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Preface

The Fifth European Congress of Mathematics (5ECM) took place from July 14–18,
2008 in the RAI Convention Center Amsterdam. It was organized by the Centrum
Wiskunde en Informatica Amsterdam, the University of Amsterdam, and the VU Uni-
versity Amsterdam, under auspices of the European Mathematical Society. Included
in this congress was the 44th Nederlands Mathematisch Congres, the yearly congress
of the Royal Dutch Mathematical Society (KWG). 5ECM stood under the special
patronage of the KWG. Previous European Congresses of Mathematics were held in
Paris (1992), Budapest (1996), Barcelona (2000), and in Stockholm (2004).

About 1000 mathematicians from 68 different countries attended the congress.
The first of ten plenary lectures, to get the congress started, was delivered by

Richard Taylor. As all the other plenary lecturers, he did a wonderful job of explaining
his work to a general mathematical audience. Another major item on the programme
were three science lectures. These lectures outlined applications of mathematics
in other sciences. Mathematical modeling plays a crucial role in predicting climate
change, as was stressed by Tim Palmer (European Centre for Medium Range Weather
Forecasts). He also outlined what would be necessary to improve on the current state
of affairs in the mathematical modeling to obtain predictions on a finer scale than
is possible at the moment. Ignacio Cirac (Max Planck Institute für Quantenoptik)
discussed quantum information theory, and the challenges in this area. The third
science lecture was given by Jonathan Sherratt (Heriot-Watt University) who talked
about the latest developments in mathematical modeling for population dynamics.
Thirty-three invited lectures were presented in sessions of four or five parallel talks.

As in the four preceding EMS congresses, ten EMS prizes were given to young
researchers, not older than 35 years, who had been selected by a Prize Committee
appointed by the EMS. In addition, the Felix Klein Prize was awarded for the second
time, jointly by the EMS and the Institute for Industrial Mathematics in Kaiserslautern,
for an application of mathematics to a concrete and difficult industrial problem.

There were twenty-two minisymposia, spread over the whole mathematical area.
These minisymposia played a role in attracting people to the ECM meeting that
would otherwise perhaps not have come to such a broad mathematics congress. The
organizers are grateful to the organizers of the minisymposia for their valuable help.

Two Round Table meetings were organized: one on Industrial Mathematics and
one on Mathematics and Developing Countries.

As part of the 44th Nederlands Mathematisch Congres, the so-called Brouwer
lecture was given, by Phillip Griffiths of IAS Princeton. The Brouwer lecture is or-
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ganized every three years by the KWG. The Brouwer lecturer receives a gold medal
commemorating the Dutch mathematician L. J. Brouwer. The Brouwer lecture with
the Brouwer medal is The Netherlands’ most prestigious award in mathematics. In-
formation about Brouwer was given by Dirk van Dalen in an invited historical lecture
during the congress. Other parts of NMC44 were the 9th Beeger lecture by Dan
Bernstein of the University of Illinois at Chicago (organized once every two years
to commemorate the Dutch number theorist N. G. W. H. Beeger and sponsored by
CWI Amsterdam) and the third Philips PhD prize lectures for Dutch PhD students
(sponsored by Philips Eindhoven and this time won by Erik Jan van Leeuwen of CWI
Amsterdam).

These proceedings present extended versions of nineteen of the invited talks which
were delivered during 5ECM. We are grateful to the authors for their contributions and
to the following referees: Keith Ball, Henk Broer, Arjeh Cohen, Gerard van der Geer,
Robbert Dijkgraaf, Klaas Landsman, Eduard Looijenga, Terry Lyons, Yvan Martel,
Andrzej Pelczar, Nicolai Reshetikhin, David Riley, Benjamin Rossman, Marta Sanz-
Solé, Floris Takens, Constantin Teleman, Rob Tijdeman, Bruno Vallette, and Don
Zagier.

A congress of this size is impossible to organize without generous financial support
from the government, businesses and industry, and the local mathematical community.
The full list of subsidy-providers and sponsors is given in the section Sponsors of these
Proceedings. Although all subsidy-providers and sponsors are equally appreciated,
we like to single out the most important ones here. The largest single subsidy was
provided by NWO, the Netherlands Organization for Scientific Research. Biggest
sponsors were Foundation Compositio Mathematica and ING Corporation.

The editors André Ran
Herman te Riele
Jan Wiegerinck
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Opening Ceremony

The 5ECM attendants were first welcomed by André Ran, chairman of the 5ECM
Organizing Committee. Following this, a spectacular tableau vivante of Rembrandt’s
most famous painting “The Nightwatch” from 1642 was built up on the stage, ac-
companied by rolls of drum from the drummers in the painting. Next, Robbert Dijk-
graaf, president of the Royal NetherlandsAcademy ofArts and Sciences, Amsterdam,
stepped out of this tableau, dressed in mediaeval costume, to give the official opening
address to the congress. Finally, Ari Laptev, president of the European Mathematical
Society, welcomed the attendants on behalf of the EMS.

Welcome Address by André Ran, Chairman of the Organizing Com-
mittee of 5ECM

Ladies and gentlemen, it is my great pleasure to welcome you all to Amsterdam to
enjoy this special mathematical event. For The Netherlands it was an honour to be
selected for the fifth European Congress of Mathematics, and many people within
the Dutch mathematical community have worked hard to prepare for you a special
congress. As a matter of fact, preparations for this congress started as early as 2001,
so we have been at it for almost seven years. We hope the week will be a successful
event for all of you, and that all of you will come away from this congress with the
feeling that you have learned something new. Above all, we hope you will have an
enjoyable week in Amsterdam.

We know that the mathematical events here at the RAI will have to compete
with a wonderful city and its surrounding countryside. However, since you are all
mathematicians we hope that the math will win from interesting sites like the museums
like a boat tour on the canals, or a walk in the city streets.

I would like to take this opportunity to thank all those who supported us financially,
via subsidies, via sponsoring, or via gifts. There are too many to name them all.
However, I want to name just a few and then show the complete list, which you can
also find in your programme on page 2.

The first organization I want to single out is the most important one for us. The
Netherlands Organization for Scientific Research provided us with a very substan-
tial subsidy. As a matter of fact, about 1/5 of the total budget was covered from
this subsidy. Without their support the congress would not have been possible in
Amsterdam.

NWO is investing in mathematics in terms of money, but also in terms of ensuring
that the knowledge generated through its initiatives is disseminated and utilised. Since
science knows no borders, NWO also is looking across the national border, mainly
aiming to increase cooperation in Europe. The development of the European Research
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Area is seen as a key element in this. Apart from this NWO cooperates and maintains
contacts with Russia, Asia, Africa and America. Representatives of NWO will be
around during the congress, and are more then willing to discuss with you. I would
like to ask you all to show your appreciation to them in a round of applause.

Other subsidies were donated by many organizations, a full list can be found in
your programme book.

There were also many companies who sponsored us with substantial amounts.
For most of those you will find an item in your congress bag, or an advertisement in
the program, or just read the label on the water bottles that will be distributed during
the conference. Their logos can also be found on our website, and just clicking on
those will get you to the website of the company.

Other companies, like ING Bank, even have a stand, and have representatives
here at the congress. Again, may I ask you to show your appreciation by a round of
applause?

Finally, we received gifts from several companies, organizations and private in-
dividuals, and important guarantee subsidies from several organizations. These too
are of course highly appreciated.

Important support in terms of money, manpower, moral support, and help in the
organization was received from the Dutch mathematical community and the Konink-
lijk Wiskundig Genootschap. Mathematicians from all over the country helped us
by being chairs of committees, organizing mini-symposia or helping out with many
trivial matters. People from almost all universities in the Netherlands were involved in
the organization in one way or another. Without them it would have been impossible
to organize this event.

Before I give the floor to the President of the Royal Netherlands Academy of Arts
and Sciences, Professor Robbert Dijkgraaf, for the official opening of this congress, I
would like to draw your attention to the screen: to save you a trip to the Rijksmuseum,
we have already given you a taste of what is undoubtedly the most famous 17th century
Dutch painting: the “Nightwatch” by Rembrandt.

OpeningAddress by Robbert Dijkgraaf, President of the Royal Nether-
lands Academy of Arts and Sciences, Amsterdam

Distinguished Guests, Fellow Mathematicians, Ladies and Gentlemen,
It is a great privilege and a real pleasure to welcome you to Amsterdam and the

fifth European Congress of Mathematics on behalf of the Dutch scientific community
in general and the Royal Netherlands Academy of Arts and Sciences in particular.

Given this embarrassing grand entrance, I feel it is appropriate to say a few words
on the relation between mathematics and the arts from a historical perspective.

This year the Academy celebrates its bicentenary. It is among the oldest royal
institutions of the Netherlands, even antedating the Kingdom of the Netherlands by
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The Nightwatch, 1642
Rembrandt van Rijn (1606–1669)

Rijksmuseum Amsterdam

seven years. This mathematical paradox is resolved by the fact that the Academy was
founded during the French occupation by a different King of Holland, Louis Napoléon
Bonaparte, brother of the French emperor. Louis Napoléon was a somewhat tragic
figure, rather unhappy in gloomy and cold Amsterdam, mostly vacationing in the
sunny south of France. Yet he bravely tried to master the Dutch language, making
himself rather infamous by pronouncing his title of King of Holland consistently as
something that translates into English as ‘rabbit of Olland’.

The Academy was founded along the French model as the Royal Institute of
Science, Letters and Fine Arts. Painters, writers and composers were elected among
its first members. Ludwig van Beethoven was a foreign member, as was the French
painter Jacques-Louis David. The magnificent 17th century lodgings of theAcademy,
the Trippenhuis in the historic centre of Amsterdam also known as the small Royal
Palace, was for a long time home to the Rijksmuseum. Rembrandt’s masterpiece
‘de Nachtwacht’, that has just materialized before your eyes, was for many years
exhibited in our Great Hall. But both the artists and the paintings left the Academy
in 1851 when our government in the spirit of that time judged them of little practical
use for science.
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The Rembrandt Nightwatch tableau with Robbert Dijkgraaf addressing the audience

In the early nineteenth century the bond between science and art was thought to
be much more self-evident, although one can wonder for the right reasons. In these
days it was argued that scientists should be foremost eloquent and artists should be
learned and academic. That attitude was demonstrated by one of the founding fathers
of the Royal Academy, the mathematician Jan Hendrik van Swinden, professor at the
University of Amsterdam and chair of the international committee defining the metric
units, in which capacity he addressed the National Congress in Paris on the 4th of
July 1799. He was eloquent in both old and new languages, always speaking with
the required ‘genteel appearance and civilized posture’ and ‘without a single letter in
writing before him.’

That not all mathematicians could rise to the standard of Van Swinden, now
and two hundred years ago, becomes clear from a contemporary description of a
mathematician as in general ‘stiff, dull, pale and drawn, also in domestic circles,
where even the gentle words of a loving spouse or the flattering of precious children
could not bring life into his frigid countenance.’ ‘The mathematician views a lovely
landscape with the cold eyes of a land surveyor.’

Ladies and Gentlemen, the last time that the Netherlands saw such a distinguished
gathering of mathematicians was the year 1954 when Amsterdam hosted the Inter-
national Congress of Mathematicians. I am happy to see quite a few distinguished
guests present today who attended that Congress as students or young and upcoming
professors. This reminds us of the strong historical bonds in mathematics, where
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only a few degrees of separation connect us all to the grand historical figures. For ex-
ample, Sir Michael Atiyah recently told me how the ICM in Amsterdam was his first
visit abroad as a graduate student and how at that time he was looking forward with
great expectations to hear the lectures of Hermann Weyl and John von Neumann. His
fellow student at that time, Sir Roger Penrose attended, as many other participants,
a reception in the Stedelijk Museum where a small exhibition was organized around
an unknown Dutch graphic artist by the name of M. C. Escher. As one says: the
rest is history. Penrose subsequently wrote a paper with his father, the distinguished
geneticist Lionel Penrose, introducing Escher’s impossible figures to the world. One
of the remarkable side-effects of the ICM has been the interactions between Escher
and mathematicians from all over the world leading to many new pieces of art and
many new mathematical ideas.

Ladies and Gentlemen, the ECM is a wonderful initiative of the European Mathe-
matical Society that brings the best of mathematics together. Viewed from a historical
perspective this Congress is a remarkable illustration of the rapid growth of mathe-
matics, the diverse spectrum of interactions touching more and more fields in science
and applications in society. At the same time it is a testament to the unity of mathe-
matics. The Dutch mathematical community has to be praised for their efforts to host
this prestigious congress and for carrying a large share of the financial burden. The
unity of mathematics is further enhanced by the incorporation of the Dutch Math-
ematical Congress within the ECM, this despite the earlier Dutch rejection of the
European constitution. Indeed, this congress reminds us of the special role of the
Netherlands and Amsterdam through the centuries as a place of scientific diplomacy
and cooperation, both within Europe and the world.

With these thoughts I am happy to give the word to the President of the European
Mathematical Society, Professor Ari Laptev.

Thank you and enjoy these days in Amsterdam.

Welcome Address by Ari Laptev, President of the European Mathe-
matical Society

Ladies and gentlemen,
It is a great pleasure for me to welcome you all to the Fifth European Congress

of Mathematics here in this culturally rich city of Amsterdam and I am delighted to
see so many participants.

The Programme Committee has worked hard to provide us with an exciting week
of distinguished lectures that I am sure we will find stimulating, challenging and
enjoyable.

The 5th European Congress of Mathematics is, without doubt, the main mathe-
matical event of the year 2008. It enables mathematicians from all over the world
to meet their fellow colleagues, some of whom they might otherwise never have the
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chance to meet. Such Congresses also provide opportunities for interaction between
different areas of mathematics which often leads to new exciting development of
sometimes completely new areas of mathematics.

Mathematics is a very dynamic subject that has a growing number of applications
in both traditional and new areas such as environmental science, biology, medicine,
finances and telecommunication. The present impressive technological development
is unthinkable without the new discoveries in Mathematics made during the last
decades.

The European Mathematical Society, founded in 1990, together with the National
European Mathematical Societies play an increasingly important role in promoting
Mathematical Science in Europe.

In a few moments the names of the ten EMS Prize Winners will be announced.
These brilliant young European mathematicians have already made substantial con-
tributions in different areas of our beautiful subject and we thank the Prize Committee
for their excellent choices.

Finally on behalf of all the Congress participants I would like to congratulate the
5ECM organizers on their committed work and for making this event possible.

And lastly I would like to express our gratitude to all the sponsors without whom
this Congress would not be possible. We are very grateful to all funding agencies
supporting the Congress, in particular, the Royal Dutch Mathematical Society for
their involvement in organizing this event.



Prize Ceremony

Ten EMS prizes were awarded during 5ECM by the European Mathematical Society
in recognition of distinguished contributions in Mathematics by young researchers not
older than 35 years. The EMS prizes are presented every four years at the European
Congress of Mathematics.

The Prize Committee was appointed by the EMS and consisted of fifteen recog-
nized mathematicians from a wide variety of fields (listed in the section Commit-
tees). The prizes were first awarded in Paris in 1992, followed by Budapest in 1996,
Barcelona in 2000, and Stockholm in 2004. During 5ECM in Amsterdam, the prizes
were awarded after the Opening Ceremony on July 14, 2008. Each prize winner
received 5,000 Euro.

The prize money for the EMS Prizes was generously made available by the Dutch
Foundation Compositio Mathematica.

The Felix Klein Prize has been established by the European Mathematical Society
and the endowing organization: the Institute for Industrial Mathematics in Kaiser-
slautern. It is awarded to a young scientist or a small group of young scientists
(normally under the age of 38) for using sophisticated methods to give an outstanding
solution to a concrete and difficult industrial problem, which meets with the com-
plete satisfaction of industry. The Prize is presented every four years at the European
Congress of Mathematics. The prize committee consisted of six members appointed
by agreement of the EMS and the Institute for Industrial Mathematics in Kaiser-
slautern (listed in the section Committees). The first prize was presented at 3ECM
in Barcelona to David C. Dobson. During 4ECM in Stockholm, no Felix Klein Prize
was awarded.

The eleven Prize Winners are listed below. Two of the EMS Prize winners, Artur
Avila and Laure Saint-Raymond, were invited by the 5ECM Scientific Committee to
present an Invited Lecture, before they were selected as Prize Winner by the Prize
Committee.

The Prize Ceremony during 5ECM was chaired by the Chair of the EMS prize
Committee Rob Tijdeman.



The Prize Winners

Artur Avila

Full name: Artur Avila Cordeiro de Melo,
born: June 29, 1979; citizenship: Brazilian;
Ph.D.: IMPA Rio de Janeiro, Brazil; presently:
Clay Mathematics Institute, Paris 6, France and
IMPA, Rio de Janeiro, Brazil.

Artur Avila has obtained many important results in dynamical systems, especially in
the theory of iterated rational maps and the Teichmüller geodesic flow. Several of
them provide the final solution to longstanding and major problems, for example: his
proof with Lyubich that there are infinitely renormalizable Julia sets in the quadratic
family f .z/ D z2 C c with Hausdorff dimension strictly less than 2, his proof with
Jitomirskaya of the “ten Martini Conjecture” of B. Simon, his proof with Viana of
the Kontsevich–Zorich conjecture on simplicity of the Lyapunov spectrum for the
Teichmüller geodesic flow, his proof with Forni that almost every interval exchange
which does not have the combinatorics of a rotation is weakly mixing and his proof
with Gouëzel and Yoccoz of exponential mixing for the Teichmüller flow. He is
internationally recognized as a leader of research in these areas.

Alexei Borodin

Born: June 25, 1975; citizenship Russian;
Ph.D.: University of Pennsylvania, U.S.A.
2001; presently: CalTech, Pasadena, U.S.A.

Alexei Borodin has made substantial contributions to the representation theory of
“big” groups, to combinatorics, interacting particle systems and random matrix the-
ory. A key observation of Borodin and Olshanski in the representation theory of big
groups is that the irreducible characters for the group are associated with stochastic
point processes. Borodin found a determinantal formula for the correlation functions
of the so-called generalized regular representation of the infinite symmetric group
and, with Olshanski, also of the unitary group. A stunning consequence of his work
is one of the first proofs of a conjecture of Baik, Deift and Johansson in Combina-
torics. In later work Borodin analyzed the irreducible character associated with the
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generalized regular representation. Borodin and his collaborators also developed a
radical new approach for analyzing totally antisymmetric simple exclusion processes.
Equally remarkable is his work on isomonodromy transformations of linear systems
of difference equations and his solution of a problem of Widom on the spectrum of
some matrix. Borodin is a brilliant mathematician.

Ben Green

Full name: Ben Joseph Green, born: February
27, 1977; citizenship: British; Ph.D.: Univer-
sity of Cambridge, 2002; presently University
of Cambridge, England.

Ben Green is best known for his celebrated result with Terence Tao that there exist
arbitrarily long arithmetic progressions of primes. Some basic ideas for the proof
can already be found in the earlier work of Green. Therein he proved that every
relative dense subset of the primes contains an arithmetic progression of length 3. In
another paper he improved a result of Bourgain on the sumset of two dense subsets
of an interval. Where Bourgain obtained a lower bound 1/3 in the exponent and
Ruzsa an upper bound 2/3, Green got a lower bound 1/2. One of the essential steps
in the proof of the famous result with Tao is the discovery by Green that the work
of Goldston and Yildirim on short intervals between primes provided precisely the
“random-like” superset of the primes that they needed. After their proof Green and
Tao have continued their investigations. This has allowed them to give an asymptotic
for how many progressions of length 4 there are in the primes up toN . By now Green
has a string of highly impressive results.

Olga Holtz

Name: Olga V. Holtz; born: August 19, 1973;
citizenship: Russian; Ph.D.: University of
Wisconsin-Madison, 2000; presently: Tech-
nische Universität Berlin, Germany, and Uni-
versity of California-Berkeley, U.S.A.

Olga Holtz has made substantial contributions to several mathematical areas including
algebra, numerical linear algebra, approximation theory, theoretical computer science
and numerical analysis. Some of these are spectacular results such as the proof of the
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Newton inequalities forM -matrices, the fundamental work on accurately evaluating
polynomials in finite arithmetic and the proof that all group theory based fast matrix
multiplication methods are numerically stable. These are not only very strong results
in theoretical computer science that may have a fundamental impact on computational
methods of the coming years, but they also required very deep mathematical theory in
the context of finite group theory. Her new work on zonotopal algebra is a substantial
contribution to combinatorial commutative algebra. Olga Holtz is a mathematician
who truly transcends the traditional boundaries of applied versus pure mathematics.

Bo’az Klartag

Born: April 25, 1978; citizenship: Israeli;
Ph.D.: Tel-Aviv University, 2004; presently:
Clay Mathematics Institute, Princeton Univer-
sity, U.S.A.

Bo’az Klartag’s main achievements are in Asymptotic Geometric Analysis. He has
solved a number of long standing problems in this field. He broke the record on the
minimum number of symmetrization steps of convex bodies required to transform
them into near balls, thereby solving problems posed by Hadwiger and Bourgain–
Lindenstrauss–Milman. He solved the isomorphic version of a slicing problem posed
by Bourgain 20 years ago, exhibiting novel ideological and technical ideas. This work
has a strong impact on Functional Analysis. He proved a central limit theorem for
convex bodies, a beautiful result bringing, in a novel way ideas of Convex Geometry
into Probability Theory. With Feffermann he solved a fundamental problem on op-
timal extrapolation of smooth functions. Bo’az Klartag is a surprisingly productive
young mathematician who has succeeded, in a very short time, to make breakthroughs
in a number of different directions of major significance in modern analysis.
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Alexander Kuznetsov

Born: November 1, 1973; citizenship: Rus-
sian; Ph.D.: Moscow State University, 1998;
presently: Steklov Mathematical Institute,
Moscow, Russia.

Kuznetsov has made fundamental contributions to birational projective geometry, rep-
resentation theory, mathematical physics, homological algebra, and non-commutative
geometry. A trademark of his work is the blend of his ground-breaking ideas and tech-
nical sophistication. His work on birational projective geometry includes theories of
homological Lefschetz decompositions, homological projective duality and categor-
ical resolutions of singularities. Kuznetsov boldly and innovatively combines several
ideas ranging from very classical algebraic geometry such as Mori’s Minimal Model
Program to such hot topics as Kontsevich’s Homological Mirror Symmetry Program.
His techniques can be used in situations where the conventional constructions do
not apply and thus extend the range of birational projective geometry considerably.
Kuznetsov’s work is a great source of inspiration.

Assaf Naor

Born: May 7, 1975; citizenship: Czech/Israeli;
Ph.D.: Hebrew University, Jerusalem, Israel;
presently Courant Institute, New York, U.S.A.

Assaf Naor has made ground-breaking contributions to three mathematical fields:
functional analysis, the theory of algorithms and combinatorics. Naor is the leading
architect of the modern theory of non-linear functional analysis: a theory that has
taken off in recent years and has become an essential tool in mathematical computer
science. Among other things, Naor and a variety of collaborators discovered an
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unpredicted threshold phenomenon in the non-linear Dvoretzky Theorem, found a
non-linear analogue of the cotype invariant and proved a sophisticated non-linear
analogue of the celebrated Maurey–Pisier Theorem. Naor’s work has led to essentially
optimal embeddings of finite subsets of L1 into Hilbert space and thence, the best
available polynomial time approximation algorithm to compute the sparsest cut in a
network with several commodities. Assaf Naor’s versatility, originality and technical
power are overwhelming and his work has a profound influence on functional analysis
and mathematical computer science.

Laure Saint-Raymond

Born: August 4, 1975, citizenship: French;
Ph.D.: ParisVII, France, 2000; presently: ENS
Paris, France.

Laure Saint-Raymond is well known for her outstanding results on nonlinear partial
differential equations in the dynamics of gases and plasmas and also in fluid dynamics.
Her most striking work concerns the study of the hydrodynamic limits of the equation
of Boltzmann in the kinetic theory of gases, where she answered a question posed by
Riemann within the framework of his 6th problem. Recently, in collaboration with
I. Gallagher, she aims at understanding the equations of rotating fluids within the
limit where the number of Rossby tends to 0. They have already obtained surprising
results in this direction. At 32 years, Laure Saint-Raymond is at the origin of several
outstanding and difficult results in the field of nonlinear partial differential equations
of mathematical physics. She is one of the most brilliant young mathematicians in
her generation.

Agata Smoktunowicz

Born: October 12, 1973; citizenship: Polish;
Ph.D.: PAN, Warsaw, Poland; presently: Uni-
versity of Edinburgh, Scotland and Institute of
Mathematics of the PolishAcademy of Sciences.



The Prize Winners xxv

Agata Smoktunowicz has solved a number of outstanding problems in noncommu-
tative algebra. She has made the first significant progress for decades on some fun-
damental problems concerning nil rings. The most spectacular of these results is the
construction, over any countable field, of a simple nil algebra. This solves a famous
problem of Levitsky, Jacobson and later Kaplansky from around 1970. This work
is a technical tour-de-force. Other outstanding problems she has solved include an
answer to a problem about polynomial rings over nil rings first asked by Amitsur
in 1971, the proof of the Artin–Stafford Gap Theorem for graded domains, and the
first examples of finitely generated nil, but not nilpotent algebras with polynomially
bounded growth. In all her work, Smoktunowicz has introduced novel techniques
and constructions and she displays a great ability to deal with long, difficult and
technically demanding calculations.

Cédric Villani

Born: October 5, 1973; citizenship: French;
Ph.D.: ENS, Paris, France, 1998; presently:
ENS Lyon, France.

Cédric Villani has contributed to the theory of non-equilibrium statistical mechanics,
in particular in connection with the Boltzmann equation and the Landau equation in
plasma physics. He proved the Cercignani conjecture and obtained with Desvillettes
the first convergence result to a global gaussian equilibrium for the Boltzmann equa-
tion without any smallness assumption. A second component of Villani’s work is at
a crosspoint between probability, functional analysis, partial differential equations,
differential and Riemannian geometries. With Otto he studied the link between dif-
fusion equations, Talagrand inequalities and logarithmic Sobolev inequalities. More
recently, Lott and Villani obtained a new characterization of Riemannian manifolds
with bounded Ricci curvature from below, in terms of convexity of the Boltzmann
entropy with respect to optimal transportation (Monge–Kantorovich–Wasserstein)
metrics. By his way of looking at problems Villani has inspired many.
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Josselin Garnier, the Felix Klein Prize
Winner

Born: June 18, 1971; citizenship: French;
Ph.D.: École Polytechnique, 1996; presently:
Université Paris 7.

Josselin Garnier was appointed associate Professor in Mathematics in Toulouse at the
(remarkably young) age of 30, and he joined the Université Paris Diderot (Paris 7) in
2005, where he became a full professor in 2007. He is affiliated to the Laboratoire
de Probabilités et Modèles Aléatoires and the Laboratoire Jacques Louis Lions. He
is also a scientific consultant at the Nuclear Energy Agency (CEA), he has a number
of research contracts with many teams of CEA, with the French Electric Company
(EDF), and with the European Aeronautic Defence and Space company (EADS). In
2006, he has been one of the organizers (with Guillaume Bal and Didier Lucor) of
the CERMRACS summer activity of SMAI that aims at promoting the collaboration
between academic and industrial mathematicians on dedicated problems.

His research is at the interface of stochastics and applied analysis, and the fields
of applications are mainly in optics, wave propagation and plasma physics. He
is a leading scientist dealing with probabilistic aspects in the framework of partial
differential equations and he has shown his ability to apply powerful theoretical tools
to deal with real industrial problems.

Josselin Garnier has both an impressive academic curriculum (wave propagation
in random medium where a recent breakthrough is the analysis of time reversal of the
wave when the medium is randomly layered, first proof of the existence of solitons
in random media with qualitative and quantitative information, analysis of Bose–
Einstein condensates...) where he has published numerous high level publications in
international scientific journals both in the mathematical area and in applied physics
area but he is also deeply involved in real applications (new techniques in imaging for
the detection of buried objects, telecommunication for comparison of signal-to-noise
ratio and signal-to-interference ratio for various protocols in wireless communication,
design of the target in the Laser Mega Joule experimental device in the framework
of Inertial Confinement Fusion, problems in aeronautics where for acoustic prob-
lems, electromagnetic compatibility analysis, design of antennas.... the industrial
conception has to incorporate now Random modeling and uncertainty management).
Finally he knows very well the state-of-the-art about most of the numerical methods
in Computational Fluid Dynamics and he can provide very useful orientations for
robust simulations of these problems.
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Plenary Lectures

Luigi Ambrosio Optimal transportation and evolution problems
in spaces of probability measures

Christine Bernardi From a posteriori analysis to automatic modelling

Jean Bourgain New developments in arithmetic combinatorics

Jean-François Le Gall The continuous limit of large random planar maps

François Loeser The geometry behind non-archimedean integrals

László Lovász Very large graphs

Matilde Marcolli Renormalization, Galois symmetries and motives
Felix Otto Pattern formation and partial differential

equations

Nicolai Reshetikhin Topological quantum field theory: 20 years later

Richard Taylor The Sato–Tate conjecture

Science Lectures

J. Ignacio Cirac Quantum information theory: applications and
challenges

Tim Palmer Climate change and the trillion-dollar
millenium mathematics

Jonathan Sherratt Periodic travelling waves in field vole
populations

Invited Lectures

Nalini Anantharaman Entropy and localization of eigenfunctions

Christoph Böhm Ricci flow in higher dimensions

Annalisa Buffa On the discretization of differential forms

José Antonio Carrillo The Patlak–Keller–Segel model: free energies,
geometric inequalities

Nils Dencker The solvability of differential equations

Bas Edixhoven On the computation of the coefficients of
modular forms

Manfred Einsiedler Spectral gap and effective equidistribution
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László Erdös Derivation of the Gross–Pitaevskii equation for the
dynamics of the Bose–Einstein condensate

Nicola Fusco The sharp Sobolev inequality in quantitative form

Søren Galatius Homotopy theory and automorphism groups

Dmitry Kaledin Motivic structures in non-commutative geometry

Nikita Karpenko Essential dimension of finite p-groups

Arno Kuijlaars Critical phenomena in random matrix theory

Miklós Laczkovich Whitney constants, twisted sums, and the difference
property

Michel Ledoux Markov operators, classical orthogonal polynomial,
ensembles and random matrices

Wolfgang Lück Topological rigidity of aspherical manifolds

Yvan Martel Inelastic collision of two solitons for nonintegrable
gKdV equations

Sergei Merkulov Wheeled pro(p)file of Batalin–Vilkovisky formalism
and BF theory of unimodular Poisson structures

Ralf Meyer Equivariant non-commutative topology

Oleg Musin Positive definite functions in distance geometry

Nikolai Nadirashvili Singular solutions to fully nonlinear
elliptic equations

Jaroslav Nešetřil From sparse to nowhere dense structures: dualities
and first order properties

Yuval Peres Internal aggregation with multiple sources

Christoph Schweigert Bundle gerbes and surface holonomy

H. Mete Soner Nonlinear parabolic PDEs and pricing intervals

Balázs Szegedy Non-standard methods, regularity and the
completion of hyper-graphs

Constantin Teleman Topological field theories in 2 dimensions

Ana Vargas Bilinear restriction theorems and applications
to dispersive equations

Frank Wagner Geometric model theory

Reinhard Werner Locality and unitarity in the structure of quantum
cellular automata

Andreas Winter High dimensional geometry in quantum information

Ragnar Winther Finite element exterior calculus – a link between
algebraic topology and numerical analysis

Stanislaw Woronowicz The trace formula for Haar weight on locally
compact quantum groups
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Prize Winner Lectures

Artur Avila Dynamics of quasiperiodic cocycles and the
spectrum of the almost Mathieu operator

Alexei Borodin Random surfaces in dimensions two, three, and four

Ben Green Patterns of primes

Olga Holtz Complexity and stability of linear problems

Bo’az Klartag High-dimensional distributions with convexity
properties

Alexander Kuznetsov Derived categories and rationality of cubic fourfolds

Assaf Naor The story of the sparsest cut problem

Laure Saint-Raymond Some results about the sixth problem of Hilbert

Agata Smoktunowicz On some open questions in noncommutative
ring theory

Cédric Villani Optimal transport and Riemannian geometry:
Monge meets Riemann

Josselin Garnier Passive sensor imaging using cross correlations
of noisy signals

Round Table on Industrial Mathematics

Wim Mulder The seismic inverse problem

Valtteri Niemi Mathematics in mobile communications

Wil Schilders Mathematics in the electronics industry, and in
industry as a whole

Gerrit T. Timmer Applied mathematics at work: lessons learned in
25 years at ORTEC

Round Table on Mathematics and Developing Countries
(moderators: Andreas Griewank, Tsou Sheung Tsun)

This round table discussion was organised as a follow up to one on “Developing
Mathematics in the Developing World” held at ICIAM07. While the previous event
had a global scope, this one has focused on developing mathematics in Africa. Apart
from the moderators the panel included Wandera Ogana (Kenya), Laura Pauline Fotso
(Cameroon), Gareth Whitten (South Africa), Leif Abrahamsson (Uppsala Univer-
sity), Paulus Gerdes (Mocambique), Mohamed Jaoua (Nice) and Bernard Philippe
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(Rennes). They are all actively involved in several development activities and orga-
nizations.

Each of the panelists spoke for about 10 minutes, followed by a discussion among
and between themselves and the audience on the following topics: Status quo of
mathematics in statistical terms; Challenges with the development of advanced Cen-
tres of Excellence; Barriers: political, economical, and cultural; Remedies: “Twin-
ning” of departments from developing countries with departments from the developed
countries; Strategies to persuade African governments to support the development of
mathematics in their countries.

Special Lectures

Dan Bernstein Edwards curves (Beeger Lecture)

Dirk van Dalen Brouwer’s revolution – a century later

Phillip Griffiths Complex algebraic geometry (Brouwer Lecture)

Philips PhD Prize Lectures

Stefanie Donauer Infinitely many unobservable data – asymptotics
in deconvolution problems

Willemien Ekkelkamp Predicting the sieving effort for the number field

sieve factorization method

Robbert de Haan More efficient cryptography from error
correcting codes

Erik Jan van Leeuwen Geometric optimization for wireless networks
and computational biology

Arjen Stolk An algebraic approach to discrete tomography

Yana Volkovich Probabilistic analysis of web ranking

Minisymposia

Advances in Variational Evolution (org.: Alexander Mielke, Ulisse Stefanelli)

Yann Brenier A non-convex gradient flow structure for mass transport,
convection and magnetic relaxation

Nassif Ghoussoub Navier–Stokes evolutions as self-dual variational problems

Giuseppe Savaré Gradient flows and diffusion in metric spaces under lower
curvature bounds
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Ulisse Stefanelli The weighted-energy-dissipation functional

Algebra and Optimization (org.: Jan Draisma, Monique Laurant)

Harm Derksen G-invariant tensors

Marie-Françoise Roy Certificates of positivity in the Bernstein’s basis
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inequalities?

Frank Vallentin Semidefinite programming bounds

Applications of Noncommutative Geometry
(org.: Gunther Cornelissen, Klaas Landsman)

Caterina Consani Noncommutative geometry and motives

Yuri Manin An update on real multiplication

Pedro Resende Noncommutative geometry and Bohr’s doctrine of
classical concepts

Walter van Suijlekom On the geometry of noncommutative gauge fields

Applied Algebraic Topology (org.: Michael Farber)

Yuliy Baryshnikov Enumeration in sensor networks and integrals with
respect to Euler characteristics

Gunnar Carlsson Persistent topology and data

Konstantin Mischaikow Databases for global nonlinear dynamics

Marian Mrozek Reduction homology algorithms

Shmuel Weinberger A topological view of unsupervised learning from
noisy data

Combinatorics of Hard Problems (org.: Josep Diaz, Oriol Serra, Jaroslav Nešetřil)

Jiří Matoušek Low-distortion embeddings in Rd

Colin McDiarmid Random graphs from a minor-closed class

Marc Noy Enumeration of planar graphs and related families of graphs

Vera T. Sós Convergence of dense graph sequences

Coupled Cell Networks (org.: Peter Ashwin, Ana Dias, Jeroen Lamb)

Konstantinos Efstathiou Unstable attractors and heteroclinic cycles in pulse
coupled networks with delay
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Michael Field Global dynamics and heteroclinic cycles in coupled
cell systems

Hiroshi Kori Synchronization engineering via global delayed
nonlinear feedback

Oleksandr V. Popovych Decoupling of oscillatory ensembles by mixed
nonlinear delayed feedback

Eric Shea-Brown Reliable and unreliable dynamics in driven oscillator
networks
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(org.: Andrew Comech, Alexander Komech)

Vladimir Buslaev Generic scenario of the scattering for nonlinear
wave equations

Andrew Comech Global attraction to solitary waves in models based on the
Klein–Gordon equation

Scipio Cuccagna On asymptotic stability of standing waves of
nonlinear Schrödinger equations

Elena Kopylova Scattering of solitons for the Schrödinger equation coupled
to a particle

Markus Kunze Radiation in classical particle systems

A. E. Merzon On scattering states in the nonlinear Lamb system

David Stuart Vortices in a Chern–Simons–Schrödinger system
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Uniqueness of bounded solutions to aggregation equations
by optimal transport methods

José A. Carrillo and Jesús Rosado

Abstract. We show how to extend the method used in [22] to prove uniqueness of solutions to
a family of several nonlocal equations containing aggregation terms and aggregation/diffusion
competition. They contain several mathematical biology models proposed in macroscopic de-
scriptions of swarming and chemotaxis for the evolution of mass densities of individuals or
cells. Uniqueness is shown for bounded nonnegative mass-preserving weak solutions without
diffusion. In diffusive cases, we use a coupling method [16], [33], and thus we need a stochastic
representation of the solution to hold. In summary, our results show, modulo certain technical
hypotheses, that nonnegative mass-preserving solutions remain unique as long as theirL1-norm
is controlled in time.

Mathematics Subject Classification (2000). 35A02.

Keywords. Optimal transport, uniqueness, aggregation equation.

1. Introduction

We aim to study the uniqueness of solutions to continuity equations evolving a non-
negative density �.t; x/ at position x 2 RN and time t > 0 by the equation

8̂ˆ̂̂<
ˆ̂̂̂:

@�

@t
.t; x/C div Œ�.t; x/u.t; x/� D 0; t > 0; x 2 RN ;

u.t; x/ WD �rK � �.t; x/; t > 0; x 2 RN ;

�.0; x/ D �0.x/ � 0; x 2 RN ;

(1.1)

where u.t; x/ WD �rK � �.t; x/ is the velocity field. We will also deal with this
uniqueness issue for the associated equations in which a linear diffusion term is added,
i.e., 8̂<

:̂
@�

@t
.t; x/C div Œ�.t; x/u.t; x/� D ��; t > 0; x 2 RN ;

�.0; x/ D �0.x/ � 0; x 2 RN :

(1.2)
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The initial data is assumed to have total finite mass, �0 2 L1.RN /. Moreover, since
solutions of (1.1) formally preserves the total mass of the systemZ

RN
�.t; x/ dx D

Z
RN

�0.y/ dy WDM; (1.3)

we can assume, without loss of generality, that we work with probability measures,
i.e., M D 1, by suitable scalings of the equation. A further assumption that will be
made through this work is the boundedness of the initial data, i.e., �0 2 L1.RN /.

This kind of nonlocal interaction equations have been proposed as models for
velocity distributions of inelastic colliding particles [3], [4], [31], [14], [15]. Here,
typical interaction kernels K.x/ are convex and increasing algebraically at infinity.
Convexity gives rates of expansion/contraction of distances between solutions, see
also [1], and thus uniqueness.

Another source of these models is in the field of collective animal behavior. One
of the mathematical problems arising there is the analysis of the long time behavior of
a collection of self-interacting individuals via pairwise potentials leading to patterns
such as flocks, schools or swarms formed by insects, fishes and birds. The simplest
models based on ODE/SDEs systems, for instance [10], [27], led to continuum de-
scriptions [13], [12], [29], [30] for the evolution of densities of individuals. Here, one
of the typical potentials used is the Morse potential, which is radial K.x/ D k.jxj/
and given by

k.r/ D �Cae�r=`a C Cre�r=`r ; (1.4)

with Ca, Cr attractive and repulsive strengths and `a, `r their respective length
scales. Typically, these interaction potentials are not convex, and they are composed
of an attraction part usually in a certain annular region and a repulsive region closed
to the origin while the interaction gets asymptotically zero for large distances, see
[12]. Global existence and uniqueness of weak solutions in Sobolev spaces when
the potential is well-behaved and smooth, say K 2 C 2.RN / with bounded second
derivatives, were established in [29], [21]. Uniqueness results in the smooth potential
case also follow from the general theory developed in [1] as used in [13].

One of the interesting mathematical difficulties in these problems relates to the
case of only attractive potentials with a Lipschitz point at the origin as the Morse
potential with Cr D 0. In this particular case, finite time blow-up for L1 � L1
solutions have been proved for compactly supported initial data, see [21], [6], [5], [7]
for a series of results in this direction. In this particular case, a result of uniqueness of
L1 � L1 solutions under some additional technical hypotheses was obtained in [5]
inspired by ideas from 2D-incompressible Euler equations in fluid mechanics [34].

Finally, another source of problems of this form is the so-called Patlak–Keller–
Segel (PKS) model [28], [20] for chemotaxis in the parabolic–elliptic approximation.
This equation corresponds to the case in which the potential is the fundamental so-
lution of the operator �� in any dimension. Originally, this model was written in
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two dimensions with linear diffusion, see [18], [9], [8] for a state of the art in two
dimensions and [17] in larger dimensions. Therefore, in the rest we will refer to as
“PKS equation without diffusion” and the “PKS equation”, respectively. In the case
without diffusion, it is known that bounded solutions will exist locally in time and that
smooth fast-decaying solutions cannot exist globally. In the classical PKS system
in 2D dimensions, the mass is a critical quantity and thus there are global solutions
below a critical mass and local in time solutions that may blow-up in time for mass
values larger than the critical one. In more dimensions, this dichotomy is not so well
known and there are criteria for both situations.

Here, we will essentially work with the three type of interaction potentials above:
bounded second derivatives, pointy potentials and Poisson kernels, to show unique-
ness of bounded weak solutions on a given time interval Œ0; T �. The idea is based
on G. Loeper’s work [22] who showed the uniqueness of bounded weak solutions
for the Vlasov–Poisson system and the 2D-incompressible Euler equations using as
“distance” an estimate on the Euclidean optimal transport distance between proba-
bility measures. We handle the case without diffusion in the next section. Finally,
in Section 3 we present the adaptation of this idea using a coupling method ([16],
[33]) to the case with diffusion by assuming that we have an stochastic representation
formula.

2. Uniqueness for aggregation equations

2.1. Notion of solution. Let us start by working with the continuity equation (1.1)
with a given velocity field u W Œ0; T � � RN ! RN . The continuity equation comes
from the assumption that the mass density of individuals in a set is preserved by the
flow map or characteristics associated to the ODE system determined by

8̂<
:̂
dX.t; ˛/

dt
D u.t; X.t; ˛//; t � 0;

X.0; ˛/ D ˛; ˛ 2 RN :

Let us assume that the given velocity field u is such that the solutions to the ODE
system are globally defined in Œ0; T � and unique. Moreover, let us assume that the
flow map X.t/ W RN ! RN for all t � 0 associated to the velocity field u.t; x/,
X.t/.˛/ WD X.t; ˛/ for all ˛ 2 RN , is a family of homeomorphisms from RN onto
RN . Typically in our cases, u 2 C.Œ0; T � � RN IRN / and is either Lipschitz or
Log-Lipschitz in space, which implies the above statements on the ODE system, see
for instance [23], [24].

Given � 2 Cw.Œ0; T �; L1C.RN //, we will say that it is a distributional solution
to the continuity equation (1.1) with the given velocity field u and initial data �0 2
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L1C.RN /, if it verifies

Z T

0

Z
RN

�
@'

@t
.t; x/C u.t; x/ � r'.t; x/

�
�.t; x/ dx dt D

Z
RN

'.0; x/�0.x/ dx

for all ' 2 C1
0 .Œ0; T / � RN //. Here, the symbol Cw means continuity with the

weak-* topology of measures. Let us point out that under the above hypotheses the
term .u � r'/� makes perfect sense as duality L1 � L1.

In fact, the distributional solution of the continuity equation with initial data
�0 2 L1C.RN / is uniquely characterized by

Z
B

�.t; x/ dx D
Z
X.t/�1.B/

�0.x/ dx

for any measurable set B � RN , see [1]. In the optimal transport terminology, this
is equivalent to saying that X.t/ transports the measure �0 onto �.t/ and we denote
it by �.t/ D X.t/ # �0 defined by

Z
RN

�.x/�.t; x/ dx D
Z

RN
�.X.t; x//�0.x/ dx for all � 2 C0b .R

N / : (2.1)

With these ingredients, we can define the notion of solution for which we will
prove its uniqueness.

Definition 2.1. A function � is a bounded weak solution of (1.1) on [0,T] for a
nonnegative initial data �0 2 L1.RN / if it satisfies the following conditions.

(1) � 2 Cw.Œ0; T �; L1C.RN //.
(2) The solutions of the ODE system X 0.t; ˛/ D u.t; X.t; ˛// with the velocity

field u.t; x/ WD �rK ��.t; x/ are uniquely defined in Œ0; T � for any initial data
˛ 2 RN .

(3) �.t/ D X.t/ # �0 is the unique distributional solution to the continuity equation
with given velocity field u.

(4) � 2 L1.0; T IL1.RN //.

Remark 2.2. (1) Let us point out that even if the solution to the continuity equation
with given velocity field u is unique, the uniqueness issue for (1.1) is not settled due
to the nonlinear coupling through u D �rK � �.

(2) In order to show that bounded weak solutions exist, one usually needs more
assumptions on the initial data depending on the particular choices of the kernel K.
Typically for initial data �0 2 L1C \ L1.RN /, we will have a time T > 0 possibly
depending on the initial data and a bounded weak solution on the time interval Œ0; T �.
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2.2. Ingredients about optimal transport. Given two probability measures �1 and
�2 with bounded second moment, the Euclidean Wasserstein Distance is defined as

W2.�1; �2/ D inf
…2�

²“
RN�RN

jx � yj2 d….x; y/

³1=2
(2.2)

where … runs over the set of transference plans � , that is, the set of joint probability
measures on RN �RN with marginals �1 and �2, i.e.,“

RN�RN
'.x/ d….x; y/ D

Z
RN

'.x/ �1.x/ dx

and “
RN�RN

'.y/ d….x; y/ D
Z

RN
'.y/ �2.y/ dy

for all ' 2 Cb.RN /, the set of continuous and bounded functions on RN .

Remark 2.3. As it will be used below, given two maps X1; X2 W RN ! RN and a
given probability measure with bounded second moment �0, then

W 2
2 .X1 # �0; X2 # �0/ �

Z
RN
jX1.x/ �X2.x/j2d�0.x/

just by using … D .X1 �X2/ # �0 in the definition of the distance W2.

First we recall a result, already used in [22], for estimating the displacement
interpolation between two absolutely continuous measures �1 and �2 with respect to
Lebesgue. Let us define the displacement interpolation between these measures as

�� D ..� � 1/T C .2 � �/IRN /#�1 (2.3)

for � 2 Œ1; 2�, where T is the optimal transport map between �1 and �2 due to
Brenier’s theorem [11] and IRN is the identity map.

Theorem 2.4 ([2], [25], [19], [1]). Let �1 and �2 be two probability measures on
RN , such that they are absolutely continuous with respect to the Lebesgue measure
andW2.�1; �2/ <1. Then there exists a vector field �� 2 L2.RN ; �� dx/ such that

i.
d

d�
�� C div.���� / D 0 for all � 2 Œ1; 2�.

ii.
Z

RN
�� j�� j2 dx D W 2

2 .�1; �2/ for all � 2 Œ1; 2�.
iii. We have the L1-interpolation estimate

k��kL1.RN / � max
˚k�1kL1.RN /; k�2kL1.RN /

�
for all � 2 Œ1; 2�.



8 J. A. Carrillo and J. Rosado

One of the ingredients in the proof of Loeper for the Vlasov–Poisson and the 2D-
incompressible Euler equations is an interpolation estimate between the associated
Newtonian potentials.

Proposition 2.5 ([22]). Let �1 and �2 be two probability measures on RN with L1
densities with respect to the Lebesgue measure. Let ci be the solution of the Poisson
equation��ci D �i in RN given by ci D �N ��i with �N the fundamental solution
of �� in RN . Then

krc1 � rc2kL2.RN / � max.k�1kL1.RN /; k�2kL1.RN //
1=2W2.�1; �2/:

We will proceed similarly to the proof of the previous proposition to get the fol-
lowing interpolation in smoother situations where the kernel has integrable Hessian.

Proposition 2.6. Let �1 and �2 be two probability measures on RN withL1 densities
with respect to the Lebesgue measure. Let ci D K � �i with rK 2 L2.RN / and
jD2Kj 2 L1.RN /. Then

krc1 � rc2kL2.RN /
� kjD2KjkL1.RN / max.k�1kL1.RN /; k�2kL1.RN //

1=2W2.�1; �2/:

Proof. Let us first point out that rci 2 L2.RN / due to the assumption rK 2
L2.RN /. By using Theorem 2.4, we can write

krc1 � rc2k2L2.RN / D
Z

RN
jrK � .�1 � �2/ .x/j2 dx

D
Z

RN

ˇ̌ˇ̌�rK �
Z 2

1

@

@�
�� d�

�
.x/

ˇ̌ˇ̌2 dx

D
Z

RN

ˇ̌ˇ̌�rK �
Z 2

1

div.���� / d�

�
.x/

ˇ̌ˇ̌2 dx:

Applying Jensen’s inequality, integrating-by-parts and estimating the modulus and
the L2-norm of the convolution, we get

krc1 � rc2k2L2.RN / �
Z 2

1

Z
RN

ˇ̌jD2Kj � .�� j�� j/
ˇ̌2

dx d�

� k��kL1.RN /kjD2Kjk2L1.RN /
Z 2

1

Z
RN

�� j�� j2dx d�;

from which the desired inequality follows using the other information from Theo-
rem 2.4. �



Uniqueness of bounded solutions to aggregation equations by optimal transport methods 9

2.3. Uniqueness for bounded weak solutions. Let us set some notation for the rest
of this section. Let us assume that �1 and �2 are two bounded weak solutions to (1.1).
We look at the two characteristics flow maps, X1 and X2, such that �i D Xi # �0,
i D 1; 2, and provide a bound for the distance between them at time t in terms of its
distance at time t D 0.

In the following, we will address the uniqueness withu D �rK��, first providing
the details of the computation for a regular smooth kernel K 2 C 2.RN / and with
L1-bounded Hessian and then modify it in order to include a more general family
of kernels with possibly Lipschitz point at the origin, namely, for kernels with the
Hessian bounded inL1.RN /. Let us remark that the potentialK.x/ D e�jxj belongs
to this class forN � 2. Finally, we look at the Keller–Segel model without diffusion,
i.e., taking u D rc D �r�N � �. The main theorem is summarized as follows.

Theorem 2.7. Let �1, �2 be two bounded weak solutions of equation (1.1) in the
interval Œ0; T � with initial data �0 2 L1C.RN / and assume that either

� u is given by u D �rK � �, with K such that K 2 C 2.RN / and jD2Kj 2
L1.RN /; or

� u is given by u D �rK � �, with K such that rK 2 L2.RN / and jD2Kj 2
L1.RN /; or

� u D �r�N � �.
Then �1.t/ D �2.t/ for all 0 � t � T .

Idea of the proof. Given the two bounded weak solutions to (1.1), let us define the
quantity

Q.t/ WD 1

2

Z
RN
jX1.t/ �X2.t/j2�0.x/ dx; (2.4)

with Xi the flow map associated to each solution, �i .t/ D Xi # �0, i D 1; 2. Taking
into account the remarks to the definition of the W2-distance, we may conclude that
W 2
2 .�1.t/; �2.t// � 2Q.t/. It is then clear thatQ.t/ 	 0would imply that �1 D �2.

(1) Regular kernel case. In this case, the velocity field is continuous and Lipschitz
in space, therefore the characteristics are globally defined and unique. Now, by
taking the derivative of Q w.r.t. time, we get

@Q

@t
D
Z

RN
hX1 �X2; u1.x1/ � u2.x2/i�0.x/dx

D
Z

RN
hX1 �X2; u1.x1/ � u1.x2/i�0.x/dx

C
Z

RN
hX1 �X2; u1.x2/ � u2.x2/i�0.x/dx

(2.5)
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where the dependence on the time variable has been omitted for clarity. Now,
taking into account the Lipschitz properties of u into the first integral and using
Hölder inequality in the second one, we can write

@Q

@t
� CQ.t/CQ.t/ 12

�Z
RN
ju1 .X2.t; x// � u2 .X2.t; x// j2�0.x/dx

� 1
2

D CQ.t/CQ.t/ 12 I.t/ 12 : (2.6)

Now, let us work in the term I.t/. By using that the solutions are constructed
transporting the initial data through their flow maps, we deduce

I.t/ D
Z

RN
jrK � .�1 � �2/ ŒX2.t; x/� j2�0.x/ dx

D
Z

RN

ˇ̌ˇ̌ Z
RN
rK.X2.x/ � y/�1.y/ dy

�
Z

RN
rK.X2.x/ � y/�2.y/ dy

ˇ̌ˇ̌2�0.x/ dx

D
Z

RN

ˇ̌ˇ̌ Z
RN

�rK.X2.x/ �X1.y//
� rK.X2.x/ �X2.y//

�
�0.y/ dy

ˇ̌ˇ̌2�0.x/ dx

�
Z

RN

Z
RN

ˇ̌rK.X2.x/ �X1.y//
� rK.X2.x/ �X2.y//

ˇ̌2
�0.y/�0.x/ dy dx;

the last step holding due to Jensen’s inequality. Using Taylor’s theorem, since
K is twice differentiable, we deduce

rK.A/ D rK.B/C
Z 1

0

.D2K/
�
X2.x/ �X1.y/
C �.X1.y/ �X2.y//

�
.X1.y/ �X2.y// d�

with A D X2.x/ � X2.y/ and B D X2.x/ � X1.y/, and thus jrK.A/ �
rK.B/j � C jX1.y/ � X2.y/j since jD2Kj 2 L1.RN /. This finally gives
that I.t/ � CQ.t/. Going back to (2.6), we recover @Q

@t
� CQ.t/, and hence

we can conclude that if Q.0/ D 0 then Q.t/ 	 0, implying �1 D �2.

(2) Kernels allowing Lipschitz singularity. Under the assumptions on the kernel K
and the properties of bounded weak solutions, it was shown in [5, Lemma 4.2]
that the velocity field u is Lipschitz continuous in space and time. Therefore,
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we can recover exactly the relation (2.6) again. Now, in order to estimate I.t/,
we write it as

I.t/ D
Z

RN
jrK � .�1 � �2/ ŒX2.t; x/� j2�0.x/ dx

D
Z

RN
jrK � .�1 � �2/ .x/j2�2.x/ dx:

Using Proposition 2.6, we deduce that

I.t/

� k�2kL1.RN /kjD2KjkL1.RN / max.k�1kL1.RN /; k�2kL1.RN //W
2
2 .�1; �2/

� CQ.t/;
and we can conclude similarly as in the previous case.

(3) PKS model without diffusion. Under the assumptions on bounded weak solu-
tions, the velocity field in our case is Log-Lipschitz in space. This is a classical
result used in 2D-incompressible Euler equations and easily generalized to any
dimension [23], [24], [22]. More precisely, u 2 L1..0; T / � RN IRN / and
there exists a constant C depending on the L1 and L1 norms of �.t/ such that

ju.t; x/ � u.t; y/j � C jx � yj log
1

jx � yj when jx � yj � 1

2

for any t 2 Œ0; T �. The flow map under these conditions can be uniquely defined
and is a Hölder homeomorphism.

The uniqueness proof follows estimating the second term in (2.5) as in the
previous case. More precisely, we use Proposition 2.5 to infer that

I.t/ � k�2kL1.RN / max.k�1kL1.RN /; k�2kL1.RN //W
2
2 .�1; �2/ � CQ.t/;

implyingZ
RN
hX1 �X2; u1.x2/ � u2.x2/i�0.x/dx � Q.t/ 12 I.t/ 12 � CQ.t/:

Now, let us concentrate in the first term of (2.5), we just repeat the standard
arguments in [22] to get that by taking T small enough thenZ

RN
hX1 �X2; u1.x1/ � u1.x2/i�0.x/dx � CQ.t/ log2.2Q.t//

where the log-Lipschitz property ofuwas used. This finally gives the differential
inequality

d

dt
Q.t/ � CQ.t/

�
1C log

1

Q.t/

�
;

for 0 � t � T with T small enough. Standard Gronwall-like arguments as in
[23] imply Q.t/ D 0, and thus, the uniqueness. �
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3. Uniqueness for aggregation/diffusion competition

We start by defining the concept of solution we will work with.

Definition 3.1. A function � is a bounded weak solution of (1.2) on [0,T] for a
nonnegative initial data �0 2 L1.RN /, if it satisfies the following conditions.

(1) � 2 Cw.Œ0; T �; L1C.RN //.
(2) The SDE system

dX.t/ D u.t; X.t// dt Cp2 dWt
with the velocity field u.t; x/ WD �rK � �.t; x/ and initial data X.0/ with law
�0.x/ has a solution given by a Markov process X.t/ of law �.t; x/. Here Wt
is the standard Wiener process.

(3) �.t/ is a distributional solution to (1.2).

(4) � 2 L1.0; T IL1.RN //.

We point out that again more additional assumptions on the kernel K and the
initial data �0 are needed to prove the existence of such solutions. Solutions of
this form have been obtained for particular cases of K in [26], [16]. Moreover,
stability estimates, leading in particular to uniqueness of solutions, are obtained under
convexity assumptions on the kernel K in [16]. Here, we will assume the existence
of bounded weak solutions for the three models introduced in the previous section
with diffusion. The existence theory seems a challenging problem to be tackled in the
PKS system. The main theorem for these models with diffusion can be summarized
as follows.

Theorem 3.2. Let �1, �2 be two bounded weak solutions of equation (1.2) in the
interval Œ0; T � with initial data �0 2 L1C.RN / and assume that either

� u is given by u D �rK � �, with K such that K 2 C 2.RN / and jD2Kj 2
L1.RN /; or

� u is given by u D �rK � �, with K such that rK 2 L2.RN / and jD2Kj 2
L1.RN /; or

� u D �r�N � �.
Then �1.t/ D �2.t/ for all 0 � t � T .

Proof. Given two bounded weak solutions to (1.2), let us consider that the solutions
of the SDE systems

dXi .t/ D u.t; Xi .t// dt C
p
2dWt
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with initial data X1.0/ D X2.0/ a random variable with law �0, are constructed
based upon the same Wiener process as in [16], see also Chapter 2 in [33]. Then, the
stochastic process X1.t/ �X2.t/ follows a deterministic equation:

d

dt
.X1.t/ �X2.t// D u.t; X1.t// � u.t; X2.t//:

Therefore, the quantity used in this case will be

Q.t/ WD 1

2
E
�jX1.t/ �X2.t/j2� : (3.1)

It is also easy to check thatW 2
2 .�1.t/; �2.t// � 2Q.t/ by defining an admissible plan

	 transporting �1.t/ to �2.t/ by
Z

RN�RN
'.x; y/d	.x; y/ D E Œ'.X1.t/; X2.t//�

for all ' 2 Cb.RN /. This plan has the right marginals since the law ofXi .t/ is given
by �i .t; x/ meaning that

Z
RN

'.x/�i .t; x/ dx D E Œ'.Xi .t//� :

It is clear then that Q.t/ 	 0 would imply that X1.t/ D X2.t/, and thus their
laws �1 D �2. With this new quantity the proof now follows exactly the same steps
as in Theorem 2.7. We make a quick summary of the new ingredients to consider.
We first compute the time derivative of Q.t/ as

dQ

dt
D E ŒhX1 �X2; u1.X1/ � u1.X2/i�C E ŒhX1 �X2; u1.X2/ � u2.X2/i� ;

with abuse of notation since an integrated in time version of it would give full rigor.
Now, the proof of the smooth case can be really copied directly to this case by
replacing integration with respect to the measure �0 by expectations. The second and
third cases can be also adapted by using the following ingredients:

(1) The interpolation results in Propositions 2.6 and 2.5 can be used by realizing
that

I.t/ D E
�jrK � .�1 � �2/ ŒX2.t/� j2� D

Z
RN
jrK � .�1 � �2/ .x/j2�2.x/ dx

since �2.t; x/ is the law of X2.t/.

(2) In the case of the PKS system, one of the ingredients used by G. Loeper in his
proof in [22] was the continuity in time of the solutions of the ODE system for
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small time. This step was not detailed in the previous section since the proof
coincides with the one in [22]. This needed continuity can be also proved in the
present case since being the two SDE systems solved with the same Brownian
motion, we have

d

dt
.X1.t/ �X2.t// D u1.t; X1.t// � u2.t; X2.t//:

Using that under the assumptions of bounded densities the velocity fields are
bounded and Log-Lipschitz, and since the initial data is the same, we deduce
jX1.t/ �X2.t/j � Ct for all 0 � t � T a.e. in the probability space.

All the rest of the details are left to the interested reader. �

Acknowledgements. We acknowledge support from the project MTM2008-06349-
C03-03 DGI-MICINN (Spain), 2009-SGR-345 from AGAUR-Generalitat de Cata-
lunya and IPAM–UCLA where part of this work was done.

References

[1] L. A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space
of probability measures. Lectures Math. ETH Zurich, Birkhäuser, Basel, 2005.

[2] J. D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numer. Math. 84 (2000), 375–393.

[3] D. Benedetto, E. Caglioti, and M. Pulvirenti,A kinetic equation for granular media. RAIRO
Modél. Math. Anal. Numér. 31 (1997), 615–641.

[4] D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti, A non-maxwellian steady
distribution for one-dimensional granular media. J. Stat. Phys. 91 (1998), 979–990.

[5] A. Bertozzi and J. Brandman, Finite-time blow-up of L1-weak solutions of an aggregation
equation. Comm. Math. Sci. 8 (special issue in honor of Andrew Majda’s 60th birthday)
(2010), no. 1, 45–65.

[6] A. Bertozzi, T. Laurent, Finite-time blow-up of solutions of an aggregation equation in
Rn. Comm. Math. Phys. 274 (2007), 717–735.

[7] A. Bertozzi, J. A. Carrillo, and T. Laurent, Blowup in multidimensional aggregation equa-
tions with mildly singular interaction kernels. Nonlinearity 22 (2009), 683–710.

[8] A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite time aggregation for the critical
Patlak-Keller-Segel model in R2. Comm. Pure Appl. Math. 61 (2008), 1449–1481.

[9] A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal
critical mass and qualitative properties of the solutions. Electron. J. Differential Equations
44 (2006), 32 pp.

[10] S. Boi,V. Capasso, and D. Morale, Modeling the aggregative behavior of ants of the species
Polyergus rufescens. Spatial heterogeneity in ecologicalmodels (Alcalá de Henares, 1998),
Nonlinear Anal. Real World Appl. 1 (2000), 163–176.



Uniqueness of bounded solutions to aggregation equations by optimal transport methods 15

[11] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions.
Comm. Pure Appl. Math. 44 (1991), 375–417.

[12] M. Burger, V. Capasso, and D. Morale, On an aggregation model with long and short range
interactions. Nonlinear Anal. Real World Appl. 8 (2007), no. 3, 939–958.

[13] M. Burger and M. Di Francesco, Large time behavior of nonlocal aggregation models with
nonlinear diffusion. Netw. Heterog. Media 3 (2008), 749–485.

[14] J. A. Carrillo, R. J. McCann, and C. Villani, Kinetic equilibration rates for granular media
and related equations: entropy dissipation and mass transportation estimates. Rev. Mat.
Iberoamericana 19 (2003), 971–1018.

[15] J. A. Carrillo, R. J. McCann, and C. Villani, Contractions in the 2-Wasserstein length space
and thermalization of granular media. Arch. Rat. Mech. Anal. 179 (2006), 217–263.

[16] P. Cattiaux, A. Guillin, and F. Malrieu, Probabilistic approach for granular media equations
in the non-uniformly convex case. Probab. Theory Related Fields 140 (2008), 19–40.

[17] L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogen-
esis systems in high space dimensions, Milan J. Math. 72 (2004), 1–28.

[18] J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel
model in R2. C. R. Math. Acad. Sci. Paris 339 (2004), 611–616.

[19] W. Gangbo and R. J. McCann, The geometry of optimal transportation. Acta Math. 177
(1996), 113–161.

[20] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability.
J. Theor. Biol. 26 (1970), 399–415.

[21] T. Laurent, Local and global existence for an aggregation equation. Comm. Partial Differ-
ential Equations 32 (2007), 1941–1964.

[22] G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density.
J. Math. Pures Appl. 86 (2006), 68–79.

[23] A. Majda and A. L. Bertozzi, Vorticity and incompressible flow. Cambridge Texts in Appl.
Math. 27, Cambridge University Press, Cambridge, 2002.

[24] C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids.
Appl. Math. Sci. 96, Springer-Verlag, New York, 1994.

[25] R. J. McCann,A convexity principle for interacting gases. Adv. Math. 128 (1997), 153–179.

[26] S. Méléard, Asymptotic behaviour of some interacting particle systems: McKean-Vlasov
and Boltzmann models. In Probabilisticmodels for nonlinear partial differential equations,
ed. by Talay and L. Tubaro, Lecture Notes in Math. 1627, Springer-Verlag, Berlin, 1995,
42–95.

[27] D. Morale, V. Capasso, and K. Oelschläger, An interacting particle system modelling
aggregation behavior: from individuals to populations. J. Math. Biol. 50 (2005), 49–66.

[28] C. S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys. 15
(1953), 311–338.

[29] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model
for biological groups. SIAM J. Appl. Math. 65 (2004), 152–174.

[30] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis, A nonlocal continuum model for biological
aggregation. Bull. Math. Biol. 68 (2006), no. 7, 1601–1623.



16 J. A. Carrillo and J. Rosado

[31] G. Toscani, One-dimensional kinetic models of granular flows. RAIRO Modél. Math. Anal.
Numér. 34 (2000), no. 6, 1277–1291.

[32] C. Villani, Topics in optimal transportation. Grad. Stud. Math. 58, Amer. Math. Soc.,
Providence, RI, 2003.

[33] C.Villani, Optimal transport, old and new. Grundlehren Math. Wiss. 338, Springer-Verlag,
Berlin, 2009.

[34] V. I.Yudovich, Non-stationary flow of an incompressible liquid. Zh. Vychisl. Mat. Mat. Fiz
3 (1963), 1032–1066.

José A. Carrillo, ICREA - Departament de Matemàtiques, Universitat Autònoma de
Barcelona, 08193 Bellaterra, Spain
E-mail: carrillo@mat.uab.es

Jesús Rosado, Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193
Bellaterra, Spain



5ECM Amsterdam 2008
© 2010 European Mathematical Society

On the computation of the coefficients of modular forms
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Abstract. An overview for a non-specialised audience is given of joint work with Jean-Marc
Couveignes, Robin de Jong, Franz Merkl, and Johan Bosman. This joint work concerns fast
computation of coefficients of modular forms, via the computation of associated Galois repre-
sentations. For example, for p prime, Ramanujan’s �.p/ can be computed in time polynomial
in logp. The overview focuses on the main results and ideas. Developments since 2006 are
included: more examples by Johan Bosman, generalisation to forms of level one and of arbi-
trary weight, and an application to theta functions of lattices. Some future developments are
mentioned.
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1. Introduction

The aim of this article is to give an overview of joint work with Jean-Marc Couveignes,
Robin de Jong, Franz Merkl, and Johan Bosman. Details of this joint work can be
found in [9], in [7] and in [3] and [2]. This joint work will appear as a book in
the series “Annals of Mathematics Studies” of Princeton University Press. The book
version will contain deterministic variants of the probabilistic algorithms given in [9].
In this overview, by algorithm we mean deterministic algorithm. We will focus on
the main results and ideas, skipping technical details, and we will also mention
some future developments. In comparison to the previous overview [10] of this joint
work, this text discusses the developments since 2006: more examples by Johan
Bosman, generalisation to forms of level one and of arbitrary weight, and application
to theta functions of lattices; it says much less about the method by which Galois
representations are computed.

An important example of our main results can be formulated easily. Ramanujan’s
� -function � W N>0 ! Z is defined by the equality of formal power series with integer
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coefficients:

q
Y
n�1

.1 � qn/24 D
X
n�1

�.n/qn D q � 24q2 C 252q3 C � � � in ZŒŒq��: .1:1/

Hecke already showed that j�.n/j D O.n6/ as n tends to infinity. One can then ask
how fast �.n/ can be computed, as a function of n. More precisely, one can ask
if there is an algorithm that on input n 2 N>0 computes �.n/ in time polynomial
in logn, i.e., in a running time that is bounded by a fixed power of log n. As a partial
answer to this question we have the following result.

1.2 Theorem. There exists an algorithm that on input a prime number p gives �.p/,
in running time polynomial in logp.

Let us first indicate why this is fast. For n 2 N, a straightforward way to compute
�.n/ is to compute the product in (1.1) up to order qn, i.e., to do the necessary
multiplications in the ring ZŒŒq��=.qnC1/. Clearly, this takes time at least linear
in n, hence exponential in logn. A faster algorithm for computing �.n/, based
on computation of class numbers, is given in [5]; but, even assuming the generalised
Riemann hypothesis (GRH), that algorithm has running time approximatelyO.n1=2/,
which is still exponential in logn.

Let us emphasise that in Theorem 1.2 the integer p must be a prime number. This
condition is not there for some artificial reason. Forn 2 N>0, the computation of �.n/
is reduced to the computation of the �.p/ for p dividing n via well-known properties
of the � -function. These are summarised in the identity of (formal) Dirichlet seriesX

n�1
�.n/n�s D

Y
p

.1 � �.p/ � p�s C p11 � p�2s/�1; .1:3/

where the index p of the Euler product on the right ranges over the set of prime
numbers. On the other hand, if p and q are distinct prime numbers and n D pq,
then one can easily compute �.p/2=p11 and �.q/2=q11 from �.n/ and �.n2/, which
shows that factoring n is equivalent to computing �.n/ and �.n2/, provided �.n/ ¤ 0.
See [1] for details.

The importance of the series
P
n�1 �.n/qn in (1.1) comes from the fact that the

complex analytic function � W H! C on the complex upper half plane defined by

� W H! C; z 7!
X
n�1

�.n/e2�inz .1:4/

is a modular form of level 1 and weight 12, the so-called discriminant modular form.
This means that for all

�
a b
c d

�
in SL2.Z/ and all z 2 H one has

�

�
az C b
cz C d

�
D .cz C d/12�.z/: .1:5/
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Behind our proof of Theorem 1.2 is the existence of Galois representations associated
to modular forms. This will be explained in some detail in the next section.

In our opinion, the fact that such Galois representations are accessible to compu-
tation is of much interest. We get congruences for �.p/ modulo all primes `. The
classical congruences only involve the primes 2, 3, 5, 7, 23, and 691. Whereas the
classical congruences are given by explicit formulas, these other congruences are
“encoded” by number fields K`, and can now, in theory, be made explicit. More
generally, one can hope that non-solvable global field extensions whose existence is
guaranteed by the Langlands program can be made accessible to computation. Our
result gives an example of the computation of higher degree étale cohomology with
F`-coefficients together with its Galois action. It provides some evidence towards
the existence of polynomial time algorithms for computing the number of solutions
in Fp of a fixed system of polynomial equations over Z, when p varies.

To end this introduction, let us note that as a consequence of Theorem 1.2, for
m 2 N given together with its factorisation into primes, the number of elements x
of the Leech lattice with kxk2 D 2m can be computed in time polynomial in logm.
This will be explained in Section 5.

2. Galois representations

Our proof of Theorem 1.2 uses that� is an eigenform for certain operators named after
Hecke, that such an eigenform implies the existence of certain Galois representations
(Deligne), and that, for p prime, �.p/ is the trace of the Frobenius conjugacy class.
We make this more explicit.

Deligne has shown in 1969 (see [8]) that for each prime number ` there exists a
number field K` (i.e., finite extension of Q), Galois over Q, together with a faithful
representation

�` W Gal.K`=Q/,!GL2.F`/; .2:1/

uniquely determined by the modular form � by the following conditions. First of
all, the representation �` is semisimple (i.e., irreducible, or the direct sum of two
1-dimensional representations). Secondly, the extension Q ! K` is unramified at
all primes p ¤ `. Lastly, for all p ¤ ` the characteristic polynomial of the Frobenius
element �`.Frobp/ is given by

det.1 � x � �`.Frobp// D 1 � �.p/x C p11x2: .2:2/

The notions “unramified” and “Frobenius element” will be made explicit in a moment.
What is important now is that we have a description of �.p/ mod `:

for all ` ¤ p, trace.�`.Frobp// D �.p/ in F`. .2:3/
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The fieldsK`, which encode non-explicit congruences mod ` for �.p/, for all p ¤ `,
can be thought of as an analog in the GL2 context of the fields Q.�`/ generated by
the roots of unity of order `. Serre and Swinnerton-Dyer have shown that for ` not
in f2; 3; 5; 7; 23; 691g we have im.�`/ � SL2.F`/. Hence, for these `, called non-
exceptional, the extension Q! K` is not solvable. Nevertheless, these K` can now
be computed efficiently.

2.4 Theorem. There exists an algorithm that on input ` computesK` and �` in time
polynomial in `. More precisely, it gives

� the extension Q! K`, given in terms of the “structure constants” ai;j;k 2 Q
with respect to a Q-basis e: eiej DPk ai;j;kek;

� a list of the elements � of Gal.K`=Q/, where each � is given as its matrix with
respect to e;

� the injective morphism �` W Gal.K`=Q/,!GL2.F`/.

Before discussing the proof of this result, let us describe how it implies Theo-
rem 1.2, via standard methods from computational number theory. So, let p be a
prime number. The strategy is then to compute �.p/ mod ` for all ` up to some
sufficiently large number x.p/. One knows that j�.p/j < 2p11=2 by Deligne, and
that

Q
`<x.p/ ` � ex.p/. So, in order to deduce �.p/ from the congruences modulo

all ` < x.p/, it is sufficient to take x.p/ a suitable constant times logp. Hence,
for proving Theorem 1.2, it suffices to show that for primes p and `, one can com-
pute �.p/ mod ` in time polynomial in ` � logp. Theorem 2.4 gives us �` in time
polynomial in `. Then one computes a Q-basis e0 of K` such that the denominators
of the structure constants a0

i;j;k
with respect to e0 are not divisible by p and such

that the Fp-algebra obtained by reduction mod p of the a0
i;j;k

is a product of fields
(unramifiedness at p means that such a basis e0 exists); here one uses an algorithm
of Buchmann and Lenstra (see [4]). The group Gal.K`=Q/ then permutes these
fields, and for each of them, there is a unique element in Gal.K`=Q/ that induces
the p-power automorphism on it. This gives, up to conjugation, an element Frobp in
Gal.K`=Q/. Then one has �.p/ D trace.�`.Frobp// in Fl .

Let us now discuss how one proves Theorem 2.4. As this will become somewhat
technical, some readers may want to skip it from some point on and continue with
the next section.

So, let ` be a prime number. We may and do assume that the image of �` contains
SL2.F`/. According to [8], �` is realised on a 2-dimensional sub-F`-vector space V`
of the dual of the étale cohomology groupH 11.E10xQ;et

;F`/, where E10 is the 10-fold

self-product of the “universal elliptic curve”. In particular, E10 is an 11-dimensional
algebraic variety, defined over Q, and independent of `. At this point, the reader



On the computation of the coefficients of modular forms 21

is not required to know what all this is; we just want to convince him/her that this
realisation of �` is not easily accessible for computation in a direct way.

Via some standard methods in étale cohomology (the Leray spectral sequence,
and passing to a finite cover to trivialise a locally constant sheaf of finite dimensional
F`-vector spaces), or from the theory of congruences between modular forms, it is
well known that V` also occurs in the `-torsion J`.xQ/Œ`� of the Jacobian variety J`
of some modular curve X` defined over Q. The field K` is then the field generated
by suitable “coordinates” of the points x 2 V` � J`.xQ/Œ`�. The Riemann surface
X`.C/ of complex points of X` can be described as

X`.C/ D �1.`/n.H [ P1.Q//; .2:5/

where �1.`/ D
˚ �

a b
c d

� 2 SL2.Z/ j a � 1 .mod `/ and c � 0 .mod `/
�
.

We are now in the more familiar situation of torsion points on abelian varieties.
But the price that we have paid for this is that the abelian variety J` depends on `, and
that its dimension, equal to the genus of X`, i.e., equal to .` � 5/.` � 7/=24, grows
quadratically with `. This makes it impossible to directly compute the x 2 V` using
computer algebra: known algorithms for solving systems of non-linear polynomial
equations take time exponential in the dimension.

At this point, Couveignes suggested to use approximations and height bounds.
This is an important idea. In its simplest form, it works as follows. Suppose that x
is a rational number, x D a=b, with a and b in Z coprime. Suppose that we have
an upper bound M for max.jaj; jbj/. Then x is determined by any approximation
y 2 R of x such that jy � xj < 1=2M 2, simply because for all x0 ¤ x with
x0 D a0=b0, where a0 and b0 in Z satisfy max.ja0j; jb0j/ < M , we have jx0 � xj D
j.a0b � ab0/=bb0j � 1=M 2.

For the computation of K`, we consider the minimal polynomial P` in QŒT � of
a carefully theoretically constructed generator ˛ of K`. We use approximations of
all Galois conjugates of ˛, i.e., of all roots of P`. Instead of working directly with
torsion points of J`, we work with divisors on the curve X`. Using this strategy, the
problem of showing that P` can be computed in time polynomial in ` is divided into
two different tasks. Firstly, to show that the number of digits necessary for a good
enough approximation of P` is bounded by a fixed power of `. Secondly, to show
that, given ` and n, the coefficients of P` can be approximated with a precision of n
digits in time polynomial in n �`. The first problem was solved by Bas Edixhoven and
Robin de Jong, with some help by Franz Merkl, usingArakelov geometry. The second
problem was solved by Jean-Marc Couveignes, in two ways: complex approximations
(numerical analysis), and approximations in the sense of reductions modulo many
small primes, using exact computations in Jacobians of modular curves over finite
fields. We emphasise that the solutions to each of these problems required much
work, which occupies most of the pages of [9] and of [7].



22 B. Edixhoven

3. Johan Bosman’s examples

Using the Magma system to do computer computations over C, Johan Bosman has
found, for all ` 	 23 and for every normalised cuspidal eigenform fk of level one
and weight k 	 22, a polynomialPk;` of degree `C1 that gives the projective Galois
representation over F` associated to fk:

N�fk ;` W Gal.xQ=Q/! GL2.F`/! PGL2.F`/:

More precisely, the action of Gal.xQ=Q/ on the roots ofPk;` corresponds to the action
of Gal.xQ=Q/ via �fk ;` W Gal.xQ=Q/ ! GL2.F`/ on the set of 1-dimensional sub-
F`-vector spaces of F2

`
. We refer to [3] for these examples, where the 13 cases with

non-solvable image are listed in a table at the end. Three of the examples come from
`-torsion of elliptic curves. For the 10 other cases, one must really work with the
Jacobian J`, which is of dimension 12 for ` D 23.

In order to find the polynomials Pk;`, Bosman computed, with a high precision,
approximations of them, which allowed him to guess the Pk;`. The theoretically
proved sufficient precision is not really made explicit in [9], and even if it was, it
would not be practical. ThePk;` thus obtained do have the property that their splitting
field is unramified outside `, and that it has the right Galois group. To really prove
that his Pk;` are correct, he then uses the recent progress by Khare, Wintenberger,
Kisin (see [11] and [12]) on Serre’s conjecture on modularity of 2-dimensional Galois
representations over finite fields. The projective representations to PGL2.F`/ coming
from thePk;` can be lifted to GL2.F`/, still being unramified outside `, and thus come
from a modular form of level one and of minimal weight, which is then shown to
be fk .

We list some of Bosman’s examples. The polynomials given here are not the
approximated ones, but have been obtained by taking suitable elements in the ring of
integers of the field given by the approximated polynomials.

P12;17 D x18 � 9x17 C 51x16 � 170x15 C 374x14 � 578x13 C 493x12 � 901x11
C 578x10 � 51x9 C 986x8 C 1105x7 C 476x6 C 510x5 C 119x4
C 68x3 C 306x2 C 273x C 76I

P12;19 D x20 � 7x19 C 76x17 � 38x16 � 380x15 C 114x14 C 1121x13 � 798x12
� 1425x11 C 6517x10 C 152x9 � 19266x8 � 11096x7 C 16340x6
C 37240x5 C 30020x4 � 17841x3 � 47443x2 � 31323x � 8055I

P22;23 D x24 � 11x23 C 46x22 � 1127x20 C 6555x19 � 7222x18 � 140737x17
C 1170700x16 � 2490371x15 � 16380692x14 C 99341324x13
C 109304533x12 � 2612466661x11 C 4265317961x10
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C 48774919226x9 � 244688866763x8 � 88695572727x7
C 4199550444457x6 � 10606348053144x5 � 25203414653024x4
C 185843346182048x3 � 228822955123883x2
� 1021047515459130x C 2786655204876088:

As an application of his computation of the P12;` for ` in f13; 17; 19g, Bosman
has verified Lehmer’s conjecture that for all n 2 Z�1, �.n/ ¤ 0 up to a higher
bound than what was done before. More precisely, he has shown that for all n <
22798241520242687999 � 2 � 1019 one has �.n/ ¤ 0. The previous bound was
22689242781695999 � 2 � 1016.

Using the same methods, Johan Bosman could also produce a polynomial that
gives an SL2.F16/ extension of Q, corresponding to a weight 2 modular form on
�0.137/ (genus 11). Such an example was still missing in tables of Jürgen Klüners.
See [2].

4. Modular forms of level 1 and arbitrary weight

In this section we present the generalisation of Theorem 1.2 on fast computation
of �.p/ to forms of level 1 and arbitrary weight.

For k 2 Z, a holomorphic function f W H ! C is called a modular form of
level 1 and weight k if it satisfies the following two conditions. The first condition
is that for all

�
a b
c d

�
in SL2.Z/ and for all z in H we have f ..az C b/=.cz C d// D

.cz C d/kf .z/. This implies that for all z 2 H we have f .z C 1/ D f .z/, hence
that f has a q-expansion f DPn2Z an.f /q

n (recall that q.z/ D exp.2	iz/). The
second condition is that f is “holomorphic at the cusp”, i.e., that for all n < 0 we
have an.f / D 0.

For k 2 Z, we let Mk denote the C-vector space of modular forms of level 1
and weight k. The subspace Sk consisting of the f with a0.f / D 0 is called the
space of cuspforms. The direct sumM of allMk is a graded C-algebra, and it is well
known to be generated by the Eisenstein series of weights 4 and 6, together with �,
satisfying one relation:

M D CŒE4; ��˚E6 �CŒE4; ��;
where

E4 D 1C 240
X
n�1

�3.n/q
n; E6 D 1� 504

X
n�1

�5.n/q
n; and � D E34 �E26

1728
;

and where, for m and n in N, �m.n/ DP0<d jn dm. The space Mk is zero if k < 0,
and, for k � 0 its dimension grows linearly with k: dimMk � k=12 is bounded. For
each k in Z we have Sk D �Mk�12. For k � 4, Sk has codimension one in Mk .
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For each k 2 N, the space Mk is equipped with Hecke operators, coming from
the action of GL2.Q/C on H. These operators preserve Sk . For each i 2 N>0 one
has an operator Ti on Mk (we do not include k in the notation, and we denote the
restriction of Ti to Sk still by Ti ). The Z-algebra in EndC.Sk/ generated by the Ti
is called the Hecke algebra Tk acting on cuspforms of level 1 and weight k. It is
commutative, generated by the Tp with p prime. For p prime, the action of Tp on
Mk is as follows:

for f in Mk and p prime, Tpf D
X
n�0

anp.f /q
n C

X
n�0

pk�1an.f /qnp:

The Hecke algebra Tk , together with its elements Ti , i 2 N>0, gives us another
interpretation of Sk: the pairing Sk
Tk ! C, .f; t/ 7! a1.t.f //, identifies Sk with
the space of Z-linear maps from Tk to C. The subset of morphisms of Z-algebras
corresponds to the set of normalised cuspidal eigenforms: the f in Sk such that
a1.f / D 1 and Ti .f / D ai .f / �f for all i . Each Sk has a natural inner product, for
which the Ti are self-adjoint, hence Sk has a basis of eigenforms, and all eigenvalues
are real.

The structure of M given above implies that as a Z-module, Tk is generated by
the Ti with i 	 k=12, and that it is free of rank dimC Sk . Therefore, an element f
of Sk is determined by its values on the Ti with i 	 k=12. The following theorem
is the generalisation of Theorem 1.2 to arbitrary weights: it says that the coefficients
ap.f / can be computed quickly, if the am.f / for m 	 k=12 are given.

4.1 Theorem. Assume the generalised Riemann hypothesis for number fields, or, in
the following, assume that k bounded. There is an algorithm that on input k 2 N
and p prime gives the element Tp of Tk as a Z-linear combination of the Ti with
i 	 k=12, in time polynomial in k logp.

The principle of the proof of Theorem 4.1 is simply to compute the image of Tp
in sufficiently many quotients Tk=m of Tk by maximal ideals. We only consider
maximal ideals m of Tk with Tk=m a prime field, and with #.Tk=m/ 	 x for a
suitable bound x to be specified later. We let P.k; x/ be the set of these m. We will
use the LLL-algorithm (see [13]) to computeTp from all these congruences, replacing
the Chinese remainder theorem that we used in the case k D 12, where T12 D Z.

The Z-algebra Tk can be computed, in the form of a Z-basis and a multiplication
table, in time polynomial in k, using algorithms for computing with modular symbols
(see [15]).

For each maximal ideal m of Tk there is a unique semi-simple Galois repre-
sentation �m from Gal.xQ=Q/ to GL2.Tk=m/ that is unramified at all primes q not
equal to the characteristic of Tk=m, and such that for all such q the Frobenius element
�m.Frobq/ has trace Tq and determinant qk�1 in Tk=m. Just as in Theorem 2.4, form
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with T=m a prime field, �m can be computed in time polynomial in k �log.#.Tk=m//.
Hence we can compute the image of Tp in all the Tk=m with m in P.k; x/ in time
polynomial in kx. We let Ik;x be the intersection in Tk of allm in P.k; x/. Then we
have the exact sequence

0! Ik;x ! Tk !
Y

m2P.k;x/
Tk=m! 0;

and we can compute the image Tp of Tp in Tk=Ik;x , as well as a pre-image T 0
p in Tk

of Tp in time polynomial in kx. We will now address the problem of how to choose
x so that we can efficiently compute Tp from T 0

p.
In the case where k is not fixed, we will use the assumption of GRH to show that

there are sufficiently many m’s, in the form of the following effective prime number
theorem for number fields (see [16]).

4.2 Theorem (Weinberger). Assume GRH for number fields. For K a number field
and x in R let 	1.x;K/ denote the number of maximal ideals m of the ring of
integers OK of K with OK=m a prime field and with jOK=mj 	 x. For x > 2 in R
let li.x/ D R x

2
.1= logy/dy. Then there exists c1 in R such that for every number

field K and for every x > 2 one has

j	1.x;K/ � li.x/j 	 c1
p
x log

�j discr.OK/x
dimQK j� ;

where discr.OK/ 2 Z denotes the discriminant of OK .

As all eigenvalues of all Ti on all Sk are real, we have, for each k, an isomorphism
of R-algebras R ˝ Tk ! RdimSk , unique up to permutation of the factors. The
standard inner product on RdimSk is the trace form of this R-algebra, hence is obtained
by extension of scalars from Z to R of the trace form of Tk . We will view each Tk
as a lattice in R˝ Tk , and we equip each R˝ Tk with the standard volume form,
i.e., the one for which the unit cube has volume one. From the Ramanujan bound on
the eigenvalues of the Ti , proved by Deligne, one easily derives that

log Vol.R˝ Tk=Tk/ D 1

2
log discr jTkj 	 k2

24
log k:

Let us now explain how we choose x as a function of k and p, assuming GRH for
number fields. Let nk be the rank of Tk , i.e., nk D dimC Sk . We can and do assume
that nk > 0. The norm of the element Tp that we want to compute from a congruence
modulo Ik;x is bounded, by Deligne, as follows:

kTpk 	 2n1=2k p.k�1/=2:
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Applying Theorem 4.2 to the number fields of which Q˝Tk is a product, one proves
that for x a suitable constant times fixed powers of k and logp, one has the following
lower bound for the length of a shortest non-zero element of Ik;x:


1.Ik;x/ > 2
.nkC1/=2 � kTpk; where 
1.Ik;x/ D minfktk j t 2 Ik;x � f0gg:

Under these conditions, the standard approach for using the LLL-algorithm for the
“closest vector problem” shows that Tp can be computed from our element T 0

p in
Tp C Ik;x , in time polynomial in k logp, as follows.

Let b denote our inner product on Tk , i.e., the trace form. Let e D .e1; : : : ; en/ be
an “LLL-reduced basis” of Ik;x: if e� D .e�

1 ; : : : ; e
�
n/ denotes the orthogonal R-basis

of R ˝ Tk obtained from e by letting e�
i be the orthogonal projection of ei to the

orthogonal complement of the subspace of R˝ Tk generated by fej j j < ig (i.e.,
by the Gram–Schmidt orthogonalisation process), and 
i;j WD b.ei ; e

�
j /=b.e

�
j ; e

�
j /,

then we have

j
i;j j 	 1

2
for 1 	 j < i 	 n;

and

ke�
i k2 �

�
3

4
� 
2i;i�1

�
ke�
i�1k2 for 1 < i 	 n:

Then Tp can be recovered from T 0
p as follows:

� put xn WD T 0
p;

� for i going down from n to 1 let xi�1 WD xi � Œb.xi ; e�
i /=b.e

�
i ; e

�
i /�ei , where,

for y in Q, Œy� denotes the largest of the (one or two) integers nearest to y;

� then Tp D x0.

In the case where k is fixed, in Theorem 4.1, the Z-algebra Tk is fixed, and the
ordinary asymptotic prime number theorem for each of the factors of Q˝Tk suffices
for what we do.

4.3 Theorem. Assume GRH for number fields, or, in the following, assume that k is
bounded. There exists an algorithm that on input positive integers k and n, together
with the factorisation of n into prime factors, computes the element Tn of Tk as
Z-linear combination of the Ti with i 	 k=12, in time polynomial in k logn.

Theorem 4.3 follows from Theorem 4.1 by using the standard way to express Tn
in the Tp for the prime numbers p dividing n:

Tm D
Y
pjm

Tpvp.m/ ; Tpr D TpTpr�1 � pk�1Tpr�2 :
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5. Lattices

Theorem 4.3 has an interesting application to certain modular forms that come from
lattices: theta functions of even unimodular lattices.

Let us consider a free Z-module L of finite rank nL, equipped with a positive
definite symmetric bilinear form b W L
L! Z. Then LR WD R˝L is an R-vector
space of dimension nL on which b gives an inner product, and hence L is a lattice in
the euclidean space LR. For m in Z we define

rL.m/ WD #fx 2 L j b.x; x/ D mg: .5:1/

In this situation, one considers the so-called theta-function �L W H ! C associated
to .L; b/:

�L D
X
x2L

qb.x;x/=2 D
X
m�0

rL.m/q
m=2; where q W z 7! exp.2	iz/: .5:2/

The form b is called even if b.x; x/ is even for all x in L. Equivalently, b is even
if and only if the matrix of b with respect to a basis of L has only even numbers on
the diagonal. The form b is called unimodular if the map x 7! .y 7! b.x; y// from
L to its dual L_ is an isomorphism of Z-modules. Equivalently, b is unimodular if
and only if the matrix of b with respect to a basis of L has determinant 1. If .L; b/
is even and unimodular, then nL is even, and �L is a modular form of level 1 and
weight nL=2 (see [14, VII,§6]). This explains that Theorem 4.3 has the following
consequence.

5.3Theorem. AssumeGRH, or, in the following, consider only .L; b/whose ranksnL
arebounded. There is analgorithm that, on input the ranknL and the integers rL.i/ for
1 	 i 	 nL=24 of an even unimodular lattice .L; b/, and an integer m > 0 together
with its factorisation into primes, computes rL.m/ in time polynomial in nL logm.

To prove this theorem, one writes �L as a rational multiple of the Eisenstein series
EnL=2 of weight nL=2 plus a cuspform f with rational coefficients. The coefficient
am.EnL=2/ can be computed easily, because m is given with its factorisation. For
am.f / one first computes the ai .f / for i 	 nL=24, using the rL.i/. Then, view-
ing f as a Z-linear map TnL=2 ! Q, one has am.f / D f .Tm/ and one applies
Theorem 4.3.

We give an example. Let L be the Leech lattice. It is the unimodular lattice of
rank 24 that, according to Henry Cohn and Abhinav Kumar [6], gives the densest
lattice sphere packing in dimension 24. As M12 is two-dimensional, generated by
E12 and �, �L is a linear combination of these two. Comparing the coefficients of
qm for m D 0 and m D 1 gives

�L D E12 � 65520
691

�; withE12 D 1C 65520

691

X
n�1

�11.n/q
n:
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Theorem 5.3 says that ifm > 0 is given, with its factorisation into primes, then rL.m/
can be computed in time polynomial in logm.

We can also consider direct sums of copies of L. For n 2 N, we have

�Ln D
X

x1;:::;xn2L
q.b.x1;x1/C���Cb.xn;xn//=2 D

�X
x2L

qb.x;x/=2
�n D �nL:

This means that we can compute the rLn.i/ for 1 	 i 	 n in time polynomial in n by
doing our multiplications in ZŒŒq��=.qnC1/. Hence, assuming GRH, ifm > 0 is given,
with its factorisation into primes, then rLn.m/ can be computed in time polynomial
in n logm.

It is interesting to note that theta functions are usually considered as modular
forms whose coefficients are easy to compute. As such, they can be used to compute
coefficients of cuspforms. But for coefficients am with m large, one now concludes
that the situation is reversed.

6. Perspectives

It is to be expected that Theorem 4.3 will be generalised to the spaces of cuspforms
of varying level and weight, with running time for computing Tn polynomial in logn,
the level and the weight. A PhD-student, Peter Bruin, is working on this.

Hence, it is also to be expected that, assuming GRH, there is an algorithm that
on input positive integers n and m, together with the factorisation of m into primes,
computes the number

rZ2n.m/ D #fx 2 Z2n j x21 C � � � C x22n D mg
in time polynomial in n and logm. Hence, even in the absence of explicit simple
formulas for the rZ2n.m/ as one has for n 	 5, there will be an algorithm that
computes the rZ2n.m/ as fast as if one had such formulas.

Another consequence of the expected generalisation of Theorem 4.3 mentioned
above is that, again assuming GRH, there is an algorithm that on input a positive
number n and a finite field Fq computes the number #X1.n/.Fq/ in time polynomial
in n and log q. Indeed, this is a matter of computing the element Tp (where p is the
prime dividing q) in the Hecke algebra acting on the space S2.�1.n// of modular
forms of weight 2 on �1.n/. At this moment, there is no algorithm known for point
counting on curves C over Fq that has running time polynomial in log q and the
genus of C , if both the genus and the characteristic of Fq are not bounded. The case
of modular curves is interesting, but does not indicate how to solve this for general
curves.
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Effective equidistribution and spectral gap

Manfred Einsiedler

Abstract. In these notes we discuss some equidistribution problems with the aim to give reason-
able error rates, i.e., we are interested in effective statements. We motivate some arguments by
studying a concrete problem on a two-torus, and then describe recent results on the equidistribu-
tion of semisimple orbits obtained in joint work with G. Margulis and A. Venkatesh. We end by
studying the relationship between equidistribution of closed orbits and mixing properties. This
leads to a way of transporting spectral gap from one group – via an effective equidistribution
result on a quotient by an irreducible lattice – to another group. The latter topic is ongoing joint
work with G. Margulis and A. Venkatesh.

Mathematics Subject Classification (2000). 37A17, 37C85, 11F99.

Keywords. Homogeneous dynamics, equidistribution, spectral gap.

1. Purpose

These notes are the combination of a few lectures given on an effective equidistribu-
tion theorem and related material. The main theorem that we discuss e.g. describes
how dense closed orbits xH of H D SO.2; 1/.R/B on SL.3;Z/n SL.3;R/ with big
volume have to be. A more general version of this was obtained in joint work [7]
with G. Margulis and A. Venkatesh and will be described in §6. A crucial input to the
method that we used in [7] was spectral gap – in §4 we state what is used in general
and prove the statement in the special case of SL.3;R/ being the acting group. We
motivate these questions and give a brief historical discussion in §2–§3. In §7 we
outline the idea of ongoing joint work with G. Margulis and A.Venkatesh. Most of
the material herein is well known to experts, but we think that assembling the material
in these notes is worthwhile as it may help someone reading [7].

The author would like to thank his coauthors and students for many discussions
on these topics. This research has been supported by the NSF-FRG collaborative
grant 0554373.
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2. Model cases of equidistribution problems

2.1. (Too) general setup. Let us start with the following kind of equidistribution
problems (which we specialize later to a more concrete setup). Suppose T W X ! X

is a continuous map on a compact metrizable space and x 2 X . Then one can ask
about the distribution properties of the finite sequence of points

x; T .x/; T 2.x/; : : : ; T n�1.x/ 2 X:

We can specify the question more concretely by defining the measure

Z
f dıx;n D 1

n

n�1X
`D0

f .T `.x// for all f 2 C.X/;

and asking about the behavior of ıx;n for large n and a given x. If ıx;n converges for
n ! 1 in the weak� topology to some measure �, then we say that the orbit of x
equidistributes (w.r.t.�). If we have a reasonable error for the expression

ˇ̌ R
f dıx;n�R

f d�
ˇ̌

for smooth functions, then we speak of effective equidistribution.
If T is ergodic with respect to an invariant probability measure �, one knows

that ıx;n converges to � in the weak� topology as n ! 1 for �-a.e. x 2 X by
Birkhoff’s pointwise ergodic theorem, i.e., a.e. orbit equidistributes w.r.t. �. This
is an interesting statement and can be quite useful in applications, but it does by
no means provide a complete answer to the problem. For instance, it does not say
anything about orbits of points x 2 X that are not typical for �. Moreover, if we
want to work with large but fixed n then again this provides no information about
ıx;n as the general ergodic theorem does not provide an effective error rate.

2.2. Rotation on the circle T . In the generality discussed above, one cannot hope
to say anything about a given point x 2 X and also not anything – even if x is typical
for an ergodic measure � – about the speed of approximation. However, there are
cases where both can be achieved.

Still in the same generality as above, if T has only one invariant probability
measure onX , say�, then more is true: For every point x one has that ıx;n converges
in the weak� topology to � – and does so uniformly. It is easy to give an example
for this, as e.g. the circle rotation defined by T .x/ D x C ˛ for x 2 T D R=Z and
some fixed irrational ˛ 2 R (with addition being understood modulo Z) preserves
only the Lebesuge measuremT and ıx;n converges tomT for any x 2 T . Moreover,
one can also answer the refined question for an error rate but this requires1 additional

1If one asks for a weaker form of an effective error rate, then one can do any irrational ˛. We refer to the
work of Green and Tao [11] for what one can say without the Liouville-assumption.
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assumptions on ˛: If ˛ is not a Liouville number and f 2 C1.X/, then

ˇ̌
ˇ̌1
n

n�1X
`D0

f .x C `˛/ �
Z

T
f d�

ˇ̌
ˇ̌ < 1

n
S.f /;

where S.f / depends on the function f (respectively on the sizes of the first few
derivatives f; f 0; f 00; : : : ; f .L/ with L dependent on ˛). This is quite well known
and can be proven directly for characters ek.x/ D exp.2�ikx/ (using the geometric
series and the assumption on˛), and then can be boot-strapped to any smooth function
f by an application of the Cauchy–Schwarz inequality. Instead of proving this, we
give a proof of a different effective equidistribution statement on T2 below.

2.3. Polynomial curves on T 2. Let us study now two2 polynomials p1.t/; p2.t/
for t 2 Œ0; 1� of degree � D and how the corresponding curve3 f.p1.t/; p2.t// W t 2
Œ0; 1�g behaves modulo Z2 as a subset of T2. I.e., we wish to estimate

ˇ̌̌
ˇ
Z 1

0

f .p1.t/; p2.t// dt �
Z

T2
f .x/ dx

ˇ̌̌
ˇ (1)

for a given smooth f defined on T2. Clearly, if e.g. p2 D 0 then there will not
be a reasonable estimate for (1) as the curve in questions stays in a subtorus, more
generally the same holds if .p1.t/; p2.t// is close to a rational line for all t 2 Œ0; 1�.
To avoid this problem, let us assume that there exists some L and T such that for any
integer n 2 Z2 we have that the polynomial

pn.t/ D .n1p1 C n2p2/.t/ D c0 C c1t C � � � C cDtD

is nonconstant and moreover that4

max
jD1;:::;D jcj j � T for all n 2 Z2 with knkL � T: (2)

We fix L and think of T being a very large number (but without actually taking the
limit T !1 as one often would do in ergodic theory). We wish to estimate (1) by a
negative power of T (which will depend on D) times a constant that depends on the
sizes of the first few partial derivatives of f (where the number of derivatives used
will depend on L). As this section’s main purpose is to introduce some ideas in a

2The only reason for restricting the dimension to2 is just to restrict the number of parameters in this discussion.
3The continuous setting is in some aspects easier than the discrete one considered before, but is also more

relevant to the following discussion.
4Clearly, making a restriction on the n for which we require (2), will lead to a stronger result. In particular,

with this restriction one can apply the result (5) to the case of a flow .p1.t/; p2.t// D T.t; ˛t/ whenever ˛
is not a Liouville number.
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very concrete setup, we make no claims regarding the optimality5 of the estimates.
We refer to [2] for the case of expanded images of a fixed curve where the Van der
Corput lemma (see e.g. [10, pg. 146]) is used to prove a sharper estimate. Instead of
using Van der Corput we will combine harmonic with more geometric arguments as
this generalizes more easily to the context considered later.

2.3.1. Characters first. We start the calculation for the desired estimate by the case
where f .x/ D en.x/ D exp.2�i.n1x1 C n2x2// is a character. The following
argument is relatively simple but requires some games with exponents and hence a
few constants that we will optimize at the end.

By definition ofpn we have en..p1.t/; p2.t// D exp.2�ipn.t//. We assume first
that knkL � T . By our assumption (2) and the equivalence of norms on the space of
polynomials of degree � D � 1 we have6

S D max
t2Œ0;1�

jp0
n.t/j � T

and similarly
max
t2Œ0;1�

jp00
n.t/j � S:

As p0
n.t/ is a polynomial of degree D � 1 we can easily convince ourselves that the

Lebesgue measure of the points t 2 Œ0; 1� where jp0
n.t/j is much smaller than S must

in fact be small. In fact, for the polynomial 1
S
p0

n on Œ0; 1� of supremum norm about
equal to one, the value of this polynomial can only be small, say smaller than S˛�1,
roughly speaking, close to the roots. Here the worst case happens if all theD�1 roots
are equal, in which case 1

S
p0

n.t/ is smaller than S˛�1 on an interval of size S
˛�1
D�1 .

More formally, this estimate follows from the interpolation formula for polynomials,
see for instance [12, Proposition 3.2], and gives that

mR

�˚
t 2 Œ0; 1� W jp0

n.t/j < S˛
��� S

˛�1
D ; (3)

where ˛ 2 .0; 1/ is to be determined later. Vaguely speaking, for any ˛ we will
be able to ignore those t with jp0

n.t/j < S˛ as we are aiming to obtain an estimate
involving a negative power of T .

Next we fix some ˇ 2 .0; 1/, again to be determined later, and divide Œ0; 1�
into subintervals of size S�ˇ and one interval that may be shorter than that. Let I
be one such interval of length � S�ˇ and assume that for some t0 2 I we have
jp0

n.t0/j � S˛ . Then as the second derivative is bounded by� S on Œ0; 1� we have
for any t 2 Œ0; 1� that

pn.t/ D pn.t0/C .t � t0/p0
n.t0/CO..t � t0/2S/:

5This is partly but not only because we will be wasteful at places in the estimates if this helps to keep the
expressions tidy.

6Implicit constants in the �-notation we allow to depend onD.
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By choosing t 2 I and ˇ > 1
2

we can make the error term here of the form

j.t � t0/2jS � S�2ˇC1:

As the derivative of exp.2�i �/ is of absolute value 2� we have with these choice that
ˇ̌
en

�
.p1.t/; p2.t/

� � exp
�
2�iknk.pn.t0/C .t � t0/p0

n.t0//
�ˇ̌� S�2ˇC1:

We make that approximation because it is trivial to integrate an exponential function,
which leads toˇ̌ˇ̌ Z

I

exp
�
2�i.pn.t0/C .t � t0/p0

n.t0//
�
dt

ˇ̌ˇ̌� ˇ̌
p0

n.t0/
ˇ̌�1 � S�˛:

Together we get
ˇ̌ˇ̌ Z
I

en

�
.p1.t/; p2.t/

�
dt

ˇ̌ˇ̌� S�˛ C S�2ˇC1mR.I /:

We are summing this estimate over all intervals I that contain some t0 with
jp0

n.t0/j � S˛ , of which there are at most Sˇ C 1� Sˇ , and add the integral of the
trivial estimate kenk1 D 1 over the remaining intervals. As the union of the latter
intervals is contained in the set in (3), we obtain

ˇ̌ˇ̌ Z 1

0

en

�
.p1.t/; p2.t/

�
dt

ˇ̌ˇ̌� S�˛Sˇ C S�2ˇC1 C S ˛�1
D :

It is clear that if we choose e.g. ˇ D 3
5

and ˛ D 4
5

, then all of the exponents are
negative. A slightly better negative exponent is achieved by setting all the exponents

equal and solving for ˛ and ˇ, which then turns the right-hand side into� S� 1
2DC3 .

Using in addition S � T gives for all n 2 Z2 n f0g that
ˇ̌ˇ̌ Z 1

0

en

�
.p1.t/; p2.t/

�
dt

ˇ̌ˇ̌� T � 1
2DC3 knkL: (4)

2.3.2. Bootstrapping to any smooth function. Using Cauchy–Schwarz and the
relation between smoothness and Fourier-coefficients we can now generalize (4) to
an estimate for (1). In fact, we claim that

ˇ̌ˇ̌ Z 1

0

f .p1.t/; p2.t// dt �
Z

T2
f .x/ dx

ˇ̌ˇ̌� T � 1
2DC3SLC2.f / (5)

whenever p1, p2 are polynomials of degree � D satisfying (2) and f 2 C1.T2/.
We note that the error is independent of the starting point of the curve .p1.0/; p2.0//
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and of the particular polynomial as long as it satisfies our assumptions. Here SLC2
is the L2-Sobolev norm of f of degree LC 2 defined by

SLC2.f /2 D
Z
jf .x/j2dx C

Z ˇ̌
ˇ̌� @

@x1

�LC2
f .x/

ˇ̌
ˇ̌2dx C

Z ˇ̌
ˇ̌� @

@x2

�LC2
f .x/

ˇ̌
ˇ̌2 dx

D
X

n2Z2

�
1C .2�/LC2knk2.LC2/�j Of .n/j2:

To obtain (5) recall also that the Fourier series f D P
n2Z2

Of .n/en converges
uniformly for f 2 C1.T2/. Hence we may sum (4) multiplied by Of .n/ over all
n 2 Z2 n f0g to obtain

ˇ̌ˇ̌ Z 1

0

f .p1.t/; p2.t// dt �
Z

T2
f .x/ dx

ˇ̌ˇ̌� T � 1
2DC3

X
n2Z2nf0g

j Of .n/jknkL:

Here the sum on the right-hand side can be estimated via Cauchy–Schwarz:

X
n2Z2nf0g

j Of .n/jknkL D
X

n2Z2nf0g
j Of .n/jknkLC2 1

knk2

�
� X

n2Z2nf0g
j Of .n/j2knk2.LC2/� 12 ;

where we used that
�
1

knk2
�

n2Z2nf0g belongs to `2. As the last expression is� SLC2.f /
this finishes the proof of (5).

3. Equidistribution of unipotent and closed orbits on homogeneous spaces

3.1. Unipotent orbits. We replace the setup of a single transformation on a compact
space discussed in §2.1 by a one-parameter flow, i.e., an action of R, on a homoge-
neous space. Let X D �nG be a quotient of a linear group G by a lattice � , and
let U D fut D exp.tw/ W t 2 Rg < G be a one-parameter unipotent subgroup –
here w is a nilpotent element of the Lie algebra of G. Then instead of the above we
consider the pieces of orbits xuŒ0;T � D fxut W 0 � t � T g for points x 2 X . For this
Ratner [15] has shown that the normalized image of the Lebesgue measure on xuŒ0;T �
converges to a natural measure onX – as before we say the orbit equidistributes with
respect to this measure. This natural invariant measure on X is for many points7 the
Haar measure on X , but the theorem applies to any point as follows. For a given x
Ratner proves [15] that the orbit closure xU � X is of the form xL for some closed

7Unlike the abstract ergodic theorem Ratner’s theorem establishes precisely for which points this is true.
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connected subgroup L < G and that this orbit supports an L-invariant probability
measure, the Haar measure mxL, this is known as Raghunathan’s conjecture. Then
the measure on xuŒ0;T � converges in the weak� topology to mxL. However, the
problem of estimating the error in this theorem and in this generality is wide open.

A special case of the above setup is given byU D ˚ut D � 1 t0 1 � W t 2 R
�

acting on
X D �n SL.2;R/, i.e., the horocycle flow on the unit tangent bundle of a hyperbolic
surface. IfX D �n SL.2;R/ is compact, then the equidistribution of orbits has been
established by Furstenberg [9] already much earlier. Moreover, in this case error rates
are known: ˇ̌ˇ̌ 1

T

Z
f .xut / dt �

Z
f dmX

ˇ̌ˇ̌� S.f /T �ı ;

where mX is the Haar measure on X , S.f / is a Sobolev norm of the function f and
ı > 0 is a constant which depends on the spectral properties of X . In particular, this
error is independent of the starting point x. We refer the reader to [3], Section 9.3.1
in [17], and [8] for more details. If X is noncompact with finite volume, e.g. X D
SL.2;Z/n SL.2;R/, then the above error is again more delicate. This is because in
X there are periodic orbits for the action of U . Even assuming that x is not periodic,
x could in fact be very close to a periodic orbit for U which makes it impossible to
give an error that is independent of x.

3.2. Equidistribution of closed orbits. A problem related to the distribution of
pieces of the orbit is the distribution of closed orbits. Here a toy problem is the
effective distribution properties of rational lines in the two-dimensional torus (which
is a special case of the discussion in §2.3).

3.2.1. Periodic horocycles. A more interesting case concerns the distribution prop-
erties of closed horocyle orbits on noncompact quotients. Here an error rate has been
established by Sarnak [16]. We now describe this result for SL.2;Z/n SL.2;R/ and
outline the argument from [17, Section 9] which establishes a slightly weaker form
of the effective equidistribution.

We start by recalling that periodic orbits of U are easily visualized using the
unit tangent bundle of the hyperbolic plane H D fz 2 C W Im.z/ > 0g. Here the
fundamental domain for SL.2;Z/ is the triangle bounded by Re.z/ D ˙1

2
and the

unit circle. In this picture the horocycle transports vectors along the horocycle normal
to the vector, and horocycles are horizontal lines and circles touching the real axis. In
particular, we can visualize periodic orbits for the horocycle flow as horizontal line
segments cutting through the fundamental domain with the arrows pointing up. Let
y be the y-coordinate of the points in the orbit and write Py for the periodic orbit.
Going up inside the fundamental domain (i.e., for y !1) the length of the periodic
orbit, which equals 1

y
goes to zero and the orbit escapes to infinity.
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However, as y ! 0 we can still draw periodic orbits as horizontal lines outside
the standard fundamental domain. If we draw Py for small y inside the fundamental
domain (applying the appropriate isometries from SL.2;Z/) the orbit will look much
more complicated, but will be periodic of large length 1

y
. In fact, the orbitPy becomes

equidistributed in X as y ! 0. Moreover, as Sarnak showed (in greater generality
and with more information regarding ı) this can be made effective, i.e.,

ˇ̌ˇ̌ Z
Py

f �
Z
X

f dmX

ˇ̌ˇ̌� yıS.f /

for any f 2 C1
c .X/. Here

R
Py
f denotes the normalized integral over the periodic

orbit Py .

3.2.2. Outline of a proof. The geodesic flow is hyperbolic, i.e., inside the 3-dimen-
sional space X there are three special directions:

(o) the orbit direction of the geodesic flow,

(s) the horocycle direction (corresponding toU ) which is contracted by the geodesic
flow in forward time (the stable direction), and

(u) the opposite horocycle direction (corresponding to
�
1 0� 1
�
) which is expanded

(the unstable direction).

Now let B be a small box (using the above three directions as “directions for the
sides”) around the periodic orbit P1 (the periodic orbit for U going through i ), then

hf; gt � �Bi ! mX .B/

Z
X

f dmX as t !˙1

by the Howe–Moore theorem on vanishing of matrix coefficients or (equivalently)
the mixing property of the geodesic flow. Here h � ; � i is the inner product in L2.X/,
�B is the characteristic function, gt � denotes the unitary action of the geodesic flow
on L2.X/, and mX denotes the Haar measure on X . However, gt � �B equals the

characteristic function of Bt D B

�
e

�
t
2

e
t
2

�
, which we should think of as a box

around the periodic orbit Pe�t . The distance of points in this new box to the new
periodic orbit in the direction of geodesic flow is unchanged, and in the direction of
the opposite horocycle flow has decreased exponentially. Hence for f 2 Cc.X/ and
large enough t we have (by uniform continuity and the careful construction of a thin
enough box)

Z
Pe�t

f 	 1

mX .B/

Z
Bt

f dmX D 1

mX .B/
hf; gt � �Bi 	

Z
X

f;

which can be made more precise to give a proof of the (noneffective) claim.
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Using f 2 C1
c one can use the same argument as above (the method in [16] is

different and gives a better constant for ı), replacing the box with a smooth box-like
function, and replacing the Howe–Moore theorem with the effective decay of matrix
coefficients as discussed in §4.

3.2.3. More general closed orbits. More generally, one may ask about the distri-
bution properties of closed, finite volume orbits xH of closed subgroups H � G on
quotientsX D �nG. IfH is generated by unipotent subgroups, a theorem of Mozes
and Shah [13] describes limits of such finite volume orbits – the limit measure is again
a Haar measure mxL just as in Ratner’s theorem. However, also just as in Ratner’s
equidistribution theorem for individual orbits, the problem of establishing an error
rate in this generality is wide open. We will discuss in §6 a special case where an
error rate has been obtained in joint work with Margulis and Venkatesh [7].

4. Effective decay of matrix coefficients and spectral gap

We assume G is a closed linear semisimple group. We say we have effective decay
of matrix coefficients for X D �nG if there exists some ı > 0 such thatˇ̌hg � f1 � s f1 dmX ; f2 � s f2 dmX iˇ̌� kgk�ıS.f1/S.f2/; (6)

where g 2 G, f1; f2 2 C1
c .X/, and kgk denotes the maximum of the matrix entries

of g. As before S.f / denotes a Sobolev norm of f .
Also we say that the action of G on X has a spectral gap if there exists some

nonnegative � 2 Cc.G/ with
R
G
�.g/dmG.g/ D 1 such that for any f 2 L2.X/

with
R
X
fdmX D 0 we have k� 
 f k2 � �kf k2 for some fixed � < 1. Here

� 
 f .x/ D
Z
�.g/f .xg/ for x 2 X

may be thought of as the average of the images g � f of f under the unitary transfor-
mation induced by right multiplication by g on X with respect to the weights �.g/.
As � 
 1 D 1 the assumption that � < 1 amounts to having a gap in the spectrum of
the operator �
.

Both of the above notions generalize to more general unitary representations of
G, in both notions we restrict ourself to representations without fixed vectors (or
equivalently the orthogonal complement of the space of vectors fixed under G). The
existence of a spectral gap � < 1 that is independent of the unitary representation is
the well-known property (T) of the group G. We recall that SL.3;R/ has property
(T), but that SL.2;R/ does not have property (T).

From representation theory one knows that (6) is equivalent to spectral gap for the
G-action onL2.X/ (where ı and the gap 1�� are related). We refer to [7, Section 6]
and the references there for a discussion of this equivalence.
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4.1. Effective decay for SL.3; R/. Spectral gap, in the form of effective decay of
matrix coefficients, is an essential input for establishing effective equidistribution
for homogeneous spaces, and so we would like to discuss where it comes from.
However, instead of describing the general argument for establishing spectral gap
and effective decay of matrix coefficients on “congruence” quotients, which would
be quite hard in these short notes, we will give a direct proof of the effective decay
of matrix coefficients for unitary representations of SL.3;R/. I.e., we will prove (6)
by showing ˇ̌hg � v;wiˇ̌� kgk� 34S.v/S.w/; (7)

whenever v;w are smooth vectors belonging to a Hilbert space H which has a unitary
action of SL.3;R/ on it and does not contain any SL.3;R/-fixed vectors. E.g. this
will apply to the subspace of L2.�n SL.3;R// of functions of integral zero for any
lattice � . Again we will use a Sobolev norm S.v/ for smooth vectors v 2 H which
we define below. The argument we present is an effectivization of the proof that
SL.3;R/ has property (T) and is likely well known to experts of the field.

4.1.1. Smooth vectors and the Sobolev norm. Let � be a unitary representation
of SL.3;R/ on a Hilbert space H , for which we will also write �.g/v D g � v for
g 2 SL.3;R/ and v 2 H . A vector v 2 H is called smooth if all partial derivates of
g 7! �.g/v as a map fromG to H exist. Taking a basis e1; : : : ; e8 of the Lie algebra
sl3 of SL.3;R/ we can define the Sobolev norm (of degree one) by

S.v/2 D kvk2 C
8X

jD1

				
�
@

@t
exp.tej / � v

�ˇ̌ˇ
tD0

				
2

;

where the sum is over all partial derivatives corresponding to the basis elements.

4.2. Spectral measures. We will also be needing some basic properties of the spec-
tral measures which we recall next. Let � be a unitary representation of R2. Then
t ! h�.t/v; vi is a positive definite function and so equals

R
R2 exp.2�it �s/d�v;v.s/

for some finite measure �v;v on R2 by Bochner’s theorem. We will refer to �v;v as
the spectral measure of v. These are used in the theory of unitary representations of
R2 to define the projection-valued measure EB on H for any Borel subset B � R2

which have the property that the spectral measure �EBv;EBv is the restriction of
�v;v to B . The map EB is an orthogonal projection commuting with �.t/ for all
t 2 R2, satisfies that ER2 is the identity and that EB1[B2 D EB1 C EB2 whenever
B1; B2 � R2 are disjoint. In particular, if H does not contain any vectors fixed under
R2, then �v;v.f0g/ D 0. Finally, we note that if v;w 2 H have singular spectral
measures, then v and w are orthogonal.
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We will be using these tools for the restriction of the unitary representation of
SL.3;R/ to the subgroup

U D
´ 

1 0 t1
0 1 t2
0 0 1

!
W t 2 R2

μ
:

Note that by the Mautner phenomenon we have no R2-fixed vectors in H as we
assumed that there are no SL.3;R/-invariant vectors.

We note that the subgroup SL.2;R/ embedded into the upper left corner of
SL.3;R/ normalizes the subgroupU . This leads to a relationship of the spectral mea-
sure of v and of g �v for g 2 SL.2;R/. In fact, we claim that�g �v;g �v D .g�1/T��v;v .
This follows from uniqueness of the measure in Bochner’s theorem and the equation

h�.t/g � v; g � vi D h�.g�1t/v; vi D
Z

R2
exp.2�i.g�1t/ � s/ d�v;v.s/

D
Z

R2
exp.2�it � ..g�1/T s/ d�v;v.s/:

Here we used that
�
g�1 0
0 1

� �
1 0 t1
0 1 t2
0 0 1

� �
g 0
0 1

�
belongs to U and is the element corre-

sponding to g�1t.

4.3. Eigenfunctions of SO.2/ first. We assume first that v;w 2 H are eigenfunc-
tions of SO.2/, i.e., that for the matrix k� 2 SO.2/ corresponding to a rotation by
angle � we have k� � v D exp.i�n/v and k� � w D exp.i�m/v for some n;m 2 Z.
In this case we have h�.t/k� � v; k� � vi D h�.t/v; vi which shows that the spectral
measures of v and k� � v are the same. This implies that the spectral measure of v,
and similarly for w, is invariant under SO.2/.

We claim that for such eigenfunctions v;w we have

jhar � v;wij � e�jrjkvkkwk with ar D
0
@e

�r 0 0

0 er 0

0 0 1

1
A ; (8)

where as before we assume H does not contain any SL.3;R/-invariant vectors. We
assume that r > 0, the argument for the other case is similar. We show this by splitting
both v and w into two components v D vmain C vvertical and w D wmain C whorizontal.
Here vvertical is defined as the image of v under the orthogonal projection defined
by the set

˚
.t2; t1/ W

ˇ̌
t2
t1

ˇ̌ � er
�

which is a sector shaped neighborhoods of the t2-
axis of angle � e�r . Hence by invariance of the spectral measure under SO.2/
we get kvverticalk � e�rkvk. Similarly, whorizontal is defined as the image of w
under the orthogonal projection defined by

˚
.t2; t1/ W

ˇ̌
t2
t1

ˇ̌ � e�r� which also has
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kwhorizontalk � e�rkwk. The other two vectors vmain and wmain are defined as the
projections w.r.t. the complements of these sets. Recall that the spectral measure of
vmain is supported on

˚
.t2; t1/ W

ˇ̌
t2
t1

ˇ̌
< er

�
and that the spectral measure of ar � vmain

is the push forward of the spectral measure of vmain under .a�1
r /T D a�1

r . This shows
that the spectral measure of ar � vmain is supported on

˚
.t2; t1/ W

ˇ̌
t2
t1

ˇ̌
< e�r� and so

ar � vmain is orthogonal to wmain as their spectral measures are supported on disjoint
sets. Applying this to

jhar � v;wij � jhar � vmain; wmainij C jhar � vmain; whorizontalij
C jhar � vvertical; wmainij C jhar � vvertical; whorizontalij;

we get that the first term is zero, and the other are bounded by� e�rkvkkwk which
gives (8).

4.4. Bootstrapping to general vectors and general group elements. We first ex-
tend (8) to any diagonal matrix

a D
0
@e

r1 0 0

0 er2 0

0 0 er3

1
A

with r1 C r2 C r3 D 0 and any two smooth vectors v;w 2 H to say

jha � v;wij � e� 12 jr2�r1jS.v/S.w/: (9)

To obtain this we decompose v DPn2Z vn andw DPm2Zwm into eigenfunctions
for SO.2/ – by smoothness these sums converge absolutely. Next notice that

a D

0
B@
er1C 1

2 r3 0 0

0 er2C 1
2 r3 0

0 0 1

1
CA
0
B@
e� 12 r3 0 0

0 e� 12 r3 0

0 0 er3

1
CA D ar2C 1

2 r3
c;

where ar2C 1
2 r3
D a 1

2 .r2�r1/ is as in (8) and c commutes with SO.2/. The latter
implies that vn is mapped under c again to eigenfunctions of SO.2/. Therefore, we
may apply (8) to each c � vn and wm to get

jha � v;wij �
X
m;n2Z

jha 1
2 .r2�r1/c � vn; wmij � e� 12 jr2�r1j X

m;n2Z

kvnkkwmk:

However, the last sum on the right may be written as the product of
P
n2Z kvnk and

the corresponding sum for wm. Notice that the derivative of vn along some element
r of the Lie algebra of SO.2/ equals

�
@

@t
exp.t r/ � vn

�ˇ̌ˇ
tD0 D nvn
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and so
�
@
@t

exp.t r/ � v�ˇ̌
tD0 D

P
n2Z nvn, and that the terms in the last sum are all

orthogonal to each other. Hence Cauchy–Schwarz gives

X
n2Z

kvnk D kv0k C
X

n2Znf0g

1

n
knvnk � kv0k C

				
�
@

@t
exp.t r/ � v

�ˇ̌
ˇ
tD0

				� S.v/;

where we used that r can be expressed as a linear combination of the basis elements
e1; : : : ; e8 2 sl3 that we used to define S.v/. This gives (9).

To make (9) closer to (7) we notice that in (9) we could have proven the same
statement with either e� 12 jr3�r2jS.v/S.w/ or with e� 12 jr3�r1jS.v/S.w/ on the right.
We claim that

min.e� 12 jr2�r1j; e� 12 jr3�r2j; e� 12 jr3�r1j/ � kak� 34 ;
which then shows that (7) holds for all diagonal matrices. To prove the above,
assume that r3 � r2 � r1. Then kak D er3 and er1 � e 12 .r1Cr2/ which together with
r1 C r2 C r3 D 0 gives

er1�r3 � e 12 .r1Cr2Cr3/e� 32 r3 D e� 32 r3 D kgk� 32 ;
which proves the claim and so (7) in this case.

To prove (7) for all g 2 SL.3;R/ we recall that g D k1ak2 for some k1; k2 2
SO.3/ and some diagonal matrix a by the Cartan decomposition of g in SL.3;R/.
As SO.3/ is compact, kgk and kak are bounded by some multiples of each other.
Similarly, S.k2 � v/ � S.v/ and S.k�1

1 w/ � S.w/. Together this gives using (9)
that

jhg � v;wij D jha � .k2 � v/; k�1
1 � wij � kgk�

3
4S.v/S.w/;

which proves (7).

4.5. Groups without property (T). As we mentioned before the above argument is
the effectivization of the proof that SL.3;R/ has property (T). However, e.g. SL.2;R/
and SU.m; 1/.R/ do not have property (T). For these groups spectral gap (respective
effective decay of matrix coefficients) is not an automatic property for any unitary
representation. However, Selberg showed that the SL.2;R/-action on congruence
quotients �n SL.2;R/ has a spectral gap – in fact there is a uniform spectral gap that
is independent of � . In this case and in similar cases the spectral gap is a property of
the space and not of the group.

5. An effective pointwise ergodic theorem

For the main theorem of [7], which we will discuss in §6, a pointwise ergodic theorem
was needed and also proven in [7, Proposition 9.2]. As we outline now this is a



44 M. Einsiedler

consequence of the effective decay of matrix coefficients (6) discussed earlier (but
we will refer to [7] for the last step of the argument).

There are two basic types of non-compact one-parameter subgroups of semisimple
groups G � SL.n;R/: Diagonalizable subgroups and unipotent subgroups. The
estimate in (6) can be used to establish an effective ergodic theorem for both of
them, but as the unipotent case may seem a bit more delicate and at the same time
is the case that will be used later, let us focus on that case. Hence suppose ut D
exp.tp/ is a unipotent one-parameter subgroup defined by some nilpotent element
p in the Lie algebra of G. Then we notice that t � kutk � tn as the entries of
the matrix ut are polynomials in t and so (6) is the statement that matrix coefficients
decay at a polynomial rate with respect to the time parameter of the subgroup. (For
diagonalizable subgroups (6) would be exponential decay of matrix coefficients.)

5.1. A single function and a given time first. For f 2 C1
c .X/ and T > 0 we

define the discrepancy at x by

DT .f /.x/ D 1

T

Z T

0

f .xut / dt �
Z
X

f dmX :

It measures how far the time average over Œ0; T � is away from the expected value.
Using Fubini’s theorem several times as well as that ut 2 G preserves mX we getZ
jDT .f /j2 dmX D 1

T 2

Z T

0

Z T

0

Z
X

f .xut1/
Nf .xut2/dmX dt2dt1

� 2Re
1

T

Z T

0

Z
X

f .xut / dmXdt

Z
X

NfdmX C
ˇ̌ˇ
Z
X

f dmX

ˇ̌ˇ2

D 1

T 2

Z T

0

Z T

0

�
hut1�t2 � f; f i �

ˇ̌ˇ
Z
X

f dmX

ˇ̌ˇ2� dt2dt1:
Now notice that for most .t1; t2/ 2 Œ0; T �2 we have that jt1�t2j is quite big, and so the
expression within the last integral is quite small. More precisely, if jt1 � t2j > T

1
2 ,

then by (6) we have thatˇ̌̌
hut1�t2 � f; f i �

ˇ̌sXf dmX ˇ̌2
ˇ̌̌
� T � 12 ıS.f /2

while the integral over the part jt1 � t2j � T 1
2 is bounded by the area � T T 1

2 times
the trivial estimate� kf k21 of the integrand. Together this givesZ

jDT .f /j2 dmX � T � 12 ıS.f /2 C T � 12 kf k21:
We can simplify this as follows. If we modify our notion of Sobolev norm, we can
make sure that

kf k1 � S.f /;



Effective equidistribution and spectral gap 45

see [7, Lemma 5.1.1]. This is not entirely trivial, because in fact, we claim that one
can modify the norm in such a way that S.f / is still the norm of a pre-Hilbert-space
structure (i.e., is an Hermitian norm) on C1

c .X/ – this is not important right now,
but will be for the last step of the argument. If additionally we also assume w.l.o.g.
that ı � 1, then we haveZ

jDT .f /j2 dmX � T � 12 ıS.f /2:

This shows that

W 2mX
�˚
x 2 X W DT .f /.x/ � W

��� T � 12 ıS.f /2 (10)

for anyW > 0. We still have some freedom inW – asking for a better estimate, i.e., a
smaller value ofW , will make the estimate of the set worse. To achieve a reasonable
estimate on the set, we set W D T � 16 ıS.f / which makes the above into

mX
�˚
x 2 X W DT .f /.x/ � T � 16 ıS.f /

��� T � 16 ı : (11)

This is already an effective version of the pointwise ergodic theorem: For a given
f 2 C1

c .X/ and T > 0 we know that the average of f over the Œ0; T �-orbit of x

is T � 16 ıS.f / close to
R
X
f dmX except possibly for a set of points x of measure

� T � 16 ı . However, this is not yet very satisfactory as the exceptional set is still
allowed to depend on f and on T .

5.2. A single function with large enough times. It is relatively easy to obtain the
following strengthening of the above: There exists some 	 > 0 such that for a given
f 2 C1

c .X/ we have that for any T0 the average of f over the Œ0; T �-orbit of x
is T ��S.f / close to

R
X
fdmX for all T � T0 except possible for a set of measure

� T ��
0 . I.e., at some cost in the exponents we can make the set independent of the

particular time interval Œ0; T � that we use to average and still get a very good estimate
on the measure of the exceptional points if we only restrict ourself to large enough
times T � T0.

To prove the above let M D 121
ı

. Then we may apply (11) for Tn D nM which
gives

mX
�˚
x 2 X W DT .f /.x/ � T � 16 ı

n S.f /
��� n�2:

Call this exceptional set En, then mX
�S

n�n0 En
�� n�1

0 for any real n0 > 0.

Now choose some T0 and define n0 D T
1
M

0 . Now let T � T0 and let n D
dT 1

M e � n0. Then jnM � T j � nM�1 � T
M�1
M D T 1� 1

M and from this it is easy
to see that

ˇ̌̌
ˇ 1
nM

Z nM

0

f .xut / dt � 1

T

Z T

0

f .xut / dt

ˇ̌̌
ˇ� kf k1T � 1

M :
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This gives for x … En that

ˇ̌
ˇ̌ 1
T

Z T

0

f .xut / dt �
Z
X

f dmX

ˇ̌
ˇ̌� .T � 1

M C T � 16 ı/S.f /:

Setting 	 D min
�
1
M
; 1
6
ı
� D 1

12
ı gives the desired estimate.

5.3. Bootstrapping to all functions f 2 C 1
c .X/. We fix some 	 > 0. We say a

point x 2 X is .T0; 	/-generic if

ˇ̌̌
ˇ 1
T

Z T

0

f .xut /dt �
Z
X

fdmX

ˇ̌̌
ˇ� T ��S 0.f / (12)

for all T � T0 and all f 2 C1
c .X/. Then an even stronger effective version of the

pointwise ergodic theorem would be that there exists a choice of 	 for which

mX
�˚
x W x is not .T0; 	/-generic

��� T ��
0 :

This can be obtained by the argument in [7, Section 9]. The hidden cost is that in (12)
a different notion of Sobolev norm S 0 (defined using more derivatives) is used than in
(10). Allowing for that, gives us the possibility of making W in (10) also depend on
S 0.f /
S.f /

. The argument is in some way then similar to §2.3.2 and §4.4. Using different
Sobolev norms one can find an orthonormal basis f1; : : : ; fk; : : :w.r.t. S 0.�/ such thatP1
nD1 S.fn/ is finite. This uses some ideas (relative traces of Hermitian norms) of

Bernstein and Reznikov [1]

6. Effective equidistribution for semisimple subgroups

We shall assume the following.

� There is a semisimple Q-group G so that G D G .R/B and � is a congruence
subgroup of G .Q/.

� H is a connected semisimple subgroup without compact factors.

We note that in this context an H -orbit x0H � X D �nG is closed if and only if it
has finite volume.

Two examples of this setup areH D SO.2; 1/.R/B acting on SL.3;Z/n SL.3;R/,
andH D SL.k;R/ embedded diagonally in SL.k;R/�SL.k;R/ acting on SL.k;Z/�
SL.k;Z/n SL.k;R/ � SL.k;R/ for k � 2. In fact in both of these examples H is
a maximal subgroup, where a subgroup H � G is called maximal if there is no
subgroup S � G containing H with dimension strictly between the dimensions of
G and H .



Effective equidistribution and spectral gap 47

6.1. Maximal subgroup theorem. In joint work with Margulis and Venkatesh we
proved [7] the following theorem8.

Theorem 1 ([7], simpler form). Let �;H � G be as above. Assume that H is a
maximal subgroup of G.

There exists ı > 0 depending only on G, H so that the Haar measure mx0H on
a closed orbit x0H is Vol�ı -close to mX , i.e., for any f 2 C1

c .X/ we have
ˇ̌ˇ̌Z
x0H

f �
Z
X

f

ˇ̌ˇ̌� Vol�ı S.f /;

where Vol denotes the volume9 of the orbit x0H .

Crucial input. This theorem has as the major input the spectral gap for the
H -action on L2.x0H/ in a uniform way for all possible closed orbits x0H , i.e.,
ı and the implicit constant as in the discussion of effective decay of matrix coeffi-
cients (6) are not allowed to depend on x0.

� If H has property (T) as e.g. for H D SL.3;R/, this holds always.

� If H does not have (T) as e.g. for H D SO.2; 1/.R/B, the required statement
is property .
/ as established by Clozel [5] (building on work of Burger and
Sarnak [4]). This is where the congruence assumption on � is crucial, see [7,
Section 6].

6.2. A comment about the proof. Our proof has little to do with the outline for the
horocycle flow in §3.2.2, instead may be viewed as an effective version of the measure
classification theorem by Ratner and the limiting distribution theorem due to Mozes
and Shah (in the semisimple case considered here). It uses a version of the effective
ergodic theorem discussed in §5 (where the measure mX is replaced by mx0H ).
The difference of the effective ergodic theorem in [7, Proposition 9.2] and what we
discussed in §5 is that in the former the average is not taken over initial intervals
Œ0; T � but rather over long intervals very far away from the origin. More precisely,
in [7, Proposition 9.2] an error is obtained for the average of f over the interval
ŒTM ; .T C 1/M � which roughly speaking has length TM�1, and this error holds for
all points but those in a set of small measure. This is desirable, as the divergence of
two nearby points under a unipotent one-parameter subgroup in H is determined by
a polynomial. If this polynomial is uniformly bounded on Œ0; .T C 1/M � then it is
nearly constant on the interval ŒTM ; .T C 1/M �. This allows the effectivization of

8The first simpler version of the theorem was presented by Margulis in several talks before our joint work and
may also be approachable by other methods. In fact most of the work in [7] goes into the discussion of possible
intermediate subgroups where the argument becomes more involved, see Theorem 2.

9The volume Vol is calculated in comparison with a fixed Haar measure onH , but the Haar measuremx0H
is normalized to be a probability measure.
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a particular argument that appears in Ratner’s work (the combination of the ergodic
theorem and polynomial divergence for unipotent orbits, see [14] and [15, pg. 244]),
we refer to [6] or [7, Section 2] for the ineffective argument in precisely the context
we need here.

6.3. More general version. The more general version of our theorem is as follows.

Theorem 2 ([7], current form). Let �;H � G be as above. Assume thatH has finite
centralizer in G. There exists ı > 0 depending only on G,H and V0 > 0 depending
only on � , G, H so that, for any V � V0 and any closed orbit x0H there exists an
intermediate subgroupH � S � G for which

� x0S is a closed S -orbit with volume < V , and

� the Haar measure on x0H is V �ı -close to the Haar measure on x0S , i.e., for
any f 2 C1

c .X/ we have
ˇ̌ˇ̌Z
x0H

f �
Z
x0S

f

ˇ̌ˇ̌ < V �ıS.f /:

One may read this statement as follows: If V D Vol.x0H/ is very large we may
apply the theorem to this parameter and obtain some bigger group S © H . The
orbit x0S of the higher dimensional group S has finite volume V 0 D Vol.x0S/ (w.r.t.
to a Haar measure on S ) and should be thought of as being less complicated since
V 0 < V . However, V 0 may still be large (x0S may still be complicated), so that one
may want to apply the theorem to the parameter V 0 to obtain a different group S 0 © S

whose orbit x0S 0 has smaller volume (is less complicated) at the cost of obtaining a
worse error statement. This may be continued until the volume of the orbit of some
group becomes less than V0 (e.g. if S 00 D G).

6.3.1. Visualization on T 3. A toy model for this problem of intermediate orbits is
the image of long rational line L � R3 in a 3-dimensional torus L=Z3 � T3. It is
determined L D Rn by a single primitive vector n 2 Z3 and the length of the closed
circle L=Z3 is precisely knk. As we mentioned in §3.2 it is quite easy to establish
an effective error for the distribution properties of a rational torus in T2. However,
unlike the case of a rational line in T2 the circleL=Z3 is contained in rational planes
P � R3. A rational plane is determined by a primitive orthogonal vector v 2 Z3,
and one may check that kvk equals the area of the image torus P=Z3 – we will also
think of kvk as a measure of the complexity of P=Z3 inside T3. If kvk is much
smaller than knk for some choice of the plane, then an effective error with an error
determined by knk can only be given if we compare the Lebesgue measure on the
circle L=Z3 to the Lebesgue measure on the two-dimensional subtorus P=Z3. If
kvk is also big (for all rational planes containing L), then one can also compare the
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Lebesgue measure on the circle L=Z3 to the Lebesgue measure on T3 but the error
would be expressed in terms of the smallest kvk.

7. Transportation of spectral gap

7.1. Hecke correspondences. The above theorem (in fact the maximal case in Theo-
rem 1) may be used in the context of G D SL.2;R/ � SL.2;R/ with � equal to
the product of SL.2;Z/ with itself. Then the Hecke correspondence T np (roughly
speaking) corresponds to big volume orbits inside X D �nG with respect to the
diagonal subgroup isomorphic to SL.2;R/, i.e.,H� D f.g; g/ W g 2 SL2.R/g. These
orbits are isomorphic to congruence quotients of SL.2;R/. The uniform effective
decay of matrix coefficients (which comes from Selberg’s theorem) for the action of
H� then implies a bound for the eigenvalue of the Hecke operator Tp . In that sense,
the theorem allows us to transport the spectral gap from one place to another (in this
case from1 to p).

7.2. General setup. Another instance of this transportation of spectral gap can be
set up as follows.

Let G1; G2 be simple groups, and suppose G2 has (T) but G1 has not. Let � be
an irreducible lattice in G D G1 � G2, e.g. this is possible for G1 D SU.2; 1/.R/
and G2 D SL.3;R/. As we discussed in §4 (resp. §4.1 in the case of SL.3;R/) we
then have effective decay of matrix coefficients for the action of G2.

We wish to bound the matrix coefficients of G1 acting on X D �nG. Let
H� D f.g; g/ W g 2 Gg. Notice that the diagonal orbit � � �H� � X � X is
‘responsible’ for the inner product in the sense that the integral of f1 ˝ Nf2 over
this orbit equals the inner product hf1; f2i. In the same sense is the deformed orbit
� � �H�.g; e/ responsible for the matrix coefficients of g, i.e.,

Z
f1 ˝ Nf2dm���H�.g;e/ D

Z
X

f1.xg/ Nf2.x/dmX .x/ D hg � f1; f2i:

The volume of the deformed orbit � � �H�.g; e/ is roughly speaking a power of
kgk, more precisely bounded from above and below by multiples of powers of kgk.
Hence effective equidistribution of the Haar measures on these orbits to the Haar
measure on X �X gives effective decay of matrix coefficients.

However, notice that the theorem does not apply as the group giving the closed
orbit has been conjugated and does not remain fixed. (In the theorem the rate of
equidistribution is allowed to depend on the group H , which is changing in this
case.)

On a positive side, if g D .g1; e/ then the simple factor of H� corresponding to
G2 remains (as a subgroup of G �G) fixed and this is the part with known effective
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decay. In this case the method behind the proof of the theorem can be used to show
effective equidistribution and so decay of matrix coefficients for theG1-action. In all
of this, the rate (i.e., the ı appearing in the discussion) of decay of matrix coefficients
for G1 only depends on the spectral gap for G2 (but not on �).

7.3. Effective equidistribution implies a weak form of .�/. Using the above con-
struction for a p-adic group G2, one can prove a weaker version of property .
/ for
all simple algebraic groups of absolute higher rank (i.e., all groups except forms of
SL2 for which property .
/ has been known much longer).

So let G be a simple, simply connected algebraic Q-group of absolute rank � 2.
Let G1 D G .R/, G2 D G .Qp/, and let � be commensurable with G .ZŒ 1

p
�/, then

L2.�1nG/ (with �1 D � \ G .Zp/) is contained in L2.�nG1 � G2/. We choose
p such that G2 has Qp-rank � 2. This gives that G2 has property (T), and so also
effective decay of matrix coefficients. The latter is the only input to the method which
establishes the result.

Hence the spectral gap of the G2-action and its independence from � gives also
some spectral gap of the G1-action on �1nG1 and in a uniform way (as long as the
lattice inG1 can be obtained from a lattice inG1�G2 by intersection which is always
possible for congruence subgroups). We then obtain a proof of uniform spectral gap
of the action of G1, a version of property .
/. We note that the gap hereby obtained
is probably quite bad in comparison to what Clozel obtained in [5]. This is part of an
ongoing joint work with Margulis and Venkatesh.
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Introduction

A space X is called aspherical if it is path connected and all its higher homotopy
groups vanish, i.e.,�n.X/ is trivial forn � 2. This survey article is devoted to aspheri-
cal closed manifolds. These are very interesting objects for many reasons. Often inter-
esting geometric constructions or examples lead to aspherical closed manifolds. The
study of the question which groups occur as fundamental groups of closed aspherical
manifolds is intriguing. The condition aspherical is of purely homotopy theoretical
nature. Nevertheless there are some interesting questions and conjectures about cur-
vature properties of a closed aspherical Riemann manifold and about the spectrum
of the Laplace operator on its universal covering. The Borel Conjecture predicts
that aspherical closed topological manifolds are topologically rigid and that aspher-
ical compact Poincaré complexes are homotopy equivalent to closed manifolds. We
discuss the status of some of these questions and conjectures. Examples of exotic
aspherical closed manifolds come from hyperbolization techniques and we list certain
examples. At the end we describe (winking) our universe of closed manifolds.

The results about product decompositions of closed aspherical manifolds in Sec-
tion 6 are new and Section 8 contains an announcement of a result joint with Arthur
Bartels and Shmuel Weinberger about hyperbolic groups with spheres of dimension
� 6 as boundary.

The author wants to the thank the Max-Planck-Institute for Mathematics in Bonn
for its hospitality during his stay from October 2007 until December 2007 when
parts of this paper were written. The work was financially supported by the Son-
derforschungsbereich 478 – Geometrische Strukturen in der Mathematik – the Max-
Planck-Forschungspreis and the Leibniz-Preis of the author. The author wants to
thank the referee for his valuable suggestions.

1. Homotopy theory of aspherical manifolds

From the homotopy theory point of view an aspherical CW -complex is completely
determined by its fundamental group. Namely

Theorem 1.1 (Homotopy classification of aspherical spaces).

(i) Two aspherical CW -complexes are homotopy equivalent if and only if their
fundamental groups are isomorphic.

(ii) LetX and Y be connectedCW -complexes. Suppose that Y is aspherical. Then
we obtain a bijection

ŒX; Y � ��!Š Œ….X/;….Y /�; Œf � 7! Œ….f //�;
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where ŒX; Y � is the set of homotopy classes of maps from X to Y ,….X/,….Y /
are the fundamental groupoids, Œ….X/;….Y /� is the set of natural equivalence
classes of functors from ….X/ to ….Y / and ….f / W ….X/ ! ….Y / is the
functor induced by f W X ! Y .

Proof. (ii) One easily checks that the map is well-defined. For the proof of surjec-
tivity and injectivity one constructs the desired preimage or the desired homotopy
inductively over the skeletons of the source.

(i) This follows directly from assertion (ii). �

The description using fundamental groupoids is elegant and base point free,
but a reader may prefer its more concrete interpretation in terms of fundamental
groups, which we will give next: Choose base points x 2 X and y 2 Y . Let
hom.�1.X; x/; �1.Y; y// be the set of group homomorphisms from �1.X; x/ to
�1.Y; y/. The group Inn

�
�1.Y; y/

�
of inner automorphisms of �1.Y; y/ acts on

hom
�
�1.X; x/; �1.Y; y/

�
from the left by composition. We leave it to the reader to

check that we obtain a bijection

Inn
�
�1.Y; y/

�n hom
�
�1.X; x/; �1.Y; y/

� ��!Š Œ….X/;….Y /�;

under which the bijection appearing in Lemma 1.1 (ii) sends Œf � to the class of
�1.f; x/ for any choice of representative of f with f .x/ D y. In the sequel we will
often ignore base points especially when dealing with the fundamental group.

Lemma 1.2. A CW -complex X is aspherical if and only if it is connected and its
universal covering zX is contractible.

Proof. The projection p W zX ! X induces isomorphisms on the homotopy groups
�n for n � 2 and a connected CW -complex is contractible if and only if all its
homotopy groups are trivial (see [99, Theorem IV.7.17 on page 182]. �

An aspherical CW -complex X with fundamental group � is the same as an
Eilenberg–MacLane space K.�; 1/ of type .�; 1/ and the same as the classifying
space B� for the group � .

2. Examples of aspherical manifolds

In this section we give examples and constructions of aspherical closed manifolds.

2.1. Non-positive curvature. Let M be a closed smooth manifold. Suppose that
it possesses a Riemannian metric whose sectional curvature is non-positive, i.e.,
is � 0 everywhere. Then the universal covering zM inherits a complete Riemannian
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metric whose sectional curvature is non-positive. Since zM is simply-connected and
has non-positive sectional curvature, the Hadamard–Cartan Theorem (see [45, 3.87
on page 134]) implies that zM is diffeomorphic to Rn and hence contractible. We
conclude that zM and hence M is aspherical.

2.2. Low-dimensions. A connected closed 1-dimensional manifold is homeomor-
phic to S1 and hence aspherical.

LetM be a connected closed 2-dimensional manifold. ThenM is either aspherical
or homeomorphic to S2 or RP2. The following statements are equivalent: i.) M
is aspherical. ii.) M admits a Riemannian metric which is flat, i.e., with sectional
curvature constant 0, or which is hyperbolic, i.e., with sectional curvature constant�1.
iii) The universal covering of M is homeomorphic to R2.

A connected closed 3-manifold M is called prime if for any decomposition as a
connected sum M Š M0 ] M1 one of the summands M0 or M1 is homeomorphic
to S3. It is called irreducible if any embedded sphere S2 bounds a diskD3. Every ir-
reducible closed 3-manifold is prime. A prime closed 3-manifold is either irreducible
or an S2-bundle over S1 (see [53, Lemma 3.13 on page 28]). A closed orientable
3-manifold is aspherical if and only if it is irreducible and has infinite fundamental
group. A closed 3-manifold is aspherical if and only if it is irreducible and its fun-
damental group is infinite and contains no element of order 2. This follows from the
Sphere Theorem [53, Theorem 4.3 on page 40].

Thurston’s Geometrization Conjecture implies that a closed 3-manifold is aspheri-
cal if and only if its universal covering is homeomorphic to R3. This follows from [53,
Theorem 13.4 on page 142] and the fact that the 3-dimensional geometries which have
compact quotients and whose underlying topological spaces are contractible have as
underlying smooth manifold R3 (see [89]).

A proof of Thurston’s Geometrization Conjecture is given in [74] following ideas
of Perelman.

There are examples of closed orientable 3-manifolds that are aspherical but do
not support a Riemannian metric with non-positive sectional curvature (see [66]).

For more information about 3-manifolds we refer for instance to [53], [89].

2.3. Torsionfree discrete subgroups of almost connected Lie groups. Let L be a
Lie group with finitely many path components. Let K � L be a maximal compact
subgroup. Let G � L be a discrete torsionfree subgroup. Then M D GnL=K is
a closed aspherical manifold with fundamental group G since its universal covering
L=K is diffeomorphic to Rn for appropriate n (see [52, Theorem 1. in Chapter VI]).

2.4. Hyperbolization. A very important construction of aspherical manifolds comes
from the hyperbolization technique due to Gromov [49]. It turns a cell complex into
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a non-positively curved (and hence aspherical) polyhedron. The rough idea is to de-
fine this procedure for simplices such that it is natural under inclusions of simplices
and then define the hyperbolization of a simplicial complex by gluing the results for
the simplices together as described by the combinatorics of the simplicial complex.
The goal is to achieve that the result shares some of the properties of the simplicial
complexes one has started with, but additionally to produce a non-positively curved
and hence aspherical polyhedron. Since this construction preserves local structures,
it turns manifolds into manifolds.

We briefly explain what the orientable hyperbolization procedure gives. Further
expositions of this construction can be found in [19], [22], [24], [25]. We start with
a finite-dimensional simplicial complex † and a assign to it a cubical cell complex
h.†/ and a natural map c W h.†/! † with the following properties:

(i) h.†/ is non-positively curved and in particular aspherical.

(ii) The natural map c W h.†/! † induces a surjection on the integral homology.

(iii) �1.f / W �1.h.†//! �1.†/ is surjective.

(iv) If † is an orientable manifold, then

(a) h.†/ is a manifold;

(b) the natural map c W h.†/! † has degree one;

(c) there is a stable isomorphism between the tangent bundle T h.†/ and the
pullback c�T†;

Remark 2.1 (Characteristic numbers and aspherical manifolds). Suppose that M
is a closed manifold. Then the pullback of the characteristic classes of M under
the natural map c W h.M/!M yield the characteristic classes of h.M/, andM and
h.M/ have the same characteristic numbers. This shows that the condition aspherical
does not impose any restrictions on the characteristic numbers of a manifold.

Remark 2.2 (Bordism and aspherical manifolds). The conditions above say that c is
a normal map in the sense of surgery. One can show that c is normally bordant to the
identity map on M . In particular M and h.M/ are oriented bordant.

Consider a bordism theory �� for PL-manifolds or smooth manifolds which is
given by imposing conditions on the stable tangent bundle. Examples are unori-
ented bordism, oriented bordism, framed bordism. Then any bordism class can be
represented by an aspherical closed manifold. If two closed aspherical manifolds
represent the same bordism class, then one can find an aspherical bordism between
them. See [22, Remarks 15.1] and [25, Theorem B].

2.5. Exotic asphericalmanifolds. The following result is taken from Davis–Janusz-
kiewicz [25, Theorem 5a.1].
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Theorem 2.3. There is a closed aspherical 4-manifoldN with the following proper-
ties:

(i) N is not homotopy equivalent to a PL-manifold.

(ii) N is not triangulable, i.e., not homeomorphic to a simplicial complex.

(iii) The universal covering zN is not homeomorphic to R4.

(iv) N is homotopy equivalent to a piecewise flat, non-positively curved polyhedron.

The next result is due to Davis–Januszkiewicz [25, Theorem 5a.4].

Theorem 2.4 (Non-PL-example). For every n � 4 there exists a closed aspherical
n-manifold which is not homotopy equivalent to a PL-manifold

The proof of the following theorem can be found in [23], [25, Theorem 5b.1].

Theorem 2.5 (Exotic universal covering). For each n � 4 there exists a closed as-
phericaln-dimensionalmanifold such that its universal covering is not homeomorphic
to Rn.

By the Hadamard–Cartan Theorem (see [45, 3.87 on page 134]) the manifold
appearing in Theorem 2.5 above cannot be homeomorphic to a smooth manifold with
Riemannian metric with non-positive sectional curvature.

The following theorem is proved in [25, Theorem 5c.1 and Remark on page 386]
by considering the ideal boundary, which is a quasiisometry invariant in the negatively
curved case.

Theorem 2.6 (Exotic example with hyperbolic fundamental group). For every n � 5
there exists an aspherical closed smooth n-dimensional manifoldN which is homeo-
morphic to a strictly negatively curved polyhedron and has in particular a hyperbolic
fundamental group such that the universal covering is homeomorphic to Rn but N
is not homeomorphic to a smooth manifold with Riemannian metric with negative
sectional curvature.

The next results are due to Belegradek [8, Corollary 5.1], Mess [71] and Wein-
berger (see [22, Section 13]).

Theorem 2.7 (Exotic fundamental groups).

(i) For every n � 4 there is a closed aspherical manifold of dimension n whose
fundamental group contains an infinite divisible abelian group.

(ii) For every n � 4 there is a closed aspherical manifold of dimension nwhose fun-
damental group has an unsolvable word problem and whose simplicial volume
is non-zero.
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Notice that a finitely presented group with unsolvable word problem is not a
CAT.0/-group, not hyperbolic, not automatic, not asynchronously automatic, not
residually finite and not linear over any commutative ring (see [8, Remark 5.2]).

The proof of Theorem 2.7 is based on the reflection group trick as it appears for
instance in [22, Sections 8,10 and 13]. It can be summarized as follows.

Theorem2.8 (Reflection group trick). LetG beagroupwhichpossesses afinitemodel
for BG. Then there is a closed aspherical manifoldM and a map i W BG !M and
r W M ! BG such that r B i D idBG .

Remark 2.9 (Reflection group trick and various conjectures). Another interesting
immediate consequence of the reflection group trick is (see also [22, Sections 11])
that many well-known conjectures about groups hold for every group which possesses
a finite model forBG if and only if it holds for the fundamental group of every closed
aspherical manifold. This applies for instance to the Kaplansky Conjecture, Unit
Conjecture, Zero-divisor Conjecture, Baum–Connes Conjecture, Farrell–Jones Con-
jecture for algebraic K-theory for regular R, Farrell–Jones Conjecture for algebraic
L-theory, the vanishing of zK0.ZG/ and of Wh.G/ D 0. For information about these
conjectures and their links we refer for instance to [6], [68] and [70]. Further similar
consequences of the reflection group trick can be found in Belegradek [8].

3. Non-aspherical closed manifolds

A closed manifold of dimension� 1with finite fundamental group is never aspherical.
So prominent non-aspherical manifolds are spheres, lens spaces, real projective spaces
and complex projective spaces.

Lemma 3.1. The fundamental group of an aspherical finite-dimensional CW -com-
plex X is torsionfree.

Proof. LetC � �1.X/ be a finite cyclic subgroup of �1.X/. We have to show thatC
is trivial. Since X is aspherical, Cn zX is a finite-dimensional model for BC . Hence
Hk.BC/ D 0 for large k. This implies that C is trivial. �

Lemma 3.2. IfM is a connected sumM1 ]M2 of two closed manifoldsM1 andM2

of dimension n � 3 which are not homotopy equivalent to a sphere, then M is not
aspherical.

Proof. We proceed by contradiction. Suppose that M is aspherical. The obvious
map f W M1 ] M2 ! M1 _M2 given by collapsing Sn�1 to a point is .n � 1/-con-
nected, where n is the dimension of M1 and M2. Let p W CM1 _M2 ! M1 _M2
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be the universal covering. By the Seifert–van Kampen Theorem the fundamental
group of �1.M1 _ M2/ is �1.M1/ � �1.M2/ and the inclusion of Mk ! M1 _
M2 induces injections on the fundamental groups for k D 1; 2. We conclude that
p�1.Mk/ D �1.M1 _M2/ ��1.Mk/ �Mk for k D 1; 2. Since n � 3, the map f
induces an isomorphism on the fundamental groups and an .n � 1/-connected map
Qf W CM1 ] M2 ! CM1 _M2. Since CM1 ] M2 is contractible, Hm.CM1 _M2/ D 0

for 1 � m � n � 1. Since p�1.M1/ [ p�1.M2/ D CM1 _M2 and p�1.M1/ \
p�1.M2/ D p�1.f�g/ D �1.M1 _ M2/, we conclude Hm.p�1.Mk// D 0 for
1 � m � n � 1 from the Mayer–Vietoris sequence. This implies Hm. �Mk/ D 0 for
1 � m � n � 1 since p�1.Mk/ is a disjoint union of copies of �Mk .

Suppose that �1.Mk/ is finite. Since �1.M1 ]M2/ is torsionfree by Lemma 3.1,
�1.Mk/must be trivial andMk D �Mk . SinceMk is simply connected andHm.Mk/D
0 for 1 � m � n � 1, Mk is homotopy equivalent to Sn. Since we assume that Mk

is not homotopy equivalent to a sphere, �1.Mk/ is infinite. This implies that the
manifold �Mk is non-compact and hence Hn. �Mk/ D 0. Since �Mk is n-dimensional,
we conclude Hm. �Mk/ D 0 for m � 1. Since �Mk is simply connected, all ho-
motopy groups of �Mk vanish by the Hurewicz Theorem [99, Corollary IV.7.8 on
page 180]. We conclude from Lemma 1.2 that M1 and M2 are aspherical. Using
the Mayer–Vietoris argument above one shows analogously thatM1 _M2 is aspher-
ical. Since M is by assumption aspherical, M1 ] M2 and M1 _M2 are homotopy
equivalent by Lemma 1.1 (i). Since they have different Euler characteristics, namely
�.M1]M2/ D �.M1/C�.M2/�.1C.�1/n/ and�.M1_M2/ D �.M1/C�.M2/�1,
we get a contradiction. �

4. The Borel Conjecture

In this section we deal with

Conjecture 4.1 (Borel Conjecture for a groupG). IfM andN are closed aspherical
manifolds of dimensions� 5with�1.M/ Š �1.N / Š G, thenM andN are homeo-
morphic and any homotopy equivalenceM ! N is homotopic to a homeomorphism.

Definition 4.2 (Topologically rigid). We call a closed manifold N topologically
rigid if any homotopy equivalence M ! N with a closed manifold M as source is
homotopic to a homeomorphism.

If the Borel Conjecture holds for all finitely presented groups, then every closed
aspherical manifold is topologically rigid.

The main tool to attack the Borel Conjecture is surgery theory and the Farrell–
Jones Conjecture. We consider the following special version of the Farrell–Jones
Conjecture.
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Conjecture 4.3 (Farrell–Jones Conjecture for torsionfree groups and regular rings).
Let G be a torsionfree group and let R be a regular ring, e.g., a principal ideal
domain, a field, or Z. Then

(i) Kn.RG/ D 0 for n � �1.
(ii) The change of rings homomorphism K0.R/ ! K0.RG/ is bijective. (This

implies in the case R D Z that the reduced projective class group zK0.ZG/
vanishes).

(iii) The obvious map K1.R/ � G=ŒG;G� ! K1.RG/ is surjective. (This implies
in the case R D Z that the Whitehead group Wh.G/ vanishes).

(iv) For any orientation homomorphism w W G ! f˙1g the w-twisted L-theoretic
assembly map

Hn.BGIw Lh�1i/ ��!Š Lh�1i
n .RG;w/

is bijective.

Lemma 4.4. Suppose that the torsionfree groupG satisfies the version of the Farrell–
Jones Conjecture stated in Conjecture 4.3 for R D Z.

Then the Borel Conjecture is true for closed aspherical manifolds of dimension
� 5 with G as fundamental group. Its is true for closed aspherical manifolds of
dimension 4 with G as fundamental group if G is good in the sense of Freedman
(see [42], [43]).

Sketch of the proof. We treat the orientable case only. The topological structure set
� top.M/ of a closed topological manifold M is the set of equivalence classes of
homotopy equivalences M 0 ! M with a topological closed manifold as source and
M as target under the equivalence relation, for which f0 W M0 !M and f1 W M1 !
M are equivalent if there is a homeomorphism g W M0 !M1 such that f1 Bg and f0
are homotopic. The Borel Conjecture 4.1 for a groupG is equivalent to the statement
that for every closed aspherical manifoldM withG Š �1.M/ its topological structure
set � top.M/ consists of a single element, namely, the class of id W M !M .

The surgery sequence of a closed orientable topological manifoldM of dimension
n � 5 is the exact sequence

	 	 	 ��! NnC1
�
M � Œ0; 1�;M � f0; 1g� ��! LsnC1

�
Z�1.M/

�
@�! � top.M/

��! Nn.M/
���! Lsn

�
Z�1.M/

�
;

which extends infinitely to the left. It is the basic tool for the classification of topo-
logical manifolds. (There is also a smooth version of it.) The map � appearing in the
sequence sends a normal map of degree one to its surgery obstruction. This map can be
identified with the version of theL-theory assembly map where one works with the 1-
connected cover Ls.Z/h1iof Ls.Z/. The mapHk

�
M ILs.Z/h1i�!Hk

�
M ILs.Z/

�
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is injective for k D n and an isomorphism for k > n. Because of the K-theoretic
assumptions we can replace the s-decoration with the h�1i-decoration. Therefore
the Farrell–Jones Conjecture implies that the maps � W Nn.M/! Lsn

�
Z�1.M/

�
and

NnC1
�
M � Œ0; 1�;M � f0; 1g� ��! LsnC1

�
Z�1.M/

�
are injective respectively bijec-

tive and thus by the surgery sequence that � top.M/ is a point and hence the Borel
Conjecture 4.1 holds forM . More details can be found, e.g., in [39, pages 17, 18, 28],
[87, Chapter 18]. �

Remark 4.5 (The Borel Conjecture in low dimensions). The Borel Conjecture is
true in dimension � 2 by the classification of closed manifolds of dimension 2. It
is true in dimension 3 if Thurston’s Geometrization Conjecture is true. This follows
from results of Waldhausen (see Hempel [53, Lemma 10.1 and Corollary 13.7]) and
Turaev (see [93]) as explained for instance in [65, Section 5]. A proof of Thurston’s
Geometrization Conjecture is given in [74] following ideas of Perelman.

Remark4.6 (Topological rigidity for non-aspherical manifolds). Topological rigidity
phenomenons do hold also for some non-aspherical closed manifolds. For instance the
sphere Sn is topologically rigid by the Poincaré Conjecture. The Poincaré Conjecture
is known to be true in all dimensions. This follows in high dimensions from the h-co-
bordism theorem, in dimension four from the work of Freedman [42], in dimension
three from the work of Perelman as explained in [62], [73], and in dimension two
from the classification of surfaces.

Many more examples of classes of manifolds which are topologically rigid are
given and analyzed in Kreck–Lück [65]. For instance the connected sum of closed
manifolds of dimension � 5 which are topologically rigid and whose fundamental
groups do not contain elements of order two, is again topologically rigid and the
connected sum of two manifolds is in general not aspherical (see Lemma 3.2). The
product Sk � Sn is topologically rigid if and only if k and n are odd. An integral
homology sphere of dimension n � 5 is topologically rigid if and only if the in-
clusion Z ! ZŒ�1.M/� induces an isomorphism of simple L-groups LsnC1.Z/ !
LsnC1

�
ZŒ�1.M/�

�
.

Remark 4.7 (The Borel Conjecture does not hold in the smooth category). The
Borel Conjecture 4.1 is false in the smooth category, i.e., if one replaces topological
manifold by smooth manifold and homeomorphism by diffeomorphism. The torusT n

for n � 5 is an example (see [97, 15A]). Other counterexample involving negatively
curved manifolds are constructed by Farrell–Jones [31, Theorem 0.1].

Remark4.8 (The Borel Conjecture versus Mostow rigidity). The examples of Farrell–
Jones [31, Theorem 0.1] give actually more. Namely, it yields for given � > 0 a closed
Riemannian manifoldM0 whose sectional curvature lies in the interval Œ1��;�1C��
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and a closed hyperbolic manifold M1 such that M0 and M1 are homeomorphic but
no diffeomorphic. The idea of the construction is essentially to take the connected
sum of M1 with exotic spheres. Notice that by definition M0 were hyperbolic if we
would take � D 0. Hence this example is remarkable in view of Mostow rigidity,
which predicts for two closed hyperbolic manifoldsN0 andN1 that they are isometri-
cally diffeomorphic if and only if �1.N0/ Š �1.N1/ and any homotopy equivalence
N0 ! N1 is homotopic to an isometric diffeomorphism.

One may view the Borel Conjecture as the topological version of Mostow rigidity.
The conclusion in the Borel Conjecture is weaker, one gets only homeomorphisms
and not isometric diffeomorphisms, but the assumption is also weaker, since there are
many more aspherical closed topological manifolds than hyperbolic closed manifolds.

Remark 4.9 (The work of Farrell–Jones). Farrell–Jones have made deep contribu-
tions to the Borel Conjecture. They have proved it in dimension� 5 for non-positively
curved closed Riemannian manifolds, for compact complete affine flat manifolds and
for closed aspherical manifolds whose fundamental group is isomorphic to the fun-
damental group of a complete non-positively curved Riemannian manifold which is
A-regular (see [32], [33], [35], [36]).

The following result is due to Bartels and Lück [4].

Theorem 4.10. Let C be the smallest class of groups satisfying the following condi-
tions:

� Every hyperbolic group belongs to C .
� Every group that acts properly, isometrically and cocompactly on a complete

proper CAT.0/-space belongs to C .
� If G1 and G2 belong to C , then both G1 �G2 and G1 �G2 belong to C .
� IfH is a subgroup of G and G 2 C , thenH 2 C .
� Let fGi j i 2 I g be a directed system of groups (with not necessarily injective

structure maps) such that Gi 2 C for every i 2 I . Then the directed colimit
colimi2I Gi belongs to C .

Then every group G in C satisfies the version of the Farrell–Jones Conjecture
stated in Conjecture 4.3.

Remark 4.11 (Exotic closed aspherical manifolds). Theorem 4.10 implies that the
exotic aspherical manifolds mentioned in Section 2.5 satisfy the Borel Conjecture in
dimension � 5 since their universal coverings are CAT.0/-spaces.

Remark 4.12 (Directed colimits of hyperbolic groups). There are also a variety
of interesting groups such as lacunary groups in the sense of Olshanskii–Osin–
Sapir [80] or groups with expanders as they appear in the counterexample to the
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Baum–Connes Conjecture with coefficients due to Higson–Lafforgue–Skandalis [54]
and which have been constructed by Arzhantseva–Delzant [2, Theorem 7.11 and The-
orem 7.12]. Since these arise as colimits of directed systems of hyperbolic groups,
they do satisfy the Farrell–Jones Conjecture and the Borel Conjecture in dimension
� 5 by Theorem 4.10.

The Bost Conjecture has also been proved for colimits of hyperbolic groups by
Bartels–Echterhoff–Lück [3].

The original source for the (Fibered) Farrell–Jones Conjecture is the paper by
Farrell–Jones [34, 1.6 on page 257 and 1.7 on page 262]. The C �-analogue of the
Farrell–Jones Conjecture is the Baum–Connes Conjecture whose formulation can be
found in [7, Conjecture 3.15 on page 254]. For more information about the Baum–
Connes Conjecture and the Farrell–Jones Conjecture and literature about them we
refer for instance to the survey article [70].

5. Poincaré duality groups

The following definition is due to Johnson–Wall [59].

Definition 5.1 (Poincaré duality group). A groupG is called a Poincaré duality group
of dimension n if the following conditions holds:

(i) The groupG is of type FP, i.e., the trivial ZG-module Z possesses a finite-dimen-
sional projective ZG-resolution by finitely generated projective ZG-modules.

(ii) We get an isomorphism of abelian groups

H i .GIZG/ Š
´
¹0º for i 6D nI
Z for i D n:

The next definition is due to Wall [96]. Recall that a CW -complex X is called
finitely dominated if there exists a finite CW -complex Y and maps i W X ! Y and
r W Y ! X with r B i ' idX .

Definition 5.2 (Poincaré complex). Let X be a finitely dominated connected CW -
complex with fundamental group � .

It is called a Poincaré complex of dimension n if there exists an orientation ho-
momorphism w W � ! f˙1g and an element

ŒX� 2 H�
n .
zX Iw Z/ D Hn

�
C�. zX/˝Z�

wZ
�

in the n-th �-equivariant homology of its universal covering zX with coefficients in
the ZG-module wZ, such that the up to Z�-chain homotopy equivalence unique
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Z�-chain map

� \ ŒX� W C n��. zX/ D homZ�

�
Cn��. zX/;Z�

�! C�. zX/
is a Z�-chain homotopy equivalence. Here wZ is the ZG-module, whose underlying
abelian group is Z and on which g 2 � acts by multiplication with w.g/.

If in addition X is a finite CW -complex, we call X a finite Poincaré duality
complex of dimension n.

A topological spaceX is called an absolute neighborhood retract or briefly ANR
if for every normal space Z, every closed subset Y � Z and every (continuous)
map f W Y ! X there exists an open neighborhood U of Y in Z together with
an extension F W U ! Z of f to U . A compact n-dimensional homology ANR-
manifold X is a compact absolute neighborhood retract such that it has a countable
basis for its topology, has finite topological dimension and for every x 2 X the
abelian group Hi .X;X � fxg/ is trivial for i 6D n and infinite cyclic for i D n. A
closedn-dimensional topological manifold is an example of a compact n-dimensional
homology ANR-manifold (see [21, Corollary 1A in V.26 page 191]).

Theorem 5.3 (Homology ANR-manifolds and finite Poincaré complexes). Let M
be a closed topological manifold, or more generally, a compact homology ANR-
manifold of dimension n. Then M is homotopy equivalent to a finite n-dimensional
Poincaré complex.

Proof. A closed topological manifold, and more generally a compact ANR, has the
homotopy type of a finite CW -complex (see [61, Theorem 2.2]. [98]). The usual
proof of Poincaré duality for closed manifolds carries over to homology manifolds.

�

Theorem 5.4 (Poincaré duality groups). Let G be a group and n � 1 be an integer.

(i) The following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n.

(b) There exists an n-dimensional aspherical Poincaré complex with G as
fundamental group.

(ii) Suppose that zK0.ZG/ D 0. Then the following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n.

(b) There exists a finite n-dimensional aspherical Poincaré complex with G
as fundamental group.

(iii) A group G is a Poincaré duality group of dimension 1 if and only if G Š Z.
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(iv) A groupG is a Poincaré duality group of dimension 2 if and only ifG is isomor-
phic to the fundamental group of a closed aspherical surface.

Proof. (i) Every finitely dominated CW -complex has a finitely presented funda-
mental group since every finite CW -complex has a finitely presented group and a
group which is a retract of a finitely presented group is again finitely presented [94,
Lemma 1.3]. If there exists a CW -model for BG of dimension n, then the cohomo-
logical dimension of G satisfies cd.G/ � n and the converse is true provided that
n � 3 (see [14, Theorem 7.1 in Chapter VIII.7 on page 205], [29], [94], [95]). This
implies that the implication (i)(b) H) (i)(a) holds for all n � 1 and that the implica-
tion (i)(a) H) (i)(b) holds for n � 3. For more details we refer to [59, Theorem 1].
The remaining part to show the implication (i)(a)H) (i)(b) for n D 1; 2 follows from
assertions (iii) and (iv).

(ii) This follows in dimension n � 3 from assertion (i) and Wall’s results about the
finiteness obstruction which decides whether a finitely dominated CW -complex is
homotopy equivalent to a finite CW -complex and takes values in zK0.Z�/ (see [37],
[72], [94], [95]). The implication (ii)(b)H) (ii)(a) holds for alln � 1. The remaining
part to show the implication (ii)(a) H) (ii)(b) follows from assertions (iii) and (iv).

(iii) Since S1 D BZ is a 1-dimensional closed manifold, Z is a finite Poincaré
duality group of dimension 1 by Theorem 5.3. We conclude from the (easy) implica-
tion (i)(b) H) (i)(a) appearing in assertion (i) that Z is a Poincaré duality group of
dimension 1. Suppose that G is a Poincaré duality group of dimension 1. Since the
cohomological dimension of G is 1, it has to be a free group (see [91], [92]). Since
the homology group of a group of type FP is finitely generated, G is isomorphic to a
finitely generated free groupFr of rank r . SinceH 1.BFr/ Š Zr andH0.BFr/ Š Z,
Poincaré duality can only hold for r D 1, i.e., G is Z.

(iv) This is proved in [27, Theorem 2]. See also [10], [11], [26], [28]. �

Conjecture 5.5 (Aspherical Poincaré complexes). Every finite aspherical Poincaré
complex is homotopy equivalent to a closed manifold.

Conjecture 5.6 (Poincaré duality groups). A finitely presented group is an n-dimen-
sional Poincaré duality group if and only if it is the fundamental group of a closed
aspherical n-dimensional topological manifold.

Because of Theorem 5.3 and Theorem 5.4 (i), Conjecture 5.5 and Conjecture 5.6
are equivalent.

The disjoint disk property says that for any � > 0 and maps f; g W D2 !M there
are maps f 0; g0 W D2 ! M so that the distance between f and f 0 and the distance
between g and g0 are bounded by � and f 0.D2/ \ g0.D2/ D ;.
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Lemma 5.7. Suppose that the torsionfree group G and the ring R D Z satisfy the
version of the Farrell–Jones Conjecture stated in Theorem 4.3. Let X be a Poincaré
complex of dimension � 6 with �1.X/ Š G. Then X is homotopy equivalent to a
compact homology ANR-manifold satisfying the disjoint disk property.

Proof. See [87, Remark 25.13 on page 297], [15, Main Theorem on page 439 and
Section 8] and [16, Theorem A and Theorem B]. �

Remark 5.8 (Compact homology ANR-manifolds versus closed topological mani-
folds). In the following all manifolds have dimension� 6. One would prefer if in the
conclusion of Lemma 5.7 one could replace “compact homology ANR-manifold” by
“closed topological manifold”. The problem is that in the geometric exact surgery
sequence one has to work with the 1-connective cover Lh1i of theL-theory spectrum
L, whereas in the assembly map appearing in the Farrell–Jones setting one uses theL-
theory spectrum L. The L-theory spectrum L is 4-periodic, i.e., �n.L/ Š �nC4.L/
for n 2 Z. The 1-connective cover Lh1i comes with a map of spectra f W Lh1i ! L

such that �n.f / is an isomorphism for n � 1 and �n.Lh1i/ D 0 for n � 0. Since
�0.L/ Š Z, one misses a part involving L0.Z/ of the so called total surgery ob-
struction due to Ranicki, i.e., the obstruction for a finite Poincaré complex to be
homotopy equivalent to a closed topological manifold, if one deals with the periodic
L-theory spectrum L and picks up only the obstruction for a finite Poincaré complex
to be homotopy equivalent to a compact homology ANR-manifold, the so called four-
periodic total surgery obstruction. The difference of these two obstructions is related
to the resolution obstruction of Quinn which takes values in L0.Z/. Any element
of L0.Z/ can be realized by an appropriate compact homology ANR-manifold as its
resolution obstruction. There are compact homology ANR-manifolds that are not
homotopy equivalent to closed manifolds. But no example of an aspherical compact
homology ANR-manifold that is not homotopy equivalent to a closed topological
manifold is known. For an aspherical compact homology ANR-manifold M , the
total surgery obstruction and the resolution obstruction carry the same information.
So we could replace in the conclusion of Lemma 5.7 “compact homology ANR-
manifold” by “closed topological manifold” if and only if every aspherical compact
homology ANR-manifold with the disjoint disk property admits a resolution.

We refer for instance to [15], [38], [85], [86], [87] for more information about
this topic.

Question 5.9 (Vanishing of the resolution obstruction in the aspherical case). Is
every aspherical compact homology ANR-manifold homotopy equivalent to a closed
manifold?
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6. Product decompositions

In this section we show that, roughly speaking, a closed aspherical manifold M is a
productM1�M2 if and only if its fundamental group is a product �1.M/ D G1�G2
and that such a decomposition is unique up to homeomorphism.

Theorem 6.1 (Product decomposition). Let M be a closed aspherical manifold of
dimension n with fundamental group G D �1.M/. Suppose we have a product
decomposition

p1 � p2 W G ��!Š G1 �G2:
Suppose thatG,G1 andG2 satisfy the version of the Farrell–Jones Conjecture stated
in Theorem 4.3 in the case R D Z.

ThenG,G1 andG2 are Poincaré duality groups whose cohomological dimensions
satisfy

n D cd.G/ D cd.G1/C cd.G2/:

Suppose in the sequel that

� the cohomological dimension cd.Gi / is different from 3, 4 and 5 for i D 1; 2,
� n � 5 or n � 2 or (n D 4 and G is good in the sense of Freedman).

Then:

(i) There are topological closed aspherical manifolds M1 and M2 together with
isomorphisms

vi W �1.Mi / ��!Š Gi

and maps
fi W M !Mi

for i D 1; 2 such that

f D f1 � f2 W M !M1 �M2

is a homeomorphism and vi B �1.fi / D pi (up to inner automorphisms) for
i D 1; 2.

(ii) Supposewe have another such choice of topological closed asphericalmanifolds
M 0
1 andM 0

2 together with isomorphisms

v0
i W �1.M 0

i / ��!Š Gi

and maps
f 0
i W M !M 0

i

for i D 1; 2 such that the map f 0 D f 0
1 � f 0

2 is a homotopy equivalence and
v0
i B �1.f 0

i / D pi (up to inner automorphisms) for i D 1; 2. Then there are
for i D 1; 2 homeomorphisms hi W Mi ! M 0

i such that hi B fi ' f 0
i and

vi B �1.hi / D v0
i holds for i D 1; 2.
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Proof. In the sequel we identifyG D G1�G2 by p1�p2. Since the closed manifold
M is a model for BG and cd.G/ D n, we can choose BG to be an n-dimensional
finite Poincaré complex in the sense of Definition 5.2 by Theorem 5.3.

From BG D B.G1 � G2/ ' BG1 � BG2 we conclude that there are finitely
dominated CW -models for BGi for i D 1; 2. Since zK0.ZGi / vanishes for i D 0; 1
by assumption, we conclude from the theory of the finiteness obstruction due to
Wall [94], [95] that there are finite models for BGi of dimension maxfcd.Gi /; 3g.
We conclude from [47], [84] that BG1 and BG2 are Poincaré complexes. One easily
checks using the Künneth formula that

n D cd.G/ D cd.G1/C cd.G2/:

If cd.Gi / D 1, then BGi is homotopy equivalent to a manifold, namely S1, by
Theorem 5.4 (iii). If cd.Gi / D 2, then BGi is homotopy equivalent to a manifold
by Theorem 5.4 (iv). Hence it suffices to show for i D 1; 2 that BGi is homotopy
equivalent to a closed aspherical manifold, provided that cd.Gi / � 6.

Since by assumptionGi satisfies the version of the Farrell–Jones Conjecture stated
in Theorem 4.3 in the case R D Z, there exists a compact homology ANR-manifold
Mi that satisfies the disjoint disk property and is homotopy equivalent to BGi
(see Lemma 5.7). Hence it remains to show that Quinn’s resolution obstruction
I.Mi / 2 .1 C 8 	 Z/ is 1 (see [86, Theorem 1.1]). Since this obstruction is multi-
plicative (see [86, Theorem 1.1]), we get I.M1 �M2/ D I.M1/ 	 I.M2/. In general
the resolution obstruction is not a homotopy invariant, but it is known to be a ho-
motopy invariant for aspherical compact ANR-manifolds if the fundamental group
satisfies the Novikov Conjecture 7.2 (see [15, Proposition on page 437]). Since Gi
satisfies the version of the Farrell–Jones Conjecture stated in Theorem 4.3 in the case
R D Z, it satisfies the Novikov Conjecture by Lemma 4.4 and Remark 7.4. Hence
I.M1�M2/ D I.M/. Since I.M/ is a closed manifold, we have I.M/ D 1. Hence
I.Mi / D 1 and Mi is homotopy equivalent to a closed manifold. This finishes the
proof of assertion (i).

Assertion (ii) follows from Lemma 4.4. �

Remark 6.2 (Product decompositions and non-positive sectional curvature). The
following result has been proved by Gromoll–Wolf [48, Theorem 2]. Let M be a
closed Riemannian manifold with non-positive sectional curvature. Suppose that we
are given a splitting of its fundamental group�1.M/ D G1�G2 and that the center of
�1.M/ is trivial. Then this splitting comes from an isometric product decomposition
of closed Riemannian manifolds of non-positive sectional curvatureM DM1�M2.
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7. Novikov Conjecture

Let G be a group and let u W M ! BG be a map from a closed oriented smooth
manifold M to BG. Let

L.M/ 2
M

k2Z;k�0
H 4k.M IQ/

be theL-class ofM . Its k-th entry L.M/k 2 H 4k.M IQ/ is a certain homogeneous
polynomial of degree k in the rational Pontrjagin classes pi .M IQ/ 2 H 4i .M IQ/
for i D 1; 2; : : : ; k such that the coefficient sk of the monomialpk.M IQ/ is different
from zero. The L-class L.M/ is determined by all the rational Pontrjagin classes
and vice versa. The L-class depends on the tangent bundle and thus on the differen-
tiable structure of M . For x 2 Qk�0H k.BGIQ/ define the higher signature ofM
associated to x and u to be the integer

signx.M; u/ WD hL.M/ [ f �x; ŒM �i: (7.1)

We say that signx for x 2 H�.BGIQ/ is homotopy invariant if for two closed
oriented smooth manifoldsM andN with reference mapsu W M ! BG and v W N !
BG we have

signx.M; u/ D signx.N; v/;

whenever there is an orientation preserving homotopy equivalence f W M ! N such
that v B f and u are homotopic. If x D 1 2 H 0.BG/, then the higher signature
signx.M; u/ is by the Hirzebruch signature formula (see [56], [57]) the signature of
M itself and hence an invariant of the oriented homotopy type. This is one motivation
for the following conjecture.

Conjecture 7.2 (Novikov Conjecture). Let G be a group. Then signx is homotopy
invariant for all x 2Qk2Z;k�0H k.BGIQ/.

This conjecture appears for the first time in the paper by Novikov [78, §11]. A
survey about its history can be found in [39]. More information can be found for
instance in [39], [40], [64].

We mention the following deep result due to Novikov [75], [76], [77].

Theorem 7.3 (Topological invariance of rational Pontrjagin classes). The rational
Pontrjagin classes pk.M;Q/ 2 H 4k.M IQ/ are topological invariants, i.e., for a
homeomorphism f W M ! N of closed smooth manifolds we have

H4k.f IQ/
�
pk.M IQ/

� D pk.N IQ/
for all k � 0 and in particularH�.f IQ/.L.M// D L.N /.
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The rational Pontrjagin classes are not homotopy invariants and the integral Pon-
trjagin classes pk.M/ are not homeomorphism invariants (see for instance [64, Ex-
ample 1.6 and Theorem 4.8]).

Remark 7.4 (The Novikov Conjecture and aspherical manifolds). Let f W M ! N

be a homotopy equivalence of closed aspherical manifolds. Suppose that the Borel
Conjecture 4.1 is true for G D �1.N /. This implies that f is homotopic to a
homeomorphism and hence by Theorem 7.3

f�.L.M// D L.N /:

But this is equivalent to the conclusion of the Novikov Conjecture in the case
N D BG.

Conjecture 7.5. A closed aspherical smooth manifold does not admit a Riemannian
metric of positive scalar curvature.

Proposition 7.6. Suppose that the strong Novikov Conjecture is true for the groupG,
i.e., the assembly map

Kn.BG/! Kn.C
�
r .G//

is rationally injective for all n 2 Z. Let M be a closed aspherical smooth manifold
whose fundamental group is isomorphic to G.

ThenM carries no Riemannian metric of positive scalar curvature.

Proof. See [88, Theorem 3.5]. �

Proposition 7.7. Let G be a group. Suppose that the assembly map

Kn.BG/! Kn.C
�
r .G//

is rationally injective for all n 2 Z. Let M be a closed aspherical smooth manifold
whose fundamental group is isomorphic to G.

ThenM satisfies the Zero-in-the-spectrum Conjecture 9.5.

Proof. See [67, Corollary 4]. �

We refer to [70, Section 5.1.3] for a discussion about the large class of groups
for which the assembly map Kn.BG/ ! Kn.C

�
r .G// is known to be injective or

rationally injective.
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8. Boundaries of hyperbolic groups

We announce the following two theorems joint with Arthur Bartels and Shmuel Wein-
berger. For the notion of the boundary of a hyperbolic group and its main properties
we refer for instance to [60].

Theorem 8.1. Let G be a torsion-free hyperbolic group and let n be an integer � 6.
(i) The following statements are equivalent:

(a) The boundary @G is homeomorphic to Sn�1.
(b) There is a closed aspherical topological manifold M such that G Š

�1.M/, its universal covering zM is homeomorphic to Rn and the com-
pactification of zM by @G is homeomorphic toDn.

(ii) The aspherical manifold M appearing in the assertion above is unique up to
homeomorphism.

The proof depends strongly on the surgery theory for compact homology ANR-
manifolds due to Bryant–Ferry–Mio–Weinberger [15] and the validity of the K- and
L-theoretic Farrell–Jones Conjecture for hyperbolic groups due to Bartels–Reich–
Lück [5] and Bartels–Lück [4]. It seems likely that this result holds also if n D 5.
Our methods can be extended to this case if the surgery theory from [15] can be
extended to the case of 5-dimensional compact homology ANR-manifolds.

We do not get information in dimensions n � 4 for the usual problems about
surgery. For instance, our methods give no information in the case, where the bound-
ary is homeomorphic to S3, since virtually cyclic groups are the only hyperbolic
groups which are known to be good in the sense of Friedman [43]. In the case n D 3
there is the conjecture of Cannon [17] that a group G acts properly, isometrically
and cocompactly on the 3-dimensional hyperbolic plane H3 if and only if it is a
hyperbolic group whose boundary is homeomorphic to S2. Provided that the in-
finite hyperbolic group G occurs as the fundamental group of a closed irreducible
3-manifold, Bestvina–Mess [9, Theorem 4.1] have shown that its universal covering
is homeomorphic to R3 and its compactification by @G is homeomorphic to D3,
and the Geometrization Conjecture of Thurston implies that M is hyperbolic and G
satisfies Cannon’s conjecture. The problem is solved in the case n D 2, namely, for
a hyperbolic group G its boundary @G is homeomorphic to S1 if and only if G is a
Fuchsian group (see [18], [41], [44]).

For every n � 5 there exists a strictly negatively curved polyhedron of dimension
n whose fundamental group G is hyperbolic, which is homeomorphic to a closed
aspherical smooth manifold and whose universal covering is homeomorphic to Rn,
but the boundary@G is not homeomorphic toSn�1, see [25, Theorem 5c.1 on page 384
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and Remark on page 386]. Thus the condition that @G is a sphere for a torsion-
free hyperbolic group is (in high dimensions) not equivalent to the existence of an
aspherical manifold whose fundamental group is G.

Theorem 8.2. Let G be a torsion-free hyperbolic group and let n be an integer � 6.
(i) The following statements are equivalent:

(a) The boundary @G has the integral Čech cohomology of Sn�1.
(b) G is a Poincaré duality group of dimension n;

(c) There exists a compact homology ANR-manifoldM homotopy equivalent
to BG. In particular,M is aspherical and �1.M/ Š G.

(ii) If the statements in assertion (i) hold, then the compact homology ANR-manifold
M appearing there is unique up to s-cobordism of compact ANR-homology
manifolds.

The discussion of compact homology ANR-manifolds versus closed topological
manifolds of Remark 5.8 and Question 5.9 are relevant for Theorem 8.2 as well.

In general the boundary of a hyperbolic group is not locally a Euclidean space but
has a fractal behavior. If the boundary @G of an infinite hyperbolic groupG contains
an open subset homeomorphic to Euclidean n-space, then it is homeomorphic to Sn.
This is proved in [60, Theorem 4.4], where more information about the boundaries
of hyperbolic groups can be found.

9. L2-invariants

Next we mention some prominent conjectures about aspherical manifolds and L2-
invariants. For more information about these conjectures and their status we refer
to [68] and [69].

9.1. The Hopf and the Singer Conjecture

Conjecture 9.1 (Hopf Conjecture). If M is an aspherical closed manifold of even
dimension, then

.�1/dim.M/=2 	 �.M/ � 0:
If M is a closed Riemannian manifold of even dimension with sectional curvature
sec.M/, then

.�1/dim.M/=2 	 �.M/ > 0 if sec.M/ < 0I

.�1/dim.M/=2 	 �.M/ � 0 if sec.M/ � 0I
�.M/ D 0 if sec.M/ D 0I
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�.M/ � 0 if sec.M/ � 0I
�.M/ > 0 if sec.M/ > 0:

Conjecture 9.2 (Singer Conjecture). IfM is an aspherical closed manifold, then

b.2/p . zM/ D 0 if 2p 6D dim.M/:

If M is a closed connected Riemannian manifold with negative sectional curvature,
then

b.2/p . zM/

´
D 0 if 2p 6D dim.M/I
> 0 if 2p D dim.M/:

9.2. L2-torsion and aspherical manifolds

Conjecture 9.3 (L2-torsion for aspherical manifolds). IfM is an aspherical closed

manifold of odd dimension, then zM is det-L2-acyclic and

.�1/ dim.M/�1
2 	 �.2/. zM/ � 0:

If M is a closed connected Riemannian manifold of odd dimension with negative
sectional curvature, then zM is det-L2-acyclic and

.�1/ dim.M/�1
2 	 �.2/. zM/ > 0:

IfM is an aspherical closedmanifoldwhose fundamental group contains anamenable
infinite normal subgroup, then zM is det-L2-acyclic and

�.2/. zM/ D 0:

9.3. Simplicial volume and L2-invariants

Conjecture 9.4 (Simplicial volume and L2-invariants). Let M be an aspherical
closed orientable manifold. Suppose that its simplicial volume kMk vanishes. Then
zM is of determinant class and

b.2/p . zM/ D 0 for p � 0I
�.2/. zM/ D 0:

9.4. Zero-in-the-spectrum Conjecture

Conjecture 9.5 (Zero-in-the-spectrum Conjecture). Let zM be a complete Rieman-
nian manifold. Suppose that zM is the universal covering of an aspherical closed
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Riemannian manifold M (with the Riemannian metric coming from M ). Then for
some p � 0 zero is in the spectrum of the minimal closure

.	p/min W dom
�
.	p/min

� 
 L2�p. zM/! L2�p. zM/

of the Laplacian acting on smooth p-forms on zM .

Remark 9.6 (Non-aspherical counterexamples to the Zero-in-the-spectrum Conjec-
ture). For all of the conjectures about aspherical spaces stated in this article it is
obvious that they cannot be true if one drops the condition aspherical except for
the Zero-in-the-spectrum Conjecture 9.5. Farber and Weinberger [30] gave the first
example of a closed Riemannian manifold for which zero is not in the spectrum of
the minimal closure .	p/min W dom

�
.	p/min

� 
 L2�p. zM/ ! L2�p. zM/ of the
Laplacian acting on smooth p-forms on zM for each p � 0. The construction by
Higson, Roe and Schick [55] yields a plenty of such counterexamples. But there are
no aspherical counterexamples known.

10. The universe of closed manifolds

At the end we describe (winking) our universe of closed manifolds.
The idea of a random group has successfully been used to construct groups with

certain properties, see for instance [2], [46], [50, 9.B on pages 273ff], [51], [79],
[82], [90] and [100]. In a precise statistical sense almost all finitely presented groups
are hyperbolic see [81]. One can actually show that in a precise statistical sense
almost all finitely presented groups are torsionfree hyperbolic and in particular have
a finite model for their classifying space. In most cases it is given by the limit for
n ! 1 of the quotient of the number of finitely presented groups with a certain
property (P) which are given by a presentation satisfying a certain condition Cn by
the number of all finitely presented groups which are given by a presentation satisfying
condition Cn.

It is not clear what it means in a precise sense to talk about a random closed
manifold. Nevertheless, the author’s intuition is that almost all closed manifolds are
aspherical. (A related question would be whether a random closed smooth manifold
admits a Riemannian metric with non-positive sectional curvature.) This intuition is
supported by Remark 2.1. It is certainly true in dimension 2 since only finitely many
closed surfaces are not aspherical. The characterization of closed 3-dimensional
manifolds in Section 2.2 seems to fit as well. In the sequel we assume that this
(vague) intuition is correct.

If we combine these considerations, we get that almost all closed manifolds are
aspherical and have a hyperbolic fundamental group. Since except in dimension 4
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the Borel Conjecture is known in this case by Lemma 4.4, Remark 4.5 and Theo-
rem 4.10, we get as a consequence that almost all closed manifolds are aspherical and
topologically rigid.

A closed manifoldM is called asymmetric if every finite group which acts effec-
tively onM is trivial. This is equivalent to the statement that for any choice of Rieman-
nian metric onM the group of isometries is trivial (see [63, Introduction]). A survey
on asymmetric closed manifolds can be found in [83]. The first constructions of asym-
metric closed aspherical manifolds are due to Connor–Raymond–Weinberger [20].
The first simply-connected asymmetric manifold has been constructed by Kreck [63]
answering a question of Raymond and Schultz [13, page 260] which was repeated
by Adem and Davis [1] in their problem list. Raymond and Schultz expressed also
their feeling that a random manifold should be asymmetric. Borel has shown that an
aspherical closed manifold is asymmetric if its fundamental group is centerless and
its outer automorphism group is torsionfree (see the manuscript “On periodic maps
of certain K.�; 1/” in [12, pages 57–60]).

This leads to the intuitive statement:

Almost all closed manifolds are aspherical, topologically rigid and asymmetric.

In particular almost every closed manifold is determined up to homeomorphism
by its fundamental group.

This is — at least on the first glance — surprising since often our favorite mani-
folds are not asymmetric and not determined by their fundamental group. There
are prominent manifolds such as lens spaces which are homotopy equivalent but not
homeomorphic. There seem to be plenty of simply connected manifolds. So why do
human beings may have the feeling that the universe of closed manifolds described
above is different from their expectation?

If one asks people for the most prominent closed manifold, most people name
the standard sphere. It is interesting that the n-dimensional standard sphere Sn

can be characterized among (simply connected) closed Riemannian manifolds of
dimension n by the property that its isometry group has maximal dimension. More
precisely, if M is a closed n-dimensional smooth manifold, then the dimension of
its isometry group for any Riemannian metric is bounded by n.n C 1/=2 and the
maximum n.nC 1/=2 is attained if and only if M is diffeomorphic to Sn or RPn;
see Hsiang [58], where the Ph.D Thesis of Eisenhart is cited and the dimension of
the isometry group of exotic spheres is investigated. It is likely that the human
taste whether a geometric object is beautiful is closely related to the question how
many symmetries it admits. In general it seems to be the case that a human being is
attracted by unusual representatives among mathematical objects such as groups or
closed manifolds and not by the generic ones. In group theory it is clear that random
groups can have very strange properties and that these groups are to some extend
scary. The analogous statement seems to hold for closed topological manifolds.
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At the time of writing the author cannot really name a group which could be a po-
tential counterexample to the Farrell–Jones Conjecture or other conjectures discussed
in this article. But the author has the feeling that nevertheless the class of groups, for
which we can prove the conjecture and which is for “human standards” quite large,
is only a very tiny portion of the whole universe of groups and the question whether
these conjectures are true for all groups is completely open.

Here is an interesting parallel to our actual universe. If you materialize at a
random point in the universe it will be very cold and nothing will be there. There is
no interaction between different random points, i.e., it is rigid. A human being will
not like this place, actually even worse, it cannot exist at such a random place. But
there are unusual rare non-generic points in the universe, where human beings can
exist such as the surface of our planet and there a lot of things and interactions are
happening. And human beings tend to think that the rest of the universe looks like
the place they are living in and cannot really comprehend the rest of the universe.
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Abstract. Wheeled props is one the latest species found in the world of operads and props.
We attempt to give an elementary introduction to the main ideas of the theory of wheeled props
for beginners, and also a survey of its most recent major applications (ranging from algebra
and geometry to deformation theory and Batalin–Vilkovisky quantization) which might be of
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Mathematics Subject Classification (2000). 18D50, 46L65.

Keywords. Wheeled props, Poisson manifolds, Feynman diagrams.

1. Introduction

The theory of operads and props undergoes a rapid development in recent years;
its applications can be seen nowadays almost everywhere – in algebraic topology, in
homological algebra, in differential geometry, in non-commutative geometry, in string
topology, in deformation theory, in quantization theory, etc. The theory demonstrates
a remarkable unity of mathematics; for example, one and the same operad of little
2-disks solves the recognition problem for based 2-loop spaces in algebraic topology,
describes homotopy Gerstenhaber structure on the Hochschild deformation complex
in homological algebra, and also controls diffeomorphism invariant Hertling–Manin’s
integrability equations in differential geometry!

First examples of operads and props were constructed in the 1960s in the clas-
sical papers by Gerstenhaber on deformation theory of algebras and by Stasheff on
homotopy theory of loop spaces. The notion of prop was introduced by MacLane
already in 1963 as a useful way to code axioms for operations with many inputs and
outputs. The notion of operad was ultimately coined 10 years later by P. May through
axiomatization of properties of earlier discovered associahedra polytopes and the
associated A1-spaces by Stasheff and of the little cubes operad by Boardman and
Vogt.

In this paper we attempt to explain the main ideas and constructions of the theory
of wheeled operads and props and illustrate them with some of the most recent appli-
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cations [Gr1], [Gr2], [Me1]–[Me7], [MMS], [MeVa], [Mn], [Str1], [Str2] to geome-
try, deformation theory and Batalin–Vilkovisky quantization formalism of theoretical
physics. In the heart of these applications lies the fact that some categories of local
geometric and theoretical physics structures can be identified with the derived cate-
gories of surprisingly simple algebraic structures. The language of graphs is essential
for the proof of this fact and permits us to reformulate it as follows. Solution spaces
of several important highly non-linear differential equations in geometry and physics
are controlled by (wheeled) props which are resolutions of very compact graphical
data, a kind of “genome”. For example, the “genome” of the species local Poisson
structures is the prop of Lie 1-bialgebras built from two “genes”

��
��B and ����

� ;

subject to the following engineering rules (see §2 for precise details):

B
������B��

		

� B


�����B��
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�� C B���� ���

��� �� :

We shall explain how a slight modification of the above rules by addition of two extra
conditions,




���B�� D 0 and ��

���
� �� D 0;

changes the resulting “species” dramatically: instead of the category of local Poisson
structures one gets the category of quantum BV manifolds with split quasi-classical
limit which, for example, naturally emerges in the study of quantum master equations
[BaVi], [Sc] for BF -type quantum field theories (see §5 for precise details). More-
over, in the homotopy theory sense, this category is as perfect as, for example, the
nowadays famous category of Lie1-algebras: quasi-isomorphisms of quantum BV
manifolds turn out to be equivalence relations.

It is yet to see how non-trivial topology can be incorporated into the current
pro(p)file of local differential geometry, but it is worth stressing already now that
this approach to geometry and physics turns space-time – “the background of every-
thing” – into an ordinary observable, a certain function (representation) on a prop,
and hence unveils a possibility for a new architecture.

In fact, some elements of this architecture have been envisaged long ago by Roger
Penrose [Pe] in his “abstract index calculus”.
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A new architecture of geometry and physics:
A prop is the fundamental background
for both a space-time and structures.

The paper is organized as follows. In Section 2 we give a short but self-contained
introduction into the theory of (wheeled) operads and props. Sections 3 and 4 aim
to give an account of most recent applications of that theory to geometry and, re-
spectively, deformation theory. In Section 5 we explain some ideas of Koszul duality
theory and its relation to the homotopy transfer formulae and Batalin–Vilkovisky
formalism.

A few words about notation. The symbol Sn stands for the permutation group, i.e.,
for the group of all bijections, Œn� ! Œn�, where Œn� denotes (here and everywhere)
the set f1; 2; : : : ; ng. Given a partition, Œn� D I1t � � � t Ik , the symbol �.I1; : : : ; Ik/
denotes the sign of the permutation Œn�! fI1; : : : ; Ikg. If V DLi2Z V

i is a graded
vector space, then V Œk� is a graded vector space with V Œk�i WD V iCk . We work
throughout over a field K of characteristic 0.

2. An introduction to operads, dioperads, properads and props

2.1. Directed graphs. Let m and n be arbitrary non-negative integers. A directed
.m; n/-graph is a triple .G; fin; fout/, whereG is a finite 1-dimensional CW-complex
whose 1-dimensional cells (“edges”) are oriented (“directed”), and

fin W Œm�!
8<
:

the set of all 0-cells, v, of G
which have precisely one

adjacent edge directed from v

9=
; ;

fout W Œn�!
8<
:

the set of all 0-cells, v, of G
which have precisely one

adjacent edge directed towards v

9=
;
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are injective maps of finite sets (called labelling maps or simply labellings) such
that Im fin \ Im fout D ;. The set G˚.m; n/ of all possible directed .m; n/-graphs
carries an action, .G; fin; fout/ ! .G; fin B ��1; fout B �/, of the group Sm � Sn
(more precisely, the right action of Sop

m �Sn we omit this detail from now). We often
abbreviate a triple .G; fin; fout/ to G. For any G 2 G˚.m; n/ the set

V.G/ WD fall 0-cells of Gg n fIm fin [ Im foutg

of all unlabelled 0-cells is called the set of vertices of G. The edges attached to
labelled 0-cells, i.e., the ones lying in Im fin or in Im fout are called incoming or,
respectively, outgoing legs of the graph G. The set

E.G/ WD fall 1-cells of Gg n flegsg

is called the set of (internal) edges of G. Legs and edges of G incident to a vertex
v 2 V.G/ are often called half-edges of v; the set of half-edges of v splits naturally
into two disjoint sets, Inv and Outv , consisting of incoming and, respectively, outgoing
half-edges. In all our pictures the vertices of a graph will be denoted by bullets,
the edges by intervals (or sometimes curves) connecting the vertices, and legs by
intervals attached from one side to vertices. A choice of orientation on an edge or a
leg will be visualized by the choice of a particular direction (arrow) on the associated
interval/curve; unless otherwise explicitly shown the direction of each edge in all our
pictures is assumed to go from bottom to the top. For example, the graph

� 


			


� ��� ))
)�� ��

�


21

1 2

�� 2 G˚.2; 2/

has four vertices, four legs and five edges; the orientation of all legs and of four internal
edges is not shown explicitly and hence, by default, flows upwards. Sometimes
we skip showing explicitly labellings of legs (as in Table 1, for example). We set
G˚ WD tm;n�0G˚.m; n/. Note that elements of G˚ are not necessarily connected,
e.g.,

���

��� �**((
23

�� ��
������

�

1
4

2

1 2 G˚.2; 4/:

2.2. Decorated directed graphs. Let E be an S-bimodule, that is, a family
fE.p; q/gp;q�0 of vector spaces on which the group Sp acts on the left and the
group Sq acts on the right, and both actions commute with each other. We shall use



Wheeled props in algebra, geometry and quantization 87

elements of E to decorate vertices of an arbitrary graph G 2 G˚ as follows. First,
for each vertex v 2 V.G/ we construct a vector space

E.Outv; Inv/ WD hOutvi ˝Sp E.p; q/˝Sq hInvi;
where hOutvi (resp., hInvi) is the vector space spanned by all bijections Œ#Outv�!
Outv (resp., Inv ! Œ#Inv�/. It is (non-canonically) isomorphic toE.p; q/ as a vector
space and carries natural actions of the automorphism groups of the sets Outv and
Inv . These actions make the following unordered tensor product over the set V.G/
(of cardinality, say, k),

O
v2V.G/

E.Outv; Inv/ WD
� M
i WŒk�!V.G/

E.Outi.1/; Ini.1//˝: : :˝E.Outi.k/; Ini.k//
�

Sk
;

into a representation space of the automorphism group Aut.G/ of the graphG which,
by definition, is the subgroup of the symmetry group of the 1-dimensional CW-
complex underlying the graph G which fixes its legs. Hence with an arbitrary graph
G 2 G˚ and an arbitrary S-bimodule E one can associate a vector space

GhEi WD �˝v2V.G/E.Outv; Inv/
�

AutG

whose elements are called decorated (byE) graphs. For example, the automorphism

group of the graph G D
���

�� �**((
21

is Z2 so that GhEi D E.1; 2/ ˝Z2 E.2; 2/. It is

useful to think of an element in GhEi as of the graph G whose vertices are literally
decorated by some elements a 2 E.1; 2/ and b 2 E.2; 1/ and subject to the following
relations:

� a��

�� � b**((
21

D
� a��1��

�� ��b**((
21

; � 2 Z2;

�

0
@ � a��

�� � b**((

21

1
A D � �a��

�� � b**((

21

D
� a��

�� � �b**((
21

for all � 2 K;

�a1Ca2��

�� � b**((
21

D
�a1��

�� � b**((
21

C
�a2��

�� � b**((
21

; and similarly for b:

It also follows from the definition that
� a��

�� � b**((
21

D
� a��

�� � b.12/**((
12

, .12/ 2 Z2.
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2.2.1. Remark. If E D fE.p; q/g is a differential graded (dg, for short) S-bi-
module, i.e., if each vector space E.p; q/ is a complex equipped with an Sp � Sq-
equivariant differential ı, then, for any graph G 2 G˚.m; n/, the associated graded
vector spaceGhEi comes equipped with an induced Sm�Sn-equivariant differential
ıG so that the collection, fLG2G˚.m;n/GhEigm;n�0, is again a dg S-bimodule. We
sometimes abbreviate ıG with ı.

2.2.2. Remark. The one vertex graph

Cm;n WD �
+++++
,,,: : : ���

-----
----

-
...: : : /

// ++++
+

‚ …„ ƒ
„ ƒ‚ …

m output legs

n input legs

2 G˚.m; n/

is often called the .m; n/-corolla. It is clear that for any S-bimodule E one has
GhEi D E.m; n/.

2.3. Wheeled props. A wheeled prop is an S-bimodule P D fP .m; n/g together
with a family of linear Sm � Sn-equivariant maps,

f�G W GhP i ! P .m; n/gG2G˚.m;n/ ; m; n � 0;

parameterized by elements G 2 G˚, which satisfy a “three-dimensional” associa-
tivity condition,

�G D �G=H B �0
H ; (1)

for any subgraph H � G. Here G=H is the graph obtained from G by shrinking
the whole subgraph H into a single internal vertex, and �0

H W GhEi ! .G=H/hEi
stands for the map which equals �H on the decorated vertices lying inH and which
is identity on all other vertices of G.

If the S-bimodule P underlying a wheeled prop has a differential ı satisfying, for
any G 2 G˚, the condition ı B �G D �G B ıG , then the wheeled prop P is called
differential.

By Remark 2.2.2, the values of the maps �G can be identified with decorated
corollas, and hence the maps themselves can be visually understood as contraction
maps, �G2G˚.m;n/ W GhP i ! Cm;nhP i, contracting all the edges and vertices of G
into a single vertex.

2.3.1. Remark. Strictly speaking, the notion introduced in § 2.3 should be called
a wheeled prop without unit. A wheeled prop with unit can be defined as in §2.1.1
provided one enlarges G˚ by adding a family of graphs, f" " � � � " ˚˚ � � �˚g,
without vertices [MMS].
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2.4. Props, properads, operads, etc. as G -algebras. Let G D tm;nG.m; n/ be a
subset of the set G˚, say, one of the subsets defined in Table 1 below. A subgraphH
of a graph G 2 G is called admissible if H 2 G and G=H 2 G , i.e., a contraction
of a graph from G by a subgraph belonging to G gives a graph which again belongs
to G .

Table 1. A list of G-algebras.

G Definition G -algebra Typical examples

G˚ All possible directed graphs
Wheeled

prop


			�
�

�� ���))) 

���
�
�� �
�

�


�
%%%
��

G˚
c

A subset G˚
c � G˚ consisting

of all connected graphs
Wheeled
properad



���
�
�� �
�

�


�
%%%
��

G˚
oper

A subset G˚
oper � G˚

c consisting of graphs
whose vertices have at most one output leg

Wheeled
operad ���

��� ��

G"

A subset G" � G˚ consisting
of graphs with no wheels, i.e.,

with no directed closed paths of edges
Prop 

			�
�

�� ���)))

G"

c
A subset G"

c � G" consisting
of all connected graphs

Properad 
			�

�
�� ���)))

G"

c;0

A subset G"

c;0 � G"

c consisting
of graphs of genus zero

Dioperad


���

�
�� �
�

�


�
%%%

G
1
2

A subset G
1
2 � G"

c;0 consisting of
all .m;n/-graphs with the number

of directed paths from input legs
to the output legs equal tomn

1
2

-Prop ���

���

�
�� 



Gf A subset Gf � G"

c;0 consisting of graphs
whose vertices have precisely one output leg

Operad ���

���

G j
A subset G j � Gf consisting of graphs

whose vertices have precisely one input leg
Associative

algebra �
�
�
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A G-algebra is, by definition, an S-bimodule P D fP .m; n/g together with
a family of linear Sm � Sn-equivariant maps, f�G W GhP i ! P .m; n/gG2G˚.m;n/,
parameterized by elements G 2 G , which satisfy condition (1) for any admissible
subgraph H � G (cf. § 2.3). Applying this idea to the subfamilies G � G˚ from
Table 1 gives us, in the chronological order, the notions of prop, operad, dioperad, pro-
perad, 1

2
-prop and their wheeled versions which have been introduced, respectively,

in the papers [Mc], [May], [Ga], [Va1], [Ko1], [Me5], [MMS].
We leave it as an exercise to the reader to check that G j-algebra structures on an

S-bimoduleE with onlyE.1; 1/ non-zero are precisely associative algebra structures
onE.1; 1/. This fact implies that, for any G-algebraE D fE.m; n/gm;n�0, the space
E.1; 1/ is an associative algebra.

2.5. Basic examples of G -algebras. (i) For any G and any finite-dimensional vec-
tor space V the S-bimodule EndV D fHom.V ˝n; V ˝m/g is naturally a G-algebra
with contraction maps�G2G being ordinary compositions and, possibly, traces of lin-
ear maps; it is called the endomorphism G-algebra of V . In the cases G ¤ G˚;G˚

c

the assumption of finite-dimensionality of V can be dropped (as the defining opera-
tions �G do not employ traces).

(ii)With any S-bimodule,E D fE.m; n/g, there is associated another S-bimodule,
F GhEi D fF GhEi.m; n/g with F GhEi.m; n/ WD L

G2G.m;n/GhEi, which has
a natural G-algebra structure with the contraction maps �G being tautological. The
G-algebra F GhEi is called the free G-algebra generated by the S-bimoduleE. We
often abbreviate notations by replacing F G˚

by F ˚, F Gf

by F f, etc.

(iii) Definitions of G-subalgebras, Q � P , of G-algebras, of their ideals, � � P ,
and the associated quotient G-algebras, P=�, are straightforward. We omit the
details.

2.6. Morphisms and resolutions of G -algebras. A morphisms of G-algebras,
� W P1 ! P2, is a morphism of the underlying S-bimodules such that, for any
graph G, one has � B �G D �G B .�˝G/, where �˝G is a map, GhP1i ! GhP2i,
which changes decorations of each vertex in G in accordance with �. A morphism
P ! End hV i of G-algebras is called a representation of the G-algebra P in a
graded vector space V .

A free resolution of a dg G-algebra P is, by definition, a dg free G-algebra,
.F GhEi; ı/, together with a morphism, � W .F hEi; ı/! P , which induces a coho-
mology isomorphism. If the differential ı in F hEi is decomposable with respect to
compositions�G , then it is called a minimal model of P and is often denoted by P1.
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3. Applications to algebra and geometry

3.1. The operad of associative algebras. Let A0 D fA0.m; n/g be an S-bimodule
with allA0.m; n/ D 0 exceptA0.1; 2/ WD KŒS2�. The associated free operad F fhA0i
can be identified with the vector space spanned by all connected planar graphs of the

form
���

��� 3

24
1 ���

 . In particular, F fhA0i.1; 2/ Š A0.1; 2/ Š spanh ��

�

21

; ��

�
12

i. Let

I0 be an ideal of F fhA0i generated by the following 6 planar graphs:

���

��� �.3/
�.2/�.1/

� ���

 � ���.1/
�.2/ �.3/

2 F fhA0i.1; 3/ for all � 2 S3: (2)

3.1.1. Claim. There is a 1-1 correspondence between representations � W Ass !
EndV of the quotient operad Ass WD F fhA0i=hI0i in a space V and associative
algebra structures on V .

Proof. The values of � on arbitrary (equivalence classes of) planar graphs is uniquely
determined by its value, �. ��

�

21

/ 2 Hom.V ˝2; V /, on one of the two generators.

Denote this value by �. As � sends any of the graphs (2) to zero, the multiplication
in V given by � must be associative. �

Thus the operad Ass can be called the operad of associative algebras. What
could be a (minimal) free resolution of Ass? By the definition in § 2.6, this must be
a free operad, F fhAi, generated by some S-bimodule A D fA.1; n/gn�2 equipped
with a differential ı and a projection � W F fhAi ! Ass inducing an isomorphism,
H.F fhAi; ı/ D Ass, at the cohomology level. The latter condition suggests that
we can choose A.1; 2/ to be identical to A0.1; 2/ and set a differential ı to satisfy
ı ��

�

21

D 0. Then the graphs (2) are cocycles in F fhAi.1; 3/. In view of the cohomo-

logy isomorphism F fhAi ! Ass, we have to make them coboundaries, and hence
are forced to introduce an S3-module,

A.1; 3/ WD KŒS3�Œ1� D span

*
%%
%

��
��

�.3/�.1/ �.2/

+

�2S3

;

and set

ı %%
%

��
��

31 2

D ���

��� 3
21

� ���

 � ��1
2 3

: (3)
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We get in this way a well-defined dg free operad together with a well-defined epimor-
phism,

�
F f. ��

� ; ��

� / ; ı

� ! .Ass; 0/; sending .1; 3/-corollas to zero. However,
this epimorphisms fails to be a quasi-isomorphism as

ı

0
@ ��

��

��
� ��
�

4

1 2 3

C ��

�� �����
�1

432

� %%
%

��
���

00 1
1

4
1 2

3

C %%
%

��
���
00 1
1
4

2 3
1

� %%
%

��
�� �11001

34
2

1
A

„ ƒ‚ …
a nontrivial cohomology class inH�1.F f. ��

� ; ��

� / ;ı/

D 0:

To kill this cohomology class we have to introduce a new generating .1; 4/-corolla,

22
2334455
5�

41 32
, of degree �2 and set the value of the differential on it to be equal to the

underbraced expression above. Again we get a well-defined dg free operad together
with a natural homomorphism,

�
F . ��

� ; ��

� ; 6667788999� /; ı

� ! Ass; which, again, fails
to be a quasi-isomorphism. To treat the new problem one has to introduce a new
generating corolla of degree �3 with 5 input legs and so on.

3.1.2. Theorem ([Sta]). Theminimal resolution ofAss is a dg free operad, Ass1 WD
.F fhAi; ı/, generated by the S-bimodule A D fA.1; n/g,

A.1; n/ WD KŒSn�Œn � 2� D span

*
�

���
���
��
��: : : 		
		

:::
:::

�.1/ �.2/ �.n/

+

�2Sn

; (4)

and with the differential given on the generators by

ı �








;;
;; <<
<<
��

��
�

�.1/ ::: �.n/

D
n�2X
kD0

n�kX
lD2

.�1/kCl.n�k�l/C1 �
�.1/:::�.k/ �.kClC1/:::�.n/====

====
=

��
��
�

>>>>>
>>>>>

>>
:::

:::

�






;;
; <<
<
��

��

�.kC1/:::�.kCl/

: (5)

3.1.3. Definition. Representations, Ass1 ! EndV , of the dg operad .Ass1; ı/ in
a dg vector space V are called A1-structures in V .

3.1.4. Remark. We now suggest the reader to re-read Stasheff’s Theorem 3.1.2 from
the end to the beginning: given an infinite dimensional graph complex, .Ass1; ı/,
spanned by all possible planar graphs (without wheels) built from .1; n/-corollas
with n � 2 and equipped with differential (5), then its cohomology, H.Ass1; ı/, is
generated by only .1; 2/-corollas, i.e., it is surprisingly small. It is often impossible
to obtain such a result by a direct computation. One of the main theorem-proving
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technique in the theory of operads and props is called the Koszul duality theory, and a
result of type 3.1.2 often requires a combination of ideas from homological algebra,
algebraic topology, the theory of Cohen–Macaulay posets [Va2] and so on. Stasheff
[Sta] proved Theorem 3.1.2 by constructing a remarkable family of polytopes called
nowadays associahedra; in his approach the surprising smallness ofH.Ass1; ı/ gets
nicely explained by the obvious contractibility of Stasheff’s polytopes as topological
spaces. We shall review some theorem-proving techniques in Section 5 and continue
this section with a list of examples which are most relevant to differential geometry.

3.2.Thewheeledoperadoffinite-dimensional associative algebras. Theorem 3.1.2
has been obtained in the category of algebras over the family of graphs, Gf, which
contain no closed directed paths of internal edges. What happens if we keep the same
family of generators as in the case of Ass,

A0.m; n/ D
8<
:

KŒS2� D spanh ��

�
21

; ��

�
12

i for m D 1; n D 2;
0 otherwise,

the same family of relations (1), but enlarge the family of graphs we work over from
Gf to G˚? The associated quotient wheeled operad, Ass˚ WD F ˚hA0i=hI0i; can
be called the operad of finite-dimensional associative algebras. Indeed, one has the
following

3.2.1. Claim. There is a one-to-one correspondence between representations
� W Ass˚ ! EndV of Ass˚ in a finite-dimensional vector space V and associa-
tive algebra structures on V .

Proof. We need to explain only the subjective finite-dimensional, and that follows
from the fact that representations of graphs 2 Ass˚ which have wheels involve

traces. For example, the element ��


� �� 2 Ass˚.0; 1/ gets represented in V as the

image of the multiplication map �. ��

� / 2 Hom.V ˝V; V / under a natural trace map
Hom.V ˝ V; V /! Hom.V;K/. �

It is easy to see that the straightforward analogue of Theorem 3.1.2 can not hold
true for the operad of finite-dimensional associative algebras as, for example, formula
(3) implies

ı
33 %
%%

��
��

21 ��

D ���

��� 2
1

��
� ���

 � ��1

2
��
D ���

��� 2
1

��
� ���

��� 2

1
��
D 0
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and hence provides us with a non-trivial cohomology class inH�1.F ˚hAi; ı/which
maps under the natural projection F ˚hAi ! Ass˚ to zero. The correct analogue of
Stasheff’s result for finite-dimensional associative algebras was found in [MMS].

3.2.2. Theorem. The minimal resolution of Ass˚ is a dg free wheeled operad,
.Ass˚/1 WD .F ˚h OAi; ı/ generated by an S-bimodule OA D f OA.m; n/g,

OA.m; n/ WD

8̂ˆ̂̂̂ˆ̂̂̂ˆ̂̂̂
<̂
ˆ̂̂̂ˆ̂̂̂ˆ̂̂̂ˆ̂:

KŒSn�Œn � 2� D span

*
�

���
���
��
��: : : 		
		

:::
:::

�.1/ �.2/ �.n/

+

�2Sn

for m D 1; n � 2;
Ln�1
pD1 KŒSn�Cp�Cn�p

Œn� D span

*
H

????
????

??
@@@

@@@
@

AA
AA

:::
�.1/ �.2/ �.p/

BBBB
BBBB

BB
CCC

CCC
CC
DD
DD

:::
�.n/�.pC1/

+

�2Sn

for m D 0; n � 2;
0 otherwise,

where Cp � Cn�p is the subgroup of Sn generated by two commuting cyclic per-
mutations 	 WD .12 : : : p/ and 
 WD .p C 1 : : : n/, and kŒSn�Cp�Cn�p

stands for
coinvariants.

The differential is given on the generators of OA.1; n/ by (5) and on the generators
of OA.0; n/ by

ı H
????

????
??

EEE
EEE

EE
AA
AA

:::
1 2 p

BBBB
BBBB

BB
CCC

CCC
CC
DD
DD

:::
npC1

D
I

.1:::p/

I
.pC1:::n/

0
@ �

@@@
@@@

@
   

   
::: 44

44

1 2 p

���
���

�
FFF

FFF

:::
33
33

npC1��

C
pX
kD2

.�1/kn H
????

????
??

@@@
@@@

@
AA
AA

:::
kC1 p

BBBB
BBBB

BB
CCC

CCC
CC
DD
DD

:::
npC1�

((
(( **
**

GG
GG HH
HH

1 ::: k

C
n�2X
kD2

.�1/pCk.1Cn�p/C1 H
????

????
??

EEE
EEE

EE
AA
AA

:::
1 2 p

&&&&&
&&&&&

&
66

66
6
DD
DD

:::
npCkC1�

((
((
GG
GG HH
HH
**

**

pC1 ::: pCk

1
A

where the symbol
I

.i1:::ik/

stands for the cyclic skewsymmetrization of the indices
.i1 : : : ik/.

Thus the minimal resolution, .Ass˚/1, of the operad of finite-dimensional asso-
ciative algebras is different from the naive “wheelification”, .Ass1/˚, of the Stasheff
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minimal resolution of the operad, Ass, of arbitrary associative algebras. A similar
phenomenon occurs for the operad of commutative algebras [MMS]. In contrast, the
operad, Lie, of Lie algebras is rigid with respect to the wheelification:

3.2.3. Fact ([Me5]). .Lie˚/1 D .Lie1/˚, i.e., wheeledL1-algebras are exactly
the same as ordinary finite-dimensional L1-algebras.

3.2.4. Reminder on L1-algebras and their homotopy classification. For future
reference we recall here a few useful facts about Lie and L1-algebras [Ko2]. The
operad, Lie, of Lie algebras is the quotient operad, Lie WD F fhL0i=I , of the free
operad generated by an S-bimodule L0 D fL0.m; n/g,

L0.m; n/ D
8<
:

sgn2 D spanh ��

�
21

D � ��

�
12

i for m D 1; n D 2;
0 otherwise,

(6)

modulo the ideal I generated by the following relations:

���

��� 3
21

C ���

��� 2
13

C ���

��� 1
32

D 0: (7)

Its minimal resolution Lie1 is a dg free operad F fhLi generated by an Sn-bimodule

L.m; n/ WD

8̂
<̂
ˆ̂:

sgnnŒn � 2� D span

*
��

��
��
�
��
��
::: �
��
�

��
��

�

1 2 n-1 n

+
for m D 1; n � 2;

0 otherwise,

with the differential given by

ı ��
��
��
�

��
��
::: �
��
�

��
��

�

1 2 n-1 n

D
X

Œn�DI1tI2
#I1�2;#I2�1

.�1/�.I1;I2/C.#I1C1/#I2 �
99
99
9

�









II
II

44
44 33
33

:::„ƒ‚…
I1

„ƒ‚…
I2

AA
AA
::: *
**
*

66
66

6 : (8)

Here (and elsewhere) sgnn stands for the 1-dimensional sign representation of Sn.
With an arbitrary graded vector space V one can associate a formal graded mani-

fold MV , whose structure sheaf OMV
is, by definition, the completed graded cocom-

mutative coalgebra b̌.V Œ1�/; if V is finite dimensional, then one can equivalently
view MV as a small neighbourhood of zero in the space V Œ1� equipped with the
algebra (rather than coalgebra), b̌.V �Œ�1�/, of ordinary smooth formal functions.
It is well known (see, e.g., [Ko2]) that L1-structures in a dg space V , that is, rep-
resentations L1 ! EndV , are in one-to-one correspondence with degree 1 vector
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fields, Ä, on MV which vanish at the distinguished point, Ä j02MV
D 0, and satisfy

the condition ŒÄ; Ä� D 0 (such vector fields are called cohomological). The pairs
.MV ; Ä/ are often called dg manifolds. This interpretation of L1-structures permits
us to use simple and concise geometric instruments to describe notions which, in the
pure algebraic translation, look awkwardly large. For example, a morphism of L1-
algebras V ! W is nothing but a smooth map, f W MV ! MW , of the associated
formal manifolds such that f�.ÄV / D ÄW .

An L1-algebra .MV ; Ä/ is called minimal if the first Taylor coefficient, Ä.1/, of
the homological vector field Ä at the distinguished point 0 2 MV vanishes. It is
called linear contractible if the higher Taylor coefficients Ä.�2/ vanish and the first
one Ä.1/ has trivial cohomology when viewed as a differential in V . According to
Kontsevich [Ko2], any L1-algebra (or, better, the associated dg manifold) is iso-
morphic to the direct product of a minimal and of a linear contractible one. This
fact implies that quasi-isomorphisms in the category ofL1-algebras are equivalence
relations. A dg manifold is called contractible if it is isomorphic to a linear con-
tractible one.

3.3. UnimodularLie algebras. Many important Lie algebras g (e.g., all semisimple
Lie algebras) have the additional property that, for any g 2 g, the trace of the
associated adjoint action

Adg W g �! g;

e 7�! Œg; e�

vanishes. Lie algebras with this property are called unimodular. The wheeled operad,
ULie, controlling unimodular Lie algebras is the quotient of the free wheeled operad,
F ˚hL0i, generated by the S-bimodule (6) modulo the ideal generated by the Jacobi
relations (7) and the unimodularity relation

��




� �� D 0:

Its minimal resolution has been found in [Gr1]:

3.3.1. Theorem. The operad ULie1 is a dg free operad, F ˚h OLi generated by the
S-bimodule

OL.m; n/ WD

8̂ˆ̂<
ˆ̂̂:

sgnnŒn � 2� for m D 1; n � 2;
sgnnŒn� D span

� �
��
��
�
��
��
::: �
��
�

��
��

�

1 2 n-1 n

�
for m D 0; n � 1;

0 otherwise,
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with the differential on the generators of OL.1; n/ given by (8) and on the generators
of OL.1; n/ by

ı ��
��
��
�

��
��
::: �
��
�

��
��

�

1 2 n-1 n

D
X

Œn�DI1tI2
#I1�2;#I2�0

.�1/�.I1;I2/C.#I1C1/#I2 �
99
99
9

�









II
II

44
44 33
33

:::„ƒ‚…
I1

„ƒ‚…
I2

AA
AA
::: *
**
*

66
66

6 C ��
��
��
�
��
��
::: �
��
�

��
��

�

1 2 n
��
:

Geometrically, unimodularL1-structures in V can be interpreted as pairs .Ä; !/,
where Ä is a cohomological vector field and! aQ-invariant section of the Berezinian
bundle on V �Œ1� (see [Gr1]).

3.4. Lie 1-bialgebras and Poisson geometry. A Lie n-bialgebra on a graded vector
space V is a pair of linear maps,

� ' 

��B
1

21

W V ! V ^ V; Œ � � ' ��

�
1

21

W ^2.V Œ�n�/! V Œ�n�;

making the space V into a Lie coalgebra and the space V Œ�n� into a Lie algebra and
satisfying, for any a; b 2 V , the compatibility condition

�Œa � b� D
X

a1 ˝ Œa2 � b�C Œa � b1�˝ b2
C .�1/jajjbjCnjajCnjbj.Œb � a1�˝ a2 C b1 ˝ Œb2 � a�/:

Here �a DW P a1 ˝ a2 and �b DW P b1 ˝ b2. The case n D 0 gives the notion
of a Lie bialgebra which was introduced by Drinfeld [Dr] in the context of quantum
groups. The case n D 1, as we shall see below, is relevant to Poisson geometry.
In this case one has ^2.V Œ�1�/ D .ˇ2V /Œ�2� so that the basic binary operations

have the following symmetries: 

��B
1

21

D � 

��B
1

12

and ��

�
1

21

D ��

�
1

12

. Thus the prop

of Lie 1-bialgebras Lie1B is the quotient of the free prop F "hBi generated by an
S-bimodule

B.m; n/ WD

8̂ˆ̂̂̂ˆ̂̂<
ˆ̂̂̂ˆ̂̂̂:

sgn2 ˝ 11 D span

�


��B
1

21
�

if m D 2; n D 1;

11 ˝ 12Œ�1� � span

�
��

�
1

21

�
if m D 1; n D 2;

0 otherwise,

(9)
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modulo the ideal generated by Jacobi relations (7) and the following ones:

B

��B
��

		 3
21

C B

��B
��

		 2
13

C B

��B
��

		 1
32

D 0;


��B
�
�� �
�

21

1 2

� ��
��B ���

�

1
2

2

1

C ��
��B ���

�

1
2

1

2

� ��
��B ���

�

2
1

2

1

C ��
��B ���

�

2
1

1

2

D 0: (10)

Its minimal resolution, Lie1B1, has been computed in [Me3].

3.4.1. Theorem. (i) Lie1B1 is a dg free prop, F "hXi, generated by an S-bimodule

X.m; n/Œ�1� D sgnm ˝ 1nŒm � 2� D span

*
�

!!!!!!
����
: : : 





JJJJJJ

1 2 m

JJJ
JJJ






: : : �

��
�

!!!
!!!

1 2 n

+

m�1;n�1;mCn�3
(11)

and with the differential given on the generators as follows:

ı �
!!!!!!

����
: : : 





JJJJJJ

1 2 m

JJJ
JJJ






: : : �

��
�

!!!
!!!

1 2 n

D
X

Œm�DI1tI2;Œn�DJ1tJ2
jI1j�0;jI2j�1;jJ1j�1;jJ2j�0

.�1/�.I1tI2/CjI1j.jI2jC1/ �
KKKKK
����
: : : 





--------

‚…„ƒI1

���
��





: : : �

��
�

KKK
KK

„ ƒ‚ …
J1

�
KKKKK
����
: : : 





�����

‚ …„ ƒI2









: : : D

DD
D

66
66

6

„ƒ‚…
J2

(ii) For any d 2 N, there is a one-to-one correspondence between representations
of the dg prop Lie1B1 in Rp and formal Poisson structures, � , on Rd vanishing at
the origin.

Proof. The proof of (i) is straightforward (see, e.g., [MeVa], [Me5], [Va1]) once
one uses rather non-straightforward Koszul duality theory for dioperads, [GiKa],
[Ga], and Kontsevich’s ideas of 1

2
-props and path filtrations [Ko1], [MaVo]. We

shall discuss some of these ideas in §5 and show here now only the proof of (ii).
Since Rp is concentrated in degree zero, an arbitrary representation � W Lie1B1 !
EndRp can have non-zero values only on .m; n/-corollas with m D 2. Denote these

values, �

0
@ �

��� 



1 2

JJJ
JJJ






: : : �

��
�

!!!
!!!

1 2 n

1
A 2 Hom.ˇnRp;^2Rp/; by �n. As the tangent space,

T0, to Rp at zero can be identified with Rp itself, we can identify the total sum
� WD P

n�1 �n 2 Hom.ˇ�1Rp;^2T0/ with a formal bi-vector field on Rp . Then
the equation �Bı D ı B� becomes precisely the Poisson equation Œ�; ��S D 0, where
Œ ; �S denotes the Schouten bracket. �

It is worth pointing out that the vanishing condition �j02Rp D 0 in Theo-
rem 3.4.1(ii) is no serious restriction: given an arbitrary formal or analytic Poisson
structure � on Rp (not necessary vanishing at 0 2 Rp), then, for any parameter �
viewed as a coordinate on R, the product�� is a Poisson structure on RpC1 D Rp�R
vanishing at zero 0 2 RnC1 and hence is a representation of the prop Lie1B1.
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3.4.2. Bi-Hamiltonian geometry. The prop profile of a pair of compatible Poisson
structures (which is an important concept in the theory of integrable systems) has
been computed by Strohmayer in [Str2] with the help of an earlier result of Dotsenko
and Khoroshkin [DoKh].

3.4.3. Wheeled Poisson structures? Theorem 3.4.1 says that the minimal resolu-
tion

Lie1B1 D .F "hXi; ı/
of the prop Lie1B of arbitrary Lie 1-bialgebras controls the category of local (for-
mal) smooth Poisson structures. What can be said about a minimal resolution,
.Lie1B˚/1, of the wheeled prop, Lie1B˚, of finite dimensional Lie 1-bialgebras
whose representations can, in view of Theorem 3.4.1(ii), be called wheeled Poisson
structures? Note that Lie1B˚ has the same generators and relations as Lie1B, the
only difference being that graphs now might have wheels. As in the case of associative
algebra, the naive wheelification,

.Lie1B1/˚ WD .F ˚hXi; ı/;
creates new non-trivial cohomology classes, as e.g. this one [Me5],

�JJ
�










�����

��

�
���

��

��

��

�
� ,,,

�


000000�

���

��

����

C
� ���
���
11
11
11����

��

���� 2 .Lie1B1/˚; (12)

which map under the natural projection .Lie1B1/˚ ! Lie1B˚ to zero. Thus the
set of generators of a minimal resolution, .Lie1B˚/1, of Lie1B˚ must be larger
than the set (11), and at present its computation is beyond reach. All we can say
now about mysterious wheeled Poisson structures on a graded formal manifold M
is that (i) they are Maurer–Cartan elements of a certain L1-algebra extension of the
ordinary Schouten bracket onM which involves divergence operators (in fact, graph
(12) gives us a glimpse of the �3 composition in that L1-algebra), and (ii) they can
be deformation quantized in exactly the same sense as ordinary Poisson structures;
moreover, it is proven in [Me6] with the help of the theory of wheeled props that there
exist universal formulae for deformation quantization of wheeled Poisson structures
which involve only rational numbers Q.

3.5. Pre-Lie algebras, Nijenhuis geometry and contractible dg manifolds. A
pre-Lie algebra is a vector space together with a binary operation, B W V ˝2 ! V ,
satisfying the condition

.a B b/ B c � a B .b B c/ � .�1/jbjjcj.a B c/ B b C .�1/jbjjcja B .c B b/ D 0
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for any a; b; c 2 V . Any pre-Lie algebra is naturally a Lie algebra with the bracket,
Œa; b� WD aBb�.�1/jajjbjbBa. Let us consider the following extension of this notion:
a pre-Lie2 algebra is a pre-Lie algebra .V; B/ equipped with a compatible Lie bracket
in degree 1, i.e., with a linear map1 Œ � � W ^2 .V Œ�1�/! V Œ�1� satisfying the Jacobi
identities and the following compatibility condition for all a; b; c 2 V :

Œa � b� B c C .�1/jbja B Œb � c�C .�1/jbjjajCjbjb B Œa � c�

D .�1/jbjjcjCjcjŒ.a B c/ � b�C .�1/.jajC1/.jbjCjcj/CjajŒ.b B c/ � a�:

This compatibility condition can be understood as follows. The vector space
V ˚ V Œ�1� is naturally a complex with trivial cohomology. If we write elements of
V ˚ V Œ�1� as aC…b, where a; b 2 V and … is a formal symbol of degree 1, then
the natural differential in V ˚ V Œ�1� is given by d.aC…b/ D 0C…a. Given two
arbitrary binary operations,

B W V ˝ V ! V; Œ � � W ˇ2 V ! V Œ1�;

define a degree zero map, Œ ; � W ^2 .V ˚ V Œ�1�/! V ˚ V Œ�1�, by setting

Œa; b� WD a B b � .�1/jajjbjb B a; Œ…a; b� WD �.�1/jajŒa � b�C…a B b;
Œ…a;…b� WD …Œa � b� :

3.5.1. Proposition ([Me4]). The data .V ˚ V Œ�1�; d; Œ ; �/ is a (contractible) dg
Lie algebra if and only if .V; B; Œ � �/ is a pre-Lie2 algebra.

Rather surprisingly, the minimal resolution, pre-Lie21, of the operad of pre-Lie2-
algebras has much to do with the famous Nijenhuis integrability condition in differ-
ential geometry. The following result is based on the works [ChLi], [Me4], [Str2].

3.5.2. Theorem. (i) The operad pre-Lie21 is a free operad, F fhN i, generated by
an S-bimodule N with all N.m; n/ D 0 except the following ones,

N.1; n/ WD
nM

pD1
IndSn

Sp�Sn�p
1p ˝ sgnn�pŒn � p � 1�

D span

* H
????

????
??

@@@
@@@

@
AA
AA

:::
i1 i2 ip„ ƒ‚ …
symmetric

BBBB
BBBB

BB
CCC

CCC
CC
DD
DD

:::
inipC1„ ƒ‚ …

skewsymmetric

+
; n � 2;

1Equivalently, a linear map Œ � � W ˇ2 V ! V Œ1�.
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and equipped with a differential given on the generators by

d
H

---
---

---
--

LLL
LLL

LLL

��
��
��

: : : MM
MM
M
NN
NN
N

��
��

��
�

!!!
!!!

!!

: : : ++
+++

+++
+++

1 2 p pC1 n

D
X

I1tI2D.1;:::;p/

J1tJ2D.pC1;:::;n/

#I2�1;#I1C#J2�1

#I2C#J1�2

.�1/#J2C�.J1;J2/ H
====

====
====

=

: : :JJ
JJJ

JJJ
J

OO
OO
OO
O

PP
PP
P

QQ
QQ

QQ

: : :FFF
FFF

FF

RRRR
RRRR

RRRR
R

J2
„ ƒ‚ …H

LLL
LLL

LLL

� � �OOO
OO
O

MM
MM
M
NN
NN
N

� � ���
��

��

SSS
SSS

SSS

J1

„ƒ‚…
I2

„ƒ‚…
I1

„ ƒ‚ …

�
X

I1tI2D.1;:::;n�p/

J1tJ2tJ3D.n�pC1;:::;n/

#I1�1;#I2�1

#I1C#J3�1;#I2C#J2�1

.�1/#J2C#J3C�.J1;J2;J3/ H
EEE

EEE
EEE

EE

: : :..
..
..
.

00
00
0
NN
NN
N

//
//

//
/

: : :TTT
TTT

TTT
T

BBBB
BBBB

BBBB
BB

J3
„ ƒ‚ …H

JJJ
JJJ

JJJ

� � �UUU
UU
U

00
00
0

11
11
1

� � ���
��

��

!!!
!!!

!!!

J1
J2

„ƒ‚…
I2

„ƒ‚…
I1

„ ƒ‚ …
:

(ii) For any d 2 N, there is a one-to-one correspondence between representations
of pre-Lie21 in Rd and endomorphisms, J W TRd ! TRd , of the tangent bundle on
the affine space Rd satisfying the Nijenhuis integrability condition,NJ D 0, and the
vanishing condition J j02Rd D 0.

We recall that the Nijenhuis tensor of an endomorphism J W TM ! TM of the
tangent bundle of an arbitrary smooth manifold M (in particular, of Rm) can be
defined as a map

NJ W ^2 TRm �! TRm ;

X ˝ Y 7�! NJ .X; Y / WD ŒJX; J Y �C J 2ŒX; Y � � J ŒX; J Y � � J ŒJX; Y �;
and that its beauty is hidden in the far from being obvious fact that it is linear not
only over R but also over arbitrary smooth functions, f 2 OM , on M , that is,
NJ .fX; Y / D NJ .X; f Y / D fNJ .X; Y /.

A representation of this dg operad in an arbitrary graded vector space V might
be called a graded or extended Nijenhuis structure on V (viewed as a formal mani-
fold). Interestingly, the category of these extended Nijenhuis manifolds is almost
identical (see [Me4]) to the category of contractible dg manifolds which we first met
in §3.2.4 when discussing Kontsevich’s homotopy classification of dg manifolds.
Proposition 3.5.1 above is in fact one of the simplest manifestations of this more
general phenomenon.
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3.6. Gerstenhaber algebras and Hertling–Manin geometry. We conclude this
section with an example which was actually the first one to reveal strong interconnec-
tions between derived (via minimal resolutions) categories of rather simple algebraic
structures and solution sets of highly non-linear diffeomorphism covariant differential
equations on ordinary smooth manifolds.

A Gerstenhaber algebra is, by definition, a graded vector space V together with
two linear maps B W ˇ2 V ! V and Œ � � W ˇ2 V ! V Œ1� such that .V; B/ is a graded
commutative algebra, .V Œ�1�; Œ � �/ is a graded Lie algebra, and the compatibility
equation

Œ.a B b/ � c� D a B Œb � c�C .�1/jbj.jcjC1/Œa � c� B b for all a; b; c 2 V
holds. The operad of Gerstenhaber algebras is often denoted by G . Its minimal
resolution, G1, has been computed in [GeJo]; it is one of the most important operads
in mathematics which found many applications in homological algebra, algebraic
topology and deformation quantization. It was shown in [Me2] that G1 has also a
differential geometric dimension:

3.6.1. Theorem. For any d 2 N, there is a one-to-one correspondence between
representations of the dg operad G1 in Rd (concentrated in degree 0) and linearmaps
� W ˇ2TRd ! TRd making the tangent sheaf TRd into a commutative and associative
algebra, and satisfying the Hertling–Manin integrability condition, R� D 0, and the
vanishing condition � j02RdD 0.

We recall that the Hertling–Manin tensor R� of an arbitrary commutative and
associative product, � W TM ˇTM ! TM , on the tangent sheaf of an arbitrary smooth
manifold M is a map [HeMa]

R� W ˝4 TM �! TM ;

X ˝ Y ˝Z ˝W 7�! R�.X; Y;Z;W /;

where

R�.X; Y;Z;W / D Œ�.X; Y /; �.Z;W /� � �.Œ�.X; Y /;Z�;W /
� �.Z; Œ�.X; Y /;W �/ � �.X; ŒY; �.Z;W /�/
� �ŒX;�.Z;W /�; Y /C �.X;�.Z; ŒY;W �//
C �.X;�.ŒY;Z�;W //C �.ŒX;Z�; �.Y;W //
C �.ŒX;W �; �.Y;Z//:

A remarkable fact is that this map is linear not only over R but also over arbitrary
smooth functions f 2 OM on M , that is, R�.fX; Y;Z;W / D fR�.X; Y;Z;W /,
R�.X; f Y;Z;W / D fR�.X; Y;Z;W /, etc. One can view the Hertling–Manin
integrability equation as a diffeomorphism covariant version of the WDVV equation
[HeMa], [HMT].
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4. Applications to deformation theory

4.1. From minimal resolutions to L1-algebras. One of the advantages of know-
ing a dg free resolution, P1, of a G-algebra controlling a mathematical structure
P is that P1 paves a direct way to the deformation theory of P -structures. In the
heart of this approach to the deformation theory of many algebraic and geometric
structures is the observation 4.1.2 (see below) which was proven in [MeVa] in several
ways. For its precise formulation we need the following notion.

4.1.1. Definitions. AnL1-algebra .g; f�n W ^ng! gŒ2�n�gn�1/ is called filtered
if g admits a non-negative decreasing Hausdorff filtration,

g0 D g 	 g1 	 � � � 	 gi 	 � � � ;
such that Im�n � gn for all n � n0 beginning with some n0 2 N. In this
case it makes sense to define the associated set MC.g/ of Maurer–Cartan ele-
ments as a subset of g consisting of degree 1 elements � satisfying the equationP
n�1 1

nŠ
�n.�; : : : ; �/ D 0.

A very useful fact is that to every Maurer–Cartan element� 2MC.g/ of a filtered
L1-algebra .g; f�n W ^n g ! ggn�1/ there corresponds a �-twisted L1-algebra
structure, f��n W ^n g ! ggn�1, on g. If one thinks of the original L1-algebra as
of a dg manifold .Mg; Ä/ (see §4.1.2), then the set MC.g/ can be identified with the
zero set of the homological vector field Ä, and the �-twisted L1-algebra structure
on g corresponds to that homological vector field Ä� on Mg which is obtained from
Ä by the translation diffeomorphism x ! x C � for all x 2Mg.

4.1.2. Theorem ([MeVa]). Let .F GhEi; ı/ be a dg free G-algebra (see Table 1)
generated by an S-bimodule E, and let .Q; ıQ/ be an arbitrary dg G-algebra. Then

(i) the graded vector space g WD HomS.E;Q/Œ�1� is canonically a filtered L1-
algebra;

(ii) the set of all morphisms fF GhEi ! Qg of dg G-algebras is canonically
isomorphic to the Maurer–Cartan set MC.g/ of the L1-algebra in (i).

Proof. As an illustration we show an elementary proof of the theorem in the simplest
case G D G j (see Table 1), i.e., for the case when F GhEi is the free associative
algebra, ˝�E, generated by a graded vector space E and .Q; ıQ/ is an arbitrary dg
associative algebra (we refer the reader to [MeVa] for all other cases from Table 1
except G˚, and to [Gr2] for the case G˚). With these data we shall associate a
cohomological vector field, Ä, on the space gŒ1� D Hom.E;Q/ D Q ˝ E�, and
we shall do it in local coordinates by assuming further (only for simplicity of sign
factors in formulae) that the graded vector spaces E and Q are free modules over
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some graded commutative ring, R D L
i2ZR

i , with degree 0 generators feaga2I
and, respectively, fe˛g˛2J . Then the differentials in ˝�E and Q, as well as the
multiplication B in Q, have, respectively, the following coordinate representations:

ıea D
X
k�1

a1:::ak2I

ıa1:::aka ea1 ˝ : : :˝ eak ; ıQe˛ D
X
ˇ2J

Qˇ
˛ eˇ ;

e˛ B aˇ D
X
�2J

�
�

˛ˇ
e�

for some coefficients ıa1:::aka 2 R1,Qˇ
˛ 2 R1 and��

˛ˇ
2 R0. The vector space of all

R-linear maps, Hom.E;Q/, is naturally graded, Hom.E;Q/ DLi2Z Homi .E;Q/,
with Homi .E;Q/ denoting the space of all homogeneous linear maps of degree i . In
the chosen bases a generic element  2 Homi .E;Q/ gets a coordinate representation,
.ea/ DP

˛2J ˛a.i/e˛; for some coefficients ˛
a.i/
2 Ri . The family of parameters

f˛
a.i/
ga2I;˛2J;i2Z provides us with a coordinate system on the formal manifold Mg '

Hom.E;Q/. In these coordinates the required homological vector field on Mg, that
is, a L1-structure on Hom.E;Q/Œ�1�, is given explicitly by

Ä D
� X
˛;ˇ;a;i

Q˛
ˇ

ˇ

a.i/
�

X
a;a�;˛;i

.�1/iıa1:::aka ˛a1:::ak.i/

� @

@˛
a.i/

;

where for k � 2,

˛a1a2:::ak.i/ D
X

ˇ�;��2J
i1C���CikDi

�˛ˇ1�1�
�1
ˇ2�2

: : : �
�k�2

ˇk�1ˇk

ˇ1
a1.i1/


ˇ2
a2.i2/

: : : 
ˇk
ak.ik/

:

The equation ŒÄ; Ä� D 0 follows straightforwardly from the assumptions that ı2 D 0,
ı2

Q
D 0, as well as from the associativity of the product B and its compatibility with

ıQ. This proves (i).
The Maurer–Cartan set MC.g/ is precisely the set f 2 Hom0.E;Q/ W Äj� D 0g

and, therefore, consists of all points in Hom.E;Q/ which have all the coordinates
f˛
a.i/
gi¤0 vanishing, and the coordinate ˛

a.0/
satisfying the equations

X
ˇ2J

Q˛
ˇ

ˇ

a.0/
�

X
a1;:::;ak2I

ıa1:::aka ˛a1:::ak.0/ D 0:

This just says that the map of associative algebras ˇ�E ! Q associated to ˛
a.0/

commutes with the differentials ı and ıQ, defining thereby a morphism of dg algebras.
This proves claim (ii). �
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4.2. Deformation theory. The theory of operads and props gives a universal ap-
proach to the deformation theory of many algebraic and geometric structures and
provides us with a conceptual explanation of the well-known “experimental” obser-
vation that a deformation theory is controlled by a differential graded Lie or, more
generally, an L1-algebra. What happens is the following [KoSo], [MeVa], [vdL]:

(I) An algebraic or a (germ of) geometric structure, s, in a vector space V (which is
an object in the corresponding category, S, of algebraic or geometric structures)
can often be interpreted as a representation, ˛s W � ! EndV , of a G-algebra �

uniquely associated to the category of s-structures.

(II) A dg resolution, � W �1 D .F GhEi; ı/ ! � , of the G-algebra � gives rise,
by Theorem 4.1.2, to a filtered L1-algebra on the vector space g D
HomS.E;EndV /Œ�1�/ whose Maurer–Cartan elements correspond to all pos-
sible representations �1 ! EndV ; in particular, our original algebraic or geo-
metric structure s defines a Maurer–Cartan element �s WD ˛s B � in MC.g/.

(III) The �s-twisted L1-algebra structure on g is precisely the one which controls,
in Deligne’s sense, the deformation theory of s.

For example, if s is the structure of associative algebra on a vector space V , then

(i) there is an operad, Ass, uniquely associated to the category of associative alge-
bras such that s corresponds to a morphism, ˛s W Ass ! EndV , of operads (see
§2.1);

(ii) there is a unique minimal resolution (see Theorem 3.1.2), Ass1, of Ass which
is generated by the S-module E D fKŒSn�Œn � 2�g and whose representations,
� W Ass1 ! EndV , in a dg space V are in one-to-one correspondence with
Maurer–Cartan elements in the Lie algebra

�
G WD HomS.E;EndV /Œ�1� D

M
n�1

HomK.V
˝n; V /Œ1 � n�; Œ ; �G

�
;

where Œ ; �G is the Gerstenhaber bracket;

(iii) the particular associative algebra structure s on V gives, therefore, rise to the
associated Maurer–Cartan element s WD ˛s B� in G ; twisting G by s gives the
Hochschild dg Lie algebra, Gs D .

L
n HomK.V

˝n; V /Œ1 � n�; Œ ; �G ; dH WD
Œs; �G/ which indeed controls the deformation theory of s.

This is a classical example illustrating how the machine works. For some new applica-
tions of this approach to deformation theory (e.g. to the proof of Deligne’s conjecture
or to the deformation theory of associative bialgebras) we refer to [KoSo], [MeVa]
and to many references cited there.
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5. Koszul duality theory, quantum BV manifolds and effective BF -actions

5.1. Quadratic G -algebras and their Koszul duals. Koszul duality theory of
quadratic G-algebras is one of the most powerful theorem-proving techniques in
the theory of (wheeled) operads and properads and their applications.

What is a quadratic G-algebra? Every family of graphs G from Table 1 has
a uniquely defined subfamily Ggen of generating graphs, which, by definition, is
the smallest subset of G with the defining property that for every G 2 G and any
G-algebra P , the associated “contraction” composition �G W GhP i ! P can be
represented as an iteration (in the sense of (1)) of compositions �Gi for some Gi 2
Ggen, i 2 I . For example,

Gf
gen D

´
�






"""

""" ��
��

TTT
TTT

�
VV
VV
AA
A DD
D

��
��::: :::

:::

μ
;

G"
gen D

8<
: �

KKKKK
����
:::444

--------
���

��





::: �

��
�

KKK
KK
�����

WWWWW ������
�

KKKKK
����
::: 





�����

��
��
::: D
DD
D

66
66

6
; �

KKKKK
���::: 

�����
���

��

::: ��
�

KKK
KK �

KKKKK
���::: 

�����
���

��

::: ��
�

KKK
KK

9=
; ;

and

G˚
c;gen D

8̂<
:̂ �

:::::
IIII
: : : 

--------

���
��


: : : II

II
:::

::

�
FFFFFF
IIII
: : :((((

99999

XX
XX
: : : D

DD
D

22
22

2
; �
:::::
IIII
: : : 

����

���
��

: : : II

II ,,,
,

��

9>=
>; :

5.1.1. Weight gradation. Let G be a family of graphs from Table 1. For any genus
q graphG 2 G with p vertices we set kGk WD pCq if the family G contains wheels
and set kGk WD p otherwise. This number is called the weight ofG. Thus Ggen � G
consists precisely of graphs of weight 2.

For an S-bimodule E let F G
.�/
hEi stand for a subspace of the free G-algebra

F GhEi spanned by decorated graphs of weight�. Operadic compositions in F GhEi
are homogeneous with respect to the weight gradation.

5.1.2. Definition. A G-algebra P is defined to be quadratic if it is the quotient
F GhEi=hRi of a free G-algebra (generated by an S-bimodule E) modulo the ideal
generated by a subspace R � F G

.2/
hEi DL

G2Ggen
GhEi. It comes equipped with

an induced weight gradation, P D L
��1 P.�/, where P.�/ D F G

.�/
hEi=hRi. In

particular, P.1/ D E and P.2/ D F G
.2/
hEi=R.

5.2. Koszul duality. Let Gc be any family of connected graphs from Table 1. In this
case one can associate to any quadratic Gc-algebra P its Koszul dual Gc-coalgebra
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P ¡. We omit technical details (referring to [GiKa], [GeJo], [Ga], [Va1], [MMS],
[Me7]) and explain just the working scheme:

(i) The notion of Gc-coproperad is obtained by an obvious dualization of the
notion of Gc-algebra (see §2.3): this is an S-bimodule P D fP .m; n/g together
with a family of linear Sm � Sn-equivariant maps,

f�G W P .m; n/! GhP igG2Gc.m;n/;m;n�0 ;

which satisfy the coassociativity condition, �G D �0
H B �G=H , for any subgraph

H � G which belongs to the family G . Here �0
H W .G=H/hEi ! GhEi is the map

which equals �H on the distinguished vertex of G=H and which is the identity on
all other vertices of G.

(ii) There exists a pair of adjoint exact functors

B: the category of dg Gc-algebras  ��! the category of dg Gc-coalgebras: Bc ,

P 7�! .B.P /; @P /;

.Bc.Q/; @Q/  �� Q;

such that for any dg Gc-algebra P the compositionBc.B.P // is a dg free resolution of
P . The differential @P in B.P / encodes both the differential and all the generating
contraction compositions, f�G W GhP i ! P gG2Ggen , in the Gc-algebra P (and
similarly for @Q).

(iii) As a vector space B.P / is isomorphic to the free Gc-algebra, F Gc h yP i,
generated by an S-bimodule yP which is linearly isomorphic to P and hence comes
equipped with an induced weight gradation. The subspace B.P.1// WD F Gc h yP.1/i
of B.P / is obviously a sub-coproperad. On the other hand,B.P / has its own “outer”
weight gradation, B.P / D L

��1B.�/.P /, induced from the weight gradation of

the free algebra B.�/.P / WD F Gc
.�/
h yP i; the cobar differential @P has weight �1 with

respect to this outer weight gradation.

5.2.1. Definition. Given a quadratic Gc-algebra P , the Gc-coalgebra

P ¡ D
M
��1

P
¡
.�/

with P
¡
.�/
WD B.�/.P.1// \ Ker@P � B.P / is called the Koszul dual to P .

The beauty of this notion is that P ¡ is again quadratic and, moreover, can often
be easily computed directly from generators and relations, E and R, of P .

5.2.2. Definition. A quadratic Gc-algebra P is called Koszul, if the associated in-
clusion of dg coproperads, { W .P ¡; 0/! .B.P /; @P /, is a quasi-isomorphism.
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As the cobar construction functorBc preserves quasi-isomorphisms between con-
nected G-coalgebras, the composition

� W P1 WD Bc.P ¡/
Bc.{/���! Bc.B.P //

natural projection���������! P

is a quasi-isomorphism if and only if P is Koszul; in this case the dg free Gc-algebra
P1 gives us a minimal resolution of the quadratic algebra P . Almost all minimal
resolutions listed in §2 have been obtained in this way.

5.3. Homotopy transfer formulae. If P1 is a minimal resolution of some
G-algebra P , and .V; d/ is a complex carrying a P -structure, then one might ex-
pect that the associated cohomology space, H.V; d/, carries an induced structure of
P1-algebra. In the case when P is an operad of associative algebras, existence of
such induced Ass1-structures was proven by Kadeishvili in [Ka] and the first ex-
plicit formulae have been shown in [Me1]. Later Kontsevich and Soibelman [KoSo]
have nicely rewritten these homotopy transfer formulae in terms of sums of decorated
graphs. In fact, it is a general phenomenon that the homotopy transfer formulae can
be represented as sums of graphs. The required graphs are precisely the ones which
describe the image of the natural inclusion { W .P ¡; 0/ ! .B.P /; @P /, and apply to
any quadratic G-algebra, not necessarily the Koszul one [Me7].

5.4. Example: unimodular Lie 1-bialgebras versus quantum BV manifolds.
The wheeled prop, ULie1B, of unimodular Lie 1-bialgebras was defined in [Me7]
(cf. §3.4) as the quotient F ˚

c hBi=hRi of the free wheeled properad generated by the
S-bimodule (9) modulo the ideal generated by relations (7), (10) and the following
ones,




������ D 0; ��

���
� �� D 0;

expressing unimodularity of both binary operations. This is a quadratic wheeled
properad so that one can apply the above general machinery to compute its Koszul
dual coproperad, ULie1B¡, and then the dg properad P1 WD Bc.ULie1B¡/ which

turns out to be a free wheeled properad, F ˚
c hZi, generated by an S-bimodule

Z.m; n/ WD
1M
a�0

sgnm ˝ 1nŒm � 2 � 2a�

D span

*
a

���
333 




444
:::






44
4 ��
�
33
3
:::

1 2 m�1 m

1 2 n�1 n

+

mCnC2a�3
mCa�1;nCa�1

;
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and equipped with the following differential:

ı a

���
333 




444
:::






44
4 ��
�
33
3
:::

1 2 m�1 m

1 2 n�1 n
D .�1/m�1

a�1
���
333 




444
:::






44
4 ���33
3
:::

1 2 m

1 2 n
��

C
X
aDbCc
b;c�0

X
mDI 0

tI 00

Œn�DJ 0
tJ 00

.�1/�.I1tI2/CjI1j.jI2jC1/
b

���
333








444

:::






44
4 ��
�
33
3
:::

c

���33 44 



:::

MM
M NN
N
QQ

Q
:::„ƒ‚…
J 00

„ƒ‚…
J 0

I 0‚…„ƒ
I 00‚…„ƒ

:

It is not known at present whether or not ULie1B is Koszul, i.e., whether or not the
above free properad is a (minimal) resolution of the latter. In any case, ULie1B1
gives us an approximation to that minimal resolution, and has, in fact, a geometrically
meaningful set, fULie1B1 ! EndV g, of all possible representations. To describe
this set let us recall a few notions from the Schwarz model [Sc] of the Batalin–
Vilkovisky quantization formalism [BaVi].

5.5. Formal quantum BV manifolds. Let fxa;  a; „g1�a�n, n 2 N, be a set of
formal homogeneous variables of degrees jxaj C j aj D 1 and j„j D 2, and let
O„
x; WD KŒŒxa;  a; „�� be the associated free graded commutative ring which we

view from now on as a KŒŒ„��-algebra. The degree �1 Lie bracket,

ff � gg WD .�1/jf j�.fg/ � .�1/jf j�.f /g � f�.g/ for all f; g 2 O„
x; ;

makes O„
x; into a Gerstenhaber KŒŒ„��-algebra (see §3.6). Here and elsewhere

� WDPn
aD1.�1/jxaj @2

@xa@ a
. A quantum master function is, by definition, a degree

2 element � 2 O„
x; satisfying a so called quantum master equation

„�� C 1

2
f� � �g D 0: (13)

Such an element makes the KŒŒ„��-module O„
x; differential with the differential

�� WD „�Cf�� g. Note that this differential does not respect the algebra structure
in O„

x; but respects the Poisson brackets.

Consider a group of KŒŒ„��-algebra automorphisms, F W O„
x; ! O„

x; , preserv-
ing the Lie brackets, F.ff � gg/ D fF.f / � F.g/g (but not necessarily the operator
�); this group is uniquely determined by a collection, N WD fjxaj; j ajg1�a�n, of 2n
integers and is denoted by SympN . It is often called a group of symplectomorphsims
of the Gerstenhaber algebra .O„

x; ; f � g/. A remarkable fact [Kh] is that SympN acts
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on the set of quantum master functions by the formula

e
F.�/

„ WD
"

Ber

 
@F .xa/

@xb
@F .xa/
@ b

@F . a/

@xb
@F . a/
@ b

!#� 12
e
�.x; ;„/

„ : (14)

5.5.1. Definition. An equivalence class of pairs, .O„
x; ; �/, under the action of

the group SympN is called a formal quantum BV manifold M of dimension N .
A particular representative, .O„

x; ; �/, of M is called a Darboux coordinate chart
on M.

In geometric terms, M is a formal odd symplectic manifold equipped with a
special type semidensity [Kh], [Sc]. We need an extra structure on M which we
again define with the help of a Darboux coordinate chart. Notice that the ideals,
Ix and I , in the KŒŒ„��-algebra O„

x; generated, respectively, by fxag1�a�n and
f ag1�a�n, are also Lie ideals; geometrically, they define a pair of transversally
intersecting Lagrangian submanifolds of M. A quantum BV manifold M is said
to have split quasi-classical limit (or, slightly shorter, M is quasi-classically split)
if it admits a Darboux coordinate chart in which the master function �.x;  ; „/ DP
n�0 �n.x;  /„n satisfies the following two boundary conditions:

�0 2 IxIy ; �1 2 Ix C Iy :
In plain terms, these conditions mean that�.x;  ; „/ is given by a formal power series
of the form

�.x;  ; „/ D
X
a;b

� a
.0/ bx

b a

„ ƒ‚ …
�0

C
X

pCqC2n�3
pCn�1
qCn�1

1

pŠqŠ
�

b1:::bq
.n/ a1:::ap

xa1 : : : xap b1 : : :  bq„n

„ ƒ‚ …
�

(15)
for some � b1:::bq

.n/ a1:::ap
2 K. The quantum master equation (13) immediately implies

that f�0; �0g D 0 so that Ä WD f�0 � g is a differential in the Gerstenhaber algebra
O„
x; . Then the master equation (13) for a quasi-classically split quantum master

function can be equivalently rewritten in the form

Ä� C „�� C 1

2
f� � �g D 0;

where � is an element of O„
x; of polynomial order at least3 (here we set, by definition,

the polynomial order of the generators x and  equal to 1 and the polynomial order
of „ equal to 2). The differential Ä induces a differential on the tangent space T�M

to M at the distinguished point; we denote it by the same letter Ä. Such a quantum
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BV manifold is called minimal if Ä D 0 and contractible if there exists a Darboux
coordinate chart in which � D 0 (i.e., � D Ä) and the tangent complex .T�M; Ä/ is
acyclic (cf. §3.2.4).

An important class of so calledBF field theories (see, e.g., [CaRo] and references
cited there) have associated quantum BV manifolds which do satisfy the split quasi-
classical limit condition.

5.5.2. Proposition. For any dg vector space V , there is a one-to-one correspon-
dence between representations, ULie1B1 ! EndV , and structures of formal quasi-
classically split quantum BV manifold on MV˚V �Œ1�, the formal manifold associated
to V ˚ V �Œ1�.

5.6. Morphisms of quantum BV manifolds ([Me7]). The above proposition to-
gether with the Koszul duality theory approach to the homotopy transfer outlined
in §5.3 provide us with highly non-trivial formulae for constructing quantum BV
manifold structures out of dg unimodular Lie 1-bialgebras. We would like to have a
category of quantum BV manifolds in which such homotopy transfer formulae can
be interpreted as morphisms. This can be achieved via the following

5.6.1. Definitions. (i) A morphism of quasi-classically split quantum BV manifolds
F W M! yM is, by definition, a morphism of dg KŒŒ„��-modules,

F W �O yM
' O„

Ox; O ; � O�
� �! �

OM ' O„
x; ; ��

�
;

inducing in the classical limit „ ! 0 a morphism of algebras, F j„D0 W O Ox; O !
Ox; which preserves the ideals, F j„D0.h Oxi/ � hxi and F j„D0.h O i/ � h i, of the
distinguished Lagrangian submanifolds in yMj„D0 and Mj„D0.

(ii) IfF W M! yM is a morphism of quantum BV manifolds, thendF j„D0 induces
in fact a morphism of dg vector spaces, .T�M; Ä/! .T� yM; OÄ/; F is called a quasi-
isomorphism if the latter map induces an isomorphism of the associated cohomology
groups.

5.6.2. Theorem ([Me7]). Every quantum quasi-classically split BV manifold is iso-
morphic to the product of a minimal one and of a contractible one. In particular,
every such manifold is quasi-isomorphic to a minimal one.

5.7. Homotopy transfer of quantum BV-structures via Feynman integral. Ho-
motopy transfer formulae of P1-structures given by Koszul duality theory are given
by sums of decorated graphs which resemble Feynman diagrams in quantum field
theory. This resemblance was made a rigorous fact in [Mn] for the case of the wheeled
operad of unimodular Lie algebras (see §3.3).
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Given any complex V and a dg Lie 1-bialgebra structure on V with degree 0
Lie cobrackets �CoLie W V ! ^2V and degree 1 Lie brackets Œ � � W ˇ2 V ! V Œ1�,
the associated by Koszul duality theory homotopy formulae transfer this rather trivial
quantum BV manifold structure on V to a highly non-trivial quantum master function
on its cohomology H.V /; the same formulae can also be described [Me7] by a
standard Batalin–Vilkovisky quantization [BaVi] of a BF -type field theory on the
space V ˚ V �Œ1� with the action given by

S W V ˚ V �Œ1� �! K;

p ˚ ! 7�! S.p; !/ WD hp; d!i C 1

2
hp; Œ!; !�i C 1

2
hŒp � p�; !i;

where h ; i stands for the natural pairing, and Œ ; � W ˇ2 .V �Œ1�/ ! V �Œ2� for the
dualization of �CoLie. Thus at least in some cases the Koszul duality technique for
homotopy transfer of1-structures is identical to the Feynman diagram technique in
theoretical physics. The beauty of the latter lies in its combinatorial simplicity (due
to the Wick theorem), while the power of the former lies in its generality: the Koszul
duality theory applies to any (non-commutative case including) quadratic G-algebras.
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Positive definite functions in distance geometry

Oleg R. Musin�

Abstract. I. J. Schoenberg proved that a function is positive definite in the unit sphere if and
only if this function is a nonnegative linear combination of Gegenbauer polynomials. This fact
plays a crucial role in Delsarte’s method for finding bounds for the density of sphere packings
on spheres and Euclidean spaces.

One of the most exciting applications of Delsarte’s method is a solution of the kissing
number problem in dimensions 8 and 24. However, 8 and 24 are the only dimensions in which
this method gives a precise result. For other dimensions (for instance, three and four) the upper
bounds exceed the lower. We have found an extension of Delsarte’s method that allows to solve
the kissing number problem (as well as the one-sided kissing number problem) in dimensions
three and four.

In this paper we also will discuss the maximal cardinalities of spherical two-distance sets.
With help of the so-called polynomial method and Delsarte’s method these cardinalities can be
determined for all dimensions n < 40.

Recently, extensions were found of Schoenberg’s theorem for multivariate positive-definite
functions. With help of these extensions and semidefinite programming some upper bounds for
spherical codes can be improved.
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Keywords. Positive definite functions, Delsarte’s method, kissing numbers, 2-distance set,
semidefinite programming.

1. Introduction

LetM be a metric space with a distance function � . A real continuous function f .t/
is said to be positive definite (p.d.) inM if for arbitrary points p1; : : : ; pr inM , real
variables x1; : : : ; xr , and arbitrary r , we have

rX
i;jD1

f .tij / xixj � 0; tij D �.pi ; pj /;

�Research supported in part by NSF grant DMS0807640 and NSA grant MSPF-08G-201.
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or, equivalently, the matrix
�
f .tij /

� � 0, where the sign � 0 stands for “is positive
semidefinite”.

Let Sn�1 denote the unit sphere in Rn. Schoenberg [34] proved that:

f .cos'/ is p.d. in Sn�1 if and only if f .t/ DP1
kD0 fkG

.n/

k
.t/ with all fk � 0.

Here G.n/
k
.t/ are the Gegenbauer polynomials.

Schoenberg’s theorem has been generalized by Bochner [8] to more general
spaces. Namely, the following fact holds: f is p.d. in a 2-point-homogenous space
M if and only if f .t/ is a nonnegative linear combination of the zonal spherical
functions ˆk.t/ (see details in [16, Theorem 2], [10, Chapter 9]).

Note that the Bochner–Schoenberg theorem is widely used in coding theory and
discrete geometry for finding bounds for error-correcting codes, constant weight
codes, spherical codes, sphere packings and other packing problems in 2-point-
homogeneous spaces (see [10], [16], [26], [25], [27], [32] and many others).

The paper is organized as follows:
Section 2 recalls definitions of Gegenbauer polynomials and considers Delsarte’s

method for spherical codes.
Section 3 discusses applications of Delsarte’s method to the kissing number prob-

lem. One of the most exciting applications of Delsarte’s method is a solution of the
kissing number problem in dimensions 8 and 24. However, 8 and 24 are the only
dimensions in which this method gives a precise result. For other dimensions (for
instance, three and four) the upper bounds exceed the lower. We have found an ex-
tension of the Delsarte method that allows to solve the kissing number problem (as
well as the one-sided kissing number problem) in dimensions three and four.

Section 4 discusses maximal cardinalities of spherical two-distance sets. With
help of the so-called polynomial method and Delsarte’s method these cardinalities
can be determined for all dimensions n < 40.

Section 5 considers Sylvester’s theorem and semidefinite programming (SDP)
bounds for codes. Delsarte’s method and its extensions allow to consider the upper
bound problem for codes in 2-point-homogeneous spaces as a linear programming
problem with perhaps infinitely many variables. We show that by using power sums
of distances as variables this problem can be considered as a finite semidefinite pro-
gramming problem. This method allows to improve some linear programming upper
bounds.

Section 6 discusses an application of the extended Schoenberg’s theorem to mul-
tivariate Gegenbauer polynomials. This extension derives new positive semidefinite
constraints for the distance distribution which can be applied to spherical codes.
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2. Delsarte’s method

2-A. The Gegenbauer polynomials. We recall the definition of Gegenbauer poly-
nomials. Let the polynomials C .n/

k
.t/ be defined by the expansion

.1 � 2rt C r2/.2�n/=2 D
1X
kD0

rkC
.n/

k
.t/:

Then the polynomials G.n/
k
.t/ WD C

.n/

k
.t/=C

.n/

k
.1/ are called Gegenbauer or ultra-

spherical polynomials. (So the normalization ofG.n/
k

is determined by the condition

G
.n/

k
.1/ D 1.) The Gegenbauer polynomials G.n/

k
can also be defined by the recur-

rence formula

G
.n/
0 D 1; G.n/1 D t; : : : ; G.n/k D

.2k C n � 4/ t G.n/
k�1 � .k � 1/G.n/k�2

k C n � 3 :

Note that for any even k � 0 (resp. odd) G.n/
k
.t/ is even (resp. odd). There-

fore, G2` and G2`C1 are orthogonal on Œ�1; 1�. Moreover, all polynomials G.n/
k

are
orthogonal on Œ�1; 1� with respect to the weight function .1 � t2/.n�3/=2:

Z 1

�1
G
.n/

k
.t/G

.n/

`
.t/ .1 � t2/.n�3/=2 dt D 0; k ¤ `:

Recall the addition theorem for Gegenbauer polynomials:

G
.n/

k
.cos �1 cos �2 C sin �1 sin �2 cos'/

D
kX
sD0

cnks G
.nC2s/
k�s .cos �1/G

.nC2s/
k�s .cos �2/ .sin �1/

s .sin �2/
s G.n�1/

s .cos'/;

where cnks are positive coefficients whose values are of no concern here (see [9],
[14]).

2-B. Schoenberg’s theorem. Using the addition theorem for Gegenbauer polynomi-
als, Schoenberg [34] proved the following theorem:

Theorem 2.1. A continuous real function f .cos'/ is positive definite in Sn�1 if and
only if f is a nonnegative linear combination of the Gegenbauer polynomials, i.e.,
f .t/ DP1

kD0 fkG
.n/

k
.t/ with all fk � 0.

This theorem can also be proved with help of the addition theorem for harmonic
polynomials (see details in [32]).
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2-C. Delsarte’s inequality. Let fp1; p2; : : : ; pM g be any finite subset of the unit
sphere Sn�1. By 'ij D dist.pi ; pj / we denote the spherical (angular) distance
between pi , pj . Clearly, cos'ij D hpi ; pj i.

If a symmetric matrix is positive semidefinite, then the sum of all its entries is
nonnegative. Schoenberg’s theorem implies that the matrix

�
G
.n/

k
.tij /

�
is positive

semidefinite, where tij WD cos'ij , i.e.,

MX
iD1

MX
jD1

G
.n/

k
.tij / � 0: .2:1/

Suppose a continuous functions f W Œ�1; 1�! R is p.d. in Sn�1. Then

f .t/ D
1X
kD0

fkG
.n/

k
.t/

with all fk � 0. Let

S.X/ D Sf .X/ WD
MX
iD1

MX
jD1

f .tij /:

Using .2:1/, we get

S.X/ D
1X
kD0

fk

� MX
iD1

MX
jD1

G
.n/

k
.tij /

�
�

MX
iD1

MX
jD1

f0G
.n/
0 .tij / D f0M 2:

Thus
Sf .X/ � f0M 2: .2:2/

2-D. Delsarte’s bound. We say that X D fp1; : : : ; pM g � Sn�1 is a spherical
 -code, where 0 <  < � , if for all i ¤ j , tij D cos�ij � z WD cos , i.e.,
tij 2 Œ�1; z�. In other words, the angular separation between distinct points from X

is at least  . Denote by A.n; / the maximal size of a  -code in Sn�1.

Theorem 2.2 ([11], [12], [16]). Let a continuous function f W Œ�1; 1� ! R be p.d.
in Sn�1. Let f .t/ � 0 for all t 2 Œ�1; cos �. Then

A.n; / � f .1/

f0
:

Proof. Let X D fp1; : : : ; pM g � Sn�1 be a spherical  -code. Clearly, f .ti i / D
f .1/. By assumptions we have f .tij / � 0 for all i ¤ j . Therefore

Sf .X/ DMf.1/C 2f .t12/C � � � C 2f .tM�1;M / �Mf.1/:
If we combine this with .2:2/, then we get M � f .1/=f0. �



Positive definite functions in distance geometry 119

3. The kissing problem

3-A. The kissing number problem. The kissing number problem asks for the max-
imal number k.n/ of nonoverlapping spheres of equal size in n-dimensional space
that can touch another sphere of the same size. In other words, k.n/ D A.n; �=3/,
i.e., k.n/ is the maximal size of a spherical �=3-code of length (dimension) n.

This problem in dimension three was the subject of a famous discussion between
Isaac Newton and David Gregory in 1694. In three dimensions the problem was
finally solved only in 1953 by Schütte and van der Waerden [36].

In 1979 Levenshtein [19], and, independently, Odlyzko and Sloane [31]
(D [10, Chapter 13]), using Delsarte’s method, have proved that k.8/ D 240, and
k.24/ D 196560. Moreover, Bannai and Sloane [5] (D [10, Chapter 14]) proved that
the maximal kissing arrangements in these dimensions are unique up to isometry.
However, n D 8; 24 are the only dimensions in which this method gives a precise
result. For other dimensions (for instance, n D 3; 4) the upper bounds exceed the
lower.

3-B. The kissing problem in dimensions 8 and 24. The proofs in [19], [31] that
k.8/ D 240 and k.24/ D 196560 are surprisingly short, clean, and technically easier
than all known proofs in three dimensions. Indeed, let

f8.t/ D .t � 1=2/ t2.t C 1=2/2.t C 1/ D
6X
kD0

f
.8/

k
G
.8/

k
.t/;

and

f24.t/ D .t � 1=2/.t � 1=4/2 t2.t C 1=4/2.t C 1=2/2.t C 1/ D
10X
kD0

f
.24/

k
G
.24/

k
.t/:

Since all f .8/
k
� 0; f

.24/

k
� 0 and f8.t/ � 0; f24.t/ � 0 for all t 2 Œ�1; 1=2�,

Theorem 2.2 yields

k.8/ � f8.1/

f
.8/
0

D 240; k.24/ � f24.1/

f
.24/
0

D 196560:

For n D 8; 24 the minimal vectors in sphere packings E8 and Leech lattices give
these kissing numbers. Thus k.8/ D 240, and k.24/ D 196560.

3-C. The kissing problem in four dimensions. It is not hard to see that k.4/ � 24.
Indeed, the unit sphere in R4 centered at .0; 0; 0; 0/ has 24 unit spheres around it,
centered at the points .˙p2;˙p2; 0; 0/, with any choice of signs and any ordering
of the coordinates. The convex hull of these 24 points yields a famous 4-dimensional
regular polytope – the “24-cell”. Its facets are 24 regular octahedra.
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Let fOS.t/ D f0 C f1G
.4/
1 .t/ C � � � C f9G

.4/
9 .t/; where f0 D 1; f1 D

3:6181; f2 D 6:1156; f3 D 7:0393; f4 D 5:0199; f5 D 2:313; f6 D f7 D
f8 D 0; f9 D 0:4525. This polynomial was applied by Odlyzko and Sloane [31] to
prove that k.4/ � 25. Since fOS.t/ � 0 for t 2 Œ�1; 1=2�, Delsarte’s bound gives

k.4/ D A.4; �=3/ � fOS.1/=f0 D fOS.1/ � 25:5584:
Thus, k.4/ � 25.

Note that Arestov and Babenko [1] proved that the bound k.4/ � 25 cannot be
improved using Delsarte’s method.

Let

f4.t/ WD 1344

25
t9� 2688

25
t7C 1764

25
t5C 2048

125
t4� 1229

125
t3� 516

125
t2� 217

500
t� 2

125
:

In [26] we proved that k.4/ D 24. This proof is based on the following two lemmas:

Lemma 3.1. Let X D fx1; : : : ; xM g be points in the unit sphere S3. Then

S.X/ D
MX
iD1

MX
jD1

f4.hxi ; xj i/ �M 2:

Proof. The expansion of f4 in terms of Uk D G.4/k is

f4 D
9X
iD0

f
.4/
i Ui D U0 C 2U1 C 153

25
U2 C 871

250
U3 C 128

25
U4 C 21

20
U9:

We see that all f .4/i � 0 and f .4/0 D 1. So Lemma 3.1 follows from .2:2/. �

Lemma 3.2. Suppose X D fx1; : : : ; xM g is a subset of S3 such that the angular
separation between any two distinct points xi , xj is at least �=3. Then

S.X/ D
MX
iD1

MX
jD1

f4.hxi ; xj i/ < 25M:

It is not easy to prove this lemma. A proof is given in [26, Sections 4, 5, 6].

Theorem 3.1. k.4/ D 24.
Proof. LetX be a spherical �=3-code in S3 withM D k.4/ points. ThenX satisfies
the assumptions in Lemmas 3.1, 3.2. Therefore, M 2 � S.X/ < 25M . From this
M < 25 follows, i.e., M � 24. From the other side we have k.4/ � 24, showing
that M D k.4/ D 24. �
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3-D. The kissing problem in three dimensions. Our extension of Delsarte’s method
can be applied to other dimensions and spherical  -codes. The most interesting
application is a new proof for the Newton–Gregory problem, k.3/ < 13. In dimension
three all computations are technically much easier than for n D 4 (see [24]).

Let

f3.t/ D 2431

80
t9 � 1287

20
t7 C 18333

400
t5 C 343

40
t4 � 83

10
t3 � 213

100
t2 C t

10
� 1

200
:

Then for anyM -point kissing arrangementX we haveSf3.X/ � 12:88M (see details

in [23], [24]). The expansion of f3 in terms of Legendre polynomials Pk D G.3/k is

f3 D P0 C 1:6P1 C 3:48P2 C 1:65P3 C 1:96P4 C 0:1P5 C 0:32P9:
Since f .3/0 D 1; f .3/i � 0, we have Sf3.X/ �M 2. Thus, k.3/ � 12:88 < 13.

3-E. The one-sided kissing problem in four dimensions. Let H be a closed half-
space of Rn. Suppose S is a unit sphere inH that touches the supporting hyperplane
of H . The one-sided kissing number B.n/ is the maximal number of unit nonover-
lapping spheres in H that can touch S .

If nonoverlapping unit spheres kiss (touch) the unit sphere S inH � Rn, then the
set of kissing points is an arrangement on the closed hemisphere SC of S such that the
(Euclidean) distance between any two points is at least 1. So the one-sided kissing
number problem can be stated in another way: How many points can be placed on the
surface of SC so that the angular separation between any two points is at least �=3?
In other words,B.n/ is the maximal cardinality of a �=3-code on the hemisphere SC.

Clearly, B.2/ D 4. It is not hard to prove that B.3/ D 9. Using extensions of
Delsarte’s method we proved that B.4/ D 18 (see [25] for a proof and references).
Recently several new upper bounds have been obtained for the one-sided kissing
numbers [6], [27], [3].

4. Spherical two-distance sets

4-A. Two-distance sets. A set S in Euclidean space Rn is called a two-distance set,
if there are two distances c and d , and the distances between pairs of points of S are
either c or d . If a two-distance set S lies in the unit sphere Sn�1, then S is called a
spherical two-distance set. In other words, S is a set of unit vectors, there are two
real numbers a and b, �1 � a; b < 1, and inner products of distinct vectors of S are
either a or b.

The ratios of distances of two-distance sets are quite restrictive. Namely, Larman,
Rogers, and Seidel [17] have proved the following fact: if the cardinality of a two-
distance set S in Rn, with distances c and d , c < d , is greater than 2nC 3, then the
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ratio c2=d 2 equals .k � 1/=k for an integer k with

2 � k � 1Cp2n
2

:

Einhorn and Schoenberg [13] proved that there are finitely many two-distance sets
S in Rn with cardinality jS j � n C 2. Delsarte, Goethals, and Seidel [12] proved
that the largest cardinality of spherical two-distance sets in Rn (we denote it by g.n/)
is bounded by n.nC 3/=2, i.e.,

g.n/ � n.nC 3/
2

:

Moreover, they give examples of spherical two-distance sets withn.nC3/=2points for
n D 2; 6; 22. (Therefore, in these dimensions we have equality g.n/ D n.nC 3/=2.)
Blockhuis [7] showed that the cardinality of (Euclidean) two-distance sets in Rn does
not exceed .nC 1/.nC 2/=2.

The standard unit vectors e1; : : : ; enC1 form an orthogonal basis of RnC1. Denote
by �n the regular simplex with vertices 2e1; : : : ; 2enC1. Let ƒn be the set of points
ei C ej ; 1 � i < j � nC 1. Sinceƒn lies in the hyperplane

P
xk D 2, we see that

ƒn represents a spherical two-distance set in Rn. On the other hand,ƒn is the set of
mid-points of the edges of �n. Thus,

g.n/ � jƒnj D n.nC 1/
2

:

For n < 7 the largest cardinality of Euclidean two-distance sets is g.n/, where
g.2/ D 5; g.3/ D 6; g.4/ D 10; g.5/ D 16, and g.6/ D 27 (see [21]). However,
for n D 7; 8 Lisoněk [21] discovered non-spherical maximal two-distance sets of
cardinality 29 and 45 respectively.

4-B. Spherical two-distance sets with a C b � 0. In [29], using the polynomial
method, we proved the following fact:

Theorem 4.1. Let S be a spherical two-distance set in Rn with inner products a
and b. If aC b � 0, then

jS j � n.nC 1/
2

:

Recently, Nozaki [30] extended this theorem for spherical d -distance sets.

Theorem 4.2. Let S be a spherical d -distance set in Rn with inner products
a1; : : : ; ad . Let

dY
kD1

.t � ak/ D
dX
kD0

fkG
.n/

k
.t/:
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Then
jS j �

X
kWfk>0

hk;

where

hk D
 
nC k � 2

k

!
C
 
nC k � 3
k � 1

!
:

4-C. Delsarte’s method for spherical two-distance sets. Let S be a spherical two-
distance set in Rn with inner products a and b, where a > b. Let c D p2 � 2a,
d D p2 � 2b. Then c and d are the Euclidean distances of S .

Let

bk.a/ D ka � 1
k � 1 :

If k is defined by the equation: bk.a/ D b, then .k � 1/=k D c2=d 2. Therefore,
if jS j > 2n C 3, then k is an integer number and k 2 f2; : : : ; K.n/g [17]. Here,

K.n/ D b1Cp
2n

2
c.

Consider the case aC bk.a/ < 0. Since bk.a/ � �1, we have

a 2 Ik WD
�
2 � k
k

;
1

2k � 1
�
:

Therefore, for fixed n; k 2 f2; : : : ; K.n/g, and a 2 Ik we have spherical codes
with two inner products a and bk.a/. The maximal cardinality of these codes can be
bounded by Delsarte’s method (see details in [29]). Since for 6 < n < 40, n ¤ 22; 23,
Delsarte’s bounds are not greater than n.nC 1/=2, we have that g.n/ D n.nC 1/=2.
For n D 23 we obtain g.23/ � 277. But g.23/ � 276. This proves the following
theorem:

Theorem 4.3. If 6 < n < 22 or 23 < n < 40, then

g.n/ D n.nC 1/
2

:

For n D 23 we have
g.23/ D 276 or 277:

The case n D 23 is very interesting. In this dimension the maximal number of
equiangular lines (or equivalently, the maximal cardinality of a two-distance set with
a C b D 0) is 276 [18]. On the other hand, jƒ23j D 276. So in 23 dimensions we
have two very different two-distance sets with 276 points.
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Note that for n D 23 Delsarte’s bound is � 277:095. So this numerical bound is
not far from 277. Perhaps stronger tools, such as semidefinite programming bounds,
are needed here to prove that g.23/ D 276.

Our numerical calculations show that the barrier n D 40 is in fact fundamental:
Delsarte’s bounds are incapable of resolving the n � 40, k D 2 case. That means: a
new idea is required to deal with n � 40.

5. Sylvester’s theorem and SDP bounds for codes

5-A. 2-point-homogeneous spaces. We say that a G-space M is a 2-point-homoge-
neous space if (i) M is a metric space with a distance � defined on it; (ii) M is a set on
which a group G acts; (iii) � is strongly invariant under G, i.e., for x; x0; y; y0 2M

with �.x; y/ D �.x0; y0/ there is an element g 2 G such that g.x/ D x0 and
g.y/ D y0.

These assumptions are quite restrictive. In fact, if G is infinite and M is a
compact space, then Wang [39] has proved that M is a sphere; or a real, complex
or quaternionic projective space; or the Cayley projective plane. However, the finite
2-point-homogeneous spaces have note yet been completely classified (for the most
important examples and references, see [10]).

With any 2-point-homogeneous space M and an integer number k � 0 are as-
sociated the zonal spherical functions ˆk.t/ such that fˆk.t/gkD0;1;2;::: are orthog-
onal on T WD f�.x; y/ W x; y 2 Mg, where � is the certain function in � (i.e.,
�.x; y/ D F.�.x; y//) defined by M . For all continuous compact M and for all
currently known finite cases, ˆk.t/ is a polynomial of degree k. The normalization
is given by the rule: ˆk.�0/ D 1, where �0 WD �.x; x/. Then ˆ0.t/ D 1.

Note that if M is a Hamming space F n
2 with �.x; y/ D �.x; y/ D Hamming dis-

tance, then �0 D 0. Here ˆk.t/ is the Krawtchouk polynomial Kk.t; n/. Consider
the case M = unit sphere Sn�1 � Rn with �.x; y/ D cos �.x; y/ D hx; yi, where
�.x; y/ is the angular distance between x and y. Then the corresponding zonal
spherical function ˆk.t/ is the Gegenbauer polynomial G.n/

k
.t/.

5-B. The Bochner–Schoenberg theorem. The main property for zonal spherical
functions is called “positive-definite degenerate kernels” or “p.d.k.” [10]. This
property first was discovered by Bochner [8] (general spaces) and independently
for spherical spaces by Schoenberg [34].

Now we explain what the p.d.k. property means for finite subsets in M .

Theorem 5.1 ([8], [34], [16]). Let M be a 2-point-homogeneous space. Then for
any integer k � 0 and for any finite C D fxig � M the matrix

�
ˆk.�.xi ; xj //

�
is

positive semidefinite.
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This theorem implies the fact that plays a crucial role for the linear programming
bounds. For any positive semidefinite matrix the sum of its entries is nonnegative.
Then

Theorem 5.2 ([11], [12], [16], [31]). For any finite C D fxig �M we have

jC jX
iD1

jC jX
jD1

ˆk.�.xi ; xj // � 0:

Since ˆk.�.xi ; xi // D ˆk.�0/ D 1, this theorem implies

1

jC j
X

i;j Wi¤j
ˆk.�.xi ; xj // � �1; k D 0; 1; 2; : : : : .5:1/

5-C. The linear programming bounds. Let S be a fixed subset of T . We say that
a finite subset C � M is an S -code if �.x; y/ 2 S for all x; y 2 C; x ¤ y. The
largest cardinality jC j of an S -code will be denoted by A.M ; S/.

The distance distribution f˛tg of C is defined by

˛t WD 1

jC j .number of ordered pairs x; y 2 C with �.x; y/ D t /:

We obviously have

˛�0 D 1; ˛t � 0; t 2 T;
X
t2T

˛t D jC j: .5:2/

.5:1/ and .5:2/make it possible to regard the problem of bounding A.M ; S/ as a
linear programming problem:

Primal problem (LPP): Choose a natural number s, a subset f�1; : : : ; �sg of S , and
real numbers ˛�1 ; : : : ; ˛�s so as to

maximize ˛�1 C � � � C ˛�s
subject to

˛�i � 0; i D 1; : : : ; s;
sX
iD1

˛�iˆk.�i / � �1; k D 0; 1; : : : :

This is a linear programming problem with perhaps infinitely many unknowns ˛t
and constraints .5:1/; .5:2/. If C is an S -code then its distance distribution certainly
satisfies the constraints .5:1/; .5:2/. So if the maximal value of the sum˛�1C� � �C˛�s
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that can be attained is A�, then A.M ; S/ � 1C A�. (The extra 1 arises because the
term ˛�0 D 1 does not occur in this sum.)

Dual problem (LPD): Choose a natural number N and real numbers f1; : : : ; fN so
as to

minimize f1 C � � � C fN
subject to

fk � 0; k D 1; : : : ; N;
NX
kD1

fk ˆk.t/ � �1; t 2 S:

Thus, we have

Theorem 5.3. If A� is the optimal solution to either of the primal or dual problems,
then A.M ; S/ � 1C A�.

5-D. Sylvester’s theorem. Sylvester’s theorem (see [33], [27]) gives an answer to
the following question: Suppose we know for complex numbers t1; : : : ; tn only its
power sums sk , where sk are real numbers. How to determine the number of real ti
in an interval Œa; b�?

Let

Rm WD

0
BBB@

s0 s1 : : : sm�1
s1 s2 : : : sm
:::

:::
: : :

:::

sm�1 sm : : : s2m�2

1
CCCA ;

FC
m .a/ WD

0
BBB@

s1 � as0 s2 � as1 : : : sm � asm�1
s2 � as1 s3 � as2 : : : smC1 � asm

:::
:::

: : :
:::

sm � asm�1 smC1 � asm : : : s2m�1 � as2m�2

1
CCCA ;

F �
m .b/ WD

0
BBB@

bs0 � s1 bs1 � s2 : : : bsm�1 � sm
bs1 � s2 bs2 � s3 : : : bsm � smC1

:::
:::

: : :
:::

bsm�1 � sm bsm � smC1 : : : bs2m�2 � s2m�1

1
CCCA ;

and

Hm.a; b/ D Hm.s0; s1 : : : ; s2m�1; Œa; b�/ WD
0
@ Rm 0 0

0 FC
m .a/ 0

0 0 F �
m .b/

1
A :
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Theorem 5.4. Consider real numbers t1; : : : ; tn in Œa; b�. Then for any natural num-
berm the matrixHm.a; b/ is positive semidefinite. Moreover, form � rank.Rn/ the
converse holds, i.e., if Hm.a; b/ � 0, then complex numbers t1; : : : ; tn with real sk
are real numbers in Œa; b�.

In fact, the constraint Hm.a; b/ � 0 does not depend on n D s0. Indeed, let

Nsk WD tk1 C � � � C tkn
n

D sk

n
; xHm.a; b/ D 1

n
Hm.a; b/:

In other words, xHm.a; b/ can be obtained by substituting Nsk for sk in Hm.a; b/:

xHm.a; b/ D xHm.Ns1; : : : ; Ns2m�1; Œa; b�/ WD Hm.1; Ns1; : : : ; Ns2m�1; Œa; b�/:

Thus Hm.a; b/ � 0 if and only if xHm.a; b/ � 0.

5-E. Semidefinite programming. The standard form of the SDP problem is the
following [37], [38]:

Primal problem:
minimize c1x1 C � � � C c`x`

subject to
X � 0; where X D T1x1 C � � � C T`x` � T0:

Dual problem:
maximize hT0; Y i

subject to
hTi ; Y i D ci ; i D 1; : : : `;

Y � 0:
Here T0; T1; : : : ; T`; X , and Y are real N 	 N symmetric matrices, .c1; : : : ; c`/

is a cost vector, .x1; : : : ; x`/ is a variable vector, and by hA;Bi we denote the inner
product, i.e., hA;Bi D Tr.AB/ DP aij bij .

5-F. The SDP bounds. From here on we assume that ˆk.t/ is a polynomial of
degree k, ˆk.�0/ D 1, and S D T \ Œa; b� (the most interesting case for coding
theory and sphere packings).

In fact, the optimal solution A� of the LPP and LPD problems in Section 5-C
depends only on the family of polynomials ˆ WD fˆk.t/gkD0;1;::: and Œa; b�. We
denote 1C A� by LP.ˆ; Œa; b�/.

Since
ˆk.t/ D pk0 C pk1t C � � � C pkktk;
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we have

ˆk.t1/C � � � Cˆk.t`/ D
kX
dD0

pkd sd ; sd D td1 C � � � C td` :

Let C D fvig be an S -code on M , and let �i;j D �.vi ; vj /. Note that the number
of ordered pairs .vi ; vj /; i ¤ j , equals n D jC j.jC j� 1/. Then .5:1/ can be written
in the form

y C pk0 C
kX
dD1

pkdxd � 0; .5:3/

where

y D 1

jC j � 1; xd D Nsd D sd

n
; sd D

X
i;j;i¤j

�di;j :

From Theorem 5.4 we have for any m that

xHm.x1; : : : ; x2m�1; Œa; b�/ � 0: .5:4/

Now we introduce the simplest SDP bound.

SDP0 problem: Choose a natural number m and real numbers y; x1; : : : ; x2m�1 so
as to

minimize y

subject to

y C
kX
iD1

pkixi � �pk0; k D 1; : : : ; 2m � 1;

xHm.x1; : : : ; x2m�1; Œa; b�/ � 0:

Note that in .5:3/, jC j D .1C y/=y. Thus

Theorem 5.5. If y� is the optimal solution of the SDP0 problem, then

A.M ; S/ � SDP0.ˆ; Œa; b�;m/ WD 1C y�

y� :

Since we just substituted Hm � 0 for t 2 S in the LPP problem, we can expect
that SDP0.ˆ; Œa; b�/ D LP.ˆ; Œa; b�/ (see details in [27]).

In fact, for a continuous M the LPP and LPD problems are not finite linear
programming problems. These problems can be solved only via discretization. For
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instance, Odlyzko and Sloane [31] (
 [10, Chapter 13]) applied LPD for upper bounds
on kissing numbers, where they replaced S by 1001 equidistant points in S . For the
LPP problem it is not clear how to do a discretization of f˛�g. On the other hand, for
a given m the SDP0 is a finite primal SDP problem. As a by-product of solutions of
this problem we have bounds on jC j and power sums sk (see [27, Section 5]).

In [27, Section 6] it is shown that some recent extensions of Delsarte’s method
can be reformulated as SDP problems (SDPA). Section 7 extends the SDPA bounds
to subsets of a 2-point-homogeneous space and shows that some upper bounds for
codes can be improved. In particular we obtain new bounds of one-sided kissing
numbers.

6. Multivariate positive definite functions

6-A. Schrijver’s method. Recently, Schrijver [35] using semidefinite programming
(SDP) improved some upper bounds on binary codes. Even more recently, Schrijver’s
method has been adapted for non-binary codes (Gijswijt, Schrijver, and Tanaka [15]),
and for spherical codes (Bachoc and Vallentin [2], [3], [4]). In fact, this method using
the stabilizer subgroup of the isometry group derives new positive semidefinite con-
straints which are stronger than linear inequalities in the Delsarte linear programming
method. We consider and extend this method for spherical codes in [28]. Note that
this approach is different from the method considered in Section 5.

6-B. Multivariate positive definite functions on spheres. Let us consider the
following problem: For given points Q D fq1; : : : ; qmg in M to describe the
class of continuous functions F.t;u; v/ in 2m C 1 variables with t 2 R; u; v 2
Rm; F .t;u; v/ D F.t; v;u/ such that for arbitrary pointsp1; : : : ; pr inM thematrix�
F.tij ;ui ;uj /

� � 0; where tij D �.pi ; pj /; ui D .�.pi ; q1/; : : : ; �.pi ; qm//:
Denote this class by PD.M;Q/. If Q D ;, then PD.M;Q/ is the class of p.d.

functions inM . In this case an answer is given by the Bochner–Schoenberg theorem.

Let 0 � m � n � 2; t 2 R; u; v 2 Rm for m > 0, and u D v D 0 for m D 0.
Then the following polynomial in 2mC 1 variables of degree k in t is well defined:

G
.n;m/

k
.t;u; v/ WD .1 � juj2/k=2 .1 � jvj2/k=2G.n�m/

k

 
t � hu; vip

.1 � juj2/.1 � jvj2/

!
:

In [28] we proved the following theorem:

Theorem 6.1. Let 0 � m � n � 2. LetQ D fq1; : : : ; qmg � Sn�1 with rank.Q/ D
m. Let e1; : : : ; em be an orthonormal basis of the linear space with the basis
q1; : : : ; qm, and let LQ denotes the linear transformation of coordinates. Then
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F 2 PD.Sn�1;Q/ if and only if

F.t;u; v/ D
1X
kD0

fk.u; v/G
.n;m/

k
.t; LQ.u/; LQ.v//;

where fk.u; v/ � 0 (i.e., fk.u; v/ D h1.u/h1.v/C � � � C h`.u/h`.v/) for all k � 0.
Note that for the casem D 0 this is Schoenberg’s theorem [34], and form D 1 it

is the Bachoc–Vallentin theorem [3].

6-C. Upper bounds for spherical codes. In this subsection we set up upper bounds
for spherical codes which are based on multivariate p.d. functions. These bounds
extend the famous bound of Delsarte. Note that for the case m D 1 this bound is the
Bachoc–Vallentin bound [4].

Definition 6.1. Consider a vector J D .j1; : : : ; jd /. Split the set of numbers
fj1; : : : ; jd g into maximal subsets I1; : : : ; Ik with equal elements. That means, if
Ir D fjr1 ; : : : ; jrsg, then jr1 D � � � D jrs D ar and all other j` ¤ ar . Without loss
of generality it can be assumed that i1 D jI1j � � � � � ik D jIkj > 0. (Note that we
have i1 C � � � C ik D d .) Denote by  .J / the vector ! D .i1; : : : ; ik/.

Let

Wd WD f! D .i1; : : : ; ik/ W i1 C � � � C ik D d; i1 � � � � � ik > 0; i1; : : : ; ik 2 Zg:
Let ! 2 Wd . Denote

Qq!.N / WD #fJ D .j1; : : : ; jd / 2 f1; : : : ; N gd W  .J / D !g;

q!.N / WD Qq!.N /
N

:

It is not hard to see that if ! 2 Wd , then q!.N / is a polynomial of degree d � 1,
and X

!2Wd
q!.N / D N d�1:

Definition 6.2. For any vector x D fxij g with 1 � i < j � d denote by A.x/ a
symmetric d 	 d matrix

�
aij
�

with all ai i D 1 and aj i D aij D xij , i < j .
Let 0 < � < � and

X.�/ WD fx D fxij g W xij 2 Œ�1; cos �� or xij D 1; 1 � i < j � dg:
Now for any x D fxij g 2 X.�/ we define a vector J.x/ D .j1; : : : ; jd / such

that jk D k if there are no i < k with xik D 1, otherwise jk D i , where i is the
minimum index with xik D 1.
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Let ! 2 Wd . Denote

D!.�/ WD fx 2 X.�/ W  .J.x// D ! and A.x/ � 0g:
Let f .x/ be a real function in x, and let

B!.�; f / WD sup
x2D!.�/

f .x/:

Note that the assumption A.x/ � 0 implies existence of unit vectors p1; : : : ; pd
such that A.x/ is the Gram matrix of these vectors, i.e., xij D hpi ; pj i. Moreover,
if xij D 1, then pi D pj . In particular, D.d/.�/ D f.1; : : : ; 1/g and therefore
B.d/.�; f / D f .1; : : : ; 1/.

Definition 6.3. Let x D fxij g, where 1 � i < j � mC 2 � n, and let A.x/ � 0.
Then there exist P D fp1; : : : ; pmC2g � Sn�1 such that xij D hpi ; pj i. Let
F.x/ be a continuous function in x with F.Qxk`/ D F.x/ for all Qxk` that can be
obtained by interchanging two points pk and p` in P . We say that F.x/ 2 PDnm
if for all x with A.x/ � 0 we have QF.x12;u1;u2/ 2 PD.Sn�1;Q.x//, where
ui D .xi3; : : : ; xi;mC2/, Q.x/ D fp3; : : : ; pmC2g, and QF.x12;u1;u2/ D F.x/.

For the classical case m D 0 Schoenberg’s theorem says that f 2 PDn0 if and
only if

f .t/ D
X
k

fkG
.n/

k
.t/

with all fk � 0. Using Theorem 6.1 it is not hard to describe the class of functions
in PDnm for all m � n � 2.

Let C be an N -element subset of the unit sphere Sn�1 � Rn. It is called an
.n;N; �/ spherical code if every pair of distinct points .c; c0/ ofC have inner product
hc; c0i at most cos � .

In [28] we proved the following theorem.

Theorem 6.2. Let f0 > 0; 0 � m � n � 2, and F.x/ D f .x/ � f0 2 PDnm. Then
an .n;N; �/ spherical code satisfies

f0N
mC1 �

X
!2WmC2

B!.�; f / q!.N /:

It is easy to see for m D 0 that q.2/.N / D 1; q.1;1/.N / D N � 1, and
B.2/.�; f / D f .1/. Therefore, from Theorem 6.2 we have

f0N � f .1/C B.1;1/.�; f /.N � 1/:
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Suppose B.1;1/.�; f / � 0, i.e., f .t/ � 0 for all t 2 Œ�1; cos ��. Thus for .n;N; �/
spherical code we obtain Delsarte’s bound

N � f .1/

f0
:

The Bachoc–Vallentin bound [4, Theorem 4.1] is the bound in Theorem 6.2 for
m D 1 and B.1;1;1/.�; f / � 0. Indeed, let B.2;1/.�; f / � B . Since q.3/.N / D 1,
q.2;1/.N / D 3.N � 1/, and B.3/.�; f / D f .1; 1; 1/, we have

f0N
2 � f .1; 1; 1/C 3.N � 1/B:

Let us consider Theorem 6.2 also for the case m D 2 with B.1;1;1;1/.�; f / � 0.
Let B.3;1/.�; f / � B1, B.2;2/.�; f / � B2, and B.2;1;1/.�; f / � B3. Then

f0N
3 � f .1; 1; 1; 1; 1; 1/C 4.N � 1/B1 C 3.N � 1/B2 C 6.N � 1/.N � 2/B3:

Let f .x/ be a polynomial of degree d . Then the assumptions in Theorem 6.2
can be written as positive semidefinite constraints for the coefficients of F (see for
details [2], [3], [4], [15], [35]). Actually, the bound given by Theorem 6.1 can be
obtained as a solution of an SDP (semidefinite programming) optimization problem.
In [2], [3], Bachoc and Vallentin, using numerical solutions of the SDP problem for
the casem D 1, have obtained new upper bounds for the kissing numbers and for the
one-sided kissing numbers in several dimensions n � 10.

However, the dimension of the corresponding SDP problem grows so fast when-
ever d and m are increasing that this problem can be treated numerically only for
relatively small d and smallm. It is an interesting problem to find (explicitly) suitable
polynomials F for Theorem 6.2 and using them to obtain new bounds for spherical
codes.
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Introduction

Dense graphs have been extensively studied in the context of extremal graph theory.
The outstanding Szemerédi Regularity Lemma [51] states that any dense network has
properties which are close to the ones of a random graph. In particular, a large dense
network cannot be too irregular. This structural result is one of the cornerstones of
contemporary combinatorics (and one would like to say of mathematics in general).
It also led to manifold applications and generalizations, see e.g. [22], [21], [24], [52],
[13]. The research covered by this paper is related to the recent development which
is based on the study of homomorphisms of graphs (and structures). (It is perhaps of
interest to note in how many different areas and what variety of contexts the notion
of a homomorphism recently appeared, see e.g. [19].) The main idea is to study
the local structure of a large graph G by counting the homomorphisms from various
small graphs F into G (this relates to the area called property testing), and to study

�Supported by grant 1M0021620808 of the Czech Ministry of Education and AEOLUS.
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the global structure of G by counting its homomorphisms into various small graphs
H (sometimes interpreted as templates). Regularity is viewed here as a structural
approximation in a proper metric and also as a convergence. For a survey of this
development see [3]. Very schematically, this may be outlined by the diagram

F1

�������� H1

: : : �� G

�������� ��

�������� : : :

Fp

��������
Hq .

This approach proved to be very fruitful and relates (among others) to the notion
of quasi-random graphs, see e.g. [5], and to the full characterizations of testable graph
properties, see e.g. [1], [3].

Nevertheless, such an approach becomes difficult when the considered structures
become sparse (see [2], [14] for results extending this approach to sparse graphs).
In particular, Szemerédi’s regularity lemma concerns graphs which have (at least
locally) m edges which is quadratic with respect to the number n of vertices, or at
least as large as n1C� if one consider extensions and generalizations of this lemma
to the sparse context, see e.g. [21]. This area is a subject of an intensive research see
e.g. [15].

In this paper we take a different approach via the homomorphism order. We shall
see that in this setting, at a proper level of generality, some of the results for dense
graphs can be extended to the world of sufficiently sparse classes of graphs. This
leads to a new classification of classes of structures (nowhere dense vs somewhere
dense classes) which is very robust with respect to standard graph operations (such
as contraction of edges and cloning of vertices). We display a variety of equiva-
lent definitions of this classification which in turn leads to applications in extremal
combinatorics, complexity of algorithms and model theory. This classification also
extends our earlier work on classes with bounded expansion [31], [32]. In the second
part of this paper we deal with dualities, i.e., with those classes of structures which
can be alternatively described either by finitely many forbidden substructures or as
a Constraint Satisfaction Problem. Such instances are called finite dualities and we
characterize classes which have all restricted dualities (Theorem 27). To do so we
develop the continuous version of our classification. This part is very recent and we
include several proofs. Although in most of this paper we deal with graphs, the results
can be extended to oriented graphs, hypergraphs and to general relational structures
by means of an appropriate construction (such as Gaifman graph, 2-section, bigraph
of incidence).
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Part I Classification of graph classes

1. The nowhere dense/somewhere dense dichotomy

1.1. Classification by shallow minors. In the following we consider finite simple
undirected graphs, except when explicitly stated otherwise, and we denote by G the
class of all such graphs.

We use standard graph theory terminology, however, we find it useful to introduce
the following: for a graph G D .V;E/, we denote by jGj the order of G (that is:
jV j) and by kGk the size of a graph of G (that is: jEj).

The distance in a graphG between two vertices x andy is the minimum length of a
path linking x and y (or1 if x and y do not belong to the same connected component
of G) and is denoted by distG.x; y/. Let G D .V;E/ be a graph and let d be an
integer. The d -neighborhood NG

d
.u/ of a vertex u 2 V is the subset of vertices of

G at distance at most d from u in G: NG
d
.u/ D fv 2 V W distG.u; v/ � dg.

A class C of graphs is hereditary if every induced subgraph of a graph in C belongs
to C , and it is monotone of every subgraph of a graph in C belongs to C .

For any graphs H and G and any integer d , the graph H is said to be a shallow
minor of G at depth d ([48] attributes this notion, then called low depth minor, to
Ch. Leiserson and S. Toledo) if there exists a subset fx1; : : : ; xpg ofG and a collection
P of disjoint subsets V1 � NG

d
.x1/; : : : ; Vp � NG

d
.xp/ such thatH is a subgraph of

the graph G=P obtained from G by contracting each Vi into xi and removing loops
and multiple edges (see Figure 1).

←r

Figure 1. A shallow minor of depth r of a graphG is a simple subgraph of a minor ofG obtained
by contracting vertex disjoints subgraphs with radius at most r .

The set of all shallow minors of G at depth d is denoted by G O d . In particular,
G O 0 is the set of all subgraphs of G. Hence we have the following non decreasing
sequence of classes:

G 2 G O 0 � G O 1 � � � � � G O d � � � �G O1:
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We extend this definition to arbitrary class of graphs C by

C O d D
[
G2C

G O d:

We have the following hierarchy of classes:

C � C O 0 � C O 1 � � � � � C O d � � � �C O1:
We call this sequence minor resolution of the class C . Note that C O 0 is the

monotone closure of C and that C O1 is the minor closed class generated by C . The
minor resolution of a class leads to a classification of classes and to their interesting
properties. The following is the key definition of this paper:

Definition 1. A class of graphs C is somewhere dense if there exists an integer d such
that C O d D G . In other words: C is somewhere dense if every graph is a bounded
depth shallow minor of a graph in C .

If an infinite class is not somewhere dense, it is nowhere dense.

For relational structures we can define analogous notions using incidence graph
(or Gaifman graphs) and for oriented graphs we can consider corresponding sym-
metrization. For the sake of simplicity in this paper we illustrate our results mostly
on classes of undirected graphs.

Although this definition may seem to be quite arbitrary, it is very robust and
more stable than expected. For instance, as we shall show now, this classification is
consistent with a classification theorem based on the logarithmic asymptotic densities
of graphs densities of graphs. We then list five other characterizations. In Section
3 we give several examples and in Section 4 we give a summary of these equivalent
definitions for the case of classes with bounded expansion.

1.2. Classification by edge densities. Let C be an infinite class of graphs and let
f W C ! R be a graph invariant. Let Inj.N;C/ be the set of all injective mappings
from N to C . Then we define

lim sup
G2C

f .G/ D sup
�2Inj.N;C/

lim sup
i!1

f .�.i//:

Notice that lim supG2C f .G/ always exist and is either a real number or˙1.

Theorem 1 (Trichotomy theorem). Let C be an infinite class of graphs (asymptoti-
cally not all edgeless). Then the limit

`dens.C/ D lim
i!1 lim sup

G2C O i

log kGk
log jGj
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may take only three values, namely 0; 1 and 2. Moreover, we have

`dens.C/ D

8̂<
:̂
0 iff supG2C kGk <1;
0 or 1 iff C is nowhere dense,

2 iff C is somewhere dense.

For a proof see [34]. It can be seen easily that `densC D 0 if and only if the class
C contains only graphs with at most k0 edges. These essentially finite classes are
interesting. A prime example is the class of all core graphs with tree depth bounded
(see Section 1.5 for the definition of tree depth).

1.3. Classification by topological resolution. A graph G0 is a subdivision of a
graph G if G0 arises from G by adding vertices (of degree 2) on the edges of G.
Thus in the topological sense we have the same graph: all edges ofG are replaced by
simple openly disjoint paths. If all these paths have length � 2d C 1 we say that G0
is a p-shallow subdivision of G. Conversely, we say that H is topological shallow
minor at depth d of a graph G if there exists a subgraph H 0 of G such that H 0 is a
shallow subdivision of H at depth d .

Having defined this we can proceed similarly as for the shallow minors and define
the notion of topological minor resolution:

The set of all topological shallow minors ofG at depth d is denoted byG zO d . In
particular, G zO 1 is the set of all subgraphs of G. Hence we have the following non
decreasing sequence of classes:

G 2 G zO 1 � G zO 2 � � � � � G zO d � � � �G zO1:
We extend this definition to an arbitrary graph class C by

C zO d D
[
G2C

G zO d:

Now we have the following hierarchy of graph classes:

C � C zO 1 � C zO 2 � � � � � C zO d � � � �C zO1:
We call this sequence topological minor resolution of class C . Note that C zO 1

is the monotone closure of C and that C zO1 is the topological minor closed class
generated by C .

Let C be an infinite class of graphs and let f W C ! R be a graph invariant. Let
Inj.N;C/ be the set of all injective mappings from N to C . Then we define

lim sup
G2C

f .G/ D sup
�2Inj.N;C/

lim sup
i!1

f .�.i//:

Notice that lim supG2C f .G/ always exists and either is a real number or˙1.
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Theorem 2 (Trichotomy theorem). Let C be an infinite class of graphs (asymptoti-
cally not all edgeless). Then the limit

`dens.C/ D lim
i!1 lim sup

G2C zO i

log kGk
log jGj

may only take three values, namely 0; 1 and 2. Moreover, we have

`dens.C/ D

8̂<
:̂
0 iff supG2C kGk <1;
0 or 1 iff C is nowhere dense,

2 iff C is somewhere dense.

For a proof see [34]. (This extends work of Zdeněk Dvořák [10], [11].)
Why do we state this topological variant of shallow minors, when we then claim

just analogous results? The main reason is that this connection is surprising and
non-trivial. The fact that minors and topological minors lead to the same classifica-
tion of classes is interesting in the context of graph-minor theory where minors and
topological minors lead often to very different results (as demonstrated for example
by Hajós and Hadwiger’s conjectures), see [34], [35] for more details.

It follows directly from the definition of the minor resolution that a class C is
nowhere dense iff for every i the supremum of !.G/ for G 2 C O i is finite (here
!.G/ is the maximal complete graph in G). It is perhaps surprising that nowhere
dense classes may be defined by their independence number as well.

1.4. Classification by independence. In the context of relativizations of first-order
homomorphism preservation theorems to specific classes of structures Anush Dawar
[6] introduced the following notion of quasi-wideness.

Let r � 1 be an integer. A subset A of vertices of a graph G is r-independent if
the distance between any two distinct elements of A is strictly greater than r . Note
that if we denote by ˛r.G/ the maximum size of an r-independent set of G, then
˛1.G/ is the usual independence number ˛.G/ of graph G.

A graph G is quasi-wide if there is a function s W N ! N such that for every
integers d andm, every sufficiently big graph G 2 C (i.e., of order at least F.d;m/)
contains a subset S of size at most s D s.d/ so that the graph G � S contains a
d -independent set of vertices of size at least m (see Figure 2)

The quasi-wide property is not hereditary. Thus we introduce the following,
stronger version:

A graph G is uniformly quasi-wide if there is a function s W N ! N such that for
every integers d and m, every sufficiently big subset A of vertices of a graph G 2 C

(i.e., such that jAj � F.d;m/) is such that G contains a subset S of size at most
s D s.d/ so that G � S contains a d -independent set of vertices of size at least m
included in A (see Figure 3)
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|S| � s

x1

x2

xm

xi

xj

xk

� d

|G ←F (m)

Figure 2. For every m, every sufficiently large G 2 C contains a subset S of size at most s.d/
so that G � S has a d -independent set of size m.

|S| � s

x1

x2

xm

xi

xj

xk

� d

|G ≤ F (m)

� d

Figure 3. For every m, every sufficiently large subset A of a graph G 2 C includes a d -inde-
pendent set of size m after the deletion of at most s.d/ vertices of G.

It appears that uniform quasi-wideness is strongly related to our classification:

Theorem 3. Let C be an infinite class of graphs. Then the following conditions are
equivalent:

� C is nowhere dense,
� the hereditary closure of C is quasi-wide,
� C is uniformly quasi-wide.

This is a non-trivial result with several consequences, see [37].

1.5. Classification by decomposition. A rooted forest is a disjoint union of rooted
trees. The height of a vertex x in a rooted forest F is the number of vertices of the
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path from the root (of the tree to which x belongs to) to x and is noted height.x; F /.
The height of F is the maximum height of the vertices of F . Let x; y be vertices of
F . The vertex x is an ancestor of y inF if x belongs to the path linking y and the root
of the tree of F to which y belongs to. The closure clos.F / of a rooted forest F is the
graph with vertex set V.F / and edge set ffx; yg W x is an ancestor of y in F; x ¤ yg.
A rooted forest F defines a partial order on its set of vertices: x �F y if x is an
ancestor of y inF . The comparability graph of this partial order is obviously clos.F /.

The tree-depth td.G/ of a graph G is the minimum height of a rooted forest F
such that G � clos.F / [30] (see Figure 4).

= =

Clos(F )G

�

Figure 4. The tree-depth of the 3 � 3 grid is 4.

This definition is analogous to the definition of rank function of a graph which
has been recently used for analysis of countable graphs, see e.g. [44] as well as to
the quantifier rank (as used e.g. by Ben Rossman [49]) and to other concepts in the
algorithmic graph theory such as vertex ranking, ordered coloring, centered coloring,
see e.g. [7], [50].

A principal property of the class of all graphs with td.G/ � k is that this class
is finite when restricted to core graphs (or core structures, see e.g. [19]). This holds
more generally for colored graphs and for relational structures in general. This has
also a number of consequences. For example the class of all graphs with td.G/ � k
is well quasi ordered with respect to induced subgraph ordering. Nevertheless one
should remark that the number of core graphs with td.G/ � k has an Ackermann
growth.

In [30] we introduced the following parametrized generalization of the chromatic
number: for any integer p, �p.G/ denotes the minimum number of colors one shall
use to color the vertices of G in such a way that for every subset I of at most p
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colors, the subgraph GI of G induced by the vertices with color in I has tree-depth
at most jI j. Thus �1 is the usual chromatic number of a graph (i.e., no edge is
monochromatic) and �2 is minimal coloring with the property that no path with 4
vertices gets less than 3 colors.

There is a fraternal orientation augmentation algorithm (not to be described here,
see [29], [32]) which we will call “Algorithm A”, which computes for any pair .G; p/
a vertex coloring of G using � Np.G/ colors with the additional property that any
subset of i � p colors induce a subgraph of tree-depth at most i . This algorithm runs
(for a graph with n vertices) in the worst time O.n2p logpN 2

p .G//. Moreover the
numberNp.G//which this algorithm uses is a good bound on �p.G/. More formally
this is expressed by the following result which yields yet another characterization of
nowhere dense classes ([32], [34]):

Theorem 4. Let C be an infinite class of graphs. Then the following conditions are
equivalent:

� C is nowhere dense,

� for every integer p, lim supG2C

log�p.G/

log jGj D 0,

� for every integer p, lim supG2C

logNp.G/

log jGj D 0, where Np.G/ is the number

of colors used by “Algorithm A” when run on the pair .G; p/.

Notice that the running time of “Algorithm A” is at most jGjo.1/ for fixed p and
for G restricted to a nowhere dense class. Thus any graph G in a (fixed) nowhere
dense class C can be decomposed into a small number of classes such that the sub-
graphs induced by any � p classes of the partition have components of only finitely
many (homomorphism) types. Thus p is then parameter expressing the precision of
such decomposition. Moreover such decomposition can be found in almost linear
number of steps. This has a number of algorithmic consequences ([29], [32]. Such a
decomposition is called Low Tree Depth Decomposition.

1.6. Classification by vertex ordering. As a generalization of both arrangeability
and coloring number Kierstead and Yang introduced in [20] two new series of invari-
ants colk and wcolk , that is: the coloring number of rank k and the weak coloring
number of rank k.

Let L be a linear order on the vertex set of a graph G, and let x; y be vertices of
G. We say y is weakly k-accessible from x if y <L x and there exists an x-y-path P
of length at most k (i.e., with at most k edges) with minimum vertex y with respect
to<L (see Figure 5). The vertex is k-accessible from x if y <L x and there exists an
x-y-path P of length at most k with minimum vertex y and second minimum vertex
x with respect to <L.
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xy

<

G

P

Figure 5. The vertex y is weakly 8-accessible from x.

Let Qk.G;L; x/ and Rk.G;L; x/ be the sets of vertices that are respectively
weakly k-accessible and k-accessible from x:

Qk.G;L; x/ D fy W 9x-y path P such that minP D yg
Rk.G;L; x/ D fy W 9x-y path P such that minP D y and min.P � y/ D xg
The weak k-coloring number wcolk.G/ and the k-coloring number colk.G/ of

G are defined by

wcolk.G/ D 1Cmin
L

max
v2V.G/

jQk.G;L; v/j;
colk.G/ D 1Cmin

L
max
v2V.G/

jRk.G;L; v/j:

It is easy to see ([20]) that these two graph invariants are polynomially dependent:

colk.G/ � wcolk.G/ � .colk.G//
k

These parameters form two non-decreasing sequences. The sequence of weak-
coloring numbers has the tree-depth as its maximum:

col.G/ D wcol1.G/ � wcol2.G/ � � � � � wcolk.G/ � � � � � wcol1.G/ D td.G/:

Generalized coloring numbers are strongly related to the maximum density of
shallow minors. It has been proved by X. Zhu that there exist polynomials Fk such
that the following holds:

Theorem 5 ([53]). For every half integer1 k and every graph G:

1C sup
G2C Ok

kGk
jGj � wcol2kC1.G/ � F2kC1

�
sup

G2C Ok

kGk
jGj

�

1When k is not an integer, an appropriate generalization ofGOk has to be used [39], [53].
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From this follows the following characterization of nowhere dense classes:

Theorem 6. Let C be an infinite class of graphs. Then the following conditions are
equivalent:

� C is nowhere dense,

� for every integer p, lim supG2C

log colp.G/

log jGj D 0,

� for every integer p, lim supG2C

log wcolp.G/

log jGj D 0.

1.7. Classification by counting. The trichotomy theorem (Theorem 1) is related
to counting the numbers of copies of K2 in a graph. This may be extended (using
the decomposition theorem) if we consider homomorphism or induced copies of any
non-trivial graph F . (Recall that hom.F;G/ denotes the number of homomorphisms
from F toG and that #F � G denotes the number of induced subgraphs ofG which
are isomorphic to F .)

Theorem 7. Let F be a (connected) non trivial graph (i.e., with at least one edge).
Then the following limits

lim
i!1 lim sup

G2C O i

log hom.F;G/

log jGj
and

lim
i!1 lim sup

G2C O i

log #F � G
log jGj

can only take the values �1; 0; 1; : : : ; ˛.F / and jF j, where ˛.F / stands for the
independence number of F . Moreover, C is somewhere dense if and only if the limit
is jF j.

For a proof, see [36].

1.8. Examples

1.8.1. Simplicial graphs. A k-dimensional simplex, or k-simplex, is the convex
hull of k C 1 affinely independent points in Rd space. A d -dimensional sim-
plicial complex is a collection of k-simplexes, k � d , closed under sub-simplex
and intersection. For example, a 3-dimensional simplicial complex is a collec-
tion of cells (3-simplexes), faces (2-simplexes), edges (1-simplexes) and vertices
(0-simplexes). A d -dimensional simplicial graph is the collection of edges and
vertices of a d -dimensional simplicial complex. The aspect ratio of a body is its
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diameter divided d th root of its volume [25]. The volume of a regular d -simplex,
d -cube, and d -ball of unit diameter are respectively 2�d=2pd C 1=dŠ; d�d=2 and
2�d�d=2=.d=2/Š. Hence the aspect ratios of a d -simplex, d -cube, and d -ball are
respectively ˛s D 21=2.d Š/1=d .d C 1/�1=.2d/ � p2d=e; ˛c D

p
d , and ˛b D

2��1=2.d=2/Š1=d � p2d=.e�/. A simplicial graph of aspect ratio ˛ means a sim-
plicial graph coming from a complex in which every d -simplex has aspect ratio at
most ˛.

Classes of simplicial graphs with bounded aspect ratio exclude big shallow com-
plete minors as proved by Plotkin, Rao and Smith [48]. It follows that such classes
are nowhere dense.

1.8.2. High girth graphs. A standard example of a monotone nowhere dense class
of graphs is the class of the graphs whose maximum degree does not exceed some
function of the girth, i.e., B� D fG W �.G/ � �.girth.G//g.

Such classes may have average degree as big as no.1/ as a consequence (see for
instance [4]): For every positive integer n and an “expected degree” k (where k <
n=3), there exists a graphG of order n, size bnk=2c, vertex degrees in fk�1; k; kC1g
and whose girth g is such that g > logk.n/ C O.1/. Hence, for any decreasing
function f W RC ! RC such that limx!1 f .x/ D 0 there exists a constant C such
that the class B� defined by �.x/ D .f �1.1=x/CC/1=x contains graphs with order
n, girth at least 1=f .n/ and degrees k ˙ 1 with k 	 nf .n/.

1.8.3. Classical sparse classes. Figure 6 shows the inclusion map of some important
hereditary nowhere dense classes which were studied in combinatorial as well as
algorithmic context.

2. Bounded expansion classes

A specific example of classes which are nowhere dense are classes with bounded
expansion. These classes have been introduced in [29]. A class C has bounded
expansion if there exists a function f W N ! R (called expansion function) such that

8d 2 N W sup
G2C Od

kGk
jGj � f .d/:

The value supG2C Od
kGk
jGj is denoted by rd .C/ and, in the particular case of a single

element class fGg, rd .G/ is called the greatest reduced average density (grad) ofG
of rank d .

For an extensive study of bounded expansion classes we refer the reader to [31],
[32], [33], [10], [11], [40].
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`dens.CO/D�1 Edgeless

�� ��

��
`dens.CO/D0 Bounded size

		





��

Star forests

�� ��

Path forests

��

��

Bounded tree-depth

��

Forests

 ��
blueBounded tree-width

��

Planar

��

Bounded degree � Wide

��

��

��

Bounded genus

��
Excluded apex minor

�� ��
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��

��
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��

Excluded topological minor

�� ��
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��
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��
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��
Nowhere dense � Quasi-wide
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`dens.CO/D2 Somewhere Dense

��
Dense

Figure 6. Inclusion map of some important hereditary nowhere dense classes.
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bounded expansion��������������
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��

no Kp subdivisions Random G.n; d=n/ highly subdivided non-repetitively
k-colorable�� �������������

��
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��

bounded degree no Kp minors bounded
stack number
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queue number

��

��

��

��

planar
bounded

crossing number
bounded number of
crossings per edge

Figure 7. Classes with bounded expansion.

(See [40] for the definition of stack and queue numbers. This paper contains
further examples of bounded expansion classes.)

As for nowhere dense classes, several equivalent characterizations exist for classes
with bounded expansion:

Theorem 8. Let C be a class of graphs. The following properties are equivalent:

� C has bounded expansion,

� for every integer p, supG2C �p.G/ <1,

� for every integer p, supG2C Np.G/ <1, whereNp.G/ is the number of colors
used by “Algorithm A” when run on the pair .G; p/.
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Notice that the running time of “Algorithm A” is at most O.jGj/ for fixed p and
for G restricted to a bounded expansion class. Thus low tree depth decompositions
can be found in a linear time.

Thus any graphG in a (fixed) bounded expansion class C can be decomposed into
a fixed numberNp.G/ of classes such that the subgraphs induced by any� p classes
of the partition have components of only finitely many (homomorphism) types. Thus
p is then parameter expressing the precision of such decomposition. Moreover such
decomposition can be found in a linear number of steps. Not surprisingly, this has
a number of algorithmic consequences ([29], [32]. Such a decomposition is called
Low Tree Depth Decomposition.

As nowhere dense classes do, the classes with bounded expansion have several
characterizations based on different aspects (density, orientation, decomposition, or-
dering, etc.). For instance, it has been proved in [10], [11] that bounded expansion
classes are characterized by not containing shallow subdivisions of graphs with high
minimum degree.

Part II Distances and dualities

3. Algebra of classes

For a graph G we denote by ŒG� the set of all graphsH which are homomorphically
equivalent to G. ŒG� is called homomorphism equivalence class of G. It is a well-
known that for a finite graph (structure) G there exists up to an isomorphism unique
G0 2 ŒG� with the smallest number of vertices. Such an H is called the core of
G ([19]). For homomorphism equivalence classes ŒG� and ŒH � we put ŒG� � ŒH �
and ŒG� ! ŒH � iff G 0 ! H 0 for every G0 2 ŒG� and H 0 2 ŒH �. The set of all
homomorphism equivalence classes will be denoted by ŒG � and � is a partial order
defined on ŒG �. ŒG � is a partial order with remarkable properties, most notably it is
(countable) universal partial order which is also dense, see [19]. We shall add to
these facts some properties of an interesting completion of ŒG �. Towards this end we
define .! G/ as the class of all the graphs having a homomorphism to G. Similarly
we denote by .G !/ the class of all graphs which admit a homomorphism from G.
Hence

ŒG� D .! G/ \ .G !/ (1)

and by .! ŒG�/ and .ŒG� !/ we shall understand analogously defined subclasses
of ŒG �. These classes express usual graph constructions related to homomorphism
order:

� the sum

.! ŒG CH�/ D fŒAC B� W ŒA� 2 .! ŒG�/; ŒB� 2 .! ŒH �/g

.ŒG CH�!/ D .ŒG�!/ \ .ŒH�!/I
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� the categorical product

.! ŒG �H�/ D .! ŒG�/ \ .! ŒH �/

.ŒG �H�!/ D fŒA � B� W ŒA� 2 .ŒG�!/; ŒB� 2 .ŒH�!/g:
(The last equation follows from the standard trick that graphs .F C G/ � .F CH/
and F are homomorphism equivalent whenever G �H ! F .)

A (graph) ideal is a subset � � G such that:
� 8G 2 �;8H 2 G ; H ! G ) H 2 �,
� 8G1; G2 2 �; G1 CG2 2 �.

An ideal � is principal if there exists a graphG (the principal element of �) such that
� D .! G/. An ideal � is prime if G �H 2 � implies G 2 � or H 2 �. If the
principal ideal .! G/ generated by a graphG is prime,G is said to be multiplicative.
In other words; G is multiplicative if H1 �H2 ! G implies H1 ! G or H2 ! G.

A (graph) filter is a subset F � G such that:
� 8G 2 F ;8H 2 G ; H  G ) H 2 F ,
� 8G1; G2 2 F ; G1 �G2 2 F .

A filter F is principal if there exists a graphG (the principal element of F ) such that
F D .G !/. A filter F is prime if G CH 2 F implies G 2 F or H 2 F . Notice
that if F is a connected graph the principal filter .F !/ is prime.

For an ideal � and a filter F we define

�? D fG; 8H 2 � W H ! Gg; (2)

F ? D fG; 8H 2 F W H  Gg: (3)

Notice that �? is a filter and that F ? is an ideal and that for every graph G we have
.! G/? D .G !/ and .G !/? D .! G/. These relations provided a motivation
for the duality notion, see [41].

For the proofs of the results stated here and for a more extensive study of this
topic we refer the reader to [38].

4. Distances

4.1. Distance between graph sets. Recall that G denotes the class of all (finite
simple) graphs. For an integer t , we denote by G t the subset of G with graphs of
order at most t .

For a subset A � G , we define the weight w.A/ of A by

w.A/ D
´
0 if A D ;,
2� min¹jGj; G2Aº otherwise.

(4)
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This weight allows to define an ultrametric on the power set of G by

D.A;B/ D w�.A nB/ [ .B nA/
�
: (5)

Also, we define a non-symmetric version which intuitively “measures” how far A is
from being included in B:

�.A;B/ D w.A nB/; (6)

so that

D.A;B/ D max.�.A;B/C �.B;A//: (7)

4.2. The left distance. The left distance distL between homomorphism equivalence
classes is defined by

distL.ŒG�; ŒH �/ D D..! G/; .! H//: (8)

Notice that this definition is valid, as .! G/ does not depend on the particular
choice of G in ŒG�. The left distance gives ŒG � the structure of an ultrametric
space as distL.ŒG1�; ŒG3�/ � max.distL.ŒG1�; ŒG2�/; distL.ŒG2�; ŒG3�//. To simplify
the notation we extend the definition of dist to G (it is of course distL.G;H/ D
distL.ŒG�; ŒH �/).

This distance has a strong relationship with homomorphism invariant first order
properties:

Theorem 9 (Rossman [49]). For every integer n, there exists � > 0 and a function
<n W G ! G such that

� 8G 2 G ; Œ<n.G/� D ŒG�;
� 8G1; G2 2 G ; distL.G1; G2/ < � H) <n.G1/ 
n <n.G2/.

HereG 
n H means thatG andH satisfy exactly the same first-order properties of
quantifier rank at most n.

A sequence .Gi / of graphs is a Left Cauchy Sequence (LCS) if it is a Cauchy
sequence according to the distance distL. The completion xGL of G (with distance
distL) is a compact space (according to the Heine–Borel theorem). If .Gi / is a LCS
we will denote its limit by left limi!1Gi an shortly by left limGi .

For instance, the sequence of odd cycles converges to K2, that is:

left limC2iC1 D K2:
We extend the homomorphism order to ŒG �L by

left limGi �L left limHi () lim
i!1 �..! Gi /; .! Hi // D 0: (9)
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Notice that the relation �L does not depend of the converging sequences and that
it extends the homomorphism relation on finite graphs (identified with constant se-
quences). Also, we define

.! left limGi / D fH 2 G W H ! left limGig: (10)

Theorem 10. The mapping left limGi 7! .! left limGi / is a bijection between left
limits and graph ideals.

Corollary 11. The left homomorphism relation �L on ŒG �L has the following alter-
native characterizations:

left limGi �L left limHi () .! left limGi / � .! left limHi / (11)

() .left limGi !/ � .left limHi !/: (12)

4.3. The right distance. Similarly to the left distance, the right distance distR
between homomorphism equivalence classes is defined by

distR.ŒG�; ŒH �/ D D..G !/; .H !//: (13)

The right distance gives ŒG � the structure of an ultrametric space since it holds
that distR.ŒG1�; ŒG3�/ � max.distR.ŒG1�; ŒG2�/; distR.ŒG2�; ŒG3�//. We again write
distR.G;H/ D distR.ŒG�; ŒH �/

A sequence .Gi / of graphs is a Right Cauchy Sequence (RCS) if it is a Cauchy
sequence according to the distance distR. The completion ŒG �R of ŒG � (with dis-
tance distR) is again a compact space. If .Gi / is a RCS we will denote its limit by
right limi!1Gi and shortly by right limGi .

For instance, the sequence of odd cycles converges, but the limit is not a graph.
We extend the homomorphism relation to ŒG �R by

right limGi �R left limHi () lim
i!1 �..Hi !/; .Gi !// D 0: (14)

Notice that the relation �R does not depend of the converging sequences and that
it extends the homomorphism relation on finite graphs (identified with constant se-
quences). Also, we define

.right limGi !/ D fH 2 G W right limGi ! H g: (15)

Theorem 12. The mapping right limGi 7! .right limGi !/ is a bijection between
right limits and graph filters.

Corollary 13. The right homomorphism relation �R on ŒG �R has the following
alternative characterizations:

left limGi �R left limHi () .! right limGi / � .! right limHi / (16)

() .right limGi !/ � .right limHi !/: (17)
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Note that this characterization is similar to the one given for the definition of �L.
A basic result about the right distance is implied by the following result (which is

a culmination of intensive combinatorial research which goes back to [16], [42]):

Theorem 14 (Nešetřil and Zhu [47]). For every graphH and every choice of positive
integers k and l there exists a graph G together with a surjective homomorphism
G ! H with the following properties:

(1) girth.G/ > l;

(2) For every graphH 0 with at most k vertices, there exists a homomorphism from
G toH 0 if and only if there exists a homomorphism fromH toH 0.

This lemma (sometimes called Sparse Incomparability Lemma, see e.g. [19]) takes
the following form:

Lemma 15 (Ambivalence Lemma). For every K2 ! H1 ! H2 and every � > 0

there exists a graph G such that

� H1 ! G ! H2,

� distL.ŒH1�; ŒG�/ < �,

� distR.ŒG�; ŒH2�/ < �.

Corollary 16. Let .Gi / be an LCS and let .Hi / be a RCS. Assume that for every
integer i holds K2 ! Gi ! Hi . Then there exists a sequence .Mi / which is both
an LCS and a RCS, such that

left limMi D left limGi (18)

right limMi D right limHi (19)

This sequence .Mi / has then the limit both in xGL and xGR which we call chimera
(see Corollary 19). This double limit leads to the notions in the following section.

4.4. Full distance. Let dist be the distance between homomorphism equivalence
classes defined by:

dist.ŒG�; ŒH �/ D max.distL.ŒG�; ŒH �/; distR.ŒG�; ŒH �//

Note that dist.ŒG1�; ŒG3�/ � max.dist.ŒG1�; ŒG2�/; dist.ŒG2�; ŒG3�// hence .ŒG �; dist/
is an ultrametric space. Again we write dist.G;H/ D dist.ŒG�; ŒH �/.

The completion xG is again a compact space. If .Gi / is a Cauchy sequence for
dist, we will denote by its limit by limi!1Gi . For a sequence .Gi / to convergence
it is necessary and sufficient that the sequence converges for both the distances distL
and distR.
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We extend the homomorphism relation to limits by

lim
i
Gi ! lim

i
Hi () lim

i!1 max.�..! Gi /; .! Hi //; �..Hi !/; .Gi !/// D 0:
(20)

Notice that this relation does not depend of the converging sequences and that it
extends the homomorphism relation on finite graphs (identified with constant se-
quences),as well as the extensions we defined for left limits and right limits. Also,
we define

.! lim
i
Gi / D fH 2 G W H ! lim

i
Gig; (21)

.lim
i
Gi !/ D fH 2 G W lim

i
Gi ! H g: (22)

Theorem 17. The mapping L 7! ..! L/; .L !// if a bijection between the limits
L 2 ŒG � such that K2 ! L and the pairs .�;F / such that:

� the set � is a graph ideal which contains K2,
� the set F is a graph filter,
� for every G 2 � and everyH 2 F holds G ! H .

Corollary 18. Let A;B 2 ŒG �. Then

A! B () .! A/ � .! B/ and .A!/ � .B!/: (23)

This characterization allows the definition of a continuous homomorphism indi-
cator 	:

	.A;B/ D max.�..! A/; .! B//; �..B!/; .A!///; (24)

so that we have
A! B () 	.A;B/ D 0: (25)

Also, we have the following extension of Corollary 16.

Corollary 19 (Chimera existence). For every A ! B in ŒG � such that K2 ! A,
there exists L, called .A;B/-chimera, so that

� A! L! B,

� .! A/ D .! L/,

� .L!/ D .B!/.
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That is: a limit between A and B which is equivalent to A from the left (for homo-
morphisms from finite graphs), and equivalent to B from the right (for homomor-
phisms to finite graphs).

4.5. Directed graphs and structures. In order to extend our results to directed
graphs, we have to characterize what the limits of Cauchy sequences of directed
graphs are. What has been proved for left and the right distances remains unchanged,
except for the ambivalence Lemma 15. For directed graphs we need a new version:

Lemma 20 (Ambivalence Lemma for Directed Graphs). Let EG1 ! EG2 and let � > 0.

Assume there exists no oriented tree ET with 2� max.j ET j;jD. ET /j/ < � such that ET ! EG2
but ET ¹ EG1.

Then there exists a directed graph EH such that

� EG1 ! EH ! EG2,
� distR. EH; EG2/ < �,
� distL. EG1; EH/ < �.

We deduce the following characterization of limits of directed graphs.

Theorem 21. The mapping EL 7! ..! EL/; .EL !// if a bijection between the limits
EL 2 xEG and the pairs . E� ; EF / such that:

� the set E� is a directed graph ideal,

� the set EF is a directed graph filter,

� EF ? \ ��!Tree � E� � EF ?.

As in the undirected case (Corollary 18) we have a simple expression for homo-
morphisms between limits:

EA! EB () .! EA/ � .! EB/ and . EA!/ � .EB!/ (26)

For structures we can derive a similar ambivalence theorem. This is again in terms
of relational trees and thus it is related to the results in the next section.

5. Dualities

Suppose we want to find a decomposition of a graph with special properties. Such
a task appears in the theory of scheduling and other applied areas (particularly in
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the area of Constraint Satisfaction Problems). As typically the problem is hereditary
we can look for obstacles to our decomposition, for minimal subgraphs without our
decomposition. In this sense we are considering the dual problem: instead of looking
for a global decomposition we want to look for locally forbidden subgraphs. Can it
happen that there is essentially only one obstacle? In this extremal case we speak about
a singleton duality. Such situation can be formalized by means of homomorphisms
between graphs. In this setting duality is captured by the following scheme:

F �6�! G () G �! H:

Here G ! H , denoting the existence of a homomorphism from G to H , means
that a desired decomposition exists, while F 6! G denoting the non-existence of a
homomorphism from F toG, means that no obstacle f .G/, f W F ! G, exists inG.

Unfortunately, for undirected graphs there exists only one duality, namely the
pair .K2; K1/ (as has been observed already in [41] where the notion of duality was
defined). However, if we consider limits, and if we naturally extend the notion of
duality for limit objects, then we obtain many more examples. More precisely this
can be done as follows:

A full duality in ŒG � is a pair .F ;D/ of elements of ŒG � such that

8L 2 xG W F �6�! L () L �! D:

Lemma 22. Let .F ;D/ be a full duality. Then one of F ;D is equivalent to a graph.

Proof. As D ! D we have F ¹ D. This means that there exists a graph T such
that either T ! F and T ¹ D – hence F ! T according to duality thus T � F , or
D ! T and F ¹ T – hence T ! D by duality thus T � D. �

This may be seen as a solution of a weaker form of a conjecture formulated in
[43]: It has been conjectured there that for every maximal antichain G1; G2 in the
homomorphism order of countable graphs one of the graphsGi is finite. As obviously
every duality pair is a maximal antichain the Lemma 22 verifies this conjecture for
antichains corresponding to duality pairs.

Theorem 23. Every connected graph has a full dual, every multiplicative graph is a
full dual, and these are the only full dualities.

Sketch of the proof. We already proved that every duality pair contains a graph.
Moreover, it is easily checked that if one of F , D is a graph and if duality holds
for graphs, then it also holds for limits:

� Let .F;D/ be a duality which holds for graphs. Let L be the limit of a Cauchy
sequence .Li /. Then F ¹ L is equivalent to 9i08i � i0; F ¹ Li , i.e.,
9i08i � i0; Li ! D, which is equivalent to L! D;
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� Similarly, let .F ;D/ be a duality which holds for graphs. Let L be the limit of
a Cauchy sequence .Li /. Then L ¹ D is equivalent to 9i08i � i0; Li ¹ D,
i.e., 9i08i � i0; F ! Li , which is equivalent to D ! L.

It can be seen easily that every graph has a full dual. Hence it suffices to charac-
terize those full duality pairs .F ;D/ such that D is a graph. If D is multiplicative,
let � D fG W G ¹ Dg and let � be the class of all graphs having a homomorphism
to every graph in � . The set � is an ideal by construction and, asD is multiplicative,
� is a filter hence the pair .�; �/ defines a limit object F . For every graph G, we
have F ! G if and only if G 2 � , i.e., if and only if G ¹ D. It follows that
every multiplicative graph is a full dual. Conversely, let .F ;D/ be a full duality. Let
� D �.F/ and � D �.F/. According to the duality, F ! G if and only if G ¹ D

thus � D fG W G ¹ Dg is a filter, which means that D is multiplicative. �

5.1. Duality of directed graphs. One should stress that the absence of finite dual-
ities for undirected graphs is a singular fact. Many more dualities exists for richer
structures and they were characterized in [45]. Already for oriented graphs the situ-
ation changes and more dualities exist. Precisely, Nešetřil and Tardif [45] (see also
[19]) proved that every oriented treeF has a dual (see Figure 8). The difficult problem
of recognizing duals of directed trees is addressed by Nešetřil and Tardif [46] and
Larose, Lotten and Tardif [23].

DIRECTED

DIRECTED

Figure 8. A duality pair for directed graphs.

The assumption of Lemma 20 that no small directed tree ET is such that ET ! EG2
but ET ¹ EG1 finds here its explanation and can be shown to be a necessary condition:
Assume for contradiction that there exists a directed tree ET such that ET ! EG2 and
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ET ¹ EG1, although some EH exists such that EG1 ! EH ! EG2, distR. EH; EG2/ < �,

and distL. EG1; EH/ < �, with � < 2� max j ET j;j EDT j (where EDT is the dual of ET ). As
ET ! EG2 we have EG2 ¹ EDT . As distR. EH; EG2/ < � and distL. EG1; EH/ < � we get
ET ¹ EH (because ET ¹ EG1) and EH ¹ EDT (because EG2 ¹ EDT ), contradicting the
duality of . ET; EDT /.

Our results on duality of undirected graphs easily extend to the directed case:

Lemma 24. Let .EF ; ED/ be a full duality. Then (at least) one of EF , ED is equivalent to
a directed graph. �

Theorem 25. Every connected directed graph has a full dual, every multiplicative
directed graph is a full dual, and these are the only full dualities.

Proof. The proof of the directed case is similar to the one of the undirected one.
That one of EF , ED is a directed graph is Lemma 24. If EF is a connected directed

graph, the set F D f EG W EF ¹ EG is a filter and, according to Theorem 21, there

exists ED 2 xEG such that .! ED/ D F and . ED !/ D F ?. Then we get EF ¹ EL ()
EL! ED.

If ED is a multiplicative directed graph, the set � D f EG W EG ¹ ED is an ideal. Of
course �?? � �. Also, if ET is a directed tree with dual EDT , then we have

ET 62 � () 8 EG 2 �; ET ¹ EG (as � is an ideal)

() 8 EG 2 �; EG ! EDT (by duality)

() EDT 2 �?:

Also:

ET 2 �?? () 8 EG 2 �?; ET ! EG
() 8 EG 2 �?; EG ¹ EDT (by duality)

() EDT 62 �? (as �? is a filter).

Hence ET 2 � if and only if ET 2 �?? and, according to Theorem 21, there exists
EF 2 xEG such that .EF !/ D � and .! EF/ D �?. Then we get EF ¹ EL () EL! ED.
Conversely, if .EF ; ED/ is a duality then ED is multiplicative (same proof as for undirected
case). �

5.2. Restricted dualities. If we restrict the universe of the considered graphs G
then we can expect more “dual phenomena”. In such cases we speak about restricted
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dualities. Explicitly, a (singleton) C - restricted duality is formed by a pair F ,D such
that for every graph G 2 C holds:

F �6�! G () G �! H:

In the extremal case that for every connected F 2 C there existsDF such that F ,
DF form a C -restricted duality we say that C has all restricted dualities [33]. Before
stating the main result we give two motivating examples.

5.2.1. Planar graphs. For instance, Figure 9 displays a restricted dualities for planar
graphs: A planar graph has a homomorphism to the so-called Clebsch graph if and
only if it does not contain a triangle. As triangle free planar graphs are 3-colorable, this
generalizes the celebrated theorem of Grötzsch [17]. Of course, this characterization
by a single obstacle leads to a fast algorithm (actually a linear-time one) to decide
whether a decomposition exists. This has some interesting applications in the context
of mathematical logic.

PLANAR

PLANAR

Figure 9. A restricted duality for planar graphs.

This particular result has been proven by Naserasr [26] and uses the property that
every planar graph G may be colored by 16 colors in such a way that every cycle of
length 5 gets at least 4 colors. Actually, even proving that a fixed number of colors
would be sufficient for coloring every planar graphs in such a way every cycle of
length 5 gets at least 4 colors is already non trivial.
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5.2.2. Bounded degree graphs. A graph is sub-cubic if the degrees of all its vertices
are � 3. By Brooks theorem (see e.g. [8]) every sub-cubic connected graph is 3-
colorable with the single exception of K4. What about the class of all sub-cubic
triangle-free graphs? Does there exists a triangle free 3-colorable bound? This
question has been positively answered by Dreyer et al. [9] and Häggkvist and Hell
[18]. In fact for every finite set F D fF1; F2; : : : ; Ftg of connected graphs there
exists a graph H with the following property:

G �! H for every sub-cubic graph G 2 Forbh.F /:

(Here Forbh.F / is the class of all graphs G which satisfy Fi ¹ G for every i D
1; 2; : : : ; t . Thus Forbh.K3/ is the class of all triangle free graphs.) We can briefly
say that the class of all sub-cubic graphs has all restricted dualities.

Note that while sub-cubic graphs, and more generally graphs with bounded de-
grees, have all restricted dualities, this is not true for classes of degenerate graphs
[27], [28].

5.2.3. Bounded expansion classes. The two preceding examples actually fit in a
more a general setting which has been proved by [33]:

Theorem 26. Every class with bounded expansion has all restricted dualities.
Explicitly: For every bounded expansion class C and for any finite set F D

fF1; F2; : : : ; Ftg of connected graphs there exists a graph DF such that DF 2
Forbh.F and G ! DF for every G 2 C and G 2 Forbh.F .

5.3. Characterization of graph classes with restricted dualities. For restricted
dualities such a characterization was not known and this has been left open as a
problem (see e.g.[35]) . Using limit structures one can deduce such a characterization
using the following notion: For a graph G and a real � > 0, define ��.G/ as a
minimum order of a graph H such that G ! H and dist.G;H/ � � (we arbitrarily
choose between those graphs which have these properties, by using, for instance,
some arbitrary linear order on G ; such a graph H we can call �-retract of G).

Theorem 27. Let C be a class of graphs. Then C has all restricted dualities if and
only if for every � > 0 we have supG2C �

�.G/ <1.
Moreover, for every connected graph F , there is a sequence

Dt .F / DtC1.F / � � �
of duals ofF relative to C which converges to sup.CC\Forb.F //, where CC denotes
the closure of C be finite disjoint unions.

The class of all perfect graphs (and equivalently, the class of all complete graphs)
has all restricted dualities while it clearly fails to be a bounded expansion class. Yet
this class is covered by Theorem 27.
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6. Concluding remarks

(1) Low tree depth decomposition together with the finiteness of bounded tree depth
graphs imply the following corollary:

For every p and a bounded expansion class C there exists a positive
integer N D N.p;C/ with the following property: every graph
G 2 C has a partition V1; : : : ; VN of its vertices such that the graph
induced by any p0 � p parts has its core of size at most f .p0/where
f .p0/ depend neither on G nor on C .

(2) If we want to bound �p.G/ then we do not have to assume thatG comes from a
bounded expansion class. Instead it suffices that gradsri .G/ are all bounded by
a constant for i � pp . The flowchart of dependency of parameters is indicated
in the following diagram.

bounded �.G/ boundedr0.G/�� (degenerate)

bounded �2.G/

�� ����������������
boundedr1.G/��

��

bounded �p.G/

��

boundedrp.G/

��

bounded �2pC2.G/

�� ����������������
boundedrpp .G/

����������������

��

�r.G/ < g.r/

��

�� �� rr.G/ < f .r/

��

(bounded expansion)

bounded td.G/

��

�� bounded r.G/

��

(proper minor closed)

(3) Bounded expansion classes with low-tree depth decompositions (which can be
found linearly) include many particular problems which were studied individ-
ually. For example this yields a linear algorithm for the decision whether a
given graph is an induced subgraph of a graph (in a fixed bounded expansion
graph). This problem was previously only known to be linearly decidable for
minor closed classes. Note also that already the chromatic number �1 was al-
ready studied extensively (as star chromatic number – a strengthening of acyclic
chromatic number).
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(4) As remarked earlier it is routine to convert most of the above results to results
about oriented graphs, hypergraphs and relational structures. This can be done
by use of incidence graphs (see e.g. [45], [35]), by means of Gaifman graphs,
or directly. However in some cases the best results are obtained by ad hoc
constructions and it seems that in this direction a proper setting is not yet found.

(5) Sub-linear separators need sub-exponential growth ([29]). A very small growth
can still guarantee that a bounded expansion class is small [12]. In many such
cases this is probably far from optimal.

(6) In the background of low tree depth decomposition lies the following particular
(non-trivial) result:

Let C be a bounded expansion class (resp. a nowhere dense class),
let d be a positive integer. Denote by C � Kd the class of all graphs
G � Kd which arise from a G 2 C by replacing every vertex of G
by a complete graph Kd (this is sometimes called the lexicographic
product). Then the class C � Kd has bounded expansion (resp. is
nowhere dense).

Note that if C is the class of planar graphs then already the class C � K2 is so
rich that every graph is a minor of a graph in C � K2 (and yet C � K2 has a
bounded expansion).

Finally let us remark that the geometric approach (distances and limits) is further
developed in [38].
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[27] J. Nešetřil, Aspects of structural combinatorics. Taiwanese J. Math. 3 (1999), no. 4,
381–424.
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[40] J. Nešetřil, P. Ossona de Mendez, and D. R. Wood, Characterizations and examples of
graph classes with bounded expansion. European J. Combin., to appear.
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[44] J. Nešetřil and I. Švejdarová, Small diameters of duals. SIAM J. Discrete Math. (2007),
374–384.
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Bundle gerbes and surface holonomy
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Abstract. Hermitian bundle gerbes with connection are geometric objects for which a notion
of surface holonomy can be defined for closed oriented surfaces. We systematically introduce
bundle gerbes by closing the pre-stack of trivial bundle gerbes under descent.

Inspired by structures arising in a representation theoretic approach to rational conformal
field theories, we introduce geometric structure that is appropriate to define surface holonomy
in more general situations: Jandl gerbes for unoriented surfaces, D-branes for surfaces with
boundaries, and bi-branes for surfaces with defect lines.
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1. Introduction

Two-dimensional quantum field theories have been a rich source of relations between
different mathematical disciplines. A prominent class of examples of such theories are
the two-dimensional rational conformal field theories, which admit a mathematically
precise description (see [SFR] for a summary of recent progress). A large subclass
of these also have a classical description in terms of an action, in which a term given
by a surface holonomy enters.

The appropriate geometric object for the definition of surface holonomies for ori-
ented surfaces with empty boundary are hermitian bundle gerbes. We systematically
introduce bundle gerbes by first defining a pre-stack of trivial bundle gerbes, in such
a way that surface holonomy can be defined, and then closing this pre-stack under
descent. This construction constitutes in fact a generalization of the geometry of line
bundles, their holonomy and their applications to classical particle mechanics.

Inspired by results in a representation theoretic approach to rational conformal
field theories, we then introduce in the same spirit geometric structure that allows
to define surface holonomy in more general situations: Jandl gerbes for unoriented
surfaces, D-branes for surfaces with boundaries, and bi-branes for surfaces with defect
lines.
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2. Hermitian line bundles and holonomy

Before discussing bundle gerbes, it is appropriate to summarize some pertinent aspects
of line bundles.

One of the basic features of a (complex) line bundleL over a smooth manifoldM
is that it is locally trivializable. This means that M can be covered by open sets U˛
such that there exist isomorphisms �˛ W LjU˛ �� 1U˛ , where 1U˛ denotes the trivial
line bundle C � U˛ . A choice of such maps �˛ defines gluing isomorphisms

g˛ˇ W 1U˛
ˇ̌
U˛\Uˇ

�� 1Uˇ
ˇ̌
U˛\Uˇ with gˇ� Bg˛ˇ D g˛� on U˛\Uˇ \U� : (2.1)

Isomorphisms between trivial line bundles are just smooth functions. Given a set
of gluing isomorphisms one can obtain as additional structure the total space as the
manifold

L WD
G
˛

1U˛ =� ; (2.2)

with the relation � identifying an element ` of 1U˛ with g˛ˇ .`/ of 1Uˇ . In short,
every bundle is glued together from trivial bundles.

In the following all line bundles will be equipped with a hermitian metric, and
all isomorphisms are supposed to be isometries. Such line bundles form categories,
denoted Bun.M/. The trivial bundle 1M defines a full, one-object subcategory
Buntriv.M/ whose endomorphism set is the monoid of U.1/-valued functions on
M . Denoting by �0.C/ the set of isomorphism classes of a category C and by
H �.M;U.1// the sheaf cohomology of M with coefficients in the sheaf of U.1/-
valued functions, we have the bijection

�0.Bun.M// Š H 1.M;U.1// Š H 2.M;Z/, (2.3)

under which the isomorphism class of the trivial bundle is mapped to zero.
Another basic feature of line bundles is that they pull back along smooth maps:

for L a line bundle overM and f WM 0 �� M a smooth map, the pullback f �L is a
line bundle over M 0, and this pullback f � extends to a functor

f � W Bun.M/ �� Bun.M 0/. (2.4)

Furthermore, there is a unique isomorphismg�.f �L/ �� .f Bg/�L for composable
maps f and g.

As our aim is to discuss holonomies, we should in fact consider a different cate-
gory, namely line bundles equipped with (metric) connections. These form again a
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category, denoted by Bunr.M/, and this has again a full subcategory Buntrivr.M/

of trivial line bundles with connection. But now this subcategory has more than one
object: every 1-form ! 2�1.M/ can serve as a connection on a trivial line bundle
1 over M ; the so obtained objects are denoted by 1! . The set Hom.1! ; 1!0/ of
connection-preserving isomorphisms � W 1! �� 1!0 is the set of smooth functions
g W M �� U.1/ satisfying

!0 � ! D � i dlogg. (2.5)

Just like in (2.2), every line bundleLwith connection can be glued together from line
bundles 1!˛ along connection-preserving gluing isomorphisms �˛ˇ .

The curvature of a trivial line bundle 1! is curv.1!/ WD d! 2 �2.M/, and is thus
invariant under connection-preserving isomorphisms. It follows that the curvature
of any line bundle with connection is a globally well-defined, closed 2-form. We
recall that the cohomology class of this 2-form in real cohomology coincides with
the characteristic class in (2.3).

In order to introduce the holonomy of line bundles with connection, we say that
the holonomy of a trivial line bundle 1! over S1 is

Hol1! WD exp

�
2� i

Z
S1
!

�
2 U.1/. (2.6)

If 1! and 1!0 are trivial line bundles over S1, and if there exists a morphism � in
Hom.1! ; 1!0/, we have Hol1! DHol1!0

becauseZ
S1
!0 �

Z
S1
! D

Z
S1
� i dlog � 2 Z. (2.7)

More generally, if L is any line bundle with connection over M , and ˆ W S1 �� M
is a smooth map, then the pullback bundle ˆ�L is trivial since H 2.S1;Z/D 0, and

hence one can choose an isomorphism T W ˆ�L � �� 1! for some ! 2�1.S1/. We
then set

HolL.ˆ/ WD Hol1! . (2.8)

This is well-defined because any other trivialization T 0W ˆ�L �� 1!0 provides a
transition isomorphism � WD T 0 B T �1 in Hom.1! ; 1!0/. But as we have seen above,
the holonomies of isomorphic trivial line bundles coincide.

Let us also mention an elementary example of a physical application of line
bundles and their holonomies: the action functional S for a charged point particle.
For .M; g/ a (pseudo-)Riemannian manifold and ˆ W R � Œt1; t2� �� .M; g/ the
trajectory of a point particle of mass m and electric charge e, one commonly writes
the action SŒˆ� as the sum of the kinetic term

SkinŒˆ� D m

2

Z t2

t1

g. dˆ
dt ;

dˆ
dt / (2.9)
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and a term

� e
Z t2

t1

ˆ�A; (2.10)

withA the electromagnetic gauge potential. However, this formulation is inappropri-
ate when the electromagnetic field strength F is not exact, so that a gauge potential
A with dADF exists only locally. As explained above, keeping track of such local
1-forms A˛ and local ‘gauge transformations’, i.e., connection-preserving isomor-
phisms between those, leads to the notion of a line bundle L with connection. For a
closed trajectory, i.e., ˆ.t1/Dˆ.t2/, the action should be defined as

eiSŒˆ� D eiSkinŒˆ� HolL.ˆ/. (2.11)

An important feature of bundles in physical applications is the ‘Dirac quantization’
condition on the field strength F : the integral of F over any closed surface † in M
gives an integer. This follows from the coincidence of the cohomology class ofF with
the characteristic class in (2.3). Another aspect is a neat explanation of theAharonov–
Bohm effect. A line bundle over a non-simply connected manifold can have vanishing
curvature and yet non-trivial holonomies. In the quantum theory holonomies are
observable, and thus the gauge potential A contains physically relevant information
even if its field strength is zero. Both aspects, the quantization condition and the
Aharonov–Bohm effect, persist in the generalization of line bundles to bundle gerbes,
which we discuss next.

3. Gerbes and surface holonomy

In this section we formalize the procedure of Section 2 that has lead us from local
1-form gauge potentials to line bundles with connection: we will explain that it is
the closure of the category of trivial bundles with connection under descent. We then
apply the same principle to locally defined 2-forms, whereby we arrive straightfor-
wardly at the notion of bundle gerbes with connection. We describe the notion of
surface holonomy of such gerbes and their applications to physics analogously to
Section 2.

3.1. Descent of bundles. As a framework for structures with a category assigned to
every manifold and consistent pullback functors we consider presheaves of categories.
Let Man be the category of smooth manifolds and smooth maps, and let Cat be the 2-
category of categories, with functors between categories as 1-morphisms and natural
transformations between functors as 2-morphisms. Then a presheaf of categories is
a lax functor

F W Manopp �� Cat (3.1)
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It assigns to every manifold M a category F .M/, and to every smooth map
f W M 0 �� M a functor F .f / W F .M/ �� F .M 0/. By the qualification ‘lax’ we
mean that the composition of maps must only be preserved up to coherent isomor-
phisms.

In Section 2 we have already encountered four examples of presheaves: the
presheaf Bun of line bundles, the presheaf Bunr of line bundles with connection,
and their sub-presheaves of trivial bundles.

To formulate a gluing condition for presheaves of categories we need to specify
coverings. Here we choose surjective submersions � W Y �� M . We remark that
every cover of M by open sets U˛ provides a surjective submersion with Y the
disjoint union of the U˛; thus surjective submersions generalize open coverings.
This generalization proves to be important for many examples of bundle gerbes, such
as the lifting of bundle gerbes and the canonical bundle gerbes of compact simple Lie
groups.

With hindsight, a choice of coverings endows the category Man with a Grothen-
dieck topology. Both surjective submersions and open covers define a Grothendieck
topology, and since every surjective submersion allows for local sections, the resulting
two Grothendieck topologies are equivalent. And in fact the submersion topology is
the maximal one equivalent to open coverings.

Along with a covering � W Y �� M there comes a simplicial manifold

� � �
@0 ������
@3

�� Y
Œ3�

@0 ����
@2

�� Y Œ2�
@0 ��
@1

�� Y
� ��M: (3.2)

Here Y Œn� denotes the n-fold fibre product of Y over M ,

Y Œn� WD f.y0; : : : ; yn�1/2Y n j �.y0/ D � � � D �.yn�1/g; (3.3)

and the map @i W Y Œn� �� Y Œn�1� omits the i th entry. In particular @0 W Y Œ2� �� Y is
the projection to the second factor and @1 W Y Œ2� �� Y the one to the first. All fibre
products Y Œk� are smooth manifolds, and all maps @i are smooth. Now letL be a line
bundle over M . By pullback along � we obtain:

(BO1) An object QL WD ��L in Bun.Y /.

(BO2) A morphism

� W @�
0
QL Š @�

0�
�L � �� @�

1�
�L Š @�

1
QL (3.4)

in Bun.Y Œ2�/ induced from the identity � B @0D� B @1.
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(BO3) A commutative diagram

@�
1@

�
0
QL

@�

1
�

��@�
0@

�
0
QL @�

0
�
�� @�
0@

�
1
QL @�

2@
�
0
QL @�

2
�
�� @�
2@

�
1
QL @�

1@
�
1
QL

(3.5)

of morphisms in Bun.Y Œ3�/; or in short, an equality @�
2� B @�

0�D @�
1�.

We call a pair . QL; �/ as in (BO1) and (BO2) which satisfies (BO3) a descent object
in the presheaf Bun. Analogously we obtain for a morphism f W L �� L0 of line
bundles over M
(BM1) A morphism Qf WD ��f W QL �� QL0 in Bun.Y /.

(BM2) A commutative diagram

�0 B @�
0
Qf D @�

1
Qf B � (3.6)

of morphisms in Bun.Y Œ2�/.

Such a morphism Qf as in (BM1) obeying (BM2) is called a descent morphism in the
presheaf Bun.

Descent objects and descent morphisms for a given covering � form a category
Desc.� W Y �� M/ of descent data. What we described above is a functor

�� W Bun.M/ �� Desc.� W Y �� M/. (3.7)

The question arises whether every ‘local’ descent object corresponds to a ‘global’
object on M , i.e., whether the functor �� is an equivalence of categories.

The construction generalizes straightforwardly to any presheaf of categories F ,
and if the functor �� is an equivalence for all coverings � W Y �� M , the presheaf F

is called a sheaf of categories (or stack). Extending the gluing process from (2.2) to
non-trivial bundles shows that the presheaves Bun and Bunr are sheaves. In contrast,
the presheaves Buntriv and Buntrivr of trivial bundles are not sheaves, since gluing
of trivial bundles does in general not result in a trivial bundle. In fact the gluing
process (2.2) shows that every bundle can be obtained by gluing trivial ones. In short,
the sheaf Bunr of line bundles with connection is obtained by closing the presheaf
Buntrivr under descent.

3.2. Bundle gerbes. Our construction of line bundles started from trivial line bun-
dles with connection which are just 1-forms on M , and the fact that 1-forms can be
integrated along curves has lead us to the notion of holonomy. To arrive at a notion
of surface holonomy, we now consider a category of 2-forms, or rather a 2-category:
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An object is a 2-form ! 2�2.M/, called a trivial bundle gerbe with connection
and denoted by �! .
A 1-morphism � W ! �� !0 is a 1-form � 2 �1.M/ such that d� D !0 � !.
A 2-morphism � W � �� �0 is a smooth function � W M �� U.1/ such that
�i dlog.�/ D �0 � �.

There is also a natural pullback operation along maps, induced by pullback on
differential forms. The given data can be rewritten as a presheaf of 2-categories,
as there is a 2-category attached to each manifold. This presheaf should now be
closed under descent to obtain a sheaf of 2-categories. As a first step we complete the
morphism categories under descent. Since these are categories of trivial line bundles
with connections, we set

Hom.�! ;�!0/ WD Bunr
!0�!.M/, (3.8)

the category of hermitian line bundles with connection of fixed curvature !0 � !.
The horizontal composition is given by the tensor product in the category of bundles.
Finally, completing the 2-category under descent, we get the definition of a bundle
gerbe:

Definition 1. A bundle gerbe G (with connection) over M consists of the following
data: a covering � W Y �� M , and for the associated simplicial manifold

Y Œ4�
�������� Y

Œ3�
������ Y Œ2�

@1

��
@0 ��

Y
� �� M (3.9)

(GO1) an object �! of Grbtrivr.Y /: a 2-form ! 2 �2.Y /;
(GO2) a 1-morphism

L W @�
0�! �� @�

1�! (3.10)

in Grbtrivr.Y Œ2�/: a line bundle L with connection over Y Œ2�;

(GO3) a 2-isomorphism
� W @�

2L˝ @�
0L

�� @�
1L (3.11)

in Grbtrivr.Y Œ3�/: a connection-preserving morphism of line bundles over
Y Œ3�;

(GO4) an equality
@�
2� B .id˝ @�

0�/ D @�
1� B .@�

3�˝ id/ (3.12)

of 2-morphisms in Grbtrivr.Y Œ4�/.
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For later applications it will be necessary to close the morphism categories under
a second operation, namely direct sums. Closing the category of line bundles with
connection under direct sums leads to the category of complex vector bundles with
connection, i.e., we set

Hom.�! ;�!0/ WD VectBunr
!0�!.M/; (3.13)

where the curvature of these vector bundles is constrained to satisfy

1

n
tr.curv.L// D !0 � !; (3.14)

with n the rank of the vector bundle. Notice that this does not affect the definition of
a bundle gerbe, since the existence of the 2-isomorphism � restricts the rank of L to
be one.

As a next step, we need to introduce 1-morphisms and 2-morphisms between
bundle gerbes. 1-morphisms have to compare two bundle gerbes G and G 0. We
assume first that both bundle gerbes have the same covering Y �� M .

Definition 2. i) A 1-morphism between two bundle gerbes G D .Y; !;L;�/ and
G 0D .Y; !0; L0; �0/ over M with the same surjective submersion Y �� M consists
of the following data on the associated simplicial manifold:

Y Œ4�
�������� Y

Œ3�
������ Y Œ2�

@1

��
@0 ��

Y
� �� M: (3.15)

(G1M1) a 1-morphism A W �! �� �!0 in Grbtrivr.Y /: a rank-n hermitian vector
bundle A with connection of curvature 1

n
tr.curv.L//D!0 � !;

(G1M2) a 2-isomorphism˛ W L0˝@�
0A

�� @�
1A˝L in Grbtrivr.Y Œ2�/: a connection-

preserving morphism of hermitian vector bundles;

(G1M3) a commutative diagram

.id˝ �0/ B .@�
2˛ ˝ id/ B .id˝ @�

0˛/ D @�
1˛ B .�˝ id/ (3.16)

of 2-morphisms in Grbtrivr.Y Œ3�/.
ii) A 2-morphism between two such 1-morphisms .A; ˛/ and .A0; ˛0/ consists of
(G2M1) a 2-morphism ˇ W A �� A0 in Grbtrivr.Y /: a connection-preserving mor-

phism of vector bundles;

(G2M2) a commutative diagram

˛0 B .id˝ @�
0ˇ/ D .@�

1ˇ ˝ id/ B ˛ (3.17)

of 2-morphisms in Grbtrivr.Y Œ2�/.
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Since 1-morphisms are composed by taking tensor products of vector bundles, a
1-morphism is invertible if and only if its vector bundle is of rank one.

In order to define 1-morphisms and 2-morphisms between bundle gerbes with
possibly different coverings � W Y �� M and � 0 W Y 0 �� M , we pull all the data
back to a common refinement of these coverings and compare them there. We call
a covering 	 W Z �� M a common refinement of � and � 0 iff there exist maps
s W Z �� Y and s0 W Z �� Y 0 such that

Y

�
���

��
��

��
� Z
s�� s0

��

�

��

Y 0

� 0

����
��

��
��

M

(3.18)

commutes. An example of such a common refinement is the fibre product Z ´
Y�M Y 0 �� M , with the maps Z �� Y and Z �� Y 0 given by the projections.
The important point about a common refinement Z �� M is that the maps s and s0
induce simplicial maps

Y � Z��� �� Y 0� . (3.19)

For bundle gerbes G D .Y; !;L;�/ and G 0 D .Y 0; !0; L0; �0/ we obtain new bundle
gerbes with surjective submersionZ by pulling back all the data along the simplicial
maps s and s0. Explicitly,

GZ WD .Z; s�
0!; s

�
1L; s

�
2�/ and G 0

Z D .Z; s0�
0 !

0; s0�
1 L

0; s0�
2 �

0/:

Also morphisms can be refined by pulling them back.

Definition 3. i) A 1-morphism between two bundle gerbes G D .Y; !;L;�/ and
G 0D .Y 0; !0; L0; �0/ consists of a common refinement Z �� M of the coverings
Y �� M and Y 0 �� M and a morphism .A; ˛/ of the two refined gerbes GZ and G 0

Z .
ii)A 2-morphism between 1-morphisms mD .Z;A; ˛/ and m0D .Z0; A0; ˛0/ con-

sists of a common refinement W �� M of the coverings Z �� M and Z0 �� M
(respecting the projections to Y and Y 0, respectively) and a 2-morphism ˇ of the
refined morphisms mW and m0

W . In addition two such 2-morphisms .W; ˇ/ and
.W 0; ˇ0/ must be identified iff there exists a further common refinement V �� M
of W �� M and W 0 �� M , compatible with the other projections, such that the
refined 2-morphisms agree on V .

For a gerbe G D .Y; !;L;�/ and a refinement Z �� M of Y the refined gerbe
GZ is isomorphic to G . This implies that every gerbe is isomorphic to a gerbe defined
over an open covering Z WD F

i2I Ui . Furthermore we can choose the covering in
such a way that the line bundle over double intersections is trivial as well. When doing
so we obtain the familiar description of gerbes in terms of local data, reproducing
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formulas by [Al], [Ga1]. Extending this description to morphisms it is straightforward
to show that gerbes are classified by the so-called Deligne cohomologyH k.M;D.2//

in degree two:

�0.Grbr.M// Š H 2.M;D.2//: (3.20)

Analogously we get the classification of gerbes without connection as

�0.Grb.M// Š H 2.M;U.1// Š H 3.M;Z/. (3.21)

3.3. Surface holonomy. The holonomy of a trivial bundle gerbe �! over a closed
oriented surface † is by definition

Hol�! WD exp
�
2� i

Z
†

!
�
2 U.1/. (3.22)

If �! and �!0 are two trivial bundle gerbes over † such that there exists a 1-
isomorphism �! �� I!0 , i.e., a vector bundle L of rank one, we have an equality
Hol�! DHol�!0

because

Z
†

!0 �
Z
†

! D
Z
†

curv.L/ 2 Z. (3.23)

More generally, consider a bundle gerbe G with connection over a smooth mani-
fold M , and a smooth map

ˆ W † �� M (3.24)

defined on a closed oriented surface †. Since H 3.†;Z/ D 0, the pullback ˆ�G is
isomorphic to a trivial bundle gerbe. Hence one can choose a trivialization, i.e., a
1-isomorphism

T W ˆ�G
� �� �! (3.25)

and define the holonomy of G around ˆ by

HolG .ˆ/ WD Hol�! . (3.26)

In the same way as for the holonomy of a line bundle with connection, this definition

is independent of the choice of the 1-isomorphism T . Namely, if T 0W ˆ�G
� �� �!0

is another trivialization, we have a transition isomorphism

L WD T 0 B T �1 W �! � �� �!0 ; (3.27)

which shows the independence.
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3.4. Wess–Zumino terms. As we have seen in Section 2, the holonomy of a line
bundle with connection supplies a term in the action functional of a classical charged
particle, describing the coupling to a gauge field whose field strength is the curvature of
the line bundle. Analogously, the surface holonomy of a bundle gerbe with connection
defines a term in the action of a classical charged string. Such a string is described
in terms of a smooth map ˆ W † �� M . The exponentiated action functional of the
string is (compare (2.11))

eiSŒˆ� D eiSkinŒˆ� HolG .ˆ/; (3.28)

where SkinŒˆ� is a kinetic term which involves a conformal structure on †. Physical
models whose fields are maps defined on surfaces are called (non-linear) sigma mod-
els, and the holonomy term is called a Wess–Zumino term. Such terms are needed in
certain models in order to obtain quantum field theories that are conformally invariant.

A particular class of sigma models with Wess–Zumino term is given by WZW
(Wess–Zumino–Witten) models. For these the target spaceM is a connected compact
simple Lie group G, and the curvature of the bundle gerbe G is an integral multiple
of the canonical 3-form

H D h
 ^ Œ
 ^ 
�i 2 �3.G/
(
 is the left-invariant Maurer–Cartan form on G, and h � ; � i the Killing form of the
Lie algebra g of G). WZW models have been a distinguished arena for the interplay
between Lie theory and the theory of bundle gerbes [Ga1], [GR]. This has lead to
new insights both in the physical applications and in the underlying mathematical
structures. Some of these will be discussed in the following sections.

Defining Wess–Zumino terms as the holonomy of a bundle gerbe with connection
allows one in particular to explain the following two facts.

The Aharonov–Bohm effect: This occurs when the bundle gerbe has a flat connec-
tion, i.e., its curvatureH 2�3.M/ vanishes. This does not mean, though, that the
bundle gerbe is trivial, since its class inH 3.M;Z/may be pure torsion. In partic-
ular, it can still have non-constant holonomy, and thus a non-trivial Wess–Zumino
term.

An example for the Aharonov–Bohm effect is the sigma model on the 2-torus
T DS1 � S1. By dimensional reasons, the 3-form H vanishes. Nonetheless,
since H 2.T;U.1//DU.1/, there exists a whole family of Wess–Zumino terms
parameterized by an angle, of which only the one with angle zero is trivial.

Discrete torsion: The set of isomorphism classes of bundle gerbes with connection
that have the same curvature H is parameterized by H 2.M;U.1// via the map

H 2.M;U.1// �� Tors.H 3.M;Z//. (3.29)
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If this group is non-trivial, there exist different Wess–Zumino terms for one and
the same field strength H ; their difference is called ‘discrete torsion’.

An example for discrete torsion is the level-k WZW model on the Lie group
PSO.4n/. Since H 2.PSO.4n/;U.1//DZ2, there exist two non-isomorphic bun-
dle gerbes with connection having equal curvature.

4. The representation theoretic formulation of RCFT

4.1. Sigma models. Closely related to surface holonomies are novel geometric
structures that have been introduced for unoriented surfaces, for surfaces with bound-
ary, and for surfaces with defect lines. These structures constitute the second theme
of this contribution, extending the construction of gerbes and surface holonomy via
descent; they will be discussed in Sections 5, 6 and 7.

These geometric developments were in fact strongly inspired by algebraic and
representation theoretic results in two-dimensional quantum field theories. To ap-
preciate this connection we briefly review in this section the relation between spaces
of maps ˆ W † �� M , as they appear in the treatment of holonomies, and quantum
field theories.

As already indicated in Section 3.4, a classical field theory, the (non-linear) sigma
model, on a two-dimensional surface †, called the world sheet, can be associated to
the space of smooth maps ˆ from † to some smooth manifold M , called the target
space. Appropriate structure on the target space determines a Lagrangian for the
field theory on †. Geometric structure on M , e.g. a (pseudo-) Riemannian metric
G, becomes, from this point of view, for any given map ˆ a background function
G.ˆ.x// for the field theory on †.

Three main issues will then lead us to a richer structure related to surface holono-
mies:

In string theory (where the world sheet † arises as the surface swept out by a
string moving in M ) and in other applications as well, one also encounters sigma
models on world sheets† that have non-empty boundary. We will explain how the
geometric data relevant for encoding boundary conditions – so called D-branes –
can be derived from geometric principles.

String theories of type I, which form an integral part of string dualities, involve
unoriented world sheets. In string theory it is therefore a fundamental problem to
exhibit geometric structure on the target space that provides a notion of holonomy
for unoriented surfaces.

An equally natural structure present in quantum field theory are topological defect
lines, along which correlation functions of bulk fields can have a branch-cut. In
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specific models these can be understood, just like boundary conditions, as contin-
uum versions of corresponding structures in lattice models of statistical mechanics.
(For instance, in the lattice version of the Ising model a topological defect is pro-
duced by changing the coupling along all bonds that cross a specified line from
ferromagnetic to antiferromagnetic.)

Sigma models have indeed been a significant source of examples for quantum field
theories, at least on a heuristic level. Conversely, having a sigma model interpretation
for a given quantum field theory allows for a geometric interpretation of quantum field
theoretic quantities.

A distinguished subclass of theories in which this relationship between quantum
field theory and geometry can be studied are two-dimensional conformal field the-
ories, or CFTs, for short, and among these in particular the rational conformal field
theories for which there exists a rigorous representation theoretic approach. The
structures appearing in that approach in the three situations mentioned above suggest
new geometric notions for conformal sigma models. Below we will investigate these
notions with the help of standard geometric principles. Before doing so we formulate,
in representation theoretic terms, the relevant aspects of the quantum field theories in
question.

4.2. Rational conformal field theory. The conformal symmetry, together with fur-
ther, so-called chiral, symmetries of a CFT can be encoded in the structure of a
conformal vertex algebra V. For any conformal vertex algebra one can construct
(see e.g. [FrB]) a chiral CFT; in mathematical terms, a chiral CFT is a system of
conformal blocks, i.e., sheaves over the moduli spaces of curves with marked points.
These sheaves of conformal blocks are endowed with a projectively flat connection,
the Knizhnik–Zamolodchikov connection, which in turn furnishes representations of
the fundamental groups of the moduli spaces, i.e., of the mapping class groups.

Despite the physical origin of its name, a chiral conformal field theory is mathe-
matically rigorous. On the other hand, from the two-dimensional point of view it is,
despite its name, not a conventional quantum field theory, as one deals with (sections
of) bundles instead of local correlation functions. In particular, it must not be con-
fused with a full local conformal field theory, which is the relevant structure to enter
our discussion of holonomies.

Chiral conformal field theories are particularly tractable when the vertex algebra
V is rational in the sense of [Hu, Theorem 2.1]. Then the representation category C

of V is a modular tensor category, and the associated chiral CFT is a rational chiral
CFT , or chiral RCFT. In this situation, we can use the tools of three-dimensional
topological quantum field theory (TFT). A TFT is, in short, a monoidal functor tftC

[Tu, Chapter IV.7] that associates a finite-dimensional vector space tftC .E/ to any
(extended) surface E, and a linear map from tftC .E/ to tftC .E0/ to any (extended)
cobordism M W E �� E0.
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More precisely, a three-dimensional TFT is a projective monoidal functor from a
category CobC of decorated cobordisms to the category of finite-dimensional com-
plex vector spaces. The modular tensor category C provides the decoration data
for CobC . Specifically, the objects E of CobC are extended surfaces, i.e.,1 compact
closed oriented two-manifolds with a finite set of embedded arcs, and each of these
arcs is marked by an object of C . A morphism E �� E0 is an extended cobordism,
i.e., a compact oriented three-manifold M with @MD .�E/ t E0, together with an
oriented ribbon graph �M in M such that at each marked arc of .�E/ t E0 a ribbon
of �M is ending. Each ribbon of �M is labeled by an object of C , while each coupon
of �M is labeled by an element of the morphism space of C that corresponds to the
objects of the ribbons which enter and leave the coupon. Composition in CobC is
defined by gluing, the identity morphism idE is the cylinder over E, and the tensor
product is given by disjoint union of objects and cobordisms.

A topological field theory furnishes, for any extended surface, a representation of
the mapping class group. Our approach relies on the fundamental conjecture (which is
largely established for a broad class of models) that, for C the representation category
of a rational vertex algebra V, the mapping class group representation given by tftC

is equivalent to the one provided by the Knizhnik–Zamolodchikov connection on the
conformal blocks for the vertex algebra V.

4.3. The TFT construction of full RCFT. Let us now turn to the discussion of full
local conformal field theories, which are the structures to be compared to holonomies.
A full CFT is, by definition, a consistent system of local correlation functions that
satisfy all sewing constraints (see e.g. [FjFRS2, Definition 3.14]). According to the
principle of holomorphic factorization, every full RCFT can be understood with the
help of a corresponding chiral CFT. The relevant chiral CFT is, however, not defined
on world sheets † (which may be unoriented or have a non-empty boundary), but
rather on their complex doubles y†, which can be given the structure of extended
surfaces; this affords a geometric separation of left- and right-movers. The double
y† of † is, by definition, the orientation bundle over † modulo identification of the
two points in the fibre over each boundary point of †. The world sheet † can be
obtained from y† as the quotient by an orientation-reversing involution � . To give
some examples, when† is closed and orientable, then y† is just the disconnected sum
y†D†t�† of two copies of † with opposite orientation, and the involution � just
exchanges these two copies; the double of both the disk and the real projective plane
is the two-sphere (with � being given, in standard complex coordinates, by z � �� z�1
and by z � �� �z�1, respectively); and the double of both the annulus and the Möbius
strip is a two-torus. Further, when † comes with field insertions, that is, embedded

1Here various details are suppressed. Detailed information, e.g. the precise definition of a ribbon graph or
the reason why tftC is only projective, can be found in many places, such as [Tu], [BK], [KRT] or [FFFS,
Section 2.5–2.7].
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arcs labeled by objects of either C (for arcs on @†) or pairs of objects of C (for arcs in
the interior of †), then corresponding arcs labeled by objects of C are present on y†.

Given this connection between the surfaces relevant to chiral and full CFT, the
relationship between the chiral and the full CFT can be stated as follows: A correlation
function C.†/ of the full CFT on † is a specific element in the appropriate space of
conformal blocks of the chiral CFT on the double y†. A construction of such elements
has been accomplished in [FRS1], [FRS2], [FRS3], [FjFRS1]. The first observation
is that they can be computed with the help of the corresponding TFT, namely as

C.†/ D tftC .M†/ 1 2 tftC .y†/: (4.1)

Here M† � ;
M† �� y†, the connecting manifold for the world sheet †, is an ex-

tended cobordism that is constructed from the data of †. Besides the category C ,
the specification of the vector C.†/ needs a second ingredient: a (Morita class of a)
symmetric special Frobenius algebra A in C .

Let us give some details 2 of the construction of C.†/.

As a three-manifold, M† is the interval bundle over†modulo a Z2-identification
of the intervals over @†. Explicitly,

M† D
�y† � Œ�1; 1��=� with .Œx; or2�; t / � .Œx;�or2�;�t /: (4.2)

It follows in particular that @M†D y† and that † is naturally embedded in M† as

{ W † ' �� † � ftD0g � � �� M†. Indeed, {.†/ is a deformation retract of M†, so
that the topology of M† is completely determined by the one of †.

A crucial ingredient of the construction of the ribbon graph �M†
in M† is a (dual)

oriented triangulation � of the submanifold {.†/ of M†. This triangulation is
labeled by objects and morphisms of C . It is here that the Frobenius algebra A
enters: Each edge of � n {.@†/ is covered with a ribbon labeled by the object
A of C , while each (three-valent) vertex is covered with a coupon labeled by
the multiplication morphism m2HomC .A˝ A;A/. In addition, whenever these
assignments in themselves would be in conflict with the orientations of the edges, a
coupon with morphism in either HomC .A˝A; 1/ or HomC .1; A˝A/ is inserted.
Such morphisms are part of the data for a Frobenius structure on A. Assuming,
for now, that the world sheet† is oriented, independence of C.†/ from the choice
of triangulation � amounts precisely to the statement that the object A carries the
structure of a symmetric special Frobenius algebra.

If† has non-empty boundary, the prescription for � is amended as follows. Each
edge e of � \ {.@†/ is covered with a ribbon labeled by a (left, say) A-module

2 For another brief summary, with different emphasis, see Section 7 of [FRS4]. An in-depth exposition,
including for instance the relevance of various orientations, can e.g. be found in Appendix B of [FjFRS1].
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N DN.e/, while each vertex lying on {.@†/ is covered with a coupon that has
incomingN - andA-ribbons as well as an outgoingN -ribbon and that is labeled by
the representation morphism N 2HomC .A˝N;N/. The physical interpretation
of theA-moduleN is as the boundary condition that is associated to a component of
@†. That the objectN of C labeling a boundary condition carries the structure of an
A-module and that the morphismN is the corresponding representation morphism
is precisely what is required (in addition toA being a symmetric special Frobenius
algebra) in order to get independence of C.†/ from the choice of triangulation � .

If † is unoriented, then as an additional feature one must ensure independence of
C.†/ from the choice of local orientations of†. As shown in [FRS2], this requires
an additional structure on the algebra A, namely the existence of a morphism
� 2HomC .A;A/ that is an algebra isomorphism from the opposite algebra Aopp

to A and squares to the twist of A, i.e., satisfies

� B � D �; � Bm D m B cA;A B .� ˝ �/; � B � D 
A; (4.3)

where �2HomC .1; A/, 
A 2HomC .A;A/ and cA;A 2HomC .A˝A;A˝A/ de-
note the unit morphism, the twist, and the self-braiding of A, respectively. This
way A becomes a braided version of an algebra with involution. A symmetric
special Frobenius algebra endowed with a morphism � satisfying (4.3) is called a
Jandl algebra.

In the presence of topological defect lines on † a further amendment of the pre-
scription is in order. The defect lines partition † into disjoint regions, and to the
regions to the left and to the right of a defect line one may associate different (sym-
metric special Frobenius) algebrasAl andAr , such that the part of the triangulation
� in one region is labeled by the algebraAl , while the part of � in the other region
is labeled by Ar . The defect lines are to be regarded as forming a subset �D of �
themselves; each edge of �D is covered with a ribbon labeled by some object B
of C , while each vertex of � lying on �D is covered with a coupon labeled by a
morphism 2HomC .Al ˝ B;B/, respectively 2HomC .B ˝ Ar ; B/. Consis-
tency requires that these morphisms endow the object B of C that labels a defect
line with the structure of an Al -Ar -bimodule. (Below we will concentrate on the
case Al DAr DW A, so that we deal with A-bimodules.)

There are also rules for the morphisms of C that label bulk, boundary and defect
fields, respectively.

The prescription summarized above allows one to construct the correlator (4.1)
for any arbitrary world sheet†. The so obtained correlators can be proven [FjFRS1]
to satisfy all consistency conditions that the correlators of a CFT must obey. Thus,
specifying the algebraA is sufficient to obtain a consistent system of correlators. The
assignment of a (suitably normalized) correlator C.†/ to † actually depends only
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on the Morita class of the symmetric special Frobenius algebra A. Conversely, any
consistent set of correlators can be obtained this way [FjFRS2].

Topological defects admit a number of interesting operations. In particular, they
can be fused – on the algebraic side this corresponds to the tensor product B ˝A B 0
of bimodules. The bimodule morphisms HomAjA.B ˝A B 0; B 00/ appear as labels of
vertices of defect lines. Defect lines can also be fused to boundaries; depending on
the relative situation of the defect line and the boundary, this is given on the algebraic
side by the tensor product B˝AN of a bimodule with a left module, or by the tensor
product N ˝A B with a right module, respectively.

In the table below we collect some pertinent aspects of the construction and exhibit
the geometric structures on the sigma model target spaceM that correspond to them.

geometric situation

ˇ̌ˇ̌ˇ algebraic structure

ˇ̌ˇ̌ˇ geometric structure on Mˇ̌ˇ̌ˇ in the category C

ˇ̌ˇ̌ˇˇ̌ˇ̌ˇ† closed oriented

ˇ̌ˇ̌ˇ symmetric special

ˇ̌ˇ̌ˇ bundle gerbe Gˇ̌ˇ̌ˇ Frobenius algebra A

ˇ̌ˇ̌ˇ with connection

† unoriented

ˇ̌ˇ̌ˇ Jandl structure

ˇ̌ˇ̌ˇ Jandl gerbeˇ̌ˇ̌ˇ � W Aopp �� A

ˇ̌ˇ̌ˇ
boundary condition

ˇ̌ˇ̌ˇ A-module

ˇ̌ˇ̌ˇ G -D-brane

topological defect line

ˇ̌ˇ̌ˇ A-bimodule

ˇ̌ˇ̌ˇ G -bi-brane

Jandl gerbes, D-branes and bi-branes will be presented in Sections 5, 6 and 7, respec-
tively.

5. Jandl gerbes: Holonomy for unoriented surfaces

We have defined trivial bundle gerbes with connection as 2-forms because 2-forms
can be integrated over oriented surfaces. Closing the 2-category of trivial bundle
gerbes under descent has lead us to bundle gerbes. Jandl gerbes are bundle gerbes
with additional structure, whose holonomy is defined for closed surfaces without
orientation, even for unorientable surfaces [SSW]. In particular, Jandl gerbes pro-
vide Wess–Zumino terms for unoriented surfaces. Comparing the geometric data
with the representation theoretic ones from Section 4, bundle gerbes with connection
correspond to Frobenius algebras, while Jandl gerbes correspond to Jandl algebras.

The appropriate quantity that has to replace 2-forms in order to make integrals over
an unoriented surface well-defined is a 2-density. Every surface † has an oriented
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double covering pr W y† �� † that comes with an orientation-reversing involution
� W y† �� y† which exchanges the two sheets and preserves the fibres. A 2-density
on † is a 2-form ! 2�2.y†/ such that

��! D �!. (5.1)

A 2-density on † can indeed be integrated without requiring † to be oriented.
One chooses a dual triangulation � of † and, for each face f of � , one of its two
preimages under pr W y† �� †, denoted for. Then one setsZ

†

! WD
X
f

Z
for

!. (5.2)

Owing to the equality (5.1) the so defined integral does not depend on the choice of
the preimages for nor on the choice of triangulation � . If † can be endowed with
an orientation, the preimages for can be chosen in such a way that prjfor W for

�� f
is orientation-preserving. Then the integral of a 2-density !� coincides with the
ordinary integral of the 2-form .

Next we want to set up a 2-category whose objects are related to 2-densities. To
this end we use the 2-category of trivial bundle gerbes introduced in Section 3.2.
Thus, one datum specifying an object is a 2-form ! 2�2.y†/. In the context of 2-
categories, demanding strict equality as in (5.1) is unnatural. Instead, we replace
equality by a 1-morphism

� W ��! �� �!, (5.3)

i.e., a 1-form �2�1.y†/ such that ��!D�!Cd�. As we shall see in a moment, we
must impose equivariance of the 1-morphism up to some 2-morphism, i.e., we need
in addition a 2-isomorphism

� W ��� �� �, (5.4)

in other words a smooth function � W M �� U.1/ such that �D ����i dlog�. This
2-isomorphism, in turn, must satisfy the equivariance relation

��� D ��1. (5.5)

Thus the objects of the 2-category are triples .!; �; �/. Let us verify that they still
lead to a well-defined notion of holonomy. We choose again a dual triangulation � of
† as well as a preimage for for each of its faces. The expression (5.2) is now no longer
independent of these choices, because every change creates a boundary term in the
integrals of the 1-form �. To resolve this problem, we involve orientation-reserving
edges: these are edges in � whose adjacent faces have been lifted to opposite sheets.
Since � is a dual triangulation, its orientation-reversing edges form a disjoint union
of piecewise smooth circles c � †. For each of these circles, we choose again a
preimage cor. It may not be possible to choose cor to be closed, in which case there
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exists a point pc 2† which has two preimages in cor. We choose again one of these
preimages, denoted pcor. Then

Hol!;�;� WD exp

�
2� i

�X
f

Z
for

! C
X
c

Z
cor

�
��Y

c

�.pcor/ (5.6)

is independent of the choice of the lifts for, cor and por, and is independent of the
choice of the triangulation.

More generally, let ManC be the category of smooth manifolds with involution,
whose morphisms are equivariant smooth maps. (The involution is not required to
act freely.) In a first step, we want to define a presheaf

JantrivrW Manopp
C �� Cat (5.7)

of trivial Jandl gerbes. For .M; k/ a smooth manifold with involution k W M �� M , a
trivial Jandl gerbe involves as a first datum a trivial bundle gerbe �! , but as explained
in Section 1 we replace the 1-morphism � from (5.3) by a line bundle L overM with
connection of curvature

curv.L/ D �! � k�!, (5.8)

and we replace the 2-isomorphism � from (5.4) by an isomorphism � W k�L �� L
of line bundles with connection, still subject to the condition (5.5). Notice that the
pair .L; �/ is nothing but a k-equivariant line bundle with connection overM . After
this step, we still have the holonomy (5.6), which now looks like

Hol�! ;L;� D exp

�
2� i

X
f

Z
for

!

� Y
c

Hol NL.c/, (5.9)

where we have used the fact that, since the action of hki on cor is free, the k-equivariant
line bundle .L; �/ descends to a line bundle NL with connection over the quotient
cD cor=hki. This formula is now manifestly independent of the choices of cor and
pcor. Its independence under different choices of faces for is due to (5.8).

Now we close the presheaf Jantrivr.M/ under descent to allow for non-trivial
bundle gerbes. To do so, we need to introduce duals of bundle gerbes, 1-morphisms
and 2-isomorphisms see [Wa1]; for the sake of brevity we omit these definitions here.

Definition 4. Let M be a smooth manifold with involution k W M �� M . A Jandl
gerbe is a bundle gerbe G over M together with a 1-isomorphism A W k�G �� G �
to the dual gerbe and a 2-isomorphism ' W k�A �� A� that satisfies k�'D'��1.

Jandl gerbes form a sheaf

JanrW Manopp
C �� Cat. (5.10)
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The gluing axiom for this sheaf has been proved in [GSW2]. We remark that the
1-isomorphism A may be regarded as the counterpart of a Jandl structure � on the
Frobenius algebra A that corresponds to the bundle gerbe G , if one accepts that the
dual gerbe plays the role of the opposed algebra.

Suppose we are given a Jandl gerbe J over a smooth manifoldM with involutionk.
If † is a closed surface, possibly unoriented and possibly unorientable, and

ˆ W .y†; �/ �� .M; k/ (5.11)

is a morphism in ManC, we can pull back the Jandl gerbe J fromM to y†. As in the
case of ordinary surface holonomy, it then becomes trivial as a gerbe for dimensional
reasons, and we can choose an isomorphism

T W ˆ�J
� �� .�! ; L; �/. (5.12)

Then we define
HolJ.ˆ/ WD Hol�! ;L;� . (5.13)

This is independent of the choice of T , because any other choice T 0 gives rise to an
isomorphism T 0BT �1 in Jantrivr.y†; �/ under which the holonomy stays unchanged.

We have now seen that every Jandl gerbe J over a smooth manifold M with
involution k has holonomies for unoriented closed surfaces and equivariant smooth
maps ˆ W y† �� M . We thus infer that sigma models on M whose fields are such
maps, are defined by Jandl gerbes J over M rather than by ordinary bundle gerbes
G . This makes it an interesting problem to classify Jandl gerbes.

Concerning the existence of a Jandl gerbe J with underlying bundle gerbe G , the
1-isomorphism A W k�G �� G � requires the curvature H of G to satisfy

k�H D �H . (5.14)

Apart from this necessary condition, there is a sequence of obstruction classes
[GSW2]. Reduced to the case that M is 2-connected, there is one obstruction class
o.G /2H 3.Z2;U.1//, the group cohomology of Z2 with coefficients in U.1/, on
which Z2 acts by inversion. If o.G / vanishes, then inequivalent Jandl gerbes with
the same underlying bundle gerbe G are parameterized by H 2.Z2;U.1//.

These results can be made very explicit in the case of WZW models, for which
the object in ManC is a connected compact simple Lie group G equipped with an
involution k W G �� G acting as

k W g � �� .zg/�1 (5.15)

for a fixed ‘twist element’ z 2Z.G/. It is easy to see that the 3-form Hk 2�3.G/,
which is the curvature of the level-k bundle gerbes G over G, satisfies the necessary
condition (5.14). All obstruction classes o.G / and all parameterizing groups have
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been computed in dependence of the twist element z and the level k [GSW1]. The
numbers of inequivalent Jandl gerbes range from two (for simply connected G, per
level and involution) to sixteen (for PSO.4n/, for every even level).

Most prominently, there are two involutions on SU.2/, namely g � �� g�1 and
g

� �� �g�1, and for each of them two inequivalent Jandl gerbes per level. On
SO.3/ there is only a single involution, but the results of [SSW], [GSW1] exhibit four
inequivalent Jandl gerbes per even level. This explains very nicely why SU.2/ and
SO.3/ have the same number of orientifolds, despite a different number of involutions.
These results reproduce those of the algebraic approach (see e.g. [FRS2]); for the
precise comparison, Jandl structures related by the action of the trivial line bundle
with either of its two equivariant structures have to be identified.

6. D-branes: Holonomy for surfaces with boundary

We now introduce the geometric structure needed to define surface holonomies and
Wess–Zumino terms for surfaces with boundary. When one wants to define holonomy
along a curve that is not closed, one way to make the parallel transport group-valued
is to choose trivializations at the end points. To incorporate these trivializations into
the background, one can choose a submanifold PD �M together with a trivialization
Ej PD �� 1A. Admissible paths � W Œ0; 1� �� M are then required to start and end on
this submanifold, �.0/; �.1/2 PD . The same strategy has proven to be successful for
surfaces with boundary.

Definition 5. Let G be a bundle gerbe with connection over M . A G -D-brane is a
submanifold PD �M together with a 1-morphism

D W G j PD �� �! (6.1)

to a trivial bundle gerbe �! given by a two-form ! on PD .

The morphism D is called a G -module, or twisted vector bundle. Notice that if
H is the curvature of G , the 1-morphism D enforces the identity

H j PD D d!. (6.2)

This equality restricts the possible choices of the world volume PD of the G -D-brane.
Suppose that† is an oriented surface, possibly with boundary, andˆ W † �� M

is a smooth map. We require that ˆ.@†/ � PD . As described in Section 3.3, we
choose a trivialization T W ˆ�G �� ��. Its restriction to @† and the G -module D

define a 1-morphism

��
ˇ̌
@†

T �1j
@† �� ˆ�G

ˇ̌
@†
D ˆ�.G

ˇ̌
PD/

ˆ�.D/ �� ˆ�.�!/. (6.3)
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According to the definition (3.13), this 1-morphism is nothing but a hermitian vector
bundle E with connection over @† and its curvature is curv.E/D! � . Then we
consider

HolG ;D.ˆ/ WD exp
�
2� i

Z
†


�

tr.HolE .@†//, (6.4)

where the trace makes the holonomy of E independent of the choice of a parameter-
ization of @†. This expression is independent of the choice of the trivialization T :
if T 0W G �� ��0 is another one and E 0 is the corresponding vector bundle, we have
the transition isomorphism L from (3.27) with curvature 0� , and an isomorphism
E 0 ˝ L Š E. It follows that

exp

�
2� i

Z
†



�
tr.HolE .@†// D exp

�
2� i

�Z
†

0 � curv.L/

��
tr.HolE 0˝L.@†//;

(6.5)
and on the right hand side the unprimed quantities cancel by Stokes’ theorem.

Important results on D-branes concern in particular two large classes of models,
namely free field theories and again WZW theories. The simplest example of a
free field theory is the one of a compactified free boson, in which M is a circle
S1R Š R mod 2�RZ of radius R. As is well known, there are then in particular

two distinct types of D-branes: D0-branes D
.0/
x , whose support is localized at a

position x 2S1R, and D1-branes D
.1/
˛ , whose world volume is all of S1R and which are

characterized by a Wilson line ˛ 2R mod 1
2�R

Z, corresponding to a flat connection
on S1R.

For WZW theories, which are governed by a bundle gerbe G over a connected
compact simple Lie groupG, preserving the non-abelian current symmetries puts ad-
ditional constraints on the admissible D-branes: their support PD must be a conjugacy
class Ch of a group element h2G. This can e.g. be seen by studying the scattering
of bulk fields in the presence of the D-brane. On such conjugacy classes one finds a
canonical 2-form !h 2�2.Ch/. Additionally, the 1-morphism D W G jCh �� �!h of
a symmetric D-brane must satisfy a certain equivariance condition [Ga2]. Interest-
ingly, only on those conjugacy classes Ch for which

h D exp.2� i ˛C�
kCg_

/; (6.6)

with ˛ an integrable highest weight, admit such 1-morphisms. Here  denotes the
Weyl vector and g_ the dual Coxeter number of the Lie algebra g of G. Thus in
particular the possible world volumes of symmetric D-branes form only a discrete
subset of conjugacy classes.

We finally remark that the concepts of D-branes and Jandl gerbes can be merged
[GSW2]. The resulting structures provide holonomies for unoriented surfaces with
boundary, and can be used to define D-branes in WZW orientifold theories.



Bundle gerbes and surface holonomy 189

7. Bi-branes: Holonomy for surfaces with defect lines

7.1. Gerbe bimodules and bi-branes. In the representation theoretic approach to
rational conformal field theory, boundary conditions and defect lines are described
as modules and bimodules, respectively. The fact that the appropriate target space
structure for describing boundary conditions, D-branes, is related to gerbe modules,
raises the question of what the appropriate target space structure for defect lines
should be. The following definition turns out to be appropriate.

Definition 6. Let G1 and G2 be bundle gerbes with connection over M1 and M2,
respectively. A G1-G2-bi-brane is a submanifold PB � M1 � M2 together with a
.p�
1G1/j PB-.p�

2G2/j PB-bimodule, i.e., with a 1-morphism

B W .p�
1G1/j PB �� .p�

2G2/j PB ˝ �$ (7.1)

with �$ a trivial bundle gerbe given by a two-form $ on PB.

Similarly as in (6.2) it follows that the two-form $ on PB obeys

p�
1H j PB D p�

2H j PB C d$ . (7.2)

We call PB the world volume and$ the curvature of the bimodule. With the appropri-
ate notion of duality for bundle gerbes (see Section 1.4 of [Wa1]), a G1-G2-bimodule
is the same as a .G1˝G �

2 /-module. For a formulation in terms of local data, see (B.8)
of [FSW].

As an illustration, consider again the free boson and WZW theories, restricting
attention to the case M1DM2. For the free boson compactified on a circle S1R of
radiusR, one finds that the world volume of a bi-brane is a submanifold PBx � S1R�S1R
of the form

PBx;˛ WD f.y; y�x/ j y 2S1Rg (7.3)

with x 2S1R. The submanifold PBx;˛ has the topology of a circle and comes with a
flat connection, i.e., with a Wilson line ˛. Thus the bi-branes of a compactified free
boson are naturally parameterized by a pair .x; ˛/ taking values in two dual circles
that describe a point on S1R and a Wilson line.

In the WZW case, for which the target space is a compact connected simple Lie
group G, a scattering calculation [FSW] similar to the one performed for D-branes
indicates that the world volume of a (maximally symmetric) bi-brane is a biconjugacy
class

PBh;h0 WD ˚.g; g0/2G �G j 9 x1; x2 2G: gD x1hx�1
2 , g0D x1h0x�1

2

� � G �G
(7.4)
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of a pair .h; h0/ of group elements satisfying h .h0/�1 2Ch˛ with h˛ as given in
(6.6). The biconjugacy classes carry two commuting G-actions, corresponding to
the presence of two independent conserved currents in the field theory. Further, a
biconjugacy class can be described as the preimage

PBh;h0 D Q��1.Chh0�1/ D ˚.g; g0/2G �G j gg0�1 2Chh0�1

�
(7.5)

of the conjugacy class Chh0�1 under the map

Q� W G �G 3 .g1; g2/ � �� g1g
�1
2 2 G. (7.6)

Finally, the relevant two-form on PBh;h0 is

$h;h0 WD Q��!hh0�1 � k
2
hp�
1
 ^ p�

2
i: (7.7)

Here k is the level, 
 is the left-invariant Maurer–Cartan form,pi are the projections to
the factors ofG�G, and !h is the canonical 2-form (see Section 6) on the conjugacy
class Ch. One checks that $h;h0 is bi-invariant and satisfies (7.2).

Examples of symmetric bi-branes can be constructed from symmetric D-branes
using a multiplicative structure on the bundle gerbe G [Wa2]. Another important
class of examples are Poincaré line bundles. These describe T-dualities; an elementary
relation between T-duality and Poincaré line bundles is provided [SaS] by the equation
of motion [RS] in the presence of defects.

7.2. HolonomyandWess–Zumino term for defects. The notion of bi-brane allows
one in particular to define holonomy also for surfaces with defect lines.

The simplest world sheet geometry involving a defect line consists of a closed
oriented world sheet † together with an embedded oriented circle S � † that sepa-
rates the world sheet into two components,†D†1[S †2. Assume that the defect S
separates regions that support conformally invariant sigma models with target spaces
M1 and M2, respectively, and consider maps �i W †i �� Mi for i 2 f1; 2g such that
the image of

�S W S �� M1 �M2

s
� �� .�1.s/; �2.s//

(7.8)

is contained in the submanifold PB of M1 �M2. The orientation of †i is the one
inherited from the orientation of †, and without loss of generality we take @†1DS
and @†2D�S .

We wish to find the Wess–Zumino part of the sigma model action, or rather the
corresponding holonomy HolG1;G2;B , that corresponds to having bundle gerbes G1
and G2 overM1 andM2 and a G1-G2-bi-brane B. The pullback of the bimodule (7.1)
along the map �S W S �� PB gives a .��

1G1/jS -.��
2G2/jS -bimodule

��
SB W .��

1G1/jS �� .��
2G2/jS ˝ ���

S
$ . (7.9)
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The pullback bundle gerbes ��
i Gi over †i are trivializable for dimensional reasons,

and a choice Ti W ��
i Gi

�� �� of trivializations for two-forms i on †i produces a
vector bundle E over S . We then define

HolG1;G2;B.†; S/ WD exp

�
2� i

Z
†1

1

�
exp

�
2� i

Z
†2

2

�
tr.HolE .S// 2 C

(7.10)
to be the holonomy in the presence of the bi-brane B. As shown in Appendix B.3 of
[FSW], for similar reasons as in the case of D-branes the number HolG1;G2;B.†; S/
is independent of the choice of the trivializations T1 and T2.

7.3. Fusion of defects. In the field theory context of section 4 there are natural
notions of the fusion of a defect (an A-bimodule) with a boundary condition (a left
A-module), yielding another boundary condition, and of the fusion of two defects,
yielding another defect. Both of these are provided by the tensor product over the
relevant Frobenius algebra A. These representation theoretic notions of fusion have
a counterpart on the geometric side as well.

Consider first the fusion of a defect with a boundary condition. We allow for the
general situation of a defect described by an M1-M2-bi-brane with different target
spacesM1 andM2. Thus take anM1-M2-bi-brane with world volume PB 	M1�M2

and anM2-D-brane with world volume PD 	M2. The action of correspondences on
sheaves suggests the following ansatz for the world volume of the fusion product:

.B ?D/P WD p1
� PB \ p�1

2 . PD/
�

(7.11)

with pi the projection M1 �M2
�� Mi . The corresponding ansatz for the fusion

of an M1-M2-bi-brane B of world volume PB with an M2-M3-bi-brane B 0 of world
volume PB 0

uses projections pij from M1 �M2 �M3 to Mi �Mj :

.B ?B 0/P WD p13
�
p�1
12 .
PB/ \ p�1

23 .
PB 0
/
�
: (7.12)

In general one obtains this way only subsets, rather than submanifolds, ofM1 and
M1 �M3, respectively. On a heuristic level one would, however, expect that owing
to quantization of the branes a finite superposition of branes is selected, which should
then reproduce the results obtained in the field theory setting.

We illustrate this again with the two classes of models already considered, i.e., free
bosons and WZW theories, again restricting attention to the case M1DM2. First,
for the theory of a compactified free boson, the D-brane is of one of the types D

.0/
x

or D
.1/
˛ (see Section 6) and the bi-brane world volume is of the form PBx;˛ given in

(7.3). For D-branes of type D
.0/
x the prescription (7.11) thus yields

B.x;˛/ ?D.0/
y D D

.0/
xCy : (7.13)
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For the fusion of a bi-brane B.x;˛/ and a D1-brane D
.1/

ˇ
, one must take the flat line

bundle on the bi-brane into account. We first pull back the line bundle on PD.1/

ˇ along

p2 to a line bundle on S1R � S1R, then restrict it to PB.x;˛/, and finally tensor this
restriction with the line bundle on PB.x;˛/ described by the Wilson line ˛. This results
in a line bundle with Wilson line ˛Cˇ on the bi-brane world volume, which in turn
can be pushed down along p1 to a line bundle on S1R, so that

B.x;˛/ ?D
.1/

ˇ
D D

.1/

˛Cˇ : (7.14)

In short, the fusion with a defect B.x;˛/ acts on D0-branes as a translation by x in
position space, and on D1-branes as a translation by ˛ in the space of Wilson lines.
Similarly, the prescription (7.12) leads to

B.x;˛/ ?B.x0;˛0/ D B.xCx0;˛C˛0/ (7.15)

for the fusion of two bi-branes B.x;˛/ and B.x0;˛0/, i.e., both the position and the
Wilson line variable of the bi-branes add up.

For WZW theories, besides the quantization of the positions of the branes another
new phenomenon is that multiplicities other than zero or one appear in the field theory
approach. In that context they arise from the decompositionB˛ A̋Bˇ D

L
� N

�

˛ˇ
B�

of a tensor product of simple A-bimodules into a finite direct sum of simple A-
bimodules, and analogously for the case of mixed fusion (in rational CFT, both the
category ofA-modules and the category ofA-bimodules are semisimple). Moreover,
for simply connected groups, the multiplicities appearing in both types of fusion are
in fact the same as the chiral fusion multiplicities which are given by the Verlinde
formula.

By analogy with the field theory situation we expect fusion rules

B˛ ?Bˇ D
X
�

N
�

˛ˇ
B� (7.16)

of bi-branes, and analogously for mixed fusion of bi-branes and D-branes. In the
particular case of WZW theories on simply connected Lie groups one can in addition
invoke the duality ˛ � �� ˛_ which in that case exists on the sets of branes as well
as defects that preserve all current symmetries, so as to work instead with fusion
coefficients of type N

˛ˇ�
DN

˛ˇ
�_

. Then for the case of two D-branes D˛ and D�

with world volumes given by conjugacy classes Ch˛ and Ch� of G, as well as a
bi-brane Bˇ whose world volume is the biconjugacy class Q��1.Chˇ /, one is lead to
consider the subset

…˛ˇ� ´ p�1
1 .C˛/ \ Q��1.Cˇ / \ p�1

2 .C� /

D f.g; g0/2G �G j g 2C˛; g
0 2C� ; gg

0�1 2 Cˇ g
(7.17)
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of G �G. Combining the adjoint action on g and on g0 gives a natural G-action on
…˛ˇ� . And since both D-branes and the bi-brane are equipped with two-forms !˛ ,
!� and $ˇ , …˛ˇ� comes with a natural two-form as well, namely with

!˛ˇ� WD p�
1!˛j…˛ˇ� C p�

2!� j…˛ˇ� C$ˇ j…˛ˇ� : (7.18)

By comparison with the field theory approach, this result should be linked to the
fusion rules of the chiral WZW theory and thereby provide a physically motivated
realization of the Verlinde algebra. To see how such a relation can exist, notice that
fusion rules are dimensions of spaces of conformal blocks and as such can be obtained
by geometric quantization from suitable moduli spaces of flat connections which arise
in the quantization of Chern–Simons theories (see e.g. [ADW]). The moduli space
relevant to us is the one for the three-punctured sphereS2

.3/
, for which the monodromy

of the flat connection around the punctures takes values in conjugacy classes C˛ , Cˇ
and C� , respectively. The relations in the fundamental group of S2

.3/
imply the

condition g˛gˇg� D 1 on the monodromies g˛ 2C˛ , gˇ 2Cˇ and g� 2C� . Since
monodromies are defined only up to simultaneous conjugation, the moduli space that
matters in classical Chern–Simons theory is isomorphic to the quotient …˛ˇ�=G.

It turns out that the range of bi-branes appearing in the fusion product is cor-
rectly bounded already before geometric quantization. Indeed, the relevant product
of conjugacy classes is

Ch 
 Ch0 WD fgg0 j g 2Ch; g
0 2Ch0g; (7.19)

and for the case of G D SU.2/ it is easy to see that this yields the correct upper
and lower bounds for the SU.2/ fusion rules [JW], [FSW]. A full understanding
of fusion can, however, only be expected after applying geometric quantization to
the so obtained moduli space: this space must be endowed with a two-form, which
is interpreted as the curvature of a line bundle, and the holomorphic sections of
this bundle are what results from geometric quantization. In view of this need for
quantization it is a highly non-trivial observation that the two-form (7.18) furnished
by the two branes and the bi-brane is exactly the same as the one that arises from
classical Chern–Simons theory.

In terms of defect lines, the decomposition (7.16) of the fusion product of bi-
branes corresponds to the presence of a defect junction, which constitutes a particular
type of defect field. A sigma model description for world sheets with such embedded
defect junctions has been proposed in [RS].

We have demonstrated how structural analogies between the geometry of bundle
gerbes and the representation theoretic approach to rational conformal field theory
lead to interesting geometric structure, including a physically motivated realization of
the Verlinde algebra. The precise form of the latter and its relation with the realization
of theVerlinde algebra in the context of supersymmetric conformal field theory [FHT]
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remain to be understood. But in any case the parallelism between classical actions
and full quantum theory exhibited above remains intriguing and raises the hope that
some of the structural aspects discussed in this contribution are generic features of
quantum field theories.
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Topological field theories in 2 dimensions

Constantin Teleman

Abstract. We discuss a formality result for 2-dimensional topological field theories which are
based on a semi-simple Frobenius algebra: namely, when sufficiently constrained by structural
axioms, the complete theory is determined by the Frobenius algebra and the grading information.
The structural constraints apply to Gromov–Witten theory of a variety whose quantum coho-
mology is semi-simple. Some open questions about semi-simple field theories are mentioned
in the final section.
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1. Introduction

The notion of a Topological Field Theory (TFT) was formalised by Atiyah and Witten
[W] and modelled on Graeme Segal’s definition of a Conformal Field Theory. It was
intended to supply the structural framework for the new topological invariants of the
1980s, in particular Donaldson theory and 3-dimensional Chern–Simons theory.

The distinguishing feature of the new invariants was their multiplicativity under
unions, rather than the additivity common to classical algebraic topology invariants,
such as characteristic classes. The source of additivity is the Mayer–Vietoris sequence
for homology.

Quantum field theory explains this behaviour heuristically: the invariants of a
manifold X are integrals, not over X , but over a space of fields on X , these fields
being maps to another, fixed space. The space of fields is “multiplicative in pieces
of X .” Formulated naïvely, this can only be carried out for target spaces X with
strong finiteness properties (such as finite sets, or finite groupoids, leading to gauge
theory for finite groups), but good use of geometric or analytic information can lead
to a notion of integration over more interesting spaces of fields. This happens for
instance in Gromov–Witten theory, where a fundamental class for integration in the
space of continuous maps from a closed surface to a Kähler manifold M is defined
by the finite-dimensional cycle of holomorphic maps.
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While in recent years, the notion of TFT has experienced substantial refinements,
passing through the open-closed TFT’s of Moore and Segal [MS], [C], to an all-
dimensional notion relying on higher category theory [Lu], the original notion is the
best starting point:

1.1 Definition. A TFT is a symmetric monoidal functor from the oriented n-dimen-
sional bordism category to the category of complex vector spaces. The monoidal
structures are given by disjoint union, respectively tensor product.

Thus, to each closed oriented .n�1/-manifold (object in the n-bordism category)
there is assigned a vector space, to disjoint unions we assign tensor products, to an
n-dimensional bordism we assign linear maps between the boundary spaces, and the
gluing of bordisms leads to the composition of linear maps.

It can be said that the interest and activity surrounding the notion of TFT has not
been met by commensurate applications along the lines originally intended. In di-
mension 3, a classification of TFT’s with special properties was given by Reshetikhin–
Turaev in terms of modular tensor categories; the most famous example is Chern–
Simons theory. By contrast, in higher dimension, there seem to be no interesting
theories: all examples are built from characteristic classes. The sophisticated 4-
dimensional TFT’s constructed from gauge theories and their Floer homologies, or
from Khovanov’s categorified knot invariants, do not satisfy Definition 1.1, but only
a variant of it.

One striking exception is the case of surfaces (n D 2), where a natural extension
of the notion of TFT, that of a cohomological field theory, has framed the solution
of a classical enumerative question of algebraic geometry, the problem of counting
curves of fixed degree and genus in a projective manifold, with specified incidence
properties.

1.1. Two dimensions. The classification of (compact, connected, oriented) topo-
logical surfaces has long been known: the invariants are the number of boundary
components and the Euler characteristic. TFT’s in dimension 2were initially studied
as a toy model and their structure was understood early on. Recall that an (associa-
tive) algebra A is called Frobenius if it comes equipped with a trace � W A! C for
which a; b 7! �.a � b/ gives a perfect, symmetric paring. In particular, dimA <1.

1.2 Theorem (folklore, see [A]). A 2-dimensional oriented TFT with vector space A
assigned to the circle is equivalent to the datum of a commutative Frobenius algebra
A over C.

The multiplication on A is defined by the pair of pants with two boundary cir-
cles incoming and one outgoing, and the trace by the disk with incoming boundary.
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Divertingly enough, in spite of this simple classification, it is in 2D that the original
notion of TFT has seen powerful applications.

2. Gromov–Witten theory

My application is to Gromov–Witten theory, which generalises a classical and delicate
question in enumerative geometry: counting algebraic curves in a projective manifold,
with prescribed degree and intersection conditions.

For example, there is a unique linear map P1 ! Pn sending the points 0; 1;1
to three linear subspaces placed in general position and with total dimension n � 1.
GW theory encodes this information by deforming the ordinary cohomology algebra

H�.Pn/ D CŒ!�=h!nC1i
into the (small) quantum cohomology algebra, parametrised by q 2 C�,

QH�.Pn/ D CŒ!�=h!nC1 � qi:
The coefficient 1 in front of q indicates the uniqueness of the map, while its exponent
1 is the degree. Seen most naturally, q lives in C� D H 2.PnIC�/, which can be
seen as the exponentiated image ofH 2.PnIC/. The reader is probably familiar with
the definition of small quantum cohomology for any projective manifold X : using
the Poincaré duality bilinear form onH WD H�.X IC/, the datum of a multiplication
H ˝H ! H is equivalent to that of a vector in H˝3. On three homology classes
˛, ˇ, � , this vector takes the value

X
ı2H2.X/

N˛ˇ� .ı/ � qı ; (2.1)

where N˛ˇ� .ı/ is the number of maps of degree ı from P1 to X sending 0, 1,1 to
three cycles representing ˛, ˇ, � placed in general position. When this number is not
finite, it is set to zero. The variable q lives in the torusH 2.X IC�/ and can be raised
to powers ı 2 H2.X IZ/.

The precise definition of the numbersN˛ˇ� .ı/ for general manifolds requires more
sophisticated tools – construction of the moduli space of stable maps and its virtual
fundamental class – which we shall overlook here. The proof that the multiplication is
associative, while formally a consequence of the existence of a “four-point function”,
also relies on those constructions. Convergence of the series in (2.1) seems to be an
open question for general target manifolds.

2.1. Frobenius structure on quantum cohomology. Just like ordinary cohomo-
logy, the quantum cohomology of a projective manifold X is a Frobenius algebra,
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with the (classical) Poincaré duality pairing on H . In fact, we get a family of 2D
TFT’s parametrised by q 2 H 2.X IC�/. There is a general method to extend the
space of parameters to the rest ofH ev.X IC/, see for instance [T, §6]. This extended,
“big” quantum cohomology incorporates the count of P1’s with arbitrarily many
marked points and incidence conditions. The properties of the resulting structure on
the spaceH were abstracted into the notion of a Frobenius manifold [D1], [D2]; see
also [G1], [M1].

One important ingredient incorporates the grading on cohomology. Literally, this
is broken by quantum multiplication – see the case of QH�.Pn/ above – but the
grading is restored in the entire family of multiplications by grading the functions on
the parameter space H ev.X IC/: thus, one declares deg qı D hc1.X/jıi, using the
first Chern class ofX , and grades the rest of cohomological parameters by the shifted
normalised degree deg =2� 1. The quantum multiplication, when viewed as a tensor
field onH ev.X IC/, is homogeneous of degree 1 in this grading. Thus, deg q D nC1
in the Pn example, rendering the identity defining QH� homogeneous of degree n,
once we remember that q stands for q � 1 2 QH 0, where 1 has degree .�1/. (To
explain this slightly counter-intuitive shift, see Remark 2.2 below.) Odd cohomology
can be incorporated using the language of supermanifolds.

The more general Gromov–Witten invariants xZng mentioned in §3 below are also
homogeneous, of prescribed weights. When spelt out, the homogeneity property
encodes the fact that the virtual fundamental cycles of the moduli space of stable
maps have topologically determined dimensions, depending on the degrees of the
maps and on c1.X/.

2.2 Remark. Geometrically, the grading is implemented by the Euler vector field
on the Frobenius manifold H . Specifically, given u 2 H ev.X/, let u0 2 H�.X/ be
obtained from u by re-scaling its degree d part by d=2; the value of the Euler vector
at u is v WD c1.X/C u0=2 � u. Dubrovin’s general theory of Frobenius manifolds
shows that, near any point with semi-simple quantum multiplication, the eigenvalues
of quantum v-multiplication give a local coordinate system on the parameter space,
[D2, Theorem 3.1].

The Frobenius manifold of quantum cohomology contains answers to most enu-
merative questions about rational curves in X , concerning incidence and tangency
conditions with generally positioned cycles inX at any specified collection of marked
points. (Actually, without some positivity property of the target manifold X , the
curves must be counted in a virtual sense, taking account of obstructions.) A small
exception concerns the case of one and two marked points, where extra information
in the form of a calibration of the Frobenius manifold is needed [G1] (see also Re-
mark 3.3 below). The precise formulation and explanation for this fact lies in the
theorem that genus zero cohomological field theories in two dimensions are equiva-
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lent to germs of Frobenius manifolds. Manin’s book [M1] is largely devoted to the
proof of this.

2.2. Givental’s reconstruction conjecture. Quantum cohomology generalises to
incorporate curves of any genus, with any number of marked points and incidence
invariants, defined by the same method used for rational curves. The fundamental
result (Ruan, Tian, Li, McDuff, Salomon) ensures that the numerically defined GW
invariants are governed by the structure of an all-genus cohomological field theory
(CohFT). We will briefly review that notion below, but for now let us focus on one
important consequence of this structure. Recall that a commutative algebra over C
is called semi-simple if it is isomorphic to a direct sum of copies of C. Semi-simple
Frobenius algebras are easy to classify: the trace must be diagonal in the basis of
projectors, so all we need to know are the projector traces, a collection of non-zero
complex numbers. Classical cohomology of a manifold is never semi-simple, but the
quantum multiplication of some important projective manifolds, such as projective
space above, is semi-simple for generic values of the parameter (see §2.3 below for
more examples).

It is for this class of manifolds that Givental formulated (and proved, in the toric
Fano case) the following remarkable reconstruction conjecture:

2.3 Conjecture (Givental, [G2]). For a compact symplectic manifold X whose
quantum cohomology algebra is semi-simple at generic values of the parameter
u 2 H ev.X/, all Gromov–Witten invariants are explicitly determined from genus
zero information.

Loosely speaking: counting rational curves determines the answer to enumerative
questions for curves of all genera. Givental predicted a formula for the generating
function of all GW invariants in his framework of quantised quadratic Hamiltonians.

2.4 Theorem ([T]). Givental’s conjecture holds. More precisely, the GW (ancestor)
invariants are determined by a recursive relation from the quantum multiplication
law at a single semi-simple value of the parameter u, and from the first Chern class
c1.X/.

We will review the recursion in §3 below. I refer to Givental [G2] for the discussion
of ‘ancestor’ versus ‘descendent’ Gromov–Witten invariants; suffices to say here that
the ancestor invariants are missing precisely the calibration of the Frobenius manifold
we mentioned earlier.

2.5 Remark. Givental [G1] spells out the reconstruction using the Frobenius mani-
fold. But his discussion shows that the knowledge of a single semi-simple quantum
multiplication law suffices.
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Theorem 2.4 follows from a structural result which classifies abstract cohomolog-
ical field theories based on semi-simple Frobenius algebras (§3 below). The essential
and difficult ingredient of the proof is the Mumford conjecture, proved by Madsen
and Weiss [MW].

2.3. When does the theorem apply? Semi-simplicity of quantum cohomology is
a very strong restriction. Here are the main examples.

(i) Projective spaces, Grassmannians, generalised flag varieties of GL.

(ii) Projective toric varieties always have semi-simple big quantum cohomology.

(iii) A method used by Givental in the toric case applies to varieties which have a
circle action with isolated fixed-points: the circle-equivariant cohomology then
gives a semi-simple deformation of the classical (and hence also the quantum)
cohomology ring.

(iv) Bayer [B] showed that semi-simplicity is preserved by blowing up points; in
particular, there exist non-Fano examples.

(v) 36 of the 59 families of 3D Fanos with no odd cohomology have been checked
[AM], [Ci].

(vi) The abstract version of Theorem 2.4 applies to CohFT’s constructed from Lan-
dau–Ginzburg B-models for potentials with isolated critical points. This has not
been sufficiently exploited; see open questions, below.

(vii) On the negative side, if the even part of quantum cohomology is semi-simple,
then the manifold has no odd cohomology, and, in the algebraic case, all coho-
mology is of type .p; p/ [HMT]. This contradicts claims in the literature about
some complete intersection Fanos.

2.4. Dubrovin’s conjecture. A remarkable conjecture has gathered strong exper-
imental support. Recall that an ordered collection fEig of objects in a triangulated
C-linear category is exceptional if Ext�.Ei ;Ei / D C, concentrated in degree 0, while
Extk.Ej ;Ei / D 0 for all k, when j > i . The collection is complete if it generates
the (triangulated) category.

2.6 Conjecture (Dubrovin). A projective manifold has generically semi-simple quan-
tum cohomology iff its derived category of coherent sheaves contains a complete
exceptional collection.

2.7 Remark. Dubrovin also relates the Euler characteristics of the Ext-groups to
quantum cohomology data.
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For instance, the conjecture is known for rational surfaces [D1], [B]. Ciolli
[Ci] also checks this for 36 families of 3-dimensional Fanos. The conjecture is also
confirmed for projective toric manifolds, by Kawamata’s theorem [K] on the existence
of exceptional objects and knowledge of their quantum cohomology.

The conjecture would follow from sufficiently optimistic formulations of mirror
symmetry: the mirror partner for Gromov–Witten theory for a manifold X as in the
conjecture would be a Landau–Ginzburg B-model whose potential had isolated Morse
singularities (at generic values of the deformation space). But then, its Fukaya–Seidel
category should contain a complete exceptional collection, which by the opposite
mirror symmetry would give the desired exceptional objects in the derived category
of X . This method has been essentially confirmed for projective toric manifolds by
Abouzaid [Ab], who proves the required mirror symmetry (B-side onX is equivalent
to A-side on the Landau–Ginzburg model) without a priori reference to exceptional
objects (and, in particular, recovers Kawamata’s theorem).

2.5. Related results ofKontsevich. In the 1990s, Kontsevich initiated a programme,
HomologicalMirror Symmetry, which should give a far-reaching adaptation of Given-
tal’s reconstruction conjecture without the semi-simplicity assumption. (The pro-
gramme preceded Givental’s cited work, but converged with it later.) For a recent
update, see [KKP].

A key step is to replace the notion of cohomological field theory with that of
chain-level, open-closed field theory. Costello’s work [C] gives an implementation
of these ideas. This more sophisticated approach seems necessitated by the fact that
cohomological field theories seem unclassifiable with our limited understanding of
Deligne–Mumford spaces. The semi-simple classification was a pleasant surprise.

Applying this programme to Gromov–Witten theory requires the construction a
good Fukaya category for compact symplectic manifolds. This has not yet been
accomplished in general. On the other hand, Kontsevich’s programme does appear to
settle the partner side, B-model of mirror symmetry, where the analogue of the Fukaya
category, the derived category of coherent sheaves, is much better understood.

3. Cohomological field theory

A cohomological field theory generalises the notion of a Frobenius algebra to the
situation where surfaces vary in families, and the values of the theory are (matrices in)
the cohomology classes in the base space of the family, instead of numbers. CohFT’s
were introduced by Kontsevich and Manin [KM] precisely with Gromov–Witten
theory in mind, although related notions (such as Segal’s topological conformal field
theory, taken up by Costello and Kontsevich) had an independent development.
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I refer to [KM] for precise definitions and to the account in [T] of several possible
variations, but here are the salient points. We start with a Frobenius algebra A, and
require that:

� A family of closed surfaces over a base B gives a class in H�.BIC/.
� Withm input andn output boundaries, we get a class inH��BIHom.A˝mIA˝n/

�
.

� “Gluing boundariesD composition” applies in families.

� Nodal degenerations of surfaces (Lefschetz fibrations) are permitted.

� Everything is functorial in the base B .

� To make contact with the notion of [KM], all surfaces are assumed to be stable.

� The flat vacuum condition asks that “inserting a vacuum state should do nothing”;
see (3.1) below.

� Finally, there is a homogeneity condition with respect to a specified Euler vector
field on the Frobenius manifold of the CohFT (see §2.1); I will not spell out here.

Functoriality ensures that it suffices to specify the classes for the universal Lef-
schetz fibrations of stable surfaces, namely the universal curves xC ng over the Deligne–
Mumford spaces xM n

g of stable curves of genusgwithnmarked points. The collection
of these classes is then subject to a set of constraints, which can be concisely formu-
lated by stating that A is an algebra over the homology operad of the collection of
Deligne–Mumford spaces.1

More precisely, to each pair .n; g/ describing the genus and number of marked
points on a stable pointed curve, we must assign a class xZng 2 H�. xM n

g IA˝n/.
Restriction to boundary divisors is subject to factorisation rule. Thus, on a boundary
stratum xM n0

g0� xM n00

g00 , corresponding to a splitting of the curve into two components of

genera g0; g00 joined at a node, the restricted xZng is described in terms of xZn0

g0 ^ xZn00

g00 :
namely, the latter product must be contracted with the Frobenius bilinear form applied
to the two arguments corresponding to the nodes (one in each factor). A similar
constraint arises at boundary strata corresponding to irreducible nodal curves. The
flat vacuum condition demands that

1 a xZnC1
g D f �

1
xZng ; (3.1)

where f1 W xM nC1
g ! xM n

g is the morphism forgetting the first marked point, and
1 a stands for contraction with the “vacuum”, the identity 1 2 A. (This is the only
sensible implementation of the “vacuum does nothing” command, as we need an
extra point to insert the vacuum vector!) The homogeneity constraint pertains to the
classes xZng , when viewed as tensors on the Frobenius manifold of the CohFT [T, §7].

1We must regard this as a modular operad.
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3.2 Theorem ([T]). A CohFT based on a semi-simple Frobenius algebra A is deter-
mined by a power series R.z/ 2 End.A/ŒŒz��, R D Id C O.z/, which is subject to
Givental’s symplectic constraint R.z/R�.�z/ � Id.

The additional homogeneity constraint enforce a restriction on R (its kth Taylor
coefficient Rk has degree .�k/, as a tensor on the Frobenius manifold). This con-
straints turns out to determineR uniquely. For example, in Gromov–Witten theory,A
is the quantum cohomology QH�.X/ at some semi-simple point u of the Frobenius
manifold. The Taylor coefficients ofR are then recursively determined fromR0 D Id
by the equations2 �

RkC1; .v �/
� D .�C k/ BRk;

where .v �/ is quantum multiplication by the Euler vector v of Remark 2.2, and � is
the linear operator .deg =2 � dimC X � Id/ on A D H�.X/.

3.3 Remark. The Taylor seriesR can be interpreted in relation to Dubrovin’s mono-
dromy data description of the Frobenius manifold. Namely, the End.A/-valued ex-
pression

F.z/ WD R.1=z/ B exp .z.v �// (3.4)

describes the asymptotics around z D 1 of solutions to the quantum differential
equation

@F

@z
D
�
.v �/C �

z

�
F: (3.5)

In other words, in suitable sectors centred at z D 1 and for suitable solutions F ,
R.1=z/ gives the asymptotic expansion of the function F.z/ B exp.�z.v �//. In
the case of quantum cohomology, a distinguished solution to this equation can be
described from the 1-point (J -) function, [D2, Example 2.3]. (This is essentially the
calibration of the Frobenius manifold, mentioned in §2.1.) The genuine solutions
to (3.5) are multi-valued, with monodromy zc1.X/Y (classical cup-product); so the
expression for F in (3.4), which is formally single-valued, cannot be a genuine
function, and so R is not convergent.

3.1. Moral interpretation of R. The Frobenius algebraA is associated to the circle
in a 2D field theory. Heuristically, it should be viewed as the cohomology of a space
Y with circle action. In known applications, A is the Hochschild cohomology of
a category (the category of boundary states in the open-closed theory), and so its
chain-level model has an algebraic circle action. The series R is intended to give a
splitting of the S1-equivariant cohomology:

H�
S1
.Y / Š H�.Y /˝CŒŒz��; (3.6)

2When .v � / has repeated eigenvalues, solvability imposes constraints on �.
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where z is the generator of H�
S1
.point/. Equivalently, this singles out the space of

primary fields, a copy ofA, inside the circle-equivariant version ofA: the latter vector
space is where the states to be inserted at points on the surface genuinely live.

The existence of such a splitting is necessary if one is to extend a cohomological
field theory from the open stratum M n

g of Deligne–Mumford moduli space over its
boundary. This is not difficult to see, as follows. Consider for simplicity the setting
of a space Y , as above. Boundaries of Deligne–Mumford space arise by degenerating
handles on the curve to nodes. The cylinder with one incoming end and one outgoing
end describes the identity map on H�

S1
.Y /. The Deligne–Mumford degeneration of

this cylinder into two crossing disks must extend this to a map

H�
S1�S1.Y /! H�

S1�S1.Y /;

but with the peculiar feature that, on the left, S1 � S1 acts on Y via the first factor
only, while the right, it acts only via the second factor. This is because the incoming
and outgoing copies of Y are attached to the two different disks! The reader can now
check that the existence of such an extension forces the existence of a splitting as
in (3.6). A similar argument applies in a chain-level theory, enforcing a homotopy
trivialisation of the circle action.

The core of the classification is the statement that a choice of splitting determines
this boundary extension uniquely at the level of cohomology classes, in a semi-simple
theory.

3.2. Construction of the theory. The theory based on a givenR can be constructed
using the Morita–Mumford–Miller (tautological) classes and the so-called boundary
classes on xM n

g ; here, I just give a flavour of the universal formula and refer to [T,
§5] for more details. Recall first that the �-classes are integrals, along fibres of
the universal surface bundle xC ng ! xM n

g , of powers of the relative Euler class, and
therefore behave additively under gluing of surfaces.

Start with the multiplicative class exp.
P
j aj �j / 2 H�. xM n

g IA/. Co-multiply
this expression out to A˝n, where one factor is attached to each of the n marked
points. (It turns out that the coefficients aj 2 A are pinned down from R and the flat
vacuum condition.) Twist now each output factor by R. i /, with the  -class at the
respective marked point.

As it stands, the class obtained turns out to violate the factorisation rules on
Deligne–Mumford boundaries, and this must be corrected by the addition of boundary
classes as follows. On each boundary divisor of xM n

g , note the two Chern classes ˙ of

the cotangent lines at the node of the curve. Also note the class xZn0

g0^ xZn00

g00 coming from
the lower-genus moduli spaces;3 the two factors are assumed to have been recursively
corrected. We now contract the linear operator .Id � R. C/�R. �//=. C C  �/

3Or its counterpart xZnC2
g�1 on a boundary produced by a non-splitting handle of the curve.
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with xZn0

g0 ^ xZn00

g00 , at the two factors of A attached to the node. We push this forward

to xM n
g using Thom class of the boundary divisor, to produce the boundary correction

term for xZng .
This construction can be captured more concisely by defining an action of the

matrices R.z/ on the cohomology of Deligne–Mumford spaces. This action lifts
Givental’s loop group action on Gromov–Witten potentials, defined in his framework
of quantised quadratic Hamiltonians [G2].

3.3. What makes the classification work? The Euler class of a Frobenius algebra
A is the product of the co-product of 1: 1 7! A ˝ A 7! A. Pictorially, this is
represented by a torus with one outgoing boundary. For the cohomology ring of a
manifold, this is the usual Euler class, and it always squares to zero. However, the
quantum Euler class can be invertible: this happens precisely when the quantum
multiplication is semi-simple.

Hence, in the semi-simple case, one can increase the genus of surfaces without
loss of information in the CohFT. Now, the Mumford conjecture (Madsen–Weiss)
describes the complex cohomology of the open moduli space M n

g of smooth curves
in the g !1 limit as a free C-algebra in the tautological classes �j ,  i . From here,
we can classify the restriction to M n

g of semi-simple CohFT’s.
Finally, it follows from a result of Looijenga’s [L] that, in large g the boundary

divisors of xM n
g have Euler classes which are not zero-divisors. This controls the

problem of extending cohomology classes to the boundary.

4. Some open questions

� Reconstruction from classical data. The reconstruction theorem requires some
quantum cohomology information. A similar-looking result in classical singu-
larity theory starts from more “classical” data. Namely, Saito’s work shows how
to produce Frobenius manifold structures on the unfolding space of a function f
with an isolated critical point. The associated CohFT is the Landau–Ginzburg
B-model of mirror symmetry. In this model, the analogue of H�.X/ is the
Jacobian ring of f , and in some ways the first Chern class is the residue class
of f therein. The quantum cohomologies correspond to the Jacobian rings of
deformations of f . Now, a theorem of Scherk [Sc] asserts that, up to a change of
coordinates in the ambient space, the singularity is determined from the Jacobian
ring and the residue class of f . This does not quite determine the Frobenius
manifold, but carries quite a bit of information (the F -manifold, missing the
metric); the missing information has been completely described by Saito, as the
choice of a primitive volume form.



208 C. Teleman

Question: Is the quantum cohomology F -manifold determined by the classical
H�.X/ and c1.X/, at least for varieties with generically semi-simple quantum
cohomology? What minimal extra data is needed to recover the Frobenius
manifold?

� Degeneration. Semi-simple theories come in families with non-semi-simple
degenerations: classical cohomology for GW theory, or the Jacobian ring for
the Landau–Ginzburg B-model potential with an isolated critical point. The
Givental data for semi-simple theories degenerates at such a classical point.
Nonetheless, some theories are continuous.

Problem: Understand this phenomenon; in particular, provide a formula for the
higher-genus part of the Landau–Ginzburg B-model.

� Formality. Gromov–Witten theory can be defined at chain level, because the vir-
tual fundamental classes are define from actual spaces with obstruction bundles.
A cohomological classification leaves open the possibility of higher operations,
in the style of Massey products in cohomology.

Question: Can we have higher operations in semi-simple field theories?

The expected answer is no. Formality of Deligne–Mumford spaces erases the
difference between the chain operad and its homology. The proof of the clas-
sification theorem uses Euler classes to produce homological splittings, which
appear to work at chain level. However, it is a bit more difficult than it seems
to define the chain-level theory with all the trappings of a CohFT – mind, for
instance, the fact that the quantum cup-product breaks the grading!

� Twisted Frobenius manifolds. Gromov–Witten K-theory and the twisted Gro-
mov–Witten invariants (introduced by Coates and Givental) and other gener-
alised cohomology examples do not fit the standard definition of Frobenius
manifolds. Variations of the notion have been studied by Dubrovin and Manin
[M2].

Problem: Describe Givental’s higher genus reconstruction in generalised coho-
mology.

This is not an idle generalisation, as K-theory seems particularly suited to equiv-
ariant calculations.
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The revolution of 1907 – Brouwer’s dissertation
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Abstract. Brouwer’s dissertation contains both the germs of his topological and his foundational
work. We concentrate here on the latter. The extraordinary rich thesis contains comments and
critique on his contemporaries, and a novel approach to many foundational issues. Between the
lines one finds the genesis of the continuum and the natural numbers via the ur-intuition, the
constructive interpretation of logic, choice sequences, and a precise discussion of the language,
logic, and mathematics levels. The present paper provides a survey of the material and comments
on Brouwer’s innovations.
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1. Introduction

A century ago a young, unknown Dutchman submitted to the faculty of mathematics
and physics a dissertation that contained the germs of a revolution in mathematics,
which soon became known under the name of Intuitionism. In fact the student was
neither young, according to our standards, nor totally unknown. He was, although
undeniably a brilliant student, almost 26 when he got his Ph.D. There was a reason for
his protracted study (he enrolled at 16, and got his doctorandus degree, say ‘master’s
degree’, at 23): he suffered from nervous breakdowns and accompanying physical
disorders, as a result of spending his vacations in the compulsory military service.1

Nonetheless he had already published on decompositions of rotations in four-
dimensional space, on higher dimensional vectordistributions (including Stokes’ the-
orem), and on potential theory in non-Euclidean spaces. Moreover he had given in
1905 a series of lectures with a strong mystical flavour, published as Life, Art, and
Mysticism, [Brouwer 1905].

The dissertation was supervised by the leading Dutch mathematician at the time,
D. J. Korteweg. Korteweg was a prominent applied mathematician, and he had hoped
that Brouwer would continue his research in the direction of his earlier publications.

1Students could accomplish their service during vacations.
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Brouwer, however had the lofty ideal of putting mathematics on a better basis, like
some of the great men of the period – Borel, Cantor, Frege, Hilbert, Poincaré, Rus-
sell, Zermelo, …. The result was a dissertation that basically consisted of two parts:
geometry and foundations. The geometrical part contained of a solution of a special
case of Hilbert’s fifth problem of eliminating the differentiability conditions from
the definition of Lie groups; he solved Hilbert 5 for continuous groups acting on a
one-dimensional manifold. His investigations of Lie group theory led him to topol-
ogy, and to his stunning innovations in the years following 1909. To do justice to the
evolution of Brouwer’s topological ideas, see [van Dalen 1999], Chapters 3, 4, and 5,
is beyond the present occasion; it has to be left to 2010. Let us point out that Lie
groups did not come in by accident. In order to create the mathematical ‘measurable’
continuum out of the intuitive continuum, continuous group theory was exactly the
tool needed.

Figure 1. Student Brouwer.

Before we move on to discuss the dissertation let us make a few observations.
Some parts of it give the impression of being written in haste. This is indeed the case,
as confirmed by the correspondence between student and adviser. After the mystical
intermezzo Brouwer returned to his thesis; in September 1906 he informed Korteweg
that he was about to start to order his ideas and notes for the thesis, and in October he
sent him the list of the six chapters, and a synopsis of the first chapter. The chapters
were

(1) The building of mathematics.

(2) Its emergence in connection with experience.
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(3) Its philosophical meaning.

(4) Its founding it on axioms

(5) Its value for society.

(6) Its value for the individual

This somewhat grand scheme was in the end reduced to three chapters: The building
of mathematics, Mathematics and experience, Mathematics and logic.

From then on Brouwer forced himself to deliver regularly drafts of the text, and if
we take into account that he defended his dissertation on February 19, 1907, it is no
exaggeration to say that he was working against the clock. Indeed, on January 23 he
was still discussing the part on logic with Korteweg. Apparently publishers worked
very efficient in those days – the book was ready in time for the public defence.

The mystic intermezzo had not been a contemplative pastime; some of the philo-
sophical tenets of the thesis had recognisable connections with the 1905 lectures.
We will briefly mention some topics of Life, Art, and Mysticism, and comment on
them. The central message was: one should live content for oneself, and not interfere
with, or dominate, nature or fellow human beings. The ultimate aim of the subject is
introspection – get rid of the separation between object and subject. What stands in
the way of the ultimate return into oneself is morally to be condemned.

Like a true mystic Brouwer was far from impressed by the world and its inhab-
itants: “The life of mankind as a whole, is an arrogant eating away of its nests all
over the perfect earth, a meddling with her mothering vegetation, gnawing, spoiling,
sterilising her rich creative powers, until it has gnawed away all life, and the human
cancer withers away over the barren earth.”2 A profound difference of view, where
language and communication were concerned, separated Brouwer from his modern
contemporaries. In his words. “No two persons will experience exactly the same
feeling, and even in the most restricted sciences, logic and mathematics, which can
properly speaking not be separated, no two [persons] will think the same thing in
the case of the basic notions from which logic and mathematics are built.” In a less
colorful formulation: if a person carries out a mental mathematical construction, for-
mulates it in language and communicates it to a second person, then there is no reason
to believe that the second person will be able to carry out the original construction.
In short, there is no such thing as perfect communication. This, of course, was a
powerful motivation to be sceptical with respect to the universally preached virtues
of formalization, and the role of language.

One of the central points of Brouwer’s philosophy was the role of the individ-
ual, called the subject. The subject creates in acts of introspection the objects of
mathematics (and far more, but we will leave that out here).

In introspection, the distinction between subject and object gradually disappears
into a unordered flow of impressions:

2Almost verbatim repeated in [Brouwer 1949].
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And in that merging sea of colours, without separation, without perma-
nence and yet without movement, that chaos without disorder, you know
a Direction, which you follow spontaneously, and which you could just as
well not follow. You recognise your “Free Will”, in so far as it was free
to withdraw itself from the world, in which there was causality, and then
remains free, and yet only then has a really determined Direction, which it
reversibly follows in freedom. […] The phenomena follow each other in
time, bound by causality, because you yourself want, shrouded in clouds,
the phenomena in that regularity ([Brouwer 1905], p. 14).

The free will is mentioned here not as a metaphor, but as an actual asset of the
subject. Free will plays a role in the dissertation, and it later appears in full force at
the introduction of choice sequences.

2. The ur-intuition

For Brouwer, and for each of us, the construction or creation of the basic objects of
mathematics is of the greatest importance. At this point he had a long way to go
before he could, or would, express himself with the desired clarity. The dissertation
opens with a brief recapitulation of the by then accepted means of creating the number
systems out of the natural numbers. This is followed by the bold step to introduce
the basic material of which mathematics is made through the act of intuition.

In the following chapters we shall go further into the ur-intuition of math-
ematics (and of every activity of the intellect) as the substratum, divested
of all quality, of any perception of change, a unity of the continuous and
the discrete, a possibility of thinking together several entities, connected
by a ‘between’, which is never exhausted by the insertion of new entities.
Since continuity and discreteness occur in this ur-intuition as insepara-
ble complements, both having equal rights and being equally clear, it is
impossible to stay clear of one of them as a primitive entity, and then to
construct it from the other one, the latter being considered by itself; in
fact it is already impossible to consider it by itself. Having recognised the
intuition of continuity, the “flowing” as primitive, as well as the conceiving
of several things as one, the latter being at the basis of every mathematical
structure, we are able to state properties of the continuum as a “matrix of
points joined together in thought.”

This terse introduction of the continuum has the characteristics of a recapitulation
of a notion explained to the reader at an earlier occasion. As it stands, it is mystifying
rather than clarifying. There actually is a simple explanation: the dissertation origi-
nally contained a philosophical introduction (with a definite mystical flavour), which



The revolution of 1907 – Brouwer’s dissertation 217

mentioned the intuition of time, the notion of (causal) sequence3 and the jump from
end to means. In this introduction, which actually came at the opening of Chapter 2,
the ur-intuition is given its place as intuition of time.

But man is endowed with a faculty, that accompanies all his interactions
with nature, that is the ability of objectifying the world, seeing in the world
recurrences of sequences, seeing in the world causal systems in time.

The ur-phenomenon is the intuition of time by itself, in which iteration, as
“thing in time, and one more thing”, is possible, but in which (and this is a
phenomenon, which is outside mathematics) also a sensation can fall apart
into composing qualities, so that a single moment of life can be lived as a
sequence of qualitative distinct things.

The fact that Brouwer, when ordered by Korteweg, dropped this elucidation, made
the foundational part of the dissertation harder to grasp. Korteweg’s motivation was
simply that a text with such strong flavour of mysticism would not contribute to the
general appreciation of the faculty members, and even harm his student’s future in
mathematics. As Brouwer put it in a letter to Korteweg, the topics of Chapter 2
suddenly appeared in the lime light to take the place of their former leader, “and it
was not possible to dress all of them so that on their own they could together save the
show.”

This rather condensed explanation of the underlying motivation of the ur-intuition
was elaborated more than twenty years later in print. We will commit an anachronism
and discuss the later formulation here.

The subject experiences a flow of sensations, the basic phenomenon here is the
“falling apart of a moment of life” or “the move of time”, i.e. a present sensation gives
way to another present sensation in such a way that the first one is retained in memory.
Thus a temporary pair (twoity in Brouwer’s terminology) comes into existence, and is
separated from the ego (of the subject). Evidently this move of time can be repeated,
and thus a triple emerges, etc. In this wealth of pairs, triples, … a measure of order
is enforced through a mental act of the subject, later called the causal act, which
identifies certain pairs, triples, etc. In the ultimate identification (abstraction) all pairs
lose their individual character and become the “common substratum of all twoities,
that forms the ur-intuition of mathematics, the self-unfolding of which introduces
among other things the infinite as a mental reality, and in fact first of all the totality
of the natural numbers, not to be commented on here; next that of the real numbers,
and finally the whole of pure mathematics” ([Brouwer 1929], p. 154).

The natural numbers are in fact only one half of the ur-intuition; the other half, the
continuum, is simultaneously produced in the act of the move of time. A year after

3Brouwer uses the term “volgreeks” in his early writings. For lack of a better word, we use “sequence” as
a translation. In his later writings, for example [Brouwer 1929A,1933A], Brouwer introduces the term ‘causal
sequence’, which denotes the ‘equivalence class’ of sequences under identification by the subject.
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the dissertation, Brouwer gave a lecture at the international mathematics congress in
Rome, where he discussed the set theory that belonged to his constructive universe,
[Brouwer 1908].

When one investigates how mathematical systems come about, one sees
that they are constructed out of the ur-intuition of two-ity. The intuitions
of the continuous and the discrete join here, as [simply] a second [thing]
is thought not by itself, but under preservation of the recollection of the
first. The first and the second are thus kept together and the intuition of the
continuous (continereDkeeping together) consists of this keeping together.
This mathematical ur-intuition is nothing but the contentless abstraction of
the sensation of time. I.e. the sensation of fixed and floating together. Or
of remaining and changing together.

Here one sees that the continuous, let us say, the continuum, comes about in the
passage from one sensation to the next – it is the passage. Hence Brouwer’s claim
that the two notions are inseparable: you cannot have the one without the other.

There is a problem that we have to face: did Brouwer in 1907 see the necessity
of embracing infinity? To begin with, the infinity of the natural number sequence?
The formulation of the ur-intuition in the dissertation does not mention the issue; it
clearly allows the subject to construct the individual numbers, but does it allow for
the natural numbers as a totality?

For explicit statements one has to turn to the publications in the late twenties; in
the early days of Brouwer’s intuitionism one has often to read between the lines to
see what the extent of the natural numbers is.

Whatever may be in doubt, it is clear that one will not get the set of natural numbers
with the same status as, say, the set of numbers less than 20. There is no such thing
for the subject as a completed totality of natural numbers; the second best for the
subject would be the recognition of the totality of the natural numbers as a potential
infinite entity. There is a letter from Brouwer to the Utrecht mathematics professor
J. de Vries (undated draft in the Brouwer archive), in which Brouwer gave a quick
survey of the main points of the dissertation. Here he states “I put the ‘mathemat-
ical construction act of complete induction’ in the place of ‘the axiom of complete
induction’, and show how this is nothing new after the intuition of time.” Thus the
act that yields the totality of natural numbers is implicit in the intuition of time. The
above formulation of Brouwer foreshadows the modern practice that reduces com-
plete induction to “complete recursion” or “iteration”, where the “mathematical act
of complete induction” takes the place of the recursor.

In the dissertation and various other places, Brouwer uses the term “the mathemat-
ical intuition and so on” (discussion of Russell), and at another place he comments
on Dedekind: “Dedekind’s system has no meaning; a logical meaning would require
a consistency proof, which Dedekind does not give either, then he would have to
appeal to the intuition of ‘and so on’.” In his later publications Brouwer specifies the
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generation of the number sequence as caused by the “self-unfolding of the act of the
intellect”.

We note that quite early on Brouwer was aware of the role of the natural number
sequence, viewed as a mathematical object. Starting from the “and-so-on” intuition,
he passed on to the more explicit ‘self-unfolding’ notion. This self-unfolding, so to
speak, is part and parcel of the ur-intuition; it supplements the first acts of mathemat-
ical attention that yield the finite sequences. The discussion of Brouwer’s views on
the natural number sequence should help to alleviate the worries that Brouwer would
in fact only be able to create the individual numbers, but not the whole of all natural
numbers. The latter would have been serious, Brouwer would not have been able to
quantify over the natural numbers.

The axiom of complete induction is explicitly dealt with in the list of theses
appended to the dissertation.4 The second one says, “It is not only impossible to
prove the admissibility of the axiom of complete induction, but it ought not to have
a place as a separate axiom or as an intuitive truth. Complete induction is an act
of mathematical constructing, that has its justification already in the ur-intuition of
mathematics.”

In his Intuitionism and Formalism Brouwer returns to the issue of the objects
of mathematics: “This intuition of two-oneness, the basal intuition of mathematics,
creates not only the numbers one and two, but also all finite ordinal numbers, inasmuch
as one of the elements of the two-oneness may be thought of as a new two-oneness,
which process may be repeated indefinitely; this gives rise to the smallest infinite
ordinal!.” In fact this is the first step towards his version of the second number class.

The names “intuitionism” and “formalism”, by the way, were not Brouwer’s in-
vention. They were coined by Felix Klein in his Evanstone lecture, [Klein 1894]; he
had a fairly informal classification in mind, the one that fitted the general practice
of his day. Brouwer adopted the terms in his review of Mannoury’s book on the
foundations of mathematics, Methodologisches und Philosophisches zur Elementar-
mathematik, [Brouwer 1910]. There he listed Dedekind, Peano, Russell, Hilbert, and
Zermelo as formalists, and Poincaré, and Borel as intuitionists. Brouwer criticised
the intuitionists for “rejecting every infinite number, including the denumerable” and
for identifying mathematical existence with non-contradictority (Poincaré’s slip). In
his inaugural lecture of 1912, he considers formalism as ‘largely German’ and intu-
itionism as ‘largely French’, and his own brand of intuitionism is called there “neo-
intuitionism”. In his mature foundational program the ‘neo’ was dropped, and the
French school was called “pre-intuitionist” (“semi-intuitionist” by some). Formalism
was by then exclusively used for the Hilbert school.

Now let us look at the other twin, the continuum. Already before the ur-intuition
was introduced, Brouwer discussed the continuum in his notebooks where he wrote

4A dissertation was always supplemented by a list of ‘theses’. The topics of these were not necessarily
connected to that of the body of the dissertation.
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down his ideas, and tested technical details for the dissertation. In the notebooks he
accepted the continuum as intuitively given, but without any details. Here are two
quotes:

“The intuitive continuum as the opposite of the point; the unknown, about which
lack of understanding is impossible.”

“About the continuum I see intuitively that there are yet unknown assignments on
it, as such it is the matrix of yet unborn points. It exists thus independent from the
points to be built on it, is thus different from the set of those points, for otherwise its
creation would follow that of those points.”

He obviously saw that one needed more than just the definable (or lawlike) points.
After all, Cantor had made it clear that any attempt to stick to a denumerable con-
tinuum was bound to fail; and although Brouwer found a satisfactory solution to the
cardinality questions concerning the continuum only after the introduction of choice
sequences and spreads, he was aware of the fact that the extra, non-lawlike points
had to be incorporated. He called these extra points “unknown points”. For example,
“One also defines unknown irrationals as limits of unknown series. On assigns the
familiar ordering relation, and only afterwards one has to introduce the continuity
postulate, in order to carry out the operations on these irrationals.”

The unknown points of the continuum are used in the dissertation to refute the
well-ordering theorem.

“Now we know that besides the denumerable sets, for which the theorem
certainly holds, there exists only the continuum, for which the theorem cer-
tainly does not hold, firstly because the greater part of the elements of the
continuum must be considered as unknown, and consequently can never be
individually ordered, secondly, because every well-ordered set is denumer-
able. Thus this question also turns out to be illusory.” ([Brouwer 1907],
p. 153)

A similar use is made in the discussion of the Cantor–Bernstein theorem.

3. Choice sequences

It is an anachronism to place the choice sequences in the dissertation; yet, there are
certain associations that are hard to ignore. The first question to ask is, was Brouwer
aware of the earlier discussion of the phenomenon? At the time of Brouwer’s disser-
tation the topic of ‘choice’ was widely discussed in connection with Zermelo’s axiom
of choice. Emile Borel, in particular, took up the idea of sequences of numbers
determined by choice. In the discussion following Zermelo’s paper, he explicitly re-
jected arbitrarily large choice functions, i.e. the possibility of non-denumerably many
choices; by default one might conclude that he endorsed!-sequences of choices. The
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crucial point here is the location of these choice objects, are they to be found in an
idealised mathematical world, or inside the human being? Borel took the human side
of the issue serious, in his 1908 Rome lecture, Sur les Principes de la Théorie des
Ensembles, he admitted that denumerably many choices could not be effected in their
totality; nonetheless he was willing to allow certain thought experiments on them.
But, as the infinite totality of choices (evidently considered as choice sequences avant
la lettre) is non-denumerable, his conclusion was that it could not be admitted as a
mathematical entity for use in mathematical arguments.

Apart from the discussion around the axiom of choice, there was at the time of
Brouwer’s dissertation only Du Bois-Reymond’s book on Function theory, which
explicitly discussed “lawless sequences”. Neither the dissertation, nor the notebooks
mention Du Bois-Reymond; hence we may safely assume that Brouwer was not fa-
miliar with Du Bois-Reymond’s lawless sequences; as Du Bois-Reymond introduced
the notion in the context of analysing the continuum, Brouwer would certainly have
seen the relevance, had he been aware of the text. In Brouwer’s notebooks there
is mention of kansrij (chance sequence), and Brouwer uses the term “prendre au
hasard”. Apparently he did not see how to make use of the notion of choice. There is
no explicit mention in the dissertation, but one meets choices in the part where perfect
sets are discussed. Brouwer’s procedure there is familiar in the proofs of Cantor’s
fundamental theorem. On page 65 there is a figure that, slightly anachronistically,
may be called a “fan”. And, indeed, the step from one node to a next one is made by
choice. Hence choice sequences avant la lettre do appear in the dissertation, albeit
anonymously. The context of Cantor’s fundamental theorem makes this unavoidable;
sticking to the legitimate sets of Brouwer’s classification would deny all sense to the
theorem. Indeed, the ‘fan’ is used to deal with certain subsets of the continuum, and
it is just a tool to describe these subsets. Fans and spreads, as objects in their own
right, are only introduced in the Begründungs-paper in 1918.

Within a year after the dissertation, Brouwer returned to subsets of the continuum,
[Brouwer 1908]. By an analysis as sketched in the dissertation, he showed that these
are denumerable or of the cardinality of the continuum. The argument, however, is
not constructively acceptable, as Brouwer soon realised. In his own reprint of “In-
tuitionism and Formalism”, [Brouwer 1913], he wrote in the margin that the process
of weeding out isolated branches was not legitimate, as one cannot in general decide
whether a branch will eventually become isolated. The point is elaborated in the
subsequent “Addenda and Corrigenda”, [Brouwer 1917]. By that time Brouwer had
come to his mature intuitionistic program with choice sequences and spreads. The
notion of “deconstructible spread”, i.e. the spread in which the weeding process can
be carried out, returned in the second paper of the Begründungs series; after that the
notion was not mentioned again, except briefly in Brouwer’s correspondence with
Fraenkel5.

5Brouwer to Fraenkel 12.I.1927, see [van Dalen 2000].
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It is quite reasonable, in the light of the existing publications and notes of Brouwer
to conclude that the notion of choice sequence was already in his mind at the time of
the dissertation. It had to wait, however until he found the key principle for handling
functionals – the continuity principle.

4. Brouwer on logic

There are, even today, persistent rumours that Brouwer disapproved of logic in gen-
eral. It certainly is the case that he was critical in more than one sense. He denied, for
example, that mathematics was based on logic. Logic, he said, is based on mathemat-
ics. Mathematics, according to him, is a constructional activity that creates the objects
of mathematics, and operates on them to obtain mathematical structures of a large va-
riety. The properties of these structures (buildings in his terminology) are expressed
in the language of mathematics and established, or verified by means of a certain
kind of construction that usually is called a proof. For simple statements the required
construction is easy enough, think of a construction that establishes 5C 4 D 9. For
more complicated properties a more systematic approach becomes desirable. This
approach is embodied in the proof interpretation, which was formulated by Heyting,
and which is based on ideas of Brouwer that go back to the dissertation. The chapter
“Mathematics and Logic” opens with a discussion of logic, in particular the hypo-
thetical judgement. The reading of it is far from obvious, and there are different ways
to look at Brouwer’s formulations, see [Atten, van 2008] and [van Dalen 2004]. The
basic ingredient in establishingA! B is to transform a proof(construction) a for the
structure A into a proof(construction) b for B . And this should be done in a general
manner, in the sense that we have a construction f that converts a into f .a/ D b.
The problem here is ‘should one have the construction a before one can proceed to
the construction b?’ This, evidently, would put normal practice in danger. Heyting
gave an instructive example of a questionable case: let A D “there is a sequence of
decimals 0123456789876543210 in �”,6 and B D “there is a sequence of decimals
012345678987654321 in �”. We have an obvious construction that converts a proof
of A into a proof of B . But we have no proof of A; this clearly would be asking too
much.

One has to see, so to speak, Brouwer’s logic in action. There are quite a few places
where Brouwer applies the hypothetical argument, so we may safely assume that he
supported Heyting’s formulation of the interpretation of the logical operators. The
beauty of the Brouwer–Heyting–Kolmogorov view of logic is that logic is internalised
in mathematics; it becomes a calculus of constructions.

So what is Brouwer criticism of logic? Mathematical logic busies itself with the
mathematical language; it draws consequences from given statements about mathe-

6We have changed the example slightly. Heyting’s original sequence 0123456789 does occur in � .
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matical objects and relations. Given Brouwer’s dim views of the language, in sci-
ence as well as in daily life, it is no surprise that he denies it the exactness that his
constructional activity requires. Some logical principles are justified by the proof
interpretation, some are not. In the dissertation Brouwer did not measure up to his
own standards; the principle that he rejected whole heartedly a year later, to wit the
principle of the excluded middle, PEM, was accepted. The matter is curious, whereas
he rejected with good reasons Hilbert’s Dogma, i.e. the solvability of all mathematical
problems, he claimed that PEM was harmless and uninformative, because, he said,
A _ :A is equivalent to :A! :A. This puzzling identification was, I conjecture,
borrowed from the lectures on logic of the Amsterdam philosopher Bellaar-Spruit.
In his logic course Bellaar-Spruit had stated PEM in the form “If Alexander is not
a great man, then Alexander is not a great man”. Whatever the reasons may have
been for this formulation (and none of them could be valid), Brouwer apparently
forgot to test the equivalence in his own logical interpretation. However, a year later
Brouwer published the paper “The unreliability of logic”, in which he dropped PEM
and identified it with Hilbert’s dogma. The identification is, from an intuitionistic
point of view easy to see. Let us abbreviate a is a proof of A as a W A. If a W A_:A,
then a had to consist of two parts, a number a0 < 2 and a construction a1, such that
a1 W A if a0 D 0 and a1 W :A if a0 D 1. Now p W :A is defined as p W A! 0 D 1
(where instead of 0=1 any contradiction may be taken). Since there is no construction
that identifies 0 and 1, A can have no proof q. Hence p W :A is equivalent to “A has
no proof”, a quite reasonable constructive viewpoint. Summing up: A _ :A has a
proof, A has a proof or there is no proof of A. And indeed, Hilbert’s dogma of the
solvability of all problems A says “we can show (prove) A, or we can show that A
has no proof.”

Brouwer’s dissertation contains extensive critical discussions of existing foun-
dational approaches. On all points he was quite correct from his constructive view
point, but he must have shocked his readers. We mention a few points.

The axiomatic method was criticized because the setting up of an axiom system,
sticking conscientiously to it and showing it to be consistent, gave no guarantee
whatsoever, that there would be a mathematical structure satisfying the axioms. Given
a structure, such as e.g. Euclidean space, it would be quite alright to formulate axioms
describing the structure. The theorems derived from these axioms (in Brouwer’s case
by intuitionistic means) would then automatically be correct in the structure. But
the connection between structure and axiom system remained a one-way matter. On
page 141 Brouwer explicitly mentions that “it has nowhere been proved that if a finite
number has to satisfy a system of conditions, of which can be shown that they are
consistent, that then such a number indeed exists.” With the hindsight of Gödel’s
theorems this sounds plausible and familiar.

Cantor’s set theory shares the same fate. The countable sets, ordinals of the second
number class, and the continuum are accepted, but higher ordinals and cardinals are
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Figure 2. Three theses belonging to the dissertation.

ruled out as being beyond mental construction. In particular is the power-set out of
bounds. Brouwer goes here further than the French intuitionists; he accepts the full
continuum, as opposed to Borel who stuck to a ‘definable’ continuum.

Logicism has no interest for intuitionists as it studies a symbolic language and
hence “remains irrevocably separated from mathematics” It restricts itself to “the
language of mathematics, which itself is no mathematics, but just an imperfect tool
for people to communicate mathematics to each other, and to support their memory
for mathematics.” The discussion of Hilbert’s consistency methods is interesting as
it points out in a precise manner the shortcomings of the Heidelberg paper.7 Hilbert
wished to develop logic and mathematics simultaneously ab ovo, in particular without
making use of any mathematics. However, in his treatment he had to use the principle
of induction in dealing with the usual syntactic arguments on the meta level. The step
forward of Hilbert, compared to axiomatics and logicism, is that he explicitly moves
from mathematics to a second order mathematics that deals with the formal system of
the mathematics in the first order. The basic problem remains even for Hilbert, that a
consistency proof of the formal system does not guarantee the existence of a model,
or as Brouwer puts it, “the consistency of the language system, shown on the basis of
the mathematical intuition, does not prove (justify) the mathematical intuition that it
accompanies”.

7Hilbert’s lecture at the Heidelberg congress, 1904, [Hilbert 1905]. It was the first “proof theoretic” paper,
and it dealt with a fragment of arithmetic.
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The discussion of Hilbert’s paper ends with a detailed enumeration and discussion
of the levels of mathematics, language, logic.

It may safely be assumed that Brouwer’s foundational ideas did not travel far. The
dissertation was in Dutch, and although in the twenties a few mathematicians outside
of the Netherlands even went so far as to learn enough Dutch to be able to read the
dissertation, we may safely assume that Brouwer’s foundational work only started to
draw attention after 1918, when the first papers in German started to appear. Hilbert
and Weyl were informed at an earlier stage. In the summer of 1909 Hilbert was on
vacation at the North sea coast in Scheveningen, where Brouwer visited him and told
him his views on the various levels and the (proof) theoretic consequences.

Conceptually Brouwer was probably closest to Poincaré, who had expressed simi-
lar objections to a wide variety of foundational ideas; there was however one essential
point on which Brouwer could not follow him, that is Poincaré’s view that “exis-
tence D consistency”. He stuck to his “existence in mathematics means intuitively
constructed”, and deplored that the above identification showed “how little Poincaré
thinks of taking the intuitive construction of mathematics as the point of departure
for his criticism”, [Brouwer 1907], p. 177.

5. Life and career

The young Brouwer was a precocious child; he was mainly taught at home by his
mother, who had been a school teacher. His father was a headmaster with a solid
reputation for pedagogy. The boy grew up in an atmosphere of study and responsi-
bility. The late nineteenth century schoolmasters were as a whole a dedicated group,
believing in the values and benefits of education; they were the true champions of
enlightenment. In this environment Brouwer developed into a mature boy with a
penchant for learning and for sports (the rougher, the better). At the high school age
he mixed in Haarlem with artists and scholars. There were virtually no topics that he
despised; before entering the university he was already well read in philosophy, and
in his study and research he made good use of the fact. Given the circumstance that
Dutch mathematics and philosophy could not compete with that of the international
centres, where new ideas and subjects flourished, he had to teach himself a great
deal. The dissertation showed that he had managed very well for himself. And so the
student Brouwer, who presented his thesis, could face the faculty with self-assurance.

The public defence of his Ph.D. thesis presented no problems, even if the examiners
had been able to punch a few holes in his line of argument, the wealth of ideas and
the perfect command of the necessary technical skills would have been enough to
convince the committee. As it was, he was awarded the doctorate cum laude. He
had not been an easy student for Korteweg. The correspondence shows the temper
of the young man that was wisely and with tact overruled by the older master. The
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foundational material, and in particular the underlying mystical, subjective motivation
of the central points were perhaps too much for him. Brouwer, later in life, told that
Korteweg could no longer than a quarter of an hour on end read these parts, they
made him feel dizzy. In one case Korteweg used his authority and ordered Brouwer
to delete part of his manuscript. He wrote, “But really Brouwer, this wont do. A
kind of pessimistic and mystic philosophy of life has been woven into it, that is no
longer mathematics, and has also nothing to do with mathematics. …” Brouwer gave
in, much to the detriment of future readers – some of the basic ideas and notions
now came out of the blue. Nonetheless student and teacher remained close for years
to come. Korteweg was well aware that a student of this sort comes along only
once in a Blue Moon, so he tried to further the interests of the young man. The
first step was to make him a privaat docent8. Brouwer accepted the post with a
public lecture On the nature of geometry (1909). After that prolonged and difficult
negotiations with the board of the university followed. Eventually Korteweg decided

Figure 3. Privaat docent Brouwer (1909).

to make a detour via the Royal Academy of the Netherlands, the idea being that
once Brouwer was a member of the Academy, the university could hardly refuse
to appoint him. With recommendations of Hilbert, Poincaré, Klein, and Borel, the
membership of the Academy was secured in 1912. In the same year the appointment
to extraordinary professor at Amsterdam followed. At that occasion Brouwer gave

8After the German Privatdozent. A kind of free lance university teacher with a small fee.
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his inaugural lecture Intuitionism and Formalism. As the lecture was translated into
English, this was the first occasion for an international readership to get acquainted
with Brouwer’s program. A year later Korteweg made the generous offer to give
up his full professorship for Brouwer and to exchange it for the extraordinary chair.
From then on Brouwer was more or less in command of the mathematics section.

It has often been suggested that Brouwer’s topological career was a deliberate
strategy to acquire enough status to make his foundational program respectable. All
evidence points the other way; he became involved in topology partly through his
work on Hilbert 5. When he decided to submit his results to the Mathematische
Annalen he found out that he had been relying on Schoenflies’ somewhat deficient
1908 Bericht on point sets. Thus he had to clean up the basics of topology, and once he
got involved in the subject, he fell in love with its fascinating geometric features. In an
incredible tempo he mastered everything a topologist at that time should know. Being
a stubborn man with a strong feeling of justice, not tempered by any considerations
of misplaced respect, he was often incited by attempts to belittle him, or to cheat him.
This was a strong incentive to show his mastership in the face of adversity. Whatever
his motivations were, love or justice, he managed to reach the top of his profession
already before World War one. It brought him ample recognition, e.g. he was the
third on the list for the succession of Felix Klein. Leyden offered him a chair in 1915,
and in 1919 he got offers from Göttingen and Berlin.

Brouwer’s topological activity was cut short at the beginning of the World War;
there is a number of possible reasons: (1) after the successful wrapping up of the
dimension problems, he may have lost interest in further research, (2) he may have
wanted to return to the foundations of mathematics, (3) the isolation as a consequence
of the war. Probably each of those contributed towards his return to intuitionism. It
started with his lectures on point set theory – after all, he was the professor in set
theory, function theory, and axiomatics (the last topic seems a curious duty for an
intuitionist) – which were at first middle of the road constructive, but suddenly in
1916 turned into full blooded intuitionism. That was the beginning of his mature
intuitionistic program.

After the war he simultaneously worked on topology and intuitionism, but grad-
ually the topology part receded.

Characterising Brouwer’s brand of constructive mathematics, one has to acknowl-
edge that it is the constructivism of a topologist. Whereas most constructivists stuck
to the discrete part of mathematics, Brouwer ventured out into infinitary realms, such
as the continuum, Baire space, Cantor space and the various function spaces. Her
hardly ever practised number theory or combinatorics, and algebra appeared mostly
in a geometric or topological context. His introduction of spreads and fans betrays
the hand and the taste of a topologist.

Already before acquiring a position that was generally considered a prerequisite
for marriage, Brouwer spread his wings. In 1904, after passing his final exam, he
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bought some land in a picturesque part of the country, and had a friend of his design
a cottage for him. During that summer he married an older divorcee with a daughter.
And so he settled in the countryside where he could devote himself to his research. His
wife was the daughter of a family doctor, who had died early. His widow had carried
on the pharmacy that belonged to the practice. The idea was that the Brouwer’s
wife would eventually be in charge of the pharmacy; for this purpose she studied
pharmacy at the Amsterdam University. In a truly enterprising spirit Brouwer bought
in 1905 the pharmacy from his mother in law for his wife. The self made mystic
was thus solidly tied to the materialistic world, even before he had secured himself
a place in the scientific world. In practice he remained a free man, who travelled as
before. For a time Göttingen became his second home, where he made friends with
the mathematicians. In those happy days he had friends all over Germany, but in
particular in Göttingen and Berlin. Like a true Göttingen man he got himself a place
in the Harz,9 and to even things out, also a house in Berlin. He usually lived in the
cottage in Blaricum, while his wife stayed during the week in Amsterdam, minding

Figure 4. The young couple in Blaricum.

the pharmacy. In due time he acquired more property in Blaricum. Colleagues and
friends were always welcome; quite a number of top mathematicians stayed with
him, among others Hilbert, Carathéodory, Weyl; and Einstein too was an occasional
guest. Slowly Brouwer adapted to the bohemian life of het Gooi, as the area was
called, mixing with writers, painters, journalists, politicians. Within some ten years
the introvert student had become a man of the world, loved and admired for his wit

9That is to say, the house in Harzburg was the property of his protegé/secretary/girl friend, Cor Jongejan.
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and universal knowledge, feared for his sharp tongue. The man who entered the
second phase in his career had come a long way, without leaving his personal and
scientific loyalties behind.

It is obvious that a brief account of even the beginning of Brouwer’s activities
can not do justice to the colorful career and life of such a complicated personality.
The reader who wants to know more cannot do better than consult the two-volume
biography [van Dalen 1999], [van Dalen 2005].
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Abstract. This is a survey of a line of research in arithmetic combinatorics. It is centered around
so-called sum-product phenomena in various settings and its applications to problems in number
theory, computer science, spectral and ergodic theory. More specifically, the sum-product results
in finite fields and residue rings lead to new bounds on exponential sums of various types and
in fact provide the first non-trivial estimates. A typical result in this spirit are bounds on Gauss
sums for small multiplicative subgroups. Product theorems in matrix spaces derived from the
scalar theory enable one to prove various conjectures on the expansion of Cayley graphs and the
existence of spectral gaps for Hecke operators, most notably in SL2.q/ and SU.2/. Those in turn
lead to an extension of Selberg’s theorem for congruence subgroups and new results on prime
sieving in non-elementary subgroups of SL2.Z/. Finally, Furstenberg’s “stiffness problem” for
toral actions of subgroups of SL2.Z/ as well as a quantitative equidistibution property of the
orbits are described.
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Introduction

This exposé is a partial overview of a recent line of research in combinatorial number
theory centered around the so-called “sum-product phenomena” in various settings.

The basic philosophy of the sum-product theorem is that either the sum setACA D
fx C y j x 2 A; y 2 Ag or the product set A � A D fx � y j x; y 2 Ag will
be substantially “larger” than A, putting aside obvious obstructions of algebraic (or
metrical) nature.

If A � Z is a finite set of integers, Erdös and Szemeredi conjectured in [35] that
for all " > 0

jAC Aj C jA � Aj > c"jAj2�":
This problem is still far from resolved and the best general result to date is due to
J. Solymosi [59], with

jAC Aj C jA � Aj > jAj4=3.log jAj/�1:
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In [28], a nontrivial sum-product result is obtained for subsets A � Fp of a prime
field (also the appropriate version for arbitrary finite fields).

We will not discuss here the background for the renewed interest in that type of
question, which has to do with the 3-dimensional Kakeya problem ( see [5], [48]).

It turns out however that the real interest of the results from [28] are their further
developments related to a variety of subjects, including

(i) the theory of exponential sums and their applications;

(ii) the theory of expander graphs and spectral gaps of Hecke operators;

(iii) problems of derandomization in computer science;

(iv) prime sieving in certain thin varieties;

(v) equidistribution properties of orbits of linear groups.

We will survey some of this work. This report, as well as the reference list, is by
no means exhaustive however. Also the lack of space will not make it possible to get
into proof.

1. Sum-product theorem in finite fields

The following result was proven in [28] and in a more precise form in [27]. See also
[61] for a different approach.

Theorem 1.1 ([28] and [27]). For all " > 0, there is ı > 0 such that if A � Fp and
jAj < p1�", then

jAC Aj C jA � Aj > cjAj1Cı ;
where c > 0 is an absolute constant.

To be pointed out that formulations with explicit exponents have been obtained,
but we will not mention them here.

If we try to generalize Theorem 1.1 to arbitrary finite fields, there is the obvious
obstruction of a nontrivial subfield. As is clear from the next result, this is the only
one.

Theorem 1.2 ([28]). Assume S � Fq and jS j > qı , where ı > 0 is arbitrary and

jS C S j C jS � S j < KjS j:
Then there is a subfield G of Fq and � 2 F�

q such that

jGj < KC jS j and jSn�Gj < KC ;
where C D C.ı/.
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Further generalizations (with an appropriate formulation) to Cartesian products
Fp�Fp , residue rings Z=qZ and, more generally,O=I with I an ideal in the integers
O of a number field, will also play a role in the discussion below.

2. Exponential sums over multiplicative subgroups

A first significant application of the result of section 1 is to the theory of exponential
sums over finite fields, leading to nontrivial results in situations, where classical
methods do not seem to apply. The first progress obtained along these lines appear
in [29] and [27].

Theorem 2.1 ([29] and [27]). For all " > 0, there is ı > 0 such that if H is a
multiplicative subgroup of F�

p (H < F�
p for short) and jH j > p", then

max
.a;p/D1

ˇ̌ˇ X
x2H

ep.ax/
ˇ̌ˇ < cp�ı jH j:

Earlier results cover the range up to " > 1
4

; see [45], [49]. The technique used in
those papers are variants of Stepanov’s method.

Remark. Nontrivial bounds of the form

max
.a;p/D1

ˇ̌ˇ X
x2H

ep.ax/
ˇ̌ˇ D o.jH j/

may be obtained provided log jH j > C logp
log logp , for some constant C . This seems to

be the limitation of our method. It is a challenging problem to obtain results below
this threshold.

Theorem 2.1 is of course equivalent to the following formulation for Gauss sums.

Corollary 2.2. For all ı > 0, there is ı0 > 0 such that if .k; p � 1/ < p1�ı , then

max
.a;p/D1

ˇ̌ˇ
pX
xD1

ep.ax
k/
ˇ̌ˇ < cp1�ı0

:

Remark. Gauss classical bound by .k; p � 1/pp is trivial if .k; p � 1/ � pp.
More generally, one has Weil’s inequality for f .x/ 2 FpŒX� of degree d , namelyˇ̌ˇ X

1�x�p
ep
�
f .x/

�ˇ̌ˇ � dpp: .2:1/

This inequality is again trivial for d � pp. Obtaining nontrivial exponential sum
bounds for general polynomials when d � pp is a major open problem.
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3. Extensions to “almost groups”

It turns out that our methods apply equally well to certain incomplete sums. In
particular one obtains estimates on short exponential sums involving exponential
functions.

Theorem 3.1 ([6]). For all ı > 0, there is ı0 > 0 such that if � 2 ZC satisfies

.�; p/ D 1 and Op.�/ � t > pı ;

where we denote Op.�/ the multiplicative order of �modp, then

max
.a;p/D1

ˇ̌ˇ
tX
sD1

ep.a�
s/
ˇ̌ˇ < tp�ı0

:

A similar result, with the appropriate necessary assumptions, may be obtained for
arbitrary finite fields Fq .

Let q D pm and denote for x 2 Fq the trace

Tr.x/ D x C xp C � � � C pm�1:

Let  .x/ D ep.Tr.x// be the additive character.

Theorem 3.2 ([16]). Let � 2 F�
q be of order t and let t � t1 > q". Assume

max
1��<m
�jm

.p� � 1; t/ < q�"t;

where " > 0 is arbitrary and fixed. Then

max
a2F�

q

ˇ̌ˇ X
j�t1

 .agj /
ˇ̌ˇ < Cq�ı t1;

where ı D ı."/ > 0.

Both Theorems 3.1 and 3.2 have numerous applications, as described for instance
in the book [50]. Because shorter sums can be handled, several results in [50] can
now be stated with less restrictive assumptions and in some the conclusion may be
strengthened. Before listing a few of those issues, we state some further developments
of our techniques.
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4. More on exponential sums

We first consider the analogue of Theorem 2.1 for subgroupsH of the unit group Z�
q

of the ring Z=qZ of residues modulo q. A number of restricted results have been
obtained here; see also [15]. We only state the general one.

Theorem 4.1 ([8]). Let q be an arbitrary modulus. For all " > 0, there is ı D ı."/
such that ifH < Z�

q satisfies
jH j > q";

then
max
�2Z�

q

ˇ̌ˇ X
x2H

eq.�x/
ˇ̌ˇ < q�ı jH j:

Remarks. (1) Note that the statement in Theorem 4.1 is uniform in the modulus q.
The case of specific moduli q involving a bounded number of prime factors had been
treated previously in [15]. A classical example of such sums are Heilbronn sums

S.a/ D
p�1X
xD0

epm.ax
pm�1

/;

where m � 2 is fixed, and their generalizations; see [57], [44], [15], [10].
(2) Note also that in Theorem 4.1, we only make the assumption jH j > q". How-

ever, extension to incomplete sums, in the spirit of Theorem 3.1, is more restrictive if
the modulus is composite; see [15], [11]. This is clear, letting, say q D p2, � D 1Cp
and H D f�j j 0 � j � p

10
g.

An analogue of Theorem 3.1 for general modulus is the following:

Theorem 4.2. Let � 2 Z�
q satisfy Oq1.�/ � qı1 for q1jq (ı > 0 an arbitrary given

exponent). Then

max
.a;q/D1

ˇ̌ˇ
tX
sD1

eq.a�
s/
ˇ̌ˇ < tp�ı0

assuming t > qı and where ı0 D ı0.ı/ > 0.

Going beyond monomials, extensions of the combinatorial method based on sum-
product results permit us to treat also certain “sparse” polynomials in the spirit of
Mordell [56].

The following statement is essentially optimal, as a qualitative result, if only
assumptions on the exponents are made.
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Theorem 4.3 ([7]). Let

f .x/ D
rX
iD1

aix
ki 2 ZŒX�;

where .ai ; p/ D 1 and r is fixed. Assume

.ki ; p � 1/ < p1�ı .1 � i � r/ .4:1/

and
.ki � kj ; p � 1/ < p1�ı .1 � i 6D j < r/; .4:2/

with ı > 0 arbitrary and fixed. Then

ˇ̌ˇ
pX
xD1

ep
�
f .x/

�ˇ̌ˇ < Cp1�ı0

;

where ı0 D ı0.r; ı/ > 0.

More generally, there is the following variant for incomplete sums involving
exponential functions.

Theorem 4.4. Assume �1; : : : ; �r 2 F�
p satisfying

Op.�i / > p
ı .1 � i � r/

and
Op.�i�

�1
j / > pı .1 � i < j � r/:

Let t > pı . Then

max
.ai ;p/D1

ˇ̌ˇ
tX
sD1

ep.a1�
s
1 C � � � C ar� sr /

ˇ̌ˇ < tp�ı0

with ı0 D ı0
r.ı/ > 0.

Remarks. (1) A condition on the difference of the exponents such as (4.2) needs to
be imposed and assuming (4.1) only is not sufficient. An example is the binomial
sum

S D
p�1X
xD0

ep.x
.pC1/=2 C x/

for which jS j � p; see [31], [32].
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(2) The sum-product theorem underlying Theorem 4.2 is a certain extension of
Theorem 1.1 to subsets of Cartesian squares Fp�Fp; the statement here is necessarily
more complicated.

Replacing condition (4.2) by a much weaker assumption, it turns out to be still
possible to state a result on the solvability of certain congruences (short of getting an
exponential sum bound).

Theorem 4.5. Given r 2 ZC, r � 2 and ı > 0, there is a constantB and " > 0 such
that if k1; : : : ; kr satisfy (4.1) and moreover

.ki � kj ; p � 1/ > B for i 6D j; .4:3/

the following holds. Let .ai ; p/ D 1 and `i 2 Z.1 � i � r/. Then the system of
congruences

aix
ki 	 `i C yi .modp/ .1 � i � r/

has a solution in 1 � x < p and yi 2 Œ0; p1�"� \ Z.

See [14]. The proof combines Theorem 4.3 and the geometry of Fermat varieties.
Finally, we state a more abstract result on uniform distribution in finite commuta-

tive rings. Its original motivation was the study of ideal quotients in algebraic number
fields.

LetR be a finite commutative ring with unit and assume jRj D q, where q has no
small prime divisors (hence Theorem 4.6 below does not cover Theorem 4.1). Denote
R� the group of invertible elements of R. The following trichotomy holds, [10].

Theorem 4.6. LetH < R� and jH j > qı , where ı is arbitrarily fixed. For all " > 0,
there is "0 D "0."/! 0, as "! 0, such that one of the following alternatives holds:

(i) We have

max
�6D�0

ˇ̌ˇ X
x2H

�.x/
ˇ̌ˇ < jH j1�";

where � refers to the additive characters of R.

(ii) There is a nontrivial ideal I in R with

jH \ .1C I /j > jH j1�"0

:

(iii) There is a nontrivial subring R1 of R such that

jH \R1j > jH j1�"0

:
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5. Some applications

In this section, we list a few topics where the previous estimates turn out to be relevant.
We do not go into any detail or state the results. The reader may also wish to consult
the bibliography of the references cited here for more background. Many of the items
discussed below may be found in [50].

5.1. Cryptography and pseudo-randomness. Our first application concerns the
distribution of Diffie–Hellman triples; see [6]. Let p be a prime and � 2 Z�

p . We
consider the distribution in Œ0; 1�3 of the triples

��
�x

p

�
;

�
�y

p

�
;

�
�xy

p

��
1�x;y�t

;

where .p; �/ D 1 and Op.�/ D t > pı . The results obtained in [6] complement
those of [30, 1] and permit to establish some of these unconditionally.

A second application concerns the uniform distribution of power generators; see
[37], [38], [7]. We consider a modulus of the form q D p`, where p 6D `; p � `

prime (called a Blum integer). Take e 2 Z�
q , with

�
e; .p � 1/.` � 1/� D 1. We

then define an RSA generator (u0; u1; : : :) by u0 D � 2 Z�
q and inductively by

unC1 D uen. Such sequences were proposed as deterministic models for random
sequences. Theorem 4.4 turns out to be what is precisely needed to prove their
uniform and joint uniform distribution properties; see also the references cited in [7].

Based on Theorem 4.4, one may establish nontrivial bounds on certain other
exponential sums arising in this context, for instance sums of the form

X
0�x<p

ep.ag
x C bgx2/:

The original motivation for Theorem 4.5 was the Goresky–Klapper conjecture [42]
in coding theory (see also [18]).

5.2. Number fields. An issue discussed in [50], [17], [10] concerns the minimum
norm representatives in residue classes and the Euclidean division algorithm in alge-
braic number fields (Egami’s problem).

5.3. Coding theory. The Odlyzko–Stanley enumeration problem (see [50], [6]).

5.4. Hyperelliptic curves. Kodama’s problem on supersingularity of the modulo p
reduction, see [50], [6].
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5.5. Quantum unique ergodicity (QUE). The ergodicity of the Hanney–Berry
quantum cat map and refinements of the work of Kulberg and Rudnick on the QUE
problem, see [43], [51], [12].

6. Exponential sums over general sets and the theory of extractors in computer
science

Assume p a prime number. The following sharp result, obtained in [13], makes the
link between Theorems 1.1 and 2.1.

Theorem6.1. Given " > 0, there is ı D ı."/ such that for arbitrary setsA1; : : : ; Ak �
Fp satisfying jAj j > p" for 1 � j � k and jA1j � � � jAkj > p1C",

max
a2F�

p

ˇ̌ˇ X
x12A1

� � �
X
xk2Ak

ep.ax1 : : : xk/
ˇ̌ˇ < p�ı jA1j : : : jAkj: .6:1/

Observe that when k D 2 the statement is elementary and well known. Indeed
one has

max
a2F�

p

ˇ̌ˇX
x2A

X
y2B

ep.axy/
ˇ̌ˇ � .pjAj jBj/1=2: .6:2/

It turns out that the inequality (6.1) is of interest to certain issues in theoretical
computer science such as explicit construction of extractors (see [2], [3]). In this
language, inequality (6.1) provides a k-source extractor at entropy ratio " > 1

k
; (6.2)

yields a 2-source extractor at ratio " > 1=2.
The problem of providing explicit 2-source extractors below 1=2-entropy ratio

assignments has been open for some time. Some progress was made in [9] where the
1=2-barrier was broken. An example is given by the following.

Theorem 6.2 ([9]). There is � > 0 such that if A;B � Fp and jAj � jBj � p1=2,
then

max
a;b2F�

p

ˇ̌ˇX
x2A

X
y2B

ep.axy C bx2y2/
ˇ̌ˇ < p1�� : .6:3/

The 2-source question for arbitrary entropy ratio remains open. It is reasonable
to believe that in the following statement the assumption jAj � jBj � p1=2 could be
weakened to jAj; jBj > p".
Theorem 6.3 ([9]). There is � > 0 such that if A;B � Fp and jAj � jBj � p1=2,
then, assuming g 2 F�

p a generator, we have

max
a;b2F�

p

ˇ̌ˇX
x2A

X
y2B

ep.axy C bgxCy/
ˇ̌ˇ < p1�� : .6:4/
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7. SL2.p/ results and generalizations

It turned out that sum-product theorems in finite fields lead to product theorems in
semi-simple Lie groups. A first breakthrough result in this direction was obtained by
H. A. Helfgott [46].

Theorem 7.1 ([46]). Let A � SL2.Fp/; jAj < p3�ı and assume A is not contained
in any proper subgroup of SL2.Fp/. Then

jA � A � Aj > cjAj1C";

with c; " > 0 only depending on ı.

Remark. Denote A.s/ D .A [ A�1/ � � � .A [ A�1/ the s-fold product set. It can be
shown that if

jA � A � Aj < jAj1C";

and
jA.s/j < jAj1Cc.s/"

for all given s.

Theorem 7.1 is a set-theoretical statement. It permits us to deduce new convolution
inequalities, following a similar procedure as in the deduction of Theorem 2.1 from
Theorem 1.1. A key tool is provided by the Balog–Szemeredi–Gowers lemma and
its non Abelian extensions, see [61].

The following results on expander graphs in SL2.p/ are due to A. Gamburd and
the author; see [20].

Theorem 7.2 ([20]). Let S be a symmetric generating subset of SL2.Fp/ satisfying
the girth condition

girth
�
G .SL2.p/; S/

�
> � logp;

where � > 0 is an arbitrary fixed constant. Then the expansion coefficient c.G /
satisfies

c.G / > c.�/ > 0:

Example. Fix S � SL2.Z/ generating a free group.

Problem (A. Lubotzky). Is there for given k 2 ZC a constant � > 0 such that

c
�
G .SL2.p/; S/

�
> �

whenever jS j D k and S generates SL2.p/?



New developments in combinatorial number theory and applications 243

The next two statements are easy consequences of Theorem 7.2. The first hints
towards a positive answer to previous problem.

Corollary 7.3. For any k � 2 random Cayley graphs of SL2.p/ on k generators
are expanders.

Corollary 7.4. Let S be a subset of SL2.Z/. Then G .SL2.Fp/; Sp/ form a family
of expanders if and only if hSi is non-elementary, i.e. the limit set of hSi consists of
more than two points, or equivalently, hSi does not contain a solvable subgroup of
finite index.

Remark. For subgroups of SL2.Z/ of finite index, the result is due to A. Selberg
[58]. An extension of Selberg’s theorem for “big” subgroups of SL2.Z/, more pre-
cisely assuming the dimension of the limit set larger than 5=6 has been obtained by
A. Gamburd [40].

Theorem 7.2 was generalized in [26] to arbitrary square free modulus, with uni-
form estimates; see also [25]. This extension uses essentially the sum-product theory
in Z=qZ.

Theorem 7.5 ([26]). Assume S � SL2.Z/ generates a free subgroup. There is
q0 D q0.S/ 2 Z and c D c.S/ > 0 such that

c
�
G .SL2.q/; S/

�
> c

for q squarefree and .q; q0/ D 1.

It turns out that Theorem 7.5 is exactly the tool needed to carry out prime and
pseudo-prime sieving in certain “thin varieties” defined from subgroups of SL2.Z/
which may have arbitrary small dimension.

A few samples of results obtained along these lines (the reader should consult [25]
and [26] for the full account).

Theorem 7.6 ([26]). Assume ƒ is a non-elementary subgroup of SL2.Z/ � Z4.
Further, let f 2 QŒx1; x2; x3; x4� taking integer values on ƒ and not a multiple of
g.x1; x2; x3; x4/ D x1x4 � x2x3 � 1. There is r D r.ƒ/ 2 ZC such that

fx 2 ƒ j f .x/ has at most r prime factorsg
is Zariski dense in SL2.

Define r.z/ D number of prime factors of z 2 Znf0g.
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Theorem7.7 ([24]). Under the assumption ofTheorem 7.6, there isC D C.ƒ/ 2 ZC
such that for N !1

jfx 2 ƒ j x21 C x22 C x23 C x24 � N 2 and r.x1x2x3x4/ < C gj & N 2ı

.logN/4
;

where ı D ı�L.ƒ/� is the dimension of the limit set of ƒ.

Note that there is no other assumption on ı
�
L.ƒ/

�
than positivity in previous

statements.
Selberg’s combinatorial sieve may be applied with balls defined by the word-

metric (as in Theorem 7.6)

Nƒ.z/ D fx 2 ƒ j `.x/ � zg
or with the Archimedian metric (Theorem 7.7)

N 0
ƒ.z/ D

˚
x 2 ƒ j kxk D

q
x21 C x22 C x23 C x24 � z

�
:

In the Archimedian setting, a distinction is made between the cases ı > 1
2

and
ı � 1

2
. If ı > 1

2
, there is a L2-spectral theory for H=ƒ and we rely on the Lax-

Phillips asymptotic for N 0
ƒ.z/, [53], together with an extension of Selberg’s spectral

gap theorem based on Theorem 7.5. For ı � 1
2

, we follow Lalley’s symbolic dynamics
approach [54] based on renewal theorems and the meromorphic extension of Ruelle’s
transfer operator.

In [26], Theorem 7.6 and related statements are casted in a broader context of
“non-Abelian” Dirichlet theorems. At this point they remain conjectural and only
their “pseudo-prime version” cf. Theorem 7.6, has been established.

Returning to Corollary 7.4, Lubotzky and Weiss made the conjecture that if S is
a finite subset of SLd .Z/ generating a Zariski dense subgroup G of SLd , then the
family of Cayley graphs

G
�
SLd .Z=qZ/; �q.S/

�
forms an expander family, provided we take q to satisfy .q; q0/ D 1, where q0 2 Z
depends on ƒ. Recall indeed that according to the strong approximation property,
there is q0 D q0.ƒ/ 2 Z such that

�q.G/ D SLd .Z=qZ/ if .q; q0/ D 1
(connectedness of the graph G ).

Thus Theorem 7.5 establishes this conjecture for SL2.q/, restricting q to square-
free moduli. At the other end, the family SL2.pn/ (p prime, n 2 ZC) was treated
in [22], using a different approach combining sum-product theory with the Solovay–
Kitaev algorithm. This approach generalizes to SLd .pn/, d � 2 (p fixed and
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n ! 1), see [23]. Helfgott [47] recently extended his Theorem 7.1 to SL3.p/.
Combined with results from [23], this enables us to add the family SL3.p/ (p-prime)
to the list satisfying the Lubotzky–Weiss conjecture.

8. SU.2/

It turns out that the true counterpart of Theorem 1.1 for subsets of R is the “discretized
ring conjecture” made in [48] and proven in [4], rather than statements of [35] type.

Theorem 8.1 ([4], [21]). For all 0 < 	 < 1 and 
 > 0, there is " D ".	; 
/ > 0 such
that if A � Œ0; 1� is a union of ı-intervals, where ı > 0 is small, satisfying

jAj D ı1�� ;

and for all ı < � < ı",

max
t
jA \ B.t; �/j < �� jAj; .8:1/

then

jAC Aj C jA � Aj > ı1���":

Remark. A “non-concentration” assumption such as (8.1) is easily seen to be nec-
essary for such a statement to hold.

While the initial motivation of Theorem 8.1 was to progress on the dimension
conjecture for Kakeya sets in R3 and other problems discussed in [48], it appeared
that Theorem 8.1 as a counterpart of Theorems 1.1 and 1.2, permits us to carry out
[46], [20] in the Archimedian setting of SU.2/.

First we need to recall the non-Abelian diophantine condition from [41] that will
play the role of the “large girth” assumption.

Definition 8.2. For k � 2, we say that the set of elements g1; : : : ; gk 2 SU.2/ are
diophantine if there isD > 0 such that for anym � 1 and any wordRm in g1; : : : ; gk
of length m, and such that Rm 6D ˙e, we have

kRm ˙ ek � D�m:

Example ([41]). Take g1; : : : ; gk 2 SU.2/ \M2.xQ/ generating a free group.

We may now state the main result from [21].
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Theorem 8.3 ([21]). Let fg1; : : : ; gkg be a set of elements in SU.2/ generating a free
group and satisfying a diophantine property. Then

zg1;:::;gk D g1 C g�1
1 C � � � C gk C g�1

k

has a spectral gap, with lower bound depending on k andD only.

Corollary 8.4. If g1; : : : ; gk 2 SU.2/\M2.xQ/ generate a free group, then zg1;:::;gk
has a spectral gap.

There are several applications, including to geometry and quantum computation
(see [21]). Here are a few:

(1) A purely analytical solution to the Banach–Ruziewiez problem on finitely
additive invariant measures on S2 (see [21], [60]).

(2) Proof of the exponential mixing rate in the Conway–Radin quaquaversal tiling
of R3.

(3) "-approximation by words of length� log 1
"

in fault tolerant gates in quantum
computation (improving on the Solovay–Kitaev algorithm).

(4) Construction of explicit “dimension expanders”.

9. Actions of linear groups on tori [19]

Combining Theorem 8.1 and classical theory of random matrix products enables
us to answer affirmatively certain questions raised by Furstenberg and Guivarch on
stationary measures and equidistribution for toral actions of linear groups. Let S D
fg1; : : : ; gkg be elements in SLd .Z/ generalizing a Zariski dense subgroup of SLd
and denote

� D 1

jS j
X
g2S

ıg :

We consider the action of SLd .Z/ on the d -dimensional torus
Qd .

Theorem 9.1. Let � 2 Qd be irrational. Then for �.1/-almost every sequence
.x1; x2; : : :/, the sequences

xrxr�1 � � � x1� and x1x2 : : : xr� .r !1/

are equidistributed in
Qd .

Application of next statement in the situation hSi D SLd .Z/ solves affirmatively
Furstenberg’s “stiffness problem” [39].
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Corollary 9.2. Let � be a probability measure on
Qd which is �-stationary, i.e.

� D � 
 � D
X
g

�.g/g�Œ��:

Then � is a combination of Haar measure and an atomic measure supported by
rational points and � is h�i-invariant.

We also retrieve the description of h�i-invariant compact subsets K of
Qd , due

to Starkov, Muchnik, Guivarch.

Corollary 9.3. Let � be as above and K � Qd a h�i-invariant compact set. Then
K is finite or K DQd .

Guivarch’s equidistribution question may in fact be addressed in the following
quantitative form (which is the main result from [19]).

Theorem 9.4. Given � as above, there are constants c > 0 and C <1, such that if
� 2Qd nf0g and b 2 Zdnf0g, kbk < ecn, then

.
/ D
ˇ̌ˇX
g

�.n/.g/e2�ihb;g�i
ˇ̌ˇ < e�cn

unless k� � a
q
k < e�cn with q < e

c
4n, in which case

.
/ < jbj
C

qc
:

A key step in proving Theorem 9.4 is to exhibit certain well-distributed sets in Zd

of large Fourier coefficients. This is the place where Theorem 8.1 enters. The most
elegant approach is to rely on a consequence of Theorem 8.1, which has the form of a
Marstrand-type projection theorem. For simplicity, we formulate the result in terms
of Hausdorff dimension. The application above requires however a box-dimension
version, which is slightly more technical to state.

Theorem 9.5. Given d 2 Z; d � 2 and 0 < � < d , " > 0 there is ı > 0 such
that the following holds. Let A � Œ0; 1�d with H -dim A > �. Let  be a probability
measure on Sd�1 of dimension at least ". Denote P� the orthogonal projection on
� 2 Sd�1. Then the set f� 2 Sd�1 j dimP�A <

	
d
C ıg has zero -measure.

In our application,  will be the �-stationary measure on Pd�1.R/ given by the
theory of random matrix products.
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Large random planar maps and their scaling limits

Jean-François Le Gall

Abstract. We discuss scaling limits of random planar maps chosen uniformly at random in a
certain class. This leads to a universal limiting space called the Brownian map, which is viewed
as a random compact metric space. The Brownian map can be obtained as a quotient of the
continuous random tree called the CRT, for an equivalence relation which is defined in terms
of Brownian labels assigned to the vertices of the CRT. We discuss the known properties of the
Brownian map. In particular, we give a complete description of the geodesics starting from the
distinguished point called the root. We also discuss applications to various properties of large
random planar maps.

MathematicsSubjectClassification (2000). Primary 60C05, 05C80; Secondary 60F17, 05C12,
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Keywords. Random planar map, scaling limit, Brownian map, continuum random tree, geodesic,
Gromov–Hausdorff convergence.

1. Introduction

The main purpose of the present article is to survey recent developments about scaling
limits of large planar maps chosen uniformly at random in a suitable class. Recall
that planar maps are just (finite) graphs embedded in the plane. A planar map is thus
the kind of object one would draw on a sheet of a paper if asked to give an example
of a graph.

To explain what a scaling limit is, consider a combinatorial object, such as a path,
a tree or a graph, and suppose that it is chosen at random in the class of all objects
of size n. Often the resulting random object can be rescaled as n ! 1 in such a
way that it becomes close to a continuous model. For instance, one may consider all
discrete paths with length n starting from the origin on the integer lattice Zd . If one
chooses uniformly at random a path in this collection, then modulo a suitable rescaling
(essentially by the factor 1=

p
n) it will become close to a continuous Brownian

path. More precisely, for any set A in the path space, satisfying certain regularity
assumptions, the probability that the rescaled discrete path of length n belongs to A
will converge to the probability that the Brownian path belongs to A as n!1.



254 J.-F. Le Gall

Studying such scaling limits is all the more interesting as they are universal,
meaning that the same continuous model corresponds to the limit of many different
classes of discrete objects. A fundamental example of this universality property is
Brownian motion, which is well known to be the scaling limit of many different
classes of random paths. The study of scaling limits is motivated by at least two
important reasons:

� Often the continuous model is of interest in its own. For instance, Brownian
motion has numerous applications, independently of the fact that it is the scaling
limit of random walks.

� Knowing the continuous model gives insight into the properties of the large
discrete objects. Lots of interesting distributional asymptotics for long random
paths can be derived from explicit calculations on Brownian motion.

In the present work, we discuss scaling limits first for random trees and then for
random planar maps. The reason for considering random trees first comes from our
specific approach, which involves bijections between planar maps and certain classes
of decorated trees. The scaling limits of trees and maps both lead to remarkable
probabilistic objects. In the case of trees, the scaling limit is the CRT (Continuum
Random Tree), which has been introduced and studied by Aldous [A1], [A2] in the
early nineties. The scaling limit of random planar maps, which we call the Brownian
map, is then described as the quotient of the CRT for a certain (random) equivalence
relation. The Brownian map may be thought of as the relevant probabilistic model
for a random surface in the same sense as Brownian motion is the right model for
a purely random continuous path. Indeed, one conjectures that the Brownian map
appears as the continuous limit of many classes of planar maps, which are natural
discretizations of surfaces.

Let us recall some basic definitions. A planar map is a proper embedding of a
finite connected graph in the two-dimensional sphere S2. Loops and multiple edges
are a priori allowed. The faces of the map are the connected components of the
complement of the union of edges. A planar map is rooted if it has a distinguished
oriented edge called the root edge, whose origin is called the root vertex. In what
follows, we consider only rooted planar maps, even if this is not mentioned explicitly.
Rooting maps avoids certain technical difficulties and is believed to have no influence
on the problems we will be addressing.

Two rooted planar maps are said to be equivalent if the second one is the image
of the first one under an orientation-preserving homeomorphism of the sphere, which
also preserves the root edges. Two equivalent rooted planar maps will always be
identified.

Given an integer p � 3, a p-angulation is a planar map where each face has
degree p, that is p adjacent edges. One should count edge sides, so that if an edge
lies entirely inside a face it is counted twice: For instance, the face in the upper



Large random planar maps and their scaling limits 255

right corner of Figure 1 below has degree 4, although it seems to be adjacent to
only 3 edges. We denote by Mp

n the set of all rooted p-angulations with n faces.
Thanks to the preceding identification, the set Mp

n is finite. A 3-angulation is called a
triangulation, and a 4-angulation is called a quadrangulation. Figure 1 below shows
a quadrangulation with 7 faces.

�

� �

�

�
�

�

�

�

root
vertex

root
edge

Figure 1

Consider a planar map M . Let V.M/ denote the vertex set of M . A path in M
with length k is a finite sequence .a0; a1; : : : ; ak/ in V.M/ such that ai and ai�1
are connected by an edge of the map, for every i 2 f1; : : : ; kg. The graph distance
dgr.a; a

0/ between two vertices a and a0 is the minimal k such that there exists a path
� D .a0; a1; : : : ; ak/ with a0 D a and ak D a0. A path � D .a0; a1; : : : ; ak/ is
called a discrete geodesic (from a0 to ak) if k D dgr.a0; ak/. The set V.M/ equipped
with the metric dgr is a (finite) metric space. Clearly, the map M is not determined
by the metric space .V .M/; dgr/. Nonetheless, much information is contained in
this metric space, and in what follows we will concentrate on the study of metric
properties of planar maps.

Fix an integer p � 3 and, for every integer n � 2, let Mn be a random planar
map chosen uniformly at random in the space Mp

n . Following our initial discussion
of scaling limits, one would like to prove that for a suitable choice of the positive
constant ˛, the rescaled random metric spaces

.V .Mn/; n
�˛dgr/ (1)

converge in some appropriate sense towards a (non-degenerate) limiting random com-
pact metric space. Moreover the limiting space is believed to be independent of p,
up to trivial scaling factors. This corresponds to the universality property mentioned
above.

The rescaling factor n�˛ in (1) is needed if we want to get a “continuous” limit
and to stay within the framework of compact metric spaces. It also makes sense to
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study the limit of the spaces .V .Mn/; dgr/ without rescaling, and this gives rise to
infinite random graphs (see Angel [An] and Angel and Schramm [AS] for the case of
infinite triangulations, and Chassaing and Durhuus [CS] and Krikun [Kr] for infinite
quadrangulations of the plane).

As stated above, the problem of the scaling limit for planar maps requires an
adequate notion of the convergence of a sequence of compact metric spaces. Such a
notion is provided by the Gromov–Hausdorff distance (Gromov [Gr], Burago, Burago
and Ivanov [BBI]). Let .E1; d1/ and .E2; d2/ be two compact metric spaces. The
Gromov–Hausdorff distance between .E1; d1/ and .E2; d2/ is

dGH.E1; E2/ D inf
�
dHaus.'1.E1/; '2.E2//

�
;

where the infimum is over all isometric embeddings'1 W E1 ! E and'2 W E2 ! E of
E1 andE2 into the same metric space .E; d/, and dHaus stands for the usual Hausdorff
distance between compact subsets ofE. If K denotes the space of all isometry classes
of compact metric spaces, then dGH is a distance on K, and moreover the metric space
.K; dGH/ is Polish, that is separable and complete (see Chapter 7 of Burago, Burago
and Ivanov [BBI] for a thorough discussion of the Gromov–Hausdorff distance).

Thanks to the previous discussion, it makes sense to study the convergence in
distribution of the random metric spaces (1) as random variables with values in the
Polish space .K; dGH/. This problem was stated in this form for triangulations by
Schramm [Sc]. The general idea of finding a continuous limit for large random
planar maps had appeared earlier, especially in the pioneering paper of Chassaing and
Schaeffer [CS]. The latter paper proves a limit theorem showing that the radius, or
maximal distance from the root, of a quadrangulation with n faces chosen at random,
rescaled by the factor n�1=4, converges in distribution towards a nondegenerate limit
(see Corollary 3.4 below). This gives evidence of the fact that the proper value of the
constant ˛ in (1) should be ˛ D 1=4.

For reasons that will be explained below, it turns out to be easier to handle bipartite
planar maps: A planar map is bipartite if and only if all its faces have even degree.
In the remaining part of this introduction, we thus restrict our attention to the case
when p is even.

In order to explain our main result about scaling limits of planar maps, we need
to introduce some notation. Aldous’ Continuum Random Tree (the CRT), viewed as
a random compact metric space, is denoted by .Te ; de/. Its root � is a distinguished
point of Te . The reason for the notation Te comes from the fact that the CRT can
be coded by a normalized Brownian excursion e, as will be explained in Section 3
below. This coding makes it possible to introduce a lexicographical order on the tree
Te : If a; b 2 Te , one may consider the “lexicographical” interval Œa; b� which is
informally defined as the subset of Te consisting of all points that are visited when
going from a to b around the tree in clockwise order (see Section 4 for more rigorous
definitions). Next, conditionally given .Te ; de/, we consider a centered Gaussian
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process .Za/a2Te such that Z� D 0 and

EŒ.Za �Zb/2� D de.a; b/

for every a; b 2 Te (again this definition is slightly informal, as we consider a random
process indexed by a random set – see Section 4 for a more rigorous presentation). The
processZ should be understood as Brownian motion indexed by the tree Te : Za is a
“label” assigned to vertex a, and this label evolves as linear Brownian motion when
varying a along a line segment of the tree. Finally, we define a random equivalence
relation� on Te by setting

a � b iff Za D Zb D min
c2Œa;b�

Zc or Za D Zb D min
c2Œb;a�

Zc :

Then Theorem 4.1 below, taken from [L2], states that, from any sequence of
values of n converging to C1, we can extract a subsequence along which we have
the convergence in distribution

.V .Mn/; n
�1=4dgr/ �! .Te=�;D/; (2)

where D is a metric on the quotient Te=�, which induces the quotient topology on
that space. The limiting space .Te=�;D/ is called the Brownian map (to be more
precise, we should say that we use the name Brownian map for any of the limiting
random metric spaces that can arise in (2) when we varyp and the subsequence). This
terminology comes from Marckert and Mokkadem [MMo], who discussed limits of
rescaled random quadrangulations, however in a different sense than the Gromov–
Hausdorff convergence. Our terminology slightly differs from that in [MMo], where
the Brownian map is defined as the space Te=� with a specified metric which may
or may not coincide with D.

The need for a subsequence in (2) comes from the fact that the limiting random
metric D has not been fully characterized, and so there might be different metrics
D corresponding to different subsequences. Still one believes that it should not be
necessary to take a subsequence, and that the limiting metric space should be the same
independently of p (even if p is odd), thus confirming the universality property of
the Brownian map. The recent results of Marckert and Miermont [MMi], Miermont
[Mi1] and Miermont and Weill [MW] strongly support this conjecture.

Even though the distribution of the Brownian map has not been fully characterized,
many of its properties can be investigated in detail. In Section 5 below, we give two
theorems showing on one hand that the Hausdorff dimension of the Brownian map is
a.s. equal to 4, and on the other hand that the Brownian map is a.s. homeomorphic to
the two-dimensional sphere. The last result is maybe not surprising since we started
from graphs drawn on the sphere. Still it implies that typical large p-angulations
will not have “small bottlenecks” (see Corollary 5.3 for a precise statement). In
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Section 6 we present recent results taken from [L3] about the structure of geodesics
in the Brownian map. Here again, we provide applications to properties of large
discrete planar maps, in the spirit of the observations made at the beginning of this
introduction.

One may ask why the scaling limit of random planar maps should be related to the
CRT. This can be understood from the existence of bijections between the sets Mp

n

and various classes of labeled trees. In the particular case of quadrangulations, such
bijections were discovered by Cori and Vauquelin [CS] and then studied extensively
by Schaeffer [S]. More recently, Bouttier, Di Francesco and Guitter [BDG] provided
a nice simple extension of the Cori–Vauquelin–Schaeffer bijection to bipartite planar
maps (see Section 2 below). This result partly explains why we restrict our atten-
tion to bipartite planar maps: The bijections in the general case seem more difficult
to use for technical reasons (see however Miermont [Mi1]). The scaling limit of
the discrete trees that arise in the bijections with planar maps turns out to be given
by the CRT (see Section 3). Since in the discrete setting vertices of the map are
in one-to one correspondence with vertices of the associated tree, it is not surpris-
ing that the Brownian map can be constructed from the CRT. However, the correct
definition requires identifying certain pairs of points in the CRT, via the introduction
of the equivalence relation �. This is so because, already in the discrete setting,
certain pairs of vertices that are far away from each other in the tree can be very
close in the associated map. The principal difficulty in the proof of (2) is in fact to
determine precisely those pairs of points that need to be identified in the continuous
limit.

To conclude this introduction, let us briefly comment on the motivations for study-
ing planar maps and their scaling limits. Planar maps were first studied by Tutte [Tu]
in connection with his work on the four color theorem, and since then they have been
studied extensively in combinatorics. Planar maps also have algebraic and geomet-
ric applications: See the book of Lando and Zvonkin [LZ] for more on this matter.
Because of their relations with Feynman diagrams, planar maps soon attracted the
attention of specialists of theoretical physics. The pioneering papers by ’t Hooft
[tH] and Brézin, Itzykson, Parisi and Zuber [BIP] related enumeration problems for
planar maps with asymptotics of matrix integrals. The interest for random planar
maps in theoretical physics grew significantly when these combinatorial objects were
interpreted as models of random surfaces, especially in the setting of the theory of
quantum gravity (see in particular the book ofAmbjørn, Durhuus and Jonsson [ADJ]).
Bouttier’s thesis [Bo] describes applications of planar maps to the statistical physics
of random surfaces. The recent papers [BG1], [BG2], [BG3] by Bouttier and Guitter
address questions closely related to those of the present work from the perspective of
theoretical physics. From the probabilistic point of view, the Brownian map appears
to be a fascinating model of a random fractal surface, even if its properties are still
far from being completely understood.
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2. Bijections between maps and trees

Throughout the remaining part of this work, we fix an integer p � 2 and we deal with
the set M2p

n of all rooted 2p-angulations with n faces. We will present a bijection
between M2p

n and and a certain set of labeled trees.
By definition, a plane tree � is a finite subset of the set

U D
1[
nD0

Nn

of all finite sequences of positive integers (including the empty sequence ;), which
satisfies three obvious conditions: First ; 2 � , then, for every v D .u1; : : : ; uk/ 2 �
with k � 1, the sequence .u1; : : : ; uk�1/ (the “parent” of v) also belongs to � , and
finally for every v D .u1; : : : ; uk/ 2 � there exists an integer kv.�/ � 0 (the “number
of children” of v) such that the vertex vj WD .u1; : : : ; uk; j / belongs to � if and only
if 1 � j � kv.�/. The generation of v D .u1; : : : ; uk/ is denoted by jvj D k.
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Figure 2. A 3-tree � and the associated contour function C �
B

of �B.

Ap-tree is a plane tree � that satisfies the following additional property: For every
v 2 � such that jvj is odd, kv.�/ D p � 1.

If � is a p-tree, vertices v of � such that jvj is even are called white vertices, and
vertices v of � such that jvj is odd are called black vertices. We denote by �B the set
of all white vertices of � and by �� the set of all black vertices. See the left side of
Figure 2 for an example of a 3-tree.

A labeled p-tree is a pair � D .�; .`v/v2�B/ that consists of a p-tree � and a
collection of integer labels (taking values in Z) assigned to the white vertices of � ,
such that the following properties hold:

(a) `; D 1.

(b) Let v 2 ��, let v.0/ be the parent of v and let v.j / D vj , 1 � j � p � 1, be the
children of v. Then for every j 2 f0; 1; : : : ; p � 1g, `v.jC1/

� `v.j/ � 1, where
by convention v.p/ D v.0/.
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A labeled p-tree is called a p-mobile if the labels satisfy the following additional
condition:

(c) `v � 1 for each v 2 �B.

The left side of Figure 3 gives an example of a p-mobile with p D 3. Condition (b)
above means that if one lists the white vertices adjacent to a given black vertex in
clockwise order, the labels of these vertices can decrease by at most one at each step.
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Figure 3. A 3-mobile � with 5 black vertices and the associated spatial contour function.

Let � be a p-tree with n black vertices and let k D #� � 1 D pn. The depth-
first search sequence of � is the sequence w0; w1; : : : ; w2k of vertices of � which is
obtained by induction as follows. Firstw0 D ;, and then for every i 2 f0; : : : ; 2k�1g,
wiC1 is either the first child ofwi that has not yet appeared in the sequencew0; : : : ; wi ,
or the parent of wi if all children of wi already appear in the sequence w0; : : : ; wi .
It is easy to verify that w2k D ; and that all vertices of � appear in the sequence
w0; w1; : : : ; w2k (of course some of them appear more than once).

Vertices wi are white when i is even and black when i is odd. The contour
sequence of �B is by definition the sequence v0; : : : ; vk defined by vi D w2i for
every i 2 f0; 1; : : : ; kg.

Now let � D .�; .`v/v2�B/ be a p-mobile with n black vertices. As previously,
denote the contour sequence of �B by v0; v1; : : : ; vpn. Suppose that the tree � is drawn
in the plane as pictured in Figure 4 and add an extra vertex @. We associate with � a
rooted 2p-angulation M with n faces, whose set of vertices is

V.M/ D �B [ f@g
and whose edges are obtained by the following device: For every i 2 f0; 1; : : : ;
pn � 1g,

� if `vi D 1, draw an edge between vi and @ ;
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� if `vi � 2, draw an edge between vi and vj , where j is the first index in the
sequence i C 1; i C 2; : : : ; pn such that `vj D `vi � 1.
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Figure 4. The Bouttier–Di Francesco–Guitter bijection: A rooted 3-mobile with 5 black vertices
and the associated rooted 6-angulation with 5 faces. The root edge of the map is the rightmost
edge on the figure and is oriented from the vertex @ to the vertex labeled 1.

Notice that vpn D v0 D ; and `; D 1, and that condition (b) in the definition of
a p-tree entails that `viC1 � `vi � 1 for every i 2 f0; 1; : : : ; pn � 1g. This ensures
that whenever `vi � 2 there is at least one vertex among viC1; viC2; : : : ; vpn with
label `vi �1. The construction can be made in such a way that edges do not intersect,
except possibly at their endpoints: For every vertex v, each index i such that vi D v
corresponds to a “corner” of v, and the associated edge starts from this corner. We
refer to Section 2 of Bouttier et al [BDG] for a more detailed description.

The resulting planar map M is a 2p-angulation, which is rooted at the oriented
edge between @ and v0 D ;, corresponding to i D 0 in the previous construction.
Each black vertex of � is associated with a face of the map M . See Figure 4 for the
6-angulation associated with the 3-mobile of Figure 3.

The preceding construction yields a bijection between the set Tp
n of all p-mobiles

with n black vertices and the set M2p
n . This is the Bouttier–Di Francesco–Guitter

bijection [BDG], called the BDG bijection in what follows.
Furthermore, this bijection enjoys the following remarkable property, which is

crucial for our purposes: The graph distance in M between the root vertex @ and
another vertex v 2 �B is equal to `v . Hence knowing the labels in the tree � already
gives a lot of information about distances in the map M .

In view of our applications, it will be convenient to code a p-mobile, or more
generally a labeled p-tree, by a pair a discrete functions. The contour function of �B
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(or of � ) is the discrete sequence C �
B

0 ; C
�B

1 ; : : : ; C
�B

pn defined by

C �
B

i D
1

2
jvi j for every 0 � i � pn:

See Figure 2 for an example with p D n D 3. It is easy to verify that the contour
function determines �B, which in turn determines the p-tree � uniquely. We also
introduce the spatial contour function of � D .�; .`v/v2�B/, which is the discrete
sequence .ƒ�0; ƒ

�
1; : : : ; ƒ

�
pn/ defined by

ƒ�i D `vi for every 0 � i � pn:
From property (b) of the labels and the definition of the contour sequence, it is clear
that ƒ�iC1 � ƒ�i � 1 for every 0 � i � pn � 1 (cf. Figure 3). The pair .C �

B

; ƒ� /

determines the labeled p-tree � uniquely.

3. Scaling limits of trees

3.1. Plane trees. Our goal is to study the scaling limits of the labeled trees that
appeared in the bijections with maps. We will start with the simpler problem of
obtaining the scaling limit of plane trees. We first need to recall the definition of an
R-tree.

A metric space .T ; d/ is an R-tree if the following two properties hold for every
a; b 2 T .

(a) There is a unique isometric mapfa;b from Œ0; d.a; b/� intoT such thatfa;b.0/ D
a and fa;b.d.a; b// D b.

(b) If q is a continuous injective map from Œ0; 1� into T , such that q.0/ D a and
q.1/ D b, we have

q.Œ0; 1�/ D fa;b.Œ0; d.a; b/�/:

A rooted R-tree is an R-tree .T ; d/ with a distinguished vertex � D �.T / called the
root.

Informally, one should think of a (compact) R-tree as a connected union of line
segments in the plane with no loops. For any two points a and b in the tree, there is
a unique arc going from a to b in the tree, which is isometric to a line segment.

The multiplicity of a point a of T is the number of connected components of
T nfag. The point a is called a leaf if its multiplicity is one, and a branching point if
its multiplicity is at least 3. We will be interested in compact R-trees. Even for such
trees, there can be (countably) infinitely many branching points and uncountably many
leaves. This will indeed be the case for the random R-trees that we will introduce.
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We turn to the construction of (rooted) R-trees from their contour functions. This
is a continuous analogue of the well-known coding of plane trees by Dyck paths. Let
g W Œ0; 1� ! RC be a nonnegative continuous function such that g.0/ D g.1/ D 0.
We will explain how to associate with g a compact R-tree .Tg ; dg/.

For every s; t 2 Œ0; 1�, we set

mg.s; t/ D inf
r2Œs^t;s_t�

g.r/;

and
dg.s; t/ D g.s/C g.t/ � 2mg.s; t/:

It is easy to verify that dg is a pseudo-metric on Œ0; 1�. As usual, we introduce the
equivalence relation s �g t if and only if dg.s; t/ D 0 (or equivalently if and only
if g.s/ D g.t/ D mg.s; t/). The function dg induces a distance on the quotient
space Tg WD Œ0; 1� =�g , and we keep the notation dg for this distance. We denote
by pg W Œ0; 1� ! Tg the canonical projection. Clearly pg is continuous (when Œ0; 1�
is equipped with the Euclidean metric and Tg with the metric dg ), and therefore
Tg D pg.Œ0; 1�/ is a compact metric space.

By Theorem 2.1 of [DL], the metric space .Tg ; dg/ is a compact R-tree. Fur-
thermore the mapping g ! Tg is continuous with respect to the Gromov–Hausdorff
distance, if the set of continuous functions g is equipped with the supremum distance.
We will always view .Tg ; dg/ as a rooted R-tree with root �g D pg.0/ D pg.1/.
Note that dg.�g ; a/ D g.s/ if a D pg.s/.

It is important to observe that the tree Tg inherits a “lexicographical order” from its
coding by the function g. If a; b 2 Tg , the vertex a comes before b in lexicographical
order if the smallest representative of a in Œ0; 1� is smaller than any representative of
b in Œ0; 1�.

By definition, the CRT is the random compact R-tree .Te ; de/ coded in the pre-
vious sense by a normalized Brownian excursion e D .et /0�t�1 (recall that a nor-
malized Brownian excursion is a linear Brownian motion over the time interval Œ0; 1�,
conditioned to start and to end at the origin, and to remain positive over the interval
.0; 1/). The CRT appears as the scaling limit of plane trees, as shown by the following
theorem, which is a reformulation of a result in Aldous [A2].

Theorem 3.1. For every n � 1, let �n be a random tree that is uniformly distributed
over the set of all plane trees with n edges, and denote the graph distance on �n by
dgr. Then the rescaled trees

.�n; .2n/
�1=2dgr/

converge in distribution towards the CRT, in the Gromov–Hausdorff sense.

There are in fact many other classes of random discrete trees for which the scaling
limit is the CRT. For instance, it is not hard to see that this holds for random trees that
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are uniformly distributed over the set of all p-trees with n edges (considering only
those values of n for which this set is not empty). The latter fact is an immediate
consequence of the convergence of first components in Proposition 3.2 below.

3.2. Labeled trees and mobiles. In view of our applications to random planar maps,
we need to understand the scaling limit of the p-mobiles of Section 2. We start with
the simpler case of labeled p-trees.

For technical reasons, it is more convenient to deal with convergence of the coding
functions rather than with convergence of the trees themselves. We first introduce
the random functions that will appear in the limit. Let g be as above a continuous
function from Œ0; 1� into RC such thatg.0/ D g.1/ D 0. We can consider the centered
Gaussian process .W g

t /t2Œ0;1� whose distribution is characterized by the covariance
function

cov.W g
s ; W

g
t / D mg.s; t/;

for every s; t 2 Œ0; 1�. Note thatEŒ.W g
s �W g

t /
2� D dg.s; t/. The process .W g

s /s2Œ0;1�
is called the Brownian snake driven by g. In the usual terminology, it is in fact the
“head of the snake” rather than the snake itself – see [L1] for more information about
Brownian snakes.

Under mild regularity assumptions ong, which will be satisfied in our applications,
one can construct .W g

s /s2Œ0;1� so that it has continuous sample paths. Then the
property EŒ.W g

s �W g
t /
2� D dg.s; t/ implies that a.s. for every s 2 Œ0; 1�, W g

s only
depends on the equivalence class of s in the quotient Tg D Œ0; 1�=�g . So we can
find a process Zg D .Z

g
a /a2Tg such that Zga D W

g
t whenever a D pg.t/. The

process Zg should be interpreted as Brownian motion indexed by Tg , which was
briefly discussed in Section 1.

As in the previous subsection, we then randomize g. Precisely, we let e D
.es/s2Œ0;1� be as above a normalized Brownian excursion and we define a random
process .Ws/s2Œ0;1� such that, conditionally given e, .Ws/s2Œ0;1� is distributed as the
Brownian snake driven by e. We may again define “labels” .Za/a2Te by requiring
that Za D Wt whenever a D pe.t/.

We can now state a first result corresponding to the scaling limit of labeledp-trees.
To simplify notation, we set

�p D 1

2

r
p

p � 1; �p D
�

9

4p.p � 1/
�1=4

:

Proposition 3.2. For every n � 1, let .�n; .`nv/v2�B

n
/ be uniformly distributed over

the set of all labeled p-trees with n edges, and let C n and ƒn be respectively the
contour function and the spatial contour function of .�n; .`nv/v2�B

n
/. Then,

�
�p n

�1=2 C nŒpnt�; �p n
�1=4ƒnŒpnt�

�
0�t�1

.d/����!
n!1 .et ; Wt /0�t�1:
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This proposition is a special case of results proved in [MMi]. The convergence of
the processes .n�1=2 C n

Œpnt�
/t2Œ0;1� towards the Brownian excursion is essentially a

variant of Theorem 3.1 (or rather of the formulation of this theorem in terms of contour
functions, as in [A2]). The convergence of labels is related to general results about
convergence of “discrete snakes” towards the Brownian snake, which are proved in
[JM].

Of course the previous proposition is not sufficient for our purposes, since we
are interested in p-mobiles and not in labelled p-trees. This means that we need to
take the positivity constraint of labels (property (c) of the definition) into account. At
an intuitive level, one may guess that this positivity constraint leads to considering
the limiting pair of Proposition 3.2 conditioned on the event fWs � 0 for every s 2
Œ0; 1�g. This conditioning however requires some care, since the conditioning event
clearly has probability zero.

According to [LW], this conditioned pair, which we denote by . Net ; SWt /t2Œ0;1�, can
be constructed as follows. If s� denotes the (almost surely unique) time in Œ0; 1� such
that Ws� D minfWs W 0 � s � 1g, we set for every t 2 Œ0; 1�,

� Net D es� C es�˚t � 2me.s�; s� ˚ t /,
� SWt D Ws�˚t �Ws� ,

where s� ˚ t D s� C t if s� C t � 1 and s� ˚ t D s� C t � 1 if s� C t > 1. This
definition is better understood in terms of trees. First note that SWt only depends on
the equivalence class of t in T Ne D Œ0; 1�=� Ne , and thus we may construct the labels
. xZa/a2T Ne

such that xZa D SWt if a D p Ne.t/. Then the tree T Ne is canonically identified
with the tree Te re-rooted at the vertex pe.s�/ with minimum label (see Lemma 2.2
in [DL]), and, modulo this identification, we have xZa D Za � minfZc W c 2 Teg,
meaning that the original labels are shifted to become nonnegative.

With the preceding notation we can now state the analogue of Proposition 3.2 for
p-mobiles, which is proved in [We].

Theorem 3.3. For every n � 1, let . N�n; . Ǹnv/v2N�B

n
/ be uniformly distributed over the

set of all p-mobiles with n edges, and let xC n and xƒn be respectively the contour
function and the spatial contour function of . N�n; . Ǹnv/v2N�B

n
/. Then,

�
�p n

�1=2 xC nŒpnt�; �p n�1=4 xƒnŒpnt�
�
0�t�1

.d/����!
n!1 . Net ; SWt /0�t�1:

The following corollary was obtained in Chassaing and Schaeffer [CS] in the
case p D 2 of quadrangulations. The general case can be found in [We], but the
same result in a slightly different setting had been derived earlier by Marckert and
Miermont [MMi]. See also [Mi1] for extensions to planar maps that are not bipartite.
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Corollary 3.4. For every integer n � 2, let Mn be a random planar map that is
uniformly distributed over the set M2p

n of all rooted 2p-angulations with n faces.
Denote by @ the root vertex ofMn and let R.Mn/ D maxfdgr.@; v/ W v 2 V.Mn/g be
the radius of the map. Then,

�pn
�1=4R.Mn/

.d/����!
n!1 max

0�t�1Wt � min
0�t�1Wt :

The proof is immediate from Theorem 3.3. Indeed, we know that Mn may be
constructed as the image of . N�n; . Ǹnv/v2N�B

n
/ under the BDG bijection. Then we have

R.Mn/ D max
v2N�B

n

Ǹn
v D max

0�k�pn
xƒnk :

On the other hand, Theorem 3.3 implies that

�pn
�1=4 max

0�k�pn
xƒnk

.d/����!
n!1 max

0�t�1
SWt

and from the definition of SW in terms of W , we have also

max
0�t�1

SWt D max
0�t�1Wt � min

0�t�1Wt :

Remark. Detailed information about the limiting distribution in Corollary 3.4 can
be found in [De].

4. Convergence towards the Brownian map

We now turn to the discussion of the convergence (2) in the case of uniformly dis-
tributed 2p-angulations. Our results will involve the random pair . Ne; SW / which was
introduced at the end of the previous section. This should not come as a surprise
since this pair appears in the scaling limit of large p-mobiles (Theorem 3.3), and we
know that 2p-angulations are coded by p-mobiles. To simplify notation, we write
ST D T Ne for the tree coded by Ne, and N� for the root of ST . Also recall that . xZa/a2ST
are the labels induced on ST by the process SW .

In the discrete setting of 2p-angulations, vertices of the map (except the root) are
in one-to-one correspondence with vertices of the coding tree. A naive guess would
be that a similar property holds in the continuous setting. It turns out that this is not
correct and that one needs to identify certain vertices of the continuous random tree
ST , which plays the same role as a p-tree in the discrete setting.

Let s; t 2 Œ0; 1�. By definition,

s ' t if and only if SWs^t D SWs_t D min
s^t�r�s_t

SWr :
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In this way we obtain a random equivalence relation on Œ0; 1�. For a; b 2 ST , we
then say that a � b if and only if there exist a representative s of a in Œ0; 1� and
a representative t of b in Œ0; 1� such that s ' t . It turns out that � is also an
equivalence relation on ST , a.s. Informally, a � b if and only if a and b have the
same label ( xZa D xZb), and when going from a to b in lexicographical order (or
in reverse lexicographical order) around the tree, one encounters only vertices with
greater label. The preceding definition of the equivalence relation � can be seen to
be equivalent to the more informal one given in Section 1, modulo the identification
of the trees Te and ST up to re-rooting.

It is easy to understand why the equivalence relation� should be relevant to our
description of the scaling limit of random maps. Indeed consider two white vertices u
and u0 in ap-mobile .�; .`v/v2�B/, and recall our notation .v0; v1; : : : / for the contour
sequence of �B. Then u and u0 will be connected by an edge of the associated map if
and only if we can write fu; u0g D fvi ; vj g, with i < j , in such a way that

(a) `vj D `vi � 1,

(b) `vk � `vi for all k 2 fi; i C 1; : : : ; j � 1g.
Note that this may occur for vertices that are far away from each other in the tree, and
that such pairs of vertices should be identified in the scaling limit of maps. Recalling
that the process SW is the scaling limit of the spatial contour sequence of p-mobiles
(Theorem 3.3), we see that our definition of the equivalence relation � is just a
continuous analogue of properties (a) and (b).

We denote by m1 the quotient space m1 D ST =�. Notice that xZa D xZb if
a � b, so that the labels xZx can be defined with no ambiguity for every x 2 m1.

The following theorem is the main result of [L2].

Theorem 4.1. For every integer n � 2, letMn be a random planar map that is uni-
formly distributed over the set M2p

n of all rooted 2p-angulations with n faces. From
every strictly increasing sequence of positive integers, we can extract a subsequence
along which the following convergence holds:

�
V.Mn/; �pn

�1=4dgr
� .d/����!
n!1 .m1;D/;

where D is a random distance on m1, that induces the quotient topology on this
space. Furthermore, for every x 2 m1,

D. N�; x/ D xZx : (3)

Remark. In (3), the root N� of ST is identified with its equivalence class in m1, which
is a singleton. We will do this identification systematically, and N� thus appears as
a distinguished point of m1. The property of invariance under uniform re-rooting
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(Theorem 8.1 in [L3]) however shows that this distinguished point plays no special
role.

The limiting random metric space .m1;D/ is called the Brownian map. This
terminology is slightly abusive because, as we already explained in Section 1, the
random distance D may depend on the choice of p and of the subsequence in the
theorem. One conjectures thatD does not depend on these choices and that the same
limiting random metric space appears as the scaling limit of more general random
planar maps, such as triangulations for instance. This conjecture justifies that the
name Brownian map is used in this work to denote one of the possible limits arising
in Theorem 4.1. The results that are stated in Sections 5 and 6 below hold for any of
these limits.

Sketch of proof. The proof of Theorem 4.1 consists of two main steps. The first one
is a compactness argument showing that sequential limits of .V .Mn/; �pn

�1=4dgr/

exist, and that any such limit can be written as a quotient space of ST . The second step,
which is the hard part of the proof, is the identification of the equivalence relation
corresponding to this quotient. Let us briefly sketch the compactness argument of the
first step.

The random map Mn is the image under the BDG bijection of a p-mobile
. N�n; . Ǹnv/v2N�B

n
/, and we can thus identifyV.Mn/with N�B

n[f@g. We writevn0 ; v
n
1 ; : : : ; v

n
pn

for the contour sequence of the tree N�B
n. As in Theorem 3.3, let xƒn be the spa-

tial contour function of . N�n; . Ǹnv/v2N�B

n
/, so that xƒni D Ǹnvn

i

by definition. For every

i; j 2 f0; 1; : : : ; png, set
dn.i; j / D dgr.v

n
i ; v

n
j /:

Lemma 4.2. For every i; j 2 f0; 1; : : : ; png,
dn.i; j / � d B

n.i; j / WD xƒni C xƒnj � 2 min
i^j�k�i_j

xƒnk C 2:

This lemma essentially follows from the properties of the BDG bijection. Note
that we can construct a discrete geodesic from vni to @ via the following procedure.
We first look for the first index i1 > i such that the vertex vni1 has label Ǹni � 1. By
construction dn.i; i1/ D 1. Similarly, we then look for the first index i2 > i1 such
that vni2 has label Ǹni � 2, and we have dn.i1; i2/ D 1. We continue this way until we
arrive at a vertex with label 1, which is connected to @. We can similarly construct a
discrete geodesic from vnj to @. However the two discrete geodesics we have obtained
coincide for vertices whose distance from the root is less than or equal to

min
i^j�k�i_j

xƒnk � 1:

The bound of the lemma follows.
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We extend the definition of dn.s; t/ and d B
n.s; t/ to noninteger values s; t 2 Œ0; pn�

by linear interpolation. Next we use Theorem 3.3, which gives

�
�pn

�1=4 d B
n.pns; pnt/

�
0�s;t�1

.d/����!
n!1 .DB.s; t//0�s;t�1;

where
DB.s; t/ D SWs C SWt � 2 min

s^t�r�s_t
SWr :

This implies that we can find two sequences "k , ık of positive reals converging to 0,
such that, with a probability tending to 1 as k ! 1, we have for every n � 2, and
s; t 2 Œ0; 1�,

jt � sj < ık ) n�1=4d B
n.pns; pnt/ < "k ) n�1=4dn.pns; pnt/ < "k :

It follows that with probability close to one when k is large, each of the metric spaces
.V .Mn/; n

�1=4dn/ can be covered by at most Œ 1
ık
�C1 balls of radius "k . By standard

compactness criteria for the Gromov–Hausdorff convergence, this gives the tightness
of the sequence of distributions of the metric spaces .V .Mn/; �pn

�1=4dgr/.

Remarks. (i) The preceding argument also yields a useful bound on the limiting
distance D in Theorem 4.1. We denote by p D … B p Ne the composition of the
projection p Ne W Œ0; 1� ! ST and the canonical projection … W ST ! m1. For every
x; y 2 m1, set

DB.x; y/ D inffDB.s; t/ W s; t 2 Œ0; 1�;p.s/ D a;p.t/ D bg:
Then, for every s; y 2 m1,

D.x; y/ � DB.x; y/: (4)

This follows as a consequence of Lemma 4.2.
(ii) One may ask whether the quotient m1 D ST = � involves identifying many

pairs of points. In some sense, it does not: A typical equivalence class for � is a
singleton, and non-trivial equivalence classes can contain at most three points (there
are only countably many classes containing three points). It is also true that if a is
a point of ST that is not a leaf, then the equivalence class of a is a singleton. Thus
only certain leaves of ST are identified with certain other leaves. In a sense, getting
from the CRT to the Brownian map requires identifying relatively few pairs of points.
Still these identifications drastically change the topology of the space, as we will see
below (Theorem 5.2).

Theorem 4.1 leads to the obvious problem of characterizing the random distance
D, which would imply that there is no need for taking a subsequence in the theorem.
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Provided that the characterization does not depend on p, this would also prove that
the limiting space does not depend on the choice of p. Let us formulate a conjecture
for D from [L2] (see also [MMo]).

Conjecture. For every x; y 2 m1, D.x; y/ D inffPk
iD1DB.xi�1; xi /g where the

infimum is over all choices of the integer k and the sequence x0; x1; : : : ; xk 2 m1
such that x0 D x and xk D y.

Even if the preceding questions are still open, we will see in the next sections that
much can be said about the Brownian map, and that the properties of this limiting
space already have interesting consequences for large random planar maps.

5. Two theorems about the Brownian map

In this section and the next one, the Brownian map .m1;D/ is one of the possible
limits arising in the convergence of Theorem 4.1.

Theorem 5.1. The Hausdorff dimension of the Brownian map is

dim .m1;D/ D 4 a.s.

The bound dim .m1;D/ � 4 is very easy to derive from our construction. Indeed,
the bound (4) almost immediately implies that the projection p W Œ0; 1� ! m1 is
Hölder continuous with exponent 1=4, which gives the desired upper bound. See
[L2] for a proof of the corresponding lower bound.

Note that the topological type of the Brownian map is completely characterized
in Theorem 4.1: The metricD induces the quotient topology on m1. The following
theorem, which is the main result of [LP], identifies this topological type.

Theorem 5.2. The space .m1;D/ is almost surely homeomorphic to the two-dimen-
sional sphere S2.

The proof of Theorem 5.2 is based on the expression of the Brownian map as a
quotient space, and on a classical theorem of Moore giving sufficient conditions for
a quotient space of the sphere to be still homeomorphic to the sphere. An alternative
approach has been given by Miermont [Mi3].

Theorem 5.2 implies that with a probability close to one when n is large, a typical
2p-angulation cannot have a separating cycle of length small in comparison with the
diameter of the map, and such that both sides of the cycle have a “macroscopic” size.
Indeed the existence of such “bottlenecks” in the map would imply that the scaling
limit is a topological space which can be disconnected by removing a single point,
and this is of course not true for the sphere. We state the previous observation more
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precisely, recalling that the diameter of a typical 2p-angulation with n faces is of
order n1=4 (cf. Corollary 3.4).

Corollary 5.3. For every integer n � 2, let Mn be a random planar map that is
uniformly distributed over the set M2p

n of all rooted 2p-angulations with n faces. Let
˛ > 0 and let  W N ! RC be a function such that  .n/ D o.n1=4/ as n ! 1.
Then, with a probability tending to 1 as n ! 1, there exists no injective cycle C
of the map Mn with length less than  .n/, such that the set of vertices that lie in
either connected component of the complement of C in the sphere has diameter at
least ˛n1=4.

6. Geodesics in the Brownian map

Our goal in this section is to discuss geodesics in the Brownian map, and then to
apply this discussion to asymptotic properties of large planar maps. We rely on the
recent paper [L3]. See Miermont [Mi2] and Bouttier and Guitter [BG1], [BG3] for
other interesting results about geodesics in large random planar maps.

We start by recalling a general definition. If .E; ı/ is a compact metric space
and x; y 2 E, a geodesic or shortest path from x to y is a continuous path � D
.�.t//0�t�ı.x;y/ such that �.0/ D x, �.ı.x; y// D y and ı.�.s/; �.t// D jt � sj for
every s; t 2 Œ0; ı.x; y/�. The space .E; ı/ is then called a geodesic space if any two
points in E are connected by (at least) one geodesic. From the fact that Gromov–
Hausdorff limits of geodesic spaces are geodesic spaces (see [BBI], Theorem 7.5.1),
one gets that .m1;D/ is almost surely a geodesic space. We will determine explicitly
the geodesics between the root N� of m1 and an arbitrary point of m1.

We define the skeleton Sk.ST / as the set of all points of the tree ST that are not leaves
(equivalently these are the points whose removal disconnects the tree). One can verify
that the restriction of the projection … W ST ! m1 to Sk.ST / is a homeomorphism.
Moreover, since … is Hölder continuous with exponent 1=2 � " for every " > 0

(essentially by the bound (4)), and Sk.ST /has dimension one, the Hausdorff dimension
of….Sk.ST // is less than or equal to 2. One can indeed prove that dim….Sk.ST // D 2.

We write Skel1 D ….Sk.ST // to simplify notation. Since the Hausdorff dimen-
sion of m1 is equal to 4 almost surely (Theorem 5.1), the set Skel1 is a relatively
small subset of m1. The set Skel1 is dense in m1 and from the previous observa-
tions it is homeomorphic to a non-compact R-tree. Moreover, for every x 2 Skel1,
the set Skel1nfxg is not connected.

The following theorem provides a nice geometric interpretation of the set Skel1.

Theorem6.1. The followingproperties holdalmost surely. For everyx 2m1nSkel1,
there is a unique geodesic from N� to x. On the other hand, for every x 2 Skel1,



272 J.-F. Le Gall

the number of distinct geodesics from N� to x is equal to the number of connected
components of Skel1nfxg. In particular, the maximal number of distinct geodesics
from N� to a point of m1 is equal to 3, and there are countably many points for which
this number is attained.

Remark. The invariance of the distribution of the Brownian map under uniform re-
rooting (see Section 8 in [L3]) shows that results analogous to Theorem 6.1 hold if
one replaces the root N� by a point z distributed uniformly over m1. Here the word
“uniformly” refers to the volume measure � on m1, which is the image of Lebesgue
measure on Œ0; 1� under the projection p D … B p Ne .

Theorem 6.1 opens a new perspective on our construction of the Brownian map
.m1;D/ as a quotient space of the random tree ST (at first, this construction may
appear artificial, even though it is a continuous counterpart of the BDG bijection).
Indeed, Theorem 6.1 shows that the skeleton of ST , or rather its homeomorphic image
under the canonical projection …, has an intrinsic geometric meaning: It exactly
corresponds to the cut locus of m1 relative to the root N�, provided we define this cut
locus as the set of all points that are connected to N� by at least two distinct geodesics
(this definition of the cut locus is slightly different from the one that appears in
Riemannian geometry). Remarkably enough, the assertions of Theorem 6.1 parallel
the known results in the setting of differential geometry, which go back to Poincaré
[Po] and Myers [My].

To give a hint of the proof of Theorem 6.1, let us introduce the notion of a simple
geodesic. Let x 2 m1, let a 2 ST be such that ….a/ D x, and let t 2 Œ0; 1� be
such that p Ne.t/ D a. Recall that we have D. N�; x/ D xZx D xZa D SWt . For every
r 2 Œ0;D. N�; x/�, set

�t .r/ D supfs 2 Œ0; t � W SWs D rg:
By a continuity argument, �t .r/ is well defined and SW�t .r/ D r . Set 	t .r/ D
p.�t .r// for every r 2 Œ0;D. N�; x/�. We have

D. N�; 	t .r// D SW�t .r/ D r:
On the other hand, if 0 � r � r 0 � t ,

min
�t .r/�s��t .r 0/

SWs D r

by the definition of �t .r/. The bound (4) now gives

D.	t .r/; 	t .r
0// � r 0 � r:

Since the reverse bound is just the triangle inequality, we have obtained that

D.	t .r/; 	t .r
0// D r 0 � r
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for every 0 � r � r 0 � D. N�; x/. Clearly 	t .0/ D N� and 	t .D. N�; x// D p.t/ D x.
Thus we have proved that the path .	t .r//0�r�D. N�;x/ is a geodesic from N� to x. Such
a geodesic is called a simple geodesic.

Remark. The preceding construction of simple geodesics is just a continuous ana-
logue of the construction of discrete geodesics that was outlined in the proof of
Lemma 4.2.

The main difficulty in the proof of Theorem 6.1 is to check that all geodesics
from the root are simple geodesics. From this, the various statements of Theorem 6.1
follow by counting how many simple geodesics can exist for a given point x 2 m1.
In order that there exist more than one, two situations can occur:

� There exist several values of a such that ….a/ D x (these values thus lie in
the same equivalence class for �, and by a previous remark they are all leaves
of ST ). However, essentially from the definition of �, one can check that the
simple geodesics corresponding to these different values of a are the same.

� There is only one value of a such that….a/ D x, but there are several values of
t 2 Œ0; 1� such that p Ne.t/ D a. This means that a belongs to the skeleton of ST ,
and the number of values of t such that p Ne.t/ D a is the multiplicity of a in ST .
In that case, one easily checks that the simple geodesics 	t , for all t such that
p Ne.t/ D a, are distinct.

The statement of Theorem 6.1 is a consequence of this discussion. Note that the
number of connected components of Skel1nfxg is at most 3 because ST , or equiva-
lently the CRT, has only binary branching points, as a consequence of the fact that
Brownian minima are distinct.

The next corollary gives a surprising confluence property for geodesics starting
from the root.

Corollary 6.2. Almost surely, for every 
 > 0, there exists ˛ 2 �0; 
Œ such that the
following holds. Let x; x0 2 m1 such that D. N�; x/ � 
 and D. N�; x0/ � 
, and let
!, respectively !0, be a geodesic from N� to x, resp. from N� to x0. Then, !.t/ D !0.t/
for every t 2 Œ0; ˛�.

Since we know that all geodesics from the root are simple geodesics, this corollary
easily follows from the fact that two simple geodesics must coincide near the root.
We indeed used a similar property in the discrete setting in the proof of Lemma 4.2.

To conclude this section, let us give two applications of the previous results to
geodesics in large planar maps. In the discrete setting, there is of course no hope to
establish the uniqueness of geodesics between two vertices (see [BG1], [BG3] for
asymptotic results about the number of geodesics). Still it makes sense to deal with
macroscopic uniqueness, meaning that any two geodesics will be close at an order
that is small in comparison with the diameter of the map.
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We recall that the random planar mapMn is uniform distributed over the set M2p
n

of all rooted 2p-angulations with n faces, and that @ denotes the root vertex of Mn.
For every v 2 V.Mn/, we denote by Geon.@ ! v/ the set of all discrete geodesics
from @ to v in the map Mn.

If � , � 0 are two discrete paths with the same length k, we set

d.�; � 0/ D max
0�i�k

dgr.�.i/; �
0.i//:

Corollary 6.3. Let " > 0. Then,

1

n
#fv 2 V.Mn/ W 9�; � 0 2 Geon.@! v/; d.�; � 0/ � "n1=4g ����!

n!1 0

in probability.

This means that for a typical vertexv in the mapMn, the discrete geodesic from@ to
v is “macroscopically” unique. A stronger statement can be obtained by considering
approximate geodesics, i.e. discrete paths from @ to v whose length is bounded above
by dgr.@; v/C o.n1=4/. Also note that a related uniqueness result has been obtained
by Miermont in [Mi2].

Now what about exceptional vertices in the map Mn? Does there exist vertices
v such that there are several macroscopically different geodesics from @ to v? The
following corollary provides an answer to this question. Before giving the statement,
we need to introduce another notation. For v 2 V.Mn/, and " > 0, we set

Mult".v/ D maxfk W 9�1; : : : ; �k 2 Geon.@; v/; d.�i ; �j / � "n1=4 if i 6D j g:

Corollary 6.4. For every " > 0,

P Œ9v 2 V.Mn/ W Mult".v/ � 4� ����!
n!1 0:

However,
lim
"!0

�
lim inf
n!1 P Œ9v 2 V.Mn/ W Mult".v/ D 3�

� D 1 :
Loosely speaking, there can be at most 3 macroscopically different geodesics

from @ to an arbitrary vertex of Mn.

Remark. In the last two corollaries, the root vertex @ can be replaced by a vertex
chosen uniformly at random in Mn.
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Geometry and non-archimedean integrals
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Abstract. Non-archimedean integrals are ubiquitous in various parts of mathematics. Motivic
integration allows to understand them geometrically and to get strong uniformity statements. In
these notes, intended for a general audience, we start by giving various examples of situations
where one can get new geometric results by using p-adic or motivic integrals. We then present
some more recent results in this area, in particular a Transfer Principle allowing to transfer
identities involving functions defined by integrals from one class of local fields to another.
Orbital integrals occurring in the Fundamental Lemma of Langlands Theory form a natural
family of functions falling within the range of application of this Transfer Principle.
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1. Introduction

This paper intends to provide a leisurely introduction to recent work related to the use
of non-archimedean integrals in geometry. Our aim is to convey some flavour of the
topic to a general audience, without entering too much into technicalities. Interested
readers will find more detailed accounts in the recent surveys [46], [8], [37] and [24].

2. Using p-adic integrals and Denef’s rationality theorem

2.1. An example: counting subgroups of finite index in nilpotent groups. As a
motivating example, we shall start with an example of application of p-adic integra-
tion coming from group theory. Let G be a group and let an.G/ be the number of
its subgroups of index n, which we assume to be finite. This is the case when G is
a finitely generated group. To study the asymptotic behaviour of an.G/, it is natural
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to introduce the generating function

�G.s/ D
1X
nD0

an.G/n
�s:

When G is nilpotent the function � may be expressed as an Euler product

�G.s/ D
Y
p prime

�p;G.s/

of local factors

�G;p.s/ D
1X
iD0

api .G/p
�is:

For instance, ifG is the subgroup of GL3.Z/ of matrices having zero entries under
the diagonal and ones on the diagonal, one has

�G;p.s/ D �p.s/�p.s � 1/�p.2s � 2/�p.2s � 3/�p.3s � 3/�1;
with �p.s/ D .1 � p�s/�1, so �G;p.s/ is rational in p�s . This is a very special case
of a general result proved by Grunewald, Segal and Smith in 1988:

2.1.1 Theorem (Grunewald–Segal–Smith [27], 1988). If G is a finitely generated
torsion free nilpotent group, then �G;p.s/ is a rational series in p�s .

How to prove such a result? The main idea is to express �G;p.s/ as a p-adic
integral, and then to use a general result of Jan Denef on the rationality of such
integrals we shall explain now.

2.2. p-adic integrals. Given a prime p, let us recall that the field Qp of p-adic
numbers is the completion of Q with respect to the non-archimedean norm jxjp WD
p�vp.x/, with vp the p-adic valuation. The ring Zp of p-adic integers is the subring
of Qp consisting of elements x with jxjp � 1. Elements of Zp can be written as
infinite series

P
i�0 aipi , with ai in f0; : : : ; p � 1g. They are added and multiplied

by rounding up to the right. Similarly, elements of Qp can be written as infinite seriesP
i��˛ aipi , with ai in f0; : : : ; p � 1g and ˛ � 0.

The field Qp endowed with the norm j jp being locally compact, Qn
p admits a

canonical Haar measure �p , normalized by �p.Znp/ D 1.
In many cases, the p-adic volume of a subset X � Znp may be computed as

�p.X/ D lim
r!1.cardXr/p

�.rC1/n

with Xr the image of X in .Z=prC1Z/n (a finite set).
Let k be a field. Let us denote by Cn, the smallest collection of subsets of kn,

n 2 N, such that:
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(1) the zero locus of a polynomial f 2 kŒx1; : : : ; xn� is an element of Cn;

(2) Cn is stable by boolean operations (complement, union, intersection);

(3) if � denotes the linear projection knC1 ! kn on the first n factors and A is in
CnC1, then �.A/ is in Cn.

Elements of Cn are called semi-algebraic subsets of kn and a function g W kn ! km

is said to be semi-algebraic if its graph is.
When k is the field of real numbers R one recovers the standard definitions of

semi-algebraic sets and functions.
Now we can state the general result of Denef that Grunewald, Segal and Smith

use in the proof of their theorem.

2.2.1 Theorem (Denef [12], 1984). Let V be a bounded semi-algebraic subset of Qn
p

and let g W Qn
p ! Qp be a semi-algebraic function bounded on V . Then the integral

Z
V

jg.x/jsjdxj

is a rational function of p�s .

To prove his theorem, Denef needs to have a firmer grasp onp-adic semi-algebraic
sets than the one given by the above definition. Let us recall that over the reals, a
classical result of A. Tarski (quantifier elimination) states that a subset of Rn is semi-
algebraic if and only if it is a finite boolean combination of subsets of the form
f .x/ � 0 with f 2 RŒx1; : : : ; xn�. In 1976, A. Macintyre proved the following
analogue of Tarski’s theorem (note that over the reals the condition f .x/ � 0 may
be restated as f .x/ being a square):

2.2.2 Theorem (Macintyre [39], 1976). A subset of Qn
p is semi-algebraic if and only

if it is a finite boolean combination of subsets of the form “f .x/ is a d -th power”,
for some integer d and some f 2 QpŒx1; : : : ; xn�.

Recently, E. Hrushovski and B. Martin [32] proved rationality results for zeta func-
tions counting isomorphism classes of irreducible representations of finitely generated
nilpotent groups. They use a good description of quotients of p-adic semi-algebraic
subsets by semi-algebraic equivalence relations which is provided by recent work of
Haskell, Hrushovski and Macpherson [28], who proved elimination of imaginaries
for algebraically closed valued fields.



280 F. Loeser

3. Additive invariants

3.1. Algebraic varieties. Let k be a field and let F be a family of polynomials
f1; : : : ; fr 2 kŒT1; : : : ; TN �. The set of k-points of the corresponding (affine) alge-
braic variety XF is the set of points in kN which are common zeroes of the polyno-
mials fi , that is,

XF .k/ D f.x1; : : : ; xn/ 2 kN W fi .x1; : : : ; xN / D 0 for all ig:
For any ring K containing k, we can also consider the set of K-points

XF .K/ D f.x1; : : : ; xn/ 2 KN W fi .x1; : : : ; xN / D 0 for all ig:
In particular, if r D 0, we get the affine space AN with AN .K/ D KN for every K
containing k. If F 0 D F Si2I fgig, we have

XF 0.K/ � XF .K/
for all K. We write XF 0 � XF and we say XF 0 is a (closed) subvariety of XF .

General algebraic varieties are defined by gluing affine varieties and the notion of
(closed) subvariety can be extended to that setting. IfX 0 is a subvariety ofX , there is
a varietyX nX 0 such that, for everyK, .X nX 0/.K/ D X.K/nX 0.K/. There is also
a natural notion of products and a natural notion of morphisms between algebraic
varieties. Basically, morphisms are induced by “polynomial transformations”. In
particular, there is a notion of isomorphism of algebraic varieties. For instance,
T 7! .T 2; T 3; T �2/ induces an isomorphism between A1 n f0g and the variety
defined by

X31 �X22 D 0 and X1X3 � 1 D 0:

3.2. Universal additive invariants. LetK0.Vark/ denote the free abelian group on
isomorphism classes ŒS� of objects of Vark mod out by the subgroup generated by
the relations of the form

ŒS� D ŒS 0�C ŒS n S 0�
for S 0 a (closed) subvariety of S . Setting

ŒS� � ŒS 0� D ŒS � S 0�

endows K0.Vark/ with a natural ring structure. Denote by L the class of the affine
line A1

k
in K0.Vark/, and set

Mk WD K0.Vark/ŒL
�1�;

that is, Mk is the ring obtained by inverting L in K0.Vark/.
One may view the mapping X 7! ŒX� assigning to an algebraic variety X over

k its class inMk as the universal additive and multiplicative invariant (not vanishing
on A1

k
) on the category of algebraic varieties.
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3.3. Euler characteristics versus counting. Amongst all additive invariants, the
most fundamental ones may well be given by the Euler characteristic with compact
supports and by counting points over finite fields.

Ifk is a subfield of C andX is ak-algebraic variety, one sets Eu.X/ WD Eu.X.C//,
where Eu is the Euler characteristic with compact supports. This an additive invariant
that factors through a morphism Eu W Mk ! Z.

Also counting points over finite fields is additive. Recall that for every prime
number p, and every f � 1, there exists a unique finite field Fq having q D pf

elements. Furthermore, for every e � 1, Fqe is the unique field extension of degree e
of Fq . If k D Fq and X is a k-algebraic variety, since X.Fqe / is finite, we may set

Nqe .X/ WD jX.Fqe /j:
Clearly, X 7! Nqe .X/ is an additive invariant and factors through a morphism
Nqe W Mk ! ZŒp�1�.

When k D Q, and X is a variety over k, we may at the same time view Q as a
subfield of C and consider Eu.X/, and reduce the equations of X mod p, for p not
dividing the denominators of the equations of f , in order to get a varietyXp over Fp .
For such a p, we may consider, via counting, the number Npe .Xp/, for any e � 1.

It is a very striking fact, that these two invariants – apparently of a very different
nature – are related. Indeed, it follows from important results by A. Grothendieck
going back to the 60s that given an X , for almost all p,

lim
e!0

Npe .Xp/ D Eu.X/;

so, Euler characteristics may be computed by counting in finite fields! Of course
there is literally no meaning to taking the limit as e ! 0 of Npe .Xp/. Here is the
technically correct statement:

3.3.1 Theorem (Grothendieck). Given an X , for almost all p, there exists finite
families of complex numbers ˛i , i 2 I , and ǰ , j 2 J , depending only on X and p,
such that

Npe .Xp/ D
X
I

˛ei �
X
J

ˇej

and
Eu.X/ D jI j � jJ j:

It is difficult to give precise references for this result since it is merely a potpourri
of various results scattered in the literature. The main ingredients are the rationality
of zeta functions of varieties over finite fields due to B. Dwork [21], the cohomo-
logical interpretation of these zeta functions and general comparison results for étale
cohomology both due to A. Grothendieck, for which we refer to [23] and [40].
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4. Using p-adic integrals in birational geometry

In this section we outline some applications of p-adic integration to birational geom-
etry.

4.1. Birational geometry. We assume k D C. Let X and Y be two smooth
and connected complex algebraic varieties (not necessarily affine). A morphism
h W Y ! X is called a modification or a birational morphism if h is proper (i.e.,
h�1.compact/ D compact) and h is an isomorphism outside a subvariety F of Y ,
F 6D Y . If, moreover, F is a union of smooth connected hypersurfaces Ei , i 2 A,
of Y , which we also assume to be mutually transverse, we say h is a DNC modifica-
tion (here DNC stands for “divisor with normal crossings"). To a DNC modification
h W Y ! X we assign the following combinatorics:

For I � A, we set
EB
I WD

T
i2I Ei n

S
j…I Ej :

Note that EB; D Y n F and Y is the disjoint union of all the EB
I ’s.

For i in A, we set

ni D 1C .order of vanishing of the jacobian of h along Ei /

and, for I � A, we set
nI D

Y
i2I

ni :

4.2. Euler characteristics. We can now state the following resulting, obtained in
1987 and published in 1992:

4.2.1 Theorem (Denef–Loeser [13], 1992). For any DNC modification h W Y ! X

the relation

Eu.X/ D
X
I�A

Eu.EB
I /

nI

holds.

The proof was by no means direct. The main steps were:

(1) To reduce to data defined over a ring of finite type over Z. For simplicity of
exposition, we shall assume everything is defined over a localization of Z.

(2) For general p, to evaluate the p-adic volume of X.Qp/ as a p-adic integral on
Y.Qp/ involving the order of jacobian of h via “change of variables formula”
for p-adic integrals.

(3) To express these integrals as number of points on varieties over a finite field.
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(4) To conclude by using Grothendieck’s result relating Eu to number of points.

Nowadays, two other proofs are available: one by motivic integration that we shall
outline in 5.2, another one by direct application of the weak factorization theorem of
Abramovich, Karu, Matsuki and Włodarczyk [1]. It is still a challenging problem to
find a direct, geometric, proof.

4.3. Betti numbers of birational Calabi–Yau varieties. Inspired by mirror sym-
metry, physicists were led to conjecture the following statement: “Birational Calabi–
Yau have the same Betti numbers”. This was proved by V. Batyrev in [3] by using
p-adic integrals in a way similar to the one just explained, with as additional ingre-
dient the part of the Weil conjectures proved by Deligne, which allows for smooth
projective varieties to recover not only Euler characteristics, but also Betti numbers,
from counting in finite field. Shortly afterwards, M. Kontsevich found a direct ap-
proach to Batyrev’s Theorem, avoiding the use of p-adic integrals and involving arc
spaces. This was explained in his famous Orsay talk of December 7, 1995, entitled
“String cohomology”, which marked the official birth of motivic integration.

5. Motivic integration

5.1. The original construction. Motivic integration is a geometric analogue of p-
adic integration with Qp replaced by k..t//. Here k is a field (say of characteristic
zero) and k..t// denotes the field of formal Laurent series with coefficients in k.
The most naive idea is to try to construct a real valued measure on a large class of
subsets of k..t//n similarly as in the p-adic case. Such an attempt is doomed to fail
immediately since, as soon as k is infinite, k..t// is not locally compact.

When Kontsevich invented Motivic Integration in 1995, a real breakthrough was
to realize that a sensible measure on subsets of k..t//n could in fact be constructed
once the value group of the measure R is replaced by the ring Mk (or some of its
completions) constructed in terms of geometric objects defined over k.

Let X be a variety over the field k. The arc space L.X/ is defined by

L.X/.K/ WD X.KŒŒt ��/
for any fieldK containing k. IfX is affine and defined by the vanishing of a family of
polynomials fi in the variables x1; : : : ; xN , one gets equations for L.X/ by writing
xj DP

`�0 aj;`t`, developing fi .x1; : : : ; xN / into
P
Fi;`t

`, with Fi;` polynomials
in the variables aj;`, and asking all the polynomials Fi;` to be zero.

Note that, in general, L.X/ is an infinite-dimensional variety over k since it
involves an infinite number of variables. On the other hand, for n � 0, the space
Ln.X/ defined similarly as L.X/withKŒŒt �� replaced byKŒŒt ��=tnC1 is of finite type



284 F. Loeser

over k. The original construction, outlined by Kontsevich in 1995, and developed by
Denef–Loeser [15] and Batyrev [4] uses a limiting process similar to the one we saw
in the p-adic case:

The basic idea is to use truncation morphisms

�n W L.X/! Ln.X/:

For reasonable subsets A of L.X/,

�.A/ WD lim
n!1Œ�n.A/�L

�.nC1/d

with d the dimension ofX , in some completion yMk ofMk , in complete analogy with
the p-adic case.

5.2. First application: birational geometry. As we already mentioned, the very
first application of motivic integration was made by Kontsevich, who used it to get
a proof of Batyrev’s Theorem mentioned in 4.3 without p-adic integration. Simi-
larly, one can avoid the use of p-adic integration in the proof of the Denef–Loeser
Theorem 4.2.1.

Let us explain the underlying idea. If h W Y ! X is a birational morphism, one
can express the motivic volume of L.X/ as a motivic integral on L.Y / involving
the order of vanishing of the jacobian. This is achieved by using an analogue of the
“change of variables formula” in this setting. This may work for the following reason:
a modification h W Y ! X induces an isomorphism outside a subset F � Y of finite
positive codimension (usually one), but at the level of arc spacesh induces a morphism
between L.Y / and L.X/ which restricts to a bijection between L.Y / n L.F / and
L.X/nL.h.F //, that is, between arcs in Y not completely contained inF and arcs in
X not completely contained in h.F /. The key fact, making measure theoretic tools so
well adapted to birational geometry, is that L.F / is of infinite codimension in L.Y /,
hence L.F / and L.h.F // have measure zero in L.Y / and L.X/, respectively.

5.3. Second application: finite group actions. Let G be a finite group. A linear
action of G on a complex vector space V has a canonical decomposition

L
V˛

parametrized by characters. If G acts on a complex algebraic variety X , there is of
course no decomposition as above. But there exists one at the level of arc spaces!

Indeed, let x be a point of X and denote by G.x/ the isotropy subgroup at x,
consisting of those elements ofG fixing x. Denote by L.X/x the space of arcs onX
with origin at x. It was proved in [19] that there is a canonical decomposition

L.X/x D
G

�2ConjG.x/

L.X/�x t B;
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with ConjG.x/ the set of conjugacy classes in G.x/ and B a subset of infinite codi-
mension in L.X/x (hence of motivic measure zero).

This explains the use of motivic integration in relation with the McKay corre-
spondence to get results relating certain resolutions of the quotient space X=G with
group theoretical invariants of the action, cf. [5], [19], [48], [49].

5.4. Third application: motivic Milnor fiber. Let X be a smooth complex alge-
braic variety and f W X ! C a function (a morphism to the affine line). Let x be a
singular point of f �1.0/, that is, such that df .x/ D 0. Fix 0 < � � " � 1. The
morphism f restricts to a fibration – called the Milnor fibration –

B.x; "/ \ f �1.B.0; �/ n f0g/ �! B.0; �/ n f0g:
Here B.a; r/ denotes the closed ball of center a and radius r . The Milnor fiber at x,

Fx D f �1.�/ \ B.x; "/;
has a diffeomorphism type that does not depend on � and ", and it is endowed with
an automorphism, the monodromyMx , induced by the characteristic mapping of the
fibration.

In particular, the trace of the action of the n-th iterate of the monodromy Mx on
the cohomology of the Milnor fiber Fx ,

ƒn.Mx/ WD
X
j

.�1/j tr .M n
x IH j .Fx//;

is an invariant of the singularity. Quite surprisingly, this invariant may be expressed
in purely algebraic terms using arcs. Consider the set Xn consisting of (truncated)
arcs '.t/ in Ln.X/ such that '.0/ D x and f .'.t// D tn C (higher order terms).

5.4.1 Theorem (Denef–Loeser [18], 2002). For n � 1, we have

ƒn.Mx/ D Eu.Xn/:

The proof of this result is not very enlightening: one computes both sides of
the equality on a resolution of singularities of f D 0 using the change of variables
formula and checks that they are equal. Finding a direct, fully geometric proof, not
using resolution of singularities, still represents a quite challenging problem.

Nicaise and Sebag ([44], [43]) have shown that this result may be naturally refor-
mulated and generalized within the framework of rigid analytic geometry as a trace
formula connecting the Euler characteristic of a motivic Serre invariant (cf. [38])
with the trace of the monodromy on the analytic Milnor fiber.
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In fact, the spaces Xn do contain much more information about the Milnor fiber
and the monodromy. Denef and Loeser (cf. [20]) proved that the series

Z.T / WD
X
n�1

ŒXn�L
�dnT n;

with d the dimension of X , is rational in T and has a limit ��f as T ! 1 in
Mk . In fact, by considering an equivariant version of Z.T /, one can define �f as an
element of an equivariant version of Mk , cf. [20]. It is called the motivic Milnor fiber
of f at x, and can be viewed as a motivic incarnation of the Milnor fiber together
with the (semi-simplification of the) monodromy action on it. We refer to papers by
Denef–Loeser [14], Bittner [6] and Guibert–Loeser–Merle [25] and [26] for more on
this topic. Let us mention that the motivic Milnor fiber is used in an essential way by
Kontsevich and Soibelman in their recent work [35] on motivic Donaldson–Thomas
invariants and cluster transformations.

6. Motivic measure for definable sets and uniformity of p-adic integrals

6.1. Definable sets. A first order formula in the language of rings is a formula
written with symbols 0,C,�, 1, �,D, logical symbols^ (and), _ (or),: (negation),
quantifiers 9, 8, and variables. If k is a ring, we may extend the language by adding
constants for every element of k and consider formulas in this extended language,
which we call ring formulas over k. Now consider a ring formula '.x1; : : : ; xn/ over
k with all its free variables belonging to fx1; : : : ; xng. If K is a field containing an
homomorphic image of k, we may consider the set

X'.K/ WD
˚
.x1; : : : ; xn/ 2 Kn j '.x1; : : : ; xn/ holds

�
:

Objects of the form X' are called definable sets over k.
More generally one can consider natural extensions of the ring language to valued

ring languages admitting symbols to express that the valuation is larger than some-
thing, or that the initial coefficient of a series is equal to something. This leads also
to a notion of definable sets in the corresponding language.

6.2. General motivic measure. With Raf Cluckers we constructed in [7] a general
theory of motivic integration based on cell decomposition. In our theory, motivic inte-
grals take place in a ringNk which is obtained from the Grothendieck ringK0.Defk/
of definable sets over k (in the ring language) by inverting L and 1 � Li for i 6D 0

(here again L stands for the class of the affine line). There is a natural morphism
Nk ! yMk .

Our construction assigns to a bounded definable subset A of k..t//n in the valued
field language a motivic volume �.A/ inNk compatible with the construction in 5.1.
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It relies on a cell decomposition theorem due to Denef and Pas [45] (such cell decom-
position results trace back to the work of P. Cohen [11]). The result by Denef and
Pas tells us that one can cut a definable subset A of k..t//nC1 D k..t//n � k..t// into
0-dimensional cells (graphs of functions defined on a definable subset B of k..t//n)
and 1-dimensional cells (relative balls over B), maybe after adding some auxiliary
parameters over the residue field and the value group. This allows us to define the
measure by induction on the valued field dimension. One of the main difficulties is
to prove that the measure is well defined, that is, independent of the cell decompo-
sition. In particular, one has to prove the non obvious fact that it is independent of
the ordering of coordinates in the ambient affine space, which is a form of a Fubini
theorem.

6.3. Constructible motivic functions. In fact, from the start our construction is
relative: we define a natural class of constructible motivic functions and we prove
stability of that class with respect to integration depending on parameters. Once the
new framework is developed, integration of constructible motivic functions behaves
very similar to the more classical Lebesgue integration with Fubini theorems, change
of variable theorems, distributions, etc. Also one can extend the construction to allow
motivic analogues of exponential functions and Fourier inversion [9].

6.4. Ax–Kochen–Eršov. Though they are basically different, for instance they have
different characteristics, Qp and Fp..t// look asymptotically when p 	 0 very much
the same:

6.4.1 Theorem (Ax–Kochen–Eršov [2], [22]). Let ' be a first order sentence (that
is, a formula with no free variables) in the language of rings. For almost all prime
numbers p, the sentence ' is true in Qp if and only if it is true in Fp..t//.

For instance, for every d > 0, there is a sentence Sd in the language of rings
expressing that any homogeneous polynomial of degree d2C 1 with coefficients in a
field k has a non trivial zero in that field. Since, by work of Tsen and Lang, Sd holds
in Fp..t//, it follows from Theorem 6.4.1 that Sd holds in Qp for p large enough.

6.5. Generalization to definable sets. How can one extend the Ax–Kochen–Eršov
Theorem to formulas with free variables?

6.5.1Theorem (Denef–Loeser [17]). Let ' be a formula in the valued ring language.
Then, for almost all p, the sets X'.Qp/ and X'.Fp..t/// have the same volume.
Furthermore this volume is equal to the number of points in Fp of a motive M'

canonically attached to '.
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When ' has no free variables, one recovers the original form of the Ax–Kochen–
Eršov Theorem. There is a similar statement for integrals. This shows that p-adic
integrals have a strongly uniform pattern as p varies: they are fully controlled by a
single geometric object. On the other hand, it is a priori unclear what an Ax–Kochen–
Eršov Theorem for integrals depending on parameters could be, since there seems to
be no way to compare functions defined over different spaces. Before going more
into that direction, let us look at an example.

6.6. An example. Let E=F be a non ramified degree two extension of non-archi-
medean local fields of residue characteristic different from 2. Let  be an additive
character of F which is non trivial on OF but trivial on the maximal ideal MF . Let
Nn be the group of upper triangular matrices with 1’s on the diagonal and consider
the character � W Nn.F /! C� given by

�.u/ WD  
�X

i

ui;iC1
�
:

For a the diagonal matrix .a1; : : : ; an/ with ai in F �, Jacquet and Ye considered
the following complicated integral I.a/ defined in terms of F :

I.a/ WD
Z
Nn.F /�Nn.F /

1Mn.OF /.
tu1au2/ �.u1u2/ du1du2;

with the normalisation
R
Nn.OF /

du D 1. They also considered a similar integral J.a/
defined in terms ofE by replacingNn.F /�Nn.F / byNn.E/ and involving the non
trivial element of the Galois group x 7! Nx:

J.a/ WD
Z
Nn.E/

1Mn.OE/\Hn.
t Nuau/ �.u Nu/ du;

with Hn the set of Hermitian matrices.
The Jacquet–Ye Conjecture asserts that

I.a/ D �.a/ J.a/ (6.6.1)

with
�.a/ WD

Y
1�i�n�1

�.a1 : : : ai /;

and � the multiplicative character of order 2 on F �.
When n D 2, the Jacquet–Ye Conjecture essentially reduces to classical Gauss

sum identities, but already for n D 3 a proof by direct computation is quite hard. The
full Jacquet–Ye Conjecture over finite field extensions of Fq..t// has been proved
by Ngô in 1999 [41] and over any non-archimedean local field by Jacquet in 2004
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[33]. Ngô’s proof goes by reduction to a purely geometrical statement over algebraic
varieties over Fq (which is not possible in the p-adic case), which he can prove by
fully using the powerful machinery of `-adic perverse sheaves over such varieties.
This is a typical instance of the general principle “complicated identities between
character sums over finite fields are better proved by geometrical tools”.

Hence it is natural to ask if assuming we only know (6.6.1) holds over finite field
extensions of Fq..t// whether it is possible to deduce it from general principles for
p-adic fields. Note that it makes no sense to compare the values of the integrals
themselves, since a does not run over the same space in the characteristic 0 and p
cases. The answer is yes as we shall see now.

6.7. The transfer principle. The uniformity result given by Theorem 6.5.1 may be
extended in the following way:

6.7.1Theorem (Cluckers–Loeser [9]). Allp-adic integrals depending on parameters
that are definable in a precise sense may be obtained by specialization of canonical
motivic integrals of constructible functions for almost all p, and similarly for Qp
replaced by Fp..t//.

6.7.2 Transfer Principle (Cluckers–Loeser [9]). A given equality between definable
integrals depending on parameters holds for Qp if and only if it holds for Fp..t//,
when p 	 0.

With Cluckers and Hales [10] we have recently proved that the range of application
of the transfer principle contains in particular the so called Fundamental Lemma of
Langlands theory. One can also check that it applies to the Jacquet–Ye Conjecture.
Recall that the Fundamental Lemma was proved recently by Laumon and Ngô [36] in
the unitary case and by Ngô in the general case over finite extensions of Fp..t// [41]
by geometrical methods. Using specific techniques, Waldspurger [47] had already
previously proved that one can then deduce it for p-adic fields. It is natural to
expect that relations between non-archimedean integrals holding over all local fields
of large residual characteristic already hold at the motivic level, as equalities between
constructible motivic functions, but this seems to be presently out of reach.

6.8. Recent developments. Let us close this brief survey by mentioning some other
recent applications of Model Theory to Geometry over valued fields. Hrushovski and
Kazhdan [30] developed a geometric integration theory for general complete valued
fields (with residue characteristic zero) based on Robinson’s quantifier elimination
for algebraically closed valued fields.

On the other hand Haskell, Hrushovski and Macpherson [29] recently introduced
the notion of stably dominated type and studied it in great detail for algebraically
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closed valued fields. Such more advanced model theoretic tools seem to have very
promising applications to the study of the geometry of Berkovich spaces, cf. [31].
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1. Introduction: quantum fields and motives, an unlikely match

This paper, based on the plenary lecture delivered by the author at the 5th European
Congress of Mathematics in Amsterdam, aims at giving an overview of the current
approaches to understanding the role of motives and periods of motives in perturba-
tive quantum field theory. It is a priori surprising that there should be any relation
at all between such distant fields. In fact, motives are a very abstract and sophisti-
cated branch of algebraic and arithmetic geometry, introduced by Grothendieck as a
universal cohomology theory for algebraic varieties. On the other hand, perturbative
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quantum field theory is a procedure for computing, by successive approximations in
powers of the relevant coupling constants, values of physical observables in a quan-
tum field theory. Perturbative quantum field theory is not entirely mathematically
rigorous, though as we will see later in this paper, a lot of interesting mathematical
structures arise when one tries to understand conceptually the procedure of extraction
of finite values from divergent Feynman integrals known as renormalization.

The theory of motives itself has its mysteries, which make it a very active area of
research in contemporary mathematics. The categorical structure of motives is still
a problem very much under investigation. While one has a good abelian category of
pure motives (with numerical equivalence), that is, of motives arising from smooth
projective varieties, the “standard conjectures” of Grothendieck are still unsolved.
Moreover, when it comes to the much more complicated setting of mixed motives,
which no longer correspond to smooth projective varieties, one knows that they form
a triangulated category, but in general one cannot improve that to the level of an
abelian category with the same nice properties one has in the case of pure motives.
See [14], [45] for an overview of the theory of mixed motives.

The unlikely interplay between motives and quantum field theory has recently
become an area of growing interest at the interface of algebraic geometry, number
theory, and theoretical physics. The first substantial indications of a relation between
these two subjects came from extensive computations of Feynman diagrams carried
out by Broadhurst and Kreimer [22], which showed the presence of multiple zeta
values as results of Feynman integral calculations. From the number theoretic view-
point, multiple zeta values are a prototype case of those very interesting classes of
numbers which, although not themselves algebraic, can be realized by integrating
algebraic differential forms on algebraic cycles in arithmetic varieties. Such numbers
are called periods, cf. [43], and there are precise conjectures on the kind of operations
(changes of variables, Stokes formula) one can perform at the level of the algebraic
data that will correspond to relations in the algebra of periods. As one can consider
periods of algebraic varieties, one can also consider periods of motives. In fact, the
nature of the numbers one obtains is very much related to the motivic complexity
of the part of the cohomology of the variety that is involved in the evaluation of the
period.

There is a special class of motives that are better understood and better behaved
with respect to their categorical properties: the mixed Tate motives. They are also the
kind of motives that are expected (see [36], [55]) to be supporting the type of periods
like multiple zeta values that appear in Feynman integral computations.

At the level of pure motives the Tate motives Q.n/ are simply motives of projective
spaces and their formal inverses, but in the mixed case there are very nontrivial exten-
sions of these objects possible. In terms of algebraic varieties, for instance, varieties
that have stratifications where the successive strata are obtained by adding copies of
affine spaces provide examples of mixed Tate motives. There are various conjectural
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geometric descriptions of such extensions (see e.g. [8] for one possible description in
terms of hyperplane arrangements). Understanding when certain geometric objects
determine motives that are or are not mixed Tate is in general a difficult question and,
it turns out, one that is very much central to the relation to quantum field theory.

In fact, the main conjecture we describe here, along with an overview of some
of the current approaches being developed to answer it, is whether, after a suitable
subtraction of infinities, the Feynman integrals of a perturbative scalar quantum field
theory always produce values that are periods of mixed Tate motives.

1.1. Feynman diagrams: graphs and integrals. We briefly introduce the main
characters of our story, starting with Feynman diagrams. By these one usually means
the data of a finite graph together with a prescription for assigning variables to the
edges with linear relations at the vertices and a formal integral in the resulting number
of independent variables.

For instance, consider a graph of the following form.

p

k �

k

p
k � p

The corresponding integral gives

.2�/�2D
Z

1

k4
1

.k � p/2
1

.k C `/2
1

`2
dDk dD`:

As is often the case, the resulting integral is divergent. We will explain below the reg-
ularization procedure that expresses such divergent integrals in terms of meromorphic
functions. In this case one obtains

.4�/�D
�
�
2 � D

2

�
�
�
D
2
� 1/3�.5 �D��.D � 4/

�.D � 2/��4 � D
2

�
�
�
3D
2
� 5/ .p2

�D�5

and one identifies the divergences with poles of the resulting function.
The renormalization problem in perturbative quantum field theory consists of

removing the divergent part of such expressions by a redefinition of the running
parameters (masses, coupling constants) in the Lagrangian of the theory. To avoid
non-local expressions in the divergences, which cannot be canceled using the local
terms in the Lagrangian, one needs a method to remove divergences from Feynman
integrals that accounts for the nested structure of subdivergences inside a given Feyn-
man graphs. Thus, the process of extracting finite values from divergent Feynman
integrals is organized in two steps: regularization, by which one denotes a procedure



296 M. Marcolli

that replaces a divergent integral by a function of some new regularization parame-
ters, which is meromorphic in these parameters, and happens to have a pole at the
value of the parameters that recovers the original expression; and renormalization,
which denotes the procedure by which the polar part of the Laurent series obtained
as a result of the regularization process is extracted consistently with the hierarchy of
divergent subgraphs inside larger graphs.

1.2. Perturbative quantum field theory in a nutshell. We recall very briefly here a
few notions of perturbative quantum field theory we need in the following. A detailed
introduction for the use of mathematicians is given in Chapter 1 of [30].

To specify a quantum field theory, which we denote by T in the following, one
needs to assign the Lagrangian of the theory. We restrict ourselves to the case of
scalar theories, though it is possible that similar conjectures on number theoretic
aspects of values of Feynman integrals may be formulated more generally.

A scalar field theory T in spacetime dimension D is determined by a classical
Lagrangian density of the form

L.�/ D 1

2
.@�/2 C m2

2
�2 CLint.�/; (1)

in a single scalar field �, with the interaction term Lint.�/ given by a polynomial in
� of degree at least three. This determines the corresponding classical action as

S.�/ D
Z

L.�/dDx D S0.�/C Sint.�/:

While the variational problem for the classical action gives the classical field
equations, the quantum corrections are implemented by passing to the effective action
Seff.�/. The latter is not given in closed form, but in the form of an asymptotic
series, the perturbative expansion parameterized by the “one-particle irreducible”
(1PI) Feynman graphs. The resulting expression for the effective action is then of the
form

Seff.�/ D S0.�/C
X
�

�.�/

#Aut.�/
(2)

where the contribution of a single graph is an integral on external momenta assigned
to the “external edges” of the graph,

�.�/ D 1

N Š

Z
P
i piD0

O�.p1/ : : : O�.pN /U z�.�.p1; : : : ; pN //dp1 : : : dpN :

In turn, the function of the external momenta that one integrates to obtain the coeffi-
cient �.�/ is an integral in momentum variables assigned to the “internal edges” of
the graph � , with momentum conservation at each vertex. Thus, it can be expressed
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as an integral in a number of variables equal to the number b1.�/ of loops in the
graph, of the form

U.�.p1; : : : ; pN // D
Z
I�.k1; : : : ; k`; p1; : : : ; pN /d

Dk1 : : : d
Dk`: (3)

The graphs involved in the expansion (2) are the 1PI Feynman graphs of the theory
T , i.e. those graphs that cannot be disconnected by the removal of a single edge.
As Feynman graphs of a given theory, they are also subject to certain combinatorial
constraints: each vertex in the graph has valence equal to the degree of one of the
monomials in the Lagrangian. The edges are subdivided into internal edges connect-
ing two vertices and external edges (or half edges) connected to a single vertex. The
Feynman rules of the theory T specify how to assign an integral (3) to a Feynman
graph, namely it specifies the form of the function I�.k1; : : : ; k`; p1; : : : ; pN / of the
internal momenta. This is a product of “propagators” associated to the internal lines.
These are typically of the form 1=q.k/, where q is a quadratic form in the momentum
variable of a given internal edge, which is obtained from the fundamental (distri-
butional) solution of the associated classical field equation for the free field theory
coming from the S0.�/ part of the Lagrangian, such as the Klein–Gordon equations
for the scalar case. Momentum conservations are then imposed at each vertex, and
multiplied by a power of the coupling constant (the coefficient of the corresponding
monomial in the Lagrangian) and a power of 2� .

As we mentioned above, the resulting integrals (3) are very often divergent. Thus,
a regularization and renormalization method is used to extract a finite value. There
are different regularization and renormalization schemes used in the physics litera-
ture. We concentrate here on dimensional regularization and minimal subtraction,
which is a widely used regularization method in particle physics computations, and
on the recursive procedure of Bogolyubov–Parasiuk–Hepp–Zimmermann for renor-
malization [20], [39], [60], see also [48]. Regularization and renormalization are
two distinct steps in the process of extracting finite values from divergent Feynman
integrals. The first replaces the integrals with meromorphic functions with poles that
account for the divergences, while the latter organizes subdivergences in such a way
that the divergent parts can be eliminated (in the case of a renormalizable theory) by
readjusting finitely many parameters in the Lagrangian.

The procedure of dimensional regularization is based on the curious idea of making
sense of the integrals (3) in “complexified dimension” D � z, with z 2 C�, instead
of working in the original dimension D 2 N. It would seem at first that, to make
sense of such a procedure, one would need to make sense of geometric spaces in
dimension D � z and of a corresponding theory of measure and integration in such
spaces. However, due to the special form of the Feynman integrals (3), a lot less is
needed. In fact, it turns out that it suffices to have a formal procedure to define the



298 M. Marcolli

Gaussian integral Z
e��t2dDt WD �D=2��D=2 (4)

in the case where D is no longer a positive integer but a complex number. Clearly,
since the right hand side of (4) continues to make sense forD 2 C�, one can use that
as the definition of the left hand side and set:Z

e��t2d zt WD �z=2��z=2 for all z 2 C�. (5)

The computations of Feynman integrals can be reformulated in terms of Gaussian
integrations using the method of Schwinger parameters we return to in more detail
below, hence one obtains a well defined notion of integrals in dimension D � z:

U z�.�.p1; : : : ; pN //

D
Z
�z`dD�zk1 : : : dD�zk`I�.k1; : : : ; k`; p1; : : : ; pN /:

(6)

The variable � has the physical units of a mass and appears in these integrals for
dimensional reasons. It will play an important role later on, as it sets the dependence
on the energy scale of the renormalized values of the Feynman integrals, hence the
renormalization group flow.

It is not an easy result to show that the dimensionally regularized integrals give
meromorphic functions in the variable z, with a Laurent series expansion at z D 0.
See a detailed discussion of this point in Chapter 1 of [30]. We will not enter in
details here and talk loosely about (6) as a meromorphic function of z depending on
the additional parameter �.

We return to a discussion of a possible geometric meaning of the dimensional
regularization procedure in the last section of this paper.

1.3. The Feynman rules. The integrand I�.k1; : : : ; k`; p1; : : : ; pN / in the Feyn-
man integrals (3) is determined by the Feynman rules of the given quantum field
theory, see [40], [12]. These can be summarized as follows:

� A Feynman graph � of a scalar quantum field theory with Lagrangian (1) has
vertices of valences equal to the degrees of the monomials in the Lagrangian,
internal edges connecting pairs of vertices, and external edges connecting to a
single vertex.

� To each internal edge of a Feynman graph � one assigns a momentum variable
ke 2 RD and a propagator, which is a quadratic form qe in the variable ke ,
which (in Euclidean signature) is of the form

qe.ke/ D k2e Cm2: (7)
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� The integrand is obtained by taking a product over all internal edges of the
inverse propagators

1

q1 : : : qn

and imposing a linear relation at each vertex, which expresses the conservation
law X

ei2E.�/Ws.ei /Dv
ki D 0

for the momenta flowing through that vertex. One obtains in this way the inte-
grand

I�.k1; : : : ; k`; p1; : : : ; pN /

D ı
�P

i2Eint.�/
�v;iki CPj2Eext.�/

�v;jpj
�

q1.k1/ : : : qn.kn/
;

(8)

where �e;v denotes the incidence matrix of the graph

�e;v D

8̂<
:̂
C1; t.e/ D v;
�1; s.e/ D v;
0; otherwise.

� For each vertex of � one also multiplies the above by a constant factor involving
the coupling constants of the terms in the Lagrangian of power corresponding to
the valence of the vertex and by a power of .2�/, which we omit for simplicity.

There are two properties of Feynman rules that it is useful to recall for comparison
with algebro-geometric settings:

(1) Reduction from graphs to connected graphs: the Feynman rules are multiplica-
tive over disjoint unions of graphs

U.�; p/ D U.�1; p1/ U.�2; p2/ for � D �1 q �2: (9)

(2) Reduction from connected graphs to 1PI graphs. An arbitrary connected finite
graph can be written as a tree T where some of the vertices are replaced by
1PI graphs with a number of external edges matching the valence of the vertex,
� DSv2V.T / �v . For these graphs the Feynman rules satisfy

U.�/ D
Y

v2V.T /
U.�v/

Y
e2Eext.�v/;e02Eext.�v0 /;eDe02Eint.�/

ı.pe � pe0/

qe.pe/
: (10)
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These properties reduce the combinatorics of Feynman graphs to the 1PI case. Notice
that in the particular case wherem ¤ 0 (massive theories) and the external momenta
are set to zero, p D 0, the case (10) reduces to the simpler form

U.�/ D U.L/#E.T /
Y

v2V.T /
U.�v/; (11)

where U.L/ is the inverse propagator for a single edge, in this case just equal to the
constant factor m�2.

1.4. Parametric representation of Feynman integrals. The Feynman parameter-
ization (also known as ˛-parameterization), see [12], [40], [53], reformulates the
Feynman integrals (3) in such a way that they become manifestly (modulo diver-
gences) written as the integral of an algebraic differential form on an algebraic variety,
integrated over a cycle with boundary on a divisor in the variety, see [16].

One starts with the Feynman integral, written as above in the form

U.�/ D
Z
ı
�Pn

iD1 �v;iki C
PN
jD1 �v;jpj

�
q1 : : : qn

dDk1 : : : d
Dkn

with n D #Eint.�/ and N D #Eext.�/ and with �e;v the incidence matrix.
Then, one introduces the Schwinger parameters. These are variables si 2 RC

defined by the identity

q
�k1
1 : : : q�kn

n

D 1

�.k1/ : : : �.kn/

Z 1

0

� � �
Z 1

0

e�.s1q1C���Csnqn/ sk1�1
1 : : : skn�1

n ds1 : : : dsn:

The Feynman trick, which consists of writing

1

q1 : : : qn
D .n � 1/Š

Z
ı.1 �Pn

iD1 ti /
.t1q1 C � � � C tnqn/n dt1 : : : dtn;

is obtained from a particular case of the identity defining the Schwinger parameters,
after a simple change of variables.

One then further introduces a change of variables ki D ui CP`
kD1 	ikxk , where

	ik is the matrix

	ik D

8̂<
:̂
rl C 1; edge ei 2 loop lk , same orientation;

�1; edge ei 2 loop lk , reverse orientation;

0; otherwise.

This depends on the choice of an orientation of the edges and of a basis of loops,
i.e. a basis of H1.�/. The equations imposing the conservation laws for momenta at
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each vertex, together with the constraint
P
i tiui	ir D 0 determine uniquely ui as

functions of the external momenta p and give

X
i

tiu
2
i D p�R�.t/p;

where R�.t/ is a function defined in terms of the combinatorics of the graph. Thus,
one rewrites the Feynman integral after this change of coordinates in the form

U.�/ D �.n �D`=2/
.4�/`D=2

Z
�n

!n

‰�.t/D=2V�.t; p/n�D`=2 ; (12)

where !n is the volume form and the domain of integration is the simplex 
n D˚
t 2 RnCj

P
i ti D 1

�
. In the massless case (with m D 0) the term V�.t; p/ D

p�R�.t/p Cm2 is of the form

V�.t; p/jmD0 D P�.t; p/

‰�.t/
;

where P�.t; p/ is a homogeneous polynomial of degree b1.�/ C 1 in t , defined in
terms of the cut-sets of the graph (complements of spanning tree plus one edge),

P�.t; p/ D
X
C��

sC
Y
e2C

te;

with sC D
�P

v2V.�1/ Pv
�2

and Pv D P
e2Eext.�/;t.e/Dv pe , where the momenta

satisfy the conservation law
P
e2Eext.�/

pe D 0. The graph polynomial ‰�.t/ is a
homogeneous polynomial of degree b1.�/ given by

‰�.t/ D detM�.t/ D
X
T

Y
e…T

te;

with the sum over spanning trees of � , and the matrix

.M�/kr.t/ D
nX
iD0

ti	ik	ir :

Notice how the determinant of this matrix is independent both of the choice of an
orientation of the edges and of a basis ofH1.�/. Similarly, in the case wherem ¤ 0
but with external momenta p D 0 one has

V�.t; p/jm¤0;pD0 D m2

‰�.t/
:
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After dimensional regularization the parametric Feynman integral can be rewritten
as

U�.�/.z/ D ��z`�.n � .DCz/`
2

/

.4�/
`.DCz/

2

Z
�n

!n

‰�.t/
.DCz/
2 V�.t; p/

n� .DCz/`
2

:

Assume for simplicity that we work in the “stable range” of dimensions D such
that n � D`=2, so that we write the integral U.�; p/, up to a divergent �-factor, in
the form Z

�n

P�.p; t/
�nCD`=2

‰�.t/�nC.`C1/D=2 !n: (13)

The integrand is an algebraic differential form on the complement of the hypersurface

yX� D ft D .t1; : : : ; tn/ 2 An j ‰�.t/ D 0g: (14)

Since the polynomial is homogeneous, one can also consider the projective hypersur-
face

X� D ft D .t1 W � � � W tn/ 2 Pn�1 j ‰�.t/ D 0g: (15)

Moreover, the domain of integration is the simplex 
n with boundary @
n contained in
the normal crossings divisor y†n D

˚
t 2 An jQi ti D 0

�
. Thus, as we discuss briefly

below, if the integral converges, it defines a period of the hypersurface complement.
The integral in general is still divergent, even if we have already removed a divergent
�-factor (hence we are considering the residue of the Feynman graph U.�/). The
divergences of (13) come from the intersections y†n\ yX� ¤ ;. We discuss later how
one can treat these divergences.

It is worth pointing out here that the varieties X� are in general singular hy-
persurfaces, with a singularity locus that is often of low codimension. This can be
seen easily by observing that the varieties defined by the derivatives of the graph
polynomial are in turn cones over graph hypersurfaces of smaller graphs and that
these cones do not intersect transversely. Techniques from singularity theory can be
employed to estimate how singular these varieties typically are. Notice how, from the
motivic viewpoint, the fact that they are highly singular is what makes it possible for
many of these varieties (and possibly always for a certain part of their cohomology),
to be sufficiently “simple” as motives, i.e. mixed Tate. This would certainly not be
the case if we were dealing with smooth hypersurfaces. So the understanding of the
singularities of these varieties may play a useful role in the conjectures on Feynman
integrals and motives.

The parametric representation of Feynman integrals and its relation to the algebraic
geometry of the graph hypersurfaces was generalized to theories with bosonic and
fermionic fields in [51] where the analogous result is obtained in the form of an
integration of a Berezinian on a supermanifold.
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1.5. Algebraic varieties and motives. The other main objects involved in the con-
jecture on Feynman integrals and periods are motives. These are the focus of a deep
chapter of arithmetic algebraic geometry, still in itself very much at the center of
recent investigations in the field. Roughly speaking, motives are a universal coho-
mology theory for algebraic varieties, or, to say it differently, a way to embed the
category of varieties into a better (triangulated, abelian, Tannakian) category.

Let VK denote the category of smooth projective algebraic varieties over a field
K. For our purposes, we may assume that K is Q or a number field. The category
MK of pure motives (with the numerical equivalence relation on algebraic cycles) is
defined as having objects given by triples .X; p;m/ of a smooth projective variety
X , a projector p D p2 2 End.X/, and an integer m 2 Z. The morphisms extend
the usual notion of morphism of varieties, by allowing also correspondences, that is,
algebraic cycles in the product X � Y . A morphism in the usual sense is represented
by the cycle given by its graph in X � Y . More precisely, one has

Hom..X; p;m/; .Y; q; n// D qCorrm�n
=� .X; Y / p;

for projectors p2 D p, q2 D q, and where Corrm�n.X; Y / means the abelian group
or vector space of cycles in X � Y of codimension equal to dim.X/�mC n and �
is the numerical equivalence relation on cycles (two cycles are the same if they have
the same intersection numbers with any cycle of complementary dimension).

One defines the Tate motives Q.m/ by formally setting Q.1/ D L�1, the inverse
of the Lefschetz motive (the motive of an affine line) and Q.m/ D Q.1/m, with Q.0/
the motive of a point, so that .X; p;m/ D .X; p/ ˝ Q.m/. The reason for intro-
ducing these new objects in the category of motives is to allow for cycles of varying
codimension: this makes it possible to have a duality .X; p;m/_ D .X; pt ;�m/ and
a rigid tensor structure on the category MK. It is known that, with the numerical
equivalence on cycles, MK is an abelian category and it is in fact Tannakian. Since
it is a semisimple category, its Tannakian Galois group (the motivic Galois group)
is reductive. The subcategory generated by the Q.m/ is the category of pure Tate
motives, whose motivic Galois group is Gm. (See [5], [41], [47].)

The situation becomes considerably more complicated when the varieties con-
sidered are not smooth projective, for instance, when one wants to include singular
varieties, as is necessarily the case in relation to quantum field theory, since we have
seen that the X� are usually singular varieties. In this case, the theory of motives is
not as well understood as in the pure case. Mixed motives, the theory of motives that
accounts for these more general types of varieties, are known to form a triangulated
category DMK, by work of Voevodsky, Levine, Hanamura [45], [59]. Distinguished
triangles in this triangulated category of motives correspond to long exact sequences
in cohomology of the form

m.Y / �! m.X/ �! m.X X Y / �! m.Y /Œ1�
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in the case of closed embeddings Y � X . Moreover, one has a homotopy invariance
property expressed by the identity

m.X �A1/ D m.X/.1/Œ2�:

However, in general one does not have an abelian category. The subcategory
DMTK � DMK of mixed Tate motives is the triangulated subcategory generated
by the Q.m/. In the case where K is a number field, it is known (see [45]) that one
has a t-structure on DMTK whose heart defines an abelian category MTK of mixed
Tate motives. It is in fact a Tannakian category (see [32]), whose Galois group is of
the form U Ì Gm, where the reductive part Gm accounts for the presence of the pure
Tate motives among the mixed ones, while U is a pro-unipotent affine group scheme
which accounts for the nontrivial extensions between pure Tate motives.

More concretely, examples of mixed Tate motives are given for instance by alge-
braic varieties that admit a stratification where all the strata are built out of locally
trivial fibrations of affine spaces. We will discuss some explicit examples of this sort
below, in the context of quantum field theory.

While explicitly constructing objects in MTK or checking whether given varieties
that define objects in DMK are actually mixed Tate, i.e. whether they give objects
in DMTK or MTK, may in general be very difficult, there is an easier way to check
the motivic nature of a variety X by looking at its class in the Grothendieck ring
of varieties K0.VK/. This is generated by isomorphism classes ŒX�, subject to the
inclusion-exclusion relation ŒX� D ŒY � C ŒX X Y � for closed embeddings Y � X

and with the product given by ŒX�ŒY � D ŒX � Y �.
The class in the Grothendieck ring can be thought of as a universal Euler char-

acteristic for algebraic varieties, [11]. In fact, additive invariants of varieties, i.e.
invariants with values in a commutative ring R which satisfy �.X/ D �.Y / if
X Š Y are isomorphic varieties, �.X/ D �.Y /C�.X XY /, for closed embeddings
Y � X , and are compatible with products, �.X � Y / D �.X/�.Y /, correspond
to ring homomorphisms � W K0.V/ ! R. Examples of additive invariants are the
usual Euler characteristic, or the motivic Euler characteristic of Gillet–Soulé [35],
� W K0.VK/ ! K0.MK/ with values in the Grothendieck ring of the category of
motives, defined on projective varieties by �.X/ D Œ.X; id; 0/� and on more general
varieties in terms of a complex in the category of complexes over MK.

If one denotes by L D ŒA1� 2 K0.VK/ the Lefschetz motive, then the part of
K0.VK/ generated by the Tate motives is a polynomial ring ZŒL� (or ZŒL;L�1� after
formally inverting the Lefschetz motive in K0.MK/). Checking that the class ŒX�
of a variety X lies in this subring gives strong evidence for X being a mixed Tate
motive. It may seem that a lot of information is lost in passing from objects in DMK

to classes inK0.VK/, since this ring does not retain the information on the extensions
but only keeps the rough information on scissor relations. However, at least modulo
standard conjectures on motives, knowing that the class ŒX� lies in the Tate subring
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ZŒL;L�1� of K0.MK/ should in fact suffice to know that the motive is mixed Tate.
In any case, computing inK0.VK/ provides a lot of useful information on the motivic
nature of given varieties.

One last thing that we need to recall briefly is the notion of period, as in [43]. A
period is a complex number that can be obtained by pairing via integration

.!; 
/ 7�!
Z
�

!

an algebraic differential form ! 2 dimX .X/ on an algebraic varietyX defined over
a number field K with a cycle 
 defined by semi-algebraic relations (equalities and
inequalities) also defined over the same field K. If the domain of integration 
 has
boundary @
 ¤ 0, then the period should be thought of as a pairing with a relative
homology group


 2 HdimX .X.C/; †.C//;

where † is a divisor in X containing the boundary of 
 . It is conjectured in [43]
that the only relations between periods arise from the change of variable and Stokes
formulae for integrals.

1.6. The mixed Tate mystery: supporting evidence. The main conjecture on the
relation between quantum fields and motives can be formulated as follows.

Conjecture 1.1. Are residues of Feynman integrals in scalar field theories always
periods of mixed Tate motives?

Here “residues” refers to the removal of the divergent Gamma factor in (12).
Notice that, in general, the remaining integral still contains divergences that need to
be removed by a renormalization procedure. Thus, implicit in the above conjecture
is also an independence of the regularization and renormalization scheme used to
eliminate divergences.

The supporting evidence for this conjecture starts from extensive numerical com-
putations of Feynman integrals collected by Broadhurst and Kreimer [22], which
showed the pervasive presence of zeta and multiple zeta values. This first suggested
the fact that mixed Tate motives may be involved in this computation, in view of the
fact that multiple zeta values are periods of mixed Tate motives, according to [36],
[55].

Modulo the serious issue of divergences, the use of Schwinger and Feynman pa-
rameters expresses Feynman integrals as integrations of an algebraic differential form
on the complement of a hypersurface X� in affine space defined by a homogeneous
polynomial depending on the combinatorics of the graph.

Kontsevich formulated the conjecture that the graph hypersurfacesX� themselves
may always be mixed Tate motives, which would imply Conjecture 1.1. Although
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numerically this conjecture was at first verified up to a large number of loops, Belkale
and Brosnan [9] later disproved the conjecture in general, showing that in fact the
X� can be arbitrarily complicated as motives: they proved that the X� generate the
Grothendieck ring of varieties. This, however, does not disprove Conjecture 1.1. In
fact, even though the varieties themselves may be more complicated as motives, the
part of the cohomology that is involved in the computation of the period may still be
a realization of a mixed Tate motive.

More evidence for the fact that the cohomology involved, that is the relative
cohomology Hn�1.Pn�1 X X� ; †n X .†n \ X�//, where †n denotes the union of
the coordinate hyperplanes, is a realization of a mixed Tate motive was collected by
Bloch–Esnault–Kreimer, [16], [13].

More recently, the question has been reformulated by Aluffi–Marcolli [4] in terms
of a different relative cohomology involving determinant hypersurfaces and the mo-
tives of varieties of frames, which gives further evidence for the conjecture, as we
explain below. A different kind of evidence comes from the approach followed in
the work of Connes–Marcolli [27], where instead of constructing motives for specific
Feynman graphs, one compares the “global” properties of the Tannakian category
MTK with a similar category constructed out of the data of perturbative renormaliza-
tion, the Tannakian category of flat equisingular vector bundles. Although one obtains
in this way only a non-canonical identification between these Tannakian categories,
it adds evidence to the conjectured relation between perturbative renormalization and
mixed Tate motives.

We give in the following a general overview of these different methods and results.

2. A bottom-up approach to Feynman integrals and motives

With these preliminaries in place, we are now ready to discuss more closely the two
different approaches to the relation of quantum field theory and motives. We first
introduce what we refer to as a “bottom-up” approach, in the sense that it deals with
the problem on a graph-by-graph basis and tries, for individual graphs or families
of graphs sharing similar combinatorial properties, to construct explicit associated
motives and periods computing the Feynman integrals. This approach was pioneered
by the work of Bloch–Esnault–Kreimer [16] and further developed in [13], [17]. Here
I will concentrate mostly on my recent joint work with Aluffi [2], [3], [4].

As we have mentioned above, the parametric formulation of Feynman integrals
shows that, modulo divergences, they can be written as periods on the hypersurface
complement An X yX� , with n D #Eint.�/. One can reformulate the integral in the
projective setting. Then the question of whether the period so computed is a period
of a mixed Tate motive can be reformulated as in [16] as the question of whether the
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relative cohomology

Hn�1.Pn�1 XX� ; †n XX� \†n/ (16)

is the realization of a mixed Tate motive

m.Pn�1 XX� ; †n XX� \†n/; (17)

where †n D
˚
t 2 Pn�1 j Qi ti D 0

�
is a normal crossings divisor containing @
n,

the boundary of the domain of integration.
This leads to the question of how complex, in motivic terms, the graph hyper-

surfaces X� can be. Clearly, if it were to be the case that these would always be
mixed Tate as motives, then the conjecture on the nature of the period would follow
easily. However, this is known not to be the case, as we already mentioned above:
it is known by [9] that the classes ŒX� � generate the Grothendieck ring of varieties,
hence they cannot all be contained in the Tate subring ZŒL� � K0.V/. The question
remains, however, on whether the particular piece (16) may nonetheless be always
mixed Tate even when the variety X� itself may turn out to be more complicated.

One can exhibit explicit examples of computations of classes ŒX� � in the Grothen-
dieck ring. A useful method to obtain information on these classes is the observation,
made in [13] and used extensively in [2], [15], that the classical Cremona transfor-
mation relates the graph hypersurfaces of a planar graph and its dual graph.

In fact, if� is a planar graph and�_ denotes the dual graph in a chosen embedding
of � , the graph polynomials are related by

‰�.t1; : : : ; tn/ D
�Y

e

te

�
‰�_.t�11 ; : : : ; t�1n /:

This means that the graph hypersurfaces have the property that

C.X� \ .Pn�1 X†n// D X�_ \ .Pn�1 X†n/;
under the Cremona transformation. The latter is defined as

C W .t1 W � � � W tn/ 7�!
�
1

t1
W � � � W 1

tn

�
;

which is well defined outside the singularity locus Sn of †n defined by the ideal
ISn D .t1 : : : tn�1; t1 : : : tn�2tn; : : : ; t1t3 : : : tn/. Notice that this relation only gives
an isomorphism of the parts of X� and X�_ that lie outside of †n.

For example, using this method, an explicit formula for the classes ŒX�n � of the
hypersurfaces of the infinite family of so called “banana graphs” were computed in
[2]. The banana graphs have graph polynomial

‰�.t/ D t1 : : : tn
�
1

t1
C � � � C 1

tn

�
:
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The parametric integral in this case is

Z
�n

.t1 : : : tn/
.D2 �1/.n�1/�1 !n

‰�.t/
.D2 �1/n :

One has in this case ([2]) that the class in the Grothendieck ring is of the form

ŒX�n � D
Ln � 1
L � 1 �

.L � 1/n � .�1/n
L

� n .L � 1/n�2;

so it is manifestly mixed Tate. In fact, in this case the dual graph �_ is just a polygon,
so that X�_ D L is a hyperplane in Pn�1. One has

ŒL X†n� D ŒL� � ŒL \†n� D Tn�1 � .�1/n�1

T C 1
where T D ŒGm� D ŒA1� � ŒA0� is the class of the multiplicative group. Moreover,
one finds that X�n \†n D Sn and the scheme of singularities of †n has class

ŒSn� D Œ†n� � nTn�2:

This then gives
ŒX�n � D ŒX�n \†n�C ŒX�n X†n�;

where one uses the Cremona transformation to identify ŒX�n � D ŒSn�C ŒL X†n�.
In particular this calculation yields a value for the Euler characteristic of X�n , of

the form �.X�n/ D nC .�1/n. A different computation of the Euler characteristic
based on characteristic classes of singular varieties is also given in [2].

A very interesting observation recently made in [15] is that, although individually
the varieties of Feynman graphs may not be mixed Tate, as the result of [9] shows,
cancellations happen when one sums over graphs and one ends up with a class in
ZŒL� � K0.VK/. More precisely, it is shown in [15] that the class

SN D
X

#V.�/DN
ŒX� �

N Š

#Aut.�/

is in ZŒL�. This is in agreement with the fact that in quantum field theory individual
Feynman graphs do not represent observable physical processes and only sums over
graphs, usually with fixed external edges and external momenta, can be physically
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meaningful. This result suggests that a more appropriate formulation of the conjecture
on Feyman integrals and motives may perhaps be given directly in terms that involve
the full expansion of perturbative quantum field theory, with sums over graphs, rather
than in terms of individual graphs. As we are going to see below, this also fits
in naturally with the other, “top-down” approach to relating Feynman integrals to
motives that we discuss in the second half of this paper.

2.1. Feynman rules in algebraic geometry. The graph hypersurfaces have another
interesting property, namely the hypersurface complements behave like Feynman
rules. This was first observed and described in detail in the work [3], but we summarize
it here briefly.

As we recalled above, Feynman rules have certain multiplicative properties that
makes it possible to reduce the combinatorics of graphs from arbitrary finite graphs
to connected and then 1PI graphs, namely the properties listed in (9) and (11). When
working in affine space, one has

An1Cn2 X yX� D .An1 X yX�1/ � .An2 X yX�2/;

for a graph � that is a disjoint union � D �1 q �2. This follows immediately from
the fact that the graph polynomial factors as

‰�.t1; : : : ; tn/ D ‰�1.t1; : : : ; tn1/‰�2.tn1C1; : : : ; tn1Cn2/:

In projective space, this would no longer be the case and one has a more complicated
relation in terms of joins instead of products of varieties, which gives a fibration

Pn1Cn2�1 XX� �! .Pn1�1 XX�1/ � .Pn2�1 XX�2/

which is a Gm-bundle (assuming that �i not a forest, else the above map in projective
spaces would not be well defined). Notice that the classes of the affine and the
projective hypersurface complements are related by ([3])

ŒAn X yX� � D .L � 1/ŒPn�1 XX� �;

when � is not a forest, since Œ yX� � D .L � 1/ŒX� �C 1 is the class of the affine cone
yX� over X� .

One can then work either with the Grothendieck ringK0.VK/ (in which case one
can talk of motivic Feynman rules), or with a more refined version where one does not
identify varieties up to isomorphisms but only up to linear coordinate changes coming
from embeddings in some ambient affine space AN . This version of Grothendieck
ring was introduced in [3] under the name of ring of immersed conical varieties FK. It
is generated by classes ŒV � of equivalence under linear coordinate changes of varieties
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V � AN (for some arbitrarily large N ) defined by homogeneous ideals (hence the
name “conical”), with the usual inclusion-exclusion and product relations

ŒV [W � D ŒV �C ŒW � � ŒV \W �;
ŒV � � ŒW � D ŒV �W �:

By imposing equivalence under isomorphisms one falls back on the usual Grothen-
dieck ringK0.V/. The reason for working with FK instead is that it allowed us in [3]
to construct invariants of the graph hypersurfaces that behave like algebro-geometric
Feynman rules and that measure to some extent how singular these varieties are,
and which do not factor through the Grothendieck ring, since they contain specific
information on how the yX� are embedded in the ambient affine space A#Eint.�/.

In general, one defines an R-valued algebro-geometric Feynman rule, for a given
commutative ring R, as in [3] in terms of a ring homomorphism I W F ! R by
setting

U.�/ WD I.ŒAn�/ � I.Œ yX� �/
and by taking as value of the inverse propagator

U.L/ D I.ŒA1�/:
This then satisfies both (9) and (11). The ring F then is the receptacle of the universal
algebro-geometric Feynman rule given by

U.�/ D ŒAn X yX� � 2 F :

A Feynman rule defined in this way is motivic if the homomorphism I W F ! R

factors through the Grothendieck ring K0.VK/.

An example of algebro-geometric Feynman rule that does not factor through
K0.VK/ was constructed in [3] using the theory of characteristic classes of singular
varieties.

In the case of smooth varieties, one knows that the Chern classes of the tangent
bundle can be written as a class c.V / D c.T V /\ŒV � in homology whose degree of the
zero dimensional component satisfies the Poincaré–Hopf theorem

R
c.T V /\ ŒV � D

�.V /, which gives the topological Euler characteristic of the smooth variety. This was
generalized to singular varieties, following two different approaches that then turned
out to be equivalent, by Marie-Hélène Schwartz [54] and Robert MacPherson [46].
The approach followed by Schwartz generalized the definition of Chern classes as the
homology classes of the loci where a family of k C 1-vector fields become linearly
dependent (for the lowest degree case one reads the Poincaré–Hopf theorem as saying
that the Euler characteristic measures where a single vector field has zeros). In the case
of singular varieties a generalization is obtained, provided that one assigns some radial
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conditions on the vector fields with respect to a stratification with good properties.
The approach of MacPherson was instead based on functoriality: a conjecture of
Grothendieck–Deligne stated that there should be a unique natural transformation c�
between the functor F.V / of constructible functions on a varietyV , whose objects are
linear combinations of characteristic classes 1W of subvarieties W � V and where
morphisms are defined by the prescription f�.1W / D �.W \ f �1.p//, with � the
Euler characteristic, to the homology (or Chow group) functor, which in the smooth
case agrees with c�.1V / D c.T V / \ ŒV �. MacPherson constructed this natural
transformation in terms of data of Mather classes and local Euler obstructions. The
results of Aluffi [1] show that, in fact, it is possible to compute these classes without
having to use the original definition and the local data that are usually very difficult
to compute. Most notably, the resulting characteristic classes (denoted cCSM.X/ for
Chern–Schwartz–MacPherson) satisfy an inclusion–exclusion formula

cCSM.X/ D cCSM.Y /C cCSM.X X Y /;
but are not invariant under isomorphism, hence they are naturally defined on classes
in FK but not on K0.VK/. This classes give a good information on the singularities
of a variety: for example, in the case of hypersurfaces with isolated singularities,
they can be expressed in terms of Milnor numbers, while more generally for non-
isolated singularities, as observed by Aluffi, they can be expressed in terms of Euler
characteristics of varieties obtained by repeatedly taking hyperplane sections.

To construct a Feynman rule out of these Chern classes, one uses the following
procedure. Given a variety yX � AN , one can view it as a locally closed locus in PN ,
hence one can apply to its characteristic function 1 yX the natural transformation c�
that gives an element in the Chow group A.PN / or in the homology H�.PN /. This
gives as a result a class of the form

c�.1 yX / D a0ŒP0�C a1ŒP1�C � � � C aN ŒPN �:
One then defines an associated polynomial given by ([3])

G yX .T / WD a0 C a1T C � � � C aNT N :

It is in fact independent ofN as it stops in degree equal to dim yX . It is by construction
invariant under linear changes of coordinates. It also satisfies an inclusion-exclusion
property coming from the fact that the classes cCSM satisfy inclusion-exclusion,
namely

G yX[ yY .T / D G yX .T /CG yY .T / �G yX\ yY .T /:

It is a more delicate result to show that it is multiplicative,

G yX� yY .T / D G yX .T / �G yY .T /:
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The proof of this fact is obtained in [3] using an explicit formula for the CSM classes
of joins in projective spaces, where the join J.X; Y / � PmCn�1 of two X � Pm�1
and Y � Pn�1 is defined as the set of

.sx1 W � � � W sxm W ty1 W � � � W tyn/; with .s W t / 2 P1;

and is related to product in affine spaces by the property that the product yX � yY of the
affine cones over X and Y is the affine cone over J.X; Y /. The resulting multiplica-
tive property of the polynomials G yX .T / shows that one has a ring homomorphism
ICSM W F ! ZŒT � defined by

ICSM.Œ yX�/ D G yX .T /

and an associated Feynman rule

UCSM.�/ D C�.T / D ICSM.ŒA
n�/ � ICSM.Œ yX� �/:

This is not motivic, i.e. it does not factor through the Grothendieck ring K0.VK/, as
can be seen by the example given in [3] of two graphs (see the figure below) that have
different UCSM.�/,

C�1.T / D T .T C 1/2 C�2.T / D T .T 2 C T C 1/
but the same hypersurface complement class in the Grothendieck ring,

ŒAn X yX�i � D ŒA3� � ŒA2� 2 K0.V/:

2.2. Determinant hypersurfaces and manifolds of frames. As our excursion into
the algebraic geometry of graph hypersurfaces up to this point shows, it seems very
difficult to control the complexity of the motive

m.Pn�1 XX� ; †n XX� \†n/
that governs the computation of the parametric Feynman integral as a period.

One way to try to estimate whether the period remains mixed Tate, as the com-
plexity of the X� grows, is to use the properties of periods, in particular the change
of variable formula, which allows one to recast the computation of the same integralR
�
! associated to the data .X;D;!; 
/ of a variety X , a divisor D, a differential
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form ! on X , and an integration domain 
 with boundary @
 � D, by mapping it
via a morphism f of varieties to another set of data .X 0;D0; !0; 
 0/, with the same
resulting period whenever ! D f �.!0/ and 
 0 D f�.
/. In other words, we try to
map the variety X� inside a larger ambient variety in such a way that the part of the
cohomology that is involved in the period computation will not disappear, but the
motivic complexity of the new ambient space will be easier to control. This is the
strategy that we followed in [4], which I will briefly describe here.

The matrix M�.t/ associated to a Feynman graph � determines a linear map of
affine spaces

‡ W An ! A`
2

; ‡.t/kr D
X
i

ti	ik	ir

such that the affine graph hypersurface is obtained as the preimage

yX� D ‡�1. yD`/

under this map of the determinant hypersurface

yD` D fx D .xij / 2 A`
2 j det.xij / D 0g:

The advantage of moving the period computation via the map ‡ D ‡� from the hy-
persurface complement AnX yX� to the complement of the determinant hypersurface
A`

2 X yD` is that, unlike what happens with the graph hypersurfaces, it is well known
that the determinant hypersurface yD` is a mixed Tate motive.

One can give explicit combinatorial conditions on the graph that ensure that the
map ‡ is an embedding. As shown in [4], for any 3-edge-connected graph with
at least 3 vertices and no looping edges, which admit a closed 2-cell embedding of
face width at least 3, the map ‡ is injective. These combinatorial conditions are
natural from a physical viewpoint. In fact, 2-edge-connected is just the usual 1PI
condition, while 3-edge-connected or 2PI is the next strengthening of this condition
(the 2PI effective action is often considered in quantum field theory), and the face
width condition is also the next strengthening of face width 2, which a well known
combinatorial conjecture on graphs [52] expects should simply follow for graphs that
are 2-vertex-connected. (The latter condition is a bit more than 1PI: for graphs with
at least two vertices and no looping edges it is equivalent to all the splittings of the
graph at vertices also being 1PI.) The conditions that the graph has no looping edges
is only a technical device for the proof. In fact, it is then easy to show (see [4]) that
adding looping edge does not affect the injectivity of the map ‡ .

One can then rewrite the Feynman integral (as usual up to a divergent �-factor)
in the form

U.�/ D
Z
‡.�n/

P�.x; p/
�nCD`=2!�.x/

det.x/�nC.`C1/D=2 ;
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for a polynomial P�.x; p/ on A`
2

that restricts to P�.t; p/, and with !�.x/ the
image of the volume form. Let then y†� be a normal crossings divisor in A`

2
, which

contains the boundary of the domain of integration, ‡.@
n/ � y†� . The question
on the motivic nature of the resulting period can then be reformulated (again modulo
divergences) in this case as the question of whether the motive

m.A`
2 X yD`; y†� X .y†� \ yD`// (18)

is mixed Tate. One sees immediately that, in this reformulation of the question,
the difficulty has been moved from understanding the motivic nature of the hyper-
surface complement to having some control on the other term of the relative co-
homology, namely the normal crossings divisor y†� and the way it intersects the
determinant hypersurface. One would like to have an argument showing that the mo-
tive of y†� X .y†� \ yD`/ is always mixed Tate. In that case, knowing that A`

2 X yD` is
always mixed Tate, the fact that mixed Tate motives form a triangulated subcategory
of the triangulated category of mixed motives would show that the motive (18) whose
realization is the relative cohomology would also be mixed Tate. A first observation
in [4] is that one can use the same normal crossings divisor y†`;g for all graphs � with
a fixed number of loops and a fixed genus (that is, the minimal genus of an orientable
surface in which the graph can be embedded). This divisor is given by a union of
linear spaces

y†`;g D L1 [ � � � [ L.f2/
defined by a set of equations´

xij D 0; 1 � i < j � f � 1;
xi1 C � � � C xi;f �1 D 0; 1 � i � f � 1;

where f D ` � 2g C 1 is the number of faces of an embedding of the graph �
on a surface of genus g. A second observation of [4] is then that, using inclusion-
exclusion, it suffices to show that arbitrary intersections of the components Li of
y†`;g have the property that

�T
i2I Li

�X yD` is mixed Tate. A sufficient condition is
given in [4] in terms of manifolds of frames. These are defined as

F.V1; : : : ; V`/ WD f.v1; : : : ; v`/ 2 A`
2 j vk 2 Vkg

for an assigned collection of linear subspaces Vi of a given vector space V D A`
2
. If

the manifolds of frames are mixed Tate motives for arbitrary choices of the subspaces,
then the desired result would follow. One can check explicitly the cases of two and
three subspaces, for which one has explicit formulae for the classes ŒF.V1; : : : ; V`/�
in the Grothendieck ring:

ŒF.V1; V2/� D Ld1Cd2 � Ld1 � Ld2 � Ld12C1 C Ld12 C L;
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with di D dim.Vi / and dij D dim.Vi \ Vj /, and

ŒF.V1; V2; V3/� D .Ld1 � 1/.Ld2 � 1/.Ld3 � 1/ � .L � 1/..Ld1 � L/.Ld23 � 1/
C .Ld2 � L/.Ld13 � 1/C .Ld3 � L/.Ld12 � 1/
C .L � 1/2.Ld1Cd2Cd3�D � Ld123C1/C .L � 1/3

which also depends ondijk D dim.Vi\Vj\Vk/ andD D Dijk D dim.ViCVjCVk/.
However, it is difficult to establish an induction argument that would take care of the
cases of more subspaces, and the combinatorics of the possible subspace arrangements
quickly becomes difficult to control.

A reformulation of this problem given in [4] in terms of intersections of unions
of Schubert cells in flag varieties suggests a possible connection to Kazhdan–Lusztig
theory [42].

2.3. Handling divergences. So far we did not discuss how one takes care of the
divergences caused by the intersections of the graph hypersurfaceX� with the domain
of integration 
n. The poles of the integrand that fall inside the integration domain
happen necessarily along the boundary @
n, as in the interior the graph polynomial‰�
takes strictly positive real values. Thus, one needs to modify the integrals suitably in
such a way as to eliminate, by a regularization procedure, the intersectionsX� \@
n,
or (to work in algebro-geometric terms) the intersectionsX�\†n which contains the
former. There are different possible ways to achieve such a regularization procedure.
We mention here three possible approaches.

One method was developed by Belkale and Brosnan in [10] in the logarithmically
divergent case where n D D`=2, that is, when the polynomialP�.t; p/ is not present
and only the denominator ‰�.t/D=2 appears in the parametric Feynman integral.
Using dimensional regularization, one can, in this case, rewrite the Feynman integral
in the form of a local Igusa L-function

I.s/ D
Z
�

f .t/s!;

for f D ‰� . They prove that this L-function has a Laurent series expansion where
all the coefficients are periods. In this setting, the issue of eliminating divergences
becomes similar to the techniques used, for instance, in the context of log canonical
thresholds. The result was more recently extended to the non-log-divergent case by
Bogner and Weinzierl [18], [19].

Another method, used in [16], consists of eliminating the divergences by sepa-
rating †n and X� performing a series of blowups. This method based on iterated
blowups was investigated in great detail in [17]. Yet another method was proposed in
[49], based on deformations instead of resolutions. By considering the graph hyper-
surfaceX� as the special fiberX0 of a familyXs of varieties defined by the level sets
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f �1.s/, for f D ‰� W An ! A1, one can form a tubular neighborhood

D�.X/ D S
s2��

�

Xs;

for ��
� a punctured disk of radius �, and a circle bundle �� W @D�.X/ ! X� . One

can then regularize the Feynman integral by integrating “around the singularities” in
the fiber ��1

� .
 \X�/. The regularized integral has a Laurent series expansion in the
parameter �.

In general, as we discuss at length below, a regularization procedure for Feynman
integrals replaces a divergent integral with a function of some regularization parame-
ters (such as the complexified dimension of DimReg, or the deformation parameter �
in the example here above) in which the resulting function has a Laurent series expan-
sion around the pole that corresponds to the divergent integral originally considered.
One then uses a procedure of extraction of finite values to eliminate the polar parts of
these Laurent series in a way that is consistent over graphs, that is, a renormalization
procedure. We therefore turn now to recalling how renormalization can be formulated
geometrically, using the results of Connes–Kreimer, as this will be the step relating
the “bottom-up” approach to Feynman integrals and motives discussed so far, to the
top down approach developed in [27], [28], [29], [30].

3. The Connes–Kreimer theory

We give here a very brief overview of the main results of the Connes–Kreimer theory,
as they form the basis upon which the “top-down” approach to understanding the
relation between quantum field theory and motives rests. As we see more in detail in
the next section, in this context “top-down” means that the relation between quantum
fields and motives will appear in this second approach from the comparison of the
formal properties of associated abstract categorical structures rather than from a direct
comparison of individual objects, as in the approach we have described in the previous
sections.

3.1. The BPHZ renormalization procedure. The main steps of what is known in
the physics literature as the Bogolyubov–Parashchuk–Hepp–Zimmermann procedure
(BPHZ) are summarized as follows. (For more details the reader is invited to look at
Chapter 1 on [30]).

Step 1: Preparation. One replaces the Feynman integralU.�/ of (6) by the expression

xR.�/ D U.�/C
X

	2V.�/

C.�/U.�=�/: (19)
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Here we suppress the dependence on z, � and the external momenta p for simplicity
of notation. The expression (19) is to be understood as a sum of Laurent series in z,
depending on the extra parameter�. The sum is over the set V.�/ all proper subgraphs
� � � with the property that the quotient graph �=� , where each component of � is
shrunk to a vertex, is still a Feynman graph of the theory. The main result of BPHZ
is that the coefficient of pole of xR.�/ is local.

Step 2: Counterterms. These are the expressions by which the Lagrangian needs to
be modified to cancel the divergence produced by the graph � . They are defined as
the polar part of the Laurent series xR.�/,

C.�/ D �T . xR.�//:
Here T denotes the operator of projection onto the polar part of a Laurent series.

Step 3: Renormalized value. One then extracts a finite value from the integral U.�/
by removing the polar part, not of U.�/ itself but of its preparation:

R.�/ D xR.�/C C.�/
D U.�/C C.�/C

X
	2V.�/

C.�/U.�=�/:

A very nice conceptual understanding of the BPHZ renormalization procedure
with the DimReg C MS regularization was obtained by Connes and Kreimer [25],
[26], based on a reformulation of the BPHZ procedure in geometric terms.

3.2. Renormalization, Hopf algebras, Birkhoff factorization. The first step in
the geometric theory of renormalization is the understanding that the combinatorics
of Feynman graphs of a given theory is governed by an algebraic structure, which ac-
counts for the bookkeeping of the hierarchy of subdivergences that occur in multi-loop
Feynman integrals. The right mathematical structure that describes their interactions
is a Hopf algebra. This was first formulated by Kreimer [44] as a Hopf algebra of
rooted trees decorated by Feynman diagrams, and then by Connes–Kreimer [25], [26]
more directly in the form of a Hopf algebra of Feynman diagrams.

The Connes–Kreimer Hopf algebra ([25]) H D H .T / depends on the choice of
the physical theory, in the sense that it involves only graphs that are Feynman graphs
for the specified Lagrangian L.�/. As an algebra it is the free commutative algebra
with generators the 1PI Feynman graphs� of the theory. It is graded, by loop number,
or by the number of internal lines,

deg.�1 : : : �n/ D
X
i

deg.�i /; deg.1/ D 0:

This grading corresponds to the order in the perturbative expansion.



318 M. Marcolli

The coproduct already reveals a close relation to the BPHZ formulae. It is given
on generators by

�.�/ D � ˝ 1C 1˝ � C
X

	2V.�/

� ˝ �=�;

where the sum is over proper subgraphs � � � in a specific class V.�/ determined by
the property that the quotient graph�=� is still a 1PI Feynman graph of the theory and
that � itself is a disjoint union of 1PI Feynman graphs of the theory. Unlike � which
is assumed connected, the subgraphs � can have multiple connected components, in
which case the quotient graph �=� is the one obtained by shrinking each component
to a single vertex.

The antipode is defined inductively by

S.X/ D �X �
X

S.X 0/X 00;

where X is an element with coproduct �.X/ D X ˝ 1 C 1 ˝ X CPX 0 ˝ X 00,
where all the X 0 and X 00 have lower degrees.

We only recalled how the Connes–Kreimer Hopf algebra is constructed for scalar
field theories. Recently, van Suijlekom showed [56], [57], [58] how to extend it to
gauge theories, incorporating Ward identities as Hopf ideals.

A commutative Hopf algebra H is dual to an affine group scheme G, defined by
algebra homomorphisms

G.A/ D Hom.H ; A/;

for any commutative unital algebra A. In the case of the Connes–Kreimer Hopf
algebra this G is called the group of diffeographisms of the physical theory T and it
was proved in [25] that it acts by local diffeomorphisms on the coupling constants of
the theory.

The complex Lie group G.C/ of complex points of the affine group scheme G,
defined as G.C/ D Hom.H ;C/, is a pro-unipotent Lie group. For such groups,
which are dual to graded connected Hopf algebras that are finite dimensional in each
degree, Connes and Kreimer proved by a recursive formula that it is always possible
to have a multiplicative Birkhoff factorization

�.z/ D ��.z/�1�C.z/

of loops � W �� ! G, defined on an infinitesimal disk �� around the origin in
C�, in terms of two holomorphic functions �˙.z/ respectively defined on � and
on P1.C/ X f0g. The factorization is unique upon fixing a normalization condition
��.1/ D 1. Notice that such Birkhoff factorizations do not always exist for other
kinds of complex Lie groups, as one can see in the example of GLn.C/ where the
existence of holomorphic vector bundles on the Riemann sphere is an obstruction.
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In Hopf algebra terms, one can describe a loop � W �� ! G.C/ on an infinitesimal
punctured disk�� as an algebra homomorphism� 2 Hom.H ;C.fzg//with values in
the field of germs of meromorphic functions (covergent Laurent series). The two terms
�C and �� of the Birkhoff factorization are, respectively, algebra homomorphisms
�C 2 Hom.H ;Cfzg/ to convergent power series, and �� 2 Hom.H ;CŒz�1�/. The
BPHZ recursive formula is then reformulated in [25] [26] as the Birkhoff factorization
applied to the loop �.�/ D U.�/ given by the dimensionally regularized unrenor-
malized Feynman integrals. In fact, the recursive formula of Connes and Kreimer for
the Birkhoff factorization can be written as

��.X/ D �T .�.X/C
X

��.X 0/�.X 00//;

for �.X/ D X ˝ 1 C 1 ˝ X CPX 0 ˝ X 00, and with T the projection onto the
polar part of the Laurent series, and �C.X/ D �.X/ C ��.X/. The fact that the
�˙ obtained in this way are still algebra homomorphism depends on the fact that the
projection onto the polar part of Laurent series is a Rota–Baxter operator. In fact, this
renormalization procedure by Birkhoff factorization was easily generalized in [33],
[34] to arbitrary algebra homomorphisms � 2 Hom.H ;A/ from a commutative
graded connected Hopf algebra to a Rota–Baxter algebra. When one applies this
formula to �.�/ D U.�/ one finds the BPHZ formula with ��.�/ D C.�/ the
counterterms and �C.�/jzD0 D R.�/ the renormalized values.

Notice how, from this point of view, the algebro-geometric Feynman rules dis-
cussed above, correspond to the data of a Hopf algebra homomorphism � 2
Hom.H ;FK/ or, in the motivic case, � 2 Hom.H ; K0.VK//, together with the
assignment of the propagator U.L/ D L. It would therefore be interesting to know
if the rings FK and K0.VK/ have a non-trivial Rota–Baxter structure.

4. A top-down approach via Galois theory

As we mentioned earlier, the “top-down” approach to the question of Feynman inte-
grals and periods of mixed Tate motives consists of comparing categorical structures,
instead of looking at varieties and motives associated to individual Feynman graphs.
The main idea, developed in my joint work with Connes in [27], [28], [29], [30], is
to show that the data of perturbative renormalization can be reformulated in terms
of a Tannakian category of equivalence classes of differential systems with irregular
singularities.

A neutral Tannakian category C is an abelian category, which is k-linear for some
field k, has a rigid tensor structure and a fiber functor ! W C ! Vectk , which is a
faithful exact tensor functor to the category of vector spaces over the same field k.

Tannakian categories are extremely rigid structures, namely, such a category
is equivalent to a category of finite dimensional linear representations of an affine
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group scheme,
C ' RepG :

The affine group schemeG is reconstructed from the category as the invertible natural
transformations of the fiber functor.

Thus, in order to relate two sets of objects of a seemingly very different nature,
of which one is known (as is the case for mixed Tate motives over a number field) to
form a Tannakian category, it suffices to show that the other set of objects can also
be organized in a similar way, and check that the resulting affine group schemes are
isomorphic: this gives then an equivalence of categories. This is precisely what is
done in the results of [27].

The reason why this does not yet give an answer to the conjecture lies in the fact that
one only obtains in this way a non-canonical identification, which cannot therefore
be used to explicitly match Feynman integrals to mixed Tate motives. There are other
mysterious aspects, for instance the category of mixed Tate motives involved in the
result of [27] is not over Q or Z, but over the ring ZŒi �Œ1=2�, while all the varieties
X� involved in the parametric formulation of Feynman integrals are defined over Z.
Relating explicitly the top-down approach described below to the bottom-up approach
is still an important missing ingredient in the geometric theory of renormalization,
which may possibly provide the key to completing a proof of the main conjecture.

The main results of [27], [28], [29] are summarized as follows.

� Step 1: Counterterms as iterated integrals. One writes the negative piece ��.z/
of the Birkhoff factorization as an iterated integral depending on a single element
ˇ in the Lie algebra Lie.G/ of the affine group scheme dual to the Connes–
Kreimer Hopf algebra. This is a way of formulating what is known in physics
as the ’t Hooft–Gross relations [38], that is, the fact that counterterms only
depend on the beta function of the theory (the infinitesimal generator of the
renormalization group flow).

� Step 2: From iterated integrals to solutions of irregular singular differential
equations. The iterated integrals obtained in the first step are uniquely solu-
tions to certain differential equations. This makes it possible to classify the
divergences of quantum field theories in terms of families of differential sys-
tems with singularities. The fact that, by dimensional analysis, counterterms
are independent of the energy scale corresponds in these geometric terms to the
flat singular connections describing the differential systems satisfying a certain
equisingularity condition.

� Step 3: Equisingular vector bundles. Instead of working with equisingular
connections in the context of principal G-bundles, one can formulate things
equivalently in terms of linear representations and of flat connections on vector
bundles. These data can then be organized in a neutral Tannakian category E

which is independent of G and therefore universal for all physical theories.
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� Step 4: The Galois group. The Tannakian category of flat equisingular con-
nections is equivalent to a category of representations E ' RepU� of an affine
groups scheme U� D U ÌGm, where U is the prounipotent affine group scheme
dual to the Hopf algebra HU D U.L/_, where L D F .e�nIn 2 N/ is the free
graded Lie algebra with one generator in each degree.

� Step 5: Motivic Galois group. The same group U� D U Ì Gm is known to
arise (up to a non-canonical identification) as the motivic Galois group of the
category of mixed Tate motives over the scheme S D Spec.ZŒi �Œ1=2�/, by a
result of Deligne–Goncharov [32].

We describe briefly each of these steps below.

4.1. Counterterms as iterated integrals. In the Birkhoff factorization, there is in
fact a dependence on a mass scale �, inherited from the same dependence of the
dimensionally regularized Feynman integrals U�.�/, so that we have

��.z/ D ��.z/�1��;C.z/;

where one knows by reasons of dimensional analysis that the negative part is inde-
pendent of �. This part is written as a time ordered exponential

��.z/ D Te� 1z
R

1

0 
�t .ˇ/dt D 1C
1X
nD1

dn.ˇ/

zn
;

where

dn.ˇ/ D
Z
s1	s2	���	sn	0

��s1.ˇ/ : : : ��sn.ˇ/ds1 : : : dsn;

and where ˇ 2 Lie.G/ is the beta function, that is, the infinitesimal generator of
renormalization group flow, and the action �t is induced by the grading of the Hopf
algebra by

�u.X/ D unX; for u 2 Gm; and X 2 H ; with deg.X/ D n;

with generator the grading operator Y.X/ D nX . This result follows from the
analysis of the renormalization group in the Connes–Kreimer theory given in [25]
[26], with the recursive formula for the coefficients dn explicitly solved to give the
time ordered exponential above.

The loop ��.z/ that collects all the unrenormalized valuesU�.�/ of the Feynman
integrals satisfies the scaling property

�et�.z/ D �tz.��.z// (20)
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in addition to the property that its negative part is independent of �,

@

@�
��.z/ D 0: (21)

The Birkhoff factorization is then written in [27] in terms of iterated integrals as

��;C.z/ D Te� 1z
R

�z log�
0


�t .ˇ/dt �z log�.�reg.z//:

Thus ��.z/ is specified by ˇ up to an equivalence given by the regular term �reg.z/.
The equivalence corresponds to “having the same negative part of the Birkhoff fac-
torization”.

4.2. From iterated integrals to differential systems. The second step of the ar-
gument of [27] goes as follows. An iterated integral (or time-ordered exponen-

tial) g.b/ D Te
R b
a ˛.t/dt is the unique solution of a differential equation dg.t/ D

g.t/˛.t/dt with initial condition g.a/ D 1. In particular, given the differential field
.K D C.fzg/; ı/ and an affine group scheme G, and the logarithmic derivative

G.K/ 3 f 7! D.f / D f �1ı.f / 2 LieG.K/;

one can consider differential equations of the form D.f / D !, for a flat LieG.C/-
valued connection !, singular at z D 0 2 ��. The existence of solutions is ensured
by the condition of trivial monodromy on ��

M.!/.`/ D Te
R 1
0 `

�! D 1; ` 2 �1.��/:

These differential systems can be considered up to the gauge equivalence relation
of D.f h/ D Dh C h�1Df h, for a regular h 2 Cfzg. The gauge equivalence is
the same thing as the requirement considered above that the solutions have the same
negative piece of the Birkhoff factorization,

!0 D DhC h�1!h () f !� D f !
0

� ;

where D.f !/ D ! and D.f !
0

/ D !0.

4.3. Flat equisingular connections. The third step of [27] consists of reformulating
the data of the loops ��.z/ up to the equivalence of having the same negative piece
of the Birkhoff factorization in terms of gauge equivalence classes of differential
systems as above. The point here is that one keeps track of the �-dependence and
of the way ��.z/ scales with � and the fact that the negative part of the Birkhoff
factorization is independent of�, as in (20), (21). In geometric terms these conditions
are reformulated in [27] as properties of connections on a principal G-bundle P D
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B �G over a fibration Gb ! B ! �, where z 2 � is the complexified dimension
of DimReg and the fiber �z 2 Gm over z corresponds to the changing mass scale.
The multiplicative group acts by

u.b; g/ D .u.b/; uY .g// for all u 2 Gm:

The two conditions (20) and (21) correspond to the properties that the flat connection
$ on P � is equisingular, that is, it satisfies the following:

� Under the action of u 2 Gm the connection transforms like

$.z; u.v// D uY .$.z; u//:

� If � is a solution in G.C.fzg// of the equation D� D $ , then the restrictions
along different sections 
1; 
2 of B with 
1.0/ D 
2.0/ have “the same type of
singularities”, namely


�
1 .�/ � 
�

2 .�/;

where f1 � f2 means that f �1
1 f2 2 G.Cfzg/, regular at zero.

4.4. Flat equisingular vector bundles. The fourth step of [27] consists of trans-
forming the information obtained above from equivalence classes of flat equisingular
connections on the principal G-bundle P to a category E of flat equisingular vector
bundles. This is possible without losing any amount of information, since the affine
group scheme G dual to the Connes–Kreimer Hopf algebra of Feynman graphs of a
given physical theory is completely determined by its category RepG of finite dimen-
sional linear representations. Thus, considering all possible flat equisingular vector
bundles gives rise to a category that in particular contains as a subcategory the vector
bundles that come from finite dimensional representations ofG, for anyG associated
to a particular physical theory, while in itself the category E does not depend on any
particular G, so it is therefore universal for different physical theories.

The category E of flat equisingular vector bundles is defined in [27] as follows.
The objects Obj.E/ are pairs ‚ D .V; Œr�/, where V is a finite dimensional Z-

graded vector space, out of which one forms a bundle E D B � V . The vector
space has a filtration W �n.V / D ˚m	nVm induced by the grading and a Gm action
also coming from the grading. The class Œr� is an equivalence class of equisingular
connections, which are compatible with the filtration, trivial on the induced graded
spaces GrW�n.V /, up to the equivalence relation ofW -equivalence. This is defined by
T Br1 D r2 BT for some T 2 Aut.E/which is compatible with filtration and trivial
on GrW�n.V /. Here the condition that the connections r are equisingular means that
they are Gm-invariant and that restrictions of solutions to sections ofB with the same

.0/ are W -equivalent. The morphisms HomE.‚;‚

0/ are linear maps T W V ! V 0
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that are compatible with grading, and such that onE˚E 0 the following connections
are W -equivalent:

�r 0 0

0 r
�
W -equiv'

�r 0 Tr � r 0T
0 r

�
:

4.5. The Riemann–Hilbert correspondence. Finally, we proved in [27] that the
category E is a Tannakian category,

E ' RepU� ; with U� D U Ì Gm;

where U is dual, under the relation U.A/ D Hom.HU ; A/, to the Hopf algebra
HU D U.L/_ dual (as Hopf algebra) to the universal enveloping algebra of the
free graded Lie algebra L D F .e�1; e�2; e�3; : : : /. The renormalization group
rg W Ga ! U is a 1-parameter subgroup with generator e DP1

nD1 e�n. In particular,
the morphism U ! G that realizes the finite dimensional linear representations of
G with equisingular connections as a subcategory of E is given by mapping the
generators e�n 7! ˇn to the n-th graded piece of the beta function of the theory,
seen as an element ˇ D P

n ˇn in the Lie algebra Lie.G/. There are universal
counterterms in U� given in terms of a universal singular frame

�U .z; v/ D Te� 1z
R v
0 u

Y .e/duu :

For ‚ D .V; Œr�/ in E there exists a unique � 2 RepU� such that

D�.�U /
W -equiv' r:

This same affine group scheme U� appears in the work of Deligne–Goncharov as
the motivic Galois group of the category of mixed Tate motives MS ' RepU� , with
S D Spec.ZŒi �Œ1=2�/, albeit up to a non-canonical identification. This leads to an
identification (non-canonically) of the category E , which by the previous steps clas-
sifies the data of the counterterms in perturbative renormalization, with the category
MS of mixed Tate motives.

Cartier conjectured [23] the existence of a Galois group acting on the coupling
constants of the physical theories and related both to the groups of diffeographisms
of the Connes–Kreimer theory and to the symmetries of multiple zeta values, and he
referred to it as a cosmic Galois group. In this sense the result of [27] is a positive
answer to Cartier’s conjecture, which identifies his cosmic Galois group with the
affine group scheme U� D U Ì Gm.
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5. The geometry of Dim Reg

We end this exposition with a brief discussion on the subject of dimensional regular-
ization. In physics this is taken to mean a formal extension of the rules of integration
of Gaussians by setting

Z
e��t2d zt WD �z=2��z=2;

for z 2 C�. This prescription can then be used to make sense of a larger set of
integrations in complexified dimension z, which can be reduced to this Gaussian
form by the use of Schwinger parameters. However, no attempt is made to make
sense of an actual geometry in complexified dimension z 2 C�. We argue here that
there are (at least) two possible approaches that can be used to make sense of spaces
in dimension z compatibly with the prescription for the Gaussian integration. One
is based on noncommutative geometry and it was proposed first in the unpublished
work [31] and later included in our book [30], while the second approach is based
on motives and was proposed in [49]. The noncommutative geometry approach is
based on the idea of taking a product, in the sense of metric noncommutative spaces
(spectral triples) of the spacetime manifold over which the quantum field theory is
constructed by a noncommutative space Xz whose dimension spectrum (the most
sophisticated notion of dimension in noncommutative geometry) is given by a single
point z 2 C�. The motivic approach is based also on taking a product, but this
time of the motive associated to an individual Feynman graph by a projective limit
of logarithmic motives Log1.

In both cases the main idea is to deform the geometry by taking a product of the
original geometry on which the computation of the un-regularized Feynman integral
was performed by a new space, either noncommutative or motivic, which accounts
for the shift of z in dimension. Recently there has been a considerable amount of
activity in relating noncommutative geometry and motives (see [24] and [30]). It
would be interesting to see if, in this context, there is a way to combine these two
approaches to the geometry of dimensional regularization.

5.1. The noncommutative geometry of DimReg. The notion of metric space in
noncommutative geometry is provided by spectral triples. These consist of data of
the form X D .A;H ;D/, with A an associative involutive algebra represented as
an algebra of bounded operators on a Hilbert space H , together with a self-adjoint
operator D on H , with compact resolvent, and with the property that the commutators
Œa;D � are bounded operators on H , for all a 2 A. This structure generalizes the data
of a compact Riemannian spin manifold, with the (commutative) algebra of smooth
functions, the Hilbert space of square integrable spinors and the Dirac operator. It
makes sense, however, for a wide range of examples that are not ordinary manifolds,
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such as quantum groups, fractals, noncommutative tori, etc. For such spectral triples
there are various different notions of dimension. The most sophisticated one is the
dimension spectrum which is not a single number but a subset of the complex plane
consisting of all poles of the family of zeta functions associated to the spectral triple,

Dim D fs 2 C j �a.s/ D Tr.ajDj�s/ have polesg:
These are points where one has a well defined integration theory on the noncommu-
tative space, the analog of a volume form, given in terms of a residue for the zeta
functions. It is shown in [31], [30] that there exists a (type II) spectral triple Xz with
the properties that the dimension spectrum is Dim D fzg and that one recovers the
DimReg prescription for the Gaussian integration in the form

Tr.e��D2z / D �z=2��z=2:

The operatorDz is of the formDz D �.z/F jZj1=z , whereZ D F jZj is a self-adjoint
operator affiliated to a type II1 von Neumann algebra N and �.z/ D ��1=2.�.1C
z=2//1=z , with the spectral measure Tr.�Œa;b�.Z// D 1

2

R
Œa;b�

dt , for the type II trace.
The ordinary spacetime over which the quantum field theory is constructed can itself
be modeled as a (commutative) spectral triple

X D .A;H ;D/ D .C1.X/; L2.X; S/; =DX /

and one can take a productX�Xz given by the cup product of spectral triples (adapted
to type II case)

.A;H ;D/ [ .Az;Hz;Dz/ D .A˝Az;H ˝Hz;D ˝ 1C � ˝Dz/:
This agrees with what is usually described in physics as the Breitenlohner–Maison
prescription to resolve the problem of the compatibility of the chirality �5 operator
with the DimReg procedure, [21]. The Breitenlohner–Maison prescription consists
of changing the usual Dirac operator to a product, which is indeed of the form as in
the cup product of spectral triples,

D ˝ 1C � ˝Dz :
It is shown in [31] and [30] that an explicit example of a space Xz that can be used
to perform dimensional regularization geometrically can be constructed from the
adèle class space, the noncommutative space underlying the spectral realization of
the Riemann zeta function in noncommutative geometry (see e.g. [24]), by taking the
crossed product of the partially defined action

N D L1.yZ �R�/ Ì GL1.Q/
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and the trace

Tr.f / D
Z

yZ�R�

f .1; a/ da;

with the operator

Z.1; �; �/ D �; Z.r; �; �/ D 0; r ¤ 1 2 Q�:

5.2. The motivic geometry of DimReg. We now explain briefly the motivic ap-
proach to dimensional regularization proposed in [49]. The Kummer motives are
simple examples of mixed Tate motives, given by the extensions

M D Œu W Z! Gm� 2 Ext1DM.K/.Q.0/;Q.1//

with u.1/ D q 2 K� and the period matrix
�

1 0

log q 2�i

�
:

These can be combined in the form of the Kummer extension of Tate sheaves

K 2 Ext1DM.Gm/
.QGm.0/;QGm.1//;

QGm.1/!K ! QGm.0/! QGm.1/Œ1�:

The logarithmic motives Logn D Symn.K/ are defined as symmetric products of
this extension, [7] [37]. They form a projective system and one can take the limit as
a pro-motive

Log1 D lim �
n

Logn:

This corresponds to the period matrix
0
BBBBBBBBB@

1 0 0 � � � 0 � � �
log.s/ .2�i/ 0 � � � 0 � � �
log2.s/
2Š

.2�i/ log.s/ .2�i/2 � � � 0 � � �
:::

:::
::: � � � ::: � � �

logn.s/
nŠ

.2�i/
logn�1.s/
.n�1/Š .2�i/2

logn�2.s/
.n�2/Š � � � .2�i/n�1 � � �

:::
:::

::: � � � ::: � � �

1
CCCCCCCCCA

The graph polynomials‰� associated to Feynman graphs define motivic sheaves

M� D .‰� W An X yX� ! Gm; y†n X . yX� \ y†n/; n � 1; n � 1/;
viewed as objects .f W X ! S; Y; i; w/ in Arapura’s category of motivic sheaves, [6].
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Then the procedure of dimensional regularization can be see as taking a product
M� � Log1 in the Arapura category of the motivic sheaf M� by the logarithmic
pro-motive. The product in the Arapura category is given by the fibered product

.X1 �S X2 ! S; Y1 �S X2 [X1 �S Y2; i1 C i2; w1 C w2/:
The reason for this identification is that period computations on a fibered products
satisfy Z

��
X1
.!/ ^ ��

X2
.	/ D

Z
! ^ f �

1 .f2/�.	/;

where the integration takes place on 
1�S 
2 with 
i � Xi with boundary @
i � Yi ,
according to the diagram

X1 �S X2
�X1������������

�X2 ������������

X1
f1

������������� X2
f2

�������������

S

This leads to writing the dimensionally regularized parametric Feynman integrals
(at least in the log-divergent case where the term P�.t; p/ is absent) in the Igusa
L-function form

R
�
‰z�˛ as a period computation on M� � Log1.
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Although parts of this article reflect the content of the lecture I delivered at the ECM
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1. Introduction

The goal of this paper is to outline the progress in topological quantum field theory
and some open problems in this direction, and to emphasize the importance of the
mathematical research in quantum field theory.

Quantum field theory was developed as a theory describing interactions of elemen-
tary particles. In a similar way quantum mechanics appeared as a theory describing
atomic physics. Quantum mechanics stimulated the development of many areas of
mathematics, such as the theories of partial differential equations, operator algebras,
functional analysis, geometry etc. But mathematical complexity of quantum field
theory and the sophistication of related mathematical problems are at a different
magnitude.

In earlier stages of developments of quantum field theory the emphasis was on
perturbation theory. Some of the main problems in this direction are the ultraviolet
divergencies of Feynman diagrams, the renormalizability, and proving the unitarity
and locality of the formal power series given by the sum of Feynman diagrams.
Attempts to develop non-perturbative quantum field theories are usually based on a
notion of path integral.

Constructive field theory appeared as an attempt to make sense of the path inte-
gral. The idea is to define the path integral analytically as a limit of finite dimensional
convergent integrals. The quest for non-perturbative examples of quantum field the-
ories continued successfully in the area of integrable quantum field theories. Many
integrable classical field theories were quantized using algebraical tools from the
representation theory of quantum affine algebras.
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Among all quantum field theories, gauge theories are main candidates for theories
of fundamental interactions and they are also particularly difficult from the mathe-
matical point of view. Chern–Simons theory is an example of a gauge quantum field
theory which is finite in the perturbation theory and has a combinatorial formulation,
in terms of finite dimensional representation theory. To be more precise, whether this
combinatorial theory really quantizes the classical Chern–Simons theory is still a con-
jecture, but with the amount of accumulated evidence, there is no doubt that it is true.
These notes are focused mostly on the progress in understanding the Chern–Simons
quantum field theory.

In [112]Witten proposed a path integral that formally is an invariant of 3-manifolds.
He outlined the semiclassical asymptotics of this path integral and described all basic
elements of the asymptotical expansion. These formulae were clarified later in [43],
[62]. He also outlined the relation between the quantized Chern–Simons theory and
the WZW conformal field theory on the boundary of the 3-manifold. Based on this
relation he suggested to use the conformal field theory to define the invariant.

The construction of invariants of 3-manifolds based on the representation of 3-
manifolds by a surgery of a handle body was proposed in [92]. The main idea of
this construction was to find invariants of links which are constant on the equivalence
classes of links related by Kirby moves [72]. It became clear, almost immediately that
this approach gave an answer that is almost identical to the formulae for the invariant
from Witten’s paper written in terms of WZW data. However, there were a few
differences. The most important one was that in the combinatorial approach one can
actually prove that the numbers are invariants of 3-manifolds. The question of framing
dependence was resolved byAtiyah, who noticed that there is a canonical framing and
that the combinatorial invariant corresponds to this framing. One more difference is
that the combinatorial construction in terms of representations of quantized universal
enveloping algebra at roots of unity is parametrized by a primitive root of unity.
Braided monoidal categories related to the WZW conformal field theory correspond
to special roots of unity of the form exp.2�i

k
/.

Perhaps the most striking part of Witten’s proposal was the dichotomy between
the geometry involved in the path integral description and the combinatorics involved
in the CFT description. The complete understanding of this relation is an important
example of how the semiclassical expansion is related to the exact solution.

In Section 2 we will outline the general framework of quantum field theory. Sec-
tion 3 contains an outline of classical Lagrangian and Hamiltonian field theory. In
Section 4 we outline the idea of the path integral quantization and of the semiclas-
sical expansion in terms of Feynman diagrams. Section 5 is a digression with the
brief description of quantum groups at roots of unity and their representation theory.
Section 6 has an overview of the construction of invariants of tangles. Combinatorial
constructions of topological quantum field theories, of invariants of tangles, and their
relation to the semiclassical Chern–Simons theory are described in Section 7. The
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conclusion has a collection of some other important developments in the theory of
invariants of manifolds and topological quantum field theory.

The author benefited from numerous discussions with many people. He is partic-
ularly grateful to J. Andersen, A. Cattaneo, L. Faddeev, G. Felder, V. Fock, S. Gukov,
T. Johnson-Freyd, R. Kashaev, P. Mnev, E. Opdam, L. Rozansly, and P. Teichner. The
work was supported by the NSF grant 0601912, and by the Danish Research Foun-
dation through the Niels Bohr Visiting Professorship at the University of Aarhus.

2. Local quantum field theory

2.1. Space-time categories. The mathematical framework of a quantum field theory
as we will outline it here was suggested byAtiyah for topological quantum field theory
and Segal for conformal field theory.

In a nut shell, a quantum field theory is a functor (a family of functors) from a
space-time category to another category, which is given and is part of the data for
defining this quantum field theory.

Roughly, a space-time category is a category of cobordisms consistsing of

� objects which are .d � 1/-dimensional oriented manifolds with structure (Rie-
mannian, symplectic, etc.), and

� morphisms between two objectsN andN 0 that are d -dimensional manifoldsM
with @M D N tN 0 with structure that agrees with the structure on N and N 0.
The composition of morphisms is the gluing along the common boundary. The
precise definition of the gluing (and of objects) can be somewhat involved (as
in the case of the Riemannian category). The guiding operation is opposite to
the cutting procedure, which is easier to define.

An example of a d -dimensional space-time category is the category of metrized
cell approximations of Riemannian manifolds. Objects are metrized cell approxima-
tions of .d � 1/- dimensional Riemannian manifolds. Morphisms are metrized cell
approximations to d -dimensional Riemannian manifolds.

Another example is the topological category. In this case objects are smooth
.d � 1/-dimensional manifolds. A morphism between two manifoldsN1 andN2 is a
homeomorphism class of a d -dimensional manifold with the boundaryN1tN2 with
respect to homeomorphisms which are trivial at the boundary.

In the smooth category objects are smooth .d � 1/-dimensional manifolds with
d -dimensional collars. A morphism M between two manifolds N1 and N2 is a
diffeomorphism class of a smoothd -dimensional manifold with the boundaryN1tN2
with respect to diffeomorphisms which are trivial at the boundary. The smooth
structure on the collars of N1 and N2 should agree with the smooth structure on M .
Notice that in dimensions 1, 2, 3 smooth and topological categories are equivalent.
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A d -dimensional Riemannian category is another important example. Objects
are smooth oriented .d � 1/-dimensional Riemannian manifolds with collars. Mor-
phisms between two such manifolds N1 and N2 are isometry classes (with respect to
isometries trivial at the boundary) of oriented d -dimensional Riemannian manifolds
M such that @M D N1tN2. The orientation on all three manifolds should naturally
agree, and the metric on M agrees with the metric on N1 and N2 on a collar of the
boundary. The composition is the gluing of such Riemannian cobordisms. For the
details see [100]. This category is important for Euclidean quantum field theory and
for statistical quantum field theories.

A pseudo-Riemannian category is most interesting for physics. The difference
between this category and the Riemannian category is that morphisms are pseudo-
Riemannian with the signature .d; 1/. When d D 4 it represents the space-time
structure of our universe.

2.2. The framework of a local quantum field theory. A local quantum field theory
on a d -dimensional space-time category can be defined as a functor from the cate-
gory of d -cobordisms to the category of vector spaces (or, more generally, to some
‘standard’, ‘known’ category). For more details see [10], [97]. Here we will make a
brief outline of this structure for oriented manifolds.

A d -dimensional local quantum field theory assigns a vector space to each .d�1/-
dimensional object of the space-time category in question and a vector in the vector
space corresponding to @M to the manifold M :

N 7! H.N/; M 7! Z.M/ 2 H.@M/:

The vector space assigned to the boundary may depend on the extra structure at the
boundary, such as metric, symplectic structure, etc.

These data should satisfy natural axioms, such as H.;/ D C,

H.N1 tN2/ D H.N1/˝H.N2/;
Z.M1 tM2/ D Z.M1/˝Z.M2/ 2 H.@M1/˝H.@M2/:

An isomorphism f W N1 ! N2 lifts to a linear isomorphism between correspond-
ing vector spaces. The theory is invariant with respect to a class of isomorphisms
of d -dimensional space-times if their restriction to the boundary produces linear
isomorphisms of spaces H.N/ which commute with the map Z W M 7! H.@M/.
Topological field theories are invariant with respect to homeomorphisms, conformal
field theories are invariant with respect to conformal maps, etc.

An important part of the structure of QFT is the pairing between vector spaces
corresponding to .d�1/-objects with opposite orientations: h � ; � i W H. xN/˝H.N/!
C. One of the most important axioms of a local quantum field theory is the gluing
axiom. Assume that N1; N2 � M and f W N1 ! N2 is an orientation preserving
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isomorphism. Let Mf be the result of gluing N2 to f .N1/. The gluing axiom
establishes the relation between Z.M/, and Z.Mf /:

Z.Mf / D hZ.M/if :

Here h � ; � if W H.N 0/˝H.N1/˝H.N2/! H.N 0/ is the composition of id˝ id˝f
and of id˝ h� ; � i, and N 0 is the complement of N1 tN2 in @M .

Originally this framework was formulated byAtiyah and Segal for topological and
conformal field theories. It works well in TQFT, there also substantial evidence that it
works in CFT as well, though it needs further research. It is natural to ask whether this
approach extends to more general and more realistic quantum field theories, including
the standard model.

This framework is very natural in statistical mechanics on cell complexes (lat-
tice models in statistical mechanics) with open boundary conditions. Observables in
this setting are operators acting on vector spaces assigned to the boundary. Correla-
tion functions (expectation values in the Euclidean formulation) are compositions of
partition functions and observables followed by the gluing of boundary components
where the observables are located.

The main physical concept behind this framework is the locality of the interaction.
Indeed, we can cut our space-time manifold in small pieces and the resulting partition
functionZ in such framework is expected to be the composition of partition functions
of these small pieces. In other words, such theory is determined by its structure on
‘small’ space-time manifolds, or at ‘short distances’. This is the concept of locality.

The potential problem in extending this framework to more realistic quantum field
theories is whether it agrees with scaling limits , ie. with the renormalization of local
quantum field theory. We will discuss it briefly in Section 4.1.4.

3. Classical field theories

3.1. Local Lagrangian classical field theory. The basic ingredients of a d -dimen-
sional classical field theory are:

� The space of fields is assigned to each space-time. Fields can be sections of a
fiber-bundle on a space-time, connections on a fiber bundle over a space-time,
etc.

� The dynamics of the theory is determined by the action functional. In local
classical field theory it is determined by a local Lagrangian which assigns a
volume form on M to a field configuration that depends locally on the field.
This concept is illustrated below in a few examples. Classical “equations of
motion” are extrema of the action functional.
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� A boundary condition is a constraint on boundary values of fields. In “good
cases” there is a discrete set (or a finite dimensional variety) of solutions to
equations of motion satisfying the boundary conditions. Boundary conditions
should come in a family if one wants to produce solutions to boundary problems
on the result of the gluing of space-times from solutions to boundary problems on
the components. In the Hamiltonian formulation these families are Lagrangian
fibrations.

A d -dimensional classical field theory can be regarded as the functor from the
space-time category to the category of sets. It assigns to a .d �1/-dimensional space
the set of possible boundary values of fields, and to a space-time the set of possible
solutions to the Euler–Lagrange equations with these boundary values.

Here are some examples of local classical field theories.

3.1.1. Scalar field. The space-time for this classical field theory is a Riemannian
manifold. The fields are real valued functions on the space-time. The action function
is

SM Œ�� D
Z
M

�
1

2
.d�; d�/ � V.�/

�
dx;

where . � ; �/ is the scalar product on cotangent spaces induced by the metric onM , and
dx is the Riemannian volume form. Dirichlet boundary conditions �j@M D � are the
natural choice of boundary conditions in this theory. The function V.�/ describes the
self-interaction of the field �. Typically it is a polynomial; however in d D 2 there
are important examples of integrable field theories with the self-interaction given by
cos�; cosh �; exp� (see for example [98]).

3.1.2. Pure Euclidean d-dimensional Yang–Mills. The space-time in this case is
a Riemannian d -dimensional manifold with a principalG-bundle over it, whereG is
a compact simple (or Abelian) Lie group (for example trivial G-bundles). Fields in
the Yang–Mills theory are connections in a principal G-bundle � W P ! M (see for
example [45]) for basic definitions).

The action functional is given by the integral

SM ŒA� D
Z
M

1

2
trhF.A/; F.A/idx;

where h � ; � i is the scalar product of 2-forms on M induced by the metric, dx is the
volume form, and tr.ab/ is the Killing form on the Lie algebra g D Lie.G/.

The Euler–Lagrange equations for the Yang–Mills action are d�
AF.A/ D 0.

Fix a connection Ab on P j@M . The Dirichlet boundary conditions for the Yang–
Mills theory require that Ab is the pull-back of A to the boundary induced by the
embedding i W @M ! M . The Yang–Mills action is invariant with respect to bundle
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automorphisms (gauge transformations). Because of this, the space of solutions to
the Euler–Lagrange equations with given Dirichlet boundary conditions is infinite
dimensional. On the other hand, a generic gauge class of Dirichlet boundary condi-
tions defines a finite dimensional moduli space of gauge classes of solutions to the
Yang–Mills equations.

3.1.3. 3-dimensional Chern–Simons theory. In this case the space-time category
is the category of 3-dimensional topological cobordisms (with the trivial G-bundle
over spaces and space-times). Fix a smooth, compact, oriented 3-dimensional mani-
fold M . The space of fields of the Chern–Simons theory is the space of connections
on a trivial principal G-bundle P over M . We will identify such connections with
1-forms.

The Chern–Simons action is

CSM .A/ D
Z
M

tr
�
1

2
A ^ dA � 1

3
A ^ ŒA ^ A�

�
:

This action is of the first order in derivatives of the fields. In this sense it is very
different from the Yang–Mills theory where the action is of the second order. Also,
it is a topological action, i.e., its definition does not require any additional structure
on M , such as a metric in the Yang–Mills case.

The variation of the Chern–Simons action is given by the bulk and the boundary
terms:

ıCSM .A/ D
Z
M

tr F.A/ ^ ıAC
Z
@M

trA� ^ ıA� ;
where A� , ıA� are pull-backs to the boundary of A and ıA.

The Euler–Lagrange equations for this Lagrangian are

F.A/ D 0:
The solutions to the Euler–Lagrange equations are flat connections on P .

The boundary term of the variation of the action can be written as the value of the
1-form ‚ on the space C@M of connections on P j@M ! @M

ıCSM .A/ D .‚; ıA� /:
The differential of this form is the non-degenerate 2-form on this space defining the
symplectic structure on C@M :

!.ıA; ıB/ D
Z
@M

tr ıA ^ ıB: (1)

The solutions to the Euler–Lagrange equations (flat connections on P ) define the
isotropic subspace F@M � .C@M ; !/ of flat connections on @M which continue to
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flat connections on M . This pair, the symplectic space .C@M ; !/ and the isotropic
subspace F@M , is the non-reduced Hamiltonian formulation of the Chern–Simons
theory.

The Chern–Simons action is gauge invariant (for details see for example [42]). The
action of the gauge group is Hamiltonian on .C@M ; !/. The result of the Hamiltonian
reduction of this symplectic space with respect to the action of the gauge group is
the finite dimensional moduli space MG

@M
of gauge classes of flat connections in the

trivial G-bundle over † together with the reduced symplectic structure. The space
LG.M/ of gauge classes of flat connections over @M that continue to flat connections
on M is a Lagrangian subvariety in MG

@M
. The pair LG.M/ �MG

@M
is the reduced

Hamiltonian formulation of the Chern–Simons theory. A boundary condition in the
reduced Chern–Simons theory is a choice of a Lagrangian submanifold in MG

@M
.

3.2. Hamiltonian classical field theory. A d -dimensional Hamiltonian field theory
in a category of space-times is an assignment of the following data to manifolds which
are objects and morphisms of this category [41], [90]:

� A symplectic manifold S.Md�1/ to a .d � 1/-dimensional manifold Md�1.

� A Lagrangian submanifoldL.Md / � S.@Md / to each d -dimensional manifold
Md .

These data should satisfy the following axioms:

� S.;/ D f0g S.M1 tM2/ D S.M1/ � S.M2/.

� L.M1 tM2/ D L.M1/ � L.M2/ with L.Mi / � S.@Mi /.

� The orientation-reversing morphism � W M ! SM lifts to the symplectomor-
phism s.�/ W .S. SM/;!/ D .S.M/;�!/.

� An orientation preserving morphism f W M1 ! M2 of .d � 1/-dimensional
manifolds (a mapping preserving structures onM ) lifts to a symplectomorphism
s.f / W S.M1/! S.M2/.

� Assume that @M D .@M/1 t .@M/2 t .@M/0 and that there is an orientation
reversing morphism f W .@M/1 ! .@M/2. Denote by Mf the result of gluing
M along .@M/1 ' .@M/2 via f :

Mf DM=h.@M/1 ' .@M/2i:
Then

L.Mf / D fx 2 S..@M/0/ j there exists y 2 S.@M/1

with .y; s.f /.y/; x/ 2 L.M/g: (2)

Notice that @Mf D .@M/0 by definition.
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The last axiom is known as the gluing axiom.
In classical mechanics the gluing axiom is the composition of the evolution at

consecutive intervals of time.
A boundary condition in the Hamiltonian formulation is a Lagrangian subspace

in the symplectic manifold assigned to the boundary of the space-time manifold. The
space of boundary conditions should form a Lagrangian fibration. Different fibrations
(real polarizations) correspond to different families of boundary conditions. Classical
solutions (the Hamiltonian version of solutions to the Euler–Lagrange equations) of
such a Hamiltonian field theory with boundary values in a Lagrangian subspace L of
S.@M/ are intersection points of L and L.M/.

Remark 1. When S.M/ is finite dimensional, the intersection L.M/ with the La-
grangian submanifold of boundary conditions, generically, is a discrete set of points.
When S.M/ is infinite dimensional, it is, generically, a finite dimensional manifold.
An over-determined boundary condition is a co-isotropic submanifold, and an under-
determined boundary condition is an isotropic subspace. In systems with gauge
symmetries the construction described above is a reduced Hamiltonian formalism.

Boundary conditions should agree with gluing. Let L1 � L2 � L0 � S.@M/ D
S..@M/1/� S..@M/2/� S..@M/0/ be the Lagrangian submanifold defining bound-
ary conditions for M and let f W .@M/1 ! .@M/2 be the gluing map as above.
Boundary conditions L1 � S..@M/1/ and L2 � S..@M/2/ agree with the glu-
ing if L2 D s.f /L1. But generically, the intersection L.Mf / with the set Lf D
f.y; s.f /.y/; z/g � L1 � L2 � L0 will be empty, i.e., there will be no classical
solutions on Mf with boundary conditions L0 � Mf that pass through Lf . The
set of such solutions will be non-empty only for special choices of L1. This is why
if we want to glue solutions, we should have a Lagrangian fibration on S.@M/. In
this case we can vary boundary conditions on S..@M/1/ and select those Lagrangian
submanifolds L1 for which the intersection Lf \ L.Mf / is not empty. The collec-
tion of such intersection points will give classical solutions on Mf with boundary
conditions L0 � @Mf .

Remark 2. If the space-time category is the subcategory of a smooth category where
morphisms are cylinders, the Hamiltonian classical field theory is equivalent to the
classical Hamiltonian (possibly infinite dimensional) dynamical system. For more
details see [90].

For the scalar Bose field theory S.@M/ is the cotangent bundle to the space of
Dirichlet boundary conditions, i.e., to the space C.@M/. Taking into account the
Riemannian metric on @M it can be regarded as C.@M/˚ C.@M/. The Lagrangian
subspace L.M/ in this case consists of pairs .@n�c ; �/, where @n�c is the normal
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derivative at @M of a solution to the Euler–Lagrange equation with the boundary
condition �cj@M D �.

In the Yang–Mills theory, S.@M/ is the result of the Hamiltonian reduction of
the cotangent bundle to the space of connections on the boundary. The Lagrangian
submanifoldL.M/ is the subspace of gauge classes of pairs .i�..dA/n/; ˛/, whereA
is a solution to the Euler–Lagrange equation with the boundary condition i�.A/j@M D
˛, and .dA/n is the normal component of dA (which is locally a 2-form) and is a
1-form at the boundary.

The Hamiltonian structure of the reduced Chern–Simons theory is described at
the end of Section 3.1.3.

4. Path integral quantization

4.1. Semiclassical quantization and Feynmann diagrams

4.1.1. Asymptotical expansion of non-degenerate oscillatory integrals and Feyn-
man diagrams. LetM be a smooth compact oriented manifold with a volume form
and f be a smooth function with finitely many simple critical points. Feynman
diagrams appear naturally in the description of the asymptotical expansion of the
oscillatory integralZ

M

exp
�
i
f .x/

h

�
dx '

X
a

.2�h/
N
2

1pj det.Ba/j

exp
�
if .a/

h
C i�

4
sign.Ba/

�X
�

.ih/��.�/C1Fa.�/
jAut.�/j ;

(3)

where the sum is taken over critical points a of f , and over the graphs with vertexes of
valency� 3,F.�/ is the state sum corresponding to� described below, jAut.�/j is the
number of elements in the automorphism group of � , �.�/ is the Euler characteristic
of the graph �.�/ D jV j � jEj, where jEj is the number of edges of � and jV j
is the number of vertices of � . The state sum F.�/ is defined as follows. Assign
elements 1; : : : ; N to end points of edges of � . This defines an assignment of indices
to endpoints of stars of vertices. The state sum is defined as

Fa.�/ D
X
fig

Y
e2E.�/

.B�1
a /ie ;je

Y
v2V.�/

.weight of star of v/i :

Here B ija D @i@jf .a/, the weight of the star of a vertex colored as in Figure 1 is
@i1 : : : @inf .a/, and the indices ie , je correspond to two different endpoints of e (since
B is symmetric, it does not matter that this pair is defined only up to a permutation).
Local coordinates in (3) are chosen such that dx D dx1 : : : dxN .
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....

i2
i1

i3

i4

in

Figure 1. Weights of vertices for Feynman diagrams.

Indeed, as h ! 0 the leading contributions to the asymptotical expansion is
determined by the integrals over small neighborhoods of critical points of f , see
for example [22]. In the vicinity of a non-degenerate critical point the integral can
be replaced by the formal power series of Gaussian integrals of monomials in local
coordinates (see [38], [89] for more details).

Although the formulae for weights of Feynman diagrams involve the choice of
local coordinates, the sum over Feynman diagrams with given Euler characteristic is
defined globally.

4.1.2. Feynman diagrams in G -invariant oscillatory integrals. Because the main
theme of this note is topological field theories and because one of the most interesting
topological field theories, the Chern–Simons theory, is gauge invariant, we should
first review the asymptotical expansions of finite dimensionalG-invariant oscillating
integrals. The definition of Feynman diagram expansions of such integrals goes back
to the work of Faddeev and Popov [40] on quantization of gauge theories.

Let M be a smooth N -dimensional manifold with a free action of the compact
(n-dimensional) Lie group G, with a G-invariant volume form dx. Let f be a G-
invariant function onM with finitely many simple critical orbits (i.e.,G-orbits where
df D 0). Consider the family of integrals

Ih D 1

jGj
Z
M

e
i
h
f .x/dx (4)

The asymptotical expansion of this integral as h ! 0 can be computed by the
stationary phase method. It depends only on formal neighborhoods of isolated critical
G-orbits.

To describe this asymptotical expansion choose a submanifold S 2 M such that
it is a cross-section through G-orbits in a small neighborhood of each critical orbit
of f (local cross-section). Assume S is defined as the level 0 surface of n D dim.g/
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functions: S D f'a.x/ D 0; a D 1; : : : ; ng. Choose a basis feag, a D 1; : : : ; n

in g. The integral Ih can be written as the integral over M=G with induced volume
measure. If S is a global cross-section, the integral over orbits can be written as the
integral over S with respect to the induced measure:

Z
M

e
i
h
f .x/ det.ea'

b.x//ı.'.x// dx: (5)

Here ea'b.x/ is the result of the action of ea 2 g on the function 'b .
Recall that the Grassmann algebra generated by elements e1; : : : ; en is the exte-

rior algebra �̂ V of the vector space V DLn
aD1 Cea. Choose an orientation of V :

c D c1 ^ : : : cn 2 ^topV . The integral of F 2 �̂ V over this Grassmann algebra is,
by definition, the top degree component of F , i.e., if F D F0cClower degree terms,
then F0 D

R
Fdc. The determinant of the n�nmatrixB can be written as Gaussian

Grassmann integral:
R

exp.
Pn
a;bD1 NcaBbacb/dcd Nc D det.B/. Representing the de-

terminant in (5) as a Gaussian Grassmann integral, and taking the Fourier transform
of the ı-distribution we arrive at the following formula:

Ih �
Z
M�godd�g�

odd�g�

e
i
h
fFP.x/dxdcd Ncd	;

where
fFP D f .x/ � ih

X
a;b;i

Ncaea'b.x/cb C
X
a

'a.x/	a:

The integral is taken over the super-manifold M � godd � g�
odd � g�. Since f has

isolated criticalG-orbits, the function f .x/CPa '
a.x/	a has isolated critical points

on M � g� (the method of Lagrange multiplies). Expanding the integral near these
isolated critical points we obtain the asymptotical expansion of Ih in terms of Feynman
diagrams:

Ih ' Jh
D hd�n

2 .2�/
dCn
2

X
a

1pj det.B.a//j det.�iL.a//e ihf .a/C i�
4 sign.B.a//

�
1C

X
�¤;

.ih/��.�/.�1/c.D.�//Fa.D.�//
jAut.�/j

�
:

(6)

The sum is taken over graphs � with solid (bosonic) and dashed (fermionic) edges,
�.�/ D jverticesj � jedgesj is its Euler characteristic, D.�/ is a regular projection
of � on a plane (i.e., with only double singular points, where edges intersect). The
weights F.D.�// are computed according to the following rules: a) assign “states”
˛ D .1; : : : ; d I 1; : : : ; n/ and a D 1; : : : ; n to endpoints of edges and to stars of
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vertices as is shown in Figure 2 and Figure 3, b) assign weights to edges (propagators)
and to stars of vertices as is shown in Figure 2 and Figure 3, and take the sum of
products of weights of vertices and edges of the graph over all states. It is easy to
see that the product .�1/c.D.�//F.D.�// does not depend on the projection. The
number jAut.�/j is the order of the automorphism group of� , c.D.�// is the number
of intersections of fermionic (dashed) edges.

α β

⎛
⎜⎝

∂ 2 f (a)
∂xi∂x j

∂ϕb(a)
∂xi

∂ϕc(a)
∂x j 0

⎞
⎟⎠

−1

i, j = 1...d
b,c = 1...n

b c

(L−1(a))b
c

Figure 2. Weights of edges for Feynman diagrams in (6).

a

... ∂ n−1ϕa(a)
∂xi1 ...∂xin− j

i1 in−1

i1
... ∂ n f (a)

∂xi1 ...∂xin

in

b1

.. ∂ nL
b1
b2

(a)

∂xi1 ...∂xin

i1 inb2

Figure 3. Weights of vertices for Feynman diagrams in (6).

When S is a local cross section in the vicinity of critical orbits of f , but fails to
intersect each orbit once globally, the asymptotical expansion (6) of this integral is
still defined and is identical to the asymptotical expansion of (4), but actual integrals
may differ.

Proposition 1. The formal power series Jh does not depend on the choice of local
coordinates as long as the coordinate change is volume preserving. It does not depend
on the choice of the local cross-section S .

Remark 3. The formula (6) also works when the function f is invariant with respect
to the action of the integrable distribution L � TM . IfM is compact, the difference
with (6) is that the power series with Feynman diagrams describes not the asymptotical
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expansion of Ih but of the integral1

Z
M

e
i
h
f .x/ dx

Vol.Lx/
;

where Vol.Lx/ is the volume of the leaf of the distribution L through x 2M , so the
integral is taken essentially over the space of leaves of L. In this case the functions
'a define the local cross-section through leafs of the distributionL (a cross-section in
the vicinity of critical leafs for f ). The collection of volumes of leaves is the analog
of the volumes of orbits with respect to the right action of G. The details will appear
elsewhere.

There is a version of the Faddeev–Popov integral that works when the action of
G is not free (when there are stabilizers), see for example [96].

Remark4 (on BRST). Algebraically, the ghost fermions in the Feynman diagrams (6)
can be identified with elements of the Chevalley co-chain complex for the Lie algebra
g with coefficients in functions on M .

Remark 5. The case when f is invariant with respect to a non-integrable distribution
requires the Batalin–Vilkovisky quantization, see for example reference [28]. An
important example of a field theory with such symmetry is the Poisson sigma model
[76], [27].

In this case the perturbation theory describes the asymptotical expansion of an
oscillatory integral over a Lagrangian submanifold of a smooth supermanifold. The
paper [1] provides a powerful source of BV theories.

Remark 6. In all cases mentioned above (when f has only simple isolated critical
points; when it is G-invariant with simple isolated critical orbits; when it is invariant
with respect to an integrable distribution, etc.) the structure of critical points is
very special. The function at a critical point in any given tangent direction is either
constant, or has a simple critical point.

4.1.3. Path integrals. When path integrals are defined as mathematical objects, they
provide the following construction of quantum field theory of a given classical field
theory on a space-time manifold.

� The vector space H.N/ assigned to .d � 1/-dimensional space is the infinite
dimensional vector space of functionals on the space of boundary conditions in
the corresponding classical field theory. It can also be the space of sections of
a line bundle, as in the Chern–Simons theory, etc.

1 P. Mnev and N. Reshetikhin, to appear.
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� The vector Z.M/ in such a theory, the partition function, is the following inte-
gral:

Z.M jb/ D
Z
�j@MDb

exp
�
i
SM Œ��

h

�
D�: (7)

Here the integration is over all possible fields insideM with the given boundary
values b, h is a real variable (Planck constant in relative units) for ‘unitary’
quantum field theories, and it is imaginary for Euclidean quantum field theories.
In the latter case it is the partition function for the Boltzmann distribution in the
space of field with the energy being given by the classical action. In this sense
Euclidean quantum field theory is statistical mechanics.

This proposal makes sense only when the integral is defined, convergent, and when
the spaces H.N/ have reasonable topology. This is the case when the space-time is
the category of finite cell complexes.2

4.1.4. Digression: renormalization. To extend the path integral construction to
theories with “continuous” space-times one should approximate the space-time by
a convergent sequence of cell complexes, define a discretized classical action and
the corresponding partition function Z, and then pass to the limit when the mesh
of the approximation goes to zero. This is, more or less, the idea of constructive
field theory [52] (see also [21] and references therein). For a given sequence of
convergent approximations of the space-time, the limit of partition functions may
exist only when parameters in the discretized classical action are changing as the
mesh of the approximation goes to zero. Such limits are known as the scaling limits.
The existence of scaling limits is closely related to the theory of critical phenomena
in statistical mechanics [74].

This approach defines a “continuum” quantum field theory when such limit
(i) exists, (ii) does not depend on the approximating sequence of cell complexes
(within certain uniformity class), and (iii) the limiting partition functions satisfies
axioms of local quantum field theory, and in particular the gluing axiom.

The discretization approach is very complicated. A “short cut” through analytical
difficulties of the scaling limit is the semiclassical perturbation theory where the goal
is to construct the asymptotical expansion of the partition function. The idea is to
try the “wrong” order of the limits: first, take the asymptotical expansion of the
discretized integral as h! 0 using the asymptotical expansions in terms of Feynman
diagrams outlined in the previous section, and then to pass to the limit when the mesh
of the approximation in the coefficients of the asymptotical expansion goes to zero.
Depending on the behavior of the coefficients in this limit several possibilities may
occur:

2This section is a very sketchy outline of a very important chapter in modern theoretical physics. For more
details see for example [60], [74], [21].
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1. The coefficients converge as the mesh of the approximation goes to zero
and the limit does not depend on the approximation (effectively this means that
integrals defining weights of Feynman graphs in the continuum theory converge).
If the asymptotical expansion of the partition function satisfies the gluing rule and
factorization axioms, we have a semiclassical local quantum field theory. This is
what is expected from Chern–Simons theory, and is true for semiclassical quantum
mechanics [63].

2. The coefficients diverge when the mesh of the approximation goes to zero,
but there exist a formal power series h D Qh CP

n�1 cn Qhn and similar series for
other parameters of the theory such that cn and the coefficients in similar expansions
for other parameters are mesh dependent in such a way that the coefficients of the
power series in Qh defining Z have finite limit. When this is possible, the field the-
ory is called renormalizable (in perturbation theory). There is still the question of
how the resulting power series depends on the choice of the approximation (known
in physics literature as the regularization scheme). This is an extremely interesting
mathematical question to which physics dictates a simple answer: “physically mean-
ingful quantities should not depend (up to finite renormalization) on the regularization
scheme”. In a renormalizable quantum field theory change of regularization should
result in a transformation on the space of parameters of the theory. Among such
transformations there is the renormalization group. It is a one-dimensional subgroup
corresponding to the change of scale. These transformations act on h which also
means they should be closely related to the ambiguity in quantization (well known in
deformation quantization).

See [79] for a detailed discussion of properties of Feynman diagrams in renor-
malizable field theories. One of the remarkable conjectures is that in Rn all of them
are periods in a sense [23].

Another important issue in this case is the consistency of the assumption that
h ! 0 with the mesh dependence of it. If we expect that the formal power series
expressing h in terms of renormalized parameter Qh represents the asymptotical ex-
pansion of a function, it should represent a function which vanish as the mesh goes
to zero. The same should hold for other (dimensionless) parameters of the theory:
corresponding power series should be represented by functions which are regular in
the zero mesh limit. When this is true, the theory is called asymptotically free (as-
suming that h is a parameter characterizing the interaction). The Yang–Mills theory
for a non-Abelian group is, conjecturally, an example of this situation [54]. Whether
the partition function depends on the choice of approximating sequence is known
as the question of dependence on the regularization scheme. The question of the
compatibility of the gluing axiom with the renormalization was addressed in [101]
but still remains an open problem.

3. The other possibility is when the theory is non-renormalizable in perturbation
theory. Einstein’s theory of gravity is the most known example of such theory.
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However, this does not mean that a quantum theory of gravity does not exists. It
only means that the perturbative “short cut” does not work there.

In the semiclassical quantization only the asymptotical behavior of the discretiza-
tion of the space time when the mesh vanishes is important. Let ı be the characteristic
scale of the approximation. It is a typical length of an edge assuming that valencies
of cells behave regularly as ı ! 0. For the scalar Bose field on the space-time which
is a metrized cell complex (metrized cell approximation of a Riemannian manifold),
the discretized action can be chosen as

Sd .�/ D
X
v

�
1

2
.@�; @�/C V.�/

�
V.v/;

where the first term in the brackets is the discretized Dirichlet action (see [35] for
convergence of discretized Laplacians to the smooth one), and V.v/ is the volume of
the cell v of the dual cell complex. The space of fields in a such theory are maps �
from vertices of the cell complex to R.

If yM is such an approximation to M and @ yM is its boundary, the space assigned
to @ yM is the space of maps of vertices of @ yM to R. The partition function is given
by the integral (7), which now is finite dimensional and under simple assumptions
conditionally convergent.

If � is a smooth function onM , restricted to vertices on yM we have the following
asymptotical expansion:

Sd .�/ D
Z
M

�
1

2
.d�; d�/C V.�/

�
dx C

X
n�1

ın
Z
M

mnC2.�; �/ dx C � � � : (8)

Here mn is a bidifferential operator of order n, and � � � are boundary terms of order
� 1 in ı. They depend on the metric on M and on the way it was approximated.
The weight of any given Feynman diagram will be finite if we take enough terms in
this series. If the theory is renormalizable, the resulting formal power series repre-
senting renormalized Z (and corresponding correlation functions) should depend on
the choice of mn only through transformations in the space of renormalized param-
eters of the action. The collection of bidifferential operators mn is a version of the
regularization by higher derivatives [60].

4.2. Semiclassical quantization of gauge theories

4.2.1. The Yang–Mills theory. In the semiclassical quantization of the Yang–Mills
theory the partition function is assigned to a manifold M and to a gauge class of
a connection in the principal G-bundle P restricted to the boundary. It is a formal
power series, which would be the asymptotical expansion of the oscillatory path
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integral over all connections on P if such integral would exist, following the analogy
with the finite dimensional case:

ZYM.M;A
b/ D

Z
i�.A/DAb

e
iSYM.A/

h DA:

In a neighborhood of a classical solution Awith the Dirichlet boundary condition
i�.A/ D Ab connections can be written as AC ˛, where ˛ is a g-valued 1-form on
M . The Lorenz gauge condition for such connections is

d�
A˛ D 0:

Following the analogy with the finite dimensional case define the Faddeev–Popov
action for pure Yang–Mills theory as the following action with fields ˛.x/, Nc.x/,
c.x/:

SA.˛/ D SYM.A/C
Z
M

1

2
trhFA.˛/; FA.˛/idx

� ih
2

Z
M

�dA Nc ^ dAc � ih
2

Z
M

�dA Nc ^ Œ˛; c�:
(9)

The quadratic part in ˛ and the quadratic part in Nc, c of the action (9) are given by the
differential operator d�

AdA, which is invertible on the space Ker.d�
A / with Dirichlet

boundary conditions. Other terms define weights of vertices in Feynman diagrams.
When d 	 4, theYang–Mills theory is renormalizable: there exists a renormaliza-

tion procedure for Feynman diagrams which defines the power series in a “renormal-
ized” parameter hwith finite (“renormalized”) coefficients [59]. The renormalization
in theYang–Mills theory is particularly remarkable because it gives an asymptotically
free theory. In a nut-shell, as it was mentioned in the previous section, this means
that the renormalization is consistent with the assumption h! 0 and therefore with
the whole idea of formal power series expansion in h [54].

Since theYang–Mills theory is gauge invariant, natural observables are also gauge
invariant. Wilson loops are examples of such observables. Let V be a finite dimen-
sional representation of the Lie group G. The connection A defines the parallel
transport in the vector bundle VP D P �G V . The Wilson loop observable is the
trace of the holonomy along a loop:

W V
A .C / D trVx .hA.Cx//; hA.Cx/ D P exp

�Z
Cx

A

�
: (10)

HereCx is a path which starts and ends at x 2M , hA.Cx/ is the holonomy ofA along
Cx (parallel transport), and the trace is taken over the fiber Vx of VP over x 2M .

To define the “expectation value” of the Wilson loop one should make sense ofZ
i�.A/DAb

e
iSYM.A/

h W V
C .A/DA:
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In the semiclassical (perturbative) quantization this integral is defined as a formal
power series modeled after the asymptotical expansion of the finite dimensional in-
tegral (6). One of the important conjectures about the Yang–Mills theory is the con-
finement conjecture, also known as dynamical mass generation, which states that the
expectation value of a Wilson loop (appropriately defined) should decay exponentially
when the length of C increases. It is also known as dynamical mass generation. It
assumes that the expectation value of Wilson loops can be defined non-perturbatively
(which is a formidable mathematical problem by itself). For more details on these
conjectures see [61].

Whether the renormalization is compatible with the gluing principle is more or less
unknown. In order to answer this question one should investigate, first, how the metric
on the space time affects the renormalization (the renormalization was developed
and studied mostly in the flat space time), second, how boundary conditions affect
the renormalizations, and, finally, if the renormalized theory with generic boundary
conditions exists, one should check if the resulting theory satisfies the gluing/cutting
principle. All these questions are open. Some results in this direction for flat space-
time can be found in [101].

4.2.2. The Chern–Simons theory. The classical Chern–Simons theory with com-
pact simple Lie group G was described in Section 3.1.3. In contrast with the Yang–
Mills theory, the Chern–Simons action is a first order action. One of the implications
of this is the difference in the Hamiltonian formulation and in the setting of boundary
conditions for the path integral.

We want to make sense of the expressions

Z.M;L/ D
Z
eikCS.A/DA; ZK.M;L/ D

Z
eikCS.A/W V

A .CK/DA; (11)

where K is a knot in M , CK is a loop in M representing K, W V
A .CK/ is a Wilson

loop observable, and k is an integer. The integral is supposed to be taken over
the space of all connections on a principal G-bundle P on M . Boundary values
of these connections should be pull-backs of flat connections with the gauge class
in a Langrangian subspace L of the moduli space of flat G-connections on P j@M .
Because the action does not use the metric on M , the partition functions (11) for
closed manifolds should depend only on the homeomorphism class of K � M ,
i.e., the integral should produce topological invariants of knots in 3-manifolds. This
extends to links and framed graphs in 3-manifolds. The program of constructing
topological invariants by quantizing the classical Chern–Simons theory was proposed
and outlined by E. Witten in [112].

To define the semiclassical partition function of the Chern–Simons theory ac-
cording to the rules of Section 4.1.2 we first should choose a gauge condition. Let
us choose the Lorenz gauge, as in the case of Yang–Mills theory. For this we should
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introduce the metric (the metric in the Chern–Simons theory appear as a gauge con-
dition). The Faddeev–Popov action for the Chern–Simons theory becomes

CSA.˛/ D CS.A/C
Z
M

1

2
tr.˛ ^ dA˛ � 2

3
˛ ^ ˛ ^ ˛/

� ih
2

Z
M

�dA Nc ^ dAc � ih
2

Z
M

�dA Nc ^ Œ˛; c�;
(12)

where h stands for 1
k

.
Quite remarkably [14], the field ˛ and ghost fields in the Chern–Simons theory

can be combined into one odd “super-field”:

‰ D c C ˛ C ih � dA Nc:

Here c, ˛, and �dA Nc are 0-, 1-, and 2-forms respectively. The action (12) can be
written entirely in terms of ‰ 3:

CSA.˛/ D CS.A/C 1

2

Z
M

tr.‰ ^ dA‰ � 2
3
‰ ^‰ ^‰/:

The quadratic part of this action is determined by the operatorDA D �dAC dA�
restricted to the subspace of odd forms on M (denote it by D�

A ). The operator D�
A

is invertible when there are no harmonic forms, i.e., when the Laplace–Beltrami
operator 
A D D2

A is invertible. An example is R3 with the trivial flat connection.
In this case the inverse to D�

A , restricted to the space of 1-forms, acts as

P B ˛.x/ D 1

8�

3X
ijkD1

"ijk
Z

R3

�
.x � y/i
jx � yj3 j̨ .x/d

3y

�
dxk :

When non-zero harmonic forms for 
A exist, the operator D�
A is not invertible. In

this case P is a chain homotopy (parametrix) which plays the role of .D�
A /

�1 [14],
[24], [28].

The semiclassical proposal for the partition function follows the patterns of the
finite dimensional case from the Section 4.1.2; however, even at the level of determi-
nants it needs a “gravitational correction” [112], [43]. This correction is an overall
factor which eliminates the metric dependence of determinants, but introduces a de-
pendence of the partition function on the framing f onM (i.e., a section of the frame
bundle overM ). The final proposal for the partition function of Chern–Simons theory
for a closed compact manifoldM with a knot in it, in the case when the moduli space

3This form of the Faddeev–Popov action for the Chern–Simons theory has a simple explanation in the
framework of the Batalin–Vilkovisky formalism, see for example [28].
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of flat G-connections over M consists of isolated points is [112], [43], [14], [24]:

exp

�
c.h/

�
i�

4
�.g;M/C i 1

24�
IM .g; f /

�
� i�d.1C b

1.M//

4

�

X
ŒA�

.2�.k C c2.G///
dimH0

A
�dimH1

A
2

1

Vol.GA/
ei.

1
h

Cc2.G//CSM .A/� 2�iIA.M/

4 �i� .dimH0
A

CdimH1
A
/

2

�.M;A/1=2
�
W V
C .A/C

X
n�1

hnF
.n/
A .M;C; f /

�
:

(13)

Here c2.G/ is the value of the Casimir element on the adjoint representation (the dual
Coxeter number), c.h/ D d=.1 C hc2.G/ D k dim.g/=.k C c2.G// is the central
charge of the Wess–Zumino–Witten conformal field theory, d D dim.g/, V.GA/ is
the volume of the centralizer of the flat connection A (as of the representation of
�1.M/), and b1.M/ is the first Betti number of M (for rational homology spheres
it is zero). The eta-invariant �.g;M/ of the Riemannian manifold depends on the
metric, but the combination in the exponent of the eta-invariant and the gravitational
Chern–Simons term depends only on the framing f ,

IM .g; f / D 1

4�

Z
M

f �tr.! ^ d! � 2
3
! ^ ! ^ !/; (14)

where g is the metric onM , ! is the Levi-Civita connection onM , and the integrand
is the pull-back via f � of the Chern–Simons form on TM . Other terms in (13)
include the spectral flow IA.M/ (see [43], [62] for details), the Ray–Singer torsion
�.M;A/, and the contributions F .n/A .M; �; f / from Feynman diagrams,

F
.n/
A .M;C; f / D

X
�; ord .�/Dn

IA.D.�/;M; g/.�1/c.D.�//
jAut.�/j : (15)

Here the sum taken over graphs with 2n 3-valent vertices of two types, and with
two types of edges (solid and dashed), see Figures 4 and 5. The numbers jAut.�/j
and c.D.�// are defined in (6), and IA.D.�/;M; g/ is the appropriate trace of the
integral over Mm of the product of propagators. In other words, IA.D.�/;M; g/ is
the contribution from the Feynman diagram D.�/ with weights from Figure 4. For
example the first order term is
Z
M

Z
M

X
fag;fbg

fa1a2a3fb1b2b3P
a1b1.x; y/P a2b2.x; y/P a3b3.x; y/ dxdy: (16)
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a; x b; x0 PA.x; x
0/ab

a1x1 a2x2 a3x3
fa1a2a3ı.x1 � x2/ı.x2 � x3/

Figure 4. Weights in Feynman diagrams for the Chern–Simons theory involving propagators
and vertices for the ‰-field.

i; x

i; x

j; x0

j; x0

a; x1

�V
ij
.hA/.Cx;x0/

�V
ij
.IA/ı.x � x0/ı.x1 � x/

Figure 5. Weights of Feyman diagrams involving Wilson loops (solid lines). Here i , j enumerate
a basis in the representation space V , hA.Cx;x0/ is the holonomy of A along Cx;x0 � C .

Remarkably, each individual integral IA.D.�/;M; g/ converges, see [75], [14].
From the heuristic formula (11) we expect that the expression (13) should depend only
on the homeomorphism class of M and should not depend on the choice of metric
(gauge condition). But this is not obvious because in the definition of integrals we
used metric on M . As it was proven in [24] for rational homology spheres (see also
[75]), the dependence of the Feynman integrals on the metric has the form

IA.D.�/;M; g/ D JA.D.�/;M; f /C c.�/IM .g; f /;

where f is a framing on M , I.g; f / is the gravitational Chern–Simons action, and
c.�/ is a constant. Similar formulae hold for manifolds with acyclic flat connections
in which case c.�/ depends only on the gauge class of A and in a very special way
[24].

When the moduli space of flat connections over M may have non-trival com-
ponents, not only isolated points, one should expect the following formula for the
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asymptotical expansion of the Chern–Simons path integral [43], [62], [94]:

exp

�
c.h/

�
i�

4
�.g;M/C i 1

24
IM .g; f /

�
� i�d.1C b

1.M//

4

�

X
ŒA�

.2�.k C h_/
dim.H0

A
/�dim.H1

A
/

2
1

Vol.GA/

ei.kCh_/CSM .A/� 2�iIA4 �i� dim.H0
A
/Cdim.H1

A
/

2Z
MA

�1=2
�
W�.A/C

X
n�1

F
.n/
A .M;C; f /

�
:

(17)

Here the sum is taken over connected components of the moduli space of flat
connections in a principal G-bundle over M . The torsion � is an element ofN
i det.H i

A/
˝.�1/i ' .det.H 0

A/˝ det.H 1
A/

�/˝2. The Lie algebra g has an invariant
scalar product and therefore H 0

A has an induced volume form. Pairing this volume
form with the square root of the torsion gives a volume form on the corresponding
component of the moduli space (of flat connections on the trivial bundle over M ).
Assuming the connected component is smooth we can integrate functions with respect
to this volume form. The factor Vol.GA/ is the volume of the stabilizer of the flat
connection. When the connection is trivial but not isolated (in particularH 1 ¤ f0g),
Feynman diagrams were analyzed in [28].

The remarkable fact about the semiclassical quantization is that it really produces
topological invariants of 3-manifolds. To be more precise, at this point we have
invariants of framed 3-manifolds. But due to the existence of the canonical 2-framing
on any closed 3-manifold [11], they are also invariants of 3-manifolds.

Remark 7. The inclusion i W @M ! M induces the projection i� W M.M/ !
S.@M// from the moduli space of flat connections onM �G to the moduli space of
flat connections on @M � G. The image of this map is the Lagrangian submanifold
L.M/ � S.@M/. Sometimes this projection is a finite covering. In these cases the
invariant is still given by the formula (13) but now the partition function depends on
the boundary condition (a point on L.M/), and the square root of the torsion is a
volume form onL.M/. This is the case whenM is the complement of the 1-skeleton
of a tetrahedron in S3, or of a knot in S3.

5. Digression: quantized universal enveloping algebras at roots of unity

In this section we will recall some basic facts about quantized universal enveloping
algebras at roots of unity with the example of the quantized universal enveloping
algebra of gl2.
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5.1. Quantized universal enveloping algebras. The algebra Ut .gl2/ is generated
over CŒt; t�1� by elements K, L, E and F with the following defining relations

KL D LK; KE D t2EK; KF D t�2FK; LE D t2EL; LF D t�2FL;
EF � FE D .t � t�1/.K � L�1/:

The center of Ut .gl2/ is generated freely by Laurent polynomials in KL�1 and
C D EF CKt�1 C L�1t

This is a Hopf algebra with


.K/ D K ˝K; 
.L/ D L˝ L;

.E/ D E ˝K C 1˝E; 
.F / D F ˝ 1C L�1 ˝ F:

This Hopf algebra is not quasitriangular, but because the corresponding formal de-
formation of Uhgl2 is quasitriangular [36], there exists an outer automorphism R of
the division algebra of Ut .gl2/˝ Ut .gl2/ with the following properties:

R.
.a// D � B
.a/; (18)

.
˝ id/ BR D R13 BR23; .id˝
/ BR D R13 BR12: (19)

In the formal deformation when K D exp.hH
2
/, L D exp.hG

2
/, t D exp.h/, and

the algebra is completed over CŒŒh��, the automorphism R becomes the conjugation
with the universal R-matrix. The explicit action of R on the generators of Ut .gl2/
is given in [69].

5.2. Specialization at roots of unity. Let " be a primitive root of 1 of an odd
degree `. Denote by U" the specialization of Ut .gl2/ to t D ". It has the following
properties4:

� Elements E`, F `, K˙`, and L˙` are central in U". Denote by Z0 the central
subalgebra in U" that they generate.

� Z0 is a Hopf subalgebra with


.K`/ D K` ˝K`; 
.L`/ D L` ˝ L`;

.E`/ D E` ˝K` C 1˝E`; 
.F `/ D F ` ˝ 1C L�` ˝ F `:

� The algebra U" is a free Z0-module of dimension `4.
� The centerZ.U"/ is generated byZ0 and by C D EF CK"�L�1"�1,KL�1

modulo the relation

`�1Y
jD0

.C �K"jC1 � L�1"�j�1/ D E`F `:

4Quantum groups at roots of unity with large center were studied in [30] for any simple Lie algebra.
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� Let a, b, c, d be coordinates on the groupG� ' BC�B� such that for b˙ 2 B˙
we have

bC D
�
1 b

0 a

�
; b� D

�
d 0

c 1

�
:

Then the map F ` ! b, E` ! �cd�1, K` ! a, L` ! d is an isomorphism
of Hopf algebras Z0 ! C.BC � B�/.

� U" is semisimple over a Zariski open subvariety in Spec.Z0/ ' BC � B�.

Moreover, the specialization at roots of unity induces a non-trivial Poisson struc-
ture onZ0. To define this structure choose an identification of vector spacesUt .gl2/ '
U" (for example identify the PBW bases in both algebras). For a; b 2 Z.U"/ define

fa; bg D a � b � b � a
t � " jtD": (20)

It is easy to show that this bracket does not depend on the identification, and that it is a
Lie bracket acting by derivations on the commutative algebra structure onZ.U"/ and
therefore it defines a Poisson Lie algebra structure on this commutative algebra. The
subalgebra Z0 is a Poisson subalgebra. It is isomorphic to C.G�/ as a Hopf Poisson
algebra. The subalgebra Z1 generated by C and KL�1 is an algebraic extension of
the Poisson center Z.c/0 of Z0, and Z.U"/ D Z0 ˝Z.c/

0

Z1.

The identification of vector spaces Ut .gl2/ ' U" also defines the action of the
Poisson algebra Z.U"/ by derivations on U" by the same formula. This action
depends on the choice of the identification and changes by an inner derivation when
the identification changes. The subalgebra generated by C and KL�1 acts trivially.

Geometrically, the algebra U" is a sheaf of finite dimensional algebras over
G� D BC � B�. The restriction of this sheaf to a symplectic leaf is a bundle of
algebras. Over a generic symplectic leaf fibers are semisimple finite dimensional
algebras [30]. The action of Z0 by derivations on U" assigns to each element of Z0
a connection along Hamiltonian flow lines generated by this element on G�.

5.3. Representations at roots of unity. Geometrically, a representation of U" cor-
responding to a symplectic leaf C � G� is a vector bundle over this leaf with a
Hamiltonian connection (i.e., a mapping that assigns to a function a connection along
flow lines of its Hamiltonian vector field) that agrees with the similar connection
on U".C /. Over a generic symplectic leaf the algebra U" is semisimple and there-
fore any representation decomposes into a direct sum of irreducibles. The Lie group
G� D BC � B� maps naturally to G D GL2, .bC; b�/ 7! bCb�1� . The image of
a generic symplectic leave in G is a conjugation orbit where the eigenvalues are not
`-th roots of unity.

Let C � G� be a symplectic leaf, and Ax and Ay be fibers of U".C / over two
points x; y 2 C . Because x; y are points on the same symplectic leaf, there exists a
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piecewise Hamiltonian path �x;y connecting them. The corresponding Hamiltonian
connections on U".C / lift this path to an algebra isomorphismAx ! Ay . If x 2 G�
belongs to a generic symplectic leaf, the algebra Ax is semisimple of dimension `4,
and all algebras Ay are isomorphic if y belongs to the same symplectic leaf.

Generic irreducible representations of U" are determined by central characters
of U". Each of them has dimension `. We will denote by Vx a representation with
the Z0-central character x 2 G� and by Va;x the irreducible U"-module with the
central character a which projects to x (the projection is determined by the inclusion
Z0 � Z.U"/).

Finite dimensional representations of U" that areZ0-irreducible form a monoidal
category U"-mod fibered over G� [68]. Objects of this category are sheafs of U"-
modules over G� with the fiberwise U"-mod structure. Morphisms are fiberwise
U"-linear mappings. This category has a subcategory of maximally non-generic
representations with Z0-characters being 1 2 G�. It is naturally equivalent to the
category of finite dimensional modules over the quotient algebra U0

" D U"=hK`�1;
L` � 1;E`; F `i. This category has a semisimple quotient category generated, as an
Abelian category, by simple U0

"-modules.
The decomposition of the tensor product of generic representations of U" into

irreducible components is very different from the gl2 case. For simple algebras this
problem was addressed in [31]. For U", when x, y, and x � y are generic, we have

Va;x � Vb;y ' ˚cVc;x�y :

Here the sum is taken over all irreducible representations with theZ0-central character
x � y 2 G�.

5.4. Braiding. The quotient algebra U0
" is quasitriangular, and therefore the cate-

gory U0
"-mod is a braided monoidal category.

The category U"-mod is not braided. It has a more complicated structure of a
braided category fibered over a braided group, which was introduced in [68]. Recall
that a group H is braided if there exists a mapping  W H �H ! H �H with the
properties

(1) m B  D m0,
(2)  B .m � id/ D .m � id/ B 23 B 13,

(3)  B .id�m/ D .id�m/ B 12 B 13,

where m is the multiplication in H and m0 is the opposite multiplication. The group
GL�

2 is braided with the mapping  defined on an open dense subset as follows. Let
I W GL�

2 ! GL2 be the mapping .bC; b�/ ! bCb�1� , and x ! .xC; x�/ be its
inverse, when it is defined; then

.x; y/ D .xR; xL/;
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where I.xL/ D x�I.y/x�1� , I.y/ D .xL/
�1C I.x/.xL/C, is a braiding for GL�

2 . For
GL2 these formulae define  because the mapping I is a bijection on an open dense
subset of GL2. The same construction also works for any simple Lie algebra (of
rank r), but the mapping I in this case has degree 2r over a generic point of G and
therefore does not have an inverse. At this point one should take into account that G
is a Poisson Lie group and  has an interpolating flow [89], [68]. Among the 2r � 2r
branches of I one should choose the one corresponding to the pair .xR; xL/ given by
the interpolating flow.

The interpolating Hamiltonian flow defines a path connecting .x; y/ and .xR; xL/
in GL�

2 � GL�
2 and also a connection that lifts this path to an algebra isomorphism

Ax ˝ Ay ! AxR ˝ AxL . The outer automorphism R from Section 5.1 specializes
to an algebra isomorphisms zRx;y W Ax ˝ Ay ! AxR ˝ AxL ,

zRx;y.a˝ b/ D x;y B .R1.a˝ b/R�1
1 /;

whereR1 2 Ax˝Ay (see [89]). This mapping inherits the quasitriangular properties
of R from Section 5.1. The mapping

Rx;y D � B zRx;y

defines the braiding structure on the subcategory of U"-mod generated by left regular
representation of this algebra. By Schur’s lemma it also defines the braiding for
irreducible representations of U" [69]. As a result we have a braiding mapping
RV;W .x; y/ W Vx ˝Wy ! WxL ˝ VxR . It is described explicitly in [69] after each
irreducible representation Vx is identified with C` using the weight basis.

6. Invariants of framed tangled graphs with flat connections in the compliment

Let t be a tangle in C D R2 � Œ0; 1�. Representations of �1.Cnt / in a group G can
be parametrized by assigning a group element ge to each edge e of a diagram Dt

of t , which is the holonomy along a path going above the diagram from a base point
to e then going once around e and going back to the base point above Dt . It is well
known that such collection fgege�D.t/ defines a representation of the fundamental
group of the compliment with these holonomies if it satisfies relations xL D xyx�1,
xR D x for each overcrossing (Figure 6).

A factorization on a group G is a choice of subgroups G˙ � G such that the
multiplication mapping GC � G� ! G and its opposite are bijections. When G is
factorizable another parametrization of representations of the fundamental group was
proposed in [68]. In this case the elements ofG assigned to edges adjacent to an over-
crossing (see Figure 6) satisfy the relation xL D x�yx�1� and xR D .xL/�1C x.xL/C.
At extremal points of the diagram of a knot the color changes x 7! i.x/ where i.x/
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xL xR

x
x

x

i.x/

i.x/

y

Figure 6. The Wirtinger representation of the complement to a tangle.

is the inverse to x in G� D GC � G�. The Wirtinger representation corresponds to
G� D f0g and GC D G.

Following the same strategy as in [91] one can construct invariants of tangles
using the braiding for irreducible representations ofU".gl2/ described in the previous
section and the isomorphisms between a representation and its double dual .Vx/__ '
Vx . For the details see [68].

For generic x the quantum dimension of Vx vanishes. This implies that corre-
sponding invariant of tangles is zero if the tangle has a closed connected component.
In particular the value of this invariant on knots is identically zero. However, an in-
variant can still be defined: one should cut the knot and make it into a .1; 1/ tangle. If
the representation V is irreducible, the corresponding invariant of tangle is a multiple
of the identity operator. It is easy to show that this number does not depend on where
the knot has been cut. Therefore invariants of .1; 1/ string tangles define invariants
of knots.

Such invariants of tangles and knots depend on Z0 central characters assigned to
edges of the diagram of a tangle. One can show (see [68]) that they parameterize
representations of �1 of the complement to a tangle. The corresponding invari-
ant of a knot depends only on a conjugacy class of this representation. Thus this
construction gives invariants of knots with gauge classes of flat connections in the
complement.

If representations coloring connected components of links satisfy certain condi-
tions [48], a similar construction provides invariants of links. For an Abelian gl2-
connection in the complement of a link such invariants where constructed in [48],
[49]. Similarly such invariants can be constructed for tangled graphs.
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7. Combinatorial TQFT

7.1. Invariants of 3-manifolds via link invariants. The combinatorial construction
of invariants of 3-manifolds based on the notion of a modular category was proposed
in [92]. The key idea is to use the representation of a 3-manifold as a surgery along a
framed link on a handle-body [72]. Any invariant of framed links which is constant
on the equivalence class of links producing the same 3-manifold is a 3-manifold
invariant.

7.1.1. Modular categories. First, recall that a modular category is a semi-simple
Abelian category with finitely many simple objects, which is monoidal, braided, and
has additional properties such as a ribbon structure and a certain non-degeneracy
condition. For the details about such categories see [92], [106], [15].

Denote by cU;V W U ˝ V ! V ˝ U the commutativity constraint, by I the set
of isomorphism classes of simple objects, and by Vi the simple objects enumerated
corresponding to i 2 I . The ribbon structure on a monoidal, rigid, braided category
is a collection of functorial isomorphisms �V W V ! V such that

�V˝W D .�V ˝ �W /c�1
VW c

�1
W V ; �V � D ��

V ; �1 D id1 :

Here 1 is the unit object of a monoidal category, see [106] for definitions and refer-
ences. In a ribbon k-linear category we have the notion of the trace over Hom.V; V /:
trV W Hom.V; V /! k. Define

di D trVi .idVi /; �Vi D vi idVi ;

Sij D trVi˝Vj .c
Vi ;Vj cVj ;Vi /:

If di ¤ 0 and if the matrix S is non-degenerate, the ribbon category is called a
modular category.

The matrices Sij and Tij D viıij define the projective representation of SL2.Z/.
More generally, a modular category defines a projective representation of the mapping
class group of a surface [92]. Irreducibility of these representations was studied in
[9]. Most interesting examples of modular categories are obtained as quotients of the
categories of finite dimensional representations of Hopf algebras U".g/0. The fact
that such categories are modular was proven in [92] for sl2 and in [2] for any simple
Lie algebra.

7.1.2. Invariants of 3-manifolds and TQFT. Given a modular category C one can
construct a TQFT as follows. Objects of the space time category are standardized
surfaces (for a precise definition see [92], [106]), morphisms are 3-dimensional man-
ifolds modulo homeomorphisms that are trivial at the boundary.
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To a connected standardized surface † we assign the vector space

H.†/ D HomC .1;H
˝g/;

where g is the genus of the surface, and H DLi Vi ˝ V �
i . When † 'Fn

aD1 T .a/
this space is isomorphic to .Ck/˝k . The linear basis in Ck is given by isomorphism
classes of simple objects Vi , i D 0; : : : ; k � 1.

The construction of the corresponding combinatorial TQFT is given in [92], for
more details see [106] and [15]. To the closed manifold ML, obtained by a surgery
along a framed link L on S3, and a framed link K in the complement of L � S3

(which defines a link in ML) whose connected components are colored by simple
object Vj1 ; : : : ; Vjm we assign

�.ML; K/ D p�C.L/

C p��.L/�
k�1X

i1;:::;i`D0
di1 : : : dilJ.Li1;:::;il tKj1;:::;jm/; (21)

where �˙.L/ D the number of positive/negative eigenvalues of the linking matrix
OL, p˙ 2 C and J.Li1;:::;il / is the invariant of links colored by objects of modular
category C . When C is the semisimple quotient of the category of finite dimensional
modules of U".sl2/0 it is the colored Jones polynomial.

The formula (21) defines also an invariant of the complement of the tubular neigh-
borhood of K in ML. In particular invariants of links J.Li1;:::;il / can be regarded as
invariants of the manifold with boundary which is the complement to L in S3.

Remark 8. Invariants of 3-manifolds were also constructed combinatorially by Tu-
raev and Viro [108] locally via cell decompositions and a monoidal semisimple cate-
gory with finitely many objects, with some extra properties, but not necessary braided.
See [50] for a detailed discussion of such categories. In particular, each modular cat-
egory can be used to construct such invariants. If C is a modular category, such
invariants are equivalent to �C .M/ ˝ �C . SM/ where �C is the invariant described
above.

A similar construction of invariants of 3-manifolds (with a “sufficiently linked”
link inside) with gauge classes of SL2.C/-flat connections on a trivial SL2-bundle,
based on triangulation and generic representations of U".bC/, was proposed in [19].

7.2. Relating combinatorial and semiclassical pictures. To compare these invari-
ants one should first choose a canonical 2-framing onM [10]. The 2-framing onM is
a trivialization of TM ˚TM (the vector bundle overM with the fiber TxM ˚TxM
over x 2 M ). The canonical 2-framing defines a branch of the gravitational Chern–
Simons action with the property

d
�

4
�.g;M/C c.h/

24
IM .g; f / D 0:
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As the dependence of higher order terms on the framing appears through IM .g; f /,
the canonical 2-framing defines the framing dependence of the whole asymptotical
expansion.

When the moduli space of flat connection on a principalG-bundle overM is a col-
lection of isolated points, one should expect the following asymptotics of combinato-
rial invariants of closed 3-manifolds with links related toU".g/0 with " D exp. 2�i

kCh_
/:

�".M;L/ � e�d�i.1Cb1.M//
4

X
ŒA�

�
1=2
A .2�.k C h_/

dim.H0
A
/�dim.H1

A
/

2
1

Vol.GA/

e.kCh_/CSM .A/� 2i�IA4 Ci� dim.H0
A
/Cdim.H1

A
/

2

�
W V
L .A/C

X
n�1

F
.n/
A .M;L/

�
;

(22)

Here jZ.G/j is the number of elements in the center of G. The contribution from
smooth components of non-zero dimension is expected to be

�".M;L/ � exp

�
�d�i.1C b

1.M//

4

�X
ŒA�

.2�.k C h_//
dim.H0

A
/�dim.H1

A
/

2
1

Vol.GA/

exp

�
i.k C h_/CSM .A/ � 2�iIA

4
� i� dim.H 0

A/C dim.H 1
A/

2

�
Z
MA

�
1=2
A

�
W V
L .A/C

X
n�1

F
.n/
A .M;L/

�
:

(23)

This conjecture was confirmed in many cases [43], [62], [47], [94], [8].
1. When M D S3, the asymptotical expansion of the expectation value of the

Wilson loop is determined by the contribution from the trivial flat connection. The
higher coefficients are finite type invariants. They can be computed either in terms of
Feynman diagrams [17], [25] [104], or in terms of data coming from the Knizhnik–
Zamolodchikov equations [16], or combinatorially [87]. Similarly, when M is a
rational homology sphere, the higher order contributions for the trivial connection
are known to be finite type invariants of 3-manifolds [86].

2. Freed and Gompf [43] computed the asymptotics of the invariant (21) related
to quantum sl2 for lens spaces. The results confirmed the conjecture (22). L. Jeffrey
[62] extended these results to other lens spaces and to mapping tori of a torus; the
results again matched (23). Rozansky [94] computed the asymptotic of the invari-
ants for Seifert manifolds Xg.

p1
q1
; : : : ; pn

qn
/. Andersen and Hansen [8] computed the

asymptotics of the combinatorial invariant for quantum sl2 for .p; q/-surgery on the
figure 8 knot, and the results again matched the conjecture.

3. As it was mentioned in the previous section invariants of links J.Li1;:::;ik / are
the simplest examples of quantum invariants of manifolds with boundary. In this case
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the manifold is S3nT .L/ where T .L/ DFa T .L
a/, and T .La/ is a solid torus with

the boundary being the tubular neighborhood of La.
A version of the asymptotical expansion (22) for manifolds with boundary predicts

the asymptotic expansion of the colored Jones polynomial, and for other invariants
of links and linked graphs corresponding to irreducible representations of quantum
groups, in the limit when the weight of the representation (the color) is proportional
to r , and r ! 1. Let J.Lk1;:::;k` ; exp.2�i

r
// be the colored Jones polynomial of

the link L with connected components colored by irreducible representations Vki of
U".sl2/0 with " D exp.2�i

r
/. The semiclassical Chern–Simons theory predicts that

as ki ; r !1 with ai D ki=r being fixed

J
�
Lk1;:::;k` ; exp

�
2�i
r

�� 'X
x

r .dim.Hx/0�dim.H1x //=2
p
�xe

irS.x/� 2�iIx4 �
1CO�1

r

��
:

Here we assume that r ! 1 and ki D air , x 2 .�1.S3nL/ ! SU.2/=SU.2//
with the holonomy around the i -th component ofL being in the conjugacy classes of
diag.zi ; z�1

i / 2 SU.2/, and zj D exp.2�iaj /.
The contribution to this asymptotical expansion from Abelian flat connections is

special. For a knot, the relation between the Reidemeister torsion and the Alexander
polynomial implies that one should expect

J
�
Kk; exp

�
2�i
r

�� ' r� 12 sin.�a/


.K; e2�ia/
.1C � � � /C � � � :

Here the sum is taken over gauge classes of non-Abelian flat connections on the
trivial SU.2/-bundle over S3nK. The assumption is that the moduli space of flat
connections on the trivial SU.2/-bundle with the holonomy around the meridian of
T .K/ being conjugate to diag.e2�ia; e�2�ia/ consists of finitely many points. The
first term is the contribution from the Abelian flat connection, and 
.K; t/ is the
Alexander polynomial of the knot K. This formula, initially known as the Melvin–
Morton conjecture, and its generalization, were proven in [109]. A similar formula
holds for the asymptotics of colored Jones polynomials of links.

Here is an example of an explicit formula for such asymptotical expansion [95]
for torus knots Kn;m:

J
�
Kn;m.k/; exp

�
2�i
r

��

'
r
2

r

sin.�na/ sin.�ma/

sin.�nma/
.1C � � � / (24)

C i

2

X
l2Z;0<l<anm

ei
�
4 sign.mn/Ci�l� i�r2 .amn�l/2

nm
4 sin� l

n
sin� l

mpjnmj .1C � � � /:

Here the first term corresponds to the contribution of the Abelian flat connection in
the complement of Kn;m, the knot is colored by the irreducible .k C 1/-dimensional
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representation of U0
", and k; r !1 such that a D k

r
is fixed. The sine function in the

denominator is the value of the Alexander polynomial for t D exp.2i�a/ for the knot
Kn;m. Other terms correspond to non-Abelian flat connections in the compliment of
the knot. Among higher terms in the asymptotical expansion of J.Kk; exp.2�i

r
// one

can identify terms which are expected to be identical to Feynman diagram contribu-
tions on the background of theAbelian flat connection in the complement with the knot
(the monodromy around the meridian of the knot diag.exp.2i�a/; exp.�2i�a//)
[95].

4. Similar asymptotical expansions should hold for invariants of framed graphs
in 3-manifolds. A tetrahedron is one the simplest examples. A tetrahedron colored
by U".g/0-modules is known as a 6j -symbol. For sl2 it is the q-analog of the Rakah–
Wigner symbol. Its asymptotical expansion as q ! 1 (r !1) was derived in [102].
It agrees with (22). IfM is the complement of a tetrahedron in S3, the moduli space
M.M/ of flat connections on G � M projects to S.@M/ and is a finite covering
over its image L.M/ � S.@M/. Indeed, the dimension of S.@M/ in this case is
2.6r C 2.2j
Cj � 2r// where j
Cj is the number of positive roots of g and r is its
rank. The dimension of M.M/ is 2 dim.g/. Since dim.S.@M// D 2 dim.M.M//

the projection i� W M.M/! L.M/ has zero-dimensional fibers. One can show that
they consists of finitely many points. This implies that (22) describes the semiclassical
asymptotic of 6j -symbols for all U".g/0.

5. The dependence of the colored Jones polynomial of a knot on the color is very
special. It involves certain q-special functions [73]. This implies that the colored
Jones polynomial satisfies difference equations (with coefficients depending on the
knot) [47]. The AJ-conjecture is an algebraic version of the semiclassical conjecture.
It states that the ring of difference operators annihilating the colored Jones polynomial
in the limit q ! 1 becomes the vanishing ideal describing the representation variety
of �1.S3nK/ in SL2.C/. Its generator is known as the A-polynomial [32].

Remark 9. Another classical field theory which is closely related to the Chern–
Simons theory is the BF C B3 in 3d. Fields in this theory are A, a connection in
a principal G-bundle over M , and B , a 1-form on M with values in g. The action
functional is

S˙.A;B/ D
Z
M

tr.B ^ F.A/˙ 1

3
B ^ B ^ B/: (25)

For the plus sign defineA˙ D A˙B , and for the minus sign define A D AC iB .
Classical fields A˙ are two connection s in a principal G-bundle. It easy to check
that

SC.A;B/ D 1

2
.CS.AC/ � CS.A�//; S�.A;B/ D i Im.CS.A//

where A and B are G-connections and A is a GC-flat connection.
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It is natural to expect that this classical topological field theory for the C-sign
describes the semiclassical limit of the Turaev–Viro invariants. For the �-sign it is a
natural candidate for a complex Chern–Simons theory.

7.3. Chern–Simons TQFT and geometric quantization. When the modular cate-
gory is the truncated category ofU".g/-modules with " D exp.2�i

r
/, the vector spaces

H.†/ can be described in terms of geometric quantization of the moduli spaces of
flat connections on † � G ! † [13]. In this construction the mapping class group
�.†/ (or, rather its central extension) acts naturally on H.†/ [13].

Let us recall the construction of spaces H.†/ and of the action of the mapping
class on them using geometric quantization.

The moduli space MG
† is a symplectic manifold [12]. The mapping class group

�.†/ acts naturally on it by symplectomorphisms. It also acts on the Teichmüller
space T of complex structures on†. The Teichmüller space naturally parameterizes
a family of Kähler structures on .MG

† ; !/ (with the same symplectic part), and this
parametrization is �.†/-equivariant.

Let .L;r; . � ; �// by a pre-quantum line bundle over .MG
† ; !/. Recall that it

consists of a line bundle L over MG
† with a connection r with the curvature !, and

the Hermitian scalar product on . � ; �/ on sections of L. The prequantization line
is unique up to a bundle isomorphism that preserves the connection. See [42], [88]
for more details and references. Fix a Kähler structure on MG

† corresponding to a
� 2 T . Denote the corresponding Kähler manifoldM� , and define theVerlinde space
as Vk;� D H 0.M� ;L

k/ (the space of holomorphic sections of Lk with respect to
the complex structure induced by � ). These spaces are fibers of the Verlinde bundle
Vk over T .

One of the key properties of the bundle Vk is that its projectivization supports
a natural flat �.†/-invariant connection zr [13], [58], now known as the Hitchin
connection. The action of the mapping class group on the covariant constant sections
P .V.†// of the projectivization of Vk over T defines the projective representation
of the mapping class group �.†/:

�k W �.†/! Aut.P .V.†//:

It was conjectured by Witten that the representation �k of �.†/ is isomorphic
to the one defined combinatorially on P .H.†//. There has been done quite a lot
of work on this over time. Combining the work of Laszlo [77] with the work of
Tsuchiya, Ueno andYamada, [105], and the work of Andersen and Ueno [9], one gets
an explicit construction of an isomorphism between these representations.

Let †f be the mapping class cylinder corresponding to the diffeomorphism
f W †! †. Taking the trace of the representation �k define the number

Zk.†f / D tr.�k.f //Det.f /�
c
2 ;
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where c D dim.g/k
kCh_

is the central charge of the WZW conformal field theory. The

factor Det.f /� c2 is the framing correction.
This expression is expected to be the partition function of the Chern–Simons

theory for the mapping class tori. It has been shown in [3] that its leading terms of
the asymptotic as k !1 agree with the semiclassical functional integral proposal.

Above we described how geometric quantization of moduli spaces MG
† produces

the Verlinde vector bundle Vk . But the goal of a quantization of the moduli space
as a symplectic manifold is to construct a pair: an associative algebra that quantizes
the Poisson algebra of functions on MG

† and a representation of this associative
algebra (normally the representation is expected to have Hermitian scalar product).
The geometric quantization produces the vector space. The algebra is produced by
Toeplitz operators associated with smooth functions on MG

† . For the details on how
to construct Toeplitz operators for the geometric quantization of moduli spaces see
[4], [6] and references therein.

Using Toeplitz operators and their various properties, J. E. Andersen proved a
number of remarkable geometric applications of the Chern–Simons TQFT. Among
them are the asymptotic faithfulness of Chern–Simons representations of mapping
class groups [5] and the proof of Kazhdan’s property (T) for the mapping class groups
[4], and that Chern–Simons representations determine the Nielsen–Thursten classi-
fication of mapping classes [7].

7.4. Complex Chern–Simons theory and volume conjectures

7.4.1. The volume conjecture. In [66] Kashaev constructed invariants of knots
�.K; "/, which are parametrized by roots of unity ". He also made a conjecture that
these invariants have the following asymptotical behavior:

lim
k!1

ln.j�.K; exp.2�i
k
//j/

k
D 1

2�
vol.K/: (26)

Here vol.K/ is the hyperbolic volume of the complement of K in S3. Murakami
and Murakami [82] found that Kashaev’s invariant (which was originally constructed
using a triangulation of the complement to K) is the colored Jones polynomial for
q D exp.2�i

k
/ when the representation coloring the knot has the highest weight k.

This representation is the quantum analog of the so-called Steinberg representation
for sl2 over a finite field, and it is the first representation (ordered by the value of
the highest weight) which has zero quantum dimension. The volume conjecture (26)
was verified in [70] for torus knots.

The conjecture (26) for �.K; exp.2�i
k
// D J 0

k
.K; exp.2�i

k
// is known as the vol-
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ume conjecture. Here J 0
k
.K; exp.2�i

k
// is the normalized colored Jones polynomial

J 0
k

�
K; exp

�
2�i
k

�� D lim
q!exp. 2�i

k
/

Jk.K; q/

d.k/
;

where d.k/ D .qk � q�k/=.q � q�1/. A good collection of references for work on
this conjecture can be found on the web-site [110].

The volume conjecture was extended in [83] to describe the asymptotical behavior
of the Kashaev invariant itself, not only of its absolute value. It was argued that

lim
k!1

ln.J 0
k
.K; exp.2�i

k
///

k
D 1

2�
.vol.K/C iCS.K//

as k !1, where CS.K/ is the real part of the Chern–Simons functional evaluated
at the SL2.C/ flat connection corresponding to the hyperbolic structure on the com-
plement of K in S3. This formula was checked in a number of examples (see [110]
for references) and was extended to graphs in [111].

In [37], the asymptotical expansion of the invariant J 0
k
.K; exp.2�i

k
// for torus

knots was interpreted in terms of complex Chern–Simons and torsion factors which
would match the asymptotical expansion of the path integral. It resembles the asymp-
totical perturbative conjecture for the Chern–Simons invariant (22), but there are some
factors in the torsion part that so far have no explanation.

Gukov [55] conjectured a relation between the SL.2;C/ Chern–Simons and the
Jones polynomial when q is not a root of unity. In particular he conjectures that

lim
N!1

a ln.JN .K; exp.2�ia
N
///

N
D 1

2�
.vol.l; m/C iCS.l; m//;

where vol.l; m/ is the Neumann–Zagier function [85], and m D � exp.i�a/. When
0 � Re.a/ < 1 the imaginary part of a in this formula must be non-zero. For the
asymptotical analysis of the Jones polynomial for torus knots in this limits see [57].

The asymptotical behavior of invariants of tangles with GC-flat connections in
the complement which were constructed in [68] (see Section 6) is more difficult to
compute5. However, it is natural to expect that they are also related to the complex
Chern–Simons theory, and to make the following conjecture:

lim
k!1

ln.Ik.K; l;m; exp.2�i
k
///

k
D 1

2�
.vol.l; m/C iCS.l; m//:

Here k runs through positive integers. When l; m D 1, the invariant Ik is the Kashaev
invariant and this conjecture becomes the volume conjecture. Similar limits one

5The invariants corresponding to the left regular representation of U".sl2/ where constructed in [68]. Their
values for small roots of unity were computed in [81]. They turned out to be polynomials in representation
variables.
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should expect from invariants colored by other irreducible representations and from
the invariants constructed in [19]. These invariants for knots in S3 are conjecturally
equal to invariants of knots described in Section 6 for irreducible representations of
U".sl2/.

An integral formula for what may define invariants of knots was proposed in
[56]. It uses the braiding for vertex operators in quantum Liouville theory (see for
example [103] and references therein). This integral formula is very natural from
the point of view of the quantization of the Teichmüller spaces [41], [67]. However,
there are two problems with this formula that are not yet resolved: it is not clear
whether these integrals are convergent, and also, the symmetry of the q-dilogarithms
is only projectively tetrahedral. So, strictly speaking, the arguments from [56] do
not add up to a theorem that the state integral proposed there is an invariant of a
knot. At the same time, since this state integral is a straightforward integral version
of Kashaev’s formula, most likely these gaps can be fixed. The integral in [56]
depends on a parameter k of a similar nature as the level in the Chern–Simons theory.
The asymptotical expansion of these integrals when k ! 1 was studied in [34]
where it was established that (i) critical points of the logarithm of the integrant are in
bijection with points in the moduli space of SL2.C/-connections in the complement
of a knot (where the conjugacy class of the monodromy around a meridian is fixed
by the coloring of the knot), (ii) in examples, the steepest descent contributions from
critical points of the integral coincide with the complexification of the semiclassical
contribution of a given flat connection to the semiclassical expansion of the Chern–
Simons theory. It all indicates that the integrals from [56] should eventually define
an invariant related to quantum sl2.C/.

7.5. Complex Chern–Simons theory. The full asymptotical expansion of invari-
ants of knots constructed in [68], [69] (Section 6) and of invariants constructed in
[19] is most likely given by the semiclassical path integral over su.2/ 1-forms on the
classical sl2.C/ background. Such path integral can be written as

ZŒA�.M;L; b/ /
Z
i�.a/Db

eikCS.ACa/W V
ACa.L/Da (27)

The integral is understood as a semiclassical expansion. The sl2.C/-connection A is
fixed, and the integral is taken over su.2/-valued 1-forms. To define the asymptotical
expansion of such integrals one should draw a parallel with the steepest descent
method, as much as a parallel was drawn in the case of compact Chern–Simons with
the oscillatory integrals.

The problem of analytical continuation of the Chern–Simons theory to sl2.C/
is discussed recently in details in [114] where the integration is over the real slice
A D xA in sl2.C/ � sl2.C/-connections.
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8. Other developments

Many important developments in quantum field theory, and in particular in topological
quantum field theory, were not discussed here. Here is a brief outline of some of them.

1. Dijkgraaf and Witten [33] defined a TQFT corresponding to a cocycle on a
finite group. Recently there have been interesting developments in this direction, see
[99], [107].

2. One of the most important developments of the last decade is the Khovanov
categorification of the Jones polynomial [71] and of other invariants of knots. It is
remarkable how these results are deeply related to the representation theory and in
particular to Soergel’s categorification. This approach provided new invariants of
knots and links, however the corresponding topological quantum field theory is not
understood yet.

3. Large N asymptotical behavior of the Chern–Simons theory for G D SU.N /
is closely related to open topological strings [113] and to closed topological strings
[53]. Remarkable advances took place in this directions with developing topological
amplitudes, the relation between topological string theories and dimer models, matrix
models etc.

4. At a deeper level topological field theories are ultimately related ton-categories.
These aspects of TQFT were recently explored in [78], [44], [18].

5. One of the remarkable subjects at the interface of geometry, representation
theory, and quantum field theory is the geometric Langlands program [46]. The super-
symmetric N D 4 Yang–Mills theory is expected to have a particularly important
role in this direction [65]. Among other features this theory is expected to be finite in
perturbation theory: individual Feynman diagrams may diverge, but the sum of them
in each order is finite. This conjecture was checked in the axial gauge. Although
it is widely anticipated that it is true in any other gauge, it would be interesting to
see a reliable proof of gauge independence of this result. Quantum supersymmetric
Yang–Mills is also important in recent developments relating Bethe ansatz and moduli
spaces of instantons [51], [84].

6. The Poisson sigma model is a topological two dimensional quantum field theory
which is behind the solution to the deformation quantization problem of Poisson
manifolds [76]. This quantum field theory is particularly interesting because it is an
example of the gauge theory where vector fields describing the infinitesimal symmetry
transformations define a non-integrable distribution on the tangent space to fields of
the theory. In this theory one should really use the BV quantization [27]. The Poisson
sigma model is probably the most interesting example where this technique is really
important.

7. There are quantum field theories with symmetries that are so powerful that they
define the QFT uniquely, or almost uniquely. In other words, the spaces H.N/ in
such theories are representation spaces, and the vectors Z.M/ are invariant vectors.
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In some cases there are finitely many vectors and they can be characterized entirely
in terms of representation theory. Examples of such theories include all known con-
formal field theories (the partition function is invariant with respect to conformal
mappings), integrable field theories (in this case the partition function is usually
invariant with respect to the action of a quantum affine algebra), and the Chern–
Simons and some other topological field theories (the partition function is invariant
with respect to homeomorphisms). Such theories are a remarkable class in the sense
that partition functions and correlation functions can be defined not only semiclassi-
cally/perturbatively, but in terms of the representation theory of corresponding alge-
braic objects. In addition, many important characteristics can be computed explicitly.

We already discussed TQFT’s. Two dimensional conformal field theories [20] are
probably most remarkable from an algebraic point of view among all quantum field
theories. They can be described completely in terms of the representation theory of
affine Kac–Moody algebras and W-algebras. There is a noteworthy relation between
conformal field theories and topological field theories. Conformal field theories
appear as boundary quantum field theories for a large class of topological quantum
field theories. The category describing combinatorial data of a conformal field theory
is modular under some natural assumptions about the theory [80]. This modular
category can be used to construct a TQFT’s.

Integrable models in QFT demonstrate various interesting phenomena. Alge-
braically, they are more complicated then conformal field theories, as they are related
to the representation theory of quantized universal enveloping algebras of affine Lie
algebras. They also demonstrate a number of important phenomena. The quantum
Sine-Gordon model on a torus shows how solutions to the classical equations of mo-
tion can be obtained as the semiclassical limit of particle like states. Passing from
soliton solutions to corresponding quantum states is known as quantization of soli-
tons (see for example [39]). Other important examples of integrable models in QFT
include non-linear O.3/ � -model, chiral Gross–Neveu models, and principal chiral
field theories on simple compact Lie groups. All these models have ultraviolet di-
vergencies in the perturbation theory, the renormalization is asymptotically free, and
they have mass generation. Local correlation functions in all these models can be
described explicitly [98]. For the latest developments see [64].
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Abstract. We survey classical and recent developments in numerical linear algebra, focusing
on two issues: computational complexity, or arithmetic costs, and numerical stability, or perfor-
mance under roundoff error. We present a brief account of the algebraic complexity theory as
well as the general error analysis for matrix multiplication and related problems. We emphasize
the central role played by the matrix multiplication problem and discuss historical and modern
approaches to its solution.
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1. Computational complexity of linear problems

In algebraic complexity theory one is often interested in the number of arithmetic op-
erations required to perform a given computation, modelled as a programme which
receives an input (a finite set of elements of some algebra) and performs a sequence
of algebra operations (addition, subtraction, multiplication, division, and scalar mul-
tiplication). This is called the total (arithmetic) complexity of the computation.1

Moreover, it is often appropriate to count only multiplications (and divisions), but
not additions or multiplications by fixed scalars. These notions can be formalized
[BCS97, Definition 4.7]. For now, let us invoke

Notation. Let F be a field, let F Œx1; : : : ; xn� � A � F.x1; : : : ; xn/ be an F -algebra,
and letˆ D f'1; : : : ; 'mg be a finite set of functions. The total arithmetic complexity
of ˆ will be denoted Ltot

A .ˆ/, and its multiplicative complexity by LA.ˆ/.

1This model only counts the operations and completely ignores storage and communications costs, limitations
on precision, details of how arithmetic is implemented (in particular we are not counting bit operations), etc.
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Intuitively, this is the minimal number of steps required to compute all of '1; : : : ;
'm starting from a generic input .x1; : : : ; xn/, with intermediate results in A (in all
cases we consider,Awill simply be the algebra of polynomials or of rational functions
in the input variables, and will not always be explicitly indicated). The input and all
intermediate results are understood to be stored in memory, and the simultaneous
computation of a set ˆ of functions means that at the end of the programme ˆ is
contained in the set of results.2

Let U , V , and W be finite-dimensional vector spaces over F , and consider the
class of bilinear functions ' W U � V ! W (which includes matrix multiplication).
To define the multiplicative complexity of such a function, choose bases fuig1�i�m,
fvj g1�j�n, and fwkg1�k�p , so that

'
� mX
iD1

xiui ;

nX
jD1

yj vj

�
D

pX
kD1

'kwk :

We regard the coefficients as variables, so that each 'k is a homogeneous polynomial
of degree 2 in x1; : : : ; xm; y1; : : : ; yn.

Definition (Cf. [BCS97, Definition 14.2]).

L.'/ D LFŒx1;:::;xm;y1;:::;yn�

�f'1; : : : ; 'pg�:
Because we are considering the multiplicative complexity, this is a well-defined

notion that does not depend on the choice of bases.
It turns out that the multiplicative complexity of a bilinear function ' W U � V !

W is controlled by a somewhat more well-behaved notion, the rank R.'/. This is a
standard notion in multilinear algebra, which generalizes that of the rank of a linear
map.

Definition. Let t 2 V1˝ � � � ˝ Vn. The rank R.t/ is the smallest r such that one can
write t DPr

iD1 ti with each ti a monomial tensor, i.e., of the form ti D v1˝� � �˝vn
for some vi 2 Vi .

In case ' W U � V ! F is the bilinear map corresponding to a linear func-
tion z' W U ! V �, the rank R.'/ is the rank of z' in the usual sense. Well-known
algorithms, such as Gaussian elimination, as well as the fast algorithms described in
this paper (see Section 1.4), can quickly compute the rank of a matrix, but determin-
ing the rank of a tensor of order 3 already seems to be quite difficult. Computing the
rank of a given tensor is a combinatorial or algebro-geometric problem [Lan08].

2For example, X0 WD x, X1 WD X0 � X0, X2 WD X1 � X1, X3 WD X2 � X0 is a programme,
using 3 operations – solely multiplications in this example, which computes x5, as well as any subset of
fx; x2; x4; x5g, in A D FŒx�.
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We now explain how the rank controls the complexity of a bilinear function. First,
by a known result of Strassen (see [BCS97, Proposition 14.4]), if ' W V ! W is a
quadratic map between finite-dimensional vector spaces, that is,

'
� nX
iD1

xivi

�
D

pX
jD1

'j .x1; : : : ; xn/wj

for some bases fvig1�i�n (resp. fwj g1�j�p) of V (resp.W ) and homogeneous poly-
nomials 'i 2 F Œx1; : : : ; xn� of degree two, then we need not search through some
rather large class of programmes to find one which computes ' optimally, for in fact
L.'/ D LFŒx1;:::;xn�

�f'1; : : : ; 'pg� equals the smallest l � 1 such that

'.v/ D
lX
iD1

fi .v/gi .v/wi (1)

for some linear functionals fi ; gi 2 V �. (Note that such a formula immediately gives
an obvious algorithm computing '.v/ using only l (non-scalar) multiplications.)

Now let ' W U � V ! W be a bilinear map between finite-dimensional vector
spaces. This is covered by the preceding result of Strassen, since a bilinear map U �
V ! W may be regarded as a quadratic map via the isomorphism F ŒU � V � D
F ŒU �˝ F ŒV �. A bilinear algorithm for ' amounts to writing

'.u; v/ D
rX
iD1

fi .u/gi .v/wi (2)

for certain linear functionals fi 2 U �, gi 2 V �, and wi 2 W . The minimum such r
is the rank R.'/. Note that the rank of ' is not necessarily the same as its bilinear
complexity, despite the superficially similar-looking formulae (1) and (2). However,
by decomposing a linear functional f W U �V ! F as f .u; v/ D f .u; 0/Cf .0; v/,
one can see that

L.'/ � R.'/ � 2L.'/:
It is often easier to work with the rank rather than the more subtle notion of multi-
plicative (or total) complexity, and the above inequality shows we do not lose much
in doing so.

1.1. Algebraic complexity of matrix multiplication. The basic problem is to com-
pute the (total or multiplicative) complexity of multiplying two n� n matrices. This
is a difficult question whose answer is not at present known for n D 3, for instance.
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Matrix multiplication is a bilinear problem (see Section 1)

' W Mn�n.F/ �Mn�n.F/!Mn�n.F/;

.X; Y / 7! XY D
� nX
lD1

XilYlj

�
1�i;j�n

whose corresponding tensor will be denoted

hn; n; ni WD
X

1�i;j;k�n
uij ˝ vjk ˝ wki :

For n D 2 Winograd proved [Win71] that seven multiplications are required, so
L
�h2; 2; 2i� D R�h2; 2; 2i� D 7, but for n D 3 even the rank is not known at present

(it is known that 19 � R�h3; 3; 3i� � 23; see [BCS97, Exercise 15.3], [Lan08]).
Instead of fixing n, one considers the asymptotic complexity of matrix multipli-

cation:

!.F/ D inf
n
� 2 R j Ltot

FŒXij ;Yij �

�˚Pn
lD1XilYlj j1 � i; j � n

�� D O.n� /o (3)

so that n � n matrices with entries in F may be multiplied using O.n!.F/C�/ opera-
tions,3 for every � > 0.

First of all, one can replace the total complexity in (3) by the multiplicative
complexity or by the rank [BCS97, Proposition 15.1] and get the same exponent.
Second, !.F/ is invariant under extension of scalars [BCS97, Proposition 15.18], so
it does not depend on the exact choice of field F (e.g., Q versus R or C), but rather
only on its characteristic, which is usually taken to be zero (so ! denotes !.C/).

The value of! is an important quantity in numerical linear algebra, as it determines
the asymptotic complexity of not merely matrix multiplication but also matrix inver-
sion, various matrix decompositions, evaluating determinants, etc. (see Sections 1.4
and 2.3).

An obvious bound is 2 � ! � 3, since the straightforward method of matrix
multiplication uses O.n3/ operations, on one hand, while on the other hand we need
at least n2 multiplications to compute n2 independent matrix entries. The first known
algorithm proving that! < 3was Strassen’s algorithm, detailed in Section 2.1, which
starts with an algorithm for multiplying 2 � 2 matrices using seven multiplications
and applies it recursively, giving ! � log2 7. This idea of exploiting recursion will
be explored in the next section.

1.2. Asymptotic bilinear complexity via tensor ranks. The basic idea behind de-
signing fast algorithms to multiply arbitrarily large matrices, thereby obtaining good

3Technically, division is not allowed, as the computation should be in FŒXij ; Yij �, although this is no
restriction if F is an infinite field (see [BCS97, Remark 15.2]).
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upper bounds on !, is to exploit recursion: multiplication of large matrices can be re-
duced to several smaller matrix multiplications. One obvious way to do this is to
decompose the matrix into blocks, as in Strassen’s original algorithm. Strassen’s
“laser method” [BCS97, Section 15.8] is a sophisticated version of this, where several
matrix-multiplication tensors are efficiently packed into a single bilinear operation
(not necessarily itself a matrix multiplication). The rank of the tensor – in fact the
border rank, which will be defined below – is used to keep track of the complexity of
the resulting recursive algorithm, and appears in the resulting inequality for !. This
idea of recursion is also behind the “group-theoretic” algorithms described in the next
section.

We have mentioned that the exponent of matrix multiplication may be defined in
terms of the rank R

�hn; n; ni�:
!.F/ D inf

˚
� 2 R j R�hn; n; ni� D O.n� /�:

The reason for dealing with the rank rather than directly with the complexity mea-
sure is that the rank is better behaved with respect to certain operations, and this
will be useful for deriving bounds on the asymptotic complexity via recursion. In
particular [BCS97, Proposition 14.23], we have

R.'1 ˝ '2/ � R.'1/˝R.'2/
for bilinear maps'1 and'2, while the corresponding inequality withL in place ofR is
not known to be true. Let he; h; li be the tensor ofMe�h�Mh�l !Me�l matrix mul-
tiplication. Since he; h; li˝ he0; h0; l 0i Š hee0; hh0; l l 0i [BCS97, Proposition 14.26],
we haveR

�hee0; hh0; l l 0i� D R�he; h; li�R�he0; h0; l 0i�. Using properties of the rank
function, it is easy to derive bounds on ! given estimates of the rank of a particular
tensor.

Example. If R
�hh; h; hi� � r , then h! � r .

The first generalization is to allow rectangular matrices, via symmetrization: we
have

R
�he; h; li� D R�hh; l; ei� D R�hl; e; hi�

(another nice property of the rank not shared by the multiplicative complexity), so if
R
�he; h; li� � r , then R

�hehl; ehl; ehli� � r3, and therefore

.ehl/!=3 � r: (4)

The next refinement is to multiply several matrices at once. But first we need to
discuss border rank. The border rank appears as follows. The idea is that one may be
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able to approximate a tensor t of a certain rank by a family t1."/ D Pr
iD1 ui ."/˝

vi ."/˝ wi ."/ of tensors of possibly smaller rank, meaning

"1�qt1."/ D t CO."/
for some positive integer q. The border rank R.t/ is the smallest r for which this is
possible. This has a geometric interpretation, studied by Landsberg [Lan08].

The border rank is always less than or equal to the rank, and shares some of its
properties, including that of being hard to determine. Landsberg [Lan06] proved
that R

�h2; 2; 2i� D R
�h2; 2; 2i� D 7, but for n D 3 the best result known is

14 � R�h3; 3; 3i� � 21 (to be compared with the estimate 19 � R�h3; 3; 3i� � 23
mentioned before).

The border rank may be strictly less than the rank. For instance, the rank of

t D x1 ˝ y1 ˝ .z1 C z2/C x1 ˝ y2 ˝ z1 C x2 ˝ y1 ˝ z1
is 3, but its border rank is only 2:

"�1t1."/´ "�1�." � 1/x1 ˝ y1 ˝ z1 C .x1 C "x2/˝ .y1 C "y2/˝ .z1 C "z2/�
D t CO."/;

as can be seen by expanding the left-hand side.
The importance of the border rank is that, as in this example, the original tensor

may be recovered from t1."/ by computing the coefficient of some power of "; in
other words, from such an approximate algorithm for computing t we may recover an
exact one. This expansion increases the number of monomials, so this does not help
to compute t itself; the magic happens when we compute t˝N for large N . Taking
tensor powers corresponds to multiplying matrices recursively.

The border rank replaces the rank in a refinement of (4), so that R
�he; h; li� � r

implies .ehl/!=3 � r . A bit of work, generalizing this to the case of several simulta-
neous matrix multiplications, results in Schönhage’s asymptotic sum inequality

R
� sM
iD1
hei ; hi ; li i

�
� r H)

sX
iD1
.eihi li /

!=3 � r: (5)

From these sorts of considerations, one can see that good bounds on the asymptotic
complexity of matrix multiplication can be obtained by constructing specific tensors
of small border rank which contain matrix tensors as components; this is the idea
behind Strassen et al.’s laser method.

The principle of the laser method [BCS97, Proposition 15.41] is to look for a
tensor t , of small border rank, which has a direct-sum decomposition into blocks each
of which is isomorphic to a matrix tensor, and whose support is “tight”, ensuring that
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in a large power of t one can find a sufficiently large direct sum of matrix tensors.
Then one can apply (5).

This combinatorial method was used by Coppersmith and Winograd [CW90] to
derive ! < 2:376, the best estimate currently known.

1.3. Group-theoretic methods of fast matrix multiplication. As explained in the
previous section, the general principle is to embed several simultaneous matrix mul-
tiplications in a single tensor, via some combinatorial construction to ensure that the
embedding is efficient.

A rough sketch of Cohn et al.’s [CKSU05] “group-theoretic” algorithms is that
they involve embedding matrix multiplication into multiplication in a group alge-
bra CŒG� of a finite group G. The embedding uses three subsets of G satisfying
the “triple product property” to encode matrices as elements of the group algebra,
so that the matrix product can be read off the corresponding product in CŒG�. The
number of operations required to multiply two matrices is, therefore, less than or
equal to the number of operations required to multiply two elements of CŒG�. As a
ring, CŒG� ŠMd1�d1.C/ � � � � �Mdr�dr .C/, where d1; : : : ; dr are the dimensions
of the irreducible representations of G (see, for instance, [Lam01, Chapter 3]). This
isomorphism may be realized as a Fourier transform on G, which can be computed
efficiently. In other words, multiplication in CŒG� is equivalent to several smaller
matrix multiplications, and one can apply the algorithm recursively in order to get a
bound on !.

Cohn et al.’s embedding is of a very particular type, based on the following triple
product property: if there are subsetsX; Y; Z � G such that xx0�1yy0�1zz0�1 D 1,
then x D x0, y D y0, and z D z0. This realizes the jX j � jY j by jY j � jZj matrix
multiplicationAB by sending axy to

P
axyx

�1y and by0z to
P
by0zy

0�1z; the triple
product property ensures that one can extract the matrix product from the product in
the group algebra by looking at the coefficients of x�1z for x 2 X and z 2 Z.

It may be more convenient, as in the previous section, to encode several matrix
multiplications via the simultaneous triple product property: for Xi ; Yi ; Zi � H

one should have xix0
j

�1
yjy

0
k

�1
zkz

0
i
�1 D 1 �! i D j D k and xi D x0

i , yi D y0
i ,

zi D z0
i . It follows from (5) that

X
i

�jXi jjYi jjZi j�!=3 �X
k

d!k :

We remark that the simultaneous triple product property in H reduces to the triple
product property in the wreath product G D Hn Ì Symn, so the groups actually
output by this method turn out rather large.

From this initial description it is not at all clear what kinds of groups will give
good bounds. To this end, Cohn et al. introduce several combinatorial constructions,



388 O. Holtz and N. Shomron

analogous to those of Coppersmith and Winograd, which produce subsets satisfy-
ing the simultaneous triple product property inside powers H k of a finite Abelian
groupH , and hence the triple product property inside wreath products ofH with the
symmetric group. This reproduces the known bounds ! < 2:376, etc.

The group-theoretic method therefore provides another perspective on efficiently
packing several independent matrix multiplications into one. In both cases the es-
sential problem seems to be a combinatorial one, and one can state combinatorial
conjectures which would imply ! D 2.

1.4. Asymptotic complexity of other linear problems. One can also use recursive
“divide-and-conquer” algorithms to prove that the asymptotic complexity of other
problems in linear algebra is the same as that of matrix multiplication. This justifies
the emphasis placed on matrix multiplication in numerical linear algebra.

As a simple example, we will begin with

Example (matrix inversion). On one hand, we have the identity

0
@I A 0

0 I B

0 0 I

1
A

�1

D
0
@I �A AB

0 I �B
0 0 I

1
A ;

which shows that two n�nmatrices may be multiplied by inverting a 3n�3nmatrix.
This shows that if an invertible n� n matrix can be inverted in O.n!C�/ operations,
then the product of two arbitrary n�nmatrices can also be computed inO.n!C�/ op-
erations.

In the other direction, consider the identity

	
A B

C D


�1
D
	
A�1 C A�1BS�1CA�1 �A�1BS�1

�S�1CA�1 S�1


; S WD D � CA�1B:

This shows that inversion of
�
A B
C D

� 2M2n�2n.C/ can be reduced to a certain (fixed)
number of n � n matrix multiplications and inversions.4 Unfortunately, the indi-
cated inverses, e.g., A�1, may not exist. This defect may be remedied by writing�
A B
C D

� D X D X�.XX�/�1. Now XX� is a positive-definite Hermitian matrix,
to which the indicated algorithm may be applied (both its upper-left block and its
Schur complement will be positive-definite and Hermitian). We conclude that fast
multiplication implies fast inversion of positive-definite Hermitian, and therefore of
arbitrary (invertible), matrices.

Example (LU decomposition). Suppose, for instance, that one wishes to decompose
a matrix A as A D LUP , where L is lower triangular and unipotent, U is upper

4For instance, 2 inversions and 6 multiplications.
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triangular, and P is a permutation matrix. Note that not every matrix has such a
decomposition; a sufficient condition for it to exist is that A have full row rank.

One can give a recursive algorithm [BCS97, Theorem 16.4], due to Bunch and
Hopcroft, for computing the decomposition in case A has full row rank, via a
2 � 2 block decomposition of A. This involves one inversion of a triangular ma-
trix, two applications of the algorithm to smaller matrices, and several matrix mul-
tiplications; we elide the details. Since multiplication and inversion can be done
fast, analysis of this algorithm shows that if an n � n matrix can be multiplied in
O.n!C�/ operations, then the LU decomposition of anm� nmatrix can be done in
O.nm!C��1/ operations, that is O.n!C�/ in the case of a square matrix.

To show, conversely, that fast LU decomposition implies fast matrix multiplica-
tion, one notes that detA may be computed from an LU decomposition of A, and
that computing determinants is at least as hard as matrix multiplication (cf. [BCS97,
Theorem 16.7]). This shows that the exponents of matrix multiplication,LU decom-
position, and determinants coincide.5

Further examples involving other linear problems may be found in the literature;
see [BCS97] and also Section 2.3.

2. Numerical stability of linear problems

Numerical stability is just as important for the implementation of any algorithm as
computational cost, since accumulation and propagation of roundoff errors may sig-
nificantly distort the output of the algorithm, making the algorithm essentially useless.
On the other hand, if roundoff error bounds can be established for a given algorithm,
this guarantees that its output values can be trusted to lie within the regions provided
by the error bounds. Moreover, such regions can typically be made small by increas-
ing the hardware precision appropriately. Fast matrix multiplication algorithms, from
Strassen’s algorithm to the recent group-theoretic algorithms of Cohn et al., can be
analysed in a uniform fashion from the stability point of view [DDHK07].

The roundoff-error analysis of Strassen’s method was first performed by Brent
([Bre70], [Hig90], see also Chapter 23 in [Hig02]). The analysis of subsequent
Strassen-like algorithms is due a number of authors, most notably by Bini and
Lotti [BL80]. This latter approach was advanced in [DDHK07] to build an inclusive
framework that accommodates all Strassen-like algorithms based on stationary par-
titioning, bilinear algorithms with non-stationary partitioning, and finally the group-
theoretic algorithms of the kind developed in [CU03] and [CKSU05]. Moreover,
combining this framework with a result of Raz [Raz03], one can prove that there exist

5Compare this result on determinants with the problem of computing the permanent, which is NP-hard!
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numerically stable matrix multiplication algorithms which perform O.n!C�/ opera-
tions, for arbitrarily small � > 0, where ! is the exponent of matrix multiplication.

The starting point of the error analysis [DDHK07] is the so-called classical model
of rounded arithmetic, where each arithmetic operation introduces a small multiplica-
tive error, i.e., the computed value of each arithmetic operation op.a; b/ is given by
op.a; b/.1C �/ where j� j is bounded by some fixed machine precision " but is oth-
erwise arbitrary. The arithmetic operations in classical arithmetic are fC;�; �g. The
roundoff errors are assumed to be introduced by every execution of any arithmetic op-
eration. It is further assumed that all algorithms output the exact value in the absence
of roundoff errors (i.e., when all errors � are zero).

The error analysis can be performed with respect to various norms on the matrices
A, B , C D AB , as will be made clear in the next section. It leads to error bounds of
the form

kCcomp � Ck � �.n/"kAk kBk CO."2/; (6)

with �.n/ typically low-degree polynomials in the order n of the matrices involved,
so that �.n/ D O.nc/ for some constant c. Switching from one norm to another is
always possible, using the equivalence of norms on a finite-dimensional space, but
this may incur additional factors that depend on n.

2.1. Recursive matrix multiplication: Strassen and beyond. In his breakthrough
paper [Str69], Strassen observed that the multiplication of two 2 � 2 block ma-
trices requires only 7 (instead of 8) block multiplications, and used that remark-
able observation recursively to obtain a matrix-multiplication algorithm with running
time O.nlog2 7/. Precisely, the product

	
A11 A12
A21 A22



�
	
B11 B12
B21 B22



D
	
C11 C12
C21 C22




can be computed by calculating the submatrices

M1 D .A11 C A22/.B11 C B22/;
M2 D .A21 C A22/B11;
M3 D A11.B12 � B22/;
M4 D A22.B21 � B11/;
M5 D .A11 C A12/B22;
M6 D .A21 � A11/.B11 C B12/;
M7 D .A12 � A22/.B21 C B22/;
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and then combining them linearly as

C11 DM1 CM4 �M5 CM7;

C12 DM3 CM5;

C21 DM2 CM4;

C22 DM1 �M2 CM3 CM6:

Starting with matrices of dyadic order, this algorithm can be applied by recursively
partitioning each matrix into four square blocks and running these computations. This
yields running time O.nlog2 7/ � O.n2:81/. Since any matrix can be padded with
zeros to achieve the nearest dyadic order, the dyadic size assumption is not restrictive
at all.

The breakthrough of Strassen generated a flurry of activity in the area, leading
to a number of subsequent improvements, among those by Pan [Pan78], Bini et
al. [BCRL79], Schönhage [Sch81], Strassen [Str87], and eventually Coppersmith
and Winograd [CW90]. Each of these algorithms is Strassen-like, i.e., uses recursive
partitioning and a special “trick” to reduce the number of block matrix multiplications.

Such recursive algorithms for matrix multiplication can be analysed as follows.
Recall that bilinear functions can be evaluated via bilinear algorithms, as in Equa-
tion (2). Since they do not use commutativity of the coordinates, these algorithms
apply equally well when the input entries are elements of a non-commutative algebra;
their recursive use for matrix multiplication is then straightforward. A bilinear non-
commutative algorithm (see [BL80] or [BD78]) that computes products C D AB

inMk�k.F/ using t non-scalar multiplications over a subfield H � F (not necessarily
equal to F )6 is determined by three k2�t matrices U , V and W with elements in H
such that

chl D
tX
sD1

wrsPs; where Ps D
� k2X
iD1

uisxi

�� k2X
jD1

vjsyj

�
;
r D k.h � 1/C l;
h; l D 1; : : : ; k;

(7)
where xi (resp. yj ) are the elements of A D .aij / (resp. of B D .bij /) ordered
column-wise, and C D .cij / is the product C D AB .

For an arbitrary n, the algorithm consists of recursive partitioning and applying (7)
to compute products of resulting block matrices. More precisely, suppose thatA andB
are of size n�n, where n is a power of k (which can always be achieved by padding the
matrices A and B with zero columns and rows, as we already mentioned). Partition
A and B into k2 square blocks Aij , Bij of size .n=k/�.n=k/. Then the blocks Chl
of the product C D AB can be computed by applying (7) to the blocks of A and B ,
where each block Aij , Bij has to be again partitioned into k2 square sub-blocks

6Field extensions have no effect on the asymptotic complexity, but changing H will affect the constants
in �.n/.
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to compute the t products Ps and then the blocks Chl . The algorithm obtained by
running this recursive procedure logk n times computes the product C D AB using
at most O.nlogk t / multiplications.

Theorem ([DDHK07, Theorem 3.1]). A bilinear non-commutative algorithm for
matrix multiplication based on stationary partitioning is stable. It satisfies the error
bound (6) where k � k is the maximum-entry norm and where

�.n/ D �1Cmax
r;s
.˛s C ˇs C �r C 3/ logk n

� � �emax � kU k kV k kW k�logk n:

Here ˛s D dlog2 ase, ˇs D dlog2 bse and �r D dlog2 cre where as and bs (resp. cr )
are the number of non-zero entries of U and V (resp. W ) in column s (resp. row r),
while emax is an integer that depends (in a rather involved way) on the sparsity
pattern of the matrices U , V and W .

This theorem can be subsequently combined with the result of Raz [Raz03] that
the exponent of matrix multiplication is achieved by bilinear non-commutative algo-
rithms [Raz03] to produce an important corollary:

Corollary ([DDHK07, Theorem 3.3]). For every � > 0 there exists an algorithm
for multiplying n-by-nmatrices which performsO.n!C�/ operations (where ! is the
exponent of matrix multiplication) and which is numerically stable, in the sense that
it satisfies the error bound (6) with �.n/ D O.nc/ for some constant c depending on
� but not n.

The analysis of stationary algorithms extends to bilinear matrix multiplication
algorithms based on non-stationary partitioning. This means that the matricesAŒj �s;comp

and B Œj �s;comp are partitioned into k�k square blocks, but k depends on the level of
recursion, i.e., k D k.j /, and the corresponding matrices U , V and W also depend
on j : U D U.j /, V D V.j /, W D W.j /. Otherwise the algorithm proceeds
exactly like the stationary algorithms.

Finally, algorithms that combine recursive non-stationary partitioning with pre-
and post-processing given by linear maps Pren. / and Postn. / acting on matrices of
an arbitrary order n can be analysed using essentially the same approach [DDHK07].
Suppose that the matricesA andB are each (linearly) pre-processed, then partitioned
into blocks, respective pairs of blocks are multiplied recursively and assembled into a
large matrix, which is then (linearly) post-processed to obtain the resulting matrix C .

The analysis in [DDHK07] is performed for an arbitrary consistent (i.e., submul-
tiplicative) norm k � k that in addition must be defined for matrices of all sizes and
must satisfy the condition

max
s
kMsk � kMk �

X
s

kMsk (8)
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whenever the matrixM is partitioned into blocks .Ms/s (an example of such a norm
is provided by the 2-norm k�k2). Note that the previously mentioned maximum-entry
norm satisfies (8) but is not consistent, i.e., does not satisfy

kABk � kAk � kBk for all A; B:

Denoting the norms of pre- and post- processing maps subordinate to the norm
k � k by k � kop, we suppose that the pre- and post-processing is performed with errors

kPren.M/comp � Pren.M/kop � fpre.n/"kMk CO."2/;
kPostn.M/comp � Postn.M/kop � fpost.n/"kMk CO."2/;

where n is the order of the matrix M . As before, we denote by �.n/ the coefficient
of " in the final error bound (6).

Under all these assumptions, the following error estimate follows:

Theorem ([DDHK07, Theorem 3.5]). A recursive matrix multiplication algorithm
based on non-stationary partitioning with pre- and post-processing is stable. It
satisfies the error bound (6), with the function � satisfying the recursion

�.nj / D �.njC1/tj kPostnj kop kPrenj k2op

C 2fpre.nj /tj kPostnj kop C fpost.nj /kPrenj k2op

for j D 1; : : : ; p.

2.2. Group-theoretic matrix multiplication. In this section we describe the group-
theoretic constructions of Cohn et al. Our exposition closely follows the pertinent
parts of [DDHK07]. To give a general idea about group-theoretic fast matrix multi-
plication, we must first recall some basic definitions from algebra.

Definition (semidirect product). If H is any group and Q is a group which acts
(on the left) by automorphisms of H , with q � h denoting the action of q 2 Q on
h 2 H , then the semidirect product H ÌQ is the set of ordered pairs .h; q/ with the
multiplication law

.h1; q1/.h2; q2/ D .h1.q1 � h2/; q1q2/: (9)

We will identify H � f1Qg with H and f1H g � Q with Q, so that an element
.h; q/ 2 H ÌQ may also be denoted simply by hq. Note that the multiplication law
of H ÌQ implies the relation qh D .q � h/q.

Definition (wreath product). If H is any group, S is any finite set, and Q is a group
with a left action on S , the wreath productH oQ is the semidirect product .HS /ÌQ
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where Q acts on the direct product of jS j copies of H by permuting the coordinates
according to the action ofQ on S . (To be more precise about the action ofQ onHS ,
if an element h 2 HS is represented as a function h W S ! H , then q � h represents
the function s 7! h.q�1.s//:)

Definition (triple product property, simultaneous triple product property). If H is
a group and X; Y; Z are three subsets, we say X; Y; Z satisfy the triple product
property if it is the case that for all qx 2 Q.X/, qy 2 Q.Y /, qz 2 Q.Z/, if
qxqyqz D 1 then qx D qy D qz D 1. Here Q.X/ D Q.X;X/ is the set of
quotients; Q.S; T / WD fst�1 j s 2 S; t 2 T g � H .

If f.Xi ; Yi ; Zi / j i 2 I g is a collection of ordered triples of subsets of H , we
say that this collection satisfies the simultaneous triple product property (STPP) if
it is the case that for all i; j; k 2 I and all qx 2 Q.Xi ; Xj /, qy 2 Q.Yj ; Yk/,
qz 2 Q.Zk; Zi /, if qxqyqz D 1 then qx D qy D qz D 1 and i D j D k.

Definition (Abelian STP family). An Abelian STP family with growth parame-
ters .˛; ˇ/ is a collection of ordered triples .HN ; ‡N ; kN /, defined for all N > 0,
satisfying

(1) HN is an Abelian group,

(2) ‡N D f.Xi ; Yi ; Zi / j i D 1; 2; : : : ; N g is a collection of N ordered triples of
subsets of HN satisfying the simultaneous triple product property,

(3) jHN j D N ˛Co.1/,
(4) kN DQN

iD1 jXi j D
QN
iD1 jYi j D

QN
iD1 jZi j D N ˇNCo.N/.

Recall from Section 1.3 that in [CKSU05] matrix-multiplication algorithms are
constructed based on families of wreath products of Abelian groups.

To get into more details, we must recall basic facts about the discrete Fourier
transform of an Abelian group. For an Abelian group H , let yH denote the set of
all homomorphisms from H to S1, the multiplicative group of complex numbers
with unit modulus. Elements of yH are called characters and are usually denoted
by the letter �. The sets H; yH have the same cardinality. When H1; H2 are two
Abelian groups, there is a canonical bijection between the sets �H1 � �H2 and .H1 �
H2/

^; this bijection maps an ordered pair .�1; �2/ to the character � given by the
formula �.h1; h2/ D �1.h1/�2.h2/: Just as the symmetric group Symn acts on Hn

via the formula 	 � .h1; h2; : : : ; hn/ D .h��1.1/; h��1.2/; : : : ; h��1.n//; there is a

left action of Symn on the set yHn defined by the formula 	 � .�1; �2; : : : ; �n/ D
.���1.1/; ���1.2/; : : : ; ���1.n//:

Notation. The notation „.Hn/ will be used to denote a subset of yHn containing
exactly one representative of each orbit of the Symn action on yHn. An orbit of this
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action is uniquely determined by a multiset consisting of n characters of H , so the
cardinality of „.Hn/ is equal to the number of such multisets, i.e.

�jH jCN�1
N

�
:

Given an Abelian STP family, the corresponding recursive matrix multiplication
algorithm is defined as follows. Given a pair of n-by-n matrices A;B , find the
minimum N such that kN � NŠ � n, and denote the group HN by H . If NŠ � n,
multiply the matrices using an arbitrary algorithm. (This is the base of the recursion.)
Otherwise reduce the problem of computing the matrix product AB to

�jH jCN�1
N

�
instances of NŠ � NŠ matrix multiplication, using a reduction based on the discrete
Fourier transform of the Abelian group HN .

Padding the matrices with additional rows and columns of 0’s if necessary, one
may assume that kN �NŠ D n. Define subsets X; Y;Z � H o SymN as

X D
� NY
iD1

Xi

�
� SymN ; Y D

� NY
iD1

Yi

�
� SymN ; Z D

� NY
iD1

Zi

�
� SymN :

These subsets satisfy the triple product property [CKSU05]. Note that jX j D jY j D
jZj D n: Now treat the rows and columns of A as being indexed by the sets X; Y ,
respectively; treat the rows and columns of B as being indexed by the sets Y; Z,
respectively.

The algorithm uses two auxiliary vector spaces CŒH oSymN � and CŒ yHNÌSymN �,
each of dimensionality jH jNNŠ and each with a specific basis: the basis for CŒH o
SymN � is denoted by f eg j g 2 H o SymN g, and the basis for CŒ yHN Ì SymN � is
denoted by f e�;� j � 2 yHN ; 	 2 SymN g.

The Abelian STP algorithm from [CKSU05] performs the following steps, which
will be labelled according to whether they perform arithmetic or not. (For example,
a permutation of the components of a vector does not involve any arithmetic.)

1. Embedding (no arithmetic).
Compute the following pair of vectors in CŒH o SymN �:

a WD
X
x2X

X
y2Y

Axyex�1y ;

b WD
X
y2Y

X
z2Z

Byzey�1z :

2. Fourier transform (arithmetic).
Compute the following pair of vectors in CŒ yHN Ì SymN �:

Oa WD
X
�2 yHN

X
�2SymN

� X
h2HN

�.h/a�h

�
e�;� ;

Ob WD
X
�2 yHN

X
�2SymN

� X
h2HN

�.h/b�h

�
e�;� :
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3. Assemble matrices (no arithmetic).
For every � 2 „.HN /, compute the following pair of matrices A�; B�, whose
rows and columns are indexed by elements of SymN :

A��� WD Oa���;���1 ;

B��� WD Ob� ��;���1 :

4. Multiply matrices (arithmetic).
For every� 2 „.HN /, compute the matrix productC � WDA�B� by recursively
applying the Abelian STP algorithm.

5. Disassemble matrices (no arithmetic).
Compute a vector Oc WDP�;� Oc�;�e�;� 2 CŒ yHN Ì SymN � whose components
Oc�;� are defined as follows. Given �; 	; let �0 2 „.HN / and � 2 SymN be
such that � D � � �0: Let

Oc�;� WDC �0�;�� :
6. Inverse Fourier transform (arithmetic).

Compute the following vector c 2 CŒH o SymN �.

c WD
X
h2HN

X
�2SymN

	
1

jH jN
X
�2 yHN

�.�h/ Oc�;�


e�h:

7. Output (no arithmetic).
Output the matrix C D .Cxz/ whose entries are given by the formula

Cxz WD cx�1z :

The main result of [DDHK07] establishes the numerical stability of all Abelian
STP algorithms.

Theorem ([DDHK07, Theorem 4.13]). If f.HN ; ‡N ; kN /g is an Abelian STP family
with growth parameters .˛; ˇ/, then the corresponding Abelian STP algorithm is
stable. It satisfies the error bound (6), with the Frobenius norm and the function �
of order

�.n/ D n˛C2
2ˇ

Co.1/:

Remark ([DDHK07, Remark 4.15]). The running time of an Abelian STP algorithm
can also be bounded in terms of the growth parameters of the Abelian STP family.
Specifically, the running time is [CKSU05] O

�
n.˛�1/=ˇ Co.1/

�
: Note the curious
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interplay between the two exponents, .˛�1/=ˇ and .˛C2/=2ˇ: their sum is always
bigger than 3, since ˛ � 2ˇ C 1 is one of the requirements for an Abelian STP
construction:

˛ � 1
ˇ
C ˛ C 2

2ˇ
D 3˛

2ˇ
� 6ˇ C 3

2ˇ
> 3:

2.3. Matrix decompositions and other linear problems. The results about matrix
multiplication from the previous section can be extended to show that essentially all
linear algebra operations can also be done stably, in time O.n!/ or O.n!C�/, for
arbitrary � > 0 [DDH07]. For simplicity, whenever an exponent contains “C�”, it
will henceforth mean “for any � > 0”. Below we summarize the main results of
[DDH07].

The first result in [DDH07] can be roughly summarized by saying that n-by-n
matrices can be multiplied inO.n!C�/ operations if and only if n-by-nmatrices can
be inverted stably inO.n!C�/ operations. Some extra precision is necessary to make
this claim; the cost of extra precision is included in the O.n�/ factor.

Other results in [DDH07] may be summarized by saying that if n-by-n matrices
can be multiplied in O.n!C�/ arithmetic operations, then the QR decomposition
can be computed stably (moreover, linear systems and least squares problems can
be solved stably) in O.n!C�/ arithmetic operations. These results do not require
extra precision, which is why one needs to count arithmetic operations rather than bit
operations.

The QR decomposition can be used to stably compute a rank-revealing decom-
position, the (generalized) Schur form, and the singular value decomposition, all
in O.n!C�/ arithmetic operations. Computing (generalized) eigenvectors from the
Schur form, can be done by solving the (generalized) Sylvester equation, all of which
can be done stably in O.n!C�/ bit operations.

Here are a few more details about the work in [DDH07]. The paper starts off by
reviewing conventional block algorithms used in libraries like LAPACK [ABBC99]
and ScaLAPACK [BCCC97]. The normwise backward stability of these algorithms
was shown earlier [Hig90], [DHS95], [Hig02] using (6) as an assumption. This means
that these algorithms are guaranteed to produce the exact answer (e.g., solution of a
linear system) for a matrix OC close to the actual input matrix C , where close means
close in norm:

k OC � Ck D O."/kCk:
Here the O."/ is interpreted to include a factor nc for a modest constant c.

The running-time analysis of these block algorithms in [DDH07] shows that these

block algorithms run only as fast asO.n
9�2�
4�� / operations, whereO.n	 / is the opera-

tion count of matrix multiplication, with � used instead of !C� to simplify notation.
Even if � were to drop from 3 to 2, the exponent 9�2	

4�	 would only drop from 3
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to 2.5, providing only a partial improvement. However, further results in [DDH07]
demonstrate that one can do better.

The next step in [DDH07] is the application of known divide-and-conquer algo-
rithms for reducing the complexity of matrix inversion to the complexity of matrix
multiplication. These algorithms are not backward stable in the conventional sense.
However, they can be shown to achieve the same forward error bound (bound on the
norm of the error in the output) as a conventional backward stable algorithm, pro-
vided that they use just O.logp n/ times as many bits of precision in each arithmetic
operation (for some p > 0) as a conventional algorithm. Such algorithms are called
logarithmically stable.

Incorporating the cost of this extra precise arithmetic in the analysis only increases
the total cost by a factor at most log2p n. Therefore, if there are matrix multiplication
algorithms running inO.n!C�/ operations for any � > 0, then these logarithmically
stable algorithms for operations like matrix inversion also run inO.n!C�/ operations
for any � > 0, and satisfy the same error bound as a conventional algorithm.

A divide-and-conquer algorithm for QR decomposition from [EG00] is simul-
taneously backward stable in the conventional normwise sense (i.e., without extra
precision), and runs inO.n!C�/ operations for any � > 0. This algorithm may be in
turn used to solve linear systems, least-squares problems, and compute determinants
equally stably and fast. The same idea applies to LU decomposition but stability
depends on a particular pivoting assumption [DDH07].

The QR decomposition can then be used to compute a rank-revealingURV decom-
position of a matrixA. This means thatU andV are orthogonal,R is upper triangular,
and R reveals the rank of A in the following sense: Suppose 	1 � � � � � 	n are the
singular values of A. Then for each r , 	min.R.1 W r; 1 W r// is an approximation
of 	r and 	max.R.r C 1 W n; r C 1 W n// is an approximation of 	rC1. The algorithm
in [DDH07] is randomized, in the sense that the approximations of 	r and 	rC1 are
reasonably accurate with high probability.

Finally, the QR and URV decompositions in algorithms for the (generalized)
Schur form of nonsymmetric matrices (or pencils) [BDG97] lower their complexity
to O.n!C�/ arithmetic operations while maintaining normwise backward stability.
The singular-value decomposition may in turn be reduced to solving an eigenvalue
problem with the same complexity. Computing (generalized) eigenvectors can only
be done in a logarithmically stable way from the (generalized) Schur form. This is
done by providing a logarithmically stable algorithm for solving the (generalized)
Sylvester equation, and using this to compute eigenvectors.

This covers nearly all standard dense linear algebra operations (LU decomposition,
QR decomposition, matrix inversion, linear equation solving, solving least squares
problems, computing the (generalized) Schur form, computing the SVD, and solving
(generalized) Sylvester equations) and shows that all those problems can be solved
stably and asymptotically as fast as the fastest matrix multiplication algorithm that



Computational complexity and numerical stability of linear problems 399

may ever exist (whether the fastest matrix multiplication algorithm is stable or not).
For all but matrix inversion and solving (generalized) Sylvester equations, stability
means backward stability in a normwise sense, and the complexity is measured by
the usual count of arithmetic operations.
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convex sets, according to which the uniform measure on a high-dimensional convex body has
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1. Introduction

This article is concerned with probability measures in high dimension that satisfy cer-
tain geometric convexity assumptions. Probability distributions on high dimensional
spaces appear in quite a few branches of mathematics and mathematical physics.
From probability theory to quantum physics, from analysis and combinatorics to
statistical mechanics, it is not uncommon to study a distribution, or a family of distri-
butions, on a space of many “equally important” parameters. These high-dimensional
measures are usually, but not always, quite concrete. A general study of probability
distributions in high dimension is likely hopeless, as such distributions may exhibit a
wide range of entirely unrelated phenomena (see [36] for a possible slight exception).

There seem to exist, nevertheless, some large classes of distributions which obey
some interesting, non-trivial principles. One of the earliest such examples is provided
by the classical Central Limit Theorem. Suppose we are given a probability density
f W Rn ! Œ0;1/ which is a product density, i.e.,

f .x1; : : : ; xn/ D
nY
iD1

fi .xi /

for some functions f1; : : : ; fn. Then f is the joint density of n independent random
variablesX1; : : : ; Xn. Assume that the dimension n is large. Under mild integrability

�The author is a Clay Research Fellow, and is also supported by NSF grant #DMS-0456590.
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assumptions on the fi ’s, it is guaranteed that

P
� nX
iD1

�iXi � t
�
� 1p

2�

Z t

�1
exp

��.s � b/2=2� ds for all t 2 R; (1)

for appropriate coefficients b; �1; : : : ; �n 2 R. Stated differently, any product density
f has marginals that are approximately gaussian. This fact demonstrates that product
densities enjoy strong regularity properties in high dimension. Moreover, when the
density f is properly normalized (such thatX1; : : : ; Xn have mean zero and variance
one), the gaussian approximation (1) actually holds for “most” choices of �1; : : : ; �n 2
R with

P
i �
2
i D 1. By “most” we mean that the coefficients �1; : : : ; �nmay be chosen

randomly, uniformly on the unit sphere Sn�1 in Rn.
The case of independent random variables is perhaps the paradigmatic example for

high-dimensional measures with a clear structure, distributions that are composed of
basic building blocks. Another source for regularity in the study of high-dimensional
measures is symmetry; Measures that possess symmetries, whether they be apparent
or hidden, are usually easier to analyze.

In this article, we revisit the central limit theorem and related principles from a
more geometric point of view. Rather than exploiting the structure or symmetries of a
given high-dimensional distribution, our plan is to investigate classes of densities with
certain geometric characteristics. In particular, we shall see that convexity conditions
fit very well with high dimensionality. The study of uniform measures on arbitrary
high-dimensional convex sets turns out to be quite fruitful, as well as the study of
probability densities of the form exp.�H/, for a convex function H W Rn ! R.
The spatial arrangement of volume due to the geometry of Rn, for large n, imposes
regularity and order on such convexity-related measures.

This text is based on a talk given by the author at the fifth European Congress
of Mathematics. It is not intended as a comprehensive survey of the subject, as we
are far from exhausting all of the relevant literature. I would like to thank Emanuel
Milman, Vitali Milman and Sasha Sodin for reading a preliminary version of this
note.

2. An example: The sphere

Write jxj for the standard Euclidean norm of x 2 Rn, and x � y for the usual scalar
product of x; y 2 Rn. The unit sphere in Rn is Sn�1 D fx 2 Rn I jxj D 1g : For a
set A � Sn�1 and " > 0 denote

A" D fx 2 Sn�1 I d.x; y/ � " for some y 2 Ag;
the "-neighborhood of A. Here, d is the geodesic distance on the sphere Sn�1, i.e.,
cos d.x; y/ D x � y. As a first example of a truly high-dimensional measure of
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geometric origin, we will discuss the uniform probability measure on Sn�1, denoted
by �n�1. The rotational-symmetry of �n�1 yields simple answers to many geometric
questions. Consider for instance the isoperimetric inequality on Sn�1, going back to
Lévy [38] and to Schmidt [51] (see the appendix in Figiel, Lindenstrauss and Milman
[22] or Benyamini [5] for simple proofs). This inequality states that for any Borel set
A � Sn�1 and " > 0,

�n�1.A/ D 1=2 H) �n�1.A"/ � �n�1.H"/; (2)

where H D fx 2 Sn�1 I x1 � 0g is a hemisphere. There are only a handful of
scenarios, in addition to the sphere, where the isoperimetric problem is completely
solved (see the recent survey by Ros [50]). In order to appreciate the quantitative
consequences of the isoperimetric inequality (2), we need to estimate �n�1.H"/ D
P .Y1 � sin "/, where Y D .Y1; : : : ; Yn/ is a random vector in Sn�1, distributed
according to �n�1. When the dimension n is large, according to Maxwell’s principle,

P .Y1 � t / D C�1
n

Z t

�1
�
1 � s2�n�3

2 ds D
r
n

2�

Z t

�1
e� s2n2 ds CO

�
1

n

�
; (3)

forCn D
R 1

�1.1�s2/.n�3/=2ds. HenceY1 is distributed approximately like a gaussian
random variable of mean zero and variance 1=n. The variance of Y1 is very small;
even though Y1 attains values in the entire range Œ�1; 1�, it is very rare for jY1j to
reach values as high as 1=10. We thus arrive at the following surprising conclusion,
which seems to contradict our low-dimensional intuition: Most of the mass of the
sphere Sn�1 in high dimension, is concentrated on a very narrow strip near the
equator fx 2 Sn�1 I x1 D 0g. The same is true, of course, for all other equators in
Sn�1. This peculiar high-dimensional effect is called the “concentration of measure”
phenomenon. See Milman [42], [43] for a thorough review of this phenomenon and
its applications.

Returning to the isoperimetric inequality (2), standard computations (see, e.g.,
Section 2 in [44]) show that

�n�1.H"/ � 1 � exp.�"2n=2/: (4)

The strong quantitative information (4), when plugged into the isoperimetric inequal-
ity (2) shows that whenever A � Sn�1 has measure 1=2, its "-neighborhood covers
almost the entire sphere, in sense of measure. Another useful consequence is the
following corollary (see [44], Section 2 and Appendix V).

Corollary 2.1 (Lévy’s lemma). Let f W Sn�1 ! R be a 1-Lipschitz function (i.e.,
f .x/ � f .y/ � d.x; y/). Denote

M D
Z
Sn�1

f .x/d�n�1.x/:
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Then for any " > 0,

�n�1
�˚
x 2 Sn�1 I jf .x/ �M j � "�� � C exp.�c"2n/;

where c; C > 0 are universal constants.

Corollary 2.1 roughly states that Lipschitz functions on the high-dimensional
sphere are effectively constant. When one evaluates such a function at, say, five
randomly selected points, the typical answer will be five numbers that are very close
to one another.

2.1. Sudakov’s theorem. One of the conclusions we mentioned in passing was
Maxwell’s observation that the marginals of �n�1 are approximately gaussian when
n is large. What other distributions in high dimension have approximately gaussian
marginals? A fundamental result in this direction is a theorem going back to Sudakov
[53] and to Diaconis and Freedman [20], to be described next. LetX D .X1; : : : ; Xn/
be a random vector in Rn with EjX j2 < 1. We assume that X is normalized as
follows:

EXi D 0; EXiXj D ıi;j for all i; j D 1; : : : ; n: (5)

Equivalently, all of the one-dimensional marginals ofX have mean zero and variance
one. A random vector that satisfies the normalization condition (5) will be called
“isotropic”. It turns out that the crucial property of X in the context of gaussian
marginals is a certain thin spherical shell bound:

Theorem 2.2 (Sudakov [53], Diaconis and Freedman [20], von Weizsäcker [54],
Anttila, Ball and Perissinaki [1], Bobkov [6], ...). Let X be an isotropic random
vector in Rn and let " > 0. Assume that

P

�ˇ̌ˇ̌ jX jp
n
� 1

ˇ̌ˇ̌ � "
�
� ": (6)

Then, there exists a subset ‚ � Sn�1 with �n�1.‚/ � 1 � exp.�cpn/, such that
for any � 2 ‚ and t 2 R,

jP .X � � � t / �ˆ.t/j � C
�
"C 1

n˛

�
(7)

where ˆ.t/ D 1p
2�

R t
�1 exp

��s2=2� ds and C; c; ˛ > 0 are universal constants.

The main assumption in Theorem 2.2, the inequality (6), states that most of the
mass of the random vectorX is contained in a thin spherical shell, whose width is only
" times its radius. This thin shell assumption is in fact necessary for the conclusion of
the theorem to hold (the necessity follows from (8) below). The proof of Theorem 2.2
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is a beautiful manifestation of the concentration of measure phenomenon. Let us
briefly sketch the main ideas. Let Y be a random vector, distributed uniformly on
the sphere Sn�1, which is independent of X . Fix t 2 R. Consider the function
Ft .�/ D P .X � � � t /, defined on the sphere Sn�1. Then,

Z
Sn�1

Ft .�/d�n�1.�/ D P .jX jY1 � t / :

Note that according to (6) and (3), the random variable jX j is typically very close top
n, hence jX jY1 is approximately a standard normal random variable. Consequently,

Z
Sn�1

Ft .�/d�n�1.�/ D P .jX jY1 � t / D ˆ.t/CO
�
"C 1

n

�
: (8)

In order to deduce Theorem 2.2, we would like to show that

Ft .�/ D ˆ.t/CO
�
"C 1

n˛

�
for most � 2 Sn�1;

where “most” is interpreted in the sense of �n�1. We already know from (8) that
the average of Ft on the unit sphere is close to ˆ.t/. We thus need to show that for
most � 2 Sn�1, the value Ft .�/ is close to the average of Ft . To that end, we will
employ Corollary 2.1: Recall that Lipschitz functions deviate very little from their
mean. The function Ft is not necessarily Lipschitz (nor continuous), yet it is possible
to construct Lipschitz approximations for Ft : Take

QFt .�/ D EIt .X � �/ � Ft .�/
where It is a Lipschitz approximation of the characteristic function of .�1; t �, see
Bobkov [6] for details. This is roughly the sketch of the proof of (7) for a single,
fixed value t 2 R. By considering simultaneously the values ti D ˆ�1.i"/ for
i D 1; : : : ; b1="c, one concludes Theorem 2.2.

The above discussion demonstrates that the gaussian approximation property of
the marginals is not necessarily associated with independent random variables. The
geometry of the high-dimensional sphere is another protagonist related to gaussian
approximation principles. As a matter of fact, in comparison with the case of inde-
pendent random variables, the proof that the sphere’s marginals are close to normal
seems quite straightforward.

3. Convexity

It is easy to construct natural, isotropic probability distributions that strongly violate
the thin shell estimate (6), and consequently do not have many approximately gaussian
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marginals. For instance, write � tn�1 for the uniform probability measure on the sphere
of radius t , centered at the origin in Rn, and consider the measure

1

2

	
�
r1
n�1 C � r2n�1




for r1 D pn=2 and r2 D
p
7n=2. All marginals of this probability measure are far

from normal. Therefore, a geometric condition is needed in order to avoid this kind
of examples and deduce the existence of approximately gaussian marginals. Here we
follow the approach suggested by Anttila, Ball and Perissinaki [1] and by Brehm and
Voigt [16], and consider the relationship between thin shell bounds and convexity
assumptions.

3.1. Basic volumetric properties of convex sets. A convex body in Rn is a bounded,
open convex set. The uniform measure on a convex body has several regularity
features that are prominent mostly in high dimension. Some of these features will be
reviewed next. For subsets A;B � Rn we write AC B D fa C b I a 2 A; b 2 Bg
and also �A D f�a I a 2 Ag for � 2 R. The classical Brunn–Minkowski inequality
states that for any non-empty Borel sets A;B � Rn,

Voln .AC B/1=n � Voln.A/
1=n C Voln.B/

1=n;

where Voln is the Lebesgue measure. The Brunn–Minkowski inequality is a fun-
damental fact regarding the uniform measure on a convex domain (even though
its formulation does not mention convexity), see, e.g., Schneider [52]. A function
f W E ! Œ0;1/ is log-concave if for any x; y 2 E and 0 < � < 1,

f .�x C .1 � �/y/ � f .x/�f .y/1��:

That is, a function f is log-concave if it takes the form exp.�H/ for a convex function
H W E ! .�1;1�. In particular, the characteristic function of a convex body is
log-concave.

LetK � Rn be a convex body, and suppose thatX is a random vector distributed
uniformly on K. Let E � Rn be a subspace, and denote by ProjE the orthogonal
projection operator ontoE in Rn. One of the consequences of the Brunn–Minkowski
inequality is that the random vector ProjE .X/ has a density in the subspaceE, and this
density is log-concave. Characteristic functions of convex bodies and their marginals
are our main source of examples for log-concave densities. All marginals of all
dimensions of a log-concave density are again log-concave, see Borell [13]. The
latter fact also follows from the Prékopa–Leindler inequality which is a variant of the
Brunn–Minkowski inequality, see, e.g., [31] and references therein, or the first pages
of Pisier’s book [49].

Many questions regarding the uniform measure on a convex body may be reduced
to one-dimensional calculus problems, by using the log-concavity of the marginals.
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For instance, suppose that K is a convex body of volume one whose barycenter lies
at the origin, and let � 2 Sn�1. Denote H D fx 2 Rn I x � � D 0g. Then, as is
proven in Ball [4], Fradelizi [24] and Hensley [29],

1p
12
� Voln�1.K \H/ �

sZ
K

.x � �/2dx � 1p
2
; (9)

where Voln�1 denotes .n � 1/-dimensional volume. The inequalities in (9) are re-
duced, according to the Brunn–Minkowski inequality, to lower and upper bounds
for f 2.0/

R
R t

2f .t/ dt where f is the log-concave density of a real-valued random
variable of mean zero. It follows from (9) that when the uniform probability measure
on a convex bodyK is isotropic, then all hyperplane sections ofK through the origin
have roughly the same volume.

An additional consequence of the Brunn–Minkowski inequality that may be proven
in a similar way (see Borell [12]), goes as follows: For any random vector X that is
distributed uniformly in a convex body in Rn, and a linear functional ',

P .j'.X/j � tM/ � C exp.�ct/ for all t � 0 (10)

where M D Ej'.X/j and c; C > 0 are universal constants. In low dimension,
the inequality (10) is trivial and probably useless (in two or three dimensions, the
discussed probability is zero already for t D 10). It is the high-dimensional case in
which (10) is meaningful. The large deviations estimate (10) may be generalized to
the case where ' is a polynomial of degree d on Rn, rather than a linear functional.
In this case, the right-hand side of (10) has to be replaced by C exp.�ct1=d /, see
Bobkov [8], Bourgain [14], Carbery and Wright [17] and Nazarov, Sodin and Volberg
[46].

3.2. Spectral gap. Let � be an isotropic probability measure on Rn with a log-
concave density. We are interested in approximately gaussian marginals of � and
consequently also in spherical thin shell bounds for �. The thin shell estimate (6)
would follow from a variance bound

Z
Rn

� jxj2
n
� 1

�2
d�.x/	 1; (11)

via Chebyshev’s inequality. Here is a common line of attack on the thin-shell hypoth-
esis (see, e.g., [9]): Rather than proving (11) directly, try to establish the inequality

˛

Z
Rn
'2d� �

Z
Rn
jr'j2d� (12)

for all smooth,�-square-integrable functions ' with
R
'd� D 0. If (12) indeed holds

with ˛ 
 1=n, then (11) follows easily: It is simply the case '.x/ D jxj2=n � 1.
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Note that (12) is actually a spectral gap problem: Write exp.�H/ for the log-concave
density of �. For a smooth function ' satisfying certain growth conditions, denote

4�' D 4' � rH � r'
(for simplicity, assume that H W Rn ! R is smooth). Integrating by parts, we see
that Z

Rn
jr'j2d� D �

Z
Rn
'4�'d�:

The operator�4� is thus a positive semi-definite, densely defined symmetric operator
in L2.�/, and hence it admits an extension to a self-adjoint operator (see, e.g., [19]).
The minimal eigenvalue of�4� is zero, with a constant eigenfunction. The inequality
(12) is equivalent to a lower bound ˛ for the second eigenvalue of�4�. A conjecture
going back to Kannan, Lovász and Simonovits [30] is that (12) holds with ˛ D c, for
all isotropic, log-concave probability measures, where c > 0 is a universal constant.
Part of the appeal of this conjecture is its equivalent formulation in terms of an
isoperimetric inequality for the measure �, see Ledoux [37].

3.3. Strong uniform convexity assumptions. The spectral gap inequality (12) is
known to hold, for reasonable values of ˛, under some strong uniform convexity
assumptions. For example, denote by r2H the hessian of H . Then r2H � 0, in
the sense of symmetric matrices, as H is convex. Suppose that the following strong
convexity assumption is fulfilled:

r2H.x/ � ıI for all x 2 Rn; (13)

for some ı > 0, where I is the identity matrix. A Bochner-type integration by parts
formula (see, e.g., [3], [18]) then states that

Z
Rn
.4�'/2d� D

Z
Rn
jr2'j2HSd�C

Z
Rn
.r2H/.r'/ � r'd�

� ı
Z

Rn
jr'j2d�

(14)

under some smoothness and growth conditions for ', where j � jHS is the Hilbert–
Schmidt norm. Consequently,

.�4�/2 � �ı4�
in the sense of symmetric operators. Thus (12) holds with ˛ D ı, as was observed
by Brascamp and Lieb [15]. The assumption (13) implies, in fact, much stronger
conclusions, see Bakry and Émery [3]. An additional strong convexity assumption
that is known to imply a variance bound like (11) is related to the modulus of convexity.
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Suppose K � Rn is a convex body which is centrally symmetric (i.e., K D �K).
Consider the norm k � kK on Rn whose unit ball is K. The modulus of convexity of
K is defined as

ıK."/ D inf
²
1 � kx C ykK

2
I kxkK � 1; kykK � 1; kx � ykK � "

³

for " > 0. The modulus of convexity is always non-negative, and it is linearly
invariant (unlike the condition (13)). The larger the modulus of convexity of K,
the more “strictly-convex” is the boundary of K. Under certain assumptions on the
modulus of convexity of K and its diameter, a thin shell bound (11) was proven by
Anttila, Ball and Perissinaki [1], following the works of Arias-de-Reyna, Ball and
Villa [2] and Gromov and Milman [28]. See also Milman and Sodin [40] for related
isoperimetric inequalities.

4. A central limit theorem for convex bodies

Next we formulate a gaussian approximation result for marginals of general log-
concave densities.

Theorem 4.1 (see [33], [34]). Let X be an isotropic random vector in Rn, with
a log-concave density. Then there exists a subset ‚ � Sn�1, with �n�1.‚/ �
1 � exp.�pn/, such that for any � 2 ‚ and any measurable set A � R,

ˇ̌ˇ̌P .X � � 2 A/ � 1p
2�

Z
A

exp.�s2=2/ds
ˇ̌ˇ̌ � C

n˛
;

where C; ˛ > 0 are universal constants.

The isotropic normalization inTheorem 4.1 is used only to infer thatmostmarginals
are approximately gaussian. Without assuming thatX is isotropic, we can still assert
the existence of at least one approximately gaussian marginal. In accordance with
the discussion above, a central ingredient in the proof of Theorem 4.1 is the following
thin shell estimate: For any isotropic random vector X with a log-concave density
in Rn,

E

� jX j2
n
� 1

�2
� C

n˛
; (15)

for universal constants C; ˛ > 0 (the proof in [34] yields ˛ close to 1=5). We thus
arrive at the following fundamental, non-intuitive conclusion, conjectured by Anttila,
Ball and Perissinaki [1]: Most of the volume of a convex body in high dimension,
with the isotropic normalization, is concentrated in a very thin spherical shell.
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How can we prove the bound (15) for general log-concave densities, without mak-
ing strong uniform convexity assumptions? Let us consider first the very particular
case where the density of X is not only log-concave, but also radially symmetric in
Rn. Write f .jxj/ for the radial density of X , where f is a log-concave function
on Œ0;1/. Integrating in polar coordinates, we see that the density of the random
variable jX j is

t 7! n�nt
n�1f .t/ .t > 0/;

where �n D �n=2=	.1 C n=2/ is the volume of the n-dimensional unit ball. Such
densities are necessarily very peaked: Denote by t0 > 0 the point where the maximum
of t 7! tn�1f .t/ is attained. A standard application of Laplace’s method (see [33])
yields the bound

tn�1f .t/ � tn�1
0 f .t0/ exp

��c.t � t0/2� for jt � t0j � c
p
n; (16)

where c > 0 is a universal constant. The log-concavity of f is crucial for the
success of Laplace’s method, since it implies upper bounds for the second derivative
of log.tn�1f .t// at the point t0. The bound (16) entails that jX j is very concentrated
near its mean: Even though EjX j has the order of magnitude of

p
n, the standard

deviation of jX j is bounded by a universal constant. The inequality (15) follows with
˛ D 1, see [33] for details. An elegant argument leading to the same conclusion,
using convexity properties of the moment function, is given by Bobkov [7].

We explained how to deduce (15) in the radial case. The general log-concave
case may be reduced to the radial one by using concentration of measure techniques.
This idea is very much related to a remark by Gromov [26], Section 1.2.F. Denote by
Gn;` the grassmannian of all `-dimensional subspaces in Rn. The grassmannianGn;`
is a metric space, and it carries a unique rotationally-invariant probability measure,
denoted by �n;`, which we refer to as the uniform measure on Gn;`. When the
dimension n is large, the uniform measure on Gn;` enjoys concentration properties
similar to those described in Corollary 2.1 (see Gromov and Milman [27]).

Next, suppose that X is an isotropic random vector with a log-concave density in
Rn. For a subspace E � Rn, denote by fE W E ! Œ0;1/ the log-concave density
of the random vector ProjE .X/. Let ` be a parameter, which will have the order of
magnitude of a small, positive power of n. Our main object of study is projections of
X to different `-dimensional subspaces of Rn. Fix r > 0. Using the log-concavity
of f , it is possible to show that the map

.E; �/ 7! log fE .r�/ .E 2 Gn;`; � 2 Sn�1 \E/
may be approximated by a Lipschitz function. This is a rather technical part of the
argument, see [34] for the details. Then, we use concentration of measure principles
on the grassmannian Gn;`, to conclude that the function fE .r�/, as a function of
E and � , is “effectively constant”: For “most” subspaces E 2 Gn;` and for “most”
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� 2 Sn�1\E, the value logfE .r�/ is approximately the same. With a bit of analysis,
we deduce that for “most” subspaces E 2 Gn;` and for all � 2 Sn�1 \E, the value
fE .r�/ is roughly the same.

By considering several values of r simultaneously, we conclude that for most
subspaces E 2 Gn;`, the function fE is approximately radial. Recall that fE is the
marginal of the log-concave density f , and consequently fE is also log-concave.
To summarize, for most `-dimensional subspaces E � Rn, the function fE is the
log-concave, approximately-radial density of the isotropic random vector ProjE .X/.
According to the already established thin-shell bound for radial, log-concave densities,
for most subspaces E 2 Gn;`,

E

� jProjE .X/jp
`

� 1
�2
� C

`
: (17)

Introduce a random `-dimensional subspace E � Rn, uniformly distributed in Gn;`,
independent of X . It is well-known that jProjE .X/j D

p
`=njX j C O.jX j=pn/

with large probability of selectingE. The desired bound (15) thus follows from (17),
modulo details we skipped, see [33], [34], or [23] for the complete proof.

Theorem 4.1 is concerned with one-dimensional marginals. There are also corre-
sponding principles for multi-dimensional marginals:

Theorem 4.2 (Eldan and Klartag [21], Klartag [33], [34]). Let X be an isotropic
random vector in Rn with a log-concave density, and let ` � cn˛ be an integer. Then
there exists a subset E � Gn;`, with �n;`.E/ � 1 � exp.�pn/, such that for all
E 2 E the following holds:

(1) For any measurable set A � E,
ˇ̌ˇ̌P .ProjE .X/ 2 A/ �

Z
A

'E .x/dx

ˇ̌ˇ̌ � C

n˛
;

where 'E .x/ D .2�/�`=2 exp.�jxj2=2/.
(2) Denote by fE the density of the random vector ProjE .X/. Then for any x 2 E

with jxj � cn˛ , ˇ̌ˇ̌fE .x/
'E .x/

� 1
ˇ̌ˇ̌ � C

n˛
:

Here, C; c; ˛ > 0 are universal constants.

WhenX has a log-concave density but is not required to be isotropic, we can still
assert that ProjE .X/ is approximately gaussian for some `-dimensional subspace
E � Rn. Theorem 4.2 should be compared with the classical Dvoretzky’s theorem.
The relation between measure projections and Dvoretzky’s theorem was noted already
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by Gromov [26], Section 1.2.F. In Milman’s form [41], Dvoretzky’s theorem states
that for any convex body K � Rn, there exists a subspace E � Rn of dimension
bc lognc, such that the geometric projection

ProjE .K/ D fProjE .x/ I x 2 Kg
is approximately a Euclidean ball in the subspace E. Here, c > 0 is a universal
constant. The logarithmic dependence on the dimension is tight. Theorem 4.2 is
concerned with the full measure projection, or marginal, of the uniform measure on
K. We learn that one can project the uniform measure of the convex bodyK � Rn to
dimensions as large as bncc, and obtain an approximate gaussian. Here, again, c > 0
is a universal constant.

Both the geometric projection and the measure projection of a convex body bring
regularity of the best kind, either in the form of a Euclidean ball or in the form of
a gaussian distribution. One may argue, however, that on a quantitative level, the
projection of the uniform measure on convex bodies behaves better, in a sense, then
the geometric projection: We observe a power-law dependence on the dimension,
rather than a logarithmic dependence.

5. Rate of convergence

We are still lacking optimal rate of convergence results for the central limit theorem
for convex bodies. The exponents ˛ that our proofs yield for Theorem 4.1 and
Theorem 4.2 are probably inferior. The main problem is with the thin shell estimate
(15); it is conceivable that the correct bound should be

E

� jX j2
n
� 1

�2
� C

n
; (18)

for all isotropic random vectors X with a log-concave density in Rn, see Anttila,
Ball and Perissinaki [1] and Bobkov and Koldobsky [9]. There are some cases where
the sharp thin shell bound (18) is proven. For example, it is common to say that a
log-concave density f W Rn ! Œ0;1/ is “unconditional” if

f .x1; : : : ; xn/ D f .˙x1; : : : ;˙xn/ for all x D .x1; : : : ; xn/ 2 Rn

for any choice of n signs. That is, f is unconditional if it is invariant under coordinate
reflections. A convex body is called unconditional if its characteristic function is
unconditional. Our general philosophy is that convexity is a great source of regularity
in the study of high-dimensional distributions, which may substitute for structure and
symmetry. The fact that sharp thin shell bounds were proven, at least so far, only under
additional symmetry assumptions is certainly a weak point in our approach. Note
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that nevertheless, an unconditional log-concave density is only “mildly” symmetric,
and that convexity plays a significant role in the analysis of these densities.

When X is an isotropic random vector in Rn with an unconditional, log-concave
density, the bound (18) is proven and Theorem 4.1 holds with ˛ D 1. The proof
in [35] for the unconditional case is based on the integration by parts formula (14)
and some L2-technique. An additional advantage of the unconditional case is that
we may precisely describe the subset‚ � Sn�1 from Theorem 4.1. Specifically, for
any � D .�1; : : : ; �n/ 2 Sn�1, it is proven in [35] that

ˇ̌̌
ˇP
� nX
iD1

�iXj � t
�
�ˆ.t/

ˇ̌̌
ˇ � C

nX
iD1

�4i for all t 2 R;

where C > 0 is a universal constant. We may thus take ‚ in Theorem 4.1 to be
the set of all � 2 Sn�1 with

P
i �
4
i � 50=n. Note that for this choice, �n�1.‚/ �

1 � exp.�pn/. Additionally, for t 2 Œ0; 1� let us define

Yt D 1p
n

btncX
jD1

Xj :

The analysis in [35] may be used to show that the stochastic process .Yt /0�t�1
converges, in an appropriate sense, to the standard Brownian motion.

In the unconditional case there are also available sharp large-deviations results,
proven by Bobkov and Nazarov [10], [11]. For example, when X is an isotropic
random vector in Rn with an unconditional, log-concave density, it is shown that

P

�
1p
n

nX
iD1

Xi � t
�
� C exp

��ct2� for all 0 � t � pn; (19)

where c; C > 0 are universal constants. When the random vector X is uniform in
an unconditional convex body (a slightly stronger assumption than log-concavity),
the inequality in (19) holds for all t � 0. The sub-gaussian behavior in (19) in
the unconditional case should be compared with the general, sub-exponential bound
of (10). One may also obtain an almost sub-gaussian bound in the general, non-
unconditional case. The following was proven in [32] and in Giannopoulos, Pajor and
Paouris [25]: For any random vector X distributed uniformly in a finite-dimensional
convex body, there exists a non-zero linear functional ' for which the right-hand side
of (10) may be improved upon to C" exp.�c"t2�"/, for arbitrarily small " > 0. The
positive coefficients C", c" depend solely on ".

To prove (19), Bobkov and Nazarov use the Prékopa–Leindler inequality in order
to reduce the problem from a general unconditional log-concave density to the “worst
possible” unconditional one, which is exp.�Pi jxi j/ in this case. The latter density
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is then analyzed directly. A similar approach leads to the sharp large-deviations bound

P .jX j � t / � C exp .�ct/ for t � Cpn; (20)

valid for all isotropic random vectors X with an unconditional, log-concave density
(see [10], [11]). Here, c; C > 0 are universal constants.

One of the most significant and influential developments in recent years in the
study of high-dimensional convex bodies is the Paouris theorem [47], [48]. It is
one of the very few sharp quantitative results that are valid for all high-dimensional
log-concave distributions. Paouris proved that the bound (20) actually holds for all
isotropic random vectors X with a log-concave density, without the assumption that
the density is unconditional. Paouris observed that whenE is a random `-dimensional
subspace in Rn, for any ` � c

p
n, then the density fE of ProjE .X/ is typically

approximately radial, in the following sense: The level set

˚
x 2 E I fE .x/ � e�`fE .0/

�
(21)

is roughly a Euclidean ball. The dependence of ` on the dimension n is optimal.
The proof that (21) is indeed approximately Euclidean is based on a clever use of
the quantitative theory of Dvoretzky’s theorem, developed mostly by Milman (see,
e.g., [44]), with contributions by Litvak and Schechtman [45], [39]. Once it is known
that the “effective support” of ProjE .X/ (i.e., the set in (21)) is approximately a
Euclidean ball, some analysis of log-concave densities – mostly one-dimensional
analysis – leads to the bound (20), see [47], [48] for details.

There are currently no sharp inequalities that complement (20) for smaller values
of t , in the general case. The best available thin shell bound is that for any isotropic
random vector X with a log-concave density in Rn,

P

�ˇ̌ˇ̌ jX j2
n
� 1

ˇ̌ˇ̌ � t
�
� C exp

� � cn˛tˇ � for 0 < t < 1; (22)

with, say, ˛ D 0:33 and ˇ D 3:33, and c; C > 0 are universal constants (see [34]).
Some of the arguments we presented, especially those in Section 4, might be robust

enough to permit possible generalizations to other notions of convexity. One may
consider, for instance, probability measures on the surface of a convex body, rather
than the on the body itself, or probability densities of the form V �ˇ for a convex
function V and ˇ > 0, as long as the tail is not “too heavy” (see Bobkov [8] for the
terminology and for a review of such densities). We expect that convexity-related
properties will play a role in the study of some high-dimensional distributions in the
future.
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Some recent results about the sixth problem of Hilbert:
hydrodynamic limits of the Boltzmann equation
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Abstract. The behaviour of a gas can be described by different models depending on the time and
space scales to be considered. A natural question is therefore to know if there exist continuous
transitions between these models: this is precisely the matter of the sixth problem asked by
Hilbert on the occasion of the International Congress of Mathematicians held in Paris in 1900.

Recent works allow to understand rigorously the passage from Boltzmann’s equation (which
provides a statistical description of the microscopic state of the gas) to continuous models of
fluid mechanics.

The goal of the present paper is to present briefly the mathematical framework of the study,
and to exhibit some difficulties of the asymptotic analysis related to the physics of the problem.
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This paper is concerned with hydrodynamic limits of the Boltzmann equation, which is
part of the sixth problem posed by Hilbert in 1900, on the occasion of the International
Congress of Mathematicians.

Our goal here is to give the reader a description of the problem both from the
physical and mathematical points of view, and to point out the main difficulties. In
order that a broad audience can understand as far as possible, we will state the results
and give some elements of proof only at the very end.

1. The sixth problem of Hilbert

Let us first introduce the general framework of our study. The sixth problem of
Hilbert, motivated by Boltzmann’s work on the principles of mechanics, consists in
“developing mathematically the limiting processes [...] which lead from the atomistic
point of view to the laws of motion of continua”.
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In other words, we are interested in getting a unified theory for gas dynamics
including all levels of description, namely the atomistic point of view, kinetic theory
and hydrodynamics.

     Microscopic description

System of N interacting particles
          Newton’s equations

              

 

 

Macroscopic description

Continuous fluid equations
       of hydrodynamics  
 (Euler, Navier  Stokes...)_

Mesoscopic description

           Large system of particles with negliglible size 
                         Boltzmann's kinetic equation

N � 1

Thermodynamic limit

N � 1

Tcollision � Tobservation

Large deviations

Tcollision � Tobservation

Fast relaxation limit

1.1. A unified theory of gases. Each transition gives rise to challenging mathemat-
ical questions, and therefore to a huge literature. Here we will just mention some
significant breakthroughs.

1.1.1. From microscopic to mesoscopic and macroscopic models. For the con-
nection between microscopic and macroscopic models, as far as we know, formal
asymptotics go back to Morrey [21].

The probabilistic approach has given nice results as regards the mathematical
justification of the limiting process. Let us mention in particular a result by Olla,
Varadhan and Yau [23] for the compressible Euler limit, and a result by Quastel and
Yau [24] for the incompressible Navier–Stokes limit, starting from lattice systems of
particles with white noise.

Concerning the transition from microscopic to mesoscopic models, Lanford [15]
has proved that the Boltzmann equation can be derived in the thermodynamic limit
for a gas of hard spheres under a strong chaos assumption. Note however that the
convergence holds only for very short times, say during one half of the expected time
of first collision for a given particle.
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1.1.2. From mesoscopic to macroscopic models. From now on, we will actually
focus on the connection between the Boltzmann equation and hydrodynamics, which
has been investigated at formal level by Hilbert [14], and by Chapman and Enskog
[5].

Various mathematical theories have been developed to obtain rigorous conver-
gence results, most of which are based on some approximation methods and there-
fore require regularity to build the successive correctors. We refer for instance to the
works by Caflisch [4], De Masi, Esposito and Lebowitz [6] and Liu,Yang andYu [20]
for convergence results based on asymptotic expansions. We also mention that, using
slightly different arguments, Nishida [22], and Bardos and Ukai [2] have investigated
hydrodynamic limits of the Boltzmann equation in the framework of smooth solutions
(either local in time, or for small data).

Another approach has been initiated by Bardos, Golse and Levermore [1] follow-
ing more or less the moment method of Grad [13]. The idea is to consider all the
solutions to the Boltzmann equation that satisfy the fundamental physical estimates.
Later works by Lions and Masmoudi [19] or Golse and the author [10], [11], [25]
have shown that this strategy provides global convergence results.

1.2. From the Boltzmann equation to fluid models. Let us then explain a bit more
the physical meaning of the Boltzmann equation as well as its fundamental properties.

1.2.1. The Boltzmann equation. As usual in kinetic theory, the unknown is the
distribution function f depending on t , x and v, which gives the density of particles
having position x and velocity v at time t .

The evolution equation for f expresses a balance between free transport and
binary elastic collisions that are further assumed to be localized both in t and x. In
nondimensional variables, it states

Ma@tf C v � rxf„ ƒ‚ …
free transport

D .Kn/�1Q.f; f /„ ƒ‚ …
localized binary collisions

;

Q.f; f / D
“

Œf .v0/f .v0
1/ � f .v/f .v1/�b.v � v1; !/dv1d!;

denoting by v0 and v0
1 the pre-collisional velocities given by

v1 D v � .v � v1/ � !!; v0
1 D v0 C .v � v1/ � !!:

The Mach number Ma is the ratio between the bulk velocity and the thermal speed of
the gas, and the Knudsen number Kn is the ratio between the mean free path and the
observation length scale.
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Because elementary collisions are elastic, meaning that they conserve momentum
and energy, the collision operator has invariance properties

Z
Q.f; f /dv D

Z
Q.f; f /vidv D

Z
Q.f; f /jvj2dv D 0;

which guarantee that the Boltzmann equation satisfies the first principle of thermo-
dynamics, and more precisely that one has some local conservation laws for mass,
momentum and energy.

The same symmetries of the collision operator also imply that
Z
Q.f; f / log fdv � 0:

We then deduce that
’
f log fdvdx is a Lyapunov functional for the Boltzmann

equation, usually called the entropy. This property, known as Boltzmann’s H-theorem
gives the irreversibility associated to the second principle of thermodynamics. The
collisions actually induce some relaxation process, the equilibria of which are the
Gaussian distributions predicted by Maxwell:

Z
Q.f; f / log fdv � 0 () Q.f; f / D 0 () f Maxwellian:

1.2.2. The compressible Euler limit. Because of this last property, in the fast re-
laxation limit, i.e., when the Knudsen number is very small, Kn� 1, we have

Q.f; f / D Kn .Ma@tf C v � rxf /
so that the distribution f should be well approximated by the corresponding local
thermodynamic equilibrium.

More precisely, we expect f to be equal to some Maxwellian distribution

f .t; x; v/ � R.t; x/

.2�‚.t; x//3=2
exp

�
�jv � U.t; x/j

2

2‚.t; x/

�

up to some remainder of order Kn.
Plugging thatAnsatz in the local conservations of mass, momentum and energy, we

get a closed system of conservation laws, which is nothing else than the compressible
Euler equations up to small corrections:

Ma@tRCrx � .RU / D 0;
Ma@tRU Crx � .RU ˝ U CRT / D O.Kn/;

Ma@t
�
1
2
RjU j2 C 3

2
RT

�Crx � �12RjU j2U C 5
2
RT U

� D O.Kn/:
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1.2.3. The weakly dissipative Navier–Stokes asymptotics. Iterating the same kind
of asymptotic analysis, we can characterize the next terms of the expansion. The idea
introduced by Chapman and Enskog is to decompose the distribution f as the sum
of a hydrodynamic part Mf , and a purely kinetic part f �Mf , and to express that
purely kinetic part in terms of Mf and of the linearized collision operator at Mf :

�2Q.Mf ; f �Mf / D �Kn .Ma@tf C v � rxf /CQ.f �Mf ; f �Mf /
D �Kn

�
Ma@tMf C v � rxMf

�CO.Kn2/;

or, equivalently,

f �Mf D KnL�1
Mf

�
Ma@tMf C v � rxMf

�CO.Kn2/:

Plugging that refined Ansatz in the local conservations of mass, momentum and
energy, we get additional small dissipative terms, corresponding to the viscosity and
the heat conductivity in the Navier–Stokes–Fourier system:

Ma@tRCrx � .RU / D 0;
Ma@tRU Crx � .RU ˝ U CRT / D Knrx � .�.R; T /DU /CO.Kn2/;

Ma@t
�
1
2
RjU j2 C 3

2
RT

�Crx � �12RjU j2U C 5
2
RT U

�
D Knrx � .�.R; T /rxT /C Knrx � .�.R; T /DU � U/CO.Kn2/:

Note that in principle we should obtain asymptotic expansions at any order with
respect to Kn, but most of them are ill-posed.

1.2.4. Incompressible hydrodynamic limits. In the sequel, we will actually inves-
tigate a restricted class of asymptotic regimes corresponding to fluctuations around
some global equilibrium and leading to incompressible fluid models. These models
could be obtained formally from the previous ones by considering fluctuations with
small Mach number Ma� 1 around some fixed .R;U; T /, but we will derive them
directly from the Boltzmann equation.

2. Incompressible hydrodynamic limits

Let us therefore sketch the formal derivation of such incompressible limits and then
explain the main points where the formal arguments are not correct.

2.1. Mathematical setting. First of all, considering a fluctuation regime around a
global equilibrium, for instance

M.v/ D 1

.2�/3=2
exp

�
�jvj

2

2

�
;

requires that the size of the fluctuation can be controlled for any time.
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Rarefied gas

              Compressible fluid

         

 

Scaled Boltzmann equation

Incompressible inviscid fluid

    Incompressible Euler equations

            Compressible Euler equations      
Weakly dissipative Navier  Stokes equations_

    Incompressible viscous fluid

Incompressible Navier   Stokes equations_

Kn � Ma� 1

Kn� 1

Kn� Ma� 1

Ma � Kn Ma� Kn
Fluctuations of order Ma� 1

Fast relaxation
limit

2.1.1. The entropy inequality. A good candidate to do that is the relative entropy

H.f jM/ D
“ �

f log
f

M
� f CM

�
dvdx D

“
Mh

�
f

M
� 1

�
dvdx;

which is a nonnegative quantity because of the convexity of the entropy functional
(h.z/ D .1 C z/ log.1 C z/ � z � 0), and which is expected to measure in some
sense the distance between f and M .

Because M does not depend neither on t nor on x, and that logM is a linear
combination of 1, v and jvj2, one can use the local conservations of mass, momentum
and energy as well as the local entropy inequality to prove that the relative entropy is
a Lyapunov functional for the Boltzmann equation

H.f jM/.t/C 1

KnMa

Z t

0

�
�
Z
Q.f; f / log fdv

�
.s; x/dsdx � H.finjM/

meaning that it is controlled for any time by its initial value.

2.1.2. Fluctuations around a global equilibrium. Now, because the function h
that arises in the definition of the relative entropy behaves as h.z/ � 1

2
z2 in the
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vicinity of zero, we expect the scaled relative entropy

1

Ma2
H.f jM/ � 1

Ma2
H.finjM/ � Cin

to control essentially the L2-norm of the fluctuation g defined by

f DM.1CMag/;

at least if the distribution f has no big tail.
What can be proved actually is that the fluctuation is uniformly bounded in some

weighted L1-norm:

g 2 L1
t .L

1
loc.dx;L

1.M.1C jvj2/dv///
using Young’s inequality

pz � h�.p/C h.z/ for all p; z � 0;
together with the relative entropy bound and the superquadraticity of h�.

2.2. Formal derivation

2.2.1. Local thermodynamic equilibrium. It is natural to rewrite the Boltzmann
equation in terms of the fluctuation g:

Ma@tg C v � rxg D � 1

Kn
LMg C Ma

Kn

1

M
Q.Mg;Mg/;

where LM is the linearized collision operator defined by

LMg D � 2
M
Q.M;Mg/:

A careful study of that linearized collision operator going back to Grad [13] shows
that the kernel of LM is constituted of linear combinations of the collision invariants
1, v and jvj2. We then expect that, in the fast relaxation limit Kn! 0,

LMg D 0;
meaning that the fluctuation behaves as an element of this kernel, referred to as an
infinitesimal Maxwellian or as a fluctuation of Maxwellian:

g.t; x; v/ D �.t; x/C u.t; x/ � v C �.t; x/ jvj
2 � 3
2

:
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2.2.2. Macroscopic constraints. Rewriting also the conservation laws in terms of
the fluctuation g,

Ma@t

Z
Mgdv Crx �

Z
vMgdv D 0;

Ma@t

Z
vMgdv Crx �

Z
v ˝ vMgdv D 0;

we obtain that, in the low Mach limit Ma! 0, the mass and momentum fluxes tend
to zero.

Therefore, if the Knudsen and Mach numbers Kn and Ma tend both to zero,
whatever their respective sizes, the moments �, u and � satisfy the incompressibility
and Boussinesq relations:

rx �
Z
vMgdv D rx � u D 0;

rx �
Z
v ˝ vMgdv D rx.�C �/ D 0:

2.2.3. Motion and heat equations. In order to characterize the limiting fluctuation,
it remains then to describe the evolution of the (solenoidal part of the) bulk velocity
and of the temperature.

Our starting point is once again the system of scaled conservation laws, and more
precisely the following equations:

@tP
Z
vMgdv C 1

Ma
Prx �

Z
.v ˝ v � 1

3
jvj2 Id/Mgdv D 0;

@t

Z
.jvj2 � 5/Mgdv C 1

Ma
rx �

Z
v.jvj2 � 5/Mgdv D 0;

denoting by P the Leray projection onto divergence free vector fields. Note that the
conserved quantities have been suitably chosen in order to discard the unbounded
parts of the fluxes.

The important point is indeed the fact that the quantities � and  defined by

�.v/ D v ˝ v � 1
3
jvj2 Id;  .v/ D v.jvj2 � 5/

arising in the momentum and heat fluxes, are orthogonal to the set of infinitesimal
Maxwellians.

� 2 .Ker LM /
?;  2 .Ker LM /

?:
Then, as we expect the purely kinetic part of the fluctuation g, that is its projection
…?g on .Ker LM /

?, to be small (of same order as the Mach number Ma), the fluxes
will be bounded.
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Let us indeed recall that the Boltzmann equation for the fluctuation shows that
Ma�1LMg can be decomposed as the sum of a nonlinear term of order 1, a stress
term the order of which depends on the Reynolds number Re D Ma=Kn, and a small
remainder term coming from the time derivative:

1

Ma
LMg D 1

M
Q.Mg;Mg/ � Kn

Ma
v � rxg CO.Kn/

Using this Ansatz together with the skew-symmetry of LM to compute the mo-
mentum and heat fluxes, we identify two types of terms, namely convection terms
that contain the nonlinearity and diffusion terms that contain the additional spatial
derivative:

1

Ma

Z
	Mgdv D 1

Ma

Z
Q	MLMg dv

D
Z
Q	Q.Mg;Mg/dv

„ ƒ‚ …
convection

� Kn

Ma

Z
Q	.v � rx/Mgdv„ ƒ‚ …

diffusion

CO.Kn/

where Q� and Q are the elements of .Ker LM /
? defined by

� D LM
Q�;  D LM

Q :
All these terms can be computed explicitly if the fluctuation g is an infinitesimal
Maxwellian, which is asymptotically satisfied.

We therefore expect the limiting bulk velocity and temperature to satisfy either
the incompressible Euler equations, or the incompressible Navier–Stokes–Fourier
equations, depending on the respective sizes of the Knudsen and Mach number Kn
and Ma,

@tPuC Prx � .u˝ u/ D
�

lim
Kn

Ma

�
�
xu;

@t .3� � 2�/C 5rx � .�u/ D 5
�

lim
Kn

Ma

�
�
x�:

Note however that this formal argument is not correct since the weak compactness
inherited from the relative entropy bound is not enough to take limits in the nonlinear
convection terms.

2.3. Mathematical difficulties. The mathematical contribution to the study of hy-
drodynamic limits consists then essentially in obtaining a precise description of the
convergences so as to understand the asymptotics of nonlinear terms.

Let us therefore summarize the different approximations we have introduced to
describe the asymptotics, and estimate their accuracy.
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2.3.1. The relaxation estimate. We have first replaced the fluctuation by the corre-
sponding local thermodynamic equilibrium:

g D …g C .g �…g/

where … denotes the projection on Ker LM .
As this approximation is related to some relaxation process, we expect it to be very

good outside from some initial and boundary layers the size of which is characterized
by the Knudsen number Kn.

Kn

tRelaxation

This should be proved using the kinetic equation

Ma@tg C v � rxg D � 1

Kn
LMg C Ma

Kn

1

M
Q.Mg;Mg/

together with the coercivity estimate for LM established by Grad [13]

kg �…gk2
L2.Mdv/

� C0
Z
gLMgM dv:

The point is that the functional framework used by Grad is hilbertian, while the relative
entropy bound gives only some L1-control on the fluctuation.

2.3.2. Time regularity. We have further considered the low Mach limit, especially
to obtain the incompressibility and Boussinesq relations. Weak convergence is here
really a “convergence in average” since we expect the scaled transport operator
.Ma@t C v � rx/ to create a fast time dependence.

More precisely, if we use the local thermodynamic approximation together with
the conservation laws, we obtain a precise description of acoustic waves, the period
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of which is related to the Mach number Ma:

Ma@t�Crx � u D o.1/;
Ma@tuCrx.�C �/ D o.1/;
Ma@t� C 2=3rx � u D o.1/:

t

OscillationsMa

One difficulty is to prove that these (fast oscillating) acoustic waves will not disturb
the mean motion.

2.3.3. Spatial regularity. The last point we would like to discuss a little bit is
the dependence with respect to spatial variables. Because the transport operator is
hyperbolic and we have no assumption on the initial regularity, we do not expect the
fluctuation g to be smooth in x. On the other hand, taking limits in the (nonlinear)
convection terms requires some strong compactness, at least on the moments of g.

Averaging lemma [8] which give some regularity on the moments are actually
the useful tool to bypass this last difficulty if we have some suitable control on the
transport.

Using the bound on the entropy dissipation

D.f / D �
Z
Q.f; f / log f dv D O.Ma3Kn/

we are able to control the free-transport as follows:

.Ma@t C v � rx/Mg D 1

MaKn
Q.f; f / D O

�r
Ma

Kn

�
:

We therefore expect the situation to be very different depending on the respective
sizes of the Mach and Knudsen numbers Ma and Kn.
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.Re/�1=2

xSmoothing

3. Convergence results and elements of proofs

3.1. The mathematical framework. Our results are therefore not so optimal in
inviscid regime as in viscous regime. Let us now give the main statements as well
as some elements of proof. For the sake of simplicity, we consider a spatial domain
� that has no boundary (for instance the whole space R3 or the three-dimensional
torus T3).

3.1.1. Renormalized solutions to the Boltzmann equation. We start from very
weak solutions of the Boltzmann equation, called renormalized solutions because they
are only known to satisfy a family of formally equivalent kinetic equations obtained
from the Boltzmann equation by truncation of large tails. Such renormalized solutions
have been built by DiPerna and Lions [7], [17] twenty years ago. They exist globally
in time without restriction on the size of the initial data, but they are known neither
to be unique, nor to satisfy some of the fundamental physical properties we would
expect, namely the local conservations of momentum and energy, even nor the global
conservation of energy.

Theorem 3.1 (DiPerna & Lions). Assume that the cross-section b satisfies Grad’s
cutoff assumption for some ˇ 2 Œ0; 1�:

0 < b.z; !/ � Cb.1C jzj/ˇ j cos.bz; !/j a.e. on R3 	 S2;Z
S2
b.z; !/d! � 1

Cb

jzj
1C jzj a.e. on R3:

Let fin 2 L1loc.� 	R3/ be such that

H.finjM/ D
Z
�

Z �
fin log

fin

M
� fin CM

�
.x; v/ dv dx < C1:
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Then there exists (at least) one renormalized solution f 2 C.RC; L1loc.� 	R3// to
the Boltzmann equation, meaning that for any � 2 C1

c .R
C/,

Ma@t�
�
f

n

�
C v � rx�

�
f

n

�
D 1

Kn

1

M
� 0
�
f

M

�
Q.f; f / on RC 	� 	R3;

f .0; x; v/ D fin.x; v/ on � 	R3:

Moreover, f satisfies
� the continuity equation

Ma@t

Z
f dv Crx �

Z
f vdv D 0I

� the momentum equation with some positive definite matrix-valued defect mea-
sure m

Ma@t

Z
f vdv Crx �

Z
f v ˝ vdv Crx �m D 0I

� the entropy inequality with defect measure

H.f jM/.t/C
Z

tracem.t/C 1

MaKn

Z t

0

Z
�

D.f /.s; x/dsdx � H.finjM/:

This lack of understanding concerning the physical properties of renormalized
solutions generates of course additional technical difficulties when considering hy-
drodynamic limits.

Note however that the same kind of difficulty appears for Leray solutions to the
incompressible Navier–Stokes equations, which are not known to satisfy the global
conservation of energy.

3.1.2. General strategy. Our strategy is therefore to take advantage of these simi-
larities and to proceed by analogy. More precisely, the main idea is to recognize in
the scaled Boltzmann equation the same mathematical structure as in the asymptotic
hydrodynamic equations, especially

� weak stability in viscous regime (controlled by the dissipation terms in the
energy/entropy inequalities),

� strong-weak stability in inviscid regime (controlled by some energy/entropy
functionals).

3.2. The incompressibleNavier–Stokes limit. We first focus on the viscous regime,
and recall that the incompressible Navier–Stokes equations have global weak so-
lutions satisfying Leray energy inequality, and which are stable by weak conver-
gence [16].
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3.2.1. Leray solutions to the Navier–Stokes equations

Theorem 3.2 (Leray). Let uin 2 L2.�/ be a divergence free vector field.
Then there exists (at least) one global weak solution u 2 L2loc.R

C;H 1.�// \
C.RC; w � L2.�// to the incompressible Navier–Stokes equations

@tuC .u � rx/uCrxp D �
xu; rx � u D 0 on RC 	�;
u.0; x/ D uin.x/ on �:

(3.1)

It further satisfies the energy inequality

ku.t/k2
L2.�/

C 2�
Z t

0

krxu.s/k2L2.�/ds � kuink2L2.�/: (3.2)

The dissipation term in (3.2) provides indeed some spatial regularity, which com-
bined with the time regularity coming from the evolution equation in (3.1), gives
some strong compactness and therefore stability of the (nonlinear) convection term.

A similar mechanism will give the weak convergence of the thermodynamic fields
associated to the scaled Boltzmann equation as the Knudsen and Mach number goes
to 0 at the same rate. In such a viscous regime, the Leray energy inequality and the
DiPerna–Lions entropy inequality are indeed very similar objects.

3.2.2. From Boltzmann to Navier–Stokes. We have actually proved in collabora-
tion with François Golse [10], [11] that the limiting fluctuation is an infinitesimal
Maxwellian, the moments of which are weak solutions to the Navier–Stokes–Fourier
system.

Theorem 3.3 (Golse & Saint-Raymond). Let .f�;in/ be a family of initial fluctuations
around a global equilibriumM , i.e., such that

1

2
H.f�;injM/ � Cin:

Let .f�/ be a family of renormalized solutions to

@tf� C v � rxf� D 1


Q.f�; f�/ on RC 	� 	R3;

f�.0; x; v/ D f�;in.x; v/ on � 	R3:

Then the family of fluctuations .g�/ defined by f� D M.1 C g�/ is relatively
weakly compact in L1loc.dtdx;L

1.Mdv//; and for any limit point g of .g�/,

g.t; x; v/ D u.t; x/ � v C �.t; x/ jvj
2 � 5
2

;
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where u is a weak solution to the Navier–Stokes equations (3.1) and � satisfies the
convection-diffusion equation

@t� Crx � .u�/ D �
x�:
The only assumption we need is to know that the initial fluctuation has the “good”

size, or in other words that the initial relative entropy is scaled as Ma2.

3.2.3. Strategy of the proof: the moment method. The strategy of the proof is
very similar to that used in the formal derivation.

In order to make the arguments rigorous, we work with the renormalized fluctu-
ation

Og� D 2



�r
f�

M
� 1

�

instead of the fluctuation

g� D 1



�
f�

M
� 1

�

since both quantities are asymptotically equivalent, but the first one is in some
weighted L2-space “

M Og2� dxdv �
2

2
H.f�jM/:

We then start from some approximate conservation laws obtained by integrating
the renormalized kinetic equation against truncated collision invariants.

The scheme of the proof is therefore

� to prove that the conservation defects go to zero,

� to find a suitable decomposition of the flux terms,

� to take limits in the diffusion and convection terms.

We will not enter the details of the proof here since it relies on very careful
(and sometimes technical) estimates of the remainder terms. We will just give some
highlights concerning the main difficulties that have been mentioned in Section 2.3.

• The relaxation estimate is obtained from the identity

1


LM Og� D 1

2M
Q.M Og�;M Og�/ � 2

2
1

M
Q.
p
Mf�;

p
Mf�/

coming from the bilinearity of Q, together with the coercivity estimate on LM .
For bounded cross-sections b, the first term in the right-hand side is indeed esti-

mated by the scaled relative entropy
���� 1

2M
Q.M Og�;M Og�/

����
2

L1.dx;L2.Mdv//

� Ck Og�k2L2.dxMdv/ �
2C

2
H.f�jM/
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while the scaled entropy dissipation controls the second term���� 22
1

M
Q.
p
Mf�;

p
Mf�/

����
L2.Mdv/

� C

4
D.f�/:

For general cross-sections b, we introduce some modified collision operator and
then use essentially the same arguments.

• The spatial regularity of the moments is obtained by the averaging lemma, and
more precisely by some L1 version of averaging lemma [12] that requires a control
on the transport

.@t C v � rx/2


�r
f�

M
C ˛ � 1

�

D O.1/L2.dtdx��1Mdv/ CO./L1loc.dtdx;L
2.��1Mdv// CO.2�˛=2/L1.dtdxMdv/

and some equiintegrability with respect to v-variables which is inherited from the
relaxation estimate

Og� D … Og� C . Og� �… Og�/ D O�� C Ou� � v C 1

2
O��.jvj2 � 3/CO./:

• The acoustic waves are dealt with finally, using a “compensated compactness”
or “transparency” argument. Because of the algebraic structures of both the wave
equations

@t
3

5
.�� C ��/C 1


rx � .Id � P/u� D o

�
1



�
;

@t .Id � P/u� C 1


rx.�� C ��/ D o

�
1



�
;

and the nonlinear convection terms

Prx � .u� ˝ u�/ and rx � .u���/;
it turns out that the coupling of fast oscillating components does not produce any
contribution to the non-oscillating part of the motion.

3.3. The incompressible Euler limit. Of course the same strategy fails when con-
sidering inviscid regimes, that are regimes such that the Knudsen number is negligible
compared to the Mach number Kn � Ma. We have indeed no control on the free
transport and therefore no a priori spatial regularity on the moments.

Note that because of a similar lack of a priori regularity, the incompressible Euler
equations are not known to have global weak solutions, at least in three-dimensional
spaces �.
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3.3.1. Dissipative solutions to the Euler equations. Lions has therefore proposed
a very weak notion of solutions, called dissipative solutions since they are typically
obtained by considering the inviscid limit of the incompressible Navier–Stokes equa-
tions [18]. These solutions exist globally but are not known to satisfy any evolution
equation in the sense of distributions. They only satisfy a stability inequality, that
ensure some strong-weak uniqueness: as long as a smooth solution exists for the
incompressible Euler equations, any dissipative solution having the same initial data,
coincides with that smooth solution.

Theorem 3.4 (Lions). Let uin 2 L2.�/ be a divergence free vector field.
Then there exists (at least) one global dissipative solution u 2 C.Œ0; T /; w �

L2.�// to the incompressible Euler equations

rx � u D 0; @tuC .u � rx/uCrxp D 0; (3.3)

meaning that, for all t and all Qu 2 C1
c .R

C 	�/,
ku.t/ � Qu.t/k2

L2.�/

� kuin � Quink2L2.�/ exp

�Z t

0

krx Qu.s/kL1.�/ds

�

C
Z t

0

Z
.@t QuC Qu � rx Qu/ � . Qu � u/.s; x/dx exp

�Z t

s

krx Qu.�/kL1.�/d�

�
:

A similar stability inequality will be established for the solutions to the scaled
Boltzmann equation.

3.3.2. From Boltzmann to Euler. What we are actually able to prove [25] is the
global convergence towards dissipative solutions of the incompressible Euler equa-
tions starting from renormalized solutions to the scaled Boltzmann equation, but only
for very well-prepared initial data.

Theorem 3.5 (Saint-Raymond). Let .f�;in/ be a family of initial fluctuations around
a global equilibriumM , satisfying

1

2
H.f�;injM1;�uin;1/! 0 as  ! 0;

for some given divergence-free vector field uin 2 L2.�/.
Let .f�/ be a family of renormalized solutions to

@tf� C v � rxf� D 1

q
Q.f�; f�/ on RC 	� 	R3 .q > 1/;

f�.0; x; v/ D f�;in.x; v/ on � 	R3:
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Then the family .u�/ defined by u� D �1 R f�vdv is relatively weakly compact in
L1loc.dtdx/, and any limit pointuof .u�/ is a dissipative solution to the incompressible
Euler equations (3.3).

We have indeed to assume that the initial profile is close to thermodynamic equi-
librium so that there is no relaxation layer. Furthermore we consider initial thermody-
namic fields that satisfy both the incompressibility and Boussinesq relations in order
that there is no acoustic wave. Finally (for technical reasons that we cannot explain
here) we restrict our attention to the case when the initial fluctuation of temperature
is zero.

1

2
H.f�;injM1;�uin;1/! 0 as  ! 0; with rx � uin D 0:

All these restrictions come from the fact that we use here a completely different
strategy, which leads to some strong convergence result. For general initial data, we
would therefore have to build a more accurate approximation, with correctors taking
into account the initial layer and acoustic waves.

3.3.3. Strategy of the proof: the modulated entropy method. Let us first recall
that, in inviscid regime, the formal proof fails because of a lack of spatial regularity
on the moments (no uniform control on the free-transport). The alternative strategy
consists then in establishing a stability inequality similar to that defining dissipative
solutions. The quantity we are interested in is the scaled modulated entropy

1

2
H.f�jM1;� Qu;1/

measuring in some sense the distance of f� to the test Maxwellian M1;� Qu;1.
Such a method, called relative entropy method, has been developed by Golse [3]

in the framework of the Boltzmann equation, following an idea of Yau [27].
The scheme of the proof is as follows. We first use the relative entropy inequality

to obtain weak compactness (and convergence in the linear relations) as previously.
Then, computing the time derivative of the modulated entropy, we can identify two
terms: the first one,

“
f�.v �  Qu/ � .@t QuC . Qu � rx/ Qu/dvdx;

converges weakly and its limit is zero if Qu is a strong solution to the Euler equation.
The other one, “

f�
�
.v �  Qu/˝2 � 1

3
jv �  Quj2�dvdx;



Some recent results about the sixth problem of Hilbert 437

can be estimated in terms of the modulated entropy and the entropy dissipation. We
then deduce by Gronwall’s lemma that

1

2
H.f�jM1;� Qu;1/.t/C 1

2qC3

Z t

0

“
D.f�/dsdx

� 1

2
H.f�;injM1;� Quin1/ exp

�
C

Z t

0

kD Qu.s/kL1\L1.�/ds

�

� 1


Z t

0

“
f�.v �  Qu/ � .@t QuC Qu � rx Qu/ exp

�
C

Z t

s

kD Qu.s/kL1\L1.�/ds

�
dvdxds

for any test divergence-free vector field Qu. The convergence statement follows then
by convexity arguments.

Note that the argument can be improved a little bit to consider general initial data,
but in that case we need some extra integrability assumptions on the solutions to the
Boltzmann equation to obtain a Gronwall type estimate [26]. Under these additional
conditions on .f�/, one can actually prove that the relative entropy between f� and a
precise approximation fapp tends to zero

1

2
H.f�jfapp/! 0 as  ! 0:

This approximation fapp has an hydrodynamic part obtained as the sum of the weak
limit and of acoustic waves, and a purely kinetic part which is non zero only in a thin
time layer.

• Acoustic waves are described by
0
BBBBB@

@t Q�C . Qu � rx/ Q�C 1


rx � Qu

@t QuC . Qu � rx/ QuC Q�rx
�
Q� � 3

2
Q�
�
C 1


rx. Q�C Q�/

@t Q� C . Qu � rx/ Q� C 2

3
rx � Qu

1
CCCCCA
D 0:

Since they only modify the hydrodynamic part of the approximation, they can be
taken into account in the stability inequality with only minor modifications

• The initial relaxation layer is described by the homogeneous kinetic equation

@tf D 1

qC1Q.f; f /:

The entropy dissipation associated to that relaxation process converges towards a finite
(non zero) quantity, meaning that one has to also modulate the entropy dissipation in
the initial layer to prove the convergence statement.
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Graded algebras associated to algebraic algebras need
not be algebraic

Agata Smoktunowicz�

Abstract. It is shown that the associated graded algebras of affine nil algebras need not be nil.
A similar argument shows that filtered algebras generated in degree one of nil algebras need not
be nil. This answers a question of Riley [5].
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1. Introduction

Filtered algebras are useful for calculating the Gelfand–Kirillov dimension of asso-
ciative algebras. In [3] Purcell gives a condition which guarantees that a filtered ring
is isomorphic to its associated graded ring gr.A/. Recall that the associated graded
algebra of an associative algebra A is defined by

gr.A/ DLi�1Ai=AiC1 D
L
i�1Ai :

Riley asked whether associated graded algebras of finitely generated nil algebras are
nil ([5], Problem 1). The purpose of this paper is to answer this question in the
negative. Namely, the following holds.

Theorem 1.1. LetK be a countable field. Then there is a nilK-algebraA generated
by three elements, such that the associated graded algebra gr.A/ is not nil.

A theorem of Amitsur says that polynomial rings over nil algebras over uncount-
able fields are nil. It follows that associated graded algebras of finitely generated nil
algebras over uncountable fields are nil. Theorem 1.1 shows that graded algebras
associated to algebraic algebras over countable fields need not be nil. The following
question remains open (Riley, [5], Problem 1): Are associated graded algebras of

�This work was supported by Grant No. EPSRC EP/D071674/1.
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finitely generated nil algebras over countable fields Jacobson radical? It was shown
by Krempa [2] that the Koethe conjecture (1930) is equivalent to the assertion that
polynomial rings over nil rings are Jacobson radical. Hence, if the Koethe conjecture
is true, then the answer to Riley’s question is in the affirmative. For some related
results see [7]. In [8] Stephenson and Zhang showed that filtered algebras of Noethe-
rian algebras need not be Noetherian. Artin, Small and Zhang proved that if A is an
algebra whose filtered graded ring is locally finite and right Noetherian, then every
prime ideal in R is an intersection of primitive ideals [1].

2. Algebras generated by elements a, b, c

Let K be a countable field and let T be the free K-algebra in generators a; b; c over
K subject to relations ac D 0 and c2 D 0. Assigning gradation 1 to elements a and
b and gradation 0 to c gives a gradation on T . Then T D T0 C T1 C � � � .

Let E be the subalgebra of T generated by elements a3; b2 and c. Assigning
gradation 1 to elements a3; b2 and c gives gradation on E, and we can write E D
E0 C E1 C � � � . Let I be an ideal in E. Let gr.E=I / D L

i�1.E=I /i where
.E=I /i D .E=I /i=.E=I /iC1. By Qr we will denote the image of r 2 E in gr.E=I /.
Note that if r 2 Ek and Qr D 0, then r 2Pi>k Ei C I .

Let w.n1; n2; n3/ D
˚P

w W w is a product of n1 elements a6, n2 elements b6

and n3 elements c
�
. Notice that w.n1; n2; n3/ 2 E2n1C3n2Cn3 \ T6n1C6n2 .

Lemma 2.1. Let E, T be as above and let J be a homogeneous ideal in T . Denote,
I D E \ J . Let p D a6 C b6 C c 2 E and let Qp be an image of p in gr.E=I /. If
Qpn D 0 for some n in gr.E=I /, thenw.n1; n2; n3/ 2 I CPi>2n1C3n2Cn3 Ei for all
n1 C n2 C n3 D n.

Proof. Let Qpn D 0. Write pn DPj gj , with gj 2 Ej . Then

gj D
X

n1Cn2Cn3Dn;

2n1C3n2Cn3Dj

w.n1; n2; n3/:

By assumption Qgj D 0 so gj 2 I CPi>j Ei . Now observe that w.n1; n2; n3/ 2
T6n1C6n2 . Recall that J is a homogeneous ideal in T , therefore I DP

j�0 Tj \ I .
Moreover, for every i , Ei D P

j�0 Tj \ Ei . It follows that for every p we get˚P
w.n1; n2; n3/ W 6n1 C 6n2 D p; 2n1 C 3n2 C n3 D j; n1 C n2 C n3 D n

� 2
ICPi>j E

i . Therefore,w.n1; n2; n3/ 2Pi>2n1C3n2Cn3 EiCI , for all n1; n2; n3,
with n1 C n2 C n3 D n, as required. �
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3. Elements x, y , z and elements a, b, c

LetA be the subalgebra of T generated by elements a, b and bc. Denote x D a, y D
b, z D bc. Note that A is the free algebra in generators x, y, z. Assigning gradation
1 to x, y, z gives a gradation on A, A D H1 CH2 C � � � where Ti D Hi C cHi .

Let z.n1; n2; n3/ D
˚P

w W w is a product of n1 elements x6, n2 elements y6

and n3 elements y5z
�
. If either n1 < 0; n2 < 0 or n3 < 0 we put z.n1; n2; n3/ D 0.

Assigning gradation 1
3

to element x, 1
2

to element y and 3
2

to element z gives a
gradation on A. Let P D fi W 6i is a natural numberg. Let Zi D fw 2 A W
degx w
3
C degy w

2
C 3 degz w

2
D ig: Note that A DPi2P Zi .

Lemma 3.1. Let F be a right ideal in A. If w.n1; n2; n3/ 2Pi>2n1C3n2Cn3 Ei C
F C cF , then z.n1; n2 � n3; n3/ 2 F CPi2P Wi>2n1C3n2Cn3 Zi :

Proof. By the definition w.n1; n2; n3/ D z.n1; n2 � n3; n3/ C cz.n1; n2 � n3 C
1; n3 � 1/. Note that Ei � Zi C cZi�1 (denote Z0 D K). Comparing elements
starting with a and b we get the result. �

4. Algebras generated by elements x, y , z

In this section we will only consider algebras generated by x, y, z. Let Ms be a
set of products of exactly n elements from the set fx; y; zg. Then Hs D KMs .
Observe that z.n1; n2; n3/ 2 Z2n1C3n2C4n3 . We introduce the following ordering
on triples of natural numbers. Let d1, d2, d3, b1, b2, b3 be natural numbers. Let
.d1; d2; d3/ � .b1; b2; b3/ if either 2d1 C 3d2 C 4d3 > 2b1 C 3b2 C 4b3, or
2d1 C 3d2 C 4d3 D 2b1 C 3b2 C 4b3 and d1 < b1 or 2d1 C 3d2 C 4d3 D
2b1 C 3b2 C 4b3, d1 D b1 and d2 < b2.

Lemma 4.1 (Lemma 7, [6]). For each n � 0 the set S D fz.n1; n2; n3/ W n1 C
n2 C n3 D ng is a free basis of a right module SA. Moreover, for arbitrary integers
n1; n2; n3 and r < n1 C n2 C n3,

z.n1; n2; n3/ D
X

r1Cr2Cr3Dr
z.r1; r2; r3/z.n1 � r1; n2 � r2; n3 � r3/:

Lemma 4.2. Let f W H6p ! H6p , g W H6q ! H6q , and h W H6pC6q ! H6pC6q
be K-linear mappings such that for all u 2 M6p , v 2 M6q , h.uv/ D f .u/g.v/. If
h.z.n1; n2; n3// 2Pi2P Wi>2n1C3n2C4n3 h.Zi / for all n1C n2C n3 D pC q, then
either f .z.p1; p2; p3// 2 Pi2P Wi>2p1C3p2C4p3 f .Zi / for all p1 C p2 C p3 D p

or g.z.q1; q2; q3// 2Pi2P Wi>2q1C3q2C4q3 g.Zi / for all q1 C q2 C q3 D q.
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Proof. Suppose that the result does not hold. Let .p1; p2; p3/ and .q1; q2; q3/ be
minimal with respect to the ordering � such that p1 C p2 C p3 D p, q1 C q2 C
q3 D q and f .z.p1; p2; p3// … Pi2P Wi>2p1C3p2C4p3 f .Zi /, g.z.q1; q2; q3// …P
i2P Wi>2q1C3q2C4q3 g.Zi /. Further, let

D D H6p \
X

i2P Wi>2p1C3p2C4p3
f .Zi /

and

B D H6q \
X

i2P Wi>2q1C3q2C4q3
g.Zi /:

Observe that z.p1Cq1; p2Cq2; p3Cq3/ DPr1Cr2Cr3Dp z.r1; r2; r3/z.p1Cq1�
r1; p2C q2� r2; p3C q3� r3/. By Lemma 4.1, h.z.p1C q1; p2C q2; p3C q3// DP
r1Cr2Cr3Dp f .z.r1; r2; r3//g.z.p1 C q1 � r1; p2 C q2 � r2; p3 C q3 � r3//.

Note that if .p1; p2; p3/ � .r1; r2; r3/ with respect to the above ordering, then
.p1C q1� r1; p2C q2� r2; p3C q3� r3/ � .q1; q2; q3/. By the assumptions about
the minimality of .p1; p2; p3/, if .r1; r2; r3/ � .p1; p2; p3/, then f .z.r1; r2; r3// 2P
i2P Wi>2p1C3p2C4p3 f .Zi /. Similarly, if .v1; v2; v3/ � .q1; q2; q3/, then we have

g.z.v1; v2; v3// 2 Pi2P Wi>2q1C3q2C4q3 g.Zi /. So h.z.p1 C q1; p2 C q2; p3 C
q3// 2 f .z.p1; p2; p3//g.z.q1; q2; q3//CDH6qCH6pB . By assumption,h.z.p1C
q1; p2C q2; p3C q3// 2Pi>2p1C2q1C3p2C3q2C4p3C4q3 h.Zi /: Therefore, since A
is generated in degree one,Zi\H6pC6q �Pj2P W0�j�i .H6p\Zj /.H6q\Zi�j /, so
h.Zi / � DH6qCH6pB . Hence, h.z.p1Cq1; p2Cq2; p3Cq3// 2 DH6qCH6pB .
It follows that f .z.p1; p2; p3//g.z.q1; q2; q3// 2 DH6q C H6pB . Recall that
f .z.p1; p2; p3// 2 H6p and D 2 H6p . Therefore either f .z.p1; p2; p3// 2 D or
g.z.q1; q2; q3// 2 B , a contradiction. �

Lemma 4.3. Let p, r be integers such that p C r > 108, p; r are divisible by 240,
r > 105 and r > 5p. Let f W H6p ! H6p , g W H6rC6p ! H6rC6p be K-linear
mappings such that foru 2M6r , v 2M6p , g.uv/ D uf .v/. If for all n1Cn2Cn3 D
p C r , g.z.n1; n2; n3// 2 Pi>2n1C3n2C4n3 g.Zi / C

P40�2.pCr/2
iD1 Kfi for some

fi 2 A, then f .z.p1; p2; p3// 2Pi>2p1C3p2C4p3 f .Zi / for all p1Cp2Cp3 D p.
Moreover for all n1Cn2Cn3 D pCr , g.z.n1; n2; n3// 2Pi>2n1C3n2C4n3 g.Zi /.

Proof. The result holds if eitherp1 < 0,p2 < 0, orp3 < 0 since then z.p1; p2; p3/ D
0 by the definition. Hence, it suffices to show that each f .z.p1; p2; p3//, where
p1Cp2Cp3 D p, is a linear combination of f .z.q1; q2; q3//with q1Cq2Cq3 D p
and .q1; q2; q3/ � .p1; p2; p3/ and elements from f .Zi /with i > 2p1C3p2C4p3.
LetS D fn1; n2; n3/ W n1Cn2Cn3 D pCr; 13 .pCr/ < n1 < .pCr/.13C 1

20
/; 1
3
.pC

r/ < n2 < .pCr/.13C 1
20
/g. First we shall prove that card.S/ � .pCr/240�2. Ob-

serve that there are at least .pCr/20�1�2 natural numbers laying between .pCr/1
3
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and .pCr/.1
3
C 1
20
/. We can choose ..pCr/20�1�2/2 distinct pairs .n1; n2/ such that

1
3
.pC r/ < n1 < .pC r/.13C 1

20
/ and 1

3
.pC r/ < n2 < .pC r/.13C 1

20
/. For each

such pair we can choose a natural number n3 such that n1 C n2 C n3 D p C r
and .1

3
� 1

10
/.p C r/ < n3 < 1

3
.p C r/. Since p C r > 108, we get that

card.S/ � ..p C r/20�1 � 2/2 > 40�2.p C r/2. Hence the assumption of the
theorem implies that

P
.n1;n2;n3/2S ln1;n2;n3 Œg.z.n1; n2; n3//� t2n1C3n2C4n3 � D 0,

for some tk 2
P
i>k g.Zi /, for some ln1;n2;n3 2 K, not all of which are zeros. Let

.j1; j2; j3/ be the maximal element in S , with respect to �, such that lj1;j2;j3 ¤ 0.
Then g.z.j1; j2; j3// 2 P kn1;n2;n3g.z.n1; n2; n3// C

P
i>2j1C3j2C4j3 g.Zi / for

some kn1;n2;n3 2 K, where the sum runs over all .n1; n2; n3/ 2 S with .n1; n2; n3/ �
.j1; j2; j3/.

It follows from Lemma 4.1 that if n1Cn2Cn3 D pCr , then g.z.n1; n2; n3// DP
r1Cr2Cr3Dr z.r1; r2; r3/f .z.n1 � r1; n2 � r2; n3 � r3//. Moreover, observe that

Zi 2Pr1Cr2Cr3Dr z.r1; r2; r3/Zi�2r1�3r2�4r3CwAwherew 2M6r are monomi-
als which are linearly independent from z.r1; r2; r3/ with r1 C r2 C r3 D r . Hence,
g.Zi / 2Pr1Cr2Cr3Dr z.r1; r2; r3/f .Zi�2r1�3r2�4r3/C wA:

By Lemma 4.1, g.z.j1; j2; j3// DP
r1Cr2Cr3Dr z.r1; r2; r3/f .z.j1 � r1; j2 �

r2; j3� r3//. Therefore,
P
r1Cr2Cr3Dr z.r1; r2; r3/f .z.j1� r1; j2� r2; j3� r3// 2P

r1Cr2Cr3Dr z.r1; r2; r3/cr1;r2;r3CwAwith cr1;r2;r3 D t2j1�2r1C3j2�3r2C4j3�4r3CP
.n1;n2;n3/2S W.n1;n2;n3/�.j1;j2;j3/ kn1;n2;n3f .z.n1 � r1; n2 � r2; n3 � r3// for some

ti 2 P
j>i f .Zj /. This and the first part Lemma 4.1 imply that for each triple

.r1; r2; r3/ satisfying r1 C r2 C r3 D r , with z.r1; r2; r3/ ¤ 0, we have f .z.j1 �
r1; j2� r2; j3� r3// 2P.n1;n2;n3/2S W.n1;n2;n3/�.j1;j2;j3/ kn1;n2;n3f .z.n1� r1; n2�
r2; n3 � r3// CP

i>2j1�2r1C3j2�3r2C4j3�4r3 f .Zi /. The definition of S and the

assumption r > 5p imply that ji > p for i D 1; 2; 3. Hence for arbitrary p1; p2; p3,
such that p1 C p2 C p3 D p, the integers r1 D j1 � p1, r2 D j2 � p2, r3 D
j3 � p3 are positive and r1 C r2 C r3 D r . Thus f .z.p1; p2; p3// D f .z.j1 �
r1; j2 � r2; j3 � r3// 2 P.n1;n2;n3/�.j1;j2;j3/ kn1;n2;n3f .z.n1 � r1; n2 � r2; n3 �
r3//CPi>2j1�2r1C3j2�3r2C4j3�4r3 f .Zi /. Clearly, .n1 � r1; n2 � r2; n3 � r3/ �
.j1 � r1; j2 � r2; j3 � r3/, so the result holds. Now by Lemma 4.1 we get that if
n1 C n2 C n3 D p C r , then g.z.n1; n2; n3// 2Pi>2n1C3n2C4n3 g.Zi /. �

5. Some results from other papers

Let K be a field and Q be a graded K-algebra and Q DL1
iD1Qi . Given a number

n and a set F � Q let BQn .F / denote the right ideal in Q generated by the setS1
kD0QnkF , i.e., BQn .F / D

P1
kD0QnkFQ, where Q0 D K.

Let P be a K- algebra generated by elements x1; : : : ; x6 with gradation one.
Write P D P1 C P2 C � � � where Pn is the K linear space spanned by monomials
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of degree n in x1; : : : ; x6. By considering algebras generated by 6 elements instead
of 3 elements and using the same proof as the proof of Corollary 3 [6] we get the
following theorem.

Theorem 5.1. Let fi , i D 1; 2; : : : , be polynomials in P with degrees ti , and let
mi be an increasing sequence of natural numbers such that mi > 66ti . There exist
subsets xFi � Pmi with card. xFi / < mi6

2ti t2i such that the ideal of P generated by

f
10miC1
i , i D 1; 2; : : : is contained in the right ideal BPmiC1.

xFi / for i D 1; 2; : : : .

We say that an element r 2 T (or p 2 P ) has degree d if r 2 T0 C � � � C Td
(respectively p 2 P1 C � � � C Pd ) and d is minimal with this property.

Theorem 5.2. Let hi , i D 1; 2; : : : , be polynomials in T with deg h2i D ti , and let
mi be an increasing sequence of natural numbers such that mi > 66ti . Let I be
the smallest homogeneous ideal in T containing elements h

20miC1
i , i D 1; 2; : : : .

Then there exist subsets Fi � Hmi � A, with card.Fi / < 40�2m2i such that I
is contained in J C cJ where J is a right ideal in A and J D P1

iD1BAmiC1.Fi /.
Moreover, I \ Tmn �

Pn�1
iD1.BAmiC1.Fi /C cBAmiC1.Fi // for all n.

Proof. Let � W P ! T be a ring homomorphism such that �.x1/ D a, �.x2/ D b,
�.x3/ D ca, �.x4/ D cb, �.x5/ D bc, �.x6/ D cbc. Observe that if hi 2 T ,
then h2i 2 Im.P /. Let fi 2 P be such that �.fi / D h2i and deg.hi /2 D deg.fi /.
By Theorem 5.1 there are subsets xFi � Pmi with card. xFi / < mi6

2ti t2i such that

the ideal of P generated by f
10miC1
i , i D 1; 2; : : : is contained in the right idealP1

iD0BPmiC1. xFi /. By applying mapping � we get that the ideal of Im.P / generated

by �.fi /10miC1 D h
20miC1
i is contained in the right ideal BTmiC1.�.

xFi //. Denote

Di D �. xFi /S c�. xFi /. Note that Im.P / C cK D T . Therefore, the ideal D of T
generated by h

20miC1
i is contained inBTmiC1.Di /. Note thatDi � FiCcFi , for some

set Fi � A with Fc � F and card.Fi / � 8 card.Di / � 16 card. xFi /. Therefore,
card.Fi / < m2i 40

�2. Observe that Fi � Hmi , because xFi � Pmi . It follows that the

ideal of T generated by h
20miC1
i is contained in

P1
iD0.BAmiC1.Fi /C cBAmiC1.Fi //;

as required.
Now we will prove the last part of Theorem 5.2. Fix n. Observe that the homo-

geneous components of f
20mnC1
n have degrees larger than mnC1, hence I \ Tmn �Pn�1

iD1.BAmiC1.Fi /C cBAmiC1.Fi //. This finishes the proof. �

Let mappingsRi W Hmi ! Hmi and cRi .Fi / be defined as in Section 2 in [6] with
Fi D ffi;1; : : : ; fi;ri g � Hmi be as in Theorem 5.2. Recall that cRi .Fi / W Hmi !
Hmi is a K-linear mapping with kercRi .Fi / D fRi .fi;1/; : : : ; Ri .fi;ri /g. Given
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w D x1 : : : xmiC1 2 MmiC1 , RiC1 W HmiC1 ! HmiC1 is a K-linear mapping such
that

RiC1.w/ D cRi .Fi /.Ri .x1 : : : xmi //
miC1m

�1
iY

jD2
Ri .x.j�1/miC1 : : : xjmi /:

Moreover, R1 D Id and we assume that each mi is divisible by 6.

Theorem 5.3 (Theorem 4, [6]). Suppose thatw 2 HmlC1 \
Pl
iD0BAmiC1.Fi /. Then

RlC1.w/ D 0.
Theorem 5.4 (Theorem 6, [6]). Let Ri be as Theorem 5.3, miC1 > mi2

iC100,
miC1 divisible by mi , mi divisible by 6, for i D 1; 2; : : : . For every integer i � 0
there are si divisible by 6, si � 9

10
mi , �i 2 Smi , �i 2 Smi and a K-linear map

hi W Hmi�si ! Hmi�si , such that if u 2 Hsi and v 2 Hmi�si , then

Ri ..uv/
�i //�i D uhi .v/:

Moreover we can assume that permutations � and � permute segments of length 6
(because the mi are divisible by 6).

6. The main result

Theorem 6.1. Let m1; m2; : : : be natural numbers such that for each i , mi divides
miC1, 240 divides all mi , miC1 > mi2

iC100, and m1 > 108. Let i > 0, Fi D
ffi;1; : : : ; fi;ri g � Hmi with ri < 40�2m2i . For every i > 0 there are n1, n2, n3
such that n1 C n2 C n3 D mi

6
and Ri .z.n1; n2; n3// …Pj>2n1C3n2C4n3 Ri .Zj /.

Proof. Suppose the contrary. Let i be the minimal number so thatRi .z.n1; n2; n3// 2P
j>2n1C3n2C4n3 Ri .Zj / for all n1Cn2Cn3 D mi

6
. Clearly i > 1, sinceR1 D Id.

By the definition of Ri and by Lemma 4.2 we get that either

Ri�1.z.n1; n2; n3// 2
X

j>2n1C3n2C4n3
Ri�1.Zj /

for all n1 C n2 C n3 D mi�1
6

, or

cRi�1.Fi�1/.Ri�1.z.n1; n2; n3// 2
X

j>2n1C3n2C4n3
cRi�1.Fi�1/.Ri�1.Zj //

for all n1 C n2 C n3 D mi�1
6

. Since i was minimal the former is impossible. Thus
suppose the latter holds. It follows that cRi�1.Fi�1/Ri�1.z.n1; n2; n3/� tn1;n2;n3/ D
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0 for some tn1;n2;n3 2
P
j>2n1C3n2C4n4 Zj . By the definition of the mapping

cRi�1.Fi�1/, we get Ri�1.z.n1; n2; n3/ � tn1;n2;n3/ 2
Pri�1
jD1 KRi�1.fi�1;j /. For

w 2Mmi�1 let xRi�1.w/ D .Ri�1.w�i�1//�i�1 .
Clearly z.n1; n2; n3/� D z.n1; n2; n3/, because � permutes segments of length

6, so xRi�1.z.n1; n2; n3// D Ri�1.z.n1; n2; n3//�i�1 . By Theorem 5.4, r D si�1,
p D mi�1 � si�1, f D hi�1 and g D xRi�1 satisfy the assumptions of Lemma 4.3.
It follows that Ri�1.z.n1; n2; n3// 2Pj>2n1C3n2C4n4 Ri�1.Zj / for all n1C n2C
n3 D mi�1

6
. A contradiction. �

Proof of Theorem 1.1. The fieldK is countable so elements of T can be enumerated,
say h1; h2; : : : where degree of h2i is ti . Let I be the smallest homogeneous ideal of T

containing elements h
20miC1
i , i D 1; 2; : : : where mi , i D 1; 2; : : : is an increasing

sequence of natural numbers such that mi > 5018ti , mi divides miC1, 240 divides
mi . By Theorem 5.2 there exist subsets Fi � Hmi � A, with card.Fi / < 40�2m2i
such that I � F C cF , where F D P1

iD1BAmiC1.Fi /. Let B D A=I and let zE be

a subalgebra of B generated by a3, b2 and c. Then zE D E=.I \ E/. Note that zE
is nil. We will prove that gr. zE/ is not nil. Suppose on the contrary that gr. zE/ is nil.
Then the image of element a6 C b6 C c is nil in gr. zE/. By Lemma 2.1 there is n
such that w.n1; n2; n3/ 2 I CPi>2n1C3n2Cn3 Ei for all n1 C n2 C n3 > n. Note
that Ei D P

j�0 Tj \ Ei and that I D P
j�0 Tj \ I . Note that w.n1; n2; n3/ 2

T6n1C6n2 . Therefore, w.n1; n2; n3/ 2 I \ T6n1C6n2 C
P
i>2n1C3n2Cn3 Ei \

T6n1C6n2 . Note that mn > 6n. By Theorem 5.2, w.n1; n2; n3/ 2 F C cF CP
i>2n1C3n2Cn3 Ei for all n1 C n2 D mn

6
where F D Pn�1

iD1 BAmiC1.Fi / (because

w.n1; n2; n3/ 2 Tmn). Lemma 3.1 yields z.n1; n2 � n3; n3/ 2Pn�1
iD1 BAmiC1.Fi /CP

i>2n1C3n2Cn3 Zi . By applying the mapping Rn and by Theorem 5.3 we get
Rn.z.n1; n2 � n3; n3// 2 Pi>2n1C3n2Cn3 Rn.Zi / for all n1 C n2 D mn

6
. Hence,

Rn.z.q1; q2; q3// 2 P
i>2q1C3q2C4q3 Rn.Zi / for all q1 C q2 C q3 D mn. By

Theorem 6.1 it is impossible. �

7. Conclusions

By changing inequalities i > 2n1C3n2C4n3 and similar inequalities to the opposite
inequalities i < 2n1C 3n2C 4n3 in the proof of Theorem 1.1 we get an example of
a nil algebra E=.I \ E/ with a filtered algebra ˛.E=.I \ E// DL1

iD1 F i=F i�1,
where F D Ka3CKb2CKcC .I \E/, F 0 D KC .I \E/, generated in degree
one and not nil (over arbitrary countable field). This contrasts a result of Regev [4]
that filtered algebras of algebraic algebras over uncountable fields are algebraic.
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