimes denote � by �d1;:::;dm . If, in addition, m D 3, � is called
a triangle group, and its isomorphism class does not depend on the order of the
subscripts. Note that the parameter g and the multiset fd1; : : : ; dmg are determined
by the isomorphism class of � . Every nontrivial element of � of finite order is
conjugate to a power of one of the xi , which is an element of order exactly di .

Definition 1.1. Let H be an almost simple algebraic group. We say that a Fuchsian
group � is H -dense if and only if there exists a homomorphism �W � ! H.R/ such
that �.� / is Zariski dense in H and � is injective on all finite cyclic subgroups of
� (equivalently, �.xi / has order di for all i ).

We can now state our main theorems.

Theorem 1.2. For every Fuchsian group � and every integer n � 2,

dim X
epi
�;SU.n/ D .1 � �.� // dim SU.n/ C O.1/;

where the implicit constant depend only on � .

In particular, this answers a question of Igor Dolgachev, proving the existence
in sufficiently high degree, of uncountably many absolutely irreducible, pairwise
nonconjugate, representations.

Theorem 1.3. For every Fuchsian group � and every split simple real algebraic
group G,

dim X
epi
�;G D .1 � �.� // dim G C O.rankG/;

where the implicit constant depend only on � .

Theorem 1.4. For every SO.3/-dense Fuchsian group � and every compact simple
real algebraic group G,

dim X
epi
�;G D .1 � �.� // dim G C O.rankG/;

where the implicit constant depend only on � .
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Let us mention here that all but finitely many Fuchsian groups are SO.3/-dense
(see Proposition 6.2 for the complete list of exceptions).

The proof of the theorems is based on deformation theory. It is a well-known
result of Weil [We] that the Zariski tangent space to X�;G at any point � 2 X�;G.R/

is equal to the space of 1-cocycles Z1.�; Ad ı�/, where Ad ı� is the representation
of � on the Lie algebra g of G determined by �. (For brevity, we often denote
Ad ı� by g, where the action of � is understood.) In general, the dimension of the
tangent space to X�;G at � can be strictly larger than the dimension of a component
of X�;G containing �, thanks to obstructions in H 2.�; Ad ı�/. Weil showed that if
the coadjoint representation .Ad ı�/� has no � -invariant vectors, then � is a non-
singular point of X�;G , i.e., it lies on a unique component of X�;G whose dimension
is given by dim Z1.�; Ad ı�/, the dimension of the Zariski tangent space to X�;G

at �. Computing this dimension is easy; the difficulty is to find � for which the
obstruction space vanishes. A basic technique is to find a subgroup H of G for
which the homomorphisms � ! H are better understood and to choose � to factor
through H . To this end, we make particular use of the homomorphisms from H D
An to G D SO.n � 1/ and of the principal homomorphisms from H D PGL.2/ and
H D SO.3/ to various groups G—see Sects. 3 and 4, respectively.

It is interesting to compare our results (Theorems 1.2–1.4) to the results of
Liebeck and Shalev [LS2]. They also estimate dim X�;G (and implicitly dim X

epi
�;G),

but their methods work only for genus g � 2, while the most difficult (and
interesting) case is g D 0. On the other hand, their methods work in arbitrary
characteristic, while our methods appear to break down when the characteristic of
the field divides the order of some generator xi . A striking difference is that they
deduce their information about X�;G from deep results on the finite quotients of
� , while we work directly with X

epi
�;G and can deduce that various families of finite

groups of Lie type can be realized as quotients of � (see [LLM]).
It may also be worth comparing our results to those of Benyash-Krivatz,

Chernousov, and Rapinchuk [BCR], who consider X�;SLn where � is a surface
group. They not only compute the dimension but prove a strong rationality result.
It would be interesting to know if similar rationality results hold for more general
semisimple groups G.

The material is organized as follows. In Sect. 2, we give a uniform proof of
the upper bound in Theorems 1.2–1.4. This requires estimating the dimensions of
suitable cohomology groups and boils down to finding lower bounds on dimensions
of centralizers.

To prove the lower bounds of these three theorems, we present in each case a
representation of � which is “good” in the sense that it is a non-singular point of
the representation variety to which it belongs. We then compute the dimension of
the tangent space at the good point. In Sect. 3, we explain how one can go from
a good representation of � into a smaller group H to a good representation into a
larger group G. The initial step of this kind of induction is via a representation of



378 M. Larsen and A. Lubotzky

� into an alternating group, SO.3/, or PGL2.R/. We discuss the alternating group
strategy in Sect. 3, where we prove Theorem 1.2 and begin the proof of Theorem 1.3.
In Sect. 4, we discuss the principal homomorphism strategy, treating the remaining
cases of Theorem 1.3, proving Theorem 1.4, and proving the existence of dense
homomorphisms from SO.3/-dense Fuchsian groups to exceptional compact Lie
groups (Proposition 5.3).

Proposition 6.2 in Sect. 5 shows that there are only six Fuchsian groups which are
not SO.3/-dense. We do not have a good strategy for finding dense homomorphisms
from these groups to compact simple Lie groups, since the methods of Sect. 3 are
not effective. Y. William Yu found explicit surjective homomorphisms, described in
the Appendix, from these groups to small alternating groups, which may serve as
base cases for inductively constructing dense homomorphisms � ! G.R/ for these
groups. We are grateful to him for his help.

All Fuchsian groups in this chapter are assumed to be cocompact and oriented.
A variety is an affine scheme of finite type over R. Its dimension is understood to
mean its Krull dimension. Points are R-points, and non-singular points should be
understood scheme-theoretically; i.e., a point x is non-singular if and only if it lies
in only one irreducible component X , and the dimension of X equals the dimension
of the Zariski tangent space at x. An algebraic group will mean a linear algebraic
group over R. Unless otherwise stated, all topological notions will be understood
in the sense of the Zariski topology. In particular, a closed subgroup is taken to be
Zariski-closed. Note, however, that an algebraic group G is compact if G.R/ is so
in the real topology.

We would like to thank the referee for a quick and thorough reading and a number
of very helpful comments.

This work is dedicated to the memory of Leon Ehrenpreis who was a leading
figure in Fuchsian groups and was an inspiration in several other directions—not
only mathematically.

2 Upper Bounds

We recall some results from [We]. For every finitely generated group � , the Zariski
tangent space to � 2 X�;G.R/ is equal to Z1.�; Ad ı �/ where Ad W G ! Aut.g/

is the adjoint representation of G on its Lie algebra. We will often write this
more briefly as Z1.�; g/. Note that dim Z1.�; g/ is always at least as great as the
dimension of any component of X�;G in which � lies. Moreover, if � is a Fuchsian
group and the coadjoint representation g� D .Ad ı �/� has no � -invariant vectors,
then � is a non-singular point of X�;G .

If V denotes any finite-dimensional real vector space V on which � acts, then
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dim Z1.�; V / WD .2g � 1/ dim V C dim.V �/� C
mX

j D1

.dim V � dim V hxj i/:

D .1 � �.� // dim V C dim.V �/� C
mX

j D1

�dim V

dj

� dim V hxj i�:

(2.1)

The following proposition essentially gives the upper bounds in Theorems 1.2–
1.4, since for every irreducible component C of X

epi
�;G , there exists a representation

in C.R/; �W � ! G.R/ with Zariski-dense image; dim Z1.�; g/ is at least as great
as the dimension of any irreducible component of X�;G to which � belongs and
therefore at least as great as dim C .

Proposition 2.1. For every Fuchsian group � , every reductive R-algebraic group
G with a Lie algebra g and every representation � W � ! G.R/ with Zariski-dense
image, we have

dim Z1.�; g/ � .1 � �.� // dim G C .2g C m C rank G/ C 3

2
m rank G;

where g and m are as in (1.2).

Proof. By Weil’s formula (2.1),

dim Z1.�; g/ D .1��.� // dim GCdim.g�/� C
mX

j D1

�
dim G

dj

� dim ghxj i
�

: (2.2)

Note that if g is the real Lie algebra of G, then g˝RC is the complex Lie algebra of
G. By abuse of notation, we will also denote it by g. Of course, they have the same
dimensions over R and C, respectively.

We have the following dimension estimates.

Lemma 2.2. Under the above assumptions,

dim.g�/� � 2g C m C rank G:

Let us say that an automorphism ˛ of G of order k is a pure outer automorphism
of G if ˛l is not inner for any l satisfying 1 � l < k.

For inner or pure automorphisms, we have

Lemma 2.3. Let ˛ be either an inner or a pure outer automorphism of G of order k.
Then,

dim FixG.˛/ � dim G

k
� rank G: (2.3)
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Lemma 2.4. If G is a complex reductive group and ˛ any automorphism of G

of order k, then

dim FixG.˛/ � dim G

k
� 3

2
rank G;

where FixG.˛/ denotes the subgroup of the fixed points of ˛.

Plugging the results of Lemmas 2.2 and 2.4 into (2.1), and noting that dim ghxj i
is equal to dim FixG.xj /, we have

dim Z1.�; g/ � .1 � �.� // dim G C .2g C m C rank G/ C 3

2
m rank G:

Proof (Proof of Lemma 2.2). The dimension of the � -invariants on g�, dim.g�/� ,
is equal to the dimension of the � -coinvariants on g. As � is Zariski-dense in G,
this is equal to the dimension of the coinvariants of G acting on g via Ad. Letting G0

act first, we deduce that the space of G-coinvariants is a quotient space of g=Œg; g�.
More precisely, it is equal to the coinvariants of g=Œg; g� acted upon by the finite
group G=G0. As g=Œg; g� is a characteristic zero vector space, the dimension of the
coinvariants is the same as that of the G=G0-invariant subspace. Now, the space
of linear maps Hom.g=Œg; g�;R/ corresponds to the homomorphisms from G0 to
R, and the G=G0-invariants are those which can be extended to G. So, altogether
dim.g�/� is bounded by dim Hom.G;R/. Now

dim Hom.G;R/ D dim Gab;

where Gab D G=ŒG; G�, and

Gab D U � T � A;

where U is a unipotent group, T a torus, and A a finite group. So dim Gab D
dim U C dim T . As � is Zariski-dense in G, its image is Zariski-dense in U , and
hence,

dim U � d.� / � 2g C m;

where d.� / denotes the number of generators of � . Now, T , being a quotient of G,
satisfies dim T � rank G. Altogether,

dim.g�/� � 2g C m C rank G;

as claimed. This completes the proof of Lemma 2.2.

Proof (Proof of Lemma 2.3.). Without loss of generality, we can assume G is
connected. Let g be the Lie algebra of G. Then ˛ acts also on g, and dim FixG.˛/ D
dim g˛, so we can work at the level of Lie algebras. As ˛ respects the decomposition
of g into Œg; g� ˚ z where z is the Lie algebra of the central torus, and rankg D
rankŒg; g� C dim z, we can restrict ˛ to Œg; g� and assume g is semisimple.
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Moreover, we can write g as a direct sum g D Ls
iD1 gi where each gi is itself a

direct sum of isomorphic simple Lie algebras such that for each i , ˛ acts transitively
on the simple components. As both sides of the inequality are additive on a direct
sum of ˛-invariant subalgebras, we can assume g is a sum of t isomorphic simple
algebras, t jk, and ˛ acts transitively on the summands. If ˛ is inner, then t D 1. If ˛

is pure outer, it is equivalent to an action of the form

˛.x1; : : : ; xt / D .ˇ.xt /; x1; : : : ; xt�1/;

where ˇ is a pure outer automorphism of a simple factor h, of order k=t . Thus,

dim g˛ D dimf.x; x; : : : ; x/ j x 2 hˇg D dim hˇ:

Thus, for the outer case, it suffices to prove the result when t D 1. If k D 1, the
result is trivial. The possibilities for .g; h/ are well-known (see, e.g., [He, Chap.
X, Table 1]). For k D 2, they are .sl.2n/; sp.2n//, .sl.2n C 1/; so.2n C 1//,
.so.2n/; so.2n�1//, and .e6; f4/, and for k D 3, there is the unique case .so.8/; g2/.

Now, assume ˛ is inner. Here, (2.3) follows from work of Lawther [Lw]. We
thank the referee for suggesting this reference. For type A, a stronger estimate than
(2.3) holds, namely,

dim FixG.˛/ � dim G

k
� 1:

This will be needed for the upper bound in Theorem 1.2 and is easy to see. Namely,
for x 2 G D SLn of order k, let aj denote the multiplicity of e2� ik=j as an
eigenvalue of x. By the Cauchy–Schwartz inequality,

dim ZG.x/ C 1 D
k�1X

j D0

a2
j �

�Pk�1
j D0 aj

�2

k
D n2=k >

dim G

k
: (2.4)

Proof (Proof of Lemma 2.4.). To prove the statement, we still need to handle the
case where ˛ is neither an inner nor a pure outer automorphism. This means that for
some l dividing k, with 1 < l < k, ˛l is inner while ˛ is not. Let H D ZG.˛l / D
FixG.˛l /. As ˛l is an inner automorphism of order k=l , Lemma 2.3 implies that

dim H � dim G

k=l
� rank G:

Now ˛ acts on the reductive group H as a pure outer automorphism of order at
most l . Thus, again by Lemma 2.3,

dim FixG.˛/ D dim FixH .˛/

� dim H

l
� rank H
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� 1

l

�
dim G

k=l
� rank G

�
� rank G

� dim G

k
�

�
1 C 1

l

�
rank G:

As l > 1, we get

dim FixG.˛/ � dim G

k
� 3

2
rank G;

completing the proof of Lemma 2.4.

In summary, we have proved the upper bounds for Theorems 1.2–1.4. For
Theorems 1.3 and 1.4, the bounds follow immediately from Proposition 2.1, while
the bound for Theorem 1.2 requires the better estimate proved in (2.4).

3 A Density Criterion

The results in this section are valid for general finitely generated groups � . The
main result is Theorem 3.4, which gives a criterion for an irreducible component C

of X�;G to be contained in X
epi
�;G , i.e., to have the property that there exists a Zariski-

dense subset of C.R/ consisting of representations � such that �.� / is Zariski-dense
in G. We begin with the technical results needed in the proof of Theorem 3.4.

Proposition 3.1. Let G be a linear algebraic group over R and H � G a closed
subgroup such that G.R/=H.R/ is compact. Let C denote an irreducible component
of X�;H . The condition on � 2 X�;G.R/ that � is not contained in any G.R/-
conjugate of C.R/ is open in the real topology.

Proof. The conjugation map H � X�;H ! X�;H restricts to a map

H ı � C ! X�;H :

As H ı and C are irreducible, the image of this morphism lies in an irreducible
component of X�;H , which must therefore be C .

The proposition can be restated as follows: the condition on � that � is contained
in some G.R/-conjugate of C.R/ is closed in the real topology. To prove this,
consider a sequence �i 2 X�;G.R/ converging to �. Suppose that for each �i

there exists gi 2 G.R/ such that �i 2 gi C.R/g�1
i . Let Ngi denote the image

of gi in G.R/=H ı.R/. As this set is compact, there exists a subsequence which
converges to some Ng 2 G.R/=H ı.R/. Passing to this subsequence, we may assume
that Ng1; Ng2; : : : converges to Ng. If g 2 G.R/ represents the coset Ng, we claim that
� 2 gC.R/g�1. The claim implies the proposition.
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By the implicit function theorem, there exists a continuous section
sW G.R/=H ı.R/ ! G.R/ in a neighborhood of Ng, and we may normalize so
that s. Ng/ D g. For i sufficiently large, s. Ngi / is defined, and gi D s. Ngi /hi for
some hi 2 H ı.R/. As conjugation by elements of H ı.R/ preserves C , we may
assume without loss of generality that gi D s. Ngi / for all i sufficiently large.
As limi!1 gi D g and C.R/ is closed in the real topology in X�;G.R/,

g�1�g D lim
i!1 g�1

i �i gi 2 C.R/:

The following proposition is surely well-known, but for lack of a precise
reference, we give a proof.

Proposition 3.2. Let G be an almost simple real algebraic group. There exists a
finite set fH1; : : : ; Hkg of proper closed subgroups of G such that every proper
closed subgroup is contained in some group of the form gHi g

�1, where g 2 G.R/.

Proof. The theorem is proved for G.R/ compact in [La, 1.3], so we may assume
henceforth that G is not compact.

First, we prove that every proper closed subgroup K is contained in a maximal
closed subgroup of positive dimension. If dim K > 0, then for every infinite
ascending chain K1 D K ¨ K2 ¨ � � � � G of closed subgroups of dimension
dim K , there exists a proper subgroup L of G which contains every Ki and for
which dim L > dim K . Indeed, we can take L WD NG.Kı/, which contains
all Ki , since Kı

i D Kı. It cannot equal G since G is almost simple, and if
dim K D dim L, then Lı D Kı, and there are only finitely many groups between K

and L. Thus, every proper subgroup of G of positive dimension is either contained
in a maximal subgroup of G of the same dimension or in a proper subgroup of
higher dimension. It follows that each such proper subgroup is contained in a
maximal subgroup. For finite subgroups K , we can embed K in a maximal compact
subgroup of G, which lies in a conjugacy class of proper closed subgroups of
positive dimension since G itself is not compact, and maximal compact subgroups
are maximal subgroups.

We claim that every maximal closed subgroup H of positive dimension is either
parabolic or the normalizer of a connected semisimple subgroup or the normalizer of
a maximal torus. Indeed, H is contained in the normalizer of its unipotent radical U .
If U is nontrivial, this normalizer is contained in a parabolic P [Hu, 30.3, Cor. A],
so H D P . If U is trivial, H is reductive and is contained in the normalizer of the
derived group of its identity component H ı. If this is nontrivial, H is the normalizer
of a semisimple subgroup. If not, H ı is a torus T . Then H is contained in the
normalizer of the derived group of ZG.T /ı, which is again the normalizer of a
semisimple subgroup unless ZG.T /ı is a torus. In this case, it is a maximal torus,
and H is the normalizer of this torus. Since a real semisimple group has finitely
many conjugacy classes of parabolics and maximal tori, we need only consider the
normalizers of semisimple subgroups. There are finitely many conjugacy classes of
these by a theorem of Richardson [Ri].
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The proof of Proposition 3.2 gives some additional information, which we
employ in the following lemma:

Lemma 3.3. If H is a maximal proper subgroup of a split almost simple algebraic
group G over R, then either H is parabolic or dim H � 9

10
dim G.

Proof. For exceptional groups, all proper subgroups have dimension � 9
10

dim G.
Indeed, if G is an exceptional group over a finite fields Fq and H is a closed
subgroup over Fq , then the action of G.Fqn/ on the set of H.Fqn/-cosets gives
a nontrivial complex representation of degree G.Fqn/=H.Fqn/. As jH.Fqn/j D
O.qn dim H /, the Landazuri–Seitz estimates for the minimal degree of a nontrivial
complex representation of G.Fq/ [LZ] now imply dim H � 9

10
dim G. The same

result follows in characteristic zero by a specialization argument.
We therefore consider only the case that G is of type A, B, C, or D. Also, we

can ignore isogenies and assume that G is either SLn, a split orthogonal group, or
a split symplectic group. Let V be the natural representation of G. If dim V D n,
then dim G is n2 � 1, n.n � 1/=2, or n.n C 1/=2, depending on whether G is linear,
orthogonal, or symplectic.

It suffices to consider the case that H is the normalizer of a semisimple subgroup
K � G. The action of H must preserve the decomposition of V into K-irreducible
factors. Therefore, H lies in a parabolic subgroup unless all factors have equal
dimension. If all factors have equal dimension and there are at least three factors,
then dim H � n2=3, so the theorem holds in such cases. If H ı respects a
decomposition V D W1 ˚ W2 where dim Wi D n=2, then either G is linear and
dim H < .1=2/ dim GC1, G is orthogonal and dim H � .n=2/2, or G is symplectic
and dim H � .n=2/.n=2C1/. If V ˝C is reducible, it decomposes into two factors
of degree n=2, and the same estimates apply.

We have therefore reduced to the case that K is semisimple and V ˝ C is
irreducible, so we may and do extend scalars to C for the remainder of the proof.
If K is not almost simple, then any element of G which normalizes K must respect
a nontrivial tensor decomposition, and therefore H respects such a decomposition.
This implies

dim H � m2 C .n=m/2 � 1 � 3 C n2=4:

We may therefore assume that K is almost simple and V is associated to a dominant
weight of K . It is easy to deduce from the Weyl dimension formula that every
nontrivial irreducible representation of a simple Lie algebra L of rank r , other than
the natural representation and its dual, has dimension at least .r2 C r/=2; we need
only consider the case that V is a natural representation. As H ¨ G, we need
only consider the inclusions SO.n/ � SLn and Sp.n/ � SLn. In all cases, we have
dim H � 2

3
dim G.

We recall that X
epi
�;G is the Zariski closure in X�;G of the set of Zariski-dense

homomorphisms � ! G.R/.



Representation Varieties of Fuchsian Groups 385

Theorem 3.4. Let � be a finitely generated group, G an almost simple real
algebraic group, and �0 2 Hom.�; G.R// a non-singular R-point of X�;G . For
every closed subgroup H of G such that �0.� / � H.R/, let tH denote the
dimension of the Zariski tangent space of X�;H at �0 (i.e., tH D dim Z1.�; h/,
where h is the Lie algebra of H.R/ with the adjoint action of � .) We assume

(1) If H is any maximal closed subgroup such that �0.� / � H.R/, then

tG � dim G > tH � dim H:

(2) If H is any maximal closed subgroup such that G.R/=H.R/ is not com-
pact, then

tG � dim G > dim X�;H � dim H:

Then, X
epi
�;G contains the irreducible component of X�;G to which �0 belongs.

Proof. Let C denote the irreducible component of X�;G containing �0, which is
unique since �0 is a non-singular point of X�;G . Again, since �0 is a non-singular
point, there is an open neighborhood U of �0 in C.R/ which is diffeomorphic to R

n,
where n WD dim C D tG .

Let fH1; : : : ; Hkg represent the conjugacy classes of maximal proper closed
subgroups of G given by Lemma 3.2. Let Ci;j denote the irreducible components of
X�;Hi . For each component, we consider the conjugation morphism �i;j W G�Ci;j !
X�;G . We claim that the fibers of this morphism have dimension at least dim Hi .
Indeed, the action of H ı

i on G � Ci;j given by

h:.g; �0/ D .gh�1; h�0h
�1/

is free, and �i;j is constant on the orbits of the action. Thus, the closure of the
image of �i;j has dimension at most dim Ci;j C dim G � dim Hi . Condition (2)
guarantees that if G.R/=Hi.R/ is not compact, then a nonempty Zariski-open subset
of C lies outside the image of �i;j for all j . Condition (1) guarantees the same
thing if G.R/=Hi.R/ is compact, and some conjugate of �0 lies in Ci;j .R/. Note
that dim Ci;j � tHi if �0 2 Ci;j .R/.

Finally, we consider components Ci;j for which G.R/=Hi.R/ is compact, but
no conjugate of �0 lies in Ci;j .R/. By Proposition 3.1, the G.R/-orbit of each such
Ci;j .R/ meets C.R/ in a set which is closed in the real topology. Since �0 belongs to
none of these sets, there is a neighborhood U of �0 consisting of homomorphisms
� such that no conjugate of � lies in any such Ci;j . The intersection of U with
any nonempty Zariski-open subset of C.R/ is therefore Zariski-dense in C , and for
every � in this set, �.� / is Zariski-dense in G.R/. It follows that X

epi
�;G contains C .

Note that if G is compact, condition (2) is vacuous.

Corollary 3.5. If G is a compact almost simple algebraic group over R, H is a
connected maximal proper closed subgroup of G with finite center, and �0W � !
H.R/ has dense image, then tG � dim G > tH � dim H implies X

epi
�;G contains the

irreducible component of X�;G to which �0 belongs.
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Proof. To apply the theorem, we need only prove that �0 is a non-singular point
of X�;G . As H is maximal, the product ZG.H/H must equal H , which means
ZG.H/ D Z.H/ is finite. Thus, g� D gH D f0g, and since g is a self-dual G.R/-
representation, this implies .g�/� D f0g, which implies that �0 is a non-singular
point of X�;G .

4 The Alternating Group Method

In this section, � is any (cocompact, oriented) Fuchsian group. We first consider
G D SO.n/.

Proposition 4.1. For � a Fuchsian group and G D SO.n/, we have

dim X
epi
�;SO.n/ D .1 � �.� // dim SO.n/ C O.n/

where the implicit constant depends only on � .

Proof. Proposition 2.1 gives the upper bound, so it suffices to prove

dim X
epi
�;SO.n/ � .1 � �.� // dim SO.n/ C O.n/:

Let d1; : : : ; dm be defined as in (1.2). For large n, denote Ci , for i D 1; : : : ; m, the
conjugacy class in the alternating group AnC1 which consists of even permutations
of f1; 2; : : : ; n C 1g with only di -cycles and 1-cycles and with as many di -cycles
as possible. Thus, any element of Ci has at most 2di � 1 fixed points. Theorem 1.9
of [LS1] ensures that for large enough n, there exist epimorphisms �0 from � onto
AnC1, sending xi to an element of Ci for i D 1; : : : ; m and xi as in (1.2).

Now, AnC1 � SO.n/ and moreover the action of AnC1 on the Lie algebra so.n/

of SO.n/ is the restriction to AnC1 of the irreducible SnC1 representation associated
to the partition .n � 1/ C 1 C 1 [FH, Ex. 4.6]. If n � 5, this partition is not self-
conjugate, so the restriction to AnC1 is irreducible. By (2.2),

dim Z1.�; Ad ı æ0/ D .1 � �.� // dim so.n/

C
mX

iD1

�
dim so.n/

di

� dim so.n/hxi i
�

:

Now, dim so.n/hxi i is equal to the multiplicity of the eigenvalue 1 of x D �0.xi /

acting via Ad on so.n/. Note that the multiplicity of every di th root of unity as an
eigenvalue for our element x D �0.xi /, when acting on the natural n-dimensional
representation, is of the form n

di
C O.1/, where the implied constant depends only

on di . Thus, using the same arguments as in the proof of Lemma 2.3 (see (2.4)), we
can deduce that
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ˇ̌
ˇ̌dim so.n/

di

� dim so.n/hxi i
ˇ̌
ˇ̌ D O.n/;

where again the constant depends only on di .
As so.n/� has no AnC1-invariants, X�;SO.n/ is non-singular at �0. By Theorem

3.4, as long n is large enough that

tSO.n/ D dim Z1.�; Ad ı æ0/

> dim SO.n/ � dim AnC1 C tAnC1

D dim SO.n/;

X
epi
�;SO.n/ contains the component of X�;SO.n/ to which �0 belongs, and this has

dimension tSO.n/ D .1 � �.� // dim SO.n/ C O.n/.

We remark that in this case, there is a more elementary alternative argument.
The condition on X�;SO.n/ of irreducibility on so.n/ is open. It is impossible that all
representations in a neighborhood of �0 have finite image and those with infinite
image should have Zariski-dense image (since the Lie algebra of the connected
component of the Zariski closure is �.� /-invariant).

We can now prove Theorem 1.2.

Proof. The upper bound has already been proved in Sect. 1. It therefore suffices to
prove

dim X
epi
�;SU.n/ � .1 � �.� // dim SU.n/ C O.1/:

Throughout the argument, we may always assume that n is sufficiently large,
We begin by defining �0 as in the proof of Proposition 4.1. Let C denote the

irreducible component of X�;SO.n/ to which �0 belongs. We may choose �0
0 2 C.R/

such that �0
0.� / is Zariski-dense in SO.n/. As there are finitely many conjugacy

classes of order di in SO.n/, the conjugacy class of �.xi / does not vary as � ranges
over the irreducible variety C , so �0.xi / is conjugate to �0

0.xi / in SO.n/.
We have no further use for �0 and now redefine �0 to be the composition of �0

0

with the inclusion SO.n/ ,! SU.n/. The eigenvalues of �0.xi / are di th roots of
unity, and each appears with multiplicity n=di C O.1/, where the implicit constant
may depend on di but does not depend on n. The representation SO.n/ ! SU.n/ is
irreducible, so .su.n//SO.n/ D f0g. As su.n/ is a self-dual representation of SU.n/,
it is a self-dual representation of SO.n/, so as �0.� / is dense in SO.n/,

.su.n/�/� D .su.n/�/SO.n/ D f0g:

It follows that X�;SU.n/ is non-singular at �0. Since each eigenvalue of �0.xi / has
multiplicity n=di C O.1/,

tSU.n/ D dim Z1.�; Ad ı �0/ D .1 � �.� // dim SU.n/ C O.1/:
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We claim that SO.n/ is contained in a unique maximal closed subgroup of SU.n/.
Indeed, if G is any intermediate group, the Lie algebra g of G must be an
SO.n/-subrepresentation of su.n/ which contains so.n/. Since su.n/=so.n/ is an
irreducible SO.n/-representation (namely, the symmetric square of the natural
representation of SO.n//, it follows that g D su.n/ or g D so.n/. In the former
case, G D SU.n/. In the latter case, G is contained in NG.SO.n//. This is
therefore the unique maximal proper closed subgroup of SU.n/ containing SO.n/,
or (equivalently) �0.� /. The theorem now follows from Theorem 3.4 together with
the upper bound estimate Proposition 2.1 applied to NG.SO.n//.

We can also deduce Theorem 1.3 for G of types A and D from Proposition 4.1.

Proof. If G1 ! G2 is an isogeny, the morphism X�;G1 ! X�;G2 is quasi-finite,
and so

dim X�;G2 � dim X�;G1 :

Likewise, the composition of a homomorphism with dense image with an isogeny
still has dense image, so

dim X
epi
�;G2

� dim X
epi
�;G1

:

In particular, to prove our dimension estimate for an adjoint group, it suffices to
prove it for any covering group. We begin by proving it for G D SLn, which also
gives it for PGLn.

Let �0 now denote a homomorphism � ! SO.n/ � SLn.R/ with dense image
and such that every eigenvalue of �0.xi / has multiplicity n=di C O.1/. Such a
homomorphism exists by the proof of Proposition 4.1. It is well-known that SO.n/

is a maximal closed subgroup of SLn, and gSO.n/ D f0g: Thus �0 is a non-singular
point of X�;G.R/. Let C denote the unique irreducible component to which it
belongs. In applying Theorem 3.4, we do not need to consider parabolic subgroups
at all since �0.� / is not contained in any and G.R/=H.R/ is compact when H is
parabolic. All other maximal subgroups are reductive, and we may therefore apply
Proposition 2.1 to get an upper bound

dim X�;H � .1 � �.� // dim H C 2g C m C .3m=2 C 1/n

By Lemma 3.3, dim H < 9
10

.n2 � 1/, so for n sufficiently large,

dim X�;H � dim H < dim X�;G � dim G:

Thus, condition (2) of Theorem 3.4 holds, and so the component C of X�;G to which
�0 belongs lies in X

epi
�;G . It is therefore a non-singular point of C , and it follows that

dim X
epi
�;G � dim C D dim Z1.�; g/ D .1 � �.� // dim SLn C O.n/:
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The argument for type D is very similar. Here we work with G D SO.n; n/,
which is a double cover of the split adjoint group of type Dn over R. Our starting
point is a homomorphism �0W � ! SO.n/ � SO.n/ with dense image and such that
the eigenvalues of

�.xi / 2 SO.n/ � SO.n/ � SO.n; n/ � GL2n.C/

have multiplicity .2n/=di C O.1/. Such a �0 is given by a pair .�; 	/ of dense
homomorphisms � ! SO.n/ satisfying a balanced eigenvalue multiplicity condi-
tion and the additional condition that � and 	 do not lie in the same orbit under the
action of Aut.SO.n// on X�;SO.n/. This additional condition causes no harm, since

dim Aut SO.n/ D dim SO.n/, while the components of dim X
epi
�;SO.n/ constructed

above (which satisfy the balanced eigenvalue condition) have dimension greater
than dim SO.n/ for large n. Given a pair .�; 	/ as above, the closure H of �0.� /

is a subgroup of SO.n/ � SO.n/ which maps onto each factor but which does not
lie in the graph of an isomorphism between the two factors. By Goursat’s lemma,
H D SO.n/ � SO.n/. From here, one passes from H to G D SO.n; n/ just as in
the case of groups of type A.

5 Principal Homomorphisms

It is a well-known theorem of de Siebenthal [dS] and Dynkin [D1] that for every
(adjoint) simple algebraic group G over C, there exists a conjugacy class of
principal homomorphisms SL2 ! G such that the image of any nontrivial unipotent
element of SL2.C/ is a regular unipotent element of G.C/. The restriction of the
adjoint representation of G to SL2 via the principal homomorphism is a direct sum
of V2ei , where e1; : : : ; er is the sequence of exponents of G and Vm denotes the mth
symmetric power of the 2-dimensional irreducible representation of SL2, which is
of dimension m C 1 [Ko]. In particular,

dim G D
rX

iD1

.2ei C 1/;

where r denotes rankG. As each V2ei factors through PGL2, the same is true for the
homomorphism SL2 ! Ad.G/. More generally, if G is defined and split over any
field K of characteristic zero, the principal homomorphism can be defined over K .

The following proposition is due to Dynkin:

Proposition 5.1. Let G be an adjoint simple algebraic group over C of type A1, A2,
Bn (n � 4), Cn (n � 2), E7, E8, F4, or G2. Let H denote the image of a principal
homomorphism of G. Let K be a closed subgroup of G whose image in the adjoint
representation of G is conjugate to that of H . Then K is a maximal subgroup of G.
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Proof. As K is conjugate to H in GL.g/, in particular, the number of irreducible
factors of g restricted to H and to K is the same. By [Ko], this already implies that
H and K are conjugate in G. The fact that H is maximal is due to Dynkin. The
classical and exceptional cases are treated in [D3] and [D2], respectively.

As SL2 is simply connected, the principal homomorphism SL2 ! G lifts to a
homomorphism SL2 ! H if H is a split semisimple group which is simple modulo
its center. Again, this is true for split groups over any field of characteristic zero. We
also call such homomorphisms principal.

If G is an adjoint simple group over R with G.R/ compact and �W PGL2;C ! GC

is a principal homomorphism over C, � maps the maximal compact subgroup
SO.3/ � PGL2.C/ into a maximal compact subgroup of G.C/. Thus, � can be
chosen to map SO.3/ to G.R/, and such a homomorphism will again be called
principal. Likewise, if H is almost simple and H.R/ is compact, a principal
homomorphism �W SL2;C ! HC can be chosen so that �.SU.2// � H.R/.

Proposition 5.2. Let G be an adjoint compact simple real algebraic group of type
A1, A2, Bn (n � 4), Cn (n � 2), E7, E8, F4, or G2, and let � be an SO.3/-dense
Fuchsian group. Let �0W � ! G denote the composition of the map � ! SO.3/

and the principal homomorphism �W SO.3/ ! G. If

� �.� / dim G C
mX

j D1

dim G

dj

�
mX

j D1

rX

iD1

.1 C 2bei=dj c/

> ��.� / dim SO.3/ C
mX

j D1

dim SO.3/

dj

� m;

then

dim X
epi
�;G � .1 � �.� // dim G C

mX

j D1

dim G

dj

�
mX

j D1

rX

iD1

.1 C 2bei=dj c/: (5.1)

Proof. Let xj denote the j th generator of finite order in the presentation (1.2).
If �.xj / lifts to an element of SU.2/ whose eigenvalues are 
˙1, where 
 is a
primitive 2dj -root of unity, the eigenvalues of the image of xj in Aut.g/ are


�2e1 ; 
2�2e1 ; 
4�2e1 ; : : : ; 1; : : : ; 
2e1 ; 
�2e2 ; : : : ; 
2e2 ; : : : ; 
�2er ; : : : ; 
2er :

The multiplicity of 1 as eigenvalue is therefore
Pr

iD1.1 C 2bei=dj c/. By (2.2), the
left-hand side of (5.1) is dim Z1.�; g/. By Corollary 3.5, we need only check that

tG � dim G D ��.� / dim G C
mX

j D1

dim G

dj

�
mX

j D1

rX

iD1

.1 C 2bei=dj c/:
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is greater than

tSO.3/ � dim SO.3/ D ��.� / dim SO.3/ C
mX

j D1

dim SO.3/

dj

�
mX

j D1

1;

which is true by hypothesis.

We can now prove Theorem 1.4.

Proof. The upper bound was proved in Sect. 2. Recall that if G1 ! G2 is an isogeny,
we can prove the lower bound of the theorem for G1 and immediately deduce it for
G2. Theorem 1.2 and Proposition 4.1 therefore cover groups of type A, B, and D.
This leaves only the symplectic case, where Proposition 5.2 applies. Note that

mX

j D1

dim G

dj

�
mX

j D1

rX

iD1

.1 C 2bei=dj c/

D
mX

j D1

rX

iD1

1 C 2ei

dj

�
mX

j D1

rX

iD1

.1 C 2bei=dj c/

D
rX

iD1

mX

j D1

�
1 C 2ei

dj

� 1 C 2bei=dj c
�

:

As

�1 < 2x C 1=dj � 1 � 2bxc < 1;

the error term is at most mr in absolute value.

The following proposition illustrates the fact that the methods of this section
are not only useful in the large rank limit. We make essential use of the technique
illustrated below in [LLM].

Proposition 5.3. Every SO.3/-dense Fuchsian group is also F4.R/-dense, E7.R/-
dense, and E8.R/-dense, where F4, E7, and E8 denote the compact simple
exceptional real algebraic groups of absolute rank 4, 7, and 8 respectively.

Proof. Let G be one of F4, E7, and E8. Let E denote the set of exponents of G,
other than 1, which is the only exponent of SO.3/. We map � to G.R/ via the
principal homomorphism SO.3/ ! G and apply Corollary 3.5. To show that there
exists a homomorphism from � to G.R/ with dense image, we need only check that

tG � dim G > tSO.3/ � dim SO.3/:

The proof of Theorem 3.4 proceeds by deforming the composed homomomorphism
� ! SO.3/ ! G.R/, and under continuous deformation, the order of the image
of a torsion element remains constant. We therefore obtain more, namely, that � is
G.R/-dense.
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By replacing tG and tSO.3/ by the middle expression in (2.1) for V D g and
V D so.3/, respectively, the desired inequality can be rewritten

.2g � 2 C m/.dim G � dim SO.3// �
mX

j D1

X

e2E

.1 C 2be=dj c/ > 0: (5.2)

The summand is nonincreasing with each dj . In particular,

mX

j D1

X

e2E

.1 C 2be=dj c/ �
mX

j D1

X

e2E

.1 C 2be=2c/ <

mX

j D1

X

e2E

.1 C 2e/

D dim G � dim SO.3/:

Therefore, if g � 1, the expression (5.2) is positive. For g D 0, .d1; : : : ; dm/ is
dominated by .2; 2; : : : ; 2/ for m � 5, .2; 2; 2; 3/ for m D 4, and .2; 3; 7/, .2; 4; 5/,
or .3; 3; 4/ for m D 3.

The following table presents the value of

rX

iD1

�
.1 C 2bdi=nc/ � 2di C 1

n

�

for each root system of exceptional type and for each n � 7.

n A1 E6 E7 E8 F4 G2

2 �1=2 �1 �7=2 �4 �2 �1

3 0 �2 �4=3 �8=3 �4=3 �2=3

4 1=4 1=2 �1=4 �2 �1 1=2

5 2=5 2=5 2=5 �8=5 8=5 6=5

6 1=2 �1 �7=6 �4=3 �2=3 �1=3

7 4=7 6=7 0 4=7 4=7 0

By (2.2), the relevant values of tG � dim G are given in the following table:

di vector A1 E6 E7 E8 F4 G2

.2; 2; 2; 3/ 2 18 34 56 16 6

.2; 3; 7/ 0 4 8 12 4 2

.2; 4; 5/ 0 4 10 20 4 0

.3; 3; 4/ 0 10 14 28 8 2

For .2; : : : ; 2„ ƒ‚ …
m

/, m � 5, the values of tG � dim G for A1, E6, E7, E8, F4, G2 are

2m � 6, 40m � 136, 70m � 266, 128m � 496, 28m � 104, 8m � 28, respectively.
In all cases except .2; 4; 5/ for G2, the desired inequality holds.
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We conclude by proving Theorem 1.3 in the remaining cases, i.e., for adjoint
groups G of type B or C.

Proof. We begin with a Zariski-dense homomorphism �0W � ! PGL2.R/. Such a
homomorphism always exists since � is Fuchsian. We now embed PGL2 via the
principal homomorphism in a split adjoint group G of type Bn or Cn. Assuming
n � 4, the image is a maximal subgroup, and we can apply Theorem 3.4 as in the A
and D cases.

6 SO.3/-Dense Groups

In this section, we show that almost all Fuchsian groups are SO.3/-dense and
classify the exceptions.

Lemma 6.1. Let d � 2 be an integer.

(1) If d ¤ 6, there exists an integer a relatively prime to d such that

1

4
� a

d
� 1

2
;

with equality only if d 2 f2; 4g.
(2) If d 62 f4; 6; 10g, then a can be chosen such that

1

3
� a

d
� 1

2
;

with equality only if d 2 f2; 3g.
(3) If d … f2; 3; 18g, there exists a such that

1

12
<

a

d
<

4

15
;

with equality only if d D 12.

Proof. For (1) and (2), let

a D

8
ˆ̂<

ˆ̂:

d�1
2

if d � 1 .mod 2/,
d�4

2
if d � 2 .mod 4/,

d�2
2

if d � 0 .mod 4/.

As long as d > 12, these fractions satisfy the desired inequalities, and for d � 12,
this can be checked by hand.
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For (3), let a D d�b
6

, where b depends on d (mod 36) and is given as follows:

b d .mod 4/ d .mod 9/

�12 2 3

�6 0 6

�4 2 2; 5; 8

�3 1; 3 3

�2 0 1; 4; 7

�1 1; 3 2; 5; 8

1 1; 3 1; 4; 7

2 0 2; 5; 8

3 1; 3 0; 6

4 2 1; 4; 7

6 0 0; 3

12 2 0; 6

As long as d > 24, these fractions satisfy the desired inequalities, and the cases
d � 24 can be checked by hand.

Proposition 6.2. A cocompact oriented Fuchsian group is SO.3/-dense if and only
if it does not belong to the set

f�2;4;6; �2;6;6; �3;4;4; �3;6;6; �2;6;10; �4;6;12g: (6.1)

Proof. We recall that every proper closed subgroup of SO.3/ is contained in a
subgroup of SO.3/ isomorphic to O.2/, A5, or S4. The set of homomorphisms
O.2/ ! SO.3/, A5 ! SO.3/, and S4 ! SO.3/ have dimension 2, 3, and 3

respectively. Furthermore, dim X�;O.2/ � 2gCm, while dim X�;S4 D dim X�;A5 D 0.
Every nontrivial conjugacy class in SO.3/ has dimension 2. As the commutator

map SO.3/ � SO.3/ ! SO.3/ is surjective and every fiber has dimension at least
3, if g � 1, we have dim X�;SO.3/ � 3 C 3.2g � 2/ C 2m. For g � 2 or g D 1

and m � 2, the dimension of dim X�;SO.3/ exceeds the dimension of the space of
all homomorphisms whose image lies in a proper closed subgroup, so there exists a
homomorphism with dense image with �.xi / of order di for all i . If g D m D 1,
and �.� / � O.2/, then the commutator �.Œy1; z1�/ lies in SO.2/, so �.x1/ 2 SO.2/.
The set of elements of order d1 in SO.2/ is finite, so dim X�;O.2/ � 2, and the set of
elements of X�;SO.3/ which can be conjugated into a fixed O.2/ has dimension � 4;
again, there exists � with dense image and with �.xi / of order di for all i .

This leaves the case g D 0, m � 3. By (1.1),
P

1=di < m � 2. We claim that
unless we are in one of the cases of (6.1), there exist elements Nx1; : : : ; Nxm 2 SO.3/ of
orders d1; : : : ; dm, respectively, such that Nx1 � � � Nxm D e and the elements Nxi generate
a dense subgroup of SO.3/. For m D 3, the order of terms in the sequence d1; d2; d3

does not matter since Nx1 Nx2 Nx3 D e implies Nx2 Nx3 Nx1 D e and Nx�1
3 Nx�1

2 Nx�1
1 D e.
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Without loss of generality, we may therefore assume that d1 � d2 � d3 when m D 3.
If the base case m D 3 holds whenever d3 is sufficiently large, the higher m cases
follow by induction, since one can replace the mC1-tuple .d1; : : : ; dmC1/ by the m-
tuple .d1; : : : ; dm�1; d / and the triple .dm; dmC1; d /, where d is sufficiently large.

If ˛1; ˛2; ˛3 2 .0; �� satisfy the triangle inequality, by a standard continuity
argument, there exists a nondegenerate spherical triangle whose sides have angles
˛i . If ˛1, ˛2, and ˛3 are of order exactly d1, d2, and d3 in the group R=2� ,
respectively, then there exists a homomorphism from the triangle group �d1;d2;d3 to
SO.3/ such that the generators xi map to elements of order di , and these elements
do not commute. We claim that except in the cases .2; 4; 6/, .2; 6; 6/, .3; 6; 6/,
.2; 6; 10/, and .4; 6; 12/, there always exist positive integers ai � di =2 such that ai

is relatively prime to di and ai =di satisfy the triangle inequality. We can therefore
set ˛i D 2ai �=di :

Every nondecreasing triple from the interval Œ1=4; 1=2� except for 1=4; 1=4; 1=2

satisfies the triangle inequality. As .d1; d2; d3/ cannot be .2; 4; 4/, Lemma 6.1 (1)
implies the claim unless at least one of d1; d2; d3 equals 6. We therefore assume that
at least one of the di is 6. As 1=6 and any two elements of Œ1=3; 1=2� other than 1=3

and 1=2 satisfy the triangle inequality and as .d1; d2; d3/ ¤ .2; 3; 6/, Lemma 6.1
(2) implies the claim except if one of the di is 4, one of the di is 10, or two of
the di are 6. By Lemma 6.1 (3), the remaining ai =di can then be chosen to lie in
.1=12; 4=15/ unless this di 2 f2; 3; 12; 18g. If ai =di is in this interval, the triangle
inequality follows. Examination of the remaining 12 cases reveal five exceptions:
.2; 4; 6/, .2; 6; 6/, .2; 6; 10/, .3; 6; 6/, and .4; 6; 12/.

Assuming that we are in none of these cases, there exist non-commuting elements
Nxi in SO.3/ of order d1, d2, and d3, such that Nx1 Nx2 Nx3 D e. They cannot all lie in a
common SO.2/. In fact, they cannot all lie in a common O.2/, since any element in
the nontrivial coset of O.2/ has order 2, d3 � d2 > 2, and if three elements multiply
to the identity, it is impossible that exactly two lie in SO.2/. If � maps to S4 or A5,
then fd1; d2; d3g is contained in f2; 3; 4g or f2; 3; 5g respectively. The possibilities
for .d1; d2; d3/ are therefore .2; 5; 5/, .3; 3; 5/, .3; 5; 5/, .5; 5; 5/, .3; 4; 4/, .3; 3; 4/,
and .4; 4; 4/. The realization of �a;b;b as an index-2 subgroup of �2;2a;b implies the
proposition for �2;5;5, �3;3;5, �3;5;5, �5;5;5, �3;3;4, and �4;4;4. The only remaining case
is �3;4;4.

Lastly, we show that none of the groups in (6.1) are SO.3/-dense. Suppose there
exist elements x1; x2; x3 of orders d1; d2; d3, respectively, such that x1x2x3 equals
the identity and hx1; x2; x3i is dense in SO.3/. These elements can be regarded
as rotations through angles 2�a1, 2�a2, 2�a3, respectively, where the ai can be
taken in Œ0; 1=2/, and no two axes of rotation coincide. Choosing a point P on the
great circle of vectors perpendicular to the axis of rotation of x1, the three points
P; x�1

2 .P /; x1.P / D x�1
3 x�1

2 .P / satisfy the strict spherical triangle inequality, so
a1 < a2 Ca3. Likewise, a2 < a3 Ca1 and a3 < a1 Ca2. However, one easily verifies
in each of the cases (6.1) that one cannot find rational numbers a1; a2; a3 2 .0; 1=2�

with denominators d1, d2, d3, respectively, such that a1; a2; a3 satisfy the strict
triangle inequality.
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7 Appendix by Y. William Yu

The following triples of permutations, which evidently multiply to 1, have been
checked by machine to generate the full alternating groups in which they lie:

• �2;4;6 ! A14:

x1 D .1 2/.3 4/.5 6/.7 8/.9 10/.11 12/

x2 D .1 10 9 8/.2 14 13 3/.4 5/.6 7 12 11/

x3 D .1 3 5 11 7 9/.2 8 6 4 13 14/

• �2;6;6 ! A14:

x1 D .1 2/.3 4/.5 6/.7 8/.9 10/.11 12/

x2 D .1 14 8 7 4 2/.3 5 13 11 9 6/

x3 D .1 4 6 3 7 14/.5 9 10 11 12 13/

• �3;6;6 ! A12:

x1 D .1 2 3/.4 5 6/.7 8 9/.10 11 12/

x2 D .1 12 11 6 2 3/.4 10 8 9 5 7/

x3 D .1 2 3 6 9 10/.4 11/.5 7 8/

• �3;4;4 ! A14:

x1 D .1 2 3/.4 5 6/.7 8 9/.10 11 12/

x2 D .1 14 11 12/.2 3 4 5/.7 10 13 9/.6 8/

x3 D .1 2 12 14/.3 5/.4 8 9 6/.7 13 10 11/

• �2;6;10 ! A12:

x1 D .1 2/.3 4/.5 6/.7 8/.9 10/.11 12/

x2 D .1 8 6 7 5 3/.4 10 11/.9 12/

x3 D .1 2 3 11 9 4 5 8 6 7/.10 12/

• �4;6;12 ! A12:

x1 D .1 4 3 2/.5 8 7 6/.9 10/.11 12/

x2 D .1 2 5 9 10 3/.4 7 11 8 6 12/

x3 D .2 10 5 8/.3 12 7 11 6 4/
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In each case, one can use (2.1) to compute that

dim Z1.�; so.n// � dim SO.n/ > 0:

The reasoning of Proposition 4.1 therefore applies to give a homomorphism � !
SO.n/ either for n D 11 or for n D 13, with dense image.
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Two Embedding Theorems

Gerardo A. Mendoza

To Leon Ehrenpreis, in memoriam

Abstract We first consider pairs .N ; T / where N is a closed connected smooth
manifold and T a nowhere vanishing smooth real vector field on N that admits an
invariant metric and shows that there is an embedding F W N ! S2N�1 � C

N for
some N mapping T to a vector field of the form T 0 D i

PN
jD1 �j

�
zj @

@zj � zj @

@zj

�

for some �j ¤ 0. We further consider pairs .N ; T / with the additional datum of an
involutive subbundle V � CTN such that V C V D CTN and V \ V D spanCT
for which there is a section ˇ of the dual bundle of V such that hˇ; T i D �i and

Xhˇ; Y i � Y hˇ;Xi � hˇ; ŒX; Y �i D 0 wheneverX; Y 2 C1.N IV/:
Then K D kerˇ is a CR structure, and we give necessary and sufficient conditions
for the existence of a CR embedding of N (with a possibly different, but related,
CR structure) into S2N�1 mapping T to T 0. The first result is an analogue of the
fact that for any line bundle L ! B over a compact base, there is an embedding
f W B ! CP

N�1 such that L is isomorphic to the pullback by f of the tautological
line bundle � ! CP

N�1. The second is an analogue of the statement in complex
differential geometry that a holomorphic line bundle over a compact complex
manifold is positive if and only if one of its tensor powers is very ample.
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1 Introduction

Let F be the family of pairs .N ; T / where N is a closed connected smooth
manifold and T is a smooth nowhere vanishing real vector field on N admitting
an invariant metric. An example of such a pair is the sphere S2N�1 � CN with the
vector field T 0 in formula (1.2) below.

We will show:

Theorem 1.1. Let .N ; T / 2 F . Then there is a positive integer N , an embedding
F W N ! CN with image contained in the sphere S2N�1, and positive numbers �j
such that F�T is the vector field

T 0 D i
NX

jD1
�j

�

zj
@

@zj
� zj

@

@zj

�

: (1.2)

Furthermore, no component function of F is flat at any point of N .

An element .N ; T / 2 F is like the circle bundle of a complex line bundle over
a closed manifold B (with T being the infinitesimal generator of the circle action),
and the theorem is like the basic ingredient in the classification theorem for line
bundles. In our general setting, the orbits of T need not be compact.

Theorem 1.1 was stated without proof in [14] as Theorem 3.11. The fact that
no component of F is flat was used there in an argument involving the Malgrange
preparation theorem. The complete proof is given here in Sect. 2.

The statement of our second result requires us recalling some terminology
and a few facts. Associated with any involutive subbundle W of TN or its
complexification CTN , there is a first-order differential cochain complex on the
exterior powers of its dual,

� � � ! C1.N IVqW�/ ! C1.N IVqC1W�/ ! � � �
where the coboundary operator is given by Cartan’s formula for the differential. We
review this in more detail below. The complex is elliptic if and only if W C W D
CTN (or D TN if W � TN ), in which case, W is referred to as an elliptic
structure.

Let Fell be the set of triples .N ; T ;V/ such that .N ; T / 2 F , V � CTN is
an elliptic structure with V \ V D spanCT , and there is a closed section ˇ of V�
such that hˇ; T i D �i. Closed means in the sense of the associated complex, that
is, Dˇ D 0, where D refers to the coboundary operator of the induced complex:

V hˇ;W i �W hˇ; V i � hˇ; ŒV;W �i D 0 for all V; W 2 C1.N IV/: (1.3)

If ˇ, ˇ0 2 C1.N IV�/ are two sections as described, we say that ˇ and ˇ0 are
equivalent if ˇ0 � ˇ D Du with a real-valued function u and write ˇ for the class
of ˇ. Here Du means the restriction of du to V. Observe that necessarily T u D 0.
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Suppose that .N ; T ;V/ 2 Fell and that ˇ is a section of V� as just described.
Let

Kˇ D fv 2 V W hˇ; vi D 0g
Then Kˇ is a CR structure of codimension 1. Let �ˇ be the real 1-form that satisfies
h�ˇ; T i D 1 and whose restriction to Kˇ vanishes. Define

Levi�ˇ .v;w/ D �id�ˇ.v;w/; v; w 2 Kˇ;p; p 2 N I (1.4)

Kˇ is the conjugate of Kˇ .
A map F W N ! CN will be called equivariant if F�T D T 0 for some T 0 of the

form (1.2).

Theorem 1.5. Suppose that .N ; T ;V/ 2 Fell with dimN � 5. Fix a class ˇ̌̌ as
described above. The following are equivalent:

(1) There is ˇ 2 ˇ̌̌ and an equivariant CR immersion of N with the CR structure
Kˇ into CN for some N .

(2) There is ˇ0 2 ˇ̌̌ and an equivariant CR immersion of N with the CR structure
Kˇ0 into CN for some N with image in S2N�1.

(3) There is ˇ0 2 ˇ̌̌ such that the CR structure Kˇ0 is definite.
(4) There is ˇ0 2 ˇ̌̌ and an equivariant CR embedding of N with the CR structure

Kˇ0 into CN with image in S2N�1 for some N .

The implication (3) H) (4) is like Kodaira’s embedding theorem of Kähler
manifolds with integral fundamental form into complex projective space. This is
explained in some detail the paragraphs following Example 1.7. The proof of the
implication relies on Boutet de Monvel’s construction in [4] of an embedding under
the same condition, strict pseudoconvexity; this is the only reason for the restriction
on the dimension of N in the hypothesis of the theorem.

Concrete models of manifolds N with the structure described above are the
following.

Example 1.6. Let N D S2nC1 � CnC1, let

T D i
nC1X

jD1
�j

�

zj
@

@zj
� zj

@

@zj

�

:

Then .N ; T / 2 F , since T preserves the standard metric of S2nC1. Suppose all �j
have the same sign. Let K be the standard CR structure of S2nC1 (as a subbundle
of T 0;1CnC1 along S2nC1). Then T is transverse to K and V D K ˚ spanCT is
involutive. Let � be the unique real 1-form on S2nC1 which vanishes on K and
satisfies h�; T i D 1 and let ˇ D �i|�� where | W K ! CTS2nC1 is the inclusion
map. Then (1.3) holds. Indeed, if V and W are CR vector fields, then so is ŒV;W �
since K is involutive, and if V is CR, then ŒV; T � is also CR, so (1.3) holds if V is
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CR and W D T . Since hˇ; T i D �i, .N ; T ;V/ 2 Fell. The set of closures of the
orbits of T is a Hausdorff space, an analogue of complex projective space.

Example 1.7. Let B be a complex manifold, let E ! B a Hermitian holomorphic
line bundle, and let � W N ! B be its circle bundle. Define

V D fv 2 CTN W ��v 2 T 0;1Bg: (1.8)

Then .N ; T ;V/ 2 Fell; the vector field T is the infinitesimal generator of the
standard circle action on N . Identifying N with the bundle of oriented orthonormal
bases of the real bundle underlyingE , let � be the connection form of the Hermitian
holomorphic connection, a real smooth 1-form with h�; T i D 1 and LT � D 0,
where LT is Lie derivative. Let � W V ! CTN be the inclusion map. Using the dual
map �� W CT �N ! V�, let ˇ D �i��� . Then Imhˇ; T i D �1 and Dˇ D 0; that ˇ
is D-closed and is equivalent to the statement that � corresponds to a holomorphic
connection. Adding Du to ˇ with u real valued and T u D 0 corresponds to a change
of the Hermitian metric.

In the context of Example 1.7, let K D kerˇ; this is a CR structure. The statement
that Levi� (as defined in (1.4)) is positive definite is equivalent to the statement that
the line bundle E ! B is negative (Grauert [6], see also Kobayashi [8, p. 87]), that
is, the form ! on B such that ��! D �id� is the fundamental form of a Kähler
metric on B.

Kodaira’s embedding theorem [9] asserts that if B is compact and admits a Kähler
metric whose fundamental form is in the image of an integral class, then B admits
an embedding into a projective space. The line bundle E ! B associated to such
fundamental form is, by definition, negative, and its circle bundle with the induced
CR structure, strictly pseudoconvex. For any integerm, let H.B; E˝m/ be the space
of holomorphic sections ofE˝m. The proof of Kodaira’s existence theorem consists
of showing that for a suitablem (a negative number here), the map sending the point
b 2 B to the kernel of the map

H.B; E˝m/ 3 � 7! �.b/ 2 E˝m
b

defines an embedding 	 W B ! PH.B; E˝m/�. We describe an interpretation of
this along the lines of the last assertion in Theorem 1.5. Fix a Hermitian metric on
E and use it to induce metrics on each of the tensor powers of E . For each integer
m ¤ 0, define }m W SE ! SE˝m by

}m.p/ D
(
p ˝ � � � ˝ p if m > 0

p� ˝ � � � ˝ p� if m < 0;

(jmj factors in either case) with p� 2 E�
�.p/ such that hp�; pi D 1. A section � of

E˝.�m/ is a map E˝m ! C which in turn gives a map SE ! C by way of the
formula
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SE 3 p 7! f�.p/ D h�;}m.p/i 2 C:

This map has the property that

d

dt
f�.e

itp/ D imf�.e
itp/:

Conversely, any f W SE ! E with this property determines a section � of E˝.�m/
such that f� D f . It is not hard to see that f� is a CR function if and only if
� is a holomorphic section. Suppose E ! B is a negative line bundle. Suppose
m is so large that the map 	 described above is an embedding. Let �1; : : : ; �N
be a basis of H.B; E�m/. Then the map F W SE ! CN with components f�j is
an equivariant CR embedding, the assertion in part (1.5) of Theorem 1.5. In this
case, since F.eitp/ D eimtF.p/, the numbers �j are all equal to m (here a positive
number). Kodaira’s embedding map consists of sending the point b 2 B to the
complex line containing F.SEb/.

Theorems 1.1 and 1.5 are generalization of classical theorems about line bundles.
Other generalizations of classical results about line bundles to the contexts of
these theorems were given in [14] (generalizing classification by the first Chern
class) and [15] (concerning a kind of Gysin sequence). We point out, however,
that Theorem 1.5 applied to line bundles does not quite give Kodaira’s embedding
theorem because one cannot guarantee that the vector field T 0 alluded to in the
statement about the embedding being equivariant has all �j equal to each other. A
similar remark applies to Theorem 1.1.

The proof of Theorem 1.1, contained in Sect. 2, exploits an idea used by Bochner
[3] to prove analytic embeddability in RN of real analytic compact manifolds with
analytic Riemannian metric. The rest of this chapter is devoted to the proof of
Theorem 1.5. In Sect. 3, we recall some basic facts about involutive structures and
their associated complexes, including some aspects of elliptic structures (of which
the subbundles V in the definition of Fell are examples). In Sect. 4, we discuss
the complexes relevant to this work. The presentation here is motivated by earlier
work on complex b-structures; see [12, 13] and [14, Sect. 1]. Section 5 is a
preliminary analysis of the structure of the space of CR functions on N for a
given ˇ. This is used in Sect. 6 to prove that (1) H) (2) (Proposition 6.9) and
that (2) H) (3) (Proposition 6.11) in Theorem 1.5. The implication (3) H) (4) is
proved in Sect. 7 (Theorem 7.1). This last section includes a result (Proposition 7.5)
about a decomposition of the space ofL2 CR functions into eigenspaces of LT . This
can be interpreted as giving a global version of the Baouendi–Treves approximation
theorem [1]; see Remark 7.15. The implication (4) H) (1) is immediate.
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2 Real Embeddings

Suppose .N ; T / 2 F and fix some T -invariant Riemannian metric g on N . Let 

denote the Laplace–Beltrami operator. Since LT g D 0, 
 commutes with T . It is
of course well known that the eigenspaces of 
 are finite dimensional and consist
of smooth functions. Since 
 commutes with T , these eigenspaces are invariant
under �iT . The latter operator acts on these finite-dimensional spaces as a self-
adjoint operator (with the inner product of the L2 space defined by the Riemannian
density), in particular with real eigenvalues. Let

E�;� D f� 2 C1.N / W �iT � D ��; 
� D ��g

and let
spec.�iT ; 
/ D f.�; �/ W E�;� ¤ 0g:

The latter set, the joint spectrum of 
 and �iT , is a discrete subset of R2. Since 

is a real operator (that is, 
� D 
�),

.�; �/ 2 spec.�iT ; 
/ H) .��; �/ 2 spec.�iT ; 
/: (2.1)

Note that the map F satisfies F�T D T 0 with T 0 given by (1.2) if and only if
its component functions f j satisfy T f j D i�j f j . This justifies using functions
in the spaces E�;� as building blocks for the components of F . For each .�; �/ 2
spec.�iT ; 
/, let ��;�;j , j D 1; : : : ; N�;�, be an orthonormal basis of E�;�, so

f��;�;j W .�; �/ 2 spec.�iT ; 
/; j D 1; : : : ; N�;�g

is an orthonormal basis of L2.N /. To construct F , we will take advantage of the
following two properties of the ��;�;j :

1. For all p0 2 N , CT �
p0
N D spanfd��;�;j .p0/ W .�; �/ 2 spec.�iT ; 
/; j D

1; : : : ; N�;�g.
2. The functions ��;�;j , .�; �/ 2 spec.�iT ; 
/; j D 1; : : : ; N�;�, separate points

of N .

To prove the first assertion, suppose that the span of the d��;�;j .p0/ is a proper
subspace W of CT �

p0
N , and let f W N ! C be a smooth function such that

df .p0/ … W . By standard results from the theory of elliptic self-adjoint operators
on compact manifolds, the Fourier series of f ,

f D
X

.�;�/2˙

N�;�X

jD1
f�;�;j ��;�;j (2.2)

converges to f in C1.N /; here we used ˙ to denote spec.�iT ; 
/. So
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df .p0/ D
X

.�;�/2˙

N�;�X

jD1
f�;�;j d��;�;j .p0/

with uniform convergence of the series. The terms of the series belong to W , a
complete space because it is finite dimensional, so the convergence takes place in
W . But df .p0/ … W , a contradiction. Thus in fact W D CT �

p0
N as claimed.

The second assertion is proved by using the pointwise convergence of the series
(2.2) for a smooth function f separating two distinct points p0 and p1 to contradict
the supposition that ��;�;j .p0/ D ��;�;j .p1/ for all values of the indices.

It follows from property (1) that there are .�k; �k; jk/, k D 1; : : : ; dimN such
that the differentials at p0 of the functions f k D ��k;�k ;jk span CT �

p0
N . Then, if v

is a real tangent vector at p0, the condition df k.v/ D 0 for all k implies v D 0.
The same property is true if some or all of the functions f k are replaced by their

conjugates. So replacing f k by f
k

if �k < 0, we get that the map

p 7! .f 1.p/; : : : ; f dimN .p//

has injective differential at p0 (hence in a neighborhood of p0) and components that
satisfy T f k D i�kf k with �k > 0; see (2.1).

By the compactness of N , there are smooth functions Qf 1; : : : ; Qf QN such that
T Qf k D i�k Qf k for each k with �k > 0 and such that the map QF W N ! C

QN with
components f k is an immersion. The origin of C QN is not in the image of QF . Indeed,
if there is p0 such that Qf k.p0/ D 0 for all k, then T Qf k.p0/ D i�k Qf .p0/ D 0 for
all k, so T .p0/ belongs to the kernel of d QF .p0/, a contradiction.

Since k QF .p/k ¤ 0 for all p, the map p 7! k QF .p/k�1 QF .p/ is smooth and has
image in S2 QN�1. However, it may not be an immersion, since the differential of the
radial projection C

QNn0 ! S2
QN�1 has nontrivial kernel at every point: the kernel

at z 2 C
QNn0 is the radial vector R D P

` z`@z` C z`@z` . To fix this problem, we
augment QF by adjoining the functions . Qf k/2: redefine QF to be

QF D . Qf 1; : : : ; Qf QN ; . Qf 1/2; : : : ; . Qf QN /2/:

Then QF is again an immersion. Moreover, for all p 2 N , R. QF .p// … rg d QF .p/. To
see this, suppose v 2 Tp0N is such that

d QF .v/ D cR. QF .p0//
for some c. Then

hd Qf k; vi D c Qf k.p0/ and hd. Qf k/2; vi D c. Qf k.p0//
2; k D 1; : : : ; QN:

Using the first set of equations in the second, we get

c. Qf k.p0//
2 D hd. Qf k/2; vi D 2 Qf k.p0/hd Qf k; vi D 2c. Qf k.p0//

2 for all k
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so, since Qf k.p0/ ¤ 0 for some k, c D 2c, hence c D 0. Thus the composition of QF
with the radial projection on S4 QN�1,

F0.p/ D 1

k QF .p/k
QF .p/;

is an immersion. Let N0 D 2 QN and let f 1; : : : ; f N0 denote the components of F0.
Since T j Qf j j2 D 0 (because T Qf j D i�j Qf j and �j is real), T f j D i�j f j with
�j > 0.

We will now augment F0 so as to obtain an injective map. Let

Z D f.p0; p1/ 2 N � N W p0 ¤ p1; f
k.p0/ D f k.p1/ for all kg:

Since F0 is an immersion, the diagonal in N � N has a neighborhood U on which
the condition

.p0; p1/ 2 U and F0.p0/ D F0.p1/ H) p0 D p1

holds. Thus Z is a closed set. Suppose .p0; p1/ 2 Z. By the second property of the
functions ��;�;j , there is f smooth such that T f D i�f and f .p0/ ¤ f .p1/. If the
latter happens, then also f .p0/ ¤ f .p1/, so we may assume � > 0. With such f,
the map

F1 W p 7! 1
p
1C jf .p/j2 .F.p/; f .p//;

which has image in the unit sphere in CN0C1, separates p0 and p1. Indeed, if

F.p0/
p
1C jf .p0/j2

D F.p1/
p
1C jf .p1/j2

and

f .p0/
p
1C jf .p0/j2

D f .p1/
p
1C jf .p1/j2

;

then, since F.p0/ D F.p1/ (because .p0; p1/ 2 Z),
p
1C jf .p0/j2 Dp

1C jf .p1/j2, so f .p0/ D f .p1/ contradicting the choice of f . So F1.p0/ ¤
F1.p1/, and .p0; p1/ has a neighborhood U such that .p; p0/ 2 U H) F1.p/ ¤
F1.p

0/. Using the compactness of Z, we get a finite number of maps F1; : : : ; FL,
each mapping N into the unit sphere in CN0C1, such that .p0; p1/ 2 Z implies
F`.p0/ ¤ F`.p1/ for some `. Then, with N D N0 C .N0 C 1/LC 1,

F D 1p
LC 1

.F0; F1; : : : ; FL/ W N ! S2NC1
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is an embedding whose components f j satisfy T f j D i�j f j with �j > 0, hence
F�T D T 0 with T 0 given by (1.2) as claimed.

That no component of the map F just constructed is flat at any point of N is a
consequence of the fact that these functions are constructed out of eigenfunctions of
a second-order elliptic real operator (see [7, Theorem 17.2.6]). In particular, the set
fp 2 N W 8j F j .p/ ¤ 0g is dense in N .

Remark 2.1. The last assertion of Theorem 1.1 was an essential component in the
proof of Proposition 3.7 used in [14].

3 Involutive Structures

Let M be a smooth manifold. An involutive structure on M is a subbundle of the
complexification CTM of the tangent bundle of M. We will briefly review some
facts in connection with such structures here and then discuss particularities in the
context of Theorem 7.1. For a detailed account of various aspects of such structures,
see Treves [18–20].

Associated to any involutive structure W � CTM, there is a complex based on
the exterior powers of the dual bundle:

� � � ! C1.MIVqW�/ D�! C1.MIVqC1W�/ ! � � � : (3.1)

Namely, if � 2 C1.MIVqW�/ and V0; : : : ; Vq are smooth sections of W , then

.q C 1/D�.V0; : : : ; Vq/ D
X

j

.�1/j Vj �.V0; : : : ; OVj ; : : : ; Vq/

C
X

j<k

.�1/jCk�.ŒVj ; Vk�; V1; : : : ; OVj ; : : : ; OVk; : : : ; Vq/:

(3.2)

These satisfy
D2 D 0

and

D.� ^ / D D.�/ ^  C .�1/q� ^ D./ (3.3)

if � 2 C1.MIVqW�/ and  2 C1.MIVq0

W�/. For a function f , we have
Df D ��df , where �� W CT �M ! W� is the dual of the inclusion homomorphism
� W W ! CTM. This just means that

hDf; vi D vf (3.4)

if v 2 W .
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The structure W is said to be elliptic if W C W D CTM, the reason being that
the complex (3.1) is elliptic if and only if W is. If W is an elliptic structure, W \W
is the complexification of a subbundle of TM; its integral manifolds are called the
real leaves of the structure.

Suppose W is an elliptic structure. By a theorem of Nirenberg [17] (a conse-
quence of the Newlander–Nirenberg theorem [16]), every point p0 2 M has a
neighborhoodU on which there are local coordinates

x1; : : : ; x2n; t1; : : : ; t�

such that, with z� D x� C ix�Cn, WjU is the span of the vector fields

@z1 ; : : : ; @zn ; @t1 ; : : : ; @t� : (3.5)

Such a local chart .z1; : : : ; zn; t1; : : : ; t�/ is called a hypoanalytic chart (Baouendi-
Chang-Treves [2], Treves [20]). The intersection of the real leaves and U are the
level sets of the function p 7! .z1.p/; : : : ; zn.p//. If U is connected and  W U ! C

satisfies D D 0, then  is constant on the connected components of the real leaves
in U and a holomorphic function of the z�.

Lemma 3.6. Suppose that M is connected, let W � CT �M be an elliptic
structure, and let ˇ 2 C1.MIW�/ be D-closed. If  W M ! C is not identically
zero and D C ˇ D 0, then the set fp 2 M W .p/ D 0g has empty interior.

Proof. Let p0 2 �1.0/ and let .z1; : : : ; zn; t1; : : : ; t�/ be a hypoanalytic chart
centered at p0, mapping its domain U onto B � C where B is a ball in Cn with
center 0 and C is the cube .�1; 1/� � R� . We will show in a moment that there is
f W U ! C such that Df D ˇ in U . Assuming this, we have

D.ef / D ef .D C Df / D ef .�ˇ C ˇ/ D 0

so ef  is a holomorphic function of the z�. Thus if the set �1.0/\U does not have
empty interior, then  vanishes on U . A simple argument using the connectedness
of M then leads to the conclusion that if the interior of �1.0/ is not empty, then 
is identically 0.

To complete the proof, we show that ˇ is exact on U using a well-known
argument. Over U , the sections D z�, Dt j of W� form the frame dual to the frame
(3.5) of W . Writing

ˇ D
nX

�D1
ˇ�D z� C

�X

jD1
ˇjDt

j

we have

Dˇ D
X

�<�

�
@̌ �

@z�
� @̌ �

@z�

�

D z� ^ D z� C
nX

�D1

�X

jD1

�
@̌ j

@z�
� @̌ �

@tj

�

D z� ^ Dt j

C
X

j<k

�
@̌ k

@tj
� @̌ j

@tk

�

Dt j ^ Dtk :
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From the condition Dˇ D 0, we derive the existence of a smooth function g such
that @g=@tj D ˇj for each j . Then

ˇ0 D ˇ � Dg D
nX

�D1

�

ˇ� � @g

@z�

�

D z�

is again D-closed, and consequently the coefficients of ˇ0 are independent of the t j .
We may then view ˇ0 as a .0; 1/-form, and as such it is @-closed. Since B is a ball,
there is h.z/ such that @h D ˇ0, and it follows that ˇ D D.g C h/ in U .

We end our discussion of general elliptic structures with the following
observation:

Lemma 3.7. Suppose that M is compact and connected. If  W M ! C solves
D D 0, then  is constant.

Proof. Let p0 be an extremal point of jj. Fix a hypoanalytic chart .z; t/ for V
centered at p0. Since D D 0, .z; t/ is independent of t and @z�  D 0. So there is a
holomorphic function Z defined in a neighborhood of 0 in Cn such that  D Z ı z.
Then jZj has a maximum at 0, so Z is constant near 0. Therefore  is constant, say
.p/ D c, near p0. Let C D fp W .p/ D cg, a closed set. Let p1 2 C . Since p1
is also an extremal point of , the above argument gives that  is constant near p1,
therefore equal to c. Thus C is open, and consequently  is constant on M.

4 Underlying Complexes

Fix .N ; T ;V/ 2 Fell, that is, .N ; T / 2 F , V � CTN is an involutive elliptic
subbundle with V \ V D spanCT , and there is a global section ˇ 2 C1.N IV�/
such that

(a) hˇ; T i D �iI
(b) Dˇ D 0

(4.1)

where D refers to the coboundary operator of the induced differential complex on
V�:

� � � ! C1.N IVqV�/ D�! C1.N IVqC1V�/ ! � � � : (4.2)

In addition to the complex (4.2), which exists independently of ˇ, there is another
complex on N induced by ˇ, namely, let

Kˇ D fv 2 V W hˇ; vi D 0g:
Indeed, Kˇ is involutive: For if V and W are sections of Kˇ , then by (3.2),

hˇ; ŒV;W �i D �2Dˇ.V;W /C V hˇ;W i �W hˇ; V i
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which vanishes by property (b) above and because hˇ; V i D hˇ;W i D 0. Now,
Kˇ is a CR structure: Kˇ \ Kˇ D 0. To see this, suppose v 2 Kˇ \ Kˇ . Then in
particular, v 2 V \ V , so v D cT for some c. Thus 0 D hˇ; vi D hˇ; cT i D ic,
hence v D 0. We will write @b for the coboundary operators of the complex

� � � ! C1.N IVqK�̌/ ! C1.N IVqC1K�̌/ ! � � � :

Occasionally, there will be two such complexes involved, determined by sections ˇ
and ˇ0. We will not distinguish this in the notation.

There is a third complex associated with V and ˇ, in which the terms of the
cochain complex are those in (4.2), but the coboundary operator is

Dq.�/� D D� C i�ˇ ^ �; � 2 C1.N IVqV�/ (4.3)

with a fixed � 2 C. That DqC1.�/Dq.�/ D 0 follows immediately form the
corresponding property for D together with b) in (4.1). This complex is, again,
elliptic. Write Hq

D.�/.N / for the cohomology groups and let

specq.D/ D f� W Hq

D.�/.N / ¤ 0g:

Lemma 4.4. The cohomology groups Hq

D.�/.N / are finite dimensional for each

� 2 C. For each q, the set specq.D/ is closed and discrete; in fact,

f� 2 specq.D/ W �a � Im � � ag

is finite for each a > 0.

Proof. Fix a T -invariant metric g on N for which g.T ; T / D 1. It determines
a metric on V , hence on the various exterior powers of V�. We use these metrics
and the Riemannian measure to give an L2 inner product to each of the spaces
C1.N IVqV�/. Let

D?

q.�/ W C1.N IVqC1V�/ ! C1.N IVqV�/

denote the formal adjoint of Dq.�/; it depends holomorphically on � . Define

�q.�/ D D?

q.�/Dq.�/C Dq�1.�/D
?

q�1.�/:

This is a family of elliptic operators depending holomorphically on � . Since �q.�/

is elliptic (because the complex is) and N is compact, this is a Fredholm family.
Furthermore, if ��

�
�q.�/

�
denotes the principal symbol of �q.�/ and kˇk denotes

the pointwise norm of ˇ, we have that

.���q.�//.���/C �2 kˇk2I
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is invertible at every point ��� 2 T �N and every � 2 C with estimates

�
�
�
��
�
�q.�/

�
.���/C �2 kˇk2I ��1�� � C

k���k2 C j� j2

with uniformC for arbitrary ��� and � such that j Im� j � a (C depends on a) because
kˇk is nowhere zero. This estimate implies that for each a > 0 there is b such that
�q.�/ is invertible if j Im � j � a and jR� j > b. Since �q.�/ is a holomorphic
Fredholm family, the intersection of

˙q D f� 2 C W �q.�/ is invertibleg

with any horizontal strip f� 2 C W j Im � j � ag is finite. We now show that the
analogous statement holds for specq.D/. Let

Gq.�/ W L2.N IEq

N / ! H2.N IEq

N /

be the inverse of �q.�/, � … ˙q . The map � 7! Gq.�/ is meromorphic with
poles in ˙q . The operators �q.�/ are the Laplacians of the complex (4.2) with
the coboundary operators (4.3) when � is real. Thus for � 2 Rn.specb;N .�q/ [
specb;N .�qC1//, we have

Dq.�/Gq.�/ D GqC1.�/Dq.�/; Dq.�/
?GqC1.�/ D Gq.�/Dq.�/

?

by standard Hodge theory. Since all operators depend holomorphically on � , the
same equalities hold for � 2 R D Cn.˙q [˙qC1/. It follows that

D?

q.�/Dq.�/Gq.�/ D Gq.�/D
?

q.�/Dq.�/

in R. By analytic continuation, the equality holds on all of Cn˙q . Thus if �0 … ˙q

and � is a Dq.�0/-closed section, Dq.�0/� D 0, then the formula

� D ŒD?

q.�0/Dq.�0/C Dq�1.�0/D
?

q�1.�0/�Gq.�0/�

leads to
� D Dq�1.�0/ŒD

?

q�1.�0/Gq.�0/��:

Therefore �0 … specq.D/. Thus specq.D/ � ˙q:

Remark 4.5. The argument concerning the poles of the inverse of �q.�/ is
extracted from a related problem in the analysis of elliptic operators on b-manifolds;
see Melrose [11].

Later, we will allow replacing the section ˇ by an equivalent section in the
following sense.
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Definition 4.6. Two smooth sections ˇ, ˇ0 of V� satisfying (4.1) are equivalent if
ˇ0 � ˇ D Du for some real-valued function u. The class of ˇ is denoted ˇ̌̌ .

Lemma 4.7. Suppose ˇ, ˇ0 are equivalent, let D.�/, D0
.�/ be the associated

operators. Then
H
q

D.�/.N / � H
q

D0

.�/
.N /

for all q and � . Consequently, specq.D/ depends only on the class of ˇ.

Proof. There is u real valued such that ˇ0 D ˇ C Du. Using (3.3) and Dei�u D
i�ei�uDu, we see that

� � � �����! C1.N IVqV�/
Dˇ.�/�����! C1.N IVqC1V�/ �����! � � �

ei�u

?
?
y ei�u

?
?
y

� � � �����! C1.N IVqV�/
Dˇ0 .�/�����! C1.N IVqC1V�/ �����! � � �

(4.8)

is a cochain isomorphism for any � .

5 CR Functions

We continue our discussion with a fixed element .N ; T ;V/ of Fell and section ˇ of
V� satisfying (4.1). The section ˇ gives a CR structure Kˇ D kerˇ and operators
D.�/ defined in (4.3).

The one-parameter group of diffeomorphisms generated by T will be denoted by
t 7! at : We write Op for the orbit of T through p. The integral curves of T need
not be periodic, i.e., the orbits need not be closed.

Lemma 5.1. A distribution  2 C�1.N / solves D.�/ D 0 if and only if it is a
CR function and satisfies

T  C � D 0 (5.2)

If D.�/ D 0, then  is smooth.

Proof. Since V D Kˇ ˚ spanT , the statement that D C i�ˇ vanishes is
equivalent to

hD C i�ˇ; vi D 0 8v 2 Kˇ and hD C i�ˇ; T i D 0:

In view of part (a) of (4.1), and since hˇ; vi D 0 and hD; vi D h@b; vi if v 2 Kˇ ,
these statements are equivalent, respectively, to

@b D 0 and T  C � D 0
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as claimed. That  is smooth if D.�/ D 0 is a consequence of the complex (4.2)
being elliptic (the principal symbol of D.�/ on functions is injective).

The space of smooth CR functions, C1
CR.N / D C1.N / \ ker @b , is a ring. We

will see that C1
CR.N / decomposes as a direct sum of the spaces kerD0.�/, � 2

spec0.D/.

Lemma 5.3. The set spec0.D/ � C is a subset of the imaginary axis and
an additive discrete semigroup with identity. If spec0.D/ is not a group, then
spec0.D/n0 is contained in a single component of iRnf0g.

Proof. That spec0.D/ is discrete is a consequence of Lemma 4.4. Suppose �0 2
spec0.D/ is not zero and let  be a nonzero function that satisfies D.�0/ D 0; such
 exists precisely because �0 2 spec0.D/. Furthermore,  is bounded because it is
smooth and N is compact. By Lemma 5.1, .atp/ D e��0t .p/. So je��0t .p/j is
bounded. Since  is not identically zero, there is p such that .p/ ¤ 0. Thus je��0t j
is bounded, hence R�0 D 0.

Since D1 D 0, 0 2 spec0.D/. Let �1, �2 2 spec0.D/, and pick nonvanishing
elements 1 2 H0

D.�1/
.N /, 2 2 H0

D.�2/
.N /. Since

D.12/ D 2D1 C 1D.2/ D �i.�1 C �2/
12ˇ;

12 2 H0

D.�1C�2/.N / which by Lemma 3.6 is not identically 0 (since neither of 1,

2 is). Thus �1 C �2 2 spec0.D/.
Suppose now that spec0.D/ has elements in both components of CnR and let �C

be the element with smallest modulus among the elements of spec0.D/with positive
imaginary part, and let �� be the analogous element with negative imaginary part.
If � D �C C �� ¤ 0, then either Im � > 0 and j� j < j�Cj or Im � < 0 and
j� j < j��j. Either way, we get a contradiction, since � 2 spec0.D/. So �� D ��C.
In particular, m�C 2 spec0.D/ for every m 2 Z. If � 2 spec0.D/ is arbitrary, then
there is m 2 Z such that j� � m�Cj < j�Cj. Consequently, � � m�C D 0. Thus
spec0.D/ D �CZ, a group. Therefore, if spec0.D/ is not a group, then spec0.D/n0
is contained in a single component of CnR.

Thus the space M

�2spec0.D/

H0

D.�/.N /;

is a subring of C1
CR.N / graded by spec0.D/.

The spaces H0

D.�/.N / are particularly simple when spec0.D/ is a group.

Proposition 5.4. Suppose that spec0.D/ is a group. Then all cohomology groups
H0

D.�/.N /, � 2 spec0.D/, are one dimensional, and all their nonzero elements are

nowhere vanishing functions.
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Proof. The dimension of H0

D.0/.N / D H0

D
.N / is 1, since this space contains the

constant functions, and only the constant functions by Lemma 3.7. If spec0.D/ D
f0g, there is nothing more to prove. So suppose spec0.D/ ¤ f0g. Pick a generator
�1 of spec0.D/ and a nonzero element � 2 H0

D.�1/
.N /. If �0 2 H0

D.��1/.N / is

a nonzero element, then ��0 is not identically zero (Lemma 3.6) and belongs to
H0

D.0/.N /. Therefore ��0 is a nonzero constant. Thus � vanishes nowhere and

�k belongs to H0

D.k�1/
.N / for each k 2 Z. If  2 H0

D.k�1/
.N /, then ��k is a

constant c, so  D c�k . Thus each group H0

D.k�1/
.N / is one dimensional, and its

nonzero elements vanish nowhere.

As a consequence of the proof, we get

Corollary 5.5. Suppose that spec0.D/ is a group. If j 2 H0

D.�j /
.N /, j D 1; 2,

then d1 and d2 are everywhere linearly dependent.

If dimN D 1, then N is a circle and spec0.D/ is a group. Somewhat less
trivially:

Example 5.6. Let B be a compact complex manifold, let E ! B be a flat line
bundle; the holomorphic structure is the one for which the local flat section is
holomorphic. Pick a Hermitian metric and let N be the circle bundle, with the usual
structure as in Example 1.7. If some power Em, m ¤ 0, is holomorphically trivial,
then with the smallest such power,m0, we get that spec0.D/ D im0Z. If no such m
exists, then spec0.D/ D f0g.

6 CR Maps into C
N

We now analyze maps N ! C
Nn0.

Proposition 6.1. Suppose that there is a map F W N ! CNn0 whose components
j satisfy

Dj C i�j j ˇ D 0 (6.2)

with all the �j in one component of iRnf0g. Then there is u W N ! R smooth such
that the map QF W N ! CNn0 with components Qj D e�i�j uj has image in S2N�1.

Proof. Let sj D � Im �j and define g W RC � .RNCn0/ ! R by

g.�; y1; : : : ; yN / D
NX

jD1
��2sj yj :

Since all sj have the same sign, @�g.�; y/ does not vanish. If the sj are positive, then
for fixed y, g.�; y/ ! 1 as � ! 0 and g.�; y/ ! 0 as � ! 1. An analogous
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statement holds if all sj are negative. So for each y 2 R
N

Cn0, there is a unique
positive �.y/ such that g.�.y/; y/ D 1, and �.y/ depends smoothly on y. Define
f W N ! R by f D �.j1j2; : : : ; jN j2/. The function f is well defined because
the j do not vanish simultaneously, is positive everywhere, and satisfies

NX

jD1
f �2sj jj j2 D 1: (6.3)

By Lemma 5.3, �j D isj for some real number sj . The identity T j D ��j j
gives j .atp/ D e�isj t j .p/ so

T jj j2 D 0: (6.4)

Applying T to both members of (6.3) and using (6.4) gives

�2f �1
NX

jD1
sj f

�2sj jj j2T f D 0:

The function
PN

jD1 sj f �2sj jj j2 vanishes nowhere, since all the sj have the same
sign. Thus T f D 0, and with u D logf , we also have

T u D 0: (6.5)

Define Qj D e�i�j uj . Then j Qj j2 D f �2sj jj j2, so by (6.3) the map QF W N !
CNn0 with components Qj has image in S2N�1.

With the notation of the proof, let ˇ0 D ˇ C Du. Thus Dˇ0 D 0 and because of
(6.5), also hˇ0; T i D �i. Thus ˇ0 is an admissible section of V�. The functions Qj
satisfy

D Qj C i�j Qj ˇ0 D 0: (6.6)

Therefore, by Lemma 5.1, they are CR functions with respect to the CR structure
Kˇ0 . Thus QF W N ! S2N�1 is a CR map (as was F but for the CR structure defined
by ˇ).

Using (6.5) in (6.6) gives

T Qj � i�j Qj D 0

with �j D �sj (they all have the same sign). Therefore

QF�T .p/ D T 0. QF .p//
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where

T 0 D i
NX

jD1
�j .w

j @wj � wj @wj / (6.7)

using w1; : : : ;wN as coordinates in CN .
Suppose that  vanishes nowhere and solves D C i�0ˇ with �0 ¤ 0. Applying

Proposition 6.1, we may assume that jj D 1 after a suitable change of ˇ (in this
case, this just means that  is replaced by =jj and ˇ is changed accordingly). The
following is analogous to the situation of the circle bundle of a flat line bundle; see
Example 5.6.

Proposition 6.8. Suppose  W N ! S1 solves D C i�0ˇ D 0 with �0 ¤ 0. Then
 is a submersion whose fibers are complex manifolds.

Proof. Since  vanishes nowhere and �0 ¤ 0, T  ¤ 0 everywhere. Thus  is a
submersion. Since  is CR with respect to Kˇ , v D 0 if v 2 Kˇ . Since  is nowhere
0, also v.1=/ D 0 if v 2 Kˇ. But 1= D . Thus v is tangent to the fibers of : the
CR structure Kˇ0 is tangent to the fibers of  and can be viewed as the .0; 1/-tangent
bundle of a complex structure.

The case dimN D 1 is trivially included in Proposition 6.8. On the other hand,
we have

Proposition 6.9. Suppose that dimN D 2nC 1 > 1 and that F W N ! C
N is a

map whose components j satisfy (6.2) with �j ¤ 0. Suppose further that at every
p 2 N , nC 1 of the differentials dj .p/ are independent. Then

(1) spec0.D/n0 is contained in one component of iRnf0g.
(2) 0 is not in the image of F .

Let QF W N ! S2N�1 be the map in Proposition 6.1.
(3) Then for each p, nC 1 of the differentials d Qj .p/ are independent.

Proof. Since dim spandj > 1, Corollary 5.5 gives that spec0.D/ is not a group, so
spec0.D/n0 is contained in one component of iRnf0g by Lemma 5.3.

To show that the image of F does not contain 0, we show that for every p 2 N ,
there is j0 such that T j0.p/ ¤ 0. Since T j0 D ��j0j0.p/ and �j0 ¤ 0, we
conclude from T j0.p/ ¤ 0 that j0.p/ ¤ 0.

Let then p 2 N and suppose that the differentials dj .p/, j D 1; : : : ; n C 1,
are independent. The restrictions to the fiber Kˇ;p of these differentials vanish, so
they give n C 1 independent linear functions on the .n C 1/-dimensional vector
space CTpN=Kˇ;p . The image of T .p/ in this quotient is not 0, so for some j0,
T j0.p/ ¤ 0. Thus the image of F does not contain 0. This and the fact that the �j
lie in one component of iRnf0g allow us to apply Proposition 6.1.

Let then u W N ! R be the function in Proposition 6.1. Suppose again that
d1; : : : ; dnC1 are independent at p and T nC1.p/ ¤ 0. Let Qj D e�i�j uj . Then
also T QnC1.p/ ¤ 0. The 1-forms
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dj � T j
T nC1 dnC1; j D 1; : : : n

are independent at p, and a brief calculation gives that

d Qj � T Qj
T QnC1 d QnC1 D e�i�j u

�

dj � T j
T nC1 dnC1

�

; j D 1; : : : n (6.10)

so these n differential forms are also independent at p. They all vanish when paired
with T . Furthermore, since QnC1.p/ ¤ 0, T QnC1.p/ ¤ 0. So the differential forms
(6.10) together with d QnC1 are independent at p.

The differentials of the component functions of both F and QF are independent
over C. Since they are CR function, this is equivalent to F and QF being immersions.

The following result is similar to the statement in complex geometry asserting
that very ample holomorphic line bundles are ample.

Proposition 6.11. Let F W N ! C
N be an immersion with image in S2N�1,

N > 1, and components j that satisfy (6.2). Then the Levi form of the CR structure
Kˇ is definite.

Proof. Let �ˇ 2 C1.N IT �N / be the 1-form which vanishes on Kˇ ˚ Kˇ and
satisfies h�ˇ; T i D 1. Define the Levi form with respect to �ˇ as

Levi�ˇ .v;w/ D �id�ˇ.v;w/; v; w 2 Kˇ;p; p 2 N :

In this definition, we switched to the conjugate of Kˇ to adapt to the traditional
setup. Give S2N�1 the standard CR structure K as in Example 1.6, let T 0 be the
vector field in (6.7) and let � 0 be real 1-form which vanishes on K and satisfies
h� 0; T 0i D 1. Then F �� 0 D �ˇ, since F is a CR map and F�T D T 0. The Levi
form Levi� 0 is positive (negative) definite if the �j are positive (negative). Let v, w 2
Kˇ;p . Then �id�ˇ.v;w/ D �id� 0.F�v; F�w/. Since F is an immersion, .v;w/ 7!
�id� 0.F�v; F�w/ is nondegenerate with the same signature as Levi� 0 .

Propositions 6.9 and 6.11 give (1) H) (2) and (2) H) (3) in Theorem 1.5.

7 CR Embeddings

Boutet de Monvel [4] showed that if N is a compact strictly pseudoconvex CR
manifold of dimension � 5, then there is a CR embedding F W N ! CN for some
N . The proof of the following theorem, a version of the assertion that ample line
bundles are very ample, takes advantage of this and, as mentioned already, an idea
of Bochner [3].
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Theorem 7.1. Suppose that .N ; T ;V/ 2 Fell with dimN � 5 and that ˇ is a
smooth D-closed section of V� such that Kˇ has definite Levi form. Then there is
ˇ0 2 ˇ̌̌ (see Definition 4.6) and a CR embedding F W N ! S2N�1 � CN of N with
the CR structure Kˇ0 such that, with w1; : : : ;wN denoting the standard coordinates
in CN

F�T D i
X

j

�j .w
j @wj � wj @wj / (7.2)

for some numbers �j , j D 1; : : : ; N . The �j are all positive or all negative
depending on the signature of Levi�ˇ .

Let H 0

@b
.N / be the subspace of L2.N / consisting of CR functions. If the

Levi form of Kˇ is definite, as in the theorem, the space H 0

@b
.N / \ C1.N / is

infinite dimensional. Boutet de Monvel’s proof of his embedding theorem consists
essentially on proving that

(a) For all p0 2 N , spanfdf .p0/ W f 2 H 0

@b
.N / \ C1.N /g is the annihilator of

Kˇ in CT �
p0
N .

(b) The functions in H 0

@b
.N / \ C1.N / separate points of N .

The embedding map is then constructed, taking advantage of these properties. In the
present case, we also wish (7.2) to hold, so in addition the component functions j

of F should satisfy LT 
j D i�j j with all �j of the same sign. We will therefore

prepare for the proof of Theorem 7.1 by exhibiting a decomposition of H 0

@b
.N /,

more generally without assumptions on the Levi form, a decomposition of the @b
cohomology spaces in any degree, into eigenspaces of �iT .

We begin with the following two lemmas whose proofs are elementary.

Lemma 7.3. If ˛ is a smooth section of the annihilator of V in CT �N , then
.LT ˛/jV D 0. Consequently, for each p 2 N and t 2 R, dat W CTpN ! CTat .p/N
maps Vp onto Vat .p/.

It follows that there is a well-defined smooth bundle homomorphism a�
t WVqV� ! VqV� covering a�t . In particular, one can define the Lie derivative LT �

with respect to T of an element in � 2 C1.N IVqV�/. The usual formula holds:

Lemma 7.4. If � 2 C1.N IVqV�/, then LT � D iT D�CDiT �, where iT denotes
interior multiplication by T . Consequently, for each t and � 2 C1.N IVqV�/,
Da�

t � D a�
t D�.

In particular, it follows from (4.1) that LT ˇ D 0. Let �ˇ and the Levi form
Levi�ˇ be defined as at the beginning of the proof of Proposition 6.11. If Levi�ˇ is
either positive or negative definite (as in the hypothesis of Theorem 7.1), we may
use it to define a Hermitian metric on Kˇ and extend it to V so that T is a unit
vector field orthogonal to Kˇ . Lemma 7.4 gives that LT ˇ D 0, so Kˇ, � , hence also
Levi�ˇ are all T -invariant, h is T -invariant. This metric gives an obvious metric on
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Kˇ ˚ Kˇ ˚ spanCT which in turn gives a T -invariant Riemannian metric on N
giving a T -invariant positive density on N .

In the general case where there is no assumption on the behavior of Levi�ˇ ,

we first construct a T -invariant Hermitian metric on Kˇ as follows. Fix some T -
invariant metric Qg on N , let H D .Kˇ C Kˇ/ \ TN and define

g.v;w/ D 1

2
. Qg.u; v/C Qg.J u; J v//; u; v 2 Hp; p 2 N ;

where J is the complex structure on H for which the .0; 1/ subbundle of CH is Kˇ .
Since g.J u; J v/ D g.u; v/, there is an induced Hermitian metric h on Kˇ . Now
define the rest of the object as was done in the previous paragraph.

Use the metric h (extended to each exterior power
VqV�) and the Riemannian

density to define L2.N IVqV�/ and the formal adjoint operators @
?

b . With these,
construct the Laplacian �b;q in each degree. This operator commutes with LT .

Let H
q

@b
.N / be the kernel of �b;q in L2.N IVqV�/,

H
q

@b
.N / D f� 2 L2.N IVqK�

/ W �b;q� D 0g:

In each degree, the operator �iLT , viewed initially as acting on distributional
sections, gives by restriction an operator on H

q

@b
.N / with values in distributional

sections in the kernel of �b;q . Let

Dom.LT / D f� 2 H
q

@b
.N / W �iLT � 2 L2.N IVqV�/g

Thus LT � 2 H
q

@b
.N / if � 2 H

q

@b
.N /

Proposition 7.5. The operator

� iLT W Dom.LT / � H
q

@b
.N / ! H

q

@b
.N /; (7.6)

is Fredholm self-adjoint with compact resolvent. Hence, spec.�iLT / is a closed
discrete subset of R and there is an orthogonal decomposition

H
q

@b
.N / D

M

�2spec.�iLT /

H
q

@b;�
.N /

where
H

q

@b ;�
.N / D f� 2 H

q

@b
.N / W �iLT � D ��g:

It is immediate that (7.6) is densely defined.

Proof. The operator �b;q � L2T is a nonnegative symmetric operator when viewed
in the space of smooth sections. Furthermore, it is elliptic. To see this, let � W Kˇ !
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CTN be the inclusion map. The kernel of dual map �� W CT �N ! V� intersects
T �N (the real covectors) in exactly the characteristic variety of Kˇ , the span of the
form �ˇ . The principal symbol of @b at ��� 2 T �N is ��.@b/.���/.�/ D i.�����/ ^ �, so
just as for the standard Laplacian, ��.�b;q /.���/ D k��.���/k2I where the norm is the
one induced on V� by that of V. So ��

�
@b
�
.���/ is nonnegative and vanishes to exactly

order 2 on CharKˇ. The principal symbol of �L2T is ��.�L2T / D .h���; T i/2I, hence
��.�L2T / is positive when ��� is nonzero and proportional to � . Thus

.���b;q � L2T /.���/

is invertible for any ��� 2 T �Nn0. This analysis also leads to the conclusion that
Dom.LT / is a subspace of the Sobolev space H1.N IVqV�/.

Using ellipticity and that �b;q � L2T is symmetric, we deduce the existence of a
parametrix B so that

B.�b;q � L2T / D .�b;q � L2T /B D I �˘q

where˘q is the orthogonal projection onH D ker.�b;q�L2T /, a finite-dimensional
space consisting of smooth sections. The operator

B W L2.N IVqV�/ ! L2.N IVqV�/

is pseudodifferential of order �2, self-adjoint, and commutes with LT , hence with
�b;q . In particular, it maps ker �b;q into ker �b;q , that is, H

q

@b
.N / into itself. If

� 2 H , then
k@b�k2 C k@?b�k2 C kLT �k2 D 0;

so � 2 H
q

@
.N / and LT � D 0. In particular, H � H

q

@b
.N / and we may view

the restriction of ˘ to H q

@b
.N / as a finite rank projection H q

@b
.N / ! H q

@b
.N /

(mapping into Dom.LT /). Suppose � 2 Dom.LT /. Then

ŒB.�iLT /�.�iLT /� D �BL2T � D B.�b;q � L2T /� D � �˘� (7.7)

using that Dom.LT / � H q

@b
.N /. Since B commutes with LT , we may write the

equality of the left and rightmost terms also as

Œ�iLT B�.�iLT /� D � �˘�; � 2 Dom.LT /: (7.8)

If � 2 H
q

@b
.N /, then B� 2 H

q

@b
.N / \H2.N IVqV�/, so

BLT � 2 H
q

@b
.N / \H1.N IVqV�/ � Dom.LT /

Thus if

� W L2.N IVqV/ ! L2.N IVqV/; � W H
q

@b
.N / ! L2.N IE/
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are, respectively, the orthogonal projection on H
q

@b
.N / and the inclusion map, then

(7.7), (7.8) give that S D �i�LT B� is a parametrix for (7.6), compact because
LT B is of order �1.

We now show that Dom.LT / is dense in H q

@b
.N /. Let  2 H q

@b
.N / be orthog-

onal to Dom.LT /. If � 2 H
q

@b
.N /, then BLT � 2 Dom.LT /, so .BLT �; / D 0.

Since
.BLT �; / D .�;LT B /

and � is arbitrary, we conclude that LT B D 0. Thus also L2T B D 0, hence
.�b;q � L2T /B D 0. Consequently,  D ˘ , hence  2 Dom.LT /. Therefore
 D 0. Thus (7.6) is a densely defined operator.

Finally, to prove self-adjointness of (7.6), we only need to verify that its
deficiency indices vanish. This can be accomplished as follows. Suppose

B.�/.�b;q � L2T � �2/ D I:

This formula can be viewed as holding in the Sobolev space H1.N IVqV�/, and
gives

B.�/.�L2T � �2/� D �; � 2 Dom.LT /

since Dom.LT / � H1.N IVqV�/. Writing this as

ŒB.�/.�iLT C �/�.�iLT � �/� D �; � 2 Dom.LT /

and using that ŒB.�/.�iLT C �/� commutes with .�iL2T � �/, we see that the
resolvent set of (7.6) contains CnR.

This completes the proof of the proposition.

The proof of Theorem 7.1 will also require a rough Weyl estimate. The main
ingredient is:

Lemma 7.9. Let f�j gj2J be an orthonormal basis of H
q

@b
.N / consisting of

eigenvectors of �iLT , �j 2 H
q

@b;�j
.N /. Then there are positive constants C and

� such that

k�j .p/k � C.1C j�j j/� for all p 2 N ; j 2 J: (7.10)

If  2 C1.N IVqV�/, then for each positive integerN there is CN (depending on
 ) such that

. ; �j / � CN .1C j�j j/�N for all j: (7.11)

Proof. The proof is similar to that of the analogous statement for elliptic self-adjoint
operators. The ellipticity of �b;q � L2T gives the a priori estimates

k�k2sCm � CsCm.k�b;q� � L2T �k2s C k�k2s /; � 2 HsCm.N IE/
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for any s. Replacing �j for � gives

k�jk2sC2 � CsC2.k�2j �jk2s C k�j k2s /;

that is,
k�jk2sC2 � CsC2.1C j�j j4/k�j k2s :

By induction, there is, for each k 2 N, a constant C 0
k such that

k�j k22k � C 0
k.1C j�j j4/kk�jk20

With k large enough, the Sobolev embedding theorem gives

k�j k2L1 � C.1C j�j j4/kk�jk20 for all j 2 J (7.12)

with some constant C . This proves (7.10), since k�jk0 D 1. To prove the second
statement, let  2 C1.N IE/ and pick an integer N . Then

j�j jN j.�j ;  /j D j.LNT �j ;  /j D j.�j ;LNT  /j � k�j k0 kLNT  k:

Then (7.11) follows, since k�j k0 D 1.

The estimates (7.12) can be used as in an argument of W. Allard presented in
Gilkey [5, Lemma 1.6.3], see also [10, Proposition 1.4.7], to prove:

Lemma 7.13. There are positive constants C and � such that

dim
M

�02spec0 .�iLT /
j�0j<�

E�0 � C��:

This and the estimates (7.11) give:

Lemma 7.14. Let f�j gj2J be an orthonormal basis of H q

@b
.N / consisting of

eigenvectors of �iLT . If  2 H
q

@b
.N / \ C1.N IE/, then the Fourier series

 D
X

j2J
. ; �j /�j

converges in C1.N IE/.
Of course, these lemmas are of interest only when H

q

@b
.N / is infinite dimen-

sional.

Remark 7.15. Suppose N with the CR structure Kˇ is nondegenerate. Let f�`g1̀D0
is an orthonormal basis of H 0

@b
.N / consisting of eigenfunctions of the operator
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(7.6). Using an invariant positive density to trivialize the bundle of densities, we
identify generalized functions and densities. If u is a CR distribution, then

u D
X

hu; �`i�`

with convergence in the space of generalized functions. This may be interpreted as a
global version of the Baouendi–Treves approximation formula [1] when written as

u D lim
L!1

LX

`D0
hu; �`i�`:

Proof (Proof of Theorem 7.1). Since Levi� is definite, the space H 0

@b
.N /\C1.N /

is infinite dimensional. Let f�`g1̀D0 be an orthonormal basis of H 0

@b
.N / as in

Example 7.15. Then properties (a–b) on page 418 imply

1. For all p0 2 N , spanfd�`.p0/ W ` D 0; 1; : : : g is the annihilator of Kˇ in
CT �

p0
N .

2. The functions �`, ` D 1; 2; : : : separate points of N .

This is proved in the same way as the analogous two statements in the proof of
Theorem 1.1, taking advantage of the fact that if f 2 H 0

@b
.N / \ C1.N /, then the

Fourier series
f D

X

`

.f; �`/�`

converges in C1.N /; see Lemma 7.14. As in the proof of Theorem 1.1, we
conclude that there is an embedding

F W N ! C
N

whose components j are CR functions with respect to Kˇ and satisfy �iT j D
�j 

j . We assume, making full use of (2), that the differentials of these component
functions span the annihilator of Kˇ at each p 2 N . By Lemma 5.1,

Dj C i�j j ˇ D 0; j D 1; : : : ; N

with �j D �i�j . The map QF in constructed from F as in Proposition 6.1 then has
components which are CR with respect to ˇ0 D ˇ C Du and maps into S2N�1. By
Proposition 6.9, QF is an immersion. However, while F is injective, QF may not be.
We will correct this by increasing the number of components of F .

Let w1; : : : ;wN be the complex coordinates in CN . The vector fields

R D
X

j

�j .w
j @wj C wj @wj /; T 0 D i

X

j

�j .w
j @wj � wj @wj /
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on CN are real and commute, so give a foliationF of CNn0 by real two-dimensional
submanifolds. Since JR D T , the leaves are one-dimensional complex (immersed)
submanifolds of CNn0. The leaves are parametrized by their intersection with
S2N�1, each intersection being an orbit of T 0 in the sphere (the leaves are analogues
of the complex lines forming CP

N�1). For % 2 C and w 2 CN n0 define

% � w D .e�1%w1; : : : ; e�N %wN /:

For each % 2 C and w 2 C
Nn0, % � w belongs to the leaf passing through w. Since

T j D i�j j , F�T D T 0, so F maps orbits to orbits. In particular, F maps orbits
of T into leaves of the foliation. Since the components of QF are e�i�j uj D e��j uj ,

QF .p/ D �u.p/ � F.p/;

which means that QF .p/ lies in the intersection of the leaf containing F.p/ and the
unit sphere. Using that F is injective, it is easy to see that the restriction of QF to any
orbit of T is injective. But it may happen that points p0, p1 2 N on different orbits
of T are mapped by F to the same leaf of F , so the two orbits are mapped to the
same orbit by QF with the effect that QF is not injective. To solve this problem, we
will increase the number of components of the original map F .

Let Z D f.p0; p1/ 2 N � N W p0 ¤ p1; QF .p0/ D QF .p1/g. We show that this is
a closed set. Suppose f.p0;k; p1;k/g is a sequence in Z that converges in N � N to
some point .p0; p1/. By continuity, QF .p0/ D QF .p1/. We will show that p0 ¤ p1,
and thus we conclude .p0; p1/ 2 Z. Suppose, to the contrary, that p0 D p1. Since QF
is an immersion, p0 has a neighborhoodU with the property that .p0

0; p
0
1/ 2 U �U

and QF .p0
0/ D QF .p0

1/ imply p0
0 D p0

1. This contradicts the existence of a sequence
in Z converging to .p0; p0/. Thus no point on the diagonal in N �N belongs to Z,
hence Z is indeed closed.

More generally, Z contains no pair .p0; p1/ such that p1 2 Op0 , the orbit of T
through p0. For if the latter relation holds for .p0; p1/ 2 Z, then QF .p0/ D QF .p1/
gives u.p0/ � F.p0/ D u.p1/ � F.p1/, but since u.p0/ D u.p1/ (because T u D 0),
F.p0/ D F.p1/. Since F is injective, p0 D p1, but we have already concluded that
W contains no point of the diagonal of N � N .

If .p0; p1/ 2 Z, then QF .p0/ D QF .p1/, so F.p0/ and F.p1/ belong to the same
leaf of F : Therefore, there is % 2 C such that F.p0/ D % � F.p1/, that is,

j .p0/ D e�j %j .p1/; j D 1; : : : ; N: (7.16)

If the real part of % vanishes, then F.p1/ and F.p0/ belong to the same orbit of T 0,
so p0 and p1 belong to the same orbit of T since F is injective. But then p0 D p1,
contradicting .p0; p1/ 2 Z. So R% ¤ 0. We will show later that

3. If R% ¤ 0, then f.p0; p1/ W �`.p0/ D e�`%�`.p1/ for all `g is empty.
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Granted this, we proceed as follows. Pick .p0; p1/ 2 Z. Associated with this
pair, there is a number %.p0; p1/ with R%.p0; p1/ ¤ 0 such that (7.16) holds. Pick
` such that

�`.p0/ ¤ e�`%.p0;p1/�`.p1/ (7.17)

taking advantage of (7). Fix some j0 such that j0.p1/ ¤ 0. Such j0 exists because
of Part (6.9) of Proposition 6.9. There is a neighborhoodU of .p0; p1/ in N �N in
which there is a unique continuous function % W U ! C such that

j .q0/ D e�j %.q0;q1/j0.q1/; .q0; q1/ 2 U

By continuity and because of (7.17), we may assume

�`.q0/ ¤ e�`%.q0;q1/�`.q1/; .q0; q1/ 2 U

shrinking U if necessary. Then, if F is augmented with the function �`, (7.16) will
cease to hold for .q0; q1/ 2 U and all the component functions of the augmented
map. Since Z is compact, we can cover it with finitely many such open sets and
augment the map F to a map F 0 W N ! CN

0

for which the construction of
Proposition 6.1 gives an injective map QF 0 W N ! S2N

0�1, hence an embedding.
Indeed, if QF 0.p0/ D QF 0.p1/, then, if p0 and p1 lie in the same orbit of T
then p0 D p1, and if p0 and p1 lie in different orbits, then (7.16) holds with
j D 1; : : : ; N 0, in particular j D 1; : : : ; N , with some % with nonzero real part
(determined by F , p0 and p1). So .p0; p1/ 2 Z, hence for some j with j > N we
must have j .p0/ ¤ e�j %j .p1/, contradicting (7.16).

To complete the proof, we show the validity of (7) (see page 424). Let % 2 C be
such that R% ¤ 0. We will assume that there is .p0; p1/ such that

8` W �`.p0/ D e�`%�`.p1/ (7.18)

and derive a contradiction. We first note that p0 ¤ p1, since there is ` such that
�`.p0/ ¤ 0 (and R% ¤ 0). If R% > 0, exchange p0 and p1, so we may assume
that (7.18) holds with R% < 0. By Part (6.9) of Proposition 6.9, all �` have the same
sign. Changing T to �T (and ˇ to �ˇ for the sake of consistency) if necessary,
we may assume that all �j are positive; this is already the case if Levi�ˇ is positive
definite, but we do not need this fact in our proof.

The estimate (7.10) applied to �`.p1/ gives

j�`.p0/j � C e�`R%=2 (7.19)

for some C > 0. Suppose u 2 H 0

@b
.N /. Then u has a restriction to the orbit

through p0. Let � W R ! N be the map �.t/ D at .p0/. Let W D Char �b;0.
The Fourier series u D P

` u`�`, u` D .u; �`/, converges in C�1
W .N / because

�b;0

Pk
`D0 u`�` D 0 for all k and �b;0 is elliptic off of W . So, since �� W
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C�1
W .N / ! C�1.R/ is continuous, ��u D P

u`ei�`t�`.p0/ in C�1.R/. Let
� 2 C1

c .R/. The Fourier transform of ���u is

X

`

u`b�.� � �`/�`.p0/

and the estimates (7.19) imply that .���u/b.�/ is rapidly decreasing in � (since
R% < 0). Thus ��u is smooth.

We will now show that there is u 2 H 0

@b
.N / such that ��u is not smooth using

a support function for the CR structure at p0 and a well-known trick used in the
study of hypoelliptic operators. Let .z; t/ be a hypoanalytic chart for the structure
V centered at p0, mapping its domain U to B � I where B is an open ball in
Cn centered at 0 and I � R is an open interval around 0. The vector fields @z� ,
� D 1; : : : ; n, @t , form a frame of V over U with dual frame Dz�, Dt , and

ˇ D
nX

�D1
ˇ�Dz� � iDt:

Since Dˇ D 0, the coefficients ˇ� are independent of t . Let

t 0 D t C 2R

2

4i

0

@
nX

�D1
ˇ�.p0/z

� C 1

2

nX

�;�D1

@̌ �

@z�
.p0/z

�z�

1

A

3

5 :

Since @z�ˇ� D @z�ˇ� (because Dˇ D 0),

iˇ � Dt 0 D i
nX

�D1

 

ˇ� � ˇ�.p0/�
nX

�D1

@̌ �

@z�
.p0/z

�

!

Dz�:

The right-hand side is D-closed, since the left-hand side is, and since the right-hand
side is independent of t and Dt , the form

b D i
nX

�D1

 

ˇ� � ˇ�.p0/ �
nX

�D1

@̌ �

@z�
.p0/z

�

!

dz�

is @-closed. Let ˛ solve @˛ D b in B and let

g D ˛ C t 0 � ˛.p0/�
nX

�D1

@˛

@z�
.p0/z

� � 1

2

nX

�;�D1

@2˛

@z�@z�
.p0/z

�z�

Then
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Dg D iˇ;

so Dg vanishes on Kˇ: g is a CR function.
It is easily verified that

g D t 0 C i
X

�;�

@̌ �

@z�
.p0/z

�z� C O.jzj3/:

On the other hand, the form �ˇ is given by

�ˇ D dt C i
nX

�D1
ˇ�dz� � i

nX

�D1
ˇ�dz�;

and

�id�ˇ D
nX

�;�D1

"
@̌ �

@z�
� ˇ�

@z�

#

dz� ^ dz�

using @z� ˇ� D @z�ˇ� . The vector fields

L� D @

@z�
C iˇ�

@

@t
; � D 1; : : : ; n

form a frame for Kˇ in U , and by hypothesis Levi�ˇ is positive definite. So the
matrix with coefficients

�id�ˇ.L�; L�/ D @̌ �

@z�
� ˇ�

@z�

is positive definite. It follows that the quadratic part of

Img D � i
2

nX

�:�D1

 
1

ˇ0

@̌ �

@z�
� 1

ˇ0

ˇ�

@z�

!

z�z� C O.jzj3/

at p0 is positive definite. Thus shrinking B , we may assume that

Img � cjzj2 for some c > 0:

Define

u0 D
Z 1

0

ei�g.1C �2/�1d�:

in U . The function u0 is CR (since g is) and in L2loc, but not in C1.U /. In fact,
WF.u0/ D f��ˇ.p0/ 2 T �

p0
N W � > 0g. Let � 2 C1

c .U / be equal to 1 near p0
and let G be Green’s operator for �b;1. The operator G, being a pseudodifferential
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operator of type .1=2; 1=2/, preserves wavefront set. Therefore, since @b�u0 is
smooth, so is @

?

bG@b�u0. Let

u D �u0 � @
?

bG@b�u0:

The pullback of @
?

bG@b�u0 to the orbit through p0 is smooth. The orbit through p0
intersects U on sets z D const.; in particular, f.z; t/ W z D 0g is part of the orbit.
On the latter set, g D t ; therefore the pullback of �u0 is equal to

Z 1

0

ei� t .1C �2/�1d�

near t D 0, which is not smooth. Thus for no pair .p0; p1/ does (7.18) hold.
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Analysis on two-dimensional surfaces and in particular on the sphere S2 found many
applications in computerized tomography, statistics, signal analysis, seismology,
weather prediction, and computer vision. During the last years, many problems
of classical harmonic analysis were developed for functions on manifolds and
especially for functions on spheres: splines, interpolation, approximation, different
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aspects of Fourier analysis, continuous and discrete wavelet transform, quadrature
formulas. Our list of references is very far from being complete [1–5], [7–10, 12–
15], [17–29, 31–33]. More references can be found in monographs [11, 18].

The goal of this chapter is to describe three types of cubature formulas on
general compact Riemannian manifolds which require essentially optimal number
of nodes. Cubature formulas introduced in Sect. 3 are exact on subspaces of band-
limited functions. Cubature formulas constructed in Sect. 4 are exact on spaces of
variational splines and, at the same time, asymptotically exact on spaces of band-
limited functions. In Sect. 5, we prove existence of cubature formulas with positive
weights which are exact on spaces of band-limited functions.

In Sect. 7, we prove that on homogeneous compact manifolds the product of
two band-limited functions is also band-limited. This result makes our findings
about cubature formulas relevant to Fourier transform on homogeneous compact
manifolds and allows exact computation of Fourier coefficients of band-limited
functions on compact homogeneous manifolds.

It is worth to note that all results of the first four sections hold true even for
non-compact Riemannian manifolds of bounded geometry. In this case, one has
properly define spaces of band-limited functions on non-compact manifolds [24].

Let M be a compact Riemannian manifold and L is a differential elliptic operator
which is self-adjoint inL2.M/ D L2.M; dx/, where dx is the Riemannian measure.
The spectrum of this operator, say 0 D �0 < �1 � �2 � : : : , is discrete
and approaches infinity. Let u0; u1; u2; : : : be a corresponding complete system of
real-valued orthonormal eigenfunctions, and let E!.L/; ! > 0; be the span of all
eigenfunctions of L, whose corresponding eigenvalues are not greater than !. For a
function f 2 L2.M/, its Fourier transform is the set of coefficients fcj .f /g, which
are given by formulas

cj .f / D
Z

M
f ujdx: (1.1)

By a discrete Fourier transform, we understand a discretization of the above formula.
Our goal in this chapter is to develop cubature formulas of the form

Z
M
f �

X
xk

f .xk/wk; (1.2)

where fxkg is a discrete set of points on M and fwkg is a set of weights.
When creating such formulas, one has to address (among others) the following
problems:

1. To make sure that there exists a relatively large class of functions on which such
formulas are exact.

2. To be able to estimate accuracy of such formulas for general functions.
3. To describe optimal sets of points fxkg for which the cubature formulas exist.
4. To provide “constructive” ways for determining optimal sets of points fxkg.
5. To provide “constructive” ways of determining weights wk .
6. To describe properties of appropriate weights.
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In the first five sections of this chapter, we construct cubature formulas on general
compact Riemannian manifolds and general elliptic second-order differential oper-
ators. Namely, we have two types of cubature formulas: formulas which are exact
on spaces E!.L/ (see Sect. 3), i.e.,

Z
M
f D

X
xk

f .xk/wk (1.3)

and formulas which are exact on spaces of variational splines (see Sect. 4).
Moreover, the cubature formulas in Sect. 4 are also asymptotically exact on the
spaces E!.L/: For both types of formulas, we address first five issues from the
list above. However, in the first four sections, we do not discuss the issue 6 from
the same list.

In Sect. 5, we construct another set of cubature formulas which are exact on
spaces E!.L/ which have positive weights of the “right” size. Unfortunately, for
this set of cubatures, we are unable to provide constructive ways of determining
weights wk .

If one considers integrals of the form (1.1), then in the general case we do not
have any criterion to determine whether the product f uj belongs to the space E!.L/
in order to have an exact relationZ

M
f uj D

X
xk

f .xk/uj .xk/wk; (1.4)

for cubature rules described in Sect. 1–4. However, if M is a compact homogeneous
manifolds, i.e., M D G=K , where G is a compact Lie group and K is its closed
subgroup and L is the second-order Casimir operator (see (6.2) below), then we can
show that for f; g 2 E!.L/, their product fg is in E4d!.L/, where d D dim G

(see Sect. 7).

2 Plancherel–Polya-Type Inequalities

Let B.x; r/ be a metric ball on M whose center is x and radius is r . The following
important lemma can be found in [24, 27].

Lemma 2.1. There exists a natural numberNM, such that for any sufficiently small
� > 0, there exists a set of points fy�g such that

(1) The balls B.y�; �=4/ are disjoint.
(2) The balls B.y�; �=2/ form a cover of M.
(3) The multiplicity of the cover by balls B.y�; �/ is not greater than NM:

Definition 1. Any set of points M� D fy�g which is as described in Lemma 2.1
will be called a metric �-lattice.
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To define Sobolev spaces, we fix a cover B D fB.y�; r0/g of M of finite
multiplicity NM (see Lemma 2.1)

M D
[
B.y�; r0/; (2.1)

where B.y�; r0/ is a ball centered at y� 2 M of radius r0 � �M; contained in a
coordinate chart, and consider a fixed partition of unity � D f �g subordinate to
this cover. The Sobolev spaces Hs.M/; s 2 R; are introduced as the completion of
C1.M/ with respect to the norm

kf kHs.M/ D
 X

�

k �f k2Hs.B.y� ;r0//

!1=2
: (2.2)

Any two such norms are equivalent. Note that spaces Hs.M/; s 2 R; are domains
of operators As=2 for all elliptic differential operators A of order 2. It implies, that
for any s 2 R, there exist positive constants a.s/; b.s/ (which depend on � , A)
such that

kf kHs.M/ � a.s/
�
kf k2L2.M/ C kAs=2f kL2.M/

�1=2 � b.s/kf kHs.M/ (2.3)

for all f 2 Hs.M/:
We are going to keep notations from the introduction. Since the operator L is of

order two, the dimension N! of the space E!.L/ is given asymptotically by Weyl’s
formula

N!.M/ � C.M/!n=2; (2.4)

where n D dimM.
The next two theorems were proved in [24, 28], for a Laplace–Beltrami operator

in L2.M/ on a Riemannian manifold M of bounded geometry, but their proofs
go through for any elliptic second-order differential operator in L2.M/. In what
follows, the notation n D dim M is used.

Theorem 2.2. There exist constants C1 > 0 and �0 > 0; such that for any natural
m > n=2, any 0 < � < �0, and any �-lattice M� D fxkg, the following inequality
holds: 0

@ X
xk2M�

jf .xk/j2
1
A
1=2

� C1�
�n=2kf kHm.M/; (2.5)

for all f 2 Hm.M/:

Theorem 2.3. There exist constantsC2 > 0; and �0 > 0; such that for any natural
m > n=2, any 0 < � < �0, and any �-lattice M� D fxkg, the following inequality
holds:
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kf kHm.M/ � C2

8̂
<
:̂�

n=2

0
@ X
xk2M�

jf .xk/j2
1
A
1=2

C �mkLm=2f kL2.M/

9>=
>; : (2.6)

As one can easily verify, the norm of L on the subspace E!.L/ (the span of
eigenfunctions whose eigenvalues � !) is exactly !. In particular, one has the
following Bernstein-type inequality:

kLsf kL2.M/ � !skf kL2.M/; s 2 RC; (2.7)

for all f 2 E!.L/. This fact and the previous two theorems imply the fol-
lowing Plancherel–Polya-type inequalities. Such inequalities are also known as
Marcinkiewicz–Zygmund inequalities.

Theorem 2.4. Set m0 D �
n
2

� C 1. If C1; C2 are the same as above, a.m0/ is from

(2.3), and c0 D �
1
2
C�1
2

�1=m0 then for any ! > 0, and for every metric �-lattice
M� D fxkg with � D c0!

�1=2, the following Plancherel–Polya inequalities hold:

C�1
1 a.m0/

�1.1C !/�m0=2
 X

k

jf .xk/j2
!1=2

� ��n=2kf kL2.M/

� .2C2/

 X
k

jf .xk/j2
!1=2

; (2.8)

for all f 2 E!.L/ and n D dim M.

Proof. Since L is an elliptic second-order differential operator on a compact
manifold which is self-adjoint and positive definite in L2.M/, the norm on the
Sobolev spaceHm0.M/ is equivalent to the norm kf kL2.M/CkLm0=2f kL2.M/. Thus,
the inequality (2.5) implies

0
@ X
xk2M�

jf .xk/j2
1
A
1=2

� C1a.m0/�
�n=2 �kf kL2.M/ C kLm0=2f kL2.M/

�
:

The Bernstein inequality shows that for all f 2 E!.L/ and all ! � 0,

kf kL2.M/ C kLm0=2f kL2.M/ � .1C !/m0=2kf kL2.M/:
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Thus, we proved the inequality

C�1
1 a.m0/

�1.1C !/�m0=2
0
@ X
xk2M�

jf .xk/j2
1
A
1=2

� ��n=2kf kL2.M/; f 2 E!.L/:

(2.9)
To prove the opposite inequality, we start with inequality (2.6) where m0 D�

n
2

�C 1. Applying the Bernstein inequality (2.7), we obtain

kf kL2.M/ � C2�
n=2

0
@ X
xk2M�

jf .xk/j2
1
A
1=2

C C2�
m0!m0=2kf kL2.M/; (2.10)

where f 2 E!.L/. Now we fix the following value for �:

� D
�
1

2
C�1
2

	1=m0
!�1=2 D c0!

�1=2; c0 D
�
1

2
C�1
2

	1=m0
:

With such �, the factor in the front of the last term in (2.10) is exactly 1=2. Thus,
this term can be moved to the left side of the formula (2.10) to obtain

1

2
kf kL2.M/ � C2�

n=2

0
@ X
xk2M�

jf .xk/j2
1
A
1=2

: (2.11)

In other words, we obtain the inequality

��n=2kf kL2.M/ � 2C2

0
@ X
xk2M�

jf .xk/j2
1
A
1=2

:

The theorem is proved.

It is interesting to note that our �-lattices (appearing in the previous theorems)
always produce sampling sets with essentially optimal number of sampling points.
In other words, the number of points in a sampling set for E!.L/ is “almost” the
same as the dimension of the space E!.L/ which is given by the Weyl’s formula
(2.4).

Theorem 2.5. If the constant c0 > 0 is the same as above, then for any ! > 0

and � D c0!
�1=2, there exist positive a1; a2 such that the number of points in any

�-lattice M� satisfies the following inequalities:

a1!
n=2 � jM�j � a2!

n=2I (2.12)
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Proof. According to the definition of a lattice M�, we have

jM�j inf
x2M Vol.B.x; �=4// � Vol.M/ � jM�j sup

x2M
Vol.B.x; �=2//

or

Vol.M/
supx2M Vol.B.x; �=2//

� jM�j � Vol.M/
infx2M Vol .B.x; �=4//

:

Since for certain c1.M/; c2.M/, all x 2 M and all sufficiently small � > 0, one
has a double inequality

c1.M/�n � Vol.B.x; �// � c2.M/�n;

and since � D c0!
�1=2; we obtain the inequalities (2.12) for certain a1 D

a1.M/; a2 D a2.M/:

3 Cubature Formulas on Manifolds Which are Exact
on Band-Limited Functions

Theorem 2.4 shows that if xk is in a � latticeM� and #k is the orthogonal projection
of the Dirac measure ıxk on the space E!.L/ (in a Hilbert spaceH�n=2�".M/; " >
0/, then there exist constants c1 D c1.M;L; !/ > 0; c2 D c2.M;L/ > 0; such that
the following frame inequality holds for all f 2 E!.L/

c1

 X
k

jhf; #kij2
!1=2

� ��n=2kf kL2.M/ � c2

 X
k

jhf; #kij2
!1=2

; (3.1)

where

hf; #ki D f .xk/; f 2 E!.L/:
From here by using the classical ideas of Duffin and Schaeffer about dual frames

[6], we obtain the following reconstruction formula.

Theorem 3.1. If M� is a �-lattice in Theorem 2.4 with � D c0!
�1=2, then there

exists a frame f�j g in the space E!.L/ such that the following reconstruction
formula holds for all functions in E!.L/

f D
X
xk2M�

f .xk/�k: (3.2)
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This formula implies that for any linear functional F on the space E!.L/, one has

F.f / D
X
xk2M�

f .xk/F.�k/; f 2 E!.L/:

In particular, we have the following exact cubature formula.

Theorem 3.2. If M� is a �-lattice in Theorem 2.4 with � D c0!
�1=2 and

�k D
Z

M
�k;

then for all f 2 E!.L/, the following holds:
Z

M
f D

X
xk2M�

f .xk/�k; f 2 E!.L/: (3.3)

Thus, we have a cubature formula which is exact on the space E!.L/. Now, we
are going to consider general functionsf 2 L2.M/. Let f! be orthogonal projection
of f onto space E!.L/. As it was shown in [30], there exists a constant Ck;m that
the following estimate holds for all f 2 L2.M/:

kf � f!kL2.M/ � Ck;m

!k
˝m�k

�Lkf; 1=!� ; k;m 2 N: (3.4)

Here the modulus of continuity is defined as

˝r.g; s/ D sup
j� j�s

k	r
�gk ; g 2 L2.M/; r 2 N; (3.5)

where

	r
�g D .�1/rC1

rX
jD0

.�1/j�1C j
r ej�.iL/g; � 2 R; r 2 N: (3.6)

Thus, by combining (3.3) and (3.4), we obtain the following theorem.

Theorem 3.3. There exists a c0 D c0.M;L/, and for any 0 � k � m; k;m 2 N;

there exists a constant Ck;m > 0 such that if M� D fxkg is a �-lattice with 0 < � �
c0!

�1, then for the same weights f�j g as in (3.3)

ˇ̌
ˇ̌
ˇ̌
Z

M
f �

X
xj

f!.xj /�j

ˇ̌
ˇ̌
ˇ̌ � Ck;m

!k
˝m�k

�Lkf; 1=!� ; (3.7)

where f! is the orthogonal projection of f 2 L2.M/ onto E!.L/.
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Note (see [30]) that f 2 L2.M/ belongs to the Besov space B˛2;1.M/ if and only if

˝m .f; 1=!/ D O.!�˛/;

when ! �! 1. Thus, we obtain that for functions in B˛2;1.M/, the following
relation holds:

ˇ̌
ˇ̌
ˇ̌
Z

M
f �

X
xj

�j f!.xj /

ˇ̌
ˇ̌
ˇ̌ D O.!�˛/; ! �! 1: (3.8)

4 Cubature Formulas on Compact Manifolds Which
are Exact on Variational Splines

Given a � lattice M� D fx
g and a sequence fz
g 2 l2, we will be interested to find
a function sk 2 H2k.M/; where k is large enough, such that

1. sk.x
 / D z
 ; x
 2 M�:

2. Function sk minimizes functional g ! kLkgkL2.M/.

We already know (2.5), (2.6) that for k � d the norm H2k.M/ is equivalent to the
norm

C1.�/kf kH2k.M/ � kLkf kL2.M/ C
0
@ X
x
2M�

jf .x
 /j2
1
A
1=2

� C2.�/kf kH2k.M/:

For the given sequence fz
g 2 l2, consider a function f from H2k.M/ such that
f .x
 / D z
 : Let Pf denote the orthogonal projection of this function f in the
Hilbert space H2k.M/ with the inner product

< f; g >D
X
x
2M�

f .x
 /g.x
 /C < Lk=2f;Lk=2g >

on the subspace U 2k.M�/ D ˚
f 2 H2k.M/jf .x
 / D 0



with the norm generated

by the same inner product. Then the function g D f �Pf will be the unique solu-
tion of the above minimization problem for the functional g ! kLkgkL2.M/; k � d .

Different parts of the following theorem can be found in [29].

Theorem 4.1. The following statements hold:

(1) For any function f fromH2k.M/; k � d; there exists a unique function sk.f /
from the Sobolev spaceH2k.M/; such that f jM� D sk.f /jM� I and this function
sk.f / minimizes the functional u ! kLkukL2.M/.



440 I.Z. Pesenson and D. Geller

(2) Every such function sk.f / is of the form

sk.f / D
X
x
2M�

f .x
 /L
2k



where the function L2k
 2 H2k.M/; x
 2 M� minimizes the same functional
and takes value 1 at the point x
 and 0 at all other points of M�.

(3) Functions L2k
 form a Riesz basis in the space of all polyharmonic functions
with singularities onM�, i.e., in the space of such functions fromH2k.M/ which
in the sense of distributions satisfy equation

L2ku D
X
x
2M�

˛
 ı.x
 /;

where ı.x
 / is the Dirac measure at the point x
 .
(4) If in addition the set M� is invariant under some subgroup of diffeomorphisms

acting onM , then every two functions L2k
 ; L
2k
� are translates of each other.

The crucial role in the proof of the above Theorem 4.1 belongs to the following
lemma which was proved in [24].

Lemma 4.2. A function f 2 L2.M/ satisfies equation

L2kf D
X
x
2M�

˛
 ı.x
 /;

where f˛
g 2 l2 if and only if f is a solution to the minimization problem stated
above.

Next, if f 2 H2k.M/; k � d; then f � sk.f / 2 U 2k.M�/, and we have for
k � d;

kf � sk.f /kL2.M/ � .C0�/
kkLk=2.f � sk.f //kL2.M/:

Using minimization property of sk.f /, we obtain the inequality

������f �
X
x
2M�

f .x
 /Lx


������
L2.M/

� .c0�/
kkLk=2f kL2.M/; k � d; (4.1)

and for f 2 E!.L/, the Bernstein inequality gives for any f 2 E!.L/
������f �

X
x
2M�

f .x
 /Lx


������
L2.M/

� .c0�
p
!/kkf kL2.M/; (4.2)

for k � d . The last inequality shows, in particular, that for any f 2 E!.L/ one has
the following reconstruction algorithm.
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Theorem 4.3. There exists a c0 D c0.M/ such that for any ! > 0 and anyM� with
� D c0!

�1, the following reconstruction formula holds in L2.M/-norm

f D lim
l!1

X
xj2M�

f .xj /L
.k/
xj
; k � d; (4.3)

for all f 2 E!.L/.
To develop a cubature formula, we introduce the notation

�.k/
 D
Z

M
L.k/x
 .x/dx; (4.4)

where Lx
 2 Sk.M�/ is the Lagrangian spline at the node x
 .

Theorem 4.4. (1) For any f 2 H2k.M/, one has

Z
M
f dx �

X
xj2M�

�
.k/
j f .xj /; k � d; (4.5)

and the error given by the inequality

ˇ̌
ˇ̌
ˇ̌
Z

M
f dx �

X
x
2M�

�.k/
 f .x
 /

ˇ̌
ˇ̌
ˇ̌ � Vol.M/.c0�/kkLk=2f kL2.M/; (4.6)

for k � d . For a fixed function f the right-hand side of (4.6) goes to zero as
long as � goes to zero.

(2) The formula (4.5) is exact for any variational spline f 2 Sk.M�/ of order k
with singularities on M�.

By applying the Bernstein inequality, we obtain the following theorem. This
result explains our term “asymptotically correct cubature formulas.”

Theorem 4.5. For any f 2 E!.L/, one has

ˇ̌
ˇ̌
ˇ̌
Z

M
f dx �

X
x
2M�

�.k/
 f .x
 /

ˇ̌
ˇ̌
ˇ̌ � Vol.M/.c0�

p
!/kkf kL2.M/; (4.7)

for k � d . If � D c0!
�1=2, the right-hand side in (4.7) goes to zero for all f 2

E!.L/ as long as k goes to infinity.
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5 Positive Cubature Formulas on Compact Manifolds

Let M� D fxkg; k D 1; : : : ; N.M�/; be a �-lattice on M. We construct the Voronoi
partition of M associated to the set M� D fxkg; k D 1; : : : ; N.M�/. Elements
of this partition will be denoted as Mk;�. Let us recall that the distance from each
point in Mj;� to xj is less than or equal to its distance to any other point of the
family M� D fxkg; k D 1; : : : ; N.M�/. Some properties of this cover of M are
summarized in the following Lemma. which follows easily from the definitions.

Lemma 5.1. The sets Mk;�; k D 1; : : : ; N.M�/; have the following properties:

1. They are measurable.
2. They are disjoint.
3. They form a cover of M.
4. There exist positive a1; a2, independent of � and the latticeM� D fxkg, such that

a1�
n � �

�Mk;�

� � a2�
n: (5.1)

In what follows, we are using partition of unity � D f �g which appears in (2.2).
Our next goal is to prove the following fact.

Theorem 5.2. Say � > 0, and let
˚Mk;�



be the disjoint cover of M which is

associated with a �-lattice M�. If � is sufficiently small, then for any sufficiently
large K 2 N, there exists a C.K/ > 0 such that for all smooth functions f the
following inequality holds:

ˇ̌
ˇ̌
ˇ̌
X
�

X
xk2M�

 �f .xk/ �Mk;� �
Z

M
f .x/dx

ˇ̌
ˇ̌
ˇ̌

� C.K/

KX
jˇjD1

�n=2Cjˇjk.I C L/jˇj=2f kL2.M/; (5.2)

where C.K/ is independent of � and the �-lattice M�.

Proof. We start with the Taylor series

 �f .y/ �  �f .xk/ D
X

1�j˛j�m�1

1

˛Š
@˛. �f /.xk/.xk � y/˛

C
X

j˛jDm

1

˛Š

Z �

0

tm�1@˛ �f .xk C t�/�˛dt; (5.3)

where f 2 C1.Rd /; y 2 B.xk; �=2/; x D .x.1/; : : : ; x.d//; y D
.y.1/; : : : ; y.d//; ˛ D .˛1; : : : ; ˛d /; .x � y/˛ D .x.1/ � y.1//˛1 : : : .x.d/ �
y.d//˛d ; � D kx � xik; � D .x � xi /=�:
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We are going to use the following inequality, which is essentially the Sobolev
imbedding theorem:

j. �f /.xk/j � Cn;m
X

0�j�m
�j�n=pk. �f /kW j

p .B.xk;�//
; 1 � p � 1; (5.4)

where m > n=p and the functions f �g form the partition of unity which we used
to define the Sobolev norm in (2.2). Using (5.4) for p D 1, we obtain the following
inequality:

ˇ̌
ˇ̌
ˇ̌

X
1�j˛j�m�1

1

˛Š
@˛. �f /.xk/.xk � y/˛

ˇ̌
ˇ̌
ˇ̌

� C.n;m/�j˛j X
1�j˛j�m

X
0�j
 j�m

�j
 j�nk@˛C
 . �f /kL1.B.xk;�//; m > n; (5.5)

for some C.n;m/ � 0. Since, by the Schwarz inequality,

k@˛. �f /kL1.B.xk;�// � C.n/�n=2k@˛. �f /kL2.B.xk ;�// (5.6)

we obtain the following estimate, which holds for small �:

sup
y2B.xk ;�/

ˇ̌
ˇ̌
ˇ̌

X
1�j˛j�m�1

1

˛Š
@˛. �f /.xk/.xk � y/˛

ˇ̌
ˇ̌
ˇ̌

� C.n;m/
X

1�jˇj�2m
�jˇj�n=2k@ˇ. �f /kL2.B.xk;�//; m > n: (5.7)

Next, using the Schwarz inequality and the assumption that m > n D dim M;
j˛j D m; we obtain

ˇ̌
ˇ̌
Z �

0

tm�1@˛ �f .xk C t�/�˛dt

ˇ̌
ˇ̌

�
Z �

0

tm�n=2�1=2jtn=2�1=2@˛ �f .xk C t�/jdt

� C

�Z �

0

t2m�n�1
	1=2 �Z �

0

tn�1j@˛ �f .xk C t�/j2dt
	1=2

� C�m�n=2
�Z �

0

tn�1j@˛ �f .xk C t�/j2dt
	1=2

; m > n:
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We square this inequality, and integrate both sides of it over the ball B.xk; �=2/,
using the spherical coordinate system .�; �/: We find

Z
B.xk;�/

ˇ̌
ˇ̌Z �

0

tm�1@˛ �f .xk C t�/�˛dt

ˇ̌
ˇ̌2 �n�1d�d�

� C.m; n/

Z �=2

0

�2m�n
Z 2

0

ˇ̌
ˇ̌Z �

0

tn�1@˛. �f /.xk C t�/�˛dt

ˇ̌
ˇ̌2 �n�1d�d�

� C.m; n/

Z �=2

0

tn�1
 Z 2

0

Z �=2

0

�2m�n j@˛. �f /.xk C t�/j2 �n�1d�d�

!
dt

� Cm;n�
2j˛jk@˛. �f /k2L2.B.xk;�//;

where � D kx � xkk � �=2; m D j˛j > n: Let
˚Mk;�



be the Voronoi cover of M

which is associated with a �-lattice M� (see Lemma 5.1). From here, we obtain

Z
Mk

j �f .y/ �  �f .xk/j dx

� C.n;m/
X

1�jˇj�2m
�jˇjCn=2k@ˇ. �f /kL2.B.xk;�//

C
X

j˛jDm

1

˛Š

Z
B.xk;�/

ˇ̌
ˇ̌Z �

0

tm�1@˛ �f .xk C t�/�˛dt

ˇ̌
ˇ̌

� C.n;m/
X

1�jˇj�2m
�jˇjCn=2k@ˇ. �f /kL2.B.xk;�//

C �n=2
X

j˛jDm

1

˛Š

 Z
B.xk;�/

ˇ̌
ˇ̌
Z �

0

tm�1@˛ �f .xk C t�/�˛dt

ˇ̌
ˇ̌2 �n�1d�d�

!1=2

� C.n;m/
X

1�jˇj�2m
�jˇjCn=2k@ˇ. �f /kL2.B.xk;�//: (5.8)

Next, we have the following inequalities:

X
�

X
xk2M�

 �f .xk/ �Mk;� �
Z

M
f .x/dx

D �
X
�

 X
k

Z
Mk;�

 �f .x/dx �
X
k

 �f .xk/ �Mk;�

!
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�
X
�

X
k

ˇ̌
ˇ̌
ˇ
Z
Mk;�

 �f .x/ �  �f .xk/ �Mk;�dx

ˇ̌
ˇ̌
ˇ

� C.n;m/�n=2
X
�

X
xk2M�

X
1�jˇj�2m

�jˇjk@ˇ. �f /kL2.B.xk;�//; (5.9)

where m > n: Using the definition of the Sobolev norm and elliptic regularity
of the operator I C L, where I is the identity operator on L2.M/, we obtain the
inequality (5.2).

Now we are going to prove existence of cubature formulas which are exact on
E!.M/ and have positive coefficients of the “right” size.

Theorem 5.3. There exists a positive constant a0, such that if � D a0.! C 1/�1=2,
then for any �-lattice M� D fxkg, there exist strictly positive coefficients �xk >
0; xk 2 M�, for which the following equality holds for all functions in E!.L/:

Z
M
f dx D

X
xk2M�

�xkf .xk/: (5.10)

Moreover, there exists constants c1; c2; such that the following inequalities hold:

c1�
n � �xk � c2�

n; n D dim M: (5.11)

Proof. By using the Bernstein inequality, and our Plancherel–Polya inequalities
(2.8), and assuming that

� <
1

2
p
! C 1

; (5.12)

we obtain from (5.2) the following inequality:

ˇ̌
ˇ̌
ˇ̌
X
�

X
xk2M�

 �f .xk/ �Mk;� �
Z

M
f .x/dx

ˇ̌
ˇ̌
ˇ̌ � C1�

n=2

KX
jˇjD1

�
�
p
1C!

�jˇj kf kL2.M/

� C2�
n
�
�
p
1C !

�0@ X
xk2M�

jf .xk/j2
1
A
1=2

; (5.13)

where C2 is independent of � 2 �0; .2p! C 1
��1
/ and the �-lattice M�.

Let R!.L/ denote the space of real-valued functions in E!.L/. Since the
eigenfunctions of L may be taken to be real, we have E!.L/ D R!.L/C iR!.L/,
so it is enough to show that (5.10) holds for all f 2 R!.L/.
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Consider the sampling operator

S W f ! ff .xk/gxk2M�;

which maps R!.L/ into the space R
jM� j with the `2 norm. Let V D S.R!.L// be

the image of R!.L/ under S . V is a subspace of RjM�j, and we consider it with the
induced `2 norm. If u 2 V , denote the linear functional y ! .y; u/ on V by `u.
By our Plancherel–Polya inequalities (2.8) , the map

ff .xk/gxk2M� !
Z

M
f dx

is a well-defined linear functional on the finite dimensional space V , and so equals
`v for some v 2 V , which may or may not have all components positive. On the
other hand, if w is the vector with components f�.Mk;�/g; xk 2 M�, then w might
not be in V , but it has all components positive and of the right size

a1�
n � �

�Mk;�

� � a2�
n;

for some positive a1; a2, independent of � and the lattice M� D fxkg. Since, for
any vector u 2 V , the norm of u is exactly the norm of the corresponding functional
`u, inequality (5.13) tells us that

kPw � vk � kw � vk � C2�
n
�
�
p
1C !

�
; (5.14)

where P is the orthogonal projection onto V . Accordingly, if z is the real vector
v � Pw, then

v C .I � P/w D w C z; (5.15)

where kzk � C2�
n
�
�
p
1C !

�
. Note, that all components of the vector w are

of order O.�n/, while the order of kzk is O.�nC1/. Accordingly, if �
p
1C ! is

sufficiently small, then � WD wC z has all components positive and of the right size.
Since � D v C .I �P/w, the linear functional y ! .y; �/ on V equals `v. In other
words, if the vector � has components f�xkg; xk 2 M�; then

X
xk2M�

f .xk/�xk D
Z

M
f dx

for all f 2 R!.L/, and hence for all f 2 E!.L/, as desired.

We obviously have the following result.

Theorem 5.4. (1) There exists a c0 D c0.M;L/, and for any 0 � k � m; k;m 2
N; there exists a constant Ck;m > 0 such that if M� D fxkg is a �-lattice with
0 < � � c0!

�1, then for the same weights f�xj g as in (5.10)
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ˇ̌
ˇ̌
ˇ̌
Z

M
f �

X
xj

f!.xj /�xj

ˇ̌
ˇ̌
ˇ̌ � Ck;m

!k
˝m�k

�Lkf; 1=!� ; (5.16)

(2) For functions in B˛2;1.M/, the following relation holds:

ˇ̌
ˇ̌
ˇ̌
Z

M
f �

X
xj

f!.xj /�xj

ˇ̌
ˇ̌
ˇ̌ D O.!�˛/; ! �! 1; (5.17)

where f! is the orthogonal projection of f 2 L2.M/ onto E!.L/.

6 Harmonic Analysis on Compact Homogeneous Manifolds

We review some very basic notions of harmonic analysis on compact homogeneous
manifolds [16], Chap. II.

Let M; dim M D n; be a compact connected C1-manifold. One says that a
compact Lie group G effectively acts on M as a group of diffeomorphisms if

1. Every element g 2 G can be identified with a diffeomorphism

g W M ! M

of M onto itself and

g1g2 � x D g1 � .g2 � x/; g1; g2 2 G; x 2 M;

where g1g2 is the product in G and g � x is the image of x under g.
2. The identity e 2 G corresponds to the trivial diffeomorphism

e � x D x: (6.1)

3. For every g 2 G; g ¤ e; there exists a point x 2 M such that g � x ¤ x.

A groupG acts on M transitively if in addition to (1)–(3) the following property
holds:

4) For any two points x; y 2 M, there exists a diffeomorphism g 2 G such that

g � x D y:

A homogeneous compact manifold M is a C1-compact manifold on which a
compact Lie group G acts transitively. In this case, M is necessarily of the form
G=K , whereK is a closed subgroup ofG. The notationL2.M/ is used for the usual
Banach spaces L2.M; dx/, where dx is an invariant measure.
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Every element X of the (real) Lie algebra of G generates a vector field on M,
which we will denote by the same letter X . Namely, for a smooth function f on M,
one has

Xf .x/ D lim
t!0

f .exp tX � x/ � f .x/
t

for every x 2 M. In the future, we will consider on M only such vector fields. The
translations along integral curves of such vector fields X on M can be identified
with a one-parameter group of diffeomorphisms of M, which is usually denoted as
exp tX;�1 < t < 1. At the same time, the one-parameter group exp tX;�1 <

t < 1; can be treated as a strongly continuous one-parameter group of operators
acting on the space L2.M/. These operators act on functions according to the
formula

f ! f .exp tX � x/; t 2 R; f 2 L2.M/; x 2 M:

The generator of this one-parameter group will be denoted by DX , and the group
itself will be denoted by

etDX f .x/ D f .exp tX � x/; t 2 R; f 2 L2.M/; x 2 M:

According to the general theory of one-parameter groups in Banach spaces, the
operatorDX is a closed operator on every L2.M/.

If g is the Lie algebra of a compact Lie groupG, then ([16], Chap. II,) it is a direct
sum g D a C Œg; g�, where a is the center of g and Œg; g� is a semi-simple algebra.
Let Q be a positive-definite quadratic form on g which, on Œg; g�, is opposite to the
Killing form. Let X1; : : : ; Xd be a basis of g, which is orthonormal with respect to
Q. Since the formQ is Ad.G/-invariant, the operator

�X2
1 �X2

2 � � � � �X2
d ; d D dim G

is a bi-invariant operator on G. This implies in particular that the corresponding
operator on L2.M/

L D �D2
1 �D2

2 � � � � �D2
d ; Dj D DXj ; d D dim G; (6.2)

commutes with all operators Dj D DXj . This operator L, which is usually called
the Laplace operator, is elliptic, and is involved in most of the constructions and
results of our chapter.

In the rest of this chapter, the notation D D fD1; : : : ;Dd g; d D dim G;

will be used for the differential operators on L2.M/; which are involved in the
formula (6.2).

There are situations in which the operatorL is, or is proportional to, the Laplace–
Beltrami operator of an invariant metric on M. This happens, for example, if M is
a n-dimensional torus, a compact semi-simple Lie group, or a compact symmetric
space of rank one.
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7 On the Product of Eigenfunctions of the Casimir Operator
L on Compact Homogeneous Manifolds

In this section, we will use the assumption that M is a compact homogeneous
manifold and that L is the operator of (6.2), in an essential way.

Theorem 7.1. If M D G=K is a compact homogeneous manifold and L is defined
as in (6.2), then for any f and g belonging to E!.L/, their product fg belongs to
E4d!.L/, where d is the dimension of the group G.

Proof. First, we show that if for an f 2 L2.M/ and a positive ! there exists a
constant C.f; !/ such that the following inequalities hold:

kLkf kL2.M/ � C.f; !/!kkf kL2.M/ (7.1)

for all natural k, then f 2 E!.L/. Indeed, assume that

�m � ! < �mC1

and

f D
1X
jD0

cj uj ; (7.2)

cj .f / D< f; uj >D
Z

M
f .x/uj .x/dx:

Then by the Plancherel Theorem

�2kmC1
1X

jDmC1
jcj j2 �

1X
jDmC1

j�kj cj j2 � kLkf k2L2.M/

� C2!2kkf k2L2.M/; C D C.f; !/;

which implies
1X

jDmC1
jcj j2 � C2

�
!

�mC1

	2k
kf k2L2.M/:

In the last inequality, the fraction !=�mC1 is strictly less than 1, and k can be any
natural number. This shows that the series (7.2) does not contain terms with j �
mC 1, i.e., the function f belongs to E!.L/.

Now, since every smooth vector field on M is a differentiation of the algebra
C1.M/, one has that for every operator Dj ; 1 � j � d; the following equality
holds for any two smooth functions f and g on M:

Dj .fg/ D fDjg C gDj f; 1 � j � d: (7.3)
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Using formula (6.2), one can easily verify that for any natural k 2 N, the term
Lk .fg/ is a sum of dk; .d D dimG/; terms of the following form:

D2
j1
: : : D2

jk
.fg/; 1 � j1; : : : ; jk � d: (7.4)

For everyDj , one has

D2
j .fg/ D f .D2

j g/C 2.Djf /.Dj g/C g.D2
j f /:

Thus, the function Lk .fg/ is a sum of .4d/k terms of the form

.Di1 : : : Dimf /.Dj1 : : : Dj2k�m
g/:

This implies that

ˇ̌Lk .fg/ˇ̌ � .4d/k sup
0�m�2k

sup
x;y2M

jDi1 : : : Dimf .x/j
ˇ̌
Dj1 : : : Dj2k�m

g.y/
ˇ̌
: (7.5)

Let us show that the following inequalities hold:

kDi1 : : : Dimf kL2.M/ � !m=2kf kL2.M/ (7.6)

and

kDj1 : : : Dj2k�m
gkL2.M/ � !.2k�m/=2kgkL2.M/ (7.7)

for all f; g 2 E!.L/. First, we note that the operator

�L D D2
1 C � � � CD2

d

commutes with every Dj (see the explanation before the formula (6.2)). The same
is true for L1=2. But then

kL1=2f k2L2.M/ D< L1=2f;L1=2f >D< Lf; f >

D �
dX
jD1

< D2
j f; f >D

dX
jD1

< Dj f;Dj f >D
dX
jD1

kDjf k2L2.M/;

and also

kLf k2L2.M/ D kL1=2L1=2f k2L2.M/ D
dX
jD1

kDjL1=2f k2L2.M/

D
dX
jD1

kL1=2Djf k2L2.M/ D
dX

j;kD1
kDjDkf k2L2.M/:
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From here, by induction on s 2 N, one can obtain the following equality:

kLs=2f k2L2.M/ D
X

1�i1;:::;is�d
kDi1 : : : Disf k2L2.M/; s 2 N; (7.8)

which implies the estimates (7.6) and (7.7). For example, to get (7.6), we take a
function f from E!.L/, an m 2 N and do the Following

kDi1 : : : Dimf kL2.M/ �
0
@ X
1�i1;:::;im�d

kDi1 : : : Dimf k2L2.M/

1
A
1=2

D kLm=2f kL2.M/ � !m=2kf kL2.M/: (7.9)

In a similar way, we obtain (7.7).
The formula (7.5) along with the formula (7.9) implies the estimate

kLk.fg/kL2.M/ � .4d/k sup
0�m�2k

kDi1 : : : Dimf kL2.M/kDj1 : : : Dj2k�m
gk1

� .4d/k!m=2kf kL2.M/ sup
0�m�2k

kDj1 : : : Dj2k�m
gk1: (7.10)

Using the Sobolev embedding theorem and elliptic regularity of L, we obtain for
every s > dimM

2

kDj1 : : : Dj2k�m
gk1 � C.M/kDj1 : : : Dj2k�m

gkHs.M/

� C.M/
˚kDj1 : : : Dj2k�m

gkL2.M/

CkLs=2Dj1 : : : Dj2k�m
gkL2.M/



; (7.11)

where Hs.M/ is the Sobolev space of s-regular functions on M. Since the operator
L commutes with each of the operators Dj , the estimate (7.9) gives the following
inequality:

kDj1 : : : Dj2k�m
gk1 � C.M/

˚
!k�m=2kgkL2.M/ C !k�m=2CskgkL2.M/




� C.M/!k�m=2 ˚kgkL2.M/ C !s=2kgkL2.M/




D C.M; g; !; s/!k�m=2; s >
dim M
2

: (7.12)

Finally, we have the following estimate:

kLk.fg/kL2.M/ � C.M; f; g; !; s/.4d!/k; s >
dim M
2

; k 2 N; (7.13)

which leads to our result. The theorem is proved.
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The Moment Zeta Function and Applications

Igor Rivin

Abstract Motivated by a probabilistic analysis of a simple game (itself inspired by
a problem in computational learning theory), we introduce the moment zeta function
of a probability distribution and study in depth some asymptotic properties of the
moment zeta function of those distributions supported in the interval Œ0; 1�: One
example of such zeta functions is Riemann’s zeta function (which is the moment
zeta function of the uniform distribution in Œ0; 1�: For Riemann’s zeta function, we
are able to show particularly sharp versions of our results.

Key words Asymptotics • Learning theory • Zeta functions
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Introduction

Consider the following setup: .˝; �/ is a space with a probability measure �, and
!1; : : : ; !n is a collection of measurable subsets of ˝ , with �.!i / D pi : We play a
game as follows: The j th step consists of picking a point xj 2 ˝ at random, so that
after k steps we have the set Xk D fx1; : : : ; xkg: The game is considered to be over
when

8i � n; Xk \ !i ¤ Xk:
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We consider the duration of our game to be a random variable T D T .p1; : : : ; pn/;

and wish to compute the expectation E.p1; : : : ; pn/ of T: This cannot, in general,
be done without knowing the measures pi1i2:::ik D �.!i1 \ !i2 \ � � � \ !ik /; and in
the sequel we will introduce the

Independence Hypothesis:

pi1i2:::ik D pi1 � � � � � pik :

Estimates without using the independence hypothesis are shown in the companion
paper [8].

We now assume further that we do not actually know the measures p1; : : : ; pn;

but know that they themselves are a sample from some (known) probability
distribution F , of necessity supported in Œ0; 1�: We consider E.p1; : : : ; pn/

defD
E..p// as our random variable, and we wish to compute its expectation (over the
space of all n-element samples from F ), and in particular we are interested in the
limiting situation when n is large.

Under the independence assumption, it turns out that we can write (Lemma 1.3):

E.p/ D
X

s�f1;:::;ng
.�1/jsj�1

�
1

1 � ps
� 1

�
; (1)

where if s D fi1; : : : ; ikg; we write ps D pi1 � � � � � pik : To use (1) to understand
the statistical behavior of T , we must introduce the moment zeta function of the
probability distribution F ; defined as follows:

Definition A Let mk D R 1

0
xkdF be the kth moment of F : Then

�F .s/ D
1X

kD1

ms
k I

The sum in the definition above obviously converges only in some half-plane
Rs > s0; the function can be analytically continued, but in the sequel, we will be
interested in asymptotic results for s a large real number, so this will not use complex
variable methods at all.

The relevance of this to our questions comes from Lemma 2.2, which we restate
for convenience as

Lemma B Let F be a probability distribution as above, and let x1; : : : ; xn be
independent random variables with common distribution F . Then

E

�
1

1 � x1 : : : xn

�
D �F .n/: (2)

In particular, the expectation is undefined whenever the zeta function is undefined.
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Now, we can write (using Lemma B) the following formal identity:

E.T / D �
nX

kD1

.�1/k

 
n

k

!
�F .k/: (3)

The identity is only formal, because �F .k/ is not necessarily defined for all positive
integers k: It is defined for all positive integers k when F.Œ1 � x; 1�/ � x˛; for
˛ > 1—this case is analyzed in Sect. 3. If ˛ D 1 (we will not deal with the case
˛ < 1 in this chapter; see [8]), we write

T D T1 � T 0;

where

T1 D
nX

iD1

1

1 � pi

:

T1 has infinite expectation, but as n goes to 1; T1=n does converge in distribution
to a stable law of exponent 1 (see [4] and [3] for many related results). The variable
T 0 does possess a finite expectation, given by

E.T 0/ D
nX

kD2

.�1/k

 
n

k

!
�F .k/: (4)

The expressions given by (3) and (4) are analyzed in Sects. 3 and 4, and the
following theorems are shown:

Theorem C (Thm. 3.5) Let F be a continuous distribution supported on Œ0; 1�; and
let f be the density of F : Suppose further that

lim
x!1

f .x/

.1 � x/ˇ
D c;

for ˇ; c > 0: Then,

lim
n!1 n

� 1
1Cˇ

"
nX

kD1

 
n

k

!
.�1/k�F .k/

#

D �
Z 1

0

1 � exp
��c� .ˇ C 1/u1Cˇ

�

u2
du

D � .c� .ˇ C 1//
1

ˇC1 �

�
ˇ

ˇ C 1

�
:

and
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Theorem D (Thm. 4.8) Let F be a continuous distribution supported on Œ0; 1�; and
let f be the density of F : Suppose further that

lim
x!1

f .x/

.1 � x/
D c > 0:

Then,
nX

kD2

 
n

k

!
.�1/k�F .k/ � cn log n:

To get error estimates, we need stronger assumption on the function f than the
weakest possible assumption made in Theorem 4.8. The proof of the below follows
by modifying slightly the proof of Lemma 4.7:

Theorem E (Thm. 4.9) Let F be a continuous distribution supported on Œ0; 1�; and
let f be the density of F : Suppose further that

f .x/ � c.1 � x/ C O
�
.1 � x/ı

�
;

where ı > 0: Then,

nX

kD2

 
n

k

!
.�1/k�F .k/ � cn log n C O.n/:

Our original probabilistic problem is thus completely resolved, but the sums
given by (3) and (4) are interesting in and of itself, and, with some more work
(Sect. 5), we can considerably strengthen the results above as follows for the
Riemann zeta function and its scaling:

Theorem F (Thm. 5.1)

nX

kD2

 
n

k

!
.�1/k�.k/ � n log n C .2� � 1/n C O

�
1

n

�
;

where � is the Riemann zeta function and � is Euler’s constant.

Theorem G (Thm. 5.2) Let s > 1; and then

nX

kD1

 
n

k

!
.�1/k�.sk/ � �

�
1 � 1

s

�
n

1
s :

It should be remarked that using the methods of Sect. 5, higher-order terms in the
asymptotics can be obtained, if desired, but they seem to be of more limited interest.
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1 A Formula for the Winning Time T

An application of the inclusion–exclusion principle gives us the following:

Lemma 1.1. The probability lk that we have won after k steps is given by

lk D
nY

iD1

.1 � pk
i /:

Note that the probability sk of winning the game on the kth step is given by
sk D lk � lk�1 D .1 � lk�1/ � .1 � lk/. Since the expected number of steps T is
given by

E.T / D
1X

kD1

ksk;

we immediately have

T D
1X

kD1

.1 � lk/:

Lemma 1.2.

E.T / D
1X

kD1

 
1 �

nY

iD1

�
1 � pk

i

�
!

: (5)

Since the sum above is absolutely convergent, we can expand the products and
interchange the order of summation to get the formula (6) for E.T /:

Notation. Below, we identify subsets of f1; : : : ; ng with multindexes (in the
obvious way), and if s D fi1; : : : ; ilg; then

ps
defD pi1 � � � pil :

Lemma 1.3. The expression (5) can be rewritten as

E.T / D
X

s�f1;:::;ng
.�1/jsj�1

�
1

1 � ps

� 1

�
: (6)

Proof. With notation as above,

mY

iD1

�
1 � pk

i

� D
X

s�f1;:::;ng
.�1/jsjpk

s ;
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so

E.T / D
1X

kD1

 
1 �

nY

iD1

�
1 � pk

i

�
!

D
1X

kD1

0

@1 �
X

s�f1;:::;ng
.�1/jsjpk

s

1

A

D
X

s�f1;:::;ng
.�1/jsj�1

1X

kD1

pk
s

D
X

s�f1;:::;ng
.�1/jsj�1

�
1

1 � ps

� 1

�
;

where the change in the order of summation is permissible since all sums converge
absolutely.

Formula (6) is useful in and of itself, but we now use it to analyze the statistical
properties of the time of success T under our distribution and independence
assumptions. For this, we shall need to study the moment zeta function of a
probability distribution, introduced below.

2 Moment Zeta Function

Definition 2.1. Let F be a probability distribution on a (possibly infinite) interval
I , and let mk.F/ D R

I
xkF.dx/ be the kth moment of F . Then the moment zeta

function of F is defined to be

�F .s/ D
1X

kD1

ms
k.F/;

whenever the sum is defined.

The definition is, in a way, motivated by the following:

Lemma 2.2. Let F be a probability distribution as above, and let x1; : : : ; xn be
independent random variables with common distribution F . Then

E

�
1

1 � x1 : : : xn

�
D �F .n/: (7)

In particular, the expectation is undefined whenever the zeta function is undefined.
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Proof. Expand the fraction in a geometric series and apply Fubini’s theorem.

Example 2.3. For F the uniform distribution on Œ0; 1�, �F is the familiar Riemann
zeta function.

Our first observation is that for distributions supported in Œ0; 1�, the asymptotics
of the moments are determined by the local properties of the distribution at x D 1:

To show this, first recall that the Mellin transform of f is defined to be

M.f /.s/ D
Z 1

0

f .x/xs�1dx:

Mellin transform is closely related to the Laplace transform. Making the substitution
x D exp.�u/, we see that

M.f / D
Z 1

0

f .exp.�u// exp.�su/ du;

so the Mellin transform of f is equal to the Laplace transform of f ı exp; where ı
denotes functional composition.

The following observation is both obvious and well-known:

Lemma 2.4. mk.F/ D M.f /.k C 1/:

It follows that computing the asymptotic behavior of the kth moment of F as a
function of k reduces to calculating the large s asymptotics of the Mellin transform,
which is tantamount to computing the asymptotics of the Laplace transform of
f ı exp :

Theorem 2.5. Let F be a continuous distribution supported in Œ0; 1�; let f be the
density of the distribution F , and suppose that f .1�x/ D cxˇ CO.xˇCı/; for some
ı > 0: Then the kth moment of F is asymptotic to C k�.1Cˇ/; for C D c� .ˇ C 1/:

Proof. The asymptotics of the Laplace transform are easily computed by Laplace’s
method, and in the case we are interested in, Watson’s lemma (see, e.g., [1]) tells us
that if f .x/ � c.1 � x/ˇ , then M.f /.s/ � c� .ˇ C 1/s�.ˇC1/:

Corollary 2.6. Under the assumptions of Theorem 2.5, �F .s/ is defined for s >

1=.1 C ˇ/.

We will need another observation:

Lemma 2.7. For F supported in Œ0; 1�, mk.F/ is monotonically decreasing as a
function of k:

Proof. Immediate.

Below, we shall analyze three cases. In the sequel, we set ˛ D ˇ C 1.
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3 ˛ > 1

In this case, we use our assumptions to rewrite (6) as

E.T / D �
nX

kD1

 
n

k

!
.�1/k�F .k/: (8)

This, in turn, can be rewritten (by expanding the definition of zeta) as

E.T / D �
1X

j D1

��
1 � mj .F/

�n � 1
� D

1X

j D1

�
1 � �

1 � mj .F/
�n�

: (9)

Since the terms in the sum are monotonically decreasing (as a function of j )
by Lemma 2.7, the sum in (9) can be approximated by an integral of any
monotonic interpolation m of the sequence mj .F/—we will interpolate by
m.x/ D M.f /.x C 1/). The error of such an approximation is bounded by the
first term, which, in turn, is bounded in absolute value by 2, to get

T D �
Z 1

1

Œ.1 � m.x//n � 1� dx C O.1/; (10)

where the error term is bounded above by 2. We shall write

T0 D �
Z 1

1

Œ.1 � m.x//n � 1� dx:

Now, let us assume that

lim
x!1 x˛m.x/ D L; (11)

for some ˛ > 1: We substitute x D n1=˛=u, to get

T0 D n
1
˛

Z n
1
˛

0

�
1 � �

1 � m.n1=˛=u/
�n�

u2
du D n

1
˛ ŒI1.n/ C I2.n/� ;

where

I1.n/ D
Z n

1
3˛

0

�
1 � .1 � m.n1=˛=u/n

�

u2
du;

and

I2.n/ D
Z n

1
˛

n
1

3˛

�
1 � .1 � m.n1=˛=u/n

�

u2
du:

We will need the following:
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Lemma 3.1. Let fn.x/ D .1 � x=n/n; and let 0 � x < 1=2:

fn.x/ D exp.�x/

�
1 � x2

2n
C O

�
x3

n2

�	
:

Proof. Note that

log fn.x/ D n log.1 � x=n/ D �x �
1X

kD2

xk

knk�1
:

The assertion of the lemma follows by exponentiating the two sides of the above
equation.

Lemma 3.2.

lim
n!1 n

1
˛ I2.n/ D 0:

Proof. The integrand of I2.n/ is monotonically decreasing, and so

I2.n/ � n� 2
3˛

h
1 �



1 � m



n

2
3˛

��ni
:

By our assumption (11) and by Lemma 3.1, we see that the right-hand side goes to
zero (exponentially fast).

Lemma 3.3.

lim
n!1 I1.n/ D

Z 1

0

1 � exp .�Lu˛/

u2
du:

Proof. Immediate from (11) and Lemma 3.1. Note that the integral converges when
˛ is greater than 1:

Remark 3.4.

Z 1

0

1 � exp .�Lu˛/

u2
du D L

1
˛ �

�
˛ � 1

˛

�
:

Proof.

Z 1

0

1 � exp .�Lu˛/

u2
du D lim

�!0

�
1

�
�
Z 1

�

exp .�Lu˛/

u2
du

	
:

To prove the remark, we need to analyze the behavior of the integral above as � ! 0:

First, we change variables: v D Lu˛: Then,
Z 1

�

exp .�Lu˛/

u2
du D L1=˛

˛

Z 1

L�˛

exp.�v/v�.1C1=˛/dv:
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Integrating by parts, get

Z 1

L�˛

exp.�v/v�.1C1=˛/dv D �˛ exp.�v/v1=˛
ˇ̌1
L�˛ � ˛

Z

L�˛

exp.�v/v�1=˛:

Since 1=˛ < 1;
R1

0
exp.�v/v�1=˛dv D � .1 � 1=˛/; from which the assertion of

the remark follows.

We summarize as follows:

Theorem 3.5. Let F be a continuous distribution supported on Œ0; 1�; and let f be
the density of F : Suppose further that

lim
x!1

f .x/

.1 � x/ˇ
D c;

for ˇ; c > 0: Then,

lim
n!1 n

� 1
1Cˇ

"
nX

kD1

 
n

k

!
.�1/k�F .k/

#

D �
Z 1

0

1 � exp
��c� .ˇ C 1/u1Cˇ

�

u2
du

D � .c� .ˇ C 1//
1

ˇC1 �

�
ˇ

ˇ C 1

�
:

Proof. The assertion follows from Lemmas 3.3 and 3.2 together with Theorem 2.5
and Remark 3.4.

4 ˛ D 1

In this case,
f .x/ D L C o.1/ (12)

as x approaches 1; and so Theorem 2.5 tells us that

lim
j !1 jmj .F/ D L: (13)

It is not hard to see that �F .n/ is defined for n � 2. We break up the expression in
(6) as

T D
nX

j D1

1

1 � pj

� 1 C
X

s�f1;:::;ng; jsj>1

.�1/jsj�1

�
1

1 � ps

� 1

�
: (14)
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Let

T1 D
nX

j D1

1

1 � pj

� 1;

T2 D
X

s�f1;:::;ng; jsj>1

.�1/jsj�1

�
1

1 � ps

� 1

�
:

The first sum T1 has infinite expectation; however, T1=n does have a stable
distribution centered on c log n C c2. We will keep this in mind, but now let us
look at the second sum T2. It can be rewritten as

T2.n/ D �
1X

j D1

��
1 � mj .F/

�n � 1 C nmj .F/
�

: (15)

Lemma 4.1. The quantity yj D �
1 � mj .F/

�n � 1 C nmj .F/ is a monotonic
function of j:

Proof. We know that mj .F/ is a monotonically decreasing positive function of j;

and that m0.F/ D 1: It is sufficient to show that the function gn.x/ D .1�x/n Cnx

is monotonic for x 2 .0; 1�: We compute

dgn.x/

dx
D n

�
1 � .1 � x/n�1

�
> 0;

for x 2 .0; 1/:

Lemma 4.1 allows us to use the same method as in Sect. 3 under the assumption
that the kth moment is asymptotic to k˛ (this time for ˛ � 1). Since the term yj is
bounded above by a constant times n, we can write

T2.n/ D S2.n/ C O.n/; (16)

where

S2.n/ D n

Z n

0

Œ1 � nm.n=u/ � .1 � m.n=u/n�

u2
du: (17)

Remark 4.2. The error term in (16) above can be improved in the case where F is
the uniform distribution on Œ0; 1�; in which case mj D 1=j: In that case T2.n/ D
S2.n/ � �n C O.1/; where � is Euler’s constant.
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Proof. In this case, we write

T2.n/ D lim
k!1 �

kX

j D1

��
1 � mj .F/

�n � 1 C nmj .F/
�

D �
kX

j D1

��
1 � mj .F/

�n � 1
� � n

kX

j D1

mj :

The terms in the first sum are decreasing, so the first sum can be approximated by
an integral with total error O.1/: As for the second sum, since mj D 1=j; it is
well-known (e.g., Euler–Maclaurin summation) that

kX

j D1

1

j
D
Z k

1

dx

x
C � C O

�
1

k

�
;

from which the assertion of the remark follows.

To understand the asymptotic behavior of S2.n/, we write

S2.n/ D n ŒI1.n/ C I2.n/ C I3.n/ C I4.n/� ;

where

I1.n/ D R 1

0

h
1 � nm.n=u/ �



1 � m


n

u

��ni

u2
du; (18)

I2.n/ D R n

1

3
1

"
1�
 

1�m

 
n

u

!!n#

u2 du; (19)

I3.n/ D R n

n

1

3

"
1�
 

1�m

 
n

u

!!n#

u2 du; (20)

I4.n/ D �n
R n

1
m.n=u/

u2 du: (21)

Lemma 4.3.

lim
n!1 I1.n/ D

Z 1

0

1 � exp .�Lu/ � Lu

u2
du:

Proof. Immediate from the estimate (13) and Lemma 3.1.

Lemma 4.4.

lim
n!1 I2.n/ D

Z 1

1

1 � exp .�Lu/

u2
du:

Proof. Again, immediate from (13) and Lemma 3.1.
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Remark 4.5.

Z 1

0

1 � exp .�Lu/ � Lu

u2
C
Z 1

1

1 � exp .�Lu/

u2
D L.1 � � � log L/;

where � is Euler’s constant.

Proof.

Z 1

0

1 � exp .�Lu/ � Lu

u2
du C

Z 1

1

1 � exp .�Lu/

u2
du

D lim
�!0

�
�
Z 1

�

�
exp.�Lu/

u2
C 1

u2

	
du � L

Z 1

�

du

u



D lim
�!0

�
1

�
C L log � �

Z 1

�

exp.�Lu/

u2
du


: (22)

To evaluate the last limit, we need to compute the expansion as � ! 0 of the last
integral. Changing variables v D Lu; we get

Z 1

�

exp.�Lu/

u2
du D L

Z 1

L�

exp.�v/

v2
dv

D L

�
� exp.�v/

v

ˇ̌
ˇ̌
1

L�

�
Z 1

L�

exp.�v/

v
dv

	

D L

�
exp.�v/

L�
� exp.�v/ log.v/j1L� �

Z 1

L�
exp.�v/ log.v/dv

	

D exp.�L�/

�
C L exp.�L�/ log.�/

CL log L exp.�L�/ � L

Z 1

L�
exp.�v/ log.v/dv:

Substituting into (22), we get
Z 1

0

1 � exp .�Lu/ � Lu

u2
du C

Z 1

1

1 � exp .�Lu/

u2
du

D lim
�!0

�
1 � exp.�L�/

�
C L.1 � exp.�L�// log �

�L log L exp.�L�/ C
Z 1

L�

exp.�v/ log vdv



D L

�
1 � log L C

Z 1

L�

exp.�v/ log vdv

�
:

Since
R1

0 log.x/ exp.�x/dx D ��; the result follows.
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Lemma 4.6.

lim
n!1 nI3.n/ D 0:

Proof. See the proof of Lemma 3.2.

Lemma 4.7.

lim
n!1 �I4.n/

log n
D L:

Proof. We shall show that the limit in question lies between .1 � �/L and .1 C �/L;

for any � > 0; from which the conclusion of the lemma obviously follows. To do
that, pick C; such that

1 � �=4 � xm.x/ � 1 C �=4

for x > C: Now, write
Z n

1

m.n=u/

u2
du D J1.n/ C J2.n/;

where

J1.n/ D
Z n

C

1

m.n=u/

u2
du (23)

J2.n/ D
Z n

n
C

m.n=u/

u2
du: (24)

Observe that

0 < J2.n/ D 1

n

Z C

1

m.x/dx � C � 1

n
;

while

1 � �=4

n

Z n
C

1

du

u
� J1.n/ � 1 C �=4

n

Z n
C

1

du

u
;

so

.1 � �=4/

n
.log n � log C / � J1.n/ � .1 C �=4/

n
.log n � log C /:

If we now pick N D C 4=�; it is clear that for n > N;

.1 � �=2/ log n � J1.n/ � .1 C �=2/ log n;

while J2 is bounded above in absolute value by C 1�4=�:

The above lemmas can be summarized in the following:
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Theorem 4.8. Let F be a continuous distribution supported on Œ0; 1�; and let f be
the density of F : Suppose further that

lim
x!1

f .x/

.1 � x/
D c > 0:

Then,
nX

kD2

 
n

k

!
.�1/k�F .k/ � cn log n:

To get error estimates, we need stronger assumption on the function f than the
(weakest possible) assumption made in Theorem 4.8. The proof of the below follows
by modifying slightly the proof of Lemma 4.7:

Theorem 4.9. Let F be a continuous distribution supported on Œ0; 1�; and let f be
the density of F : Suppose further that

f .x/ � c.1 � x/ C O
�
.1 � x/ı

�
;

where ı > 0: Then,

nX

kD2

 
n

k

!
.�1/k�F .k/ � cn log n C O.n/:

5 Riemann Zeta Function

The proof of the key Lemma 4.7 is trivial in the case where f .x/ D 1; and so
�F is the Riemann zeta function. In that case, however, we get the following much
stronger result:

Theorem 5.1.

nX

kD2

 
n

k

!
.�1/k�.k/ � n log n C .2� � 1/n C O

�
1

n

�
;

where � is the Riemann zeta function and � is Euler’s constant.

It should also be noted that the results of Sect. 3 immediately imply the following:

Theorem 5.2. Let s > 1; then

nX

kD1

 
n

k

!
.�1/k�.sk/ � �

�
1 � 1

s

�
n

1
s :
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To prove Theorem 5.1, we need to sharpen some of the estimates of the preceding
section. First:

Lemma 5.3. Let the notation be as in the preceding section. When m.x/ D 1
x
;

I1.n/ D
Z 1

0

1 � exp .�u/ � u

u2
du C 1

2n

Z 1

0

exp.�u/ du C O

�
1

n2

�
; (25)

I2.n/ D
Z 1

1

1 � exp .�u/

u2
du C 1

2n

Z 1

1

exp.�u/ du: (26)

Proof. Immediate from the expansion in Lemma 3.1.

We can also sharpen the statement of Lemma 4.6:

Lemma 5.4.

lim
n!1 nkI3.n/ D 0;

for any k:

Proof. This statement holds in general, and no change in argument is necessary.

In the case where m.x/ D 1=x; Lemma 4.7 is immediate, and has no error term:

Lemma 5.5.

I4.n/ D � log.n/:

Proof. Immediate.

We now have the following:

Theorem 5.6.

nX

kD2

 
n

k

!
.�1/k�.k/ � n log n C .2� � 1/n C O .1/ ;

Proof. Lemmas 5.3–5.5, combined with Remark 4.2.

Remark 5.7. A statement of a similar flavor can be found in [7, 262.1–2]

To improve the error term from that in Theorem 5.6, it is necessary to sharpen
the estimate in Remark 4.2 to the following:

Theorem 5.8. With the notation of Remark 4.2,

T2.n/ D S2.n/ � �n � 1

2
C O

�
1

n

�
:
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Proof. The theorem will follow immediately from Lemma 5.9 and the results of
Sect. 5.1.

Lemma 5.9.

lim
N !1

NX

j D1

1

j
� log.n/ D �:

Proof. Well-known.

5.1 A Sum and an Integral

Let

Sn.N / D
NX

j D1

�
1 � 1

j

�n

;

In.N / D
Z N

1

�
1 � 1

x

�n

dx;

Dn.N / D Sn.N / � In.N /;

Dn D lim
N !1 Dn.N /:

In this section, we shall prove the following result:

Theorem 5.10.

Dn D 1

2
C o

�
1

n

�
:

We will need the following preliminary results:

Lemma 5.11. Let f be a C 1 function defined on Œ0; 1/: Then

NX

kD0

f .k/ D 1

2
Œf .0/ C f .N /� C

Z N

0

f .t/dt C
Z N

0

�
ftg � 1

2

�
f 0.t/dt:

Proof. Integration by parts—see Exercises for Sect. 6.7 of [1].

Lemma 5.12. Let f be a C 2 function defined on Œ0; 1/; such that f 00 is bounded,
and f 00.x/ D O.1=x2/: Then

ˇ̌
ˇ̌
ˇ

1X

kD0

Z kC1
n

k
n

 
x � k C 1

2

n

!
f .x/dx � 1

4n3

1X

kD0

f 0
 

k C 1
2

n

!ˇ̌
ˇ̌
ˇ D O

�
1

n4

�
:
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Proof. On the interval Œk=n; .k C 1/=n�, we can write

f .x/ D f

 
k C 1

2

n

!
C f 0

 
k C 1

2

n

! 
x � k C 1

2

n

!
C R2.x/; (27)

where, by Taylor’s theorem, jR2.x/j � x2 maxx2Œk=n;.kC1/=n� f
00.x/: The assertion

of the lemma then follows by integration of (27).

Lemma 5.13. Under the assumptions of Lemma 5.12, together with the assumption
that f and all of its derivatives vanish at 0

ˇ̌
ˇ̌
ˇ

1X

kD0

f 0
 

k C 1
2

n

!ˇ̌
ˇ̌
ˇ D O

�
1

n

�
:

Proof. Let g.y/ D f 0..x C 1=2/=n/: Then,

1X

kD0

f 0
 

k C 1
2

n

!
D

1X

kD0

g.k/

D 1

2
g.0/ C

Z 1

0

g.x/dx C
Z 1

0

�
fxg � 1

2

�
g0.x/dx

D 1

2
f 0
�

1

2n

�
C
Z 1

0

f 0
 

x C 1
2

n

!
dx C O

�
1

n

�

D n

Z 1
1

2n

f 0.x/dx C O

�
1

n

�

D O

�
1

n

�
:

Now we proceed to the proof of Theorem 5.10. First:

Lemma 5.14.

Dn D 1

2
C n

Z 1

1

�fxg � 1
2

� �
1 � 1

x

�n�1

x2
dx:

Proof. Immediate corollary of Lemma 5.11.

Proof (Proof of Theorem 5.10). By Lemma 5.14, it remains to analyze the asymp-
totic behavior of

Jn D .n C 1/

Z 1

1

�fxg � 1
2

� �
1 � 1

x

�n

x2
dx:
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(the expression occurring in Lemma 5.14 is actually Jn�1; we have changed the
variable for notational convenience). First, we make the substitution x D ny, to get

Jn D .n C 1/

n

Z 1
1
n

�fnyg � 1
2

� 

1 � 1

ny

�n

y2
dx

„ ƒ‚ …
Kn

;

where clearly Jn � Kn: We now write

Kn D

2

66664

Z n� 1
3

1
n„ƒ‚…
K0

n

C
Z 1

n� 1
3„ƒ‚…

K00
n

3

77775

�fnyg � 1
2

� 

1 � 1

ny

�n

y2
dx:

The integrand of K 0
n is bounded above by



1 � n� 2

3

�n

;

while the interval of integration is polynomial in length, which implies that K 0
n

decreases faster than any power of n; and so can be ignored for our purposes. On
the other hand, Lemma 3.1 implies that

K 00
n �

Z 1

0

�
fnyg � 1

2

� exp


� 1

y

�

y2
dy

D
1X

kD0

Z kC1
n

k
n

�
ny � 1

2
� k

	 exp


� 1

y

�

y2
dy

D n

1X

kD0

Z kC1
n

k
n

"
y � k C 1

2

n

#
exp



� 1

y

�

y2
dy:

We can now apply Lemmas 5.12 and 5.13 with

f .x/ D
exp



� 1

y

�

y2
I

it is easy to check that f .x/ satisfies the assumptions. Theorem 5.10 follows.
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1 Introduction

In a recent monograph [7], Green, Griffiths, and Kerr propose a general theory of
Mumford–Tate domains in order to examine new problems on arithmetic, geometry,
and representation theory, generalizing the well-established results of the theory
of Shimura varieties. In the last section of this monograph, they formulate an
algebraic independence conjecture for points in period domains. This conjecture has
its genesis in Grothendieck’s period conjecture for algebraic varieties (see [1,6,10]).

Transcendence and linear independence properties of periods of 1-forms on
abelian varieties defined over number fields are well understood, even though only
a few more general algebraic independence results have been established. Using the
linear independence properties, we can deduce results about the transcendence of
automorphic functions at algebraic points.

The first important result of this type is due to Schneider [13] in 1937. Let H
be the upper half plane, namely, the complex numbers with positive imaginary part.
Let j.�/, � 2 H, be the elliptic modular function, which is the unique function,
automorphic with respect to PSL.2;Z/, holomorphic with a simple pole at infinity,
and with Fourier series of the form

j.�/ D e�2� i� C 744 C
1X

nD1

ane2� in� ; an 2 C:

Th. Schneider proved that
n
� 2 H \ Q W j.�/ 2 Q

o
D f� 2 H W ŒQ.�/ W Q� D 2g :

Therefore, j.�/ is a transcendental number for all � 2 H \ Q which are
not imaginary quadratic, that is, are not complex multiplication (CM) points.
We view this as a transcendence criterion for complex multiplication, not only
because it is equivalent to a statement about transcendence of special values of
automorphic functions but, more importantly, because the proof uses techniques
from transcendental number theory. The analogous result for Shimura varieties of
PEL type is due to the author, jointly with Shiga and Wolfart [4, 15]. There, the
key transcendence technique is the Analytic Subgroup Theorem of Wüstholz [23].
Recall that to every polarized abelian variety A of complex dimension g, we can
associate a normalized period matrix �A in the Siegel upper half space Hg of genus
g, consisting of the g � g symmetric matrices with positive definite imaginary part.
Then, the results of [4, 13, 15] are equivalent to the statement that A is defined over
Q as an algebraic variety, and the entries of the matrix �A are algebraic numbers if
and only if A has complex multiplication (CM). Of course, the matrix �A is only
defined up to the action on Hg of the integer points of a symplectic group, but this
does not affect the statement.

The simplest case of Conjecture (VIII.A.8) of [7] asks for similar results for
variations of Hodge structure of weight n � 1 (the Shimura variety case is of weight
1). In this chapter, we prove such results for certain examples, namely, for families of



A Transcendence Criterion for CM on Some Families of Calabi–Yau Manifolds 477

Calabi–Yau threefolds shown by Borcea [2] and Viehweg–Zuo [19] to have Zariski
dense sets of complex multiplication fibers. We also indicate how to treat the first
step of a tower construction of Calabi–Yau manifolds due to Borcea [3] and Voisin
[20]. Similar considerations in [18], where full details will be given, enable us to
treat all the examples of Rohde in [11].

We thank Colleen Robles for her informative series of lectures on the monograph
[7], given at Texas A&M University in Fall 2010. We also thank the EPFL,
Lausanne, and the ETH, Zürich, in particular G. Wüstholz, for their hospitality and
the opportunity to lecture on the content of this chapter and [18].

2 The Problem and the Main Results

In this section, we describe the problem we are studying. We then mention briefly
the families of Calabi–Yau manifolds, proved by Rohde [11] to have dense sets of
CM fibers, for which the problem can be solved [18]. After that, we focus for the
rest of this chapter on the examples of Borcea [2], of Viehweg–Zuo [19], and the
first step of what Rohde calls a “Borcea–Voisin” tower [3, 20].

As defined in [11], a Calabi–Yau n-fold X is a complex compact Kähler manifold
with H k;0.X/ D f0g, k D 1; : : : ; n � 1, and a nowhere vanishing holomorphic
n-form.

For the convenience of the reader, we first recall some basic definitions from
Hodge theory. They are well-documented in literature spanning many years and can
be found in [7]. For a Q-vector space V and a field k � Q, we denote Vk D V ˝Q k

and GL.V /k D GL.Vk/. A Hodge structure of weight n 2 Z is a finite dimensional
Q-vector space V , endowed with the following three equivalent things:

• A decomposition of vector spaces VC D ˚pCqDnV p;q; with V p;q D V
q;p

.

• A filtration F n � F n�1 � � � � � F 0 D VC, with F p ˚ F
n�pC1 ' VC.

• A homomorphism of R-algebraic groups

' W U.R/ ! SL.V /R

with specified weight n and '.�IdU/ D .�1/nIdV . Here U is the group whose
k-points, where k � Q is a field, are

U.k/ D
��

a �b

b a

�
W a2 C b2 D 1; a; b 2 k

�
:

We do not specify the weight if it is clear from the context. For z 2 C with
jzj D 1, we have '.z/ D zp�q on V p;q , where z D a C ib, a; b 2 R, is identified

with the matrix
 

a �b

b a

!
2 U.R/. The endomorphism C D '.i/ is called the Weil

operator. The Q-vector space V D Q is assumed to have the trivial Hodge structure



478 P. Tretkoff and M.D. Tretkoff

'triv of weight 0 which maps U.R/ to IdV . A Hodge structure .V; '/ is polarized if
there is a bilinear nondegenerate map

Q W V ˝ V ! Q;

with

Q.u; v/ D .�1/nQ.v; u/ (1)

satisfying the Hodge–Riemann (HR) relations

Q.F p; F n�pC1/ D 0; .HR1/;

Q.u; C u/ > 0; u 6D 0; u 2 VC; .HR2/:

Let G D Aut.V; Q/, and denote by G.k/, Q � k a field, the k-points of G. Usually
there will be a lattice VZ with V D VZ ˝Q, so that G.Z/ is the arithmetic subgroup
of G preserving VZ. All our Hodge structures will be polarized, although we often
do not explicitly refer to the polarization.

The Mumford-Tate group (MT) M' of a Hodge structure .V; '/ is the smallest
Q-algebraic subgroup of SL.V / whose real points contain '.U.R//. Here, we
have used the terminology of [7], rather than calling this the Hodge group or
special Mumford–Tate group. A Hodge structure .V; '/ is called a CM (complex
multiplication) Hodge structure if and only if its Mumford-Tate group is abelian.
We just say ' is CM, if the intended V is clear from the context, or just say V is
CM, if the intended ' is clear from the context. We refer to .Q; 'triv/ as the trivial
CM Hodge structure.

Let a Q-vector space V and a nondegenerate bilinear form Q satisfying (1) be
given. Furthermore, for all integers p, q with p C q D n, let integers hp;q � 0

summing to dim V with hp;q D hq;p also be given. The hp;q are called the Hodge
numbers. We define the period domain D to be the set of polarized Hodge structures
.V; Q; '/ with dim.V p;q/ D hp;q . Therefore, each Hodge structure satisfies both
HR relations for Q. The period domain is a homogeneous space. If we fix a Hodge
structure '0 with isotropy group H0 in G.R/, then D D G.R/=H0. For all the
examples we consider, there exists a CM Hodge structure in D. Therefore we may,
and we will, assume that '0 is a fixed CM Hodge structure. We have a bijection
(with g ranging over G.R/),

˚
g'0g

�1 D 'g W U.R/ ! G.R/
� ' G.R/=H0

g'0g
�1 ! gH0:

In order to introduce the analogue of Schneider’s theorem, we need the context
of variations of Hodge structure since, in general, there may not exist suitable G.Z/-
invariant functions on D. From now on, we do not use the abstract setting, as our
examples are geometric. Indeed, all the examples we consider in this chapter, and in
[18], are smooth proper algebraic families defined over Q :

� W X ! S:
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In particular, the map � is surjective and proper. The base S is a quasi-projective
variety defined over Q. Moreover, the fibers Xs , s 2 S , are smooth projective
varieties, with Xs.C/ a compact Kähler n-fold. When s 2 S.Q/, the fiber ��1.s/ D
Xs is defined over Q as an algebraic variety. Let b be a fixed base point in S and let
V D H n.Xb;Q/prim, the primitive cohomology, with its usual polarization Q (see
[11], p.14, or [22]), given by

Q.v; w/ D
Z

Xb

v ^ w: (2)

When X is a curve, or a Calabi–Yau threefold, we have H n.X;Q/prim D H n.X;Q/,
n D dim X .

For s 2 S , the filtration associated to the usual Hodge decomposition, namely,
H n.Xs;C/ D ˚pCqDnH p;q.Xs/, can be pulled back to a filtration of VC with
Hodge numbers independent of s. We denote either by 'Xs or by H n.Xs;QXs / the
corresponding Hodge structure on V . The induced map from S to the corresponding
period domain D is multivalued when S has nontrivial fundamental group, but its
image in �nD is well defined, where � � G.Z/ is the image of the monodromy
representation ([5], Chap. 4, [21], Chap. 1). Therefore, we have a well-defined
period map

ˆ W S ! �nD:

Let � W D ! �nD be the natural projection. We can now state the analogue
of Schneider’s problem on the j -function in this context (it is a special case of
Conjecture (VIII.A.8) of [7]).

Problem. Let s 2 S.Q/ and suppose that ' 2 D satisfies �.'/ D ˆ.s/. Show that
' D g'0g

�1 for g 2 G.Q/ if and only if .V; '/ has CM.

When the pair .V; Q/ is clear from the context, we just say “' is conjugate over
Q to a CM Hodge structure” instead of “' D g'0g

�1 for g 2 G.Q/.”
The “if” part of the above statement is immediate in the examples we consider,

the only work being in the “only if” part. Notice that once one choice of ' 2 D

with �.'/ D ˆ.s/ is conjugate in G.Q/ to '0, then every ' 2 D with �.'/ D ˆ.s/

is conjugate in G.Q/ to '0.
Using the well-known description of the Siegel upper half space Hg of genus g

in terms of complex structures on R
2g (see, e.g., [12], Sect. 3), we have:

Proposition. Let � W X ! S be a family of smooth projective algebraic curves
of genus g satisfying the above assumptions. Then, we may take D D Hg and
� � PSp.2g;Z/, and the statement of the problem is true by [4, 13, 15].

In [18], we show the following:

Claim. The statement of the problem is true for all the families of Calabi–Yau
manifolds with dense sets of CM fibers constructed by Rohde in [11] (and called
CMCY families in that same reference).
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In this chapter, we focus on two examples of families of Calabi–Yau threefolds
with dense sets of CM fibers, studied respectively by Borcea and Viehweg–Zuo, and
the first step in a tower of Calabi–Yau manifolds that starts with these two examples.
We use the fact that the Hodge structures associated to each fiber of our families are
sub-Hodge structures of ones involving direct sums and tensor products of Hodge
structures on curves and various CM Hodge structures. The CM criterion on a curve
is then the one from [4, 15]. Similar considerations allow one to deal with all the
examples of [11]. Indeed, this is directly related to the proofs that these families have
dense sets of CM fibers. The definition of a CMCY family in [11], Chap. 7, p.143,
involves a stronger CM condition. Namely, a family of Calabi–Yau n-manifolds over
a quasi-projective base space, which contains a Zariski dense set of fibers X such
that the Mumford–Tate group of H k.X;QX/ is a torus for all k, is defined to be a
CMCY family. All the examples we consider satisfy the stronger CMCY condition.
We say that a variety X (Calabi–Yau or not) such that the Mumford–Tate group of
H k.X;QX/ is a torus for all k “has CM for all levels.”

3 The Main Lemmas

In this section, we collect, for the convenience of the reader, the main lemmas that
we use from other references.

Lemma 1. [2, 19]

(i) Let .V1; '1/ and .V2; '2/ be two Hodge structures of weight n and '1 ˚ '2 the
induced Hodge structure on V1 ˚ V2. Then,

M'1˚'2 � M'1 � M'2 � SL.V1/ � SL.V2/ � SL.V1 ˚ V2/;

and the projections

M'1˚'2 ! M'1; M'1˚'2 ! M'2

are surjective.
(ii) The Mumford-Tate group does not change under Tate twists.

(iii) The Mumford-Tate group of a Hodge structure concentrated in bidegree .p; p/,
p 2 Z, is trivial.

(iv) Let '1 ˝ '2 be the induced Hodge structure on V1 ˝ V2. Then '1 ˝ '2 has CM
if and only if both '1 and '2 have CM.

Lemma 2. [11, 22]. Let X1 and X2 be compact Kähler manifolds. Then, for any
integers k; r; s � 0, we have

H k.X1 � X2;Q/ D ˚iCj DkH i .X1;Q/ ˝ H j .X2;Q/

and

H r;s.X1 � X2/ D ˚pCp0Dr; qCq0DsH
p;q.X1/ ˝ H p0 ;q0

.X2/:
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Lemma 3. [11, 22]. Let X be an algebraic manifold of dimension n and let bX be
the blowup of X along a submanifold Z of codimension 2 in X . Then, for all k, we
have an isomorphism of Hodge structures

H k.X;QX/ ˚ H k�2.Z;QZ/.�1/ ' H k.bX;QbX /;

where H k�2.Z;QZ/.�1/ is H k�2.Z;QZ/ shifted by .1; 1/ in bidegree. Therefore,
the Mumford–Tate group of H k.bX;QbX / is commutative if and only if the Mumford–
Tate groups of both H k.X;QX/ and H k�2.Z;QZ/ are commutative. What’s more,
if X is a smooth surface and Z is a point of X , then the Mumford–Tate groups of
H 2.X;QX/ and H 2.bX;QbX/ are isomorphic.

4 The Borcea Family as a Two-Step Tower

Let

M1 D fx D .xi /
4
iD1 2 P

4
1 W xi 6D xj ; i 6D j g=Aut.P1/;

where Aut.P1/ acts diagonally. It is noncanonically isomorphic to

ƒ D P1 n f0; 1; 1g:

Consider three families Ei , i D 1; 2; 3, of elliptic curves (Calabi–Yau onefolds)

Ei ! ƒ

with fiber E�i of Ei at �i 2 ƒ given by

y2 D x.x � 1/.x � �i /; i D 1; 2; 3:

By the theorem of Schneider [13] mentioned in Sect. 1, the statement of the problem
in Sect. 2 is true for these families of elliptic curves.

Each elliptic curve E�i carries an involution �i W .x; y/ 7! .x; �y/ fixing the
group E�i Œ2� of 2-torsion points, which has four elements, and reversing the sign of
the holomorphic 1-form dx=y. The product involution � D �2 � �3 on the abelian
surface A�2;�3 D E�2 � E�3 sends a point to its group inverse and has 4 � 4 D 16

fixed points. Blowing up these 16 points, we get a surfacebA�2;�3 with an involutionb�,
induced by �, whose ramification locus is the 16 exceptional divisors. The quotient
K�2;�3 D bA�2;�3 =b� is smooth and is a K3-surface (hence a Calabi–Yau twofold),
called the Kummer surface of A�2;�3 . The surface K�2;�3 is isomorphic to one
obtained by resolving the 16 singular double points of the quotient E�2 �E�3 =�2 � �3.
On this last quotient surface, the maps �2 � Id and Id � �3 define the same involution,
which in turn induces an involution 	 on K�2;�3 . The involutionsb� and 	 exist by
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the universal property of blowing up (see [8], II, Corollary 7.15). The ramification
locus R	 of 	 has 8 connected components consisting of smooth rational curves
given by the union of the image, under the degree 2 rational map A�2;�3 ! K�2;�3 ,
of E�2 Œ2��E�3 and of E�2 �E�3 Œ2�. The involution 	 reverses the sign of any (nonzero)
holomorphic 2-form on K�2;�3 . This construction is a first step in a tower: we build
a Calabi–Yau twofold, with involution reversing the sign of any holomorphic 2-
form, from two Calabi–Yau onefolds with involution reversing the sign of any
holomorphic 1-form. What’s more, the rational Hodge structure '�2;�3 of level 2
on K�2;�3 is the �2 � �3-invariant part of the weight 2 Hodge structure on A�2;�3 .
This is just the tensor product of the rational Hodge structure '�2 of level 1 on E�2

with that, '�3 , on E�3 . This is a CM Hodge structure if and only if both E�2 and E�3

have CM by [2], Proposition 1.2 (Lemma 1(iv), Sect. 3). Suppose '�2;�3 is conjugate
over Q to a CM Hodge structure '0. We can write '0 as a tensor product '0;2 ˝ '0;3

of weight 1 CM Hodge structures on the elliptic curves. By [9], Proposition 2.5,
p.563, it follows that '�2 and '�3 are both also conjugate over Q to a CM Hodge
structure. Applying Th. Schneider’s theorem [13], we deduce that if �2 and �3 are
also algebraic numbers, then E�2 and E�3 are both CM and hence that '�2;�3 is CM.
We therefore have:

Theorem 1. The statement of the problem of Sect. 2 holds for the family

K ! ƒ2

of Calabi–Yau twofolds constructed above, which has a dense set of CM fibers.

The next step in the tower applies a construction similar to the above, but now
to .E1; �1/ and .K; 	/ (see [3]). Let .�1; �2; �3/ 2 ƒ3 and blow up the product
T�1;�2;�3 D E�1 � K�2;�3 along the connected components of the codimension 2
ramification divisor E�1 Œ2� � R	 of the involution �1 � 	 . Consider the induced
involution 1�1 � 	 on this blowup 2T�1;�2;�3 . The quotient

Y�1;�2;�3 D 2T�1;�2;�3 =1�1 � 	

is a Calabi–Yau threefold with involution 
 induced by Id � 	 D �1 � Id on E�1 �
K�1;�2 =�1 � 	 of which Y�1;�2;�3 is a resolution. It is also a minimal resolution of

E�1 � E�2 � E�3=H

where H is the group of order 4 generated by �1 � �2 � Id and Id � �2 � �3. The
singularities of this last quotient lie along a configuration of 48 rational curves with
43 intersection points. The ramification locus R
 of 
 consists of the image under
the degree 4 rational map

E�1 � E�2 � E�3 ! Y�1;�2;�3

of the union of

E�1 Œ2� � E�2 � E�3 ; E�1 � E�2 Œ2� � E�3 ; E�1 � E�2 � E�3 Œ2�:
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Moreover, 
 reverses the sign of any holomorphic 3-form on Y�1;�2;�3 . The Hodge
structure '�1;�2;�3 given by H 3.Y�1;�2;�3 ;QY�1;�2;�3

/ is '�1 ˝ '�2 ˝ '�3 , where '�i

is the level 1 rational Hodge structure of the elliptic curve E�i (for details, see [2]).
Therefore, again by Th. Schneider’s theorem [13], and the fact that '�1 ˝ '�2 ˝ '�3

is CM if and only if each 'i , i D 1; 2; 3 is CM, we deduce easily that

Theorem 2. The statement of the problem of Sect. 2 holds for the family

Y ! ƒ3

of Calabi–Yau threefolds constructed above, which has a dense set of CM fibers.

5 The Viehweg–Zuo Family

Viehweg and Zuo [19] have constructed iterated cyclic covers of degree 5 which give
a family of Calabi–Yau threefolds (which we call the VZCY family) with a dense
set of CM fibers. The fibers of the family are smooth quintics in P4. The study
of this family is taken up again in [11], Sect. 7.3. For a projective hypersurface
X � P4, only the Mumford-Tate group of the Hodge structure on H 3.X;Q/ can
be nontrivial, so the CM condition in the CMCY definition is just the usual one.
Consider the parameter space

M2 D ˚
.xi /

5
iD1 2 P

5
1 W xi 6D xj ; i 6D j

�
=Aut.P1/

which is noncanonically isomorphic to

S D fu; v 2 P1.C/ W u 6D 0; 1; 1; v 6D 0; 1; 1; u 6D vg:

Explicitly, the VZCY family is given by

� W X ! S

with fiber X.u;v/ the projective variety with equation,

x5
4 C x5

3 C x5
2 C x1.x1 � x0/.x1 � ux0/.x1 � vx0/x0 D 0; (3)

in homogeneous coordinates Œx0 W x1 W x2 W x3 W x4� 2 P4. The fibers X.u;v/ are
smooth hypersurfaces of degree 5 in P4. They are therefore Calabi–Yau threefolds,
by the well-known fact that any smooth hypersurface of degree d C 1 in Pd

is a Calabi–Yau .d � 1/-fold. As in Sect. 2, fix a base point b 2 S and let
V D H 3.Xb;Q/. The VZCY family is an example of an iterated cyclic cover.
Indeed, consider the family of smooth algebraic curves of genus 6 in P2 given by
the following family C ! S of cyclic covers of P1 of degree 5:

x5
2 C x1.x1 � x0/.x1 � ux0/.x1 � vx0/x0 D 0; .u; v/ 2 S: (4)
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The fibers of this family are the ramification loci of the family S ! S of cyclic
covers of P2 of degree 5 given by the family of smooth surfaces in P3:

x5
3 C x5

2 C x1.x1 � x0/.x1 � ux0/.x1 � vx0/x0 D 0: (5)

Iterating again, the fibers of this last family are the ramification loci of the family of
cyclic covers of P3 of degree 5 given by the VZCY family.

Let F5 be the Fermat curve of degree 5 given by x5 C y5 C z5 D 0. The
usual Hodge structure .H 1.F5;Q/; 'F5/ associated to the Hodge decomposition
H 1.F5;C/ D H .1;0/.F5/ ˚ H .0;1/.F5/ has CM, since it is well known that the
Jacobian of every Fermat curve is of CM type.

Let s D .u; v/ 2 S , with u; v 2 Q. Suppose, in addition, that the usual Hodge
decomposition on H 3.Xs;C/ gives a representative homomorphism

's W U.R/ ! SL.V /R

satisfying 's D g'0g
�1 for g 2 G.Q/, where G D Aut.V; Q/ with Q as in Sect. 2,

(2), and '0 is a fixed CM Hodge structure.
By the argument following Claim 8.6 of [19], p. 525, the Hodge structure

.H 3.Xb;Q/; 's/ is a sub-Hodge structure of the Hodge structure given by

Œ'1
s ˝ 'F5 ˝ 'F5 � ˚ Œ'F5 ˝ IdW � ˚ Œ'1

s .�1/�

on

ŒH 1.Cb;Q/ ˝ H 1.F5;Q/ ˝ H 1.F5;Q/� ˚ ŒH 1.F5;Q/ ˝ W � ˚ ŒH 1.Cb;Q/.�1/�;

where .�1/ denotes the Tate twist and W is a Q-vector space with a constant .1; 1/

Hodge structure. For each s 2 S , the homomorphism '1
s is associated to the usual

Hodge decomposition H 1.Cs;C/ D H .1;0/.Cs/ ˚ H .0;1/.Cs/. It is now easy to see
that if 's D g'0g�1 for g 2 G.Q/ � SL.V /Q, then we have '1

s D h'1h
�1 for

.H 1.C0;Q/; '1/ CM and h 2 Sp.12;Q/. Therefore, by the proposition of Sect. 2,
we have that '1

s is CM. Now, as 's is therefore a sub-Hodge structure of a Hodge
structure built up of tensor products and direct sums of CM Hodge structures, by
Lemma 8.1 of [19] (see also the lemmas of our Sect. 3), it follows that 's has CM
as required. We therefore have

Theorem 3. The statement of the problem of Sect. 2 holds for the VZCY family of
Calabi–Yau threefolds constructed above, which has a dense set of CM fibers.

On each fiber Xs , s 2 S , we have the involution

ı W .Œx0 W x1 W x2 W x3 W x4� 7! Œx0 W x1 W x2 W x4 W x3�

which leaves the smooth divisor Ds W x3 D x4 invariant. Moreover, Ds is
isomorphic to Ss of (5), which is CMCY for a dense set of s 2 S (see [11],
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p. 151). Moreover, by [19], p. 525, H 2.Ss ;QSs / is a sub-Hodge structure of the
tensor product of H 1.Cs;QCs / and H 1.F5;QF5 /, so, using arguments similar to the
above, the statement of the problem of Sect. 2 holds for the family S ! S .

The fibers of the VZCY family isomorphic to the Fermat quintic threefold have
CM (see [11], p. 151, [19]). The periods of the holomorphic 3-forms defined over
Q, and their transcendence, are discussed in the Appendix, authored by Marvin D.
Tretkoff.

6 The First Step of a Borcea-Voisin Tower

In this section, we indicate how to prove the claim of Sect. 2 for the Borcea–Voisin
towers of CMCY manifolds constructed by Rohde [11], by summarizing the ideas
for one step in such a tower using the families of Sect. 4 and Sect. 5. In Sect. 4, we
already saw examples of such a construction. Full details for the general case will
be given in [18].

Using the CMCY families with involution of Sects. 4 and 5, we build a CMCY
family with involution of higher dimension using the construction in [3] and in [11],
Proposition 7.2.5, and show that the statement of the problem of Sect. 2 holds for
this new family.

Let .Y; 
/ be the Borcea family of Calabi–Yau threefolds with involution
constructed in Sect. 4, and .X ; ı/ be the VZCY family of Calabi–Yau threefolds
with involution from Sect. 5. Let Y1;2;3 be the fiber of Y at .�1; �2; �3/ 2 ƒ3 and Xs

be the fiber of X at s 2 S . The ramification divisors R
 D D1;2;3 � Y1;2;3 of 
 and
Ds � Xs of ı consist of smooth nontrivial disjoint hypersurfaces. From Sect. 4, the
divisor D1;2;3 is CM for all levels, as P1 carries the trivial CM Hodge structure for
all levels. As noted at the end of Sect. 5, the divisor Ds is isomorphic to Ss of (5)
for which the statement of the problem of Sect. 2 holds for all levels.

Let 4Y1;2;3 � Xs be the blowup of Y1;2;3 �Xs with respect to D1;2;3 �Ds and 1
 � ı

be the involution on the blowup induced by 
 � ı. Then

Z1;2;3;s D 4Y1;2;3 � Xs=1
 � ı

is a Calabi–Yau sixfold with involution " generating .Z=2 � Z=2/=h
 � ıi, whose
fixed points are a smooth nontrivial divisor, and which reverses the sign of any
holomorphic 6-form on Z1;2;3;s [3, 11, 20].

Following [11], Chap. 7, and [22], using Lemmas 1–3 of Sect. 3, we express
the Hodge structure on H �.Z1;2;3;s ;Q/ in terms of tensor products and direct
sums of the Hodge structures on H �.Y1;2;3;Q/, H �.Xs;Q/, H �.D1;2;3;Q/, and
H �.Ds;Q/, where several levels 	 may intervene. By using this analysis of the
Hodge structure, we deduce that the statement of the problem of Sect. 2 holds for
the family Z , since it holds for the family Y of Sect. 4 (Theorem 2), for the family
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X of Sect. 5 (Theorem 3), and for the ramification divisors. The fact that several
levels of Hodge structure are involved is not an obstacle, as all relevant fibers of our
families turn out to have CM for all levels.

For example, the Hodge structure of level 6 on Z1;2;3;s is given by the Hodge

substructure of level 6 on 4Y1;2;3 � Xs invariant under 1
 � ı. Using Lemma 3 of
Sect. 3, this, in turn, can be expressed in terms of the Hodge structure of level 6 on
Y1;2;3 �Xs and the Hodge structure of level 4 on D1;2;3 �Ds . We then use Lemmas 1
and 2 of Sect. 3 to express these Hodge structures in terms of tensor products and
direct sums of the Hodge structures, of various levels, on Y1;2;3, Xs , D1;2;3, Ds . If the
Hodge structure H 6.Z1;2;3;s ;QZ1;2;3;s / is conjugate over Q to a CM Hodge structure,
the same is true of the Hodge structures on Y1;2;3, Xs , D1;2;3, Ds . As the statement
of the problem of Sect. 2 applies to them, again using Lemmas 1–3 of Sect. 3, we
deduce that the statement of the problem of Sect. 2 holds for the familyZ ! ƒ3�S .

Appendix: Transcendence of the Periods
on Calabi–Yau-Fermat Hypersurfaces

A famous transcendence theorem of Th. Schneider (see Schneider [14], Siegel [16])
asserts that if ! is a holomorphic 1-form on a compact Riemann surface of genus
at least 1, then there is a 1-cycle 
 on that Riemann surface such that

R



! is
a transcendental number. Here, the Riemann surface and the 1-form ! are both
supposed to be defined over the same algebraic number field. The possibility of
generalizing Schneider’s theorem to higher dimensional hypersurfaces is a natural
question.

Let V denote the Fermat hypersurface defined in affine coordinates by the
equation

zr
1 C � � � C zr

nC1 D 1:

In [17], we explicitly determined the periods of the n-forms on V for all values of
n and r . When r D n C 2, V is a Calabi–Yau manifold because on it there is a
nowhere vanishing holomorphic n-form, !, given by

! D z�.nC1/
nC1 dz1:::dzn:

In order that Schneider’s theorem generalize to these Calabi–Yau manifolds, it is
necessary and sufficient that at least one period of ! be transcendental.

For these hypersurfaces, the formula for the periods of ! obtained in [17]
simplifies to

.I/
Z




! D ˛.
/ .�.1=.n C 2///nC1 = �..n C 1/=.n C 2//;
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where �.u/ is the classical gamma function applied to u. Here the n-cycle 
 is any
member of the basis constructed in [17] for the group of primitive n-cycles on V ,
and ˛.
/ is an algebraic number that depends on 
 .

Using the classical identity

�.u/�.1 � u/ D � csc .�u/

and the fact that sin. �
m

/ is an algebraic number for all positive integers m, we can
restate (I) as

.II/
Z




! D ˇ.
/
1

�

�
�

�
1

n C 2

��nC2

;

where ˇ.
/ is an algebraic number depending on 
 .
It follows that we have the

Theorem. Schneider’s theorem extends to the n-dimensional Fermat hypersurfaces
of degree n C 2 if and only if either

.	/ .�.1=.n C 2///nC1 = �..n C 1/=.n C 2//

or

.		/
1

�

�
�

�
1

n C 2

��nC2

is a transcendental number.

Of course, .	/ is transcendental if and only if .		/ is transcendental. When
n D 1, Schneider’s theorem [14] implies that 1

�
.�. 1

3
//3 is transcendental.

Although the Fermat curves of degree r > 3 are not Calabi–Yau manifolds, the
results in [17] allow us to determine their periods explicitly. For example, ! D
dz=w3 is a holomorphic differential on the Fermat quartic curve

z4 C w4 D 1:

With respect to the basis for H1.V / given in [17], each period of ! is of the form

ˇ.
/
�
�

1
4

�
�
�

1
4

�

�
�

1
2

� ;

with ˇ.
/ an algebraic number. Because �. 1
2
/ D p

� , Schneider’s Theorem implies
that 1p

�
.�. 1

4
//2 is transcendental. Of course, 1

�
.�. 1

4
//4 is therefore transcendental.

Recall that the Fermat quartic surface V is a K3 surface and, as such, its group
of primitive 2-cycles is free abelian of rank 21.
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A basis for this group is given in [17]. Now, V is also a Calabi–Yau manifold
and the period of the nonvanishing holomorphic 2-form, !, along each 2-cycle, 
 ,
belonging to this basis is of the form ˇ.
/ 1

�
.�. 1

4
//4, where ˇ.
/ is an algebraic

number. Therefore, each of these periods is transcendental and we have the

Theorem. Schneider’s theorem extends to the Fermat quartic surface defined by

x4 C z4 C w4 D 1:

Finally, we turn to the Fermat quintic threefold, V , defined in affine coordinates
by the equation

x5 C y5 C z5 C w5 D 1:

A nowhere vanishing holomorphic 3-form on V is given by

! D w�4dxdydz:

Now, let

A.x; y; z; w/ D .�x; y; z; w/; B.x; y; z; w/ D .x; �y; z; w/;

C.x; y; z; w/ D .x; y; �z; w/; D.x; y; z; w/ D .x; y; z; �w/;

with � a primitive 5th root of unity, be automorphisms of the ambient 4-space.
Clearly, V is left fixed by A; B; C; D and the group ring ZŒA; B; C; D� acts on
the group of 3-cycles on V . It is shown in [17] that there is a 3-cycle 
 on V for
which we have the following result.

Theorem. (a) The images


.i; j; k; `/ D A.i�1/B.j �1/C .k�1/D.`�1/


span a cyclic ZŒA; B; C; D�-module and a subset of them forms a basis for the
group of 3-cycles on V .

(b) The 3-form ! can be evaluated explicitly along the 
.i; j; k; `/. In fact,

Z


.i;j;k;`/

! D 1

53
�iCj CkC`.1 � �/4�.1=5/4�.4=5/�1:

Therefore, each period of ! is the product of a nonzero algebraic number and
�.1=5/4�.4=5/�1. The algebraic number depends on the 3-cycle in question.

It follows that Schneider’s theorem generalizes to the Fermat quintic threefold if
and only if �.1=5/4�.4=5/�1 is transcendental.

Apparently the transcendence of this number is unknown.
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Finally, we note that our formula for the periods of n-forms on Fermat
hypersurfaces of degree r 6D n C 2 is substantially more complicated than that
for the Calabi–Yau-Fermat hypersurfaces treated in the present note. Namely, in
[17] we show that

Z


.i1;:::;inC1/

za1�1
1 za2�1

2 : : : zan�1
n z

anC1�r

nC1 dz1 : : : dzn

D 1

rn
�a1i1C:::CanC1inC1 .1 � �a1/ : : : .1 � �anC1 /

 
�. a1

r
/�. a2

r
/ : : : �.

anC1

r
/

�.
a1C:::CanC1

r
/

!
;

where � is a primitive r th root of unity and a1; a2; : : : anC1, i1; : : : ; inC1 are
appropriate integers between 1 and r � 1. See [17] for the details. Therefore, we
conclude that Schneider’s theorem extends to these Fermat hypersurfaces if and
only if the numbers

�. a1

r
/�. a2

r
/ : : : �.

anC1

r
/

�.
a1C:::CanC1

r
/

are transcendental.
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Ehrenpreis and the Fundamental Principle

François Treves

Abstract This chapter outlines the underpinnings and the proof of the Fundamental
Principle of Leon Ehrenpreis, according to which every solution of a system
(in general, overdetermined) of homogeneous partial differential equations with
constant coefficients can be represented as the integral with respect to an appropriate
Radon measure over the complex “characteristic variety” of the system.

Key words Fourier transform • Overdetermined systems • PDE with constant
coefficients
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35E10

1 Introduction

A preliminary version of the Fundamental Principle was first announced by
Leon Ehrenpreis at a Functional Analysis conference in Jerusalem in 1960 (see
[Ehrenpreis 1954]),with a more detailed version, and an outline of the steps of a
potential proof, provided at a Harmonic Analysis conference at Stanford in August
1961. The essence of its statement is that every distribution solution of a system of
homogeneous PDE with constant coefficients in a convex open subset � of Rn,

qX

kD1
Pj;k .D/ hk D 0, j D 1; : : : ; p, (1.1)
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can be represented as an integral of exponential-polynomial solutions with respect
to Radon measures on the “null variety” (properly defined) of the system.

A statement of this kind was strikingly bolder and deeper than the
results on the existence and approximation of solutions to scalar PDE
with constant coefficients proved by Ehrenpreis and B. Malgrange (see
[Ehrenpreis 1954, Malgrange 1955]) in the early 1950s. At that time, such
depth was practically unattainable (even in the scalar case), considering the
tools then available to analysts. Needed were the conceptual and technical
arms of the Oka-Cartan-Serre theory of analytic sheaves as well as those of
Homological Algebra, which were being perfected precisely around that time
(see [Oka 1936–1953, Serre 1955]). Not only was the Theorem B of H. Cartan
needed but a version of it with fairly precise enumerations and bounds had to be
devised.

In the period 1962–1964 the theory of coherent analytic sheaves and Ho-
mological Algebra had fully matured (see [Gunning and Rossi 1965]), enabling
Malgrange (see [Malgrange 1955]) and V. P. Palamodov (see [Palamodov 1963])
to establish firmly most of the statements on which the proof of the Funda-
mental Principle was to be based. Among other things Palamodov constructed
an example showing that the Fundamental Principle as initially stated could not
be valid (see [Hörmander 1966], p. 228); to restore it Palamodov introduced his
“Noetherian operators” (Subsection 3.1 in this article). At a 1965 conference
in Erevan, Palamodov presented a complete proof of the corrected statement.
This proof and much additional material about systems of PDE with constant
coefficients make up the content of his 1967 book (in Russian; English translation:
[Palamodov 1970]).

In the middle 1960s, a renewal of interest in the questions surrounding the
Fundamental Principle was sparked by a series of lectures by J. E. Björk at a summer
school in Sweden. The 1960s proofs of the F. P. were substantially simplified
in Chap. 8 of the monograph [Björk 1979] and in Hansen’s “habilitation” thesis
[Hansen 1982]. Finally, Hörmander’s L2 estimates for N@ made it possible to go
directly to bounds in the cohomology of coherent analytic sheaves and rid the proof
of any nonlinearity (as used in the proofs of Cartan’s theorems A and B).

This note has no pretention to any originality whatsoever. Its publication is only
justified by the sense that a volume in honor of Leon Ehrenpreis ought to contain
at least a mention, however imperfect, of his most famous theorem. It is essentially
a brief outline of the proof of the Fundamental Principle as provided in Sects. 7.6
and 7.7 of [Hörmander 1966], to which the reader is referred for all fine points and
technicalities (only the simplest of proofs are included here). I have also been guided
by the tutoring of Otto Liess, whom I wish to thank warmly.
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2 The Classical Problems

2.1 Existence and Approximation of Solutions

We suppose given a rectangular matrix P D �
Pj;k

�
1�j�p;1�k�q with polynomial

entries Pj;k 2 C Œ�1; : : : ; �n�; it is assumed that the set f� 2 C
nI P .�/ D 0g is a

proper subvariety. Using the notation Dj D 1p�1
@
@xj

and D D .D1; : : : ;Dn/, we
consider the system of inhomogeneous linear PDE with constant coefficients

P.D/Eu D Ef , (2.1)

or, more explicitly,

qX

kD1
Pj;k .D/ uk D fj , j D 1; : : : ; p, (2.2)

where the right-hand sides fj are functions or distributions in an open set � � R
n

and the solutions uk belong to the same or related function or distribution spaces.1

The problem is to show that, under the right hypotheses on the data Ef , the systems
(2.1)–(2.2) have solutions in the “natural” classes, primarily C1 or D0 (i.e., smooth
functions or distributions). In view of the P -convexity condition in the scalar case
(p D q D 1), necessary and sufficient for the surjectivityP .D/ C1 .�/ D C1 .�/

as established in Malgrange’s thesis [Malgrange 1955], the only domains � for
which the problem makes sense, in its “grand” generality, are the convex ones.
Indeed, when P .D/ D Pn

jD1 cjDj is a real vector field, the P -convexity of �
means that the intersection of � with every orbit of P (a straight line in R

n) is a
segment.

A parallel problem concerns the system of homogeneous equations

P.D/Eh D E0. (2.3)

The latter have distinguished solutions, the so-called exponential-polynomial
solutions (sometimes simply called exponential solutions), linear combinations
of solutions of the type

Eh .x/ D Eg .x/ exp i h� � xi (2.4)

where Eg is a q-vector (below we often omit the arrows) with polynomial components
and � 2 C

n belongs to a suitably defined algebraic variety V P . What is important
[also for the solution of (2.1)] is a Runge-type theorem: Every solution of (2.3) in�
is the limit of a sequence of exponential-polynomial solutions.

1Most of the time in the sequel the arrows indicating vector values will be omitted.
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2.2 The State of Affairs in the Scalar Case ca 1954

When p D q D 1, some of the questions raised here were settled in the earlier work
of Ehrenpreis and Malgrange ([Ehrenpreis 1954, Malgrange 1955]). The Runge
result was first proved in [Malgrange 1955].

It is perhaps worthwhile to sketch the proof of the existence of solutions in
C1 .�/ of the scalar equation

P .D/ u D f (2.5)

with P 2 C Œ�� D C Œ�1; : : : ; �n�. As a first step, (2.5) is solved for compactly
supported f , i.e., f 2 C1

c .�/. This can be done by making use of a fundamental
solution, i.e., a solution of the equation P .D/E D ı (ı W Dirac measure)
and by taking the convolution u D E � f as the solution. The existence of a
fundamental solution of every nonzero polynomialP was first proved by Ehrenpreis
in 1952 and soon after, by a different (and very simple) method, by Malgrange (see
[Malgrange 1955]). Another way of approaching (2.5) is by using Fourier transform
to transform (2.5) into a division problem:

P .�/ Ou .�/ D Of .�/ (2.6)

where the right-hand side belongs to the Schwartz space S .Rn/ and can be extended
as an entire function Of .�/ of exponential type [Paley–Wiener theorem; we write
Of 2 Exp .Cn/].2 Here Ou is sought as some meromorphic function whose (inverse)

Fourier transform defines a smooth function in R
n. This is exactly the approach in

[Ehrenpreis 1954] and what was to be the start of his approach to the Fundamental
Principle. In the scalar case, this settles the solvability problem in R

n for compactly
supported right-hand sides (the same approach can be followed when C1 is replaced
by D0 and many other distribution spaces).

In the case of f 2 C1 .�/ not compactly supported, one represents f as
the limit of a sequence of f� 2 C1

c .�/ with f�C1 D f� in convex open sets
�� �� �, �� % �. The preceding reasoning yields u� 2 C1 .Rn/ verifying
P .D/ u� D f� in R

n for each � D 1; 2; : : :, whence P .D/ .u�C1 � u�/ D 0 in�� .
The approximation theorem (proved in [Malgrange 1955])provides an exponential-
polynomial solution h� of (2.3) such that u�C1 � u� � h� is “very small” in the
complete metric space C1 .��/. Then the standard Mittag-Leffler argument applies:
as N ! C1, the limit of

u1 C
NX

�D1
.u�C1 � u� � h�/ D uNC1 �

NX

�D1
h� 2 C1 .�N /

defines a solution u 2 C1 .�/ of (2.5).

2The notations P , Q; : : : will always stand for matrix-valued polynomials. The corresponding
differential operators will always be denoted by P .D/, Q .D/ ; : : :
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3 Solution of the Classical Problems

3.1 Simple Algebra in the General Case

Back to (2.2) assuming pCq � 3. On the Fourier transform side, we are faced with
the division problem:

qX

kD1
Pj;k .�/ Ouk .�/ D Ofj .�/ , j D 1; : : : ; p, (3.1)

where Ofj .�/ 2 Exp .Cn/ [and Ofj .�/ 2 S .Rn/ or Ofj .�/ 2 S 0 .Rn/]. The
homogeneous equations (2.3) translate into

qX

kD1
Pj;k .�/ Ohk .�/ D 0, j D 1; : : : ; p. (3.2)

The following C Œ��-modules of vector-valued polynomials are obviously rele-
vant to the problems under discussion:

1. MP : submodule of C Œ��q generated by the “row” polynomials EPj D�
Pj;k

�
kD1;:::;q , j D 1; : : : ; p.

2. RP , the set of vectors ER D �
Rj
�
jD1;:::;p 2 C Œ��p such that ERP D 0, i.e.,

pX

jD1
RjPj;k D 0, k D 1; : : : ; q

(RP is often referred to as the set of relations of MP ).

3. SP , the set of vectors ES D .Sk/kD1;:::;q 2 C Œ��q such that P ES D 0.

Since C Œ�1; : : : ; �n� is Noetherian, every submodule of C Œ��N (1 � N 2 ZC)
is finitely generated: we can select a finite set of generators ERi D �

Ri;j
�
jD1;:::;p

(i D 1; : : : ; m) of RP and a finite set of generators ES` D .Sk;`/kD1;:::;q 2 C Œ��q

(k D 1; : : : ; r) of SP . The m � p matrix R D �
Ri;j

�
1�i�m;1�j�p provides the

compatibility conditions for the inhomogeneous equations (2.1): for (3.1) to be
solvable, it is necessary that

pX

jD1
Ri;j .�/ Ofj .�/ D 0, i D 1; : : : ; m. (3.3)

The q � r matrices S D .Sk;`/1�k�q;1�`�r provides solutions of (3.2):

qX

kD1

rX

`D1
Pj;k .�/ Sk;` .�/  ` .�/ D 0, j D 1; : : : ; p, (3.4)
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whatever the functions  `. In the linear algebra sequence

C Œ��r
S�! C Œ��q

P�! C Œ��p
R�! C Œ��m (3.5)

we have ker P D SP , the range of S ; the range of the map P is equal to MP �
ker R. But we do not necessarily have MP D ker R: for instance, in the scalar
case MP D PC Œ��, the ideal generated by the polynomial P and RP D 0 entails
R D 0.

3.2 Analytic Sheaf Theory to the Rescue

The roles of the multipliers R and S are, in a sense, generic: at a particular point
� 2 R

n or more generally � 2 C
n, there could be much “richer” relations among

the Pj;k .�/ than those expressed by R .�/P .�/ D 0 or P .�/S .�/ D 0: as an
extreme example, think of a root � of P .�/ D 0. But we do need some genericity
(or stability) to construct solutions Eu, Eh of (2.1) and (2.3), respectively, of the desired
function or distribution class. Thus, even at the local level, we need something
“more” than the elementary algebra of (3.5). Fortunately, by 1960, the Oka-Cartan-
Serre theory of coherent algebraic (or analytic) sheaves had been satisfactorily
constructed (see [Serre 1955]).

Let O�ı stand for the ring of germs of holomorphic functions at �ı 2 C
n (or,

equivalently, the ring of convergent series in the powers of � � �ı); the sheaf O is
the disjoint union of the “stalks” O� as � ranges over Cn, equipped with its natural
“sheaf” topology: if U � C

n is open and if h 2 O .U /, then U 3 � �! h� 2 O�

is a homeomorphism of U onto an open subset of O, its inverse being the base
projection; every open subset of O is a union of such sections. The definition of the
powers ON (N D 1; 2; : : :) is self-evident; C Œ�1; : : : ; �n�

N and its submodules can
be identified to subsheafs of ON .

Going back to our matrix-valued polynomial P , we consider the sheaf map

Oq P�! Op (3.6)

with P acting multiplicatively on each stalk. The range of (3.6) is the sheaf MP

generated over the sheaf of rings O by the submodule MP .

Remark 1. Keep in mind that Ev 2 MP means that Ev D Pp
jD1 EPj gj D P> Eg for

some Eg 2 Oq (P>: transpose of the matrix P).

A basic result of analytic sheaf theory (see, e.g., [Gunning and Rossi 1965],
p. 130) is that the kernel and cokernel of a map such as (3.6) are coherent, meaning
that, locally, they are both finitely generated and so are their sheaves of relations.
This means that there is an exact sequence of sheaf maps

Or '�! Oq P�! Op  �! Op=MP �! 0, (3.7)
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where  is the quotient map. Actually, a celebrated theorem of Oka tells us much
more about the possible choice of the map ': it can be taken to be algebraic.

Theorem 1. The kernel KP of the sheaf map (3.6) is generated (over the sheaf of
rings O) by a number r < C1 of vector-valued polynomials S` D .Sk;`/kD1;:::;q 2
C Œ�1; : : : ; �n�

q .

The proof consists in showing (by Oka’s argument, see [Hörmander1966],
Lemma 7.6.3) that the elements of C Œ�1; : : : ; �n�

q belonging to KP generate KP .
Then the matrix S in (3.5) can still be made use of. Thus, the short sequence of
sheaf maps

Or S�! Oq P�! Op (3.8)

is exact, and we can take ' D(multiplication by)S in (3.7). The exactness of (3.8)
means that a convergent power series Eh .�/ D P

˛2Zn Eh˛ .� � �ı/˛ (Eh˛ 2 C
q)

satisfies the multiplication equation P Eh D E0 if and only if there is a convergent
power series Eg .�/ D P

˛2Zn Eg˛ .� � �ı/˛ (Eg˛ 2 C
r ) such that S Eg D Eh.

Let us denote by P> the transpose of the matrix P D �
Pj;k

�
1�j�p;1�k�q and

define P [ .�/ D P> .��/; P [ .�/ is the “total symbol” of the transpose of the
differential operator P .D/, P .D/> D P> .�D/. We can apply Theorem 1 with
P[ in the place of P :

Theorem 2. The kernel KP[ of the sheaf map Op P [

�! Oq is generated (over
the sheaf of rings O) by a number m < C1 of vector-valued polynomials
T` D .Tk;`/kD1;:::;p 2 C Œ�1; : : : ; �n�

p .

The matrix R .�/ in (3.5) can be made use of, by taking T D R[, i.e., Tk;` .�/ D
R`;k .��/. We get the exact short sequence of sheaf maps

Om R[

�! Op P [

�! Oq . (3.9)

Remark 2. In the scalar case, when p D q D 1, multiplication of convergent
series by the polynomial P is an injective map of O onto the proper ideal PO; in
the sequences (3.5), (3.8), and (3.9), we must take R D 0 and S D 0. This shows
that we cannot transpose (3.9) and glue the result to (3.8) to obtain an exact sequence

Or S�! Oq P�! Op R�! Om.

3.3 Estimates and Their Exploitation

Below we use the notation

�n D ˚
z 2 C

nI ˇ̌zj
ˇ̌
< 1; j D 1; : : : ; n

�
.
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Let ' be a plurisubharmonic function in C
n satisfying the condition

8 .z; �/ 2 �n � C
n, j' .z C �/ � ' .�/j � Cı. (3.10)

Theorem 3. Given the system P , there is an integer N such that to each Eu 2
O .Cn/q , there is Ev 2 O .Cn/q verifying PEv D PEu and

Z

R2n

ˇ̌Ev .�/ˇ̌2 e�'.�/
�
1C j�j2

��N
d�d� � C1

Z

R2n

ˇ̌
P .�/ Eu .�/ˇ̌2 e�'.�/d�d� (3.11)

where C1 > 0 depends solely on Cı, the constant in (3.10).

Theorem 3 is a special case of Theorem 7.6.11 in [Hörmander 1966];it en-
ters under the heading of “cohomology with bounds” for the sheaf of modules
MP generated by MP : one needs a Cartan Theorem B with bounds. If f 2
	 .Cn;Op; k C 1/ is a .k C 1/-cocycle (meaning that Rf D 0), the classical
Theorem B tells us that there is u 2 	 .Cn;Oq; k/ such that Pu D f . We now
require f to satisfy suitable estimates

Z

U

jf .�/j2 e�'.�/d�d� < C1,

for every element U of the open covering of CN used to define the cochains (U is
commonly taken to be a suitably small hypercube). One must find a k-cochain v 2
	 .Cn;Oq; k/ which satisfies the equation Pv D Pu D f as well as an estimate of
the type (3.11) but with domain of integration U . The latter is achieved by taking
a closer look at the Weierstrass preparation theorem and devising lower bounds for
jPuj in U .

The same type of argument, combined with the exactness of the sequence (3.8),
leads to

Theorem 4. Given the system P , there is N 2 Z such that to each Eh 2 O .Cn/q
verifying P Eh D 0, there is Ev 2 O .Cn/r verifying Eh D SEv and

Z

R2n

ˇ̌Ev .�/ˇ̌2 e�'.�/ �1C j�j2
��N

d�d� � C1

Z

R2n

ˇ̌
ˇEh .�/

ˇ̌
ˇ
2

e�'.�/d�d�

where C1 > 0 depends solely on Cı, the constant in (3.10).

The next two lemmas are important consequences of Theorems 3 and 4. In every
one of the remaining statements in this section, � will be an arbitrary convex open
subset of Rn.

Lemma 1. If f 2 C1
c .�/p satisfies the compatibility conditions R .D/ f D 0

[cf. (3.9)], then there exists g 2 C1
c .�/q such that f D P .D/ g.
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Proof. One must show that, under the hypotheses of the statement, the linear
functional 
f W  D P [ .D/ � ! hf; �i is continuous for the topology induced on
P[ .D/D0 .�/p by D0 .�/q . Indeed, if this is true then the Hahn–Banach theorem
allows one to extend 
f as a continuous linear functional D0 .�/q 3 � ! hg; �i
with g 2 C1

c .�/q , and then obviously hf; �i D
D
g;P [ .D/ �

E
D hP .D/ g; �i

for all � 2 D0 .�/p . Actually it suffices to deal with distributions � 2 E 0 .K/p ,
meaning � 2 D0 .Rn/p and supp� � K , with K an arbitrary convex compact
subset of � whose interior contains suppf . Since K is convex, the function
C
n 3 � D � C i� �! HK .�/ D max

x2K .x � �/ 2 R is plurisubharmonic and satisfies

(3.10) for a suitably large Cı; the same is true of 2HK .�/ C N log.1 C j�j2/ if
N � 0. By the Paley–Wiener theorem, we have, for a suitable Nı 2 ZC,

k O�k2K;Nı

D
Z

R2n

j O� .�/j2 e�2HK.�/
�
1C j�j2

��Nı

d�d� < C1 (3.12)

as well as k O k2K;NıC < C1 (: degree of P).

First, we apply Theorem 3 with P [ in the place of P: there is v 2 O.Cn/p such
that P [ .v � O�/ D 0 and kvk2K;NıCN1 � Ck O k2K;NıC for suitably large positive
constantN1, C , independent of � (but not ofK). From the Paley–Wiener-Schwartz
theorem, it follows that v D O�1, �1 2 E 0 .Rn/p and supp�1 � K .

Next, we apply Theorem 4 with P[ in the place of P : there is w 2 O .Cn/
verifying R[w D O�� O�1 and kwk2K;NıCN2 � C 0 k O� � O�1k2K;N1 for suitable constants
N2 > N1; C

0 > 0 (independent of O� � v). From the Paley–Wiener–Schwartz
theorem, it follows that w D O�,� 2 E 0 .Rn/ and supp� � K . Since R .D/ f D 0,
we derive hf; �i D hf; �1i. This proves that the map E 0 .�/q 3  �! �1 2 E 0 .�/p
is continuous, whence the claim.

The proof actually shows that to each sufficiently large order m1 2 ZC, there
is m2 > m1 such that if f 2 Cm1c .�/q satisfies the compatibility conditions
R .D/ f D 0, then there exists g 2 Cm2c .�/p such that f D P .D/ g. Using
this observation and standard techniques of the theory of constant coefficients PDE,
it is possible to prove

Lemma 2. If f 2 E 0 .�/q satisfies the compatibility conditions R .D/ f D 0, then
there exists g 2 E 0 .�/p such that f D P .D/ g.

Theorem 5. The closure in C1 .�/q of the exponential-polynomial solutions of
(2.3) is the subspace of C1 .�/q of all solutions of (2.2).

Proof. By the Hahn–Banach theorem, the claim is proved if we show that the
hypothesis that f D �

f1; : : : ; fq
� 2 E 0 .�/q is orthogonal to all exponential-

polynomial solutions of (2.3), implies that f is orthogonal to all of solutions of
(2.3) in C1 .�/q . It is not difficult to prove that this hypothesis implies

8� 2 C
n, Of .�/ � h .��/ D 0
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for all h 2 O .Cn/q such that Ph 	 0. According to Theorem 2, the latter means that
there is w 2 O .U /r such that h D S w whence S .��/> Of D 0, i.e., S [ .D/ f D 0.
The latter are the compatibility conditions for P[ .D/. Then Lemma 2 applied with
P[ in place of P entails that there is g 2 E 0 .�/p verifying P .�D/> g D f . The
sought conclusion ensues directly from this last fact.

Theorem 5 is the Runge-type theorem in the general case. After the proof
that (2.1) can be solved for compactly supported right-hand sides satisfying the
appropriate compatibility conditions [obtained through estimates like (3.12) for P[

in the place of P], Theorem 5 is used via the Mittag-Leffler correction (just as in
the scalar case) to prove the existence of solutions:

Theorem 6. To each f 2 C1 .�/q such that R .D/ f D 0, there is a solution
u 2 C1 .�/p of the system of equations P.D/u D f .

Proof. Lemma 1 shows that we can solve (2.1) if f 2 C1
c .�/q . Theorem 5 enables

us to duplicate the Mittag-Leffler procedure described, in the scalar case, at the end
of Sect. 2.

Keeping track of the integersN in the estimates of type (3.11) enables one to get
some precision about the loss of derivatives in solving (2.2).

At this stage, the classical theorems of the early 1950s in the scalar case (at least
for convex domains) have been generalized to all systems (2.2).

4 To the Fundamental Principle

4.1 Noetherian Operators

The proof of the Fundamental Principle demands that we further refine the
description of the solutions in the multiplicative equation (3.2). By the exactness
of the sequence (3.8), we know that they belong to the kernel of the sheaf map Q.
But this cannot be the whole story, as the case p D q D 1 shows: in this case, Q
vanishes identically and (3.8) adds nothing to our knowledge (that multiplication by
P is injective). Note that we know much more in the one-variable case: think of the
ODE

�
d

dx � ��m h D 0 and of its solutions h D xke�x , k D 0; 1; : : : ; m � 1.
In the general case P D �

Pj;k
�
1�j�p;1�k�q, the first step is to identify the

analogue of the null variety in the scalar case,
�1
P .0/. Returning to the submodule

MP of C Œ�1; : : : ; �n�
q generated by the row-vectors EPj D �

Pj;k
�
1�k�q , j D

1; : : : ; p, we introduce its primary decomposition

MP D M1 \ � � � \ MI (4.1)

where each submodule M� is proper and primary in the following sense:
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Definition 1. A submodule M of C Œ�1; : : : ; �n�
q is proper and primary if f0g ¤

M ¤ C Œ�1; : : : ; �n�
q and if the following condition is satisfied, whatever F 2

C Œ�1; : : : ; �n�:

(Pry): If there is M 2 C Œ�1; : : : ; �n�
q nM such that FM 2 M, then there is

s 2 ZC such that F s
C Œ�1; : : : ; �n�

q � M.

Condition (Pry) says that that either multiplication by F 2 C Œ�1; : : : ; �n� sends
into M only the vector-valued polynomials that already belong to M or else, for
large enough s 2 ZC, multiplication by F s sends all vector-valued polynomials
into M. When M is primary, the polynomials F such that F s

C Œ�1; : : : ; �n�
q � M

form a prime ideal p of C Œ�1; : : : ; �n�; the algebraic subvariety

V p D f� 2 C
nI 8F 2 p; F .�/ D 0g

is irreducible, equivalent to the fact that the regular part of V p is connected (it is
dense in V p).

We denote by p� the prime ideal associated with the proper primary submodule
M�. The union

V P D V p1 [ � � � [ V pI (4.2)

will play the role played by the null variety in the scalar case—in which case MP

and M� are simply ideals in C Œ�1; : : : ; �n�.
We return to an arbitrary proper and primary submodule M of C Œ�1; : : : ; �n�

q

with associated prime ideal p. The local structure of V p is well known; in C
n, a

global statement is valid:

Lemma 3. Possibly after an affine change of variables in C
n, the following

properties hold:

(1) There is � 2 ZC, � < n, such that p\C Œ�1; : : : ; ��� D f0g [� will be the largest
such integer and we write � 0 D .�1; : : : ; ��/].

(2) For each j D 1; : : : ; n � �, there is an irreducible polynomial ˆj 2 p \
C
�
�1; : : : ; ��; ��Cj

�
of degree dj � 1, of the form

ˆj
�
� 0; ��Cj

� D �
dj
�Cj C

djX

kD1
aj;k

�
� 0� �dj�k

�Cj . (4.3)

The discriminant of ˆ1 .� 0; �/, D .� 0/ 2 C Œ�1; : : : ; ���, does not vanish identi-
cally.

(3) For each j D 2; : : : ; n � �, there are polynomials ‰j .�
0; ��C1/ 2

C Œ�1; : : : ; ��; ��C1� such that

Tj
�
� 0; ��C1; ��Cj

� D D
�
� 0� ��Cj �‰j

�
� 0; ��C1

� 2 p. (4.4)
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(4) If V D D f� 2 V P I D .� 0/ D 0g, then V pnV D is a connected complex-analytic

submanifold of Cn and the projection � W V pnV D 3 � �! � 0 2 C
�n�1
D .0/

is a local biholomorphism that turns V pnV D into a d1-sheeted covering of

C
�n�1
D .0/. The closure of V pnV D is equal to V p.

(5) For some C > 0 and all � 2 V p, then j�j � C .1C j� 0j/.
Property #5 is a statement about the degrees of the coefficients aj;k .� 0/ in (4.3).
In the sequel, s shall denote the smallest positive integer such that (Pry) is true.

Consider then the differential operators acting on polynomials F 2 C Œ�1; : : : ; �n�
q

of the kind

L D
X

j˛j<s
c˛ .�/ �D˛

�00 , (4.5)

where D˛
�00 D D

˛1
��C1

� � �D˛n��

�n
and c˛ .�/ 2 C Œ�1; : : : ; �n�

q (� stands for the scalar
product in C Œ�1; : : : ; �n�

q). We denote by Diff s .M/ the set of operators (4.5) such
that LF 2 p whatever F 2 M.

The proof of the next lemma is based on the description of V p in Lemma 3.

Lemma 4. For F 2 C Œ�1; : : : ; �n�
q to belong to M, it is (necessary and) sufficient

that LF 2 p for all L 2 Diff s .M/.

It is clear that Diff s .M/ is a finitely generated C Œ�1; : : : ; �n�-module; it is
essentially characterized by the property in Lemma 4 together with the property
that

�L; �j
� 2 Diff s .M/ for every j D 1; : : : ; n. The differential operators L 2

Diff s� .M�/ were called Noetherian by Palamodov ([Palamodov 1963], Chap. 4,
Sects. 3 and 4; this concept is relative to the variety V p).

Let M denote the subsheaf of Oq generated by M. If U � C
n is open, we

call M .U / the set of continuous sections of M over U ; M .U / is an O .U /-
submodule of O .U /q . The preceding lemmas lead to the following description of
the elements of M .U / when U is Stein (the proof exploits the coherence of the
analytic subsheaves of Oq):

Theorem 7. If U � C
n is a domain of holomorphy, then, for f 2 O .U /q to

belong to M .U /, it is (necessary and) sufficient that Lf 	 0 on V p \ U for all
L 2 Diff s .M/.

Returning to the primary decomposition (3.10), we can state

Proposition 1. If U � C
n is a domain of holomorphy, then

MP .U / D M1 .U / \ � � � \ MI .U / . (4.6)

Let s� denote the smallest positive integer such that M� satisfies (Pry) with s D
s�. We select finitely many generators L�;� (� D 1; : : : ; n�) of Diff s� .M�/ for each
� D 1; : : : ; I, The following direct consequence of Theorem 7 is of great importance
in what follows:



Ehrenpreis and the Fundamental Principle 503

Theorem 8. For f 2 O .Cn/q to belong to MP .C
n/, it is necessary and sufficient

that L�;�f 	 0 on V p� for all � D 1; : : : ; I, � D 1; : : : ; n�.

The exactness of the sequence (3.5) entails, then:

Corollary 1. Let f 2 O .Cn/q be arbitrary. If L�;�f 	 0 on V p� for all � D
1; : : : ; I, � D 1; : : : ; n� then Rf 	 0.

If we write

L�;�
�
�;D�

�
f .�/ D

X

j˛j<s�
c�;�I˛ .�/ �D˛

�00f .�/ , f 2 O .Cn/q , (4.7)

we can define the “symbol”

bL�;� .�; z/ D
X

j˛j<s�
c�;�I˛ .�/ z00˛ . (4.8)

For each z 2 C
n,bL�;� .�; z/ 2 C Œ�1; : : : ; �n�

q .

Proposition 2. If �ı 2 VP , then bL�;� .�ı; x/ eih�ı ;xi is an exponential-polynomial
solution of (2.3).

Proof. We have, for each j D 1; : : : ; p,

Pj .Dx/
�
bL�;�

�
�ı; x

�
eih�ı ;xi�

D eih�ı;xi X

j˛j<s�

X

ˇ�˛

1

ˇŠ
c�;�I˛

�
�ı�Dˇ

�
x00˛�P .ˇ/

j

�
�ı�

D eih�ı;xi X

j˛j<s�
c�;�I˛

�
�ı�X

ˇ�˛

˛Š

ˇŠ .˛ � ˇ/Š
x00˛�ˇP .ˇ/

j

�
�ı�

D
X

j˛j<s�
c�;�I˛ .�/

X

ˇ�˛

˛Š

ˇŠ .˛ � ˇ/Š
D
˛�ˇ
�

�
eih�;xi�P .ˇ/

j .�/

ˇ̌
ˇ̌
ˇ̌
�D�ı

D L�;�
�
�;D�

� �
eih�ı;xiPj .�/

�ˇ̌
ˇ
�D�ı

D 0

by Theorem 8.

Let f 2 E 0 .Rn/q be arbitrary and let L�;�
�
�;D�

�
act on

Of .��/ D
Z

eihx;�if .x/ dx (4.9)
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(the integral
R �dx stands for the duality bracket between compactly supported

distributions and C1 functions); we get directly

L�;�
�
�;D�

� Of .��/ D
Z

eihx;�ibL�;� .�; x/ f .x/ dx. (4.10)

Proposition 3. Let f 2 E 0 .Rn/q be such that L�;�
�
�;D�

� Of .��/ D 0 for all � D
1; : : : ; I, � D 1; : : : ; n� and all � 2 VP . There is w 2 E 0 .Rn/q such that f D
P[ .D/w.

Proof. Taking Remark 1 into account, combine Corollary 1 with Lemma 2.

4.2 Extension with Bounds: Final Statement

The next step is to obtain an extension theorem with bounds for functions. We
first state the central result for an arbitrary proper and primary submodule M
of C Œ�1; : : : ; �n�

q . We select finitely many generators Lj (j D 1; : : : ; �ı) of
Diff s .M/.

Theorem 9. Let ' be a plurisubharmonic function in C
n satisfying the following

condition [cf. (3.1)]:
(Temp): For some positive constants Cı, C1;  and all .z; �/ 2 C

2n,

jzj � C1 .1C j�j/� H) j' .� C z/� ' .�/j � Cı.

Then, for a suitable choice of the positive constants C and N , to each f 2
O .Cn/ there is g 2 O .Cn/ such that f � g 2 M .Cn/ and such, moreover, that

sup
�2Cn

.1C j�j/�N e�'.�/ jg .�/j � C sup
�2V p

e�'.�/ ˇ̌Lj f .�/
ˇ̌
. (4.11)

For a proof, see pp. 242–243, [Hörmander1966]. In generalizing Theorem 9 to
the submodule MP in (4.1), we make use of the generators L�;j (j D 1; : : : ; n�) of
Diff s� .M�/ introduced above (� D 1; : : : ; I).

Theorem 10. Let the plurisubharmonic function ' in C
n satisfy (Temp). Then, for

a suitable choice of the positive constants C and N , to each f 2 O .Cn/, there is
g 2 O .Cn/ such that f � g 2 MP .C

n/ and such, moreover, that

sup
�2Cn

.1C j�j/�N e�'.�/ jg .�/j � C max
�D1;:::;I

 
max

�D1;:::;�i

 
sup
�2V p�

e�'.�/ jL�;�f .�/j
!!

.

(4.12)
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In what follows, � � R
n shall once again denote a convex open set and

h D �
h1; : : : ; hq

� 2 C1 .�/q will be a solution of (2.3). We have, for every
w D �

w1; : : : ;wq
� 2 E 0 .�/q ,
Z
h �
�
P[ .D/w

�
dx D

Z
w � .P .D/ h/ dx D 0 (4.13)

where P [ .�/ D P> .��/ and the integral
R �dx stands for the duality bracket

between C1 .�/q and E 0 .�/q .
Let K denote a convex compact subset of � and HK the supporting function of

K . By the Paley–Wiener–Schwartz theorem, to say that supp w � K is equivalent
to saying that there are  2 Z and C > 0 such that

8� 2 C
n,
ˇ̌ Owj .�/

ˇ̌ � C eHK.Im �/ .1C j�j/ , j D 1; : : : ; q. (4.14)

Denote by E .K/ the space of vector-valued functions V 2 O .Cn/q such that, for
some N 2 Z,

sup
�2Cn

jV .�/j e�HK.� Im �/ .1C j�j/�N < C1. (4.15)

Let v .x/ 2 E 0 .�/q be such that V .�/ D Ov .��/. The solution h of (2.3) defines a
continuous linear functional on E .K/:


 .V / D
Z
h .x/ v .x/ dx. (4.16)

If there is w 2 E 0 .�/q such that v D P[ .D/w, i.e., V .�/ D P> .�/ Ow .��/, then

 .V / D 0 by (4.13).

We apply Theorem 10: there is G 2 O .Cn/q and N;N1 2 Z such that G � V 2
MP .C

n/ and

sup
�2Cn

.1C j�j/�N e�HK.� Im �/ jG .�/j

� C max
�D1;:::;I

 
max

�D1;:::;�i

 
sup
�2V p�

.1C j�j/�N1 e�HK.� Im �/ jL�;�V .�/j
!!

: (4.17)

We can writeG�V D P>ˆ for someˆ 2 O .Cn/p (see Remark 1) and then apply
Theorem 3 with P> in place of P : there is ‰ 2 O .Cn/ such that P>‰ D P>ˆ
and, for suitably large N2 2 ZC, C1 > 0,

sup
�2Cn

e�HK.� Im �/
�
1C j�j2

��N2 j‰ .�/j

� C1 sup
�2Cn

e�HK.� Im �/ .1C j�j/�N jG .�/ � V .�/j < C1.



506 F. Treves

We have 0 D 

�
P>‰

�
D 
 .G/ � 
 .V / and, by (4.17),

j
 .V /j � C2 max
�D1;:::;I

 
max

�D1;:::;�i

 
sup
�2V p�

.1C j�j/�N3 e�HK.� Im �/ jL�;�V .�/j
!!

(4.18)

again for suitably largeN3 2 ZC; C2 > 0 independent of V satisfying (4.15).
Let now F .K;V P / denote the (Banach) space of continuous complex functions

F in V P D V p1 [ � � � [ V p
 such that

kF kK;V P
D sup

�2V P

�
.1C j�j/�N2 e�HK.� Im �/ jF .�/j

�
< C1.

The dual F� .K;V P/ of F .K;V P / is the space of Radon measures dm on the
locally compact space V P such that .1C j�j/N2 eHK.� Im �/dm is a bounded measure
d� on V P . Thus, if F 2 F .K;V P / and dm D .1C j�j/�N2 e�HK.� Im �/d� 2
F

� .K;V P/, then the duality bracket is

hF; dmi D
Z

V P

F .�/ .1C j�j/�N2 e�HK.� Im �/d�. (4.19)

By the Hahn–Banach theorem, the inequality (4.18) implies that there are bounded
measures d��;� on V P such that


 .V / D
IX

�D1

n�X

�D1

Z

V p�

.1C j�j/�N2 e�HK.� Im �/L�;�V .�/ d��;� .�/ (4.20)

Recalling that V .�/ Dbv .��/, we see that

L�;�
�
�;D�

�
V .�/ D

Z
eihx;�ibL�;� .�; x/ v .x/ dx. (4.21)

Recalling (4.16), we see that, for arbitrary v 2 E 0 .�/q ,

hh; vi D
IX

�D1

n�X

�D1

Z

�2V p�

�
Z

x2Rn
eihx;�i .1C j�j/�N2 e�HK.� Im �/bL�;� .�; x/ v .x/ d��;� .�/ dx,

which means that, for all x in the interior of K ,

h .x/ D
IX

�D1

n�X

�D1

Z

�2V p�

eihx;�i�HK.� Im �/bL�;� .�; x/ .1C j�j/�N2 d��;� .�/ : (4.22)
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The integral at the right is absolutely, uniformly convergent and remains so after a
number of differentiations—number depending onN2. Having assumed, here, that h
is C1 we are at liberty to selectN2 as large as we wish. LettingK % � (4.22) gives
us a representation of all solutions h 2 C1 .�/q of (2.3). This is the Fundamental
Principle.
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Minimal Entire Functions

Benjamin Weiss

Abstract Consider the space of nonconstant entire functions E with the topology
of uniform convergence on compact subsets of C and with the action of C by
translation. A minimal entire function is a nonconstant entire function f with the
property that for any g 2 E which is a limit of translates of f , in turn, f is a limit
of translates of g. Thus, X , the orbit closure of f is a minimal closed invariant set.
It is not clear a priori that there exist such functions with X including functions that
are not translates of f . I will show that many such functions can be constructed and
that their orbit closures can be quite large and interesting from a dynamical point
of view. The main example is based on the construction of a particular compact
minimal action of R2 with rather special properties.

Key words Entire functions • Minimal actions

Mathematics Subject Classification: 30D99, 37B99

1 Introduction

The complex plane C acts by translation on the space of non-constant entire
functions E by sending f .z/ to f .z C c/ for c 2 C. With the topology of uniform
convergence on compact sets, E becomes a Polish space and it is natural to consider
the dynamical aspects of this action. This was first done by G.D. Birkhoff who in
[B] constructed an entire function f whose orbit under this action is dense in E .
This shows that this action is topologically transitive. In an earlier paper [W2], in
response to a question that had been raised by G. Mackey, I showed that there is
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an abundance of non-trivial ergodic invariant probability measures for this action.
In fact, for any free probability preserving action of C, .X;B; �; Tc/, there is a
measurable function F W X ! C such that for �-a.e. x 2 X , the function
fx.z/ D F.Tz.x// is a nonconstant entire function. In this note, dedicated to the
memory of one of my first teachers, Leon Ehrenpreis, I intend to demonstrate the
abundance of minimal entire functions. These are nonconstant entire functions f

with the property that for any g 2 E which is a limit of translates of f , in turn, f

is a limit of translates of g. In other words, the closure of the orbit of f in E is a
minimal set. Needless to say, these minimal sets are not compact as is customary in
topological dynamics.

Nonetheless, they can be quite close to classical minimal actions of C. In fact,
the first example of a measurable entire function in [W2] is based on the action on
R2 on a compact group, a two-dimensional solenoid, and defines a minimal entire
function. The example there was based on the lattices Lk D 3kZ2 with the compact
group being the inverse limit of the tori R2=Lk .

My intent here is to show that more general minimal actions of R2 can serve as
the basis for minimal entire functions. I will illustrate this with one example, which,
while close to the solenoid, has quite different properties. In the next section, I will
describe in detail a particular minimal action of R2 with some special properties. In
the following one, I will explain how to use it to define a minimal entire function.
The final section will contain some further remarks on the minimal system and on
extensions of the construction of entire functions based on more general minimal
actions. In conclusion, I would like thank Hillel Furstenberg for permission to
include the example of the flickering circles.

2 The Flickering Circles

In this section, I shall describe the construction of a minimal action of R
2 on

a compact metric space X which will serve as the basis for the minimal entire
functions. This construction was carried out many years ago together with Hillel
Furstenberg, and I thank him for his allowing me to include it in this note. Our
original motivation was to show that R2 can act minimally without any of its one-
parameter subgroups doing so.

The space X will be the closure of the translates of one closed subset F � R
2

in the topology induced by the Hausdorff metric on compact subsets of R2. More
explicitly, I mean that Fn converges to F if for every compact subset K , Fn \ K

converges to F \ K in the Hausdorff metric on subsets of K . It is a standard fact
that this space is compact. Let flig be a sequence of integers and frig a sequence of
positive numbers and denote by Li the lattice liZ

2. Furthermore, let Ci denote the
circle centered at the origin with radius ri . The set F will have the form

F D
1[

iD1

.Mi C Ci/
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with Mi � Li suitably defined when the sequences of li and ri satisfy some simple
growth properties.

The tricky aspect of the construction is that we want the circles defining F to be
disjoint, but nonetheless, we want the Mi to be sufficiently regular so as to guarantee
the minimality of the resulting orbit closure. To begin with, we will require that
each successive liC1 is a multiple of the preceding li so that the basic lattices Li are
nested, i.e., Li � LiC1 for all i . Next, we would like the circles Li C Ci for a fixed
i to be disjoint, so we demand that for all i

ri

li
<

1

10
;

and since we would like the new circles to enclose many circles of the previous
levels, we demand that for all i

riC1

li
> 10:

The sets Mi will be defined as the limits of a triangular array M n
i for i � n. By

d.x; E/, I mean the distance from the point x to the closed set E . The array M n
i is

defined for each n by a downward induction as follows:

(a) M n
n D Ln.

(b) M n
j D fx 2 Lj W d.x;

S
j <i�n.M n

i C Ci// > 2rj g.

Using this array, we define the n-th approximation to F by the formula:

Fn D
n[

iD1

.M n
i C Ci /

For a particular a 2 Lj , the circle a C Cj appears for the first time in Fj and
then may disappear and reappear in subsequent Fn’s (hence the name “flickering
circles”). Since a C Cj is contained inside CN for all sufficiently large N , this
process eventually stabilizes, and thus, there is a well-defined limit of the M n

j as
n tends to infinity, which is denoted by Mi , and this defines F . Its properties will
follow from the properties of the Fn.

The next lemma makes precise the fact that the interior of any one of the
translates of Ci in Fn is the same independently of n � i . Its proof is a straight
forward consequence of the fact that the lattices Li are nested. To state the lemma,
I will denote by Di the disk of radius ri centered at the origin.

Lemma 1. For all i � n � m, a 2 M n
i , and b 2 M m

i , we have:

Fn \ .a C Di / � a D Fm \ .b C Di / � b:

It follows from the lemma that for the limit sets Mi and any a and b in Mi , we
have:

F \ .a C Di / � a D F \ .b C Di / � b:
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For the minimality of the orbit closure of F , it therefore suffices to check that for
each i the set Mi is syndetic, i.e., the distance d.z; Mi / is uniformly bounded for
z 2 C. This in turn follows from the fact that for any a 2 Li , there cannot be more
than one circle of a higher order whose distance to a is less than 2ri . For circles
of the same order, this is clear, while the nature of the construction precludes the
presence of higher order circles that are too close on the scale of ri .

Let us denote the orbit closure of F by X and the action by translation by Tc .
This minimal system has a natural mapping, � , onto the solenoidal group, S , which
is defined as the inverse limit of the tori R2=Ln. This follows from the fact that the
sets Mi are syndetic, and in any limit of translates of F , one sees limits of finite
portions of Mi C Di so that the position of the lattices Li can be determined in any
limit of translates of F .

However, there are also points in X that contain infinite straight lines. These
are obtained by translating F so that larger and larger circles pass through a fixed
point of C. Clearly, one can obtain a straight line in any desired direction, and then
translating in that direction will preserve the straight line so that any fixed one-
parameter subgroup of R2 has proper closed subsets. This is how one sees that
no one-parameter subgroup of R2 acts minimally on X . This phenomenon is in
contrast to what happens with ergodicity. If R2 acts ergodically on a probability
space, then with a countable number of exceptions, the one-parameter subgroups of
R2 act ergodically (see [PS]).

A further property that can be established for this example is that X is a proximal
extension of its solenoidal factor. This means that if x and y are two points with
the same projection on S , then one can find a sequence ck 2 C such that the
distance between Tck

.x/ and Tck
.y/ tends to zero. On the other hand, it is also easy

to show that for any point s 2 S , the fiber ��1.s/ is infinite. In particular, this gives
examples of proximal extensions of equicontinuous actions which are not almost
automorphic, which are extensions of equicontinuous actions for which the generic
fiber consists of only one point (cf. [GW1]).

3 Minimal Entire Functions

In this section, I shall show how to use the structure of the set F together with
the classical theorem of C. Runge on approximation of holomorphic functions
by polynomials to construct a minimal entire function. Let me begin by recalling
Runge’s theorem:

Theorem 1. If K is a compact subset of C with a connected complement and f is
holomorphic in some neighborhood of K , then for any � > 0, there is a polynomial
p.z/ such that

supz2K jf .z/ � p.z/j < �:

The construction of the entire function will be carried out in a sequence of steps
utilizing the graded structure of F . As before, we denote by Di the closed desk



Minimal Entire Functions 513

centered at the origin with radius ri . For the first step, define f1.a C z/ D z for all
a 2 M1 and z 2 D1. For the second step, set K2 equal to the union of those translates
of D1 that lie inside D2 on which f1 was defined and apply Runge’s theorem to find
a polynomial p2 such that

supz2K2
jf1.z/ � p2.z/j <

1

10
:

We set f2.a C z/ D p2.z/ for all a 2 M2 and z 2 D2, while for those points that are
in M1 C D1 and do not lie in M2 C D2, we keep f2.z/ D f1.z/. Note that while f1

looked the same on unit disks centered at elements of M1, this is no longer the case
for f2. However, it does look the same up to an error that is at most 1

5
. On the other

hand, for the disks D2 centered at elements of M2, the function f2 is the same. In
general, we will have defined fn on

En D
n[

iD1

.Mi C Di /

to be some polynomial on each of the disks that constitute En, and fn will have the
properties:

(An) jfn�1.z/ � fn.z/j < 1
10n�1 for all z 2 En where fn�1 is defined :

(An) fn.z/ D fn.a C z/ for all a 2 Mn and z 2 Dn.
(C n

i ) jfn.a C z/ � fn.b C z/j <
Pn�1

j Di
2

10j for all a; b 2 Mi and z 2 Di .

for all 1 � i < n. In order to define fnC1, we set KnC1 D En \ DnC1 and apply
Runge’s theorem to find a polynomial pnC1 that satisfies:

supz2KnC1
jfn.z/ � pnC1.z/j <

1

10n
:

We set fnC1.a C z/ D pnC1.z/ for all a 2 MnC1 and z 2 DnC1, while for those
points that are in En and do not lie in MnC1 C DnC1, we keep fnC1.z/ D fn.z/.
This defines fnC1 on

EnC1 D
nC1[

iD1

.Mi C Di /

and it is easy to check that properties AnC1, BnC1, and C nC1
i will hold for all 1 �

i < n C 1.
The properties An imply that the fn converge to an entire function f . By passing

to a limit, one obtains from the properties C n
i that f will satisfy the properties:

(Ci ) jf .a C z/ � f .b C z/j � P1
j Di

2
10j for all a; b 2 Mi and z 2 Di .

These properties together with the fact that the sets Mn are syndetic clearly imply
that f is a minimal entire function.
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The set of entire functions g that we will get as limits of the orbit of f under
translation will be denoted by Y � E . It is clear from the construction that f .ck Cz/
will converge to an entire function g.z/ only when the sets ck C F converge to a
limiting set in X , the space of the minimal action defined in the preceding section.
Thus, there is a mapping � W Y ! X which is of course equivariant with respect to
the actions of R2 on these spaces. This mapping, � , is not onto. This follows easily
from the fact that f is not bounded, and thus there is a sequence ck along which
f .ck/ tends to 1. On the other hand, by the compactness of X , we may assume
that F C ck converges to a limit. However, if the radii ri are chosen so that the sumP1

iD1
ri

li
diverges, then it is possible to show that �.Y / is big in the following sense.

Define the measures �n on X by the formula:
Z

�d�n D
Z

uCiv2Dn

�.F C .u C iv//dudv;

for continuous functions � on X . Let � by any invariant measure on X that is a
weak�-cluster point of the measures �n. Note that since the solenoid is uniquely
ergodic, the measure � necessarily projects onto the Haar measure of the solenoidal
factor of X . The image �.Y / has �-measure one. To see this, observe that once
z 2 a C Di for a 2 Mi and i sufficiently large, f .z � a/ is very close to the
polynomial pi.z/. Denote by ODi the disk centered at the origin but with radius ri �di

where di is a sequence that tends slowly to 1 and consider the set:

Gk D fz 2 C W z 2 Mi C ODi for some i � kg:
The assumption about the divergence of the series

P1
iD1

ri

li
implies that for any fixed

k, the density of Gk in Dn tends to one as n tends to 1. Thus, the � measure of the
points corresponding to \Gk will be one, and corresponding to such points, there
will be some limiting entire function. We can summarize the results in the following
theorem:

Theorem 2. There is a minimal entire function f such that if Y denotes the closure
of its translates in E , there is an equivariant mapping � from Y to the flickering
circle minimal system .X; Tu/ with an invariant measure � such that �.�.Y / D 1.
This system .X; Tu/ is a proximal extension of a two-dimensional solenoid, and it
has the property that every one-parameter subgroup of R2 has a nontrivial invariant
subset.

4 Concluding Remarks

1. The basic idea used in the construction of the flickering circle system was used
again several times both to construct minimal systems as in [GW2] and in finding
uniquely ergodic models as in [W1] and the later papers of Alain Rosenthal (e.g.,
[R]). Most recently, I used it show that any free action of a countable group has
a minimal model [W3].
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2. A more natural example of an R2 minimal action such that no one-parameter
subgroup acts minimally is given by the product of the horocycle flow with itself.
Explicitly, let � be a co-compact subgroup of G D SL.2;R/ and let X D G=� .
The horocycle flow is defined by the action of the group

ht D
�

1 t

0 1

�

and it is minimal as was shown by G. Hedlund in [H]. Clearly, the action of R2

on X � X defined by T.s;t/.x; y/ D .hs.x/; ht .y// is also minimal. The geodesic
action is defined by the group:

gu D
�

u 0

0 u�1

�

and it satisfies the commutation relation htgu D guhu�2t . It follows that for the
one-parameter subgroup of R2, generated by .1; a/, the graph

f.x; gp
a.x// W x 2 Xg

gives a closed invariant set for the direct product of the horocycle flows. Hillel
Furstenberg observed many years ago (private communication) that for this
example, it is nonetheless true that for any positive � there is some one-parameter
subgroup of R2 such that all of its orbits in X �X are �-dense. In fact, for any R2

minimal action which is formed as the direct product of two minimal R actions,
.X; Su/; .Y; Tv/, given � > 0 if one chooses m to be sufficiently large, then the
one-parameter subgroup, Rt D St � Tmt ,will have the property that the orbit of
every point in X � Y under Rt is �-dense. In the flickering circle example, this
is not the case. There is an open set U which contains in its complement entire
orbits of every one-parameter subgroup of R2. Thus, its lack of “one-dimensional
minimality” is in some sense stronger.

3. There were two properties of the lattices Li that were crucial in the construction
of the flickering circle system. The first is that they are syndetic, and the second
is that for any two points a; b 2 Li for any j < i , the sets .a C Di / \ Lj � a D
.b C Di / \ Lj � b. If we have a sequence of sets in the plane with these two
properties, we can carry out a construction quite similar to the one in Sect. 2.
If X is a compact space and Tz is a minimal free action of C on X and we fix
a point x0 2 X and let Ui be a decreasing sequence of neighborhoods of x0,
then defining OLi D fz 2 C W Tz.x0/ 2 Ui g, the minimality implies that the OLi

are syndetic, while if the neighborhoods decrease sufficiently rapidly, we will
have something quite close to the second property. Now, one can use these sets
to replace the regular lattices Li and construct a minimal entire function that is
based on the recurrence patterns of the point x0.

4. At the time that I wrote [W2], I was unaware of Birkhoff’s paper [B], which
was recently pointed out to me by Eli Glasner. Using the techniques of [W2],
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it is not hard to guarantee that closed support of the ergodic measures � that are
constructed there on E is all of E . The ergodic theorem now shows that �-a.e.
f 2 E has a dense orbit. This is a strengthening of Birkhoff’s result.
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A Conjecture by Leon Ehrenpreis About Zeroes
of Exponential Polynomials

Alain Yger

Dedicated to the memory of Leon Ehrenpreis

Abstract Leon Ehrenpreis proposed in his 1970 monograph Fourier Analysis in
several complex variables the following conjecture: the zeroes of an exponential
polynomial

PM
0 bk.z/ei˛kz, bk 2 QŒX�, ˛k 2 Q\R are well separated with respect

to the Paley–Wiener weight. Such a conjecture remains essentially open (besides
some very peculiar situations). But it motivated various analytic developments
carried by C.A. Berenstein and the author, in relation with the problem of deciding
whether an ideal generated by Fourier transforms of differential delayed operators in
n variables with algebraic constant coefficients, as well as algebraic delays, is closed
or not in the Paley–Wiener algebrabE.Rn/. In this survey, I present various analytic
approaches to such a question, involving either the Schanuel-Ax formal conjecture
or D-modules technics based on the use of Bernstein–Sato relations for several
functions. Nevertheless, such methods fail to take into account the intrinsic rigidity
which arises from arithmetic hypothesis: this is the reason why I also focus on the
fact that Gevrey arithmetic methods, that were introduced by Y. André to revisit
the Lindemann–Weierstrass theorem, could also be understood as an indication
for rigidity constraints, for example, in Ritt’s factorization theorem of exponential
sums in one variable. The objective of this survey is to present the state of the
art with respect to L. Ehrenpreis’s conjecture, as well as to suggest how methods
from transcendental number theory could be combined with analytic ideas, in order
precisely to take into account such rigidity constraints inherent to arithmetics.

Key words Bernstein–Sato relations • Differential-difference operator • Expo-
nential polynomial
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1 The Conjecture, Various Formulations

In [36], page 322, Leon Ehrenpreis formulated the following conjecture.

Conjecture 1.1 (original form, incorrect). If F1; : : : ; FN are N exponential poly-
nomials in n variables with purely imaginary algebraic frequencies, namely,

Fj .z1; : : : ; zn/ D
MjX

kD0

bjk.z/ eih˛jk;zi ; bjk 2 CŒX1; : : : ; Xn� ; ˛jk 2 Q
n \ Rn ;

j D 1; : : : ; N;

then the ideal .F1; : : : ; FN / they generate in the Paley–Wiener algebra 2E 0.Rn/ is
slowly decreasing with respect to the Paley–Wiener weight p.z/ D log jzj C jIm zj.
As a consequence,1 this ideal is closed in 2E 0.Rn/. It coincides with the ideal

ŒI.F1; : : : ; FN /�loc, which consists of elements in 2E 0.Rn/ that belong locally to the
ideal generated by F1; : : : ; FN in the algebra of entire functions in n variables.

This conjecture, in a slightly modified form (see Conjecture 1.2), has been the
inspiration for the joint work of C.A. Berenstein and the author since 1985. It is
a challenging and fascinating question, one that is closely connected with other
open questions in number theory and analytic geometry. In this note, I will point out
many of these connections, detail some of the progress that has been made on the
problem, and, hopefully, inspire others to continue the work.

As it stands, Conjecture 1.1 would imply, in the one variable setting, the
following : if

f .z/ D
MX

kD0

bk.z/ei˛kz ; bk 2 CŒX� ; ˛k 2 Q \ R (1.1)

is an exponential polynomial in one variable with algebraic frequencies and all
simple zeroes, then the ideal .f; f 0/ is a non proper ideal in 1E 0.R/ which would
imply

jf .z/j C jf 0.z/j � c
e�AjIm zj

.1 C jzj/p
(1.2)

1This follows from Theorem 11.2 in [36].
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for some c; A > 0 and p 2 N. Unfortunately, such an assertion is false if one does
not set any condition of arithmetic nature on the polynomial coefficients bk . Take,
for example,

f .z/ D f�.z/ D sin.z � �/ � sin.
p

2.z � �//;

where 2�=� has excellent approximations belonging to .2Z C 1/ ˚ p
2.2Z C 1/;

then some zeroes of f� of the form

2l�

1 � p
2

; l 2 Z ;

will approach extremely well other zeroes of f� of the form

2˛ C .2l 0 C 1/�

1 C p
2

; l 0 2 Z;

and thus the ideal .f� ; f 0
� / fails to be closed in 1E 0.R/. So Conjecture 1.1 needs to be

reformulated as follows.

Conjecture 1.2 (revised form). If F1; : : : ; FN are exponential polynomials in n

variables with both algebraic coefficients and purely imaginary algebraic frequen-
cies, namely

Fj .z1; : : : ; zn/ D
MjX

kD0

bjk.z/ eih˛jk ;zi ; bjk 2 QŒX1; : : : ; Xn� ; ˛jk 2 Q
n \ Rn ;

j D 1; : : : ; N; (1.3)

then the ideal .F1; : : : ; FN / they generate in the Paley–Wiener algebra 2E 0.Rn/ is
slowly decreasing with respect to the Paley–Wiener weight p.z/ D log jzj C jIm zj.
As a consequence, this ideal is closed in 2E 0.Rn/, and thus coincides with the set of

elements in 2E 0.Rn/ which belong locally to the ideal generated by F1; : : : ; FN in the
algebra of entire functions in n variables.

Such a conjecture appears to be stronger than the following one.

Conjecture 1.3 (weaker revised form). If F1; : : : ; FN are exponential polynomi-
als in n variables as in Conjecture 1.2, namely

Fj .z1; : : : ; zn/ D
MjX

kD0

bjk.z/ eih˛jk ;zi ; bjk 2 QŒX1; : : : ; Xn� ; ˛jk 2 Q
n \ Rn ;

j D 1; : : : ; N;
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then the closure of the ideal .F1; : : : ; FN / they generate in the Paley–Wiener algebra
2E 0.Rn/ coincides with the set of elements in 2E 0.Rn/ which belong locally to the ideal
generated by F1; : : : ; FN in the algebra of entire functions in n variables.

The conjecture is equivalent to the assertion that the underlying system of
difference-differential equations �1 � f D � � � D �N � f D 0 satisfies the
spectral synthesis property.

With C.A. Berenstein, we have been developing since [16] a long-term joint
research program originally devoted to various attempts to tackle Conjecture 1.2.
Such attempts lead to an approach based on multidimensional analytic residue
theory that relies on techniques of analytic continuation in one or several complex
variables [19, 20]. Conjecture 1.3 seems harder to deal with since it does not

fit so well with the search for explicit division formulas in 2E 0.Rn/ that resolve
Ehrenpreis’s fundamental principle as studied in [36]. (See also [18] or, more
recently, [2]). What is known as the Ehrenpreis-Montgomery conjecture is the
particular case of Conjecture 1.2, when n D 1. Thanks to Ritt’s theorem [51],
Conjecture 1.2 in the case n D 1 reduces to the following.

Conjecture 1.4 (Ehrenpreis-Montgomery conjecture). Let

f .z/ D
MX

kD0

bk.z/ ei˛kz ; bk 2 QŒX�; ˛k 2 Q \ R (1.4)

be an exponential polynomial with both algebraic coefficients and frequencies.
Then, there are constant c; A > 0, p 2 N (depending on f ) such that

�
f .z/ D f .z0/ D 0 and z 6D z0

�
H) jz � z0j � c

e�AjIm zj

.1 C jzj/p
: (1.5)

A possible reason for the terminology is the relation between Conjecture 1.4 and
the following conjecture by H. Shapiro (1958) mentioned by H.L. Montgomery in a
colloquium in Number Theory (Bolyai Janos ed.), see [56, 57].

Conjecture 1.5 (Montgomery-Shapiro conjecture). Let f; g be two exponential
polynomials that have an infinite number of common zeroes. Then, there is an
exponential polynomial h that divides both f and g and has also an infinite number
of zeroes.

Unfortunately, I failed to find a precise reference in H. L. Montgomery’s work.
There seems to be an oral contribution by H. L. Montgomery linking Conjecture 1.4
and Conjecture 1.5. In 1973, Carlos J. Moreno quoted in the introduction of [47]
an unpublished manuscript devoted to his work toward such a conjecture. His thesis
(New York University, 1972), under the supervision of L. Ehrenpreis, was centered
around it. The idea there was to prove Conjecture 1.4 for sums of exponentials
(i.e., bk 2 Q for any k), involving only a small number of exponential monomials.
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This is fundamentally different from the methods that arose later (see, e.g., [16]),
which depend on the rank of the subgroup � .f / of the real line generated by the
frequencies ˛k .

2 What is Known in Connection with Results
in Transcendental Number Theory

As mentioned in Sect. 1, besides the approach by C. Moreno in his thesis, most of
the attempts toward Conjecture 1.4 rely on an additional hypothesis on the rank of
the additive subgroup � .f / of Q \ R generated by the frequencies ˛0; : : : ; ˛M ,
not on the number of monomials ei˛kz involved. An easy case when Conjecture 1.4
holds is the case where the rank of � .f / equals 2, and the bk are constant [39]. The
result means in that case that the analytic transcendental curve

t 2 C 7! .eit ; ei�1t / ; �1 2 .Q \ R/ n Q;

cannot approach a finite subset in Q
2
. Explicitly, any finite linear combination

of logarithms of r algebraic numbers (r D 3 here) ˛� with degrees at most D,
logarithmic heights at most h, and with integer coefficients �� having absolute values
less than B is either 0 or bounded from below in absolute value,

ˇ
ˇ
ˇ

rX

�D1

�� log ˛�

ˇ
ˇ
ˇ � 1

Bc.r/�DrC2 log D�hr
: (2.6)

This is a well-known fact originally due to A. Baker; see, e.g., [9, 10] or ([58],
Sect. 4), for up-to-date results, references or conjectures. When the coefficients ��

are algebraic, with heights less than B , the following less explicit estimate continues
to hold.

ˇ
ˇ
ˇ

rX

�D1

�� log ˛�

ˇ
ˇ
ˇ � 1

Bc.r;D/�h	.r/
(2.7)

for some constants c.r; D/ and 	.r/, D being the maximum of the degrees of the ˛�

and ��. The next natural step would be to show that, if �1; �2 are two real algebraic
numbers such that .1; �1; �2/ are Q-linearly independent, the transcendental curve

t 2 C 7! .eit ; ei�1t ; ei�2t /

cannot approach an algebraic curve in C3 which is defined over Q; That is, the set
of common zeroes of polynomials belonging to QŒX1; X2; X3�. Here we are close
to a quantified version of the so-called Schanuel’s conjecture (see [58], Sect. 4, for
conjectures respect to its quantitative versions).
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Conjecture 2.1 (Schanuel’s conjecture, “numerical” version). Given s complex
numbers y1; : : : ; ys which are Q-linearly independent, the transcendence degree of
the algebraic extension QŒy1; : : : ; ys; ey1 ; : : : ; eys � over Q is at least equal to s.

For s D 1, this is Gel’fond-Schneider’s theorem. The s D 2 case would imply,
for example, the algebraic independence over Q of the pair of numbers .e; �/ or
.log 2; log 3/, and is of course still open. When � is an algebraic number with degree
D � 2 and 
 a complex number such that ei
 6D 1, a result by G. Diaz [34] asserts
that, among the exponentials ei�
; : : : ; ei�D�1
 , at least Œ.d C 1/=2� are algebraically
independent over Q. This result covers Gel’fond’s well-known result (D D 3)
and even leads to a quantitative version of it. In fact, the quantitative formulation
obtained by D. Brownawell in [14] for D D 3 (using Gel’fond-Schneider’s method)
implies the following (rather weak) result respect to Conjecture 1.4, when the rank
of � .f / equals 3.

Proposition 2.1 ([15]). If f is an exponential sum in one variable with bk 2 Q and
� .f / D Z ˚ �Z ˚ �2Z, � being an irrational cubic, then, for any � > 0, there is
c� > 0 depending on f such that

�
f .z/ D f .z0/ D 0 and z 6D z0

�
H) jz � z0j � c�e�jzj4C�

(2.8)

The methods introduced by Guy Diaz in [34] in fact allow one to replace 4 C �

by 1 C � in (2.8). In any case, we are indeed very far from what would be the
formulation of Conjecture 1.4 in the particular case where bk are constant and the
algebraic frequencies belong to the group Z˚�Z˚�2Z, � being an irrational cubic.
This is inherent to the approach of the problem via classical methods in diophantine
approximation.

Besides these cases and the results of C. Moreno in his unpublished 1971 thesis
when the number of monomial terms is small, to my knowledge nothing is really
known about Conjecture 1.4, at least in connection with an approach based on
transcendental number theory methods. For an up-to-date survey of Schanuel’s
conjecture and its quantitative versions, we refer to ([58], Sects. 3.1 and 4.3).

3 Using the Formal Counterpart of Schanuel’s Numerical
Conjecture

The point of view I developed with C. A. Berenstein in [16] and Sect. 2 of [15] relies
on the fact that the formal analog of Schanuel’s conjecture holds, despite the fact
that very little is known about the numerical Schanuel conjecture. This is a result by
J. Ax and B. Coleman [6, 31], following the ideas developed by C. Chabauty [28]
and E. Kolchin [40], see also [22] for a modern up-to-date presentation. Here is a
formulation.
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Theorem 3.1 (Schanuel’s conjecture, formal version). Let y1; : : : ; ys be s formal
power series in CŒŒt1; : : : ; tk�� (k � 1), and I an ideal in CŒX1; : : : ; Xs; Y1; : : : ; Ys�,
defining in C2s an algebraic subvariety V.I / with dimension less or equal to s,
such that

8 P 2 I; P.y1.t/; : : : ; ys.t/; ey1.t/; : : : ; eys.t// � 0:

Then, there are rational numbers r1; : : : ; rs and a complex number2 � 2 C such that

sX

j D1

rj yj .t/ � �: (3.9)

Here is a corollary of the last Theorem that shows the crucial role it plays when
studying the slowly decreasing conditions introduced by Ehrenpreis (e.g., [36]) for
ideals generated by exponential polynomials with frequencies in .iZ/n. We ignore
for the moment any condition of arithmetic type on the coefficients.

Corollary 3.1 ([16], Proposition 6.4 and Corollary 6.7). Let P1; : : : ; PN be N

polynomials in the 2n variables .X1; : : : ; Xn; Y1; : : : ; Yn/, defining an algebraic
variety V.P / in C2n

z;w. Let �z W .z; w/ 2 C2n 7! z be the projection on the factor
Cn

z . Let W � Cn
z be the subset defined by

.z1; : : : ; zn/ … W H) dim.V.P / \ ��1.z// D 0 or � 1:

Then, any irreducible component with strictly positive dimension of the analytic
(transcendental) subset

V.F / D fz 2 Cn I Fj .z/ D Pj .z1; : : : ; zn; eiz1 ; : : : ; eizn/ D 0; j D 1; : : : ; N g

lies in W . In particular, when N � n, any irreducible component with strictly
positive dimension of V.F / lies in the closure in Cn of the set W 0 � Cn

z defined as

z … W 0 H) rank

"�
@Pj .z; w/

@wk

�

1�j �N

k�1�n

#

D n 8 w 2 Cn:

The formal analog of Schanuel’s conjecture also allows one to give refined versions
of Ritt’s theorem in several variables such as those formulated in [8]. Here is an
example.

2Unfortunately, even when one specifies arithmetic conditions on the ideal I , such as the generating
polynomials have algebraic coefficients, nothing more precise can be asserted about the constant
� . Indeed, this is the main stumbling block to such a result being an efficient tool in proving
Conjecture 1.2 or even Conjecture 1.4.
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Corollary 3.2 ([16], see also [52]). Let

F.z1; : : : ; zn/ D
MX

kD0

bk.z/eih˛k;zi

be an exponential polynomial in n complex variables which is identically zero on
an algebraic irreducible curve C. Then either all polynomial factors bk vanish
identically on C or else C is contained in some affine subspace h˛k1 � ˛k2 ; zi D � ,
where � is a complex constant3 and ˛k1 6D ˛k2 . If an irreducible polynomial
P 2 CŒX1; : : : ; Xn� divides F (as an entire function) without dividing all the bk ,
then P is necessarily of the form

P.X/ D h˛k1 � ˛k2 ; Xi � �:

The main reason such analytic techniques arising from the formal analog of
Schanuel’s conjecture fail to imply Conjecture 1.2 (or more specifically Conjecture
1.4), is because they do not allow one to keep track of the arithmetic constraints.
Though such a goal can be (partially) achieved when adapting Nœther Normaliza-
tion’s lemma to the frame of exponential polynomials P.X1; : : : ; Xn; eY1 ; : : : ; eYn /

(as in Proposition 6.3 in [16]), it still seems far from providing enough information
to make significant advances toward Conjectures 1.2 or 1.4.

4 Arithmetic Rigidity and the D-Module Approach

4.1 Lindemann–Weierstrass Theorem Versus Ritt’s
Factorization

The ubiquity that was pointed out in [4, 5] with respect to the well-known
Lindemann–Weierstrass theorem suggests how arithmetic rigidity is reflected in
Ritt’s factorization of exponential sums in the one variable setting. Let us recall
the classical “numerical” formulation of Lindemann–Weierstrass theorem.

Theorem 4.1 (Lindemann–Weierstrass, “numerical” formulation). Let ˛1;

: : : ; ˛s be s algebraic numbers which are Q-linearly independent. Then their
exponentials e˛1 ; : : : ; e˛s are algebraically independent over Q.

Here is its equivalent “functional” formulation, which appears to be an arithmetic
version of Ritt’s factorization theorem. In this situation, arithmetic conditions indeed
impose drastic rigidity constraints.

3Here again, additional arithmetic information on F does not impose any arithmetic constraint
on � .
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Theorem 4.2 (Lindemann–Weierstrass, “functional formulation”). Let f be a
formal power series in QŒŒX��, which corresponds to the Taylor development about
the origin of an exponential polynomial f with constant coefficients,4 such that
f .1/ D 0, that is, f can be divided by z � 1 as an entire function. Then the quotient

z 7! f.X/

X � 1

is also the formal power series at the origin of an exponential polynomial with
constant coefficients.5

4.2 A First Ingredient for the Proof of Theorem 4.2:
The Notion of “Size” for a Xd=dX Module over K.X/

One of the major ingredients in the “modern” proof ([4, 5]) of Theorem 4.2 is the
notion of “being of finite size” for a Xd=dX module over K.X/, where K is a
number field. We keep for the moment to the one variable setting.

Let K be such a number field, and M be a Xd=dX module over K.X/. Assume
M is such that the K.X/ induced module is free with finite rank6. Thus, M can be
represented in terms of a basis � D .0; : : : ; ��1/ with the action of the differential
operator Xd=dX being represented as

.Xd=dX/Œj � D
��1X

kD0

Gjk.X/Œk�:

Taking into account the fact that K is a number field (and thus the arithmetic
rigidity), one can introduce a notion of size �.M/ as

�.M/ D lim sup
N !1

1

N

X

v2˙finies.K/

logC max
0�p�N

�
�
�

G.p/.X/

pŠ

�
�
�

v
; (4.10)

where ˙finies denotes the set of non archimedian (conveniently normalized) absolute
values on the number field K, and Gp is the .�; �/ matrix with entries in
K.X/, corresponding to the action of Xp.d=dX/p, expressed within the basis �

4Certainly, the coefficients and frequencies of such an exponential polynomial f are in Q.
5That is, of course, is identically zero. Nevertheless, it seems better to keep this formulation to
view the statement as the effect of arithmetic rigidity constraints in Ritt’s factorization theorem.
6More generally, one may replace K.X/ by some unitary K-algebra containing K.X/, such as
K ŒŒX��, and introduce then the notion of Xd=dX-module of finite type over K ŒŒX��.
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(see, e.g., [3, 33]). The size is in fact independent of the choice of the basis � . The
module M is said to satisfy the Galochkin condition when its size �.M/ is finite.

An important result by G. Chudnovsky [29, 30], one that relies on Siegel’s
lemma,7 asserts that, if A is a .�; �/ matrix with coefficients in KŒX� such that
the differential system

.d=dX � A/ŒY � D 0 (4.11)

admits a solution Y0 in .K ŒŒX��/� with K.X/-linearly independent components,
then the size of the corresponding Xd=dX module MA is bounded from above by
C.� / h.Y0/, where h.Y0/ denotes the maximum of the heights of the coefficients
of Y0, the height being understood here as the height of a formal power series
with coefficients in K (see [3]). In particular, MA satisfies the Galochkin condition
when the differential system admits a solution with K.X/-linearly independent
components, which are all G-functions (see [3] for various definitions8 of such an
arithmetic notion). Note that G. Chudnovsky’s theorem has been extended to the
several variable context by L. di Vizio in [32].

4.3 A Second Ingredient for the Proof of Theorem 4.2:
A Theorem by N. Katz

Here again, one keeps to the one variable context. A differential operator with
coefficients in M�;�.CŒX�/

L D
LX

1

Al.X/.d=dX/q;

it is called fuschian if all its singularities a 2 C[ f1g are regular ones. That is, are
such that

min
l�1

.vala.Al/ � l/ � vala.AL/:

A theorem by Katz [44] asserts that any Xd=dX module over K.X/ (K being a
number field) which satisfies Galochkin condition is necessarily fuschian.

This result has also an extension to the context of several variables ([32]). Such
an extension can be combined with Chudnovsky’s theorem in higher dimension, as
formulated in geometric terms also in ([32]).

7See, for example, [33], Chap. VIII, for a pedestrian presentation and a proof.
8To say it briefly, a G-function is a formal power series in Q ŒŒX�� which is in the kernel of some
element in QŒX; d=dX� and, at the same time, has a finite logarithmic height, when considered as
a power series in Q ŒŒX�� (see [3] for the notion of logarithmic height for a power series).
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The proof of Theorem 4.2 ([5]) follows from such a combination between
Chudnovsky’s and Katz’s theorems. It relies on the elementary proof proposed in
[23], which bypasses the p-adic methods based on the Bézivin–Robba criterion that
were previously introduced in [24].

4.4 The D-Modules Approach

Let us start here with a few observations about division questions in multivariate
complex analysis (see [1, 19]). This approach is reminiscent of pseudo-Wiener
deconvolution methods that involve as deconvolutors filters with transfer functions

! 2 Rn 7�! Fj .!/

kF.!/k2 C �2
;

where the Fj , j D 1; : : : ; N , are the transfer functions of the convolutor filters, and
�2 << 1 stands here for a signal to noise ratio.

Let F1; : : : ; FN be N elements in the Paley–Wiener algebra 2E 0.Rn/. Consider the
holomorphic map z 7! F.z/ WD .F1.z/; : : : ; FN .z// as an holomorphic section of
the trivial bundle Cn � CN ! Cn, equipped with its canonical basis. Let

�.z/ D

NP

j D1

Fj .z/ ˝ ej

kF.z/k2
; z 2 Cn n F �1.0/:

It can be shown that there are bundle-valued currents PF and RF in Cn defined by
the formulas

PF WD
"

kF.z/k2�

nX

rD1

�.z/ ^ .@Œ�.z/�/r�1

.2i�/r

#

�D0

RF WD
"

@ ŒkF.z/k2�� ^
nX

rD1

�.z/ ^ .@ Œ�.z/�/r�1

.2i�/r

#

�D0

: (4.12)

That is, one analytically continues the complex parameter � from fRe � 	 1g to
some half-plane fRe � > ��g for some � > 0. Note that Supp RF � F �1.0/ and
that PF and RF are related by ..2i�/cF � @/ ı PF D 1 � RF , where cF denotes the
interior product with F .

In order to justify such a construction, one takes a log resolution � W fCn ! Cn

for the subvariety fF1 D � � � D FN D 0g. Such a log resolution factorizes through
the normalized blow-up of Cn along the coherent ideal sheaf .F1; : : : ; FN /OCn .
When N 
 n and F1; : : : ; FN define a complete intersection in Cn, the current
RF reduces to its .0; N / component, which coincides in this case with the current
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realized in a neighborhhood of
SN

1 F �1
j .0/ as the value at �1 D � � � D �N D 0 of

the analytically continued current-valued holomorphic map

.�1; : : : ; �N / 2 fRe �1 >> 1; : : : ; Re �N >> 1g 7�! 1

.2i�/N

1̂

j DN

@

 
jFj j2�j

Fj

!

:

(4.13)

When F1; : : : ; FN are polynomials (i.e., Fourier transforms of distributions with
support f0g), all distribution coefficients of the current PF belong to S 0.Cn ' R2n/,
in which case the ideal .F1; : : : ; FN / is of course closed in the Paley–Wiener
algebra. The current PF is said to have Paley–Wiener growth in Cn if and only
if all its distribution coefficients T satisfy the weaker condition

9 p 2 N; ; 9 A > 0; 9 C > 0; such that

jhT; 'ij 
 C sup
jl jCjmj�p

sup
Cn

"

.1 C kzk/peAkIm zk
ˇ
ˇ
ˇ
@lCm Œ'�

@
l @

m .z/

ˇ
ˇ
ˇ

#

: (4.14)

If PF has Paley–Wiener growth, so has RF , since ..2i�/cF � @/ ı PF D 1 � RF .
Division methods such as developed in [1, 2, 19, 20], show that, if PF (hence RF )
has Paley–Wiener growth in Cn,

�
ŒI.F1; : : : ; FN /�loc

�min.n;N / � I.F1; : : : ; FN /: (4.15)

In the particular case where N 
 n and .F1; : : : ; FN / define a complete intersection
in Cn, the fact that PF (hence RF ) has Paley–Wiener growth in Cn implies that
I.F1; : : : ; FN / is closed in the Paley–Wiener algebra (one can replace the exponent
min.n; N / by 1 in (4.15)). When .F1; : : : ; FN / have no common zeroes in Cn, it is
therefore equivalent to say that I.F1; : : : ; FN / is closed in the Paley–Wiener algebra
or to say that PF has Paley–Wiener growth (here RF � 0 since F �1.0/ D ;).
Conjecture 1.2 suggests then the following conjecture.

Conjecture 4.1. Let F1; : : : ; FN be N exponential polynomials such as in Conjec-
ture 1.2. The current PF (hence also RF ) has Paley–Wiener growth.

Remark 4.1. Conjecture 4.1 implies Conjecture 1.4 : when n D 1, take N

large enough and F1; : : : ; FN the list of successive derivatives of the exponential
polynomial f W z 7! PM

kD0 bk.z/ ei˛kz (see, e.g., [15]).

In order to rephrase Conjecture 4.1 in more algebraic terms, let us recall the
following trick. If Re ˇ > 0, and t1; : : : ; tN are N strictly positive numbers, then
one has, for any .�1; : : : ; �N �1/ 2�0; 1ŒN �1 such that �1 C � � � C �N �1 < Re ˇ,

.t1 C � � � C tN /�ˇ

D 1

.2i�/N �1� .ˇ/

Z

�1CiR

� � �
Z

�N �1CiR

� �
N .
/ t

�
1

1 � � � t�
N �1

N �1 t

�

N d
1 � � � d
N �1;

(4.16)
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where

� �
N .
/ D � .
1/ � � �� .
N �1/� .ˇ � 
1 � � � � � 
N �1/ ; 
� D

N �1X

kD1


k � ˇ :

Formula (4.16) allows the transformation of the additive operation between the tj

(namely .t1 C� � �C tN /�ˇ) into a multiplicative one (namely t
�
1

1 � � � t�
N �1

N �1 t

�

N , once
in the integrand). One can view it as a continuous version of the binomial formula
(with negative exponent). Taking, for example, tj D jFj .z/j2, j D 1; : : : ; N , it
follows that one way then to tackle Conjecture 4.1 could be to study (first formally,
then numerically in Cn, pairing antiholomorphic coordinates with holomorphic ones
in order to recover positivity) the analytic continuation of

� D .�1; : : : ; �N / 7�!
NY

j D1

.Fj .z1; : : : ; zn//�j : (4.17)

When F1; : : : ; FN are polynomials in KŒX1; : : : ; Xn� D KŒX�, where K is a number
field, one may consider the K.�/hX; d=dXi-module M.F / freely generated by a
single generator (formally denoted as F� D F�1

1 ˝ � � � ˝ F�N

N ), namely

M.F / D K.�/ŒX�

�
1

F1

; : : : ;
1

FN

�

� F�:

This K.�/hX; d=dXi-module is holonomic (i.e., dimM.F / D n). A noetheriannity
argument (see, e.g., [35]) implies then that there exists a set of global Bernstein–Sato
algebraic relations

Qj .�; X; d=dX/
	
Fj � F�


 D B.�/ � F�; j D 1; : : : ; N; (4.18)

where B 2 KŒ�� and Qj 2 KŒ�� hX; d=dXi, j D 1; : : : ; N . Such a set of algebraic
relations (4.18) can be used in order to express (via (4.16) with tj D jFj .z/j2,
tD1; : : : ; N ) the current PF as a current with coefficients in S 0.Cn/.

Local analytic analogs of global Bernstein–Sato algebraic relations (4.18) indeed
exist. When f1; : : : ; fN are N elements in OCn;0 and t is an holonomic distribution
about the origin in Cn (e.g., a distribution coefficient of some integration current
ŒV �, or of some Coleff-Herrera current, see [27]), then there exists a set of local
Bernstein–Sato analytic equations

qt;j .�; 
; @=@
/
	
fj � f� ˝ t� D bt.�/ � f� ˝ t; j D 1; : : : ; N; (4.19)

where qt;j denotes a germ at the origin of a holomorphic differential operator with
coefficients analytic in 
 and polynomial in �, and bt is a finite product of affine
forms 	0C	1�1C� � �C	n�n, with 	0 2 N�, .	1; : : : ; 	M / 2 NM nf0g ([25,26,42,54]).
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Unfortunately, such a local result does not provide any algebraic information about
the qt;j , when, for example, the fj ’s represent the germs at the origin of exponential
polynomials of the form (1.3), as in Conjecture 1.2 or Conjecture 1.3.

One intermediate way to proceed in this case is to consider the case of formal
power series. For example, let us suggest an approach to tackle Conjecture 1.4 for
exponential sums. Consider an exponential sum

f W 
 2 C 7�!
MX

kD0

bkei˛k
 ;

with algebraic coefficients bk , and purely imaginary algebraic distinct frequencies
i˛k . Let K be the number field generated by the bk’s, the ˛k’s, and i . Let n � 1 be
the rank of the subgroup � .f / D Z˛0 C � � � C Z˛M , and .�1; : : : ; �n/ be a basis of
� .f /. For each j D 1; : : : ; M , let Pj 2 KŒX1; : : : ; Xn� such that

dj �1f

d
j �1
.z/ D Pj .ei�1z; : : : ; ei�nz/; 8 z 2 C;

and P WD .P1; : : : ; PM / W Cn ! CM . Let N D M C n � 1, and the exponential
polynomials F1; : : : ; FN be defined as follows:

• For j D 1; : : : ; M , Fj is the exponential sum in n variables, with coefficients
in K,

.z1; : : : ; zn/ 7�! Fj .z/ D Pj .eiz1 ; : : : ; eizn/:

• For j D 1; : : : ; n � 1, FMCj is the linear form, also with coefficients in K,

.z1; : : : ; zn/ 7�! �n zj � �j zn:

Let � be a point in Cn, such that ei� 2 Kn \ fP D 0g. The Taylor developments of
F1; : : : ; FM at � correspond to power series f1;� ; : : : ; fM;� in KŒŒX1; : : : ; Xn��, while
the Taylor developments at � of FMC1; : : : ; FN correspond to the affine power series

fMCj;� W X D .X1; : : : ; Xn/ 7�! uj C .�n Xj � �j Xn/; j D 1; : : : ; n � 1;

where uj D �n �j ��j �n is a linear combination of logarithms of algebraic numbers
with algebraic coefficients. Here u1; : : : ; un�1 can be interpreted as parameters.
Inspired by [11], one could conjecture9 the existence of a set of global formal
generic Bernstein–Sato relations:

Q�;j .�; X; u1; : : : ; un�1; d=dX/
	
fj;� � F�

�


 D g�.u1; : : : ; un�1/ b�.�/ � F�
� ;

j D 1; : : : ; N; (4.20)

9The lines which follow intend just to sketch what could be a conjectural approach to Conjecture
1.4 for exponential sums f such that � .f / has small rank.
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where F�
� D f�1

1;� ˝ : : : f�N

N;� , Q�;j is a differential operator with coefficients in
KŒ�� ŒŒu; X��, g� 2 KŒŒu��, b� 2 KŒ��. Moreover, an argument based on Siegel’s
method (and principle), such as that developed by Ehrenpreis10 in [37], could be
then used in order to ensure then that the formal power series coefficients (in X; u)
of the Qj (considered as polynomials in � and d=dX ) have a radius of convergence
that is bounded from below by � > 0, independently of �, provided ei� belongs to
a compact subset of .C�/n. Then (4.20) would provide a semi-global Bernstein–
Sato set of relations. The results quoted in Sect. 4, which rely on Siegel’s lemma
(see, e.g., the proof of Chudnovsky’s theorem in [33], or the approach to Gelfand-
Shidlovsky theorem as in [21]) give some credit to the conjectural existence of
such a collection (indexed by �, with ei� 2 Kn \ P �1.0/) of Berntein-Sato sets
of semi-global relations B� as (4.20). One could then identify terms with lower
degree in u in (4.20) and thus assume, in each set of relations B� such as (4.20),
that g� is homogeneous in u. In the particular case n D 3 (where we recall
almost nothing is known concerning Conjecture 1.4, see Sect. 2), one could thus
assume that g� factorizes as a product of linear factors ˇ�;1u1 C ˇ�;2u2, where ˇ�;1

and ˇ�;2 belong to K. Combining this with A. Baker’s theorem (take .u1; u2/ D
.log �1 C 2ik1�; log �2 C 2ik2�/, .k1; k2/ 2 Z2), one would get (with (4.20)) some
way to control the analytic continuation procedure (4.17), leading to the conjectural
lower estimates

MX

j D1

jPj .e�1z; : : : ; e�nz/j D
MX

1

ˇ
ˇ
ˇ
dj �1f

d
j �1
.z/
ˇ
ˇ
ˇ � c

e�AjIm zj

.1 C jzj/p
;

that ensure (1.5) (see [15]).
The conjectural approach proposed above can be seen as an attempt to take into

account the intrinsic arithmetic rigidity of such problems that the results quoted in
Sect. 4 suggest.

Another approach, one that would seem more direct, would be to try to mimic
the algebraic construction that leads to the construction of a global set of Bernstein–
Sato relations such as (4.18) when F1; : : : ; FN belong to KŒX1; : : : ; Xn�. That is, let
F1; : : : ; FN be N exponential polynomials of the form

Fj .z/ D Pj .z1; : : : ; zn; ei �1;1 z1 ; : : : ; ei �1;N1 z1 ; : : : ; ei �n;1 zn ; : : : ; ei �n;Nn zn/;

j D 1; : : : ; N;

where Pj 2 KŒX1; : : : ; Xn; Y1;1; : : : ; Y1;N1 ; : : : ; Yn;1; : : : ; Yn;N �, the �j;k being also
elements in K such that �j;1; : : : ; �j;Nj are Q-linearly independent for any j D
1; : : : ; n. Instead of the Weyl algebra K.�/hX; d=dXi, one could introduce a non
commutative algebra such as

10Note that this work of L. Ehrenpreis appeared in the Lecture Notes volume where appeared also
the important results by Chudnovsky [29, 30].
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K.�1; : : : ; �n/
D
X1; : : : ; Xn; Y1;1; : : : ; Y1;N1 ; : : : ; Yn;1; : : : ; Yn;Nn ; @1; : : : ; @n

E
;

with the following commutation rules: for any j; k 2 f1; : : : ; ng, for any l 2
f1; : : : ; Nj g,

Œ@k; Xj � D �ıjk ; ŒXk; Yj;l � D 0 ; Œ@k; Yj;l � D � �j;l ıkl Yj;l :

One may consider, as in the Weyl algebra case, the K.�/hX; Y; @i-module

M.F / D K.�/ŒX; Y; @�

�
1

F1

; : : : ;
1

FN

�

� F�:

Nœtheriannity arguments based on the concept of dimension11 for such a module
lead (inspired by the argument described by Ehlers in [35]) to the existence, in some
very particular cases, of what would be a substitute for a set of global Bernstein–Sato
relations such as (4.18) (see [17,18]). Unfortunately, the results obtained here cover
only situations basically quite close of that of Conjecture 1.4 when rank � .f / 
 2.
Here are the results obtained that way:

• The current PF attached to any system F D .F1; : : : ; FN /, Fj .z1; : : : ; zn/ D
Pj .z1; : : : ; zn; ei zn/, j D 1; : : : ; N , where Pj 2 CŒX1; : : : ; Xn; Y �, has Paley–
Wiener growth in Cn.

• The current PF attached to any system F D .F1; : : : ; FN /, Fj .z1; : : : ; zn/ D
Pj .z1; : : : ; zn�1; ei zn ; ei � zn/, j D 1; : : : ; N , where Pj 2 QŒX1; : : : ; Xn�1; Y1; Y2�

and � 2 .Q \ R/ n Q, has Paley–Wiener growth in Cn.

Note that only the second situation carries an arithmetic structure. The methods
developed in [17, 18] failed, at least for their intended purpose of making progress
toward Conjectures 1.2 or even 1.4. For example, they do not seem to be of any
help toward Conjecture 1.4, when rank .� .f // D 2 and f is a true exponential
polynomial (not an exponential sum). The main reason for the failure is that these
methods take into account only the concept of dimension, and ignore that of
logarithmic size. On the other hand, the conjectural approach toward Conjecture
1.4 when rank � .f / D 3 (such as sketched above) was taking into account
such concepts, basically through Siegel’s lemma. It is natural to ask the following
question: can some argument based on a filtration with respect to the size lead to
what would be a substitute for a set of global Bernstein–Sato relations such as
(4.18) or (4.20)? That would indeed provide a decisive step toward all conjectures
mentioned here.

11That is on concepts of algebraic, not really arithmetic, nature, though arithmetics is deeply
involved.
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5 Some Other Miscellaneous Approaches

This paper has intended to give a brief, up-to-date discussion of the fascinating
conjectures arising from arithmetic considerations added to L. Ehrenpreis’
contributions to the study of the “slowly decreasing condition” in the Paley–
Wiener algebra. One should add that recent developments in amœba theory
[43, 48, 49], in relation with tropical geometry, might also be of some interest
for such conjectures. Unfortunately, they usually are more adapted to the case of
complex frequencies12 than to the most delicate so-called “neutral case” where
all frequencies are purely imaginary as in the questions discussed here. The most
serious stumbling block is that, from the combinatorics point of view, when dealing
with “algebraic” cones in Rn, one is missing Gordon’s lemma. One needs then to
bypass such a difficulty; see, for example, [12] for the construction of toric varieties
associated to non rational fans. In this connection, we mention some references
that might inspire ideas for deciding such conjectures about exponential sums
[38, 41, 43, 45, 46, 48–50, 53, 55]. Unfortunately, most of them do not really take
into account the arithmetic constraints, and are more in the spirit of C. Moreno’s
papers [47].
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24. J. P. Bézivin, P. Robba, A new p-adic method for proving irrationality and transcendence
results, Annals of Mathematics 129 (1989) pp. 151–160.

25. J. E. Björk, Rings of of differential operators, North-Holland, Amsterdam, 1979.
26. J. E. Björk, Analytic D-modules and applications, Mathematics and its Applications 247,

Kluwer Academic Publishers Group, Dordrecht, 1993.
27. J. E. Björk, Residues and D-modules, pp. 605–651 in The legacy of Niels Henrik Abel, O.A.

Laudal, R. Piene (eds.), Springer-Verlag, Berlin (2004).
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Let Z be the set of integers and n a positive integer. Consider functions
f .m1; : : : ; mn/ from Zn to the complex numbers (or any field). A linear partial
difference operator with constant coefficients P is anything of the form

Pf .m1; : : : ; mn/ WD
X

˛2A

c˛f .m1 C ˛1; : : : ; mn C ˛n/;

where A is a finite subset of Zn and ˛ D .˛1; : : : ; ˛n/ and the c˛ are constants.
For example, the discrete Laplace operator in two dimensions:

f .m1; m2/ ! f .m1; m2/� 1

4
.f .m1C1; m2/Cf .m1�1; m2/Cf .m1; m2C1/Cf .m1; m2�1//:

The symbol of the operator P is the Laurent polynomial

P.z1; : : : ; zn/ D
X

˛2A

c˛z˛1

1 � � � z˛n
n :

The discrete delta function is defined in the obvious way

ı.m1; : : : ; mn/ D
(

1; if .m1; : : : ; mn/ D .0; 0; : : : ; 0/I
0; otherwise:

Note that the beauty of the discrete world is that the delta function is a genuine
function, not a “generalized” one, and one does not need the intimidating edifice of
Schwartzian distributions.

We are now ready to state the

Discrete Malgrange–Ehrenpreis Theorem: Let P be any nonzero linear
partial difference operator with constant coefficients. There exists a function
f .m1; : : : ; mn/ defined on Zn such that

Pf .m1; : : : ; mn/ D ı.m1; : : : ; mn/:

First Proof (Ehrenpreis style) Consider the infinite-dimensional vector space,
C Œz1; : : : ; zn; z�1

1 ; : : : ; z�1
n �, of all Laurent polynomials in z1; : : : ; zn. Every function

f on Zn uniquely defines a linear functional Tf defined on monomials by

Tf Œ zm1

1 � � � zmn
n � WD f .m1; : : : ; mn/;

and extended by linearity. Conversely, any linear functional gives rise to a function
on Zn. Let P.z1; : : : ; zn/ be the symbol of the operator P . We are looking for a
linear functional T such that for every monomial zm1

1 � � � zmn
n

T Œ P.z1; : : : ; zn/zm1

1 � � � zmn
n � D Tı.z

m1

1 � � � zmn
n /:
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By linearity, for any Laurent polynomial a.z1; : : : ; zn/

T Œ P.z1; : : : ; zn/a.z1; : : : ; zn/ � D Tı.a.z1; : : : ; zn//:

So T is defined on the (vector) subspace P.z1; : : : ; zn/C Œz1; : : : ; zn; z�1
1 ; : : : ; z�1

n � of
C Œz1; : : : ; zn; z�1

1 ; : : : ; z�1
n �. By elementary linear algebra, every linear functional on

the former can be extended (in many ways!) to the latter. QED.
Before embarking on the second proof, we have to recall the notion of formal

power series and, more generally, formal Laurent series.
A formal power series in one variable z is any creature of the form

1X

iD0

ai z
i :

More generally, a positive formal Laurent series is any creature of the form

1X

iDm

ai z
i ;

where m is a (possibly negative) integer. On the other hand, a negative formal
Laurent series is any creature of the form

mX

iD�1
ai z

i ;

where m is a (possibly positive) integer.
A bilateral formal Laurent series goes both ways

1X

iD�1
ai z

i :

Note that the class of bilateral formal Laurent series is an abelian additive group,
but one cannot multiply there. On the other hand, one can legally multiply two
positive formal Laurent series by each other and two negative formal Laurent series
by each other, but don’t mix them! Of course, it is always legal to multiply any
Laurent polynomial by any bilateral formal power series. But watch out for zero
divisors, e.g.,

.1 � z/
1X

iD�1
zi D 0:

Any Laurent polynomial p.z/ D ai zi C � � � C aj zj of low-degree i and high-
degree j in z (so ai ¤ 0, aj ¤ 0) has two natural multiplicative inverses. One is in
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the ring of positive Laurent polynomials and the other in the ring of negative Laurent
polynomials. Simply write p.z/ D zi ai p0.z/ and get 1=p.z/ D z�i .1=ai /p0.z/�1,
and writing p0.z/ D 1 C q0.z/, we form

p0.z/
�1 D .1 C q0.z//

�1 D
1X

iD0

.�1/iq0.z/
i ;

and this makes perfect sense and converges in the ring of formal power series.
Analogously, one can form a multiplicative inverse in powers in z�1.

It follows that every rational function P.z/=Q.z/ in one variable, z, has two
natural inverses, one pointing positively and one negatively.

What about a rational function of several variables, P.z1; : : : ; zn/=Q.z1; : : : ; zn/?
Here, we can form 2nnŠ natural inverses. There are nŠ ways to order the variables,
and for each of these one can decide whether to do the positive-pointing inverse or
the negative-pointing one. At each stage, we get a one-sided formal Laurent series
whose coefficients are rational functions of the remaining variables, and one just
keeps going.

Second Proof (Constructive): To every discrete function f .m1; : : : ; mn/ asso-
ciate, the bilateral formal Laurent series

X

.m1;:::;mn/2Zn

f .m1; : : : ; mn/zm1

1 � � � zmn
n :

We need to “solve” the equation

P.z�1
1 ; : : : ; z�1

n /

0

@
X

.m1;:::;mn/2Zn

f .m1; : : : ; mn/zm1

1 � � � zmn
n

1

A D 1:

So “explicitly”

X

.m1;:::;mn/2Zn

f .m1; : : : ; mn/zm1

1 � � � zmn
n D 1=P.z�1

1 ; : : : ; z�1
n /;

and we just described how to do it in 2nnŠ ways.

The Maple Package LEON

This article is accompanied by a Maple package LEON. One of its numerous
procedures is FS, that implements the above constructive proof. LEON can also
compute polynomial bases to solutions of linear partial difference equations with
constant coefficients, compute Hilbert Series for spaces of solutions of systems of
linear differential equations, as well as find “multiplicity varieties” ( in the style of
Ehrenpreis ) when they are zero-dimensional.
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Leon Ehrenpreis (1930–2010): A Truly Fundamental
Mathematician (A Videotaped Lecture)

I strongly urge readers to watch my lecture, available in six parts from YouTube
and in two parts from Vimeo; see the following:

http://www.math.rutgers.edu/nchar126nrelaxzeilberg/mamarim/mamarimhtml/
leon.html.

That page contains links to both versions, as well as numerous input and output
files for the Maple package LEON.
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The Legacy of Leon Ehrenpreis

Hershel M. Farkas, Robert C. Gunning, and B.A. Taylor

All those who knew Leon Ehrenpreis are well aware that he was a very multidimen-
sional person. His interests went far beyond mathematics. Leon’s interests included
Bible and Talmud studies, music, sports (handball and marathon running), philos-
ophy, and more. In this volume, we have only concentrated on his mathematical
interests.

All the contributors to this volume have written on subjects that Leon either
worked on actively or at least had a serious interest in. This is, on the one hand,
to honor his memory and, on the other, to show his breadth.

When all is done, however, a person leaves memories, what he has built
or written, and progeny (mathematical and physical). Memories are subject to
interpretation and not all people remember things the same way. The mathematical
works of Leon Ehrenpreis and the students he mentored are not subject to these
vagaries.

In this final section, we include a list of Leon’s Ph.D. students and we hope a
complete list of his mathematical publications. This is his legacy.

H.M. Farkas et al. (eds.), From Fourier Analysis and Number Theory to Radon Transforms
and Geometry, Developments in Mathematics 28, DOI 10.1007/978-1-4614-4075-8 28,
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