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Preface

“Le professeur Gelfand est ainsi un pionnier qui, comme Poincaré et Hilbert,
ayant défriché de nouveaux domaines, a laissé du travail à ses continuateurs
pour une ou plusieurs générations.’’

Henri Cartan

Israel Moiseevich Gelfand is one of the greatest mathematicians of the 20th cen-
tury. His insights and ideas have helped to develop new areas in mathematics and to
reshape many classical ones.

The influence of Gelfand can be found everywhere in mathematics and mathemat-
ical physics from functional analysis to geometry, algebra, and number theory. His
seminar (one of the most influential in the history of mathematics) helped to create
a very diverse and productive Gelfand school; indeed, many outstanding mathemati-
cians proudly call themselves Gelfand disciples.

The width and diversity of the Gelfand school confirms one of his main ideas
about the unity of the universe of mathematics, applied mathematics, and physics.
The conference held in his honor reflected this unity. Talks were presented by for-
mer Gelfand students, their former students, and other outstanding mathematicians
influenced by Gelfand.

The diversity of the talks and the subsequent outgrowths presented in this volume
represent the diversity of Gelfand’s interests. Articles by S. DeBacker and D. Kazh-
dan, B. Kostant and N. Wallach, G. Lusztig, and A. Vershik are devoted to various
aspects of representation theory. (One cannot imagine representation theory without
the fundamental works of I. M. Gelfand.) Geometry (an old love of Gelfand’s) and its
connections with physics are represented in the volume by the articles of M. Atiyah;
D. McDuff; M. Kontsevich and Y. Soibelman; and Chien-Hao Liu, Kefeng Liu, and
S.-T. Yau.

The article by A. Connes on noncommutative geometry reflects Gelfand’s long-
time (for more than 60 years) interests in noncommutative structures.

A majority of articles are devoted to a variety of topics in modern algebraic
geometry and topology: A. Braverman, M. Finkelberg, and D. Gaitsgory; T. Coates
and A. Givental; and V. Drinfeld.



viii Preface

Gelfand’s interests in mathematical and theoretical physics are represented by
papers of L. Faddeev; M. Movshev and A. Schwarz; N. Nekrasov and A. Okounkov;
and A. Okounkov, N. Reshetikhin, and C. Vafa.

The article by H. Brezis connects partial differential equations and algebraic
topology.

The unity of mathematics and physics cannot be separated from the life and work
of Israel Gelfand. The conference and this volume are testimonies and celebrations
of this unity.

P. Etingof , MIT
V. Retakh, Rutgers University
I. M. Singer, MIT

September 2005



Conference Program: An International Conference on
“The Unity of Mathematics’’

Sunday, August 31st

9:15am
Benedict Gross: Opening talk (as Dean of Harvard College)

9:30–10:30am
David Kazhdan: Works of I. M. Gelfand on the theory of representations
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Monday, September 1st

9:30–10:30am
Michael Atiyah: Some reflections on geometry and physics

11:00am–noon
Cumrun Vafa: Unity of topological field theories

2:00–3:00pm
Alain Connes: Noncommutative geometry and modular forms
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3:30–4:30pm
Albert Schwarz: Supersymmetric gauge theories on commutative and noncommuta-
tive spaces

4:45–5:45pm
Nathan Seiberg: Matrix models, the Gelfand–Dikii differential polynomials, and
(super) string theory

Tuesday, September 2nd

9:30–10:30am
Shing-Tung Yau: Mirror symmetry and localization

11:00am–noon
Dusa McDuff: Quantum cohomology and symplectomorphism groups

2:00–3:00pm
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Wednesday, September 3rd

9:30–10:30am
Alexander Givental: Strings, loops, cobordisms and quantization

11:00am–noon
Michael Hopkins: Algebraic topology and modular forms

2:00–3:00pm
Maxim Konstevich: Integral affine structures

3:30–4:30pm
Sergey Novikov: Discrete complex analysis and geometry

4:45–5:45pm
Isadore Singer: Chiral anomalies and refined index theory
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6:30pm: Banquet at Royal East Restaurant
Israel Gelfand’s talk given at dinner

Thursday, September 4th

9:30–10:30am
Peter Sarnak: The generalized Ramanujan conjectures

11:00am–noon
Bertram Kostant: Macdonald’s eta function formula and Peterson’s Borel abelian
ideal theorem

2:00–3:00pm
Dennis Gaitsgory: Uhlenbeck compactification of the moduli space of G-bundles on
an algebraic surface

3:30–4:30pm
Anatoly Vershik: Gel’fand–Zetlin bases, virtual groups, harmonic analysis on infinite
dimensional groups

4:45–5:45pm
Joseph Bernstein: Estimates of automorphic functions and representation theory



Talk Given at the Dinner at Royal East Restaurant
on September 3, 2003

Israel M. Gelfand
(Transcribed by Tatiana Alekseyevskaya)

It is a real pleasure to see all of you. I was asked many questions. I will try to answer
some of them.

• The first question is, “Why at my age I can work in mathematics?’’
• The second, “What must we do in mathematics?’’
• And the third, “What is the future of mathematics?’’

I think these questions are too specific. I will instead try to answer my own question:

• “What is mathematics?’’ (Laughter.)

Let us begin with the last question: What is mathematics?
From my point of view, mathematics is a part of our culture, like music, poetry

and philosophy. I talked about this in my lecture at the conference. There, I have
mentioned the closeness between the style of mathematics and the style of classical
music or poetry. I was happy to find the following four common features: first,
beauty; second, simplicity; third, exactness; fourth, crazy ideas. The combination
of these four things: beauty, exactness, simplicity and crazy ideas is just the heart
of mathematics, the heart of classical music. Classical music is not only the music
of Mozart, or Bach, or Beethoven. It is also the music of Shostakovich, Schnitke,
Shoenberg (the last one I understand less). All this is classical music. And I think,
that all these four features are always present in it. For this reason, as I explained
in my talk, it is not by chance that mathematicians like classical music. They like it
because it has the same style of psychological organization.

There is also another side of the similarity between mathematics and classical
music, poetry, and so on. These are languages to understand many things. For
example, in my lecture I discussed a question which I will not answer now, but I
have the answer: Why did great Greek philosophers study geometry? They were
philosophers. They learned geometry as philosophy. Great geometers followed and
follow the same tradition—to narrow the gap between vision and reasoning. For
example, the works of Euclid summed up this direction in his time. But this is
another topic.
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An important side of mathematics is that it is an adequate language for different
areas: physics, engineering, biology. Here, the most important word is adequate
language. We have adequate and nonadequate languages. I can give you examples
of adequate and nonadequate languages. For example, to use quantum mechanics
in biology is not an adequate language, but to use mathematics in studying gene
sequences is an adequate language. Mathematical language helps to organize a lot of
things. But this is a serious issue, and I will not go into details.

Why this is issue important now? It is important because we have a “perestroika’’
in our time. We have computers which can do everything. We are not obliged to be
bound by two operations—addition and multiplication. We also have a lot of other
tools. I am sure that in 10 to 15 years mathematics will be absolutely different from
what it was before.

The next question was: How can I work at my age? The answer is very simple.
I am not a great mathematician. I speak seriously. I am just a student all my life.
From the very beginning of my life I was trying to learn. And for example now, when
listening to the talks and reading notes of this conference, I discover how much I still
do not know and have to learn. Therefore, I am always learning. In this sense I am a
student—never a “Führer.’’

I would like to mention my teachers. I cannot explain who all my teachers were
because there were too many of them. When I was young, approximately 15–16
years old, I began studying mathematics. I did not have the formal education, I never
finished any university, I “jumped’’ through this. At the age of 19, I became a graduate
student, and I learned from my older colleagues.

At that time one of the most important teachers for me was Schnirelman, a ge-
nius mathematician, who died young. Then there were Kolmogorov, Lavrentiev,
Plesner, Petrovsky, Pontriagin, Vinogradov, Lusternik. All of them were different.
Some of them I liked, some of them, I understood how good they were but I did not
agree with their—let us say softly—point of view. (Laughter) But they were great
mathematicians. I am very grateful to all of them, and I learned a lot from them.

At the end, I want to give you an example of a short statement, not in mathematics,
which combines simplicity, exactness, and other features I mentioned. This is a
statement of a Nobel Prize winner, Isaac Bashevis Singer: “There will be no justice
as long as man will stand with a knife or with a gun and destroy those who are weaker
than he is.’’



Mathematics as an Adequate Language

Israel M. Gelfand

Introduction

This conference is called “The Unity of Mathematics.’’ I would like to make a few
remarks on this wonderful theme.

I do not consider myself a prophet. I am simply a student. All my life I have
been learning from great mathematicians such as Euler and Gauss, from my older and
younger colleagues, from my friends and collaborators, and most importantly from
my students. This is my way to continue working.

Many people consider mathematics to be a boring and formal science. However,
any really good work in mathematics always has in it: beauty, simplicity, exactness,
and crazy ideas. This is a strange combination. I understood earlier that this combi-
nation is essential in classical music and poetry, for example. But it is also typical
in mathematics. Perhaps it is not by chance that many mathematicians enjoy serious
music.

This combination of beauty, simplicity, exactness, and crazy ideas is, I think,
common to both mathematics and music. When we think about music, we do not
divine it into specific areas as we often do in mathematics. If we ask a composer what
is his profession, he will answer, “I am a composer.’’ He is unlikely to answer, “I am
a composer of quartets.’’ Maybe this is the reason why, when I am asked what kind
of mathematics I do, I just answer, “I am a mathematician.’’

I was lucky to meet the great Paul Dirac, with whom I spent a few days in Hungary.
I learned a lot from him.

In the 1930s, a young physicist, Pauli, wrote one of the best books on quantum
mechanics. In the last chapter of this book, Pauli discusses the Dirac equations. He
writes that Dirac equations have weak points because they yield improbable and even
crazy conclusions:

1. These equations assume that, besides an electron, there exists a positively charged
particle, the positron, which no one ever observed.

2. Moreover, the electron behaves strangely upon meeting the positron. The two
annihilate each other and form two photons.
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And what is completely crazy:

3. Two photons can turn into an electron–positron pair.

Pauli writes that despite this, the Dirac equations are quite interesting and especially
the Dirac matrices deserve attention.

I asked Dirac, “Paul, why, in spite of these comments, did you not abandon your
equations and continue to pursue your results?’’

“Because, they are beautiful.’’

Now it is time for a radical perestroika of the fundamental language of mathe-
matics. I will talk about this later. During this time, it is especially important to
remember the unity of mathematics, to remember its beauty, simplicity, exactness
and crazy ideas.

It is very useful for me to remind myself than when the style of music changed
in the 20th century many people said that the modern music lacked harmony, did not
follow standard rules, had dissonances, and so on. However, Shoenberg, Stravin-
sky, Shostakovich, and Schnitke were as exact in their music as Bach, Mozart, and
Beethoven.

1 Noncommutative multiplication

We may start with rethinking relations between the two simplest operations: addition
and multiplication.

Traditional Arithmetic and Algebra are too restrictive. They originate from a
simple counting and they describe and canonize the simplest relations between per-
sons, groups, cells, etc. This language is sequential: to perform operations is like
reading a book, and the axiomatization of this language (rings, algebras, skew-fields,
categories) is too rigid. For example, a theorem by Wedderburn states that a finite-
dimensional division algebra is always commutative.

1.1 Noncommutative high-school algebra

For twelve years, V. Retakh and I tried to understand associative noncommutative
multiplication. This is the simplest possible operation: you operate with words in
a given alphabet without any brackets and you multiply the words by concatena-
tion. Part of these results are described in a recent survey, “Quasideterminants,’’ by
I. Gelfand, S. Gelfand, V. Retakh, and R. Wilson. I would say that noncommutative
mathematics is as simple (or, even more simple) than the commutative one, but it is
different. It is surprising how rich this structure is.

Take a quadratic equation

x2 + px + q = 0

over a division algebra. Let x1, x2 be its left roots, i.e., x2
i + pxi + q = 0, i = 1, 2.

You cannot write −p = x1 + x2, q = x1x2 as in the commutative case. To have
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the proper formulas, we have to give other clothes to x1 and x2. Namely, assume
that the difference is invertible and set x2,1 = (x1 − x2)x1(x1 − x2)

−1, x1,2 =
(x2 − x1)x2(x2 − x1)

−1. Then

−p = x1,2 + x1 = x2,1 + x2,

q = x1,2x1 = x2,1x2.

To generalize this theorem to polynomials of the nth degree with left roots
x1, . . . , xn, we need to find “new clothes’’ for these roots by following the same
pattern. For any subset A ⊂ {1, . . . , n}, A = (i1, . . . , im), and i /∈ A, we introduce
pseudo-roots xA,i . They are given by the formula

xA,i = v(xi1 , . . . , xim, xi)xiv(xi1 , . . . , xim, xi)
−1,

where v(xi1 , . . . , xim, xi) is the Vandermonde quasideterminant, v(xi) = 1,

v(xi1 , . . . , xim, xi) =

∣∣∣∣∣∣∣∣∣
xmi1

. . . xmim xmi

. . .

xi1 . . . xim xi
1 . . . 1 1

∣∣∣∣∣∣∣∣∣ .
Suppose now that roots x1, . . . , xn are multiplicity free, i.e., the differences xA,i−

xA,j are invertible for any A and i /∈ A, j /∈ A, i �= j .
Let x1, . . . , xn be multiplicity free roots of the equation

xn + a1x
n−1 + · · · + an = 0.

Let (i1, . . . , in) be an ordering of 1, . . . , n. Set x̃ik = x{i1,...,ik−1},ik , k = 1, . . . , n.

Theorem.

−a1 = x̃in + · · · + x̃i1 ,

a2 =
∑
p>q

x̃ip x̃iq ,

. . . ,

an = (−1)nx̃in . . . x̃i1 .

These formulas lead to a factorization

P(t) = (t − x̃in )(t − x̃in−1) . . . (t − x̃i1),

where P(t) = tn + a1t
n−1 + · · · + an and t is a central variable.

Thus, if the roots are multiplicity free, then we have n! different factorizations
of P(t). In the commutative case we also have n! factorizations of P(t) but they all
coincide.

The variables xA,i satisfy the relations
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xA∪{i},j + xA,i = xA∪{j},i + xA,j ,

xA∪{i},j xA,i = xA∪{j},ixA,j

for i /∈ A, j /∈ A.
The algebra generated by these variables and these relations is called Qn. This

is a universal algebra of pseudo-roots of noncommutative polynomials. By going to
quotients of this algebra, we may study special polynomials, for example, polynomials
with multiple roots when xA,i = xA,j for some i, j andA. Even to a trivial polynomial
xn there corresponds an interesting quotient algebra Q0

n of Qn. For example, Q0
2 is

a nontrivial algebra with generators x1, x2 and relations x2
1 = x2

2 = 0.
Note that Qn is a Koszul (i.e., “good’’) algebra and its dual also has an interesting

structure.

1.2 Algebras with two multiplications

Sometimes a simple multiplication is a sum of two even simpler multiplications.
A good example is the algebra of noncommutative symmetric functions studied by
V. Retakh, R. Wilson, myself, and others. In the notation of Section 1.1, this algebra
can be described as follows. Let x1, . . . , xn be free noncommuting variables. Let
i1, . . . , in be an ordering of 1, . . . , n. Define elements x̃i1 , . . . , x̃in as above. Let Sym
be the algebra of polynomials in x̃i1 , . . . , x̃in which are symmetric in x1, . . . , xn as
rational functions. The algebra Sym does not depend on an ordering of 1, . . . , n, and
we call it the algebra of noncommutative symmetric functions in variables x1, . . . , xn.

To construct a linear basis in algebra Sym, we need some notation. Let w =
ap1 . . . apk

be a word in ordered letters a1 < · · · < an. An integer m is called a
descent of w if m < k and pm > pm+1. Let M(w) be the set of all descents of w.

Choose any ordering of x1, . . . , xn, say, x1 < x2 < · · · < xn. For any set
J = (j1, . . . , jk), define

RJ =
∑

x̃p1 . . . x̃pm,

where the sum is taken over all words w = xp1 . . . xpm such that M(w) = {j1, j1 +
j2, . . . , j1 + j2 + · · · + jk−1}.

The polynomials RJ are called ribbon Schur functions; they are noncommutative
analogues of commutative ribbon Schur functions introduced by MacMahon.

One can define two multiplications on noncommutative ribbon Schur functions.
Let I = (i1, . . . , ir ), J = (j1, . . . , js). Set I+J = (i1, . . . , ir−1, ir+j1, j2, . . . , js),
I · J = (i1, . . . , ir−1, ir , j1, j2, . . . , js).

Set
RI ∗1 RJ = RI+J , RI ∗2 RJ = RI ·J .

The multiplications ∗1 and ∗2 are associative and their sum equals the standard mul-
tiplication in Sym. In other words,

RIRJ = RI+J + RI ·J .

In fact, the algebra Sym is freely generated by one element x̃1 + · · · + x̃n and two
multiplications ∗1 and ∗2.
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Two multiplications also play a fundamental role in the theory of integrable sys-
tems of Magri–Dorfman–Gelfand–Zakharevich. The theory is based on a pair of
Poisson brackets such that any linear combination of them is a Poisson bracket. The
Kontsevich quantization of this structure gives us a family of associative multiplica-
tions.

I think it is time to study several multiplications. It may bring a lot of new
connections.

1.3 Heredity versus multiplicativity

An important problem both in pure and applied mathematics is how to deal with
block-matrices. Attempts to find an adequate language for this problem go back to
Frobenius and Schur. My colleagues and I think that we found an adequate language:
quasideterminants. Quasideterminants do not possess the multiplicative property of
determinants but unlike commutative determinants they satisfy the more important
Heredity Principle: LetA be a square matrix over a division algebra and (Aij ) a block
decomposition of A. Consider Aij s as elements of a matrix X. Then the quasideter-
minant of X will be a matrix B, and (under natural assumptions) the quasideterminant
of B is equal to a suitable quasideterminant of A. Maybe instead of categories, one
should study structures with the Heredity Principle.

The determinants of multidimensional matrices also do not satisfy the multiplica-
tive property. One cannot be too traditional here nor be restrained by requiring the
multiplicative property of determinants. I think we have found an adequate language
for dealing with multidimensional matrices. (See the book Discriminants, Resultants
and Multidimensional Determinants by I. Gelfand, M. Kapranov, and A. Zelevin-
sky.) A beautiful application of this technique connecting multilinear algebra and
classical number theory was given in the dissertation “Higher composition laws’’ by
M. Bhargava. I predict that this is just a beginning.

2 Addition and multiplication

The simplicity of the relations between addition and multiplication is sometimes
illusory. A free abelian group with one generator (denoted 1) and with operation of
addition and a free abelian monoid with infinitely many generators and with operation
of multiplication (called prime numbers) are the simplest objects one can imagine,
but their “marriage’’ gives us the ring of integers Z.

And even Gross, Iwaniec, and Sarnak cannot answer all questions about the mys-
teries of the ring of integers—solving the Riemann hypothesis, for example.

The great physicist Lev Landau noticed, “I do not understand why mathematicians
try to prove theorems about addition of prime numbers. Prime numbers were invented
to multiply them and not to add.’’ But for a mathematician, the nature of addition of
prime numbers is a key point in understanding the relations between two operations:
addition and multiplication.
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Note that theories like Minkowski mixed volumes and valuations are very inter-
esting forms of addition.

The invention of different types of canonical bases (Gelfand–Zetlin, Kazhdan–
Lusztig, Lusztig, Kashiwara, Berenstein–Zelevinsky) are, in fact, attempts to relate
addition and multiplication. Many good bases have a geometric nature, i.e., they are
related or they should be related to triangulations of some polyhedra.

Another attempt is the invention of matroids by Whitney. Whitney tried to axiom-
atize a notion of linear independence for vectors. This gives interesting connections
between algebra and combinatorial geometry. I will talk about this later.

Algebraic aspects of different types of matroids, including Coxeter matroids in-
troduced by Serganova and me, are discussed in a recent book, Coxeter Matroids, by
A. Borovik, I. Gelfand, and N. White. But this is just a beginning. In particular, we
have to invent matroids in noncommutative algebra and geometry.

3 Geometry

Geometry has a different nature compared to algebra; it is based on a global perception.
In geometry we operate with images like TV images. I do not understand why our
students have trouble with geometry: they are watching TV all the time. We just
need to think how to use it. Anyway, images play an increasingly important role
in modern life, and so geometry should play a bigger role in mathematics and in
education. In physics this means that we should go back to the geometrical intuition
of Faraday (based on an adequate geometrical language) rather than to the calculus
used by Maxwell. People were impressed by Maxwell because he used calculus, the
most advanced language of his time.

Many talks in this conference (Dijkgraaf, Nekrasov, Schwarz, Seiberg, Vafa) are
devoted to a search for proper geometrical language in physics. And never forget
E. Cartan, and always learn from Atiyah and Singer.

3.1 Matroids and geometry

I want to mention only one part of geometry, combinatorial geometry, and give you
only two examples. One is a notion of matroids. I became interested in matroids
when I understood that they give an adequate language for the geometry of hyper-
geometric functions by S. Gelfand, M. Graev, M. Kapranov, A. Zelevinsky, and me.
With R. Macpherson, I used matroids for a combinatorial description of cohomology
classes of manifolds. Continuing this line, Macpherson used oriented matroids for a
description of combinatorial manifolds. We should also have a similar theory based
on symplectic and Lagrangian matroids.

In particular, we should have a good “matroid’’ description for Chern–Simon
classes.
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3.2 Geometry and protein design

Another example is my work with A. Kister, “Combinatorics and geometrical struc-
tures of beta-proteins.’’ Step by step, analyzing real structures, we are trying to create
an adequate language for this subject. It is a new geometry for live objects.

4 Fourier transforms and hypergeometric functions

In our search of an adequate language, we should not be afraid to challenge the clas-
sics, even such classics as Euler. Quite recently we realized that our approach to
hypergeometric functions can be based on the Fourier transform of double exponents

like exe
√−1ωt

, where x and ω are complex and t is a real number. The Fourier trans-
forms of such functions are functionals over analytic functions. For example, let

F(x, ω, z) be the Fourier transform of the double exponent exe
√−1ωt

. Then

〈F(x, ω, z), φ(z)〉 =
∞∑
k=0

xk

k! φ(−kω).

We may define the action of F(x, ω, z) as φ 
→ ∑
Res[f (z)φ(z)], where f (z) is a

meromorphic function with simple poles in kω, k = 0, 1, 2, . . . .
The function f (z) is defined up to addition of an analytic function. As a repre-

sentative of this class, we may choose the function

�0(x, ω, z) =
∞∑
k=0

xk

k!
1

z+ kω
,

or the function
(−x)−z/ω�(z/ω).

We believe now that the function �0 should replace the Euler function � in the theory
of hypergeometric functions, but this work with Graev and Retakh is in progress.

5 Applied mathematics, nonlinear PDEs, and blowup

My search for an adequate language is based in part on my work in applied mathemat-
ics. Sergey Novikov called me somewhere, “an outstanding applied mathematician.’’
I take it as a high compliment. I learned the importance of applied mathematics from
Gauss. I think that the greatness of Gauss came in part because he had to deal with
real-world problems like astronomy and so on and that Gauss admired computations.
For example, I found recently that Gauss constructed the multiplication table for
quaternions thirty years before Hamilton.

By the way, I remember my “mental conversation’’with Gauss. When I discovered
Fourier transforms of characters of abelian groups, I had an idea that now I can make
a revolution with Gauss sums and to change number theory. I even imagined telling
this to Gauss. And then I realized that Gauss probably would tell me, “You young
idiot! Don’t you think that I already knew it when I worked with my sums?’’
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5.1 PDEs and Hironaka

Working as an applied mathematician, I realized the importance of the resolution of
singularities while working with nonlinear partial differential equations in the late
1950s. I understood that we have to deal with a sequence of resolutions (blowups)
by changing variables and adding new ones. So, I was fully prepared to embrace the
great result of Hironaka. We studied his paper for a year. Hironaka’s theorem seems
to have nothing to do with nonlinear PDEs. But for me it just shows the unity of
mathematics.

Let me emphasize here that we still do not have a “Hironaka’’ theory for nonlin-
ear PDEs.

5.2 Tricomi equation

When the books by Bourbaki started to appear in Moscow, I asked, “In which volume
will a fundamental solution of the Tricomi equation be published?’’ Bourbaki did not
publish this volume, and it is time to do it myself.

The Tricomi equation is

y
∂2u

∂x2
+ ∂2u

∂y2
= f.

It is elliptic for y > 0 and hyperbolic for y < 0. With J. Barros-Neto, we found
fundamental solutions for the Tricomi equation, continuing works by Leray, Agmon,
and others.

Acknowledgments. I am grateful to Tanya Alexeevskaya and Tanya Gelfand for their help with
the introduction, and to Vladimir Retakh for his help with the mathematical section.



The Interaction between Geometry and Physics∗

Michael Atiyah

School of Mathematics
University of Edinburgh
James Clerk Maxwell Building
The King’s Buildings
Mayfield Road
Edinburgh EH9 3JZ
Scotland
U.K.
m.atiyah@ed.ac.uk

Dedicated to Israel Moisevich Gel’fand on his 90th birthday.

Subject Classifications: 5802, 5302, 8102

1 Introduction

The theme of this conference is “The Unity of Mathematics,’’ embodying the attitude
of Gel’fand himself as demonstrated in the wide range of his many original works. I
share this outlook and am happy to describe one of the most fascinating examples, rep-
resenting the unity of mathematics and physics. The speakers were also encouraged
to look to the future and not be afraid to speculate—again, characteristics of Gel’fand.
In my case, this is perhaps an unnecessary and even dangerous injunction, since my
friends feel that I am already too much inclined to wild speculation, and very rash
enthusiasm should be dampened down instead of being whipped up. Nevertheless, I
will indulge myself and try to peer into the future, offering many hostages to fortune.

Mathematics and physics have a long and fruitful history of interaction. In fact,
it is only in recent times, with the increasing tendency to specialization in knowl-
edge, that any clear distinction was drawn between the two. Even when I was a
student in Cambridge around 1950, we studied “natural philosophy,’’ which included
physics and mechanics, as part of the mathematical tripos. Going further back, it is a
moot point whether mathematicians or physicists should claim that Newton was one
of theirs.

∗ This is a slightly extended version of the lecture delivered at Harvard and takes account of
some of the comments made to me afterwards.



2 Michael Atiyah

The great theoretical breakthroughs in physics at the end of the 19th century and
the beginning of the 20th century: electromagnetism, general relativity, and quantum
mechanics were all highly mathematical, and it is impossible to describe modern
physics in nonmathematical terms. Michael Faraday was the last great physicist
who was unskilled in mathematics. So much has mathematics pervaded physics
that Eugene Wigner has, in a much-quoted phrase, referred to “the unreasonable
effectiveness of mathematics in physics.’’

The question whether this mathematical description of physics reflects “reality’’
or whether it is an imposition of the human mind is a perennial and fascinating
problem for philosophers and scientists alike. Personally I am sure that new insights
from neurophysiology, on how the human brain works, will shed much light on this
age-old question and probably alter the very terms in which it is formulated.

Turning from the broad sweep of history to more contemporary events, one can,
however, see some sharp oscillations in the synergy between mathematics and physics.
The period (after the 1939–1945 war) of the great accelerators with their plethora of
new particles, and the struggles of theorists with the infinities that plagued quantum
field theories were far away from the concerns of most mathematicians. True, there
were always mathematicians trying desperately to lay foundations, far behind the front
line, and physicists themselves displayed great virtuosity in handling the techniques
of Feynman diagrams as well as the symmetries of Lie groups that gradually brought
order to the scene. But all this owed little to the broad mathematical community,
unless one includes converts such as Freeman Dyson, and in turn it had little impact
on mathematical research.

All this changed abruptly in the middle 1970s after the emergence of gauge theo-
ries, with their differential-geometric background, as the favored framework for the
quantum field theory of elementary particles. Not only was there now a common
language but it was soon discovered that some of the most delicate questions on both
sides were closely related. These related the “anomalies’’ of quantum field theory to
the index theory of elliptic differential operators.

Suddenly a new bridge was opened up or, to use a different metaphor, two groups
digging tunnels from two ends suddenly joined up and found that the join fitted as
beautifully as if it had been engineered by Brunel himself. This time the mathemati-
cians were not building foundations; they were in the forefront where the action was.

I remember vividly those heady days and, in particular, a meeting I had in 1975
with the physicists at MIT, including Roman Jackiw and the young Edward Witten
(who impressed me even then). I recall Jackiw asking whether this new interaction
between the two sides was a short love affair or a long-term relationship!

Well, here we are, celebrating the silver wedding anniversary of this now firmly
established marriage. The past 25 years has seen a really spectacular flowering,
with tremendous impact both ways. The younger generation of theoretical physicists
has rapidly mastered much of 20th century mathematics in the fields of algebraic
geometry, differential geometry and topology. Many of them can manipulate spectral
sequences with as much panache as the brightest graduate student in topology, and we
mathematicians are constantly being asked the most searching and recondite questions
in geometry and topology which stretch our knowledge to its limits.
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On an occasion like this it seems appropriate to take a broad view and so I will try
to survey rapidly the impact that the new physics has had on geometry (in the broad
sense). This has usually taken the form of predictions, with great precision and detail,
of some unexpected results or formulae in geometry. These predictions rarely come
with any formal proof, though sometimes proofs can, with effort, be extracted from
the physics. More often mathematicians are reduced to verifying these unexpected
formulae by indirect and less conceptual methods.

What is surprising, beyond the wide scope of the results in question, is how suc-
cessful the program has been. Despite the absence of any firm foundations, physical
intuition and skillful use of techniques, has not yet led to false conclusions. I am
tempted to reverse Wigner’s dictum and wonder at “the unexpected effectiveness of
physics in mathematics.’’

2 The background

It may be helpful to start by reviewing rapidly the parts of geometry and of physics
which have been involved in this new interaction.

Let me begin with geometry. As indicated above the differential geometry of
bundles, involving connections and curvatures, is basic. The link with physics goes
back essentially to Hermann Weyl’s attempt to interpret Maxwell’s equations geo-
metrically, and the later improvement by Kaluza. This was just the abelian case of
U(1)-bundles, but the nonabelian case, involving general Lie groupsG, is much more
sophisticated and its full mathematical development came much later.

Another key component goes back to the pioneering work of Hodge with his
theory of harmonic forms, in particular the refined theory of Kähler manifolds with
application to algebraic geometry.

It was Witten who pointed out that Hodge theory should be viewed as supersym-
metric quantum mechanics, thus providing an important bridge between key concepts
on the two sides. Moreover, when extended to quantum field theories, it showed
mathematicians that physicists were trying to make sense of Hodge theory in infinite
dimensions. Their success in this venture depended on subtle ideas of physics, going
back to Dirac, which mathematicians had to absorb.

In the first few decades after the 1939–1945 war, topology was taking center
stage in geometry. New concepts and techniques led to a good understanding of
global topological problems in differential and algebraic geometry, culminating in
Hirzebruch’s famous generalization of the Riemann–Roch theorem. This involved
a skilled use of algebraic machinery centering around the theory of characteristic
classes and the remarkable polynomials originally introduced by J. A. Todd.

All of this was motivated by internal mathematical questions derived in the main
from classical algebraic geometry, now augmented by the powerful machinery of
sheaf cohomology of Leray, Cartan and Serre. Any suggestion that this might have
relevance to physics would have been met with disbelief.

In fact, the most remarkable fact about the new geometry–physics interface is that
topology lies at its heart. In retrospect the roots of this can be seen to go back to Dirac.
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His argument explaining the quantization of electric charge—where all particles have
an electric charge which is an integer multiple of the charge of the electron—is
essentially topological. In modern terms, he argued that a charged particle, moving
in the background field of a point magnetic monopole, had a quantum-mechanical
wave function which was a section of a complex line bundle (defined outside the
monopole). Thus, while classical forces can be expressed purely locally by differential
geometric formulae, quantum mechanics forces a global topological view and the
integer topological invariants correspond to quantized charges.

The full implications of this link between quantum theory and topology only
emerged when string theory appeared in physics with its Kaluza–Klein requirement
for extra dimensions above the four of space–time. The geometry and topology of
the extra dimensions provided a strong link with the mainstream development of
contemporary geometry.

The role of Lie groups and symmetry in physics has been clear for some time and
this already has geometric and topological implications, but the higher dimensions
of Kaluza–Klein, as mediated by string theory, involve manifolds which are not
necessarily homogeneous spaces of Lie groups. This means that algebra alone is not
the answer, and that the full power of modern geometry, including Hodge theory and
sheaf cohomology, is required.

As mentioned briefly in Section 1, a key connection between the geometry and the
physics came from “anomalies’’ and their relation to index problems. These were a
natural extension of Hirzebruch’s work on the Riemann–Roch theorem and the famous
Todd polynomials, and variants of them now appeared as having important physical
significance. In fact, Hirzebruch’s work had been generalized by Grothendieck with
his introduction ofK-theory and, in its topological version, this turned out to be a very
refined tool for investigating anomalies in physics. Some of these are purely global,
having no local integral formulation, and K-theory detects such torsion invariants.
These, and other clues, indicate that K-theory plays a fundamental role in quantum
physics but the deeper meaning of this remains obscure.

Finally, I should say a word about the role of spinors. Ever since they arose in
physics with the work of Dirac they have played a fundamental part, providing the
fermions of the theory. In mathematics spinors are well understood algebraically
(going back to Hamilton and Clifford) and their role in the representation theory of
the orthogonal group provides the link with physics. However, in global geometry,
spinors are much less understood. The Dirac operator can be defined on spinor
fields and its square is similar to the Hodge–Laplace operator. Its index is given by
the topological formula referred to above in connection with anomalies. However,
while the geometric significance of differential forms (as integrands) is clear, the
geometric meaning of spinor fields is still mysterious. The only case where they can
be interpreted geometrically is for complex Kähler manifolds where holomorphic
function theory essentially extracts the “square root of the geometry’’ that is needed.
Gauss is reputed to have said that the true metaphysics of

√−1 is not simple. The
same could be said for spinors, which are also a mysterious kind of square root.
Perhaps this remains the deepest mystery on the geometry–physics frontier.
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3 Dimensional hierarchy

Although string theory may require higher dimensions at a fundamental level, at
normal energy scales we operate in a space–time of four dimensions, and the extra
Kaluza–Klein dimensions merely determine the kinds of fields and particles that we
have to deal with.

Since four-dimensional theories present many serious problems it is useful to
study simpler “toy models’’ in low dimensions. We can then think of a dimensional
hierarchy where the theory gets more complicated as we increase the dimensions.
In general, we write D = d + 1 for the space–time dimension, d being the space
dimension.

For d = 0, we just have quantum mechanics and the associated mathematics of
(finite-dimensional) manifolds, Lie groups, etc. For d = 1, we get the first level of
quantum field theory, which involves things like loop spaces and loop groups. Much
of this can now be treated by mathematically rigorous methods, but it is still a large
and sophisticated area. For d = 2, the quantum field theory becomes more serious
and rigour, for the most part, has to be left behind. This is even more so with the case
d = 3 of the real world.

The increasing complexity as D increases is reflected by (and perhaps due to)
the increasing complexity of the Riemannian curvature. Thus for D = 1 there is no
curvature, for D = 2 we have only the scalar curvature, and for D = 3 we have
the Ricci curvature, while only for D = 4 do we have the full Riemann curvature
tensor. At the level of the Einstein equations, for classical relativity, this is related to
the increasing difficulty of geometric structures in dimensions D ≤ 4. For D = 2,
we have the classical theory of Riemann surfaces (or surfaces of constant curvature).
For D = 3 the theory of 3-manifolds is already much deeper as is made clear by the
work of Thurston (and more recently Perelman). For D = 4 the situation is vastly
different, as has been shown by Donaldson, using ideas coming from physics as we
shall discuss later.

In the subsequent sections, we shall review the ways in which physics has impacted
on mathematics, organizing it according to this dimensional hierarchy. However,
before proceeding, we should make one general remark which applies throughout.
Typically, in the applications, there are formulae which depend on some integer
parameter such as a degree. From the physics point of view, what naturally emerges is
something like a generating function involving a sum over all values of the parameter.
Traditionally this is not the way geometers would have looked for the answer, and one
of the remarkable insights arising from the physics is that the generating functions
are very natural objects, sometimes being solutions of differential equations.

4 Space–time dimension 2

4.1 Rigidity theorems

The space V of solutions of an elliptic differential operator on a compact manifold
M is finite dimensional. If a compact group G acts on the manifold, preserving
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the operator, then V becomes a representation of G. In fact, all representations of
compact Lie groups arise in this way. In very special circumstances we may have
rigidity, meaning that the representation on V is trivial. For example, if V is the
space of harmonic forms, of degree p, and if G is connected, then by Hodge theory
the action is trivial. A different example arises if we take the Dirac operator D and
spin manifold M (of dimension 4k), then D and its adjoint D∗ have solution spaces
V +, V − and the index of D is defined as

index D = dim V + − dim V −.

IfG acts onM preserving the metric, then it commutes withD and soV +, V − become
representations of G and the index becomes a virtual representation or character. The
rigidity theorem (of Atiyah and Hirzebruch) says that this character is trivial, i.e., a
constant. (In fact, more is true—it is zero for a nontrivial action.)

Arguments from quantum field theory (for maps of space–time into M) led to the
discovery of a whole sequence of rigidity theorems for the Dirac operator coupled to
certain bundles. Moreover, the generating function turns out to be a modular form,
something predicted by the relativistic invariance of the quantum field theory.

This discovery stimulated a whole new branch of topology, called “elliptic co-
homology’’ with fascinating connections to number theory as explained by Michael
Hopkins [6].

This subject is an application of physics to differential topology, but the remaining
subjects of this section will be concerned with algebraic geometry.

4.2 Moduli spaces of bundles

The Jacobian of an algebraic curve classifies all holomorphic line bundles over it
with degree zero. It can also be described as the moduli space of flat U(1)-bundles.
Its study was a major feature of 19th century mathematics in the context of theta
functions. It has a natural generalization to vector bundles of higher rank, the study
of which emerged in the middle of the 20th century and is much more involved. In
particular, not much was even known about the topology of these moduli spaces.

Again quantum field theory in two dimensions has led to beautiful formulae re-
lating to the cohomology of these moduli spaces. Rigorous mathematical proofs of
these results are now available, inspired by the physics.

4.3 Moduli spaces of curves

Somewhat analogous, but deeper than the moduli spaces of Section 4.2, is the moduli
space of curves of genus g. The classical theory of the elliptic modular function deals
with the case g = 1, but for higher genus the moduli space remained rather unknown.

As in Section 4.1, physics has again produced remarkable formulae for the coho-
mology of these moduli spaces. This time the physics is related to gravity rather than
gauge theory and is important for string theory.
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4.4 Quantum cohomology

Classical geometry led to many enumerative problems, the simplest of which was
to count how many points were common to a number of subvarieties of a given
algebraic variety. This led to intersection theory, which, in the hands of Lefschetz,
was developed as an aspect of homology theory. Subsequently, this was viewed as
the ring structure of cohomology theory.

A deeper class of enumerative problems arises when we want to count not points
but curves. How many curves of given type (degree, genus, singularity structure) lie
on a given algebraic variety. This was a difficult unsolved problem even for curves
in the plane.

In quantum field theory, holomorphic curves appear as “instantons’’ of a two-
dimensional field theory, measuring important nonperturbative features of the theory.

Taking into account instantons of genus zero leads in particular to a ring asso-
ciated with the target manifold which depends on a parameter t and in the classical
limit t → 0 reduces to the cohomology ring. This new ring is called the quantum
cohomology ring and it encodes information about numbers of rational curves.

The quantum cohomology rings of various varieties have been calculated, thus
leading to explicit enumerative formulae. An important point to mention is that the
quantum cohomology ring only has a grading into odd and even parts, not an integer
grading like the classical cohomology.

4.5 Mirror symmetry

This subject, which has now grown into a large industry, is related to Section 4.4 and
is one of the ways in which the enumerative problems have been solved.

It was discovered by physicists that certain algebraic varieties come in pairs M

and M∗, called mirror pairs. The most interesting case is when M and M∗ are three-
dimensional complex algebraic varieties with vanishing first Chern class (Calabi–
Yau manifolds). The remarkable thing about mirror symmetry is that M and M∗
have quite different topologies. In fact, the ranks of the odd and even Betti numbers
switch, so that

χ(M∗) = −χ(M),

where χ is the Euler number.
For physicists, M and M∗ give rise to the same two-dimensional quantum field

theory, but quantum invariants involving instanton calculations on M can be calcu-
lated by classical invariants involving periods of integrals on M∗. This is what leads
to effectively computable formulae and gives the theory its power.

The mathematical study of Mirror Symmetry has now progressed quite far in-
volving symplectic as well as complex geometry. Recent work is formulated in the
language of derived categories and surprisingly such extremely abstract mathematical
techniques appear in return to be relevant to the physics of string theory.
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5 Three-dimensional space–time

The most striking application of quantum field theory in three dimensions was un-
doubtedly Witten’s interpretation of the polynomial knot invariants discovered by
Vaughan Jones. It was already clear, from the work of Jones, that his invariants
were essentially new and very powerful. Old conjectures were quickly disposed of.
What Witten did was to show how the Jones invariants could be easily understood
(and generalized) in terms of the quantum field theory defined by the Chern–Simons
Lagrangian. One immediate benefit of this was that it worked for any oriented 3-
manifold, not just S3. In particular, taking the empty knot one obtained numerical
invariants for compact 3-manifolds.

These developments have stimulated a great deal of work by geometers. In
particular, there are combinatorial treatments which are fully rigorous and mimic
much of the physics.

In three dimensions, we are in the odd situation of having two completely different
theories. One the one hand there are the quantum invariants just discussed, while on
the other hand there is the deep work of Thurston on geometric structures, including
the important special case of hyperbolic 3-manifolds. It has been a long-standing
and embarrassing situation that there was little or no connection between these two
theories. For example, given an explicit compact hyperbolic 3-manifold, how does
one compute its quantum invariants? Some answers were available for the simpler
structures (positive curvature or fibrations) but not for the hyperbolic case.

Recently conjectures have been made proposing a general link, with hyperbolic
volumes appearing as limits of Jones invariants. In particular Gukov [5] has attempted
to establish a basis for this link using Chern–Simons theory for the noncompact
groups SL(2,C) which ties in to three-dimensional gravity. This follows earlier work
of Witten and others. It looks very promising and one might hope to connect it
ultimately to the recent work of Perelman [9].

Perhaps, looking at current research and peering into the future, I can make a few
further comments.

In the first place, while quantum field theory gives (at least heuristically) a very
satisfying explanation of the Jones theory and most of its properties, it fails in one
important respect. It does not explain why the coefficients of the Jones polynomials
are integers. In Witten’s description, the values of the Jones polynomials at certain
roots of unity are expectation values and the physics gives no indication of their
arithmetic nature.

A really fundamental treatment should provide such an explanation, while pre-
serving the elegance of the quantum field theory approach.

After my lecture, I was reminded that recent work of Khovanov [7] does give
a direct explanation for the integer coefficients in the Jones polynomial. Khovanov
constructs, from a knot, certain homology groups as invariants and the Jones coeffi-
cients appear as Euler characteristics. While this explains their integrality it does not
explain what relations these Khovanov homology groups have to the physics.

There is a somewhat parallel situation with respect to the Casson invariant of a
homology 3-space. On the one hand Witten has shown that it is given by a variant
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of Chern–Simons theory. On the other hand it can also be interpreted as the Euler
characteristic of the Floer cohomology groups, which are the Hilbert spaces of the
Donaldson quantum field theory in four dimensions (as we shall discuss in the next
section). This might suggest that the Khovanov homology groups should simply be
interpreted as the Hilbert spaces of some four-dimensional quantum field theory. No
such theory appears at present to be known.

Speculating in another direction, I note that the Jones polynomial is naturally a
character of the circle, the integers being the multiplicities of the irreducible represen-
tations. One may ask where the circle comes from. Now the knots studied by Jones
are traditional ones in R3 and we have an S2 at∞, on which SO(3) acts. Moreover,
the equivariant K-theory of S2 is given by the character ring of the circle

KS0(3)(S
2) ∼= R(S1).

Here S1 appears as the isotropy group of the action (and is unique up to conjugation).
Since K-theory appears to play a special role in quantum field theory it is tempting
to interpret the Jones polynomial as an element of the equivariant K-theory of S2,
where we think of S2 as any large 2-space enclosing the knot. This idea receives
some encouragement from the fact that the Jones polynomial for links (generalizing

knots) involves integer series in t
1
2 , which corresponds to characters of the double

cover of our original S1. But this is natural if we replace SO(3) by Spin(3), as a
physicist would do.

Such equivariant K-groups have appeared in connection not with knots in R3 but
in connection with finite configurations of distinct points in R3 [2] and this might pro-
vide some link. This idea is reinforced by the further speculation made in [3] relating
to Hecke algebras, which provide the original Jones approach to knot invariants.

As explained in [2] the 2-sphere involved there is naturally the complex 2-sphere,
which occurs as the base of the light-cone in Minkowski space. The connection with
quantum theory that is postulated is in the spirit of the ideas of Roger Penrose as
mentioned later in Section 9.

6 Four-dimensional space–time

I have already alluded several times to Donaldson theory, on which I shall now
elaborate.

For any compact oriented 4-manifold X, any compact Lie group G and any
positive integer k, Donaldson studies the moduli space M of k-instantons. These are
anti-self-dual connections for the G-bundle (with topology fixed by k). For this he
has first to choose a Riemannian metric (or rather a conformal structure), but he then
computes some intersection numbers on M and shows these are independent of the
metric. In this way, Donaldson defines invariants of X, which are just polynomials
on the second homology of X.

As is now well known, these Donaldson invariants proved spectacularly suc-
cessful in distinguishing between 4-manifolds and they opened up the whole subject
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of smooth 4-manifolds just as Freedman had closed the subject of topological 4-
manifolds.

While the idea of using instantons came from physics, Donaldson was just using
the classical equations of Yang–Mills theory. But Witten subsequently explained that
Donaldson’s theory could be interpreted as a suitable quantum field theory in four
dimensions. Moreover, this was just a slight variant on a standard theory known as
N = 2 supersymmetric Yang–Mills.

This physical interpretation of the Donaldson theory was interesting for physicists
but it was not clear what the mathematical benefit was. However, a few years later,
the benefit became abundantly clear. As part of some very general ideas of duality in
quantum fields theories, Seiberg and Witten produced a quite different theory which
was expected to be equivalent to Donaldson theory. This has now been essentially
confirmed by mathematicians, though a rigorous proof of the equivalence is not yet
complete. Moreover, the Seiberg–Witten equations are technically easier to handle
and so they have proved more powerful in many cases. In particular, they have led
to a proof of the old conjecture of René Thom about the genus of surfaces embedded
in CP2.

I should emphasize that the equivalence between the Donaldson and Seiberg–
Witten theories is one between generating functions. Each theory has its instantons,
but there is no simple relation between instantons of separate degrees, only between
the total sums over all degrees. This should be compared with the classical Poisson
summation formula which expresses a sum over one lattice in terms of the sum of
Fourier transforms over the dual lattice. Thus these dualities of quantum field theories
should be viewed as some kind of nonlinear analogues of the Fourier transfom. I shall
return to this theme at the end of my lecture.

One surprising feature of the Seiberg–Witten theory, and the classical equations
they lead to, is that they deal with a U(1) theory coupled nonlinearly to spinors.
Thus spinors appear explicitly here, while they do not appear in the SU (2) Donaldson
theory. This only increases the mystery of spinors and emphasizes my earlier remarks
about our lack of any deep understanding of them.

At present it is not clear whether Donaldson theory, with various refinements,
will explain all geometric phenomena in four dimensions. It may do so, but it is
also possible that it may take another 100 years to fully understand the geometry of
four dimensions, just as it has taken a century to move from Riemann surfaces to an
equivalent understanding of three dimensions. If so, this may accompany a similar
period for a proper understanding of the physics of space–time, a topic to which I
will return in the last section.

7 Topological quantum theories

As I have quickly outlined, there are a large number of important areas where quantum
theories yield topological results. All of these are, in fact, topological field theories.
They are especially simple theories in which the only output is topological. The
Hamiltonian of such a theory is zero, so there is no continuous dynamics. However,
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the theory has nontrivial content related to topological phenomena. This makes
this area much simpler and hence more tractable mathematically. In [1] I gave an
axiomatic description of a topological quantum field theory, analogous to the classical
axiomatization of homology by Eilenberg and Steenrod. The key part of such a
theory is its construction by some explicit method which could in principle (as with
homology) be either combinatorial or analytic.

It might appear that, for a real physicist, such purely topological theories could
have no serious interest. But this is wrong for two reasons. In the first place the
complexity of a really physical quantum field theory can rise from one of two sources.
First there is the analytical study of small fluctuations, but this is to a great extent
based on standard examples and perturbation theory. Then there are nonperturbative
phenomena and these are illustrated very well by purely topological theories.

But not only can topological theories play the role of toy models to study nonper-
turbative effects, they can also arise from a physical theory in some limiting regime.
As a simple illustration consider Hodge theory, or supersymmetric quantum mechan-
ics. The full theory requires us to know all the eigenvalues of the Hodge Laplacian.
But under rescaling we can consider the limit when all eigenvalues get very large,
so that only the zero eigenvalues survive. This recovers the homology (as the har-
monic forms).

Although I have spoken only about quantum field theories, the connection between
geometry and physics also extends to string theories. In particular, Witten has shown
that Chern–Simons theory for U(N), in its perturbative form, is a topological string
theory for open strings on T ∗S3, the cotangent bundle of S3, with the 0-section as a
brane of multiplicity N where the string must end.

More recently Vafa and others have argued that this theory is dual to the (topo-
logical) theory of closed strings on a rank 2 vector bundle over CP1. In this duality,
one switches from a perturbative expansion valid for large level, of Chern–Simons
U(N) gauge theory, to a perturbative expansion of the closed string theory for large
N . The geometry behind this duality is best understood in M-theory terms involving
a suitable 7-manifold of G2-holonomy [4].

This duality of Vafa leads to explicit formulae for every genus of the world-sheet
and these have now been verified by mathematical computations using fixed-point
methods on moduli spaces [8]. Interestingly, in the end, everything boils down to
purely combinatorial formulae. On the one hand string theory arises from the Feyn-
man diagrams of perturbation theory, while on the other hand we have combinatorial
data associated with degenerate algebraic curves. Riemann surfaces and analysis in-
terpolate between these two different combinatorial schemes, but with sufficient skill
a direct computation can be made. However, this is not very enlightening.

In his lecture at this conference, Vafa [10] discusses many aspects of topological
theories in much greater detail. I refer to his text for more information.

8 The significance for mathematics

It should be clear from my rapid survey that quantum theory, in its modern form, has
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had profound consequences for mathematics and in particular for geometry. But it is
hard to grasp the real significance of all this and to predict what its future will be.

While physics can inject new ideas and techniques into mathematics, it cannot in
the end provide a foundation for it. Even if, one day, we can develop a completely
rigorous quantum field theory or string theory, it would be bizarre if this had to be
the pillar on which mathematics, or large parts of it, rested.

A historical perspective may help us get a glimpse of the future in this respect.
Fourier analysis emerged, in the 18th century, from physics, specifically the study of
heat conduction. But in due course it was absorbed into a purely mathematical theory,
and was fundamental in the subsequent development of Linear Analysis. Later, in the
20th century, this theory was generalized to the noncommutative situation centering
around group representation theory. In fact, one could say that noncommutative
Fourier analysis has been one of the central theories of 20th century mathematics.

As I have mentioned earlier, the dualities of quantum field theory and string theory
which lie behind some of the most striking applications of physics to geometry can be
viewed as some kind of nonlinear Fourier Transform. In special finite-dimensional
cases these are now understood mathematically, and are related to classical ideas
of integral geometry. These include the Penrose Transform, the Mukai Transform,
the Nahm Transform, and the inverse scattering transform in soliton theory. In fact,
solitons are a prominent part of all these dualities. However, the full dualities of
string theory (or QFT) are infinite dimensional and nonlinear.

All this suggests that a prominent theme of 21st century mathematics might be
the development of a fully-fledged nonlinear Fourier Transform theory for function
spaces. Of course, there are too many kinds of nonlinearity to be encompassed in
any nontrivial way by a single theory. Clearly, physics appears to be singling out a
type of nonlinearity for which a deep but tractable duality will hold. The key feature
of this nonlinearity appears to be supersymmetry, which in some way extends the
symmetry arising in group theory. In geometric terms this means that we deal not
just with homogeneous spaces of Lie groups but also with Riemannian manifolds
having special holonomy, such as Kähler manifolds, Calabi–Yau manifolds or G2-
manifolds. The Lie groups are still there, but only at the (integrable) infinitesimal
level. These ideas are, in fact, not far removed from the original ideas of Lie, who
moved on from finite-dimensional Lie groups to the infinite-dimensional structures
occurring for example in complex manifolds. Lie himself was disappointed that his
fundamental ideas did not appear to be given their due credit. The 20th century
certainly rectified this omission, but perhaps the 21st century will take it even further.

9 The significance for physics

In the previous section, I tried to peer into the future to see what kind of mathematics
might emerge from the current geometry–physics interface. Trying to forecast the
physics is even harder, and I am less qualified, but perhaps an outsider can offer a
different perspective.
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As we know, the holy grail in current fundamental physics is how to combine
Einstein’s Theory of General Relativity with Quantum Theory. These two theories
operate very effectively but at quite different scales, GR at cosmic distances and QM
at subatomic scales.

The difficulty in combining the two theories is both conceptual and technical. As
is well known, Einstein dreamed of a unified geometric theory, extending GR, and he
never accepted the philosophical foundations of QM, with its uncertainty principle.
In the long debate on this controversy between Einstein and Bohr the general verdict
of the physics community was that Einstein lost and that his idea of a unified field
theory was a hopeless pipe dream.

With the remarkable success of the standard model of elementary particles, in-
corporating geometrically the electromagnetic, the weak force and the strong force,
Einstein’s ideas were given new life. But the framework remained that of QM, and
GR remained strictly outside the scope of the unification. Now, with string theory
offering the hope of the ultimate unification it might appear that the old controversy
between Einstein and Bohr has been resolved, with the honours more equally split.
Unification is perhaps being achieved, but QM has persisted.

This is the orthodox view of string theorists and they have impressive evidence
in their favor. The only fly in the ointment is that no one yet has any real idea of
what their ultimate M-theory is. Perhaps in the coming years this will be clarified
and we will learn to live with the mysterious world of 11 dimensions and its hidden
supersymmetries. Perhaps only a few technical obstacles remain to complete the
structure.

But it is at least worth exploring alternative scenarios. There are in particular two
attractive ideas that have their devotees. The first (in historical precedence) is Roger
Penrose’s twistor theory. On the one hand this has, as a technical mathematical tool,
proved its worth in a number of problems. It is also related to supersymmetry and
duality. Links with string theory are being explored. But beyond these mathematical
technicalities there lies a deeper philosophical idea. Penrose is an Einsteinian who
believes that in the hoped-for marriage between GR and QM it is the latter that must
give the most, adapting itself to the beauty of GR. Twistors are thought of as a first
step to achieving this goal. Moreover, Penrose speculates that the mysterious role
of complex numbers in QM should ultimately have a geometric origin in the natural
complex structure of the base of the light-cone in Minkowski space. So far, it has to
be conceded that the weight of evidence is not in Penrose’s favor, but that does not
mean that he may not ultimately be vindicated.

A completely different scenario is offered by Alain Connes’ noncommutative
geometry, a theory with a rich mathematical background and a promising future.
Links with physics exist and new ones are being discovered. In a sense Connes
takes off from the Heisenberg commutation relations, in a definitely non-Einsteinian
direction. However, he tries to keep the geometric spirit by using the same concepts
and terminology. It is certainly possible that the final version of M-theory may use
Connes’ framework for its formulation.

Perhaps I can end by indulging in some wild speculation of my own, not I hope
totally unrelated to the other ideas above.
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I start, further back, by asking some philosophical or metaphysical questions. If
we end up with a coherent and consistent unified theory of the universe, involving
extremely complicated mathematics, do we believe that this represents “reality’’?
Do we believe that the laws of nature are laid down using the elaborate algebraic
machinery that is now emerging in string theory? Or is it possible that nature’s laws
are much deeper, simple yet subtle, and that the mathematical description we use
is simply the best we can do with the tools we have? In other words, perhaps we
have not yet found the right language or framework to see the ultimate simplicity
of nature.

To get a better idea of what I am trying to say, let us consider GR as a description of
gravity. To a mathematician this theory is beautifully simple but yet subtle. Moreover,
it is highly nonlinear so that it is extremely complicated in its detailed implications.
This is no doubt why it appeals to both Einstein and Penrose as a model theory. Is
it not possible that something having the same inherent simplicity (and nonlinearity)
can explain all of nature?

While everyone might agree that this would be an ideal philosophical ambition,
there appears to be the insuperable obstacle presented by QM. To get round this will
require some conceptual leap, and such leaps have in the past only come when one is
prepared to sacrifice some accepted dogma, such as Einstein did with the separation
of space and time.

Let me, in such a speculative mood, raise one possibility of a dogma to be sacri-
ficed. Ever since Newton, it has been a cardinal principle of physical sciences that
we can predict the future from the present (given complete knowledge). This even
holds in QM, where the state at time zero evolves by a Hamiltonian flow to give the
state at future times. This assumption, which may have seemed rash to some, has
abundantly proved its worth. But is it really true? Perhaps all we can say is that a
knowledge of present and past enables us to predict the future? After all, this, in a
sense, is true in the biological world where our DNA represents our past.

Of course, to explain the remarkable success of the standard dogma, the effect of
the past would have to be minute and only noticeable at very short time-scales. But
this is precisely where QM comes into play. So perhaps the uncertainty in QM is
really a reflection of the fact that we (the observers) do not know our past. Perhaps
the Hilbert Space state at the present time is determined by our past.

This metaphysical idea would have to be embodied in precise mathematical form
consistent with GR. In particular, the fundamental equations would not be differen-
tial equations but integrodifferential equations, involving integration over the past.
The nonlinearity of GR, together with the effect of past history, would be diffi-
cult to solve mathematically. But very good approximations might be obtained
by using high precision mathematical tools of the kind appearing in string theory.
The various dualities might appear from alternative ways of making the necessary
approximations.

A theory on these lines would have satisfied Einstein and it seems at least worth
exploring. The dream of all mathematical physicists is to find ultimate explanations
which are inherently simple in mathematical form and yet can explain the fascinating
diversity of nature. We should not settle for less.
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Abstract. Let G be an almost simple simply connected group over C, and let Buna
G
(P2,P1)

be the moduli scheme of principal G-bundles on the projective plane P2, of second Chern class
a, trivialized along a line P1 ⊂ P2.

We define the Uhlenbeck compactification Ua
G

of Buna
G
(P2,P1), which classifies, roughly,

pairs (FG,D), where D is a 0-cycle on A2 = P2 − P1 of degree b, and FG is a point of
Buna−b

G
(P2,P1), for varying b.

In addition, we calculate the stalks of the Intersection Cohomology sheaf of Ua
G

. To do
that we give a geometric realization of Kashiwara’s crystals for affine Kac–Moody algebras.

Subject Classifications: 14D20, 14D21, 17B67

Introduction

0.1

Let G be an almost simple simply connected group over C, with Lie algebra g, and
let S be a smooth projective surface.

Let us denote by Buna
G(S) the moduli space (stack) of principal G-bundles on S

of second Chern class a. It is easy to see that Buna
G(S) cannot be compact, and the

source of the noncompactness can be explained as follows:
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By checking the valuative criterion of properness, we arrive at the following
situation: we are given a G-bundle FG on a three-dimensional variety X defined
away from a point, and we would like to extend it to the entire X. However, such
an extension does not always exist, and the obstruction is given by a positive integer,
which one can think of as the second Chern class of the restriction of FG to a suitable
4-sphere corresponding to the point x.

However, this immediately suggests what a compactification of Buna
G(S) could

look like: it should be a union⋃
b∈N

Buna−b
G (S)× Symb(S). (1)

In the differential-geometric framework of moduli spaces of K-instantons on
Riemannian 4-manifolds (where K is the maximal compact subgroup of G) such a
compactification was introduced in the pioneering work [U]. Therefore, we shall call
its algebro-geometric version the Uhlenbeck space, and denote it by Ua

G(S).
Unfortunately, one still does not know how to construct the spaces Ua

G(S) for
a general group G and an arbitrary surface S. More precisely, one would like to
formulate a moduli problem, to which Ua

G(S) would be the answer, and so far this
is not known. In this formulation the question of constructing the Uhlenbeck spaces
has been posed (to the best of our knowledge) by V. Ginzburg. He and V. Baranovsky
(cf. [BaGi]) have made the first attempts to solve it, as well as indicated the approach
adopted in this paper.

A significant simplification occurs for G = SLn. Let us note that when G = SLn,
there exists another natural compactification of the stack Buna

n(S) := Buna
SLn

(S), by
torsion-free sheaves of generic rank n and of second Chern class a, called the Gieseker
compactification, which in this paper we will denote by Ña

n(S). One expects that there
exists a proper map f : Ña

n(S)→ Ua
SLn

(S), described as follows:
A torsion-free sheaf M embeds into a short exact sequence

0 →M→M′ →M0 → 0,

where M′ is a vector bundle (called the saturation of M), and M0 is a finite-
length sheaf. The map should send a point of Ña

n(S) corresponding to M to the
pair (M′, cycle(M0)) ∈ Buna−b

n (S) × Symb(S), where b is the length of M0, and
cycle(M0) is the cycle of M0. In other words, the map must “collapse’’ the informa-
tion of the quotient M′ → M0 to just the information of the length of M0 at various
points of S.

Since the spaces Ña
n(S), being a solution of a moduli problem, are easy to con-

struct, one may attempt to construct the Uhlenbeck spaces Ua
SLn

(S) by constructing

an explicit blowdown of the Gieseker spaces Ña
n(S). This has indeed been performed

in the works of J. Li (cf. [Li]) and J. W. Morgan (cf. [Mo]).
The problem simplifies even further, when we put S = P2, the projective plane,

and consider bundles trivialized along a fixed line P1 ⊂ P2. In this case, the sought-
for space Ua

n(S) has been constructed by S. Donaldson (cf. [DK, Chapter 3]) and
thoroughly studied by H. Nakajima (cf., e.g., [Na]) in his works on quiver varieties.
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In the present paper, we will consider the case of an arbitrary group G, but the
surface equal to P2 (and we will be interested in bundles trivialized along P1 ⊂ P2,
i.e., we will work in the Donaldson–Nakajima setup.)

We will be able to construct the Uhlenbeck spaces Ua
G, but only up to nilpotents.

In other words, we will have several definitions, two of which admit modular descrip-
tions, and which produce the same answer on the level of reduced schemes. We do
not know whether the resulting schemes actually coincide when we take the nilpo-
tents into account. And neither do we know whether the resulting reduced scheme is
normal.

We should say that the problem of constructing the Uhlenbeck spaces can be posed
over a base field of any characteristic. However, the proof of one of the main results
of this paper, Theorem 4.8, which ensures that our spaces Ua

G are invariantly defined,
uses the char. = 0 assumption. It is quite possible that in order to treat the char. = p

case, one needs a finer analysis.

0.2

The construction of Ua
G used in this paper is a simplification of a suggestion of

Drinfeld’s (the latter potentially works for an arbitrary surface S).
We are trying to express points of Ua

G (one may call them quasi-bundles) by
replacing the original problem for the surface P2, or rather for a rationally equivalent
surface P1 × P1, by another problem for the curve P1.

As a motivation, let us consider the following simpler situation. Let M0 be the
trivial rank-2 bundle on a curve C. A flag in M0 is by definition a line subbundle
L ⊂M0, or equivalently a map from C to the flag variety of GL2, i.e., P1.

However, there is a natural generalization of a notion of a flag, also suggested by
Drinfeld: instead of line subbundles, we may consider all pairs (L, κ : L → M0),
where L is still a line bundle, but κ need not be a bundle map, just an embedding of
coherent sheaves. We define a quasi-map C → P1 (generalizing the notion of a map)
to be such a pair (L, κ).

In fact, one can introduce the notion of a quasi-map from a curve (or any projective
variety) C to another projective variety T. When T is the flag variety of a semisimple
group G, the corresponding quasi-map spaces have been studied in [FFKM, BG1,
BFGM].

Our construction of the Uhlenbeck space is based on considering quasi-maps
from P1 (thought of as a “horizontal’’ component of P1×P1) to various flag varieties
associated to the loop group of G; among them the most important are Kashiwara’s
thick Grassmannian and the Beilinson–Drinfeld Grassmannian GrBD

G .
The spaces of maps and quasi-maps from a projective curve C to Kashiwara’s flag

schemes are of independent interest and have been another major source of motivation
for us.

In [FFKM, FKMM] it was shown that if one considers the space of (based)
maps, of multidegree µ, from C to the flag variety of a finite-dimensional group G,
one obtains an affine scheme, which we denote by Mapsµ(C,Bg), endowed with
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a symplectic structure, and which admits a Lagrangian projection to the space of
colored divisors on C, denoted Cµ.

Moreover, the irreducible components of the central fiber F
µ
g of this projection

(i.e., the fiber over µ · c ∈ Cµ, for some point c ∈ C) form in a natural way a basis
for the µ-weight piece of U(ň), where ǧ ⊃ ň are the Langlands dual Lie algebra and
its maximal nilpotent subalgebra, respectively.

One may wonder if this picture can be generalized for an arbitrary Kac–Moody
g′, instead of the finite-dimensional algebra g. We discuss such a generalization in
Parts I and IV of this paper. We formulate Conjecture 2.27, which is subsequently
proven for g′ affine (and, of course, finite), which allows one to define on the set of
irreducible components of the central fibers ∪

µ
F
µ

g′ a structure of Kashiwara’s crystal,

and thereby link it to the combinatorics of the Langlands dual Lie algebra ǧ′.
In particular, when g′ is affine, the space Mapsµ(C,Bg′) turns out to be closely

related to the space of bundles on P2, and the space of quasi-maps QMapsµ(C,Bg′) to
the corresponding Uhlenbeck space. The relation between the irreducible components
of Fµ and the Lie algebra ǧ′ mentioned above allows us to explicitly compute the
Intersection Cohomology sheaf on Ua

G, and express it in terms of ǧ′ (in this case
g′ = gaff , the affinization of g.)

0.3

The two main results of this paper are construction of the scheme Ua
G, so that it has the

stratification as in (1) (Theorem 7.2), and the explicit description of the Intersection
Cohomology sheaf of Ua

G (Theorem 7.10). Let us now explain the logical structure
of the paper and the main points of each of the parts.

Part I is mostly devoted to the preliminaries. In Section 1 we introduce the
notion of a quasi-map (in rather general circumstances) and prove some of its basic
properties. The reader familiar with any of the works [FFKM], [BG1], or [BFGM]
may skip Section 1 and return for proofs of statements referred to in the subsequent
sections.

In Section 2 we collect some facts about Kashiwara’s flag schemes Gg′,p for a
general Kac–Moody Lie algebra g′, and study the quasi-map spaces from a curve C
to Gg′,p. In the main body of the paper, we will only use the cases when g′ is the
affine algebra gaff , or the initial finite-dimensional Lie algebra g.

In Section 3 we collect some basic facts about G-bundles on a surface P1 × P1

trivialized along the divisor at infinity.
In Part II we introduce the Uhlenbeck space Ua

G and study its properties. In
Section 4 we give three definitions of Ua

G, of which two are almost immediately
equivalent; the equivalence with the (most invariant) third one is established later.

Section 5 contains a proof of Theorem 5.12, (conjectured in [FGK]) about the iso-
morphism of our definition of the Uhlenbeck space Ua

SLn
with Donaldson’s definition.

The proof follows the ideas indicated by Drinfeld.
In Section 6 we prove some additional functoriality properties of Ua

G, which,
combined with Theorem 5.12 of the previous section, yields Theorem 4.8 about the
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equivalence of all three definitions from Section 4. In addition, in Section 6 we estab-
lish the factorization property of Ua

G with respect to the projection on the symmetric
power A(a) of the “horizontal’’ line, which will be one of the principal technical tools
in the study of the geometry of Ua

G, and in particular, for the computation of the
IC sheaf.

In Section 7 we prove Theorem 7.2 saying that Ua
G indeed has a stratification as

in (1). In addition, we formulate Theorem 7.10 describing the stalks of the IC sheaf
on the various strata.

In Section 8 we present two moduli problems, whose solutions provide two more
variants of the definition of Ua

G, and which coincide with the original one on the level
of reduced schemes.

In Part III we define the “parabolic’’ version of Uhlenbeck spaces, Uθ
G,P and

Ũθ
G,P , which are two different compactifications of the space BunG;P (S,D∞;D0),

classifying G-bundles on P2 with a trivialization along a divisor P1 � D∞ ⊂ P2,
and a reduction to a parabolic P along another divisor P1 � D0 ⊂ P2. Introducing
these more general spaces is necessary for our calculation of stalks of the IC sheaf.

Thus in Section 9 we give the definition of Uθ
G,P and Ũθ

G,P , and establish the
corresponding factorization properties.

In Section 10, we prove Theorem 10.2, which describes the stratifications of Uθ
G,P

and Ũθ
G,P parallel to those of Ua

G.

In Section 11, we prove an important geometric property of Ũθ
G,P when P = B

saying that its boundary (in a natural sense) is a Cartier divisor.

In Part IV we make a digression and discuss a construction of crystals (in the sense
of Kashiwara), using the quasi-map spaces QMaps(C,Gg′,p) introduced in Section 2,
for an arbitrary Kac–Moody algebra g′. Unfortunately, to make this construction
work one has to assume a certain geometric property of the QMaps(C,Gg′,p) spaces,
Conjecture 2.27, which we verify in Section 15.6 for g′ of affine type, using some
geometric properties of the parabolic Uhlenbeck spaces. As was mentioned above, it
is via Kashiwara’s crystals—more precisely, using Theorem 12.8—that we relate the
IC stalks on Ua

G and the Lie algebra ǧaff .

In Section 12 we recollect some general facts about Kashiwara’s crystals. In
particular, we review what properties are necessary to prove that a given crystal Bg′
is isomorphic to the standard crystal B∞g′ of [Ka5].

In Section 13 we take our Lie algebra g′ to be finite dimensional and spell out our
“new’’ construction of crystals using the affine Grassmannian of the corresponding
group G.

In Section 14 we consider the case of a general Kac–Moody algebra, and essen-
tially repeat the construction of the previous section using the scheme QMaps(C,Gg′,p)
instead of the affine Grassmannian.

In Section 15 we verify Conjecture 2.27 and Conjecture 15.3 for finite-dimen-
sional and affine Lie algebras, which ensures that in these cases the crystal of the
previous section is well defined and can be identified with the standard crystal B∞g .
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In Part V we perform the calculation of the IC sheaf on the schemes Ua
G, Ũθ

G,P

and Uθ
G,P .

In Section 16 we formulate four theorems, which describe the behavior of the
IC sheaf, and in Section 17 we prove all four statements by an inductive argument
borrowed from [BFGM].

Finally, in the appendix we reproduce a theorem ofA. Joseph, formulated in Part I,
Section 2, which says that the space of based maps C → Gg′,p of given degree is a
scheme of finite type for any Kac–Moody Lie algebra g′.

Part I: Preliminaries on Quasi-Maps

1 Maps and quasi-maps

1.1

The simplest framework in which one defines the notion of quasi-map is the following:
Let Y be a projective scheme, E a vector space, and T ⊂ P(E) a closed subscheme.
There exists a scheme, which we will denote Maps(Y,T) that represents the

functor which assigns to a test scheme S the set of maps Y×S → T, which commute
with the natural projection of both sides to Y.

To show the representability, it is enough to assume that T is the entire P(E) (since
in general Maps(Y,T) is evidently a closed subfunctor in Maps(Y,P(E))), and in the
latter case our functor can be rewritten as pairs (L, κ), where L is a line bundle on
Y× S, and κ is an injective bundle map

κ : L ↪→ OY×S ⊗ E.

Therefore, we are dealing with an open subset of a suitable Hilbert scheme. The
scheme Maps(Y,T) splits as a disjoint union of subschemes, denoted Mapsa(Y,T),
and indexed by the set of connected components of the Picard stack Pic(Y) of Y (our
normalization is such that σ = (L, κ) ∈ Mapsa(Y,T) if L−1 ∈ Pica(Y)), and each
Mapsa(Y,T) is a quasi-projective scheme.

We will introduce a bigger scheme, denoted QMapsa(Y,T;E), which contains
Mapsa(Y,T) as an open subscheme. First, we will consider the case of T = P(E).

By definition, QMapsa(Y,P(E);E) represents the functor that assigns to a scheme
S the set of pairs (L, κ), where L is a line bundle on the product Y× S belonging to
the connected component Pic−a(Y) of the Picard stack, and κ is an injective map of
coherent sheaves

κ : L ↪→ OY×S ⊗ E,

such that the quotient is S-flat. (The latter condition is equivalent to the fact that for
every geometric point s ∈ S, the restriction of κ to Y × s is injective.) This functor
is also representable by a quasi-projective scheme, for the same reason.

Now let T be arbitrary, and let IT = ⊕
n≥0

InT ⊂ Sym(E∗) be the corre-

sponding graded ideal. We define the closed subscheme QMapsa(Y,T;E) ⊂
QMapsa(Y,P(E);E) by the condition that for every n the composition
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OY×S ⊗ InT ↪→ OY×S ⊗ Symn(E∗)→ (L−1)⊗n

vanishes.
We will denote by QMaps(Y,T;E) the union of QMapsa(Y,T;E) over all con-

nected components of Pic(Y).
In the main body of the present paper the scheme Y will be a smooth algebraic

curve, but for completeness in this section we will consider the general case. Note
that in the case of curves, the parameter a amounts to an integer, normalized to be
the negative of deg(L).

In the rest of this section we will study various properties and generalizations of
the notion of a quasi-map introduced above.

1.2 Variant

Assume for a moment that Y is integral. Observe that if σ = (L, κ) is an S-point of
QMapsa(Y,P(E);E), there exists an open dense subset U ⊂ Y× S over which κ is
a bundle map.

Consider the (automatically closed) subfunctor of QMapsa(Y,P(E);E), corre-
sponding to the condition that the resulting mapU → P(E) factors through T ⊂ P(E).
It is easy to see that this subfunctor coincides with QMapsa(Y,T;E).

The above definition can be also spelled out as follows. Let C(T;E) be the
affine cone over T, i.e., the closure in E of the preimage of T under the natural map
(E− 0)→ P(E). The multiplicative group Gm acts naturally on C(T;E) and we can
form the stack C(T;E)/Gm, which contains T as an open substack.

It is easy to see that a map S → QMaps(Y,T;E) is the same as a map σ : Y×S →
C(T;E)/Gm such that for every geometric s ∈ S, the map Y � Y×s → C(T;E)/Gm

sends the generic point of Y into T.
We will now introduce a still bigger scheme, QQMapsp(Y,T;E). First,

QQMapsp(Y,P(E);E) is the scheme classifying pairs (L, κ), where L is an S-flat
coherent sheaf on Y×S whose restriction to every geometric fiber Y× s is of generic
rank 1, and κ is a map of coherent sheaves, injective at each Y × s (as above s ∈ S

denotes a geometric point). The superscript p signifies that the Hilbert polynomial p
of L (with respect to some ample line bundle on Y) is fixed. Omitting the superscript
means that we are taking the union over all possible Hilbert polynomials.

As in the case of QMapsp(Y,T;E), given an S-point (L, κ) of QQMapsp(Y,
P(E);E), there exists an open dense subset U ⊂ Y×S, over which L is a line bundle,
and κ is a bundle map.

For a closed subscheme T ⊂ P(E), we defined the closed subfunctor QQMapsp(Y,
T;E) of QQMapsp(Y,P(E);E) by the condition that the resulting map U → P(E)
factors through T.

Since QQMapsp(Y,P(E);E) is actually the entire Hilbert scheme, we obtain the
following.

Lemma 1.3. The scheme QQMapsp(Y,P(E);E) is proper.
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Note that by assumption, for every geometric point s ∈ S, the restriction Ls :=
L|Y×s embeds into E ⊗ OY; therefore, L is torsion-free. In particular, when Y is a
smooth curve, QMaps(Y,T;E) coincides with QQMaps(Y,T;E). But in general we
have an open embedding QMaps(Y,T;E) ↪→ QQMaps(Y,T;E).
Proposition 1.4. Suppose Y is smooth. Then the scheme QMapsa(Y,T;E) is proper
as well.

Proof. Let us check the valuative criterion of properness. Using Lemma 1.3 we can
assume that we have the following setup:

Let X be a curve with a marked point 0X ∈ X, and let L be a torsion-free coherent
sheaf on Y×X, embedded into E⊗OY×X, and such that L|Y×(X−0X) is a line bundle.

We claim that L itself is a line bundle. Indeed, L is locally free outside of
codimension 2, and since Y × X is smooth, it admits a saturation, i.e., there exists
a unique line bundle L0 containing L, such that L0/L is supported in codimension
2. Moreover, it is easy to see that the map L → E ⊗ OY×X extends to a map
L0 → E ⊗ OY×X. But since the cokernel of κ was X-flat, we obtain that L → L0

must be an isomorphism. ��
In particular, we see that when Y is smooth, QMaps(Y,T;E) is the union of certain

of the connected components of QQMaps(Y,T;E).

1.5 Based quasi-maps

Let Y′ ⊂ Y be a closed subscheme, and σ ′ : Y′ → T a fixed map. We introduce the
scheme QMapsa(Y,T;E)Y′,σ ′ as a (locally closed) subfunctor of QMapsa(Y,T;E)
defined by the following two conditions:

• The restriction of the map κ to Y′ ×S is a bundle map. (Equivalently, the quotient
OY×S ⊗ E/L is locally free in a neighborhood of Y′ × S.)

• The resulting map Y′ × S → T equals Y′ × S → Y′ σ ′→ T.

When Y is integral, one defines in a similar way the subscheme

QQMapsa(Y,T;E)Y′,σ ′ ⊂ QQMapsa(Y,T;E).
The following assertion will be needed in the main body of the paper: Assume

that Y is a smooth curve C and Y′ is a point c, so that σ ′ : pt → T corresponds to
some point of T.

Lemma 1.6. There exists an affine map QMapsa(C,T;E)c,σ ′ → (C − c)(a). In
particular, the scheme QMapsa(C,T;E)c,σ ′ is affine.

Proof. We can assume that T = P(E), so that σ ′ corresponds to a line 
 ⊂ E. Let us
choose a splitting E � E′ ⊕ 
.

Then we have a natural map QMapsa(C,E)c,σ ′ → (C − c)(a), that assigns to a
pair (L, κ : L → O ⊗ E) the divisor of zeroes of the composition L → O ⊗ E →
O⊗ 
 � O.



Uhlenbeck Spaces via Affine Lie Algebras 25

Since C− c is affine, the symmetric power (C− c)(a) is affine as well. We claim
that the above morphism QMapsa(C,E)c,σ ′ → (C− c)(a) is also affine.

Indeed, given a divisor D ∈ (C− c)(a), the fiber of QMapsa(C,E)c,σ ′ over it is
the vector space Hom(O(−D),E′). ��

1.7 The relative version

Suppose now that Y itself is a flat family of projective schemes over some base X,
and E is a vector bundle on Y, with T ⊂ P(E) a closed subscheme.

The scheme of maps Maps(Y,T) assigns to a test scheme S over X the set of maps
σ : Y×

X
S → T, such that the composition Y×

X
S → T → Y is the projection on the

first factor. By definition, Maps(Y,T) is also a scheme over X.
By essentially repeating the construction of Section 1.1, we obtain a scheme

QMaps(Y,T;E), which is quasi-projective over X.
As before, if Y′ ⊂ Y is a closed subscheme, flat over X, and σ ′ : Y′ → T is

a X-map, we can define a locally closed subscheme QMapsa(Y,T;E)Y′,σ ′ of based
maps. When Y → X has integral fibers, one can define the relative versions of
QQMaps(Y,T;E) and QQMaps(Y,T;E)Y′,σ ′ in a similar fashion.

In what follows, we will mostly discuss the “absolute’’ case, leaving the (straight-
forward) modifications required in the relative and based cases to the reader.

1.8

Next we will study some functorial properties of the quasi-map spaces. From now
on we will assume that Y is integral.

For T ⊂ P(E) as above, let P be the very ample line bundle O(1)|T . Note that
we have a map H 0(T,P)∗ → E.

Now let T1 ⊂ P(E1) and T2 ⊂ P(E2) be two projective schemes, andφ : T1 → T2
be a map, such that φ∗(P2) � P1. Assume, moreover, that the corresponding map
H 0(T2,P2)→ H 0(T1,P1)

∗ extends to a commutative diagram

H 0(T1,P1)
∗ −−−−→ H 0(T2,P2)

∗⏐⏐� ⏐⏐�
E1 −−−−→ E2.

Lemma 1.9. Under the above circumstances the morphism Maps(Y,T1)→ Maps(Y,
T2) extends to a Cartesian diagram:

Maps(Y,T1) −−−−→ QMaps(Y,T1,E1) −−−−→ QQMaps(Y,T1,E1)⏐⏐� ⏐⏐� ⏐⏐�
Maps(Y,T2) −−−−→ QMaps(Y,T2,E2) −−−−→ QQMaps(Y,T2,E2).
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Proof. The existence of the map QMaps(Y,T1,E1) → QMaps(Y,T2,E2) is nearly
obvious from the interpretation of quasi-maps as maps to the affine cone.

Note that the condition of the lemma is equivalent to the fact that the map T1 → T2
extends to a commutative diagram of the corresponding affine cones:

T1 ←−−−− C(T1;E1)− 0 −−−−→ C(T1;E1) −−−−→ E1⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
T2 ←−−−− C(T2;E2)− 0 −−−−→ C(T2;E2) −−−−→ E2.

Therefore, we can just compose a map Y × S → C(T1;E1)/Gm with the map
C(T1;E1)/Gm → C(T2;E2)/Gm.

Let us construct the map QQMaps(Y,T1,E1) → QQMaps(Y,T2,E2). Given a
scheme S, and a coherent sheaf of generic rank 1 L on Y× S with a map κ1 : L →
OY×S ⊗ E1, let us consider the composition

κ2 : L→ OY×S ⊗ E1 → OY×S ⊗ E2.

We claim that the restriction of κ2 to every fiber Y × s is still injective. Indeed,
we are dealing with a map Ls → OY ⊗ E2 which is injective over an open subset of
Y (because on some open subset U , κ2 corresponds to a map U → T2), and we know
that Ls is torsion-free.

The square

QMaps(Y,T1,E1) −−−−→ QQMaps(Y,T1,E1)⏐⏐� ⏐⏐�
QMaps(Y,T2,E2) −−−−→ QQMaps(Y,T2,E2).

is Cartesian, because being in QMaps is just the condition that L is locally free.
To prove that the square

Maps(Y,T1) −−−−→ QMaps(Y,T1,E1)⏐⏐� ⏐⏐�
Maps(Y,T2) −−−−→ QMaps(Y,T2,E2).

is Cartesian, we have to show that if coker(κ2) is locally free, then so is coker(κ1).
But this follows from the four-term exact sequence

0 → OY×S ⊗ ker(E1 → E2)→ coker(κ1)

→ coker(κ2)→ OY×S ⊗ coker(E1 → E2)→ 0. ��

This lemma has a straightforward generalization to the based case:
If we fix Y′ and σ ′1 : Y′ → T1 with σ ′2 := φ ◦ σ ′1, we have a Cartesian square
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QMaps(Y,T1,E1)Y′,σ ′1 −−−−→ QMaps(Y,T1,E1)⏐⏐� ⏐⏐�
QMaps(Y,T2,E2)Y′,σ ′2 −−−−→ QMaps(Y,T2,E2),

and similarly for QQMaps.
Assume now that we are in the situation of Lemma 1.9, and that the map T1 → T2

is a closed embedding.

Proposition 1.10. Under the above circumstances, the resulting morphisms

QMaps(Y,T1,E1)→ QMaps(Y,T2,E2)

and

QQMaps(Y,T1,E1)→ QQMaps(Y,T2,E2)

are closed embeddings.
If T1 → T2 is an isomorphism and Y is normal, then the morphism QMaps(Y,

T1,E1) → QMaps(Y,T2,E2) induces an isomorphism on the level of reduced
schemes.

(Due to the Cartesian diagram above, the same assertions will hold in the based
situation.)

Proof. If E1 → E2 is an isomorphism, then the assertion of the lemma is obvi-
ous, as both schemes are closed subschemes in QMaps(Y,P(E2),E2) (respectively,
QQMaps(Y,P(E2),E2)). Therefore, we can assume that T1 � T2 =: T.

First, we claim that the map

Hom(S,QQMaps(Y,T,E1))→ Hom(S,QQMaps(Y,T,E2))

is an injection for any scheme S.
This follows from the fact that if L is a torsion-free coherent sheaf on Y×S, then

any two maps L → OY×S ⊗ E1 that coincide over a dense subset U ⊂ Y× S must
coincide globally.

Since the scheme QQMaps(Y,T,E1) is proper, the map

QQMaps(Y,T,E1)→ QQMaps(Y,T,E2)

is proper. Combined with the previous statement, we obtain that it is a closed embed-
ding. Using the Cartesian diagrams of Lemma 1.9, we obtain that QMaps(Y,T,E1)→
QMaps(Y,T,E2) is a closed embedding as well.

To prove the last assertion, we claim that for any normal scheme S, the map

Hom(S,QMaps(Y,T,E1))→ Hom(S,QMaps(Y,T,E2))
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is in fact a bijection. Indeed, let us consider the map between the cones C(T;E1)→
C(T;E2). This map is finite, and is an isomorphism away from 0 ∈ C(T;E2).

For a given element in Hom(S,QMaps(Y,T,E2)), consider the Cartesian product

(Y× S) ×
C(T;E2)/Gm

C(T;E1)/Gm.

This is a scheme, finite and generically isomorphic to Y× S. Since Y× S is normal,
we obtain that it admits a section, i.e., we have a map Y× S → C(T,E1)/Gm. ��

1.11

The definition of quasi-maps given above depends on the projective embedding of T.
In fact, one can produce another scheme, which depends only on the corresponding
very ample line bundle P = O(1)|T . Note that for the discussion below it is crucial
that we work with QMaps and not QQMaps, because we will be taking tensor products
of the corresponding line bundles.

For a test scheme S, we let Hom(S,QMaps(Y,T;P)) be the set consisting of
pairs (L, κ), where L is, as before, a line bundle on Y × S, and κ is a map L →
OY×S ⊗ �(T,P)∗ which extends to a map of algebras

⊕
n
H 0(T,P⊗n)→⊕

n
(L∗)⊗n,

and such that κ is injective over every geometric point s ∈ S. (This definition makes
sense for an arbitrary, i.e., not necessarily integral scheme Y.)

Adopting again the assumption that Y is integral, we can spell out the above
definition as follows. Let C(T;P) be the affine closure of the total space of (P−1−0),
i.e., C(T;P) is the spectrum of the algebra ⊕

n
H 0(T,P⊗n). We can form the stack

C(T;P)/Gm, which contains T as an open subset.
As before, we can consider the functor QMaps(Y,T;P) that assigns to a scheme

S the set of maps Y× S → C(T;P)/Gm, such that for every geometric point s ∈ S,
the map Y � Y× s → C(T;P)/Gm sends the generic point of Y into T.

Proposition 1.12. For T ⊂ P(E) and P as above we have the following:

(a) There is a canonical morphism QMaps(Y,T;P)→ QMaps(Y,T;E). When Y is
smooth, this map is a closed embedding, which induces an isomorphism on the
level of reduced schemes.

(b) For n ∈ N, we have a morphism QMaps(Y,T;P)→ QMaps(Y,T;P⊗n). When
Y is smooth, this map is also a closed embedding, which induces an isomorphism
on the level of reduced schemes.

(c) If φ : T1 → T2 is a map of projective schemes, such that φ∗(P2) � P1, we have a
morphism QMaps(Y,T;P1)→ QMaps(Y,T;P2), which is a closed embedding,
whenever φ is.
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Proof. Observe that we have a finite map C(T;P)→ C(T;H 0(T,P)∗), and more-
over, for any positive integer n, a finite map C(T;P)→ C(T;P⊗n). This makes the
existence of the maps QMaps(Y,T;P)→ QMaps(Y,T;E) and QMaps(Y,T;P)→
QMaps(Y,T;P⊗n) obvious.

For k large enough, the map ofC(T;P) into the product �
i=1,...,k

C(T;H 0(T,P⊗i )∗)
is a closed embedding. Hence QMaps(Y,T;P) is representable by a closed sub-
scheme in the product �

i=1,...,k
QMaps(Y,T;H 0(T,P⊗i )∗).

In particular, when Y is smooth, we obtain that QMaps(Y,T;P) is proper.
To finish the proof of the proposition, it would suffice to show that for a

test scheme S, the maps Hom(S,QMaps(Y,T;P)) → Hom(S,QMaps(Y,T;E))
and Hom(S,QMaps(Y,T;P)) → Hom(S,QMaps(Y,T;P⊗n)) are injective and
are, moreover, bijective if S is normal. This is done exactly as in the proof of
Lemma 1.10.

Assertion (c) of the Proposition follows from Lemma 1.9 and Lemma 1.10. ��
Point (c) of the above proposition allows to define QMaps(Y,T;P) as a strict

ind-scheme, when T is a strict ind-projective ind-scheme endowed with a very ample
line bundle.

Indeed, if T = lim→ Ti , where Ti are projective schemes, and Ti → Tj are closed

embeddings, and Pi is a compatible system of line bundles on Ti , we have a system
of closed embeddings

QMaps(Y,Ti;Pi )→ QMaps(Y,Tj ;Pj ).

In this section we will discuss the quasi-map spaces in their Hom(S,QMaps(Y,
T;E)) incarnation. The Hom(S,QMaps(Y,T;P))-versions of the corresponding re-
sults are obtained similarly.

1.13

Suppose now that we have an embedding T ⊂ P(E1)×· · ·×P(Ek). In this situation,
for a k-tuple a of parameters ai , we can introduce a scheme of quasi-maps:

We first define QMapsa(Y,P(E1)×· · ·×P(Ek);E1, . . . ,Ek) simply as the product

�
i

QMapsai (Y,P(Ei )).

For an arbitrary T, which corresponds to a multigraded ideal

⊕
n1,...,nk

I
n1,...,nk
T ⊂ Sym(E∗1)⊗ · · · ⊗ Sym(E∗n),

we set QMapsa(Y,T;E1, . . . ,Ek) to be the closed subscheme in �
i

QMapsai (Y,

P(Ei )), defined by the condition that for each n-tuple n1, . . . , nk of nonnegative
integers, the composition

OY×S ⊗ (IT)
n1,...,nk ↪→ OY×S ⊗ Symn1(E∗1)⊗ · · · ⊗ Symnk (E∗k)
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→ (L−1
1 )⊗n1 ⊗ · · · ⊗ (L−1)

⊗nk
k

vanishes.
For Y integral, this condition is equivalent to demanding that the generic point of

Y gets mapped to T, just as in the definition of QMapsa(Y,T;E).
Alternatively, let C(T;E1, . . . ,Ek) ⊂ E1 × · · · × Ek be the affine cone over T.

We have an action of Gk
m on C(T;E1, . . . ,Ek), and the stack-quotient C(T;E1, . . . ,

Ek)/Gk
m again containsT as an open subset. By definition, Hom(S,QMapsa(Y,T;E1,

. . . ,Ek)) is the set of maps from Y× S to the stack C(T,E1, . . . ,Ek)/Gk
m, such that

for every geometric s ∈ S, the map Y×s → C(T;E1, . . . ,Ek)/Gk
m sends the generic

point of Y to T.
The above definition has an obvious QQMaps version, and Lemma 1.9, Pro-

position 1.10 with its based analogues, generalize in a straightforward way. Note,
however, that for the next proposition it is essential that we work with QMaps, and
not with QQMaps, as we will be taking tensor products of Lis.

Observe that T can be naturally embedded into P(E1 ⊗ · · · ⊗ Ek) via the Segre
embedding P(E1)× · · · × P(Ek) ↪→ P(E1 ⊗ · · · ⊗ Ek).

Lemma 1.14. There exists a map

QMapsa(Y,T;E1, . . . ,Ek))→ QMapsa1+···+ak (Y,T;E1 ⊗ · · · ⊗ Ek),

extending the identity map on Maps(Y, S). Moreover, when Y is smooth, this map is
finite.

Proof. We have a map of stacks

C(T;E1 ⊗ · · · ⊗ Ek)/Gm → C(T;E1, . . . ,Ek)/Gk
m,

which makes the existence of the map QMaps(Y,T;E1, . . . ,Ek)) → QMaps(Y,T;
E1 ⊗ · · · ⊗ Ek) obvious.

We know that when Y is smooth, QMaps(Y,T;E1, . . . ,Ek) is proper; therefore,
to check that our map is finite, it is enough to show that the fiber over every geometric
point of the scheme QMaps(Y,T;E1 ⊗ · · · ⊗ Ek) is finite.

Suppose that we have a line bundle L on Y with an injective map κ : L →
OY⊗ (E1⊗ · · ·⊗Ek), such that there exists an open subset U ⊂ Y such that κ|U is a
bundle map corresponding to a map U → T. In particular, we have the line bundles
LU

1 , . . . ,LU
k , defined on U , such that LU

1 ⊗ · · · ⊗ LU
k � L|U .

Let L′i be the (unique) extension of LU
i such that the map L′i → OY ⊗ Ei is

regular and is a bundle map away from codimension 2. Clearly, L is a subsheaf in
L′1 ⊗ · · · ⊗ L′k .

Then the fiber of QMaps(Y,T;E1, . . . ,Ek))→ QMaps(Y,T;E1 ⊗ · · · ⊗ Ek) is
the scheme classifying subsheaves Li ⊂ L′i such that L1 ⊗ · · · ⊗ Lk � L and the
maps Li → OY ⊗ Ei continue to be regular. This scheme is clearly finite. ��

An example of the situation of Section 1.13 is this: Suppose that T = T1×· · ·×Tk ,
and each Ti embeds into the corresponding Ei . Then from Lemma 1.14 we obtain
that there exists a finite morphism
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�
i

QMapsai (Y,Ti;Ei ) � QMapsa(Y,T;E1, . . . ,Ek)

→ QMapsa1+···+ak (Y,T;E1 ⊗ · · · ⊗ Ek).

In the main body of the paper, we will need the following technical statement.
Let T0 ⊂ E0 and T′0 ⊂ E′0 be two projective varieties.

Let T be another projective variety, embedded into P(E0)×P(E1)×· · ·×P(En),
and endowed with a map T → T0, such that the two maps from T to P(E0) coincide.

Lemma 1.15. The (a priori finite) map

QMaps(Y,T;E0,E1, . . . ,Ek)× QMaps(Y,T′0;E′0)
→ QMaps(Y,T × T′0;E0 ⊗ E′0,E1, . . . ,Ek)

×
QMaps(Y,T0×T′0;E0⊗E′0)

QMaps(Y,T0 × T′0;E0,E
′
0).

is an isomorphism.

The proof is straightforward.

1.16

Let
◦

QQMaps(Y,T;E) denote the open subset of QQMaps(Y,T;E) corresponding to
the condition that coker(κ) is a torsion-free coherent sheaf on Y (over every geometric
point s in the corresponding test scheme S). Let us denote by ∂(QQMaps(Y,T;E))
the complement to

◦
QQMaps(Y,T;E) in QQMaps(Y,T;E).

For a Hilbert polynomial p, let TFreep1 (Y) denote the corresponding connected
component of the stack of torsion-free coherent sheaves of generic rank 1 on Y. For
two parametersp, p′, let us denote by YQ;(p,p′) the stack classifying triples (L,L′, β :
L ↪→ L′), where L,L′ are points of TFreep1 (Y) and TFreep

′
1 (Y), respectively, and

β is a nonzero map, which is automatically an embedding. Note that for p = p′,
YQ;(p,p′) projects isomorphically onto TFreep1 (Y).

Proposition 1.17. There is a natural proper morphism

ιp′,p : QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′) → QQMapsp(Y,T;E).

The composition

ιp′,p :
◦

QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′)

↪→ QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′) → QQMapsp(Y,T;E)

is a locally closed embedding. Moreover, every geometric point of QQMapsp(Y,T;E)
belongs to the image of ιp′,p for exactly one p′.
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Proof. The map ιp′,p is constructed in a most straightforward way: given an S-point

of QQMapsp
′
(Y,T,E), i.e., a sheaf L′ on Y × S, with an embedding κ ′ : L′ →

OY×S ⊗ E, and an S-point of YQ,(p,p′), i.e., another sheaf L on Y × S with an
embedding β : L → L′, we define a new point of QMaps(Y,T,E), by setting κ to
be the composition κ ′ ◦ β.

This map is proper because the scheme QQMapsp
′
(Y,T,E) is proper, and so is

the projection YQ;(p,p′) → TFreep1 (Y).
Observe now that the map⋃

p′

◦
QQMapsp

′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′) → QQMapsp(Y,T;E)

is injective on the level of S-points for any S.

Indeed, for (L,L′, κ ′, β) as above with (L′, κ ′) ∈ ◦
QQMapsp

′
(Y,T;E), the sheaf

L′ is reconstructed as the unique subsheaf in OY×S ⊗ E containing L, such that the
quotient OY×S ⊗ E/L′ is torsion-free over every geometric point of S. (Moreover,
for every geometric point (L, κ) of QQMapsp(Y,T;E), such L′ exists and equals the
preimage in OY ⊗ E of the maximal torsion subsheaf in coker(κ).)

Thus we obtain that the open subset in QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′)
equal to

(ιp′,p)
−1(QQMapsp(Y,T;E)− ιp′,p(∂(QQMapsp

′
(Y,T;E))))

coincides with
◦

QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′). Hence the map

ιp′,p :
◦

QQMapsp
′
(Y,T;E) ×

TFreep
′

1 (Y)

YQ;(p,p′)

→ (QQMapsp(Y,T;E)− ιp′,p(∂(QQMapsp
′
(Y,T;E))))

is also proper, and being an injection on the level of S-points, it is a closed embed-
ding. ��

Now set
◦

QMaps(Y,T;E) := ◦
QQMaps(Y,T;E) ∩ QMaps(Y,T;E), and

∂(QMaps(Y,T;E)) := ∂(QQMaps(Y,T;E)) ∩ QMaps(Y,T;E).
For example, when Y is a smooth curve (in which case there is no differ-

ence between QMaps and QQMaps), the locus
◦

QMaps(Y,T;E) coincides with
Maps(Y,T;E). Indeed, the condition that the quotient is torsion-free is equivalent in
this case to its being a vector bundle.

Recall that by Pica(Y) we denote connected components of the Picard stack of Y.
Observe that if the parametersa, a′ are such that Pic−a(Y)×Pic−a′(Y) ⊂ TFreep1 (Y)×
TFreep

′
1 (Y), then
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YQ;(p,p′) ×
TFreep1 (Y)×TFreep

′
1 (Y)

(Pic−a(Y)× Pic−a′(Y)) � Pic−a′(Y)× Y(a−a′),

where by Y(b) we denote the scheme that classifies pairs (L, s), where L ∈ Picb(Y)
and s : OY → L is a nonzero section. Note that when Y is a smooth curve, Y(b) is
just the corresponding symmetric power.

Thus from the previous proposition, we have a map

ιa′,a : QMapsa
′
(Y,T;E)× Y(a−a′) → QMapsa(Y,T;E), (2)

and a locally closed embedding ιa′,a :
◦

QMapsa
′
(Y,T;E) × Y(a−a′) → QMapsa(Y,

T;E).
Assume now that Y is smooth. We have the following.

Lemma 1.18. The map ιa′,a : QMapsa
′
(Y,T;E) × Y(a−a′) → QMapsa(Y,T;E)

above is proper and finite. Every geometric point of QMapsa(Y,T;E) belongs to the
image of exactly one ιa′,a .

Proof. The properness assertion follows from the fact that the schemes QMapsa
′
(Y,

T;E) and Y(a−a′) are proper when Y is smooth. The finiteness follows from the fact
that given two line bundles L ⊂ L′ on Y, the scheme classifying line bundles L′′,
squeezed between the two, is finite.

To prove the last assertion, it suffices to observe that if L is a torsion-free sheaf
of generic rank 1 on a smooth variety, embedded into OY ⊗ E, such that the quotient
is torsion-free, then L is a line bundle. ��

The above assertions have an obvious based analogue. The only required mod-
ification is that instead of YQ;(p,p′) (respectively, Y(a−a′)) we need to consider its
open substack corresponding to the condition that L → L′ is an isomorphism in a
neighborhood of our subscheme Y′ (respectively, the section s has no zeroes on Y′).

1.19 Meromorphic quasi-maps

In what follows, we will have to consider the following generalization of the notion
of quasi-map. We will formulate it in the relative situation.

Let Y be a flat projective scheme over a base X, and let Y1 ⊂ Y be a relative
Cartier divisor. Let E be a vector bundle defined over Y−Y1, and T ⊂ P(E) a closed
subscheme.

We define the functor ∞·Y1 QMaps(Y,T;E) on the category of schemes over X,
to assign to a test scheme S the set of pairs (L, κ), where L is a line bundle over
Y×

X
S, and κ is a map of coherent sheaves on (Y− Y1)×

X
S

κ : L|(Y−Y1)×
X
S → E ⊗

OX

OS,

such that for an open dense subset U ⊂ (Y−Y1)×
X
S, over which κ is a bundle map,

the resulting map U → P(E) factors through T.
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Proposition 1.20. The functor ∞·Y1 QMaps(Y,T;E) is representable by a strict ind-
scheme of ind-finite type over X.

Proof. Suppose that Y2 is another relative Cartier divisor containing Y1. We have a
closed embedding of functors ∞·Y1 QMaps(Y,T;E) ↪→∞·Y2 QMaps(Y,T;E).

Therefore, the question of ind-representability being local on X, by enlarging
Y1 we can assume that E is actually trivial; we will denote by the same symbol its
extension to the entire Y.

Let L1 be a line bundle on Y and s : O→ Y be a section such that Y1 is its set of
zeroes. If L1 ∈ Pica1

X (Y), we have a natural closed embedding

QMapsa(Y,T;E)→ QMapsa+a1(Y,T;E),

as in (2), which sends a point (L, κ) ∈ QMapsa(Y,T;E) to (L⊗L−1
1 ,L⊗L−1

1
s−1−→

L
κ−→ E).
It is now easy to see that ∞·Y1 QMaps(Y,T;E) is representable by the inductive

limit lim−→QMapsa+n·a1(Y,T;E). ��

If Y′ ⊂ Y is another closed subscheme, disjoint from Y1, endowed with a sec-
tion σ ′ : Y′ → T, in the same manner we define the corresponding based version
∞·Y1 QMaps(Y,T;E)Y′,σ ′ , which is also a strict ind-scheme of ind-finite type.

1.21

Now let E be a pro-finite-dimensional vector space, i.e., E = lim← Ei . (In the relative

situation, we will assume that E is an inverse limit of vector bundles on Y.)
Let us recall the definition of the scheme P(E) in this case. By definition, for a

test scheme S, a map S → P(E) is a line bundle L on S together with a map S → E

(which by definition means a compatible system of maps S → Ei), such that locally
on S, starting from some index i, the map S → Ei is an injective bundle map.

By construction, P(E) is a union of open subschemes “P(E)−P(ker(E→ Ei )),’’
where each such open is the inverse limit of finite-dimensional schemes P(Ej ) −
P(ker(Ej → Ei )), j ≥ i.

When Y is a projective scheme, the scheme Maps(Y,P(E)) makes sense, and it is
also a union of schemes that are projective limits of schemes of finite type.

The definition of QQMaps(Y,P(E)) proceeds in exactly the same way as when
E is finite dimensional. Namely, for a test scheme Hom(S,QQMaps(Y,P(E)) is the
set of pairs σ = (L, κ), where L a coherent sheaf of generic rank 1 on Y× S, and κ

is a compatible system of maps L→ OY×S⊗Ei , such that for every geometric point
s ∈ S starting from some index i the map Ls → OY ⊗ Ei is injective.

It is easy to show that QQMaps(Y,P(E)) is a union of open subschemes, each of
which is a projective limit of schemes of finite type. However, QQMaps(Y,P(E))
itself is generally not of finite type.

If now T is a closed subscheme on P(E), we define QQMaps(Y,T;E) as the cor-
responding closed subscheme of QQMaps(Y,P(E)). As before, the open subscheme
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QMaps(Y,T;E) ⊂ QQMaps(Y,T;E) is defined by the condition that L is a line
bundle.

The following easily follows from Lemma 1.9 and Section 1.11. Let T be a pro-
jective scheme of finite type embedded into P(E), where E is a pro-finite-dimensional
vector space. Set P := O(1)T .

Lemma 1.22. We have a natural closed embedding QMaps(Y,T;P) → QMaps(Y,
P(E)).

2 Quasi-maps into flag schemes and Zastava spaces

In this section g will be an arbitrary Kac–Moody algebra. Below we list some facts
related to the flag scheme (and certain partial flag schemes) attached to g. These facts
are established in [Ka] when g is symmetrizable, but according to [Ka1], they hold in
general. In the main body of the paper we will only need the cases when g is either
finite dimensional or nontwisted affine.

2.1

We will work in the following setup:
Let A = (Aij )i,j∈I be a finite Cartan matrix. We fix a root datum, that is,

two finitely generated free abelian groups �, �̌ with a perfect bilinear pairing 〈, 〉 :
�×�̌→ Z, and embeddings I ⊂ �̌, i 
→ α̌i (simple roots), I ⊂ �, i 
→ αi (simple
coroots) such that 〈αi, α̌j 〉 = Aij .

We also assume that the subsets I ⊂ �, I ⊂ �̌ are both linearly independent, and
that the subgroup of � generated by αi is saturated (i.e., the quotient is torsion-free).
In the finite type case, the latter condition is equivalent to the fact that our root datum
is simply connected.

We denote by g(A) = g (for short) the completed Kac–Moody Lie algebra as-
sociated to the above datum (see [Ka, 3.2]). In particular, the Cartan subalgebra h
identifies with � ⊗

Z
C. Sometimes we will denote the corresponding root datum by

�g, �̌g to stress the relation with g.
The semigroup of dominant coweights (respectively, weights) will be denoted by

�+g ⊂ �g (respectively, �̌+g ⊂ �̌g). We say that λ ≤ µ if µ − λ is an integral
nonnegative linear combination of simple coroots αi , i ∈ I . The semigroup of
coweights λ, which are ≥ 0 in this sense will be denoted �

pos
g .

To a dominant weight λ̌ ∈ �̌+g , one attaches the integrable g-module, denoted

V
λ̌
, with a fixed highest-weight vector v

λ̌
∈ V

λ̌
. For a pair of weights λ̌1, λ̌2 ∈ �̌+g ,

there is a canonical map V
λ̌1+λ̌2

→ V
λ̌1
⊗ V

λ̌2
that sends v

λ̌1+λ̌2
to v

λ̌1
⊗ v

λ̌2
.

The Lie algebra g has a triangular decomposition g = n⊕h⊕n− (here n is a pro-
finite-dimensional vector space), and we have standard Borel subalgebras b = n⊕h,
b− = h⊕ n−.
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If p ⊂ g is a standard parabolic, we will denote by n(p) ⊂ n its unipotent
radical, by p− ⊂ g (respectively, n(p−) ⊂ n−) the corresponding opposite parabolic
(respectively, its unipotent radical), and by m(p) := p∩p− (or just m) the Levi factor.
We will write n(m) (respectively, n−(m)) for the intersections m ∩ n and m ∩ n−,
respectively.

If i is an element of I , we will denote the corresponding subminimal parabolic
by pi , and by p−i , ni := n(pi ), n−i := n(p−i ), mi , respectively, the corresponding
associated subalgebras. For a standard Levi subalgebra m, we will write that i ∈ m
if the corresponding simple root α̌i belongs to n(m).

From now on we will only work with parabolics corresponding to subdiagrams
of I of finite type. In particular, the Levi subalgebra m is finite dimensional, and
there exists a canonically defined reductive group M , such that m is its Lie algebra.
(When p = b, the corresponding Levi subalgebra is the Cartan torus T , whose set
of cocharacters is our lattice �g.) By the assumption on the root datum, the derived
group of M is simply connected.

We will denote by �g,p the quotient of � = �g by the subgroup generated by
Span(αi, i ∈ m). In other words, �g,p is the group of cocharacters of M/[M,M].
By �

pos
g,p we will denote the subsemigroup of �g,p equal to the positive span of the

images of αi ∈ �g � �g,p for i /∈ m.
In addition, there exists a pro-algebraic groupP , with Lie algebrap, which projects

onto M , and the kernel N(P ) is pro-unipotent.
The entire group G associated to the Lie algebra g, along with its subgroup

P−, exists as a group ind-scheme. Of course, if g is finite dimensional, G is the
corresponding reductive group. In the untwisted affine case, i.e., for gaff = g((x))⊕
K ·C⊕ d ·C being the affinization of a finite-dimensional simple g (cf. Section 3.7),
the corresponding group ind-scheme is Gaff := Ĝ × Gm, where Ĝ is the canonical
central extension 1 → Gm → Ĝ → G((x)) → 1 of the loop group ind-scheme
G((x)), corresponding to the minimal adg-invariant scalar product on g, such that
the induced bilinear form on �g is integral-valued.

2.2 Kashiwara’s flag schemes

Let p ⊂ g be a standard parabolic, corresponding to a subdiagram of I of finite type.
Following Kashiwara (cf. [Ka]), one defines the (partial) flag schemes Gg,p, equipped
with the action of G. Each Gg,p has a unit point 1Gg,p , and its stabilizer in G equals
P−, so that Gg,p should be thought of as the quotient “G/P−.’’

The scheme Gg,p comes equipped with a closed embedding (called the Plücker
embedding)

Gg,p ↪→
∏

P(V∗
λ̌
),

where the product is being taken over �̌+g,p := �̌+g ∩ �̌g,p ⊂ �̌g, and where each
V∗
λ̌

is the pro-finite-dimensional vector space dual to the integrable module V
λ̌
. The

subscheme Gg,p ↪→∏
P(V∗

λ̌
) is cut out by the so-called Plücker equations.

A collection of lines (

λ̌
⊂ V∗

λ̌
)
λ̌∈�̌+g,p satisfies the Plücker equations if
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(a) for the canonical morphism V
λ̌1+λ̌2

→ V
λ̌1
⊗V

λ̌2
, the map V∗

λ̌1
⊗̂V∗

λ̌2
→ V∗

λ̌1+λ̌2
sends 


λ̌1
⊗ 


λ̌2
to 


λ̌1+λ̌2
;

(b) for any g-morphism Vµ̌ → V
λ̌1
⊗V

λ̌2
with µ̌ �= λ̌1+λ̌2, the map V∗

λ̌1
⊗̂V∗

λ̌2
→ V∗

µ̌

sends 

λ̌1
⊗ 


λ̌2
to 0.

The point 1Gg,p corresponds to the system of lines (
0
λ̌
⊂ V∗

λ̌
), where 
0

λ̌
= (V∗

λ̌
)n− .

The inverse image of the line bundle O(1) on P(V∗
λ̌
) is the line bundle on Gg,p

denoted by Pλ̌
g,p. We have �(G,Pλ̌

g,p) = Vλ.
The orbits of the action of the pro-algebraic group N(P ) on Gg,p are parametrized

by the double-quotient Wm\Wg/Wm, where Wg and Wm are the Weyl groups of
g and m, respectively. For w ∈ Wm\Wg/Wm, we will denote by Gg,p,w the cor-
responding orbit (in our normalization, the unit point 1Gg,p belongs to Gg,p,e, where

e ∈ Wg is the unit element). By Gg,p,w we will denote the closure of Gg,p,w (e.g.,
Gg,p,e equals the entire Gg,p), and by Gw

g,p the open subscheme equal to union of
orbits with parameters w′ ≤ w in the sense of the usual Bruhat order. For each
w ∈ Wm\Wg/Wm there exists a canonical subgroup N(P )w ⊂ N(P ), of finite
codimension, such that N(P )w acts freely on Gw

g,p with a finite-dimensional quotient.
For every simple reflection si ∈ Wg with αi /∈ m, we have a codimension-1

subscheme Gg,p,si , and its closure Gg,p,si is an effective Cartier divisor. The union⋃
i

Gg,p,si is called the Schubert divisor and it equals the complement Gg,p − Ge
g,p.

Consider the affine cone C(Gg,p) over Gg,p corresponding to the Plücker embed-
ding. This is a closed subscheme of

∏
λ̌∈�̌+g,p

V∗
λ̌

consisting of collections of vectors

(u
λ̌
⊂ V∗

λ̌
)
λ̌∈�̌+g,p satisfying the Plücker equations:

(a) For the canonical morphism V
λ̌1+λ̌2

→ V
λ̌1
⊗V

λ̌2
, the map V∗

λ̌1
⊗̂V∗

λ̌2
→ V∗

λ̌1+λ̌2
sends u

λ̌1
⊗ u

λ̌2
to u

λ̌1+λ̌2
.

(b) For anyg-morphismVµ̌ → V
λ̌1
⊗V

λ̌2
with µ̌ �= λ̌1+λ̌2, the mapV∗

λ̌1
⊗̂V∗

λ̌2
→ V∗

µ̌

sends u
λ̌1
⊗ u

λ̌2
to 0.

We have a natural action of the torus M/[M,M] on C(Gg,p). Let
◦
C(Gg,p) be

the open subset corresponding to the condition that all u
λ̌
�= 0. Then

◦
C(Gg,p) is a

principal M/[M,M]-bundle over Gg,p.

2.3 Quasi-maps into flag schemes

Let C be a smooth projective curve, with a marked point∞C ∈ C, called “infinity.’’

We will denote by
◦
C the complement C−∞C.

We will use a shorthand notation QMaps(C,Gg,p) for the scheme of based quasi-
maps QMaps(C,Gg,p;Vλ̌

, λ̌ ∈ �̌+g,p)∞C,σconst , where σconst : ∞C → Gg,p is the
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constant map corresponding to 1Gg,p ∈ Gg,p. In other words, QMaps(C,Gg,p) clas-
sifies based maps from C to the stack C(Gg,p)/(M/[M,M]). By Maps(C,Gg,p) we
will denote the open subscheme of maps.

The scheme QMaps(C,Gg,p) splits as a disjoint union according the degree, which
in our case is given by elements θ ∈ �

pos
g,p.

For a fixed parameter θ as above, let
◦
Cθ be the corresponding partially sym-

metrized power of
◦
C. In other words, a point of

◦
Cθ assigns to every λ̌ ∈ �̌+g,p an

element of the usual symmetric power
◦
C(n), where n = 〈θ, λ̌〉, and this assignment

must be linear in λ̌ in a natural sense. Explicitly, if θ = �
i∈Ini · αi , for i /∈ m, then

◦
Cθ � ∏

i∈I

◦
C(ni ).

From Section 1.16, we obtain that for each θ ′, θ−θ ′ ∈ �
pos
g,p, we have a finite map

ιθ ′ : QMapsθ−θ ′(C,Gg,p)×
◦
Cθ ′ → QMapsθ (C,Gg,p), (3)

such that the corresponding map

ιθ ′ : Mapsθ−θ ′(C,Gg,p)×
◦
Cθ ′ → QMapsθ (C,Gg,p)

is a locally closed embedding. Moreover, the images of ιθ ′ define a decomposition
of QMapsθ (C,Gg,p) into locally closed pieces. We will denote the embedding of the

deepest stratum
◦
Cθ → QMapsθ (C,Gg,p) by sθp.

Given a quasi-map σ ∈ QMapsθ (C,Gg,p) which is the image of

(σ ′ ∈ QMapsθ−θ ′(C,Gg,p), θk · ck ∈
◦
Cθ ′),

we will say that (a) the defect of σ is concentrated in ∪
k

ck , (b) the defect of σ at ck

equals θk , (c) the total defect equals θ ′, and (d) σ ′ is the saturation of σ . Sometimes,
we will assemble statements (a)–(c) into one by saying that the defect of σ is the

colored divisor �
k
θk · ck ∈

◦
Cθ ′ .

2.4 The finite-dimensional case

Assume for a moment that g is finite dimensional. Let BunG(C) (respectively,
BunG(C,∞C)) denote the stack of G-bundles on C (respectively, G-bundles trivial-
ized at∞C).

We can consider a relative situation over BunG(C) (respectively, over BunG(C,

∞C)), when one takes maps or quasi-maps (respectively, based maps or quasi-maps)

from C to FG

G×Gg,p, where FG is a point of BunG(C) (respectively, BunG(C,∞C)).
The corresponding stacks of maps identify, respectively, with the stack BunP−(C)

of P−-bundles on C, and BunP−(C,∞C)–the stack P−-bundles on C trivialized
at∞C.
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In the nonbased case, the stack of relative quasi-maps is denoted by BunP−(C),
and it was studied in [BG1] and [BFGM]. The corresponding stack of relative based
quasi-maps will be denoted by BunP−(C,∞C).

2.5 Some properties of quasi-map spaces

Let ν ∈ �g be a coweight space of quasi-maps such that 〈ν, α̌i〉 = 0 for i ∈ m,
and 〈ν, α̌i〉 > 0 if i /∈ m. Consider the corresponding 1-parameter subgroup
Gm → T . Since the point 1Gg,p is T -stable, we obtain a Gm-action on the scheme
QMapsθ (C,Gg,p).

In what follows, if a group Gm acts on a scheme Y, we will say that the action
contracts Y to a subscheme Y′ ⊂ Y, if: (a) the action on Y′ is trivial, and (b) the action
map extends to a morphism A1 × Y→ Y, such that 0× Y is mapped to Y′.

Proposition 2.6. The above Gm-action contracts QMapsθ (C,Gg,p) to
◦
Cθ

sθp⊂
QMapsθ (C,Gg,p).

Proof. The above T -action on QMapsθ (C,Gg,p) corresponds to an action of T on
the cone C(Gp,g) that takes a collection of vectors (u

λ̌
∈ V∗

λ̌
)
λ̌∈�̌+g,p to λ̌(t) · t · u

λ̌
,

where t · u denotes the T -action on the representation V∗
λ̌
.

It is clear now that a 1-parameter subgroup corresponding to ν as in the proposition
contracts each V∗

λ̌
to the line 
0

λ̌
.

Moreover, the subscheme of quasi-maps which map C to (
0
λ̌
)
λ̌∈�̌+g,p ⊂ C(Gp,g)

coincides with sp(
◦
Cθ ). ��

Proposition 2.7. The scheme Mapsθ (C,Gg,p) is a union of open subschemes of finite
type.

Remark. One can prove that the scheme Mapsθ (C,Gg,b) is in fact globally of finite
type, at least when g is symmetrizable (cf. the appendix), but the proof is more in-
volved. Of course, when g is finite dimensional, this is obvious. When g is (untwisted)
affine, another proof will be given in the next section, using a modular interpretation
of Gg,b via bundles on the projective line.

Proof. Let us first remark that if Y and T are projective schemes, and T0 ⊂ T is an
open subscheme, the subfunctor of Maps(Y,T) consisting of maps landing in T0 is
in fact an open subscheme.

For an element w ∈ Wm\W/Wm, let Mapsθ (C,Gw
g,p) be the open subset in

Mapsθ (C,Gg,p) of maps that land in the open subset Gw
g,p ⊂ Gg,p. Evidently,

Mapsθ (C,Gg,p) � ∪
w

Mapsθ (C,Gw
g,p). We claim that each Mapsθ (C,Gw

g,p) is of

finite type.
Recall that the subgroup N(P )w ⊂ N(P ) acts freely on Gw

g,p and that the quotient
Gw

g,p/N(P )w is a quasi-projective scheme of finite type. Hence the scheme (of based
maps) Maps(C,Gw

g,p/N(P )w) is of finite type.
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We now claim that the natural projection map

Mapsθ (C,Gw
g,p)→ Maps(C,Gw

g,p)/N(P )w

is a closed embedding. (We will show, moreover, that this map is actually an isomor-
phism if C is of genus 0.)

First, let us show that this map is injective on the level of S-points for any S.
Let σ1, σ2 be two based maps C × S → Gw

g,p which project to the same map to
Gw

g,p/N(P )w. Then by definition we obtain a map σ̃ : C × S → N(P )w with
σ̃ |∞C×S ≡ 1. Since C is projective and N(P )w is an inverse limit of groups which
are extensions of Ga , we obtain that σ̃ ≡ 1.

Now let us show that the map Mapsθ (C,Gw
g,p) → Maps(C,Gw

g,p)/N(P )w is
proper by checking the valuative criterion.

Let σ ′ be a based map C× X → Gw
g,p/N(P )w, where X is an affine curve such

that the restriction σ ′|C×(X−0X) lifts to a map to Gw
g,p. Let us filter N(P )w by normal

subgroupsN(P )w = N0 ⊃ N1 ⊃ . . . with associated graded quotients isomorphic to
the additive group Ga . Set σ ′0 = σ ′, and assume that we have found a lifting of σ ′ to a
based map σ ′i : C×X → Gw

g,p/Ni . Then the obstruction to lifting it to the next level
lies in H 1(C×X,O(−∞C)�OX). Since X is affine, the latter group is isomorphic to
the space of H 1(C,O(−∞C))-valued functions on X. By assumption, the function
corresponding to the obstruction class vanishes on the open subset X−0X; therefore,
it vanishes.

Note that when C is of genus 0, and for an arbitrary affine base S, the same
argument shows that any based map σ ′ : C × S → Gw

g,p/N(P )w lifts to a map
C× X → Gw

g,p, because in this case H 1(C,O(−∞C)) = 0. ��
Let p ⊂ p′ be a pair of standard parabolics, and set p(m′) = m′ ∩ p to be the

corresponding parabolic in m′. Note that we have an exact sequence

0 → �m′,p(m′) → �g,p → �g,p′ → 0.

Lemma 2.8. We have a natural map QMapsθ (C,Gg,p)→ QMapsθ
′
(C,Gg,p′), where

θ ′ is the image of θ under the above map of lattices. If θ ′ = 0, there is an isomorphism
QMapsθ (C,Gg,p) � QMapsθ (C,Gm′,p(m′)).

Proof. The existence of the map QMapsθ (C,Gg,p)→ QMapsθ
′
(C,Gg,p′) is imme-

diate from the definitions.
Note that if θ ′ = 0, QMapsθ

′
(C,Gg,p′) is a point-scheme that corresponds to the

constant map C → 1Gg,p′ ∈ Gg,p′ . Note also that the preimage of 1Gg,p′ in Gg,p

identifies naturally with Gm′,m′(p). In particular, for θ as above, we have a closed
embedding QMapsθ (C,Gm′,p(m′))→ QMapsθ (C,Gg,p).

To see that it is an isomorphism, note that for any σ ∈ QMapsθ (C,Gg,p) there
exists an open dense subset U ⊂ C×S such that the map σ |U projects to the constant
map U → Gg,p′ , and hence has its image in Gm′,p(m′). But this implies that σ itself
is a quasi-map into Gm′,p(m′). ��
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Assume for example that p = b and that µ ∈ �
pos
g = �

pos
g,b equals αi for some

i /∈ m. By putting p′ = pi , from the previous lemma we obtain that the space
QMapsθ (C,Gg,b) in this case identifies with the space of based quasi-maps C → P1

of degree 1. In particular, it is empty unless C is of genus 0, and for C � P1, it is
isomorphic to A2.

Note that we have a natural map Maps(C,Gg,p)→ BunM(C,∞C). Indeed, for
a based map C×S → Gg,p we define an M-bundle on C×S by taking the Cartesian
product

(C× S) ×
Gg,p

◦
G̃g,p,

where
◦
G̃g,p is as in Section 2.29.

The corresponding schemes Maps(C,Gg,p) and Maps(C,Gg,p′) are related in the
following explicit way:

Let P−(M ′) be the parabolic in M ′ corresponding to p−(m′). Let BunM ′(C,∞C)

be the stack as in Section 2.4, and let BunP−(M ′)(C,∞C) ⊂ BunP−(M ′)(C,∞C)

be the corresponding stacks of P−(M ′)-bundles and generalized P−(M ′)-bundles,
respectively.

The following is straightforward from the definitions.

Lemma 2.9. There exists an open embedding

Maps(C,Gg,p′) ×
BunM′ (C,∞C)

BunP−(M ′)(C,∞C) ↪→ QMaps(C,Gg,p),

whose image is the union of Im(ιθ ′) over θ ′ ∈ �
pos
m′,p(m′). Moreover, the map

Maps(C,Gg,p′) ×
BunM′ (C,∞C)

BunP−(M ′)(C,∞C) ↪→ Maps(C,Gg,p)

is an isomorphism.

For p = b and a vertex i ∈ I , let us denote by ∂(QMaps(C,Gg,b))i the locally
closed subset equal to Im(ιαi ).

The above lemma combined with Proposition 2.7 yields the following.

Corollary 2.10. The open subscheme Maps(C,Gg,b)
⋃
( ∪
i∈I∂(QMaps(C,Gg,b))i) is

(locally) of finite type.

2.11 Projection to the configuration space

We claim that there exists a canonical map �θ
p : QMapsθ (C,Gg,p)→

◦
Cθ . Indeed, let

σ be an S-point of QMapsθ (C,Gg,p), i.e., for every λ̌ ∈ �̌+g,p we have a line bundle

Lλ̌ on C×S and a map κλ̌ : Lλ̌ → OC×S⊗V∗
λ̌
. Recall that the choice of the standard

parabolic p defines a highest-weight vector in V
λ̌
; hence by composing κλ̌ with the
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corresponding map OC×S ⊗ V∗
λ̌
→ OC×S , we obtain a map Lλ̌ → O, i.e., a point of

C(〈θ,λ̌〉). The obtained divisor avoids ∞C because the composition 
0
λ̌
→ V∗

λ̌
→ C

is nonzero.
The above construction of �θ

p can be alternatively viewed as follows. Recall the
coneC(Gg,p), and observe that for each vertex i ∈ I with i /∈ m, we have a function on
C(Gg,p) corresponding to the map Vω̌i

→ C, where ω̌i is the fundamental weight. Let
us denote by C(Gg,p,si ) the corresponding Cartier divisor. Note that the intersection
◦
C(Gg,p) ∩ C(Gg,p,si ) is the preimage of the Cartier divisor Gg,p,si ⊂ Gg,p.

An S-point of QMapsθ (C,Gg,p) is a map σ : C × S → C(Gg,p)/(M/[M,M]),
and by pulling back C(Gg,p,si ), we obtain a Cartier divisor on C × S, which by the
conditions on σ is in fact a relative Cartier divisor over S, i.e., it gives rise to a map
from S to the suitable symmetric power of C.

Note that the composition of the map sθp and �θ
p is the identity map on

◦
Cθ . More

generally, for θ ′ ∈ �
pos
g,p, the composition

�θ
p ◦ ιθ ′ : QMapsθ−θ ′(C,Gg,p)×

◦
Cθ ′ → ◦

Cθ (4)

covers the addition map
◦
Cθ−θ ′ × ◦

Cθ ′ → ◦
Cθ .

2.12 Zastava spaces

We will introduce twisted versions of the schemes QMapsθ (C,Gg,p), called Zastava
spaces Zθ

g,p(C); cf. [BFGM]. We will first define Zθ
g,p(C) as a functor, and later

show that it is representable by a scheme.
Let C be a smooth curve (not necessarily complete). An S-point of Zθ

g,p(C) is
given by data (Dθ ,FN(P ), κ), where we have the following:

• Dθ is an S-point of Cθ . In particular, we obtain a principal M/[M,M]-bundle
FM/[M,M] on C × S, such that for every λ̌ ∈ �̌g,p the associated line bundle

denoted Lλ̌
FM/[M,M] equals OC×S(−λ̌(Dθ )).

• FN(P ) is a principal N(P )-bundle on C × S. Note that this makes sense, since
N(P ) is a pro-algebraic group. In particular, for everyN(P )-integrable g-module
V, we can form a pro-vector bundle (V∗)FN(P )

on C × S. If v ∈ V is an N(P )-
invariant vector, it gives rise to a map (V∗)FN(P )

→ OC×S .

• κ is a system of maps κλ̌ : Lλ̌
FM/[M,M] → (V∗

λ̌
)FN(P )

which satisfy the Plücker

relations, and such that the composition of κλ̌ and the projection (V∗
λ̌
)FN(P )

→
OC×S corresponding to the highest-weight vector v

λ̌
∈ V

λ̌
is the tautological map

OC×S(−λ̌(Dθ ))→ OC×S .

We will denote by
◦
Zθ

g,p(C) the open subfunctor in Zθ
g,p(C) corresponding to the

condition that the κλ̌s are injective bundle maps.
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Another way to spell out the definition of Zθ
g,p(C) is as follows: Let us consider

the quotient N(P )\C(Gg,p)/(M/[M,M]). This is a nonalgebraic stack (i.e., all the
axioms, except for the one about covering by a scheme, hold). It contains as an open
substack N(P )\Ge

g,p � pt , and the Cartier divisors N(P )\C(Gg,p,si )/(M/[M,M])
for i ∈ I .

It is easy to see that an S-point of Zθ
g,p(C) is the same as a map

C× S → N(P )\C(Gg,p)/(M/[M,M]),
such that for every geometric point s ∈ S, the map

C � C× s → N(P )\C(Gg,p)/(M/[M,M])
sends the generic point of C to N(P )\Ge

g,p � pt , and the intersection

C ∩ (N(P )\C(Gg,p,si )/M/[M,M])
is a divisor of degree 〈θ, ω̌i〉 on C.

From this description of Zθ
g,p(C), we obtain the following.

Lemma 2.13. For an S-point (Dθ ,FN(P ), κ) of Zθ
g,p(C), the N(P )-bundle FN(P )

admits a canonical trivialization away from the support of Dθ . Moreover, in terms of

this trivialization, over this open subset the maps κλ̌ are constant maps corresponding
to v

λ̌
∈ 
0

λ̌
⊂ V∗

λ̌
.

For the proof it suffices to observe that for a map C × S → N(P )\C(Gg,p)/

(M/[M,M]), the open subset C × S − supp(Dθ ) is exactly the preimage of pt =
N(P )\Ge

g,p.
Let us now consider the following setup, suggested in this generality by Drinfeld.

Let T be a (not necessarily algebraic) stack, which contains an open substack T0

isomorphic to pt . Let S be a scheme, embedded as an open subscheme into a scheme
S1, and let σ : S → T be a map such that σ−1(T − T0) is closed in S1.

Lemma 2.14. There is a canonical bijection between the set of maps σ as above and
the set of maps σ1 : S1 → T such that σ−1

1 (T − T0) is contained in S.

Proof. Of course, starting from σ1, we get the corresponding σ by restriction to S.
Conversely, for σ : Y × S → T as above, consider the two open subsets S and

S1 − (σ−1(T − T0)), which cover S1.
By setting σ1|S = σ , σ1|S1−(σ−1(T−T0)) to be the constant map to pt = T0, we

have gluing data for σ1. ��
We apply this lemma in the following situation.

Corollary 2.15. Let C → C1 be an open embedding of curves. We have an isomor-
phism

Zθ
g,p(C) � Zθ

g,p(C1) ×
Cθ

1

Cθ .

The proof follows from the fact that for an S-point of Zθ
g,p(C), the support of

the colored divisor Dθ , which is the same as the preimage of N(P )\(C(Gg,p))/

(M/[M,M])− pt , is finite over S.



44 Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory

2.16 Factorization principle

Let pt = T0 ⊂ T be an embedding of stacks as before, and suppose now that the
complement T − T0 is a union of Cartier divisors Ti , for i belonging to some set of
indices I .

For a set of nonnegative integers n = ni, i ∈ I , consider the functor Mapsn(C,T)

that assigns to a scheme S the set of maps

σ : C× S → T,

such that each σ−1(Ti ) ⊂ C×S is a relative (over S) Cartier divisor of degree ni . It is
easy to see that Mapsn(C,T) is a sheaf in the faithfully flat topology on the category
of schemes.1

By construction, we have a map (of functors) Mapsn(C,T) → ∏
i∈I

C(ni ). The

following factorization principle is due to Drinfeld.

Proposition 2.17. Let ni = n′i + n′′i be a decomposition, and let(∏
i∈I

C(n′i ) ×
∏
i∈I

C(n′′i )
)

disj

be the open subset corresponding to the condition that the divisors D′i ∈ C(n′i ) and

D′′i ∈ C(n′′i ) have disjoint supports. We have a canonical isomorphism

Mapsn(C,T) ×∏
i∈I

C(ni )

(∏
i∈I

C(n′i ) ×
∏
i∈I

C(n′′i )
)

disj

� (Mapsn
′
(C,T)×Mapsn

′′
(C,T)) ×∏

i∈I
C(n′

i
)×∏

i∈I
C(n′′

i
)

(∏
i∈I

C(n′i ) ×
∏
i∈I

C(n′′i )
)

disj

.

Proof. Given an S-point (σ,D′,D′′) of

Mapsn(C,T) ×∏
i∈I

C(ni )

(∏
i∈I

C(n′i ) ×
∏
i∈I

C(n′′i )
)

disj

we produce the S-points σ ′ and σ ′′ of Mapsn
′
(C,T) and Mapsn

′′
(C,T) as follows:

As a map C×S → T, σ ′ is set to be equal toσ on the open subset C×S−supp(D′′),
and to the constant map C × S → T0 = pt on the open subset C × S − supp(D′).
By assumption, this gives well-defined gluing data for σ ′. The map σ ′′ is defined by
interchanging the roles of ′ and ′′.

1 According to Drinfeld, one can formulate a general hypothesis on T, under which the functor
Mapsn(C,T) is representable by a scheme.
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Conversely, given σ ′ and σ ′′, with the corresponding colored divisors D′ and D′′,
respectively, we define σ as follows. On the open subset C× S − supp(D′′), σ is set
to be equal to σ ′, and on the open subset C × S − supp(D′), σ is set to be equal to
σ ′′. Since σ ′ and σ ′′ agree on C×S− supp(D′ +D′′), this gives well-defined gluing
data for σ . ��

The above proposition admits the following generalization. Let p : C̃ → C be
an étale cover. Let C̃(n)

disj ⊂ C̃(n) be the open subset that consists of divisors D̃ on C̃

such that the divisor p∗(p∗(D̃))− D̃ is disjoint from D̃.
Essentially the same proof gives the following.

Proposition 2.18. There is a canonical isomorphism

Mapsn(C,T) ×∏
i∈I

C(ni )

∏
i∈I

C̃(ni )
disj � Mapsn(C̃,T) ×∏

i∈I
C̃(ni )

∏
i∈I

C̃(ni )
disj .

As an application, we take T = N(P )\(C(Gg,p))/(M/[M,M]), and we obtain
the following factorization property of the Zastava spaces.

Proposition 2.19. For an étale map p : C̃ → C, we have a canonical isomorphism

Zθ
g,p(C) ×

Cθ
C̃θ

disj � Zθ
g,p(C̃) ×̃

Cθ

C̃θ
disj.

In particular, for θ = θ1 + θ2, we have a canonical isomorphism

Zθ
g,p(C) ×

Cθ
(Cθ1 × Cθ2)disj � (Z

θ1
g,p(C)× Z

θ2
g,p(C)) ×

Cθ1×Cθ2

(Cθ1 × Cθ2)disj.

Moreover, the above isomorphisms preserve the loci
◦
Zθ

g,p(C) ⊂ Zθ
g,p(C),

◦
Zθ

g,p(C̃) ⊂ Zθ
g,p(C̃).

This proposition together with Lemma 2.14 expresses the locality property of the
Zastava spaces Zθ

g,p(C) with respect to C.
Another application of Proposition 2.17 is Proposition 6.6, where T is taken to be

the stack of coherent sheaves of generic rank n on P1 with a trivialization at∞.

2.20 The case of genus 0

Now let C be a projective line, and
◦
C = C−∞C the corresponding affine line.

The following proposition will play a key role in this paper.

Proposition 2.21. The functor represented by QMapsθ (C,Gg,p) is naturally isomor-

phic to Zθ
g,p(

◦
C).
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Proof. By the very definition of Zθ
g,p(

◦
C), the assertion of the proposition amounts to

the following: For an S-point (Dθ ,FN(P ), κ) of Zθ
g,p(

◦
C), the N(P )-bundle FN(P )

on
◦
C× S can be canonically trivialized.
Note that according to Corollary 2.15, FN(P ) extends to a principal N(P )-bundle

on the entire C×S, with a trivialization on∞C×S. But since N(P ) is pro-unipotent,
and C is of genus 0, such a trivialization extends uniquely to C× S.

(Note, however, that this trivialization and the one coming from Lemma 2.13 do
not agree, but they do coincide on∞C × S.) ��
Remark. For a curve of arbitrary genus, it is easy to see that the natural map

QMapsθ (C,Gg,p)→ Zθ
g,p(

◦
C) is a closed embedding.

Indeed, if the N(P )-bundle FN(P ) trivialized at ∞C can be trivialized globally,
this can be done in a unique fashion (since H 0(C,OC(−∞C)) = 0), and the property
that it admits such a trivialization is a closed condition.

As a corollary of Proposition 2.21, we obtain the following statement.

Corollary 2.22. The functor Zθ
g,p(C) is representable by a scheme for any curve C.

The corresponding open subscheme
◦
Zθ

g,p(C) is locally of finite type.

Proof. Using Corollary 2.15 and Proposition 2.19, we reduce the assertions of the
proposition to the case when the curve in question is the projective line. The repre-

sentability now follows from Proposition 2.21. The fact that
◦
Zθ

g,p(C) is of finite type
follows from Proposition 2.7. ��

2.23 Further properties of spaces of maps

In this subsection (until Section 2.29) we will assume that C is of genus 0, and
establish certain properties of the scheme Mapsθ (C,Gg,p). Using Proposition 2.21,

the same assertions will hold for the space
◦
Zθ

g,p(C) on any curve C.
First, note that Proposition 2.21 and Proposition 2.19 yield the following factor-

ization property of QMapsθg,p(C) with respect to the projection �θ
p:

QMapsθg,p(C) ×
Cθ

(Cθ1 × Cθ2)disj

� (QMapsθ1
g,p(C)× QMapsθ2

g,p(C)) ×
Cθ1×Cθ2

(Cθ1 × Cθ2)disj. (5)

Proposition 2.24. The scheme Mapsθ (C,Gg,p) is smooth.

Proof. Let σ : C × S → Gg,p be a based map, where S is an Artinian scheme, and
let S′ ⊃ S be a bigger Artinian scheme. We must show that σ extends to a based map
σ ′ : C× S′ → Gg,p.



Uhlenbeck Spaces via Affine Lie Algebras 47

Since Gg,p is a union of open subschemes, each of which is a projective limit of
smooth schemes under smooth maps, locally on C there is no obstruction to extending
σ . Therefore, by induction on the length of S′, we obtain that the obstruction to the
existence of σ ′ lies in H 1(C, σ ∗(T Gg,p)(−∞C)), where T Gg,p is the tangent sheaf
of Gg,p.

However, the Lie algebra g surjects onto the tangent space to Gg,p at every point.
Therefore, we have a surjection OC ⊗ g � σ ∗(T Gg,p). Hence we have a surjection
on the level of H 1, but H 1(C,OC ⊗ g(−∞C)) � H 1(C,OC(−∞C))⊗ g = 0. ��

Now let p = b, and for an element µ ∈ �
pos
g equal to µ =∑

i

ni · αi let us define

the length of µ as |µ| =∑
ni .

Proposition 2.25. The scheme Mapsµ(C,Gg,b) is connected.

Proof. The proof proceeds by induction on the length of µ. If |µ| = 1, or more
generally, if µ is the image of n · αi for some i ∈ I , the scheme Mapsµ(C,Gg,b) is
isomorphic to the scheme of based maps C → P1 of degree n, and hence is connected.

Letµ be an element of minimal length for which Mapsµ(C,Gg,b) is disconnected.
By what we said above, we can assume that µ is not a multiple of one simple coroot.

By the factorization property, equation (5), and the minimality assumption,
Mapsµ(C,Gg,b) contains a connected component K, which projects under �

µ

b to

the main diagonal �(
◦
C) ⊂ ◦

Cµ. We claim that this leads to a contradiction.
Indeed, by the definition of �µ

b , for any map σ ∈ K there exists a unique point
c ∈ C with σ(c) ∈ Gg,b − Ge

g,b. Let w ∈W be minimal with the property that there
exists σ ∈ K as above such that σ(c) ∈ Gg,b,w.

Ifw is a simple reflection si , thenσ(C) intersects only Gg,b,si , i.e., by the definition
of �µ

b , θ is a multiple of αi , which is impossible.
Hence we can assume that 
(w) > 1, and let w′ be such that w = w′ · si , 
(w′) =


(w)−1. We claim that we will be able to find σ ′ ∈ K such that σ ′(C)∩Gg,b,w′ �= ∅.
Indeed, the group SL2 corresponding to i ∈ I acts on Gg,b, and the corresponding

N−i ⊂ SL2 preserves the point 1Gg,b
. Hence N−i acts on Mapsθ (C,Gg,b), and, being

connected, it preserves the connected component K. However, for any nontrivial
element u ∈ N−i , u(Gg,b,w) ⊂ Gg,b,w′ . Hence if we define σ ′ as u(σ), for the same
point c ∈ C, σ ′(c) ∈ Gg,b,w′ . ��
Remark. For finite-dimensional g the above proposition is not new; see [Th, FFKM,
KiP, Pe]. However, all the proofs avoiding factorization use Kleiman’s theorem on
generic transversality, unavailable in the infinite-dimensional setting.

Corollary 2.26. The dimension of Mapsµ(C,Gg,b) equals 2|µ|.
Proof. Using Proposition 2.25 and Proposition 2.24, we know that Mapsµ(C,Gg,b)

is irreducible. Recall the map �
µ

b : Mapsµ(C,Gg,b) →
◦
Cµ, and consider the open

subset in Mapsµ(C,Gg,b) equal to the preimage of the locus of
◦
Cµ corresponding to

multiplicity-free divisors.
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Using (5), this reduces us to the case when µ is a simple coroot αi , i ∈ I .
But as we have seen before, the scheme Mapsµ(C,Gg,b) in this case is isomorphic
to A2. ��

Note that since the base
◦
Cµ is smooth, from the above corollary it follows that for

any point c ∈ ◦
C every irreducible component of the preimage of the corresponding

point µ · c ∈ ◦
Cµ in Mapsµ(C,Gg,b) is of dimension ≥ |µ|.

The following conjecture will be established in the case when g is of finite and
affine type.

Conjecture 2.27. The projection �
µ

b : Mapsµ(C,Gg,b) →
◦
Cµ is flat. Equivalently,

the preimage of the point µ · c ∈ ◦
Cµ (for any point c ∈ ◦

C) is equidimensional of
dimension |µ|.

For a parabolic p and θ ∈ �
pos
g,p equal to the projection of θ̃ =∑

ni · αi ∈ �
pos
g

with i /∈ m, define |θ | as
∑

ni , and |θ |′ = |θ | − 〈θ̃ , ρ̌M 〉, where ρ̌M is half the sum
of the positive roots of m.

Corollary 2.28. The dimension of Mapsθ (C,Gg,p) equals 2|θ |′.
Proof. Pick an element µ̌ ∈ �

pos
g which projects to θ under �g → �g,p, and which

is sufficiently dominant with respect to m, so that the map Bunµ

B−(M)
(C,∞C) →

BunM(C, c) is smooth.
It is sufficient to show that for any such µ,

dim((Mapsθ (C,Gg,p) ×
BunM(C,c)

Bunµ

B−(M)
(C,∞C))

= 2|θ |′ + rel. dim.(Bunµ

B−(M)
(C,∞C),BunM(C, c)).

However, according to Lemma 2.9 and Corollary 2.26, the left-hand side of
the above expression equals 2|µ|, and rel. dim.(Bunµ

B−(M)
(C,∞C),BunM(C, c))

is readily seen to equal 〈µ, 2ρ̌M 〉. Together, this yields the desired result. ��

2.29 Enhanced quasi-maps

For an element λ̌ ∈ �̌+g , let U
λ̌

denote the corresponding integrable module over the
Levi subalgebra M . Note that each such U

λ̌
can be realized as (V

λ̌
)p− . Therefore,

every map of g-modules Vν̌ → Vµ̌ ⊗ V
λ̌

gives rise to a map Uν̌ → Uµ̌ ⊗ U
λ̌
.

Consider the subscheme

C̃(Gg,p) ⊂
∏
�̌+g

Hom(V
λ̌
,U

λ̌
)

given by the following equations:
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A system of maps ϕ
λ̌
∈ Hom(V

λ̌
,U

λ̌
) belongs to C̃(Gg,p) if, for every ν̌, λ̌, µ̌ ∈

�̌+g and a map Vν̌ → Vµ̌ ⊗ V
λ̌
, the diagram

Vν̌ −−−−→ Vµ̌ ⊗ V
λ̌

ϕν̌

⏐⏐� ϕµ̌⊗ϕ
λ̌

⏐⏐�
Uν̌ −−−−→ Uµ̌ ⊗ U

λ̌

(6)

is commutative.
There is a natural map from C̃(Gg,p) to C(Gg,p) which remembers the data of ϕ

λ̌

for λ̌ ∈ �+g,p. Let
◦
C̃(Gg,p) be the open subscheme of C̃(Gg,p) corresponding to the

condition that all the ϕ
λ̌

are surjections. We have a natural map

◦
C̃(Gg,p)→ Gg,p,

and the former is a principal M-bundle over the latter.
For a (not necessarily complete) curve C, we shall now define a certain scheme

Z̃θ
g,p(C), called the enhanced version of the Zastava space.

By definition, Z̃θ
g,p(C) classifies quadruples (Dθ ,FN(P ),FM, κ), where

• (Dθ ,FN(P )) are as in the definition of Zθ
g,p(C),

• FM is a principal M-bundle on C, such that the induced M/[M,M]-bundle
FM/[M,M] is identified with the one coming from Dθ ,

• κ is a system of generically surjective maps

κλ̌ : (V
λ̌
)FN(P )

→ (U
λ̌
)FM

, λ̌ ∈ �̌+g ,

such that

• the κλ̌s satisfy the Plücker relations (cf. equation (6)) and
• for λ̌ ∈ �̌+g,p, the composition

OC → (V
λ̌
)FN(P )

κλ̌−→ Lλ̌
FM/[M,M]

equals the tautological embedding OC → O(λ̌(Dθ )).

The proof that Z̃θ
g,p(C) is indeed representable by a scheme is given below.

One can reformulate the definition of Z̃θ
g,p(C) as follows: it classifies maps from C

to the stackN(P )\C̃(Gg,p)/M which send the generic point of C toN(P )\Ge
g,p � pt .

From this it is easy to see that the analogues of Lemma 2.13, Corollary 2.14, and
Proposition 2.19 hold. In particular, for an S-point of Z̃θ

g,p(C), on the open subset
C× S −Dθ the bundles FN(P ) and FM admit canonical trivializations, such that the

maps κλ̌ become the projections OC ⊗ V
λ̌
→ OC ⊗ U

λ̌
.

If C is a complete curve with a marked point∞C, we define the scheme of based

enhanced quasi-maps Q̃Mapsθ (C,Gg,p) as
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Z̃θ
g,p(C) ×

Zθ
g,p(C)

QMapsθ (C,Gg,p).

In other words, Q̃Mapsθ (C,Gg,p) classifies maps from C to the stack C̃(Gg,p)/M

which send a neighborhood of ∞C to
◦
C̃(Gg,p)/M � Gg,p, and such that ∞C gets

sent to 1Gg,p ∈ Gg,p.
Just as in Proposition 2.21, when C is of genus 0 we have an isomorphism between

Z̃θ
g,p(

◦
C) and Q̃Mapsθ (C,Gg,p), and in general the latter is a closed subscheme of the

former.
When g is finite dimensional, we introduce the corresponding (relative over

BunG(C,∞C)) version of Q̃Mapsθ (C,Gg,p), denoted B̃unP−(C,∞C).

2.30

To formulate the next assertion, we need to recall some notation related to affine
Grassmannians.

If M is a reductive group and C a curve, we will denote by GrM,C the correspond-
ing affine Grassmannian. By definition, this is an ind-scheme classifying triples
(c,FM, β), where c is a point of C, FM is an M-bundle, and β is a trivialization of
FM on C−c. When the point c is fixed, we will denote the corresponding subscheme
of GrM,C by GrM,c, and sometimes simply by GrM .

More generally, for a ∈ N, we have the Beilinson–Drinfeld version of the affine
Grassmannian, denoted GrBD,a

M,C , which is now an ind-scheme over C(a). For a fixed

divisor D ∈ C(a), we will denote by GrBD,a
M,C,D the fiber of GrBD,a

M,C over D. By
definition, the latter scheme classifies pairs (FM, β), where FM is as before an M-
bundle on C, and β is its trivialization off the support of D.

Assume now that M is realized as the reductive group corresponding to a Levi
subalgebra m ⊂ g, for a Kac–Moody algebra g, and let θ be an element of �+g,p.

We define the (finite-dimensional) scheme Modθ,+
M,C to classify triples (Dθ ,FM, β),

where Dθ is a point of Cθ , FM is a principal M-bundle on C, and β is a trivialization
of FM off the support of Dθ , such that the following conditions hold:

(1) The trivialization given by β of the induced M/[M,M]-bundle FM/[M,M] is

such that Lλ̌
FM/[M,M] � O(λ̌(Dθ )), λ̌ ∈ �+g,p, where Lλ̌

FM/[M,M] is the line bundle

associated with FM/[M,M] and the character λ̌ : M/[M,M] → Gm.
(2) For an integrable g-module V, and the corresponding m-module U := Vn(p), the

(a priori meromorphic) map OC ⊗ U→ UFM
induced by β is regular.

SinceM admits a faithful representation of the form Vn(p), whereV is an integrable
g-module, we obtain that Modθ,+

M,C is indeed finite dimensional.

Let us describe more explicitly the fibers of Modθ,+
M,C over Cθ . For simplicity,

let us take a point in Cθ equal to θ · c, where c is some point of C. Recall that
the entire affine Grassmannian GrM,c is the union of Schubert cells, denoted GrµM,c,
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where µ runs over the set of dominant coweights of M . It is easy to see that the fiber
of Modθ,+

M,C over θ · c, being a closed subscheme in GrM,c, contains (equivalently,
intersects) GrµM,c if and only if the followinng two conditions hold:

(1) The projection of µ under �m = �g → �g,p equals θ .
(2) wM

0 (µ) ∈ �
pos
g , where wM

0 is the longest element of the Weyl group of M .

In particular, for a given θ , there are only finitely many such µ, a fact that follows
alternatively from the above finite-dimensionality statement.

Note that there is a canonical map rp : Z̃θ
g,p(C) → Zθ

g,p(C) which remembers

the data of FM/[M,M], and κλ̌ for λ̌ ∈ �̌+g,p. It is easy to see that rp is an isomorphism

over the open subset
◦
Zθ

g,p(C).

Lemma 2.31. We have a closed embedding (of functors) Z̃θ
g,p(C) → Zθ

g,p(C) ×
Cθ

Modθ,+
M,C.

This lemma implies, in particular, that both Z̃θ
g,p(C) and Q̃Mapsθ (C,Gg,p) are

representable, being closed subfunctors of representable functors.

Proof. For an S-point of Z̃θ
g,p(C), we already know that the corresponding M-bundle

admits a trivialization on C× S −Dθ .
Moreover, if Uλ̌ is an m-module with λ̌ ∈ �̌+g , the corresponding map βλ̌ :

OC ⊗ U
λ̌
→ (U

λ̌
)FM

equals the composition

OC ⊗ U
λ̌
→ OC ⊗ V

λ̌
→ (U

λ̌
)FM

, (7)

where the first arrow comes from the embedding U
λ̌
� (V

λ̌
)n(p) ↪→ V

λ̌
.

This proves that FM with its trivialization indeed defines a point of Modθ,+
M,C.

Conversely, given a point of Zθ
g,p(C), and anM-bundle FM trivialized on C×S−

Dθ , from Lemma 2.13 we obtain that there is a meromorphic map κλ̌ : OC ⊗ V
λ̌
→

(U
λ̌
)FM

. Our data defines a point of Z̃θ
g,p(C) if and only if κλ̌ is regular, which is a

closed condition. ��
We will denote by �θ

M the projection Z̃θ
g,p(C)→ Modθ,+

M,C.

2.32

Let us once again assume that C is complete. We will introduce yet two more
versions of Zθ

g,p(C) (denoted Zθ
g,p(C), and Z̃θ

g,p(C), respectively, and called the
twisted Zastava spaces), which will be fibered over the stack BunM(C) classifying
M-bundles on C.

By definition, Z̃θ
g,p(C) classifies the data of (Dθ ,FP ,FM, κ), where (Dθ ,FM)

are as before, FP is a principal P -bundle on C, and κ is a collection of maps
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κλ̌ : (V
λ̌
)FP

→ (U
λ̌
)FM

, λ̌ ∈ �̌+g ,

which are generically surjective and satisfy the Plücker relations, and for λ̌ ∈ �̌+g,p the

compositions Lλ̌
FP
→ (V

λ̌
)FP

→ Lλ̌
FM

induce isomorphisms Lλ̌
FM

� Lλ̌
FP

(λ̌(Dθ )).

The stack Zθ
g,p(C) classifies triples (Dθ ,FP , κ), where (Dθ ,FP ) are as above,

and κ are collections of maps κλ̌ : (V
λ̌
)N(P ) → O(λ̌(Dθ )), defined for λ̌ ∈ �̌+g,p.

The forgetful map Z̃θ
g,p(C)→ Zθ

g,p(C) will be denoted by the same symbol rp.

We have an open substack
◦
Zθ

g,p(C) ⊂ Zθ
g,p(C) that corresponds to the condition

that the maps κλ̌ are surjective. Over it, rp is an isomorphism.
We have a projection, which we will call qp, from both Zθ

g,p(C) and Z̃θ
g,p(C) to

the stack BunM(C) that “remembers’’ the data of the M-bundle F′M := N(P )\FP .
In the case of Z̃θ

g,p(C) we also have the other projection to BunM(C), denoted qp− ,

that “remembers’’ the data of FM . Of course, the preimage of the trivial bundle F0
M ∈

BunM(C) under qp identifies with the schemes Zθ
g,p(C) and Z̃θ

g,p(C), respectively.
It is easy to see that Lemma 2.13, Corollary 2.14, and Proposition 2.19 generalize

to the context of twisted Zastava spaces. In particular, we have the following assertion.

Lemma 2.33. Letφ1, φ2 : S → BunM(C) be two arrows such that the corresponding
M-bundles on C × S are identified over an open subset U ⊂ C × S. In addition
let Dθ be the graph of a map S → Cθ , such that Dθ ⊂ U . Then the two Cartesian
products S ×

BunM(C)×Cθ
Z̃θ

g,p(C), taken with respect to either φ1 or φ2 are naturally

isomorphic, and a similar assertion holds for Zθ
g,p(C).

This lemma implies that Z̃θ
g,p(C) and Zθ

g,p(C) are algebraic stacks, such that the
morphism qp is representable.

As in the case of Zθ
g,p(C), we have a stratification of Zθ

g,p(C) by locally closed

substacks of the form
◦
Zθ−θ ′

g,p (C)×Cθ ′ for θ ′, θ−θ ′ ∈ �
pos
g,p. To describe the preimages

of these strata in Z̃θ
g,p(C) we need to introduce some notation:

Let HM,C be the Hecke stack, i.e., a relative over BunM(C) version of GrM,C,
which classifies quadruples (c,FM,F′M, β), where c is a point of C, FM,F′M are

principal M-bundles on C, and β is an identification FM � F′M |C−c. Let H
BD,a
M,C ,

H
+,θ
M,C be the corresponding relative versions of GrBD,a

M,C and Mod+,θM,C, respectively.

We will denote by
←
h ,
→
h the two projections from any of the stacks HM,C, H

BD,a
M,C or

Mod+,θM,θ to BunM(C) that “remember’’ the data of FM and F′M , respectively.
Note that we have a canonical (convolution) map HM,C ×

BunM(C)×C
HM,C →

HM,C, which sends (c,FM,F′M, β) × (c,F′M,F′′M, β ′) to (c,FM,F′′M, β ′′), where

β ′′ = β ′ ◦β. Similarly, we have a map H
+,θ
M,C ×

BunM(C)
H
+,θ ′
M,C → H

+,θ+θ ′
M,C that covers

the addition map Cθ × Cθ ′ → Cθ+θ ′ .
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As in the case of Zθ
g,p(C), we have a map �θ

M : Z̃θ
g,p(C) → H

+,θ
M,C, such that

the map

Z̃θ
g,p(C) ↪→ Zθ

g,p ×
BunM(C)

H
+,θ
M,C

is a closed embedding, and such that the maps qp, qp− are the compositions of �θ
M

with
←
h and

→
h , respectively.

Proposition 2.34. The preimage of a stratum
◦
Zθ−θ ′

g,p (C)× Cθ ′ in Z̃θ
g,p(C) is isomor-

phic to
◦
Zθ−θ ′

g,p (C) ×
BunM(C)

H
+,θ ′
M,C, where the projections from

◦
Zθ−θ ′

g,p (C) and H
+,θ ′
M,C to

BunM(C) are qp− and
←
h , respectively.

By fixing the P -bundle FP (respectively, the M-bundle N(P )\FP ) to be triv-

ial, we obtain the description of the corresponding strata in Q̃Mapsθ (C,Gg,p) and
Z̃θ

g,p(C), respectively.

Proof. Given a point of Zθ
g,p(C) factoring through

◦
Zθ−θ ′

g,p (C)×Cθ ′ , we have a triple

(FP ,F
1
M, κ):

(V
λ̌
)FP

κθ−→ (U
λ̌
)F1

M
,

where the maps κθ are surjections.
Then it is clear that the scheme of possible FMs with β : FM � F1

M |C−Dθ ′ , such
that the (a priori meromorphic) maps

(V
λ̌
)FP

κθ−→ (U
λ̌
)FM

continue to be regular, identifies with the fiber of H
+,θ ′
M,C over F1

M ∈ BunM(C). ��

We will denote by s̃θp the embedding of the last stratum H
θ,+
M,C → Z̃θ

g,p(C). Note
that in terms of the above proposition, the composition

◦
Zθ−θ ′

g,p (C) ×
BunM(C)

H
+,θ ′
M,C → Z̃θ

g,p(C)
�θM−→ H

+,θ
M,C

equals

◦
Zθ−θ ′

g,p (C) ×
BunM(C)

H
+,θ ′
M,C

�θ−θ ′M ×id−→ H
+,θ−θ ′
M,C ×

BunM(C)
H
+,θ ′
M,C → H

+,θ
M,C.
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2.35 The meromorphic case

Let X be a scheme, and DX ⊂ C×X a relative Cartier divisor disjoint from∞C×X.
We will now develop a notion of a meromorphic quasi-map parallel to Section 1.19.
These will appear in the following two contexts.

First, let g be finite dimensional, and let FG be a principal G-bundle defined on

C × X − DX, trivialized along ∞C × X. Let ∞·DX QMaps(C,FG

G× Gg,p) be the
functor on the category of schemes over X that assigns to a test scheme S the data of

(FM/[M,M], κλ̌, λ̌ ∈ �+g,p), where FM/[M,M] is a principalM/[M,M]-bundle defined

on C× S, and the κλ̌s are maps

Lλ̌
FM/[M,M] |(C×X−DX)×

X
S → (V∗

λ̌
)FG

, (8)

satisfying the Plücker equations, with a prescribed value at ∞C × S corresponding
to the trivialization of FG. The functor ∞·DX QMapsθ (C,Gg,p) is representable by a
strict ind-scheme of ind-finite type, by Proposition 1.20.

Similarly, we define the ind-scheme ∞·DXQ̃Maps(C,FG

G× Gg,p), where instead

of an M/[M,M]-bundle FM/[M,M], we have an M-bundle FM , and the maps κλ̌ :
(V

λ̌
)FG

→ (U
λ̌
)FM

are defined for all λ̌ ∈ �+g and satisfy the Plücker relations in
the sense of (6).

Now let g be arbitrary. We define ∞·DX QMaps(C,Gg,p) to be the ind-scheme

which is the union over ν ∈ �
pos
g,p of schemes classifying the data of (FM/[M,M], κλ̌,

λ̌ ∈ �+g,p), where FM/[M,M] is a principal M/[M,M]-bundle on C× S, and the κλ̌s
are maps

Lλ̌
FM/[M,M](−〈ν, λ̌〉 ·DX|C×S)→ V∗

λ̌
,

satisfying the Plücker relations, with the prescribed value at∞C×S. The ind-scheme

∞·DXQ̃Maps(C,Gg,p) is defined similarly, but where the union goes over ν ∈ �
pos
g .

3 Bundles on P1 × P1

In this section C will be a projective curve of genus 0 with a marked infinity∞C, and
∞X ∈ X will be another such curve. We will be interested in the surface S′ := C×X,
and we will call D′∞ := C×∞X ∪∞C × X ⊂ S′ the divisor at infinity.

Throughout this section g will be a finite-dimensional simple Lie algebra, and G

the corresponding simply connected group.

3.1

Consider the stack BunG(S′,D′∞) that classifies G-bundles on S′ with a trivialization
on D′∞. We will see shortly that BunG(S′,D′∞) is in fact a scheme. We have
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BunG(S′,D′∞) = ∪
a∈N

Buna
G(S

′,D′∞),

where Buna
G(S

′,D′∞) corresponds to G-bundles with second Chern class equal to a.
(It is easy to see that BunG(S′,D′∞) contains no points with negative Chern class.)

Recall now that BunG(X,∞X) denotes the stack classifyingG-bundles on X with
a trivialization at∞X. The stack BunG(X,∞X) contains an open subset correspond-
ing to the trivial bundle, which is isomorphic to pt . Since BunG(X,∞X) is smooth,
the complement BunG(X,∞X) − pt , being of codimension 1, is a Cartier divisor.
That is, we are in the situation of Section 2.16. We will denote the corresponding line
bundle on BunG(X,∞X) by PBunG(X,∞X).

We will use the shorthand notation of Maps(C,BunG(X,∞X)) for the functor
of based maps from C to BunG(X,∞X) that send ∞C to pt ⊂ BunG(X,∞X). By
definition,

Maps(C,BunG(X,∞X)) = ∪
a∈N

Mapsa(C,BunG(X,∞X)),

where each Mapsa(C,BunG(X,∞X) corresponds to maps σ such that
σ ∗(PBunG(X,∞X)) is of degree a. Since PBunG(X,∞X) comes equipped with a sec-

tion, we obtain a map �a
h : Mapsa(C,BunG(X,∞X))→

◦
C(a).

We have an obvious isomorphism of functors:

BunG(S′,D′∞) � Maps(C,BunG(X,∞X)). (9)

The following assertion is left to the reader.

Lemma 3.2. Under the above isomorphism, Buna
G(S

′,D′∞) maps to Mapsa(C,

BunG(X,∞X)).

In particular, we obtain a map �a
h : Buna

G(S
′,D′∞) → ◦

C(a). By interchanging

the roles of X and C, we obtain a map �a
v : Buna

G(S
′,D′∞)→ ◦

X(a).

3.3

Let GG,X denote the “thick’’ Grassmannian corresponding to G and the curve X. In
other words, GG,X is the scheme classifying pairs, (FG, β), where FG is a G-bundle
on X, and β is a trivialization of FG over the formal neighborhood of D∞X of∞X.

As we shall recall later, GG,X is one of the partial flag schemes associated to
the affine Kac–Moody algebra corresponding to g. The unit point 1GG,X is the pair
(F0

G, βtaut ), where F0
G is the trivial bundle and βtaut is its tautological trivialization.

In particular, the scheme of based maps Mapsa(C,GG,X) makes sense. (And we
know from Proposition 2.7 that it is locally of finite type and smooth.)

Moreover, GG,X carries a very ample line bundle that will be denoted by PGG,X ,
which is in fact the pullback of the line bundle PBunG(X,∞X) under the natural pro-
jection PGG,X → BunG(X,∞X). This enables us to define the scheme of based
quasi-maps QMapsa(C,GG,X), studied in the previous section.
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Recall also that over the symmetric power
◦
X(a) we have the ind-scheme GrBD,a

G,X ,

classifying pairs (D,FG, β), where D ∈ ◦
X(a), FG is a G-bundle on X, and β is its

trivialization off the support of D. We have a section
◦
X(a) → GrBD,a

G,X , which also
corresponds to the trivial bundle with a tautological trivialization. We will denote
by Maps(C,GrBD,a

G,X ) the (ind-)scheme of based relative maps C → GrBD,a
G,X . By

definition, this is an ind-scheme over
◦
X(a).

There exists a natural map GrBD,a
G,X → GG,X ×

◦
X(a), which corresponds to the

restriction of the trivialization on X−D to D∞X . It is easy to see that this map is in
fact a closed embedding. Moreover, the restriction PGrBD,a

G,X
of the line bundle PGG,X

to GrBD,a
G,X is relatively very ample. Therefore, we can introduce the ind-scheme of

based quasi-maps QMaps(C,GrBD,a
G,X ).

Proposition 3.4. The natural morphisms

Mapsa(C,GrBD,a
G,X )→ Mapsa(C,GG,X)

→ Mapsa(C,BunG(X,∞X)) � Buna
G(S

′,D′∞)

are all isomorphisms. The resulting map Buna
G(S

′,D′∞)→ ◦
X(a) coincides with the

map �a
v .

Proof. Let us show first that any map S → Buna
G(S

′,D′∞) (for any test scheme S)

lifts to a map S → Maps(C,GrBD,a
G,X ). Indeed, given a G-bundle FG on S′ × S and

using the map �a
v we obtain a divisor Dv ⊂ ◦

X × S, such that FG is trivialized on
C × (X × S − Dv). But this by definition means that we are dealing with a based

map C× S → GrBD,a
G,X , which covers the map S → ◦

X(a) corresponding to Dv .
To prove the proposition it remains to show that if FG is a G-bundle in S × S′

equipped with two trivializations on C×D∞X × S which agree on∞C×D∞X × S,
then these two trivializations coincide.

Indeed, the difference between the trivializations is a map from C×S to the group
of automorphisms of the trivial G-bundle on D∞X . And since C is complete and the
group in question is pro-affine, any such map is constant along the C factor. ��

3.5

Using Proposition 2.24 we obtain that the scheme Buna
G(S

′,D′∞) is smooth. More-

over, we claim that dim(Buna
G(S

′,D′∞)) = 2 · ȟ · a, where ȟ is the dual Coxeter
number. One way to see this is via Corollary 2.28, and another way is as follows:

The tangent space to FG ⊂ Buna
G(S

′,D′∞) at a point corresponding to aG-bundle
FG equals H 1(S′, gFG

(−D′)). Note that the vector bundle corresponding gFG
has

zero first Chern class, and the second Chern class equals 2 · ȟ · a.
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Since points of Buna
G(S

′,D′∞) have no automorphisms, we obtain that H 0(S′,
gFG

(−D′)) = 0, and by Serre duality we obtain that H 2(S′, gFG
(−D′)) �

H 0(S′, g∗FG
(−D′))∗ = 0. Hence the dimension of H 1(S′, gFG

(−D′)) can be calcu-

lated by the Riemann–Roch formula, which yields 2·ȟ·a. Note that this calculation in
fact re-proves that Buna

G(S
′,D′∞) is smooth, since we have shown that all the tangent

spaces have the same dimension.
Let 0X ⊂ X be another point, and let us denote by D′0 ⊂ S′ the divisor C ×

0X. By taking restriction of G-bundles we obtain a map from Buna
G(S

′,D′∞) to
BunG(C,∞C).

Lemma 3.6. The above map Buna
G(S

′,D′∞)→ BunG(C,∞C) is smooth.

Proof. Since both Buna
G(S

′,D′∞) and BunG(C,∞C) are smooth, it suffices to check
the surjectivity of the corresponding map on the level of tangent spaces:

H 1(S′, gFG
(−D′))→ H 1(C, gFG

|D′0(−∞C)).

By the long exact sequence, the cokernel is given byH 2(S′, gFG
(−D′−D′0)), and

we claim that this cohomology group vanishes. Indeed, by Serre duality, it suffices
to show that H 0(S′, gFG

(−∞C × X)) = 0, and we have an exact sequence

0 → H 0(S′, gFG
(−D′))→ H 0(S′, gFG

(−∞C × X))

→ H 0(C, gFG
|C×∞X (−∞C)) · · · .

We know already that the first term vanishes (since Buna
G(S

′,D′∞) is a scheme) and
the last term vanishes too (since gFG

|C×∞X is trivial). ��
As another corollary of Proposition 3.4 we obtain the following factorization

property of Buna
G(S

′,D′∞) with respect to the projection �a
h (and by symmetry, with

respect to �a
v ):

Buna
G(S

′,D′∞) ×
◦
C(a)

(
◦
C(a1) × ◦

C(a2))disj

� (Buna1
G (S′,D′∞)× Buna2

G (S′,D′∞)) ×
◦
C(a1)×◦C(a2)

(
◦
C(a1) × ◦

C(a2))disj. (10)

3.7 Relation with affine Lie algebras

Let 0X ∈ X be another chosen point, and let x be a coordinate on X with x(0X) = ∞,
x(∞X) = 0. Let gaff � g((x))⊕K ·C⊕d ·C be the corresponding untwisted affine
Kac–Moody algebra, such that the element d acts via the derivation x · ∂x . We will
denote by ĝ the derived algebra of gaff , i.e., g((x))⊕K · C.

The lattice �gaff is by definition the direct sum �g ⊕ δ · Z ⊕ Z, and we will
denote by �̂g the direct sum of the first two factors, i.e., the cocharacter lattice of
the corresponding derived group. (The other factor can be largely ignored, since, for
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example, the semigroup �
pos
gaff is contained in �̂g, and we will sometimes write �̂

pos
g

instead of �pos
gaff .) We will write an element µ ∈ �̂g as (µ, a) for µ ∈ �g, a ∈ Z. By

definition, the element δ ∈ �̂g equals (0, 1).
Let α0 denote the positive coroot of g dual to the long dominant root. The simple

affine coroot α0 equals (−α0, 1). Note that (µ, a) ∈ �̂
pos
g if and only if a ≥ 0 and

µ+ a · α0 ∈ �
pos
g .

We will denote by g+aff (respectively, g−aff ) the subalgebra g[[x]] ⊕K ·C⊕ d ·C
(respectively, g[x−1] ⊕ K · C ⊕ d · C). These algebras are the maximal parabolic
and its opposite corresponding to I ⊂ Iaff . The corresponding partial flag scheme
Ggaff ,g

+
aff

identifies with GG,X. Note that the latter does not depend on the choice of
the point 0X ∈ X.

If P ⊂ G is a parabolic and P− is the corresponding opposite parabolic, let us
denote by GG,P,X the scheme classifying triples (FG, β, γ ), where (FG, β) are as in
the definition of GG,X, and γ is the data of a reduction to P of the fiber of FG at 0X.

We will denote by p+aff the subalgebra of g+aff consisting of elements whose value
modulo x belongs to p. Similarly, we will denote by p−aff the subalgebra of g−aff
consisting of elements whose value modulo x−1 belongs to p−. The corresponding
Lie algebras p+aff , p

−
aff are a parabolic and its opposite in gaff , and Ggaff ,p

+
aff
� GG,P,X.

The Levi subgroup corresponding to p+aff is M ×Gm ×Gm; we will denote by Maff
the group M ×Gm corresponding to the first Gm-factor.

The lattice �gaff ,p
+
aff

is the direct sum �g,p ⊕ δ · Z ⊕ Z, and we will denote by

�̂g,p ⊂ �gaff ,paff the direct sum of the first two factors. For θ ∈ �̂
pos
g,p := �

pos
gaff ,p

+
aff

,

we have the corresponding scheme Modθ,+
Maff ,C

.
Thus for a projective curve C, we can consider the schemes of based maps

Mapsθ (C,GG,P,X) for θ ∈ �̂
pos
g,p. For θ = (θ, a), consider the stack Bunθ

G;P (S
′,

D′∞;D′0) that classifies the data of a G-bundle FG ∈ Buna
G(S

′,D′∞), and equipped
with a reduction to P on D′0 of weight θ , compatible with the above trivialization on
D′∞ ∩ D′0 = ∞C ×∞X.

From Proposition 3.4 we obtain an isomorphism

Bunθ
G;P (S

′,D′∞;D′0) � Mapsθ (C,GG,P,X). (11)

We can also consider the scheme of based quasi-maps QMapsθ (C,GG,P,X). We

will denote by �θ

p+aff
the map QMapsθ (C,GG,P,X)→

◦
Cθ .

In addition, we have the scheme of enhanced based quasi-maps Q̃Mapsθ (C,

GG,P,X). We have a projection denoted rp+aff
: Q̃Mapsθ (C,GG,P,X) → QMapsθ (C,

GG,P,X), and a map �θ
Maff

: Q̃Mapsθ (C,GG,P,X)→ Modθ,+
Maff ,X

, such that

Q̃Mapsθ (C,GG,P,X)→ QMapsθ (C,GG,P,X) ×◦
Cθ

Modθ,+
Maff ,C

is a closed embedding.
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Note that the map rp+aff
is not an isomorphism even when P = G. But it is, of

course, an isomorphism when p = b.

3.8

Finally, let us show that the scheme Mapsa(C,GG,X) = Buna
G(S

′,D′∞) is globally of
finite type. Using equation (11), this would imply that the schemes Mapsθ (C,Ggaff ,p

+
aff
)

are also of finite type.
Using Proposition 3.4, it suffices to show that any map σ : C → GrBD,a

G,X of degree

a has its image in a fixed finite-dimensional subscheme of GrBD,a
G,X . To simplify the

notation, we will fix a divisor D ∈ ◦
X(a) and consider based maps C → GrBD,a

G,X,D .

Write D = �
k
nk ·xk with xk pairwise distinct. Then GrBD,a

G,X,D is the product of the

affine Grassmannians �
k

GrG,xk , and consider the subscheme �
k

Grnk ·α0
G,xk

⊂ GrBD,a
G,X,D ,

where for a dominant coweight λ of G, GrλG,x denotes the corresponding finite-

dimensional subscheme of GrG,x.

Lemma 3.9. For D ∈ ◦
X(a) as above, any based map σ : C → GrBD,a

G,X,D of degree a

has its image in the subscheme �
k

Grnk ·α0
G,xk

.

Of course, an analogous statement holds globally, i.e., when D moves along
◦
X(a).

Proof. For a fixed point FG ∈ Buna
G(S

′,D′∞), let σC be the corresponding based

map C → GrBD,a
G,X , and let σX be the corresponding based map X → GG,C.

Let us fix a point c ∈ C, which we may as well call 0C. We must show that the
value of σC at 0C belongs to �

k
Grnk ·α0

G,xk
⊂ GrBD,a

G,X,D .

From Section 3.7, we have a map Mapsa(X,GG,C) → Moda,+
Gaff ,X

covering the

map �a
v : Mapsa(X,GG,C)→

◦
X(a).

Now, it is easy to see that for our map σX, �a
v (σX) = D and the fiber of Moda,+

Gaff ,X

atD is a closed subscheme of�
k

Grnk ·α0
G,xk

(cf. [BFGM, Proposition 1.7]); moreover, this

embedding induces an isomorphism on the level of reduced schemes. The resulting
point of �

k
Grnk ·α0

G,xk
equals the value of σC at 0C, which is what we had to show. ��

Part II: Uhlenbeck Spaces

Throughout Part II, G will be a simple simply connected group and g its Lie
algebra. When G = SLn, the subscript “SLn’’ will often be replaced by just “n.’’



60 Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory

4 Definition of Uhlenbeck spaces

4.1 Rational surfaces

As was explained in the introduction, Uhlenbeck spaces Ua
G are attached to the surface

S � P2 with a distinguished “infinity’’ line D∞ � P1 ⊂ P2. However, in order to
define Ua

G, we will need to replace S by all possible rationally equivalent surfaces
isomorphic to P1 × P1.

Let
◦
S ⊂ S denote the affine plane S−D∞. For two distinct points dv,dh ∈ D∞we

obtain a decomposition of
◦
S as a product of two affine lines (horizontal and vertical):

◦
S � ◦

C× ◦
X,

where dv corresponds to the class of parallel lines in
◦
S that project to a single point

in
◦
C, and similarly for dh. Let C := ◦

C ∪∞C, X := ◦
X ∪∞X be the corresponding

projective lines.
Let us denote by S′ the surface C × X, and by πv, πh the projections from S′ to

C and X, respectively. Let D′∞ := ∞C×X ∪C×∞X be the corresponding divisor
“at infinity’’ in S′. The surfaces S and S′ are connected by a flip-flop. Namely, let S′′
be the blow-up of S at the two points dv,dh. Then S′ is obtained from S′′ by blowing
down the proper transform of D∞.

In particular, it is easy to see that (a family of) G-bundles on S trivialized along
D∞ is the same as (a family of) G-bundles on S′ trivialized along D′∞.

4.2

Let O denote the variety D∞ × D∞ − �(D∞), i.e., the variety classifying pairs of
distinct points (dv,dh) ∈ D∞, and let us consider the “relative over O’’ versions of
the varieties discussed above.

In particular, we have the relative affine (respectively, projective) lines
◦
CO,

◦
XO

(respectively, CO, XO), and the relative surface S′O. Let πv,O (respectively, πh,O)

denote the projection S′O → CO (respectively, S′O → XO.) We will denote by
◦
C(a)

O ,
◦
X(a)

O the corresponding fibrations into symmetric powers.
Let us recall the following general construction. Suppose that Y1 is a scheme

(of finite type), and Y2 → Y1 is an affine morphism (also of finite type). Then the
functor on the category of schemes that sends a test scheme S to the set of sections
(i.e., Y1-maps) S × Y1 → Y2 is representable by an affine ind-scheme of ind-finite
type, which we will denote by Sect(Y1,Y2).

(To show the representability, it is enough to assume that Y2 is the total space of
a vector bundle E, in which case Sect(Y1,Y2) is representable by the vector space
�(Y1,E).)

For example, by applying this construction to Y1 = O, we obtain the ind-schemes

Sect(O,
◦
C(a)

O ), Sect(O,
◦
X(a)

O ), Sect(O,
◦
C(a)

O ×
O

◦
X(a)

O ).
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4.3

We are now ready to give the first definition of the Uhlenbeck space Ua
G.

For a fixed pair of directions (dv,dh) ∈ D∞, i.e., a point of O, and a divisor

Dv ∈
◦
X(a), consider the scheme of based quasi-maps QMapsa(C,GrBD,a

G,X,Dv
); cf.

Section 1.11. This ind-scheme is ind-affine, of ind-finite type; cf. Lemma 1.6.

By makingDv ∈
◦
X(a) a parameter, we obtain an ind-affine ind-scheme QMapsa(C,

GrBD,a
G,X ) fibered over

◦
X(a). Finally, by letting (dv,dh) ∈ O move, we obtain ind-

affine fibrations

QMapsa(C,GrBD,a
G,X )O →

◦
X(a)

O → O.

Thus we can consider the ind-scheme Sect(O,QMapsa(C,GrBD,a
G,X )O). By con-

struction, we have a natural map

�a
v,O : Sect(O,QMapsa(C,GrBD,a

G,X )O)→ Sect(O,
◦
X(a)

O ).

When a pair of directions (dv,dh) is fixed, by further evaluation we obtain the map

�a
v : Sect(O,QMapsa(C,GrBD,a

G,X )O)→
◦
X(a).

Now, we claim that we have a natural map

Buna
G(S,D∞)→ Sect(O,QMapsa(C,GrBD,a

G,X )O).

Indeed, constructing such a map amounts to giving a map Buna
G(S,D∞) � BunG(S′,

D′∞)→ QMapsa(C,GrBD,a
G,X ) for every pair of directions (dv,dh) ∈ O, but this has

been done in the previous section, Proposition 3.4.
Since Buna

G(S,D∞) is a scheme, its image in Sect(O,QMapsa(C,GrBD,a
G,X )O) is

contained in a closed subscheme of finite type. In fact, it is contained in the subscheme
described in Section 3.8.

Definition 4.4. We define Ua
G to be the closure of the image of Buna

G(S,D∞) in the

ind-scheme Sect(O,QMapsa(C,GrBD,a
G,X )O).

By construction, Ua
G is an affine scheme of finite type, which functorially depends

on the pair (S,D∞).

Lemma 4.5. The map Buna
G(S,D∞)→ Ua

G is an open embedding.

Proof. Let us fix a pair of directions (dv,dh) and consider the corresponding eval-
uation map Sect(O,QMapsa(C,GrBD,a

G,X )O) → QMapsa(C,GrBD,a
G,X ). We have a

composition

Buna
G(S,D∞)→ Ua

G ×
QMapsa(C,GrBD,a

G,X )

Mapsa(C,GrBD,a
G,X )

→ Mapsa(C,GrBD,a
G,X ) � Buna

G(S,D∞).
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Since Buna
G(S,D∞) is dense in Ua

G, we obtain that all arrows in the above formula
are isomorphisms. The assertion of the lemma follows since

Ua
G ×

QMapsa(C,GrBD,a
G,X )

Mapsa(C,GrBD,a
G,X )

is clearly open in Ua
G. ��

4.6

We will now give two more definitions of the space Ua
G, which, on the one hand, are

more economical, but on the other hand possess less symmetry. Of course, later we
will establish the equivalence of all the definitions.

Let us fix a point (dv,dh) ∈ D∞ and consider the space of quasi-maps
QMapsa(C,GG,X). As we have seen in the previous section, this is an affine scheme
of infinite type.

We have a natural map

Buna
G(S,D∞)→ QMapsa(C,GG,X)× Sect(O,

◦
X(a)

O ),

constructed as in the previous section.
We set ′Ua

G to be the closure of the image of Buna
G(S,D∞) in the above product.

From this definition, it is not immediately clear that ′Ua
G is of finite type.

Again, for a fixed pair of directions (dv,dh) ∈ D∞, consider the fibration

GrBD,a
G,X → ◦

X(a), and consider the corresponding fibration of quasi-map spaces

QMapsa(C,GrBD,a
G,X )→ ◦

X(a). This is an affine ind-scheme of ind-finite type.
We have a natural map

Buna
G(S,D∞)→ QMapsa(C,GrBD,a

G,X ) ×
◦
X(a)

Sect(O,
◦
X(a)

O ),

where the projection Sect(O,
◦
X(a)

O )→ ◦
X(a) corresponds to the evaluation at our fixed

point (dv,dh).
We set ′′Ua

G to be the closure of its image. By construction, ′′Ua
G is an affine

scheme of finite type.

Proposition 4.7. There is a canonical isomorphism ′Ua
G � ′′Ua

G.

Proof. Recall that we have a natural map GrBD,a
G,X → GG,X, such that the canonical

line bundle on GrBD,a
G,X is the restriction of that on GG,X; moreover, the map GrBD,a

G,X →
GG,X ×

◦
X(a) is a closed embedding.

Therefore, using Lemma 1.22, we obtain a closed embedding

QMapsa(C,GrBD,a
G,X )→ QMapsa(C,GG,X)×

◦
X(a).
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This defines a map

QMapsa(C,GrBD,a
G,X ) ×

◦
X(a)

Sect(O,
◦
X(a)

O )→ QMapsa(C,GG,X)× Sect(O,
◦
X(a)

O ),

which is also a closed embedding. This proves the proposition. ��

We also have a natural map Ua
G → ′′Ua

G, which corresponds to the evaluation

map Sect(O,QMapsa(C,GrBD,a
G,X )O)→ QMapsa(C,GrBD,a

G,X ).

Theorem 4.8. The map Ua
G → ′′Ua

G is an isomorphism.

This theorem will be proved in the next section for G = SLn, and in Section 6.3
for G general.

4.9

We conclude this section with the following observation:
Let (dv,dh) be a fixed pair of directions. Using Section 2.11, we obtain a map

QMapsa(C,GG,X)→
◦
C(a).

By composing it with QMapsa(C,GrBD,a
G,X ) → QMapsa(C,GG,X), we also obtain

the map �a
h : QMapsa(C,GrBD,a

G,X )→ ◦
C(a). By making (dv,dh) vary along O, we

have, therefore, a morphism:

�a
h,O : Sect(O,QMapsa(C,GrBD,a

G,X )O)→ Sect(O,
◦
C(a)

O ).

Now note that the space O carries a natural involution, which interchanges the

roles of dv and dh. In particular, we have a map τ : Sect(O,
◦
X(a)

O )→ Sect(O,
◦
C(a)

O ).

We will denote by Sect(O,QMapsa(C,GrBD,a
G,X )O)

τ the equalizer of the two maps

τ ◦�v,O and �h,O : Sect(O,QMapsa(C,GrBD,a
G,X )O)→ Sect(O,

◦
C(a)

O ). (12)

We have the following.

Lemma 4.10. Ua
G ⊂ Sect(O,QMapsa(C,GrBD,a

G,X )O)
τ .

The proof follows from the fact that the maps τ ◦ �v,O and �h,O coincide on
Buna

G(S,D∞); cf. Proposition 3.4.
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5 Comparison of the definitions: The case of SLn

5.1

In order to prove Theorem 4.8 for SLn, we will recall yet one more definition of
Uhlenbeck spaces, essentially due to S. Donaldson. To simplify the notation, we will
write Ua

n instead of Ua
SLn

.
In the case G = SLn, the moduli space Bunn(S,D∞) admits the following linear

algebraic ADHM description going back to Barth (see a modern exposition in [Na]).
We consider vector spaces V = Ca , W = Cn, and consider the affine space

End(V )⊕ End(V )⊕ Hom(W, V )⊕ Hom(V ,W),

a typical element of which will be denoted (B1, B2, ı, j). We define a subscheme
Ma

n ⊂ End(V )⊕ End(V )⊕Hom(W, V )⊕Hom(V ,W) by the equation [B1, B2] +
ıj = 0.

A quadruple (B1, B2, ı, j) ∈ Ma
n is called stable if V has no proper sub-

space containing the image of ı and invariant with respect to B1, B2. A quadruple
(B1, B2, ı, j) ∈ Ma

n is called costable if Ker(j) contains no nonzero subspace invari-
ant with respect to B1, B2. We have the open subscheme sMa

n ⊂ Ma
n (respectively,

cMa
n ⊂ Ma

n ) formed by stable (respectively, costable) quadruples. Their intersection
sMa

n ∩ cMc is denoted by scMa
n .

According to [Na, 2.1], the natural action of GL(V ) on sMa
n (respectively, cMa

n )
is free, and the GIT quotient Ña

n := sMa
n/GL(V ) is canonically isomorphic to

the fine moduli space of torsion-free sheaves of rank n and second Chern class
a on S equipped with a trivialization on D∞. The open subset scMa

n/GL(V ) ⊂
sMa

n/GL(V ) corresponds, under this identification, to the locus of vector bundles
Buna

n(S,D∞) ⊂ Ña
n.

Finally, consider the categorical quotient Na
n := Ma

n//GL(V ). The natural pro-
jective morphism Ña

n → Na
n is the affinization of Ña

n, i.e., Na
n is the spectrum of the

algebra of regular functions on Ña
n. Moreover, Na

n is reduced and irreducible and the
natural map Bunn(S,D∞)→ Na

n is an open embedding.
Our present goal is to construct a map Na

n → Ua
n and show that the composition

Na
n → Ua

n → ′Ua
n is an isomorphism. The proof given below was indicated by

Drinfeld, and the main step is to interpret Na
n as a coarse moduli space of coherent

perverse sheaves (cf. [B]) on S.

5.2

Let S be a smooth surface.

Definition 5.3. We will call a complex M ∈ DCoh≥0,≤1(S) a coherent perverse
sheaf if

• h1(M) is a finite-length sheaf,
• h0(M) is a torsion-free coherent sheaf.
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Coherent perverse sheaves obviously form an additive subcategory of DCoh(X),
denoted PCoh(X). It is easy to see that Serre–Grothendieck duality maps PCoh(X)

to itself.

Lemma 5.4. ForM1,M2 ∈ PCoh(X), the inner Hom satisfies RHomi (M1,M2) = 0
for i < 0.

If S is a scheme, an S-family of coherent perverse sheaves on S is an object M

of DCoh(S × S) such that for every geometric point s ∈ S the (derived) restriction
Ms ∈ DCoh(S) belongs to PCoh(S).

Lemma 5.5. The functor Schemes → Groupoids, that assigns to a test scheme S

the full subgroupoid of DCoh(S × S) consisting of S-families of coherent perverse
sheaves on S, is a sheaf of categories in the faithfully flat topology.

The lemma is proved in exactly the same manner as the usual faithfully flat descent
theorem for sheaves, using the fact that for two S-families of coherent perverse
sheaves M1 and M2, the cone of any arrow M1 → M2 is a canonically defined
object of DCoh(S× S), which follows from Lemma 5.4.

5.6

For S = P2, consider the functor Schemes → Groupoids, denoted Perva
n(S,D∞),

that assigns to a test scheme S the groupoid whose objects are S-families of coherent
perverse sheaves M on S, such that

• M is of generic rank n, ch2(M) = −a;
• in a neighborhood of D∞ × S ⊂ S× S, M is a vector bundle, and its restriction

to the divisor D∞ × S is trivialized.

Morphisms in this category are isomorphisms between coherent perverse sheaves (as
objects in DCoh(S× S)), which respect the trivialization at D∞.

The following theorem, due to Drinfeld, is a generalization of Donaldson–
Nakajima theory.

Theorem 5.7. The functor Perva
n(S,D∞) is representable by the stack Ma

n/GL(V ).

Proof. The proof is a modification of Nakajima’s argument in [Na, Chapter 2]. Let us
choose homogeneous coordinates z0, z1, z2 on P2, so that the line D∞ ⊂ S is given
by equation z0 = 0. In particular, this defines a pair of directions (dv,dh) ∈ O.

Lemma 5.8. For a coherent perverse sheaf M on S trivialized at D∞, we have

H±1(S,M(−1)[1]) = H±1(S,M(−2)[1]) = H±1(S,M⊗�1[1]) = 0.

The proof for a torsion-free sheaf (in cohomological degree 0) is given in [Na,
Chapter 2]. The statement of the lemma obviously also holds for a finite-length sheaf
in cohomological degree 1, and an arbitrary M is an extension of two such perverse
sheaves. ��
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Let p1, p2 be the two projections S× S → S, and let C• be the Koszul complex
on S× S, i.e., the complex

0 → O(−2) � �2(2)→ O(−1) � �1(1)→ O � O→ 0,

which is known to be quasi-isomorphic to O�(S). Then the complex of perverse
coherent sheaves p∗2(M(−1))⊗ C• looks like

0 → O(−2)�(M(−1)⊗�2(2))→ O(−1)�(M(−1)⊗�1(1))→ O�M(−1)→ 0

The first term of the Beilinson spectral sequence for Rp1∗(p∗2(M(−1)) ⊗ C•) �
M(−1) reduces to

O(−2)⊗H 1(S,M(−2))→ O(−1)⊗H 1(S,M⊗�1)→ O⊗H 1(S,M(−1))

(in degrees −1, 0, 1). Hence M is canonically quasi-isomorphic to the complex
(monad)

O(−1)⊗H 1(S,M(−2))
d→ O⊗H 1(S,M⊗�1)

b→ O(1)⊗H 1(S,M(−1))

and d is injective.
Now we are able to go from perverse sheaves to the linear algebraic data and

back. We set V = H 1(S,M(−2)), W ′ = H 1(S,M ⊗ �1), V ′ = H 1(S,M(−1)).
We have dim V = dim V ′ = a and dim W ′ = 2a + n. Since H 0(S,O(1)) has
a basis {z0, z1, z2}, we may write in the above monad d = z0d0 + z1d1 + z2d2,
b = z0b0 + z1b1 + z2b2, where di ∈ Hom(V ,W ′), bi ∈ Hom(W ′, V ′). Nakajima
checks in [Na] that b1d2 = −b2d1 is an isomorphism from V to V ′, and identifies V ′
withV via this isomorphism. Nakajima definesW ⊂ W ′ asW := Ker(b1)∩Ker(b2),
and identifies W ′ with V ⊕ V ⊕W via (d1, d2) : V ⊕ V � W ′ : (−b2, b1). Note

that dim W = n. Under these identifications, we write V
d0→ V ⊕ V ⊕W

b0→ V as
d0 = (B1, B2, j), b0 = (−B2, B1, ı), where B1, B2 ∈ End(V ), ı ∈ Hom(W, V ),
j ∈ Hom(V ,W) satisfy the relation [B1, B2] + ıj = 0.

Conversely, given V,W,B1, B2, ı, j as above, we define M as a monad

V ⊗ O(−1)
d→ (V ⊕ V ⊕W)⊗ O

b→ V ⊗ O(1)

(in cohomological degrees −1, 0, 1), where d = (z0B1 − z1, z0B2 − z2, z0j),
b = (−z0B2 + z2, z0B1 − z1, z0ı). Evidently, M|D∞ = W ⊗ OD∞ . ��

If M is a coherent perverse sheaf on S = P2 trivialized along D∞ � P1, we
will denote by the same symbol M the corresponding coherent perverse sheaf on
S′ = C× X, trivialized along the divisor D′∞.

The following assertion can be deduced from the above proof of Theorem 5.7

Lemma 5.9. The maps �a
h , �a

v from Buna
n(S,D∞) to (A1)(a) � ◦

C(a) and (A1)(a) �
◦
X(a), respectively (cf. Proposition 3.4), are given by the characteristic polynomials
of B1 and B2.
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For the proof one has to observe that if M is a point of Buna
n(S,D∞), correspond-

ing to a quadruple (B1, B2, ı, j), and Dh (respectively, Dv) is the divisor on A1 given
by the characteristic polynomial of B1 (respectively, B2), then as a bundle on S′, M

will be trivialized on (C−Dh)× X (respectively, C× (X −Dv)).

5.10

We will now construct a map Perva
n(S,D∞)→ Ua

n. First, for a fixed pair of directions
(dv,dh), we will construct a map

Perva
n(S,D∞)→ QMapsa(C,GSLn,X). (13)

Thus let M be an S-point of Perva
n(S,D∞) or Perva

n(S
′,D′∞). Over the open

subscheme (C×S)0 of C×S, over which M is a vector bundle, we obtain a genuine
map (C× S)0 → GSLn,X, and we have to show that this map extends as a quasi-map
to the entire C× S.

Let us recall the description of the fundamental representation of ŝln as a Clifford
module Cliffn; cf. [FGK, Section 2.2]. Thus we have to attach to M a line bundle
LM on C× S, and a map

LM → OC×S ⊗�•(x−d1Cn[[x]]/xd2Cn[[x]])⊗ (det(x−d1Cn[[x]]/Cn[[x]]))−1

for each pair of positive integers d1 and d2.
Consider the (derived) direct image

Nd := (πv × id)∗(M(d · (C×∞X × S))).

This is a complex on C × S, whose fiber at every geometric point of C × S

lies in cohomological degrees 0 and 1. Therefore, locally on C × S, N can be
represented by a length-2 complex of vector bundles F0

d → F1
d . We set LM :=

det(F0
d)⊗ det(F1

d)
−1 ⊗ det(x−dCn[[x]]/Cn[[x]]).

We have also a canonical map on S′ × S:

M→ O⊕n/O⊕n(−d2 · (C×∞X × S)),

which comes from a trivialization of M around the divisor D′h × S. Therefore, we
obtain a map in the derived category Nd1 → OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]]).

Moreover, by replacing F0
d1
→ F1

d1
by a quasi-isomorphic complex of vector bun-

dles, we can assume that the above map Nd1 → OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]])
comes from a map F0

d1
→ OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]]).

Thus we have a map F0
d1
→ F1

d1
⊕ (OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]])) and,

hence, a map

�
rk(F0

d1
)
(F0

d1
)→ �

rk(F0
d1
)
(F1

d1
⊕ OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]]))

� �
rk(F1

d1
)
(F1

d1
)⊗�

rk(F0
d1
)−rk(F1

d1
)
(OC×S ⊗ (x−d1Cn[[x]]/xd2Cn[[x]])).
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By tensoring both sides by (det(x−d1Cn[[x]]/Cn[[x]]))−1, we obtain a map
LM → OC×S ⊗�•(x−d1Cn[[x]]/xd2Cn[[x]])⊗ (det(x−d1Cn[[x]]/Cn[[x]]))−1, as
required.

It is easy to check that the definition of this morphism does not depend on a
particular choice of representing complex, and over (C × S)0, this is the same map
as the one defining the map (C× S)0 → GSLn,X.

5.11

Thus we have a map Perva
n(S,D∞)→ QMapsa(C,GSLn,X) for every fixed pair of di-

rections (dv,dh). In particular, we have a map Perva
n(S,D∞)→ ◦

C(a), and by letting

(dv,dh) vary, we obtain a map Perva
n(S,D∞) → Sect(O,

◦
C(a)

O ). By interchanging

the roles of dh and dv , we also obtain a map Perva
n(S,D∞)→ Sect(O,

◦
X(a)

O ).
We now claim that for any fixed pair of directions (dv,dh), the map

Perva
n(S,D∞)→ ◦

X(a) × QMapsa(C,GSLn,X)

factors through the closed subscheme QMapsa(C,GrBD,a
SLn,X

) ⊂ ◦
X(a) × QMapsa(C,

GSLn,X). Indeed, this is so because the corresponding fact is true over the open dense
substack Buna

n(S,D∞) ⊂ Perva
n(S,D∞). (The density assertion is a corollary of

Theorem 5.7).
Therefore, we obtain a map

Perva
n(S,D∞)→ Sect(O,QMapsa(C,GrBD,a

SLn,X
)O). (14)

The image of this map lies in Ua
n because the open dense substack Buna

n(S,D∞) does
map there. In other words, we obtain a map Perva

n(S,D∞)→ Ua
n.

In particular, from Theorem 5.7, we have a GL(V )-invariant map Ma
n → Ua

n, and
since Ua

n is affine, we thus have a map Na
n → Ua

n.
Moreover, from Lemma 5.9 we obtain that for a fixed pair of directions (dv,dh),

the composition Ma
n → Ua

n

�a
h→ ◦

C(a) � (A1)(a) is given by the map sending B1 to its
characteristic polynomial, and similarly for �a

v and B2. Indeed, this is so because
the corresponding fact holds for the open part scMa

n .

Remark. Above we have shown that the map Buna
n(S,D∞) → Ua

n extends to a
GL(V )-invariant map Ma

n → Ua
n. However, if we used the results of [FGK], the

existence of the latter map could be proved differently:
In [FGK] we constructed a map Ña

n → Ua
n, using the interpretation of Ña

n as the
moduli space of torsion-free coherent sheaves on S. Since Na

n is the affinization of Ña
n,

and Ua
n is affine, we do obtain a map Na

n → Ua
n and hence a map Ma

n/GL(V )→ Na
n.

Theorem 5.12. The maps Na
n → Ua

n → ′Ua
n are isomorphisms.

The rest of this section is devoted to the proof of this theorem. Since all three
varieties that appear in Theorem 5.12 have a common dense open piece, namely,
Buna

n(S,D∞), it is sufficient to prove that the map f : Na
n → ′Ua

n is an isomorphism.
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5.13

Consider the map Ña
n → ′Ua

n. It was shown in [FGK] that this map is proper. Since
Na

n is an affinization of Ña
n, we obtain that f : Na

n → ′Ua
n is finite.

Choose a point 0S ∈
◦
S, and let 0C, 0X be the corresponding points on C and

X, respectively. Consider the corresponding action of Gm by dilations. By trans-
port of structure, we obtain a Gm-action on the scheme QMaps(C,GrBD,a

X,SLn
) and on

Sect(O,
◦
X(a)

O ).
It is easy to see that the Gm-action contracts both these varieties to a single point.

Namely, Sect(O,
◦
X(a)

O ) is contracted to the section that assigns to every (d1
v,d1

h) ∈ D∞
the point a · 0X in the symmetric power of

◦
X. Using Proposition 2.6, we obtain that

QMaps(C,GrBD,a
SLn,X

) is contracted to the quasi-map whose saturation is the constant

map C → GrBD,a
SLn,X

, corresponding to the trivial bundle and tautological trivialization,

with defect of order a at 0C. Let us denote by σU the attracting point of ′Ua
n described

above.
The above action of Gm on ′Ua

n is covered by a natural Gm-action on the stack

Perva
n(S,D∞). Moreover, if we identify

◦
S with A2, such that 0S corresponds to the

origin, the above action on Perva
n(S,D∞) corresponds to the canonical Gm-action on

the variety A2 by homotheties.
The induced Gm-action on Na

n � Ma
n//GL(V ) contracts this variety to a single

point, which we will denote by σN.
Thus it would be sufficient to show that the scheme-theoretic preimage f−1(σU)

is in fact a point-scheme corresponding to σN.

5.14

Let gN (respectively, gU) denote the canonical map from Perva
n(S,D∞) toNa

n (respec-
tively, Ua

n). We claim that it is sufficient to show that the inclusion (gN)−1(zN
0 ) ↪→

(gU)−1(zU
0 ) is an equality. This follows from the next general observation.

Lemma 5.15. Let Y1 be an affine algebraic variety (in char 0) with an action of
a reductive group G. Let Y2 be another affine variety and g : Y1 → Y2 be a
G-invariant map, and let us denote by f : Y1//G → Y2, g′ : Y1 → Y1//G the
corresponding maps. Then if for some z′ ∈ Y1//G, z ∈ Y2 with f(z′) = z the
inclusion (g′)−1(z) ⊂ (g)−1(z′) is an isomorphism, then (f)−1(z) is a point-scheme.

Consider now the following ind-stack Perva
n(S,S − 0S): For a scheme S, its S-

points are S-families of coherent perverse sheaves on S (with c1 = 0, ch2 = −a),
equipped with a trivialization on S − 0S and such that for every pair of directions
(dv,dh) ∈ O, the composition

S → Perva
n(S)→ QMapsa(C,GSLn,X)→

◦
C(a)

maps to the point a · 0C ∈
◦
C(a).
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Proposition 5.16. The composition Perva
n(S,S−0S)→ Perva

n(S,D∞)→ Na
n is the

constant map to the point σN.

Proof. For a triple (B1, B2, ı, j), representing a point of Perva
n(S,D∞), let us denote

by TW any endomorphism of the vector space W obtained by composing the maps
B1, B2, ı, j , and by TV any similarly obtained endomorphism of V .

It is easy to see that the space of regular functions on Na
n is obtained by taking

matrix coefficients of all possible TW s and traces of all possible TV s.
Let M be an S-point of Perva

n(S,S−0S). For an integerm, let M′ be the (constant)
S-family of coherent perverse sheaves on S, corresponding to the torsion-free sheaf

ker(O⊕n → (O/mm
0S
)⊕n),

where m0S is the maximal ideal of the point 0S. Then, when m is large enough, we
can find a map M′ →M, which respects the trivializations of both sheaves on S−0S.
The cone of this map is set-theoretically supported at 0S and has cohomologies in
degrees 0 and 1.

Let (V ,W,B1, B2, ı, j) and (V ′,W ′, B ′1, B ′2, ı′, j ′) denote the linear algebra data
corresponding to M and M′, respectively. By unraveling the proof of Theorem 5.7,
we obtain that there are maps V ′ → V and W ′ � W which commute with all the
endomorphisms.

By the definition of M′, j ′ = 0. From this we obtain that all the matrices TW

vanish, and the only nonzero TV -matrices are of the form B
k1
1 ◦Bk2

2 ◦ · · · ◦Bkm−1
1 . It

remains to show that any such matrix is traceless.
Note that for any matricesT 1

V andT 2
V as above, the trace ofT 1

V ◦i◦j◦T 2
V ∈ End(V )

equals the trace of the corresponding endomorphism of V ′, and hence vanishes. The
relation [B1, B2]+ ı ◦ j = 0 implies that the trace of a matrix B

k1
1 ◦Bk2

2 ◦ · · · ◦Bkm−1
1

does not depend on the order of the factors. Therefore, it is sufficient to show that
the characteristic polynomial of a matrix B1 + c · B2 vanishes for all c ∈ C.

However, using [FGK, Lemma 3.5], for any such c, we can find a pair of directions
(dv,dh) ∈ O, such that this characteristic polynomial equals the value of Ma

n →
Ua
n

�a
h→ ◦

C(a) � (A1)(a) at our point of Ma
n . ��

Using this proposition, we obtain that in order to prove Theorem 5.12 it would
be sufficient to show that any S-point of the stack (gU)−1(σU) factors through an
S-point of Perva

n(S,S− 0S).

5.17

Let M be an arbitrary S-family of coherent perverse sheaves on S′ corresponding to
an S-point of Perva

n(S,D∞). Let (dv,dh) be a fixed configuration, and let us denote

by Dh ⊂
◦
C× S, Dv ⊂

◦
X × S the corresponding divisors.

First, by unraveling the definition of the map

Perva
n(S,D∞)→ QMaps(C,GSLn,X)→

◦
C(a),
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we obtain that M is a vector bundle away from the divisors Dh×X and C×Dv . (In
other words, a quasi-map necessarily acquires a defect at some point of C if M has a
singularity on the vertical divisor over this point.)

Moreover, when we view M|S′×S−C×Dv
as an (X × S −Dv)-family of bundles

on C, this family is canonically trivialized.
Consider now the restriction of M to the complement ofDh×X∪C×Dv ⊂ S×S.

This is a vector bundle equipped with two trivializations. One comes from the fact
that we are dealing with a map C× S −Dh → GrBD,a

SLn,X,Dv
, and the other one comes

from the trivialization of M|S′×S−C×Dv
mentioned above.

We claim that these two trivializations actually coincide. This is so because the
corresponding fact is true over the dense substack Buna

n(S,D∞) ⊂ Perva
n(S,D∞).

Going back to the proof of the theorem, assume that M corresponds to an S-point
of (gU)−1(σU). Then, first of all, the divisors Dh, Dv are (a ·0C)×S and (a ·0X)×S,
respectively.

Moreover, M is a vector bundle away from 0S×S, and it is trivialized away from
C×0X×S ⊂ S′ ×S. Therefore, we only have to show that this trivialization extends
across the divisor C× 0X × S over (C− 0C)× S.

However, by the definition of σU, the map (C − 0C) × S → GrSLn,X → GSLn

is the constant map corresponding to the trivial bundle. Therefore, the trivialization
does extend.

6 Properties of Uhlenbeck spaces

6.1

Let φ : G1 → G2 be a homomorphism of simple simply connected groups, and let φZ
denote the corresponding homomorphism φZ : Z � H3(G1,Z)→ H3(G2,Z) � Z.
Observe that for a curve X, the pullback of the canonical line bundle PBunG2 (X)

under the induced map BunG1(X)→ BunG2(X) is P
⊗φZ(1)
BunG1 (X). In particular, the map

BunG1(S,D∞)→ BunG2(S,D∞) sends Buna
G1

(S,D∞) to BunφZ(a)
G2

(S,D∞).

Lemma 6.2. The map Buna
G1

(S,D∞) → BunφZ(a)
G2

(S,D∞) extends to morphisms

Ua
G1
→ U

φZ(a)
G2

and ′′Ua
G1
→ ′′UφZ(a)

G2
. When φ is injective, both these maps are

closed embeddings.

Proof. First, for a curve X, from φZ(a) we obtain a map X(a) → X(φZ(a)), and
the corresponding map GrBD,a

G1,X
→ GrBD,φZ(a)

G2,X
. The latter morphism is a closed

embedding if φ is.
Hence according to Proposition 1.12(c), for a curve C with a marked point c ∈ C

we obtain a morphism of the corresponding based quasi-map spaces:

φQMaps : QMapsa(C,GrBD,a
G1,X

)→ QMapsφZ(a)(C,GrBD,φZ(a)
G2,X

).

The existence of the maps Ua
G1
→ U

φZ(a)
G2

and ′′Ua
G1
→ ′′UφZ(a)

G2
now follows from

the definition of Ua
G and ′′Ua

G. ��
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6.3 Comparison of the definitions: The general case

The above lemma allows us to establish the equivalence of the two definitions of Ua
G.

Proof of Theorem 4.8. Let us choose a faithful representation φ : G → SLn. By
the previous lemma, Ua

G and ′′Ua
G are isomorphic to the closures of Buna

G(S,D∞) in

U
φZ(a)
n (S,D∞) and ′′UφZ(a)

n (S,D∞), respectively.
However, by Theorem 5.12, the map U

φZ(a)
n (S,D∞) → ′′UφZ(a)

n (S,D∞) is an
isomorphism. Hence Ua

G → ′′Ua
G is an isomorphism as well. ��

6.4 Factorization property

Next, we will establish the factorization property of Uhlenbeck compactifications. Let
us fix a pair of nonparallel lines (dv,dh), and consider the corresponding projection

�a
h : Ua

G →
◦
C(a).

Proposition 6.5. For a = a1 + a2, there is a natural isomorphism

(
◦
C(a1) × ◦

C(a2))disj ×◦
C(a)

Ua
G � (

◦
C(a1) × ◦

C(a2))disj ×
◦
C(a1)×◦C(a2)

(U
a1
G × U

a2
G ).

To prove this proposition, we will first consider the case of SLn.

Proposition 6.6. For a = a1 + a2, there are natural isomorphisms

(
◦
C(a1 × ◦

C(a2))disj ×◦
C(a)

Ña
n � (

◦
C(a1) × ◦

C(a2))disj ×
◦
C(a1)×◦C(a2)

(Ña1
n × Ña2

n ),

(
◦
C(a1 × ◦

C(a2))disj ×◦
C(a)

Na
n � (

◦
C(a1) × ◦

C(a2))disj ×
◦
C(a1)×◦C(a2)

(Na1
n ×Na2

n ).

Proof. The second factorization isomorphism follows from the first one since Na
n is

the affinization of Ña
n.

Let Cohn(X,∞X) be the stack of coherent sheaves on X with a trivialization at
∞X. This is a smooth stack which contains an open subset isomorphic to the point
scheme, that corresponds to the trivial rank-n vector bundle. The complement of this
open subset is of codimension 1 and hence is a Cartier divisor.

Observe now that the scheme Ña
n represents the functor of maps, Mapsa(

◦
C,

Cohn(X,∞X)), where the latter is as in Section 2.16.

Indeed, an S-point of Mapsa(
◦
C,Cohn(X,∞X)), is according to Lemma 2.14 the

same as coherent sheaf M on X×C×S, trivialized over∞X×C×S and X×∞C×S,
and which is C × S-flat. But this implies that for every geometric point s ∈ S, the
restriction M|S×s is torsion-free.

Hence the assertion about the factorization of Ña
n follows from Proposition

2.17. ��
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Now we can prove Proposition 6.5.

Proof. Let us choose a faithful representation φ : G→ SLn and consider the corre-
sponding closed embedding

Ua
G → QMapsa(C,GG,X)× UφZ(a)

n .

The image of this map lies in the closed subscheme

QMapsa(C,GG,X) ×
◦
C(φZ(a))

UφZ(a)
n � QMapsa(C,GG,X) ×◦

C(a)

(
◦
C(a) ×

◦
C(φZ(a))

UφZ(a)
n ).

Now, QMapsa(C,GG,X) factorizes over
◦
C(a) according to Proposition 2.19, and

the fiber product
◦
C(a) ×◦

C(φZ(a))

U
φZ(a)
n factorizes over

◦
C(a) because U

φZ(a)
n does so over

◦
C(φZ(a)). This implies the proposition in view of the isomorphism (10). ��

6.7

Let us fix a point dv ∈ D∞ and observe that the curve C is well defined without the
additional choice of dh ∈ D∞ − dv . Indeed, C is canonically identified with the
projectivization of the tangent space T Sdv . Thus the map �a

h,O gives rise to a map

�a
h,dv

: (D∞ − dv)× Ua
G →

◦
C(a).

Proposition 6.8. The above map �a
h,dv

is independent of the variable D∞ − dv .
Moreover, the corresponding factorization isomorphisms of Proposition 6.5 are also
independent of the choice of dh.

Proof. Since Buna
G(S,D∞) is dense inUa

G, it is enough to show that the corresponding

map (D∞−dv)×Buna
G(S,D∞)→ ◦

C(a) is independent of the first dh, and similarly
for the factorization isomorphisms.

Consider the surface Sdv obtained by blowing up S at dv . Then the exceptional
divisor identifies canonically with C, and we have a projection π

dv
v : Sdv → C. We

can consider the corresponding stack Buna
G(Sdv ,Ddv∞), which classifies G-bundles

with a trivialization along Ddv∞ := (C ∪ (π
dv
v )−1(∞C)) ⊂ Sdv .

In addition, Sdv can be regarded as a relative curve XC with a marked infinity
over C, and we can consider the relative stack BunG(XC,∞XC). This stack contains
an open substack (corresponding to the trivial bundle) and its complement is a Cartier
divisor.

The corresponding space of sections C → BunG(XC,∞XC) identifies with
Buna

G(Sdv ,Ddv∞), and thus gives rise to a map

Buna
G(Sdv ,Ddv∞)→ ◦

C(a),

and the corresponding factorization isomorphisms; cf. Proposition 2.17. This makes
the assertion of the proposition manifest. ��
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6.9

Let us now fix a point dh ∈ D∞, and consider the family of curves CD∞−dh
corre-

sponding to the moving point dv ∈ D∞ − dh.
We have a natural forgetful map

Sect(O,
◦
C(a)

O )→ Sect(D∞ − dh,
◦
C(a)

D∞−dh
),

and by composing with �a
h,O we obtain a map

Ua
G → Sect(D∞ − dh,

◦
C(a)

D∞−dh
).

From Proposition 6.8, we obtain the following corollary.

Corollary 6.10. The map

Ua
G → QMapsa(C,GG,X)× Sect(D∞ − dh,

◦
C(a)

D∞−dh
)

is a closed embedding, where C corresponds to some fixed point of D∞ − dh.

Proof. We know that Ua
G → Mapsa(C,GG,X)×Sect(O,

◦
C(a)

O ) is a closed embedding,

and if we consider the open subset
◦
O := O− dh × (D∞ − dh), the map

Ua
G → Mapsa(C,GG,X)× Sect(

◦
O,

◦
C(a)
◦
O

)

would be a closed embedding as well. However, from Proposition 6.8, we obtain that

the map Ua
G → Sect(

◦
O,

◦
C(a)
◦
O

) factors as

Ua
G → Sect(D∞ − dh,

◦
C(a)

D∞−dh
)→ Sect(

◦
O,

◦
C(a)
◦
O

),

where the last arrow comes from the projection to the first factor
◦
O → (D∞ − dh).

This establishes the proposition. ��

7 Stratifications and IC stalks

7.1

In this section we will introduce a stratification of Ua
G and formulate a theorem de-

scribing the intersection cohomology sheaf ICUa
G

.

Let b be an integer 0 ≤ b ≤ a, and set by definition Ua;b
G := Buna−b

G (S,D∞)×
Symb(

◦
S).

Theorem 7.2. There exists a canonical locally closed embedding ιb : Ua;b
G → Ua

G.

Moreover, Ua
G = ∪

b
Ua;b
G .
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7.3 Proof of Theorem 7.2

Let (F′G,DS) be a point of Buna−b
G (S,D∞)× Symb(

◦
S). For every pair of directions

(dv,dh), the data of F′G defines a based map σ ′ : C → GrBD,a−b
G,X of degree a − b.

Consider the embedding GrBD,a−b
G,X ↪→ GrBD,a

G,X obtained by adding to the divisor

Dv ∈
◦
X(a−b) the divisor πh(DS). We define the sought-for quasi-map σ : C →

GrBD,a
G,X by adding to the map

C
σ ′−→ GrBD,a−b

G,X → GrBD,a
G,X (15)

the defect equal to πv(DS); cf. Sections 1.16 and 2.3, (3). Since this can be done for
any pair of directions (dv,dh), we obtain a point of Sect(O,QMaps(C,GrBD,a

G,X )O).
This morphism is a locally closed embedding due to the corresponding property of
the quasi-map spaces.

Note that the above construction defines in fact a map ιb : Ua−b
G × Symb(

◦
S) →

Sect(O,QMaps(C,GrBD,a
G,X )O).

Now our goal is to prove that the image of ιb belongs to Ua
G, and that every

geometric point of Ua
G belongs to (exactly) one of the subschemes Ua;b

G . First, we
shall do this for G = SLn.

Let Ña;b
n be the scheme classifying pairs M ⊂ M′, where M ∈ Na

n, and M′ is a
vector bundle on S, such that M′/M is a torsion sheaf of length b. We have a natural
proper and surjective map

Ña;b
n → Buna−b

n (S,D∞)× Symb(
◦
S),

and a locally closed embedding Ña;b
n ↪→ Ña

n. Moreover, it is easy to see that the
square

Ña;b
n −−−−→ Ña

n⏐⏐� ⏐⏐�
Buna−b

n (S,D∞)× Symb(
◦
S)

ιb−−−−→ Sect(O,QMaps(C,GrBD,a
SLn,X

)O)

(16)

is commutative, where in the above diagram the right vertical arrow is the composition
of Ña

n → Na
n � Ua

n and Ua
n ↪→ Sect(O,QMaps(C,GrBD,a

SLn,X
)O).

This readily shows that the image of ιb belongs to Ua
G for G = SLn. Moreover,

since Ña
n � ∪

b
Ña;b

n , we obtain that Ua
n � ∪

b
Ua;b
n .

Now let us treat the case of an arbitrary G. To show that the image of ιb belongs

to Ua
G consider the open subset in the product Buna−b

G (S,D∞) × Symb(
◦
S) corre-

sponding to pairs (FG,DS) such that πv(DS) is a multiplicity-free divisor, disjoint
from �a−b

h (FG). It would be enough to show that the image of this open subset in

Sect(O,QMaps(C,GrBD,a
G,X )O) is contained in Ua

G.
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Note that from equation (16) we obtain the following compatibility relation of
the map ιb with the factorization isomorphisms of Proposition 6.5 for SLn. For
b = b1 + b2 the map

(Buna−b
n (S,D∞)× Symb(

◦
S)) ×

◦
C(a)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj

ιb

⏐⏐�
Ua
n ×◦

C(a)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj

coincides with the composition

(Buna−bn (S,D∞)× Symb(
◦
S)) ×

◦
C(a)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj

∼
⏐⏐�

(Buna−bn (S,D∞)× Symb1(
◦
S)× Symb2(

◦
S)) ×

◦
C(a−b)×◦C(b1)×◦C(b2)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj

id×ιb1×ιb2

⏐⏐�
(Ua−b

n × U
b1
n × U

b2
n ) ×

◦
C(a−b)×◦C(b1)×◦C(b2)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj

∼
⏐⏐�

Ua
n ×
◦
C(a)

(
◦
C(a−b) × ◦

C(b1) × ◦
C(b2))disj.

Hence by embedding G into SLn and using Lemma 6.2, we reduce our assertion
to the case when b = a = 1. Using the action of the group of affine-linear transfor-
mations, we reduce the assertion further to the fact that the image of the point-scheme,
thought of as Bun0

G(S,D∞)× 0S, belongs to U1
G.

However, as in the proof of Theorem 5.12, the above point-scheme is the only at-
tractor of the Gm-action on Sect(O,QMaps(C,GG,X)O). In particular, it is contained
in the closure of Bun1

G(S,D∞), which is U1
G.

To finish the proof of the theorem, we have to show that every geometric point
of Ua

G belongs to (exactly) one of the subschemes Ua;b
G . That these subschemes are

mutually disjoint is clear from the fact that b can be recovered as a total defect of a
quasi-map.

Let σO be a point of Ua
G, thought of as a collection of quasi-maps σ : C → GrBD,a

G,X
for every pair of directions (dv,dh). We have to show that there exists a point
σ ′O ∈ Buna−b

G (S,D∞), and a 0-cycle DS = �bi · si on S, such that for every pair

of directions (dv,dh), the corresponding quasi-map σ : C → GrBD,a
G,X has as its

saturation the composition

C
σ ′−→ GrBD,a−b

G,X ↪→ GrBD,a
G,X ,
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(the last arrow is as in (15)), with defect πv(DS). (In what follows we will say that
the point σO ∈ Ua

G has saturation equal to the G-bundle F′G corresponding to σ ′O, and
defect given by the 0-cycle DS.)

For a faithful representation φ : G → SLn, let σO,n be the corresponding point

of U
φZ(a)
n . We know that σO,n can be described as a pair (σ ′O,n

,DS,n), where σ ′O,n
is

the saturation of σO,n, i.e., a point of BunφZ(a−b)
n (S,D∞), and DS,n = �bi,n · si is a

0-cycle on S.
For a fixed pair of directions (dv,dh), let σ ′′ be the saturation of σ . In particular,

σ ′′ defines aG-bundle on S, with a trivialization along D∞, such that the inducedSLn-
bundle is isomorphic to σ ′O,n

. Since the morphism BunG(S,D∞)→ Bunn(S,D∞) is
an embedding, we obtain that this G-bundle on S is well defined, i.e., is independent
of (dv,dh). We set σ ′O to be the corresponding point of BunG(S,D∞).

It remains to show that the integers bi,n are divisible by φZ(1). For that we choose
a pair of directions (dv,dh) so that the points πv(si ) are pairwise distinct. Then the
corresponding bis are reconstructed as the defect of the quasi-map σ .

This completes the proof of the theorem.

7.4

Note that in the course of the proof of Theorem 7.2 we have established that the

morphisms ι : Ua−b
G × Sym(

◦
S) → Ua

G are compatible in a natural sense with the
factorization isomorphisms of Proposition 6.5. This is so because the corresponding
property is true for SLn.

As a corollary of Theorem 7.2, we obtain, in particular, the following.

Corollary 7.5. The variety Buna
G(S,D∞) is quasi-affine, and its affine closure is

isomorphic to the normalization of Ua
G.

Proof. Indeed, we know that dim Buna
G(S,D∞) = 2ȟa and from Theorem 7.2, we

obtain that the complement to Buna
G(S,D∞) inside the normalization of Ua

G is of

dimension 2ȟ(a − 1)+ 2. In other words, it is of codimension 2(ȟ− 1) ≥ 2. ��
We do not know whether Ua

G is in general a normal variety, but this is true for
G = SLn since Ua

n � Na
n; cf. [CB].

7.6

For a fixed pair of directions (dv,dh) and a point 0X ∈ X, consider the Gm-action on
S which acts as the identity on C and by dilations on X, fixing 0X. By transport of
structure, we obtain a Gm-action on Ua

G.

Proposition 7.7. The above Gm-action on Ua
G contracts this space to

(
◦
C× 0X)

(a) ⊂ ◦
S(a) � Ua;a

G ↪→ Ua
G.

The contraction map Ua
G →

◦
C(a) coincides with �a

h .
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Proof. We will use the description of Ua
G via Corollary 6.10, i.e., we realize it as a

closed subset in

QMaps(C,GG,X)× Sect(D∞ − dh,
◦
C(a)

D∞−dh
).

Note that the family of curves CD∞−dh
can be naturally identified with the constant

family (D∞ − dh) × C via the projection C × 0X
πv→ Cdv for each dv ∈ D∞ − dh.

In terms of this trivialization, the above Gm-action contracts the space Sect(D∞ −
dh,

◦
C(a)

D∞−dh
) to the space of constant sections, which can be identified with

◦
C(a).

In addition, from Proposition 2.6 we obtain that the above Gm-action contracts

the space QMapsa(C,GG,X) to
◦
C(a) ⊂ QMapsa(C,GG,X).

By comparing it with our description of the map ib : Ua;b
G → Ua

G for b = a we
obtain the assertion of the proposition. ��

7.8 An example

Let us describe explicitly the Uhlenbeck space Ua
G for a = 1. (In particular, using

Proposition 6.5, this will imply the description of the singularities of Ua
G for general

a along the strata Ua;b
G for b = 1.)

Choose a pair of directions (dv,dh), and consider the corresponding surface
S′ = C × X. Let us choose points 0C ∈ C − ∞C, 0X ∈ X − ∞X, and consider

the affine Grassmannian GrG := GrG,X,0X . Let Gr
α0
G ⊂ GrG be the corresponding

closed subscheme. It contains the unit point 1Gr ∈ GrG, which is its only singularity.

By definition, we have a map Gr
α0
G → BunG(X), and, as we know, the stack

BunG(X) carries a line bundle PBunG(X) with a section whose set of zeroes is the
locus of nontrivial bundles. Let us denote by D

Gr
α0
G

the corresponding Cartier divisor

in Gr
α0
G . Note that the point 1Gr belongs to Gr

α0
G −D

Gr
α0
G

.

We claim that there is a natural isomorphism

U1
G �

◦
C× ◦

X × (Gr
α0
G −D

Gr
α0
G

).

We have the projection

� 1
h ×� 1

v : U1
G →

◦
C× ◦

X,

and the group A2 acts on U1
G via its action on

◦
S by shifts. Therefore, it is enough to

show that
(� 1

h )
−1(0C) ∩ (� 1

v )
−1(0X) � Gr

α0
G −D

Gr
α0
G

. (17)

Note that the intersection (� 1
h )
−1(0C) ∩ (� 1

v )
−1(0X) contains only one geometric

point, which is not in BunG(S′,D′∞), namely, the point 0C×0X from the stratum U1;1
G .
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Let 1C ∈ C be a point different from 0C and∞C. Given a point in (� 1
h )
−1(0C)∩

(� 1
v )
−1(0X), we have a quasi-map σ : C → Gr

α0
G (cf. Section 3.8), such that σ ,

restricted to C − 0C, is a map whose image belongs to Gr
α0
G −D

Gr
α0
G

. Hence σ 
→
σ(1C) defines a map in one direction (� 1

h )
−1(0C)∩(� 1

v )
−1(0X)→ (Gr

α0
G −D

Gr
α0
G

).

Let us first show that this map is one-to-one. From the proof of Theorem 7.2, it is
clear that it sends the unique point in (� 1

h )
−1(0C) ∩ (� 1

v )
−1(0X) ∩ U1;1

G to the point

1Gr ∈ Gr
α0
G −D

Gr
α0
G

.

Now, let σ1, σ2 be two elements of (� 1
h )
−1(0C) ∩ (� 1

v )
−1(0X). Since both σ1

and σ2 are of degree 1, if we had 1Gr = σ1(∞C) = σ2(∞C), and σ1(1C) = σ2(1C),
this would imply σ1 = σ2. For the same reason, no map σ can send 1C to 1Gr.

Hence the map (� 1
h )
−1(0C) ∩ (� 1

v )
−1(0X)→ (Gr

α0
G −D

Gr
α0
G

) is one-to-one on

the level of geometric points. Since the left-hand side is reduced, and the right-hand
side is normal, we obtain that it is an open embedding. Recall now the action of Gm by

dilations along the X-factor. We claim that it contracts (Gr
α0
G −D

Gr
α0
G

) to the point 1Gr.

Indeed, we have a closed embedding GrG ↪→ GG,X, such that (Gr
α0
G − D

Gr
α0
G

) gets

mapped to the corresponding open cell Ggaff ,g
+
aff ,e

(cf. Section 2.2), and for Schubert
cells the contraction assertion is evident.

Using Proposition 7.7, this implies that (� 1
h )
−1(0C) ∩ (� 1

v )
−1(0X)→ (Gr

α0
G −

D
Gr

α0
G

) is in fact an isomorphism.

Remark. It is well known that (Gr
α0
G −D

Gr
α0
G

) is isomorphic to the minimal nilpotent

orbit closure Omin in g. It was noticed by V. Drinfeld in 1998 that the transversal
slice to the singularity of U1

G should look like Omin.

7.9

For a fixed b, 0 ≤ b ≤ a, let P(b) be a partition, i.e., b = �
k
nk · dk , with dk > 0

and pairwise distinct. Let us denote by SymP(b)(
◦
S) the variety �

k
Symnk (

◦
S), and by

◦
SymP(b)(

◦
S) the open subset of SymP(b)(

◦
S) obtained by removing all the diagonals.

The symmetric power Symb(
◦
S) is the union ∪

P(b)

◦
SymP(b)(

◦
S) over all the partitions

of b. Let U
a;P(b)
G = Buna−b

G (S,D∞)× ◦
SymP(b)(

◦
S) be the corresponding subscheme

in U
a;P(b)
G .
The next theorem, which can be regarded as the main result of this paper, describes

the restriction of the intersection cohomology sheaf of Ua
G to the strata U

a;P
G .

Let ǧaff denote the Langlands dual Lie algebra to gaff . Consider the (maximal)
parabolic g[[t]] ⊕K · C⊕ d · C ⊂ gaff ; then we obtain the corresponding parabolic
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inside ǧaff , whose unipotent radical V is an (integrable) module over the correspond-
ing dual Levi subalgebra, i.e., V is a representation of the group Ǧaff = Ǧ×Gm. In
particular, we can consider the space Vf , where f ∈ ǧ is a principal nilpotent ele-
ment. We regard Vf as a bi-graded vector space, Vf = ⊕

m,l
(Vf )ml : where the “first’’

grading, corresponding to the upper index m, is the principal grading coming from
the Jacobson–Morozov triple containing f , and the “second’’ grading, corresponding
to the lower index l, comes from the action of Gm ⊂ Gaff .

For a partition P(b) as above, we will denote by SymP(b)(Vf ) the graded vector
space ⊗

k

(⊕
i≥0

(Symi (Vf ))dk [2i])⊗nk ,

where the subscript dk means that we are taking the graded subspace of the corre-
sponding index with respect to the “second’’ grading, and the notation [j ] means
the shift with respect to the “first’’ grading. By declaring the “first’’ grading to be
cohomological we obtain a semisimple complex of vector spaces.

Theorem 7.10. The restriction ICUa
G
|
U

a;P(b)
G

is locally constant and is isomorphic to

the IC sheaf on this scheme tensored by the (constant) complex SymP(b)(Vf ).

8 Functorial definitions

8.1

An obvious disadvantage of our definition of Ua
G is that we were not able to say what

functor it represents. In this section, we will give two more variants of the definition of
the Uhlenbeck space, we will call them TannUa

G and Drinf Ua
G, respectively, and which

will be defined as functors. Moreover, TannUa
G will be a scheme, whereas Drinf Ua

G is
only an ind-scheme.

We will have a sequence of closed embeddings

Ua
G → TannUa

G → Drinf Ua
G,

which induce isomorphisms on the level of the corresponding reduced schemes. (In
other words, up to nilpotents, one can give a functorial definition of the Uhlenbeck
space.)

8.2 A Tannakian definition

In this subsection, we will express the Uhlenbeck space for an arbitrary G in terms
of that of SLn.

For two integers n1 and n2, consider the homomorphisms

SLn1 × SLn2 → SLn1+n2 and SLn1 × SLn2 → SLn1·n2 ,
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and the corresponding morphisms

Bunn1(X)× Bunn2(X)→ Bunn1+n2(X)

and

Bunn1(X)× Bunn2(X)→ Bunn1·n2(X).

Note that the pullbacks of the line bundles PBunn1+n2 (X) and PBunn1·n2 (X) are iso-

morphic to PBunn1 (X) � PBunn2 (X) and P
⊗n2
Bunn1 (X) � P

⊗n1
Bunn2 (X), respectively.

As in Lemma 6.2, we obtain the closed embeddingsU
a1
n1×U

a2
n2 → U

a1+a2
n1+n2

andU
a1
n1×

U
a2
n2 → U

a1·n2+a2·n1
n1·n2 , which extend the natural morphisms between the corresponding

moduli spaces Buna
n(S,D∞).

Moreover, it is easy to deduce from the proof of Theorem 7.2 that if σO,1 (re-
spectively, σO,2) is a collection of based quasi-maps C → GrBD,a

SLn1 ,X
describing a

point of U
a1
n1 , whose saturation is σ ′O,1 and defect D1,S (respectively, σ ′O,2, D2,S),

then the corresponding point of U
a1+a2
n1+n2

(respectively, U
a1·n2+a2·n1
n1·n2 ) will have satura-

tion σ ′O,1 ⊕ σ ′O,2 (respectively, σ ′O,1 ⊗ σ ′O,2) and defect D1,S + D2,S (respectively,
n2 ·D1,S + n1 ·D2,S).

8.3

We set TannUa
G to represent the functor that assigns to a test scheme S the follow-

ing data:

• an S-point of Sect(O,QMapsa(C,GrBD,a
G,X )O);

• for every representation φ : G→ SLn, a point of U
φZ(a)
n ,

such that we have the following:

• The corresponding S-points of Sect(O,QMapsφZ(a)(C,GrBD,φZ(a)
SLn,X

)O), com-
ing from

Sect(O,QMapsa(C,GrBD,a
G,X )O)→ Sect(O,QMapsφZ(a)(C,GrBD,φZ(a)

SLn,X
)O)

← UφZ(a)
n ,

coincide.
• For φ = φ1 ⊗ φ2, n = n1 · n2 (respectively, φ = φ1 ⊕ φ2, n = n1 + n2), the

corresponding S-point of U
φZ(a)
n equals the image of the corresponding point of

U
φ1Z(a)
n1 × U

φ2Z(a)
n2 under

Uφ1Z(a)
n1

× Uφ2Z(a)
n2

→ UφZ(a)
n .
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Since for a faithful representation φ : G → SLn, the map Sect(O,QMapsa(C,

GrBD,a
G,X )O) → Sect(O,QMapsφZ(a)(C,GrBD,φZ(a)

SLn,X
)O) is a closed embedding, it is

easy to see that TannUa
G is in fact a closed subfunctor in U

φZ(a)
n ; in particular, TannUa

G

is indeed representable by an affine scheme of finite type. Moreover, by construction,
we have a closed embedding Ua

G → TannUa
G.

Proposition 8.4. The above map Ua
G → TannUa

G induces an isomorphism on the level
of reduced schemes.

We do not know whether it is in general true that TannUa
G is actually isomorphic

to Ua
G.

Proof. Since the map in question is a closed embedding, we only have to check that
it defines a surjection on the level of geometric points.

Thus let σO : C → GrBD,a
G,X be the collection of quasi-maps representing a point

of Sect(O,QMapsa(C,GrBD,a
G,X )O), and σO,φ be a compatible system of points of

U
φZ(a)
n for every representation φ : G→ SLn.

Using Theorem 7.2, we have to show that there exists a point F′G ∈ BunG(S,D∞)

(corresponding to a system of maps σ ′O) and a 0-cycle DS, such that for every
(dv,dh) ∈ O, the corresponding quasi-map σ has as its saturation the map of (15)
and πv(DS) as its defect.

Let F′φ be the SLn bundle corresponding to the saturation of σO,φ . From our

description of the maps U
a1
n1 × U

a2
n2 → U

a1+a2
n1+n2

and U
a1
n1 × U

a2
n2 → U

a1·n2+a2·n1
n1·n2 , it

follows that F′φ1⊕φ2
� F′φ1

⊕ F′φ2
and F′φ1⊗φ2

� F′φ1
⊗ F′φ2

.
Therefore, the collection {F′φ} defines a G-bundle on S, trivialized along D∞,

which we set to be our F′G. The 0-cycle DS is reconstructed using just one faithful
representation of G, as in the proof of Theorem 7.2. ��

8.5 Drinfeld’s approach

Consider the functor {Schemes of finite type} → {Groupoids}; we will call it Drinf Ua
G

since the definition below follows a suggestion of Drinfeld. The category correspond-
ing to a test scheme S has as objects the data of the following:

• A principal G-bundle FG defined on an open subscheme of U ⊂ S × S, such
that S × S − U is finite over S, and U ⊃ D∞ × S, and FG is equipped with
a trivialization along D∞ × S. (We will denote by UO the corresponding open
subset in S′O × S, and by FG,O the corresponding G-bundle over it.)

• A map S → Sect(O,QMapsa(C,GrBD,a
G,X )O)

τ . (This expression makes use of the
superscript τ , which was introduced in Lemma 4.10.) We will denote by σO the
corresponding relative quasi-map CO× S → GrBD,a

G,XO
. Let VO ⊂ CO× S denote

the open subset over which σO is defined as a map, and Dv,O ⊂ XO × S the
corresponding relative divisor. Let UσO ⊂ S′O×S be the open subset VO×

O
XO∪
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CO ×
O
(XO − Dv,O), and F

σO
G be the corresponding principal G-bundle defined

on UσO .
• An isomorphism α between FG,O|UσO∩UO and F

σO
G |UσO∩UO , respecting the trivi-

alizations along D′∞,O × S.

Morphisms between an object (FG,U, σO, α) and another object (F1
G,U

1, σ 1
O,

α1) are G-bundle isomorphisms FG � F1
G|U1

O∩UO
, which commute with other pieces

of data (in particular, the data of σO must be the same). In particular, we see that
objects in our category have no nontrivial automorphisms, i.e., Drinf Ua

G is a functor
{Schemes of finite type} → {Sets}.
Lemma 8.6. The functor Drinf Ua

G is representable by an affine ind-scheme of ind-
finite type.

(Later we will show that Drinf Ua
G → Sect(O,QMapsa(C,GrBD,a

G,X )O) is, in fact,
a closed embedding.)

Proof. It is enough to show that the forgetful map Drinf Ua
G → Sect(O,QMapsa(C,

GrBD,a
G,X )O) is ind-representable (and ind-affine). Thus for a test-scheme S let σO be

a relative quasi-map CO × S → GrBD,a
G,XO

, and let UσO , F
σO
G be as above.

Let (dv,dh) ∈ O be some fixed pair of directions, and setU ⊂ S′×S (respectively,
FG) to be the fiber of UσO (respectively, F

σO
G ) over the corresponding point of O.

We will denote by the same character U (respectively, FG) the corresponding open
subset in S× S (respectively, the G-bundle over it).

Consider the group ind-scheme over S, call it AutU(FG), of automorphisms of
FG, respecting the trivialization at the divisor of infinity. Consider now the group
ind-scheme of S-maps S × O → AutU(FG). Then it is easy to see that the fiber
product

S ×
Sect(O,QMapsa(C,GraG)O)

Drinf Ua
G

is (ind-)represented by the above ind-scheme MapsS(S ×O,AutU(FG)). ��
The rest of this section will be devoted to the proof of the following result.

Theorem 8.7. We have a closed embedding TannUa
G → Drinf Ua

G, which induces an
isomorphism on the level of reduced schemes.

8.8

Our first task is to construct the map TannUa
G → Drinf Ua

G. The first case to consider is
G = SLn. In this case, by the definition of TannUa

G, we have Ua
n � TannUa

n.
Since Drinf Ua

n is ind-affine, and Ua
n � Na

n is the affinization of the scheme Ña
n, to

construct a map Ua
n → Drinf Ua

n, it suffices to construct a map Ña
n → Drinf Ua

G.
Given an S-point M of Ña

n, i.e., an S-family of torsion-free sheaves on S, there
exists an open subset U ⊂ S × S whose complement is finite over S, such that M
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is a vector bundle when restricted to U , i.e., we obtain a principal SLn-bundle FSLn

on U .
The data of a relative quasi-map σO are obtained from the composition

Ña
n → Ua

n → Sect(O,QMapsa(C,GraG)O).

The isomorphisms α : FSLn,O|UσO∩UO � F
σO
SLn
|UσO∩UO follow from the construction

of the map (13).
Thus we have a morphism Ua

n → Drinf Ua
n, and moreover, for n = n1 + n2

(respectively, n = n1 · n2) and a = a1 + a2 (respectively, a = n1 · a2 + n2 · a1), the
natural morphism

Drinf Ua1
n1
× Drinf Ua2

n2
→ Drinf Ua

n

is compatible with the corresponding morphism U
a1
n1 × U

a2
n2 → Ua

n. Hence we have
the morphism TannUa

G → Drinf Ua
G for an arbitrary G.

Next, we will show that the composition Ua
G → TannUa

G → Drinf Ua
G is a closed

embedding. Let U
a

G be the closure of BunG(S,D∞) in Drinf Ua
G.

Then under the projection Drinf Ua
G → Sect(O,QMapsa(C,GrBD,a

G,X )O), U
a

G gets
mapped to Ua

G, and we obtain a pair of arrows

Ua
G � U

a

G,

such that both compositions induce the identity map on BunG(S,D∞). Since the
latter is dense, we obtain that the map Ua

G → U
a

G is in fact an isomorphism.
Thus Ua

G → Drinf Ua
G is a closed embedding, and let us show now that it induces

an isomorphism from Ua
G to the reduced (ind-)scheme underlying Drinf Ua

G. For that
we have to check that this map is surjective on the level of geometric points.

Let (FG, σO, α) be a geometric point of Drinf Ua
G, and let Dv,O (respectively,

Dh,O) be the relative Cartier divisors in XO (respectively, CO) obtained from σO via
�a

v,O (respectively, �a
h,O). Let us denote by F′G the (unique) extension of FG to the

entire S. Let σ ′O be the map CO × S → GrBD,a−b
G,XO

corresponding to F′G. Let D′
v,O

(respectively, D′
h,O) be the relative divisors in XO (respectively, CO) corresponding

to σ ′O.
Set S − U = ∪

i
si . Our task is to show that there exist integers bi such that for

every pair of directions (dv,dh) ∈ O, we have the following:

(1) Dv = D′v + bi · πh(si ), Dh = D′h + bi · πv(si ).

(2) The quasi-map σ has the saturation equal to C
σ ′−→ GrBD,a−b

G,X,D′v
→ GrBD,a

G,X,Dv
.

(3) The defect of σ equals �
i
bi · πv(si ).

Let σ ′′ : C → GrBD,a
G,X,Dv

be a based map of degree a−b which is the saturation of
σ . We know that σ is obtained from σ ′′ by adding to it a divisor of degree b supported

on ∪
i
πv(si ). Hence by letting (dv,dh) move along O, we obtain a section O → ◦

X(b)

O
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with the above support property. However, it is easy to see that any such section is
of the form

(dv,dh) 
→ �
i
bi · πv(si )

for some integers bi .

Now, since the maps σ ′ and σ ′′ give rise to the same bundle on S′, the two
compositions

C
σ ′−→ GrBD,a−b

G,X,D′v
→ GG,X and C

σ ′′−→ GrBD,a
G,X,Dv

→ GG,X

coincide. Hence σ ′ and σ ′′ have the same degree a− b and �a−b
h (σ ′) = �a−b

h (σ ′′).
Since by the property of saturations (cf. (4)) we have �a

h (σ ) = �a−b
v (σ ′′) + �

i
bi ·

πv(si ), we obtain Dh = D′h + bi · πv(si ). By combining this with the condition

that σO ∈ Sect(O,QMapsa(C,GrBD,a
G,X )O)

τ (cf. Lemma 4.10), we also obtain that
D′v = Dv +�

i
bi · πh(si ). Moreover, we obtain that σ ′′ is the composition of σ ′ and

the embedding GrBD,a−b
G,X,D′v

→ GrBD,a
G,X,Dv

, which is what we had to show.

To complete the proof of the theorem, it would be enough to show that the projec-
tion Drinf Ua

G → Sect(O,QMapsa(C,GrBD,a
G,X )O) is a closed embedding. We know

this for the closed subschemeUa
G, and hence, we obtain a priori that the map in question

is ind-finite. Therefore, it would suffice to show that any tangent vector to Drinf Ua
G,

which is vertical with respect to the map Drinf Ua
G → Sect(O,QMapsa(C,GrBD,a

G,X )O),
is in fact zero.

Let Spec(C[ε]/ε2)→ Drinf Ua
G be such a tangent vector. Then the relative quasi-

map σO : CO × Spec(C[ε]/ε2) → GrBD,a
G,XO

is actually independent of ε, and as we
have seen in the proof of Lemma 8.6, we can assume that the generically defined
G-bundle FG is also independent of ε. Thus we are dealing with an infinitesimal
automorphism of FG, and we must show that it is zero.

However, FG extends canonically to a G-bundle on the entire S, and so does our
infinitesimal automorphism. Since this automorphism preserves the trivialization
along D∞, our assertion reduces to the fact that points of BunG(S,D∞) have no
automorphisms.

Part III: Parabolic Versions of Uhlenbeck Spaces

Throughout this part, g will be a simple finite-dimensional Lie algebra with the
corresponding simply connected group denoted G. By gaff we will denote the corre-
sponding untwisted affine Kac–Moody algebra, i.e., gaff = g((x))⊕K · C⊕ d · C,
as in Section 3.7.



86 Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory

9 Parabolic Uhlenbeck spaces

9.1

Let P1 � D0 ⊂ S � P2 be a divisor different from D∞; we will denote by
◦
D0 the

intersection D0 ∩
◦
S.

Let us denote by BunG;P (S,D∞;D0) the scheme classifying the data consisting
of a G-bundle FG on S, a trivialization of FG|D∞ , and a reduction to P of FG|D0 ,
compatible with the above trivialization at the point D∞ ∩D0. In other words, if we
denote by BunP (D0;D∞ ∩D0) the moduli stack classifying P -bundles on the curve
D0 with a trivialization at D∞ ∩ D0, we have an identification

BunG;P (S,D∞;D0) � BunG(S,D∞) ×
BunG(D0;D∞∩D0)

BunP (D0;D∞ ∩ D0). (18)

From this description, we see that BunG;P (S,D∞;D0) splits into connected compo-
nents indexed by θ ∈ �̂g,p � �g,p⊕ δ ·Z, where for θ = (θ, a), the index a indexes
the component of BunG(S,D∞), and θ that of BunP (D0;D∞ ∩ D0).

Recall the scheme GG,P,X (cf. Section 3.7), and observe that from Proposition 3.4
it follows that the scheme Bunθ

G;P (S,D∞;D0) � Bunθ
G;P (S

′,D′∞;D′0) is isomor-

phic to the scheme of based maps, Mapsθ (C,GG,P,X). This description implies that
Bunθ

G;P (S,D∞;D0) is empty unless θ ∈ �̂
pos
g,p.

Our present goal is to introduce parabolic versions of the Uhlenbeck spaces, Uθ
G;P

and Ũθ
G;P , both of which contain BunG;P (S,D∞;D0) as an open subset.

Let us first choose a pair of directions (dv,dh) ∈ D∞, but with the condition
that dh = D∞ ∩ D0. In other words, we have a rational surface S′ � C × X,
and in addition to ∞C ∈ C and ∞X ∈ X, we have a distinguished point 0X ∈ X,
such that D′0 = C × 0X is the proper transform of D0. Henceforth, we will identify
D0 � D′0 � C.

We will first introduce Uθ
G;P and Ũθ

G;P using a choice of dv , and then show that
the definition is in fact independent of that choice.

Definition 9.2. For θ = (θ, a), the parabolic Uhlenbeck space Uθ
G;P is defined as the

closure of Bunθ
G;P (S

′,D′∞;D′0) in the product QMapsθ (C,GG,P,X) ×
QMapsa(C,GG,X)

Ua
G.

Note that for P = G, the scheme Uθ
G;P is nothing but Ua

G.

Definition 9.3. The enhanced parabolic Uhlenbeck space Ũθ
G;P is defined as the clo-

sure of Bunθ
G;P (S

′,D′∞;D′0) in the product Q̃Mapsθ (C,GG,P,X) ×
QMapsa(C,GG,X)

Ua
G.

As we shall see later, both Uθ
G;P and Ũθ

G;P are schemes of finite type. Note also

that from the definition of Ua
G and Theorem 4.8, it follows that Uθ

G;P (respectively,

Ũθ
G;P ) could be equivalently defined as the closure of Bunθ

G;P (S
′,D′∞;D′0) inside
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the product QMapsθ (C,GG,P,X)×Sect(O,
◦
C(a)

O ) (respectively, Q̃Mapsθ (C,GG,P,X)

× Sect(O,
◦
C(a)

O )). Note also that Ũθ
G;P is a closed subscheme in the product

Uθ
G;P ×◦

Cθ

Modθ,+
Maff ,C

(this is so because the corresponding property holds on the level

of quasi-map spaces). We will denote the natural projection Ũθ
G;P → Uθ

G;P by rp+aff
.

Obviously, forP = B, the map rp+aff
is an isomorphism, but it is NOT an isomorphism

for P = G.

We will denote by �θ

p+aff
and �θ

Maff
the natural maps Uθ

G;P →
◦
Cθ and Ũθ

G;P →
Modθ,+

Maff ,C
.

The following horizontal factorization property of Uθ
G;P and Ũθ

G;P follows from
the corresponding factorization properties of quasi-map spaces (Proposition 2.19) and
of the Uhlenbeck space (Proposition 6.5).

Corollary 9.4. For θ = θ1 + θ2, we have canonical isomorphisms

Uθ
G;P ×◦

Cθ

(
◦
Cθ1 × ◦

Cθ2)disj � (U
θ1
G;P × U

θ2
G;P ) ×

◦
Cθ1×◦Cθ1

(
◦
Cθ1 × ◦

Cθ2)disj

and

Ũθ
G;P ×◦

Cθ

(
◦
Cθ1 × ◦

Cθ2)disj � (Ũ
θ1
G;P × Ũ

θ2
G;P ) ×

◦
Cθ1×◦Cθ2

(
◦
Cθ1 × ◦

Cθ2)disj.

9.5

Now our goal is to prove that the schemes Uθ
G;P and Ũθ

G;P are in fact canonically
attached to the surface S with the divisor D0, i.e., that they do not depend on the
choice of the direction dv . We will consider the case of Ũθ

G;P , since that of Uθ
G;P is

analogous (and simpler).
By Theorem 8.7, for S = Ua

G, the product S× S contains an open subset U , such
that S×S−U is finite over S, and over which we have a well-defined G-bundle FG.
Let D be a divisor on C× S, such that C× S −D ⊂ U . We set HugeŨθ

G;P to be the
ind-scheme of meromorphic enhanced quasi-maps

D·∞Q̃Maps(C,FG|C×S−D
G× Gg,p);

cf. Section 2.35 (recall that Gg,p is the finite-dimensional flag variety G/P ).
Clearly, HugeŨθ

G;P , is defined in a way independent of the choice of dv . We now

claim that for any dv we have a closed embedding Ũθ
G;P ↪→ HugeŨθ

G;P .

Indeed, the scheme Q̃Maps(C,GG,P,X) embeds as a closed subscheme into the

corresponding ind-scheme of meromorphic enhanced quasi-maps D·∞Q̃Maps(C,

GG,P,X). Now
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D·∞Q̃Maps(C,GG,P,X) ×
D·∞ QMaps(C,GG,X)

S � HugeŨθ
G;P .

This is because the data of an enhanced quasi-map (C × S − D) → GG,P,X that
projects to a given map (C× S −D)→ GG,X is equivalent to a data of an enhanced
quasi-map

(C× S −D)→ FG|C×S−D
G× Gg,p.

Note that the composition

Bunθ
G;P (S

′,D′∞;D′0)→ Ũθ
G;P → HugeŨθ

G;P

is also independent of dv . This shows that we can identify Ũθ
G;P with the closure of

Bunθ
G;P (S

′,D′∞;D′0) inside HugeŨθ
G;P , which makes it manifestly independent of dv .

Note also that in the course of the proof, we also established the following.

Corollary 9.6. The map Ũθ
G;P → BunM(C,∞C), which is the composition of �θ

Maff
:

Ũθ
G;P → Modθ,+

Maff ,C
and the natural projection Modθ,+

Maff ,C
→ BunM(C,∞C), is

independent of the choice of dv .

(Of course, the maps �θ
Maff

and �θ

p+aff
: Uθ

G;P → ◦
Cθ do depend on the choice

of dv .)

Corollary 9.7. The schemes Uθ
G;P and Ũθ

G;P are of finite type.

(Indeed, the ind-scheme HugeUθ
G;P is of ind-finite type, and Ũθ

G;P is the closure

of Buna
G;P (S,D∞,D0) inside HugeUθ

G;P .)

9.8 Beilinson–Drinfeld–Kottwitz flag space

Consider the ind-scheme GrBD,a
G,P,X,0X

fibered over over
◦
X(a), which classifies the

data of

• a divisor D ∈ ◦
X(a),

• a principal G-bundle FG on X,
• a trivialization FG � F0

G|X−D , and
• a reduction to P of the G-torsor FG|0X .

We have an evident map GrBD,a
G,P,X,0X

→ GG,P,X, which remembers of the trivial-
ization of FG on X−D its restriction to the formal neighborhood of∞X. Moreover,

it is easy to see that the map GrBD,a
G,P,X,0X

→ GG,P,X ×
◦
X(a) is, in fact, a closed

embedding.
Thus we can consider the relative based quasi-map space QMaps(C,GrBD,a

G,P,X,0X
),

fibered over
◦
X(a), which is a closed subscheme inside QMaps(C,GG,P,X)×

◦
X(a).
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As in Proposition 4.7, we obtain that the parabolic Uhlenbeck space Uθ
G;P can be

alternatively defined as the closure of Bunθ
G;P (S

′,D′∞;D′0) in the product

QMapsθ (C,GrBD,a
G,P,X,0X

) ×
QMapsa(C,GrBD,a

G,X )

Ua
G,

where a is the projection of θ under �̂g,p → Z.
The above realization of Uθ

G;P gives an alternative proof that Uθ
G;P is a scheme

of finite type, since GrBD,a
G,P,X,0X

is of ind-finite type.
We will establish another important property of parabolic Uhlenbeck spaces (go-

ing back to the work [Va] of G. Valli), called the vertical factorization property.

Proposition 9.9. Let θ = (θ, a) be an element of �̂pos
g,p. If a = a1 + a2 is such that

θ1 = θ − a2 · δ also lies in �̂
pos
g,p, then there are canonical isomorphisms

Uθ
G;P ×

◦
X(a)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj

� (U
θ1
G;P × U

a2
G ) ×

◦
X(a1)×( ◦X−0X)(a2)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj,

and

Ũθ
G;P ×

◦
X(a)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj

� (Ũ
θ1
G;P × U

a2
G ) ×

◦
X(a1)×( ◦X−0X)(a2)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj.

If θ − δ /∈ �
pos
aff,g,p, then the composition Uθ

G;P → Ua
G

�a
v−→ ◦

X(a) maps to the point

a · 0X ∈
◦
X(a).

Proof. First, the usual Uhlenbeck space Ua
G has the vertical factorization property

Ua
G ×

◦
X(a)

(
◦
X(a1) × ◦

X(a2))disj � (U
a1
G × U

a2
G ) ×

◦
X(a1)×◦X(a2)

(
◦
X(a1) × ◦

X(a2))disj, (19)

because C and X play symmetric roles in the definition of Ua
G.

Using (18) we obtain that the corresponding factorization property for the open
subscheme Bunθ

G;P (S,D∞;D0) follows from that of Buna
G(S,D∞).

To establish the factorization property of Uθ
G;P we will use the fact (cf. [Ga]) that

GrBD,a
G,P,X,0X

×
◦
X(a)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj



90 Alexander Braverman, Michael Finkelberg, and Dennis Gaitsgory

� (GrBD,a1
G,P,X,0X

×GrBD,a2
G,X ) ×

◦
X(a1)×◦X(a2)

(X(a1) × (
◦
X − 0X)

(a2))disj. (20)

Moreover, this decomposition is compatible with the corresponding line bundles.
Therefore, (20) combined with (19) and Lemma 1.15 yield an isomorphism:

(QMapsθ (C,GrBD,a
G,P,X,0X

) ×
QMapsa(C,GrBD,a

G,X )

Ua
G) ×◦

X(a)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj

� (QMapsθ1(C,GrBD,a1
G,P,X,0X

)× QMapsa2(C,GrBD,a2
G,X ))

×
QMapsa1 (C,Gr

BD,a1
G,X )×QMapsa2 (C,Gr

BD,a2
G,X )

(U
a1
G × U

a2
G )

×
◦
X(a1)×( ◦X−0X)(a2)

(
◦
X(a1) × (

◦
X − 0X)

(a2))disj.

Since Uθ
G;P is the closure of Bunθ

G;P (S
′,D′∞;D′0) in the product

QMapsθ (C,GrBD,a
G,P,X,0X

) ×
QMapsa(C,GrBD,a

G,X )

Ua
G,

we conclude that it factorizes in the required fashion.
To prove the assertion for Ũθ

G;P , recall that it is the closure of Bunθ
G;P (S

′,D′∞;D′0)
in the product Uθ

G;P ×Modθ,+
Maff

.

Note also that we have a natural closed embedding Modθ1,+
Maff

→ Modθ,+
Maff

, such
that we have a commutative square

(
◦
X(a1) × ◦

X(a2))disj ×
◦
X(a1)×◦X(a2)

(Bunθ1
G;P (S′,D′∞;D′0)× Buna2

G
(S′,D′∞)) −−−−−→ Modθ1,+

Maff

∼
⏐⏐� ⏐⏐�

(
◦
X(a1) × ◦

X(a2))disj ×◦
X(a)

Bunθ
G;P (S′,D′∞;D′0) −−−−−→ Modθ,+

Maff
.

Therefore, the factorization property for Ũθ
G;P follows from that for Uθ

G;P .

Suppose now that θ − δ /∈ �̂
pos
g,p. Since Bunθ

G;P (S,D∞;D0) is dense in Uθ
G;P , it

is enough to prove that

Bunθ
G;P (S,D∞;D0)→ Buna

G(S,D∞)
�a

v−→ ◦
X(a)

is the constant map to a · 0X ∈
◦
X(a).

If this were not the case, there would exist a1, a2 �= 0 with a1 + a2 = a and a
based map

C → GrBD,a1
G,P,X,0X

×GrBD,a2
G,X
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of total degree θ , such that its projection onto the second factor, i.e., C → GrBD,a2
G,X

was not the constant map. However, the space of such maps is the union over
b ∈ Z of

Mapsθ−b·δ(C,GrBD,a1
G,P,X,0X

)×Mapsb(C,GrBD,a2
G,X ),

which is nonempty only when b ≥ 0 and θ − b · δ ∈ �
pos
g,p. But this forces b = 0,

i.e., our map C → GrBD,a2
G,X must actually be the constant map. ��

10 Stratification of parabolic Uhlenbeck spaces

10.1

For an element θ ∈ �̂
pos
g,p consider a decomposition θ = θ1 + θ2 + b · δ with θ1,

θ2 ∈ �̂
pos
g,p − 0, b ∈ N. Let us denote by

◦◦
S the complement to D0 in

◦
S, and let us

denote by U
θ;θ2,b
G;P the following scheme:

Bunθ1
G;P (S,D∞;D0)×

◦
Cθ2 × Symb(

◦◦
S).

The following is a generalization of Theorem 7.2.

Theorem 10.2. There exists a finite map ιθ2,b : U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S) → Uθ

G;P ,
compatible with the factorization isomorphisms of Corollary 9.4 and Proposition 9.9.
Moreover, the composition

ιθ2,b : Uθ;θ2,b
G;P ↪→ U

θ1
G;P ×

◦
Cθ2 × Symb(

◦
S)→ Uθ

G;P

is a locally closed embedding, and Uθ
G;P � ∪

θ2,b
U
θ;θ2,b
G;P .

Proof. We construct a map

U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S)→ QMapsθ (C,GG,P,X) ×

QMapsa(C,GG,X)
Ua
G

as follows:

The projection U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S)→ Ua

G is the map

U
θ1
G;P ×

◦
Cθ2 × Symd(

◦
S)→ U

a1
G ×

◦
C(a2)× Symb(

◦
S)→ U

a1
G × Syma2+b(

◦
S)

ιa2+b−→ Ua
G,

where ιa2+b is as in Theorem 7.2.

The projection U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S)→ QMapsθ (C,GG,P,X) is
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U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S)→ QMapsθ1(C,GG,P,X)×

◦
Cθ2 × ◦

C(b)

→ QMapsθ1(C,GG,P,X)×
◦
Cθ2+b·δ

→ QMapsθ (C,GG,P,X),

where the first arrow in the above composition uses the map πv : Symb(
◦
S) →

◦
C(b), the second arrow corresponds to the addition of divisors, and the third arrow

comes from (3). It is easy to see that the resulting map U
θ1
G;P ×

◦
Cθ2 × Symb(

◦
S) →

QMapsθ (C,GG,P,X) × Ua
G indeed maps to the fiber product QMapsθ (C,GG,P,X)

×
QMapsa(C,GG,X)

Ua
G and that the map ιθ2,b is a locally closed embedding.

Moreover, it is easy to see that the image of ιθ2,b belongs in fact to the subscheme

QMapsθ (C,GrBD,a
G,P,X,0X

) ×
QMapsa(C,GrBD,a

G,X )

Ua
G,

and that this map is compatible with the isomorphisms of Proposition 9.9.
The map ιθ2,b is also compatible with the factorization isomorphisms (9.4)

(due to the corresponding property of the map ιb for the Uhlenbeck space Ua
G).

Therefore, to prove that the image of ιθ2,b belongs to Uθ
G;P (i.e., to the closure of

Bunθ
G;P (S

′,D′∞;D′0) in the product QMapsθ (C,GG,P,X) ×
QMapsa(C,GG,X)

Ua
G), it suf-

fices to analyze separately the following cases: (a) θ2 = 0, b = 0; (b) θ1 = 0, θ2 = 0;
(c) θ1 = 0, b = 0. Of course, case a) is trivial, since it corresponds to the open stratum,
i.e., Bunθ

G;P (S
′,D′∞;D′0) itself.

The second case, when θ1 = 0, θ2 = 0, follows immediately from Proposition 9.9.

Indeed, the preimage of (
◦
X − 0X)

(b) under Ub·δ
G;P → Ub

G

�b
h−→ ◦

X(b) in this case is
isomorphic to

Ub
G ×

◦
X(b)

(
◦
X − 0X)

(b),

which contains Symb(
◦◦
S) as a closed subscheme, according to Theorem 7.2.

Thus it remains to treat the case θ1 = 0, b = 0. We will use again the horizontal
factorization property, i.e., Corollary 9.4, which allows us to assume that θ2 is the
projection of a simple coroot of gaff .

To show that the image of
◦
C � Bun0

G;P (S,D∞;D0)×
◦
C× Sym0(

◦◦
S) belongs to

Uθ
G;P , we will consider a certain Gm-action on QMapsθ (C,GG,P,X) ×

QMapsa(C,GG,X)
Ua
G.

We choose a direction dv ∈ D∞− dh and consider the Gm-action on S as in Pro-
position 7.7. This action induces a Gm-action on QMapsθ (C,GG,P,X) ×

QMapsa(C,GG,X)

Ua
G, which we shall call “the action of the first kind.’’ Note that the corresponding

action on the first factor, i.e., QMapsθ (C,GG,P,X), corresponds to the canonical
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homomorphism Gm → Maff×Gm, where the latter is thought of as the Levi subgroup
corresponding to the parabolic p+aff ⊂ gaff .

Another Gm-action, which we shall call “the action of the second kind,’’ corre-
sponds to a dominant central cocharacter ν : Gm → Z(M), as in Proposition 2.6.

Note that the actions of the first and the second kind commute with one another, and
the compound Gm-action, which we shall call “new,’’ corresponds to a cocharacter
Gm → Maff × Gm, which satisfies the dominance condition of Proposition 2.6.
Using this proposition, combined with Proposition 7.7, we obtain that the “new’’

action contracts the space QMapsθ (C,GG,P,X) ×
QMapsa(C,GG,X)

Ua
G to ιθ,0(

◦
C). This

contraction map is dominant, due to its equivariance with respect to the action of

A1 � ◦
C by horizontal shifts.

In particular, we obtain that ιθ,0(
◦
C) lies in the closure of Bunθ

G;P (S,D∞;D0),
which is what we had to show.

Now let us show that every geometric point of Uθ
G;P belongs to one of the locally

closed subschemes U
θ;θ2,b
G;P . We will argue by induction on the length of θ .

Consider the map Uθ
G;P → Ua

G, and let z ∈ Ua
G be the image of our geometric

point. If z has a singularity at s ∈ ◦◦
S , then �a

v (z) �= a · 0X, and by Proposition 9.9,
θ − δ ∈ �̂

pos
g,p. Hence our geometric point is contained in the image of i0,1, and our

assertion follows from the induction hypothesis.

If z has a singularity at s ∈ ◦
C× 0X, then our geometric point is contained in the

image of iα0,0, and again the assertion follows by the induction hypothesis.
Hence it remains to analyze the case when z belongs to Buna

G(S,D∞), i.e., we
are dealing with the locus of Uθ

G;P isomorphic to

BunG(S,D∞) ×
BunG(C,∞C)

Bun
θ

P (C,∞C),

where Bun
θ

P (C,∞C) is the corresponding version of Drinfeld’s stack of generalized
P -bundles on C with a trivialization at∞C ∈ C.

The assertion in this case follows from the corresponding property of Drinfeld’s
compactifications; cf. [BG1]. ��

10.3

In the course of the proof of Theorem 10.2, we have established the following.

Corollary 10.4. The “new’’ Gm-action on QMapsθ (C,GG,P,X) ×
QMapsa(C,GG,X)

Ua
G

preserves Uθ
G;P and contracts it to the subscheme

◦
Cθ

iθ,0
↪→ Uθ

G;P . The contraction

map Uθ
G;P →

◦
Cθ coincides with the map �θ

p+aff
.

In what follows, we will sometimes use the notation sp+aff
for the map

◦
Cθ → Uθ

G;P .
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10.5

Now we turn to the space Ũθ
G;P . For θ = θ1 + θ2 + b · δ, let us denote by Ũ

θ;θ2,b
G;P the

preimage in Ũθ
G;P of the locally closed subset U

θ;θ2,b
G;P ⊂ Uθ

G;P .

Proposition 10.6. We have an isomorphism on the level of reduced schemes:

Ũ
θ;θ2,b
G;P � (Bunθ1

G;P (S,D∞;D0) ×
BunM(C,∞C)

H
θ2,+
Maff ,C

)× Symb(
◦◦
S).

Proof. Recall the map rp+aff
: Q̃Mapsθ (C,GG,P,X)→ QMapsθ (C,GG,P,X), and note

that we have a natural closed embedding

Ũθ
G;P → Uθ

G;P ×
QMapsθ (C,GG,P,X)

Q̃Mapsθ (C,GG,P,X).

Hence we a priori have a closed embedding

Ũ
θ;θ2,b
G;P → (Bunθ1

G;P (S,D∞;D0) ×
BunM(C,∞C)

H
θ2+b·δ,+
Maff ,C

)× Symb(
◦◦
S),

by Proposition 2.34. However, using the vertical factorization property, Proposi-
tion 9.9, we obtain that its image is in fact contained in (Bunθ1

G;P (S,D∞;D0)

×
BunM(C,∞C)

H
θ2,+
Maff ,C

)× Symb(
◦◦
S). Thus we have to show that the above inclusion is

in fact an equality on the level of reduced schemes.
Using again the vertical factorization property, we can assume that b = 0.

We know (cf. Lemma 3.6) that the map BunG(S,D∞) � BunG(S′,D′∞) →
BunG(C,∞C), given by restriction of G-bundles under C � D0 → S, is smooth.
Hence the map

BunG;P (S,D∞;D0) � BunG(S,D∞) ×
BunG(C,∞C)

BunP (C,∞C)

→ BunP (C,∞C)→ BunM(C,∞C)

is smooth as well. Therefore, the scheme Bunθ1
G(S,D∞;D0) ×

BunM(C,∞C)
H

θ2,+
Maff ,C

is

irreducible, and it is enough to check our surjectivity assertion at the generic point.
Consider the map

Bunθ1
G;P (S,D∞;D0) ×

BunM(C,∞C)
H

θ2,+
Maff ,C

→ (
◦
Cθ1 × ◦

Cθ2).

It is sufficient to analyze the locus which projects to pairs of simple and mutually

disjoint divisors in
◦
Cθ1 × ◦

Cθ2 . Moreover, using the horizontal factorization property,
we reduce the assertion to the case when θ1 = 0, and θ2 = θ is the projection of a
simple coroot in gaff .
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For θ of the form (θ, 0) we have an isomorphism Ũθ
G;P � B̃unθ

P (C,∞C). There-
fore, if θ is the projection of a coroot belonging to g, our assertion follows from the
corresponding fact for B̃unθ

P (C,∞C); cf. [BFGM]. Hence it remains to consider the
case when θ is the projection of the simple affine coroot α0.

Consider the “new’’ Gm-action on Ũθ
G;P as in Corollary 10.4. In the same way,

we obtain a Gm-action on Ũθ
G;P , which contracts this space to

Modθ,+
Maff ,C

� ◦
Cθ ×

◦
Cθ

Modθ,+
Maff ,C

⊂ Uθ
G;P ×◦

Cθ

Modθ,+
Maff ,C

.

Thus it is enough to show that the map �θ
Maff

: Ũθ
G;P → Modθ,+

Maff ,C
is dominant. Of

course, it is sufficient to prove that the restriction of �θ
Maff

to Bunθ
G;P (S,D∞;D0) is

dominant.

Let us fix a point c ∈ ◦
C and consider the preimage of a · c ∈ C under

Bunθ
G;P (S,D∞;D0)→ Buna

G(S,D∞)
�a

h−→ ◦
C(a),

which we will denote by
◦
Fθ

gaff ,p
+
aff

; cf. Section 14.2. The map �θ
Maff

gives rise to a

map
◦
Fθ

gaff ,p
+
aff
→ Grθ,+Maff

:= GrMaff ∩Modθ,+
Maff ,C

.

Recall (cf. Section 13.7) that the affine Grassmannian GrM is a union of locally
closed subsets GrνM , ν ∈ �+m, and GrνM = ∪

ν′≤ν
Grν

′
M . Note that on the level of reduced

schemes, (Grθ,+Maff
)red is isomorphic to Gr

wM
0 (θ)

M , where wM
0 is the longest element in

the Weyl group of M .

Recall now that we have fixed θ to beα0. Therefore, the complement to Gr
−wM

0 (α0)

M

in Gr
−wM

0 (α0)

M is a point-orbit corresponding to Gr0,+
Maff

δ−→ Grα0,+
Maff

(unless M = T ).

Therefore, using Corollary 14.4, we conclude that if the map
◦
F
α0

gaff ,p
+
aff
→ Grα0,+

Maff

were not dominant for some (and hence, every) point c ∈ C, we would obtain that
for every geometric point of Bunθ

G;P (S,D∞;D0), the corresponding P -bundle on C
is such that the induced M-bundle is trivial. However, since C is of genus 0, this
would mean the G-bundle on C is trivial. But this is a contradiction: we know (cf.
Proposition 3.4) that there must exist a horizontal line C× x such that the restriction
of the G-bundle to it is nontrivial, but according to the second part of Proposition 9.9,
this point x must equal 0X. ��

In what follows, we will denote by s̃p+aff
the map Modθ,+

Maff ,C
→ Ũθ

G;P .

10.7 Functorial definitions in the parabolic case

Let us briefly discuss alternative definitions of Uθ
G;P Ũθ

G;P , which will be functorial

in the spirit of Drinf Ua
G. We will consider Ũθ

G;P , since the case of Uθ
G;P is analogous

(and simpler).
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Consider the functor FunctŨθ
G;P : {Schemes} → {Sets} that assigns to a scheme S

the data of

• an S-point of Ua
G (in particular, we obtain a G-bundle FG defined on an open

subset U ⊂ S×S such that S×S−U is finite over S; let D ⊂ C×S be a relative
Cartier divisor such that C× S −D ⊂ U ∩ C× S);

• a meromorphic enhanced quasi-map σ ∈ ∞·Dh
Q̃Mapsθ (C,FG

G× Gg,p) (in par-
ticular, we have an M-bundle FM defined on C× S),

such that the following condition is satisfied:
For any direction dv ∈ D∞ − dh, and the corresponding decomposition S′ �

C× X, the meromorphic enhanced quasi-map

σ̂ : C → GG,P,X,

obtained from FG and σ , is, in fact, regular.
As before one shows that the functor FunctŨθ

G;P is representable by an ind-scheme
of ind-finite type.

Theorem 10.8. There exists a canonical closed embedding Ũθ
G;P → FunctŨθ

G;P ,
which induces an isomorphism on the level of geometric points.

Proof. The closed embedding Ũθ
G;P → FunctŨθ

G;P has been constructed in Sec-
tion 9.5.

Consider a geometric point of FunctŨθ
G;P , and let s1, . . . , sk be the points of

◦◦
S ,

where the corresponding point z ∈ Ua
G has a singularity, and let b1, . . . , bk be the

corresponding multiplicities. Let also c1, . . . , cn be the points on D0 � C where
the enhanced meromorphic quasi-map σ (as in the definition of FunctŨθ

G;P ) is either
nondefined or has a singularity.

Let us choose a direction dv so that the points ci are disjoint from πv(sj ). Then
the enhanced quasi-map σ̂ (as in the definition of FunctŨθ

G;P ) has singularities only

at the above points ci and πv(sj ). Let θi ∈ �̂
pos
g,p denote the defect of σ̂ at ci . The

defect of σ̂ at πv(sj ) is automatically equal to bj · δ.
Set θ ′ = θ − �

i
θi − �

j
bj · δ. According to Proposition 2.34, the quasi-map σ̂

can be described as its saturation σ̂ ′ ∈ Bunθ ′
G;P (S,D∞;D0) and the corresponding

positive modification, i.e., a point in

pt ×
BunMaff (C,∞C)

(�
j
H

bj ·δ,+
Maff ,C,πv(sj )

×�
i
H

θi ,+
Maff ,C,ci

),

where pt ∈ BunMaff corresponds to the pair FM (cf. the definition of FunctŨθ
G;P ) and

the line bundle corresponding to the divisor �a
h (z) (for z ∈ Ua

G as above).
The theorem now follows from the description of points of Ũθ

G given by Proposi-
tion 10.6. ��
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11 The boundary

11.1

Let Y be a scheme of finite type whose underlying reduced subscheme Yred is irre-
ducible; let Yn → Yred be its normalization. Let Y′ ⊂ Y be a closed subset, and let
Y′n be the preimage of Y′ in Yn.

Definition 11.2. Y′ will be called a quasi-effective Cartier divisor if there exists a line
bundle P on Y, and a meromorphic (i.e., defined over a dense open subset) section
s : OY → P, such that

• the section s is an isomorphism on Y− Y′;
• the section sn : OYn

→ P ⊗
OY

OYn
is regular;

• the set of zeroes of sn coincides with Y′n.

The notion of quasi-effective Cartier divisor is useful because of the following
lemma.

Lemma 11.3. Let Y′ ⊂ Y be a quasi-effective Cartier divisor, and let Z ⊂ Y′ be a
nonempty irreducible subvariety, not contained inY′. Then dim(Z∩Y′) = dim(Z)−1.

Proof. LetZn be the preimage ofZ in Yn. It is sufficient to show that dim(Zn∩Y′n) =
dim(Zn)− 1; but this is true because Y′n is a Cartier divisor in Yn. ��

Here is a simple criterion for how to show that a subset Y′ is a quasi-effective
Cartier divisor. Suppose that we are given a line bundle P on Y with a trivialization
sn : O → P over Y − Y′. Suppose also that Y′ contains a dense subset of the form
∪
i
Y′i , where Y′i ⊂ Y are subvarieties of codimension 1, such that s has a zero at the

generic point of each Y′i .

Lemma 11.4. Under the above circumstances, Y′ is a quasi-effective Cartier divisor.

11.5 The finite-dimensional case

Recall the space BunB(C) (cf. Section 2.4) defined for any projective curve C. By
definition, the boundary of BunB(C) is the closed subset ∂(BunB(C)) := BunB(C)−
BunB(C).

Theorem 11.6. The boundary ∂(BunB(C)) is a quasi-effective Cartier divisor in
BunB(C).

The idea of the proof given below is borrowed from Faltings’ approach to the
construction of the determinant line bundle on the moduli space of bundles on a
curve; cf. [Fa].

Recall that the moduli space BunG(C) is equipped with the line bundle PBunG(C).
Its 2ȟth tensor power can be identified with the determinant line bundle PBunG(C),det,
whose fiber at FG ∈ BunG(C) is det(R�(C, gFG

)).
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Let us consider the line bundle PBunT (C) on the stack BunT (C) whose fiber at
FT ∈ BunT (C) is

⊗̌
α

det(R�(C,Lα̌
FT

)),

where α̌ runs over the set of all roots of g.
We have the canonical projections pG : BunB(C) → BunG(C) and pT :

BunB(C) → BunT (C), and we define the line bundle PBunB(C) on BunB(C) as

p∗G((PBunG(C),det)
−1)⊗ p∗T (PBunT (C)).

Observe that over the open part BunB(C) ⊂ BunB(C) we have an (almost canon-
ical) trivialization of PBunB(C). Indeed, for a point FB ∈ BunB(C), with the induced
G- andT - bundle being FG and FT , respectively, the vector bundle gFG

has a filtration
with the successive quotients being Lα̌

FT
, and the trivial bundle h⊗ O. Hence

det(R�(C, gFG
)) � ⊗̌

α
det(R�(C,Lα̌

FT
))⊗ det(R�(C,O))dim(T ).

In order to be able to apply Lemma 11.4, we need to analyze the behavior of the
section s : O → PBunB(C) just constructed at the generic point at each irreducible

component of ∂(BunB(C)).
It is well known (cf. [BG1]) that ∂(BunB(C)) contains as a dense subset the

following codimension-1 locus: it is the union of connected components indexed
by the vertices of the Dynkin diagram of g; each such component ∂(BunB(C))i is
isomorphic to C× BunB(C), and we have an identification

BunB(C) ∪ ∂(BunB(C))i � BunPi
(C) ×

BunMi
(C)

BunBi
(C),

where Pi (respectively, Mi) is the corresponding subminimal parabolic (respectively,
its Levi quotient), and BunBi

(C) is the corresponding space for the group Mi ; cf.
Lemma 2.9 and Corollary 2.10.

This reduces our problem to the following calculation. Let G be a reductive
group of semisimple rank 1 and the derived group isomorphic to SL2, and let V be
an irreducible G-module of dimension n + 1. Let PBunG(C),V be the line bundle on
BunG(C) given by

FG 
→ det(R�(C,VFG
)),

and PBunT (C),V be the line bundle on BunT (C) given by

FT 
→ ⊗̌
µ

det(R�(C,L
µ̌

FT
)),

where µ̌ runs over the set of weights of V. Let PBunB(C),V be the corresponding line

bundle on BunB(C), and s its trivialization over BunB(C).

Lemma 11.7. The section s has a zero of order n(n+1)(n+2)
6 along the boundary

∂(BunB(C)).
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Proof. Recall that for groups of semisimple rank 1, the stack BunB(C) is smooth,
and the variety ∂(BunB(C)) is irreducible.

First, it is easy to see that our initial group can be replaced by GL2, such that
V is the nth symmetric power of the standard representation. We will construct a
map of the projective line P1 into BunB(C), such that A1 ⊂ P1 maps to the open
part BunB(C) and the intersection P1 ∩ ∂(BunB(C)) is transversal, and such that the
pullback of PBunB(C),V to P1 has degree n(n+1)(n+2)

6 .
Fix a point c ∈ C and a point FB ∈ BunB(C), i.e., a vector bundle M on C and a

short exact sequence
0 → L1 →M→ L2 → 0.

Consider the projective line of all elementary lower modifications of M at c. This
P1 maps to BunB(C) by setting the new T -bundle to be (L1(−c),L2). The required
properties of the embedding P1 → BunB(C) are easy to verify. By construction, the

composition P1 → BunB(C)
pT→ BunT (C) is the constant map; therefore, it suffices

to calculate the degree of the pullback of PBunG(C),V under P1 → BunB(C)
pG→

BunG(C).
But for a lower modification M′ ⊂ M, the quotient Symn(M)/ Symn(M′) has a

canonical n-step filtration with successive quotients isomorphic to

(M/M′)⊗j ⊗ Symn−j (M/M(−x)).
Therefore, on the level of determinant lines, det(R�(C,Symn(M′))) is isomorphic

to a fixed one-dimensional vector space times (M/M′)⊗
n(n+1)(n+2)

6 . ��
This implies the assertion of the theorem.

11.8

We will now formulate and prove an analogue of Theorem 11.6 for Uhlenbeck spaces
on P2.

Forµ ∈ �̂
pos
g = �̂

pos
g,b, consider the open subset

◦
U
µ

G;B in U
µ

G;B equal to the union of

the strata U
µ;0,b
G;B . In other words,

◦
U
µ

G;B consists of points which have no singularities
along D0. (This means that the induced point of Ua

G gives rise to a bundle FG defined

in a neighborhood of D0, and the corresponding quasi-map C → FG|C
G× Gg,b is in

fact a map.) Of course,
◦
U
µ

G;B contains Bunµ

G;B(S,D∞;D0) as an open subset, and
from Theorem 10.2 we obtain that the complement is of codimension at least 2.

We define the boundary ∂(U
µ

G;B) ⊂ U
µ

G;B as the complement Uµ

G;B−
◦
U
µ

G;B . From

Theorem 10.2, we obtain that ∂(Uµ

G;B) contains a dense subset of codimension 1 equal
to the disjoint union over i ∈ Iaff of

∂(U
µ

G;B)i := U
µ;αi ,0
G;B � Bunµ−αi

G;B (S,D∞;D0)×
◦
C.
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Remark. Note also that U
µ

G;B is regular at the generic point of each ∂(U
µ

G;B)i (in

particular, U
µ

G;B is regular in codimension 1.) Indeed, from Theorem 10.2, it is easy
to deduce that the open subset

Bunµ

G;B(S,D∞;D0)
⋃

( ∪
i∈Iaff

U
µ;αi ,0
G;B )

projects one-to-one on the open subset in QMapsµ(C,GG,P,X) equal to

Maps(C,Ggaff ,b
+
aff
)
⋃

( ∪
i∈Iaff

∂(QMaps(C,GG,P,X))i),

and the latter is smooth, by Lemma 2.9.

Theorem 11.9. The boundary ∂(U
µ

G;B) is a quasi-effective Cartier divisor in U
µ

G;B .

The rest of this section is devoted to the proof of this theorem.

11.10

Let us choose a pair of directions (dv,dh), and consider the corresponding decom-

position S′ � C× X. From the map �a
v : Ua

G →
◦
X(a), we obtain a relative divisor

on Ua
G × X and the associated line bundle.

We define the line bundle PU,G on Ua
G as the restriction of the above line bundle

to Ua
G × 0X ⊂ Ua

G × X.

Let
◦
Ua
G be the open subset in Ua

G corresponding to points with no singularity along

D0. We have a canonical projection
◦
Ua
G → BunG(C,∞C).

The next assertion follows from the construction of the map �a
v .

Lemma 11.11. The restriction of PU,G to
◦
Ua
G can be canonically identified with the

pullback of PBunG(C) under
◦
Ua
G → BunG(C).

We have a canonical projection pT,aff from U
µ

G;B to BunTaff (C). We define the

line bundle PU,B on U
µ

G;B as the tensor product of the pullback of PBunT (C) under

U
µ

G;B
pT,aff−→ BunTaff (C)→ BunT (C)

and the inverse of the pullback of P⊗2·h∨
U,G

under U
µ

G;B → Ua
G.

We claim that over
◦
U
µ

G;B there is a canonical trivialization of s : O → PU,B .

Indeed, we have a projection
◦
U
µ

G;B → BunB(C), and the restriction of PU,B is the
pullback of PBunB(C) under this map. Therefore, the existence of the trivialization
follows from the corresponding fact for BunB(C), using the fact that PBunG(C),det �
P⊗2·h∨

BunG(C).



Uhlenbeck Spaces via Affine Lie Algebras 101

Thus to prove Theorem 11.9, it remains to show that the above meromorphic
section s has a zero at the generic point of each ∂(U

µ

G;B)i , i ∈ Iaff .
When i ∈ I ⊂ Iaff , this readily follows from Theorem 11.6, since in this case

∂(U
µ

G;B)i is contained in the preimage of
◦
Ua
G in U

µ

G;B .
Therefore, it remains to analyze the behavior of s on the open subvariety

U
µ

G;B − ∪
i∈I∂(U

µ

G;B)i

at the generic point of ∂(Uµ

G;B)i0 , where i0 corresponds to the affine root.

Lemma 11.12. Let Y be a variety (regular in codimension 1), acted on by the group
Gm; let P be an equivariant line bundle, and s : O → P be an equivariant nowhere
vanishing section defined outside an irreducible subvariety Y′ of codimension 1.

Suppose that there exists a point y ∈ Y−Y′ such that the action map Gm×y → Y

extends to a map A1 → Y, such that the image of 0, call it y′, belongs to Y′. Assume,
moreover, that the Gm-action on the fiber of P at y′ (note that y′ is automatically
Gm-stable) is given by a positive power of the standard character. Then s vanishes
at the generic point of Y′.

Proof. If we lift y to a geometric point in the normalization of Y, the same conditions
will hold; therefore, we can assume that Y is normal.

To prove the lemma we have to exclude the possibility that s has a pole of order
≥ 0 on Y′. If it did, the same would be true for the pullback of the pair (P, s) to A1,
endowed with the standard Gm-action. In the latter case, to have a pole of nonnegative
order means that P � OA1(−n · 0) with n ≥ 0, but the action of Gm on the fiber of
P � OA1(−n · 0) at 0 is given by the character −n, which is a contradiction. ��

Thus to prove the theorem, we need to construct a Gm-action as in the lemma and
check its properties. Consider the Gm-action “of the first kind’’ on U

µ

G;B , as in the
proof of Theorem 10.2. The line bundle PU,B and the section s are Gm-equivariant,
by construction.

Let us now construct a point y ∈ U
µ

G;B as in the lemma. Let us write µ = (µ, a),
and recall the projection

�
µ

b+aff
: Uµ

G;B →
◦
Cµ � ◦

Cµ−a·δ × ◦
C(a).

Let y be any point of
◦
U
µ

G;B which projects to a multiplicity-free point in
◦
Cµ. We

claim that the Gm action will contract this point to a point y′ on the subscheme

U
µ;a·α0,0
G;B ⊂ ∂(U

µ

G;B)i0 ∩ (U
µ

G;B − ∪
i∈I∂(U

µ

G;B)i).

Indeed, using the horizontal factorization property, Proposition 9.4, it suffices to
analyze separately the cases when a = 0, and when and µ = α0. In the former case,

the assertion is trivial, since in this case U
µ

G;B � Bun
µ

B(C, c), and the Gm-action is
trivial.
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In the latter case, from Theorem 10.2, we obtain that the projection

U
α0
G;B → QMapsα0(C,GG,B,X)

is one-to-one. From the remark following Lemma 2.8, we obtain that QMapsα0(C,

Bgaff ) �
◦
C× A1, so that the Gm action comes from the standard Gm-action on A1.

Hence U
α0
G;B → QMapsα0(C,Bgaff ) is an isomorphism, and the contraction statement

in this case is manifest as well.
Thus it remains to check that for any point y′ ∈ U

µ;a·α0,0
G;B , the Gm-action on the

fiber of PU,B at y′ is given by a positive character. However, by construction this
action is the same as the Gm-action on the fiber of O(a · 0X)

⊗2·h∨ at 0X ∈ X, i.e.,
corresponds to the 2 · a · h∨th power of the standard character.

Thus the theorem is proved.

11.13 Remark

Let us give another interpretation of the line bundle PU,B for G = SLn in terms of
the scheme Ña

n classifying torsion-free sheaves on S.
For µ = (µ, a), and µ = (µ1, . . . , µn), consider the scheme Ñ

µ
n,f lag that classi-

fies the data of

• a torsion-free sheaf of generic rank n, denoted M, on S, which is locally free near
D∞, and with ch2(M) = −a;

• a trivialization M|D∞ � O⊕n;
• a flag of locally free subsheaves

M =M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn =M(D0),

such that each Mi/Mi−1 is a coherent sheaf on D0 of generic rank 1 and of
degree µi .

On Ñ
µ
n,f lag there is a natural line bundle PÑ,B , whose fiber at a point M ⊂M1 ⊂

· · · ⊂Mn−1 ⊂M(D0) is the line

⊗
i=1,...,n

(det(R�(det(Mi/Mi−1)))⊗ det(R�(Mi/Mi−1))
−1).

In [FGK] it was shown that there exists a natural proper map Ñ
µ
n,f lag → U

µ
SLn,B

,
which is, in fact, a semismall resolution of singularities. One can show that the
pullback of PU,B to Ñ

µ
n,f lag is isomorphic to P⊗2n

Ñ,B
.

Part IV: Crystals

In this part, g will be an arbitrary Kac–Moody Lie algebra, with the exception of
Sections 13, 15.5, and 15.6.
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12 Crystals in general

12.1

We refer to [KaS, Section 3.1] for the definition of crystals associated to a Kac–Moody
algebra. By a slight abuse of language, by crystal over g we will actually mean a
crystal over the Langlands dual algebra of g, in particular, the weight function will
take values in the lattice �.

Crystals form a category, where the morphisms from B1 to B2 are the maps of
sets B1 → B2 which preserve the ei , fi operations and the εi , φi–functions for i ∈ I .

If m is a Levi subalgebra in g, it corresponds to a subdiagram of the Dynkin graph;
therefore, it makes sense to talk about m-crystals. If B is a g-crystal, we will denote
by the same symbol the underlying m-crystal. Similarly, for every m-crystal B we
define a g-crystal structure on the same underlying set, by leaving ei, fi, εi, φi for
i ∈ m unchanged, and declaring that for j /∈ m, ej , fj send everything to 0, and
εj = φj = −∞.

12.2

Let Bg be a crystal. Our goal in this section is to review some extra structures and
properties of Bg which allow one to identify it with the standard crystal B∞g that
parametrizes the canonical basis in U(ň); cf. [KaS, Section 3.2].

For i ∈ I , let mi be the corresponding subminimal Levi subalgebra. Let Bi be the
g-crystal obtained in the above way from the “standard’’ sl2-crystal. In other words,
as a set it is Z≥0 and consists of elements that we will denote bi (n), n ≥ 0 with
wti(bi (n)) = n · α̌i , fi(bi (n)) = bi (n− 1), φi(bi (n)) = n, and all the operations for
j �= i are trivial.

According to [KaS, Proposition 3.2.3], we need to understand what kind of struc-
ture on Bg allows one to construct maps �i : Bg → Bg ⊗ Bi , satisfying conditions
(1)–(7) of loc. cit.

Our crystal Bg will automatically satisfy conditions (1)–(4), and it will be φ-
normal, i.e.,

for b ∈ Bg, φi(b) = max{n|f n
i (b) �= 0}.

Then the ε-functions are defined by the rule

φi(b) = εi(b)+ 〈wt(b), α̌i〉.

12.3

We suppose that the set Bg carries another crystal structure (also assumed φ-normal),
given by operations e∗i and f ∗i , i ∈ I with the same weight function wt . Also assume
the following:

(a) The operations ei , fi commute with e∗j and f ∗j whenever i �= j .
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(b) For every vertex i ∈ I , we have a set decomposition

Bg = ∪
n∈N

Cn
mi
× Bn

mi
× Bi , (21)

where we have the following:
• Cn

mi
is an abstract set, Bn

mi
is the set underlying the finite sl2-crystal of highest

weight n, and Bi is as above.
• This decomposition respects both the ei , fi and the e∗i , f ∗i -operations.
• The ei , fi–action on each Cn

mi
×Bn

mi
×Bi is the trivial action on Cn

mi
, times

the action on Bn
mi
× Bi as on the tensor product of crystals.

• The e∗i , f ∗i –action on each Cn
mi
×Bn

mi
×Bi is trivial on the first two factors

times the standard action on Bi .

12.4

We claim that under the above circumstances, we do have canonical maps �i : Bg →
Bg × Bi , satisfying [KaS, condition (6) of Proposition 3.2.3].

Indeed, such maps obviously exist for g = sl2, i.e., for each i we have a map of
mi-crystals

�can
i : Bi → Bi ⊗ Bi .

We define the map �i on Bg in terms of the decomposition (21). Namely, on each
Cn

mi
×Bn

mi
×Bi ⊂ Bg, �i is the identity map on the first two factors times �can

i on
the third one.

In other words, each b ∈ Bg can be uniquely written in the form (e∗i )n(b′), where
f ∗i (b′) = 0, and

�i(b) = b′ ⊗ bi (n). (22)

We claim that �i indeed respects the operations ej and fj . First, when j �= i,
the assertion follows immediately from (22), since f ∗i , e∗i commute with ej and fj .

For j = i the assertion is also clear, since we are dealing with the map of mi-
crystals

Bn
mi
⊗ Bi

id⊗�can
i−→ Bn

mi
⊗ Bi ⊗ Bi .

12.5

Finally, in order to apply the uniqueness theorem of [KaS], the crystal Bg must satisfy
the “highest-weight property’’ (i.e., [KaS, condition (7) of Proposition 3.2.3]). It can
be stated in either of the two ways:

For b ∈ Bg different from the canonical highest-weight vector b(0),

• there exists i ∈ I such that fi(b) �= 0;
• there exists i ∈ I such that f ∗i (b) �= 0.
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Let us denote by Bmi
g the subset of Bg consisting of elements annihilated by f ∗i .

We claim that it also has a natural crystal structure. Indeed, the operations ej and fj
obtained by restriction from Bg preserve Bmi

g , since they commute with e∗i .
The operations ei and fi are defined in terms of the decomposition (21). Namely,

Bmi
g ∩ (Cn

mi
× Bn

mi
× Bi ) = (Cn

mi
× Bn

mi
)× bi (0),

and we set ei , fi to act along the Bn
mi

–factor.
Moreover, note that the map �i constructed above maps Bg to Bmi

g ⊗ Bi , and
we claim that this is a map of crystals with respect to the crystal structure on Bmi

g

introduced above. Moreover, one easily checks that this map is an isomorphism.

12.6

Thus if Bg satisfies the highest-weight property, and admits decompositions as in
(21) for every i, it can be identified with the standard crystal B∞g of [KaS]. In what
follows, we will need several additional properties of B∞g .

Let m be an arbitrary Levi subalgebra of g. (In our applications we will only con-
sider Levi subalgebras that correspond to subdiagrams of finite type.) The following
result is a generalization of what we have constructed for m = mi ; cf. [Ka4, Ka5].

Theorem 12.7. For every Levi subalgebram there exists an isomorphism ofg-crystals
(with respect to the ei, fi, εi, φi, i ∈ I )

�m : B∞g � Bm
g ⊗ B∞m ,

(here B∞m is viewed as a g-crystal), such that

(a) the operations e∗i , f ∗i for i ∈ m on B∞g go over to the e∗i , f ∗i operations along the
second factor;

(b) the m-crystal structure on Bm
g is normal.

In particular, from this theorem we obtain that, as a set, Bm
g can be realized as

a subset of B∞g consisting of elements annihilated by the f ∗i , i ∈ m. In terms of
this set-theoretic embedding Bm

g → B∞g , the operations ej , fj , εj , φj for j /∈ m are
induced from those on B∞g . For i ∈ m, the ei and fi operators on an element b ∈ Bm

g
can be explicitly described as follows:

The element fi(b) (for the action that comes from Bm
g -crystal structure) equals

fi(b) (for the action that is induced by the B∞g -crystal structure). The element ei(b)
(for the action coming from the Bm

g -crystal structure) equals ei(b) (for the action
induced by the B∞g -crystal structure) if the latter belongs to Bm

g , and 0 otherwise.
In addition, we have the following assertion; cf. [Ka3, Theorem 3].

Theorem 12.8. The set Bm
g parametrizes the canonical basis for U(n(p̌)), where p̌ is

the corresponding parabolic subalgebra, and n(p̌) is its unipotent radical. Moreover,
as an m-crystal, Bm

g splits as a disjoint union
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Bm
g = ∪ν Cν

m ⊗ Bν
m,

where ν runs over the set of dominant integral weights of m, Bν
m is the crys-

tal associated to the integrable m̌-module V ν
M , and Cν

m parametrizes a basis in
Homm̌(V ν

M,U(n(p̌))).

Note that the set Cν
m of the above theorem embeds into B∞g as the set of those

b ∈ B∞g (ν) which are annihilated by fi and f ∗i for i ∈ m.

13 Crystals via the affine Grassmannian

13.1

In this section we will take g to be finite dimensional, and give a construction of a
crystal Bg using the affine Grassmannian GrG of G, in the spirit of [BG]. We will
assume that the reader is familiar with the notation of [BG].

In the next section we will generalize this construction for an arbitrary Kac–
Moody algebra g, using the space QMaps(C,Gg,b) instead of the (nonexistent in the
general case) affine Grassmannian.

Recall that for a standard parabolic P , we denote by N(P ) (respectively, M , P−,
N(P−)) its unipotent radical (respectively, the Levi subgroup, the corresponding
opposite parabolic, etc.) By B(M) (respectively, N(M), B−(M), N−(M)) we will
denote the standard Borel subgroup in M (respectively, unipotent radical of B(M),
etc.) Finally, recall that T denotes the Cartan subgroup of G.

Let C be a (smooth, but not necessarily complete) curve, and c ∈ C a point.
We will choose a local parameter on C at c and call it t . Recall that if H is an
algebraic group, we can consider the group-scheme H [[t]], the group ind-scheme
H((t)) and the ind-scheme of ind-finite type GrH := H((t))/H [[t]], called the
affine Grassmannian. In what follows we will consider the affine Grassmannians
corresponding to the groups G, M , P , N(P ), etc.

For a coweight λ, we have a canonical point in T ((t)), denoted tλ. We will denote
by the same symbol its image in GrT and GrG via the embedding of GrT → GrG.

We have the maps iP : GrP → GrG, iP− : GrP− → GrG, which are locally
closed embeddings on every connected component, and projections qP : GrP →
GrM , qP− : GrP− → GrM . The projections qP , qP− induce a bijection on the set
of connected components. For a coweight λ ∈ �, we will denote by GrλT (respec-
tively, GrλB , Grλ

B− ) the corresponding connected component of GrT (respectively,
GrB , GrB− ).

13.2

It is known that the intersection Grλ1
B ∩Grλ2

B− is of pure dimension 〈λ1 − λ2, ρ̌〉. Let
us denote by Bg(λ) the set of irreducible components of the above intersection with
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parameters λ1 − λ2 = λ. (It is easy to see that the action of tλ
′ ∈ T ((t)) identifies

Grλ1
B ∩Grλ2

B− with Grλ1+λ′
B ∩Grλ2+λ′

B− .)
Our goal now is to show that the set Bg := ∪

λ
Bg(λ) has a natural structure of

g-crystal. We need to define the weight function wt : Bg → �, the functions
εi, φi : Bg → Z for i ∈ I , and the operations ei, fi : Bg → Bg ∪ 0.

Of course, the function wt is defined so that wt(Bg(λ)) = λ. The function φi is
defined in terms of fi by the normality condition

for b ∈ Bg, φi(b) = max{n|f n
i (b) �= 0}.

The function εi will be defined by the rule

εi(b) = φi(b)− 〈α̌i , wt (b)〉.
Thus we have to define the operations ei and fi .

13.3

First, let us assume that G is of semisimple rank 1. Then we can identify the coroot
lattice with Z, and it is easy to see that GrλB ∩Gr0

B− is nonempty if and only if λ = n·α
(where α is the unique positive coroot), with n ≥ 0. In the latter case, this intersection
is an irreducible variety, isomorphic to An −An−1. Thus Bg in this case is naturally
Z≥0, and the definition of ei and fi is evident: they are the raising and the lowering
operators, respectively.

In the case of a general G, the operations will be defined by reduction to the
rank-1 case.

For a parabolic P and λ,µ ∈ �, consider the intersection

q−1
P (Grµ

B−(M)
) ∩ Grλ

B− ⊂ GrG,

projecting by means of qP on Grµ
B−(M)

.

Lemma 13.4. The above intersection splits as a direct product

Grµ
B−(M)

×((qP )−1(g) ∩ Grλ
B−)

for any g ∈ Grµ
B−(M)

.

Proof. The group N−(M)((t)) acts transitively on Grµ
B−(M)

, and it also acts on GrG
preserving the intersection (qP )

−1(Grµ
B−(M)

) ∩ Grλ
B− .

Moreover, for g′ ∈ GrP ⊂ GrG and g = qP (g
′), the inclusion

StabN−(M)((t))(g
′,GrG) ⊂ StabN−(M)((t))(g,GrM)

is an equality, since N−(M) ∩N(P ) = 1.
Therefore, for any g as above, the action of N−(M)((t))/StabN−(M)((t))(g,GrM)

on the fiber (qP )−1(g) ∩ Grλ
B− defines an isomorphism

(qP )
−1(Grµ

B−(M)
) ∩ Grλ

B− � Grµ
B−(M)

×((qP )−1(g) ∩ Grλ
B−). ��
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We will use this lemma as follows. For λ1, λ2, µ ∈ �, let us note that the
intersection

Grλ1
B ∩(qP )−1(Grµ

B−(M)
) ∩ Grλ2

B−

is the same as
(qP )

−1(Grλ1
B(M) ∩Grµ

B−(M)
) ∩ Grλ2

B− .

In particular, by putting λ1 = µ we obtain that the variety (qP )
−1(g) ∩ Grλ

B− of
Lemma 13.4 is finite dimensional of dim ≤ 〈µ− λ, ρ̌〉.

Of course, the variety (qP )
−1(Grµ

B−(M)
)∩Grλ

B− depends up to isomorphism only

on the difference µ′ := µ − λ. Let us denote by Bm,∗
g (µ′) the set of irreducible

components of (qP )−1(g) ∩ Grλ
B− of (the maximal possible) dimension 〈µ′, ρ̌〉.

Since the group N−(B)((t)) is ind-pro-unipotent, we obtain that the stabilizer

StabN−(M)((t))(g,GrM)

appearing in the proof of Lemma 13.4 is connected. Therefore, the set Bm,∗
g (µ′) is

well defined, i.e., is independent of the choice of the point g.
Clearly, for every irreducible component K of Grλ1

B ∩Grλ2
B− there exists a unique

µ ∈ � such that the intersection K ∩ (qP )
−1(Grµ

B−(M)
) is dense in K.

Using Lemma 13.4, we obtain that the set Bg(λ) can be canonically decomposed
as a union

Bg(λ) = ∪
µ

Bm,∗
g (µ)× Bm(λ− µ). (23)

Finally, we are able to define the operations ei and fi . For each i ∈ I take P to
be the corresponding subminimal parabolic Pi and consider the decomposition

Bg(λ) = ∪
µ

Bmi ,∗
g (µ)× Bmi

(λ− µ).

For an element bg ∈ Bg(λ) of the form

b′ × bmi
,b′ ∈ Bmi ,∗

g (µ),bmi
∈ Bmi

(λ− µ),

we set ei(bG) to be

b′ × ei(bmi
) ∈ Bmi ,∗

g (µ)× Bmi
(λ+ αi − µ) ∪ 0 ⊂ Bg(λ+ αi) ∪ 0,

and similarly for fi .
This is well defined, because Mi is of semisimple rank 1, and we know how the

operators ei and fi act on Bmi
.

13.5

Let us now define the operations e∗i and f ∗i . First, when G is of semisimple rank 1,
we set e∗i = ei and f ∗i = fi . To treat the general case, we simply interchange the
roles of the projections qP and qP− .



Uhlenbeck Spaces via Affine Lie Algebras 109

In more detail, for any λ and µ as before, let us consider the intersection

GrλB ∩(qP−)−1(GrµB(M)).

As in Lemma 13.4, this intersection can be represented as a product GrµB(M)

× ((qP−)
−1(g) ∩ GrλB) for any g ∈ GrµB(M). For µ′ = λ − µ, let us denote by

Bm
g (µ′) the set of irreducible components of top dimension of (qP−)

−1(g) ∩ GrλB .

By looking at the intersections of irreducible components of Grλ1
B ∩Grλ2

B− with
the various (qP−)

−1(GrµB(M)), we obtain a decomposition

Bg(λ) = ∪
µ

Bm
g (µ)× Bm(λ− µ). (24)

By taking M = Mi , for bg ∈ Bg(λ) of the form

b′ × bmi
,b′ ∈ Bmi

g (µ),bmi
∈ Bmi

(λ− µ),

we set e∗i (bg) to be

b′ × e∗i (bmi
) ∈ Bmi

g (µ)× Bmi
(λ+ αi − µ) ∪ 0 ⊂ Bg(λ+ αi) ∪ 0,

and similarly for f ∗i .

Remark. Let us explain the consistency of the notation Bm
g (µ). As we shall see later,

the crystals Bg (and in particular Bm) have the highest-weight property. If we assume
this, we will obtain that the set Bm

g (µ) is precisely the subset of Bg(µ) consisting
of elements annihilated by f ∗i , i ∈ m. Indeed, the latter elements correspond to the
irreducible components of

Gr0
B ∩(qP−)−1(GrµB(M) ∩Grµ

B−(M)
)

of dimension 〈µ, ρ̌〉, which is the same as the set Bm
g (µ).

Proposition 13.6. For i �= j , the operations ei, fi commute with the operations
e∗j , f ∗j .

Proof. Consider the intersection (qPi
)−1(Grµ1

B−(Mi)
) ∩ (qP−j

)−1(Grµ2
B(Mj )

) ⊂ GrG.

We claim that it decomposes as

(Grµ1
B−(Mi)

×Grµ2
B(Mj )

)× ((qPi
)−1(g1) ∩ (qP−j

)−1(g2))

for any g1 × g2 ∈ Grµ1
B−(Mi)

×Grµ2
B(Mj )

.

Indeed, as in the proof of Lemma 13.4, the group N−(Mi)((t)) × N(Mj)((t))

acts transitively on the base Grµ1
B−(Mi)

×Grµ2
B(Mj )

, and since the subgroups N−(Mi),

N(Mj ) ⊂ G commute with one another, we obtain the desired decomposition as in
Lemma 13.4.
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For µ = µ1 − µ2, let us denote by Ci,j (µ) the set of irreducible components of
top (= 〈µ, ρ̌〉) dimension of (qPi

)−1(g1) ∩ (qP−j
)−1(g2).

By intersecting Grλ1
B ∩Grλ2

B− with (qPi
)−1(Grµ1

B−(Mi)
)∩(qP−j )−1(Grµ2

B(Mj )
) for the

various µ1 and µ2, we obtain a decomposition

Bg(λ) � ∪
µ1,µ2

Ci,j (µ1 − µ2)× Bmi
(λ1 − µ1)× Bmj

(µ2 − λ2).

This decomposition is a refinement of (23) and (24). Therefore, for an element
bG ∈ Bg(λ) of the form c× bi × bj with

c ∈ Ci,j (µ1 − µ2),bi ∈ Bmi
(λ− µ1),bj ∈ Bmj

(λ− µ2),

the ei and fi operations act via their action on bi , and the e∗j and f ∗j act via bj ,
respectively. This makes the required commutativity property manifest. ��

13.7

Finally, we are going to define the decompositions of Bg as in (21). In fact, we will
define the decompositions as in Theorem 12.7 for any Levi subalgebra m. First, we
need to discuss certain m-crystals associated with the convolution diagram of M .

Let us recall some notation related to the affine Grassmannian GrM . The group-
scheme M[[t]] (being a subgroup of the group ind-scheme M((t))) acts naturally on
GrM , and its orbits are parametrized by the set �+m of dominant coweights of M; for
ν ∈ �+m we will denote the corresponding orbit by GrνM .

Let ConvM denote the convolution diagram for M . It is by definition of the
ind-scheme parametrizing the data of (FM,F′M, β, β̃ ′), where FM,F′M are principal
M-bundles on C, β is a trivialization of FM on C − c, and β̃1) is an isomorphism
FM |C−c → F′M |C−c. We will think of ConvM as a fibration over GrM with typical
fiber GrM ; more precisely,

ConvM � M((t)) ×
M[[t]]

GrM .

Sometimes, we will write ConvM � GrM  GrM , so that the first factor is perceived
as the base, and the second one as the fiber. In particular, if Y ⊂ GrM is a subscheme,
and Y′ ⊂ GrM is an M[[t]]-invariant subscheme, it makes sense to consider the
subscheme Y  Y′ ⊂ GrM  GrM � ConvM . For ν ∈ �+m, let Convν

M ⊂ ConvM be
equal to GrM  GrνM .

Note that for a point (FM,F′M, β, β̃ ′) ∈ ConvM , by taking the composition
β1 := β̃1 ◦ β we obtain a trivialization of F′M on C− c, and thus a map ConvM →
GrM ×GrM , which is easily seen to be an isomorphism. We will denote by p and
p′ the two projections ConvM → GrM , which remember the data of (FM, β) and
(F′M, β ′), respectively. Note that the locally closed subsets Convν

M introduced above
are exactly the orbits of the diagonal M((t)) action on ConvM � GrM ×GrM .
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13.8

For another pair of coweights λ1 and λ2, consider the intersection

(Grλ1
B(M)×Grλ2

B−(M)
)ν := (Grλ1

B(M)×Grλ2
B−(M)

) ∩ Convν
M .

Again, up to isomorphism, the above variety depends only on the difference
λ = λ1−λ2. Let us denote by Dν

m(λ) the set of irreducible components of the above
intersection of the (maximal possible) dimension 〈ν + λ, ρ̌〉.

We will define on the set Dν
m := ∪

λ
Dν

m(λ) two structures of a (φ-normal) m-crystal.

First, let us define the operations ei , fi . For this let us fix λ1, λ2 ∈ � and consider
the ind-scheme

(Grλ1
B−(M)

×Grλ2
B−(M)

)ν := (Grλ1
B−(M)

×Grλ2
B−(M)

) ∩ Convν
M

projecting by means of p onto Grλ1
B−(M)

. As in Lemma 13.4, we obtain that there is
an isomorphism

(Grλ1
B−(M)

×Grλ2
B−(M)

)ν � Grλ1
B−(M)

×((g × Grλ2
B−(M)

) ∩ Convν
M)

for any g ∈ Grλ1
B−(M)

.

For λ = λ1 − λ2 and g ∈ Grλ1
B−(M)

, let Bν,∗
m (λ) denote the set of irreducible

components of the intersection (g × Grλ2
B−(M)

) ∩ Convν
M of (the maximal possible)

dimension 〈ν + λ, ρ̌〉. (As in Lemma 13.4, this set does not depend on the choice of
g ∈ GrM ).

Thus we have a set-theoretic decomposition

Dν
m(λ) � ∪

λ′
Bν,∗

m (λ′)× Bm(λ− λ′).

By taking M = Mi , we define the operations ei and fi to act along the second
multiple of this decomposition. It is easy to see that this definition agrees with the
one in Section 13.3.

The operations e∗i , f ∗i are defined in a similar fashion. We fix λ1 and λ2 and
consider the ind-scheme

(Grλ1
B(M)×Grλ2

B(M))
ν := (Grλ1

B(M)×Grλ2
B(M)) ∩ Convν

M

projecting by means of p′ onto Grλ2
B(M). It also splits as a product

(Grλ1
B(M)×Grλ2

B(M))
ν � Grλ2

B(M)×((Grλ1
B(M)×g) ∩ Convν

M)

for any g ∈ Grλ2
B(M).

Let Bν
m(λ) denote the set of irreducible components of (the maximal possible)

dimension 〈ν + λ, ρ̌〉 of (Grλ1
B(M)×g) ∩ (GrM ×GrM)ν , and as before, we obtain a

set-theoretic decomposition
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Dν
m(λ) � ∪

λ′
Bν

m(λ′)× Bm(λ− λ′). (25)

We define the operations e∗i , f ∗i to act along the second multiple of this decom-
position for M = Mi , and again this definition is easily seen to coincide with the one
of Section 13.5.

Note that by taking g to be the unit element in GrM , we obtain that Bν
m(λ) are

exactly the elements of the crystal associated to the integrable M̌-module with highest
weight ν of weight λ. Set Bν

m := ∪
λ
Bν

m(λ), and recall from [BG] that this set has a

canonical structure of a (normal) m-crystal.
The following is a generalization of [BG, Theorem 3.2] when one of the finite

crystals is replaced by Bm.

Proposition 13.9. In terms of the above set-theoretic decomposition Dν
m � Bν

m×Bm,
the crystal structure on Dν

m, given by ei and fi , corresponds to the tensor product
crystal structure on the right-hand side.

We omit the proof, since the argument is completely analogous to the correspond-
ing proof in loc. cit.

13.10

Finally, we are ready to define the decompositions of (21).
Consider the projection

(qP × qP−) : GrP ×
GrG

GrP− → GrM ×GrM � ConvM .

This projection is M((t))-equivariant. For a fixed M-dominant coweight ν let
us denote by (GrP ×

GrG
GrP−)

ν the preimage of Convν
M under this map. For a point

g ∈ Convν
M consider the scheme (qP ×qP−)

−1(g) ⊂ (GrP ×
GrG

GrP−)
ν . The set of its

irreducible components of (the maximal possible) dimension 〈ν, ρ̌〉 will be denoted
by Cν

m.
Thus we obtain a decomposition

Bg = ∪
ν
Cν

m × Dν
m.

Moreover, by unraveling the construction of the operations, we obtain that the
above decomposition respects the action of both ei, fi , and e∗i , f ∗i , such that all of
the operations act via the second multiple (i.e., Dν

m) in the way specified above.
This defines the required decomposition in view of Proposition 13.9.
Finally, by combining what we said above with Theorem 12.8 (and assuming

the highest-weight property of the crystal Bg), we obtain that the set Cν
m, which

enumerates irreducible components of (qP×qP−)
−1(g) forg ∈ Convν

M , parametrizes
a basis of HomM(V ν

M,U(n(p̌))).
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14 Crystals via quasi-map spaces

14.1

In this section g will again be an arbitrary Kac–Moody algebra. Recall that Gg,b

denotes Kashiwara’s flag scheme. We will fix C to be an arbitrary smooth (but not
necessarily complete) curve, with a distinguished point c ∈ C. As in the previous
section, we will denote by t a local coordinate on C defined near c.

Recall that for λ ∈ �
pos
g in Section 2.12 we introduced the scheme Zλ

g,b(C) and

its open subset
◦
Zλ

g,b(C). We showed in Proposition 2.21 that when C = A1, then

Zλ
g,b(C) can be identified with the scheme of based quasi-maps QMapsλ(P1,Gg,b),

such that Zλ
g,b(C) corresponds to the locus of maps inside quasi-maps.

We have a natural projection �λ
b : Zλ

g,b(C)→ Cλ, and we set Fλ
g,b := (�λ

b)
−1(λ ·

0C) (respectively,
◦
Fλ

g,b := Fλ
g,b ∩

◦
Zλ

g(C)).
It was shown in [FFKM] (cf. also [BFGM]) that when g is finite dimensional,

the scheme
◦
Fλ

g,b can be identified with the intersection Gr0
B ∩Gr−λ

B− considered in
the previous section. Thus the contents of the previous section amount to defining a
crystal structure on the union of the sets of irreducible components of the union of
◦
Fλ

g,b (over all λ ∈ �
pos
g ).

For an arbitrary Kac–Moody algebra g, set Bg(λ) to be the set of irreducible

components of
◦
Fλ

g,b, and set Bg = ∪
λ
Bg(λ). In this section we will generalize the

construction of the previous section to define on Bg a structure of a crystal. However,
since in the general case we do not have the affine Grassmannian picture, and we will
have to spell out the definitions using quasi-map spaces.

To define the crystal structure on Bg we will need to assume Conjecture 2.27.
To identify it with the standard crystal of [KaS], we will need to assume one more
conjecture, Conjecture 15.3 (cf. Section 15). Both these conjectures are verified when
g is of affine (and, of course, finite) type (cf. Sections 15.5 and 15.6).

14.2

For a standard parabolic p ⊂ g, and an element θ ∈ �
pos
g,p, let Fθ

g,p (respectively,

F̃θ
g,p,

◦
Fθ

g,p) denote the preimage of θ · c under �θ
b : Zθ

g,p(C)→ Cθ (respectively, in

Z̃θ
g,p(C),

◦
Zθ

g,p(C)).
Assuming for a moment that C is complete (cf. the proof of Proposition 14.3,

where we get rid of this assumption), recall the stacks Zθ
g,p(C) (respectively,

Z̃θ
g,p(C),

◦
Zθ

g,p(C)), introduced in Section 2.32. Recall also the forgetful map
GrM → BunM(C), where GrM is GrM,c. We now define three ind-schemes

Sθ
g,p := Zθ

g,p(C) ×
BunM(C)×Cθ

(GrM ×pt),
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S̃θ
g,p := Z̃θ

g,p(C) ×
BunM(C)×Cθ

(GrM ×pt)

and

◦
Sθ

g,p :=
◦
Zθ

g,p(C) ×
BunM(C)×Cθ

(GrM ×pt),

where we are using the projection qp : Zθ
g,p(C) → BunM(C) (and similarly for

Z̃θ
g,p(C),

◦
Zθ

g,p(C)) to define the fiber product, and pt → Cθ corresponds to the point
θ · c. By definition, Fθ

g,p � Sθ
g,p ×

GrM
pt , where pt ↪→ GrM is the unit point (and

similarly for F̃θ
g,p,

◦
Fθ

g,p).

Using the map �θ
M : Z̃θ

g,p(C)→ HM,C, we can rewrite

S̃θ
g,p � Z̃θ

g,p(C) ×
HM,C

ConvM and
◦
Sθ

g,p(C) �
◦
Zθ

g,p ×
HM,C

ConvM .

Proposition 14.3. There exists a canonical action of M((t)) on S̃θ
g,p (respectively,

Sθ
g,p,

◦
Sθ

g,p) compatible with its action on ConvM (respectively, GrM, ConvM).

Proof. We will give a proof for S̃θ
g,p, since the corresponding facts for Sθ

g,p and
◦
Sθ

g,p
are analogous (and simpler).

Let Dc (respectively, D∗
c ) be the formal (respectively, formal punctured) disc in

C around c. Using Lemma 2.13, the data defining a point of S̃θ
g,p can be rewritten

using the formal disc Dc instead of the curve C as follows:
It consists of a principal P -bundle FP on Dc, a principal M-bundle FM on Dc

with a trivialization β : FM |D∗
c
→ F0

M |D∗
c

on the formal punctured disc D∗
c , and a

collection of maps

κλ̌ : (V
λ̌
)FP

→ (U
λ̌
)FM

,

satisfying the Plücker equations, such that for λ̌ ∈ �̌+g,p the composed map of line
bundles

Lλ̌
FP
→ (V

λ̌
)FP

→ Lλ̌
FM

has a zero of order 〈θ, λ̌〉 at c.
(In particular, this description makes it clear that the schemes S̃θ

g,p etc., do not
depend on the global curve C, but rather on the formal neighborhood Dc of c.)

In these terms, the action of M((t)) leaves the data of (FP ,FM, κλ̌) intact, and
only acts on the data of the trivialization β. ��

For ν ∈ �+m, recall the subscheme Convν
M ⊂ ConvM . Let us denote by Sν

g,p ⊂◦
Sθ

g,p the preimage of Convν
M under the map �θ

M . The resulting map Sν
g,p → Convν

M

will be denoted by �ν
M . From Proposition 14.3, we obtain the following.
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Corollary 14.4. The map �ν
M : Sν

g,p → Convν
M is a fibration, locally trivial in the

smooth topology.

The proof is immediate from the fact that theM((t))-action on Convν
M is transitive.

14.5

For λ1, λ2 ∈ �g, λ = λ1 − λ2, and θ being the projection of λ under �g → �g,p,
recall the subscheme (Grλ1

B(M)×Grλ2
B−(M)

)ν ⊂ ConvM .

By unraveling the definitions of
◦
Sθ

g,p and
◦
Sλ

g,p, we obtain an isomorphism:

◦
Sθ

g,p ×
ConvM

(Grλ1
B(M)×Grλ2

B−(M)
) � ◦

Sλ
g,b ×

ConvT
(tλ1 × tλ2). (26)

(Here we denote by tλ the point-scheme, identified with the reduced subscheme
of the corresponding connected component of GrT .)

The isomorphism (26), combined with Conjecture 2.27 which we assume, implies
the following dimension estimate.

Corollary 14.6. The fibers of the projection �ν
M : Sν

g,p → Convν
M are of dimension

at most 〈ν, ρ̌ − 2ρ̌M 〉.
Proof. Pick λ1 = λ = ν and λ2 = 0 so that (Grλ1

B(M)×Grλ2
B−(M)

) ∩ Convν
M is

nonempty, and is in fact of pure dimension 〈ν, 2ρ̌M 〉. Therefore, it would suffice to

show that
◦
Sθ

g,p ×
ConvM

(Grλ1
B(M)×Grλ2

B−(M)
) is of dimension ≤ 〈ν, ρ̌〉 = 〈λ1 − λ2, ρ̌〉.

However, from Conjecture 2.27 (which we assume to hold for our g), we ob-
tain that

dim(
◦
Sθ

g,p ×
ConvM

(Grλ1
B(M)×Grλ2

B−(M)
)) = dim(

◦
Sλ

g,b ×
ConvT

(tλ1 × tλ2))

= dim(
◦
Fλ

g,b) = 〈λ1 − λ2, ρ̌〉
which implies the desired dimension estimate. ��

Since the stabilizers of the M((t))-action on Convν
M are connected, we obtain that

irreducible components of
◦
Sν

g,p are in one-to-one correspondence with irreducible
components of any fiber of �ν

M : Sν
g,p → Convν

M . Let us denote by Cν
m the set

of irreducible components of any such fiber of (the maximal possible) dimension
〈ν, ρ̌ − 2ρ̌M 〉.

Thus our set Bg(λ) can be identified with the set of irreducible components of the
fibers of ◦

Sλ
g,b → Convλ

T =
⋃

λ1−λ2=λ
tλ1 × tλ2 .
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Using the isomorphism (26), we obtain a decomposition

Bg � ∪
ν
Cν

m × Dν
m, (27)

where Dν
m is as in the previous section.

This already allows one to introduce the operations ei , fi , e∗i , f ∗i . Indeed, by
choosing m to be the subminimal Levi subalgebra mi , we let our operations act along
the second factor in the decomposition

Bg � ∪
n
Cn

mi
× Dn

mi
,

as in Section 13.7. Moreover, the properties of (21) hold due to Proposition 13.9.
To be able to apply the uniqueness theorem of [KaS], it remains to do two things:

to check that the operations ei , fi commute with e∗j , f ∗j whenever i �= j , and to
establish the highest-weight property of Bg. Then the uniqueness theorem of [KaS]
would guarantee the isomorphism Bg � B∞g .

14.7

The above definition of the operations ei , etc. mimics the definition of Section 13.7.
We will now give another (of course, equivalent) construction in the spirit of Sec-
tion 13.3, which would enable us to prove the commutation relation.

Again, for a standard parabolic p, let us consider the ind-scheme Sµ

g,p,b equal to

◦
Sθ

g,p ×
ConvM

(Grµ
B−(M)

×Gr0
B−(M)

),

where θ is the image of µ under �g → �g,p.
In other words, Sµ

g,p,b classifies the data of

• a principal P -bundle FP (as usual, the induced bundle will be denoted by F′M );

• regular bundle maps (V
λ̌
)FP

→ Lλ̌

F0
T

; and

• meromorphic maps Lν̌

F0
T

→ (Uν̌ )F′M ,

such that

• Lλ̌

F0
T

→ (U
λ̌
)F′M → (V

λ̌
)FP

→ Lλ̌

F0
T

are the identity maps and

• the (a priori meromorphic) compositions (U
λ̌
)F′M → Lλ̌

F0
T

(〈−µ, λ̌〉·c) are regular

and surjective.

Using Proposition 14.3, we obtain that the natural projection

Sµ

g,p,b → (Grµ
B−(M)

×Gr0
B−(M)

)→ Grµ
B−(M)

splits as a direct product, as in Lemma 13.4.
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For another element λ ∈ �g, consider the preimage (call it Sλ,µ

g,p,b) of GrλB(M) ∩
Grµ

B−(M)
⊂ Grµ

B−(M)
in Sµ

g,p,b. Using (26), we conclude that Sλ,µ

g,p,b is isomorphic to

a locally closed subset inside
◦
Sλ

g,b ×
ConvT

(tλ × t0).

Therefore, as in Section 13.3, we obtain that the fibers of Sµ

g,p,b → Grµ
B−(M)

are of

dimensions≤ 〈µ, ρ̌〉, and if we denote by Bm,∗
g (µ) the set of irreducible components

of any such fiber, we obtain a decomposition

Bg(λ) = ∪
µ

Bm,∗
g (µ)× Bm(λ− µ). (28)

Moreover, by unraveling our definition of the eis and fis we obtain that they act along
the second multiple of the above decomposition when we choose p = pi .

14.8

We will now perform a similar procedure for the e∗i and f ∗i . Let Sµ

g,b,p be the ind-
scheme equal to

◦
Sθ

g,p ×
ConvM

(Gr0
B(M)×GrµB(M)).

In other words, Sµ

g,b,p classifies the data of

• a B-bundle FB , such that the induced T -bundle FT is trivial;
• an M-bundle FM ;
• regular bundle maps (V

λ̌
)FB

→ (U
λ̌
)FM

; and

• meromorphic maps (Uν̌ )FM
→ Lν̌

F0
T

,

such that

• the compositions Lλ̌

F0
T

→ (V
λ̌
)FB

→ (U
λ̌
)FM

→ Lλ̌

F0
T

are the identity maps and

• the κ
λ̌,−
p s induce regular bundle maps Lλ̌

F0
T

→ (U
λ̌
)FM

(〈µ, λ̌〉 · c).

As above, we have a projection Sµ

g,b,p → GrµB(M), which splits as a direct product
and defines a decomposition

Bg(λ) = ∪
µ

Bm
g (µ)× Bm(λ− µ), (29)

where Bm
g (µ) is the set of irreducible components of dimension 〈µ, ρ̌〉 of any fiber

of �µ

b,M .
And as before, the operations e∗i , f ∗i introduced earlier coincide with those defined

in terms of the above decomposition for M = Mi .
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14.9

At last, we are ready to check the required commutation property of ei and fi with
e∗j and f ∗j for i �= j ∈ I .

Consider the scheme Sµ1,µ2
g,i,j classifying the data of

• a Pi-bundle FPi
(with the induced Mi-bundle F′Mi

);
• an Mj -bundle FMj

;
• regular maps (Vν̌ )FPi

→ (Uν̌ )FMj
;

• meromorphic maps : Lν̌

F0
T

→ (Uν̌ )F′Mi

; and

• meromorphic maps (Uν̌ )FMj
→ Lν̌

F0
T

,

such that

• the compositions Lλ̌

F0
T

→ (U
λ̌
)F′Mi

→ (V
λ̌
)FPi

→ (Uλ̌)FMj
→ Lλ̌

F0
T

are the

identity maps;
• the (a priori meromorphic) compositions

(U
λ̌
)F′Mi

→ (V
λ̌
)FPi

→ (U
λ̌
)FMj

→ Lλ̌

F0
T

(−〈µ1, λ̌〉 · c)
are regular bundle maps; and

• the (a priori meromorphic) compositions

Lλ̌

F0
T

(−〈µ2, λ̌〉 · c)→ (U
λ̌
)F′Mi

→ (V
λ̌
)FPi

→ (U
λ̌
)FMj

are regular bundle maps as well.

As before, we have a map

Sµ1,µ2
g,i,j → Grµ1

B−(Mi)
×Grµ2

B(Mj )
.

We claim that Sµ1,µ2
g,i,j over Grµ1

B−(Mi)
×Grµ2

B(Mj )
also splits as a direct product. This

follows from the fact that we can make the group (N−(Mi) × N(Mj))((t)) act on
Sµ1,µ2

g,i,j lifting its action on Grµ1
B−(Mi)

×Grµ2
B(Mj )

.

The isomorphism class of Sg,µ1,µ2
i,j also depends only on the difference µ =

µ1 − µ2, and let us denote by Ci,j (µ) the set of irreducible components of the top
dimension of any fiber of Sg,µ1,µ2

i,j over Grµ1
B−(Mi)

×Grµ2
B(Mj )

.

As before, the preimage of (Grλ1
B(Mi)

∩Grµ1
B−(Mi)

) × (Grµ2
B(Mj )

×Grλ2
B−(Mj )

) in

Sg,µ1,µ2
i,j is naturally a locally closed subset inside

◦
Sλ1−λ2

g,b and we obtain a decompo-
sition

Bg(λ) � ∪
µ1,µ2

Bmi
(λ1 − µ1)× Bmj

(µ2 − λ2)× Ci,j (µ1 − µ2). (30)

Moreover, this decomposition refines those of (28) and (29). Hence the ei, fi, e∗j , f ∗j
operations preserve the decomposition of (30), and ei, fi act along the first factor,
whereas e∗j , f ∗j act only along the second factor, and hence they commute.
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15 The highest-weight property

In this section (with the exception of Sections 15.5 and 15.6), g will still be a general
Kac–Moody algebra. We will reduce Conjecture 2.27 to Conjecture 15.3 and verify
the latter in the finite and affine cases.

15.1

Observe that for any i ∈ I , using (3), by adding a defect at c ∈ C, we can realize
Z
λ−αi
g,b (C) as a closed subscheme of Zλ

g,b(C) of codimension 2. Similarly, F
λ−αi
g,b is a

closed subscheme of Fλ
g,b.

Let K be an irreducible component of
◦
Fλ

g,b, and let K be its closure in Fλ
g,b.

Consider the intersection

K ∩ ◦
F
λ−αi
g,b ⊂ Fλ

g,b.

Proposition 15.2. If the above intersection is nonempty, it consists of one irreducible
component, whose dimension is dim(K)− 1.

Proof of Proposition 15.2. Recall the stack Sµ

g,b,pi
introduced in the previous section.

Let Sµ,≤λ
g,b,pi

and Sµ,λ

g,b,pi
be its closed (respectively, locally closed) subschemes equal to

◦
Sθ

g,pi
×

ConvMi

(Gr0
B(Mi)

×(GrµB(Mi)
∩Gr

λ

B−(Mi)
)),

◦
Sθ

g,pi

×
ConvMi

(Gr0
B(Mi)

×(GrµB(Mi)
∩Grλ

B−(Mi)
)),

respectively, where Gr
λ

B−(Mi)
is the closure of Grλ

B−(Mi)
in GrMi

. (In other words,
we impose the condition that the maps (Uν)FMi

→ LF0
T
(〈λ, ν〉 · c) are regular

(respectively, regular bundle maps).)

We have Sµ,≤λ
g,b,pi

= ⋃
0≤λ′≤λ

Sµ,λ′
g,b,pi

, and Sµ,≤λ
g,b,pi

identifies naturally with a locally

closed subset of Fλ
g,b (of the same dimension), and

Fλ
g,b �

⋃
µ

Sµ,≤λ
g,b,pi

,
◦
Fλ

g,b �
⋃
µ

Sµ,λ

g,b,pi
.

We have a pair of Cartesian squares:

Sµ,λ

g,b,pi
−−−−→ Sµ,≤λ

g,b,pi
←−−−− Sµ,λ−αi

g,b,pi⏐⏐� ⏐⏐� ⏐⏐�
◦
Fλ

g,b −−−−→ Fλ
g,b

ιαi←−−−− ◦
F
λ−αi
g,b .
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Therefore, it is enough to show that for any irreducible component K of Sµ,λ

g,b,pi
,

the intersection
K ∩ Sµ,λ−αi

g,b,pi

consists of one irreducible component, whose dimension is dim(K)− 1.
However, since Sµ

g,b,pi
→ GrµB(Mi)

splits as a product, our assertion follows from

the fact that GrµB(Mi)
∩Grλ

B−(Mi)
and GrµB(Mi)

∩Grλ−αi
B−(Mi)

are irreducible varieties,
since Mi is a reductive group of rank 1. ��

In order to be able to apply the uniqueness theorem of [KaS], we need the following
conjecture to be satisfied for our g.

Conjecture 15.3. Ifλ �= 0, for every irreducible component K of
◦
Fλ

g,b, the intersection

K ∩ ◦
F
λ−αi
g,b ⊂ Fλ

g,b is nonempty for at least one i ∈ I .

Note that Conjecture 15.3 implies Conjecture 2.27.

Proof. We will argue by induction on the length of λ. The dimension estimate is
obvious for λ = 0, and let us suppose that it is verified for all λ′ < λ.

Let K be an irreducible component of
◦
Fλ

g,b, and let i ∈ I be such that K′ :=
K ∩ ◦

F
λ−αi
g,b is nonempty.

We know that dim(K′) ≤ 〈λ − αi, ρ̌〉. Hence by Proposition 15.2, dim(K) ≤
〈λ, ρ̌〉, which is what we had to prove. ��

Note also that if we assume Conjecture 15.3, and thus obtain a well-defined crystal
structure on Bg, the operation

K 
→ K ∩ ◦
F
λ−αi
g,b ,

as in Proposition 15.2, viewed as a map Bg(λ)→ Bg(λ− αi) ∪ 0, equals f ∗i .
Hence if Conjecture 15.3 is verified, we obtain, according to Section 12.5, that

our crystal Bg can be identified with Kashiwara’s crystal B∞g .
In particular, we obtain the following corollary.

Corollary 15.4. If Conjecture 15.3 is verified, then for a parabolic subalgebra p ⊂ g
such that its Levi subalgebra is of finite type, the dimension of the fibers of the
map Sν

g,p → Convν
M is ≤ 〈ν, ρ̌ − 2ρ̌M 〉, and the set of irreducible components

of dimension 〈ν, ρ̌ − 2ρ̌M 〉 of (any) such fiber parametrizes a basis of the space
Homm(V

µ
M,U(n(p̌))).

15.5

Although Conjecture 15.3 is well known for g of finite type, we will give here yet
another proof, using Theorem 11.6. Then we will modify this argument to prove
Conjecture 15.3 in the affine case.
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We will argue by contradiction. Let λ be a minimal element in �
pos
g , for which

there exists a component K such that all K ∩ ◦
F
λ−αi
g,b are empty. As in the proof of

Conjecture 2.27 above, we obtain in particular that for all λ′ < λ, the dimension
estimate dim(Fλ′

g,b) = |λ′| holds.
Let C be a genus 0 curve. According to [BFGM], we have a smooth map

Zλ
g,b(C) → BunB(C), and let ∂(Zλ

g,b(C)) be the preimage of ∂(BunB(C)) in

Zλ
g,b(C). According to Theorem 11.6, ∂(Zλ

g,b(C)) is a quasi-effective Cartier di-

visor in Zλ
g,b(C). Let us consider the intersection K ∩ ∂(Zλ

g,b(C)). This intersection

is nonempty, since it contains the point-scheme, corresponding to Z0
g,b(C) � F0

g,b ⊂
Zλ

g,b(C).

On the one hand, from Lemma 11.3, we obtain that dim(K∩∂(Zλ
g)) ≥ dim(K)−

1 ≥ |λ| − 1. On the other hand, this intersection is contained in

∩
λ′<λ

K ∩ Fλ′
g,b.

But, according to our assumption, all the λ′ appearing in the above expression have
the property that |λ′| ≤ |λ| − 2, and hence dim(K ∩ ∂(Zλ

g,b(C))) is of dimension
≤ |λ| − 2, which is a contradiction.

15.6

In this subsection we will prove Conjecture 15.3 for affine Lie algebras. We will
change our notation, and from now on g will denote a finite-dimensional semisimple
Lie algebra, and gaff will be the corresponding affine Kac–Moody algebra.

As above, we will argue by contradiction. Let µ be a minimal element of �̂pos
g

for which there exists a component K violating Conjecture 15.3. In particular, we

can assume that the dimension estimate dim(
◦
Fλ′

gaff ,b
+
aff
) = |λ′| holds for all λ′ < λ.

Let us consider the corresponding Uhlenbeck space Uλ
G;B . We can view our

component K as a subset in Bunλ
G;B(S,D∞;D0); let K be the closure of K in-

side Uλ
G;B .

Consider the intersection K∩∂(Uλ
G;B). As before, it is nonempty, since it contains

the point a · c ∈ U
µ;µ,0
G,B ⊂ Uλ

G;B , and hence is of dimension at least |λ| − 1. On the
other hand we will show that if K violates Conjecture 15.3, this intersection will be
of dimension ≤ |λ| − 2.

Indeed, consider the fiber of �λ

b+aff
: Uλ

G;B →
◦
Cλ over λ · c ∈ ◦

Cλ. According to

Theorem 10.2, it is the union over decompositions λ = λ1 + λ2 + b · δ of varieties

◦
F
λ1

gaff ,b
+
aff
× Symb(

◦
X − 0X),

and ∂(
◦
Uλ
G;B) corresponds to the locus where λ2 �= 0. Since |δ| is the dual Coxeter

number, and is > 1, the intersection
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K ∩ (
◦
F
λ1

gaff ,b
+
aff
× Symb(

◦
X − 0X)) (31)

is of dimension ≤ |λ| − 2 unless b = 0 and |λ1| = |λ| − 1.
However, under the projection U

µ

G;B → Z
µ

gaff ,b
+
aff
(C), the intersection (31) gets

mapped to K ∩ ◦
F
λ1

gaff ,b
+
aff

, and by assumption the latter is empty for λ1 = λ− αi for

all i ∈ Iaff .
This completes the proof of Conjecture 15.3 for untwisted affine Lie algebras.

The proof for a twisted affine Lie algebra follows by realizing it (as well as all the
related moduli spaces) as the fixed-point set of a finite order automorphism of the
corresponding untwisted affine Lie algebra. We will not use the result for the twisted
affine Lie algebras, and we leave the details to the interested reader.

Part V: Computation of the IC Sheaf

16 IC stalks: Statements

16.1

The purpose of this section is to formulate some statements about the behavior of the
IC-sheaves on the parabolic Uhlenbeck spaces Ũθ

G,P and Uθ
G,P . Since the material

here is largely parallel to that of [BFGM], we will assume that the reader is familiar
with the notation of [BFGM].

Recall that we have a natural map

rp+aff
: Ũθ

G;P → Uθ
G;P

and the decompositions into locally closed subschemes

Uθ
G;P =

⋃
θ2,b

U
θ;θ2,b
G;P and Ũθ

G;P =
⋃
θ2,b

Ũ
θ;θ2,b
G;P ,

where Ũ
θ;θ2,b
G;P = r−1

p+aff
(U

θ;θ2,b
G;P ). Recall also that we have the natural sections

sp+aff
: ◦Cθ → Uθ

G;P and s̃p+aff
: Modθ,+

Maff
→ Ũθ

G;P .

16.2

For a standard parabolic p ⊂ g, consider the corresponding parabolic p+aff ⊂ gaff , and
let Vp be the unipotent radical of the parabolic attached to it in the Langlands dual
Lie algebra ǧaff . (Recall that by V we denote Vp for p = g.)

The corresponding Levi subgroup contains the subgroup M̌aff � M̌ × Gm (we
ignore the other Gm-factor because it is central), and consider Vp as a M̌aff -module.



Uhlenbeck Spaces via Affine Lie Algebras 123

Note that the lattice �̂g,p is naturally the lattice of central characters of M̌aff , and
�̂

pos
g,p ⊂ �̂g,p corresponds to those that appear in Sym(Vp).

Let us denote by LocMaff the canonical equivalence of categories between
Rep(M̌aff ) and the category of spherical perverse sheaves on the affine Grassman-
nian of Maff . More generally, for a scheme (or stack S) mapping to BunMaff , we

will denote by LocMaff
S,C the corresponding functor from Rep(M̌aff ) to the category of

perverse sheaves on S ×
BunMaff

HMaff ,C; cf. [BFGM, Theorem 1.12].

For an element θ ∈ �̂
pos
g,p, we will denote by P(θ) elements of the set of partitions

of θ as a sum θ = �
k
nk ·θk , θk ∈ �̂

pos
g,p; let |P(θ)| be the sum�

k
nk . For a partition P(θ),

let SymP(θ)(
◦
C) denote the corresponding partially symmetrized power of

◦
C, i.e.,

SymP(θ)(
◦
C) := �

k

◦
Cθk .

Let H
P(θ),+
Maff ,C

be the appropriate version of the Hecke stack over SymP(θ)(
◦
C).

Recall (cf. [BFGM, Section 4.1]) that we have a natural finite map

ÑormP(θ) : HP(θ),+
Maff ,C

→ H
θ,+
Maff ,C

,

covering the map NormP(θ) : CP(θ) → Cθ .

As in [BFGM, Theorem 1.12], we have the functor LocMaff ,P(θ)
S,C from Rep(M̌aff )

to the category of perverse sheaves on S ×
BunMaff

H
P(θ),+
Maff ,C

.

Theorem 16.3. The object (̃sp+aff
)!(ICŨθ

G;P
) is isomorphic to the direct sum over all

P(θ) of

(ÑormP(θ))∗(LocMaff ,P(θ)
pt,C (Vp))[−|P(θ)|],

where pt → BunM(C) is the map corresponding to the trivial bundle.

16.4

Next we will state the theorem that describes the stalks of ICŨθ
G;P

.

Let θ ∈ �̂
pos
g,p be decomposed as θ = θ1+θ2+b·δ, and recall that the corresponding

stratum Ũ
θ;θ2,b
G;P is isomorphic to

(Bunθ1
G;P (S

′,D′∞;D′0) ×
BunM(C,∞C)

H
θ2,+
Maff ,C

)× Symb(
◦◦
S).

Let us fix partitions P(b) and P(θ2) of b and θ2, respectively. Let
◦

SymP(θ2)(
◦
C) ⊂

SymP(θ2)(
◦
C) and

◦
SymP(b)(

◦
S) ⊂ SymP(b)(

◦
S) be the open subsets obtained by re-

moving all the diagonals. Let us denote by Ũ
θ;P(θ2),P(b)

G;P the corresponding locally

closed subvariety in Ũ
θ;θ2,b
G;P . Note that it is isomorphic to
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(Bunθ1
G;P (S

′,D′∞;D′0) ×
BunM(C,∞C)

(H
P(θ2),+
Maff ,C

×
SymP(θ2)(C)

◦
SymP(θ2)(

◦
C)))

× ◦
SymP(b)(

◦◦
S).

Theorem 16.5. The *-restriction of ICŨθ
G;P

to the stratum Ũ
θ;P(θ2),P(b)

G;P is isomor-

phic to

LocMaff ,P(θ2)

Bun
θ1
G;P (S,D∞;D0),C

(⊕
i≥0

Symi (Vp)[2i]) � (SymP(b)(Vf )⊗ IC ◦
SymP(b)(

◦◦
S )
).

16.6

We will now formulate theorems parallel to Theorems 16.3 and 16.5 for the schemes
Uθ
G;P .

Let V be a representation of the group M̌aff , and let P(θ) : θ = �
k
nk · θk be

a partition. We will denote by LocP(θ)(V ) the semisimple complex of sheaves on
SymP(θ)(C) which is the IC-sheaf tensored by the complex of vector spaces equal to⊗

k

(V
f
θk
)⊗nk ,

where V f denotes the kernel of the principal nilpotent element f ∈ m̌ acting on V f

endowed with a principal grading, which we declare cohomological.
Note that the same procedure makes sense when V is actually a semisimple

complex of M̌aff -representations.

Theorem 16.7. The object (sp+aff
)∗(ICUθ

G;P
) is isomorphic to the direct sum over all

P(θ) of
(NormP(θ))∗(LocP(θ)(Vp))[|P(θ)|].

And finally, we have the following.

Theorem 16.8. The *-restriction of ICUθ
G;P

to the stratum

U
θ;P(θ2),P(b)

G;P � Bunθ1
G;P (S,D∞;D0)×

◦
SymP(θ2)(

◦
C)× ◦

SymP(b)(
◦◦
S)

is isomorphic to

ICBunG;P (S,D∞;D0) �LocP(θ2)(⊕
i≥0

Symi (Vp)[2i])� (SymP(b)(Vf )⊗ IC ◦
SymP(b)(

◦◦
S )
).

Corollary 16.9. Theorem 7.10 holds.

To prove Corollary 16.9 it is enough to note that it is a particular case of Theo-
rem 16.8 when P = G.
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17 IC stalks: Proofs

17.1 Logic of the proof

To prove all five theorems—i.e., Theorems 16.3, 16.5, 16.7, 16.8, and 7.10—we will
proceed by induction on the length |θ | of the parameter θ .

Thus let θ be (θ, a), and we assume that the assertions of Theorems 16.3, 16.5,
16.7, and 16.8 hold for all θ ′ < θ and that the assertion of Theorem 7.10 holds for all
a′ < a.

As we shall see, the induction hypothesis will give a description of the restrictions
of ICUθ

G;P
and (respectively, ICŨθ

G;P
) to almost all the strata IC

U
θ;P(θ2),P(b)

G;P
(respec-

tively, IC
Ũ

θ;P(θ2),P(b)

G;P
).

This will allow us to perform the induction step and prove Theorem 16.3 for the
parameter equal to θ . Then we will deduce Theorems 16.5, 16.7, and 16.8 from
Theorem 16.3. Finally, as was noted before, Theorem 7.10 is a particular case of
Theorem 16.8.

17.2

Consider a decomposition θ = θ1 + θ2 + b · δ, and let Ũ
θ;P(θ2),P(b)

G;P be the corres-
ponding stratum. We claim that if(

(θ2 < θ)
∧

(b < a)
)∨

(|P(θ2)| > 1)
∨

(|P(b)| > 1)

then the restriction of ICŨθ
G;P

to this stratum is known and given by the expression of

Theorem 16.5, by the induction hypothesis.
We will first establish the required isomorphism locally in the étale topology on

Ũ
θ;P(θ2),P(b)

G;P and then argue that it holds globally. An absolutely similar argument
establishes the description of the restriction of ICUθ

G;P
to the corresponding stratum

in Uθ
G;P under the same assumption on P(θ2),P(b).

We claim that every geometric point belonging to the stratum Ũ
θ;P(θ2),P(b)

G;P has
an étale neighborhood, which is smoothly equivalent to an étale neighborhood of a

point in Ũ
θ ′;θ2,b
G;P , where θ ′ < θ .

Let us first consider the case when θ1 �= 0. Recall the map �θ

p+aff
: Uθ

G;P →
◦
Cθ

and the map rp+aff
: Ũθ

G;P → Uθ
G;P . Using Proposition 10.6, let us write a point σ of

Ũ
θ;θ2,b
G;P as a triple

(σ ′,Dθ2 , (FMaff , β), (�bi · si )),
where we have the following:

• σ ′ is a based map of degree C → BunG;P (X,∞X; 0X). Let us denote by F′G
the corresponding principal G-bundle on S′, endowed with a trivialization along
D′∞ and a reduction to P along D′0; let F′M denote the corresponding M-bundle
on D′0 � C.
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• Dθ2 is an element of
◦
Cθ2 .

• (F′M,Dθ2 ,FMaff , β) is a point of H
θ2,+
Maff ,C

.

• �bi · si is a 0-cycle of degree b on
◦◦
S .

Assume for a moment that the support of the divisor �θ

p+aff
(σ ′) ∈ ◦

Cθ is dis-

joint from both πv(�bi · si ) and Dθ2 . Then, according to the factorization property
Proposition 9.4, our point of Ũ

θ;θ2,b
G;P is smoothly equivalent to a point in the prod-

uct Ũ
θ−θ1;θ2,b
G;P × Ũ

θ1;0,0
G;P , and our assertion about smooth equivalence follows since

Ũ
θ1;0,0
G;P � Bunθ1

G;P (S; ,D′∞;D′0) and the latter is smooth.

It remains to analyze the case when the support of �θ

p+aff
(σ ′) does intersect the

supports of Dθ2 and πv(�bi · si ). By applying again Proposition 9.4, we can assume

that there exists a point c ∈ ◦
C, such that Dθ2 = θ2 · c and πv(�bi · si ) = b · c.

Consider the fiber product

(Ũθ
G;P × Buna1

G (S′,D′∞)) ×
X(a)×X(a1)

(X(a) × (
◦
X − 0X)

(a1))disj,

which, according to Proposition 9.9, maps smoothly to Ũ
θ+a1·δ
G;P .

We can view this morphism as a convolution of a point σ ∈ Ũθ
G;P with a point

σ1 ∈ Buna1
G (S′,D′∞) such that �v(σ) and �v(σ1) have disjoint supports. We will

denote the resulting point of Ũ
θ+a1·δ
G;P by σ ◦ σ1.

It is easy to see that if σ ∈ Ũ
θ;θ2,b
G;P , then σ ◦ σ1 ∈ Ũ

θ+a1·δ;θ2,b
G;P ; moreover, σ ◦ σ1

corresponds to the triple

(σ ′ ◦ σ1,D
θ2 , (FMaff , β), (�bi · si )),

where all but the first piece of data remain unchanged.
Therefore, it is sufficient to show that there exists an integer a1 large enough and

σ1 ∈ Buna1
G (S′,D′∞), such that the support of �

θ1+a1·δ
p+aff

(σ ◦ σ1) is disjoint from c.

The latter means that the G-bundle obtained from σ ′ ◦ σ1 on the line c × X should
be trivial and its reduction to P at c × 0X in the generic position with respect to the
trivialization at c×∞X.

We can view σ1 as a pair consisting of a divisor D ∈ (
◦
X − 0X)

(a1) and a based
map C → GrBD,a1

G,X,D . Then the restriction of σ ◦ σ1 to c × X is obtained from the
restriction of σ to c×X by a Hecke transformation corresponding to the value of the
above map C → GrBD,a1

G,X,D at c.
Now, it is clear that by choosing a1 to be large enough we can always find a based

map C → GrBD,a1
G,X,D which will bring σ ′|c×X to the desired generic position.
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17.3

Now, let us assume that θ1 = 0, but (0 < θ2 < θ)
∧
(0 < b). Write θ2 as (θ2, b2)

and let us consider separately the cases b2 �= 0 and b2 = 0.
If b2 �= 0, the assertion about the smooth equivalence follows from Proposi-

tion 9.9.

If b2 = 0, the composition Ũ
θ;θ2,b
G;P ↪→ Ũθ

G;P → Ua
G

�a
h→ X(a) maps to (

◦
X−0X)

(a),
and the assertion once again follows from Proposition 9.9.

Thus it remains to analyze the cases when either θ2 = θ , but |P(θ2)| > 1 or
b · δ = θ , but |P(b)| > 1.

In the former case the assertion about the smooth equivalence follows immediately
from Proposition 9.4. In the latter case, given a point

(�bi · si ) ∈ Symb(
◦◦
S) � Ũb·δ;0,b

G;P ,

which belongs to the stratum
◦

SymP(b)(
◦◦
S)with |P(b)| > 1, its projection with respect

to at least one of the projections �b
h or �b

v will be a divisor supported in more than
one point. In other words, we deduce the smooth equivalence assertion from either
Proposition 9.9 or Proposition 9.4.

To summarize, we obtain that there are only two types of strata not covered by
the induction hypothesis. One is when θ2 = θ , and the corresponding stratum is

isomorphic to
◦
C, which is contained in the image of sp+aff

. The restriction is locally
constant, because of the equivariance with respect to the group A1 action on the pair
(S′,D′0) by “horizontal’’ shifts (i.e., along the C-factor).

The other type of stratum occurs only when θ = a · δ; the stratum itself is isomor-

phic to
◦◦
S , and it is contained in an open subset of Ũθ

G;P that projects isomorphically
onto an open subset of Ua

G, via Proposition 9.9.
Note that the restriction of ICŨθ

G;P
to this last stratum is automatically locally

constant. Indeed, it is enough to show that ICUa
G
|◦
S

is locally constant, but this

follows from the fact that ICUa
G

is equivariant with respect to the group of affine-
linear transformations acting on S.

Thus we have established that the restriction of ICŨθ
G;P

to Ũ
θ;P(θ2),P(b)

G;P locally

has the required form.
Let us now show that the isomorphism in fact holds globally. First, we claim

that the complex ICŨθ
G;P
|
Ũ

θ;P(θ2),P(b)

G;P
is semisimple. This follows from the fact that

by retracing our calculation in the category of mixed Hodge modules, we obtain
that ICŨθ

G;P
|
Ũ

θ;P(θ2),P(b)

G;P
is pure. Hence the semisimplicity assertion follows from the

decomposition theorem.
Therefore, it remains to see that the cohomologically shifted perverse sheaves

that appear as direct summands in Theorem 16.5 have no monodromy. This is shown
in the same way as the corresponding assertion in [BFGM, Section 5.11].
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17.4 The induction step

We will now perform the induction step and prove Theorem 16.3 for the value of
the parameter equal to θ . The proof essentially mimics the argument of [BFGM,
Section 5].

Recall the map �θ
Maff

: Ũθ
G;P → Modθ,+

Maff
, and its section s̃p+aff

: Modθ,+
Maff

→
Ũθ
G;P . Recall also (cf. Corollary 10.4 and Proposition 10.6) that we have the “new’’

Gm-action on Ũθ
G;P that contracts it onto the image of s̃p+aff

.

Under these circumstances, we have teh following, as in [BFGM, Lemma 5.2 and
Proposition 5.3].

Lemma 17.5. There is a canonical isomorphism

(̃sp+aff
)!(ICŨθ

G;P
) � (�θ

Maff
)!(ICŨθ

G;P
),

and (̃sp+aff
)!(ICŨθ

G;P
) is a semisimple complex.

By the induction hypothesis and the factorization property, we may assume that the
restriction of (̃sp+aff

)!(ICŨθ
G;P

) to the open subset in Modθ,+
Maff

equal to the preimage of

the complement of the main diagonal
◦
Cθ−�(

◦
C) has the desired form. In other words,

(̃sp+aff
)!(ICŨθ

G;P
) �

⊕
P(θ),|P(θ)|>1

(ÑormP(θ))∗(LocMaff ,P(θ)
pt,C (Vp))[−|P(θ)|]

⊕
Kθ ,

where Kθ is a semisimple complex on Grθ,+Maff ,C
⊂ Modθ,+

Maff
, and our goal is to

show that

Kθ � LocMaff
pt,C((Vp)θ )[−1], (32)

where the subscript θ means that we are taking the direct summand of Vp corre-
sponding to the central character θ .

We pick a point in C that we will call c, and consider the fiber of Ũθ
G;P over it,

which we denote by UFθ
G;P . By definition, we have a projection

�θ
Maff

: UFθ
G;P → Grθ,+Maff

.

As in [BFGM, Section 5.12], it is sufficient to prove that (�θ
Maff

)!(ICŨθ
G;P
|UFθ

G;P
)

is concentrated in the (perverse) cohomological degrees ≤ 0 and that its 0th coho-
mology is isomorphic to

LocMaff ((U(Vp))θ ).
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17.6

We calculate (�θ
Maff

)!(ICŨθ
G;P
|UFθ

G;P
) by intersecting UFθ

G;P with the various strata

Ũ
θ;P(θ2),P(b)

G;P of Ũθ
G;P .

Case 1: The open stratum. Set
◦
Fθ
G;P = UFθ

G;P ∩ Bunθ
G;P (S,D0;D∞). (Of course,

◦
Fθ
G;P �

◦
Fθ

gaff ,p
+
aff

, in the terminology of Part IV.) The projection of the latter scheme

onto Grθ,+Maff
was studied in Section 15.

For anMaff -dominant coweight ν, let
◦
Fν
G;P denote the preimage in

◦
Fθ
G;P of GrνMaff

,

and we know from Corollary 15.4 that
◦
Fν
G;P is of dimension ≤ 〈ν, ρ̌aff 〉. Hence

(�θ
Maff

)!(C ◦
Fν
G;P

)

lies in the cohomological degrees≤ 〈θ, 2(ρ̌aff−ρ̌Maff )〉. Moreover, by Corollary 15.4
its top (i.e., 〈θ, 2(ρ̌aff − ρ̌Maff )〉) perverse cohomology is isomorphic to

ICGrνMaff
⊗Hom

M̌aff
(V ν

Maff
, U(n(p̌)).

Since Bunθ
G;P (S

′,D′∞;D′0) is smooth of dimension 〈θ, 2(ρ̌aff−ρ̌Maff )〉, we obtain

that (�θ
Maff

)!(ICŨθ
G;P
| ◦
Fθ
G;P

) indeed lies in the cohomological degrees ≤ 0, and its 0th

perverse cohomology is Loc(U(n(p̌))θ ).
Next, we will show that all other strata do not contribute to the cohomological

degrees ≥ 0.

Case 2: The intermediate strata, when θ2 �= θ , b · δ �= θ . Note that if the intersection
of Ũ

θ;P(θ2),P(b)

G;P with UFθ
G;P is nonempty, then necessarily |P(θ2)| = 1. In this case,

we will denote this intersection by F
θ;θ2,P(b)

G;P . As a scheme it is isomorphic to

(
◦
F
θ1
G;P ×

BunM(C)
H

θ2,+
Maff

)× ◦
SymP(b)(

◦
X − 0X).

Note also that
◦
F
θ1
G;P ×

BunM
H

θ2,+
Maff

� ◦
F
θ1
G;P ×

Gr
θ1,+
Maff

(Grθ1,+
Maff

 Grθ2,+
Maff

),

where Grθ1,+
Maff

 Grθ2,+
Maff

⊂ ConvMaff is the corresponding subscheme in the convolution

diagram; cf. Section 13.7. We shall view F
θ;θ2,P(b)

G;P as a fibration over
◦
F
θ1
G;P ×◦

SymP(b)(
◦
X − 0X) with the typical fiber Grθ2,+

Maff
.

In terms of the above identifications, the projection �θ
Maff

: UFθ
G;P → Grθ,+M is

equal to the composition
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(
◦
F
θ1
G;P ×

Gr
θ1,+
Maff

(Grθ1,+
Maff

 Grθ2,+
Maff

))× ◦
SymP(b)(

◦
X − 0X)

→ Grθ1,+
Maff

 Grθ2,+
Maff

→ Grθ1+θ2,+
Maff

→ Grθ,+Maff
,

where the latter map is induced by the central cocharacter b · δ.
Now, using the assumption that θ2 �= θ and b · δ �= θ , we can use Section 17.2 to

write down the restriction of ICŨθ
G;P

to F
θ;θ2,P(b)

G;P .

We obtain that it is equal to the external product of the complex

(C ◦
F
θ1
G;P
[〈θ1, 2(ρ̌aff − ρ̌Maff )〉]) � (SymP(b)(Vf )[2|P(b)|] ⊗ C ◦

SymP(b)(
◦
X−0X)

)

along the base
◦
F
θ1
G;P ×

◦
SymP(b)(

◦
X − 0X), and the perverse complex

LocMaff (⊕
i≥0

(Symi (Vp))θ2 [2i])

along the fiber Grθ2,+
Maff

.
By Corollary 15.4, we obtain that the !-direct image of the restriction

ICŨθ
G;P
|
F
θ;θ2,P(b)

G;P
onto Grθ1,+

Maff
 Grθ2,+

Maff
is a complex of sheaves lying in strictly neg-

ative cohomological degrees with spherical perverse cohomology. By the exactness
of convolution, its further direct image onto Grθ,+Maff

also lies in strictly negative co-
homological degrees, which is what we had to show.

Case 3: The strata with θ = b · δ. The intersection Ũb·δ;0,b
G;P ∩UFθ

G;P is isomorphic to

(
◦
X− 0X)

(b), which we further subdivide according to partitions P(b) of b. The map
Ũb·δ;0,b
G;P ∩UFθ

G;P → Grθ,+Maff
is the composition of the projection Ũb·δ;0,b

G;P ∩UFθ
G;P →

pt and the embedding pt → Grθ,+Maff
corresponding to the central cocharacter b · δ.

We will consider separately two cases: (a) when |P(b)| > 1 and (b) when
|P(b)| = 1.

In case (a), the restriction of ICŨθ
G;P

to the corresponding stratum
◦

SymP(b)(
◦◦
S) is

known, according to Section 17.3. In particular, we know that this complex lives in
the perverse cohomological degrees ≤ −|P(b)|. Hence when we further restrict it

to
◦

SymP(b)(
◦
X− 0X) ⊂

◦
SymP(b)(

◦◦
S), it lives in the perverse cohomological degrees

≤ −2|P(b)| < −1 − |P(b)|. Therefore, when we take its direct image along
◦

SymP(b)(
◦
X − 0X) we obtain a complex in the cohomological degrees < 0.

In case (b), by the definition of intersection cohomology, the restriction of ICŨθ
G;P

to
◦◦
S lives in strictly negative cohomological degrees. According to Section 17.3, this

restriction is locally constant; therefore, its further restriction to X− 0X ⊂
◦◦
S lives in

the cohomological degrees < −1. Hence its cohomology along X − 0X lives in the
cohomological degrees < 0.
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Case 4: The stratum θ2 = θ . According to Proposition 10.2, the intersection
Ũθ;θ,0
G;P ∩UFθ

G;P is in fact isomorphic to Grθ,+Maff
, such that the map �θ

Maff
is the identity

map.
Hence the required assertion follows from the fact that the restriction of ICŨθ

G;P
to

Grθ,+Maff
lives in the negative cohomological degrees, by the definition of the IC sheaf.

17.7

Thus the induction step has been performed and we have established Theorem 16.3
for the parameter equal to θ . Now Theorem 16.7 is deduced from Theorem 16.3 is
the same way as [BFGM, Theorem 7.2] is deduced from [BFGM, Theorem 4.5].

Let us prove now Theorem 16.8. As was explained in Section 17.2, it remains to
identify the restriction of ICUθ

G;P
to strata of two types.

Type 1. U
θ;P(θ),0
G;P , where P(θ) is a 1-element partition.

Note that U
θ;P(θ),0
G;P is a closed subset of Uθ;θ,0

G;P , and the latter is exactly the image
of the map sp+aff

. Therefore, we have to calculate the ∗-restriction of⊕
P(θ)

(NormP(θ))∗(LocP(θ)(Vp))[|P(θ)|]

to Grθ,+Maff ,C
⊂ Modθ,+

Maff ,C
, and as in the proof of [BFGM, Theorem 1.12], we obtain

the required answer for Theorem 16.8.

Type 2. We can assume that P = G and we are dealing with the stratum
◦
S ⊂

Syma(
◦
S) ⊂ Ua

G.

By Theorem 16.7 we know the restriction of ICUa
G

to
◦
C ⊂ ◦

S, and we obtain

⊕
i
(Symi (Vf ))a[2i] ⊗ C ◦

C
[2].

In particular, by passing to the category of mixed Hodge modules and retracing
the proof of Theorem 16.7, we obtain that ICUa

G
| ◦
C

is pure.

However, since ICUa
G
|◦
S

is equivariant with respect to the group of affine-linear

transformations of
◦
S, we obtain that ICUa

G
|◦
S

is also pure, and hence semisimple.

Therefore, it is isomorphic to ⊕
i
(Symi (Vf ))a[2i] ⊗ C◦

S
[2], as required.

Finally, let us prove Theorem 16.5. In this case there are also two types of strata,
not covered by the induction hypothesis: Ũ

θ;P(θ),0
G;P and Ũa·δ;0,a

G;P .
The assertion for the stratum of the first type follows from Theorem 16.3 just as

the corresponding assertion for Uθ
G,P follows from Theorem 16.7. The assertion for

the stratum of the second type follows from the corresponding fact for Ua
G, which has

been established above.
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18 Appendix

We recall the setup of Proposition 2.7. Assume that g is symmetrizable. Then a
stronger statement holds.

Theorem 18.1. The scheme Mapsθ (C,Gg,p) is of finite type.

We reproduce here the proof due to V. Drinfeld and A. Joseph. Recall that ac-
cording to Proposition 2.7, Mapsθ (C,Gg,p) is a union of finite type open subschemes
Mapsθ (C,Gw

g,p), w ∈ W. We have to check that the above union is actually finite,
i.e., for w big enough we have Mapsθ (C,Gg,p) = Mapsθ (C,Gw

g,p). In other words,
we have to find w ∈ W such that any map σ ∈ Mapsθ (C,Gg,p) lands in the open
subscheme Gw

g,p ⊂ Gg,p. We will give a proof for p = b, and the general case follows
immediately.

More precisely, for µ = ∑
i∈I

ni · αi ∈ �
pos
g we set |µ| := ∑

i∈I
ni . We will prove

that the image of σ(C) in Gg,b never intersects the Schubert subvariety Gg,b,w for

(w) > 2|µ| (the reduced length).

To this end note that |µ| is the intersection multiplicity of the curve σ(C) and
the Schubert divisor

⋃
i∈I

Gg,b,si in Gg,b. If σ(C) passes through a point of Gg,b,w,

this intersection multiplicity cannot be smaller than the multiplicity of the Schubert
divisor at this point. Thus it suffices to prove that the multiplicity of the Schubert
divisor

⋃
i∈I

Gg,b,si at a point of the Schubert variety Gg,b,w is at least 1
2
(w).

We choose ρ̌ ∈ h∗ such that 〈αi, ρ̌〉 = 1 ∀ i ∈ I . Let Vρ̌ denote the simple
g-module with highest weight ρ̌. For each w ∈W, let vwρ̌ denote an extremal vector
in Vρ̌ of weight wρ̌; let v∗

wρ̌
be an extremal vector in V∗

ρ̌
of weight −wρ̌.

Recall that under the projective embedding Gg,b ↪→ P(V∗
ρ̌
) the Schubert divisor⋃

i∈I Gg,b,si is cut out by the equation vρ̌ . There is a transversal slice to Gg,b,w through
the T -fixed point w isomorphic to w(n) ∩ n− (and the isomorphism is given by the
action of the corresponding nilpotent Lie group), and in the coordinatesf ∈ w(n)∩n−
the above equation reads

〈vρ̌, exp(f )v∗
wρ̌
〉 = 0,

where exp is the isomorphism between the nilpotent Lie algebra w(n) ∩ n− and the
corresponding Lie group.

Hence the multiplicity mw of the Schubert divisor at the point w ∈ Gg,b,w is the
maximal integerm such that 〈f1 . . . fmvρ̌, v

∗
wρ̌
〉 = 0 for any f1, . . . , fm ∈ w(n)∩n−.

Let Fn denote the canonical filtration on the universal enveloping algebra U(n−).
Now the desired estimate mw ≥ 1

2
(w) is a consequence of the following lemma
belonging to A. Joseph. We are grateful to him for the permission to reproduce
it here.

Lemma 18.2. Suppose vwρ̌ ∈ Fm(U(n−))vρ̌ . Then 2m ≥ 
(w).
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Proof. The proof uses the Chevalley–Kostant construction of Vρ̌ as extended in [J] to
the affine case. The extension generalizes with no significant change for g as above.
The extension from the semisimple case (of Chevalley–Kostant) needs a little care
as infinite sums are involved. A slightly more streamlined analysis is given in [GrJ].
Some details are given below.

Recall that g admits a nondegenerate symmetric invariant bilinear form ( , ). From
this one may construct the Clifford algebraC(g) of g defined as a quotient of the tensor
algebra T (g) of g by the ideal generated by the elements x ⊗ y − y ⊗ x − 2(x, y)
∀ x, y ∈ g.

One defines a Lie algebra homomorphism ϕ of g to a subspace of certain infinite
sums of quadratic elements of C(g). (See [J, 4.11] or [GrJ, 4.7]). In this one checks
that only finitely many commutators contribute to a given term in [ϕ(x), ϕ(y)], which
therefore makes sense and by the construction equals ϕ[x, y] (cf. [GrJ, 4.7]).

It turns out that we need to reorder the expression for ϕ(x) so that only finitely
many of the negative root vectors lie to the right. This process is well defined for
root vectors x of weight ±α̌i , i ∈ I . This is extended to g via commutation and the
Jacobi identities (see [J, 4.11]). Notably,

ϕ(h) = ρ̌(h)− 1

2

∑
α̌∈�+

∑
r

α̌(h)er−α̌e
r
α̌
∀ h ∈ h, (33)

where �+ is the set of positive roots, er
α̌

is a basis for gα̌ and er−α̌ a dual basis for g−α̌ .
Through the diamond lemma one shows that C(g) admits a triangular decompo-

sition, that is to say there is a vector space isomorphism

C(n−)⊗ C(h)⊗ C(n)
∼−→C(g)

given by multiplication. (The left-hand side is defined by restricting the bilinear form:
in particular C(n−) = �(n−)).

View n as a subspace of C(g) and let I (g) denote the left ideal it generates.
Through multiplication by ϕ(x), x ∈ g, and the above ordering, it follows that
C(g)/I (g) becomes a g-module. By [J, 4.12] it is a direct sum of dim C(h) copies
of Vρ̌ . In particular if vρ̌ is the image of the identity of C(g) in C(g)/I (g), then
U(ϕ(g))vρ̌ is isomorphic to Vρ̌ . (However, it does not lie in C(n−) (mod I (g)),
only in C(n−)⊗ C(h) (mod I (g))). (Note by (33) above, vρ̌ has weight ρ̌.)

Given w ∈ W, set S(w−1) = {α̌ ∈ �+ such that w−1α̌ ∈ −�+}. Since
β̌ ∈ S(w−1) is a real root there is a unique up to scalars root vector e−β̌ ∈ n− of

weight −β̌. Since C(g)/I (g) ≈ �(n−) ⊗ C(h) as an h-module it follows that the
subspace of C(g)/I (g) of weight wρ̌ is just⎛⎝ ∏

β̌∈S(w−1)

e−β̌

⎞⎠C(h).

With respect to the canonical filtration Fn of C(g), such an element has degree
between 
(w) and 
(w) + dim h. Yet ϕ(g) ⊂ F 2C(g) and vρ̌ ∈ F 0C(g). The
assertion of the lemma follows. ��
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This completes the proof of Theorem 18.1.
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Subject Classifications: 58C30, 46E35

1 Topological degree and VMO

Degree theory for continuous maps has a long history and has been extensively stud-
ied, both from the point of view of analysis and topology. If f ∈ C0(Sn, Sn), deg f is
a well-defined element of Z, which is stable under continuous deformation. Starting
in the early 1980s, the need to define a degree for some classes of discontinuous maps
emerged from the study of some nonlinear PDEs (related to problems in liquid crys-
tals and superconductors). These examples involved Sobolev maps in the limiting
case of the Sobolev embedding; see Sections 2 and 3 below. (Topological questions
for Sobolev maps strictly below the limiting exponent have been investigated in [15]
and [14].) In these cases, the Sobolev embedding asserts only that such maps belong
to the space VMO (see below) and need not be continuous.

In connection with degree for H 1/2(S1, S1), L. Boutet de Monvel and O. Gabber
suggested a concept of degree for maps in VMO(S1, S1) (see [2] and Section 3
below). In our joint work with L. Nirenberg [16], we followed up on their suggestion
and established on firm grounds a degree theory for maps in VMO(Sn, Sn). Here is
a brief summary of our contribution.
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First, recall the definition of BMO (bounded mean oscillation), a concept origi-
nally introduced by F. John and L. Nirenberg in 1961. Let � be a smooth bounded
open domain in Rn, or a smooth, compact, n-dimensional Riemannian manifold (with
or without boundary). An integrable function f : �→ R belongs to BMO if

|f |BMO = Sup
B⊂�

�
∫
B

�
∫
B

|f (x)− f (y)|dxdy <∞,

where the Sup is taken over all (geodesic) balls in�. It is easy to see that an equivalent
seminorm is given by

Sup
B⊂�

�
∫
B

∣∣∣∣f (x)−�
∫
B

f (y)dy

∣∣∣∣ dx.
A very important subspace of BMO, introduced by L. Sarason, consists of VMO
(vanishing mean oscillation) functions in the sense that

lim|B|→0
�
∫
B

�
∫
B

|f (x)− f (y)|dxdy = 0.

It is easy to see that

VMO(�,R) = C0(�,R)
BMO

.

The space VMO is equipped with the BMO seminorm |f |BMO. Clearly, L∞ ⊂ BMO.
It is well known that BMO is strictly bigger than L∞ (a standard example is f (x) =
| log |x||); however, as a consequence of the classical John–Nirenberg inequality,

BMO ⊂ ∩
p<∞Lp.

Thus BMO is “squeezed’’ between L∞ and ∩p<∞Lp and for many purposes serves
as an interesting “substitute’’ for L∞.

Concerning VMO, it is easy to see that L∞ �⊂VMO, but, of course, C0 ⊂VMO.
A useful example showing that the inclusion is strict is the function

f (x) = | log |x||α,
which belongs to VMO for every α < 1. In some sense, VMO serves as a “substitute’’
for C0. The Sobolev space W 1,n provides an important class of VMO functions.
Recall that for every 1 ≤ p <∞,

W 1,p(�,R) = {f ∈ Lp(�); ∇f ∈ Lp(�)}.
Poincaré’s inequality asserts that∫

B

∣∣∣∣f −�
∫
B

f

∣∣∣∣ ≤ C|B|1/n
∫
B

|∇f |,

from which we deduce, using Hölder, that
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�
∫
B

∣∣∣∣f −�
∫
B

f

∣∣∣∣ ≤ C

[∫
B

|∇f |n
]1/n

and thus W 1,n ⊂ VMO.
Similarly, the fractional Sobolev space Ws,p(�) is contained in VMO for all

0 < s < 1 and all 1 < p < ∞ with sp = n (the limiting case of the Sobolev
embedding). Indeed, in the Gagliardo characterization, we have

Ws,p(�) = {f ∈ Lp(�);
∫
�

∫
�

|f (x)− f (y)|p
|x − y|n+sp dxdy <∞}. (1.1)

Clearly,∫
B

∫
B

|f (x)− f (y)|dxdy =
∫
B

∫
B

|f (x)− f (y)|
|x − y|(n/p)+s |x − y|(n/p)+sdxdy

≤ C|B|(1/p)+(s/n)
∫
B

∫
B

|f (x)− f (y)|
|x − y|(n/p)+s dxdy.

Using Hölder, we deduce that∫
B

∫
B

|f (x)− f (y)|dxdy

≤ C|B|(1/p)+(s/n)+2−(2/p)
[∫

B

∫
B

|f (x)− f (y)|p
|x − y|n+sp dxdy

]1/p

,

and thus when sp = n,

�
∫
B

�
∫
B

|f (x)− f (y)|dxdy ≤ C

[∫
B

∫
B

|f (x)− f (y)|p
|x − y|n+sp dxdy

]1/p

,

which implies that Ws,p ⊂ VMO.
One of the basic results in [16] is the following.

Theorem 1 (H. Brezis and L. Nirenberg [16]). Every map f ∈ VMO(Sn, Sn) has
a well-defined degree. Moreover,

(a) this degree coincides with the standard degree when f is continuous;
(b) the map f 
→ deg f is continuous on VMO(Sn, Sn) under BMO-convergence.

It is quite easy to define the VMO-degree. For any given measurable map f :
Sn → Sn and 0 < ε < 1, set

f̄ε(x) = �
∫
Bε(x)

f (y)dy.

Next, we present an elementary lemma that is extremely useful.

Lemma 1. If f ∈ VMO(Sn, Sn), then

|f̄ε(x)| → 1 as ε→ 0, uniformly in x ∈ Sn.
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Proof. Set

ρε(x) = �
∫
Bε(x)

�
∫
Bε(x)

|f (y)− f (z)|dydz,

so that ρε(x) → 0 as ε → 0, uniformly in x ∈ Sn, since f ∈ VMO. Then
observe that

1− ρε(x) ≤ |f̄ε(x)| ≤ 1. ��
If f ∈ VMO(Sn, Sn), we may now set

fε(x) = f̄ε(x)

|f̄ε(x)|
, x ∈ Sn, 0 < ε < ε0(f ).

Using ε as a homotopy parameter, we see that deg fε is well defined and independent
of ε for ε > 0 sufficiently small. This integer is, by definition, VMO-deg f . The
proof of Theorem 1(a) is straightforward. For the proof of (b), we refer to [16].

The space VMO(Sn, Sn) is larger than C0(Sn, Sn). However, its structure, from
the point of view of connected (or, equivalently, path-connected) components, is
similar to C0(Sn, Sn). More precisely, there is a VMO version of the celebrated Hopf
result.

Theorem 2. The homotopy classes (i.e., the path-connected components) of
VMO(Sn, Sn) are characterized by their VMO-degree.

Remark 1. By contrast, it is not possible to define a degree for maps in L∞(Sn, Sn).
In fact, the space L∞(Sn, Sn) is path-connected (see [16, Section I.5]).

2 Degree for H 1(S2, S2) and beyond

In my earlier paper with J. M. Coron [12] (see also [9, 10]), we were led to a concept
of degree for maps in H 1(S2, S2). Our original motivation came from solving a
nonlinear elliptic system, proposed in [17], which amounts to finding critical points
of the Dirichlet integral

E(u) =
∫
�

|∇u|2

subject to the constraint

u ∈ H 1
ϕ (�, S2) = {u ∈ H 1(�; S2); u = ϕ on ∂�},

where � denotes the unit disc in R2 and ϕ : ∂� → S2 is given (smooth). In the
process of finding critical points, it is natural to investigate the connected components
of H 1

ϕ (�, S2), a question which is closely related to the study of the components of
H 1(S2, S2). The way we defined a degree for H 1(S2, S2) was with the help of an
integral formula. Recall that if f ∈ C1(Sn, Sn), Kronecker’s formula asserts that
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deg f = �
∫
Sn

det(∇f ), (2.1)

where det(∇f ) denotes the n × n Jacobian determinant of f . When n = 2, the
right-hand side of (2.1) still makes sense when f is not C1, but merely in H 1(S2, S2)

because det(∇f ) ∈ L1. We were able to prove (via a density argument) that the RHS
in (2.1) belongs to Z and we took it as a definition of the H 1-degree of f . Similarly,
one may use (2.1) to define a degree for every map f ∈ W 1,n. In view of the
discussion in Section 1, we know that W 1,n ⊂ VMO and thus any f ∈ W 1,n(Sn, Sn)

admits a VMO-degree in the sense of Section 1. Fortunately, the two definitions
coincide. In fact, we have the following.

Lemma 2. For every f ∈ W 1,n(Sn, Sn),

W 1,n-deg f = VMO-deg f.

Moreover, the components of W 1,n(Sn, Sn) are characterized by their degree.

Using this concept of degree, we managed to prove in [12] that if ϕ is not a
constant, then E achieves its minimum on two distinct components of H 1

ϕ (�, S2). A
very interesting question remains open.

Open Problem 1. Does E admit a critical point in each component of H 1
ϕ (�, S2)

when ϕ is not a constant?

Even the special case

ϕ(x, y) = (Rx,Ry,
√

1− R2), 0 < R < 1, x2 + y2 = 1,

is open.
It is also interesting to study the homotopy structure of W 1,p(Sn, Sn) for values

of p �= n. This was done in my joint paper with Y. Li [14].

Theorem 3. When p > n, the standard (C0) degree of maps in W 1,p is well defined
and the components of W 1,p are characterized by their degree. When 1 ≤ p < n,
W 1,p is path-connected.

Following the earlier paper [15], we started to investigate with Y. Li [14] the
homotopy structure ofW 1,p(M,N)whenM andN are general Riemannian manifolds
(M possibly with boundary, while ∂N = ∅). When p ≥ dim M , the homotopy
structure of W 1,p(M,N) is identical to that of C0(M,N). When dim M > 1 and
1 ≤ p < 2, we proved in [14] that W 1,p(M,N) is always path-connected. When
p decreases from dim M to 2, the set W 1,p(M,N) becomes larger and larger while
various surprising phenomena may occur:

(a) Some homotopy classes persist below the Sobolev threshold p = dim M , where
maps need not belong to VMO.
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(b) As p decreases, the set W 1,p(M,N) increases, and in this process some of the
homotopy classes “coalesce’’ as p crosses distinguished integer values—and
usually there is a cascade of such levels where the homotopy structure undergoes
“dramatic’’ jumps.

(c) As p decreases, new homotopy classes may “suddenly’’appear at some (integral)
levels; every map in these new classes must have “robust’’ singularities: they
cannot be erased via homotopy.

We refer the interested reader to [14] and to the subsequent remarkable paper by
F. B. Hang and F. H. Lin [18].

3 Degree for H 1/2(S1, S1). Can one hear the degree
of continuous maps?

Another important example that motivated my work with L. Nirenberg [16] was the
concept of degree for maps inH 1/2(S1, S1) due to L. Boutet de Monvel and O. Gabber
(presented in [2, appendix]). The motivation in [2] came from a Ginzburg–Landau
model arising in superconductivity. This H 1/2-degree also plays an important role in
our study of the Ginzburg–Landau vortices with F. Bethuel and F. Hélein (see [1]).
For example, it is at the heart of the proof of the following.

Lemma 3. Let � be the unit disc in R2 and let ϕ be a smooth map from ∂� = S1

into S1. Then
[H 1

ϕ (�, S1) �= ∅] ⇔ [deg ϕ = 0].

The way Boutet de Monvel and Gabber originally defined a degree forH 1/2(S1, S1)

went as follows. First, observe that if f ∈ C1(S1,C \ {0}), then the Cauchy formula
asserts that

deg f = 1

2iπ

∫
S1

ḟ

f
. (3.1)

In particular, if f ∈ C1(S1, S1) we may write (3.1) as

deg f = 1

2iπ

∫
S1

f̄ ḟ = 1

2π

∫
S1

det(f, ḟ ) (3.2)

(which is the simplest form of Kronecker’s formula (2.1)). Then Boutet de Monvel
and Gabber observed that the right-hand side of (3.2) still makes when f is not C1,
but merely in H 1/2. To do so, they interpret the RHS in (3.2) as a scalar product in the
dualityH 1/2−H−1/2(f̄ ∈ H 1/2, ḟ ∈ H−1/2). Using a density argument, they prove
that the RHS in (3.2) belongs to Z and they take it as definition for the H 1/2-degree of
f . On the other hand, recall (see Section 1) that H 1/2(S1) ⊂ VMO(S1). Therefore,
any f ∈ H 1/2(S1, S1) admits a VMO-degree in the sense of Section 1, and, in fact,
we have the following.
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Lemma 4. For every f ∈ H 1/2(S1, S1),

H 1/2-deg f = VMO-deg f.

Lemmas 2 and 4 show the unifying character of the VMO-degree, putting various
concepts of degree (for continuous maps, for W 1,n(Sn, Sn) maps, for H 1/2(S1, S1)

maps, etc.) under a common roof.
In 1996, I. M. Gelfand invited me to present at his seminar the VMO-degree

theory we had just developed with Louis Nirenberg. He asked me to elaborate on the
special case of the H 1/2(S1, S1)-degree. I wrote down Gagliardo’s characterization
of H 1/2 which, in this special case, takes the form

H 1/2(S1) =
{
f ∈ L2(S1);

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy <∞

}
.

Since I. M. Gelfand was not fully satisfied with Gagliardo’s formulation, I also wrote
down the characterization of H 1/2 in terms of the Fourier coefficients (an) of f :

H 1/2(S1) =
{
f ∈ L2(S1);

+∞∑
n=−∞

|n||an|2 <∞
}

(see also Lemma 5 below). At that point, I. M. Gelfand asked whether there is a
connection between the degree and the Fourier coefficients. At first, I was surprised by
his question, but I realized shortly afterwards that if one inserts the Fourier expansion

f (θ) =
+∞∑

n=−∞
ane

inθ

into (3.2), one finds

deg f =
+∞∑

n=−∞
n|an|2. (3.3)

Formula (3.3) is easily justified when f ∈ C1(S1, S1). The density ofC1(S1, S1) into
H 1/2(S1, S1) and the stability of degree under VMO-convergence (and thus under
H 1/2-convergence) yield the following.

Theorem 4. For every f ∈ H 1/2(S1, S1),

VMO-deg f =
+∞∑

n=−∞
n|an|2. (3.4)

Formula (3.4) raises some intriguing questions. First, however, we present a
consequence of Theorem 4.
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Corollary 1. Let (an) be a sequence of complex numbers satisfying

+∞∑
n=−∞

|n||an|2 <∞, (3.5)

+∞∑
n=−∞

|an|2 = 1, (3.6)

and

+∞∑
n=−∞

anān+k = 0 ∀k �= 0. (3.7)

Then

+∞∑
n=−∞

n|an|2 ∈ Z. (3.8)

Proof. Set

f (θ) =
+∞∑

n=−∞
ane

inθ ,

so that f ∈ H 1/2(S1,C). Moreover, we have∫
S1
(|f (θ)|2 − 1)eikθ dθ = 0 ∀k. (3.9)

Indeed, for k = 0, (3.9) follows from (3.6), and for k �= 0, (3.9) follows from (3.7).
Thus we obtain

|f (θ)| = 1 a.e. (3.10)

Applying Theorem 4, we find (3.8). ��
Pedagogical Question. Is there an elementary proof of Corollary 1 that does not rely
on Theorem 4?

Suppose now f ∈ C0(S1, S1) and f /∈ H 1/2. Then the series

+∞∑
n=−∞

|n||an|2

is divergent. The LHS in (3.4) is well defined, but the RHS is not. It is natural
to ask whether deg f may still be computed as a “principal value’’ of the series∑+∞

n=−∞ n|an|2 (which is not absolutely convergent). In [11] we raised the question
of whether standard summation processes can be used to compute the degree of a
general f ∈ C0(S1, S1). Let, for example,
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σN =
+N∑

n=−N
n|an|2

or

Pr =
+∞∑

n=−∞
n|an|2r |n|, 0 < r < 1.

Is it true that, for any f ∈ C0(S1, S1),

deg f = lim
N→+∞ σN or deg f = lim

r↓1
Pr?

J. Korevaar [20] has shown that the answer is negative. He has constructed interesting
examples of maps f ∈ C0(S1, S1) of degree 0 such that σN (respectively, Pr ) need
not have a limit as N → ∞ (respectively, r → 1) or may converge to any given
real number λ �= 0, including ±∞. In view of this fact, we now propose a more
“modest’’ question: Do the absolute values of the Fourier coefficients determine the
degree? More precisely, we have the following.

Open Problem 2 (Can one hear the degree of continuous maps?). Let f, g ∈
C0(S1, S1) and let (an), (bn) denote the Fourier coefficients of f and g, respectively.
Assume that

|an| = |bn| ∀n ∈ Z. (3.11)

Can one conclude that
deg f = deg g?

Answer the same question if one assumes only that f, g ∈ VMO(S1, S1).

Of course, the answer to Open Problem 2 is positive if, in addition, f, g ∈
H 1/2(S1, S1). This is a consequence of Theorem 4. The answer is still positive
in a class of functions strictly larger than H 1/2. The proof is based on the following.

Theorem 5. For every f ∈ W 1/3,3(S1, S1), we have

VMO-deg f = lim
ε↓0

1

ε2

∑
n∈Z

n �=0

|an|2 sin2 nε

n
. (3.12)

Corollary 2. Assume that f, g ∈ W 1/3,3(S1, S1) satisfy (3.11). Then

VMO-deg f = VMO-deg g.

Corollary 3 (J. P. Kahane [19]). Assume that f, g ∈ C0,α(S1, S1), with α > 1/3,
satisfy (3.11). Then

deg f = deg g.
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Note that C0,α ⊂ W 1/3,3 ∀α > 1/3. (This is an obvious consequence of
Gagliardo’s characterization (1.1)). Thus Corollary 2 implies Corollary 3. Our proof
of Theorem 5 is a straightforward adaptation of the ingenious argument of J. P. Kahane
[19] for C0,α, α > 1/3.

Remark 2. The conclusion of Theorem 5 holds iff ∈ W 1/p,p(S1, S1)with 1 < p ≤ 3
(since W 1/p,p ∩ L∞ ⊂ W 1/3,3 ∀p ≤ 3). (Note that when 1 < p ≤ 2 the conclusion
of Theorem 5 is an immediate consequence of Theorem 4 since

∑ |n||an|2 < ∞.
However, in the range 2 < p ≤ 3, the conclusion is far from obvious since the series∑ |n||an|2 may be divergent.) It is interesting to point out that formula (3.12) fails
if one assumes only f ∈ W 1/p,p(S1, S1) with p > 3. In fact, J. P. Kahane [19] has
constructed an example of a function f ∈ C0,1/3(S1, S1) such that deg f = 0 while

lim
ε↓0

1

ε2

∑
n∈Z

n �=0

|an|2 sin2 nε

n
= λ,

where λ could be any real number λ �= 0. The heart of the matter is the existence of
a 2π -periodic function ϕ ∈ C0,1/3(R,R) such that∫ 2π

0
(ϕ(θ + h)− ϕ(θ))3dθ = sin h ∀h.

This still leaves open the question whether Corollary 2 holds when W 1/3,3 is replaced
by W 1/p,p, p > 3.

Taking p→ 1 in Remark 2 suggests that Theorem 5 holds for f ∈ W 1,1. This is
indeed true, and there is even a stronger statement.

Theorem 6. For every f ∈ C0(S1, S1) ∩ BV(S1, S1), we have

deg f = lim
ε↓0

1

ε

+∞∑
n=−∞

|an|2 sin nε.

Consequently, we also have the following.

Corollary 4. Assume f, g ∈ C0(S1, S1) ∩ BV(S1, S1) satisfy (3.11). Then

deg f = deg g.

Remark 3. It was already observed by J. Korevaar in [20] that for every f ∈ C0∩BV,
one has

deg f = lim
N→∞

+N∑
n=−N

n|an|2,

which also implies Corollary 4.
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Proof of Theorem 5. We follow the argument of J. P. Kahane [19], except that we
work in the fractional Sobolev space W 1/3,3 instead of the smaller Hölder space
C0,α, α > 1/3. Set

d = VMO-deg f.

By [16, Theorem 3 (and Remark 10)], we may write

f (θ) = ei(ϕ(θ)+dθ)

for some ϕ ∈ VMO(S1,R). Applying [3, Theorem 1] and the uniqueness of the
lifting in VMO, we know that ϕ ∈ W 1/3,3.

Write∫ 2π

0
f (θ + h)f̄ (θ)dθ = 2π

+∞∑
n=−∞

|an|2einh =
∫ 2π

0
eidhei(ϕ(θ+h)−ϕ(θ))dθ,

(3.13)

eidh = 1+ idh+O(|h|2), (3.14)

and

ei(ϕ(θ+h)−ϕ(θ)) = 1+ i(ϕ(θ + h)− ϕ(θ))− 1

2
(ϕ(θ + h)− ϕ(θ))2

+O(|ϕ(θ + h)− ϕ(θ)|3).
(3.15)

Thus

Im[eidhei(ϕ(θ+h)−ϕ(θ))] = Im[(1+ idh)ei(ϕ(θ+h)−ϕ(θ))] +O(|h|2)
= (ϕ(θ + h)− ϕ(θ))+ dh+O|h|2)
+O(|h||ϕ(θ + h)− ϕ(θ)|2) (3.16)

+O(|ϕ(θ + h)− ϕ(θ)|3).
Integrating (3.16) with respect to θ yields∣∣∣∣∣

+∞∑
n=−∞

|an|2 sin nh− dh

∣∣∣∣∣ ≤ C|h|2 + C

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ. (3.17)

Next, integrating (3.17) with respect to h on (0, 2ε) gives∣∣∣∣∣∣∣
∑
n∈Z

n�=0

|an|2
(

1− cos 2nε

n

)
− 2dε2

∣∣∣∣∣∣∣
≤ Cε3 + C

∫ 2ε

0
dh

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ
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and therefore ∣∣∣∣∣∣∣
1

ε2

∑
n∈Z

n�=0

|an|2 sin2 nε

n
− d

∣∣∣∣∣∣∣
≤ Cε + C

ε2

∫ 2ε

0

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dhdθ

≤ Cε + C

∫ 2ε

0

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3
|h|2 dhdθ,

(3.18)

which implies (3.12) since ϕ ∈ W 1/3,3. ��
Proof of Theorem 6. Since f ∈ C0∩BV, the corresponding ϕ satisfies ϕ ∈ C0∩BV.
We return to (3.17) with h = ε,∣∣∣∣∣1ε

+∞∑
h=−∞

|an|2 sin nε − d

∣∣∣∣∣ ≤ Cε + C

ε

∫ 2π

0
|ϕ(θ + ε)− ϕ(θ)|3dθ. (3.19)

Next, we have ∫ 2π

0
|ϕ(θ + ε)− ϕ(θ)|dθ ≤ ε‖ϕ‖BV. (3.20)

Inserting (3.2) into (3.19) gives∣∣∣∣∣1ε
+∞∑

n=−∞
|an|2 sin nε − d

∣∣∣∣∣ ≤ Cε + C Sup
θ

‖ϕ(θ + ε)− ϕ(θ)‖2
L∞ , (3.21)

and the conclusion follows since ϕ ∈ C0. ��
Remark 4. It has been pointed out to me by J. P. Kahane that a slightly stronger
conclusion holds in Theorem 5.

Theorem 5′. For every f ∈ W 1/3,3(S1, S1), we have

VMO-deg f = lim
ε↓0

1

ε

+∞∑
n=−∞

|an|2 sin nε. (3.22)

Proof. Returning to (3.17), it suffices to verify that

lim
h↓0

1

h

∫ 2π

0
|ϕ(θ + h)− ϕ(θ)|3dθ = 0. (3.23)

Set

I (t) =
∫ 2π

0
|ϕ(θ + t)− ϕ(θ)|3dθ
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so that

I 1/3(t1 + t2) ≤ I 1/3(t1)+ I 1/3(t2).

Thus

I (t1 + t2) ≤ 4(I (t1)+ I (t2)).

Consequently,

I (h) ≤ 8

h

∫ h

h/2
(I (s)+ I (h− s))ds = 8

h

∫ h

0
I (s)ds ≤ 8h

∫ h

0

I (s)

s2
ds.

Since ϕ ∈ W 1/3,3, we know that∫ 2π

0

I (s)

s2
ds <∞

and (3.23) follows.

4 New estimates for the degree

Going back to (3.3), we see that for every f ∈ C1(S1, S1),

| deg f | ≤
∑

|n||an|2. (4.1)

Combining (4.1) with Gagliardo’s characterization (1.1) of H 1/2, we find that

| deg f | ≤ C

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy. (4.2)

In fact, the sharp estimate

| deg f | ≤ 1

4π2

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy (4.3)

is an immediate consequence of (4.1) and the following.

Lemma 5. For every f ∈ H 1/2, one has∫
S1

∫
S1

|f (x)− f (x)|2
|x − y|2 dxdy = 4π2

+∞∑
n=−∞

|n||an|2. (4.4)

Proof. Write∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dxdy =

∫ 2π

0

∫ 2π

0

|∑ ane
inθ −∑ ane

inψ |2
|eiθ − eiψ |2 dθdψ
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=
∫ 2π

0

dγ

|eiγ − 1|2
∫ 2π

0

∣∣∣∑ an(1− einγ )einθ
∣∣∣2 dθ

= 2π
∑

|an|2
∫ 2π

0

|einγ − 1|2
|eiγ − 1|2 dγ.

However, for |n| ≥ 1,

|einγ − 1|2
|eiγ − 1|2 = (ei(n−1)γ + · · · + 1)(e−i(n−1)γ + · · · + 1),

and thus ∫ 2π

0

|einγ − 1|2
|eiγ − 1|2 dγ = 2π |n|.

Inserting this into the previous equality yields (4.4). ��

Remark 5. Inequality (4.3) can be viewed as an estimate for the “least amount of
H 1/2-energy’’ necessary to produce a map f : S1 → S1 with assigned degree. More
precisely, we have

Inf
f :S1→S1
deg f=n

∫
S1

∫
S1

|f (x)− f (y)|2
|x − y|2 dx dy = 4π2|n|, (4.5)

and the Inf in (4.5) is achieved when f (θ) = einθ . The existence of a minimizer
for similar problems where the standard H 1/2 norm is replaced by equivalent norms
(e.g., the trace of an H 1 norm on the disc with variable coefficients) is a very delicate
question because of “lack of compactness’’; we refer to [21].

Remark 6. Estimate (4.2) serves as a building block in the study of the least H 1/2-
energy of maps u : S2 → S1 with prescribed singularities. Such a question has been
investigated in [5]. More precisely, recall that

‖u‖2
H 1/2(S2)

=
∫
S2

∫
S2

|u(x)− u(y)|2
|x − y|3 dxdy.

Given points � = {p1, p2, . . . , pk} ∪ {n1, n2, . . . , nk}, consider the class of maps

A = {u ∈ C1(S2 \�, S1); deg(u, pi) = +1 and deg(u, ni) = −1 ∀i}.

Theorem 7 (Bourgain–Brezis–Mironescu [5]). There exist absolute constants C1,

C2 > 0 such that

C1L(�) ≤ Inf
u∈A ‖u‖

2
H 1/2(S2)

≤ C2L(�), (4.6)

where L(�) is the length of a minimal connection connecting the points (pi) to the
points (ni).
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Theorem 7 is the H 1/2-version of an earlier result [13] concerning H 1 maps from
S3 into S2 with singularities that had been motivated by questions arising in liquid
crystals with point defects, while the analysis in [5] has its source in the Ginzburg–
Landau model for superconductors. It is the LHS inequality in (4.6), which is related
to (4.2). The RHS inequality in (4.6) comes from a “brute force’’ construction called
the “dipole construction.’’

Remark 7. An immediate consequence of (4.3) is the estimate

| deg f | ≤ 1

2π2

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 ∀f ∈ C1(S1, S1), ∀p ∈ (1, 2). (4.7)

Estimate (4.7) deteriorates as p ↓ 1 since the RHS in (4.7) tends to +∞ unless f

is constant (see [4]). It would be desirable to improve the constant (1/2π2) and
establish that

| deg f | ≤ Cp

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 dxdy ∀f ∈ C1(S1, S1), ∀p ∈ (1, 2).

(4.8)
with a constant Cp ∼ (p − 1) as p ↓ 1. In the limit as p ↓ 1, one should be able to
recover (in the spirit of [4]) the obvious inequality

| deg f | ≤ 1

2π

∫
|ḟ |. (4.9)

Inequality (4.8) is also valid for p > 2, but it cannot be deduced from (4.3) and
its proof requires much work.

Theorem 8 (Bourgain–Brezis–Mironescu [6]). For everyp > 1, there is a constant
Cp such that for any (smooth) f : S1 → S1,

| deg f | ≤ Cp

∫
S1

∫
S1

|f (x)− f (y)|p
|x − y|2 = Cp‖f ‖pW 1/p,p . (4.10)

There is an estimate stronger than (4.10).

Theorem 9 (Bourgain–Brezis–Mironescu [7]). For any δ > 0 sufficiently small,
there is a constant Cδ such that, ∀f ∈ C0(S1, S1),

| deg f | ≤ Cδ

∫
S1

∫
S1

[|f (x)−f (y)|>δ]

1

|x − y|2 dxdy. (4.11)

Remark 8. In Bourgain–Brezis–Nguyen [8], it was proved that (4.11) holds for any
δ < 21/2. This was later improved by H.-M. Nguyen [22], who established the bound

| deg f | ≤ C

∫
S1

∫
S1

[|f (x)−f (y)|>31/2]

1

|x − y|2 dxdy; (4.12)

Nguyen [22] has also constructed examples showing that (4.11) fails for any
δ > 31/2.
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Open Problem 3. What is the behavior of the best constant Cδ in (4.11) as δ ↓ 0?
Is there a more precise estimate of the form

| deg f | ≤ Cδ

∫
S1

∫
S1

[|f (x)−f (y)|>δ]

1

|x − y|2 dxdy (4.13)

with C independent of δ, for all δ < 31/2?

In the spirit of [4], one might then be able to recover (4.9) as δ → 0.

Higher-dimensional analogues

Theorem 9 can be extended to higher dimensions.

Theorem 10 (Bourgain–Brezis–Mironescu [8]). Let n ≥ 1. For any δ ∈ (0, 21/2),

there is a constant Cδ such that ∀f ∈ C0(Sn, Sn),

| deg f | ≤ C

∫
Sn

∫
Sn

[|f (x)−f (y)|>δ]

1

|x − y|2n dxdy. (4.14)

A more refined version of Theorem 10 was obtained by H.-M. Nguyen [22].
He proved that (4.14) holds for any δ < [2 + 2/(n + 1)]1/2 and that this range of
δs is optimal for all dimensions n. From Theorem 10 we may, of course, recover
the earlier estimate of Bourgain–Brezis–Mironescu [6]: ∀n ≥ 1, ∀p > n, ∀f ∈
Wn/p,p(Sn, Sn),

| deg f | ≤ C(p, n)

∫
Sn

∫
Sn

|f (x)− f (y)|p
|x − y|2n dxdy = C(p, n)‖f ‖p

Wn/p,p . (4.15?)

In a different direction, it might be interesting to estimate other topological in-
variants in terms of fractional Sobolev norms. One of the simplest examples could
be the following.

Open Problem 4. Does one have

|Hopf-degree f | ≤ Cp

∫
S3

∫
S3

|f (x)− f (y)|p
|x − y|6 ∀p > 3, ∀f ∈ C1(S3, S2)?
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To I. M. Gelfand, who teaches us the unity of mathematics.

Subject Classifications: 14D20, 55N22, 14C40, 14L05

The present paper is closely based on the lecture given by the second author at The
Unity of Mathematics symposium and is based on our joint work in progress on
Gromov–Witten invariants with values in complex cobordisms. We will mostly con-
sider here only the simplest example, elucidating one of the key aspects of the theory.
We refer the reader to [9] for a more comprehensive survey of the subject and to [5] for
all further details. Consider M0,n, n ≥ 3, the Deligne–Mumford compactification of
the moduli space of configurations of n distinct ordered points on the Riemann sphere
CP 1. Obviously, M0,3 = pt, M0,4 = CP 1, while M0,5 is known to be isomorphic
to CP 2 blown up at four points. In general, M0,n is a compact complex manifold of
dimension n−3, and it makes sense to ask what is the complex cobordism class of this
manifold. The Thom complex cobordism ring, after tensoring with Q, is known to
be isomorphic to U∗ = Q[CP 1,CP 2, . . . ], the polynomial algebra with generators
CP k of degree −2k. Thus our question is to express M0,n, modulo the relation of
complex cobordism, as a polynomial in complex projective spaces.

This problem can be generalized in the following three directions.
First, one can develop intersection theory for complex cobordism classes from

the complex cobordism ring U∗(M0,n). Such intersection numbers take values in the
coefficient algebra U∗ = U∗(pt) of complex cobordism theory.

Second, one can consider the Deligne–Mumford moduli spaces Mg,n of stable
n-pointed genus-g complex curves. They are known to be compact complex orbi-
folds, and for an orbifold, one can mimic (as explained below) cobordism-valued
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intersection theory using cohomological intersection theory over Q against a certain
characteristic class of the tangent orbibundle.

Third, one can introduce [12, 3] more general moduli spaces Mg,n(X, d) of
degree-d stable maps from n-pointed genus-g complex curves to a compact Käh-
ler (or almost-Kähler) target manifold X. One defines Gromov–Witten invariants of
X using virtual intersection theory in these spaces (see [2, 8, 13, 15, 16]). Further-
more, using virtual tangent bundles of the moduli spaces of stable maps and their
characteristic classes, one can extend Gromov–Witten invariants to take values in the
cobordism ring U∗.

The Quantum Hirzebruch–Riemann–Roch Theorem (see [5]) expresses cobord-
ism-valued Gromov–Witten invariants ofX in terms of cohomological ones. Cobord-
ism-valued intersection theory in Deligne–Mumford spaces is included as the special
case X = pt. In these notes, we will mostly be concerned with this special case,
and with curves of genus zero, i.e., with cobordism-valued intersection theory in the
manifolds M0,n. The cobordism classes of M0,n that we seek are then interpreted as
the self-intersections of the fundamental classes.

1 Cohomological intersection theory on M0,n

Let Li , i = 1, . . . , n, denote the line bundle over M0,n formed by the cotangent
lines to the complex curves at the marked point with the index i. More precisely,
consider the forgetful map ftn+1 : M0,n+1 → M0,n defined by forgetting the last
marked point. Let a point p ∈ M0,n be represented by a stable genus-zero complex
curve � equipped with the marked points σ1, . . . , σn. Then the fiber ft−1

n+1(p) can be
canonically identified with �. In particular, the map ftn+1 has n canonical sections
σi defined by the marked points, and the diagram formed by the forgetful map and the
sections can be considered as the universal family of stable n-pointed curves of genus
zero. TheLis are defined as the conormal bundles to the sectionsσi :M0,n →M0,n+1
and are often called universal cotangent lines at the marked points.

Putψi = c1(Li) and define the correlator 〈ψk1
1 , . . . , ψ

kn
n 〉0,n to be the intersection

index
∫
M0,n

ψ
k1
1 . . . ψ

kn
n . These correlators are not too hard to compute (see [17, 11]).

Moreover, it turns out that intersection theory in the spaces M0,n is governed by the
“universal monotone function.’’ Namely, one introduces the genus-0 potential

F0(t0, t1, t2, . . . ) :=
∑
n≥3

∑
k1,...,kn≥0

〈ψk1
1 , . . . , ψkn

n 〉0,n
tk1 . . . tkn

n! .

It is a formal function of t0, t1, t2, . . . whose Taylor coefficients are the correlators.
Then

F0 = critical value of

{
1

2

∫ τ

0
Q2(x)dx

}
, (1)

where

Q(x) := −x + t0 + t1x + · · · + tn
xn

n! + · · · .
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More precisely, the “monotone function’’ of the variable τ depending on the parame-
ters t0, t1, . . . has the critical point τ = τ(t0, t1, . . . ). It can be computed as a formal
function of the tis from the relation Q(τ) = 0 which has the form of the “universal
fixed-point equation’’:

τ = t0 + t1τ + · · · + tn
τn

n! + · · · .

Then termwise integration in (1) yields the critical value as a formal function of the
tis which is claimed to coincide with F0.

The formula (1) describing F0 can be easily derived by the method of character-
istics applied to the following PDE (called the string equation):

∂0F0 − t1∂t0F0 − t2∂t1F0 − · · · = t2
0/2.

The initial condition F0 = 0 at t0 = 0 holds for dimensional reasons: dimR M0,n <

2n = deg(ψ1 . . . ψn). The string equation itself expresses the well-known fact that for
i = 1, . . . , n, the class ψi on M0,n+1 does not coincide with the pull-back ft∗n+1(ψi)

of its counterpart from M0,n but differs from it by the class of the divisor σi(M0,n).
The family of “monotone functions’’ in (1) can alternatively be viewed as a family

of quadratic forms in Q depending on one parameter τ . This leads to the following
description of F0 in terms of linear symplectic geometry.

Let H denote the space of Laurent series Q((z−1)) in one indeterminate z−1.
Given two such Laurent series f, g ∈ H, we put

�(f, g) := 1

2πi

∮
f (−z)g(z)dz = −�(g, f ).

This pairing is a symplectic form on H, and

f = · · · − p2z
−3 + p1z

−2 − p0z
−1 + q0z

0 + q1z
2 + q2z

2 + · · ·
is a Darboux coordinate system.

The subspaces H+ := Q[z] and H− := z−1Q[[z−1]] form a Lagrangian polar-
ization of (H, �) and identify the symplectic space with T ∗H+. Next, we consider
F0 as a formal function on H+ near the shifted origin −z by putting

q0 + q1z+ · · · + qnz
n + · · · = −z+ t0 + t1z+ · · · + tnz

n + · · · . (2)

This convention—called the dilaton shift—makes many ingredients of the theory
homogeneous, as is illustrated by the following examples: the vector field on the
LHS of the string equation is −∑ qk+1∂qk ; Q(x) in (1) becomes

∑
qkx

k/k!; F0
becomes homogeneous of degree 2, i.e.,

∑
qk∂qkF0 = 2F0. Furthermore, we define

a (formal germ of a) Lagrangian submanifold L ⊂ H as the graph of the differential
of F0:

L = {(p,q) | p = dz+qF0} ⊂ H ∼= T ∗H+.

Then L ⊂ H is the Lagrangian cone
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L

Tt

zH+

H+

-z

zTt

Fig. 1. The Lagrangian cone L.

L = ∪τ e
τ/zzH+ = {zeτ/zq(z) | q ∈ Q[z], τ ∈ Q}.

We make a few remarks about this formula. The tangent spaces to the cone L

form a one-parameter family Tτ = eτ/zH+ of semi-infinite Lagrangian subspaces.
These are graphs of the differentials of the quadratic forms from (1). The subspaces
Tτ are invariant under multiplication by z and form a variation of semi-infinite Hodge
structures in the sense of S. Barannikov [1]. The graph L of dF0 is therefore the
envelope to such a variation. Moreover, the tangent spaces Tτ of L are tangent to L

exactly along zTτ . All these facts, properly generalized, remain true in genus-zero
Gromov–Witten theory with a nontrivial target space X (see [9]).

2 Complex cobordism theory

Complex cobordism is an extraordinary cohomology theory U∗(·) defined in terms of
homotopy classes � of maps to the spectrum MU(k) of the Thom spaces of universal
Uk/2-bundles:

Un(B) = lim
k→∞�(�kB,MU(n+ k)).

The dual homology theory, called bordism, can be described geometrically as

Un(B) := {maps Zn → B} / bordism,

where Zn is a compact stably almost complex manifold of real dimension n, and the
bordism manifold should carry a stably almost complex structure compatible in the
obvious sense with that of the boundary. See Figure 2.

When B itself is a compact stably almost complex manifold of real dimension m,
the celebrated Pontryagin–Thom construction identifies Un(B) with Um−n(B) and
plays the role of the Poincaré isomorphism.

One can define characteristic classes of complex vector bundles which take values
in complex cobordism. The splitting principle in the theory of vector bundles identifies
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Z ′ Z ′′

f ′
f ′′

B

Fig. 2. A bordism between (Z′, f ′) and (Z′′, f ′′).

U∗(BUn) with the symmetric part of U∗((BU1)
n). Thus to define cobordism-valued

Chern classes, it suffices to describe the first Chern class u ∈ U2(CP∞) of the
universal complex line bundle. By definition, the first Chern class of O(1) over CPN

is Poincaré-dual to the embedding CPN−1 → CPN of a hyperplane section.
The operation of tensor product of line bundles defines a formal commutative

group law on the line with coordinateu. Namely, the tensor product of the line bundles
with first Chern classes v andw has the first Chern class u = F(v,w) = v+w+· · · .
The group properties follow from associativity of tensor product and invertibility of
line bundles.

Henceforth we use the notation U∗(·) for the cobordism theory tensored with Q.
Much as in complex K-theory, there is the Chern–Dold character which provides

natural multiplicative isomorphisms

Ch : U∗(B)→ H ∗(B,U∗).

Here U∗ = U∗(pt) is the coefficient ring of the theory and is isomorphic to the
polynomial algebra on the generators of degrees −2k Poincaré-dual to the bordism
classes [CP k]. We refer to [4] for the construction. The Chern–Dold character
applies, in particular, to the universal cobordism-valued first Chern class of complex
line bundles:

Ch(u) = u(z) = z+ a1z
2 + a2z

3 + · · · , (3)

where z is the cohomological first Chern of the universal line bundle O(1) over CP∞,
and {ak} is another set of generators in U∗. The series u(z) can be interpreted as an
isomorphism between the formal group corresponding to complex cobordism and the
additive group (x, y) 
→ x + y:

F(v,w) = u(z(v)+ z(w)),

where z(·) is the series inverse to u(z). This is known as the logarithm of the formal
group law and takes the form



160 Tom Coates and Alexander Givental

z = u+ [CP 1]u
2

2
+ [CP 2]u

3

3
+ [CP 3]u

4

4
+ · · · . (4)

Much as in K-theory, one can compute push-forwards in complex cobordism in
terms of cohomology theory. In particular, for a mapπ : B → pt from a stably almost
complex manifold B to a point, we have the Hirzebruch–Riemann–Roch formula

πU∗ (c) =
∫
B

Ch(c)Td(TB) ∈ U∗ ∀c ∈ U∗(B), (5)

where Td(TB) is the Todd genus of the tangent bundle. By definition, the push-
forward πU∗ of the cobordism class c represented by the Poincaré-dual bordism class
represented by Z → B is the class of the manifold Z in U∗. In cobordism theory, the
Todd genus is the universal cohomology-valued stable multiplicative characteristic
class of complex vector bundles:

Td(·) = exp
∞∑

m=1

sm chm(·),

where s = (s1, s2, s3, . . . ) is yet another set of generators of the coefficient algebraU∗.
To find out which one, use the fact that on the universal line bundle Td(O(1)) = z

u(z)
and so

exp
∞∑

m=1

sm
zm

m! =
∑
k≥0

[CP k]u
k(z)

k + 1
.

3 Cobordism-valued intersection theory of M0,n

Let �i ∈ U∗(M0,n), i = 1, . . . , n, denote the cobordism-valued first Chern classes
of the universal cotangent lines Li over M0,n. We introduce the correlators

〈�k1
1 , . . . , �kn

n 〉U0,n := πU∗ (�
k1
1 . . . �kn

n )

and the genus-0 potential

FU
0 (t0, t1, . . . ) :=

∑
n≥3

∑
k1,...,kn≥0

〈�k1
1 , . . . , �kn

n 〉0,n
tk1 . . . tkn

n!

which take values in the coefficient ring U∗ of complex cobordism theory. In par-
ticular, the generating function FU

0 :=∑
n≥3[M0,n]tn0 /n! for the bordism classes of

M0,n is obtained from FU
0 by putting t1 = t2 = · · · = 0. Our present goal is to

compute FU
0 .

According to the Hirzebruch–Riemann–Roch formula (5), the computation can
be reduced to cohomological intersection theory in M0,n betweenψ-classes and char-
acteristic classes of the tangent bundle. In the more general context of (higher genus)
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Gromov–Witten theory, one can consider intersection numbers involving character-
istic classes of the virtual tangent bundles of moduli spaces of stable maps as a natural
generalization of “usual’’ Gromov–Witten invariants. It turns out that it is possible
to express these generalized Gromov–Witten invariants in terms of the usual ones,
but the explicit formulas seem unmanageable unless one interprets the generalized
invariants as the RHS of the Hirzebruch–Riemann–Roch formula in complex cobor-
dism theory. This interpretation of the (cohomological) intersection theory problem
in terms of cobordism theory dictates a change of the symplectic formalism described
in Section 1, and this change alone miraculously provides a radical simplification of
the otherwise unmanageable formulas. In this section, we describe how this happens
in the example of the spaces M0,n.

Let U denote the formal series completion of the algebra U∗ in the topology
defined by the grading. Introduce the symplectic space1 (U, �U) defined over U .
Let U denote the space of Laurent series

∑
k∈Z fku

k with coefficients fk ∈ U which
are possibly infinite in both directions but satisfy the condition limk→+∞ fk = 0 in
the topology of U . We will call such series convergent and write U = U{{u−1}}. For
f, g ∈ U, we define �U(f, g) ∈ U by

�U(f, g) := 1

2πi

∞∑
n=0

[CPn]
∮

f (u∗)g(u)undu,

where u∗ is the inverse to u in the formal group law described in Section 2. Using
the formal group isomorphism u = u(z) we find u∗(z) = u(−z(u)). The formula
(4) for the logarithm z = z(u) shows that our integration measure

∑[CPn]undu
coincides with dz. Thus the following quantum Chern character qCh is a symplectic
isomorphism, qCh∗� = �U :

qCh : U 
→ H⊗̂U,
∑
k∈Z

fku
k 
→

∑
k∈Z

fku
k(z). (6)

The “hat’’ over the tensor product sign indicates the necessary completion by conver-
gent Laurent series.

The next step is to define a Lagrangian submanifold LU ⊂ U as the graph of the
differential of the generating function FU

0 . This requires a Lagrangian polarization
U = U+ ⊕ U−. We define U+ = U{u} to be the space of convergent power series.
However, there is no reason for the opposite subspace u−1U{{u−1}} to be Lagrangian
relative to �U . We need a more conceptual construction of the polarization. This is
provided by the following residue formula:

1

2πi

∮
dz

u(z− x)u(−z− y)
=

⎧⎪⎨⎪⎩
+ 1

u(−x−y) if |x| < |z| < |y|,
− 1

u(−x−y) if |y| < |z| < |x|,
0 otherwise.

The integrand here has first-order poles at z = x and z = −y, and the integral depends
on the property of the contour to enclose both, neither, or one of them.

1 We continue to call it “space’’ although it is a U -module.
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One can pick a topological basis {uk(z) | k = 0, 1, 2, . . . } in the U -module
U{u} =qCh U{z} (e.g., 1, u(z), u(z)2, . . . or 1, z, z2, . . . ) and expand u(x+y) in the
region |x| < |y| as

1

u(−x − y)
=

∞∑
k=0

uk(x)vk(y), (7)

where the vk are convergent Laurent series in y−1 (or, equivalently, in u−1). The
residue formulas then show that∑

l,m≥0

�U(vl, um)ul(x)vm(y) =
∑
k≥0

uk(x)vk(y),∑
l,m≥0

�U(ul, um)vl(x)vm(y) = 0,

∑
l,m≥0

�U(vl, vm)ul(x)um(y) = 0,

or, in other words, {v0, u0; v1, u1; . . . } is a Darboux basis in (U, �U). For example,
in cohomology theory (which we recover by setting a1 = a2 = · · · = 0), the Darboux
basis {−z−1, 1; z−2, z;−z−3, z2; . . . } is obtained from the expansion

1

−x − y
=
∑
k≥0

xk(−y)−1−k.

We define U− to be the Lagrangian subspace spanned by {vk}:

U− :=
⎧⎨⎩∑

k≥0

f−kvk, f−k ∈ U

⎫⎬⎭ .

A different choice u′k =
∑

cklul of basis in U+ yields∑
l

ul(x)vl(y) =
∑
k

u′k(x)v′k(y) =
∑
kl

ul(x)cklv
′
k(y),

so that vl =∑
l cklv

′
k . Thus the subspace U− spanned by v′k remains the same.

As before, the Lagrangian polarization U = U+ ⊕ U− identifies (U, �U) with
T ∗U+. We define a (formal germ of a) Lagrangian section

LU := {(p,q) ∈ T ∗U+ | p = d−u∗+qFU } ⊂ U.

Note that the dilaton shift is defined by the formula

q0 + q1u+ q2u
2 + · · · = u∗(u)+ t0 + t1u+ t2u

2 + . . . (8)

involving the inversion u∗(u) in the formal group. This reduces to the dilaton shift
−z in the cohomological theory when we set a1 = a2 = · · · = 0.
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Our goal is to express the image qCh(LU) in terms of the Lagrangian cone

L = ∪τ∈Uzeτ/z(H+⊗̂U) ⊂ H⊗̂U

defined by cohomological intersection theory in M0,n. The answer is given by the
following theorem (see [5]).

Theorem. qCh(LU) = L.

Corollary. LU is a Lagrangian cone with the property that its tangent spaces T are
tangent to LU exactly along uT .

4 Extracting intersection indices

In this section, we unpack the information hidden in the abstract formulation of the
Theorem to compute the fundamental classes [M0,n] in U∗. We succeed for small
values of n, but things soon become messy. A lesson to learn is that there is no
conceptual advantage in doing this, and that the Theorem as stated provides a better
way of representing the answers.

The Theorem together with our conventions (7), (8) on the polarization and dilaton
shift encode cobordism-valued intersection indices in M0,n. We may view qCh(U−)
as a family of Lagrangian subspaces depending on the parameters (a1, a2, . . . ). The
dilaton shift u(−z) can be interpreted in a similar parametric sense. First, the value
of FU

0 considered as a function on the conical graph LU of dFU
0 is equal at a point

f =∑
(pkvk + qkuk) to the value of the quadratic form

1

2

∑
k≥0

pkqk = 1

2

∑
k≥0

qk�
U(f, uk).

The projection
∑

qkuk of f to U+ along U− is∑
k≥0

qkuk(x) =
∑
k≥0

uk(x)�
U
(∑

vk, f
)
= 1

2πi

∮
|x|<|z|

f (z)dz

u(z− x)
.

Combining, we find that the value of FU
0 at the point f = −zeτ/zq(z) ∈ L is given

by the double residue

1

8π2

∮ ∮
|x|<|z|

dzdx

u(z+ x)
xzq(x)q(z)e[τ(

1
x
+ 1

z
)].

The integral vanishes at τ = 0. Differentiating in τ brings down the factor (z+x)/zx.
We expand (z+x)/u(z+x) = 1+∑k>0 bk(z+x)k , where (b1, b2, . . . ) is one more
set of generators of U∗—“the Bernoulli polynomials.’’ Each factor (z + x) can be
replaced by zx and differentiation in τ . Using this we express the double integrals
via the product of single integrals. After some elementary calculations, we obtain the
result in the form
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−1

2

∫ τ

0
[Q(−1)(y)]2dy − 1

2

∑
k>0

bk
dk−1

dτk−1
[Q(−1−k)(τ )]2, (9)

where Q(−l)(τ ) =
(

d

dτ

)−l
Q(τ) :=

∑
m≥0

qm
τm+l

(m+ l)! .

Thus (9) gives the value of the potential FU
0 at the point (t0, t1, . . . ), which is com-

puted as

t0 + t1x + t2x
2 + · · · = −u(−x)− 1

2πi

∮
|x|<|z|

zeτ/zq(z)dz
u(z− x)

.

To evaluate the latter expression, we write 1/(z − x) = ∑
r>0 x

r−1/zr , expand
(z− x)/u(z− x) as before and use the binomial formula for (z− x)r . The resulting
expression is

−u(−x)−
∑
k≥0

xkQ(k−1)(τ )−
∑
k≥0

(−x)k
∑
l≥0

Q(−2−l)(τ )
(
k + l

k

)
bk+l+1.

It leads to the following sequence of equations (we put a−1 = 0, a0 = b0 = 1):

tk + (−1)kak−1 +
∑
l≥0

blQ
(k−1−l)(τ ) (1− l)(2− l) . . . (k − l)

k! = 0. (10)

These equations are homogeneous relative to the grading

deg τ = 1, deg tk = 1− k, deg ak = deg bk = deg qk = −k
and need to be solved for q0, q1, · · · ∈ U∗ and τ ∈ U∗[[t0, t1, . . . ]].

With the aim of computing FU
0 (t) := FU

0 |t0=t,t1=t2=···=0 modulo (t7), we work
modulo elements in U∗ of degree < −3 and set up the equations (10) with k =
0, 1, 2, 3, 4:

t + q0τ + q1τ
2/2 + q2τ

3/6 + q3τ
4/24

+ b1(q0τ
2/2 + q1τ

3/6 + q2τ
4/24)

+ b2(q0τ
3/6 + q1τ

4/24)
+ b3q0τ

4/24 = 0,
q0 − 1 + q1τ + q2τ

2/2 + q3τ
3/6

− b2(q0τ
2/2 + q1τ

3/6)
− 2b3q0τ

3/6 = 0,
a1 + q1 + q2τ + q3τ

2/2
+ b3q0τ

2/2 = 0
− a2 + q2 + q3τ = 0

a3 + q3 = 0.

We solve this system consecutively modulo elements in U∗ of degree n < 0,−1,−2,
−3. The relation

∑
bkx

k = (
∑

akx
k)−1 implies
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b1 = −a1, b2 = a2
1 − a2, b3 = 2a1a2 − a3 − a3

1 .

Taking this into account, we find (using MAPLE)

τ = −t + (a2
1/3− a2/2)t3 + (7a3 − 11a1a2 + 5a3

1)t
4/12

q0 = 1 − a1t + a2
1 t

2/2 + (4a3 − 11a1a2 + 5a3
1)t

3/6
q1 = − a1 + a2t + (−a1a2 + a3

1/2)t2

q2 = a2 − a3t

q3 = − a3.

From (9), we find FU
0 (t) modulo (t7):

FU
0 =mod(t7) −

q2
0τ

3

6
− q0q1τ

4

8
− q2

1τ
5

40
− q0q2τ

5

30
− q1q2τ

6

72

− q0q3τ
6

144
− b1

2

(
q0τ

2

2
+ q1τ

3

6
+ q2τ

4

24

)2

− b2

(
q0τ

2

2
+ q1τ

3

6

)(
q0τ

3

6
+ q1τ

4

24

)
− 7b3q

2
0τ

6

144
.

Substituting the previous formulas into this mess, we compute

FU
0 = t3

6
− a1

t4

12
+ (9a2 − 2a2

1)
t5

120
+ (10a3

1 − 10a1a2 − 34a3)
t6

720
+O(t7).

Expressing u(x) = x + a1x
2 + a2x

3 + a3x
4 + · · · as the inverse function to x(u) =

u+ p1u
2/2+ p2u

3/3+ p3u
4/4+ · · · , we find

a1 = −p1/2, a2 = p2
1/2− p2/3, a3 = −5p3

1/8+ 5p1p2/6− p3/4

and finally arrive at

FU
0 = t3

6
+ p1

t4

24
+ (4p2

1 − 3p2)
t5

120
+
(

45

2
p3

1 − 30p1p2 + 17

2
p3

)
t6

720
+O(t7).

The coefficients in this series mean that [M0,3] = [pt], [M0,4] = [CP 1], that each
blowup of a complex surface M (= CP 2 in our case) adds [CP 1 × CP 1] − [CP 2]
to its cobordism class,2 and that

[M0,6] = 45

2
[CP 1 × CP 1 × CP 1] − 30[CP 1 × CP 2] + 17

2
[CP 3].

The coefficient sum (45/2−30+17/2) yields the arithmetical genus of [M0,6] (which
is equal to 1 for all M0,n since they are rational manifolds).

2 This is not hard to verify by studying the behavior under blowups of the Chern characteristic
numbers

∫
M c1(TM)2 and

∫
M c2(TM), or simply using the fact that CP 1×CP 1 is obtained

from CP 2 by two blowups and one blowdown.



166 Tom Coates and Alexander Givental

5 Quantum Hirzebruch–Riemann–Roch theorem

Assuming that the reader is familiar with generalities of Gromov–Witten theory, we
briefly explain below how the Theorem of Section 3 generalizes to higher genera and
arbitrary target spaces.

Let X be a compact almost Kähler manifold. Gromov–Witten invariants of X

with values in complex cobordism are defined by

〈φ1�
k1
1 , . . . , φn�

kn
n 〉X,d

g,n :=
∫
[Mg,n(X,d)]

Td(T X,d
g,n )

n∏
i=1

ev∗i (Ch(φi))u(ψi)
ki . (11)

Here [Mg,n(X, d)] is the virtual fundamental class of the moduli space of degree-d
stable pseudoholomorphic maps to X from genus-g curves with n marked points,
φi ∈ U∗(X) are cobordism classes on X, evi : Mg,n(X, d) → X are evaluation
maps at the marked points, ψi are (cohomological) first Chern classes of the universal
cotangent line bundles over Mg,n(X, d), and T

X,d
g,n is the virtual tangent bundle of

Mg,n(X, d).
The genus-g potential of X is the generating function

FU
g,X :=

∑
n,d

Qd

n!
∑

k1,...,kn≥0

∑
α1,...,αn

〈φα1�
k1
1 , . . . , φαn�

kn
n 〉X,d

g,n t
α1
k1

. . . t
αn
kn

,

where {φα} is a basis of the free U∗(pt)-module U∗(X), Qd is the monomial in the
Novikov ring representing the degree d ∈ H2(X), and {tαk , k = 0, 1, 2, . . . } are
formal variables. The total potential of X is the expression

DU
X := exp

⎛⎝ ∞∑
g=0

�g−1FU
g,X

⎞⎠ . (12)

The exponent is a formal function (with values in a coefficient ring that includes
U∗(pt), the Novikov ring and Laurent series in �) on the space of polynomials t :=
t0 + t1� + t2�

2 + · · · with vector coefficients tk =∑
α tαk φα .

We prefer to consider DU
X as a family of formal expressions depending on the

sequence of parameters s = (s1, s2, . . . )—generators of U∗(pt) featuring in the def-
inition of the Todd genus Td(·) = exp

∑
sk chk(·). The specialization s = 0 yields

the total potential DX of cohomological Gromov–Witten theory on X. Our goal is to
express DU

X in terms of DX.
To formulate our answer, we interpret DU

X as an asymptotic element of some Fock
space, the quantization of an appropriate symplectic space defined as follows. Let U
now denote the superspace U∗(X) tensored with Q and with the Novikov ring and
completed, as before, in the formal series topology of the coefficient ring U∗(pt). Let
(a, b)U denote the cobordism-valued Poincaré pairing

(a, b)U := πU∗ (ab) ∈ U,
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where π : X→ pt. We put

U := U{{u−1}}, �U(f, g) = 1

2πi

∑
n≥0

[CPn]
∮

(f (u∗), f (u))Uundu

and define a Lagrangian polarization of (U, �U) using (7):

U+ = U{u}, U− :=
⎧⎨⎩∑

k≥0

pkvk | pk ∈ U

⎫⎬⎭ .

Using the dilaton shift q(u) = 1u∗ + t(u) (where 1 is the unit element of U ), we
identify DX with an asymptotic function of q ∈ U+. By definition, this means that
the exponent in DX is a formal function of q near the shifted origin. The Heisenberg
Lie algebra of (U, �U) acts on functions on U invariant under translations by U−,
and this action extends to the (nonlinear) space of asymptotic functions.

In the specialization s = 0, the above structure degenerates into its cohomolog-
ical counterpart introduced in [10]: (H, �) = T ∗H+ where H := H((z−1)) con-
sists of Laurent series in z−1 with vector coefficients in the cohomology superspace
H = H ∗(X,Q) tensored with the Novikov ring, H+ = H [z], H− = z−1H [[z−1]],
�(f, g) = (2πi)−1

∮
(f (−z), g(z))dz, and (a, b) := ∫

X
ab is the cohomolog-

ical Poincaré pairing. The total potential DX is identified via the dilaton shift
q(z) = t(z)− z with an asymptotic element of the corresponding Fock space.

The quantum Chern–Dold character of Section 3 is generalized in the follow-
ing way:

qCh

(∑
k∈z

fku
k

)
:= √

Td(TX)
∑
k∈Z

Ch(fk)u
k(z).

The factor
√

Td(TX) is needed to match the cobordism-valued Poincaré pairing
πU∗ (ab) = ∫

X
Td(TX)Ch(a)Ch(b) with the cohomological one. The quantum

Chern–Dold character provides a symplectic isomorphism of (U, �U) with
(H⊗̂U,�). This isomorphism identifies the Heisenberg Lie algebras and thus—
due to the Stone–von Neumann theorem—gives a projective identification of the
corresponding Fock spaces. Understanding the quantum Chern–Dold character in
this sense, we obtain a family of “quantum states’’

〈Ds
X〉 := qCh〈DU

X〉.

These are one-dimensional spaces depending formally on the parameter s = (s1,

s2, . . . ) and spanned by asymptotic elements of the Fock space associated with
(H, �). We have 〈Ds

X〉|s=0 = 〈DX〉.
Introduce the virtual bundle E = TX ' C over X, and identify z ∈ H ∗(CP∞)

with the equivariant first Chern class of the trivial line bundle L over X equipped
with the standard fiberwise S1-action.
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Theorem (see [5]). Let �̂ be the quantization of the linear symplectic transforma-
tion � given by multiplication (in the algebra H) by the asymptotic expansion of the
infinite product √

Td(E)

∞∏
m=1

Td(E ⊗ L−m).

Then
〈Ds

X〉 = �̂(s)〈DX〉.
We need to add to this formulation the following comments. The asymptotic

expansion in question is obtained using the famous formula relating integration with
its finite-difference version via the Bernoulli numbers:

s(x)

2
+

∞∑
m=1

s(x −mz) = 1+ e−zd/dx

1− e−zd/dx
s(x)

2

∼
∞∑

m=0

B2m

(2m)!z
2m−1 d

2m−1s(x)

dx2m−1
.

Taking s(x) =∑
k≥0 skx

k/k! and letting x run over the Chern roots of E, we find that

ln � =
∞∑

m=0

D∑
l=0

s2m−1+l
B2m

(2m)! chl (E)z2m−1,

where D = dimC(X). The operators A on H defined as multiplication by
chl (E)z2m−1 are infinitesimal symplectic transformations—they are antisymmetric
with respect to �—and so define quadratic Hamiltonians �(Af, f )/2 on H. We
use the quantization rule of quadratic Hamiltonians written in a Darboux coordinate
system {pα, qα}:

(qαqβ)ˆ := qαqβ

�
, (qαpβ)ˆ := qα

∂

∂qβ
, (pαpβ)ˆ := �

∂2

∂pα∂pβ

.

The rule defines the quantization Â and the action on the quantum state 〈DX〉 of
�̂ := exp(ln �) .̂

A more precise version of this Quantum–Hirzebruch–Riemann–Roch theorem
also provides the proportionality coefficient between �̂DX and Ds

X. Namely, let us
write � = �1�2, where ln �2 consists of the z−1-terms in (12) and ln �1 contains
the rest. Let us agree that �̂DX means �̂1�̂2DX (this is important since the two
operators commute only up to a scalar factor). Then (see [5])

Ds
X = (sdet

√
Td(E))1/24e

1
24

∑
l>0 sl−1

∫
X chl (E)cD−1(TX)�̂(s)DX, (13)

where cD−1 is the (D − 1)st Chern class, and sdet stands for the Berezinian.
Taking the quasi-classical limit � → 0, we obtain the genus-zero version of the

theorem. As in Section 3, the graph of the differential dFU
0,X of the cobordism-valued

genus-zero potential defines a (formal germ of a) Lagrangian submanifold LU
X of U.
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Corollary. The image qCh(LU
X) of the Lagrangian submanifold LU

X ⊂ U is ob-
tained from the Lagrangian cone LX ⊂ H representing dF0

X by the family of linear
symplectic transformations �(s):

qCh(LU
X) = �LX.

In particular, LU
X is a Lagrangian cone with the property that its tangent spaces T

are tangent to LU
X exactly along uT .

When X = pt, we have ln � = −∑m>0 s2m−1B2mz
2m−1/(2m)!. In the case

g = 0, since Lpt is invariant under multiplication by z, we see that qCh(LU
pt) = Lpt.

This is our Theorem from Section 3.

6 Outline of the proof of the QHRR theorem

The proof proceeds by showing that the derivatives in sk , k = 1, 2, . . . , of the LHS
and the RHS of (13) are equal. Differentiating the LHS in sk brings down a factor
of chk(T

X,d
g,n ) inside all the correlators (11). Since the RHS contains the generating

function DX for intersection numbers involving the classes ψi , our main problem
now is to express the Chern character ch(T X,d

g,n ) in terms of ψ-classes.
One can view the moduli space Mg,n(X, d) as fibered over the moduli stack Mg,n

of marked nodal curves (�; σ1, . . . , σn). Thus the virtual tangent bundle T
X,d
g,n falls

into three parts:
T X,d
g,n = T ′ + T ′′ + T ′′′,

where T ′ is the virtual tangent bundle to the fibers, T ′′ is the (pullback of the)
tangent sheaf to the moduli stack Mg,n logarithmic with respect to the divisor of
nodal curves, and T ′′′ is a sheaf supported on the divisor. The subbundle T ′—
which is the index bundle of the Cauchy–Riemann operator describing infinitesi-
mal variations of pseudoholomorphic maps to X from a fixed complex curve �

with a fixed configuration of marked points—can alternatively be described in
terms of the twisting bundles considered in [6]. Namely, the diagram formed by
the forgetful map ftn+1 : Mg,n+1(X, d) → Mg,n(X, d) and the evaluation map
evn+1 : Mg,n+1(X, d) → X can be considered as the universal family of genus-g,
n-pointed stable maps to X of degree d . Let E be a complex bundle (or virtual bun-
dle) over X. The K-theoretic pull-back/push-forward E

X,d
g,n := (ftn+1)∗ ev∗n+1(E)

is an element, called a twisting bundle, of the Grothendieck group of orbibundles
K∗(Mg,n(X, d)). The virtual bundle T ′ coincides with the twisting bundle (T X)

X,d
g,n .

Intersection numbers in Mg,n(X, d) against characteristic classes of twisting bun-
dles E

X,d
g,n are called Gromov–Witten invariants of X twisted by E. The “Quantum

Riemann–Roch’’ theorem of [6] expresses such twisted Gromov–Witten invariants
in terms of untwisted ones. The key to this is an application of the Grothendieck–
Riemann–Roch theorem to the universal family ftn+1 :Mg,n+1(X, d)→Mg,n(X, d),
analogous to Mumford’s famous computation [14] of the Hodge classes in Mg,0 (and
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to its generalization to Mg,n(X, d) by Faber and Pandharipande [7]). Applying the
same idea here allows us to express the classes chk(T

′) in terms of ψ-classes on the
universal family Mg,n+1(X, d).

Next, fibers of the logarithmic tangent bundle T ′′ can be viewed as dual to spaces
of quadratic differentials on � twisted appropriately at the marked points and nodes.
More precisely, T ′′ = −(ftn+1)∗(L−1

n+1), where Ln+1 is the universal cotangent line
at the (n+ 1)st marked point and (ftn+1)∗ is the K-theoretic push-forward. Thus by
applying the Grothendieck–Riemann–Roch formula again, we can express chk(T

′′)
in terms of ψ-classes on the universal family Mg,n+1(X, d).

Finally, the sheafT ′′′ can be expressed as the K-theoretic push-forward (ftn+1)∗OZ

of the structure sheaf of the locus Z ⊂ Mg,n+1(X, d) of nodes of the curves �.
This has (virtual) complex codimension 2 in the universal family Mg,n+1(X, d). It is
parametrized by certain pairs of stable maps with genera g1 and g2 where g1+g2 = g,
each of which carry an extra marked point, and by stable maps of genus g− 1 which
carry two extra marked points; the extra marked points are glued to form the node.
Intersection numbers involving the classes chk(T

′′′) can therefore be expressed in
terms of intersections against ψ-classes in (products of) “simpler’’ moduli spaces of
stable maps.

Together, the previous three paragraphs give recursive formulas which reduce
intersection numbers involving the classes chk(T

X,d
g,n ) to those involving only ψ-

classes. Processing the sk-derivative of the LHS of (13) in this way one finds,
after some 20 pages of miraculous cancellations and coincidences, that it is equal
to the sk-derivative of the RHS. We do not have any conceptual explanation for these
cancellations, which often look quite surprising. For example, it turns out to be
vital that the orbifold Euler characteristic χ(M1,1) is equal to 5/12 (or, equivalently,

that c1(T
pt,0

1,1 ) = 10ψ1). Were this not the case, a delicate cancellation involving
the cocycle coming from the projective representation of the Heisenberg Lie algebra
would not have occurred, and the multiplicativity of (13) with respect to the group
Td(·) = exp

∑
sk chk(·) of characteristic classes would have been destroyed.

The three summands T ′, T ′′, and T ′′′ play differing roles in the ultimate formula,
as we now explain. Comparing the QHRR theorem with the Quantum Riemann–Roch
theorem from [6], one sees that the potentials Ds

X coincide with the total potentials
of X for cohomological Gromov–Witten theory twisted by the characteristic class
Td(·) = exp

∑
sk chk(·) and the bundle E = TX−C. But the total potential DU

X for
cobordism-valued Gromov–Witten theory of X differs from Ds

X precisely because
of the additional s-dependence coming from the quantum Chern–Dold character, i.e.,
through the s-dependence of the dilaton shift u(−z) and of the polarization H+ ⊕
qCh(U−). These effects are compensated for by (ftn+1)∗(C−L−1

n+1) and (ftn+1)∗OZ

respectively. Thus, roughly speaking, the quantized symplectic transformation �̂

accounts for variations T ′ of maps � → X, while the symplectic formalism of
Section 3 based on formal groups accounts for variations T ′′ + T ′′′ of complex
structures on �. This suggests that there is an intrinsic relationship between formal
group laws and the moduli space of Riemann surfaces. However, the precise nature
of this relationship remains mysterious.
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Israel Gelfand is one of the handful of mathematicians who really shaped the
mathematics of the twentieth century. Even among them he stands out by the fecundity
of the concepts he created and the astonishing number of new fields he originated.

One characteristic feature of his mathematics is that, while working at a high
level of conceptual breadth, it never loses contact with concrete computations and
applications, including those to theoretical physics, a subject in which his influence
is hard to match.

Although mathematicians before Gelfand had studied normed rings, it was he who
created the tools that got the theory really started. In his thesis he brought to light the
fundamental concept of maximal ideal and proved that the quotient of a commutative
Banach algebra by a maximal ideal is always the field C of complex numbers. This
easily implied, for instance, Wiener’s well-known result that the inverse of a func-
tion with no zeros and absolutely convergent Fourier expansion also has absolutely
convergent Fourier expansion. The fundamental result in the commutative case char-
acterized the rings of continuous functions on a (locally) compact space in a purely
algebraic manner. Dropping the commutativity assumption led Gelfand and Naimark
to the theory of C∗-algebras, again proving the fundamental result that any such ring
can be realized as an involutive norm closed subalgebra of the algebra of operators in
Hilbert space. The key step, known as the “Gelfand–Naimark–Segal’’ construction,
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plays a basic role in quantum field theory, and was used early on by Gelfand and
Raikov to show that any locally compact group admits enough irreducible Hilbert
space representations. These and many others of Gelfand’s results were so influential
that it is hard for us to imagine mathematics without them.

They played a decisive role in the foundations of Noncommutative Geometry,
a subject to which I have devoted most of my mathematical work. I refer to the
survey [35] for a thorough presentation of the subject and will describe here, after a
brief introduction, a few of the open frontiers and problems which are actively being
explored at this point.

I The framework of noncommutative geometry

As long as we consider geometry as intimately related to our model of space-time,
Einstein’s general relativity clearly vindicated the ideas of Gauss and Riemann, al-
lowing for variable curvature, and formulating the intrinsic geometry of a curved
space independently of its embedding in Euclidean space. The two key notions are
those of manifold of arbitrary dimension, whose points are locally labeled by finitely
many real numbers xµ, and that of the line element, i.e., the infinitesimal unit of
length, which, when transported, allows one to measure distances. The infinitesimal
calculus encodes the geometry by the formula for the line element ds in local terms

ds2 = gµνdx
µdxν,

and allows one to generalize most of the concepts which were present either in Eu-
clidean or non-Euclidean geometry, while considerably enhancing the number of
available interesting examples.

Riemann was sufficiently cautious in his lecture on the foundation of geometry to
question the validity of his hypotheses in the infinitely small. He explicitly proposed
to “gradually modify the foundations under the compulsion of facts which cannot
be explained by it’’ in case physics would find new unexplained phenomena in the
exploration of smaller scales.

The origin of noncommutative geometry can be traced back to the discovery
of such unexplained phenomena in the phase space of the microscopic mechanical
system describing an atom. This system manifests itself through its interaction with
radiation and the basic laws of spectroscopy, as found in particular by Ritz and
Rydberg, are in contradiction with the “manifold’’ picture of the phase space.

The very bare fact, which came directly from experimental findings in spec-
troscopy and was unveiled by Heisenberg (and then understood at a more mathemati-
cal level by Born, Jordan, Dirac and the physicists of the late 1920s), is the following.
Whereas when you are dealing with a manifold you can parameterize (locally) its
points x by real numbers x1, x2, . . . , which specify completely the situation of the
system, when you turn to the phase space of a microscopic mechanical system, even
of the simplest kind, the coordinates, namely, the real numbers x1, x2, . . . that you
would like to use to parameterize points, actually do not commute.
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This means that the classical geometrical framework is too narrow to describe
in a faithful manner many physical spaces of great interest. In noncommutative
geometry one replaces the usual notion of manifold formed of points labeled by
coordinates with spaces of a more general nature, as we shall see shortly. Usual
geometry is just a particular case of this new theory, in the same way as Euclidean
and non-Euclidean geometry are particular cases of Riemannian geometry. Many of
the familiar geometrical concepts do survive in the new theory, but they also carry a
new unexpected meaning.

Before describing the novel notion of space, it is worthwhile to explain in simple
terms how noncommutative geometry modifies the measurement of distances. Such
a simple description is possible because the evolution between the Riemannian way
of measuring distances and the new (noncommutative) way exactly parallels the
improvement of the standard of length1 in the metric system. The original definition
of the meter at the end of the 18th century was based on a small portion (one forty
millionth part) of the size of the largest available macroscopic object (here the earth’s
circumference). Moreover, this “unit of length’’ became concretely represented in
1799 as “mètre des archives’’by a platinum bar localized near Paris. The international
prototype was a more stable copy of the “mètre des archives’’ which served to define
the meter. The most drastic change in the definition of the meter occurred in 1960
when it was redefined as a multiple of the wavelength of a certain orange spectral line
in the light emitted by isotope 86 of krypton. This definition was then replaced in
1983 by the current definition which, using the speed of light as a conversion factor,
is expressed in terms of inverse frequencies rather than wavelength, and is based
on a hyperfine transition in the cesium atom. The advantages of the new standard
are obvious. No comparison to a localized “mètre des archives’’ is necessary, the
uncertainties are estimated as 10−15 and for most applications a commercial cesium
beam is sufficiently accurate. Also we could (if any communication were possible)
communicate our choice of unit of length to aliens, and uniformize length units in the
galaxy without having to send out material copies of the “mètre des archives’’!

As we shall see below, the concept of “metric’’ in noncommutative geometry is
precisely based on such a spectral data.

Let us now come to “spaces.’’ What the discovery of Heisenberg showed is
that the familiar duality of algebraic geometry between a space and its algebra of
coordinates (i.e., the algebra of functions on that space) is too restrictive to model
the phase space of microscopic physical systems. The basic idea then is to extend
this duality, so that the algebra of coordinates on a space is no longer required to be
commutative. Gelfand’s work on C∗-algebras provides the right framework to define
noncommutative topological spaces. They are given by their algebra of continuous
functions which can be an arbitrary, not necessarily commutative, C∗-algebra.

It turns out that there is a wealth of examples of spaces, which have obvious
geometric meaning but which are best described by a noncommutative algebra of
coordinates. The first examples came, as we saw above, from phase space in quantum
mechanics but there are many others, such as

1 Or, equivalently, of time using the speed of light as a conversion factor.
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• space of leaves of foliations,
• space of irreducible representations of discrete groups,
• space of Penrose tilings of the plane,
• Brillouin zone in the quantum Hall effect,
• phase space in quantum mechanics,
• space time,
• space of Q-lattices in Rn.

This last class of examples [44, 45] appears to be of great relevance in number theory
and will be discussed at the end of this short survey. The space of Q-lattices [45] is
a natural geometric space, with an action of the scaling group providing a spectral
interpretation of the zeros of the L-functions of number theory and an interpretation of
the Riemann explicit formulas as a trace formula [31]. Another rich class of examples
arises from deformation theory, such as deformation of Poisson manifolds, quantum
groups and their homogeneous spaces. Moduli spaces also generate very interesting
new examples as in [32, 72], as well as the fiber at∞ in arithmetic geometry [46].

Thus there is no shortage of examples of noncommutative spaces that beg our
understanding but which are very difficult to comprehend. Among them the non-
commutative tori were fully analyzed at a very early stage of the theory in 1980 [15]
and a beginner might be tempted to be happy with the understanding of such simple
examples ignoring the wild diversity of the general landscape. The common feature
of many of these spaces is that when one tries to analyze them from the usual set
theoretic point of view, the usual tools break down for the following simple reason.
Even though as a set they have the cardinality of the continuum, it is impossible to
distinguish their points by a finite (or countable) set of explicit functions. In other
words, any explicit countable family of invariants fails to separate points.

Here is the general principle that allows one to nevertheless encode them by a
function algebra, which will no longer be commutative. The above spaces are obtained
as quotients from a larger classical space Y gifted with an equivalence relation R.
The usual algebra of functions associated to the quotient is

A = {f | f (a) = f (b) ∀ (a, b) ∈ R}. (1)

This algebra is, by construction, a subalgebra of the original function algebra on
Y and remains commutative. There is, however, a much better way to encode in
an algebraic manner the above quotient operation. It consists, instead of taking the
subalgebra given by (1), of adjoining to the algebra of functions the identification of
a with b, whenever (a, b) ∈ R. The algebra obtained in this way,

B = {f = [fab], (a, b) ∈ R}, (2)

is the convolution algebra of the groupoid associated to R and is, of course, no
longer commutative in general, nor Morita equivalent to a commutative algebra. By
encoding the dynamics underlying the identification of points by the relation R, it
bypasses the problem created by the lack of constructible static invariants labeling
points in the quotient.
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The first operation (1) is of a cohomological flavor, while the second (2) always
gives a satisfactory answer, which keeps a close contact with the quotient space.
One then recovers the “naive’’ function spaces generated by the first operation (1)
from the cyclic cohomology of the noncommutative algebra obtained from the second
operation (2).

The second vital ingredient of the theory is the extension of geometric ideas
to the noncommutative framework. It may seem at first sight that it is a simple
matter to rewrite algebraically the usual geometric concepts but, in fact, the extension
of geometric thinking imposed by passing to noncommutative spaces forces one to
rethink most of our familiar notions. The most interesting part comes from totally
unexpected new features, such as the canonical dynamics of noncommutative measure
spaces, which have no counterpart in the classical geometric setup.

As we shall see below, far reaching extensions of classical concepts have been ob-
tained, with variable degrees of perfection, for measure theory, topology, differential
geometry, and Riemannian geometry:

• metric geometry,
• differential geometry,
• topology,
• measure theory.

II Measure theory

One compelling reason to start working in noncommutative geometry is that, even at
the very coarse level of measure theory, the general noncommutative case is becoming
highly nontrivial. When one looks at an ordinary space and measures theory, one uses
the Lebesgue theory, which is a beautiful theory, but all spaces are the same. There
is nothing really happening as far as classification is concerned. This is not at all the
case in noncommutative measure theory. What happens there is very surprising. It
is an absolutely fascinating fact that, when one takes a noncommutative algebra M

from the measure theory point of view, such an algebra evolves with time!
More precisely, it admits a god-given time evolution, given by a canonical group

homomorphism [10, 11]

δ : R → Out(M) = Aut(M)/ Int(M) (1)

from the additive group R to the center of the group of automorphism classes of M
modulo inner automorphisms.

This homomorphism is provided by the uniqueness of the, a priori state dependent,
modular automorphism group of a state. Together with the earlier work of Powers,
Araki–Woods, and Krieger, it was the beginning of a long story that eventually led
to the complete classification [11, 86, 87, 68, 29, 12, 13, 19, 57] of approximately
finite-dimensional factors (also called hyperfinite).
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They are classified by their module,

Mod(M)⊂∼ R∗+, (2)

which is a virtual closed subgroup of R∗+ in the sense of G. Mackey, i.e., an ergodic
action of R∗+, called the flow of weights [29]. This invariant was first defined and
used in my thesis [11] to show in particular the existence of hyperfinite factors which
are not isomorphic to Araki–Woods factors.

There is a striking analogy, which I described in [27], between the above classifica-
tion and the Brauer theory of central simple algebras. It has taken new important steps
recently, since noncommutative manifolds [40, 41] give examples of construction of
the hyperfinite II1 factor as the crossed product of the field Kq of elliptic functions
by a subgroup of its Galois group, in perfect analogy with the Brauer theory.

Thus we see that noncommutative measure theory is already highly nontrivial;
hence we have many reasons to believe that if one goes further in the natural hierarchy
of features of a space, one will discover really interesting new phenomena.

III Topology

The development of the topological ideas was prompted by the work of Israel Gelfand,
whose C∗-algebras give the required framework for noncommutative topology. The
two main driving forces in the development of noncommutative topology were the
Novikov conjecture on homotopy invariance of higher signatures of ordinary man-
ifolds as well as the Atiyah–Singer index theorem. It has led, through the work of
Atiyah, Singer, Brown, Douglas, Fillmore, Miščenko, and Kasparov [1, 83, 5, 75, 62],
to the realization that not only the Atiyah–Hirzebruch K-theory but more importantly
the dual K-homology admits Hilbert space techniques and functional analysis as their
natural framework. The cycles in the K-homology group K∗(X) of a compact space
X are indeed given by Fredholm representations of the C∗-algebra A of continuous
functions on X. The central tool is the Kasparov bivariant K-theory. A basic example
of C∗-algebra, to which the theory applies, is the group ring of a discrete group, and
restricting oneself to commutative algebras is an obviously undesirable assumption.

For a C∗-algebra A, let K0(A), K1(A) be its K-theory groups. Thus K0(A) is
the algebraic K0 theory of the ring A and K1(A) is the algebraic K0 theory of the
ring A ⊗ C0(R) = C0(R, A). If A → B is a morphism of C∗-algebras, then there
are induced homomorphisms of abelian groups Ki(A) → Ki(B). Bott periodicity
provides a six term K-theory exact sequence for each exact sequence 0 → J →
A→ B → 0 of C∗-algebras, and excision shows that the K-groups involved in the
exact sequence only depend on the respective C∗-algebras.

Discrete groups, Lie groups, group actions, and foliations give rise, through their
convolution algebra, to a canonical C∗-algebra, hence to K-theory groups. The
analytical meaning of these K-theory groups is clear as a receptacle for indices of
elliptic operators. However, these groups are difficult to compute. For instance, in
the case of semisimple Lie groups, the free abelian group with one generator for each
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irreducible discrete series representation is contained in K0(C
∗
r (G)), where C∗r (G)

is the reduced C∗-algebra of G. Thus an explicit determination of the K-theory in
this case in particular involves an enumeration of the discrete series.

We introduced with P. Baum [3] a geometrically defined K-theory, which special-
izes to discrete groups, Lie groups, group actions, and foliations. Its main features
are its computability and the simplicity of its definition. In essence, it is the group of
topological data labeling the symbols of elliptic operators. It does not involve the dif-
ficult quotient spaces, but replaces them (up to homotopy) by the familiar homotopy
quotient (replacing free actions by proper actions).

In the case of semisimple Lie groups, it elucidates the role of the homogeneous
spaceG/K (K the maximal compact subgroup ofG) in theAtiyah–Schmid geometric
construction of the discrete series [2]. Using elliptic operators, we constructed a
natural map µ from our geometrically defined K-theory groups to the above analytic
(i.e., C∗-algebra) K-theory groups.

Much progress has been made in the past years to determine the range of validity
of the isomorphism between the geometrically definedK-theory groups and the above
analytic (i.e., C∗-algebra) K-theory groups. We refer to the three Bourbaki seminars
[84] for an update on this topic and for a precise account of the various contributions.
Among the most important contributions are those of Kasparov and Higson, who
showed that the conjectured isomorphism holds for amenable groups. It also holds
for real semisimple Lie groups, thanks in particular to the work of A. Wassermann.
Moreover, the recent work of V. Lafforgue [69] crossed the barrier of property T,
showing that it holds for cocompact subgroups of rank-one Lie groups and also of
SL(3,R) or of p-adic Lie groups. He also gave the first general conceptual proof
of the isomorphism for real or p-adic semisimple Lie groups. The proof of the
isomorphism, for all connected locally compact groups, based on Lafforgue’s work,
has been obtained by J. Chabert, S. Echterhoff, and R. Nest [7]. The proof by G. Yu
of the analogue (due to J. Roe) of the conjecture in the context of coarse geometry
for metric spaces that are uniformly embeddable in Hilbert space and the work of
G. Skandalis, J. L. Tu, J. Roe, and N. Higson on the groupoid case has very striking
consequences, such as the injectivity of the map µ for exact C∗r (�), due to Kaminker,
Guentner and Ozawa.

Finally, the independent results of Lafforgue and Mineyev–Yu [74] show that the
conjecture holds for arbitrary hyperbolic groups (most of which have property T), and
P. Julg was even able to prove the conjecture with coefficients for rank-one groups.
This was the strongest existing positive result until its extension to arbitrary hyper-
bolic groups which has recently been achieved by Vincent Lafforgue. On the negative
side, recent progress due to Gromov, Higson, Lafforgue, and Skandalis gives coun-
terexamples to the general conjecture for locally compact groupoids, for the simple
reason that the functor G → K0(C

∗
r (G)) is not half-exact, unlike the functor given

by the geometric group. This makes the general problem of computing K(C∗r (G))

really interesting. It shows that besides determining the large class of locally compact
groups, for which the original conjecture is valid, one should understand how to take
homological algebra into account to deal with the correct general formulation.

It also raises many integrality questions in cyclic cohomology of both discrete
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groups and foliations since a number of natural cyclic cocycles take integral values
on the range of the map µ from the geometric group to the analytic group [20].

In summary, the above gives in any of the listed examples a natural construction,
based on index problems, of K-theory classes in the relevant algebra, and tools to
decide if this construction exhausts all the K-theory. It also provides a classifying
space, which gives a rough approximation “up to homotopy’’ of the singular quotient
encoded by the noncommutative geometric description.

IV Differential geometry

The development of differential geometric ideas, including de Rham homology, con-
nections and curvature of vector bundles, etc. took place during the 1980s thanks
to cyclic cohomology, which I introduced in 1981, including the spectral sequence
relating it to Hochschild cohomology [16]. This led Loday and Quillen to their inter-
pretation of cyclic homology in terms of the homology of the Lie algebra of matrices,
which was also obtained independently by Tsygan in [88]. My papers appeared in
preprint form in 1982 [17] and were quoted by Loday and Quillen [71] (see also [18]
and [6]).

The first role of cyclic cohomology was to obtain index formulas computing an
index, by the pairing of a K-theory class with a cyclic cocycle. (See [15] for a typical
example with a cyclic 2-cocycle on the algebra C∞(T2

θ ) of smooth functions on
the noncommutative 2-torus.) This pairing is a simple extension of the Chern–Weil
theory of characteristic classes, using the following dictionary to relate geometrical
notions to their algebraic counterpart in such a way that the latter is meaningful in
the general noncommutative situation.

Space Algebra

Vector bundle Finite projective module

Differential form (Class of) Hochschild cycle

de Rham current (Class of) Hochschild cocycle

de Rham homology Cyclic cohomology

Chern–Weil theory Pairing 〈K(A),HC(A)〉
The pairing 〈K(A),HC(A)〉 has a very concrete form and we urge the reader to
prove the following simple lemma to get the general flavor of these computations of
differential geometric nature.

Lemma 1. Let A be an algebra and ϕ a trilinear form on A such that

• ϕ(a0, a1, a2) = ϕ(a1, a2, a0) ∀ aj ∈ A;
• ϕ(a0a1, a2, a3) − ϕ(a0, a1a2, a3) + ϕ(a0, a1, a2a3) − ϕ(a2a0, a1, a2) = 0
∀ aj ∈ A.
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Then the scalar ϕn(E,E,E)2 is invariant under homotopy for projectors (idempo-
tents) E ∈ Mn(A).

In the example of the noncommutative torus, the cyclic 2-cocycle representing
the fundamental class [15] gives an integrality theorem, which J. Bellissard showed
to be the integrality of the Hall conductivity in the quantum Hall effect, when applied
to a specific spectral projection of the Hamiltonian (see [24] for an account of the
work of J. Bellissard).

Basically, by extending the Chern–Weil characteristic classes to the general frame-
work, the theory allows for many concrete computations of a differential geometric
nature on noncommutative spaces. Indeed, the purely K-theoretic description of the
Atiyah–Singer index formula would be of little practical use if it were not supple-
mented by the explicit local formulas in terms of characteristic classes and of the
Chern character. This is achieved in the general noncommutative framework by the
“local index formula,’’ which will be described below in more detail.

Cyclic cohomology was used at a very early stage [20] to obtain index theorems,
whose implications could be formulated independently of the whole framework of
noncommutative geometry. A typical example is the following strengthening of a
well-known result of A. Lichnerowicz [70].

Theorem 2 ([20]). Let M be a compact oriented manifold and assume that the Â-
genus Â(M) is nonzero (since M is not assumed to be a Spin manifold Â(M) need
not be an integer). Let then F be an integrable Spin subbundle of TM . There exists
no metric on F for which the scalar curvature (of the leaves) is strictly positive
(≥ ε > 0) on M .

The proof is based on the construction of cyclic cohomology classes (on the al-
gebra of the foliation) associated to Gelfand–Fuchs cohomology. The main difficulty
is in extending the cocycles to a subalgebra stable under the holomorphic functional
calculus.

The reason for working with cyclic cocycles rather than with the (obviously dual)
cyclic homology can be understood easily in the above example. Cyclic cocycles
are functionals of a differential geometric nature and as such are, of course, not
everywhere defined on the algebra of all continuous functions. There is, however, in
general a strong compatibility between differentiability and continuity, which reflects
itself in the closability of the densely defined operators of differential geometry. It is
precisely this closability that is exploited in [20] to construct the smooth domain of
the cocycles. In that way cyclic cocycles are closely related to unbounded operators
in Hilbert space, each defining its own independent smooth domain.

The theory also showed, early on, the depth of the relation between the above
classification of factors and the geometry of foliations. In a remarkable series of
papers (see [60] for references), J. Heitsch and S. Hurder have analyzed the interplay
between the vanishing of the Godbillon–Vey invariant of a compact foliated mani-
fold (V , F ) and the type of the von Neumann algebra of the foliation. Their work

2 Note that ϕ has been uniquely extended to Mn(A) using the trace on Mn(C), i.e., ϕn =
ϕ ⊗ Trace.
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culminates in the following beautiful result of S. Hurder [60]. If the von Neumann
algebra is semifinite, then the Godbillon–Vey invariant vanishes. We have shown, in
fact, that cyclic cohomology yields a stronger result, proving that if GV �= 0, then the
central decomposition of M necessarily contains factors M , whose virtual modular
spectrum is of finite covolume in R∗+.

Theorem 3 ([20]). Let (V , F ) be an oriented, transversally oriented, compact, foli-
ated manifold (codim F = 1). Let M be the associated von Neumann algebra, and
Mod(M) its flow of weights. Then, if the Godbillon–Vey class of (V , F ) is different
from 0, there exists an invariant probability measure for the flow Mod(M).

One actually constructs an invariant measure for the flow Mod(M), exploiting
the following remarkable property of the natural cyclic 1-cocycle τ on the algebra A
of the transverse 1-jet bundle for the foliation. When viewed as a linear map δ from
A to its dual, δ is an unbounded derivation, which is closable, and whose domain
extends to the center Z of the von-Neumann algebra generated by A. Moreover, δ
vanishes on this center, whose elements h ∈ Z can then be used to obtain new cyclic
cocycles τh on A. The pairing

L(h) = 〈τh, µ(x)〉
with the K-theory classes µ(x) obtained from the assembly map µ, which we had
constructed with P. Baum (cf. the topology section), then gives a measure on Z,
whose invariance under the flow of weights follows from the discreteness of the
K-group. To show that it is nonzero, one uses an index formula that evaluates the
cyclic cocycles, associated as above to the Gelfand–Fuchs classes, on the range of
the assembly map µ.

Cyclic cohomology led H. Moscovici and myself to the first proof of the Novikov
conjecture for hyperbolic groups.

Theorem 4 ([36]). Any hyperbolic discrete group satisfies the Novikov conjecture.

The proof is based on the higher index theorem for discrete groups and the anal-
ysis3 of a natural dense subalgebra stable under holomorphic functional calculus in
the reduced group C∗-algebra. Cyclic cohomology has had many other applications,
which I will not describe here. The very important general result of excision was
obtained in the work of Cuntz and Quillen [48, 49].

In summary, the basic notions of differential geometry extend to the noncommu-
tative framework and, starting from the noncommutative algebra A of “coordinates,’’
the first task is to compute both its Hochschild and cyclic cohomologies in order to
get the relevant tools before proceeding further to its “geometric’’ structure.

One should keep in mind the new subtleties that arise from noncommutativity. For
instance, unlike the de Rham cohomology, its noncommutative replacement, which is
cyclic cohomology, is not graded but filtered. Also it inherits from the Chern character
map a natural integral lattice. These two features play a basic role in the description of

3 Due to Haagerup and Jolissaint.
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the natural moduli space (or, more precisely, its covering Teichmüller space, together
with a natural action of SL(2,Z) on this space) for the noncommutative tori T2

θ . The
discussion parallels the description of the moduli space of elliptic curves, but involves
the even cohomology instead of the odd cohomology [32].

V Quantized calculus

The infinitesimal calculus is built on the tension expressed in the basic formula∫ b

a

df = f (b)− f (a)

between the integral and the infinitesimal variation df . One comes to terms with this
tension by developing the Lebesgue integral and the notion of differential form. At the
intuitive level, the naive picture of the “infinitesimal variation’’ df as the increment
of f for very nearby values of the variable is good enough for most purposes, so that
there is no need in trying to create a theory of infinitesimals.

The scenario is different in noncommutative geometry, where quantum mechanics
provides a natural stage for the calculus [24, 35]. It is, of course, a bit hard to pass
from the classical stage, where one just deals with functions, to the new one, in
which operators in a Hilbert space H play the central role, but one basic input of
quantum mechanics is precisely that the intuitive notion of a real variable quantity
should be modeled as a self-adjoint operator in H. One gains a lot in doing so.
The set of values of the variable is the spectrum of the operator, and the number of
times a value is reached is the spectral multiplicity. Continuous variables (operators
with continuous spectrum) coexist happily with discrete variables precisely because
of noncommutativity of operators. Furthermore, we now have a perfect home for
infinitesimals, namely, for variables that are smaller than ε for any ε, without being
zero. Of course, requiring that the operator norm is smaller than ε for any ε is too
strong, but one can be more subtle and ask that for any positive ε, one can condition
the operator by a finite number of linear conditions, so that its norm becomes less than
ε. This is a well-known characterization of compact operators in Hilbert space, and
they are the obvious candidates for infinitesimals. The basic rules of infinitesimals
are easy to check, for instance, the sum of two compact operators is compact, the
product compact times bounded is compact and they form a two-sided ideal K in the
algebra of bounded operators in H.

The size of the infinitesimal ε ∈ K is governed by the rate of decay of the de-
creasing sequence of its characteristic values µn = µn(ε) as n→∞. (By definition,
µn(ε) is the nth eigenvalue of the absolute value |ε| = √ε∗ε.) In particular, for all
real positive α, the following condition defines infinitesimals of order α:

µn(ε) = O(n−α) when n→∞. (1)

Infinitesimals of order α also form a two-sided ideal and, moreover,
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εj of order αj ⇒ ε1ε2 of order α1 + α2. (2)

The other key ingredient in the new calculus is the integral∫
–– .

It has the usual properties of additivity and positivity of the ordinary integral, but it
allows one to recover the power of the usual infinitesimal calculus, by automatically
neglecting the ideal of infinitesimals of order > 1∫

–– ε = 0 ∀ ε µn(ε) = o(n−1). (3)

By filtering out these operators, one passes from the original stage of the quantized
calculus described above to a classical stage where, as we shall see later, the notion
of locality finds its correct place.

Using (3), one recovers the above mentioned tension of the ordinary differential
calculus, which allows one to neglect infinitesimals of higher order (such as (df )2)
in an integral expression.

We refer to [24] for the construction of the integral in the required generality,
obtained by the analysis, mainly due to Dixmier [51], of the logarithmic divergence
of the ordinary trace for an infinitesimal of order 1.

The first interesting concrete example is provided by pseudodifferential operators
k on a differentiable manifold M . When k is of order 1 in the above sense, it is
measurable and

∫
– k is the noncommutative residue of k [89]. It has a local expression

in terms of the distribution kernel k(x, y), x, y ∈ M . For k of order 1 in the above
sense, the kernel k(x, y) diverges logarithmically near the diagonal,

k(x, y) = −a(x) log |x − y| +O(1) (for y → x), (4)

where a(x) is a 1-density independent of the choice of Riemannian distance |x − y|.
Then one has (up to normalization),∫

–– k =
∫
M

a(x). (5)

The right-hand side of this formula makes sense for all pseudodifferential operators
(cf. [89]), since one can easily see that the kernel of such an operator is asymptotically
of the form

k(x, y) =
∑

an(x, x − y)− a(x) log |x − y| +O(1), (6)

where an(x, ξ) is homogeneous of degree −n in ξ , and the 1-density a(x) is defined
intrinsically, since the logarithm does not mix with rational terms under a change of
local coordinates.

What is quite remarkable is that this allows one to extend the domain of the
integral

∫
– to infinitesimals that are of order < 1, hence to obtain a computable
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answer to questions that would be meaningless in the ordinary calculus—the prototype
being “what is the area of a four manifold?’’—which we shall discuss below. The
same principle of extension of

∫
– to infinitesimals of order < 1 turns out to work in

much greater generality. It works, for instance, for hypoelliptic operators and more
generally for spectral triples, whose dimension spectrum is simple, as we shall see
below.

VI Metric geometry and spectral action

With the above calculus as a tool, we now have a home for infinitesimals and can
come back to the two basic notions introduced by Riemann in the classical framework,
those of manifold and of line element [82]. We have shown that both of these notions
adapt remarkably well to the noncommutative framework and lead to the notion of
spectral triple, on which noncommutative geometry is based (cf. [35] for an overall
presentation and [26, 25, 55] for the more technical aspects). This definition is entirely
spectral: the elements of the algebra are operators, the points, if they exist, come from
the joint spectrum of operators, and the line element is an operator. In a spectral triple

(A,H,D), (1)

the algebra A of coordinates is concretely represented on the Hilbert space H and
the operator D is an unbounded self-adjoint operator, which is the inverse of the line
element,

ds = 1/D. (2)

The basic properties of such spectral triples are easy to formulate and do not make
any reference to the commutativity of the algebra A. They are

[D, a] is bounded for any a ∈ A, (3)

D = D∗ and (D + λ)−1 is a compact operator ∀ λ /∈ C. (4)

There is a simple formula for the distance in the general noncommutative case.
It measures the distance between states,4

d(ϕ,ψ) = Sup{|ϕ(a)− ψ(a)|; a ∈ A, ‖[D, a]‖ ≤ 1}. (5)

The significance of D is twofold. On the one hand it defines the metric by the
above equation, on the other hand its homotopy class represents the K-homology
fundamental class of the space under consideration. In the classical geometric case,
both the fundamental cycle in K-homology and the metric are encoded in the spectral
triple (A,H,D), where A is the algebra of functions acting in the Hilbert space H of
spinors, while D is the Dirac operator. In some sense this encoding of Riemannian
geometry takes a square root of the usual ansatz giving ds2 as gµνdxµdxν , the point

4 Recall that a state is a normalized positive linear form on A.
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being that the Spin structure allows for the extraction of the square root of ds2. (As
is well known, Dirac found the corresponding operator as a differential square root
of a Laplacian.)

The first thing one checks is that in the classical Riemannian case the geodesic
distance d(x, y) between two points is reobtained by

d(x, y) = Sup{|f (x)− f (y)|; f ∈ A, ‖[D, f ]‖ ≤ 1}, (6)

with D = ds−1 as above, and where A is the algebra of smooth functions. Note that
ds has the dimension of a length L, D has dimension L−1, and the above expression
for d(x, y) also has the dimension of a length. It is also important to notice that we
do not have to give the algebra of smooth functions. Indeed, imagine we are just
given the von Neumann algebra A′′ in H, weak closure of A. How do we recover the
subalgebra C∞(M) of smooth functions? This is hopeless without using D, since the
pair (A′′,H) contains no more information than the multiplicity of this representation
of a Lebesgue measure space. (Recall that they are all isomorphic in the measure
category.) Using D, however, the answer is as follows. We shall say that an operator
T in H is smooth iff the following map is smooth:

t → Ft(T ) = eit |D|T e−it |D| ∈ C∞(R,L(H)). (7)

We let
OP 0 = {T ∈ L(H); T is smooth}. (8)

It is then an exercise to show, in the Riemannian context, that

C∞(M) = OP 0 ∩ L∞(M),

where L∞(M) = A′′ is the von Neumann algebra weak closure in H.
In the general context, the flow (7) plays the role of the geodesic flow, assuming

the following regularity hypothesis on (A,H,D):

a and [D, a] ∈ ∩Dom δk ∀ a ∈ A, (9)

where δ is the derivation δ(T ) = [|D|, T ], for any operator T . This derivation is the
generator of the geodesic flow.

The usual notion of dimension of a space is replaced by the dimension spectrum,
which is the subset � of {z ∈ C,Re(z) ≥ 0} of singularities of the analytic functions

ζb(z) = Trace(b|D|−z), Re z > p, b ∈ B, (10)

where we let B denote the algebra generated by δk(a) and δk([D, a]), for a ∈ A. The
dimension spectrum � is, of course, bounded above by the crude dimension provided
by the growth of eigenvalues ofD, or equivalently by the order of the infinitesimal ds.
In essence, the dimension spectrum is the set of complex numbers where the space
under consideration becomes visible from the classical standpoint of the integral

∫
–.

The dimension spectrum of an ordinary manifold M is the set {0, 1, . . . , n}, n =
dim M; it is simple. Multiplicities appear for singular manifolds. Cantor sets provide
examples of complex points z /∈ R in the dimension spectrum.
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Going back to the usual Riemannian case, one checks that one recovers the vol-
ume form of the Riemannian metric by the equality (valid up to a normalization
constant [24]) ∫

–– f |ds|n =
∫
Mn

f
√
gdnx, (11)

but the first interesting point is that besides this coherence with the usual computations,
there are new simple questions we can ask now, such as “what is the two-dimensional
measure of a four-manifold?’’ or, in other words, “what is its area?’’ Thus one should
compute ∫

–– ds2. (12)

From invariant theory, this should be proportional to the Hilbert–Einstein action. The
direct computation has been done in [63], the result being∫

–– ds2 = −1

24π2

∫
M4

r
√
gd4x, (13)

where, as above, dv = √gd4x is the volume form, ds = D−1 the length element,
i.e., the inverse of the Dirac operator, and r is the scalar curvature.

A spectral triple is, in effect, a fairly minimal set of data allowing one to start
doing quantum field theory. First, the inverse

ds = D−1 (14)

plays the role of the propagator for Euclidean fermions and allows one to start writing
the contributions of Feynman graphs whose internal lines are fermionic. The gauge
bosons then appear as derived objects through the simple issue of Morita equivalence.
Indeed, to define the analogue of the operator D for the algebra of endomorphisms
of a finite projective module over A

B = EndA(E), (15)

where E is a finite, projective, Hermitian right A–module, requires the choice of a
Hermitian connection on E . Such a connection∇ is a linear map∇ : E → E⊗A�1

D ,
satisfying the rules [24]

∇(ξa) = (∇ξ)a + ξ ⊗ da ∀ ξ ∈ E, a ∈ A, (16)

(ξ,∇η)− (∇ξ, η) = d(ξ, η) ∀ ξ, η ∈ E, (17)

where da = [D, a] and where �1
D ⊂ L(H) is the A–bimodule of operators of

the form
A = �ai[D, bi], ai, bi ∈ A. (18)

Any algebra A is Morita equivalent to itself (with E = A), and when one applies
the construction above in this context, one gets the inner deformations of the spectral
geometry. (We ignore the real structure and refer to [26] for the full story.) These
replace the operator D by



188 A. Connes

D → D + A (19)

where A = A∗ is an arbitrary self-adjoint operator of the form (18), where we
disregard the real structure for simplicity. Analyzing the divergences of the simplest
diagrams with fermionic internal lines, as proposed early on in [23], provides perfect
candidates for the counterterms, and hence the bosonic self-interactions. Such terms
are readily expressible as residues or Dixmier traces and are gauge invariant by
construction. The basic results are the following:

• In the above general context of NCG and in dimension 4, the obtained countert-
erms are a sum of a Chern–Simons action associated to a cyclic 3-cocycle on the
algebra A and a Yang–Mills action expressed from a Dixmier trace, along the
lines of [23] and [24]. The main additional hypothesis is the vanishing of the
“tadpole,’’ which expresses that one expands around an extremum.

• In the above generality exactly the same terms appear in the spectral action 〈N(�)〉
as the terms independent of the cutoff parameter �.

The spectral action was defined in [9] and computed there for the natural spectral
triple describing the standard model. We refer to [64] for the detailed calculation. The
overall idea of the approach is to use the above more flexible geometric framework to
model the geometry of space-time, starting from the observed Lagrangian of gravity
coupled with matter. The usual paradigm guesses space-time from the Maxwell part
of the Lagrangian concludes that it is Minkowski space and then adds more and more
particles to account for new terms in the Lagrangian. We start instead from the full
Lagrangian and derive the geometry of space-time directly from this empirical data.
The only rule is that we want a theory that is pure gravity, with the action functional
given by the spectral action 〈N(�)〉 explained below, with an added fermionic term

S = 〈N(�)〉 + 〈ψ,Dψ〉.
Note thatD here stands for the Dirac operator with all its decorations, such as the inner
fluctuations A explained above. Thus D stands for D+A, but this decomposition is
an artifact of the standard distinction between gravity and matter, which is irrelevant
in our framework.5 The gauge bosons appear as the inner part of the metric, in the
same way as the invariance group, which is the noncommutative geometry analogue
of the group of diffeomorphisms, contains inner automorphisms as a normal subgroup
(corresponding to the internal symmetries in physics).

The phenomenological Lagrangian of physics is the Einstein Lagrangian plus the
minimally coupled standard model Lagrangian. The fermionic part of this action is
used to determine a spectral triple (A,H,D), where the algebra A determines the
effective space-time from the internal symmetries and yields an answer which differs
from the usual space-time (coming from QED). The Hilbert space H encodes not only
the ordinary spinors (coming from QED) but all quarks and leptons, and the operator
D encodes not only the ordinary Dirac operator but also the Yukawa coupling matrix.

5 The spectral action is clearly superior to the Dixmier trace (residue) version of the Yang–
Mills action in that it does not use this artificial splitting.
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Then one recovers the bosonic part as follows. The Hilbert–Einstein action functional
for the Riemannian metric, the Yang–Mills action for the vector potentials, the self-
interaction, and the minimal coupling for the Higgs fields all appear with the correct
signs in the asymptotic expansion for large � of the number N(�) of eigenvalues of
D that are ≤ � (cf. [9]),

N(�) = # eigenvalues of D in [−�,�]. (20)

This step function N(�) is the superposition of two terms,

N(�) = 〈N(�)〉 +Nosc(�).

The oscillatory part Nosc(�) is the same as for a random matrix, governed by the
statistic dictated by the symmetries of the system, and does not concern us here.
The average part 〈N(�)〉 is computed by a semiclassical approximation from local
expressions involving the familiar heat equation expansion and delivers the correct
terms. Other nonzero terms in the asymptotic expansion are cosmological, Weyl
gravity and topological terms. In general, the average part 〈N(�)〉 is given as a sum
of residues. Assuming that the dimension spectrum � is simple, it is given by

〈N(�)〉 :=
∑
k>0

�k

k
Ress=k ζD(s)+ ζD(0), (21)

where the sum is over k ∈ � and

ζD(s) = Trace(|D|−s).
For instance, for SpecD ⊂ Z andP(n) the total multiplicity of {±n}, for a polynomial
P , one has

〈N(�)〉 =
∫ �

0
P(u)du+ cst,

which smoothly interpolates through the irregular step function

N(�) =
�∑
0

P(n).

As explained above, the Yang–Mills action appears in general as a part of the
spectral action, but can also be defined directly using the calculus. This analogue
of the Yang–Mills action functional and the classification of Yang–Mills connections
on noncommutative tori were developed in [30], with the primary goal of finding a
“manifold shadow’’ for these noncommutative spaces. These moduli spaces turned
out indeed to fit this purpose perfectly, allowing us, for instance, to find the usual
Riemannian space of gauge equivalence classes of Yang–Mills connections as an
invariant of the noncommutative metric. We refer to [24] for the construction of the
metrics on noncommutative tori from the conceptual point of view and to [25] for
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the verification that all natural axioms of noncommutative geometry are fulfilled in
that case.

Gauge theory on noncommutative tori was shown to be relevant in string theory
compactifications in [32]. Indeed, both the noncommutative tori and the components
∇j of the Yang–Mills connections occur naturally in the classification of the BPS
states in M-theory [32]. In the matrix formulation of M-theory, the basic equations
to obtain periodicity of two of the basic coordinates Xi turn out to be the following:

UiXjU
−1
i = Xj + aδ

j
i , i = 1, 2, (22)

where the Ui are unitary gauge transformations. The multiplicative commutator

U1U2U
−1
1 U−1

2

is then central and, in the irreducible case, its scalar value λ = exp 2πiθ brings in the
algebra of coordinates on the noncommutative torus. TheXj are then the components
of the Yang–Mills connections. It is quite remarkable that the same picture emerged
from the other information one has about M-theory, concerning its relation with 11-
dimensional supergravity, and that string theory dualities could be interpreted using
Morita equivalence. The latter [79] relates the values of θ on an orbit of SL(2,Z), and
this type of relation, which is obvious from the foliation point of view [15], would be
invisible in a purely deformation theoretic perturbative expansion like the one given
by the Moyal product. The gauge theories on noncommutative 4-space were used
very successfully in [76] to give a conceptual meaning to the compactifications of
moduli spaces of instantons on R4 in terms of instantons on noncommutative R4. The
corresponding spectral triple has been shown to fit in the general framework of NCG
in [52] and the spectral action has been computed in [53]. These constructions apply
to flat spaces, but were greatly generalized to isospectral deformations of Riemannian
geometries of rank > 1 in [39, 40]. We shall not review here the renormalization of
QFT on noncommutative spaces, but we simply refer to a recent remarkable positive
result by H. Grosse and R. Wulkenhaar [56].

In summary, we now have at our disposal an operator theoretic analogue of the
“calculus’’ of infinitesimals and a general framework of geometry.

In general, given a noncommutative space with coordinate algebra A, the determi-
nation of corresponding geometries (A,H,D) is obtained in two independent steps:

1. The first step consists of presenting the algebraic relations between coordinates
x ∈ A and the inverse line element D, the simplest instance being the equation

U−1[D,U ] = 1

fixing the geometry of the one-dimensional circle. We refer to [39, 40] for
noncommutative versions of this equation in dimension 3 and 4. Basically, this
fixes the volume form v as a Hochschild cocycle and then allows for arbitrary
metrics with v as volume form as solutions.

2. Once the algebraic relations between coordinates and the inverse line element
have been determined, the second step is to find irreducible representations of
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these relations in Hilbert space. Different metrics will correspond to the var-
ious inequivalent irreducible representations of the pair (A,D), fulfilling the
prescribed relations. One guiding principle is that the homotopy class of such a
representation should yield a nontrivial K-homology class on A, playing the role
of the “fundamental class.’’ The corresponding index problem yields the ana-
logue of the Pontrjagin classes and of “curvature,’’ as discussed below. In order
to compare noncommutative metrics, it is very natural to use spectral invariants,
such as the spectral action mentioned above.

In many ways, the above two steps parallel the description of particles as irreducible
representations of the Poincaré group. We thus view a given geometry as an irre-
ducible representation of the algebraic relations between the coordinates and the line
element, while the choice of such representations breaks the natural invariance group
of the theory. The simplest instance of this view of geometry as a symmetry breaking
phenomenon is what happens in the Higgs sector of the standard model.

VII Metric geometry, the local index formula

In the spectral noncommutative framework, the next appearance of the notion of
curvature (besides the above spectral one) comes from the local computation of the
analogue of Pontrjagin classes, i.e., of the components of the cyclic cocycle that is
the Chern character of the K-homology class of D, which make sense in general.
This result allows us, using the infinitesimal calculus, to go from local to global in
the general framework of spectral triples (A,H,D).

The Fredholm index of the operatorD determines (we only look at the odd case for

simplicity but there are similar formulas in the even case) an additive mapK1(A)
ϕ→Z,

given by the equality

ϕ([u]) = Index(PuP ), u ∈ GL1(A), (1)

where P is the projector P = 1+F
2 , F = Sign(D).

It is an easy fact that this map is computed by the pairing of K1(A) with the cyclic
cocycle

τ(a0, . . . , an) = Trace(a0[F, a1] . . . [F, an]) ∀ aj ∈ A, (2)

where F = Sign D, and we assume that the dimension p of our space is finite, which
means that (D + i)−1 is of order 1/p, also n ≥ p is an odd integer. There are
similar formulas involving the grading γ in the even case, and it is quite satisfactory
[21, 61] that both cyclic cohomology and the Chern character formula adapt to the
infinite-dimensional case, in which the only hypothesis is that exp(−D2) is a trace
class operator.

The cocycle τ is, however, nonlocal in general, because the formula (2) involves
the ordinary trace instead of the local trace

∫
– and it is crucial to obtain a local form

of the above cocycle.
This problem is solved by the “local index formula’’ [37], under the regularity

hypothesis (9) on (A,H,D).
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We assume that the dimension spectrum � is discrete and simple and refer to [37]
for the case of a spectrum with multiplicities. Let (A,H,D) be a regular spectral
triple with simple dimension spectrum; the local index theorem is the following [37].

Theorem 5.

• The equality ∫
–– P = Resz=0 Trace(P |D|−z)

defines a trace on the algebra generated by A, [D,A], and |D|z, where z ∈ C.
• There is only a finite number of nonzero terms in the following formula defining

the odd components (ϕn)n=1,3,... of a cocycle in the bicomplex (b, B) of A,

ϕn(a
0, . . . , an) =

∑
k

cn,k

∫
–– a0[D, a1](k1) . . . [D, an](kn)|D|−n−2|k| ∀ aj ∈ A

where the following notations are used: T (k) = ∇k(T ) and∇(T ) = D2T −TD2,
k is a multi-index, |k| = k1 + · · · + kn,

cn,k = (−1)|k|
√

2i(k1! . . . kn!)−1((k1+1) . . . (k1+k2+· · ·+kn+n))−1�
(
|k| + n

2

)
.

• The pairing of the cyclic cohomology class (ϕn) ∈ HC∗(A) with K1(A) gives the
Fredholm index of D with coefficients in K1(A).

We refer to [59] for a user friendly account of the proof. The first test of this
general local index formula was the computation of the local Pontrjagin classes in
the case of foliations. Their transverse geometry is, as explained in [37], encoded by
a spectral triple. The answer for the general case [38] was obtained thanks to a Hopf
algebra H(n) only depending on the codimension n of the foliation. It allowed us to
organize the computation and to encode algebraically the noncommutative curvature.
It also dictated the correct generalization of cyclic cohomology for Hopf algebras
[38, 42]. This extension of cyclic cohomology has been pursued with great success
recently [65, 66, 58] and we shall use it later. In the above context of foliations, the
index computation transits through the cyclic cohomology of the Hopf algebra H(n)

and we showed that it coincides with the Gelfand–Fuchs cohomology [54].
Another case of great interest came recently from quantum groups, where the local

index formula works fine and yields quite remarkable formulas involving a sequence
of rational approximations to the logarithmic derivative of the Dedekind eta function,
even in the simplest case of SUq(2) (cf. [8, 43]). What is very striking in this example
is that it displays the meaning of locality in the noncommutative framework. This
notion requires no definition in the usual topological framework but would appear
far more elusive in the noncommutative case without such concrete examples. What
it means is that one works at∞ in momentum space, but with very precise rules that
allow one to strip all formulas from irrelevant details that won’t have any effect in
the computation of residues. We urge the reader to look at the concrete computations
of [43] to really appreciate this point.
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After the breakthrough of [50] showing that, contrary to a well-established neg-
ative belief, one could get nontrivial spectral geometries associated to quantum ho-
mogeneous spaces, it was shown in [77] how the above local index formula should
be adapted to deal with the situation when the principal symbol of D2 is no longer
scalar because of a q-twist. Finally, recent work in the general case of quantum flag
manifolds opens the way to a large class of examples, on which the above machinery
should be tested and improved [67].

An open question of great relevance in the general framework of the analysis of
spectral triples is to associate to any spectral triple (A,H,D) the coarse geometry of
its “momentum space’’P . This space should be an ordinary metric space, with growth
exactly governed by the spectrum of |D| (which would give the set of distances to
the origin). When viewed in the sense of the coarse geometry of John Roe, the space
P should give an accurate description of the “infinitesimal’’ structure of the noncom-
mutative space given by the spectral triple (A,H,D). In particular, the classification
by M. Gromov of discrete groups with polynomial growth should be extended to
show that the “local structure’’ of noncommutative finite-dimensional manifolds is
essentially of nilpotent nature. (The map from discrete groups G to spectral triples is
the action of the group ring in l2(�). With |D| being the multiplication by the word
metric, it only takes care of the absolute value of |D|.)

VIII Renormalization, residues, and locality

At about the same time as the Hopf algebra H(n), another Hopf algebra was indepen-
dently discovered by Dirk Kreimer, as the organizing concept in the computations of
renormalization in quantum field theory.

His Hopf algebra is commutative as an algebra, and we showed in [33] that it is
the dual Hopf algebra of the enveloping algebra of a Lie algebra G, whose basis is
labeled by the one-particle irreducible Feynman graphs. The Lie bracket of two such
graphs is computed from insertions of one graph in the other and vice versa. The
corresponding Lie group G is the group of characters of H.

We showed that the groupG is a semidirect product of an easily understood abelian
group by a highly nontrivial group closely tied up with groups of diffeomorphisms.

Our joint work shows that the essence of the concrete computations performed
by physicists using the renormalization technique is conceptually understood as a
special case of a general principle of multiplicative extraction of finite values coming
from the Birkhoff decomposition in the Riemann–Hilbert problem. The Birkhoff
decomposition is the factorization

γ (z) = γ−(z)−1γ+(z), z ∈ C, (1)

where we let C ⊂ P1(C) be a smooth simple curve, C− the component of the
complement of C containing ∞ �∈ C and C+ the other component. Both γ and γ±
are loops with values in G,

γ (z) ∈ G ∀ z ∈ C
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and γ± are boundary values of holomorphic maps (still denoted by the same symbol),

γ± : C± → G. (2)

The normalization condition γ−(∞) = 1 ensures that if it exists, the decomposition
(2) is unique (under suitable regularity conditions).

When G is a simply connected nilpotent complex Lie group, the existence (and
uniqueness) of the Birkhoff decomposition (2) is valid for any γ . When the loop
γ : C → G extends to a holomorphic loop: C+ → G, the Birkhoff decomposition
is given by γ+ = γ , γ− = 1. In general, for z ∈ C+, the evaluation

γ → γ+(z) ∈ G (3)

is a natural principle to extract a finite value from the singular expression γ (z). This
extraction of finite values coincides with the removal of the pole part when G is the
additive group C of complex numbers and the loop γ is meromorphic inside C+ with
z as its only singularity. It is convenient, in fact, to use the decomposition relative to
an infinitesimal circle C+ around z.

The main result of our joint work [34] is that the renormalized theory is just the
evaluation at z = D of the holomorphic part γ+ of the Birkhoff decomposition of the
loop γ with values in G provided by the dimensional regularization.

In fact, the relation that we uncovered in [34] between the Hopf algebra of Feyn-
man graphs and the Hopf algebra of coordinates on the group of formal diffeomor-
phisms of the dimensionless coupling constants of the theory allows us to prove the
following result, which for simplicity deals with the case of a single dimensionless
coupling constant.

Theorem 6 ([34]). Let the unrenormalized effective coupling constant geff (ε) be
viewed as a formal power series in g and let geff (ε) = geff+(ε)(geff−(ε))

−1 be its
(opposite) Birkhoff decomposition in the group of formal diffeomorphisms. Then the
loop geff−(ε) is the bare coupling constant and geff+(0) is the renormalized effective
coupling.

This allows us, using the relation between the Birkhoff decomposition and the clas-
sification of holomorphic bundles, to encode geometrically the operation of renormal-
ization. It also signals a very clear analogy between the renormalization group as an
“ambiguity’’group of physical theories and the missing Galois theory atArchimedean
places alluded to above. We refer to [28] for more information.

Note also that the residue, which is the cornerstone of our integral calculus (Sec-
tion V), plays a key role in the Birkhoff decomposition. Indeed, we showed in [34]
that the negative part in the Birkhoff decomposition (the part coming from diver-
gences and giving the counterterms) is entirely determined by its residue (the term in
1/ε) in the dimensional regularization, a strong form of the ’t Hooft relations in QFT.
This then gives much weight to the idea that local functionals are best expressed in
the general context of NCG as noncommutative integrals, i.e., residues.

With this conceptual understanding of renormalization at hand, the next obvious
question is to match it with the above framework of NCG and apply it to the spectral
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action. One very nice feature of the framework of NCG is that it allows for the dressing
of the geometry. Indeed, in quantum field theory the Dirac propagator undergoes a
whole series of quantum corrections that provide a formal power series in powers of
�. In our framework, these corrections mean that the whole geometry is affected by
the quantum field theory. This directly fine tunes its fundamental ingredient, which
is the “line element’’ ds = ×——×. Of course, it is necessary, in order to really
formulate things coherently, to pass to the second quantized Hilbert space, rather
than staying in the one particle Hilbert space. This remains to be done in the general
framework of NCG, but one can already appreciate a direct benefit of passing to the
second quantized Hilbert space. Indeed, if we concentrate on space (versus space-
time), its “line element’’ ds = ×——× becomes positive, as the inverse of the Dirac
Hamiltonian, thanks to the “Dirac sea’’ construction, which makes a preferred choice
of the spin representation of the infinite-dimensional Clifford algebra. What remains
at the second quantized level of the cohomological significance of ds (as a generator
of Poincaré duality in K-homology) should be captured by a “regulator’’ pairing with
algebraic K-theory along the lines of [22].

IX Modular forms and the space of Q-lattices

We shall end this short presentation of the subject with examples of noncommutative
spaces, which appeared in our joint work with H. Moscovici [44] and M. Marcolli
[45] and have obvious relevance in number theory. Modular forms already appeared
in noncommutative geometry in the classification of noncommutative three-spheres
[40, 41], where hard computations with the noncommutative analogue of the Jacobian,
involving the ninth power of the Dedekind eta function, were necessary in order to
analyze the relation between such spheres and noncommutative nilmanifolds.

The coexistence of two a priori unrelated structures on modular forms, namely,
the algebra structure given by the pointwise product on the one hand and the action
of the Hecke operators on the other, led us in [44] to associate to any congruence
subgroup � of SL(2,Z) a crossed product algebra A(�), the modular Hecke algebra
of level�, which is a direct extension of both the ring of classical Hecke operators and
of the algebra M(�) of �-modular forms. With M denoting the algebra of modular
forms of arbitrary level, the elements of A(�) are maps with finite support

F : �\GL+2 (Q)→M, α 
→ Fα ∈M,

satisfying the covariance condition

Fαγ = Fα|γ ∀α ∈ GL+2 (Q), γ ∈ � (1)

and their product is given by convolution

(F 1 ∗ F 2)α :=
∑

β∈�\GL+2 (Q)

F 1
β · F 2

αβ−1 |β.
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In the simplest case �(1) = SL(2,Z), the elements of A(�(1)) are encoded by a
finite number of modular forms fN ∈ M(�0(N)) of arbitrary high level and the
product operation is nontrivial.

Our starting point is the basic observation that the Hopf algebra H1 = H(1) of
transverse geometry in codimension 1 mentioned above admits a natural action on
the modular Hecke algebras A(�). As an algebra, H1 coincides with the universal
enveloping algebra of the Lie algebra with basis {X, Y, δn; n ≥ 1} and brackets

[Y,X] = X, [Y, δn] = nδn, [X, δn] = δn+1, [δk, δ
] = 0, n, k, 
 ≥ 1,
(2)

while the coproduct, which endows it with the Hopf algebra structure, is determined
by the identities

�Y = Y ⊗ 1+ 1⊗ Y, �δ1 = δ1 ⊗ 1+ 1⊗ δ1,

�X = X ⊗ 1+ 1⊗X + δ1 ⊗ Y,

together with the property that � : H1 → H1 ⊗H1 is an algebra homomorphism.
The action of X on A(�) is given by a classical operator going back to Ramanujan,
which corrects the usual differentiation by the logarithmic derivative of the Dedekind
eta function η(z). The action of Y is given by the standard grading by the weight (the
Euler operator) on modular forms. Finally, δ1 and its higher “derivatives’’ δn act by
generalized cocycles on GL+2 (Q) with values in modular forms.

One can then analyze this action of H1 through its cyclic cohomology. The latter
admits three basic generators, with one of them cobounding in the periodized theory.
We describe them and their meaning for foliations.

• Godbillon–Vey cocycle. Its class is represented by δ1 which is a primitive element
of H1, i.e., fulfills

�δ1 = δ1 ⊗ 1+ 1⊗ δ1.

It is cyclic, so that B(δ1) = 0, where B is the boundary operator in cyclic coho-
mology, whose definition involves the antipode, the product and the coproduct.
One shows that the class of δ1,

[δ1] ∈ HC1
Hopf (H1),

is the generator of PHCodd
Hopf (H1) and corresponds to the Godbillon–Vey class

in the isomorphism with Gelfand–Fuchs cohomology. It is this class which is
responsible for the type III property of codimension one foliations explained
above.

• Schwarzian derivative. The element δ′2 := δ2 − 1
2δ

2
1 ∈ H1 is a Hopf cyclic

cocycle, whose action in the foliation case corresponds to the multiplication by
the Schwarzian derivative of the holonomy and whose class,

[δ′2] ∈ HC1
Hopf (H1),

is equal to B(c), where c is the Hochschild 2-cocycle

c := δ1 ⊗X + 1

2
δ2

1 ⊗ Y.
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• Fundamental class. The generator of the even group PHCeven
Hopf (H1) is the class

of the cyclic 2-cocycle

F := X ⊗ Y − Y ⊗X − δ1Y ⊗ Y,

which for foliations represents the transverse fundamental class.

We showed in [44] that each of the above cocycles admits a beautiful interpretation
in its action on the modular Hecke algebras. First, the action of δ′1, coupled with
modular symbols, yields a rational representative for the Euler class of GL+2 (Q).
Next the action of δ′2 is an inner derivation implemented by the modular form ω4,

ω4 = −E4

72
, E4(q) := 1+ 240

∞∑
1

n3 qn

1− qn
.

Moreover, there is no way to perturb the action of the Hopf algebra H1 on the mod-
ular Hecke algebras so that δ′2 vanishes, and the obstruction exactly agrees with the
obstruction found by D. Zagier in his work on Rankin–Cohen algebras [90].

Next, the action of the fundamental class gives a Hochschild 2-cocycle which is
the natural extension to modular Hecke algebras of the first Rankin–Cohen bracket.
This led us to the following general result, which provides the correct notion of one-
dimensional projective structure for noncommutative spaces and extends the Rankin–
Cohen deformation in that generality. Let the Hopf algebra H1 act on an algebra A,
in such a way that the derivation δ′2 is inner, implemented by an element � ∈ A,

δ′2(a) = �a − a� ∀ a ∈ A (3)

with
δk(�) = 0 ∀ k ∈ N. (4)

Such an action of H1 on an algebra A will be said to define a projective structure on
A, and the element � ∈ A implementing the inner derivation δ′2 will be called its
quadratic differential.

Our main result in [44] is the construction of a sequence of brackets RC∗, which,
applied to any algebra A endowed with a projective structure, yields a family of formal
associative deformations of A. The formulas for RCn are completely explicit, but
they rapidly become quite involved, as witnessed by the complexity of the following
formula for RC3, which gives the bidifferential operator expression for the third
bracket. (The expression of RC4 is much longer, it would occupy several pages.)

RC3 = −2X ⊗X2 − 2X ⊗X2.Y + 2X ⊗ α[�].Y + 2X ⊗ α[�].Y 2 + 2X2 ⊗X

+ 6X2 ⊗X.Y

+ 4X2 ⊗X.Y 2 − 2X3 ⊗ Y

3
− 2X3 ⊗ Y 2 − 4X3 ⊗ Y 3

3
+ 2Y ⊗X3

3

− 2

3
Y ⊗ α[�].X
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− 2

3
Y ⊗ α[X[�]].Y − 2Y ⊗ α[�].X.Y + 2Y 2 ⊗X3 − 2Y 2 ⊗ α[�].X
− 2Y 2 ⊗ α[X[�]].Y

− 6Y 2 ⊗ α[�].X.Y + 4Y 3 ⊗X3

3
− 4

3
Y 3 ⊗ α[�].X − 4

3
Y 3 ⊗ α[X[�]].Y

− 4Y 3 ⊗ α[�].X.Y

− 6X.Y ⊗X2 − 6X.Y ⊗X2.Y + 6X.Y ⊗ α[�].Y + 6X.Y ⊗ α[�].Y 2

− 4X.Y 2 ⊗X2

− 4X.Y 2 ⊗X2.Y + 4X.Y 2 ⊗ α[�].Y + 4X.Y 2 ⊗ α[�].Y 2 + 2X2.Y ⊗X

+ 6X2.Y ⊗X.Y

+ 4X2.Y ⊗X.Y 2 − 2δ1.X ⊗X − 6δ1.X ⊗X.Y − 4δ1.X ⊗X.Y 2

+ 2δ1.X
2 ⊗ Y + 6δ1.X

2 ⊗ Y 2

+ 4δ1.X
2 ⊗ Y 3 + 2δ1.Y ⊗X2 + 2δ1.Y ⊗X2.Y − 2δ1.Y ⊗ α[�].Y

− 2δ1.Y ⊗ α[�].Y 2

+ 6δ1.Y
2 ⊗X2 + 6δ1.Y

2 ⊗X2.Y − 6δ1.Y
2 ⊗ α[�].Y − 6δ1.Y

2 ⊗ α[�].Y 2

+ 4δ1.Y
3 ⊗X2

+ 4δ1.Y
3 ⊗X2.Y − 4δ1.Y

3 ⊗ α[�].Y − 4δ1.Y
3 ⊗ α[�].Y 2 − δ2

1 .X ⊗ Y

− 3δ2
1 .X ⊗ Y 2

− 2δ2
1 .X ⊗ Y 3 + δ2

1 .Y ⊗X + 3δ2
1 .Y ⊗X.Y + 2δ2

1 .Y ⊗X.Y 2 + 3δ2
1 .Y

2 ⊗X

+ 9δ2
1 .Y

2 ⊗X.Y

+ 6δ2
1 .Y

2 ⊗X.Y 2 + 2δ2
1 .Y

3 ⊗X + 6δ2
1 .Y

3 ⊗X.Y + 4δ2
1 .Y

3 ⊗X.Y 2

+ 1

3
δ3

1 .Y ⊗ Y + δ3
1 .Y ⊗ Y 2

+ 2

3
δ3

1 .Y ⊗ Y 3 + δ3
1 .Y

2 ⊗ Y + 3δ3
1 .Y

2 ⊗ Y 2 + 2δ3
1 .Y

2 ⊗ Y 3 + 2

3
δ3

1 .Y
3 ⊗ Y

+ 2δ3
1 .Y

3 ⊗ Y 2

+ 4

3
δ3

1 .Y
3 ⊗ Y 3 + 2

3
α[�].X ⊗ Y + 2α[�].X ⊗ Y 2 + 4

3
α[�].X ⊗ Y 3

− 2α[�].Y ⊗X

− 6α[�].Y ⊗X.Y − 4α[�].Y ⊗X.Y 2 − 2α[�].Y 2 ⊗X

− 6α[�].Y 2 ⊗X.Y − 4α[�].Y 2 ⊗X.Y 2

+ 2

3
α[X[�]].Y ⊗ Y + 2α[X[�]].Y ⊗ Y 2 + 4

3
α[X[�]].Y ⊗ Y 3

− 6δ1.X.Y ⊗X − 18δ1.X.Y ⊗X.Y

− 12δ1.X.Y ⊗X.Y 2 − 4δ1.X.Y 2 ⊗X − 12δ1.X.Y 2 ⊗X.Y
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− 8δ1.X.Y 2 ⊗X.Y 2 + 2δ1.X
2.Y ⊗ Y

+ 6δ1.X
2.Y ⊗ Y 2 + 4δ1.X

2.Y ⊗ Y 3 − 3δ2
1 .X.Y ⊗ Y − 9δ2

1 .X.Y ⊗ Y 2

− 6δ2
1 .X.Y ⊗ Y 3

− 2δ2
1 .X.Y 2 ⊗ Y − 6δ2

1 .X.Y 2 ⊗ Y 2 − 4δ2
1 .X.Y 2 ⊗ Y 3 + 2α[�].X.Y ⊗ Y

+ 6α[�].X.Y ⊗ Y 2

+ 4α[�].X.Y ⊗ Y 3 − 2α[�].δ1.Y ⊗ Y − 6α[�].δ1.Y ⊗ Y 2

− 4α[�].δ1.Y ⊗ Y 3 − 2α[�].δ1.Y
2 ⊗ Y

− 6α[�].δ1.Y
2 ⊗ Y 2 − 4α[�].δ1.Y

2 ⊗ Y 3.

The modular Hecke algebras turn out to be intimately related to the analysis of
a very natural noncommutative space, which arose in a completely different context
[45], having to do with the interplay between number theory and phase transitions
with spontaneous symmetry breaking in quantum statistical mechanics, as initiated
in [4]. The search for a two-dimensional analogue of the statistical system of [4] was
obtained in [45], by first reinterpreting the latter from the geometry of the space of
Q-lattices in dimension one and then passing to two dimensions.

An n-dimensional Q-lattice consists of an ordinary lattice � in Rn and a homo-
morphism

φ : Qn/Zn → Q�/�.

Two such Q-lattices are called commensurable if and only if the corresponding lattices
are commensurable and the maps agree modulo the sum of the lattices.

The space Ln of commensurability classes of Q-lattices in Rn turns out to be a very
complicated noncommutative space, which appears to be of great number theoretical
significance because of its relation to both the Riemann zeta function (for n = 1) and
modular forms (for n = 2). In physics language, what emerges is that the zeros of zeta
appear as an absorption spectrum in the L2 space of the space of commensurability
classes of one-dimensional Q-lattices as in [31]. The noncommutative geometry
description of the space of one-dimensional Q-lattices modulo scaling recovers the
quantum statistical mechanical system of [4], which exhibits a phase transition with
spontaneous symmetry breaking. In a similar manner, we showed in [45] that the
space of Q-lattices in C modulo scaling generates a very interesting quantum statistical
mechanical system whose ground states are parameterized by

GL2(Q)\GL2(A)/C∗,

while the natural symmetry group of the system is the quotient

S = Q∗\GL2(Af ).

The values of a ground state ϕ on the natural rational subalgebra AQ of rational
observables generates, in the generic case, a specialization Fϕ ⊂ C of the modular
field F . The state ϕ then intertwines the symmetry group S of the system with
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the Galois group of the modular field and there exists an isomorphism θ of S with
Gal(Fϕ/Q), such that

α ◦ ϕ = ϕ ◦ θ−1(α) ∀α ∈ Gal(Fϕ/Q).

In general, while the zeros of zeta and L-functions appear at the critical temperature,
the analysis of the low temperature equilibrium states concentrates on the Langlands
space

GLn(Q)\GLn(A).

The subalgebra AQ of rational observables turns out to be intimately related to the
modular Hecke algebras, which leads us to suspect that many of the results of [44]
will survive in the context of [45], and will therefore be relevant in the analysis of
the higher-dimensional analogue of the trace formula of [31].
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1 Introduction

We describe the stable distributions supported on the nilpotent cone for p-adic G2.

1.1 The problem

Traditionally, the study of harmonic analysis on g, the Lie algebra of a reductive p-
adic groupG, was concerned with understanding invariant distributions (for example,
orbital integrals and their Fourier transforms) for a single group. Many of the modern
problems in harmonic analysis (for example, the fundamental lemma) are concerned
with establishing identities between distributions for two different groups. For these
problems, it is often more natural to consider stable distributions.

Unfortunately, our understanding of stable distributions is quite limited. In the
early 1970s it was realized that a better understanding of invariant distributions could
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be gained by studying the distributions supported on the nilpotent cone. It is natural
to expect that a similar approach will be useful in the study of stable distributions.
However, this will require a description of the stable distributions supported on the
nilpotent cone. Thanks to Waldspurger [28], for unramified classical groups we have
such a description. In this paper we provide a description for p-adic G2.

1.1.1 Stable distributions

To motivate the definition of stability, we begin by recalling a result of Harish-
Chandra. Let k denote a characteristic zero nonarchimedean local field and suppose
that G = G2(k).

A distribution is an element of C∞c (g)∗, the linear dual of the space of locally
constant, compactly supported functions on g. A distribution T is said to be invariant
provided that T (f g) = T (f ) for all f ∈ C∞c (g) and all g ∈ G. Here f g(X) =
f (Ad(g)X) for X ∈ g and g ∈ G.

Suppose Dann is the subspace of C∞c (g) consisting of functions for which all
regular semisimple orbital integrals are equal to zero (see Section 2.7). In [15],
Harish-Chandra showed that a distribution T ∈ C∞c (g)∗ is invariant if and only if
resDann T = 0. (Here resDann T denotes the restriction of T to the subspace Dann.) In
other words, regular semisimple orbital integrals are dense in the space of invariant
distributions.

We now define J st(g), the space of stable distributions on g, in a similar way.
Suppose X ∈ g is regular semisimple. There is a finite set {X1, X2, . . . , Xn} of
regular semisimple elements of g so that G2(K)X∩g can be written as a disjoint union

G2(K)X ∩ g = GX1 � GX2 � · · · � GXn.

(Here K is a fixed maximal unramified extension of k and G2(K)X denotes the G2(K)-
orbit ofX in the Lie algebra of G2(K).) After normalizing measures (see Section 2.7),
we set

SµX =
n∑


=1

µX

,

where µX

is the orbital integral associated to X
. We call SµX a stable orbital

integral. The role of Dann is now played by Dstann, the space of functions that vanish
on every stable orbital integral. We define

J st(g) := {T ∈ C∞c (g)∗ | resDstann T = 0}.
Note that each stable distribution is an invariant distribution.

1.1.2 The main result

Let J (N ) denote the subspace of C∞c (g)∗ consisting of the invariant distributions
supported on N , the set of nilpotent elements in g. From Harish-Chandra [15], we
know that the set of nilpotent orbital integrals form a basis for J (N ).
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In Theorem 7.0.1 we describe a basis for J st(N ) := J (N ) ∩ J st(g), the set of
stable distributions supported on N . More precisely, we show that a distribution
belongs to J st(N ) if and only if it is a linear combination of special nilpotent orbital
integrals. (We call a nilpotent G2(k)-orbit in g special provided that it is either trivial
or k-distinguished (see Section 5.2.1).)

1.2 A guide to this paper

One goal of this paper is to describe some of the “machinery’’ occurring in [28] in
a uniform way via Bruhat–Tits theory; to this end, Sections 2 and 3 introduce the
notations and normalizations necessary to carry this out. In particular, we discuss
how to attach various data to a facet in the Bruhat–Tits building. For example, to a
facet F we can attach lattices g+F ⊂ gF of g so that the quotient LF (f) := gF /g

+
F is

isomorphic to the Lie algebra of a finite group of Lie type.
In Section 4 we examine the interaction between invariant distributions and func-

tions of depth zero. A function of depth zero is an element of C∞c (g) that can be
obtained (after extending by zero) by inflating a function on LF (f), for some facet F ,
to a function on gF . In particular, we find a basis for J (N )∗ consisting of functions
of depth zero associated to generalized Green functions. That we can find such a
basis is a byproduct of the proof of a homogeneity result of Waldspurger [28] and
DeBacker [11].

This homogeneity result lies at the core of our considerations. For any alcove C

in the Bruhat–Tits building of G, we have a lattice gC in g. We set

D0 :=
∑
C

Cc(g/gC),

where the sum is over the set of alcoves in the building. The subspace D0 of C∞c (g)
may be though of as a kind of Lie algebra version of the Iwahori–Hecke algebra. We
define

g0 :=
⋃
F

gF ,

where the indexing set is the set of facets in the building. The set g0 is a (very large)
subset of g which is closed, open, invariant, and contains N . The homogeneity result
states that

resD0 J (g0) = resD0 J (N ), (∗)

where J (g0) denotes the set of invariant distributions supported on g0.
We use equation (∗) in the following way. Suppose T ∈ J (g0) and D is the

unique distribution in J (N ) for which

resD0 T = resD0 D.

Waldspurger [28] has shown that if T is stable, then D is stable. Thus we have two
problems: (1) Find a basis for resD0 J (g0) ∩ resD0 J

st(g), and (2) use this basis to
find a basis for J st(N ). The second problem is addressed in Section 7.
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In Section 5 we produce a basis for resD0 J (g0). This basis is dual to the basis
for resD0 J (g0)

∗ coming from the depth zero functions attached to generalized Green
functions. Thanks to Kazhdan [19], to a generalized Green function which comes
from a Deligne–Lusztig generalized character, we can associate an “orbital integral’’
in LF (f). The corresponding distribution in J (g0) should be thought of as a lift
of this orbital integral. For G2, the remaining generalized Green functions are all
associated to cuspidal local systems. The idea is to associate to a cuspidal local
system an invariant distribution which is supported on the set of regular semisimple
elements. This association is related (as Waldspurger has noticed) to the Kazhdan–
Lusztig map [20].

In Section 6 we obtain a new basis for resD0 J (g0) by taking combinations of
the basis elements produced in Section 5. This new basis has the property that each
element is either stable or a combination of “κ-orbital integrals’’. We conclude this
section by repeating an argument of Waldspurger to show that the stable elements of
this new basis are a basis for resD0 J (g0) ∩ resD0 J

st(g).

2 Notation and normalizations

2.1 Basic notation

Let k be a characteristic zero nonarchimedean local field. Let ν be a valuation on k

so that ν(k×) = Z. We denote the (finite) residue field of k by f. We denote by R the
ring of integers in k, by ℘ its prime ideal, and by � a fixed uniformizer. (So f = R/℘

and ℘ = �R.) We let � denote an additive character of k which is nontrivial on R

and trivial on ℘. We shall call the corresponding additive character on f by � as well.
Let K be a fixed maximal unramified extension of k. We denote by RK the ring

of integers of K . Let F denote the residue field of K . Note that F is an algebraic
closure of f.

Let � = Gal(K/k). Let σ denote a topological generator for �.
Let G be the connected reductive algebraic k-split group with root system ' of

type G2. Fix a maximal k-split torus T in G. We fix a basis � for the root system and
let β denote the long root and α the short root in this basis (see Figure 1). We denote
by g the Lie algebra of G, and, with respect to T, we fix a Chevalley basis

{Hδ,Xφ | δ ∈ � and φ ∈ '}
for G. We let G = G(k), the group of k-rational points of G, and, similarly, we set
T = T(k) and g = g(k).

2.2 Buildings and associated notation

Let B(G) denote the Bruhat–Tits building of G. We identify B(G) with the �-fixed
points of B(G,K), the Bruhat–Tits building of G(K).

For every maximal k-split torus S in G, we can associate an apartment A(S, k) =
A(S(k)) in B(G). Each apartment of B(G) can be carried to A(T ) via the action of
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β

α

Fig. 1. The root system G2.

G on B(G). Since we have fixed a Chevalley basis, we may identify A(T ) with the
vector space X∗(T) ⊗ R. Via the natural pairing between co-roots and roots, A(T )

also carries a natural simplicial decomposition: Each element of

� := {φ + n | φ ∈ ' and n ∈ Z},
the set of affine roots with respect to T, G, and ν, can be thought of as a function on
X∗(T)⊗ R by setting

(φ + n)(r · λ) := r〈φ, λ〉 + n

for λ ∈ X∗(T) and r ∈ R. For each ψ ∈ � we let Hψ denote the corresponding
hyperplane, and, in the natural way, these hyperplanes gives us a simplicial decom-
position of A(T ). In our case, this simplicial decomposition may be thought of as
a tiling of the plane by (π6 , π

3 , π
2 )-right triangles. The normalizer in G of T acts

transitively on the set of maximal simplices, called alcoves, in A(T ). For this paper,
we will focus on that alcove in A(T ) bounded by the hyperplanes Hα+0, Hβ+0, and
H−(2β+3α)+1 (see Figure 2). If ψ = φ+n is an affine root, then ψ̇ := φ is called the
gradient of ψ .

Supposex ∈ B(G,K). We denote the parahoric subgroup of G(K) corresponding
to x by G(K)x . Since G is simply connected, G(K)x is the fixator in G(K) of x. We
denote the pro-unipotent radical of G(K)x by G(K)+x . The subgroups G(K)x and
G(K)+x depend only on the facet of B(G,K) to which x belongs. If F is a facet in
B(G,K) and x ∈ F , then we define G(K)F := G(K)x and G(K)+F := G(K)+x .

Example 2.2.1. In Figure 3 we have placed a label on each of the facets occurring in the
closure of our preferred chamber. (Recall that Ã1 signifies a subdiagram consisting
of a short root.) These labels will be used extensively later in the paper. It is a bit
notationally messy to explicitly describe the groups G(K)F and G(K)+F , but here is
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H
α
+0

H
β
+0

H−(2β+3α)+1

Fig. 2. Our fixed alcove in B(G).

F
Ã

1

F
A

1

FA2

F∅

FG2

F ′A1
FA1×Ã1

Fig. 3. A labeling of the facets.

how to construct them: For each root φ ∈ ', we let Uφ denote the corresponding
root group in G(K). Our choice of a Chevalley basis determines an isomorphism
from Uφ to K . Thus Uφ carries a natural filtration indexed by the integers and hence
by the affine roots of the form φ + n with n ∈ Z. We set Uφ+0 := Uφ ∩ G(RK)

and define Uφ+1 to be the first filtration subgroup of Uφ+0. For every n ∈ Z this
uniquely determines a subgroup Uφ+n of Uφ . Thus for each ψ ∈ �, we have a
subgroup Uψ of G(K). For a facet F in A(T,K) the parahoric G(K)F is the group
generated by T(RK) and the groups Uψ such that ψ ∈ � and ψ is nonnegative on
F . The prounipotent radical G(K)+F is the subgroup of G(K)F generated by the first
filtration subgroup of T(RK) and the groups Uψ such that ψ ∈ � is positive on F .
Note that G(K)FG2

= G2(RK).

For a facet F in B(G,K), the quotient G(K)F /G(K)+F is the group of F-rational
points of a connected, reductive F-group GF .
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Example 2.2.2. In Figure 4 each facet in our preferred chamber has been labeled with
the corresponding connected reductive f-group. Note that every vertex occurring in
the closure of F∅ corresponds to a node in the extended Dynkin diagram of type G2
(see Figure 5). So, for example, FA2 corresponds to the node labeled α + 0 (by
deleting this node we obtain a subdiagram of type A2).

GL2
1

SO4 SL3

G2

G
L

2

G
L 2

GL2

Fig. 4. The groups GF .

−(2β + 3α)+ 1α + 0 β + 0

Fig. 5. The extended Dynkin diagram of type G2.

Similarly, we define (see [2, Section 2.2]) lattices g(K)x , g(K)+x , g(K)F , and
g(K)+F in g(K). If we denote the Lie algebra of GF by LF , then LF (F) ∼=
g(K)F /g(K)+F . If ψ ∈ � and x ∈ A(T,K) such that ψ(x) = 0, then we define
g(K)ψ := gψ̇ ∩ g(K)x and g(K)+ψ := gψ̇ ∩ g(K)+x . This definition is independent
of the choice of x.

Suppose now that x is �-fixed (that is, x ∈ B(G)). In this case the parahoric
subgroup of G attached to x is Gx := G(K)�x , and the prounipotent radical of Gx

is G+x := (G(K)+x )� . As above, Gx and G+x depend only on the facet of B(G) to
which x belongs. If F is a facet in B(G) and x ∈ F , then we define the parahoric
subgroup GF := Gx , the associated pro-unipotent radical G+F := G+x , and the
associated connected reductive f-group GF = Gx . For a facet F in B(G) we have
GF (f) = GF/G

+
F . Similarly, by taking �-fixed points, we can define lattices gx , g+x ,

gF , and g+F in g, and we have LF (f) ∼= gF /g
+
F .



212 Stephen DeBacker and David Kazhdan

2.3 Levis and facets

If M is the group of k-rational points of a Levi k-subgroup of a parabolic k-subgroup,
then we let (M) denote the conjugacy class of M . The set of such conjugacy classes
is partially ordered: (L) ≤ (M) if and only if there exist L1 ∈ (L) and M1 ∈ (M)

such that L1 ≤ M1. We write (L) < (M) provided that (L) ≤ (M) and (L) �= (M).
To each facet F in B(G) we can associate a conjugacy class (MF ). Without loss

of generality, we suppose F is in A(T ). Let MF be the subgroup of G generated by
T and the root groups Uφ , where φ runs over the set of roots for which the affine
roots φ + n ∈ � are constant on F . The group MF is the group of k-rational points
of a Levi k-subgroup of a parabolic k-subgroup.

Example 2.3.1. IfF is a vertex, then (MF ) is {G}. IfF is an alcove, then (MF ) = (T ).
We have that (MF

Ã1
) and (MFA1

) correspond to the distinct conjugacy classes of

GL2(k)-Levi subgroups of G.

2.4 Compact and topologically unipotent elements

We define

G0 :=
⋃

x∈B(G)

Gx

and

G0+ :=
⋃

x∈B(G)

G+x .

The set G0 is often referred to as the set of compact elements in G, and the set G0+ is
called the set of topologically unipotent elements in G. Since G is simply connected,
the set of compact elements is the union of all compact subgroups of G. The set of
topologically unipotent elements has the property that if g ∈ G0+ , then

lim
n→∞ gp

n = 1,

where p denotes the characteristic of f.
One can also describe the set of topologically unipotent elements as follows. If

g ∈ G, then g ∈ G0+ provided that there exists a facet F in B(G) such that g ∈ GF

and the image of g in GF (f) is unipotent.
We define, in a completely analogous manner, the set g0 of compact elements in

g and the set g0+ of topologically nilpotent elements in g.

2.5 An assumption on the characteristic of f

We will require that p, the characteristic of f, be sufficiently large. Taking p > 16 is
sufficient, but probably not necessary. We briefly state the facts we use which require
some restrictions on p.
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We require that every k-torus in G splits over a tamely ramified extension of k.
We let B denote the Killing form on g—that is, B(X, Y ) = tr(ad(X) · ad(Y )).

It is a G-invariant, nondegenerate, symmetric bilinear form on g. We assume that
for each x in B(G), the form B induces a Gx(f)-invariant, nondegenerate, symmetric
bilinear form on Lx(f).

For every facet F in B(G) we assume that there is a GF (F)-equivariant bijection
from NF , the set of nilpotent elements in LF (F), to UF , the set of unipotent elements
in GF (F).

We assume that Theorem 4.4.1 is valid (see [12, Section 4.2]).
We assume that the Lie algebra of a torus over the finite field contains regular

semisimple elements. An element of a Lie algebra is called regular semisimple
provided that its centralizer is a torus.

If e ∈ NF (f), then we assume that we can complete e to an sl2(F)-triple (f, h, e)

with f and h both �-fixed. Moreover, we assume that there exists an sl2(K)-triple
(Y,H,X) lifting (f, h, e) with Y , H , and X each �-fixed.

2.6 The Fourier transform and attendant normalizations

Suppose V is a finite-dimensional k-vector space, B ′ is a symmetric, nondegenerate
bilinear two-form on V , and dv is a Haar measure on V . Let C∞c (V ) denote the
space of compactly supported locally constant functions on V . We define the Fourier
transform, denoted f̂ or F(f ), of f ∈ C∞c (V ) by

f̂ (v′) =
∫
V

�(B ′(v′, v)) · f (v) dv

for v′ ∈ V . Unless explicitly stated to the contrary, we shall always assume that dv is

normalized so that ˆ̂f (v′) = f (−v′) for f ∈ C∞c (V ) and v′ ∈ V . In particular, when
our vector space is g, we shall take B ′ to be the Killing form and, therefore, uniquely
pin down a Haar measure.

Suppose F is a facet in B(G). For a complex-valued function f on LF (f), we
define its Fourier transform by

f̂ (Z̄) = |f|− dim(LF )/2
∑

X̄∈LF (f)

�(B(X,Z)) · f (X̄)

forZ ∈ gF with image Z̄ ∈ LF (f). (Recall that we are identifying LF (f)with gF /g
+
F .)

Definition 2.6.1. If F is a facet in B(G) and f is a function on LF (f), then we let fF
denote the natural inflation of f to a function in C(gF /g

+
F ) ⊂ C∞c (g).

Suppose dX is the Haar measure on g and F is a facet in B(G). We have

measdX(g
+
F ) = |LF (f)|−1/2 = |f|− dim(LF )/2 .

We also have
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(f̂ )F (Z) = f̂F (Z)

for all Z ∈ g and for each complex-valued function f on LF (f); for this reason we
will not distinguish between (f̂ )F and f̂F .

We will always assume that the Haar measure dg on G is chosen so that

measdg(G
+
F ) = |LF (f)|−1/2 .

This normalization is independent of F .

2.7 Semisimple orbital integrals

Suppose Y ∈ g is semisimple. Let OY denote the G-orbit of Y in g; this orbit
carries an invariant measure, unique up to scaling, which we denote by dµY . Since
OY is closed, if f ∈ C∞c (g), then the restriction of f to OY belongs to C∞c (OY ).
Consequently, we may define an invariant distribution, µY , on g by

µY (f ) :=
∫
OY

f (Z) dµY (Z)

for f ∈ C∞c (g).
For our calculations, it is important to specify how the measure dµY is normalized.

The centralizer in G of Y , denoted CG(Y ), is the group of k-rational points of a
connected reductive k-group; in Section 2.6 we specified a choice of a Haar measure
for such a group (all the material there applies to the group of k-rational points of any
reductive k-group). We identify the G-orbit of Y with G/CG(Y ) and define µY by
taking the quotient measure.

Suppose that X, Y ∈ g are regular semisimple and stably-conjugate; that is, there
is a g ∈ G(K) such that Ad(g)X = gX = Y . In this case, we have g(CG(X)) =
CG(Y ). Consequently, Ad(g)∗(µX) = µY .

3 Induction, restriction, and cuspidality

3.1 Induction, restriction, and the pairing over f

We begin by considering any connected reductive f-group G. We let LG denote the
Lie algebra of G.

We let C(LG(f)) denote the space of complex-valued functions on LG(f). For
functions h, h′ ∈ C(LG(f)) we define

(h, h′)LG =
1

|G(f)|
∑

X̄∈LG(f)

h(X̄) · h′(X̄).

Here h(X̄) denotes the complex conjugate of h(X̄).
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Suppose P is a parabolic f-subgroup of G with unipotent radical U and a Levi
f-subgroup M so that P has a Levi decomposition P = MU. If f ∈ C(LM(f)), we
define IndG

P f ∈ C((LG)(f)) by

IndG
P f (X̄) := 1

|P(f)|
∑

(x̄,Z̄,Ȳ )

f (Ȳ ) · [X̄](x̄(Ȳ + Z̄))

for X̄ ∈ LG(f). Here [X̄] denotes the characteristic function associated to the set {X̄},
and the sum is over triples

(x̄, Z̄, Ȳ ) ∈ G(f)× LU(f)× LM(f).

In the opposite direction, if h ∈ C(LG(f)), then we define rG
P h ∈ C(LM(f)) by

(rG
P h)(Ȳ ) := 1

|G(f)| · |U(f)|
∑
(x̄,Z̄)

h(x̄(Ȳ + Z̄))

for Ȳ ∈ LM(f). Here the sum is over pairs

(x̄, Z̄) ∈ G(f)× LU(f).

For f ∈ C(LM(f)) and h ∈ C(LG(f)) we have a version of Frobenius Reciprocity:

(rG
P h, f )LM = (h, IndG

P f )LG .

Finally, we call a function h ∈ C(LG(f)) cuspidal provided that rG
P h = 0 for each

proper parabolic f-subgroup P = MU of G.

3.2 Extension to our situation

Suppose that H is a facet in B(G). For functions h, h′ ∈ C(LH (f)), we define

(h, h′)H := (h, h′)LH
.

Suppose F is another facet in B(G) for which H ⊂ F̄ ; that is, H is contained in
the closure of F . We have

G+H ⊂ G+F ⊂ GF ⊂ GH

with GF/G
+
H the group of f-rational points of a parabolic f-subgroup P of GH .

Moreover, if U denotes the unipotent radical of P, then the group of f-rational points
of U is G+F /G

+
H . Finally, the Levi f-subgroup factor of P is isomorphic to GF .

Similarly, we have
g+H ⊂ g+F ⊂ gF ⊂ gH

with gF /g
+
H the vector space of f-rational points of the parabolic subalgebra LP of

LH , and so on.
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Example 3.2.1. For example, in the notation introduced in Figure 3, GF∅/GFG2
is a

Borel subgroup of G2(f) = GFG2
/G+FG2

. The reader is encouraged to spend some

time working out the details.

For f ∈ C(LF (f)), we define

IndH
F f := IndGH

P f ∈ C(LH (f)),

and for h ∈ C(LH (f)) we define rHF h ∈ C(LF (f)) by

rHF h := rGH

P h.

Of course, for f ∈ C(LF (f)) and h ∈ C(LH (f)), we have

(rHF h, f )F = (h, IndH
F f )H ,

and h ∈ C(LH (f)) is cuspidal if and only if rHF h = 0 whenever F �= H is a facet in
B(G) which contains H in its closure.

3.3 Cuspidality over f and k

SupposeP is the group of k-rational points of a parabolic k-subgroup P of G. Suppose
M is the group of k-rational points of a Levi k-subgroup of P and N is the group of
k-rational points of the unipotent radical of P. Let p = m+ n denote the associated
Lie algebras in g. For f ∈ C∞c (g), we define

fP (Y ) :=
∫
K

dk

∫
n
f (k(Y + Z)) dZ,

where dZ is a Haar measure on n and dk is the normalized Haar measure on the
compact open subgroup K = GFG2

.

Lemma 3.3.1. We use the notation introduced above and suppose H is a facet in
B(G) and h ∈ C(LH (f)) is cuspidal. If (M) < (MH), then (hH )P = 0.

Proof. Fix k ∈ GFG2
. It will be enough to show that

0 =
∫

n
(hH )(k

−1
(Y + Z)) dZ

for Y ∈ m. From [2, Corollary 2.4.3], there is an n ∈ N such that nkH is a facet in
B(M). Since

n−1
Y = Y modulo n

and dZ is a Haar measure, we have∫
n
(hH )(k

−1
(Y + Z)) dZ =

∫
n
((nkh)nkH )(Y + Z) dZ.
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Here nkh ∈ C(LnkH (f)) is defined by

nkh(X̄) = h(k
−1n−1

X),

where X ∈ gnkH is any lift of X̄. If (Y + n) ∩ gnkH = ∅, then the integral∫
n
((nkh)nkH )(Y + Z) dZ

is zero. Suppose now that (Y + n) ∩ gnkH �= ∅. Since nkH ⊂ B(M), we have

gnkH ∩ (m+ n) = (gnkH ∩m)+ (gnkH ∩ n).

Thus, since (Y + n) ∩ gnkH �= ∅, we conclude that Y ∈ gnkH ∩ m ⊂ gnkH . Since
(M) < (MH), the image of N ∩ GnkH in GnkH (f) is the group of f-rational points
of the unipotent radical of a proper parabolic subgroup of GnkH . Thus, since nkh is
a cuspidal function in LnkH (f), the integral is zero. ��

4 Some comments on invariant distributions on the Lie algebra

Recall that a distribution on g is an element of the linear dual of C∞c (g). We let J (g)
denote the space of Ad(G)-invariant distributions on g.

4.1 An equivalence relation on functions of depth zero

We begin by introducing the indexing set If .

Definition 4.1.1.

If := {(F, f ) : F is a facet in B(G) and f ∈ C(LF (f))}.
The set If carries a natural equivalence relation. However, before introducing

this equivalence relation, we must recall some notation and facts. If A is an apartment
in B(G) andF is a facet in A, then we denote byA(A, F ) the smallest affine subspace
of A that contains F . If F and F ′ are two facets in A, then the condition

∅ �= A(A, gF ) = A(A, F ′)

implies that the natural maps

g(K)gF ∩ g(K)F ′ → LgF (F) and g(K)gF ∩ g(K)F ′ → LF ′(F)

are surjective, �-equivariant maps with kernel equal to

g(K)+gF ∩ g(K)+
F ′ .

In this way, we get a natural f-isomorphism between LgF and LF ′ , which we write

as LgF
i= LF ′ . Whenever we want to identify objects (see Definition 4.1.2 and

Remarks 4.1.3 and 4.1.4) via this isomorphism, we will use the “
i=’’ notation.



218 Stephen DeBacker and David Kazhdan

Definition 4.1.2. For (F, f ) and (F ′, f ′) in If we write (F, f ) ∼ (F ′, f ′) if and
only if there exist a g ∈ G and an apartment A in B(G) such that

1. ∅ �= A(A, gF ) = A(A, F ′) and

2. gf
i= f ′ in C(LgF (f))

i= C(LF ′(f)).

Here gf is the function defined by gf (X̄) := fF (
g−1

X), where X ∈ ggF is any lift
of X̄.

Remark 4.1.3. Instead of considering pairs (F, f ) with f a function on C(LF (f)), we
could (and will) consider an equivalence relation on pairs of the form (F, e), where
e is an element of LF (f) and the second condition in Definition 4.1.2 is replaced by

ge
i= e′ in LgF (f)

i= LF ′(f).

Remark 4.1.4. There is a group analogue of the above with GF replacing LF , etc. We
shall use it in the following context: Instead of considering pairs (F, f ) as above,
we consider pairs (F,S) with S a maximal f-minisotropic torus in GF . A torus is
f-minisotropic in GF provided that its maximal f-split subtorus lies in the center of
GF . We then say that (F,S) is equivalent to (F ′,S′) provided that the first condition
of Definition 4.1.2 is true and the second is replaced by

gS i= S′ in GgF
i= GF ′ .

Example 4.1.5. Since our preferred alcove is a fundamental domain for the action of
G on B(G), in order to determine representatives for the above equivalence relation,
it is enough to look at our alcove. The set of pairs (F, f ) ∈ If , where F runs over
the nonprimed facets in Figure 3, form a set of representatives for If /∼. (The two
facets FA1 and F ′A1

correspond to two “GL2(f)-Levi subgroups’’ of SL3(f), all such
Levi subgroups are SL3(f)-conjugate.)

4.2 Functions of depth zero and invariant distributions

Lemma 4.2.1. Let H and F be facets in B(G). Suppose H ⊂ F̄ . Let P denote
the parabolic f-subgroup of GH corresponding to F . If f ∈ C(LF (f)) and D ∈
J (g), then

D(fF ) = |P(f)|
|GH (f)| ·D((IndH

F f )H ).

Proof. Suppose f ∈ C(LF (f)). Let U denote the unipotent radical of P. Since

g+H ⊂ g+F ⊂ gF ⊂ gH

we have fF ∈ C(gH/g+H ). Choose h ∈ C(LH (f)) such that fF = hH .
Since D ∈ J (g), there exists a GH (f)-invariant d ∈ C(LH (f)) such that

D(h′H ) = (d, h′)H
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for all h′ ∈ C(LH (f)). We have

D((IndH
F f )H ) = (d, IndH

F f )H = (rHF d, f )F

= 1

|GF (f)|
∑

Ȳ∈LF (f)

rHF (d)(Ȳ ) · f (Ȳ )

= 1

|GH (f)| · |GF (f)| · |U(f)|
∑

Ȳ∈gF /g
+
F

fF (Y )
∑

x̄∈GH /G
+
H

Z̄∈g+
F
/g+

H

dH (x(Y + Z))

= 1

|P(f)|
∑

Ȳ∈gF /g
+
H

dH (Y ) · fF (Y )

= |GH (f)|
|P(f)| ·

1

|GH (f)|
∑

Ȳ∈gH /g+H

hH (Y ) · dH (Y )

= |GH (f)|
|P(f)| · (d, h)H =

|GH (f)|
|P(f)| ·D(hH )

= |GH (f)|
|P(f)| ·D(fF ). ��

Corollary 4.2.2. Suppose D ∈ J (g). If (Fi, fi) ∈ If and supp((fi)Fi
) ⊂ g0+ ; then

(F1, f1) ∼ (F2, f2)⇒ D(f1F1
) = D(f2F2

).

Proof. The condition supp((fi)Fi
) ⊂ g0+ implies that the support of fi is contained

in NFi
(f).

Since D is G-invariant, without loss of generality, we may assume there is an
apartment A such that

A(A, F1) = A(A, F2) �= ∅
and

f1
i= f2 in C(LF1(f))

i= C(LF2(f)).

Moreover, we may assume that fi is a GFi
(f)-invariant function.

There is a sequence of pairs (F (i), f (i)) with 1 ≤ i ≤ m so that

1. each F(i) is maximal in A(A, F1) for each i,

2. f (j)
i= f (
) in C(LF(j)(f))

i= C(LF(
)(f)) for 1 ≤ j, 
 ≤ m,
3. (F (1), f (1)) = (F1, f1) and (F (m), f (m)) = (F2, f2),
4. F̄ (i) ∩ F̄ (i + 1) �= ∅ for 1 ≤ i < m.

Thus, without loss of generality, we assume there is a facet H in A such that H ⊂
F̄1 ∩ F̄2. From Lemma 4.2.1, we have

D(fiFi
) =

∣∣GFi
/G+H

∣∣
|GH (f)| ·D(IndH

Fi
(fi)H ).



220 Stephen DeBacker and David Kazhdan

Since the unipotent radicals of any two parabolics sharing a common Levi factor
have the same dimension, we have that |GF1/G

+
H | = |GF2/G

+
H |. Therefore, we need

only check that
IndH

F1
f1 = IndH

F2
f2

in C(LH (f)). Note that both functions are supported on NH (f) and both are induced
from a nilpotently supported function on the Levi subalgebra. After identifying NH (f)
with UH (f), the statement we want follows from the fact that for finite groups of Lie
type, parabolic induction is independent of the parabolic containing the Levi (see, for
example, [17]). ��

4.3 Some indexing sets

We define IG to be the subset of If consisting of pairs (F,G), where G is a generalized
Green function in C(LF (f)). We shall describe these functions in Section 5. Note
that by extending by zero, we are thinking of the generalized Green function as a
function on all of LF (f), not just the set of nilpotent elements in LF (f). We let I c

denote the subset of IG consisting of pairs (F,G), where G is a cuspidal generalized
Green function on LF (f); that is, G is a generalized Green function on LF (f) which
is cuspidal in the sense that rFH G = 0 for each facet H with F � H̄ .

Finally, we define In to be the set of pairs (F, e), where F is a facet in B(G) and
e ∈ NF (f). To each such pair, we associate the function [(F, e)], the characteristic
function of the coset e.

Example 4.3.1. In Figure 6, we tally the number of cuspidal generalized Green func-
tions supported on LF (f); we will give a more precise description in Section 5. Note
that the cuspidal generalized Green functions associated to FA1 and F ′A1

are equiva-
lent.

1

1

1

∣∣f×/(f×)3
∣∣

4

12

Fig. 6. A tally of the cuspidal generalized Green functions.
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4.4 A homogeneity result

We will need a very precise version of Howe’s finiteness conjecture for the Lie
algebra [16]. Such results were first proved by Waldspurger for unramified classical
groups [29]. Waldspurger’s work has been generalized in [11].

We let J (g0) denote the subspace of J (g) consisting of distributions having sup-
port in g0. For example, if Y ∈ g0, then the associated orbital integral, µY , is an
element of J (g0).

We let D0 denote the (invariant version of the) Lie algebra analogue of the
Iwahori–Hecke algebra. More precisely, we have

D0 =
∑
C′

Cc(g/gC′),

where the sum runs over the set of alcoves in B(G). Finally, we define

D0
0 :=

∑
F⊂F̄∅

C(gF /gF∅),

where F∅ is our fixed alcove.

Theorem 4.4.1 (Waldspurger, DeBacker). We have

1.
resD0 J (g0) = resD0 J (N ).

2. Suppose D ∈ J (g0). We have

resD0 D = 0 if and only if resD0
0
D = 0.

Note that the second statement in the theorem says that a dual basis for resD0 J (g0)

may be found in D0
0. The following corollary is a generalization of a result of Wald-

spurger [28, Corollaire III.10(i)].

Corollary 4.4.2. Suppose D ∈ J (g0). We have

resD0 D = 0 if and only if D(ĜF ) = 0 for all (F,G) ∈ I c/∼.
Remark 4.4.3. Thanks to Corollary 4.2.2, the right-hand side makes sense.

Proof. “⇒’’ If (F,G) ∈ I c, then GF ∈ C(gF /g
+
F ) ∩ C∞c (g0+). Therefore, from [2,

Lemma 4.2.3] we have ĜF ∈ C(gF /g
+
F ) ∩ D0. Thus for all (F,G) ∈ I c we have

ĜF ∈ D0 and so D(ĜF ) = 0.
“⇐’’ Recall that for f ∈ C∞c (g) we have D̂(f ) := D(f̂ ). It therefore follows,

from Lemma 4.2.1, Corollary 4.2.2, and the fact that generalized Green functions
behave well with respect to parabolic induction,1 that we may assume that D̂(GF ) = 0
for all (F,G) ∈ IG. Since D is G-invariant and since the characteristic function of

1 Sometimes called Harish-Chandra induction.



222 Stephen DeBacker and David Kazhdan

each nilpotent orbit in LF (f ) can be written as a combination of generalized Green
functions, we conclude that D̂([(F, e)]) = 0 for all (F, e) ∈ In.

Fix an alcove C′ in B(G). Since for all facets F ⊂ C̄′, we have that g+
C′/g

+
F is

the nilradical of the Borel subgroup GC′/G
+
F in GF (f) ∼= GF/G

+
F , it follows from

the above paragraph that for all facets F ⊂ C̄′, we have

resC(g+
C′/g

+
F )

D̂ = 0.

Consequently, since the Fourier transform mapsC(g+
C′/g

+
F ) bijectively toC(gF /gC′),

for all facets F ⊂ C̄′, we have

resC(gF /gC′ ) D = 0.

But this means that resD0
0
D = 0. The result now follows from Theorem 4.4.1. ��

5 A basis for resD0 J(g0)

From Corollary 4.4.2 we have a particularly nice spanning set for (resD0 J (g0))
∗;

namely, the set of functions
{ĜF },

where (F,G) ∈ I c runs over a set of representatives for I c/∼. (In fact, this set is a
basis; see below.) The goal of this section is to produce a dual basis in resD0 J (g0)

with good properties. In particular, for every pair (F,G) ∈ I c we will construct an
invariant distribution which is supported on the set of regular semisimple elements.
The restriction to D0 of these distributions will constitute our dual basis.

Since G is of type G2, for a facet F in B(G) the cuspidal generalized Green
functions on LF (f) come in two flavors: they are either toric Green functions, i.e., the
restriction to the unipotent set (identified with the nilpotent set) of Deligne–Lusztig
generalized characters, or they are attached to cuspidal local systems (these occur
only if F is a vertex). In general, the situation is more complicated. Note that, in all
cases, cuspidal generalized Green functions are real-valued functions.

5.1 Distributions associated to the toric Green functions

Fix a facet F in B(G) and let S denote a f-minisotropic torus in GF (From, for
example, [10, Section 3.3] the set of conjugacy classes of f-minisotropic tori in GF

corresponds to the set of conjugacy classes in the (absolute) Weyl group WF of GF

which do not intersect a proper parabolic subgroup of WF .) Let QF
S denote the

associated toric Green function (see, for example, [10, Section 7.6]).

Example 5.1.1. In Figure 7 we enumerate the cuspidal toric Green functions by listing
(in the notation of Carter—see Table 1) the elliptic conjugacy classes in WF . (In
Table 1, the elements wα and wβ are the simple reflections corresponding to our
simple roots α and β.)
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Ã
1

A2

A
1

G2,A2,A1×Ã1

A1×Ã1 A1

{e}

Fig. 7. A list of the cuspidal toric Green functions.

Table 1. A tabulation of data for the Weyl group of G2.

Weyl group element conjugacy class image of α image of β

1 {e} α β

wα Ã1 −α β + 3α

wβ A1 β + α −β
wαwβ G2 β + 2α −β − 3α
wβwα G2 −β − α 2β + 3α

wβwαwβ Ã1 β + 2α −2β − 3α

wαwβwα A1 −β − 2α 2β + 3α
wαwβwαwβ A2 β + α −2β − 3α
wβwαwβwα A2 −β − 2α β + 3α

wαwβwαwβwα Ã1 −β − α β

wβwαwβwαwβ A1 α −β − 3α

wαwβwαwβwαwβ A1 × Ã1 −α −β

From [19], we have⎛⎝F

⎛⎝ ∑
g∈GF (f)

[X̄S]g
⎞⎠⎞⎠ (X̄) = (−1)rk(S) · |S(f)|

|LS(f)|1/2
·QF

S (X̄) (1)

for X̄ ∈ NF (f). Here X̄S is any element of LF (f) whose centralizer in GF is S and
rk(S) denotes the dimension of the maximal f-split torus in S. One should think
of the left-hand side as the function (up to a constant) that represents the Fourier
transform of the (finite) orbital integral corresponding to X̄S. We also note that for
all X̄ ∈ NF (f), we have

QF
S (X̄) = (−1)rk(S) · |LF (f)|1/2 · Q̂F

S (X̄).
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(From [21], the two sides are proportional. The constant of proportionality may be
computed explicitly by evaluating both sides at zero.)

Finally, we let S denote a lift of (F,S) to a maximal torus of G (that is, S has the
property that F ⊂ A(S,K) and the image of S(K) ∩ G(K)F in GF (F) is S(F)—
see [13]). From [13], the torus S is unique up to conjugation by G+F . We let S denote
the group of k-rational points of S.

Lemma 5.1.2. Fix (F,QF
S ) ∈ I c. Suppose XS ∈ gF is such that the centralizer of

its image in LF (f) is S. If (F ′,G) ∈ I c, then we have

µXS(ĜF ′) =

⎧⎪⎨⎪⎩
(−1)rk(S) · |GF (f)| · |NG(S)/S|

|LF (f)|1/2 · |S(f)| if (F ′,G) ∼ (F,QF
S ),

0 otherwise.

Proof. Since the centralizer of XS in G is a torus lifting (F,S), we may assume that
this torus is S. Working through the definitions, we have

µXS(ĜF ′) =
∫
G/S

ĜF ′(
gXS) dg

∗,

where dg∗ is the quotient measure dg
ds

. Fix a g ∈ G. Since ĜF ′ ∈ C(gF ′/g
+
F ′),

we have that ĜF ′(gXS) �= 0 implies that gXS ∈ gF ′ . This, in turn, implies that
XS ∈ gg−1F ′ , which, from, for example, a slight modification of [12, Section 4.4],
implies that g−1F ′ ⊂ B(S) := A(S,K)� ↪→ B(G,K)� = B(G).

Let F denote the set of G-facets in the intersection of B(S) with the G-orbit of
F ′. From [13] we can find an apartment A in B(G) such that B(S) ⊂ A and, in
fact, B(S) = A(A, F ); thus without loss of generality, we suppose F is in A(T ).
Since S = CG(XS) and H ⊂ B(S), for each facet H in F the centralizer in GH

of the image of XS in LH (f) = gH/g+H is naturally isomorphic to S; we denote the
corresponding toric Green function by QH

S . We remark that QH
S = IndH

F QF
S .

We let F rep denote a set of representatives for F modulo the action of S. For
each H ∈ F rep, we fix gH ∈ G for which g−1

H F ′ = H . Since gHGH = GF ′ and ĜF ′
is GF ′ -invariant, we have

µXS(ĜF ′) =
∑

H∈F rep

∫
GHS/S

ĜF ′(
gH gXS) dg

∗

=
∑

H∈F rep

measdg∗(GHS/S) · ĜF ′(
gH XS).

(2)

Fix H ∈ F rep. We are interested in the term

ĜF ′(
gH XS)

occurring in the sum above. For notational convenience we set GH := g−1
H GF ′ . We

first observe that
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ĜH (XS) =
∫

gH

�(B(XS, Y )) · GH (Y ) dY. (3)

On the other hand, we have

(QF
S , rHF (g

−1
H G))LF

= (QH
S , g

−1
H G)LH

= 1

|GH (f)| ·
∑

X̄∈LH (f)

QH
S (X̄) · GH (X).

Now, since G is supported on NF ′(f), we can apply equation (1) to arrive at

(−1)rk(S) · |S(f)|
|LS(f)|1/2

· (QF
S , rHF (g

−1
H G))LF

= 1

|GH (f)| ·
∑

X̄∈LH (f)

⎛⎝F

⎛⎝ ∑
g∈GH (f)

[X̄S]g
⎞⎠⎞⎠ (X̄) · GH (X).

Expanding the right-hand side yields

1

|GH (f)| · |LH (f)|1/2
·
∑

X̄∈LH (f)

∑
Ȳ∈LH (f)

∑
g∈GH (f)

[X̄S](gȲ ) ·�(B(X, Y )) · GH (X).

By moving the sum over GH (f) in front of the other two sums and making the changes
of variables (X 
→ g−1

X) and (Y 
→ g−1
Y ), we can take advantage of the invariance

properties of B and GH to arrive at

(−1)rk(S) · |S(f)|
|LS(f)|1/2

· (QF
S , rHF (g

−1
H G)LF

= measdX(g
+
H ) ·

∑
X̄∈LH (f)

�(B(X,XS)) · GH (X).
(4)

Combining equations (2), (3), and (4), we arrive at

µXS(ĜF ′) = (−1)rk(S) ·
∑

H∈F rep

measdg∗(GHS/S) · |S(f)|
|LS(f)|1/2

· (QF
S , rHF (g

−1
H G))LF

.

Since for the pair (F ′,G) the generalized Green function G was assumed to be cus-
pidal, in order for the sum above to be nonzero, it must be the case that there is an
apartment A and a g ∈ G such that

A(A, F ) = A(A, gF ′).

We therefore assume that this is true. Consequently, since generalized Green functions
are orthogonal, in order for the sum above to be nonzero we must have (F,QF

S ) ∼
(F ′,G).
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To complete the proof, we consider the situation when (F,QF
S ) ∼ (F ′,G). With-

out loss of generality, from Corollary 4.2.2 we may assume thatF ′ = F and G = QF
S .

The orthogonality relations for toric Green functions [10, Proposition 7.6.2] give us

µXS(ĜF ′) =
∑

H∈F rep

(−1)rk(S) ·measdg∗(GFS/S) ·
∣∣NGF

(S)(f)/S(f)
∣∣

|LS(f)|1/2
.

We first note that

measdg∗(GFS/S) = measdg(GF )

measds(S ∩GF )

= |GF (f)| · |LS(f)|1/2

|LF (f)|1/2 · |S(f)| .
(5)

So we have

µXS(ĜF ′) =
(−1)rk(S) · |F rep| · |GF (f)| ·

∣∣NGF
(S)(f)/S(f)

∣∣
|LF (f)|1/2 · |S(f)| .

To complete the proof, we now show that∣∣F rep
∣∣ = |NG(S)/S|∣∣NGF

(S)(f)/S(f)
∣∣ .

Suppose H ∈ F rep and g ∈ G such that gF = H ⊂ B(S). Let gS denote the f-torus
in GH whose group of F-rational points agrees with the image of gS(K) ∩ G(K)H

in GH . Via the identification GH
i= GF we see that there is a k ∈ GH ∩ GF such

that kgS i= S in GH
i= GF . Since S is a lift of kgS, from [13] there is an element

k′ ∈ G+H such that k′kgS = S. Thus every element of F rep uniquely determines, up
to right multiplication by NGF

(S)/S, an element of NG(S)/S. The desired equality
follows. ��
Definition 5.1.3. Suppose (F,QF

S ) ∈ I c. Choose XS ∈ gF such that the image of
XS in LF (f) has centralizer S in GF . We define

D(F,QF
S ) := µXS .

Remark 5.1.4. As a distribution on g, the distribution D(F,QF
S ) is not independent of

our choice of XS. However, thanks to Lemma 5.1.2 and Corollary 4.4.2, we have that
resD0 D(F,QF

S ), the restriction of D(F,QF
S ) to D0, is independent of the choice of XS.

5.2 Distributions associated to cuspidal local systems

There are four (or two, depending on whether or not f× has cubic roots of unity) classes
in I c/∼which are not covered by the material in Section 5.1. Each of these pairs is of
the form (F,G), where F is a vertex in B(G), and G is a cuspidal generalized Green
function associated to a cuspidal local system. The goal of this section is to associate
to each such pair a particularly good element of resD0 J (g0). As Waldspurger has
noticed, this association is related to the Kazhdan–Lusztig [20] map from nilpotent
orbits in Lie G(C) to conjugacy classes of maximal tori in G(C((t))).
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5.2.1 Distinguished elements

Suppose k is a field and h is the Lie algebra of H , the group of k-rational points of
a reductive k-group. A nilpotent H -orbit in h is said to be k-distinguished provided
that it does not intersect a Levi k-subalgebra of a proper parabolic k-subgroup. An
element of a k-distinguished orbit is said to be k-distinguished.

5.2.2 Cuspidal local systems

Suppose F is a vertex. A cuspidal local system for LF (f) is specified by a F-
distinguished nilpotent orbit Ō in LF (F) and a “cuspidal’’ character χ of an irre-
ducible representation of the (twisted by σ ) component group associated to the orbit
Ō. Choose a �-fixed element e ∈ Ō. From Lang–Steinberg [10, Section 1.17], for
every c in the component group C(F, e) := (GF )e/(GF )

◦
e there is a gc ∈ GF (F)

such that the image of σ(gc)−1gc in C(F, e) is c. We have

Ō� =
∐

c∈C(F,e)

GF (f)gc e.

The generalized Green function associated to this cuspidal local system is

G :=
∑

c∈C(F,e)/∼
χ(c) · [GF (f)gc e],

where [GF (f)gc e] denotes the characteristic function of the orbit GF (f)gc e and the
equivalence relation is σ -conjugacy. We now describe the (|µ3(f)| + 1) elements of
I c/∼ which arise from cuspidal local systems.

Independent of the status of the cubic roots of unity, we shall always have the
classes in I c/∼ represented by

(FG2 ,Gsgn) and (FA1×Ã1
,Gsgn).

For the facet FG2, the generalized Green function Gsgn comes from the cuspidal local
system supported on the F-distinguished nonregular orbit in LFG2

(F); we take the
sign character, sgn, on the associated component group, which is S3. For the facet
FA1×Ã1

the generalized Green function Gsgn arises from the cuspidal local system
supported on the regular orbit in LFA1 ×Ã1

(F); we consider the sign character, sgn, on

Z/2Z, the associated component group. If f× �= (f×)3, then we have the additional
classes in I c/∼ represented by

(FA2 ,Gχ ′) and (FA2 ,Gχ ′′),

where, in each case, the generalized Green function is coming from the cuspidal local
system supported on the regular nilpotent orbit in LFA2

(F). The characters χ ′ and
χ ′′ are the two nontrivial characters on the associated component group, Z/3Z. We
summarize this notation in Figure 8.
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Gsgn Gχ ′, Gχ"

Gsgn

Fig. 8. Cuspidal generalized Green functions associated to cuspidal local systems.

In order to continue to use our preferred chamber F∅ as a way to visualize infor-
mation, we must be somewhat careful about how e gets chosen in each case. Since
we will also eventually need to choose a lift X of e, we also do this now. In Table 2
we list our choices. The superscript 1 on e1

1 and X1
1 denotes the identity element

of µ3(f).

Table 2. Choices for e and X for cuspidal local systems.

(F,G) X e

(FG2 ,Gsgn) X1 := Xβ −Xβ+3α ∈ gFG2
e1, the image of X1 in LFG2

(FA1×Ã1
,Gsgn) X

+
1 := Xα +�X−(2β+3α) ∈ gFA1 ×Ã1

e+1 , the image of X+1 in LFA1 ×Ã1

(FA2 ,Gχ ′) X1
1 := Xβ +�X−(2β+3α) ∈ gFA2

e1
1, the image of X1

1 in LFA2

(FA2 ,Gχ ′′) X1
1 e1

1

5.2.3 Component groups over F and K

Before we can continue, we need a better understanding of the connection between
the component groups associated to distinguished nilpotent orbits over F and K .

SupposeF is a vertex and Ō is a F-distinguished orbit in LF (F). Choose a�-fixed
e ∈ Ō.

Recall that T is our fixed maximal k-split torus in G, and our alcove F∅ belongs
to A(T ). Let T be the maximal f-torus in GF corresponding to T.

We complete e to an sl2(F)-triple (f, h, e)with f and h both�-fixed. We suppose
that the associated one-parameter subgroup µ̄ belongs to Xf∗(T) and that there exists
an sl2(K)-triple (Y,H,X) lifting (f, h, e) with Y , H , and X each �-fixed and such
that the lift µ ∈ Xk∗(T) of µ̄ is the associated one-parameter subgroup.
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Let LF (i) denote the i-eigenspace for the action of the one parameter subgroup
µ̄ and set

LF (≥ j) =
⊕
i≥j

LF (i).

Let P denote the parabolic f-subgroup with Lie algebra LF (≥ 0) and let M denote
the f-Levi subgroup of P with Lie algebra LF (0). The unipotent radical of P will
be denoted N. (The parabolic P is the distinguished parabolic associated to e.) Let
(GF )e (respectively, Me, Ne) denote the centralizer of e in GF (respectively, M, N).
We have [10, Section 5.7]

(GF )e = MeNe

and, since e is F-distinguished,

Me
∼= (GF )e/(GF )

◦
e,

where (GF )
◦
e denotes the connected component of (GF )e. (Note that Me = CGF

(e)∩
CGF

(f )∩CGF
(h).) From Lang–Steinberg, for all g ∈ Me(F), there exists m ∈ M(F)

such that σ(m)−1m = g.
Similarly, from µ we construct a k-parabolic subgroup P of G, a k-Levi M of P,

and the unipotent radical N of P such that P has a Levi decomposition P = MN. (The
k-parabolic P is the distinguished parabolic associated to X.) Let GX (respectively,
MX, NX) denote the centralizer of X in G (respectively, M, N). As before, we have

GX = MXNX.

It follows that GX(K) = MX(K)NX(K).

Example 5.2.1. We describe some of these objects for the e we chose in Table 2 of
Section 5.2.2. We let α̌ and β̌ denote the coroots of α and β, respectively. For the
vertex FG2 we have µ = 2α̌ + 4β̌ and P is the image of the parahoric G(K)F

Ã1
in

G2(F) = GFG2
(F). The Levi subgroup M is isomorphic to GL2 = GF

Ã1
and Me1 is

S3 embedded in GL2 as the group generated by

α̌(µ3) and n̄α.

Here n̄α is the image of an involution nα ∈ NG(T ) which represents the Weyl group
element corresponding to α. We note that M(K) acts on the root space g(K)−(2β+3α)

by det−1.
For the vertex FA1×Ã1

we have µ = −2β̌ and P is the Borel subgroup realized
as the image of the Iwahori subgroup G(K)F∅ in SO4(F) = GFA1 ×Ã1

(F). The Levi

subgroup M is isomorphic to (GL1)
2 = GF

Ã1
, and Me+1

is µ2 embedded in (GL1)
2

as α̌(µ2).
Finally, for the vertex FA2 we have µ = −2(α̌ + β̌), and P is the image of

the Iwahori subgroup G(K)F∅ in SL3(F) = GFA2
(F). The Levi subgroup M is

isomorphic to (GL1)
2 = GF

Ã1
and Me1

1
is µ3 embedded in (GL1)

2 as α̌(µ3).
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Now, since F is a vertex, X is K-distinguished in g(K); moreover, F is the
unique facet in B(G) for which X, Y , and H belong to g(K)F (see, for example, [3,
Corollary 4.4]). Since X is K-distinguished, MX(K) is finite. Since

MX = CG(Y ) ∩ CG(H) ∩ CG(X),

and F is the unique facet in B(G) for which X, H , and Y belong to g(K)F , it follows
that

MX(K) ⊂ G(K)F .

Indeed, if m ∈ MX(K), then X, H , and Y belong to g(K)mF . But F is the unique
facet for which X, H , and Y belong to g(K)F . Hence mF = F .

Lemma 5.2.2. The natural surjective map

G(K)F → G(K)F /G(K)+F ∼= GF (F)

induces an isomorphism MX(K) ∼= Me(F).

Proof. We first show that the map is surjective. Suppose m̄ ∈ Me(F). Letp ∈ G(K)F
be any lift of m̄. From [12, Corollary 5.2.3], since

pX ∈ (X + g(K)+F ) ∩ G(K)X,

there exists k ∈ G(K)+F such that kpX = X. So without loss of generality, p ∈
GX(K)∩G(K)F . Since GX(K) ⊂ MX(K)NX(K) and P(K)∩G(K)F = (M(K)∩
G(K)F )·(N(K)∩G(K)F ) (with uniqueness of decompostion), we can writep = mn

with
m ∈ MX(K) ∩G(K)F

and
n ∈ NX(K) ∩G(K)F .

Since M(F) = M(K)F /M(K)+F , we conclude that m ∈ MX(K) ∩ G(K)F and
n ∈ NX(K) ∩G(K)+F . Thus the image of m in M(F) is m̄.

We now show that the map is injective. Suppose m ∈ MX(K) ≤ G(K)F such
that the image of m in Me(F) is trivial. We have m ∈ G(K)+F and m is of finite order.
Therefore, m is trivial. ��
Corollary 5.2.3. If g ∈ MX(K), then there exists m ∈ M(K)F such that σ(m)−1m

= g.

Proof. Let ḡ denote the image of g in Me. From Lang–Steinberg, we can choose
m̄ ∈ M(F) such that σ(m̄)−1m̄ = ḡ. We have that m̄e is an element of LF (f). By
completing m̄e to an sl2(f)-triple, we see from [12, Lemma 5.3.3] that we may choose
a �-fixed lift X′ of m̄e so that the nilpotent orbit G(K)X′ is the unique nilpotent orbit
of minimal dimension intersecting m̄e nontrivially. Let m′ ∈ M(K)F be any lift of m̄.
It follows from [12, Corollary 5.2.3], that there exists a j ∈ G(K)+F such that jm

′
X =

X′. By construction, we have σ(jm′)−1jm′ ∈ GX(K) = MX(K)NX(K), and the
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image of σ(jm′)−1jm′ in GF (F) is ḡ ∈ Me. Thanks to the Iwahori decomposition,
we can write j = n̄′′n′′m′′ with m′′ ∈ G(K)+F ∩ M(K), n′′ ∈ G(K)+F ∩ N(K),
and n̄′′ ∈ N̄(K) ∩ G(K)+F , where N̄ denotes the unipotent radical of the parabolic
subgroup opposite P = MN. We have

σ(jm′)−1jm′ = σ(m′)−1σ(m′′)−1σ(n′′)−1σ(n̄′′)−1n̄′′n′′m′′m′ ∈ GX(K) ≤ P(K).

Thus σ(n̄′′) = n̄′′. Consequently, n̄′′ ∈ N̄(k) ∩ G(K)+F . Without loss of generality,
we may replace X′ with n̄′′X′. We now have j = n′′m′′. Let m = m′′m′. Then
n′′mX = X′. Since

σ(m)−1σ(n′′)−1n′′m = [σ(m)−1m][m−1
(σ (n′′)n′′)] ∈ MX(K)NX(K),

we have σ(m)−1m ∈ MX(K), and the image of σ(m)−1m in GF (F) is ḡ. The
corollary now follows from Lemma 5.2.2. ��

5.2.4 Identifying regular semisimple elements

We now associate to each of the (|µ3(f)| + 1) pairs (F,G) a subset of the regular
semisimple elements in g. More specifically, recall that we have associated to (F,G)
a nilpotent element e. For each m ∈ Me we will choose a subset of the regular
semisimple elements in g. Essentially, these are certain elements of a torus associated
to e by the Kazhdan–Lusztig map. Although there are explicit lists [25] describing this
map, because we need to associate to the pair (m, e) a set of topologically nilpotent
regular semisimple elements of g and not just g(K), we must do this part of the proof
“by hand.’’ To this end, we offer a caveat: although our approach seems very general,
it only works for G2.

Fix one of the pairs (F,G) ∈ I c with G corresponding to a cuspidal local system.
Recall that in Table 2 and Example 5.2.1 we have associated to the pair (F,G) a
nilpotent e ∈ LF (f), a nilpotent X ∈ gF , subgroups Me and MX(K), etc.

Recall (see Example 2.2.2) that each vertex occurring in the closure of F∅ cor-
responds to a node in the extended Dynkin diagram of type G2. Let ψF denote the
affine root labeling the node corresponding to F .

We let H denote the fixator in MX(K) of g(K)ψ̇F
; that is

H = {m ∈ MX(K) | mZ = Z for all Z ∈ g(K)ψ̇F
}.

The group H is finite, and its centralizer, G(X), is a connected reductive subgroup
of G which contains T. The centralizer (in G) of each element of the set

B(F,G, X) := X + g(K)ψF
� g(K)+ψF

⊂ Lie(G(X))(K)

is a K-elliptic torus in G(X) which splits over a totally ramified extension of degree
h. Here h denotes the Coxeter2 number of G(X). In Table 3 we describe all these

2 The symbol h is also used for the semisimple element of an sl2-triple over f. However, this
should not cause any confusion.
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objects for our four specific pairs; in the column labeled “class’’ we identify the Weyl
group conjugacy class corresponding to the K-elliptic torus (see [25, Table I]). In
fact, if S is such a torus, then our assumptions on p imply that that the building of
S(K) embeds in the building of G(X)(K) which, in turn, embeds into that of G(K)

as the point

y = F + µ̂

2h
.

More specifically, the building of a torus corresponding to the Weyl conjugacy class
A2 occurs in the interior of the facet F

Ã1
, and the building of a torus corresponding

to the Weyl conjugacy class G2 occurs in the interior of the facet F∅. In all cases, the
quotient G(K)y/G(K)+y is isomorphic to M(F).

Table 3. Some data associated to cuspidal local systems.

(F,G) H G(X) h class

(FG2 ,Gsgn) α̌(µ3) SL3 3 A2

(FA1×Ã1
,Gsgn) 1 G2 6 G2

(FA2 ,Gχ ′) 1 G2 6 G2

(FA2 ,Gχ ′′) 1 G2 6 G2

5.2.5 Two distributions associated to (F, G)

Let (F,G) be one of our (|µ3(f)| + 1) pairs. We will associate two distributions,
denoted T(F,G) and D(F,G), to this pair. While the first distribution is most naturally
associated to the pair (F,G), it is the second which will play a fundamental role in
the remainder of the paper. In Section 5.2.8 we show that the restrictions to D0 of
these two distributions agree (up to an explicit constant).

We begin by defining D(F,G). Let e and X be the nilpotent elements associated
to (F,G) and let χ denote the associated character of Me. For m ∈ Me, we fix
gm ∈ MX(K) ∩G(K)F such that σ(gm)−1gm = m and set

A(F,G, X, gm) = {gmY | Y ∈ B(F,G, X) and mY = σ(Y )}.
In all cases, A(F,G, X, gm) is a subset of g which is naturally topologically iso-
morphic to R× and consists entirely of regular semisimple elements for which the
centralizer is a K-elliptic k-torus; that is, an elliptic maximal k-torus which splits
over a totally ramified extension of k. Moreover, since gψ̇F

(K) is M(K)-invariant,
we have

A(F,G, X, gm)ψ̇F
= gψF

� g+ψF
,

where A(F,G, X, gm)ψ̇F
denotes the image of A(F,G, X, gm) under the projection

map g→ gψ̇F
.
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We let dY denote the measure on A(F,G, X, gm) which arises from the normal-
ized Haar measure on R×. We shall study the distribution

D(F,G) :=
∑

Me/∼

χ(m) · ∣∣Sm/S◦m∣∣∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

µY dY.

Here Sm is the centralizer in G of any element of A(F,G, X, gm) and S◦m is the
parahoric subgroup of Sm.

We now take up the definition of the distribution T(F,G).

Lemma 5.2.4. Suppose f ∈ C∞c (g). The function from G to C defined by

g 
→
∫

g
f (gZ) · GF (Z) dZ

is locally constant and compactly supported.

Proof. This is a standard result which dates back to Harish-Chandra’s notes [14]. We
sketch the main idea: Fix f ∈ C∞c (g). Choose n ∈ Z>0 so that f is locally constant
with respect to gF,n := �ngF . For g outside of a compact subset of G we have that
the image of ggF,n ∩ gF in LF (f) is the nilradical of a proper parabolic subgroup of
GF (f). Since G is a cuspidal function, the result follows. ��

Thanks to Lemma 5.2.4, it makes sense to define the invariant distribution
T(F,G) by

T(F,G)(f ) :=
∫
G

∫
g
f (gZ) · GF (Z) dZ dg

for f ∈ C∞c (g). (Here dg (respectively, dZ) is the Haar measure on G (respec-
tively, g).)

5.2.6 An orthogonality result for T(F,G)

We continue to use the notation introduced in the previous section.

Lemma 5.2.5. If (F ′,G′) ∈ I c, then we have

T(F,Ḡ)(Ĝ
′
F ′) =

⎧⎨⎩
|GF (f)|2
|LF (f)| (Ĝ,G)LF

if (F ′,G′) ∼ (F,G),

0 otherwise.

Proof. We fix g ∈ G and consider the integral∫
g

Ĝ′F ′(
gZ) · ḠF (Z) dZ.

If gZ ∈ gF ′ , then, since the support of GF (Z) lies in g0+ , we have that the image
of gZ in LF ′(f) is nilpotent. Consequently, since, on the set of nilpotent elements,
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a generalized Green function agrees with its Fourier transform up to a constant, we
may replace Ĝ′

F ′ in the above integral with const(G′, F ′) ·G′
F ′ . Thus we are interested

in the integral

const(G′, F ′) ·
∫

g
G′F ′(

gZ) · ḠF (Z) dZ.

We first show that this integral is zero if g−1F ′ �= F . Recall that F is a vertex.
If g−1F ′ �= F , then the above integral is, up to a constant, equal to the integral∫

g
G′F ′(

gZ)

∫
gF∩g+

g−1F ′
ḠF (Z + Z′) dZ′ dZ.

However, since G is a cuspidal function on LF (f) and the image of gF ∩ g+
g−1F ′ in

LF (f) is the nilradical of a proper parabolic subgroup of GF , we conclude that the
above double integral is zero.

We now suppose that g−1
F ′ = F . If G �= g−1G′, then the integral is zero since

nonequivalent generalized Green functions are orthogonal.
We have shown that T(F,G)(Ĝ′F ′) is zero unless (F,G) ∼ (F ′,G′). We now take

up the case when (F,G) ∼ (F ′,G′). Without loss of generality, we may assume that
(F,G) = (F ′,G′). We have

T(F,G)(ĜF ) = const(G, F ) ·
∫
GF

∫
gF

GF (
gZ) · ḠF (Z) dZ dg.

Using the invariance of G, we obtain the desired formula. ��

5.2.7 Some auxiliary functions and vanishing results

Unfortunately, we have not been able to produce a notationally simple proof of the
relationship between T(F,G) and D(F,G); consequently, the reader is encouraged to
skip the proofs in this subsection.

Let gF (i) denote the intersection of gF with the i-eigenspace in g for µ; similar
notation applies to LF , etc. For G2, we have gF (2i + 1) = 0 for all i; that is, all
nilpotent orbits are even. We will not take advantage of this fact.

We denote by gy,−(1/h) (using the notation of Moy and Prasad [24]) the unique
lattice in g for which

gy ⊂ gy,−(1/h) ⊂ gF + gψF

and
gy,−(1/h)/gy ∼= LF (−2)⊕ g−ψF

/g+−ψF
.

Thus
LF (−2) ∼= gy,−(1/h)(−2)/gy(−2), (6)

while
g−ψF

�⊂ gF and g+−ψF
⊂ gy ⊂ gF . (7)
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Definition 5.2.6. Let dj denote the Haar measure on G. For Z ∈ g0, we set

I (Z) :=
∫
Gy

∑
m̄∈Me/∼

χ(m)∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

�(B(Z, jY )) dY dj.

Since G+F ≤ Gy , we have I (Z) = I (
Z) for all 
 ∈ G+F . Consequently, it makes
sense to define the following.

Definition 5.2.7.
J (Z) :=

∑
ī∈GF (f)

I (iZ).

We now prove a vanishing result for the function Z 
→ I (Z). As usual for such
results, the statement is simple yet the proof is technically demanding.

Lemma 5.2.8. If Z ∈ g0 � gF , then I (Z) = 0.

Proof. Fix Z ∈ g0 � gF .
First, suppose that Z /∈ gy,−(1/h). For all m ∈ MX(K) every element of

A(F,G, X, gm) is “good’’ of depth 1/h in the sense of [4]. Thus for all Y ∈
A(F,G, X, gm), ∫

Gy

�(B(Z, jY )) dj = 0

from [4, Lemma 6.3.3]. Consequently, when Z /∈ gy,−(1/h), we have I (Z) = 0.
Now suppose Z ∈ gy,−(1/h) � gF . Since Z ∈ gy,−(1/h), we can write I (Z) as

measdj (G+y )∣∣f×∣∣ ·
∑


̄∈M(f)

∑
m̄∈MX(K)/∼

χ(m)∣∣CGF (f)(
gme)

∣∣
·�(B(Z, 
gmX)) ·

∑
W̄

�(B(Z, 
W)),

where the sum is over W̄ in
(gψF

� g+ψF
)/g+ψF

.

Note that the last sum is independent of 
̄ ∈ M(f), so it will be enough to show that∑

̄∈M(f)

∑
m̄∈MX(K)/∼

χ(m)∣∣CGF (f)(
gme)

∣∣ ·�(B(Z, 
gmX)) (8)

is zero.
Since Z /∈ gF , from equation (7) we have that the element Z is congruent to

Z−ψ̇F
modulo gF . Here

Z−ψ̇F
∈ g−ψF

� g+−ψF
⊂ gy,−(1/h) � gy (9)
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denotes the image of Z under the projection g→ g−ψ̇F
.

Since 
gmX ∈ gF (2), for purposes of evaluating equation (8) we may restrict our
attention to Z−2 ∈ gF , the image of Z under the projection g → g−2. Since the
Fourier transform of a function on LF (2)(f) is a function on LF (−2)(f), in order to
evaluate equation (8), we need to compute the Fourier transform of

∑
m̄∈Me/∼

χ(m) · ∣∣CM(f)(
gme)

∣∣∣∣CGF (f)(
gme)

∣∣ · [M(f)gme].

From [20, Proposition 10.6] and [21], the Fourier transform of the above function is
supported on the f-rational points of the unique Zariski dense M-orbit in LF (−2).
Thus it will be enough to show that the image of Z−2 in LF (−2) cannot lie in
this orbit.

Suppose the image of Z−2 lies in this orbit. We would then have that Z−2+Z−ψ̇F

is not nilpotent—in fact, it is good in the sense of [4] and its centralizer is a maximal
k-torus which splits over a totally ramified extension. However, since Z−ψ̇F

/∈ gy
(see equation (9)) and Z−2 /∈ gy (see equation (6)), we conclude that the coset
Z + gy = Z−2 + Z−ψ̇F

+ gy is nondegenerate, that is, it contains no nilpotent
elements. However, Z ∈ g0 and g0 ⊂ N + gy from [2, Corollary 3.3.2]. ��

With the above vanishing result, we can prove the following.

Lemma 5.2.9. For Z ∈ g0, we have

J (Z) = meas(Gy)

meas(G+F )
· ĜF (Z).

Proof. From Lemma 5.2.8 we may assume that Z ∈ gF . We then have

J (Z) = meas(Gy) ·
∑

ī∈GF /G
+
F

∑
m∈Me/∼

χ(m)∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

�(B(Z, iY )) dY

= meas(Gy) ·
∑

m̄∈Me/∼
χ(m)

∑
W̄∈LF (f)

�(B(Z,W)) · [GF (f)gme](W̄ )

(we now switch the order of summation to arrive at)

= meas(Gy)

meas(G+F )
· ĜF (Z). ��

5.2.8 The relation between D(F,G) and T(F,G)

Lemma 5.2.10. If (F ′,G′) ∈ I c, then we have

D(F,Ḡ)(Ĝ
′
F ′) =

⎧⎨⎩
|GF (f)|
|LF (f)|1/2

· (Ĝ,G)LF
if (F ′,G′) ∼ (F,G),

0 otherwise.
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Proof. From Lemma 5.2.5 it will be enough to show that for Z ∈ g0, we have

D̂(F,G)(Z) = |LF (f)|1/2

|GF (f)| · T̂(F,G)(Z).

Since the Fourier transform bijectively maps C∞c (g0) to

D0+ :=
∑

x∈B(G)

C∞c (g/g+x ),

it will be enough to show

D(F,G)(f ) = |LF (f)|1/2

|GF (f)| · T(F,G)(f )

for all f ∈ D0+ . Fix f ∈ D0+ . We have

D(F,G)(f ) =
∑

m̄∈Me/∼

χ(m) · ∣∣Sm/S◦m∣∣∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

µY (f ) dY

(since the volume of CG(Y ) is
∣∣Sm/S◦m∣∣, this becomes)

=
∑

m̄∈Me/∼

χ(m)∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

∫
G

f (jY ) dj dY

=
∑

m̄∈Me/∼

χ(m)∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

∑
j̄∈G/GF

∫
GF

f (jiY ) di dY

(Here di is the restriction of the Haar measure dj to GF .)

= meas(G+F )
meas(Gy)

·
∑

j̄∈G/GF

∫
g
f̂ (−jZ) · J (Z) dZ

(since f̂ is supported in g0, from Lemma 5.2.9 we derive)

=
∑

j̄∈G/GF

∫
g
f (jZ) · GF (Z) dZ

= (meas(GF ))
−1 ·

∫
G

∫
g
f (jZ) · GF (Z) dZ dj

= |LF (f)|1/2

|GF (f)| · T(F,G)(f ). ��

Remark 5.2.11. For a pair (F,G) ∈ I c with G coming from a cuspidal local system,
we have shown that

resD0+ T(F,G) = |GF (f)|
|LF (f)|1/2

· resD0+ D(F,G).
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Table 4. A listing of distributions.

distribution name description

Dst
G2

D
(FG2 ,Q

FG2
SG2

)

Dst
A2

⎛⎝D
(FG2 ,Q

FG2
SA2

)
+ 2 ·D

(FA2 ,Q
FA2
SA2

)

⎞⎠
Dunst

A2

⎛⎝D
(FG2 ,Q

FG2
SA2

)
−D

(FA2 ,Q
FA2
SA2

)

⎞⎠

Dst
A1×Ã1

⎛⎜⎝D
(FG2 ,Q

FG2
S
A1×Ã1

)
+ 3 ·D

(F
A1×Ã1

,Q
F
A1×Ã1

S
A1×Ã1

)

⎞⎟⎠
Dunst

A1×Ã1
(D

(FG2 ,Q
FG2
S
A1×Ã1

)
−D

(F
A1×Ã1

,Q
F
A1×Ã1

S
A1×Ã1

)

)

Dst
Ã1

D
(F

Ã1
,Q

F
Ã1

S
Ã1

)

Dst
A1

D
(FA1 ,Q

FA1
SA1

)

Dst{e} D
(F{e},Q

F{e}
S{e} )

Dst
(FG2 ,Gsgn)

D(FG2 ,Gsgn)

Dst
(FA1 ×Ã1

,Gsgn)
D(FA1 ×Ã1

,Gsgn)

Dst
(FA2 ,Gχ ′ )

D(FA2 ,Gχ ′ )

Dst
(FA2 ,Gχ ′′ )

D(FA2 ,Gχ ′′ )

6 A basis for resD0 J st(g) ∩ resD0 J(g0)

In this section, we produce a basis for resD0 J
st(g) ∩ resD0 J (g0).

6.1 A new basis for resD0 J(g0)

Using the notation of Figures 3, 7, and 8 we produce a new basis for resD0 J (g0)

which is more amenable to our purposes. If f× �= (f×)3, then we let B denote the
twelve distributions listed in Table 4. If f× = (f×)3, then we let B denote the first
ten distributions listed in Table 4. We let Bst denote the subset of B consisting of
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those elements of B whose label has a superscript st. Similarly, we let Bunst denote
the two element subset of B consisting of those elements of B whose label has a
superscript unst.

It follows from Lemma 5.2.10 and Corollary 4.4.2 that the set

{resD0 D | D ∈ B}
is a basis for resD0 J (g0). Moreover, for each D ∈ B, there exists a unique com-
bination, which we shall call GD , of the functions GF (with (F,G) ∈ I c our chosen
representatives for the equivalence classes in I c) for which

D(ĜD′) =
{

1 if D = D′,
0 if D �= D′

for all D,D′ ∈ B.
Recall that from Remark 5.1.4 the distributions associated to toric Green functions

are not independent of the choice ofXS (as distributions on g). In Sections 6.2 and 6.3
we show that for a suitable choice of the XS, the distributions in Bst are stable and the
distributions in Bunst are the images under endoscopic induction of elliptic (but not
G2) endoscopic groups in the sense of Waldspurger [27]. In Section 6.4, we present
a result of Waldspurger which shows that the elements of the set

{resD0 D | D ∈ Bst}
form a basis for resD0 J (g0) ∩ resD0 J

st(g).

6.2 The distributions associated to unramified tori

Let C denote a conjugacy class in the Weyl group of G2. We now turn our attention
to the distributions

D∗C
of Table 4.

Suppose (F,QF
C) ∈ I c. Let SC be a torus in GF corresponding to C. Let S

be a a maximal K-split k-torus in G which lifts the pair (F,SC). Choose a regular
semisimple element XSC

∈ Lie(S)(k) ⊂ gF for which the centralizer in GF of the
image of XSC

in LF (f) is SC . Since G2 is simply connected, the short exact sequence

1 → S(K)→ G(K)→ G(K)XSC
→ 1

yields the exact sequence (of pointed sets)

1 → S(k)→ G(k)→ (G(K)XSC
)Gal(K/k) → H1(Gal(K/k),S(K))→ 1.

Thus the number of rational conjugacy classes in

G(K)XSC
∩ g
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Table 5. A tabulation of tor[X∗(T)/(1− w)X∗(T)].
Class of w tor[X∗(T)/(1− w)X∗(T)]

{e} trivial group

A1 trivial group

Ã1 trivial group

A2 Z/3Z

A1 × Ã1 Z/2Z× Z/2Z

G2 trivial group

is in bijective correspondence with the elements of the group H1(Gal(K/k),S(K)).
Thanks to Tate–Nakayama duality, we have H1(Gal(K/k),S(K)) is isomorphic to
tor[X∗(T)/(1−w)X∗(T)], the group of torsion points of X∗(T)/(1−w)X∗(T). (Here
w is any element of C.) The groups tor[X∗(T)/(1− w)X∗(T)] are listed in Table 5.

For each character κ of tor[X∗(T)/(1− w)X∗(T)], we have a distribution

TC(κ) :=
∑
ρ

κ(ρ) · µX
ρ

SC

,

where the sum if over ρ in tor[X∗(T)/(1 − w)X∗(T)] and X
ρ

SC
belongs to the G-

conjugacy class in (G(K)XSC
∩ g) indexed by ρ. Note that TC(1) is stable.

Suppose first that C /∈ {A2, A1 × Ã1}. From Lemma 5.1.2 and Corollary 4.4.2
the restrictions to D0 of the distributions Dst

C are independent of the choice of XSC
.

Hence we may and do assume that

Dst
C = TC(1).

That is, Dst
C ∈ J st(g).

Now suppose that C ∈ {A2,A1×Ã1}. We analyze these cases in two steps: first,
we examine the G-conjugacy classes of maximal K-split k-tori corresponding to C.
We then examine how the set (G(K)XSC

∩ g) interacts with these conjugacy classes
of tori.

According to [13], the G-conjugacy classes of maximal K-split k-tori are param-
eterized by I t /∼. Here I t is the set of pairs (F,S), where F is a facet in B(G)

and S is a maximal f-minisotropic torus in GF and ∼ is the equivalence relation
introduced in Remark 4.1.4. Moreover, a maximal K-split k-torus lifting (F1,S1)

is G(K)-conjugate to a maximal K-split k-torus lifting (F2,S2) if and only if the
Weyl group conjugacy classes corresponding to S1 and S2 are the same. Thus the
distribution D∗C is associated to a single “G(K)-conjugacy class’’of maximal K-split
k-tori. If C = A2, then the two corresponding G-conjugacy classes of maximal K-
split k-tori correspond to the pairs (FG2 ,SA2) and (FA2 ,SA2). On the other hand, if
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C = A1×Ã1, then the two corresponding G-conjugacy classes of maximal K-split
k-tori correspond to the pairs (FG2 ,SA1×Ã1

) and (FA1×Ã1
,SA1×Ã1

).

The rational classes in G(K)X that intersect Lie(S)(k) are parameterized by the
quotient

N(F,SC) := [(NG(K)(S(K)))/(S(K))]�/[NG(S)/S].
In Table 6 we describe the cardinality of these quotients for the classes of interest.

Table 6. The quotient N(F,S).

Class of w vertex |N(F,S)|
A2 FG2 1

A2 FA2 2

A1 × Ã1 FG2 1

A1 × Ã1 F
A1×Ã1

3

Combining the previous two paragraphs with Lemma 5.1.2 and Corollary 4.4.2 ,
we have that, up to scaling,

resD0 TA1×Ã1
(1) = resD0 D

st
A1×Ã1

,

resD0 TA2(1) = resD0 D
st
A2

,

resD0 TA1×Ã1
(κ) = resD0 D

unst
A1×Ã1

,

and

resD0 TA2(κ) = resD0 D
unst
A2

,

where κ is any nontrivial character of tor[X∗(T)/(1− w)X∗(T)] with w ∈ C. Thus
we may assume that Dst

C = TC(1) ∈ J st(g) and Dunst
C = TC(κ) with κ nontrivial.

6.3 The distributions associated to cuspidal local systems

The remaining distributions are all associated to tori which split over totally ramified
extensions.

Fix a maximal k-torus S which splits over a totally ramified extension. Let E be
the extension of K over which S splits. Since we are assuming that every maximal
k-torus splits over a tame extension, Gal(E/K) is cyclic. Hence, if S = gT with
g ∈ G(E), then τ(g)−1g ∈ NG(E)(T(E)), where τ generates Gal(E/K). Let C
denote the conjugacy class in W corresponding to τ(g)−1g. Let w denote the image
of τ(g)−1g in W .
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Fix a regular semisimple element X ∈ g which lies in the the Lie algebra of S(k).
As above, the set of rational conjugacy classes in

G(K)X ∩ g

is controlled by the group H1(Gal(K/k),S(K)). Thanks to a result of Bruhat and
Tits [9], we have that H1(Gal(K/k),S(K)) is isomorphic to (S(K)/S(K)0)/(1 −
σ)(S(K)/S(K)0), where S(K)0 denotes the parahoric subgroup of S(K). Since
H1(Gal(E/K),S(E)0+) is trivial, S(K)0 = S(K)0+ , and, from [4], S(K)0+ =
S(E)

Gal(E/K)

0+ , we have

S(K)/S(K)0 ∼= (S(E)/S(E)0+)
Gal(E/K).

Since S is K-elliptic, we have

(S(E)/S(E)0+)
Gal(E/K) = (S(E)0/S(E)0+)

Gal(E/K)

which is isomorphic to (T(E)0/T(E)0+)
w◦τ , the subgroup of T(E)0/T(E)0+ fixed

by w◦τ . Since τ acts trivially on the quotient T(E)0/T(E)0+ , we need only compute
the group of w-fixed points in T(E)0/T(E)0+ . For w ∈ G2, this group is trivial. It
follows that the distributions D(FA1 ×Ã1

,Gsgn), D(FA2 ,Gχ ′ ), and D(FA2 ,Gχ ′′ ) are stable.

We are left to consider why the distribution D(FG2 ,Gsgn) is stable. The torus S
associated to this distribution corresponds to the Weyl group conjugacy class A2; a
computation shows that the group S(K)/S(K)0 is isomorphic to Z/3Z. We have

D(FG2 ,Gsgn) :=
∑

Me/∼

sgn(m) · ∣∣Sm/S◦m∣∣∣∣CGF (f)(
gme)

∣∣
∫
A(F,G,X,gm)

µY dY

and Me = S3 = 〈α̌(µ3), n̄α〉. We consider two cases.

6.3.1 Case I: The cubic roots of unity belong to f×

In this case, σ acts trivially on Me. If the conjugacy class of m is represented by
an element of α̌(µ3), then, by construction, the centralizer Sm of an element of
A(FG2 ,Gsgn, X1, gm) belongs to a copy of SL3 in G2 which is defined over k. In this
case Sm/S

◦
m has cardinality three and H1(Gal(K/k),Sm(K)) = Z/3Z. On the other

hand, if m belongs to the conjugacy class containing n̄α , then the centralizer Sm of
an element of A(FG2 ,Gsgn, X1, gm) belongs to a copy of SU3 in G2 which is defined
over k. In this case, Sm/S◦m is trivial and H1(Gal(K/k),Sm(K)) is trivial.

We have that D(FG2 ,Gsgn) is equal to

3

6

∫
A(FG2 ,Gsgn,X1,gα̌(1))

µY dY + 3

3

∫
A(FG2 ,Gsgn,X1,gα̌(ξ))

µY dY

+ −1

2

∫
A(FG2 ,Gsgn,X1,gn̄α )

µY dY,



Stable Distributions Supported on the Nilpotent Cone for the Group G2 243

where ξ is a nontrivial element of µ3. As noted above, H1(Gal(K/k),Sn̄α (K)) is
trivial, so the last term in the sum is stable. The first two terms combine to give a
stable distribution. More precisely, if

Y = Xβ −Xβ+3α + γ�X−2β−3α ∈ A(FG2 ,Gsgn, X1, ge)

(γ ∈ R×), then Y , gα̌(ξ)Y , and g
α̌(ξ2)Y are representatives for the G-conjugacy classes

in (G(K)Y ∩ g). We have α̌(ξ2) = nα (α̌(ξ)) and gα̌(ξ2) = nαgα̌(ξ). Since α̌(ξ) acts
trivially on gψ̇F

, it follows that

gα̌(ξ)Y ∈ A(FG2 ,Gsgn, X1, gα̌(ξ))

and

g
α̌(ξ2)Y = nαgα̌(ξ)n

−1
α (Xβ −Xβ+3α + γ�X−2β−3α)

= nαgα̌(ξ) (Xβ −Xβ+3α − γ�X−2β−3α)

∈ nαA(FG2 ,Gsgn, X1, gα̌(ξ)) = A(FG2 ,Gsgn, X1, gα̌(ξ)).

Thus, for each Y ∈ A(FG2 ,Gsgn, X1, gα̌(1)), representatives for both of the remaining
rational conjugacy classes in (G(K)Y ∩ g) occur in A(FG2 ,Gsgn, X1, gα̌(ξ)).

6.3.2 Case II: The cubic roots of unity do not belong to f×

In this case, since σ acts nontrivially on Me, we consider σ -conjugacy classes in Me.
If m represents the σ -conjugacy class α̌(µ3), then, by construction, the centralizer
Sm of an element of A(FG2 ,Gsgn, X1, gm) belongs to a copy of SL3 in G2 which is
defined over k. In this case Sm/S

◦
m has cardinality one and H1(Gal(K/k),Sm(K)) is

trivial. On the other hand, if m belongs to either the σ -conjugacy class

{n̄α}
or the σ -conjugacy class

{n̄αα̌(t) | t ∈ µ3 \ {1}},
then the centralizer Sm of an element of A(FG2 ,Gsgn, X1, gm) belongs to a copy of
SU3 in G2 which is defined over k. In this case, Sm/S◦m has three elements and
H1(Gal(K/k),Sm(K)) = Z/3Z.

We have D(FG2 ,Gsgn) is equal to

−3

6

∫
A(FG2 ,Gsgn,X1,gn̄α )

µY dY + −3

3

∫
A(FG2 ,Gsgn,X1,gn̄α α̌(ξ))

µY dY

+ 1

2

∫
A(FG2 ,Gsgn,X1,gα̌(1))

µY dY,

where ξ is a nontrivial element of µ3. Since H1(Gal(K/k),Sα̌(1)(K)) is trivial, the
last term in the sum is stable. The first two terms combine to give a stable distribution.
More precisely, if
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Y = (Xβ −Xβ+3α + γ�X−2β−3α) ∈ B(FG2 ,Gsgn, X1)

(γ ∈ R×K and σ(γ ) = −γ ), then gn̄α Y , gn̄α α̌(ξ)Y , and g
n̄α α̌(ξ2)Y represent the three G-

conjugacy classes in (G(K)Y ∩ g). We have nαα̌(ξ
2) = nα (nαα̌(ξ)) and gn̄αα̌(ξ2) =

nαgn̄αα̌(ξ). Since α̌(µ3) acts trivially on g(K)ψ̇F
, we have that

gn̄α Y ∈ A(FG2 ,Gsgn, X1, gn̄α ),
gn̄α α̌(ξ)Y ∈ A(FG2 ,Gsgn, X1, gn̄αα̌(ξ)),

and

g
n̄α α̌(ξ2)Y = nαgn̄α α̌(ξ) (Xβ −Xβ+3α − δ�X−2β−3α)

∈ nαA(FG2 ,Gsgn, X1, gn̄αα̌(ξ)) = A(FG2 ,Gsgn, X1, gn̄αα̌(ξ)).

Thus, for each Z ∈ A(FG2 ,Gsgn, X1, gn̄α ), representatives for both of the remaining
rational conjugacy classes in (G(K)Z ∩ g) occur in A(FG2 ,Gsgn, X1, gn̄αα̌(ξ)).

6.4 A result of Waldspurger

The proof of the following lemma is a straightforward adaptation of a result of Wald-
spurger [28, Théorème IV.13].

Lemma 6.4.1. The elements of the set

{resD0 D | D ∈ Bst}
form a basis for resD0 J (g0) ∩ resD0 J

st(g).

Proof (Waldspurger). Suppose T ∈ J st(g) such that resD0 T is an element of
resD0 J (g0). It is enough to show that if

resD0 T

is in the span of the elements of the set

{resD0 D | D ∈ Bunst},
then resD0 T = 0.

Since resD0 T ∈ resD0 J (g0), we have that the Fourier transform T̂ of T is
represented by a locally integrable function on C∞c (g0+). We shall denote by T̂ the
extension (by zero) of this function to g.

Suppose
resD0 T =

∑
D∈Bunst

c(D) · resD0 D

with c(D) ∈ C and at least one of the c(D) nonzero. Since for each D ∈ B we have
ĜD ∈ D0 and GD ∈ C∞c (g0+), we conclude that
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c(D) = T (ĜD) = T̂ (GD)

=
∫

g
T̂ (X) · GD(X) dX

=
∑

ch ·
∫

h
|η(H)| · T̂ (H) · µH(GD) dH.

The last displayed line is Weyl’s integration formula; the sum is over conjugacy
classes of Cartan subalgebras of g, the ch are positive constants, and dH is a Haar
measure on h. Thus there is a regular semisimple H in g0+ for which µH(GD) �= 0.
Fix such an H .

An inspection of the elements of Bunst reveals that (GD)P = 0 for all proper
parabolic subgroups P of G. Hence, from Lemma 3.3.1 and [15, Lemma 1.5] we
conclude that H is elliptic. Consequently, there is an elliptic regular semisimple H

in g0+ for which

0 �= T̂ (H) =
∑

D∈Bunst

c(D) · D̂(H). (10)

However, from [27, I, Proposition] the function T̂ is stable—that is, it is constant on
the rational points in the orbit

G(k̄)H.

On the other hand, from [27, I, Proposition A], the right-hand side of equation (10)
cannot be stable unless it is zero, a contradiction. ��

7 Stable distributions supported on the nilpotent cone

In this section, we explicitly describe the stable distributions supported on the nilpo-
tent cone. Thanks to Harish-Chandra, we know that the set of nilpotent orbital inte-
grals is a basis for the set of invariant distributions supported on the nilpotent cone.
We therefore need to describe a basis for J st(N ), the set of stable distributions sup-
ported on N , in terms of nilpotent orbital integrals. For G2(k), we call a nilpotent
orbit special provided that it is either k-distinguished or trivial. We shall prove the
following.

Theorem 7.0.1. Suppose O is a nilpotent orbit. The orbital integral µO is stable if
and only if O is special. Moreover, the set

{µO | O is special}
is a basis for J st(N ).

Remark 7.0.2. We shall assume that the measure on a nilpotent orbit is normalized as
in [28].
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7.1 A parameterization of nilpotent orbits

We let I d denote the subset of In consisting of pairs (F, e), where F is a facet in
B(G) and e is a f-distinguished nilpotent element of L(f); that is, e is nilpotent and
does not belong to the Levi subalgebra of a proper parabolic f-subgroup. The set I d

carries the equivalence relation discussed in Remark 4.1.3 of Section 4.1.
Thanks to [6], if (F, e) ∈ I d , then there is a unique nilpotent orbit O(F, e) of min-

imal dimension which intersects the coset e nontrivially. The map (F, e) 
→ O(F, e)

induces a bijective correspondence between I d/∼ and O(0), the set of nilpotent or-
bits in g [12]. Thus we can use the set I d to keep track of the nilpotent orbits. To do
this, we introduce some additional notation. For each facet F , the number of pairs
(F, e) ∈ I d listed below agrees (as it should) with the numbers given in Figure 6.
Some of this notation has been defined previously.

Let e0 ∈ LFG2
(f) be an element of the regular nilpotent GFG2

(f)-orbit. We denote
by O0 the regular G-orbit O(FG2 , e0).

Let e1, e
′
1, e

′′
1 ∈ LFG2

(f) be elements of the the subregular nilpotent GFG2
(f)-orbits

with |Me1(f)| = 6, |Me′1(f)| = 3, and |Me′′1 (f)| = 2. We let O1, O′1 and O′′1 denote the
nilpotent orbits O(FG2 , e1), O(FG2 , e

′
1), and O(FG2 , e

′′
1), respectively.

Let e±1 ∈ LF
A1×Ã1

(f) be elements of the the regular nilpotent GF
A1×Ã1

(f)-orbits;

we assume e+1 and e−1 lie in distinct GF
A1×Ã1

(f)-orbits. We let O±1 denote the nilpotent

orbit O(FA1×Ã1
, e±1 ).

Let eδ1 ∈ LFA2
(f), with δ ∈ µ3(f), be representatives for the regular nilpotent

GFA2
(f)-orbits. We assume that eδ1 and eδ

′
1 lie in the same GFA2

(f)-orbit if and only

if δ = δ′. We let Oδ
1 denote the nilpotent orbit O(FA2 , e

δ
1).

We have now labeled each of the 6 + |f×/(f×)3| k-distinguished G-orbits in g.
They are all special. There are three more nilpotent orbits in g, these are parameterized
by the pairs (FA1 , e2), (FÃ1

, e3), and (F∅, e4). Here e2 (respectively, e3) is a regular
nilpotent element in LFA1

(f) (respectively, LFÃ1
(f)). Finally, e4 is the zero element

in LF∅(f), and O(F∅, e4) = {0}.

7.2 Generalized Gelfand–Graev characters

Suppose (F, e) ∈ In. Let (f, h, e) ∈ LF (f) denote an sl2(f)-completion of e. Recall
that

LF (≤ 1) =
∑
j≤1

LF (j),

where LF (j) is the j -eigenspace for the action of h on LF (f).
We let �(F,e) denote the generalized Gelfand–Graev character for (f, h, e); it is

defined by

�(F,e)(Z̄) = |LF (−1)|1/2

|LF (≤ −1)|
∑

ḡ∈GF (f);ḡ Z̄∈LF (≤−2)

�(B(X, gZ)),
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where X is any lift of e and Z̄ ∈ LF (f).
Let h(F, e) ∈ C(gF /g

+
F ) denote the characteristic function of the lift of the subset

e + LF (≤ 1)

of LF (f). Note that h(F, e) ∈ D0. From, for example, the proof of [23, Lemma 2.2]
we have that the map (ḡ, X̄) 
→ ḡX̄ from GF (≤ −1)×(e+CLF (f)(f )) to e+LF (≤ 1)
is bijective. Here GF (≤ −1) is the unipotent radical of the parabolic subgroup in
GF (f) with Lie algebra LF (≤ 0).

The functions �(F,e) and h(F, e) are related by the fact (see [23, Section 2] and
[28, p. 283, (2)]) that∑

ḡ∈GF (f)

ĥ(F, e)(gZ̄) = |LF (1)| · |LF (f)|1/2 · �(F,e)(Z̄) (11)

for all Z̄ ∈ LF (f).

7.3 The distributions of interest evaluated at the functions h(F, e)

We now evaluate various distributions at the functions h(F, e). We perform these
calculations in increasing order of difficulty (from the authors’ perspective).

7.3.1 Nilpotent orbital integrals

For nilpotent orbital integrals, the result we need is a straightforward generalization
of a result of Waldspurger [28, Section IX.4].

Lemma 7.3.1. Suppose (F, e), (F ′, e′) ∈ In. We have

µO(F,e)(h(F
′, e′))

is zero unless the (p-adic) closure of O(F ′, e′) is contained in the (p-adic) closure
of O(F, e). Moreover,

µO(F,e)(h(F, e)) = |LF (1)|1/2 .

7.3.2 Distributions not associated to toric Green functions

For a pair (F,G) ∈ I c, where G is not a toric Green function, the result we need is
not difficult to obtain.

Lemma 7.3.2. Fix (F,G) ∈ I c. Suppose that G is not a toric Green function. If x is
a vertex in B(G) and (x, e) ∈ I d , then Dst

(F,G)
(h(x, e)) is zero unless F lies in the

G-orbit of x. In this case, we may assume x = F . We then have

Dst
(x,G)(h(x, e)) = |Lx(0)|−1/2 · G(e).
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Proof. In all cases, F is a vertex. We have

Dst
(F,G)(h(x, e))

= |LF (f)|1/2

|GF (f)| ·
∫
G

∫
g
h(x, e)(gZ) · GF (Z) dZ dg

= |LF (f)|1/2

|GF (f)| ·
∫
G

∫
gF

h(x, e)(gZ) · GF (Z) dZ dg

= |LF (f)|1/2

|GF (f)| ·
∫
G

∑
Z̄∈gF /(gF∩g+

g−1x
)

h(x, e)(gZ)

∫
gF∩g+

g−1x

GF (Z + Z′) dZ′ dg.

If g−1x �= F , then the image of gF ∩ g+
g−1x

in LF (f) is the nilradical of a proper

parabolic subgroup of GF (f). Hence, as G is a cuspidal function, the inner integral is
zero. Thus ifx andF do not lie in the sameG-orbit of vertices, thenDst

(F,G)
(h(x, e)) =

0. On the other hand, if they do lie in the same orbit, then we may assume F = x.
We then have

Dst
(x,G)(h(x, e)) =

|Lx(f)|1/2

|Gx(f)| ·
∫
Gx

∫
gx

h(x, e)(gZ) · Gx(Z) dZ dg

= |Lx(f)|1/2

|Gx(f)| ·measdg(Gx) ·measdZ(g
+
x ) · |Lx(≤ −1)| · G(e)

= |Lx(0)|−1/2 · G(e). ��

7.3.3 Distributions associated to toric Green functions

Finally, we consider the distributions associated to toric Green functions. These
calculations are rather lengthy.

Lemma 7.3.3. Fix (F,QF
S ) ∈ I c. Suppose XS ∈ gF such that the image of XS in

LF (f) has centralizer S in GF . Let S be a lift of (F,S). If x is a vertex in B(G) and
(x, e) ∈ I d , then

µXS(h(x, e)) = 0

unless there exists a g ∈ G for which gx ∈ B(S); in this case, we may assume that
x ∈ B(S) and we have

µXS(h(x, e)) =
(−1)rk(S) · |Lx(1)|1/2 · |NG(S)/S|∣∣NGx

(S)(f)/S(f)
∣∣ · (Indx

F QF
S , �(x,e))Lx

.

Proof. Since the centralizer of XS in G is a torus lifting (F,S), we may assume that
this torus is S. We have

µXS(h(x, e)) =
∫
G/S

h(x, e)(gXS) dg
∗ =

∫
G/S

hx(
gXS) dg

∗,
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where dg∗ is the quotient measure dg
ds

and

hx(Y ) = 1

|Gx(f)| ·
∑

ḡ∈Gx(f)

h(x, e)(gY )

for Y ∈ g.
Fix a g ∈ G. Since h(x, e) ∈ C(gx/g

+
x ), we have that h(x, e)(gXS) �= 0 implies

that gXS ∈ gx . This, in turn, implies that XS ∈ gg−1x , which, from, for example, a
slight modification of [12, Section 4.4], implies that g−1x ∈ B(S) := A(S,K)� ↪→
B(G,K)� = B(G).

Let F denote the set of vertices in the intersection of B(S) with the G-orbit
of x. Note that for each vertex y in F the centralizer in Gy of the image of XS in
Ly(f) = gy/g

+
y is naturally isomorphic to S; we denote the corresponding toric Green

function by Q
y

S. We remark that Qy

S = Indy
F QF

S .
We let F rep denote a set of representatives for F modulo the action of S. Without

loss of generality, x ∈ F . For each y ∈ F rep, we fix gy ∈ G, for which g−1
y x = y.

Since gyGy = Gx and hx is Gx-invariant, we have

µXS(hx) =
∑

y∈F rep

∫
GyS/S

hx(
gygXS) dg

∗

=
∑

y∈F rep

measdg∗(GyS/S) · hx(gyXS)

(from equation (5))

= |Gx(f)| · |LS(f)|1/2

|Lx(f)|1/2 · |S(f)| ·
∑

y∈F rep

hx(
gyXS).

(12)

Fix y ∈ F rep. We are interested in the term

hx(
gyXS)

occurring in the sum above. For notational convenience we set hy := h
gy
x and let h

denote the corresponding element of C(Ly(f)). We first observe that

hy(XS) =
∫

gy

�(B(XS, Y )) · ĥy(−Y ) dY. (13)

On the other hand, we have

(QF
S , ryF ĥ)LF

= (Q
y

S, ĥ)Ly

= 1∣∣Gy(f)
∣∣ · ∑

X̄∈Ly(f)

Q
y

S(X̄) · ĥy(X).

Now, since ĥ is supported on the nilpotent cone, we can apply equation (1) to arrive at
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(−1)rk(S) · |S(f)|
|LS(f)|1/2

· (QF
S , ryF ĥ)LF

= 1∣∣Gy(f)
∣∣ · ∑

X̄∈Ly(f)

⎛⎝F

⎛⎝ ∑
g∈Gy(f)

[X̄S]g
⎞⎠⎞⎠ (X̄) · ĥy(X).

Expanding the right-hand side yields

1∣∣Gy(f)
∣∣ · ∣∣Ly(f)

∣∣1/2
·
∑

X̄∈Ly(f)

∑
Ȳ∈Ly(f)

∑
g∈Gy(f)

[X̄S](gȲ ) ·�(B(X, Y )) · ĥy(X).

By moving the sum over Gy(f) in front of the other two sums and making the changes

of variables (X 
→ g−1
X) and (Y 
→ g−1

Y ), we can take advantage of the invariance
properties of B and hy to arrive at

(−1)rk(S) · |S(f)|
|LS(f)|1/2

· (QF
S , ryF ĥ)LF

= measdX(g
+
y ) ·

∑
X̄∈Ly(f)

�(B(X,XS)) · ĥy(X)

(since the left-hand side is independent of

the choice of XS)

= measdX(g
+
y ) ·

∑
X̄∈Ly(f)

�(B(X,XS)) · ĥy(−X).

(14)

Combining equations (12), (13), and (14), we arrive at

µXS(hx) = (−1)rk(S) ·
∑

y∈F rep

|Gx(f)|
|Lx(f)|1/2

· (QF
S , ryF ĥ)LF

= (−1)rk(S) · |F
rep| · |Gx(f)|
|Lx(f)|1/2

· (Qx
S, ĥ)Lx

(from equation (11)

= (−1)rk(S) · ∣∣F rep
∣∣ · |Lx(1)|1/2 · (Indx

F QF
S , �(x,e))Lx

.

To complete the proof, we now show that∣∣F rep
∣∣ = |NG(S)/S|∣∣NGx

(S)(f)/S(f)
∣∣ .

From [13, Lemma 2.2.1], we can find a maximal k-split torus T′ of G such that
B(S) ⊂ A(T′, k) and, in fact, B(S) = A(A(T′, k), F ) (see Section 4.1 for notation).
Suppose y ∈ F rep and g ∈ G such that gx = y ∈ B(S). Let gS denote the f-torus
in Gy whose group of F-rational points agrees with the image of gS(K) ∩G(K)y in
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Gy . Via the natural identification of GF in Gy we see that there is a k ∈ Gy such

that kgS i= S in GF in Gy . Since S is a lift of kgS, from [13, Lemma 2.2.2] there
is an element k′ ∈ G+y such that k′kgS = S. Thus every element of F rep uniquely
determines, up to right multiplication by NGx (S)/S, an element of NG(S)/S, and
vice-versa. The desired equality follows. ��

Suppose x is a vertex in B(G). For each pair (x, e) ∈ I d and each (F,QF
S ) ∈ I c

we set X(x,e)

(F,S)
equal to zero if the G-orbit of x does not intersect the building B(S),

where S is any lift of (F,S). Otherwise, we assume x lies in B(S) and set X(x,e)

(F,S)

equal to the Green polynomial associated to (Indx
F QF

S )(e) evaluated at q−1. These
polynomials can be explicitly described: If e is regular in Lx(f) and the G-orbit of x
intersects B(S), then X

(x,e)

(F,S)
= 1. Otherwise, either X(x,e)

(F,S)
= 0 or e is subregular in

LFG2
(f) and we have (see [26, Section 7])

X
(FG2 ,e1)

(F,S)
= 1+ q−1(χ(w)+ 2τ(w)),

X
(FG2 ,e

′
1)

(F,S)
= 1+ q−1(χ(w)− τ(w)),

and

X
(FG2 ,e

′′
1 )

(F,S)
= 1+ q−1(χ(w)),

where χ and τ are characters of W (see Table 7) and w ∈ W is a representative of
the conjugacy class associated to S.

Table 7. Characters for the Weyl group of G2.

1 ε τ ετ χ χτ

{e} 1 1 1 1 2 2

Ã1 1 −1 1 −1 0 0

A1 1 −1 −1 1 0 0

G2 1 1 −1 −1 1 −1

A2 1 1 1 1 −1 −1

A1 × Ã1 1 1 −1 −1 −2 2

Corollary 7.3.4. Fix (F,QF
S ) ∈ I c. Suppose XS ∈ gF such that the image of XS in

LF (f) has centralizer S in GF . Let S be a lift of (F,S). If x is a vertex in B(G) and
(x, e) ∈ I d ; then

µXS(h(x, e)) = 0
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unless there exists a g ∈ G for which gx ∈ B(S); in this case, we may assume that
x ∈ B(S) and we have

D(F,QF
S )(h(x, e)) =

|Lx(0)|1/2 · |Lx(1)| · |NG(S)/S| ·X(x,e)

(F,S)

|Wx | · q ,

where Wx denotes the absolute Weyl group of Gx and the constants X
(x,e)

(F,S)
were

described above.

Proof. From Lemma 7.3.3 we have

µXS(h(x, e)) =
(−1)rk(S) · |Lx(1)|1/2 · |NG(S)/S|∣∣NGx

(S)(f)/S(f)
∣∣ · (Indx

F QF
S , �(x,e))Lx

(from [18, 2.3.2])

= |Lx(1)| · |Lx(0)|1/2 · |NG(S)/S| · |S(f)| ·X(x,e)

(F,S)∣∣NGx
(S)(f)/S(f)

∣∣ · |Wx | · q
· (Indx

F QF
S , Indx

F QF
S )Lx

(from [10, Proposition 7.6.2])

= |Lx(0)|1/2 · |Lx(1)| · |NG(S)/S| ·X(x,e)

(F,S)

|Wx | · q . ��

Recall that if C is a conjugacy class in W , then, after scaling, we may assume

Dst
C =

∑
(F,QF

S )∈I c/∼

D(F,QF
S )

|NG(S)/S| ,

where the sum is over the set of equivalence classes of pairs (F,QF
S ) for which S

corresponds to C. For notational ease, if w ∈ C, then Dst
w := Dst

C . For each character
κ of W we define

Dst
κ =

∑
w∈W

κ(w) ·Dst
w.

The distributionDst
κ is stable. Thanks to Corollary 7.3.4, if x is vertex and (x, e) ∈ I d ,

then we can compute Dst
κ (h(x, e)). Indeed, we have

Dst
κ (h(x, e)) =

|Lx(0)|1/2 · |Lx(1)| · Yκ(x, e)
q · |Wx | , (15)

where the value of Yκ(x, e) is given in Table 8.

7.4 A basis for J st(N )

We now prove Theorem 7.0.1.
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Table 8. The values of Yκ(x, e).

(FG2 , e0) (FG2 , e1) (FG2 , e
′
1) (FG2 , e

′′
1) (FA1×Ã1

, e±1 ) (FA2 , e
δ
1)

1 12 12 12 12 8 6
ε 0 0 0 0 −4 0

τ 0 24q−1 −12q−1 0 0 0
ετ 0 0 0 0 0 6

χ 0 12q−1 12q−1 12q−1 0 0
χτ 0 0 0 0 4 0

A proof of Theorem 7.0.1. If T ∈ J (g0), then from Theorem 4.4.1, the restriction
of T to D0 has a local expansion. That is, there exist constants cO(T ), indexed by
O ∈ O(0), so that for all f ∈ D0, we have

T (f ) =
∑

O∈O(0)

cO(T ) · µO(f ).

Thanks to Waldspurger [28, Lemme IV.15], we know that if T is stable, then∑
cO(T ) · µO is also stable. Moreover, for each i, the distribution∑

dim(O)=i
cO(T ) · µO

is stable.
Since µ{0} is stable, from Lemma 6.4.1 we need to produce 6+ |f×/(f×)3| addi-

tional combinations of nilpotent orbital integrals which are stable. That each of the
remaining combinations can be taken to be of the form µO with O k-distinguished
follows directly from Lemma 7.3.1, Lemma 7.3.2, and equation (15). We now explain
how this happens.

We first examine the regular nilpotent orbital integral µO0 . From Theorem 4.4.1,
the restriction of Dst

1 to D0 has a local expansion:

Dst
1 (f ) =

∑
cO(Dst

1 ) · µO(f ) (16)

for all f ∈ D0. By evaluating both sides of equation (16) at h(FG2 , e0), we conclude
from Lemma 7.3.1, equation (15), and Table 8 that cO0(D

st
1 ) �= 0. Hence, thanks

to [28, Lemme IV.15], the distribution

µO0

is stable.
We next look at the three k-distinguished nilpotent orbital integrals µO1 , µO′

1
,

and µO′′
1
. The restrictions to D0 of the stable distributions Dst

τ , Dst
χ , and Dst

FG2
:=

Dst
(FG2 ,Gsgn)

have local expansions:
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Dst
τ (f ) =

∑
cO(Dst

τ ) · µO(f ), Dst
χ (f ) =

∑
cO(Dst

χ ) · µO(f ),

and

Dst
FG2

(f ) =
∑

cO(Dst
FG2

) · µO(f )

for all f ∈ D0. From equation (15) and Table 8, we conclude that

Dst
χ (h(FG2 , e0)) = Dst

χ (h(FA1×Ã1
, e±1 )) = Dst

χ (h(FA2 , e
δ
1)) = 0 (17)

and

Dst
τ (h(FG2 , e0)) = Dst

τ (h(FA1×Ã1
, e±1 )) = Dst

τ (h(FA2 , e
δ
1)) = 0. (18)

Similarly, from Lemma 7.3.2 we have

Dst
FG2

(h(FG2 , e0)) = Dst
FG2

(h(FA1×Ã1
, e±1 )) = Dst

FG2
(h(FA2 , e

δ
1)) = 0. (19)

Therefore, we conclude from Lemma 7.3.1 that cO(Dst
τ ) = cO(Dst

χ ) = cO(Dst
FG2

) =
0 for all k-distinguished nilpotent orbits O other than O1, O′1, and O′′1 .

By evaluating the distribution Dst
χ at the functions h(FG2 , e1), h(FG2 , e

′
1), and

h(FG2 , e
′′
1) we conclude from equation (17), Lemma 7.3.1, and equation (15) that

cO1(D
st
χ ) = cO′

1
(Dst

χ ) = cO′′
1
(Dst

χ ) �= 0.

Hence, thanks to [28, Lemme IV.15], the distribution

µO1 + µO′
1
+ µO′′

1
(20)

is stable.
By evaluating the distribution Dst

τ at the functions h(FG2 , e1), h(FG2 , e
′
1), and

h(FG2 , e
′′
1) we conclude from Lemma 7.3.1, equation (15), and equation (18) that

cO1(D
st
χ ) = −2cO′

1
(Dst

χ ) �= 0 and cO′′
1
(Dst

χ ) = 0.

Hence, thanks to [28, Lemme IV.15], the distribution

2µO1 − µO′
1

(21)

is stable.
By evaluating the distribution Dst

FG2
at the functions h(FG2 , e1), h(FG2 , e

′
1), and

h(FG2 , e
′′
1) we conclude from Lemma 7.3.1, Lemma 7.3.2, and equation (19) that

cO1(D
st
FG2

) = cO′
1
(Dst

FG2
) = −cO′′

1
(Dst

FG2
) �= 0.

Hence, thanks to [28, Lemme IV.15], the distribution
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µO1 + µO′
1
− µO′′

1
(22)

is stable.
Consequently, from equations (20), (21), and (22), we conclude that the distribu-

tions µO1 , µO′
1
, and µO′′

1
are stable.

We now examine the two k-distinguished nilpotent orbital integralsµO+
1

andµO−
1

.

The restrictions to D0 of the stable distributions Dst
χτ and Dst

FA1 ×Ã1
:= Dst

(FA1 ×Ã1
,Gsgn)

have local expansions:

Dst
χτ (f ) =

∑
cO(Dst

χτ ) · µO(f )

and

Dst
FA1 ×Ã1

(f ) =
∑

cO(Dst
FA1 ×Ã1

) · µO(f )

for all f ∈ D0. From equation (15) and Table 8, we have

Dst
χτ (h(FG2 , e0)) = Dst

χτ (h(FG2 , e1)) = Dst
χτ (h(FG2 , e

′
1))

= Dst
χτ (h(FG2 , e

′′
1)) = Dst

χτ (h(FA2 , e
δ
1)) = 0.

(23)

Similarly, from Lemma 7.3.2,

Dst
FA1 ×Ã1

(h(FG2 , e0)) = Dst
FA1 ×Ã1

(h(FG2 , e1)) = Dst
FA1 ×Ã1

(h(FG2 , e
′
1))

= Dst
FA1 ×Ã1

(h(FG2 , e
′′
1)) = Dst

FA1 ×Ã1
(h(FA2 , e

δ
1)) = 0.

(24)

Therefore, we conclude from Lemma 7.3.1 that cO(Dst
χτ ) = cO(Dst

FA1 ×Ã1
) = 0 for

all k-distinguished nilpotent orbits O other than O+1 and O−1 .
By evaluating the distribution Dst

χτ at the functions h(FA1×Ã1
, e±1 ), we conclude

from equation (23), Lemma 7.3.1, and equation (15) that

cO+
1
(Dst

χτ ) = cO−
1
(Dst

χτ ) �= 0.

Hence, thanks to [28, Lemme IV.15], the distribution

µO+
1
+ µO−

1
(25)

is stable.
By evaluating the distribution Dst

FA1 ×Ã1
at the functions h(FA1×Ã1

, e±1 ), we con-

clude from Lemma 7.3.1, equation (15), and equation (24) that

cO+
1
(Dst

χτ ) = −cO−
1
(Dst

χτ ) �= 0.

thanks to [28, Lemme IV.15], the distribution
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µO+
1
− µO−

1
(26)

is stable.
From equations (25) and (26), we conclude that the distributions µO+

1
and µO−

1
are stable.

Finally, we examine the k-distinguished nilpotent orbital integrals µOδ
1

for δ ∈
µ3(f). The restriction to D0 of the stable distribution Dst

ετ has local expansion

Dst
ετ (f ) =

∑
cO(Dst

ετ ) · µO(f )

for f ∈ D0. If |µ3(f)| �= 1, then the restrictions to D0 of the stable distributions
Dst

χ ′ := Dst
(FA2 ,Gχ ′ )

and Dst
χ ′′ := Dst

(FA2 ,Gχ ′′ )
have local expansions

Dst
χ ′(f ) =

∑
cO(Dst

χ ′) · µO(f ) and Dst
χ ′′(f ) =

∑
cO(Dst

χ ′′) · µO(f )

for all f ∈ D0. From equation (15) and Table 8, we have

Dst
ετ (h(FG2 , e0)) = Dst

ετ (h(FG2 , e1)) = Dst
ετ (h(FG2 , e

′
1)) = Dst

ετ (h(FG2 , e
′′
1))

= Dst
ετ (h(FA1×Ã1

, e±1 )) = 0.
(27)

When |µ3(f)| �= 1, similar statements can be made for Dst
χ ′ and Dst

χ ′′ (using

Lemma 7.3.2). Therefore, we conclude from Lemma 7.3.1 that cO(Dst
εχ ) = 0 for

all k-distinguished nilpotent orbits O other than Oδ
1. Similarly, if |µ3(f)| �= 1, then

cO(Dst
χ ′) = cO(Dst

χ ′′) = 0 for all k-distinguished nilpotent orbits O other than Oδ
1.

By evaluating the distribution Dst
ετ at the function(s) h(FA2 , e

δ
1) we conclude

from equation (27), Lemma 7.3.1, equation (15), and [28, Lemme IV.15] that the
distribution ∑

δ∈µ3(f)

µOδ
1

is stable. If |µ3(f)| �= 1, then by evaluating the distributions Dst
χ ′ , and Dst

χ ′′ at

the functions h(FG2 , e
δ
1), we conclude from Lemma 7.3.1, Lemma 7.3.2, the Dst

FG2
-

analogue of equation (27), and [28, Lemme IV.15] that the distributions∑
δ∈µ3(f)

χ ′(δ) · µOδ
1

and ∑
δ∈µ3(f)

χ ′′(δ) · µOδ
1

are stable. Consequently, independent of the order of |µ3(f)|, each element of the set

{µOδ
1
| δ ∈ µ3(f)}

is a stable distribution. ��
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List of symbols

( , )LG An invariant pairing for functions on a finite reductive Lie
algebra.

214

i= 217
A(A, F ) The smallest affine subspace of A containing F . 217
α̌ The coroot of α. 229
A(F,G, X, gm) {gmY | Y ∈ B(F,G, X) and mY = σ(Y )}. 232
A1 A conjugacy class in the Weyl group. 222
Ã1 A conjugacy class in the Weyl group. 222
A2 A conjugacy class in the Weyl group. 222
A1 × Ã1 A conjugacy class in the Weyl group. 222
B The Killing form on g. 213
B(G) The Bruhat–Tits building of G. 208
B The (9+ |µ3(f)|) distributions listed in Table 4. 238
Bst Those elements of B whose label has a superscript st. 238
Bunst Those elements of B whose label has a superscript unst. 239
B(F,G, X) X + g(K)ψF

� g(K)+ψF
. 231

C∞c (V ) The space of complex valued compactly supported locally
constant functions on V .

213

cuspidal 215
� A basis for '. 208
D(F,G)

∑
Me/∼

χ(m)·|Sm/S◦m||CGF (f)(
gme)|

∫
A(F,G,X,gm)

µY dY . 233

D(F,QF
S ) µXS , the distribution associated to a toric Green function. 226

Dst
C An element of B associated to the Weyl conjugacy class C. 238

Dunst
C An element of B associated to a Weyl conjugacy class C. 238

Dst
(F,G)

An element of B associated to a Green function arising from
a cuspidal local system.

238

D0 A subspace of C∞c (g). 221
D0

0 A subspace of D0. 221
D0+ A subspace of C∞c (g). 237
distinguished 227
ε A character of the Weyl group. 251
e0 A regular nilpotent element of LFG2

(f). 246
e1 A subregular nilpotent element of LFG2

(f). 228
e′1 A subregular nilpotent element of LFG2

(f). 246
e′′1 A subregular nilpotent element of LFG2

(f). 246

e+1 A regular nilpotent element of LFA1 ×Ã1
(f). 228

e±1 A subregular nilpotent element of LF
A1×Ã1

(f). 246

e1
1 A regular nilpotent element of LFA2

(f). 228

eδ1 A regular nilpotent element of LFA2
(f). 246

f The residue field of k. 208
F The residue field of K . 208
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F∅ A fixed alcove in A(T ). 210
FG2 The hyperspecial vertex in the closure of our preferred al-

cove F∅.
210

FA1×Ã1
A vertex in the closure of F∅. 210

FA2 A vertex in the closure of F∅. 210
FA1 A facet in the closure of F∅. 210
FÃ1

A facet in the closure of F∅. 210

F̄ The closure of the facet F . 215
fP The constant term of f along P . 216
f̂ The Fourier transform of f . 213
F(f ) The Fourier transform of f . 213
[(F, e)] The characteristic function of the coset e. 220
G2 A conjugacy class in the Weyl group. 222
Gsgn A generalized Green function arising from a cuspidal local

system.
227

Gχ ′ A generalized Green function on LA2(f) arising from a cus-
pidal local system.

227

Gχ ′′ A generalized Green function on LA2(f) arising from a cus-
pidal local system.

227

G The connected reductive algebraic k-split group of type G2. 208
G The group of k-rational points of G. 208
G0 The set of compact elements in G. 212
G0+ The set of topologically unipotent elements in G. 212
G(K)x The parahoric subgroup of G(K) corresponding to x. 209
G(K)+x The pro-unipotent radical of G(K)x . 209
Gx The parahoric subgroup attached to x. 211
G+x The prounipotent radical of the parahoric Gx . 211
GF The connected reductive F group attached to the facet F . 210
g The Lie algebra of G. 208
g The vector space of k-rational points of g. 208
g0 The set of compact elements in g. 212
g0+ The set of topologically nilpotent elements in g. 212
g(K)x A lattice in g(K) associated to x. 211
g(K)+x A sublattice of g(K)x . 211
gx A lattice in g associated to x. 211
g+x A sublattice of gx . 211
gF (i) The intersection of gF with the i-eigenspace in g for µ. 234
� The Galois group Gal(K/k). 208
�(F,e) The generalized Gelfand–Graev character for (f, h, e). 246
h The Coxeter number. 231
Hδ A Chevalley basis element. 208
I c A subset of IG. 220
I d A subset of In. 246
If The set of pairs (F, f ), where F is a facet and f ∈

C(LF (f)).
217
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IG The set of pairs (F,G) with G ∈ C(LF (f)) a generalized
Green function.

220

In The set of pairs (F, e), where F is a facet and e ∈ LF (f) is
nilpotent.

220

Ind The induction map. 215
invariant 206
J (g) The space of invariant distributions on g. 217
J (g0) The subspace of J (g) consisting of distributions supported

on g0.
221

J (N ) The span of the nilpotent orbital integrals. 206
J st(N ) The set of stable distributions supported on N . 207
J st(g) The space of stable distributions on g. 206
k A characteristic zero nonarchimedean local field. 208
K A fixed maximal unramified extension of k. 208
LF The Lie algebra of GF . 211
LG The Lie algebra of G. 214
� An additive character of k that descends to an additive char-

acter of f.
208

lifts 224
local expansion 253
(MF ) The conjugacy class of Levi subgroups of G corresponding

to F .
212

minisotropic 218
µO The orbital integral attached to the orbit O. 245
µ The one-parameter subgroup associated to an sl2(k)-triple. 228
µY The orbital integral associated to the semisimple element Y . 214
µ̄ The one-parameter subgroup associated to an sl2(f)-triple. 228
N The set of nilpotent elements in g. 206
NF The set of nilpotent elements in LF (F). 213
ν A nontrivial discrete valuation. 208
nα An involution in NG(T ) corresponding to the root α. 229
n̄α The image in the Weyl group of the involution nα ∈ NG(T ). 229
O(F, e) The nilpotent orbit attached to (F, e) ∈ I d . 246
O0 O(FG2 , e0). 246
O1 O(FG2 , e1). 246
O′1 O(FG2 , e

′
1). 246

O′′1 O(FG2 , e
′′
1). 246

O±1 O(FA1×Ã1
, e±1 ). 246

Oδ
1 O(FA2 , e

δ
1). 246

℘ The prime ideal of R. 208
' The root system of type G2. 208
� The set of affine roots with respect to T, G, and ν. 209
ψ̇ The gradient of the affine root ψ . 209
QF

S A toric Green function. 222
r The restriction map. 215
R The ring of integers of k. 208



260 Stephen DeBacker and David Kazhdan

RK The ring of integers of K . 208
res Restriction. 221
regular semisimple 213
σ A fixed topological generator for �. 208
special orbit 245
stable 206
T A fixed maximal k-split torus in G. 208
T The group of k-rational points of T. 208
TC(κ) A combination of toric Green functions. 240
τ A character of the Weyl group. 251
tor Torsion. 240
T(F,G)

∫
G

∫
g f (gZ) · GF (Z) dZ dg. 233

Uφ The root group in G(K) corresponding to the root φ. 210
Uψ The subgroup of Uψ̇ corresponding to the affine root ψ . 210
UF The set of unipotent elements in GF (F). 213
� A uniformizer for k. 208
Wx The absolute Weyl group of Gx . 252
Xφ A Chevalley basis element. 208

X
(x,e)

(F,S)
Values related to Green polynomials. 251

XS An element of gF such that its image in LF (f) has centralizer
S in GF .

226

X1 A subregular nilpotent element of g. 228
X+1 A subregular nilpotent element of g. 228
X1

1 A subregular nilpotent element of g. 228
χ A character of the Weyl group. 251
ξ A nontrivial element of µ3. 243
Yκ(x, e) 252
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“According to the Lamb conjecture, the key to the future development of
Quantum Field Theory is probably buried in some forgotten paper published
in the 30’s. Attempts to follow up this conjecture, however, will probably
be unsuccessful because of the Peierls-Jensen paradox; namely, that even if
one finds the right paper, the point will probably be missed until it is found
independently and accidentally by experiment.’’

“The Future of Field Theory,’’ by Pure Imaginary Observer [PI]

Subject Classifications: 14F05, 14F42, 14C35

1 Introduction

1.1 Subject of the article

The goal of this work is to show that there is a reasonable algebro-geometric notion of
vector bundle with infinite-dimensional locally linearly compact fibers and that these
objects appear “in nature.’’ Our approach is based on some results and ideas discov-
ered in algebra during the period 1958–1972 by H. Bass, L. Gruson, I. Kaplansky,
M. Karoubi, and M. Raynaud.

This article contains definitions and formulations of the main theorems, but prac-
tically no proofs. A detailed exposition will appear in [Dr].
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1.2 Conventions

We use the words S-family of vector spaces as shorthand for “vector bundle on a
scheme S’’ and Tate space as shorthand for “locally linearly compact vector space.’’

1.3 Overview of the results and structure of the article

1.3.1 General theory

In Section 2 we recall the Raynaud–Gruson theorem on the local nature of projectivity,
which shows that there is a good notion of family of discrete infinite-dimensional
vector spaces.

In Section 3 we introduce the notion of a Tate module over an arbitrary ring R

and show that if R is commutative one thus gets a reasonable notion of S-family
of Tate spaces, S = SpecR. One has to take into account that K0 of the additive
category of Tate R-modules may be nontrivial. In fact, it equals K−1(R). We show
that K−1(R) = 0 if R is Henselian. We give a proof of this fact because it explains
the fundamental role of the Nisnevich topology in this work. We discuss the notions
of dimension torsor and determinant gerbe of a family of Tate spaces.

At least technically, the theory of Tate R-modules is based on the notion of almost
projective module, which is introduced in Section 4. Roughly speaking, a module
is almost projective if it is projective up to finitely generated modules. Unlike Tate
modules, almost projective modules are discrete. Any Tate module can be represented
as the projective limit of a filtering projective system of almost projective modules
with surjective transition maps.

Section 5 is devoted to the canonical central extension of the automorphism groups
of almost projective and Tate R-modules. In Section 5.5 we discuss an interesting
(although slightly vague) picture, which I learned from A. Beilinson.

1.3.2 Application to the space of formal loops

In Section 6 we define a class of Tate-smooth ind-schemes (morally, these are smooth
infinite-dimensional algebraic manifolds modeled on Tate spaces). According to
Theorem 6.3, the ind-scheme of formal loops of a smooth affine manifold Y over the
local field k((t)) is Tate-smooth over k. This is one of our main results. In Section 6.10
we use it to define a “refined’’ version of the motivic integral of a differential form
on Y with no zeros over the intersection of Y with a polydisk. Unlike the usual
motivic integral, the “refined’’ one is an object of a triangulated category rather than
an element of a group.

1.3.3 Application to vector bundles on a manifold with punctures

In Section 7 we first show that almost projective and Tate modules appear naturally
in the study of the cohomology of a family of finite-dimensional vector bundles
on a punctured smooth manifold. Then we briefly explain how the canonical central
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extension that comes from this cohomology allows one (in the case of GL(n)-bundles)
to interpret the “Uhlenbeck compactification’’ constructed in [FGK, BFG] as the fine
moduli space of a certain type of generalized vector bundles on P2 (we call them
gundles). In fact, the application to the “Uhlenbeck compactification’’ was one of the
main motivations of this work.

2 Families of discrete infinite-dimensional vector spaces (after
Kaplansky, Raynaud, and Gruson)

Is there a reasonable notion of not necessarily finite-dimensional vector bundle on
a scheme? We know due to Serre [S] that a finite-dimensional vector bundle on an
affine scheme SpecR is the same as a finitely generated projective R-module. So it
is natural to give the following definition.

Definition. A vector bundle on a scheme X is a quasicoherent sheaf of OX-modules
F such that for every open affine subset SpecR ⊂ X the R-module H 0(SpecR,F)

is projective.

Key Question. is this a local notion? More precisely, the question is as follows. Let
SpecR = ⋃

i Ui , Ui = SpecRi . Let M be a (not necessarily finitely generated) R-
module such that M⊗R Ri is projective for all i. Does it follow that M is projective?

The question is difficult: the arguments used in the case thatM is finitely generated
fail for modules of infinite type. Nevertheless, Grothendieck [Gr2, Remark 9.5.8]
conjectured that the answer is positive. This was proved by Raynaud and Gruson
[RG] (in Chapter 1 for countably generated modules and in Chapter 2 for arbitrary
ones). Moreover, they proved the following theorem, which says that projectivity is
a local property for the fpqc topology (not only for Zariski).

Theorem 2.1. Let M be a module over a commutative ring R and R′ be a flat commu-
tative R-algebra such that the morphism SpecR′ → SpecR is surjective. If R′⊗RM

is projective, then M is.

In fact, they derived it as an easy corollary of the following remarkable and
nontrivial theorem due to Kaplansky [Ka] and Raynaud–Gruson [RG], which explains
what projectivity really is. Theorem 2.1 follows from the fact that for commutative
rings properties (a)–(c) below are local.

Theorem 2.2. Let R be a (not necessarily commutative) ring. An R-module M is
projective if and only if the following properties hold:

(a) M is flat;
(b) M is a direct sum of countably generated modules;
(c) M is a Mittag–Leffler module.
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The fact that a projective module can be represented as a direct sum of countably
generated ones was proved by Kaplansky [Ka].

The remaining part of Theorem 2.2 is due to Raynaud and Gruson [RG]. The key
notion of Mittag–Leffler module was introduced in [RG]. Here I prefer only to explain
what a flat Mittag–Leffler module is. By the Govorov–Lazard lemma [Gov, Laz],
a flat R-module M can be represented as the inductive limit of a directed family
of finitely generated projective modules Pi . According to [RG], in this situation
M is Mittag–Leffler if and only if the projective system formed by the dual (right)
R-modules P ∗i := HomR(Pi, R) satisfies the Mittag–Leffler condition: for every i

there exists j ≥ i such that Im(P ∗j → P ∗i ) = Im(P ∗k → P ∗i ) for all k ≥ j .

Remarks.
(i) One gets a slightly different definition of not necessarily finite-dimensional

vector bundle on a scheme if one replaces projectivity by the property of being a flat
Mittag–Leffler module. The product of infinitely many copies of Z is an example of
a flat Mittag–Leffler Z-module which is not projective (it is due to Baer; see [Ka2,
pp. 48 and 82]). Unlike projectivity, the property of M being a flat Mittag–Leffler
module is a first-order property (in the sense of mathematical logic) of R(N) ⊗R M

viewed as a module over EndR R(N) (hereR(N) is the rightR-module freely generated
by N). Let me also mention that one does not need AC (the axiom of choice) to prove
that a vector space over a field is a flat Mittag–Leffler module, but in set theory
without AC one cannot prove that R is a direct summand of a free Q-module1 (one
cannot even prove the existence of a Q-linear embedding of R into a free Q-module
F , for given such an embedding and using a Q-linear retraction F → Q one would
get a splitting s : R/Q → R of the exact sequence 0 → Q → R → R/Q → 0
and therefore a nonmeasurable subset s(R/Q) ⊂ R, but it is known [So] that the
existence of such a subset cannot be proved in set theory without AC).

(ii) Instead of property (c) from Theorem 2.2 the authors of [RG] used a slightly
different one, which is harder to formulate. Probably their property has some technical
advantages.

(iii) Here are some more comments regarding the work [RG]. First, there is no
evidence that the authors of [RG] knew that Theorem 2.1 had been conjectured by
Grothendieck. Second, their notion of Mittag–Leffler module and their results on
infinitely generated projective modules were probably largely forgotten (even though
they deserve to be mentioned in algebra textbooks). Probably they were “lost’’among
many other powerful and important results of [RG] (mostly in the spirit of EGA IV).

3 Families of Tate vector spaces and the K−1-functor

3.1 A class of topological vector spaces

We consider topological vector spaces over a discrete field k.
1 Without AC, it is not true that any free module F is projective, i.e., every epimorphism
M → F has a section. So without AC, projectivity is not equivalent to being a direct
summand of a free module.
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Definition. A topological vector space is linearly compact if it is the topological dual
of a discrete vector space.

Example. k[[t]] � k × k × · · · = (k ⊕ k ⊕ . . . )∗.
A topological vector space V is linearly compact if and only if it has the following

three properties:

1. V is complete and Hausdorff,
2. V has a base of neighborhoods of 0 consisting of vector subspaces,
3. each open subspace of V has finite codimension.

Definition. A Tate space is a topological vector space isomorphic to P ⊕Q∗, where
P and Q are discrete.

A topological vector space T is a Tate space if and only if it has an open linearly
compact subspace.

Example. k((t)) equipped with its usual topology (the subspaces tnk[[t]] form a base
of neighborhoods of 0). This is a Tate space because it is a direct sum of the linearly
compact space k[[t]] and the discrete space t−1k[t−1], or because k[[t]] ⊂ k((t)) is
an open linearly compact subspace.

Tate spaces play an important role in the algebraic geometry of curves (e.g., the
ring of adèles corresponding to an algebraic curve is a Tate space) and also in the
theory of∞-dimensional Lie algebras and Conformal Field Theory. In fact, they were
introduced by Lefschetz [L, pp. 78–79], under the name of locally linearly compact
spaces. The name “Tate space’’ was introduced by Beilinson because these spaces
are implicit in Tate’s remarkable work [T]. In fact, the approach to residues on curves
developed in [T] can be most naturally interpreted in terms of the canonical central
extension of the endomorphism algebra of a Tate space, which is also implicit in [T].

3.2 What is a family of Tate spaces?

Probably this question has not been considered. We suggest the following answer. In
the category of topological modules over a (not necessarily commutative) ring R we
define a full subcategory of Tate R-modules. If R is commutative, then we suggest
considering Tate R-modules as “families of Tate spaces.’’ This viewpoint is justified
by Theorems 3.3 and 3.4 below.

3.2.1 Definitions

An elementary TateR-module is a topologicalR-module isomorphic toP⊕Q∗, where
P , Q are discrete projective R-modules (P is a left module, Q is a right one). A Tate
R-module is a direct summand of an elementary Tate R-module. A Tate R-module
M is quasi-elementary if M ⊕ Rn is elementary for some n ∈ N.

By definition, a morphism of Tate modules is a continuous homomorphism. The
following lemma is very easy.

Lemma 3.1. Let P,Q be as in the definition of Tate R-module. Then every morphism
Q∗ → P has finitely generated image. ��
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3.2.2 Examples

1. R((t))n is an elementary Tate R-module.
2. A finitely generated projective R((t))-module M has a unique structure of topo-

logical R((t))-module such that every R((t))-linear morphism M → R((t))

is continuous. This topology is called the standard topology of M . Clearly, M
equipped with its standard topology is a TateR-module. In general, it is not quasi-
elementary. For example, let k be a field, R := {f ∈ k[x]|f (0) = f (1)} and

M := {u = u(x, t) ∈ k[x]((t)) | u(1, t) = tu(0, t)}. (3.1)

Then M is a finitely generated projective R((t))-module which is not quasi-
elementary as a Tate R-module (see Section 3.5.3).

Remark. The precise relation between finitely generated projective R((t))-modules
and Tate R-modules is explained in Theorem 3.10 below.

3.2.3 Lattices and bounded submodules

A submodule L of a topological R-module M is said to be a lattice if it is open and
L/U is finitely generated for every open submodule U ⊂ L. A subset of a Tate
R-module M is bounded if it is contained in some lattice. A lattice L in a Tate module
M is coprojective if M/L is projective.

Remarks.

(i) One can show that a lattice L in a Tate module M is coprojective if and only if
M/L is flat.

(ii) In every Tate R-module lattices exist and, moreover, form a base of neighbor-
hoods of 0. On the other hand, a Tate R-module M has a coprojective lattice if
and only if M is elementary.

Theorem 3.2. A Tate R-module M has the following properties:

(a) M is complete and Hausdorff;
(b) lattices in M form a base of neighborhoods of 0;
(c) the functor that associates to a discrete R-module N the group Hom(M,N) of

continuous homomorphisms M → N is exact.

If a topological R-module M has a countable base of neighborhoods of 0 and satisfies
(a)–(c), then it is a Tate R-module.

Only the last statement of the theorem is nontrivial. The countability assumption
is essential in its proof.

Remark. If a topological R-module M satisfies (b), then (c) is equivalent to the
following property: for every latticeL there is a latticeL′ ⊂ L such that the morphism
M/L′ → M/L admits a factorization M/L′ → P → M/L for some projective
module P .
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3.2.4 Duality

The dual of a Tate R-module M is defined to be the right R-module M∗ of continuous
homomorphisms M → R equipped with the topology whose base is formed by
orthogonal complements of open bounded submodules L ⊂ M . Then M∗ is again a
Tate module, and M∗∗ = M (it suffices to check this for elementary Tate modules).

3.2.5 Tate modules as families of Tate spaces

Theorem 3.3. The notion of Tate module over a commutative ring R is local for the
flat topology, i.e., for every faithfully flat commutative R-algebra R′ the category of
Tate R-modules is canonically equivalent to that of Tate R′-modules equipped with
a descent datum.

The proof is based on the Raynaud–Gruson technique.

Theorem 3.4. Let R be a commutative ring. Then every Tate R-module M is
Nisnevich-locally elementary; in other words, there exists a Nisnevich covering
SpecR′ → SpecR such that R′⊗̂RM has a coprojective lattice L′. Moreover, for
every lattice L ⊂ M one can choose R′ and L′ so that L′ ⊃ R′⊗̂RL.

The proof is not hard. A closely related statement (Theorem 3.7) will be proved
in Section 3.4.

Let me give the definition of Nisnevich covering. A morphism π : X→ SpecR
is said to be a Nisnevich covering if it is étale and there exist closed subschemes
SpecR = F0 ⊃ F1 ⊃ · · · ⊃ Fn = ∅ such that each Fi is defined by finitely
many equations and π admits a section over Fi−1 \ Fi , i = 1, . . . , n. A morphism
π : X → Y is a Nisnevich covering if for every open affine U ⊂ Y the morphism
π−1(U) → U is a Nisnevich covering. (If Y is locally Noetherian, then an étale
morphism X→ Y is a Nisnevich covering if and only if it admits a section over each
point of Y ; this is the usual definition.) The Nisnevich topology is weaker than étale
but stronger than Zariski. The following table may be helpful:

Topology Stalks of OX, X = SpecR
Zariski Localizations of R

Nisnevich Henselizations of R
Ètale Strict Henselizations of R

3.2.6 Remarks on Theorem 3.4

(i) In Theorem 3.4, one cannot replace “Nisnevich’’ by “Zariski.’’ For example,
we will see in Section 3.5.3 that the Tate module (3.1) is not Zariski-locally
elementary.

(ii) It is easy to show that every quasi-elementary Tate module over a commutative
ring R is Zariski-locally elementary.
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3.3 Tate R-modules and K−1(R)

How does one see that a Tate R-module is not quasi-elementary? We will assign
to each Tate R-module M a class [M] ∈ K−1(R) such that [M] = 0 if and only if
M is quasi-elementary. It is easy to define [M] if one uses the following definition
of K−1(R).

3.3.1 K−1 via Calkin category

First, introduce the following category Call = Call
R : its objects are all R-modules and

the group HomCall(M,M ′) of Call-morphisms M → M ′ is defined by

HomCall(M,M ′) := Hom(M,M ′)/Homf (M,M ′),

where Homf (M,M ′) is the group of R-linear maps A : M → M ′ whose image
is contained in a finitely generated submodule of M ′. Let C ⊂ Call be the full
subcategory whose objects are projective modules. The idempotent completion2 of
C (also known as the Karoubi envelope of C) will be denoted by CKar or CKar

R and will
be called the Calkin category of R. Let Cℵ0 ⊂ C be the full subcategory of countably
generated projective R-modules and CKarℵ0

its idempotent completion.

Proposition 3.5. Every object of CKar is stably equivalent3 to an object of CKarℵ0
. Two

objects of CKarℵ0
are stably equivalent in CKar if and only if they are stably equivalent

in CKarℵ0
.

As a corollary, we see that K0(CKar) is well defined4 (even though CKar is not
equivalent to a small category), and the morphism K0(CKarℵ0

) → K0(CKar) is an
isomorphism. Now define K−1(R) by

K−1(R) := K0(CKar
R ). (3.2)

Remarks.

(i) The above definition of K−1 is slightly nonstandard but equivalent to the stan-
dard ones.

2 The idempotent completion of a category B is the category BKar in which an object is a
pair (B, p : B → B) with B ∈ B and p2 = p, and a morphism (B1, p1) → (B2, p2) is
a B-morphism ϕ : B1 → B2 such that p2ϕp1 = ϕ. This construction was explained by
P. Freyd in [Fr, Chapter 2, Exercise B2] a few years before Karoubi.

3 Objects X, Y of an additive category A are said to be stably equivalent if X⊕ Z � Y ⊕ Z

for some Z ∈ A.
4 K0 of an additive category A is defined by the usual universal property. It may exist even

if A is not equivalent to a small category, e.g., K0 of the category of all vector spaces
equals 0.
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(ii) Define the algebraic Calkin ring by

Calk(R) := EndC R(N) := End R(N)/Endf R(N), R(N) := R ⊕ R ⊕ · · · .
(Calk(R) is an algebraic version of the analysts’ Calkin algebra, which is defined
to be the quotient of the ring of continuous endomorphisms of a Banach space by
the ideal of compact operators). If P ∈ CKarℵ0

, then HomCKar (P,R(N)) is a finitely
generated projective module over Calk(R). Thus one gets an antiequivalence
between CKarℵ0

and the category of finitely generated projective Calk(R)-modules,
which induces an isomorphism

K−1(R)
∼−→ K0(Calk(R)).

3.3.2 The class of a Tate R-module

Let TR denote the additive category of Tate R-modules. We will define a functor

' : TR → CKar
R . (3.3)

Let ER ⊂ TR be the full subcategory of elementary Tate modules. One gets a functor
� : ER → CR by setting �(P ⊕ Q∗) := P (here P , Q are discrete projective
modules) and defining �(f ) ∈ HomC(P, P1), f : P ⊕Q∗ → P1 ⊕Q∗1, to be the

image of the composition P ↪→ P ⊕ Q∗ f−→ P1 ⊕ Q∗1 � P1 in HomC(P, P1).
(The equality �(f ′f ) = �(f ′)�(f ) follows from Lemma 3.1.) The functor (3.3)
is defined to be the extension of � : ER → CR ⊂ CKar

R to TR = EKar
R .

Now define the class [M] of a Tate R-module M by [M] := ['(M)] ∈
K0(CKar

R ) = K−1(R).

3.3.3 K0 of the category of Tate R-modules

Theorem 3.6.

(i) A Tate R-module has zero class in K−1(R) if and only if it is quasi-elementary.
(ii) K0(TR) is well defined (even though TR is not equivalent to a small category).
(iii) The morphism K0(TR) → K0(CKar

R ) = K−1(R) induced by (3.3) is an isomor-
phism.

(iv) Every element of K0(TR) = K−1(R) can be represented as the class of
R((t))⊗R[t,t−1] P for some finitely generated projective R[t, t−1]-module P .

Remark. The only nontrivial point of the proof is the surjectivity of the composition

K0(R[t, t−1])→ K0(R((t)))→ K0(TR)→ K−1(R), (3.4)

which is used in the proof of (iii) and (iv) (in fact, to prove (iii) it suffices to use
Theorem 4.1(a) below). The surjectivity of (3.4) is a standard fact5 from K-theory.
It is proved by noticing that there is a canonical section K−1(R) → K0(R[t, t−1]),
namely, multiplication by the canonical element of K1(Z[t, t−1]).

5 The surjectivity of (3.4) is a tautology if one uses the definition of K−1 given by H. Bass
[Ba]. But it is a theorem if one defines K−1 by (3.2).
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3.4 Nisnevich-local vanishing of K−1

Theorem 3.4 is closely related6 to the following theorem, which I was unable to find
in the literature.

Theorem 3.7. Let R be a commutative ring. Then every element of K−1(R) vanishes
Nisnevich-locally.

Remarks.

(i) According to [We2, Example 8.5] (which goes back to L. Reid’s work [Re]), it
is not true that every element of Ki(R), i < −1, vanishes Nisnevich-locally.

(ii) It is known that K−1 commutes with filtering inductive limits. So Theorem 3.7 is
equivalent to vanishing of K−1(R) for commutative Henselian rings R. I prefer
the above formulation of the theorem because commutation of K−1 with filtering
inductive limits is not immediate if one defines K−1 by (3.2), i.e., via the Calkin
category.

In the proof of Theorem 3.7 given below we use the definition of K−1 from
Section 3.3.1, but it is also easy to prove the theorem using the definition of K−1
given by H. Bass [Ba].

Proof. It suffices to show that if P is an R-module,7 F ⊂ P is a finitely generated
submodule, and π ∈ End P is such that Im(π2 − π) ⊂ F then after Nisnevich
localization there exists π̃ ∈ End P such that π̃2 = π̃ and Im(π̃ − π) ⊂ F .

The idea is to look at the spectrum of π . There exists a monic f ∈ R[λ] such
that f (π2 − π) annihilates F . Then f (π2 − π)(π2 − π) = 0. Put g(λ) := (λ2 −
λ)f (λ2−λ); then there is a unique morphism R[λ]/(g)→ End P such that λ 
→ π .
Put S := SpecR[λ]/(g) ⊂ SpecR × A1; then S ⊃ 0 ∪ 1, where 0 = SpecR × {0}
and 1 = SpecR × {1}.

Suppose we have a decomposition

S = S0 , S1, Si open, S0 ⊃ 0, S1 ⊃ 1. (3.5)

Then we can define e ∈ R[λ]/(g) = H 0(S,OS) by e|S0 = 0, e|S1 = 1 and define π̃

to be the image of e in End P .
Claim: A decomposition (3.5) exists Nisnevich-locally on SpecR. Indeed, ac-

cording to the table at the end of Section 3.2.5, it suffices to show that this decom-
position exists if R is Henselian. Let ḡ ∈ (R/m)[λ] be the reduction of g modulo
the maximal ideal m ⊂ R. To get (3.5) it suffices to choose a factorization ḡ = ḡ0ḡ1
such that ḡ0, ḡ1 are coprime, ḡ0(0) = 0, ḡ1(1) = 0 and then lift it to a factorization
g = g0g1. ��

6 More precisely: Theorem 3.7 follows from Theorems 3.4 and 3.6(iii); Theorem 3.4 follows
from Theorems 3.7 and 4.2(iii).

7 We need only the case that P is projective, but projectivity is not used in what follows.
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3.5 The dimension torsor

Let R be commutative. Then it follows from [We2, Theorem 8.5] that there is a
canonical epimorphism K−1(R) → H 1

ét(SpecR,Z), so a Tate R-module M should
define αM ∈ H 1

ét(SpecR,Z). We will define αM explicitly as a class of a certain
Z-torsor DimM on SpecR canonically associated to M . DimM is called “the torsor
of dimension theories’’ or “dimension torsor.’’

3.5.1 The case that R is a field

IfM is a Tate vector space over a fieldR the notion of dimension torsor is well known.8

Notice that if L ⊂ M is open and linearly compact, then usually dim L = ∞ and
dim(M/L) = ∞. But for any open linearly compact L, L′ ⊂ M one has the relative
dimension dL′

L := dim(L′/L′ ∩ L)− dim(L/L′ ∩ L) ∈ Z.

Definition. A dimension theory on a Tate vector space M is a function

d : {open linearly compact subspaces L ⊂ M} → Z

such that d(L′)− d(L) = dL′
L .

A dimension theory exists and is unique up to adding n ∈ Z. So dimension
theories on a Tate space form a Z-torsor. This is DimM .

Example. Let T be a Z-torsor, let R(T ) be the vector space over a field R freely gener-
ated by T . Then Z acts on R(T ), so R(T ) becomes a R[z, z−1]-module (multiplication
by z coincides with the action of 1 ∈ Z). Put M := R((z))⊗R[z,z−1] R(T ). Then one
has a canonical isomorphism

DimM
∼−→ T : (3.6)

to t ∈ T one associates the dimension theory dt such that dt (Lt ) = 0, where Lt ⊂ M

is the R[[z]]-subspace generated by t .

3.5.2 The general case

IfM is a Tate module andL ⊂ L′ ⊂ M are coprojective lattices thenL′/L is a finitely
generated projective R-module, so if R is commutative then dL′

L := rank(L′/L) ∈
H 0(SpecR,Z) is well defined.

Definition. Let M be a Tate module over a commutative ring R. A dimension theory
on M is a rule that associates to each R-algebra R′ and each coprojective lattice
L ⊂ R′⊗̂RM a locally constant function dL : SpecR′ → Z in a way compatible
with base change and so that dL2 − dL1 = rank(L2/L1) for any pair of coprojective
lattices L1 ⊂ L2 ⊂ R′⊗̂RM . Here R′⊗̂RM denotes the completed tensor product.

8 I copied the definition below from [Ka3], but the notion goes back at least to the physical
concept of “Dirac sea,’’ which many years later became the “infinite wedge construction’’
in the representation theory of infinite-dimensional Lie algebras.
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Theorem 3.4 implies that if the functions dL with the above properties are defined
for all étale R-algebras, then there exists a unique way to extend the definition to all
R-algebras. It also shows that dimension theories form a Z-torsor for the Nisnevich
topology.9 It is called the dimension torsor and denoted by DimM .

One has a canonical isomorphism

DimM1⊕M2

∼−→ DimM1 +DimM2 . (3.7)

So one gets a morphism K0(TR) = K−1(R) → H 1
ét(SpecR,Z). It is surjective.

Indeed, let T be a Z-torsor on S := SpecR. Then the free OS-module O(T )
S generated

by the sheaf of sets T is equipped with an action of Z, so it is a module over OS[z, z−1]
(multiplication by z coincides with the action of 1 ∈ Z). This module is locally free
of rank one, so its global sections form a projective R[z, z−1]-module R(T ) of rank
1. Therefore, R((z)) ⊗R[z,z−1] R(T ) is a Tate R-module. Its dimension torsor is
canonically isomorphic to T (cf. (3.6)).

3.5.3 Example

Let M be the Tate module (3.1) over R := {f ∈ k[x]|f (0) = f (1)}. Then the
Z-torsor DimM is nontrivial (its pullback to S := Spec(R ⊗k k̄) corresponds to the
universal covering of S). So the class of M in K0(TR) = K−1(R) is nontrivial and
therefore M is not quasi-elementary. Moreover, it does not become quasi-elementary
after Zariski localization.

3.5.4 The kernel of the morphism K−1(R) → H 1
ét(Spec R, Z) may be nonzero

Moreover, this can happen even if R is local. Examples can be found in [We3]. More
precisely, [We3, Section 6] contains examples of algebras R over a field k such that
H 1

ét(SpecR,Z) = 0 but K−1(R) �= 0. In each of these examples SpecR is a normal
surface with one singular point x. Let Rx denote the local ring of x. According to
[We1], the map K−1(R)→ K−1(Rx) is an isomorphism, so K−1(Rx) �= 0.

3.6 The determinant gerbe

Given a Tate spaceM over a field, Kapranov [Ka3] defines its groupoid of determinant
theories. The definition is based on the notion of relative determinant of two lattices
in a Tate space and goes back to J.-L. Brylinski [Br] (and further back to the Japanese
school and [ACK]). IfM is a Tate module over a commutative ringR, then rephrasing
the definition from [Ka3] in the obvious way one gets a sheaf of groupoids on the
Nisnevich topology of S := SpecR (details will be explained in Section 5). This
sheaf of groupoids is, in fact, an O×S -gerbe. We call it the determinant gerbe of M .
Associating the class of this gerbe to a Tate R-module M one gets a morphism

9 In fact, the categories of Z-torsors for the Nisnevich, étale, fppf, and fpqc topologies are
equivalent.
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K0(TR) = K−1(R)→ H 2
Nis(S,O

×
S ). (3.8)

Probably this is well known to K-theorists. One can get the restriction of (3.8) to
Ker(K−1(R) → H 1

ét(SpecR,Z)) (and possibly the morphism (3.8) itself) from the
Brown–Gersten–Thomason spectral sequence [TT, Section 10.8]. More details on
the determinant gerbes will be given in Section 5.

3.7 Co-Sato Grassmannian

Let M be a Tate module over a commutative ring R. The co-Sato Grassmannian of
M is the following functor GrasM from the category of commutative R-algebras R′
to that of sets: GrasM(R′) is the set of coprojective lattices in R′⊗̂RM . Given lattices

L ⊂ M and L̃ ⊂ M∗ let GrasL,L̃
M (R′) ⊂ GrasM(R′) be the set of coprojective lattices

in R′⊗̂RM containing R′⊗̂RL and orthogonal to R′⊗̂RL̃. The functor GrasM is the

inductive limit of the subfunctors GrasL,L̃
M , and these subfunctors form a filtering

family. Theorem 3.4 easily implies the following proposition.

Proposition 3.8.

(i) GrasL,L̃
M is an algebraic space proper and of finite presentation over SpecR.

Locally for the Nisnevich topology of SpecR it is a projective scheme over SpecR.
(ii) GrasM is an ind-algebraic space ind-proper over SpecR.

Remarks.

(a) A standard argument based on the Plücker embedding (see Section 5.4.3) shows

that if the determinant gerbe ofM is trivial then GrasL,L̃
M is projective over SpecR

and GrasM is an ind-projective ind-scheme.
(b) Using Proposition 3.8 it is easy to prove ind-representability and ind-properness

of the F-twisted affine Grassmannian GRF of a reductive group scheme G over
R. Here F is a G-torsor on SpecR((t)) and GRF is the functor that sends
a commutative R-algebra R′ to the set of extensions of F ⊗R((z)) R

′((z)) to a
G-torsor over SpecR′[[z]] (up to isomorphisms whose restriction to F ⊗R((z))

R′((z)) equals the identity).

3.8 Finitely generated projective R((t))-modules from the Tate viewpoint

Theorem 3.10 below says that a finitely generated projective R((t))-module is the
same as a Tate R-module equipped with a topologically nilpotent automorphism. An
endomorphism (in particular, an automorphism) of a Tate R-module M is said to be
topologically nilpotent if it satisfies the equivalent conditions of the next lemma.

Lemma 3.9. Let M be a Tate R-module, T ∈ End M . Then the following conditions
are equivalent:

(i) T n → 0 for n→ 0 (which means that for every pair of lattices L,L′ ⊂ M there
exists N such that T nL′ ⊂ L for all n > N).
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(ii) There exists a (unique) structure of topological R[[t]]-module on M such that T
acts as multiplication by t .

If M is a finitely generated projective R((t))-module equipped with its standard
topology, then multiplication by t is a topologically nilpotent automorphism of M .
The next theorem says that the converse statement is also true.

Theorem 3.10. Let M be a Tate R-module and T : M → M be a topologically
nilpotent automorphism. Equip M with the topological R((t))-module structure such
that tm = T (m) form ∈ M . ThenM is a finitely generated projectiveR((t))-module,
and the topology on M is the standard one.

Theorem 3.11. Let R be commutative. Then the notion of finitely generated pro-
jective R((t))-module is local for the fpqc topology of SpecR. More precisely,
let R′ be a faithfully flat commutative R-algebra, R′′ := R′ ⊗R R′, and let
f, g : R′((t))→ R′′((t)) be defined by f (a) := 1⊗ a, g(a) := a⊗ 1; then the cate-
gory of finitely generated projective R((t))-modules is canonically equivalent to that
of finitely generated projective R′((t))-modules M ′ equipped with an isomorphism

R′′((t))⊗f M ′ ∼−→ R′′((t))⊗g M ′ satisfying the usual cocycle condition.

This is an immediate corollary of Theorems 3.3 and 3.10.

Remark. If R is of finite type over a field k and the morphism SpecR′ → SpecR is a
Zariski covering, then Theorem 3.11 is well known from the theory of nonarchimedian
analytic spaces [BGR, Be], which is applicable because R((t)) is an affinoid k((t))-
algebra in the sense of Section 6.5.

3.9 The dimension torsor of a projective R((t))-module

Let R be a commutative ring. Let M be a finitely generated projective R((t))-module
equipped with an isomorphism ϕ : det M

∼−→ R((t)). If R is a field, then M has an
R[[t]]-stable lattice; moreover, there is a lattice L ⊂ M such that

R[[t]]L ⊂ L, ϕ(det L) = R[[t]]. (3.9)

So it is easy to see that if R is a field, then there is a unique dimension theory dϕ on
M such that dϕ(L) = 0 for all lattices L ⊂ M satisfying (3.9). Therefore, if R is any
commutative ring, then the Z-torsor DimM is trivialized over each point of SpecR.

Proposition 3.12. These trivializations come from a (unique) trivialization dϕ of the
Z-torsor DimM .

By Proposition 3.12 the morphism K0(R((t)))→ H 1
ét(SpecR,Z) that sends the

class of a projective R((t))-module M to the class of DimM annihilates the kernel of
the epimorphism det : K0(R((t))) � PicR((t)), so we get a morphism

f : PicR((t))→ H 1
ét(SpecR,Z) (3.10)
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such that the diagram

K0(R((t)))
det−→ PicR((t))

↓ ↙
H 1

ét(SpecR,Z)

(3.11)

commutes. The composition

g : PicR[t, t−1])→ PicR((t))
f−→ H 1

ét(SpecR,Z) (3.12)

was studied in [We2].

Remarks.

(i) As explained in [We2], the kernels of (3.10) and (3.12) may be nontrivial (even
if R is Henselian). Example: If k is a field and R is either k[x2, x3] ⊂ k[x] or
the Henselization of k[x2, x3] at the singular point of its spectrum, then Ker f �
k((t))/k[[t]], Ker g � k[t, t−1]/k[[t]] (e.g., to show that Ker f � k((t))/k[[t]]
for R = k[x2, x3] notice that a line bundle on SpecR((t)) is the same as a triple
consisting of a line bundle on Spec k[x]((t)), a line bundle on Spec k((t)) and an
isomorphism between their pullbacks to Spec k[x]((t))/(x2)). It is also explained
in [We2] that g has a splitting (and therefore f has). Indeed, PicR[t, t−1] =
H 1

ét(SpecR,C), whereC is the derived direct image of the étale sheaf of invertible
functions on SpecR[t, t−1], and the morphism Z → C defined by n 
→ tn gives
a splitting.

(ii) The interested reader can easily lift the diagram (3.11) of abelian groups to a
commutative diagram of appropriate Picard groupoids (in the sense of [Del,
Section 1.4]).

4 Almost projective and 2-almost projective modules

4.1 Main definitions and results

Recall that every Tate R-module has a lattice but not necessarily a coprojective one.
If M is a Tate R-module and L ⊂ M is a lattice (respectively, a bounded open
submodule) then M/L is 2-almost projective (respectively, almost projective) in the
sense of the following definitions.

Definitions. An elementary almost projective R-module is a module isomorphic to a
direct sum of a projectiveR-module and a finitely generated one. An almost projective
R-module is a direct summand of an elementary almost projective module. An almost
projective R-module M is quasi-elementary if M⊕Rn is elementary for some n ∈ N.

Definition. An R-module M is 2-almost projective if it can be represented as a direct
summand of P ⊕ F with P a projective R-module and F an R-module of finite
presentation.
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In fact, there is a reasonable notion of n-almost projectivity for any positive n;
see Remark (3) at the end of this subsection.

Remark. It is easy to show that an almost projective module M is quasi-elementary if
and only if it can be represented as P/N with P projective and N ⊂ P a submodule
of a finitely generated submodule of P . It is also easy to show that for P and N as
above P/N is 2-almost projective if and only if N is finitely generated.

Theorem 4.1.

(a) Every almost projective R-module M0 can be represented as M/L with M being
a Tate R-module and L ⊂ M a bounded open submodule.

(b) If M0 is 2-almost projective, then in such a representation L is a lattice.

Theorem 4.2.

(i) The notion of almost projective module over a commutative ring R is local for
the flat topology, i.e., for every faithfully flat commutative R-algebra R′ almost
projectivity of an R-module M is equivalent to almost projectivity of the R′-
module R′ ⊗R M . The same is true for 2-almost projectivity.

(ii) For every almost projective module M over a commutative ring R there exists a
Nisnevich covering SpecR′ → SpecR such that R′ ⊗R M is elementary.

(iii) For every quasi-elementary almost projective moduleM over a commutative ring
R there exists a Zariski covering SpecR =⋃

i SpecRfi such that Rfi ⊗R M is
elementary for all i.

The proof of (i) is based on the Raynaud–Gruson technique. The proofs of (ii)
and (iii) are much easier. In particular, (iii) easily follows from Kaplansky’s Theorem
[Ka], which says that a projective module over a local field is free (even if it is not
finitely generated!).

Remarks.
(1) In statement (ii) of the theorem one cannot replace “Nisnevich’’by “Zariski.’’

For example, the quotient of the TateR-module (3.1) by any open bounded submodule
is an almost projective module which is not Zariski-locally elementary (because the
Tate module (3.1) is not; see Section 3.5.3).

(2) My impression is that statement (ii) is more important than (i) even though
it is much easier to prove. Statement (i) gives you peace of mind (without it one
would have two candidates for the notion of almost projectivity), but in the examples
of almost projective modules that I know one can prove almost projectivity directly
rather than showing that the property holds locally. The roles of Theorems 3.3 and 3.4
in the theory of Tate R-modules are similar.

(3) Although we do not need it in the rest of this work, let us define the notion
of n-almost projectivity for any n ∈ N: an R-module M is n-almost projective if
in the derived category of R-modules M can be represented as a direct summand of
P ⊕ F · with P being a projective R-module and F · being a complex of projective
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R-modules such that F i = 0 for i > 0 and F i is finitely generated for i > −n.10

One can show that for n = 1, 2 this is equivalent to the above definitions of almost
projectivity and 2-almost projectivity and that if n > 2 then an R-module M is n-
almost projective if and only if it is 2-almost projective and for some (or for any)
epimorphism f : P � M with P projective Ker f is (n − 1)-almost projective.
One can also show that a module M over a commutative ring is n-almost projective
if and only if it can be Nisnevich-locally represented as a direct sum of a projective
module and a module M ′ having a resolution Pn−1 → Pn−2 → . . . P0 → M ′ → 0
by finitely generated projective modules.

4.2 Class of an almost projective module in K−1

In Section 3.3.1 we defined the category Call and its full subcategory C formed by
projective modules. Let Cap ⊂ Call denote the full subcategory of almost projective
modules. By definition, an almost projective moduleM is a direct summand ofF⊕P

with F finitely generated and P projective, so M viewed as an object of Cap becomes
a direct summand of P ∈ C. So we get a fully faithful functor ' : Cap → CKar

(in fact, it is not hard to prove that ' is an equivalence). To an almost projective
R-module M one associates an element [M] ∈ K−1(R) := K0(CKar), namely, [M]
is the class of '(M) ∈ CKar.

Let T be a Tate R-module and L ⊂ T an open bounded submodule (so T/L is
almost projective). Then [T/L] = [T ].

4.3 The dimension torsor of an almost projective module

To an almost projective module one associates its dimension torsor. The definition is
given below. It is parallel to the definition of the dimension torsor of a TateR-module,
but there is one new feature: the dimension torsor of an almost projective module is
equipped with a canonical upper semicontinuous section.

A submodule L of an almost projective R-module M is said to be a lattice if it
is finitely generated. In this case M/L is also almost projective. A lattice L ⊂ M is
said to be coprojective if M/L is projective.11 One shows that in this case M/L is
projective and L has finite presentation, so coprojective lattices exist if and only if
M is elementary.

Now let R be commutative. We define a dimension theory (respectively, upper
semicontinuous dimension theory) on an almost projective R-module M to be a rule
that associates to each R-algebra R′ and each coprojective lattice L ⊂ R′ ⊗R M a
locally constant (respectively, an upper semicontinuous) function dL : SpecR′ → Z
in a way compatible with base change and such that dL2 − dL1 = rank(L2/L1) for

10 One can show that this definition is equivalent to the following one: an R-module M is n-
almost projective if a projective resolution of M viewed as a complex in the Calkin category
CKar
R

from Section 3.3.1 is homotopy equivalent to a direct sum of an object of CKar
R

and a

complex C· in CKar
R

such that Ci �= 0 only for i ≤ −n.
11 One can show that if M is 2-almost projective this is equivalent to M/L being flat.
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any pair of coprojective lattices L1 ⊂ L2 ⊂ R′ ⊗R M . The notion of dimension
theory (or upper semicontinuous dimension theory) does not change if one considers
only étale R-algebras instead of arbitrary ones. Dimension theories on an almost
projective R-module M form a Z-torsor for the Nisnevich topology of SpecR, which
is denoted by DimM . One defines the canonical upper semicontinuous dimension
theory dcan on M by dcan

L (x) := dimKx (Kx ⊗R′ L), where R′ is an R-algebra,
L ⊂ R′ ⊗R M is a coprojective lattice, x ∈ SpecR′, and Kx is the residue field
of x. An upper semicontinuous dimension theory on M is the same as an upper
semicontinuous section of DimM , by which we mean a Z-antiequivariant morphism
from the Z-torsor DimM to the sheaf of upper semicontinuous Z-valued functions on
SpecR. Clearly, dcan is a true (i.e., locally constant) section of DimM if and only if
the quotient of M modulo the nilradical I ⊂ R is projective over R/I . In this case
dcan defines a trivialization of DimM .

If N is a Tate R-module and L ⊂ N is an open bounded submodule then the
dimension torsor of the almost projective module N/L canonically identifies with
that of N .

5 Finer points: Determinants and the canonical central extension

Section 5.6 (in which we discuss the canonical central extension of the automorphism
group of an almost projective module) is the only part of this section used in the rest of
the article, namely, in Section 7. Therefore, some readers (especially those interested
primarily in spaces of formal loops and refined motivic integration) may prefer to
skip this section. But it contains an interesting (though slightly vague) picture, which
I learned from A. Beilinson (see Section 5.5).

In Sections 5.1–5.4 we follow [BBE, Section 2]. In particular, we combine the
dimension torsor and the determinant gerbe into a single object, which is a Torsor
over a certain Picard groupoid (these notions are defined below). The reason why
it is convenient and maybe necessary to do this is explained in Section 5.3. Our
terminology is slightly different from that of [BBE], and our determinant Torsor is
inverse to that of [BBE].

5.1 Terminology

According to [Del, Section 1.4], a Picard groupoid is a symmetric monoidal category
A such that all the morphisms of A are invertible and the semigroup of isomorphism
classes of the objects of A is a group. A Picard groupoid is said to be strictly com-

mutative if for every a ∈ Ob A the commutativity isomorphism a ⊗ a
∼−→ a ⊗ a

equals ida . As explained in [Del, Section 1.4], there is also a notion of sheaf of Picard
groupoids (champ de catégories de Picard) on a site.

We will work with the following simple examples.

Examples. For a commutative ring R we have the Picard groupoid PicR of invertible
R-modules and the Picard groupoid PicZ

R of Z-graded invertibleR-modules (the latter
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is not strictly commutative because we use the “super’’ commutativity constraint
a ⊗ b 
→ (−1)p(a)p(b)b ⊗ a). For a scheme S denote by PicZ

S (respectively, PicS)
the sheaf of Picard groupoids on the Nisnevich site of S formed by Z-graded invertible
OS-modules (respectively, plain invertible OS-modules, also known as O×S -torsors).

We need more terminology. An action of a monoidal category A on a category C is
a monoidal functor from A to the monoidal category Funct(C, C) of functors C → C.
Suppose A acts on C and C′, i.e., one has monoidal functors ' : A → Funct(C, C)
and '′ : A → Funct(C′, C′). Then an A-functor C → C′ is a functor F : C → C′
equipped with isomorphismsF'(a)

∼−→ '′(a)F satisfying the natural compatibility
condition (the two ways of constructing an isomorphism

F'(a1 ⊗ a2)
∼−→ '′(a1 ⊗ a2)F

must give the same result). An A-equivalence C → C′ is an A-functor C → C′ which
is an equivalence.

There is also an obvious notion of action of a sheaf of monoidal categories A on a
sheaf of categories C, and given an action of A on C and C′ there is an obvious notion
of A-functor C → C′ and A-equivalence C → C′.

Definition. Let A be a sheaf of Picard groupoids on a site. A sheaf of categories C
equipped with an action of A is an A-Torsor if it is locally A-equivalent to A.

Remark. The notion of Torsor makes sense even if A is nonsymmetric. But A has to
be symmetric if we want to have a notion of product of A-Torsors.

5.2 The determinant Torsor

Let R be a commutative ring, S := SpecR. Slightly modifying the construction
of [Ka3], we will associate a Torsor over PicZ

S to an almost projective R-module
M . Recall that a coprojective lattice L ⊂ M is a finitely generated submodule such
that M/L is projective. The set of coprojective lattices L ⊂ M will be denoted by
G(M). In general, G(M) may be empty, and it is not clear if every L1, L2 ∈ G(M)

are contained in some L ∈ G(M). But it follows from Theorem 4.2(ii) that these
properties hold after Nisnevich localization (to show that every L1, L2 ∈ G(M) are
Nisnevich-locally contained in some coprojective lattice apply statement (ii) or (iii)
of Theorem 4.2 to M/(L1+L2)). In other words, for every x ∈ SpecR the inductive
limit of G(R′ ⊗R M) over the filtering category of all étale R-algebras R′ equipped
with an R-morphism x → SpecR′ is a nonempty directed set.

For each pair L1 ⊂ L2 in G(M) one has the invertible R-module det(L2/L1). It
is equipped with a Z-grading (the determinant of an n-dimensional vector space has
grading n).

Definition. A determinant theory on M (respectively, a weak determinant theory on
M) is a rule � which associates to each R-algebra R′ and each L ∈ G(R′ ⊗R M) an
invertible graded R′-module �(L) (respectively, an invertible R′-module �(L)) to
each pair L1 ⊂ L2 in G(R′ ⊗R M) an isomorphism
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�L1L2 : �(L1)⊗ det(L2/L1)
∼−→ �(L2), (5.1)

and to each morphism f : R′ → R′′ of R-algebras a collection of base change
morphisms �f = �f,L′ : �(L′) → �(R′′L′), L′ ∈ G(R′ ⊗R M). These data
should satisfy the following conditions:

(i) every �f,L′ induces an isomorphism R′′ ⊗R′ �(L′) ∼−→ �(R′′L′);
(ii) �f2f1 = �f2�f1 ;
(iii) the isomorphisms (5.1) commute with base change;
(iv) for any triple L1 ⊂ L2 ⊂ L3 in G(R′ ⊗R M), the obvious diagram

�(L1)⊗ det(L2/L1)⊗ det(L3/L3)
∼−→ �(L1)⊗ det(L3/L1)⏐� ⏐�

�(L2)⊗ det(L3/L2)
∼−→ �(L3)

commutes.

Remark. It follows from Theorem 4.2(ii) that the notion of (weak) determinant theory
does not change if one considers only étale R-algebras instead of arbitrary ones.

The groupoid of all determinant theories on M is equipped with an obvious action
of the Picard groupoid PicZ

R of invertible Z-graded R-modules: P ∈ PicZ
R sends �

to P�, where (P�)(L) := P ⊗R �(L).
Determinant theories on R′ ⊗R M for all étale R algebras R′ form a sheaf of

groupoids DetM on the Nisnevich site of S := SpecR, which is equipped with an
action of the sheaf of Picard groupoids PicZ

S . It follows from Theorem 4.2(ii) that
DetM is a Torsor over PicZ

S . We call it the determinant Torsor of M .
If M is a Tate module (rather than an almost projective one), then the above

definition of determinant theory and determinant Torsor still applies (of course, in this
case the words “coprojective lattice’’ should be understood in the sense of Section 3.2
and ⊗ should be replaced by ⊗̂). If M is an almost projective or Tate module and
L ⊂ M is a lattice, then M/L is almost projective and DetM/L canonically identifies
with DetM .

Remark. Consider the category whose set of objects is Z and whose only morphisms
are the identities. We will denote it simply by Z. Addition of integers defines a functor
Z × Z → Z, so Z becomes a Picard groupoid. We have a canonical Picard functor
from PicZ

S to the constant sheaf Z of Picard groupoids: an invertible OS-module
placed in degree n goes to n. The Z-torsor corresponding to the PicZ

S -Torsor DetM
is the dimension torsor DimM from Sections 3.5 and 4.3.

5.3 On the notion of determinant gerbe

We also have the forgetful functor from the category of Z-graded invertibleR-modules
to that of plain invertible R-modules and the corresponding functor F : PicZ

S →
PicS . Notice that F is a monoidal functor, but not a Picard functor. Applying
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F to the PicZ
S -Torsor DetM one gets a PicS-Torsor, which is the same as an O×S -

gerbe.12 This is the determinant gerbe considered by Kapranov [Ka3] and mentioned
in Section 3.6. Its sections are weak determinant theories. As F does not commute
with the commutativity constraint, there is no canonical equivalence between the
O×S -gerbe corresponding to a direct sum of almost projective modules Mi , i ∈ I ,
Card I <∞, and the product of the O×S -gerbes corresponding to Mi , i ∈ I (but there
is an equivalence which depends on the choice of an ordering of I ). This is the source
of the numerous signs in [ACK] and the reason why we prefer to consider Torsors
over PicZ

S rather than pairs consisting of an O×S -gerbe and a Z-torsor (as Kapranov
does in [Ka3]).

5.4 Fermion modules, determinant theories, and co-Sato Grassmannian

We follow [BBE, Sections 2.14–2.15] (in particular, see [BBE, Remark (iii) at the
end of Section 2.15]).

5.4.1 Fermion modules and weak determinant theories

Fix a Tate R-module M . Let Cl(M ⊕M∗) denote the Clifford algebra of M ⊕M∗.
Define a Clifford module to be a module V over Cl(M⊕M∗) such that for any v ∈ V

the set {a ∈ M ⊕M∗|av = 0} is open in M ⊕M∗. A Clifford module V is said to
be a fermion module13 if V is fiberwise irreducible and projective over R.

If V is a fermion module and L ⊂ M is a coprojective lattice, let �V (L) denote
the annihilator of L ⊕ L⊥ ⊂ M ⊕M∗ in V . As explained in [BBE], �V (L) is a
line in V (i.e., a direct summand of V which is an invertible R-module) and �V

is a weak determinant theory: if L1 ⊂ L2 ⊂ M are coprojective lattices, then the
isomorphism (5.1) comes from the composition

∧r
L2 → ∧

M → Cl(M ⊕M∗),
where r is the rank of L2/L1 and

∧
M is the exterior algebra of M . Thus one gets a

functor V 
→ �V from the groupoid of fermion modules to that of weak determinant
theories. As explained in [BBE], it is an equivalence: to construct the inverse functor
� 
→ V� one first constructs V� Nisnevich-locally, then glues the results of the local
constructions, and finally uses Theorem 2.1 to prove thatV� is a projectiveR-module.

The equivalences V 
→ �V and � 
→ V� are compatible with the actions of the
groupoid PicR of invertible R-modules.

5.4.2 Graded fermion modules and determinant theories

As explained in [BBE], the fermion module V� corresponding to a weak determinant
theory� is equipped with a T -grading, where T is the dimension torsor ofM . Given a
12 This follows from the definitions, but also from the Grothendieck-Deligne dictionary men-

tioned in Section 5.5 (the complex of sheaves of abelian groups corresponding via this
dictionary to the sheaf of Picard categories PicS is O×

S
[1], i.e., O×

S
placed in degree −1).

13 Motivation of the name: if M is a discrete projective R-module then fermion modules have
the form (

∧
M) ⊗R L with L being an invertible R-module. Here

∧
M is the exterior

algebra of M .
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determinant theory on M rather than a weak determinant theory one gets a Z-grading
on the fermion module compatible with the Z-grading of Cl(M ⊕ M∗) for which
M has degree 1 and M∗ has degree −1. Thus DetM identifies with the groupoid of
Z-graded fermion modules.

5.4.3 The Plücker embedding of the co-Sato Grassmannian

The co-Sato Grassmannian GrasM of a Tate R-module M was defined in Section 3.7.
Now suppose that the determinant gerbe ofM is trivial and fix a weak determinant the-
ory � on M . Then we get a line bundle A� on GrasM whose fiber over a coprojective
lattice L equals �(L).

On the other hand, we have the fermion module V = V� such that �=�V (see
Section 5.4.1). Assigning to a coprojective lattice L the line �V (L) one gets a
morphism i : GrasM → P, where P is the ind-scheme of lines in V . As explained by
Plücker, i is a closed embedding.

Clearly, A� = i∗O(−1).

5.5 A somewhat vague picture

5.5.1 The picture I learned from Beilinson

Let S be a spectrum in the sense of algebraic topology. We put πi(S) := π−i (S)
and define τ≤kS to be the spectrum equipped with a morphism τ≤kS → S such that
πi(τ≤kS) = 0 for i > k and the morphism πi(τ≤kS) → πi(S) is an isomorphism
for i ≤ k. There is a notion of torsor over a spectrum S, which depends only on
τ≤1S. Namely, an S-torsor is a point of the infinite loop space L corresponding
to (τ≤1S)[1] (or equivalently, a morphism from the spherical spectrum to S[1]). A
homotopy equivalence between torsors is a path connecting the corresponding points
of L, so equivalence classes are parametrized by π1(S) := π−1(S).

Beilinson’s first remark: an object of the Calkin category CKar
R (see Section 3.3.1)

defines a point of the infinite loop space corresponding to the K-theory spectrum
K(CKar

R ), and as K(CKar
R ) = K(R))[1] it defines a K(R)-torsor. In particular, an

almost projective R-module M defines a K(R)-torsor, whose class in π−1(K(R)) =
K−1(R) is the class [M] considered in Section 3.3. If R is commutative then by
Thomason’s localization theorem [TT, Section 10.8], K(R) = R�(S,K), where
K is the sheaf of K-theories of OS (this is a sheaf of spectra on the Nisnevich
site of S). So the notion of K(R)-torsor should14 coincide with that of K-torsor.
Both of them should coincide with that of τ≤1K-torsor. By Theorem 3.7, K1 :=
K−1 = 0, so τ≤1K = τ≤0K and therefore we get a morphism τ≤1K = τ≤0K →
K[0,1] := K[−1,0] := τ≥−1τ≤0K. So to an almost projective R-module M there
should correspond a K[0,1]-torsor�M . According to Beilinson, K[0,1] and�M should

14 Here and in what follows, I use the word “should’’ to indicate the parts of the picture that
I do not quite understand (probably due to the fact that I have not learned the theory of
sheaves of spectra).
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identify with PicZ
S and the Torsor DetM from Section 5.2 via the following dictionary,

which goes back to A. Grothendieck and was used in [Del, Sections 1.4–1.5] and in
[Del87, Section 4].

5.5.2 Grothendieck’s dictionary

According to it, a Picard groupoid is essentially the same as a spectrum X with
πi(X) = 0 for i �= 0, 1. More precisely, the following two constructions become
essentially inverse to each other if the first one is applied only to infinite loop spaces
X with πi(X) = 0 for i > 1:

(i) To an infinite loop spaceX one associates its fundamental groupoid�(X) viewed
as a Picard groupoid.15

(ii) To a Picard groupoid one associates its classifying space viewed as an infinite
loop space.16

For strictly commutative Picard groupoids there is a similar dictionary and, more-
over, a precise reference, namely, [Del, Corollary 1.4.17]. The statement from [Del]
is formulated in a more general context of sheaves. It says that a sheaf of strictly
commutative Picard groupoids is essentially the same as a complex of sheaves of
abelian groups with cohomology concentrated in degrees 0 and −1.

Hopefully, there is also a sheafified version of the dictionary in the nonstrictly
commutative case. It should say that a sheaf A of Picard groupoids is essentially the
same as a sheaf of spectra S whose sheaves of homotopy groupsπi vanish for i �= 0, 1
and that the notion of A-Torsor from Section 5.1 is equivalent to that of S-torsor.

5.5.3 Problem: Make the above somewhat vague picture precise

The notion of determinant Torsor is very useful, and its rigorous interpretation in the
standard homotopy-theoretic language of algebraic K-theory would be helpful.

5.6 The central extension for almost projective modules

Let M be an almost projective module over a commutative ring R and M̃ be the
corresponding quasicoherent sheaf on the Nisnevich topology of S := SpecR. Then
the sheaf Aut M := Aut M̃ has a canonical central extension

0 → O×S → Âut M → Aut M → 0. (5.2)
15 If X = �Y the group structure on π0(X) = π1(Y ) lifts to a monoidal category structure

on �(X). If X = �2Z the proof of the commutativity of π0(X) = π2(Z) “lifts’’ to a
braiding on �(X), the “square of the braiding’’ map t : π0(X)× π0(X)→ π1(X) equals
the Whitehead product π2(Z) × π2(Z) → π3(Z), and therefore t vanishes if Z is a loop
space.

16 The classifying space BA of any symmetric monoidal category A is a �-space (see [Seg])
or if you prefer, an E∞ space (see [M]). So if every object of A is invertible (i.e., if π0(BA)

is a group) then BA is an infinite loop space.
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Its definition is similar to that of the Tate central extension of the automorphism group
of a Tate vector space, also known as “Japanese’’ extension (see [Br, Ka3, PS, BBE]).
Namely, if M has a determinant theory �, then Aut M is the sheaf of automorphism
of (M,�). This sheaf does not depend (up to canonical isomorphism) on the choice
of �. This allows one to define Âut M even if � exists only locally.

Now suppose that a group R-scheme G acts on M (i.e., one has a compatible
collection of morphisms G(R′)→ Aut(R′ ⊗R M) for all R-algebras R′). Then (5.2)
induces a canonical central extension of group schemes

0 → Gm → Ĝ→ G→ 0. (5.3)

(One first defines Ĝ as a functor {R-algebras}→{groups} and then notices that Ĝ is
representable because it is a Gm-torsor overG.) IfG is abelian we get the commutator
map G × G → Gm. If M is projective (in particular, if k is a field) the extension
(5.3) canonically splits because in this case there is a canonical determinant theory
on M defined by �(L) = det L. The following example shows that in general the
extension (5.3) can be nontrivial.

Example (A. Beilinson). Let k be a field, R = k[ε]/(ε2). Fix g ∈ k((t)); then Lg :=
R[[t]] + εgR[[t]] is a lattice in the Tate R-module R((t)). Put M := R((t))/Lg .
Let G1 denote the multiplicative group of R[[t]] viewed as a group scheme over R.
On M we have the natural action of G1 and also the action of Ga such that c ∈ Ga

acts as multiplication by 1 + cεg. So G := G1 × Ga acts on M . The theory of the
Tate extension (see, e.g., [BBE, Section 3]) tells us that in the corresponding central
extension (5.3) the commutator of c ∈ Ga and u ∈ R[[t]]× equals cε · res(u · dg).
So the extension (5.3) is not commutative if dg �= 0.

Remarks.

(i) To define the central extension (5.3), it suffices to have an action of G on M as an
object of the Calkin category CKar defined in Section 3.3.1 (see [BBE, Section 2]
for more details). Of course, in this setting the extension (5.3) may be nontrivial
even if R is a field.

(i′) One can define the extension (5.3) ifG is any group-valued functor on the category
of R-algebras (e.g, a group ind-scheme).

(ii) As explained in [BBE], the canonical central extension of the automorphism
group of a Tate vector space should rather be considered as a “superextension’’
(this is necessary to formulate the compatibility between the extensions corre-
sponding to the Tate spaces T1, T2 and T1⊕T2). The same is true for the canonical
central extension of the automorphism group of an object of the Calkin category
CKar. But in the case of an almost projective module M “super’’ is unneces-
sary because any automorphism of M has degree 0, i.e., preserves the dimension
torsor (this follows from the existence of the canonical upper semicontinuous
dimension theory on M; see Section 4.3).
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6 Applications to spaces of formal loops. “Refined’’ motivic
integration

In this section all rings and algebras are assumed to be commutative. We fix a ring k.
Starting from Section 6.4 we suppose that k is a field.

6.1 A class of schemes

We will use the following notation for affine spaces:

AI := Spec k[xi]i∈I , A∞ := AN.

We say that a k-scheme is nice if it is isomorphic to X×AI , where X is of finite
presentation over k (the set I may be infinite). An affine scheme is nice if and only if
it can be defined by finitely many equations in a (not necessarily finite-dimensional)
affine space.

Definition. A k-scheme X is locally nice (respectively, Zariski-locally nice, étale-
locally nice) if it becomes nice after Nisnevich localization (respectively, Zariski or
étale localization). X is differentially nice if for every open affine SpecR ⊂ X the
R-module �1

R := �1
R/k is 2-almost projective.

By Theorem 4.2(i) étale-local niceness implies differential niceness. I do not
know if étale-local niceness implies local niceness. Local niceness does not imply
Zariski-local niceness (see Section 6.2 below).

For a differentially nice k-scheme X one defines the dimension torsor DimX:
if X is an affine scheme SpecR, then DimX is the dimension torsor of the almost
projective R-module �1

R , and for a general X one defines DimX by gluing together
the torsors DimU for all open affine U ⊂ X. If X′ ⊂ X is a closed subscheme defined
by finitely many equations and X is differentially nice, then X′ is; in this situation
DimX′ canonically identifies with the restriction of DimX to X′.

In the next subsection we will see that the dimension torsor of a locally nice k-
scheme may be nontrivial, and on the other hand, there exists a locally nice k-scheme
with trivial dimension torsor which is not Zariski-locally nice.

6.2 Examples

(i) Define i : A∞ → A∞ by i(x1, x2, . . . ) := (0, x1, x2, . . . ). Take A1 × A∞
and then glue (0, x) ∈ A1 × A∞ with (1, i(x)) ∈ A1 × A∞. Thus one gets
a locally nice k-scheme X whose dimension torsor is nontrivial and even not
Zariski-locally trivial.

(ii) Let M be an almost projective module over a finitely generated algebra R over
a Noetherian ring k. Let X denote the spectrum of the symmetric algebra of M .
Then X is locally nice. This follows from Theorem 4.2(ii) and the next theorem,
which is due to H. Bass [Ba2, Corollary 4.5].
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Theorem 6.1. If R is a commutative Noetherian ring whose spectrum is connected,
then every infinitely generated projective R-module is free.

It is easy to deduce from Theorem 6.1 that X is Zariski-locally nice if and only
if the class of M in K−1(R) vanishes locally for the Zariski topology (to prove the
“only if’’ statement consider the restriction of �1

X to the zero section SpecR ↪→ X).
If R and M are as in (3.1), then we get the above Example (i).

(iii) There exists a locally nice scheme X over a field k which is not Zariski-locally
nice but has trivial dimension torsor.17 According to (ii), to get such an example
it suffices to find a finitely generated k-algebra R and an almost projective R-
module M such that H 1

ét(SpecR,Z) = 0 but the class of M in K−1(R) is not
Zariski-locally trivial. [We3, Section 6] contains examples of finitely generated
normal k-algebras R with K−1(R) �= 0. In each of them SpecR has a unique
singular point x, and according to [We1], the map K−1(R) → K−1(Rx) is an
isomorphism. Now take any nonzero element of K−1(R) and represent it as a
class of an almost projective R-module M .

6.3 Generalities on ind-schemes

The key notions introduced in this subsection are those of reasonable, T-smooth, and
Tate-smooth ind-scheme (see Sections 6.3.3–6.3.7).

6.3.1 Definition of ind-scheme and formal scheme

Functors from the category of k-algebras to that of sets will be called “spaces.’’ For
example, a k-scheme can be considered as a space. Subspace means “subfunctor.’’
A subspace Y ⊂ X is said to be closed if for every (affine) scheme Z and every
f : Z → X the subspace Z ×X Y ⊂ Z is a closed subscheme.

Let us agree that an ind-scheme is a space which can be represented as lim−→Xα ,

where {Xα} is a directed family of quasi-compact schemes such that all the maps
iαβ : Xα → Xβ , α ≤ β, are closed embeddings. (Notice that if the same space
can also be represented as the inductive limit of a directed family of quasi-compact
schemes X′β then each X′β is contained in some Xα and each Xα is contained in some
X′β .) If X can be represented as above so that the set of indices α is countable, then X

is said to be an ℵ0-ind-scheme. If P is a property of schemes stable under passage to
closed subschemes then we say that X satisfies the ind-P property if each Xα satisfies
P . For example, one has the notion of ind-affine ind-scheme and that of ind-scheme
of ind-finite type.

Set Xred := lim−→Xα red; an ind-scheme X is said to be reduced if Xred = X.

17 In Section 6.13.3 we will see that one can get such X from the loop space of a smooth affine
manifold.
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6.3.2 O-modules and pro-O-modules on ind-schemes

A pro-module over a ring R is defined to be a pro-object18 of the category of R-
modules. We identify the category of Tate R-modules with a full subcategory of the
category of pro-R-modules by associating to a Tate R-module the projective system
formed by its discrete quotient modules.

An O-module (respectively, a pro-O-module) P on a space X is a rule that assigns
to a commutative algebra A and a point φ ∈ X(A) an A-module (respectively, a pro-
A-module) Pφ , and to any morphism of algebras f : A → B a B-isomorphism

fP : B⊗f Pφ
∼−→ Pfφ in a way compatible with composition of f s. An O-module

on a scheme Y is the same as a quasicoherent sheaf of OY -modules, and an O-module
P on an ind-scheme X = lim−→Xα is the same as a collection of O-modules PXα on

Xα together with identifications i∗αβPXβ = PXα for α ≤ β that satisfy the obvious
transitivity property.

A pro-O-module is said to be a Tate sheaf if for each φ as above the pro-module
Pφ is a Tate module.

The cotangent sheaf �1
X of an ind-scheme X = lim−→Xα is the pro-O-module

whose restriction to each Xα is defined by the projective system i∗αβ�1
Xβ

, β ≥ α (here
iαβ is the embedding Xα → Xβ ).

6.3.3 The notion of reasonable ind-scheme

The following definitions are due toA. Beilinson. Aclosed quasi-compact subscheme
Y of an ind-scheme X is called reasonable if for any closed subscheme Z ⊂ X

containing Y the ideal of Y in OZ is finitely generated. Notice that reasonable
subschemes of X form a directed set. An ind-scheme X is reasonable if X is the
union of its reasonable subschemes, i.e., if it can be represented as lim−→Xα , where all

Xα’s are reasonable.
Any scheme is a reasonable ind-scheme. A closed subspace of a reasonable ind-

scheme is a reasonable ind-scheme. The product of two reasonable ind-schemes is
reasonable. The completion of any ind-scheme along a reasonable closed subscheme
is a reasonable ind-scheme.

6.3.4 Main example: ind-scheme of formal loops

Let Y be an affine scheme overF := k((t)). Define a functor LY from the category of
k-algebras to that of sets by LY (R) := Y (R⊗̂F), R⊗̂F := R((t)). It is well known
and easy to see that LY is an ind-affine ind-subscheme. This is the ind-scheme of
formal loops of Y . If Y is an affine scheme of finite type over F , then LY is a
reasonable ℵ0-ind-scheme.

18 A nice exposition of the theory of pro-objects and ind-objects of a category is given in [GV,
Section 8]. See also [AM, Appendix].
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6.3.5 Formal schemes

We define a formal scheme to be an ind-scheme X such that Xred is a scheme. An
ℵ0-formal scheme is a formal scheme which is an ℵ0-ind-scheme. The completion
of an ind-scheme Z along a closed subscheme Y ⊂ Z is the direct limit of closed
subschemes Y ′ ⊂ Z such that Y ′red = Yred. In the case of formal schemes we write
“affine’’ instead of “ind-affine.’’ A formal scheme X is affine if and only if Xred is
affine.

Remark. As soon as you compare the above definition of formal scheme with the
one from EGA I you see that they are not equivalent (even in the affine case) but the
difference is not big: an ℵ0-formal scheme in our sense which is reasonable in the
sense of Section 6.3.3 is a formal scheme in the sense of EGA I, and on the other hand,
a Noetherian formal scheme in the sense of EGA I is a formal scheme in our sense.

6.3.6 Formal smoothness

Following Grothendieck ([Gr64], [Gr]), we say that X is formally smooth if for every
k-algebra A and every nilpotent ideal I ⊂ A the map X(A)→ X(A/I) is surjective.
A morphism X→ Y is said to be formally smooth if for every k-algebra k′ and every
morphism Spec k′ → Y the k′-spaceX×Y Spec k′ is formally smooth. Clearly, formal
smoothness of any ind-scheme (respectively, a reasonable ind-scheme) is equivalent
to formal smoothness of its completions along all closed subschemes (respectively,
all reasonable closed subschemes).

Theorem 6.2.

(i) For reasonable formal schemes formal smoothness is an étale-local property.
(ii) A reasonable closed subscheme of a formally smooth ind-scheme is differen-

tially nice.
(iii) If a reasonable ℵ0-ind-scheme X is formally smooth then �1

X is a Tate sheaf (the
notions of cotangent sheaf of an ind-scheme, Tate sheaf, and Mittag–Leffler–Tate
sheaf are defined in Section 6.3.2).

In the case of schemes statement (i) of the theorem was proved by Grothendieck
(cf. [Gr2, Remark 9.5.8]) modulo the conjecture on the local nature of projectivity
(which was proved a few years later in [RG]). The proof of Theorem 6.2 in the general
case is slightly more complicated but based on the same ideas.

6.3.7 T-smoothness and Tate-smoothness

We say that a reasonable ind-scheme X is T-smooth if

(i) every reasonable closed subscheme of X is locally nice;
(ii) X is formally smooth.

A T-smooth ind-scheme X is said to be Tate-smooth if its cotangent sheaf is a Tate
sheaf (according to Theorem 6.2(iii), this is automatic for ℵ0-ind-schemes).
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Remark. In the above definitions we do not require every closed subscheme of X to
be contained in a formally smooth subscheme. It is not clear if this property holds
for L(SL(n)) or for the affine Grassmannian, even though these ind-schemes are
Tate-smooth. See also Remark (ii) from Section 6.4.

6.3.8 Dimension torsor

Let X be a reasonable ind-scheme such that all its reasonable closed subschemes are
differentially nice (by Theorem 6.2(ii) this is true for any formally smooth reasonable
ind-scheme). Then there is an obvious notion of the dimension torsor of X: for each
reasonable closed subscheme Y ⊂ X one has the dimension torsor DimY , and if
Y ′ ⊂ Y are reasonable closed subschemes then DimY ′ identifies with the restriction
of DimY to Y ′.

6.3.9 Relation with the Kapranov–Vasserot theory

The notion of T-smooth ind-scheme is similar to the notion of “smooth locally com-
pact ind-scheme’’ introduced by M. Kapranov and E. Vasserot (see [KV, Defini-
tion 4.4.4]). Neither of these classes of ind-schemes contains the other one. The
theory of D-modules on smooth locally compact ind-schemes developed in [KV]
extends to the class of T-smooth ind-schemes, and the same is true for the Kapranov–
Vasserot theory of de Rham complexes (which goes back to the notion of chiral de
Rham complex from [MSV]). According to A. Beilinson (private communication),
these theories, in fact, extend to the class of formally smooth reasonable ind-schemes,
which contains both “smooth locally compact’’ ind-schemes in the sense of [KV] and
T-smooth ones.

6.4 Loops of an affine manifold

From now on we assume that k is a field (I have not checked if Theorems 6.3 and 6.4
hold for any commutative ring k). So F = k((t)) is also a field. For any affine
F -scheme Y one has the ind-scheme of formal loops LY (see Section 6.3.4).

Theorem 6.3. If an affine F -scheme Y is smooth, then LY is Tate-smooth.

Remarks.

(i) The theorem is not hard. It is only property (i) from the definition of T-smoothness
(see Section 6.3.7) that requires some efforts. See Section 6.7 for more details.

(ii) If Y is a smooth affine F -scheme then by Theorem 6.3 every reasonable closed
subscheme X ⊂ LY is locally nice. But there exist Y and X ⊂ LY as above
such that X is not Zariski-locally nice. One can choose Y and X such that DimX

is not Zariski-locally trivial. But one can also choose Y and X such that DimX is
trivial but X is not Zariski-locally nice. See Section 6.13 for examples of these
situations. According to H. Bass [Ba], K−1 of a regular ring is zero, so in these
examples LY cannot be represented (even Zariski-locally) as the union of an
increasing sequence of smooth closed subschemes.
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In the next subsection we formulate an analog of Theorem 6.3 for affinoid analytic
spaces (this is a natural thing to do in view of Section 6.6).

6.5 Loops of an affinoid space

We will use the terminology from [BGR] (which goes back to Tate) rather than the
one from [Be]. Let F 〈z1, . . . , zn〉 ⊂ F [[z1, . . . zn]] be the algebra of power series
which converge in the polydisk |zi | ≤ 1. As F = k((t)) one has F 〈z1, . . . , zn〉 =
k[z1, . . . , zn]((t)). For every k-algebra R the F -algebra R⊗̂F = R((t)) is equipped
with the norm whose unit ball is R[[t]]. In particular, F 〈z1, . . . , zn〉 is a Banach
algebra. An affinoid F -algebra is a topological F -algebra isomorphic to a quotient
of F 〈z1, . . . , zn〉 for some n. All morphisms between affinoid F -algebras are au-
tomatically continuous (see, e.g., [BGR, Section 6.1.3]). The category of affinoid
analytic spaces is defined to be dual to that of affinoid F -algebras; the affinoid space
corresponding to an affinoid F -algebra A will be denoted by M(A).

For an affinoid analytic space Z = M(A) and a k-algebra R denote by LZ(R)

the set of continuous F -homomorphisms from A to the Banach F -algebra R⊗̂F =
R((t)). It is easy to see that the functor LZ is a reasonable affine ℵ0-formal scheme
in the sense of Sections 6.3.5 and 6.3.3 (and therefore an affine formal scheme in the
sense of EGA I). For example, if Z is the unit disk then LZ is the completion of the
ind-scheme of formal Laurent series along the subscheme of formal Taylor series.

Theorem 6.4. If an affinoid space Z is smooth then the formal scheme LZ is Tate-
smooth. In particular, (LZ)red is a locally nice scheme.

6.6 Theorem 6.3 follows from Theorem 6.4

Let Y = SpecB be a closed subscheme of An = SpecF [z1, . . . , zn]. The ind-
scheme LY is the union of its closed subschemes LNY defined by (LNY)(R) :=
Y (R) ∩ (t−NR[[t]])n ⊂ R((t))n for any k-algebra R. The completion of LY along
LNY identifies with LYN , where YN is the affinoid analytic space defined by

YN :=M(BN), BN := B ⊗F [z1,...,zn] F 〈tNz1, . . . , t
Nzn〉

(in other words, YN is the intersection of Y with the polydisk of radius rn, r :=
|t−1| > 1). Therefore, Theorem 6.3 follows from Theorem 6.4.

6.7 Sketch of the proof of Theorem 6.4

The formal smoothness of LZ follows immediately from the definitions. It is also easy
to describe the cotangent sheaf of LZ. Let A be the affinoid F -algebra corresponding
to Z. Every finite-dimensional vector bundle E on Z defines a Tate sheaf LE on LZ:
if SpecR ⊂ LZ is a closed affine subscheme and f : A→ R((t)) corresponds to the
morphism SpecR ↪→ LZ, then the pullback of LE to SpecR is the Tate R-module
R((t))⊗A �(Z,E). The proof of the next lemma is straightforward.
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Lemma 6.5. The cotangent sheaf of LZ identifies with the Tate sheaf L�1
Z corre-

sponding to the cotangent bundle �1
Z of the analytic space Z.

Corollary. Let SpecR ⊂ LZ be a reasonable closed subscheme. Let M be the
module of global sections of the pullback to SpecR of the Tate sheaf L�1

Z . Then �1
R

is the quotient of the Tate R-module M by some lattice.

It remains to show that a reasonable closed subscheme SpecR ⊂ LZ is locally
nice. It easily follows from the above corollary and Theorem 3.4 that after Nisnevich
localization �1

R becomes a direct sum of a free module and a module of finite presen-
tation. This is a linearized version of local niceness. To deduce local niceness from
its linearized version one works with the implicit function theorem.

6.8 The renormalized dualizing complex

Fix a prime l �= char k. Let Db
c (X,Zl ) denote the appropriately defined bounded

constructible l-adic derived category on a scheme X (see [E, Ja]). For a general
locally nice k-scheme X there is no natural way to define the dualizing complex
KX ∈ Db

c (X,Zl ). Indeed, if X is the product of A∞ and a k-scheme Y of finite type
and if π : X → Y is the projection, then KX should equal π∗KY ⊗ (Zl[2](1))⊗∞,
which makes no sense. But suppose that the dimension Z-torsor DimX is trivial
and that we have chosen its trivialization η. Then one can define the renormalized
dualizing complex K

η
X ∈ Db

c (X,Zl ). The definition (which is straightforward) is
given below. The reader can skip it and go directly to Section 6.9.

First assume that X is nice, i.e., there exists a morphism π : X → Y such that
Y is a k-scheme of finite type and X is Y -isomorphic to Y × AI for some set I . Let
CX be the category of all such pairs (Y, π). A morphism f : (Y, π) → (Y ′, π ′) is
defined to be a morphism f : Y → Y ′ such that π ′ = fπ . Such an f is unique if it
exists. The category CX is equivalent to a directed set. So to define K

η
X it suffices to

define a functor
CX → Db

c (X,Zl ), (Y, π) 
→ K
η,π
X (6.1)

which sends all morphisms to isomorphisms.
If (Y, π) ∈ CX, then π∗�1

Y ⊂ �1
X is locally of finite presentation and �1

X/π
∗�1

Y

is locally free. So for every open affine U ⊂ X one has the coprojective lattice
�(U, π∗�1

Y ) ⊂ �(U,�1
X) and therefore a section of the torsor DimX over U . These

sections agree with each other, so we get a global section ηπ of DimX. Put

m := ηπ − η ∈ H 0(X,Z), (6.2)

K
η,π
X := π∗KY ⊗ (Zl[2](1))⊗m, (6.3)

Now let f : (Y, π) → (Y ′, π ′) be a morphism. One easily shows that f : Y → Y ′
is smooth,19 so one has a canonical isomorphism

19 Choosing a section Y → X one sees that Y is Y ′-isomorphic to a retract of Y ′ × AJ for
some J . So f is formally smooth and therefore smooth.
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KY
∼−→ f ∗KY ′ ⊗ (Zl[2](1))⊗d , (6.4)

where d is the relative dimension of Y over Y ′. It is easy to see that π∗d = ηπ ′ −ηπ ,

so (6.4) induces an isomorphism αf : Kη,π
X → K

η,π ′
X . We define (6.1) on morphisms

by f 
→ αf .
So we have defined K

η
X if X is nice. The formation of Kη

X commutes with étale
localization of X. It is easy to see that Exti (Kη

X,K
η
X) = 0 for i < 0. So by [BBD,

Theorem 3.2.4] there is a unique way to extend the definition of Kη
X to all étale-locally

nice k-schemes X so that the formation of Kη
X still commutes with étale localization.

6.9 R�c of a locally nice scheme

Suppose we are in the situation of Section 6.8, i.e., we have a locally nice k-scheme
X, a trivialization η of its dimension torsor, and a prime l �= char k. Assume that X
is quasicompact and quasiseparated. Then we put

R�η
c (X ⊗ k̄,Zl ) := R�(X ⊗k k̄, K

η
X)
∗, (6.5)

where K
η
X is the renormalized dualizing complex defined in Section 6.8. R�

η
c (X ⊗

k̄,Zl ) is an object of Db
c (Spec k,Zl ), i.e., of the appropriately defined bounded con-

structible derived category of l-adic representations of Gal(ks/k), where ks is a
separable closure of k.

Problems.

(1) Define an object of the triangulated category of k-motives [VSF, VMW] whose
l-adic realization equals R�

η
c (X ⊗ k̄,Zl ) for each l �= char k (Voevodsky says

this can probably be done).
(2) Now suppose that the determinant gerbe of X is trivial and we have fixed its

trivialization ξ . Can one canonically lift R�
η
c (X ⊗ k̄,Zl ) to an object of the

motivic stable homotopy category depending on η and ξ? Or at least, can one
canonically lift R�

η
c (X ⊗ k̄,Ql ) to an object of the motivic stable homotopy

category tensored by Q? (The motivic stable homotopy category, also known as
A1 stable homotopy category, was defined in [Vo]). The reason why ξ is assumed
to exist and to be fixed: if k = R this allows us to define R�

η,ξ
c (X(R),Z).

6.10 “Refined’’ motivic integration

Suppose that in the situation of Theorem 6.4 the canonical bundle det �1
Z is trivial.

Choose a trivialization of det �1
Z , i.e., a differential form ω ∈ H 0(Z, det �1

Z) with
no zeros. By Theorem 6.4, the scheme X := (LZ)red is locally nice. By Section 3.9
and the corollary of Lemma 6.5, our trivialization of det �1

Z induces a trivialization
η of the dimension torsor Dim X. We put∫

Z

|ω| := R�η
c (X,Zl ) ∈ Db

c (Spec k,Zl ), (6.6)

where R�
η
c (X,Zl ) is defined by (6.5). Clearly,

∫
Z
|ω| does not depend on the choice

of X.
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6.11 Comparison with usual motivic integration

In the situation of Section 6.10 (i.e., integrating a holomorphic form with no zeros
over an affinoid domain) the usual motivic integral [Lo] belongs to Mk := M ′

k[L−1],
where M ′

k is the Grothendieck ring of k-varieties20 and L ∈ M ′
k is the class of the

affine line. Its definition can be reformulated as follows.
Given a connected nice k-scheme X and a trivialization η of its dimension torsor

one chooses π : X → Y as in Section 6.8, defines m ∈ H 0(X,Z) = Z by (6.2) and
puts [X]η := [Y ]Lm ∈ Mk . If X is any quasicompact quasiseparated locally nice
k-scheme, choose closed subschemes X = F0 ⊃ F1 ⊃ · · · ⊃ Fn = ∅ so that each Fi

is defined by finitely many equations and Fi \ Fi+1 is nice and connected; then put
[X]η :=∑

i[Fi \ Fi+1]η. Finally, in the situation of Section 6.10, one puts(∫
Z

|ω|
)

usual
:= [X]η ∈ Mk. (6.7)

Clearly, (6.7) is well defined, and the images of (6.7) and (6.6) inK0(D
b
c (Spec k,Zl ))

are equal. So (6.7) and (6.6) can be considered as different refinements of the same
object of K0(D

b
c (Spec k,Zl )). Unless the map Mk → K0(D

b
c (Spec k,Zl )) is injec-

tive (which seems unlikely), the “refined’’motivic integral (6.6) cannot be considered
as the refinement of the usual motivic integral (6.7). This is why I am using quotation
marks.

6.12 Remark

Our definition of “refined’’ motivic integration works only in the case of integrating
a holomorphic form with no zeros over an affinoid domain (which is probably too
special for serious applications).

On the other hand, in an unpublished manuscript V. Vologodsky defined a different
kind of “refined motivic integration’’ in the case of K3 surfaces. More precisely, let
ω �= 0 be a regular differential form on a K3 surface X over F = k((t)), char k = 0.
Let A denote the Grothendieck ring of the category of Grothendieck motives over k,
and let In denote the motivic integral of ω over X ⊗F k((t1/n)) viewed as an object
of A⊗Q. Vologodsky defined objects M1,M2,M3 of the category of Grothendieck
motives so that In is a certain linear combination of the classes of M1,M2,M3. The
objects M1,M2,M3 depend functorially on (X, ω). His definition of M1,M2,M3 is
mysterious.

6.13 Counterexamples

Here are the examples promised in Remark (ii) of Section 6.4.
20 M ′

k
is generated by elements [X] corresponding to isomorphism classes of k-schemes of

finite type, and the defining relations are [X] = [Y ] + [X \ Y ] for any k-scheme X of finite
type and any closed subscheme Y ⊂ X. In particular, these relations imply that [X] depends
only on the reduced subscheme corresponding to X.
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6.13.1 Not Zariski-locally trivial dimension torsor

Put Y := (P1 × P1) \ �f , where P1 is the projective line over F := k((t)) and �f is
the graph of a morphism f : P1 → P1 of degree n > 0. Clearly, Y is affine, and

det �1
Y = p∗1O(−2)⊗ p∗2O(−2) = p∗1O(2n− 2), (6.8)

where p1, p2 : Y → P1 are the projections. We claim that if n > 1, then the dimen-
sion torsor of LY is not Zariski-locally trivial. Moreover, there exists a morphism
φ : SpecR → LY , R := {f ∈ k[x]|f (0) = f (1)}, such that φ∗ DimLY is not
Zariski-locally trivial. One constructs φ as follows. Consider the R((t))-module M

defined by (3.1). One can represent M as a direct summand of R((t))2. Indeed, the
R((t))-module

{u = u(x, t) ∈ k[x]((t))2 | u(1, t) = A(t)u(0, t)}, A(t) :=
(
t 0
0 t−1

)
is isomorphic to R((t))2 because there exists A(x, t) ∈ SL(2, k[x, t, t−1]) such that
A(0, t) is the identity matrix and A(1, t) = A(t) (to find A(x, t) represent A(t) as
a product of elementary matrices). Representing M as a direct summand of R((t))2

one gets a morphism
g : SpecR((t))→ P1. (6.9)

As p1 : Y → P1 is a locally trivial fibration with fiber A1, one can represent g
as p1ϕ for some ϕ : SpecR((t)) → Y . Let φ : SpecR → LY be the morphism
corresponding to ϕ. By (6.8) and the corollary of Lemma 6.5, the Z-torsor φ∗ DimLY

canonically identifies with the dimension torsor of M⊗(2n−2). In particular, φ has the
desired property, i.e., φ∗ DimLY is not Zariski-locally trivial.

The class of φ∗ DimLY in H 1
ét(SpecR,Z) is not a generator of this group (using

(6.8) and the morphism (3.10) one sees that it equals (2n−2)v, where v is a generator).
Below we construct a slightly different pair (Y, φ : SpecR → LY ) such that the class
of φ∗ DimLY in H 1

ét(SpecR,Z) is a generator.

6.13.2 Modification of the above example

Let Y be the space of triples (v, l, l′), where l, l′ are transversal one-dimensional
subspaces in F 2 and v ∈ l. Then there exists a morphism φ : SpecR → LY ,
R := {f ∈ k[x]|f (0) = f (1)}, such that the class of the Z-torsor φ∗ DimLY is a
generator of H 1

ét(SpecR,Z).
More precisely, defineπ : Y → P1 byπ(v, l, l′) := l, let g̃ : SpecR((t))→ Y be

such that πg̃ equals (6.9), and let φ : SpecR → LY be the morphism corresponding
to g̃. Then the class of φ∗ DimLY is a generator of H 1

ét(SpecR,Z).

6.13.3 Any “unpleasant thing’’ can happen

This is what the following theorem essentially says. For example, combining state-
ment (ii) of the theorem with Weibel’s examples mentioned in Section 3.5.4, one sees
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that for some smooth affine scheme Y over F = k((t)) with trivial canonical bundle
there exists a reasonable closed subscheme of LY which is not Zariski-locally nice
(even though its dimension torsor is trivial).

Theorem 6.6. Let R be a k-algebra and u ∈ K−1(R).

(i) There exists a smooth affine scheme Y over F = k((t)) and a morphism f :
SpecR → LY such that the pullback of the cotangent sheaf of LY to SpecR has
class u.

(ii) If the image of u in H 1
ét(SpecR,Z) equals 0, then one can choose Y to have

trivial canonical bundle (in this case the dimension torsor of LY is trivial).

Sketch of the proof . Consider schemes Y of the following type21:

Y = Y0 ⊗k F, Y0 = (G× V )/H, G = Aut(km ⊕ kn),

H = Aut km × Aut kn, m, n ∈ N,
(6.10)

whereG andH are viewed as algebraic groups over k andV is a suitable representation
of H . To prove statement (i) of the theorem it suffices to take V = Lie[H,H ]⊕W ∗,
where W is the representation of H in km. To prove (ii) it suffices to take V =
Lie[H,H ] ⊕W ∗ ⊕ det W .

7 Application to finite-dimensional vector bundles on manifolds
with punctures

7.1 The top cohomology

Let R be commutative,22 Sn := SpecR[[t1, . . . , tn]]), 0 ⊂ Sn the subset defined by
the equations t1 = · · · = tn = 0, and S′n := Sn \ 0. Let Vect denote the category of
vector bundles on S′n (of finite rank). For L ∈ Vect write Hi(L) instead of Hi(S′n, L).
The cohomology functors Hi : Vect →{R-modules} vanish for i ≥ n and if n > 1,
then Hn−1 commutes with base change R → R̃, R[[t1, . . . , tn]] → R̃[[t1, . . . , tn]].

Theorem 7.1. If n > 1, then for every L ∈ Vect the R-module Hn−1(S′n,L) is
2-almost projective.

21 The manifold Y from Section 6.13.2 is a particular example of (6.10), in which m = n = 1
and dim V = 1.

22 One can formulate and prove Theorems 7.1–7.3 without the commutativity assumption. In
this case there is no S′n, but one can define a vector bundle on S′n to be a collection of finitely

generated projective modules Pi over SpecR[[t1, . . . , tn]][t−1
i
] with a compatible system

of isomorphisms Pi [t−1
j
] ∼−→ Pj [t−1

i
].
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7.2 Derived version

A. Beilinson explained to me that such a version should exist. Consider Dperf (S′n) =
Kb(Vect) :={homotopy category of bounded complexes in Vect}. We will decom-
pose R� : Kb(Vect)→ D(R) as

Kb(Vect)
(R�)topol−−−−−→ Kb(TR)

Forget−−−→ D(R),

where TR is the category of Tate R-modules. First, we have the derived functor

R� : Kb(Vect)→ D−(R[[t1, . . . , tn]]) = K−(P), (7.1)

where P is the category of projective R[[t1, . . . , tn]]-modules. Second, a projective
module P over R[[t1, . . . , tn]] carries a natural topology (the strongest one such that
all R[[t1, . . . , tn]]-linear maps from finitely generated free R[[t1, . . . , tn]]-modules
to P are continuous), so we get a functor from P to the additive category R -top of
topological R-modules and therefore a functor

K−(P)→ K−(R -top). (7.2)

Theorem 7.2. The composition of (7.1) and (7.2) belongs to the essential image of
Kb(TR) in K−(R -top), so we get a triangulated functor (R�)topol : Kb(Vect) →
Kb(TR). If L ∈ Vect, then (R�)topol(L) ⊂ K[0,n−1](T ).

To formulate the basic properties of (R�)topol we need some notation. Let CKar

denote the Calkin category of R (see Section 3.3.1). Consider the functor Kb(TR)→
Kb(CKar) induced by (3.3). The composition

Kb(Vect)
(R�)topol−−−−−→ Kb(TR)→ Kb(CKar) (7.3)

will be denoted by R�discr, because the image of a Tate R-module T in CKar may be
viewed as the “discrete part’’ of T . One also has the “compact part’’ functor from
TR to the category (CKar)◦ dual to CKar: this is the composition of the dualization
functor TR → T ◦R and the functor T ◦R → (CKar)◦ corresponding to (3.3). So we get
R�comp : Kb(Vect)→ Kb((CKar)◦).

Theorem 7.1 is an easy consequence of statement (i) of the following theorem.

Theorem 7.3.

(i) If L ∈ Vect, then R�discr(L) is an object of CKar placed in degree n− 1.
(ii) If L ∈ Vect, then R�comp(L) is an object of (CKar)◦ placed in degree 0.
(iii) Let ω denote the relative (over R) canonical line bundle on S′n. Then there is

a canonical duality between (R�)topol(L), L ∈ Kb(Vect), and (R�)topol(L∗ ⊗
ω[n− 1]).
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7.3 The dimension torsor corresponding to a vector bundle

Let X = SpecR be an affine scheme of finite type over C. Let Y denote X(C)

equipped with the usual topology. Given a vector bundle L on X× (An \ {0}), n > 1,
one has the R-module M := Hn−1(X× (An \ {0}),L), which is almost projective by
Theorem 7.1. So by Section 4.3 one has the dimension torsor DimM (which can be
viewed as a torsor on Y ) and its canonical upper semicontinuous section dcan. Here
is a geometric description of (DimM, dcan).

(i) Notice that a complex vector bundle of any rank m on the topological space
Cn \ {0} is trivial (because π2n−2(GL(m,C)) = 0), and the homotopy classes of its
trivializations form a torsor over π2n−1(GL(m,C)). One has the natural morphism
π2n−1(GL(m,C)) → π2n−1(GL(∞,C)) = K

top
0 (S2n−2) = Z. So L defines a Z-

torsor TL on Y .
(ii) More generally, a finite complex L· of topological vector bundles on

Y × (Cn \ {0}) defines a Z-torsor TL· :=
∑

i (−1)iTLi , and a homotopy equiva-

lence f : L·1 → L·2 defines an isomorphism TL1

∼−→ TL2 (because the dimension
torsor of Cone(f ) is canonically trivialized). Of course, this isomorphism depends
only on the homotopy class of f . An extension of L· to an object of the homotopy
category of complexes of topological vector bundles on Y×Cn defines a trivialization
of TL· .

(iii) Let L be an algebraic vector bundle on X × (An \ {0}), n > 1. Let j :
An \ {0} → An be the embedding. For each x ∈ X the sheaf j∗Lx is coherent and
has a finite locally free resolution (here Lx is the restriction of L to {x}× (An \ {0})).
So by (ii) one gets a trivialization of TLx

for each x, i.e., a set-theoretical section s

of TL.
(iv) One can show that (TL, s) is canonically isomorphic to (DimM, dcan) (maybe

up to a sign).

7.4 Central extension

Theorem 7.4. LetX be a smooth scheme over S := SpecR of pure relative dimension
n > 1. LetF ⊂ X be a closed subscheme which is finite over S and a locally complete
intersection over S. Let j : X \ F ↪→ X denote the open embedding. Then for any
vector bundle L on X \ F the R-module H 0(X,Rn−1 j∗L) is 2-almost projective.

This easily follows from Theorems 7.1 and 4.2(i).
Now let OF be the ring of regular functions on the formal completion of X along

F . In the situation of Theorem 7.4 H 0(X,Rn−1 j∗L) is an OF -module, so it is
equipped with an action of the group scheme G := O×

F . Therefore, applying (5.3),
one gets a central extension

0 → Gm → ĜL → O×
F → 0. (7.4)
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Remarks.

(i) Suppose that in the situation of Theorem 7.4 L extends to a vector bundle on X.
Then the R-module H 0(X,Rn−1 j∗L) is projective, and therefore the extension
(7.4) canonically splits.

(ii) Suppose that in the situation of Theorem 7.4 F ⊂ F̃ ⊂ X and F̃ satisfies the
same conditions as F . Put L̃ := L|

X\F̃ . Then we have the central extension
(7.4) and a similar central extension

0 → Gm → ĜL̃ → O×
F̃
→ 0. (7.5)

Using the functor (R�)topol from Section 7.2 one can construct a canonical mor-
phism from (7.5) to (7.4) which induces the restriction map O×

F̃
→ O×

F and the
identity map Gm → Gm. If F = ∅ this amounts to Remark (i) above.

7.5 Commutativity theorem

Let cL : O×
F ×O×

F → Gm be the commutator map of the central extension (7.4).

Theorem 7.5. Suppose that in the situation of Theorem 7.4 n = 2. Then cL = 1 if
and only if det L extends to an invertible sheaf on X.

Remarks.

(i) If an extension of det L to an invertible sheaf on X exists, it equals j∗ det L. In
particular, the extension is unique.

(ii) Theorems 7.4 and 7.5 are still true for vector bundles on (SpecOF ) \ F instead
of X \ F .

Question. What is the geometric meaning of cL and the condition cL = 1 if n > 2?

7.6 Generalizing the notion of vector bundle on a surface

LetGbe a reductive group over Q. The moduli scheme ofG-bundles on P2
Q trivialized

over a fixed projective line P1
Q ⊂ P2

Q has a remarkable “Uhlenbeck compactification’’
UG constructed in [FGK, BFG], which goes back to the physical picture of “instanton
gas.’’ It would be very important to interpret UG as a moduli scheme of some kind
of geometric objects.23 These conjectural new objects are, so to speak, “G-bundles
with singularities.’’ I suggest calling them G-gundles. The new word “gundle’’ can
be considered as an abbreviation for “generalized G-bundle.’’ On the other hand, its
first three letters are also the first letters of the names of D. Gaitsgory, V. Ginzburg,
K. Uhlenbeck, and H. Nakajima.24

23 For example, such an interpretation would hopefully allow to define an analog of UG for
any proper smooth surface.

24 Gaitsgory is an author of [FGK, BFG], and the relation of the other three mathematicians
to these articles is explained in the introductions to them.
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It turns out that the central extension (7.4) allows us to give a definition of GL(n)-
gundle on any smooth family of surfaces over any base so that UGL(n) identifies with
the moduli scheme of GL(n)-gundles on P2

Q trivialized over P1
Q.

Let X be a scheme smooth over S of pure relative dimension 2. The definition of
GL(n)-gundle on X consists of several steps. I will only explain the first one and list
the other steps.

7.6.1 Pre-gundles 1

Let F be as in Theorem 7.4.

Definition. A GL(n)-pre-gundle on X nonsingular outside F is a pair that consists
of a rank n vector bundle L on X \ F and a splitting of (7.4). The groupoid of such
pairs will be denoted by Pre-gunF (X).

Remark. If (7.4) admits a splitting, then by Theorem 7.5 det L extends to a line
bundle on X.

7.6.2 Pre-gundles 2

If F , F̃ are as in Theorem 7.4 and F̃ ⊃ F , then one defines a fully faithful functor
Pre-gunF (X)→ Pre-gun

F̃
(X) using Remark (ii) at the end of Section 7.4.

7.6.3 Pre-gundles 3

If X is projective over S, one defines the groupoid of pre-gundles on X to be the
inductive 2-limit of Pre-gunF (X) over all closed subschemes F ⊂ X which are
finite over S and locally complete intersections over S. This groupoid is denoted by
Pre-gun(X), and its objects are called GL(n)-pre-gundles on X.

If X is arbitrary, one first defines Pre-gunF (X) for any subscheme F ⊂ X quasi-
finite over S (a standard étale or Nisnevich localization technique allows one to
reduce this to the case of finite locally complete intersection considered above). Then
one defines Pre-gun(X) to be the inductive 2-limit of Pre-gunF (X) over all closed
subschemes F ⊂ X quasi-finite over S.

7.6.4 Remark

If S is the spectrum of a field, then Pre-gun(X) identifies with the groupoid of pairs
(L, Z) with L being a GL(n)-bundle on X and Z a 0-cycle on X, it being understood
that an isomorphism (L1, Z)

∼−→ (L2, Z) is the same as an isomorphism L1
∼−→ L2

and that there are no isomorphisms (L1, Z1)
∼−→ (L2, Z2) if Z1 �= Z2.

To see this, first notice that for any finiteF ⊂ X a vector bundle onX\F uniquely
extends to X. Second, by Remark (i) from Section 7.4, the central extension (7.4) has
a canonical splitting, so all splittings of (7.4) are parametrized by Hom(O×

F ,Gm),
i.e., by the group of 0-cycles on X supported on F .
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7.6.5 Pre-gundles 4

Let S again be arbitrary. Associating to an S-scheme S′ the groupoid of pre-gundles
on X ×S S′ one gets a (nonalgebraic) S-stack Pre-gunX. This is the stack of GL(n)-
pre-gundles on X.

7.6.6 Gundles

One defines a closed substack GunX ⊂ Pre-gunX, whose formation commutes with
base change S′ → S. Its S-points are called GL(n)-gundles on X.

By Section 7.6.4, if S = Spec k with k being a field, then GL(n)-pre-gundles on
X identify with pairs (L, Z) with L being a GL(n)-bundle on X and Z being a 0-cycle
on X. It turns out that such a pair (L, Z) is a GL(n)-gundle if and only if Z ≥ 0.

Remark. I can define the closed substack GunX ⊂ Pre-gunX using the method of
[FGK, BFG], i.e., by working with various curves on X. Unfortunately, I do not
know a “purely two-dimensional’’ way to do it.

7.6.7 Hope

If X is proper over S, then GunX is an algebraic stack.

7.6.8 Fact

Now let S = Spec Q and X = P2
Q. Fix a projective line P1

Q ⊂ P2
Q, and consider the

open substack U ⊂ GunX parametrizing those gundles which are nonsingular on a
neighborhood of P1 and whose restriction to P1 is trivial. Then U identifies with the
quotient of the “Uhlenbeck compactification’’ UGL(n) from [BFG] by the action25 of
GL(n). In particular, the stack U is algebraic.

Acknowledgments. I thank A. Beilinson, D. Gaitsgory, V. Ginzburg, D. Hirschfeldt, M. Kapra-
nov, D. Kazhdan, A. Suslin, and C. Weibel for stimulating discussions.

Speaking at the “Unity of Mathematics’’ conference (Harvard, 2003) was a great honor
and pleasure for me, and an important stimulus to write this article. I am very grateful to the
organizers of the conference.

This research was partially supported by NSF grants DMS-0100108 and DMS-0401164.

References

[ACK] E. Arbarello, C. De Concini, and V. G. Kac, Infinite wedge representation and the
reciprocity law on algebraic curves, in Theta Functions, Bowdoin 1987, Proceed-
ings of Symposia in Pure Mathematics 49, Part 1, American Mathematical Society,
Providence, RI, 1989, 171–190.

25 GL(n) acts on UGL(n) by changing the trivialization over P1.



Infinite-Dimensional Vector Bundles in Algebraic Geometry 303

[AM] M. Artin and B. Mazur, Etale Homotopy, Lecture Notes in Mathematics 100,
Springer-Verlag, Berlin, New York, Heidelberg, 1969.

[Ba] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
[Ba2] H. Bass, Big projective modules are free, Illinois J. Math., 7 (1963), 24–31.
[BBD] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analyse et topologie

sur les espaces singuliers, Vol. 1, Astérisque 100, Société Mathématique de France,
Paris, 1982.

[BBE] A. Beilinson, S. Bloch, and H. Esnault, Epsilon-factors for Gauss-Manin deter-
minants, Moscow Math, J., 2-3 (2002), 477–532; see also xxx.lanl.gov, e-print
math.AG/0111277.

[Be] V. G. Berkovich. Spectral Theory and Analytic Geometry over Non-Archimedean
Fields, Mathematical Surveys and Monographs 33, American Mathematical Society,
Providence, RI, 1990.

[BFG] A. Braverman, M. Finkelberg, and D. Gaitsgory, Uhlenbeck spaces via affine Lie
algebras, e-print AG/0301176, 2003.

[BGR] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean Analysis: A Systematic
Approach to Rigid Analytic Geometry, Grundlehren der Mathematischen Wissen-
schaften 261, Springer-Verlag, Berlin, 1984.

[Br] J.-L. Brylinski, Central extensions and reciprocity laws, Cahiers Topol. Géom. Dif-
férentielle Catég., 38-3 (1997), 193–215.

[Del] P. Deligne, La formule de dualité globale, in Theorie des topos et cohomologie étale
des schemas (SGA 4), Tome 3, Lecture Notes in Mathematics 305, Springer-Verlag,
Berlin, New York, Heidelberg, 1973, 481–587.

[Del87] P. Deligne, Le déterminant de la cohomologie, in K. A. Ribet, ed., Current Trends in
Arithmetical Algebraic Geometry, Contemporary Mathematics 67, American Math-
ematical Society, Providence, RI, 1987, 93–177.

[Dr] V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry, to appear at
xxx.lanl.gov.

[E] T. Ekedahl, On the adic formalism, in Grothendieck Festschrift, Vol. II, Progress in
Mathematics 87, Birkhäuser Boston, Cambridge, MA, 1990, 197–218.

[FGK] M. Finkelberg, D. Gaitsgory, and A. Kuznetsov, Uhlenbeck spaces for A2 and affine
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Summary. Several examples of quantum systems, obtained after discretization of space-time
in the elementary models of conformal field theory, are considered. The algebraic structure of
the corresponding algebra of observables and deformation of Virasoro symmetry are discussed
and construction of the evolution operator is given.

Subject Classifications: 81R12, 81J40, 37K10

1 Introduction

Integrable evolution equation in (1+ 1)-dimensional space-time (integrable models)
have been the subject of discussion for the last 35 years beginning with the papers
[1, 2]; see the history and references in [3]. Their quantization, which makes sense
due to the inherent Hamiltonian structure, was developed mostly during the 1980s on
the basis of the algebraic Bethe Ansatz (see the survey in [4]) and produced beautiful
algebraic structures, such as the Yang–Baxter relations and quantum groups. These
objects already appeared on the kinematic level of description. In this talk I want
to emphasize lesser-known features connected with dynamics, namely, the evolution
operator in the Heisenberg picture. To this end, I shall use models defined on the
discretized space-time. The mere existence of such integrable deformations is a
result of more recent developments, and I shall give the relevant references below. It
is remarkable that interesting formulas appear even in the examples corresponding in
the continuum limit to the simplest models of conformal field theory. In this case the
evolution operator is a mere shift along the spatial lattice site. However, even here
the exact formulas will be quite instructive.

I begin by recalling the examples in the classical continuous space context, then
describe space discretization and quantization, and finally produce the corresponding
evolution operator. An unexpected new feature—modular doubling—will appear and
I shall briefly discuss it.
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2 Main examples

2.a Abelian current

The field variablep(x) is defined on a circle, representing space, so that the space-time
is S1 × R. To symbolize the circle, we shall use the periodic conditions

p(x + L) = p(x). (1)

The manifold with coordinates p(x) is a phase space with the Poisson bracket

{p(x), p(y)} = γ δ′(x − y), (2)

where δ′(x) is the first derivative of the delta function. The parameter γ plays the
role of the coupling constant. Its relevance will become clear only after quantization.
For the time being, it is a positive real number.

The function

P =
∫ L

0
p(x)dx (3)

is a central element. The submanifold defined by the fixing the value of P is sym-
plectic.

The Hamiltonian

H = 1

2γ

∫ L

0
p2(x)dx (4)

gives a linear equation of motion

ṗ + p′ = 0, (5)

where dot and prime symbolize the time and space derivatives, respectively. The
solution

p(x, t) = p(x − t), (6)

(left mover) shows that the dynamics is just a shift along the space axis.
Let us mention in passing that the first nontrivial integrable equation of motion is

given by the Hamiltonian

H = 1

2γ

∫ L

0

(
1

3
p3(x)+ (p′)2(x)

)
dx, (7)

and it is the famous KdV equation

ṗ + pp′ + p′′′ = 0.

However, in what follows we shall discuss only the first rather trivial example of
dynamics.
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2.b Virasoro algebra

The combination

s(x) = p2(x)+ p′(x) (8)

satisfies the Poisson bracket relation

{s(x), s(y)} = 2γ (s(x)+ s(y))δ′(x − y)+ γ δ′′′(x − y), (9)

which corresponds to the central extension of the algebra of diffeomorphisms on the
circle. In the normalization used in the physics literature the corresponding central
charge is given by

Cclass = 6π

γ
.

The Hamiltonian

H = 1

2γ

∫
s(x)dx,

which evidently coincides with (4), leads to the equation of motion of the left mover

ṡ + s′ = 0. (10)

Let us recall that the quantization of the relations (9) (see, e.g., [5, 6]) leads to the
change of the central charge

Cquant = 1+ 6

(
π

γ
+ γ

π
+ 2

)
= 1+ 6

(
τ + 1

τ
+ 2

)
, τ = γ

π
. (11)

2.c Nonabelian current

Let A be a compact Lie algebra and ta its generators with the structure constants f abc,

[ta, tb] =
∑
c

f abctc,

and normalization,

tr(tatb) = δab.

The dynamical variable L(x) (nonabelian current) has values in A and can be param-
eterized as

L(x) =
∑
a

La(x)ta

by periodic functions La(x), La(x + L) = La(x).
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The Poisson brackets

{La(x), Lb(y)} = γ
∑
c

f abcLc(x)δ(x − y)+ γ δabδ′(x − y) (12)

are the natural generalizations of the relation (2). The Hamiltonian

H = 1

2γ

∫ L

0
tr L2dx = 1

2γ

∫ L

0

∑
a

(La)2dx

leads to the equation of motion of the left mover

L̇+ L′ = 0

[7, 8].
Only these three examples will be used in what follows. Let us stress that they

are connected with the most familiar examples of infinite-dimensional differential-
geometric objects: the Virasoro algebra and Kac–Moody algebra. The variablesp(x),
s(x) andL(x)have a natural geometric interpretation as connections in a vector bundle
(p(x) and L(x)) or a projective connection (s(x)). Thus it is only natural to consider
their quantum counterparts and automorphisms.

3 Discretization and quantization

The space-time variables (x, t) will be replaced by the vertices (n,m) of the lattice.
Here (n,m) are integers and the periodicity condition (1) will be replaced by the
identification

n ≡ n+N.

Thus the space-time turns into ZN × Z. This construction can be thought of as a
deformation of S1 × R with the deformation parameter �—the length of the space-
time unit of separation. The continuum contraction is obtained by the limit � → 0
in the expressions

x = n�, t = m�, L = N�.

The discrete space ZN will be called a chain. The dynamical variables p(x), s(x),
L(x) turn into pn, sn, Ln. The equation of the left mover changes into the shift

gn → gn−1, (13)

where gn stands for pn, sn or Ln.
After quantization the variables gn become generators of the algebra of observ-

ables. The shift (13) becomes an automorphism of this algebra. In the Heisenberg
picture, it is given by the time evolution operator V such that

gnV = Vgn−1.

In what follows we shall give the discrete deformation, quantization and construction
of the operator V for all our three basic examples.
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3.a Abelian current

The generators are comprised of a set of pn, n = 1, . . . N , defined over discrete circle
Zn or on the whole Z with periodicity condition pn+N = pn. The Poisson relation
(2) is replaced by the commutator one

i

�
[pm, pn] = 2γ (δm+1,n − δm,n+1). (14)

Here δm,n is the Kronecker symbol, � is the Planck constant, and the RHS in (14) give
the simplest deformation of the derivative of the δ-function. Relation (14) contracts
to (2) in the limit � → 0, �→ 0 if we put

pn = 2�p(x), x = n�.

It is convenient to introduce the Weyl-type variables

wn = eipn

instead of pn. They have a natural interpretation as the holonomy along one lattice
site for the connection p(x).

The relations (14) lead to the following relations among the wn:

wn−1wn = q2wnwn−1 (15)

and

wnwm = wmwn, |n−m| ≥ 2

with the factor q given by

q = ei�γ .

We see how the coupling constant γ enters together with the quantization constant �.
For real γ the factor q lives on the unit circle

|q| = 1, γ real

and there are two natural involutions for the generators wn: the compact,

w∗n = w−1
n ,

and the noncompact,

w∗n = wn.

The algebra generated by wn is a discrete quantum counterpart of the space of
functions on the phase space of variables p(x). It has one central element (the
analogue of P from (3)),

Q = w1w2 . . . wN,
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for N odd and two,

Q1 = w1w3 . . . wN−1,

Q2 = w2w4 . . . wN,

for N even. The shift wn → wn−1 is an automorphism for N even only if

Q1 = Q2. (16)

Let us turn to the construction of the evolution operator V such that

wnV = Vwn−1 (17)

following [9]. It was shown there that for N even and under the condition (16), it can
be found in the form

V = θ(w1) . . . θ(wN−1), (18)

where the function θ(w) satisfies the functional equation

θ(q2w) = θ(w)

w
(19)

up to a constant factor. Note that expression (18) is an ordered product of local factors
with one factor θ(wN) explicitly omitted.

To check the property (17) for wn with 2 ≤ n ≤ N − 1 is easy. Indeed, for such
wn we have

wnV = θ(w1) . . . wnθ(wn−1)θ(wn) . . . θ(wN−1)

and

Vwn−1 = θ(w1) . . . θ(wn−1)θ(wn)wn−1 . . . θ(wN−1).

Thus the property (17) is satisfied if we have the relation

wnθ(wn−1)θ(wn) = θ(wn−1)θ(wn)wn−1. (20)

Using the main exchange relation (15), we transform this into

θ(q−2wn−1)wnθ(wn) = θ(wn−1)wn−1θ(q
−2wn).

and see that it is satisfied due to equation (19).
The check (17) for w1 is little more elaborate. We have

w1θ(w1) . . . θ(wN−1) = θ(w1)θ(q
2w2)w1θ(w3) . . . θ(wN−1)

= θ(w1)θ(w2)w
−1
2 θ(w3) . . . θ(wN−1)w1

and continuing taking consecutive factors w2m+1 or w2m, m = 1, . . . N−2
2 to the right

finally get
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w1V = V
1

w2w4 . . . wN−2
w1 . . . wN−1 = VwN

if (16) is satisfied. It follows from the last equation that

θ(w1)V = V θ(wN),

and using the explicit form of V , we get the relation

θ(w1) . . . θ(wN−1) = θ(w2) . . . θ(wN). (21)

From this the relation (17) for wN follows as above.
Now we see that (21) is a particular case of the cyclic relations

V = b1b2 . . . bN−1 = b2b3 . . . bN = · · · = bNb1 . . . bN−2, (22)

where we defined

bn = θ(wn).

Furthermore, it follows from (20) that the generators bn satisfy the Artin Braid Group
relations

bn−1bnbn−1 = bnbn−1bn (23)

and

bnbm = bmbn, |n−m| ≥ 2. (24)

It was shown by A. Volkov (mentioned in [10]) that the “global relations’’ (22) and
the “local relations’’ (23) are equivalent if the locality condition (24) is satisfied. The
variables bn, n = 1, . . . N − 1, generate the Braid Group BN−1; the variable bN is a
function of them, which can be found from one of the relations (22).

Thus we have established an intimate connection between the deformed algebra
of abelian currents and the Braid Group. This is the first algebraic lesson in our
exposition.

ForN odd the simple formula (18) forV does not hold. One way out is to use some
ordering in the algebra generated by wn. It is easy to see that for a general monomial
we have the following reaction to a shift of the origin in the product over ZN :

q2n1nNw
n1
1 w

n2
2 . . . w

nN
N = q2n2n1w

n2
2 . . . w

nN
N w

n1
1

= · · · = q2nknk−1w
nk
k . . . w

nN
N w

n1
1 . . . w

nk−1
k−1 .

(25)

This allows us to introduce the cyclic ordering

(w
n1
1 w

n1
1 . . . w

nN
N )cycl

in the algebra generated by wn for N ≥ 3, making it equal to any term in (25). In
particular, the formula for the product of local factors
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(θ1(w1) . . . θN(wN))cycl

means the following: use the series

θk(w) =
∞∑
−∞

ak,lw
l

for each factor and in each monomial entering the product change the usual product
of the powers of w

nk
k into the cyclic one. It is easy to see that we have the cyclic

property

(θ1(w1) . . . θN(wN))cycl = (θ2(w2) . . . θN(wN)θ1(w1))cycl

= · · · = (θk(wk) . . . θN(wN)θ1(w1) . . . θk−1(wk−1))cycl.

Moreover, if we choose the “point of departure’’ in the product, all local factors but
the first and the last one remain intact. Thus the check of property (17) for V given
by the formula

V = (θ(w1) . . . θ(wN))cycl (26)

works for any N without complications.
A natural question appears about the relation between the definitions (26) and (18)

for even N . The answer is that these formulas differ by a factor, expressed via the
central elements, written formally as

∞∑
k=−∞

(Q1/Q2)
k,

which is 0 for Q1 �= Q2 and ∞ for Q1 = Q2. Thus the expression (26) for V is
correct for odd N , and for even N one must use the expression (18).

We stop here the discussion of the abelian current and return to the explicit formula
for θ(w) in the next section.

3.b Discrete Virasoro

We need to realizethe deformed version of the classical relation (9). The first version
was given in [11]. Here we shall arrive at the same formula using the algebraic trick
from [9]. It is easy to see that if the function γ (w) satisfies the functional equation

γ (q2w) = γ (w)
1

1+ qw
, (27)

then

θ(w) = γ (w)γ (w−1) (28)
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satisfies equation (19). It was shown purely algebraically in [9] that from the equation
(27) the following relation holds: let u, v be a Weyl pair

uv = q2vu. (29)

Then we have the relations

γ (u)γ (v) = γ (u+ v),

γ (v)γ (u) = γ (u+ v + q−1uv) = γ (u)γ (q−1uv)γ (v). (30)

The last relation can be naturally called the pentagon equation and so γ (u) can be
considered as a definition of some noncommutative 3-cocycle. There will be more
about this in the next section.

Now we arrive at a natural definition of the discrete Virasoro generators sn. Take
the expression (18) for the evolution operator V for even N ,

V = θ(w1) . . . θ(wn)θ(wn+1) . . . θ(wN−1),

and transform the generic factor θ(wn)θ(wn+1) using (28) and (30),

θ(wn)θ(wn+1) = γ (wn)γ (w
−1
n )γ (wn+1)γ (w

−1
n+1)

= γ (wn)γ (w
−1
n + wn+1 + q−1w−1

n wn+1)γ (w
−1
n+1).

The expression

sn = w−1
n + wn+1 + q−1w−1

n wn+1

gives the deformation of (8). It is easy to realize the corresponding contraction for

� → 0, �→ 0.

We shall not write here the relations between the generators sn generalizing the Vira-
soro relation (9). Instead we shall find what to substitute for the Braid Group structure
of generators bn in terms of sn.

It is easy to see that the cyclicity (22) allows us to rewrite the evolution operator
V via the variables tn,

tn = γ (sn),

in the form

V = t1 . . . tN−1 = t2 . . . tN = · · · = tn . . . tN t1 . . . tn−1. (31)

A. Volkov showed in [12] that the tn satisfy the set of relations

tn+1tn−1tntn+1 = tn−1tn+1tn, tntn−1tn+1 = tn−1tntn+1tn−1 (32)

and

tntm = tmtn, |n−m| ≥ 3. (33)

He has shown that the global cyclicity relations (31) and locality (33) lead to the
relation
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tntn−2tn−1tntn+1 = tn−2tn−1tntn+1tn−1,

from which (32) follows if one adds a condition that these products are equal to
tn−2tntn−1tn+1, the origin of which is unclear until now. Needless to say, it is satisfied
by our generators tn.

From all this it is easy to see that V acts as a shift for the generators tn,

tnV = V tn−1.

However, there is an additional bonus. It follows from (32) that the following set of
relations hold:

tn+2tn+1tntn+2 = tntn+2tn+1tn. (34)

Here the ordering of tn is decreasing from right to left in contrast to the increasing
order we used until now. The relations (34) lead to the shift property

tnW = Wtn+2

for operators W formally given by the product of tn in the opposite order compared
with that in V

W = tN tN−1 . . . t2t1

with some analogue of the cyclic ordering. However, the exact definition of such an
ordering has not yet been found. We shall conjecture that it exists and use it in the
construction of the evolution operator for the nonabelian current.

In any event, we arrive at the second lesson: the discretized and quantized Vira-
soro phase space is intimately connected with a new algebraic structure—the Volkov
algebra.

3.c Nonabelian current

The deformation of L(x) is given by matrix variables Ln with contraction defined by

Ln = 1+ i�L(x), x = n�.

In [13, 14] the following relations were introduced to replace the Kac–Moody rela-
tions (12):

R+L1
nL

2
n = L2

nL
1
nR−,

L1
nL

2
n+1 = L2

n+1R+L1
n, (35)

L1
nL

2
m = L2

mL
1
n, |n−m| ≥ 2.

Here the usual notations from the RTF formulation of quantum groups [15] are used:

L1
n = Ln ⊗ I, L1

n = I ⊗ Ln;
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R± are given in terms of the R-matrix R associated with the Lie algebra A,

R+ = R, R− = PR−1+ P,

where P is a permutation matrix. The Yang–Baxter relation

R12R13R23 = R23R13R12

ensures the correctness of the relations (35) and provides the continuum classical
limit (12) under the contraction � → 0, �→ 0.

It is a natural place here to comment on the relation between the algebra A gen-
erated by Ln and the universal enveloping algebra of the quantum group. For this,
consider the monodromy matrix

M = L1 . . . LN .

It follows from (35) that M satisfies the relation

M1R−1− M2R− = R−1+ M2R+M1,

characteristic of the quantum group Uq in the RTF formulation [15]. Furthermore,
the central elements of Uq , given by the q-trace of M , are also central in A,

[trq M,Ln] = 0.

This leads to the conclusion that the categories of representations of A and Uq coin-
cide. For more on this, see [16].

Now let us turn to the discussion of the construction of the evolution operator.
For this it is convenient to parametrize the elements of the matrix Ln by simpler
generators—namely, to develop the analogue of the Wakimoto realization of Kac–
Moody generators. We shall describe a concrete proposal of A. Volkov and myself
[17] for the simplest case of A = SU (2), so that Ln is a 2× 2 matrix. We introduce
a refinement of the chain ZN , changing it to Z2N , so that each “physical’’ site n is
associated with two sites 2n, 2n− 1 on Z2N . We write the Gauss-type factorization

Ln = B2nC2n−1

with triangular matrices B2n and C2n and parametrize them as follows:

B2n =
⎛⎜⎝α

− 1
2

2n+ 1
2

0

0 α
1
2

2n+ 1
2

⎞⎟⎠
⎛⎝1 β2n

0 1

⎞⎠ ,

C2n−1 =
⎛⎜⎝α

1
2

2n− 1
2

0

0 α
− 1

2

2n− 1
2

⎞⎟⎠
⎛⎝ 1 0

β2n−1 1

⎞⎠
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with new generators βn, α
n+ 1

2
attached to the sites and edges, respectively. The new

generators should satisfy the relations (we write only the nontrivial ones)

α
n+ 1

2
α
n− 1

2
= q2α

n− 1
2
α
n+ 1

2
, (36)

βnαn− 1
2
= q2α

n− 1
2
βn, (37)

α
n+ 1

2
βn = q2βnαn+ 1

2
, (38)

[βn−1, βn] = (q − q−1)α
n− 1

2
(39)

to ensure the relation (35) for Ln with the R-matrix

R =

⎛⎜⎜⎜⎝
q

1
2

q− 1
2 q

1
2 − q− 3

2

q− 1
2

q
1
2

⎞⎟⎟⎟⎠ .

In fact, the α−β algebra is bigger than that generated by Ln. It contains a subalgebra,
equivalent to an abelian current algebra, which commutes with the matrix elements
of Ln. However, the reduction of the corresponding evolution operator causes no
difficulties.

It follows from what was described that the evolution operator is a shift by two
lattice sites of our refined chain Z2N . Exactly such a situation was discussed at the
end of the previous section. To use the result mentioned there we need to find in the
α − β algebra an analogue of the generators sn. This was done in [17]. The α − β

algebra is split into two commuting ones, generated by αn and

t
n− 1

2
= q + q2βnα

−1
n− 1

2
βn−1.

The generators tn have exactly the same local relations as sn. However, in our setting
they have different continuum limits.

Thus the evolution operator is factorized into two commuting factors

V = UW

and U provides the shift of α-currents, whereas W acts as

tnW = Wtn+2.

From the considerations in Section 3.b, it follows that W should be given by some
cyclic ordering of the local product

W = γ (tN ) . . . γ (t1).

However, up to now Volkov and I have not found the appropriate definition of the
cyclic ordering for the generators tn. Thus the program of the construction of the
evolution operator for discretized nonabelian currents is not yet completed.
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4 Functional equations and modular doubling

The functional equations (19) and (27) have the following formal solutions via the
variable w:

θ(w) =
∞∑

k=−∞
q−k2

wk, (40)

γ (w) =
∞∏
k=0

(1+ q2k+1w) (41)

= 1+
∞∑
k=1

q
k(k−1)

2
wn

(q−1 − q) . . . (q−n − qn)
(42)

= exp
1

4

∞∑
k=1

(−1)kwk

k(qk − q−k)
. (43)

Thus θ(w) is a θ -function, whereas γ in accordance with its three representations
can be called a q − �-function, q-exponent or exponent of the q-dilogarithm. The
last representation is relevant for the interpretation of the pentagon equation. It was
shown in [18] that in the classical limit � → 0 the relation (30) turns into the famous
five-term relation for the dilogarithm, which in turn is interpreted as a relation on
the 3-cocycle for SL(2,C). The second interpretation is closer to the relation (29),
which we can trace at least to [19]. The first equality in the relation (30) is similar to
a formula from [20].

The grave deficiency of solutions (40)–(43) is that the corresponding series and/or
products do not converge for real values of the coupling constant γ . Even worse is
the case when q is a root of unity. The way out of this first advertised in [21] is to
return to the algebra generated by the noncompact generators pn from Section 3.a.
It is clear that the algebra Aq , generated by the wn is smaller than the algebra B
generated by the pn. Indeed, let us introduce variables w̃n, modular dual to wn,

w̃n = w
−π/�γ
n = e−ipn/τ ,

where

τ = γ�
π

,

so that q obtains the traditional expression

q = eiπτ .

The generators w̃n have Weyl-type relations

w̃n+1w̃n = q̃2w̃nw̃n+1

with the modularly dual factor q̃,
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q̃ = e−iπ/τ ,

and commute with wn,

[wn, w̃m] = 0,

due to the Euler formula e2πi = 1. Thus for the generic q, the algebra B is factorized
into two commuting factors

B = Aq ⊗Aq̃ .

As is mentioned by A. Connes, (see, e.g., [22]) for real γ the algebras Aq and Aq̃

(noncommutative tori) can be considered as factors of type II1. We shall not discuss
this in any detail. Instead let us mention an interesting case when |τ | = 1. According
to formula (11) it corresponds to the central charge of the Virasoro algebra in the
“forbidden interval’’

1 ≤ Cquant ≤ 25.

For such τ the algebra B has a beautiful involution

w∗n = w̃n,

and thus to get a selfadjoint dynamical system one should take the sum of two systems,
corresponding to q and q̃. This is what I call “modular doubling.’’

What are the functions θ(p) and γ (p) which serve for the modular doubles in the
same way as θ(w) from (40) and γ (w) from (41) work for the models in Aq? They
are quite simple:

θ(p) = exp
p2
n

4πiτ

and

γ (p) = γq(w)

γq̃(w̃)
,

where we attached the subindex q to γ (w) to distinguish the factors γ corresponding
to w and w̃. The functional equations for them,

θ(p + 2π) = θ(p)e−ip/τ ,
θ(p + 2πτ) = θ(p)e−ip,

γ (p + 2π) = 1

1+ q̃e−ip/τ
,

γ (p + 2πτ) = 1

1+ qeip
,

unify the two equations (19), (27) and their analogues for the modular double. The
Braid relations for θ(pn), the pentagon relation for γ (pn), and the Volkov algebra
relations for γ (sn), where
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sn = γ (−pn)γ (pn+1)

are satisfied. The discussion of this and a lot more can be found in a recent publication
of Volkov [23], where a deep interrelation with noncommutative analogues of the
hypergeometric identities is discussed.

Using the “noncompact’’ setting we do not encounter any difficulties connected
with the arithmetic properties of τ . So we get one more lesson, more analytic than
algebraic: discretization and quantization requires also the modular doubling of the
classical system. With this we close our exposition.
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Abstract. In this paper we propose a way to construct an analytic space over a non-archimedean
field, starting with a real manifold with an affine structure which has integral monodromy.
Our construction is motivated by the junction of the Homological Mirror conjecture and the
geometric Strominger–Yau–Zaslow conjecture. In particular, we glue from “flat pieces’’ an
analytic K3 surface. As a byproduct of our approach we obtain an action of an arithmetic
subgroup of the group SO(1, 18) by piecewise-linear transformations on the two-dimensional
sphere S2 equipped with naturally defined singular affine structure.

Subject Classifications: 14J32, 14G22

1 Introduction

1.1

An integral affine structure on a manifold of dimension n is given by a torsion-
free flat connection with the monodromy reduced to GL(n,Z). There are two basic
situations in which integral affine structures occur naturally. One is the case of
classical integrable systems described briefly in Section 3. Most interesting for us
is a class of examples arising from analytic manifolds over non-archimedean fields
which is discussed in Section 4. It is motivated by the approach to Mirror Symmetry
suggested in [KoSo]. We recall it in Section 5.

From our point of view, manifolds with integral affine structure appear in Mirror
Symmetry in two ways. One considers the Gromov–Hausdorff collapse of degener-
ating families of Calabi–Yau manifolds. The limiting space can be interpreted either
as the contraction (see Section 5.2) of an analytic manifold over a non-archimedean
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field of Laurent series C((t)), or as the base of a fibration of a Calabi–Yau mani-
fold by Lagrangian tori (with respect to the symplectic Kähler 2-form). On a dense
open subset of the limiting space one gets two integral affine structures associated
with two interpretations, the non-archimedean one and the symplectic one. The mir-
ror dual family of degenerating Calabi–Yau manifolds should have metrically the
same Gromov–Hausdorff limit, with the roles of the two integral affine structures
interchanged.

A very interesting question arises: how to reconstruct these families of Calabi–
Yau manifolds from the corresponding manifolds with integral affine structures? This
question was one of the main motivations for the present work.

1.2

Our approach to the reconstruction of analytic Calabi–Yau manifolds from real man-
ifolds with integral affine structure can be illustrated in the following toy-model
example. Let S1 = R/Z be a circle equipped with the affine structure induced from
R. We equip S1 with the canonical sheaf Ocan

S1 of Noetherian C((q))-algebras. By

definition, for an open interval U ⊂ S1, the algebra Ocan
S1 (U) consists of formal series

f =∑
m,n∈Z am,nq

mzn, am,n ∈ C, such that inf am,n �=0(m+nx) > −∞. Here x ∈ R
is any point in a connected component of the preimage of U in R, the choice of a
different component x → x + k, k ∈ Z, corresponds to the substitution z 
→ qkz.
The corresponding analytic space is the Tate elliptic curve (E,OE), and there is a
continuous map π : E → S1 such that π∗(OE) = Ocan

S1 .

In the case of K3 surfaces one starts with S2. The corresponding integral affine
structure is well defined on the set S2 \ {x1, . . . , x24} ⊂ S2, where x1, . . . , x24 are
distinct points. Similarly to the above toy-model example, one can construct the
canonical sheaf Ocan

S2\{x1,...,x24} of algebras, an open two-dimensional smooth analytic

surface X′ with the trivial canonical bundle (Calabi–Yau manifold), and a continuous
projection π ′ : X′ → S2 \ {x1, . . . , x24} such that π ′∗(OX′) = Ocan

S2\{x1,...,x24}. The

problem is to find a sheaf OS2 whose restriction to S2 \ {x1, . . . , x24} is locally
isomorphic to Ocan

S2\{x1,...,x24}, an analytic compact K3 surface X, and a continuous

projection π : X → S2 such that π∗(OX) = OS2 . We call this problem (in the
general case) the Lifting Problem and discuss it in Section 7. Unfortunately we do
not know the conditions one should impose on singularities of the affine structure
in order that the Lifting Problem have a solution. We consider a special case of
K3 surfaces in Sections 8–11. Here the solution is nontrivial and depends on data
which are not visible in the statement of the problem. They are motivated by Mirror
Symmetry and consist, roughly speaking, of an infinite collection of trees embedded
into S2 \ {x1, . . . , x24} with the tail vertices belonging to the set {x1, . . . , x24}. The
sheaf Ocan

S2\{x1,...,x24} has to be modified by means of automorphisms assigned to every
edge of a tree and then glued together with a certain model sheaf near each singular
point xi .

Informally speaking, we break S2 \ {x1, . . . , x24} endowed with the sheaf
Ocan

S2\{x1,...,x24} into infinitely many infinitely small pieces and then glue them back
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together in a slightly deformed way. The idea of such a construction was proposed
several years ago independently by K. Fukaya and the first author. The realization
of this idea was hindered by a poor understanding of singularities of the Gromov–
Hausdorff collapse and by the lack of knowledge of certain open Gromov–Witten
invariants (“instanton corrections’’). The latter problem is circumvented here (and in
fact solved) with the use of a certain pro-nilpotent Lie group (see Section 10).

1.3

The relationship between K3 surfaces and singular affine structures on S2 is of very
general origin. Starting with a projective analytic Calabi–Yau manifold X over a
complete non-archimedean local fieldK , one can canonically construct a PL manifold
Sk(X) called the skeleton of X. If X is a generic K3 surface, then Sk(X) is S2. We
discuss skeleta in Section 6.6. The group of birational automorphisms of X acts
on Sk(X) by integral PL transformations. For X = K3 we obtain an action of
an arithmetic subgroup of SO(1, 18) on S2. Further examples should come from
Calabi–Yau manifolds with large groups of birational automorphisms.

1.4

We have already discussed the contents of the paper. Let us summarize it. The paper
is naturally divided into three parts. Part I is devoted to generalities on integral affine
structures and examples, including Mirror Symmetry. Motivated by string theory
we use the term A-model (respectively, B-model) for examples arising in symplectic
(respectively, analytic) geometry.

In Part II we discuss the concept of singular integral affine structure, including an
affine version of the Gauss–Bonnet theorem. The latter implies that if all singularities
of an integral affine structure on S2 are standard (so-called focus–focus singularities)
then there are exactly 24 singular points. Part II also contains a statement of the
Lifting Problem and a discussion of flat coordinates on the moduli space of complex
Calabi–Yau manifolds. We expect that under mild conditions on the singular integral
affine structure there exists a solution of the Lifting Problem, which is unique as long
as we fix periods (see Sections 7.3 and 7.4 for more details).

The most technical Part III contains a solution of the Lifting Problem for K3
surfaces. We construct the corresponding analytic K3 surface as a ringed space. The
sheaf of analytic functions is defined differently near a singular point and far from the
singular set. It turns out that the “naive’’candidate for the sheaf on the complement of
the singular set has to be modified before we can glue it to the model sheaf near each
singular point. This modification procedure involves a new set of data (we call them
lines). We also discuss the group of automorphisms of the canonical sheaf which
preserve the symplectic form. We use this group in order to modify the “naive’’ sheaf
along each line.

The paper has two appendices. The first contains some background on analytic
spaces, while the second is devoted to the Torelli theorem.
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Part I

2 Z-affine structures

2.1 Definitions

Let us recall that an affine structure on manifold Y (smooth, of dimension n) is given
by a torsion-free flat connection ∇ on the tangent bundle T Y .

We will give below three equivalent definitions of the notion of integral affine
structure.

Definition 1. An integral affine structure onY (Z-affine structure for short) is an affine
structure∇ together with a∇-covariant lattice of maximal rank T Z = (T Y )Z ⊂ T Y .

It is easy to see that if Y carries a Z-affine structure, then for any point y ∈ Y there
exist a small neighborhood U , local coordinate system (x1, . . . , xn) in U such that
∇ = d in coordinates (x1, . . . , xn) and the lattice (TxY )

Z, x ∈ U , is a free abelian
group generated by the tangent vectors ∂/∂xi ∈ TxY , 1 ≤ i ≤ n. Let us call Z-affine
such a coordinate system in U . (Sometimes we will call such U a Z-affine chart.)
For a covering of Y by Z-affine charts, the transition functions belong (locally) to
GL(n,Z) � Rn. Explicitly, a change of coordinates is given by the formula

x′i =
∑

1≤j≤n
aij xj + bi,

where (aij ) ∈ GL(n,Z), (bi) ∈ Rn.
Hence Definition 1 is equivalent to the following.

Definition 2. A Z-affine structure on Y is given by a maximal atlas of charts such
that the transition functions belong locally to GL(n,Z) � Rn.

In the above definition Y is just a topological manifold, a C∞-structure on it can
be reconstructed canonically from the Z-affine structure.

We can restate the notion of Z-affine structure in the language of sheaves of affine
functions.

We say that a real-valued function f on Rn is Z-affine if it has the form

f (x1, . . . , xn) = a1x1 + · · · + anxn + b,

where a1, . . . , an ∈ Z and b ∈ R. We will denote by Aff Z,Rn the sheaf of functions
on Rn which are locally Z-affine.

Definition 3. A Z-affine structure (of dimension n) on a Hausdorff topological space
Y is a subsheaf Aff Z,Y of the sheaf of continuous functions on Y , such that the pair
(Y,Aff Z,Y ) is locally isomorphic to (Rn,Aff Z,Rn).

The equivalence of the last two definitions follows from the observation that a
homeomorphism between two open domains in Rn preserving the sheaf Aff Z,Rn is
given by the same formula x′ = A(x)+ b, A ∈ GL(n,Z), b ∈ Rn as the change of
coordinates between two Z-affine coordinate systems.
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2.2 Monodromy representation and its invariant

With a given affine structure on Y we can associate a flat affine connection ∇aff (see
[KN]). The corresponding parallel transport acts on tangent spaces by affine transfor-
mations. For a Z-affine structure the monodromy of ∇aff belongs to GL(n,Z)� Rn,
i.e., ∀y ∈ Y , we have a monodromy representation

ρ : π1(Y, y)→ GL(n,Z) � Rn.

Alternatively, we can define the monodromy representation by covering a loop in Y

by Z-affine coordinate charts and composing the corresponding transition functions.
Notice that a Z-affine structure on Y gives rise to a class

[ρ] ∈ H 1(Y, T Z ⊗ R) = H 1(Y, T ∇Y ),

where T ∇Y ⊂ TY is the subsheaf of ∇-flat sections.1 The de Rham representative of
the class [ρ] is given by a differential 1-form θ ∈ �1(Y, TY ) such that θ(v) = v for
any tangent vector v. In affine coordinates one has θ = ∑

i ∂/∂xi ⊗ dxi . Clearly,
∇(θ) = 0.

We will later need an explicit formula for the R-valued pairing of [ρ] with a
closed singular 1-chain with coefficients in the local system (T ∗)Z = (T ∗Y )Z, the
dual covariant lattice in T ∗Y . With any singular 1-chain c with values in (T ∗)Z

we associate a real number j (c) in the following way. Suppose that c is given by
a continuous map γ : [0, 1] → Y and a section α ∈ �([0, 1], γ ∗(T ∗)Z). Parallel
transport via the connection ∇aff gives rise to a map γ : [0, 1] → Tγ (0)Y , γ (0) = 0.
Let α0 = α(0) ∈ (T ∗γ (0))Z ⊂ T ∗γ (0)Y . We define j (c) = 〈α0, γ (1)〉. We extend j (c)

to an arbitrary singular 1-chain c by additivity. Then the class [ρ] can be calculated
as 〈[ρ], [c]〉 = j (c) for any closed 1-chain c ∈ C1(Y, (T

∗)Z).

3 A-model construction

3.1 Integrable systems

Let (X, ω) be a smooth symplectic manifold of dimension 2n, B0 a smooth man-
ifold of dimension n, π : X → B0 a smooth map with compact fibers, such that
{π∗(f ), π∗(g)} = 0 for any f, g ∈ C∞(B0). Here {·, ·} denotes the Poisson bracket
on X. We assume that π is a submersion on an open dense subset X′ ⊂ X. Such a
triple (X, π, B0) is called an integrable system. In applications it is typically given
by a collection of smooth functions (H1, . . . , Hn) on X (these functions are called
Hamiltonians) such that {Hi,Hj } = 0, 1 ≤ i, j ≤ n. Usually the first Hamiltonian
H = H1 is identified with the energy of the mechanical system.

Let us consider the case when π is proper. This is a natural restriction, because
in applications the energy H1 is already a proper map H1 : X→ R.

1 Here we slightly abuse notation because Y is not necessarily connected.
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Let x ∈ B0 be a point such that the restriction of π to π−1(x) is a submersion. We
call such points π -smooth. According to Sard’s theorem π -smooth points form an
open dense subset of B0. The fiber π−1(x) is a compact Lagrangian submanifold of
X. The Liouville integrability theorem (see [Ar]) says that π−1(x) is a disjoint union
of finitely many tori T n

α . Moreover, for each torus T n
α there exists a local coordinate

system (ϕ1, . . . , ϕn, I1, . . . , In) in a neighborhood Wα of T n
α such that ϕi ∈ R/2πZ,

(I1, . . . , In) ∈ Rn and ω =∑
1≤i≤n dIi ∧ dϕi . These coordinates are called action-

angle coordinates. The map π in action-angle coordinates is given by the projection
(ϕ1, . . . , ϕn, I1, . . . , In) 
→ (I1, . . . , In). There is an ambiguity in the choice of
action-angle coordinates. In particular, the action coordinates I = (I1, . . . , In) are
defined up to a transformation I ′ = A(I) + b, A ∈ GL(n,Z), b ∈ Rn. Indeed, the
free abelian group generated by 1-forms dIi , 1 ≤ i ≤ n, in each cotangent space
T ∗x B0 admits an invariant description. It is the free abelian group generated by the
restrictions of 1-forms

∫
γ
ω to T ∗x B0, where γ runs through closed singular 1-chains

in π−1(x) ∩Wα . In this way we obtain a Z-affine structure on π(Wα).
Let B be the set of connected components of fibers of π . Endowed with the

natural topology it becomes a locally compact Hausdorff space; projection from X

to B will be denoted by the same letter π . The natural continuous map B → B0 is
a kind of “ramified finite covering.’’ Let us define Bsm ⊂ B as the set of connected
components on which π is a submersion (i.e., the set of all Liouville tori). Then Bsm

is an open dense subset in B. Hence it carries a Z-affine structure given by the action
coordinates.

The singular part Bsing = B \ Bsm consists of projections of singular fibers.
Typically the codimension of Bsing is greater than or equal than 1. The codimension
1 stratum consists of the boundary of the image of π and of the ramification locus
of the map B → B0. The structure of singularities of the integral affine structure
in higher codimensions is less understood. It seems that the following property is
always satisfied.

Fixed Point Property. For any x ∈ Bsing, there is a small neighborhood U such
that the monodromy representation π1((U \ Bsing)α) → GL(n,Z) � Rn for any
connected component (U \Bsing)α of U \Bsing has a fixed vector in Rn in the natural
representation by affine transformations.

We will discuss this property in Section 6, devoted to compactifications.

3.1.1 Cohomological interpretation of class [ρ]
In Section 2.2 we introduced an invariant [ρ] ∈ H 1(Bsm, T Z ⊗ R) of a Z-affine
structure. Here we will give an interpretation of [ρ] for integrable systems.

Let us consider X′ = π−1(Bsm) which is a Lagrangian torus fibration over Bsm

(i.e., fibers are Lagrangian tori such that the fiber over x ∈ Bsm is isomorphic up to
a shift to the torus T ∗x Bsm/(T ∗x Bsm)Z).

Any singular closed 1-chain c on Bsm with values in the local system

(T ∗x Bsm)Z � H1(T
∗
x B

sm/(T ∗x Bsm)Z,Z)
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gives a 2-chain c on X′ with the boundary belonging to a finite collection of fibers
π−1(x(i)), 1 ≤ i ≤ N , of the fibration π : X′ → Bsm. Moreover, for every point
x(i) the part of ∂c over x(i) is homologous to zero in π−1(x(i)). Therefore, there
exists a collection of 2-chains ci , 1 ≤ i ≤ N , supported on π−1(x(i))) such that the
2-chain c +∑

1≤i≤N ci is closed. In this way we obtain a group homomorphism
Js : H1(B

sm, (T ∗)Z) → H2(X
′,Z)/H 0

2 (X
′,Z), where H 0

2 (X
′,Z) ⊂ H2(X

′,Z)

denotes the sum of the images of H2(π
−1(y),Z) for y ∈ Bsm. (It is enough to

pick one base point y for any connected component of Bsm.) It is easy to see that
〈[ρ], [c]〉 = 〈[ω], Js([c])〉, where [ω] is the class of the symplectic form ω.

3.2 Examples of integrable systems

We describe here few examples related to the rest of the paper.

3.2.1 Flat tori

The first example is the triple (X, π, B0), where X = R2n/�, B0 = Rn/�′ are tori
(here � � Z2n, �′ � Zn are lattices), the projection π : X → B0 is an affine
map of tori, and X carries a constant symplectic form. Assuming that the fibers of
π are connected, we have B0 = B = Bsm. The monodromy representation is a
homomorphism ρ : π1(B)→ Rn ⊂ GL(n,Z)� Rn. The integral affine structure on
B depends on n2 real parameters, which are coefficients of an invertible n×n matrix
expressing a basis of the lattice �′ ⊂ TxB as a linear combination of generators of
the lattice (TxB)Z ⊂ TxB, where x ∈ B is an arbitrary point.

3.2.2 Surfaces

Let (X, ω) be a surface and π : X→ B0 = R be an arbitrary smooth proper function
with isolated critical points. Then (X, π, B0) is an integrable system. The space B

of connected components of fibers is a graph, and the Z-affine structure on Bsm ⊂ B

gives a length element on the edges of B.

3.2.3 Moment map

Consider a compact connected symplectic manifold (X, ω) of dimension 2n together
with a Hamiltonian action of the torus T n. Then one has an integrable system π :
X → B0, where π is the moment map of the action and B0 = (Lie(T n))∗ � Rn.
Furthermore, it is well known that B = π(X) is a convex polytope and Bsm is the
interior of B.

3.2.4 K3 surfaces

Before considering this example let us remark that one can define integrable systems in
the case of complex manifolds. More precisely, assume that X is a complex manifold
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of complex dimension 2n, ωC is a holomorphic closed nondegenerate 2-form on X,
B = B0 is a complex manifold of dimension n and π : X→ B is a surjective proper
holomorphic map such that generic fibers of π are connected complex Lagrangian
submanifolds of X. With a complex integrable system one can associate a real one by
forgetting the complex structures onX andB and takingω := Re(ωC) as a symplectic
form on X. It is easy to see that the image of the monodromy representation belongs
to Sp(2n,Z) � R2n ⊂ GL(2n,Z) � R2n.

Let (X,�) be a complex K3 surface equipped with a nonzero holomorphic 2-form
ωC = � and π : X→ CP 1 a holomorphic fibration such that the generic fiber of π is
an elliptic curve. For example, X can be represented as a surface in CP 2×CP 1 given
by a general equation F(x0, x1, x2, y0, y1) = 0 of bidegree (3, 2) in homogeneous
coordinates. The map π is the projection to the second factor. The holomorphic form
� is given by

� = iEulerx∧Eulery
dx0 ∧ dx1 ∧ dx2 ∧ dy0 ∧ dy1

dF
,

where Eulerp denotes the Euler vector field along the coordinates p = (xi) or (yi).
Such an elliptic fibration gives an integrable system. Namely, we set X := X(C),
ω := Re(�), B := CP 1 � S2. Generically Bsing is a set of 24 = χ(X) points in
S2. The singularity of the affine structure near each of the 24 points is well known
in the theory of integrable systems where it is called a focus–focus singularity (see,
e.g., [Au, Zu]). We will discuss it in Section 6.4. Here we give a short description of
this singularity. We take R2 with the standard integral affine structure and remove the
point (x0, 0) on the horizontal axis. Then we modify the affine structure (and also the
C∞-structure!) on the ray {(x, 0) | x > x0}. The new local integral affine coordinates
near points of this ray will be functions y and x + max(y, 0) (see Figure 1). The
monodromy of the resulting integral affine structure around removed singular point
(x0, 0) is given by the transformation (x, y) 
→ (x + y, y).

x0(    , 0)

Fig. 1. Focus–focus singularity. All lines are straight in the modified Z-affine structure.



Affine Structures and Non-Archimedean Analytic Spaces 329

3.3 Families of integrable systems and PL actions

In many examples an integrable system depends on parameters. It often happens that
the parameter space P carries a natural foliation F such that the fundamental group
π1(Fp, p), p ∈ P , of any leaf acts on the base space Bp of the corresponding torus
fibration. This action is given by piecewise-linear homeomorphisms with integral
linear parts.

Let us illustrate this phenomenon in the case of the family of integrable systems
associated with the K3 surface discussed above.

Here the parameter space P has dimension 38, which is twice the complex di-
mension of the space of polynomials F modulo unimodular linear transformations.
On the other hand, the miniversal family of representations (up to conjugation)

{ρ : π1(S
2 − {24 points})→ SL(2,Z) � R2},

such that the monodromy around each puncture is conjugate to (
1 1
0 1 ), has dimen-

sion 20.
Thus we obtain a foliation F of P of rank 18 = 38 − 20. It is defined by the

following property: if we continuously vary the parameters p ∈ P along leaves of
F , then the conjugacy class of the monodromy representation ρ remains unchanged.

Notice that in the local model described above, we can move the position (x0, 0)
at which we start the cut. Then we have on the sphere S2 a set of 24 “worms’’(singular
points, each of them can move in its preferred direction, which is the line invariant
under the local monodromy). One can show easily that any continuous deformation of
Z-affine structure, satisfying the Fixed Point Property (see Section 3.1) and preserving
the conjugacy class of ρ, corresponds to a movement of worms.2

Moving “worms’’we get a canonical identification of manifolds with integral
affine structures far enough from singular points. We will see later in Section 6.4
that we also have a canonical PL identification of manifolds near singular points.
Therefore, we obtain a local system along leaves of F with the fiber over p ∈ P
being a manifold Bp � S2 with the above Z-affine structure. In this way we get
a homomorphism from π1(Fp, p) to AutZPL(S

2), where ZPL denotes the group of
integral PL transformations of S2 equipped with the above Z-affine structure. We
will return to this action in Section 6.7, where it will be compared with another PL
action on the same space.

4 B-model construction

4.1 Z-affine structure on smooth points

Here we are going to define an analog of the notion of integrable system in the
framework of rigid analytic geometry. Roughly speaking, it is a triple (X, π, B),

2 Notice that in our example rk(F) = 18 is less than 24. This means that there are six
constraints on moving worms.



330 Maxim Kontsevich and Yan Soibelman

whereX is a variety defined over a non-archimedean field (see [Be1] andAppendixA),
B is a CW complex and π : X → B a continuous map. More precisely, let K be a
field with nontrivial valuation, X an irreducible algebraic variety overK of dimension
n, f = (f1, . . . , fN) a collection of nonzero rational functions on X. Then we have
a multivalued map

X(K)→ [−∞,+∞]N, x 
→ valK(f (x)) := (valK(f1(x)), . . . , valK(fN(x))).

Here K is the algebraic closure of K , and valK denotes valuation on K .
Let ψ : [−∞,+∞]N → B be a continuous map such that the composition

π = ψ ◦ val(f ) is single-valued. Our map π will always be of this form. More
generally, we can take X to be a (not necessarily algebraic) compact smooth K-
analytic space, and π : X → B to be a continuous map which factorizes as the
composition of the projection pX : X → SX to the Clemens polytope SX of some
model X of X and a continuous map π ′ : SX → B (see Section 4.2.3).

Now we would like to be more precise. Let K be a complete non-archimedean
field, with valuation val and the corresponding norm |x| := exp(− val(x)) ∈ R≥0.
Before giving the next definition, we observe that there is a canonical continuous map
πcan : (Gan

m )n → Rn (see Section A.2 in Appendix A). Here Gan
m is a multiplicative

group (considered as an analytic space over K) and the restriction of πcan to (K
×
)n

is given by the formula

πcan(z1, . . . , zn) = (log |z1|, . . . , log |zn|).
The sheaf Ocan

Rn := (πcan)∗(O(Gan
m )n) of K-algebras is called the canonical sheaf.

Let X be a smooth K-analytic space of dimension n and π : X→ B a continuous
map of X into a Hausdorff topological space B.

Definition 4. We call a point x ∈ B smooth (or π -smooth) if there is a neighborhood
U of x such that the fibrationπ−1(U)→ U is isomorphic to a fibrationπ−1

can(V )→ V

for some open subset V ⊂ Rn. Here the isomorphism π−1(U) � π−1
can(V ) is taken

in the category of K-analytic spaces while U � V is a homeomorphism.
In this case we will call π (or the triple (π−1(U), π,U)) an analytic torus fibra-

tion.

Let Bsm denotes the set of smooth points of B. It is a topological subspace of B
(in fact, a topological manifold of dimension n).

Theorem 1. The space Bsm carries a sheaf of Z-affine functions, which is locally
isomorphic to the canonical sheaf of Z-affine functions on Rn.

Proof. We start with the following lemma.

Lemma 1. Let V ⊂ Rn be a connected open set and ϕ ∈ O×
(Gan

m )n
(π−1

can(V )) an

invertible analytic function. Then the function valx(ϕ(x)) is constant along fibers of
πcan, and it is the pullback of a Z-affine function on Rn.
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Proof. In order to prove the lemma we observe that any analytic function ψ ∈
O×

(Gan
m )n

(π−1
can(V )) can be expanded into Laurent series:

ψ =
∑

I=(i1,...,in)∈Zn

cI z
I , cI ∈ K

satisfying certain convergence conditions (see Section A.2).
Then for a nonzero analytic function ψ on π−1

can(V ) we introduce a real-valued
function Val(ψ)(x) := inf I∈Zn(val(cI ) − 〈I, x〉), x ∈ V . It is a concave, locally
piecewise-linear function on V . It is easy to see that

(a) there is a dense open subset V1 ⊂ V such that for any x ∈ V1 the infimum in the
definition of Val(ψ) is achieved for a single multiindex I ;

(b) Val(ψ1ψ2) = Val(ψ1)+ Val(ψ2).

For an invertible functionϕ, we have 0 = Val(1) = Val(ϕϕ−1) = Val(ϕ)+Val(ϕ−1).
Since both Val(ϕ) and Val(ϕ−1) are concave, their sum can be equal to zero iff they are
both affine. Moreover, they are both Z-affine since the linear part of Val(ϕ) is given by
the integer vector I for some single multiindex I . Finally, observe that valx(ϕ(x)) ≥
π∗can(Val(ϕ))(x), x ∈ π−1

can(V ). Therefore, valx(ϕ(x)) = Val(ϕ)(πcan(x)) for invert-
ible ϕ. ��

Now we can finish the proof of the theorem. The above formula gives us a
coordinate-free description ofπ∗can(Val(ϕ)). It is easy to see that any Z-affine function
on V is of the form Val(ϕ) + c, c ∈ R, for some invertible ϕ (in the case of Rn it
suffices to take monomials as ϕ). We can identify π−1(U)→ U with π−1

can(V )→ V

for some small open U ⊂ X and V ⊂ Rn. Then we can define Val(ϕ) for any
invertible ϕ ∈ OX(π

−1(U)) by the above formula. Finally we define a sheaf of
Z-affine functions on Bsm by taking all functions of the form Val(ϕ) + c, c ∈ R. It
follows from the above discussion that in this way we obtain a Z-affine structure on
Bsm, which is locally isomorphic to the standard one on Rn. ��

We will denote by Aff can
Z,Bsm the sheaf of Z-affine functions constructed in the

proof.

4.2 Examples

4.2.1 Logarithmic map

This is a basic example

π = πcan = log | · | : X = (Gan
m )n → B0 = B = Rn

described in detail in Appendix A. For any algebraic (or analytic) subvariety Z ⊂
(Gan

m )n of dimension m ≤ n its image π(Z) is a noncompact piecewise-linear closed
subset of Rn of real dimension m. The smooth points for π|Z are dense in π(Z).

In particular, if Z is a curve, then π(Z) is a graph in B with straight edges having
rational directions. One can try to make a dictionary which translates the properties
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of the algebraic variety Z ⊂ Gn
m to the properties of the PL set π(Zan) which is the

closure of π(Z(K)) in Rn. This circle of ideas is the subject of so-called “tropical
geometry’’ (see, e.g., [Mi]).

4.2.2 Tate tori

Let ρ : Zn → (K×)n be a group homomorphism such that the image of the composi-
tion val ◦ρ : Zn → Rn is a rank n lattice in Rn. The group (K×)n acts by translations
on the analytic space (Gan

m )n. The restriction of this action to Zn (via ρ) is discrete
and cocompact. The quotient is a K-analytic space X called the Tate torus. There is
an obvious map π : X → B := Rn/(val ◦ρ)(Zn). All points of B are smooth. The
space X depends on n2 parameters taking values in K×(cf. the flat tori example in
Section 3.2.1).

4.2.3 Clemens polytopes and their contractions

For any smooth projective variety X of dimension n, and and an snc model X of
it (see Appendix A) we have a canonical projection to the corresponding Clemens
polytope

pX : Xan → SX .

All interior points of n-dimensional simplices of SX are pX -smooth, although there
might be other smooth points too. More generally, one can compose the projection
pX with a continuous surjection π ′ : SX � B, where B is a finite CW complex
and map π ′ is a cell map for some cell subdivision of SX . We assume that the fibers
of the composition π := π ′ ◦ pX : Xan → B are connected. This seems to be the
most general case of maps from projective varieties over complete local fields to CW
complexes relevant for our purposes.

4.2.4 Curves

Let X/K be a connected smooth projective curve of genus g > 1. After passing
to a finite extension K ′ of K we may assume that X has a canonical model X with
stable reduction. The graph �′ corresponding to the special fiber X0 is a retraction of
(X⊗K K ′)an. The quotient graph � = �′/Gal(K ′/K) is a retraction of the analytic
curve Xan (see [Be1]). We define B := �. Then Bsm is the complement of a finite set.
As in Section 3.2.2, a Z-affine structure on a graph is the same as a length element (i.e.,
a metric). Therefore, � is a metrized graph. Notice also that the maximal number of
edges of the graph corresponding to a genus g curve is 3g−3, which is the dimension
of the moduli space of genus g curves.

Notice that if in Section 4.2.1 the subvariety Z is a curve, then its projection is
a noncompact metrized graph with unbounded edges corresponding to the punctures
Z \ Z.
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4.2.5 K3 surfaces

Here we will describe a particular case of the construction from Section 4.2.3 (a
contraction of a Clemens polytope).

Let the field K be C((t)) and X ⊂ P3
K a formal family of complex K3 surfaces

given by the equation

x0x1x2x3 + tP4(x0, x1, x2, x3) = 0,

where P4 is a generic homogeneous polynomial of degree 4, and t is a formal param-
eter.

The special fiber at t = 0 of this family is singular; it is given by the equation
x0x1x2x3 = 0. Let us denote by P̃3 the blowup of the total space of the trivial P3-
bundle over Spec(OK) at 24 points pα , 1 ≤ α ≤ 24, of the special fiber, where each
pα is a solution of the equation

P4(x0, x1, x2, x3) = 0, xi = xj = 0, 0 ≤ i < j ≤ 3.

The closure X of X in P̃3 is a model with simple normal crossings. The associated
Clemens polytope SX has 28 vertices. Four of them correspond to the coordinate
hyperplanes xi = 0 in P3, and the other 24 correspond to divisors sitting at the
preimages of the points pα . Therefore, SX is the union of the boundary ∂�3 of
the standard 3-simplex �3 with 24 copies of the standard 2-simplex �2. These 24
triangles �2

α , 1 ≤ α ≤ 24, are decomposed into six groups of four triangles in each.
All triangles from the same group have a common edge, which is identified with
an edge of ∂�3 (tetrahedron with 24 “wings’’). As we mentioned in the previous
example, there is a continuous map p : Xan → SX . We are going to construct B as
a retraction of SX .

In order to do this we observe that for an edge e ⊂ �2 and a point a ∈ e one has
the canonical retraction pa,e : �2 → e. Namely, let us identify the edge e with the
interval [−1, 1] of the real line, so that a is identified with the point a = (a0, 0), and
�2 is bounded by e and the segments 0 ≤ y ≤ 1 − |x|. Then we define pa,e by the
formulas (see Figure 2)

(x, y) 
→ (x + y, 0), x + y ≤ a0;
(x, y) 
→ (x − y, 0), x − y ≥ a0;
(x, y) 
→ (a0, 0), otherwise.

Now we choose a point qij , 0 ≤ i < j ≤ 3 in the interior of each edge eij of
∂�3 (here i, j are identified with the vertices of ∂�3). There are four “wings’’ �2

α

having eij as a common edge. Then we retract each �2
α to eij by the map pqij ,eij .

This gives us a retraction π ′ = π ′(qij ) : SX → ∂�3. Let π := pX ◦π ′(qij ) : Xan → B

be the composition of the projection pX : Xan → SX with the above retraction. One
can show that all points of B := ∂�3 are π -smooth except for the chosen six points
qij , 0 ≤ i < j ≤ 3. According to Theorem 1, we obtain a Z-affine structure on
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a

Fig. 2. Triangle contracted to one side. The dashed area maps to point a.

S2 \ ∪0≤i<j≤3{qij }. One can show that the local monodromy around each point qij
is conjugate to the matrix (

1 4
0 1

)
.

We skip the computations here.

4.3 Stein property

A K-analytic space X is called Stein if the natural map

X→ Specan(�(X,OX))

is a homeomorphism. Here �(X,OX) is considered as a topological K-algebra. This
definition is equivalent to the standard one. Let us call the projection π : X → B

Stein if for any b ∈ B there exists a fundamental systems of neighborhoods Ui of
x such that π−1(Ui) ⊂ X is a Stein domain. If π is Stein then we can reconstruct
(X,OX) and π from the space B endowed with the sheaf π∗(OX) of topological
K-algebras.

Proposition 1. Let B be a contraction of the Clemens polytope SX of some model X
of X as in Section 4.2.3, and π a Stein map. Then Bsm is dense in B.

Proof.3 It suffices to prove that n-dimensional cells are dense in B; here n = dim X.
For any open U ⊂ B, U �= ∅, we have Hn

c (U, π∗(�n
X)) � Hn

c (π
−1(U),�n

X).
The last group is nontrivial, because for any nonempty open V ⊂ Xan the inte-

gration map
∫ : Hn

c (V,�n
X)→ K is onto. Therefore, dim(U) ≥ n. ��

All the examples in Sections 4.2.1–4.2.5 (except Section 4.2.3) have the Stein
property.

3 We thank Ofer Gabber for suggesting this proof below.
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5 Z-affine structures and mirror symmetry

5.1 Gromov–Hausdorff collapse of Calabi–Yau manifolds

We recall that a Calabi–Yau metric on a complex manifold X is a Kähler metric with
vanishing Ricci curvature. If such a metric exists, then c1(T X) = 0 ∈ H 2(X,R) and
hence the class of the canonical bundle

∧dim X
(T ∗X) is torsion in Pic(X). According

to the famous Yau theorem, for any compact Kähler manifold X such that c1(T X) =
0 ∈ H 2(X,R), and any Kähler class [ω] ∈ H 2(X,R) there exists a unique Calabi–
Yau metric gCY with the class [ω].4 Up to now, there is no explicitly known nonflat
Calabi–Yau metric on a compact manifold.

In Mirror Symmetry one studies the limiting behavior of gCY as the complex
structure on X approaches a “cusp’’ in the moduli space of complex structures (“max-
imal degeneration’’). A well-known conjecture of Strominger, Yau, and Zaslow (see
[SYZ]) claims a torus fibration structure of Calabi–Yau manifolds near the cusp. A
metric approach to the maximal degeneration (see [GW, KoSo]) explains the structure
of such Calabi–Yau manifolds in terms of their Gromov–Hausdorff limits. We recall
this picture below following [KoSo].

We start with the definition of a maximally degenerating family of algebraic
Calabi–Yau manifolds.

Let Cmer
t = {f = ∑

n≥n0
ant

n} be the field of germs at t = 0 of meromorphic
functions in one complex variable, and Xmer an algebraic n-dimensional Calabi–
Yau manifold over Cmer

t (i.e., Xmer is a smooth projective manifold over Cmer
t with

the trivial canonical class: KXmer = 0). We fix an algebraic nonvanishing volume
element � ∈ �(Xmer,KXmer ). The pair (Xmer, �) defines a one-parameter analytic
family of complex Calabi–Yau manifolds (Xt ,�t ), 0 < |t | < ε, for some ε > 0.

Let [ω] ∈ H 2
DR(Xmer) be a cohomology class in the ample cone. Then for every

t such that 0 < |t | < ε, it defines a Kähler class ωt on Xt . We denote by gXt the
unique Calabi–Yau metric on Xt with the Kähler class [ωt ].

It follows from resolution of singularities that as t → 0 one has∫
Xt

�t ∧�t = C(log |t |)m|t |2k(1+ o(1))

for some C ∈ C×, k ∈ Z, 0 ≤ m ≤ n = dim(Xmer).

Definition 5. We say that Xmer has maximal degeneration at t = 0 if, in the formula
above, we have m = n.

Let us rescale the Calabi–Yau metric: gnew
Xt

= gXt / diam(Xt , gXt )
1/2. In this way

we obtain a family of Riemannian manifolds Xnew
t = (Xt , g

new
Xt

) of diameter 1.

4 Notice that there is a discrepancy in terminology. In the algebraic situation one usually calls
Calabi–Yau a projective variety with trivial canonical class in Pic(X), and the polarization
is not considered as part of data.
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Conjecture 1. If Xmer has maximal degeneration at t = 0, then

diam(Xt , gXt ) = −(log |t |)−1 exp(O(1)),

and there is a limit (B, gB) of Xnew
t in the Gromov–Hausdorff metric as t → 0 such

that we have the following:

(a) (B, gB) is a compact metric space which contains a smooth oriented Riemannian
manifold (Bsm, gBsm ) of dimension n as a dense open metric subspace. The
Hausdorff dimension of Bsing = B \ Bsm is less than or equal to n− 2.

(b) Bsm carries a Z-affine structure.
(c) The metric gBsm has a potential. This means that it is locally given in affine

coordinates by a symmetric matrix (gij ) = (∂2F/∂xi∂xj ), where F is a smooth
function (defined modulo adding an affine function).

(d) In affine coordinates the metric volume element is constant, i.e.,

det(gij ) = det(∂2F/∂xi∂xj ) = const

(real Monge–Ampère equation).

There is a more precise conjecture (see [KoSo] for the details) which says that out-
side ofBsing the spaceXnew

t is metrically close to a torus fibration with flat Lagrangian
fibers (integrable system). This torus fibration can be canonically reconstructed (up
to a locally constant twist) from the limiting data (a)–(d).

Conjecture 1 holds for abelian varieties (since B = Bsm is a flat torus in this
case). It is nontrivial for K3 surfaces (see [GW] for the proof). In three-dimensional
case there is now substantial progress (see [LYZ]).

Definition 6. A Monge–Ampère manifold is a triple (Y, g,∇), where (Y, g) is a
smooth Riemannian manifold with metric g, and ∇ is a flat connection on T Y such
that we have the following:

(a) ∇ defines an affine structure on Y .
(b) Locally in affine coordinates (x1, . . . , xn), the matrix (gij ) of g is given by (gij ) =

(∂2F/∂xi∂xj ) for some smooth real-valued function F .
(c) The Monge–Ampère equation det(∂2F/∂xi∂xj ) = const is satisfied.

The following easy proposition is well known.

Proposition 2. For a given Monge–Ampère manifold (Y, gY ,∇Y ) there is a canoni-
cally defined dual Monge–Ampère manifold (Y∨, g∨Y ,∇∨Y ) such that (Y, gY ) is iden-
tified with (Y∨, g∨Y ) as Riemannian manifolds, and the local system (T Y∨,∇∨Y ) is
naturally isomorphic to the local system dual to (T Y,∇Y ) (the dual local system is
constructed via the metric gY ).

Corollary 1. If ∇Y defines an integral affine structure on Y with the covariantly
constant lattice (T Y )Z, then ∇∨Y defines an integral affine structure on Y∨ such
that for all x ∈ Y∨ = Y the lattice (TxY

∨)Z is dual to (TxY )
Z with respect to the

Riemannian metric gY on Y .
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We will call integral a Monge–Ampère manifold with Z-affine structure.
In Mirror Symmetry one often has a so-called dual family of Calabi–Yau manifolds

associated with the given one. There is no general definition of the dual family, but
there are many examples. The following conjecture (see [KoSo]) formalizes the
Strominger–Yau–Zaslow picture of Mirror Symmetry.

Conjecture 2. The smooth parts of Gromov–Hausdorff limits of dual families of
Calabi–Yau manifolds are dual integral Monge–Ampère manifolds.

One can say that Monge–Ampère manifolds with integral affine structures are real
analogs of Calabi–Yau manifolds. Conversely, having an integral Monge–Ampère
manifold (Y, gY ,∇Y , (T Y )Z) one can construct a torus fibration T Y/(T Y )Z → Y .
It is easy to see that the total space of this fibration is in fact a Calabi–Yau manifold
(typically noncompact as Y is noncompact too). Rescaling the covariant lattice we
can make fibers small (of the size O((log |t |)−1)). As we already mentioned, the
extended version of Conjecture 1 says that this torus fibration is close (after a locally
constant twist) to Xnew

t outside of a “singular’’ subset.

5.1.1 K3 example

In the case of collapsing K3 surfaces the corresponding intergal Monge–Ampère
manifold has an explicit description.

Let S be a complex surface endowed with a holomorphic nonvanishing volume
form �S , and π : S → C be a holomorphic fibration over a complex curve C such
that the fibers of π are nonsingular elliptic curves.

We define a metric gC on C as the Kähler metric associated with the (1, 1)-form
π∗(�S∧�S). Let us choose (locally on C) a basis (γ1, γ2) in H1(π

−1(x),Z), x ∈ C.
We define two closed 1-forms on C by the formulas

αi = Re

(∫
γi

�S

)
, i = 1, 2.

It follows that αi = dxi for some functions xi , i = 1, 2. We define a Z-affine
structure on C, and the corresponding connection ∇, by saying that (x1, x2) are Z-
affine coordinates (compare with 3.2.4). One can check directly that (C, gC,∇) is a
Monge–Ampère manifold. In a typical example of elliptic fibration of a K3 surface,
one gets C = CP 1 \ {x1, . . . , x24}, where {x1, . . . , x24} is a set of distinct 24 points
in CP 1. M. Gross and P. Wilson (see [GW]) proved that there exists a family of K3
surfaces with Calabi–Yau metrics collapsing to S2 � CP 1 with the intergal Monge–
Ampère structure described above.

5.2 Non-archimedean picture for the space B

Here we would like to formulate a conjecture which relates the Gromov–Hausdorff
limit with non-archimedean geometry, thus giving a purely algebraic description of
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Z-affine structure on Bsm. Let Cmer
t = ∪m≥1Cmer

t1/m be the algebraic closure of Cmer
t .

We denote by πmer : X(Cmer
t )→ B the map which associates the limiting point (in

the Gromov–Hausdorff metric) of the points x(t1/m) ∈ Xt1/m(C) as t1/m → 0.
Let K = C((t)) be the field of formal Laurent series. Then, by extending scalars

we obtain an algebraic Calabi–Yau manifold X over K . We denote by Xan the
corresponding smooth K-analytic space.

Conjecture 3. The map πmer is well defined and extends by continuity to the map
π : Xan → B. The set Bsm (defined as the maximal open subset of B on which
the limiting metric is smooth) coincides with the set of π -smooth points. The two
Z-affine structures on Bsm, one coming from the collapse picture, the other coming
from non-archimedean picture, coincide with each other.

We also make the following conjecture (or better a wish, because it is based on
very thin evidence).

Conjecture 4. The map π is Stein.

Part II

6 Compactifications of Z-affine structures

6.1 Properties of compactifications

Assume that we are given a noncompact manifold Bsm with a Z-affine structure. We
would like to “compactify’’ it, i.e., to find a compact Hausdorff topological space B

such that Bsm ⊂ B is an open dense subset. We do not require an extension of the
Z-affine structure to B. The question is: what kind of properties should one expect
from such a compactification? We cannot give a complete list of such properties at the
moment. Instead, we formulate two of them and illustrate the notion of compactifica-
tion in the PL case. The similarity between examples in Sections 3.2 and 4.2 suggests
that the class of singularities which appear in integrable systems should be more or
less the same as the class of singularities appearing in non-archimedean geometry.

Let x ∈ Bsing := B \ Bsm be a singular point of some compactification of Bsm.
Then we require the following.

Finiteness Property. There is a fundamental system of neighborhoods U ⊂ B of x
such that the number of connected components of U ∩ Bsm is finite.

Let U ∩ Bsm = �1≤i≤NUi be the disjoint union of the connected components.
Let us pick a point xi ∈ Ui and consider a continuous path γ : [0, 1] → B such that
γ (0) = xi, γ (1) = x, γ ([0, 1)) ⊂ Ui . Using the affine structure we can canonically
lift this path to a path γ ′ : [0, 1)→ TxiB. We assume that the lifted path γ ′ extends
to time t = 1 and is analytic at t = 1 (this is a technical assumption, helping to avoid
some pathologies). Then we require the following.



Affine Structures and Non-Archimedean Analytic Spaces 339

Independence Property. The path γ with the properties as above exists, and the
point γ ′(1) ∈ TxiB does not depend on the choice of γ .

The Independence Property implies the existence of a fixed vector for the mon-
odromy representation restricted to π1(U ∩ Bsm, xi) (this implies the Fixed Point
Property from Section 3.1).

6.2 PL compactifications

Let V be a finite set, and let S ⊂ 2V belong to the set of (n+ 1)-element subsets of
V . Then we have an n-dimensional simplicial complex B = ∪Y∈S�Y ⊂ �V .

Let us choose a Z-affine structure on the n-dimensional faces of B which is
compatible with the standard affine structure, and consider all (n − 1)-dimensional
faces which enjoy the following property: they belong to exactly two n-dimensional
faces. For any two such n-dimensional faces σ and τ , we choose a Z-affine structure
on σ ∪ τ which is compatible with the already chosen Z-affine structures on σ and
τ (such a choice is equivalent to a choice of Z-affine structure in a neighborhood of
the (n − 1)-dimensional face σ ∩ τ ). In this way we obtain a Z-affine structure on
the union U of the interior points of all n-dimensional simplices and also the interior
points of (n− 1)-dimensional faces belonging to exactly two top-dimensional cells.

Proposition 3. There exists a (unique) maximal extension of this Z-affine structure
to an open subset Umax ⊂ B containing U .

Proof. Let us proceed inductively by codimension of faces. The induction step re-
duces to the obvious remark that the extension of the standard Z-affine structure on
Rn \ L to a neighborhood of point p ∈ L in Rn is unique in the case when L ⊂ Rn

is an affine subspace, dim L ≤ n− 2. ��
It is easy to see that Bsm := Umax with Z-affine structure on it, compactified by

B, satisfies both the Finiteness and Independence Properties.
We introduce PL compactifications both as a “toy model,’’ and also (as we hope,

see Conjecture 6 in Section 6.3) as a sufficiently representative class for applications.
In this case we can try to formulate additional desired properties. One of the goals is
to find a good substitute for the algebro-geometric notion of a canonical singularity
(which is, morally, a singularity of a noncollapsing limit of a family of Calabi–Yau
manifolds with fixed Kähler class).

For a large class of maximally degenerating Calabi–Yau manifolds there is a
proposal by several authors (see [GS, HZh]) for a PL compactificationB conjecturally
related to the Gromov–Hausdorff limit. The space B is topologically a sphere Sn; it
carries two dual cell decompositions. Each of these decompositions is identified with
the boundary ∂P1 or ∂P2 of a convex (n + 1)-dimensional polytope. Moreover, on
each n-dimensional face of each polytope we have a Z-affine structure compatible
with the natural affine structure. The assumption is that for any two open n-cells
U,U ′ from the first and the second cell decompositions, the two induced Z-affine
structures onU∩U ′ coincide. This gives a Z-affine structure onB\(Skn−1 ∩Sk′n−1),
where Skn−1 and Sk′n−1 are the (n− 1)-skeletons of the two CW-structures.
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6.3 Some conjectures about singular sets

Our conjectures are in fact rather “wishes,’’ i.e., they are desired properties of Bsing =
B \Bsm. For simplicity, we assume that Bsing is a stratified set (say, the CW complex)
of dimension less than or equal t0 n− 1.

Conjecture 5. We have a decomposition Bsing = B
sing
n−1 ∪ B

sing
≤n−2, where B

sing
≤n−2 con-

sists of strata of dimension less than or equal to n − 2, Bsing
n−1 is the union of strata

of dimension n − 1, and locally near every point x ∈ B
sing
n−1 the Z-affine structure is

modeled by the “book’’∪i∈IRn−1 ×R≥0. Here I is a finite set, all half-spaces have
a common plane Rn−1 × {0} and x belongs to this plane. The Z-affine structure on
Bsm = �Rn−1 × R>0 is the natural one.

This conjecture gives a local model for a singular Z-affine structure at a singular
component of codimension one. Let us discuss the case of higher codimension. We
start with the following definition.

Definition 7. A Z-affine structure with singularities on B is given by

1. a closed subset Bpresing ⊂ B of a compact space B;
2. a Z-affine structure on the open set B \ Bpresing.

One can think about the closed set of “potential singularities’’Bpresing as contain-
ing the actual set of singularities Bsing).

Definition 8. A continuous path γ (t), t ∈ [0, 1], in the space of Z-affine structures
with singularities on a given compact space B is given by

1. a continuous path B
presing
t in the space of all compact subsets of B;

2. a Z-affine structure on B \ Bpresing
t for all t ∈ [0, 1].

Notice that for each t0 ∈ (0, 1)andx0 ∈ B\Bpresing
t0

we can choose neighborhoods

Ut0 of t0 andUx0 of x0 such thatUx0 ⊂ B\Bpresing
t for all t ∈ Ut0 . Then we require that

3. if Ut0 and Ux0 are sufficiently small, then the induced Z-affine structure on Ux0

does not depend on t ∈ Ut0 .

Notice that in the case when the homotopy type ofB\Bpresing
t remains unchanged,

the representation ρt : π1(B \ Bpresing
t )→ GL(n,Z) � Rn stays the same.

We are going to give an example of a nontrivial path in the next subsection. We
expect that singularities which appear in the collapse of Calabi–Yau manifolds satisfy
the following.

Conjecture 6. If Bsing = Bpresing is of codimension at least two in B, then there is
a continuous path γ (t) in the space of Z-affine structures with singularities which
connects a given structure with the one coming from a PL compactification, and
such that for all t we have codim(B

presing
t ) ≥ 2 and γ (t) has the Finiteness and

Independence Properties.
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6.4 Standard singularities in codimension 2

Let us remove the angle {(x, y) ∈ R2 | 0 < x < y} from R2. After that we identify
the sides of the angle by the affine transformation (x, y) 
→ (x + y, y). In this way
we introduce a new Z-affine structure on R2 \ {(0, 0)} with the monodromy around
(0, 0) given by the unipotent matrix (see Figure 3)(

1 1
0 1

)
.

(x,y) (x+y,y)

Fig. 3. Glue the two sides of the dashed area. White parallelograms are identified.

This Z-affine structure does not admit a continuation to R2. Therefore, we obtain
a Z-affine structure with singularities on R2. We will call standard the singularity
at (0, 0).

Equivalently, we can describe this Z-affine structure on R2 \ {(0, 0)} by taking
a cut along the ray {(x, 0) | x > 0} in R2 and gluing the standard Z-affine structure
above and below the cut by means of the affine transformation (x, y) 
→ (x + y, y)

(see Figure 1 in Section 3.2.4). In this description it is clear that we can start the cut at
an arbitrary point (x0, 0) on the x-axes. The resulting singularity will also be called
the standard one.

We adopt this terminology.

Remark 1. We can vary the position of (x0, 0), thus obtaining a continuous path in
the space of Z-affine structures with singularities in R2.

More generally, suppose that B is equipped with a Z-affine structure which has
standard singularities at the points p1, . . . , pm. Then we can slightly move each point
pi in the direction invariant under the local monodromy around pi . This gives a new
Z-affine structure which is ZPL-isomorphic to the initial one.

The standard singularity is called a focus–focus singularity in the theory of inte-
grable systems (see [Zu]). In non-archimedean geometry it appears as a singular value
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of some map f : Xan → R2, whereX is an algebraic surface in the three-dimensional
affine space A3

K (see Section 8).
Let us consider the Cartesian product of R2 \ {(0, 0)} equipped with the above

Z-affine structure with the standard (nonsingular) Z-affine structure on Rn−2. Let
us choose a continuous function f (z1, . . . , zn−2) and start the cuts at all points
(f (z1, . . . , zn−2), 0, z1, . . . , zn−2). This means that we introduce the standard non-
singular Z-affine structure in the region y �= 0 as well as in the region (y = 0, x <

f (z1, . . . , zn−2)). Near the points (y = 0, x > f (z1, . . . , zn−2)) we introduce a
modified Z-affine structure by declaring the functions

(y, x +max(y, 0), z1, . . . , zn−2)

to be Z-affine coordinates. This gives an example of a “curved’’ singular set Bsing

of codimension 2. Since the function f can be approximated by PL functions, the
above Z-affine structure can be deformed to a PL one.

6.5 Z-affine version of Gauss–Bonnet theorem

LetB be a connected compact oriented topological surface, andBsing ⊂ B a finite set.
Assume that Bsm = B \Bsing carries a Z-affine structure such that for any x ∈ Bsing

there exists a small neighborhood U such that U = ∪i∈IUi , where I is a finite set
and each Ui is affine equivalent to a germ of an angle in R2, with x being the apex of
each angle.

The aim of this section is to define a map iloc : Bsing → 1
12 Z (which depends

only on the Z-affine structure near Bsing) and to prove the following result (a kind of
Gauss–Bonnet theorem).

Theorem 2. The following equality holds:∑
x∈Bsing

iloc(x) = χ(B),

where χ(B) is the Euler characteristic of B.

We start with the construction of iloc. Let us denote by ˜SL(2,Z) the preimage

of SL(2,Z) in the universal covering ˜SL(2,R) of the group SL(2,R). The group
˜SL(2,R) contains π1(SL(2,R)) � Z. Let u be a generator of the latter (it also

belongs to ˜SL(2,Z)).
We have an exact sequence of groups

1 → Z → ˜SL(2,Z)→ PSL(2,Z)→ 1.

Notice that PSL(2,Z) is a free product Z/2 ∗ Z/3. Moreover, in the above exact

sequence Z is embedded into the center of ˜SL(2,Z). Notice that u is the image of
2 ∈ Z. One can choose representatives a2, a3 of the standard generators of PSL(2,Z)



Affine Structures and Non-Archimedean Analytic Spaces 343

in such a way that ˜SL(2,Z) is generated by u, a2, a3 subject to the relations a2
2 =

a3
3, a

4
2 = a6

3 = u. This gives a homomorphism of groups φ : ˜SL(2,Z) → Z such
that φ(a2) = 3, φ(a3) = 2, φ(u) = 12. Dividing by 12 we obtain a homomorphism

i : ˜SL(2,Z)→ 1
12 Z such that i(u) = 1.

Let us consider a topological S1-bundle E over B, such that the fiber over x ∈ B

is the union of all affine rays emanating from x. Then the restriction ofE toBsm is just
the spherical bundle. Let us pick x0 ∈ Bsm and remove it from B together with small
neighborhoods of all points Bsing. We denote by B1 the topological space obtained in
this way. We can trivialize the tangent bundle overB1 (we choose aC∞-trivialization,
compatible with the SL(2,R)-structure) in such a way that it extends to a continuous
trivialization of the S1-bundleE overB\{x0}. Let α ∈ �1(B1)⊗sl(2,R) be a 1-form
defined by means of the affine structure∇ onB1. Then dα+ 1

2 [α, α] = 0 andα defines

a flat connection on the trivial ˜SL(2,R)-bundle over B1. This gives a a monodromy

representation π1(B1) → ˜SL(2,Z) defined up to conjugation. Composing it with
the homomorphism i we obtain a homomorphism π1(B1) → 1

12 Z. Since 1
12 Z is an

abelian group, the latter homomorphism is the composition π1(B1)→ H1(B1,Z)→
1

12 Z. Let us pick small circles [γx] ∈ H1(B,Z) for each x ∈ Bsing. Then the above
homomorphism gives us a number denoted by iloc(x) ∈ 1

12 Z.

Proof of Theorem 2. Let us pick a small circle [γx0 ] ∈ H1(B1,Z) around x0. Then∑
x∈Bsing [γx]+[γx0 ] = 0. The monodromy around x0 can be easily computed via the

winding number of the induced vector field (section of E|γx0
) and is equal to−χ(B)u.

Applying the homomorphism i we obtain the result. ��
Corollary 2. Suppose that the monodromy for each point x ∈ Bsing is the standard
one (see Section 6.4). Then one has two possibilities:

(a) Bsing = ∅ and B = Bsm is a two-dimensional torus;
(b) the set Bsing consists of 24 distinct points on the sphere S2.

Proof. It is easy to see that for each point x ∈ Bsing one has iloc(x) = 1
12 . Then from

the Gauss–Bonnet theorem one deduces that χ(B) = 2 − 2g, where g is the genus
of the Riemann surface B. Then we have

|Bsing|
12

= 2− 2g.

Since the LHS is nonnegative we conclude that either g = 1 or g = 0. In the first
case |Bsing| = 0 and we have a Z-affine structure on a torus. In the second case we
have |Bsing| = 24 and g = 0. ��
Remark 2. This corollary was proved in [LeS] by different methods.

Similarly, for the affine structure with the monodromy at each point conjugate to(
1 4
0 1

)
,

one has iloc(x) = 1
3 , and we have six singular points on S2 (see Section 4.2.5).
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6.6 Skeleton of a non-archimedean Calabi–Yau variety

Let X = X/K be a smooth proper algebraic variety over a non-archimedean field
K , dim X = n, and let � ∈ �(X,�n

X) be a nonzero top-degree form on X. We
will associate canonically with the pair (X,�) a piecewise-linear compact space
Sk(X,�) ⊂ Xan such that dimR Sk(X,�) ≤ n.

Let us assume for simplicity that K = C((t)) and X is defined over Cmer
t ⊂ K .

The analytic spaceXan contains a dense subsetXDiv of divisorial points corresponding
to irreducible components of special fibers of all snc models X ofX (seeAppendixA):

XDiv = ∪X iX (VSX ),

where VSX is the set of vertices of the Clemens polytope SX .
The top-degree form � gives rise to a map ψ� : XDiv → Q. Namely, if p : X →

Spec(Cmer
t ) is an snc model and D ⊂ X0 is an irreducible divisor of the special fiber,

then we define

ψ�(D) = ordD(� ∧ dt/t)

ordD(p∗(t))
.

Here � ∧ dt/t is a meromorphic top-degree form on X /C.
It is easy to show that ψ�(D) depends only on the point iX (D) ∈ Xan. The

function ψ� is (globally) bounded from below.

Definition 9. A divisorial point iX (D) is called essential if

ψ�(D) = inf
x∈XDiv

ψ�(x).

Definition 10. The skeleton Sk(X,�) is the closure in Xan of the set of essential
points.5

Let X be an snc model. We will explain how to describe Sk(X,�) in terms of X
and �. In fact it is a nonempty simplicial subcomplex of iX (SX ).

Let us call X -essential a divisor Di ⊂ X0 such that

ψ�(Di) = min
Dj∈X0

ψ�(Dj ).

A nonempty collection Di1 , . . . , Dil of divisors in X0 is called X -essential if all Dik

are X -essential, the intersectionDi1∩Di2∩· · ·∩Dil is nonempty and does not belong
to the closure of the divisor of zeros of � is X \ X0.

Theorem 3. The skeleton Sk(X,�) is the image under iX of the subcomplex
Sk(X , �) ⊂ SX consisting of simplices corresponding to X -essential collections
of divisors.

5 Our notion of a skeleton should not be confused with the one introduced in [Be3]. The latter
is related to the Clemens polytope SX of an snc model X .
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Sketch of the proof. Notice that for any snc model X the subset SX (Q) ⊂ SX con-
sisting of points with rational barycentric coordinates is mapped by iX into XDiv.
Namely, we can modify X by blowing up at nonempty intersections of irreducible
components of the special fiber and then continue this process indefinitely. Divisorial
points obtained in this way exhaust all points of iX (SX (Q)).

We will prove that the set of essential points in Xan coincides with iX (SX (Q) ∩
Sk(X , �)). First of all, a direct computation shows that ψ� restricted to iX (SX (Q))

achieves its absolute minimum on iX (SX (Q) ∩ Sk(X , �)). Secondly, another
straightforward computation shows that the latter set does not change under blowups
of first and second type (see Section A.5 in Appendix A). This concludes the proof.��

For a Calabi–Yau manifold X we will denote Sk(X,�) simply by Sk(X), as there
exists only one (up to a scalar) nonzero top-degree form � on X and Sk(X, λ�) =
Sk(X,�) ∀λ ∈ K×.

One can prove that the PL space Sk(X,�) is in fact a birational invariant. More-
over, the group Autbrt(X) of birational automorphisms of X acts on the skeleton by
ZPL transformations. In order to obtain nontrivial examples of such actions we need
Calabi–Yau manifolds with large groups of birational automorphisms. An example
of a ZPL-action is considered in the next subsection.

6.7 K3 surfaces and ZPL-actions on S2

6.7.1 Integrable systems

Recall that in Section 3.3 we constructed a 38-dimensional space P parameterizing
integrable systems (X, ω) → B with B � S2. The space P carries a codimension
20 foliation F corresponding to small deformations of integrable systems which do
not change the invariant [ρ] of the local system ρ : π1(B \Bsing)→ SL(2,Z)� R2.
We explained that the fundamental group of a leaf of F acts by PL homeomorphisms
of S2. Here we are going to give a (partial) description of P and F in cohomological
terms using the Torelli theorem (see Appendix B).

An algebraic polarized K3 surface X/C elliptically fibered over CP 1, equipped
with a holomorphic volume form � can be encoded by the data (�, (·, ·), [ω], [�],
[γ ],KX), where

1. (�, (·, ·),C[�],KX) is K3 period data;
2. [ω], [γ ] ∈ �, � ∈ �⊗ C;
3. [ω] ∈ KX, γ ∈ ∂KX, ([ω], [�]) = ([γ ], [�]) = ([γ ], [γ ]) = 0;
4. γ is a nonzero primitive lattice vector.

Here [ω] is the class of the polarization (projective embedding) of X, and [γ ] is dual
to the class of a generic fiber of the elliptic fibration π : X→ CP 1.

Perhaps one can express in cohomological terms the fact that π has exactly 24
critical values. The latter is an open condition.

Let L ⊂ H2(X,Z) be a subgroup consisting of cohomology classes of cycles
which are projected into graphs in B \ Bsing (such cycles are circle fibrations over
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graphs). When we move along a leaf of F , then the pairing of Re([�])withL remains
unchanged (see Section 3.1.1). Clearly, L ⊂ [γ ]⊥, and moreover, one can check that
L = [γ ]⊥ � Z21. The pairing with Re([�]) gives a map �2,18 := [γ ]⊥/Z[γ ] → R,
where �2,18 is the following even unimodular lattice of signature (2, 18):

�2,18 =
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕ (−E8)⊕ (−E8),

where −E8 is the Cartan matrix for the Dynkin diagram E8 taken with the minus
sign.

The functional (Re[�], ·) on �2,18 can be represented as (vRe[�], ·), where
vRe[�] ∈ �2,18 ⊗ R is a vector with strictly positive squared norm. One can show
that the (non-Hausdorff) space of leaves of F is canonically identified with the set
{v ∈ �2,18 ⊗ R|(v, v) > 0}/Aut(�2,18).

The fundamental group of the leaf Fv corresponding to a vector v ∈ �2,18 ⊗ R
maps onto the group�v ⊂ Aut(�2,18). This group is (up to conjugation) the stabilizer
in (Aut(�2,18), (·, ·)2,18, v) of the coneKv , which is a connected component of the set

{w ∈ �2,18 ⊗ R|(w, v) = 0, (w,w) > 0} \
⋃

γ∈�2,18,(γ,γ )=−2,(γ,v)=0

Hγ

and Hγ ∈ �2,18 ⊗ R is the hyperplane orthogonal to γ (cf. Appendix B). Let
us denote by AutZPL,v(S

2) the group of piecewise-linear transformations of S2 with
integer linear part. The index v signifies the dependence of ZPL-structure on S2 on v.

Conjecture 7. The homomorphism π1(Fv) → AutZPL,v(S
2) arising from the mon-

odromy of the local system along the leaf Fv (see Sections 3.3 and 6.4) is equal to
the composition

π1(Fv) � �v → AutZPL,v(S
2),

where the homomorphism φv : �v → AutZPL,v(S
2) is uniquely determined by this

property.

In particular, for v ∈ �2,18 the group �v is a subgroup (and also a quotient group)
of an arithmetic subgroup in the Lie group SO(1, 18). Also, in this case there is a
�v-invariant notion of a point with integer coordinates on S2, as well of points with
coordinates in 1

N
Z for any integer N ≥ 1. The number Mv,N of such points is finite,

and we obtain a homomorphism from �v to the mapping class group π1(Munord
0,Mv,N

),
the fundamental group of the moduli space of genus-zero complex curves with Mv,N

unordered distinct marked points. The latter group is closely related to the braid
group. The conclusion is that we have constructed homomorphisms from arithmetic
groups to braid groups.

One can consider the whole moduli space M44 of Z-affine structures on S2 with
24 standard singularities. This space is a Hausdorff orbifold (with a natural Z-affine
structure!) of dimension 44, and it carries a foliation of codimension 20 as before.
It seems that using our main result (Theorem 5 in Part III) together with a certain
natural assumption (see Conjecture 11 in Section 11.6), one can show that the action
by ZPL transformations of S2 of the fundamental group of leaves of the foliation on
the larger space M44 is again reduced to the action of �v .
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6.7.2 Analytic surfaces

Let X = (Xt )t→0 be a maximally degenerate K3 surface over the field Cmer
t (see Sec-

tion 5.1). We denote by �X the quotient group [γ0]⊥/Z[γ0], where [γ0] ∈ H2(Xt ,Z)

is the vanishing cycle. Then �X � �2,18. Let us assume that the monodromy acts
trivially on �X.

We define a natural homomorphism ρX : �X → (Cmer
t )× by the formula

ρX([γ ]) = exp

(
2πi

∫
γ
�t∫

γ0
�t

)
, [γ ] ∈ [γ0]⊥.

One can give a more abstract definition of ρX in terms of the variation of Hodge
structure. It is easy to see that (valCmer

t
◦ρX)([γ ]) = (vX, [γ ]), where vX ∈ �X is

a vector such that (vX, vX) > 0, and valCmer
t

is the standard valuation on the field
Cmer

t ⊂ C((t)).
Let Xan be the corresponding analytic K3 surface over the field K = C((t)). We

have an analytic torus fibration over S2 \ {x1, . . . , x24} which can be extended to a
continuous map Xan → S2. Let us call such an extension a singular analytic torus
fibration with standard singularities.

Conjecture 8. For any analytic K3 surfaceXan/K admitting an analytic torus fibration
Xan → S2 with standard singularities, one can define intrinsically the lattice �Xan

and the homomorphism ρXan : �Xan → K×.

Notice that for K3 surfaces any birational automorphism is biregular. Hence the
group of birational automorphisms Autbrt(X) acts by a ZPL-transformation of the
sphere S2 which is equipped with a singular Z-affine structure (see Section 6.6), i.e.,
we have a homomorphism

Autbrt(X) = Aut(X)→ AutZPL,vX (Sk(Xan, �)) � AutZPL,vX (S
2).

Conjecture 9.

(1) The image �ρX of Aut(X) in Aut(�X, ρX) is a subgroup of �vX , where vX :=
valK ◦ρX : �X → R.

(2) The homomorphism Aut(X) → AutZPL,vX (S
2) is conjugate to the restriction to

�ρX of the homomorphism φvX defined in the previous subsection.

6.7.3 Lattice points

Let us consider the special case when vector v is a lattice vector, i.e., v ∈ �2,18. In
the A-model picture, it corresponds to the integrality of the class [ω] of symplectic
2-form. In the B-model, this means that the non-archimedean field K has valuation
in Z ⊂ R. In terms of Z-affine structures, it means that the monodromy of the affine
connection is reduced to SL(2,Z) � Z2. The group �v is a subgroup (and also a
quotient group) of an arithmetic subgroup in the Lie group SO(1, 18). Also, in this
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case there is a �v-invariant notion of a point with integer coordinates on B � S2, as
well as points with coordinates in 1

N
Z for any integer N ≥ 1. The number Mv,N of

such points is finite. It is not hard to see that Mv,N = Areav +2 = (v,v)
2 N2+2, where

Areav is the area of B with a ZPL structure corresponding to v. This is analogous

to the Riemann–Roch formula rk(�(XC, L
⊗N)) = ∫

X
c1(L)

2

2 + 2 for an ample line
bundle L on a complex K3 surface XC.

The action of �v on S2 gives rise to a homomorphism �v → SMv,n , where SMv,n

is the symmetric group. Also the action gives a homomorphism from �v to the
mapping class group π1(Munord

0,Mv,N
), the fundamental group of the moduli space of

genus-zero complex curves with Mv,N unordered distinct marked points. The last
group is closely related to the braid group. The conclusion is that we have constructed
homomorphisms from arithmetic groups to a tower of braid groups.

One can deduce from Torelli theorem an interpretation of �v as a quotient group
of the fundamental group of a neighborhood U of a cusp in 19-dimensional moduli
space of polarized complex algebraic K3 surfaces, where vector v corresponds to the
polarization. Therefore, the homomorphism �v → SMv,n gives a finite covering U ′
of U . One may wonder whether there exists a line bundle over U ′ whose direct image
toU coincides with the direct image of the sheafL⊗N from the universal family of K3
surfaces. (This question is in spirit of some ideas of Andrey Tyurin; see, e.g., [Tyu].)

6.8 Further examples

There are many families of Calabi–Yau varieties with huge groups of birational au-
tomorphisms. We learned the following example from D. Panov and D. Zvonkine.
For any real numbers l1, . . . , ln > 0, we can consider the space of planar n-gons with
the lengths of edges equal to l1, . . . , ln, modulo the group of orientation-preserving
motions. This space can be identified with the space of solutions of the system of
equations ∑

lizi = 0,
∑

liz
−1
i = 0,

where (z1 : · · · : zn) ∈ CPn−1 is a point satisfying the reality condition |zi | = 1,
i = 1, . . . , n. Hence we obtain a singular subvariety of CPn−1 of codimension
2, depending on the parameters l1, . . . , ln. One can check that this variety is bi-
rationally isomorphic to a nonsingular Calabi–Yau variety. For any proper subset
I ⊂ {1, . . . , n}, 2 ≤ |I | ≤ n − 2, we have a birational involution σI defined by the
formula

σ ∗I (zi) =
{
c/zi if i ∈ I ,

zi if i /∈ I ,

where c :=
∑

i∈I li zi∑
i∈I li /zi

.

We do not know at the moment the structure of the groupGn generated by the invo-
lutions σI . One can easily obtain explicit formulas for the action of Gn by piecewise-
linear homemorphisms of Sn−3. The length parameters li should be replaced by
elements of a non-archimedean field K with “generic’’ norms λi = valK(li) ∈ R.
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Denote by ζi , i = 1, . . . , n, real variables which have the meaning of valuations of
the variables zi ∈ K . The sphere Sn−3 is obtained in the following way. In Rn we
consider the intersection of two subsets:

{(ζ1, . . . ζn) | min
i
(λi + ζi) is achieved at least twice}

and

{(ζ1, . . . ζn) | min
i
(λi − ζi) is achieved at least twice}

and then take the quotient by the action of R:

(ζ1, . . . ζn)→ (ζ1 + a, . . . , ζn + a)

corresponding to the projectivization. For appropriately chosen (λ1, . . . , λn) we
obtain a set which is the union of Sn−3 with several “wings’’ going to infinity. The
action of the involution σI is obtained from algebraic formulas from above, in which
one replaces non-archimedean variables by real ones, addition by minimum and
multiplication (division) by addition (subtraction).

7 K-affine structures

7.1 Definitions

Let Bsm be a manifold with Z-affine structure. The sheaf of Z-affine functions
Aff Z := Aff Z,Bsm gives rise to an exact sequence of sheaves of abelian groups

0 → R → Aff Z → (T ∗)Z → 0.

Let K be a complete non-archimedean field with a valuation map val. We give
two equivalent definitions of a K-affine structure on Bsm compatible with a given
Z-affine structure.

Definition 11. A K-affine structure on Bsm compatible with the given Z-affine struc-
ture is a sheaf AffK of abelian groups on Bsm, an exact sequence of sheaves

0 → K× → AffK → (T ∗)Z → 0,

together with a homomorphism ' of this exact sequence to the exact sequence of
sheaves of abelian groups

0 → R → Aff Z → (T ∗)Z → 0,

such that ' = id on (T ∗)Z and ' = val on K×.
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Since Bsm carries a Z-affine structure, we have an associated GL(n,Z) � Rn-
torsor on Bsm, whose fiber over a point x consists of all Z-affine coordinate systems
at x.

Definition 12. A K-affine structure on Bsm compatible with the given Z-affine struc-
ture is a GL(n,Z)�(K×)n-torsor onBsm such that the application of val×n to (K×)n
gives the initial GL(n,Z) � Rn-torsor.

The equivalence of the above two definitions is obvious in local Z-affine coordi-
nates. The reason is that the set of automorphisms of the exact sequence of groups

0 → K× → K× × Zn → Zn → 0

which are the identity on K× coincides with the group GL(n,Z) � (K×)n.
Finally, we can formulate the Fixed Point Property for K-affine structures (see

Section 3.1 for the Z-affine case).

Fixed Point Property for K-Affine Structures. In the notation of the end of Sec-
tion 3.1, for any b ∈ Bsing and sufficiently small neighborhood U of b the lifted
monodromy representation π1(U) → GL(n,Z) � (K×)n has fixed vectors in
K×n, and the R-affine span of the corresponding (under the valuation map) vec-
tors in Rn coincides with the set of fixed points of the monodromy representation
π1(U)→ GL(n,Z) � Rn.

7.2 K-affine structure on smooth points

From this section until the end of the chapter (except for Section 11.7), we will assume
the following.

Zero Characteristic Assumption. K is a complete non-archimedean local field such
that its residue field has characteristic zero.

LetX be aK-analytic manifold of dimension n and we are given a continuous map
π : X → B, where B is a topological space. Then Bsm carries a Z-affine structure
(Theorem 1). Suppose that there is an open K-analytic submanifold U ⊂ X such that
π−1(Bsm) ⊂ U and there is a nonwhere vanishing analytic form � ∈ �(U,�n

X). We
are going to define a Z-affine function Val(�) similar to the definition of the function
Val(ϕ) in Section 4.1. Namely, in local coordinates (z1, . . . , zn) we consider the
expression ϕ := �/

∧
1≤i≤n(dzi/zi). This is an invertible function, and we define

Val(�) as Val(ϕ). The independence of the choice of coordinates follows from the
following lemma.

Lemma 2. Let (zi)i=1,...,n, (z′i )i=1,...,n, be two systems of invertible coordinates on
π−1(U) for some connected open U ⊂ Bsm. Then

|(∧1≤i≤n(dzi/zi))/(
∧

1≤i≤n(dz′i/z′i ))|x = 1 ∀x ∈ π−1(U).
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Proof. By Lemma 1 from Section 4.1, we know that z′i , as any invertible function,

can be written in the form ciz
I (i) (1+o(1)) for some nonzero ci ∈ K and a multiindex

I (i) ∈ Zn. The vectors I (1), . . . , I (n) form a basis of Zn, as follows from the condition
that z′1, . . . , z′n form a coordinate system. Therefore, after applying the change of

coordinates zi 
→ ciz
I (i) preserving the form

∧
i dzi/zi up to sign, we may assume

that z′i = (1+ o(1))zi . The Jacobian matrix of the transformation (zi)→ (z′i ) is the
identity matrix plus terms of size o(1). Therefore, its determinant has norm equal
to 1. ��

Now we make the following assumption.

Constant Norm Assumption. The function Val(ϕ) is locally constant.

Theorem 4. If the Constant Norm Assumption is satisfied, then there is a K-affine
structure on Bsm compatible with the Z-affine structure Aff can

Z,Bsm (see Section 4.1).

Proof. Let us write in local coordinates � = ϕ(z1, . . . , zn)
∧

1≤i≤n
dzi
zi

. De-
fine the residue Res(�) ∈ K as the constant term ϕ0 in the Laurent expansion
ϕ(z1, . . . , zn) = ∑

I∈Zn ϕI z
I . It is easy to see that Res(�) does not depend (up

to sign) on the choice of local coordinates. For nowhere vanishing � satisfying the
Constant Norm Assumption, we have exp(−Val(ϕ)) = |ϕ| = |ϕ0|. Therefore, we
have Res(�) �= 0.

Let us return to the proof of the theorem. Let F be the sheaf of abelian groups
F ⊂ π∗(O×X) consisting of f such that Val(f ) = 0. Then we have an exact sequence
of sheaves

0 → K×/O×K → π∗(O×X)/F → (T ∗X)Z → 0,

where OK denotes the constant sheaf with fiber being the ring of integers of K .
Indeed, we embed K×/O×K into π∗(O×X)/F as constant functions. The projection
π∗(O×X)/F → (T ∗X)Z assigns to the function f the linear part of the corresponding
Z-affine function Val(f ).

Notice that if U ⊂ Bsm is a connected domain then any f ∈ �(U, F ) can be
written (noncanonically) as f = a(1+ r), where a ∈ O×K and r = o(1) in π−1(U).

We define an epimorphism of sheaves p� : F � O×K by the formula

p�(f ) = p�(a(1+ r)) = a exp

(
Res(� log(1+ r))

Res(�)

)
.

Here exp and log are understood as infinite convergent series. (In order to make
sense of them, we use the Zero Characteristic Assumption.)

It is easy to see that p� is well defined. Then the exact sequence of sheaves

1 → K× → π∗(O×X)/ ker(p�)→ (T ∗X)Z → 1

defines a K-affine structure on Bsm compatible with Aff can
Z,Bsm . This concludes the

proof of the theorem. ��
Notice that the above proof gives an explicit construction of theK-affine structure.

We will denote it by Aff�K,Bsm . It is easy to see that this K-affine structure does not
change if we make a rescaling � 
→ c�, c ∈ K×.
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7.3 Lifting Problem

Let K be as in Section 7.2, let B ⊃ Bpresing be a space with singular Z-affine structure
(see Section 6.3), and assume we have an extension of the Z-affine structure on
B\Bpresing to aK-affine structure satisfying the Fixed Point Property (see Section 7.1).
We assume that that Z-affine structure cannot be extended to a larger open set U ⊃
B \Bpresing, U �= B \Bpresing. Slightly abusing notation, we will denote B \Bpresing

simply by Bsm. We want to have a K-analytic space X, meromorphic nonzero top-
degree form � and a continuous proper (and maybe also Stein) map π : X → B

such that

1. Bpresing coincides with Bsing, and the Z-affine structure on Bsm arising from the
projection π coincides with the given one;

2. the restriction �|π−1(Bsm) is a nowhere vanishing analytic form which satisfies
the Constant Norm Assumption;

3. the K-affine structure on Bsm arising from the pair (X,�) coincides with the
initial one.

We call the problem of finding such data the Lifting Problem.

Remark 3. If a solution of the Lifting Problem exists, then Bsm is orientable. Indeed,
Res(�) is locally a constant defined up to a sign which depends on the orientation of
Bsm. A global choice of the constant gives an orientation. For oriented Bsm we can
rescale � canonically in such a way that Res(�) = 1.

Question. What restrictions on the behavior of the K-affine structure near Bpresing =
Bsing should we impose in order to guarantee the existence of a solution of the Lifting
Problem?

Let B = Bsm be a flat torus (see Section 3.2.1). Then the Lifting Problem has a
solution (canonical up to rescaling of �) for any compatible K-affine structure. More
precisely, the groupoid of Tate tori and isomorphisms between them is equivalent to
the groupoid of K-affine structures on real flat tori.

In Sections 8–11 we are going to discuss a solution of the Lifting Problem for K3
surfaces. In that case Bsing �= ∅.

If we restrict ourselves only to the smooth part Bsm (i.e., we allow noncompactX)
then there is a canonical solution of this “reduced’’ Lifting Problem. In other words,
one can construct a smooth K-analytic space X′ with an analytic top-degree form �′
and a map π ′ : X′ → Bsm satisfying the above conditions 1–3. Let us explain this
construction assuming that Bsm is oriented.

First, we notice that the orientation of Bsm gives a reduction to SL(n,Z)�(K×)n
of the structure group of the torsor defining the K-affine structure. The reduced group
acts naturally by automorphisms of the fibration πcan : (Gan

m )n → Rn preserving the
form

∧
1≤i≤n

dzi
zi

. The action on (Gan
m )n is induced from the action on monomials.

Namely, the inverse to an element (A, λ1, . . . , λn) ∈ SL(n,Z) � (K×)n acts on
monomials as

zI = z
I1
1 . . . zInn 
→

(∏n
i=1λ

Ii
i

)
zA(I).
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The action of the same element on Rn is given by the similar formula

x = (x1, . . . , xn) 
→ A(x)− (val(λ1), . . . , val(λn)).

Let Bsm = ∪αUα be an open covering by coordinate charts Uα � Vα ⊂ Rn such
that for any α, β we are given elements gα,β ∈ SL(n,Z) � (K×)n satisfying the 1-
cocycle condition for any triple α, β, γ . Then the space X′ is obtained from π−1

can(Vα)

by gluing by means of the transformations gα,β . The form
∧

1≤i≤n
dzi
zi

gives rise to
a nowhere vanishing analytic top-degree form �′ on X′. Thus we have obtained a
solution of the reduced Lifting Problem. The sheaf π∗(OX′) := Ocan

Bsm is called the
canonical sheaf .

In the case Bpresing �= ∅ this solution seems to be the “wrong’’ one, i.e., it cannot
be extended to a solution π : X → B, where X and B are compact. In the case of
K3 surfaces we will show later how to modify it in order to obtain a “true’’ solution
of the Lifting Problem.

7.4 Flat coordinates and periods

Here we are going to discuss a relation between K-affine structures and so-called flat
coordinates on the moduli space of complex structures on Calabi–Yau manifolds. We
assume the picture of collapse from Section 5.1.

7.4.1 Flat coordinates for degenerating complex Calabi–Yau manifolds

Let Xmer = (Xt )t→0 be a maximally degenerating algebraic Calabi–Yau manifold of
dimension n over Cmer

t . We denote by B the Gromov–Hausdorff limit of our family
(see Conjecture 1, Section 5.1). Its connected oriented open dense part Bsm carries a
Z-affine structure with the covariant lattice T Z.

Recall that according to the picture of collapse presented in Section 5.1 there
is a canonical isotopy class of embeddings from the total space of a torus bundle
p : X′t → Bsm to the complex manifold Xt for all sufficiently small t �= 0. Let
us denote by [γ0] ∈ Hn(X

′
t ,Z) the fundamental class of the fiber of p. This is the

homology class of a singular chain in X′t which projects to a point by p.
Let H≤1

n (X′t ,Z) ⊂ Hn(X
′
t ,Z) be the subgroup generated by homology classes

of chains which are projected into graphs in Bsm. It follows from the definition that
we have an epimorphism

Ja : H1(B
sm,

∧n−1
T Z) � H≤1

n (X′t ,Z)/Z[γ0]
similar to the homomorphism Js defined in the symplectic case (see Section 3.1.1).
The following formula defines a homomorphism of groups:

P : H≤1
n (X′t ,Z)/Z[γ0] → (Cmer

t )×, [γ ] 
→ exp

(
2πi

∫
[γ ]�t∫
[γ0]�t

)
.
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We will call P the period map. Notice that Z[γ0] := H≤0
n (X′t ,Z) ⊂ H≤1

n (X′t ,Z)

is the low-degree part of the limiting Hodge filtration on the homology of the Calabi–
Yau manifold Xt . The nonzero complex numbers

exp

(
2πi

∫
[γi ]�t∫
[γ0]�t

)
,

where γi is a set of generators of H≤1
n (X′t ,Z)/H≤0

n (X′t ,Z) are called flat coordinates
in Mirror Symmetry (see, e.g., [Mor]). These are local coordinates near a point close
to the “cusp’’ of the moduli space of complex structures (local Torelli theorem).

The orientation of Bsm gives rise to an isomorphism
∧n−1

T Z � (T ∗)Z. There-
fore, combining the maps Ja, P and the above isomorphism we obtain a homomor-
phism

P̃ : H 1(Bsm, (T ∗)Z)→ (Cmer
t )×.

7.4.2 Non-archimedean periods

Let Xan be a smooth analytic Calabi–Yau manifold associated with Xmer. Assuming
the equivalence of the Gromov–Hausdorff and non-archimedean pictures of collapse
presented in Section 5, we have a continuous map π : Xan → B. It gives a K-affine
structure on Bsm. The corresponding exact sequence

0 → K× → AffK → (T ∗)Z → 0

represents a class in H 1(Bsm, T Z ⊗ K×) � Ext1((T ∗)Z,K×). Pairing with this
class gives another homomorphism

P ′ : H1(B
sm, (T ∗)Z)→ K× = H0(B

sm,K×).

Conjecture 10. The homomorphism P ′ is equal to the composition of P̃ with the
embedding (Cmer

t )× ↪→ K×.

Part III

We fix field K satisfying the Zero Characteristic Assumption.
Let B be a compact oriented surface, Bsing ⊂ B a finite set, and AffK = AffK,Y

a sheaf defining a K-affine structure on Y := Bsm = B \ Bsing. We assume that all
singularities of the underlying Z-affine structure are standard (see Section 6.4), and
the local monodromy around each b ∈ Bsing acts on (K×)2 with a fixed point (see
the Fixed Point Property at the end of Section 7.1). The main result of Part III of the
article can be formulated as follows.

Theorem 5. There exist a compact K-analytic surface Xan, a top-degree analytic
form � = �Xan and a continuous proper Stein map π : Xan → B such that the set of
π -smooth points coincides with Y and the induced K-affine structure coincides with
the one given by AffK .

In other words, the triple (Xan, π,�) is a solution of the Lifting Problem.
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By the Stein property it suffices to construct the sheaf OB = π∗(OXan ) of K-
algebras over B. We will see that outside of the finite singular set S = {x1, . . . , x24}
the sheaf OB is locally isomorphic to Ocan

Y . In the next section we will describe the
local model for the sheaf OB near each singular point. It will be glued together with
a modification of the canonical sheaf Ocan

Y . This modification depends on data called
lines. The appearance of lines is motivated by Homological Mirror Symmetry (see
[Ko, KoSo]).6 Roughly speaking, lines correspond (for mirror dual K3 surface) to
collapsing holomorphic discs with boundaries belonging to fibers of the dual torus
fibration (see Section 5.1 and [KoSo]). Such “bad’’ fibers are Lagrangian tori, but
they do not correspond to objects of the Fukaya category (A-branes in the terminology
of physicists). There are infinitely many such fibers and hence infinitely many lines.
We will axiomatize this piece of data in Section 9. Subsequently, with each line l we
will associate an automorphism of the restriction of Ocan

Y to l. This will give us the
above-mentioned modified canonical sheaf.

8 Model near a singular point

Here we will construct an analytic torus fibration corresponding to the standard sin-
gularity (see Sections 3.2.4 and 6.4).

Let X ⊂ A3 be the algebraic surface given by the equation (αβ − 1)γ = 1 in
the coordinates (α, β, γ ), and Xan be the corresponding analytic space. We define
a continuous map f : Xan → R3 by the formula f (α, β, γ ) = (a, b, c), where
a = max(0, log |α|p), b = max(0, log |β|p), c = log |γ |p = − log |αβ − 1|p. Here
| · |p = exp(− valp(·)) denotes the multiplicative seminorm corresponding to the
point p ∈ Xan (see Appendix A).

Proposition 4. The map f is proper. Moreover,

(a) the image of f is homeomorphic to R2;
(b) all points of the image except of (0, 0, 0) are f -smooth.

Proof. Here is the plan of the proof:

1. We define three open domains Ti , i = 1, 2, 3, in three copies of the standard
two-dimensional analytic torus (Gan

m )2, and a continuous map πi : Ti → R2

such that all points of the image Ui = πi(Ti) are πi-smooth (i.e., each πi is an
analytic torus fibration). The domains Ui cover R2 \ {(0, 0)}.

2. For each i, 1 ≤ i ≤ 3, we construct an open embedding gi : Ti ↪→ Xan.
3. We construct an embedding j : R2 ↪→ R3 such that each open set Ui is home-

omorphically identified with f (gi(Ti)) and j ((0, 0)) = (0, 0, 0). Moreover,
πi-smooth points are mapped into f -smooth points.

6 The main idea is that X is a component of the moduli space of certain objects (skyscraper
sheaves) in the derived category Db(Coh(X)). These objects correspond to U(1)-local
systems on Lagrangian tori in the Fukaya category of the mirror dual symplectic manifold.
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The proposition will follow from 1–3.
Let us describe the constructions and formulas. We start with the open sets Ui ,

1 ≤ i ≤ 3. Let us fix a number 0 < ε < 1 and define

U1 = {(x, y) ∈ R2|x < ε|y|},
U2 = {(x, y) ∈ R2|x > 0, y < εx},
U3 = {(x, y) ∈ R2|x > 0, y > 0}

Clearly, R2 \ {(0, 0)} = U1 ∪ U2 ∪ U3. We also define a slightly modified domain
U ′2 as {(x, y) ∈ R2|x > 0, y < ε

1+ε x}.
We define Ti := π−1

can(Ui) ⊂ (Gan
m )2, i = 1, 3, and T2 := π−1

can(U
′
2) ⊂ (Gan

m )2.
Then the projections πi : Tl → Ul are given by the formulas

πi(ξi, ηi) = πcan(ξi, ηi) = (log |ξi |, log |ηi |), i = 1, 3,

π2(ξ2, η2) =
{
(log |ξ2|, log |η2|) if |η2| < 1,

(log |ξ2| − log |η2|, log |η2|) if |η2| ≥ 1.

In these formulas (ξi, ηi) are coordinates on Ti , 1 ≤ i ≤ 3.
We define the inclusion gi : Ti ↪→ X, 1 ≤ i ≤ 3, by the following formulas:

g1(ξ1, η1) =
(

1

ξ1
, ξ1(1+ η1),

1

η1

)
,

g2(ξ2, η2) =
(

1+ η2

ξ2
, ξ2,

1

η2

)
,

g3(ξ3, η3) =
(

1+ η3

ξ3η3
, ξ3η3,

1

η3

)
.

Let us decompose Xan = X− ∪X0 ∪X+ according to the sign of log |γ |p, where
p ∈ Xan is a point. It is easy to see that

f (X−) = {(a, b, c) ∈ R3 | c < 0, a ≥ 0, b ≥ 0, ab(a + b + c) = 0},
f (X0) = {(a, b, c) ∈ R3 | c = 0, a ≥ 0, b ≥ 0, ab = 0},
f (X+) = {(a, b, c) ∈ R3 | c > 0, a ≥ 0, b ≥ 0, ab = 0}.

From this explicit description we see that f is proper and the image of f is
homeomorphic to R2.

Let us consider the embedding j : R2 → R3 given by the formula

j (x, y) =
{
(−x,max(x + y, 0),−y) if x ≤ 0,

(0, x +max(y, 0),−y) if x ≥ 0.

One can easily check that the image of j coincides with the image of f , j ◦πi = f ◦gi
and f−1(j (Ui)) = gi(Ti) for all 1 ≤ i ≤ 3. This concludes the proof of the
proposition. ��
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We can derive more from the explicit formulas given in the proof.
Let us denote by π : Xan → R2 the map j (−1) ◦f . It is an analytic torus fibration

outside of the point (0, 0). The induced Z-affine structure on R2 \ {(0, 0)} is in fact
the standard singular Z-affine structure described in Sections 3.2.4 and 6.4, as follows
immediately from the formulas for the projections πi , i = 1, 2, 3.

Let us introduce another sheaf Ocan on R2 \ {(0, 0)}. It is defined as (πi)∗(OTi )

on each domain Ui , with identifications

(ξ1, η1) = (ξ2, η2) on U1 ∩ U2,

(ξ1, η1) = (ξ3, η3) on U1 ∩ U3,

(ξ2, η2) = (ξ3η3, η3) on U2 ∩ U3.

Let us consider the direct image sheaf π∗(OXan ). It is easy to see that on the sets
U1 and U2 ∪ U3 this sheaf is canonically isomorphic to Ocan (by identification of
coordinates (ξ1, η1) and of the glued coordinates (ξ2, η2) and (ξ3, η3), respectively).
Therefore, on the intersection U1∩ (U2∪U3) we identify two copies of the canonical
sheaf by a certain automorphism ϕ of Ocan which preserves one coordinate (namely,
the coordinate η). We will develop the theory of such transformations and their
analytic continuations in Section 11. The explicit formulas for ϕ is

ϕ(ξ, η) =
{
(ξ(1+ η), η) on U1 ∩ U2,

(ξ(1+ 1/η), η) on U1 ∩ U3.

We would like to now say few words about analytic volume forms. Notice that
each Ti ⊂ (Gan

m )2 carries a nowhere vanishing top-degree analytic form given by
the formula �i = dξi∧dηi

ξiηi
. Then a straightforward calculation shows that �Ti is the

pullback under gi of the nowhere vanishing on Xan
0 analytic top-degree form

� = −γ dα ∧ dβ.

The form � satisfies the Constant Norm Assumption; hence it gives a K-affine struc-
ture on R2 \ {(0, 0)}. On the other hand, the sheaf Ocan of algebras is also endowed
with the top-degree form �can, equal to dξi∧dηi

ξiηi
in local coordinates.

Lemma 3. The K-affine structure on R2 \ {(0, 0)} associated with � coincides with
the one associated with �can.

Proof. Using definitions from Section 7.2 one sees immediately that it is enough to
calculate p�can (1+ η) = exp(Res(�can log(1+ η))) = 1 ∈ O×K . ��

In all the definitions and formulas in this section on can shift domains Ui , i =
1, 2, 3, by vector (x0, 0) ∈ R2 for arbitrary x0 ∈ R, thus giving an map Xan → R2

with singularity at the point (x0, 0).
Finally, we denote π∗(OXan ) by Omodel

R2 . This will be our model for the sheaf OB

near each point of the singular set Bsing.
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9 Lines on surfaces

In this section we are going to describe axiomatically the notion of collection of lines
on a surface.

9.1 Data

(a) A compact oriented surface B, a finite subset Bsing ⊂ B.
(b) A Z-affine structure on Y = Bsm = B \Bsing with the standard singularities near

each b ∈ Bsing.
(c) A set L of lines. With each line l ∈ L, there is an associated continuous map

fl : (0,+∞) → Y . We assume that L is decomposed into a disjoint union of
two subsets L = Lin � Lcom. Lines belonging to Lin are called initial, while
those in Lcom are called composite. We assume that for any l ∈ L there exists a
continuous extension fl : [0,+∞) → B such that fl(0) ∈ Bsing if l ∈ Lin and
fl(0) ∈ Y = Bsm if l ∈ Lcom.

(d) A collection of covariantly constant nowhere vanishing integer-valued 1-forms
αl ∈ �((0,+∞), f ∗l ((T ∗)Z), l ∈ L. We assume that for l ∈ Lin in the standard
coordinates (x, y) near the singular point fl(0) we have fl(t) = (0, t) or fl(t) =
(0,−t) for all sufficiently small t > 0, and αl(t) = ±f ∗l (dy).

(e) A map L → L × L, l 
→ (pleft(l), pright(l)). (The letter p stands for “parent’’:
one can think about these lines as “generating l in a collision.’’)

Notice that since the form dy is invariant with respect to the monodromy, the con-
dition in (d) is coordinate-independent. The covector αl(t) will be called a direction
covector of l at time t . It gives rise to a half-plane

P
(0)
l,t = {v ∈ Tfl(t)Y |〈αl(t), v〉 > 0}.

9.2 Axioms

To every l1Lin we assign a pair (fl(0), sgn(αl(0))) ∈ Bsing×{±1}, where sgn(αl(0))
is a choice of sign in ±f ∗l (dy) (see data (d) in the previous subsection). In this way
we obtain a map r : Lin → Bsing × {±1}.
Axiom 1. The map r is one-to-one.

Let U ⊂ Y be a simply-connected domain, and assume the line l intersects U .
Let I ⊂ R+ be an interval such that fl(I ) ⊂ U . Then there exists a covariantly
constant closed nonzero 1-form βU in U (with constant integer coefficients), such
that f ∗l (βU ) = αl , when both sides are restricted to I .

Axiom 2. For any t1, t2 ∈ I , one has∫ fl(t2)

fl(t1)

βU = t2 − t1.
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Let l1, l2 ∈ L, t1, t2 > 0 satisfy the condition fl1(t1) = fl2(t2) = x ∈ Y . In
this case we say that the lines l1 and l2 have a collision at x at the times t1 and t2,
respectively.

Axiom 3. Under the above assumptions there are only two possibilities:

3a. either l1 = l2 and t1 = t2, or
3b. the covector αl1(t1) is not proportional to αl2(t2). Then we may assume that

αl1(t1) ∧ αl2(t2) > 0.

Under these conditions we require that for any coprime positive integers n1, n2 there
exists a unique line l ∈ L such that l1 = pleft(l), l2 = pright(l), fl(0) = x and
αl(0) = n1αl1(t1)+ n2αl2(t2).

In other words, l1 and l2 are “parents of l,’’ and the direction covector of l at the
intersection point is a primitive integral linear combination of those for l1 and l2 (see
Figure 4).

l

l1

l2

Fig. 4. A line l and its two parents l1, l2. The dashed half-planes are domains in tangent planes
where the 1-forms α take positive values.

Axiom 4. For every line l ∈ Lcom, there exist l1 and l2 such that they satisfy condi-
tion 3b.

Axiom 5. For any x ∈ Y , there are no more than two pairs (l, t) ∈ L × (0,+∞)

such that x = fl(t). In other words, there are no more than two lines intersecting at
a point in Y .

Let l1, l2, t1, t2, x mean the same as in Axiom 3, and assume that αl1(t1)∧αl2(t2)

> 0. Let us consider the set L(x) of germs of all l ∈ Lcom starting at x (i.e., such that
fl(0) = x).
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Axiom 6. For any finite subset L′ ⊂ L(x) there is an orientation-preserving homeo-
morphism of a neighborhood of x onto a neighborhood of (0, 0) ∈ R2 such that we
have the following:

6a. The germs of oriented curves which are images of l1 and l2 get transformed into
the germs at (0, 0) of the coordinate axes (x, 0) and (0, y), respectively.

6b. The germ of the image of l ∈ L′ gets transformed into the germ of the ray
{(n1t, n2t) | t > 0}, where αl(0) = n1αl1(t1)+ n2αl2(t2).

Figure 5 illustrates this axiom.

Fig. 5. Two intersecting lines and some of the new lines obtained as a result of a collision, in
a canonical form.

Axiom 7. Let pi denote either pleft or pright. Then for any l ∈ L there exists N ≥ 1
such that if the line p1(p2(. . . pN(l) . . . ) is well defined, then it belongs to Lin.

This axiom says that any composed line l ∈ Lcom appears as a result of finitely
many collisions. The tree of ancestors of a given line form a tree embedded in B; see
Figure 6.

9.3 Example: Gradient lines

Here we offer a construction of the set of lines satisfying the above axioms.
Let us use the standard R2 as a model around each b ∈ Bsing in order to fix a

structure of a smooth manifold on the whole surface B. Let Ỹ denotes the covering
of Y such that the fiber over y ∈ Y is (T ∗y Y )Z \ {0}.

Let us fix a generic smooth metric on B. By pullback it gives a metric on Ỹ .
Notice that there is a canonical closed 1-form β on Ỹ such that β|(y,µ) = µ, where
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s

s

s

1

2

3

l

Fig. 6. The tree of ancestors of a line l starting from 3 singular points s1, s2, s3 ∈ Bsing.

y ∈ Y , µ ∈ (T ∗y Y )Z. Using the metric we obtain a gradient vector field v on Ỹ

dual to β.
For any s ∈ Bsing and a choice of 1-form α(0) = ±dy in local coordinates, we

take the unique integral line of v starting at (s, α(0)). The set Lin will be the set of
all lines obtained in this way. Each line l ∈ Lin carries a covariantly constant closed
1-form αl . Using Axiom 2 as a definition, we obtain a canonical parametrization of
each line by the time parameter t . Since the metric is generic, a line cannot return to
a point in Bsing.

Then we proceed inductively. If two already constructed lines l1, l2 ∈ L meet at
x ∈ Y , we produce a new integral line l of v with the direction covector satisfying
condition 3b for any pair of coprime positive integers n1, n2. In this way we construct
a set of lines L satisfying all the axioms. The only nontrivial thing to check is that
for each line the values of the parameter t are in one-to-one correspondence with
the interval (0,+∞). In order to see this we observe that the length of each line is
infinite. Indeed, an integral curve of v cannot have a limiting point in Y (since the
flow generated by v is smooth, and the lengths of tangent vectors are bounded from
below because of the integrality of 1-forms).

We conclude that there exists a set L of lines satisfying Axioms 1–7.

10 Groups and symplectomorphisms

In this section we are going to discuss the sheaf of groups of symplectomorphisms
Symp := Symp(Ocan

Y ) of the sheaf Ocan
Y . Let U ⊂ Y be an open convex subset. By

definition, a symplectomorphism of Ocan
Y (U) is an automorphism of the K-algebra

Ocan
Y (U) preserving the projection toY and the canonical symplectic form� = dξ∧dη

ξη

(the latter is understood as an element of the algebra of Kähler differential forms).
To each line l we will assign a symplectomorphism of the restriction of Ocan

Y to l,
so that the assignment will be compatible with the collision of lines. Then we are
going to modify the sheaf Ocan

Y using symplectomorphisms associated with lines and
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obtain the sheaf Omodif
Y . This sheaf will be glued with the sheaf Omodel

R2 near each

point of Bsing.

10.1 Pro-nilpotent Lie algebra

Here it will be convenient to work in local coordinates (x, y) = (log |ξ |, log |η|)
on Y .

Let (x0, y0) ∈ R2 be a point, α1, α2 ∈ (Z2)∗ be 1-covectors such that α1∧α2 > 0.
Denote by V = V(x0,y0),α1,α2 the closed angle

{(x, y) ∈ R2|〈αi, (x, y)− (x0, y0)〉 ≥ 0, i = 1, 2}.
Let O(V ) be the K-algebra consisting of series f = ∑

n,m∈Z cn,mξ
nηm, such

that cn,m ∈ K and for all (x, y) ∈ V , we have the following:

1. If cn,m �= 0, then 〈(n,m), (x, y)− (x0, y0)〉 ≤ 0, where we identify (n,m) ∈ Z2

with a covector in (T ∗p Y )Z.
2. log |cn,m| + nx +my →−∞ as long as |n| + |m| → +∞.

The algebra O(V ) is a Poisson algebra with respect to the bracket {ξ, η} = ξη.
For an integer covector µ = adx + bdy ∈ (Z2)∗, we denote by Rµ the mono-

mial ξaηb.
Let us consider a pro-nilpotent Lie algebra g := gα1,α2,V ⊂ O(V ) consisting

of series
f =

∑
n1,n2≥0,n1+n2>0

cn1,n2R
−n1
α1

R−n2
α2

satisfying the condition

log |cn,m| − n1〈α1, (x, y)〉 − n2〈α2, (x, y)〉 ≤ 0 ∀(x, y) ∈ V.

The latter condition is equivalent to log |cn,m| − 〈n1α1 + n2α2, (x0, y0)〉 ≤ 0.
The Lie algebra g admits a filtration by Lie subalgebras g≥k , k ∈ Z, k ≥ 1,

g = g≥1, such that g≥k consists of the above series which satisfy the condition
n1 + n2 ≥ k. Clearly, [g≥k1 , g≥k2 ] ⊂ g≥k1+k2 , and g = lim←−k→+∞ g/g≥k .

Thus g is a topological complete pro-nilpotent Lie algebra over K . We denote
by G the corresponding pro-nilpotent Lie group exp(g). It inherits the filtration by
normal subgroups G≥k obtained from the corresponding Lie algebras.

10.2 Lie groups Gλ

For each λ ∈ [0,+∞]Q := Q≥0 ∪∞ define a Lie subalgebra

gλ =
{∑
n1,n2

cm,nR
−n1
α1

R−n2
α2

∈ g | cn1,n2 ∈ K,
n2

n1
= λ

}
.

Every gλ is an abelian Lie algebra. It carries the induced filtration by Lie algebras
g≥kλ = gλ ∩ g≥k . Denote by Gλ = exp(gλ) the corresponding pro-nilpotent group.
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Lemma 4. For any given k ≥ 1, there exist finitely many λ1 < λ2 < · · · < λNk
such

that gλ/g≥kλ = 0 for λ �= λi , 1 ≤ i ≤ Nk .

Proof. Indeed, for the monomialRn1
α1R

n2
α2 ∈ gλ which maps nontrivially to the quotient

gλ/g≥kλ , we have n1 + n2 ≤ k, n1/n2 = λ, where n1, n2 are nonnegative integers.
There are finitely many such nonnegative integers n1 and n2. ��

It follows from the lemma that we have a natural isomorphism of vector spaces∏
λ∈[0,+∞]Q gλ/g≥kλ → g/g≥k , so the map

(fλ)λ∈[0,+∞]Q 
→
∑
λ

fλ =
Ni∑
i=1

fλi , where fλ ∈ gλ/g≥kλ ∀λ ∈ [0,+∞]Q

is well defined and gives rise (after taking the projective limit as k → +∞) to the
isomorphism g �∏

λ∈[0,+∞]Q gλ.
In a similar way, we define the map

∏
→ : ∏λ∈[0,+∞]Q Gλ → G, the product

with respect to the natural order on Q, by finite-dimensional approximations

∏(k)
→ :

Nk∏
i=1

Gλi /G
≥k
λi
→ G/G≥k, (g1, . . . , gNk

) 
→ g1 . . . gNk
forgi ∈ Gλi /G

≥k
λi

.

Theorem 6. The map
∏
→ is a bijection of sets.

Proof. Let k ≥ 1 be an integer. We claim that
∏(k)
→ is a bijection of sets (this implies

the proposition by taking the projective limit as k → +∞). We will prove the
bijection by induction in k. The case k = 1 is obvious because all the groups under
consideration are trivial.

We would like to prove that
∏(k+1)
→ is a bijection assuming that

∏(k)
→ is a

bijection. Let h be an element of G/G≥k+1 and h its image in G/G≥k . By
the induction assumption there exist unique hi ∈ Gλi /G

≥k+1
λi

, 1 ≤ i ≤ Nk+1,

such that h1 . . . hn = h. Let hi , 1 ≤ i ≤ Nk+1, be any liftings of hi to
Gi/G

≥k
i . Then h1 . . . hNk+1 = h (mod G≥k), hence c := h1 . . . hNk+1h

−1 be-
longs to G≥k/G≥k+1 ⊂ Center(G/G≥k+1). The last inclusion holds because
[g, g≥k] = [g≥1, g≥k] ⊂ g≥k+1.

Next, we observe that the isomorphism of abelian Lie algebras⊕
1≤i≤Nk+1

g≥kλi
/g≥k+1

λi
� g≥k/g≥k+1

implies an isomorphism of the corresponding abelian groups∏
1≤i≤Nk+1

G
≥k
i /G

≥k+1
i � G≥k/G≥k+1.

Hence we can write uniquely c = c1 . . . cNk+1 , where ci ∈ G≥k/G≥k+1 ⊂
Center(G/G≥k+1). It follows that

∏(k+1)
→ ((hic

−1
i )) = h. Also, it is now clear that

this decomposition of h is unique. This concludes the proof. ��
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10.3 Function ordl

For l ∈ L we will define an order function

ordl ∈ �((0,+∞), f ∗l (Aff Z,Y ))

(whose meaning will become clear later) by the following inductive procedure:

1. Let l ∈ Lin and t > 0 be sufficiently small. Then in the standard affine coordinates
near s = fl(0) one has αl = ±f ∗l (dy). We define ordl = ±f ∗l (y). Then
d(ordl ) = αl , and we can extend uniquely ordl for all t ∈ (0,+∞).

2. Let l ∈ Lcom and l1, l2 be parents of l. In the notation of Axiom 3, we have
fl1(t1) = fl2(t2) = fl(0) and αl(0) = n1αl1(t1) + n2αl2(t2). Then we define
ordl (0) := n1 ordl1(t1) + n2 ordl2(t2). Again, using the condition d(ordl ) = αl

and the knowledge of ordl (0), we can extend ordl for t > 0.

Notice that ordl (t) can be thought of as an affine function on the tangent space
Tfl(t)Y (in the induced integral affine structure). In particular, we have a half-plane
Pl,t ⊂ Tfl(t)Y defined by the inequality ordl (t) > 0. The family of half-planes Pl,t

is covariantly constant with respect to ∇aff .
Each half-plane Pl,t contains 0 ∈ Tfl(t)Y strictly in its interior. Recall that at the

end of Section 9.1 we defined another half-plane P
(0)
l,t ⊂ Tfl(t)Y . It is easy to see that

P
(0)
l,t is the half-plane parallel to Pl,t such that 0 ∈ Tfl(t)Y is on the boundary of P (0)

l,t .

10.4 Symplectomorphisms assigned to lines

In this section we are going to assign to any line l ∈ L a symplectomorphism

ϕl ∈ �((0,+∞), f ∗l (Symp)),

giving for each t > 0 a transformation ϕl(t) : Ocan
Y,fl(t)

→ Ocan
Y,fl(t)

. This symplecto-
morphism in local coordinates will belong to the subgroup Gλ, where λ is the slope
of αl(t). More precisely, we demand that ϕl(t) be of the form

ϕl(t) = exp{Fl,t (ξ
−aη−b), ·},

where αl(t) = adx + bdy, the operation {·, ·} is the Poisson bracket on Ocan
Y,fl(t)

and
Fl,t (z) ∈ zK[[z]] is an analytic function of one variable satisfying the following
condition. Let us consider the pullback (by the exponential map) of the function
Fl,t (ξ

−aη−b) to a section of the sheaf Ocan on the Z-affine manifold Tfl(t) � R2.
Then this pullback should admit an analytic continuation from 0 ∈ Tfl(t) to the half-
plane Pl,t , and obey there the bound

|Fl,t (ξ
−aη−b)| ≤ exp(− ordl (t)).

Let us explain the construction of ϕl(t), leaving the justification for the following
sections.
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The symplectomorphisms ϕl are constructed by an inductive procedure. Let
l = l+ ∈ Lin be (in standard affine coordinates) a line in the half-plane y > 0
emanating from (0, 0) (there is another such line l− in the half-plane y < 0). Assume
that t is sufficiently small. Then we defineϕl(t) ∈ Sympfl(t) on topological generators
ξ, η by the formula (as in Section 8)

ϕl(t)(ξ, η) = (ξ(1+ 1/η), η).

Notice that ϕl(t) = exp{F(η−1), ·}, where F(z) =∑
n>0(−1)nzn/n2 is conver-

gent for |z| < 1.

In order to extend ϕl(t) to the interval (0, t0), where t0 is not small, we cover the
corresponding segment of l by open charts. Notice that a change of affine coordinates
transforms η into a monomial multiplied by a constant fromK×. Therefore, η extends
analytically in a unique way to a section in�((0,+∞), f ∗l ((Ocan)×)). Moreover, the
norm |η| strictly decreases as t increases, and remains strictly smaller than 1. Hence
F(η) can be canonically extended for all t > 0.

Each symplectomorphism ϕl(t) is defined by a series which converges in the half-
plane Pl,t . Using the exponential map associated with the affine structure as well as
estimates of ordl (t), we can analytically extend ϕl(t) into a neighborhood of fl(t).

Let us now assume that l1 and l2 collide at p = fl1(t1) = fl2(t2), generating
the line l ∈ Lcom. Then ϕl(0) is defined with the help of the Factorization Theorem
in the group G. More precisely, we set αi := αli (ti), i = 1, 2 and the angle V to
be the intersection of the half-planes Pl1,t1 ∩ Pl2,t2 . By construction, the elements
g0 := ϕl1(t1) and g+∞ := ϕl2(t2) belong, respectively, to G0 and G+∞. Then we
can use the factorization Theorem 6 and write down the formula

g+∞g0 =∏
→((gλ)λ∈[0,+∞]Q) = g0 . . . g1/2 . . . g1 . . . g+∞,

where gλ ∈ Gλ and the product on the right is in increasing order. There is no clash of
notation because it is easy to see that the boundary factors in the decomposition from
above are indeed equal to g0 and g+∞. Every term gλ with 0 < λ = n1/n2 < +∞
corresponds to the newborn line l with the direction covector n1αl1(t1) + n2αl2(t2).
Then we set ϕl(0) := gλ. This transformation is defined by a series which is conver-
gent in a neighborhood of p, and using the analytic continuation as above, we obtain
ϕl(t) for t > 0. The decomposition identity can be rewritten as

g0 . . . g1/2 . . . g1 . . . g+∞g−1
0 g−1+∞ = id,

where each factor corresponds to half-lines at the collision point (see Figure 5), and
the meaning of the identity is that the infinite composition of symplectomorphisms
in the natural cyclic order on half-lines is trivial.
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11 Modification of the sheaf Ocan

11.1 Pieces of lines and convergence regions

Definition 13. A neighborhood U of a point x ∈ Y is convex if there exists an open
convex U1 ∈ TxY , 0 ∈ U1, which is isomorphic to U by means of the exponential
map expx : TxY → Y associated with affine structure on Y .

For x ∈ Y let U ⊂ U ′ be convex neighborhoods of x such that U is relatively
compact in U ′. Let l ∈ L. Then there is a natural embedding f−1

l (U)→ f−1
l (U ′).

Definition 14. A piece of l defined by the pair (U,U ′) is an element of the image
of the set of connected components π0(f

−1
l (U)) into π0(f

−1
l (U ′)) under the above

embedding.

In plain words, a piece L of l is an equivalence class of a connected interval
of l ∩ U . Two connected intervals are equivalent if they are contained in a larger
connected interval of l ∩ U ′. The sole purpose of the introduction of the notion of a
piece is to avoid some pathology. Namely, for any pair (U,U ′) as above, any l ∈ L
and any T ∈ R>0, there is only a finite number of pieces of l in (U,U ′) which have
points with time parameter t ∈ (0, T ).

Let L be a piece of l defined by a pair (U,U ′). Then one can define an affine
function ordL ∈ Aff Z,Y (U

′) in the following way. Let t > 0 be such that fl(t)
belongs to L. Since U ′ is convex, there is a unique continuation of ordl (t) to U ′.
This is an affine function which does not depend on the choice of t . We will denote
it by ordL.

For any germ of a symplectomorphism ϕ ∈ Sympp at the point p ∈ Y we
define its convergence region as the maximal convex subset �(ϕ) ⊂ TpY such that
the pullback exp∗p(ϕ) extends to �(ϕ). Since the definition of ϕl (and hence its
convergence region) is covariant with respect to the affine connection, we have the
following result.

Proposition 5. Let p = fl(t) belong to a line l. Then the convergence region of ϕl(t)
at p contains an open half-plane Pl,t .

It is clear that one can define convergence regions for symplectomorphisms as-
sociated with pieces of lines, and that a similar property holds for them.

11.2 Main assumptions, and an apology

Let us suppose that our collection of lines satisfies the following assumptions.

Assumption A1. There is a smooth metric g = gB and a collection of balls D(s, rs)

with centers at s ∈ Bsing such that each ball D(s, rs) contains exactly two lines
l± ∈ Lin emanating from s.
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Assumption A2. There exists ε > 0 such that for any p = fl(t) ∈ Y ′ := B \
∪s∈BsingD(s, rs) the distance in TpY between 0 ∈ TpY and the boundary line of Pl,t

is greater than or equal to ε.

We are going to show in Section 11 that such a collection does exist.
Assumptions A1 and A2 are very artificial; they do not hold in the physical picture

which is the main motivation of the construction. It is quite possible that they can be
weakened or even omitted. Their main use here is the possibility of defining a sheaf
of analytic functions by simple gluing. In complex geometry it is similar to the gluing
of closed Riemann surfaces with boundaries by means of real-analytic identifications
of the boundaries. It is well known that one can replace real-analytic maps by smooth
ones (or even by quasi-symmetric continuous maps). Maybe the rest of this section
is unnecessary, and unpleasant technical arguments in Section 11.5 can be avoided.

11.3 Infinite product and its convergence

Denote by WL := ∪l∈Lfl([0,+∞)) the set of all points of all lines; it has measure
zero. Let p be a point of Y . We consider two convex neighborhoods U ⊂ U ′ of p,
such that U is relatively compact in U ′.

For any two points x, y belonging U \ WL, and a path γ joining x and y in
U , we would like to define an infinite ordered product iγx,y of transformations ϕ±1

L ,
where the factors correspond to the intersection points of γ with all possible pieces
L relative to (U,U ′). The factors in the infinite product are ordered according to the
time parameter of γ ; the sign corresponds to the mutual position of orientations of γ
and the piece L at the intersection point.

In order to give a precise meaning to the infinite product, the neighborhood U

of p should be sufficiently small. Then we will have an analytic continuation of
symplectomorphisms ϕL to U , and the convergence of the infinite product. We are
also going to prove that the product is independent of the choice of the path γ . In
order to achieve these goals it suffices to assume the following:

C1 For any l, t such fl(t) ∈ U , the set (expfl(t))
−1(U) is contained in Pl,t .

C2 For any C ∈ R, there is only a finite number of pieces L of lines in U such that
inf x∈U ordL(x) < C.

Theorem 7. Assume the two conditions above. Then the product defining i
γ
x,y con-

verges at every point of U and in fact gives an element of Symp(U). Moreover, the
product does not depend on the choice of path γ , and for any x, y, z ∈ U \ WL
satisfies the relation ix,yiy,z = ix,z.

Proof. Condition C1 implies that all transformations ϕL admit an analytic con-
tinuation to U . Let us introduce a decreasing filtration by positive real numbers
Symp≥r (U), r ∈ R, r ≥ 0, on the group Symp(U) by the formula

{g ∈ Symp(U) | log |ξ ′/ξ − 1|, log |η′/η − 1| < −r, where (ξ ′, η′) = g((ξ, η))}.
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This is a complete filtration, and condition C2 implies that in any quotient
Symp(U)/Symp≥r (U) only a finite number of elementsϕL are nontrivial. Therefore,
we can define the product in the quotient group.

In order to prove independence of γ , we consider the quotient group
Symp(U)/Symp≥r (U), and the finite one-dimensional CW-complex (graph) con-
sisting of finitely many pieces L, such that ϕL �= 1 in the quotient. For each vertex
v of the graph there is a natural cyclic order on the edges incident to v. The product
ϕv = ∏

L ϕ±1
L taken in the cyclic order over the set of edges incident to v is equal

to id (this follows from the construction of ϕl via factorizations). Since U is simply-
connected, we conclude that the image of i

γ
x,y in Symp(U)/ Symp≥r (U) does not

depend on γ . Using completeness of the filtration we see that ix,y := i
γ
x,y does not

depend on γ . The proof of the identity ix,yiy,z = ix,z is similar. ��
Theorem 8. Assumptions A1 and A2 imply that for any p ∈ Y there exist neighbor-
hoods U and U ′ satisfying conditions C1 and C2.

Proof. Assumption A1 implies that the situation near any singular point s ∈ Bsing is
trivial, as there are only two lines near s. If we are far from Bsing, then obviously
Assumption A2 implies C1.

In order to check C2, we prove the following lemma.

Lemma 5. Under Assumptions A1 and A2, for any C > 0 the set

{(l, t) | ordl (t)(fl(t)) < C} ⊂ L× (0,+∞)

consists of a finite number of intervals.

Proof. We proceed by induction in “complexity of the line.’’ Let δ ∈ R>0 be the
infimum of ordl (t)(fl(t)), where l ∈ Linit has a collision at time t . This is strictly
positive because the number of initial lines is finite, and by Assumption A1 there are
no collisions at small times. Observe that the value of ordl (0) at the beginning of any
composite line l is greater than or equal to the sum ordl1(t1)+ ordl2(t2). Therefore,
the inequality in the lemma implies that the number of collisions is bounded from
above. Let us observe that the length of segments of lines between intersections is
also bounded since it is less than or equal toA ordl , for some absolute constantA > 0.
Hence we have only finitely many possibilities for intersections. ��

For a point p ∈ Y which is far from Bsing, we choose as U a neighborhood of
radius ε′ 0 ε, where ε > 0 is constant from Assumption A2. Then for any point of
a line fl(t) ∈ U , we will have the inclusion

U ⊂ expfl(t)

(
1

2
Pl,t

)
.

This implies that ordL in U for the corresponding piece L is bounded below by

1

2
ordl (t)(fl(t)).

Since (by the last lemma) there exists only a finite number of pieces L intersecting
such U , we obtain convergence condition C2. ��
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11.4 Construction of the modified sheaf Omodif
B

For any point p ∈ Y and a neighborhood U satisfying conditions C1 and C2 we
define a sheaf Omodif

U as the identification of copies of the sheaf (Ocan
Y )|U labeled by

points x ∈ U \WL, by the isomorphisms ix,y . It follows from formulas in Section 8
that near singular points one can canonically identify this sheaf with the restriction
of the sheaf Omodel

R2 to a punctured neighborhood of (0, 0) ∈ R2.

Proposition 6. For the modified sheaf Omodif one has a canonical nowhere vanishing
section � of the associated sheaf of K-analytic 2-forms.

The K-affine structure Aff�K,Y on Y associated with � coincides with the initial
one AffK,Y .

Proof. The existence of � follows from the fact that all modifications associated with
lines are symplectomorphisms. In order to finish the proof it suffices to check that
the modification associated with a line does not change the K-affine structure on Y .
In local coordinates we may assume that � = dξ

ξ
∧ dη

η
and the modification is of the

form ϕ(ξ, η) = (ξf (η−1), η), where f (z) = 1+∑n≥1 cnz
n ∈ K[[z]] is convergent

in an appropriate domain. We need to check that the automorphism ϕ acts trivially
on the quotient sheaf π∗(O×X)/ ker p� (see Section 7.2 for the notation). This check
reduces to the calculation of

p�

(
ξf (η)

ξ

)
= exp

(
Res(� log(ξf (η)/ξ)))

Res(�)

)
.

The latter is equal to exp(Res(� log(f (η)))) = 1 because log(f (η−1)) belongs to
η−1K[[η−1]] and therefore has no constant term. ��

Thus we have a solution of the Lifting Problem under Assumption A1 and A2.

11.5 Construction of the collection of lines

We would like to show that there exists a smooth metric g and a collection of lines
satisfying the Assumptions A1 and A2.

Let g0 be an arbitrary smooth metric, flat near singular points. We define germs
of lines l ∈ Lin in such a way that for each s ∈ Bsing in local coordinates these lines
are given by {(0, y)|y > 0} and {(0, y)|y < 0}. The metric g will coincide with g0
in a sufficiently small neighborhood U = ∪s∈BsingD(s, rs) of the singular set. Hence
Assumption A1 will be satisfied.

In order to construct the whole family of lines we introduce a 3-dimensional
manifold M consisting of pairs (x, P ), where x ∈ B \ U1 and P is a half-plane
in TxB whose boundary contains zero. Here U1 := ∪s∈BsingD(s, 2rs) is a larger
neighborhood of Bsing.

We would like to construct a smooth section v : (x, P ) 
→ v(x,P ) ∈ TxB of the
pullback to M of the tangent bundle T B satisfying the following conditions:

1. for any (x, P ) ∈M, one has v(x,P ) ∈ int(P );
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2. for any x ∈ B \U1, the map (x, P ) 
→ R×>0 · v(x,P ) is an orientation-preserving
diffeomorphism

S1 � (TxB
∗ \ {0})/R×>0 → S1 � (TxB \ {0})/R×>0;

3. for every l ∈ Lin, there exists a smooth extension of the piece of l in U1 to a
larger piece intersecting ∂U1 such that

ḟl(t) ∈ R×>0 · v(fl(t),Pl,t )

for such t > 0 that fl(t) ∈ B \ U1.

Let us associate with the section v a nowhere vanishing vector field v̂ on T ∗(B \
U1) \ (zero section) in the following way:

• For each (x, α) ∈ T ∗x B the vector v̂(x, α) is tangent to the horizontal distribution
associated with the flat connection ∇ (the one which defines the affine structure
on B \ Bsing).

• The projection of v̂(x, α) toB coincides with v(x,Pα), wherePα = {γ |(α, γ ) > 0}.
Clearly, these conditions determine v̂ uniquely. Now we formulate the last condition:

4. There exists r ′s > 2rs such that for almost all (in the sense of Baire category)
initial values (x0, P0) ∈ M the integral curve of v̂ starting at (x0, P0) reaches
the pullback of B \ ∪s∈BsingD(s, r ′s) in finite time.

Using the vector field v̂ we will construct (under certain genericity assumptions)
a set L of lines satisfying Assumption A1. Namely, the data consisting of a line l and
an integer-valued 1-form αl (see Section 9) will be an integral line of v̂.

We are going to construct lines by induction on the number of collisions. Lines
l ∈ Lin will be constructed using condition 3. The genericity assumption mentioned
after condition 4 is the assumption that no more than two lines collide and that
initial values for newborn lines will be sufficiently generic. Conditions 1 and 4 plus
genericity imply that one can parametrize any line l ∈ L by the new “time’’ t > 0
such that Axiom 2 is satisfied. Axiom 6 follows from condition 2. Other axioms and
the Assumption A1 will be satisfied automatically.

Now we would like to discuss Assumption A2.

Proposition 7. Suppose that the metric g and field v described above are such that
for any (x, P ) ∈M, there exists C > 0 such that

(∇v(x,P )
g)(nP , nP ) ≤ Cg(nP , v(x,P )),

where nP is the normal unit vector to P directed inward and ∇v(x,P )
g is the covariant

derivative of the metric g considered as a symmetric tensor on the cotangent bundle.
Then Assumption A2 is satisfied.

Proof. In order to satisfy Assumption A2 it suffices to find such ε > 0 that for
any x ∈ B \ U1 and any half-plane Px ⊂ TxB, 0 ∈ int(Px), with the distance
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distgx (0, ∂Px) = ε, one has the following property: if Px+δtvx,Px is the half-plane
obtained from Px by a small covariant (using ∇aff ) shift δt in the direction of vx,P ′x
(here P ′x is parallel to Px but 0 ∈ ∂P ′x), then

distgx+δtv
x,P ′x

(0, Px+δtvx,P ′x ) ≥ distgx (0, ∂Px).

Here gx denotes the induced flat metric on the tangent space TxB. This property
guarantees that the condition distgx (0, ∂Pl,t ) ≥ ε will propagate along the line. For
a new line obtained as a result of the collision of l1 and l2 at the times t1 and t2,
respectively, one has

distgx (0, ∂Pl,0) ≥ min{distgx (0, ∂Pl1,t1), distgx (0, ∂Pl2,t2)}
since ∂Pl,0 contains the intersection point A ∈ ∂Pl1,t1 ∩ ∂Pl2,t2 ; see Figure 7.

(0,0)

P

PP
l,

l ,

0l ,t

t2 2

11

Fig. 7. Three half-planes containing zero.

One can easily see that the infinitesimal inequality above is equivalent to

δtgx(v(x,P ′x), nP ′x )+ ε/2(gx+δtv(x,P ′x ) − gx)(nP ′x , nP ′x ) ≥ 0.

(The change in the distance consists of two summands: one corresponds to the shift
along δtv(x,Px) with the metric fixed, and the other corresponds to the change of
the metric.) Taking the limit δt → 0, we arrive at the inequality for the covariant
derivative of the metric with C = 2/ε. ��

Now our goal is to construct the field of directions v and the metric g satisfying
conditions 1–4 and the inequality from the last propostion. This will conclude the
construction of the set L of lines satisfying Assumptions A1 and A2.

Since ∂U1 is the boundary of a convex set, we can locally model it by the graph
of a function y = f (x) such that f ′′(x) > 0, f ′(x0) = 0. We may assume that
P = Pdy is the upper half-plane. Then we take
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v(x,y),P = ∂/∂y + (f (x)− f (x0))/f
′(x)

f (x)− f (x0)+ f (x)− y
∂/∂x.

We extend this local model of v near ∂U1 to B \U1 in such a way that conditions 1
and 2 are satisfied. It is clear that we can satisfy conditions 3 and 4 as well by taking a
small perturbation of v. In Figure 8 there is a picture of the field (x, y) 
→ v((x,y),P(x,y))

in the case when P(x0,y0) is the upper half-plane.

1U

Fig. 8. Vector field near ∂U1 for P = the upper half-plane.

For an arbitrary choice of the metric g we have g(nP , vz,P ) > 0 for all (z, P ) ∈
M. The problem with the inequality

(∇v(z,P )
g)(nP , nP ) ≤ Cg(nP , v(z,P ))

arises only as the point z approaches ∂U1. Indeed, in this case the vector v(z,P ) can
be very close to ∂Pz ⊂ TzB.

Lemma 6. With the above choice of v assume that the metric satisfies for any z ∈ ∂U1
the condition

(∇ezg)(nz, nz) = 0,

where ez ∈ TzB is the unit tangent vector to ∂U1 and nz is the normal vector to ∂U1
(all scalar products and lengths are taken with respect to the metric g).

Then there exists C > 0 such that

(∇v(z,P )
g)(nP , nP ) ≤ Cg(nP , v(z,P ))

for all (z, P ) ∈M.

Proof. We need to check that the ratio

(∇v(z,P )
g)(nP , nP )

g(nP , v(z,P ))
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is bounded for (z, P ) ∈M.
It suffices to prove the lemma assuming that U1 is the parabolic domain {(x, y)

∈ R2|y > x2} and P is the upper half-plane. The vector field v(z,P ) is given for
z = (x, y) by the formulas

v(z,P ) = ∂/∂y + x∂/∂x

4x2 − 2y
.

The denominator is equal to g(nP , v(z,P )) = 〈dy, v(z,P )〉 · √g(∂/∂y, ∂/∂y) =√
g(∂/∂y, ∂/∂y) = exp(O(1)) near (0, 0).

The numerator is equal to

x∂/∂x

4x2 − 2y
f1(x, y)+ f2(x, y),

where f1(x, y) = (∇∂/∂xg)(nP , nP ) and f2(x, y) = (∇∂/∂yg)(nP , nP ) are two C∞-
functions.

By the assumption of the lemma, we have f1(0, 0) = 0. Therefore, |f1(x, y)| ≤
const max{|x|, |w|}, where w = x2−y is a convenient local coordinate near the point
(0, 0). Notice also that f2(x, y) = O(1).

Now we can estimate the first summand of the numerator assuming that |x| and
|w| are sufficiently small. As we have seen, it is bounded by

I := x

x2 + w
O(max{|x|, |w|}.

There are three cases that we need to consider:

(a) If 0 < w < x2, then I = x

x2 O(|x|) = O(1).

(b) If x2 ≤ w < x, then I = x
w
O(|x|) = O(1).

(c) If x ≤ w ≤ 1, then I = x
w
O(|w|) = O(1).

We see that the numerator is bounded. This concludes the proof of the lem-
ma. ��

Finally, we have the following result.

Lemma 7. There exists a metric g satisfying the conditions of Lemma 6.

Proof. First of all, the condition on g from Lemma 6 is the condition on a loop g|TzB
of scalar products on two-dimensional spaces; here z ∈ ∂U1 � S1. We can write
g = exp(ψ)g0, where det(g0) = 1 and ψ is a smooth function. Then we have

∇ez (expψg0) = exp(ψ)∇ezg0 + exp(ψ)∂ez(ψ)g0.

The equation of Lemma 6 gives ∂ezψ = −(∇ezg0)(nz, nz)/g0(nz, nz). The RHS of
this expression is known as long as we know g0. Hence we can say that dψ = βg0 ,
where βg0 is a 1-form depending on the restriction (g0)|∂U1 . We see that it suffices to
find g0 such that

∫
∂U1

βg0 = 0 (then ψ and hence g exist).
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Let us consider the functional I (g0) =
∫
S1 βg0 . We can interpret a metric g0

as a point in the Lobachevsky plane H = SL(2,R)/SO(2). More precisely, let us
consider the space S of pairs (g0, P ), where g0 is a positive quadratic form on R2 such
that det(g0) = 1 andP is a half-plane in R2. (The meaning ofP is the inward oriented
tangent half-plane to ∂U1 at a point z ∈ ∂U1.) This space is naturally diffeomorphic
to S∗(R2) × H. The latter manifold can be identified in an SL(2,R)-equivariant
way with the manifold consisting of pairs (x, y), where x ∈ H and y belongs to the
absolute. Hence (g0)|∂U1 is (locally) a nonparametrized path in S. (It would be a
global path if the bundle over S1 given by the all metrics on S1 with the determinant
1 was trivial.)

Next, we observe that the variation δI (g0) =
∫
N
ω, whereN is a two-dimensional

surface bounded by the paths defined byg0 andg0+δg0, andω is a canonical SL(2,R)-
invariant 2-form on S. One can show that even by a small variation of the path defined
by g0 we can make I (g0) an arbitrary real number. In particular, we can find g0 such
that I (g0) = 0. This concludes the proof of Lemma 6. ��

Summarizing, we have constructed a set of lines satisfying Assumptions A1
and A2. This concludes the proof of Theorem 5. Thus we have obtained a solu-
tion of the Lifting Problem, which is a K-analytic K3 surface.

11.6 Independence and uniqueness

It is natural to ask how the above construction of the K-analytic K3 surface (Xan, �)

depends on the choice of the set L of lines. We know that the “periods’’ of � (they
are encoded in the initial K-affine structure) do not depend on L (see Sections 7.3
and 10.4). In the light of the Torelli theorem (seeAppendix B) it is natural to formulate
the following conjecture.

Conjecture 11. The isomorphism class of the pair (Xan, �) does not depend on the
choice of the set L of lines.

More precisely, the change in L corresponds to the change of the projection
π := πL : Xan → B (see Section 7.3).

Remark 4. For B = S2 and Bsing = {x1, . . . , x24}with the standard singular Z-affine
structure we have constructed a K-analytic K3 surface depending on 20 parameters
in K×. More precisely, we have a 20-dimensional K-analytic space of conjugacy
classes of representations

π1(S
2 \ Bsing)→ SL(2,Z) � (K×)2

such that the monodromy around each singular point is conjugate to the pair
(A, (1, 1)), where A ∈ SL(2,Z) is equal to(

1 1
0 1

)
.

(compare with Section 3.3).
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11.7 Remark on the case of positive and mixed characteristic

Our construction of (Xan, �) works even without the assumption char k = 0, where
k is the residue field of K . This can be explained from the point of view of the
Factorization Theorem (see Section 10.4). It turns out that the symplectomorphisms
which appear in the infinite product in the RHS of the Factorization Theorem are
infinite series whose coefficients are integer polynomials in the coefficients of the
“parent’’ symplectomorphisms.

For example, let f0(z) = 1 +∑n≥1 cnz
n and f∞(z) = 1 +∑n≥1 dnz

n be two
power series that are convergent for |z| < 1. Let us consider two symplectomor-
phisms: F0(ξ, η) = (ξ, ηf0(ξ

−1)), and F∞(ξ, η) = (ξf∞(η−1), η) and decompose
F∞ ◦ F0 into the infinite ordered product

∏
→(Fλ). Here

Fp/q(ξ, η) = (ξfp/q(ξ
−pη−q)q, ηfp/q(ξ−pη−q)−p),

where fp/q(z) = 1 + ∑
n≥1 c

p/q
n zn. Then one can check that for any coprime

p, q ∈ Z>0 and any n ≥ 1, one has

c
p/q
n ∈ Z[c1, c2, . . . , d1, d2, . . . ].

This implies that our construction works when one replaces K by an arbitrary
commutative ring R endowed with a complete nontrivial valuation val : R →
(−∞,+∞].

11.8 Further generalizations

First of all, one can introduce a small parameter � ∈ K , |�| < 1, of noncommutativity
in the picture; coordinates ξ, η will not commute but instead satisfy the relation

ηξ = ξη exp(�).

For such a noncommutative analytic torus one can still define the sheaf O�
can on R2

by the “same’’ formula as in the commutative case:

O�
can(U) =

⎧⎨⎩ ∑
n,m∈Z

cn,mξ
nηm | ∀(x, y) ∈ U sup

n,m
(log |cn,m| + nx +my) <∞

⎫⎬⎭ ,

where U ⊂ R2 is connected. Also one can construct a noncommutative deformation
of the model sheaf near the singular point. All arguments with the groups work as
well. In this way we will obtain a kind of quantized K3 surface over a non-archime-
dean field.

Secondly, we believe that one can generalize our construction to higher dimen-
sions. Instead of lines there will be codimension one walls which should be flat
hypersurfaces with respect to the Z-affine structure and carry foliations by parallel
lines. Generically, on the intersection of two such foliated hypersurfaces one can
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“separate’’ variables into the product of the purely two-dimensional situation studied
in the present paper, and n−2 dummy variables. Presumably everywhere except for a
countable union of codimension 2 subsets one can use two-dimensional factorization
and define gluing volume-preserving maps φ. One can hope that by a kind of Hartogs
principle the sheaf will have a canonical extension to the whole space B.

A Analytic geometry

In this section we collect several facts and definitions about rigid analytic spaces and
Clemens polytopes. Some of them are well known, the rest are borrowed from [KoT].

We always work over a complete non-archimedean local field K . The field K

carries a valuation map valK := val : K → R ∪ {+∞} such that val(0) = +∞,
val(1) = 0, val(xy) = val(x)+ val(y), val(x + y) ≥ min(val(x), val(y)).

We will assume that the valuation is nontrivial. The ring

OK = val−1
K (R≥0 ∪ {+∞})

is called the ring of integers of K . The residue field is defined as k = OK/mK , where
mK = val−1

K (R>0 ∪ {+∞}) is the maximal ideal in OK .
Our main example is the field K = C((t)) of Laurent series in one variable. In

this case valK(
∑

n≥n0
cnt

n) = n0, as long as cn0 �= 0.

A.1 Berkovich spectrum

We refer the reader to [Be1] for the general definition of an analytic space and more
details. In this appendix we restrict ourselves to analytic spaces associated with
algebraic varieties (although we use the general definition in the paper as well).

Let R = R/K be a commutative unital finitely generated K-algebra. The under-
lying set of the Berkovich spectrum Specan(R) := Specan(R/K) can be defined in
two ways. First one uses valuations (or, equivalently, multiplicative seminorms).

Definition 15 (valuations). A point x of Specan(R/K) is an additive valuation

valx : R → R ∪ {+∞}
extending val := valK , i.e., it is a map satisfying the conditions

• valx(r + r ′) ≤ max(valx(r), valx(r ′));
• valx(rr ′) = valx(r)+ valx(r ′);
• valx(λ) = valK(λ)

for all r, r ′ ∈ R and all λ ∈ K .

Having a valuation and a real number q0 ∈ (0, 1) one can define the multiplicative
seminorm |a| = q

valK(a)
0 , a ∈ R. In particular, in the previous definition one can take

seminorms | · |x instead of valuations valx(·). The reader has noticed that in the main
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body of the paper, for R = K we often took |a| = e− val(a). It is easy to translate the
definition of Berkovich spectrum into the language of multiplicative seminorms. We
use it freely in the paper.

The second way to define Xan uses evaluations (characters).

Definition 16 (evaluation maps). A point x of Specan(R/K) is an equivalence class
of homomorphisms of K-algebras

evalx : R → Kx,

where Kx ⊃ K is a complete field equipped with a non-archimedean valuation which
extends the valuation valK , and such that Kx is generated by the closure of the image
of evalx .

The field Kx is determined by x ∈ Xan in a canonical way. We define for r ∈ R

and x ∈ Xan the “value’’ r(x) ∈ Kx as the image evalx(r).
In order to pass from the first description of Specan(R/K) to the second, starting

with a valuation valx one defines the fieldKx as the completion of the field of fractions
of R/Ix , where Ix = (valx)−1({+∞}).
Definition 17. The topology on Specan(R/K) is the weakest topology such that for
all r ∈ R the map

Specan(R/K)→ R ∪ {+∞},
x 
→ valx(r)

is continuous.

An element f ∈ R defines a function f : Specan(R) → Kx , where Kx is the
non-archimedean valuation field, which is the completion of the field of fractions of
the domain R/ ker(valx). Since each Kx carries a seminorm, we obtain a function
|f | : Specan → R≥0, x 
→ |f (x)|.

A fundamental system of neighborhoods U = Ux ⊂ Specan(R) of a point x is
parametrized by the following data: a finite collection of functions

(fi)i∈I , (gj )j∈J ∈ R

and numbers
β+i , β−i , γj ∈ R>0

such thatβ−i < |fi(x)| < β+i , |gj (x)| = 0, The corresponding neighborhood consists
of points x′ such that β−i < |fi(x′)| < β+i , |gj (x′)| < γj for all i ∈ I , j ∈ J , and
x′ ∈ U .

Let us assume that the elements (fi)i∈I , (gj )j∈J generate R, i.e.,

R = K[(fi)i∈I , (gj )j∈J ]/I,
where I is an ideal. Let us consider the algebra of series
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s =
∑

nI∈ZI ,mJ∈NJ

cI,J f
nI
I g

mJ

J

with constants cI,J ∈ K , absolutely convergent when the variables (fi)i∈I , (gj )j∈J
satisfy the above inequalities. The quotient of this algebra by the topological closure
of the ideal I is the algebra OSpecan(R/K)(U).

As in the case of schemes we can glue Specan(R/K) into ringed spaces called
analytic spaces (or rigid analytic spaces). Moreover, we get a functor

(Schemes/K)→ (K-analytic spaces),

X 
→ (Xan,OXan ).

Proposition 8. The space Xan

(a) is a locally compact Hausdorff space as long as X is separated;
(b) has the homotopy type of a finite CW -complex;
(c) is contractible if X has good reduction with irreducible special fiber.

Example 1. Let X = A1 = Spec(K[x]) be the affine line. The analytic space Xan

contains, among others, points of the following types:

• X(K) ↪→ X(K)/Gal(K/K) ↪→ Xan.
• For r ∈ R≥0, define ∣∣∣∣∣∣

d∑
j=0

cj z
j

∣∣∣∣∣∣
r

:= max
j

(|cj |rj ).

This gives an embedding R≥0 ↪→ Xan.

We see that Xan contains, in a sense, both p-adic and real points.

Define the cone over Xan as

CXan (R) := Xan × R>0.

We interpret a point x = (x, λ) of CXan (R) as a Kx-point of X, where Kx ⊃ K is a
complete field with the R-valued valuation

valx := λ valx,

whose restriction to K is proportional to valK . The set of points x ∈ CXan (R) such
that the valuation valx is Z-valued is denoted by CXan (Z).

A.2 Algebraic torus and the logarithmic map

Here we will describe explicitly the main example for our paper. Let X = Gn
m =

Spec(K[z±1
i ]), 1 ≤ i ≤ n, be an algebraic torus, andXan = (Gan

m )n the corresponding
analytic space.
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First, we define an embedding ican : Rn ↪→ Xan. For a real vector (xi)1≤i≤n ∈
Rb, the corresponding point p := ican(x1, . . . , xn) ∈ Xan will be described in terms
of valuations.

For every Laurent polynomial f =∑
I∈Zn cI z

I , cI ∈ K , we set

valp(f ) := min
I∈Zn

(
val(cI )−

n∑
i=1

xiIi

)
.

Next, we define a projection πcan : Xan → Rn by the formula

πcan(y) = (− valy(z1), . . . ,− valy(zn)) = (log |z1|y, . . . , log |zn|y).
The fiber over a point (x1, . . . , xn) ∈ Rn can be identified with the set of seminorms
| · |y such that |zi |y = exp(xi), 1 ≤ i ≤ n. We see that πcan is a kind of torus fibration.
Moreover, πcan ◦ ican = idRn .

For any open connectedU ∈ (R)n, theK-algebra of analytic functions onπ−1
can(U)

consists of series f = ∑
I∈Zn cI z

I with coefficients cI ∈ K such that for any
p = (x1, . . . , xn) ∈ U , we have log |cI | +∑n

i=1 xiIi →+∞ when |l| → +∞. It is
easy to see that π−1

can(U) = π−1
can(Conv(U)), where Conv(U) is the convex hull of U .

The sheaf (πcan)∗(OXan ) := Ocan
Rn (canonical sheaf) plays an important role in the

paper (see Sections 4.1, 7.3, and 8).

A.3 Clemens polytopes

Let X be a smooth proper scheme over the non-archimedean field K . We assume that
K carries a discrete valuation val such that val(K×) = Z.

Definition 18. A model of X is a scheme of finite type X /OK flat and proper over
OK , together with an isomorphism X ×Spec(K) Spec(OK) � X. Denote the special
fiber of X by

X 0 := X ×Spec(K) Spec(k).

A model has no nontrivial automorphisms. Thus the stack of equivalence classes
of models is in fact a set, which we denote by ModX. It carries a natural partial order.
Namely, we say that X1 ≥ X2 if there exists a map X1 → X2 over Spec(OK). Such
a map is automatically unique.

Definition 19. A model X has normal crossings if the scheme X is regular and the
reduced subscheme X 0

red is a divisor with normal crossings.

By the resolution of singularities, in the case char k = 0 we know that every
model is dominated by a model with normal crossings.

Definition 20. A model X has simple normal crossings (snc model for short) if

• it has normal crossings,
• all irreducible components of X 0

red are smooth, and
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• all intersections of irreducible components of X 0
red are either empty or irreducible.

The set of equivalence classes of snc models will be denoted by Modsnc
X . It is a

filtered partially ordered set. The order is given by dominating maps of models which
give the identity automorphism on the generic fiber.

It is easy to show that starting with any model with normal crossings and applying
blowups centered at certain self-intersection loci of the special fiber, we can get
an snc model. In what follows, we use snc models only. This choice is dictated
by convenience and not by necessity. Working with snc models has the advantage
that all definitions and calculations can be made very transparent. The reader can
consult [Be2] for the approach in the general case, without the use of the resolution
of singularities.

Let X be an snc model and I = IX the set of irreducible components of X 0
red.

Denote by Di ⊂ X the divisor corresponding to i ∈ I . For any finite nonempty
subset J ⊂ I , put

DJ :=
⋂
j∈J

Dj .

By the snc property, the setDJ is either empty or is a smooth connected proper variety
over k of dimension dim(DJ ) = (n− |J | + 1). For a divisor Di ⊂ X 0 we denote by
di ∈ Z>0 the order of vanishing of u at Di , where u ∈ K is a uniformizing element,
valK(u) = 1. Equivalently, di is the multiplicity of Di in X 0.

Definition 21. The Clemens polytope SX is the finite simplicial subcomplex of the
simplex �I such that �J is a face of SX iff DJ �= ∅.

Clearly, SX is a nonempty connected CW-complex. We will also consider the
cone over SX :

CX (R) :=
⎧⎨⎩∑

i∈I
ai〈Di〉 | ai ∈ R≥0,

⋂
i:ai>0

Di �= ∅
⎫⎬⎭ \ {0} ⊂ RI .

Analogously, we can define CX (Z).
We identify SX with the following subset of CX (R):{∑

i∈I
ai〈Di〉 ∈ CX (R) |

∑
i

aidi = 1

}
.

Obviously, we can also describe SX as a quotient of CX (R):

SX = CX (R)/R×+ .

A.4 Simple blowups

Let X be an snc model, J ⊂ IX a nonempty subset and Y ⊂ DJ a smooth irreducible
variety of dimension less than or equal to n. Let us assume that Y intersects transver-
sally (inDJ ) all subvarietiesDJ ′ ofDJ (for J ′ ⊃ J ), and that all intersections Y ∩DJ

are either empty or irreducible. It is obvious that the blowup X ′ := BlY (X ) of X
with center at Y is again an snc model.
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Definition 22. For a pair of snc models X ′ ≥ X as above, we say that X ′ is obtained
from X by a simple blowup. If Y = DJ we say that we have a simple blowup of the
first type. Otherwise (when dim(Y ) < dim(DJ )), we have a simple blowup of the
second type.

Let us describe the behavior of SX under simple blowups. To the set of vertices
we add a new vertex corresponding to the divisor Ỹ obtained from Y :

IX ′ = IX � {new}, Dnew := Ỹ .

The degree of the new divisor is (for both the first and the second type)

dnew :=
∑
i∈J

dj .

For blowups of the first type, we have automatically #J > 1. Here is the list of
faces of SX ′ :

(1) I ′ for I ′ ∈ Faces(SX ), I ′ �⊂ J ;
(2) I ′ � {new} for I ′ ∈ Faces(SX ), I ′ �= J , I ′ ∪ J ∈ Faces(SX );
(3) the vertex {new}.
For blowups of the second type, the list of faces of SX ′ is

(1) I ′ for I ′ ∈ Faces(SX );
(2) I ′ � {new} for I ′ ∈ Faces(SX ), I ′ ⊃ J , Y ∩DI ′ �= ∅;
(3) the vertex {new}.

On can deduce from results [AKMW] the following.

Theorem 9 (weak factorization). Assume that char k = 0. Then for any two snc
models X ,X ′ there exists a finite alternating sequence of simple blowups

X < X1 > X2 < · · · < X2m+1 > X ′.

Corollary 3. The simple homotopy type of SX does not depend on the choice of an
snc model X .

A.5 Clemens cones and valuations

Let X be an snc model of X. We define a map

iX : CX (R)→ CXan (R)

as follows. For J = {j1, . . . , jk} ⊂ IX such that DJ �= ∅ let us consider a point
x ∈ CX (R),

x =
k∑

i=1

ai〈Dji 〉, ai ∈ R>0, ∀i ∈ {1, . . . , k}
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and an affine Zariski open subset U ⊂ X containing the generic point of DJ . One can
embed O(U) into the algebra of formal series KJ [[z1, . . . , zk]], where KJ is the field
of rational functions on DJ and zi = 0 are equations of divisors Dji , i = 1, . . . , k.
We define a valuation vx of O(U) by the formula

vx

⎛⎝ ∑
n1,...,nk≥0

cn1,...,nk

k∏
i=1

z
ni
i

⎞⎠ = inf
{∑

aini | cn1,...,nk �= 0
}
.

We define iX (x) to be the image of the point vx ∈ Specan(O(U)/K) in Xan. It
is easy to check that the element iX (x) does not depend on the choice of the open
subset U .

The following proposition is obvious.

Proposition 9. The map iR
X is an embedding.

We will denote also by iX the induced embedding SX ↪→ Xan.

A.6 Clemens cones and paths

For a model X we can interpret elements of CXan (Z) as paths in X , i.e., equivalence
classes of maps

φ : Spec(OL)→ X ,

where OL is the ring of integers in a field L with discrete valuation in Z, such that
the image of φ does not lie in X . We define the map

pZ
X :CXan (Z)→ CX (Z)

as
pZ

X ([φ]) :=
∑
i

ai〈Di〉,

where ai ∈ Z≥0 is the multiplicity of the intersection of the path φ with the divisor
Di , i ∈ IX .

The following proposition can be derived from [Be1].

Proposition 10. The map pZ
X extends uniquely to a continuous R×+-equivariant map

pR
X :CXan (R)→ CX (R). The map pR

X is a surjection.

We denote by pX : Xan → SX the map induced by pR
X .

Let f : X ′ → X be a dominating map of models. Let us denote by mi,i′ ∈ Z≥0
the multiplicity of a divisor Di′ , i′ ∈ IX ′ , in the proper pullback of Di , i ∈ IX . We
define pZ

X ′,X : CXan (Z)→ CX (Z) by the formulas
∑

i′ ai′ 〈Di′ 〉 
→∑
i mi,i′ai′ 〈Di〉.

Let pX ′,X : SXan (R)→ SX (R) be the corresponding map of Clemens polytopes.
Then we have the following result, which is easy to prove.
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Lemma 8. For any dominating map of models X ′ → X , we have

pZ
X = pZ

X ′,X ◦ pZ
X ′ .

Corollary 4. For dominating maps X ′′ ≥ X ′ ≥ X , we have

pX ′′,X = pX ′,X ◦ pX ′′,X ′ .

Theorem 10. For any algebraic X the analytic space Xan is a projective limit over
the partially ordered set of snc models X of Clemens polytopes SX . The connecting
maps are pX ′,X .

With any meromorphic at t = 0 family of smooth complex projective varieties
Xt , 0 < |t | < ε, one can associate a variety X over the field C((t)). It is easy to see
that for any snc model X one can canonically complete the family Xt by adding SX
as the fiber over t = 0. The total space is not a complex manifold but just a Hausdorff
locally compact space which maps properly to the disk {t ∈ C | |t | < ε}. Passing to
the projective limit we see that one can compactify the family Xt at t = 0 by Xan.

B Torelli theorem for K3 surfaces

Here we recall the classification theory of complex K3 sufaces (see [PSS] and its
extension to the nonalgebraic case in [LP]). Let X be a complex K3 surface, i.e.,
smooth connected complex manifold with dimC X = 2 which admits a nowhere
vanishing holomorphic 2-form �, and such that H 1(X,Z) = 0.

It is known that the group H 2(X,Z) endowed with the Poincaré pairing (·, ·) is
isomorphic to the lattice

�K3 =
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕ (−E8)⊕ (−E8)

of signature (3, 19).
The complex one-dimensional vector space H 2,0(X) = C · [�] ⊂ H 2(X,Z)⊗C

satisfies the condition (v, v) = 0, (v, v) > 0 for any nonzero vector v. Finally,
it is known that X admits a Kähler metric, and the Kähler cone KX ⊂ H 2(X,R)

of all Kähler metrics on X is an open subset of CX := {[ω] ∈ H 2(X,Z) ⊗
R|([ω], [�]) = 0, ([ω], [ω]) > 0}. In fact KX is a connected component of the
set CX \ ∪v∈H 2(X,Z),(v,v)=−2,(v,[�])=0Hv , where Hv is the hyperplane orthogonal
to v.

Axiomatizing these data we arrive at the following definition.

Definition 23. K3 period data is a quadruple (�, (·, ·),H 2,0,K) consisting of a free
abelian group �, a symmetric pairing (·, ·) : � × � → Z, a one-dimensional
complex vector subspace H 2,0 ⊂ � ⊗ C and a set K ⊂ � ⊗ R satisfying the
following conditions:

1. rk� = 22;
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2. (�, (·, ·)) is isomorphic to �K3;
3. for any v ∈ H 2,0 \ {0} one has (v, v) = 0 and (v, v) > 0;
4. the set K is a connected component of C \ ∪v∈�,(v,v)=−2,(v,H 2,0)=0Hv , where

C = {w ∈ � ⊗ R|(w,H 2,0) = 0, (w,w) > 0} and Hv is the hyperplane
orthogonal to v.

The K3 period data form a groupoid. On the other hand, K3 surfaces also form a
groupoid (morphisms are isomorphisms of K3 surfaces). Then classical global Torelli
theorem can be formulated in the following way.

Theorem 11. The groupoid of K3 surfaces is equivalent to the groupoid of K3 pe-
riod data.

In particular, the automorphism group of a K3 surface is isomorphic to the auto-
morphism group of its period data.

More generally, one can speak about holomorphic families of K3 surfaces over
complex analytic spaces. For a K3 surface over an analytic space M the period data
consist of a local system of integral lattices (�, (·, ·)) pointwise isomorphic to �K3,
a holomorphic line subbundle H 2,0 of � ⊗Z OM which is isotropic with respect
to the symmetric pairing (·, ·), and satisfying pointwise the condition (v, v) > 0,
v ∈ H

2,0
x \ {0}, x ∈ M red, and an open subset of the total space of the bundle over

M red with fibers�x⊗R∩(H 2,0)⊥ ((H 2,0)⊥ is the orthogonal complement) satisfying
pointwise condition 4 from the definition of K3 period data. Then the Torelli theorem
holds for families as well.
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Summary. In this paper, Part II, of a two-part paper we apply the results of [KW], Part I, to
establish, with an explicit dual coordinate system, a commutative analogue of the Gelfand–
Kirillov theorem for M(n), the algebra of n × n complex matrices. The function field F(n)

of M(n) has a natural Poisson structure and an exact analogue would be to show that F(n) is
isomorphic to the function field of an n(n−1)-dimensional phase space over a Poisson central
rational function field in n variables. Instead we show that this the case for a Galois extension,
F(n, e), of F(n). The techniques use a maximal Poisson commutative algebra of functions
arising from Gelfand–Zeitlin theory, the algebraic action of an n(n− 1)/2-dimensional torus
on F(n, e), and the structure of a Zariski open subset of M(n) as an n(n − 1)/2-dimensional
torus bundle over an n(n+ 1)/2-dimensional base space of Hessenberg matrices.

Subject Classifications: 14L30, 53D17, 14M17, 14R20, 33C45

0 Part II continuation of introduction

0.6

We recall some of the notation and results in Part I, i.e., [KW]. If k is a positive
integer, then Ik = {1, . . . , k}. M(n) is the algebra of all n× n complex matrices. If
m ∈ In, then regard M(m) ⊂ M(n) as the upper left block of all m × m matrices.
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If x ∈ M(n), then xm ∈ M(m) is the upper left principal m × m minor of x. Using
a natural isomorphism of (the Lie algebra) M(n) with its dual space, M(n) becomes
a Poisson manifold so that its affine ring O(M(n)) is a Poisson algebra. For any
k ∈ Z+, let d(k) = k(k + 1)/2. The subalgebra J (n) of O(M(n)), generated by
the symmetric polynomial Gl(m)-invariants of M(m) for all m ∈ In, is a polyno-
mial algebra with d(n) generators and, more importantly, it is a maximal Poisson
commutative subalgebra of O(M(n)).

In Part I we showed that the Poisson vector field ξf on M(n) corresponding to
any f ∈ J (n) is globally integrable on M(n) and a choice of generators of J (n)

defines an abelian Lie group A of dimension d(n− 1) operating on M(n). The orbits
of A are explicitly determined in Part I, and the orbits are independent of the choice
of generators. One particular choice are the functions, pi(x), i ∈ Id(n), x ∈ M(n),
where, for all m ∈ In, pd(m−1)+k(x), k ∈ Im, are the nontrivial coefficients of the
characteristic polynomial of xm.

A suitable measure on R and the Gram–Schmidt process define a sequence, φk(t),
k ∈ Z+, of orthogonal polynomials on R. LetWn be the span ofφm−1, m ∈ In, and let
x ∈ M(n) be the matrix, with respect to this basis, of the operator of multiplication by
t , followed by projection on Wn. The matrix x is Jacobi, and for m ∈ In one recovers
the orthogonal polynomial φm as the characteristic polynomial of xm. In particular,
the all important zeros of the orthogonal polynomials φm appear as the eigenvalues
of the xm. One motivation for our work here is to set up Poisson machinery to
deal with the eigenvalues of xm for any x ∈ M(n). In the course of setting up
this machinery we have obtained a number of new results. Some of these results
have appeared in Part I [KW]. In the present paper, Part II, we will be concerned
with establishing a refinement of a commutative analogue of the Gelfand–Kirillov
theorem. The refinement refers to exhibiting an explicit coordinate system satisfying
the Poisson commutation relations of phase space. The coordinate system emerges
from the action of an algebraic group and the structure of M(n), obtained in Part I,
as sort of a cotangent bundle over the variety of Hessenberg matrices.

In more detail, let M�(n) be the Zariski open (dense) subset of M(n) defined as
the set of all x ∈ M(n) such that xm is regular semisimple in M(m) for all m ∈ In and
such that the spectrum of xm−1, for m > 0, has empty intersection with the spectrum
of xm. In Part I M�(n) was shown to have the following structure: It is a (C×)d(n−1)

bundle over a d(n)-dimensional base space (d(n − 1) + d(n) = n2). The fibers are
not only the level sets for the functions in J (n) but also the fibers are the orbits of A
in M�(n). The base space, denoted by be,�(n), is the intersection be ∩M�(n), where
be is the space of Hessenberg matrices. That is, x ∈ be if and only if x is of the form

x =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n−1 a1n
1 a22 · · · a2n−1 a2n
0 1 · · · a3n−1 a3n
...

...
. . .

...
...

0 0 · · · 1 ann

⎞⎟⎟⎟⎟⎟⎠ .
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Also, be,�(n) is Zariski dense in be. Theorem 2.5 in Part I concerning establishing a
beautiful property of be plays a major role here. In Part II a “Lagrangian’’ property
of be plays a key role in showing that the dual coordinates si , defined below, Poisson
commute. Part I has three sections. A serious deficiency in M�(n) in dealing with the
commutative analogue of the Gelfand–Kirillov theorem is that one cannot consistently
solve the characteristic polynomials of xm for all m ∈ In and all x ∈ M�(n) to yield
algebraic eigenvalue functions ri on M�(n).

0.7

We begin, in the first section of Part II, labeled Section 4, to obtain such functions on
a covering space M�(n, e) of M�(n). Initially, the covering map

πn : M�(n, e)→ M�(n)

is only understood to be analytic. The covering admits, as deck transformations, a
group, �n, isomorphic to the direct product of the symmetric groups Sm, m ∈ In, and
as analytic manifolds

M�(n, e)/�n
∼= M�(n).

However, much more structure is needed and established in Section 4. For one
thing M�(n, e) is a nonsingular affine variety and πn is a finite étale morphism. For
another, if F(n) is the field of rational functions on M(n) and F(n, e) is the field
of rational functions on M�(n, e), then F(n, e) is a Galois extension of F(n) with
�n as Galois group. Furthermore the affine ring O(M�(n, e)) is the integral closure
of O(M�) in F(n, e). Very significant for our purposes, there exist (eigenvalue)
functions ri ∈ O(M�(n, e)), i ∈ Id(n), with the property that for any m ∈ In and any
z ∈ M�(n, e) the numbers rd(m−1)+k(z), k ∈ Im, are the eigenvalues of xm, where
x = πn(z). The Poisson structure on M�(n) lifts to M�(n, e) and one has [ri, rj ] = 0
for all i, j ∈ Id(n).

0.8

Section 5 is devoted to the construction of the dual coordinates sj ∈ O(M�(n, e)), j ∈
Id(n−1). There are two key points here: (a) It is shown that the Poisson vector fields
ξri on M�(n, e) integrate and generate a complex algebraic torus, Ar

∼= (C×)d(n−1),
which operates algebraically on M�(n, e)), and, in fact, if M�(n, e, b) is the πn

inverse image of be,�(n) in M�(n, e), then the map

Ar ×M�(n, e, b)→ M�(n, e), (b, y) 
→ b · y
is an algebraic isomorphism. The natural coordinate system on Ar then carries over
to M�(n, e) defining functions sj ∈ O(M�(n, e)), j ∈ Id(n−1), when they are nor-
malized so that, for all j , sj is the constant 1 on M�(n, e, b). The second key point,
(b), yields the Poisson commutativity [si, sj ] = 0 from the Lagrangian property of
be. See Theorem 5.20 and its proof. Combining Theorems 5.14 and 5.23, one has
the following.
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Theorem 0.16. The image of the map

M�(n, e)→ Cn2
, z 
→ (r1(z), . . . , rd(n)(z), s1(z), . . . , sd(n−1)(z)) (0.13)

is a Zariski open set Y in Cn2
, and (0.13) is an algebraic isomorphism of M�(n, e)

with Y . Furthermore, one has the following Poisson commutation relations:

(1) [ri, rj ] = 0, i, j ∈ Id(n),

(2) [ri, sj ] = δij sj , i ∈ Id(n), j ∈ Id(n−1), (0.14)

(3) [si, sj ] = 0, i, j ∈ Id(n−1).

Noting that si vanishes nowhere on M�(n, e), one has r(i) ∈ O(M�(n, e)) for
i ∈ Id(n−1), where r(i) = ri/si . Replacing ri by r(i) in (2), one has the more
familiar phase space commutation relation [r(i), sj ] = δij . For the implication of
Theorem 0.16 on the structure of the field F(n, e), see Theorem 5.24.

0.9

Of course, given the eigenvalue functions ri , the dual coordinates sj are not uniquely
determined. In the present paper, they are given by the use of the algebraic group Ar

(defined by the ri) and a set of Hessenberg matrices as a base space. Independently
and quite differently, the papers [GKL1] and [GKL2] also deal with establishing a
refined commutative analogue of the Gelfand–Kirillov theorem. A point of similarity
is the use of the coordinates ri and the necessity, thereby, to go to a covering. In
[GKL1, Section 3] dual coordinates are given, denoted in that paper by Qnj . It seems
to be an interesting question to write down equations expressing a relation between
the Qnj in [GKL1] and the si here. The first three sections of the paper are in Part I.
Part II begins with Section 4.

4 The covering M�(n, e) of M�(n) and the eigenvalue
functions ri

4.1

We retain the general notation of Part I so that n is a positive integer and M(n) is the
space of all complex n × n matrices. As in (2.61), for m ∈ In (see Section 1.1), let
d(m) be the space of all diagonal matrices in M(m) and let e(m) be the (connected)
Zariski open subset of all regular elements in d(m). That is, if z ∈ d(m), then z ∈ e(m)

if and only if the diagonal entries of z are distinct. Consider the direct product

e = e(1)× · · · × e(m) (4.1)

so that if ν ∈ e, we can write

ν = (ν(1), . . . , ν(n)), (4.2)
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where ν(m) ∈ e(m). In addition, we will write

ν(m) = diag(ν1m, . . . , νmm), (4.3)

where the numbers νim ∈ C, i ∈ Im, are distinct. Taking notation from (2.53), let
e�(n) be the Zariski open subset of e defined so that if ν ∈ e, then ν ∈ e�(n) if and
only if

νim �= νjm+1, ∀m ∈ In−1, i ∈ Im, j ∈ Im+1. (4.4)

Of course, e�(n) is a nonsingular variety, where

dim e�(n) = d(n)

(see Section 0.1). The symmetric group Sm, as the Weyl group of (M(m), d(m)),
operates freely on e(m) and the direct product �n = S1 × · · · × Sn (a group of order∏

m∈In m!) operates freely on e�(n), where if σ = (σ1, . . . , σn), σm ∈ Sm, is in �n

and ν ∈ e�(n), then, using the notation of (4.2) and (4.3),

σ · ν = (σ1 · ν(1)), . . . , σm · ν(m)) (4.5)

and

σm · ν(m) = diag(ν
σ−1
m (1)m, . . . , νσ−1

m (m)m
). (4.6)

4.2

Recall the Zariski open set M�(n) of M(n) (see (2.53)). In particular, we recall
that the matrices in M�(n) are regular semisimple. Consider the direct product
e�(n) ×M�(n) and let

M�(n, e) = {(ν, x) ∈ e�(n) ×M�(n) | ν(m) is Gl(m)-conjugate to xm, ∀m ∈ In}.
(4.7)

It is clear that M�(n, e) is a Zariski closed subset of e�(n) ×M�(n) and the maps

πn :M�(n, e)→ M�(n), where πn(ν, x) = x (4.8)

and

κn :M�(n, e)→ e�(n), where κn(ν, x) = ν (4.9)

are surjective (see Theorem 2.5) algebraic morphisms.
For m ∈ In and i ∈ Im, let ρim be the regular function on M�(n, e) defined so

that if z ∈ M�(n, e) and ν = κn(z), then ρim(z) = νim.

Remark 4.1. One notes that if z ∈ M�(n, e) and x ∈ M�(n), then πn(z) = x if and
only if

(ρ1m(z), . . . , ρmm(z)) = (µ1m(x), . . . , µmm(x)), (4.10)

up to a reordering, for all m ∈ In, using the notation of Section 2.2.
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One defines a free action of �n on M�(n, e), operating as a group of algebraic
isomorphisms, by defining

σ · z = (σ · ν, x), (4.11)

where σ ∈ �n and z = (ν, x) ∈ M�(n, e).
The following well-known proposition is classical.

Proposition 4.2. Let m ∈ In and let γ (m) ∈ e(m). Let g(m) ∈ Gl(m), and put
x(m) = Ad g(m)(γ (m)). Then there exists an open neighborhood N of γ (m) in
e(m) and a section S ⊂ Gl(m) of the quotient map Gl(m) → Gl(m)/Diag(m)

(using notation in Section 3.4) defined on a neighborhood of g(m)Diag(m) such that
the map

S ×N → M(m), where (g, γ ) 
→ Ad g(γ ) (4.12)

is an analytic isomorphism onto an open set of M(m). The elements of the image are
necessarily regular semisimple elements of M(m).

If U is an open subset of Mn(�) and φ : U → e is an analytic map, let graph φ :
U → e×Mn(�) be the analytic map defined by putting graph φ(x) = (φ(x), x).

Proposition 4.3. Let z = (ν, x) ∈ M�(n, e). Then there exist a (sufficiently small)
connected open neighborhood U of x in M�(n) and an analytic map φ : U → e�(n)

with the following properties:

(1) graph φ(x) = z, graph φ : U → Uz is a homeomorphism, where Uz is the image
of graph φ, and Uz ⊂ M�(n, e).

(2) π−1
n (U) = �σ∈�nσ · Uz.

(3) {σ ·Uz | σ ∈ �n} are the connected components of π−1
n (U) and each component

is open in M�(n, e).

In particular,U is evenly covered byπn andπn is a covering projection (see (4.8)).

Proof. Statements (1) and (2) are immediate consequences of Proposition 4.2. But
it is immediate from (1) and (2) that σ · Uz is connected and closed in π−1

n (U) for
any σ ∈ �n. Since the partition in (2) is finite, it follows that the parts are open in
π−1
n (U) and hence are open in M�(n, e). The remaining statements are obvious. ��

4.3

As in the introduction, Section 0, let be = −e+b using the notation of Section 2.2. By
Remark 2.4, Theorems 2.3 and 2.5 hold if be replaces e+b. Let be,�(n) = M�(n)∩be.
Then be,�(n) is a Zariski open subset of be and

'n : be,�(n) → �(n) (4.13)

is an algebraic isomorphism by Theorem 2.5 (see Remark 2.16). In particular, be,�(n)

is dense in be. Now let M�(n, e, b) = π−1
n (be,�(n)) so that, by Proposition 4.3,

M�(n, e, b) is a covering of be,�(n). Now consider the restriction
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κn : M�(n, e, b)→ e�(n) (4.14)

of (4.9) to M�(n, e, b). Note that e�(n) is connected since it is clearly Zariski open
in e. One has the following.

Theorem 4.4. The map (4.14) is a homeomorphism. In particular, M�(n, e, b) is
connected.

Proof. Let ν ∈ e�(n). Then by Theorem 2.5 there exists (uniquely) x ∈ be such that,
for any m ∈ In, (µ1m(x), . . . , µm,m(x)) = (ν1m, . . . , νmm), up to a reordering. But
then x ∈ be,�(n) and, by Proposition 4.3, (ν, x) ∈ M�(n, e, b). But then ν is in the
image of (4.14). That is, (4.14) is surjective. But assume z, z′ ∈ M�(n, e, b) and
κn(z) = κn(z

′). Then if x = πn(z) and x′ = πn(z
′), one has x, x′ ∈ be and hence

x = x′ by Theorem 2.5. Thus z = z′ so that (4.14) is injective. Hence (4.14) is
bijective. But, of course, as a restriction map, (4.14) is continuous. We have only to
show that its inverse is continuous.

Let βi , i ∈ In, be the regular function on e�(n) defined so that if ν ∈ e�(n),
then βd(m−1)+k(ν), k ∈ Im, m ∈ In, is the elementary symmetric function of degree
m − k + 1 in {ν1m, . . . , νmm}. Now let β : e�(n) → Cd(n) be the regular algebraic
map defined so that

β(ν) = (β1(ν), . . . , βd(n)(ν)). (4.15)

One notes that if c = β(ν), then by (2.3), (2,4), (2.10), and (2.11),

(ν1m, . . . , νmm) = (µ1m(c), . . . , µmm(c)), (4.16)

up to a reordering, for all m ∈ In. It follows then that

β : e�(n) → �(n) (4.17)

is a surjective morphism (see (2.53)). Recalling Theorem 2.3 (where −e replaces e),
one has, inverting (4.13), a surjective morphism

β̃ : e�(n) → be,�(n), (4.18)

where β = 'n ◦ β̃ noting that, for i ∈ In,

pi(β̃(ν)) = βi(ν) (4.19)

by (2.3), (2.4), and (2.5). But clearly (ν, β̃(ν)) ∈ M�(n, e, b) for any ν ∈ e�(n).
Hence

e�(n) → M�(n, e, b), ν 
→ (ν, β̃(ν)) (4.20)

is an algebraic morphism. But (4.20) must be the inverse to (4.14), by the bijectivity
of (4.14), since κn((ν, β̃(ν))) = ν. Hence (4.14) is a homeomorphism. ��

Recalling (4.9), let Mν(n, e) = κ−1
n (ν) so that one has a “fibration’’

M�(n, e) = �ν∈e�(n)
Mν(n, e) (4.21)
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of M�(n, e) over e�(n) with fiber projection κn (see (4.9) and Proposition 4.5 below).
Let ν ∈ e�(n). If ν ∈ e�(n) and c ∈ �(n) ⊂ Cd(n) is defined by

c = β(ν) (4.22)

(see (4.17)), note that

Mc(n)→ Mν(n, e), x 
→ (ν, x) (4.23)

is a homeomorphism, by the definition of M�(n, e). The following asserts, in partic-
ular, that the “fibers’’ of (4.21) are all homeomorphic.

Proposition 4.5. One has a homeomorphism

Mν(n, e) ∼= (C×)d(n−1) (4.24)

for any ν ∈ e�(n).

Proof. This is immediate from (4.23) and Theorem 3.23. ��
Remark 4.6. Note that M�(n, e, b) defines a cross-section of κn by Proposition 4.14.
That is, for any ν ∈ e�(n), the intersection

M�(n, e, b) ∩Mν(n, e) (4.25)

has only one point.

Proposition 4.7. M�(n, e), as a topological space (Euclidean topology), is con-
nected.

Proof. As a covering of the manifold of M�(n), obviously M�(n, e) is locally con-
nected (see Proposition 4.3) so that any connected component of M�(n, e) is open in
M�(n, e). But then there exists a connected componentC such thatM�(n, e, b) ⊂ C,
by Theorem 4.4. But if ν ∈ e�(n), then Mν(n, e) is connected by (4.24). But then
Mν(n, e) ⊂ C by (4.25). Hence C = M�(n, e) by (4.21). Thus M�(n, e) is con-
nected. ��

4.4

The definition of variety here and throughout implies that it is Zariski irreducible. We
will prove in this section that M�(n, e) is a nonsingular affine variety of dimension
n2. We first observe the following.

Proposition 4.8. The nonempty Zariski open subset e�(n) of e (see Section 4.1) is a
nonsingular affine variety, and the nonempty Zariski open subset M�(n) of M(n) is a
nonsingular affine variety (see (2.53)). In particular, e�(n)×M�(n) is a nonsingular
affine variety of dimension n2 + d(n).
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Proof. Recalling Section 4.1, clearly, for any m ∈ In, e(m) is a Zariski open,
nonempty subvariety of d(m). It is affine since it is the complement of the zero
set of the discriminant function on d(m). But then e is a nonsingular affine variety
of dimension d(n). But then e�(n) is a nonsingular affine variety of dimension d(n)

since the condition (4.4) clearly defines e�(n) as the complement of the zero set of a
single regular function on e. But now the argument in Remark 2.16 readily charac-
terizes M�(n) as the complement in M(n) of the zero set in M(n) of a polynomial in
J (n) (see (2.30)). Thus M�(n) is a nonsingular affine variety of dimension n2. This
of course proves the proposition. ��

If X is an affine variety, we will denote the affine ring of X by O(X).

Theorem 4.9. M�(n, e) is an n2-dimensional Zariski closed affine nonsingular sub-
variety of the nonsingular affine variety e�(n) ×M�(n) (see Proposition 4.8).

Proof. One has

O(e�(n) ×M�(n)) = O(e�(n))⊗O(M�(n)). (4.26)

For i ∈ In, let βi ∈ O(e�(n)) be defined as in (4.15). Also let p′i ∈ O(M�(n)) be
defined by putting p′i = pi |M�(n), where pi ∈ J (n) is given by (2.5) (see (2.30)).
For notational convenience, put W = e�(n)×M�(n). Now let fi ∈ O(W) be defined
by putting fi = βi ⊗ 1− 1⊗ p′i . Clearly,

M�(n, e) = Spec[O(W)/(f1, . . . , fd(n)]. (4.27)

But for any z = (ν, x) ∈ M�(n, e), one has

(dfi)z, i ∈ In, are linearly independent (4.28)

since (dpi)x , i ∈ In, are linearly independent in T ∗x (M(n)) by (2.55) and the def-
inition of Msreg(n) in Section 2.3. One also notes that (dβi)ν , i ∈ In, are linearly
independent in T ∗ν (e) since ν(m) is regular in d(m) for anym ∈ In. But thenM�(n, e)
is nonsingular at z by [M1, Chapter 3, Theorem 4, Section 4, p. 172], where X and
U in the notation of that reference are equal to W here (see Proposition 4.8) and
Y = M�(n, e). Thus M�(n, e) is nonsingular and has dimension n2. But now since
M�(n, e) is connected in the Euclidean topology, by Proposition 4.7, it is obviously
connected in the Zariski topology (i.e., it is not the disjoint union of two nonempty
Zariski open sets). But then, since it is nonsingular, it is irreducible as an algebraic
set by [B, Corollary 17.2, p. 72]. It is then also a closed affine subvariety of W by
(4.27). ��

We may regard O(M�(n)) as a module for J (n) (see Section 2.4)) where pi

operates as multiplication by p′i (using the notation in the proof of Theorem 4.9).
Similarly, regard O(e�(n)) as a module for J (n) where pi operates as multiplication
by βi (see (4.19)). Then Theorem 4.9 and equality (4.27) clearly imply the following.

Theorem 4.10. As an affine ring one has the tensor product

O(M�(n, e)) = O(e�(n))⊗J (n) O(M�(n)) (4.29)
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4.5

Assume that Y is an affine variety and that � is a finite group operating as a group of
algebraic isomorphisms ofY . Then� operates as a group of algebraic automorphisms
of O(Y ), where for any f ∈ O(Y ), σ ∈ � and z ∈ Y , one has

(σ · f )(z) = f (σ−1 · z). (4.30)

Let Y/� be the set of orbits of � on Y . Obviously any f ∈ O(Y )� defines a function
of Y/�. It is then a classical theorem that Y/� has the structure of an affine variety,
where

O(Y/�) = O(Y )�. (4.31)

See, e.g., [M2, Chapter 1, Section 2, Theorem 1.1, p. 27 and Amplification 1.3, p. 30].
In addition, one notes that

Y → Y/�, z 
→ � · z (4.32)

is a morphism where the corresponding cohomomorphism is the embedding

O(Y )� → O(Y ). (4.33)

Let F(Y ) be the quotient field of O(Y ) and let F(Y/�) be the quotient field of
O(Y/�). Since � is finite, it is a simple and well-known fact that, as a consequence
of (4.31),

F(Y/�) = F(Y )� so that F(Y ) is a Galois extension of F(Y/�). (4.34)

Let ClosF(Y )(O(Y/�)) be the integral closure of O(Y/�) in F(Y ).

Proposition 4.11. ClosF(Y )(O(Y/�)) is a finite module over O(Y/�). In particular
ClosF(Y )(O(Y/�)) is Noetherian. Furthermore, O(Y ) is also a finite module over
O(Y/�) so that O(Y ) is integral over O(Y/�) and hence

O(Y ) ⊂ ClosF(Y )(O(Y/�)), (4.35)

and one has equality in (4.35) in case Y is nonsingular. Finally (in the sense of [M1,
Chapter 2, Section 7, Definition 3, p. 124]), the morphism (4.32) is finite and the
morphism

Z 
→ Y/� (4.36)

is finite, where Z = Spec(ClosF(Y )(O(Y/�))) and (4.36) is defined so that the
injection O(Y/�)→ ClosF(Y )(O(Y/�)) is the corresponding cohomomorphism.

Proof. The first statement is given by [ZS, Chapter 5, Theorem 9, Section 4, p. 267].
The statement that O(Y ) is also a finite module over O(Y/�) is stated as Noether’s
Theorem and proved as [Sm, Theorem 2.3.1, p. 26]. But now if Y is nonsingular, then
O(Y) is integrally closed in F(Y ). See, e.g., [M1, p. 197, first paragraph]. But of
course ClosF(Y )(O(Y/�)) is integral over O(Y). Hence one has equality in (4.35).
But now the finiteness of (4.32) and (4.36) follows from [M1, Chapter 2, Section 7,
Proposition 5, p. 124] since Y, Y/� and Z are affine varieties. ��
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Making use of Theorem 4.9, we apply Proposition 4.11 in the case where Y =
M�(n, e) and � = �n with, of course, the action given by (4.12). The quotient
field of O(M�(n, e)) will be denoted by F(n, e). The quotient field of O(M(n))

will be denoted by F(n). In the notation of Section 1.1, note that O(M(n)) is just
P(n). Since M�(n) is Zariski dense in M(n), note that F(n) is also the quotient field
of O(M�(n)).

It is clear from the definition of πn (see (4.8)) that πn is a morphism whose
corresponding cohomomorphism maps O(M�(n)) into O(M�(n, e)

�n). Hence πn

descends to a morphism
M�(n, e)

�n → M�(n). (4.37)

Proposition 4.12. The morphism (4.37) is an isomorphism of algebraic varieties.
That is,

M�(n, e)
�n ∼= M�(n). (4.38)

In particular, πn is a finite morphism. Furthermore,

F(n, e)�n ∼= F(n) (4.39)

so that, using (4.39) to define an identification, F(n, e) is a Galois extension of F(n)

with Galois group �n. In addition, using (4.38) to define an identification, one has

ClosF(n,e) O(M�(n)) = O(M�(n, e)), (4.40)

Proof. It is immediate from Proposition 4.3 that (4.37) is bijective. But then it
is birational by [Sp, Theorem 5.1.6, p. 81] (since we are in a characteristic zero
case). But M�(n) is nonsingular. Thus (4.37) is an isomorphism (see, e.g., [Sp,
Theorem 5.2.8, p. 85]). The rest of the statements follows from Proposition 4.11
since M�(n, e) is nonsingular by Theorem 4.9. ��

Recall the notation of Proposition 4.3 so that z = (γ, x) ∈ M�(n, e). Also,
Uz is a (Euclidean) open neighborhood of z in M�(n, e), U is a (Euclidean) open
neighborhood of x in M�(n), and the statements of Proposition 4.3 hold. The inverse
of the homeomorphism graph φ : U → Uz is clearly

πn|Uz : Uz → U. (4.41)

Proposition 4.13. Recalling the notation of Proposition 4.3, the map (4.41) is an
analytic isomorphism. In particular (see [M1, Corollary 2 (p. 182) to Theorem 3 in
Chapter 3, Section 5]) πn : M�(n, e)→ M�(n) (see (4.8)) is an étale morphism.

Proof. Since πn is a morphism, it is a holomorphic map of nonsingular analytic
manifolds (see [M1, Chapter 1, Section 10, p. 58, ii]). Thus the homeomorphism
(4.41) is an analytic map. It suffices to prove that

graph φ : U → Uz (4.42)

is analytic. To do this, first regard (4.42) as a map
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U → e�(n) ×M�(n) (4.43)

(see (4.7)). By the definition of graph φ in Proposition 4.3, it is obvious that (4.43) is
analytic. Hence if g ∈ O(e�(n)×M�(n)), then g ◦graph φ is an analytic function on
U . But then f ◦ graph φ is an analytic function on U for any f ∈ O(M�(n, e)) since
O(M�(n, e)) is just the restriction of O(e�(n)×M�(n)) to M�(n, e). But then (4.42)
is analytic since an analytic coordinate system in a Euclidean neighborhood of z in
M�(n, e) is given by elements in O(M�(n, e)) which are uniformizing parameters
in a Zariski neighborhood of z (see [M1, Chapter 3, Section 6, p. 183]). ��

Combining Propositions 4.3 and 4.13, one has the following.

Proposition 4.14. The map πn defines M�(n, e) as an analytic covering of M�(n)

with �n as the group of deck transformations.

4.6

Since M�(n, e) is locally and analytically isomorphic to M�(n) (via πn) the tensor
which defines Poisson bracket of functions onM�(n) lifts and defines Poisson bracket
of analytic functions on M�(n, e). In particular O(M�(n, e)) has the structure of
a Poisson algebra. For any f ∈ O(M�(n)) (noting that we regard O(M(n)) ⊂
O(M�(n))), let f̂ ∈ O(M�(n, e)) be defined by putting f̂ = f ◦ πn. For f1, f2 ∈
O(M�(n)) one then has

̂[f1, f2] = [f̂1, f̂2]. (4.44)

Using the notation of Section 1.2 but now, in addition, applied to M�(n, e), for any
ϕ ∈ O(M�(n, e)), let ξϕ be the (complex) vector field on M�(n, e) defined so that
ξϕψ = [ϕ,ψ] for any ψ ∈ O(M�(n)). It is immediate that if f ∈ O(M�(n), then
ξf̂ is πn-related to ξf so that unambiguously

(πn)∗(ξf̂ ) = ξf . (4.45)

Besides the (just considered) subring of O(M�(n, e)), defined by the pullback of (the
surjection) πn, there is the subring of O(M�(n, e)) defined by the pullback of (the
surjection) κn (see (4.9)). Indeed, let

J (n, e) = {q ◦ κn | q ∈ O(e�(n))}. (4.46)

From the definition of ρkm, k ∈ Im, m ∈ Im in Section 4.2, note that ρkm ∈ J (n, e).
For notational convenience let ri ∈ J (n, e), i ∈ Id(n), be defined so that

ri = ρkm, (4.47)

where
i = d(m− 1)+ k (4.48)

so that
ri ∈ J (n, e), i ∈ d(n). (4.49)
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Remark 4.15. Recalling Section 4.1, note that conversely J (n, e) is a localization of
the polynomial ring generated by the ri , i ∈ Id(n).

Now put Ĵ (n) = {p̂ | p ∈ J (n)} (see Section 2.4) so that Ĵ (n) is the polynomial
ring

Ĵ (n) = C[p̂1, . . . , p̂d(n)]. (4.50)

Let I[m] = Id(m) − Id(m−1) so that card I[m] = m.

Proposition 4.16. One has
Ĵ (n) ⊂ J (n, e). (4.51)

In fact, if i ∈ I[m], wherem ∈ In, and i is written as in (4.48), then p̂i is the elementary
symmetric polynomial of degree m− k + 1 in the functions rj , j ∈ I[m]. Indeed, if

Pm(λ) = λm +
∑
k∈Im

(−1)m−k+1 ̂pd(m−1)+kλk−1,

then
Pm(λ) =

∏
j∈I[m]

(λ− rj ) (4.52)

so that, in addition, rj , for j ∈ I[m], satisfies the polynomial equation

Pm(rj ) = 0.

Proof. The inclusion (4.51) follows from (4.50) and (4.52). On the other hand, (4.52)
follows from (2.3), (2.4), and (2.5) together with (4.10), (4.29), and (4.47). ��

Since πn is an analytic covering map (see Proposition 4.14), it follows from
(2.55) and the definition of strongly regular (see Section 2.3) that the differen-
tials (dp̂i)z, i ∈ Id(n), are linearly independent at any z ∈ M�(n, e). For any
m ∈ In, let T ∗z (M�(n, e))

(m) be the m-dimensional subspace of the cotangent space
T ∗z (M�(n, e)) spanned by the differentials (dp̂i)z, i ∈ I[m].

Proposition 4.17. Let z ∈ M�(n, e) and let m ∈ In. Then (dri)z, i ∈ I[m], is a basis
of T ∗z (M�(n, e))

(m).

Proof. Let V be the space of T ∗z (M�(n, e)) spanned by (dri)z, i ∈ I[m]. But then
dim V ≤ m. But T ∗z (M�(n, e))

(m) ⊂ V by (4.51). Thus V = T ∗z (M�(n, e))
(m) by

dimension. ��
In the notation above, let T ∗z (M�(n, e))

′ (respectively, T ∗z (M�(n, e))
′′) be the

d(n − 1)-dimensional (respectively, d(n)-dimensional) sum of the subspaces
T ∗z (M�(n, e))

(m) over all m ∈ In−1 (respectively, m ∈ In). Then as an immedi-
ate consequence of Proposition 4.17, one has the following.

Proposition 4.18. Let z ∈ M�(n, e). Then (dri)z, i ∈ Id(n−1) (respectively, Id(n)) is
a basis of T ∗z (M�(n, e))

′ (respectively, T ∗z (M�(n, e))
′′).
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4.7

Let ν ∈ e�(n). By definition (see (4.21)), Mν(n, e) = κ−1
n (ν) so that Mν(n, e) is a

Zariski closed subset of M�(n, e).

Remark 4.19. Note that (see (4.2), (4.3), Section 4.2, and (4.47)) Mν(n, e) may be
given by the equations

Mν(n, e) = {z ∈ M�(n, e) | ri(z) = νkm when i ∈ Id(n) is put in the form (4.48)}.
(4.53)

Note also that Mν(n, e) is nonsingular by Proposition 4.18 (linear independence of
differentials).

Proposition 4.20. Let ν ∈ e�(n) and let c = β(ν) so that c ∈ �(n) (see (4.22)).
Then the covering map πn (see (4.8)) restricts to an algebraic isomorphism

πn : Mν(n, e)→ Mc(n) (4.54)

of nonsingular affine varieties.

Proof. Recall that Mc(n) is an irreducible nonsingular Zariski closed subvariety of
M(n) (see Theorem 3.23). The homeomorphism (4.23) can obviously be regarded
as a morphism mapping Mc(n) to e�(n) ×M�(n). However the image of (4.23) is
the Zariski closed subset Mν(n, e) of e�(n) ×M�(n). Thus (4.23), as it stands, is a
bijective morphism. But then Mν(n, e) is a variety (i.e., it is irreducible). Hence it is
a nonsingular affine variety by Remark 4.19. Thus (4.23), as it stands, is an algebraic
isomorphism. But (4.54) is just the inverse of (4.23). ��

Note that (2.31) and (4.44) imply

[p̂, q̂] = 0 (4.55)

for any p, q ∈ J (n). In particular,

[p̂i , p̂j ] = 0 (4.56)

for any i, j ∈ Id(n). One consequence of Proposition 4.20 is the following.

Proposition 4.21. Let ν ∈ e�(n) and let z ∈ Mν(n, e), so that ν = κn(z) (see (4.9)).
Then (ξp̂i

)z, i ∈ Id(n−1), is a basis of the tangent space Tz(Mν(n, e)).

Proof. Let x = πn(z) (see (4.8)) and c = β(ν) (see (4.22)) so that x ∈ Mc(n). Since
πn is a local analytic isomorphism it suffices by Proposition 4.20 and (4.45) to see
that (ξpi

)x , i ∈ d(n − 1), is a basis of Tx(Mc(n)). But x is strongly regular (see
Section 2.3) by (2.55) since c ∈ �(n). The result then follows from Remark 2.8 and
Theorems 3.4 and 3.23. ��

The argument which established Theorem 3.25 may now be used to establish the
following.
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Theorem 4.22. J (n, e) (see (4.46)) is a maximal Poisson commutative subalgebra
of O(M�(n, e)). In particular, (see (4.48)),

[ri, rj ] = 0 (4.57)

for any i, j ∈ Id(n). Furthermore, if f ∈ J (n, e) and ν ∈ e�(n), then f |Mν(n, e) is
a constant function and ξf |Mν(n, e) is tangent to Mν(n, e). Moreover, if we write
(using Proposition 4.21)

ξf =
∑

i∈Id(n−1)

fiξp̂i
(4.58)

on Mν(n, e), where fi ∈ O(Mν(n, e)), then all the fi are constant on Mν(n, e).
Finally,

(ξri )z, i ∈ Id(n−1), is a basis of Tz(Mν(n, e)), for any z ∈ Mν(n, e) and

(ξri )z = 0, i ∈ I[n] = Id(n) − Id(n−1), for any z ∈ Mν(n, e).
(4.59)

Proof. Let ν ∈ e�(n). The function ri is constant on Mν(n, e) for all i ∈ Id(n) by
Remark 4.19. Let f ∈ J (n, e). But then f |Mν(n, e) is a constant function by Re-
mark 4.15. On the other hand, if z ∈ Mν(n, e) and Wz is the orthocomplement of
Tz(Mν(n, e)) in T ∗(M�(n, e)), then (dri)z, i ∈ Id(n), is a basis of Wz by Proposi-
tion 4.18 and Remark 4.19. But this implies that (df )z ∈ Wz by Remark 4.15. In
particular, (dp̂i)z ∈ Wz for any i ∈ Id(n) by (4.50). In fact, (dp̂i)z, i ∈ Id(n), is a
basis of Wz by Proposition 4.18 and the definition of T ∗z (M�(n, e))

′′ in Section 4.6.
Now for any g ∈ O(M�(n, e)) the tangent vector (ξg)z depends only on (dg)z

(see Section 1.2). But

(ξp̂i
)z = 0 for any i ∈ I[n] = Id(n) − Id(n−1) (4.60)

by (2.7). But then (ξg)z ∈ Tz(Mν(n, e)) if (dg)z ∈ Wz, by Proposition 4.21. Hence
ξf |Mν(n, e) is tangent to Mν(n, e). Furthermore, Propositions 4.17, 4.18, and 4.21
imply (4.59). Now if g ∈ J (n, e), then g|Mν(n, e) is constant. But ξf |Mν(n, e) is
tangent toMν(n, e). ThusJ (n, e) is Poisson commutative. In particular, [ξp̂j

, ξf ] = 0
for any j ∈ Id(n−1). But on Mν(n, e), one has

[ξp̂j
, ξf ] =

∑
i∈Id(n−1)

(ξp̂j
fi)ξp̂i

by (4.58). Thus ξp̂j
fi = 0, by Proposition 4.21, for all i, j ∈ Id(n−1). Hence the fi

are constants.
Now recall the definition of M�(n, e, b) in Section 4.3. Then M�(n, e, b) is

a Zariski closed subset of M�(n, e) since, clearly, be,�(n) is obviously closed in
M�(n). But M�(n, e, b) is irreducible since it is the image of the bijective morphism
(4.20). But then (4.14) is a bijective (and hence, necessarily birational, since we are in
characteristic 0) morphism of irreducible varieties. In addition e�(n) is nonsingular
(see Section 4.1). Thus (4.14) is an isomorphism of varieties. Consequently (see
(4.46)), the map
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J (n, e)→ O(M�(n, e, b)), g 
→ g|M�(n, e, b) (4.61)

is an algebra isomorphism. Consequently, given any h ∈ O(M�(n, e)) there exists
a unique g ∈ J (n, e) such that g|M�(n, e, b) = h|M�(n, e, b). But now assume
that h Poisson commutes with any function in J (n, e). Then h|Mν(n, e) is constant,
by Proposition 4.21, for any ν ∈ e�(n). But then h = g on Mν(n, e) by (4.25).
Thus h = g, by (4.21), and hence J (n, e) is maximally Poisson commutative in
O(M�(n, e)). ��

4.8

We recall some definitions, results and notations in Part I. Generators p(i), i ∈ Id(n),
of the polynomial ring J (n) (see (2.30)) were defined by (3.20), recalling (2.38). In
particular, two sets of generators of J (n) were under consideration in Part I, namely,
the p(i) and the pi (see (2.5) and (2.3)), where i ∈ Id(n). From the discussion
preceding (2.38), it follows that for x ∈ M(n), and m ∈ In,

span of (dp(i))x , for i ∈ Id(m) = span of (dpi)x , for i ∈ Id(m) (4.62)

and hence

span of (ξp(i)
)x , for i ∈ Id(m) = span of (ξpi

)x , for i ∈ Id(m). (4.63)

But then, by (4.45), for any z ∈ M�(n, e),

span of (ξp̂(i)
)z, for i ∈ Id(m) = span of (ξp̂i

)z, for i ∈ Id(m). (4.64)

An immediate consequence of (4.64), when m = n− 1, and Proposition 4.21 is the
following.

Proposition 4.23. Let ν ∈ e�(n) and let z ∈ Mν(n, e). Then (ξp̂(i)
)z, i ∈ Id(n−1), is a

basis of Tz(Mν(n, e)).

By definition, a (see Section 3.2) is the (complex) commutative d(n − 1)-
dimensional Lie algebra of vector fields on M(n) spanned by ξp(i)

, i ∈ Id(n−1).
By Theorem 3.4, the Lie algebra a integrates to a (complex) analytic Lie group
A ∼= Cd(n−1) which operates analytically on M(n). Now let â be the d(n − 1)-
dimensional complex commutative (see (4.44)) Lie algebra of vector fields on
M�(n, e) spanned by ξp̂(i)

, i ∈ Id(n−1).

Remark 4.24. If ν ∈ e�(n), then note that by Proposition 4.23, â|Mν(n, e) is a com-
mutative d(n− 1)-dimensional Lie algebra of vector fields on Mν(n, e).

Let Â(∼= Cd(n−1)) be a simply connected Lie group with Lie algebra â. Let

A→ Â, a 
→ â (4.65)

be the group isomorphism whose differential maps ξp(i)
to ξp̂(i)

for all i ∈ Id(n−1).
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Theorem 4.25. The Lie algebra â integrates to an action of Â on M�(n, e). Further-
more, if a ∈ A and z ∈ M�(n, e), then

πn(̂a · z) = a · x, (4.66)

where x = πn(z). Moreover, Mν(n, e) is stable under the action of Â for any ν ∈
e�(n). In fact, for all ν, Â operates transitively on Mν(n, e) so that (4.21) is the
decomposition of M�(n, e) into Â orbits.

Proof. Noting Remark 4.24, Theorem 4.25 is an immediate consequence of (4.45),
the isomorphism (4.54), and Theorem 3.23. ��
Remark 4.26. Implicit in Theorem 4.25 and its proof is the fact that if ν ∈ e�(n), then
the Lie algebra â|Mν(n, e) of vector fields on Mν(n, e) (see Remark 4.24) integrates
to the group action Â|Mν(n, e) on Mν(n, e).

One now has an analogue of Theorem 3.5. (Actually, it is an analogue of a
considerably weaker result than Theorem 3.5 in that M�(n, e) covers the strongly
regular set M�(n) and not all of M(n).)

Theorem 4.27. Let f ∈ J (n, e) (see (4.46)). Then the vector field ξf integrates to
an action of C on M�(n, e). In fact, if ν ∈ e�(n), then ξf |Mν(n, e) is tangent to
Mν(n, e). Indeed,

ξf |Mν(n, e) ∈ â|Mν(n, e) (4.67)

so that (see Remark 4.26), the action of C stabilizes Mν(n, e).

Proof. Clearly, p̂(i) ∈ J (n, e), for i ∈ Id(n−1), by (4.50). Let ν ∈ e�(n). Then
ξp̂i
|Mν(n, e), i ∈ Id(n−1), is a basis of â|Mν(n, e) by (the constancy of the fi in)

Theorem 4.22 and Proposition 4.23. But then one has (4.67), also by Theorem 4.22.
Theorem 4.27 then follows from Remark 4.26 and Theorem 4.25. ��

5 The emergence of the dual coordinates sj , j ∈ Id(n−1)

5.1

We first wish to be more explicit about the vector fields ξrj , j ∈ Id(n−1), on M�(n, e).
See Section 4.2 and (4.47). Fix m ∈ In. We have put I[m] = Id(m) − Id(m−1). For
i ∈ I[m] and

i = d(m− 1)+ k (5.1)

for k ∈ Im, one has, on M�(n, e),

p̂(i) = 1

m+ 1− k

∑
j∈I[m]

rm+1−k
j . (5.2)

See (2.38), (3.20), Section 4.2, and (4.47). Thus
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dp̂(i) =
∑
j∈I[m]

rm−kj drj (5.3)

and hence
ξp̂(i)

=
∑
j∈I[m]

rm−kj ξrj (5.4)

(see (1.14)).
Now let z ∈ M�(n, e) and let ν = κn(z) (see (4.9)) so that z ∈ Mν(n, e).

Let x = πn(z) so that x ∈ M�(n). Since the numbers (the eigenvalues of xm)
rj (z), j ∈ I[m], are distinct the Vandermonde m×m matrix

Ck
 = rj (z)
m−k, (5.5)

where
j = d(m− 1)+ 
 (5.6)

is invertible.

Remark 5.1. In the notation of (4.53), note that rj (z) = ν
m.

If m = n, then ξpi
and ξp(i)

vanish by (2.7) and the argument which implies
(2.7). Henceforth, assume m ∈ In−1. Recalling the definition of the m-dimensional
commutative Lie algebra a(m) of vector fields on M(n) (see Section 3.1 and (3.20)),
there exists a unique basis ηjν , j ∈ I[m], of a(m) such that for i ∈ I[m] and k related
to i by (5.1),

ξp(i)
=

∑
j∈I[m]

rm−kj (z)ηjν. (5.7)

But then (4.46), (5.4), (5.7), and the invertibilty of the Vandermonde matrixCk
 imply
the following.

Proposition 5.2. Let ν ∈ e�(n) and m ∈ In−1. Then

(πn)∗(ξrj |Mν(n, e)) = ηjν |Mc(n), (5.8)

where c = β(ν) (see (4.22)) for all j ∈ I[m].

We recall in Section 2.4 that Zx,m is the commutative (associative) algebra of
M(m) generated by xm. Here x = πn(z) so that xm is regular semisimple and hence
dim Zx,m = m. We recall (see Section 3.1) that Gx,m is the (algebraic) subgroup of
Gl(n) corresponding to Zx,m when Zx,m is regarded as a Lie subalgebra of M(n). We
also recall that A(m) is a simply connected group corresponding to a(m) and a(m)

integrates to an action of A(m) on M(n) (see Theorem 3.3). Next we recall (see (3.6))
that ρx,m is the homomorphism of A(m) into Gx,m whose differential is given by

(ρx,m)∗(ξp(i)
) = −(xm)m−k (5.9)

when i ∈ I[m] has the form (5.1). But then applying (ρx,m)∗ to (5.7), one has
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−(xm)m−k =
∑
j∈I[m]

rm−kj (z)(ρx,m)∗(ηjν). (5.10)

On the other hand, put
hν,m = diag(ν1m, . . . , νmm),

recalling (4.53), so that in the notation of Section 4.1,

hν,m ∈ e(m). (5.11)

Note that for the matrix units e

, 
 ∈ Im, one has

hν,m =
∑

∈Im

ν
me

. (5.12)

Now let gz ∈ Gl(m) be such that

gzhν,mg
−1
z = xm (5.13)

(see Remark 5.1). Using the notation of Section 4.1, note that then

gzd(m)g−1
z = Zx,m. (5.14)

Remark 5.3. Note that gz is unique in Gl(m) modulo the maximal diagonal torus
Diag(m) (see Section 3.4).

For j ∈ I[m], let εz,j ∈ Zx,m be the idempotent in Zx,m defined by putting

εz,j = gze

g
−1
z , (5.15)

where 
 is defined by (5.6). Thus (5.12) and (5.13) imply that

xm =
∑

∈Im

ν
mεz,d(m−1)+
. (5.16)

But the εz,d(m−1)+
, 
 ∈ Im, are orthogonal idempotents by (5.15). Hence, by
Remark 5.1,

−(xm)m−k = −
∑

∈Im

νm−k
m εz,d(m−1)+
. (5.17)

Proposition 5.4. Let z ∈ M�(n, e) and let ν = κ(z) (see (4.9)). Let x = πn(z) (see
(4.8)) and let m ∈ In. Let ηj,ν ∈ a(m), j ∈ I[m], be the basis of a(m) defined by (5.7)
so that one has (5.8). Let (ρx,m)∗ : a(m)→ Zx,m be the Lie algebra homomorphism
defined as in (3.6) and (3.7). Let εz,j , j ∈ I[m], be the orthogonal idempotents in
Zx,m defined by (5.15). Then

(ρx,m)∗(ηj,ν) = −εz,j (5.18)

for any j ∈ I[m].

Proof. One has νm−k
m = rm−kj (z) by Remark 5.1. But then (5.18) follows from the
equality of the right-hand sides of (5.10) and (5.17), recalling the invertibility of the
Vandermonde matrix (5.5). ��
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5.2

Retain the notation of Proposition 5.4. For any ζ ∈ C× and i ∈ In, let δi(ζ ) ∈ Diag(n)
(see Section 3.4) be the invertible n× n diagonal matrix such that αjj (δi(ζ )) = 1 if
j �= i and αii(δi(ζ )) = ζ , using the notation of (1.2). One notes that if 
 ∈ Im, then
δ
(ζ ) ∈ Diag(m). Also, using the relation between j and 
 given by (5.6), one has
γzj (ζ ) ∈ Gx,m, by (5.14), where we put

γzj (ζ ) = gzδ
(ζ )g
−1
z . (5.19)

Let q ∈ C. One notes that
exp qe

 = δ
(e

q) (5.20)

and hence
exp qεz,j = γzj (e

q). (5.21)

Multiplying (5.18) by q and exponentiating (where exp qηj,ν ∈ A(m)), it follows
then from (3.6) that

ρx,m(exp qηj,ν) = γzj (e
−q). (5.22)

We can now describe the flow generated by ξrj (see (4.47) and Section 4.2) on
M�(n, e) for any j ∈ Id(n−1) (see Theorem 4.27).

Theorem 5.5. Let j ∈ Id(n−1) and let m ∈ In−1 be such that j ∈ I[m] = Id(m) −
Id(m−1). Let z ∈ M�(n, e) (see (4.7)) and let x ∈ M�(n), ν ∈ e�(n) be such that x =
πn(z) and ν = κn(z). See (4.8) and (4.9). Let q ∈ C. Then (ν,Ad(γzj (e−q))(x)) ∈
Mν(n, e) (see (4.7) and (4.21)) and

(exp qξrj ) · z = (ν,Ad(γzj (e
−q))(x)), (5.23)

where γzj (e
−q) ∈ Gx,m is defined by (5.21).

Proof. Let c = β(ν) (see (4.22)) so that c ∈ �(n) and, by Proposition 4.20, the
restriction of πn to Mν(n, e) defines an algebraic isomorphism Mν(n, e) → Mc(n).
But then by (5.8), one has

πn((exp qξrj ) · z) = (exp qηj,ν) · x (5.24)

(see Theorems 3.23 and 4.27). But (exp qηj,ν) ∈ A(m) since by definition ηj,ν ∈
a(m). Hence, by (5.22) and Theorem 3.3, one has (exp qηj,ν) ·x = Ad(γzj (e−q))(x).
But then (5.23) follows from (4.7). ��

5.3

We continue with the notation of Sections 5.1 and 5.2.

Proposition 5.6. Let j ∈ Id(n−1). Then the isomorphism exp qξrj of M�(n, e) re-
duces to the identity if q ∈ 2πiZ.
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Proof. This is immediate from (5.23) since γzj (e
−q) is the identity matrix of M(n),

by (5.15) and (5.21), if q ∈ 2πiZ. ��
Let r be the commutative d(n − 1)-dimensional Lie algebra of vector fields on

M�(n, e) with basis ξrj , j ∈ Id(n−1) (see (4.57) and (4.59)). Let j ∈ Id(n−1) and
let Ar,j be a one-dimensional complex torus with a global coordinate ζj defining an
algebraic group isomorphism

ζj : Ar,j → C×. (5.25)

By Proposition 5.6 (and abuse of notation), we can regard

Cξrj = LieAr,j (5.26)

and simultaneously have Ar,j operate on M�(n, e), as an integration of the vector
field ξrj , in such a fashion that if b ∈ Ar,j , then b = exp qξrj if

ζj (b) = eq . (5.27)

It is very easy to prove that the action of Ar,j is analytic, but what is much more
important for us is to prove that this action is that of an algebraic group, operating
algebraically on an affine algebraic variety.

Theorem 5.7. Let j ∈ Id(n−1). Then the map

Ar,j ×M�(n, e)→ M�(n, e), (b, z) 
→ b · z (5.28)

is a (algebraic) morphism.

Proof. Let b ∈ Ar,j and let z ∈ M�(n, e). Let ζ = ζj (b) so that ζ ∈ C×. Recalling
(4.7), write z = (ν, x), where x ∈ M�(n) and ν ∈ e�(n). Let m ∈ In−1 be such that
j ∈ I[m] = Id(m) − Id(m−1). Then by (5.23) and (5.27),

b · z = (ν,Ad(γz,j (ζ
−1))(x)). (5.29)

Since ν = κn(z) and x = πn(z) (see (4.8) and (4.9)) and both (4.8) and (4.9) are
morphisms, it suffices by (5.29) to prove that the map

Ar,j ×M�(n, e)→ Gx,m, (b, z) 
→ γz,j (ζ
−1) (5.30)

is a morphism. Now 
 ∈ Im in (5.19) is defined so that j = d(m− 1)+ 
. For any
g ∈ Gl(m) let [g] ∈ Gl(m)/Diag(m) be the left coset defined by g (see Section 3.4).
Of course, Gl(m)/Diag(m) is an affine algebraic homogeneous space. Recalling
(5.19), to prove (5.30) is a morphism, it clearly suffices to show that

Ar,j ×M�(n, e)→ Gl(m)/Diag(m), (b, z) 
→ [gz] (5.31)

is a morphism.



408 Bertram Kostant and Nolan Wallach

Let E(m) be the set of all regular semisimple elements in M(m) so that E(m) has
the structure of a Zariski open (and hence nonsingular) affine subvariety of M(n).
Then, recalling (4.1), the map

Gl(m)× e(m)→ E(m), (g, µ) 
→ gµg−1 (5.32)

is a surjective morphism. But now if g ∈ Gl(m) and µ ∈ e(m), then [g] · µ ∈ E(m)

is well defined by putting [g] · µ = gµg−1. Clearly,

(Gl(m)/Diag(m))× e(m)→ E(m), ([g], µ) 
→ [g] · µ (5.33)

is then also a surjective morphism. Now let

E(m, e) = {(µ, y) ∈ e(m)× E(m) | µ is Gl(m)-conjugate to y} (5.34)

so that E(m, e) is a Zariski closed subset of e(m)×E(m). The argument establishing
the dimension and nonsingularity in Theorem 4.9 (especially using the independence
of the differentials dpi , i ∈ I[m], at all points in E(m)) can obviously be modified to
apply here and prove that

E(m, e) is a nonsingular m2-dimensional Zariski closed subset of e(m)× E(m).

(5.35)
But now (5.33) may be augmented to define the map

(Gl(m)/Diag(m))× e(m)→ E(m, e), ([g], µ) 
→ (µ, [g] · µ). (5.36)

But (5.33) readily implies that (5.36) is a surjectve morphism so that, for one thing,
E(m, e) is irreducible. HenceE(m, e) is a nonsingular variety. But (5.36) is obviously
bijective and hence birational. But then (5.36) is an algebraic isomorphism. Let

E(m, e)→ (Gl(m)/Diag(m))× e(m) (5.37)

be the inverse isomorphism. Projecting on the first factor defines a morphism σ :
E(m, e)→ Gl(m)/Diag(m), where, for g ∈ Gl(m) and µ ∈ e(m),

σ((µ, [g] · µ)) = [g]. (5.38)

But now, since (4.8) and (4.9) are morphisms, it follows that τ : Ar,j ×M�(n, e)→
E(m, e) is a morphism, where, using the noataion of (4.3), τ((b, z)) = (ν(m), xm).
But

σ ◦ τ((b, z)) = [gz] (5.39)

by (5.13), since clearly hν,m = ν(m). See (4.3) and (5.12). This proves that (5.31)
is a morphism. ��
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5.4

Let m ∈ In−1 and let r(m) be the span of the vector fields ξri , i ∈ I[m], and so that,
as defined in Section 5.3,

r = r(1)⊕ · · · ⊕ r(m− 1). (5.40)

By (4.57) and (4.59), r(m) is a commutative Lie algebra of dimension m, and as
we have already noted, r is a commutative Lie algebra of dimension d(n − 1). Let
(see (5.26))

Ar(m) = Ar,d(m−1)+1 × · · · × Ar,d(m−1)+m,
Ar = Ar(1)× · · · × Ar(n− 1)

(5.41)

so that as algebraic groups

Ar(m) ∼= (C×)m,
Ar
∼= (C×)d(n−1).

(5.42)

In addition, by (5.26),

r(m) = LieAr(m),

r = LieAr.
(5.43)

As an immediate consequence of Theorem 5.7 and commutativity, one has the fol-
lowing.

Theorem 5.8. Letm ∈ In−1. Then the Lie algebras r(m) and r, respectively, integrate
to an algebraic action of Ar(m) and Ar on M�(n, e).

The following result is a refinement of Theorem 4.25. We are now dealing with
the “eigenvalue’’ vector fields ξri themselves on M�(n, e) rather than the more crude
“eigenvalue symmetric function’’ vector fields ξp̂(i)

.

Theorem 5.9. Let ν ∈ e�(n). Then Mν(n, e) is stable under the algebraic group
Ar. Furthermore Ar operates simply and transitively on Mν(n, e). In particular, the
disjoint union (4.21) is the Ar-orbit decomposition of M�(n, e).

Proof. By Theorems 4.22 and 4.27, one has

r|Mν(n, e) = â|Mν(n, e). (5.44)

Hence

Ar|Mν(n, e) = Â|Mν(n, e). (5.45)

But then Mν(n, e) is stable under Ar and Ar operates transitively on Mν(n, e) by
Theorem 4.25. The only question concerns the simplicity of this action.
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Let b ∈ Ar. By definition, there exist qj ∈ C, j ∈ Id(n−1), such that

b = exp q1ξr1 · · · exp qd(n−1)ξrd(n−1) . (5.46)

But then if c = β(ν) (see (4.22)), it follows from Proposition 5.2 that there exist
ηjν ∈ a, j ∈ Id(n−1), such that if a ∈ A is defined by putting

a = exp q1η1,ν · · · exp qd(n−1)ηd(n−1),ν, (5.47)

then
b|Mν(n, e) = â|Mν(n, e), (5.48)

recalling Theorem 4.25. Also, Proposition 5.2 implies that a = a(1) · · · a(n − 1),
where for m ∈ In−1, a(m) ∈ A(m) is given by

a(m) =
∏

j∈I[m]
exp qjηj,ν . (5.49)

Now assume that b|Mν(n, e) has a fixed point. But then by the commutativity of
Ar and the transitivity of Ar on Mν(n, e), it follows that b|Mν(n, e) reduces to the
identity. We must prove

qj ∈ 2πiZ, ∀j ∈ Id(n−1) (5.50)

by (5.27) and (5.41). But now a|Mc(n) reduces to the identity by (4.66) and (5.48).
See Proposition 4.20. But then a ∈ Dc (see Section 3.64). Hence a(m) ∈ Dc(m) for
any m ∈ In−1 by Theorem 3.28. But Theorem 3.28 also asserts that if z ∈ Mν(n, e)
and x = πn(z), then also a(m) ∈ Ker ρx,m. But by (5.15) and (5.18) (see also (5.19)
and (5.22)), this implies (5.50) since m ∈ In−1 is arbitrary. ��

5.5

In the introduction, Section 0, we defined be ⊂ M(n). In common parlance (for some
people), be is the space of all n× n Hessenberg matrices. In Section 4.3 we defined
be,�(n) to be the intersection M�(n) ∩ be so that be,�(n) is a Zariski open subvariety
of be (and hence a nonsingular variety) and a closed subvariety of M�(n). We also
defined M�(n, e, b) = π−1

n (be,�(n)) (see (4.8) and Section 4.3) so that M�(n, e, b)
is a Zariski closed subset of M�(n, e). Sharpening Theorem 4.4, we shall need the
following.

Theorem 5.10. The restriction (see (4.9))

κn : M�(n, e, b)→ e�(n) (5.51)

is an algebraic isomorphism so that M�(n, e, b) is a closed nonsingular subvariety
of M�(n, e).
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Proof. Clearly, (5.51) is a morphism since it the restriction of (4.9) to a Zariski closed
subset of M�(n, e). On the other hand, it is bijective by Theorem 4.4. However, the
inverse of (5.51) is a morphism. See (4.20). ��

An easy consequence of Theorem 5.10 is the following.

Theorem 5.11. The image of the map

M�(n, e, b)→ Cd(n), y 
→ (r1(y), . . . , rd(n)(y)) (5.52)

is a Zariski open set in Cd(n) of the form (Cd(n))q , where q is a nonzero polynomial
on Cd(n) and (5.52) is an algebraic isomorphism of M�(n, e, b) with (Cd(n))q .

Proof. Recalling the definition of e�(n) in Section 4.1, Theorem 5.11 follows im-
mediately from Theorem 5.10 and the definition of ri in (4.47) and ρkm in Sec-
tion 4.2. ��

On the other hand, we establish the following product structure for M�(n, e).

Theorem 5.12. The map

Ar ×M�(n, e, b)→ M�(n, e), (b, y) 
→ b · y (5.53)

is an algebraic isomorphism.

Proof. The map (5.53) is bijective by (4.21), (4.25), and Theorem 5.9. But then
(5.53) is a bijective morphism of nonsingular algebraic varieties by Theorems 5.8
and 5.10. Hence (5.53) is an algebraic isomorphism. ��

By definition (see (5.41)) any element b ∈ Ar can be uniquely written

b = (b1, . . . , bd(n−1)), (5.54)

where bj ∈ Ar,j . We now extend the domain of the function ζj on Ar,j to all of Ar

so that, in the notation of (5.54),

ζj (b) = ζj (bj ). (5.55)

Thus ζj ∈ O(Ar) and the map

Ar → (C×)d(n−1), b 
→ (ζ1(b), . . . , ζd(n−1)(b)) (5.56)

is an isomorphism of algebraic groups. For i ∈ d(n− 1), let λri be the left invariant
vector field on Ar whose value at the identity of Ar corresponds to (abuse of notation)
ξri . Thus, by (5.27), in the coordinates ζj of Ar, one has

λri = ζi
∂

∂ζi

and hence
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λri ζj = δij ζi . (5.57)

But now, by Theorem 5.12, every z ∈ M�(n, e) can be uniquely written z = b · y
where b ∈ Ar and y ∈ M�(n, e, b). Hence, by Theorem 5.12, one has a well-defined
function sj ∈ O(M�(n, e)), j ∈ Id(n−1), where

sj (z) = ζj (b
−1). (5.58)

Furthermore, Theorems 5.8, 5.9, and 5.12 and (5.55) also clearly imply the following.

Theorem 5.13. Let ν ∈ e�(n). Then the map

Mν(n, e)→ (C×)d(n−1), z 
→ (s1(z), . . . , sd(n−1)(z))

is an algebraic isomorphism.

The action of Ar on M�(n, e) of course introduces, contragrediently, an action
of Ar on O(M�(n, e)) so that if b ∈ Ar, f ∈ O(M�(n, e)), and z ∈ M�(n, e), then
(b · f )(z) = f (b−1 · z). It is immediate from (5.58) that

b · sj = ζj (b)sj , j ∈ Id(n−1). (5.59)

But then with regard to Poisson bracket on M�(n, e), at this stage, we can say, for
i ∈ Id(n) and j ∈ Id(n−1),

[ri, sj ] = δij sj (5.60)

since, by differentiating (5.59) and applying (5.57), clearly,

ξri sj = δij sj , (5.61)

recalling (4.59).
Combining Theorems 5.11, 5.12, and 5.13 and (5.61), one sees that the si, rj ,

i ∈ Id(n−1), j ∈ Id(n), form a system of uniformizing parameters on M�(n, e).

Theorem 5.14.

For any z ∈ M�(n, e), the n2 differentials (dri)z, (dsj )z, i ∈ Id(n),

j ∈ Id(n−1), are a basis of the cotangent space T ∗z (M�(n, e)).
(5.62)

Furthermore, the image of the map

M�(n, e)→ Cn2
, z 
→ (r1(z), . . . , rd(n)(z), s1(z), . . . , sd(n−1)(z)) (5.63)

is a Zariski open set Y in Cn2
and (5.63) is an algebraic isomorphism of M�(n, e)

with Y .

Proof. Let z ∈ M�(n, e). The (dri)z, i ∈ Id(n), are linearly independent by Proposi-
tion 4.18 (double prime statement). On the other hand, (dsj )z, i ∈ Id(n), j ∈ Id(n−1),
are clearly linearly independent by (5.61). But (5.61) together with (4.57) implies
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that (dri)z are independent of the (dsj )z. By dimension this proves (5.62). The image
of (5.63) is the just the product of the image of (5.52) and (5.59) by Theorem 5.12.
Here we are using the constancy of the ri on Mν(n, e) (see (4.53)). But then the image
Y of (5.63) is Zariski open in Cn2

by Theorems 5.11 and 5.13. But the morphism
(5.63) is bijective by Theorems 5.11, 5.12, and 5.13. Since both Y and M�(n, e) are
nonsingular varieties it follows (a version of Zariski’s Main Theorem) that (5.63) is
an algebraic isomorphism. ��

5.6

It is our main objective now to prove the si , i ∈ Id(n−1), Poisson commute among
themselves. Localizing this problem, letting z ∈ M�(n, e) and i, j ∈ Id(n−1) it is
enough to show that

[si, sj ](z) = 0. (5.64)

Let νo = κn(z) so that z ∈ Mνo(n, e). By (4.25) there exists a unique element zo
in M�(n, e, b) ∩Mνo(n, e). Let xo = πn(zo) (see (4.8)). Recalling the definition of
M�(n, e, b) and be,�(n) in Section 4.3, it follows that xo ∈ be,�(n) and, by Proposi-
tion 4.14, πn defines M�(n, e, b) as an analytic covering space of be,�(n) (see also
Theorem 5.10). Thus there exists an open connected (in the Euclidean sense) neigh-
borhood Vxo of xo in be,�(n) such that Vxo is evenly covered by πn. Let Vzo be the
connected component of π−1

n (Vxo) which contains zo. Thus Vzo is an open connected
neighborhood of zo in M�(n, e, b) and

πn : Vzo → Vxo (5.65)

is an analytic isomorphism.
Now, recalling the analytic isomorphism (4.13), let co = 'n(xo) (see (2.8))

and let Vco be the open connected neighborhood of co in �(n) defined by putting
Vco = 'n(Vxo). Finally, let Vνo = κn(Vzo) so that (see (5.51)) Vνo is open connected
neighborhood of νo in e�(n).

Lemma 5.15. The map
β ◦ κn : Vzo → Vco (5.66)

is an analytic isomorphism (see (4.15) for the definition of β).

Proof. One readily notes that β ◦κn restricted to Vzo is the same as 'n ◦πn restricted
to Vzo (a commutative diagram). But (5.65) is an analytic isomorphism and (4.13) is
an analytic isomorphism. ��

Let x = πn(z). Let Wz = Ar · Vzo and let Wx = πn(Wz).

Proposition 5.16. Wz is an open connected neighborhood of z in M�(n, e). Further-
more,

Wz = �ν∈Vνo
Mν(n, e). (5.67)

In addition, Wx is an open connected neighborhood of x in M�(n) and
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Wx = �c∈Vco
Mc(n) (5.68)

(see Section 2.2). Finally,

πn : Wz → Wx (5.69)

is an analytic isomorphism.

Proof. Since Vzo is open and connected in M�(n, e, b) it follows from Theorem 5.12
that Wz is open and connected in M�(n, e). Furthermore, (5.67) follows from Theo-
rems 5.9 and 5.12. Also z ∈ Wz since νo ∈ Vνo . Since a covering map is an open map
it follows that Wx is an open connected neighborhood of x in M�(n). Also (5.68)
follows from (5.67) and Proposition 4.20. Since (5.69) is both open and continuous,
to prove that it is an analytic isomorphism it suffices to prove that it is bijective.
For this, of course, one must see that it is injective. But this clearly follows from
Proposition 4.20, Lemma 5.15, and the bijectivity of (5.51). ��

Proposition 5.16 enables us to transport holomorphic functions on Wz to Wx .
Using the notation of Section 1.2, for i ∈ Id(n), j ∈ Id(n−1), let r ′i , s′j ∈ H(Wx)

be defined so that on Wz, r ′i ◦ πn = ri and s′j ◦ πn = sj . Recalling the definition
of the Poisson structure on M�(n, e) (see Section 4.6), it follows that (5.69) is an
isomorphism of Poisson manifolds. Hence, to prove (5.64), it suffices to prove

[s′i , s′j ](x) = 0. (5.70)

Obviously, for i ∈ Id(n−1),

(πn)∗(ξri |Wz) = ξr ′i . (5.71)

If r′ is the commutative Lie algebra span of ξr ′i , i ∈ Id(n−1), then, recalling Proposi-
tion 4.20, Theorem 5.9, (5.67), and (5.68), r′ integrates to a group Ar′ , which operates
on Wx , and which admits an isomorphism

Ar → Ar′ , b 
→ b′ (5.72)

such that for any w ∈ Wz and b ∈ Ar,

πn(b · w) = b′ · πn(w). (5.73)

In addition, Theorems 5.9 and 5.12 imply the following.

Proposition 5.17. (5.68) is the orbit decomposition of Ar′ on Wx and Ar′ operates
simply (as well as transitively) onMc(n) for every c ∈ Vco . Furthermore (see (5.65)),

Wx = �b∈Ar b
′ · Vxo . (5.74)
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5.7

We retain the notation of the previous section and recall some notation from Sec-
tion 1.2. If O ⊂ M(n) is an adjoint orbit of Gl(n) and y ∈ O, then Oy = O. If O is
an orbit of regular semisimple elements, then

dim O = 2d(n− 1), (5.75)

and if qk , k = 1, . . . , n, is the constant value that the Gl(n)-invariant (see Section 2.1)
pd(n−1)+k takes on O, then O is clearly determined by those values. That is,

O = {y ∈ M(n) | pd(n−1)+k(y) = qk}. (5.76)

It follows then from (2.9) that if (see Section 2.2)

Cd(n)(O) = {c ∈ Cd(n) | cd(n−1)+k = qk, k ∈ In},
one has

O = �c∈Cd(n)(O)Mc(n). (5.77)

Let S be the set of all Gl(n)-adjoint orbits of regular semisimple elements. Since any
y ∈ M�(n) (see (2.53)) is regular semisimple, one has Oy ∈ S for any y ∈ Wx . Let

S(Wx) = {O ∈ S | Wx ∩O �= ∅}
and for any O ∈ S(Wx) let Vco(O) = Cd(n)(O) ∩ Vco so that

O ∩Wx = �c∈Vco (O)Mc(n) (5.78)

by (5.68) and (5.77).
Now, recall from Section 1.2 that any adjoint orbit has the structure of a symplectic

manifold. If O ∈ S, then as one knows O is closed in M(n). If O ∈ S(Wx), then
O ∩Wx is open in O and hence O ∩Wx is a symplectic manifold.

Proposition 5.18. Let O ∈ S(Wx). Then the group Ar′ (see Proposition 5.17) sta-
bilizes O ∩Wx and operates as a group of symplectomorphisms on O ∩Wx .

Proof. For any i ∈ Id(n−1), the vector field ξr ′i |O ∩Wx is tangent to O ∩Wx and is a
Hamiltonian vector field on O ∩Wx by Proposition 1.3 and especially (1.19). Thus
r′|O ∩Wx is a Lie algebra of Hamiltonian vector fields on O ∩Wx . But by (5.78)
and Proposition 5.17, O ∩Wx is stabilized by the integrated group Ar′ . Hence Ar′
operates as a group of symplectomorphisms of O ∩Wx . ��

Assume X is a submanifold of Wx . Let S(X) = {O ∈ S | O ∩ X �= ∅} so that
S(X) ⊂ S(Wx). We will say X is Lagrangian in Wx if dim X = d(n) and O ∩X is
a Lagrangian submanifold of the symplectic manfold O, for any O ∈ O(X).

Proposition 5.19. Assume X is a Lagrangian submanifold of Wx . Let b ∈ Ar. Then
S(X) = S(b′ ·X) and b′ ·X is again a Lagrangian submanifold of Wx .
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Proof. Obviously, dim b′ · X = d(n). Let O ∈ S(X). Then, of course, O ∩ X =
(O ∩ Wx) ∩ X and, by definition of being Lagrangian, obviously (O ∩ Wx) ∩ X

is Lagrangian in O ∩Wx . But b′ operates as a symplectomorphism of O ∩Wx by
Proposition 5.18. Thus b′ · ((O ∩Wx)∩X) = (O ∩Wx)∩ b′ ·X is again Lagrangian
in O ∩Wx . That is, O ∈ S(b′ · X) and b′ · (O ∩ X) = O ∩ b′ · X is Lagrangian in
O. By using b−1 one readily reverses the argument to show that if O ∈ S(b′ · X),
then O ∈ S(X) and O ∩ b′ ·X is Lagrangian in O. ��

The following result will be seen to be the key point in proving (5.70) and conse-
quently (5.64).

Theorem 5.20. Retain the notation of (5.65) (or (5.74)). Then Vxo is a Lagrangian
submanifold of Wx .

Proof. We will use results in [K2]. These are stated for complex semisimple Lie
groups but their extension to the reductive group Gl(n) is immediate and we will
apply the results for that case. Let N ⊂ Gl(n) be the maximal unipotent subgroup
where LieN is the Lie subalgebra of all strictly upper triangular matrices. Retaining
notation in [KW], we have put u = LieN . See (3.51)). Let s be defined by [K2,
(1.1.5)] so that if se = −e + s, using the notation of Section 2.2, then se ⊂ be (see
Section 4.3) and, as asserted by [K2, Theorem 1.1], (a) se is a cross-section for the
adjoint action of Gl(n) on the set of all regular elements in M(n). On the other hand,
(b) [K2, Theorem 1.2] asserts that be is stable under Ad N and the map

N × se → be, (u,w) 
→ Ad u(w) (5.79)

is an isomorphism of affine varieties.
To prove that Vxo is Lagrangian in Wx , we first observe that dim Vxo = d(n). This

is clear since Vxo is open in be (see Section 5.6). Now let O ∈ S(Vxo). It remains to
show that O ∩ Vxo is Lagrangian in O. But now, by (a) above, O ∩ se consists of a
single point yo, and hence by (b), one must have

O ∩ be = Ad N(yo). (5.80)

Since O is closed in M(n), this implies that Ad N(yo) is closed in be and one has

O ∩ Vxo = Ad N(yo) ∩ Vxo (5.81)

since Vxo ⊂ be. But Vxo is open in be and hence (5.81) implies that O ∩ Vxo is open
in Ad N(yo). Consequently, to prove that O ∩ Vxo is Lagrangian in O, it suffices
to prove that Ad N(yo) is Lagrangian in O. But dim Ad N(yo) = dim N by (5.79),
and dim N = d(n − 1), which is half the dimension of O. On the other hand,
if y ∈ Ad N(yo) and u, v ∈ u (see (3.51)), we must show that ωy(η

u, ηv) = 0
(see Section 1.2 and, more specifically, (1.10)). But ωy(η

u, ηv) = B(y, [u, v]) by
(1.10). But B(y, [u, v]) = 0 since y ∈ be, and one notes that be is B-orthogonal
to [u, u]. ��
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By Theorem 5.12, one has the following disjoint union:

M�(n, e) = �b∈Arb ·M�(n, e, b). (5.82)

On the other hand, we note that the components in (5.82) are level sets of the functions
sj , j ∈ Id(n−1). Indeed, for any τ ∈ (C×)d(n−1), let τi ∈ C×, i ∈ Id(n−1), be defined
so that

τ = (τ1, . . . , τd(n−1)) (5.83)

and for τ ∈ (C×)d(n−1), let

M�(n, e, τ ) = {y ∈ M�(n, e) | si(y) = τi, ∀i ∈ Id(n−1)} (5.84)

so that
M�(n, e) = �τ∈(C×)d(n−1)M�(n, e, τ ). (5.85)

The following proposition is an immediate consequence of (5.58).

Proposition 5.21. The partitions (5.74) and (5.82) of M�(n, e) are the same. That
is, for any b ∈ Ar,

b ·M�(n, e, b) = M�(n, e, τ ), (5.86)

where for i ∈ Id(n−1), τi = ζi(b
−1).

Remark 5.22. Since Vzo is open in M�(n, e, τ ) (see Section 5.6), note from the defi-
nition Wz in Section 5.6 one has the disjoint union

Wz = �b∈Arb · Vzo (5.87)

and hence by (5.86),

b · Vzo = {w ∈ Wz | si(w) = ζi(b
−1), ∀i ∈ Id(n−1)}. (5.88)

We can now prove one of the main theorems of the paper.

Theorem 5.23. The uniformizing parameters ri, sj , i ∈ Id(n), j ∈ Id(n−1), of
M�(n, e) (see Theorem 5.14) satisfy the following Poisson commutation relations:

(1) [ri, rj ] = 0, i, j ∈ Id(n),

(2) [ri, sj ] = δij sj , i ∈ Id(n), j ∈ Id(n−1), (5.89)

(3) [si, sj ] = 0, i, j ∈ Id(n−1).

Proof. (1) and (2) have already been proved. See (4.57) and (5.60). We therefore
have only to prove (3). We use the notation of Section 5.6, where we have to prove
(5.64). But as we have observed, this comes down to proving (5.70). Recalling the
isomorphism (5.69) and the definitions of s′i and b′ for b ∈ Ar in Section 5.6, one has
the disjoint union

Wx = �b∈Arb
′ · Vxo (5.90)
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and

b′ · Vxo = {y ∈ Vx | si(y) = ζi(b
−1), ∀i ∈ Id(n−1)} (5.91)

by (5.87) and (5.88).
But now, by (5.90), there exists b ∈ Ar such that x ∈ b′ · Vxo . For notational

simplicity put X = b′ · Vxo . But then X is a Lagrangian submanifold of Vx by
Proposition 5.19 and Theorem 5.20. Obviously, Ox ∈ S(X) (using the notation
of Proposition 5.19). Thus Ox ∩ X is a Lagrangian submanifold of the symplectic
manifold Ox and x ∈ Ox ∩X. Let v ∈ Tx(Ox ∩X). But since the s′i are constant on
X by (5.91) one has vs′i = 0 for all i ∈ Id(n−1). On the other hand, (ξs′i )x ∈ Tx(Ox)

by Proposition 1.3. Thus ωx((ξs′i )x, v) = 0, by (1.17) and (1.19), for all v in the
Lagrangian subspace Tx(Ox ∩ X) of Tx(Ox). But by the isotropic maximality of
Tx(Ox ∩ X), with respect to ωx , one must have (ξs′i )x ∈ Tx(Ox ∩ X). But then
(ξs′i )xs

′
j = 0 for all i, j ∈ Id(n−1) since s′j is constant on Ox ∩ X. This proves

(5.70). ��

5.8

The Poisson bracket inP(n) (see Section 1.1) or, as denoted in Section 4.4, O(M(n)),
extends in the obvious way to the quotient field, F(n) (see Section 4.5). Similarly, the
Poisson structure inO(M�(n, e) extends to the function fieldF(n, e) (see Section 4.5),
which, we recall, is a Galois extension of F(n). See Proposition 4.12.

The Gelfand–Kirillov theorem is the statement that the quotient division ring of
the universal enveloping algebra of M(n) is isomorphic to the quotient division ring
of a Weyl algebra over a (central) rational function field. A natural commutative
analogue is the statement that F(n), as a Poisson field, is isomorphic to the rational
function field of a classical phase space over (a Poisson central) function field. Using
the eigenvalue functions, ri , and the commutative algebraic group Ar we now find
that the statement is explicitly true for the Galois extension F(n, e) of F(n).

Theorem 5.24. For i ∈ Id(n−1) one has s−1
i ∈ O(M�(n, e)) (see (5.58)) so that (see

Section 4.2 and (4.47)) r(i) ∈ O(M�(n, e)), where

r(i) = ri/si . (5.92)

Then F(n, e) is the rational function field in n2 variables,

F(n, e) = C(r(1), . . . , r(d(n−1)), s1, . . . , sd(n−1), rd(n−1)+1, . . . , rd(n−1)+n). (5.93)

Furthermore, one has the Poisson commutation relations: rd(n−1)+k Poisson com-
mutes with all every element in F(n, e) for k ∈ In and, for i, j ∈ Id(n−1),

(1) [r(i), r(j)] = 0,

(2) [r(i), sj ] = δij , (5.94)

(3) [si, sj ] = 0.
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Proof. As a function field, one has

F(n, e) = C(r1, . . . , rd(n−1), s1 . . . , sd(n−1), rd(n−1)+1, . . . , rd(n−1)+n) (5.95)

by Theorem 5.14. For i ∈ Id(n−1) one has s−1
i ∈ O(M�(n, e)) since si vanishes

nowhere on M�(n, e) by (5.58). As a function field (5.93) follows immediately from
(5.95). The commutation relations (5.94) follow easily from (5.89). ��

Involved in the paper are two groups that operate on M�(n, e) and then contra-
grediently on O(M�(n, e)). In both cases, the latter action extends to an action on
the field F(n, e). The first group is the Galois group �n (see Section 4.5 and Proposi-
tion 4.12). It is immediate from Proposition 4.14 that �n preserves Poisson bracket.
The second group is the d(n − 1)-dimensional complex torus, Ar. Since the action
of Ar is algebraic (see Theorem 5.8) the group Ar stabilizes O(M�(n, e)). In fact,
since the action is algebraic, as one knows, for any f ∈ O(M�(n, e)),

Ar · f spans a finite-dimensional subspace of O(M�(n, e)). (5.96)

In addition, the action of Ar obviously extends to an action on the field F(n, e).
Furthermore, this action also preserves the Poisson bracket (an easy consequence
of (5.46) and (5.96)). The following theorem explicitly determines the action of
the two groups. If α ∈ Zd(n−1) and j ∈ Id(n−1), let αj ∈ Z be such that α =
(α1, . . . , αd(n−1)). For α ∈ Z, let ζ α be the character on the torus Ar defined by
putting (see (5.55) and (5.56))

ζ α = ζ
α1
1 · · · ζ αd(n−1)

d(n−1) .

Also, let sα ∈ F(n, e) be defined by putting

sα = s
α1
1 · · · sαd(n−1)

d(n−1) .

Theorem 5.25. Let m ∈ In and let j ∈ I[m] = Id(m)−Id(m−1). Then for any σ ∈ �n,
there exists k ∈ I[m] such that

σ · rj = rk. (5.97)

Furthermore, if m ∈ In−1, then σ · sj = sk and σ · r(j) = r(k). In addition �n

normalizes the torus Ar. In fact, in the preceding notation,

σAr,j σ
−1 = Ar,k (5.98)

(see Section 5.3 and (5.41)).
Next, for any rational functionf ∈ C(r1, . . . , rd(n)) and anyα ∈ Zd(n−1), one has

b · (f sα) = ζ α(b)f sα (5.99)

for any b ∈ Ar.



420 Bertram Kostant and Nolan Wallach

Proof. (5.97) follows immediately from the definition of the action of �n. See (4.5),
(4.6), (4.10), (4.11), the definition of ρim in Section 4.2, and (4.47). Since σ preserves
the Poisson bracket structure inM�(n, e), it carries the vector field ξrj to ξrk and hence
transforms the corresponding flows (where, by (4.59), we may assume m ∈ In−1)
so as to yield (5.98). But σ also stabilizes M�(n, e, b) since, by definition (see
Section 5.5), M�(n, e, b) = π−1

n (be,�(n)), But then σ · sj = sk by (5.58) and (5.98).
It is, of course, then immediate that σ · r(j) = r(k).

Equation (5.99) follows obviously from the definition of Ar (see (5.41)) and
(5.59). ��
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Summary. We describe the applications of localization methods, in particular the functorial
localization formula, in the proofs of several conjectures from string theory. The functorial
localization formula pushes the computations on complicated moduli spaces to simple moduli
spaces. It is a key technique in the proof of the general mirror formula, the proof of the
Hori–Vafa formula for explicit expressions of basic hypergeometric series of homogeneous
manifolds, and the proof of the Mariño–Vafa formula for Hodge integrals. The proposal of
Strominger–Yau–Zaslow of mirror symmetry will also be discussed.

Subject Classifications: 14J32, 14D21, 14N35

1 Introduction

The main purpose of this article is to explain the applications of a variation of the
localization formula of Atiyah–Bott in solving various conjectures from string theory.
We call this variation the Functorial Localization Formula. We will also discuss the
role of the SYZ proposal in mirror symmetry.

We start with a review of the Atiyah–Bott localization formula [A-B]. Recall the
definition of equivariant cohomology group for a manifold X with a torus T action:

H ∗
T (X) = H ∗(X ×T ET ),

where ET is the universal bundle of T .
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Example. We know ES1 = S∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λ
wnZn],

then
HS1(Pn;Q) ∼= Q[H,α]/〈(H − w0α) · · · (H − wnα)〉,

where α is the generator of H ∗(BS1,Q).

Atiyah–Bott Localization Formula. For ω ∈ H ∗
T (X) an equivariant cohomology

class, we have

ω =
∑
E

iE∗
(

i∗Eω
eT (E/X)

)
,

where E runs over all connected components of the T fixed point set.

This formula is very effective in the computations of integrals on manifolds with
torus T symmetry. The idea of localization is fundamental in many subjects of
geometry. In fact, Atiyah and Witten proposed to formally apply this localization
formula to loop spaces and the natural S1-action, from which one gets the Atiyah–
Singer index formula. In fact, the Chern characters can be interpreted as equivariant
forms on loop space, and the Â-class is the inverse of the equivariant Euler class of
the normal bundle of X in its loop space LX:

eT (X/LX)−1 ∼ Â(X),

which follows from the normalized infinite product formula⎛⎝∏
n�=0

(x + n)

⎞⎠−1

∼ x

sin x
.

K. Liu observed in [Liu] that the normalized product

∏
m,n

(x +m+ nτ) = 2q
1
8 sin(πx) ·

∞∏
j=1

(1− qj )(1− e2πixqj )(1− e−2πixqj ),

where q = e2πiτ , also has deep geometric meaning. This formula is the Eisenstein
formula. It can be viewed as a double loop space analogue of the Atiyah–Witten
observation. This formula gives the basic Jacobi θ -function. As observed by K. Liu,
formally this gives the Â-class of the loop space, and the Witten genus which is
defined to be the index of the Dirac operator on the loop space:

eT (X/LLX) ∼ Ŵ (X),

where LLX is the double loop space, the space of maps from S1× S1 into X. Ŵ (X)

is the Witten class. See [Liu] for more details.
The variation of the localization formula to be used in various situations is the

following.
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Functorial Localization Formula. Let X and Y be two manifolds with torus action.
Let f : X → Y be an equivariant map. Given F ⊂ Y a fixed component, let
E ⊂ f−1(F ) be those fixed components inside f−1(F ). Let f0 = f |E; then for
ω ∈ H ∗

T (X) an equivariant cohomology class, we have the following identity on F :

f0∗
[

i∗Eω
eT (E/X)

]
= i∗F (f∗ω)

eT (F/Y )
.

This formula will be applied to various settings to prove conjectures from physics.
It first appeared in [L-L-Y1, I]. It is used to push computations on complicated moduli
spaces to simpler moduli spaces. A K-theory version of the functorial localization
formula also holds [L-L-Y1, II]; interesting applications are expected.

Remark. Consider the diagram

H ∗
T (X)

f∗−→ H ∗
T (Y )

↓ iE
∗ ↓ iF

∗

H ∗
T (E)

f0∗−→ H ∗
T (F ).

The functorial localization formula is like Riemann–Roch with the inverted equiv-
ariant Euler classes of the normal bundle as “weights,’’ in a way similar to the Todd
class for the Riemann–Roch formula. In fact, if we formally apply this formula to the
map between the loop spaces of X and Y , equivariant with respect to the rotation of
the circle, we do formally get the differentiable Riemann–Roch formula. We believe
this can be done rigorously by following Bismut’s proof of the index formula which
made rigorous the above argument of Atiyah–Witten.

This formula will be used in the following setups:
(1) We call the mirror principle the proof of the mirror formulas and its generaliza-

tions. The mirror principle implies all of the conjectural formulas for toric manifolds
and their Calabi–Yau submanifolds from string theory. In this case we apply the
functorial localization formula to the map from the nonlinear moduli space to the
linearized moduli space. This transfers the computations of integrals on complicated
moduli space of stable maps to computations on rather simple spaces like projective
spaces. From this, the proof of the mirror formula and its generalizations become
conceptually clean and simple.

In fact, the functorial localization formula was first found and used in Lian–Liu–
Yau’s proof of the mirror conjecture.

(2) The proof of the Hori–Vafa conjecture and its generalizations for Grassman-
nians and flag manifolds. This conjecture predicts an explicit formula for the basic
hypergeometric series of a homogeneous manifold in terms of the basic series of a
simpler manifold such as the product of projective spaces. In this case we use the
functorial localization formula twice to transfer the computations on the complicated
moduli spaces of stable curves to the computations on Quot-schemes. The first is
a map from moduli space of stable maps to a product of projective spaces, and the
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other one is a map from the Quot-scheme into the same product of projective spaces.
A key observation we had is that these two maps have the same image.

This approach was first sketched in [L-L-Y1, III]; the details for Grassmannians
were carried out in [L-L-L-Y] and [B-CF-K]. The most general case of flag manifolds
was carried out in [ChL-L-Y2].

(3) The proof of a remarkable conjecture of Mariño–Vafa on Hodge integrals
by C.-C. M. Liu, K. Liu, and Z. Zhou [L-L-Z1]. This conjecture gives a closed
formula for the generating series of a class of triple Hodge integrals for all genera
and any number of marked points in terms of the Chern–Simons knot invariant of the
unknot. This formula was conjectured by M. Mariño and C. Vafa in [M-V] based on
the duality between large N Chern–Simons theory and string theory. Many Hodge
integral identities, including the ELSV formula for Hurwitz numbers [ELSV] and
the λg conjecture [Ge-P, Fa-P2], can be obtained by taking various limits of the
Mariño–Vafa formula [L-L-Z2]. The Mariño–Vafa formula was proved by applying
the functorial localization formula to the branch morphism from the moduli space of
relative stable maps to a projective space.

2 Mirror principle

There have been many discussions of the mirror principle in the literature. Here
we only give a brief account of the main ideas of the setup and proof of the mirror
principle. We will use two very interesting examples to illustrate the algorithm.

The goal of the mirror principle is to compute the characteristic numbers on mod-
uli spaces of stable maps in terms of certain hypergeometric type series. This was
motivated by mirror symmetry in string theory. The most interesting case is the
counting of the numbers of curves which corresponds to the computations of Euler
numbers. More generally, we would like to compute the characteristic numbers and
classes induced from the general Hirzebruch multiplicative classes such as the total
Chern classes. The computations of integrals on moduli spaces of those classes pulled
back through evaluation maps at the marked points and the general Gromov–Witten
invariants can also be considered as part of the mirror principle. Our hope is to de-
velop a “black-box’’ method which makes easy the computations of the characteristic
numbers and the Gromov–Witten invariants.

The general setup of the mirror principle is as follows. Let X be a projective
manifold, Mg,k(d,X) the moduli space of stable maps of genus g and degree d with
k marked points into X, modulo the obvious equivalence. The points in Mg,k(d,X)

are triples (f ;C; x1, . . . , xk), where f : C → X is a degree d holomorphic map
and x1, . . . , xk are k distinct smooth points on the genus g curve C. The homology
class f∗([C]) = d ∈ H2(X,Z) is identified as an integral n-tuple d = (d1, . . . , dn)

by choosing a basis of H2(X,Z), dual to the Kähler classes.
In general, the moduli space may be very singular, and may even have different,

dimension for different components. To define integrals on such singular spaces,
we need the virtual fundamental cycle of Li-Tian [L-T], and also Behrend–Fantechi
[B-F], which we denote by [Mg,k(d,X)]v . This is a homology class of the expected
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dimension
2(c1(T X)[d] + (dimC X − 3)(1− g)+ k)

on Mg,k(d,X).
Let us consider the case k = 0 first. Note that the expected dimension of the virtual

fundamental cycle is 0 if X is a Calabi–Yau 3-fold. This is the most interesting case
for string theory.

The starting data of the mirror principle are as follows. Let V be a concavex
bundle on X, which we defined as the direct sum of a positive and a negative bundle
onX. ThenV induces a sequence of vector bundlesV g

d on Mg,0(d,X)whose fiber at
(f ;C; x1, . . . , xk) is given byH 0(C, f ∗V )⊕H 1(C, f ∗V ). Let b be a multiplicative
characteristic class. So far, for all applications in string theory, b is the Euler class.

The problem of the mirror principle is to compute

K
g
d =

∫
[Mg,0(d,X)]v

b(V
g
d ).

More precisely, we want to compute the generating series

F(T , λ) =
∑
d,g

K
g
d λ

g ed·T

in terms of certain hypergeometric type series. Here λ, T = (T1, . . . , Tn) are formal
variables.

The most famous formula in the subject is the Candelas formula as conjectured
by P. Candelas, X. de la Ossa, P. Green, and L. Parkes [CdGP]. This formula changed
the history of the subject. More precisely, the Candelas formula considers the genus
0 curves, that is, we want to compute the so-called A-model potential of a Calabi–Yau
3-fold M given by

F0(T ) =
∑

d∈H2(M;Z)

K0
d e

d·T ,

where T = (T1, . . . , Tn) are considered as the coordinates of the Kähler moduli of
M , and K0

d is the genus zero, degree d invariant of M which gives the numbers
of rational curves of all degree through the multiple cover formula [L-L-Y1]. The
famous mirror conjecture asserts that there exists a mirror Calabi–Yau 3-fold M ′ with
B-model potential G(t), which can be computed by period integrals, such that

F(T ) = G(t),

where t denotes the coordinates of complex moduli of M ′. The map t 
→ T is
called the mirror map. In the toric case, the period integrals are explicit solutions to
the GKZ-system, that is, the Gelfand–Kapranov–Zelevinsky hypergeometric series.
While the A-series are usually very difficult to compute, the B-series are very easy to
get. This is the magic of the mirror formula. We will discuss the proof of the mirror
principle which includes the proof of the mirror formula.

The key ingredients for the proof of the mirror principle consist of
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1. linear and nonlinear moduli spaces;
2. Euler data and hypergeometric (HG) Euler data.

More precisely, the nonlinear moduli is the moduli space M
g
d (X) which is the

moduli space of stable maps of degree (1, d) and genus g into P1 × X. A point
in M

g
d (X) consists of a pair (f, C), where f : C → P1 × X with C a genus g

(nodal) curve, modulo obvious equivalence. The linearized moduli Wd for toric X

were first introduced by Witten and used by Aspinwall–Morrison to do approximate
computations.

Example. Consider the projective space Pn with homogeneous coordinates [z0, . . . ,

zn]. Then the linearized moduli Wd is defined as projective space with homogeneous
coordinates [f0(w0, w1), . . . , fn(w0, w1)], where the fj (w0, w1) are homogeneous
polynomials of degree d.

This is the simplest compactification of the moduli space of degree d maps from
P1 into Pn. The following lemma is important. See [L-L-Y1, IV] for its proof. The
g = 0 case was given in [Gi] and in [L-L-Y1, I].

Lemma 1. There exists an explicit equivariant collapsing map

ϕ : Mg
d (P

n) −→ Wd.

For a general projective manifold X, the nonlinear moduli Mg
d (X) can be embed-

ded into M
g
d (P

n). The nonlinear moduli Mg
d (X) is very “singular’’ and complicated,

but the linear moduli Wd is smooth and simple. The embedding induces a map of
M

g
d (X) to Wd . The functorial localization formula pushes the computations onto Wd .

Usually, mathematical computations are done on the moduli of stable maps, while
physicists have tried to use the linearized moduli to approximate the computations. So
the functorial localization formula connects the computations of mathematicians and
physicists. In some sense the mirror symmetry formula is more or less the comparison
of computations on nonlinear and linearized moduli.

A mirror principle has been proved to hold for balloon manifolds. A projective
manifold X is called a balloon manifold if it admits a torus action with isolated fixed
points, and if the following conditions hold. Let

H = (H1, . . . , Hk)

be a basis of equivariant Kähler classes such that

1. the restrictions H(p) �= H(q) for any two fixed points p �= q;
2. the tangent bundle TpX has linearly independent weights for any fixed point p.

This notion was introduced by Goresky–Kottwitz–MacPherson.

Theorem 2. The mirror principle holds for balloon manifolds and for any concavex
bundles.

Remarks.

1. All toric manifolds are balloon manifolds. For g = 0 we can identify the hyper-
geometric series explicitly. Higher genus cases need more work to identify such
series.
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2. For toric manifolds and g = 0, the mirror principle implies all of the mirror
conjectural formulas from string theory.

3. For Grassmannian manifolds, the explicit mirror formula is given by the Hori–
Vafa formula to be discussed in Section 3.

4. The case of direct sum of positive line bundles on Pn, including the Candelas
formula, has two independent approaches, by Givental and by Lian–Liu–Yau.

Now we briefly discuss the proof of the mirror principle. The main idea is to
apply the functorial localization formula to ϕ, the collapsing map and the pullback
class ω = π∗b(V g

d ), where π :Mg
d(X)→ Mg,0(d,X) is the natural projection.

Such classes satisfy a certain induction property. To be precise we introduce the
notion of Euler Data, which naturally appears on the right-hand side of the functorial
localization formula, Qd = ϕ!(π∗b(V g

d )), which is a sequence of polynomials in
equivariant cohomology rings of the linearized moduli spaces with simple quadratic
relations. We also consider their restrictions to X.

From the functorial localization formula, we prove that by knowing the Euler data
Qd we can determine the Kg

d . On the other hand, there is another much simpler Euler
data, the HG Euler data Pd , which coincides with Qd on the “generic’’ part of the
nonlinear moduli. We prove that the quadratic relations and the coincidence on the
generic part determine the Euler data uniquely up to a certain degree. We also know
that Qd always has the right degree for g = 0. We then use the mirror transformation
to reduce the degrees of the HG Euler data Pd . From these we deduce the mirror
principle.

Remarks.

1. Both the denominator and the numerator in the HG series, the generating series of
the HG Euler data, are equivariant Euler classes. In particular, the denominator
is exactly from the localization formula. This is easily seen from the functorial
localization formula.

2. The quadratic relation of Euler data, which naturally comes from gluing and
functorial localization on the A-model side, is closely related to special geometry,
and is similar to the Bershadsky–Cecotti–Ooguri–Vafa holomorphic anomaly
equation on the B-model side. Such a relation can determine the polynomial
Euler data up to a certain degree.
It is an interesting task to use special geometry to understand the mirror principle
computations, especially the mirror transformation as a coordinate change.

3. The Mariño–Vafa formula to be discussed in Section 4 is needed to determine the
hypergeometric Euler data for higher genus computations in the mirror principle.
The Mariño–Vafa formula comes from the duality between Chern–Simons theory
and Gromov–Witten theory. This duality and the matrix model for Chern–Simons
theory indicate that the mirror principle may have a matrix model description.

Let us use two examples to illustrate the algorithm of the mirror principle.

Example. Consider the Calabi–Yau quintic in P4. In this case,
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Pd =
5d∏

m=0

(5κ −mα)

where α can be considered as the weight of the S1 action on P1, and κ denotes the
generator of the equivariant cohomology ring of Wd .

The starting data of the mirror principle in this case is V = O(5) on X = P4.
The hypergeometric series, after taking α = −1, is given by

HG[B](t) = eHt
∞∑
d=0

∏5d
m=0(5H +m)∏d
m=1(H +m)5

edt ,

where H is the hyperplane class on P4 and t is a formal parameter.
We introduce the series

F(T ) = 5

6
T 3 +

∑
d>0

K0
d e

dT .

The algorithm is as follows. Take the expansion in H :

HG[B](t) = H {f0(t)+ f1(t)H + f2(t)H
2 + f3(t)H

3},
from which we have the famous Candelas Formula: With T = f1/f0,

F(T ) = 5

2

(
f1

f0

f2

f0
− f3

f0

)
.

Example. Let X be a toric manifold and g = 0. Let D1, . . . , DN be the T -invariant
divisors in X. The starting data consist of V = ⊕iLi with c1(Li) ≥ 0 and c1(X) =
c1(V ). Let us take b(V ) = e(V ) the Euler class. We want to compute the A-series

A(T ) =
∑

K0
d e

d·T .

The HG Euler series which is the generating series of the HG Euler data can be easily
written down as

B(t) = e−H ·t
∑
d

∏
i

〈c1(Li),d〉∏
k=0

(c1(Li)− k)

∏
〈Da,d〉<0

∏−〈Da,d〉−1
k=0 (Da + k)∏

〈Da,d〉≥0
∏〈Da,d〉

k=1 (Da − k)
ed·t .

Then the mirror principle implies that there are explicitly computable functions
f (t), g(t), which define the mirror map, such that∫

X

(ef B(t)− e−H ·T e(V )) = 2A(T )−
∑

Ti
∂A(T )

∂Ti
,

where T = t + g(t). From this equation we can easily solve for A(T ).
In general, we want to compute
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K
g
d,k =

∫
[Mg,k(d,X)]v

k∏
j=1

ev∗j ωj · b(V g
d ),

where ωj ∈ H ∗(X) and evj denotes the evaluation map at the j th marked point. We
form a generating series with t , λ and ν formal variables,

F(t, λ, ν) =
∑
d,g,k

K
g
d,ke

dtλ2gνk.

The ultimate mirror principle we want to prove is to compute this series in terms
of certain explicit HG series. It is easy to show that those classes in the integrand
can still be combined to induce Euler data. Actually the Euler data really encode the
geometric structure of the stable map moduli.

We only use one example to illustrate the higher genus mirror principle.

Example. Consider an open toric Calabi–Yau manifold O(−3) → P2. Here V =
O(−3). Let

Qd =
∑
g≥0

ϕ!(π∗eT (V g
d ))λ

2g.

Then it can be shown that the corresponding HG Euler data is given explicitly by

PdJ (κ, α, λ)J (κ − dα,−α, λ),
where Pd is exactly the genus 0 HG Euler data and J is the generating series of Hodge
integrals with summation over all genera. J may be considered as the degree 0 Euler
data. In fact, we may say that the computations of Euler data include computations
of all Gromov–Witten invariants, and even more. Some closed formulas can be
obtained. We have proved that the mirror principle holds in such a general setting.
The remaining task is to determine the explicit HG Euler data.

Finally, we mention some recent works. First, we have constructed the refined
linearized moduli space for higher genus, the A-twisted moduli stack AMg(X) of
genus g curves associated to a smooth toric variety X, induced from the gauged linear
sigma model studied by Witten.

This new moduli space is constructed as follows. A morphism from a curve of
genus g into X corresponds to an equivalence class of triples (Lρ, uρ, cm)ρ,m, where
each Lρ is a line bundle pulled back from X, uρ is a section of Lρ satisfying a
nondegeneracy condition, and the collection {cm}m gives conditions to compare the
sections uρ in different line bundles Lρ , (cf.[Cox]). AMg(X) is the moduli space of
such data. It is an Artin stack, fibered over the moduli space of quasi-stable curves
[ChL-L-Y1]. We hope to use this refined moduli to do computations for the higher
genus mirror principle.

On the other hand, motivated by recent progress in open string theory, we are also
trying to develop an open mirror principle. Open string theory predicts formulas for
the counting of holomorphic discs with boundary inside a Lagrangian submanifold,
more generally of the counting of the numbers of open Riemann surfaces with bound-
ary in a Lagrangian submanifold. The linearized moduli space for such data is being
constructed which gives a new compactification of such moduli spaces.
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3 Hori–Vafa formula

In [H-V], Hori and Vafa generalize the world-sheet aspects of mirror symmetry to
being the equivalence of d = 2, N = (2, 2) supersymmetric field theories (i.e.,
without imposing the conformal invariance on the theory). This leads them to a
much broader encompassing picture of mirror symmetry. See [HKKPTVVZ] for
full explanations. Putting this in the framework of abelian gauged linear sigma
models (GLSM) [Wi1] enables them to link many d = 2 field theories together. The
generalization of this setting to nonabelian GLSM [Wi1, Section 5.3] leads them to the
following conjecture, when the physical path integrals are interpreted appropriately
mathematically.

Conjecture 3 (Hori–Vafa [H-V, Appendix A]). The hypergeometric series for a given
homogeneous space (e.g., a Grassmannian manifold) can be reproduced from the
hypergeometric series of simpler homogeneous spaces (e.g., a product of projec-
tive spaces). Similarly for the twisted hypergeometric series that are related to the
submanifolds in homogeneous spaces.

In other words, different homogeneous spaces (or some simple quotients of them)
can give rise to generalized mirror pairs.

Some progress towards this conjecture has been made for general flag manifolds
by using hyper-Quot schemes in [ChL-L-Y2]. The derivation of the formula for
flag manifolds is rather complicated, involving many technical new ingredients like
restrictive flag manifolds. A main object to be understood in the above conjecture
is the fundamental hypergeometric series HG[1]X(t) associated to the flag manifold
X. Recall that in the computations of the mirror principle, the existence of linearized
moduli made the computations for toric manifolds easy.

An outline of how this series may be computed was given in [L-L-Y1, III] via
an extended mirror principle diagram. To make clear the main ideas we will only
focus on the case of Grassmannian manifolds in this article. The main problem for
the computation is that there is no known good linearized moduli for Grassmannians
or general flag manifolds. To overcome this difficulty we use the Grothendieck quot
scheme to play the role of the linearized moduli. The method gives a complete proof
of the Hori–Vafa formula in the Grassmannian case.

Let ev : M0,1(d,X) → X be the evaluation map on the moduli space of stable
maps with one marked point, and c the first Chern class of the tangent line at the
marked point. The fundamental hypergeometric series for the mirror formula is
given by the push-forward

ev∗
[

1

α(α − c)

]
∈ H ∗(X)

or, more precisely, the generating series

HG[1]X(t) = e−tH/α
∞∑
d=0

ev∗
[

1

α(α − c)

]
edt .
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Assume the linearized moduli exists. Then the functorial localization formula
applied to the collapsing map: ϕ : Md → Nd , immediately gives the expression as
the denominator of the hypergeometric series.

Example. X = Pn, then we have ϕ∗(1) = 1, and functorial localization immediately
gives us

ev∗
[

1

α(α − c)

]
= 1∏d

m=1(x −mα)n+1
,

where the denominators of both sides are equivariant Euler classes of normal bundles
of the fixed points. Here x denotes the hyperplane class.

For X = Gr(k, n) or general flag manifolds, no explicit linearized moduli is
known. Hori–Vafa conjectured a formula for HG[1]X(t) by which we can compute
this series in terms of those of projective spaces.

Hori–Vafa Formula for Grassmannians. We have

HG[1]Gr(k,n)(t)

= e(k−1)π
√−1σ/α∏

i<j (xi − xj )
·
∏
i<j

(
α

∂

∂xi
− α

∂

∂xj

)∣∣∣∣
ti=t+(k−1)π

√−1
HG[1]P(t1, . . . , tk),

where P = Pn−1 × · · · × Pn−1 is the product of k copies of projective space, σ is the
generator of the divisor classes on Gr(k, n) and xi the hyperplane class of the ith
copy of Pn−1:

HG[1]P(t1, . . . , tk) =
k∏

i=1

HG[1]Pn−1
(ti).

Now we describe the ideas of the proof of the above formula. As mentioned above
we use another smooth moduli space, the Grothendieck Quot-scheme Qd to play the
role of the linearized moduli, and apply the functorial localization formula. Here is
the general setup:

To start, note that the Plücker embedding τ : Gr(k, n)→ PN induces an embed-
ding of the nonlinear moduli Md of Gr(k, n) into that of PN . The composition of this
map with the collapsing map gives us a map ϕ : Md → Wd into the linearized mod-
uli space Wd of PN . On the other hand, the Plücker embedding also induces a map
ψ : Qd → Wd. We have the following three crucial lemmas proved in [L-L-L-Y].

Lemma 4. The above two maps have the same image in Wd : Im ψ = Im ϕ. And all
the maps are equivariant with respect to the induced circle action from P1.

Just as in the mirror principle computations, our next step is to analyze the fixed
points of the circle action induced from P1. In particular we need the distinguished
fixed point set to get the equivariant Euler class of its normal bundle. The distinguished
fixed point set in Md is M0,1(d,Gr(k, n)) with the equivariant Euler class of its
normal bundle given by α(α − c), and we know that ϕ restricts to ev.
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Lemma 5. The distinguished fixed point set in Qd is a union: ∪sE0s , where each
E0s is a fiber bundle over Gr(k, n) with fiber given by a flag manifold.

It is a complicated endeavor to determine the fixed point sets E0s and the weights
of the circle action on their normal bundles. The situation for the flag manifold case
is much more involved. See [L-L-L-Y] and [ChL-L-Y2] for details.

Now let p denote the projection from E0s onto Gr(k, n). The functorial localiza-
tion formula, applied to ϕ and ψ , gives us the following.

Lemma 6. We have the equality on Gr(k,N):

ev∗
[

1

α(α − c)

]
=
∑
s

p∗
[

1

eT (E0s/Qd)

]
,

where eT (E0s/Qd) is the equivariant Euler class of the normal bundle of E0s in Qd .

Finally, we compute p∗[ 1
eT (E0s/Qd)

]. There are two different approaches; the first
one is by direct computations in [L-L-L-Y], and the other one is by using the well-
known Euler sequences for universal sheaves [B-CF-K]. The second method has the
advantage of being more explicit. Note that

eT (TQ|E0s − T E0s) = eT (TQ|E0s )/eT (T E0s).

Both eT (TQ|E0s ) and eT (T E0s) can be written down explicitly in terms of the uni-
versal bundles on the flag bundle E0s = Fl(m1, . . . , mk, S) over Gr(r, n). Here S is
the universal bundle on the Grassmannian.

The push-forward byp from Fl(m1, . . . , mk, S) to Gr(r, n) is done by an analogue
of the family localization formula of Atiyah–Bott, which is given by a sum over the
Weyl groups along the fiber which labels the fixed point sets.

In any case, the final formula of degree d is given by

p∗
[

1

eT (E0s/Qd)

]
= (−1)(r−1)d

∑
(d1,...,dr )

d1+···+dr=d

∏
1≤i<j≤r (xi − xj + (di − dj )α)∏

1≤i<j≤r (xi − xj )
∏r

i=1
∏di

l=1(xi + lα)n
.

Here x1, . . . , xr are the Chern roots of S∗. As a corollary of our approach, we have
the following.

Corollary 7. The Hori–Vafa conjecture holds for Grassmann manifolds.

This corollary was derived in [B-CF-K] by using the idea and method and also the
key results in [L-L-L-Y]. The explicit form of the Hori–Vafa conjecture for general
flag manifolds and its justifications require further study in the future.
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4 Mariño–Vafa formula

To compute the mirror formula for higher genus, we need to compute Hodge integrals,
which are defined as follows. Let Mg,h be the moduli space of stable curves of
genus g with h marked points. The Hodge bundle E is the rank g vector bundle over
Mg,h whose fiber over [(C, x1, . . . , xh)] ∈ Mg,h is H 0(C, ωC). The λ classes are
defined by

λj = cj (E) ∈ H 2i (Mg,h;Q).

The cotangent line T ∗xiC of C at the ith marked point xi gives a line bundle Li over
Mg,h. The ψ classes are defined by

ψi = c1(Li ) ∈ H 2(Mg,h;Q).

Hodge integrals are intersection numbers of λ classes and ψ classes.
We next introduce a particular form of Hodge integrals. Given a partition

µ = (µ1 ≥ · · · ≥ µh > 0),

define 
(µ) = h, and |µ| = µ1 + · · · + µh. Given a triple (g, µ, τ), where g is a
nonnegative integer, µ is a partition, and τ ∈ Z, we define the one-partition Hodge
integral as follows:

Gg,µ(τ) = −√−1
|µ|+
(µ)

|Aut(µ)| (τ (τ + 1))
(µ)−1

(µ)∏
i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

·
∫
Mg,
(µ)

�∨g (1)�∨g (−τ − 1)�∨g (τ )∏
(µ)
i=1 (1− µiψi)

,

where

�∨g (u) = ug − λ1u
g−1 + · · · + (−1)gλg.

The one-partition Hodge integral can be simplified in special cases:

• g = 0: �∨0 (u) = 1.∫
M0,h

1∏h
i=1(1− µiψi)

=
∑

k1+···+kh=h−3

µ
k1
1 · · ·µkh

h

∫
M0,h

ψ
k1
1 · · ·ψkh

h

=
∑

k1+···+kh=h−3

µ
k1
1 · · ·µkh

h

h!
k1! · · · kh!

= |µ|h−3.
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• τ = 0: Gg,µ(0) = 0 if 
(µ) > 1, and

Gg,(d)(0) =
√−1

d+1
∫
Mg,1

λg

1− dψ
= √−1

d+1
d2g−2bg,

where

bg =
{

1, g = 0,∫
Mg,1

λgψ
2g−2, g > 0.

To state Mariño–Vafa’s conjecture on one-partition Hodge integrals, we introduce
some generating functions.

We first define generating functions of one-partition Hodge integrals. Introduce
variables λ and p = (p1, p2, . . . ). Given a partition µ, let

pµ = pµ1 · · ·pµ
(µ)
.

Define generating functions to be

Gµ(λ; τ) =
∞∑
g=0

λ2g−2+
(µ)Gg,µ(τ ),

G(λ; τ ;p) =
∑
µ

Gµ(λ; τ)pµ,

G•(λ; τ ;p) = exp(G(λ; τ ;p)) =
∑
µ

G•µ(λ; τ)pµ.

We next define generating functions of symmetric group representations. Let χµ

denote the character of the irreducible representation of the symmetric group S|µ|
indexed by µ with |µ| = ∑

j µj , and let Cµ denote the conjugacy class of S|µ|
indexed by µ. Introduce

Vµ(λ) =
∏

1≤a<b≤
(µ)

sin[(µa − µb + b − a)λ/2]
sin[(b − a)λ/2]

· 1∏
(ν)
i=1

∏µi

v=1 2 sin[(v − i + 
(µ))λ/2]
,

which has an interpretation in terms of quantum dimension in Chern–Simons knot
theory. Define

R•µ(λ; τ) =
∑
|ν|=|µ|

χν(Cµ)

zµ
e
√−1(τ+ 1

2 )κνλ/2Vν(λ), (1)

R•(λ; τ ;p) =
∑
µ

R•µ(λ; τ)pµ,

where
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zµ = |Aut(µ)|µ1 · · ·µ
(µ), κµ = |µ| +
∑
i

(µ2
i − 2iµi).

Define
R(λ; τ ;p) = log(R•(λ; τ ;p)).

Conjecture 8 (Mariño–Vafa [M-V]).

G(λ; τ ;p) = R(λ; τ ;p). (2)

The Mariño–Vafa formula (2) provides a highly nontrivial link between geometry
(Hodge integrals) and combinatorics (representations of symmetric groups). Note that
for each fixed partition µ, the Mariño–Vafa formula gives a closed and finite formula
for Gµ(λ; τ), a generating function for all genera.

We now outline the proof of the Mariño–Vafa formula due to C.-C. M Liu, K. Liu,
and J. Zhou [L-L-Z1]. There is another approach due to A. Okounkov and R. Pand-
haripande [O-P].

At τ = 0, both sides of the Mariño–Vafa formula can be greatly simplified:

G(λ; 0;p) = −
∞∑
d=1

√−1
d+1

pd

λd2

∞∑
g=0

bg(λd)
2g, (3)

R(λ; 0;p) = −
∞∑
d=1

−√−1
d+1

pd

2d sin(λd/2)
(4)

They are equal by a previous result [Fa-P1]:

∞∑
g=0

bgt
2g = t/2

sin(t/2)
. (5)

Note that both sides of the Mariño–Vafa formula (2) are valid for τ ∈ C. It
follows from the expression (1) that

R•µ(λ; τ) =
∑
|ν|=|µ|

R•ν (λ; 0)zν'
•
νµ(
√−1λτ), (6)

where

'•νµ(λ) =
∑
χ

λ−χ+
(ν)+
(µ)
H •

χ,ν,µ

(−χ + 
(ν)+ 
(µ))! =
∑
η

χη(Cν)

zν

χη(Cµ)

zµ
eκηλ/2

is the generating function of disconnected double Hurwitz numbers H •
ν,µ,χ . The

convolution equation (6) is equivalent to the following cut-and-join equation:

∂R

∂τ
=
√−1λ

2

∞∑
i,j=1

(
(i + j)pipj

∂R

∂pi+j
+ ijpi+j

(
∂R

∂pi

∂R

∂pj

+ ∂2R

∂pi∂pj

))
. (7)
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In the symmetric group Sd , a transposition can cut an (i+j)-cycle into an i-cycle
and an j -cycle:

(s, t)(s, s2, . . . , si , t, t2, . . . , tj ) = (s, s2, . . . , si)(t, t2, . . . tj ).

This corresponds to the cut operator

(i + j)pipj

∂

∂pi+j
.

A transposition can also join an i-cycle and a j -cycle to form an (i + j)-cycle:

(s, t)(s, s2, . . . , si)(t, t2, . . . tj ) = (s, s2, . . . , si , t, t2, . . . tj ).

This corresponds to the join operator

ijpi+j
∂

∂pi

∂

∂pj

.

The Mariño–Vafa formula will follow from the initial values (3), (4), (5), the
cut-and-join equation (7) of R(λ; τ ;p), and the following cut-and-join equation
of G(λ; τ ;p).
Theorem 9 (Liu–Liu–Zhou [L-L-Z1]).

∂G

∂τ
=
√−1λ

2

∞∑
i,j=1

(
(i + j)pipj

∂G

∂pi+j
+ ijpi+j

(
∂G

∂pi

∂G

∂pj

+ ∂2G

∂pi∂pj

))
. (8)

The cut-and-join equation (8) is equivalent to the following convolution equation:

G•µ(λ; τ) =
∑
|ν|=|µ|

G•ν(λ; 0)zν'
•
ν,µ(

√−1λτ). (9)

Theorem 9 is proved by applying functorial localization to the branch morphism

Br :Mg(P1, µ)→ Symr P1 ∼= Pr ,

where Mg(P1, µ) is the moduli space of relative stable maps from a genus g curve
to P1 with fixed ramification type µ = (µ1, . . . , µh) at∞, and

r = 2g − 2+ |µ| + 
(µ)

is the virtual dimension of Mg(P1, µ). Note that the C∗-action on P1 induces C∗-
actions on the domain and the target of Br, and Br is C∗-equivariant. This is similar
to the setup of the mirror principle, with a different linearized moduli.

We end this section with some applications of the Mariño–Vafa formula, following
[L-L-Z2]. We have
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Gg,µ(τ) =
2g−2+|µ|+
(µ)∑

k=
(µ)−1

Gk
g,µτ

k,

where

G
2g−2+|µ|+
(µ)
g,µ = −√−1

|µ|+
(µ)

|Aut(µ)|
µ
µi

i

µi !
∫
Mg,
(µ)

�∨g (1)∏
(µ)
i=1 (1− µiψi)

,

G
(µ)−1
g,µ = −√−1

|µ|+
(µ)

|Aut(µ)|
λg∏
(µ)

i=1 (1− µiψi)
.

The part corresponding to G
2g−2+|µ|+
(µ)
g,µ in R(λ; τ ;p) reduces to the Burnside

formula of Hurwitz numbers Hg,µ. We obtain the ELSV formula [ELSV]:

1

|Aut(µ)|
µ
µi

i

µi !
∫
Mg,
(µ)

�∨g (1)∏
(µ)
i=1 (1− µiψi)

= Hg,µ

(2g − 2+ |µ| + 
(µ))! . (10)

Extracting the part corresponding to G

(µ)−1
g,µ (τ ) from R(λ; τ ;p), we obtain

∞∑
g=0

λ2g
∫
Mg,n

λg∏n
i=1(1− µiψi)

= |µ|n−3 |µ|λ/2

sin(|µ|λ/2)
. (11)

The identity (11) is true for any partition of length n, so it may be viewed as an identity
of polynomials in λ,µ1, . . . , µn. This gives us the values of all λg-integrals:∫

Mg,n

ψ
k1
1 · · ·ψkn

n λg =
(

2g + n− 3

k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)! . (12)

The identity (12) was first proved in [Fa-P2].
The following identities proved in [Fa-P1] are also consequences the Mariño–Vafa

formula:∫
Mg

λg−2λg−1λg = 1

2(2g − 2)!
|B2g−2|
2g − 2

|B2g|
2g

,

∫
Mg,1

λg−1

1− ψ1
= bg

2g−1∑
i=1

1

i
− 1

2

∑
g1+g2=g
g1,g2>0

(2g1 − 1)!(2g2 − 1)!
(2g − 1)! bg1bg2 .

5 Mirror symmetry

In the previous sections we discussed the localization method to understand the count-
ing function of Gromov–Witten invariants. These formulas are rather difficult to
predict. They were motivated by important concepts of duality. A very important
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duality is called mirror symmetry. The counting function of Gromov–Witten invari-
ants appears as instanton contribution to the IIA theory of one Calabi–Yau manifold
M . The ability to compute it came from the symmetry that the IIA theory of M is
isomorphic to the IIB theory of another Calabi–Yau manifold M̂ which is “mirror’’
to M . The IIB theory can be computed by deformation of complex structures, which
can in turn be computed by studying the periods of holomorphic differentials.

However, the construction of M̂ has not been explained in a fundamental way,
except for some special cases. About eight years ago, Strominger, Zaslow, and Yau,
based on the newly developed brane theory, proposed a geometric construction of M̂ .
The program is still being pursued vigorously and it is closely related to the (more
algebraic) homological mirror conjecture of Kontsevich and Fukaya.

We now explain the construction of SYZ and some of the important questions to
be answered.

Motivated by understanding supersymmetric cycles in Calabi–Yau manifolds,
Becker–Becker–Strominger [B-B-S] considered the concept of Lagrangian subvari-
eties V of a CY manifold M so that the holomorphic three-form, when restricted to
the subvariety, is a (complex) constant (with norm one) multiple of the volume form
of the subvariety. They consider a pair (V , L), where L is a U(1) flat line bundle
over V . These branes play an important role in understanding questions of duality, as
supersymmetric cycles are protected when coupling constants of the theory change.

Soon it was found that such subvarieties V had been studied by Harvey–Lawson
earlier based on their interest on understanding examples of area-minimizing subvari-
eties in Euclidean space. They were called special Lagrangian cycles by them. Later
McLean [Mc] proved that the local moduli of a special Lagrangian submanifold V in
a Calabi–Yau manifold are parametrized by harmonic one-form on V . The space of
the harmonic one-form also parametrizes flat U(1) bundles over V . Hence one can
put an almost complex structure on the moduli space of the pair (V , L). This was
observed by Strominger–Yau–Zaslow [S-Y-Z] and was proposed there to study this
moduli space as an interesting complex manifold. In particular, when the first Betti
number of V is equal to three, this complex manifold is three dimensional.

Based on the theory of branes, it was proposed by SYZ that if V is a three-
dimensional torus, we can replace V by its dual V ∗, the moduli space of flat U(1)
line bundles over V , and obtain a new complex manifold M̂ . In general, we shall
need to make instanton corrections to the complex structure on M̂ . We proposed M̂

to be the mirror manifold of M .
The foliation defined by the special Lagrangian torus have singular leaves. We

expect that in the large radius limit, there is a map f : M −→ S3 so that outside a
trivalent graph G ⊂ S3 the fibers are nonsingular special Lagrangian tori. If these
tori are linear we call the picture semiclassical. Leung–Yau–Zaslow [Le-Y-Z] has
studied this mirror construction quite extensively. Many interesting predictions for
mirror symmetry hold for this semiclassical setting.

The first explicit construction of Ricci flat metric for the semiclassical setting was
due to Greene–Shapere–Vafa–Yau [G-S-V-Y]. It is an interesting question to find
instanton corrections to their metric to obtain the Ricci flat metric on the K3 surface.
M. Gross and P. Wilson [G-W] studied this problem based on perturbation of the
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semiflat Ricci flat metric. Unfortunately, we still have little information about the
instantons which are holomorphic disks whose boundaries give nontrivial homology
classes on the Lagrangian torus.

If we consider the domain which parametrizes the special Lagrangian tori in
M , assuming we are in the semiflat situation, there is a Weil–Petersson metric on
S3 \ G. The form of such metrics was worked out by N. Hitchin [Hi], namely, that
it is a Hessian metric defined on an affine flat manifold. (This kind of metric was
introduced by Cheng–Yau [C-Y] in 1980 as an analogue of a Kähler metric for flat
affine structures. Under some assumptions, Cheng–Yau also proved existence and
uniqueness theorems for such a metric.) Hence there is a flat affine structure on
S3 \ G and in order for the torus to be defined, the monodromy group must be a
subgroup of SL(3,Z). It is believed that there is a well-defined volume form on

S3 \ G so that in suitable flat coordinates, the metric has the form
∑

∂2u
∂xi∂xj

dxidxj

and det( ∂2u
∂xi∂xj

) = 1. The existence of such a metric on a tube domain is related to the

existence of Ricci flat Kähler flat metrics if we look at the complexified coordinates
xj +

√−1yj . (This ansatz was first proposed by E. Calabi.) However, its existence
and the behavior near the triple singular point of G is nontrivial. This was worked
out recently by Loftin–Yau–Zaslow [Lo-Y-Z].

Potentially, the construction of SYZ geometry can be reduced to the follow-
ing data:

1. Construction of the flat affine structure in S3 \ G whose holonomy group is a
subgroup of SL(3,Z).

2. Construction of Cheng–Yau-type Hessian metric with a given flat volume form.
3. Construction of a map fromS3\G to the moduli space of flat tori that is compatible

with the holonomy group mentioned above.

Once this construction is carried out, one can construct the mirror manifold M̂ in
the large radius limit. A very important verification of the SYZ construction of the
mirror conjecture is to understand the deformation of the complex structure of M̂ and
relate it to periods of the holomorphic three-form. It should reflect the counting of
holomorphic curves of M .

Under reasonable topological assumptions, M. Gross studied the SYZ construc-
tion for the quintic in P4 and computed the Hodge diagram of the mirror manifold.
He concludes that the picture is consistent. W.-D. Ruan [Ru] studied the Lagrangian
fibration for Calabi–Yau manifolds that are constructed from toric manifolds.

The mirror correspondence is supposed to map the even cohomology of M to
the odd cohomology of M̂ . We propose to construct this map in terms of the SYZ
construction in the following manner.

For the map f : M −→ S3 and its mirror f̂ : M̂ −→ S3, we can form a nine-
dimensional variety by forming their fiber product M×

S3
M̂ −→ S3. The general fiber

of this map is given by T 3 × (T 3)∗, which admits the standard Poincaré (complex)
line bundle L so that L restricted to T 3 × {l} is given by l. We assume that L can be
extended to be a line bundle (or a sheaf) over M ×

S3
M̂ .
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Let�1 : M×
S3
M̂ −→ M and�2 : M×

S3
M̂ −→ M . Then we can define the mirror

map on the cohomology level by taking any even degree cohomology class ω in M ,
and mapping it to (�2)∗[(�∗1ω) exp(c1(L))], which gives odd cohomology in M̂ .

This assertion should be easier to verify in the semiclassical picture when we have
flat affine constructions. When one counts instanton corrections, one should be able
to map quantum cohomology of M to H 1(TM̂), the deformation space of complex
structures of M̂ .

In [Le-Y-Z], we discuss how to map special Lagrangian cycles in M̂ to stable
holomorphic sheaves over M . It would be important to prove this picture rigorously
(which in turn depends on a rigorous construction of M̂). The potential construction
of special Lagrangian cycles in M̂ can give a way to construct holomorphic cycles in
M . Therefore it becomes an important question to understand which odd-dimensional
cohomology classes in M̂ admit special Lagrangian cycles. The Hodge conjecture on
M may suggest that an integral multiple of each odd-dimensional cohomology class
in M̂ should be representable by special Lagrangian cycles.

There are several directions in which we may want to generalize the above pictures.

1. When M is Calabi–Yau, we can look for fiber spaces, which are holomorphic.
Hence f : M −→ N is holomorphic, the general fiber T is polarized Calabi–Yau
and the space N is a Fano variety or a variety with negative Kodaira dimension.
We can replace each fiber T by its mirror manifold T̂ . Hopefully, one can
complete the process to form a new compact Kähler manifold M̂ which is still
Calabi–Yau. Obviously there are conditions one needs to impose in order for
such an assertion to hold.
The new manifold M̂ should reflect a great deal about the geometry of M . One
can still define the transfer map from M to M̂ . Since everything is now complex,
it maps even cohomology of M to even cohomology of M̂ .
At least when T is a complex torus, it may give an isomorphism of derived cate-
gory of M to a derived category of M̂ , the Chow rings of M to Chow rings of M̂ .

2. When M is a more general Kähler–Einstein manifold, the notion of special La-
grangian does not make sense. However, we can replace it by Lagrangian cycles
which are area minimizing among all Lagrangian cycles. Hence we are looking
for Lagrangian cycles whose mean curvature one-form is harmonic.

Many interesting questions in geometry can be motivated by such pictures.
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1

Let k be an algebraic closure of a finite field Fq . Let G = GLn(k). The group
G(Fq) = GLn(Fq) can be regarded as the fixed point set of the Frobenius map
F : G → G, (gij ) 
→ (g

q
ij ). Let Q̄l be an algebraic closure of the field of l-adic

numbers, where l is a prime number invertible in k. The characters of irreducible
representations of G(Fq) over an algebraically closed field of characteristic 0, which
we take to be Q̄l , have been determined explicitly by J. A. Green [G]. The theory of
character sheaves [L2] tries to produce some geometric objects over G from which
the irreducible characters of G(Fq) can be deduced for any q. This allows us to unify
the representation theories of G(Fq) for various q. The geometric objects needed in
the theory are provided by intersection cohomology.

Let X be an algebraic variety over k, let X0 be a locally closed irreducible,
smooth subvariety of X and let E be a local system over X0 (we say “local system’’
instead of “Q̄l-local system’’). Deligne, Goresky, and MacPherson attach to this
datum a canonical object IC(X̄0, E) (intersection cohomology complex) in the derived
category D(X) of Q̄l-sheaves on X; this is a complex of sheaves which extends E
to X (by 0 outside the closure X̄0 of X0) in the most economical possible way so
that local Poincaré duality is satisfied. We say that IC(X̄0, E) is irreducible if E is
irreducible.

Now take X = G and take X0 = Grs to be the set of regular semisimple elements
in G. Let T be the group of diagonal matrices in G. For any integer m ≥ 1 invertible
in k we have an unramified n!mn-fold covering

πm : {(g, t, xT ) ∈ Grs × T ×G/T ; x−1gx = tm} → Grs, (g, t, xT ) 
→ g.
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An irreducible local system E on Grs is said to be admissible if it is a direct summand
of the local system πm!Q̄l for some m as above. The character sheaves on G are the
complexes IC(G, E) for various admissible local systems E on Grs .

We show how the irreducible characters ofG(Fq) can be recovered from character
sheaves on G. If A is a character sheaf on G, then its inverse image F ∗A under F is
again a character sheaf. There are only finitely many A (up to isomorphism) such that
F ∗A is isomorphic to A. For any such A we choose an isomorphism φ : F ∗A ∼→ A

and we form the characteristic function χA,φ : G(Fq)→ Q̄l whose value at g is the
alternating sum of traces of φ on the stalks at g of the cohomology sheaves of A.
Now φ is unique up to a nonzero scalar; hence χA,φ is unique up to a nonzero scalar.
It turns out that

(a) χA,φ is (up to a nonzero scalar) the character of an irreducible representation of
G(Fq) and A 
→ χA,φ gives a bijection between the set of (isomorphism classes
of ) character sheaves on G that are isomorphic to their inverse image under F
and the irreducible characters of G(Fq).

(This result is essentially contained in [L1, L3].) The main content of this result is
that the (rather complicated) values of an irreducible character of G(Fq) are gov-
erned by a geometric principle, namely by the procedure which gives the intersection
cohomology extension of a local system.

2

More generally, assume that G is a connected reductive algebraic group over k.
The definition of the IC(G, E) given above for GLn makes sense also in the general
case. The complexes on G obtained in this way form the class of uniform character
sheaves on G. Consider now a fixed Fq -rational structure on G with Frobenius
map F : G → G. The analogue of property 1(a) does not hold in general for
(G, F ). It is still true that the characteristic functions of the uniform character sheaves
that are isomorphic to their inverse image under F are linearly independent class
functions G(Fq) → Q̄l . However, they do not form a basis of the space of class
functions. Moreover, they are in general not irreducible characters of G(Fq) (up to
a scalar); rather, each of them is a linear combination with known coefficients of a
“small’’ number of irreducible characters of G(Fq) (where “small’’ means “bounded
independently of q’’); this result is essentially contained in [L1, L3].

It turns out that the class of uniform character sheaves can be naturally enlarged
to a larger class of complexes on G.

For any parabolic P of G, UP denotes the unipotent radical of P . For a Borel B
in G, the images under cB : G→ G/UB of the double cosets BwB form a partition
G/UB = ∪w(BwB/UB).

An irreducible intersection cohomology complex A ∈ D(G) is said to be a char-
acter sheaf on G if it is G-equivariant and if for some/any Borel B in G, cB! A has the
following property:
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(∗) Any cohomology sheaf of this complex restricted to any BwB/UB is a local
system with finite monodromy of order invertible in k.

Then any uniform character sheaf on G is a character sheaf on G. For G = GLn the
converse is also true, but for general G this is not so.

Consider again a fixed Fq -rational structure on G with Frobenius map F : G→
G. The following partial analogue of property 1(a) holds (under a mild restriction on
the characteristic of k):

(a) The characteristic functions of the various character sheaves A on G (up to

isomorphism) such that F ∗A ∼→ A form a basis of the vector space of class
functions G(Fq)→ Q̄l .

3

We now fix a parabolic P of G. For any Borel B of P , let c̃B : G/UP → G/UB be
the obvious map. Now P acts on G/UP by conjugation.

An irreducible intersection cohomology complex A ∈ D(G/UP ) is said to be
a parabolic character sheaf if it is P -equivariant and if for some/any Borel B in P ,
c̃B! A has property 2(∗). When P = G, we recover the definition of character sheaves
on G.

Consider now a fixed Fq -rational structure on G with Frobenius map F : G→ G

such that P is defined over Fq . Then G/UP has a natural Fq -rational structure with
Frobenius mapF . The following generalization of 2(a) holds (under a mild restriction
on the characteristic of k):

(a) The characteristic functions of the various parabolic character sheaves A on

G/UP (up to isomorphism) such that F ∗A ∼→ A form a basis of the vector space
V of P(Fq)-invariant functions G(Fq)/UP (Fq)→ Q̄l .

The proof is given in [L5]. It relies on a generalization of property 2(a) to not
necessarily connected reductive groups which will be contained in the series [L6].

If h : G(Fq) → Q̄l is the characteristic function of a character sheaf as in 2(a),
then by summing h over the fibers of G(Fq)→ G(Fq)/UP (Fq) we obtain a function
h̄ ∈ V . It turns out that each function h̄ is a linear combination of a “small’’ number
of elements in the basis of V described above. (The fact such a basis of V exists is
not a priori obvious.)

The parabolic character sheaves on G/UP are expected to be a necessary ingre-
dient in establishing the conjectural geometric interpretation of Hecke algebras with
unequal parameters given in [L4].

4

In this section G denotes an abelian group with a given family F of automorphisms
such that
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(i) if F ∈ F and n ∈ Z>0, then Fn ∈ F;
(ii) if F ∈ F, F ′ ∈ F, then there exist n, n′ ∈ Z>0 such that Fn = F ′n′ ;
(iii) for any F ∈ F, the map G→ G, x 
→ F(x)x−1 is surjective with finite kernel.

For F ∈ F and n ∈ Z>0, the homomorphism

NFn/F : G→ G, x 
→ xF(x) . . . F n−1(x),

restricts to a surjective homomorphism GFn → GF . (If y ∈ GF , we can
find z ∈ G with y = Fn(z)z−1, by (i), (iii).) We set x = F(z)z−1. Then
x ∈ GFn

and NFn/F (x) = y.) Let X be the set of pairs (F,ψ), where F ∈ F
and ψ ∈ Hom(GF , Q̄∗l ). Consider the equivalence relation on X generated by
(F,ψ) ∼ (F n, ψ ◦ NFn/F ). Let G∗ be the set of equivalence classes. We define a
group structure onG∗. We consider two elements ofG∗; we represent them in the form
(F,ψ), (F ′, ψ ′), where F = F ′ (using (ii)) and we define their product as the equiv-
alence class of (F,ψψ ′); one checks that this product is independent of the choices.
This makes G∗ into an abelian group. The unit element is the equivalence class of
(F, 1) for any F ∈ F. For F ∈ F we define an automorphism F ∗ : G∗ → G∗ by
sending an element ofG∗ represented by (F n, ψ)withn ∈ Z>0, ψ ∈ Hom(GFn

, Q̄∗l )
to (F n, ψ ◦F) (here ψ ◦F is the composition GFn F→ GFn ψ→ Q̄∗l ); one checks that
this is well defined. For any F ∈ F the map Hom(GF , Q̄∗l )→ G∗, ψ 
→ (F,ψ) is

(a) a group isomorphism of Hom(GF , Q̄∗l ) onto the subgroup (G∗)F ∗ of G∗.

(This follows from the surjectivity of NFn/F : GFn → GF .)

5

Assume now that G is an abelian, connected (affine) algebraic group over k. We
define the notion of character sheaf on G.

Let F be the set of Frobenius maps F : G → G for various rational structures
on G over a finite subfield of k. (These maps are automorphisms of G as an abstract
group.) Then properties 4(i)–(iii) are satisfied for (G,F); hence the abelian group
G∗ is defined as in Section 4. We will give an interpretation of G∗ in terms of local
systems onG. LetF ∈ F. LetL : G→ G be the Lang map x 
→ F(x)x−1. Consider
the local system E = L!Q̄l on G. Its stalk at y ∈ G is the vector space Ey consisting

of all functions f : L−1(y)→ Q̄l . We have Ey = ⊕ψ∈Hom(GF ,Q̄∗l )
E

ψ
y , where

Eψ
y = {f ∈ Ey; f (zx) = ψ(z)f (x) ∀z ∈ GF , x ∈ L−1(y)}.

We have a canonical direct sum decomposition E = ⊕ψE
ψ , where Eψ is a local

system of rank 1 on G whose stalk at y ∈ G is E
ψ
y (ψ as above). There is a unique

isomorphism of local systems φ : F ∗Eψ ∼→ Eψ which induces identity on the stalk
at 1. This induces for any y ∈ G the isomorphism E

ψ

F(y) → E
ψ
y given by f 
→ f ′,
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where f ′(x) = f (F (x)). If y ∈ GF , this isomorphism is multiplication by ψ(y).
Thus the characteristic function χEψ,φ : GF → Q̄l is the character ψ .

Let n ∈ Z>0. Let L′ : G → G be the map x 
→ Fn(x)x−1. Conider the
local system E′ = L′!Q̄l on G. Its stalk at y ∈ G is the vector space E′y consisting

of all functions f ′ : L′−1(y) → Q̄l . We define Ey → E′y by f 
→ f ′, where

f ′(x) = f (NFn,F x) (note that NFn/F (L
′−1(y)) ⊂ L−1(y)). This is induced by a

morphism of local systems E → E′ which restricts to an isomorphism Eψ ∼→ E′ψ ′ ,
where ψ ′ = ψ ◦NFn/F ∈ Hom(GFn

, Q̄∗l ).
From the definitions we see that, if ψ,ψ ′ ∈ Hom(GF , Q̄∗l ), then for any y ∈ G

we have an isomorphism E
ψ
y ⊗ E

ψ ′
y

∼→ E
ψψ ′
y given by multiplication of functions

on L−1(y). This comes from an isomorphism of local systems Eψ ⊗Eψ ′ ∼→ Eψψ ′ .
A character sheaf on G is by definition a local system of rank 1 on G of the form

Eψ for some (F,ψ) as above. Let S(G) be the set of isomorphism classes of character
sheaves on G. Then S(G) is an abelian group under tensor product. The arguments
above show that (F,ψ) 
→ Eψ defines a (surjective) group homomorphism G∗ →
S(G). This is in fact an isomorphism. (It is enough to show that, if (F,ψ) is as above
and ψ ′ ∈ Hom(GF , Q̄∗l ) is such that the local systems Eψ,Eψ ′ are isomorphic, then

ψ = ψ ′.) As we have seen earlier, each Eψ,Eψ ′ has a unique isomorphism φ, φ′
with its inverse image under F : G → G which induces the identity at the stalk at
1. Then we must have χEψ,φ = χ

Eψ ′ ,φ′ hence ψ = ψ ′. Note that for F ∈ F, the

map F ∗ : G∗ → G∗ corresponds under the isomorphism G∗ ∼→ S(G) to the map
S(G) → S(G) given by the inverse image under F . Using this and 4(a), we see
that, for F ∈ F, the map Hom(GF , Q̄∗l )→ S(G), ψ 
→ Eψ is a group isomorphism
of Hom(GF , Q̄∗l ) onto the subgroup of S(G) consisting of all character sheaves on
G that are isomorphic to their inverse image under F . We see that in this case the
analogue of 1(a) holds.

From the definitions, we see that

(a) if L1 ∈ S(G) and m : G × G → G is the multiplication map, then m∗L1 =
L1 ⊗ L1.

In the case where G = k, our definition of character sheaves on G reduces to that of
the Artin–Schreier local systems on k.

6

In this section we assume that G is a unipotent algebraic group over k of “exponential
type,’’ that is, such that the exponential map from LieG to G is well defined (and
an isomorphism of varieties.) In this case we can define character sheaves on G

using Kirillov theory. Namely, for each G-orbit in the dual of LieG we consider the
local system Q̄l on that orbit extended by 0 on the complement of the orbit. Taking
the Fourier–Deligne transform we obtain (up to shift) an irreducible intersection
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cohomology complex on LieG (since the orbit is smooth and closed, by Kostant–
Rosenlicht). We can view it as an intersection cohomology complex on G via the
exponential map. The complexes on G thus obtained are by definition the character
sheaves of G. Using Kirillov theory (see [K]), we see that in this case the analogue
of 1(a) holds.

Assume, for example, that G is the group of all matrices

[a, b, c] =
⎛⎝1 a b

0 1 c

0 0 1

⎞⎠
with entries in k and that 2−1 ∈ k. Consider the following intersection cohomology
complexes on G:

(i) the complex which on the center {(0, b, 0); b ∈ k} is the local system E ∈
S(k), E �= Q̄l extended by 0 to the whole of G;

(ii) the local system f ∗E , where f [a, b, c] = (a, c) and E ∈ S(k2).

The complexes (i)–(ii) are the character sheaves of G.

7

In this section we assume that G is a connected unipotent algebraic group over k (not
necessarily of exponential type). We expect that in this case there is again a notion
of character sheaf on G such that over a finite field, the characteristic functions of
character sheaves form a basis of the space of class functions and each characteristic
function of a character sheaf is a linear combination of a “small’’number of irreducible
characters. Thus here the situation should be similar to that for a general connected
reductive group rather than that for GLn. We illustrate this in one example. Assume
that k has characteristic 2. Let G be the group consisting of all matrices of the form⎛⎜⎜⎝

1 a b c

0 1 d b + ad

0 0 1 a

0 0 0 1

⎞⎟⎟⎠
with entries in k; we also write [a, b, c, d] instead of the matrix above. (This group
can be regarded as the unipotent radical of a Borel in Sp4(k).)

Let E0 ∈ S(k) be the local system on k associated in Section 5 to Fq and to the
homomorphism ψ0 : Fq → Q̄∗l (composition of the trace Fq → F2 and the unique
injective homomorphism F2 → Q̄∗l ).

Consider the following intersection cohomology complexes on G:

(i) the complex which on the center {[0, b, c, 0]; (b, c) ∈ k2} is the local system
E ∈ S(k2), E �= Q̄l (see Section 5) extended by 0 to the whole of G;
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(ii) the complex which on {[a0, b, c, 0]; (b, c) ∈ k2} (with a0 ∈ k∗ fixed) is the
local system pr∗c E , where E ∈ S(k), E �= Q̄l (see Section 5) extended by 0 to
the whole of G;

(iii) the complex which on {[0, b, c, d0]; (b, c) ∈ k2} (with d0 ∈ k∗ fixed) is the local
system f ∗E0, where f [0, b, c, d0] = αb + α2d0c (with α ∈ k∗ fixed) extended
by 0 to the whole of G;

(iv) the complex which on {[a0, b, c, d0]; (b, c) ∈ k2} (with a0, d0 ∈ k∗ fixed) is
the local system f ∗E0, where f [a0, b, c, d0] = a−2

0 d−1
0 c extended by 0 to the

whole of G;
(v) the local system f ∗E on G, where f [a, b, c, d] = (a, d) ∈ k2 and E ∈ S(k2).

By definition, the character sheaves on G are the complexes in (i)–(v) above. Note
that there are infinitely many subvarieties of G which appear as supports of character
sheaves (this in contrast with the case of reductive groups). There is a symmetry that
exchanges the character sheaves of type (ii) with those of type (iii). Namely, define
ξ : G→ G by

[a, b, c, d] 
→ [d, c + ab + a2d, b2 + dc + abd, a2].
Then ξ is a homomorphism whose square is [a, b, c, d] 
→ [a2, b2, c2, d2]; moreover,
ξ∗ interchanges the sets (ii) and (iii) and it leaves stable each of the sets (i), (iv), and (v).

Now G has an obvious Fq -structure with Frobenius map F : G → G. We
describe the irreducible characters of G(Fq):

(I) We have q2 one-dimensional characters U → Q̄∗l of the form [a, b, c, d] 
→
ψ0(xa + yd) (one for each x, y ∈ Fq ).

(II) We have q − 1 irreducible characters of degree q of the form [0, b, c, 0] 
→
qψ0(xb) (all other elements are mapped to 0), one for each x ∈ Fq − {0}.

(III) We have q − 1 irreducible characters of degree q of the form [0, b, c, 0] 
→
qψ0(xc) (all other elements are mapped to 0), one for each x ∈ Fq − {0}.

(IV) We have 4(q−1)2 irreducible characters of degree q/2, one for each quadruple
(a0, d0, ε1, ε2), where

a0 ∈ F∗q, d0 ∈ F∗q, ε1 ∈ Hom({0, a0},±1), ε2 ∈ Hom({0, d0},±1),

namely,

[a, b, c, d] 
→ (q/2)ε1(a)ε2(d)ψ0(a
−2
0 d−1

0 (ba + ba0 + c)),

if a ∈ {0, a0}, d ∈ {0, d0}; all other elements are sent to 0.

A character of type (II) is obtained by inducing from the subgroup {[a, b, c, d] ∈
G(Fq); d = 0} the one-dimensional character [a, b, c, 0] 
→ ψ0(xb), where x ∈
Fq − {0}. A character of type (III) is obtained by inducing from the commutative
subgroup {[a, b, c, d] ∈ G(Fq); a = 0} the one-dimensional character [0, b, c, d] 
→
ψ0(xc), where x ∈ Fq − {0}. A character of type (IV) is obtained by inducing from
the subgroup {(a, b, c, d) ∈ G(Fq); a ∈ {0, a0}} (where a0 ∈ Fq − {0} is fixed) the
one-dimensional character [a, b, c, d] 
→ ε1(a)ψ0(f d + a−2

0 d−1
0 (ba + ba0 + c)),
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where f ∈ Fq is chosen so that ψ0(f d0) = ε2(d0). (The induced character does not
depend on the choice of f .)

Consider the matrix expressing the characteristic functions of character sheaves
A such that F ∗A ∼= A (suitably normalized) in terms of irreducible characters of
G(Fq). This matrix is square and a direct sum of diagonal blocks of size 1 × 1
(with entry 1) or 4× 4 with entries ±1/2, representing the Fourier transform over a
two-dimensional symplectic F2-vector space. There are (q−1)2 blocks of size 4×4
involving the irreducible characters of type IV.

We see that in our case the character sheaves have the desired properties. We
also note that in our case G(Fq) has some irreducible character whose degree is not
a power of q (but q/2) in contrast with what happens in the situation in Section 6.

8

Let ε be an indeterminate. For r ≥ 2 let Ar = k[ε]/(εr ). Let G = GLn(Ar ). Let B
(respectively, T ) be the group of upper triangular (respectively, diagonal) matrices in
G. Then G is in a natural way a connected affine algebraic group over k of dimension
n2r and B, T are closed subgroups of G. On G we have a natural Fq -structure with

Frobenius map F : G → G, (gij ) 
→ (g
(q)
ij ), where for a0, a1, . . . , ar−1 in k we

set (a0 + a1ε + · · · + ar−1ε
r−1)(q) = a

q

0 + a
q

1 ε + · · · + a
q

r−1ε
r−1. The fixed point

set of F : G → G is GLn(Fq [ε]/(εr )). For i �= j in [1, n], we consider the
homomorphism fij : k → T which takes x ∈ k to the diagonal matrix with ii-entry
equal to 1+ εr−1x, jj -entry equal to 1− εr−1x and other diagonal entries equal to
1. Since T is connected and commutative, the group S(T ) is defined (see Section 5).
Let L ∈ S(T ). We will assume that L is regular in the following sense: for any
i �= j in [1, n], f ∗ijL is not isomorphic to Q̄l .

Let π : B → T be the obvious homomorphism. Consider the diagram

G
a← Y

b→ T ,

where

Y = {(g, xB) ∈ G×G/B; x−1gx ∈ B}, a(g, xB) = g, b(g, xB) = π(x−1gx).

Then b∗L is a local system on Y and we may consider the complex a!b∗L on G.
As in Section 5, we can find an integer m0 > 0 such that, for any m ∈ M =

{m0, 2m0, 3m0, . . . }, L is associated to (Fqm, ψm), where ψm ∈ Hom(T Fm
, Q̄∗l ).

We can regard ψm as a character B(Fqm)→ Q̄∗l via π : B → T ; inducing this from
B(Fqm) to G(Fqm) we obtain a representation of G(Fqm) whose character is denoted
by cm. It is easy to see (using the regularity of L) that this character is irreducible.

For m ∈ M, there is a unique isomorphism (Fm)∗L ∼→ L of local systems on
T which induces the identity on the stalk of L at 1. This induces an isomorphism
(Fm)∗(b∗L)

∼→ b∗L (where F : Y → Y is (g, xB) 
→ (F (g), F (x)B)) and an
isomorphism (Fm)∗(a!b∗L)

∼→ a!b∗L in D(G). Let χm : GFm → Q̄l be the



Character Sheaves and Generalizations 451

characteristic function ofa!b∗Lwith respect to this isomorphism. From the definitions
we see that χm = cm. This shows that a!b∗L behaves like a character sheaf except
for the fact that it is not clear that it is an intersection cohomology complex.

We conjecture that

(a) if L is regular, then a!b∗L is an intersection cohomology complex on G.

(The conjecture also makes sense and is expected to be true when GLn is replaced
by any reductive group, and G by the corresponding group over Ar .) Thus one can
expect that there is a theory of character sheaves for G, as far as generic principal
series representations and their twisted forms are concerned. But one cannot expect
a complete theory of character sheaves in this case (see Section 13).

In Sections 9–12, we prove the conjecture in the special case where G = GL2(k)
and r = 2.

9

Let A = A2 = k[ε]/(ε2). Let V be a free A-module of rank 2. Let G be the group
of automorphisms of the A-module V . This is the group of all automorphisms of the
four-dimensional k-vector space V that commute with the map ε : V → V given by
the A-module structure. Hence G is an algebraic group of dimension 8 over k. Let
0G̃ be the set of all pairs (g, V2), where g ∈ G and V2 is a free A-submodule of V of
rank 1 such that gV2 = V2. For k = 1, 2, let Xk be the set of all A-submodules of V
that have dimension k as a k-vector space. Let G̃ be the set of all triples (g, V1, V2),
where g ∈ G, V1 ∈ X1, V2 ∈ X2, V1 ⊂ V2, gV1 = V1, gV2 = V2 and the scalars
by which g acts on V1 and V2/V1 coincide. We can regard 0G̃ as a subset of G̃ by
(g, V2) 
→ (g, εV2, V2). Note that G̃ is naturally an algebraic variety over k and 0G̃

is an open subset of G̃.
The group of units A′ of A is an algebraic group isomorphic to k∗ × k. Hence

S(A′) is defined. Let L1 ∈ S(S ′),L2 ∈ S(S ′). Let L = L1 � L2 ∈ S(A′ × A′),
E = L2 ⊗ L∗1 ∈ S(A′). Define f : 0G̃ → A′ ×A′ by f (g, V2) = (α1, α2), where
α1 ∈ A′ is given by gv = α1v for v ∈ V2 and α2 ∈ A′ is given by gv′ = α2v

′ for
v′ ∈ V/V2. Let L̃ = f ∗(L1 � L2), a local system on 0G̃. Define fi : 0G̃ → A′
(i = 1, 2) by f1(g, V2) = α1α2, f2(g, V2) = α1, where α1, α2 are as above. Then
L̃ = f ∗1 L1 ⊗ f ∗2 L. (We use 5(a).)

We shall assume that L is regular in the following sense: the restriction of E to
the subgroup T = {1+ εc; c ∈ k} of A′ is not isomorphic to Q̄l .

Lemma 10.

(a) G̃ is an irreducible, smooth variety and G̃ − 0G̃ is a smooth irreducible hyper-
surface in G̃.

(b) We have IC(G̃, L̃)|
G̃−0G̃

= 0.

Note that f1 : 0G̃→ A′ extends to the whole of G̃ by f1(g, V1, V2) = detA(g :
V → V ). Hence f ∗1 L1 extends to a local system on G̃ and we have IC(G̃, L̃) =
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f ∗1 L1 ⊗ IC(G̃, f ∗2 E). Hence to prove (b) it is enough to show that IC(G̃, f ∗2 E) is
zero on G̃− 0G̃.

Let Z (respectively, H ) be the fiber of the second projection G̃ → X1 (respec-
tively, G̃ − 0G̃ → X1) at V1 ∈ X1. Since G acts transitively on X1 it is enough to
show that Z is smooth, irreducible, H is a smooth, irreducible hypersurface in Z and
IC(Z, f ∗2 E) is zero on H . (The restriction of f2 to Z is again denoted by f2.)

Let e1, e2 be a basis of V such that V1 = kεe1. The subspaces V2 ∈ X2 such
that V1 ⊂ V2 are exactly the subspaces V

z′,z′′
2 = kεe1 + k(z′e1 + z′′εe2), where

(z′, z′′) ∈ k2 − {0}. An element g ∈ G is of the form

ge1 = a0e1 + b0e2 + a1εe1 + b1εe2,

ge2 = c0e1 + d0e2 + c1εe1 + d1εe2,

where ai, bi, ci, di ∈ k satisfy a0d0 − b0c0 �= 0.
The condition that gεe1 ∈ kεe1 is b0 = 0. The condition that gV z′,z′′

2 = V
z′,z′′
2

is that z′b1 + z′′d0 = a0z
′′ if z′ �= 0 (no condition if z′ = 0). The condition that

the scalars by which g acts on V1 and V
z′,z′′
2 /V1 coincide is a0 = d0 if z′ = 0 (no

condition if z′ �= 0).
We see that we may identify Z with

{(a0, c0, d0, a1, b1, c1, d1; z′, z′′) ∈ k7 × (k2 − {0})/k∗;
a0 �= 0, d0 �= 0, z′b1 = z′′(a0 − d0)}

and H with the subset defined by z′ = 0. In this description it is clear that Z is
irreducible, smooth and H is a smooth, irreducible hypersurface in Z. The function
f2 takes a point with z′ �= 0 to a0 + ε(a1 + z′′z′−1c0). To prove the statement on
intersection cohomology, we may replace Z by the open subset z′′ �= 0 containing
H . Thus we may replace Z by

Z1 = {(a0, c0, d0, a1, b1, c1, d1; z) ∈ k7 × k; a0 �= 0, d0 �= 0, zb1 = a0 − d0}
and H by the subset defined by z = 0. The function f2 is defined on Z1 −H by

a0 + ε(a1 + z−1c0) = (a0 + εa1)(1+ εz−1c0a
−1
0 ).

Thus f2 = f3f4, where f3 (respectively, f4) is defined on Z1 − H by a0 + εa1
(respectively, 1 + εz−1c0a

−1
0 ). Hence f ∗2 E = f ∗3 E ⊗ f ∗4 E . Now f3 extends to

Z1 hence f ∗3 E extends to a local system on Z1. We have IC(Z1, f
∗
3 E ⊗ f ∗4 E) =

f ∗3 E ⊗ IC(Z1, f
∗
4 E). It is enough to show that IC(Z1, f

∗
4 E) is zero on H . We make

the change of variable c = c0a
−1
0 . Then Z1 becomes

Z1 = {(a0, c, a1, b1, c1, d1; z) ∈ k7 × k; a0 �= 0, a0 − zb1 �= 0},
H is the subset defined by z = 0 and f4 : Z1 − H → A′ is given by 1 + εz−1c.
Let Z̃1 = {(a0, c, a1, b1, c1, d1; z) ∈ k7 × k} and let H1 be the subset of Z̃1 defined
by z = 0. Then Z1 is open in Z̃1 and f4 is well defined on Z̃1 − H1 by 1 + εz−1c.
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Hence f ∗4 E is well defined on Z̃1 − H1. It is enough to show that IC(Z̃1, f
∗
4 E) is

zero on H1. Let H ′ = {(c, z) ∈ k2; z = 0} and define f ′ : k2 − H ′ → A′ by
f ′(c, z) = 1 + εz−1c. It is enough to show that IC(k2, f ′∗E) is zero on H ′. Let P
be the projective line associate to k2. Then H ′ defines a point x0 ∈ P . Since f ′ is
constant on lines, it defines a map h : P − {x0} → A′. Since P is one-dimensional
we have IC(P, h∗E) = F , where F is a constructible sheaf on P whose restriction
to P − {x0} is h∗E . It is enough to show that

(c) the stalk of F at x0 is 0;
(d) Hi(P,F) = 0 for i = 0, 1.

(Indeed, (c) implies that IC(k2, f ′∗E) is zero at (c, 0) with c �= 0 and (d) implies that
IC(k2, f ′∗E) is zero at (0, 0).)

Consider the standard Fq -rational structures an k2, X,A′ and let F be the cor-
responding Frobenius map. We may assume that E is associated as in Section 5 to
(Fq, ψ), where ψ ∈ Hom(A′F , Q̄∗l ). For any m ∈ Z>0 there is a unique isomor-

phism φm : (Fm)∗E ∼→ E which induces the identity on the stalk of E at 1. The
characteristic function of E with respect to this isomorphism is a′ 
→ ψ(NFm/F (a

′)),
a′ ∈ A′Fm

. Since, by assumption, E |T is not isomorphic to Q̄l , ψ |T F is not a trivial
character. Hence ψ ◦ NFm/F : A′Fm → Q̄∗l is nontrivial on T Fm

. Now φm induces

an isomorphism φ′m : (Fm)∗h∗E ∼→ h∗E . We show that

(e)
∑

x∈PFm−{x0} tr(φ′m, (h∗E)x) = 0.

An equivalent statement is∑
(c,z)∈Fqm×F∗

qm

(ψ ◦NFm/F )(1+ εz−1c) = 0,

which follows from the fact that ψ ◦ NFm/F : A′Fm → Q̄∗l is nontrivial on T Fm
.

Introducing (e) in the trace formula for Frobenius, we see that

(f)
∑2

i=0(−1)i tr(φ′m,H i(P,F)) = tr(φ′m,Fx0),

where Fx0 is the talk of F at x0 and φ′m is in fact equal to φ′1m (for m = 1, 2, 3, . . . ).
By Deligne’s purity theorem, Hi(P,F) together with φ′1 is pure of weight i; by
Gabber’s theorem [BBD], Fx0 together with φ′1 is mixed of weight ≤ 0. Hence from
(f) we deduce that H 1(P,F) = 0, H 2(P,F) = 0 and dim H 0(P,F) = dim Fx0 .
By the hard Lefschetz theorem [BBD] we have dim H 0(P,F) = dim H 2(P,F). It
follows that H 0(P,F) = 0, hence Fx0 = 0. This proves (c), (d). The lemma is
proved.

Lemma 11. Define ρ : 0G̃ → G by (g, V2) 
→ g. Let K = ρ!L̃. Let G0 be the
open dense subset of G consisting of all g ∈ G such that g : εV → εV is regular,
semisimple. Let ρ0 : ρ−1(G0) → G0 be the restriction of ρ. Then ρ0!L̃ is a local
system on G0. We have dim supp HiK < dim G− i for any i > 0.
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The first assertion of the lemma follows from the fact that ρ0 is a double covering.
To prove the second assertion it is enough to show that, for i > 0, the setGi consisting
of the points g ∈ G such that dim ρ−1(g) = i and ⊕jH

j
c (ρ

−1(g), L̃) �= 0 has
codimension > 2i in G.

Consider the fiber ρ−1(g) for g ∈ G. We may assume that, with respect to a
suitable A-basis of V , g can be represented as an upper triangular matrix (

a b
0 c

) with
a, c in A′ and b ∈ A. (Otherwise, ρ−1(g) is empty.) There are five cases:

Case 1. a − d ∈ A′. Then ρ−1(g) consists of two points.
Case 2. a − d ∈ εA, b ∈ A′. Then ρ−1(g) is an affine line.
Case 3. a − d ∈ εA − {0}, b ∈ εA. Then ρ−1(g) is a disjoint union of two affine

lines.
Case 4. a = d, b ∈ εA− {0}. Then ρ−1(g) is an affine line.
Case 5. a = d, b = 0. Then ρ−1(g) is an affine line bundle over a projective line.

In Case 2, we may identify ρ−1(g), L̃|ρ−1(g) with P − {x0},F |P−{x0} in the proof of

Lemma 10. Then the argument in that proof shows that Hj
c (ρ

−1(g), L̃) = 0 for all
j . We see that G1 consists of all g as in Cases 3 and 4, hence G1 has codimension 3
in G. We see that G2 consists of all g as in Case 5, hence G2 has codimension 6 in
G. The lemma is proved. Note that without the assumption that L is regular, the last
assertion of the lemma would not hold. (There would be a violation coming from g

in Case 2.)

12

We show that

(a) ρ!L̃ = IC(G, ρ0!L̃).

Define ρ̃ : G̃ → G by ρ̃(g, V1, V2) = g. Clearly, ρ̃ is proper. Let j : 0G̃ → G

be the inclusion. We have ρ = ρ̃ ◦ j , hence ρ!L̃ = ρ̃!(j!L̃). By Lemma 10, we
have j!L̃ = IC(G̃, L̃) hence ρ!L̃ = ρ̃! IC(G̃, L̃). Since ρ̃ is proper, ρ̃! commutes
with the Verdier duality D. Hence D(ρ!L̃) = ρ̃!D IC(G̃, L̃). Hence D(ρ!L̃) equals
ρ̃! IC(G̃, L̃∗) up to a shift. Now the same argument that shows j!L̃ = IC(G̃, L̃)

shows also j!L̃∗ = IC(G̃, L̃∗). Hence, up to shift, D(ρ!L̃) equals ρ̃!j!L̃∗ = ρ!L̃∗.
Now the argument in Lemma 11 can also be applied to L̃∗ instead of L̃ and yields
dim supp Hiρ!L̃∗ < dim G − i for any i > 0. Thus, ρ!L̃ satisfies the defining
properties of IC(G, ρ0!L̃), hence it is equal to it. This proves (a).

We see that conjecture 8(a) holds for n = 2, r = 2.

13

If G is a connected affine algebraic group over k which is neither reductive nor
nilpotent, one cannot expect to have a complete theory character sheaves for G.
Assume for example that G is the group of all matrices
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[a, b] =
(
a b

0 1

)
with entries in k. The group G(Fq) (for the obvious Fq -rational structure) has (q−1)
one-dimensional representations and one (q − 1)-dimensional irreducible represen-
tation. The character of a one-dimensional representation can be realized in terms of
an intersection cohomology complex (a local system on G), but that of the (q − 1)-
dimensional irreducible representation appears as a difference of two intersection
cohomology complexes, one given by the local system Q̄l on the unipotent radical of
G and one supported by the unit element of G. A similar phenomenon occurs for G
as in Section 9 and for a (q2 − 1)-dimensional irreducible representation of G(Fq).
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Summary. We discuss the question of what quantum methods (J -holomorphic curves and
quantum homology) can tell us about the symplectomorphism group and its compact sub-
groups. After describing the rather complete information we now have about the case of the
product of two 2-spheres, we describe some recent results of McDuff–Tolman concerning the
symplectomorphism group of toric manifolds. This leads to an interpretation of the relations
in the quantum cohomology ring of a symplectic toric manifold in terms of the Seidel elements
of the generating circles of the torus action.
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manifold, toric automorphism group

Subject Classifications: 53D35, 57R17

1 Introduction

1.1 Overview

The group Symp(M,ω) of symplectomorphisms of a symplectic manifold (M,ω) is
an interesting but largely unknown group. The manifold for which we have the most
information is S2 × S2 with its family of symplectic forms ωλ := λπ∗1 (σ )+ π∗2 (σ ),
where λ ≥ 1. We begin by discussing recent results due to Abreu, McDuff, and
Anjos–Granja on the homotopy type of the corresponding family of groups

Gλ := Symp(S2 × S2, ωλ).
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In all cases that have so far been calculated, the homotopy groups of Gλ are generated
by its compact subgroups. These appear as the automorphism groups of the different
toric structures on S2 × S2.

As a first step towards generalizing these results, one can look at the relation of
the toric automorphism group Aut(M, T ) of a toric manifold (M, T ) to Symp(M,ω).
Recent work by McDuff–Tolman gives examples where the inclusion of Aut(M, T )

does not induce an injection on π1. Nevertheless, our work suggests that the map
π1(Aut(M, T ))→ π1 Symp(M,ω) is noninjective only in cases where the manifold
M has very special structure. After discussing such questions, we explain a simple
way of understanding the corrections needed to Batyrev’s formula for the quantum
cohomology ring of a non-Fano toric manifold. These come from the Seidel elements
of the generating circles of the torus action. In the nef case they give a new perspective
on Givental’s change of variable formula that relates the I - and J -functions in his
proof of the mirror conjecture.

This paper is rather narrowly focussed; more general information on symplec-
tomorphism groups may be found in the survey articles [16, 17]. For background
material on symplectic topology see McDuff–Salamon [18, 19].

1.2 Preliminaries

Consider a closed manifold M of dimension 2n and its symplectomorphism group
Symp(M,ω), consisting of all diffeomorphisms that preserve the symplectic form.
The identity component Symp0(M,ω) contains a normal subgroup, the Hamiltonian
group Ham(M,ω), made up of the time-1 maps of the flows φH

t , t ≥ 0, generated
by time-dependent Hamiltonian functions H : M × [0, 1] → R. If H 1(M;R) = 0,
then Ham(M,ω) = Symp0(M,ω); in general it is a subgroup of codimension equal
to dim H 1(M;R). In all cases, the group G := Ham(M,ω) may be considered as a
Fréchet Lie group whose Lie algebra consists of all normalized Hamiltonians:

Lie G =
{
F : M → R

∣∣∣∣ ∫
M

Fωn = 0

}
.

As Reznikov pointed out in [22] the formula

〈F,G〉 :=
∫
M

FGωn

defines a nondegenerate form on Lie G that is invariant under the adjoint action of
G, and so is analogous to a Killing form. Thus, although G := Ham(M,ω) is an
infinite-dimensional group, its Lie algebra behaves like the Lie algebra of a compact
Lie group, and one might hope that this is reflected in the topological properties of
G. Investigating this is one of the ideas behind this paper.

We first observe that the above invariant form may be used to define an analog of
Chern–Weil theory for Hamiltonian bundles (i.e., bundles with fiber M and structural
group G = Ham). Guillemin–Lerman–Sternberg pointed out in [8] that given any
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such bundle M → P → B the fiberwise symplectic form ω has a closed extension
�. One can normalize the class [�] by requiring that

π!([�]n+1) =
∫
M

[�]n+1 = 0 ∈ H 2(B),

where
∫
M

denotes the integral over the fiber of π : P → B. Such a form � defines
an Ehresmann connection on the bundle P → B whose horizontal spaces are the
�-orthogonal complements to the fiber. It turns out that the holonomy of this con-
nection is Hamiltonian. Moreover, given vector fields v,w ∈ TbBG with horizontal
lifts v*, w*, the function �(v*,w*)(x) restricts on each fiber Mb := π−1(b) to an
element F(v,w) ∈ Lie(G) that represents the curvature �̃(v,w) of this connection
at (v,w). By making finite-dimensional approximations, one can make sense of this
construction on the universal Hamiltonian bundle

(M,ω)→ (MG, �)→ BG.

Any Ad-invariant polynomial Ik : Lie(G)⊗k → R therefore gives rise to a charac-
teristic class cI

k in H ∗(BG), namely the class represented by the closed real-valued
2k-form Ik ◦ �̃k . Just as in the case of U(n) we may define Ik by using the Killing
form, namely

Ik(F1 ⊗ · · · ⊗ Fk) :=
∫
M

F1 · · ·Fkω
n.

We claim that up to a constant cI
k equals the class defined by the fiberwise integral

µk :=
∫
M

[�]n+k ∈ H 2k(BG). (1.1)

The classes cI
k are variants of the ones defined by Reznikov [22], while the µk were

considered by Januszkiewicz–Kȩdra in [9]. The following proof is taken from Kȩdra–
McDuff [10].

Lemma 1.1. This class cI
k is a nonzero multiple of µk .

Proof. Let v1, . . . , v2k be vector fields on BG with horizontal lifts v*1, . . . , v
*
2k . Then

if the wj are tangent to the fiber at x ∈ MG , we find

�n+k(w1, . . . , w2n, v
*
1, . . . , v

*
2k)(x) =

∑
σ

ε(σ )

(
n+ k

n

)
× F1,σ (x) · · ·Fk,σ (x)ω

n(w1, . . . , w2n),

where, for each permutation σ of {1, . . . , 2k}, ε(σ ) denotes its signature and

Fj,σ (x) := �(v
*

σ(2j−1), v
*

σ(2j))(x) = �̃(vσ(2j−1), vσ(2j))(x).

Therefore, (π!�n+k)(v1, . . . , v2k) = cIk ◦ �̃k(v1, . . . , v2k), as claimed. ��
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2 The group of symplectomorphisms of (S2 × S2, ωλ)

Consider the group Gλ := Symp(S2×S2, ωλ) defined above. We need only consider
the range λ ≥ 1 since G1/λ is isomorphic to Gλ (because ω1/λ is a scalar multiple
of ωλ). We shall think of S2 × S2 as a trivial S2-bundle over S2 where the base is
identified with the first (i.e., the larger) factor.

Gromov proved in [7] that

G1 � SO(3)× SO(3), Gλ �� G1 if λ > 1,

where � denotes homotopy equivalence. Abreu [1] calculated H ∗(Gλ;Q) for 1 <

λ ≤ 2; his calculation was completed by Abreu–McDuff [2] to all λ. The following
theorem combines this with some results from McDuff [15] and very recent work by
Abreu, Granja, and Kitchloo.

Theorem 2.1.

(i) The homotopy type of Gλ is constant on the intervals k < λ ≤ k + 1, k ≥ 1.
(ii) H ∗(Gλ;Q) ∼= �(t, x, y) ⊗ Q[wk] when k < λ ≤ k + 1. Here deg t = 1,

deg x = deg y = 3, and degwk = 4k.
(iii) H ∗(BGλ;Q) = Q[T ,X, Y ]/T (X − Y + T 2) . . . (k4X − k2Y + T 2), where

T ,X, Y are appropriate deloopings of t, x, y, respectively.

We now explain the relation between statements (ii) and (iii) and their connection
to the different toric structures on S2 × S2. The generator t in (ii) is dual to the
element τ ∈ π1(Gλ) represented by the circle action α on S2 × S2 ∼= P(O(2)⊕ C)

given by rotating the fiber of the line bundle O(2)→ CP1. (Here we are identifying
S2 × S2 with the second Hirzebruch surface P(O(2) ⊕ C), where O(2) and C are
bundles over S2 = CP1. We denote by J1 the corresponding complex structure on
S2 × S2.)

The generators x, y in (ii) are dual to the 3-spheres ξ, η in Gλ given by the inclusion
of each factor of SO(3)× SO(3) in Gλ. Thus x+ y is dual to the diagonal copy ξ + η

of SO(3) in SO(3)× SO(3). We claim that that this commutes with the circle action
α. Indeed, one can identify S2 × S2 with the toric manifold P(O(2)⊕ C) in such a
way that its toric (or Kähler) automorphism group K1 := Aut(J1) coincides with the
product SO(3)×S1 of α with the diagonal copy of SO(3): see [2]. In this realization
α has the formula

τt (z, w) 
→ (z, Rt,zw),

where Rt,z : S2 → S2 is the rotation through angle 2πt with axis through the point z
and its antipode. Thus α fixes the points on the diagonal and antidiagonal in S2× S2

and commutes with the diagonal SO(3) action.
If 1 < λ ≤ 2, then one can show that α does not commute with the individual

SO(3)-factors ξ, η even up to homotopy. More precisely, one can show that the
remaining generator w1 ∈ H 4(Gλ) is dual to the element [ξ, τ ] ∈ π4(Gλ) given by
the Samelson product:
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S3 × S1 (ξ,τ ) 
→ξτξ−1τ−1

−−−−−−−−−−→ Gλ⏐⏐� =
⏐⏐�

S4 := S3 × S1/S3 ∨ S1 [ξ,τ ]−−−−→ Gλ.

Since Samelson products deloop to Whitehead products, the element w1 is not trans-
gressive but rather gives rise to the relation T (X − Y + T 2) = 0 in H ∗(BGλ).

When λ > 2 there is another Hirzebruch structure on S2 × S2 that supports a
Kähler structure in the class [ωλ], namely the complex structure J2 coming from the
identification of S2 × S2 with P(O(4) ⊕ C). The autmorphism group Aut(J2) of
this structure is again isomorphic to SO(3)× S1 but its image K2 in Gλ contains the
rational homotopy classes ξ + 4η, τ . Therefore, the class τ can be represented in Gλ

by a circle action in K1 that commutes with ξ + η and by a circle action in K2 that
commutes with ξ + 4η. Hence by the linearity of the Samelson product [ξ, τ ] now
vanishes in π∗(Gλ). Therefore, one can define the higher product [ξ, ξ, τ ] and it turns
out that this does not vanish when 2 < λ ≤ 3. Similarly, when k < λ ≤ k + 1 there
are k + 1 toric structures on S2 × S2 and wk is dual to a kth order Samelson product
of the form [ξ, . . . , ξ, τ ].

2.1 The integral homotopy type of Gλ

We now explain some recent work by Anjos [3] and Anjos–Granja [4] that gives a
beautiful description of the full homotopy type of Gλ in the first interesting case,
namely 1 < λ ≤ 2. This description arises naturally from the geometry that is the
basis of the proof of Theorem 2.1. The arguments go back, of course, to Gromov’s
original paper on J -holomorphic curves. Recall that an almost complex structure
J on a symplectic manifold (M,ω) is said to be tamed by ω if ω(v, Jv) > 0 for
all nonzero v ∈ TM . Further, a map f : S2 → M is said to be J -holomorphic if
df ◦ j = J ◦ df , where j is the standard complex structure on S2. For short, one
sometimes calls such f a J -sphere.

Gromov looked at the contractible space

J λ

of all almost complex structures J on M := S2×S2 that are tamed by ωλ. He proved
that when λ = 1 every J ∈ J 1 has the same pattern of holomophic curves as does
the product structure J0 := j×j . In particular, there are two foliations by J -spheres,
one consisting of spheres in the class A := [S2 × pt] and the other of spheres in the
class B := [pt × S2]. For each such J one can think of these spheres as providing
“coordinates’’ on M = S2 × S2, i.e., there is a diffeomorphism ψJ : M → M that
takes the standard foliations of M by the spheres S2×pt, pt×S2 to the two foliations
by J -spheres. This diffeomorphism ψJ is not quite symplectic, but has a canonical
homotopy to an element ψ ′J ∈ G1. Moreover, ψ ′J is independent of choices modulo
the subgroup SO(3)× SO(3) = Aut(J0). It follows that the sequence of maps
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Aut(J0) −→ G1 −→ J

is a fibration up to homotopy, that is split by the map J 
→ ψ ′J . Since J is contractible,
we arrive at Gromov’s result that Aut(J0) � G1.

When 1 < λ ≤ 2 it is no longer true that all elements in J λ have the same pattern
of J -spheres. There is now a second model, namely the pattern formed by the J1-
curves. In this case there is only one foliation, by spheres in the classB = [pt×S2] of
the smaller sphere and there is an isolated curve in the class A−B of the antidiagonal
(the rigid curve P(O(2)⊕0) in the Hirzebruch surface). In this case there can be noA-
curves, by positivity of intersections: if A1, A2 are represented by distinct connected
J -curves, then one has A1 · A2 ≥ 0. Thus

J λ = U0 ∪ U1,

where, for i = 0, 1, the set Ui consists of all J whose J -spheres are like those of Ji .
This decomposition has the following properties:

• U1 is a codimension 2-submanifold of J λ. In other words, there is a neighborhood
NU1 of U1 in J λ such that

NU1 \ U1 → U1

is an S1-bundle.
• Aut(J1) = SO(3)× S1.

• There are homotopy equivalences

Gλ/Aut(J0) � U0, Gλ/Aut(J1) � U1.

The following theorem shows that Gλ is homotopic to an amalgamated free product
of the two Lie groups Aut(J0) and Aut(J1).

Theorem 2.2. Gλ is homotopy equivalent to the pushout of the diagram

SO(3) −→ Aut(J0)

↓
Aut(J1)

in the category of topological groups.

To prove this it suffices to show that the pushout of the quotients

Gλ/ SO(3) −→ Gλ/Aut(J0)

↓
Gλ/Aut(J1)

in the homotopy category is contractible. But the above remarks show that this is
equivalent to the pushout of the diagram
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NU1 \ U1 −→ U0
↓
U1.

Since all the maps here are cofibrations (inclusions), the pushout is simply the con-
tractible set U0 ∪ U1 = J λ.

It is very likely that this work can be extended to all λ > 1, although the resulting
pushout diagrams will be more complicated. As already mentioned when k < λ ≤
k+1, there are k+1 different integrable complex structures J0, . . . , Jk that are tamed
byωλ, and the corresponding Lie groups Aut(Ji) define the structure of the generators
and relations for the rational homotopy type of Gλ and BGλ. One can show (using
a gluing argument) that there is a corresponding stratification of J λ. Therefore, all
the ingredients are in place except that one has to find a pushout diagram (or other
categorical construction) that corresponds to a higher order Whitehead product.

Similar results are true for the nontrivial S2-bundle over S2, i.e., the one-point
blowup of CP2, and also, by recent work of Lalonde–Pinsonnault [13], for the one-
point blowup of S2 × S2 in the range 1 < λ ≤ 2. Here are two open problems:

• What happens with the many-point blowup of CP2?
• What is the homotopy type of Symp(T 2 × S2, λσ0 + σ1) for λ > 0?

Lalonde and Pinsonnault are working on the first of these problems. Some infor-
mation on the second may be found in McDuff [15] and Buse [6]. In particular, the
homotopy type of the group is constant for λ in the range 0 < λ ≤ 1. However, it is
not yet known what this group is, even rationally.

3 Higher-dimensional toric manifolds

A 2n-dimensional symplectic manifold (M,ω) is said to be toric if it admits a Hamil-
tonian action of an n-torus T := T n. Such a manifold (M, T ) can always be realised
as the symplectic reduction M := CN//T ′ at some element ν ∈ (t′)∗ ∼= RN−n of
a high-dimensional Euclidean space CN by the action of a (N − n)-dimensional
subtorus T ′ of the standard N -torus T N ⊂ U(N). Further, T can be identified with
the quotient T N/T ′ and the toric autmorphism group Aut(M, T ) is the quotient by
T ′ of the centralizer of T ′ in U(N):

Aut(M, T ) := Cent(T ′)/T ′.

Here is an example. Let M be the symplectic quotient C5//T ′, where T ′ is a
2-torus whose generators ξ1, ξ2 act with the weights (1, 1, 1, 0, 0) and (5, 1, 0, 1, 1),
respectively. Quotienting out by ξ2 gives the vector bundle O5 ⊕ O1 ⊕ C → CP1,
and quotienting that by ξ1 gives the projectivization. Thus M is a bundle over CP1
with fiber CP2. M can also be written as the (ordinary) quotient S3 ×S1 CP2, where
S1 acts on CP2 via the circle diag(λ3, λ−1, λ−2), λ ∈ S1, in PSU (3). Since this circle
contracts in PSU (3), M is diffeomorphic to the product, and it is shown in McDuff–
Tolman [21] that if we choose any of its toric Kähler forms, it is symplectomorphic
to a product (CP1 × CP2, ωµ), where
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ωµ := µσCP1 + σCP2 , µ > 3.

(Here we assume that the forms σCPi are normalized to have integral 1 over the
projective line.)

Observe that the centralizer of T ′ is isomorphic to S1 × S1 × S1 ×U(2), so that
Aut(M, T ) = T 3 × U(2)/T ′. Thus π1(Aut(M, T )) has rank 2.

The product (CP1 × CP2, ωµ) has many toric structures, denoted (Ma,b, Ta,b),
that are obtained similarly but with ξ2 allowed to have any weights (a, b, 0, 1, 1)
such that

a ≥ b ≥ 0, a + b = 3k, 3µ > 2a − b.

Thus for 1 < µ ≤ 2 the possibilities for (a, b) are (0, 0), (2, 1) and (3, 3), while for
2 < µ ≤ 3 one must add to these the pairs (3, 0), (4, 2), (5, 4), and (6, 6).

It would be very interesting to understand the relation of the different Lie sub-
groups Aut(Ma,b, Ta,b) to the homotopy groups of Gµ := Symp(M,ωµ). One cannot
hope for such complete information as in the four-dimensional case since the analysis
there was based on our exhaustive knowledge of the J -curves. Nevertheless, the
more elementary aspects of the four-dimensional case do generalize. For example,
the group π1(Gµ) for µ > 1 still contains an element of infinite order that does not
appear in G1. This was discovered by Seidel [24]. This element is realised as the
circle action corresponding to a suitable facet of the moment polytope of (M2,1, T2,1)

and hence appears in Aut(M2,1, T2,1).
In general, given a symplectic toric manifold (M, T , ωµ), one can try to under-

stand the induced map
π∗ Aut(M, T )→ π∗(Gµ)

where Gµ := Symp0(M,ωµ)? For example, is it always injective, at least rationally?
How does it vary with the cohomology class of [ωµ]?

The following result from [21] applies to generic low-dimensional toric manifolds.

Proposition 3.1. If dim M ≤ 6 and Aut(M, T ) = T , then π1(T ) injects into π1(Gµ)

for all forms ωµ.

The proof is elementary, using only the geometry of the moment polytope. One
might hope that this result would generalize to all dimensions, but that is not so;
it already fails in dimension 8. One important reason for this lack of injectivity
is demonstrated in the example (Ma,b, Ta,b) discussed above. We saw earlier that
π1(Aut(M, T )) has rank 2 when a > b > 0. On the other hand this automorphism
group is contained in the group Gfib of diffeomorphisms of M that commute with
the projection to CP1 and restrict to symplectomorphisms on each fiber pt × CP2.
Since Symp0(CP2) � PSU (3) (by Gromov), Gfib deformation retracts to the product
of the group of orientation preserving diffeomorphisms of the base with the group of
fiberwise diffeomorphisms that fix each fiber:

Gfib � SO(3)×Map(S2,PSU (3)).

Hence π1(Gfib) has rank 1. Although the elements of Gfib are not symplectomor-
phisms, a standard Moser-type argument shows that any compact subset of Gfib can
be homotoped into Gµ for sufficiently large µ. It follows that
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π1(Aut(M2,1, T2,1))→ π1(Gµ)

is not injective for sufficiently large µ. By directly constructing a homotopy, one can
show that in fact it is not injective for all µ > 1: see [21].

Note that Aut(M, T ) is always a maximal connected compact subgroup of
Symp0(M) because its subgroup T is a maximal connected abelian subgroup of
Symp0(M). Therefore, by analogy with what happens in the finite-dimensional case
(where a simple G deformation retracts to its maximal compact subgroup), one would
expect that at the very least the homotopy carried by Aut(M, T )would not completely
disappear in Ham(M,ω). The next result from Kȩdra–McDuff [10] gives some sup-
porting evidence.

Theorem 3.2. Let (M,ω) be a symplectic manifold of dimension 2n and set G :=
Ham(M,ω). Suppose given a nonconstant homomorphism α : S1 → G that rep-
resents the zero element in π1(G) and so extends to a map α̃ : D2 → G. Define
ρ ∈ π3(G)⊗Q by

S3 := (D2 × S1)/((D2 × {1}) ∨ (∂D2 × S1))→ G, (3.1)

(z, t) 
→ [̃α(z), α(t)] ,

where the bracket [φ,ψ] denotes the commutator φψφ−1ψ−1. Then ρ �= 0 and is
independent of the choice of extension α̃. Moreover, ρ transgresses to an element
ρ ∈ π4(BG)⊗Q with nonzero image in H4(BG).

This is proved by showing that the characteristic class µ2 defined in (1.1) is
nontrivial on ρ. As an example, if α is a nonzero element in the kernel of the map
π1(Aut(M2,1, T2,1))→ π1(Gµ), then ρ is represented in the PSU (3)-factor of

Aut(M0,0, T0,0) ∼= PSU (3)× SO(2).

We conclude with several remarks.

• Because the element ρ above is detected by a characteristic class that exists on all
simply connected symplectic manifolds, it is very robust and persists under small
variations of the class [ω] of the form. This should be contrasted with the elements
wk of Theorem 2.1 that disappear under appropriate perturbations of [ω]. Thus
these elements are quite different in nature even though they are constructed in
ostensibly similar ways, i.e., via commutators.

• In the case of the toric manifolds (Ma,b, Ta,b, ω
µ) it would be interesting to work

out the relation between the groups Gµ and the fiberwise diffeomorphism group
Gfib. There is an analogous question in the case (S2 × S2, ωλ). But here one can
use the existence of J -spheres in the fiber class B to define natural maps Gλ → Gλ′

whenever λ < λ′ and can show that

lim
λ→∞Gλ � Gfib.

In the six-dimensional case such maps do not seem to exist. Nevertheless, one still
should be able to make sense of the limit as µ→∞ and to investigate its relation
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to the group Gfib. In this case, of course, there is no symmetry between µ and 1/µ
and so one could similarly consider the limit as µ→ 0. This should be related to
the group of fiberwise diffeomorphisms of the fibration CP1 × CP2 → CP2.

• An interesting question in the six-dimensional case is the extent to which J -spheres
can give useful information. One can no longer use their geometry; for example,
spheres in the class [CP1 × pt] need not form the leaves of a foliation. Nev-
ertheless, one can get information from quantum cohomology as in Seidel [24].
Such methods allow one to show that the elements in π∗(Gfib) ⊗ Q coming from
π∗(�2(PSU (3)))⊗Q do not appear in Gµ for µ ≤ 1 though they are there when
µ > 1. Buse [6] has a different approach to these problems that uses equivariant
Gromov–Witten invariants.

4 Quantum cohomology of toric manifolds

Consider a compact symplectic manifold (M,ω) and its Hamiltonian group G :=
Ham(M,ω). One very useful tool in understanding π1(G) is Seidel’s representation

S : π1(G)→ Units(QH∗(M))

of π1(G) in the group of multiplicative units in the quantum cohomology of M . Here
we use the coefficients � := �univ[q, q−1] for quantum cohomology QH∗(M) :=
H ∗(M) ⊗ �, where q is a variable of degree 2 and �univ is a generalized Laurent
series ring in a variable t of degree 0:

�univ :=
{∑
κ∈R

rκ t
κ

∣∣∣∣ rκ ∈ Q, #{κ < c | rκ �= 0} <∞ ∀c ∈ R

}
.

Thus typical elements in QH∗(M) have the form
∑

d,κ ad,κq
d tκ where ad,κ ∈ H ∗(M)

satisfy the same finiteness condition as do the rκ .
Given an element φ ∈ π1(G), the element S(φ) is constructed as follows. First

consider the Hamiltonian fibration

(M,ω) −−−−→ (Pφ,�)
π−−−−→ S2

whose clutching function is a representing loop {φt } for φ. Thus Pφ is the union
of two copies of D2 × M whose boundaries are identified via {φt }. It carries two
canonical cohomology classes, u ∈ H 2(Pφ) which is the class of the coupling form
and cVert

1 ∈ H 2(Pφ), the first Chern class of the vertical tangent bundle.
As mentioned in §1.2, the fiberwise form ω has a closed extension � that we

may assume to be symplectic by adding to it the pullback of a suitable area form on
the base. Choose an �-tame almost complex structure J̃ on Pφ that preserves the
tangent bundle to the fiber and projects under π to the standard complex structure on
S2. Then, because the fibers of π are J̃ -holomorphic, every J̃ -sphere f : S2 → Pφ

that represents a section class Ã in Pφ (i.e., a class such that Ã ∩ [M] = 1) may



Symplectomorphism Groups and Quantum Cohomology 467

be parametrized as a section. Denote by M(Ã, J̃ ) the space of all such sections.
In good cases this is a manifold with boundary of codimension ≥ 2, so that its
intersection with a fixed fiber [M] represents a homology class in M which we denote
αÃ := [M(Ã, J̃ )] ∩ [M]. In general, this homology class is defined using Gromov–
Witten invariants in P :

αÃ ·M β = GWP
Ã,3

([M], [M], i∗(β)) ∀β ∈ H∗(M).

Here [M] ∈ H∗(P ) denotes the homology class of a fiber and i : M → P is the
inclusion of a fiber. Then we define

S(φ) :=
∑
Ã

PD(aÃ)⊗ qcVert
1 (Ã)tu(Ã).

One can show that this sum satisfies the requisite finiteness condition and so represents
an element in QH∗(M) = H ∗(M) ⊗ � of degree 0. Further, the image S(0) of
the constant loop is the multiplicative unit 1 ∈ H ∗(M) ⊂ QH∗(M), and a gluing
argument shows that

S(φ + ψ) = S(φ) ∗ S(ψ),

where ∗ denotes quantum multiplication. (Proofs in various contexts may be
found in Seidel [23], Lalonde–McDuff–Polterovich [12], McDuff [14] and McDuff–
Salamon [19]. We denote the group operation in π1(G) by + since this is an abelian
group.)

In general it is not easy to calculate S(φ). The following result is proved in
McDuff–Tolman [20]. It applies when φ is represented by a circle action t 
→ φt .
Denote by K : M → R the normalized moment map of this action (i.e.,

∫
M

Kωn =
0), and by

Xmax := K−1(max K)

the maximal fixed point set. Further, if J is an S1-invariant and ω-tame almost
complex structure then we say that (M, J ) is Fano (respectively, nef) if c1(TM, J )

is positive (respectively, nonnegative) on every J -sphere.

Theorem 4.1. Suppose that φK is represented by a circle action with normalized
moment map K . Suppose further that the weights of the linearized action at the
maximal fixed point component Xmax are 0 or −1. Then

S(φK) = PD[Xmax] ⊗ q−1t−max K +
∑

κ>−max K,d

ad,κ ⊗ qdtκ .

If (M, J ) is Fano all the higher order terms ad,κ ∈ H ∗(M) vanish, while if (M, J )

is nef they vanish unless deg(ad,κ ) ≤ 2.

Again following [20], we now explain what this theorem tells us about the quantum
cohomology of a symplectic toric manifold (M, T ). We begin by reviewing the
structure of the usual cohomology ring. Denote the Lie algebra of T by t and its
dual by t∗. Let ' : M → t∗ be the normalized moment map for the T -action, i.e.,
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each of its components is mean normalized. The image of ' is a convex polytope
� ⊂ t∗, and we denote its facets (the codimension one faces) by D1, . . . , DN and
the outward primitive integral normal vectors by η1, . . . ηN ∈ t. Let � be the set of
subsets I = {i1, . . . , ik} ⊆ {1, . . . , N} for which Di1 ∩ · · · ∩ Dik �= ∅. Define two
ideals in Q[x1, . . . , xN ]:
P(�) =

〈∑
(ξ, ηi)xi

∣∣∣ ξ ∈ t∗
〉

and SR(�) = 〈xi1 · · · xik | {i1, . . . , ik} /∈ �〉.
A subset I ⊆ {1, . . . , N} is called primitive if I is not in � but every proper subset
is. Clearly,

SR(�) = 〈xi1 · · · xik | {i1, . . . , ik} ⊆ {1, . . . , N} is primitive〉.
The following result is well known.

Proposition 4.2. The map that sends xi to the Poincaré dual of '−1(Di) (which we
shall also denote by xi ∈ H 2(M)) induces an isomorphism

Q[x1, . . . , xN ]/(P (�)+ SR(�)) ∼= H ∗(M,Q). (4.1)

Moreover, there is a natural isomorphism between H2(M;Z) and the set of tuples
(a1, . . . , aN) ∈ ZN such that

∑
aiηi = 0, under which the pairing between such an

element of H2(M,Z) and xi is ai .

The linear functional ηi is constant on Di ; let ηi(Di) denote its value. Under the
isomorphism of (4.1) (extended to real coefficients),

[ω] =
∑
i

ηi(Di)xi and c1(M) =
∑
i

xi . (4.2)

Note also that each element ηi lies in the integer lattice of t and so corresponds to a
circle action λi on M . By Theorem 4.1,

S(λi) = yi ⊗ q−1t−ηi(Di) ∈ Units(QH∗(M)),

where the element yi has the form xi +∑κ>0 ad,κq
d tκ .

We are now ready to examine the quantum cohomology of a toric variety. Given
any face of �, let Dj1 , . . . , Dj
 be the facets that intersect to form this face. The dual
cone is the set of elements in t which can be written as a positive linear combination of
ηj1 , . . . , ηj
 . Every vector in t lies in the dual cone of a unique face of �. Therefore,
given any subset I = {i1, . . . , ik} ⊆ {1, . . . , N} there is a unique face of � so that
ηi1 + · · · + ηik lies in its dual cone. Let Dj1 , . . . , Dj
 be the facets that intersect to
form this unique face. Then there exist unique positive integers m1, . . . , m
 so that

ηi1 + · · · + ηik −m1ηj1 − · · · −m
ηj
 = 0.

Batyrev showed that if I is primitive the sets I and J = {j1, . . . , j
} are disjoint.
Let βI ∈ H2(M,Z) be the class corresponding to the above relation. By (4.2), we
see that
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c1(βI ) = k −m1 − · · · −m
,

and

ω(βI ) = ηi1(Di1)+ · · · + ηik (Dik )−m1ηj1(Dj1)− · · · −m
ηj
(Dj
).

Since ηi1 + · · · + ηik = m1ηj1 + · · · + m
ηj
 , the corresponding circle actions are
also equal. Using the fact that the Seidel representation is a homomorphism, we find

yi1 ∗ · · · ∗ yik ⊗ q−kt−ηi1 (Di1 )−···−ηik (Dik
)

= yj1
m1 ∗ · · · ∗ yj
m
 ⊗ q−m1−···−m
t−m1ηj1 (Dj1 )−···−m
ηj
 (Dj


).

Therefore,

yi1 ∗ · · · ∗ yik − yj1
m1 ∗ · · · ∗ yj
m
 ⊗ qc1(βI )tω(βI ) = 0.

Since x1, . . . , xN generate H ∗(M), the natural homomorphism

+ : Q[x1, . . . , xN ] ⊗�→ QH∗(M)

which takes xi to the Poincaré dual of '−1(Di) is surjective. To compute QH∗(M),
we need to find the kernel of +. It is not hard to check that there is

Yi = xi + higher order terms ∈ Q[x1, . . . , xN ] ⊗� (4.3)

such that +(Yi) = yi . Define an ideal SRY (�) ⊂ Q[x1, . . . , xN ] ⊗� by

SRY (�)

= 〈Yi1 · · ·Yik − Yj1
m1 · · ·Yj
m
 ⊗ qc1(βI )tω(βI ) | I = {i1, . . . , ik} is primitive}〉,

(4.4)

where the Yi are as in (4.3). Note that SRY (�) depends on the Yi . Additionally, even
if yi is known, it is not in general possible to describe Yi without prior knowledge
of the ring structure on QH∗(M). On the other hand, SRY is clearly contained in the
kernel of +. Moreover, Batyrev shows that ω(βI ) > 0 for all primitive I . Hence we
conclude the following.

Proposition 4.3. Let QH∗(M) denote the small quantum cohomology of the toric
manifold (M,ω) with coefficients � = �univ[q, q−1]. The map which sends xi to
the Poincaré dual of '−1(Di) induces an isomorphism

Q[x1, . . . , xN ] ⊗�/〈P(�)+ SRY (�)〉 ∼= QH∗(M).

In the Fano case, Theorem 4.1 states that the higher order terms in Yi vanish.
Therefore, we recover the formula for the small quantum cohomology of a Fano toric
variety given by Batyrev and proved by Givental.

In the nef case there may be higher order terms in the Seidel elements yi . However,
these terms only involve cohomology classes ad,κ of degree ≤ 2. Therefore, ad,κ
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either lifts to the unit 1 in Q[x1, . . . , xN ] ⊗ � or to some linear combination of the
xi that is unique modulo the additive relations P(�). Hence we do not need to know
the quantum multiplication in M in order to define the Yi . The rest of the information
needed to define the relations P(�) and SRY (�) is contained explicitly in �.

Thus in the nef case, once one knows the Seidel elements �(�i), i = 1, . . . , N ,
there is an easy formula for the quantum cohomology ring based on the combinatorics
of the moment polytope�. This substitution of theYi for the xi in the Stanley–Reisner
ring SRY should be related to Givental’s change of variable formulae as discussed
in [5, 11.2.5.2].

It should also be possible to calculate the Yi by an explicit formula from the
polytope. In [20] we show that its terms are generated by certain chains of edges in
the polytope, and that the coefficient of each such term is determined locally, i.e., by a
neighborhood of the chain. However we do not attempt to calculate these coefficients.
Even in nef examples in four dimensions, the chains can be quite complicated.

Observe finally that here we are working with the stripped down coefficient ring
�univ[q, q−1]. However, as described in McDuff–Salamon [19, Chapter 11.4], it is
possible to obtain a similar description of the quantum cohomology for (M, T ) with
coefficients in the usual Novikov ring (the completed group ring of H2(M;Z)/tor)
by varying the cohomology class of [ω].
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In the present paper we analyze algebraic structures arising in Yang–Mills theory.
The paper should be considered as a part of a project started with [15] and devoted
to maximally supersymmetric Yang–Mills theories. In this paper we collect those
of our results which hold without the assumption of supersymmetry and use them
to give rigorous proofs of some results of [15]. We consider two different algebraic
interpretations of Yang–Mills theory—in terms of A∞-algebras and in terms of repre-
sentations of Lie algebras (or associative algebras). We analyze the relations between
these two approaches and calculate some Hochschild (co)homology of the algebras
in question.

1 Introduction

Suppose g is a Lie algebra equipped with a nondegenerate inner product 〈., .〉. We
consider a Yang–Mills field A as a g-valued one-form on a complex D-dimensional
vector space V equipped with a symmetric bilinear inner product (., .). (All vector
spaces in this paper are defined over the complex numbers.) We write this form as
A =∑D

i=1 Aidx
i , where x1, . . . , xD is an orthogonal coordinate system on V which

is fixed for the rest of the paper.
We assume that the field A interacts with bosonic and fermionic matter fields φ,ψ

which are functions on the vector space V with values in '⊗g,�S⊗g, respectively.
The symbol � stands for the change of parity. In other words matter fields transform
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according to the adjoint representation of g. The linear space ' is equipped with
a symmetric inner product (., .), the linear space S is equipped with a symmetric
bilinear map � : Sym2(S) → V. An important example is 10D SUSY Yang–Mills
theory, where D = 10, � = 0, V and S are the spaces of the vector and spinor
representations of SO(10), and � stands for the SO(10)-intertwiner Sym2 S → V.

We will always consider the action functional S as a holomorphic functional on
the space of fields; to quantize one integrates exp(−S) over a real slice in this space.
(For example, if g = gl(n), one takes u(n)-valued gauged fields as a real slice in
the space of gauge fields.) All considerations are local; in other words our fields are
polynomials or power series on V. This means that the action functionals are formal
expressions (integration over V is ill-defined). However, we work with the equations
of motion, which are well-defined. It is easy to get rid of this nuisance and make the
definitions completely rigorous.

Choosing once and for all an orthonormal basis in ' and some basis in S we can
identify φ,ψ with g-valued fields (φ1, . . . , φd ′) and (ψα). The Lagrangian in these
bases takes the form

L = 1

4

D∑
i,j=1

〈Fij , Fij 〉+
D∑
i=1

d ′∑
j=1

〈∇iφj ,∇iφj 〉+
D∑
i=1

∑
αβ

〈�i
αβ∇iψ

α, ψβ〉−U(φ,ψ),

(1)
where ∇i stands for the covariant derivative built out of Ai , Fij = ∂iAj − ∂jAi +
[Ai,Aj ] denotes the gauge field strength, and �i

αβ is the matrix of the linear map � in
the chosen bases; U is a g-invariant potential. The corresponding action functional
Scl is gauge invariant and can be extended to a solution of the BV master equation in
the standard way:

S = Scl +
∫

V

(
D∑
i=1

〈∇ic, A
∗i〉 +

∑
α

〈[c, ψα], ψ∗α〉 +
d ′∑

j=1

〈[c, φj ], φ∗j 〉

+ 1

2
〈[c, c], c∗〉

)
dx1 . . . dxD.

(2)

Here c stands for a Grassmann odd ghost field, and A∗i , ψ∗α , φ∗j , c∗ are antifields
for Ai , ψα , φj , c. (The parity of antifields is opposite to the parity of fields.)

The BV action functional S determines a vector field Q on the space of fields,
where Q obeys Q2 = 0. The space of solutions of the equations of motion in the
BV formalism coincides with the zero locus of Q. Using Q we introduce a structure
of L∞-algebra on the space of fields (see [1] or [15, Appendix C]). (Recall that the
Taylor coefficients of a vector field Q obeying Q2 = 0 at a point belonging to the
zero locus of Q specify an L∞-algebra. A point in the space of fields where all fields
vanish belongs to the zero locus of Q; we construct the L∞-algebra using the Taylor
expansion of Q at this point.) The equations of motion can be identified with the
Maurer–Cartan equations for the L∞-algebra.

The L∞-algebra L we constructed depends on the choice of Lie algebra g and
other data: potential, inner products on the spaces V, ', and the bilinear map � on
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S. When we need to emphasize such dependence we will do it by an appropriate
subscript: e.g., Lgln shows that the Lie algebra g is gln. We will assume that the
potential U(φ,ψ) in our algebraic approach is a polynomial (or, more generally, a
formal power series) in φ and ψ . If g = gln it has the form

U(φ,ψ) = tr(P (φ,ψ)),

where P(φ,ψ) is a noncommutative polynomial in the matrix fields φ1, . . . , φd ′ , ψα .
In this case we construct the A∞-algebra A in a such a way that the L∞-algebra Lgln
is built in a standard way from the A∞-algebra A⊗Matn. We can say that working
with the A∞-algebra A we are working with all algebras Lgln at the same time.
(Moreover, we can say that we are working with the gauge theories of all classical
gauge groups at the same time.)

We mentioned already that for a Q-manifold X (a supermanifold equipped with
an odd vector field Q obeyingQ2 = 0) one can construct an L∞-algebra on the vector
space �T ∗x0

X for every point x0 ∈ X in the zero locus of Q. In the finite-dimensional
case, we can identify the L∞-algebra with a formal Q-manifold. On the other hand
the algebra of functions on a formal Q-manifold X (= the algebra of formal power
series) is a differential commutative algebra. This algebra by definition is dual to the
L∞-algebra L.

Similar definitions can be given for A∞-algebras. The algebra of functions on a
formal noncommutative manifold X is defined as the topological algebra of formal
noncommutative power series. More precisely, ifW is a Z2-graded topological vector
space we can consider the tensor algebra T (W) =⊕

n≥1 W
⊗n. This algebra has an

additional Z-grading with nth graded component W⊗n and a descending filtration
Kn = ⊕

i≥n W⊗i . The algebra of formal power series T̂ (W) is defined as the
completion of T (W) with respect to this filtration. By definition the completion
T̂ (W) consists of infinite series in the generators which become finite upon projection
to T (W)/Kn for every n. The elements of T̂ (W) are infinite sums of monomials
formed by elements of a basis of W . The algebra T̂ (W) is Z2-graded; the filtration
on T (W) generates a filtration on the completion. T̂ (W) can be considered as the
inverse limit of the spaces T (W)/Kn; we equip T̂ (W) with the topology of inverse
limit. (The topology on T (W)/Kn is defined as the strongest topology compatible
with the linear structure.) A formal noncommutative Q-manifold is by definition a
topological algebra T̂ (W) equipped with a continuous odd differential Q obeying
Q2 = 0. We say that the formal Q-manifold (T̂ (W),Q) specifies a structure of
A∞-coalgebra H on the space �W . We are saying that the differential topological
algebra (T̂ (W),Q) is (bar)-dual to the A∞-coalgebra H. One says also that the
differential algebra (T̂ (W),Q) is obtained from the A∞-coalgebra H by means of
the bar-construction; we denote it by Bar H. The homology of (T̂ (W),Q) is called
the Hochschild homology of H. Notice that in this definition Hochschild homology
is Z2-graded. We also obtain a structure of A∞-algebra A = H∗ on �W ∗. In the
finite-dimensional case the notion of A∞-algebra on the vector space V is equivalent
to the notion of A∞-coalgebra on the vector space V ∗. However, in the infinite-
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dimensional case it is much simpler to use A∞-coalgebras. We will consider the case
when the space W is equipped with a descending filtration Fn; then we can extend
Fn to a filtration of T (W) and T̂ (W) is defined by means of this filtration. (See
Section 3.2 in the appendix for definitions.)

Another way of algebraization of Yang–Mills theory is based on consideration of
the equations of motion (the equations are treated as defining relations in an associative
algebra). We analyze the relations between two ways of algebraization and study
some properties of the algebras at hand. In particular we calculate some Hochschild
homology.

The paper is organized as follows. In Section 1.1 we formulate our main re-
sults. In Section 2.1 we give proofs in the case of Yang–Mills theory reduced to a
point, and in Sections 2.2 and 2.3 we consider the more general case of Yang–Mills
theory reduced to any dimension. In Sections 2.4, 2.5, and 2.6 we make some ho-
mological calculations that allow us to apply general results to the case of maximally
supersymmetric theories.

All proofs in the paper are rigorous. However, our exposition in Section 2.1 is
sometimes sketchy; the exposition of more general results in Sections 2.2 and 2.3 is
more formal.

Notation

Denote by 〈a1, . . . , an〉 the span of the vectors a1, . . . , an in some linear space.
Denote by C〈a1, . . . , an〉 the free algebra without a unit on the generators

a1, . . . , an. If 〈a1, . . . , an〉 = W , then an alternative notation for C〈a1, . . . , an〉 is

T (W) =
⊕
n≥1

W⊗n. (3)

All algebras in this paper are nonunital algebras, unless the opposite is explicitly
stated.

Any algebra has a canonical filtration Fn = {∑ a1 . . . an}.
Suppose A is an algebra with a unit and augmentation (i.e., a homomorphism

ε : A→ C). Denote I (A) = Ker ε.
Suppose A is an algebra (unit is irrelevant). Denote by A = A + C the algebra

with the following multiplicative structure: (a, α)(b, β) = (ab+ αb+ βa, αβ)). In
this construction we formally adjoin a unit to A equal to (0, 1). The algebra A has an
augmentation ε(a, α) = α and I (A) = A.

Suppose the Z2-grading of the Hochschild homology comes from a Z-grading.
This happens in the case when the algebra A has no differential, or is Z-graded. In
the Z-graded case by our definition the zeroth Hochschild homology of the algebra
without unit is equal to zero (sometimes it is called the reduced homology). Some-
times it will be convenient for us to define H0(A) = C, so H•(A) would become
an A∞-coalgebra with counit and coaugmentation. The completion will be denoted
by H•(A). It is easy to see that it is equal to the standard unreduced Hochschild
homology of the unital algebra A, which is denoted by H•(A,C) and defined in [12].
We will use this notation also in the Z2-graded case.



Algebraic Structure of Yang–Mills Theory 477

1.1 Main results

Let us reduce the theory to a point, i.e., consider fields that do not depend on xi, i =
1, . . . , D (the case of x-dependent fields will be considered later). The BV action
functional becomes a (super)function and takes the form

S = 1

4

D∑
i,j=1

〈[Ai,Aj ], [Ai,Aj ]〉 + 1

2

D∑
i=1

d ′∑
j=1

〈[Ai, φj ], [Ai, φj ]〉

+ 1

2

D∑
i,j=1

∑
αβ

�i
αβ〈[Ai, ψ

α], ψβ〉 − U(φ,ψ) (4)

+
D∑
i=1

〈[Ai, c], Ai∗〉 +
d ′∑

j=1

〈[c, φj ], φ∗j 〉 +
∑
α

〈[c, ψα], ψ∗α〉 +
1

2
〈[c, c], c∗〉.

Here Ai, φi, ψ
α, c∗ are elements of g, and A∗i , φ∗i , ψ∗α and c are elements of �g.

The vector field Q corresponding to S is given by the formulas

Q(Ai) = [c,Ai],
Q(φj ) = [c, φj ],
Q(ψα) = [c, ψα],
Q(c) = 1

2
[c, c],

Q(c∗) =
D∑
i=1

[Ai,A
∗i] +

d ′∑
j=1

[φj , φ
∗j ] +

∑
α

{ψα,ψ∗α} + [c, c∗],

Q(A∗m) = −
D∑
i=1

[Ai, [Ai,Am]] −
d ′∑
k=1

[φk[φk,Am]]

+ 1

2

∑
αβ

�m
αβ{ψα,ψβ} − [c,A∗m],

Q(φ∗j ) = −
D∑
i=1

[Ai[Ai, φj ]] − ∂U

∂φj

− [c, φ∗j ],

Q(ψ∗sα ) = −
D∑
i=1

∑
β

�i
αβ [Ai, ψ

β ] − ∂U

∂ψα
− [c, ψ∗α ].

(5)

Let us consider the case g = gl(n). In this case all fields are matrix-valued
functions. In order to pass from the L∞ to the A∞ construction we need to assume
that the functions ui(x) are equal to matrix polynomials.

We can construct an A∞-algebra A0 such that the L∞-algebra Lgl(n) can be
obtained as the L∞-algebra corresponding to theA∞-algebra algebra A0⊗Matn. The
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construction is obvious—we consider Ai, φj , c, A
∗i , φ∗j , c∗ in (5) not as matrices

but as formal generators. Then Q determines the derivation Q̂ in the algebra T̂ (W) of
formal power series with respect to the free generators. (We consider Ai, φj , ψ

∗
α, c

∗
as even elements and A∗i , φ∗j , ψα, c as odd ones.) The space W can be considered
as the direct sum of the spaces V,�,�S,�C,�V,��,S∗,C.

The derivation Q̂ obeys Q̂2 = 0; hence it specifies a structure of A∞-coalgebra
on�W . The potentialU(φ,ψ) is a linear combination of cyclic words in the alphabet
φj , ψ

α . In other words U(ϕ,ψ) is an element of CycW = T (W)/[T (W), T (W)]
or, if we allow infinite sums, an element of the completion of this space. The linear
space [T (W), T (W)] is spanned by Z2-graded commutators. Notice that for every
w ∈ W ∗ one can define the derivative ∂/∂w : CycW → T (W); this map can be
extended to completions. The derivative ∂U/∂φj in the definition of the operator Q
should be understood in this way. The derivation Q̂ specifies not only a structure
of A∞-coalgebra on �W but also a structure of the A∞-algebra on �W ∗. Let us
consider for simplicity the case of the bosonic theory; writing the potential in the form

U(φ) =
∑
k

cj1,...,jkφ1 . . . φk,

we can represent the operations in the A∞-algebra in the following way:

mk(pj1 , . . . ,pjk ) = −cj1,...,jk+1 p∗jk+1
(k ≥ 2),

m2(ai1 , a∗i2) = m2(a∗i2 , ai1) = −c̄∗δi1i2 ,

m2(pj1 ,p∗j2
) = m2(p∗j2

,pj1) = −c̄∗δj1
j2
,

m3(ai1 , ai2 , ai3) = −(δi1i2 a∗i3 − 2δi1i3 a∗i2 + δi2i3 a∗i1),
m3(ai1 , ai2 ,pj ) = −δi1i2 p∗j ,
m3(ai1 ,pj , ai2) = 2δi1i2 p∗j ,
m3(pj , ai1 , ai2) = −δi1i2 p∗j ,
m3(pj1 ,pj2 , ai ) = −δj1j2 a∗i ,
m3(pj1 , ai ,pj2) = 2δj1j2 a∗i ,
m3(ai ,pj1 ,pj2) = −δj1j2 a∗i .

(6)

(We are using a basis of �W ∗ that is dual to the basis of W .) There is an additional
set of equations relating c with the rest of the algebra. They simply assert that c is
a unit.

The ideal I (c) ⊂ T (W) generated by the element c is closed under the differential
Q̂. Denote by BV 0 the quotient differential algebra T (W)/I (c). To define a filtration
on BV 0 we introduce first of all a grading on W assuming that

deg(c) = 0, deg(Ai) = deg(φi) = 2, deg(ψα) = 3,

deg(ψ∗α) = 5, deg(A∗i ) = deg(φ∗i ) = 6, deg(c∗) = 8.
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The corresponding multiplicative grading on T (W) in general does not descend to
BW0, but the decreasing filtration on T (W) generated by the grading descends to
BV 0 and is compatible with the differential Q in the case when deg(U) ≥ 8. (The
grading on W induces a grading on the space Cyc('+�S) of cyclic words and the
corresponding filtration Fk; the notation deg(U) ≥ 8 means that U ∈ F 8.)

We always impose the condition deg(U) ≥ 8 in considering BV 0; under this
condition we can consider the completion of BV 0 as a filtered differential algebra
B̂V 0 that can be identified with the quotient algebra T̂ (W)/Î (c). Notice that Q

is a polynomial vector field; hence, instead of the algebra T̂ (W) of formal power
series, we can work with the tensor algebra T (W) =⊕

k≥0 W
⊗k . However, without

additional assumptions on the potential U , the results of our paper are valid only
for the completed algebra T̂ (W). The differential algebra (T̂ (W), Q̂) is dual to the
A∞-algebra A. It will be more convenient for us to work with A∞-coalgebras. The
motivation is that we would like to avoid dualization in the category of infinite-
dimensional vector spaces as much as possible. However, there is an involutive
duality functor on the category of finite-dimensional or graded vector spaces. It
implies that the category of finite-dimensional A∞-algebras is dual to the category
of A∞-coalgebras. The same statement is true for the category of A∞-(co)algebras
equipped with an additional grading. There is a topological version of such a duality
which is not an autoequivalence of the appropriate category; rather it is an equivalence
between two different categories.

Another approach to algebraization ofYang–Mills theory is based on consideration
of the equations of motion. We will illustrate it in the case of Yang–Mills theory
reduced to a point. We consider its equations of motion,

D∑
i=1

[Ai, [Ai,Am]] +
d ′∑
k=1

[φk[φk,Am]]

− 1

2

∑
αβ

�m
αβ{ψα,ψβ} = 0, m = 1, . . . , D, (7)

D∑
i=1

[Ai[Ai.φj ]] + ∂U

∂φj

= 0, j = 1, . . . , d ′, (8)

∑
β

D∑
i=1

�i
αβ [Ai, ψ

β ] + ∂U

∂ψα
= 0, (9)

as defining the relations of an associative algebra with generators Ai, φj , ψ
α . This

algebra will be denoted by YM 0. (The algebras A and YM 0 depend on the choice of
potential U ; hence more accurate notations would be AU

0 and YM U
0 ). One can say

that YM 0 is a quotient of the tensor algebra T (W1) with generators Ai, φj , ψ
α with

respect to some ideal. The grading on W1 = V + ' + �S generates a grading on
YM 0 if deg(U) = 8. It generates a decreasing filtration compatible with the algebra
structure on YM 0 if deg(U) ≥ 8; in this case we can introduce an algebra structure
on the completion ŶM 0. The graded algebra associated with the filtered algebra YM 0
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will be denoted by YM ′
0; it can be described as the algebra YM 0 corresponding to the

component of U having degree 8.

Theorem 1. If the potentialU has degree≥ 8, then the differential algebra (B̂V 0, Q̂)

is quasi-isomorphic to the algebra ŶM 0. If the potential U has degree 8, we can say
also that the differential algebra (BV 0,Q) is quasi-isomorphic to the algebra YM 0.

Proof. See Section 2.1 for the proof. ��
The above constructions can be included into the following general scheme.
Let us consider the Z2-graded vector spaces W1 = V with basis e1, . . . , en,

W2 = �V ∗ with dual basis e∗1, . . . , e∗n, and the one-dimensional spaces W0 with
odd generator c, W3 = �W ∗

0 with even generator c∗. Take L ∈ CycW1.
Define a differential Q on the free algebra T (W) by the rule

Q(ei) = [c, ei],
Q(ēi) = ∂L

∂ei
+ [c, e∗i],

Q(c) = −1

2
[c, c],

Q(c∗) =
∑
i

[ei, ēi] + [c, c∗].

(10)

Define W red = W1 +W2 +W3. Denote the algebra T (W) with the differential Q
defined by formula (10) as T (W)L. Denote by I (c) the ideal generated by c. It is
easy to see that it is a differential ideal. Write BVL = T (W)L/I (c).

It is easy to see that BV 0 = BVL for L defined in (1), where one should disregard
〈 , 〉 signs. (We consider Ai, φj , . . . as free variables and L as a Z2-graded cyclic
word.) The algebra YM L is defined as the quotient of T (W1) with respect to the ideal
generated by ∂L/∂ei . There exists a natural homomorphism of BVL onto YM L that
sends ei → ei , e∗i → 0, c∗ → 0. If this homomorphism is a quasi-isomorphism, we
say that L is regular. Theorem 1 gives a sufficient condition for regularity.

Theorem 1 can be generalized to unreduced Yang–Mills theory or to the theory
reduced to d dimensions, 0 < d ≤ D. Our considerations will be local; this means
that for the theory with gauge group g reduced to d dimensions, we consider g-valued
fields Ai,A

∗i , φj , φ
∗j , c, c∗ that are formal functions of the first d variables. They

span the space Wd⊗g, where Wd = W⊗C[[x1, . . . , xd ]]. The space Wd is equipped
with a filtrationF s , which induces a filtration onWd⊗g in a trivial way. The groupF s

consists of all power series with coefficients in W with Taylor coefficients vanishing
up to degree s. The filtration F s defines a topology in the standard way.

The solutions of the equations of motion in the BV formalism correspond to the
zeros of a vector field Q defining a structure of A∞-coalgebra on the space �Wd ; we
denote this coalgebra by bvd . We can also work with the A∞-algebra defined on the
space �W ∗ ⊗ C[x1, . . . , xd ].

The role of the algebra YM 0 in the case at hand is played by the truncated Yang–
Mills algebra TdYM . We consider a set of differentials ∂k : YM 0 → YM 0, k =
1, . . . , d. The differentials are defined by the formula
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∂k(Ai) = δki, 1 ≤ i ≤ d,

∂k(Ai) = 0, i > d,

∂k(φj ) = 0 for all j .

(11)

Definition 2. We define TdYM as
⋂d

k=1 Ker ∂k . We assume that ∂k , k = 1, . . . , d,
is generic and that the matrix � is nondegenerate. We define TdYM in the standard
way as I (TdYM ).

The precise meaning of the assumptions in this definition can be explained in the
following way.

Definition 3. We say that the set of differentials ∂k , k = 1, . . . , d, is generic if the
restriction of the bilinear form from V to TdYM ∩ V is nondegenerate. If the set
of generators includes fermions, then we require that there be a subspace V ′ ⊂ V

of codimension one such that V ′ ⊃ TdYM ∩ V and the bilinear form (s1, s2)v
def=

[�(s1, s2)→ V/V ′] is nondegenerate.

Definition 4. We say that the matrix � is nondegenerate if there is at least one generic
differential from Definition 3.

If we do not assume genericity we use an alternative notation TµYM for TdYM
which will be adopted throughout the main part of the paper. The algebra TdYM is
filtered and we can define its completion T̂ (Wd). The ideal I (c) ⊂ T̂ (Wd) generated
by the element c is closed under the differential Q̂. Denote by B̂V d the quotient
algebra T̂ (Wd)/Î (c). We use the notation B̂Vµ for the quotient T̂µ(W)/I (c) without
the assumption of genericity of the family ∂k , k = 1, . . . , d.

Theorem 5. The differential algebra (B̂V d , Q̂) is quasi-isomorphic to T̂dYM .

Proof. See Proposition 46. ��
Corollary 6. The algebra T̂dYM is quasi-isomorphic to the dual of the coalgebra bvd .

Proof. See Proposition 47, where the A∞-coalgebra bvd is denoted as bvµ. ��
Let us analyze the structure of the algebra TdYM for d ≥ 1.

Definition 7. Define the algebraK(q1, . . . , qn|p1, . . . , pn;ψ1, . . . , ψn′) as the quo-
tient algebra C〈q1, . . . , qn, p

1, . . . , pn, ψ1, . . . , ψn′ 〉/I (ω), where the ideal I (ω) is
generated by the element

ω =
n∑

i=1

[qi, pi] − 1

2

n′∑
j=1

{ψj ,ψj }. (12)

Theorem 8. The algebra T̂1YM is isomorphic to the algebra K̂ .



482 M. Movshev and A. Schwarz

Theorem 9. The algebra T̂dYM for d ≥ 2 is isomorphic to the completion of the free
algebra T (H + S + G), where H stands for the space of all polynomial harmonic
two-forms on Cd and S stands for the space of harmonic spinors and G stands for
the space of harmonic polynomials on Rd with values in '+ CD−d .

Proof. The proofs of statements that are more general than Theorems 8 and 9 are
given in Examples 1, 2, and 4 and Propositions 50 and 52. ��

Notice that the above theorems have a physical interpretation.
Theorems 1 and 5 can be interpreted as the statement that the BV formalism is

equivalent to the more traditional approach to the theory of gauge fields. (One can
relate this theorem to the calculation of BV homology in [2].) Theorem 8 is related to
the Hamiltonian formalism in gauge theory when we neglect the dependence of the
fields on all spatial variables. A solution to the equation of motion in such a theory is
characterized by a point of a phase space; the degeneracy of the Lagrangian leads to
the constraint (12) on the phase space variables.

Theorems 8 and 9 mean that there exists a one-to-one correspondence between
solutions of the full Yang–Mills equation of motion and solutions of the linearized
version of this equation.

The phase space dynamics specifies an action of the one-dimensional Lie algebra
a on the algebra K . More precisely, we define an action of exterior derivative H ,
corresponding to the generator of a, by the rule

H(qi) = pi, (13)

H(Qi) = P i, (14)

H(pi) = −
D−1∑
i=1

[qi, [qi, qm]] −
d ′∑

j=1

[Qj, [Qj, qm]] + 1

2

∑
αβ

�m
αβ{ψα,ψβ}, (15)

H(P j ) = −
D−1∑
i=1

[qi, [qi,Qj ]] − ∂U

∂Qj

, (16)

H(ψα) = −
D−1∑
i=1

∑
β

�i
αβ [qi, ψβ ] − ∂U

∂ψα
. (17)

Definition 10. Suppose A is an algebra with a unit and g is a Lie algebra which acts
upon A via derivations. Let

ρ : g→ Der A (18)

be the homomorphism to the Lie algebra of derivations that corresponds to the action.
Let U(g) be the universal enveloping algebra of g. Denote by U(g) � A the algebra
defined on the space U(g)⊗A in the following way. It contains U(g)⊗ 1 and 1⊗A

as subalgebras. For g ∈ U(g) and a ∈ A, ga = g ⊗ a. If g is a linear generator of
g, then ga − ag = ρ(g)a. We call U(g) � A the semidirect product.
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Theorem 11. Suppose the �-matrices used in the definition of YM 0 are nondegener-
ate in the sense of Definition 4. Then the algebra YM 0 is isomorphic to the semidirect
product

YM 0 = U(a) � K(q1, . . . , qD−1,Q1, . . . ,Qd ′ |p1, . . . , pD−1, P 1, . . . , P d ′ ;ψα).

(19)
In the above formula U(a) is the universal enveloping algebra of the abelian

one-dimensional Lie algebra a spanned by the element H , which acts on K̂ as an
outer derivation.

Formula (19) remains valid for the completed algebras ŶM 0 and K̂ if we replace
the semidirect product with its completion with respect to the multiplicative decreasing
filtration Fn which coincides with the intrinsic filtration on K̂ and is determined by
the condition H ∈ F 2.

Proof. See Section 2.1 for the proof. ��
Using general results about Hochschild homology (the main reference is [12]; see

also the appendix) for algebras with one relation and on the homology of a cross-
product, we get the following theorem.

Theorem 12. The Hochschild homology H ∗(K(q1, . . . , qn|p1, . . . , pn;ψ1, . . . ,

ψn′)) is isomorphic to

H 0(K) = C, (20)

H 1(K) = 〈[q1], . . . , [qn], [p1], . . . , [pn], [ψ1], . . . , [ψn′ ]〉, (21)

H 2(K) = 〈r〉, (22)

Hi(K) = 0 for i ≥ 3. (23)

The symbols [q1], . . . , [qn], [p1], . . . , [pn], [ψ1], . . . , [ψn′ ] are in one-to-one cor-
respondence with the generators q1, . . . , qn, p1, . . . , pn, ψ

1, . . . , ψn′ . There is a
nondegenerate even skew-symmetric pairing on H 1(K) which depends on the choice
of a generator r in H 2(K). The statement of the proposition holds if one replaces
the algebra K by its completion K̂ .

Proof. See Section 2.1 for the proof. ��
Theorem 13. The Hochschild homology H ∗(ŶM 0) is isomorphic to

H 0(ŶM 0) = W0 = 〈c〉,
H 1(ŶM 0) = W1 = '+�S,

H 2(ŶM 0) = W2 = �W ∗
1 ,

H 3(ŶM 0) = W3 = 〈c∗〉.

(24)

There is a graded commutative duality pairing
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Hi(ŶM 0)⊗H 3−i (ŶM 0)→ C

which depends on the choice of a generator c∗ in W3.
The algebra YM 0 has the same Hochschild homology.

Proof. See Section 2.1 for the proof. ��

The duality of A∞-algebras is closely related to the Koszul duality of quadratic
algebras (see, e.g., [11]).

Let S be a spinor representation of Spin(10). Let

S = Sym(S)/
∑
αβ

�i
αβu

αuβ,

where �i
αβ are spinor �-matrices and u1, . . . , u16 is a basis of S. The algebra S can

be considered as the algebra of polynomial functions on the space of pure spinors
(spinors in S∗ satisfying

∑
αβ �i

αβu
αuβ = 0). Denote

B0 = S ⊗�(S) (25)

with linear generators of �(S) denoted by θ1, . . . , θ16. Define a differential on the
algebra B0 by the rule

Q(θα) = uα. (26)

We call the differential algebra (B0,Q) the Berkovits algebra. From here until the
end of the section, we assume that YM 0 is built from the following data: D = 10,
d ′ = 0, S is an irreducible spinor representation sl of Spin(10), where �i

αβ are the
�-matrices associated with the spinor representation S. (This means that YM 0 is
obtained from 10D SUSY YM theory reduced to a point.)

We checked in [15] that YM 0 maps to the Koszul dual of the Berkovits algebra
(B0,Q) (see [15] and references therein about Koszul duality). In this paper we prove
a statement which was formulated in [15] without proof.

Theorem 14. The Koszul dual to the algebra (B0,Q) is quasi-isomorphic to YM 0.

Proof. To prove this fact we should know the homology of the Berkovits algebra.
A heuristic calculation of this homology was given in [6]. We present a rigorous
calculation in Section 2.6. ��

Theorem 15. The Berkovits algebra (B0,Q) is quasi-isomorphic to the A∞-algebra
A obtained from the D = 10 SUSY YM action functional reduced to a point.

This statement was formulated in [15]. It follows from Theorem 14 and from the
relation between Koszul duality and bar-duality.

Let us now consider the d-dimensional Berkovits algebra (Bd,Q).
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Definition 16. The Berkovits algebra (Bd,Q) is defined as the algebra of polynomial
functions of the pure spinor u, the odd spinor θ = (θ1, . . . , θ16), and the commuting
coordinates x1, . . . , xd (d ≤ 10), equipped with the differential

Q =
16∑
α=1

uα
∂

∂θα
+

16∑
αβ=1

d∑
i=1

�i
αβu

αθβ
∂

∂xi
.

The algebra Bd is a quadratic algebra.

Theorem 17. The Koszul dual to the differential algebra (Bd,Q) is quasi-isomorphic
to the truncated Yang–Mills algebra TdYM .

Proof. See Propositions 73 and 74. ��

2 Proofs

2.1 Algebras ̂K and ŶM 0

Proof of Theorem 11. We need to rewrite relations (7), (8), (9) in a slightly dif-
ferent form. Introduce the notation qi = Ai+1 (i ≥ 1), Qi = φi(i ≥ 1),
pi = [A1, Ai+1](i ≥ 1), P j = [A1, φj ] (j ≥ 1). Commutation with A1 preserves
the algebra generated by qi,Qi, p

i, P j , ψα . Denote the operation of commutation
with A1 by H : [A1, x] = H(x). Then by definition we have (13), (14).

In the new notation, when m = 0 relation (7) becomes (12). To prove this, we use
the nondegeneracy of the �-matrices. It allows us to set �1

αβ = δαβ by appropriate
choice of bases in S and in V. Relations (7) when m > 0 become (15), relations (8)
become (16), and relations (8) become (17). We can see that in this representation
the algebra YM 0 is the semidirect product of two algebras: the universal enveloping
algebra U(a) of an abelian algebra with one generator H and of the algebra K .

The action of the universal enveloping algebra is given as outer derivation H (the
letter H stands for the Hamiltonian) by the formulas (13), (14), (12), (15), (16), (17).

If H acts on K via formulas (13), (14), (12), (15), (16), (17), then the map
p : YM 0 → U(a) � K , defined by the formulas

p(A1) = H, p(Ai+1) = qi, 1 ≤ i ≤ D,

p(φj ) = Qj, 1 ≤ j ≤ d ′, p(ψα) = ψα,

is well defined and agrees on filtrations. This is because formulas (13), (14), (12),
(15), (16), (17) imply (7), (8), (9)). As a result, p is a continuous isomorphism that
can be extended to completions. ��

We need to formulate basic theorems on how to compute the Hochschild homology
of some algebras.

Proposition 18.

(a) Suppose g is a Lie algebra. Then H1(g,C) ∼= g/[g, g], where [g, g] is the ideal
of g consisting of elements of the form [a, b], where a, b ∈ g.
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(b) Suppose g = F/R, where F is a free Lie algebra and R is an ideal of relations.
Then H2(g,C) ∼= R ∩ [F,F ]/[F,R].

Proof. See [12] for the proof. ��
Corollary 19. Suppose g is a positively graded Lie algebra.

(a) Let V ⊂ g be a minimal generating subspace. Then the canonical map V →
g/[g, g] ∼= H1(g,C) is an isomorphism.

(b) Suppose g = F/R, where F is a free algebra and R is an ideal. Assume also that
the minimal linear subspace of relations L which generates the ideal R is a sub-
space of [F,F ]. Then the canonical mapL→ R/[F,R] = R∩[F,F ]/[F,R] ∼=
H2(g,C) is an isomorphism.

Proposition 20. Let A be an algebra complete with respect to the decreasing multi-
plicative filtration F s , s ≥ 1, such that

⋂
F s = 0. There is an isomorphism between

H1(A) and a minimal linear space X ⊂ A such that the subalgebra generated by X

is dense (in the sense of the topology generated by the filtration) in A.

Definition 21. Suppose A is an algebra with a unit and M is a bimodule. If i ≥ 0 is
the minimal number such that the Hochschild homology Hi+k(A,M) = 0 for all M ,
k > 0, then one says that the homological dimension of A is equal to i.

Proposition 22 ([8]). Suppose the positively graded algebra A is the quotient of a
free algebra T by the ideal generated by one element r . If r �= aba, where a, b ∈ T

and deg(a) > 0, then the homological dimension of A is equal to 2 and H1(A) is
isomorphic to a minimal set of generators and H2(A) = 〈r〉.
Proposition 23 ([12]). There is an isomorphism H1(T (W)) = W . All other homolo-
gies of the free algebra T (W) are trivial.

Proposition 24. Let A be a positively graded algebra and Â its completion with
respect to the filtration associated with the grading. Then H∗(Â) = Ĥ∗(A), where
Ĥ∗(A) stands for the completion of H∗(A) by means of the filtration associated with
the grading.

Proof. Obvious. ��
Proof of Theorem 12. We can use Proposition 22 for the computation of homology
groups. The algebra has only one relation in degree 2; therefore, H2(K) = 〈r〉 is one
dimensional. There is a comultiplication map

� : H2 → H2 ⊗H0 +H1 ⊗H1 +H0 ⊗H2. (27)

The image of r in the middle component gives the matrix of the pairing. It is nonde-
generate, and after the inversion one gets
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[qi] ∗ [pj ] = −[pj ] ∗ [qi] = δ
j
i ,

[ψi] ∗ [ψj ] = [ψj ] ∗ [ψi] = δij
(28)

and all other products are equal to zero. The vanishing of Hi(K) = 0 for i ≥ 3 is
a corollary of Proposition 22. The completion of K is associated with the grading;
therefore, the statement of the proposition for the completed algebra follows from
Proposition 24. ��
Proof of Theorem 13. By definition we have isomorphisms H ∗(ŶM 0) = H∗(YM 0,

C) and H ∗(K̂) = H∗(K,C). The algebra ŶM 0 contains a dense semidirect product
U(a) � K̂ and the algebra YM 0 is equal to a semidirect product.

Let A be one of these algebras. Introduce an increasing filtration GnA defined as
follows. The algebra U(a) = C[H ] has a grading such that deg(H) = 1; denote by
GnU(a) the associated increasing filtration. Write Gn(A) = GnU(a)⊗ B, where B

is either K or K̂ . This filtration induces a filtration of the bar-complex. It leads to a
spectral sequence which is usually attributed to Serre and Hochschild.

The next computations will be carried out for the case of the semidirect product
U(a) � K = YM 0.

The E2-term of the spectral sequence is E2
ij = Hi(U(a),Hj (K)) = Hi(a,

Hj (K)). (Here Hi(a, . . . ) stands for the homology of the Lie algebra a with co-

efficients in some module.) We have convergence, E2
ij ⇒ Hi+j (U(a) � K,C).

The homology with trivial coefficients of the algebra K is computed in Theorem 12.
We have

H 1(K̂) = 〈[q1], . . . , [qd ], [p1], . . . , [pd ], [Q1], . . . , [Qd ′ ], [P 1], . . . , [Pd ′ ], [ψα]]〉.
The action of the algebra a or (what is the same) the action of its generator H

on the homology of K is easy to describe. It is trivial for H 0(K) for obvious rea-
sons. It is trivial on H 2(K) because if one applies the differential of a free algebra
C〈q1, . . . , qD−1, p

1, . . . , pD−1,Q1, . . . ,Qd ′ , P 1, . . . , P d ′ , ψα〉 defined by the for-
mulas (13)–(17) to the LHS of equation (12), one gets zero. The action of H on
[qi], [Qj ], [ψα] ∈ H 1(K) is zero and H [pi] = −[qi], H [P i] = −[Qi]. (This fol-
lows from the formulas (13)–(17) and the restriction on the degree of the potential.)

The differentialdA : C1(a, H 1(K)) = H 1(K)
H→ H 1(K) = C0(a, H 1(K))(Here

Ci denotes the group of i-chains of the abelian Lie algebra a). This is the only
nontrivial differential in the E1-term. The spectral sequence degenerates in the
E2-term because all linear spaces which higher differentials can hit are equal to
{0}. This implies that the classes [A1], . . . , [AD], [φ1], . . . , [φd ′ ], [ψα] form a basis
of H1(U(a) � K,C). We have a nondegenerate pairing on E2 between E2

i,j and

E2
1−i,2−j . It comes from the diagonal E2

1,2 → E2
i,j ⊗E2

1−i,2−j . This diagonal is the
tensor product of the diagonal from Theorem 12 and the diagonal in the homology of
an abelian Lie algebra. It indicates that H2(U(a)�K,C) is dual to H1(U(a)�K,C)

and the relations (7), (8) are a minimal set of relations, H3(U(a) � K , C) = C.
All homology groups Hi(U(a) � K), i ≥ 4, are equal to zero because all con-

tributors to these groups in the spectral sequence vanish.
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This proves the statement for the algebra U(a)�K = YM 0. We cannot apply the
proof directly to ŶM 0 because it is not a semidirect product. We have the following
argument in this case:

The algebra ŶM 0 is filtered with Gr ŶM 0 = ŶM ′
0. To define ŶM ′

0, we need to take
the potential U of ŶM 0 and extract its degree 8 homogeneous part. The algebra YM ′

0
is graded and its completion with respect to the decreasing completion associated with
the grading is equal to ŶM ′

0. By Proposition 20 the Hochschild cohomology of ŶM ′
0

is equal to the completion of the homology of YM ′
0. The latter are finite dimensional.

They coincide with the homology of YM ′
0. The spectral sequence associated with the

filtration FnŶM 0 degenerates at the E1-term. The proof follows from this fact. ��
Definition 25. Introduce a multiplicative filtration on T (W) by extending the filtra-
tion from the generating space W . After completing the algebra T (W) we get T̂ (W).
Define a continuous differential on the algebra T̂ (W) by the formula (5). Under the
assumptions of Theorem 1, the differential (5) leaves the subalgebra T (W) ⊂ T̂ (W)

invariant. Denote the resulting differential algebra by (T (W),Q).

Define a map
p : B̂V 0 → ŶM 0 (29)

by its values on topological generators:

p(Ai) = Ai,

p(φj ) = φj ,

p(ψα) = ψα,

p(A∗i ) = p(φ∗j ) = p(ψ∗α) = p(c∗) = 0,

(30)

then extend it to the entire algebra using the properties of homomorphism and con-
tinuity. The maps p : BV 0 → YM 0 and p : BV ′0 → YM ′

0 are defined by the same
formulas.

Proof of Theorem 1. We will use Theorems 13 and their corollaries. The Hochschild
homologies of ŶM 0 and of YM 0 were calculated in Theorem 13. To calculate the
homology of the differential algebra B̂V 0, we start with B̂V 0 considered as an algebra
without differential.

It is easy to check that this is a completed free algebra with free topological
generators:

Ai, φi, ψα, A∗i , φ∗i , ψ∗α, c∗.

It follows from Propositions 23 and 24 that H1(B̂V 0) = W1 ⊕ W ∗
1 ⊕ C is the

space spanned by free topological generators, Hi(B̂V 0) = 0 for i �= 1.
The Hochschild homology of the differential algebra (B̂V 0,Q) is not Z-graded,

but it is Z2-graded. The calculation of the completed Hochschild homology of
(B̂V 0,Q) is based on the general Lemma 83.

In our case H is the coalgebra that corresponds to the differential Q on B̂V 0.
This coalgebra is filtered (in the sense described in the appendix) with F 1(H) = H ,
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F 2(H) = 0. The A∞-coalgebra H has differential equal to zero. We obtain that as a
Z2-graded vector space the Hochschild homology of (B̂V 0,Q) is isomorphic to the
Hochschild homology of B̂V 0.

More precisely, this homology is spanned by the following cocycles, where
the map ι is the identification of the generators of BV 0 and the homology classes
in Bar(BV 0,Q):

ι(A∗m) = −A∗m +
D∑
i=1

(Ai |[Ai,Am] − [Ai,Am]|Ai)

+
d ′∑
k=1

(φk|[φk,Am] − [φk,Am]|φk)+ 1

2

∑
αβ

�m
αβψ

α|ψβ, (31)

ι(φ∗j ) = −φ∗j +
D∑
i=1

(Ai |[Ai.φj ] − [Ai.φj ]|Ai)+ ∂̃U

∂φj

, (32)

ι(ψ∗α) = −ψ∗sα +
D∑
i=1

∑
β

(�i
αβAi |ψβ − ψβ |Ai)+ ∂̃U

∂ψα
, (33)

ι(c∗) =
∑
i

(Ai |(A∗i − ι(A∗i ))− (A∗i − ι(A∗i ))|Ai)

+
d ′∑

j=1

(φj |(φ∗j − ι(φ∗j ))− (φ∗j − ι(φ∗j ))|φj )

+
∑
α

(ψα|(ψ∗α − ι(ψ∗α))+ (ψ∗α − ι(ψ∗α))|ψα). (34)

The map ι is the identity map on Ai, φj , ψ
α . We need to explain what˜means

in the formulas (33) and (32). The tensor algebra T (V ) generated by the linear space
V can be considered as the free product of the algebra V with zero multiplication and
the algebra spanned by the⊗ symbol (the multiplication in such an algebra is trivial).
Consider the algebra spanned by the bar symbol | with zero multiplication. Then
Bar T (V ) is a subspace of the free product V ◦〈⊗〉◦〈|〉, where ◦ denotes free product.
Define a derivation on such an algebra by the rule d(v) = 0, v ∈ W , d|(⊗) = |,
d|(|) = 0. The partial derivatives of U in formulas (32), (33) are elements of the

tensor algebra T (φ1, . . . , φd ′ , ψα) ⊂ Bar T (φ1, . . . , φd ′ , ψα). Then ∂̃U
∂φj

= d| ∂U∂φj
and ∂̃U

∂ψα = d| ∂U∂ψα , where d| is extended by continuity to B̂ar T̂ (V ).
Simple direct calculation using formulas (31)–(34) shows that the homomorphism

(B̂V 0,Q)→ ŶM 0 induces an isomorphism on Hochschild homology. ��
Definition 26. Denote the minimal model (see [10] for definition) for the coalgebra
B̂ar(B̂V 0, d) by b̂v0. The linear space of b̂v0 coincides with W1 +W2 +W3 and the
structure maps coincide with (5) (the variable c is set to zero). The coalgebras bv0
and bv′0 are noncomplete and graded versions of the coalgebra b̂v0.



490 M. Movshev and A. Schwarz

Proposition 27. Theorem 1 together with Lemma 83 can be rephrased as the state-
ment that the A∞-coalgebra bv0 is bar-dual to the algebra ŶM 0.

2.2 Truncated Yang–Mills algebra

We need to describe the notation adopted in this section.
Define a bigraded vector space W =⊕3

i=0
⊕8

j=0 W
j
i ,

W 0
0 = 〈c〉, W 2

1 = V +', W 3
1 = S,

W 8
3 = 〈c∗〉, W 6

2 = V∗ +'∗, W 5
2 = S∗.

(35)

We define

Wi =
8⊕

j=0

W
j
i , Wj =

3⊕
i=0

W
j
i . (36)

We refer to

W =
3⊕

i=0

Wi as homological and W =
8⊕

j=0

Wj as additional (37)

gradings. We also have a filtration,

Fn(W)i =
8⊕

j≥k
W

j
i . (38)

The algebra ŶM 0 is filtered by the multiplicative filtration Fn(ŶM 0). On the generat-
ing space W1 it is given by formula (38), which determines it uniquely. This filtration
was alluded to at the end of the proof of Theorem 13.

A continuous differential ∂i of ŶM 0 is defined by the formulas

∂i(Aj ) = δij , (39)

∂i(φk) = ∂i(ψ
α) = 0. (40)

We use δij for the Kronecker δ symbol. All such differentials span the D-dimensional
vector space V∗. They can be arranged into one differential ∂ : ŶM 0 → V∗ ⊗ ŶM 0,
∂(a) = ∂1(a), . . . , ∂d(a). A choice of projection

µ : V∗ → V → 0 (41)

on the spaceV specifies a differential ∂µ of YM0 with values in the bimoduleV⊗ŶM0.
Denote

T̂ YM µ = Ker ∂µ and T̂ YM µ = I (T̂ YM µ).

The algebra T̂ YM µ is filtered by T̂ YM µ∩Fn, where Fn = Fn(ŶM 0) is the filtration
on ŶM 0. Similar constructions hold for the algebras YM 0 and YM ′

0. As a result, we
can define TµYM and TµYM ′.
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Define the algebra ÊµYM = ŶM 0⊗�•(V ). The differential is defined by the rule

d(a) = ∂µ(a) ∈ YM 0 ⊗ V ⊂ YM 0 ⊗�•(V ), a ∈ YM 0,

d(v) = 0, v ∈ �•(V ).
(42)

The differential can be extended uniquely to the algebra using the Leibniz rule. Denote

ÊµYM = I (ÊµYM ).

A similar construction works for the algebras YM 0 and YM ′
0. We can de-

fine the algebras EµYM and EµYM ′. Define a multiplicative decreasing filtration

F s(ÊµYM ) = F s on ÊµYM which extends the filtration on F s(ŶM 0). It is uniquely

determined by the condition V ⊂ F 1. It defines a filtration on ÊµYM for which we
keep the same notation. A similar filtration exists on EµYM . The algebra EµYM ′
is graded, the grading is a multiplicative extension of the grading on YM ′

0, the grad-

ing of the space V ⊂ EµYM ′ is equal to one. In the case of the algebras ÊµYM ,
EµYM , the differential preserves the filtration. In the case of EµYM ′ the differential
preserves the grading.

Lemma 28. Suppose B is an algebra with a unit generated by elements B1, . . . , Bn.
Assume that we are given k commuting differentials ∂s , s = 1, . . . , k, k ≤ n, of
the algebra B such that ∂sBj = δsj . Then there exists an increasing filtration Gi ,
i = 0, 1, . . . , such that

(a)
⋃

i G
i = B.

(b) GiGj ⊂ Gi+j .
(c) Bi ∈ G1.

Proof. Define the filtration Gi inductively. By definition G0 =⋂k
s=1 Ker ∂si , then

Gi+1 = {x|∂s(x) ∈ Gi for all s, 1 ≤ s ≤ k}. (43)

Property (b) follows from the Leibniz rule. By definition Bi ∈ G1; hence (c) follows.
Since Bi are generators, (b) and (c) imply (a). ��

Consider the algebra GrG(B) = ⊕∞
i=0 G

i+1B/GiB. Denote the image of the
elements B1, . . . , Bk in G1/G0 by B̂1, . . . , B̂k .

Lemma 29. The algebra GrG(B) has the following properties:

(a) The elements B̂1, . . . , B̂k commute in GrG(B).

(b) The elements B̂1, . . . , B̂k commute with G0B.
(c) The subalgebra of GrG(B) generated by G0B and B̂1, . . . , B̂k is isomorphic to

C[B̂1, . . . , B̂k] ⊗G0B.
(d) The elements B̂1, . . . , B̂k and G0B generate GrG(B).

(f) We have an isomorphism GrG(B) = C[B̂1, . . . , B̂k] ⊗G0B.
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Proof.

(a) ∂s[Bi, Bj ] = [δsi , Bj ] + [Bi, δsj ] = 0; therefore, [Bi, Bj ] ∈ G0, hence
[B̂i , B̂j ] = 0.

(b) Similarly, ∂s[Bi,m] = [δsi , m] = 0 for m ∈ G0 ⊂ Ker ∂s for s = 1, . . . , k,
Therefore, [Bi,m] ∈ G0 and [B̂i , m̂] = 0.

(c) Denote the subalgebra generated by G0B and B̂1, . . . , B̂k by C. There is a
surjective map

C[B̂1, . . . , B̂k] ⊗G0B → C (44)

and an inclusion G0 ⊂ C. Denote the kernel of the map (44) by I . Then

I ∩G0B = 0. (45)

Suppose 0 �= a = ∑
ai1,...,ik B̂

i1
1 . . . B̂

ik
k ∈ I . Since a is a polynomial

in B̂1, . . . , B̂k , there are i1, . . . , ik such that there is no ai′1,...,i′k �= 0 with

i1 < i′1, . . . , ik < i′k . This means that an element ∂
i1
1 . . . ∂

ik
k a �= 0 belongs

to I and is independent of B̂1, . . . , B̂k , which contradicts (45).
(d) We are going to prove the statement by induction on the index i in GriG(B). If

i = 0, then there is nothing to prove. Suppose we have an element â ∈ Gri+1
G (B).

Let a ∈ Gi+1 be its representative inB. Then ∂sa = bs ∈ Gi and by the inductive
assumption b̂s = b̂s(B̂1, . . . , B̂k) ∈ C. The elements bs satisfy ∂i b̂s = ∂s b̂i . This
implies that there is b ∈ B such that ∂s b̂ = b̂s . Consider the difference a−b = c,
∂s ĉ = 0, hence ∂sc ∈ Gi−1 for every s; therefore, c ∈ Gi and â = b̂. ��

Lemma 30. Suppose an algebra B satisfies the conditions of Lemma 28. Denote by
V the linear space with the basis [∂1], . . . , [∂k]. Define the structure of a complex
with differential

∑k
s=1[∂s]∂s on the linear space �i(V )⊗ B. Then the cohomology

of this complex is concentrated in degree 0 and is isomorphic to G0.

Proof. Define a filtration on the complexHi = B⊗�i(V )byGjHi = Gi+j⊗�i(V ).
The adjoint quotients of this filtration are isomorphic to

GjHi/G
j−1Hi = �i(V )⊗ Sym(i+j)(V )⊗G0. (46)

The differential coincides with the de Rham differential. Its cohomology is iso-
morphic to G0 in degree zero and to 0 in higher degrees. The spectral sequence
corresponding to the filtration Gi collapses at the E1-term and converges to the co-
homology we are looking for. ��
Lemma 31.

(a) The embeddings (T YM µ, 0)→ (EµYM , d) and (T YM ′
µ, 0)→ (EµYM ′, d) are

quasi-isomorphisms.
(b) The map

(T̂ YM µ, 0)→ (ÊµYM , d) (47)

is a filtered quasi-isomorphism of algebras (see the appendix for the definition).
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Proof.

(a) The algebras YM 0 and YM ′
0 satisfy Lemma 30; hence the proof follows.

(b) The morphism (47) is compatible with the filtrations which exist on its range and
domain. It induces a map of spectral sequences associated with the filtrations.
Let us analyze the E2-term.
The algebra A = GrF (ŶM 0) is isomorphic to YM ′

0, where in the relations (8), (9)
we drop the potential U . The algebra YM ′

0 is finitely generated and graded, and
it carries no topology. The algebra A satisfies the conditions of Lemma 30. This
implies that there is a quasi-isomorphism (Gr T̂ YM µ, 0)→ (�(V )⊗ ŶM 0, d).
We see that the map (47) induces an isomorphism of the E1-terms of the cor-
responding spectral sequences. Since the range and domain are complete with
respect to the filtrations, we conclude that the map (47) is a quasi-isomorphism.
The property that it induces is the quasi-isomorphism of adjoint quotients, and it
is the same as the filtered property. ��

Corollary 32. The map (T̂ YM µ, 0)→ (ÊµYM 0, d) is a filtered quasi-isomorphism.
(T YM µ, 0)→ (EµYM , d)and (T YM ′

µ, 0)→ (EµYM ′, d)are quasi-isomorphisms.

Remark 33. The algebra ÊµYM is topologically finitely generated. This implies that

the canonical filtration is comparable with the filtration F s(ÊµYM ). This implies

that the algebra ÊµYM 0 is complete with respect to the canonical filtration In
ÊµYM 0

and T̂ YM µ with respect to T̂ YM µ ∩ In
ÊµYM 0

.

2.3 Construction of BV µ

Let V be the vector space generated by the symbols ∂i, i = 1, . . . , d, Sym(V ) =⊕∞
i=0 Symi (V ). Denote the decreasing filtration of Sym(V ) associated with the

grading by Fn(Sym(V )). The vector spaces Wi , i = 0, . . . , 3, were defined by the
formulas (36),

Wi = Wi ⊗ Sym(V ),

W = W 0 +W 1 +W 2 +W 3.
(48)

The last direct sum decomposition is called the homological grading on W .
Define two filtrations on W . The first one is

Fn(W) =
∑

i+j≥n
F i(W)⊗ Fj (Sym(V )), (49)

where F i(W) was defined in (38). The second is

F̃ n(W) = W ⊗ Fn(Sym(V )). (50)

We have
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F̃ n(W) ⊂ Fn(W) ⊂ F̃ n−8(W) (51)

with finite-dimensional quotients. Denote the completion of W by Ŵ = Ŵ0+ Ŵ1+
Ŵ2 + Ŵ3.

The filtrations F̃ n(W) andFn(W)define two multiplicative filtrations onT (W [1]),
which we denote by F̃ n(T (W [1])) and Fn(T (W [1])). The algebra T (W [1]) ac-
quires a homological grading by multiplicative extension of the homological grading
from W .

Define an additional grading on W :

W
k =

⊕
i+j=k

Wi ⊗ Symj (V ). (52)

The algebra T (W [1]) acquires an additional grading by multiplicative extension of
the additional grading from W .

Proposition 34. The completions of T (W [1]) with respect to the filtrations F̃ n(W)

and Fn(W) coincide and we denote it by ̂T (W [1]). Similarly, the two completions
of the space of generators of W coincide.

Proof. The filtration satisfies the inclusions F̃ n(T (W [1])) ⊂ Fn(T (W [1])) ⊂
F̃ n−k(T (W [1])) for some finite k with finite-dimensional quotients. This is a simple
corollary of equation (51). We see that the filtrations are commensurable. It is a
simple exercise to show that the completions are equal. ��

The operators ∂i act by multiplication on the set of generators of the algebra
T (W [1]) (recall that it is a free Sym(V )-module). We extend the action of ∂i on

̂T (W [1]) as a continuous derivation, which we denote by the same symbol ∂i .
There is a linear map µ : W1 → V . It is an extension by zero from V to

W1 = V + �S + ' of the map µ defined in (41). We used the identification
of 〈A1, . . . , AD〉 and 〈A1, . . . , AD〉∗ provided by the canonical bilinear form. The

algebra ̂T (W [1]) admits a continuous action of the outer derivation ∇i defined by the
formula

∇ix = µ(Ai)x + [Ai, x]. (53)

The commutator is defined as

[∇i ,∇i] = µ(Ai)Aj − µ(Aj )Ai + [Ai,Aj ]. (54)

Definition 35. Define a continuous differential in the algebra ̂T (W [1]) by the for-
mulas (5), where deg(U) ≥ 8. Define a differential on the algebra T (W [1]) by the
formula (5), where deg(U) ≥ 8, and we impose some finiteness conditions on the
potential. We denote this algebra by (T (W [1]),Qµ). The filtration on the algebras

̂T (W [1]) and T (W [1]) is preserved by the differential.
If one assumes that the potential satisfies deg(U) = 8, we denote the algebra

(T (W [1]),Qµ) by (T (W [1])′,Qµ). In this algebra the differential has degree zero
with respect to the additional grading.
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One can extend Qµ uniquely to the entire set of generators, using commutation
properties with ∂i .

Proposition 36. The differential Qµ satisfies (Qµ)2 = 0. The differential has degree
−1 with respect to the homological grading.

Observe that though the elements ∇i do not belong to the algebra ̂T (W [1]), all
RHS expressions in the formulas (5) do.

Define an odd differential ε of the algebra T (W [1]) by the formula ε(c) = 1, the
value of ε on all other generators being equal to zero. It can be extended by continuity

to ̂T (W [1]).

Proposition 37. The commutator {Qµ, ε} is a differential P of the algebra ̂T (W [1])
which on generators is equal to the identity transformation. The same holds
for T (W [1]).
Proof. Direct computation. ��

This implies that P is an invertible linear transformation on ̂T (W [1]) and on
T (W [1]), and H = ε/P is a contracting homotopy. We are interested in a modifi-

cation of the algebras ( ̂T (W [1]),Qµ), (T (W [1]),Qµ), (T (W [1])′,Qµ). Denote by
Î (c) the closure of the ideal generated by c. A simple observation is that Î (c) is a
differential ideal. The ideal Î (c) is not closed under the action of ∂i , however.

Definition 38. Denote by B̂Vµ the quotient algebra ̂T (W [1])/Î (c). Similarly, define
BVµ and BV ′µ. The former algebra is filtered and the latter is graded.

Remark 39. In contrast with the algebras B̂V 0, BV 0, BV ′0 the algebras B̂Vµ, BVµ,
BV ′µ have nontrivial components with negative homological grading.

Proposition 40. There is a morphism of differential graded algebras (B̂Vµ,Q
µ)→

(ÊµYM , d) defined by the formulas

p(∂ic) = [∂i],
p(Ai) = Ai,

p(φi) = φi,

p(ψα) = ψα,

(55)

which preserves the filtrations (so it is continuous). The map is zero on the rest of
the generators. The formulas (55) define a map (BVµ,Q

µ) → (EµYM , d) which
preserves the filtrations and a map (BV ′µ,Qµ)→ (EµYM ′, d) of degree zero.

The filtrations Fn ̂T (W [1]) and F̃ n ̂T (W [1]) of ̂T (W [1]) induce similarly named
filtrations of B̂Vµ, denoted FnB̂Vµ and F̃ nB̂Vµ. The filtrations Fn and F̃ n are also
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defined on BVµ and BV ′µ. In the latter case the filtration Fn coincides with the
decreasing filtration associated with the grading.

Define Gr B̂Vµ =∏
n≥0 Grn B̂Vµ as

Grn BVµ = F̃ nB̂Vµ/F̃
n+1B̂Vµ. (56)

Proposition 41. The algebra Gr B̂Vµ is the completion of the free algebra with the

same space of generators as B̂Vµ. The differential Q is defined by the formulas (5),
except that in the formula (53) one needs to replace

µ(Ai)x + [Ai, x] ⇒ [Ai, x]. (57)

Similarly, Gr BVµ and Gr BV ′µ coincide with BVµ as algebras. In the definition of
Qµ one has to alter ∇i according to the rule (57).

Proof. Obvious. ��
The nonreduced bar-complex of an A∞-coalgebra H with a counit ε is by defini-

tion the bar-complex of H as if it had no counit. A simple theorem asserts that in the
presence of a counit it is always contractible.

Definition 42. The algebras ( ̂T (W [1]),Qµ) and (Gr T (W [1]),Gr Q) can be thought
of as nonreduced bar-complexes of A∞-coalgebras with a counit and coaugmenta-

tion, which we denote by (Ŵ ,Qµ) and (Ŵ ,Gr(Qµ)); the corresponding coideals

are denoted as b̂vµ and Ĝr bvµ. Similarly, we have the A∞-coalgebras (W,Qµ),

(W,Gr Qµ); (W
′
,Qµ), (W

′
,Gr Qµ) with coaugmentation coideals (bvµ,Qµ),

(Gr bvµ,Gr Qµ) and (bv′µ,Qµ), (Gr bv′µ,Gr Qµ), respectively.

There is a general construction of the tensor product of A∞-coalgebras. Its
description when one of the tensor factors is an ordinary coalgebra is very sim-
ple. Suppose H , G are two A∞-algebras and G has only one nontrivial operation
�2 = � : G→ G⊗2. Define the mapping νn → G⊗n by the formula

νGn = (�⊗ id⊗ . . . id) ◦ · · · ◦�. (58)

The tensor product of H and G has its underlying vector space equal to H ⊗G. The
operations �H⊗G

i are defined by the formula

�H⊗G
n (a ⊗ b) = T�H

n (a)⊗ νGn (b) (59)

where the operator T is a graded permutation which defines an isomorphism H⊗n⊗
G⊗n ∼= (H ⊗ G)⊗n. We need to draw attention to the fact that although �H

n is the
nth operation in the coalgebra H , the map νGn is not such for the coalgebra G, but
rather the nth iteration of the binary operation. As you can see, this construction is
not symmetric.

Observe that on the category of A∞-algebras a similar operation corresponds to
the extension of the ring of scalars.
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It turns out that the algebras Ĝr bvµ, Gr bvµ, Gr bv′µ have an alternative descrip-

tion in terms of the finite-dimensional A∞-coalgebras b̂v0, bv0, bv′0 introduced in
Definition 26.

The Künneth formula asserts the following.

Proposition 43. There is a quasi-isomorphism of algebras B̂ar(H ⊗ G) →
B̂ar(H) ⊗̂ B̂ar(G).

Proof. See [12] for the proof in the case of algebras. The coalgebra case is similar.��
Proposition 44. There is an isomorphism of coalgebras Ĝr bvµ = W ⊗ Ŝym(V ),

Gr bvµ = W ⊗ Sym(V ), Gr bv′µ = W ′ ⊗ Sym(V ).

Proof. All nontrivial interactions between the bv0 and Sym(V ) parts inside bvµ stem
from the µ(Ai)x part in the formula (53) which we kill in passing from b̂vµ to Gr b̂vµ.

In the case at hand, H = b̂v0, G = Sym(V ). The symmetric algebra Sym(V )

has diagonal � which on v ∈ V is equal to �(v) = v ⊗ 1 + 1⊗ v. The arguments
remain valid in the noncomplete and graded cases. ��
Proposition 45. The map p : (B̂Vµ,Q) → (ÊµYM , d) defined in equations (55)
is a quasi-isomorphism. The map p : (BV ′µ,Q) → (EµYM ′, d) is also a quasi-
isomorphism.

Proof. Define a filtration F̃ nEµYM 0 by the formula

F̃ nEµYM =
⊕
k≥n

�k(V )⊗ ŶM 0. (60)

The filtrations F̃ nÊµYM are compatible with the map p : B̂Vµ → ÊµYM . The map
p induces a map of spectral sequences associated with the filtrations.

The E0 term of the spectral sequence associated with B̂Vµ coincides with
Gr B̂Vµ.

Proposition 43 implies a series of quasi-isomorphisms:

Ĝr BVµ
def= B̂ar(Gr b̂vµ) = B̂ar(b̂v0 ⊗ Ŝym(V ))

k→ B̂ar(b̂v0)⊗ B̂ar(Ŝym(V )),

(61)
The map Gr(p) factors through the map k: Gr(p) = p′ ◦ k, where p′ is

B̂ar(bv0)⊗ B̂ar(Sym(V ))
p′→ ŶM 0 ⊗�(V ). (62)

The map p′ in the formula (62) is the tensor product of two quasi-isomorphisms.
The first one is from Theorem 1; the second one is the classical quasi-isomorphism
B̂ar( ̂Sym(V ))→ �(V ).

These considerations imply that there is an isomorphism p : H • Gr BVµ →
H • Gr EµYM . This means that we have an isomorphism of spectral sequences asso-
ciated with the filtration F̃ n starting with the E1 term.
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It implies that the map p induces a quasi-isomorphism of completed complexes:
p : B̂Vµ → ÊµYM . The proof goes through in the graded case. (All the tools
which are needed for the proof are collected in the appendix in the segment devoted
to homogeneous A∞-(co)algebras.) The obstacle to the proof in the noncomplete
case is the absence of a quasi-isomorphism Bar bv0 = BV 0 → YM 0. ��

Proposition 46. (B̂Vµ,Q), T̂µYM and (BV ′µ,Q), TµYM ′ are pairs of quasi-iso-
morphic algebras.

Proof. By Proposition 45, the algebra (B̂Vµ,Q) is quasi-isomorphic to ( ̂EµT YM ,Q).

By Lemma 31 the algebra ( ̂EµT YM ,Q) is quasi-isomorphic to T̂µYM . The proof
for the second pair is similar. ��

Proposition 47. The Hochschild homologyHi(T̂µYM ,C)as anA∞-coalgebra is iso-
morphic to the A∞-coalgebra b̂vµ. The same isomorphism holds in the graded case.

Proof. There is a series of quasi-isomorphisms

T̂µYM
a∼= ÊµYM

b∼= B̂ar(b̂vµ). (63)

Theorem 80 asserts that if all quasi-isomorphisms in equation (63) are filtered, then
we have a quasi-isomorphism

B̂ar T̂µYM ∼= B̂ar B̂ar(b̂vµ). (64)

Lemma 31 asserts that the quasi-isomorphism a is filtered. The proof of Proposi-
tion 45 shows that the quasi-isomorphism b is filtered. Lemma 83 claims that for any
algebra complete with respect to the canonical filtration we have a quasi-isomorphism

b̂vµ ∼= B̂ar B̂ar(b̂vµ). (65)

By definition, the homology of the algebra T̂µYM is the homology of the bar-
complex B̂ar TµYM . By the result of [13], there is a quasi-isomorphism of A∞-

coalgebras H(T̂µYM ) and B̂ar T̂µYM . Quasi-isomorphisms (64) and (65) finish the
proof. The proof in the graded case is similar. ��

Proposition 48. The differentialQµ
1 in theA∞-coalgebra b̂vµ is defined on Ŝym(V )-

generators by the formulas

Q
µ
1 (φk) = 0,

Q
µ
1 (Ai) = −µ(Ai)c,

Q
µ
1 (ψ

α) = 0,

Q
µ
1 (c) = 0,



Algebraic Structure of Yang–Mills Theory 499

Q
µ
1 (c

∗) =
D∑
i=1

µ(Ai)A
∗i ,

Q
µ
1 (A

∗m) =
D∑
i=1

−µ(Ai)µ(Ai)Am + µ(Am)µ(Ai)Ai,

(66)

Q
µ
1 (φ

∗j ) =
D∑
i=1

−µ(Ai)µ(Ai)φj ,

Q
µ
1 (ψ

∗
α) =

D∑
i=1

∑
β

−�i
αβµ(Ai)ψ

β.

The same formulas hold in the graded case. The homological grading on the complex
Ŵ is defined as follows: the component of homological degree i is equal to Ŵi .

Proof. Direct inspection. ��

2.4 Examples of computations

Example 1. The first trivial example is when V = 0 and µ = 0. In this case the
differential Q1 in (66) is equal to zero and we get that H•(ŶM 0) = W , where the
graded space W is defined by formula (36). This is a tautological result.

The second example is when dim(V ) = 1. We have two options: restriction of
the bilinear form (., .) to the kernel of the map (41) is (a) invertible; (b) degenerate.

Example 2. Let us analyze case (a). Below is an explicit description of the com-
plex (66):

L⊗ c∗ t→ L⊗ A∗1

L⊗ A∗2 t2→ L⊗ A2
. . .

L⊗ A∗D t2→ L⊗ AD

Lφ∗1 t2→ L⊗ φ1
. . .

L⊗ φ∗d ′ t2→ L⊗ φd ′

L⊗ ψ∗α
t→ L⊗ ψα

. . .

L⊗ A1
t→ L⊗ c

3 2 1 0

(67)

Here L = Ĉ[t]. The cohomology classes of this complex are

(a) In dimension 0, it is the space of constants.
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(b) In dimension 1 the space is spanned by A2, . . . , AD , tA2, . . . , tAD , φ1, . . . , φd ′ ,
tφ1, . . . , tφd ′ , ψα .

(c) In dimension 2, the space is spanned by A∗1.
(d) In dimension 3, the space of cocycles is zero.

This computation enables us to identify the algebra TµYM with the subalgebra
K ⊂ YM 0 defined in Theorem 11. The connection is [qi] = Ai+1, [pi] = tAi+1,
[P j ] = φj , [Qj ] = tφj , [ψα] = ψα . The symbol [a] denotes the homology class of
a generator a. The cocycle A∗1 corresponds to the single relation

∑D−1
i=1 [qi, pi] +∑d ′

i=1[Qi, P
i] − 1

2

∑
α{ψα,ψα}.

The algebra K has homological dimension 2. There is up to a constant only
one homology class, which we denote

∫ ∈ H2(K). The algebra K is the universal
enveloping algebra of a Lie algebra k with the same set of generators and relations.
We have an isomorphism H 2(K) = H 2(k,C). It can be used to define a symplectic
structure on the moduli space of representations of k in a semisimple Lie algebra g,
equipped with an invariant dot-product (., .)g. It is well known what the tangent
space to a point ρ of the moduli of representations of a Lie algebra m is. It is equal to
H 1(m, g). In our case it is equal toH 1(k, g). If we have two elements a, b ∈ H 1(k, g),
the cohomological product a ∪ b ∈ H 2(k, g⊗ g). The composition with (., .)g gives
an element of H 2(k,C), whose value on the homology class

∫
is equal to the value

of the symplectic dot-product ω(a, b). In more condensed notation, we can write

ω(a, b) =
∫

(a, b)g. (68)

Proposition 49. The symplectic form ω(a, b) defined on the moduli space Modk(g)
is nondegenerate and closed.

Proof. There is a different description of the space Modk(g). Consider the linear
space (g+ g)×(D−1) + (g+ g)⊗'∗ +�g⊗ S∗. We can identify the vector space
g+g with g+g∗, by means of the invariant bilinear form (., .)g. The space g+g∗ is a
symplectic manifold. The space �g is an odd-dimensional symplectic manifold with
symplectic form equal to (., .)g. The Lie algebra g acts on this space by symplectic

vector fields. Define the set of functions fi = (ei,
∑D−1

k=1 [qk, pk]+∑d ′
k=1[Qk, P

k]−
1
2

∑
α{ψα,ψα}). It is easy to see that this set of functions defines a set of Hamiltonians

for the generators ei of the Lie algebra g. The symplectic reduction with respect to
the action of g gives rise precisely to the manifold we are studying. The statement of
the proposition follows from the general properties of Hamiltonian reduction. ��

Example 3. Now we want to discuss case (b), where the restriction of the bilinear form
to the kernel of the map µ is degenerate. It is easy to see that the null space of the
form is one dimensional. Without loss of generality we may assume that µ(A0) = t ,
µ(A1) = it (i is the imaginary unit) and the map µ on the rest of the generators is
equal to zero. It is convenient to make a change of coordinates
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v = 1√
2
(A1 + iA2),

u = 1√
2
(A1 − iA2),

u∗ = 1√
2
(A1 + iA∗2),

v∗ = 1√
2
(A1 − iA∗2).

(69)

In this notation, the differential Q1 looks like

C[t] ⊗ c∗
√

2t→ C[t] ⊗ u∗

C[t] ⊗ v∗ −2t2→ C[t] ⊗ v

C[t] ⊗ A∗3 0→ C[t] ⊗ A3
. . .

C[t] ⊗ A∗D 0→ C[t] ⊗ AD

C[t]φ∗1 0→ C[t] ⊗ φ1
. . .

C[t] ⊗ φ∗d ′ 0→ C[t] ⊗ φd ′

C[t] ⊗ ψ∗α
Gt→ C[t] ⊗ ψα

. . .

C[t] ⊗ u

√
2t→ C[t] ⊗ c

3 2 1 0

(70)

where G is a linear map S∗ → S. In the degenerate case, not much can be said about
G. If G is built from spinorial �-matrices, G has a kernel with dimension equal to
1/2 dim(S). An important observation is that the complex (70) has infinite homology
groups in dimensions 1, 2. The homology in dimension 3 is trivial and the zeroth
homology is one dimensional. To simplify formulas for truncated Yang–Mills algebra
in this case we get rid of fermions. After the change of variables (69), the relations
(7), (8), (9) become

−[v[v, u]] +
D∑
i=3

[Ai, [Ai, v]] +
d ′∑
k=1

[φk[φk, v]] = 0,

−[u[u, v]] +
D∑
i=3

[Ai, [Ai, u]] +
d ′∑
k=1

[φk[φk, u]] = 0,

[u[v,Am]] + [v[u,Am]] +
D∑
i=3

[Ai, [Ai,Am]] +
d ′∑
k=1

[φk[φk,Am]] = 0,

m = 3, . . . , D,
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[u[v, φj ]] + [v[u, φj ]] +
D∑

k=3

[Ak[Ak.φj ]] + ∂U

∂φj

= 0,

j = 1, . . . , d ′.
(71)

The generators of the algebra TµYM with rk(µ) = 1 and ind(µ) = 0 are

v,

p = [u, v],
An

m = Adn(u)Am, n ≥ 0, m = 3, . . . , D,

φn
j = Adn(u)φj , n ≥ 0, j = 1, . . . , d ′.

(72)

As in the case of the first example, the algebra YM 0 is the semidirect product of an
abelian one-dimensional Lie algebra and the algebra TµYM . The relations in TµYM
and the action of the generator of the abelian Lie algebra (Hamiltonian) can be read
off from equations (71). The action of the Hamiltonian is given by the formulas

H(p) =
D∑
i=3

[A0
i , A

1
i ] +

d ′∑
k=1

[φ0
k , φ

1
k ],

Hm(A0
i ) = Am

i ,

Hm(φ0
i ) = φm

i

The relations are

[v, p] +
D∑
i=3

[A0
i , [A0

i , v]] +
d ′∑
k=1

[φ0
k [φ0

k , v]] = 0,

A∗m0 = [p,A0
m] + 2[v,A1

m] +
D∑
i=3

[A0
i , [A0

i , A
0
m]] +

d ′∑
k=1

[φ0
k [φ0

k , A
0
m]] = 0,

m = 3, . . . , D,

φ
∗j
0 = [p, φ0

j ] + 2[v, φ1
j ] +

D∑
k=3

[A0
k[A0

k.φ
0
j ]] +

∂U

∂φ0
j

= 0, j = 1, . . . , d ′,
(73)

A∗mn = Hn(A∗m0 ), m = 3, . . . , D, n ≥ 1,

φ
∗j
n = Hn(φ

∗j
0 ), j = 1, . . . , d ′, n ≥ 1.

Proposition 50. There is an isomorphism of TµYM and the quotient algebra C〈v, p,
An

k, φ
n
j , ψα〉/(I ), where the ideal is generated by relations (73). There is an isomor-

phism C[H ]� TµYM ∼= YM 0.

Example 4. Suppose V = V and µ = id. We need to compute the cohomology of
complexes
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〈c∗〉 ⊗ Ŝym(V) d→

S∗ ⊗ Ŝym(V)

�V∗ ⊗ Ŝym(V)

'∗ ⊗ Ŝym(V)

D/
→

d ∗ d→

×||v||2
→

S⊗ Ŝym(V)

V ⊗ Ŝym(V)

'⊗ Ŝym(V)

d→ 〈c〉 ⊗ Ŝym(V)

3 2 1 0
(74)

It is easy to see that the homology of the complex (74) coincides with the completion
of the homology of a similar complex with Ŝym stripped of the completion sign.
Therefore, we will examine only the noncompleted version. It is particularly easy to
compute the '∗ −' part of the cohomology. It is equal to zero in all dimensions but
one, where it is '⊗ Sym(V)/(||v||2). By (||v||2) we denote the homogeneous ideal
of functions equal to zero on the quadric q given by the equation ||v||2 = 0.

Denote

T = {(a, b) ∈ V × V | ||a||2 = 0, (a, b) = 0},
X = {(a, b̃) ∈ T |b is defined up to addition of a multiple of a}. (75)

Then X is the quotient bundle of the tangent bundle T to the quadric by the one-
dimensional subbundle L. L consists of all vector fields that are tangent to the
projection q{0} → q̃ ⊂ PD−1. The space of global sections of X is precisely the first
cohomology of the complex (74) in the V ⊗ Sym(V)-term. The zeroth cohomology
in the 〈c〉 ⊗ Sym(V)-term is one dimensional for obvious reasons. The vanishing of
the third and the second cohomology will be proved in Proposition 52 under more
general assumptions.

There is a standard “adjoint’’ Dirac operator D/ ∗ : S⊗Sym(V)→ S∗ ⊗Sym(V).
Together D/ and D/ ∗ satisfy

D/D/ ∗ = ||.||2,
D/ ∗D/ = ||.||2, (76)

where ||.||2 is the operator of multiplication on the quadric. Equations (76) imply
that there is no second cohomology in the S∗ ⊗ Sym(V)-term. There is a similar
geometric interpretation of cohomology in the S ⊗ Sym(V)-term. Suppose S is a
spinor representation of Spin(n); upon restriction of S to Spin(n − 2), S splits into
two nonisomorphic spinor representations S1,S2; choose the one of the two which
contains the highest weight vector of S as a representation of Spin(n). The Levi
subgroup of the stabilizer of a point l of the quadric q is equal to SO(n− 2). One can
induce a vector bundle C on q from the representation S1 of Spin(n − 2). It is not
hard to see that the first cohomology of the complex (74) in the term S⊗ Sym(V) is
isomorphic to the direct sum of the space of global sections of C.

It is useful to use the Borel–Weil theorem to compute the spaces of global sections
of these bundles.

As an illustration, let us carry out such a computation in the case D = 10, d ′ = 0,
N = 1.
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The Dynkin graph of the group Spin(10) = Spin(V) is

�� �

�

�

�
��

�
��

w1 w2 w3

w5

w4

(77)

We will encode a representation which is labeled by the Dynkin diagram above by an
array [w1, w2, w3, w4, w5]. Our convention is that the spinor representation S is equal
to the irreducible representation with highest weight [0, 0, 0, 1, 0], the tautological
representation in C10 = V is equal to [1, 0, 0, 0, 0], the exterior square of the latter
representation is equal to [0, 1, 0, 0, 0]. In the case of the N = 1,D = 10 super-
Yang–Mills theory the cohomology is equal to⊕

i≥0

[i, 1, 0, 0, 0] harmonic two-forms,

⊕
i≥0

[i, 0, 0, 1, 0] harmonic spinors.
(78)

An interesting feature of the algebra TdYM is that its second homology vanishes.
As a result we conclude that the algebra T̂dYM is the completed free algebra. It
is useful to exhibit the set of free generators of such an algebra. Before doing this
introduce some notation. The space V is a representation of SO(10) and a basis
vector AD can be taken to be the highest weight vector. The element (AD)⊗i is a
highest weight vector in the ith symmetric power Symi (V). Let W be an irreducible
representation of Spin(D) with highest weight vector w. Then the vector (AD)i ⊗
w ∈ Symi (V) ⊗ W will be a highest weight vector and generates an irreducible
subrepresentation of Spin(D) in Symi (V) ⊗ W ; denote the projection on such a
representation by p. For example, the representation [i, 1, 0, 0, 0] is isomorphic to
the image of p : Symi (C10)⊗�2(C10)→ Symi (C10)⊗�2(C10).

Denote Ad(x)(y) = [x, y], Fij = [Ai,Aj ]. Introduce elements Ad(A(i1)

. . .Ad(Aik−1)Fik)j , where ( ) denotes symmetrization. This element belongs to
Symk−1(V) ⊗ �2(V). Similarly, the elements Ad(A(i1) . . .Ad(Aik )φj belong to
Symk(V)⊗' and Ad(A(i1) . . .Ad(Aik−1)ψ

α belong to Symk(V)⊗S. The elements

p(Ad(A(i1) . . .Ad(Aik−1)Fik)j ),

p(Ad(A(i1) . . .Ad(Aik))ψ
α),

p(Ad(A(i1) . . .Ad(Aik))φj )

(79)

form a topological free set of generators of the algebra TdYM . One can check this by
looking at the image of these elements in the first homology.

We would like to elucidate some general features of the complex (66). Its structure
depends on the map µ.
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Definition 51. Let µ(b) be the image of the tensor q ∈ Sym2(V) inverse to the scalar
product under the map µ (see (41)). Write ind(µ) = rk µ(b) and rk(µ) = dim V .

There are three classes of maps:

(a) µ = 0;
(b) ind(µ) = 0, µ �= 0;
(c) ind(µ) = 1, rk(µ) = 1;
(d) all other cases.

The importance of such a division is justified by the following proposition.

Proposition 52.

(a) If condition (a) is satisfied, the algebra TµYM has homological dimension 3 and
coincides with YM 0.

(b) If condition (b) is satisfied, the algebra TµYM has homological dimension 2 and
has an infinite number of generators and relations.

(c) If condition (c) is satisfied, then the algebra TµYM has homological dimension
2, and has a finite number of generators and one relation.

(d) If the condition (d) is satisfied, the algebra TµYM is a completed free algebra
with an infinite number of generators.

Proof.

(a) The proof is a tautology.
If µ �= 0 the third homology is equal to zero. Indeed, the space of four-chains is
equal to zero. On the space of three-chains (equal to Sym(V )⊗c∗) the differential
is injective. This implies that if µ �= 0 the homological dimension of all algebras
in question is less than or equal to 2.

(b) The case when the dimension d (the number of generators of Ak) is less than or
equal to three and ind(µ) = 0 was covered by Example 2. We may assume that
d ≥ 4. Then the restriction of the map Q1 : �V∗ ⊗ Ŝym(V ) → V ⊗ Ŝym(V )

contains a free module with at least [d/2] generators ([d/2] is the dimension of
the maximal isotropic subspace in the space �V∗ equipped with the standard
bilinear form). This implies that the image Im[Q1 : W 3 → W 2] cannot cover
Ker Q1 ∩W 2 and the second cohomology is infinite dimensional.

(c) This was worked out as the first nontrivial example of computation of cohomol-
ogy.

(d) If ind(µ) ≥ 1 one can choose a subspace V ′ ⊂ V of codimension 1 such that
the image of µ(b) in Sym2(V/V ′) is nonzero. Choose some complement V ′′
to V ′ such that V = V ′ + V ′′. Define the linear space F 1 as the ideal in
Ŝym(V ) generated by V ′′. Introduce the multiplicative descending filtration F i

of Ŝym(V ) generated by F 1. Define the filtration of Ŵ as F s(Ŵ ) = W ⊗
F s . The E2-term of the spectral sequence associated with such a filtration is
equal to the cohomology of (67), where L = Ĉ[t]⊗̂Ŝym(V ′). The element
t is a generator of V ′′. The space of the second homology of the E2-term is
the free Ŝym(V ′)-module generated by A∗1 (we can assume this without loss
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of generality). Similarly, the first homology of the E2-term is a free Ŝym(V ′)
module of rankD+d ′−1+l. The differential inE2 is a Ŝym(V ′) homomorphism
and it is injective on the second homology, if we can prove that it is nonzero on
A∗1. A simple analysis shows that Q1A

∗1 �= 0 in E2 if the map µ satisfies
condition (d). ��

2.5 Fano manifolds

Let M be a smooth manifold of dimension n. Denote by �p the sheaf of holomorphic
p-forms on M . Let us fix a line bundle L. In the most interesting situations M is
a projective manifold and L is obtained from the tautological line bundle O(1) on
projective space by means of restriction to M . We will use the notation O(1) for L
and O(−1) for the dual bundle L∗ also in the general case. We identify line bundles
with invertible sheaves. For any sheaf F denote by F(i) the sheaf F ⊗ O(1)⊗i ,
where the tensor product is taken over the structure sheaf O.

The Serre algebra S is defined by the formula

S =
∞⊕
i=0

Si =
∞⊕
i=0

H 0(M,O(i)). (80)

It can be embedded in the differential algebra B (Koszul–Serre algebra) in the
following way. As an algebra

B = S ⊗�(S1), (81)

where �(S1) is the exterior algebra of S1. The algebra B is Z-graded: an element
a ∈ Si ⊗ �j(S1) has degree deg(a) = j . Let vα , α = 1, . . . , s, be a basis of
S1 ⊂ S and let θα be the corresponding basis of S1 ⊂ �(S1). The algebra B carries a
differential d of degree−1. If a ∈ S, then d(a) = 0, d(θα) = vα . It can be extended
to B by the Leibniz rule.

There is an additional grading on B, which we denote by Deg. An element
a ∈ Si ⊗�j(S1) has degree Deg(a) = i + j . The differential has degree zero with
respect to the additional grading. According to the definition in the appendix such an
algebra is called homogeneous. We can split B into a sum

B =
⊕
i,j

Bj,i (82)

such that a ∈ Bj,i has the degrees deg(a) = j , Deg(a) = i. A line bundle L is
called ample if for some positive n the tensor power L⊗n defines an embedding of
the manifold M into P(H 0(M,L⊗n)∗). We assume that

M is an algebraic smooth manifold of dimension n,

the canonical bundle �n is isomorphic to O(−k), k > 0, (83)

O(1) = L is ample.
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The constant k is called the index. Manifolds satisfying the above assumptions are
Fano manifolds (i.e., the anticanonical line bundle is ample). Conversely, every Fano
manifold can be equipped with the above structure. (We can always take k = 1.)

The goal of this section is to illuminate some properties of the cohomology of the
following complexes:

Q•i = (0 → �i(S1)→ �i−1(S1)⊗ S1 → · · · → Si → 0) =
i⊕

j=0

Bj,i . (84)

Some preliminaries on H•(M, O(i))

Proposition 53 (Kodaira [9]). Suppose L is an ample bundle over a complex mani-
fold N . Then

Hi(N,�j ⊗ L) = 0 if i + j > n.

Corollary 54. Under the assumptions (83),

H i(M,O(l)) = 0 for 0 < i < n and any l,

H 0(M,O(−l)) = 0 for l > 0,

H 0(M,O(l)) = 0 for l > −k,
H 0(M,O) = C,

Hn(M,O(−l)) = H 0(M,O(l − k))∗, l ≥ k.

(85)

Proof. The proof is straightforward: use Theorem 53 and Serre duality. ��
Theorem 55. Suppose M is an n-dimensional Fano manifold of index k. Let B be
the differential algebra (81). There exists a nondegenerate pairing

Hj,i(B)⊗Hs−n−1−j,s−k−i (B)→ Hs−n−1,s−k(B),

where s = dim S1.

Proof. There is a short exact sequence of vector bundles over M (Euler sequence):

0 → O(−1)→ S∗1
m∗→ T (−1)→ 0, (86)

where S∗1 is the trivial bundle with fiber S∗1 . The first map is the tautological embed-
ding. The vector bundle T (−1) is the quotient S∗1/O(−1)

The ith exterior power of the dual of this sequence gives rise to the complex of
vector bundles

Ni = (0 → Ei → �i(S1)→ �i−1(S1)(1)→ · · · → �1(S1)(i−1)→ O(i)→ 0),
(87)

which is acyclic everywhere except in degree zero. The zeroth cohomology is equal
to �i(T (−1)) = Ei . Since Es = 0, the complex Ns has a particularly simple form.
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After tensoring the resolution N•s (i) by the Dolbeault complex �0,• one can com-
pute the diagonal cohomology of the corresponding bicomplex (hypercohomology)
which we denote by H•(N•s (i)). By the acyclicity of N•s (i), we have the equality

H•(N•s (i)) = 0. (88)

There is a spectral sequence of the bicomplex N•s (i) ⊗ �0,• whose E
p,q

1 -term
coincides with

E
p,q

1 = �p(S1)⊗Hq(O(i − p)).

According to equation (85) and Corollary 54, all nonzero entries of the E1-term
are concentrated on horizontal segments:

E
p,0
1 = �p(S1)⊗ Si−p, 0 ≤ p ≤ i, (89)

E
p,n

1 = �p(S1)⊗ S∗p−i−k, i + k ≤ p ≤ s. (90)

All entries Ep,q

1 not mentioned in the above table are equal to zero.

Definition 56. Let K• = · · · → Ki → Ki+1 → . . . . The complex K•[l] is a
complex with shifted grading:

Ki[l] = Ki+l . The differential in the new complex is equal to (−1)ld.

We have an obvious equality of complexes:

(E
•,0
1 , d) = Q•i , (91)

(E
•,n
1 , d) = Q•∗s−k−i[−s]. (92)

The second isomorphism depends on a choice of a linear functional on the space
�s(S1) ∼= C. The symbol ∗ means dualization. The spectral sequence converges
to zero in the (n + 1)st term. The differential dn+1 on E

p,q

2 = E
p,q

n+1 induces an
isomorphism

dn+1 : Ep,n

2 → E
p−n−1,0
2 , (93)

which is a map of E•,02 modules, because the spectral sequence is multiplicative.
The isomorphism (93) can be interpreted as a nondegenerate pairing:

(., .) : Hl(Qi)⊗Hs−n−1−l (Qs−k−i )→ C (94)

It satisfies (ab, c) = (a, bc), because dn+1 is a map of E•,02 modules. The pairing
can be recovered from the functional λ(a) = (a, 1) by the rule (a, b) = λ(ab). The
functional is not equal to zero only on Hs−n−1(Qs−k). The proof follows from this.

A direct inspection of the complex Q•i shows that Hi(Q•i ) = 0 for i �= 0. This
implies by the duality (94) that

Hi,i(B) = Hs−n−1−i,s−k−i (B) = 0 for i �= 0. �� (95)
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The duality (94) also implies that the cohomology of Q•i is not equal to zero
only in the range 0 ≤ deg ≤ s − n − 1; therefore, we have proved the following
proposition.

Proposition 57. Under the assumptions of Theorem 55,

Hj,i(B) �= 0 only for

0 ≤ j ≤ s − n− 1 and j ≤ i

and by duality, i ≤ j + n+ 1− k.

Notice that an analogue of Theorem 55 can be proved for Calabi–Yau manifolds.

Proposition 58. Suppose an n-dimensional smooth algebraic manifold has �n = O,
Hi(M,O) = 0 for 0 < i < n and L = O(1) is ample. Then there is a nondegenerate
pairing

Hj,i(B)⊗Hs−n−1−j,s−i (B)→ Hs−n−1,s(B)

for the differential graded algebra B defined in (81).

Proof. The proof goes along the same lines as Theorem 55. ��

2.6 Berkovits algebra

In this section we will be dealing with some structures built from the 16-dimensional
spinor representation S = sl of the group Spin(10) defined over the complex numbers.
This group is a double cover of the group of all linear transformations of the linear
space V, dim(V) = 10 that preserve a nondegenerate form (., .) and have determinant
equal to one. The Dynkin diagram D5 that corresponds to the Lie algebra SO(V) can
be found in the picture (77). Our convention is that the representation S is equal to
the irreducible representation with highest weight [0, 0, 0, 1, 0].

Let Si be [0, 0, 0, i, 0]. There is a structure of algebra on⊕
i≥0

Si = S (96)

induced by the tensor product of representations and projection on the leading com-
ponent.

According to Cartan [5] there is a compact Kähler 10-dimensional homoge-
neous space OGr(5, 10) of the group O(V)—the Grassmannian of maximal (five-
dimensional) isotropic subspaces of V. This space is called the isotropic Grassman-
nian. It has two connected components. They are isomorphic as Kähler manifolds
but not as homogeneous spaces. An element e ∈ O(V) with det(e) = −1 swaps the
spaces. Let us describe one of the connected components, which we denote Q and
will call the space of pure spinors. Fix W0 ∈ OGr(5, 10); then the other isotropic
subspace W1 belongs to the same component Q if dim(W0 ∩W1) is odd.

The complex group Spin(V) (in fact SO(V)) acts transitively on Q; the corre-
sponding stable subgroup P is a parabolic subgroup. To describe the Lie algebra p of
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P , we notice that the Lie algebra so(V) of SO(V) can be identified with �2(V) (the
space of antisymmetric tensors ρab, where a, b = 0, . . . , 9). The vector representa-
tion V of SO(V) restricted to the group GL(5,C) = GL(W) ⊂ SO(V) is equivalent
to the direct sum W ⊕ W ∗ of the vector and covector representations of GL(W),
where dim(W) = 5. The direct sum W +W ∗ carries a canonical symmetric bilinear
form. The Lie algebra of SO(V) as a vector space can be decomposed as �2(W)+p,
where p = (W ⊗ W ∗) ⊕ �2(W ∗) is the Lie algebra of P . Using the language of
generators we can say that the Lie algebra so(10,C) is generated by skew-symmetric
tensors mab, nab and by kba , where a, b = 1, . . . , 5. The subalgebra p is generated by
kba and nab. The corresponding commutation relations are

[m,m′] = [n, n′] = 0, (97)

[m, n]ba = macn
cb, (98)

[m, k]ab = mack
c
b +mcbk

c
a, (99)

[n, k]ab = nackbc + ncbkac . (100)

Proposition 59 (Borel–Weil–Bott theorem [4]). Suppose L is an invertible homo-
geneous line bundle over the Kähler compact homogeneous space M of a semisimple
group G. Then Hi(M,L) can be nonzero only for one value of i. For this value
Hi(M,L) is an irreducible representation.

Corollary 60. Hi(Q,O) = 0 for i > 0.

Since H 1(Q,O) = 0 all holomorphic topologically trivial line bundles are
holomorphically trivial. The corollary and the Hodge decomposition imply that
H 2(Q,O) = H 0(Q, �2) = 0 and H 2(Q,Z) = Pic(Q).

Proposition 61.

(a) The group Pic(Q) = Z.
(b) The group Pic(Q) has a very ample generator, which we denote by O(1) = L,

such that H 0(Q,O(1)) = S.
(c) The canonical class of Q is isomorphic to O(−8).

Proof. We saw that that the Levi subgroup of the parabolic group P contains a
center isomorphic to C×, so the singular cohomology H 1(P,Z) = Z. Transgression
arguments imply that H 2(Q,Z) = Z. This proves that the Picard group of Q is equal
to Z.

Denote by G̃L(W) ⊂ Spin(V) the double cover of GL(W). The restriction of S∗

to G̃L(W) is isomorphic to

[C+�2(W)+�4(W)] ⊗ det−1/2(W). (101)

By the Borel–Weil theorem this implies that the ample generator of Pic(Q), which
we denote by O(1), has its space of global sections isomorphic to S.

Consider the representation of G̃L(W) in �2(W). It is easy to see that
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det(�2(W)) = det4(W) = (det1/2(W))8. (102)

We can interpret �2(W) as an isotropy representation of the parabolic subgroup P in
the tangent space of Q at a point which is fixed by P . This implies that the canonical
class K is isomorphic to O(−8). ��

By the Borel–Weil–Bott theorem the algebra
⊕

n≥0 H
0(Q,O(n)) is equal to S.

It is possible to write a formula for S in terms of generators and relations. To do
this observe that

Sym2(S) = S2 ⊕ V.

Denote by
� : V → Sym2(S)

the inclusion of representations. We use the same letter for the projection

� : Sym2(S)→ V.

To distinguish these two maps we will always specify the arguments. The first
map �(v) has a vector argument v. The second map �(s1, s2) has two spinor ar-
guments s1, s2.

Proposition 62 (Cartan [5, 3]).

(a) Denote by A1, . . . , A10 a basis of V. Then the algebra S defined in (96) can be
described through generators and relations:

S = Sym(S)/(�(A1), . . . , �(A10)).

(b) The space Q can be identified with all points λ ∈ P(S∗) such that �(λ, λ) = 0.

Consider the complex

Kos•(S)(i) = (0 → �i(S)→ �i−1(S)⊗ Sym1(S)→ · · · → Symi (S)→ 0);
(103)

it is a classical Koszul complex.
The cohomological grading is the degree in the exterior algebra. The sum

Kos•(S) = ⊕
i Kos•(S)(i) is an algebra. It contains Sym(S) = ⊕

i≥0 Symi (S)
as a subalgebra. The algebra S is a module over Sym(S). Then

B0 = Kos•(S) ⊗
Sym(S)

S =
⊕
i

Q•(i) (104)

is called the (reduced) Berkovits algebra. The complex Kos•(S) is a free resolution
of C over Sym(S). This implies that we have an identity

Hn(Q•(i)) = Torn,iSym(S)(C,S). (105)

(The left upper index corresponds to the cohomology index; the right index corre-
sponds to the homogeneity index.) There is a symmetry
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Torn,iSym(S)(C,S) = Torn,iSym(S)(S,C). (106)

One way to compute the groups Hn(Q•(i)) is to construct a minimal resolution of S
as a module over Sym(S) (instead of C as Sym(S)module). Then the generators of the
modules in the resolution will coincide with the cohomology classes of the complexes
Q•(i). Such a resolution was constructed in [7] (though Spin(V) equivariance in their
approach is not apparent). Another option is to compute the cohomology of Q•(i),
i = 0, . . . , 4 by brute force using a computer. This has been (partly) done in [6]. In
all these approaches, due to the duality proved in Theorem 55 the only nontrivial task
is the computation of H •(Q•(4)).

We are going to construct a (partial) free resolution of Sym(S) module S whose
graded components are schematically depicted in the picture (107):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{0} → M3
3

δ3→ M2
3

δ2→ M1
3

δ1→ M0
3

δ0→ S3

{0} → M2
2

δ2→ M1
2

δ1→ M0
2

δ0→ S2

{0} → M1
1

δ1→ M0
1

δ0→ S1

{0} → M0
0

δ0→ S0.

(107)

By definition Mi =⊕
j≥0 M

i
j and M0 = Sym(S).

Since the algebra S is quadratic with ideal of relations I = ⊕
j≥1 Ij generated

by V = I2, we have M1
2 = V,M1

1 = 0 and M1 = V ⊗ Sym(S). Denote by Ai ,
i = 1, . . . , 10, the basis of V and by uα , α = 1, . . . , 16, the basis of S. The map δ1
is defined by the formula δ1(Ai) =∑16

αβ=1 �iαβu
αuβ .

The linear space M2
3 = B is the kernel of the surjection V ⊗ S → I3. In

the case of interest, the representation content of I3 is [1, 0, 0, 1, 0], and the rep-
resentation content of V ⊗ S1 is [0, 0, 0, 0, 1] ⊕ [1, 0, 0, 1, 0]. This implies that
B = [0, 0, 0, 0, 1] = S∗. Denote a basis of the vector space S∗ by ψα , α = 1, . . . , 16.
The map δ2 is given on generators by

δ2 : S∗ → S⊗ V,

δ2(ψβ) =
16∑
α=1

10∑
i=1

�αβiAiu
α.

(108)

We conclude that the module M2 is equal to S∗ ⊗ Sym(S)+ M̃2, where M̃2 is a free
module with generators of degree greater than 3. We will see later that M̃2 = 0. Now
we need to prove a weaker statement: M̃2

4 = 0. Indeed, it is equal to the cohomology
of the complex

S∗ ⊗ S
δ2→ V ⊗ Sym2(S)

δ1→ I4 → 0

in the term V ⊗ Sym2(S). We have the following representation content:
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I4 = [1, 0, 0, 2, 0] ⊕ [2, 0, 0, 0, 0],
V ⊗ Sym2(S) = [0, 0, 0, 0, 0] ⊕ [0, 0, 0, 1, 1] ⊕ [0, 1, 0, 0, 0]

⊕ [1, 0, 0, 2, 0] ⊕ [2, 0, 0, 0, 0],
S∗ ⊗ S = [0, 0, 0, 0, 0] ⊕ [0, 0, 0, 1, 1] ⊕ [0, 1, 0, 0, 0].

(109)

Since the map δ1 is surjective we need to check that S∗ ⊗ S
δ2→ V ⊗ Sym2(S) is the

inclusion. This can be readily checked by applying the map δ2 to the highest vectors
of each representation in the decomposition of S∗ ⊗ S. Let us extend the partial
resolution of S to an arbitrary full resolution. Using this resolution, we can compute
Tori,jSym(S)(C,S). Simple computations give the following answer:

Tor0,i
Sym(S)(C,S) = C if i = 0 and {0} if i �= 0,

Tor1,i
Sym(S)(C,S) = V if i = 2 and {0} if i �= 1,

Tor2,i
Sym(S)(C,S) = S∗ if i = 3 and {0} if i < 3 or i = 4,

Tor3,i
Sym(S)(C,S) = {0} if i < 5.

(110)

Using equation (105), the general duality theorem (Theorem 55), and Proposi-
tion 57, we prove the following.

Proposition 63. The cohomology of the algebra B0 is

H 0,0 = C,

H 1,2 = V,

H 2,3 = S∗,
H 3,5 = S,

H 4,6 = V,

H 5,8 = C,

Hp,q = 0 for all p, q not listed above.

As we know from [15] the Koszul dual to the algebra S = F(Q̂) is the algebra
S !) with generators λα , α = 1, . . . , 16, which span a linear space S∗ and the relations

16∑
αβ=1

�αβ
m1...m5

{λα, λβ} = 0. (111)

This algebra is the universal enveloping algebra U(L) of a Lie algebra L with the
same set of generators and relations.

The Cartan–Eilenberg complex of a positively graded Lie algebra g is the exterior
algebra �(g†) = �•(g†); the dual complex is denoted by �(g) = �•(g). The sign †
denotes dualization in the category of graded vector spaces (see the appendix). The
differential �•(g†) is given by the formula
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(dν)(x) = ν([x1, x2]) (112)

where ν ∈ �1(g†) is a linear generator. Denote by H •(g,C) the homology of this
complex; the homology of the dual complex �•(g) will be denoted as H•(g,C) (See
[12] for details about the (co)homology of Lie algebras). For any positively graded
Lie algebra g, there is a canonical quasi-isomorphism �•(g) → Bar(U(g)) and the
dual quasi-isomorphism Bar(U(g))† → �(g†) (see [12] for details).

By one of the properties of the Koszul duality transformation (see [11]) there is
an inclusion U(g)! ⊂ H •(g,C), for any quadratic Lie algebra.

We need the following proposition.

Proposition 64 ([3]). For any compact homogeneous Kähler manifold G/P of a
reductive groupG and an ample line bundleα on it the Serre algebra

⊕
n≥0 H

0(G/P,

α⊗n) is Koszul.

Since the Koszul relation is reflexive for the case at hand, we have an isomorph-
ism:

U(L)! = H •(L,C). (113)

Proposition 65. There is a quasi-isomorphism ρ : �•(L†) → S, which maps the
linear functional λ∗α on L into the generator uα of S. This map is zero on the
subspace

⊕
i≥2 L∗i ⊂ �1(L∗).

Proof. The only statement which needs to be checked is that ρ commutes with dif-
ferentials. This is obvious, however. ��

Our next goal is to relate the Berkovits algebra (Bd,Q) with the classical BV
approach to YM theory.

Let µ : V → V be a surjective linear map. We assume that the linear space V has
an orthonormal basis A1, . . . , A10 and that the linear space V has a basis generated by
the symbols ∂

∂x1 , . . . ,
∂

∂xd
. Let Sym(V ∗) be the symmetric algebra on the space dual

to V . The space V ∗ has a basis x1, . . . , xd . Then µ(Ai) defines a linear functional
on V ∗, which can be extended to a derivation of Sym(V ∗). Introduce the algebra

Bµ = B0 ⊗ Sym(V ∗) (114)

and a differential on it by the rule

Q =
16∑
α=1

uα
∂

∂θα
+

16∑
αβ=1

10∑
i=1

�i
αβu

αθβµ(Ai). (115)

Recall that the differential algebra (Bd,Q) was defined in the introduction in
Definition 16; (Bµ,Q) is a minor generalization of it.

Consider a graded extension Mµ of the Lie algebra L. The linear space L1 = S∗.
Then Mµ0 = S∗ and this space has a basis τα, α = 1, . . . , 16. The linear space V

has a basis ξ1, . . . , ξd and Mµ1 = S∗ + V . The linear space V is by definition dual
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to the linear space generated by x1, . . . , xd of linear coordinates on d-dimensional
linear space. For i ≥ 3 we have Mµi = Li .

The parity of elements of M is reduction of grading modulo 2. The Lie algebra
M is equipped with a differential defined by the formulas

d : Mµ1 → Mµ0; S∗ + V
id,0→ S∗,

d : Mµ2 → Mµ1; V
0,µ→ S∗ + V,

d : Mµi → Mµi−1; i ≥ 3, d = 0.

(116)

The commutation relations in the algebra M are those of the semidirect product
L � (S∗ + V ), where S∗ ⊂ Mµ0, V ⊂ Mµ1. The linear space S∗ + V is an abelian
ideal. The action of L on S∗ + V is given by the rule

[θα, τβ ] = 2µ
10∑
i=1

�i
αβAi,

[θα, ξi] = 0.

(117)

One can consider a version of the Cartan–Eilenberg complex for the differential
graded Lie algebra (Mµ, d); in the complex �•(M†

µ), formula (112) becomes

(Dν)(x) = ν([x1, x2])+ ν(d(x3)). (118)

There is a map
χ : (�(M†

µ),D)→ (Bµ,Q). (119)

On the generators, the map is

χ(ξ∗i ) = xi,

χ(λ∗α) = uα,

χ(τα) = θα,

χ is zero on the rest of the generators.

(120)

To make this map a map of complexes, one has to modify slightly the grading on Bµ:

x̃i = 2,

ũα = 2,

θ̃α = 1.

(121)

The grading on �(M†
µ) is the standard cohomological grading.

Proposition 66. The mapχ is well defined and is a quasi-isomorphism of the algebras
(�(M†

µ),D) and (Bµ,Q).
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Proof. We leave the proof of the first statement as an exercise for the reader. The
algebra Mµ carries an action of C× which commutes with the differential D. It
manifests itself in a grading. In this grading DEG(λα) = 1. This condition allows
us to uniquely extend the grading to the entire algebra. The induced grading on
�(Mµ) has the following feature: all graded components become finite-dimensional
complexes bounded from both sides. Such a grading can be pushed onto Bµ. The
simple observation is that the map χ is surjective. A filtration of �(Mµ) which leads
to the Serre–Hochschild spectral sequence, based on the extension

0 → S∗ + V → Mµ → L → 0 (122)

can be pushed onto the algebra Bµ. The E2-terms of the corresponding spectral
sequences are isomorphic to the algebra Bµ. Therefore, the limiting terms of the
spectral sequence, which converge strongly, must coincide. ��
Proposition 67. The universal enveloping algebra U(Mµ) is Koszul dual to Bµ.

Proof. The proof is a straightforward application of the definitions. ��
In order to avoid confusion, when we talk about differential Lie algebras, by

(co)homology we always mean cohomology of the Cartan–Eilenberg complex. How-
ever, the linear space of the algebra itself carries a differential which we call the in-
trinsic differential. The cohomology of such a differential will be called the intrinsic
cohomology.

The algebra Mµ carries an intrinsic differential. It allows us to reduce the space
of the algebra without affecting its cohomology. Introduce two subalgebras EµM =⊕

i≥1 EµMi and TµM =⊕
i≥2 TµM of Mµ:

EµM1 = V,

EµMi = Li , i ≥ 2,

the differential is a restriction of the differential to EµM,

(123)

TµM2 = Ker[µ : L2 → V ],
TµMi = Li , i ≥ 3,

d = 0.

(124)

Proposition 68. The algebras EµM, TµM quasi-isomorphically embed into the al-
gebra Mµ.

Proof. Obvious. ��
Corollary 69. H •(TµM,C) = H •(EµM,C) = H •(Bµ), where the first two groups
are the cohomology of Lie algebras. The last group is intrinsic to the differential of
the algebra Bµ.

We need to identify the algebras TµM and EµM. Assume that µ = 0. In [15] we
indicated that the algebra L contains a homomorphic image of the Lie algebra SYM .
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The universal enveloping algebra U(SYM ) is isomorphic to YM 0 with D = 10, d ′ =
0, N = 1 and the potential U equal to zero. The Lie algebra SYM is generated by

Ai =
∑
αβ

�
αβ
i {λα, λβ},

ψα =
∑
β

10∑
m=1

�αβm[λβ,Am]
(125)

with relations (7), (8), (9).

Proposition 70. The Lie algebra SYM is isomorphic to the algebra
⊕

i≥2 Li .

Proof. By construction SYM maps into
⊕

i≥2 Li . We need to check that the set
of generators of

⊕
i≥2 Li coincides with A1, . . . , A10, ψ

1, . . . , ψ16 and there are
no relations other than (7), (8), (9) with D = 10, d ′ = 0, N = 1, and U =
0. To do so, we take advantage of Proposition 18 and Corollary 19. The space
H •(E0M,C) is quasi-isomorphic toH •(B0), which was computed in Proposition 63.
According to this proposition, H 1(E0M,C) = V + S∗ and H 2(E0M,C) = V + S.
It implies that elements A1, . . . , A10 which span V and ψ1, . . . , ψ16 which span S
are indeed the generators of the algebra E0M. The relations (7) (if we think of them
as elements of a free algebra) transform as the representation �V∗, (7) transform
as the representation S∗ are indeed the generators of the ideal of relations of the
algebra E0M. ��

If µ = 0 then Mµ is quasi-isomorphic to T0M =⊕
i≥2 Li .

Proposition 71. The Koszul dual to B0 is quasi-isomorphic to U(SYM ).

Proof. According to Proposition 70, U(SYM ) is quasi-isomorphic to U(
⊕

i≥2 Li ).
By the remark from the previous paragraph,

⊕
i≥2 Li is quasi-isomorphic to T0M,

which by Proposition 68 is quasi-isomorphic to M0. By Proposition 67 M0 is Koszul
dual to B0. ��
Corollary 72. There is a quasi-isomorphism bv∗0 ∼= B0.

Proof. We already established a quasi-isomorphism between �(E0M) and B0. We
have a canonical quasi-isomorphism Bar(E0M)† → �(E0M†). On the other hand,
according to Theorem 1, we have a quasi-isomorphism Bar YM ∼= bv0. Dualization
of the last quasi-isomorphism gives the necessary quasi-isomorphism. ��
Proposition 73. There is a quasi-isomorphism

Bµ
∼= bv∗µ. (126)

Proof. There is an obvious identification U(TµM) ∼= TµYM (U stands for the uni-
versal enveloping algebra) which comes from the identification T0M ∼= SYM . Then
by Lemma 31 and Propositions 45 and 66, we have a quasi-isomorphism (126). ��
Proposition 74. The Koszul dual to Bµ is quasi-isomorphic to U(TµM).

Proof. According to Proposition 67, the Koszul dual to Bµ is equal to U(Mµ). The
result follows from the previous observation and Proposition 68. ��
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3 Appendix: Dualization in the category of linear spaces:
Bar duality

3.1 Dual spaces

Suppose we have an inverse system of finite-dimensional vector spaces · · · →
Ni+1 i→ Ni → · · · → N0 (i ≥ 0), where all maps i are surjective. Let N = lim

i
Ni .

There is a canonical map N → Ni which in our case is surjective. Denote the kernel
of this map by J i . It is clear that J i−1 ⊂ J i and the set of linear spaces J i com-
pletely determines the inverse system, and for every linear space W with a decreasing
filtration J i such that

i=0⋂
∞

J i = {0}, (127)

dim(J i/J i−1) <∞, (128)

we have W ⊂ lim
i

W/Li = Ŵ . Define a direct system of finite-dimensional vector

spaces M0 → M−1 → . . .Mn → Mn−1 → . . . as Mn = N∗−n. We call such a
direct system the dual to Nn and denote it by N∗n. It should be clear how to define
N∗∗n and that it is equal to Nn. Observe that colim

n
N∗n has an increasing filtration

by spaces F i = Ni∗. Denote M = colim
n

N∗n. The filtration satisfies

M =
⋃
i

F i, (129)

dim(F i+1/F i) <∞. (130)

Skipping all mentionings of limits we can say that there is a dualization invertible
functor from the category of complete linear spaces W with decreasing filtration, Ji
(i ≤ 0), where Ji satisfies (127), (128) and linear spaces M equipped with increasing
filtration, and F i such that F i satisfies (129) and (128). We will refer to such a duality
as topological.

Definition 75. Denote by U =⊕
i∈Z Ui a graded vector space with dim(Ui) <∞.

One can define a dualization functor on the category of such vector spaces. Indeed,
by definition U† =⊕

i∈Z U∗−i , and the grading of U∗i is equal to −i. Observe that

the functor U† is autoduality in the category of graded linear spaces. A vector space
dual in this sense to U will be called the algebraic dual.

Given a graded vector space U =⊕
i≥0 Ui one can define two linear spaces with

filtrations:

(a) U =⊕
i≥0 Ui and a filtration is defined as Fn =⊕

0≤i≤n Ui .
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(b) Û = ∏
i≥0 Ui and a filtration is defined as Jn = ∏

n≤i Ui . In the future the sign̂ will always means completion of the space W with respect to a decreasing
filtration.

In the future, if we write U∗ for U = ⊕
i≥0 Ui , we will always mean the topo-

logical dual.

3.2 A∞-algebras

Let us consider a Z2-graded vector space W and the corresponding tensor algebra
T (W) = ⊕

n≥1 W
⊗n. The tensor algebra T (W) is Z-graded, but it also has a Z2-

grading coming from the Z2-grading of W . We say that the differential (= an odd
derivation having zero square) Q on T (W) specifies a structure of A∞-coalgebra on
V = �W .

One can describe the structure of A∞-coalgebra on V = �W as a sequence of
linear maps �1 : V → V , �2 : V → V ⊗ V , �n : V → V⊗n. Using the Leibniz
rule we can extend �1,�2, . . . to a derivation Q of (T (W); the condition Q2 = 0
implies some conditions on �1,�2, . . . . The map �1 is a differential (�2

1 = 0); the
map �2 can be interpreted as comultiplication. If �n = 0 for n ≥ 3, we obtain a
structure of associative coalgebra on V .

One says that the differential algebra (T (W),Q) is (bar-)dual to theA∞-coalgebra
(V ,m) or that (T (W),Q) is obtained from (V ,�) by means of the bar-construction.
We will use the notation Bar(V ,�) for this differential algebra. The Hochschild
homology of (V ,�) is defined as the homology of (T (W),Q).

An A∞-map of coalgebras is defined as a homomorphism of corresponding dif-
ferential tensor algebras (i.e., as an even homomorphism Bar(V ,�)→ Bar(V ′,�′)
commuting with the differentials).

One can describe an A∞-map φ(V,�) → (V ′,�′) by means of a sequence of
maps ϕn : V → V ′⊗n, where V = �W , V ′ = �W ′.

The map ϕ1 commutes with the differentials (�′1ϕ1 = ϕ1�1); hence it induces a
homomorphism of the homology of (V ,�1) into the homology of (V ′,�′1). If the
induced homomorphism is an isomorphism one says that the A∞-map is a quasi-
isomorphism.

One can define an A∞-algebra structure on the Z2-graded vector space V as an
odd coderivation Q of the tensor coalgebra T (W) =⊕

n≥1 W
⊗n obeying Q2 = 0.

(Here W = �V ).
Equivalently, an A∞ algebra (V ,m) can be defined as a Z2-graded vector space

V equipped with a series of operations

m1 : V → V,m2 : V⊗2 → V, . . . , mn : V⊗n → V,

obeying certain conditions.
One says that the differential coalgebra (T (W),Q) is bar-dual to the the A∞

algebra (V ,m) or that (T (W),Q) is obtained from (V ,m) by means of the bar-
construction. We will use the notation Bar(V ,m) for the differential coalgebra
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(T (W),Q). The Hochschild homology of (V ,m) is defined as the homology
of (T (W),Q).

Usually one considers bar-duality for Z-gradedA∞-algebras andA∞-coalgebras.
The algebra Bar(V ,�) = (T (W),Q) that is dual to a Z-graded A∞-coalgebra

(V ,�) will be considered as a Z-graded differential algebra. The space W is equal
to V [−1]; in other words W coincides with V with grading shifted by−1. Similarly,
the Z-graded coalgebra Bar(V ,m) dual to the graded A∞-algebra (V ,m) will be
considered as a graded differential coalgebra.

Let us consider the case of A∞-(co)algebras (V ,m) and (V ′,m) having an ad-
ditional positive grading. This is an auxiliary grading which has no correlation with
the internal (homological) Z2(Z)-grading. We assume that all structure maps mk

have degree zero with respect to this additional grading. The same applies to A∞-
morphisms. Such A∞-(co)algebras will be called homogeneous. We will use the
abbreviations h.morphism, h.quasi-isomorphism, etc., for homogeneous morphism,
homogeneous quasi-isomorphism, etc.

Theorem 76. Two homogeneous Bar(V ,�)A∞-(co)algebras are h.quasi-isomorph-
ic iff their dual algebras (coalgebras) are h.quasi-isomorphic.

Theorem 77. If the A∞-morphism f : (V ,m) → (V ′,m′) of homogeneous
(co)algebras induces an isomorphism of Hochschild homology, then f is an h.quasi-
isomorphism.

For quadratic algebras bar-duality is closely related to Koszul duality. Let A be a
quadratic algebra A =⊕

n>0 A
n, dim An <∞, and B =⊕

n>0 A
∗n the dual graded

coalgebra.

Proposition 78. The differential graded algebra bar-dual to the coalgebraB is quasi-
isomorphic to the Koszul dual A! if A is a Koszul algebra.

We will consider duality in the more general situation when the A∞-coalgebra
(V ,�) whose descending filtration Fk satisfies F 1 = V,∩k≥1F

k = 0 and V is
complete with respect to the filtration. Then we can introduce the corresponding
filtration Fk on T (W). We define Fp(T (W)) by the formula∑

∑k
r=1 nr≥p

Fn1 ⊗ · · · ⊗ Fnk . (131)

We assume that the structure of A∞-coalgebra is compatible with the filtration. This
means that

�k(F
s) ⊂

∑
n1+···+nk≥s

F n1 ⊗ · · · ⊗ Fnk , nk ≥ 1. (132)

In the language of tensor algebras we require that Q(Fk(T (W))) ⊂ Fk(T (W)).
In particular, for the filtered A∞-coalgebra we have �1(F

s) ⊂ F s ; hence we can
consider the homology of (F s,�1).
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The bar dual to the filtered A∞-coalgebra (V ,�) is defined as the topological
differential algebra (T̂ (W),Q) obtained from (T (W),Q) by means of completion
with respect to the filtration Fk .

The A∞-maps of filtered coalgebras should agree with the filtrations; they can
be considered as continuous homomorphisms of the dual topological differential
algebras.

Representing the A∞-map φ : (V ,�k) → (V ′,�′k) as a series of maps

ϕk : V → V ′⊗k and using that �′1ϕ1 = ϕ1�1, φ1 induces a homomorphism of

homology of (F k/F k+1,�1) into the homology of (F ′k/F ′k+1
,�′1); if all of these

homomorphisms are isomorphisms, we say that φ is a filtered quasi-isomorphism.
There are nonfiltered quasi-isomorphisms between filtered objects.

We also introduce a notion of filtered A∞-algebra (V ,m) fixing a decreasing
filtration Fp on V , p ≥ 1, that satisfies the conditions

µk : F s1 ⊗ ...⊗ F sk → F s1+···+sk , k ≥ 1, (133)⋂
s

F s = 0, F 1 = V (134)

and V is complete with respect to such a filtration. (Notice that the notion of filtered
A∞-algebra is not dual to the notion of filtered A∞-coalgebra (a filtration that is
dual to a decreasing filtration is an increasing filtration). The differential coalgebra
Bar(V ,m) corresponding to the filtered A∞-algebra can be considered as a filtered
coalgebra (see formula (132) for the filtration). Its completion B̂ar(V ,m) can also
be regarded as a filtered differential topological coalgebra.

Let f be an A∞-morphism of filtered A∞-algebras (V ,m) → (V ′,m′) that is
compatible with the filtrations. It induces a map f∗ : Bar(V ,m) → Bar(V ′,m′) of
the corresponding dual coalgebras that can be extended to a map f̂∗ : ̂Bar(V ,m)→

̂Bar(V ′,m′).
We need the following statements proved in [14].

Theorem 79. If the filteredA∞-coalgebras are quasi-isomorphic, then the dual topo-
logical algebras are quasi-isomorphic.

Theorem 80. Let (V ,�) and (V ′,�′) be two filtered A∞-algebras. Then quasi-
isomorphism of the corresponding topological differential coalgebras (T̂ (W),Q)and
(T̂ (W ′),Q′) implies quasi-isomorphism of the A∞-algebras (V ,�) and (V ′,�′).

Let (V ,�) and (V ′,�′) be two filtered A∞-algebras. Then filtered quasi-
isomorphism of (V ,�) and (V ′,�′) implies quasi-isomorphism of the corresponding
topological differential coalgebras (T̂ (W),Q) and (T̂ (W ′),Q′).

Theorem 81. Let (V ,�) and (V ′,�′) be two filtered A∞-coalgebras. Then fil-
tered quasi-isomorphism of the corresponding topological differential algebras
(T̂ (W),Q) and (T̂ (W ′),Q′) implies quasi-isomorphism of the A∞-coalgebras
(V ,�) and (V ′,�′).
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Theorem 82. If the map f∗ : B̂ar(V ,m)→ B̂ar(V ′,m) is a quasi-isomorphism, then
the original map f is also a quasi-isomorphism.

Lemma 83. For any A∞ filtered coalgebra H , there is an A∞ morphism

B̂ar B̂ar(H)
ψ→ H (135)

of A∞-coalgebras. The morphism ψ is a quasi-isomorphism.
Similarly, for any A∞ filtered algebra A, there is an A∞i-morphism

A
φ→ B̂ar B̂ar(A) (136)

of A∞-coalgebras. The morphism φ is a quasi-isomorphism.
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Summary. We study N = 2 supersymmetric four-dimensional gauge theories, in a certain
N = 2 supergravity background, called the�-background. The partition function of the theory
in the �-background can be calculated explicitly. We investigate various representations for
this partition function: a statistical sum over random partitions, a partition function of the
ensemble of random curves, and a free fermion correlator.

These representations allow us to derive rigorously the Seiberg–Witten geometry, the
curves, the differentials, and the prepotential.

We study pure N = 2 theory, as well as the theory with matter hypermultiplets in the fun-
damental or adjoint representations, and the five-dimensional theory compactified on a circle.

Subject Classifications: 81T60, 81T13, 81T45

1 Introduction

Supersymmetric gauge theories are interesting theoretical laboratories. They are rich
enough to exhibit most of the quantum field theory phenomena, yet they are rigid
enough to contain a lot of exactly calculable information [1, 2, 3, 4]. They embed
easily into string theory, and provide an exciting arena in the search for string/gauge
dualities [5, 6, 7, 8].

In the past few years a lot of progress has been made in understanding some of
this rich structure using direct field theoretic techniques (see [9, 10] and references
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therein), in the case of the theories with extended supersymmetry, and in [8] in the
case of N = 2 SUSY broken down to N = 1 by the superpotential.

In particular, a connection between four-dimensional gauge theories and two-
dimensional conformal field theories seemed to appear. Some earlier indications for
such a connection were observed in the study of N = 4 super-Yang–Mills theory
[11, 12].

In this paper we shall make this connection more transparent in the case of N = 2
theories.

We shall also derive, by purely field theoretic means, via direct instanton calculus,
the solution for the low-energy effective theories, proposed by Seiberg and Witten in
1994 [13] and further generalized in [4, 14].

1.1 Notation

Throughout the paper, we denote color indices by lowercase Latin letters l, m, n =
1, . . . , N , the vevs of the Higgs field by

a = diag(a1, . . . , aN), a = 1

N

∑
l

al, ãl = al − a,

and the dual vevs by

ξ = diag(ξ1, . . . , ξN).

The vector

ρl = 1

N

(
l − N + 1

2

)
.

will occur often.
For the gauge group G = U(N), the group of gauge transformations on R4 which

extend smoothly to S4 will be denoted by G. Its normal subgroup G∞, which consists
of the gauge transformations trivial at∞, will play a special role.

1.2 Organization of the paper

Section 2 is addressed to physicists who want to jump quickly onto the subject. It
contains previously unpublished details on the noncommutative regularizations of the
theories we consider, as well as a systematic introduction to �-backgrounds. In this
paper we shall not touch upon the recently revived [15] C-backgrounds of [16, 17],
postponing the explanations of the relations between � and C to some future work.

Section 3 starts by setting the stage for the mathematical problem and reviews the
ingredients needed for its solution. We present the formula for the partition function of
the pure N = 2 gauge theory in the �-background, as a sum over random partitions.
We also begin to formulate the same sum in terms of random paths, which arise
as the boundaries of the Young diagrams representing the random partitions. The
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mathematically oriented reader can skip Section 2 and proceed directly to Section 3.
(We also recommend [18, 19] for orientation.)

Section 4 attacks the problem of the calculation of the prepotential. Physically
it has to do with the limit on which the �-background approaches flat space. In
the random path representation, this limit is the quasiclassical limit, which can be
evaluated using the saddle point method. This is exactly the idea of our derivation.
We extensively discuss the equations on the minimizing path, and their solution. We
find that the solution is most simply described in terms of the Seiberg–Witten curve.

Section 5 explains the fermionic representation of the partition function in the
special �-background, preserving twice as many supersymmetries as compared to
the generic �-background. Even though the formalism of free fermions is well
known to mathematicians under the name of the infinite wedge representations of
gl(∞) algebra, we supply the necessary details. We find that a certain transform of
the partition function can be written as a matrix element (current conformal block)
of the exponentials in the Û (N) currents on the sphere S2.

Section 6 begins our quest for generalizations. We discuss the softly broken
N = 4 theory, i.e., N = 2 gauge theory with the matter hypermultiplet in the adjoint
representation. As most of the steps are similar to the pure gauge theory case, we move
faster and write down the expression for the partition function in terms of partitions,
paths, and chiral fermions, which this time live on an elliptic curve, determined by
the microscopic gauge coupling. Again we perform the saddle point evaluation, and
find that the prepotential is encoded, as conjectured by Donagi and Witten [20], in
the spectral curves of the elliptic Calogero–Moser integrable system.

Section 7 considers gauge theories with matter in the fundamental representa-
tion, and gauge theories with the tower of Kaluza–Klein states, coming from the
compactification of the five-dimensional theory on a circle.

Section 8 presents our conclusions and the discussion of unsolved problems.

Note added in proof

H. Nakajima informed us that he and K. Yoshioka found another proof [21] of our
main theorem of Section 4, which relates the partition function, prepotential and the
Seiberg–Witten curves. They use blowup techniques.

2 N = 2 gauge theory, deformations, and backgrounds

In this section we recall the construction of [9, 10] and also provide quite a few new
details. We consider N = 2 supersymmetric gauge theory with gauge group U(N).
We study the Euclidean path integral with fixed vev of the adjoint Higgs field on R4

with certain nonminimal couplings. Most of the interesting dynamics in such theories
is associated with instanton [22] effects [23].
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2.1 Lagrangian, fields, couplings

The simplest way to write down the action of four-dimensional super-Yang–Mills
theory with extended supersymmetry is to use dimensional reduction of the higher-
dimensional minimal supersymmetric theory.

In particular, starting with the six-dimensional N = 1 SYM, we arrive at

Lflat = 1

4g2
0

∫ √
Gd4x Tr

{
−FIJF

IJ − 2DIφD
I φ̄ − [φ, φ̄]2

− iλ̄α̇i σ
I
αα̇DIλ

αi + i

2
(φεij[λ̄α̇i, λ̄

α̇
j ] − φ̄εij[λαi, λ

j
α])
}

+ ϑ0

2π

∫
Tr F ∧ F.

(2.1)

Here AI , φ, φ̄ are the components of the six-dimensional gauge field, which decom-
pose as the four-dimensional gauge field and an adjoint complex Higgs field (or two
real Higgs fields); λαi are N = 2 gluions—a pair of four-dimensional Weyl spinors,
transforming in the adjoint representation of the gauge group.

The indices α, β = 1, 2 correspond to the doublet of SU(2)L, α̇, β̇ = 1, 2 is
that for SU(2)R , while i, j = 1, 2 are the internal indices, which reflect the SU(2)I
R-symmetry of the theory. They are raised and lowered using the SU(2) invariant
tensor ε12 = −ε21 = 1 = ε21 = −ε12. Space-time Lorentz indices will be denoted
throughout the paper by the uppercase Latin letters I, J, . . . = 1, 2, 3, 4. The Pauli
tensors, relating the spinor and vector indices, are σIαα̇ .

In (2.1) we have used the bare coupling constant g0 and the bare theta angle ϑ0.
The bare coupling corresponds to some high energy cutoff scale µ.

The action (2.1) is the limit of the six-dimensional action of the theory on a six
manifold T2 × R4 with the standard flat product metric.

2.2 �-background

However, in going from six to four dimensions one may have started with a nontrivial
six-dimensional metric. In particular, by reducing on the two-torus one may have
considered R4 bundles with nontrivial flat SO(4) connections, such as the space N6
with the metric

ds2 = Adzdz̄+ gIJ (dx
I + V Idz+ V̄ I dz̄)(dxJ + V J dz+ V̄ J dz̄) (2.2)

with V I = �I
J x

J , V̄ I = �̄I
J x

J , and the area A of the torus to be sent to zero. For
[�, �̄] = 0 the metric (2.2) is flat.

However, for � �= 0, the background (2.2) will break all supersymmetries. In-
deed, the spinors εi

α, ε̄α̇i generating supersymmetries of (2.1) are the components of
a six-dimensional Weyl spinor. In order to generate the symmetry of the theory on a
curved background the spinor must be covariantly constant. In our case this means
that the spinor, viewed as four-dimensional Weyl spinor, should be invariant under
the holonomies around the two cycles of the two-torus, which is possible only for
discrete choices of �, �̄.
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2.2.1 �-background in the physical formalism

Fortunately there exists a continuous deformation of the N = 2 theory preserving
some fermionic symmetry (which also deforms along the way). The trick is to use
the R-symmetry, which is manifest in the four-dimensional theory—the SU(2) group,
which acts on the internal index i = 1, 2 of the gluinos λ.

Namely, in addition to the nontrivial metric (2.2), we turn on a Wilson loop in
the R-symmetry group, which should compensate some part of the metric induced
holonomy on the spinors.

As a result, in the limit A→ 0 with �, �̄ fixed the action (2.1) gets extra terms:

�L = �I
JL

(1)J
I + �̄I

J L̄
(1)J
I +�I

J �̄
K
L L

(2)JL
IK , (2.3)

where

L
(1)J
I =

∫
d4x

√
G(xJ (Tr FIKDK'̄+ εij Tr λ̄α̇iDI λ̄

α̇
j )+GJKσ̄

ij
IK Tr[λ̄α̇i, λ̄

α̇
j ]),
(2.4)

where the tensor σ̄
ij
IK = −σ̄ ij

KI = σ̄
ji
IK = 1

2εIKJLσ̄
ijJL is the ’t Hooft projector:

so(4) = suL(2)⊕ suR(2)→ suR(2) = (( 1
2 )⊗ ( 1

2 ))sym:

σ
β̇
IJ α̇ =

1

4
(σ

ββ̇
I σJβȧ − σ

ββ̇
J σIβȧ)

and, for future use,

σ
β
IJα =

1

4
(σIαα̇σ

βα̇
J − σJαα̇σ

βα̇
I ).

Finally,

L
(2)JL
IK =

∫
d4x

√
GxJ xLGMN Tr FIMFKN. (2.5)

2.2.2 �-background in the twisted formalism

Supersymmetric gauge theories with extended supersymmetry can be formulated in
a way which guarantees the existence of a nilpotent symmetry in any curved back-
ground. This formulation, sometimes called twisted, or topological, or cohomologi-
cal, makes use of the R-symmetry of the theory. The coupling to the curved metric
is accompanied by the coupling to the R-symmetry gauge field, which is taken to be
equal to the corresponding projection of the spin connection [24, 25]. In this way,
the fermions of the pure gauge theory become a one-form ψ , a self-dual two-form χ ,
and a scalar η. The bosons AI and φ are not sensitive to the twisting.

The advantage of such a formulation of the theory is the clear geometric meaning
of all the terms in the action. It is well known that N = 2 super-Yang–Mills in the
twisted formulation provides an integral representation for the Donaldson invariants
of four-manifolds (for G = SO(3)). In our study the gauge theory lives on R4, which
is boring topologically. However, we study something different from the Donaldson
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theory, due to the �-background. It corresponds to the K-equivariant version of
Donaldson invariants, K = Spin(4) being the group of rotations.

In general, if the metric G = GIJ dx
I dxJ of the Euclidean space-time manifold

has some isometries, one can deform the standard Donaldson–Witten [24, 26] action
by coupling it to the isometry vector fieldsV and V̄ , which should commute [V, V̄ ] =
0. Explicitly, the action of the theory is given by

L = 1

2g2
0

(
−1

2
Tr F  F + Tr(DAφ − ιV F )  (DAφ̄ − ιV̄ F )

+ 1

2
Tr([φ, φ̄] + LV φ̄ − LV̄ φ)

2 volg

)
+ Tr(χ(DAψ)+ + ηD∗Aψ + χ  LV χ + η ∧  LV η + ψ  LV̄ ψ)

+ Tr(χ  [φ, χ] + η  [φ, η] + ψ  [φ̄, ψ])
+ ϑ0

2π
Tr F ∧ F.

(2.6)

On R4, we take, as above,

V I = �I
J x

J , V̄ I = �̄I
J x

J (2.7)

with

�IJ =

⎛⎜⎜⎝
0 ε1 0 0
−ε1 0 0 0

0 0 0 ε2
0 0 −ε2 0

⎞⎟⎟⎠ , �̄IJ =

⎛⎜⎜⎝
0 ε̄1 0 0
−ε̄1 0 0 0

0 0 0 ε̄2
0 0 −ε̄2 0

⎞⎟⎟⎠ , (2.8)

where �IJ = GJK�I
K , etc.

2.3 On supersymmetry

For completeness, we list here the formulae for the supersymmetries of the actions
(2.1), (2.3), (2.6).

2.3.1 Supersymmetry of the physical theory

The supercharges transform in the representation (2, 1, 2)⊕ (1, 2, 2) of the Lorentz
× R-symmetry group SU(2)L × SU(2)R × SU(2)I . Introducing the corresponding
infinitesimal parameters ζ i

α and ζ̄ i
α̇ , the supersymmetry transformations can be written

δAI = −iλ̄α̇i σIαα̇ζ αi − iλαiσIαα̇ζ̄
α̇
i ,

δλαi = σ IJ
αβ ζ

βiFIJ + iζ i
αD + i

√
2σ I

αα̇DIBεijζ̄ α̇j ,

δλ̄i
α̇ = σ IJ

α̇β̇
ζ̄
β̇

i FIJ − iζ̄α̇iD + i
√

2σ I
αα̇DI B̄εijζ

αj, (2.9)

δB = √2ζ αiλαi,

δB̄ = √2ζ̄ α̇i λ̄i
α̇

with the auxiliary field D = [B, B̄].
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2.3.2 Twisted superalgebra

The twisted formulation of the theory is achieved by replacing the Lorentz group
K = SU(2)L×SU(2)R ∈ K×SU(2)I by another subgroup of K×SU(2)I , namely,
SU(2)L× SU(2)d , with SU(2)d being diagonally embedded into SU(2)R × SU(2)I .
In other words, the internal index i is identified with another SU(2)R index, α̇. The
fields are redefined according to

ψI = λαβ̇σ
αβ̇
I , χIJ = σIJ α̇β̇ λ̄

α̇β̇ , η = εα̇β̇ λ̄
α̇β̇ . (2.10)

Similarly, the supersymmetry parameters ζ i
α become ζ I , ζ̄α̇i become ζ IJ and ζ . Of

course, ζ IJ is self-dual.
The supersymmetry algebra becomes

δAI = −iζψI − iζIJψ
J − iζI η,

δψI = +ζ JF−IJ + iζID + iζDIφ,

δχIJ = ζF+IJ − iζIJD + i(ζ[IDJ ]φ̄)+,
δη = ζ IJ FIJ − iζD + ζ IDI φ̄,

(2.11)

δφ = ζ IψI ,

δφ̄ = ζη + ζ IJ χIJ .

The geometric meaning of the transformations δ is the following. The space
of fields AI , φ,ψI represents the G-equivariant de Rham complex of the space A of
gauge fields on R4, together with the ingredients needed to construct a Mathai-Quillen
representative of the Euler class of a certain infinite-dimensional bundle over A, and
the projection form [27] associated with the projection A→ A/G.

The space R4 is hyper-Kähler, and possesses an action of the group R4 of trans-
lations.

The transformation generated by ζ is the G-equivariant de Rham differential. The
transformations generated by ζ IJ correspond to the G-equivariant ∂̄I,J ,K differen-
tials, corresponding to the three complex structures on A induced from the complex
structures on R4. Finally, ζ I correspond to the operators ι∂I of contraction with the
vector fields on A, induced by the vector fields

∂

∂xI

generating translations of R4.

2.3.3 Supersymmetry of the �-background

The transformations which generate the symmetry of the �-background utilize the
rotational symmetries of R4. To the vector field



532 Nikita A. Nekrasov and Andrei Okounkov

V = �I
J x

J ∂

∂xI

there is an associated vector field on A and the associated operation of contraction
on the G-equivariant de Rham complex. In terms of the transformations δ of the
twisted theory these are simply the transformation (2.11) with the space-dependent
transformation parameter ζ I = V I (x) = �I

J x
J .

The theory (2.3) in invariant under the transformation generated by

(ζ, ζ I , ζ IJ ) = (ζ, V I (x)ζ, 0).

The supercharge generating this transformation will be denoted by Q̃.

2.4 Noncommutative deformation

The theory (2.1) allows yet another deformation, which we shall implicitly use to
simplify our calculations. Let +IJ = −+JI be a constant Poisson tensor on R4. The
theory on R4 can be deformed to that on the noncommutative space, R4

+. A naive way
to define this deformation is to replace all the products of functions (or components
of various tensor fields) in (2.1) by the so-called Moyal product:

f  g(x) = exp
i

2
+IJ ∂

∂ξI

∂

∂ηJ

∣∣∣
η=ξ=0

f (x + ξ)g(x + η). (2.12)

A more conceptual definition goes as follows (cf. [28, 29]). Consider the theory
(2.1) dimensionally reduced to zero space-time dimensions. We get some sort of
supersymmetric matrix model. Replace the matrices by operators in the Hilbert
space H. Explicitly, we get the theory of six bosonic operators,

XI , ', '̄; I = 1, . . . , 4, (2.13)

and eight fermionic ones (we use the twisted formulation),

�I , η, χIJ = 1

2
εIJKLχKL; I, J = 1, . . . , 4, (2.14)

where we lower indices using some Euclidean metric gIJ :

χKL = gKIgLJ χ
IJ ,

The action reads as follows:

L = − 1

4g2
TrH(gIKgJL([XI ,XJ ][XK,XL] + χIJ [XK,�L] + χIJ [',χKL])

+ 2gIJ (η[XI ,�J ] + ['̄,XI ][',XJ ] +�I ['̄,�J ])
+ ([', '̄]2 + η[', η])) (2.15)

+ TrH

(
iBIJ [XI ,XJ ] + ϑ

8π
εIJKL[XI ,XJ ][XK,XL] + L0

)
.
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The action (2.15) leads to the equations of motion which do not depend on the pa-
rameters entering the last line in (2.15), i.e., BIJ , ϑ0, L0.

A special class of extrema of the action (2.15) with all the fermionic fields set to
zero is achieved on the operators XI ,', '̄ obeying

[XI ,XJ ] = i+IJ I, +IJ = 2g2
0g

IKgJLBKL,

[XI ,'] = 0 = [XI , '̄] = [', '̄]. (2.16)

Let us fix a standard set of operators xI in H obeying

[xI , xJ ] = i+IJ 1. (2.17)

The algebra (2.17) may be represented reducibly in H. In general, for nondegener-
ate +IJ ,

H = H0 ⊗W, (2.18)

where H0 is an irreducible representation of (2.17), and W is a multiplicity space,
which we shall assume to be a finite-dimensional Hermitian vector space, of complex
dimension N . From now on, xI will denote the operators on H0. The corresponding
operators on H will be denoted as xI ⊗ 1N . Expanding,

XI = xI⊗1N+i+IJAJ (x), ' = φ(x) = 1⊗a+φ∞(x), �I = +IJψJ (x),
(2.19)

where φ∞(x) → 0, x →∞, we arrive at the naive formulation, with the metric on
R4, given by

GIJ = gKL+
IK+JL,

ϑ0 = ϑ Pf (+),

1

g2
0

= 1

g2
Pf (+)

√
det g.

(2.20)

In (2.19), both AJ = AJ |ln ⊗ Eln and φ are valued in the N × N matrices, anti-
Hermitian operators in W . To arrive at the ordinary gauge theory, we should take the
limit + → 0, while keeping GIJ , g

2
0, ϑ0 finite. The curvature F of the gauge field

A is given by

[XI ,XJ ] = i+IJ ++IK+JLFKL. (2.21)

2.4.1 Combining � and �

The universal gauge theory (2.15) can also be subject to the nontrivial �-background:
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L = − 1

4g2
TrH(gIKgJL([XI ,XJ ][XK,XL]

+ χIJ [XK,�L] + χIJ ([',χKL] + 2�K
MχML))

+ 2gIJ ((['̄,XI ] + �̄I
LX

L)([',XJ ] +�J
KXK)

+ η[XI ,�J ] +�I (['̄,�J ] + �̄J
L�

L))
(2.22)

+ ([', '̄]2 + η[', η]))
+ TrH(iBIJ [XI ,XJ ] + ϑ

8π
εIJKL[XI ,XJ ][XK,XL] + L0).

The vacua of the theory (2.22) are given by the operators which solve slightly different
equations than (2.16). Namely, the condition on ' is now

[XI ,'] = �I
JX

J , [XI , '̄] = �̄I
JX

J , (2.23)

which is consistent with [XI ,XJ ] = i+IJ only under certain conditions on �,+, �̄.
Namely, assuming nondegeneracy of +, with ω = +−1, the matrices

EIJ = �K
J ωKI , ĒIJ = �̄K

J ωKI (2.24)

must be symmetric. Then the solution to (2.16) is given by

XI = xI , ' = 1

2
EIJ xIxJ , '̄ = 1

2
ĒIJ xIxJ . (2.25)

Now, the gauge field AI and the Higgs field φ are introduced via

XI = xI ⊗ 1N + i+IJAJ (x), ' = 1

2
EIJXIXJ ⊗ 1N + φ(x). (2.26)

2.4.2 Supersymmetry of the noncommutative theory in �-background

We shall only write down the supercharge of interest to us:

Q̃XI = �I , Q̃�I = [',XI ] +�I
JX

J ,

Q̃' = 0, Q̃χIJ = HIJ ,

Q̃HIJ = [',χIJ ] − (�I
KχJK −�J

KχIK)+,
(2.27)

Q̃'̄ = η, Q̃η = [', '̄].
Here HIJ is an auxiliary field, which is equal to [XI ,XJ ]+ on-shell.

2.4.3 Observables in the supersymmetric gauge theory: � = 0

In the ordinary N = 2 supersymmetric gauge theory a special class of observables
play an important role. They are distinguished by the property that a certain super-
charge annihilates them. Of particular interest for application to Donaldson theory
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are the observables which are constructed out of the invariant polynomials in the
Higgs field φ by means of the descent procedure. In terms of the twisted fields, these
observables appear as follows. Let P(φ) be any G-invariant polynomial on the Lie
algebra g = Lie(G) of the gauge group G. Then

O(0)
P (x) = P(φ(x)),

O(1)
P (C) =

∮
C

∂P

∂φa
ψa,

O(2)
P (�) =

∫
�

∂P

∂φa
F a + 1

2

∂2P

∂φa∂φb
ψa ∧ ψb,

...

O(4)
P (X) =

∫
X

1

2

∂2P

∂φa∂φb
F a ∧ Fb

+ · · · + 1

24

∂4P

∂φa∂φb∂φc∂φd
ψa ∧ ψb ∧ ψc ∧ ψd.

(2.28)

Here x, C,�, . . . , X represent a 0, 1, 2, . . . , 4-cycles in the space-time manifold,
respectively. The main idea behind (2.28) is to use the fact that the supercharge Q

acts on P('(x)+· · · ) as the de Rham differential. To compare the observables of the
ordinary gauge theory to those of the noncommutative gauge theory, we shall utilize
the generating function (form):

OP = P

(
φ(x)+ ψI (x)dx

I + 1

2
FIJ (x)dx

I ∧ dxJ
)
∈ �∗(space-time). (2.29)

Its main property is
dx〈OP (x) . . . 〉 = 0.

The noncommutative gauge symmetry does not allow, naively, for local observ-
ables as in the first line of (2.28). However, it has as many gauge invariant observables
as does the ordinary theory. For the gauge group U(N) the invariant polynomials
can be expressed as polynomials in the single trace operators

Pn(φ) = Tr φn. (2.30)

It is convenient to introduce the character

Pβ(φ) = Tr eiβφ =
∞∑
n=0

(iβ)n

n! Pn. (2.31)

The analogue of (2.28)–(2.29) is the following closed form on R4:

OPβ (x, dx) = β2e−βω
∫

d4ϑd4κe−iβ(κI xI+ϑI dx
I ) TrH eiβ'(ϑ,κ), (2.32)

where
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'(ϑ, κ) = '+κIX
I+ϑI�

I+1

2
ϑIϑJ [XI ,XJ ], ω = 1

2
ωIJ dx

I∧dxJ . (2.33)

The closedness of OPβ is proved with the help of the symmetry acting on ϑ, κ:

δϑ = κ, δκ = 0. (2.34)

2.4.4 Observables: � �= 0

The chiral observables get deformed when � �= 0. First of all, in the ordinary gauge
theory, the generating form OP becomes equivariantly closed under the correlator:

(d + ιV )OP = 0. (2.35)

In the noncommutative gauge theory we get the same statement, but now we need to
modify the symmetry δ to its equivariant analogue,

δϑI = κI , δκI = −�J
I ϑJ , (2.36)

and change (2.32) to

OPβ ;� =
∏

α=1,2

eβεα − 1

εα
eβω�

∫
d4ϑd4κe−iβ(κI xI+ϑI dx

I ) TrH eiβ'(ϑ,κ),

ω� = 1

2
(ωIJ dx

I ∧ dxJ − EIJ xI xJ ).

(2.37)

In what follows we consider either the 0-observable or the integrated 4-observable.
In the first case, we set x = 0 (to be at the fixed point), and get the integral over ϑ, κ
of TrH eiβ'(ϑ,κ). In the second case, we get the integral over ϑ, κ of TrH eiβ'(ϑ,κ)

with an extra δ-invariant Gaussian factor. Actually, (2.36) implies that the integral
over ϑ, κ is localized at κ = ϑ = 0, so that both the 0- and 4-observables are equal,
up to an εα-dependent factor

O(0)
Pβ ;� =

∏
α=1,2

(eβεα − 1)TrH eiβ',

∫
R4

O(4)
Pβ ;� =

∏
α=1,2

eβεα − 1

εα
TrH eiβ'.

(2.38)

The observables (2.38) are most natural in the five-dimensional gauge theory com-
pactified on the circle of the circumference β. The periodicity of OPβ in ' has a
simple origin there—large gauge transformations [14]. We shall return to this theory
in Section 7.
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3 Gauge theory partition function

In the ordinary gauge theory the natural object of study is the Euclidean path integral
over the field configurations, such that

φ(x)→ a, x →∞. (3.1)

We are aiming to calculate the path integral in the �-background, with the boundary
conditions (3.1) (and, in fact, using noncommutative deformation):

Z(a, ε1, ε2;�) =
∫

DADψDηDχD'D'̄e−
∫

R4 L
√
gd4x. (3.2)

In the noncommutative gauge theory the condition (3.1) is phrased differently. Think
of ' as an element of the Lie algebra of the group G+ ≈ U(H) of gauge transforma-
tions. (Note that normally one takesG+ = PU(H).) The identificationH = CN⊗H0
allows one to view ' as an N ×N matrix of operators in H0. The condition (3.1) is
now stated as

' = a⊗ 1H0 +
1

2
1N ⊗ EIJ xIxJ + ϕ(x). (3.3)

where ϕ(x)→ 0 as x →∞ faster than any power of x.
The integral (3.2) needs a UV cutoff µ. The bare couplings g0 and ϑ0 are renor-

malized, thus generating an effective scale �,

�2N ∼ µ2Ne
− 8π2

g2
0
+2πiϑ0

. (3.4)

Remark. On the U(1) factor. The gauge theory with gauge group U(N) has an in-
teresting pattern of the renormalization group flow. The ordinary gauge theory has a
decoupled U(1) factor, which does not exhibit any renormalization of its coupling,
and an interacting SU(N) part, with the famous phenomenon of asymptotic freedom,
reflected in (3.4). When the theory is deformed by +, the perturbative loop calcu-
lations are altered in a +-dependent way, as it introduces, among other things, an
energy scale. In particular, the U(1) factor coupling constant starts running, in the
energy range

µ2 �2 1

µ+
,

where the formula (3.4) with N = 1 holds (this result is a simple generalization
of [30], which can also be justified using [1, 31]). The U(1)N−1 ⊂ SU(N) gauge
couplings experience different renormalization group flow, as they are affected by
the loops of the charged W-bosons. In principle, we should introduce two distinct
low-energy scales, one for the SU(N) part of the gauge group, another for U(1):
�,�0. As we shall eventually remove noncommutativity, it makes sense to keep
�0 ≈ µ. We shall encounter the ambiguity related to the U(1) factor in the analysis
of the Seiberg–Witten curves. In the paper we concentrate on the SU(N) dynamics,
and mostly set a = 0.
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Remark. The theory (2.1) has an anomalous U(1)gh symmetry (gh for ghost). Under
this symmetry, the adjoint Higgs field' has charge+2, '̄ has charge−2, the fermions
ψ have charge +1, and χ, η have charge −1. In the background of the instanton of
charge k the path integral measure transforms under the ghost U(1) with the charge
−4kN . The � deformation breaks U(1)gh. It can be restored by assigning to �, �̄

the charges +2,−2, respectively.

3.1 Partition function as a sum over partitions

The partition function Z(a, ε1, ε2;�) can be explicitly evaluated as a sum over in-
stantons. Moreover, the �-background lifts instanton moduli, leaving only a finite
number of isolated points on the appropriately compactified instanton moduli space
as a full set of supersymmetric minima of the action. The evaluation of (3.2) is then
reduced to the calculation of the ratios of the bosonic and fermionic determinants
near each critical point. These points are labeled by colored partitions.

Consequently, (3.2) is given by the sum over N -tuples of partitions [9, 10]. (See
Appendix B for the notations and definitions related to partitions.) Explicitly,

Z(a; ε1, ε2,�) = Zpert(a;�, ε1, ε2)
∑

k

�2N |k|Zk(a; ε1, ε2), (3.5)

where

Zk(a; ε1, ε2) =
∏

l,n;i,j

al − an + ε1(i − 1)+ ε2(−j)
al − an + ε1(i − k̃nj − 1)+ ε2(kli − j)

=
∏

l,n;i,j

al − an + ε1(−i)+ ε2(j − 1)

al − an + ε1(k̃lj − i)+ ε2(j − kni − 1)
(3.6)

= 1

ε
2N |k|
2

∏
(l,i)�=(n,j)

�(kli − knj + ν(j − i + 1)+ bln)� (ν(j − i)+ bln)

�(kli − knj + ν(j − i)+ bln)�(ν(j − i + 1)+ bln)
,

bln = al − an

ε2
, ν = −ε1

ε2
, (3.7)

and

Zpert(a; ε1, ε2,�) = exp

⎛⎝∑
l,n

γε1,ε2(al − an;�)

⎞⎠ , (3.8)

where the function γε1,ε2 is defined in Appendix A.

Remark. The product over i, j in (3.6) in Zk is infinite and needs a precise definition.
Here it is: Fix a pair (l, n). Consider all the factors in Zk corresponding to l, n. Split
the set of indices (i, j) into four groups:
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Z2+ = S++ ∪ S+− ∪ S−+ ∪ S−−,
S++ = {(i, j) | 1 ≤ i ≤ 
(kl ), 1 ≤ j ≤ kn1},
S+− = {(i, j) | 1 ≤ i ≤ 
(kl ), kn1 < j}, (3.9)

S−+ = {(i, j) | 
(kl ) < i, 1 ≤ j ≤ kn1},
S−− = {(i, j) | 
(kl ) < i, kn1 < j}.

The set S++ is finite, the set S−− contributes 1. The set S+− contributes

Zln
+−;k =


(kl )∏
i=1

∞∏
j=kn1+1

aln + ε1(i − 1)+ ε2(−j)
aln + ε1(i − 1)+ ε2(kli − j)

:=

(kl )∏
i=1

kli∏
j=1

1

aln + ε1(i − 1)+ ε2(kli − kn1 − j)
,

(3.10)

and similarly for S−+. See also [32].

The special case ε2 = −ε1 = �, i.e., ν = 1 deserves special attention. In this
case, the expression for the partition function simplifies to

Z(a; �,�) =
∑

k

�2N |k|Zk(a; �),

Zk(a; �) = Zpert(a; �)µ2
k(a, �),

µ2
k(a, �) =

∏
(l,i)�=(n,j)

(
al − an + �(kl,i − kn,j + j − i)

al − an + �(j − i)

)
,

Zpert(a; �) = exp

⎛⎝∑
l,n

γ�(al − an;�)

⎞⎠ ,

(3.11)

where the function γ�(x;�) is defined in Appendix A.

3.2 Plancherel measure on partitions

In the case when N = 1 and ν = 1, the sum in (3.5) is over a single partition k and
the weight µk(a, �) reduces to

µ(k) =
∏
i<j

(
ki − kj + j − i

j − i

)
=
∏
�∈k

1

h(�)
, (3.12)

where the second product is over all squares � in the diagram of the partition k and
h(�) denotes the corresponding hook-length.

The weight µ(k)2 is known as the Plancherel measure on partitions because of
the relation
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µ(k) = dim Rk

|k|! , (3.13)

where Rk is the irreducible representation of the symmetric group corresponding
to the partition k. As in the classical Plancherel theorem, the Fourier transform
on the symmetric group an isometry of the L2-spaces with respect to the Haar (i.e.,
counting) measure on the group and the Plancherel measure on the set of its irreducible
representations. Observe that from (3.13) it follows that∑

|k|=n
µ2(k) = 1

n! . (3.14)

The Plancherel measure is the most fundamental and natural measure on the set
of partitions. In many aspects, the set of partitions equipped with the Plancherel
measure is the proper discretization of the Gaussian Unitary Ensemble (GUE) of
random matrices [33]. In particular, the integrable structures of random matrices
are preserved and, in fact, become more natural and transparent for the Plancherel
measure; see [34, 35]. Similarly, Plancherel random partitions play a central role
in the Gromov–Witten theory of target curves, extending the role played by random
matrices in the case of the point target; see [36].

A pedestrian explanation of the relation between Plancherel measure and GUE
can be obtained by rewriting the weight (3.12) as the product of the Vandermonde
determinant in the variables ki − i and a multinomial coefficient, which, of course,
is the discrete analogue of the Gaussian weight.

As we will see below in Section 5, for N > 1 and ν = 1 the partition function is
again related to the Plancherel measure, but now periodically weighted with period
N . Finally, the case ν �= 1 leads to the Jack polynomial analogue of the Plancherel
measure; see [37].

4 Prepotential

In this section we study the limit ε1, ε2 → 0 of the partition function (3.2). In this
limit, according to field theory arguments [9] the partition function must behave as

Z(a; ε1, ε2,�) = exp

(
− 1

ε1ε2
F(a; ε1, ε2,�)

)
(4.1)

where F is analytic in ε1, ε2 for ε1,2 → 0. We prove the conjecture of [9], which
identifies F0(a,�) ≡ F(a; 0, 0,�) with the Seiberg–Witten prepotential of the low-
energy effective theory.

4.1 Quasiclassical limit and SW curve

By setting ν = 1 we deduce from the field theory prediction (4.1) that for � → 0 the
partition function (3.11) has an asymptotic expansion,
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Z(a; �,�) = exp

⎛⎝ ∞∑
g=0

�2g−2Fg(a,�)

⎞⎠ , (4.2)

where

F0(a,�) = −1

2

∑
l,n

(al − an)
2
(

log

(
al − an

�

)
− 3

2

)
+

∞∑
k=1

�2kNfk(a) (4.3)

is the so-called prepotential of the low-energy effective theory. The coefficients fk
for k = 1, 2 were computed directly from instanton calculus in [38, 39] for k ≤ 5
in [9].

The prepotential was identified in [3, 4, 40] with the prepotential of the periodic
Toda lattice. The arguments for this identification were indirect. In [41] the coeffi-
cients fk for k ≤ 5 were computed for the Toda prepotential, in agreement with the
later results of [9].

The purpose of this paper is to give a proof of this relation to all orders in the
instanton expansion.

More precisely, we shall show the following:

The set (a1, . . . , aN ; 1
2πi

∂F0
∂a1

, . . . , 1
2πi

∂F0
∂aN

) coincides with the set of periods of the
differential

dS = 1

2πi
z
dw

w
(4.4)

on the curve Cu defined by

�N

(
w + 1

w

)
= PN(z), PN(z) = zN + u1z

N−1+ u2z
N−2+ · · · + uN . (4.5)

Remark. Normally the factor 2πi is included in the definition of the prepotential [18].
We chose not to do this to get real expressions for F0 for real als and �.

For generic u = (u1, u2, . . . , uN), the curve (4.5) is a smooth hyperelliptic curve
of genus N − 1. The differential dS has poles at two points ∞± over x = ∞. The
homology group

H1(Cu − {∞+,∞−};Z)

is isomorphic to Z⊕Z2(N−1), the first summand being generated by the small loop σ∞
around ∞+ (the loop around ∞− is in the same homology class). The intersection
pairing identifies the dual space with

H1(Cu, {∞+,∞−};Z),

the relative cycle dual to σ∞ being the path 
∞ connecting∞−,∞+.
Note that in the N -parameter family of curves (4.5), there is a set of singular

curves. The identification between the periods and (a, ∂F0
∂a

) is up to the action of the
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monodromy group. We need to fix this identification in some open domain of the
parameter space.

Consider the region U∞ of the parameter space where us 2 �s . In this domain
the curve (4.5) can be approximately described as follows. Let α1, . . . , αN be the
zeroes of the polynomial PN(x):

PN(x) =
N∏
l=1

(x − αl). (4.6)

For small �, for each l we can unambiguously find α±l ≈ αl such that

PN(α±l ) = ±2�N. (4.7)

These are the branch points of the two-fold covering ρ : Cu → P1, P1 3 x.
Let al be the 1-cycles on Cu which are the lifts of the cycles on the x-plane which

surround the cuts going from α−l to α+l . Let bl be the relative 1-cycle represented by
the path on Cu which starts at∞−, goes to α+l , and then goes on the second sheet to
∞+. The cycles al , and bl have the canonical intersection pairing:

al ∩ bm = δlm. (4.8)

The position of the a-cycles and b-cycles on the curve Cu is illustrated in Figure 1.

Fig. 1. The curve Cu and the cycles on it. The closed ones are als. The noncompact ones
are bls.

The cycles σ∞ and 
∞ are related to al ,bm via

σ∞ =
∑
l

al , 
∞ =
∑
l

bl . (4.9)

The periods al and ∂F0
∂al

are defined via
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al =
∮

al
dS,

∂F0

∂al
= 2πi

∫
bl (µ)

dS, (4.10)

where bl (µ) is the regularized contour of integration, which connects w|z=µ and
w−1|µ instead of∞+ and∞−.

The divergent (with µ) part of the periods is easy to calculate:

1

2πi

∂F0

∂al
= 2Nµ− u1 logµ+ finite part. (4.11)

At the same time, ∮
σ∞

dS = a =
∑
l

al = −u1. (4.12)

As we said above, in what follows we set a = 0 = u1. Also, to avoid worrying about
the cutoff, we work with the absolute cycles bl − bl+1.

4.2 Partitions and their profiles

The standard geometric object associated to a partition is its diagram. In this paper, we
will draw partition diagrams in what is sometimes referred to as the Russian form (as
opposed to the traditionally competing French and English traditions of drawing parti-
tions). For example, Figure 2 shows the diagram of the partition (8, 6, 5, 3, 2, 2, 1, 1).
The upper boundary of the diagram of k is the graph of a piecewise-linear function
fk(x), which we will call the profile of the partition k. Explicitly,

fk(x) = |x| +
∞∑
i=1

[|x − ki + i − 1| − |x − ki + i| + |x + i| − |x + i − 1|]. (4.13)

The profile is plotted in bold in Figure 2.

Fig. 2. Diagramma �nga (Young diagram).

For general ε2 > 0 > ε1, it is convenient to extend the definition of fk(x) by
scaling the two axes by−ε1 and ε2, respectively. For example, for (ε1, ε2) = (−1, 1

2 ),
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Fig. 3. Squeezed Young diagram.

the scaled diagram of the same partition (8, 6, 5, 3, 2, 2, 1, 1) and the corresponding
profile fk(x|ε1, ε2) will look as Figure 3.

We have

fk(x|ε1, ε2) = |x| +
∞∑
i=1

[|x + ε1 − ε2ki − ε1i| − |x − ε2ki − ε1i|

− |x + ε1 − ε1i| + |x − ε1i|]

= |x| +
∞∑
j=1

[|x + ε2 − ε1k̃j − ε2j | − |x − ε1k̃j − ε2j |

− |x + ε2 − ε2j | + |x − ε2j |].

(4.14)

By construction, the profile of a partition satisfies

f ′k(x|ε1, ε2) = ±1,

fk(x|ε1, ε2) ≥ |x|, (4.15)

fk(x|ε1, ε2) = |x| for |x| 2 0.

We also define the profile of a charged partition

fa;k(x|ε1, ε2) = fk(x − a|ε1, ε2).

The charge and the size are easily recovered from fa;k(x):

a = 1

2

∫
R
dxxf ′′a;k(x|ε1, ε2) = −1

2

∫
––
R
dxf ′a;k(x|ε1, ε2),

|k| = a2

2ε1ε2
− 1

4ε1ε2

∫
dxx2f ′′a;k(x|ε1, ε2)

= 1

2ε1ε2

(
a2 −

∫
dx(fa;k(x|ε1, ε2)− |x|)

)
.

(4.16)
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Here and in what follows, we denote by∫
––
D

g(x)dx = lim
L→∞,δ→0

∫
D∩[−L,L]\singδ(g)

g(x)dx

the principal value integral over a domain D ⊂ R, where singδ(g) denotes the δ-
neighborhood of the singularities of g(x).

For a colored partition k and a vector a, we define

fa;k(x|ε1, ε2) =
N∑
l=1

fal;kl
(x|ε1, ε2). (4.17)

For example, for ε2 = −ε1 = �, a1 = −a2 = 11� and the partition

{(7, 4, 3, 3, 2, 1), (8, 7, 4, 4, 3, 1)},
the corresponding profile looks as in Figure 4.
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30

40

–20 –10 0 10 20

Fig. 4. The profile of the colored partition {(7, 4, 3, 3, 2, 1), (8, 7, 4, 4, 3, 1)}.

4.3 Vacuum expectation values and resolvents

The profile function is natural from the gauge theory point of view: the vacuum
expectation values of the single trace operators Tr φn have a simple expression in
terms of the profiles

〈Tr φn〉a = 1

Z(a; ε1, ε2,�)

∑
k

�2N |k|Zk(a; ε1, ε2,�)On[k], (4.18)
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where

On[k] = 1

2

∫
R
dxxnf ′′a;k(x|ε1, ε2). (4.19)

The second derivative f ′′ of a partition profile is a compactly supported distribution
on R which for random partitions plays a role similar to the role of the spectral
measure for random matrices. In particular, it is convenient to introduce the resolvent
R(z|ε1, ε2) of a colored partition k by

R(z|ε1, ε2) = 1

2

∫
R
dx

f ′′a;k(x|ε1, ε2)

z− x
. (4.20)

Note that

R(z|ε1, ε2) = N

z
+ a

z2
+O

(
1

z3

)
, z −→∞. (4.21)

In our context, the limit shapes f of partitions will be convex piecewise analytic
functions for which the second derivative f ′′(x) will be positive and compactly sup-
ported.

4.4 Real vs. complex

In the gauge theory the vacuum expectation values al of the Higgs field are, in general,
complex. In this case the profile function fa,k does not make sense. However, the
resolvent (4.20) of a colored partition is well defined and can be effectively used in
the analysis below. The formula (4.19) is replaced by

On[k] = 1

2πi

∮
znR(z|ε1, ε2)dz, (4.22)

where the contour goes around z = ∞.
Complex values of al can be reached from the real values by analytic continuation.

By the same token, it is enough to analyze the problem for values of al in any open
set of RN . In particular, it is enough to analyze the problem in the asymptotic domain
U∞, which is what we will do next.

4.5 The thermodynamic limit

Our strategy in extracting the ε1, ε2 → 0 limit of the sum (3.5) is the following.
The typical size of the partition k contributing to the sum is of order |k| ∼ 1

ε1ε2
,

and is so large that the sum over the partitions can be approximated by an integral
over the space of continuous Young diagrams f (x). A continuous Young diagram,
by definition, is a function satisfying the following weakening of condition (4.15):
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f (x) = |x|, |x| 2 0,

|f (x)− f (y)| ≤ |x − y|,∫
––
R
dxf ′(x) = 0,

(4.23)

∫
R
dx(f (x)− |x|) <∞.

Note that the condition f ′(x) = ±1 is replaced by the weaker Lipschitz condition.
We will show that this path integral is dominated by a unique saddle point (in

fact, a strict maximum). In more mathematical language, this means the following.
By associating to every partition its profile, we get from (3.5) a measure on the space
of Lipschitz functions. As ε1, ε2 → 0, these measures concentrate around a single
point, that is, converge to the delta measure at a single function. This function is the
limit shape of our random partition. We will construct this limit shape explicitly and
show that it has a very simple and direct relation to the Seiberg–Witten geometry.

We begin by observing that the Plancherel measure µ(k) can be written in terms
of the profile fk(x|�) as follows:

µ(k) = exp

(
−1

8

∫
––
x �=y

f ′′k (x|�)f ′′k (y|�)γ�(x − y;�)dxdy

)
. (4.24)

More generally, we have

Zk(a; ε1, ε2,�)

= exp

(
−1

4

∫
–– dxdyf ′′a,k(x|ε1, ε2)f

′′
a,k(y|ε1, ε2)γε1,ε2(x − y,�)

)
,

(4.25)

as can be easily checked with the help of the main difference equation. Denoting the
right-hand side of (4.25) by Zf (ε1, ε2,�), we have

Z(a; ε1, ε2,�) =
∑

f∈�discrete
a

Zf (ε1, ε2,�), (4.26)

where the summation is over the set �discrete
a of paths of the form f = fa,k .

When ε1, ε2 → 0 with ν fixed, the size of a typical partition kl in (4.26) grows
like |kl | ∼ 1

ε1ε2
. In this limit, the sum (4.26) looks like an integral over the space �a

of paths f of the form

f (x) =
N∑
l=1

fl(x − al) (4.27)

with each fl satisfying (4.23). For this integral, ε1ε2 plays the role of the Planck
constant. Our strategy, therefore, is to find a saddle point (in fact, the minimum) of
the action

E�(f ) = 1

4

∫
––
y<x

dxdyf ′′(x)f ′′(y)(x − y)2
(

log

(
x − y

�

)
− 3

2

)
(4.28)



548 Nikita A. Nekrasov and Andrei Okounkov

on the space �a of paths (4.27). The action (4.28) is the leading term as ε1, ε2 → 0
of the action in (4.25):

Zf (a; ε1, ε2,�) ∼ exp

(
1

ε1ε2
E�(f )

)
. (4.29)

Integrating by parts, we rewrite (4.28) as

E�(f ) = −1

2

∫
––
x<y

(N + f ′(x))(N − f ′(y)) log

(
y − x

�

)
dxdy, (4.30)

which, for N = 1, reproduces the result of Logan–Schepp–Kerov–Vershik [42, 43,
44, 45]. Thus we have

F0(a,�) = −Critf∈�a E�(f ). (4.31)

4.5.1 Profiles vs. eigenvalue densities

In [9] an expression for Zk(a, ε1, ε2) =∑
k,|k|=k Zk was given in terms of a certain

contour integral over k eigenvalues φI , I = 1, . . . , k. This expression follows
straightforwardly from the ADHM construction of the moduli space of instantons,
and, therefore, easily generalizes to the case of SO, Sp gauge groups. It is, therefore,
quite remarkable that the formula (4.29) can be obtained directly from the contour
integral expression, avoiding the actual evaluation of the integral (which is, of course,
needed to get correctly the Fgs with g > 0).

Zk(a, ε1, ε2) =
∮ k∏

I=1

[
ε1 + ε2

2πε1ε2

dφI

P (φI )P (φI + ε1 + ε2)

]∏
I �=J

φIJ (φIJ + ε1 + ε2)

(φIJ + ε1)(φIJ + ε2)
,

(4.32)
where

P(x) =
N∏
l=1

(x − al),

φIJ = φI − φJ .

(4.33)

We now multiply Zk by �2kN and sum over k = 0, 1, . . . , to get Zinst. Take the limit
ε1, ε2 → 0. The typical k which will contribute most to the sum will be of order
k ∼ 1

ε1ε2
. So we introduce the density of eigenvalues,

ρ(x) = ε1ε2

k∑
I=1

δ(x − φI ), (4.34)

which is normalized in a k-independent way that nevertheless guarantees its finite-
ness in the limit we are taking. Now, the difference from the ordinary ’t Hooft-like
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limit of ordinary matrix integrals is the presence of an equal number of the φIJ terms
in the numerator and denominator of the measure (4.32). This will change qualita-
tively the density dependence of the effective potential on the eigenvalues, and the
resulting equilibrium distribution of the eigenvalues. In particular, in our limit the
former superymmetric matrix integral (4.32) scales as exp kF as opposed to ’t Hooft’s
exp k2F .

Nevertheless, we have a sharp peak in the measure, which justifies the application
of the saddle point method. Indeed, by expanding in ε1, ε2 we map the measure in
(4.32) onto

�2kNZk(a, ε1, ε2) ∼ exp

(
1

ε1ε2
E�[ρ]

)
, (4.35)

where

E�[ρ] = −
∫
––
x �=y

dxdy
ρ(x)ρ(y)

(x − y)2
− 2

∫
dxρ(x) log

(
P(x)

�N

)
. (4.36)

Up to the perturbative piece

1

2

∑
l,n

(al − an)
2 log

(
al − an

�

)
,

the energy (4.36) coincides with the action (4.28) if we identify

f (x)−
N∑
l=1

|x − al | = ρ(x). (4.37)

The same method applies to other theories considered in [9, 46].
Thus we have learned yet another interpretation of the limiting profile of the

colored partition. In the rest of the paper we shall work with limit profiles, as the
equations on the extremum are identical to those following from (4.36).

4.5.2 Surface tension

Given a function f (x) as in (4.27), how can we extract als? This is easy to do in the
region U∞ where

al 0 al+1,

in which case the supports of the functions fal,kl
do not intersect. Introduce param-

eters ξ1, . . . , ξN which will play the role of dual variables to the charges al . From
(4.16), we have the following.

Proposition 1. For al 0 al+1, we have∑
l

ξlal = −1

2

∫
––
R
σ(f ′(x))dx,
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where σ(y) is a concave, piecewise-linear function on [−N,N] such that

σ ′(y) = ξl, y ∈ [−N + 2(l − 1),−N + 2l]
and

σ(−N) = −σ(N) = −
∑
l

ξl .

An example of the graph of σ is plotted in Figure 5.
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Fig. 5. Surface tension for ξ = (4, 1,−2,−3).

In Section 5, we define a dual partition function ZD(ξ, �,�). We will see that
the dual partition function ZD can be interpreted in terms of a periodically weighted
(with period N ) Plancherel measure on partitions. The periodic weights in this for-
malism are precisely eξl and the functionσ becomes the corresponding surface tension
function.

This story has many parallels and direct connections to the theory of periodically
weighted planar dimers developed in [47].

It is a general principle that singularities of surface tension (usually referred to
as “cusps’’) correspond to flat regions (“crystal facets’’) of the corresponding action
minimizing shapes. In our case, the singularities of the function σ correspond to gaps
between the supports of the functions f ,l(x − al) for the minimizer f (x).

4.6 Equations for the limiting shape

In order to minimize E(f )with fixed als, we introduce Lagrange multipliers ξl , which
we order as

ξ1 > · · · > ξN, (4.38)
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and look for the maximizer of the total action

S�(f ) = −E�(f )+ 1

2

∫
σ(f ′(x))x (4.39)

for fixed values of the ξls. To get back the minimum of E(f ) with fixed al we shall
later perform the Legendre transform with respect to the ξls. Note that the surface
tension term 1

2

∫
σ(f ′) in (4.39) under the conditions a = 0 and (4.38) can be made

arbitrarily large by making the individual profiles fl sufficiently separated from each
other. The price one pays for this is the decrease in the “energy’’ term −E�(f ), and
thus there is a competition between the two terms in (4.39) which leads to the global
maximum.

The action (4.39) is a concave functional. In fact, the first term in (4.39) is strictly
concave (with proper boundary conditions), which can be seen by rewriting it as a
certain Sobolev norm; see [44]. Therefore, any critical point of the action S(f ) is
automatically a global minimizer. It is, therefore, enough to look at the first variation
of (4.39). Because of the singularities of σ , this first variation will involve one-sided
derivatives.

Taking the first variation and integrating once by parts, we find the following
equation: ∫

––
y �=x

dy(y − x)

(
log

∣∣∣∣y − x

�

∣∣∣∣− 1

)
f ′′(y) = σ ′(f ′(x)). (4.40)

This equation should be satisfied for any pointx for whichf ′(x) is a point of continuity
of σ ′. When

f ′(x) ∈ {−N + 2l | l = 1, . . . , N − 1},
then considering the left and right derivatives separately, we obtain the inequalities

Xf (x) ∈ (σ ′(f ′(x)− 0), σ ′(f ′(x)+ 0)), (4.41)

where, by definition,

[Xf ](x) =
∫
––
y �=x

dy(y − x)

(
log

∣∣∣∣y − x

�

∣∣∣∣− 1

)
f ′′(y). (4.42)

The transform Xf is closely related to the standard Hilbert transform

[Hg](x) = 1

π

∫
––
y �=x

dy
g(y)

y − x
. (4.43)

Indeed,
[Xf ]′′ = πH(f ′′). (4.44)

With ξ0 = +∞, ξN+1 = −∞, conditions (4.40) and (4.41) can be recast in the
following form.



552 Nikita A. Nekrasov and Andrei Okounkov

Proposition 2. A function f (x) is a critical point of S(f ) iff

Xf (x) = ξl whenever −N + 2l − 2 < f 
′(x) < −N + 2l,

ξl > Xf (x) > ξl+1 whenever f 
′(x) = −N + 2l, l = 0, . . . , N.

(4.45)

In other words, the function

ϕ(x) = f ′ (x)+
1

πi
[Xf ]′(x) (4.46)

defines a map from R to the boundary of the domain � depicted in Figure 6. We now
describe the solution to (4.45) in great detail.

Fig. 6. Conformal map for N = 3.

4.7 Construction of the maximizer

Let '(z) be the conformal map from the upper half-plane to the domain � which is
the half-strip

� = {� | |4(�)| < N,5(�) > 0} (4.47)

with vertical slits along

{4(�) = −N + 2l,5(�) ∈ [0, ηl]}, l = 1, . . . , N − 1. (4.48)

The positive reals ηl , l = 1 . . . N − 1, are the parameters of the function '.
We normalize ' by the condition that it maps infinity to infinity and

'(z) = N + 2N

πi
log

�

z
+O

(
1

z

)
, z→∞. (4.49)

This fixes ' up to an overall shift x 
→ x + const. This ambiguity is related to
the overall shift of the limit shape (and hence, to the overall charge of our colored
partition) and is immaterial.
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4.7.1 Construction of the conformal map

The map ' can, of course, be found using the Schwarz–Christoffel formula, but it is
easier to construct it as the following sequence of elementary conformal maps.

We take PN(z) to be a monic real polynomial

PN(z) = zN + · · ·
such that all roots α±l of the equation

PN(z)2 − 4�2N =
N∏
l=1

(z− α+l )(z− α−l ) (4.50)

are real. Let w be the smaller root of the equation

�N

(
w + 1

w

)
= PN(z). (4.51)

The function

w 
→ �N

(
w + 1

w

)
is known as the Zhukowski function and it maps the open disk |w| < 1 to the exterior
of the segment [−2�N, 2�N ]. It also maps reals to reals, and therefore the smaller
root of (4.51) maps the upper half-plane to the disk |w| < 1 with slits along the real
axis. It remains to take the logarithm to obtain the map '. Concretely,

'(z) = 2

πi
log(w)+N, (4.52)

where w is the smaller root of the equation (4.51) and we take the branch of the
logarithm satisfying

5 log(w)→ 0, z→+∞.

Since

w ∼ �N

zN
, z→∞,

we get the normalization condition (4.49).

4.7.2 Example: N = 2

As an example, consider the case N = 2. A real quadratic polynomial

P2(z) = z2 + · · ·
maps the upper half-plane to the entire complex plane with a cut along the ray[

min
x∈R

P2(x),+∞
)

.

In particular, if minR P2(x) < −2�2, that is, if both roots of

P2(x) = −2�2

are real, then the segment [−2�2, 2�2] is contained in this cut.
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Fig. 7. A sequence of maps for N = 2.

4.7.3 Gaps and bands

For general N , the only difference from the N = 2 case is that the map PN winds the
upper half-plane N/2 times around the complex plane. Correspondingly, the root of
(4.51) lives on a certain cover of the disk |w| < 1, which then gets unfolded by the
logarithm.

Observe that the conformal map'(z) has a well-defined extension to the boundary
R of the upper half-plane

ϕ(x) = '(x + i0),

where the notation is consistent with (4.6).
We label the roots of (4.50) so that the union of the intervals [α−l , α+l ] is the

preimage of the base of the half-strip � under the map ϕ, that is,

ϕ−1([−N,N]) =
N⋃
l=1

[α−l , α+l ]. (4.53)

These intervals are plotted in bold in the above figures. We will call these intervals
the bands of ' and the complementary intervals the gaps of '.

Proposition 3. We claim that for a choice of ξls in (4.38), we can find the correspond-
ing values of ηl , l = 1, . . . , N , such that the function f satisfying

f ′ (x) = 4ϕ(x), (4.54)

is the maximizer of the action S(f ). The bands and gaps of ' will correspond to the
curves and flat parts of the limit shape f , respectively. They will also correspond to
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the bands and gaps in the spectrum of the Lax operator for the periodic Toda chain,
as will be explained in the next section.

Let us apply the Schwarz reflection principle to any vertical part of the boundary
of � and the corresponding piece of the real axis in the domain of '. Taking the
resulting function modulo 2, we obtain an N -fold covering map

'mod 2 : C \
N⋃
l=1

[α−l , α+l ] → {5� > 0}/mod 2 (4.55)

from the complex plane minus the bands to the half-infinite cylinder, shown schemat-
ically in Figure 8. Note that this map has square-root branching precisely over the
points iηl , l = 1, . . . , N − 1.

Fig. 8. Covering half-cylinder.

It follows that '′(z) extends to an analytic function in the complement of the
bands. By the reflection principle, the value of '′(z) on the other side of the cut is
precisely −'′(z). Also note that '′(z) is real (respectively, purely imaginary) on
bands (respectively, gaps). We conclude that

'′(z) = 1

πi

∫
R

4ϕ′(x)
x − z

dx = − 2

πi
Rf  (z), (4.56)

where Rf (z) is (ε1, ε2 → 0 limit of) the resolvent of the limit profile f , defined by
(4.54). We can, therefore, identify

lth band ≡ [α−l , α+l ] = supp f
′′
l (x − al), l = 1, . . . , N. (4.57)

4.7.4 Periods

It follows from (4.56) that

al = 1

2πi

∮
al
zRf (z)dz =

∮
al
dS, (4.58)
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where we used (4.52), and, in agreement with (4.4), we have defined the Seiberg–
Witten differential

dS = 1

2πi
z
dw

w
. (4.59)

Taking the average of '′(z) on the two sides of the cut in (4.56), we get

H4ϕ′(x) = −5ϕ′(x). (4.60)

Using (4.44), we conclude from (4.60) that

[Xf ]′(x) = −π5ϕ(x)+ const.

We claim that this constant is, in fact, zero. Indeed, we have

[Xf ]′(x) = −
∫

log

( |y − x|
�

)
f ′′(y)dy = 2N log

(
�

|x|
)
+O

(
1

x

)
, x →∞.

(4.61)
Comparing this to (4.49), we conclude that

[Xf ]′(x) = −π5ϕ(x). (4.62)

Since, clearly, 5ϕ(x) ≥ 0 and 5ϕ(x) vanishes on the bands, it follows from (4.62)
that Xf is monotone decreasing and constant on the bands. It is also clear that the
function (4.54) is monotone increasing and constant on the gaps, where it takes the
values

−N + 2l, l = 0, . . . , N.

This verifies the conditions (4.45) with the ξl being the values of Xf on the bands.
To recover the ξl , we just integrate [Xf ]′ along the gap, where

i5ϕ(x) = ϕ(x)+ const.

We find

ξl+1 − ξl = −π
∫ α−l+1

α+l
5ϕ(x)dx = −πi

∫ α+l+1

α+l
xdϕ(x),

integrating by parts and using the vanishing of 5ϕ(x) at the endpoints of a gap. In
terms of the Seiberg–Witten differential and the cycles bl , the last relation reads

ξl − ξl+1 = 2πi
∮

bl−bl+1

dS. (4.63)

This, together with the overall constraint
∑

ξl = 0, fixes the values of the ξl .



Seiberg–Witten Theory and Random Partitions 557

4.7.5 Completeness

We now show that by a suitable choice of the slit-lengths ηl , we can achieve any value
of the parameters (4.38). The period map

RN−1
>0 3 (η1, . . . , ηN−1) 
→ (ξ1 > · · · > ξN), (4.64)

is a continuous (in fact, analytic) map of open sets of RN−1. Because of the uniqueness
of the maximizer f , this map is one-to-one. Hence, if we can additionally show that
it maps boundary to boundary, it will follow that this map is onto.

It is clear that if ηl → 0 for some l, then ξl − ξl+1 → 0. Suppose that for some
n = 1, . . . , N ,

ηn = max
l

ηl →+∞.

It is clear from the electrostatic interpretation of the conformal map ' that the tip of
the nth slit will not be screened by other slits, that is, for some constants δ1, δ2 > 0,
we have ∫

x∈[α+l ,α−l ],5'(x)>(ηn−δ1)

dx > δ2,

whence

ξl − ξl+1 =
∫
[α+l ,α−l ]

5'(x)dx > δ2(ηn − δ1)→∞.

4.7.6 Periods and the prepotential

We now perform a check. We consider the partials

∂S(f )

∂ξl
(4.65)

and relate them to the A-periods al (4.58) of the differential dS.
We have

∂

∂ξl
S(f ) =

[
∂

∂ξl
S
]
(f ) (4.66)

because any infinitesimal change in f can only decrease the value of S(f ), which
forces the variation of S due to the change in f to vanish (this is essentially the usual
argument about the variation of the critical value of the action with respect to the
parameters of the action). The rest is trivial:

δS(f ) = 1

2

∫
[δσ ](f ′)dx = −1

2

∫
[δσ ]′(f ′)xf ′′(x)dx

= −1

2

∑
l

δξl

∫ α+l

α−l
xf 

′′(x)dx

= −1

4

∑
l

δξl

∮
al
zd'(z),

(4.67)
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which is exactly what we wanted, given (4.52), (4.59). Thus

F0(a,�) = −E�(f ),

Rf (z)dz = d log(w),

al =
∮

al
dS,

ξl = 2πi
∮

bl

dS.

(4.68)

The integral in the last line is to be understood with the cutoff. Again, in the SU(N)

theory, where only the differences al − am, and ξl − ξm make sense, the cutoff never
show up. It is the Cheshire cat smile of the noncommutative regularization.

4.8 Lax operator

The Seiberg–Witten curves arising from conformal maps ' can be parameterized as
the spectral curves in the periodic Toda chain corresponding to real initial conditions.

Consider the infinite Toda chain with particle coordinates qi and momenta pi .
Make it periodic by imposing the constraints

qi+N = qi −N log� (4.69)

for all i. The Lax operator of this periodic Toda chain is a discrete Schrödinger
operator of the form

L(w) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 eq1−q2 w�NeqN−q1

eq1−q2 p2 eq2−q3

eq2−q3
. . .

. . . eqN−1−qN
w−1�NeqN−q1 eqN−1−qN pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.70)

where w is the Bloch–Floquet multiplier.
The integrals of motions are summarized by the spectral curve, which is the curve

defined by the characteristic polynomial

det(z− L(w)) = P(z)−�N

(
w + 1

w

)
.

Here P(z) is a monic polynomial of degree N . Observe that all roots of the polyno-
mials

P(z)± 2�N = det(z− L(∓1)) (4.71)

are real because L(±1) is a real symmetric matrix. This fact plays an important role
in the dynamics of the periodic Toda lattice.
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The bands and gaps of the map ' are precisely the bands and gaps in the spectrum
of the associated periodic discrete Schrödinger operator L on Z:

[Lf ](i) = eqi−1−qi f (i − 1)+ pif (i)+ eqi−qi+1f (i + 1), i ∈ Z.

Indeed, by (4.69), L commutes with the translation operator T ,

[Tf ](i) = f (i +N),

and (4.70) is the restriction of L to the N -dimensional w-eigenspace of T . In a band,
the Bloch–Floquet multiplier w is a complex number of absolute value 1 and hence
L has a bounded eigenfunction.

It can be shown that all curves of the form (4.51) with N real ovals arise in
this way. This is similar to the result of [47] that the spectral curves of periodically
weighted planar dimers parameterize Harnack (also known as maximal) plane curves.
Incidentally, they are also M-curves, not just because they are used in the M-theory
construction of the gauge theory [7] but also, and mostly,1 because they have exactly
real N ovals.

For example, taking the lattice at rest leads to Chebyshev polynomials. In this
case all gaps shrink to points.

4.9 An SU(3) example

Here is an example of a limit shape f . Take

P(z) = z3 − 4z.

To visualize the curve w + 1
w
= P(z), let’s look at the plots of 4(w) and 5(w) for

z ∈ [−3, 3] plotted in Figure 9 in bold and normal, respectively. The three parts of
this curve correspond to the three bands of the corresponding limit shape f plotted
in Figure 10.

4.10 Higher Casimirs

As in [10] we could deform the theory by adding arbitrary higher Casimirs to the
microscopic prepotential:

FUV = 2πi

[
τ0

2
Tr '2 +

∑
n

τn

∞∏
J=1

(
1

J
Tr 'J

)nJ
]
. (4.72)

The deformations by the single trace operators are especially simple, as they would
lead to the modification of the action S(f ) by the purely surface term

S(f ; τn) = −E�(f )+ 1

2

∫
dxσ(f ′)+ 1

2

∫
dxf ′′(x)

∞∑
k=1

τk
xk+1

k + 1
. (4.73)

Note that τ1 shifts log(�). Presumably the critical point of (4.73) would be a solution
of some generalization of the Whitham equations [48, 40, 18, 49, 50, 51].

1 We should apologize to M-theorists for the fact that M-manifolds were introduced a long
time before 11d SUGRA was invented.
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5 Dual partition function and chiral fermions

In this section we show that a certain transform of the partition function (3.2) has a
natural fermionic representation. The physical origin of these fermions is still not
completely clear. One way to understand them is to invoke the Chern–Simons/closed
string duality of Gopakumar–Vafa [52], and then the fermionic representation of large
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N topological gauge theories [53]. Another possible origin is through the M-theory
five-brane realization of the gauge theory. Mathematically this story is very much
related to the Heisenberg algebra representation in the cohomology of the moduli
space of torsion-free sheaves on CP2, studied in [54].

5.1 Dual partition function

Let ξ1, . . . , ξN be complex parameters,∑
l

ξl = 0.

Consider

ZD(ξ ;p; �,�) =
∑

p1,...,pN∈Z,∑
l pl=p

Z(�(pl + ρl); �,�) exp

(
i

�

∑
l

plξl

)
. (5.1)

Clearly,
ZD(ξ ;p +N; �,�) = ZD(ξ ;p; �,�) (5.2)

(shift allpls by 1). Thus there are essentiallyN partition functions one could consider.
They are labeled by the level 1 integrable highest weights of ŝlN . Moreover,

ZD(ξ ;p + 1; �,�) = ZD(ξ+;p; �,�), (5.3)

where
ξ+ = (ξ2, ξ3, . . . , ξN , ξ1). (5.4)

To extract from ZD the partition function of interest we perform a contour integral.
In the search for the prepotential we are actually interested in the extremely high
frequency Fourier modes of ZD , as we want F0(a;�) as a function of finite al =
�(pl + ρl), with � → 0. This means that the inverse Fourier transform can be
evaluated using the saddle point, which we already analyzed.

Clearly,

ZD(ξ ;p; �,�) = exp
∞∑
g=0

�2g−2FD
g (ξ ;p,�), (5.5)

where FD
0 is in fact p-independent, and is given by the Legendre transform of F0:

FD
0 (ξ ;�) = i

∑
l

ξlal + F0(a;�), ξl = i
∂F0

∂al
; (5.6)

i.e., ξl must be given by the bl periods of the differential dS.

Remark. Note that in this section ξl differs by the factor i from the ξl of the previous
section.
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5.2 Free fermions

Introduce N free chiral fermions ψ(l):

ψ(l)(z) =
∑

r∈Z+ 1
2

ψ(l)
r z−r

(
dz

z

) 1
2

ψ̃(l)(z) =
∑

r∈Z+ 1
2

ψ̃(l)
r z−r

(
dz

z

) 1
2

(5.7)

{ψ(l)
r , ψ̃(m)

s } = δlmδr+s ,

which can also be packaged into a single chiral fermion �

�r, �̃r , r ∈ Z + 1

2
,

{�r, �̃s} = δr+s , (5.8)

�(z) =
∑

r∈Z+ 1
2

�rz
−r
(
dz

z

) 1
2

, �̃(z) =
∑

r∈Z+ 1
2

�̃rz
−r
(
dz

z

) 1
2

in the standard fashion [55]:

�N(r+ρl) = ψ(l)
r , �̃N(r−ρl) = ψ̃(l)

r . (5.9)

The operators �r , �̃s act in the standard fermionic Fock space H (sometimes called
an infinite wedge representation). It splits as a sum of Fock subspaces with fixed
U(1) charge, defined below:

H = ⊕p∈ZH[p].

Introduce affine Û (N)1 currents, which act within H[p] for any p:

J ln(z) =: ψ(l)ψ̃(n) :=
∑
k∈Z

dz

zk+1

∑
r∈Z+ 1

2

: ψ(l)
r ψ̃

(n)
k−r : . (5.10)

Here we normal order with respect to the vacuum |0〉, which is annihilated by

�r |0〉 = 0, r > 0,

�̃s |0〉 = 0, s > 0,
(5.11)

which is equivalent to

ψ(l)
r |0〉 = 0, r > 0,

ψ̃(l)
s |0〉 = 0, s > 0.

(5.12)
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The normal ordered product is simply

: �r�̃s :=
{

�r�̃s, s > 0,

−�̃s�r, r > 0,

: ψ(l)
r ψ̃(m)

s :=
{

ψ
(l)
r ψ̃

(m)
s , s > 0,

−ψ̃(m)
s ψ

(l)
r , r > 0.

(5.13)

One can also introduce vacua with different overall U(1) charges:

�r |p〉 = 0, r > p,

�̃s |p〉 = 0, s > −p, (5.14)

|p〉 ∈ H[p].
It is also useful to work with � and the corresponding Û (1)1 currents,

J (z) =: ��̃ : (z) = − 1

N

∑
l,m

J lm(z−N)zl−m, (5.15)

and Virasoro generators,
L0 =

∑
r∈Z+ 1

2

r : �r�̃−r . (5.16)

Note the following:

L0|p〉 = p2

2
|p〉. (5.17)

5.2.1 Bosonization

It is sometimes convenient to work with the chiral boson

φ(z) = q − iJ0 log(z)+ i
∑
n�=0

1

n
Jnz

−n,

∂φ ≡ z∂zφ = −iJ ,

[q, J0] = i,

�(z) =: eiφ(z) :, �̃(z) =: e−iφ(z) : .

(5.18)

We will also use a truncated boson, with the zero mode q removed:

ϕ(z) = −iJ0 log(z)+ i
∑
n�=0

1

n
Jnz

−n. (5.19)

The space H[p] is actually an irreducible representation of the Heisenberg algebra
generated by J :

H[p] = Spann1,...,nk>0 J−n1 . . .J−nk |p〉, J0
∣∣
H[p] = p. (5.20)

We also recall that

� : H[p] → H[p + 1], �̃ : H[p] → H[p − 1]. (5.21)
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5.3 Dual partition function as a current correlator

We claim that

ZD(ξ ;p; �,�) = 〈p|e 1
�

∮
Tr E+(z)J (z)e

∮ 1
�

Tr H(z)J (z)�2L0e−
1
�

∮
Tr E−(z)J (z)|p〉,

(5.22)
where the matrices E±, H are given by

E+(z) = zEN,1 +
N∑
l=2

El−1,l ,

H(z) =
∑
l

ξlE
l,l, (5.23)

E−(z) = z−1E1,N +
N∑
l=2

El,l−1.

5.4 Affine algebras and arbitrary gauge groups

Note that (5.22) can be written using the Chevalley generators ei, fi, hi of the affine
Lie algebra ŝlN :

ZD(ξ ;p; �,�) = (u�,�
2h0eHξ u�)Vωp

,

u� = exp

(
N

�

N∑
l=1

fl−1

)
v0, (5.24)

Hξ = 1

�

N−1∑
l=1

(ξl − ξl+1)hl,

where Vωp is the integrable highest weight module with highest weight vector v0
(annihilated by the simple roots el) and highest weight ωp, p = 1, . . . , N .

The formula (5.24) has an obvious generalization to any simple Lie algebra ĝ.
Conjecturally, it gives the partition function in the �-background in the N = 2 gauge
theory with gauge group S-dual to G (Langlands dual).

5.5 Dual partition function and gl(∞)

We now return to the AN−1 case.
In the language of the single fermion �, the formula (5.22) reads

ZD(ξ ;p; �,�) = 〈p|eJ1
� eHξ �2L0e

J−1
� |p〉, (5.25)

where Hξ is a diagonal matrix

Hξ = 1

�

∑
r

ξ
(r+ 1

2 )mod N
: �r�̃−r : .
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Clearly, [Hξ , L0] = 0. The formula (5.25) expresses the dual partition function as
an average with the Plancherel measure of the N -periodic weight eHξ .

Remark (on the Toda equation). The function ZD obeys the Toda equation (cf. [56]):

4∂2
log(�) log(ZD(p)) = ZD(p + 1)ZD(p − 1)

(ZD(p))2
. (5.26)

In fact, the formula (5.25) identifies ZD as the tau-function of the Toda lattice hi-
erarchy, thanks to the results of [57, 36, 58], with the specific parameterization of
the times. We hope to return to this property of the partition function in a future
publication.

5.6 The U(1) case

In order to understand (5.25), (5.22), we first consider the case N = 1. As the
Plancherel measure is a-independent in this case, we can study both the partition
function and its dual with ease. Let us represent the states in the fermionic Fock
space as semi-infinite functions of�r . The chargep vacuum |p〉 in this representation
corresponds to the product

|p〉 =
−→∏

r>−p
�r ≡ �−p+ 1

2
�−p+ 3

2
· · · . (5.27)

To every partition k, there corresponds the so-called charge p partition state:

|p;k〉 =
−→∏

i=1,2,...

�−p− 1
2+i−ki =

−→∏
1≤i≤n

�−p− 1
2+i−ki

←−∏
1≤i≤n

�̃
p+ 1

2−i |p〉

=
−→∏

1≤i≤n
�−p− 1

2+i−ki |p − n〉.
(5.28)

These states form a complete basis in the space H[p]. The important fact, responsible
for (5.25), is the variant of the boson–fermion correspondence:

exp
1

�
J−1|p〉 =

∑
k

µ(k)
�|k|

|p;k〉, (5.29)

where the factor µ(k) is the Plancherel measure (3.12). It follows that

Z(a, �,�) = �
a2

�2 〈0|e− 1
�

J1�2L0e
1
�

J−1 |0〉, (5.30)

which for a = �p can also be written as

Z(a, �,�) = 〈p|e− 1
�

J1�2L0e
1
�

J−1 |p〉. (5.31)
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To make use of (5.29), we blend N partitions kl , l = 1, . . . , N , into a single one,
K. Let p1, . . . , pN be some integers. Consider the following countable set of distinct
integers:

{N(pl + kli − i)+ l − 1|l = 1, . . . , N, i ∈ N} = {p +KI − I |I ∈ N}, (5.32)

where the sequence K1 ≥ K2 ≥ · · · is defined by (5.32) and the condition that it
stabilizes to zero. Likewise, p is determined from (5.32) and depends only on the pl :

p =
∑
l

pl. (5.33)

Let
al = �(pl + ρl).

The size of the blended partition K is expressed in terms of the al (see Appendix A):

|K| = 1−N2

24
− p2

2
+N

∑
l

ã2
l

2�2
+N

∑
l,i

kli (5.34)

It is now straightforward to evaluate µk := µ(K),

µ2
K = Zk(a; �), (5.35)

and arrive at (5.25).

6 N = 2 theory with adjoint hypermultiplet

In a sense the most interesting N = 2 theory is the theory with a massive hyper-
multiplet in the adjoint representation. This theory is ultraviolet finite, and is thus
characterized by the microscopic coupling τ0 = ϑ0

2π + 4πi
g2

0
, and by the mass m of

the hypermultiplet. It is convenient to use the nodal parameter q = e2πiτ0 to count
instantons.

In this case the prepotential of the low-energy effective theory is expected to have
the following expansion:

F0(a,m, q) = πiτ0

∑
l

a2
l

− 1

2

∑
l �=n
[(al − an)

2 log(al − an)

− (al − an +m)2 log(al − an +m)]

+
∞∑
k=1

qkfk(a,m)

(6.1)



Seiberg–Witten Theory and Random Partitions 567

The previous calculations of the coefficients fk for low values of k were done in [59].
One of the remarkable features of the prepotential of the low-energy effective theory
of the theory with an adjoint hypermultiplet is its relation to the elliptic Calogero–
Moser system [60]. Indeed, in [20] an ansatz for the family of curves encoding
the prepotential was proposed, using a version of the Hitchin system [61]. This very
construction of the elliptic Calogero–Moser system was found earlier [62]. One of the
advantages of this realization is its simple extension to Lie groups other than SU(N)

(see, e.g., [63]). The coefficients fk of the prepotential of the Calogero–Moser system
were calculated for k = 1, 2 in, e.g., [41].

6.1 Partition function

The partition function of the theory with an adjoint hypermultiplet in the �-
background is explicitly calculable (in [9] the countour integral representation was
given; the poles of the integral are exactly the same as those of the contour integral
for the pure theory) and the answer is (µ = m/�):

Z(a,m; �, q) = exp
∞∑
g=0

�2g−2Fg(a,m; q)

= q
1

2�2

∑
l a

2
l − 1

24N(µ2−1)∑
k

q |k|Zk(a,m; �, q),
(6.2)

where

Zk(a,m; �, q) = Zpert(a,m; �, q)µ2
k(a, �)

×
∏

(l,i)�=(n,j)

(al − an +m+ �(j − i))

(al − an +m+ �(kl,i − kn,j + j − i))
, (6.3)

Zpert(a,m; �, q) = exp
∑
l,n

γ�(al − an; q)− γ�(al − an +m; q).

6.2 Abelian theory

Let us consider the N = 1 case first. Let µ = m
� . In the N = 1 case, we are to sum

over all partitions k:

Z(a,m; �, q) = q
a2

2�2+ 1
24 (µ

2−1)
e−γ�(m;q)∑

k

q |k|
∏
�∈k

(
h(�)2 − µ2

h(�)2

)
. (6.4)

The fact that (6.2) reduces to (6.4) for N = 1 is a consequence of a simple identity
between the Chern characters:∑
i<j

e�(ki−kj+j−i)−e�(j−i)−em+�(ki−kj+j−i)+em+�(j−i) =
∑
�∈k

em+�h(�)−e�h(�).

(6.5)
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Another expression for (6.4) will be useful immediately:

Z(a,m; �, q) = q
a2

2�2 e−γ�(m;q)Z(µ), Z(µ) = q
1

24 (µ
2−1)

∑
k

q |k|Zk(µ),

Zk(µ) =

(k)∏
i=1

(
(k)+ ki − i + µ)!(
(k)+ ki − i − µ)!(
(k)− i)!2
(
(k)− i + µ)!(
(k)− i − µ)!(
(k)+ ki − i)!2 (6.6)

×
det1≤i,j≤
(k) ‖ 1

ki−kj+j−i+µ‖
det1≤i,j≤
(k) ‖ 1

j−i+µ‖
.

Proposition 4. The analogue of the formula (5.31) for the theory with adjoint matter is

Z(µ) = q
µ2

24 TrH0 q
L0− 1

24 Vµ(1), (6.7)

where

Vµ(z) =: eiµϕ(z) := exp

(
−µ

∑
n>0

J−n
zn

n

)
zµJ0 exp

(
µ
∑
n>0

Jn

z−n

n

)
, (6.8)

ϕ(z) is the bosonic field (5.19), and Hλ is the charge λ subspace of the fermionic
Fock space.

Proof. We represent the trace (6.7) as a sum over partition states: |p;k〉, where
p = a

� is fixed. We start by evaluating

〈k|Vµ(1)|k〉 =
det1≤i,j≤
(k) ‖Gki−i+
(k),kj−j+
(k)‖

det1≤i,j≤
(k) ‖G−i+
(k),−j+
(k)‖ , (6.9)

where we employ Wick’s theorem and where for i, j ∈ Z+,

Gij = (−)i−j (i + µ)!(j − µ)!
i!j !(i − j + µ)

sin πµ

πµ

= Coeff xiyj

(
1− y

1− x

)µ 1

1− xy
(6.10)

= 〈0|�̃
j+ 1

2
Vµ(1)�− 1

2−i |0〉.

The second line of (6.10) follows from

[µ− y∂y + x∂x]
{(

1− y

1− x

)µ 1

1− xy

}
= µ(1− y)µ−1(1− x)−µ−1,

while the last line is most easily derived from the current action on the fundamental
fermions �, �̃,
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〈0|�̃(y−1)Vµ(1)�(x)|0〉

= exp

(
µ
∑
n>0

1

n
(xn − yn)

)
× 〈0|�̃(y−1)�(x)|0〉

=
(

1− y

1− x

)µ
(dx)

1
2 (dy)

1
2

1− xy
,

(6.11)

from which (6.10) follows by employing the expansion (5.8). ��
Remark. Note that an immediate consequence of the equalities (6.4) and (6.7) is the
identity

∏
n>0

(1− qn)µ
2−1 =

∑
k

q |k|
∏
�∈k

h(�)2 − µ2

h(�)2
,

Z(µ) = η(q)µ
2−1

(6.12)

(see Appendix C for notation), which interpolates between the Dyson–Macdonald
formulas for the root systems An. Indeed, when µ = n, the exponent on the left in
(6.12) equals

dim SU(µ) = µ2 − 1,

while on the right we have a sum over all partitions with no hooks of length µ, which
one can easily identify with the sum over the weight lattice of SU(n) entering the
Dyson–Macdonald formula.

6.2.1 Higher Casimirs and the Gromov–Witten theory of elliptic curves

Just as in [10] we can consider deforming the theory by the higher Casimirs. And as in
[10] these are represented in the free fermion formalism by the W-generators, and the
trace (6.7) becomes the W1+∞ character in the presence of the “vertex’’ operator Vm

�
.

For m = 0 this trace becomes exactly the W1+∞ character, as studied in [64, 65].
As shown in [36], this trace also coincides with the all-genus partition function of the
Gromov–Witten theory of an elliptic curve (see also [66]). It would be nice to find a
Gromov–Witten dual of the “vertex’’ operator Vµ, and establish the precise relation
of (6.12) to [36, 65, 64].

Note that the “flow to the pure N = 2 theory,’’ which is represented by the limit
m →∞, q → 0, such that �2 = m2q stays finite, leads to the dual Gromov–Witten
theory of CP1 with log(�2) playing the role of the Kähler class.

6.3 Nonabelian case

Using (6.4) it is simple to express the partition function (6.2) in terms of free fermions:

Z(a; �,m, q) = TrH(N)
a
�

(qL0Vµ(1)), (6.13)
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where
H(N)

p = ⊗N
l=1H[pl]

stands for the Fock space of N free fermions, with specified charges (p1, . . . ,

pN)(U(1)N (weight, in the language of affine Lie algebras).
We also have an expression for the dual partition function:

ZD(ξ, p; �,m, q) = TrHp
(qL0Vµ(1)e

Hξ ). (6.14)

Of course, the modular properties of the partition functions (6.6), (6.12), (6.14) reflect
the S-duality of the N = 4 theory [11].

6.4 Path representation

As in the pure gauge theory case it is extremely useful to represent the partition
function as a sum over the profiles—the paths f (x). The result is

Z(a,m; �, q) =
∑

f∈�discrete
a

Zf (a,m; �, q),

Zf (a,m; �, q) = exp

(
−1

4

∫
dxdyf ′′(x)f ′′(y)γ�(x − y; q)

+ 1

4

∫
dxdyf ′′(x)f ′′(y)γ�(x − y +m; q)

+ 1

4�2
log(q)

∫
dxx2f ′′(x)

)
.

(6.15)

Interchanging x and y, one sees that this is symmetric with respect to m 
→ −m.

6.5 Variational problem for the prepotential

Again, as in the case of the pure N = 2 gauge theory we are looking for the extremum
of a certain action functional on the space�a of profilesf (x)with fixed partial charges.
By adding the surface tension term to the action we get a minimization problem on
the space of all profiles, i.e., functions that satisfy

f (x)−N |x| = 0, |x| 2 0,

and the Lipschitz condition |f ′(x)| ≤ N . The Lipschitz condition in our case will
be satisfied automatically, since all extrema will be convex. We also impose the total
zero charge condition, a = 0, i.e.,∫

R
xf ′′(x)dx = 0. (6.16)

In this section we set m = im.
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6.5.1 Path energy and surface tension

Let

L(x) = 1

2
x log

(
x2

x2 +m

)
−m arctan

x

m
. (6.17)

We have

L′(x) = 1

2
log

(
x2

x2 +m2

)
,

L′′(x) = 1

x
− 1

2

(
1

x + im
+ 1

x − im

)
.

(6.18)

We introduce a generalization of the energy functional (4.28):

Eq,m(f ) = −1

2

∫
––
x<y

(N + f ′(x))(N − f ′(y))L′(y − x)dxdy

− iπτ

2

∫
R
x2f ′′(x)dx,

(6.19)

where the first term is the leading � → 0 asymptotics of (6.15) and the second term

comes from the weight q |k|. In the limit q → 0, m→∞, so that � = mq
1

2N stays
finite, Eq,m → E�. (This reflects the flow of the theory with adjoint hypermultiplet
to the pure N = 2 super-Yang–Mills theory.)

The functional we want to maximize is

Sq,m(f ) = −Eq,m(f )+ 1

2

∫
σ(f ′(x))dx, (6.20)

where the last term is the usual surface tension term. Again, the functional (6.20) is
convex; therefore, every local maximizer is also a global maximizer.

6.5.2 Variational equations

Varying f ′(x) in (6.20), and integrating by parts, we obtain the equation∫
––
y �=x

f ′′(y)L(y − x)dy − σ ′(f ′(x))+ 2πiτx = const, (6.21)

which should be satisfied at any point of continuity of σ ′(f ′(x)). The constant
in (6.21) is the Lagrange multiplier corresponding to the constraint (6.16). At the
points of discontinuity of σ ′(f ′(x)), the equality (6.21) should be replaced by the
corresponding two-sided inequalities.

The function σ ′ is piecewise constant, therefore differentiating (6.21) with respect
to x we get the equation ∫

f ′′(y)L′(y − x)dy = 2πiτ. (6.22)
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6.6 The spectral curve

The facets of the limit shape correspond to the singularities of the surface tension σ ,
therefore the maximizer f will have N − 1 of them. This means that the support of
f ′′ will be N intervals (bands),

supp f ′′ =
⋃

l=1,...,N

supp f ′′l , (6.23)

and, as in (4.57), we denote

supp f ′′l = [α−l , α+l ]. (6.24)

Consider the resolvent R(z) ≡ Rf (z; 0, 0) introduced in (4.20). It has jump dis-
continuities along the bands with the jump equal to πif ′′(x). Set, by definition
(cf. [67, 68]),

G(z) = R

(
z− im

2

)
− R

(
z+ im

2

)
.

This function is analytic in the domain U which is the Riemann sphere with 2N
symmetric cuts

U = C̄\
N⋃
l=1

[
α−l ±

im

2
, α+l ±

im

2

]
.

We have
G(z) = O(z−2), z→∞,

and hence we can consider the multivalued function∫ z

∞
G(y)dy.

The period of
∫
G(y)dy around any cut is equal to the integral of the jump of G(z)

along the cut. By construction, the jump of G(z) is±πif ′′(x) and as
∫ α+l
α−l

f ′′(y)dy =
2, we have the well-defined function

F(z) = 1

2πi

∫ z

∞
G(y)dy mod Z

= 1

4πi

∫
R
dyf ′′(y) log

(
z− im

2 − y

z+ im
2 − y

)
mod Z.

(6.25)

We will show that F is an N -fold branched cover of the standard cylinder

Cτ = {� | |5(�)| < −iτ/2}mod Z

by the domain U . Clearly, F maps the infinity of U to the origin � = 0 of Cτ .
The following proposition describes the behavior of the function F(z) on both

sides of the two cuts corresponding to any band [α−l , α+l ].
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Fig. 11. Covering finite cylinder.

Proposition 5. For any x ∈ [α−l , α+l ], we have

F

(
x + im

2
± i0

)
− F

(
x − im

2
∓ i0

)
= τ. (6.26)

Proof. This is, in fact, a reformulation of (6.22). Indeed, let x± denote the two
arguments of F in (6.26). We need to show that

τ =
∫ x+

x−
G(y)dy = 1

4πi

∫ x+

x−
dz

∫
R

(
1

y − z+ im
2

− 1

y − z− im
2

)
f ′′(y)dy.

(6.27)
Since the integrand is nonsingular on the domain of integration, we can change the
order of integration, which gives

1

2πi

∫
L′(y − x)f ′′(y)dy = τ, (6.28)

which is precisely (6.22). ��
Since f ′′(x) is real, we have

R(z̄) = R(z),

from which it follows that

G(z̄) = −G(z), F (z̄) = F(z). (6.29)

Proposition (6.26) now implies that

5F
(
x ± im

2

)
= ∓iτ/2, x ∈ [α−l , α+l ].

which means that F maps the boundary ∂U to the boundary ∂Cτ . It follows that F
maps U onto Cτ and, moreover, since F has degree N on the boundary, the map
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F : U → Cτ

is an N -fold branched cover.
Proposition (6.26) also gives the analytic continuation of the function F(x) across

the cuts ofU . The Riemann surface C of the functionF is obtained by taking countably
many copies of the domain U and identifying the point

x + im

2
± i0, x ∈ [α−l , α+l ],

on one sheet with the point

x − im

2
∓ i0

on the next sheet.
By construction, F extends to the map from C to the infinite cylinder

F : C → C mod Z,

satisfying the property

F−1(� + τ) = F−1(�)+ im. (6.30)

More geometrically, this means that the curve C is imbedded into the total space A
of the affine bundle over the elliptic curve Eτ = C/Z ⊕ τZ which is obtained from
Cτ by identifying its boundaries:

C ⊂ A = {(z,�)|z ∈ C,� ∈ C}/(z,�) ∼ (z,� + 1) ∼ (z+m,� + τ). (6.31)

The map F is the restriction to C of the projection A → Eτ . The coordinate z is the
coordinate on the fiber of A.

This implies, in turn, that C is the spectral curve of the elliptic Calogero–Moser
system [60]. Indeed, the latter is the spectral curve of the Lax operator (see Ap-
pendix C):

C: Detl,n(L(�)− z) = 0,

Lln(�) = δln

(
pn +m

1

2πi
log(θ11(�))′

)
+ m

2πi
(1− δln)

θ11(� + ql − qn)θ
′
11(0)

θ11(�)θ11(ql − qn)
,

(6.32)

and is naturally viewed as the holomorphic curve in A representing the homology class
of N [Eτ ] under the identification A ≈ C×Eτ : (z,�) = (p+m log(θ11(�))′,�).
This condition, together with the behavior near � = 0, fixes uniquely the N -
parameter family of curves C. The coordinates u = (u1, . . . , uN) on the base of
the family of curves can be defined using the characteristic polynomial of the Lax
operator (6.32). An alternative set of (local) coordinates is given by the so-called ac-
tion variables, which can be defined as a set of periods of the complexified Liouville
one-differential zd� on C. In our construction these periods are linear combinations
of als, ξls, and m; see below.
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Remark. For N = 1, the function F−1(�) is, up to normalization, the classical
Weierstraß function ζ(�).

The limit shape f is reconstructed from the fact that f ′(x)mod 2Z is equal to the
jump of the function F(x) across the cut of U .

6.6.1 Periods

We shall now study the periods of the differential

dS = zd� |C = zdF (z) = 1

2πi
z

(
R

(
z− im

2

)
− R

(
z+ im

2

))
dz (6.33)

on the Riemann surface C.
For l = 1, . . . , N let a±l denote the 1-cycle, which circles around the cut [α−l ±

im
2 , α+l ± im

2 ]. Clearly, ∮
a±l

dS = al ± im

2
. (6.34)

For l = 1, . . . , N−1, let βl be the cycle on C joining some points x+ im
2 and y+ im

2 ,
where

x ∈ (α−l , α+l ), y ∈ (α−l+1, α
+
l+1),

above both cuts on some sheet of C and below both cuts on the next sheet of C.
By construction of C, we have∮

βl

zdF (z) =
∫ y+ im

2 +i0

x+ im
2 +i0

zdF (z)+
∫ x− im

2 −i0

y− im
2 −i0

zdF (z)

=
∫ y+ im

2 +i0

y− im
2 −i0

zdF (z)−
∫ x+ im

2 +i0

x− im
2 −i0

zdF (z).

By the same principle as in the proof of Proposition (6.26), we obtain∫ x+ im
2 +i0

x− im
2 −i0

zdF (z) = 1

4πi

∫
R
f ′′(t)dt

×
[(

t + im

2

)
log

x − t + i0

x − t − im
+
(
t − im

2

)
log

(
x − t − i0

x − t + im

)]
= 1

2πi

∫
R
(xL′(t − x)+ L(t − x))f ′′(t)dt

= 1

2πi
ξl+1 + const

(6.35)

thanks to (6.21), (6.28), and the fact that σ ′(f ′(x)) = ξl because x lies on the lth
band. We summarize:
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ξl − ξl+1 = 2πi
∮
βl

dS,

al ± im

2
=
∮

a±l
dS,

F(a,m, q) = −Eq,m(f ).

(6.36)

7 On another matter

The results of the previous chapters can be generalized in various ways. One can
incorporate hypermultiplets in arbitrary representations. One can add a tower of
Kaluza–Klein states. One can study quiver gauge theories. We shall only sketch the
results for fundamental matter, or for five-dimensional theories. The other cases will
be treated in future publications.

7.1 Hypermultiplets in the fundamental representation

In this section m denotes the vector of masses:

m = diag(m1, . . . , mk)

We will denote by f = 1, . . . , k the flavor index.
The partition function of the theory with k matter hypermultiplets in the fundamen-

tal representation of U(N) is given by the following sum over colored partitions [9]:

Z(a,m; �,�) =
∑

k

�(2N−k)|k|Zk(a,m; �,�),

Zk(a,m; �,�) = Zpert(a,m; �,�)
∏
l,i,f

�
(
mf+al

� + kli + 1− i
)

�
(
mf+al

� + 1− i
) µ2

k(a, �),

Zpert(a,m; �,�) = exp

⎛⎝∑
l,n

γ�(al − an;�)+
∑
l,f

γ�(al +mf ;�)

⎞⎠ .

(7.1)

As before, the partition function (7.1) can be written as a sum over profiles f = fa,k
as follows:

Z(a,m; �,�) =
∑
f

Zf (a,m; �,�),

Zf (a,m; �,�) = exp

(
−1

4

∫
dxdyf ′′(x)f ′′(y)γ�(x − y;�)

+ 1

2

∑
f

∫
dxf ′′(x)γ�(x +mf ;�)

)
.

(7.2)
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Observe that the action in (7.2) is the old action (4.25) evaluated at a modified function
f̃ such that

f̃ ′′ = f ′′ −
∑

f

δ(x +mf ) (7.3)

Therefore, the variational problem for the limit shape f is essentially the variational
problem solved in Section 4, the only modification being that the maximizer f̃ is
required to have corners at the points x = −mf .

We will solve this problem under the assumption that themf are real and |mf | 2 0.
Without loss of generality, we can assume that the number k of flavors is exactly 2N−1
since letting some mf go to infinity reduces the number of labels.

Let �̃ be the half-strip

{|4(�)| < N,5(�) > 0},
but now with two kinds of vertical slits. As before, we have N − 1 slits going from
the points

−N + 2l + iηl, l = 1, . . . , N − 1,

down to the real axis. Additionally, we introduce 2N − 1 slits from the points

−N + l + iη̃l , l = 1, . . . , 2N − 1,

going up to infinity. Let '̃ be the conformal map from the upper half-plane to the
domain �̃ as in Figure 12.

Fig. 12. The map '̃ for N = 3.

The numbers ηl are, as before, the parameters of this map, as well as the number
�. The numbers η̃l are uniquely fixed by the requirement that

'−1(∞) = {m1, . . . , m2N−1,∞}.
Let P(z) be a monic degree N polynomial with all real roots. Suppose that � is

sufficiently small and the mf are large enough. If
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m1 < · · · < mr 0 0 0 mr+1 < · · · < m2N−1,

then, as before, one checks that the map

'̃(z) = 2

πi
ln

w√
�
−N + r + 1, (7.4)

where w is the smaller root of the equation

w + �

w
= P(z)√

Q(z)
, Q(z) =

2N−1∏
f=1

(z+mf ), (7.5)

is the required conformal map. Its construction is illustrated in Figure 13, which is a
modification of Figure 7. The branch of the logarithm in (7.4) is chosen so that

5 log(w)→ 0, z→∞.

Fig. 13. The map '̃ as a composition of maps for N = 2.

We now claim that the maximizer f̃ is given by the same formula as before,

f̃ (x)
′ = 4'̃(x), (7.6)

which simply means that the nontrivial part of the maximizer f is determined by the
formula

f (x)
′ = 4'̃(x), |x| < min{|mf |}, (7.7)

whereas f (x) = N |x| outside of this interval.
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Indeed, f̃ (x)′ clearly has the required jumps at the points x = −mf . The equation

(Xf̃ )
′ = −π5'

is checked in the exact same way as before. In particular, the asymptotics

'̃(z) ∼ 1

πi
ln

�

z
+ real constant, z→∞, (7.8)

agrees with the fact that from (4.61) we have

(Xf̃ )
′(z) = ln �− ln |z| +O

(
1

z

)
, z→∞. (7.9)

This verifies the predictions of [3, 4]. If 2N = k, then the curve will be covering
an elliptic curve and again can be explicitly constructed.

7.2 Five-dimensional theory on a circle

Consider five-dimensional pure supersymmetric gauge theory with eight super-
charges, compactified on the circle S1 of circumference β. In addition, put the
�-twist in the noncompact four dimensions. The resulting theory is a deformation of
(2.1) by β-dependent terms.

The theory was analyzed in [14, 9] and the result of the calculation of the partition
function is the following:

Z(a; �, β,�) =
∑

k

(β�)2N |k|Zk(a; �, β)

Zk(a; �, β) = Zpert(a; �, β)µ2
k(a, β, �),

µ2
k(a, β, �) =

∏
(l,i)�=(n,j)

sinh β
2 (al − an + �(kl,i − kn,j + j − i))

sinh β
2 (al − an + �(j − i))

,

Zpert(a; �, β) = �
1−N2

12 exp
∑
l,n

γ�(al − an|β;�).

(7.10)

Note that we included a power of β in � in (7.10) in order to have a simple four-
dimensional limit β → 0, � finite. This “renormalization’’ group relation was
actually derived in [6, 14].

7.2.1 Path representation

The partition function (7.10) is easily written as a path sum:

Z(a; �, β,�) =
∑
f∈�a

exp

(
−1

4

∫
––
x �=y

f ′′(x)f ′′(y)γ�(x − y|β;�)

)
. (7.11)
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7.2.2 Prepotential

From (7.11) we derive, as before, the equations on the critical path, which, in turn,
determine the prepotential. Assuming β > 0, we have

F0(a, β,�) = 1

4
Eβ(f ), (7.12)

where f is the maximizer and the functional Eβ is defined by

Eβ(f ) =
∫
––
x<y

dxdy(N + f ′(x))(N − f ′(y)) log
2

β�
sinh

β|x − y|
2

. (7.13)

Again, we modify the functional (7.12) by a surface energy term to obtain the follow-
ing total action functional:

S(f ) = 1

4
Eβ(f )+ 1

2

∫
R
σ(f ′)dx. (7.14)

We now introduce a five-dimensional analogue of the transform Xf (see Appendix A
for the definition of the function γ0(x;β)):

[Xβf ](x) = 1

2

∫
––
y �=x

dy sgn(y − x)γ ′0(|y − x|;β)f ′′(y). (7.15)

Note that the relation

γ0(x;β)′′ = log
2

β�
sinh

βx

2
(7.16)

implies that

[Xβf ]′(x) = −1

2

∫
––
y �=x

dy log

(
2

β�
sinh

β|x − y|
2

)
f ′′(y). (7.17)

The equations on the minimizer for (7.14) are formulated exactly as in Proposition 2,
(4.45), with the replacement of Xf by Xβf .

The solutions to these equations can be constructed as follows. Let '(z) be the
conformal map from the horizontal strip

0 < 5z <
π

β
(7.18)

to the slit half-strip �̃ with N − 1 slits of the form (4.48) and an additional vertical
semi-infinite slit

4� = 0, 5� > η̃,

as in Section 7.1 above. We normalize ' by requiring that it map the two ends of
the horizontal strip to the two ends of �̃. This fixes it up to precomposing with an
overall shift by a real constant.

The exponential map
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z 
→ X = eβz

maps the strip (7.18) to the upper half-plane, mapping R to R>0. Therefore, we can
use the results of the previous section to conclude that ' has the form

'(z) = N + 2

πi
logw,

where w is the smaller root of the equation

X−
N
2 PN(X) = (β�)N

(
w + 1

w

)
, X = eβz. (7.19)

Here PN is a monic polynomial of degree N and logw is normalized, as usual, by
the requirement that 5 logw→ 0 as z→+∞ along the real axis.

In the form (7.19), the parameter η̃ of the map ' becomes a function of � and
other parameters. The equation (7.19) defines the spectral curve of the relativistic
Toda chain, as predicted in [14].

Applying the Schwarz reflection principle to any vertical part of the boundary of
�̃ and taking the resulting function modulo 1, we obtain a 2N -fold map from the
horizontal cylinder of circumference 2π/β with N cuts along the real axis to the unit
half-cylinder, as shown in Figure 14. Here each cut covers 2-to-1 the finite boundary
of the half-cylinder, while both ends of the cylinder cover N -to-1 each the infinite
end of the half-cylinder.

Fig. 14. The map 'mod 1.

As before, it follows that '′(z) extends to a 2πi/β-periodic function in the entire
complex plane with N cuts along the real axis, periodically repeated. The values of
'′(z) on the two sides of the cut are real and opposite in sign. We have

'(x + i0) = ±
(
i
Nβx

π
+N

)
+ 2N

πi
log β�, x →±∞, (7.20)

whence

'′(x + i0) = ∓Nβ

πi
, x →±∞. (7.21)
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It follows that the function '′(z) satisfies the integral equation

'′(z) = β

2πi

∫
R
4'′(x) coth

(
β
(x − z)

2

)
dx. (7.22)

Moreover, by comparing the asymptotics, we can integrate (7.22) to

'(z) = N + i

π

∫
R
4'′(x) log

(
2

β�
sinh

β(z− x)

2

)
dx. (7.23)

We claim that the maximizer f is given in terms of the map ' by the usual
formula

f ′ (x) = 4'(x + i0).

Indeed, from (7.23) and (7.17), we conclude that

(Xβf )
′(x) = −π

2
5'(x). (7.24)

The difference from the previously considered cases lies in the fact that to reconstruct
the values of ξls (and als) we have to integrate the multivalued differential

dS5 = 1

β
log(X)

dw

w

on the curve (7.19), as indeed proposed in [14]. Also note that the domain where
the map ' is defined is different. This leads to the new form of the Seiberg–Witten
differential.

7.2.3 Free-field representation

Again we start with N = 1 case. Let Q = eβ�. In this case we are to sum over all
partitions:

Z(a, �, β,�) =
∑

k

(−1)|k|(β�)2|k| ∏
�∈k

⎛⎝ β

2 sinh
(
β�h(�)

2

)
⎞⎠2

= exp
∞∑
n=1

(β�)2n

4n sinh2
(
β�n

2

) .
(7.25)

The free-field representation of the sum (7.25) is most simply done using the vertex
operators

�±(β, �) = exp
∑
±n>0

1

n(1−Qn)
Jn. (7.26)

Then
Z(a, �, β,�) = 〈0|�+(β, �)(β�)2L0�−(β, �)|0〉, (7.27)

and for N > 1, we would get

ZD(ξ ;p;β, �,�) = 〈p|�+(β, �)(β�)2L0eHξ �−(β, �)|p〉. (7.28)
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8 Conclusions and future directions

8.1 Future directions and related work

In this paper we extensively analyzed the partition functions of various N = 2
supersymmetric gauge theories, subject to the �-background of N = 2 supergravity.
In all cases the partition function was identified with the statistical sum of an ensemble
of random partitions with various Boltzmann weights. The grand canonical ensemble
corresponds to a fixed theta angle in the gauge theory. In the thermodynamic limit
the statistical sums are dominated by a saddle point, a master partition, from which
one can easily extract various important characteristics of the low-energy effective
gauge theory, such as the prepotential of the effective action, which is identified with
the free energy per unit volume in the dual statistical model, provided we relate the
volume to the parameters ε1, ε2 of the �-background, via

V = 1

ε1ε2
.

The particle number is clearly the instanton charge. So the gauge theory partition
function corresponds to the grand canonical ensemble, with log(�) being the chem-
ical potential. The average particle number per unit volume, the density, is easy to
determine:

ρ =
〈
k

V

〉
= ε1ε2

2NZinst(a, ε1, ε2,�)

∂

∂ log(�)
Zinst(a, ε1, ε2,�)

−→
V→∞

1

2N

∂

∂ log(�)
F inst

0 (a,�) = u2 −
∑
l

a2
l

2

(8.1)

(recall (4.5)). In the region U∞, the right-hand side of (8.1) is clearly very small; it
is of order

ρ ∼ �2N

a2(N−1)
∼ M2

We
− 8π2

g2
eff (MW ) ,

where MW is the typical W -boson mass, and geff (MW) is the effective coupling at
this scale. The dependence of the instanton density on the coupling is the typical one
in the dilute gas approximation (cf. [23, 69]). In the semiclassical region, there are
very few instantons per unit volume.

Of course, a cautious reader may wonder about the dimensionality of the instanton
density (which normally should be (mass)4). The point is that the noncommutative
regularization which we used in the calculations introduces a scale ∼ √+, which is
responsible for the dimensional transmutation we see in (8.1). Indeed, the physical
volume, occupied by k instantons sitting on top of each other, is roughly k+2. Such
instanton “foam’’ [70], or perhaps, liquid, may well be related to more complicated
phenomenological pictures, say, instanton liquid [71]. Moreover, as we go deeper
into the moduli space of vacua, the diluteness of the instanton gas also must cease
to hold. However, the analytic properties of the partition function (3.2) are powerful
enough to uniquely fix it by the instanton gas expansion in U∞.
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Note that one of the interpretations of our result is the existence of the master
field in the N = 2 gauge theories, which, however, works only for special (chiral)
observables, unlike the master field of the large N gauge theories [72]. The latter,
however, is much more elusive.

In our story, the master field is constructed as follows. First of all, the labeled par-
titions k we sum over are in one-to-one correspondence with the (noncommutative)
gauge fields, describing certain arrangements of the nearly point-like instantons, sit-
ting nearly on top of each other. The “master’’partition with the profilef corresponds
to the statistically most favorable configuration.

We extensively exploited in this paper the fact that the �-background acts as a
box, similarly, in some respects, to the AdS space for the supergravity theory. One
may wonder: Why couldn’t we use the more traditional ways of regularizing infrared
divergences of the gauge theory? In fact, the number of options is rather limited. One
may study gauge theories on compact four-manifolds. To preserve supersymmetry
one needs to turn on certain nonminimal couplings, which effectively twist the gauge
theory. However, in these approaches one cannot learn directly the properties of the
gauge theory in infinite volume, as all vacua are averaged over, and either most of
them do not contribute to the correlation functions of the chiral operators (which is
the case for simple-type manifolds), or (for manifolds with b+2 ≤ 1) the contribution
of the various vacua is related to the prepotential in a complicated fashion [73, 74].
It is out of such attempts to regulate the N = 2 theory that one naturally arrives at
the concept of the �-background.

The topic which we completely neglected in our paper is the application of our
formalism to theories with N = 1 supersymmetry. Recently, there has been a lot
of excitement related to the exact calculations of the effective superpotentials of the
theories, obtained from N = 2 theories by superpotential deformations [8, 75, 76].
It should be straightforward to apply our techniques in these setups as well. One
encouraging feature of our formalism in the case of pure N = 2 and softly broken
N = 4 theories is the striking similarity of the expression we have for the partition
functions and the matrix models calculating the effective superpotentials of the N = 1
gauge theories with an additional adjoint chiral multiplet, or with three adjoint chiral
multiplets, with specific superpotential.

The similarity is the measure—in the first case, it is the regularized Vandermonde
determinant of the infinite matrix '̂ with the eigenvalues al + �(kli − i), and in the
second case, it is the ratio of the determinants:

Det′(ad '̂)

Det(ad '̂+m)
.

The fact that the eigenvalues concentrate (for small �) around als also has a matrix
model counterpart. Namely, to get the theory with U(1)N gauge symmetry, one adds
to the U(N) theory a tree-level superpotential with extrema near a1, . . . , aN . In the
limit of vanishing superpotential, one is left essentially with the Haar measure on
matrices, together with the prescription to distribute eigenvalues near the extrema of
the phantom of the superpotential [8].
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The differences are also easy to see: on our case the matrix is infinite, but the
eigenvalues are discrete and are summed over. In the Dijkgraaf–Vafa case, the matrix
is finite, but the eigenvalues are continuous and integrated over. We have � → 0,
they have N̂ →∞. The issue is tantalizing and is under investigation [77].

0h, East is East, and West is West, and never the twain shall meet. . . .

Another issue which we didn’t touch much upon is the string theory dual of our
calculation. There are several points one may want to stress.

First of all, the summation over partitions that we encountered is very similar to
the summation over partitions one encounters in the two-dimensional U(N̂) Yang–
Mills theory, in the large N̂ limit. In particular, when working on a two-sphere, one
finds a master partition [78], and moreover, for the values of the ’t Hooft coupling
constant the profile of the master partition has facets, just like ours.

Of course, technically speaking, the two-dimensional YM theory corresponds to
the U(1) theory in our case, and the ’t Hooft coupling there corresponds to the higher
Casimir coupling τ3 in our game. But the phenomena have similar origin. Now, the
two-dimensional Yang–Mills theory has a dual closed string representation [79], and
so does our four-dimensional partition function. And again, just like 1/N̂ played the
role of the string coupling constant, � plays this role in the four-dimensional story.

In the U(1) case all this is more or less well known [36, 10] by now. However,
the full string dual of the U(N) theory is yet to be discovered (see [10] for discussion;
see also [80, 81]).

We should add that from the point of view of Gromov–Witten theorists the dual
type A topological string theory, whatever it is, must be rather simple. Most of them
should have one-dimensional target spaces. The rough correspondence between the
gauge theory and the dual GW theory states that the U(N) theory with g adjoint
hypermultiplets (which is not asymptotically free/conformal for g > 1) is dual to the
GW theory of N copies of the Riemann surface of genus g. The words “N copies’’
still do not quite have a formal meaning.

In the large N̂ description of the two-dimensional Yang–Mills theory a prominent
role was played by the formalism of free fermions [53]. Of course, the chiral fermions
of [53] are ours �, �̃. (Somehow four-dimensional gauge theories do not see the
antichiral sector.)

One of the exciting problems is to better understand the nature of these chiral
fields in the string realizations of N = 2 gauge theories. The conjecture of [9] was
that they arise as the modes of the chiral two-form propagating on the worldvolume
of the NS5/M5 brane, trapped by the �-background. In the bosonized form, these can
also be mapped to the truncated version of the Kodaira–Spencer field, propagating
along the Seiberg–Witten curve. We are planning to investigate these issues in the
future.

Yet another exciting area of research revolving around our partition functions is
their two-dimensional (anyonic) interpretation in the ν �= 1 case. The connections
to the Jack polynomials, which are the eigenfunctions of the Sutherland many-body
Hamiltonians with ν(ν−1) coupling constant, suggest strongly some relations to the
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physics of the quantum Hall effect, and also to the theory of analytic maps [82]. The
latter also seem to be responsible for the higher Casimir deformation (4.73).

The Seiberg–Witten curve itself seems to arise as some quasiclassical object in
the theory of some many-body (N̂ →∞) system. Indeed, the space z,w where it is
embedded can be viewed as a one-particle phase space. The particles are basically free
for ν = 1, and have some phantom interaction for ν �= 0, 1, which only reveals itself
in the generalized Pauli exclusion principle (Haldane exclusion principle). They
fill some sort of Fermi sea, bounded by the Seiberg–Witten curve. Perhaps, the
relation to random dimers [47] will also prove useful in understanding these issues.
Another possibly useful feature of our energy functional is its seimple relation to the
two-dimensional local theory of a free boson. Indeed, the bilocal part of (4.36) is
nothing but the induced boundary action, with ρ(x) being the boundary condition
in the theory of the free boson, living on the upper half-plane. Of course, when the
subleading in � corrections are taken into account the theory will cease to be free. It
is also interesting to point out that our extremizing configuration f (x) corresponds
to some sort of multiple D-brane boundary state, with N D-branes located at x ∼ al ,
l = 1, . . . , N .

It is of course very tempting to develop these pictures further, connect instanton
gas/liquid/crystal to the (Luttinger?) liquid of the dual anyons, and learn more about
the properties of five-branes from all this. Perhaps the results of [83, 84] will prove
useful along this route.

Finally, the theory with adjoint matter should be closely related to conformal field
theory on an elliptic curve. We have uncovered some of the relations in the partition
function being interpreted as a trace in the representation of a current algebra. We
should also note that the elliptic Calogero–Moser system, whose spectral curve, as
we showed above, encodes the quasiclassical/thermodynamic limit of the partition
function, allows a nonstationary generalization, related to the KZB equations, which,
conjecturally, governs our full partition function [85, 86, 87, 88, 89, 90].

8.2 Summary of the results

In this paper we have advanced in the study of the vacuum structure of gauge theories.
We considered N = 2 supersymmetric gauge theories in four dimensions, and have
subjected them to the so-called �-background. In this background one can calculate
exactly the partition function in any instanton sector. The result has the form of
a statistical sum of the ensemble of random partitions. The limit where the �-
background approaches flat space is the most interesting for the applications, as there
one is supposed to learn about the properties of the supersymmetric gauge theory in flat
space-time. In terms of random partitions this is a thermodynamic, or quasiclassical
limit. The flat space limit of the free energy coincides with the prepotential of the
low-energy effective theory.

We have evaluated the sum over instantons by applying the saddle point method,
and thus have succeeded (to our knowledge, for the first time in the literature) in
producing the all-instanton direct calculation of the prepotential.
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In all cases considered: pure gauge theory, theory with matter hypermultiplets,
five-dimensional theory compactified on a circle—the saddle point corresponds to
some master partition, which is the analogue of the eigenvalue distribution in the
theory of random matrices. And in all cases one can encode the solution in some
family of algebraic curves, endowed with a meromorphic (sometimes multivalued)
differential, whose periods contain the information about the prepotential.

We have also found interesting representation of the full partition function (which,
in addition to the prepotential, also contains certain higher gravitational couplings Fg

of the gauge theory) as a partition function of the theory of chiral fermions/bosons on
a sphere (for the pure gauge theory), on a torus (for the theory with adjoint matter),
or some q-analogue thereof (for the five-dimensional theory).

We have also uncovered numerous puzzling relations between various seemingly
unrelated topics which leave a lot of work for the future.

Disclaimer

Opinions presented in this paper do not necessarily reflect the authors’ point of view.
There are about ∼ 2πi/ misprints in this paper. We are, however, confident that most
of them cancel each other.

A The function γ�(x; 	)

A.0.1 Free case: ε2 = −ε1 = �

The function γ�(x;�) is characterized by the following properties:

1. Asymptotic expansion for � → 0:

γ�(x;�) =
∞∑
g=0

�2g−2γg(x). (A.1)

2. Finite-difference equation:

γ�(x + �;�)+ γ�(x − �;�)− 2γ�(x;�) = log
( x

�

)
. (A.2)

The conditions (A.1)–(A.2) specify γ�(x;�) uniquely up to a linear function in
x. All the terms γg(x), g > 0 are uniquely determined:

γ0(x) = 1

2
x2 log

( x

�

)
− 3

4
x2,

γ1(x) = − 1

12
log

( x

�

)
,

γ2(x) = − 1

240

1

x2
,

...

γg(x) = B2g

2g(2g − 2)

1

x2g−2
, g > 1,

(A.3)
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where the Bn are the usual Bernoulli numbers:

t

et − 1
=

∞∑
n=0

Bn

n! t
n.

The function γ�(x;�) is closely related to the gamma function:

γ�

(
x + �

2
;�
)
− γ�

(
x − �

2
;�
)
= log

(
1√
2π

�
x
� �

(
1

2
+ x

�

))
. (A.4)

Another definition of the function γ�(x;�) is through zeta-regularization:

γ�(x;�) = d

ds

∣∣∣
s=0

�s

�(s)

∫ ∞

0

dt

t
ts

e−tx

(e�t − 1)(e−�t − 1)
. (A.5)

Remark. Note that

γ�(0;�) = − 1

12
.

The function γ�(x;�) for � = 1 arises as the free energy of the c = 1 string
with � being the string coupling and x the cosmological constant. It is also related
to the free energy of the topological type A string on the conifold (see also below).
The adepts of the applications of matrix models in SUSY gauge theories [8] praise
yet another property of γ�(x;�):

log(VolU(N)) = γ1(N; 1). (A.6)

A.0.2 Anyon case: General ε1, ε2

γε1,ε2(x;�) = d

ds

∣∣∣∣
s=0

�s

�(s)

∫ ∞

0

dt

t
ts

e−tx

(eε1t − 1)(eε2t − 1)
. (A.7)

In the case ε2 = −ε1 = �, this reduces to γ�(x;�):

γ�(x;�) = γ−�,�(x;�).

The main difference equation:

γε1,ε2(x;�)+ γε1,ε2(x − ε1 − ε2;�)− γε1,ε2(x − ε1;�)− γε1,ε2(x − ε2;�)

= log

(
�

x

)
. (A.8)

Reflection:

γ−ε1,ε2(x;�) = −γε1,ε2(x − ε1;�)− 2x + ε1

2ε2
log(�). (A.9)

For ν ∈ Q, the function γε1,ε2(x;�) can be related to γ�(x;�). Suppose
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ε1 = − �
p
, ε2 = �

q
, p, q ∈ N. (A.10)

Then

γε1,ε2(x;�) =
p−1∑
i=0

q−1∑
j=0

γ�

(
x + �

pq
(pj − qi);�

)
. (A.11)

A.0.3 Trigonometric analogue of γε1,ε2(x; 	)

The natural generalization of (A.7) is the function

γε1,ε2(x|β;�) = 1

2ε1ε2

(
−β

6

(
x + 1

2
(ε1 + ε2)

)3

+ x2 log(β�)

)

+
∞∑
n=1

1

n

e−βnx

(eβnε1 − 1)(eβnε2 − 1)
,

(A.12)

which obeys the main Q-difference equation:

γε1,ε2(x|β;�)+ γε1,ε2(x − ε1 − ε2|β;�)

− γε1,ε2(x − ε1|β;�)− γε1,ε2(x − ε2|β;�)

= − log

(
2

β�
sinh

βx

2

)
.

(A.13)

We shall only use in this paper the special case ε2 = −ε1 = �, where we get the
function

γ�(x;β;�) = βx3

12�2
− x2

2�2
log(β�− βx

24
+

∞∑
n=1

1

n

e−βnx

(e−βn� − 1)(eβn� − 1)

=
∞∑
g=0

γg(x;β)�2g−2,

γ0(x;β) = −x2

2
log β�+ β

x3

12
− 1

β2
Li3(e

−βx), (A.14)

γ1(x;β) = − 1

12
log

(
2 sinh

βx

2

)
,

γg(x;β) = B2gβ
2g−2

2g(2g − 2)
Li3−2g(e

−βx).

Note that up to terms of instanton degree zero the function γ�(x|β;�) coincides with
the all-genus free energy of the type A topological string on the resolved conifold,
with βx being the Kähler class of the P1, and β� the string coupling [91]. Another
Gromov–Witten interpretation is via the local F1, with the Kähler class of the base P1

being log(β�) (considered to be big), and the fiber P1 with the Kähler class βx [6].
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Fig. 15. Box, hook, . . . .

B Partitions, charges, colors

Partition: A nonincreasing sequence of nonnegative integers, stabilizing at some
point at zero:

k : k1 ≥ k2 ≥ · · · ≥ kn > 0 = kn+1 = kn+2 = · · · .
n ≡ 
(k) is called the length of k, |k| = ∑

i ki , is called the size of the partition,
and the ki are called the parts of the partition. The parts of a partition are labeled by
i, j = 1, 2, . . . . For the partition k,

� = (i, j) ∈ k ⇐⇒ 1 ≤ i, 1 ≤ j ≤ ki .

Dual partition: k̃,
(i, j) ∈ k̃ ⇐⇒ (j, i) ∈ k,

i.e., k̃i = #{j |i ≤ kj }.
Hook-length hi,j = h(�) of the (i, j) box in the Young diagram of the partition k:

hi,j = k̃j + ki − i − j + 1.

Colored partition: k, the N -tuple of partitions:

k = (k1, . . . ,kN);
individual partitions are denoted as

kl = (kl,1 ≥ kl,2 ≥ · · · ≥ kl,nl > kl,nl+1 = 0 = · · · ),
|k| =

∑
l,i

kli .

Charged partition: (p;k), the set of nonincreasing integers κi = ki + p, where

k = (k1 ≥ k2 ≥ · · · )
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is a partition and p ∈ Z. The limit κ∞ ≡ p is called the charge.
Blending of colored partitions: Given a vector p = (p1, . . . , pN), with∑

l

pl = 0

and an N -tuple of partitions k, we define the blended partition K as follows:

{Ki − i | i ∈ N} = {N(kli − i + pl)+ l − 1 | l = 1, . . . , N, i ∈ N}. (B.1)

B.0.4 Power-sums

To the charged partition (p;k) it is useful to associate the following shifted-symmetric
generating function, analytic in t , with a single pole at t = 0, defined for 4t > 0 by
the series

pp;k(t) =
∞∑
i=1

et(p+ki−i+
1
2 ). (B.2)

The expansion of pp;k(t) near t = 0 contains information about the charge, the size
of k, etc.:

pp;k(t) = 1

t
+ p + t

(
p2

2
+ |k| − 1

24

)
+ · · · . (B.3)

Given N partitions kl , l = 1, . . . , N , and the charges pl ∈ Z, we associate to
them the generating function

pp;k(t) =
∑
l,i

e
t
(
N(pl+kl,i−i)+l− 1

2

)
=
∑
l

eNtρlppl,kl
(Nt), (B.4)

which corresponds to the blended partition K of charge

p =
∑
l

pl =
∑
l

p̃l (B.5)

and size

|K| =
∑
I

KI = N
∑
l

(
1

2
p̃2
l + |kl |

)
− 1

2
p2 − N2 − 1

24
, (B.6)

where
p̃l = pl + ρl.

The function fp;k(x) is related to pp;k(t) by the integral transformation

f
′′
p;k(x) = −

1

πi

∫
R

dte−itx sin
t�
2

pp;k(it�). (B.7)

The resolvent (4.20) is related to pp;k(t) by another integral transformation:

R(z|ε1, ε2) = − 1

πi

∫ ∞

0
dte−tz sinh

t�
2

pp;k(t�). (B.8)
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C Theta-function

For completeness, we list here the relevant formulae for the odd theta function, which
we use in (6.32):

θ11(� ; τ) =
∑
n∈Z

eπiτ(n+
1
2 )

2+2πi(�+ 1
2 )(n+ 1

2 ),

θ11(� + 1; τ) = −θ11(� ; τ),
θ11(� + τ ; τ) = −e−πi(2�+τ)θ11(� ; τ).

(C.1)

From these formulae one easily concludes that the Lax operator L(�) (6.32) is the
meromorphic Higgs operator in the rank N vector bundle over the elliptic curve Eτ ,
twisted by the one-dimensional affine bundle, which makes its spectrum to live in the
affine bundle as well.

In (6.12), we use the Dedekind eta-function

η(q) = q
1
24

∞∏
n=1

(1− qn), q = e2πiτ . (C.2)
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Summary. We propose a new duality involving topological strings in the limit of the large
string coupling constant. The dual is described in terms of a classical statistical mechanical
model of crystal melting, where the temperature is the inverse of the string coupling constant.
The crystal is a discretization of the toric base of the Calabi–Yau with lattice length gs . As
a strong piece of evidence for this duality we recover the topological vertex in terms of the
statistical mechanical probability distribution for crystal melting. We also propose a more
general duality involving the dimer problem on periodic lattices and topological A-model
string on arbitrary local toric threefolds. The (p, q) 5-brane web, dual to Calabi–Yau, gets
identified with the transition regions of rigid dimer configurations.

Subject Classifications: 81T45, 81T30, 14J32, 82B23

1 Introduction

Topological strings on Calabi–Yau threefolds have been a fascinating class of string
theories, which have led to insights into the dynamics of superstrings and supersym-
metric gauge theories. They have also been shown to be equivalent in some cases to
noncritical bosonic strings. In this paper we ask how the topological A-model which
“counts’’ holomorphic curves inside the Calabi–Yau behaves in the limit of large val-
ues of the string coupling constant gs 2 1. We propose a dual description which is
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given in terms of a discrete statistical mechanical model of a three-dimensional real
crystal with boundaries, where the crystal is located in the toric base of the Calabi–Yau
threefold, with the “atoms’’ separated by a distance of gs . Moreover, the temperature
T in the statistical mechanical model corresponds to 1/gs . Heating up the crystal
leads to melting of it. In the limit of large temperature, or small gs , the Calabi–Yau
geometry emerges from the geometry of the molten crystal!

In the first part of this paper we focus on the simplest Calabi–Yau, namely, C3.
Even here there are a lot of nontrivial questions to answer. In particular, the compu-
tation of topological string amplitudes when we put D-branes in this background is
nontrivial and leads to the notion of a topological vertex [1, 2] (see also the recent
paper [3]). Moreover, using the topological vertex one can compute an all order
amplitude for topological strings on arbitrary local Calabi–Yau manifolds. This is an
interesting class to study, as it leads to nontrivial predictions for instanton corrections
to gauge and gravitational couplings of a large class of N = 2 supersymmetric gauge
theories in four dimensions via geometric engineering [4] (for recent progress in this
direction see [5, 6]). It is also the same class which is equivalent (in some limits)
to noncritical bosonic string theories. In this paper we will connect the topological
vertex to the partition function of a melting corner with fixed asymptotic boundary
conditions. Furthermore we find an intriguing link between dimer statistical mechan-
ical models and noncompact toric Calabi–Yau threefolds. In particular, the dimer
problems in two dimensions naturally get related to the study of configurations of the
(p, q) 5-brane web, which is dual to noncompact toric Calabi–Yau threefolds.

The organization of this paper is as follows: In Section 2 we will motivate and
state the conjecture. In Section 3 we check aspects of this conjecture and derive the
topological vertex from the statistical mechanical model. In Section 4 we discuss
dimer problems and its relation to topological strings on Calabi–Yau.

Our proposal immediately raises many questions, which are being presently in-
vestigated. Many of them will be pointed out in the paper. One of the most interesting
physical questions involves the superstring intepretation of the discretization of space.
On the mathematical side, we expect that our statistical mechanical model should have
a deep meaning in terms of the geometry of the target space based on the interpretation
of its configurations as torus fixed points in the Hilbert scheme of curves of the target
threefold. Also, our 3d model naturally extends the random 2d partition models that
arise in N = 2 supersymmetric gauge theory [5] and Gromov-Witten theory of target
curves [7]. For some mathematical aspects of the topological vertex, see [8, 9, 3].

2 The conjecture

2.1 Hodge integrals and 3d partitions

Consider topological A-model strings on a Calabi–Yau threefold. For simplicity, let
us consider the limit when the Kähler class of the Calabi–Yau is rescaled by a factor
that goes to infinity. As explained in [10], in this limit the genus g amplitude is
given by
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χ

2

∫
Mg

c3
g−1(H)

where χ is the Euler characteristic of the Calabi–Yau threefold, Mg is the moduli
space of Riemann surfaces, H is the Hodge bundle over Mg , and cg−1 denotes its
(g − 1)st Chern class. For genus 0 and 1, there is also some Kähler dependence
(involving the volume and the second Chern class of the tangent bundle), which we
subtract out to get a finite answer. Consider

Z = exp

[
χ

2

∑
g

g
2g−2
s

∫
Mg

c3
g−1(H)

]
.

It has been argued physically [11] and derived mathematically [12] that

Z = f χ/2,

where

f =
∏
n

1

(1− qn)n

and
q = e−gs .

By the classical result of MacMahon, the function f is the generating function for 3d
partitions, that is,

f =
∑

3d partitions

q# boxes,

where, by definition, a 3d partition is a 3d generalization of 2d Young diagrams and
is an object of the kind seen on the left in Figure 3. This fact was pointed out to one
of us as a curiosity by R. Dijkgraaf shortly after [11] appeared.

2.2 Melting of a crystal and Calabi–Yau threefold

It is natural to ask whether there is a deeper reason for this correspondence. What
could three-dimensional partitions have to do with the A-model topological string on
a Calabi–Yau threefold? The hint comes from the fact that we are considering the
limit of large Kähler class and in this limit the Calabi–Yau looks locally like C3s glued
together. It is then natural to view this torically, as we often do in the topological
string, in the context of mirror symmetry, and write the Kähler form as∑

i=1,2,3

dzi ∧ dzi ∼
∑

i=1,2,3

d|zi |2 ∧ dθi,

where the |zi |2 span the base of a toric fibration of C3. Note that |zi |2 = xi parame-
terize the positive octant O+ ⊂ R3. If we assign Euler characteristic “2’’ to each C3

patch, the topological string amplitudes on it get related to the MacMahon function.
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Then it is natural to think that the octant is related to three-dimensional partitions,
in which the boxes are located at Z3 lattice points inside O+. Somehow the points
of the Calabi–Yau, in this case C3, become related to integral lattice points on the
toric base.

The picture we propose is the following. We identify the highly quantum Calabi–
Yau with the frozen crystal, that is, the crystal in which all atoms (indexed by lattice
points in O+) are in place. We view the excitations as removing lattice points as in
Figure 1. The rule is that we can remove lattice points only if there are no pairs of
atoms on opposite sides. This gives the same rule as 3d partitions. Note that if one
holds the page upside-down, one sees a 3d partition in Figure 1, namely, the partition
from Figure 3.

Fig. 1. A melting crystal corner.

Removing each atom contributes the factor q = e−µ/T to the Boltzmann weight
of the configuration, where µ is the chemical potential (the energy of the removal of
an atom) and T is the temperature. We choose units in which µ = 1. To connect
this model to the topological string on C3 we identify gs = 1/T . In particular, in
the gs → 0, that is, the q → 1 limit the crystal begins to melt away. Rescaled in all
direction by a factor of 1/T = gs , the crystal approaches a smooth limit shape which
has been studied from various viewpoints [15, 16]. This is plotted in Figure 2.

The analytic form of this limit shape is encoded in terms of a complex Riemann
surface, which in this case is given by

F(u, v) = e−u + e−v + 1 = 0 (2.1)

defined as a hypersurface in C2 with a natural 2-form du∧dv, where u, v are periodic
variables with period 2πi. In coordinates e−u and e−v this is simply a straight line
in C2. Consider the following function of the variables U = Re(u) and V = Re(v)

R(U, V ) = 1

4π2

∫∫ 2π

0
log |F(U + iθ, V + iφ)|dθdφ. (2.2)
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Fig. 2. The limit shape of a 3d partition.

This function is known as the Ronkin function of F . In terms of the Ronkin function,
the limit shape can be parameterized as follows:

(x1, x2, x3) = (U + R,V + R,R), R = R(U, V ).

Note that
U = x1 − x3, V = x2 − x3.

The projection of the curved part of the limit shape onto the (U, V )-plane is the region
bounded by the curves

±e−U ± e−V + 1 = 0,

excluding the case when both signs are positive. This region is the amoeba of the
curve (2.1), which, by definition, is its image under the map (u, v) 
→ (U, V ). In
different coordinates, this is the planar region actually seen in Figure 2.

2.3 Mirror symmetry and the limit shape

Consider topological strings on C3. One can apply mirror symmetry in this context
by dualizing the three phases of the complex parameters according to T-duality. This
has been done in [13]. One introduces dual variables Yi which are periodic, with
period 2πi and are related to the zi by

|zi |2 = Re(Yi).
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(This is quantum mechanically modified by addition of an i-independent large positive
constant to the right-hand side.) The imaginary part of the Yi is “invisible’’ to the
original geometry, just as is the phase of the zi to the Yi variables. They are T-dual
circles. But we can compare the data between C3 and the mirror on the base of the
toric variety which is visible to both. In mirror symmetry the Kähler form of C3 gets
mapped to the holomorphic three-form which in this case is given by

� =
3∏

i=1

dYi exp[W ],

where
W =

∑
e−Yi .

Note that shifting Yi → Yi + r shifts W → e−rW . The analog of rescaling in the
mirror is changing the scale of W . Let us fix the scale by requiring W = 1; this will
turn out to be the mirror statement to rescaling by gs to get a limit shape. In fact, we
will see below that the limit shape corresponds to the toric projection of the complex
surface in the mirror given simply by W(Yi) = 1. Let us define

u = Y1 − Y3, v = Y2 − Y3.

Then
W = e−Y3F(u, v),

where
F(u, v) = e−u + e−v + 1;

we will identify F(u, v) with the Riemann surface of the crystal melting problem. In
this context also according to the mirror map the points in the u, v space get mapped
to the points on the toric base (i.e., O+) satisfying

x1 − x3 = Re(u) = U,

x2 − x3 = Re(v) = V.

We now wish to understand the interpretation of the limit shape from the viewpoint
of the topological string. We propose that the boundary of the molten crystal which
is a 2-cycle on the octant should be viewed as a special Lagrangian cycle of the
A-model with one hidden circle in the fiber. Similarly, in the B-model mirror it
should be viewed as the B-model holomorphic surface, which in the case at hand gets
identified with W = 1. (Recall that in the LG models B-branes can be identified with
W = const. [14].) On this surface we have

e−Y3F(u, v) = 1.

If we take the absolute value of this equation, to find the projection onto the base,
we find

e−Re(Y3)|F(u, v)| = 1.
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If we take the logarithm of this relation, we have

−Re(Y3)+ log |e−u + e−v + 1| = 0 → x3 = log |e−u + e−v + 1|.
However, we have a fuzziness in mapping this to the toric base: u = Re(u) + iθ

and v = Re(v)+ iφ and so a given value for Re(u) and Re(v) does not give a fixed
value of x3. That depends in addition on the angles θ, φ of the mirror torus which are
invisible to the A-model toric base. It is natural to take the average values as defining
the projection to the base, i.e.,

x3 = 1

4π2

∫
dθdφ log |F(U + iθ, V + iφ)|,

which is exactly the expression for the limit shape. We thus find some further evidence
that the statistical mechanical problem of crystal melting is rather deeply related to the
topological string and mirror symmetry on Calabi–Yau. Moreover, we can identify
the points of the crystal with the discretization of points of the base of the toric
Calabi–Yau.

To test this conjecture further we will have to first broaden the dictionary between
the two sides. In particular, we ask what is the interpretation of the topological vertex
for the statistical mechanical problem of crystal melting? For the topological vertex
we fix a 2d partition on each of the three legs of the toric base. There is only one
natural interpretation of what this could mean in the crystal melting problem: This
could be the partition function of the melting crystal with three fixed asymptotic
boundary shapes for the molten crystal, dictated by the corresponding partition. We
will show that this is indeed the case in the next section.

3 Melting corner and the topological vertex

3.1 Transfer matrix approach

The grand canonical ensemble of 3d partitions weighted with q# boxes is the simplest
model of a melting crystal near its corner. We review the transfer matrix approach
to this model following [16]. This approach can be easily generalized to allow for
certain inhomogeneity and periodicity, which is useful in the context of the more
general models discussed in Section 4.

We start by cutting the 3d partition into diagonal slices by planes x2 − x1 = t ;
see Figure 3. This operation makes a 3d partition a sequence {µ(t)} of ordinary
partitions indexed by an integer variable t . Conversely, given a sequence {µ(t)}, it
can be assembled into a 3d partition provided it satisfies the following interlacing
condition. We say that two partitions µ and ν interlace, and write µ 7 ν if

µ1 ≥ ν1 ≥ µ2 ≥ ν2 ≥ · · · .
It is easy to see that a sequence of slices {µ(t)} of a 3d partition satisfies



604 Andrei Okounkov, Nikolai Reshetikhin, and Cumrun Vafa

Fig. 3. A 3d partition and its diagonal slices.

µ(t) ≺ µ(t + 1), t < 0,

and the reverse relation for t ≥ 0.
There is a well-known map from partitions to states in the NS sector of the

complex fermionic oscillator. Let ai and bi be the areas of pieces one gets by slicing
a 2d partition first diagonally and then horizontally (resp. vertically) above and the
below the diagonal, respectively. Formally,

ai = µi − i + 1

2
, bi = µt

i − i + 1

2
,

where i ranges from 1 to the number of squares on the diagonal of µ. In mathe-
matical literature, these coordinates on partitions are known as (modified) Frobenius
coordinates. The fermionic state associated to µ is

|µ〉 =
d∏

j=1

ψ∗aiψbi |0〉.

Note that
qL0 |µ〉 = q# boxes|µ〉 = q |µ||µ〉,

where we denote the total number of boxes of µ by |µ|. We can write a bosonic
representation of this state by the standard bosonization procedure.

Consider the operators

�±(z) = exp

⎛⎝∑
±n>0

znJn

n

⎞⎠ ,

where the Jn denote the modes of the fermionic current ψ∗ψ . The operators �±(z)
can be identified with annihilation and creation parts of the bosonic vertex operator
eφ(z). The relevance of these operators for our problem lies in the following formulas:
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�−(1)|µ〉 =
∑
ν7µ

|ν〉,

�+(1)|µ〉 =
∑
ν≺µ

|ν〉.
(3.1)

To illustrate their power we will now derive, as in [16], the MacMahon generating
function for 3d partitions

Z =
∑

3d partitions π

q# of boxes.

By the identification (3.1) of the transfer matrix, we have

Z =
〈( ∞∏

t=0

qL0�+(1)
)
qL0

( −1∏
t=−∞

�−(1)qL0

)〉
. (3.2)

Now we commute the operators qL0 to the outside, splitting the middle one in half.
This yields

Z =
〈∏
n>0

�+(qn− 1
2 )
∏
n>0

�−(q−n−
1
2 )

〉
. (3.3)

Now we commute the creation operators through annihilation operators, using the
commutation relation

�+(z)�−(z′) = (1− z/z′)−1�−(z′)�+(z).

The product of resulting factors gives directly the MacMahon function

Z =
∏
n>0

(1− qn)−n = f.

Same ideas can be used to get more refined results, such as, for example, the
correlation functions, see [16]. We will generalize below the above computation to
the case when 3d partitions have certain asymptotic configuration is in the direction of
the three axes. Before doing this, we will review some relevant theory of symmetric
functions.

3.2 Skew Schur functions

Skew Schur functions sλ/µ(x1, x2, . . . ) are certain symmetric polynomials in the
variables xi indexed by a pair of partitions µ and λ such that µ ⊂ λ, see [17]. Their
relevance for us lies in the well-known fact (see, e.g., [18]) that∏

i

�−(xi)|µ〉 =
∑
λ⊃µ

sλ/µ(x)|λ〉. (3.4)
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When µ = ∅, this specializes to the usual Schur functions. The Jacobi–Trudi deter-
minantal formula continues to hold for skew Schur functions:

sλ/µ = det(hλi−µj+j−i ). (3.5)

Herehk is the complete homogeneous function of degree k—the sum of all monomials
of degree k. They can be defined by the generating series

∑
n≥0

hnt
n =

∏
i

(1− txi)
−1 = exp

(∑
n>0

tn

n

∑
i

xni

)
. (3.6)

The formula (3.5) is very efficient for computing the values of skew Schur functions,
including their values at the points of the form

qν+ρ =
(
qν1−1/2, qν2−3/2, qν3−5/2, . . .

)
, (3.7)

where ν is a partition. In this case the sum over i in (3.6) becomes a geometric series
and can be summed explicitly.

There is a standard involution in the algebra of symmetric functions which acts by

sλ 
→ sλt ,

where λt denotes the transposed diagram. It continues to act on skew Schur functions
in the same manner,

sλ/µ 
→ sλt /µt .

It is straightforward to check that

sλ/µ(q
ν+ρ) = (−1)|λ|−|µ|sλt /µt (q−ν−ρ). (3.8)

Finally, the following property of skew Schur functions will be crucial in making
the connection to the formula for the topological vertex from [1]. The coefficients of
the expansion

sλ/µ =
∑
ν

cλµνsν (3.9)

of skew Schur functions in terms of ordinary Schur functions are precisely the tensor
product multiplicities, also known as the Littlewood-Richardson coefficients.

3.3 Topological vertex and 3d partitions

Topological vertex in terms of Schur functions

Our goal now is to recast the topological vertex [1] in terms of Schur functions.
The basic ingredient of the topological vertex involves the expectation values of the
U(∞) Chern–Simons Hopf link invariant Wµλ = Wλµ in representations µ and λ.
The expression of the Hopf link invariant Wµλ in terms of the Schur functions is the
following:
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Wµλ = Wµsλ(q
µ+ρ), (3.10)

where
Wµ = qκ(µ)/2sµt (qρ). (3.11)

Here

κ(λ) =
∑
i

[(
λi − i + 1

2

)2 −
(
−i + 1

2

)2
]
= 2

∑
�=(i,j)∈λ

(j − i) (3.12)

is the unique up to scalar quadratic Casimir such that

κ(∅) = κ(�) = 0.

Using (3.9) it is straightforward to check that the topological vertex C(λ,µ, ν) in the
standard framing has the following expression in terms of the skew Schur functions:

C(λ,µ, ν) = qκ(λ)/2+κ(ν)/2sνt (q
ρ)
∑
η

sλt /η(q
ν+ρ)sµ/η(qνt+ρ). (3.13)

The lattice length

To relate the crystal melting problem to the topological vertex, we first have to note
that the topological vertex refers to computations in the A-model corresponding to
placing Lagrangian branes on each leg of C3, assembled into representations ofU(∞)

and identified with partitions. If we place the brane at a fixed position and put it in
a representation µ, the effect of moving the brane from a position l to the position
l + k (in string units) affects the amplitude by multiplication by

exp(−k|µ|).
Now consider the lattice model, where we fix the asymptotics at a distance L 2 1
to be fixed to be a fixed partition µ. Then, if we change L→ L+K , the amplitude
gets weighted by qK|µ|. Since we have already identified q = e−gs , comparing these
two expressions, we immediately deduce that

k = Kgs.

In other words, the distance in the lattice computation times gs is the distance as
measured in string units. This is satisfactory as it suggests that as gs → 0 the lattice
spacing in string units goes to zero and the space becomes continuous.

In defining the topological vertex one gets rid of the propagator factors above
(which will show up in the gluing rules). Similarly, in the lattice model when we
fix the asymptotic boundary condition to be given by fixed 2d partitions we should
multiply the amplitudes by q−L|µ| for each fixed asymptote at lattice position L.

Actually this is not precisely right: we should rather counterweight it with q−(L+ 1
2 )|µ|.

To see this note that if we glue two topological vertices with lattice points L1 and L2
along the joining edge, the number of points along the glued edge is L1 + L2 + 1.
Putting the 1

2 in the above formula gives a symmetric treatment of this issue in the
context of gluing.
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Framing

The topological vertex also comes equipped with a framing [1] for each edge, which
we now recall. Toric Calabi–Yau’s come with a canonical direction in the toric base.
In the case of C3, it is the diagonal line x1 = x2 = x3 in O+. One typically projects
vectors on this toric base along this direction, to a two-dimensional plane (the U,V

plane in the context we have discussed). At each vertex there are integral projected
2d vectors along the axes which sum up to zero. The topological vertex framing is
equivalent to picking a 2d projected vector on each axis whose cross product with the
integral vector along the axis is +1 (with a suitable sense of orientation). If vi is a
framing vector for the ith axis, and ei denotes the integral vector along the ith axis,
then the most general framing is obtained by

vi → vi + niei,

where ni is an integer. We now interpret this choice in our statistical mechanical
model: In describing the asymptotes of the 3d partition we have to choose a slicing
along each axis. We use the framing vector, together with the diagonal direction
x1 = x2 = x3, to define a slicing 2-plane for that edge. The standard framing
corresponds to choosing the framing vector in cyclic order: On the x1-axis, we choose
x3, on the x3-axis we choose x2 and on the x2-axis we choose x1. This together with
the diagonal line determines a slicing plane on each axis. Note that all different
slicings will have the diagonal line on them. This line passes through the diagonal of
the corresponding 2d partition.

Before doing any detailed comparison with the statistical mechanical model with
fixed asymptotes we can check whether framing dependence of the topological vertex
can be understood. This is indeed the case. Suppose we compute the partition function
with fixed 2d asymptotes and with a given framing (i.e., slicing). Suppose we shift
the framing by ni . This will still cut the asymptotic diagram along the same 2d
partition. Now, however, the total number of boxes of the 3d partition has changed.
The diagonal points of the partition have not moved as they are on the slicing plane
for each framing. The farther a point is from the diagonal the more it has moved.
Indeed the net number of points added to the 3d partition is given by

ni
∑
k,l∈µ

(k − l) = niκ(µ).

Thus the statistical mechanical model will have the extra Boltzmann weight qniκ(µ).
This is precisely the framing dependence of the vertex. Encouraged by this observa-
tion we now turn to computing the topological vertex in the standard framing from
the crystal point of view.

3.4 The perpendicular partition function

Definition

Now our goal is to find an exact match between the formula (3.13) and the partition
function P(λ,µ, ν) for 3d partitions whose asymptotics in the direction of the three
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coordinates axes is given by three given partitions λ, µ, and ν. This generating
function, which we call the perpendicular partition function, will be defined and
computed presently.

Consider three-dimensional partitions π inside the box

[0, N1] × [0, N2] × [0, N3].
Let the boundary conditions in the planes xi = Ni be given by three partitions λ,
µ, and ν. This means that, for example, the facet of π in the plane x1 = N1 is the
diagram of the partition λ oriented so that λ1 is its length in the x2 direction. The other
two boundary partitions are defined in the cyclically symmetric way. See Figure 4,
in which λ = (3, 2), µ = (3, 1) and ν = (3, 1, 1).

Fig. 4. A 3d partition ending on three given 2d partitions.

Let PN1,N2,N3(λ, µ, ν) be the partition function in which every π is weighted by
qvol(π). It is obvious that the limit

P(λ,µ, ν) = lim
N1,N2,N3→∞

q−N1|λ|−N2|µ|−N3|ν|PN1,N2,N3(λ, µ, ν) (3.14)

exists as a formal power series in q. What should the relation of this to the topological
vertex be? From what we have said before this should be the topological vertex itself
up to framing factors. Let us also fix the framing factor, to compare it to the canonical
framing. First of all, we need to multiply P by

q
−1
2 (|λ|+|µ|+|ν|).

This is related to our discussion of the gluing algorithm (of shifting Ni → Ni + 1
2 )

and splitting the point of gluing between the two vertices. Second, this perpendicular
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slicing is not the same as canonical framing. We need to rotate the perpendicular
slicing to become the canonical framing. This involves the rotation of the partition
along its first column by one unit and the sense of the rotation is to increase the number
of points. For each representation, this gives

1

2

∑
i

λi(λi − 1) = 1

2
(‖λ‖2 − |λ|)

extra boxes which we have to subtract off and gives the additional weight. Here

‖λ‖2 =
∑

λ2
i .

Combining with the previous factor, we get a net factor of

q
1
2 (||λ||2+||µ||2+||ν||2).

Moreover, we should normalize as usual by dividing by the partition function with
trivial asymptotic partition, which is the MacMahon function. We thus expect∏

n

(1− qn)nq
1
2 (||λ||2+||µ||2+||ν||2)P (λ, µ, ν) = C(λ,µ, ν).

We will see below that this is true up to gs →−gs and an overall factor that does not
affect the gluing properties of the vertex (as they come in pairs) and it can be viewed
as a gauge choice for the topological vertex.

Transfer matrix formula

Recall that in the transfer matrix setup, one slices the partition diagonally. Compared
with the perpendicular cutting, the diagonal cutting adds extra boxes to the partition
and, as a result, it increases its volume by (

λ
2 )+ (

µt

2 ), where, by definition,(
λ

2

)
=
∑
i

(
λi

2

)
. (3.15)

Also, for the transfer matrix method it is convenient to let N3 = ∞ from the very
beginning, that is, to consider

PN1,N2(λ, µ, ν) = lim
N3→∞

q−N3|ν|PN1,N2,N3(λ, µ, ν). (3.16)

The partition function PN1,N2(λ, µ, ν) counts 3d partitions π with given boundary
conditions on the planes x1,2 = N1,2 inside the container which is a semi-infinite
cylinder with base

[0, N1] × [0, N2] \ ν;
see Figure 5. In other words, PN1,N2(λ, µ, ν) counts skew 3d partitions in the sense
of [16].
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Fig. 5. The container for skew 3d partitions.

The main observation about skew 3d partitions is that their diagonal slices interlace
in the pattern dictated by the shape ν. This gives the following transfer matrix formula
for (3.16), which is a direct generalization of (3.2):

PN1,N2(λ, µ, ν) = q−(
λ
2)−(µ

t

2 )

×
〈
λt

∣∣∣∣∣∣∣
⎛⎜⎝ ∏

N1−1
terms

qL0�±(1)

⎞⎟⎠ qL0

⎛⎜⎝ ∏
N2−1
terms

�±(1)qL0

⎞⎟⎠
∣∣∣∣∣∣∣µ
〉
,

(3.17)

where the pattern of pluses and minuses in �± is dictated by the shape of ν.

Transformation of the operator formula

Now we apply to the formula (3.17) the following three transformations:

• Commute the operators qL0 to the outside, splitting the middle one in half. The
operators �±(1) will be conjugated to the operators �±(q...) in the process.

• Commute the raising operators �− to the left and the lowering operators �+ to the
right. There will be some overall, ν-dependent multiplicative factor Z(ν) from
this operation.

• Write the resulting expression as a sum over intermediate states |η〉〈η|.

The result

We obtain

P(λ,µ, ν) = Z(ν)q−(
λ
2)−(µ

t

2 )−|λ|/2−|µ|/2
∑
η

sλt /η(q
−ν−ρ)sµ/η(q−ν

t−ρ). (3.18)
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In order to determine the multiplicative factor Z(ν), we compute

P(∅,∅, ν) = P(ν,∅,∅)
using formula (3.18). We get

Z(ν) = q−(
ν
2)−|ν|/2sνt (q

−ρ)∏
n>0(1− qn)n

. (3.19)

Since
κ(µ)

2
=
(
µ

2

)
−
(
µt

2

)
, (3.20)

comparing (3.18) with (3.13), we obtain

C(λ,µ, ν; 1/q) = q
‖λt ‖+‖µt ‖+‖νt ‖

2
∏
n>0

(1− qn)nP (λ, µ, ν), (3.21)

where
‖λ‖2

2
=
∑
i

λ2
i

2
=
(
λ

2

)
+ |λ|

2
. (3.22)

This is exactly what we aimed for; see Section 3.4, up to the following immaterial
details. The difference between ‖λt‖ and ‖λ‖ is irrelevant since the gluing formula
pairs λ with λt . Also, since the string amplitudes are even functions of gs , they are
unaffected by the substitution q 
→ 1/q. These differences can be viewed as a gauge
choice for the topological vertex.

3.5 Other generalizations

One can use the topological vertex to glue various local C3 patches and obtain the
topological A-model amplitudes. Thus it is natural to expect that there is a natural
lattice model. There is a natural lattice [26] for the crystal in this case, obtained by
viewing the Kähler form divided by gs as defining the first Chern class of a line bundle
and identifying the lattice model with holomorphic sections of this bundle. This is
nothing but geometric quantization of Calabi–Yau with the Kähler form playing the
role of symplectic structure and gs playing the role of �. The precise definition
of lattice melting problem for this class is investigated in [26]. The fact that we
have already seen the emergence of topological vertex in the lattice computation
corresponding to C3 would lead one to expect that asymptotic gluings suitably defined
should give the gluing rules of the statistical mechanical model. It is natural to expect
that this idea also works the same way in the compact case, by viewing the Calabi–Yau
as a noncommutative manifold with noncommutativity parameter being gsk, where
k is the Kähler form.

It is also natural to embed this in superstring [27], where gs will be replaced by the
graviphoton field strength. The largegs in this context translates to strong graviphoton
field strength, for which it is natural to expect discretization of spacetime. This is
exciting as it will potentially give a novel realization of the superstring target space
as a discrete lattice.
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4 Periodic dimers and toric local CY

4.1 Dimers on a periodic planar bipartite graph

Anatural generalization of the ideas discussed here is the planar dimer model, see [19]
for an introduction. Let� be a planar graph (“lattice’’) which is periodic and bipartite.
The first condition means that it is lifted from a finite graph in the torus T2 via the
standard covering map R2 → T2. The second condition means that the vertices of �
can be partitioned into two disjoint subsets (“black’’ and “white’’ vertices) such that
edges connect only white vertices to black vertices. Examples of such graphs are the
standard square or honeycomb lattices.

By definition, a dimer configuration on � is a collection of edges D = {e} such
that every vertex is incident to exactly one edge in D. Subject to suitable boundary
conditions, the partition function of the dimer model is defined by

Z =
∑
D

∏
e∈D

w(e),

where w(e) is a certain (Boltzmann) weight assigned to a given edge. For example,
one can take both weights and boundary conditions to be periodic, in which case
Z is a finite sum. One can also impose boundary conditions at infinity by saying
that the dimer configuration should coincide with a given configuration outside some
ball of large radius. The relative weight of such a configuration is a well-defined
finite product, but the sum Z itself is infinite. In order to make it convergent, one
introduces a factor of qvolume(D), defined in terms of the height function; see below.
Other boundary conditions can be given by cutting a large but finite piece out of the
graph � and considering dimers on it.

Simple dimer models, such as equal weight square or honeycomb grid dimer
models with simple boundary conditions were first considered in the physics literature
many years ago [20, 21]. Acomplete theory of the dimer model on a periodic weighted
planar bipartite graph was developed in [24, 25]. It has some distinctive new features
due to spectral curve being a general high genus algebraic curve. We will now quote
some results of [24, 25] and indicate their relevance in our setting.

4.2 Periodic configurations and spectral curve

Consider a dimer configuration D on a torus or, equivalently, a dimer configuration
in the plane that repeat, periodically, like a wallpaper pattern. There are finitely many
such configurations and they will play a special role for us, namely, they will describe
the possible facets of our CY crystal. We will now introduce a certain refined counting
of these configurations.

Given two configurations D1 and D2 on a torus T2, their union is a collection of
closed loops on T2. These loops come with a natural orientation by, for example,
going from white to black vertices along the edges of the first dimer and from black
to white vertices along the edges of the second dimer. Hence, they define an element
(by summing over all classes of the loops)



614 Andrei Okounkov, Nikolai Reshetikhin, and Cumrun Vafa

h = (h1, h2) ∈ H1(T2,Z)

of the first homology group of the torus. Fixing any configuration D0 as our reference
point, we can associate h = h(D) to any other dimer configuration and define

F(z,w) =
∑
D

(−1)Q(h)zh1wh2
∏
e∈D

w(e), (4.1)

whereQ(h) is any of the four theta-characteristics, for example, Q((h1, h2)) = h1h2.
The ambiguity in the definition of (4.1) comes from the choice of the reference dimer
D0, which means overall multiplication by a monomial in z and w, the choice of
the basis for H1(T2,Z), which means SL(2,Z) action, and the choice of the theta-
characteristic, which means flipping the signs of z and w.

The locus F(z,w) = 0 defines a curve in the toric surface corresponding to the
Newton polygon of F . It is called the spectral curve of the dimer problem for the
given set of weights. It is the spectral curve of the Kasteleyn operator on �, the
variables z and w being the Bloch–Floquet multipliers in the two directions. In our
situation, the curve F(z,w) will be related to the mirror Calabi–Yau threefold.

4.3 Height function and “empty’’ configurations

Now consider dimer configurations in the plane. The union of two dimer configura-
tions D1 and D2 again defines a collection of closed oriented loops. We can view it
as the boundary of the level sets of a function h, defined on the cells (also known as
faces) of the graph �. This function h is well-defined up to a constant and is known
as the height function.

It is instructive to see how for dimers on the hexagonal lattice this reproduces the
combinatorics of the 3d partitions, the height function giving the previously missing
3rd spatial coordinate; see Figure 6. The “full corner’’ or “empty room’’ configu-
ration, which was our starting configuration describing the fully quantum C3 in the
language of the dimers becomes the unique, up-to translation, configuration in which
the periodic dimer patterns can come together. Each rhombus corresponds to one
dimer (the edge of the honeycomb lattice inside it).

For general dimers, there are many periodic dimer patterns and there are (integer)
moduli in how they can come together. For example, for the square lattice, which is
the case corresponding to the O(−1)⊕O(−1)→ P1 geometry, the periodic patterns
are the brickwall patterns and there is one integer degree of freedom in how they can be
patched together. One possible such configuration is shown in Figure 7. The arrows
in Figure 7 point from white vertices to black ones to help visualize the difference
between the four periodic patterns.

All of these “empty’’configurations can serve as the initial configuration, describ-
ing the fully quantum toric threefold, for the dimer problem. When lifted into 3d via
the height function, each empty configuration follows a piecewise linear function,
which is the boundary of the polyhedron defining the toric variety. In particular, the
number of “empty room’’ moduli matches the Kähler moduli of the toric threefold
and changes in its combinatorics correspond to the flops.
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Fig. 6. The “empty room’’ configuration of honeycomb dimers.

Fig. 7. An “empty room’’ configuration of square dimers.

Readers familiar with (p, q) 5-brane webs [22] and their relation to toric Calabi–
Yau [23] immediately see a dictionary: A 5-brane configuration is identified as the
transition line from one rigid dimer configuration to other, which in toric language is
related to which T2 cycle of Calabi–Yau shrinks over it. For example, the C3 geometry
is mapped to three 5-branes (of types (1, 0), (0, 1), (−1,−1)) on the 2-plane meeting
at a point where each region gets identified with a particular dimer configuration.
A similar description holds for arbitrary 5-brane webs. In this context, F(z,w) =
F(e−u, e−v) is identified with the mirror geometry [13].1

1 More precisely as in [13, 14] this corresponds to a LG theory with W = e−Y3(F (u, v)) or
to a noncompact CY given as a hypersurface: αβ − F(u, v) = 0.



616 Andrei Okounkov, Nikolai Reshetikhin, and Cumrun Vafa

4.4 Excitations and limit shape

Now we can start “removing atoms’’ from the “full crystal’’ configuration, adding
the cost of q to each increase in the height function. The limit shape that develops
is controlled by the surface tension of the dimer problem. This is a function of the
slope measuring how much the dimer likes to have height function with this slope.
Formally, it is defined as the n→∞ limit of the free energy per fundamental domain
for dimer configurations on the n× n torus T2 restricted to lie in a given homology
class or, equivalently, restricted to have a certain slope when lifted to a periodic
configuration in the plane.

One of the main results of [24] is the identification of this function with the
Legendre dual of the Ronkin function of the polynomial (4.1) defined by

R(U, V ) = 1

4π2

∫∫ 2π

0
log |F(U + iθ, V + iφ)|dθdφ. (4.2)

The Wulff construction implies that the Ronkin function itself is one of the possible
limit shapes, the one corresponding to its own boundary conditions. Note that this is
exactly what one would anticipate from our general conjecture if we view F(z,w)

as the describing the mirror geometry. In fact, following the same type of argument
as in the C3 case discussed before would lead us to the above Ronkin function.

As an example consider the dimers on the hexagonal lattice with 1 × 1 funda-
mental domain. In this case the edge weights can be gauged away and (4.2) becomes
the Ronkin function considered in Section 2.2. For the square lattice with 1 × 1
fundamental domain, there is one gauge invariant combination of the four weights
and the spectral curve takes the form

F(z,w) = 1+ z+ w − e−t zw,

where t is a parameter related to the size of P1 in the O(−1)⊕O(−1)→ P1 geometry.
The spectral curve is a hyperbola in C2 and (the negative of) its Ronkin function is
plotted in Figure 8. Note how one can actually see the projection of the mirror curve!

Fig. 8. The Ronkin function of a hyperbola.
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All possible limit shapes for given set of dimer weights are maximizers of the
surface tension functional and in this sense are very similar to minimal surfaces. An
analog of the Weierstraß parameterization for them in terms of analytic data was found
in [25]. It reduces the solution of the Euler–Lagrange PDEs to solving equations for
finitely many parameters, essentially finding a plane curve of given degree and genus
satisfying certain tangency and periods conditions.

In the limit of extreme weights and large initial configurations, the amoebas and
Ronkin functions degenerate to the piecewise-linear toric geometry. In this limit, it
is possible to adjust parameters to reproduce the topological vertex formula for the
GW invariants of the toric target obtained in [1]. We expect that the general case will
reproduce the features of the background dependence (i.e., holomorphic anomaly) in
the A-model [10]. This issue is presently under investigation [28].
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Summary. This text mainly follows my talk at the conference “Unity of Mathematics’’ (Har-
vard, September 2003), devoted to the 90th birthday of I. M. Gelfand. I introduce some new
notions that are related to several old ideas of I. M. and try to give a draft of the future devel-
opment of this area, which includes the representation theory of inductive families of groups
and algebras and Fourier analysis on such groups. I also include a few reminiscences about
I. M. as my guide.

Subject Classifications: 22D20, 43A30

0 Historical excursus: I. M. Gelfand as my correspondence
advisor

The first substantial series of mathematical works that I studied as a student was the
series of papers by Gelfand, Raikov, and Shilov (GIMDARGESH, as I called it to
myself) on commutative normed rings and subsequent papers on generalized Fourier
analysis. This theory became a mathematical inspiration for me; I was struck by its
beauty and naturalness, universality and depth.

Before this I hesitated whether I should join the Department of Algebra—I at-
tended the course of Z. I. Borevich on group theory and the course of D. K. Faddeev on
Galois theory—or the Department of Mathematical Analysis, where my first advisor
G. P. Akilov worked; in the latter case I could choose complex analysis (V. I. Smirnov,
N.A. Lebedev) or real and functional analysis (G. M. Fikhtengolts, L. V. Kantorovich).
But now the choice was clear: the functional analysis. At the same time I was more
interested in the works of the Moscow (Gelfand) school of functional analysis focused
on noncommutative problems than in the works of the Leningrad school, which was
oriented towards the theory of functions and operator theory.

Since then the works of I. M. Gelfand and his school in various fields have become
a kind of mathematical guidebook for me. My master’s thesis was devoted to the
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theory of generalized functions; this topic equally interested the Leningrad mathe-
maticians (L. V. Kantorovich, G. P. Akilov). Later, following G. P. Akilov’s advice,
I began to study representation theory, which was at the time absolutely unrepre-
sented in Leningrad. While I was a postgraduate student, I. M. Gelfand popularized
problems concerning measure theory in infinite-dimensional spaces, inspired by the
theory of distributions, the notion of generalized random processes, and quantum
physics. These problems were communicated to us by D. A. Raikov, who, follow-
ing I. M. Gelfand’s advice, worked in the new theory of locally convex and nuclear
spaces, which we also studied in G. P. Akilov’s seminar.

In Leningrad, measure theory in linear topological spaces was studied in the late
1950s–early 1960s by V. N. Sudakov and myself. At the time everybody believed that
the theory of generalized functions and measure theory in infinite-dimensional spaces
would require one to overstep the limits of conventional Banach functional analy-
sis, which would be replaced by the theory of nuclear spaces (Minlos–Sazonov and
Gelfand–Kostyuchenko theorems, quasi-invariant measures, etc.). However, it soon
became clear that measure theory in linear spaces is a natural part of general measure
theory, and Banach analysis continued to be the traditional language of functional
analysis. After a while, the interest in all these problems gradually died away.

V. A. Rokhlin’a arrival at Leningrad thoroughly changed the mathematical land-
scape in the Department of Mathematics. In particular, he organized seminars on
ergodic theory and topology. V. A. became my principal advisor during my postgrad-
uate studies and several subsequent years. I seriously studied the theory of dynamical
systems and general measure theory, and both my dissertations were devoted to these
problems. But representation theory continued to fascinate me equally. Even ear-
lier, in his talks on problems of functional analysis at the All-Union Conference on
Functional Analysis and the 3rd Mathematical Congress (1956), I. M. spoke about
von Neumann factors and Wiener measure as subjects that were possibly related and
underestimated at the time. Later, in the 1960s, I began to study factors and relations
of the theory of C∗-algebras, introduced by Gelfand and Naimark, with the theory of
dynamical systems; this became the subject of my research for several years.

Except for several short discussions with I. M. in the mid- and late 1960s and the
acquaintance by correspondence via V. A. Rokhlin (and possibly via Yu. V. Linnik),
our close acquaintance took place in the spring of 1972. After a session of his seminar,
I began to talk to him about my work (joint with A. A. Shmidt) on the limit statistics of
cycles of random permutations; and the next day, at his home, about my plans to study
the representations of the symmetric groups. Though at first he said that with them
everything is clear and started to talk enthusiastically about the theory of symmetric
functions, later he agreed that not everything is that clear and advised me to look
at the paper by E. Thoma on the characters of the infinite symmetric group, which
was of great interest for me. This paper played an important role in our subsequent
studies of this group with my pupil S. V. Kerov. One of our principal contributions
was an explanation and a new proof of Thoma’s result in terms of representation
theory (asymptotics of Young diagrams). And in that conversation I. M. approved
wholeheartedly of my ideas, which I later called asymptotic representation theory;
and even when he retold them to D. Kazhdan, who appeared a little later, he referred to
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the theorems on the asymptotic behavior of Young diagrams, characters, etc., which
were only conjectured at the time (many of them were proved later in joint papers
with S. V. Kerov), as if they were results already obtained. Those results I talked
about that were already proved related rather to probability theory (Poisson–Dirichlet
measures) and the theory of dynamical systems than to representation theory. Other
groups besides the symmetric groups and their representations were not discussed in
those conversations. I took leave of him and was about to depart for Leningrad.

Suddenly, on the day of my departure, I. M., having found out, in a rather com-
plicated way, the phone number of my friends with whom I stayed at Moscow, called
me and asked me to come to him immediately. He also invited M. I. Graev, and
during our long walk told me about the problem of constructing the noncommutative
integral of representations for semisimple groups, and especially for SL(2,R). He
had earlier offered this problem to other pupils of his, but he said that he had no doubt
that it “fitted’’ me. I was slightly surprised, because I supposed that he could not
know to what extent I was acquainted with the representation theory of Lie groups,
and in particular that of SL(2); as I have mentioned above, we did not discuss these
matters at all.

But I. M. was right—this problem was offered to me at a very appropriate mo-
ment. Several years before this conversation, at the youth seminar organized by
L. D. Faddeev and myself, we studied Gelfand’s volumes on generalized functions
and other useful things, which were not widespread in Leningrad. And in the early
1970s, apart from my studies of ergodic theory, I gave a course and seminars focused
on the representation theory of groups and algebras, tensor products, and factors.
Apparently, I. M. had heard about it, but I did not ask him. Thus his problem ap-
peared at an appropriate moment. We coped with it within several months (the end
1972—the beginning 1973). The first paper in Uspekhi (Russian Math. Surveys) ap-
peared in a volume dedicated to Kolmogorov in 1973, and this was the beginning
of our collaboration with I. M. and M. I. Graev, which lasted with gaps of about
ten years and which I am going to describe one day in more detail. That first (the
best, in I. M.’s and my opinion) paper of this series was devoted to the “integral’’ of
representations of SL(2,R) and touched upon many topics that are still current; in
that paper we rediscovered several constructions that had recently appeared (Araki’s
Gaussian construction, cohomology in groups without Kazhdan’s property, etc.), gave
the first explicit formulas for the nonzero cohomology of semisimple groups of rank
1, and constructed irreducible nonlocal representations of current groups with values
in finite-dimensional Lie groups. I. M. repeatedly (and the last time—at this confer-
ence (Harvard 2003)) expressed his wish to continue our joint work in this direction.
We had no doubt that this series of papers would have various applications, which
has already been repeatedly confirmed, and that work would be continued.

This paper is devoted to a subject from another line, which also goes back to
I. M.’s works. Having worked for many years with inductive families of semisimple
algebras, S. V. Kerov and the author at once appreciated the importance of the notion
that we called the Gelfand–Tsetlin algebras; this notion is a generalization of the well-
known and still popular construction of the Gelfand–Tsetlin bases for the unitary and
orthogonal groups. These algebras serve as a basis for harmonic analysis and Fourier
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analysis on noncommutative groups. They play an especially important role in the
representation theory of locally finite groups, symmetric groups, and, more generally,
inductive limits of groups and algebras. Our joint works with A. Okounkov (see [1]
and [2]) show how applying these algebras, and especially a natural basis in them (the
Young–Jucys–Murphy basis), allows one to reconstruct the representation theory of
the symmetric groups in a completely different basis. In my talk and in this paper
I draw attention to yet another idea, closely related to the previous one; namely,
to the idea of inverse limits of algebras with respect to conditional expectations.
For the symmetric group, this question will be considered in detail in a joint work
with N. V. Tsilevich (in preparation). On the other hand, inverse limits of finite-
dimensional algebras generalize von Neumann’s theory of complete and noncomplete
tensor products [3], and I remember one of my first visits to Gelfand’s seminar in
the late 1950s, when this von Neumann paper was being discussed and commented
on by the head of the seminar. In this paper I do not touch upon one subject that I
mentioned in the talk, namely, the results on representations of the group of infinite
matrices over a finite field, which we intensively studied with S. V. Kerov during the
last several years. It will be considered in other publications under preparation.

1 Definition of a generalized expectation on a subalgebra

Let A be a C∗-algebra over C with involution ∗, and let B be its involution C∗-
subalgebra. All algebras in the paper are assumed to be algebras with identity, and
all subalgebras are assumed to contain this identity. Here we mainly consider finite-
dimensional algebras, but the definitions below are valid for the general case.

Definition 1. A linear operator P : A −→ B is called a conditional mathematical
expectation, or expectation1 for short, of the algebra A onto the subalgebra B if

1. P(b) = b and P(b1ab2) = b1P(a)b2 for all a ∈ A and b, b1, b2 ∈ B;
2. P(a∗) = a∗, P 1 = 1;

and

3. P ≥ 0, which means that for all a ∈ A, P(aa∗) is positive, i.e., belongs to the
real cone in B generated by elements of the form bb∗.

We will say that P is a generalized expectation if only the first and second conditions
hold, and P is a true expectation, or expectation, if condition 3 also holds.

The notion of (“conditional’’!) expectation is well known and has been used in
many situations; for commutative algebras, it coincides with the ordinary notion of

1 The word “conditional’’ is the traditional one, but I prefer to omit it below, as well as the
word “mathematical,’’ violating the old tradition. The reason is that the “unconditional
expectation’’ is simply the “conditional expectation’’ onto the algebra of scalars C (the
conditions are trivial); thus if we fix a subalgebra B, we do not need to use the word
“conditional,’’ because it is clear what the “conditions’’ are.
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(mathematical) conditional expectation on a sigma-subfield or subalgebra. A fruitful
example of generalized , i.e., nonpositive expectation appeared, I believe, only re-
cently, in the very concrete situation of the group algebra of the symmetric group (see
below), and this is the reason for considering this notion in full generality. Some-
times people require that an expectationP should be not only positive but even totally
positive, but we will not put emphasis on this.

Note also that it is clear from the definition that the set of all expectations in an
algebra A to a subalgebra B is a convex set.

In the main part of the paper, our attention will be focused not on a single general-
ized expectation for some pair B ⊂ A, but on sequences of generalized expectations
in an inductive family of algebras.

It is not difficult to describe all expectations for finite-dimensional semisimple
C∗-algebras over C, which are the sums of several copies of full matrix algebras
Mn(C), as well as to describe generalized conditional expectations for these algebras.
Recall that for a general pair (A,B), where A = ∑m

j=1 Aj is a finite-dimensional

C∗-algebra, B = ∑k
i=1 Bi is a C∗-subalgebra, and Aj = Mkj (C), j = 1, . . . , m,

Bi = Mni (C), i = 1, . . . , k, are their decompositions into simple algebras, one can
define a bipartite multigraph in which the first (upper) part of the vertices is indexed
by the subalgebras Bi , i = 1, . . . , k, and the second (lower) part of the vertices is
indexed by the subalgebras Aj , j = 1, . . . , m, and the multiplicity of an edge (i, j)

is equal to the number of copies of the subalgebra Bi as a subalgebra of Aj . We
will use this construction in the theorem below (claim 2). For the sake of clarity, we
consider the multiplicity-free case when each Bi belongs to at most one Aj ; a pair
(i, j) is called admissible if it is an edge, or Bi ⊂ Aj . In order to determine the
pair (A,B) uniquely up to isomorphism, we must fix this bipartite multigraph and
positive integers in each upper vertex (the dimensions of the Bi).

Theorem 1.

1. First, assume that A = Mn(C) and that its subalgebra B is also a full matrix
algebra B = Mm(C) (that is, the multigraph reduces to two vertices and one
edge). Then there exists a unique expectation P(a) = pap, where a ∈ A and p

is the natural orthogonal projection determined by the identity of the algebra B.
2. Suppose that A is a finite-dimensional semisimple algebra and B is a semisimple

subalgebra as above. Then every conditional expectation P : A −→ B is
the sum

P =
∑
i,j

Pi,j

over all admissible pairs (i, j) of generalized expectations from claim 1: Pi,j :
Aj −→ Bi , Pi,j (a) = λi,jpi,j api,j , where λi,j are real numbers (for a true
expectation, nonnegative real numbers) such that

∑
j λi,j = 1 for every i.

The proof of claim 1 is obvious; in order to prove claim 2, it suffices to separate
the restrictions of P to each Aj by the linearity of P and then apply claim 1 and
condition 2 from the definition of expectation (P 1 = 1).
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Thus a real matrix {λi,j } satisfying the condition
∑

j λi,j = 1 for every i is a
parameter on the set of generalized conditional expectations for a fixed semisimple
finite-dimensional algebra and a subalgebra; for true expectations, we have an addi-
tional condition λi,j ≥ 0, and {λi,j } is a Markovian matrix on the bipartite graph.
For this reason, in the general case we will say that the matrix λi,j is a general-
ized Markovian matrix. It is clear that the set of (generalized) expectations for a
finite-dimensional pair B ⊂ A is always nonempty.

The conjugate operator to a generalized expectation P is an operator P ∗ from the
space A∗ conjugate to A to B∗. If P is a true (positive) expectation, then P ∗ maps
each state (= positive normalized functional) on B to some state on A. But since P

is not a homomorphism of algebras, it does not map traces (characters) to traces. We
may consider more refined properties of expectations in regard to this fact, e.g., call
an expectation central if the image of each trace is a trace, etc. We will not discuss
this topic here.

The following natural question arises. Suppose thatPB is an expectation for a pair
of finite-dimensional algebras A,B. Let us regard A as a vector space. The problem
is to describe the ∗-algebra E = 〈A,PB〉 generated by the left action of A and PB

in END(A). We give the answer to this question in terms of the decomposition of E
into simple algebras.

Theorem 2. Let �(LB,LA) be the bipartite graph corresponding to the pair (A,B),
where LA (LB) are the vertices of � corresponding to the decomposition of A (B),

respectively. Then the diagram of the triple of algebras (B ⊂ A ⊂ E) is the graph
�(LB,LA,LE), where the bipartite part �(LA,LE) is the reflection of γ (LB,LA),

which means that LE ≡ LB and the edges between the vertices of (LA,LE) are the
same as the corresponding edges in �(LB,LA). This means, in particular, that the
algebra E = 〈A,PB〉 does not depend on the choice of the expectation PB , but only
on the subalgebra B itself, so that we can denote it by E(A,B).

The proof of this theorem uses Theorem 1 (the structure of expectations); we will
not give examples and details here. Theorem 1 was firstly proved by V. Jones [12];
see also [13].

2 Two classes of examples for group algebras

For the group algebras (over C) of finite groups, we present two types of expectations
related to the group structure. Since a linear map in the group algebra is determined
by its values on the group, we can state the question in terms of the group.

1. The first type of examples relates to the case when the value of the expectation at
an element of the group (regarded as a subset of the group algebra) again belongs to
the group.

In this case we can formulate a purely group-theoretical question concerning a
group analogue of expectation.

Assume that G is a finite group and H is a subgroup. When does there exist a
map p from G onto H such that
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p(h) = h, p(h1gh2) = h1p(g)h2, p(eG) = eH

for all h, h1, h2 ∈ H and g ∈ G, where eH and eG are the identity elements in G and
H , respectively?

If such a map p exists, we say that it is a virtual projection of the group G to the
subgroup H .

Theorem 3. The following two conditions are equivalent:

1. There exists a virtual projection p : G→ H .
2. There exists a set K ⊂ G such that

(a) K is invariant under the inner automorphisms generated by the elements of
H , that is, for every h ∈ H , for every k ∈ K , hkh−1 ∈ K;

(b) the intersection of the set K with any left (equivalently, right) coset of H in
G has only one element; in other words, for all k, k′ ∈ K , k �= k′, we have
k−1k′ /∈ H .

Proof. The proof is straightforward, and we only supplement it with some comments.
Condition (b) means that the groupG can be partitioned into left cosets of the subgroup
H , each of them containing exactly one element of the set K; thus G ∼= H × K ,
and for every g ∈ G there is a unique left decomposition g = hk with h ∈ H ,
k ∈ K; condition (a) gives the right decomposition with the same h but another
k′ ∈ K : g = k′h. We assert that there is a bijection between the set of all virtual
projections p : G → H and the set of all subsets K that satisfy these conditions.
Namely, if K enjoys properties (a) and (b) above, then the corresponding virtual
projection p is given by the formula

p(g) = h

for the element g = hk = k′h; and vice versa: if p is a virtual projection, then the
set K = p−1(eH ) ⊂ G enjoys properties (a) and (b). ��
Remark 1. It is clear from the construction that the set K is the union of orbits of
the group of inner automorphisms of H . If O is one of these orbits in K , then its
characteristic function commutes with H . In the case of the symmetric group, K is
a single orbit.

Remark 2. The set K above can be described in the following terms (E. Vinberg’s
observation): K̄ = {k ∈ G : k belongs to the center of the group H ∩ k−1Hk}.
Then our K is a subset of K̄ , which is H -invariant and intersects each left (and,
automatically, right) coset of the subgroup H at one point.

For different groups, it may happen that such a set K either is nonunique, or does
not exist at all.

It is an interesting question for what pairs H ⊂ G a virtual projection (in terms
of Theorem 3, a set K with properties (a) and (b)) does exist. In the trivial example
G is the direct product of two groups: G = H ×K .
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As a nontrivial example, consider the symmetric groups G = Sn and H = Sn−1
with the ordinary embedding; then K is the set of transpositions (i, n), where i runs
over 1, 2, . . . , n. The map p : G→ H determined by this decomposition is a virtual
projection; it simply deletes the element n from a permutation. This projection was
defined in [4] (see also [5]) and called the virtual projection. It is easy to check that
for n > 4, the virtual projection and the corresponding set K are unique; for n = 3, 4,
there are several possibilities to choose such a set K .

Let us extend a virtual projection by linearity to an operatorP in the group algebra:

P : C(G) −→ C(H) ⊂ C(G).

Lemma 1. The linear operator P defined above is a generalized expectation of the
algebra C(G) to C(H) in the sense of Definition 1.

An important remark: in general, the generalized expectation P does not satisfy
the positivity condition 3 from Definition 1; for example, in the case of the symmetric
group (see above), this operator is not positive, because, e.g., the signature of a
permutation can change under this projection. Thus P is not an expectation, but a
generalized expectation.

Thus we have defined a particular class of generalized expectations on group
algebras, which arise from virtual projections on groups. A very interesting problem
is to describe pairs (G,H) for which a virtual projection, and hence the corresponding
generalized expectation on the group algebra, does exist. For an abelian group, it is
easy to describe all virtual projections (they exist for all pairs (G,H) and determine
true expectations), but even for metabelian groups I do not know the answer.

For some classes of groups, such as free groups, “local groups’’ (see [6]), Coxeter
groups, presumably the following recipe works: suppose that Gn = 〈σ1, σ2, . . . , σn〉
and Gn ⊃ Gn−1 = 〈σ1, σ2, . . . , σn−1〉. There exists a normal form of each element
of Gn as a word in the alphabet σ1, . . . , σn such that the deletion of the letter σn in
this normal form is a virtual projection of Gn onto Gn−1. This is true for free, locally
free, and symmetric groups (such a normal form does exist).

2. The second type of example is closer to the classical definitions, because it leads
to true (positive) expectations. Again let G and H be a finite group and its subgroup,
respectively; now we allow the values of expectations at the elements of the group
not only to belong to the group, but also to be equal to zero. Define a projection

P : C(G) −→ C(H) ⊂ C(G)

as follows: P is the linear extension to the whole group algebra of the following
map on the group: P(h) = h for all h ∈ H , and P(g) = 0 if g ∈ G, g /∈ H .
This definition makes sense for an arbitrary group and a subgroup. Obviously, P is a
(positive) expectation. For some reason, we call it the Plancherel expectation. This
definition leads, in particular, to Fourier analysis on the symmetric groups, which will
be the subject of the joint paper with N. Tsilevich which is now in preparation.

It is easy to formulate the analogue of Lemma 2 for algebras: the set of all
generalized expectations P : A −→ B is in a one-to-one correspondence with the
set of subspaces T of A satisfying the following properties:
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1. T is a closed complement to the subspace B of the vector space A;
2. BTB ⊂ T .

The correspondence is as follows: T = ker P .
Because of the convexity of the set of expectations, we can consider convex com-

binations of these two types of examples. For the symmetric group, such deformations
are related to the contents of the papers [4, 5].

3 Gelfand–Tsetlin (GZ-) algebras

Now we introduce the central notion of the theory of inductive families of algebras
(not only finite-dimensional). This notion follows the idea of the classical papers by
Gelfand and Tsetlin [7, 8], in which a particular basis was defined for the orthogonal
SO(n) and unitary SU(n) groups. This basis appears only if we consider not just one
group, say SO(n) or SU(n), but the whole inductive family SO(2) ⊂ SO(3) ⊂ · · · ⊂
SO(n) or SU(1) ⊂ SU(2) ⊂ · · · ⊂ SU(n) simultaneously. Since the restrictions
of irreducible representations of the group SO(n) to the subgroup SO(n − 1) (and
similarly with SU) are multiplicity-free, this inductive family determines a basis
(Gelfand–Tsetlin basis), which is unique up to scalar multiples (see below). But even
more important is the notion of Gelfand–Tsetlin algebras, which was introduced for a
general inductive family of algebras in our papers with S. Kerov (a detailed exposition
is given in [9]) and independently, but not in the same spirit, in [10]). I do not know any
papers about Gelfand–Tsetlin algebras even in the classical case (that of the universal
enveloping algebras of semisimple Lie algebras) apart from the paper [11], which
concerns a completely different problem. The most important problem is to define
reasonable multiplicative generators of the Gelfand–Tsetlin algebras in terms of the
initial algebras; having such generators, one can create the representation theory of an
inductive family of algebras in a very natural way. The realization of this plan allows
one to define an analogue of the Fourier transform for algebras with inductive family
of subalgebras inside it. For the symmetric group, these generators were defined
(independently of GZ-algebras) by A. Young and in more recent times by Jucys
and Murphy (YJM-generators). The consistent development of the representation
theory of the symmetric groups was given in [1, 2]. For other groups (even for
the orthogonal and unitary groups), this is still not done. Below we consider only
complex ∗-representations of algebras over C.

Definition 2 (Gelfand–Tsetlin algebra). Suppose we are given a finite or infinite
family Ak , k = 0, . . . , n (here n can be finite or infinite) of semisimple algebras over
C, A0 = C, Ak ⊂ Ak+1. Assume for the sake of clarity that the multiplicity of the
restriction of an irreducible representation of Ak to Ak−1 for k = 1, . . . , n − 1 is
equal to one or zero (the so-called simple spectrum). By definition, the Gelfand–
Tsetlin algebra GZn is the algebra generated by the centers, which we denote by
ζ(Ak) ⊂ Ak , k = 0, . . . , n:

GZn = 〈ζ(A1), . . . , ζ(An)〉.
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(The notation 〈. . . 〉 stands for the subalgebra of An generated by the contents of the
brackets.)

It is clear from this definition that all GZk are abelian algebras and the family
of algebras {GZk}n1 is an inductive family of subalgebras in An (the centers do not
form an inductive family); the definition and the assumption on the simplicity of the
spectrum also imply that GZn is a maximal abelian subalgebra of An. Moreover,
from the definition we can conclude that there is a particular basis (defined up to
scalars) in the algebra GZn, which we call the GZ-basis; and, consequently, there is a
particular basis in each irreducible representation of An—this is what people usually
called the Gelfand–Tsetlin basis. In the case of the groups SO(n) and SU(n), this is
just the classical Gelfand–Tsetlin basis [7, 8]. It leads to the well-known notion of
Gelfand–Tsetlin patterns.

The elements of the GZ-basis of the algebra GZn in the general case are defined
as those elements such that each of them has a nonzero image in only one irreducible
representation. All such elements are defined uniquely (up to scalars). We may say
that there is a bijection between this basis and paths in the graph of the Bratteli diagram
of the algebra An (see below). As we have mentioned above, a nontrivial problem
is to describe the GZ-algebra, as well as the GZ-basis, using some multiplicative
generators of GZ(An), not in terms of representations, but in intrinsic terms of the
initial definition of the algebras An (or groups in the case when An is a group algebra).
This problem leads to what we called the Fourier analysis of inductive families of
algebras (groups).

We want to emphasize that the notion of GZn-subalgebra of an algebra An does
depend on the structure of the inductive family Ai , i = 1, . . . , n, and not only on the
algebra An itself; so if we choose another inductive family inside An, then GZn can
also change. The development of these ideas for the symmetric groups can be found
in [1, 2]. The assumption on the simplicity of the spectrum is assumed to be satisfied
in all further considerations.

The analysis of examples of Gelfand–Tsetlin algebras in the case of groups, and
especially of the GZn subalgebras of C(SN), allows us to formulate the following
theorem.

Theorem 4. Suppose that G1 ⊂ G2 ⊂ · · · ⊂ Gn is a finite sequence of finite
groups. Suppose that the restriction of irreducible representations of Gk to Gk−1,
k = 1, . . . , n, is multiplicity-free and there exists a virtual projection of Gk to Gk−1,
k = 1, . . . , n. Then the family of sets {Xk = ker Pk, k = 1, . . . , n} generates (as
multiplicative generators) the subalgebra GZn; here Pk is the generalized expecta-
tion C(Gk) −→ C(Gk−1) corresponding to the virtual projection pk : Gk → Gk−1
(see the previous section).

Proof. Using Remark 1 after Theorem 2, we can prove that the center of C(Gk)

belongs to the algebra generated by GZk−1 and the set Xk . ��

In the case of the symmetric group, the setXk is determined by the YJM-elements.
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4 The inverse limit of an inductive family of algebras and
GZ-algebras, and martingales

Suppose now we have a countable sequence An, n = 0, 1, . . . , A0 = C, An ⊂ An+1,
of C∗-algebras that form an inductive family of algebras and define the inductive
limit

A∞ = limind→ Ai

with respect to the embedding of algebras.
In the same spirit we can define the inductive limit of the Gelfand–Tsetlin algebras

GZ∞ = limind→ GZn;

under our assumptions, it is again a maximal abelian subalgebra of A∞.
Using Theorem 4 from the previous section, we can define multiplicative gener-

ators of GZ∞ = limind GZn for the case of group algebras. In particular, this gives
a description of a multiplicative basis for the GZ-algebra of the infinite symmetric
group.

An inductive family {An} of finite-dimensional algebras determines a Z+-graded
graph Y (the Bratteli diagram). The vertices of level n ≥ 0 correspond to the simple
subalgebras of the algebra An (at the zero level we have one vertex 0), and two
adjacent levels Yn and Yn−1 form precisely the bipartite graph that was mentioned
in Section 2. The set of all maximal paths (finite if the number of algebras is finite,
or infinite) from the vertex 0 to the end is called the set of tableaux and is denoted
by T (Y ) (recall that a path is a sequence of edges, and in the multiplicity-free case
a path is also a sequence of vertices). Now let us choose a sequence of generalized
expectations of these algebras at each level:

Pn : An −→ An−1, n = 1, 2, . . . .

Lemma 2. The restriction of the generalized expectationPn to the Gelfand–Tsetlin al-
gebra GZn sends it to GZn−1; thus this restriction is an expectation of GZn to GZn−1.

Proof. Each expectation sends the center of the algebra onto the center of the sub-
algebra: Pn(ζ(An)) = ζ(An−1). Indeed, let z ∈ ζ(An) and b ∈ An−1; then
Pn(zb) = Pn(z)b = Pn(bz) = bPnz. At the same time Pn(ζ(An−1)) = ζ(An−1).
Consequently, Pn(GZn) = GZn−1 by definition. ��

Now let us define the projective limit

A∞ = limproj
←

{An, Pn}

with respect to the sequence of generalized expectations. It is obvious from the
definition that the following lemma holds.

Lemma 3. A∞ is a left and right A∞-bimodule (but not an algebra in general).
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Indeed, all algebras An act from the left and from the right on all Am, m > n;
thus these actions extend to the projective limit. This definition makes sense for a
general inductive family with an arbitrary system of expectations.

By Lemma 3, we can also correctly define the inverse (projective) limit of the
algebras {GZn}:

GZ∞ = limproj
←

{GZn, Pn}.

This is not an algebra either, but a module over GZ∞. The interpretation of this limit
will be given below.

Suppose now that all algebras An, n = 1, 2, . . . , are finite-dimensional semisim-
ple algebras. Since (generalized) expectations are determined by systems of (gen-
eralized) Markovian matrices, the projective module is determined by the system of
matrices �n, n = 1, 2, . . . , where �n determines the expectation of An to An−1.

Let us fix such a system of generalized (or true) Markovian matrices �n, n =
1, 2, . . . . The size of�n ismn×mn−1, wheremk is the number of simple subalgebras
in the algebra Ak . We denote this system of matrices by L = {�n, n = 1, 2, . . . },
and in order to emphasize the dependence of the projective limit on the expectations,
we will sometimes write

A∞L = limproj
←

{An, Pn}

and
GZ∞L = limproj

←
{An, Pn}.

In the case of abelian algebras, as well as in the case of GZ-algebras, such an
inverse limit is well known by another name, at least when all matrices �n are true
Markovian matrices. We will shortly explain this link.

First of all, as usual, the system of Markovian matrices L determines a Markov
measure µL on the space of tableaux T (Y ) (see above). Thus we have a measure
space (more precisely, a Lebesgue space) (T (Y ),AµL), where A is the sigma-field
generated by elementary cylindrical sets (an elementary cylindrical set of order n is
the set of all paths with common fragment of length n). Second, in A we have an
increasing sequence of finite sigma-subfields of cylindrical sets of order n. Following
the general definition of martingales, we can now define the vector space ML of
martingales over this increasing sequence of sigma-subfields, each of them being
a sequence {fn}n of measurable functions such that fn is An-measurable and the
expectation of fn on the sigma-field An−1 is equal to fn−1.

It is clear from the definition that this space of martingales is exactly the inverse
limit GZ∞L defined above.

This is the reason for calling the elements of the inverse limit A∞L of algebras
noncommutative martingales. This opens a wide range of generalizations of the
martingale theory to this noncommutative case.

If we have a generalized expectation, then we need to consider martingales with
respect to nonpositive measures, which, as far as I know, have never been considered.

In the group case there is a distinguished Markov measure—the so-called
Plancherel measure on the space of tableaux T (Y ); namely, if G = limindGn is
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a locally finite group with simple spectrum (like S∞ = limind Sn), then, using one
of the expectations defined in the previous section, we obtain the Plancherel measure
on T (Y ), which is the inverse limit of the Plancherel measures on the spaces of finite
tableaux. Martingales with respect to the Plancherel measure play an important role
as a special kind of modules over the group algebras of the group G.

Our last remark concerns the link with von Neumann’s theory of infinite tensor
products: if our algebra A∞ is the infinite tensor product of algebras of matrices
(e.g., of order 2), the so-called Glimm algebras, then each incomplete tensor product
of Hilbert spaces in the sense of [3] is generated by the inverse limit of algebras
with respect to some sequence of expectations. In this spirit, the scheme of this
section allows us to generalize von Neumann’s theory to an arbitrary inductive limit
of finite-dimensional algebras instead of Glimm algebras.
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