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Preface

The Russian edition of this book was dated for the 95th anniversary of the
birth of Academician S. L. Sobolev (1908–1989), a great mathematician of the
twentieth century. It includes S. L. Sobolev’s fundamental works on equations
of mathematical physics, computational mathematics, and cubature formulas.

S. L. Sobolev’s works included in the volume reflect scientific ideas, ap-
proaches, and methods proposed by him. These works laid the foundations for
intensive development of modern theory of partial differential equations and
equations of mathematical physics, and were a gold mine for new directions
of functional analysis and computational mathematics.

The book starts with the paper “Academician S. L. Sobolev is a founder of
new directions of functional analysis” by Academician Yu. G. Reshetnyak. It
was written on the basis of his lecture delivered at the scientific session devoted
to S. L. Sobolev in the Institute of Mathematics (Novosibirsk, October, 2003).

The book consists of two parts. Part I includes selected articles on equa-
tions of mathematical physics and Part II presents works on computational
mathematics and cubature formulas. All works are given in chronological or-
der.

Part I consists of 11 fundamental works of S. L. Sobolev devoted to the
study of classical problems of elasticity and plasticity theory, and a series of
hydrodynamic problems that arose due to active participation of S. L. Sobolev
in applied investigations carried out in the 1940s.

The first mathematical articles by S. L. Sobolev were written during his
work in the Theoretical Department of the Seismological Institute of the USSR
Academy of Sciences (Leningrad). Five articles from this cycle are included in
this book (papers [1–5] of Part I). These works are devoted to solving a series
of important applied problems in the theory of elasticity.

In the first paper included in the volume, S. L. Sobolev solves the classi-
cal problem posed in the famous article by H. Lamb (1904) on propagation
of elastic vibrations in a half-plane and a half-space. At first, he considers
H. Lamb’s plane problem, then for this case studies reflection of longitudinal
and transverse elastic plane waves from the plane. Using the theory of func-
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tions of complex variable, he proposes a method for finding plane waves falling
at different angles on the boundary. In particular, he points out a method for
finding the Rayleigh waves. Then, using H. Lamb’s formulas and applying the
method of superposition of plane waves, he gets integral formulas for longitu-
dinal and transverse waves at any internal point of the medium. With these
results he studies H. Lamb’s space problem.

The next two papers by S. L. Sobolev and his teacher V. I. Smirnov are
devoted to more general problems of H. Lamb type. In these articles the
authors propose a new method for the study of problems of the theory of
elasticity. Using the method, the authors get totally new results in the theory
of elasticity and point out a series of problems which can be solved by the
method. In the literature the method is known as the method of functionally
invariant solutions. The main advantage of the method is that there is no
need to use Fourier integrals as did H. Lamb. The method has visual geometric
character and allows one to apply the theory of functions of a complex variable.
The set of functionally invariant solutions contains important solutions of the
wave equation (the Volterra solution, plane waves). This set is closed with
respect to reflection and refraction. Using functionally invariant solutions,
the authors solve H. Lamb’s generalized problem on vibrations of an elastic
half-space under the action of a force source inside the half-space. In these
papers V. I. Smirnov and S. L. Sobolev obtain formulas for components of
displacements at arbitrary point of the space. The authors give a physical
interpretation of the obtained formulas. In particular, they conclude that,
at infinity, elastic vibrations cause a wave of finite amplitude, and the wave
moves with the velocity of the Rayleigh waves.

It should be noted that the first three works are practically unknown to
readers because they were published in sources which are difficult to access.

In the paper [4] of Part I the problem on propagation of elastic vibrations
in a half-plane and an elastic layer is considered. Unlike all preceding inves-
tigations, S. L. Sobolev studies the problem in the case of arbitrary initial
conditions. For solving this problem he applies the Volterra method and the
method of functionally invariant solutions. The main result of the author is
integral formulas for components of displacements at arbitrary points of the
medium at any point of time. In particular, the formulas clarify the reason
for appearance of the Rayleigh space waves in the general case.

The Smirnov–Sobolev method found numerous applications in subsequent
investigations. A review of results obtained by the method at the Seismolog-
ical Institute of the USSR Academy of Sciences (Leningrad) is given in the
paper [5] of Part I.

The paper [6] contains an exhaustive explanation of the Smirnov–Sobolev
method of functionally invariant solutions for the wave equation. S. L. Sobolev
proves that all functionally invariant solutions to the two-dimensional wave
equation can be obtained by this method.

The paper [7] of Part I is devoted to the theory of diffraction of waves on
Riemann surfaces. Solving the problem, the author comes to the necessity of
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using functions which are solutions to the wave equation

1
a2

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
= 0

in a generalized sense. S. L. Sobolev introduces a notion of weak solution of
the wave equation. He says that a function u is called a weak solution of the
wave equation in a domain D, if the function is the limit of a sequence of
classical solutions of the equation in L1. S. L. Sobolev studies properties of
weak solutions and elaborates the method of average functions. Using proper-
ties of weak solutions, the author proposes a method for solving the problem
of diffraction of waves on Riemann surfaces.

In his subsequent works S. L. Sobolev developed the notion of weak solu-
tion, introduced a notion of generalized derivative, defined functional spaces
W l

p called Sobolev spaces, and proved embedding theorems. These works laid
the foundations of the modern theory of generalized functions. A series of
works devoted to the subject will be included in the next volume of selected
works of S. L. Sobolev.

In the paper [8] of Part I, S. L. Sobolev solves the important problem
of propagation of a plastic state in an infinite plane, with a circular hole,
exposed to the action of symmetrical forces causing displacements on the
boundary. S. L. Sobolev indicates the method of computation of all quantities
characterizing the motion, i.e., the displacement components at any point of
time in the plastic and elastic zones, the stress tensor components in both
zones, and the flow lines in the plastic zone.

The last three papers [9–11] of Part I are devoted to the problem of small
oscillations of a rotating fluid. The problem is classical. The study of this
problem began with the famous article “Sur l’equilibre d’une masse fluide
animée d’un mouvement de rotation” by H. Poincaré (1885). Papers [9, 10]
contain results of investigations carried out by S. L. Sobolev in the 1940s.

In the paper [9] S. L. Sobolev considers a system of partial differential
equations of the form

∂−→v
∂t

− [−→v × k] + ∇p =
−→
F ,

div−→v = g.

(1)

This system arises when studying small oscillations of a rotating ideal fluid.
The main aim of the author is to research the Cauchy problem, the first
and second boundary value problems for system (1) in a bounded domain.
Using methods of functional analysis developed by him, S. L. Sobolev proves
well-posedness of the problems, and proposes a method for construction of
solutions. He establishes also a close connection between system (1) and the
non-classical equation

∆
∂2u

∂t2
+
∂2u

∂z2
= f. (2)
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By the method of potentials, S. L. Sobolev obtains explicit formulas of solu-
tions to the Cauchy problem for system (1) and for equation (2).

System (1) can be written as

A0
∂

∂t

(−→v
p

)
+Ax

∂

∂x

(−→v
p

)
+Ay

∂

∂y

(−→v
p

)
+Az

∂

∂z

(−→v
p

)
+B

(−→v
p

)
=
(−→
F
g

)
,

where the matrix A0 is singular, i.e., system (1) is not a Cauchy–Kovalevskaya
system. Probably, equations and systems not solvable with respect to the
highest-order derivative were first studied by H. Poincaré (1885). Subse-
quently, they were considered in a number of articles by mathematicians and
mechanicians. This was connected initially with research into certain hydro-
dynamics problems. Particularly, the most intense interest in equations and
systems not solvable with respect to the highest-order derivative arose in con-
nection with the investigation of the Navier–Stokes system by C. W. Oseen
(1927), F. K. G. Odqvist (1930), J. Leray and J. Schauder (1934), E. Hopf
(1950) and the study of the problem on small oscillations of a rotating fluid
by S. L. Sobolev. The paper [9] was one of the first deep investigations of
equations and systems not solvable with respect to the highest-order deriva-
tive. This paper originated intense research into such equations and systems.
At present, system (1) is called the Sobolev system, equation (2) is called the
Sobolev equation in the literature.

The paper [10] was written by S. L. Sobolev in 1943, but it was published
only in 1960. In the work he considers the problem of stability of motion of a
heavy symmetric top with a cavity filled with a fluid. It is assumed that the
top rotates around its axis, and its foot is immovable. The author reduces the
research into stability of motion to solving the differential equation

dR

dt
= iBR+R0,

where B is a linear operator self-conjugate with respect to a Hermitian form
Q. This form depends on parameters characterizing mechanical properties
of the shell and the fluid. It is interesting that the form Q can be positive
definite or indefinite depending on values of the parameters. Since solutions
to the equation are written by means of the resolvent of the operator B, the
author studies the solutions in a space with indefinite metric.

It should be noted that the theory of differential equations in spaces with
indefinite metric began to develop in the 1940s. Therefore the paper [10] is
one of the first works in this direction.

The main results of the paper [10] follow from established properties of the
resolvent of the operator B in a space with inner product defined by the form
Q. In particular, if the form Q is positive definite, then the motion is stable;
if the form Q is indefinite, then the motion can be unstable. S. L. Sobolev
studies in detail the cases when the cavity filled with the fluid has the form
of an ellipsoid or a cylinder. The author points out angular velocities under
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which the motion is stable, and he describes the cases when the resonance
phenomenon is to be observed.

The paper [11] is a survey of S. L. Sobolev’s lecture delivered at the Interna-
tional Symposium on Applied Analysis and Mathematical Physics (Cagliari-
Sassari, Italy, 1964). In the paper he discusses mathematical problems con-
nected with the research into system (1) and equation (2) arising when study-
ing small oscillations of a rotating ideal fluid. The study of properties of
solutions of system (1), equation (2) and more general equations began with
appearance of S. L. Sobolev’s famous article (1954; see [9] of Part I). In his
lecture he gives a survey of results obtained in this direction for the past 10
years. In particular, he notes a series of unexpected results on spectral proper-
ties of operators generated by the problems. From the results it follows that,
as a rule, solutions to the boundary value problems have non-compact trajec-
tories. S. L. Sobolev points out that asymptotic properties of solutions depend
essentially on domain geometry. On the other hand, in the case of a boundary
time interval, S. L. Sobolev proves that solutions of many boundary value
problems depend continuously on deformations of the domain boundary. He
notes also some connections of many boundary value problems with various
problems of mathematical analysis and other problems of partial differential
equations. He emphasizes that the class of the problems under discussion is
at an initial stage of study.

Part II of the book includes 29 articles on computational mathematics
and cubature formulas. It starts with an early paper which is devoted to the
Schwartz method for approximate solution of boundary value problems for
partial differential equations of elasticity theory. The next five works were
written by S. L. Sobolev as part of his active participation in applied inves-
tigations carried out in the Soviet Union in the 1940-50s. These articles are
devoted to computational methods in difference and integral equations, and
problems of approximation of linear operators. In these works S. L. Sobolev ac-
tively advocated the use of functional analysis in computational mathematics,
and pointed out close interconnections between computational mathematics,
differential equations and functional analysis. He emphasized that the use of
computers for solving complex applied problems will be more effective under
active collaboration of mathematicians and engineers.

A noticeable place in the scientific legacy of S. L. Sobolev is occupied by
his contributions to the theory of approximate multidimensional integration
which were accomplished during his stay of 25 years in Novosibirsk. His first
article in this direction was published in 1961 and the last in 1985 and there
are two dozen of these papers in this volume. In these papers S. L. Sobolev
mainly pursue a functional-analytical approach. This implies that, first, the
integrands are combined in a Banach space and, second, the difference between
the integral and the approximative combination of the values of the integrand
is treated as the result of applying some linear functional. This functional,
called the error of a cubature formula, is usually continuous. Knowledge of
the value of its norm allows us to derive guaranteed estimates for the accuracy
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of the cubature formula under study on the elements of the chosen space. In
addition to describing the construction of the formulas under consideration,
i.e., indicating their nodes and weights or algorithms for their determination,
the functional-analytical approach implies the study of the norms of the re-
spective errors in a chosen Banach space. In particular, two-sided estimates
for these norms are derived. In papers [7, 8, 9] of Part II S. L. Sobolev ad-
dresses the main problems of the theory of cubature formulas and the theory
of interpolation.

In the theory of cubature formulas, a term coined by S. L. Sobolev, four
principal directions are specified. All are exposed in the present edition.

The first in chronological order of the directions consists in studying the
cubature formulas in three-dimensional space which possess high polynomial
degree and are invariant under the action of the rotation group of some regu-
lar polyhedron. The requirement that a cubature formula with fixed nodes be
exact for polynomials up to a certain degree reduces the problem of construct-
ing the weights of the formula to solution of a system of linear equations. The
higher the desired order is and the larger are the number of nodes, the greater
becomes the size of this system. However, in the case when the integration
domain possesses some symmetry and we use an invariant cubature formula
for approximate integration, it is possible to diminish substantially the size
of the system to be solved. Papers [10, 11] of Part II address the question of
how to achieve this.

The second direction in the theory, which seems to be most advanced,
consists in studying asymptotically optimal cubature formulas on the spaces
of functions of finite smoothness (papers [12, 14, 16, 18, 23] of Part II). In
this respect S. L. Sobolev himself considered the Hilbert L(m)

2 spaces. The
construction of a regular boundary layer which he proposed makes it possible
to find the weights of a cubature formula with arbitrarily many nodes by
solving only a few standard systems of linear equations of size depending
only on the order m (papers [13, 18, 21] of Part II). The central place in
this direction is occupied by derivation of an asymptotic expansion of the
L

(m)∗
2 norm of an error with regular boundary layer. The expansion contains

two summands. The first is written explicitly via the so-called generalized
Bernoulli numbers, whereas the second is negligible as compared with the first,
provided that the small mesh-size h of the lattice of integration is sufficiently
small. The expansion implies that the norm of an error with regular boundary
layer decreases like hm as h → 0. It is a rather deep analytical fact enabling
us to give not an algebraic but rather a functional-analytical definition of the
order of a cubature formula on some function class (paper [29] of Part II).

The expansion of the L(m)∗
2 norm of an error with regular boundary layer

gives solid grounds for choosing a numerical integration formula with nodes
comprising a lattice. Indeed, given N nodes, we may pose the problem of
finding a cubature formula whose error has L

(m)∗
2 norm minimal, with the

minimum taken over not only the weights but also the nodes of the formula.
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However, the ratio of the L(m)∗
2 norm of the error of such an optimal formula

to the L(m)∗
2 norm of the error with regular boundary layer and the same num-

ber N of nodes is bounded from below by a positive quantity independent of
N . This is immediate from the Bakhvalov Theorem (paper [14] of Part II).
Increasing N , we could however hardly expect large gain from using formulas
with arbitrary disposition of nodes instead of those with nodes comprising a
parallelepipedal lattice. Moreover, to optimize a formula over nodes is a dif-
ficult problem involving solution of simultaneous nonlinear equations of high
order. This is in sharp contrast to the formulas with regular boundary layer
whose nodes are explicit and need no calculation at all.

Note that the theory of formulas with regular boundary layer actually
presents the function summation problem pertinent to the calculus of finite dif-
ferences. From this point of view, every cubature formula with regular bound-
ary layer is a multidimensional analog of the classical quadrature formula of
Gregory. Constructing such a cubature formula, we thus take account of the
behavior of an integrand near to the boundary of the integration domain by
especially selecting the weights of the formula at the nodes belonging to some
boundary layer. All remaining weights coincide.

Remarkable is the method proposed by S. L. Sobolev for finding the norm
of an error l(x) and his use of the concept of extremal function u(x) (papers
[7, 12, 14, 15] of Part II). Such function is considered as a weak solution to
the many-dimensional polyharmonic equation with a special right side

∆mu(x) = (−1)ml(x).

A solution to this equation on the real axis is a piecewise-polynomial function
of the class W (m)

2 , i.e., a spline. In many dimensions, this approach enabled
S. L. Sobolev to apply the methods he invented in the theory of partial dif-
ferential equations to study of the classical problems of analysis.

The third direction of the theory comprises the S. L. Sobolev contribution
to cubature formulas on the classes of infinitely differentiable functions (papers
[17, 22, 29] of Part II). As such he considered the spaces of periodic functions
of many variables with prescribed behavior of the integral norms in the L(m)

2

spaces as m tends to infinity. The classification he proposed embraces the
conventional spaces of entire functions of given type and order, spaces of
analytic functions and the Gevrey classes containing quasianalytic functions.
Considering the action on this space of the error of a lattice formula with equal
weights, S. L. Sobolev obtained an asymptotic expansion of the logarithm of
the norm of the error. In exact analogy with the case of the spaces of finite
smoothness, the respective formula comprises two summands. One of them is
explicitly expressed through the parameters of the initial class, whereas the
other is negligible as compared with the first at a small mesh-size h. This
research demonstrated in particular that a noteworthy effect accompanies
the transition from functions of finite smoothness to infinitely differentiable
functions. Namely, the norm of the error of a cubature formula, decreasing
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not faster than some power of the lattice mesh-size in the first case, decreases
exponentially in the second case. S. L. Sobolev suggested that in the second
case the order of a cubature formula be assumed infinite. More exactly, a
cubature formula possesses infinite order in a Banach space provided that the
norm of the corresponding error in the dual space vanishes faster than any
degree of the mesh-size of the integration lattice. S. L. Sobolev exhibited one
example of the sort in the case of many dimensions.

Finally, the fourth direction of the theory comprises the S. L. Sobolev
research in L(m)

2 -optimal lattice cubature formulas (papers [20] and [24] of Part
II). A central place is occupied here by description of some analytic algorithm
for determining weights of such formulas. To this end, S. L. Sobolev defined
and studied a special finite-difference operator whose action on a function of
a discrete argument may be written as convolution with a special kernel in
analogy with the action of the polyharmonic operator ∆m on a continuously
differentiable function (paper [19] of Part II).

The problem of calculating the convolution kernel for an arbitrary m turns
out rather involved. It was partly solved in the one-dimensional case: here a
formula is available expressing the desired values through the roots of the
Euler–Frobenius polynomials of degree 2m. The weights of optimal formu-
las are conveniently treated as the values at the appropriate points of some
compactly-supported function of a many-dimensional discrete argument. This
function happens to satisfy a linear finite-difference equation with a special
right side. Applying to this right side a discrete convolution analog of the
polyharmonic operator, S. L. Sobolev obtained an analytical formula for the
sought weights (paper [24] of Part II). To use it in the one-dimensional case,
he revealed many properties of the roots of the Euler–Frobenius polynomials
(papers [25–28] of Part II). In particular, he obtained asymptotic formulas for
the roots of these polynomials. The results by S. L. Sobolev on the weights
of optimal cubature formulas generalized some results by A. Sard, I. Meyers,
I. Schoenberg and S. Silliman derived by the method of splines.

The method of S. L. Sobolev for studying cubature formulas is deeply
rooted in such fields of theoretical mathematics as mathematical analysis, the
theory of differential equations and functional analysis. At the same time, the
specific subject of research, a cubature formula for approximate integration, is
traditionally ascribed to numerical analysis which the modern computational
mathematics stems from. As a result, a theory has emerged which has unde-
niable import for applications. This order of events seems by far not random
but rather an inevitable phenomenon of modern mathematics.

We would like to say a few words about selected works of S. L. Sobolev.
In 2001 the Scientific Council of the Sobolev Institute of Mathematics of
the Siberian Division of the Russian Academy of Sciences (Novosibirsk)
made a decision to publish selected works of Academician S. L. Sobolev
in many volumes. An editorial board was formed, consisting of Academi-
cian Yu. G. Reshetnyak, Prof. G. V. Demidenko, Prof. S. S. Kutateladze,
Prof. V. L. Vaskevich, and Prof. S. K. Vodop’yanov. As mentioned above, the
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Russian edition of the first volume came out in 2003. Prof. G. V. Demidenko
and Prof. V. L. Vaskevich are the editors of this volume. The second volume
will be published in Russian in 2006. It will include fundamental works of
S. L. Sobolev on functional analysis and differential equations. The editors of
the second volume are Prof. G. V. Demidenko and Prof. S. K. Vodop’yanov.

Selecting S. L. Sobolev’s works for the first volume, the editors used the
chronology of his works. It was composed by V. M. Pestunova and published
in the Sobolev Institute of Mathematics in 1998. A big help in search of early
works of S. L. Sobolev was given by the employees of the library of the Sobolev
Institute of Mathematics: L. G. Gulyaeva, L. A. Mikuta, and V. G. Ponomar-
chuk.

Many people actively participated in the preparation of the manuscript:
members of the Sobolev Institute of Mathematics L. V. Alekseeva and
Dr. I. I. Matveeva; members of the Lavrentiev Institute of Hydrodynamics
Prof. N. I. Makarenko and Dr. A. E. Mamontov; students of Novosibirsk State
University L. N. Buldygerova, V. G. Demidenko, Yu. E. Khropova, T. V. Ko-
tova, A. A. Kovalenko, M. A. Kuklina, A. V. Mudrov, A. M. Popov, and
E. A. Samuilova.

The editors are much indebted to each of the contributors mentioned
above.

The Russian edition was supported by the Federal Special Program “In-
tegratsiya” (grant number C0015), by the Russian Foundation for Basic Re-
search (grant number 03-01-14016), and by the Siberian Division of the Rus-
sian Academy of Sciences.

The editors are very grateful to Prof. H. G. W. Begehr for useful advice
in regard to the English edition of this book.

The editors would like to take this opportunity to thank J. Martindale
and R. Saley. The English edition became possible due to fruitful cooperation
with them.

The editors would like to express their deep gratitude to Dr. V. V. Fokin
for his huge work in the translation of this book into English.

Novosibirsk, Gennadii Demidenko
December 2005 Vladimir Vaskevich
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S. L. Sobolev – one of the most prominent mathematicians of the 20th cen-
tury – was born on October 6, 1908 in Petersburg. His father, Lev Alexan-
drovich Sobolev, was a public attorney. Lev Alexandrovich studied at Peters-
burg University, but was expelled because of his participation in the revolu-
tionary movement and sent to the army as a soldier. Afterwards, he passed, as
external student, the state examinations at the Law Department of Kharkov
University. Sergei Sobolev’s paternal grandfather was a hereditary Siberian
kazak.

It was in his early youth when Sergei Sobolev lost his father; he was brought
up by his mother, Natalia Georgievna, a most educated woman, teacher of
literature and history. Natalia Georgievna also had a second specialty: she
graduated from a Medical Institute and worked as associate professor at the
First Leningrad Medical Institute. She inculcated in Sergei Sobolev such per-
sonality features as fidelity to principle, honesty and purposefulness, which
characterized him as scientist and person.

Sergei Sobolev mastered the high school program by himself, being partic-
ularly fond of mathematics. In the years of the Civil War, he lived in Kharkov
with his mother. There he studied for one semester at preparatory courses
to a labor technical night school. By 15 years of age, he knew the complete
course of mathematics, physics, chemistry, and other sciences according to
the high school curriculum, had read many books of classic Russian and for-
eign literature as well as books on philosophy, medicine, biology, etc. Having
moved from Kharkov to Petrograd in 1923, Sergei Sobolev was enrolled in the
final school year of School 190 and finished it with excellence in 1924. After
finishing school, he could not enter a university because of his young age (he
was under 16), so he began to study at the First State Art Studio, in a piano
class.

In 1925, Sergei Sobolev entered the Physics and Mathematics Department
of Leningrad State University, proceeding with his studies at the Art Studio. In
Leningrad State University, he attended lectures by Professors N. M. Gyunter,
V. I. Smirnov, G. M. Fikhtengol’ts and others. He wrote his diploma thesis on
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analytical solutions of a system of differential equations with two independent
variables under the academic supervision of Prof. N. M. Gyunter.

In those years, Leningrad University was a major scientific mathemati-
cal center, which retained the remarkable traditions of the Petersburg math-
ematical school. It was famous for its great discoveries in mathematics
and connected with the names of P. L. Chebyshev, A. M. Lyapunov, and
A. A. Markov.

After graduating in 1929 from Leningrad University, Sergei Sobolev started
to work in the Theoretical Department of Leningrad Seismological Institute
under the direction of V. I. Smirnov. In that period, in close cooperation with
V. I. Smirnov, they solved a number of fundamental mathematical problems
in the wave transmission theory.

Since 1932, S. L. Sobolev worked in V. A. Steklov Mathematical Institute
in Leningrad, and since 1934 – in Moscow. On February 1, 1933, when he was
not yet 25 years old, he was elected a corresponding member of the USSR
Academy of Sciences. He became a full member of the USSR Academy of Sci-
ences on January 29, 1939. In 1941, for his works in mathematical theory of
elasticity, S. L. Sobolev was awarded with the State Prize of the 1st Degree.
During the Great Patriotic War, V. A. Steklov Mathematical Institute was
evacuated in Kazan, and for a short period, from 1941 to 1943, S. L. Sobolev
was the director of this institute. Since 1943, he worked in the institute headed
by I. V. Kurchatov, which was then called the Laboratory of Measuring In-
struments of the USSR Academy of Sciences (now I. V. Kurchatov Institute
of Atomic Energy). He kept on working as research fellow at this institute
before leaving for Novosibirsk.

S. L. Sobolev is known worldwide as a prominent mathematician and au-
thor of outstanding research works on the theory of differential equations,
computational mathematics, and functional analysis. He gave rise to the wave
transmission theory. He developed the theory of generalized functions as func-
tionals on a set of smooth compactly-supported functions. On the basis of this
theory, he defined the concept of a weak solution of a partial differential equa-
tion. S. L. Sobolev introduced new function spaces and proved embedding
theorems for them (Sobolev spaces, Sobolev embedding theorems). He laid
the foundations of the spectral theory for operators in spaces with indefi-
nite metric in connection with studying solutions of hydrodynamic systems
of rotating fluid. He made a significant contribution to the development of
computational mathematics: he introduced the important concept of compu-
tational algorithm closure and constructed the theory of cubature formulas.
He organized at Moscow University the country’s first Chair of Computational
Mathematics.

S. L. Sobolev was a forward-thinking man and a socially active person. For
example, he vigorously supported cybernetics and mathematical economics
when these schools of thought were victimized; he advocated protection of
the unique ecosystem of the Baikal Lake. It is hard to enumerate all the
important achievements that he attained.
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S. L. Sobolev was involved in applied scientific projects that were highly
important state matters – he developed mathematical support for the USSR
nuclear project while working as deputy director for I. V. Kurchatov in the
Measuring Instrument Laboratory.

S. L. Sobolev had great authority in world-wide science. He was elected
an international member of the French Academy of Sciences, Accademia
Nazionale dei Lincei in Roma, Berlin Academy of Sciences, Edinburgh Royal
Society, honorary doctor of Charles University in Prague, honorary doctor of
Humboldt University in Berlin, honorary doctor of Higher School of Architec-
ture and Construction in Weimar, honorary member of Moscow and American
Mathematical Societies.

The services S. L. Sobolev rendered to science and our country were highly
valued and he was awarded with numerous orders and prizes even before his
arrival in Novosibirsk – in the Siberian Division of the USSR Academy of
Sciences. For the works done at the I. V. Kurchatov Institute of Nuclear
Power, S. L. Sobolev was conferred the honorary title of Hero of Socialist
Labor, decorated with several Lenin Orders and many other decorations of
the Soviet government.

In 1957, Academician S. L. Sobolev together with Academicians M. A. Lav-
rentiev and S. A. Khristianovich became one of the three founders of the
Siberian Division of the USSR Academy of Sciences.

S. L. Sobolev was the founder and director of the Institute of Mathematics
of the USSR Academy of Sciences. He held the position of director from 1957
to 1983 when, after celebration of his 75th birthday, he left to go to Moscow
to work at the Steklov Mathematical Institute. In 1988, he was put forward
for a M. V. Lomonosov Gold Medal of the USSR Academy of Sciences.

In the last years of his life, S. L. Sobolev was seriously ill, and he passed
away on January 3, 1989. The M. V. Lomonosov Gold Medal of the USSR
Academy of Sciences was awarded to him posthumously in 1989.

One of the main achievements of S. L. Sobolev in mathematics was con-
struction of the theory of generalized functions, one of the most important
directions of modern functional analysis, and creation of the theory of func-
tions with generalized derivatives. In the literature these spaces are called
Sobolev spaces. These two directions in the scientific research of S. L. Sobolev
appear as one whole.

As a separate direction of mathematics, functional analysis had been
formed at the end of the 19th, beginning of the 20th centuries. The cre-
ation of set theory and based on it general (set theoretic) topology and the
theory of functions of a real variable created favorable circumstances for func-
tional analysis. The appearance of functional analysis was an answer to certain
questions of theoretical mathematics, possibly even implicitly stated, and its
applications. In applications it is often important to know the conditions not
only in the particular example, but rather for all problems of a certain class.
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The need for development of research methods, not for particular functions
or equations, but for entire classes of functions and equations, had led to
the creation of functional analysis. The role of functional analysis in modern
mathematics is by no means complete with this description.

The applications of functional analysis to problems of the theory of partial
differential equations were already known before works of S. L. Sobolev. In
this connection, we can indicate, for example, the famous D. Hilbert’s works
devoted to the validation of the Dirichlet principle for the Laplace equation.
By virtue of S. L. Sobolev’s investigations, functional analysis become a uni-
versal method for solving problems of mathematical physics.

In the 1920–30s, many scientists working in the theory of partial differential
equations concentrated their efforts in order to understand what is a weak
solution of a differential equation, and, in particular, how to extend the notion
of the derivative of a function, so it would satisfy all needs of the theory of
partial differential equations.

The most effective and, I would say, the most spectacular way of solving
this problem was indicated by S. L. Sobolev. He noticed that any locally
summable function of n variables generates a certain functional on the space of
smooth compactly-supported functions. If one identifies the function with this
functional, then it becomes possible to extend on locally integrable functions
various operations performed on smooth functions by means of an adjoint
operator.

The basics of the theory of generalized functions were presented briefly
by S. L. Sobolev in his note in the journal “Doklady Akademii Nauk SSSR”
(1935). The complete presentation was given in the article of S. L. Sobolev
“Méthode nouvelle à résoudre le problème de Cauchy pour les équations
linéaires hyperboliques normales” (A new method of solving the Cauchy prob-
lem for linear normal hyperbolic equations. Mat. Sb., 1, 39–72 (1936)). The
Russian translation of this article is also given in the last edition of the book
by S. L. Sobolev “Some Applications of Functional Analysis in Mathematical
Physics”, edited by O. A. Oleinik and published in 1988, with comments by
V. I. Burenkov and V. P. Palamodov.

The basic ideas and constructions of the theory of generalized functions
contained in S. L. Sobolev’s articles appear in the modern theory practically
without any changes. Let us point out the most important ideas.

1. A generalized function is defined as a functional on the space of smooth
compactly-supported functions.

2. Linear differential operators in the space of generalized functions are
introduced in the form of adjoints to the corresponding linear differential
operators on the space of smooth compactly-supported functions.

3. The generalized functions are classified in the order of their singularity
(in terms of S. L. Sobolev, by a class).

4. The regularization of generalized functions by means of convolution and
approximation of an arbitrary generalized function by infinitely differentiable
functions.
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5. The flexible manipulation of spaces of test and generalized functions,
defined by various conditions imposed on supports of test and generalized
functions.

6. Reducing the Cauchy problem to a problem with a nontrivial right-
hand side without initial conditions by transforming the initial conditions
into sources of delta function type.

Let Ω be a domain, i.e., a connected open set in the space Rn. The function
ϕ defined in Ω is called compactly-supported , if there exists a compact set
Sϕ ⊂ Ω such that ϕ(x) = 0 for x /∈ Sϕ. There is the smallest set among
compact sets satisfying this condition. It is called the support of the function
ϕ. Further we assume that Sϕ is the support of the function ϕ. We say that the
function ϕ : Ω → R belongs to the class Cr

0(Ω), if it is compactly-supported
and has all partial derivatives of order r in Ω, and all these derivatives are
continuous. The symbol C∞

0 (Ω) denotes the set of all functions ϕ belonging
to the class Cr

0 (Ω) for any r ≥ 1.
The class Cr

0(Ω) is a vector space. We will consider linear functionals on
the spaces Cr

0(Ω). The value of a functional f on a function ϕ ∈ Cr
0(Ω)

is denoted by the symbol 〈f, ϕ〉. In the space Cr
0 (Ω), a certain topology is

introduced (I do not describe it in detail, referring instead to the book by
S. L. Sobolev “Some Applications of Functional Analysis in Mathematical
Physics”). A generalized function is a functional continuous in this topology.

In the work of S. L. Sobolev mentioned above (Mat. Sb., 1, 39–72 (1936))
the generalized functions are simply called functionals. The term “generalized
function” appeared later. French mathematician Laurent Schwartz used the
term “distribution” to denote this object.

Let us present certain examples. They are significant for the theory of
generalized functions.

1. Suppose that f : Ω → R is an arbitrary measurable function in
L1,loc(Ω). The function f for every r defines on the space Cr

0(Ω) the linear
functional f̃ by the formula

〈f̃ , ϕ〉 =
∫
Ω

f(x)ϕ(x) dx.

The functional f̃ is continuous in Cr
0(Ω) in the sense of the definition given

above, and, hence, it is a certain generalized function.
The functional f̃ defines the function f uniquely up to values on the set

of measure zero. (This statement is known from the calculus of variations
under the name of the Du Bois–Reymond lemma.) After S. L. Sobolev, in
what follows, we identify the function f ∈ L1,loc(Ω) with the functional f̃ ∈
D(Ω). Therefore, I simply write f instead of f̃ . Thus, we obtain an embedding
of L1,loc(Ω) to the space Dr(Ω) of linear functionals over the vector space
Cr

0(Ω) for each integer r > 0. Thus, any function from the class L1,loc(Ω) is
a generalized function.
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Similarly to this example, the notation f(x) is used in the literature for
any generalized function. According to this, instead of 〈f, ϕ〉 one uses the
expression ∫

Ω

f(x)ϕ(x) dx.

2. LetΩ = Rn and let a be an arbitrary point inRn. By the symbol δ(x−a)
we denote the generalized function such that for any function ϕ ∈ Cr

0(Rn) the
following equality holds: ∫

Ω

δ(x− a)ϕ(x) dx = ϕ(a).

We say that δ(x−a) is a δ-function concentrated at the point a of the space
Rn. The notion of δ-function was introduced by Dirac and used in theoretical
physics before the work of S. L. Sobolev.

Dirac defined δ(x − a) as the usual function such that δ(x − a) = 0 for
x �= a, δ(0) = ∞ and ∫

Rn

δ(x− a) dx = 1.

From a mathematical standpoint, the definition of Dirac is nonsense, even
though its physical content is absolutely clear. For example, the Dirac δ-
function is the unit mass concentrated in an arbitrarily small domain.

3. Let Ω be a domain in Rn. The symbol B0(Ω) denotes the union of all
Borel sets A ⊂ Ω, whose closures are compact and also contained in Ω. Let
µ : B0(Ω) → R be a countably additive set function defined on the union of
the sets B0(Ω). Then for any function ϕ ∈ Cr

0(Ω), r ≥ 1, the following integral
is defined:

〈dµ, ϕ〉 =
∫
Ω

ϕ(x)dµ(x).

The set function µ is defined uniquely by the functional dµ. Obviously, the
notion of the δ-function is a particular case of the given example.

The generalized function f(x) is called nonnegative in the domain Ω if for
any nonnegative function ϕ ∈ Cr

0(Ω) the following inequality holds:∫
Ω

f(x)ϕ(x) dx ≥ 0.

The following statement can be easily proved: if the generalized function
f(x) is nonnegative, then f = dµ, where µ is a nonnegative countably additive
set function defined in Ω.

Let us show how the operations on usual functions are extended onto
generalized functions. We use the example of differentiation for this.
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Let α = (α1, α2, . . . , αn) be an n-dimensional multiindex, i.e., the vector in
Rn, whose components are nonnegative integers. We set |α| = α1+α2+· · ·+αn

and denote by the symbol Dα the operator of differentiation

Dα =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
.

First we consider the case n = 1. Let Ω be an interval (a, b) ⊂ R, and let
f(x) be a function defined in Ω from the class Cr, i.e., it has a continuous
derivative of order r at every point of this interval. Applying the rule of
integration by parts, we obtain that for any function ϕ ∈ Cr

0(Ω) the inequality
holds,

b∫
a

f (r)(x)ϕ(x) dx = (−1)r

b∫
a

f(x)ϕ(r)(x) dx.

Hence, by applying the Fubini theorem, we conclude that if Ω is a domain in
Rn, and the function f belongs to the class Cm(Ω), m = |α|, then for any
function ϕ from the class Cr

0(Ω), r ≥ m, the following equality holds:∫
Ω

Dαf(x)ϕ(x) dx = (−1)m

∫
Ω

f(x)Dαϕ(x) dx.

This equality presents a scheme to show how one can define the notion of a
generalized derivative for arbitrary generalized functions.

If f(x) is a generalized function in a domain Ω of the space Rn, then its
derivative Dαf(x) is a linear functional, whose action on smooth functions is
defined by the rule∫

Ω

Dαf(x)ϕ(x) dx = (−1)|α|
∫
Ω

f(x)Dαϕ(x) dx.

By this definition, any generalized function has any derivative of any order.
Let us consider the simplest wave equation

∂2u

∂t2
= a2 ∂

2u

∂x2
. (1)

Any solution of this equation can be represented in the form

u(x, t) = f(x− at) + g(x+ at). (2)

To substitute the function u(x, t) defined by (2) in equation (1) the functions
f and g must have second order derivatives.

Each term in (2) has certain physical meaning. By (2), the function u(x, t)
is represented as a sum of two waves, one wave moves in one direction, and the
other one moves in the opposite direction. The requirement of second order
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differentiability of the functions f and g is not much justified physically. The
question of how to understand the solution of the wave equation was the
subject of discussions among mathematicians already in the 18th century. In
particular, they suggested to take any function of form (2) as a solution of
the equation for any functions f and g.

For any locally integrable functions f and g, the function u(x, t) defined
by (2) always satisfy the wave equation under the condition that the deriva-
tives in this equation are understood in the sense of the theory of generalized
functions.

The definition given by S. L. Sobolev allows one to correct also “trans-
gressions” of physicists, related to the δ-function, namely, to give a rigorous
definition of the derivative of the δ-function. According to the definition of
S. L. Sobolev, the derivative Dαδ(x− a) is the generalized function such that
the equality

〈Dαδ, ϕ〉 = (−1)|α|Dαϕ(a)

holds for any compactly-supported function from the corresponding class of
smoothness.

It is necessary also to note the ingenious construction invented by S. L. So-
bolev in order to smooth functions and generalized functions. This method
allows one to approximate an arbitrary generalized function by functions from
the class C∞.

To illustrate this, let us indicate certain simple applications of the notions
introduced by S. L. Sobolev.

The criterion of the monotonicity of a function, defined on a certain interval
of the real line, is usually formulated in courses of differential calculus in the
following way. If the function f : (a, b) → R is differentiable at each point of
the interval (a, b), then it is increasing if and only if its derivative is always
nonnegative. The theory of generalized functions allows one to remove the
requirement of differentiability, more precisely, to replace it by a significantly
weaker requirement of local integrability.

A locally integrable function f : (a, b) → R is increasing if and only if its
derivative, as a generalized function, is nonnegative.

Similarly, a function that is locally integrable on the interval (a, b) is convex
if and only if its second derivative is a nonnegative generalized function.

Let us also indicate that the condition: the function f : (a, b) → R is
absolutely continuous, is equivalent to the condition: the function f is locally
integrable and its derivative, as a generalized function, is a locally integrable
function.

S. L. Sobolev also constructed the theory of classes of functions with gen-
eralized derivatives, the so-called spaces W l

p(Ω). In the literature these spaces
are called Sobolev spaces. For applications of functional analysis to mathe-
matical physics, besides the general principles, it is necessary to have large
sets of Banach spaces that can be used in problems of mathematical physics.
The spaces W l

p(Ω) provide such sets.
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Let Ω be a domain in Rn, let l ≥ 1 and p ≥ 1 be real numbers such that
l is the integer, and let f be a generalized function defined in Ω. We say that
f belongs to the class W l

p(Ω), if all its derivatives Dα, |α| ≤ l, belong to the
class Lp(Ω). Naturally, these derivatives are understood in the sense of the
definition given above.

S. L. Sobolev built a theory of the classes W l
p(Ω). These functional classes

have become the object of careful attention of many researches. At the same
time, the techniques of studying such functions and methods proposed by
S. L. Sobolev were universally recognized; they continue to be applied in
many various studies.

S. L. Sobolev had constructed integral representations of the functions
from the classes W l

p(Ω) and studied different norms of the classes W l
p(Ω).

He showed that these classes form Banach spaces. Here, the main result of
S. L. Sobolev is embedding theorems establishing connections between these
spaces.

Let us make some statements.

Theorem 1. Let Ω be a bounded domain in the space Rn with a boundary sat-
isfying certain conditions of geometrical nature. If lp > n, then any function
f ∈ W l

p(Ω) is continuous. Moreover, the following inequality holds:

‖f‖C(Ω) ≤ M‖f‖W l
p(Ω),

where M = M(l, p, n,Ω) is a positive constant.

Theorem 2. Let Ω be a bounded domain in the space Rn with a boundary
satisfying certain conditions of geometrical nature. If lp ≤ n, then any func-
tion f ∈ W l

p(Ω) for any q such that 1 ≤ q < np
n−lp belongs to the class Lq(Ω).

Moreover, the following inequality holds:

‖f‖Lq(Ω) ≤ M‖f‖W l
p(Ω),

where M = M(l, p, q, n,Ω) is a positive constant.

The conditions on the boundary of the domain Ω, indicated by S. L. So-
bolev in these theorems, have quite general character. For example, they are
satisfied for any domain with a smooth boundary.

S. L. Sobolev was one of the founders of Novosibirsk State University in
Akademgorodok. He gave the first lecture during the opening of Novosibirsk
State University. Working in the Siberian Division of the USSR Academy of
Sciences for 25 years, he was the head of the Chair of Differential Equations in
the Department of Mechanics and Mathematics, lectured the classical course
on equations of mathematical physics and a special course on cubature for-
mulas, the theory which he had developed. The result of this research is his
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book “Introduction to the Theory of Cubature Formulas” (Nauka, Moscow
(1974)). The scientific school in the field of the theory of cubature formulas
was formed under the lead of S. L. Sobolev.

In the 1960s, S. L. Sobolev was also engaged in the problem of construction
of electronic computers with processing power at least 1 billion operations per
second (in the terminology used now, supercomputers). In this connection a
group was formed in the Institute of Mathematics of the Siberian Division
of the USSR Academy of Sciences. Such a supercomputer had to be a clus-
ter of separate computers (processors) performing in parallel different steps
of the work. The main technical principle was micro computerization. The
time allocated for the completion of this project was said to be 20–25 years.
The journal titled “Computational Systems” was published in the institute.
It published papers devoted to electronic computers of high productivity. An
interinstitutional seminar was organized, where everybody who studied this
subject could present. Unfortunately, for objective (and possibly, subjective)
reasons this work was not finished, since it did not find proper understanding
and support. We can now say that, during the work conducted in the Insti-
tute of Mathematics, there was given a prognosis of ways of development of
computer science. This prognosis turned out to be precise. The ideas formu-
lated in the process of that work were implemented in real devices later on.
For example, the proposal to use for connecting processors the network of the
faces of the n-dimensional cube first was formulated in one of the papers pub-
lished in the journal“Computational Systems” in 1962. This idea was realized
in many parallel supercomputers working now.

The fact that such a remarkable mathematician as Academician S. L. So-
bolev arrived in Novosibirsk in 1957 had great significance for the Siberian
Division and development of mathematics in Siberia. The Sobolev Institute
of Mathematics has been one of the world centers of mathematical research
already for more than 40 years.



Part I

Equations of Mathematical Physics



1. Application of the Theory of Plane Waves
to the Lamb Problem∗

S. L. Sobolev

Chapter 1

1. Professor H. Lamb in his article [1] considered the problem on propa-
gation of disturbances in an infinite half-space.

At a point on a boundary of the half-space there is a force normal to the
surface of boundary between the medium and the vacuum. The problem is
to compute components of displacements at some other point of the surface
(the observation point). The results obtained by H. Lamb allow us to compute
these displacements in the form of definite integrals.

Our problem is to find analogous integral expressions for displacements
at an arbitrary point inside the medium. Our method, in spite of a certain
formal dissimilarity, is actually close to H. Lamb’s method.

The essence of our method is the consideration of a disturbance propa-
gating in the half-space as a sum of disturbances of a certain special type:
the complex plane waves. We obtain these complex waves directly from the
equations of elasticity; however, they can be obtained by summing in a cer-
tain order the multiple Fourier integrals used by H. Lamb. We are not going
to prove the existence and uniqueness theorems for our integral representa-
tion, since they are the formal corollary of the corresponding theorems for the
Fourier integrals. Moreover, the obtained result does not need a strict proof,
since the final formulas allow us to verify all initial and boundary conditions.

Let us briefly outline the statement of the problem.
First, we investigate the two-dimensional Lamb problem, and then move

on to the three-dimensional problem.
As a starting point, we take H. Lamb’s expressions of the displacements

on the boundary, which we use as the boundary conditions.

∗ Tr. Seism. Inst., 18 (1932), 41 p.
Tr. Seism. Inst. is Transactions of the Seismological Institute of the USSR
Academy of Sciences. – Ed.
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As in any method of representing a solution as a definite integral, for
solving a problem we need to define so-called density of spectrum in the rep-
resentation. For this purpose, we identify integrals obtained by H. Lamb with
those obtained by us.

After defining in such way the spectral function, we transform the obtained
results to a form more convenient for calculation.

Now we move on to the presentation of our method.
2. In our note [2] we had already studied the reflection of longitudinal

and transverse elastic plane waves falling at different angles on the plane.
However, because of the great importance of the plane waves for the problem
in question, and also since the presentation of this question can be significantly
simplified by using the theory of functions of a complex variable, we review
this question again.

Consider an infinite elastic half-space and direct the y-axis along the nor-
mal to the boundary plane inward to the elastic medium, and the x- and
z-axis along its surface. Suppose that we deal with a plane problem, and that
the disturbance picture does not depend on the coordinate z. In this case, as
is known, the components of the displacements u and v have the form

u =
∂ϕ

∂x
+
∂ψ

∂y
, v =

∂ϕ

∂y
− ∂ψ

∂x
, (1)

where ϕ and ψ are scalar and vector potentials satisfying the equations

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= a2 ∂

2ϕ

∂t2
,

∂2ψ

∂x2
+
∂2ψ

∂y2
= b2

∂2ψ

∂t2
. (2)

Here

a =
√

ρ

λ+ 2µ
, b =

√
ρ

µ

are the values reciprocal to the velocity of propagation of the longitudinal and
transverse waves.

Let us consider the coordinate system moving along the x-axis with the

velocity
1
θ
, and assume that in this moving system of coordinates the distur-

bance picture, i.e., both the displacements and potentials, remain constant.

In what follows, this quantity
1
θ

is called apparent velocity, and the described
motion is called the plane wave. The meaning of this name will be explained
later.

If we denote ξ = t − θx, then the system of ξ and y coordinates is our
moving system of coordinates with the rescaled abscissa axis.

Our assumption is equivalent to the fact that both ϕ and ψ depend only
on ξ and y.

Substituting these expressions into equations (2), we obtain

θ2 ∂
2ϕ

∂ξ2
+
∂2ϕ

∂y2
= a2 ∂

2ϕ

∂ξ2
and θ2 ∂

2ψ

∂ξ2
+
∂2ψ

∂y2
= b2

∂2ψ

∂ξ2
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or

(θ2 − a2)
∂2ϕ

∂ξ2
+
∂2ϕ

∂y2
= 0 and (θ2 − b2)

∂2ψ

∂ξ2
+
∂2ψ

∂y2
= 0. (3)

It is interesting to discuss separately three possible cases. In the first case,
when |θ| < a, both equations (3) are the vibrating string equations. In the
second case, when a < |θ| < b, the equation on ϕ is elliptic, and the equation
on ψ is the vibrating string equation. Finally, in the third case, when |θ| > b,
both equations are elliptic. We discuss all three cases separately.

In the first case, substituting
√
a2 − θ2y = η1 into the first equation, and√

b2 − θ2y = η2 into the second equation, we reduce both equations to the
form

∂2ϕ

∂ξ2
− ∂2ϕ

∂η2
1

= 0,
∂2ψ

∂ξ2
− ∂2ψ

∂η2
2

= 0.

The general solution of these equations has the form

ϕ = ϕ1(ξ + η1) + ϕ2(ξ − η1)

= ϕ1(t− θx+
√
a2 − θ2y) + ϕ2(t− θx−√

a2 − θ2y),

ψ = ψ1(ξ + η2) + ψ2(ξ − η2)

= ψ1(t− θx+
√
b2 − θ2y) + ψ2(t− θx−√

b2 − θ2y).

(4)

There only remains to satisfy conditions on the surface y = 0. If we assume
that this surface is free of strains, then this condition can be written in the
form of the system of two equalities1

µ

(
2
∂2ϕ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

)∣∣∣∣
y=0

= 0,

µ

(
b2

a2

∂2ϕ

∂y2
+
(
b2

a2
− 2
)
∂2ϕ

∂x2
− 2

∂2ψ

∂x∂y

)∣∣∣∣
y=0

= 0.

(5)

Substituting for
∂2ϕ

∂y2
and

∂2ψ

∂y2
their expressions from (3), we obviously obtain

(
2
∂2ϕ

∂x∂y
− θ2 − b2

θ2

∂2ψ

∂x2
− ∂2ψ

∂x2

)∣∣∣∣
y=0

= 0,

(
− b2

a2

(
θ2 − a2

θ2

)
∂2ϕ

∂x2
+
(
b2

a2
− 2
)
∂2ϕ

∂x2
− 2

∂2ψ

∂x∂y

)∣∣∣∣
y=0

= 0.

1 For details see the paper by S. L. Sobolev “Some questions of the theory of
propagation of vibrations” in the book: Frank, F., Mises, R.: Differential and
Integral Equations of Mathematical Physics. Vol. 2. ONTI, Leningrad – Moscow
(1937). – Ed.
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Obviously, we can integrate these conditions once with respect to x and
omit a constant which does not change the result, since it presents some
constant term in the displacement. Thus, we obtain[

2θ2 ∂ϕ

∂y
− (2θ2 − b2)

∂ψ

∂x

]∣∣∣∣
y=0

= 0,

[
−(2θ2 − b2)

∂ϕ

∂x
− 2θ2 ∂ψ

∂y

]∣∣∣∣
y=0

= 0.

(6)

Substituting (4) in (6), we obtain the system of equations2

2θ
√
a2 − θ2(ϕ′

1 − ϕ′
2) + (2θ2 − b2)(ψ′

1 + ψ′
2) = 0,

(2θ2 − b2)(ϕ′
1 + ϕ′

2) − 2θ
√
b2 − θ2(ψ′

1 − ψ′
2) = 0.

(7)

To simplify the computations, we put

ϕ2 = [(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2]f1,

ψ2 = [(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2]f2.

Then, we have

ϕ = [(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2]f1(t− θx−

√
a2 − θ2y)

−[(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2]f1(t− θx+

√
a2 − θ2y)

−4θ
√
b2 − θ2(2θ2 − b2)f2(t− θx+

√
a2 − θ2y), (8.1)

ψ = [(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2]f2(t− θx−

√
b2 − θ2y)

−[(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2]f2(t− θx+

√
b2 − θ2y)

+4θ
√
a2 − θ2(2θ2 − b2)f1(t− θx+

√
b2 − θ2y). (8.2)

It is not difficult to reveal the physical meaning of these formulas.
Obviously, each potential contains two distinct sets of terms. One set re-

mains constant in one system of moving parallel lines defined by equations

t− θx∓
√
a2 − θ2y = const for ϕ

and
t− θx∓

√
b2 − θ2y = const for ψ,

and another set remains constant in the second system.

2 The argument of functions in the presented equalities is the difference t − θx.
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The first set of terms (actually, only one term) is the incident plane wave,
and another set is the reflected plane wave. It is not difficult to derive the
relation between “the incidence angle” (or reflection) of the wave and the
apparent velocity.

Indeed, if we denote by ϑ1 the incidence angle of the wave, i.e., the angle
between the normal to the plane of identical value of the scalar potential and
the normal to the surface of the boundary, then we obtain for this angle the
formula (see Fig. 1),

tanϑ1 =
θ√

a2 − θ2
or sinϑ1 =

θ

a
. (9.1)

Fig. 1.

In the same way, we obtain the formula for the incident transverse wave

sinϑ2 =
θ

b
. (9.2)

Obviously, the reflection angles of both waves are equal to the correspond-
ing incidence angles.

Hence we have the known law of reflection

sinϑ1

sinϑ2
=

b

a
.

Solving the problem looks somewhat more difficult in the case when one
of equations (2), namely, the equation on ϕ, is elliptic, i.e., when a < |θ| < b.

In this case, putting η1 =
√
θ2 − a2y and η2 =

√
b2 − θ2y, we obtain the

system of two equations
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∂2ϕ

∂ξ2
+
∂2ϕ

∂η2
1

= 0,
∂2ψ

∂ξ2
− ∂2ψ

∂η2
2

= 0

and the same boundary conditions (6).
It follows from the equation on ϕ that ϕ is the real part of an analytic

function of a complex variable, regular in the upper half-plane.
Moreover, if we assume that it is bounded at infinity (this is exactly what

we are interested in), then both ϕ and its derivatives are determined up to a
constant by contour values of its real part. Henceforth, we assume that this
function is regular up to the contour. Writing down the obtained result, we
have

ϕ = Re (ϕ(ζ)), ζ = ξ + iη,

where ϕ denotes our function of a complex variable bounded at infinity and
regular up to the contour.

For future reference, it is convenient to use also the imaginary part of the
function ϕ. Assuming ϕ = ϕ + iϕ∗, we have the known Cauchy–Riemann
equations

∂ϕ

∂ξ
=
∂ϕ∗

∂η
,

∂ϕ

∂η
= −∂ϕ∗

∂ξ
.

Whence we obtain

−1
θ

∂ϕ

∂x
=

1√
θ2 − a2

∂ϕ∗

∂y
,

1√
θ2 − a2

∂ϕ

∂y
=

1
θ

∂ϕ∗

∂x
.

Substituting this into the first equation in (6), we obtain[
2θ
√
θ2 − a2

∂ϕ∗

∂x
− (2θ2 − b2)

∂ψ

∂x

]∣∣∣∣
y=0

= 0. (10.1)

If we now recall that

∂ψ

∂y
=
∂ψ1

∂y
+
∂ψ2

∂y
=

√
b2 − θ2

θ

(
−∂ψ1

∂x
+
∂ψ2

∂x

)
,

then the second equation in (6) can be written in the form[
−(2θ2 − b2)

∂ϕ

∂x
− 2θ

√
b2 − θ2

(
−∂ψ1

∂x
+
∂ψ2

∂x

)]∣∣∣∣
y=0

= 0. (10.2)

Equalities (10) can be integrated with respect to x, omitting an arbitrary
constant as unessential. Then we have

2θ
√
θ2 − a2ϕ∗|y=0 − (2θ2 − b2)(ψ1 + ψ2) = 0,

−(2θ2 − b2)ϕ|y=0 + 2θ
√
b2 − θ2(ψ1 − ψ2) = 0.

Solving these equations for ψ2, we obtain
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4θ
√
b2 − θ2(2θ2 − b2)ψ2 = −(2θ2 − b2)2ϕ|y=0

+4θ2
√
θ2 − a2

√
b2 − θ2ϕ∗|y=0

or, otherwise,

ψ2 = −Re

[
[(2θ2 − b2)2 + 4iθ2

√
θ2 − a2

√
b2 − θ2]ϕ|y=0

4θ
√
b2 − θ2(2θ2 − b2)

]
= Re [ψ2].

In the same way, we have

ψ1 = Re

[
[(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2]ϕ|y=0

4θ
√
b2 − θ2(2θ2 − b2)

]
= Re [ψ1].

Here we denote by ψ2 and ψ1 the complex expressions in square brackets. We
also have the evident equalities

[(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2]ϕ = −4θ

√
b2 − θ2(2θ2 − b2)ψ2,

[(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2]ϕ = 4θ

√
b2 − θ2(2θ2 − b2)ψ1.

For the sake of simplicity we assume as before that

ψ2 = [(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2]f2.

In this case we have

ϕ = −4θ
√
b2 − θ2(2θ2 − b2)f2,

and from the second equality we obtain

ψ1 = −
[
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

]
f2.

Summing the obtained results, we immediately have

ϕ = Re [−4θ
√
b2 − θ2(2θ2 − b2)f2(t− θx+ i

√
θ2 − a2y)],

ψ = Re
[
[(2θ2 − b2)2 + 4iθ2

√
θ2 − a2

√
b2 − θ2]f2(t− θx−

√
b2 − θ2y) (11)

−[(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2]f2(t− θx+

√
b2 − θ2y)

]
.

These formulas are absolutely analogous to formulas (8), which is expected.
They admit the obvious physical interpretation:

f2(t− θx−
√
b2 − θ2y)

is, as before, the incident transverse wave, and
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f2(t− θx+
√
b2 − θ2y)

is the reflected transverse wave, while the longitudinal potential is neither
incident nor reflected. Obviously, the longitudinal disturbance, being different
from a harmonic function only by scaling, fills the entire half-space in this
case. The reflected transverse wave differs from the incident wave in a shape
as well.

It is not difficult to verify that our case corresponds to the one when the
incidence angle of the transverse wave is larger than the limiting angle of the
full inner reflection. From the law of sines, expressed by (9.1) and (9.2), in
this case we see that sinϑ1 > 1, which obviously brings us to an imaginary
angle.

As is known, this case is called the wave incidence with the angle greater
than the limiting angle.

To conduct the study to the end, it is necessary to consider the last case,
when |θ| > b.

It is not difficult to see that in this case the most convenient approach is
to perform a change of variables similar to the above one.

Putting
η1 =

√
θ2 − a2y, η2 =

√
θ2 − b2y,

we reduce both equations (2) to the Laplace equations

∂2ϕ

∂ξ2
+
∂2ϕ

∂η2
1

= 0,
∂2ψ

∂ξ2
+
∂2ψ

∂η2
2

= 0.

As before, we obtain

ϕ = Reϕ, ψ = Reψ, ϕ = ϕ+ iϕ∗, ψ = ψ + iψ∗

together with the Cauchy–Riemann equations

−1
θ

∂ϕ

∂x
=

1√
θ2 − a2

∂ϕ∗

∂y
,

1√
θ2 − a2

∂ϕ

∂y
=

1
θ

∂ϕ∗

∂x
,

−1
θ

∂ψ

∂x
=

1√
θ2 − b2

∂ψ∗

∂y
,

1√
θ2 − b2

∂ψ

∂y
=

1
θ

∂ψ∗

∂x
.

As before, substituting our equalities into (6), we obtain

2θ
√
θ2 − a2

∂ϕ∗

∂x

∣∣∣∣
y=0

− (2θ2 − b2)
∂ψ

∂x

∣∣∣∣
y=0

= 0,

− (2θ2 − b2)
∂ϕ

∂x

∣∣∣∣
y=0

− 2θ
√
θ2 − b2

∂ψ∗

∂x

∣∣∣∣
y=0

= 0.

(12)

Integrating with respect to x and omitting an arbitrary constant, we have
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2θ
√
θ2 − a2ϕ∗

∣∣∣
y=0

− (2θ2 − b2)ψ
∣∣
y=0

= 0,

− (2θ2 − b2)ϕ
∣∣
y=0

− 2θ
√
θ2 − b2ψ∗

∣∣∣
y=0

= 0.
(13)

As before, we assume that ϕ and ψ are bounded at infinity. In this case,
because of our assumption, the functions ϕ and ψ have to be determined
by their values on the real axis. Hence their conjugate functions must be
determined up to a constant summand.

From (13) we immediately obtain

Re [−2θi
√
θ2 − a2ϕ]|y=0 = Re [(2θ2 − b2)]ψ|y=0,

Re [−(2θ2 − b2)ϕ]|y=0 = Re [−2θi
√
θ2 − b2ψ]|y=0.

In this case, from our assumptions it follows that

−2θi
√
θ2 − a2ϕ = (2θ2 − b2)ψ, (2θ2 − b2)ϕ = 2θi

√
θ2 − b2ψ. (14)

The system of these equations gives nonzero solutions for ϕ and ψ if and
only if

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2 = 0. (15)

Equation (15) is the known Rayleigh equation.
Thus, we see that the motion, that we call the plane wave, with an apparent

velocity less than
1
b

is possible only for a unique value of the apparent velocity

equal to
1
c
, where c is a root of equation (15)3.

To obtain the most convenient formulas, we put

ψ = −[(2θ2 − b2)2 + 4θ2
√
θ2 − a2

√
θ2 − b2]f2(t− θx+ i

√
θ2 − b2y). (16.1)

Obviously, for ϕ we have

ϕ = −4iθ
√
θ2 − b2(2θ2 − b2)f2(t− θx+ i

√
θ2 − a2y). (16.2)

In this case the nature of both waves is completely analogous to the nature
of the longitudinal wave in the previous case.

The disturbances fill the entire half-space, and by the maximum modulus
principle, they attain maximum value on the boundary. Everywhere inside the
medium they are continuous and all their derivatives are continuous as well.
Possible discontinuations of the derivatives are located only on the contour.
Such motion is called the Rayleigh wave.

Now it is not difficult to see that all three cases in question can be expressed
by the same formulas, namely,
3 The Rayleigh equation has a unique positive root θ = c. – Ed.
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ϕ = Re
{
[(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2]f1(t− θx−

√
a2 − θ2y)

−[(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2]f1(t− θx+

√
a2 − θ2y)

−4θ
√
b2 − θ2(2θ2 − b2)f2(t− θx+

√
a2 − θ2y)

}
, (17.1)

ψ = Re
{
[(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2]f2(t− θx−

√
b2 − θ2y)

−[(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2]f2(t− θx+

√
b2 − θ2y)

+4θ
√
a2 − θ2(2θ2 − b2)f1(t− θx+

√
b2 − θ2y)

}
, (17.2)

where f1 and f2 are functions of complex variables, bounded and regular in
the upper half-plane. For this purpose, it is necessary to make an agreement
to assign either positive real or positive imaginary value to the radicals in this
formula.

Obviously, the first case is obtained immediately, since the arguments of
f1 and f2 are real, and their factors are real as well. As is known, the real
part of a function of a complex variable on the real axis can take completely
arbitrary value.

In the second case, the argument of f1(t−θx−i
√
θ2 − a2y) lies in the lower

half-plane, and, hence, we must assume that f1 is bounded and regular in the
entire plane. As is known, such a function must be constant, and without loss
of generality, we can assume that it is zero. Then we obtain exactly (11).

Finally, if |θ| > b, then we have to assume that the functions f1 and f2 are
zero, with the exception of the case when both coefficients at the terms with
the argument in the lower half-plane are equal to zero. This again leads us to
the Rayleigh equation (15). At the first glance, for θ = c our formulas contain
two arbitrary functions; however, it is not difficult to see that equality holds

(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2

4θ
√
b2 − θ2(2θ2 − b2)

= − 4θ
√
a2 − θ2(2θ2 − b2)

(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2

.

Hence only one certain linear combination of f1 and f2 is contained in the
expressions for both potentials. Without loss of generality, we can assume that
f1 = 0. In such case, we immediately obtain (16).

As we have already noted, our assumption is reduced to the fact that the
solution of the elasticity equations in the half-space is represented by the sum
(integral) of the elementary solutions of form (17).

In other words, the solution of the elasticity equations in the half-space
is composed from longitudinal and transverse waves reflecting at different
angles (sometimes larger than the limiting angle), and, furthermore, from the
Rayleigh wave, i.e., the solution of type (16).

From the point of view of the known principle of propagation of disconti-
nuities it is interesting to point out the fact that in our representation, besides
the surface discontinuities propagating inside the medium with the velocities
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1
a

and
1
b
, there are also the linear discontinuities moving along the boundary

with the normal velocity
1
c
.

Indeed, formulas (16) are particular solutions with such type of discontinu-
ity. The function f2, appearing in these formulas, can have discontinuities on
the boundary of its existence domain, i.e., on the real axis. These isolated lin-
ear discontinuities, sliding on the surface and not related to the inner surfaces

of the discontinuities, have to move with the velocity
1
c
, as proved.

As we have already noted, our physical idea can be justified by summing
the Fourier integrals used by H. Lamb in his memoir, and therefore, it is not
new in principle. However, we think this idea was not explicitly presented yet.

3. For the sake of convenience of the further presentation, we need to give
a somewhat different form of H. Lamb’s formulas.

Therefore, let us transform them.
Due to H. Lamb, for x > 0 we have

u0 = −H

µ
Q(t− cx)− 2

πµ

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q(t− θx) dθ,

v0 = − 1
πµ

b∫
a

b2(2θ2 − b2)2
√
θ2 − a2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q(t− θx) dθ (18)

− 1
πµ

B

∞∫
b

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Q(t− θx) dθ,

where H is a constant, Q(t) is an acting force, and the symbol B
∫

denotes
the principal value of the divergent integral4.

We use a certain artificial trick to transform these formulas such that they
give a solution for any x.

Namely, we fix a certain moment of time t and construct the function
Qt(t1) as

Qt(t1) =
{
Q(t1) for t1 < t,
0 for t1 > t.

Finally, using the function Qt, we construct the function of a complex
variable

Qt(t1) = Qt(t1) + iQ∗
t (t1),

4 Formula (18) was obtained in [1],

H = − c(2c2 − b2 − 2
√

c2 − a2
√

c2 − b2)

F ′(c)
,

where c > 0 is a root of the Rayleigh equation F (θ) = 0. – Ed.
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regular in the upper half-plane of the argument t1, whose real part equals
Qt(t1) on the real axis.

We assume that both the function Q(t) and the function Q′(t) tend to
zero as t → −∞.

From above it follows that with a specific choice of Q∗
t (t1), our constructed

function Qt(t1) vanishes at infinity.
Using the introduced function Qt, for u0 we obtain the expression com-

pletely equivalent to the previous one; however, it possesses the symmetry
property

u0 = −H

µ
Qt(t−cx)− 2

πµ

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t−θx) dθ

+
H

µ
Qt(t+ cx) +

2
πµ

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t+ θx) dθ.

For the sake of brevity, we denote

F (θ) = (2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2.

Recalling the expression on H and expressing it through the corresponding
residue, we can write our formula in the form

u0 =
c[(2c2 − b2) − 2

√
c2 − a2

√
c2 − b2]

µ
E−c

(
1

F (θ)

)
Qt(t+ cx)

− 1
πµ

−a∫
−b

2b2θ(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t− θx) dθ

+
c[2c2 − b2 − 2

√
c2 − a2

√
c2 − b2]

µ
Ec

(
1

F (θ)

)
Qt(t− cx)

− 1
πµ

b∫
a

2b2θ(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t− θx) dθ, (19.1)

where symbols Ec( ) and E−c( ) denote residues at the points c and −c of the
function in round brackets.

Let us study separately the transformation of the second term in the ex-
pression for v0, substituting Qt for Q. The value of this term remains the
same, and it equals

− 1
πµ

B

∞∫
b

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Qt(t− θx) dθ.
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Let us consider the contour C pictured in Fig. 2 in the plane θ and study
the integral

− 1
2πµ

∫
C

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Qt(t− θx) dθ.

Fig. 2.

As we have proved [3], the denominator does not have roots on the given
sheet of the Riemann surface. Therefore, this integral is equal to zero5. Fur-
thermore, from evident estimates of the integrand we see that with infinite
expansion of the contour only the integral over the real axis remains; it is
equal to zero on the bases of classical theorems of the theory of functions.
Indeed, the denominator of the integrand has order θ2, and the numerator
has order θ. Since Q is zero at infinity, we obtain our assertion.

Dividing the above integral into the terms corresponding to different pieces
of the contour C, we obtain

1
πµ

B

−b∫
−∞

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Qt(t− θx) dθ

+
1
πµ

−a∫
−b

b2
√
θ2 − a2

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

Qt(t− θx) dθ

+
1
πµ

a∫
−a

ib2
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Qt(t− θx) dθ

− 1
πµ

b∫
a

b2
√
θ2 − a2

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

Qt(t− θx) dθ

5 See the corresponding arguments in the paper [4] of Part I of this book (p. 148). –
Ed.
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− 1
πµ

B

∞∫
b

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Qt(t− θx) dθ

+
πi

πµ
b2
√
c2 − a2E−c

(
1

F (θ)

)
Qt(t+ cx)

− πi

πµ
b2
√
c2 − a2Ec

(
1

F (θ)

)
Qt(t− cx) = 0.

Consider now the real part of this equality. Then, by the definition of the
function Qt, we obtain

− 1
πµ

−a∫
−b

4θ2b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗

t (t− θx) dθ

− 1
πµ

a∫
−a

b2
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Q∗
t (t− θx) dθ

− 1
πµ

b∫
a

b2(2θ2 − b2)2
√
θ2 − a2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t− θx) dθ

− 1
πµ

b∫
a

4θ2b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗

t (t− θx) dθ

− 1
πµ

B

∞∫
b

b2
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Qt(t− θx) dθ

−b2
√
c2 − a2

µ
E−c

(
1

F (θ)

)
Q∗

t (t+ cx)

+
b2
√
c2 − a2

µ
Ec

(
1

F (θ)

)
Q∗

t (t− cx) = 0. (20)

Substituting into (18) for v0 the expression of the improper integral over
the interval b < θ < ∞ obtained from the last formula, we have

v0 =
b2
√
c2 − a2

µ
E−c

(
1

F (θ)

)
Q∗

t (t+ cx) − b2
√
c2 − a2

µ
Ec

(
1

F (θ)

)
Q∗

t (t− cx)

+
1
πµ

−a∫
−b

4θ2b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗

t (t− θx) dθ
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+
1
πµ

a∫
−a

b2
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Q∗
t (t− θx) dθ

+
1
πµ

b∫
a

4θ2b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗

t (t− θx) dθ. (19.2)

Formulas (19.1) and (19.2) give us the desired representation for u0 and v0.
4. If we would calculate u0 and v0 from equations (17) and integrate with

respect to θ, then the form of the obtained solution would be completely
analogous to the given one in (19). The simplest assumption, which will lead
us to the goal, is simply identifying the integrands in both representations
of u0 and v0. Hence we obtain equations which allow us to compute spectral
functions for different values of θ. By the way, for the discrete spectral lines
θ = ±c and in the intervals a < |θ| < b we obtain two equations on one
unknown function f2; however, these equations have solutions. For brevity,
we denote by the symbol

∫
E

dθ the integral taken over the entire set of the

permissible spectral values of θ and added with two terms corresponding to
±c. Then,

u0 =
∫
E

Re [−4b2θ2
√
a2 − θ2

√
b2 − θ2 f

′
1(t− θx)

+2b2(2θ2 − b2)
√
b2 − θ2 f

′
2(t− θx)] dθ,

v0 =
∫
E

Re [2b2(2θ2 − b2)
√
a2 − θ2 f

′
1(t− θx)

+4θ2b2
√
a2 − θ2

√
b2 − θ2 f

′
2(t− θx)] dθ.

(21)

Hence, for the interval −a < θ < a, we have

−2θ
√
a2 − θ2f

′
1(t− θx) + (2θ2 − b2)f

′
2(t− θx) = 0,

2b2
√
a2 − θ2{(2θ2 − b2)f

′
1(t− θx) + 2θ

√
b2 − θ2f

′
2(t− θx)}

=
1
πµi

b2
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Q(t− θx).

The determinant of this system of equations is nonzero, and we obtain

f
′
1(t− θx) =

1
2πµi

(2θ2 − b2)
[(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2]2

Qt(t− θx),

f
′
2(t− θx) =

1
2πµi

2θ
√
a2 − θ2

[(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2]2

Qt(t− θx),

(22)
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−a < θ < a.

For both intervals a < |θ| < b we obtain two identical equations

2b2(2θ2 − b2)
√
b2 − θ2f

′
2(t− θx)

= − 2
πµ

θb2
√
b2 − θ2

√
θ2 − a2(2θ2 − b2)

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t− θx),

4iθb2
√
b2 − θ2

√
θ2 − a2f

′
2(t− θx)

=
1
πµi

4θ2b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Qt(t− θx).

These two equations are reduced to the one, and give

f
′
2(t− θx) =

1
πµ

θ
√
θ2 − a2 Qt(t− θx)

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
, a < |θ| < b. (23)

In the same way, we obtain also the values of the discrete spectral function
for θ = +c and θ = −c. Without presenting computations, we give the final
result

f
′
2(t− cx) =

−i
4µc

√
c2 − b2

Ec

(
1

F (θ)

)
Q(t− cx), (θ = c), (24)

f
′
2(t+ cx) =

−i
4µc

√
c2 − b2

E−c

(
1

F (θ)

)
Q(t+ cx), (θ = −c). (25)

From these formulas we immediately obtain the integral representation for
u and v at any point inside the medium.

Thus, we have

u = Re
{[

c(2c2 − b2)
µ

E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − a2y)

+
c(2c2 − b2)

µ
Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − a2y)

− 1
πµ

−a∫
−b

4θ3
√
b2 − θ2

√
θ2 − a2(2θ2 − b2)Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

+
1

2πµi

a∫
−a

θ(2θ2 − b2)
(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2

×[Qt(t− θx+
√
a2 − θ2y) −Qt(t− θx−

√
a2 − θ2y)] dθ
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− 1
πµ

b∫
a

4θ3
√
b2 − θ2

√
θ2 − a2(2θ2 − b2)Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

]

+
[−2c

√
c2 − a2

√
c2 − b2

µ
E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − b2y)

−2c
√
c2 − a2

√
c2 − b2

µ
Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − b2y)

+
1
πµ

−a∫
−b

θ
√
θ2 − a2

√
b2 − θ2 Qt(t− θx−√

b2 − θ2y) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

+
1
πµ

−a∫
−b

θ
√
θ2 − a2

√
b2 − θ2 Qt(t− θx+

√
b2 − θ2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1
πµi

a∫
−a

θ
√
a2 − θ2

√
b2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Qt(t− θx+
√
b2 − θ2y) −Qt(t− θx−

√
b2 − θ2y)] dθ

+
1
πµ

b∫
a

θ
√
θ2 − a2

√
b2 − θ2 Qt(t− θx−√

b2 − θ2y) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

+
1
πµ

b∫
a

θ
√
θ2 − a2

√
b2 − θ2 Qt(t− θx+

√
b2 − θ2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

]}
, (26.1)

v = Re
{[

i(2c2 − b2)
√
c2 − a2

µ
E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − a2y)

− i(2c2 − b2)
√
c2 − a2

µ
Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − a2y)

− 1
πµi

−a∫
−b

(θ2 − a2)4θ2(2θ2 − b2)
√
b2 − θ2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

− 1
2πµi

a∫
−a

(2θ2 − b2)
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Qt(t− θx−
√
a2 − θ2y) +Qt(t− θx+

√
a2 − θ2y)] dθ
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− 1
πµi

b∫
a

(θ2 − a2)4θ2(2θ2 − b2)
√
b2 − θ2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

]

+
[−2ic2

√
c2 − a2

µ
E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − b2y)

+
2ic2

√
c2 − a2

µ
Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − b2y)

− 1
πµ

−a∫
−b

θ2
√
θ2 − a2 Qt(t− θx−√

b2 − θ2y) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

+
1
πµ

−a∫
−b

θ2
√
θ2 − a2 Qt(t− θx+

√
b2 − θ2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1
πµi

a∫
−a

θ2
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Qt(t− θx−
√
b2 − θ2y) +Qt(t− θx+

√
b2 − θ2y)] dθ

+
1
πµ

b∫
a

θ2
√
θ2 − a2 Qt(t− θx+

√
b2 − θ2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

− 1
πµ

b∫
a

θ2
√
θ2 − a2 Qt(t− θx−√

b2 − θ2y) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

]}
. (26.2)

It remains to transform these expressions to a simpler form.
5. For this purpose, we transform the terms containing the residues of(
1

F (θ)

)
. We replace these residues with the respectively chosen contour inte-

grals. Obviously, the most convenient way to do it is to integrate in the plane
of the variable of the function Qt. For this purpose, instead of θ we introduce
the new variable H via the formula

H = θx+
√
a2 − θ2y. (27)

For the sake of definiteness, we assume that x > 0. Let us make a cut in
the plane θ along the real axis between the points ±a. First, we consider the
transformation of the real axis of θ. We take as the first sheet of the Riemann
surface the one such that

H = θx+
√
a2 − θ2y
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on the lower lip of the cut and

H = θx−
√
a2 − θ2y

on the upper lip. Obviously, on this sheet

H = θx+ i
√
θ2 − a2y

on the right side of a and

H = θx− i
√
θ2 − a2y

on the left side of −a. From the formula

(θx)2

x2
−
(√

θ2 − a2y
)2

y2
= a2

it follows that the intervals of the real axis right of a and left of −a are
transformed into two pieces of the same hyperbola. It is not difficult to see

that on the upper lip of the cut (−a, a) for −a < θ <
−ax√
x2 + y2

the variable

H has a real value and is decreasing from −ax to −a
√
x2 + y2. For

− ax√
x2 + y2

< θ < a

we obtain
−a
√
x2 + y2 < H < ax.

On the lower lip for
−a < θ <

ax√
x2 + y2

we have
−ax < H < a

√
x2 + y2,

and for
ax√
x2 + y2

< θ < a

we obtain
a
√
x2 + y2 > H > ax.

Solving (27) for θ, we obtain on the upper lip of the cut of the first sheet

θ =
Hx+ y

√
a2(x2 + y2) −H2

x2 + y2
,

and on the lower lip
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θ =
Hx− y

√
a2(x2 + y2) −H2

x2 + y2
.

Studying now what the real axis of H is transformed into, we come to the
result pictured in Fig. 36. For clarity, we use identical shading for parts of
lines transformed one into another.

Fig. 3.

It is not difficult to see that the transformations of the plane of the first
sheet are one-to-one.

The second sheet, where the roots are taken with the opposite signs, is
studied in the same way (see Fig. 4).

Fig. 4.

Besides the variable H we also need one more variable Ξ,

Ξ = θx+
√
b2 − θ2y. (28)

6 In Figs. 3–6

a∗ = a
p

x2 + y2, a∗∗ =
axp

x2 + y2
. – Ed.
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Since the transformation is completely analogous to the previous one with
the only difference that instead of a we have b here, we do not repeat our
reasoning.

6. Let us consider the contour L1 on the first sheet of the plane H and
the corresponding contour L′

1 on the first sheet of the plane θ (see Fig. 5).

Fig. 5.

Let us compile a table of values of functions we need on separate parts of
the contour L1 and at a singular point. The names of the pieces of the contour
are indicated in Fig. 5.

For the sake of brevity, let us introduce the positive quantities T1 and T2

by means of the formulas

T 2
1 =

(
[b2(x2 + y2)2 − a2y2(x2 + y2) −H2(x2 − y2)]2

+4H2x2y2[H2 − a2(x2 + y2)]
)1/2

+[b2(x2 + y2)2 − a2y2(x2 + y2) −H2(x2 − y2)], (29.1)

T 2
2 =

(
[b2(x2 + y2)2 − a2y2(x2 + y2) −H2(x2 − y2)]2

+4H2x2y2[H2 − a2(x2 + y2)]
)1/2

−[b2(x2 + y2)2 − a2y2(x2 + y2) −H2(x2 − y2)]. (29.2)
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As we have indicated above, to compute the residues in the expressions
for u and v, we use the contour integration. We obtain

c(2c2 − b2)
µ

E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − a2y)

=
1

2πiµ

∫
L1

{
θ(2θ2 − b2) ∂θ

∂HQt(t−H)
(2θ2 − b2)2 + 4θ2αβ

}
dH

=
1

2πiµ

−a
√

x2+y2∫
−∞

θ(2θ2 − b2)Qt(t−H) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

∞∫
a
√

x2+y2

θ(2θ2 − b2)Qt(t−H) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

−a∫
−ax√
x2+y2

θ(2θ2 − b2)Qt(t− θx+
√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

+
1

2πiµ

−b∫
−a

θ(2θ2 − b2)Qt(t− θx+ i
√
θ2 − a2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

−a∫
−b

θ(2θ2 − b2)Qt(t− θx+ i
√
θ2 − a2y) dθ

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

ax√
x2+y2∫
−a

θ(2θ2 − b2)Qt(t− θx−√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

. (30)

In the same way, we have

i(2c2 − b2)
√
c2 − a2

µ
E−c

(
1

F (θ)

)
Qt(t+ cx+ i

√
c2 − a2y)

=
1

2πiµ

∫
L1

{
(2θ2 − b2)α ∂θ

∂HQt(t−H)
(2θ2 − b2)2 + 4θ2αβ

}
dH

=
1

2πiµ

−a
√

x2+y2∫
−∞

(2θ2 − b2)α ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH
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+
1

2πiµ

∞∫
a
√

x2+y2

(2θ2 − b2)α ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

−a∫
−ax√
x2+y2

(2θ2 − b2)
√
a2 − θ2 Qt(t− θx+

√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

+
1

2πiµ

−b∫
−a

i(2θ2 − b2)
√
θ2 − a2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

−a∫
−b

i(2θ2 − b2)
√
θ2 − a2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

ax√
x2+y2∫
−a

−(2θ2 − b2)
√
a2 − θ2 Qt(t− θx−√

a2 − θ2y) dθ
(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2

. (31)

Together with the contour L1(L′
1) we also consider the contour L2(L′

2) on
the second sheet of the surface (see Fig. 6).

Fig. 6.

Below we present the table of the values we need of some functions, where
T1 and T2 are the same as above.
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Compiling the integrals over the contour, we obtain similarly as above

c(2c2 − b2)
µ

Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − a2y)

=
1

2πiµ

∫
L2

{
−θ(2θ2 − b2) ∂θ

∂HQt(t−H)
(2θ2 − b2)2 + 4θ2αβ

}
dH

=
1

2πiµ

−a
√

x2+y2∫
−∞

−θ(2θ2 − b2) ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

∞∫
a
√

x2+y2

−θ(2θ2 − b2) ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

a∫
−ax√
x2+y2

−θ(2θ2 − b2)Qt(t− θx+
√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

+
1

2πiµ

b∫
a

−θ(2θ2 − b2)Qt(t− θx+ i
√
θ2 − a2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

a∫
b

−θ(2θ2 − b2)Qt(t− θx+ i
√
θ2 − a2y) dθ

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

ax√
x2+y2∫
a

−θ(2θ2 − b2)Qt(t− θx−√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

, (32)

and also

i(2c2 − b2)
√
c2 − a2

µ
Ec

(
1

F (θ)

)
Qt(t− cx+ i

√
c2 − a2y)

=
1

2πiµ

∫
L2

{
−(2θ2 − b2)α ∂θ

∂HQt(t−H)
(2θ2 − b2)2 + 4θ2αβ

}
dH

=
1

2πiµ

−a
√

x2+y2∫
−∞

−(2θ2 − b2)α ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH
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+
1

2πiµ

∞∫
a
√

x2+y2

−(2θ2 − b2)α ∂θ
∂HQt(t−H)

(2θ2 − b2)2 + 4θ2αβ
dH

+
1

2πiµ

a∫
−ax√
x2+y2

(2θ2 − b2)
√
a2 − θ2 Qt(t− θx+

√
a2 − θ2y) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

+
1

2πiµ

b∫
a

i(2θ2 − b2)
√
θ2 − a2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

a∫
b

i(2θ2 − b2)
√
θ2 − a2 Qt(t− θx+ i

√
θ2 − a2y) dθ

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

+
1

2πiµ

ax√
x2+y2∫
a

(2θ2 − b2)
√
a2 − θ2 Qt(t− θx−√

a2 − θ2y) dθ
(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2

. (33)

These expressions make it possible to compute the value of the first square
bracket in the expressions for u and v. The expression in the first bracket in
(26.1) for u, after substitution of values of the residues, is written in the form

1
2πiµ

−a
√

x2+y2∫
−∞

{
θ(2θ2 − b2) ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L1

− θ(2θ2 − b2) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L2

}

×Qt(t−H) dH

+
1

2πiµ

∞∫
a
√

x2+y2

{
θ(2θ2 − b2) ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L1

− θ(2θ2 − b2) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L2

}

×Qt(t−H) dH.

It is not difficult to see that the coefficient at Qt(t) is the difference of two
conjugate functions, and it is pure imaginary. Focusing our attention on the
imaginary coefficient and taking the real part, we bring this bracket to the
form depending only on Qt, and not on Qt. Taking into account the definition
of the function Qt, we finally obtain the result for the real part of the first
bracket in expression (26.1) for u,

1
πµ

∞∫
a
√

x2+y2

Im

{
θ(2θ2 − b2) ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L1

}
Qt(t−H) dH. (34.1)
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Similarly, for the real part of the first bracket in expression (262) for v we
obtain

1
πµ

∞∫
a
√

x2+y2

Im

{
(2θ2 − b2)α ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

∣∣∣∣∣
L1

}
Qt(t−H) dH. (34.2)

7. The transformation of the second square bracket in (26) depends on
location of critical points on the Riemann surface, i.e., on values of x and y.
Here we need to consider two cases:

I. a
√
x2 + y2 ≥ bx,

II. a
√
x2 + y2 ≤ bx.

Without making all calculations, which are quite similar to the previous
ones, we present only the final result for the displacements in both cases by
collecting all said above. For a

√
x2 + y2 ≥ bx,

u =
1
πµ

∞∫
a
√

x2+y2

Im

{
θ(2θ2 − b2) ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−H) dH

+
1
πµ

∞∫
b
√

x2+y2

Im

{
2θαβ ∂θ

∂Ξ

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−Ξ) dΞ, (35.1)

v =
1
πµ

∞∫
a
√

x2+y2

Im

{
(2θ2 − b2)α ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−H) dH

− 1
πµ

∞∫
b
√

x2+y2

Im

{
2θ2α ∂θ

∂Ξ

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−Ξ) dΞ, (35.2)

where7

θ(H) =
Hx− iy

√
H2 − a2(x2 + y2)
x2 + y2

, α(H) =
Hy + ix

√
H2 − a2(x2 + y2)
x2 + y2

,

β(H) =
1√

2(x2 + y2)
(T1 + T2),

θ(Ξ) =
Ξx− iy

√
Ξ2 − b2(x2 + y2)
x2 + y2

, α(Ξ) =
1√

2(x2 + y2)
(S1 + iS2),

7 Ξ, T1, T2 are defined in (28), (29). – Ed.
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β(Ξ) =
Ξy + ix

√
Ξ2 − b2(x2 + y2)
x2 + y2

,

S2
1 =

(
[a2(x2 + y2)2 − b2y2(x2 + y2) −Ξ2(x2 − y2)]2

(36)

+4Ξ2x2y2[Ξ2 − b2(x2 + y2)]
)1/2

+[a2(x2 + y2)2 − b2y2(x2 + y2) −Ξ2(x2 − y2)],

S2
2 =

(
[a2(x2 + y2)2 − b2y2(x2 + y2) −Ξ2(x2 − y2)]2

+4Ξ2x2y2[Ξ2 − b2(x2 + y2)]
)1/2

−[a2(x2 + y2)2 − b2y2(x2 + y2) −Ξ2(x2 − y2)].

In the same way, for a
√
x2 + y2 ≤ bx we have

u =
1
πµ

∞∫
a
√

x2+y2

Im

{
θ(2θ2 − b2) ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−H) dH

+
1
πµ

∞∫
ax+

√
b2−a2y

Im

{
2θαβ ∂θ

∂Ξ

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−Ξ) dΞ, (37.1)

v =
1
πµ

∞∫
a
√

x2+y2

Im

{
(2θ2 − b2)α ∂θ

∂H

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−H) dH

− 1
πµ

∞∫
ax+

√
b2−a2y

Im

{
2θ2α ∂θ

∂Ξ

(2θ2 − b2)2 + 4θ2αβ

}
Qt(t−Ξ) dΞ, (37.2)

where the functions θ, α, and β have the previous values on the intervals
a
√
x2 + y2 < H < ∞ and b

√
x2 + y2 < Ξ < ∞, and

θ =
Ξx− y

√
b2(x2 + y2) −Ξ2

x2 + y2
, β =

√
b2 − θ2, α = i

√
θ2 − a2 (38)

on the interval ax+
√
b2 − a2y < Ξ < b

√
x2 + y2. Formulas (35)–(38) present

the final answer to the question.
8. In conclusion, let us point out several simple physical consequences

following from our formulas.
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It is interesting to trace moments of appearance of different phases of
vibrations inside the medium in the case when initial conditions are zero for
t < t0, and the force begins to act for t ≥ t0.

For simplification, we assume that the force acting on the surface of the
medium is the short and very intensive force of impulse type.

This is reduced to the assumption that we have to take the function Q(t)
under the integral sign, extremely large in a small interval of time and van-
ishing outside this interval.

In this case, we can replace the integral by a finite expression as H. Lamb
does in the cited memoir.

From the method of derivation of our formulas it is obvious that the in-
tegrals (or the functions obtained from the integrals) containing H are the
longitudinal waves, and the integrals containing Ξ are the transverse waves.

Moving on to the investigation of the force of impulse type, we see that
in this case the components of the displacement are expressed by the factor
in front of the function Q under the integral sign, if we substitute t − t0
for H or Ξ, respectively, where t0 is the moment of the impulse activation.
For simplicity, putting t0 = 0, we obtain that we again need to consider two
different cases for our motion:

a
√
x2 + y2 > bx, (39)

a
√
x2 + y2 < bx. (40)

In the first case, both components of the displacement are equal to zero for
t < a

√
x2 + y2. For t = a

√
x2 + y2 the longitudinal wave appears; moreover,

u and v are defined by the formulas

u1 =
1
πµ

Im

{
θ1(2θ2

1 − b2)∂θ1
∂t

(2θ2
1 − b2)2 + 4θ2

1αβ

}
,

v1 =
1
πµ

Im

{
(2θ2

1 − b2)α1
∂θ1
∂t

(2θ2
1 − b2)2 + 4θ2

1α1β1

}
,

(41)

where θ1 denotes the result of the substitution of t for H in the function θ.
Starting at t = b

√
x2 + y2, the transverse wave is superimposed on this

longitudinal wave. The transverse wave gives the components

u2 =
1
πµ

Im

{
2θ2α2β2

∂θ2
∂t

(2θ2
2 − b2)2 + 4θ2

2α2β2

}
,

v2 = − 1
πµ

Im

{
2θ2

2α2
∂θ2
∂t

(2θ2
2 − b2)2 + 4θ2

2α2β2

}
.

(42)

It is easy to verify that
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∂θ1
∂t

∣∣∣∣
t=a

√
x2+y2

= ∞

and
∂θ2
∂t

∣∣∣∣
t=b

√
x2+y2

= ∞.

It leads to the fact that at any point (x, y) (for y > 0) the infinite displace-
ment takes place at the moments of time t = a

√
x2 + y2 and t = b

√
x2 + y2.

In the second case, the arriving longitudinal wave is the same as in the
first case. However, the moment of arrival of the transverse wave is somewhat
different; namely, the transverse wave appears at the moment

t = ax±
√
b2 − a2y

and is defined by the formulas

u2 =
1
πµ

Im

{
2θ2α2β2

∂θ2
∂t

(2θ2
2 − b2)2 + 4θ2

2α2β2

}
,

v2 = − 1
πµ

Im

{
2θ2

2α2
∂θ2
∂t

(2θ2
2 − b2)2 + 4θ2

2α2β2

}
.

(43)

However, the integrand form essentially depends on the sign of the ex-
pression t− b

√
x2 + y2. At the moment t = b

√
x2 + y2 we again have infinite

displacements giving a new phase of the same transverse wave. Also, note that
at the beginning moment of the first transverse phase in the second case the
radical α in the analytic expressions for u and v gets a critical point, and we
can verify that the derivatives of the displacements with respect to the time
become infinite. This gives us the basis to talk about a push at the moment
of the appearance of this new phase.

The denominator of all our functions vanishes at the surface points for
t = ±cx. At points located close to these two points the displacements attain
very large values.

It is obvious that the moments t = a
√
x2 + y2 and t = b

√
x2 + y2 corre-

spond to the shortest transit time of the disturbance along the straight line
from the source to the observation point with the velocities of the longitudinal

wave
1
a

and the transverse wave
1
b
. If we picture the fronts of the different

phases at a certain moment of time, we obtain Fig. 7.

Two circles with radii
t

a
and

t

b
give the obvious fronts of the wave inside

|a
√
x2 + y2| > bx, two tangents ax ± √

b2 − a2y = t to the inner circle give
the fronts of the transverse wave inside the angle between the lines

±a
√
x2 + y2 − bx = 0.
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Fig. 7.

Let us note that the moments t = ax±√
b2 − a2y also correspond to the

shortest transit time from the source to the observation point, but along the
piece-wise line. One of its pieces is the boundary of the medium, and another
piece consists of the line angled at a limiting angle of the full inner reflection;
moreover, along the boundary of the medium the disturbance moves with

the velocity
1
a
, and inside with the velocity

1
b
. Indeed, denoting by α the

limiting angle of the full inner reflection and denoting by h the distance from
the source to the point, where the ray leaves the surface, we obtain for the
transition along such path

y =
x− h

tanα
, t = ah+

by

cosα
.

Hence,
h = x− y tanα

and

t = ax− y

(
a tanα− b

cosα

)
.

Recalling now that

sinα = ±a

b
, cosα =

√
b2 − a2

b
,

and
tanα = ± a√

b2 − a2
,

we obtain

t = ax− y

(
± a2

√
b2 − a2

∓ b2√
b2 − a2

)
= ax±

√
b2 − a2y,

which is required.
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Thus, the results of our study completely confirm the known Fermat prin-
ciple frequently used by seismologists.

We can also physically explain this result by using relatively simple de-
scriptive ideas.

The longitudinal wave, propagating along the disk and remaining near the
surface, generates behind the fissure of the transverse wave similar to the one
which remains behind a boat moving faster than a wave. Therefore, for a
certain mutual arrangement of the source and an observer, we have clearly
expressed the phenomenon at the moment when this “forced” transverse wave
approaches the observer.

Furthermore, we should point out that the discontinuities moving with the
velocity of the Rayleigh wave must be concentrated actually on the surface in
the form of two points running over the surface with the Rayleigh velocity.

Moreover, in the entire phenomenon we should pay attention to the fact
that the vibrations beginning with a sharp push come to naught gradually
with the infinite increase of t.

We could compute curves given by (41), (42), and (43); however, since it
is quite simple, we leave this to the reader.

Chapter 2

In the same way, one can also solve the second problem stated by H. Lamb
on an action of a given concentrated force in the three-dimensional space. As
in the plane problem, first, we need to rewrite the formulas given by H. Lamb
in a form more convenient for us. H. Lamb’s formulas, derived by him in the
second part of the work cited earlier, have the form

q0 =
H

πµ

∂

∂ω

∞∫
0

R(t− cω coshu) du

− 2
π2bµ

b∫
a

U(θ)
∂

∂ω

∞∫
0

R(t− θω coshu) du dθ, (44)

w0 =
1

π2bµ
B

∞∫
a

θV (θ)
∂

∂t

∞∫
0

R(t− θω coshu) du dθ. (45)

In this case, the surface of the half-space is assumed to be the (x, y)-plane,
the concentrated force acts vertically at the origin, ω is the distance between
the point and the z-axis, q0 and w0 are the projections of the displacement of
a certain point of the surface on the direction of ω and z-axis. Here U(θ) and
V (θ) are the same functions, which were the factors of the integrand in the
plane problem, and R(t) denotes the acting force.
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Let us first transform the integral

∞∫
0

R(t− θω coshu) du.

Let us change somewhat the notation. We denote by Q(t) the function
R(t), and instead of ω we introduce �.

The integral can be rewritten as

∞∫
0

Q(t− θ� coshu) du.

Let us construct the function Qt(t1) = Qt(t1) + iQ∗
t (t1) regular in the

upper half-plane of the complex variable and possessing on the real axis the
property

Qt(t1) =

{
Q(t), t1 > t,

Q(t1), t1 < t.

Then, the function Q′
t(t1) is single-valued, and on the real axis it has

infinity at most of logarithmic order.
In this case, for positive θ (in H. Lamb’s formulas we deal only with such

ones),
∞∫
0

Q′
t(t− θ� coshu) du = Re

∞∫
1

Q
′
t(t− θ�ξ)√
ξ2 − 1

dξ.

The function
Q

′
t(t− θ�ξ)√
ξ2 − 1

is regular in the lower half-plane of the variable

ξ. Thus, if only Q′(∞) = 0 and the integral written above has meaning, then

−
−1∫
∞

Q
′
t(t− θ�ξ)√
ξ2 − 1

dξ + i

1∫
−1

Q
′
t(t− θ�ξ)√

1 − ξ2
dξ +

∞∫
1

Q
′
t(t− θ�ξ)√
ξ2 − 1

dξ = 0.

By the definition of the function Qt, the real part of the first term is zero.
Then,

Re

∞∫
1

Q
′
t(t− θ�ξ)√
ξ2 − 1

dξ = Im

1∫
−1

Q
′
t(t− θ�ξ)√

1 − ξ2
dξ. (46)

Putting ξ = cosϑ, we have

∞∫
0

Q′(t− �θ coshu) du =

π∫
0

Q∗′
t (t− �θ cosϑ) dϑ.
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Using similar transformations, we can obtain the formula

∞∫
0

Q′(t− �θ coshu) coshu du =

π∫
0

Q∗′
t (t− �θ cosϑ) cosϑdϑ. (47)

If Q(t) decreases rapidly enough as t → ∞, we can differentiate with
respect to the parameter in H. Lamb’s formula for q0. Then the formula can
be written in the form

q0 = −cH

πµ

∞∫
0

Q′(t− c� coshu) coshu du

+
2

π2bµ

b∫
a

U(θ)θ

∞∫
0

Q′(t− θ� coshu) coshu du dθ. (48)

Substituting into H. Lamb’s formula for q0 the value of the integral from
(47), we obtain

q0 = −cH

πµ

π∫
0

Q∗′
t (t− c� cosϑ) cosϑdϑ

− 2
π2µ

b∫
a

[
b2θ2(2θ2 − b2)

√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(θ2 − b2)

×
π∫

0

Q∗′
t (t− θ� cosϑ) cosϑdϑ

]
dθ.

Finally, for convenience, we replace ϑ by π − ϑ1 and θ by −θ1. In this
formula, denoting again ϑ1 and θ1 by ϑ and θ, respectively, and taking for q0
the half-sum of the obtained results, we have

q0 =
1
2π

π∫
0

cosϑdϑ
{−cH

µ
Q∗′

t (t− �c cosϑ) +
cH

µ
Q∗′

t (t+ �c cosϑ)

− 2
πµ

b∫
a

b2θ2(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)
Q∗′

t (t− θ� cosϑ) dθ

+
2
πµ

−a∫
−b

b2θ2(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗′

t (t− θ� cosϑ) dθ
}
. (49)
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Let us transform the expression for w0. We differentiate the formula with
respect to the parameter, substitute our expression for H. Lamb’s integral,
and replace ϑ by π − ϑ1 and θ by −θ1. Renaming and taking the half-sum of
the results, we obtain

w0 =
1
2π

π/2∫
0

dϑ

{−1
πµ

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)

− 1
πµ

B

∞∫
b

b2θ
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)2 − 4θ2

√
θ2 − a2

√
θ2 − b2

+
1
πµ

−a∫
−b

b2θ(2θ2 − b2)2
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)

+
1
πµ

B

−b∫
−∞

b2θ
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)2 − 4θ2

√
θ2 − a2

√
θ2 − b2

}

+
1
2π

π∫
π/2

dϑ

{−1
πµ

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)

− 1
πµ

B

∞∫
b

b2θ
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)2 − 4θ2

√
θ2 − a2

√
θ2 − b2

+
1
πµ

−a∫
−b

b2θ(2θ2 − b2)2
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)

+
1
πµ

B

−b∫
−∞

b2θ
√
θ2 − a2Q∗′

t (t− �θ cosϑ) dθ
(2θ2 − b2)2 − 4θ2

√
θ2 − a2

√
θ2 − b2

}
. (50)

Let us transform now both integrals written by using the theory of func-
tions of complex variable.

In the first integral cosϑ > 0, hence, the function Q
′
t(t−�θ cosϑ) is regular

in the lower half-plane of the complex variable θ. To transform it, we consider
the integral of the following function of the complex variable over the contour
I (see Fig. 8)

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Q
′
t(t− �θ cosϑ).
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Fig. 8.

If we assume that Q
′
(∞) vanishes as θ−1−a, then the integral over this

contour vanishes, and we can write

B

−b∫
−∞

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Q
′
t(t− �θ cosϑ) dθ

−πicb
2
√
c2 − a2

F ′(−c) Q
′
t(t+ �c cosϑ)

+

−a∫
−b

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4iθ2
√
θ2 − a2

√
b2 − θ2

Q
′
t(t− �θ cosϑ) dθ

+i

a∫
−a

b2θ
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Q
′
t(t− �θ cosϑ) dθ

−
b∫

a

b2θ
√
θ2 − a2

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

Q
′
t(t− �θ cosϑ) dθ

−B

∞∫
b

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Q
′
t(t− �θ cosϑ) dϑ

−πicb
2
√
c2 − a2

F ′(c)
Q

′
t(t− �c cosϑ) = 0.

Taking the imaginary part of this equality, we obtain

B

∞∫
b

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
b2 − θ2

Q
′
t(t− �θ cosϑ) dθ

+

b∫
a

b2θ(2θ2 − b2)
√
θ2 − a2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q

′
t(t− �θ cosϑ) dθ

−B

−b∫
−∞

b2θ
√
θ2 − a2

(2θ2 − b2)2 − 4θ2
√
θ2 − a2

√
θ2 − b2

Q
′
t(t− �θ cosϑ) dθ
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−
−a∫

−b

b2θ(2θ2 − b2)
√
θ2 − a2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q

′
t(t− �θ cosϑ) dθ

= −πcb2
√
c2 − a2

F ′(−c) Q
′
t(t+ �c cosϑ) − πcb2

√
c2 − a2

F ′(c)
Q

′
t(t− �c cosϑ)

+

−a∫
−b

b2θ
√
b2 − θ2(θ2 − a2)

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q

′
t(t− �θ cosϑ) dθ

+

a∫
−a

b2θ
√
a2 − θ2

(2θ2 − b2)2 − 4θ2
√
a2 − θ2

√
b2 − θ2

Q
′
t(t− �θ cosϑ) dθ

+

b∫
a

b2(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q

′
t(t− �θ cosϑ) dθ. (51)

If we now consider the part of the integral, where 0 > cosϑ > −1, i.e.,
π
2 < ϑ < π, then the function Q

′
t(t − �θ cosϑ) is regular in the upper half-

plane of the complex variable θ. If we again perform the transformation by
using the integration over the contour II, then, because of the fact that all
values of the radicals are replaced by their conjugates, we obtain a formula
that differs from (51) only by the sign of its right side. However, it is not
difficult to present these two representations by using one formula. Indeed,
by the definition of the function Qt, all terms containing negative values of
θ vanish. Therefore, we can change their sign, at the same time the formula
remains valid. By the same reason, we can change the sign in all terms with
positive θ in the formula corresponding to the interval π

2 < ϑ < π.
Thus, we bring both formulas to the same form. Substituting the result

into the expression for w0, we obtain the final expressions for q0 and w0 in
the form

q0 =
1
2π

π∫
0

dϑ cosϑ

×
{
c| − c|(2c2 − b2 − 2

√
c2 − a2

√
c2 − b2)

µF ′(−c) Q∗′
t (t+ �c cosϑ)

+
c|c|(2c2 − b2 − 2

√
c2 − a2

√
c2 − b2

µF ′(c)
Q∗′

t (t− �c cosϑ)

− 2
πµ

−a∫
−b

b2θ|θ|(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗′

t (t− �θ cosϑ) dθ
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− 2
πµ

b∫
a

b2θ|θ|(2θ2 − b2)
√
θ2 − a2

√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q∗′

t (t− �θ cosϑ) dθ
}
, (52.1)

w0 =
1
2π

π∫
0

dϑ

{−| − c|b2√c2 − a2

µF ′(−c) Q′
t(t+ �c cosϑ)

+
|c|b2√c2 − a2

µF ′(c)
Q′

t(t− �c cosϑ)

− 1
πµ

−a∫
−b

b2|θ|(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q′

t(t− �θ cosϑ) dθ

− 1
πµ

b∫
a

b2|θ|(θ2 − a2)
√
b2 − θ2

(2θ2 − b2)4 + 16θ4(θ2 − a2)(b2 − θ2)
Q′

t(t− �θ cosϑ) dθ

− 1
πµ

a∫
−a

b2|θ|√b2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Q′
t(t− �θ cosϑ) dθ

}
. (52.2)

Comparing these formulas with (19.1) and (19.2) in Chap. 1, we easily
observe that they are completely analogous. Formulas (52) are obtained from
(19), if in the expressions for u0 and v0 we replace the function Q by −i|θ|Q
and, putting x′ = � cosϑ′, integrate u0 cosϑ′ and v0 with respect to the param-
eter ϑ′. Obviously, the physical meaning of these operations is that in our space
we consider a plane problem depending on the coordinates x′ = � cosϑ′ and
y′ = z. Then, rotating this coordinate system, we sum the obtained results.
Obviously, this plane problem is presented as a sum of plane waves analogous
to the ones that had been studied in solving the Lamb plane problem. It is
only necessary to substitute −i|θ|Q′

for Q. Hence the simplest assumption
is reduced to the one that in the depth of the medium the solution is also
represented by the same sum of plane waves. Thus, we can immediately write
the final formula for the depth

q = Re
{

1
2π

π∫
0

dϑ cosϑ

×
{[

−i c| − c|(2c2 − b2)
µF ′(−c) Q

′
t(t+ c� cosϑ+ i

√
c2 − a2z)

+
i

πµ

−a∫
−b

4θ3|θ|√b2 − θ2
√
θ2 − a2(2θ2 − b2)Q

′
t(t− �θ cosϑ+ i

√
θ2 − a2z) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)
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− 1
2πµ

a∫
−a

θ|θ|(2θ2 − b2)
(2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2

×[Q
′
t(t− �θ cosϑ+

√
a2 − θ2z) −Q

′
t(t− �θ cosϑ−

√
a2 − θ2z)] dθ

+
i

πµ

b∫
a

4θ3|θ|√b2 − θ2
√
θ2 − a2(2θ2 − b2)Q

′
t(t− �θ cosϑ+ i

√
θ2 − a2z) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

−i c|c|(2c
2 − b2)

µF ′(c)
Q

′
t(t− c� cosϑ+ i

√
c2 − a2z)

]
+
[
i2c| − c|√c2 − a2

√
c2 − b2

µF ′(−c) Q
′
t(t+ c� cosϑ+ i

√
c2 − b2z)

− i

πµ

−a∫
−b

|θ|θ√θ2 − a2
√
b2 − θ2 Q

′
t(t− θ� cosϑ−√

b2 − θ2z) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

− i

πµ

−a∫
−b

|θ|θ√θ2 − a2
√
b2 − θ2 Q

′
t(t− θ� cosϑ+

√
b2 − θ2z) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

− 1
πµ

a∫
−a

θ|θ|√a2 − θ2
√
b2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Q
′
t(t− θ� cosϑ+

√
b2 − θ2z) −Q

′
t(t− θ� cosϑ−

√
b2 − θ2z)] dθ

− i

πµ

b∫
a

θ|θ|√θ2 − a2
√
b2 − θ2 Q

′
t(t− θ� cosϑ−√

b2 − θ2z) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

− i

πµ

b∫
a

θ|θ|√θ2 − a2
√
b2 − θ2 Q

′
t(t− θ� cosϑ+

√
b2 − θ2z) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+i
2c|c|√c2 − a2

√
c2 − b2

µF ′(c)
Q

′
t(t− c� cosϑ+ i

√
c2 − b2z)

]}}
. (53.1)

In the same way,

w = Re
{

1
2π

π∫
0

dϑ

{[
(2c2 − b2)| − c|√c2 − b2

µF ′(−c) Q
′
t(t+ c� cosϑ+ i

√
c2 − a2z)

+
1
πµ

−a∫
−b

4θ2|θ|(2θ2 − b2)(θ2 − a2)
√
b2 − θ2 Q

′
t(t− �θ cosϑ+ i

√
θ2 − a2z) dθ

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2
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+
1

2πµ

a∫
−a

|θ|(2θ2 − b2)
√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Q
′
t(t− �θ cosϑ−

√
a2 − θ2z) +Q

′
t(t− �θ cosϑ+

√
a2 − θ2z)] dθ

+
1
πµ

b∫
a

4θ2|θ|(2θ2 − b2)(θ2 − a2)
√
b2 − θ2 Q

′
t(t− θ� cosϑ+ i

√
θ2 − a2z) dθ

(2θ2 − b2)4 − 16θ4(θ2 − a2)(θ2 − b2)

−|c|(2c2 − b2)
√
c2 − a2

µF ′(c)
Q

′
t(t− c� cosϑ+ i

√
c2 − a2z)

]

+
[
2c2|c|√c2 − a2

µF ′(−c) Q
′
t(t+ c� cosϑ+ i

√
c2 − b2z)

+
i

πµ

−a∫
−b

θ2|θ|√θ2 − a2 Q
′
t(t− θ� cosϑ−√

b2 − θ2z) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

− i

πµ

−a∫
−b

θ2|θ|√θ2 − a2 Q
′
t(t− θ� cosϑ+

√
b2 − θ2z) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

− 1
πµ

a∫
−a

θ2|θ|√a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

×[Q
′
t(t− θ� cosϑ−

√
b2 − θ2z) +Q

′
t(t− θ� cosϑ+

√
b2 − θ2z)] dθ

− i

πµ

b∫
a

θ2|θ|√θ2 − a2 Q
′
t(t− θ� cosϑ+

√
b2 − θ2z) dθ

(2θ2 − b2)2 + 4iθ2
√
θ2 − a2

√
b2 − θ2

+
i

πµ

b∫
a

θ2|θ|√θ2 − a2 Q
′
t(t− θ� cosϑ−√

b2 − θ2z) dθ
(2θ2 − b2)2 − 4iθ2

√
θ2 − a2

√
b2 − θ2

− 2c2|c|
µF ′(c)

Q
′
t(t− c� cosϑ+ i

√
c2 − b2z)

]}}
. (53.2)

In the same way as in the plane problem, one can rewrite these expressions
in a form more compact and more convenient for computations.

The details of computations are completely similar to the ones already
carried out, and we do not repeat them here. Let us point out only the final
result. If the function Q′(t) rapidly enough vanishes as t → ∞, then q and w
have the form
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q =

∞∫
a
√

�2+z2

Q′(t−H)

⎧⎨⎩ 1
2π2µ

Re

π∫
0

θ2(2θ2 − b2) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ
cosϑ dϑ

⎫⎬⎭ dH

+

∞∫
b
√

�2+z2 (a
√

�2+z2>b�)

a�+
√

b2−a2z (a
√

�2+z2<b�)

Q′(t−Ξ)

×
⎧⎨⎩ 1

2π2µ
Re

π∫
0

2θ2αβ ∂θ
∂Ξ

(2θ2 − b2)2 + 4θ2αβ
cosϑdϑ

⎫⎬⎭ dΞ (54.1)

and

w =

∞∫
a
√

�2+z2

Q′(t−H)

⎧⎨⎩ 1
2π2µ

Re

π∫
0

θα(2θ2 − b2) ∂θ
∂H

(2θ2 − b2)2 + 4θ2αβ
dϑ

⎫⎬⎭ dH

−
∞∫

b
√

�2+z2 (a
√

�2+z2>b�)

a�+
√

b2−a2z (a
√

�2+z2<b�)

Q′(t−Ξ)

×
⎧⎨⎩ 1

2π2µ
Re

π∫
0

2θ3α ∂θ
∂Ξ

(2θ2 − b2)2 + 4θ2αβ
dϑ

⎫⎬⎭ dΞ. (54.2)

In these formulas values of the functions θ(H), α(H), β(H), θ(Ξ), α(Ξ),
and β(Ξ) are obtained from (36) and (38), if we replace x by � cosϑ. Formulas
(54) give the final answer to the stated problem. It is not difficult to see that
the picture of the wave front motion in the case of the three-dimensional
problem completely coincides with the picture obtained by the front rotation
for the solution of the plane problem. For the solution obtained by us one can
repeat all the same that was said for the solution of the plane problem related
to the nature of the Rayleigh waves, etc.
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2. On a New Method in the Plane Problem
on Elastic Vibrations∗

V. I. Smirnov and S. L. Sobolev

1. The problem on vibrations of an elastic half-space bounded by the vacuum
was posed by H. Lamb in his well-known article [1]. He considered a series
of problems on vibrations under the action of different forces. In some cases
he solved these problems completely, and in other cases he only presented
formulas containing divergent Fourier integrals. First, H. Lamb considered
the force periodic in time and spatial coordinates, and then he applied the
Fourier integral to arrive at the general case.

In the present work we propose a new method, which allows us to solve
some of H. Lamb’s problems by means of simple calculations. Our method
gives tools to determine displacements not only on the surface (as H. Lamb),
but also inside the half-space.

The essential feature of our method is the reduction of a problem with
three independent variables to one with one or two independent variables.

Two real variables can be reduced to one complex variable, and we can
use the theory of functions of a complex variable to find the solution.

First, we consider the problem discussed by H. Lamb on vibrations of
the half-space under the action of a vertical impact on the surface. Then,
we discuss problems when the source of the force is located inside the elastic
medium. Under some fundamental assumptions, we find a solution by reduc-
ing a number of independent variables. Obtained solutions satisfy initial and
boundary conditions.

Our general reasoning allows us to study the reflection of elastic waves of
special types on the plane.

For instance, we can solve the problem on vibration of an elastic layer.
2. Let us state the first problem on vibrations of the half-space under the

action of a vertical impact on the surface.
Assume that the surface of the medium is the (x, z)-plane and suppose

that the motion does not depend on the coordinate z. Then, our problem is
reduced to the two-dimensional problem, which is very important later.

∗ Tr. Seism. Inst., 20 (1932), 37 p.
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For the components of the displacement u and v we have

u =
∂ϕ

∂x
+
∂ψ

∂y
, v =

∂ϕ

∂y
− ∂ψ

∂x
, (1)

and the functions ϕ and ψ must satisfy the equations

∂2ϕ

∂t2
=

1
a2

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
,

∂2ψ

∂t2
=

1
b2

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
, (2)

where

a =
√

ρ

λ+ 2µ
, b =

√
ρ

µ
. (3)

Denote by ρ the density of the medium, λ and µ are the Lame elastic
constants.

Suppose thatR(x, t) is the vertical force acting along the x-axis and normal
to the surface y = 0. Then we have the boundary conditions[

2
∂2ϕ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

]∣∣∣∣
y=0

= 0, (4)

[(
b2

a2
− 2
)(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+ 2

∂2ϕ

∂y2
− 2

∂2ψ

∂x∂y

]∣∣∣∣
y=0

=
R(x, t)
µ

. (5)

To consider the case of the impact concentrated at the point x = 0 at the
moment t = 0, we pass to the limit.

Let

Pε(x, t) =
1
ε2
P

(
x

ε
,
t

ε

)
,

where P (x, t) is a function continuous in the rectangle

−1 ≤ x ≤ 1, 0 ≤ t ≤ 1,

P (x, t) ≡ 0 for |x| ≥ 1 or
∣∣∣∣t− 1

2

∣∣∣∣ ≥ 1
2
.

Let ϕε(x, y, t) and ψε(x, y, t) be solutions of equations (2) with conditions
(4) and (5), where we replace R(x, t) by Pε(x, t).

We consider the problem on vibrations under the action of the impact as
the limiting case of the stated problem as ε → 0.

Thus, we have

ϕ(x, y, t) = lim
ε→0

ϕε(x, y, t), ψ(x, y, t) = lim
ε→0

ψε(x, y, t).

The value of the impact is defined as

Q = lim
ε→0

ε∫
−ε

dx

ε∫
0

Pε(x, t) dt =

1∫
−1

dx

1∫
0

P (x, t) dt.
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After defining the functions ϕε and ψε, we have

ϕε(kx, ky, kt) = ϕε/k(x, y, t) and ψε(kx, ky, kt) = ψε/k(x, y, t).

This property of the functions ϕε and ψε is stipulated by the form of
equations (2), conditions (4) and (5), and by the definition of Pε(x, t). Passing
to the limit, we have

ϕ(kx, ky, kt) = ϕ(x, y, t) and ψ(kx, ky, kt) = ψ(x, y, t),

i.e., the functions ϕ and ψ are homogeneous of degree 0. Hence they depend
on two variables

ξ =
x

t
, η =

y

t
. (6)

Also, note the case when the potentials ϕ and ψ are homogeneous func-
tions. Let P (x) be an odd function for −1 ≤ x ≤ 1. In (5) we put

R(x, t) = 0 for t < 0 and R(x, t) =
1
ε2
P

(
x

ε

)
for t > 0.

In this case, we have

ε∫
−ε

R(x, t) dx =
1
ε

1∫
−1

P (x) dx = 0,

and the moment with respect to x = 0 is equal to

2
ε2

ε∫
0

xP

(
x

ε

)
dx = 2

1∫
0

xP (x) dx = q.

As ε → 0, we have the focused moment q applied at t = 0.
Therefore, we see that the case of homogeneous potentials can arise under

different mechanical circumstances. In this connection, later we will see that
a solution of the problem contains several arbitrary constants, defined by
mechanical conditions of the problem. It should be noted that we again deal
with nonuniqueness of the solution. Later we will have an equation on the
boundary of the existence domain of an analytic function. This equation will
express the fact that the real part of a linear operator must vanish on this
function. Assuming that the mentioned operator vanishes everywhere, we will
select the simplest solution of this equation. We will also be able to obtain
other solutions of the problem. For this, we equate this operator to a regular
function, whose real part has zero boundary value on the entire contour with
the exception of a unique singular point of this function. We will not study
the family of all solutions, but we hope to do it in a future paper.

Moving on to consideration of the functions ϕ and ψ, let us note a fact,
which we will encounter later.
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Using homogeneity of the functions ϕ and ψ, we reduce equations (2) to
two equations with two independent variables. Furthermore, by suitable choice
of these variables, we reduce these equations to the Laplace equation or the
vibrating string equation. Indeed, if the functions ϕ and ψ depend only on
quantities (6), then equations (2) take the form

(a2ξ2 − 1)
∂2ϕ

∂ξ2
+ 2a2ξη

∂2ϕ

∂ξ∂η
+ (a2η2 − 1)

∂2ϕ

∂η2
+ 2a2ξ

∂ϕ

∂ξ
+ 2a2η

∂ϕ

∂η
= 0,

(b2ξ2 − 1)
∂2ψ

∂ξ2
+ 2b2ξη

∂2ψ

∂ξ∂η
+ (b2η2 − 1)

∂2ψ

∂η2
+ 2b2ξ

∂ψ

∂ξ
+ 2b2η

∂ψ

∂η
= 0.

(7)

Characteristics for the first equation in (7) are determined by the ordinary
differential equation

(a2ξ2 − 1)dη2 − 2a2ξηdξdη + (a2η2 − 1)dξ2 = 0

and by a similar equation for the second equation.
The last equation can be written in the form

a2(ξdη − ηdξ)2 − (dξ2 + dη2) = 0.

Let ds be an element of the characteristic arc. Then we can write our
equation in the form

ξ
dη

ds
− η

dξ

ds
= ±1

a
,

hence we see that the characteristics touch the circle

ξ2 + η2 =
1
a2
.

The first equation in (7) is elliptic, if

ξ2 + η2 <
1
a2
, (8.1)

and hyperbolic, if

ξ2 + η2 >
1
a2
. (8.2)

In the last case, two families of characteristics are expressed by the equa-
tion

−Cξ ±
√
a2 − C2η + 1 = 0,

where C is an arbitrary constant. This equation gives for C two complex
conjugate values under condition (8.1). Let us begin our analysis with this
case. Then, we have the imaginary characteristics

ξ

ξ2 + η2
± i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

= C.
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Putting

σ =
ξ

ξ2 + η2
, τ =

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

, (9.1)

we reduce the first equation in (7) to the Laplace equation

∂2ϕ

∂σ2
+
∂2ϕ

∂τ2
= 0. (10.1)

Similarly, under condition (8.2), by the real transform

σ =
ξ

ξ2 + η2
, τ =

η
√
a2(ξ2 + η2) − 1
ξ2 + η2

, (9.2)

we bring the first equation in (7) to the vibrating string equation

∂2ϕ

∂σ2
− ∂2ϕ

∂τ2
= 0. (10.2)

In the second part of our work we discuss a more general and simple way
of the reduction of equations (2) to canonical form (10.1) or (10.2).

3. Taking into account that the initial moment t = 0 of the action of
our force corresponds to the rest of the half-space and that vibrations cannot
propagate with a velocity more than the velocity of longitudinal vibrations,
we can assert that a required solution will vanish outside the circle

ξ2 + η2 =
1
a2
. (11.1)

Thus, to find the potential ϕ, we have to integrate equation (10.1).
As regards the search for the potential ψ, a should be replaced by b in all

previous formulas. The characteristics of the second equation in (7) will be
tangent to the circle

ξ2 + η2 =
1
b2
, (11.2)

and this equation will be reduced to (10.2) outside this circle. If the point
(ξ, η) is located not only outside circle (11.2), but also outside circle (11.1),
then the value of ψ must also vanish at this point.

Note that at each point outside circle (11.2) ψ is a sum of two terms1,
each of which is constant along one of two characteristics passing through
this point. Then we can assert that ψ can differ from zero outside circle (11.2)
only on the intervals of tangents between the point of tangency and the axis
1 The function ψ has the form

f1

 
ξ + η

p
b2(ξ2 + η2) − 1

ξ2 + η2

!
+ f2

 
ξ − η

p
b2(ξ2 + η2) − 1

ξ2 + η2

!
. – Ed.
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η = 0, and on such tangents, which have a projection on this axis less than
1
a

by counting from the origin of coordinates.
Therefore, for the transverse wave, the front in the (ξ, η)-plane consists

of the arc AB of circle (11.2) and two segments of tangents AA1 and BB1

such that OA1 = OB1 =
1
a

(see Fig. 1). For the longitudinal wave, i.e., for

the potential ϕ, the front consists only of semicircle (11.1). The shape of the
front of the transverse wave (see Fig. 1) can be immediately obtained from
the Fermat principle. It should be noted that vibrations propagate over the

surface with the velocity
1
a
, and each point of this surface is a source of

not only longitudinal, but also transverse vibrations. At the same time these

transverse vibrations propagate inside with the velocity
1
b
.

Fig. 1.

The equation of the straight line AA1 in the (ξ, η)-plane is

aξ +
√
b2 − a2 η − 1 = 0. (12.1)

Returning to the variables x, y, t, we obtain the rectilinear front

ax+
√
b2 − a2 y − t = 0. (12.2)

To study equation (10.1), we introduce the complex variable

θ1 = σ + iτ =
ξ

ξ2 + η2
+ i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

.

This transform maps the semidisk

ξ2 + η2 <
1
a2
, η > 0,

onto the half-plane τ > 0 of the complex variable θ1, the diameter B1A1 onto
the intervals (−∞,−a) and (+a,+∞) of the axis τ = 0, and the semicircle
B1A1 onto the interval (−a,+a) of this axis (see Fig. 2). In the half-plane
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τ > 0 the potential ϕ is a harmonic function and can be expressed as the real
part of an analytic function Φ(θ1) = ϕ+ iϕ∗:

ϕ = Re [Φ(θ1)].

Fig. 2.

Similarly, introducing the complex variable

θ2 = σ + iτ =
ξ

ξ2 + η2
+ i

η
√

1 − b2(ξ2 + η2)
ξ2 + η2

,

in the semidisk
ξ2 + η2 <

1
b2
, η > 0,

we can express the potential ψ as the real part of a function Ψ(θ2) = ψ+ iψ∗

analytic in the half-plane τ > 0:

ψ = Re [Ψ(θ2)].

The formulas

θ1 =
ξ

ξ2 + η2
+ i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

,

θ2 =
ξ

ξ2 + η2
+ i

η
√

1 − b2(ξ2 + η2)
ξ2 + η2

(13)

prove that the values of θ1 and θ2 coincide at the points of the diameter CD
(see Fig. 1), which will be essential later.

It is easy to prove that on the plane θ2 the points D and C correspond to
the points +b and −b of the axis τ = 0, and the points B and A correspond
to the points +a and −a of this axis.

Let us now introduce the boundary conditions with respect to the new
variables. For any t > 0, there are no stresses on the surface of the half-space.
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Therefore, for ϕ and ψ we should take conditions (4) and (5) with P (x, t) = 0.
We obtain

D1(ϕ,ψ) =
[
2
∂2ϕ

∂ξ∂η
− ∂2ψ

∂ξ2
+
∂2ψ

∂η2

]∣∣∣∣
y=0

= 0,

D2(ϕ,ψ) =
[(

b2

a2
− 2
)(

∂2ϕ

∂ξ2
+
∂2ϕ

∂η2

)
+ 2

∂2ϕ

∂η2
− 2

∂2ψ

∂ξ∂η

]∣∣∣∣
y=0

= 0,

(14)

where we denote by D1 and D2 the linear operators on the left side of our
conditions. Differentiation with respect to ξ and η can be replaced by dif-
ferentiation with respect to θ1 and θ2. It is easy to see that for η = 0 we
have

∂θ1
∂ξ

= −θ2
1,

∂2θ1
∂ξ2

= 2θ3
1,

∂θ1
∂η

= −θ1
√
a2 − θ2

1,
∂2θ1
∂η2

= −2θ3
1,

∂2θ1
∂ξ∂η

= −2θ4
1 − a2θ2

1√
a2 − θ2

1

,

where the square root has the negative imaginary value for θ1 > a.
We have similar expressions for θ2. Conditions (14) take the form

Re
[
2θ
√
a2 − θ2Φ′′(θ) + 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ)

−(2θ2 − b2)Ψ ′′(θ) − 4θΨ ′(θ)
]∣∣∣∣

τ=0

= 0,

Re
[
(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ)

−2θ
√
b2 − θ2Ψ ′′(θ) − 2

b2 − 2θ2

√
b2 − θ2

Ψ ′(θ)
]∣∣∣∣

τ=0

= 0.

(15)

Since θ1 and θ2 coincide on the axis η = 0, we denote the variables by θ
without index.

Conditions (15) must be satisfied on the part that corresponds to the
diameters of the semicircles.

Taking into account what we said about the correspondence between θ1,
θ2, ξ and η, we see that conditions (15) must be satisfied on the intervals
σ ≤ −b and σ ≥ +b. Note once again that the interval −a ≤ σ ≤ +a of
the variables θ1 and θ2 corresponds to the arcs of the semicircles, forming the
front of propagation of longitudinal and transverse vibrations. Consequently,
the functions ϕ and ψ, i.e., the real parts of Φ and Ψ , must vanish on this
interval. Taking into account that all coefficients on the left sides of (15) are
real for −a ≤ θ ≤ +a, we can assert that conditions (15) must be also satisfied
on the interval −a ≤ θ ≤ +a.
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Later, we show that these conditions must hold also on two intervals
−b ≤ θ ≤ −a and a ≤ θ ≤ b. For this purpose we consider an equation
of hyperbolic type for ψ in the curvilinear triangles AA1C and BB1D (see
Fig. 1). It is enough to consider the triangle BB1D. Introducing the variables

σ =
ξ

ξ2 + η2
, τ =

η
√
b2(ξ2 + η2) − 1
ξ2 + η2

, (16)

for ψ we have the vibrating string equation

∂2ψ

∂σ2
− ∂2ψ

∂τ2
= 0,

whose solution is
ψ = f1(σ + τ) + f2(σ − τ).

Since ψ is equal to zero outside circle (11.1), as above, we can assert that
the last expression for ψ contains at most one term different from zero on the
pieces of the characteristics, made of segments of tangents between the arc
BD and the axis η = 0.

The mentioned segments can be defined by the values of the real parameter
θ3,

θ3 =
ξ

ξ2 + η2
− η
√
b2(ξ2 + η2) − 1
ξ2 + η2

, a ≤ θ3 ≤ b, (17)

and the function ψ depends only on θ3 inside the triangle BB1D. It is easy
to see that the value of θ3 coincides on each tangent with the corresponding
value of θ2 on the arc BD. Hence, in view of continuity of ψ, in the triangle
BB1D we should take

ψ = Re [Ψ(θ3)].

On the interval B1D of the axis η = 0 the values of θ3 coincide with the
values of θ1.

Returning to conditions (14), we can express the derivatives with respect
to ξ and η by the derivatives with respect to θ1 and θ3. These variables can
be denoted by the same letter θ, and a ≤ θ ≤ b.

Conditions (14) take the form

Re
{

2θ
√
a2 − θ2Φ′′(θ) + 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ)
}

−(2θ2 − b2)Re [Ψ ′′(θ)] − 4θRe [Ψ ′(θ)] = 0,

Re {(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ)} − 2θ
√
b2 − θ2Re [Ψ ′′(θ)]

−2
b2 − 2θ2

√
b2 − θ2

Re [Ψ ′(θ)] = 0,

a ≤ θ ≤ b.
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Hence conditions (15) must hold on the interval a ≤ θ ≤ b.
Considering the triangle AA1C, we can similarly show that conditions

(15) must hold also on the interval −b ≤ θ ≤ −a. Thus, conditions (15) are
established on the entire real axis of the plane θ.

The simplest conclusion from this fact is that the analytic functions on the
left sides of conditions (15) are equal to imaginary constants. This conclusion
is necessary, if we assume that the passage to the limit on the axis τ = 0 is
continuous everywhere. Thus, we obtain

−2θ
√
a2 − θ2Φ′′(θ) − 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ) + (2θ2 − b2)Ψ ′′(θ) + 4θΨ ′(θ) = αi,

(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ) − 2θ
√
b2 − θ2Ψ ′′(θ) − 2

b2 − 2θ2

√
b2 − θ2

Ψ ′(θ) = βi,

where α and β are real constants.
Integrating the equations with respect to θ, we have

−2θ
√
a2 − θ2Φ′(θ) + (2θ2 − b2)Ψ ′(θ) = αiθ + C1,

(b2 − 2θ2)Φ′(θ) − 2θ
√
b2 − θ2Ψ ′(θ) = βiθ + C2,

(18)

hence,

Φ′(θ) =
−(αiθ + C1)2θ

√
b2 − θ2 − (βiθ + C2)(2θ2 − b2)

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

,

Ψ ′(θ) =
(αiθ + C1)(2θ2 − b2) − (βiθ + C2)2θ

√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

,

(19)

where C1 and C2 are complex constants. Consider real values of θ on the in-
terval −a ≤ θ ≤ +a. As above, this interval corresponds to the front of the
longitudinal wave and to a part of the front of the transverse wave. Conse-
quently, the real parts of Φ′(θ) and Ψ ′(θ) must be equal to zero on the interval
−a ≤ θ ≤ +a. Hence C1 and C2 are pure imaginary.

To find the constants, we express the projections of the displacements u,
v by the functions Φ and Ψ by using (1). We have

u = Re
[
Φ′(θ1)

∂θ1
∂x

+Ψ ′(θ2)
∂θ2
∂y

]
, v = Re

[
Φ′(θ1)

∂θ1
∂y

−Ψ ′(θ2)
∂θ2
∂x

]
. (20)

The expressions for θ1 and θ2 give

∂θ1
∂x

= −θ1 ∂θ1
∂t

,
∂θ1
∂y

= −
√
a2 − θ2

1

∂θ1
∂t

,

∂θ2
∂x

= −θ2 ∂θ2
∂t

,
∂θ2
∂y

= −
√
b2 − θ2

2

∂θ2
∂t

,

(21)
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where the square roots are negative imaginary for θ1 and θ2 > b. Indeed, for
the variables θ1 and θ2 we have

θ1 =
xt

x2 + y2
+ i

y
√
t2 − a2(x2 + y2)
x2 + y2

,

θ2 =
xt

x2 + y2
+ i

y
√
t2 − b2(x2 + y2)
x2 + y2

.

(22)

Consider now values of u and v on the axis x = 0. We assume that the
impact is concentrated at the point x = 0 and acts along the axis x = 0.

Hence u = 0 on this axis. Obviously, θ1, θ2,
∂θ1
∂t

and
∂θ2
∂t

are pure imaginary

on this axis. Consequently,
∂θ1
∂x

is real, and
∂θ2
∂y

is pure imaginary. From the

first of equations (20) we can conclude that C1 = β = 0. Denote C2 by −Ci,
where C is a real constant. Then, we can write

Φ′(θ) = i
−2αθ2

√
b2 − θ2 + C(2θ2 − b2)

F (θ)
,

Ψ ′(θ) = i
αθ(2θ2 − b2) + C2θ

√
a2 − θ2

F (θ)
,

(23)

where
F (θ) = (2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2. (24)

Formulas (23) contain two real constants α and C. Consider the displace-
ments u and v at a point of the axis y = 0 and assume that the time t tends

to infinity. Under these assumptions, the variables θ1 and θ2 equal
t

x
and tend

to infinity. The expression

F (θ) = (2θ2 − b2)2 − 4θ4

(
1 − a2

θ2

)1/2(
1 − b2

θ2

)1/2

= (2a2 − 2b2)θ2 + · · ·

has order θ2.
Using the expression for θ,

θ =
xt

x2 + y2
+ i

y
√
t2 − c2(x2 + y2)
x2 + y2

, c2 = a2 or b2, (25)

it easy to expand u and v in power series with respect to
1
t
. If α �= 0, then these

series begin with a constant term, and we have the displacements different
from zero as t → ∞. This term is equal to zero for α = 0. This fact forces us
to put α = 0. Then formulas (23) give us

Φ′(θ) = iC
2θ2 − b2

F (θ)
, Ψ ′(θ) = iC

2θ
√
a2 − θ2

F (θ)
. (26)
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The elementary potential ψ will be defined by the real part of the analytic
function Ψ(θ) not only inside the semidisk

ξ2 + η2 <
1
b2
,

but also in two triangles, if we replace θ2 by the variable θ3 defined above.
4. The constant C in (26) depends on the concentrated impact Q. Assume

that this constant is determined by the condition that Q is equal to 1. Also,
assume that the force Q(t) acts at the point x = 0 of the axis y = 0, where
Q(t) is a continuous function of t. Let ϕ0(x, y, t) and ψ0(x, y, t) be elementary
potentials at the given point (x, y) at the moment t. We can construct these
potentials by means of superposition of the effects of the action of the ele-
mentary impulses Q(t−H)dH concentrated at the moment t−H, where the
variable H belongs to the interval (H0,∞). We denote by H0 the time interval
necessary for the impulse to propagate to the point (x, y). For the longitudi-
nal wave, H0 is equal to a

√
x2 + y2. In the case of the transverse wave, the

expression for H0 depends on the position of the point (x, y). If this point is
located inside the angle AOB (see Fig. 1), where the front of the transverse
wave has the shape of a circular arc, then H0 = b

√
x2 + y2. If, on the contrary,

this point is located outside this angle, then we have H0 = ax +
√
b2 − a2 y.

These expressions for H0 follow immediately from equation (12.1) (in this case
we assume that x > 0). Finally, using equations (20) and (26), we obtain two
expressions for the components of the displacement:

u = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
Q(t−H) dH

+ CIm

∞∫
b
√

x2+y2

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
Q(t−H) dH, (27.1)

v = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
Q(t−H)dH

− CIm

∞∫
b
√

x2+y2

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
Q(t−H) dH. (27.2)

Expressions (27) are related to the case when (x, y) are located inside AOB,
i.e., if b2x2 ≤ a2(x2 + y2). In the case b2x2 ≥ a2(x2 + y2), we have

u = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
Q(t−H) dH



On a New Method in the Plane Problem on Elastic Vibrations 57

+CIm

∞∫
ax+

√
b2−a2 y

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
Q(t−H) dH, (28.1)

v = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
Q(t−H) dH

−CIm

∞∫
ax+

√
b2−a2 y

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
Q(t−H) dH. (28.2)

In these formulas we should take

θ2 =
Hx

x2 + y2
+ i

y
√
H2 − b2(x2 + y2)

x2 + y2
for H2 ≥ b2(x2 + y2),

θ2 =
Hx

x2 + y2
− y
√
b2(x2 + y2) −H2

x2 + y2
for H2 ≤ b2(x2 + y2),

with the arithmetical square root. To determine the derivatives of θ with
respect to x and y, one can use formulas (21). Obviously, we should assume
that the behavior of the function Q(t) as t → −∞ is such that the integrals
mentioned above converge.

Formulas (27) and (28) coincide with the formulas derived in the work
of S. L. Sobolev [2], but the method described here is simpler and allows to
solve many other questions without any application of the Fourier integral.
It is known that such application frequently leads to essential complexities in
solving the problem.

The analysis of formulas (26), (27) and (28) was carried out in the men-
tioned work of S. L. Sobolev, nevertheless, we repeat some moments of this
analysis here.

First of all, note that in the case of the concentrated impact, the compo-
nents of u and v are infinite on circles (11.1) and (11.2). This fact follows from
the expressions for the derivatives

∂θ

∂x
and

∂θ

∂y
.

A unique exception are points on the axis η = 0, where the displacement
is equal to zero. The mentioned circumstance also take place on the parts
AC and BD of circle (11.2), which does not compose the front of the distur-
bance propagation. At the moments corresponding to such parts, we have the
beginning of a new phase of vibrations. On the lines

±aξ +
√
b2 − a2η = 1,
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which compose the front of the transverse wave, the derivatives
∂u

∂t
and

∂v

∂t
are infinite. This follows from the fact that Ψ ′(θ) contains the factor

√
a2 − θ2,

and the mentioned lines correspond to the case θ2 = a2.
The regular functions Φ(θ) and Ψ(θ) defined by (26) have two poles θ = ±c

on the real axis. These poles are roots of the equation

F (θ) = 0. (29)

It is easy to see that θ = c is a number reciprocal to the velocity of the
surface waves, which were first studied by Lord Rayleigh. Taking into account

that θ =
ht

x
on the real axis, we can assert that such poles give an infinite

displacement propagating on the surface in two directions with the velocity
1
c
. With the exception of these poles, the functions Φ(θ) and Ψ(θ) do not have

any singular point.
The proof of this fact is contained, for example, in the work of V. D. Kup-

radze and S. L. Sobolev [3]2.
5. It is now easy to obtain formulas for the displacement also in the case

when the force is distributed continuously along the axis y = 0. Let f(x) be a
density of this distribution. If the impact happens at the moment t = 0, then
the formulas have the form

u(x, y, t) = CIm

+∞∫
−∞

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
f(ξ) dξ

+ CIm

+∞∫
−∞

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
f(ξ) dξ, (30.1)

v(x, y, t) = CIm

+∞∫
−∞

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
f(ξ) dξ

− CIm

+∞∫
−∞

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
f(ξ) dξ, (30.2)

where

θ1 =
(x− ξ)t

(x− ξ)2 + y2
+ i

y
√
t2 − a2(x− ξ)2 − a2y2

(x− ξ)2 + y2
,

2 See corresponding reasoning in the paper [4] of Part I of this book (p. 148). – Ed.
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θ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− ξ)t
(x− ξ)2 + y2

+ i
y
√
t2 − b2(x− ξ)2 − b2y2

(x− ξ)2 + y2

for b2(x− ξ)2 + b2y2 < t2,

(x− ξ)t
(x− ξ)2 + y2

− y
√
b2(x− ξ)2 + b2y2 − t2

(x− ξ)2 + y2

for b2(x− ξ)2 + b2y2 > t2.

Note that the imaginary parts of all integrands in formulas (30) are equal
to zero outside the fronts of the corresponding waves. Assume that the force
is distributed not only along the axis y = 0, but the image of its action in time
is of unconcentrated nature. Then, multiplying the elementary potentials by
Q(ξ, t−H), we have to integrate with respect to H as in (27), (28), and with
respect to ξ as in (30). The lower limit of integration with respect to H in the
first integral is

a
√

(x− ξ)2 + y2.

In the second integral the lower limit is

b
√

(x− ξ)2 + y2

for
b2(x− ξ)2 ≤ a2[(x− ξ)2 + y2],

and
a|x− ξ| +

√
b2 − a2 y

for
b2(x− ξ)2 ≥ a2[(x− ξ)2 + y2].

6. All previous conclusions up to formulas (19) remain valid also in the
case of a focused force acting along the axis y = 0. In this case, we need
only to determine the constants in (19) somewhat differently. It is easy to
see that in this case the component v must vanish at the points on the axis
x = 0. Indeed, if we change the direction of the force acting along y = 0, then,
by the symmetry principle, the component v must remain unchanged on the
axis x = 0, at the same time u must change sign. On the other hand, the
displacement vector can only change its direction. Whence v = 0. Arguing in
the same way as above, by (26) we obtain the formulas

Φ′(θ) = −iC 2θ
√
b2 − θ2

F (θ)
, Ψ ′(θ) = iC

2θ2 − b2

F (θ)
. (31)

7. Before moving on to solving other problems, we present some general
considerations, which were essential in the preceding discussion and will be
even more important in the future. The essential moment in solving the prob-
lem is reducing the wave equation (2) for the potential
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c2
∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
, c2 = a2 or b2,

to the Laplace equation in new independent variables σ and τ . In the case
c2 = b2, we obtained the solution of (2) with an arbitrary function of one
variable, which we denoted above by (σ− τ). In the first case, the dependence
of the complex variable θ = σ+iτ on the original variables (x, y, t) is expressed
by the formula

−θx−
√
c2 − θ2 y + t = 0. (32)

If we consider the three-dimensional space S with the coordinates (x, y, t),
then from the preceding computations it follows that equation (32) has com-
plex roots inside the cone

c2(x2 + y2) − t2 = 0. (33)

If we take a root θ of this equation with the positive imaginary part, then
for the root

√
c2 − θ2 in (32) we have to choose the negative imaginary value

for θ > c. Outside cone (33), i.e., for

c2(x2 + y2) − t2 > 0,

equation (32) has two real roots, and an arbitrary function of each of these
roots satisfies equation (2).

We point out a more general class of solutions of equation (2), which is
obtained by the reduction of this equation to the Laplace equation.

For the dependence of the new variable θ = σ+ iτ on the variables (x, y, t)
we use a linear function of x, y, and t with coefficients, which are analytic
functions of θ. Obviously, the coefficient at t may be taken equal to 1. This
leads us to the relation

t+ χ1(θ)x+ χ2(θ)y = χ(θ). (34)

Assume that in a domain of the space S this equation has a complex root
θ = σ+iτ , which is a function of (x, y, t). Consider a solution of (2), depending
only on σ and τ .

In this case, one can verify that equation (2) can be reduced to the form

∂2ϕ

∂σ2
+
∂2ϕ

∂τ2
= 0

under the condition
χ2

1(θ) + χ2
2(θ) = c2.

This circumstance is a consequence of the geometric nature of the lines
σ = const, τ = const, which are the straight lines in our three-dimensional
space S. However, since we do not use this fact, we will not discuss it in
detail. Taking into account that a harmonic function is mapped to a harmonic
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function under the action of the conformal mapping, we can take χ1(θ) as a
new complex variable. Then, in view of the condition mentioned above, we
have

χ2(θ) = ±
√
c2 − θ2,

and we can reduce relation (34) to the form

t− θx±
√
c2 − θ2 y − χ(θ) = 0. (35)

If this equation has a real root in a domain of the space S, then an arbitrary
function of this root satisfies equation (2).

All these assertions can be verified by simple calculation.
We present the corresponding formulas, since they will be useful later.
Denote by δ the left side of equation (35) and by δ′ the partial derivative

∂δ

∂θ
. We have

∂θ

∂x
=

θ

δ′
,

∂θ

∂y
= ∓

√
c2 − θ2

δ′
,

∂θ

∂t
= − 1

δ′
. (36)

The second-order derivatives are

∂2θ

∂x2
=

1
δ′

∂

∂θ

(
θ2

δ′

)
,

∂2θ

∂y2
=

1
δ′

∂

∂θ

(
c2 − θ2

δ′

)
,

∂2θ

∂t2
=

1
δ′

∂

∂θ

(
1
δ′

)
,

∂2θ

∂x∂y
=

1
δ′

∂

∂θ

(∓θ√c2 − θ2

δ′

)
.

(37)

By (36), if equation (35) has a real root θ in a domain of the space S, then
this root satisfies the inequality −c ≤ θ ≤ +c, and the function χ(θ) must
have real values.

Let us note also some formulas used later. Let θ be a complex root of (35),
let f(θ) be an analytic function. Using (36) and (37), we obtain the following
expressions for the derivatives of f(θ) with respect to (x, y, t):

∂2f

∂x2
=

1
δ′

∂

∂θ

[
f ′(θ)

θ2

δ′

]
,

∂2f

∂y2
=

1
δ′

∂

∂θ

[
f ′(θ)

c2 − θ2

δ′

]
,

∂2f

∂t2
=

1
δ′

∂

∂θ

[
f ′(θ)

1
δ′

]
,

∂2f

∂x∂y
= ∓ 1

δ′
∂

∂θ

[
f ′(θ)

θ
√
c2 − θ2

δ′

]
.

(38)

The same formulas remain valid for the function f(θ) of the real argument
θ, if θ is a real root of equation (35).

8. Let us now discuss the two-dimensional problem on vibrations of the
half-space under the action of a source of force F , located inside the half-
space. As before, assume that the elastic half-plane is y ≥ 0. Let x = 0,
y = f be the coordinates of the force source. We assume that the force action
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is concentrated at some moment. As above, we denote by t the time passed
from this moment.

Introduce two functions X(α, t) and Y (α, t) defined on

0 ≤ α ≤ 2π, 0 ≤ t ≤ 1.

Consider vibrations of the half-plane, being at rest at the moment t = 0,
under the action of stresses

1
ε2
X

(
α,

t

ε

)
and

1
ε2
Y

(
α,

t

ε

)
applied at the points of a circle of radius ε with center F (0, f), where the
interval of the action of stresses is 0 ≤ t ≤ ε. As ε → 0, we have vibrations
of the half-plane with a singularity at the point F (0, f) and with potentials
ϕ and ψ homogeneous in x, (y − f), and t. A similar result is obtained if the
moment is at t = 0. Note that the singularity of this type, generally speaking,
is homogeneous. We assume that our source has such singularity.

In another work we hope to conduct a mechanical analysis of this concept
of homogeneous singularity.

On the interval 0 ≤ t ≤ af there is no wave reflected from the plane y = 0
of the space S, and, as discussed above, the elementary potentials ϕ and ψ

depend only on the ratios
x

t
and

y − f

t
, i.e., they must remain constant on

the straight lines of the space S, passing through the point x = 0, y = f ,
t = 0. Subsequently, these lines will be called the rays of the space S. First
of all, we consider the case when the source F is the source of longitudinal
waves, i.e., we assume that the potential ψ is equal to zero on the interval
0 ≤ t ≤ af . The potential ϕ is not equal to zero only for

t2 > a2[x2 + (y − f)2],

i.e., inside the cone T0 of the space S with apex F . The equation of the cone
is

t2 − a2[x2 + (y − f)2] = 0. (39)

We consider only the inner part of this cone, where y ≥ 0 and t > 0.
Introduce the complex variable θ1 determined, as in (35), by the equality

t− θ1x+
√
a2 − θ2

1(y − f) = 0,

i.e.,

δ1 = t− θ1x+
√
a2 − θ2

1 y −
√
a2 − θ2

1 f = 0. (40)

Then ϕ must be the real part of an analytic function of the complex
variable θ1

ϕ1 = Re [Φ1(θ1)]. (41)
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Expression (40) sets in the correspondence to each ray inside the cone T0

a value of θ1, and ϕ1 remains constant along each ray. Consider this corre-
spondence in detail. Solving equation (40) with respect to θ1, we obtain

θ1 =
xt− i(y − f)

√
t2 − a2[x2 + (y − f)2]

x2 + (y − f)2
, (42)

where the radical is taken with “+” sign. The rays, located in the half-space
t > 0 and crossing the plane y = 0, correspond to the complex values of θ1
from the upper plane, i.e., with the positive imaginary part. Formula (42)
establishes the law of the correspondence between the rays and the values of
θ1. The family of rays, forming the part of the cone where t > 0, corresponds
to the entire complex plane with the cut (−a,+a) along the real axis. However,
the points of this cut correspond to the generators of the cone. The intervals
(−∞,−a) and (+a,+∞) of the real axis of θ1 correspond to the rays located
on the plane y = f , the imaginary axis corresponds to the rays of the plane
x = 0, and the upper half (0,+i∞) of this axis corresponds to the rays for
which y < f , and which further intersect the plane y = 0. From the last
fact and equation (40) it follows that in this equation the radical

√
a2 − θ2

1

is positive for the values of θ1 on the imaginary semiaxis (0,+i∞). This is
equivalent to the assumption that the value of the radical

√
a2 − θ2

1 is negative
imaginary for θ1 > a.

The generators of the cone T0 correspond to the front of propagation of
vibrations. Consequently, ϕ1 must vanish in the corresponding points, i.e.,
the function Φ1(θ1) in (41) must be purely imaginary on the cut (−a,+a).
The points of the axis of the cone T0 correspond to the source of different
moments, and this axis corresponds to the point of the plane θ1 at infinity.
Since we know the source, we do the singularity of Φ1(θ) at infinity.

Thus, the function Φ1(θ) is determined. A more detailed analysis of dif-
ferent sources will be conducted later. Our assumption, that the potential ϕ
remains constant along each ray emanating from the point x = 0, y = f ,
t = 0, leads us to the fact that the singularity of ϕ1 in the force source takes
place at all moments t > 0.

9. The given elementary potential ϕ1 determines the motion when t < af .
For t > af we have to add two more potentials: one ϕ2 for the longitudinal
wave, and another ψ1 for the transverse wave. We select these potentials in
the same way as above, i.e., we assume that these potentials must remain
constant along some rays of the space S. These rays are called the reflected
rays. Beginning with the construction of ϕ2, first of all, we note that ϕ2 must
be the real part of an analytic function:

ϕ2 = Re [Φ2(θ2)], (43)

where θ2 is defined by equation (35) for c = a. We choose the function χ(θ)
in this equation such that the values of θ1 and θ2 coincide for y = 0, i.e., we
select χ(θ) as in equation (40).



64 V. I. Smirnov and S. L. Sobolev

Then, for θ2 we have the equation

δ2 = t− θ2x−
√
a2 − θ2

2 y −
√
a2 − θ2

2 f = 0. (44)

It is easy to verify that these reflected rays generate the cone

t2 − a2[x2 + (y + f)2)] ≥ 0

with apex (0,−f, 0). We select in equation (44) the opposite sign of the radical
than in equation (40), so the rays going to the domain t > 0, y > 0, correspond
to the complex values of θ2 with the positive imaginary parts.

Constructing the potential ψ1, we should put c = b in equation (35). The
term χ(θ) is chosen in the same way as in equation (40). The sign of the
radical in the coefficient at y should be taken such that the rays, along which
y and t increase, correspond to the values of θ with the positive imaginary
parts. It is easy to show that we should take “−” sign.

Then, for θ3 we have the equation

δ3 = t− θ3x−
√
b2 − θ2

3 y −
√
a2 − θ2

3 f = 0. (45)

For y = 0 the values of θ3 coincide with the values of θ1 and θ2.
The potential ψ1 is the real part of an analytic function

ψ1 = Re [Ψ(θ3)]. (46)

Before we construct the functions Φ2(θ2) and Ψ(θ3), let us point out the
connection between the variables θ. For this purpose, consider the section of
the main cone T0 by the plane y = 0, where we have the reflection. In the
section we have the hyperbola

t2 − a2(x2 + f2) = 0.

Each point (x, t) of the plane y = 0, located inside this hyperbola, for
which

t2 − a2(x2 + f2) ≥ 0 and t > 0,

corresponds to a complex value of θ1 from the upper half-plane or the real
axis. By the construction of equations (44) and (45), the values of θ2 and θ3
coinciding with the values of θ1 correspond to the point (x, t). Thus, choosing
the point (x, t), we define the complex values of θ2 and θ3 from the upper half-
plane. Substituting these values into (44) and (45), we obtain two reflected
rays in the space S. The potential ϕ2 remains constant along one of these rays,
and ψ1 remains constant along another one. The values of y and t increase
along these reflected rays. Hence the addition of the potentials ϕ2 and ψ1

does not influence the motion for t < af and does not change the initial data.
If we fix a point (x, y) and a moment t, then the corresponding values of θ2
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and θ3 from the upper half-plane are obtained from equations (44) and (45).
Obviously, it is impossible to define complex θ2 and θ3 for some points (x, y, t).

This corresponds to the fact that the reflected rays do not fill the entire
domain t > 0, y > 0.

If, for example, the reflected ray of the potential ϕ2 does not pass through
the point (x, y, t), then we should not add the potential ϕ2 at this point in
order to construct the solution.

It is easy to verify that, by (35), the complex value of θ characterizes some
direction in the space S without any dependence on the term χ(θ). Thus, the
above reasoning gives us the law of the correspondence between the directions
of the incident and reflected rays. We will not discuss this anymore, since our
goal is only the effective construction of the solution.

For the displacement components we have

u = Re
[
Φ′

1(θ1)
∂θ1
∂x

+ Φ′
2(θ2)

∂θ2
∂x

+ Ψ ′(θ3)
∂θ3
∂y

]
,

v = Re
[
Φ′

1(θ1)
∂θ1
∂y

+ Φ′
2(θ2)

∂θ2
∂y

− Ψ ′(θ3)
∂θ3
∂x

]
.

(47)

Inside the hyperbola t2−a2(x2 +f2) = 0 on the plane y = 0 the boundary
conditions expressing the absence of stresses must hold. However, note that
the variables θ1, θ2 and θ3 coincide for y = 0. This allows us to omit index.
Furthermore, let δ′ without index denote the general value of the variables δ′1,
δ′2 and δ′3 for y = 0. Using (38), we can write the boundary conditions in the
form

Re
{

1
δ′

∂

∂θ

−2θ
√
a2 − θ2[Φ′

1(θ) − Φ′
2(θ)] + (b2 − 2θ2)Ψ ′(θ)

δ′

}∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)[Φ′
1(θ) + Φ′

2(θ)] − 2θ
√
b2 − θ2Ψ ′(θ)

δ′

}∣∣∣∣
y=0

= 0.

(48)

The expressions under the sign of the real part Re contain the complex
variable θ, which can take arbitrary values from the upper half-plane, and the
real variable x, which appears in the formula for δ.

First, note that θ can be expressed in terms of x and t. This follows from
formula (42) for y = 0.

Thus, in the expression

δ′ = −x+
θ√

a2 − θ2
f (49)

we can replace x by means of the formula

x =
t

θ
−

√
a2 − θ2 f

θ
.
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Hence we have one complex variable θ and one real parameter t under the
sign of the real part on the left sides of (48).

Consider the interval (−a,+a) of the real axis of the plane θ, corresponding
to the generators of the cone T0, i.e., to the front of propagation of vibrations
on the plane y = 0. All three potentials ϕ1, ϕ2 and ψ must vanish on this front,
i.e., the real parts of the functions Φ1, Φ2 and Ψ must be equal to zero on this
interval. Obviously, we can make the same conclusion about the derivatives
Φ′

1, Φ
′
2, and Ψ ′. Taking into account that the radical

√
a2 − θ2 is real on this

interval, we can assert that conditions (48) are satisfied for each positive real
value of t on the interval −a < θ < +a. Fix now a value of t and prove that
conditions (48) will be satisfied for this value of t and for all θ from the upper
half-plane. If t is fixed, and x is changing from

−
√
t2 − a2f2

a

to

+

√
t2 − a2f2

a
,

then the complex variable

θ =
xt

x2 + f2
± i

f
√
t2 − a2(x2 + f2)
x2 + f2

describes a curve l, issuing from a pointA on the interval (−a,+a) and arriving
at another point B on the same interval. The curve l together with the interval
AB of the real axis form a closed contour. By (48) for fixed t the expressions
for θ and t along this contour have zero real parts. Then, these real parts must
vanish on the entire upper half-plane of θ. Making the change of variables

t = θx+
√
a2 − θ2 f,

we can conclude that conditions (48), where δ′ is defined by (49), must hold
for an arbitrary value of x on the entire upper half-plane of θ. Let us prove
that we then have

−2θ
√
a2 − θ2[Φ′

1(θ) − Φ′
2(θ)] + (b2 − 2θ2)Ψ ′(θ) = 0,

(b2 − 2θ2)[Φ′
1(θ) + Φ′

2(θ)] − 2θ
√
b2 − θ2Ψ ′(θ) = 0.

(50)

Denoting by σ1(θ) the left side of the first of these equalities and putting

σ2(θ) =
θf√

a2 − θ2
,

we can express the first condition in (48) in the form

σ′
1(θ)[−x+ σ2(θ)] − σ′

2(θ)σ1(θ)
[−x+ σ2(θ)]2

= Ci,
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where C is a real constant depending only on x, and θ can take arbitrary values
in the upper half-plane. From the last equality it follows that the coefficient
at x and the term independent of x in the numerator of this fraction must
vanish. Hence σ1(θ) = 0, i.e., the first equality in (50) holds. Similarly, we can
prove the second equality.

Solving equations (50) with respect to Φ′
2(θ) and Ψ ′(θ), we obtain

Φ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′

1(θ),

Ψ ′(θ) = −4θ(2θ2 − b2)
√
a2 − θ2

F (θ)
Φ′

1(θ),

(51)

where
F (θ) = (2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2. (52)

The fractions in (51) are real on the interval −a < θ < +a of the real
axis. On the other hand, the real part of the function Φ1(θ) vanishes on this
interval. Whence, by condition, the real parts of Φ′

2(θ) and Ψ ′(θ) also vanish on
this interval. Integrating, we can choose additive constants in the expressions
for the potentials Φ2(θ) and Ψ(θ) such that the real parts of Φ2(θ) and Ψ(θ)
will also be equal to zero. By formulas (51) and (47), we can determine the
displacement components.

10. Let us point out some consequences of the obtained formulas. Consider
equation (40) having complex roots inside the cone T0 and real roots from the
interval −a < θ < +a on the generators of this cone. As is known, these
generators correspond to the front of propagation of the longitudinal wave
in the domain t > 0, y > 0 of the space S. Let θ1 = θ0 be a value from
the interval −a < θ1 < +a, let λ0 be a corresponding generator. If we put
θ1 = θ0 in equation (40), then we have the equation of the plane tangent to
the cone T0 along λ0. Therefore points (x, y, t) in the exterior of the cone T0

correspond to real values of θ1 from the interval −a < θ1 < +a. Then, δ′′1 = 0
along each generator λ0, i.e., the derivative of the left side of equation (40)

is equal to zero. Hence the derivatives
∂θ1
∂x

and
∂θ1
∂y

are infinite along these

generators, and we have infinite displacements on the front of propagation of
the longitudinal wave. The study of equations (44) and (45) leads to a similar
conclusion, and we have infinite displacements on the fronts of reflected waves.

Expanding the left side of equation (40) in powers of (θ1 − θ0), we can

conclude that
∂θ1
∂x

and
∂θ1
∂y

are infinite of the orders

1√
x− x0

and
1√

y − y0
,

respectively.
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Let us now move on to finding asymptotic estimates of the obtained solu-
tion as t → ∞. This will give us the phenomenon of surface waves in the clear
form.

Let ξ = x− t
c , η = y, where c is a positive root of the equation F (θ) = 0,

i.e.,
1
c

is the known velocity of the Rayleigh wave [2]. Assuming that ξ and η

remain bounded, let us construct the asymptotic expansions for θ1 and θ2 up

to the terms of order
1
t2

. It is easy to see that we have

θ1 = c− c2ξ

t
− i

c
√
c2 − a2(η − f)

t
+O

(
1
t2

)
,

θ2 = c− c2ξ

t
+ i

c
√
c2 − a2(η + f)

t
+O

(
1
t2

)
.

(53)

Hence,

∂θ1
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ1
∂y

= −i c
√
c2 − a2

t
+O

(
1
t2

)
,

∂θ2
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ2
∂y

= i
c
√
c2 − a2

t
+O

(
1
t2

)
.

(54)

By F (c) = 0, one can also verify that

F (θ1) = F ′(c)
−c2ξ − ic

√
c2 − a2(η − f)
t

+O

(
1
t2

)
, (55)

F (θ2) = F ′(c)
−c2ξ + ic

√
c2 − a2(η + f)
t

+O

(
1
t2

)
. (56)

Similarly, for θ3 we obtain

θ3 = c− c2ξ

t
+ i

c
√
c2 − b2η

t
+ i

c
√
c2 − a2 f

t
+O

(
1
t2

)
, (57)

∂θ3
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ3
∂y

= i
c
√
c2 − b2

t
+O

(
1
t2

)
. (58)

This allows us to write the asymptotic expansions for the displacement

components up to the term of order
1
t
. Taking into account (47) and (51)3,

we have
3 The authors use also the formula

F (θ3) = F ′(c)
−c2ξ + ic

√
c2 − b2η + ic

√
c2 − a2f

t
+ O

„
1

t2

«
. – Ed.
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u = Re
{−(2c2 − b2)2 − 4c2

√
c2 − a2

√
c2 − b2

F ′(c)

× −c
−cξ + i

√
c2 − a2(η + f)

Φ′
1(c) −

i4c(2c2 − b2)
√
c2 − a2

F ′(c)

× i
√
c2 − b2

−cξ + i
√
c2 − b2η + i

√
c2 − a2 f

Φ′
1(c)
}

+O

(
1
t

)
, (59.1)

v = Re
{−(2c2 − b2)2 − 4c2

√
c2 − a2

√
c2 − b2

F ′(c)

× i
√
c2 − a2

−cξ + i
√
c2 − a2(η + f)

Φ′
1(c) +

i4c(2c2 − b2)
√
c2 − a2

F ′(c)

× −c
−cξ + i

√
c2 − b2η + i

√
c2 − a2 f

Φ′
1(c)
}

+O

(
1
t

)
. (59.2)

Our analysis allows us to note that at infinity vibrations produce the wave

propagating with the velocity
1
c

with bounded amplitude. It is easy to see

that this wave is a natural generalization of the Rayleigh wave4.
In the case of the concentrated source of the force inside the medium, we

see that the surface wave has nonperiodic nature. We should also mention that
the exponential law of damping in the depth is not valid anymore. Obviously,
the concept of wave length does not make sense.

11. Let us now move on to the source of transverse waves. As in the previ-
ous problem, we assume that this source is regular, i.e., the given elementary
potential of the transverse waves ψ1 is the real part of a regular analytic
function

ψ1 = Re [Ψ1(θ1)], (60)

where the complex variable θ1 is defined by an equation similar to (40),

δ1 = t− θ1x+
√
b2 − θ2

1 y −
√
b2 − θ2

1 f = 0. (61)

In this case, the cone T0 is defined by the equation

t2 − b2[x2 + (y − f)2] = 0, (62)

and the rays located inside this cone correspond to the plane of the complex
variable θ1 with the cut (−b,+b) along the real axis. The values of θ1 on this
cut correspond to the generators of the cone. We look for the potential of
longitudinal reflected waves in the form of the real part of a function analytic
in the upper half-plane

ϕ = Re [Φ(θ2)], (63)

4 These waves were studied by S. L. Sobolev in his work cited above.
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where θ2 is defined by the equation

δ2 = t− θ2x−
√
a2 − θ2

2 y −
√
b2 − θ2

2 f = 0. (64)

As before, we chose an equation such that it coincides with equation (61)
for y = 0. In the section of cone (62), by the plane y = 0, we have the
hyperbola

t2 − b2(x2 + f2) = 0, t > 0. (65)

Each point P from the interior of this hyperbola corresponds to a complex
value of θ1 from the upper half-plane, and points of the hyperbola correspond
to values of θ1 on the interval (−b,+b) of the real axis. To obtain a reflected
ray lx,t of the potential ϕ of the longitudinal wave passing through a point P
with coordinates (x, t) of the plane y = 0, we should take the corresponding
value of θ1 and substitute it for θ2 into equation (64). This ray lx,t passes
through the point P , and equation (64) defines its direction.

As we have already noted, the direction of the straight lines, obtained from
equation (64), is completely defined by the first three terms on the left side of
this equation. Hence the direction is the same as one obtained from equation
(44) with the same value of θ. The straight lines of equation (44) form the
already known cone with apex x = 0, y = −f , t = 0 and the apex angle equal

to arctan
1
a
. For this cone as well as for the cone T0 from our problem, the

values of θ from the upper half-plane correspond to the rays along which y
and t increase simultaneously. When the value of θ tends to a point of the real
interval (−a,+a), the direction of the corresponding ray coincides with the
direction of the corresponding generator of the cone. When θ tends to a point
of the real axis outside the interval (−a,+a), the ray direction is parallel to
the plane y = 0 in the limit. In the present case, the points of hyperbola (62)
correspond to the values of θ1 on the interval (−b,+b). Let A and B be the
points of this hyperbola for θ1 = ±a (see Fig. 3).

Fig. 3.

The arc AB of the hyperbola corresponds to the values of θ1 from
−a < θ1 < +a.

The infinite branches AA1 and BB1 correspond to the values of θ1 from
the intervals a ≤ θ1 < b and −b ≤ θ1 < −a. The above reasoning leads us to
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the following conclusion: if a point P (x, t) tends to a point on the arc AA1

or BB1, then the angle between the corresponding ray lx,t of the reflected
longitudinal wave and the plane y = 0 tends to zero. The limit for the points
located on these arcs is on the plane y = 0.

Substituting into (64) instead of θ2 some value from the interval (a, b) or
(−b,−a), we obtain the equation of the ray lx,t passing through a point of the
arc AA1 or BB1 and located on the plane y = 0:

t− θ2x−
√
b2 − θ2

2 f = 0.

It is easy to show that the last equation defines the tangents to hyperbola
(65). Hence, for each point of the arcs AA1 and BB1 of the hyperbola, the cor-
responding ray of the reflected longitudinal potential is tangent to hyperbola
(65) at this point.

Later we will see that the potential of the reflected longitudinal waves will
be equal to zero only on the interval (−a,+a) of the real axis, as in the case of
the longitudinal source, but it will not be equal to zero on the intervals (a, b)
and (−b,−a). Also, it will not vanish in two domains of the plane bounded by
the arcs AA1 and BB1 of the hyperbola and two tangents to the hyperbola
at the points A and B. We denote these domains by (I) and (II). There is no
incident transverse wave in these domains. To satisfy the boundary conditions,
we have to define the potential ψ2 of the reflected transverse wave not only
inside hyperbola (65), but also outside this hyperbola in the domains (I) and
(II).

We will see later how to do it. We now move on to the definition of ψ2

inside the hyperbola, i.e., for complex values of θ from the upper half-plane.
Here, ψ2 is the real part of an analytic function

ψ2 = Re [Ψ2(θ3)], (66)

where θ3 is defined by the equation

δ3 = t− θ3x−
√
b2 − θ2

3 y −
√
b2 − θ2

3 f = 0, (67)

which defines the conical beam T1 of rays with apex

F1(x = 0, y = −f, t = 0)

and angle arctan
1
b

at the apex. We consider only those rays of this beam
which pass through the domain y > 0, t > 0 of the space S.

Let us now write the boundary conditions for the mentioned points, i.e.,
for the values of θ from the upper half-plane. The values of θ1, θ2 and θ3
coincide for y = 0. Denoting by θ this common value, we have



72 V. I. Smirnov and S. L. Sobolev

Re
{

1
δ′

∂

∂θ

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)[Ψ ′

1(θ) + Ψ ′
2(θ)]

δ′

} ∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)Φ′(θ) + 2θ
√
b2 − θ2[Ψ ′

1(θ) − Ψ ′
2(θ)]

δ′

} ∣∣∣∣
y=0

= 0,

(68)

where δ′ is the derivative of the expression (t− θx−√
b2 − θ2 f) with respect

to θ.
As in the case of the source of longitudinal waves, from above we obtain

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)[Ψ ′

1(θ) + Ψ ′
2(θ)] = 0,

(b2 − 2θ2)Φ′(θ) + 2θ
√
b2 − θ2[Ψ ′

1(θ) − Ψ ′
2(θ)] = 0.

(69)

Then, we can define the functions Φ′(θ) and Ψ ′
2(θ)

Φ′(θ) =
4θ(2θ2 − b2)

√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(70)

The potential ψ1 of the transverse waves propagating from the source must
vanish on the wave front. It means that the real parts of the functions Ψ1(θ)
and Ψ ′

1(θ) must be equal to zero for −b ≤ θ ≤ +b. Taking into account that
the fractions in (70) are real for −a ≤ θ ≤ +a, we can assert that Φ′(θ) and
Ψ ′

2(θ) have zero real part for −a ≤ θ ≤ +a. This fact is not valid anymore
on the intervals a < θ < b and −b < θ < −a, since the indicated fractions
contain the radical

√
a2 − θ2. Therefore, in the domains (I) and (II) of the

plane y = 0 the potential ϕ equal to the real part of Φ(θ) is not equal to
zero. These domains are generated by the rays lx,t or the lθ, corresponding
to the real values of θ from the intervals (a, b) and (−b,−a). If we substitute
such value of θ for θ3 into equation (67), we have the equation of some plane
in the space S. The section of this plane by the plane y = 0 is the ray lθ.
It is easy to see that this plane is tangent to the cone T1 of the reflected
transverse wave. Thus, we have the family of planes tangent to the cone T1

along the generators passing through the points P of the arcs AA1 and BB1

of the hyperbola. Consider one of the planes tangent to the cone along the
generator F1P . Let θ be the real value of the parameter θ, corresponding to
this generator F1P . Denote by Uθ the domain of this tangent plane, bounded
by the generator F1P and the ray lθ of the plane y = 0, and located in the
half-space y > 0. The values of θ belong to the intervals (a, b) or (−b,−a).

The domains Uθ fill a domain R in the space S. In this domain we define
the potential ψ2 as a function of the real variable θ. This function is constant
in each Uθ. As already mentioned in Sect. 7, an arbitrary function of a real
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root θ of equation (67) in the domain R satisfies the wave equation (2) for
c = b.

Our choice of Uθ allows us to assert that we did not break the initial
conditions, since we have t > af for Uθ. Similar circumstances will be valid for
the future problems, and we will not discuss it anymore. As we will see later,
our procedure always determines the potential continuously. Moving on to the
effective computation of this potential, we have to choose a function of θ, which
defines the potential ψ2 in the domain R such that the boundary conditions
are always satisfied in the domains (I) and (II) of the plane y = 0. The second
formula in (70) gives us Ψ ′

2(θ) on the intervals (a, b) and (−b,−a). Integrating
along the real axis, we obtain Ψ2(θ). Obviously, one can put Ψ2(±a) = 0.
It is easy to prove that if the potential ψ2 is equal to the real part of the
indicated function Ψ2(θ) on the planes Uθ, then the boundary conditions will
be satisfied also in the domains (I) and (II) of the plane y = 0. Indeed,
returning to equalities (69), we can assert that they hold also on the intervals
a ≤ θ ≤ b and −b ≤ θ ≤ −a. However, the real part of Ψ ′

1(θ) is equal to
zero on these intervals, and the coefficients of this function in equation (69)
do not contain the radical

√
a2 − θ2. Hence these coefficients are real. Taking

into account once again the fact that δ′ is also real, in the discussed case we
have the condition in form (68) with Ψ ′

1(θ) = 0, i.e.,

Re
{

1
δ′

∂

∂θ

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)Ψ ′

2(θ)
δ′

}∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)Φ′(θ) − 2θ
√
b2 − θ2Ψ ′

2(θ)
δ′

}∣∣∣∣
y=0

= 0.

These equations show that the boundary conditions hold in the domains
(I) and (II) of the plane y = 0. Thus, the problem is solved.

Let us note again that the value of ψ2 on Uθ is equal to the value of this
function along the generator F1P , through which Uθ passes.

12. Let us now derive some consequences of the obtained results. As in
Sect. 10, we can prove that the displacements are infinite on the fronts of the
waves. We will not return to this point anymore.

If we cross the constructions made in the space S by the plane t = const,
we obtain the fronts of the waves at the time moment t (see Fig. 4). Let us take
sufficiently large t such that the plane t = const to pass through the domain
R of the space S. In this case, the front of the transverse waves consists of
three parts. The first part is the arc AHB of the circle that is the section
of the cone T0 by the plane t = const. This is a wave propagating from the
source. The second part is the arc AEFB of the circle that is the section of
the cone T1 by the plane t = const. The third part consists of two lines CE
and DF that are the sections U+a and U−a by the plane t = const. This last
part is generated by the longitudinal waves propagating along the plane y = 0

with the velocity
1
a
. The points E and F are the points of the intersection
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of the plane t = const with the generators of the cone T0, corresponding to
the values θ = ±a. The front of the longitudinal waves is the curve CGD
enveloping the lines

θx+
√
a2 − θ2 y +

√
b2 − θ2 f = t, −a ≤ θ ≤ +a, t = const.

All these fronts propagate according to the Fermat principle. As in the pre-
vious case, one can give asymptotic representations of the displacements and
to reveal the surface wave. The explanation is completely analogous to the
above one.

Fig. 4.

13. The presented approach can be applied not only to the two-dimensional
problem on vibrations of the half-space, but it also gives the general law of
reflection of a beam of rays of special type from a plane in the space S.

For this special type, the potential (longitudinal or transverse) is the real
part of an analytic function of θ in the upper half-plane, where θ is a root of
the equation

t− θx±
√
c2 − θ2 y − χ(θ) = 0, c = a or b.

As mentioned above, this form is equivalent to form (34). We will say that
in this case vibrations have imaginary potentials.

The indicated analytic function satisfies also some boundary conditions.
In the last cases it is necessary to consider real values of θ which correspond
to planes in the space S. The potential must remain constant on each of these
planes. We do not consider the entire plane, but rather only its part concluded
between the reflective plane and the terminal position of the ray obtained when
θ from the upper half-plane tends to the discussed real value corresponding to
the plane. The presented method gives, for example, a solution of the problem
on vibrations of a layer.

Let 2f be the thickness of the plane layer bounded by the lines y = 0 and
y = 2f . Suppose that we have a source of longitudinal type at the point x = 0,
y = f with the singularity of the type described above. Let the potential of
this source be given by the formula
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ϕ = Re [Φ(θ)], (71)

where the analytic function Φ(θ) is defined on the entire plane with the cut
(−a,+a) along the real axis; let the real part of Φ(θ) be equal to zero on
this cut. Consider the part Ω of the space S, bounded by the planes y = 0
and y = 2f . Denote by S0 the first of these planes, and the second by S1. If
we are at rest for t < 0, then we have longitudinal vibrations with the given
potential ϕ for 0 ≤ t < af . The rays corresponding to this wave form the cone

T0 with apex (x = 0, y = f, t = 0) and angle arctan
1
a

at the apex. At the
moment t = af we have reflected rays of longitudinal and transverse waves
with respect to the planes S0 and S1. All these rays follow the direction of
growth of t. Hence, in the domain Ω bounded by the planes t = 0 and t = af ,
the displacement is defined by the fundamental cone T0. In expression (71), θ
is defined by the equality

t− θx+
√
a2 − θ2 y −

√
a2 − θ2 f = 0.

Let ϕ1 and ψ1 be the potentials of the longitudinal and transverse waves
reflected from the plane S0, let ϕ2 and ψ2 be the analogous potentials for the
reflection from S1.

We have
ϕ1 = Re [Φ1(θ1)] and ψ1 = Re [Ψ1(θ′1)], (72)

where θ1 and θ′1 are complex values from the upper half-plane, defined by the
equations

t− θ1x−
√
a2 − θ2

1 y −
√
a2 − θ2

1 f = 0,

t− θ′1x−
√
b2 − θ′1

2 y −
√
a2 − θ′1

2 f = 0.

(73)

Equations (51) allow us to obtain the functions Φ1(θ1) and Ψ1(θ1) for
values of the argument from the upper half-plane

Φ′
1(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′(θ),

Ψ ′
1(θ) =

−4θ(2θ2 − b2)
√
a2 − θ2

F (θ)
Φ′(θ).

(74)

In this case, the real parts of Φ′
1(θ) and Ψ ′

1(θ) are equal to zero on the interval
−a ≤ θ ≤ +a. These reflected rays pass through points of the plane S0,
located inside the hyperbola t2 − a2(x2 + f2) = 0. The rays fall on the plane
S1 above the line t = 3af .

Values of θ from the lower half-plane correspond to rays of the cone T0,
falling on the plane S1. Let

ϕ2 = Re [Φ2(θ2)], ψ2 = Re [Ψ2(θ′2)] (75)
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be the potentials of the longitudinal and transverse waves reflected from the
plane S1. Complex values of θ2 and θ′2 from the lower half-plane must coincide
with θ for y = 2f . It is easy to see that θ2 and θ′2 are defined by the equations

t− θ2x−
√
a2 − θ2

2 y + 3
√
a2 − θ2

2 f = 0,

t− θ′2x−
√
b2 − θ′2

2 y + 2
√
b2 − θ′2

2 f −
√
a2 − θ′2

2 f = 0.

(76)

The derivatives of the functions Φ2 and Ψ2 are determined by the formulas
obtained from (74) by the sign change in front of the radical

√
a2 − θ2 in the

second formula. The displacement of the layer, bounded by the planes t = f
and t = 3f in the domain Ω, is determined by the potentials ϕ, ϕ1, ϕ2, ψ1,
and ψ2. Further, we have to consider the reflection of the rays corresponding
to the potentials ϕ1, ϕ2, ψ1, and ψ2. First, consider the potential ϕ1. The
corresponding rays reflected from the plane S0 fall on the plane S1 and create
reflected rays of longitudinal and transverse vibrations. Let us introduce the
corresponding potentials

ϕ3 = Re [Φ3(θ3)], ψ3 = Re [Ψ3(θ′3)], (77)

where the variables θ3 and θ′3 from the upper half-plane must coincide for
y = 2f with θ1 defined by the first equation in (73). It is easy to see that the
equations on these variables have the form

t− θ3x+
√
a2 − θ2

3 y − 5
√
a2 − θ2

3 f = 0,

t− θ′3x+
√
b2 − θ′3

2 y − 2
√
b2 − θ′3

2 f − 3
√
a2 − θ′3

2 f = 0.

(78)

The functions Φ′
3 and Ψ ′

3 are determined through Φ′
1 by the formulas obtained

from (74) by the sign change in front of the radical
√
a2 − θ2 in the second

formula.
Introduce the potentials ϕ4 and ψ4 for rays corresponding to the reflection

of the beam of rays of transverse vibrations with the potential ψ1 from the
plane S1,

ϕ4 = Re [Φ4(θ4)], ψ4 = Re [Ψ4(θ′4)], (79)

where θ4 and θ′4 from the upper half-plane satisfy the equations

t− θ4x+
√
a2 − θ2

4 y − 2
√
b2 − θ2

4 f − 3
√
a2 − θ2

4 f = 0,

t− θ′4x+
√
b2 − θ′4

2 y − 4
√
b2 − θ′4

2 f −
√
a2 − θ′4

2 f = 0.

(80)

The functions Φ′
4 and Ψ ′

4 are determined through Ψ ′
1 by the formulas obtained

from (70) by the sign change in front of the radical in the first formula
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Φ′
4(θ) =

−4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
4(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(81)

Note that the range of the argument of the function Ψ ′
1(θ) consists of

the upper half-plane and the interval (−a,+a), and the real part of Ψ ′
1(θ)

vanish on this interval. Analogous results are valid for all remaining functions
obtained by the reflection from the planes S0 and S1. It is completely clear
how we should continue the calculations.

In the case of a source of transverse vibrations we have somewhat different
circumstances.

14. Assume that the formula ψ = Re [Ψ(θ)] gives us the potential of a
source of transverse vibrations, where the variable θ is defined by the equation

t− θx+
√
b2 − θ2 y −

√
b2 − θ2 f = 0, (82)

and the range of change of this variable is the entire complex plane with
the cut (−b,+b) along the real axis. We construct the potentials ϕ1 and ψ1

reflected from the plane S0,

ϕ1 = Re [Φ1(θ1)], ψ1 = Re [Ψ1(θ′1)], (83)

where

Φ′
1(θ) =

4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′(θ),

Ψ ′
1(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′(θ).

(84)

Real values of θ from a ≤ |θ| ≤ b correspond to rays of longitudinal vibrations
in the plane S0 and to the plane, where Ψ1(θ) is equal to a constant defined
by (84).

For θ1 and θ′1 we have the equations

t− θ1x−
√
a2 − θ2

1 y −
√
b2 − θ2

1 f = 0,

t− θ′1x−
√
b2 − θ′1

2 y −
√
b2 − θ′1

2 f = 0.

(85)

Further, consider the reflection of the obtained rays of longitudinal vibra-
tions from the plane S1. We have the potentials of reflected longitudinal and
transverse vibrations ϕ2 and ψ2,

ϕ2 = Re [Φ2(θ2)], ψ2 = Re [Ψ2(θ′2)]. (86)

For the variables θ2 and θ′2 we have the equations
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t− θ2x+
√
a2 − θ2

2 y −
√
b2 − θ2

2 f − 3
√
a2 − θ2

2 f = 0,

t− θ′2x+
√
b2 − θ′2

2 y − 3
√
b2 − θ′2

2 f − 2
√
a2 − θ′2

2 f = 0,

(87)

and the functions Φ′
2 and Ψ ′

2 are defined by the formulas

Φ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′

1(θ),

Ψ ′
2(θ) =

4θ
√
a2 − θ2(2θ2 − b2)

F (θ)
Φ′

1(θ).

(88)

The rays of longitudinal vibrations of the potential ϕ1, corresponding to
the real values of θ from a ≤ |θ| ≤ b, remain in the plane S0. Hence the range
of θ2 and θ′2 is the upper half-plane and the interval (−a,+a). This fact is
valid for the variable θ in (88), and the real parts of Φ′

2(θ) and Ψ ′
2(θ) are equal

to zero on the interval (−a,+a).
Consider now the reflection of rays of transverse vibrations with the po-

tential ψ1 from the plane S1. Introduce the potentials for the reflected rays

ϕ3 = Re [Φ3(θ3)], ψ3 = Re [Ψ3(θ′3)], (89)

where

t− θ3x+
√
a2 − θ2

3 y − 3
√
b2 − θ2

3 f − 2
√
a2 − θ2

3 f = 0,

t− θ′3x+
√
b2 − θ′3

2 y − 5
√
b2 − θ′3

2 f = 0

(90)

and

Φ′
3(θ) =

−4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
3(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(91)

Let us make some additional comments about real values of θ such that
a < |θ| < b.

For Φ′
3(θ) and Ψ ′

3(θ) we obtain values with nonzero real parts. From the
first equation in (90) it follows that the rays of longitudinal vibrations corre-
sponding to these values of θ are located in the plane S1. The second equation
defines a family of planes, on which Ψ3(θ) remains constant. It is easy to ver-
ify the boundary conditions by considering the potentials in domains of the
plane S1, filled with the rays of longitudinal vibrations. Let us consider these
domains in detail.

For every real value of θ from the inequality a < |θ| < b, the equation of
the corresponding ray located in the plane S1 is
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t− θx− 3
√
b2 − θ2 f = 0, y = 2f.

Substituting into the second equation in (90) θ for θ′3 and putting y =
2f , we obtain the same equation . Hence the indicated ray of longitudinal
vibrations coincide with the section of the plane, where Ψ3(θ) is constant.
The same can be obtained putting y = 2f in the second equation in (85), i.e.,
the plane, on which Ψ1(θ) is constant, crosses the plane S1 along the same ray
lθ. When the rays of the potential ϕ3 reflect from the plane S0, the range of
θ is the upper half-plane with the interval (−a,+a) of the real axis. The real
part of Φ′

3(θ) is equal to zero along this interval.
Using the same argument, we can obtain solutions of problems with differ-

ent boundary conditions, for example, with the absence of the displacements,
etc.

15. Using the above method in the case when the source is located inside
the medium, it is easy to solve also the first problem in the very compact
form: the two-dimensional problem on vibrations of the half-space under the
action of an impact concentrated on the surface.

Let the source of vibrations be located at the point

O(x = 0, y = 0, t = 0)

of the space S, let the complex potentials Φ(θ1) and Ψ(θ′1) of longitudinal and
transverse vibrations correspond to this source. Consider two cones T1 and T2

with apex O and angles arctan
1
a

and arctan
1
b

at the apex. Write down the

equations for θ1 and θ′1,

t− θ1x−
√
a2 − θ2

1 y = 0, (92)

t− θ′1x−
√
b2 − θ′1

2 y = 0. (93)

Complex values of θ1 from the upper half-plane correspond to rays passing
through the point O and moving inside the cone T1 in the domain y > 0,
t > 0 of the space S. Real values of θ1 such that |θ1| > a correspond to rays
located in the plane y = 0. Finally, real values of θ1 from the interval (−a,+a)
correspond to generators of the cone T1. Completely analogous correspondence
will take place between rays inside the cone T2 and complex values of θ′1.

Let OA and OA1 be generators of T1 in the plane y = 0, let OB and OB1

be generators for T2. Using (38), one can write the condition that the stress
is equal to zero inside the angle BOB1 at all points of the plane y = 0

Re
{
∂

∂θ
[2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)Ψ ′(θ)]

}
= 0,

Re
{
∂

∂θ
[(b2 − 2θ2)Φ′(θ) − 2θ

√
b2 − θ2Ψ ′(θ)]

}
= 0.

(94)
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Note that points inside the angle BOB1 correspond to real values of θ such
that |θ| > b. Consider now the angles AOB and A1OB1. Here we have the
potential Φ1(θ) of longitudinal vibrations. To satisfy the boundary conditions,
we have to apply transverse vibrations. This corresponds to the fact that longi-
tudinal vibrations propagating over the surface generate transverse vibrations
inside. In this case, the argument of the function Φ1(θ) takes real values from
the intervals (a, b) and (−b,−a). For these values of θ, equation (93) defines
planes tangent to the cone T2. Let us take the parts of these planes between
the plane y = 0 and the generators of the cone T2.

Denote by Uθ these parts. On each Uθ the potential of transverse vibra-
tions must be constant, and we have to choose the functions ω(θ) such that
the boundary conditions are satisfied in the angles AOB and A1OB1. Since
|θ| ≤ b, we can write these conditions in the form

Re
{
∂

∂θ
[2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)ω′(θ)]

}
= 0,

Re
{
∂

∂θ
[(b2 − 2θ2)Φ′(θ) − 2θ

√
b2 − θ2ω′(θ)]

}
= 0.

(95)

Since the potential is continuous, the value of ω(θ) must coincide with the
real part of Ψ(θ) on the generator of the cone T2, along which Uθ touches
the cone. Then conditions (95) coincide with conditions (94), i.e., conditions
(94) must be satisfied also for a ≤ |θ| ≤ b. Since velocity of vibrations cannot

be greater than
1
a
, we must assume that the potentials of longitudinal and

transverse vibrations must vanish for −a ≤ θ ≤ a, i.e., conditions (94) will be
also satisfied for these values of θ. Thus, these conditions must be satisfied on
the entire real axis. Calculating the functions Φ(θ), Ψ(θ), and the potentials

ϕ = Re [Φ(θ)], ψ = Re [Ψ(θ)],

we have to continue ψ into the exterior of the cone T2 along the planes Uθ.
The establishment of conditions (94) for all real values of θ is the essential

fact in solving the first problem.
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3. On Application of a New Method to Study
Elastic Vibrations in a Space
with Axial Symmetry∗

V. I. Smirnov and S. L. Sobolev

1. In our paper [1] we considered elastic vibrations of special type in the
two-dimensional case. Using the theory of functions of a complex variable for
such vibrations, we obtained the general law of reflection in the case of a
rectilinear boundary. This led us to solving the problem on propagation of
elastic vibrations in a half-plane or in parallel layers, if the source of these
vibrations has a type described in [1]. This source could be located either on
the surface or inside the medium.

In the present work, using results of the previous article [1], we are go-
ing to consider the problem on propagation of elastic vibrations in a space
with axial symmetry. As in the plane case, the main object of our studies will
be vibrations of special type, namely, vibrations which can be constructed
by superposing plane vibrations discussed in the previous article. Using the
reflection law for plane vibrations, we will also have a law of reflection for
vibrations obtained by superposition of plane vibrations. This will lead us to
solving the problem on elastic vibrations in the case of the three-dimensional
half-space and parallel layers. All these problems are similar to the problems
discussed in our previous article for the two-dimensional case. We will also dis-
cuss the Lamb problem [2] about vibrations of the half-space under the action
of a force applied to a point on the surface of the half-space along the normal
vector to this surface. The fundamental problem in the two-dimensional case
was the problem on vibrations under the action of an impact focused at some
moment of time. In the case of the space, we will have a force engaged at some
moment of time. Let us note also that in the Lamb problem we will obtain
formulas for displacements at an arbitrary point of the half-space.

2. Let us introduce the cylindrical coordinates (�, z, ϑ). Assume that the
displacement vector in each point is located in the plane passing through this
point and the z-axis. Suppose also that the displacement components q and
w on the �-axis and the z-axis do not depend on ϑ. In this case, we have the

∗ Tr. Seism. Inst., 29 (1933), 49 p.
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formulas1

q =
∂ϕ

∂�
− ∂ψ

∂z
, w =

∂ϕ

∂z
+
∂ψ

∂�
+

1
�
ψ, (1)

where ϕ and ψ must satisfy the equations

a2 ∂
2ϕ

∂t2
=
∂2ϕ

∂�2
+

1
�

∂ϕ

∂�
+
∂2ϕ

∂z2
, (2)

b2
∂2ψ

∂t2
=
∂2ψ

∂�2
+

1
�

∂ψ

∂�
− 1
�2
ψ +

∂2ψ

∂z2
. (3)

The constants a and b are expressed by the formulas

a =
√

ρ

λ+ 2µ
, b =

√
ρ

µ
, (4)

where λ and µ are the Lame coefficients, and ρ is the density of the medium.
The function ϕ(�, z, t) is the scalar potential of the displacement field, and

the corresponding terms in (1) are the potential part of this field. Equation
(2) is the wave equation

a2 ∂
2ϕ

∂t2
= ∇2ϕ, (5)

where ϕ does not depend on ϑ.
The terms in expression (1), containing the function ψ, give the solenoid

part of the displacement field. This part is the curl of a vector field, and this
field is the vector potential of the displacement field. This vector potential
must satisfy the wave equation

b2
∂2ω

∂t2
= ∇2ω, (6)

in other words, the components of this field in every direction must satisfy
this equation. In the case of the axial symmetry with respect to the z-axis,
this vector potential is directed along the ϑ-axis, and the function ψ gives the
length of this vector. Assume that the vector field is composed from vectors
of length ψ directed along the ϑ-axis, where ψ does not depend on ϑ. In this
case, by (3), the vector field satisfies the wave equation (6).

3. Let us construct now a class of solutions of equations (2) and (3) that
we use later. First of all, we recall some results from the previous article about
solutions of the wave equation in the case of two variables

c2
∂2ω

∂t2
=
∂2ω

∂x2
1

+
∂2ω

∂z2
(c = a or b). (7)

1 For details see the paper by S. L. Sobolev “Some questions of the theory of
propagation of vibrations” in the book: Frank, F., Mises, R.: Differential and
Integral Equations of Mathematical Physics. Vol. 2. ONTI, Leningrad – Moscow
(1937). – Ed.
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In the mentioned article we obtained one class of solutions of this equation. Let
us recall these results. Let us construct the equation determining a complex
variable θ, as a function of the variables (x1, z, t),

t− θx1 ±
√
c2 − θ2 z = χ(θ), (8)

where χ(θ) is an analytic function. If in a domain of the space S with coordi-
nates (x1, z, t) equation (8) has an imaginary root, then the real or imaginary
part of any analytic function of θ gives a solution of equation (7) in this do-
main of the space S. If in a domain of the space S equation (8) has a real
root, then any twice-differentiable function of θ is a solution of equation (7).
Also, note that each solution of equation (7), being a homogeneous function of
order zero with respect to the arguments t−α, x1 −β, z−γ, can be obtained
by the method described above. In this case equation (8) has the form

(t− α) − θ(x1 − β) ±
√
c2 − θ2(z − γ) = 0. (8.1)

We construct now a class of solutions of equation (2). Let (x, y, z) be the
Cartesian coordinates expressed in cylindrical coordinates according to the
formulas

x = � cosϑ, y = � sinϑ, z = z.

Let us take an x1-axis in the (x, y)-plane. Let µ be the angle between the
x-axis and the x1-axis. For a point (�, z, ϑ), we have x1 = � cos(ϑ−µ). We can
construct a solution of (5) by taking the real or imaginary part of an arbitrary
analytic function of a complex variable θϑ−µ determined by the equation

t− θϑ−µ � cos(ϑ− µ) ±
√
a2 − θ2

ϑ−µ z = χ(θϑ−µ).

Integrating with respect to µ from 0 to 2π, we obtain a solution of equation
(5), which does not depend on ϑ, i.e., we obtain a solution of equation (2).
Let ϑ − µ = λ. Let us integrate with respect to λ from 0 to 2π. Then, we
obtain a solution of equation (2) in the form

ϕ(�, z, t) =

2π∫
0

Φ(θλ)dλ, (9)

where θλ is determined by the equation

t− θλ� cosλ±
√
a2 − θ2

λ z = χ(θλ), (10)

and Φ(θλ) is an analytic function of θλ. The interval of integration (0, 2π) can
be reduced to (0, π). If we want to obtain a real solution, we have to take a
real or imaginary part of expression (9), i.e., we can write
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ϕ = Re

π∫
0

Φ(θλ)dλ or ϕ = Im

π∫
0

Φ(θλ)dλ. (11)

Consider now equation (3). First, assume that we deal with the two-
dimensional case of elastic vibrations. Suppose that in the coordinate system
(x1, y1, z) displacements do not depend on y1 and occur on planes parallel to
the (x1, z)-plane. In this case, the vector potential at every point is parallel
to the y1-axis, and its length must satisfy equation (7) for c = b. Let us take
a solution of this equation of the type described above, i.e., suppose that the
length of the vector potential is equal to the real part of an analytic function
Ψ(θϑ−µ), where θϑ−µ is determined by the equation

t− θϑ−µ � cos(ϑ− µ) ±
√
b2 − θ2

ϑ−µ z = χ(θϑ−µ).

Along the axes ϑ and � the components of this vector are

Re [Ψ(θϑ−µ)] cos(ϑ− µ) and Re [Ψ(θϑ−µ)] sin(ϑ− µ).

Integrating with respect to µ from 0 to 2π, we obtain a vector potential
that does not depend on ϑ and satisfies equation (6). Along the axes ϑ and �
the components of this potential are

Re

2π∫
0

Ψ(θλ) cosλdλ and Re

2π∫
0

Ψ(θλ) sinλdλ, (12)

where θλ satisfies the equation

t− θλ � cosλ±
√
b2 − θ2

λ z = χ(θλ). (13)

The second integral in (12) is equal to zero. Hence the obtained vector
potential is directed along the ϑ-axis. Taking into account that this potential
does not depend on ϑ and satisfies equation (7), we can assert that its length
satisfies equation (3). Thus, we obtain solutions of equation (3) in the form

ψ = Re

π∫
0

Ψ(θλ) cosλdλ or ψ = Im

π∫
0

Ψ(θλ) cosλdλ. (14)

Obviously, formulas (11) and (14) do not present all solutions of equation
(2) and (3). Let us return to equation (7). As noted above, each homogeneous
solution of order zero of the arguments t − α, x1 − β, z − γ of this equation
can be expressed as a function of θ, where θ is defined by (8.1). We prove
a similar theorem for equations (2) and (3). Suppose that a solution of the
equation in question is a homogeneous function of order zero of the �, z, t. In
this case, for θλ we have the equation
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t− θλ � cosλ±
√
a2 − θ2

λ z = 0. (15)

In this section we study homogeneous solutions of equation (2). Introduce
the variables

ξ =
�

t
, η =

z

t
, (16)

and assume that the function ϕ determined by equation (2) depend only on
the arguments ξ and η. According to this assumption, equation (2) takes the
form

(a2ξ2 − 1)
∂2ϕ

∂ξ2
+ 2a2ξη

∂2ϕ

∂ξ∂η
+ (a2η2 − 1)

∂2ϕ

∂η2

+2a2

(
ξ
∂ϕ

∂ξ
+ η

∂ϕ

∂η

)
− 1
ξ

∂ϕ

∂ξ
= 0. (17)

The substitution of −ξ for ξ or −� for � is equivalent to the substitution of
(ϑ+ π) for ϑ. Taking into account the axial symmetry, we consider solutions
of equation (17) which are even functions of ξ, i.e.,

ϕ(−ξ, η) = ϕ(ξ, η).

Let us study (11), where θλ is determined by equation (15) as a function
of ξ and η. In this case formula (11) gives us solutions of equation (17). It is
easy to see that these solutions are even functions of ξ. Indeed, from equation
(15) it follows that the variable θλ depends on λ through the product ξ cosλ.
Instead of (11) we can write

ϕ(ξ, η) =

π∫
0

F (ξ cosλ, η)dλ.

Hence,

ϕ(−ξ, η) =

π∫
0

F (−ξ cosλ, η)dλ.

Putting λ1 = π − λ, we have

ϕ(−ξ, η) = −
0∫

π

F (ξ cosλ1, η)dλ1 =

π∫
0

F (ξ cosλ1, η)dλ1 = ϕ(ξ, η),

which is required.
Further, we will prove that every solution of (17), that is an even function

of ξ, can be expressed by (11) and (15). We will present a method to determine
Φ(θλ) for a given ϕ(ξ, η).

We study preliminary formulas (11), (15), and functions given by these
formulas in detail. Let T be the plane of the complex variable θ with the
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cut (−a, a) along the real axis. The function
√
a2 − θ2 is single-valued in the

domain T . We assume that this function is positive for the positive imaginary
θ, i.e., for θ = αi, α > 0. In other words, we assume that

√
a2 − θ2 is negative

imaginary for θ > a. Let us write equation (15) in the form

1 − θλ ξ cosλ+
√
a2 − θ2

λ η = 0, (18)

hence,

θλ =
ξ cosλ

ξ2 cos2 λ+ η2
− i

η
√

1 − a2(ξ2 cos2 λ+ η2)
ξ2 cos2 λ+ η2

. (19)

First, we consider the disk K on the plane of the variables (ξ, η) defined
by the inequality

ξ2 + η2 <
1
a2
. (20)

For such values of (ξ, η), equation (17) is elliptic. Let us introduce also the
variable θ determined by the equation

1 − θξ +
√
a2 − θ2 η = 0, (21)

where

θ =
ξ

ξ2 + η2
− i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

. (22)

Let us note that we choose positive roots in (19) and (22). First, let us
take the upper part of the disk K, where η > 0. In view of (21) and (22), this
part corresponds to the lower part of the domain T , where Im θ < 0. Denote
by T1 this part of the domain T . Let Φ(θ) be a function holomorphic in T1.
When the parameter λ runs through the interval 0 ≤ λ ≤ π, the variable θλ

traces a contour l located in T1 and symmetric with respect to the imaginary
axis. Let us separate the real and imaginary parts

θ = α+ iβ, Φ(θ) = ω1(α, β) + iω2(α, β),

and introduce the new function holomorphic in T1,

Φ1(θ) = ω1(−α, β) − iω2(−α, β).

Let
Φ2(θ) =

1
2
[Φ(θ) + Φ1(θ)].

Taking into account the definition of Φ1(θ), we can assert that Φ2(θ) is
real on the imaginary axis, and the formula

ϕ = Re

π∫
0

Φ(θλ)dλ
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is equivalent to the formula

ϕ =

π∫
0

Φ2(θλ)dλ.

Therefore, we can always write (11) in the form

ϕ =

π∫
0

Φ(θλ)dλ, (23)

where Φ(θ) is real on the imaginary axis. We will use such choice of the
function Φ(θ) subsequently.

In further calculations we will use instead of θ the new variable w,

w =
√
a2 − θ2, wλ =

√
a2 − θ2

λ, (24)

where

wλ = − η

ξ2 cos2 λ+ η2
− iξ cosλ

√
1 − a2(ξ2 cos2 λ+ η2)

ξ2 cos2 λ+ η2
. (25)

On the plane w the domain T1 corresponds to the half-plane located on
the left of the imaginary axis with the cut (−a, 0) along the real axis (see
Fig. 1). Let us denote by S1 this half-plane with the cut.

In this domain we have a holomorphic function Φ(w) real on the interval
−∞ < w < −a of the real axis and admitting conjugate values at points
symmetric with respect to this axis. Instead of (23) we have

ϕ(ξ, η) =

π∫
0

Φ(wλ)dλ. (26)

Fixing (ξ, η), we have the point

w = − η

ξ2 + η2
− i

ξ
√

1 − a2(ξ2 + η2)
ξ2 + η2

. (27)

When λ changes from 0 to π, the point wλ traces the contour lw symmetric
with respect to the real axis. The beginning of this contour is the point w,
and the end is the conjugate point w. This contour is located in the domain
S1 (see Fig. 1).

Let us return to (26) and introduce instead of λ the new variable w1,
running the contour lw. By (24),

w1 =
√
a2 − θ2

λ and θλ = −
√
a2 − w2

1,
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Fig. 1.

where the radical
√
a2 − w2

1 is negative imaginary for w1 > a. Instead of
equation (18) we have

1 +
√
a2 − w2

1 ξ cosλ+ w1η = 0.

Consequently,

cosλ = − 1 + w1η

ξ
√
a2 − w2

1

, λ = arccos
(
− 1 + w1η

ξ
√
a2 − w2

1

)
.

By simple calculations, we obtain

dλ =
w1 + a2η

(a2 − w2
1)
√
ξ2(a2 − w2

1) − (1 + w1η)2
dw1.

The roots of the equation

ξ2(a2 − w2
1) − (1 + w1η)2 = 0

are

w1 =
−η − iξ

√
1 − a2(ξ2 + η2)
ξ2 + η2

= w, w1 =
−η + iξ

√
1 − a2(ξ2 + η2)
ξ2 + η2

= w.

Hence,

dλ =
w1 + a2η√

ξ2 + η2(a2 − w2
1)
√

(w1 − w)(w − w1)
dw1.

The radical
√
ξ2 + η2 has to be taken positive. To make the function
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(w1 − w)(w − w1) (28)

single-valued, we make two straight cuts parallel to the imaginary axis, going
from the points w and w to infinity, without crossing the real axis. If ξ is
positive, then the point w is located in the lower part of the domain S1, and
dw1 is positive imaginary at the point where the contour lw intersects the
interval (−∞,−a) of the real axis. On the other hand, we have w1 < −a at

this point. Hence, a2 − w2
1 < 0 and w1 + a2η < 0, because 0 < η <

1
a
. The

function dλ must be positive. Consequently, in the formula for dλ we should
select function (28) positive imaginary for w1 < −a, if ξ > 0. In the same
way, we can prove that we should take this function negative imaginary for
w1 < −a, if ξ < 0. We consider the case ξ = 0 later. Instead of (26) we have

ϕ(ξ, η) =
1√

ξ2 + η2

∫
lw

(w1 + a2η)Φ(w1)
(a2 − w2

1)
√

(w1 − w)(w − w1)
dw1. (29)

Obviously, we can deform the contour of integration using the well-known
Cauchy theorem.

For ξ = 0 formulas (25) and (26) give us

ϕ(0, η) = πΦ

(
−1
η

)
. (30)

Assuming that the function Φ(w) is continuous up to the cut −a ≤ w ≤ 0,
let us determine values of the function ϕ(ξ, η) on the semicircle

ξ2 + η2 =
1
a2
, η > 0.

In this case w = w = −a2η, and (29) gives us

ϕ(ξ, η)
∣∣∣∣
ξ2+η2= 1

a2

= ∓a

i

∫
lw

Φ(w1)
a2 − w2

1

dw1, (31)

where the upper sign corresponds to the case ξ > 0, and the lower sign to the
case ξ < 0. In the first case, the contour lw goes from the point w = −a2η on
the lower lip of the cut into the opposite point on the upper lip. In the second
case, the direction of circulation about the contour lw reverses (see Fig. 2).

It still remains to study values of the function ϕ(ξ, η) defined by (26) or
(29) on the diameter η = 0 of the disk K. By (25), in this case wλ becomes
infinite for

λ =
π

2
,

and we cannot apply (26). Let us take (29) and tend the point (ξ, η) to the
point (ξ0, 0). The end points of the contour lw will tend to the limits
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Fig. 2.

w0 = −i
√

1 − a2ξ20
ξ0

, w0 = i

√
1 − a2ξ20
ξ0

.

Using the Cauchy theorem, as we noticed above, we can assume that the
contour lw is always located within a finite distance. Finally, we have

ϕ(ξ0, 0) =
1
ξ0i

∫
lw0

w1Φ(w1)
(a2 − w2

1)
√
w2

1 + β2
dw1, (32)

where

β =

√
1 − a2ξ20
ξ0

, (33)

and the radical
√
w2

1 + β2 is positive for real values of w1. The contour lw0

with end-points (−iβ) and (+iβ) must be located inside of S1. Until now, we
studied the solution ϕ(ξ, η) of equation (17), defined by (26), in the upper
part of the disk K, where η > 0. Consider now the lower semidisk. Formula
(22) tells us that this semidisk corresponds to the upper part of the domain
T of the plane θ or, in view of (25), to the part of the plane w, located on
the right of the imaginary axis, with the cut (0, a) along the real axis. Let us
denote this domain by S2. Using (26) or (29), we suppose that the function
Φ(w) is holomorphic in the domain S2, and the contour lw must be located in
this domain.

The formulas obtained above are valid in this case with some sign changes.
Let us point out these changes. We should take the radical

√
(w1 − w)(w − w1)

negative imaginary for w1 > 0, if ξ > 0, and positive imaginary, if ξ < 0. For-
mulas (30) and (31) preserve their form, and instead of (32) we have
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ϕ(ξ0, 0) = − 1
ξ0i

∫
lw0

w1Φ(w1)
(a2 − w2

1)
√
w2

1 + β2
dw1, (34)

where β is given by (33).
Let us note also the significance of the diameter η = 0 in representation

(26) (or (29)) for solutions of equation (17), even with respect to ξ. Suppose,
for example, that the function Φ(w) is holomorphic in the entire plane of the
variable w with the cut (−a,+a). Apply (29) in the semidisk η > 0 and in
the semidisk η < 0. Then, we obtain two solutions of equation (17)

ϕ1(ξ, η), η > 0; ϕ2(ξ, η), η < 0.

Equation (17) is elliptic inside the disk K. Hence these solutions are an-
alytic functions of ξ and η; however, generally speaking, ϕ2(ξ, η) is not an
analytic continuation of ϕ1(ξ, η), i.e., by (29), analytic continuation of the
function Φ(w) across the imaginary axis does not give analytic continuation
ϕ(ξ, η) across the diameter η = 0. We will come back to this question later.

4. In the previous section we studied the solutions of equation (17), defined
by (26) and (29). We now prove that every solution of equation (17) inside of
the disk K, that is an even function with respect to ξ, can be given by (26).
We present also a way to determine the function Φ(w) for a given ϕ(ξ, η).

First, consider the semidisk η > 0. Let ϕ(ξ, η) be a solution of (17), even
with respect to ξ. This solution is an analytic function of (ξ, η), and we can
express it in the form

ϕ(ξ, η) = ϕ0(η) + ϕ2(η)ξ2 + ϕ4(η)ξ4 + · · · (35)

in a neighborhood of the ray ξ = 0.
It is easy to prove that the coefficients ϕ2(η), ϕ4(η), . . . are uniquely defined

by the coefficient ϕ0(η). Indeed, substituting (35) in (17) and equating the
coefficient at ξn to zero, we have

n(n− 1)a2ϕn(η) − (n+ 2)(n+ 1)ϕn+2(η) + 2a2nηϕ′
n(η)

+(a2η2 − 1)ϕ′′
n(η) + 2a2nϕn(η) + 2a2ηϕ′

n(η) − (n+ 2)ϕn+2(η) = 0.

These equations completely determine the functions ϕ2(η), ϕ4(η), . . .
Hence the solution ϕ(ξ, η) satisfying the condition of the form

ϕ(ξ, η)|ξ=0 = ϕ0(η) (36)

is unique. In condition (36) the function ϕ0(η) must be analytic for 0 < η <
1
a
.

It is easy to find a function Φ(w) such that the solution defined by (26) satisfies
condition (36). Indeed, in view of (30), this condition gives us

ϕ0(η) = πΦ

(
−1
η

)



92 V. I. Smirnov and S. L. Sobolev

or

Φ(w) =
1
π
ϕ0

(
− 1
w

)
for − a > w > −∞. (37)

Then, we have analytic real values of the function Φ(w) along the inter-
val −a > w > −∞ of the real axis, and this function is holomorphic in a
neighborhood of this interval. Hence (29) gives us the function ϕ(ξ, η) in a
neighborhood of the ray ξ = 0. However, as we already observed, condition
(36) determines the solution uniquely. Hence every solution ϕ(ξ, η) even with
respect to ξ can be presented by (26) or (29). Formula (37) gives us a method
to determine Φ(w) for a given ϕ(ξ, η). Suppose that the given solution ϕ(ξ, η)
is analytic in the entire semidisk η > 0. Prove that Φ(w) is holomorphic in the
entire domain T1. Consider (26) and introduce instead of λ the new variable

τ = ξ cosλ. (38)

For ξ > 0 we have

ϕ(ξ, η) =

+ξ∫
−ξ

Φ(wτ )√
ξ2 − τ2

dτ, (39)

where

wτ = − η

τ2 + η2
− i

τ
√

1 − a2(τ2 + η2)
τ2 + η2

.

Equation (39) is the Abel integral equation on the function Φ(w), and we
can solve it by the usual method. Let us multiply both parts of equation (39)

by
ξ√

µ2 − ξ2
and integrate with respect to ξ from 0 to µ;

µ∫
0

ϕ(ξ, η)ξ√
µ2 − ξ2

dξ =

µ∫
0

[ +ξ∫
−ξ

Φ(wτ )dτ√
ξ2 − τ2

]
ξdξ√
µ2 − ξ2

.

Changing order of integration on the right side and applying the well-
known Dirichlet formula, we have

µ∫
0

ϕ(ξ, η)ξ√
µ2 − ξ2

dξ =

µ∫
0

[ µ∫
τ

ξdξ√
(ξ2 − τ2)(µ2 − ξ2)

]
Φ(wτ )dτ

+

0∫
−µ

[ µ∫
−τ

ξdξ√
(ξ2 − τ2)(µ2 − ξ2)

]
Φ(wτ )dτ.

Consider the internal integral and introduce instead of ξ the new variable
of integration σ,
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σ2 =
ξ2 − τ2

µ2 − τ2
or ξ2 = σ2(µ2 − τ2) + τ2.

We have
µ∫

τ

ξdξ√
(ξ2 − τ2)(µ2 − ξ2)

=

1∫
0

dσ√
1 − σ2

=
π

2
.

An analogous result is valid for the second internal integral. The previous
formula gives us

µ∫
0

ϕ(ξ, η)ξdξ√
µ2 − ξ2

=
π

2

+µ∫
−µ

Φ(wτ )dτ,

or, differentiating with respect to µ,

π

2
[Φ(w1) + Φ(w2)] =

d

dµ

µ∫
0

ϕ(ξ, η)ξdξ√
µ2 − ξ2

, (40)

where

w1 = − η

µ2 + η2
− i

µ
√

1 − a2(µ2 + η2)
µ2 + η2

,

w2 = − η

µ2 + η2
+ i

µ
√

1 − a2(µ2 + η2)
µ2 + η2

.

We change the limits of integration in (39) for the case ξ < 0; however,
repeating computations, it is easy to verify that (40) is also valid for ξ < 0.

Let us note that the function Φ(w), real on the interval −∞ < w < −a
of the real axis, admits complex conjugate values at conjugate points w1 and
w2. Substituting τ for ξ and ξ for µ, by (40), we have

Re [Φ(w)] =
1
π

d

dξ

ξ∫
0

ϕ(τ, η)τdτ√
ξ2 − τ2

, (41)

where

w = − η

ξ2 + η2
− i

ξ
√

1 − a2(ξ2 + η2)
ξ2 + η2

.

Introducing instead of τ the new variable of integration σ,

τ = ξσ,

we can reduce (41) to the form

Re [Φ(w)] =
1
π

d

dξ

1∫
0

ϕ(ξσ, η)ξσdσ√
1 − σ2

, (42)
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or, integrating by parts,

Re [Φ(w)] =
1
π

d[ϕ(ξσ, η)ξ]
dξ

∣∣∣∣
σ=0

+
1
π

d

dξ

1∫
0

ϕ′(ξσ, η)ξ2
√

1 − σ2dσ, (43)

where ϕ′ is the derivative of the function ϕ with respect to the first argument.
By assumption, the function ϕ(ξ, η) is analytic in the upper part of the

disk K, whence it follows that the right side of (43) is also analytic in this
domain. If ξ is close to zero, the right side of (43) gives us the real part of
the holomorphic function Φ(w) defined by (37), i.e., it gives us the harmonic
function of the variables

u = − η

ξ2 + η2
, v = −ξ

√
1 − a2(ξ2 + η2)
ξ2 + η2

.

Obviously, this fact holds for all values of ξ and η from the upper part of
the disk K, and (43) gives us the real part of a function, holomorphic in the
domain S1, coinciding with Φ(w), and defined by (37) in a neighborhood of
the ray ξ = 0. We can repeat the same arguments for the lower part of the
disk K.

Let us note one case, important in applications, when the function ϕ(ξ, η)
is analytic in the disk K with singular point ξ = η = 0. In this case, we
can apply our arguments to the upper and lower parts of the disk K and
obtain two functions Φ1(w) and Φ2(w) holomorphic in the domains S1 and
S2, respectively. However, Φ2(w) is not an analytic continuation of Φ1(w). This
is related to the fact that (43) cannot be applied for η = 0. If ϕ(ξ, η) does not
have singular points in K, then (43) presents the function Φ(w) holomorphic
in the domain (S1 +S2). In this case, ϕ(ξ, η) can be given by (26) in the entire
disk K by means of the same holomorphic function Φ(w).

5. Let us consider now two special cases, when ϕ(ξ, η) has the singular
point ξ = η = 0, and an analytic continuation of the function ϕ(ξ, η) across
the diameter η = 0 leads to a simple law of continuation of the function Φ(w).

First, suppose that the function ϕ(ξ, η) is analytic in the upper half of K
and on the diameter η = 0, excluding ξ = η = 0, satisfies the condition

∂ϕ(ξ, η)
∂η

∣∣∣∣
η=0

= 0. (44)

Introduce the notation

ϕ(ξ, η)|η=0 = f(ξ). (45)

As noted above, this function ϕ(ξ, η) leads us to the function Φ(w) holomor-
phic in the domain S1. We assume that this function is continuous up to the
imaginary axis. Using (32) and taking into account (45), we have
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1
ξi

∫
lw

Φ(w1)w1dw1

(a2 − w2
1)
√
w2

1 + β2
= f(ξ), (46)

where

β =

√
1 − a2ξ2

ξ
,

and lw is the contour located in the domain S1 and connecting the points
(−iβ) and (+iβ).

In the domain S2 consider the holomorphic function Φ1(w) given by the
formula

Φ1(w) = Φ(−w). (47)

Consider the solution ϕ1(ξ, η) of equation (17), analytic in the lower part of
the disk K,

ϕ1(ξ, η) =

π∫
0

Φ1(wλ)dλ.

Formula (34) gives us

ϕ1(ξ, 0) = − 1
ξi

∫
l′w

Φ1(w2)w2dw2

(a2 − w2
2)
√
w2

2 + β2
,

where l′w is a contour located in the domain S2 and connecting the points
(−iβ) and (iβ). Introducing the new variable of integration w1 = −w2, in
view of (47), we have

ϕ1(ξ, 0) =
1
ξi

∫
lw

Φ(w1)w1dw1

(a2 − w2
1)
√
w2

1 + β2
,

i.e.,
ϕ1(ξ, η)|η=0 = f(ξ). (48)

We now show that ϕ1(ξ, η) also satisfies the condition

∂ϕ1(ξ, η)
∂η

∣∣∣∣
η=0

= 0. (49)

Formulas (48) and (49) show that, on the diameter η = 0, ϕ1(ξ, η) satisfies
the same Cauchy conditions as well as the function ϕ(ξ, η). Therefore, ϕ1(ξ, η)
is a continuation of ϕ(ξ, η), i.e., in the present case formula (47) gives the law
of continuation of the function Φ(w).

To prove (49), we need to obtain expressions for the derivatives
∂ϕ

∂η
and

∂ϕ1

∂η
. For this, let us take (29) in the form
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ϕ(ξ, η) =
1√

ξ2 + η2

∫
lw

(w1 + a2η)Φ(w1)
(−w1 + ã)(a2 − w2

1)
d
√

(w1 − w)(w − w1),

where
ã = − η

ξ2 + η2
.

Integrating by parts, we have

ϕ(ξ, η) =
1√

ξ2 + η2

∫
lw

(w1 + a2η)Φ′(w1)
(−w1 + ã)(a2 − w2

1)

√
(w1 − w)(w − w1)dw1

+
1√

ξ2 + η2

∫
lw

Φ(w1)
√

(w1 − w)(w − w1)
d

dw1

{
w1 + a2η

(−w1 + ã)(a2 − w2
1)

}
dw1.

Differentiating with respect to η and putting η = 0, we have

∂ϕ(ξ, η)
∂η

∣∣∣∣
η=0

=
i(1 − a2ξ2)

ξ3

∫
lw

√
w2

1 + β2 Φ′(w1)dw1

w1(a2 − w2
1)

+
1
iξ3

∫
lw

w1Φ
′(w1)

(a2 − w2
1)
√
w2

1 + β2
dw1

+
i(1 − a2ξ2)

ξ3

∫
lw

(3w2
1 − a2)

√
w2

1 + β2 Φ(w1)
w2

1(a2 − w2
1)2

dw1

+
1
iξ3

∫
lw

2w2
1Φ(w1)

(a2 − w2
1)2
√
w2

1 + β2
dw1,

where β is given by (33); the contour lw located in the domain S1 connects
the points (−iβ) and (iβ). We should take the radical

√
w2

1 + β2 positive for
the real w1, if ξ > 0, and negative, if ξ < 0. We have a similar expression for

∂ϕ1(ξ, η)
∂η

∣∣∣∣
η=0

.

However, in this case we should take instead of Φ(w1) the function Φ1(w1)
determined by formula (47); the contour lw must be located in the domain
S2, and the radical

√
w2

1 + β2 must have the opposite sign. Substituting in
the expression

∂ϕ1(ξ, η)
∂η

∣∣∣∣
η=0

the variable of integration w2 = −w1 and taking into account (44), we obtain
(49). If we have the condition



On Application of a New Method to Study Elastic Vibrations 97

ϕ(ξ, η)|η=0 = 0 (50)

instead of condition (44), then we should replace (47) by the formula

Φ1(w) = −Φ(−w).

We can prove this assertion in the same way as above.
6. In the previous sections we studied solutions of equation (17) inside the

disk K, where equation (17) is elliptic. We now move on to the problem of
continuation of these solutions into the exterior of this disk. Let, for example,
ϕ(ξ, η) be a solution of equation (17), analytic in the upper part of the disk
K, including some arcs of the semicircle ξ2 +η2 = 1

a2 (η > 0). Let Φ(w) be the
corresponding function holomorphic in the domain S1. By (43), this function
is also holomorphic on the lips of the cut (−a, 0) corresponding to the arcs
mentioned above. For values of ϕ(ξ, η) on this circle, we have (31).

By

w = − η

ξ2 + η2
− i

ξ
√

1 − a2(ξ2 + η2)
ξ2 + η2

,

the real and imaginary parts of the function Φ(w) are functions of ξ and η.
In our previous article [1] we proved that these functions are solutions of the
equation

(a2ξ2 − 1)
∂2f

∂ξ2
+ 2a2ξη

∂2f

∂ξ∂η
+ (a2η2 − 1)

∂2f

∂η2
+ 2a2

(
ξ
∂f

∂ξ
+ η

∂f

∂η

)
= 0. (51)

This equation as well as equation (17) is elliptic inside K and hyperbolic
outside K. In our mentioned article we proved that characteristics of equations

(51) and (17) are tangents to the circle ξ2 + η2 =
1
a2

, and a solution of (51)

can be obtained if we chose f(ξ, η) to be constant along the characteristics.
The real and imaginary parts of Φ(w) are known inside K. We apply the
following principle of continuation of these solutions into the exterior of K:
we take f(ξ, η) to be constant along every tangent to the semicircle between
the point of tangency and the axis η = 0. Obviously, this constant is equal to
the value of the function f(ξ, η) at the point of tangency.

Applying (26) or (29) to the function Φ(wλ) outside the disk K, we have
a continuation of the solution ϕ(ξ, η) of equation (17). As follows from our
previous article, this continuation method has direct mechanical sense for the
vector potential.

Let us consider the above continuation in detail. For example, consider a
point M(ξ, η) such that

ξ > 0,
1
a
> η > 0, ξ2 + η2 >

1
a2
. (52)

The coordinates of the tangency point for the tangent to the semicircle
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ξ2 + η2 =
1
a2
, η > 0,

passing through the point M , are

ξ0 = −ξ + η
√
a2(ξ2 + η2) − 1

a2(ξ2 + η2)
, η0 =

η + ξ
√
a2(ξ2 + η2) − 1

a2(ξ2 + η2)
.

By the formula

w = −η + iξ
√

1 − a2(ξ2 + η2)
ξ2 + η2

,

we have

w = − η0

ξ20 + η2
0

= −a2η0 = −η + ξ
√
a2(ξ2 + η2) − 1
ξ2 + η2

.

Thus, our continuation method gives us the following value of the function
Φ(w) at the point M(ξ, η):

Φ

(
−η + ξ

√
a2(ξ2 + η2) − 1
ξ2 + η2

)
. (53)

To obtain the value of the function ϕ(ξ, η) at the point M , we should
substitute ξ cosλ for ξ in expression (53) and integrate with respect to λ from
0 to π. For a value of λ = λ0, the radical√

a2(ξ2 cos2 λ+ η2) − 1 (54)

becomes pure imaginary, and the point with coordinates (ξ cosλ, η) is located
inside K for λ0 < λ < π− λ0. For these values of λ, we should choose radical
(54) to be negative imaginary. Then the argument in expression (53) is a
complex number. For π − λ0 < λ < π, this argument is

−η − ξ cosλ
√
a2(ξ2 cos2 λ+ η2) − 1

ξ2 cos2 λ+ η2
,

where the radical should be chosen positive. This last expression is equal to
(−a2η0), where η0 is the ordinate of the tangency point of the tangent to the
upper semicircle, passing through the point (ξ cosλ, η).

Then, we have a contour lw in the plane of the variable w. This contour
starts from the point

w = −η + ξ
√
a2(ξ2 + η2) − 1
ξ2 + η2

located on the lower lip of the cut and goes along this cut until the point

w′ = − η

ξ2 cos2 λ0 + η2
, λ = λ0.
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Then, the contour describes the path located in S1 until the point w′ on the
upper lip of the cut and, finally, goes along this lip until the point w.

Thus, for ϕ(ξ, η) we have

ϕ(ξ, η) =

π∫
0

Φ

(
−η ± ξ cosλ

√
a2(ξ2 cos2 λ+ η2) − 1

ξ2 cos2 λ+ η2

)
dλ,

where the choice of the sign is given above. Introducing the integration variable
w1 instead of λ, as in Sect. 3, we have

dλ =
w1 + a2η

(a2 − w2
1)
√
−(ξ2 + η2)w2

1 − 2ηw1 + (ξ2a2 − 1)
dw1.

Putting

w = −η + ξ
√
a2(ξ2 + η2) − 1
ξ2 + η2

, w0 = −η − ξ
√
a2(ξ2 + η2) − 1
ξ2 + η2

,

we have

dλ =
w1 + a2η√

ξ2 + η2(a2 − w2
1)
√

(w1 − w)(w0 − w1)
dw1

and

ϕ(ξ, η) =
1√

ξ2 + η2

∫
lw

(w1 + a2η)Φ(w1)
(a2 − w2

1)
√

(w1 − w)(w0 − w1)
dw1, (55)

where lw is the contour described above.
Also, let us make an assumption about the function ϕ(ξ, η). We suppose

that this function is analytic and equal to zero on an arc AA1 of the semicircle

ξ2 + η2 =
1
a2
, η > 0,

symmetric with respect to the axis ξ = 0. Formula (30) shows us that in this
case Φ(w) is single-valued and holomorphic in a neighborhood of the point
w = −a, and

Φ(−a) = 0. (56)

Indeed, in (30) ϕ(0, η) is an analytic function of η in a neighborhood of
the point η = −a−1, since ξ = 0, η = −a−1 is the midpoint of the arc AA1.
By assumption, ϕ(ξ, η) is analytic on the arc AA1. Hence Φ(w) is analytic
on the lips of the cut corresponding to this arc. As we have already noted,
this function is single-valued in a neighborhood of the point w = −a. By the
principle of analytic continuation, Φ(w) is single-valued and holomorphic on
the interval (−a, c) of the cut, where the point c corresponds to the points A
and A1 of the semicircle.

Let us consider formula (55). Assume that a tangent to the semicircle
passing through a point (ξ, η) has a tangency point on the arc AA1. In this
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case, the end points of the contour lw are located on the interval (−a, c) of
the cut. By (56), the integrand does not have a pole at the point w = −a,
and its branching points w1 = w and w1 = w0 are located as follows: one on
the contour, and another one outside this contour. Hence, according to the
Cauchy theorem, formula (56) gives us

ϕ(ξ, η) = 0,

i.e., according to our continuation rule, ϕ(ξ, η) is equal to zero on tangents to
the semicircle, whose tangency points are located on the arc AA1, symmetric
with respect to ξ = 0, and where ϕ(ξ, η) is zero. We can obtain a similar result
in the case of η < 0.

7. To clarify the described theory, let us give some examples.
Let us take a solution of equation (2), depending only on the argument

r

t
,

where r is the distance from the origin, i.e., r =
√
�2 + z2.

In this case, we can let
ϕ(ξ, η) = f(ω),

where ω = ξ2 + η2.
Then,

∂ϕ

∂ξ
= 2ξf ′(ω),

∂ϕ

∂η
= 2ηf ′(ω),

∂2ϕ

∂ξ2
= 2f ′(ω) + 4ξ2f ′′(ω),

∂2ϕ

∂ξ∂η
= 4ξηf ′′(ω),

∂2ϕ

∂η2
= 2f ′(ω) + 4η2f ′′(ω).

Substituting the expressions into equation (17), we have

f ′′(ω) [4ξ2(a2ξ2 − 1) + 8a2ξ2η2 + 4η2(a2η2 − 1)]

+f ′(ω)[2(a2ξ2 − 1) + 2(a2η2 − 1) + 4a2(ξ2 + η2) − 2] = 0

or
2ωf ′′(ω) + 3f ′(ω) = 0.

Integrating, we have

ϕ(ξ, η) =
C1√
ξ2 + η2

+ C2.

Let us take the solution

ϕ(ξ, η) =
1√

ξ2 + η2
− a, (57)

which is equal to zero on the circle
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ξ2 + η2 =
1
a2
.

This solution has the singular point ξ = η = 0. We define the corresponding
function Φ(w). In the upper semidisk η > 0, we have by (30),

1
η
− a = πΦ

(
−1
η

)
.

Hence,

Φ(w) = − 1
π

(w + a), η > 0. (57.1)

For the semidisk η < 0, we have

−1
η
− a = πΦ1

(
−1
η

)
and

Φ1(w) =
1
π

(w − a). (57.2)

It is easy to see that solution (57) satisfies the condition

∂ϕ(ξ, η)
∂η

∣∣∣∣
η=0

= 0,

and functions (57.1) and (57.2) satisfy condition (47). According to our con-
tinuation rule, solution (57) is equal to zero outside the disk K.

Let us consider a solution of equation (17), depending only on η. Such a
solution satisfies the equation

(a2η2 − 1)
d2ϕ

dη2
+ 2a2η

dϕ

dη
= 0.

Let us take the solution
ϕ = C ln

1 − aη

1 + aη
. (58)

Formula (30) gives us

C ln
1 − aη

1 + aη
= πΦ

(
−1
η

)
.

Consequently,

Φ(w) =
C

π
ln

1 + a
w

1 − a
w

(59)

in the entire disk K.
Let us note that solution (58) does not have singular points inside K.

According to this fact, the function Φ(w) is an analytic function in S1 and S2.
Solution (58) satisfies also the condition
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ϕ(ξ, η)|η=0 = 0,

and function Φ(w) at points symmetric with respect to w = 0 satisfies the
condition

Φ(w) = −Φ(−w)

mentioned in Sect. 5.
Let us consider one more solution of equation (17),

ϕ(ξ, η) =
η√

1 − a2ξ2
, (60)

which does not have singular points inside K. Formula (30) gives us

η = πΦ

(
−1
η

)
.

Whence we have the expression for Φ(w) in the entire disk K,

Φ(w) = − 1
πw

. (61)

8. We now consider solutions of equation (3), homogeneous of order zero
of the arguments �, z and t, i.e., functions of the arguments

ξ =
�

t
, η =

z

t
.

Instead of equation (17) for ψ, we have the equation

(b2ξ2 − 1)
∂2ψ

∂ξ2
+ 2b2ξη

∂2ψ

∂ξ∂η
+ (b2η2 − 1)

∂2ψ

∂η2

+2b2
(
ξ
∂ψ

∂ξ
+ η

∂ψ

∂η

)
− 1
ξ

∂ψ

∂ξ
+

1
ξ2
ψ = 0. (62)

By axial symmetry, we have to consider solutions corresponding to the
displacement component w, which is an even function of ξ and �. The second
formula in (1) tells us that such solutions are odd functions of ξ, i.e.,

ψ(−ξ, η) = −ψ(ξ, η). (63)

Let us consider the formula 2

ψ = Re

π∫
0

Ψ(θλ) cosλdλ, (64)

where θλ is a function of ξ and η, and is defined by the equation
2 See formulas from Sect. 3. – Ed.
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t− θλ� cosλ±
√
b2 − θ2

λ z = 0

or (65)

1 − θλξ cosλ±
√
b2 − θ2

λ η = 0.

Formula (64) gives us solutions of equation (62). It easy to see that these
solutions are odd functions of ξ. Indeed, from equation (65) it follows that the
variable θλ depends on λ through the product ξ cosλ. Hence instead of (64)
we can write

ψ(ξ, η) =

π∫
0

F (ξ cosλ, η) cosλdλ.

Consequently,

ψ(−ξ, η) =

π∫
0

F (−ξ cosλ, η) cosλdλ

or, putting λ1 = π − λ,

ψ(−ξ, η) =

0∫
π

F (ξ cosλ1, η) cosλ1dλ1 = −
π∫

0

F (ξ cosλ, η) cosλdλ = −ψ(ξ, η),

which is required.
Introducing new variables

w =
√
b2 − θ2, w1 =

√
b2 − θ2

λ

instead of (64), we have

ψ(ξ, η) = Re

π∫
0

Ψ(w1) cosλdλ, (66)

and

w = − η

ξ2 + η2
− i

ξ
√

1 − b2(ξ2 + η2)
ξ2 + η2

,

w1 = − η

ξ2 cos2 λ+ η2
− i

ξ cosλ
√

1 − b2(ξ2 cos2 λ+ η2)
ξ2 cos2 λ+ η2

.

(67)

When the variable λ moves along the interval (0, π), then w1 describes a
contour symmetric with respect to the real axis. Symmetric points correspond
to values of cosλ with the same absolute values, but with opposite signs.

Separating the real and imaginary parts, we can write
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w = α+ iβ, Ψ(w) = ω1(α, β) + iω2(α, β).

Let us introduce the holomorphic functions

Ψ1(w) = ω1(α,−β) − iω2(α,−β),

Ψ2(w) =
1
2
[Ψ(w) + Ψ1(w)].

Instead of (66) we can write

ψ(ξ, η) =
1
i

π∫
0

Ψ2(w1) cosλdλ,

where the function Ψ2(w) is real on the real axis. Then, we can always assume

ψ(ξ, η) =
1
i

π∫
0

Ψ(w1) cosλdλ, (68)

where Ψ(w) has complex conjugate values at points symmetric with respect
to the real axis.

Further analysis will be completely analogous to the same one for the
potential ϕ(ξ, η). As noted above,

cosλ = − 1 + w1η

ξ
√
b2 − w2

1

,

and an analog of formula (29) has the form

ψ(ξ, η) =
i

ξ
√
ξ2 + η2

∫
lw

(w1 + b2η)(1 + ηw1)Ψ(w1)
(b2 − w2

1)
√
b2 − w2

1

√
(w1 − w)(w − w1)

dw1, (69)

where the contour lw and the sign of the radical
√

(w1 − w)(w − w1) were
defined in Sect. 3. The radical

√
b2 − w2

1 should be taken positive, if w1 is
located on the upper part of the imaginary axis. If we take ξ = 0 in (68), then

ψ(0, η) =
1
i

π∫
0

Ψ

(
−1
η

)
cosλdλ.

Differentiating formula (68) with respect to ξ and putting ξ = 0, by (67),
we get

∂ψ(ξ, η)
∂ξ

∣∣∣∣
ξ=0

= −
π∫

0

Ψ ′
(
−1
η

)√
1 − b2η2

η2
cos2 λdλ

or
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∂ψ(ξ, η)
∂ξ

∣∣∣∣
ξ=0

= −π

2

√
1 − b2η2

η2
Ψ ′
(
−1
η

)
. (70)

This formula is similar to formula (30). It gives us the function Ψ(w) with
an additive constant. However, the substitution Ψ(w) = const into (68) gives
us ψ(ξ, η) = 0. Therefore, the indicated uncertainty of the function Ψ(w) is
unessential.

An analog of formula (31) for values of ψ(ξ, η) on the circle

ξ2 + η2 =
1
b2

has the form

ψ(ξ, η)
∣∣∣∣
ξ2+η2= 1

b2

= ∓ b

ξ

∫
lw

(1 + ηw1)Ψ(w1)
(b2 − w2

1)
√
b2 − w2

1

dw1, η > 0, (71)

where the upper sign corresponds to the case ξ > 0, the lower to the case
ξ < 0, and the contour lw is the same as in (31). An analog of (32) has the
form

ψ(ξ, 0) =
1
ξ2

∫
lw

w1Ψ(w1)
(b2 − w2

1)3/2
√
w2

1 + β2
dw1, (72)

where

β =

√
1 − b2ξ2

ξ
,

and the radical
√
w2

1 + β2 must be taken positive, if w1 is real. If η < 0, then
we have similar formulas with other signs, as in the case of the potential ϕ.

9. In the previous section, we studied solutions of equation (62), defined
by (68) and (69). We now prove that any solution of equation (62), even with
respect to ξ, can be represented by (68) inside the disk K,

ξ2 + η2 <
1
b2
.

We give a method to determine the function Ψ(w) for a given ψ(ξ, η). Our
analysis is similar to the one in Sect. 4.

Consider the semidisk for η > 0. Let ψ(ξ, η) be a solution of (62), odd with
respect to ξ. This solution can be represented in the form

ψ(ξ, η) = ψ1(η)ξ + ψ3(η)ξ3 + ψ5(η)ξ5 + · · · (73)

in a neighborhood of the ray ξ = 0.
Substituting this expression in (62) and equating the coefficient at ξn to

zero, we obtain

n(n− 1)b2ψn(η) − (n+ 2)(n+ 1)ψn+2(η) + 2b2nηψ′
n(η)
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+(b2η2 − 1)ψ′′
n(η) + 2b2nψn(η) + 2b2ηψ′

n(η)

−(n+ 2)ψn+2(η) + ψn+2(η) = 0.

These equations completely determine the functions ψ3(η), ψ5(η), . . ., and
the solution satisfying the condition

∂ψ(ξ, η)
∂ξ

∣∣∣∣
ξ=0

= ψ1(η) (74)

is unique. The function ψ1(η) must be analytic for 0 < η <
1
a
. It is easy to

find Ψ(w) such that the solution determined by formula (68) satisfies condition
(74). Indeed, in view of (70), we have

ψ1(η) = −π

2

√
1 − b2η2

η2
Ψ ′
(
−1
η

)
(75)

or

Ψ ′(w) = − 2
π

ψ1

(
− 1
w

)
w
√
w2 − b2

= i
2
π

ψ1

(
− 1
w

)
w
√
b2 − w2

,

where the radical
√
w2 − b2 is positive, and

√
b2 − w2 is positive imaginary

for w < −b.
Formula (75) gives us Ψ ′(w) along the interval −∞ < w < −a of the real

axis, and this function is a function holomorphic in a neighborhood of this
interval.

We can prove now that Ψ(w) is holomorphic in the domain T1, if ψ(ξ, η)
is analytic in the semidisk for η > 0.

Let us introduce the new variable τ = ξ cosλ instead of λ in (68). In the
case ξ > 0, we have

ψ(ξ, η) =
1
i

+ξ∫
−ξ

Ψ(wτ )τdτ

ξ
√
ξ2 − τ2

, (76)

where

wτ = − η

τ2 + η2
− i

τ
√

1 − b2(τ2 + η2)
τ2 + η2

.

Multiplying both parts of (76) by

ξ2√
µ2 − ξ2

and integrating with respect to ξ from 0 to µ, applying transformations similar
to the ones done in Sect. 4, we have
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µ∫
0

ψ(ξ, η)ξ2dξ√
µ2 − ξ2

=
π

2i

+µ∫
−µ

Ψ(wτ )τdτ.

Differentiating with respect to µ and substituting τ for ξ and ξ for µ, we
obtain

Im [Ψ(w)] =
i

πξ

d

dξ

ξ∫
0

ψ(τ, η)τ2dτ√
ξ2 − τ2

, (77)

where

w = − η

ξ2 + η2
− i

ξ
√

1 − b2(ξ2 + η2)
ξ2 + η2

. (78)

The following formula is similar to formula (42) of Sect. 4,

Im [Ψ(w)] =
i

πξ

d

dξ

1∫
0

ψ(ξσ, η)ξ2σ2dσ√
1 − σ2

. (79)

Hence, as in Sect. 4, Ψ(w) is a holomorphic function in the domain S1, if
ψ(ξ, η) is analytic in the semidisk for η > 0.

If the function ψ(ξ, η) is analytic on some arcs of the semicircle

ξ2 + η2 =
1
b2
, η > 0,

then the function Ψ(w) is holomorphic on the corresponding intervals of the
cut (−b, 0).

Suppose, for example, that ψ(ξ, η) is analytic on the arc AA1 containing

the point ξ = 0, η =
1
b
.

In this case, the function ψ1(η) is analytic in a neighborhood of the point

η =
1
b
. In a neighborhood of the point w = −b formula (75) gives us the

expression

Ψ ′(w) =
f1(w)√
b2 − w2

,

where f1(w) is holomorphic in this neighborhood. Integrating and putting
Ψ(−b) = 0, we have

Ψ(w) =
√
b2 − w2f(w), (80)

where f(w) is holomorphic at the point w = −b.
Suppose that ψ(ξ, η) is equal to zero on the arc AA1 symmetric with

respect to the ray ξ = 0. In this case, we can make an analytic continuation
of the function

f(w) =
Ψ(w)√
b2 − w2
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along the corresponding lips of the cut (−b, 0).
However, as we observed above, f(w) is single-valued and holomorphic at

the point w = −b corresponding to the midpoint of the arc AA1. Consequently,
this function has the same values on the intervals of two lips of the cut.

It is easy to prove that f(−b) = 0 in the present case. Indeed, let us apply
formula (71) at points of the arc AA1,

ψ(ξ, η)
∣∣∣∣
ξ2+η2= 1

b2

= − b

ξ

∫
lw

(1 + ηw1)f(w1)
b2 − w2

1

dw1,

where lw is a closed contour, inside which the function f(w) is single-valued
and holomorphic. Computing the residue of the integrand at the point w1 =
−b, we have

ψ(ξ, η)
∣∣∣∣
ξ2+η2= 1

b2

= − b

ξ

(1 − ηb)f(−b)
b

πi.

However, by assumption, the left side is equal to zero. Hence, f(−b) = 0.
It remains to construct a continuation of the solution ψ(ξ, η) into the

exterior of the disk
ξ2 + η2 <

1
b2
.

We can use the same continuation method, as in the case of the potential
ϕ(ξ, η), since the real and imaginary parts of the function Ψ(w) also satisfy
equation (51), where we need only substitute b for a. We set Ψ(w) to be a
constant along every tangent to the semicircle between the tangency point
and the axis η = 0, and this constant is equal to the value of Ψ(w) at the
tangency point. Instead of formula (55) for the points (ξ, η),

ξ > 0,
1
b
> η > 0, ξ2 + η2 >

1
b2
,

we have

ψ(ξ, η) = − 1

ξ
√
ξ2 + η2i

∫
lw

(w1 + a2η)(1 + ηw1)Ψ(w1)dw1

(a2 − w2
1)
√
a2 − w2

1

√
(w1 − w)(w − w1)

,

where lw is the contour indicated in Sect. 6,

w = −η + ξ
√
b2(ξ2 + η2) − 1
ξ2 + η2

, w1 = −η − ξ
√
b2(ξ2 + η2) − 1
ξ2 + η2

.

Repeating the arguments of Sect. 6, we can show that ψ(ξ, η) is equal to
zero on the tangents such that the tangency points are located on the arc
AA1 symmetric with respect to ξ = 0, and ψ(ξ, η) is equal to zero. All above
results are also valid for η < 0.

10. Let us give now some examples. Searching for solutions of equation
(62) in the form
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ψ(ξ, η) = ξnf(ξ2 + η2),

by simple calculations, we can obtain the solution

ψ(ξ, η) =
1 − b2(ξ2 + η2)

(ξ2 + η2)3/2
ξ, (81)

which is an odd function of ξ. For this solution,

ψ1(η) =
∂ψ(ξ, η)

∂ξ

∣∣∣∣
ξ=0

=
1 − b2η2

η3
for η > 0,

ψ1(η) =
∂ψ(ξ, η)

∂ξ

∣∣∣∣
ξ=0

= −1 − b2η2

η3
for η < 0.

Applying formula (75), for η > 0 we have

1 − b2η2

η3
= −π

2

√
1 − b2η2

η2
Ψ ′
(
−1
η

)
.

Let
η = − 1

w
, w < 0.

Since the radical
√

1 − b2η2 must be positive, we obtain

w(b2 − w2) =
π

2

√
w2 − b2 wΨ ′(w),

where the radical
√
w2 − b2 is positive for w < −b. Also, we can write

w(b2 − w2) = −iπ
2

√
b2 − w2 wΨ ′(w),

where
√
b2 − w2 is positive imaginary for w < −b, and

Ψ ′(w) =
2
π

√
b2 − w2i.

For η < 0, we have

w(b2 − w2) = −π

2

√
w2 − b2 wΨ ′(w),

where
√
w2 − b2 is positive for w > b. If the radical

√
b2 − w2 is positive

imaginary for w < −b, then we have to take it negative imaginary for w > b,
and the previous formula takes the form

w(b2 − w2) = −iπ
2

√
b2 − w2 wΨ ′(w),

and, consequently, for η < 0,



110 V. I. Smirnov and S. L. Sobolev

Ψ ′(w) =
2
π

√
b2 − w2i,

i.e., we have for η > 0 and for η < 0 the same analytic function Ψ(w).
Also, note that our solution (81) is equal to zero on the circle

ξ2 + η2 =
1
b2
.

Therefore, a continuation of this solution into the exterior of the disk is equal

to zero for |η| ≤ 1
b
. We put ψ(ξ, η) = 0 for |η| > 1

b
too. We will always make

this assumption, when ψ(ξ, η) is equal to zero on the arc AA1 of the circle

ξ2 + η2 =
1
b2

, symmetric with respect to ξ = 0.
11. We consider now some mechanical problems. First, let us clarify the

mechanical sense of the homogeneous solutions of equations (2) and (3). As
proved in our article [1], in the case of the two-dimensional problem, the
homogeneous potentials give, for example, elastic vibrations under the action
of an impact focused at some point and at some moment of time. In the given
case, homogeneous potentials give us elastic vibrations under the action of
an impact. Without loss of generality, we can assume that this point is the
coordinate origin, and the moment of time is t = 0. Similarly to the two-
dimensional case, we consider a force applied to some point as the limiting
case of a force applied to points of a certain surface, convergent to the given
point.

Let us consider a surface of revolution

f(�, z) = 0,

where � and z belong to bounded intervals. Let us construct homothetic sur-
faces Sε,

f

(
�

ε
,
z

ε

)
= 0 (82)

as ε → 0. We say that points of two surfaces Sε1 and Sε2 correspond, if the
coordinates of these points are connected by the homothetic transformation

x2 =
ε2
ε1
x1, y2 =

ε2
ε1
y1, z2 =

ε2
ε1
z1.

Let us assume that a stress is applied at points of the surface Sε at the
moment t = 0. This stress does not depend on the angle ϑ whose components

are products of
1
ε2

by a quantity independent of ε and constant at the cor-
responding points of the surfaces Sε, as the parameter ε tends to zero. Also,
suppose that the initial state of the elastic space is at rest at the moment
t = 0. In this case, for every value of ε we have elastic vibrations with axial
symmetry. Let ϕε(�, z, t) and ψε(�, z, t) be corresponding potentials.
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These potentials must satisfy equations (2) and (3). Components of stresses
are given on the surface Sε. These boundary conditions have the form

D1(ϕε, ψε) =
1
ε2
X(x, y, z), D2(ϕε, ψε) =

1
ε2
Y (x, y, z),

D3(ϕε, ψε) =
1
ε2
Z(x, y, z),

(83)

where D1, D2, and D3 are homogeneous linear functions of the second-order
derivatives of the functions ϕε and ψε with respect to x, y, z with constant
coefficients, and X, Y , and Z are functions, defined on the surface Sε inde-
pendent of the angle ϑ. We should also take into account the initial conditions
which define the rest at t = 0. Then, the functions ϕε and ψε satisfy conditions
(2), (3), boundary conditions (83) and the initial data, mentioned above. Let
us construct functions

ϕ(�, z, t) = ϕε(k�, kz, kt), ψ(�, z, t) = ψε(k�, kz, kt), (84)

where k is a constant. We have

∂ϕ

∂�
=
∂ϕε(k�, kz, kt)

∂(k�)
k,

∂2ϕ

∂�2
=
∂2ϕε(k�, kz, kt)

∂(k�)2
k2.

Obviously, functions (84) satisfy equations (2) and (3). Since Dl(ϕ,ψ) are
homogeneous linear functions of the second-order derivatives of ϕ and ψ with
respect to x, y, and z with constant coefficients, we can write

Dl(ϕ,ψ)|(x,y,z) = k2Dl(ϕε, ψε)|(kx,ky,kz),

where the indexes (x, y, z) and (kx, ky, kz) denote the points where we should
take the corresponding expressions. However, the functions ϕε and ψε satisfy
conditions (83). Consequently,

D1(ϕ,ψ) =
(
ε

k

)−2

X(kx, ky, kz), D2(ϕ,ψ) =
(
ε

k

)−2

Y (kx, ky, kz),

D3(ϕ,ψ) =
(
ε

k

)−2

Z(kx, ky, kz),

i.e., ϕ and ψ satisfy boundary conditions on the surface S ε
k

whose points have
the coordinates

x′ = kx, y′ = ky, z′ = kz,

where (x, y, z) is the point on Sε, corresponding to the point (x′, y′, z′) on
the surface S ε

k
. By the given condition, the initial state for the potentials

ϕε(�, z, t) and ψε(�, z, t) is the rest state.
Obviously, the potentials ϕ and ψ satisfy the same conditions as the po-

tentials ϕ ε
k

and ψ ε
k
,
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ϕε(k�, kz, kt) = ϕ ε
k
(�, z, t), ψε(k�, kz, kt) = ψ ε

k
(�, z, t).

As ε → 0, we obtain potentials ϕ0(�, z, t) and ψ0(�, z, t) corresponding to
the case of force applied at the origin at the time moment t = 0. The previous
formulas give us

ϕ0(k�, kz, kt) = ϕ0(�, z, t), ψ0(k�, kz, kt) = ψ0(�, z, t),

i.e., ϕ0(�, z, t) and ψ0(�, z, t) are homogeneous functions of order zero of the
arguments (�, z, t).

In conclusion, we note that we take the components of stresses of order
1
ε2

,

because the area of the surface Sε is equal to the product of ε2 by a constant
independent of ε.

12. We now consider the problem on vibrations of the half-space z > 0
under the action of a force applied at the point � = 0, z = f at the moment
of time t = 0. Assume that this force has axial symmetry and produces vibra-
tions of longitudinal type. This source of vibrations is given by a potential ϕ
which, as we observed above, is a homogeneous function of order zero of the
arguments (�, z − f, t), i.e., this potential is a function of

ξ =
�

t
, η =

z − f

t
.

Taking into account that the initial state is at rest, we can assert that this
function ϕ(ξ, η) must be defined only inside the disk

ξ2 + η2 <
1
a2

and vanish on the boundary of this disk, corresponding to the front of propa-
gation of a longitudinal wave. As proved above, one can represent this given
potential in the form3

ϕ(ξ, η) =

π∫
0

Φ(θλ)dλ, (85)

where

θλ =
ξ cosλ− iη

√
1 − a2(ξ2 cos2 λ+ η2)

ξ2 cos2 λ+ η2
. (86)

Potential (85) determines completely the displacement for 0 < t < af .
Outside this time interval we have to add two more reflected potentials: one

for reflected longitudinal waves, and another for reflected transverse waves.
These reflected potentials can be defined by the condition that there are no
stresses on the surface z = 0. We can represent them as a combination of
potentials of two-dimensional problems [1]. For these potentials, we have the
expressions
3 For similar formulas see Sect. 3. – Ed.
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ϕ1 =

π∫
0

Φ1(θ
(1)
λ )dλ, ψ1 =

π∫
0

Ψ1(θ
(2)
λ ) cosλdλ,

where θ(1)
λ and θ

(2)
λ are determined by the equations

t− θ
(1)
λ � cosλ−

√
a2 − θ

(1)
λ

2
(z + f) = 0,

t− θ
(2)
λ � cosλ−

√
b2 − θ

(2)
λ

2
z −
√
a2 − θ

(2)
λ

2
f = 0.

For the functions Φ1(θ) and Ψ1(θ), we have

Φ′
1(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Φ′(θ),

Ψ ′
1(θ) = − 4θ(2θ2 − b2)

√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

Φ′(θ).

(87)

Similarly, we can consider the case of transverse type source. In this case,
the function ψ1 defining the reflected transverse potential is a function of the
arguments

ξ1 =
�

t
, η1 =

z + f

t
.

This function is not zero on two arcs of the semicircle

ξ21 + η2
1 =

1
b2
, η1 > 0.

A continuation ψ1 into the exterior of the semidisk ξ21 + η2
1 <

1
b2

gives us
transverse vibrations produced by longitudinal vibrations propagating over
the surface z = 0 with a speed greater than for the transverse vibrations.
In our previous article, we already observed a similar phenomenon in the
two-dimensional case. Our method also gives a solution of the problem on
vibrations of a layer under the action of the source described above.

Let us make some essential additions to the previous arguments about the
reflection of elastic waves in the three-dimensional space with axial symme-
try. Suppose that the potential ϕ(ξ, η) corresponding to longitudinal incident
waves vanishes on the circle

ξ2 + η2 =
1
a2
,

or on a half-circle, or on some arc AA1 symmetric with respect to the point
ξ = 0 of the circle. As noted in Sect. 6, in this case, expressing ϕ(ξ, η) in the
integral form
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ϕ(ξ, η) =

π∫
0

Φ(wλ)dλ,

the function Φ(w), real on the interval (−∞,−a) of the real axis, is also regular
at the point w = −a and, therefore, is real and regular on some interval
(−∞,−c), where −a < −c ≤ 0. If ϕ(ξ, η) is equal to zero on the semicircle,
then, as we observed earlier, c = 0. Moreover, we must have Φ(−a) = 0, i.e.,
in a neighborhood of the point w = −a we have an expansion of the form

Φ(w) =
∞∑

n=1

an(w + a)n,

where the coefficients an are real. Vice versa, if we have such expansion for Φ,
then ϕ(ξ, η) vanishes on some arc AA1. Using the variable

w =
√
a2 − θ2,

where w = −a for θ = 0, we have the expansion

Φ(θ) =
∞∑

n=1

bnθ
2n,

where the coefficients bn are real. The two expansions are equivalent. In a
similar case, when the potential ψ(ξ, η) vanishes on some arc AA1 such that
values of θ satisfy the condition −b ≤ θ ≤ b, we have an expansion in the form
(see Sect. 9)

Ψ(w) = (b2 − w2)3/2
∞∑

n=1

an(w + b)n,

where the coefficients an are real. Using the variable

w =
√
b2 − θ2,

where w = −b for θ = 0, we obtain the equivalent expansion

Ψ(θ) =
∞∑

n=1

bnθ
2n+1

with real coefficients. And vice versa, having such expansion at the origin, the
potential ψ(ξ, η) vanishes on some arc AA1.

Until now we studied the case when the equation on θ associates the real
interval −a ≤ θ ≤ a or −b ≤ θ ≤ b to a semicircle. We do not always have
such case under reflection. However, it is easy to prove that the previous
result always occurs. In this case, AA1 is a part of a front propagation of
disturbances. Since fractions in (87) and in similar formulas for the reflection
of transverse vibrations are functions regular for θ = 0, even or odd with
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respect to θ, we can assert that after the reflection the functions Φ1(θ) and
Ψ1(θ) behave as described above, i.e., the reflected potentials ϕ1(x, y, t) and
ψ1(x, y, t) vanish on parts of the front corresponding to the same values of θ,
as before the reflection of the arc AA1, i.e., for −a ≤ θ ≤ a.

These results can be formulated differently. Namely, if the imaginary part
of Φ(θ) vanishes on some interval −c < θ < c (c ≤ a) of the real axis, and
Φ(0) = 0, then

Re

π∫
0

Φ(θλ)dλ

gives us the longitudinal potential, where θλ is a root of the equation

t− θλ� cosλ±
√
a2 − θ2

λ z − χ(θλ) = 0.

This potential is equal to zero on the surface obtained by rotating the arc
AA1 around the z-axis. This arc corresponds to the interval −c < θ < c, in
view of the equation

t− θx±
√
a2 − θ2 z − χ(θ) = 0.

The function χ(θ) is real on the indicated interval. A similar result occurs
for the reflection of transverse waves. We come back to the study of these
problems in detail later.

Finally, let us note that if the force acting at the point � = z = 0 is a
given function of time, then we can present it as a sum of forces acting at the
given point at different moments of time. In this case, the potentials are the
Stieltjes integrals of expressions ϕdQ1(t− τ1) and ψdQ2(t− τ1), where ϕ and
ψ are elementary potentials produced by a force applied at a moment τ1.

13. We solve now the Lamb problem [2] about the vibrations of the half-
space z > 0 under the action of a force at the point � = z = 0, parallel to the
z-axis. We use the variable θ and consider the potentials ϕ and ψ in the form

ϕ =

π∫
0

Φ(θ1)dλ, ψ =

π∫
0

Ψ(θ2) cosλdλ, (88)

where θ1 and θ2 are determined by the equations

δ1 = t− θ1� cosλ−
√
a2 − θ2

1 z = 0,

δ2 = t− θ2� cosλ−
√
b2 − θ2

2 z = 0.

(89)

In these equations the radical signs are chosen such that values of θ from
the upper half-plane correspond to rays in the half-space z > 0. The imaginary
part of the function Φ(θ) is an odd function at the points symmetric with
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respect to the imaginary axis. It occurs for the real part of the function Ψ(θ).
These properties of the functions Φ(θ) and Ψ(θ) follow from the fact that the
imaginary axis of θ corresponds to the real axis of w, and the expression for

ψ does not contain the factor
1
i
.

Let u, v, w be components of the displacement along the axes �, ϑ, z. It is
known that the components of the strain tensor are expressed by the formulas

ε� =
∂u

∂�
, εϑ =

1
�

∂v

∂ϑ
+
u

�
, εz =

∂w

∂z
,

γ�ϑ =
1
�

∂u

∂ϑ
+
∂v

∂�
− v

�
, γϑz =

∂v

∂z
+

1
�

∂w

∂ϑ
, γz� =

∂w

∂�
+
∂u

∂z
.

In the case of axial symmetry v = 0, and the components u = q and w do
not depend on θ. Hence,

ε� =
∂q

∂�
, εϑ =

q

�
, εz =

∂w

∂z
,

γ�ϑ = γϑz = 0, γz� =
∂w

∂�
+
∂u

∂z
.

For the stress components, we have

Tzz = λ

[
1
�

∂

∂�
(�q) +

∂w

∂z

]
+ 2µ

∂w

∂z
,

T�z = µ

(
∂w

∂�
+
∂q

∂z

)
,

Tϑz = 0,

or, in view of (1),

1
µ
Tzz =

λ

µ

[
1
�

∂

∂�

(
�
∂ϕ

∂�
− �

∂ψ

∂�

)
+
∂2ϕ

∂z2
+

∂2ψ

∂�∂z
+

1
�

∂ψ

∂z

]

+2
(
∂2ϕ

∂z2
+

∂2ψ

∂�∂z
+

1
�

∂ψ

∂z

)
,

1
µ
T�z =

∂2ϕ

∂z∂�
+
∂2ψ

∂�2
+

1
�

∂ψ

∂�
− 1
�2
ψ +

∂2ϕ

∂�∂z
− ∂2ψ

∂z2
.

By simple transformations, we obtain

1
µ
Tzz =

λ

µ

(
1
�

∂ϕ

∂�
+
∂2ϕ

∂�2
+
∂2ϕ

∂z2

)
+ 2
(
∂2ϕ

∂z2
+

∂2ψ

∂�∂z
+

1
�

∂ψ

∂z

)
,

1
µ
T�z = 2

∂2ϕ

∂�∂z
+
∂2ψ

∂�2
− ∂2ψ

∂z2
+

1
�

∂ψ

∂�
− 1
�2
ψ.
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Using equations (2), (3), and the formula

λ

µ
=

b2

a2
− 2,

we have
1
µ
Tzz = (b2 − 2a2)

∂2ϕ

∂t2
+ 2

∂2ϕ

∂z2
+ 2

∂2ψ

∂�∂z
+

2
�

∂ψ

∂z
,

1
µ
T�z = 2

∂2ϕ

∂�∂z
+ b2

∂2ψ

∂t2
− 2

∂2ψ

∂z2
.

(90)

Let us consider formulas (88) and construct expressions for the derivatives
of ϕ and ψ with respect to � and z.

In our previous article we studied the equation

δ = t− θx−
√
c2 − θ2 y = 0

and obtained the formulas for the derivatives of a smooth function f(θ) of θ
with respect to x, y and t,

∂f(θ)
∂y

= f ′(θ)
√
c2 − θ2

δ′
,

∂2f(θ)
∂x2

=
1
δ′

∂

∂θ

[
f ′(θ)

θ2

δ′

]
,

∂2f(θ)
∂x∂y

=
1
δ′

∂

∂θ

[
f ′(θ)

θ
√
c2 − θ2

δ′

]
,

∂2f(θ)
∂y2

=
1
δ′

∂

∂θ

[
f ′(θ)

c2 − θ2

δ′

]
,

∂2f(θ)
∂t2

=
1
δ′

∂

∂θ

[
f ′(θ)

1
δ′

]
,

where
δ′ =

∂δ

∂θ
= −x+

θ√
c2 − θ2

y.

Using formulas of such type in the case of equations (89), for the function
Φ(θ1) we have

∂2Φ(θ1)
∂�∂z

=
1
δ′1

∂

∂θ1

[
Φ′(θ1)

θ1
√
a2 − θ2

1

δ′1

]
cosλ,

∂2Φ(θ1)
∂z2

=
1
δ′1

∂

∂θ1

[
Φ′(θ1)

a2 − θ2
1

δ′1

]
,

∂2Φ(θ1)
∂t2

=
1
δ′1

∂

∂θ1

[
Φ′(θ1)

1
δ′1

]
,

(91)

and for the function Ψ(θ2) we obtain
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∂Ψ(θ2)
∂z

= Ψ ′(θ2)

√
b2 − θ2

2

δ′2
,

∂2Ψ(θ2)
∂�∂z

=
1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

θ2
√
b2 − θ2

2

δ′2

]
cosλ,

∂2Ψ(θ2)
∂z2

=
1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

b2 − θ2
2

δ′2

]
,

∂2Ψ(θ2)
∂t2

=
1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

1
δ′2

]
.

(92)

Let us denote by T
(1)
�z , T (1)

zz the parts of stresses arising from the potential
ϕ, and by T

(2)
�z , T (2)

zz from the potential ψ, respectively. Taking into account
(88), (90), and (91), we have

1
µ
T (1)

�z =

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

2θ1
√
a2 − θ2

1

δ′1

]
cosλdλ,

1
µ
T (1)

zz =

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

b2 − 2a2

δ′1

]
dλ+

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

2a2 − 2θ2
1

δ′1

]
dλ

or
1
µ
T (1)

�z =

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

2θ1
√
a2 − θ2

1

δ′1

]
cosλdλ,

1
µ
T (1)

zz =

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

b2 − 2θ2
1

δ′1

]
dλ.

(93)

Similarly, by (88), (90), and (92),

1
µ
T (2)

�z =

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

b2

δ′2

]
cosλdλ−

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2b2 − 2θ2
2

δ′2

]
cosλdλ

or
1
µ
T (2)

�z =

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
2 − b2

δ′2

]
cosλdλ (94)

and
1
µ
T (2)

zz =

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
√
b2 − θ2

2

δ′2

]
cos2 λdλ
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+
2
�

π∫
0

Ψ ′(θ2)

√
b2 − θ2

2

δ′2
cosλdλ. (95)

Integrating the second integral by parts and taking into account that

δ′2 = −� cosλ+
θ2√
b2 − θ2

2

z

depends on λ through θ2, we have

2
�

π∫
0

Ψ ′(θ2)

√
b2 − θ2

2

δ′2
cosλdλ = −2

�

π∫
0

sinλ
∂

∂θ2

[
Ψ ′(θ2)

√
b2 − θ2

2

δ′2

]
∂θ2
∂λ

dλ

+
2
�

π∫
0

sinλΨ ′(θ2)

√
b2 − θ2

2

(δ′2)2
� sinλdλ.

However, it is obvious that

∂θ2
∂λ

= −θ2� sinλ
δ′2

and, consequently,

2
�

π∫
0

Ψ ′(θ2)

√
b2 − θ2

2

δ′2
cosλdλ = 2

π∫
0

{
θ2
δ′2

∂

∂θ2

[
Ψ ′(θ2)

√
b2 − θ2

2

δ′2

]

+
1
δ′2
Ψ ′(θ2)

√
b2 − θ2

2

δ′2

}
sin2 λdλ =

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
√
b2 − θ2

2

δ′2

]
sin2 λdλ.

Substituting the equality into expression (95), we have

1
µ
T (2)

zz =

π∫
0

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
√
b2 − θ2

2

δ′2

]
dλ, (96)

and formulas (93), (94), and (96) give us the following expressions for the
stresses inside the half-space:

1
µ
T�z =

π∫
0

{
1
δ′1

∂

∂θ1

[
Φ′(θ1)

2θ1
√
a2 − θ2

1

δ′1

]
+

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
2 − b2

δ′2

]}
cosλdλ,

(97)
1
µ
Tzz =

π∫
0

{
1
δ′1

∂

∂θ1

[
Φ′(θ1)

b2 − 2θ2
1

δ′1

]
+

1
δ′2

∂

∂θ2

[
Ψ ′(θ2)

2θ2
√
b2 − θ2

2

δ′2

]}
dλ,
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where

δ′1 =
θ1z −

√
a2 − θ2

1 � cosλ√
a2 − θ2

1

, δ′2 =
θ2z −

√
b2 − θ2

2 � cosλ√
b2 − θ2

2

. (98)

Let us study the limits of expressions (97), as z tends to zero, i.e., the
stresses on the surface z = 0. Consider, for example, the first term in the
expression for Tzz,

π∫
0

1
δ′1

∂

∂θ1

[
Φ′(θ1)

b2 − 2θ2
1

δ′1

]
dλ. (99)

Let us introduce instead of λ a new variable of integration θ1. The first
equation in (89) gives us

cosλ =
t−
√
a2 − θ2

1 z

�θ1
,

λ = arccos
t−
√
a2 − θ2

1 z

�θ1
= arccos

1 −
√
a2 − θ2

1 η

ξθ1
.

Hence we have

dλ = ±a2z − t
√
a2 − θ2

1

θ1
√
a2 − θ2

1

1√
�2θ2

1 − (t−
√
a2 − θ2

1 z)2
dθ1

= ±a2η −
√
a2 − θ2

1

θ1
√
a2 − θ2

1

1√
ξ2θ2

1 − (1 −
√
a2 − θ2

1 η)2
dθ1. (100)

Substituting w1 =
√
a2 − θ2

1 for θ1 in the expression

ξ2θ2
1 − (1 −

√
a2 − θ2

1 η)
2,

we obtain
−(ξ2 + η2)w2

1 + 2ηw1 + (a2ξ2 − 1).

This expression has the roots

w =
η ± iξ

√
1 − a2(ξ2 + η2)
ξ2 + η2

=
zt± i�

√
t2 − a2(�2 + z2)
�2 + z2

.

Similarly, the expression

ξ2θ2
1 − (1 −

√
a2 − θ2

1 η)
2

has the roots
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θ =
ξ + iη

√
1 − a2(ξ2 + η2)
ξ2 + η2

, θ(∗) =
−ξ + iη

√
1 − a2(ξ2 + η2)
ξ2 + η2

.

This fact follows immediately from the formula w =
√
a2 − θ2, which as-

sociates the upper half-plane of θ to a domain S2
4 of the plane w.

The expression in (100) has the branching points θ and θ(∗) on the upper
half-plane. We can make it single-valued by using cuts parallel to the real
axis. The cuts go from the points θ and θ(∗) to infinity and do not cross the
imaginary axis. For the variable θ1, we have

θ1 =
ξ cosλ+ iη

√
1 − a2(ξ2 cos2 λ+ η2)

ξ2 cos2 λ+ η2
. (101)

Putting λ =
π

2
, we obtain

θ
(0)
1 =

i
√

1 − a2η2

η
,

√
a2 − θ

(0)
1

2
=

1
η
.

For this value of λ, dθ1 is negative for ξ > 0 and positive for ξ < 0. Formula
(100) gives us

dλ =
a2η − 1

η

i

√
1 − a2η2

η2

dθ1√
ξ2θ

(0)
1

2 −
(

1 −
√
a2 − θ

(0)
1

2
η

)2
.

The difference a2η − 1
η

is negative, and we have to take the radical

√
ξ2θ

(0)
1

2 −
(

1 −
√
a2 − θ

(0)
1

2
η

)2

negative imaginary in the case of ξ > 0 and positive imaginary in the case of
ξ < 0.

Obviously, this rule will be valid for the radical√
ξ2θ2

1 − (1 −
√
a2 − θ2

1 η)2

in the case of positive imaginary values of θ1. Integral (99) has the form∫
lθ

1
δ′1

∂

∂θ1

[
Φ′(θ1)

b2 − 2θ2
1

δ′1

]
a2η −

√
a2 − θ2

1

θ1
√
a2 − θ2

1

4 S2 is the part of the complex plane w, located on the right of the imaginary axis,
with the cut (0, a). – Ed.
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× 1√
ξ2θ2

1 − (1 −
√
a2 − θ2

1 η)2
dθ1, (102)

where lθ is a contour going from the point θ to the point θ(∗). On the plane w
this contour corresponds to the contour lw often mentioned above. Also, note
that δ′1 is expressed by the formula

δ′1 =
θ1z −

√
a2 − θ2

1 � cosλ√
a2 − θ2

1

=
θ1z − �

√
a2 − θ2

1

t−
√
a2 − θ2

1 z

�θ1√
a2 − θ2

1

=
a2z − t

√
a2 − θ2

1

θ1
√
a2 − θ2

1

,

and this function does not have roots on the upper half-plane. Therefore, the
integrand in (102) is a holomorphic function over the line θθ(∗). Thus, by the
Cauchy theorem, we can deform the contour of integration and, for example,
always take for this contour the upper semicircle, such that the interval θθ(∗)

is the diameter. Letting z go to zero, we have

η → 0, δ′1 → − t

θ1
, θ → 1

ξ
, θ(∗) → −1

ξ
, cosλ → t

�θ1
,

and expression (102) becomes

− 1
t2

−1/ξ∫
1/ξ

∂

∂θ1

(
Φ′(θ1)θ1(b2 − 2θ2

1)
)

dθ1√
ξ2θ2

1 − 1
,

where the radical
√
ξ2θ2

1 − 1 is negative imaginary, if ξ > 0, and θ1 is located
on the upper part of the imaginary axis, and positive imaginary for ξ < 0.

In a similar way, for the second term for Tzz in (97) we have

− 1
t2

−1/ξ∫
1/ξ

∂

∂θ2

(
Ψ ′(θ2)2θ2

2

√
b2 − θ2

2

)
dθ2√
ξ2θ2

2 − 1
,

and, denoting the variable of integration by the same letter θ1, we obtain

− 1
µ
Tzz =

1
t2

−1/ξ∫
1/ξ

ω1(θ1)dθ1√
ξ2θ2

1 − 1
,

where

ω1(θ1) =
∂

∂θ1

(
Φ′(θ1)θ1(b2 − 2θ2

1) + Ψ ′(θ1)2θ2
1

√
b2 − θ2

1

)
. (103)
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For the stress T�z we have

− 1
µ
T�z =

1
t�

−1/ξ∫
1/ξ

ω2(θ1)dθ1
θ1
√
ξ2θ2

1 − 1
,

where

ω2(θ1) =
∂

∂θ1

(
Φ′(θ1)2θ2

1

√
a2 − θ2

1 + Ψ ′(θ1)θ1(2θ2
1 − b2)

)
. (104)

The boundary conditions on the surface z = 0 give us

−1/ξ∫
1/ξ

ω1(θ1)dθ1√
ξ2θ2

1 − 1
= 0,

−1/ξ∫
1/ξ

ω2(θ1)dθ1
θ1
√
ξ2θ2

1 − 1
= 0. (105)

In the case of the Lamb problem, as we observed in our previous article,

the front of the longitudinal wave is the circle x2 + y2 =
1
a2
t2, and the front

of the transverse wave is the arc of the circle x2 + y2 =
1
b2
t2, symmetric with

respect to y = 0, and two segments of the tangents in the ends of this arc.
This fact tells us that in the present case the potential ϕ(ξ, η) is equal to zero
on the entire semicircle

ξ2 + η2 =
1
a2
, η > 0,

and the potential ψ(ξ, η) is equal to zero on the arc of the semicircle

ξ2 + η2 =
1
b2
, η > 0,

symmetric with respect to the axis ξ = 0. However, we observed above (see
Sect. 6) that in this case the function Φ(w) has the zero w = −a and can be
expressed in its neighborhood in the form

Φ(w) = α1(w + a) + α2(w + a)2 + · · · .
Similarly, the function Ψ(w) can be expressed in a neighborhood of w = −b
in the form (see Sect. 9)

Ψ(w) =
√
b2 − w2

(
β1(w + b) + β2(w + b)2 + · · ·

)
.

Introducing for Φ(w) instead of w the new variable θ

w =
√
a2 − θ2, w + a = γ2θ

2 + γ4θ
4 + · · · ,
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in a neighborhood of the point θ = 0, we have

Φ(θ) = α′
2θ

2 + α′
4θ

4 + · · · .
Similarly, introducing for Ψ(w),

w =
√
b2 − θ2,

we have
Ψ(θ) = β′

3θ
3 + β′

5θ
5 + · · · .

Formulas (103) and (104) give us

ω1(θ) = α′′
1θ + α′′

3θ
3 + · · · ,

ω2(θ) = β′′
2 θ

2 + β′′
4 θ

4 + · · · .
(106)

We assume that these functions do not have singularities in a bounded domain.
By assumption, the imaginary part of the function Φ(θ) and the real part

of the function Ψ(θ) must vanish on the imaginary axis. Therefore, in view of
(103) and (104), the real part of ω1(θ1) and the imaginary part of ω2(θ1) must
vanish on the imaginary axis. Thus, the coefficients α′′

n and β′′
n must be real.

Obviously, boundary conditions (105) hold. Substituting expression (106) into
formulas (103) and (104), we obtain for Φ′(θ) and Ψ ′(θ) the equations

(b2 − 2θ2)Φ′(θ) + 2θ
√
b2 − θ2Ψ ′(θ) = ω3(θ),

2θ
√
a2 − θ2Φ′(θ) − (b2 − 2θ2)Ψ ′(θ) = ω4(θ),

where

ω3(θ) =
1
2
α′′

1θ +
1
4
α′′

3θ
3 + · · · , ω4(θ) =

1
3
β′′

2 θ
2 +

1
5
β′′

4 θ
4 + · · · . (107)

These equations give us

Φ′(θ) =
(b2 − 2θ2)ω3(θ) + 2θ

√
b2 − θ2ω4(θ)

F (θ)
,

Ψ ′(θ) =
2θ
√
a2 − θ2ω3(θ) − (b2 − 2θ2)ω4(θ)

F (θ)
,

(108)

where
F (θ) = (b2 − 2θ2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2. (109)

We see that the functions Φ′(θ) and Ψ ′(θ) have poles at points where F (θ)
is equal to zero. As noted in the previous work, these points θ = ±c correspond
to the Rayleigh waves. Moreover, functions (108) have one more singular point
θ = ∞ corresponding to the value ξ = η = 0, i.e., the point where the force
is applied. Let us assume that this point is a pole, and the order of this pole
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is small as possible. Formulas (107) and (108) show us that these conditions
include the case

ω4(θ) ≡ 0, α′′
3 = α′′

5 = · · · = 0.

The number
1
2
α′′

1 is real. Denoting it by β, we have

Φ′(θ) = β
θ(b2 − 2θ2)

F (θ)
, Ψ ′(θ) = β

2θ2
√
a2 − θ2

F (θ)
. (110)

14. Let us construct formulas for the displacement components q and w.
For the potentials we have

ϕ =

π∫
0

Φ(θ1)dλ, ψ =

π∫
0

Ψ(θ2) cosλdλ, (111)

where θ1 and θ2 satisfy the equations

δ1 = t− θ1� cosλ−
√
a2 − θ2

1 z = 0,

δ2 = t− θ2� cosλ−
√
b2 − θ2

2 z = 0.
(112)

From (1) we have

q =

π∫
0

Φ′(θ1)
∂θ1
∂�

dλ−
π∫

0

Ψ ′(θ2)
∂θ2
∂z

cosλdλ,

w =

π∫
0

Φ′(θ1)
∂θ1
∂z

dλ+

π∫
0

Ψ ′(θ2)
∂θ2
∂�

cosλdλ+
1
�

π∫
0

Ψ(θ2) cosλdλ.

Integrating by parts in the last integral, we obtain

w =

π∫
0

Φ′(θ1)
∂θ1
∂z

dλ+

π∫
0

Ψ ′(θ2)
∂θ2
∂�

cosλdλ− 1
�

π∫
0

Ψ ′(θ2)
∂θ2
∂λ

sinλdλ.

By (112), for the derivatives we have

∂θ1
∂t

= − 1
δ′1
,

∂θ1
∂�

=
θ1 cosλ
δ′1

= −θ1 cosλ
∂θ1
∂t

,

∂θ1
∂z

=

√
a2 − θ2

1

δ′1
= −

√
a2 − θ2

1

∂θ1
∂t

,

∂θ2
∂t

= − 1
δ′2
,

∂θ2
∂�

= −θ2 cosλ
∂θ2
∂t

,
∂θ2
∂z

= −
√
b2 − θ2

2

∂θ2
∂t

,
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∂θ2
∂λ

= −θ2� sinλ
δ′2

= θ2� sinλ
∂θ2
∂t

.

Using these expressions, we obtain

q =

π∫
0

[
−θ1Φ′(θ1)

∂θ1
∂t

+
√
b2 − θ2

2Ψ
′(θ2)

∂θ2
∂t

]
cosλdλ,

w =

π∫
0

[
−
√
a2 − θ2

1Φ
′(θ1)

∂θ1
∂t

− θ2Ψ
′(θ2)

∂θ2
∂t

]
dλ

or, taking into account (110),

q = β

π∫
0

[
θ2
1(2θ

2
1 − b2)

F (θ1)
∂θ1
∂t

+
2θ2

2

√
a2 − θ2

2

√
b2 − θ2

2

F (θ2)
∂θ2
∂t

]
cosλdλ,

w = β

π∫
0

[
θ1(2θ2

1 − b2)
√
a2 − θ2

1

F (θ1)
∂θ1
∂t

− 2θ3
2

√
a2 − θ2

2

F (θ2)
∂θ2
∂t

]
dλ.

(113)

To determine the constant β we need to use the value of force applied at
the point � = z = 0. Let P be the value of this force. Expand asymptotically
q and w as t → +∞. Computing the limit, we must obtain the displacement
components for the static problem, where the vertical force acts at the point
� = z = 0 on the surface of the half-space z > 0. For this static problem, the
solution is known [3]

q = u cosϑ+ v sinϑ =
P

4πµ

{
�z

(�2 + z2)3/2
+

a2

a2 − b2

(
1
�
− z

�
√
�2 + z2

)}
,

(114)

w =
P

4πµ

(
z2

(�2 + z2)3/2
− b2

a2 − b2
1√

�2 + z2

)
.

Let us take formulas (113) and expand the integrands in powers of
1
t
. For

the variable θ1, we have the equation

t− θ1� cosλ−
√
a2 − θ2

1 z = 0. (115)

Hence the expansion for θ1 in a neighborhood of the point t = ∞ has the form

θ1 = c1t+ c0 + c−1
1
t

+ · · · , ∂θ1
∂t

= c1 − c−1
1
t2

− · · · . (116)

Equation (115) can be written in the form
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t− θ1� cosλ+ iθ1

(
1 − a2

θ2
1

)1/2

z = 0

or

t− θ1� cosλ+ iθ1z − i
a2z

2θ1
− i

a4z

8θ3
1

− · · · = 0.

Using (116), we have

t− (� cosλ− iz)
(
c1t+ c0 + c−1

1
t

+ · · ·
)

−i a
2z

2c1t

[
1 +
(
c0
c1t

+
c−1

c1t2
+ · · ·

)]−1

− · · · = 0.

Equating the coefficients of t, t0, and t−1 to zero, we obtain

c1 =
1

� cosλ− iz
, c0 = 0, c−1 = −ia

2z

2
. (117)

Expand now the function

θ2
1(2θ

2
1 − b2)

(b2 − 2θ2
1)2 + 4θ2

1

√
a2 − θ2

1

√
b2 − θ2

1

in a neighborhood of the point θ = ∞ or t = ∞,

2θ4
1 − b2θ2

1

4θ4
1 − 4b2θ2

1 + b4 − 4θ4
1

(
1 − a2

θ2
1

)1/2(
1 − b2

θ2
1

)1/2

=
2θ4

1 − b2θ2
1

(2a2 − 2b2)θ2
1 +
[
(b2 − a2)2

2
+ b4

]
+ · · ·

=
1

a2 − b2
θ2
1 − a4 + b4

4(a2 − b2)2
+ · · ·

=
c21

a2 − b2
t2 +

[
2c1c−1

a2 − b2
− a4 + b4

4(a2 − b2)2

]
+ · · · .

Hence,

θ2
1(2θ

2
1 − b2)

F (θ1)
∂θ1
∂t

=
c31

a2 − b2
t2 +

[
− c21c−1

a2 − b2
+

2c21c−1

a2 − b2
− (a4 + b4)c1

4(a2 − b2)2

]
+ · · · .

Similarly,

θ2 = d1t+ d−1
1
t

+ · · · , ∂θ2
∂t

= d1 − d−1
1
t2

− · · · ,
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where

d1 =
1

� cosλ− iz
; d−1 = −i b

2z

2
(118)

and
2θ2

2

√
a2 − θ2

2

√
b2 − θ2

2

F (θ2)
=

1
2
− (b2 − 2θ2

2)
2

2F (θ2)

=
1
2
− 4θ4

2 − 4b2θ2
2 + b4

2(2a2 − 2b2)θ2
2 + [(b2 − a2)2 + 2b4] + · · ·

= − 1
a2 − b2

θ2
2 +

b4 − 2a2b2 + 3a4

4(a2 − b2)2
+ · · ·

= − d2
1

a2 − b2
t2 +

[
− d1d−1

a2 − b2
+
b4 − 2a2b2 + 3a4

4(a2 − b2)2
+ · · ·

]
.

Consequently,
2θ2

2

√
a2 − θ2

2

√
b2 − θ2

2

F (θ2)
∂θ2
∂t

= − d3
1

a2 − b2
t2 +

[
d2
1d−1

a2 − b2
− 2

d2
1d−1

a2 − b2
+

(b4 − 2a2b2 + 3a4)d1

4(a2 − b2)2

]
+ · · · .

Substituting expressions (117) and (118) for c1, c−1, d1, and d−1, we have

θ2
1(2θ

2
1 − b2)

F (θ1)
∂θ1
∂t

+
2θ2

2

√
a2 − θ2

2

√
b2 − θ2

2

F (θ2)
∂θ2
∂t

=
c21c−1 − d2

1d−1

a2 − b2
+

2a4 − 2a2b2

4(a2 − b2)2
c1 + · · ·

= − iz

2(� cosλ− iz)2
+

a2

2(a2 − b2)(� cosλ− iz)
+ · · ·

=
a2� cosλ− iz(2a2 − b2)
2(a2 − b2)(� cosλ− iz)2

+ · · · ,

where the sum of omitted terms has order
1
t
. Hence, in view of the first formula

in (113), we have

q|t=∞ = β

π∫
0

a2� cosλ− iz(2a2 − b2)
2(a2 − b2)(� cosλ− iz)2

cosλ dλ.

By similar computations, we can also obtain

w|t=∞ = β

π∫
0

ib2� cosλ− z(a2 − 2b2)
2(a2 − b2)(� cosλ− iz)2

dλ.
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Integrating with respect to λ, we have

q|t=∞ =
πβ

2

[
�z

(�2 + z2)3/2
+

a2

a2 − b2

(
1
�
− z

�
√
�2 + z2

)]
,

w|t=∞ =
πβ

2

[
z2

(�2 + z2)3/2
− b2

a2 − b2
1√

�2 + z2

]
.

Taking into account (114), we can determine the constant

β =
P

2π2µ
. (119)

Substituting this expression for β in (113), we have the formulas presenting
a solution of the Lamb problem.

For points of the surface z = 0, these formulas are given in H. Lamb’s work
cited. For the general case z ≥ 0, they were obtained by S. L. Sobolev [4] by
a method different from the method of the present work.
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4. On Vibrations of a Half-Plane and a Layer
with Arbitrary Initial Conditions∗

S. L. Sobolev

The plane problem on vibrations of a half-plane and an elastic layer has been
repeatedly studied by many authors.

In the majority of papers on this question particular solutions of the equa-
tions of elasticity are found in the form of stationary sinusoidal modes. How-
ever, this approach presents considerable difficulties if we want to obtain the
general solution of the problem under arbitrary initial and boundary condi-
tions.

Our paper is based on a different principle, namely, on the method of
characteristics.

We apply the principle of reflected waves to construct a particular solution,
and then use the well-known method of G. Green and B. Riemann.

The advantages of this approach are to avoid the use of Fourier integrals,
which can be difficult in the case of continuous spectra.

V. Volterra was the first who applied this method to equations in the plane
theory of elasticity. Our paper has points of contact with a famous memoir of
this notable mathematician.

Another essential feature of our approach is the application of the theory
of functions of one complex variable to problems of this type, which had
already been used in the paper by V. I. Smirnov and S. L. Sobolev [1]. This
new method allows us to construct a class of solutions of the equations of
elasticity for which the reflection principle is easily established.

We show that by means of these solutions any arbitrary solution of the
problem can be obtained. For this purpose we have to adapt the Volterra
formula, which represents a direct generalization of the well-known Green
formula.

1. To avoid complications we restrict ourselves to vibrations of the half-
plane, because vibrations of the layer are in essence the same; the only differ-
ence is that for the layer several reflections have to be considered.

Our problem is to integrate the elasticity equations

∗ Mat. Sb., 40, 236–265 (1933)
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�
∂2u

∂t2
= (λ+ 2µ)

∂

∂x

(
∂u

∂x
+
∂v

∂y

)
+ µ

∂

∂y

(
∂u

∂y
− ∂v

∂x

)
+X,

�
∂2v

∂t2
= (λ+ 2µ)

∂

∂y

(
∂u

∂x
+
∂v

∂y

)
− µ

∂

∂x

(
∂u

∂y
− ∂v

∂x

)
+ Y

(1)

with the initial conditions

u|t=T (x,y) = u0(x, y),
∂u

∂t

∣∣∣∣
t=T (x,y)

= u′0(x, y),

v|t=T (x,y) = v0(x, y),
∂v

∂t

∣∣∣∣
t=T (x,y)

= v′0(x, y)

(2)

and the boundary conditions

Xy|y=0 = µ

(
∂u

∂y
+
∂v

∂x

)∣∣∣∣
y=0

= 0,

Yy|y=0 =
[
λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y

]∣∣∣∣
y=0

= 0.

(3)

The mechanical meaning of the boundary conditions is that stresses vanish on
the boundary of the medium. For the sake of simplicity, we limit ourselves in
this paper only to the case when T = 0, X = 0, Y = 0, although the proposed
method allows us to obtain solutions for arbitrary T , X, and Y .

Let us now recall the Volterra fundamental formula, which generalizes the
Green formula. We prove it in a somewhat simpler form than V. Volterra did.

Let (u, v) and (u1, v1) be any two solutions of (1).
For the first solution, we denote the stress components by Xx, Xy, Yy and

the components of the external forces by X, Y . We denote the corresponding
quantities for the second solution (u1, v1) by Xx,1, Xy,1, Yy,1 and X1, Y1. It
is known that1

Xx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x
, Xx,1 = λ

(
∂u1

∂x
+
∂v1

∂y

)
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∂u1

∂x
,

Xy = µ

(
∂u

∂y
+
∂v

∂x

)
, Xy,1 = µ

(
∂u1

∂y
+
∂v1

∂x

)
,

Yy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y
, Yy,1 = λ

(
∂u1

∂x
+
∂v1

∂y

)
+ 2µ

∂v1

∂y
.

(4)

We consider a domain Ω bounded by a surface S in the space with the
coordinates (x, y, t). Let ν be the direction of the inward normal to this surface.
1 For details see S. L. Sobolev “Some questions of the theory of propagation of

vibrations” in the book: Frank, F., Mises, R: Differential and Integral Equations
of Mathematical Physics. Vol. 2. ONTI, Leningrad – Moscow (1937). – Ed.
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Consider the following integral over the surface S,

I =
∫∫
S

{
[u1Xx + v1Xy − uXx,1 − vXy,1] cos νx

+[u1Xy + v1Yy − uXy,1 − vYy,1] cos νy

−�
[
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∂t
+ v1

∂v

∂t
− u
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− v

∂v1

∂t

]
cos νt

}
dS.

Replacing the stresses by their expressions (4) and applying the Gauss
formula, we obtain

I =
∫∫∫

Ω

{
u
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− �
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dx dy dt.

Using equation (1), we arrive at the final result2∫∫
S

{
[u1Xx + v1Xy − uXx,1 − vXy,1] cos νx

+[u1Xy + v1Yy − uXy,1 − vYy,1] cos νy

−�
[
u1
∂u

∂t
+ v1

∂v

∂t
− u

∂u1

∂t
− v

∂v1

∂t

]
cos νt

}
dS

=
∫∫∫

Ω

{u1X + v1Y − uX1 − vY1} dx dy dt. (5)

In all that follows formula (5) plays a main role. In our case the formula
is simplified, because the triple integral in it vanishes.

2. Formula (5) has been derived under the assumption that equations (1)
are valid throughout Ω. However, we have to apply this formula also when
certain partial derivatives of the solution (u1, v1) are discontinuous or even
become infinite on isolated surfaces inside Ω.

Let us clarify now conditions under which the formula remains valid even
for this case.
2 Formula (5) is known as the Volterra formula. – Ed.



134 S. L. Sobolev

For definiteness we suppose that there is just one surface of discontinuity
Σ inside Ω. Suppose also that at every point this surface has a continuously
changing tangent plane, and that the components of displacement (u1, v1), as
well as their derivatives in the direction tangential to Σ, all vary continuously
on passage across Σ3. We also need one more condition. We require that the
quantities

�
∂u1

∂t
cos νt−Xx,1 cos νx−Xy,1 cos νy,

�
∂v1

∂t
cos νt−Xy,1 cos νx− Yy,1 cos νy

(6)

are also continuous on Σ. In other words, quantities (6) tend to a limit at
any point M of Σ, and these limits are the same when Σ is approached from
either side.

Under these hypotheses we can divide Ω into two parts by Σ, and apply
formula (5) to each half. Adding up the obtained relations, the integrals over
Σ disappear and we again arrive at (5) for the entire domain Ω.

Continuity conditions (6) are sometimes referred to as the dynamic con-
ditions of compatibility of the elasticity problem. They are also consequences
of the equations of elasticity in the integral form∫∫

S

(
�
∂u1

∂t
cos νt−Xx,1 cos νx−Xy,1 cos νy

)
dS = −

∫∫∫
Ω

X1 dx dy dt,

(7)∫∫
S

(
�
∂v1

∂t
cos νt−Xy,1 cos νx− Yy,1 cos νy

)
dS = −

∫∫∫
Ω

Y1 dx dy dt.

This point of view is extremely general; however, we cannot go into details
here.

Continuity conditions for quantities (6) also admit a geometric interpre-
tation, according to which the velocity of propagation of the line of discon-
tinuity in the (x, y)-plane can only take two well-defined values. This fact
is well known, however, the usual proof assumes that the derivatives of the
components of displacement are finite on each side of the surface Σ. For our
purposes it is very important to get rid of this restriction, because for solutions
we encounter later these derivatives in fact go off to infinity on approaching
Σ. For this reason we now give a full proof of the fact mentioned above.

We rewrite expressions (6) in the form

�
∂u1

∂t
cos νt−

[
λ

(
∂u1

∂x
+
∂v1

∂y

)
+ 2µ

∂u1

∂x

]
cos νx

−µ
(
∂u1

∂y
+
∂v1

∂x

)
cos νy, (6.1)

3 This condition is sometimes called the kinematic condition of compatibility . – Ed.
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cos νx.

The continuity conditions for the tangential derivatives mean that the
quantities

∂u1

∂x
cos νy − ∂u1

∂y
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∂v1
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∂y
cos νx,

∂u1

∂y
cos νt− ∂u1

∂t
cos νy,

∂v1

∂y
cos νt− ∂v1

∂t
cos νy, (8)
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cos νx− ∂u1
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cos νt,

∂v1
∂t

cos νx− ∂v1

∂x
cos νt

vary continuously on passage across Σ. Thus, our conditions yield the follow-
ing eight quantities, which vary continuously on passage across Σ:

�
∂u1
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cos νt− (λ+ 2µ)

∂u1
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cos νx− µ

∂u1

∂y
cos νy − µ
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∂x
cos νy

−λ∂v1
∂y

cos νx = M1,

�
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cos νt− λ

∂u1
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cos νy − µ
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∂y
cos νx− µ

∂v1
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−(λ+ 2µ)
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cos νy = M2, (9)

∂u1
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cos νy − ∂u1
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∂y
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∂t
cos νy +

∂v1

∂y
cos νt = M7,

∂u1

∂t
cos νx− ∂u1

∂x
cos νt = M5,

∂v1

∂t
cos νx− ∂v1

∂x
cos νt = M8.

Consider the matrix of coefficients at the derivatives of the functions u
and v:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

� cos νt 0 −(λ + 2µ) cos νx −µ cos νy −µ cos νy −λ cos νx

0 � cos νt −λ cos νy −µ cos νx −µ cos νx −(λ + 2µ) cos νy

0 0 cos νy − cos νx 0 0

− cos νy 0 0 cos νt 0 0

cos νx 0 − cos νt 0 0 0

0 0 0 0 cos νy − cos νx

0 − cos νy 0 0 0 cos νt

0 cos νx 0 0 − cos νt 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (10)
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If this matrix is of rank 6, then we can choose a subsystem of six equations
from (9) for which all derivatives of the displacements can be defined uniquely
as continuous functions. Hence for Σ to be a surface of discontinuity it is
necessary that matrix (10) have rank less than 6.

It is easy to verify that matrix (10) may have six determinants of order
6 not vanishing identically; their values are Q cos2 νt, Q cos2 νx, Q cos2 νy,
Q cos νx cos νt, Q cos νy cos νt, Q cos νx cos νy, respectively, where Q is an ex-
pression of the form

[� cos2 νt− (λ+ 2µ)(cos2 νx+ cos2 νy)][� cos2 νt− µ(cos2 νx+ cos2 νy)].

Taking into account that cos2 νt, cos2 νx and cos2 νy cannot vanish simulta-
neously, we obtain the condition

[� cos2 νt− (λ+ 2µ)(cos2 νx+ cos2 νy)]

×[� cos2 νt− µ(cos2 νx+ cos2 νy)] = 0. (11)

This equation leads us to two types of surfaces of discontinuity,

� cos2 νt− (λ+ 2µ)(cos2 νx+ cos2 νy) = 0, (12)

� cos2 νt− µ(cos2 νx+ cos2 νy) = 0. (13)

The discontinuities of types (12) and (13) are called longitudinal and trans-
verse, respectively.

The geometrical meaning of such classification will become quite clear after
simple analysis.

Consider the coordinate system (x, y) chosen so that at a given point M
of the surface Σ the y-axis is tangent to the surface, i.e., we suppose that
cos νy = 0. Then, by (9), for a discontinuity of type (12) all derivatives of v1

must be continuous at the point M .
Indeed, by virtue of the choice of the coordinate system, we can assert

that the derivatives
∂u1

∂y
and

∂v1
∂y

are continuous. The second and the eighth

equations of (9) take in our case the form

�
∂v1

∂t
cos νt− µ

∂v1

∂x
cos νx = M ′

2,
∂v1

∂t
cos νx− ∂v1

∂x
cos νt = M8,

where M ′
2 and M8 vary continuously on passage across Σ.

Because of (12), the determinant of this system is nonzero, so
∂v1

∂x
and

∂v1

∂t
can be found as continuous functions on passage across Σ. In general, we may
claim that in the case given by equality (12) all derivatives of the displacement
components in the tangential direction to Σ, in other words, all derivatives of
a coordinate corresponding to the tangent to the line of discontinuity in the
(x, y)-plane, are continuous on passage across this surface (this line).
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Similarly, in the case when (13) holds, with the same choice of coordinates,
all derivatives of u1 are continuous, i.e., in this case the derivatives of the dis-
placement coordinate corresponding to the normal to the line of discontinuity
are continuous.

The preceding considerations had the purpose of deriving necessary conse-
quences of the assumptions we have made. We may now claim that our results
are also sufficient for (5) to be applicable.

More precisely, suppose that the surface Σ satisfies conditions (12), the
tangential derivatives of (u1, v1) are continuous on passage across Σ, and,
in addition, all derivatives of the displacement component corresponding to
the tangent to the line of discontinuity in the (x, y)-plane are continuous
on passage across this line. Then we may claim that the quantities in (6)
are continuous. Hence formula (5) is applicable. If instead of (12) we have
equality (13), then for the above conditions we need to replace the tangential
component of the discontinuity line by the normal component of this line.

Indeed, consider condition (12) and all other conditions mentioned above.
We choose the coordinate axes in the (x, y)-plane so that cos νy = 0. Then

the following derivatives are continuous:
∂u1

∂y
,
∂v1

∂t
,
∂v1
∂x

,
∂v1

∂y
.

The first of expressions (6.1) reduces in our case to the form

�
∂u1

∂t
cos νt− (λ+ 2µ)

∂u1

∂x
cos νx+M,

where M is continuous on passage across Σ. By (12), we have

�
∂u1

∂t
cos νt− (λ+ 2µ)

∂u1

∂x
cos νx = �

cos νt
cos νx

(
∂u1

∂t
cos νx− ∂u1

∂x
cos νt

)
.

Hence the first quantity in (6.1) is continuous. The continuity of the second
quantity is obvious. In the case when condition (13) holds, the proof is obvious.
We mention also two very useful special cases when formula (5) is valid. The
first is when condition (12) holds, the tangential derivatives are continuous

and, in addition, the vector (u1, v1) is potential, i.e.,
∂u1

∂y
=

∂v1

∂x
. Choosing

the x-axis and the y-axis as above, it is easy to see that
∂v1

∂x
and

∂v1

∂t
are

continuous. Thus, all requirements indicated above are fulfilled. The second
case is when (13) holds, the tangential derivatives are continuous and, in

addition, the vector (u1, v1) is solenoidal, i.e.,
∂u1

∂x
+
∂v1

∂y
= 0. The proof is

similar to the first case.
We now point out a consequence of the preceding arguments. Consider the

first case. Suppose that the vector (u1, v1) vanishes on Σ and is defined only
on one side of the surface. It is easy to see that the vector (u1, v1) can be
extended to the other side of Σ as u1 = 0, v1 = 0.

The previous arguments show that quantities (6.1) remain continuous,
therefore they vanish on Σ. A similar result holds in the second case as well.
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Finally, we point out that in both cases under the given hypotheses, the
integrals over Σ in formula (5) vanish.

The surface Σ satisfying (12) or (13) is often called the characteristic of
the equations of elasticity. The angle between the t-axis and the normal to

the longitudinal characteristic is equal to arctan
1
a
, while the angle between

the t-axis and the normal to the transverse characteristic is arctan
1
b
.

3. For further arguments we need to recall basic features of the new method
of studying the plane problem on elastic vibrations as proposed in the pa-
per [1]. This method consists in the application of the theory of functions of
a complex variable to this problem.

We recall the main idea of the method in detail, because we have to apply
it here with certain modifications.

Consider in the (x, y, t)-space the wave equation

∂2ϕ

∂t2
= c2∇2ϕ (c = a, b). (14)

In this space we take an equation that is linear with respect to x, y, t,
whose coefficients are analytic functions of a complex variable Φ,

l(Φ)t+m(Φ)x+ n(Φ)y = q(Φ). (15)

If the coefficients l, m and n satisfy the equation

l2(Φ) = c2[m2(Φ) + n2(Φ)], (16)

then the complex-valued function Φ defined by (15) as a function of x, y, t
satisfies equation (14).

A similar claim holds for the real and imaginary parts of Φ.
Thus, we can define a class of solutions of equation (14) in the form

ϕ = Re (Φ), (17)

where Φ satisfies (15).
The proof is completely obvious. We have to find the second derivatives of

Φ and verify that they satisfy equation (14). The above theorem is completely
analogous to a corresponding theorem in the theory of characteristics for first-
order equations.

It should be noted here that this theorem is valid also in the case when
values of Φ defined by (15) are real for all x, y, t in some domain of the three-
dimensional space and the coefficients l, m, n, and q are also real. This is a
particular case of a more general situation.

It is useful to normalize the method for obtaining solutions of equation
(14) in the above form.

We can divide equation (15) by l(Φ) and introduce the new variable

θ =
m(Φ)
l(Φ)

; then equation (15) takes the form
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t+ θx±
√

1
c2

− θ2y = χ(θ), (18)

and ϕ is determined by the equation

ϕ = Re (Φ(θ)), (19)

where Φ is an analytic function of θ. Formula (19) expresses the fact that ϕ is
a harmonic function of two variables: the real and the imaginary parts of θ.

Formula (19) provides a solution of equation (18) also when (18) has a real
root in some domain of the (x, y, t)-space. In this case formula (19) gives us
the real part of an analytic function on the real axis. In other words, in this
case we obtain an arbitrary function of the real variable θ.

Formula (19) leads to a simple construction of a class of solutions of equa-
tions of the elasticity theory.

It is well known that in the absence of external forces the general solution
of equations (1) can be written as the sum of two vectors

(u, v) = (u1, v1) + (u2, v2). (20)

The potential vector (u1, v1) satisfies the condition

∂u1

∂y
=
∂v1
∂x

(21)

and the wave equation

∂2(u1, v1)
∂t2

= a2∇2(u1, v1), a2 =
λ+ 2µ

�
. (22)

The solenoidal vector (u2, v2) satisfies the condition

∂u2

∂x
+
∂v2

∂y
= 0 (23)

and the wave equation

∂2(u2, v2)
∂t2

= b2∇2(u2, v2), b2 =
µ

�
. (24)

Each component of both vectors can be obtained from corresponding
equalities of type (19).

As we will see later, using this approach we will be able to obtain in the
form of (19) a particular solution of the problem in question. This approach
was used by V. Volterra in his famous memoir.

On the other hand, this method allows us easily to satisfy boundary condi-
tions (3) with the help of some simple reflection operations. For this purpose
it suffices to superimpose on one of the solutions of the equations of type (19)
two more solutions of the same type (the reflected waves).
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4. Now we consider in detail the theory of reflections.
First of all it is useful to recall some simple properties of solutions of the

above type.
Consider the manifold θ = const.
As we can see from equation (18), for real θ bounded between −1

c
and

+
1
c

the function χ(θ) is also real, and the manifolds θ = const are planes in
three-dimensional space making an angle arctan c with the t-axis.

On the other hand, the values of θ different from the above values define
lines rather than planes; this is so because for real x, y and t we need to
separate the real and imaginary parts in equation (18).

Hence we obtain a pair of real linear equations which determine a line.
The set of all lines corresponding to values of θ outside the interval(

−1
c
,+

1
c

)
fills out, generally speaking, a domain in the (x, y, t)-space. The

boundary surface of this domain must be composed of lines corresponding to
the deleted values of θ. For the study of elastic vibrations of some part of
the plane, its boundary must correspond in the (x, y, t)-space to a cylindrical
surface with generators parallel to the t-axis, and this surface also determines
a part of the boundary of the mentioned above domain. Let us investigate
more closely those parts of the boundary surface that are generated by real

values of θ in the interval
(
−1
c
,+

1
c

)
. We find the equations for the limiting

position of the line when the complex variable θ tends to the real value θ0
from that interval. Taking into account that, by condition, χ(θ) is real-valued

on a part of or the whole interval
(
−1
c
,+

1
c

)
, we can write equations of the

line corresponding to the complex value of θ in the form of two equations

t+ θx±
√

1
c2

− θ2y − χ(θ) = 0, t+ θx±
√

1
c2

− θ
2
y − χ(θ) = 0,

where θ is the complex conjugate of θ and the square root is defined by

continuation through the interval
(
−1
c
,+

1
c

)
.

In the limit when θ and θ approach to θ0, these equations lead to the
following relations, which determine the position of the line for θ = θ0:

t+ θ0x±
√

1
c2

− θ2
0y − χ(θ0) = 0, x∓ θ0√

1
c2 − θ2

0

y − χ′(θ0) = 0. (25)

Thus, we see that the surface generated by the above lines is the envelope

of the planes corresponding to the real values of θ inside
(
−1
c
,+

1
c

)
. Further-

more, each plane forms an angle arctan c with the t-axis. Thus, we can claim
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that the normal to the surface Σ generated by these lines must satisfy the

condition tan νt = ±1
c
. If we let

c = a =

√
λ+ 2µ

�
,

then this condition coincides with (12); on the other hand, if we let c = b =√
µ

�
, then it coincides with (13), i.e., Σ is a characteristic surface. If we write

the equation of this surface in the form v(x, y, t) = C, then equations (12)
and (13) can be reduced to the following form:(

∂v

∂x

)2

+
(
∂v

∂y

)2

− 1
c2

(
∂v

∂t

)2

= 0
(
c2 =

λ+ 2µ
�

,
µ

�

)
. (26)

Suppose that we are dealing with a vector of potential (respectively,
solenoidal) type satisfying the elasticity equations, and that its components
are expressed in form (19) in some domain D1 of the (x, y, t)-space, where
equation (18) has complex conjugate roots. The preceding arguments pro-
vide us with a simple method for continuation of this solution across Σ into
a domain D2 in which equation (18) has two real roots corresponding to
the above imaginary roots. However, this continuation is not unique. As was
shown above, Σ is a characteristic surface, hence quantities (6.1) remain con-
tinuous and formula (5) remains applicable after continuation in the case when
this continuation is carried out preserving the continuity of (u1, v1) across Σ,
and, thus, the continuity of the tangential derivatives of (u1, v1). We look for
(u1, v1) in the domain D2 in the form of (19) with the same analytic functions,
as those defined on D1. This ensures continuity of (u1, v1) on passage across
Σ. In what follows one conclusion is essential concerning the planes

t+ θx±
√

1
a2

− θ2y − χ(θ) = 0, −1
a
≤ θ ≤ 1

a
,

which fill out D2.

Every plane corresponding to a value of θ in the interval
(
−1
a
,+

1
a

)
is di-

vided into two parts by the corresponding line of the surface Σ. Consequently
outside D2 we have two systems of half-planes.

From the point of view of the solutions of equations (18), these two systems
correspond to the fact that the complex root in D1 of this equation becomes
multiple on the boundary and can be extended in two different ways beyond
this domain. Thus, it is quite natural to define the function ϕ outside D1 in
two different ways.

As we have seen above, each point of D2 corresponds to two different real
values of θ. In (19) we can choose for (u1, v1) values of θ such that they belong
to one or another of the above systems of half-planes.



142 S. L. Sobolev

In general, we may superimpose these two solutions and obtain a composite
structure, which will turn out to be useful later. To obtain this composite
structure we express u1 and v1 as the sum of two functions of θ chosen so
that their sum on either half of the tangent plane is equal to u1 and v1 on the
corresponding line of Σ.

We now study the connection between the values of the complex variable
θ and the direction of the corresponding line. First, note that this direction
does not depend on the choice of the function χ(θ).

For definiteness we suppose that in formula (18) just one sign is chosen in

front of the radical

√
1
a2

− θ2.

We cut the complex plane θ along the interval
(
−1
a
,+

1
a

)
of the real line,

and let the radical

√
1
a2

− θ2 have negative imaginary part for real θ >
1
a
.

Then this root is positive on the upper lip of our cut and negative on the lower
lip. Suppose that the minus sign is taken in front of the radical in formula (18).
Then along the lines corresponding to θ in the upper half-plane t and y are
changing in the same direction. For a solution of the problem of vibration of
the half-plane y > 0 with given initial conditions we take the parts of the lines
for which y > 0 and we let t decrease. In accordance with this fact, the rays
corresponding to values of θ in the upper half-plane go from the interior of the
domain y > 0 and intersect the boundary y = 0. We call these rays incident
rays. Similarly, along each ray corresponding to θ in the lower half-plane, t
and y vary in opposite directions and these rays go from the boundary y = 0
into the domain y > 0. These are called reflected rays. If in formula (18) we
take the plus sign in front of the radical, the rays corresponding to θ in the
lower half-plane become the incident rays.

Besides the incident and reflected rays, the notions of incident and reflected
waves are also useful.

To clarify these notions, we now study in detail the surface Σ generated

by those lines that correspond to real values of θ in the interval
(
−1
a
,+

1
a

)
.

The section L of Σ by the plane t = t0 is the envelope of the lines

t0 + θx−
√

1
a2

− θ2y − χ(θ) = 0,

and the slopes of these lines are determined by

dy

dx
=

θ√
1
a2 − θ2

,

from which it follows that the tangent to L at the point, where θ = 0, is
parallel to the axis y = 0; also the part of L for which x is a monotone
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function of θ is convex. We examine just this part of L, assuming that the
point, where θ = 0, is in its interior.

The part of the plane t = t0 lying in a neighborhood of this curve on its
concave side belongs to the domain D of the (x, y, t)-space filled out by the
lines corresponding to complex values of θ. Suppose that θ is in the upper
half-plane, i.e., that the rays are incident.

We assume that as t varies over some interval 0 > t > T these rays move
inside the half-plane y > 0.

We also assume that in the case of incident rays and for the part of L under

consideration the quantity
d2y

dx2
is positive. This is essential to our argument.

Thus, the part of L in question has the shape illustrated in Fig. 1.

Fig. 1.

In the domain D the components of the vector (u1, v1) are determined by
equations of type (19). We now define these functions outside the domain D
as follows: on each tangent half-plane to Σ, whose traces on the plane t = t0
are shown in Fig. 2, a), we define u1, v1 by equating them with their respective
values at the point of tangency; in the domain beyond the horizontal tangent
we obtain u1 = v1 = 0.

The rule by which we have defined u1, v1 outside D was chosen to ensure
that in a neighborhood of the line y = 0 for t > T the vector (u1, v1) remains
constant.

In some domain D of the (x, y, t)-space consisting of incident rays let
equation (18) for θ give a complex value, for instance, in the upper half-plane.

It is perfectly obvious that if Re (Φ(0)) = 0 (from now on we always
suppose this to be the case), then our method allows us to continue u1 and
v1 in a well-defined manner to the exterior of D so that their extensions are
continuous functions.

We call such a wave an incident wave. Reflected waves are defined anal-
ogously. The part corresponding to complex values of θ consists of reflected
rays. The corresponding curve has its convex side turned towards the half-
space y > 0 and the values of the vector (u1, v1) are defined in such a way
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that this vector vanishes on each half-plane whose line of intersection with
the plane y = 0 has points with the following property: the t-coordinate of
such a point is greater than the t-coordinate of the point of intersection of the
corresponding line and the plane y = 0.

This wave is shown in Fig. 2, b).

Fig. 2.

Note that in the case of a layer enclosed between two straight lines, a
wave that is incident relative to one of its boundaries is reflected relative to
the other.

The idea of our method is that to satisfy boundary conditions (3) we
have to superimpose two reflected waves on the motion, given as an incident
longitudinal or transverse wave. One wave is longitudinal and the other one
is transverse.

As pointed out above, the reflected waves have been chosen so that for
t > T the fundamental mode remains stationary.

5. We now move on to the construction of the reflected waves. Consider
the incident longitudinal wave defined by the equations

δ1 ≡ t+ θ1x−
√

1
a2

− θ2
1 y − χ(θ1) = 0, (18.1)

u1 = Re (U1(θ1)), v1 = Re (V1(θ1)). (27)

For this wave to be in fact longitudinal and to satisfy (21) it suffices that
functions U1 and V1 satisfy the obvious relation:

−∂U1

∂θ1

√
1
a2

− θ2
1 =

∂V1

∂θ1
θ1, (28)

which we assume to hold from now on.
Let equations (27) give a solution satisfying boundary conditions (3) for

t > T ; more precisely, suppose that for such values of t there is no mo-
tion in a neighborhood of the plane y = 0. Suppose also that Re (V1(0)) =
Re (U1(0)) = 0, which is necessary for the vector (u1, v1) to be continuous.
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To meet boundary conditions (3) we superimpose on this solution two
reflected waves, longitudinal and transverse, which do not alter the motion
for t > T .

For this purpose it is natural to look for both waves in the same form

u2 = Re (U2(θ2)), v2 = Re (V2(θ2)), (29)

u3 = Re (U3(θ3)), v3 = Re (V3(θ3)). (30)

The simplest way to do it is to suppose that the values of θ2 and θ3 coincide
with the values of θ1 on the plane y = 0, i.e., that each incident ray generates
two reflected rays determined by the same value of the complex variable θ.

For θ2 and θ3 to determine reflected rays we need to take in equation (18)
the coefficient of y with the sign opposite to that of the incident wave.

Thus, we obtain the following two equations for θ2 and θ3:

δ2 ≡ t+ θ2x+

√
1
a2

− θ2
2 y − χ(θ2) = 0, (31)

δ3 ≡ t+ θ3x+

√
1
b2

− θ2
3 y − χ(θ3) = 0. (32)

It is obvious that θ2 and θ3 coincide with θ1 for y = 0.
For wave (29) to be longitudinal it suffices that U2 and V2 satisfy the

equation
∂U2

∂θ2

√
1
a2

− θ2
2 =

∂V2

∂θ2
θ2, (33)

and for wave (30) to be transverse it suffices that the equation

−∂U3

∂θ3
θ3 =

∂V3

∂θ3

√
1
b2

− θ2
3 (34)

holds.
We now consider boundary conditions (3). Substituting the obtained values

of u and v into the expressions for stresses, we obtain

Xy|y=0 = µRe
{
∂U1

∂θ1

√
1
a2 − θ2

1

δ′1
+
∂V1

∂θ1

−θ1
δ′1

+
∂U2

∂θ2

−
√

1
a2 − θ2

2

δ′2

+
∂V2

∂θ2

−θ2
δ′2

+
∂U3

∂θ3

−
√

1
b2 − θ2

3

δ′3
+
∂V3

∂θ3

−θ3
δ′3

}∣∣∣∣
y=0

= 0,

Yy|y=0 = µRe
{
a2

b2

[
∂U1

∂θ1

−θ1
δ′1

+
∂V1

∂θ1

√
1
a2 − θ2

1

δ′1
+
∂U2

∂θ2

−θ2
δ′2
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+
∂V2

∂θ2

−
√

1
a2 − θ2

2

δ′2
+
∂U3

∂θ3

−θ3
δ′3

+
∂V3

∂θ3

−
√

1
b2 − θ2

3

δ′3

]
−2
[
∂U1

∂θ1

−θ1
δ′1

+
∂U2

∂θ2

−θ2
δ′2

+
∂U3

∂θ3

−θ3
δ′3

]}∣∣∣∣
y=0

= 0,

where δ′1, δ
′
2, and δ′3 denote the partial derivatives with respect to θ of the left

sides of corresponding equations 4.
Taking into account (28), (33), and (34), we may replace the derivatives

of the function V by the corresponding derivatives of the function U .
Observing that δ′1, δ

′
2, and δ′3 coincide for y = 0, we obtain the following

two equations sufficient for the validity of the boundary conditions:

2
∂U1

∂θ

√
1
a2

− θ2 − 2
∂U2

∂θ

√
1
a2

− θ2 − ∂U3

∂θ

(
1
b2 − 2θ2

)√
1
b2 − θ2

= 0,

∂U1

∂θ

(
2θ2 − 1

b2

)
θ

+
∂U2

∂θ

(2θ2 − 1
b2 )

θ
+
∂U3

∂θ
2θ = 0.

(35)

These equations allow us to find the unknown functions U2 and U3 from
the following two equations:

∂U2

∂θ
= −

(
2θ2 − 1

b2

)2 − 4θ2
√

1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂U1

∂θ
,

∂U3

∂θ
= −

4
(
2θ2 − 1

b2

)√
1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂U1

∂θ
.

(36.1)

Then the functions V2 and V3 are found from

∂V2

∂θ
=

(
2θ2 − 1

b2

)2 − 4θ2
√

1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂V1

∂θ
,

∂V3

∂θ
= − 4θ2

(
2θ2 − 1

b2

)
(
2θ2 − 1

b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂V1

∂θ
.

(36.2)

It is easy to see that the reflected waves do not change the motion when t > T .
Consequently the obtained motion satisfies the initial conditions.

The functions U2, V2, U3, V3 are continuous, because constants of integra-
tion can be chosen so that

4 In view of (22), (24) we have a2

b2
= λ

µ
+ 2. – Ed.
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Re (U2(0)) = Re (V2(0)) = Re (U3(0)) = Re (V3(0)) = 0. (37)

The case of a transverse incident wave can be studied in a completely
analogous fashion.

For such wave we obtain the formulas

u4 = Re (U4(θ4)), v4 = Re (V4(θ4)), (38)

Re (U4(0)) = 0, Re (V4(0)) = 0, (39)

where θ4 satisfies the equation

δ4 ≡ t+ θ4x−
√

1
b2

− θ2
4 y − χ(θ4) = 0, (40)

and U4, V4 are connected by the relation

∂U4

∂θ4
θ4 =

∂V4

∂θ4

√
1
b2

− θ2
4. (41)

Then the reflected waves are defined by the following equations:

u5 = Re (U5(θ5)), v5 = Re (V5(θ5)), (42)

δ5 ≡ t+ θ5x+

√
1
a2

− θ2
5 y − χ(θ5) = 0, (43)

u6 = Re (U6(θ6)), v6 = Re (V6(θ6)), (44)

δ6 ≡ t+ θ6x+

√
1
b2

− θ2
6 y − χ(θ6) = 0, (45)

∂U5

∂θ5

√
1
a2

− θ2
5 =

∂V5

∂θ5
θ5, (46)

∂U6

∂θ6
θ6 = −∂V6

∂θ6

√
1
b2

− θ2
6, (47)

∂U5

∂θ
=

4θ2
(
2θ2 − 1

b2

)
(
2θ2 − 1

b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂U4

∂θ
,

∂V5

∂θ
=

4
(
2θ2 − 1

b2

)√
1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂V4

∂θ
,

(48.1)

∂U6

∂θ
=

(
2θ2 − 1

b2

)2 − 4θ2
√

1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂U4

∂θ
,

∂V6

∂θ
=

− (2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2(

2θ2 − 1
b2

)2 + 4θ2
√

1
a2 − θ2

√
1
b2 − θ2

∂V4

∂θ
.

(48.2)
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To apply formula (5) to the reflected waves so constructed it is essential
that the coefficients in equalities (36) and (48) do not have singular points in
the open upper half-plane of the variable θ. Let us find all the singular points

of these coefficients. First of all, there are the branch points ±1
a
, ±1

b
on the

real axis; these are of no interest. Let us study the poles of the coefficients
in question. They can occur only at the point θ = ∞ or at the roots of the
equation

F (θ) ≡
(

2θ2 − 1
b2

)2

+ 4θ2

√
1
a2

− θ2

√
1
b2

− θ2 = 0. (49)

The series expansion of the denominator in the neighborhood of the point
θ = ∞ takes the simple form(

2θ2 − 1
b2

)2

+ 4θ2

√
1
a2

− θ2

√
1
b2

− θ2 =
(

2
a2

− 2
b2

)
θ2 +O(1), (50)

where O(1) is finite at θ = ∞.
The expansion of all numerators begins with θ4. Hence the coefficients have

a second-order pole at θ = ∞. However, no difficulties arise because of this
pole, since the ray corresponding to θ = ∞ is parallel to y = 0 and therefore
is not reflected.

Now we consider the roots of equation (49). The inspection of this equation

shows that it has only two real roots ±1
c
, where c < b.

Indeed, the existence of these roots follows from the change of the sign of

the left side of equation (49) as θ varies in each of the intervals
(
−∞,−1

b

)
and

(
1
b
,+∞

)
.

The fact that these roots are the only real roots can be easily proved. To
prove that there are no other real roots of equation (49), we have merely to

investigate the sign of the derivative. For instance, for
1
b
< θ < ∞,

F ′(θ) =

(
16θ3 − 8 θ

b2

)√
θ2 − 1

b2

√
θ2 − 1

a2 − 16θ5 + 12θ3
(

1
a2 + 1

b2

)− 8θ
a2b2√

θ2 − 1
a2

√
θ2 − 1

b2

< −
(

1
b2 − 1

a2

) (
12θ3 + 8θ

b2

)√
θ2 − 1

a2

√
θ2 − 1

b2

< 0,

and for −∞ < θ < −1
b

the inequality signs are reversed.

Thus, F ′(θ) has constant sign in each of these intervals.
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It is easy to see that on the interval
(
−1
b
,+

1
b

)
of the real axis the left

side of equation (49) does not have roots. It is now easy to show that this
expression has no roots in the open upper half-plane of the variable θ.

Indeed, if θ goes along the interval
(
−∞,−1

b

)
with an indentation in the

upper half-plane to avoid the root −1
c
, then the argument of our quantity un-

dergoes a jump of π. On the interval
(
−1
b
,+

1
b

)
the real part of our function

is positive and there is no jump of its argument. When θ moves along the

interval
(

1
b
,+∞

)
there is again a jump of argument of π as for the interval(

−∞,−1
b

)
. Finally, in view of the estimate of our expression in the neigh-

borhood of θ = ∞ (formula (50)), the change of argument along a sufficiently
large semicircle centered at the origin is −2π. Hence the required result now
follows from the classical Cauchy theorem.

A similar argument shows that there are no roots of equation (49) in the
lower half-plane.

As we see later, these poles give rise to the phenomenon known as “surface
waves” or the Rayleigh waves.

6. After these preparatory remarks we can now move on to the solving of
the problem stated about vibrations of the half-plane under arbitrary initial
conditions.

First of all we make an important remark concerning the representation
of particular solutions in elasticity theory.

It can be shown that if some solution ϕ of the wave equation is a homo-
geneous function of degree zero with respect to

(t0 − t), (x− x0), (y − y0), (51)

then it can be written in the form

ϕ = Re (Φ(θ)), (52)

where

(t0 − t) − θ(x− x0) +

√
1
a2

− θ2(y − y0) = 0. (53)

The proof is obvious. Any homogeneous function of degree zero is a func-

tion of the arguments
x− x0

t0 − t
and

y − y0

t0 − t
. Instead of these variables we can

introduce two new variables:

Re θ and Im θ. (54)

Replacing in the wave equation x, y and t by variables (54), we arrive at
the Laplace equation. This proves the above assertion.
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Following V. Volterra, we take a particular solution of the problem in the
form

u1 =
∂ϕ1

∂x
, v1 =

∂ϕ1

∂y
,

ϕ1 = (t0 − t) ln

(
a(t0 − t)

r
+

√
a2(t0 − t)2

r2
− 1

)
−
√

(t0 − t)2 − r2

a2
, (55)

where a =

√
λ+ 2µ

�
and r =

√
(x− x0)2 + (y − y0)2, and the point (x, y, t)

is located inside the cone
a(t0 − t) = r.

Here u1 and v1 are homogeneous functions of degree zero of variables (51),
therefore we can express them in form (52) (or (27)).

A simple computation gives us

U1 = −i
√

1
a2

− θ2, V1 = −iθ, (56)

where θ satisfies equation (53).
It is easy to see that in this case the rays corresponding to complex values

of θ generate the cone t − t0 <
r

a
with an apex at the point (x0, y0, t0) and

angle arctan a between its generator and the t-axis. At the boundary of this
domain u1 and v1 vanish. The incident rays correspond to the half of the
cone for which y− y0 < 0, and the rays, which by our definition are reflected,
correspond to the other half of the cone.

The formulas obtained in the preceding section enable us to find the re-
flected waves and to construct the solution for t < t0 − y0

a
as well.

For this purpose we have to take in (18.1), (31) and (32)

χ(θ) = t0 + θx0 −
√

1
a2

− θ2y0. (57)

The waves arising in this case are shown in Fig. 3.
The displacements u, v are nonzero inside the above-mentioned cone,

t0 − t =
1
a

√
(x− x0)2 + (y − y0)2. (58)

Denote by Ω1 the domain bounded by this cone, the plane y = 0 and the
plane t = 0.

Let L1 be the surface of the cone, Σ be the part of the boundary of Ω1

in the plane y = 0, and S1 be the part of the boundary of Ω1 in the plane
t = 0. Then it follows from the arguments of Sect. 2, that the displacements
and their corresponding expressions (6.1) vanish on L1.
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Fig. 3.

The displacements (u2, v2) are nonzero in the domain Ω2 bounded by a
part L2 of the surface of the reflected cone

t0 − t =
1
a

√
(x− x0)2 + (y + y0)2 (59)

and a part S2 of the plane t = 0.
These displacements together with expressions (6.1) vanish on L2.
Finally, the displacements (u3, v3) are nonzero only in the domain Ω3

bounded by the envelope of the planes

t0 − t− θ3(x− x0) −
√

1
b2

− θ2
3 y −

√
1
a2

− θ2
3 y0 = 0, (60)

a part of Σ in the plane y = 0, and a part S3 of the plane t = 0.
On L3 the displacements (u3, v3) and their corresponding expressions (6)

vanish.
The sum of the three waves on Σ (and therefore on the entire plane y = 0)

satisfies the equations

Xy,1 +Xy,2 +Xy,3 = 0,

Yy,1 + Yy,2 + Yy,3 = 0.
(61)

In precisely the same way we can examine the reflection of the second partic-
ular solution of V. Volterra:

u4 =
∂ψ4

∂y
, v4 = −∂ψ4

∂x
,

ψ4 = (t0 − t) ln

(
b(t0 − t)

r
+

√
b2(t0 − t)2

r2
− 1

)
−
√

(t0 − t)2 − r2

b2
,

(62)
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where b =
√
µ

�
, t0 − y0

b
< t < t0.

By arguments that differ in no way from the preceding ones it can be
shown that the displacements (u4, v4) can be written in the form

u4 = Re (U4(θ4)), U4(θ4) = −iθ4,

v4 = Re (V4(θ4)), V4(θ4) = i

√
1
b2

− θ2
4,

(63)

where

(t0 − t) − θ4(x− x0) +

√
1
b2

− θ2
4(y − y0) = 0. (64)

Thus, the analysis carried out in the previous section allows us to construct
reflected waves and to find a solution for t < t0 − y0

b
.

A geometric picture of the waves is provided in Fig. 4.
To obtain the appropriate formulas in this case we have to choose for χ(θ)

in the corresponding equations of Sect. 5 ((40), (43) and (45)) the function

χ(θ) = t0 + θx0 −
√

1
b2

− θ2 y0. (65)

The displacements (u4, v4) vanish outside the cone L4:

t0 − t =
1
b

√
(x− x0)2 + (y − y0)2, (66)

and are nonzero inside the domain Ω4 bounded by this cone, a part Σ′ of the
surface y = 0 and a part S4 of the plane t = 0; (u4, v4) vanish on L4 together
with their corresponding expressions (6.1).

Several observations have to be made concerning the reflected waves. First
consider the longitudinal reflected wave. It is generated by rays corresponding
to values of θ in the upper half-plane. The boundary of the domain generated
by these rays consists of rays corresponding to values of θ in the interval(
−1
b
,+

1
b

)
, i.e., the rays obtained as reflections of rays belonging to the

contour of the incident wave.

However, the rays corresponding to the subintervals
(
−1
b
,−1

a

)
and(

1
a
,
1
b

)
lie in the plane y = 0, as can be seen from equations (43). It is

also easy to see that they touch the hyperbola in the intersection of the cone
(66) with the plane y = 0.

The components of displacements (u5, v5) and their corresponding expres-
sions (6.1) vanish on the surface L5 defined as the envelope of planes (43) for

−1
a
< θ < +

1
a
.
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Fig. 4.

The reflected transverse wave is an example of a wave in which there are
half-planes as well as rays.

Indeed, the boundary of the domain generated by the rays corresponding
to complex values of θ is generated by the rays corresponding to values of θ

in the interval −1
b
< θ < +

1
b
.

But on this interval the coefficients in reflection formulas (48) are not real.
Therefore, the functions u6(θ6) and v6(θ6) cannot have zero real parts on this
interval, since the real parts of the functions u4(θ4) and v4(θ4) vanish here,
while their imaginary parts are definitely nonzero.

Hence, by the arguments in Sect. 5, (u6, v6) are nonzero on certain half-
planes.

Thus, the domain Ω6, where (u6, v6) are nonzero is bounded by the surface
L6 consisting of a part of the reflected cone

t0 − t =
1
b

√
(x− x0)2 + (y − y0)2 (67)

and two planes tangent to cone (67) and corresponding to the values θ = ±1
a
,

and also of the surface Σ′ and a part S6 of the plane t = 0.
7. We now return to the main problem. Following V. Volterra, we apply

formula (5) to the required solution as well as to the solution (u1, v1) con-
structed above in the domain Ω′

1, which is obtained from Ω1 by cutting out a
small cylinder M of radius ε along the singular (for our solution) line x = x0,
y = y0.

We obtain∫∫
S1

G1dS +
∫∫
L1

G1dS +
∫∫
M

G1dS +
∫∫
Σ

G1dS = 0, (68)
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where G1 denotes the expression in the double integral in formula (5).
As noted earlier, the surface integral over L1 is zero. The integral over S1

is known, because its integrand contains only u, v,
∂u

∂t
, and

∂v

∂t
when t = 0.

Consider the integral over M . It is obvious that cos νt vanishes on M . Keeping
in mind that ν is the inward normal for Ω′

1, we obtain

cos νx =
x− x0

r
, cos νy =

y − y0

r
, r =

√
(x− x0)2 + (y − y0)2 = ε. (69)

Furthermore,

u1 = −
√

(t0 − t)2 − r2

a2

r
cos νx, v1 = −

√
(t0 − t)2 − r2

a2

r
cos νy,

Xx,1 cos νx+Xy,1 cos νy

=

⎧⎨⎩(λ+ 2µ)
(t0 − t)2√

(t0 − t)2 − r2

a2

− λ

√
(t0 − t)2 − r2

a2

⎫⎬⎭ cos νx
r2

,

Xy,1 cos νx+ Yy,1 cos νy

=

⎧⎨⎩(λ+ 2µ)
(t0 − t)2√

(t0 − t)2 − r2

a2

− λ

√
(t0 − t)2 − r2

a2

⎫⎬⎭ cos νy
r2

.

(70)

Consider first the integral∫∫
M

[u(Xx,1 cos νx+Xy,1 cos νy) + v(Xy,1 cos νx+ Yy,1 cos νy)] dt dl,

where dl denotes the element of arc length of the circle in the base of the
cylinder. This integral can be transformed in an obvious way to the following:

t0− ε
a∫

0

⎧⎨⎩
⎡⎣2µ

√
(t0 − t)2 − ε2

a2
+

ε2(λ+ 2µ)

a2

√
(t0 − t)2 − ε2

a2

⎤⎦

× 1
ε2

∫
C

(u cos νx+ v cos νy) dl

⎫⎬⎭ dt,

where C is the circle.
Applying to the integral over C first the Green formula and then the mean

value theorem, we obtain

π

t0− ε
a∫

0

⎧⎨⎩
⎡⎣2µ

√
(t0 − t)2 − ε2

a2
+

(λ+ 2µ) ε2

a2√
(t0 − t)2 − ε2

a2

⎤⎦(∂u
∂x

+
∂v

∂y

)
ξ, η

⎫⎬⎭ dt,
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where the point ξ, η depends on t and lies inside C.
We find the limit of this integral as ε → 0. It is equal to

2πµ

t0∫
0

(t0 − t)
(
∂u

∂x
+
∂v

∂y

)
x0, y0

dt

+ lim
ε→0

(λ+ 2µ)
π

a2

t0− ε
a∫

0

ε2√
(t0 − t)2 − ε2

a2

(
∂u

∂x
+
∂v

∂y

)
ξ, η

dt.

Let K be the upper bound of the quantity
∣∣∣∣∂u∂x +

∂v

∂y

∣∣∣∣. It is obvious that

the absolute value of the second term in the above expression does not exceed

(λ+ 2µ)
π

a2

t0− ε
a∫

0

Kε2√
(t0 − t)2 − ε2

a2

dt.

Substituting the independent variable

t = t0 − ε

a
− z,

this integral reduces to the form

(λ+ 2µ)π
a2

t0− ε
a∫

0

Kε2√
z
(
z + 2ε

a

)dz.
The latter integral clearly tends to zero as ε → 0. Similarly it can be shown
that

lim
ε→0

∫∫
M

[u1(Xx cos νx+Xy cos νy) + v1(Xy cos νx+ Yy cos νy)] dt dl

= −2π(λ+ 2µ)

t0∫
0

(t0 − t)
(
∂u

∂x
+
∂v

∂y

)
x0, y0

dt.

At last,

lim
ε→0

∫∫
M

G1dS = −2π(λ+ 2µ)

t0∫
0

(t0 − t)
(
∂u

∂x
+
∂v

∂y

)
x0, y0

dt. (71)
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Finally, we obtain

2π(λ+ 2µ)

t0∫
0

(t0 − t)
(
∂u

∂x
+
∂v

∂y

)
dt =

∫∫
S1

G1dS +
∫∫
Σ

G1dS. (72)

For our purposes it is necessary to express the right side of equality (72) in
terms of known quantities. Therefore, we must eliminate

∫∫
Σ

G1dS. To do this,

we consider additionally the domains Ω2, Ω3 and apply formula (5) to the
required solution as well as to the solutions (u2, v2) and (u3, v3) constructed
earlier. We obtain

−
∫∫
Σ

G2dS −
∫∫
L2

G2dS −
∫∫
S2

G2dS = 0, (73)

or, since the integral over L2 is zero,

−
∫∫
Σ

G2dS −
∫∫
S2

G2dS = 0,

similarly

−
∫∫
Σ

G3dS −
∫∫
S3

G3dS = 0. (74)

Taking into account that

G1 + G2 + G3 = 0 over Σ, (75)

and using (2) and (61), we obtain

2π(λ+ 2µ)

t0∫
0

(t0 − t)
(
∂u

∂x
+
∂v

∂y

)
x0, y0

dt

=
∫∫
S1

G1dS +
∫∫
S2

G2dS +
∫∫
S3

G3dS. (76)

In the same way we can apply formula (5) to the required solution and to
the particular solution (u4, v4) in the domain Ω4 with a cylinder M1 of radius
ε removed from it. This gives us∫∫

S4

G4dS +
∫∫
L4

G4dS +
∫∫
M1

G4dS +
∫∫
Σ′

G4dS = 0. (77)

Calculating the integral over M1, we obtain
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− lim
ε→0

∫∫
M1

G4dS

= lim
ε→0

∫∫
M1

[u(Xx,4 cos νx+Xy,4 cos νy) + v(Xy,4 cos νx+ Yy,4 cos νy)] dS

− lim
ε→0

∫∫
M1

[u4(Xx cos νx+Xy cos νy) + v4(Xy cos νx+ Yy cos νy)] dS

= lim
ε→0

t0− ε
b∫

0

⎧⎨⎩
⎡⎣2µ

√
(t0 − t)2 − ε2

b2
+

µε2

b2
√

(t0 − t)2 − ε2

b2

⎤⎦ 1
ε2

×
∫
C

(u cos νy − v cos νx) dl

⎫⎬⎭ dt− lim
ε→0

∫∫
M1

[(Xxu4 +Xyv4) cos νx

+(Xyu4 + Yyv4) cos νy] dS,

and hence by arguments similar to the previous case we obtain

− lim
ε→0

∫∫
M1

G4dS = 2πµ

t0∫
0

(t0 − t)
(
∂u

∂y
− ∂v

∂x

)
x0, y0

dt. (78)

Applying again the previous arguments, we obtain the second fundamental
formula

2πµ

t0∫
0

(t0 − t)
(
∂u

∂y
− ∂v

∂x

)
x0, y0

dt =
∫∫
S4

G4dS+
∫∫
S5

G5dS+
∫∫
S6

G6dS. (79)

Denoting the right sides of equalities (76) and (79) by M and N , respec-
tively, we rewrite these equations in the form

t0∫
0

(λ+ 2µ)
(
∂u

∂x0
+

∂v

∂y0

)
(t0 − t)dt =

1
2π

M(x0, y0, t0), (76.1)

t0∫
0

µ

(
∂u

∂y0
− ∂v

∂x0

)
(t0 − t)dt =

1
2π

N(x0, y0, t0), (79.1)

where M(x0, y0, t0) and N(x0, y0, t0) are known.
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These formulas yield

t0∫
0

[
(λ+ 2µ)

∂

∂x0

(
∂u

∂x0
+

∂v

∂y0

)
+ µ

∂

∂y0

(
∂u

∂y0
− ∂v

∂x0

)]
(t0 − t)dt

=
1
2π

(
∂M

∂x0
+
∂N

∂y0

)
,

t0∫
0

[
(λ+ 2µ)

∂

∂y0

(
∂u

∂x0
+

∂v

∂y0

)
− µ

∂

∂x0

(
∂u

∂y0
− ∂v

∂x0

)]
(t0 − t)dt

=
1
2π

(
∂M

∂y0
− ∂N

∂x0

)
,

and hence, using equations (1), we obtain

t0∫
0

�
∂2(u, v)
∂t2

(t0 − t)dt =
1
2π

[(
∂M

∂x0
,
∂M

∂y0

)
+
(
∂N

∂y0
,− ∂N

∂x0

)]
. (80)

Integrating by parts, we arrive at the relation

(u, v)|x0,y0,t0 = (u, v)|x0,y0,0 + t0

(
∂u

∂t
,
∂v

∂t

) ∣∣∣∣
x0,y0,0

+
1

2π�

[(
∂M

∂x0
,
∂M

∂y0

)
+
(
∂N

∂y0
,− ∂N

∂x0

)]
. (81)

Formula (81) gives the solution of our problem.
The assumption that T = 0, X = 0, Y = 0 is inessential for our arguments,

since the same particular solutions with the same reflection principle permit
us to obtain an analogous result even in the general case.

The functions M(x0, y0, t0) and N(x0, y0, t0) are expressed as sums of in-
tegrals:

M(x0, y0, t0) =
∫∫
S1

G1dS +
∫∫
S2

G2dS +
∫∫
S3

G3dS,

N(x0, y0, t0) =
∫∫
S4

G4dS +
∫∫
S5

G5dS +
∫∫
S6

G6dS.

The integrands contain the functions (uk, vk), k = 2, 3, 5, 6, and are some-
what unwieldy, because the corresponding functions Uk, Vk, as is evident from
formulas (36) and (48), are elliptic integrals.

The right sides of formula (81) contain derivatives of the functions M and

N . Differentiating the integrands, we obtain
∂U

∂θ
and

∂V

∂θ
instead of U and



On Vibrations of a Half-Plane and a Layer 159

V , thus obtaining a computationally more convenient expression for solution
(81).

To simplify the notation we introduce5:

I1 =
∫∫
S1

{
u
∂u1

∂t
+ v

∂v1

∂t

}
dx dy=−

∫∫
S1

{
uRe

[
U ′

1

1
δ′1

]
+ vRe

[
V ′

1

1
δ′1

]}
dx dy,

I2 = −
∫∫
S2

{
uRe

[
U ′

2

1
δ′2

]
+ vRe

[
V ′

2

1
δ′2

]}
dx dy,

I3 = −
∫∫
S3

{
uRe

[
U ′

3

1
δ′3

]
+ vRe

[
V ′

3

1
δ′3

]}
dx dy,

(82)

I4 = −
∫∫
S4

{
uRe

[
U ′

4

1
δ′4

]
+ vRe

[
V ′

4

1
δ′4

]}
dx dy,

I5 = −
∫∫
S5

{
uRe

[
U ′

5

1
δ′5

]
+ vRe

[
V ′

5

1
δ′5

]}
dx dy,

I6 = −
∫∫
S6

{
uRe

[
U ′

6

1
δ′6

]
+ vRe

[
V ′

6

1
δ′6

]}
dx dy,

where
U ′

k ≡ ∂Uk

∂θk
, δ′k ≡ ∂δk

∂θk
,

J1 =
∫∫
S1

{
u1
∂u

∂t
+ v1

∂v

∂t

}
dx dy, J2 =

∫∫
S2

{
u2
∂u

∂t
+ v2

∂v

∂t

}
dx dy,

(83)

J3 =
∫∫
S3

{
u3
∂u

∂t
+ v3

∂v

∂t

}
dx dy, J4 =

∫∫
S4

{
u4
∂u

∂t
+ v4

∂v

∂t

}
dx dy,

J5 =
∫∫
S5

{
u5
∂u

∂t
+ v5

∂v

∂t

}
dx dy, J6 =

∫∫
S6

{
u6
∂u

∂t
+ v6

∂v

∂t

}
dx dy.

The functions Ik are more manageable, because they contain only U ′
k(θk)

and V ′
k(θk).

However, the functions Jk are expressed in somewhat complicated form
and for the following computations we have to consider their derivatives with
respect to x0 and y0.

The range of integration Sk varies with x0 and y0. Its boundary has fixed
portions, and portions that vary with x0 and y0. It is easy to see that the

5 For differentiation S. L. Sobolev uses formulas (18.1), (27), (29)–(32), (38), (40),
(42)–(45). – Ed.
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integrands vanish on the variable parts of the boundary. Using this fact and
applying the formula for differentiating an integral with a variable domain of
integration, we obtain

∂J2

∂x0
=
∫∫
S2

{
∂Re (U2)
∂x0

∂u

∂t
+
∂Re (V2)
∂x0

∂v

∂t

}
dx dy

=
∫∫
S2

{
Re
[
U ′

2

−θ2
δ′2

]
∂u

∂t
+ Re

[
V ′

2

−θ2
δ′2

]
∂v

∂t

}
dx dy,

∂J2

∂y0
=
∫∫
S2

⎧⎨⎩Re

⎡⎣U ′
2

√
1
a2 − θ2

2

−δ′2

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
2

√
1
a2 − θ2

2

−δ′2

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy,

∂J3

∂x0
=
∫∫
S3

{
Re
[
U ′

3

−θ3
δ′3

]
∂u

∂t
+ Re

[
V ′

3

−θ3
δ′3

]
∂v

∂t

}
dx dy,

∂J3

∂y0
=
∫∫
S3

⎧⎨⎩Re

⎡⎣U ′
3

√
1
a2 − θ2

3

−δ′3

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
3

√
1
a2 − θ2

3

−δ′3

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy,

(84)
∂J5

∂x0
=
∫∫
S5

{
Re
[
U ′

5

−θ5
δ′5

]
∂u

∂t
+ Re

[
V ′

5

−θ5
δ′5

]
∂v

∂t

}
dx dy,

∂J5

∂y0
=
∫∫
S5

⎧⎨⎩Re

⎡⎣U ′
5

√
1
b2 − θ2

5

−δ′5

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
5

√
1
b2 − θ2

5

−δ′5

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy,

∂J6

∂x0
=
∫∫
S6

{
Re
[
U ′

6

−θ6
δ′6

]
∂u

∂t
+ Re

[
V ′

6

−θ6
δ′6

]
∂v

∂t

}
dx dy,

∂J6

∂y0
=
∫∫
S6

⎧⎨⎩Re

⎡⎣U ′
6

√
1
b2 − θ2

6

−δ′6

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
6

√
1
b2 − θ2

6

−δ′6

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy.

We now have to compute the following two quantities:

∂J1

∂x0
+
∂J4

∂y0
and

∂J1

∂y0
− ∂J4

∂x0
,

expressing them as integrals containing
∂Uk

∂θ
and

∂Vk

∂θ
.

We cannot carry out the differentiations of these expressions by the usual
rules of differentiation, since the integrals so obtained do not converge in the
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ordinary sense. This is because the integrands become infinite at the point
(x0, y0).

In a neighbourhood of this point

u1 = t0
x0 − x

r2
+ τ1, v1 = t0

y0 − y

r2
+ σ1,

u4 = t0
y0 − y

r2
+ τ4, v4 = −t0x0 − x

r2
+ σ4,

(85)

where

τ1 =
t0 −

√
t20 − r2

a2

r2
(x− x0), σ1 =

t0 −
√
t20 − r2

a2

r2
(y − y0),

τ4 =
t0 −

√
t20 − r2

b2

r2
(y − y0), σ4 = −

t0 −
√
t20 − r2

b2

r2
(x− x0)

(86)

are the regular functions in a neighborhood of the point (x0, y0).
We decompose each integral J1 and J4 into the sum of two integrals by

cutting out in the domains S1 and S4 a small disc centered at the point (x0, y0)
and radius independent of x0, y0.

Denoting the disc by σ and the complements of S1 and S4 by S1 and S4,
respectively, we have

J1 =
∫∫
S1

(
u1
∂u

∂t
+ v1

∂v

∂t

)
dx dy

+
∫∫
σ

t0

(
∂u

∂t

x0 − x

r2
+
∂v

∂t

y0 − y

r2

)
dx dy +

∫∫
σ

(
τ1
∂u

∂t
+ σ1

∂v

∂t

)
dx dy,

(87)

J4 =
∫∫
S4

(
u4
∂u

∂t
+ v4

∂v

∂t

)
dx dy

+
∫∫
σ

t0

(
∂u

∂t

y0 − y

r2
− ∂v

∂t

x0 − x

r2

)
dx dy +

∫∫
σ

(
τ4
∂u

∂t
+ σ4

∂v

∂t

)
dx dy.

The first and third terms on the right sides of these expressions can be
differentiated under the integral sign. Thus, we obtain(

∂J1

∂x0
+
∂J4

∂y0

)
=
∫∫
S1

{
Re
[
U ′

1

−θ1
δ′1

]
∂u

∂t
+ Re

[
V ′

1

−θ1
δ′1

]
∂v

∂t

}
dx dy

+
∫∫
S4

⎧⎨⎩Re

⎡⎣U ′
4

√
1
b2 − θ2

4

δ′4

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
4

√
1
b2 − θ2

4

δ′4

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy
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+
∂

∂x0

∫∫
σ

t0
∂u

∂t

x0 − x

r2
dx dy +

∂

∂y0

∫∫
σ

t0
∂u

∂t

y0 − y

r2
dx dy

+
∂

∂x0

∫∫
σ

t0
∂v

∂t

y0 − y

r2
dx dy − ∂

∂y0

∫∫
σ

t0
∂v

∂t

x0 − x

r2
dx dy

+
∫∫
σ

(
∂A

∂x0
+
∂B

∂y0

)
dx dy, (88)

where A and B are certain regular functions. It is obvious that∫∫
σ

t0
∂u

∂t

x0 − x

r2
dx dy = − ∂

∂x0

∫∫
σ

t0
∂u

∂t
ln

1
r
dx dy,

∫∫
σ

t0
∂u

∂t

y0 − y

r2
dx dy = − ∂

∂y0

∫∫
σ

t0
∂u

∂t
ln

1
r
dx dy.

(89)

Then it follows from the classical theory of the logarithmic potential that the
sum of the third and fourth terms on the right side of expression (88) tends,

as the disc σ contracts to the point (x0, y0), to the limit 2πt0
∂u

∂t
(x0, y0, 0)6.

We now transform expressions (88).
We break the domain of integration in the first term into two parts: S1 =

(S1 − S4) + S4.
The first of the integrals so obtained does not depend on the disc σ. Com-

bining the second integral with the second term of expression (88), it is not
difficult to see that the integrand is regular at the point (x0, y0). Letting the
disc σ contract to the point (x0, y0), we obtain the formulas:

∂J1

∂x0
+
∂J4

∂y0
− 2πt0

∂u

∂t
(x0, y0, 0)

=
∫∫

S1−S4

{
Re
[
U ′

1

−θ1
δ′1

]
∂u

∂t
+ Re

[
V ′

1

−θ1
δ′1

]
∂v

∂t

}
dx dy

+
∫∫
S4

⎧⎨⎩
⎡⎣Re

⎛⎝U ′
4

√
1
b2 − θ2

4

δ′4

⎞⎠+ Re
(
U ′

1

−θ1
δ′1

)⎤⎦ ∂u
∂t

+

⎡⎣Re

⎛⎝V ′
4

√
1
b2 − θ2

4

δ′4

⎞⎠+ Re
(
V ′

1

−θ1
δ′1

)⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy (90.1)

and, in exactly the same way,

6 The last three terms tend to zero. – Ed.
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∂J1

∂y0
− ∂J4

∂x0
− 2πt0

∂v

∂t
(x0, y0, 0)

=
∫∫

S1−S4

⎧⎨⎩Re

⎡⎣U ′
1

√
1
a2 − θ2

1

δ′1

⎤⎦ ∂u
∂t

+ Re

⎡⎣V ′
1

√
1
a2 − θ2

1

δ′1

⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy

+
∫∫
S4

⎧⎨⎩
⎡⎣Re

⎛⎝U ′
1

√
1
a2 − θ2

1

δ′1

⎞⎠+ Re
(
U ′

4

θ4
δ′4

)⎤⎦ ∂v
∂t

+

⎡⎣Re

⎛⎝V ′
1

√
1
a2 − θ2

1

δ′1

⎞⎠+ Re
(
V ′

4

θ4
δ′4

)⎤⎦ ∂v
∂t

⎫⎬⎭ dx dy. (90.2)

If now in formula (81) the derivatives of M and N are replaced by the
formulas we have obtained for them, the expression for the solution takes the
following form 7:

u(x0, y0, t0) = u(x0, y0, 0) +
1
2π

∂I1
∂x0

+
1
2π

∂I4
∂y0

+
1
2π

∂I2
∂x0

+
1
2π

∂I5
∂y0

+
1
2π

∂I3
∂x0

+
1
2π

∂I6
∂y0

− 1
2π

(
∂J1

∂x0
+
∂J4

∂y0
− 2πt0

∂u

∂t
(x0, y0, 0)

)
− 1

2π
∂J2

∂x0
− 1

2π
∂J5

∂y0
− 1

2π
∂J3

∂x0
− 1

2π
∂J6

∂y0
,

(91)

v(x0, y0, t0) = v(x0, y0, 0) +
1
2π

∂I1
∂y0

− 1
2π

∂I4
∂x0

+
1
2π

∂I2
∂y0

− 1
2π

∂I5
∂x0

+
1
2π

∂I3
∂y0

− 1
2π

∂I6
∂x0

− 1
2π

(
∂J1

∂y0
− ∂J4

∂x0
− 2πt0

∂v

∂t
(x0, y0, 0)

)
− 1

2π
∂J2

∂y0
+

1
2π

∂J5

∂x0
− 1

2π
∂J3

∂y0
+

1
2π

∂J6

∂x0
.

The derivatives of the functions I and J in these formulas can be evaluated
by means of (82), (84), and (90). Thus, we have brought the formulas for the
solution to a more calculable form.

8. Our formulas allow us to explain rigorously the phenomenon known as
surface waves or the Rayleigh waves.

In the paper by V. I. Smirnov and S. L. Sobolev mentioned earlier, the
problem of surface waves was studied in some particular cases. We can now
study the problem in full generality.

Suppose that at the time t = 0 all the initial disturbance is concentrated
in a bounded domain ω; we apply formulas (91) to the case when t0 and the
coordinate x0 tend to infinity.
7 From now on � = 1. – Ed.
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It is easy to see from these assumptions that u and v tend to zero when
x0

t0
tends to a finite limit, except in one case which we will now discuss; this

will lead to the concept of the Rayleigh surface waves.

Indeed, according to our assumptions, the quantities
1
δ′

appearing in the
expressions for the derivatives of I and J tend to zero, because they contain
x− x0 in the denominator.

Consequently, if U ′, V ′ and θ all remain finite, the derivatives of I and J
also tend to zero. However, as is easy to see, under our assumptions θ converges
to a finite limit and U ′

1 and V ′
1 are also finite. Therefore, the derivatives of I

and J always tend to zero, except the case when the coefficients in formulas

(36) and (48) tend to infinity. This occurs only when θ → ±1
c
, where

1
c

is a

root of equation (49). In this case the ratio
x0

t0
converges to the finite limit

±c.
For the discussion of this case it is convenient to replace

x0

t0
by a new

variable ξ, where x0 − x = ξ ∓ ct0.
Let us determine the asymptotic behavior of our integrals for finite ξ, as

t0 tends to infinity. For the sake of definiteness we take the plus sign in the
last equation. Using the Laurent expansion, we obtain

θ2 = a0 +
a1

t0
+ · · · , θ5 = g0 +

g1
t0

+ · · · ,

θ3 = b0 +
b1
t0

+ · · · , θ6 = h0 +
h1

t0
+ · · ·

(92)

and substituting these expressions into the equations

(t0 − t) − θ2(x− x0) −
√

1
a2

− θ2
2(y + y0) = 0,

(t0 − t) − θ3(x− x0) −
√

1
b2

− θ2
3y −

√
1
a2

− θ2
3y0 = 0,

(93)

(t0 − t) − θ5(x− x0) −
√

1
a2

− θ2
5y −

√
1
b2

− θ2
5y0 = 0,

(t0 − t) − θ6(x− x0) −
√

1
b2

− θ2
6(y + y0) = 0,

which define θk, we obtain for t = 0

θ2 = −1
c

+
ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)

t0
+ · · · ,
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θ3 = −1
c

+
ξ
c2 + 1

c

√
1
b2 − 1

c2 y + 1
c

√
1
a2 − 1

c2 y0

t0
+ · · · ,

(94)

θ5 = −1
c

+
ξ
c2 + 1

c

√
1
a2 − 1

c2 y + 1
c

√
1
b2 − 1

c2 y0

t0
+ · · · ,

θ6 = −1
c

+
ξ
c2 + 1

c

√
1
b2 − 1

c2 (y + y0)

t0
+ · · · .

We also have

F (−1
c
) = 0 and F (θ) =

(
θ +

1
c

)
F ′
(
−1
c

)
+ · · · .

Replacing θk in formulas (36) and (48) by expressions (94), we obtain

U ′
2(θ2) = −

[(
2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i)[

ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)
c
√

1
a2 − 1

c2

t0 + · · · ,

V ′
2(θ2) =

[(
2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i)[

ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

) t0 + · · · ,

(95.1)

U ′
3(θ3) =

[
−4
(

2
c2 − 1

b2

)2√ 1
b2 − 1

c2

]
(−i) 1

c[
ξ
c2 + 1

c

√
1
b2 − 1

c2 y + 1
c

√
1
a2 − 1

c2 y0

]
F ′ (− 1

c

) t0 + · · · ,

V ′
3(θ3) = [− 4

c2 ( 2
c2

− 1
b2 )](−i)h

ξ

c2
+ 1

c

q
1

b2
− 1

c2
y+ 1

c

q
1

a2 − 1
c2

y0

i
F ′(− 1

c )
t0 + · · · ,

(95.2)

U ′
5(θ5) =

[
4
c2

(
2
c2 − 1

b2

)]
(−i)[

ξ
c2 + 1

c

√
1
a2 − 1

c2 y + 1
c

√
1
b2 − 1

c2 y0

]
F ′ (− 1

c

) t0 + · · · ,

V ′
5(θ5) =

4
(

2
c2 − 1

b2

)√
1
a2 − 1

c2
1
c i[

ξ
c2 + 1

c

√
1
a2 − 1

c2 y + 1
c

√
1
b2 − 1

c2 y0

]
F ′ (− 1

c

) t0 + · · · ,
(96.1)

U ′
6(θ6) =

[(
2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i)[

ξ
c2 + 1

c

√
1
b2 − 1

c2 (y + y0)
]
F ′ (− 1

c

) t0 + · · · ,

V ′
6(θ6) =

−
[(

2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
i1c[

ξ
c2 + 1

c

√
1
b2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)√
1
b2 − 1

c2

t0 + · · · .

(96.2)
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We now compute the derivatives
∂θ

∂t
,
∂θ

∂x0
,
∂θ

∂y0
for t = 0:

∂θ2
∂t

= − 1
δ′2

=
1
ct0

+ · · · , ∂θ2
∂x0

=
1

c2t0
+ · · · , ∂θ2

∂y0
=

1
c

√
1
a2 − 1

c2

t0
+ · · · ,

∂θ3
∂t

=
1
ct0

+ · · · , ∂θ3
∂x0

=
1

c2t0
+ · · · , ∂θ3

∂y0
=

1
c

√
1
a2 − 1

c2

t0
+ · · · ,

(97)

∂θ5
∂t

=
1
ct0

+ · · · , ∂θ5
∂x0

=
1

c2t0
+ · · · , ∂θ5

∂y0
=

1
c

√
1
b2 − 1

c2

t0
+ · · · ,

∂θ6
∂t

=
1
ct0

+ · · · , ∂θ6
∂x0

=
1

c2t0
+ · · · , ∂θ6

∂y0
=

1
c

√
1
b2 − 1

c2

t0
+ · · · .

Replacing the derivatives in formulas (82) and (84) by the above expres-
sions, we obtain

I2 =
∫∫
S2

⎧⎪⎨⎪⎩uRe

⎡⎢⎣
[(

2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i)[

ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)
c2
√

1
a2 − 1

c2

⎤⎥⎦

+ vRe

⎡⎢⎣
[(

2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i)[

ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)
c2

⎤⎥⎦
⎫⎪⎬⎪⎭ dx dy + · · · , (98)

and similarly

∂J2

∂x0
=
∫∫
S2

⎧⎪⎨⎪⎩Re

⎡⎢⎣−
[(

2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i) 1

c2[
ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)
c
√

1
a2 − 1

c2

⎤⎥⎦ ∂u
∂t

+ Re

⎡⎢⎣−
[(

2
c2 − 1

b2

)2 − 4
c2

√
1
a2 − 1

c2

√
1
b2 − 1

c2

]
(−i) 1

c2[
ξ
c2 + 1

c

√
1
a2 − 1

c2 (y + y0)
]
F ′ (− 1

c

)
⎤⎥⎦∂v
∂t

⎫⎪⎬⎪⎭dx dy + · · · . (99)

Substituting expressions (98) and (99) in formula (91), we obtain under
our assumption the solution in the form of the Laurent series

u(ξ, y0, t0) = u0(ξ, y0) +
u1(ξ, y0)

t0
+ · · · ,

v(ξ, y0, t0) = v0(ξ, y0) +
v1(ξ, y0)

t0
+ · · · .

(100)
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The terms u0 and v0 in these series are nonzero; they give us the partic-
ular solution of the elasticity equations that has the form of the generalized
Rayleigh waves. These waves were studied by the author in the paper [2]. So,
we see that if the disturbance is concentrated in a finite domain ω, then, gen-
erally speaking, as t0 and x0 increase to infinity, the displacements become
damped; however, there exists a unique velocity – the velocity of the Rayleigh
waves, for which the wave is propagated with finite displacement. An observer
moving with this velocity parallel to the axis y = 0 will see as the final result
one and the same displacement for sufficiently large t0. This wave had been
investigated by the author in the article cited.

In conclusion I express my profound gratitude to V. I. Smirnov, the Head
of the Theoretical Department of the Seismological Institute of the USSR
Academy of Sciences, for his helpful advice, and also to all those employees
of the Institute who have assisted the author in his work.
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5. On a New Method of Solving Problems
about Propagation of Vibrations∗

S. L. Sobolev

1. In this article we present in outline a new method of solving a certain
class of problems on propagation of vibrations. This approach was developed
and applied to a number of problems in the Theoretical Department of the
Seismological Institute of the USSR Academy of Sciences.

The basis of the new method is to apply analytic functions of complex
variables to solving dynamic problems in the case of one wave equation or the
equations of the theory of elasticity. The theory of analytic functions gives
a possibility to construct a certain class of solutions of the wave equation.
In particular, this class contains fundamental solutions of two- and three-
dimensional problems, usually used in the theory of characteristics and mak-
ing it possible to construct the general solutions of the problems on vibrations
of a half-space or a medium consisting of a number of parallel layers. The es-
sential property of solutions of the mentioned class is that we can construct
solutions in this class by means of reflection of a given solution from the rec-
tilinear boundary. Some many-valued solutions also belong to this mentioned
class. They are used in the problems of diffraction and, in particular, give a
possibility to construct the general theory of diffraction of plane waves and
diffraction of any perturbation with respect to an angle or a logarithmic point
of the Riemann surface in the two-dimensional case.

In this review we follow partly the chronological order of the problems
solved by the new method. First, we present one special problem, namely, the
general theory of plane waves in an elastic half-space with a free boundary.
In this problem we apply the new method only partially. Then we move on
to the investigation of mathematical foundations of the new method and its
application for solving problems on vibrations of an elastic half-space or a
layered medium under the action of forces of special type. The next question is
to construct fundamental solutions of the equations of the theory of elasticity
and the general solutions of the problems on natural vibrations of the half-
space or the layered medium for arbitrary initial conditions. These problems,

∗ Prikl. Mat. Mekh., 1, 290–309 (1933)
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as well as the previous one, can be solved in both two-dimensional and three-
dimensional cases. Finally, we move on to the construction of some many-
valued solutions of the wave equation connected with diffraction problems.
We begin with the problem of diffraction of plane waves for two and three
dimensions, and then move on to the general problem of the diffraction for
the two-dimensional case.

2. The standard and most known application of analytic functions of a
complex variable to partial differential equations is the application of these
functions to the Laplace equation with two variables

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0. (1)

Let us briefly recall the basic points connecting equation (1) with the theory
of analytic functions. Any real solution of equation (1) is the real part of an
analytic function; on the other hand, both real and imaginary parts of any
analytic function are solutions of equation (1). We can formally construct
solutions of (1). Namely, using the well-known formula of d’Alembert, we
obtain the general solution of equation (1) in the form

u = f1(x+ iy) + f2(x− iy).

Obviously, the necessity to differentiate the written functions of the complex
arguments leads us to the theory of analytic functions of complex variables.

Let us move on to the study of the wave equation

∆u− 1
a2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 1
a2

∂2u

∂t2
= 0. (2)

This equation has a real solution of the form

u = f(t− lx−my − nz), (3)

where the constants l, m, and n determining the direction of motion of plane
wave (3) must be connected by the equality

a2(l2 +m2 + n2) = 1, (4)

and f is an arbitrary function. If we assign to these constants the complex
values

l = l′ + il′′, m = m′ + im′′, n = n′ + in′′ (5)

satisfying equality (4), and assume that the function f is an analytic function
of the complex variable, then formula (3) again gives us a solution of equation
(2). This solution can be called the complex plane wave. Its real and imaginary
parts are arbitrary conjugate harmonic functions of the arguments

t− l′x−m′y − n′z, l′′x+m′′y + n′′z. (6)
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The problem on reflection of plane waves from a plane boundary in an elastic
medium was the first problem to be completely solved by using complex plane
waves [1–3].

As is known, the fundamental equations of the theory of elasticity can be
reduced to the wave equations

∆ϕ− 1
a2

∂2ϕ

∂t2
= 0, ∆

−→
ψ − 1

b2
∂2−→ψ
∂t2

= 0, a2 > b2, (7)

where ϕ is the scalar potential, and the vector
−→
ψ is the vector potential. The

displacement vector is defined by the formula

u = gradϕ+ rot
−→
ψ . (8)

Such a displacement field defined by formula (8) is called the plane elastic
wave, if the potentials ϕ and

−→
ψ , being the solutions of the wave equations,

are given by formulas of form (3).
Choosing an appropriate coordinate system, we can reduce the problem

on plane waves to the plane problem of the theory of elasticity when the
displacements do not depend on one of the coordinates, for instance, on the y-
coordinate; for this it suffices to consider only the case when the displacement
vector is located in the (x, z)-plane. In this case instead of the vector

−→
ψ we

have the scalar ψ equal to the length of the vector
−→
ψ ; the last vector has

the y-axis direction. Instead of the formulas given above we obtain two wave
equations on scalar functions

∂2ϕ

∂x2
+
∂2ϕ

∂z2
− 1
a2

∂2ϕ

∂t2
= 0,

∂2ψ

∂x2
+
∂2ψ

∂z2
− 1
b2
∂2ψ

∂t2
= 0.

(9)

The displacement components on the x-axis and the z-axis are defined by the
formulas1

u =
∂ϕ

∂x
+
∂ψ

∂z
,

w =
∂ϕ

∂z
− ∂ψ

∂x
.

(10)

We now move on to the presentation of the general theory of plane waves
in the half-space z > 0. Boundary conditions on the surface z = 0 can be
various. We have the greatest interest in the two simplest cases, namely, the

1 For details see the article of S. L. Sobolev “Some questions of the theory of
propagation of vibrations” in the book: Frank, F., Mises, R.: Differential and
Integral Equations of Mathematical Physics. Vol. 2. ONTI, Leningrad – Moscow
(1937). – Ed.
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case when this boundary is free of stresses, or the case when this boundary
is fixed, i.e., the displacement vector is zero on the boundary. For the sake of
definiteness, we discuss the case of a free boundary2.

Referring to formula (3), we see that in the case of the real parameters
l, m, n the vector with the components l, m, n determines the direction of
motion of the plane wave. Of course a single plane wave does not satisfy the
limiting conditions; to satisfy them we have to add new plane waves. Only the
combination of such waves will satisfy not only the differential equations, but
the limiting conditions as well. We call the wave incident if the angle between
the direction of its motion and the z-axis is obtuse, and reflected if this angle
is acute. Notice that for the given real incident wave we can obtain both the
real and complex reflected waves.

Consider first the case when the incident wave is purely longitudinal, i.e.,
the function ψ in formulas (10) is equal to zero. In this case the functions ϕ
and ψ, determining the entire combination of plane waves, both incident and
reflected, are determined by the formulas

ϕ=Re

{[(
2θ2 − 1

b2

)2

+ 4θ2

√
1
a2

− θ2

√
1
b2

− θ2

]
f1

(
t− θx−

√
1
a2

− θ2 z

)

−
[(

2θ2 − 1
b2

)2

− 4θ2

√
1
a2

− θ2

√
1
b2

− θ2

]
f1

(
t− θx+

√
1
a2

− θ2 z

)}
,

(11)
ψ = Re

{
4θ

√
1
a2

− θ2

(
2θ2 − 1

b2

)
f1

(
t− θx+

√
1
b2

− θ2 z

)}
.

In the case of the incident pure transverse wave we obtain the formulas

ϕ = Re
{
−4θ

√
1
b2

− θ2

(
2θ2 − 1

b2

)
f2

(
t− θx+

√
1
a2

− θ2 z

)}
,

(12)

ψ = Re
{[(

2θ2 − 1
b2

)2

+4θ2

√
1
a2

− θ2

√
1
b2

− θ2

]
f2

(
t− θx−

√
1
b2

− θ2 z

)

−
[(

2θ2 − 1
b2

)2

− 4θ2

√
1
a2

− θ2

√
1
b2

− θ2

]
f2

(
t− θx+

√
1
b2

− θ2 z

)}
.

2 In this case the boundary conditions have the form„
a2 ∂2ϕ

∂z2
+ (a2 − 2b2)

∂2ϕ

∂x2
− 2b2 ∂2ψ

∂x∂z

«˛̨̨̨
z=0

= 0,

„
2

∂2ϕ

∂x∂z
+

∂2ψ

∂z2
− ∂2ψ

∂x2

«˛̨̨̨
z=0

= 0. – Ed.
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In these formulas the symbol Re denotes the real part, and all radicals
in the formulas are considered negative when the radicand is positive, and
positive imaginary when the radicand is negative. Next, f1 and f2 are arbitrary
analytic functions, and, finally, θ is a real parameter. If this parameter satisfies
the inequality

|θ| < 1
a
,

then we obtain the real plane waves; in other cases we have the complex plane
waves. These formulas contain both incident and reflected waves; moreover,
an incident wave is defined by the term where the argument of the function
contains the radical with the plus sign.

Since we deal with an unbounded half-space, it is natural to impose on
solutions certain restrictions at infinity, namely, to require that these solutions
remain bounded in the entire half-space. For imaginary values of the radicals√

1
a2

− θ2 and

√
1
b2

− θ2 we need to deal with values of the functions f1 and

f2 on the entire plane of the complex variable. Recalling the famous Liouville
theorem that the regular function bounded on the entire plane is constant,
we have to conclude that in these cases either one of the functions mentioned
above or both of them must be constant. Moreover, for this constant we can
take zero.

These general arguments lead us to the following conclusions.

If θ satisfies the inequality |θ| < 1
a
, then for any incident longitudinal

or transverse wave we can construct the reflected waves. It is not difficult to
obtain from the formulas presented the known rules for the angles of incidence
and reflection.

If the parameter θ satisfies the condition
1
a
< |θ| < 1

b
, then the argument of

the function f1 is from the entire plane of the complex variable, and formulas
(11) are inapplicable. However, formulas (12) remain valid even in this case; it
is not difficult to see that in the combination of waves presented by formulas
(12) the transverse waves determined by the function f2 are real and consist of
two parts: incident and reflected. Let us point out one essential difference with
the previous case. The analytic function f2 in formulas (12) has both real and
imaginary parts. In the present case the coefficients of f2 in the expression for
ψ in formulas (12) are complex and, isolating the real part, we have for ψ the
expression containing both real and imaginary parts of f2, where the incident
and reflected transverse waves are given by the different real functions. The
longitudinal wave is complex in this case. Here we have the case when the
angle of incidence of the transverse wave is greater than the limiting angle of
the full inner reflection.

Finally, assume that the parameter θ satisfies the condition |θ| > 1
b
; in

this case, generally speaking, neither formulas (11) nor formulas (12) have
any meaning; however, there exists a unique positive value of θ for which we
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obtain a bounded solution. This value is a root of the equation(
2θ2 − 1

b2

)2

+ 4θ2

√
1
a2

− θ2

√
1
b2

− θ2 = 0. (13)

In this case the terms of formulas (11) and (12) containing the argument
from the lower half-plane of complex variables vanish, and we can take for the
functions f1 and f2 any functions regular and bounded in the upper half-plane.
The solutions obtained in such a way are the general case of plane surface
waves or Rayleigh waves. Lord Rayleigh himself presented these formulas for a
very particular case of harmonic vibrations, damping with z. The only positive
root of equation (13) gives the reciprocal of the propagation speed of the
Rayleigh waves.

The general theory of plane waves can be applied also to more general
cases of vibration propagations; in particular, it was applied to solve the fa-
mous Lamb problem on vibrations of an elastic half-space under influence of
a concentrated force applied at a point of a surface. The solution given by
H. Lamb for surface points was possible to express as a sum of plane waves
spread over the continuous spectrum of θ,

−1
b
< θ < +

1
b
, (14)

adding the plane waves corresponding to θ = ±1
c

3. Such representation of the
solution for z = 0 led directly to the possibility to extend it into the half-space,
i.e., gave the way to obtain formulas for the displacements also for z > 0.

3. We now move on to the study of the mathematical basis of our new
method in its generality4. Consider the wave equation on the plane

∂2u

∂x2
+
∂2u

∂z2
− 1
a2

∂2u

∂t2
= 0, (15)

and set a problem of the construction of a solution of this equation having
the form

u = f(θ), (16)

where f is an arbitrary function, and θ is a certain determined, generally
speaking, complex function of the variables x, z, t. The direct substitution
into equation (16) gives

f ′′(θ)

[(
∂θ

∂x

)2

+
(
∂θ

∂z

)2

− 1
a2

(
∂θ

∂t

)2
]

+ f ′(θ)
[
∂2θ

∂x2
+
∂2θ

∂z2
− 1
a2

∂2θ

∂t2

]
= 0,

3 1

c
is the root of the Rayleigh equation (13). – Ed.

4 This method is presented in the works of V. I. Smirnov and S. L. Sobolev [4–7]. –
Ed.
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and since the analytic function f is chosen arbitrary, we obtain for θ the
system of two equations(

∂θ

∂x

)2

+
(
∂θ

∂z

)2

− 1
a2

(
∂θ

∂t

)2

= 0,

∂2θ

∂x2
+
∂2θ

∂z2
− 1
a2

∂2θ

∂t2
= 0.

(17)

The analysis of these equations brings us to the fact that the function θ must
appear as the solution of the equation of the form

δ ≡ l(θ)t+m(θ)x+ n(θ)z − χ(θ) = 0, (18)

where l, m, n, χ are any analytic functions satisfying only the condition

a2(m2 + n2) = l2. (19)

Any analytic function f(θ) is certainly a function of the variables x, z, t, and
its derivatives with respect to these variables are expressed via the following
formulas:

∂f

∂x
= −m(θ)

δ′
f ′(θ),

∂f

∂z
= −n(θ)

δ′
f ′(θ),

∂f

∂t
= − l(θ)

δ′
f ′(θ),

∂2f

∂x2
=

1
δ′

∂

∂θ

(
m2

δ′
f ′(θ)

)
,

∂2f

∂z2
=

1
δ′

∂

∂θ

(
n2

δ′
f ′(θ)

)
,

∂2f

∂t2
=

1
δ′

∂

∂θ

(
l2

δ′
f ′(θ)

)
,

∂2f

∂x∂z
=

1
δ′

∂

∂θ

(mn
δ′

f ′(θ)
)
,

∂2f

∂x∂t
=

1
δ′

∂

∂θ

(
ml

δ′
f ′(θ)

)
,

∂2f

∂z∂t
=

1
δ′

∂

∂θ

(
ln

δ′
f ′(θ)

)
,

(20)

where δ′ is the derivative of the left side of equation (18) with respect to θ.
Consider the three-dimensional space S with coordinates x, z, t. If in some

domain B of this space equation (18) gives us for θ a certain domain of the
plane of the complex variable, then the function f in formula (16) must be
analytic in this domain; however, if for the points x, z, t in some domain
equation (18) gives for θ values generating a certain line (for instance, if θ
is real), then in the formula we can take for f(θ) any real function defined
on the mentioned above line and differentiable. Of course, we can consider
such real function as a limiting value of a real part of some analytic function
on this line. In the general case we can take, of course, only the real part of
an analytic function f(θ) of the complex variable θ, and thus we obtain real
solutions of equation (15).

Consider now equation (18) in detail. Without loss of generality we can
assume that the coefficient of l(θ) is equal to 1, and set −m(θ) as the new
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complex variable. Moreover, by the condition we reduce equation (18) to the
form

t− θx±
√

1
a2

− θ2 z − χ(θ) = 0. (21)

We can obtain another form of this equation convenient for applications, if
we assume

l(θ) = a, m(θ) =
1
2

(
ζ +

1
ζ

)
,

at the same time our main equation is reduced to the form

at− 1
2

(
ζ +

1
ζ

)
x± i

2

(
ζ − 1

ζ

)
z − χ(ζ) = 0. (22)

The preceding arguments define a certain class of solutions of equation
(15). We select from this class some interesting solutions, namely, assume
that equation (21) has the special form

(t− t0) − θ(x− x0) ±
√

1
a2

− θ2 (z − z0) = 0 (23)

or that the same equation (22) has the form

a(t− t0) − 1
2

(
ζ +

1
ζ

)
(x− x0) ± i

2

(
ζ − 1

ζ

)
(z − z0) = 0. (24)

An arbitrary analytic function ζ, where ζ is the solution of (24), gives us the
solution of equation (15) depending on two arguments

ξ =
x− x0

a(t− t0)
, η =

z − z0
a(t− t0)

, (25)

i.e., gives us the homogeneous solutions of zero order of the arguments x −
x0, z − z0, t − t0. One also can prove the inverse statement, namely: any
homogeneous solution of equation (15) can be obtained in the above way.

4. Let us study now in detail the homogeneous solutions mentioned above,
where for simplicity’s sake we assume that x0 = z0 = t0 = 0. Introduce instead
of x, z the polar coordinates

x = r cosϑ, z = r sinϑ. (26)

Then equation (24) becomes

at− 1
2
r

(
ζe−iϑ +

1
ζ
eiϑ

)
= 0, (27)

from where for ζ we obtain
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ζ =

(
at

r
±
√
a2t2

r2
− 1

)
eiϑ. (28)

Choosing the “−” sign of the radical, we obtain the following law of corre-
spondence. The disk ξ2 + η2 < 1 on the (ξ, η)-plane corresponds to the unit
disk |ζ| < 1 on the plane of the variable ζ, and each radius of the first disk cor-
responds to the radius of the second disk with the same central angle. Thus,
inside the disk

ξ2 + η2 < 1 (29)

the solution of the wave equation is given by the formula

u = Re {f(ζ)}, (30)

where f is an analytic function in the unit disk. On the boundary of disk (29),
equation (27) gives for ζ a double root with module equal to 1. Finally, moving
to the exterior of disk (29), we obtain for ζ two distinct roots with module
equal to 1; these roots remain constant on tangents to the boundary of disk
(29). Thus, we see that the structure of the solution is completely different
inside and outside the disk.

Let us explain now in general the possible ways of continuing the solution
from disk (29) into the exterior of this disk. Suppose that we have inside the
disk the homogeneous solution given by formula (30).

On the boundary of disk (29) this solution has a certain real value. We
can present arbitrarily these real values in the form of a sum of two real terms
and correspondingly we can present the analytic function f in the form of a
sum of two analytic functions,

f(ζ) = f1(ζ) + f2(ζ).

Let us draw now two systems of half-tangents to the boundary of disk
(29), as in Fig. 1, and assume that outside the disk the real function u1 is
defined in the following way. On each of the half-tangents of the first family
it remains constant, namely, it is equal to the value of the real part of f1 at
the tangency point. Similarly, we define the function u2 on the second family
of half-tangents, by using the values of the real part of f2 on the circle.

Fig. 1.



178 S. L. Sobolev

The sum u = u1 + u2 gives us one of the possible continuations of solution
(30) defined inside disk (29). Obviously, with such continuation the continuity
is kept on the move over the circle, however, from above we see that such con-
tinuation is not single valued. In concrete problems the choice of continuation
is related to the physical conditions of the problem, namely, to the well-known
Fermat principle on the propagation of the disturbance front.

If instead of ξ, η we consider the three-dimensional space S with the coor-
dinates x, z, t, then any point ξ, η corresponds to the certain half-line emitting
from the coordinate origin (we assume θ > 0), the inner part of disk (29) cor-
responds to the conic beam of half-lines with an apex at the origin and an
apex angle arctan a. We can say that this conic beam gives that part of the
half-space, where the disturbance has propagated, appearing at t = 0 at the
point (0, 0) and propagating with the speed a. Inside of this conic beam equa-
tions (23) and (24) give for ζ and θ complex values filling up some domain,
and the solution of the wave equation is obtained as a real part of a certain
analytic function of one of these variables. For the variable ζ the above men-
tioned domain is the unit disk, and for the variable θ it is the entire plane with

the cut −1
a
< θ < +

1
a

along the real axis. In the exterior of this conic beam
we can obtain a solution assuming that u remains constant on the half-planes
tangent to the surface of the conic beam.

5. Let us apply the previous results on the homogeneous solutions to the
Lamb problem of vibrations in the half-plane z > 0 under the action of a
concentrated force at the moment t = 0 at the point x = 0, z = 0 along
the direction parallel to the z-axis. We can show that in the presence of this
force the potentials ϕ and ψ of longitudinal and transverse waves should be
homogeneous solutions of the corresponding wave equations

∆ϕ− 1
a2

∂2ϕ

∂t2
= 0, ∆ψ − 1

b2
∂2ψ

∂t2
= 0. (31)

Therefore, we seek these potentials in the form of the real parts of some
analytic functions

ϕ = Re {Φ(θ1)}, ψ = Re {Ψ(θ2)}, (32)

where the complex variables θ1 and θ2 are determined from the equations

t− θ1x+

√
1
a2

− θ2
1 z = 0, t− θ2x+

√
1
b2

− θ2
2 z = 0. (33)

To define functions Φ and Ψ we have limiting conditions expressing the absence
of stresses on the boundary z = 0. The fact is essential that for z = 0 equations
(33) coincide, and hence for each point of the boundary the variables θ1 and
θ2 are equal. It gives us the possibility to express the limiting conditions via
the same complex variable θ. Using differential formulas (20) and equating to
zero both components of the stress vector acting at the boundary z = 0, we
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obtain two equations for determining the unknown functions Φ and Ψ . Adding
the natural conditions at infinity to these equations, we obtain the following
expressions for the unknown functions:

Φ′(θ1) = iC
2θ2

1 − 1
b2(

2θ2
1 − 1

b2

)2 + 4θ2
1

√
1
a2 − θ2

1

√
1
b2 − θ2

1

,

Ψ ′(θ2) = iC
2θ2
√

1
b2 − θ2

2(
2θ2

2 − 1
b2

)2 + 4θ2
2

√
1
a2 − θ2

2

√
1
b2 − θ2

2

,

(34)

where C is a real constant proportional to the impulse of an instantaneous
force.

Let us analyze in general the formulas obtained. For the complex variable

θ1, we have the entire plane with the cut −1
a
< θ <

1
a
, where the points of this

cut correspond to the generators of the surface of the conic beam mentioned in

the previous section. For the variable θ2 we need to change
1
a

for
1
b
, where a is

the speed of propagation of longitudinal waves, and b is the speed of transverse
waves. Only the half-plane z > 0 has a physical meaning, and in this respect
we have to consider not an entire conical beam, but rather only its half, and
for the complex variables θ1 and θ2 we have only the upper half-plane with
the upper lip of the corresponding cut. For the complex variable θ1 we have

on this cut −1
a
< θ <

1
a
, and the first formula in (34) gives us for Φ′ pure

imaginary values. This leads us to the fact that the longitudinal potential ϕ
vanishes on the surface of the conic beam, and we assume it is zero outside
the beam as well. A somewhat different circumstance holds for the transverse
potential. Here we have on the cut the condition −1

b
< θ <

1
b
, and the second

formula in (34) gives us the complex value of Ψ ′ for
1
a
< |θ| < 1

b
. Thus,

on certain generators of the surface of the conic beam the potential ψ is not
zero. Using elementary arguments, we get convinced that outside the beam it
has to be continued in such a way so it remains constant on the half-planes
tangent to the surface of the conic beam and going to the boundary z = 0.
This special property of the potentials ϕ and ψ is connected to the fact that
the longitudinal waves propagating along the boundary z = 0 more rapidly
than the transverse waves generate (in view of the limiting conditions) also
transverse waves, which pass ahead of waves propagating with the usual speed
b.

Let us point out one more fact concerning formulas (34). If θ coincides
with a root of the equation(

2θ2 − 1
b2

)2

+ 4θ2

√
1
a2

− θ2

√
1
b2

− θ2 = 0, (35)
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then formulas (34) give infinite values of the potentials. We have already
encountered the real root of equation (35) in the theory of plane waves. As
before, this leads to the appearance of surface waves.

6. We now move on to the study of the general laws of reflections of special
elastic vibrations from a rectilinear boundary. Here, as in the Lamb problem,
we deal with the two-dimensional case [8, 9]. Assume that in the half-plane
z > 0 we have a longitudinal disturbance with the potential determined by
the formula

ϕ = Re {Φ(θ)}, (36)

where the complex variable θ satisfies the usual equation of the form

δ ≡ t− θx+

√
1
a2

− θ2 z − χ(θ) = 0. (37)

In the general case the given solution can be defined both in the domain of
the (x, z, t)-space, where equation (37) is transformed to the complex values
of θ, filling up some domain, and in the domain of this space where equation
(37) gives, for instance, the real value for θ. Suppose that the analytic function
Φ(θ) and continuation of the solution into the domain of real values of θ are
defined such that, in a neighbourhood of the boundary z = 0, there are no
disturbances up to some point of time. Beginning at the moment when the
given disturbances reach the surface, we have to add to the given disturbance,
which we call the incident wave, also the reflected longitudinal wave and the
reflected transverse wave. We seek for these reflections of the wave in the usual
form

ϕ1 = Re {Φ1(θ1)}, ψ2 = Re {Ψ2(θ2)}, (38)

where the complex variables θ1 and θ2 must satisfy the equations of the form

δ1 ≡ t− θ1x−
√

1
a2

− θ2
1 z − χ(θ1) = 0,

δ2 ≡ t− θ2x−
√

1
b2

− θ2
2 z − χ(θ2) = 0.

(39)

These equations are written in such a way that values of the variables θ1
and θ2 coincide with θ for z = 0. Let us point out as well that in equations
(39) we choose the radical sign opposite to the sign that we have in equation
(37). This guarantees us that the reflected disturbances do not change the
movement picture at the time preceding the reflection. Substituting into the
limiting conditions the longitudinal potential ϕ+ϕ1 and the transverse poten-
tial ψ2 and using the corresponding differential formulas (20), we obtain two
equations for determining the unknown functions Φ′

1 and Ψ ′
2. The essential

point here is that the complex variables θ, θ1, θ2 coincide on the boundary
z = 0.

The formulas presenting the final answer have the form
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Φ′
1(θ1) =

− (2θ2
1 − 1

b2

)2 + 4θ2
√

1
a2 − θ2

1

√
1
b2 − θ2

1(
2θ2

1 − 1
b2

)2 + 4θ2
1

√
1
a2 − θ2

1

√
1
b2 − θ2

1

Φ′(θ1),

Ψ ′
2(θ2) =

−4θ2
√

1
a2 − θ2

2

(
2θ2

2 − 1
b2

)
(
2θ2

2 − 1
b2

)2 + 4θ2
2

√
1
a2 − θ2

2

√
1
b2 − θ2

2

Φ′(θ2).

(40)

Notice also that they do not contain at all the function χ(θ), which appeared
in equation (37). In exactly the same way we solve the general problem of
reflection from a rectilinear boundary, also in the case when the given incident
wave is the disturbance of the purely transverse type

ψ = Re {Ψ(θ)}, (41)

where θ is defined from the equation

δ ≡ t− θx+

√
1
b2

− θ2 z − χ(θ) = 0. (42)

In all these cases, using physical conditions of the problem, we have to
continue solutions from the domain of complex values of θ into the domain
where this variable has a real value, as we did, for example, in the Lamb
problem, continuing the values of θ into the exterior of the conic beam.

For an example we consider the case when the incident wave is a distur-
bance propagating from the source located at the point x = 0, z = z0 and
issuing at the moment t = 0 such vibrations for which ϕ = 0, and ψ are the
solutions of the wave equation, homogeneous with respect to the arguments
x, z − z0, t.

In this case the incident wave is determined from the formula

ψ = Re {Ψ(θ)}, (43)

where θ is the solution of the equation

δ ≡ t− θx+

√
1
b2

− θ2 (z − z0) = 0. (44)

The function Ψ(θ) is the given function of the complex variable, regular on

the plane θ with the cut −1
b
< θ <

1
b
. This function has a singular point

at infinity corresponding to the source of vibrations, and its real part must
vanish on the cut corresponding to the front of the propagating disturbance.
In this case the reflected transverse wave is also defined by the homogeneous
solution

ψ1 = Re {Ψ1(θ1)},

δ1 ≡ t− θ1x−
√

1
b2

− θ2
1 (z + z0) = 0,

(45)
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with the center at the point x = 0, z = −z0. The reflected longitudinal wave
has more complex structure

ψ2 = Re {Ψ2(θ2)},

δ2 ≡ t− θ2x−
√

1
a2

− θ2
2 z −

√
1
b2

− θ2
2 z0 = 0,

(46)

and its front is a certain algebraic curve. On the attached picture (see Fig. 2)
we see the geometric picture of the front of disturbance at a point of time
after the reflection.

Fig. 2.

The part of the disk ACB is the domain occupied by the incident transverse
wave. The algebraic curve DHE limits the domain of reflected longitudinal
disturbance. The reflected transverse disturbance occupies particularly the
segment AFGB, inside which the corresponding complex variable takes a
complex value, and particularly this disturbance is located in the triangles
DAF and BGE, where the value of this variable is real and belongs to the
intervals

−1
b
< θ < −1

a
and

1
a
< θ <

1
b
. (47)

Here, as in the Lamb problem, we have the phenomenon of surface waves.
7. We now move on to the description of the new method in three-

dimensional space. The main point is the principle of superposition of plane
waves. Choose the rotating system of coordinates

X = r cos(ϑ− λ), Y = r sin(ϑ− λ), (48)

where r, ϑ, z are cylindrical coordinates and λ is an arbitrary parameter. Let
us take a solution of the plane problem in the unbounded space of coordinates
X, z, depending on the parameter λ. According to the general rule, we have,
for instance, for the potential of longitudinal waves

ϕ = Re {Φ(θϑ−λ, λ)},

δ ≡ t− θϑ−λr cos(ϑ− λ) +

√
1
a2

− θ2
ϑ−λ z − χ(θϑ−λ) = 0.

(49)



On a New Method of Solving Problems about Propagation of Vibrations 183

Integrating with respect to the parameter λ, we have an expression for the
potential of longitudinal waves in three-dimensional space,

ϕ(r, ϑ, z) = Re

2π∫
0

Φ(θϑ−λ, λ) dλ. (50)

To obtain a potential of transverse disturbances we need to apply the same
process. In the solution of the plane problem

ψ = Re {Ψ(θϑ−λ, λ)},

δ ≡ t− θϑ−λr cos(ϑ− λ) +

√
1
b2

− θ2
ϑ−λ z − χ(θϑ−λ) = 0,

(51)

we should take Ψ as the length of a certain vector parallel to the y-axis, and
then we add geometrically these vectors corresponding to different values of
λ. This would lead us to the vector potential with components on the r-axis
and the ϑ-axis of the cylindrical system of coordinates determined from the
formulas

ψr = Re

2π∫
0

Ψ(θϑ−λ, λ) sin(ϑ− λ) dλ,

ψϑ = Re

2π∫
0

Ψ(θϑ−λ, λ) cos(ϑ− λ) dλ.

(52)

This process leads us again to the construction of a certain class of solutions of
the equations of the elasticity theory in three dimensions. With a help of this
class of solutions we can consider, for the case of three dimensions, problems
similar to those mentioned above in the case of two dimensions. Together
with this class of solutions it is useful to introduce some new solutions as
well, which are obtained by rotation of the transverse waves for which the
displacement vector is parallel to the z-axis. Studying the solutions which
could be expressed in complex form, we obtain in the plane case solutions of
the form

V = −∂ψz

∂x
, ψz = Re {Ψz(θ′ϑ−λ, λ)},

δ′ ≡ t− θ′ϑ−λr cos(ϑ− λ) +

√
1
b2

− θ′2ϑ−λ z − χ(θ′ϑ−λ) = 0.

(53)

Integrating with respect to λ, we obtain the vector potential determined
by a vector parallel to the z-axis, and the length of this vector is found from
the formula

ψz = Re

2π∫
0

Ψz(θ′ϑ−λ, λ) dλ. (54)
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It can be proved among other facts that all solutions of the equations of elastic-
ity theory, for which the potentials are homogeneous functions, are contained
in the set of the solutions introduced.

Let us discuss in greater detail the case when the potential is a homoge-
neous function of the variables r, z, t (it does not depend on ϑ), and when the
displacement vector is located in the meridian plane. In this case the distur-
bances have axial symmetry with respect to the z-axis. The scalar potential is
a homogeneous solution of the wave equation, and the vector potential is di-
rected along the z-axis of the cylindrical system of coordinates. For the scalar
potential we have the formula

ϕ = Re

π∫
0

Φ(θϑ−λ) dλ, (55)

where

δ ≡ t− θϑ−λr cos(ϑ− λ) +

√
1
a2

− θ2
ϑ−λ z = 0. (56)

We can attain by the appropriate choice of an analytic function that, without
changing the potential ϕ, we can exclude the symbol of the real part from the
formula determining this potential, i.e., we have

ϕ =

π∫
0

Φ(θϑ−λ) dλ. (57)

One of the main problems is determining an analytic function Φ(θϑ−λ),
given the potential ϕ(ξ, η) = ϕ

(r
t
,
z

t

)
. As it occurs, it can be done by the

final formula

Φ(θ) =
1
π
ϕ

⎛⎝0,
1√

1
a2 − θ2

⎞⎠ . (58)

Similarly, we can determine an integrand and an expression for the poten-
tial of transverse waves

ψ′(θ) =
2
π

∂ψ
∂ξ

(
0, 1q

1
b2

−θ2

)
θ
√

1
b2 − θ2

. (59)

The main property of the class of solutions introduced is the possibility to
construct relatively easily the law of reflection from the rectilinear boundary
to obtain the reflected potentials for solutions determined by formulas (50)
and (54). It is simple enough to produce the reflection of those plane waves
whose rotations determine the given potentials. Obviously, this reflection pro-
cess leads us to solutions satisfying the limiting conditions; however, we need
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to verify that the additional terms determining the reflected waves do not
change the movement picture before the reflection. We can show that it will
be actually so, if we explain in more detail the connection between the poten-
tials ϕ, ψ and the integrand in formulas (50) and (54). Moreover, we need here
to continue appropriately the solution as we have done in the two-dimensional
case.

Let us notice one essential difference related to mechanical properties of
homogeneous solutions for two- and three-dimensional cases. In the case of
two dimensions the homogeneous potentials of zero degree give a solution of
the problem on the action of instantaneous impulse at some point, or, better
to say, some line, taking into account the third dimension. The homogeneous
potentials in the three-dimensional case no longer present a concentrated im-
pulse, but a force concentrated at the assigned place and acting from the
prescribed moment of time on (turned on force). Superposing such turned on
forces, we can obtain any force.

8. One of the basic problems which can be solved by using the theory
presented is the problem about natural vibrations of the half-space and layered
media [9]. The problem consists of the following: at the initial moment t = 0,
given the values of displacements and its velocities in the coordinate functions

u|t=0 = u0(x, y, z), v|t=0 = v0(x, y, z), w|t=0 = w0(x, y, z),

∂u

∂t

∣∣∣∣
t=0

= u′0(x, y, z),
∂v

∂t

∣∣∣∣
t=0

= v′0(x, y, z),
∂w

∂t

∣∣∣∣
t=0

= w′
0(x, y, z),

(60)

we have to find the displacements at all moments of time. The method of solu-
tion of this problem for an unbounded medium was proposed by V. Volterra.
It is based on application of the so-called method of characteristics. Let us dis-
cuss in detail this method in the case of two dimensions. If in the (x, z, t)-space
there are given two solutions of the elasticity equations whose displacement
vectors are u, w and u1, w1, and the components of stress tensor are Xx, Xz,
Zz and X

(1)
x , X(1)

z , Z(1)
z , then there exists the formula∫∫

S

{
(Xxu1 +Xzw1 −X(1)

x u−X(1)
z w) cosnx

+(Xzu1 + Zzw1 −X(1)
z u− Z(1)

z w) cosnz

−�
(
∂u

∂t
u1 +

∂w

∂t
w1 − ∂u1

∂t
u− ∂w1

∂t
w

)
cosnt

}
dS = 0, (61)

where S denotes an arbitrary closed surface in the (x, z, t)-space, inside which
the displacement vectors have continuous first derivatives. Applying this for-
mula relatively to the chosen surfaces, and taking as one of the solutions the
desired solution, and for another one a specially chosen solution, we can find
the value of the unknown solution in an arbitrary point of the space. As for
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the surfaces for which we apply formula (61), it is necessary to take closed
surfaces bounded by the conic surface

a2(t− t0)2 = (x− x0)2 + (y − y0)2 (62)

or
b2(t− t0)2 = (x− x0)2 + (y − y0)2, (63)

by the plane t = 0 and a small cylinder with the axis x = x0, y = y0.
The described method solves the problem completely in unbounded space.
In the framework of the present article we cannot discuss in more detail

the specifics of applying this method in the case of half-space. It is essential
that the special solutions used by V. Volterra belong to the class of solutions
studied by us, and for which we have obtained the reflection. We should point
out a small difference with the above discussion. While in our previous solu-
tions of equations of the elasticity theory we assumed that the potentials are
expressed in terms of functions of complex variable via formulas (16), here we
deal with the case when the displacements rather than the potentials are ex-
pressed in such form. This circumstance, however, is not difficult in principle.
Obviously, the components of the displacement vector satisfy the wave equa-
tion, and we can construct solutions where these components are expressed
in form (16). The formulas giving values of the displacement vector in two
particular solutions used by V. Volterra have the form

u1 = Re
{
−i
√

1
a2 − θ2

1

}
, w1 = Re {−iθ1},

u2 = Re {−iθ2}, w2 = Re
{
i
√

1
b2 − θ2

2

}
,

(64)

where θ1 is given by formula (23), and θ2 differs from θ1 by substituting b
for a. In view of the fact that the theory of reflections from a boundary of
such type solutions has been developed, it is possible to employ the Volterra
method in the case of bounded space.

A detailed analysis allows us to construct the theory of surface waves
also for this problem. If at the initial moment t = 0 the disturbance was
concentrated in some bounded domain of the half-space, then the wave from
the class of the surface waves studied in the theory of complex plane waves
will propagate from this domain with Rayleigh velocity c.

Besides the problem of vibrations in the half-space, we can solve in the
same way the problem about the vibrations of an arbitrary medium consisting
of parallel layers with different physical properties.

The problem of free vibrations in three dimensions is solved by the same
method in principle. Instead of formula (61) we have to write a generalization
of this formula in the case of four-dimensional (x, y, z, t)-space. The form of
particular solutions used here is also somewhat different. It is the most conve-
nient to use for this purpose solutions not possessing an axial symmetry. We
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are not going to discuss the form of these particular solutions itself. The essen-
tial feature is that here, as in the case of two dimensions, the integrals of type
(50) and (52) express not the potentials, but the displacements themselves.
For these particular solutions it is possible to find their finite representation
and, building the theory of reflections, proceed as in the two-dimensional case.

9. We have presented how to solve the basic questions of the theory of
reflection of elastic waves from a plane boundary for cases of free and forced
vibrations. Without discussing how to solve the questions of diffractions, which
analysis is based on the same principle, we move on to another application
of our method of complex variables. Here we have in mind the theory of the
wave diffraction [10,11].

One of the main problems of diffraction is the problem of diffraction of the
wave around an obstacle in the form of an angle or a screen. Mathematically
this problem is stated as follows. We have to find a solution of the wave
equation

∆u− 1
a2

∂2u

∂t2
= 0 (65)

for the domain in the space bounded by two planes passing through the z-axis,
i.e., the domain

0 < ϑ < α, (66)

where ϑ is the cylindrical coordinate of the space with the boundary conditions

u|ϑ=0 = 0, u|ϑ=α = 0 (67)

or
∂u

∂n

∣∣∣∣
ϑ=0

= 0,
∂u

∂n

∣∣∣∣
ϑ=α

= 0. (68)

Usually in this case π < α < 2π. Already A. Sommerfeld5 proved the equiv-
alence of these problems with the problem of solving the wave equation in a
many-sheeted space with a branching line on the bending edge z = 0. This
proof resembles the known arguments from the theory of reflections of waves
from the ends of free and fixed string. For example, consider such vibration
where besides boundary conditions (67) there are also given the initial condi-
tions

u|t=0 = u0(r, ϑ, z),

∂u

∂t

∣∣∣∣
t=0

= u′0(r, ϑ, z).
(69)

Simultaneously with domain (66) let us consider the domain −α < ϑ < 0,
and define additionally in this domain the initial conditions as follows:

u0(r, ϑ, z) = u0(r,−ϑ, z),
u′0(r, ϑ, z) = u′0(r,−ϑ, z).

(70)

5 See Frank, F., Mises, R.: Differential and Integral Equations of Mathematical
Physics. Vol. 2. ONTI, Leningrad – Moscow (1937). – Ed.
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Obviously, because of the complete symmetry of the problem, the value of
displacements on the neutral plane ϑ is zero. Repeating many times the re-
flection process from both arms of the angle, we arrive at the desired results.
Thus, if we continue respectively the initial conditions, then the problem can
be reduced to the problem of vibration of the domain −∞ < ϑ < +∞ with
arbitrary initial conditions. However, this domain is not our usual space. It
is the Riemann space with the logarithmic branching line r = 0, since all
functions of the coordinates which we study, generally speaking, are not peri-
odic functions of ϑ anymore with the period 2π. They have different period.
Therefore we have to place points with coordinates ϑ different by 2kπ on dis-
tinct sheets of the Riemann space. When we consider the problem of forced
vibrations, the method of its reduction to the many-sheeted problem coincides
with the above one. Instead of the initial conditions we have to place in the
Riemann space the reflected sources in corresponding points.

The solution of the problem by the method of complex variables described
below does not impose any restrictions like periodicity. For the particular
example let us consider first the plane problem. If we construct the complex
variable ζ by the formula

ζ =

(
at

r
−
√
a2t2

r2
− 1

)
eiϑ, (71)

then any function of this variable with branching points at ζ = 0 produces
a branching solution of the wave equation with the branching point r = 0.
Some of these solutions immediately give the answer to the specific physical
problems. Consider one of such problems, namely, the problem of diffraction
of the plane wave. The essence of this problem is in the following. In the
(x, y, t)-space with the logarithmic branching point at the coordinate origin
the elementary plane wave propagates over one sheet. For t < 0 this wave is
given by the formula

u = 0 for r cosϑ < −at or |ϑ| > π

2
,

u = 1 for r cosϑ > −at, |ϑ| < π

2
.

(72)

This wave is a plane disturbance with the front parallel to the y-axis moving
with velocity a toward the origin. Before a certain point the disturbance u = 0,
and after u = 1.

Let us examine the same motion after the wave has passed through the
logarithmic point. It can be proved that this solution after diffraction must
be a homogeneous function of zero order with respect to the coordinates and
time, i.e., inside the disk r < at it must be expressed as the real part of
a function of complex variable ζ, and in the exterior of the disk it has to
continue via one of the laws described above (see Fig. 3). The interior of the
disk is the domain where the phenomenon of diffraction has influence. It is not
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difficult to establish the value of the function of complex variable f(ζ) on the
contour of the domain from physical arguments. These values must be such
that u is continuous on the passage from the interior of the disk r < at into
the exterior of this disk, where the phenomenon of diffraction cannot have
influence. Because of the established law of correspondence of the points of
the disk r < at with the points of the disk |ζ| < 1, we can obtain the answer
to the question.

Fig. 3.

For convenience let us enumerate the sheets of the Riemann surface from
−∞ to +∞, making a cut from the origin along the negative axis and letting
the sheet where −π < ϑ < +π be the zero sheet. On the zero sheet, as we
can see from the picture, the diffraction disk everywhere borders with the
disturbed domain shaded on the picture and where, consequently, u = 1. On
all other sheets it borders with the domain where u = 0. Thus, we have to
construct such a harmonic function which on the zero sheet is equal to 1 on
the contour, and to 0 on other sheets. Such a harmonic function is known [12].
It is given by the formula

u = Re
{

1
πi

ln
[
1
i

ln ζ − π

]
− 1
πi

ln
[
1
i

ln ζ + π

]}
, (73)

where ln ζ denotes its principal value, i.e., i arg ζ. Formula (73) allows study-
ing the general phenomenon of diffraction of plane waves on the logarithmic
surface. Any plane wave which is determined before diffraction by the formula

u = f(x+ at) for t < 0, (74)

where f(s) = 0 for s < 0, can be decomposed into a sum of plane waves by
using the formula

u =

∞∫
0

u0(x+ at− h)f ′(h) dh, (75)

where u0 is the discontinuous function we have studied. It is equal either
to 0 or 1. We obtain the diffraction of the general form of plane waves by
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adding separate terms, i.e., studying diffraction of the integrand, and then
integrating with respect to the parameter. The transition from diffraction on
the logarithmic surface to diffraction on an angle can be obtained by using
the theory of reflection.

However, we can avoid these arguments if from the very beginning we
introduce periodic elementary plane waves. We will not discuss it here. The
diffraction of plane waves in three-dimensional space is studied by using ele-
mentary solutions equal to 0 in an undisturbed domain and 1 in a disturbed
domain. To study an incident elementary plane wave with a given angle to
the branching axis, we introduce the special moving system of coordinates.
Let the angle between the normal to the wave front and the z-axis be ω, then
from geometric arguments we have that the apparent speed of the motion of
the wave front along the z-axis is equal to

a

cosω
. Here we can verify that the

dependence of our solution on the coordinates z and t is such that u in all
parts of the space must be a function only of

t− z cosω
a

= τ. (76)

If in the wave equation we make the corresponding substitution of variables,
then we obtain an equation on u of the form

∂2u

∂x2
+
∂2u

∂y2
=

sin2 ω

a2

∂2u

∂τ2
. (77)

Thus, the problem has been reduced to the problem in two dimensions. If
in the previous solution we replace a by

a

sinω
and t by τ , then it provides

the answer to our question. We obtain the following physical picture of the
phenomenon (see Fig. 4). The plane ABCD, the plane of the wave front,
intersects the branching axis at the point E. The diffraction disturbance is
concentrated on all sheets of the Riemann surface inside the cone EFGHI,
with an apex at the point E, tangent to the plane of the wave along the line
EF . The values u = 1 are obtained on the zero sheet of the Riemann space
between the cone and the plane ABCD. The exterior of this plane on the
zero sheet and the exterior of the cone on all other sheets is the unperturbed
domain. The integration of such a plane wave, as in the case of two dimensions,
allows us to obtain the diffraction of a plane wave of general type.

The last problem that has to be discussed is the question of diffraction for
arbitrary initial conditions (the diffraction of free vibrations). So far this prob-
lem has been solved only for the case of wave propagation in two-dimensional
space.

A method of solution is based on integration in the plane of a certain
complex parameter of solutions depending on this parameter.

In view of the lack of space we cannot discuss this method in detail. We
only present the final result.
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Fig. 4.

The essence of the approach is that, using contour integrals, we look for a
representation of such solution of the wave equation on the Riemann surface
which is equal on the first sheet for a2t2 < (x2

0 + y2
0) to the known Volterra

solution

ln

(
at

r1
−
√
a2t2

r21
− 1

)
, (78)

where r1 denotes the distance from the varying point of the domain to the
fixed point with coordinates x0, y0, t0, and vanishes on the other sheets. As is
known, this solution plays the major role in solving the problem of free vibra-
tions via the characteristics method. If we know its diffraction, then, applying
techniques similar to the ones used in the theory of free elastic vibrations,
which we do not have time to discuss, we can solve the general problem here
as well. Particular solution (78) can be obtained superimposing the elemen-
tary plane waves discussed by us; the formulas presenting the answer to the
question have the form

W =
1

2πi

∫
c

v(λ) dλ+ ψ(x, y), (79)

where c is the contour chosen respectively, v(λ) is the solution of the type
discussed given by the formula

v(λ) =
1
πi

ln
[
1
i

ln ζ − λ

]
, (80)

where

ζ =

(
at1
r

−
√
a2t21
r2

− 1

)
eiϕ,

t1 = t+
r0
2ar

(
ei(ϕ0−λ) + ei(λ−ϕ0)

)
.
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Here r0, ϕ0 denote the polar coordinates of the point (x0, y0). Integral
(79) gives a representation of the unknown function both before and after the
diffraction. In such way the stated problem is completely solved.

Our essay would be incomplete if we say nothing about the problems
standing at the present for this new method and about the perspectives for
its further development.

First of all we note that certain results concerning, for example, the prop-
agation of waves in a layer are not deeply enough studied. In spite of the fact
that the method of complex variables, speaking theoretically, has presented
the complete solution of the problem, which could not be obtained until now
in any other way, some of the formulas obtained do not allow qualitative anal-
ysis at present. The problem is that for the late moments of time, i.e., for
multiple reflections from a boundary, we represent displacements as a sum
that, though finite, has a very large number of terms. Therefore we lose the
qualitative character of the phenomenon. At the present this question is being
studied and some results have been already obtained.

The second question that has to be looked at is the question of studying
the mechanical properties of those special solutions, which are characterized
by homogeneous potentials of zero order, and construction of homogeneous
solutions of other orders. The problem is that we have only the mechanical
characteristics of a few sources of the particular type so far, and the question
about the mechanical behavior of all discussed sources remains open.

Finally, a very broad set of problems remains unsolved in the diffraction
theory. Here, besides the naturally appearing question about diffraction in
three dimensions, we have such extremely difficult questions as the question
about the diffraction of elastic waves. An elementary inspection of this ques-
tion immediately leads to quite complex boundary value problems of the the-
ory of functions of a complex variable. These problems belong to the so-called
class of mixed problems for which the theory has not been developed at all.

Further research in this direction will be devoted to the resolution of these
questions.
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vibrations élastiques dans l’espace a symétrie axiale. Tr. Seism. Inst., 29 (1933),
49 p.8
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6. Functionally Invariant Solutions
of the Wave Equation∗

S. L. Sobolev

It is well-known that the elementary complex solution of the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0 (1)

in the real domain of x and y,
x+ iy, (2)

possesses the property which is called the property of functional invariance.
We recall the definition of this property. Let u(x, y) be a solution of equation
(1). It is called the functionally invariant solution in a domain D of the real
variables x, y, if an arbitrary function χ(u), differentiated with respect to u
twice in the range of values of u, corresponding to real variables x and y from
the domain D, is a solution of equation (1). Obviously, solution (2) is the
functionally invariant solution of equation (1) in the entire domain, i.e., in
the entire real (x, y)-plane.

The notion of the functional invariant can be transferred on other types
of equations.

For the wave equation in the two-dimensional space

∂2u

∂x2
+
∂2u

∂y2
=

1
a2

∂2u

∂t2
, (3)

V. I. Smirnov and the author constructed a special class of the functionally
invariant solutions. The definition of this class is contained, for example, in
the paper by the author [1].

First these solutions were obtained by V. I. Smirnov and the author in [2]
and in the note of the same authors [3].

Let us recall how to construct such solutions.
Construct a linear algebraic equation in the variables x, y, t, with coeffi-

cients depending on the unknown Ω,
∗ Tr. Fiz.-Mat. Inst. Steklova, 5, 259–264 (1934)



196 S. L. Sobolev

l(Ω)t+m(Ω)x+ n(Ω)y − k(Ω) = 0. (4)

Let the coefficients of this equation be analytic functions of Ω, let them
satisfy the condition

[l(Ω)]2 = a2{[m(Ω)]2 + [n(Ω)]2}.
Suppose that equation (4) can be solved forΩ and the solution is a function

Ω(x, y, t) (5)

real or complex.
Then function (5) is the functionally invariant solution of the wave equa-

tion (3).
The class of solutions (5) was used by V. I. Smirnov and the author to-

gether with other members of the Theoretical Department of the Seismological
Institute of the USSR Academy of Sciences when solving problems of different
types. All its properties were studied in detail. The references on this question
can be found in the paper by the author [4].

In the present note we prove that the class of solutions constructed in this
way is unique.

The result that we prove can be formulated as a theorem.

Theorem. Any function Ω(x, y, t), with continuous derivatives of the first
and second orders, which is a functionally invariant solution of equation (3),
can be obtained by solving an equation of type (4).

Proof. Let us consider an arbitrary function f(Ω) differentiable twice as men-
tioned above.

Since the function is functionally invariant, we have

∂2f(Ω)
∂x2

+
∂2f(Ω)
∂y2

− 1
a2

∂2f(Ω)
∂t2

= 0

or, after minor transformations,

f ′′(Ω)

[(
∂Ω

∂x

)2

+
(
∂Ω

∂y

)2

− 1
a2

(
∂Ω

∂t

)2
]

+f ′(Ω)
[
∂2Ω

∂x2
+
∂2Ω

∂y2
− 1
a2

∂2Ω

∂t2

]
= 0.

To satisfy this condition, obviously, it is necessary and sufficient that the
function Ω satisfies simultaneously two partial differential equations

∂2Ω

∂x2
+
∂2Ω

∂y2
− 1
a2

∂2Ω

∂t2
= 0 (6)

and
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∂Ω

∂x

)2

+
(
∂Ω

∂y

)2

− 1
a2

(
∂Ω

∂t

)2

= 0. (7)

Our task is to integrate the system of equations (6) and (7).
Differentiating equation (7) with respect to all three independent variables,

we have
∂Ω

∂x

∂2Ω

∂x2
+
∂Ω

∂y

∂2Ω

∂x∂y
− 1
a2

∂Ω

∂t

∂2Ω

∂x∂t
= 0,

∂Ω

∂x

∂2Ω

∂x∂y
+
∂Ω

∂y

∂2Ω

∂2y
− 1
a2

∂Ω

∂t

∂2Ω

∂y∂t
= 0,

∂Ω

∂x

∂2Ω

∂x∂t
+
∂Ω

∂y

∂2Ω

∂y∂t
− 1
a2

∂Ω

∂t

∂2Ω

∂t2
= 0.

(8)

Solving equations (8) for the mixed derivatives of Ω and using (6) and (7),
we obtain

2
∂2Ω

∂x∂y

∂Ω

∂x

∂Ω

∂y
=
∂2Ω

∂x2

(
∂Ω

∂y

)2

+
∂2Ω

∂y2

(
∂Ω

∂x

)2

,

2
∂2Ω

∂x∂t

∂Ω

∂x

∂Ω

∂t
=
∂2Ω

∂x2

(
∂Ω

∂t

)2

+
∂2Ω

∂t2

(
∂Ω

∂x

)2

,

2
∂2Ω

∂y∂t

∂Ω

∂y

∂Ω

∂t
=
∂2Ω

∂y2

(
∂Ω

∂t

)2

+
∂2Ω

∂t2

(
∂Ω

∂y

)2

.

(9)

Besides equations (9) we can obtain similarly three more equations. How-
ever, these equations are not independent of (9).

The new equations have the form

∂2Ω

∂t2
∂Ω

∂x

∂Ω

∂y
+

∂2Ω

∂x∂y

(
∂Ω

∂t

)2

=
∂2Ω

∂x∂t

∂Ω

∂y

∂Ω

∂t
+

∂2Ω

∂y∂t

∂Ω

∂x

∂Ω

∂t
,

∂2Ω

∂x2

∂Ω

∂y

∂Ω

∂t
+

∂2Ω

∂y∂t

(
∂Ω

∂x

)2

=
∂2Ω

∂x∂y

∂Ω

∂x

∂Ω

∂t
+

∂2Ω

∂x∂t

∂Ω

∂x

∂Ω

∂y
,

∂2Ω

∂y2

∂Ω

∂x

∂Ω

∂t
+

∂2Ω

∂x∂t

(
∂Ω

∂y

)2

=
∂2Ω

∂x∂y

∂Ω

∂y

∂Ω

∂t
+

∂2Ω

∂y∂t

∂Ω

∂x

∂Ω

∂y
.

(10)

If we add several elementary identities to equations (9) and (10), we can
write these equations in an invariant form. In the usual symbolism of tensor
analysis the obtained system of equations can be written in the form

∇α∇βΩ∇γΩ∇δΩ + ∇γ∇δΩ∇αΩ∇βΩ

= ∇α∇γΩ∇βΩ∇δΩ + ∇β∇δΩ∇αΩ∇γΩ.
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Consider an open set Ex of the points of the domain D, where the deriva-

tive
∂Ω

∂x
is nonzero. Construct two functions

a1 =
∂Ω

∂y

(
∂Ω

∂x

)−1

, a2 =
∂Ω

∂t

(
∂Ω

∂x

)−1

.

Differentiating these functions, by (9) and (10), we have

∂ai

∂x

∂Ω

∂y
− ∂ai

∂y

∂Ω

∂x
= 0,

∂ai

∂x

∂Ω

∂t
− ∂ai

∂t

∂Ω

∂x
= 0,

∂ai

∂y

∂Ω

∂t
− ∂ai

∂t

∂Ω

∂y
= 0, i = 1, 2.

From here it is easy to see that a1 and a2 are functions depending only on
Ω, i.e., they remain constant on any connected part of the surface Ω = const
belonging to Ex. Let us form the expression

x+ a1(Ω)y + a2(Ω)t = g

and show that g also depends only on Ω. Indeed, an elementary computation
gives

∂g

∂x

∂Ω

∂y
− ∂g

∂y

∂Ω

∂x
= 0,

∂g

∂x

∂Ω

∂t
− ∂g

∂t

∂Ω

∂x
= 0,

∂g

∂y

∂Ω

∂t
− ∂g

∂t

∂Ω

∂y
= 0.

Thus, Ω must satisfy the equation

δ1 ≡ x+ a1(Ω)y + a2(Ω)t− g(Ω) = 0.

It is easy to show that the function Ω can be determined from this equa-
tion. Indeed, forming the derivative of δ1 with respect to x, we obtain

1 + δ′1(Ω)
∂Ω

∂x
= 0, (11)

where δ′1(Ω) denotes the partial derivative of δ1 with respect to Ω. Obviously,
equality (11) can happen only when δ′1(Ω) �= 0, which proves our assertion.

Since systems (9) and (10) are invariant, we can claim that for the points
of the open set E, where at least one of the partial derivatives of Ω is nonzero,
Ω can be expressed as the solution of the linear equation
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δ(Ω) ≡ l(Ω)t+m(Ω)x+ n(Ω)y − k(Ω) = 0. (12)

For the derivatives of Ω with respect to the coordinates a direct compu-
tation gives the expressions

∂Ω

∂t
=

−l(Ω)
δ′

,
∂Ω

∂x
=

−m(Ω)
δ′

,
∂Ω

∂y
=

−n(Ω)
δ′

,

∂2Ω

∂t2
=

1
δ′

∂

∂Ω

(
l2(Ω)
δ′

)
,

∂2Ω

∂x2
=

1
δ′

∂

∂Ω

(
m2(Ω)
δ′

)
,

∂2Ω

∂y2
=

1
δ′

∂

∂Ω

(
n2(Ω)
δ′

)
.

Substituting these expressions in (6) and (7), we see that both of these
equations will hold if the coefficients l, m, and n satisfy the condition

[l(Ω)]2 = a2{[m(Ω)]2 + [n(Ω)]2}.

At those limiting points of E, that do not belong to E, the value of the
function Ω can be defined by continuity.

In the remaining open set M consisting of the union of domains Ω is
obviously constant along each such domain and can be presented in the form
of a solution of the equation of type (12).
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2. Smirnov, V., Sobolev, S.: Sur une méthode nouvelle dans le problème plan des
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7. General Theory of Diffraction of Waves
on Riemann Surfaces∗

S. L. Sobolev

Chapter 1 Weak Solutions of the Wave Equation

In the theory of integration of the wave equation

�u =
∂2u

∂x2
+
∂2u

∂y2
− 1
a2

∂2u

∂t2
= 0 (1)

in the two-dimensional space, so-called discontinuous solutions of this equa-
tion are often used in one or another form with discontinuous derivatives on
different surfaces of the three-dimensional space.

Which of these solutions have a physical sense, and which can be used
in different parts of mathematical apparatus applied to particular problems?
This question has been studied many times already. There is a large number of
studies devoted to the so-called kinematic and dynamic conditions of compat-
ibility, i.e., to the conditions satisfied by the first derivatives of an unknown
function on the discontinuity surface.

As we will see further, the research of N. M. Gunter devoted to equations
of the potential theory and the heat equation, are very close to this set of
ideas. There, N. M. Gunter shows that, for these problems of mathematical
physics, it is quite useful to turn from a differential equation in the classical
form to the study of certain integral equalities containing derivatives of orders
lower than the main differential equation.

For solving of the diffraction problem on logarithmic surfaces, which we
undertake in the second part of our work, we need to use certain functions,
which are solutions of the wave equation in a certain generalized sense. These
solutions not only can be nondifferentiable, but also be unbounded themselves.
In the first part of the work we study certain properties of such solutions.

We give a definition of these weak solutions and show that the solutions
with certain continuity properties are solutions satisfying dynamic and kine-

∗ Tr. Fiz.-Mat. Inst. Steklova, 9, 39–105 (1935)
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matic properties of compatibility. Conversely, we establish that discontinuous
solutions, satisfying the compatibility conditions, are the weak solutions.

Moreover, we establish that the integration with respect to a parameter
of weak solutions depending on this parameter under some additional condi-
tions leads us again to weak solutions. Finally, we state and solve the Cauchy
problem for these solutions.

Besides these general theoretical considerations, we study one particular
class of such solutions, which are constructed by using the theory of functions
of a complex variable.

This class was constructed by V. I. Smirnov and the author in the paper [1].
In Chap. 2 of the present work we integrate certain solutions of this type

with respect to a parameter, and construct a solution of the diffraction prob-
lem by using this approach.

1. Let us consider a certain integrable function u(x, y, t) and also the
sequence of integrable functions

un(x, y, t). (2)

Let us write the integral over a certain domain of the three-dimensional
space ∫∫∫

D

|un(x, y, t) − u(x, y, t)| dτ,

where dτ is the volume element.
If this integral tends to zero,

lim
n→∞

∫∫∫
D

|un(x, y, t) − u(x, y, t)| dτ = 0, (3)

then we say that the sequence converges in the mean of order 1 to the function
u(x, y, t) in the domain D, or, in other words, converges in L1.

A function u(x, y, t) is called a weak or a limiting solution of the wave
equation (1), or, for brevity, an L1-solution in a domain D, if a sequence
of functions un(x, y, t) with continuous second derivatives such that it satis-
fies the wave equation and converges in L1 to the function u(x, y, t) in this
domain.

Let us explain a necessary and sufficient condition for a given function
u(x, y, t) to be a limiting solution of equation (1)1.

Suppose that a function u(x, y, t) is an L1-solution. Let us construct a
sequence of continuous solutions un(x, y, t) convergent to u(x, y, t) as above.

In the (x, y, t)-space we consider a domain G located entirely inside D and
bounded by the surface S compounded from a finite number of pieces with
continuously changing tangent planes.

1 In what follows, S. L. Sobolev assumes a weaker convergence in the definition of
the weak solution, namely, un → u in Lloc – Ed.
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Let us construct in this domain a function v(x, y, t) that is continuous up
to the surface S together with its first and second derivatives and vanishes on
this surface together with the first-order derivatives. Apply the classical Green
formula to this constructed function v(x, y, t) and to the solutions un(x, y, t).

We obtain∫∫∫
G

(un�v − v�un) dτ =
∫∫
S

[
v
∂un

∂µ
− un

∂v

∂µ

]
dS, (4)

where dτ is the volume element of the (x, y, t)-space, dS is the element of the

surface S, and
∂

∂µ
denotes formally the operation

∂

∂µ
= cos νx

∂

∂x
+ cos νy

∂

∂y
− 1
a2

cos νt
∂

∂t
,

where ν is the direction of the inward normal to S.
Since v vanishes on S together with

∂v

∂µ
, the right side of formula (4) is

equal to zero. Taking into account that un satisfies the wave equation, we
obtain ∫∫∫

G

un�v dτ = 0. (5)

Let us introduce the integral∫∫∫
G

u�v dτ (6)

and prove that it is equal to zero.
For this purpose, we write the difference∫∫∫

G

un�v dτ −
∫∫∫

G

u�v dτ =
∫∫∫

G

(un − u)�v dτ

and prove that it tends to zero.
Indeed, ∣∣∣∣∣∣

∫∫∫
G

(un − u)�v dτ

∣∣∣∣∣∣
≤
∫∫∫

G

|un − u||�v| dτ ≤ M

∫∫∫
G

|un − u| dτ,

where M is the maximum of |�v| in G.
Consequently,
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lim
n→∞

∣∣∣∣∣∣
∫∫∫

G

(un − u)�v dτ

∣∣∣∣∣∣ = 0.

Since integral (5) is equal to zero, and the difference between the integral and
(6) tends to zero, then integral (6) is equal to zero.

As we will show further, the condition that integral (6) vanishes and any
domain G and an arbitrary function v, vanishing with its first derivatives on
the boundary and continuous with its second derivatives up to the boundary∫∫∫

G

u�v dτ = 0, (7)

is not only necessary, but also sufficient for the function u(x, y, t) to be an
L1-solution of the wave equation.

For brevity, we call it Condition A.
2. Moving on to the proof of sufficiency of Condition A, let us prove several

elementary statements on the general properties of integrable functions.
Let us consider in a domain D of the (x, y, t)-space an arbitrary function

f(x, y, t) integrable in this domain. Consider an inner domain D1 such that
the distance between its inner points and points of the boundary of D is
greater than a number η1.

For any point x0, y0, t0 of the domain D1 let us take a countable system
of balls with radii η1, η2, . . ., where

0 < ηn < . . . < η2 < η1, lim
n→∞ ηn = 0.

Inside of each ball of radius ηn, circumscribed around x0, y0, t0, we con-
struct a function

ωn(x, y, t;x0, y0, t0) (8)

of the variables (x, y, t) satisfying the following conditions:
1) all functions ωn(x, y, t;x0, y0, t0) are uniformly bounded for any n and

for any point (x0, y0, t0) from D1;
2) the functions ωn(x, y, t;x0, y0, t0) are measurable as functions of six

variables (x, y, t;x0, y0, t0);
3) for all (x0, y0, t0) and for any n the integrals

In(x0, y0, t0) =
∫∫∫

(x−x0)2+(y−y0)2+(t−t0)2=r2≤η2
n

ωn(x, y, t;x0, y0, t0) dτ (9)

satisfy the inequality
In(x0, y0, t0) > γVn, (10)

where

Vn =
4πη3

n

3
,
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and γ is a fixed positive number;
4) we require that the function ωn be zero outside the ball of radius ηn:

ωn(x, y, t;x0, y0, t0) = 0 for (x−x0)2+(y−y0)2+(t−t0)2 = r2 > η2
n. (11)

The system of the functions ωn satisfying these conditions is called the
regular system of nuclei .

Let us construct now the system of functions

fn(x0, y0, t0) =

∫∫∫
r2≤η2

n

ωn(x, y, t;x0, y0, t0)f(x, y, t) dx dy dt

In(x0, y0, t0)
(12)

corresponding to a function f(x, y, t).
The sequence of fn(x0, y0, t0) is called the sequence of average functions

corresponding to the given regular system of nuclei ωn(x, y, t;x0, y0, t0).
We prove several elementary properties of sequences of average functions.

Property 1. The sequence of average functions corresponding to the regular
system of nuclei ωn converges almost everywhere to f(x, y, t).

Property 2. If a function f(x, y, t) is bounded, then the sequence of average
functions fn(x, y, t) is also bounded uniformly.

Property 3. The convergence fn(x, y, t) to f(x, y, t) is the mean convergence
with order 1.

Before moving on to the proof of these statements, we note that in the
proof we can assume that the function f(x, y, t) is nonnegative; moreover,

f > κ > 0. (13)

Indeed, from the algorithm of construction of average functions it follows
that the average function fn of the sum of two terms f = f (1) + f (2) is equal
to the sum of the average functions

fn = f (1)
n + f (2)

n .

Any integrable function f can be decomposed into two terms satisfying
the above stated condition. Obviously, in this case from Properties 1–3 for
the sequences f (1)

n and f
(2)
n the same properties for the sequence of fn follows.

Furthermore, it is not difficult to see that the function ωn can be considered
bounded by positive constants

0 < m < ωn < M. (14)

If ωn does not satisfy this condition, we can always express it by the
difference of two functions satisfying this condition
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ωn = ωn − ωn.

Let us denote by fn and fn the average functions corresponding to ωn

and ωn, respectively. Let In and In be values of the integrals

In =
∫∫∫

r2<η2
n

ωn dτ, In =
∫∫∫

r2<η2
n

ωn dτ.

We have the obvious identities

Infn = Infn − Infn, In = In − In.

Hence,

fn =
Infn − Infn

In − In

.

Dividing the numerator and the denominator of this fraction by Vn, we
obtain

fn =

In

Vn
fn − In

Vn
fn

In

Vn
− In

Vn

= fn +

In

Vn
(fn − fn)

In

Vn
− In

Vn

= fn +

In

Vn
(fn − fn)

In

Vn

.

Obviously, the second term on the right side almost everywhere tends to

zero, because its denominator is larger than a fixed constant γ,
In

Vn
< M , and

the difference fn−fn almost everywhere tends to zero. From the boundedness
of fn and fn the uniform boundedness of this second term follows. Finally, if
fn and fn converge to f in L1, then the second term converges to zero in L1

too.
Therefore, in the proof we assume that inequalities (13) and (14) are au-

tomatically fulfilled.
A particular case of Property 1 is the well-known Lebesgue theorem about

differentiation of indefinite integrals.
Indeed, if we define a function ωn(x, y, t;x0, y0, t0) equal to one at some

points of a set En and zero outside this set, then fn(x0, y0, t0) has the form
F (En)
mEn

, where F (En) is the Lebesgue integral of f over En.

In such case this property is a reformulation of the fact that the given
function is equal almost everywhere to the derivative of its indefinite integral.

Recall that points with such a property are called Lebesgue points.
Let us prove now Property 1 for sequences of average functions.
We establish that fn(x0, y0, t0) converges to f(x0, y0, t0) at all the Lebesgue

points.
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Let M be the upper bound of the functions ωn, and m > 0 be the lower
bound. Let us decompose the ball of radius ηn into l collections of

Er = (K(l)
r−1 < ωn(x, y, t;x0, y0, t0) < K(l)

r ), r = 1, 2, . . . , l, (15)

where

K
(l)
j = m+

j(M −m)
l

.

Obviously, all these sets are measurable.
It is clear that fn(x0, y0, t0) can be rewritten in the form

fn(x0, y0, t0) =

l∑
r=1

∫∫∫
Er

ωn(x, y, t;x0, y0, t0)f(x, y, t) dτ

l∑
r=1

∫∫∫
Er

ωn(x, y, t;x0, y0, t0) dτ
. (16)

We consider a Lebesgue point for the function f . Let us estimate separately
the numerator and the denominator of expression (16).

First, we point out one important equality.
By the Lebesgue theorem,

1
Vn

∫∫∫
r<ηn

f(x, y, t) dτ = f(x0, y0, t0) + ξ1(n),

where the function ξ1(n) tends to zero as n → ∞, or∫∫∫
r<ηn

f(x, y, t) dτ = Vnf(x0, y0, t0) + Vnξ1(n) ≤ KVn. (17)

Let us write the expression

f (l)
n (x0, y0, t0) =

l∑
r=1

K
(l)
r−1

∫∫∫
Er

f(x, y, t) dτ

l∑
r=1

K
(l)
r−1mEr

and show that the difference fn(x0, y0, t0) − f
(l)
n (x0, y0, t0) can be made less

than any prior given number, if l is sufficiently large.
Indeed,

fn(x0, y0, t0) − f (l)
n (x0, y0, t0)

=

[
l∑

r=1

∫∫∫
Er

(ωn −K
(l)
r−1)f(x, y, t) dτ

]
l∑

r=1
K

(l)
r−1mEr(

l∑
r=1

K
(l)
r−1mEr

)
In
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−

[
l∑

r=1

∫∫∫
Er

(ωn −K
(l)
r−1) dτ

]
l∑

r=1

∫∫∫
Er

K
(l)
r−1f(x, y, t) dτ(

l∑
r=1

K
(l)
r−1mEr

)
In

.

Since K(l)
r−1 > m, the denominator of the fraction is greater than mγV 2

n .
It is not difficult to see that the numerators, in turn, are less than⎛⎝ l∑

r=1

M −m

l

∫∫∫
Er

f(x, y, t) dτ

⎞⎠MVn

and
M −m

l
Vn

l∑
r=1

∫∫∫
Er

Mf(x, y, t) dτ,

respectively. Hence,

|fn(x0, y0, t0) − f (l)
n (x0, y0, t0)| < 2MK(M −m)

mγl
= ξ2(l). (18)

Therefore, the difference fn(x0, y0, t0) − f
(l)
n (x0, y0, t0) is arbitrarily small for

sufficiently large l and uniform with respect to n.
Let us fix l so large that ξ2(l) is less than

ε

2
, where ε is an arbitrary positive

number.
By the Lebesgue theorem, for an arbitrary given number δ and all sets E ′

r

from Er with measures greater than
δVn

l
, we have∫∫∫

E′
r

f(x, y, t) dτ = mE ′
rf(x0, y0, t0) +mE ′

rξr(δ, n), (19)

where ξr(δ, n) < ξ(δ, n), ξr(δ, n) tends to zero as n → ∞ for a fixed δ. In this
case, for δ < 1,

ξ1(n) < ξ(δ, n).

Let E ′′
r be sets of measures less than

δVn

l
. Obviously,

∑
mE ′′

r < δVn.

Comparing (17) and (19), we obtain∑∫∫∫
E′′

r

f dτ +
∑∫∫∫

E′
r

f dτ =
∑∫∫∫

E′′
r

f dτ + f(x0, y0, t0)
∑

mE ′
r
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+
∑

ξr(δ, n)mE ′
r = f(x0, y0, t0)Vn + ξ1(n)Vn.

Solving this equation for
∑∫∫∫

E′′
r

f dτ , we obtain

∑∫∫∫
E′′

r

f dτ = f(x0, y0, t0)
(∑

mE ′′
r

)
−
∑

ξr(δ, n)mE ′
r + ξ1(n)Vn.

Recalling that ∣∣∣∑ ξr(δ, n)mE ′
r

∣∣∣ < Vnξ(δ, n),

we have ∣∣∣∣∣∣∣
∑∫∫∫

E′′
r

f dτ

∣∣∣∣∣∣∣ ≤ Vnω(δ, n), (20)

where ω(δ, n) is arbitrarily small for sufficiently small δ and sufficiently large
n.

Returning to f
(l)
n (x0, y0, t0), let us consider the difference

f (l)
n (x0, y0, t0) − f(x0, y0, t0).

This difference can be written in the form

f (l)
n (x0, y0, t0) − f(x0, y0, t0)

=

∑
K

(l)
r−1

∫∫∫
E′

r

f dτ +
∑

K
(l)
r−1

∫∫∫
E′′

r

f dτ∑
K

(l)
r−1mE ′

r +
∑

K
(l)
r−1mE ′′

r

−
(∑

K
(l)
r−1mE ′

r

)
f(x0, y0, t0)∑

K
(l)
r−1mE ′

r

=

(∑
K

(l)
r−1mE ′

r

)(∑
K

(l)
r−1ξr(δ, n)mE ′

r

)
(∑

K
(l)
r−1mE ′

r +
∑

K
(l)
r−1mE ′′

r

)(∑
K

(l)
r−1mE ′

r

)

+

(∑
K

(l)
r−1

∫∫∫
E′′

r

f dτ

)(∑
K

(l)
r−1mE ′

r

)
(∑

K
(l)
r−1mE ′

r +
∑

K
(l)
r−1mE ′′

r

)(∑
K

(l)
r−1mE ′

r

)

−
(∑

K
(l)
r−1mE ′′

r

)
f(x0, y0, t0)

(∑
K

(l)
r−1mE ′

r

)
(∑

K
(l)
r−1mE ′

r +
∑

K
(l)
r−1mE ′′

r

)(∑
K

(l)
r−1mE ′

r

) .
First, we fix sufficiently small δ, and then choose sufficiently large n. It is

obvious that this difference is arbitrarily small, i.e.,∣∣∣f (l)
n (x0, y0, t0) − f(x0, y0, t0)

∣∣∣ < ε

2
. (21)
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Comparing this inequality with (18), we see that

|fn(x0, y0, t0) − f(x0, y0, t0)| < ε,

which is required.
For nuclei of constant signs, Property 2 for sequences of average functions

is valid in the stronger form.
Namely, if |f | ≤ M , then the absolute values of all fn satisfy the same

inequality
|fn| ≤ M.

The proof is completely obvious. For the same nuclei of constant signs,
substituting −f for f and comparing the obtained results, we have

v.min f ≤ fn ≤ v.max f. (22)

Here the symbols v.min and v.max denote the so-called essential minimum
and maximum.

If the function f(x, y, t) is bounded, then from Property 1 and Prop-
erty 2 of average functions we have also Property 3. Indeed, in this case
|fn(x0, y0, t0) − f(x0, y0, t0)| almost everywhere converges to zero. Since the
difference is bounded, by the well-known Lebesgue theorem, we obtain

lim
n→∞

∫∫∫
|fn − f | dτ = 0. (23)

Going on to the study of unbounded functions f(x, y, t), we prove a certain
auxiliary statement.

Lemma 1. For any measurable set E one can pass to the limit under the
integral sign

lim
n→∞

∫∫∫
E

fn(x, y, t) dτ =
∫∫∫
E

f(x, y, t) dτ. (24)

The property formulated in the lemma is usually called the weak convergence.
Therefore, the second form of our lemma is the following: the sequence of

the functions fn(x, y, t) weakly converges to the function f(x, y, t).

Proof. We replace the function fn(x, y, t) by its representation. In this case
we obtain ∫∫∫

E
fn(x, y, t) dτ

=
∫∫∫
E

⎧⎪⎨⎪⎩
∫∫∫

r2<η2
n

ωn(x1, y1, t1;x, y, t) f(x1, y1, t1)
In(x, y, t)

dτ1

⎫⎪⎬⎪⎭ dτ. (25)
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It is not difficult to see that the product

ωn(x1, y1, t1;x, y, t) f(x1, y1, t1)

is a measurable summable function in the space of six variables (x1, y1, t1; x,
y, t), because it is the product of the summable function f(x1, y1, t1) and the
measurable bounded function.

Hence, in the integral on the right side of (25), by the well-known Lebesgue
theorem, we can change the order of integration. Recalling that ωn = 0 for
r > ηn, we can replace the integration domain in the inner integral by a
domain E ′ containing all points such that the distance from these points to E
does not exceed ηn. After such rearrangement, we obtain∫∫∫

E
fn(x, y, t) dτ

=
∫∫∫
E′

f(x1, y1, t1)

⎧⎨⎩
∫∫∫
E

ωn(x1, y1, t1;x, y, t)
In(x, y, t)

dτ

⎫⎬⎭ dτ1. (26)

The inner integral on the right side of formula (26) is a bounded function,
because ωn is bounded above, In satisfies condition (10), and the function ωn

for fixed (x1, y1, t1) is nonzero only for r ≤ ηn.
For brevity, we denote∫∫∫

E

ωn(x1, y1, t1;x, y, t)
In(x, y, t)

dτ = K(E)
n (x1, y1, t1). (27)

On the basis of the above, K(E)
n (x1, y1, t1) is bounded.

We prove later that as n → ∞ K
(E)
n weakly converges to the so-called

characteristic function of the set E , which is defined as

ψE(x1, y1, t1) =

{
1 for (x1, y1, t1) ∈ E ,
0 for (x1, y1, t1) ∈ R3\E .

(28)

To establish our statement about the weak convergence of fn to f , it
suffices to prove the following lemma.

Lemma 2. The product of a certain sequence ψn, weakly convergent to ψ and
bounded, and any summable function f is itself weakly convergent to the limit
equal to ψf .

Whence it immediately follows that the integral on the right side of formula
(26) converges to

∫∫∫
E

f(x1, y1, t1) dτ1, and our statement is proved.
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Proof. The proof of Lemma 2 is elementary.
First, we establish it for the case when f = 1 at points of a certain set E1

and equal to zero outside.
Here2

lim
n→∞

∫∫∫
E

f(x1, y1, t1)ψn(x1, y1, t1) dτ1 = lim
n→∞

∫∫∫
EE1

ψn(x1, y1, t1) dτ1

=
∫∫∫
EE1

ψ(x1, y1, t1) dτ1 =
∫∫∫
E

f(x1, y1, t1)ψ(x1, y1, t1) dτ1,

which is required.
From this particular case it is easy to move on to the case when f is a

bounded function
|f | < N. (29)

Let
|ψn| < M, |ψ| < M. (30)

Let us choose the number K larger than
8NMm

ε
, where m is the measure

of a domain D, and ε is a given positive number.
Let us construct a function fK(x, y, t) as follows:

fK(x, y, t) = −N +
2(l − 1)N

K

at points of the set

El =
(
−N +

2(l − 1)N
K

< f < −N +
2lN
K

)
, l = 1, 2, . . . ,K.

Obviously, we have∫∫∫
E

f(ψn − ψ) dτ −
∫∫∫
E

fK(ψn − ψ) dτ =
∫∫∫
E

(f − fK)(ψn − ψ) dτ.

Since
|f − fK | < 2N

K
<

ε

4Mm
and |ψn − ψ| ≤ 2M,

we obtain ∣∣∣∣∣∣
∫∫∫
E

f(ψn − ψ) dτ −
∫∫∫
E

fK(ψn − ψ) dτ

∣∣∣∣∣∣ ≤ ε

2
. (31)

2 S. L. Sobolev uses the notation EE1 for the intersection of sets E and E1. – Ed.
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However, fK(x, y, t) is a sum of a finite number of functions admitting only
two values. Therefore, by the result proved above,

lim
n→∞

∫∫∫
E

fKψn dτ =
∫∫∫
E

fKψ dτ.

Hence, for sufficiently large n we obtain∣∣∣∣∣∣
∫∫∫
E

fK(ψn − ψ) dτ

∣∣∣∣∣∣ < ε

2
. (32)

From (31) and (32) it follows that∣∣∣∣∣∣
∫∫∫
E

f(ψn − ψ) dτ

∣∣∣∣∣∣ < ε, (33)

which is required.
Finally, let us prove our lemma for an arbitrary summable function.
Let f(x1, y1, t1) be such a function.
Let us construct the function f(x1, y1, t1) by the following rule:

f(x1, y1, t1) = f(x1, y1, t1), if |f(x1, y1, t1)| < N,

f(x1, y1, t1) = N, if f(x1, y1, t1) > N,

f(x1, y1, t1) = −N, if f(x1, y1, t1) < −N.

Denote by f the difference f − f .
Then, by the main integrability property, for a sufficiently large N ,∫∫∫

E
|f | dτ < ε

4M
, (34)

where ε is a given fixed number. Obviously,∫∫∫
E

f(ψn − ψ) dτ =
∫∫∫
E

f(ψn − ψ) dτ +
∫∫∫
E

f(ψn − ψ) dτ.

We choose N large enough for (34) to hold. Then,∣∣∣∣∣∣
∫∫∫
E

f(ψn − ψ) dτ

∣∣∣∣∣∣ ≤
∫∫∫
E

|f |{|ψn| + |ψ|} dτ ≤ 2M
∫∫∫
E

|f | dτ ≤ ε

2
.

Next, for the bounded function f we can take n so large that
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∫∫∫
E

f(ψn − ψ) dτ

∣∣∣∣∣∣ < ε

2
.

Then, ∣∣∣∣∣∣
∫∫∫
E

f(ψn − ψ) dτ

∣∣∣∣∣∣ < ε, (35)

and Lemma 2 is proved. ��
To finish our proof, it only remains to establish the weak convergence of

the function
K(E)

n to ψE .

Our statement will be proved when we establish that for any set E,

lim
n→∞

∫∫∫
E

K(E)
n (x1, y1, t1) dτ1 = m(EE). (36)

Let us prove the equality.
Let us consider an arbitrary set E and construct the characteristic function

ϕ(x, y, t) =

{
1 for (x, y, t) ∈ E,

0 for (x, y, t) ∈ R3\E.
By the result proved above, for this function the sequence of average func-

tions converges to ϕ in mean of order 1, hence

lim
n→∞

∫∫∫
EE

|1 − ϕn(x, y, t)| dτ = 0.

Recalling that for the nucleus of constant signs the values of ϕn are between
0 and 1, and using this equality, we obtain

lim
n→∞

∫∫∫
EE

⎧⎨⎩
∫∫∫
E

ωn(x1, y1, t1;x, y, t)
In(x, y, t)

dτ1

⎫⎬⎭ dτ = m(EE).

Changing the order of integration, we have

lim
n→∞

∫∫∫
E

⎧⎨⎩
∫∫∫
EE

ωn(x1, y1, t1;x, y, t)
In(x, y, t)

dτ

⎫⎬⎭ dτ1 = m(EE). (37)

Next, on the same basis, we obtain

lim
n→∞

∫∫∫
E−E

ϕn(x, y, t) dτ = 0.
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Using the positivity of ϕn and changing the order of integration as above, we
obtain

lim
n→∞

∫∫∫
E

⎧⎨⎩
∫∫∫
E−E

ωn(x1, y1, t1;x, y, t)
In(x, y, t)

dτ

⎫⎬⎭ dτ1 = 0. (38)

Summing (37) and (38), we get (36).
Thus, Lemma 1 is proved. ��
Let us begin the proof of Property 3 for the sequence of average functions.
Consider a summable function f(x, y, t), which we again represent in the

form of the sum
f = f + f, where |f | ≤ N,

and f possesses the property ∫∫∫
D

|f | dτ ≤ ε

4
. (39)

Obviously, any average function fn(x, y, t) also can be represented in the
form of the sum

fn(x, y, t) = fn(x, y, t) + fn(x, y, t), (40)

where
fn > 0, fn > 0.

Let us consider the integral∫∫∫
D

|fn(x, y, t) − f(x, y, t)| dτ. (41)

We obtain∫∫∫
D

|fn(x, y, t) − f(x, y, t)| dτ ≤
∫∫∫

D

|fn(x, y, t) − f(x, y, t)| dτ

+
∫∫∫

D

fn(x, y, t) dτ +
∫∫∫

D

f(x, y, t) dτ. (42)

By the result proved above, for sufficiently large n, the integral
∫∫∫
D

fn(x, y, t)dτ

differs from
∫∫∫
D

f(x, y, t) dτ no more than by
ε

4
. Consequently,

∫∫∫
D

fn(x, y, t) dτ <
ε

2
. (43)
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Since Property 3 was proved for bounded functions, for sufficiently large
n we have ∫∫∫

D

|fn(x, y, t) − f(x, y, t)| dτ < ε

4
. (44)

Using (39), (43), (44), and (42), we obtain∫∫∫
D

|fn(x, y, t) − f(x, y, t)| dτ < ε, (45)

which is required.
3. We can return to the proof of the sufficiency of Condition A for a given

function to be a limiting solution.
Let u(x, y, t) be a given function satisfying this condition. We construct

for it the sequence of average functions by using the regular system of

ωn(x, y, t;x0, y0, t0) =

⎧⎨⎩ e
r2

r2−η2
n , r < ηn,

0, r ≥ ηn,

(46)

where r is equal to
√

(x− x0)2 + (y − y0)2 + (t− t0)2. We obtain

un(x0, y0, t0) =
1
In

∫∫∫
r<ηn

u(x, y, t)e
r2

r2−η2
n dτ =

1
In

∫∫∫
D

uωn dτ. (47)

Let us prove that function (47) has continuous second derivatives and
satisfies the wave equation.

By the general properties of average functions, it is known that

lim
n→∞

∫∫∫
|un − u| dτ = 0. (48)

Thus, we will establish that the function u(x, y, t) is a weak solution of the
wave equation. For the proof, let us note that the function

un(x0, y0, t0) =
1
In

∫∫∫
D

u(x, y, t)ωn(x, y, t;x0, y0, t0) dτ (49)

can be infinitely differentiated under the integral sign.
Indeed, the functions

Dxωn =
ωn(x, y, t;x0 + h, y0, t0) − ωn(x, y, t;x0, y0, t0)

h
,

Dxxωn =
Dxωn(x, y, t;x0 + h, y0, t0) −Dxωn(x, y, t;x0, y0, t0)

h
,



General Theory of Diffraction of Waves on Riemann Surfaces 217

and so on converge to the corresponding derivatives of ωn as h → 0, and the
functions remain bounded. Therefore, by the Riesz theorem, one can pass to
the limit under the integral sign in the expressions

un(x0 + h, y0, t0) − un(x0, y0, t0)
h

.

Taking into account that

∂ωn

∂x0
= −∂ωn

∂x
,

∂ωn

∂y0
= −∂ωn

∂y
,

∂ωn

∂t0
= −∂ωn

∂t
, . . . ,

we obtain

�0un(x0, y0, t0) =
∫∫∫

D

u�0ωn dτ =
∫∫∫

r2<η2
n

u�ωn dτ ;

however, by (7), since ωn vanishes on the boundary together with its first
derivatives, we obtain

�0un(x0, y0, t0) = 0. (50)

Our statement is proved.
The sequence of functions (47) has one more important property.
If a function u has absolutely continuous derivatives of order k and, there-

fore, summable derivatives of order k+ 1, then the (k+ 1)st derivatives of un

almost everywhere converge to (k+1)st derivatives of u as n → ∞; moreover,
the convergence is the mean convergence of order 1, and the derivatives of
order k of un converge to the derivatives of order k of u uniformly.3

For the proof, let us consider, for instance, the first derivative with respect
to x0,

∂un

∂x0
=
∫∫∫
r<ηn

u
∂ωn

∂x0
dτ = −

∫∫∫
r<ηn

u
∂ωn

∂x
dτ.

If u is an absolutely continuous function, then we can integrate by parts
the integral on the right side. Since the function ωn vanishes on the boundary
together with its derivatives, then we obtain

∂un

∂x0
=
∫∫∫
r<ηn

∂u

∂x
ωn dτ. (51)

Thus, the derivative of an average function is just the average function of
the derivative, and our assertion follows. In the same way, we can prove our
statement for derivatives of any order. We say that the sequence of average
functions having all derivatives satisfying the wave equation and this property
is “proper”.

3 All functions are considered in an inner domain D1. – Ed.
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4. To determine how usual solutions of the wave equation and limiting so-
lutions defined in Sect. 1 are related, we study properties of those L1-solutions,
which possess known properties of continuity.

Their main property is the following one.
Let a function u have absolutely continuous first derivatives, therefore,

summable second derivatives. If u is an L1-solution, then it satisfies the wave
equation almost everywhere.

For the proof, let us construct the regular sequence of average functions
(47).

By the result proved above, �un almost everywhere converges to �u as
n → ∞. Furthermore, since �un = 0, we see that �u = 0 almost everywhere,
whence our assertion follows.

Let us consider in the domain D of the (x, y, t)-space a certain surface
S1 with a continuously changing tangential plane. Let us take a domain Ω
on this surface. In this domain we consider a certain function v continuous
together with first-order and second-order derivatives up to the boundary and
vanishing on the boundary of Ω.

Assume that a function u is continuous in the domain D.
Let us compose the integral ∫∫

Ω

v
∂un

∂µ
dS, (52)

where un is a certain family of “proper” average functions for the function u.
We prove now the main statement.
Integral (52) as n → ∞ has a definite finite limit independent of construc-

tion of the family of average functions. We denote this limit by∫∫
Ω

v
∂u

∂µ
dS. (53)

In our space we construct a closed surface S consisting of a finite number
of pieces with continuously changing tangential planes and piece-wise regular
contours, such that it is a part of the surface S1.

Then, we extrapolate the function v into the interior of this surface so
it has continuous first-order and second-order derivatives up to S. Moreover,
we require that the function v vanishes on S except for Ω. Applying to the
domain G bounded by the surface S the Green formula (4) for the functions
v and un, we obtain∫∫∫

G

un�v dτ =
∫∫
Ω

∂un

∂µ
v dS −

∫∫
S

un
∂v

∂µ
dS.

Hence,
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Ω

v
∂un

∂µ
dS =

∫∫∫
G

un�v dτ +
∫∫
S

un
∂v

∂µ
dS. (54)

Since the right side of this equality as n → ∞ has the definite limit∫∫∫
G

u�v dτ +
∫∫
S

u
∂v

∂µ
dS (55)

independent of the choice of average functions, then the left side also does
not depend on the choice. It is obvious that this limit cannot depend on the
choice of the domain G.

Our assertion is proved.

By the definition of
∫∫

v
∂u

∂µ
dS, for any closed surface S and for any v with

continuous second-order derivatives, we have∫∫
S

v
∂u

∂µ
dS =

∫∫∫
G

u�v dτ +
∫∫
S

u
∂v

∂µ
dS. (56)

This formula is a generalization of the classical Green formula.

The symbol
∫∫

v
∂u

∂µ
dS can have meaning not only for continuous solu-

tions, but also for the general L1-solutions of the wave equation.
We say that a domain Ω on a certain surface S with a continuously chang-

ing tangential plane is a domain of full summability for a given summable
function u, if

a) u is summable on this surface,
b) an arbitrary sequence of average functions un converges to the function

u in mean of order 1 on this surface.

We prove that the expression
∫∫
Ω

v
∂u

∂µ
dS has meaning for any domain of

full summability.
The proof coincides word by word with the one carried out for continuous

functions.
Let us consider the domain G and the function v mentioned above. Ap-

plying the Green formula, we obtain as above∫∫∫
G

un�v dτ =
∫∫
Ω

v
∂un

∂µ
dS −

∫∫
Ω

un
∂v

∂µ
dS.

From the existence of the limit for the integrals∫∫∫
G

un�v dτ and
∫∫
Ω

un
∂v

∂µ
dS

we can immediately conclude the existence of the limit for the integral



220 S. L. Sobolev ∫∫
Ω

v
∂un

∂µ
dS.

As a corollary, we also obtain a generalization of formula (56). Let us
consider an arbitrary domain G bounded by a piece-wise regular surface S.
Assume that Ω on S is a full summability domain of a weak solution. Then,
for any function v with continuous derivatives up to the second order and
vanishing everywhere on the boundary of S except for Ω, the following formula
holds: ∫∫∫

G

u�v dτ =
∫∫
Ω

v
∂u

∂µ
dS −

∫∫
Ω

u
∂v

∂µ
dS. (56.1)

At first sight, formula (56.1) is an almost tautological consequence of the

definition of
∫∫

v
∂u

∂µ
dS; however, it should be noted that the introduced sym-

bol does not depend on values of
∂v

∂µ
and the domain G.

It is not difficult to establish that the symbol
∫∫
Ω

v
∂u

∂µ
dS is a linear op-

erator, i.e., for any two functions v1, v2 satisfying the given conditions we
have ∫∫

Ω

v1
∂u

∂µ
dS +

∫∫
Ω

v2
∂u

∂µ
dS =

∫∫
Ω

(v1 + v2)
∂u

∂µ
dS. (57)

Moreover,
∫∫

v
∂u

∂µ
dS is an additive function of the domain, i.e., if the

domain Ω can be represented in the form of the sum of two domains Ω1 and
Ω2 so that the function v satisfies the given conditions in each domain, then∫∫

Ω1+Ω2

v
∂u

∂µ
dS =

∫∫
Ω1

v
∂u

∂µ
dS +

∫∫
Ω2

v
∂u

∂µ
dS. (58)

Let E be a measurable set on Ω. Assume that, for average functions, the
equality holds

lim
n→∞

∫∫
E

(
∂un

∂µ
− ∂u

∂µ

)
dS = 0. (59)

Then, we can write the operator
∫∫
Ω

v
∂u

∂µ
dS in the form

∫∫
Ω

v
∂u

∂µ
dS =

∫∫
Ω

v
∂u

∂µ
dS. (60)

In this case, we say that the quantity
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∂u

∂µ
(61)

is the average conormal derivative of u.
An example of functions having average conormal derivatives on any sur-

face is a function satisfying the so-called kinematic and dynamic conditions
of compatibility.

The definition of these solutions is the following.
We say that a weak solution of the wave equation u is proper , or it satisfies

the kinematic conditions of compatibility, if the solution being a continuous
function has first derivatives continuous everywhere except for a finite number
of surfaces. Moreover, everywhere on these surfaces except possibly for a finite
number of lines, there is a continuously changing tangential surface, and the
function u is differentiable along any line completely lying on the surface of
discontinuity. Next, we assume that derivatives of u at a certain point M along
the direction tangent to the surface of discontinuity Σ (along the direction
parallel to the tangential plane to this surface at the point that is the limit of
M) tend to the derivative of u along the surface, when M tends to Σ along
any nontangential path; moreover, in any closed set of points of the surface
without some number of the mentioned lines, this convergence is uniform for
any nontangential path inside each specific aperture angle smaller than π.

As regards normal derivatives at the point M , we also require that on each
side of Σ they either converge uniformly to a limit in the sense given above
or converge uniformly to infinity of a certain sign.

Let us establish the existence of
∂u

∂µ
almost everywhere on the discontinuity

surface and, in any case, at all those points that do not belong to the lines
indicated above.

For this purpose, let us first prove an important property of discontinuity
surfaces.

Let us take a part of such surface without singular lines or singular points
indicated above, and construct a sphere σ with center M0 on this part. We
choose the radius of the sphere sufficiently small so that there is no singular
line inside the sphere on the surface, and straight lines parallel to the normal
at the point M0 cross the discontinuity surface inside σ only at one point and
do not cross each other inside σ.

The discontinuity surface Σ breaks our sphere into two parts: σ1 and σ2.
First, we make an assumption that on one side of Σ the normal derivative

of u tends to infinity uniformly in the above-indicated sense. We now construct
the “conormal vector” −→µ with the components

cos νx, cos νy, and − 1
a2

cos νt.

Let us decompose this vector into two terms, one of which goes along the
normal to the surface, and another one belongs to the tangential plane to the
surface
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−→µ = −→µ 1 + −→µ 2. (62)

Construct now a surface Σ1 close to Σ and parallel it. This surface pos-
sesses the known property that its normal coincides with the normal to Σ.
The surface Σ1 divides the domain bounded by σ and Σ into two pieces.

Let us denote by V1 the piece separated off Σ. Apply the Green formula
(56) to this domain, taking instead of the function v simply 1. We have∫∫

σ1
1

∂u

∂µ
dS +

∫∫
Σ1

∂u

∂µ
dS = 0. (63)

Using (62), it is easy to transform the integral over the surface Σ1,∫∫
Σ1

∂u

∂µ
dS =

∫∫
Σ1

[(−→µ 1 · gradu) + (−→µ 2 · gradu)] dS. (64)

It is not difficult to see that (−→µ 1 · gradu) = |µ1|∂u
∂ν

.

We prove that the length of the vector −→µ 1 must be zero.
Assuming the contrary, let us consider the case when −→µ 1 is nonzero every-

where on Σ1. In this case, in view of our assumptions, the integral
∫∫
Σ1

∂u

∂µ
dS

has to increase unboundedly as Σ1 approaches to Σ.
However, it is not difficult to verify that, according to our assumptions on

the solution, the integral
∫∫
σ1
1

∂u

∂µ
dS has a finite limit. Then equality (63) leads

us to the contradiction.
The existence of such a limit is completely obvious.

Indeed,
∂u

∂µ
can be again divided into two terms containing the tangential

and normal derivatives on σ1
1 . Obviously, the tangential derivative is inte-

grable, and the normal derivative coincides with the derivative on the surface
σ1 and can be integrated by parts.

Thus, the discontinuity surface, if the normal derivative is infinite on it,
has to possess the property that its conormal belongs to the tangential plane.

We can also prove this statement in the case when the normal derivative
on the discontinuity surface has a finite jump.

Let us choose a sufficiently small sphere σ such that this jump is of the
same sign everywhere inside σ, and the conormal differs essentially from the
tangent everywhere. First, we apply the Green formula to the domain bounded
by the surface σ, and then we do it to two pieces of the domains separated by
the surface Σ. Hence, ∫∫

σ1

∂u

∂µ
dS +

∫∫
σ2

∂u

∂µ
dS = 0,
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σ1

∂u

∂µ
dS +

∫∫
Σ

∂u(+)

∂µ
dS = 0,

∫∫
σ2

∂u

∂µ
dS +

∫∫
Σ

∂u(−)

∂µ
dS = 0.

Consequently, ∫∫
Σ

∂u(+)

∂µ
dS +

∫∫
Σ

∂u(−)

∂µ
dS = 0. (65)

Taking into account the change of the direction of the normal on both
sides, we come to an absurd conclusion that the integral of a quantity with
constant sign is zero, which provides the inconsistency of the assumption that
the conormal does not belong to the tangential plane.

From a mathematical standpoint, our result is easily formulated in the
form of the equality

cos2 νx+ cos2 νy − 1
a2

cos2 νt = 0 (66)

valid at all regular points of the discontinuity surface.
In the case when the discontinuity surface is implicitly given in the form

ϕ(x, y, t) = 0, (67)

equation (66) becomes the known equation of characteristics(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2

− 1
a2

(
∂ϕ

∂t

)2

= 0. (68)

This equation is sometimes called the dynamic condition of strong disconti-
nuities.

It is interesting to note that condition (66) or (68) is sufficient for a given
function, satisfying the wave equation everywhere except for the discontinu-
ity surfaces subject to the requirements formulated above and the kinematic
conditions of compatibility, to be a weak solution of the wave equation.

Using this property, it is easy to show that the average conormal deriva-
tive on the discontinuity surface is the derivative along a certain tangential

direction. Therefore, the existence of
∂u

∂µ
is proved.

5. For limiting solutions of the wave equation, as well as for usual solutions,
we can state and solve the Cauchy problem. Moreover, it is easy to prove the
uniqueness of such a solution.

Let us solve this problem.
First, we construct an auxiliary function

vε(x, y, t;x0, y0, t0)
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defined in the following way.
Let us consider the cone of characteristics

(x− x0)2 + (y − y0)2 = a2(t− t0)2 (69)

and its part, where
t < t0. (70)

Let us define a function

ψ(x− x0, y − y0, t− t0) (71)

in the domain

(x− x0)2 + (y − y0)2 ≤ a2(t− t0)2, t0 − 1 < t < t0. (72)

Assume that this function is positive and infinitely differentiable in this do-
main; moreover, it vanishes together with all derivatives on the boundary of
this domain.

As an example of such a function, we can take

ψ = e
− 1

[a2(t−t0)2−(x−x0)2+(y−y0)2][t−t0+1] . (73)

Let us consider a function ψε defined by the equality

ψε = ψ

(
x− x0

ε
,
y − y0

ε
,
t− t0
ε

)
(74)

in a domain Dε,

(x− x0)2 + (y − y0)2 ≤ a2(t− t0)2, t0 − ε < t < t0, (75)

and
ψε = 0 for t < t0 − ε.

In the domain

(x− x0)2 + (y − y0)2 ≤ a2(t− t0)2, t < t0, (76)

we define the function vε as follows:

vε|(x−x0)2+(y−y0)2=a2(t−t0)2
= 0 (77)

and
�vε = ψε. (78)

As we know from a general course of mathematical physics, in this case
the function vε is defined by the formula
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vε(x, y, t;x0, y0, t0)

= − 1
2π

∫∫∫
t<t1<t0

(x−x1)
2+(y−y1)

2≤a2(t−t1)
2

(x1−x0)
2+(y1−y0)

2≤a2(t1−t0)
2

ψε(x1 − x0, y1 − y0, t1 − t0)

× dτ1√
a2(t− t1)2 − (x− x1)2 − (y − y1)2

, (79)

and it vanishes together with all derivatives on surface (69).
We now move on to solving the Cauchy problem.
In the (x, y, t)-space we consider a surface S defined by the equation

t = T (x, y). (80)

Assume that the surface has a continuous tangential plane and satisfies the
condition (

∂T

∂x

)2

+
(
∂T

∂y

)2

<
1
a2
. (81)

The following problem is called the Cauchy problem.
Let a value of a weak solution u be given on surface (80):

u|t=T = u0. (82)

Let the linear operator ∫∫
Ω

v
∂u

∂µ
dS (83)

be defined.
The question is to find the weak solution u.
Solving this problem is elementary by using the Green formula derived

above. We can obtain this solution at any point (x0, y0, t0) possessing the
property that surface (80) cuts off from the cone of characteristics (69) a
closed domain G.

Applying (56.1) to the function vε and the unknown solution u, we obtain∫∫∫
Dε

uψε dx dy dt = −
∫∫
S1

u
∂vε

∂µ
dS +

∫∫
S1

vε
∂u

∂µ
dS. (84)

By condition, the right side is the known function Fε(x0, y0, t0). However,
the left side differs by a constant factor from an average function for u.

Using Sect. 2, we obtain

u(x0, y0, t0) = lim
ε→0

Fε(x0, y0, t0)∫∫∫
Dε

ψε(x, y, t) dτ
. (85)
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Obviously, the construction method gives us the uniqueness of the solution.
It should be noted that Fε, as quite obviously, is a solution of the equation
�u = 0. Therefore, if the right side of (85) has a limit in L1, then this limit is
a weak solution. In this case, the initial conditions on u follow from the same
conditions on Fε.

Let us point out in conclusion one additional important property of weak
solutions.

Theorem. Let
u(x, y, t, λ) (86)

be a summable function of the variables x, y, t, λ in a domain of the four-
dimensional space. Assume that u(x, y, t, λ) is a limiting solution of (1).

Then the Lebesgue integral∫
E
u(x, y, t, λ) dλ = U(x, y, t) (87)

over any measurable set E is a weak solution of equation (1) in the domain.

Proof. To prove the theorem we use the necessary and sufficient condition4

obtained by us. Let us note that

∫∫∫
G

U�v dτ =
∫∫∫

G

⎧⎨⎩
∫
E
u dλ

⎫⎬⎭�v dτ.

By condition, �v is bounded. Then, by the well-known Lebesgue theorem, we
can change the order of integration.

Thus, we obtain

∫∫∫
G

U�v dτ =
∫
E

⎧⎨⎩
∫∫∫

G

u�v dτ

⎫⎬⎭ dλ, (88)

which proves our assertion. ��
6. We now move on to one important application of the theory of limiting

solutions of the wave equation.
In 1930 V. I. Smirnov and the author developed the so-called class of

complex solutions of the wave equation.
This class was introduced in [1].
A short review of results from this work was published in [2, 3]. In [4] the

author presented an axiomatic construction of this class of solutions. This
construction is based on the main property of functional invariance, i.e., the

4 Condition A, see equality (7). – Ed.
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property that every function f(u(x, y, t)) of a solution u(x, y, t) is, in turn, a
solution.

This class of solutions was studied in detail and used in a series of articles
on the theory of reflection, refraction, and wave diffraction5.

Let us briefly recall certain theorems about this class of solutions.
Let us construct an equation linear with respect to x, y, t

δ ≡ at−m(Ω)x− n(Ω)y − g(Ω) = 0, (89)

where coefficients m, n, and g are analytic functions of an unknown quantity
Ω.

Let the coefficients m and n satisfy the equation

m2(Ω) + n2(Ω) = 1. (90)

Solving equation (89), we obtain the quantity Ω, generally speaking, as a
complex analytic function of real variables in a domain G.

In a part G1 of the domain G this function can accept values filling a
certain domain in the complex plane. In another part G2 of this domain, the
function can accept values forming a continuum.

The basic property of the function Ω is the following: in the first case an
arbitrary analytic function of Ω is a solution of the wave equation; in the
second case an arbitrary function twice differentiable with respect to Ω along
the set of values admitted by Ω, is a solution of the wave equation.

The proof follows from the formulas of differentiation

∂f(Ω)
∂x

=
m(Ω)
δ′

f ′(Ω),
∂f(Ω)
∂y

=
n(Ω)
δ′

f ′(Ω),
∂f(Ω)
∂t

=
−a
δ′
f ′(Ω), (91)

and
∂2f(Ω)
∂x2

=
1
δ′

∂

∂Ω

(
m2(Ω)
δ′

f ′(Ω)
)
,

∂2f(Ω)
∂y2

=
1
δ′

∂

∂Ω

(
n2(Ω)
δ′

f ′(Ω)
)
,

∂2f(Ω)
∂t2

=
1
δ′

∂

∂Ω

(
a2

δ′
f ′(Ω)

)
,

∂2f(Ω)
∂x∂y

=
1
δ′

∂

∂Ω

(
m(Ω)n(Ω)

δ′
f ′(Ω)

)
,

∂2f(Ω)
∂x∂t

=
1
δ′

∂

∂Ω

(−am(Ω)
δ′

f ′(Ω)
)
,

∂2f(Ω)
∂y∂t

=
1
δ′

∂

∂Ω

(−an(Ω)
δ′

f ′(Ω)
)
,

(92)

5 See [5] for references on this question. – Ed.
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where, for brevity, δ′ denotes the derivative of the left side of (89) with respect
to Ω.

Formulas (91) and (92) are verified directly.
Both parts are separated one from another by a characteristic surface,

which is an envelope of the family of planes Ω = const filling the domain G2.
The line of tangency divides such a plane into two parts. The obtained half-
planes form two systems. Equation (89) has two roots inside G2. Each of the
roots corresponds to one system of such half-planes. Obviously, the manifolds
Ω = const are rays in the domain G1 (see, for instance, [5]).

In the plane of the variable Ω we denote by L the continuum of values
attained by the function in G2. Obviously, L is the boundary of the range of
Ω, attained by this function in G1.

In the literature cited, it was proved that if values of the function f(Ω)
on L are limits of its values in B, then f(Ω) in G is a solution of the wave
equation, satisfying the kinematic and dynamic conditions of compatibility.

Thus, the result proved there is essentially the fact that the function f(Ω)
with the second derivative continuous up to the contour, is a solution of the
wave equation.

Using weak solutions, one can expand somewhat this result.
Our main task is to find sufficient conditions such that f(Ω) is a weak

solution in G.
We try to present these conditions in the widest form.
First, we simplify somewhat our problem by introducing instead of the

general variable Ω a new variable ζ by the formula

m(Ω) =
1
2

(
ζ +

1
ζ

)
.

Then, by (90), equation (89) can be rewritten6 in terms of the variable ζ,

δ ≡ at− 1
2

(
ζ +

1
ζ

)
x+

i

2

(
ζ − 1

ζ

)
y + χ(ζ) = 0. (93)

Using the variable ζ, we can easily investigate shapes of the domain B and
the contour L.

Indeed, the contour L must consist of such values of ζ for which equation
(93) determines a real plane in the (x, y, t)-space. Obviously, only points of a
unit circle in the plane ζ could be taken for such values; moreover, it could be
only points such that χ(ζ) is real. If this fact does not hold, i.e., the function
χ(ζ) attains no real values, then the question about weak solutions of desired

type does not at all arise. However, if there exists an arc
�

αβ of the unit circle
in the plane ζ such that χ(ζ) is real, then, because of its analyticity, it can

6 From (90) it follows that n(Ω) = ± i
2

“
ζ − 1

ζ

”
. To be specific, S. L. Sobolev

chooses the “−” sign. – Ed.
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be extended over this arc. The extended function takes conjugate values at
points symmetric with respect to our circle.

Let us substitute into (93) two symmetric values of ζ, i.e., two values ζ1
and ζ2 such that

Re (
1
i

ln ζ1) = Re (
1
i

ln ζ2), Im (
1
i

ln ζ1) = −Im (
1
i

ln ζ2).

As is not difficult to verify, in the real (x, y, t)-space we obtain two complex
conjugate equations of planes, which give one straight line after selecting real
and imaginary parts.

Thus, solving the equation for each ray, it is possible to always choose a
value of ζ inside of the unit disk. Therefore, the domain B is a part of such a
disk.

In the literature mentioned above we studied in detail the question on
correspondence between the plane of the variable ζ and the direction of a ray
in the (x, y, t)-space.

We established that to the cone of directions l,

tan
�

lt< a,

there corresponds the entire unit disk. To concentric circles |ζ| = � there

correspond directions tan
�

lt= m. The quantity m decreases as � decreases.

To radii arg ζ = ϑ there correspond directions such that ϑ =
�

lx.
In the case of χ(ζ) = 0, the cone of directions drawn from the origin

coincides with the cone of rays ζ = const.
Let us introduce the notion of the Riesz class: functions of a complex

variable on the given arc.
Consider the function f(ζ), regular in the domain with a part of the bound-

ary being the arc of the circle α < ϑ < β. We say that f(ζ) belongs to the
Riesz class Hαβ

1 on the given arc, if integrals

β−ε∫
α+ε

|f(reiϑ)| dϑ

are uniformly bounded for r < 1, for any ε.
This notion is the natural generalization of the well-known definition of

functions of the H1 class on a circle.
Functions from Hαβ

1 , belonging to the H1 class on the arc, have the same
property as the functions of this class on the circle:

1) they have almost everywhere on the arc
�

αβ summable limiting values
along all nontangential paths,

2) in integrals ∫
E(α+ε<ϑ<β−ε)

|f(ζ)| dζ,
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computed over any union E on the arc α+ ε, β − ε of the concentric circle of
radius r, we can pass to the limit by letting r go to 1.

The proof of these properties is completely elementary.
After these definitions, we can already formulate our conditions for the

function u = f(ζ), where ζ is defined by equation (93), to be the limiting
solution of the wave equation in the entire domain consisting of the part of
G1, when ζ belongs to the arc of the unit circle, and the part of G2, when ζ
belongs to the unit disk.

Theorem. For u = f(ζ) to be the limiting solution of the wave equation in

G, it is sufficient that the function f(ζ) belongs to the class Hαβ
1 , where

�

αβ
is the arc where ζ is changing in G1.

Proof. To prove this theorem, we construct a sequence of real numbers g1 <
g2 < . . . < gn < . . . < 1 convergent to 1, lim

n→∞ gn = 1, and consider the

sequence of functions fn(ζ) = f(gnζ).
These functions could be possibly defined in the domain somewhat nar-

rower than the domain where f(ζ) is defined, in the (x, y, t)-space; however, it
is completely obvious that their domain can be defined arbitrarily close to the
original one, and independently of the arbitrary closed union G′, consisting
of the inner points of the domain G, where f(ζ) is defined, we can choose g1
so that all functions fn(ζ) are defined in G′. Let us point out the following
properties of functions fn(ζ):

1) fn(ζ) are the analytic solutions of the wave equation in the domains G′
1

and G′
2, where G′

1 = G′ ·G1, G′
2 = G′ ·G2, and the proper solutions in G;

2) the sequence of fn(ζ) converges almost everywhere to the limit f(ζ);
3) in any closed union E in the (x, y, t)-space,

lim
n→∞

∫∫∫
E

|f(ζ) − fn(ζ)| dτ = 0.

The first property is obvious. The second one follows from the fact that in
G′

1 we can pass to the limit in the usual way, and in G′
2 the values of fn(ζ)

are the values on the concentric arc of the function f(ζ), from the Riesz class
Hαβ

1 .
To prove the third property, let us recall that because f(ζ) belongs to the

class Hαβ
1 on the arc

�

αβ,

lim
n→∞

β−ε∫
α+ε

|fn(ζ) − f(ζ)| dζ = 0.

Let us transform in the domain G′
2 the coordinates x, y, t into the new

ones, introducing new variables ζ, η1, and η2, where η1 and η2 are chosen
arbitrary.
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With the appropriate selection of η1 and η2, the functional determinant

D(x, y, t)
D(ζ, η1, η2)

,

as easy to verify, is bounded in the entire domain G′
2, since the derivatives

∂ζ

∂x
,
∂ζ

∂y
, and

∂ζ

∂t
become infinite on the boundary and nowhere vanish. In this

case as n → ∞,∫∫∫
|fn(ζ) − f(ζ)| dτ =

∫∫∫
|fn(ζ) − f(ζ)| D(x, y, t)

D(ζ, η1, η2)
dη1 dη2 dζ → 0,

which provides our statements.
Thus, the function f(ζ) is the limit of the strongly convergent sequence of

functions fn(ζ), which are the solutions satisfying the kinematic and dynamic
conditions of compatibility. These functions, being the weak solutions, are, in
turn, limits of sequences of solutions with continuous derivatives

fn(ζ) = lim
n→∞ f (n)

n (ζ).

In this case, via the standard arguments, we can establish that, for exam-
ple, the sequence f (n)

n (ζ) converges almost everywhere to f(ζ) in a way that
it is possible to pass to the limit in the integral

lim
n→∞

∫∫∫
|f (n)

n (ζ) − f(ζ)| dτ = 0.

Therefore, f(ζ) is itself the weak solution. The theorem is proved. ��

Chapter 2 The Problem of Integration
of the Wave Equation on Riemann Surfaces

1. In the literature cited in Chap. 1, elementary solutions of the problem of
diffraction of plane waves were studied in detail both on logarithmic surfaces
and on surfaces with finite branching.

These solutions have the form

w =
1
πi

ln
(

1
πi

ln ζ
)

(1)

or
w =

1
πi

ln[(ζ)χ − (ζ)−χ], (2)

where ζ is a complex variable defined by the equation
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2at−
(
ζ +

1
ζ

)
x+ i

(
ζ − 1

ζ

)
y = 0. (3)

There, in greater detail, the geometric picture of correspondence between
the variables x, y, t and the variable ζ were studied7.

Therefore, we do not discuss this question now, considering it is known.
There we also touched on some questions of diffraction. For example, we es-
tablished that the plane wave, propagating in the direction characterized by
λ and arriving at the origin at the moment t = 0, was presented on the loga-
rithmic Riemann surface in the form of a linear combination of several values
of the function

w =
1
πi

ln
[

1
πi

ln
(

ζ

eiλ

)]
=

1
πi

ln
[

1
πi

ln
(
ζ

ξ

)]
, ξ = eiλ. (4)

We consider now a union of plane waves propagating along different direc-
tions such that at the moment t = 0 the front of every such plane wave passes
a given fixed point �0, ϑ0.

It is not difficult to see that in this case we must define the variable ζ by
the equation

2at1 −
(
ζξ +

1
ζξ

)
x+ i

(
ζξ − 1

ζξ

)
y = 0, (5)

where

t1 = t+
�0

a
cos(ϑ0 − λ) = t+

�0

2a

(
ξ

eiϑ0
+
eiϑ0

ξ

)
. (6)

Our task is to construct a certain particular solution of the wave equation
by means of integration with respect to the parameter ξ of the weak solution
determined by (4) in the plane of complex variables.

For this purpose, first of all, we conduct a detailed study of the analytic
character of this function.

Since, by the result proved earlier,

ζξ = e
i

(
ϑ+ arccos

at1
�

)
,

then
1
i

ln ζ = ϑ− 1
i

ln ξ + arccos
at1
�
.

As we see, the function ln ζ, as an analytic function of all its parameters,
attains an infinite number of values. To systemize these values, let us, first,
take for the principal value of ln ξ and denote it as ln0 ξ the branch where the
argument is located between ϑ0 − π and ϑ0 + π.
7 It is not difficult to establish the correspondence by using the polar coordinates

x = � cos ϑ, y = � sin ϑ. Equation (3) is written as ζ2�e−iϑ − 2atζ + �eiϑ = 0.

Hence, ζ = eiϑ
“

at
�
±
q

a2t2

�2 − 1
”

or ζ = e
i(ϑ±arccos at

�
)
. – Ed.
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In exactly the same way arccos0
at1
�

denotes the principal value of arccos,

i.e., the value that it takes on the plane
at1
�

, if we make there a cut from

+1 to −∞ along the real axis and assume that on the upper lip of the cut
(1,−1) it is bounded between 0 and π, and on the lower lip, between 0 and

−π. Obviously, in this case the values of
1
i

ln ζ will be

1
i

ln ζ = ϑ− 1
i

ln0 ξ ± arccos0
at1
�

+ 2πj. (7)

The Riemann surface for the domain of ζ can be comprised of such sheets,

where ln ξ and arccos
at1
�

take well-defined values.

We systematize these values by enumerating the sheets of this surface. Let
us agree to denote by the symbol Lj those sheets where

1
i

ln ζ = ϑ− 1
i

ln0 ξ + arccos0
at1
�

+ 2πj, (8)

and by the symbol Mj the sheets where

1
i

ln ζ = ϑ− 1
i

ln0 ξ − arccos0
at1
�

+ 2πj. (9)

Obviously, on the interval of the real axis
at1
�

> 1 the value
1
i

ln ζ on the

sheets Lj is expressed in the form

1
i

ln ζ = ϑ− 1
i

ln0 ξ +
1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠+ 2πj, (10)

and on the sheets Mj ,

1
i

ln ζ = ϑ− 1
i

ln0 ξ − 1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠+ 2πj. (11)

If we disregard mentally the branching of ln ξ and consider only the branch-

ing of arccos
at1
�

, denoting by L+
j and M+

j upper lips of the cuts, and by L−
j

and M−
j their lower lips, then on the interval of the cut −1 <

at1
�

< +1 the

function
1
i

ln ζ +
1
i

ln0 ξ is a decreasing function on L+
j and M−

j ,

(2j + 1)π >
1
i

ln ζ − ϑ+
1
i

ln0 ξ > 2πj (12)
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and increasing on the sheets L−
j and M+

j ,

(2j − 1)π <
1
i

ln ζ +
1
i

ln0 ξ − ϑ < 2πj. (13)

On the interval −∞ <
at1
�

< −1 the function
1
i

ln ζ is represented on the

sheets L+
j = L−

j+1 in the form

1
i

ln ζ = ϑ− 1
i

ln0 ξ − 1
i

ln

⎡⎣∣∣∣∣at1�
∣∣∣∣+
√
a2t21
�2

− 1

⎤⎦+ (2j + 1)π, (14)

and on the sheets M+
j = M−

j−1 in the form

1
i

ln ζ = ϑ− 1
i

ln0 ξ +
1
i

ln

⎡⎣∣∣∣∣at1�
∣∣∣∣+
√
a2t21
�2

− 1

⎤⎦+ (2j − 1)π. (15)

Let us now study critical points of this function and the character of
connection of the sheets at these points.

For this purpose, first, let us note that if arccos
at1
�

would not be a multi-

valued function, then the Riemann surface for the function ln ζ would have
the only cut made along the line,

arg ξ = ϑ0 + (2k + 1)π, k = . . . ,−2,−1, 0, 1, 2, . . .

If we agree to consider as the upper lip and denote by the “+” sign the side
of the cut bordering with points of smaller arg, and by “−” sign the opposite
side, then we obtain the following simple table of the correspondence of the
sheets when moving through this cut:

+ −
Lj Lj−1

Mj Mj−1

.

We denote this cut by digit I.
Besides this cut, it is necessary to make several cuts separating the different

values of arccos
at1
�

.

We consider preliminary the function ln ζ as a function only of the argu-

ment
at1
�

, assuming that the quantity
1
i

ln ξ on the right side is the indepen-

dent parameter.

In this case, in the complex plane of the argument
at1
�

we need to make

two cuts: cut II′ along the real axis from +1 to −1, and cut III′ along the same
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real axis from −1 to −∞. If we denote by “+” sign the upper lips of these
cuts, i.e., the lips approachable from the upper half-plane of the corresponding
sheet, where

Im
{
at1
�

}
> 0,

and by the “−” sing the lower lips, then it is easy to comprise tables explaining
the order of sewing of these sheets:

II′
+ −
Lj Mj

Mj Lj

III′
+ −
Lj Lj+1

Mj Mj−1

.

To explain the arrangement of the critical points on the surface of ξ, it is

sufficient to note that
at1
�

is the single-valued function of ξ.

Thus, we can simply arrange the cuts on ξ so that they are mapped on

the corresponding cuts in the plane
at1
�

.

Obviously,
at1
�

accepts real values where

ξ

eiϑ0
+
eiϑ0

ξ

is real. It requires that either

arg ξ = ϑ0 + kπ, k = . . . ,−2,−1, 0, 1, 2, . . . ,

or |ξ| = 1. Obviously, the domains

|ξ| > 1, 2kπ < arg ξ − ϑ0 < (2k + 1)π

and
|ξ| < 1, (2k − 1)π < arg ξ − ϑ0 < 2kπ

are mapped to the upper half-plane
at1
�

, and the domains

|ξ| < 1, 2kπ < arg ξ − ϑ0 < (2k + 1)π

and
|ξ| > 1, (2k − 1)π < arg ξ − ϑ0 < 2kπ

are mapped to the lower half-plane
at1
�

(see Fig. 1).

It is not difficult to see that intervals of the ray arg ξ = ϑ0 + 2kπ from the
circle |ξ| = 1 to infinity or to zero correspond to those points of the real axis
at1
�

, where
at1
�

>
at+ �0

�
, intervals of the ray arg ξ = ϑ0 +(2k+1)π from the
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Fig. 1.

circle |ξ| = 1 to infinity or to zero correspond to those points of the real axis
at1
�

, where
at1
�

<
at− �0

�
, and, finally, both semicircles |ξ| = 1 correspond to

the points where
at− �0

�
<
at1
�

<
at+ �0

�
.

Therefore, it is directly evident how on the plane ξ all cuts and all critical

points of the function arccos
at1
�

are located. First, we note that these critical

points correspond to the values

at1
�

= −1, 1,∞.

The direct computation gives us six critical values:

ξ = 0, ξ = ∞,

ξ =

[
−at− �

�0
+

√
(at− �)2

�2
0

− 1

]
eiϑ0 ,

ξ =

[
−at− �

�0
−
√

(at− �)2

�2
0

− 1

]
eiϑ0 , (16)

ξ =

[
−at+ �

�0
+

√
(at+ �)2

�2
0

− 1

]
eiϑ0 ,

ξ =

[
−at+ �

�0
−
√

(at+ �)2

�2
0

− 1

]
eiϑ0 .

Here we can distinguish four possible cases of arrangement of points on the
plane ξ:
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1) � > at+ �0,
2) at+ �0 > � > |at− �0|,
3) at < �0, � < �0 − at,
4) at > �0, � < at− �0.
In view of the fact that here we study only the positive values of �, t, and

�0, there are no other cases.
Geometrically all four considered cases admit very simple interpretation.

If from the point �0, ϑ0 in the (�, ϑ)-plane we draw a circle C1 of radius at,
and then construct two circles centered at the origin and tangent to C1, then
the entire (�, ϑ)-plane gets divided into three pieces:

a) exterior of the larger tangential disk, where case 1) holds;
b) annular domain between two tangential disks, where case 2) holds;
c) interior of the smaller disk, in which we have either case 3) or case 4)

depending whether this smaller circle touches C1 from without or from within
(see Fig. 2).

Fig. 2.

To make cuts more conveniently on the plane ξ we slightly deform on the

plane
at1
�

cuts II′ and III′ so that they would be entirely located in the upper

half-plane.
Then, in correspondence to all four cases, we have the following picture

(see Fig. 3):
The transition tables from one sheet to another are given above. The

positive and negative lips of the cuts are denoted by “+” and “−” signs
marked on the drawing.

The critical points located on the unit circle can be easily obtained by
purely geometric construction.

In case 2) or 3) we construct on the (�, ϑ)-plane a circle with radius �
centered at the origin, and the circle C1 with radius at centered at the point
�0, ϑ0, and draw common tangents to both these circles.
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Fig. 3.

In case 2) there are two such tangents, and in case 3) we obtain two outer
tangents and two inner tangents. Then, we draw the radii of the circle C1 to
the tangency points. In this case arg of critical points ξ1 or ξ2 is respectively
equal to the angle composed by the radius connected with the tangency point
of the outer tangent and the axis ϑ = 0, and arg of critical points ξ3 or ξ4 in
case 3) is respectively equal to the angle between the radius of C1, connected
with the tangency point of one of the inner tangents.

For the proof, it is sufficient to calculate the location of the tangency
points. It can be done by using completely elementary computations, on which
we cannot dwell now.

Besides the study of the character of multiformity of the function ln ζ, we
should know for future reference how to compute its roots and determine the
sheets of the Riemann surface where these roots are located.

For the computation of roots, let us exponentiate the equality

i

(
ϑ− 1

i
ln ξ
)

= −i arccos
at1
�
.

Then,

eiϑ

ξ
= e−i arccos

at1
� = e

ln

 
at1

� ∓
r

a2t21
�2 −1

!
.

Hence,
eiϑ

ξ
+

ξ

eiϑ
= 2

at1
�

or
at

�
+
�0

2�

(
eiϑ0

ξ
+

ξ

eiϑ0

)
=

1
2

(
eiϑ

ξ
+

ξ

eiϑ

)
,

i.e.,
ξ2
( �0

eiϑ0
− �

eiϑ

)
+ 2atξ + (�0e

iϑ0 − �eiϑ) = 0.

Keeping the letter ξ for the independent variable, and denoting the roots of
this equation by ζ, we obtain

ζ =
−at∓

√
a2t2 − (�2 + �2

0 − 2��0 cos(ϑ− ϑ0))
�0

eiϑ0
− �

eiϑ
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or

ζ =
{

at√
�2 + �2

0 − 2��0 cos(ϑ− ϑ0)

±
√

a2t2

�2 + �2
0 − 2��0 cos(ϑ− ϑ0)

− 1
}
ei arg(�e−iϑ−�0e−iϑ0 ). (17)

Obviously, each of the roots calculated for fixed �, ϑ, t, �0, ϑ0 can lie only
on one sheet of the Riemann surface, because the values of ln ζ are different on
all sheets. With a change in our parameters, the roots can sometimes approach
each other and even coincide.

To clarify the question on the location of these roots, we give a simple
geometric interpretation for them.

If in our (�, ϑ)-plane we would move the origin to the point �0, ϑ0 and
calculate the value of the new complex variable ζ(1) via the formula

2at−
(
ζ(1) +

1
ζ(1)

)
x1 + i

(
ζ(1) − 1

ζ(1)

)
y1 = 0, (18)

where
x1 = x� cosϑ0, y1 = y − � sinϑ0, (19)

then we would see that our ζ(1) is given exactly by formula (17).
Thus, we can repeat for ζ(1) all claims made for the variable ζ. Inside

the circle C1 the variable ζ(1) accepts values from the interior of a unit disk,
and outside it, values on the boundary of this disk. The construction of these
values can be done, as before, by drawing from the given point two tangents
to the circle C1.

We now move on to the study. From our geometric interpretation we see
that in case 1) both roots of (17), which we denote by ζ(1) and ζ(2), are always
located on a unit circle.

Let us study a character of motion of the roots in all possible cases, as-
suming that �, ϑ0, �0, t are fixed and varying only ϑ.

In the first case, for ϑ = ϑ0, both roots are located symmetrically about
the ray arg ξ = ϑ0 on the circle |ξ| = 1. We denote the root with arg greater
than ϑ0 by ζ(1), and another one by ζ(2). From the geometrical interpretation
of these roots it follows that they are all, remaining always distinct as ϑ grows,
moving in the positive direction along the circle |ξ| = 1. With the increase of
ϑ by 2π, they both describe the entire circle.

To determine on which sheets these roots are located, it is the simplest to

use the fact that they are both located on cut II, where arccos
at1
�

is real.

Obviously,
1
i

ln ξ for ϑ = ϑ0 is changing on a circle from −π to π, and

hence, ± arccos
at1
�

+ 2πj for the root ζ(2), with arg less than ϑ0, has to end

up in the interval (−π, 0), and for the root ζ(1), with arg larger than ϑ0, this
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± arccos
at1
�

+2πj must lie in the interval (0, π); it is clear from here that ζ(1)

is located on the cut M (−)
0 L

(+)
0 .

From the motion character of the roots itself for this case, there follows
their location on the sheets of the Riemann surface for all values of ϑ0.

Obviously, for ϑ = (2k − 1)π + ϑ0, the root ζ(1) is located on the cut
between L

(+)
−k and M

(−)
−k , and the root ζ(2) is on the cut between L

(−)
−k+1 and

M
(+)
−k+1.

For ϑ = 2kπ + ϑ0, the root ζ(1) is located on the cut between L
(+)
−k and

M
(−)
−k , and the root ζ(2) is on the cut between L

(−)
−k and M

(+)
−k .

On Fig. 3, the dotted curves indicate the paths of the roots in all cases in
which we are interested.

To study case 2), first, we point out that the point ξ = 0 is not, actually
speaking, critical for the sheets M , and the point ξ = ∞ is not critical for
the sheets L. Indeed, going around one of these points, we cross two of the
cuts made by us. It is not difficult to see from the presented tables that going
around zero we move from the sheet M−k on the same one, and going around
∞ we get from the sheet L−k on the same one.

Moving on to the study of case 2), we investigate again, first, the location
of the roots for the value ϑ = ϑ0. From the geometrical interpretation of the
roots given above, it follows that one of them is located inside the disk |ξ| ≤ 1,
and another one is outside it, and for � > �0 they are both located on the
ray arg ξ = ϑ0, and for � < �0 – on the ray arg ξ = ϑ0 + π. It is not difficult
to verify that the inner root ζ(1) is located on the sheet M0, and the exterior
one ζ(2) is on the sheet L0. (The notations are taken with no relations to case
1).) For � > �0, this follows from the fact that separating in the equation

ϑ0 − 1
i

ln0 ξ ± arccos0
at1
�

+ 2πj = 0

the real and imaginary parts, we obtain

j = 0, Im
{
−1
i

ln0 ξ ± arccos0
at1
�

}
= 0.

The second equality can occur only when the sign in front of arccos is “−”,

since the imaginary part of −1
i

ln0 ξ and the imaginary part of arccos0
at1
�

are

both negative.
Therefore, the inner root falls on the sheet M0.
By the same arguments, we see that for the outer root ζ(2) as well

± arccos0
at1
�

must appear with the “+” sign, and, hence, this root must fall on the sheet
L0.
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Observing further how the roots are changing, we use again their geomet-
ric interpretation. We see that as ϑ grows, both these roots have increasing
argument, and their modules tend to 1. For a certain value of ϑ both these
roots come together at a certain point on the contour on cut II between ξ1 and
ξ3 and become a double root. Next, one of them begins to move immediately
along the circle in the positive direction toward the critical point ξ2, and turns
backward after it reaches it, while another root, returning first in the negative
direction to the point ξ1, then turns into the positive direction. After this,
both roots meet again at a certain point on the cut. Taking into account that
for values of ϑ, neighboring with ϑ0 + π, case 2) must continuously transform
into case 1), we get convinced that the root that moved first in the positive
direction is the root ζ(1) and must first move along the cut L(+)

0 M
(−)
0 , and

another root ζ(2) must, reaching the critical point, go around it and move on
the cut L(−)

0 M
(+)
0 .

It is not difficult further, using very simple arguments, to establish that
for the values ϑ = ϑ0 + 2π the root ζ(1), with module smaller than 1, must
lie on the sheet M−1, and the root ζ(2), with module greater than 1, is on the
sheet L−1.

It is clear from here that both these roots must merge into one multiple
root on cut II between the points ξ2 and ξ4, where the sheets L(−)

−1 and M
(−)
−1

merge.
Therefore, the root ζ(1), that had been moving before toward the point ξ2,

must go around it before it moves back to merge with the root ζ(2). With the
further change of ϑ, the entire movement picture repeats; moreover, only the
numbers of the sheets diminish by one with every cycle.

Case 3) is easily obtained from case 2), if we take into account the con-
tinuity. From the geometric interpretation, it is obvious that the roots move
along cuts II, the root ζ(1) is between the points ξ2 and ξ4, and the root
ζ(2) is between the points ξ1 and ξ3, moving from one point to another and
backward.

For ϑ = ϑ0 + 2kπ, the root ζ(2) lies on the seam between the sheets L(+)
−k

and M (−)
−k , and the root ζ(1) is on the seam between the sheets L(−)

−k and M (+)
−k .

Similarly, for ϑ = ϑ0+(2k+1)π the root ζ(1) ends up on the seam between
M

(+)
−k and L

(−)
−k , and the root ζ(2) is between the sheets M (−)

−k−1 and L
(+)
−k−1.

Finally, case 4) also can be obtained from case 2) by using simple ideas of
continuity.

Here the root ζ(1) moves always inside the disk |ξ| < 1, and the root
ζ(2) is outside this disk. Both these roots must get onto cut I for the value
ϑ = ϑ0+(2k+1)π, and for (2k−1)π < ϑ−ϑ0 < (2k+1)π they lie, respectively,
on the sheets M−k and L−k.

Finishing the study of analytic properties of the function
1
i

ln ζ, we also
clarify its values at the point ξ = 0 on the sheets M and at the point ξ = ∞
on the sheets L, which will be important for us in the future.
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Expanding the function

at1
�

−
√
a2t21
�2

− 1

in series of increasing powers of ξ, we obtain

at1
�

−
√
a2t21
�2

− 1 =
�

�0eiϑ0
ξ + · · · , (20)

where the second-order and higher-order terms are neglected.
Similarly,

at1
�

+

√
a2t21
�2

− 1 =
�

�0
eiϑ0ξ−1 + · · · , (21)

where the zero-order and higher-order terms are neglected.

Obviously, arccos0
at1
�

containing in ln ζ takes the value

1
i

ln

⎛⎝at1
�

−
√
a2t21
�2

− 1

⎞⎠
on the sheets Mk.

This follows from the fact that its imaginary part on the ray arg ξ = ϑ0 in
this case tends to −∞.

By the same reason arccos0
at1
�

on the sheets Lk must be equal to

1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠ .

Taking this into account and substituting into
1
i

ln ζ expression (20), we
finally obtain on Mj ,

lim
ξ→0

1
i

ln ζ = ϑ+
1
i

ln
�

�0eiϑ0
+ 2πj. (22)

In absolutely the same way, we can establish that on Lj ,

lim
ξ→∞

1
i

ln ζ = ϑ+
1
i

ln
�0

�eiϑ0
+ 2πj. (23)

After these preliminary calculations, we can already begin the construction
of our fundamental solution.
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We will seek it in the form of a contour integral of the function
1

2πi
1
ξ

ln
1
i

ln ζ, computed along the contour C, presented on the drawing

(see Fig. 4).
This contour consists of the circle |ξ| = 1, of twice traveled radius of this

circle arg ξ = ϑ0, and twice traveled radius of this circle arg ξ = ϑ0 + π.

Fig. 4.

This contour is somehow located on sheets of the Riemann surface and is
not necessarily closed on this surface.

For the function w =
1

2πi

∫
C

1
ξ

ln
1
i

ln ζ dξ to be the solution of the wave

equation, it suffices that the values of the integrand
1
ξ

ln
1
i

ln ζ for any fixed ξ

on the contour C be the weak solution of the wave equation and that the result
of integration be the function possessing the required conditions of continuity.

We will analyze the requirements necessary for the choice of the integration
contour.

First, we study the parts of the contour located inside our circle |ξ| = 1
on the radii. On the radius arg ξ = ϑ0 we can deal either with cut II, or the
cut is not present at all. If the cut is not present, then it is sufficient to assign
for ln ζ a value from the sheet L. Indeed, with this choice of the path, the
function ln ζ cannot vanish on the contour, and ln ln ζ is always finite. While
the choice of the sheet M would threaten unpleasant consequences, limiting
the possibility to define uniquely ln ln ζ in the entire space.

Absolutely the same arguments force us to choose also the sheets L on the
path taken along another radius for the cases when the given value of ξ lies
either on the joint cut I and III, or on cut I.

Let us point out now certain remarkable features of the solutions obtained
for |ξ| = 1.

Obviously, a certain point ξ, for a different choice of �, ϑ, and t, can end
up either outside the cuts, or on cut II, or on cut III.
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If the point is located outside the cuts, i.e.,
at1
�

> 1 (this can occur for

such � when we obtain cases 2), 3) or 4)), then, giving to the angle ϑ the

increment of 2π, we obviously increase
1
i

ln ζ also by 2π.

If, in this case, the values of the function
1
i

ln ζ are taken on the sheet M ,
then they will be located in the upper half-plane, and, therefore, its argument
will decrease with the growth of the real part. If, however, these values are
taken from the sheet L, then they will be located in the lower half-plane, and
its argument will increase with the growth of the real part. As ϑ moves from

−∞ to +∞, arg
1
i

ln ζ gets on the sheets M the increment of −π, and on the
sheets L the increment of π. If we now move on to analysis of the case when
the point ξ = const gets on cut II, which is possible in cases 2) and 3), then,

as is not difficult to verify here,
1
i

ln ζ can be only a real number; moreover,
it could be either positive, or negative at different moments depending on the
location of the roots. If we require that for the large in module values of ϑ
the distinct cases transform one to another continuously, then from here there

follows the necessity that the argument of
1
i

ln ζ has only one jump such that

if the values of
1
i

ln ζ in the space with no cuts are taken from the sheet M ,
then its value would be −π, and if these values are taken from the sheet L,
then π.

Hence, first of all, the corollary follows for the case when cut III passes
through the given point ξ.

Indeed, by the same arguments of continuity, we again must require that

arg
1
i

ln ζ has on the interval −∞ < ϑ < +∞ an increment equal either to
−π or π. The analysis similar to the one conducted above allows us to get

convinced that if we take the values of
1
i

ln ζ at the point without cut from
the sheet L, then also at the points on cut III we should take the sheet L,
and conversely, if the values, with no cut present, were taken from the sheet
M , then also on cut III we should take the values from the sheet M .

Obviously, the choice of the sheet number depends on which sheet the

values of
1
i

ln ζ are chosen on cut II, and has to be made so this function is
changing continuously from case to case.

It is not difficult to verify directly that for any point on cut II we have

only once a jump of the argument of
1
i

ln ζ. In such way, the method of the
sign choice of this jump is completely determined.

Let us point out a simple mnemonic rule for the determination of this sign.
If we would slightly deform our integration contour so that our point in

question would lie inside the disk |ξ| ≤ 1, then during the motion of the root
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of the function
1
i

ln ζ along cut II in the positive direction the argument of
1
i

ln ζ would increase by π in the interval −∞ < ϑ < +∞, and during the
motion of the root of this function in the negative direction, this argument
would get in this interval the increment of −π.

Similarly, if the considered value of ξ would lie outside the disk |ξ| ≤ 1
for those values of � and t, where the root is moving near ξ in the positive

direction, the increment of arg
1
i

ln ζ would be −π, and for those, where the
root is moving near ξ in the negative direction, this increment would be π.
Thus, if on the interval with no cuts we choose values of the function from the

sheet M , then we have to place mentally the roots of
1
i

ln ζ, moving in the
positive direction, inside the contour, and the roots moving in the negative
direction in its exterior.

Conversely, if the values of
1
i

ln ζ were selected in the domain without cuts
from the sheet L, then positively increasing roots should be placed into the
exterior of the disk, and negatively increasing into the interior.

If all conditions that we examined are satisfied, then the function
1
ξ

ln
1
i

lnζ

is the (defined for all values of �, ϑ, and t) weak solution of the wave equation
depending on the parameter ξ, and we can integrate this solution by using
the theory developed in Chap. 1.

2. We now move on to the construction of our solution.
As indicated above, let us integrate the function

1
ξ

ln
1
i

ln ζ over the contour

described earlier,
1

2πi

∫
1
ξ

ln
1
i

ln ζ dξ.

To give a definite meaning to this integral, it only remains to agree about the
choice of values of this function.

On the two rectilinear intervals of the contour arg ξ = ϑ0 we can deal
either with the absence of cut or with appearing cut II.

In the cases of the absence of cut we will take on both these intervals
values from the sheet L0, which, as is not difficult to see, cancel each other.

However, in the case of cut II, the values of
1
i

ln ζ on the interval, going

from the circle to the center, will be taken from the cut M (+)
0 L

(−)
0 , and on

the opposite interval, going from the center to the circle, we take these values
from the cut M (−)

0 L
(+)
0 .

On the semicircle |ξ| = 1, ϑ0 < arg ξ < ϑ0 + π we can have either the case
when there is no cut at all, or the case of cut II or III.

In the first case, we take the values of the function from the sheet M0, in
the second case, i.e., on cut II, from the cut M (−)

0 L
(+)
0 , and, finally, in the

case of III from the cut M (−)
0 M

(+)
1 .
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Similarly, on the semicircle |ξ| = 1, ϑ0 − π < arg ξ < ϑ0 we will take, in
the case of the cut absence, the values from the sheet M0, in the case of cut
II from the cut M (+)

0 L
(−)
0 , and, finally, on cut III we choose these values from

the cut M (+)
0 M

(−)
−1 .

At last, on the two rectilinear intervals arg ζ = ϑ0 + π we can have either
one cut I, or joint cut I and II, or joint cut I and III. On joint cut I and III
we take the values on both intervals from the seams L(+)

−1 L
(−)
1 . The integrals

over these intervals are obviously canceling each other.
On joint cut I–II we take values on the interval, directed from the circle

to the center, on the seam M
(−)
0 L

(+)
−1 , and on the interval, directed from

the center to the circle, from the seam M
(+)
0 L

(−)
1 . Finally, on cut I for the

interval going from the circle to the center we choose a value from the seam
L

(−)
0 L

(+)
−1 , and for the interval going from the center to the circle – from the

seam L
(+)
0 L

(−)
1 .

We now move on to the computation of our integral for different values of
�, t, and ϑ.

Our goal is to conduct this computation in the closed form in cases 1), 2),
and 3). In case 4), this integral is not expressible in closed form.

Let us agree, first, on how we choose the values of ln
1
i

ln ζ on different

parts of our contour. We begin with case 3).
In view of the mnemonic rule that we obtained earlier, on the circle |ξ| = 1

we have to always take the values of ln
1
i

ln ζ such that the roots of
1
i

ln ζ would
be outside this circle. However, in this case the part of the integral computed
over this circle is simply the integral over the closed contour of the function
single-valued inside this contour.

For convenience, we choose, for example, these values such that the value

of the regular function ln
1
i

ln ζ at the point ξ = 0 on the sheet M0, where

this contour is located, would be, for ϑ = ϑ0, equal to i
π

2
+ ln ln

�0

�
.

On the parts of radii arg ξ = ϑ0 and arg ξ = ϑ0 + π we can choose the

value of ln
1
i

ln ζ completely arbitrary, because the integrals over these parts
cancel out at the end, as we have already pointed out above.

It is not difficult as well to compute directly this integral for discussed
case 3).

Its value is obtained directly from the Cauchy formula and is equal to the

value of the function ln
1
i

ln ζ at the origin, i.e.,

W =
1

2πi

∫
C

1
ξ

ln
1
i

ln ζ dξ
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= ln
[
(ϑ− ϑ0) +

1
i

ln
�

�0

]
= ln

1
i

ln
z

z0
, (24)

where
z = �eiϑ and z0 = �0e

iϑ0 . (25)

We now move on to the study of case 2). First, we have to note that
here we cannot use the Cauchy formula in its original form, since the integral
written by us is not, generally speaking, the contour integral of a single-valued

function yet. The roots of the function
1
i

ln ζ can get inside the contour, and
ln of this function is not coming back to the original value as we move around
the contour.

If we recall the mnemonic rule given above, then we can easily select the
domains where the roots have to be moved inside the contour.

Let us draw in the (�, ϑ)-plane the circle of radius at centered at the point
�0, ϑ0, and construct two circles tangent to the given one with centers at
the origin. Then, we draw through the tangency points of these circles their
common tangents. In this case, our entire plane with the cut ϑ0 − π < ϑ <
ϑ0 + π will be divided into domains marked on the drawing (see Fig. 5).

Fig. 5.

Tracing the motion of the roots of ln
1
i

ln ζ for ϑ < ϑ0−π or for ϑ > ϑ0+π,
we see that these roots are not related at all to the chosen contour. In the
plane ϑ0 − π < ϑ < ϑ0 + π we brake case 2) into 5 subcases 2a), 2b), 2c), 2d),
2e). Schematically, the motion of the roots in this case can be represented on
the following drawing (see Fig. 6).

In interval 2a) the increment ϑ of roots is not present. In interval 2b) one of
the roots enters inside the contour at the point ξ = ei(ϑ0−π) and moves inside
the disk along the contour in the positive direction. In interval 2c) the root
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Fig. 6.

enters inside the disk |ξ| ≤ 1 and moves along a certain path to another point
of the contour. Then, in interval 2d) this root moves along the circle on the
inner side, and, finally, for ξ = e−i(ϑ0+π) leaves this interval. On interval 2e)
there are no roots inside the domain. All computations for subcases 2a) and
2e) are carried out similarly to the previous one, and the result is as before

W =
1

2πi

∫
C

1
ξ

ln
1
i

ln ζ dξ = ln
1
i

ln
z

z0
. (24)

Indeed, in this case, adding to the integrands in both integrals taken over
the segments of the radius arg ξ = ϑ0 ± π, the multiple 2πi, in this case, we
can achieve that the integrals computed over intervals of these radii along the
joint cut II and I would comprise one closed contour together with integrals
computed over the circle |ξ| = 1.

Obviously, adding multiples of 2πi does not change the value of the integral
in the large, since added terms simply cancel out like the integrals over parts
of the radii.

It is interesting that these additional terms differ on parts 2a) and 2e),
since the integrands in integrals over the inner contours, when ϑ changes from
−∞ to +∞, get an increment of −π, while the integrands in integrals over
the circle get an increment of π. In this case, it is obvious that the continuous
continuation of the integrands from the circle to the radii is possible only
when the additional terms in 2a) and 2e) also differ by 2π.

Let us compute now the integral W in cases 2b), 2c), and 2d). This com-
putation in all three cases is the same. We have

W =
1

2πi

∫
C

ln
1
i

ln ζ
dξ

ξ
=

1
2πi

∫
C

ln
1
i

ln ζ
ξ − ζ(1)

dξ

ξ
+

1
2πi

∫
C

ln(ξ − ζ(1))
dξ

ξ
,

where ζ(1) is a root of the function
1
i

ln ζ.
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It is easy to see that the first integral, adding again some multiple of 2πi
to the integrand on the radii, can be transformed to the integral computed

over a closed contour, because the function
ln ζ

ξ − ζ(1)
has no zeros inside the

contour.
In this case, the Cauchy formula gives

1
2πi

∫
C

ln
1
i

ln ζ
ξ − ζ(1)

dξ

ξ
= ln

1
i

ln ζ|ξ=0 − ln(−ζ(1))

= ln
1
i

ln
z

z0
− ln ζ(1) + πi.

To compute the second integral, we write it in the form

1
2πi

∫
C

ln
(
ξ − ζ(1)

ξ

)
dξ

ξ
+

1
2πi

∫
C

ln ξ
dξ

ξ
.

Here, the first term is the integral over a closed contour of the function

regular at infinity and vanishing there as
1
ξ2

. Therefore, it vanishes. Regarding

the second term, it is equal to
1

2πi
ln2 ξ|C , i.e., to the difference of values of

the functions
1

2πi
ln2 ξ going around the contour C.

Obviously, in this case, we have to start at the point ξ = ei(ϑ0−π) and
proceed to the point ξ = ei(ϑ0+π). In this case, we have

1
2πi

∫
C

ln ξ
dξ

ξ
=

1
4πi

{[i(ϑ0 +(2k+1)π)]2− [i(ϑ0 +(2k−1)π)]2} = i(ϑ0 +2kπ).

Obviously, the constant k can be attributed to the value of ln ζ(1).
Finally, in this case,

W = ln
1
i

ln
z

z0
− ln ζ(1) + iϑ0 + πi. (26)

The value of ln ζ(1) can be determined by continuity moving from cases
2a) and 2e).

In exactly the same way, the integral in case 1) is computed.
Similarly to what has occurred in case 2a) and 2e), in cases 1a) and 1e)

we should not include any roots inside the contour. In this case, it is obvious
that

W = ln
1
i

ln
z

z0
.

For cases 1b) and 1d), which are similarly to studied case 2b), 2c), and 2d),
we introduce one root inside the contour. In this case, computations give
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1b) W = ln 1
i ln z

z0
− ln ζ(1) + iϑ0 + πi,

1d) W = ln 1
i ln z

z0
− ln ζ(2) + iϑ0 + πi.

(27)

Here, ζ(1) denotes the root located on the semicircle ϑ0−π < arg ζ(1) < ϑ0,
and ζ(2) is the root located on the semicircle ϑ0 < arg ζ(2) < ϑ0 + π.

In perfect analogy, we can compute the integral in case 1c), where we move
both roots ζ(1) and ζ(2) inside the contour.

We have

W =
1

2πi

∫
C

ln
1
i

ln ζ
dξ

ξ
=

1
2πi

∫
C

ln
1
i

ln ζ
(ξ − ζ(1))(ξ − ζ(2))

dξ

ξ

+
1

2πi

∫
C

ln
(ξ − ζ(1))(ξ − ζ(2))

ξ2
dξ

ξ
+

2
2πi

∫
C

ln ξ
dξ

ξ
,

and again, in view of the Cauchy theorem and because of the regularity of the
integrand in the second integral,

W = ln
1
i

ln
z

z0
− ln ζ(1) − ln ζ(2) + 2iϑ0 − 2πi. (28)

Let us now compose the function

ω = ln
1
i

ln
z

z0
−W − πi. (29)

From the entire previous discussion, it is not difficult to see what this function
is equal to in cases 1), 2), and 3).

This function vanishes on all sheets except the zero sheet.
On the zero sheet, it is zero in zone 3).
In zones 2) and 3) of the zero sheet, ω is simply ln ζ(1), moreover, inside the

disk centered at �0, ϑ0 with the radius at its values are defined by the usual
rule in the interior of the unit disk, and in the exterior they are continued in
the following way.

The contour C1 is divided into two parts by the diameter passing through
the coordinate origin. One of these parts I gives the values of arg ζ(1) located
between ϑ0−π and ϑ0, and part II gives the values of arg ζ(1) located between
ϑ0 and ϑ0 + π.

The function ln ζ(1) is divided into the sum of two functions, each of which
preserves a constant value on one of our semicircles

ln ζ(1) = ϕ1(ζ ′) + ϕ2(ζ ′′).

The function ϕ1(ζ ′), preserving constant value on cut I, continues into the
exterior of the circle C1 via a family of half-tangents in the counterclockwise
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Fig. 7.

direction, and the function ϕ2(ζ ′′), keeping constant value on cut II, continues
via a system of half-tangents in the clockwise direction (see Fig. 7).

The real part of this function ω, as is easy to verify directly on the zero
sheet of the Riemann surface, is exactly equal to the Volterra solution8

V = ln

(
at

r1
−
√
a2t2

r21
− 1

)
. (30)

From the general reasoning that we developed in the first part, it follows
that in case 4) as well we obtain the solution of the wave equation such that
the function ω is the limiting solution in the entire domain.

This function is the diffraction of the elementary solution.
Before we begin to solve the Cauchy problem by using this function, let

us study in more detail some of its properties.
Let us estimate values of this function as � → 0 and ϑ → ±∞, assuming

�0, t, and ϑ0 are fixed. Obviously, we have to study only case 4).
Evaluating ω, we notice that

ln
1
i

ln
z

z0

can be easily represented in the form

1
2πi

∫
C

ln
1
i

ln
z

z0

dξ

ξ
.

Whence we obtain for case 4)

ω =
1

2πi

∫
C

{
ln

1
i

ln
z

z0
− ln

1
i

ln ζ
}

dξ

ξ
− πi.

8 Here, r1 =
p

(x − x0)2 + (y − y0)2. – Ed.
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Since we are interested only in the real part of the function ω, then πi can
be omitted. We have

Reω = Re

⎧⎨⎩− 1
2πi

∫
C

ln

[
ϑ− 1

i ln ξ + arccos at1
�

ϑ− ϑ0 + 1
i ln �− 1

i ln �0

]
dξ

ξ

⎫⎬⎭ . (31)

Let us estimate this integral for large values of ϑ and small �. For this
purpose we denote

ϑ− 1
i ln ξ + arccos at1

�

ϑ− ϑ0 + 1
i ln �− 1

i ln �0

= 1 + χ.

The quantity χ tends to zero as ϑ growths, in this case

Reω = Re

⎧⎨⎩− 1
2πi

∫
C

ln(1 + χ)
dξ

ξ

⎫⎬⎭ .

It is not important for the computation of the real part which branch of
ln in the integrand is chosen.

Therefore, we choose the branch which vanishes for large values of ϑ.
We transform formula (31) to the form

Reω = −Re

⎧⎨⎩ 1
2πi

∫
C

[ln(1 + χ) − χ]
dξ

ξ
+

1
2πi

∫
C

χ
dξ

ξ

⎫⎬⎭ . (32)

First, we calculate the second term.

Since χ is expressed rationally by
1
i

ln ζ, then the Riemann surface for χ

is the same as for
1
i

ln ζ.
Obviously,

χ =
− 1

i ln
[
ξ

(
at1
� +

√
a2t21
�2 − 1

)]
− 1

i ln �+ 1
i ln �0 + ϑ0

ϑ− ϑ0 + 1
i ln �− 1

i ln �0

. (33)

Whence, on the sheet M0 we have9 χ(0) = 0.
Next, it is possible to note that the contour, which we use to integrate χ,

can be transformed into a closed one on the Riemann surface.
Only the integrals, taken over both sides of a segment of the line

arg ξ = ϑ0 − π, along the part where we have only cut I, can obstruct do-
ing this.

9 See formulas (20)–(22). – Ed.
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Denoting this segment by l, in the integral taken over C we have two terms
of the form

1
2πi

∫
l+

χ|
L

(−)
0 =L

(+)
−1

dξ

ξ
+

1
2πi

∫
l−

χ|
L

(+)
0 =L

(−)
1

dξ

ξ
.

Here, l+ denotes the direction from the circle |ξ| = 1 to the critical point ξ2.
Developing in more detail these integrals, we have

1
2πi

∫
l+

χ|
L

(−)
0

dξ

ξ
=

1
2πi

ξ2∫
−eiϑ0

1
i ln �− 1

i ln �0 + π + 1
i ln |ξ| − arccos0 at1

�

(ϑ− ϑ0) + 1
i ln �− 1

i ln �0

dξ

ξ
,

1
2πi

∫
l−

χ|
L

(+)
0

dξ

ξ
=

1
2πi

−eiϑ0∫
ξ2

1
i ln �− 1

i ln �0 − π + 1
i ln |ξ| + arccos0 at1

�

(ϑ− ϑ0) + 1
i ln �− 1

i ln �0

dξ

ξ
.

Combining these integrals, after simple computations we obtain

1
2πi

∫
l+

{
χ|

L
(−)
0

− χ|
L

(+)
0

} dξ
ξ

=
1

2πi

∫
l+

{
χ|

M
(−)
0

− χ|
M

(+)
0

} dξ
ξ
. (34)

Taking into account this equality and replacing the contour C by the closed
contour, located on the sheet M0 and consisting of the circle |ξ| = 1 and pieces
of the radius arg ξ = ϑ0 − π, we obtain

1
2πi

∫
C

χ
dξ

ξ
= χ(0) = 0.

Thus, it remains only to estimate the integral

1
2πi

∫
C

[ln(1 + χ) − χ]
dξ

ξ
. (35)

Because of our selection of the values of ln, for all χ with the module less
than one, |χ| < q < 1, we have a very simple estimate of the module of the
integrand in (35) ∣∣∣∣[ln(1 + χ) − χ]

1
ξ

∣∣∣∣ ≤ M
|χ|2
|ξ| ,

where M is a certain absolute constant. Let us note that on the contour C,
for fixed t, |ξ| > |ξ1| > K, where K is a constant not depending on � and ϑ.
Because of this, the last integral goes to zero as χ tends to zero, i.e., with the

growth of ϑ, and vanishes as
1
ϑ2

. However, for our purposes we need to make
a somewhat more exact estimate.
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We estimate the function |χ2| separately on the circle |ξ| = 1, on the
interval of the rectilinear part of the contour where only cut I is present, and
on the interval where cuts I and II are present. The integral over the intervals,
where cuts I and III are joint, cancels out, as we have repeatedly noted.

On the circle the values of χ are taken from the sheet M0, therefore,

arccos
at1
�

is represented in the form

−1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠ = −1
i

ln(at1 +
√
a2t21 − �2) +

1
i

ln �.

The function ln(at1 +
√
a2t21 − �2) satisfies the obvious inequalities

ln at1 < ln(at1 +
√
a2t21 − �2) < ln at1 + ln 2.

Taking into account that at1 on our circle, for the case in question, varies
in the following limits at− �0 < at1 < at+ �0, we obtain∣∣∣∣−1

i
ln(at1 +

√
a2t21 − �2)

∣∣∣∣ < M1, (36)

where M1 is a constant depending only on �0.
Using inequality (36), we can already estimate the quantity |χ| more pre-

cisely.
To avoid the value � = 1, we divide our study into two separate cases, first

discussing only the values � <
1
2
.

Dividing the numerator and the denominator of our expression of χ by
1
i

ln �, we obtain

χ =
iϑ0
ln � − 1 + ln �0

ln � − ln ξ
ln � − ln(at1+

√
a2t21−�2)

ln �

i(ϑ−ϑ0)
ln � + 1 − ln �0

ln �

.

Whence we easily see that |χ2| in this case satisfies the inequality

|χ2| ≤ M

A+ (ϑ−ϑ0)2

(ln �)2

, (37)

where A and M are constants for fixed �0, ϑ0, and t.

If we consider now
1
2
< ln � < N , then immediately it is possible to obtain

similarly

|χ2| ≤ M

A+ (ϑ− ϑ0)2
. (38)
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To estimate |χ| on the interval, where cuts I and III are made, it suffices

to take into account that for
(
at1
�

)
> 1 the ratio

ln
(

at1
� +

√
a2t21
�2 − 1

)
ln �

converges to a finite limit as � → 0 and, hence, has an exact upper boundary
independent of �.

Whence, for our interval we have

|χ2| ≤ M

A+ (ϑ−ϑ0)2

(ln �)2

for � <
1
2
. The estimate is even simpler,

|χ2| ≤ M

A+ (ϑ− ϑ0)2

for
1
2
< � < N .

It remains for us to estimate the quantity |χ2| on cuts I and II.

Taking into account that there arccos
at1
�

is a real number bounded by

finite limits, we easily obtain the same estimate as in the previous case.
The estimate obtained for |χ|2 is carried out to the function Reω, if we

recall that the module of
1
ξ

on the contour C is bounded by a constant inde-

pendent of � and ϑ. Let us also note that this estimate is uniform for bounded
t and �0. This fact is easily verified directly.

Next, it is also necessary to estimate
∂Reω
∂t

. We have

∂Reω
∂t

= Re
1

2πi

∫
C

∂
∂t

[
± 1

i ln
(

at1
� +

√
a2t21
�2 − 1

)]
ϑ− 1

i ln ξ0 ± 1
i ln
(

at1
� +

√
a2t21
�2 − 1

) dξ

ξ
. (39)

Let us expand this integral in more detail. First, we denote different parts
of the contour where

±1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠
is computed from the different rules. Let l1 be an arc of the circle |ξ| = 1,
ϑ0 − π < arg ξ < ϑ0 + π, let l2 be the segment of the radius arg ξ = ϑ0 + π
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from the unit circle to the point ξ2. We denote by l3 the interval along the
segment of the same radius from the point ξ2 to the point ξ4, and by l4 the
segment l3 in the opposite direction, and by l5 the interval l2 taken in the
opposite direction.

Then, taking into account the notes made above regarding the values of

±1
i

ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠ ,

we obtain

∂Reω
∂t

= Re
1

2πi

⎧⎪⎪⎨⎪⎪⎩
∫
l1

− ∂
∂t

[
1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]
ϑ− 1

i ln0 ξ − 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)
− π

dξ

ξ

+
∫
l2

∂
∂t

[
1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]
ϑ− 1

i ln |ξ| + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)
− π

dξ

ξ

+
∫
l3

∂
∂t arccos∗ at1

�

ϑ− 1
i ln |ξ| + arccos∗ at1

� − π

dξ

ξ

+
∫
l4

− ∂
∂t arccos∗ at1

�

ϑ− 1
i ln |ξ| − arccos∗ at1

� + π

dξ

ξ

+
∫
l5

∂
∂t

[
1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]
ϑ− 1

i ln |ξ| + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)
+ π

dξ

ξ

⎫⎪⎪⎬⎪⎪⎭ .

Here, arccos∗
at1
�

denotes the function real in the interval

−1 <
at1
�

< 1

and equals

π

2
−

at1
�∫

0

dy√
1 − y2

.

It is easy to see that on l1, l2, and l5,



General Theory of Diffraction of Waves on Riemann Surfaces 257

∂

∂t
ln

⎛⎝at1
�

+

√
a2t21
�2

− 1

⎞⎠ =
a

�

1√
a2t21
�2 − 1

=
a√

a2t21 − �2

=
a√

�2
0

4ξ2 (ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

=
−2aξ

�0

√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

.

Here, the root
√

(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4) is chosen negative for pos-
itive values of ξ, and with the continuous change of ξ this root becomes positive
for negative ξ. Moreover,

∂

∂t
arccos∗

at1
�

=
a

�

−1√
1 − a2t21

�2

=
−a√

−�2
0

4ξ2 (ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

=
2aξ

�0

√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)
,

where √
−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

is chosen positive for negative ξ.

Taking into account these relations, we rewrite
∂Reω
∂t

in the form

∂Reω
∂t

= Re
1

2πi

⎧⎪⎪⎨⎪⎪⎩
−i
�0

∫
l1

2a[
ϑ− 1

i ln |ξ| − 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]

× dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

+
−i
�0

∫
l2

2a[
ϑ− 1

i ln |ξ| + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)
− π

]
× dξ√

(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

+
1
�0

∫
l3

2a dξ[
ϑ− 1

i ln |ξ| + arccos∗ at1
� − π

]√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)
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+
1
�0

∫
l4

2a dξ[
ϑ− 1

i ln |ξ| + arccos∗ at1
� + π

]√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

− i

�0

∫
l5

2a[
ϑ− 1

i ln |ξ| + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)
+ π

]

× dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

⎫⎪⎪⎬⎪⎪⎭ . (40)

To estimate it, let us now combine the integrals taken over the intervals
l2 and l5. Changing the order of integration on l5, we obtain∫

l2

F2 dξ +
∫
l5

F5 dξ =
∫
l2

2π[(
ϑ− 1

i ln |ξ| + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

))2

− π2

]

× 2a dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

.

Then, we note the elementary equality

− i

�0

∫
l1

2a dξ
ϑ
√

(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

+
1
�0

∫
l3

2a dξ
ϑ
√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

− 1
�0

∫
l4

2a dξ
ϑ
√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

= 0

following from the Cauchy theorem on contour integrals. Subtracting the left

side of this equality term by term from
∂Reω
∂t

, we present this last expression
in the form

∂Reω
∂t

= Re
1

2πi

⎧⎪⎪⎨⎪⎪⎩
−2ai
�0

∫
l1

[
1
i ln0 ξ + 1

i ln
(

at1
� +

√
a2t21
�2 − 1

)]
ϑ

[
ϑ− 1

i ln0 ξ − 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]

× dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)
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−2ai
�0

∫
l2

2π[
ϑ− 1

i ln ξ + 1
i ln
(

at1
� +

√
a2t21
�2 − 1

)]2
− π2

× dξ√
(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

+
2a
�0

∫
l3

(
1
i ln |ξ| − arccos∗ at1

� + π
)
dξ

ϑ
[
ϑ− 1

i ln |ξ| + arccos∗ at1
� − π

]√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

−2a
�0

∫
l4

(
1
i ln |ξ| + arccos∗ at1

� − π
)

ϑ
[
ϑ− 1

i ln |ξ| − arccos∗ at1
� + π

]
× dξ√−(ξ − ξ1)(ξ − ξ2)(ξ − ξ3)(ξ − ξ4)

⎫⎬⎭ . (41)

Now, the estimate makes no longer any problems.

As is easy to verify, in the assumption that �0 < at we have for
∂Reω
∂t

the
same inequalities as the ones obtained for Reω,∣∣∣∣∂Reω

∂t

∣∣∣∣ ≤ M

A+ (ϑ−ϑ0)2

(ln �)2

, |Reω| ≤ M

A+ (ϑ−ϑ0)2

(ln �)2

for � <
1
2
, (42)

∣∣∣∣∂Reω
∂t

∣∣∣∣ ≤ M

A+ (ϑ− ϑ0)2
, |Reω| ≤ M

A+ (ϑ− ϑ0)2
for

1
2
< � < N. (43)

The estimates on Reω are uniform for �0 and t, and the estimates for
∂Reω
∂t

are uniform for �0 and t, if at > �0 + δ, where δ is a fixed number.
We could show how the constants A and M change with the change of

�0 and t, but because of absolute simplicity of these estimates we leave them
aside.

To finish the study of this question, let us also consider
∂Reω
∂ϑ

. It is obvious
that this function approaches zero as

M

A+ (ϑ−ϑ0)2

(ln �)2

with ϑ increasing for small values of �, and as

M

A+ (ϑ− ϑ0)2

for values of � >
1
2
.
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3. Now we can move on to the search for weak solutions of the Cauchy
problem on the Riemann surface.

Since this solution is in perfect analogy with the one already carried out
for the regular Cauchy problem on the simple plane, then we only outline here
the basic points of the derivation.

In correspondence to a certain point �0, ϑ0, t0 or, which is the same, x0,
y0, t0 we construct in our Riemann (x, y, t)-space, with the branching axis
x0 = 0, y0 = 0, the cone of characteristics with its surface bounded in limits
of that part of the space, where ϑ0 − π < ϑ < ϑ0 + π. Next, in the entire
remaining part we supplement this surface by the multi-sheeted surface of the
cone of characteristics with an apex at the point x1 = 0, y1 = 0, t1 = t0 − �0

a
.

Its equation is
x2 + y2 = a2(t− t1)2.

Thus, we obtain a surface which we call the surface of a wave for the given
point x0, y0, t0.

Let us again consider the domain Dε and the function ψε, which we deter-
mined in Sect. 5 of Chap. 1. We define the function vε in our Riemann space,
inside the surface of a wave, by using the previous conditions

vε|(x−x0)2+(y−y0)2=a2(t−t0)2
= 0 (44)

and
�vε = ψε. (45)

It can be easily verified that this function can be defined by using the
formula

vε(x, y, t;x0, y0, t0) = − 1
2π

∂

∂t

∫∫∫
Dε

ψε(x1 − x0, y1 − y0, t1 − t0)

×ω(x, y, t;x1, y1, t1) dx1 dy1 dt1. (46)

Indeed, if we calculate it, for example, at points with coordinates satisfying
the condition t > t0 − �0

a
, then this function entirely coincides for ϑ0 − π

2
<

ϑ < ϑ0 +
π

2
with the function given in formula (79) of the first part, and

vanishes at remaining ϑ. For all other points, it is directly obvious that it
satisfies both conditions stated.

Now we solve the problem of integration of the wave equation on the
Riemann surface with initial data

u|t=0 = u0(�, ϑ), (47)∫∫
Ω

v
∂u

∂t

∣∣∣∣
t=0

dS = L(Ω, v). (48)
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Let us construct the domain bounded by the surface of a wave for the
point x0, y0, t0, by the plane t = 0 and two half-planes ϑ = α and ϑ = β.

By the Lebesgue theorem, it is always possible to choose α and β such
that they would be the surfaces of complete summability.

Applying to this domain the Green formula obtained in Chap. 1 and taking

into account that on the surface of wave vε and
∂vε

∂ν
vanish, we obtain

∫∫
Dε

ψεu dr =
∫∫
S1

(
v
∂u

∂ν
− u

∂v

∂ν

)
dS

+
∫∫
S2

(
v
∂u

∂ν
− u

∂v

∂ν

)
dS +

∫∫
S3

(
v
∂u

∂t
− u

∂v

∂t

)
dS. (49)

(The application of this formula, strictly speaking, requires also an additional
study of the behavior of vε near � = 0. However, it is not difficult to clarify
the validity of all these operations under sufficiently wide assumptions.)

Here, S1 and S2 denote the parts of surfaces ϑ = α and ϑ = β, which are
the boundaries of the domain G, and S3 denotes the part of the plane t = 0,
which is such boundary.

We pass now to the limit as α → −∞ and β → ∞.
If the integrals over S1 and S2 cancel out in this case, then we obtain the

solution of the problem repeating word by word all arguments of Chap. 1.
The uniqueness of the solution in this case follows from the algorithm itself.

It is not difficult to indicate the cases when the solution probably exists.
It happens, for example, when the function u|t=0 is continuous and bounded

on all sheets, and the function
∂u

∂t

∣∣∣∣
t=0

exists and is summable.

This easily follows from the estimates we gave for ω,
∂ω

∂t
, and

∂ω

∂ϑ
.
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8. The Problem of Propagation
of a Plastic State∗

S. L. Sobolev

Summary. The author considers the problem on propagation of a plastic state in
an infinite plane with a circular hole, subject to the action of symmetrical forces
causing assigned displacements on the boundary.

Author’s hypothesis are reduced to the following.
1. Matter of the plane can be only in two states: elastic or plastic; moreover, the

plastic zone is expressed in Lagrangian coordinates (�0, ϑ0) by the inequalities

r0 < �0 < R0(t),

and the elastic zone is expressed by the inequality

�0 > R0(t).

The author restricts himself to the consideration of only the motions when R0(t)
is an increasing function.

2. The elastic state of the matter is described by the usual equations of linear
elasticity within small quantities of the highest orders.

3. The plastic state is described by the known Saint-Venant equations.
4. The displacement vector, stress tensor, and velocity vector of a particle remain

continuous while crossing the boundary between the elastic and plastic zones.
The author indicates the method of computation of all quantities characterizing

the motion, i.e., the radius R0(t), components of the displacement at any point of
time in both zones, components of the stress tensor also in both zones and flow lines
in the plastic zone.

The research shows that if the angle of rotation given on the internal contour
increases too rapidly relative to the radius of expansion of the inner hole, then the
characteristics of the plastic zone become tangent to the inner contour, and the
problem losses its meaning. From a physical standpoint, this is related to the fact
that the break of the matter occurs along the inner boundary.

The rate of growth of the maximal angle of rotation for large values of the radius
of expansion of the inner hole is approximately equal to 3 ln r.

∗ Tr. Seism. Inst., 49 (1935), 15 p.
This paper was written by S. L. Sobolev in English, its summary was written in
Russian. – Ed.
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1. We consider in the present paper the following problem. An infinite
plane with a circular hole is exposed to the action of forces applied to its
boundary. We suppose that the values of displacements of the material parti-
cles are given at this boundary. Let these values depend only on time and be
symmetrical with regard to the center.

According to Lagrange, let us denote the polar coordinates of a material
point in undisturbed state by �0, ϑ0 and the coordinates of this point at the
time t by �, ϑ.

We suppose that the function �(�0, t) is independent of ϑ0 and the function
ϑ(�0, ϑ0, t) can be represented in the form

ϑ = ϑ0 + ψ(�0, t),

where the function ψ depends only on �0 and t.

The stresses
�
��,

�

�ϑ, and
�

ϑϑ (symbols adopted from A. E. H. Love’s trea-
tise1), being supposed symmetrical, will also depend only on �0 and t.

At infinity the stresses are supposed to vanish. Accordingly we suppose
that our plane consists of two parts: the plastic part

r0 < �0 < R0(t)

and the elastic one
R0(t) < �0 < ∞.

Let us consider the matter of our plane according to the following hy-
potheses.

I. The elastic state can be defined by the usual formulas of linear elasticity.

The stresses
�
��,

�

�ϑ, and
�

ϑϑ satisfy the well-known equations of mechanics of
continuous media which can be written as

∂
�
��

∂�
+

1
�

∂
�

�ϑ

∂ϑ
+

�
�� −

�

ϑϑ

�
= 0,

∂
�

�ϑ

∂�
+

1
�

∂
�

ϑϑ

∂ϑ
+

2
�

�ϑ

�
= 0,

(1)

and the displacements are connected with the stresses by the formulas

�
��= λ

[
1
�

∂

∂�
(�u�) +

1
�

∂uϑ

∂ϑ

]
+ 2µ

∂u�

∂�
,

�

ϑϑ= λ

[
1
�

∂

∂�
(�u�) +

1
�

∂uϑ

∂ϑ

]
+ 2µ

(
1
�

∂uϑ

∂ϑ
+
u�

�

)
,

�

�ϑ= µ

[
∂uϑ

∂�
+

1
�

∂u�

∂ϑ
− uϑ

�

]
,

(2)

1 Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity. 4th ed.
University Press, Cambridge (1927) – Ed.
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usually called the Hooke law.
We shall study below the finite displacements and velocities in the plastic

part of our plane, and we have to demand that these quantities are equal on
both sides of the circumference �0 = R0.

As the expressions for these quantities are exact in the plastic part, they
must be exact in the elastic one as well. Therefore, we are induced to consider
in our investigation the so-called “nonlinear elasticity”.

In order to be exact, we put down all our conditions without neglecting
the small terms.

Thus, we suppose that the solutions of equations (1) and (2) give only the
principal parts of displacements and stresses. The full expressions differ from
these solutions by certain small quantities.

II. The plastic state can be exactly defined by means of the Saint-Venant
equations: equations of mechanics of continuous media (1), the condition of
plasticity

(
�
�� −

�

ϑϑ)2 + 4
�

�ϑ
2

= 4k2 (3)

and the equation for velocities which can be written in polar coordinates in
the form(

1
�

∂u′ϑ
∂ϑ

+
u′�
�

− ∂u′�
∂�

)
2

�

�ϑ=
(
∂u′ϑ
∂�

+
1
�

∂u′�
∂ϑ

− u′ϑ
�

)
(

�

ϑϑ − �
��). (4)

We suppose again that our matter is incompressible, i.e.,

∂u′�
∂�

+
1
�

∂u′ϑ
∂ϑ

+
u′�
�

= 0. (5)

We apply the last hypotheses to the elastic part of our medium too, though in
this part we have no new results, the symmetrical solution of linear elasticity
equations for an infinite simply connected domain being the same in the case
of compressibility or incompressibility.

III. At the boundary between the elastic and the plastic state all the

functions �, ϑ,
�
��,

�

ϑϑ,
�

�ϑ, u′�, and u′ϑ are continuous:

�(e) = �(p), ϑ(e) = ϑ(p),
�
��

(e)
=

�
��

(p)
,

�

ϑϑ
(e)

=
�

ϑϑ
(p)

,
�

�ϑ
(e)

=
�

�ϑ
(p)

, u
′(e)
� = u

′(p)
� , u

′(e)
ϑ = u

′(p)
ϑ .

(6)

The above given symbols are evident. The continuity of the functions �, ϑ,
�

�ϑ, and
�

ϑϑ is obvious.
The continuity of

�
�� is the mathematical formulation of the hypotheses

that the plastic state occupies the smallest zone imaginable.
Indeed, if the elastic zone cannot be extended up to the disk �0 < R0, it

follows that at the outer side of this disk equation (3) is satisfied.
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From the continuity on the left side of equation (3) and from that of
�

�ϑ

and
�

ϑϑ it follows that either
�
�� is continuous or

�
��

(e)
+

�
��

(p)
= 2

�

ϑϑ .

We choose the former of these two hypotheses.
The continuity of u′� and u′ϑ is a new admission which results from the

natural requirement of the slowness of deformation and of the smallness of
accelerations.

Indeed, remembering that �(�0, ϑ0) and ϑ(�0, ϑ0) are continuous, i.e.,

�(e)(R0(t), t) = �(p)(R0(t), t),
ψ(e)(R0(t), t) = ψ(p)(R0(t), t),

and differentiating both sides of these equalities with respect to t, we obtain

∂�(e)

∂�0

∂R0

∂t
+
∂�(e)

∂t
=
∂�(p)

∂�0

∂R0

∂t
+
∂�(p)

∂t
,

∂ϑ(e)

∂�0

∂R0

∂t
+
∂ϑ(e)

∂t
=
∂ϑ(p)

∂�0

∂R0

∂t
+
∂ϑ(p)

∂t
.

Supposing that
∂R0

∂t
= 0, we see that

∂�(e)

∂t
=
∂�(p)

∂t
and

∂ϑ(e)

∂t
=
∂ϑ(p)

∂t
.

Our supposition is proved.

When on the contrary
∂R0

∂t
�= 0, then the radius of the plastic zone

changes, and the particles of our medium will change from one state to an-
other.

If the velocities in the plastic and the elastic zones differ, the velocities of
these particles must change abruptly, which is impossible.

It must be noted that, according to our suppositions, the function �(�0, t)
is completely determined.

Indeed, from the condition of compressibility it follows that∫∫
� d� dϑ =

∫∫
�0 d�0 dϑ0.

Therefore,
D(�, ϑ)
D(�0, ϑ0)

=
�0

�

or
�
∂�

∂�0
= �0. (7)
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Integrating with respect to �0, we get

�2 = �2
0 +

k

µ
C(t). (8)

Here C(t) is a function which can be determined from the boundary condition.
Differentiating this formula with respect to t, we obtain

2�
∂�

∂t
=

k

µ
C ′(t)

or

u′� =
kC ′(t)
2µ�

. (9)

2. Now let us consider the solution of the Saint-Venant equations for a
plastic zone.

This can be done in different ways. We follow that of Carathéodory–
Schmidt. Let us remember the main features of this method.

It consists of the construction of two orthogonal systems of lines, so-called
characteristics.

These characteristics are supposed to be determined by the equations

u(�, ϑ) = const,
v(�, ϑ) = const, (10)

the functions u and v satisfying the equations

(
�
�� −

�

ϑϑ)
(
∂u

∂�

)2

+
4

�

�ϑ

�

∂u

∂�

∂u

∂ϑ
+

�

ϑϑ − �
��

�2

(
∂u

∂ϑ

)2

= 0,

(
�
�� −

�

ϑϑ)
(
∂v

∂�

)2

+
4

�

�ϑ

�

∂v

∂�

∂v

∂ϑ
+

�

ϑϑ − �
��

�2

(
∂v

∂ϑ

)2

= 0.

(11)

Some interesting theorems about these lines were worked out by Hencky
and later on by Carathéodory and Schmidt. Let us recall some of them.

1. Supposing that the characteristics are known, we can express the solu-
tion of the problem of plastic stresses by means of the formulas

�
�� +

�

ϑϑ

2k
=

σ

2k
= ±(f1(u) + f2(v)), (12)

β = f1(u) − f2(v), (13)

�
��= ±k sin 2(β−ϑ)+σ,

�

ϑϑ= ∓k sin 2(β−ϑ)+σ,
�

�ϑ= ±k cos 2(β−ϑ). (14)

Here β is the angle between the positive direction of the line u = const
and the direction of the axis ϑ = 0.
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We must choose the upper or the lower signs of the first terms on the right
side of formulas (14) in all these formulas in the same way. The sign in the
right side of formula (12) is connected with the signs in formulas (14) and
depends on the orientation of the positive direction of axes u and v.

We shall choose this sign substituting directly expressions (14) into the
equation of continuous media (1).

2. Formulas (12), (13), (14) are equivalent to the Saint-Venant equation,
i.e., if we determine the orthogonal system of the lines u = const, v = const
in such a way that the angle β will be given by means of formula (13) with
certain f1 and f2, equations (12) and (14) give us the solution of the problem
of a plastic state.

From equality (13) it follows that

∂2β

∂u∂v
= 0. (15)

This last equation is the only condition which has to be satisfied, if we
want to construct a solution of our type.

Now let us consider our principal problem.
The two orthogonal systems of lines invariable with regard to the rotation

about the origin can generally be represented in the form

u = ϑ− ϑ1(�) = const,
v = ϑ− ϑ2(�) = const, (16)

the functions ϑ1 and ϑ2 satisfying the relation

1 + �2ϑ′
1(�)ϑ

′
2(�) = 0. (17)

Now let us write condition (13).
It is known that the angle β can be represented in the form

β = ϑ+ arctan(�ϑ′
1). (18)

Remembering that

∂

∂u
=
∂ϑ

∂u

∂

∂ϑ
+
∂�

∂u

∂

∂�
,

∂

∂v
=
∂ϑ

∂v

∂

∂ϑ
+
∂�

∂v

∂

∂�
(19)

and

∂ϑ

∂u
= − 1

∆

∂v

∂�
,

∂ϑ

∂v
=

1
∆

∂u

∂�
,

∂�

∂u
=

1
∆

∂v

∂ϑ
,

∂�

∂v
= − 1

∆

∂u

∂ϑ
,

∆ =
D(u, v)
D(�, ϑ)

= ϑ′
2(�) − ϑ′

1(�), (20)

we obtain
∂β

∂u
=

ϑ′
2

ϑ′
2 − ϑ′

1

+
1

ϑ′
2 − ϑ′

1

ϑ′
1 + �ϑ′′

1

1 + �2ϑ′2
1
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=
(1 + �2ϑ′2

1 ) − (�ϑ′′
1 + ϑ′

1)�
2ϑ′

1

(1 + �2ϑ′2
1 )2

,

∂2β

∂u∂v
=

d

d�

[
(1 + �2ϑ′2

1 ) − (�ϑ′′
1 + ϑ′

1)�
2ϑ′

1

(1 + �2ϑ′2
1 )2

] −1
ϑ2 − ϑ1

= 0. (21)

Integrating with respect to �, we have

(1 + �2ϑ′2
1 ) − (�ϑ′′

1 + ϑ′
1)�

2ϑ′
1

(1 + �2ϑ′2
1 )2

= G

or
1
2�

d

d�

[
�2

1 + �2ϑ′2
1

]
= G.

Integrating once more, we obtain

�2

1 + �2ϑ′2
1

= G�2 + C1, (22)

and finally

ϑ′
1 = ±1

�

√
(1 −G)�2 − C1

G�2 + C1
.

If we denote
C1

1 −G
= a2,

C1

G
= b2,

we obtain

ϑ′
1 =

b

a�

√
�2 − a2

�2 + b2
, ϑ′

2 = − a

b�

√
�2 + b2

�2 − a2
. (23)

Integrating with respect to �, we get

ϑ1(�) = − arctan
b

a

√
�2 − a2

�2 + b2
+

1
2
b

a
ln

√
�2 + b2 +

√
�2 − a2√

�2 + b2 −
√
�2 − a2

,

ϑ2(�) = − arctan
b

a

√
�2 − a2

�2 + b2
− 1

2
a

b
ln

√
�2 + b2 +

√
�2 − a2√

�2 + b2 −
√
�2 − a2

.

(24)

The constants of integration are not necessary and may be neglected without
any restriction of the generality.

Thus, we have

u = ϑ+ arctan
b

a

√
�2 − a2

�2 + b2
− b

a
ln(
√
�2 + b2 +

√
�2 − a2),

v = ϑ+ arctan
b

a

√
�2 − a2

�2 + b2
+
a

b
ln(
√
�2 + b2 +

√
�2 − a2),

(25)
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and

β = ϑ+ arctan �ϑ′
1 = ϑ+ arctan

b

a

√
�2 − a2

�2 + b2
=
a2u+ b2v

a2 + b2
. (26)

By means of formulas (12) and (13) we get

σ

2k
= ±

(
a2u

a2 + b2
− b2v

a2 + b2

)
+ const. (27)

Remembering that with our hypothesis σ will be independent of ϑ, we con-
clude that a = b.

Finally, when we put a2 = λ, we obtain

u = ϑ+ arctan

√
�2 − λ

�2 + λ
− ln(

√
�2 + λ+

√
�2 − λ),

v = ϑ+ arctan

√
�2 − λ

�2 + λ
+ ln(

√
�2 + λ+

√
�2 − λ).

(28)

In these formulas, λ can be either positive or negative. Complex values of
λ give us complex values of ϑ and shall be neglected.

Formulas (12) and (14) with regard to (13) give us

σ

2k
= ε ln(

√
�2 + λ+

√
�2 − λ) + C, (29)

where ε = ±1,

�
��= σ + ηk

√
�4 − λ2

�2
,

�

ϑϑ= σ − ηk

√
�4 − λ2

�2
,

�

�ϑ= −ηk λ
�2
, (30)

where η = ±1.
To determine the connection between η and ε, we substitute expressions

(30) into the equations of mechanics of continuous media (1). Then we get
η = −ε. Finally, we can write the general solution of equations of plasticity
with polar symmetry in the form

�
��= εk

[
2 ln(

√
�2 + λ+

√
�2 − λ) −

√
�4 − λ2

�2

]
+ C1,

�

ϑϑ= εk

[
2 ln(

√
�2 + λ+

√
�2 − λ) +

√
�4 − λ2

�2

]
+ C1, (31)

�

�ϑ= εk
λ

�2
,

where ε = ±1. Now let us calculate the values of velocities.
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From equations (4) and (9) it follows that

∂u′ϑ
∂�

− u′ϑ
�

=
λC ′(t)

�2
√
�4 − λ2

. (32)

From (32) we deduce

u′ϑ =
k

µ

C ′(t)
λ

√
�4 − λ2

�
+ �C ′

2(t), (33)

C ′
2(t) is the constant of integration, which can depend on t.

Remembering that u′ϑ = �′ϑ, we get

ϑ′ =
k

µ

C ′(t)
2λ

√
�4 − λ2

�
+ C ′

2(t). (34)

It must be noted that our solution given by means of formulas (28), (31),
(9), and (34) is determined only in the domain outside the circle

�2 = |λ| (35)

or
�2
0 = |λ| − k

µ
C,

because for smaller values of � the square root
√
�4 − λ2 becomes imaginary.

The characteristics are tangent to circumference (35). The maximum value of
shearing stresses at this circumference will be obtained in that direction of a
small element of line which coincides with the direction of the contour itself.

The characteristics are given in Fig. 1.

Fig. 1.
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The solution of our equations for the elastic part of the medium can be
obtained by means of well-known methods.

The solutions of the linear elastic equations are

u� =
kC(t)
2µ�

, uϑ = −kB(t)
2µ�

,

�
��=

kC(t)
�2

,
�

ϑϑ= −kC(t)
�2

,
�

�ϑ= −kB(t)
�2

.

(36)

From the condition that the maximum value of shearing stresses will be
equal to k it follows that

C2(t) +B2(t) = R4(t). (37)

But we shall also consider equations (36) and (37) as approximately exact
and introduce certain corrections which are small quantities.

Notice that the only supposition we have made for simplifying the elasticity
equation is that the values of the partial derivatives

∂u�

∂�
,

∂uϑ

∂�
,

1
�

∂u�

∂ϑ
,

1
�

∂uϑ

∂ϑ
(38)

are small quantities.

In this hypothesis we have found that the ratio
k

µ
will be a small quantity.

Indeed, k is the value of the maximum tangential stress for small strain,
and µ is the value of the tangential stress which would take place, if the strain
were of finite value; in cartesian coordinates

∂u

∂y
+
∂v

∂x
= 1.

Then we see that the order of strain components (36) will be O
(
k

µ

)
.

Accordingly, we suppose that the exact expressions for our unknown quan-
tities will be

u� =
k

µ

C(t)
2�

+ u∗�, uϑ = −k

µ

B(t)
2�

+ u∗ϑ, (39)

u∗� = RO

(
k2

µ2

)
, u∗ϑ = RO

(
k2

µ2

)
,

�
��=

kC(t)
�2

+
�
��

∗
,

�

ϑϑ= −kC(t)
�2

+
�

ϑϑ
∗
,

�

�ϑ= −kB(t)
�2

+
�

�ϑ
∗
, (40)

�
��

∗
= k O

(
k

µ

)
,

�

ϑϑ
∗
= k O

(
k

µ

)
,

�

�ϑ
∗
= k O

(
k

µ

)
,
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the corrections u∗�, u
∗
ϑ,

�
��

∗
,

�

ϑϑ
∗
,

�

�ϑ
∗

being supposed of higher order of small-
ness.

Formulas (39) and (40) permit us to proceed to the solution of our problem.
Let us write all the boundary conditions.
First, equating the values of stresses at the boundary, we get

kC(t)
R2

+
�
��

∗
= εk

[
2 ln(

√
R2 + λ+

√
R2 − λ) −

√
R4 + λ2

R2

]
+ C1(t),

−kB(t)
R2

= εk
λ

R2
−

�

�ϑ
∗
, (41)

2εk
√
R4 − λ2

R2
= −2kC(t)

R2
+

�
��

∗ −
�

ϑϑ
∗
.

Thus, we see that
ε = −signC(t). (42)

The function C(t) is known, because at the boundary � = r0 we have

�(r0, t) =

√
r20 +

k

µ
C(t), (43)

and the function �(r0, t) is supposed to be given.
Suppose C(t) > 0, i.e., ε = −1.
The first equation in (41) gives the value of C1(t), if B(t), C(t), λ(t) and

R(t) are supposed to be known. Approximate relation (37) and the other
equations in (41) give expressions for two of these functions by means of the
last one. Then, in order to solve our problem, we shall determine only one
new relation.

Making equal at the end the tangential velocities on the contour � = R
and using the given values of these velocities for � = r0, we obtain

1
R(t)

[
−k

µ

B′(t)
2R(t)

+
d

dt
u∗ϑ|�=R(t)

]
+ ζ∗ =

k

µ

C(t)
2λ(t)

√
R2 − λ2

R2
+ C ′

2(t),

ϑ′(r0, t) =
k

µ

C ′(t)
2λ(t)

√[
r20 + k

µC(t)
]2

− [λ(t)]2

r20 + k
µC(t)

+ C ′
2(t).

(44)

Here, ζ∗ is a small introduced quantity, because uϑ does not coincide with the
small change of ϑ(�0, ϑ0, t), divided by �.

Excluding C ′
2(t) and using (41), we get

−k

µ

λ′(t)
2R2(t)

− k

µ

C ′(t)C(t)
2λ(t)R2(t)

+
k

µ

C ′(t)
2λ(t)
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×

√[
r20 + k

µC(t)
]2

− [λ(t)]2

r20 + k
µC(t)

− ϑ′(r0, t) = χ∗, (45)

where χ∗ is a small quantity

χ∗ = k
R′(t)
R(t)

O

(
k2

µ2

)
.

Substituting R2 =
√
λ2 + C2 and neglecting the small terms, we get

ϑ′(r0, t) = −k

µ

λ′

2
√
λ2 + C2

− k

µ

C ′C
2λ

√
λ2 + C2

+
k

µ

C ′

2λ

√[
r20 + k

µC
]2

− λ2

r20 + k
µC

. (46)

Equation (46) serves to determine the function λ(t), and when integrating
it, we get the full solution of our problem.

The integration of this equation in a finite form is in general impossible
and can be realized only by approximate methods.

Yet let us begin with some investigations concerning the existence of the
solution with ϑ(r0, t) arbitrary.

As the law of the inverse change of a material particle from the plastic into
the elastic state is unknown, we limit ourselves to the consideration of such
types of motion where

R0(t) =

√
R2(t) − k

µ
C(t)

is a function which cannot decrease.
For instance, this condition will be satisfied, if we suppose that C(t) and

ϑ(r0, t) are nondecreasing functions.
Let us consider λ and C in the (C, λ)-plane varying along a curve L. The

parametric expression of this curve will be C = C(t), λ = λ(t). Let us consider
ϑ(r0, t) as unknown.

We suppose that the motion began at the moment t = 0 and that at this
moment condition (3) is satisfied on the circle �0 = r0, i.e., this circle coincides
with the boundary between the elastic state and the plastic one R0(0) = �0.

The right side of equation (46) is obviously positive, when λ is a negative
nonincreasing function. Let us limit ourselves to this case.

From the condition R2
0(0) = r20, i.e.,

R2(0) − k

µ
C(0) = r20, (47)

it follows that all the possible curves L will begin at the contour of the quarter
of ellipse (47) very little different from the circle
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λ2(0) + C2(0) = �4
0. (48)

The second condition we obtain, if we remember that the square root√[
r20 +

k

µ
C

]2
− λ2

is real.
Then we have

r20 +
k

µ
C > −λ, (49)

and our curves L can be situated only as we observe in Fig. 2.
Let us compare the value of ϑ(�0, t) at the same point, when we follow

different paths L1 and L2, starting from the same initial state (see Fig. 2).

Fig. 2.

Equation (46) can be written as

dϑ = −k

µ

{
dλ

2
√
λ2 + C2

+
(

C

2λ
√
λ2 + C2

−

√(
r20 + k

µC
)2

− λ2

2
(
r20 + k

µC
)
λ

)
dC

}
. (50)

The difference between the two values ϑL1 and ϑL2 at the same point,
when the paths L2 and L1 are situated as in Fig. 2, is obviously equal to the
contour integral



276 S. L. Sobolev

ϑL2−ϑL1 = −k

µ

∫
L

[
dλ

2
√
λ2 + C2

+
(

C

2λ
√
λ2 + C2

−

√(
r20 + k

µC
)2

− λ2

2
(
r20 + k

µC
)
λ

)
dC

]
,

taken along a closed contour L.
Let this integral be transformed into an integral on the area S, limited by

L. We get

ϑL2 − ϑL1 = −k

µ

∫∫
S

⎧⎪⎪⎨⎪⎪⎩
∂

∂C

(
1

2
√
λ2 + C2

)

− ∂

∂λ

⎡⎢⎢⎣ C

2λ
√
λ2 + C2

−

√(
r20 + k

µC
)2

− λ2

2
(
r20 + k

µC
)
λ

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ dC dλ

=
k

µ

∫∫
S

⎧⎪⎪⎨⎪⎪⎩− C

2λ2
√
λ2 + C2

+
r20 + k

µC

2λ2

√(
r20 + k

µC
)2

− λ2

⎫⎪⎪⎬⎪⎪⎭ dC dλ. (51)

The expression under the sign of the integral is obviously positive.
It follows that the integral over L2 is larger than the integral over L1, and

the largest possible value of ϑ can be secured by means of integration over the
contour L3 which consists of a line parallel to the λ-axis, also a part of the
line

r20 +
k

µ
C = −λ,

and finally the line parallel to the C-axis. The contour is given in Fig. 2.
For the given value of C the largest possible value of ϑ can be obtained on

the line
λ = −r20 − k

µ
C.

Let us calculate this value following a path from the point C0 = 0, λ0 = r20 to

a point C1λ1 = −r20 − k

µ
C1.

We get

ϑ = ϑ0 +
k

µ

⎧⎪⎪⎨⎪⎪⎩
1
2

+

C1∫
0

⎡⎢⎢⎣ k
µ

2

√
C2 +

(
r20 + k

µC
)2
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+
C

2
(
r20 + k

µC
)√

C2 +
(
r20 + k

µC
)2

⎤⎥⎥⎦ dC
⎫⎪⎪⎬⎪⎪⎭

=
k

2µ
+

1
2

⎧⎨⎩
√
k2

µ2
+ 1 ln

⎡⎣√k2

µ2
+ 1C +

k
µr

2
0√

k2

µ2 + 1
+

√(
r20 +

k

µ
C

)2

+ C2

⎤⎦

+ ln

⎡⎣−C +

√(
r20 +

k

µ
C

)2

+ C2

⎤⎦− ln
(
r20 +

k

µ
C

)⎫⎬⎭
∣∣∣∣∣∣
C1

0

Whence it follows that when C1 is increasing, the largest possible value of

ϑ is asymptotically equal to
3
2

lnC1.
If our boundary conditions are such that ϑ increases more rapidly than

it is permitted for the corresponding increase of C, differential equation (46)
becomes unsolvable. In this case, at a definite moment, the characteristics
become tangent to our circle � = r0. From a physical standpoint, the matter
of the plane will be torn, because it is impossible to force an internal particle
to turn with such a velocity.

We neglect here the elementary calculation of the case, when C is a nega-
tive decreasing function, i.e., our hole is contracting to the centre. The result
will be analogous.

At the end we regard it as a pleasant duty to express our sincere thanks
to our friend S. G. Mikhlin, who has much contributed to this work.



9. On a New Problem of Mathematical
Physics∗

S. L. Sobolev

Summary. We consider a system of partial differential equations that is not a
Kovalevskaya system. The Cauchy problem and the mixed problem in a smooth
domain are studied. We prove the existence of a solution in a Hilbert space H and
the continuous dependence on the initial conditions. The Cauchy problem in an
unbounded space is solved explicitly.

1 Statement of the Problem

The following system of partial differential equations appears in some prob-
lems of mathematical physics and mechanics:

∂vx

∂t
= vy − ∂p

∂x
+ Fx,

∂vy

∂t
= −vx − ∂p

∂y
+ Fy,

∂vz

∂t
= −∂p

∂z
+ Fz,

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= g,

(1)

where vx, vy, vz are components of some vector −→v and p is a scalar function
in a domain Ω with the boundary S. The coordinates of points of the domain
Ω are denoted by x, y, z.

Depending on the physical problem, some conditions can be given on the
boundary of the domain, for example,

p|S = 0 (2.1)

∗ Izv. Akad. Nauk SSSR. Ser. Mat., 18, 3–50 (1954)
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or
[vx cosnx+ vy cosny + vz cosnz]S = 0. (2.2)

To find the solutions of these problems, it is necessary to set the initial
values of the vector −→v

vx|t=0 = v(0)
x (x, y, z),

vy|t=0 = v(0)
y (x, y, z),

vz|t=0 = v(0)
z (x, y, z).

(3)

In some problems, the boundary conditions can be more complicated.
In addition to this main problem, we also study system (1) with initial

conditions (3) in an unbounded space. In such case, boundary conditions (2)
disappear and should be replaced with some condition at infinity. It is conve-
nient to write system (1) and conditions (2) and (3) in vector form. Denote
by i, j, and k the unit vectors parallel to the coordinate axes and write system
(1) as

−→
N (−→v , p) ≡ ∂−→v

∂t
− [−→v ×−→

k ] + grad p =
−→
F ,

div−→v = g.

Boundary condition (2.2) takes the form

vn|S = 0,

and initial condition (3) is written in the form of the equality

−→v |t=0 = −→v (0)(x, y, z).

We consider both the case where −→v is given in a bounded domain Ω, and
the case where −→v is given in the entire space. However, in the first case we
restrict ourselves to the simplest qualitative research of solutions of system
(1) with conditions (2.1) or (2.2), without consideration, for example, of the
behavior of these solutions for large values of t which would require the study
of detailed spectral properties of the corresponding operators. The main prob-
lem is to investigate solutions of system (1) with initial conditions (3) in an
unbounded space with the corresponding conditions at infinity. We obtain a
formula for the solution of this problem, which allows us to make a number
of qualitative conclusions about the behavior of solutions of system (1).

2 The Main Equations in a Function Space

We consider a Hilbert space of complex vectors −→v such that |−→v |2 is integrable
over a domain Ω. We denote this space by H.

The inner product in H is defined by the formula



On a New Problem of Mathematical Physics 281

(−→v (1),−→v (2)) =
∫∫∫

Ω

(v(1)
x v(2)

x + v(1)
y v(2)

y + v(1)
z v(2)

z )dΩ. (4)

We consider two cases: the case where Ω coincides with the whole space
and the case of a bounded domain Ω homeomorphic to a ball. The condition
on the topology of the domain is not essential and is introduced only for the
sake of simplicity. In the space H there is a linear manifold G̃1 of vectors

−→v 1 = gradϕ, (5)

where ϕ is a function having continuous derivatives of any order inside of the
domain.

Vectors of form (5) have continuous derivatives of any order and satisfy
the equation

rot−→v 1 = 0. (6)

Vectors satisfying (6) are usually said to be potential . It is known that for
any infinitely differentiable vector, condition (6) is necessary and sufficient for
it can be represented in form (5).

Another linear manifold J̃1 ⊂ H consists of vectors of the form

−→v 2 = rot
−→
Ψ , (7)

where the vector
−→
Ψ has continuous derivatives of any order. Vectors of form

(7) satisfy the equation
div−→v 2 = 0. (8)

Vectors satisfying (8) are usually said to be solenoidal . It is well-known
that for any infinitely differentiable vector, condition (8) is necessary and
sufficient for it can be represented in form (7).

Let H̃0 be a linear manifold of smooth vectors −→v , where each vector van-
ishes outside some (depending on this vector) finite domain C−→v lying, together
with its boundary, inside Ω and has derivatives of any order. Such vectors are
called cut-off vectors.

We denote by J̃0 the manifold of smooth solenoidal cut-off vectors J̃0 ⊂ H̃0

and by G̃0 the manifold of smooth potential cut-off vectors G̃0 ⊂ H̃0.

Lemma 1. If Ω is the entire space, any element −→v of H orthogonal to all
elements of G̃0 and J̃0 can be equal only to zero.

Proof. We note that the orthogonality of −→v to all elements of G̃0 and J̃0

implies that the vector −→v is orthogonal to the image of any vector −→ω in H̃0

under the action of the Laplace operator, i.e., to the image of any smooth
vector vanishing outside some finite interior subdomain C−→ω . Indeed,

∆−→ω = grad div−→ω − rot rot−→ω . (9)

However,
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−→ω 1 = grad div−→ω ∈ G̃0,−→ω 2 = rot rot−→ω ∈ J̃0.
(10)

Hence,
(−→v ,∆−→ω ) = (−→v ,−→ω 1) − (−→v ,−→ω 2) = 0. (11)

Thus, each component of −→v is orthogonal to all functions of the form ∆ψ,
where ψ is a smooth function vanishing outside some domain Cψ. In other
words,

∞∫∫∫
−∞

vi∆ψ dΩ = 0, i = 1, 2, 3. (12)

Hence vi is a harmonic function [1] and can be represented in the form

vi =
∞∑

n=0

rnY (i)
n (θ, ϕ), (13)

where Y (i)
n (θ, ϕ) are some spherical Laplace functions.

Additionally, the function vi should be square-integrable over the whole
space

∞∫∫∫
−∞

|vi|2 dΩ < +∞. (14)

Let

|b(i)n |2 =

2π∫
0

π∫
0

|Y (i)
n (θ, ϕ)|2 sin θ dθ dϕ,

then
A∫

0

2π∫
0

π∫
0

|vi|2 dΩ =
∞∑
0

|b(i)n |2 A
2n+1

2n+ 1
. (15)

If at least one of |b(i)n |2 is nonzero, then the sum on the right side of (15)
unboundedly increases if A increases. Since this contradicts (14), all |b(i)n |2 are
equal to zero. Hence v1, v2, v3 are equal to zero, as required. ��
Lemma 2. The manifold G̃0 is orthogonal to J̃1.

Proof. Let −→v 1 ∈ G̃0, −→v 2 ∈ J̃1. Then, by (7),

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ =

∞∫∫∫
−∞

(−→v 1, rot
−→
ψ ) dΩ

= −
∞∫∫∫
−∞

div [−→v 1 ×−→
ψ ] dΩ +

∞∫∫∫
−∞

(
−→
ψ , rot−→v 1) dΩ. (16)



On a New Problem of Mathematical Physics 283

The first integral on the right side of (16) is reduced to the integral over a
finite domain Ωv1 , whereas the second integral vanishes in view of (6). Hence,

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ = −

∫∫∫
Ωv1

div [−→v 1 ×−→
Ψ ] dΩ =

∫∫
Sv1

([−→v 1 ×−→
Ψ ],−→n ) dS, 1

where Sv1 is the surface bounding the volume Ωv1 . The last integral is equal
to zero since −→v 1 vanishes on Sv1 . Hence,

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ = 0. (17)

The lemma is proved. ��
Lemma 3. The manifold G̃1 is orthogonal to J̃0.

Proof. Let −→v 1 ∈ G̃1, −→v 2 ∈ J̃0. Then,

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ =

∞∫∫∫
−∞

(gradϕ,−→v 2) dΩ

=

∞∫∫∫
−∞

div (ϕ−→v 2) dΩ −
∞∫∫∫
−∞

ϕdiv−→v 2 dΩ. (18)

By (8), the second integral on the right side of (18) is equal to zero, and
the first integral is reduced to the integral over finite domain Ωv1 . We have

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ =

∫∫∫
Ωv2

div (ϕ−→v 2) dΩ = −
∫∫
Sv2

ϕv2n
dS. (19)

But v2n
vanishes on Sv2 . Consequently,

∞∫∫∫
−∞

(−→v 1,
−→v 2) dΩ = 0.

The lemma is proved. ��
From Lemmas 2 and 3 we obtain the following assertion.

Corollary. The manifolds J̃0 and G̃0 are orthogonal.

1 −→n is the inward normal to the surface Sv1 . – Ed.
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We denote by G0, J0, G1, and J1 the closures G̃0, J̃0, G̃1, and J̃1, respec-
tively.

The following assertion holds.

Theorem. If Ω is the entire space, then the Hilbert space H can be repre-
sented in the form

H = J ⊕G,

where J = J0 = J1 and G = G0 = G1.

Proof. Indeed, J0 and G0 are orthogonal as the closures of two orthogonal
manifolds. Moreover, H does not contain any element orthogonal to G0 and
J0 simultaneously. Consequently, H = J0 ⊕ G0. However, J1 ⊇ J0 and J1 is
orthogonal to G0. Hence J1 coincides with J0. In the same way, G1 ⊇ G0 and
G1 is orthogonal to J0. Consequently, G1 coincides with G0. The theorem is
proved. ��

We proceed with the consideration of the finite domains.

Lemma 4. If −→v in H is orthogonal to both manifolds J̃0 and G̃0, then −→v is
a harmonic vector. In other words, both the curl and the divergence of this
vector vanish.

Proof. Arguing in the same way as in the proof of Lemma 1, we conclude that
all the components of the vector −→v are harmonic functions of variables x, y,
z and have continuous derivatives of any order.

Further, let −→v 1 = gradϕ1 ∈ G̃0, and let ϕ1 satisfy the condition

ϕ1 ≡ 0 outside V1 ⊂ Ω. (20)

By the assumptions of the lemma, we obtain∫∫∫
Ω

(−→v ,−→v 1) dΩ = 0 =
∫∫∫

V1

(−→v , gradϕ1) dΩ =
∫∫∫

V1

div (ϕ1
−→v ) dΩ

−
∫∫∫

V1

ϕ1div−→v dΩ = −
∫∫
S1

ϕ1vn dS −
∫∫∫

V1

ϕ1div−→v dΩ. (21)

The first term on the right side of (21) is equal to zero since ϕ1 = 0 on
the surface S1 and, consequently, for any ϕ1 satisfying (20) we have∫∫∫

Ω

ϕ1div−→v dΩ = 0.

This is possible only if
div−→v = 0. (22)

Let −→v 2 ∈ J̃0 and −→v 2 = rot
−→
Ψ 2, where
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−→
Ψ 2 ≡ 0 outside V2 ⊂ Ω. (23)

Then, ∫∫∫
Ω

(−→v ,−→v 2) dΩ = 0 =
∫∫∫

V2

(−→v , rot
−→
Ψ 2) dΩ

=
∫∫∫

V2

div [
−→
Ψ ×−→v ] dΩ +

∫∫∫
V2

(
−→
Ψ 2, rot−→v ) dΩ

= −
∫∫
S2

([
−→
Ψ 2 ×−→v ],−→n ) dS +

∫∫∫
V2

(
−→
Ψ 2, rot−→v ) dΩ. (24)

The first term on the right side of (24) is equal to zero since
−→
Ψ 2 ≡ 0 on

S2. Hence, for any
−→
Ψ 2 satisfying (23), we have∫∫∫

Ω

(
−→
Ψ 2, rot−→v ) dΩ = 0.

This is possible only if
rot−→v = 0. (25)

Thus, any vector −→v orthogonal to J̃0 and G̃0 simultaneously is a harmonic
vector.

The lemma is proved. ��
This lemma has two important consequences.

Lemma 5. If a vector −→v is orthogonal to G̃0 and J̃1 simultaneously, then it
is equal to zero identically.

Proof. Indeed, since −→v is orthogonal to G̃0 and J̃0, it is harmonic and, con-
sequently, div−→v = 0. Hence it admits the representation −→v = rot

−→
Ψ and,

consequently, −→v ∈ J̃1. Since −→v is orthogonal to J̃1, we have −→v ≡ 0. ��
Lemma 6. If −→v is orthogonal to G̃1 and J̃0 simultaneously, then it is equal
to zero identically.

Proof. Indeed, −→v is orthogonal to G̃1 and J̃0, it is harmonic and, consequently,
admits the representation −→v = gradϕ. Thus, −→v ∈ G̃1. Since −→v is orthogonal
to G̃1, we have −→v ≡ 0. ��

We now prove the main assertion.

Theorem. The space H admits the representation

H = G0 ⊕ I ⊕ J0,

where I = G1 · J1 is the intersection of G1 and J1, i.e., the set of vectors that
are common to these two spaces.
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Proof. Indeed, Lemmas 5 and 6 imply

H = G0 ⊕ J1 and H = G1 ⊕ J0.

If the vector −→v is orthogonal to G0, J0 and I, then it is identically equal to
zero. Indeed, since this vector is orthogonal to G0, it belongs to J1. Since it
is orthogonal to J0, it belongs to G1. Consequently, this vector belongs to I
and, by the orthogonality to I, is equal to zero identically. ��

We note that I consists of harmonic vectors, which follows from Lemma 4.
Returning to our system of equations, we reduce it to a more convenient

form. We construct a vector −→v ∗ satisfying the condition div−→v ∗ = g. In the
case of (2.1) this vector is arbitrary, in the case of (2.2) it satisfies the addi-
tional condition

v∗n|S = 0.

This can be done, for example, if we set

−→v ∗ = grad v, ∆v = g,
∂v

∂n
|S = 0.

Making the change of unknown functions by the formula −→v = −→v ∗+−→v 1, we
obtain for −→v 1 the same system of equations but with the condition div−→v 1 = 0.

Thus, we can restrict ourselves to the case g = 0.
We study system (1) in a Hilbert space H. As the unknown we take an

element −→v of the Hilbert space. By the equation

div−→v = 0, (1.1)

the vector −→v is solenoidal.
Our next goal is to find solutions −→v satisfying condition (2.2)

vn|S = 0.

In the case of the smooth boundary S, for smooth functions −→v we have∫∫∫
Ω

(−→v , gradϕ) dΩ = 0, (26)

where ϕ is an arbitrary infinitely differentiable function.
We consider weak solutions of the problem. For this purpose, we replace

condition (2.2) by the requirement that −→v is an arbitrary element of J0. Let −→v
be a sufficiently smooth vector and have the limit value vn on the sufficiently
smooth surface S. From the fact that −→v belongs to J0 we have condition (2.2)
and equation (1.1). Indeed, the left side of (26) vanishes for any ϕ, which can
occur only if

div−→v = 0, vn|S = 0.
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To find
∂−→v
∂t

from (1), we should subtract the vector grad p from the vector

[−→v ×−→
k ] +

−→
F in such a way that the resulting vector belongs to J0.

The vector grad p is an element of G1. We define grad p in the weak sense
as an arbitrary element −→v 1 of G1.

From (1) it follows that the vector −→v 1 satisfying our conditions is defined
in a unique way by the formula

−→v 1 = P ∗
0 {[−→v ×−→

k ] +
−→
F }, (27)

where P ∗
0 is the projection from H into G1. Furthermore,

∂−→v
∂t

= P0{[−→v ×−→
k ] +

−→
F }, (28)

where P0 is the projection from H into J0.
Thus, system (1) and condition (2.2) can be written as a vector equation

(28).
We now consider the problem on integration of system (1) under condition

(2.1).
To generalize the statement of this problem, we can regard −→v as an arbi-

trary element of J1 since no boundary conditions are imposed on this vector.

To compute
∂−→v
∂t

, we should subtract from [−→v ×−→
k ]+

−→
F a potential vector

grad p such that p is equal to zero on the boundary and after subtracting we
obtain a solenoidal vector.

It is easy to see that for sufficiently smooth p and smooth boundary S the
vector grad p is orthogonal to any element −→v 2 ∈ J̃1. Indeed,∫∫∫

Ω

(−→v 2, grad p) dΩ =
∫∫∫

Ω

div (p−→v 2) dΩ

−
∫∫∫

Ω

p div−→v 2 dΩ = −
∫∫
S

pv2n dS −
∫∫∫

Ω

pdiv−→v 2 dΩ. (29)

Both terms on the right side are equal to zero and, consequently,∫∫∫
Ω

(−→v 2, grad p) dΩ = 0,

if −→v 2 ∈ J̃1. Therefore, to generalize the problem, it is natural to replace grad p

with an arbitrary vector −→v 1 ∈ G0. In this statement, the computation of
∂−→v
∂t

is possible for any −→v ∈ H and
−→
F ∈ H and leads to a unique result. As it

follows from (1), it suffices to take

−→v 1 = P ∗
1 {[−→v ×−→

k ] +
−→
F },
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where P ∗
1 is the projection from H into G0; moreover, we find

∂−→v
∂t

= P1{[−→v ×−→
k ] +

−→
F }, (30)

where P1 is the projection from H into J1.
Thus, system (1) and condition (2.1) can be written as a equation (30).
Note that if the above expression

P ∗
1 {[−→v ×−→

k ] +
−→
F }

is actually the gradient of a smooth function p, then we can assume that this
function is equal to zero on the boundary. We write the orthogonality condi-
tion for grad p to any element of J1. We transform this expression according
to (29). For v2n

we can take any function with zero mean value. The right
side of (29) can be identically equal to zero only if p = const.

As is known [1], if grad p ∈ G1 then the function p always exists.
Finally, we consider the last case, where the space Ω is unbounded. To

obtain
∂−→v
∂t

from [−→v ×−→
k ] +

−→
F , we should subtract grad p ∈ G.

To generalize the result we can, as above, write the problem in the form

∂−→v
∂t

= P{[−→v ×−→
k ] +

−→
F }, (31)

where P is the projection from H into J .

3 Representation of Solution as Power Series

Using the representation of the solution in the Hilbert space, we can eas-
ily construct a solution as a power series. In this section, we consider only
equation (31) since equations (28) and (30) can be studied in a similar way.
We start with the homogeneous equation. We denote by A−→v the operator
P [−→v ×−→

k ]. Obviously,

‖A−→v ‖ ≤ ‖−→v ×−→
k ‖ ≤ ‖−→v ‖.

Consequently, the norm of the operator A does not exceed 1. The equation

d−→v
dt

= A−→v (32)

has a solution

−→v = etA−→v 0 ≡ −→v 0 +
t

1
A−→v 0 +

t2

2!
A2−→v 0 + · · · . (33)

Indeed, series (33) converges uniformly with respect to t since the norm of
its nth term satisfies the inequality
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‖ t
n

n!
An−→v 0‖ ≤ tn

n!
‖−→v 0‖.

Obviously,

d−→v
dt

= A−→v 0 +
t

1
A2−→v 0 +

t2

2!
A3−→v 0 + · · · ,

and the series of the derivatives converges uniformly. Hence,

d−→v
dt

= A−→v .

Moreover, −→v |t=0 = −→v 0. (34)

Thus, the problem is solved. We establish that it is well posed. For this pur-
pose, we need to show the continuous dependence of the solution on the initial
data. Let

‖−→v 0 −−→v 1
0‖ < ε.

We consider the vectors −→v = etA−→v 0

and −→v 1 = etA−→v 1
0.

Then
‖−→v −−→v 1‖ = ‖etA(−→v 0 −−→v 1

0)‖ < etε. (35)

Consequently, the solution in the space H continuously depends on −→v 0

which is also given in the space H. Hence our problem is well posed.
By analogy, we can find a solution of a nonhomogeneous equation. We

write this equation in the form

∂−→v
∂t

= A−→v + P
−→
F

and obtain the solution of this problem according to the general formula for
an ordinary linear equation with constant coefficients, namely,

−→v = etA−→v 0 +

t∫
0

e(t−t1)AP
−→
F (t1) dt1. (36)

Indeed, the integral on the right side of (36) has meaning because the norm
of the integrand does not exceed

‖−→F (t1)‖e|t−t1|.

Differentiating both sides of (36) with respect to t, we find
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d−→v
dt

= AetA−→v 0 +A

t∫
0

e(t−t1)AP
−→
F (t1) dt1 + P

−→
F (t).

Hence formula (36) expresses a solution of the problem. It is obvious that
the constructed solution satisfies the initial conditions. The proof of the well-
posedness of this problem is obvious.

4 Potential Function for Solution

Multiplying the second equation in (1) by ±i and adding with the first equa-
tion, we can write system (1) in the form

∂

∂t
(vx + ivy) + i(vx + ivy) = −

(
∂

∂x
+ i

∂

∂y

)
p+ (Fx + iFy),

∂

∂t
(vx − ivy) − i(vx − ivy) = −

(
∂

∂x
− i

∂

∂y

)
p+ (Fx − iFy),

∂vz

∂t
= −∂p

∂z
+ Fz,

1
2

[(
∂

∂x
− i

∂

∂y

)
(vx + ivy) +

(
∂

∂x
+ i

∂

∂y

)
(vx − ivy)

]
+
∂vz

∂z
= g.

(37)

Using (37), we can find a solution of system (1) in a simple form. Intro-
ducing for brevity the notation

∂

∂x
− i

∂

∂y
=

∂

∂ζ
,

∂

∂x
+ i

∂

∂y
=

∂

∂ζ
,

vx + ivy = w, vx − ivy = w,

Fx + iFy = U, Fx − iFy = U,

(38)

we find (
∂

∂t
+ i

)
w = −∂p

∂ζ
+ U,

(
∂

∂t
− i

)
w = −∂p

∂ζ
+ U,

∂vz

∂z
= −∂p

∂z
+ Fz,

1
2

(
∂w

∂ζ
+
∂w

∂ζ

)
+
∂vz

∂z
= g.

(39)

The solution of system (39) can be represented in the form
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w = wI + wII + wIII ,

w = wI + wII + wIII ,

vz = vI
z + vII

z + vIII
z ,

p = pII + pIII ,

where wI , wI , vI
z is a particular solution of the system(
∂

∂t
+ i

)
wI = U,

(
∂

∂t
− i

)
wI = U,

∂vI
z

∂z
= Fz, (40)

wII , wII , vII
z , pII is a particular solution of the system(
∂

∂t
+ i

)
wII = −∂pII

∂ζ
,

(
∂

∂t
− i

)
wII = −∂pII

∂ζ
,

∂vII
z

∂t
= −∂pII

∂z
,

1
2

(
∂wII

∂ζ
+
∂wII

∂ζ

)
+
∂vII

z

∂z
= g − 1

2

(
∂wI

∂ζ
+
∂wI

∂ζ

)
− ∂vI

z

∂z
,

(41)

and, finally, wIII , wIII , vIII
z , pIII is a solution of the corresponding homoge-

neous system (
∂

∂t
+ i

)
wIII = −∂pIII

∂ζ
,

(
∂

∂t
− i

)
wIII = −∂pIII

∂ζ
,

∂vIII
z

∂t
= −∂pIII

∂z
,

1
2

(
∂wIII

∂ζ
+
∂wIII

∂ζ

)
+
∂vIII

z

∂z
= 0.

(42)

Obviously, it is easy to construct a solution of system (40) because this
system is a system of ordinary differential equations.

The first three equations in (41) connect each unknown function wII , wII ,
vII

z with the unknown pII ; moreover, all the operators(
∂

∂t
+ i

)
,

(
∂

∂t
− i

)
,

∂

∂ζ
,

∂

∂ζ
,

∂

∂t
,

∂

∂z
(43)
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commute in these equations. Therefore, we can look for a particular solution
of equation (41) in the form

pII = MpΦ
II , wII = MwΦ

II , wII = MwΦ
II , vII

z = MvΦ
II ,

where ΦII is a potential. The operator Mp is the least common multiple
(product) of the operators on the left sides of the first three equations in (41),
and each of the operators Mw, Mw, Mv is the product of the operator on the
right side of the corresponding equation and the completion of the operator
on the left side of the same equation to the operator Mp. Therefore,

pII = − ∂

∂t

(
∂

∂t
+ i

)(
∂

∂t
− i

)
ΦII ,

wII =
(
∂

∂t
− i

)
∂

∂ζ

∂

∂t
ΦII ,

wII =
(
∂

∂t
+ i

)
∂

∂ζ

∂

∂t
ΦII ,

vII
z =

(
∂

∂t
+ i

)(
∂

∂t
− i

)
∂

∂z
ΦII .

(44)

Formulas (44) can be written in the form

vII
x =

∂3ΦII

∂x∂t2
+
∂2ΦII

∂y∂t
,

vII
y =

∂3ΦII

∂y∂t2
− ∂2ΦII

∂x∂t
,

vII
z =

∂3ΦII

∂z∂t2
+
∂ΦII

∂z
,

pII = −∂3ΦII

∂t3
− ∂ΦII

∂t
.

(45)

Substituting expressions (44) into the last equation in (41), we obtain the
following equation for the potential ΦII :

LΦII =
{

1
2

∂2

∂ζ∂ζ

∂

∂t

[(
∂

∂t
− i

)
+
(
∂

∂t
+ i

)]
+

∂2

∂z2

(
∂

∂t
+ i

)(
∂

∂t
− i

)}
ΦII

=
(
∂2

∂t2
∆+

∂2

∂z2

)
ΦII = g − 1

2

{
∂

∂ζ
wI +

∂

∂ζ
wI

}
− ∂vI

z

∂z
. (46)

Later we will show how to find a particular solution of equation (46).
The general solution of equation (42) can be represented in the same form

as in the case of equations (41)



On a New Problem of Mathematical Physics 293

pIII = − ∂

∂t

(
∂

∂t
+ i

)(
∂

∂t
− i

)
ΦIII , wIII =

∂

∂t

(
∂

∂t
− i

)
∂

∂ζ
ΦIII ,

wIII =
∂

∂t

(
∂

∂t
+ i

)
∂

∂ζ
ΦII , vIII

z =
(
∂

∂t
+ i

)(
∂

∂t
− i

)
∂

∂z
ΦIII

or

pIII = −
(
∂3

∂t3
+

∂

∂t

)
ΦIII ,

vIII
x =

(
∂3

∂x∂t2
+

∂2

∂y∂t

)
ΦIII ,

vIII
y =

(
∂3

∂y∂t2
− ∂2

∂x∂t

)
ΦIII ,

vIII
z =

(
∂3

∂z∂t2
+

∂

∂z

)
ΦIII ,

(47)

where the function ΦIII is a solution of the homogeneous equation2

LΦIII ≡
(
∂2

∂t2
∆+

∂2

∂z2

)
ΦIII = 0. (48)

We show that such representation is always possible.
We preliminarily establish that the vectors −→v and p satisfy the equations

Lp = 0, (49)

L−→v = 0. (50)

Instead of equation (50), it is sufficient to consider the equations

Lw = 0, (51)

Lvz = 0. (52)

To prove (51) and (52), we apply some of the operators Mp, Mw, Mw, Mz

to the equation
1
2

(
∂wIII

∂ζ
+
∂wIII

∂ζ

)
+
∂vIII

z

∂z
= 0.

For example,

Mw =
∂

∂ζ

∂

∂t

(
∂

∂t
− i

)
.

We obtain

1
2

∂2

∂ζ∂ζ

∂

∂t

(
∂

∂t
− i

)
wIII +

1
2
∂

∂t

(
∂

∂t
− i

)
∂2

∂ζ
2w

III

2 Equation (48) is called the Sobolev equation. – Ed.
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+
∂2

∂z∂ζ

∂

∂t

(
∂

∂t
− i

)
vIII

z = 0

or, using the equations(
∂

∂t
− i

)
wIII = −∂pIII

∂ζ
,

(
∂

∂t
+ i

)
wIII = −∂pIII

∂ζ
,

∂

∂t
vIII

z = −∂pIII

∂z
,

we have {
1
2

∂2

∂ζ∂ζ

[
∂

∂t

(
∂

∂t
− i

)
+

∂

∂t

(
∂

∂t
+ i

)]
+
∂2

∂z2

(
∂

∂t
+ i

)(
∂

∂t
− i

)}
wIII = 0,

i.e.,
LwIII = 0.

Remaining equations (52) and (49) are proved in a similar way.
Assuming that the functions vx, vy, vz, p are given and satisfy system (42),

we consider system (47) as a system of equations with respect to an unknown
function ΦIII .

Let us show that equations (48) and (47) are compatible and determine
a function Φ up to a harmonic function χ(x, y) of two variables (we omit the
notation III for brevity).

Indeed, the general solution of the first equation in (47) has the form

∂Φ

∂t
= C2(x, y, z) cos t+ C3(x, y, z) sin t−

t∫
0

sin(t− t1)p(x, y, z, t1) dt1. (53)

For L
∂Φ

∂t
we have

L
∂Φ

∂t
=
(
∂2C2

∂z2
−∆C2

)
cos t+

(
∂2C3

∂z2
−∆C3

)
sin t

−
t∫

0

sin(t− t1)
∂2p(x, y, z, t1)

∂z2
dt1 −∆

∂2

∂t2

t∫
0

sin τp(x, y, z, t− τ) dτ

= −
(
∂2C2

∂x2
+
∂2C2

∂y2

)
cos t−

(
∂2C3

∂x2
+
∂2C3

∂y2

)
sin t

−
t∫

0

sin(t− t1)
∂2p(x, y, z, t1)

∂z2
dt1 −

t∫
0

sin τ∆
∂2

∂t2
p(x, y, z, t− τ) dτ
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− sin t
∂

∂t
∆p|t=0 − cos t∆p|t=0

= − sin t
[
∂

∂t
∆p|t=0 +

∂2C3

∂x2
+
∂2C3

∂y2

]
− cos t

[
∆p|t=0 +

∂2C2

∂x2
+
∂2C2

∂y2

]
.

Choosing C2 and C3 in a suitable way, we can achieve that L
∂Φ

∂t
is equal

to zero.
Obviously, the solutions of the following equations exist

∂2C3

∂x2
+
∂2C3

∂y2
= − ∂

∂t
∆p|t=0,

∂2C2

∂x2
+
∂2C2

∂y2
= −∆p|t=0.

(54)

Choosing C2 and C3, we obtain the value
∂Φ

∂t
up to two arbitrary functions

χ1(x, y, z) and χ2(x, y, z) that are harmonic with respect to x and y. We have

∂Φ

∂t
= Ω + χ1(x, y, z) cos t− χ2(x, y, z) sin t,

where Ω denotes all the terms on the right side of (53) except for terms
containing χ1 and χ2.

For Φ we obtain the equality

Φ = C1(x, y, z) + χ1(x, y, z) sin t+ χ2(x, y, z) cos t+

t∫
0

Ω dt1

= C1(x, y, z) + χ1(x, y, z) sin t+ χ2(x, y, z) cos t+

t∫
0

Ω(x, y, z, t− τ) dτ.

Computing LΦ, we find

LΦ =
∂2C1

∂z2
+

t∫
0

LΩ(x, y, z, t− τ) dτ +
∂∆Ω

∂t

∣∣∣∣
t=0

=
∂2C1

∂z2
+
∂∆Ω

∂t

∣∣∣∣
t=0

.

Choosing C1 from the equation

∂2C1

∂z2
= −∂∆Ω

∂t

∣∣∣∣
t=0

,

we obtain for Φ the final expression

Φ = Φ0 +D0(x, y) + zD1(x, y) + χ1(x, y, z) sin t+ χ2(x, y, z) cos t,
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where D0 and D1 are arbitrary functions and χ1(x, y, z) and χ2(x, y, z) are
arbitrary harmonic functions of x and y. Furthermore, Φ0 is a solution of the
equation LΦ = 0.

Let us show that under a suitable choice of these functions, all the remain-
ing equations of system (47) are also satisfied.

Indeed, consider the differences

ψ(0)
z =

∂3Φ0

∂z∂t2
+
∂Φ0

∂z
− vz,

ψ(0)
x =

∂3Φ0

∂x∂t2
+
∂2Φ0

∂y∂t
− vx,

ψ(0)
y =

∂3Φ0

∂y∂t2
− ∂2Φ0

∂x∂t
− vy.

(55)

We have

∂ψ
(0)
z

∂t
=

∂

∂z

(
∂3Φ0

∂t3
+
∂Φ0

∂t

)
− ∂vz

∂t
= −∂p

∂z
− ∂vz

∂t
= 0.

Consequently, ψ(0)
z (x, y, z) is independent of t. On the other hand, by (50)

we have Lψ(0)
z = 0. Consequently,

∂2ψ
(0)
z

∂z2
= 0 and ψ(0)

z = A0(x, y) + zA1(x, y). (56)

Consider the expressions

∂ψ
(0)
x

∂t
− ψ(0)

y and
∂ψ

(0)
y

∂t
+ ψ(0)

x .

By equations (1), (47) and (55), we find

∂ψ
(0)
x

∂t
− ψ(0)

y =
∂4Φ0

∂x∂t3
+
∂2Φ0

∂x∂t
−
(
∂vx

∂t
− vy

)
= −∂p

∂x
−
(
∂vx

∂t
− vy

)
= 0,

∂ψ
(0)
y

∂t
+ ψ(0)

x =
∂4Φ0

∂y∂t3
+
∂2Φ0

∂y∂t
−
(
∂vy

∂t
+ vx

)
= −∂p

∂y
−
(
∂vy

∂t
+ vx

)
= 0.

Consequently,

∂2ψ
(0)
x

∂t2
+ ψ(0)

x = 0,
∂2ψ

(0)
y

∂t2
+ ψ(0)

y = 0. (57)

Hence,
ψ(0)

x = B1(x, y, z) cos t+B2(x, y, z) sin t,

ψ(0)
y = −B1(x, y, z) sin t+B2(x, y, z) cos t.

(58)
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On the other hand, using (48) and homogeneous system (1), we have

∂ψ
(0)
x

∂x
+
∂ψ

(0)
y

∂y
+
∂ψ

(0)
z

∂z
= 0 (59)

and
Lψ(0)

x = 0, (60)

Lψ(0)
y = 0. (61)

From (60) and (61) it follows that

∂2B1

∂x2
+
∂2B1

∂y2
=
∂2B2

∂x2
+
∂2B2

∂y2
= 0. (62)

Equation (59), together with (56) and (58), yields

A1(x, y) +
(
∂B1

∂x
+
∂B2

∂y

)
cos t+

(
∂B2

∂x
− ∂B1

∂y

)
sin t = 0. (63)

From this it follows that

A1(x, y) = 0,
∂B1

∂x
+
∂B2

∂y
= 0,

∂B2

∂x
− ∂B1

∂y
= 0. (64)

We see that
ψ(0)

z = A0(x, y), (65)

B1 =
∂u

∂x
, B2 =

∂u

∂y
, (66)

where u(x, y, z) is a harmonic function of the variables x and y. We consider
the expressions for ψx, ψy, and ψz,

ψx =
∂3Φ

∂x∂t2
+

∂2Φ

∂y∂t
− vx

= ψ(0)
x + sin t

(
−∂χ1

∂x
− ∂χ2

∂y

)
+ cos t

(
∂χ1

∂y
− ∂χ2

∂x

)
,

ψy =
∂3Φ

∂y∂t2
− ∂2Φ

∂x∂t
− vy

= ψ(0)
y + sin t

(
−∂χ1

∂y
+
∂χ2

∂x

)
+ cos t

(
−∂χ2

∂y
− ∂χ1

∂x

)
,

ψz =
∂3Φ

∂z∂t2
+
∂Φ

∂z
− vz = ψ(0)

z +D1(x, y).

(67)

Choosing D1, χ1, χ2 to satisfy the equations

A0(x, y) +D1(x, y) = 0,
∂χ1

∂x
+
∂χ2

∂y
= B2,

∂χ2

∂x
− ∂χ1

∂y
= B1, (68)

for example, setting χ1 = 0, χ2 = u, from (58), (65)–(67) we obtain
ψx = ψy = ψz = 0. Consequently, (47) is proved.
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5 Green-Type Integral Formulas

We consider two systems of functions vx, vy, vz, p and wx, wy, wz, q.
Introduce the function

Z ≡
(
∂vx

∂t
− vy +

∂p

∂x

)
wx +

(
∂vy

∂t
+ vx +

∂p

∂y

)
wy +

(
∂vz

∂t
+
∂p

∂z

)
wz

+
(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
q +
(
∂wx

∂t
− wy +

∂q

∂x

)
vx +

(
∂wy

∂t
+ wx +

∂q

∂y

)
vy

+
(
∂wz

∂t
+
∂q

∂z

)
vz +

(
∂wx

∂x
+
∂wy

∂y
+
∂wz

∂z

)
p.

It is easy to see that Z can be written as

Z =
∂

∂t
(vxwx + vywy + vzwz) +

∂

∂x
(pwx + qvx)

+
∂

∂y
(pwy + qvy) +

∂

∂z
(pwz + qvz). (69)

Integrating the equality over a four-dimensional cylinder (Ω3, 0 ≤ t ≤ t0)
with axis parallel to the t-axis and using the Ostrogradskii formula, we obtain∫∫∫∫

Ω4

{(
∂vx

∂t
− vy +

∂p

∂x

)
wx

+
(
∂vy

∂t
+ vx +

∂p

∂y

)
wy +

(
∂vz

∂t
+
∂p

∂z

)
wz +

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
q

+
(
∂wx

∂t
− wy +

∂q

∂x

)
vx +

(
∂wy

∂t
+ wx +

∂q

∂y

)
vy +

(
∂wz

∂t
+
∂q

∂z

)
vz

+
(
∂wx

∂x
+
∂wy

∂y
+
∂wz

∂z

)
p

}
dΩ dt =

∫∫∫
Ω3

(vxwx + vywy + vzwz)
∣∣∣∣t0
0

dΩ

−
t0∫

0

∫∫
S3

{(pwx + qvx) cosnx

+(pwy + qvy) cosny + (pwz + qvz) cosnz} dS3 dt, (70)

where n denotes the inward normal to the surface S3 bounding Ω3 in a three-
dimensional space.

Consider the case when the functions wx, wy, wz, q satisfy the homoge-
neous system (1). In this case, we obtain
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t0∫
0

∫∫∫
Ω

{
wx

(
∂vx

∂t
− vy +

∂p

∂x

)
+ wy

(
∂vy

∂t
+ vx +

∂p

∂y

)
+ wz

(
∂vz

∂t
+
∂p

∂z

)

+q
(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
dΩ dt =

∫∫∫
Ω

(vxwx + vywy + vzwz)
∣∣∣∣t0
0

dΩ

−
t0∫

0

∫∫
S

(pwn + qvn) dS dt, (71)

where vn and wn are the normal components of −→v and −→w .
We will use the Green formula in form (71).
If vx, vy, vz, p satisfy homogeneous system (1), then (71) becomes

∫∫∫
Ω

(vxwx + vywy + vzwz)
∣∣∣∣t0
0

dΩ =

t0∫
0

⎧⎨⎩
∫∫
S

(pwn + qvn) dS

⎫⎬⎭ dt. (72)

Formulas (71) and (72) are obtained for a bounded domain Ω. We prove
that if the domain Ω contains infinity, but the functions vx, vy, vz, grad p
and wx, wy, wz, grad q are square-integrable over this domain, then these
formulas remain valid. It suffices to establish these formulas for the exterior
of a sufficiently large ball, because any unbounded domain can be represented
as the union of a bounded domain and its exterior. The formulas for the union
of domains can be obtained by adding the formulas for each term.

Remark. Any solenoidal vector −→v having continuous derivatives and defined
outside some ball Ω can be continuously extended to the whole space such
that the extended vector is also solenoidal and has continuous derivatives.

Indeed, any solenoidal vector −→v can be represented outside the ball Ω by
the formula −→v = rot

−→
A.

Extending
−→
A to the whole space such that the second-order derivatives of

the extended function remain continuous, we obtain our assertion.
Let the vector grad p be square-integrable outside the domain Ω. Extend-

ing the function p continuously to the entire space and using the arguments
from Sect. 2, we have

+∞∫∫∫
−∞

(−→v , grad p) dΩ = 0.

Hence, ∫∫∫
∞−Ω

(−→v , grad p) dΩ = −
∫∫∫

Ω

(−→v , grad p) dΩ.



300 S. L. Sobolev

However, ∫∫∫
Ω

(−→v , grad p) dΩ = −
∫∫
S

vn∗p dS, (72.1)

where n∗ is the inward normal to Ω. Replacing vn∗ = −vn, where n is the
normal to ∞−Ω, we obtain∫∫∫

∞−Ω

(−→v , grad p) dΩ = −
∫∫
S

vnp dS.

From this formula we have (71) and (72) for the exterior of the ball Ω
and, consequently, for any domain if we recall the proof of this formula and
use relation (72.1).

6 Particular Solutions of Main Equation (48)

In this section, we indicate some particular solutions of equation (48). Using
the solutions, we can construct the general solution of the problem.

We set
Φ = �mr−m−sΨ

(�τ
r

)
, (73)

where
�2 = (x− x0)2 + (y − y0)2,
r2 = (x− x0)2 + (y − y0)2 + (z − z0)2,
τ = t− t0.

We compute the function LΦ. For simplicity, we first set

x0 = y0 = z0 = t0 = 0.

Using cylindrical coordinates, we obtain

Φ = �mr−m−sΨ

(
�t

r

)
= �mr−m−sΨ(ξ),

where ξ =
�t

r
. Then,

∂2Φ

∂z2
= �mr−m−s−4{[(m+ s)(m+ s+ 1)z2 − (m+ s)�2]Ψ(ξ)

+[(2m+ 2s+ 2)z2 − �2]ξΨ ′(ξ) + z2ξ2Ψ ′′(ξ)},
∂2

∂z2

∂2Φ

∂t2
= �mr−m−s−6{[(m+ s+ 2)(m+ s+ 4)�2z2 − (m+ s+ 2)�2r2]Ψ ′′(ξ)

+[(2m+ 2s+ 7)�2z2 − �2r2]ξΨ ′′′(ξ) + z2�2ξ2Ψ (IV )(ξ)},
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1
�

∂

∂�
�
∂

∂�

∂2Φ

∂t2
= �mr−m−s−6{[(m+ 2)2(�2 + z2)r2 − 2(m+ 3)(m+ s+ 2)�2r2

+(m+ s+ 2)(m+ s+ 4)�4]Ψ ′′(ξ)

+[(2m+ 5)z2r2 − (2m+ 2s+ 7)�2z2]ξΨ ′′′(ξ) + z4ξ2Ψ (IV )(ξ)}.
Thus,

LΦ ≡ ∂2

∂t2
∆Φ+

∂2Φ

∂z2
= �mr−m−s−4{[(m+ s)(m+ s+ 1)Ψ(ξ)

+(2m+ 2s+ 2)ξΨ ′(ξ) + (ξ2 + (m+ 2)2)Ψ ′′(ξ) + (2m+ 5)ξΨ ′′′(ξ)

+ξ2Ψ (IV )(ξ)]z2 − [(m+ s)Ψ(ξ) + ξΨ ′(ξ)

+(m+ s+ 2 − s2)Ψ ′′(ξ) + ξΨ ′′′(ξ)]�2}.
As we see, LΦ can be equal to zero only if the following two equalities

hold:

Λ1 ≡ ξΨ ′′′ + [m− (s+ 1)(s− 2)]Ψ ′′ + ξΨ ′ + (m+ s)Ψ = 0,

Λ2 ≡ ξ2Ψ (IV ) + (2m+ 5)ξΨ ′′′ + [ξ2 + (m+ 2)2]Ψ ′′

+(2m+ 2s+ 2)ξΨ ′ + (m+ s)(m+ s+ 1)Ψ = 0.

(74)

A direct computation shows that

Λ2 − ξ
dΛ1

dξ
− (m+ s+ 1)Λ1 = (s− 1)2[ξΨ ′′′ + (m+ s+ 2)Ψ ′′].

It is easy to see that the second equation in (74) follows from the first
equation for s = 1.

Thus, for s = 1 we obtain for the unknown function the ordinary differen-
tial equation

Λ1 ≡ ξΨ ′′′ + (m+ 2)Ψ ′′ + ξΨ ′ + (m+ 1)Ψ = 0. (75)

The solutions of equation (75) form some class of solutions of the equation
LΦ = 0.

Equation (75) can be solved in a finite form for any m by using the Lommel
functions or Bessel functions. We are interested in some particular solutions
of this equation.

For m = 0 we have

Λ1 ≡ ξΨ ′′′ + 2Ψ ′′ + ξΨ ′ + Ψ = 0.

This equation can be written in the form

Λ1 ≡ ξ

[
Ψ ′′′ +

1
ξ
Ψ ′′ +

(
1 − 1

ξ2

)
Ψ ′
]

+
(
Ψ ′′ +

1
ξ
Ψ ′ + Ψ

)
= ξ

dN

dξ
+N,
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where N = Ψ ′′+
1
ξ
Ψ ′+Ψ . Consequently, solutions of this equation are solutions

of the Bessel equation

Ψ ′′ +
1
ξ
Ψ ′ + Ψ = 0

or solutions of the equation

Ψ ′′ +
1
ξ
Ψ ′ + Ψ =

1
ξ
,

that are Lommel functions.
Thus, for example, the following function is a solution of (48):

Φ0 =
1
r
J0

(
�t

r

)
. (76)

For m = −1 we obtain a solution in the form

Φ1 =
1
�

ξ∫
0

J0(ξ1) dξ1. (77)

Indeed, in this case, equation (75) takes the form

ξΨ ′′′ + Ψ ′′ + ξΨ ′ = 0, (78)

and the function Ψ ′(ξ) = J0(ξ) is a solution of the last equation.
For convenience, we introduce the notation

Ξ(ξ) =

ξ∫
0

J0(ξ1) dξ1. (79)

As is known, the function Ξ(ξ) is expressed in terms of the Lommel functions,
but it is of no interest for us.

Consider the case m = −2. In this case, we obtain a solution of the problem
of the form

Φ2 =
r

�2
ξ[Ξ(ξ) + J ′

0(ξ)], (80)

which can be easily verified by substitution.

7 Another Class of Particular Solutions

We set
Φ = x�mr−m−sΨ(ξ). (81)

We compute the function LΦ:
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∂2Φ

∂t2
= x

∂2

∂t2
[�mr−m−sΨ(ξ)],

∆
∂2Φ

∂t2
= x∆

∂2

∂t2
[�mr−m−sΨ(ξ)] + 2

x

�

∂

∂�
[�m+2r−m−s−2Ψ ′′(ξ)],

LΦ = xL(�mr−m−sΨ(ξ)) + x{[(2m+ 4)�mr−m−s−2

−(2m+ 2s+ 4)�m+2r−m−s−4]Ψ ′′(ξ) + 2z2t�mr−m−s−5Ψ ′′′(ξ)}

= x�mr−m−s−4

{
z2

[(
ξ
dΛ1

dξ
+ (m+ s+ 1)Λ1

)
+(s− 1)2[ξΨ ′′′ + (m+ s+ 2)Ψ ′′] + (2m+ 4)Ψ ′′ + 2ξΨ ′′′

]
−�2[Λ1 − 2sΨ ′′]

}
= x2�mr−m−s−4

{
z2

[
ξ
d

dξ
(Λ1 + 2sΨ ′′)

+(m+ s+ 1)(Λ1 + 2sΨ ′′) + ((s− 1)2 + 2 − 2s)ξΨ ′′′

+((s− 1)2(m+ s+ 2) − 2s(m+ s+ 1) + (2m+ 4))Ψ ′′
]
− �2[Λ1 + 2sΨ ′′]

}
= x2�mr−m−s−4

{
z2

[
ξ
d

dξ
(Λ1 + 2sΨ ′′) + (m+ s+ 1)(Λ1 + 2sΨ ′′)

+(s− 1)(s− 3)ξΨ ′′′ + ((m+ 2)[(s− 1)2 − 2s+ 2]

+s(s− 1)2 − 2s(s− 1))Ψ ′′
]
− �2[Λ1 + 2sΨ ′′]

}
= x2�mr−m−s−4

{
z2

[
ξ
d

dξ
(Λ1 + 2sΨ ′′) + (m+ s+ 1)(Λ1 + 2sΨ ′′)

+(s− 1)(s− 3)[ξΨ ′′′ + (m+ s+ 2)Ψ ′′]
]
− �2[Λ1 + 2sΨ ′′]

}
.

We see that for s = 1 and s = 3 two equations for Ψ follow one from
another. Consequently, for

Λ1 + 2sΨ ′′ = 0

function (81) satisfies the equation LΦ = 0.
We could obtain the second solution by solving the equations

Λ1 + 2sΨ ′′ = 0,

ξΨ ′′′ + (m+ s+ 2)Ψ ′′ = 0
(82)

for any s.
The equations for Ψ take the form

ξΨ ′′′ + (m+ 3s+ 2 − s2)Ψ ′′ + ξΨ ′ + (m+ s)Ψ = 0. (83)
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We do not study equations (82) in detail, but rather consider equation
(83) for s = 1 and s = 3.

For s = 1 from (83) we find

ξΨ ′′′ + (m+ 4)Ψ ′′ + ξΨ ′ + (m+ 1)Ψ = 0. (84)

For s = 3 from (83) we obtain

ξΨ ′′′ + (m+ 2)Ψ ′′ + ξΨ ′ + (m+ 3)Ψ = 0. (85)

The integration of these equations is again reduced to the Lommel func-
tions and the Bessel functions.

We indicate one important solution of (85) for m = −2,

ξΨ ′′′ + ξΨ ′ + Ψ = 0. (86)

The following function is a solution of this equation,

Ψ = ξJ ′
0(ξ),

which can be easily verified by direct differentiation.
Replacing x with y, we obtain additional solutions of equation (48).
Thus,

Φ =
x

�2r

�t

r
J ′

0

(
�t

r

)
=

xt

�r2
J ′

0

(
�t

r

)
(87)

and

Φ =
yt

�r2
J ′

0

(
�t

r

)
. (88)

Using the constructed particular solutions of (48), we can start to construct
the general solution of our problem.

Differentiating the solution of (80) with respect to z, we obtain one more
important solution

Φ =
z

�2r
[ξΞ(ξ) + ξJ ′

0(ξ)]

+
r

�2

d

dξ
[ξΞ(ξ) + ξJ ′

0(ξ)]
d

(
�t

r

)
dz

=
zt

�r2
J ′

0

(
�t

r

)
. (89)

For m = −3, s = 3 we obtain the equation

ξΨ ′′′ − Ψ ′′ + ξΨ ′ = 0, (90)

whose solution is, in particular, the function3

Ψ = ξJ0(ξ) −Ξ(ξ).

3 The function Ξ(ξ) is defined by (79). – Ed.
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Indeed,
Ψ ′ = ξJ ′

0(ξ),

Ψ ′′ = −ξJ0(ξ),

Ψ ′′′ = −ξJ ′
0(ξ) − J0(ξ).

This implies our assertion.
Using the obtained solutions, we can construct the system of functions

ΦI , ΦII , ΦIII , Q, (91)

where
ΦI = Φ11 − Φ12,

ΦII = Φ21 + Φ22,

Φ11 =
x− x0

�2r

�(t− t0)
r

J ′
0(�

t− t0
r

),

Φ12 =
y − y0

�3

�(t− t0)
r

J0(�
t− t0
r

) − y − y0

�3
Ξ(�

t− t0
r

),

Φ21 =
y − y0

�2r

�(t− t0)
r

J ′
0(�

t− t0
r

),

Φ22 =
x− x0

�3

�(t− t0)
r

J0(�
t− t0
r

) − x− x0

�3
Ξ(�

t− t0
r

),

ΦIII =
z − z0
�2r

�(t− t0)
r

J ′
0(�

t− t0
r

),

Q = −1
�
Ξ(�

t− t0
r

).

It is obvious that each of these functions satisfies the equations

LΦ = 0 and L0Φ = 0, (92)

where L0 denotes the operator obtained from the operator L by replacing the
variables x, y, z, t with the variables x0, y0, z0, t0.

Differentiating, we see that functions (91) satisfy the equations

∂ΦI

∂t0
− ΦII = − ∂Q

∂x0
,

∂ΦII

∂t0
+ ΦI = − ∂Q

∂y0
,

∂ΦIII

∂t0
= − ∂Q

∂z0
,

(93)

∂ΦI

∂x0
+
∂ΦII

∂y0
+
∂ΦIII

∂z0
= 0. (94)
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8 Three Particular Solutions of System (1)

Using the potentials ΦI , ΦII , ΦIII , Q, we can construct three particular solu-
tions of homogeneous system (1) by using formulas like (47). We obtain

wI
x = w111

x + w112
x − w121

x − w122
x ,

wI
y = w111

y + w112
y − w121

y − w122
y ,

wI
z = w111

z + w113
z − w121

z − w123
z ,

qI = q111 + q113 − q121 − q123,

(95)

where

w111
x =

∂3Φ11

∂x∂t2
, w112

x =
∂2Φ11

∂y∂t
, w121

x =
∂3Φ12

∂x∂t2
, w122

x =
∂2Φ12

∂y∂t
,

w111
y =

∂3Φ11

∂y∂t2
, w112

y = −∂2Φ11

∂x∂t
, w121

y =
∂3Φ12

∂y∂t2
, w122

y = −∂2Φ12

∂x∂t
,

w111
z =

∂3Φ11

∂z∂t2
, w113

z =
∂Φ11

∂z
, w121

z =
∂3Φ12

∂z∂t2
, w123

z =
∂Φ12

∂z
,

q111 = −∂3Φ11

∂t3
, q113 = −∂Φ11

∂t
, q121 = −∂3Φ12

∂t3
, q123 = −∂Φ12

∂t
.

Similarly,
wII

x = w211
x + w212

x + w221
x + w222

x ,

wII
y = w211

y + w212
y + w221

y + w222
y ,

wII
z = w211

z + w213
z + w221

z + w223
z ,

qII = q211 + q213 + q221 + q223,

(96)

where

w211
x =

∂3Φ21

∂x∂t2
, w212

x =
∂2Φ21

∂y∂t
, w221

x =
∂3Φ22

∂x∂t2
, w222

x =
∂2Φ22

∂y∂t
,

w211
y =

∂3Φ21

∂y∂t2
, w212

y = −∂2Φ21

∂x∂t
, w221

y =
∂3Φ22

∂y∂t2
, w222

y = −∂2Φ22

∂x∂t
,

w211
z =

∂3Φ21

∂z∂t2
, w213

z =
∂Φ21

∂z
, w221

z =
∂3Φ22

∂z∂t2
, w223

z =
∂Φ22

∂z
,

q211 = −∂3Φ21

∂t3
, q213 = −∂Φ21

∂t
, q221 = −∂3Φ22

∂t3
, q223 = −∂Φ22

∂t
.
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Finally,
wIII

x = w31
x + w32

x ,

wIII
y = w31

y + w32
y ,

wIII
z = w31

z + w33
z ,

qIII = q31 + q33,

(97)

where

w31
x =

∂3ΦIII

∂x∂t2
, w32

x =
∂2ΦIII

∂y∂t
, w31

y =
∂3ΦIII

∂y∂t2
, w32

y = −∂2ΦIII

∂x∂t
,

w31
z =

∂3ΦIII

∂z∂t2
, w33

z =
∂ΦIII

∂z
, q31 = −∂3ΦIII

∂t3
, q33 = −∂ΦIII

∂t
.

We will use solutions (95), (96), and (97).

9 Computations of Some Auxiliary Definite Integrals

For our purpose, we need to compute some definite integrals. For completeness,
we recall their computation.

We consider

χs(t) =

t∫
0

ξ2s−1J0(ξ) dξ√
t2 − ξ2

, (98)

ωs(t) =

t∫
0

ξ2sJ ′
0(ξ) dξ√
t2 − ξ2

. (99)

We show how some of these integrals are expressed in terms of other inte-
grals.

First of all, we make the change of variables ξ = tζ,

χs(t) = t2s−1

1∫
0

ζ2s−1J0(ζt) dζ√
1 − ζ2

, (100)

ωs(t) = t2s

1∫
0

ζ2sJ ′
0(ζt) dζ√
1 − ζ2

. (101)

Differentiating the first equation with respect to t, we obtain

d

dt

(
χs(t)
t2s−1

)
=
ωs(t)
t2s

. (102)
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Moreover,

ωs(t)
t2s−1

=

1∫
0

ζ2s−1[ζtJ ′
0(ζt)] dζ√

1 − ζ2
. (103)

Using the equality

d

dξ
[ξJ ′

0(ξ)] = ξJ ′′
0 (ξ) + J ′

0(ξ) = −ξJ0(ξ)

and differentiating both sides of (103) with respect to t, we obtain

d

dt

(
ωs(t)
t2s−1

)
= −

1∫
0

ζ2s−1ζ · ζtJ0(ζt) dζ√
1 − ζ2

= −t
1∫

0

ζ2s+1J0(ζt) dζ√
1 − ζ2

= − 1
t2s

1∫
0

(ζt)2s+1J0(ζt) dζ√
1 − ζ2

= −χs+1(t)
t2s

,

d

dt

(
ωs(t)
t2s−1

)
= −χs+1(t)

t2s
. (104)

Thus, the computation of all χs and ωs is reduced to the computation of
some of them. Let us compute the integral

χ1(t) =

t∫
0

ξJ0(ξ) dξ√
t2 − ξ2

. (105)

Note that χ1(t) can be represented as an integral in the complex plane ξ,

χ1(t) =
1
2

∫
C

ξJ0(ξ) dξ√
t2 − ξ2

,

where C is an open contour such that its endpoints are located at the point
ξ = 0 on two sheets of the Riemann surface of the function

√
t2 − ξ2 passing

around the point ξ = t (see Fig. 1).
Let us compute the integral

d2χ1(t)
dt2

=
1
2

∫
C

ξJ0(ξ)
∂2 1√

t2−ξ2

∂t2
dξ.

The function
1√

t2 − ξ2
satisfies the equation

∂2 1√
t2−ξ2

∂t2
=
∂2 1√

t2−ξ2

∂ξ2
+

1
ξ

∂ 1√
t2−ξ2

∂ξ
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Fig. 1.

or

ξ
∂2 1√

t2−ξ2

∂t2
=

∂

∂ξ
ξ
∂

∂ξ

1√
t2 − ξ2

.

Consequently,

d2χ1(t)
dt2

=
1
2

∫
C

J0(ξ)
d

dξ
ξ
d

dξ

1√
t2 − ξ2

dξ

=
1
2
J0(ξ)ξ

d

dξ

(
1√

t2 − ξ2

)∣∣∣∣∣
C

− 1
2

∫
C

ξ
d

dξ

(
1√

t2 − ξ2

)
J ′

0(ξ) dξ

= −1
2
ξJ ′

0(ξ)
1√

t2 − ξ2

∣∣∣∣∣
C

+
1
2

∫
C

1√
t2 − ξ2

d

dξ
(ξJ ′

0(ξ)) dξ

= −1
2

∫
C

ξJ0(ξ)dξ√
t2 − ξ2

= −χ1(t).

Hence,
d2χ1(t)
dt2

+ χ1(t) = 0.

Thus,
χ1(t) = a cos t+ b sin t. (106)

We note that χ1(t) is equal to zero at t = 0. Hence,

χ1(t) = b sin t.

To determine the constant b, we note that

χ1(t)
t

=

1∫
0

ζJ0(ζt)dζ√
1 − ζ2

.

Consequently,
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lim
t→0

χ1(t)
t

=

1∫
0

ζdζ√
1 − ζ2

= −
√

1 − ζ2

∣∣∣∣1
0

= 1. (107)

Thus,
χ1(t) = sin t. (108)

Using (102) and (104), we write a number of equalities:

t∫
0

ξJ0(ξ)dξ√
t2 − ξ2

= χ1(t) = sin t,

t∫
0

ξ2J ′
0(ξ)dξ√
t2 − ξ2

= ω1(t) = t2
d

dt

(
sin t
t

)
= − sin t+ t cos t,

t∫
0

ξ3J0(ξ)dξ√
t2 − ξ2

= χ2(t) = −t2 d
dt

(
ω1(t)
t

)
= −t2 d

dt

[
− sin t

t
+ cos t

]

= t2
[
sin t

(
1 − 1

t2

)
+

cos t
t

]
= sin t(t2 − 1) + t cos t,

t∫
0

ξ4J ′
0(ξ)dξ√
t2 − ξ2

= ω2(t) = t4
d

dt

(
χ2(t)
t3

)

= (3 − 2t2) sin t+ (t3 − 3t) cos t,

t∫
0

ξ5J0(ξ)dξ√
t2 − ξ2

= χ3(t) = (t4 − 5t2 + 9) sin t+ (2t3 − 9t) cos t.

(109)

Further,
t∫

0

J ′
0(ξ)dξ√
t2 − ξ2

= ω0(t) =
cos t− 1

t
.

Obviously,

d(tω0(t))
dt

= −χ1(t) = − sin t, tω0(t) = cos t− 1.

It is convenient to write the integrals following from the above formulas
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1∫
0

J ′
0(ζt)dζ√
1 − ζ2

=
cos t− 1

t
,

1∫
0

ζJ0(ζt)dζ√
1 − ζ2

=
sin t
t
,

1∫
0

ζ2J ′
0(ζt)dζ√
1 − ζ2

= − sin t
t2

+
cos t
t

,

1∫
0

ζ3J0(ζt)dζ√
1 − ζ2

=
(

1
t
− 1
t3

)
sin t+

1
t2

cos t,

1∫
0

ζ4J ′
0(ζt)dζ√
1 − ζ2

=
(
− 2
t2

+
3
t4

)
sin t+

(
1
t
− 3
t3

)
cos t,

1∫
0

ζ5J0(ζt)dζ√
1 − ζ2

=
(

1
t
− 5
t3

+
9
t5

)
sin t+

(
2
t2

− 9
t4

)
cos t.

(110)

We will use these formulas from now on.

10 Computation of vx

We move on to solving our problem. We consider system (1), where
−→
F is

an arbitrary vector of exterior forces. Assume that it is square-integrable
over the entire space. We represent the vector

−→
F as the sum of two terms−→

F =
−→
F 1 +

−→
F 2, where

−→
F 1 is a potential vector and

−→
F 2 is a solenoidal

vector; moreover, each of them is square-integrable. Let
−→
F 1 = gradΨ and

p′ = p− Ψ . Then system (1) can be written in the form

d−→v
dt

= (−→v × k) − grad p′ −−→
F 2.

Hence, without loss of generality, we can assume that
−→
F in (1) is a solenoidal

vector.
We cut off the cylinder

|z − z0| ≤ h, � ≤ η (111)

and apply (71) to the volume Ωh,η obtained by this method. Let −→v and p be
unknown functions satisfying (1), and let −→w and q be −→w I and qI . We obtain
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∫∫∫
Ωh,η

(−→v ,−→w I)
∣∣∣∣
t=t0

dΩ −
∫∫∫
Ωh,η

(−→v ,−→w I)
∣∣∣∣
t=0

dΩ −
t0∫

0

⎡⎢⎣∫∫
Sh,η

(pwI
n + qIvn) dS

⎤⎥⎦ dt

=

t0∫
0

⎡⎢⎣∫∫∫
Ωh,η

[(−→w I ,
−→
F ) + qIg] dΩ

⎤⎥⎦ dt. (112)

We pass to the limit as η → 0 and evaluate

lim
η→0

∫∫∫
Ωh,η

(−→v ,−→w I)
∣∣∣∣
t=t0

dΩ

and

lim
η→0

t0∫
0

⎡⎢⎣∫∫
Sh,η

(pwI
n + qIvn) dS

⎤⎥⎦ dt.

First of all, we note that the components of the vector −→w I at t = t0 take
the values

wI
x =

∂2 1
r

∂x2
, wI

y =
∂2 1

r

∂x∂y
, wI

z =
∂2 1

r

∂x∂z
. (113)

Indeed, at t = t0 we have

∂2Φ11

∂t2
= −x− x0

r3
,

∂2Φ12

∂t2
= 0,

∂Φ11

∂t
= 0,

∂Φ12

∂t
= 0.

Using (95), we obtain our assertion. By (113), we obtain∫∫∫
Ωh,η

(−→v ,−→w I)
∣∣∣∣
t=t0

dΩ =
∫∫∫
Ωh,η

(
−→v , grad

∂ 1
r

∂x

)
dΩ = −

∫∫
Sh,η

vn

∂ 1
r

∂x
dS, 4 (114)

where n is the inward normal to the surface Sh,η bounding Ωh,η. The last
integral can be written in the form

∫∫
Sh,η

vn

∂ 1
r

∂x
dS = −

+h∫
−h

2π∫
0

(
vx
x− x0

�
+ vy

y − y0

�

)
x− x0

r3
η

∣∣∣∣
�=η

dz dϕ

−
2π∫
0

η∫
0

vz

∣∣∣∣
z=z0+h

x− x0

r3
� d� dϕ+

2π∫
0

η∫
0

vz

∣∣∣∣
z=z0−h

x− x0

r3
� d� dϕ.

4 Further, S. L. Sobolev assumes that the function g is zero in (1). – Ed.
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The limits of the last two summands in this formula are zero since moduli
of each of these terms do not exceed the quantity

max |vz|
2π∫
0

η∫
0

x− x0

r3
� d� dϕ = max |vz|ω′,

where ω′ is the solid angle under which one, being at the point x0, y0, z0, can
observe the bottom of a sufficiently narrow cylinder (ω′ and both integrals
are as small as desired).

Thus,

lim
η→0

∫∫
Sh,η

vn

∂ 1
r

∂x
dS

= − lim
η→0

+h∫
−h

2π∫
0

(
vx

(x− x0)2

r3
+ vy

(y − y0)(x− x0)
r3

)
dz dϕ.

We can verify that

lim
η→0

+h∫
−h

2π∫
0

vy
(y − y0)(x− x0)

r3
dz dϕ = 0.

Indeed,
+h∫

−h

2π∫
0

vy|x0,y0,z0

(y − y0)(x− x0)
r3

dz dϕ = 0,

since the function
(y − y0)(x− x0)

r3
is odd. At the same time, we have

lim
η→0

+h∫
−h

2π∫
0

(vy − vy|x0,y0,z0)
(y − y0)(x− x0)

r3
dz dϕ = 0,

since the integrand
η2 sinϕ cosϕ
[η2 + z2]

3
2

tends to zero everywhere except for a neighborhood of z = z0. The integral
over this neighborhood does not exceed the quantity

max |vy − vy|x0,y0,z0 |2π
+∞∫

−∞

dz√
η2 + z2

= 2πmax |vy − v(0)
y |

and is as small as desired.
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Likewise, we prove that

lim
η→0

+h∫
−h

2π∫
0

vx
(x− x0)2

r3
dz dϕ = vx(x0, y0, z0, t0) lim

η→0

+h∫
−h

2π∫
0

(x− x0)2

r3
dz dϕ

= vx(x0, y0, z0, t0) lim
η→0

η2

+h∫
−h

dz

(
√
z2 + η2)3

2π∫
0

cos2 ϕdϕ

= vx(x0, y0, z0, t0)2π lim
η→0

h
η∫

0

dζ

(
√
ζ2 + 1)3

= 2πvx(x0, y0, z0, t0)

∞∫
0

dζ

(
√

1 + ζ2)3
,

where z = ηζ. We have
∞∫
0

dζ

(
√

1 + ζ2)3
=

∞∫
0

d

dζ

(
ζ√

1 + ζ2

)
dζ =

ζ√
1 + ζ2

∣∣∣∣∣
∞

0

= 1.

Finally,

lim
η→0

∫∫∫
Ωh,η

(−→v ,−→w I)
∣∣∣∣
t=t0

dΩ = 2πvx(x0, y0, z0, t0). (115)

We note that it was important in our process that we dealt with a cylinder
and evaluated the limit as the radius tends to zero. Taking other surfaces or
using other methods of limit passage, we could obtain quite different results.

11 Continuation of Computation of vx and vy

Let us compute the limit

lim
η→0

t0∫
0

[∫∫
Sh,η

(pwI
n + qIvn) dS

]
dt.

We set∫∫
Sh,η

pwijk
n dS = Kijk,

∫∫
Sh,η

qijkvx cosnx dS = Lijk
x ,

∫∫
Sh,η

qijkvy cosny dS = Lijk
y ,

∫∫
Sh,η

qijkvz cosnz dS = Lijk
z .

(116)
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Introducing the notation

lim
η→0

Kijk = kijk, lim
η→0

Lijk
y = lijk

y ,

lim
η→0

Lijk
x = lijk

x , lim
η→0

Lijk
z = lijk

z ,
(117)

from (95) we obtain

lim
η→0

t0∫
0

[∫∫
Sh,η

(pwI
n + qIvn) dS

]
dt

=

t0∫
0

[(k111 + k112 − k121 − k122) dt+

t0∫
0

[(l111x + l113x − l121x − l123x )

+(l111y + l113y − l121y − l123y ) + (l111z + l113z − l121z − l123z )] dt. (118)

We need to compute kijk, lijk
x , lijk

y , lijk
z . We begin with lijk. We note that

lim
η→0

Lijk
x = lim

η→0

∫∫
Sh,η

vx|x0,y0,z0q
ijk cosnx dS

and
lim
η→0

Lijk
y = lim

η→0

∫∫
Sh,η

vy|x0,y0,z0q
ijk cosny dS,

lim
η→0

Lijk
z = lim

η→0

∫∫
Sh,η

vz|x0,y0,z0q
ijk cosnz dS.

(119)

Indeed, for example,

lim
η→0

+h∫
−h

2π∫
0

(vx − vx|x0,y0,z0)q
ijk� cosnx

∣∣∣∣
�=η

dz dϕ = 0

because everywhere, except for a neighborhood of the point z = z0, the inte-
grand qijk� tends to zero and, in the neighborhood of this point, the integral
is as small as desired because vx − vx|x0,y0,z0 is small.

The quantities q111 and q113 have the factor x − x0, and quantities q121

and q123 have the factor y− y0. The remaining factors are independent of the
angle ϕ in cylindrical coordinates. Whence it follows that among the integrals
lijk, only the integrals l111x , l113x , l121y , l123y do not vanish and

l121x = l121z = l123x = l123z = l111y = l113y = l111z = l113z = 0. (120)
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Obviously, we have

l123y = −vy(x0, y0, z0, t) lim
η→0

+h∫
−h

2π∫
0

∂Φ12

∂t
η cosny dz dϕ

= −vy(x0, y0, z0, t)a1(τ),

l121y = −vy(x0, y0, z0, t) lim
η→0

+h∫
−h

2π∫
0

∂3Φ12

∂t3
η cosny dz dϕ

= −vy(x0, y0, z0, t)a2(τ),

l113x = −vx(x0, y0, z0, t) lim
η→0

+h∫
−h

2π∫
0

∂Φ11

∂t
η cosnx dz dϕ

= −vx(x0, y0, z0, t)a3(τ),

l111x = −vx(x0, y0, z0, t) lim
η→0

+h∫
−h

2π∫
0

∂3Φ11

∂t3
η cosnx dz dϕ

= −vx(x0, y0, z0, t)a4(τ),

where τ = t− t0. It is clear that

a2(τ) = a′′1(τ) and a4(τ) = a′′3(τ).

Differentiating a1(τ) with respect to τ and replacing the variables x and
y, which does not change the value of the integral, we obtain

a3(τ) = a′1(τ),

a2(τ) = a′′1(τ),

a4(τ) = a′2(τ) = a′′′1 (τ).

(121)

Thus, it is necessary to compute

a1(τ) = lim
η→0

+h∫
−h

2π∫
0

∂Φ12

∂t
η cosny dz dϕ

= lim
η→0

+h∫
−h

2π∫
0

(y − y0)2

�2r

�(t− t0)
r

J ′
0

(�τ
r

)∣∣∣∣
�=η

dz dϕ. (122)
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Making the change of integration variables in the last integral and setting
�

r
= ζ, we obtain5

ζ2 =
�2

�2 + z2
,

z2

�2
=

1
ζ2

− 1,
dz

�
= − dζ

ζ2
√

1 − ζ2
,

a1(τ) = 2πτ

1∫
0

J ′
0(ζτ)√
1 − ζ2

dζ.

(123)

By (110), we have
a1(τ) = 2π(cos τ − 1). (124)

Then, we have

l123y = − vy(x0, y0, z0, t)2π(cos τ − 1),

l121y = vy(x0, y0, z0, t)2π cos τ,

l113x = vx(x0, y0, z0, t)2π sin τ,

l111x = − vy(x0, y0, z0, t)2π sin τ,

(125)

l111x + l113x − l121y − l123y = −2πvy(x0, y0, z0, t). (126)

Let us compute the integrals kijk. For this purpose, we slightly transform
them. We set

Kijk =
∫∫
Sh,η

[
p

∣∣∣∣
x0,y0,z0,t

+ (x− x0)
∂p

∂x

∣∣∣∣
x0,y0,z0,t

+ (y − y0)
∂p

∂y

∣∣∣∣
x0,y0,z0,t

5 The integrals

Ay =

+hZ
−h

2πZ
0

(y − y0)
2

�2r

�(t − t0)

r
J ′

0

“�τ

r

”˛̨̨̨
�=η

dz dϕ,

Ax =

+hZ
−h

2πZ
0

(x − x0)
2

�2r

�(t − t0)

r
J ′

0

“�τ

r

”˛̨̨̨
�=η

dz dϕ

coincide and �2 = (x − x0)
2 + (y − y0)

2. Therefore,

Ay = 2πτ

hZ
0

ζ2

�
J ′

0(τζ)

˛̨̨̨
�=η

dz = 2πτ

1Z
η/
√

η2+h2

J ′
0(τζ)p
1 − ζ2

dζ. – Ed.



318 S. L. Sobolev

+(z − z0)
∂p

∂z

∣∣∣∣
x0,y0,z0,t

]
wijk

n dS +
∫∫
Sh,η

[
(p− p0) − ∂p

∂x

∣∣∣∣
x0,y0,z0,t

(x− x0)

−∂p

∂y

∣∣∣∣
x0,y0,z0,t

(y − y0) − ∂p

∂z

∣∣∣∣
x0,y0,z0,t

(z − z0)
]
wijk

n dS. (127)

We prove that the second term of this formula tends to zero as η → 0.
Indeed, in a neighborhood of the point x0, y0, z0 the integrand does not

exceed rδ(η), where δ(η) tends to zero as η → 0. On the other hand, (wijk
n �)

tends to zero everywhere outside this neighborhood and does not exceed
A

r
anywhere.

Consequently, the integral over the neighborhood of x0, y0, z0 does not
exceed the quantity

2π
∫
δ(η)

dz

r
= 4πδ(η),

and it is as small as desired over the remaining part. Therefore, it remains to
compute the first term in (127).

It is easy to verify that∫∫
Sh,η

p

∣∣∣∣
x0,y0,z0,t

wijk
n dS = p

∣∣∣∣
x0,y0,z0,t

∫∫
Sh,η

wijk
n dS = 0. (128)

This follows from the fact that all wijk
n are odd functions in one of the

variables x−x0, y−y0, z−z0 and have a common odd exponent with respect
to all these variables.

Let

Kijk
x =

∫∫
Sh,η

(x− x0)
∂p

∂x

∣∣∣∣
x0,y0,z0,t

wijk
n dS,

Kijk
y =

∫∫
Sh,η

(y − y0)
∂p

∂y

∣∣∣∣
x0,y0,z0,t

wijk
n dS,

Kijk
z =

∫∫
Sh,η

(z − z0)
∂p

∂z

∣∣∣∣
x0,y0,z0,t

wijk
n dS

(129)

and
lim
η→0

Kijk
x = kijk

x , lim
η→0

Kijk
y = kijk

y , lim
η→0

Kijk
z = kijk

z .

Then, we have

kijk
x =

∂p

∂x

∣∣∣∣
x0,y0,z0,t

bijk
x , kijk

y =
∂p

∂y

∣∣∣∣
x0,y0,z0,t

bijk
y , kijk

z =
∂p

∂z

∣∣∣∣
x0,y0,z0,t

bijk
z ,

where
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bijk
x = lim

η→0

∫∫
Sh,η

(x− x0)wijk
n dS,

bijk
y = lim

η→0

∫∫
Sh,η

(y − y0)wijk
n dS,

bijk
z = lim

η→0

∫∫
Sh,η

(z − z0)wijk
n dS.

On the areas z = ±h of the surface of the cylinder Sh,η the limits of the
integrals wijk

z are equal to zero.
Hence we need to compute the integrals

+h∫
−h

2π∫
0

(x− x0)
[
(x− x0)

�
wijk

x +
(y − y0)

�
wijk

y

]
� dz dϕ.

We have

b111x = lim
η→0

+h∫
−h

2π∫
0

[
(x− x0)2

∂3Φ11

∂x∂t2
+ (y − y0)(x− x0)

∂3Φ11

∂y∂t2

]
dz dϕ,

b112x = lim
η→0

+h∫
−h

2π∫
0

[
(x− x0)2

∂2Φ11

∂y∂t
− (y − y0)(x− x0)

∂2Φ11

∂x∂t

]
dz dϕ,

b121x = lim
η→0

+h∫
−h

2π∫
0

[
(x− x0)2

∂3Φ12

∂x∂t2
+ (y − y0)(x− x0)

∂3Φ12

∂y∂t2

]
dz dϕ,

b122x = lim
η→0

+h∫
−h

2π∫
0

[
(x− x0)2

∂2Φ12

∂y∂t
− (y − y0)(x− x0)

∂2Φ12

∂x∂t

]
dz dϕ.

Consequently,

b111x = lim
η→0

( +h∫
−h

2π∫
0

[
3(x− x0)2�2

r5
− (x− x0)2

r3

]
J0

(�τ
r

)∣∣∣∣
�=η

dz dϕ

+

+h∫
−h

2π∫
0

(x− x0)2(z − z0)2

r5

(�τ
r

)2

J0

(�τ
r

)∣∣∣∣
�=η

dz dϕ
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+

+h∫
−h

2π∫
0

1
r5

[4�2(x− x0)2 − 2r2(x− x0)2]
�τ

r
J ′

0

(�τ
r

)∣∣∣∣
�=η

dz dϕ

)
.

Applying the transformation mentioned above, we obtain6

b111x = 2π
[ 1∫

0

−ζ + 3ζ3√
1 − ζ2

J0(ζτ) dζ + τ2

1∫
0

ζ3 − ζ5√
1 − ζ2

J0(ζτ) dζ

+τ

1∫
0

−2ζ2 + 4ζ4√
1 − ζ2

J ′
0(ζτ) dζ

]
and, in view of (110),

b111x = 2π cos τ. (130)

Further, b112x = 0 since the integrand is an odd function of y − y0. In the
same way, we have b121x = 0. Let us compute b122x :

b122x = lim
η→0

+h∫
−h

2π∫
0

(x− x0)2

�2r

(�τ
r

)
J ′

0

(�τ
r

)∣∣∣∣
�=η

dz dϕ

= lim
η→0

τ

+h∫
−h

2π∫
0

(x− x0)2

�r2
J ′

0

(�τ
r

)
dz dϕ

= 2πτ

1∫
0

J ′
0(ζτ) dζ√
1 − ζ2

= 2π(cos τ − 1). (131)

Thus,

k111
x + k112

x − k121
x − k122

x = 2π
∂p

∂x

∣∣∣∣
x0,y0,z0,t

. (132)

All kijk
z also vanish. This fact is true because in the computation of the

corresponding bijk
z the integrand is an odd function of (z − z0).

In the integrals b111y and b122y , the integrand is an odd function of y − y0.
Hence these integrals also vanish.

Let us compute the integrals b112y and b121y . For b112y we have

b112y = lim
η→0

+h∫
−h

2π∫
0

[(x− x0)(y − y0)w112
x + (y − y0)2w112

y ] dz dϕ

6 See p. 317. – Ed.
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= lim
η→0

+h∫
−h

2π∫
0

[
3(x− x0)2(y − y0)2

�r4
− [3(x− x0)2 − r2](y − y0)2

�r4

]

×�τ

r
J0

(�τ
r

)∣∣∣∣
�=η

dz dϕ = 2πτ

1∫
0

ζJ0(ζτ) dζ√
1 − ζ2

= 2π sin τ. (133)

Further,

b121y = lim
η→0

+h∫
−h

2π∫
0

[(x− x0)(y − y0)w121
x + (y − y0)2w121

y ] dz dϕ

= lim
η→0

+h∫
−h

2π∫
0

{[
3(x− x0)2(y − y0)2

�r4
+

[3(y − y0)2 − r2](y − y0)2

�r4

]
�τ

r
J0

(�τ
r

)

−z2(y − y0)2

�r4

(�τ
r

)2

J ′
0

(�τ
r

)}∣∣∣∣
�=η

dz dϕ

= lim
η→0

+h∫
−h

2π∫
0

{[
3�(y − y0)2

r4
− (y − y0)2

�r2

]
�τ

r
J0

(�τ
r

)

−z2(y − y0)2

�r4

(�τ
r

)2

J ′
0

(�τ
r

)}∣∣∣∣
�=η

dz dϕ

= lim
η→0

2π

h∫
0

τ

(
3�4

r5
− �2

r3

)
J0

(�τ
r

)∣∣∣∣
�=η

dz

− lim
η→0

2π

h∫
0

τ2

(
�3

r4
− �5

r6

)
J ′

0

(�τ
r

)∣∣∣∣
�=η

dz

= 2π

⎧⎨⎩τ
1∫

0

3ζ3 − ζ√
1 − ζ2

J0(ζt) dζ + τ2

1∫
0

ζ4 − ζ2√
1 − ζ2

J ′
0(ζt) dζ

⎫⎬⎭ ,

or, by (110),
b121y = 2π sin τ, (134)

i.e.,
k112

y − k121
y = 0. (135)

Combining the above arguments, we have

k111 + k112 − k121 − k122 = 2π
∂p

∂x

∣∣∣∣
x0,y0,z0,t

.
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Returning to (112) and introducing the notation

lim
η→0

∫∫∫
Ωh,η

F dΩ = P. V. c.
∫∫∫

Ω

F dΩ,

we obtain

2πvx(x0, y0, z0, t0) − 2π

t0∫
0

[
−vy +

∂p

∂x

]∣∣∣∣
x0,y0,z0,t

dt

= P. V. c.
∫∫∫

Ω

(−→v ,−→w I)|t=0 dΩ

+

t0∫
0

P. V. c.
∫∫∫

Ω

[
(−→w I ,

−→
F ) + qIg

]
dΩ dt. (136)

Using the first equation in system (1), we see that

vy − ∂p

∂x
=
∂vx

∂t
− Fx.

Substituting this expression into (136) and making a simple transforma-
tion, we obtain

vx(x0, y0, z0, t0) =
1
2
vx(x0, y0, z0, 0) + P. V. c.

1
4π

∫∫∫
Ω

(−→v ,−→w I)
∣∣∣∣
t=0

dΩ

+

t0∫
0

⎧⎨⎩1
2
Fx

∣∣∣∣
x0,y0,z0,t

+
1
4π

P. V. c.
∫∫∫

Ω

[
(−→w I ,

−→
F ) + qIg

]
dΩ

⎫⎬⎭ dt. (137)

To compute the value of vy(x0, y0, z0, t0), we should apply the same argu-
ments to −→w II . It is easy to see that the same result is obtained from (137)
with y replaced by −y and vy replaced by −vy. Interchanging the variables x
and y, we obtain the required result. Finally, we have

vy(x0, y0, z0, t0) =
1
2
vy(x0, y0, z0, 0) + P. V. c.

1
4π

∫∫∫
Ω

(−→v ,−→w II)|t=0 dΩ

+

t0∫
0

⎧⎨⎩1
2
Fy

∣∣∣∣
x0,y0,z0,t

+
1
4π

P. V. c.
∫∫∫

Ω

[
(−→w II ,

−→
F ) + qIIg

]
dΩ

⎫⎬⎭ dt. (138)
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12 Computation of vz

Let us compute vz. For this purpose, we again apply (71) to the unknown
solution and the function −→w III in the same domain Ωh,η. We obtain∫∫∫

Ωh,η

(−→v ,−→w III)|t=t0 dΩ −
∫∫∫
Ωh,η

(−→v ,−→w III)|t=0 dΩ

−
t0∫

0

[∫∫
Sh,η

(pwIII
n + qIIIvn)dS

]
dt

=

t0∫
0

{∫∫∫
Ωh,η

[(−→w III ,
−→
F ) + qIIIg] dΩ

}
dt. (139)

We pass to the limit as h → 0 and find

lim
h→0

∫∫∫
Ωh,η

(−→v ,−→w III)|t=t0 dΩ (140)

and

lim
h→0

t0∫
0

[∫∫
Sh,η

(pwIII
n + qIIIvn) dS

]
dt. (141)

We note that for t = t0 the components of the vector −→w III take the values

wIII
x =

∂2 1
r

∂x∂z
, wIII

y =
∂2 1

r

∂y∂z
, wIII

z =
∂2 1

r

∂z2
. (142)

Using (142), we obtain∫∫∫
Ωh,η

(−→v ,−→w III)|t=t0 dΩ =
∫∫∫
Ωh,η

(
−→v , grad

∂ 1
r

∂z

)
dΩ = −

∫∫
Sh,η

vn

∂ 1
r

∂z
dS,

where n is the inward normal to the surface Sh,η bounding Ωh,η. The last
integral can be written as

∫∫
Sh,η

vn

∂ 1
r

∂z
dS = −

h∫
−h

2π∫
0

(
vx
x− x0

�
+ vy

y − y0

�

)
z

r3
η

∣∣∣∣
�=η

dz dϕ

−
2π∫
0

η∫
0

vz

∣∣∣∣
z=z0+h

h

r3
� d� dϕ−

2π∫
0

η∫
0

vz

∣∣∣∣
z=z0−h

h

r3
� d� dϕ.
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The first term in this formula tends to zero because the integrand is
bounded as h → 0, and the integration domain is eliminated. The second
and third terms can be represented in the form

2π∫
0

η∫
0

vz

∣∣∣∣
x0,y0,z0,t

h

r3
� d� dϕ+

2π∫
0

η∫
0

vz

∣∣∣∣
x0,y0,z0,t

h

r3
� d� dϕ

+

2π∫
0

η∫
0

(
vz

∣∣∣∣
x,y,z0+h,t

− vz

∣∣∣∣
x0,y0,z0,t

)
h

r3
� d� dϕ

+

2π∫
0

η∫
0

(
vz

∣∣∣∣
x,y,z0−h,t

− vz

∣∣∣∣
x0,y0,z0,t

)
h

r3
� d� dϕ.

In the last two integrals, the integrand is as small as desired because the
function vz is continuous. The first two integrals are 2vz(x0, y0, z0, t0)ω, where
ω is the solid angle which would be formed by observing the upper and lower
bases of the cylinder from the origin. Whence it follows that

lim
h→0

∫∫
Sh,η

vn

∂ 1
r

∂z
dS = −4πvz(x0, y0, z0, t0). (143)

In this case, the value of the limit is twice larger than in the case when we
compute the limit with respect to η.

Let us compute the limit of integral (141). We use the above notation. As
above, we have

lim
h→0

t0∫
0

[∫∫
Sh,η

(pwIII
n + qIIIvn) dS

]
dt =

t0∫
0

(k31
z + k33

z + l31z + l33z ) dt, (144)

where

l3j
z = lim

h→0

∫∫
Sh,η

q3jvz cosnz dS, k3j
z = lim

h→0

∫∫
Sh,η

pw3j
z cosnz dS.

The limits of the integrals lijx and lijy are zeros. Indeed, on the upper and
lower bases vx and vy do not participate, and the integrals over the lateral
surfaces tend to zero. Thus, we need to compute l31, l33, k31, and k33.

For l33 we have7

7 S. L. Sobolev uses the definition of the function ΦIII and the property of the
Bessel function

−ξJ0(ξ) ≡ ξJ ′′
0 (ξ) + J ′

0(ξ). – Ed.
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l33 = lim
h→0

2π∫
0

η∫
0

[vz|z0+h − vz|z0−h]
∂ΦIII

∂t
� d� dϕ

= −4π lim
h→0

η∫
0

vz|x0,y0,z0,t

[ |z − z0|
�r2

�(t− t0)
r

J0

(
�(t− t0)

r

)]
� d�

= −4πvz|x0,y0,z0,t lim
η→0

hτ

h∫
0

�

r3
J0

(�τ
r

)
d�.

We make the change of variables by setting
�

r
= ζ,

ζ =
�√

�2 + h2
, �2 =

h2ζ2

1 − ζ2
, � =

hζ√
1 − ζ2

, r =
h√

1 − ζ2
,

h� d�

r3
=

ζ dζ√
1 − ζ2

.

Then,

l33 = −4πvz(x0, y0, z0, t)τ

1∫
0

ζJ0(ζτ) dζ√
1 − ζ2

= −4πvz(x0, y0, z0, t) sin τ. (145)

Obviously,

l31 = lim
h→0

2π∫
0

η∫
0

[vz|z0+h − vz|z0−h]
∂3ΦIII

∂t3
� d� dϕ

=
d2l33

dτ2
= 4πvz(x0, y0, z0, t) sin τ (146)

and
l31 + l33 = 0. (147)

To complete our calculations it remains to compute k31 and k33.
We set

k33 = lim
h→0

∫∫
Sh,η

[
p

∣∣∣∣
x0,y0,z0,t

+ (x− x0)
∂p

∂x

∣∣∣∣
x0,y0,z0,t

+ (y − y0)
∂p

∂y

∣∣∣∣
x0,y0,z0,t

+(z − z0)
∂p

∂z

∣∣∣∣
x0,y0,z0,t

]
wn dS +

∫∫
Sh,η

[
p− p

∣∣∣∣
x0,y0,z0,t

− (x− x0)
∂p

∂x

∣∣∣∣
x0,y0,z0,t
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−(y − y0)
∂p

∂y

∣∣∣∣
x0,y0,z0,t

− (z − z0)
∂p

∂z

∣∣∣∣
x0,y0,z0,t

]
wn dS.

The limit of the second integral is zero since the integrand contains a factor
that does not exceed rδ(h) in a neighborhood of the point x0, y0, z0, where
δ(h) → 0, and the values of wn at z − z0 = h and z − z0 = −h differ by only
the sign.

In the first integral, only the following term can have a nonzero limit,∫∫
Sh,η

(z − z0)
∂p

∂z
wn dS.

The remaining terms vanish since the values of wn at z = ±h differ only
by sign and the integrals over the lateral surfaces are equal to zero because
this function multiplied by (x− x0) and (y − y0) is odd.

Let us compute

k33
z = lim

h→0

∫∫
Sh,η

(z − z0)
∂p

∂z
w33

n dS

and
k31

z = lim
h→0

∫∫
Sh,η

(z − z0)
∂p

∂z
w31

n dS.

After a simple transformation, we obtain

k33
z = 4π

∂p

∂z

∣∣∣∣
x0,y0,z0,t

c(τ),

where

c(τ) = lim
h→0

η∫
0

[
h

r3
�τ

r
J ′

0

(�τ
r

)
+

h3

�2r3

(�τ
r

)2

J0

(�τ
r

)]
� d�

= τ

1∫
0

ζ2J ′
0(ζτ) dζ√
1 − ζ2

+ τ2

1∫
0

(ζ − ζ3)J0(ζτ) dζ√
1 − ζ2

.

By (110), we find k33
z = 0.

Further,

k31
z = 4π

∂p

∂z

∣∣∣∣
x0,y0,z0,t

d2c(τ)
dτ2

= 0.

Consequently,

lim
h→0

t∫
0

[∫∫
Sh,η

(pwIII
n + qIIIvn) dS

]
dt = 0. (148)
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Returning to (139), we introduce the notation

lim
h→0

∫∫∫
Ωh,η

−→
F dΩ = P. V. d.

∫∫∫
Ω

−→
F dΩ. (149)

Passing to the limit in (139), we obtain

4πvz(x0, y0, z0, t0) − P. V. d.
∫∫∫

Ω

(−→v ,−→w III)
∣∣∣∣
t=0

dΩ

=

t∫
0

{
P. V. d.

∫∫∫
Ω

[(−→w III ,
−→
F ) + qIIIg] dΩ

}
dt

or

vz(x0, y0, z0, t0) =
1
4π

P. V. d.
∫∫∫

Ω

(−→v ,−→w III)
∣∣∣∣
t=0

dΩ

+
1
4π

t∫
0

⎧⎨⎩P. V. d.
∫∫∫

Ω

[(−→w III ,
−→
F ) + qIIIg] dΩ

⎫⎬⎭ dt. (150)

Our problem is completely solved.

13 The Cauchy Problem for a Fourth-Order Equation

The equation8

∂2∆u

∂t2
+
∂2u

∂z2
= Φ (151)

is of independent interest. We consider the Cauchy problem for this equation
in an unbounded domain, i.e., we look for a solution of this equation such that

u|t=0 = u0,
∂u

∂t

∣∣∣∣
t=0

= u1. (152)

The problem has a number of interesting properties, and we indicate how
this problem can be solved explicitly. For this purpose, we construct a formula
similar to the Green formula. We have

w

(
∂2∆u

∂t2
+
∂2u

∂z2

)
− u

(
∂2∆w

∂t2
+
∂2w

∂z2

)

≡ ∂

∂t

[
w
∂∆u

∂t
−∆u

∂w

∂t

]
+

∂

∂x

[
∂u

∂x

∂2w

∂t2
− u

∂3w

∂x∂t2

]
+

∂

∂y

[
∂u

∂y

∂2w

∂t2
− u

∂3w

∂y∂t2

]
8 Equation (151) is called the nonhomogeneous Sobolev equation. – Ed.
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+
∂

∂z

[
∂u

∂z

(
∂2w

∂t2
+ w

)
− u

∂

∂z

(
∂2w

∂t2
+ w

)]
. (153)

Integrating this formula over the volume Ω bounded by the surface S, we
obtain

t0∫
0

⎧⎨⎩
∫∫∫

Ω

[wLu− uLw] dΩ

⎫⎬⎭ dt =
∫∫∫

Ω

[
w
∂∆u

∂t
−∆u

∂w

∂t

]
dΩ

∣∣∣∣
t=t0

−
∫∫∫

Ω

[
w
∂∆u

∂t
−∆u

∂w

∂t

]
dΩ

∣∣∣∣
t=0

+

t0∫
0

⎧⎨⎩
∫∫
S

[
u
∂

∂n

∂2w

∂t2
− ∂2w

∂t2
∂u

∂n
+
(
u
∂w

∂z
− w

∂u

∂z

)
cosnz

]
dS

⎫⎬⎭ dt. (154)

Formula (154) was derived under the assumption that the domain Ω is
bounded. This formula is also valid if Ω contains infinity, if, for example, the

functions u, w,
∂2w

∂t2
decay at infinity as

1
R

, the first-order derivatives with

respect to coordinates as
1
R2

, the second-order derivatives with respect to

coordinates as
1
R3

.
This formula can be proved by the simple limit passage.
Let u be the required solution of equation (151). We set

w =
1
�
Ξ

(
�
t− t0
r

)
(155)

and apply (154) to the volume Ωh,η obtained by eliminating from the space
the cylinder Sh,η with radius η and height 2h around the point x0, y0, z0.
Passing to the limit as η → 0, we obtain

t0∫
0

⎧⎨⎩
∫∫∫

Ω

1
�
Ξ

(
�
t− t0
r

)
ΦdΩ

⎫⎬⎭ dt

=
∫∫∫

Ω

{
1
�
Ξ

(
�
t− t0
r

)
∂∆u

∂t
−∆u

∂

∂t

[
1
�
Ξ

(
�
t− t0
r

)]}∣∣∣∣
t=t0

dΩ

−
∫∫∫

Ω

{
1
�
Ξ

(
�
t− t0
r

)
∂∆u

∂t
−∆u

∂

∂t

[
1
�
Ξ

(
�
t− t0
r

)]}∣∣∣∣
t=0

dΩ

+ lim
η→0

t0∫
0

[∫∫
Sh,η

{
u
∂

∂n

∂2

∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
− ∂2

∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
∂u

∂n
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+
[
u
∂

∂z

[
1
�
Ξ

(
�
t− t0
r

)]
− 1
�
Ξ

(
�
t− t0
r

)
∂u

∂z

]
cosnz

}
dS

]
dt. (156)

In this case, the limit is independent of the method of contracting the
surface Sh,η since all integrals exist not only in the sense of the principal
value.

We compute each term on the right side of (156). Obviously, for t = t0,

1
�
Ξ

(
�
t− t0
r

)
= 0,

∂

∂t

[
1
�
Ξ

(
�
t− t0
r

)]
=

1
r
J0(0) =

1
r
.

Thus, the first term on the right side of (156) takes the form

−
∫∫∫

Ω

∆u

r
dΩ = 4πu(x0, y0, z0, t0).

The second term can be written as

−
∫∫∫

Ω

[
−∆u1

1
�
Ξ

(
�
t0
r

)
−∆u0

1
r
J0

(
�
t0
r

)]
dΩ.

We show that the limit of the last integral is equal to zero. It is obvious that
all the terms containing cosnz vanish under the limit passage, since cosnz
differs from zero only on the small walls of the cylinder. It is not hard to see
that

lim
η→0

∫∫
Sh,η

∂u

∂n

∂2

∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
dS = 0. (157)

Indeed, (157) holds because
∂u

∂n
is bounded and

∂2

∂t2

[
1
�
Ξ

(
�
t− t0
r

)]

is of the order
1
r
.

Let us compute the limit of the remaining term. It is easy to verify that

lim
η→0

t0∫
0

{∫∫
Sh,η

u
∂

∂n

∂2

∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
dS

}
dt

=

t0∫
0

u(x0, y0, z0, t) lim
η→0

∫∫
Sh,η

∂3

∂�∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
dS dt

and
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lim
η→0

∫∫
Sh,η

∂3

∂�∂t2

[
1
�
Ξ

(
�
t− t0
r

)]
dS = lim

η→0

∂

∂t

∫∫
Sh,η

∂

∂�

{
1
r
J0

(�τ
r

)}
dS

= lim
η→0

∂

∂t

⎧⎨⎩4π

h∫
0

�

[
− �

r3
J0

(�τ
r

)
− �2τ

r4
J ′

0

(�τ
r

)
+

τ

r2
J ′

0

(�τ
r

)]
dz

⎫⎬⎭
= 4π

∂

∂t

⎧⎨⎩−
1∫

0

ζJ0(ζτ) dζ√
1 − ζ2

+ τ

1∫
0

(1 − ζ2)J ′
0(ζτ) dζ√

1 − ζ2

⎫⎬⎭ = 4π
∂(−1)
∂t

= 0,

which is required9.
After these remarks, we can pass to the limit in (156). Transferring the

known terms to one side and dividing by 4π, we obtain the final result

u(x0, y0, z0, t0) = − 1
4π

+∞∫∫∫
−∞

{
1
r
J0

(
�
t0
r

)
∆u0 +

1
�
Ξ

(
�t0
r

)
∆u1

}
dΩ

− 1
4π

t0∫
0

⎧⎨⎩
∫∫∫

Ω

1
�
Ξ

(
�
t0 − t

r

)
ΦdΩ

⎫⎬⎭ dt. (158)

Formula (158) gives a representation for u at the point (x0, y0, z0, t0). It
remains to verify that we actually obtained the solution of equation (151)
with conditions (152).

14 Verification of the Obtained Solution

We first note that it suffices to verify the existence of a solution under the
homogeneous conditions. Indeed, it is obvious that the function v = u −
u0− tu1 satisfies the new nonhomogeneous equation with homogeneous initial
conditions.

Under some restrictions on Φ the function u defined by (158) has contin-
uous spatial derivatives and time-derivatives up to the required order.

We prove that the function u satisfies equation (151). Let ψ(x, y, z, t) be an
arbitrary infinitely differentiable function vanishing outside Vψ. This function
satisfies the identity

ψ(x0, y0, z0, t0) = − 1
4π

t0∫
T

⎧⎨⎩
∫∫∫

Ω

1
�
Ξ

(
�
t0 − t

r

)
Lψ dΩ

⎫⎬⎭ dt, (159)

if any point of the domain Vψ has a coordinate t less than T .

9 S. L. Sobolev uses a change of variables (123). – Ed.
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This identity can be obtained from (158) by the change t1 = T − t.
Multiplying both sides of (159) by Φ(x0, y0, z0, t0) and integrating over the

whole (x0, y0, z0, t0)-space, we obtain∫∫∫∫
ψ(x0, y0, z0, t0)Φ(x0, y0, z0, t0) dΩ0 dt0

= − 1
4π

∫
· · ·
∫

T>t>t0

1
�
Ξ

(
�
t0 − t

r

)
Lψ(x, y, z, t)Φ(x0, y0, z0, t0) dΩ dΩ0 dt dt0.

We transform this integral in the double integral by integration with re-
spect to x0, y0, z0, t0 inside the domain and performing the exterior integration
with respect to x, y, z, t. We obtain∫∫∫∫

ψ(x0, y0, z0, t0)Φ(x0, y0, z0, t0) dΩ0 dt0

=
∫∫∫∫

Lψ(x, y, z, t)u(x, y, z, t) dΩ dt

or, after integrating by parts,∫∫∫∫
ψ(x0, y0, z0, t0)[Lu− Φ] dΩ0 dt0 = 0. (160)

This integral identity holds for any ψ. Whence it follows that

Lu = Φ,

which is required.

15 Some Qualitative Consequences of the Obtained
Formulas

As we see, the solution of all our problems is closely connected with the
function

V =
1
r
J0

(
t
�

r

)
=

1
r
J0(t sin θ). (161)

Using this function, as well as some other functions of the same type, we have
constructed the general solution of all these problems.

We trace how the function V changes with time. We consider a sphere
with constant radius. On this sphere, the function V at each time moment
depends only on the polar angle θ. The argument of the Bessel function J0

changes from 0 to t on this sphere. With the course of time, more and more
waves generated by the maxima and minima of the Bessel function will be
placed in the interval between the pole and the equator of the sphere. Waves
appear at the equator and move towards the pole so that they accumulate on
the sphere but do not disappear. Hence more and more short waves will be
formed from long waves.

According to our reckoning, such a formation of short waves from long
waves is of interest.
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10. On Motion of a Symmetric Top
with a Cavity Filled with Fluid∗

S. L. Sobolev

Chapter 1 The General Theory of a Symmetric Top

1 The Motion Equations and Boundary Conditions

10. We consider a heavy top rotating with an angular velocity ω around its
axis.

Let the foot of the top be fixed. We place the coordinate origin at this
fixed point. Let the z∗-axis be directed vertically upward, let the x∗-axis and
the y∗-axis of the fixed coordinate system be located in the horizontal plane.
Let the top have a cavity filled with a fluid.

We assume that the shape of the cavity is symmetric with respect to the
axis of the top. Both for the top itself and for the cavity the axis is the axis of
symmetry of order k, where k > 2; in other words, if we rotate the top around

the axis by the angle
2π
k

, then it will match itself.
We denote by M1 the mass of the shell of the top, by M2 the mass of the

fluid, and by � the density of the fluid. Let x2, y2, z2 be the coordinate axes
related to the top; moreover, let the symmetry axis of the top coincide with
the z2-axis, and let the coordinate origin be located at the fixed point. We
denote by A1 the moment of inertia of the shell with respect to the x2-axis
and the y2-axis, and by A2 the moment of inertia of the fluid with respect to
the same axis.

∗ Zh. Prikl. Mekh. Tekhn. Fiz., 3, 20–55 (1960)
The author finished this work in 1943. However, it was not published at the time.
Since then a similar type of questions has caused a number of studies. In the
author’s work [1] and in a number of papers of other authors, spectral problems
for a system of equations of similar type, boundary value problems, etc. were
studied. However, this branch of mechanics is still attractive, and possibly the
publication of one of the first papers on these questions is of interest.
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Similarly, C1 and C2 denote the moments of inertia of the shell and the
fluid with respect to the z2-axis. The distances from the point of support to
the centers of mass of the shell and the fluid are l1 and l2, respectively.

We denote by X∗, Y ∗,
√

1 −X∗2 − Y ∗2 the coordinates of the unit vector
in the direction from the point of support along the axis of the top; u∗ is the
vector of the velocity of the fluid, which we assume to be ideal, and p∗ is a
pressure inside. We denote by S the surface of the cavity filled with the fluid,
and by V the volume it occupies.

We study only motions close to the uniform rotation of the top around a
vertical line. Let us clarify what it means.

Let

u(0) = ωk × r,

p(0) = �
ω2(r2 − z∗2)

2
− �gz∗ + p0 = �

ω2(x∗2 + y∗2)
2

− �gz∗ + p0,

X(0) = Y (0) = 0,

(1.1)

where r is the coordinate vector, and k is the unit vector along the z∗-axis.
The quantities u(0), p(0), X(0), Y (0) describe this uniform rotation. We are
interested only in the differences

u − u(0), p∗ − p(0), X∗ −X(0), Y ∗ − Y (0). (1.2)

Further, we look for quantities (1.2).
The problem, so stated, is the linear problem of the theory of partial

differential equations.
Our goal is to find conditions under which motion (1.1) of such top is

stable.
20. The present work is divided into three chapters. In Chap. 1 we consider

the general theory of motion of the top with a symmetric cavity filled with
fluid. In Chap. 2 we study the theory of motion of the top with a cavity shaped
as an ellipsoid of rotation. Chap. 3 is devoted to the top with a cylindrical
cavity. Let us present briefly the content of each chapter.

The general solution of the problem on vibrations of the filled top, as well
as the solution of any linear problem on vibrations with an infinite number
of degrees of freedom, can be represented differently in the form of a sum of
finite or infinite number of terms, each of which is, in turn, a solution of the
problem.

Sometimes the study of these terms can be simpler than the study of the
general solution.

In Chap. 1 for any symmetric top we divide each solution of the problem,
which is naturally to assumed to be real, into the sum of k distinct complex
solutions, which are simpler to study. These solutions are distinguished by
the transformation which they experience under the rotation of the top by

the angle
2π
k

.
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Among these k solutions, there are only two such when, together with
the fluid, the shell also vibrates. These two solutions are complex conjugate.
Thus, it is sufficient to study only one of them; there is no need to consider
the remaining k − 1 solutions.

Thus, the solution which we study later has simpler properties than the
general solution.

If the cavity filled with the fluid is a body of rotation, then the problem is
even simpler, because in this case one can isolate a solution such that in the
polar coordinates r, θ, z its dependence on the angle θ is especially simple.

The quantities describing the motion of the top with a cavity can be con-
sidered in a certain phase space {R}, which in this case is infinite-dimensional,
because of the infinite number of degrees of freedom. In this case the equations
of motion of the fluid within a shell are written in the form

dR

dt
= iBR+R0, (1.3)

where B is a linear operator, R is an unknown element or a vector of the
phase space. The solution of this equation, satisfying the condition R = R(0)

for t = 0, is given by the formula

R = eiBtR(0) +

t∫
0

eiB(t−t1)R0(t1) dt1. (1.4)

The spectral theory of operators allows us to represent this solution by
using the resolvent of the operator B,

Γλ = (λE −B)−1. (1.5)

It is proved that the operator B is bounded. Hence its resolvent is regular
near λ = ∞. In this case

eiBtR0 =
1

2πi

∫
C

eiλtΓλR0 dλ, (1.6)

where C is an arbitrary sufficiently large contour.
The remaining of Chap. 1 is devoted to the study of the operator B and

its resolvent.
In the phase space {R} we construct a Hermitian form Q(R1, R2) whose

behavior is determined by the quantity

L = C1 + C2 −A1 −A2 − K

ω2
, K = g(l1M1 + l2M2). (1.7)

Here K is the value of the tilting moment of the force of gravity referred
to the angle of deflection of the z2-axis from the vertical.
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If L is positive, then the Hermitian form Q is positive definite; if L is
negative, then it divides into the difference of a positive form and one negative
term in the complementary space. The relation

Q(BR1, R2) = Q(R1, BR2) (1.8)

holds.
The operator B is self-conjugate with respect to the form Q. If L > 0, then

the operator Q is the so-called Hermitian operator, and its entire spectrum is
concentrated on the real axis. In this case, the operator exp(iBt) is bounded.

If L < 0, and we are interested mostly in this case, then one can establish
the existence of at most one pair of complex eigenvalues of B. This case is
essentially new in operator theory.

The presence or the absence of these complex eigenvalues is connected
with the presence or the absence of solutions of the problem in question with
the factor exp(±iσt ± τt), i.e., with the question on stability of the solution
of the problem. This question is studied in detail in the following chapters.

30. As noted above, if the cavity is a body of rotation, then the problem
is somewhat simplified. In this case the phase space {R} can be divided into
the sum of three mutually complementary subspaces:

{R} = {R}1 + {R}1 + {R}2.

Here the spaces {R}1 and {R}1 contain those motions of the fluid where
the pressure p has the form e∓iθp(r, z), and {R}2 contains those where the
pressure is orthogonal to e∓iθ. The operator B keeps all these spaces invariant.
All motions of the fluid are also divided into the sum of motions in {R}1, {R}1

and in {R}2. Here the motions in {R}2 are such that the shell of the top is
not involved in them.

An even bigger simplification occurs when the cavity is an ellipsoid of
rotation. In this case the phase space {R}1, in turn, decomposes into a certain
three-dimensional space {R}3 and complementary infinite-dimensional space
{R}3:

{R}1 = {R}3 ⊕ {R}3.

In this case the shell is included only in motions of {R}3.
Therefore, the question on stability of the motion of the top with an el-

lipsoidal cavity is reduced to the study of the behavior of roots of a certain
equation of third order depending on parameters. In particular, when the top
shell is weightless and the top itself is mounted at the center of gravity, this
question has been already studied in the literature.

The qualitative analysis shows that the character of the motion of a top
with an ellipsoidal cavity is determined by four dimensionless parameters,
namely, by relations between the numbers

A, A
(0)
2 , C1, C2,

K

ω2
= ν, (1.9)



On Motion of a Symmetric Top with a Cavity Filled with Fluid 337

where A = A1 +A2, A
(0)
2 is the main equatorial moment of inertia of the fluid.

Suppose that A, A(0)
2 , C1, and C2 are fixed. Let us vary the angular velocity

ω (or, which is the same, the tilting moment K). The domain of change of ν
can be divided in this case into four parts:

(I) −∞ < ν < ν1, (III) ν2 < ν < ν3,

(II) ν1 < ν < ν2, (IV) ν3 < ν < ∞,
(1.10)

where ν1, ν2, and ν3 are the roots of a certain cubic equation. In the first and
third domains the motion is stable, while in the second and forth domains it is
unstable. If this cubic equation has the only root, then the domain of change
of ν is divided only into two parts. If we suppose that A = A0

2, C1 = 0, i.e., if
we study the top with a weightless shell rotating around the center of gravity,
then the stability of its motion occurs when c < a or c > 3a, where c is the
semiaxis of the ellipsoid along the axis of rotation, and a is another axis.

This result is known in the literature.
40. In the case of a cylindrical cavity the problem is solved by expanding

the desired solution and the resolvent into a series of a special type. It turns
out to be possible to construct the function D with the property that its roots
are the eigenvalues of the operator. This function has an essential singularity,
on the interval of the real axis −2ω < λ < 2ω, and it is regular in the remaining
part of the plane.

The study reveals the following result. Unlike the top with an ellipsoidal
cavity, changing the parameter ν, there exist an infinite set of intervals, where
the top loses its stability. Moreover, the values of imaginary parts of the roots
are either large or small. If we engage such a top, and start reducing the
velocity of rotations, then we pass through the domain of agitated motions
many times.

Based on this, we can conclude that if we wish to calm the motion, we
need to shape the cavity in the form of an ellipsoid of rotation. We calculate
a particular example of a top with an ellipsoidal cavity. In the case when
the moments of inertia of the shell are significantly larger than the moment
of inertia of the fluid, and the cavity is sufficiently long, (c > 3a), we give
an approximate formula for determining the necessary value of the angular
velocity

q > 2
√
KA(0), A(0) = A−A

(0)
2

2a2

c2 − a2
, (1.11)

where q is a moment of momentum of the top around the axis.

2 Mathematical Statement of the Problem

10. The equations of motion of the shell, which we consider to be a solid body
with a fixed point, if we assume the deviations from the uniform rotation to
be small, have the form
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A1

..

X
∗

+C1ω
.

Y
∗ −My∗ = 0,

A1

..

Y
∗ −C1ω

.

X
∗

+Mx∗ = 0,
(2.1)

where Mx∗ and My∗ are the components of moments of all forces acting at
the shell.

There are three possible types of these forces: the weight of the shell, the
pressure of the fluid, and exterior forces. The force of gravity is applied at the
point with the coordinates

l1X
∗, l1Y

∗, l1
√

1 −X∗2 − Y ∗2

and directed along the negative z, therefore, its moments are

−gl1M1Y
∗, gl1M1X

∗. (2.2)

If we calculate the moments of forces of the pressure of the fluid at the
shell, then we have for them the following expressions, respectively,

Mx∗(p∗) =
∫∫
S

p∗[y∗ cosnz∗ − z∗ cosny∗] dS,

My∗(p∗) =
∫∫
S

p∗[z∗ cosnx∗ − x∗ cosnz∗] dS.

(2.3)

Assuming that the moments of exterior forces are equal to M (0)
x∗ and M

(0)
y∗ ,

respectively, we have

A1

..

X
∗

+C1ω
.

Y
∗ −gl1M1X

∗ −My∗(p∗) −M
(0)
y∗ = 0,

A1

..

Y
∗ −C1ω

.

X
∗ −gl1M1Y

∗ +Mx∗(p∗) +M
(0)
x∗ = 0.

(2.4)

The expressions for the force of pressure can be obtained from the equa-
tions of hydrodynamics. These equations have the form

du∗

dt
+

1
�
grad p∗ = F − gk, div u∗ = 0, (2.5)

where F is a vector of external mass forces, g is the acceleration of gravity.
20. Let us introduce the moving system of coordinates x, y, z, such that its

origin coincides with the moving point all the time, the z-axis remains parallel
to the z∗-axis, and the x-axis and the y-axis revolve around the z-axis with
angular velocity ω. The absolute particle acceleration of fluid is the sum of
the relative, transfer, and Coriolis accelerations. We have

du∗

dt
=
∂u′

∂t
+ (u′∇)u′ + (−ω2xi − ω2yj) − 2ω(u′ × k), (2.6)
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where u′ is the vector of relative motion in the coordinates x, y, z.
Also assume that

p∗ = −g�z +
ω2�(x2 + y2)

2
+ p′. (2.7)

Then, neglecting small terms, equation (2.5) can be written in the form

∂u′x
∂t

− 2ωu′y +
1
�

∂p′

∂x
= Fx,

∂u′z
∂t

+
1
�

∂p′

∂z
= Fz,

∂u′y
∂t

+ 2ωu′x +
1
�

∂p′

∂y
= Fy,

∂u′x
∂x

+
∂u′y
∂y

+
∂u′z
∂z

= 0.

(2.8)

Substituting (2.7) into (2.3) and (2.4), we have with accuracy up to the
terms of higher order

Mx∗(p∗ − p′) =
∫∫∫

V

[−g�y∗ − ω2�y∗z∗] dv,

My∗(p∗ − p′) =
∫∫∫

V

[g�x∗ + ω2�x∗z∗] dv,

(2.9)

but ∫∫∫
V

�y∗ dv = l2M2Y
∗,

∫∫∫
V

�x∗ dv = l2M2X
∗,

∫∫∫
V

z∗ dv = l2,

∫∫∫
V

y∗z∗ dv = A∗
2y,z,

∫∫∫
V

x∗z∗ dv = A∗
2x,z,

(2.10)

where A∗
2y,z and A∗

2x,z are the components of the tensor of the moments of the
inertia of the volume V with respect to the axis x∗, y∗, z∗. These components
can be represented in the form

A∗
2x,z =

C2

2
(cosx2x

∗ cosx2z
∗ + cos y2x

∗ cos y2z
∗)

+
(
A2 − C2

2

)
cos z2x∗ cos z2z∗ = (A2 − C2) cos z2x∗ cos z2z∗,

A∗
2y,z = (A2 − C2)Y ∗. (2.11)

Thus, we obtain

A1

..

X
∗

+C1ω
.

Y
∗ −K2X

∗ −My∗(p′) −M
(0)
y∗ = 0,

A1

..

Y
∗ −C1ω

.

X
∗ −K2Y

∗ +Mx∗(p′) +M
(0)
x∗ = 0,

(2.12)
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where K2 = g(l1M1 + l2M2) + ω2(A2 − C2).
To write the boundary conditions more conveniently, we pass from the

coordinates X∗ and Y ∗ to others. Let

X∗ + iY ∗ = Z∗. (2.13)

Multiplying the second equation in (2.12) by i and adding it to the first
one, we obtain

A1

..

Z
∗ −C1ωi

.

Z
∗ −K2Z

∗ + 2iN∗(p′) + 2iN (0) = 0, (2.14)

where

2N∗(p′) = Mx∗(p′) + iMy∗(p′), 2N (0) = M
(0)
x∗ + iM

(0)
y∗ . (2.15)

Let us introduce the notation

µ∗ = z∗(cosnx∗ + i cosny∗) − (x∗ + iy∗) cosnz∗.

Then, 2N∗(p′) = i

∫∫
S

µ∗p′ dS.

Also, let Z∗ = eiωtZ. Obviously, the real and imaginary parts of the com-
plex number Z = X + iY give the value of deviation of the unit vector of the
top axis in the coordinates x, y, z. We write equation (2.14) as

A1

..

Z −(C1 − 2A1)ωi
.

Z +Lω2Z + ie−iωt2[N∗(p′) +N
(0)
∗ ] = 0, (2.16)

where, as indicated above, L = C1 + C2 −A1 −A∗ − K

ω2
. Obviously,

e−iωtN∗(p′) = N(p′), e−iωtN
(0)
∗ = N (0).

Here,

2N(p′) = i

∫∫
S

µp′ dS, µ = z(cosnx+ i cosny) − (x+ iy) cosnz.

30. Obviously, the normal component of the velocity u′ on the surface S
must coincide with the normal component of the velocity of the corresponding
point of the surface S in the system x∗, y∗, z∗.

Denoting by w the vector of the transfer velocity S in the fixed system,
we obtain

wx =
.

X z, wy =
.

Y z, wz = − .

X x− .

Y y. (2.17)

Hence,

u′n|S =
.

X (z cosnx− x cosnz)+
.

Y (z cosny − y cosnz). (2.18)
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Condition (2.18) makes it possible to solve the problem stated. For the
sake of convenience let us express condition (2.18) in terms of

.

Z; we obtain

u′n|S =
1
2
(

.

Z µ+
.

Z µ). (2.19)

40. The symmetry of the cavity occupied by the fluid allows splitting the
general solution of the problem into several particular solutions, similar to
how in the domain with an axial symmetry of infinite order the solution can
be expanded into a Fourier series in the cyclic coordinate. However, in the case
when there is only a symmetry of a finite order, this expansion is unrealizable,
and we use a different approach.

Let ϕ be a certain function defined in the domain V of the real variables
x, y, z. Let us denote the complex coordinates as

x+ iy = ζ, x− iy = ζ (2.20)

and assume that ζ and ζ are independent variables varying along a corre-
sponding two-dimensional manifold.

Using the function ϕ(x, y), let us introduce k new functions ϕ(s)(ζ, ζ),
s = 0, 1, . . . , k − 1,

ϕ(s)(ζ, ζ) =
1
k

k−1∑
l=0

es2πil/kϕ(ζe2πil/k, ζe−2πil/k). (2.21)

Let us point out some simple properties of the symbol ϕ(s). Thus, we have

k−1∑
s=0

ϕ(s)(ζ, ζ) =
1
k

k−1∑
l=0

ϕ(ζe2πil/k, ζe−2πil/k)

(
k−1∑
s=0

es2πil/k

)
.

However,

k−1∑
s=0

(
e2πil/k

)s

=
(e2πil/k)k − 1
e2πil/k − 1

=
{

0, l �≡ 0 (mod k),
k, l = 0 (mod k).

Hence,
k−1∑
s=0

ϕ(s)(ζ, ζ) = ϕ(ζ, ζ). (2.22)

The function ϕs possesses the distinctive periodicity

ϕ(s)(ζe2πi/k, ζe−2πi/k) =
1
k

k−1∑
l=0

es2πil/kϕ(ζe2πi(l+1)/k, ζe−2πi(l+1)/k)

= e−s2πi/kϕ(s)(ζ, ζ). (2.23)
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Obviously,
ϕ(s1) = ϕ(s2) for s1 ≡ s2 (mod k).

If ϕ is a real function, then

ϕ(s1) = ϕ(s2) for s2 ≡ k − s1 (mod k). (2.24)

Formula (2.22) produces the required splitting of the solution into a finite
number of the terms k = 0, 1, . . . , k− 1. Strictly speaking, differentiation of ϕ
with respect to ζ or ζ makes no sense, however, if we assume

∂ϕ

∂ζ
=

1
2

(
∂ϕ

∂x
− i

∂ϕ

∂y

)
,

∂ϕ

∂ζ
=

1
2

(
∂ϕ

∂x
+ i

∂ϕ

∂y

)
, (2.25)

then all the usual differentiation formulas remain valid.
Using this fact and differentiating (2.21), we obtain

∂

∂ζ
ϕ(s)(ζ, ζ) =

1
k

k−1∑
l=0

e(s+1)2πil/k ∂ϕ

∂ζ
(ζe2πil/k, ζe−2πil/k) =

(
∂ϕ

∂ζ

)
(s+1)

.

Then,

∂

∂ζ
ϕ(s)(ζ, ζ) =

1
k

k−1∑
l=0

e(s−1)2πil/k ∂ϕ

∂ζ
(ζe2πil/k, ζe−2πil/k) =

(
∂ϕ

∂ζ

)
(s−1)

,

i.e.,
∂

∂ζ
ϕ(s) =

(
∂ϕ

∂ζ

)
(s+1)

,
∂

∂ζ
ϕ(s) =

(
∂ϕ

∂ζ

)
(s−1)

. (2.26)

Let us also emphasize the formula

k−1∑
s=0

es2πit/kϕ(s)(ζ, ζ) =
k−1∑
s=0

ϕ(ζe−2πit/k, ζe2πit/k), (2.27)

which follows from the transformation

k−1∑
s=0

es2πit/kϕ(s)(ζ, ζ) =
1
k

k−1∑
l=0

ϕ(ζe2πil/k, ζe−2πil/k)

(
k−1∑
s=0

es2πi(t+l)/k

)
.

50. Let us introduce in equation (2.8) the variables ζ and ζ. We have

∂p′

∂x
=
∂p′

∂ζ
+
∂p′

∂ζ
,

∂p′

∂y
= i

(
∂p′

∂ζ
− ∂p′

∂ζ

)
. (2.28)

Assuming

u′x + iu′y = u′ζ , u′x − iu′y = u′
ζ
, Fx + iFy = Fζ , Fx − iFy = Fζ ,
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multiplying the second equation from the left set of (2.8) by i, adding and
subtracting from the first one, we obtain

∂u′ζ
∂t

+ 2ωiu′ζ +
2
�

∂p′

∂ζ
= Fζ ,

∂u′z
∂t

+
1
�

∂p′

∂z
= Fz,

∂u′
ζ

∂t
− 2ωiu′

ζ
+

2
�

∂p′

∂ζ
= Fζ ,

∂u′ζ
∂ζ

+
∂u′

ζ

∂ζ
+
∂u′z
∂z

= 0.

(2.29)

Let us apply to equations (2.29) the operation (s). We obtain

∂u′ζ,(s−1)

∂t
+ 2ωiu′ζ,(s−1) +

2
�

∂p′(s)
∂ζ

= Fζ,(s−1),

∂u′
ζ,(s+1)

∂t
− 2ωiu′

ζ,(s+1)
+

2
�

∂p′(s)
∂ζ

= Fζ,(s+1),

∂u′z,(s)

∂t
+

1
�

∂p′(s)
∂z

= Fz,(s),

∂u′ζ,(s−1)

∂ζ
+
∂u′

ζ,(s+1)

∂ζ
+
∂u′z,(s)

∂z
= 0, s = 0, 1, . . . , k − 1.

(2.30)

Thus, the system of equations also splits; instead of one system (2.8) we
now have k different systems relating uζ,(s−1), uζ,(s+1), p

′
(s), uz,(s).

Let us study now the boundary conditions, and also the operator N(p′).
Replacing in conditions (2.19) ux and uy by their expressions, we obtain

u′n|S = u′x cosnx+ u′y cosny + u′z cosnz|S

=
1
2
u′ζ(cosnx− i cosny) +

1
2
u′

ζ
(cosnx+ i cosny) + u′z cosnz|S

=
1
2
u′ζλ1 +

1
2
u′

ζ
λ1 + u′z cosnz|S =

1
2

.

Z µ+
1
2

.

Z µ, (2.31)

where
λ1 = cosnx+ i cosny. (2.32)

Obviously, we have

λ1(ζe2πi/k, ζe−2πi/k) = e2πi/kλ1(ζ, ζ),

λ1(ζe2πi/k, ζe−2πi/k) = e−2πi/kλ1(ζ, ζ),

µ(ζe2πi/k, ζe−2πi/k) = e2πi/kµ(ζ, ζ),

µ(ζe2πi/k, ζe−2πi/k) = e−2πi/kµ(ζ, ζ).

(2.33)
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Hence,

λ1 = λ1,(−1), λ1 = λ1,(1), µ = µ(−1), µ = µ(1). (2.34)

Applying the operation (s) to both parts of (2.31), we obtain

1
2
u′ζ,(s−1)λ1 +

1
2
u′

ζ,(s+1)
λ1 + u′z,(s) cosnz|S =

1
2

.

Z µ(s) +
1
2

.

Z µ(s)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

.

Z µ, s ≡ 1 (mod k),

1
2

.

Z µ, s ≡ −1 (mod k),

0, s �≡ ±1 (mod k).

(2.35)

Substituting into N(p′) instead of p′ its expression1, we also obtain

2N(p′) = i

k−1∑
s=0

∫∫
S

p′(s)µdS. (2.36)

However, ∫∫
S

p′(s)µdS = e2πi(1−s)/k

∫∫
S

p′(s)µdS. (2.37)

One easily gets convinced in this fact by rotating the coordinate axis.
Therefore, all integrals (2.36) are equal to zero, except for the one where
s = 1, and, hence,

2N(p′) = i

∫∫
S

p′(1)µdS, 2N(p′) = −i
∫∫
S

p′(−1)µdS. (2.38)

Thus, the boundary conditions for systems (2.30) appear to be also split
and mutually independent.

Systems (2.30) for s ≡ ±1 (mod k) have the boundary conditions for
u′ζ,(s−1), u

′
ζ,(s+1)

, uz,(s) nonhomogeneous of the same type as (2.31); for s �≡ ±1
(mod k) the conditions are homogeneous.

The boundary conditions on (2.30) for s = 1 include
.

Z, which is connected,
thus, to the quantities

u′ζ,(0), u′
ζ,(2)

, u′z,(1), p′(1). (2.39)

On the other side, the quantity Z satisfies the equation

A1

..

Z −B1ωi
.

Z +Lω2Z+2iN(p′(1))+2iN (0) = 0, B1 = C1−2A1, (2.40)

1 S. L. Sobolev uses a formula of type (2.22). – Ed.
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which also involves p′(1). Thus, variables (2.39) and Z are related through the
system of equations. Similarly, in system (2.30) for s = −1 the boundary
conditions are related to Z. The equation

A1

..

Z +B1ωi
.

Z +Lω2Z − 2iN(p′(−1)) − 2iN
(0)

= 0 (2.41)

presents another connection between Z and the functions u′ζ,(−2), u′
ζ,(0)

,
u′z,(−1), p

′
(−1).

60. If the cavity filled with fluid has the shape of a body of rotation, then
the quantities p′(1) and p′(−1) have a particularly simple form. Obviously, in
this case conditions (2.23) hold for any k. Suppose that p′(1) can be expanded
into the series

p′(1) =
∞∑

l=−∞
eilθpl,(1).

Substituting this expression into formula (2.23), we obtain

∞∑
l=−∞

eil(θ+2π/k)pl,(1) = e−2πi/k
∞∑

l=−∞
eliθpl,(1).

Hence,
∞∑

l=−∞
(e2πil/k − e2πi/k)pl,(1)e

liθ = 0,

and then either e2πil/k = e−2πi/k or pl,(1) = 0.
Therefore, l ≡ −1(mod k).
Thus, in the expansion of p′(1) only the terms containing e−iθ, e(k−1)iθ,

e(2k−1)iθ, etc. can appear. If it occurs for all k, then p′(1) contains the factor
e−iθ.

Similarly, p′(−1) contains only the terms eiθ, e(k+1)iθ, e(2k+1)iθ, etc., and,
if it occurs for all k, then p′(−1) is divisible by eiθ.

70. In the following sections we will study the solutions of (2.30), but now
let us also present formulas for certain expressions, having a definite physical
meaning. Let us denote

u′
ζ,(s+1)

+ u′ζ,(s−1) = vx,[s], u′
ζ,(s+1)

− u′ζ,(s−1) = −ivy,[s],

2u′z,(s) = vz,[s], 2p′(s) = p[s], Fζ,(s+1) + Fζ,(s−1) = Fx,[s], (2.42)

Fζ,(s+1) − Fζ,(s−1) = iFy,[s], 2Fz,(s) = Fz,[s].

Obviously,

u′x =
1
2

k−1∑
s=0

vx,[s] =
1
4

k−1∑
s=0

(vx,[s] + vx,[s]),
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u′y =
1
2

k−1∑
s=0

vy,[s] =
1
4

k−1∑
s=0

(vy,[s] + vy,[s]),

u′z =
1
2

k−1∑
s=0

vz,[s] =
1
4

k−1∑
s=0

(vz,[s] + vz,[s]),

Fx =
1
2

k−1∑
s=0

Fx,[s] =
1
4

k−1∑
s=0

(Fx,[s] + F x,[s]), (2.43)

Fy =
1
2

k−1∑
s=0

Fy,[s] =
1
4

k−1∑
s=0

(Fy,[s] + F y,[s]),

Fz =
1
2

k−1∑
s=0

Fz,[s] =
1
4

k−1∑
s=0

(Fz,[s] + F z,[s]),

p′ =
1
2

k−1∑
s=0

p[s] =
1
4

k−1∑
s=0

(p[s] + p[s]).

The equations for v[s] are obtained from equations (2.30) by addition and
subtraction.

We obtain

∂vx,[s]

∂t
− 2ωvy,[s] +

1
�

∂p[s]

∂x
= Fx,[s],

∂vz,[s]

∂t
+

1
�

∂p[s]

∂z
= Fz,[s],

∂vy,[s]

∂t
+ 2ωvx,[s] +

1
�

∂p[s]

∂y
= Fy,[s],

∂vx,[s]

∂x
+
∂vy,[s]

∂y
+
∂vz,[s]

∂z
= 0,

(2.44)

and further
vx,[s] cosnx+ vy,[s] cosny + vz,[s] cosnz|S

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.

Z µ, s ≡ 1 (mod k),
.

Z µ, s ≡ −1 (mod k),

0, s �≡ ±1 (mod k).

(2.45)

These equations coincide with (2.8), however, they have different boundary
conditions. Together with (2.40) and (2.41) they give the complete system of
the relations.

At first we studied only the real values of u′, X, Y , and p. In this case
all functions for s ≡ −1 (mod k) are simply conjugate to functions for s ≡ 1
(mod k).

The solutions for s �≡ ±1 (mod k) are not interesting for us, because the
shell is not involved in these motions. Therefore, later we are going to study
only the case when s = 1.
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80. If we suppose that the vector F[s] on the right side of (2.44) is such
that its components are continuous up to the boundary of the domain and
have continuous derivatives inside, then this vector can be split into the sum
of two terms such that

F[s] = Φ + Ψ, (2.46)

where
div Ψ = 0, rotΦ = 0, Ψn|S = 0. (2.47)

Next, we can assume that

Φ = gradΞ + iϕωgradχ,
∫∫
S

ΞµdS = 0, (2.48)

and the function χ is determined from the conditions

∆χ = 0,
∂χ

∂n

∣∣∣∣
S

= µ, (2.49)

which are compatible in view of the equality∫∫
S

µdS = 0. (2.50)

In correspondence to (2.46) and (2.48), the general solution of the problem
can be split into two solutions in respect to two cases:

(I) Ξ = 0, (II) ϕ = 0, N (0) = 0, Ψ = 0. (2.51)

For case (II) the particular solution of the problem, as is easy to verify
directly, has the form

v[1] = 0, Z = 0, p[1] = �Ξ. (2.52)

Then, further we can restrict ourselves for case (I).

3 Vector Space and the Operator for a Derivative

10. Assume that the function χ has first-order derivatives and |gradχ|2 is
integrable over V . Let∫∫∫

V

(
∂χ

∂x

∂χ

∂x
+
∂χ

∂y

∂χ

∂y
+
∂χ

∂z

∂χ

∂z

)
dv

=
∫∫
S

χ
∂χ

∂n
dS =

∫∫
S

χ
∂χ

∂n
dS = 2κ2. (3.1)
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Set
.

Z= iωW. (3.2)

Equation (2.40) can be rewritten in this case in the form

A1

.

W −B1ωiW − LωiZ +
1
ω
N(p[1]) +

2
ω
N (0) = 0. (3.3)

Let us multiply the first three equations in (2.44) by
∂χ

∂x
,
∂χ

∂y
,
∂χ

∂z
, respec-

tively. Then, we sum these expressions, and integrate over V . Hence,∫∫∫
V

(
Fx,[1]

∂χ

∂x
+ Fy,[1]

∂χ

∂y
+ Fz,[1]

∂χ

∂z

)
dv

=
∫∫∫

V

[
∂

∂t

(
vx,[1]

∂χ

∂x
+ vy,[1]

∂χ

∂y
+ vz,[1]

∂χ

∂z

)
− 2ωvy,[1]

∂χ

∂x

+2ωvx,[1]
∂χ

∂y
+

1
�

(
∂p[1]

∂x

∂χ

∂x
+
∂p[1]

∂y

∂χ

∂y
+
∂p[1]

∂z

∂χ

∂z

)]
dv

=
∫∫
S

[
χ
∂

∂t
(vx,[1] cosnx+ vy,[1] cosny + vz,[1] cosnz) +

1
�
p[1]

∂χ

∂n

]
dS

−2ω
∫∫∫

V

(
vy,[1]

∂χ

∂x
− vx,[1]

∂χ

∂y

)
dv (3.4)

or, in view of condition (2.45)2,

2iω
.

W κ2 − 2i
�
N(p[1]) = 2ω

∫∫∫
V

(
vy,[1]

∂χ

∂x
− vx,[1]

∂χ

∂y

)
dv+2iωϕκ2. (3.5)

Now, let

v[1] = iωWgradχ+ v, p[1] = iω�(ϕ− .

W )χ+ p, (3.6)∫∫∫
V

(
∂χ

∂y

∂χ

∂x
− ∂χ

∂x

∂χ

∂y

)
dv = iE. (3.7)

Then

− 1
ω
N(p) = i�ωWE − i�

∫∫∫
V

(
vy
∂χ

∂x
− vx

∂χ

∂y

)
dv. (3.8)

Equation (3.8) together with (3.3) gives

2 S. L. Sobolev uses formulas (2.38), (2.49). – Ed.
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(A1 + �κ2)
.

W −(B1 + �E)ωiW − LωiZ

−�i
∫∫∫

V

(
vx
∂χ

∂y
− vy

∂χ

∂x

)
dv − �ϕκ2 +

2
ω
N (0) = 0. (3.9)

Returning to the system in question, we obtain

div v = 0, vn|S = 0,

∂vx

∂t
− 2ωvy +

1
�

∂p

∂x
− 2iω2W

∂χ

∂y
= Ψx,

∂vy

∂t
+ 2ωvx +

1
�

∂p

∂y
+ 2iω2W

∂χ

∂x
= Ψy,

∂vz

∂t
+

1
�

∂p

∂z
= Ψz.

(3.10)

We call the system of equations (3.9), (3.10), and (3.2) the system D.
Together with this system we will sometimes consider the system D.

Applying the operator div to the left sides of equations (3.10), we obtain

2ω
(
∂vx

∂y
− ∂vy

∂x

)
+

1
�
∆p = 0. (3.11)

Same equations (3.10) give us

∂p

∂n

∣∣∣∣
S

= −2�ω(vx cosny − vy cosnx)

− 2iω2�

(
∂χ

∂x
cosny − ∂χ

∂y
cosnx

)
W. (3.12)

Condition (3.12) does not contradict (3.11). As we see, the function p is
completely defined (up to a constant term) by the definition of v and W .
Setting

∆p0 = 2ω�
(
∂vy

∂x
− ∂vx

∂y

)
,
∂p0

∂n

∣∣∣∣
S

= 2�ω(vy cosnx− vx cosny),

∆χ1 = 0,
∂χ1

∂n

∣∣∣∣
S

= −2ω
(
∂χ

∂y
cosnx− ∂χ

∂x
cosny

)
,

(3.13)

we have
p = p0 − iω�Wχ1. (3.14)

Whence we see that the knowledge of values of v, Z, W , Ψ, N (0), and ϕ

at a moment of time allows us to compute
dv
dt

,
dZ

dt
, and

dW

dt
.



350 S. L. Sobolev

20. Let us introduce new notation. We say that the system {Z,W,v} is
the element of the vector space {R}, where Z, W are complex numbers, v is
a vector function in the domain V and satisfies certain additional conditions.
We denote by R this element.

For v we make two assumptions:
(a) ∫∫∫

V

(vxvx + vyvy + vzvz) dv = ‖v‖2 < ∞;

(b) for any arbitrary function ψ with continuous derivatives in the domain
V , the following identity holds:∫∫∫

V

(
∂ψ

∂x
vx +

∂ψ

∂y
vy +

∂ψ

∂z
vz

)
dv = 0. (3.15)

The set of vectors v satisfying conditions (a) and (b) forms a Hilbert
space H. Let us prove the lemma.

Lemma 3.1. For any element v from H, there exists another element vε such
that ‖vε − v‖ < ε. The function vε has continuous derivatives of any order
inside V and is equal identically to zero outside some domain Vη, where Vη

is the inner domain of V , such that the distance of each of its points to the
boundary of V exceeds η.

Proof. To prove this lemma, it suffices to take as vε the function

vε(P ) =
1
C

∫∫∫
V2η

exp
η2

r2 − η2
v(P ′) dvP ′ , r(P, P ′) < η, (3.16)

where P ′ is a varying point, r = r(P, P ′) is the distance from P ′ to P , C is a
certain constant. Function (3.16) is the so-called average function for v, and
its properties were studied in detail by the author in [2]. ��

30. The equations of system D can be written in the form
.

R −R0 = iBR, (3.17)

where R0 denotes the element of {R} with the components(
0,
�ϕκ2 − (2/ω)N (0)

A1 + �κ2
,Ψ
)
, (3.18)

and B is a linear operator defined for all such elements of this space that v
has continuous derivatives.

For the sake of convenience, let us write out again the formulas defining
this operator.
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If we let BR = R1, where R1 = {Z1, w1,v1}, then

v1x = −2ωivy +
i

�

∂p

∂x
+ 2ω2W

∂χ

∂y
,

v1y = 2ωivx +
i

�

∂p

∂y
− 2ω2W

∂χ

∂x
,

v1z =
i

�

∂p

∂z
,

(3.19)

div v = 0, vn|S = 0, (3.20)

(A1 + �κ2)w1 = (B1 + �E)ωW +LωZ+ �

∫∫∫
V

(
vx
∂χ

∂y
− vy

∂χ

∂x

)
dv, (3.21)

Z1 = ωW. (3.22)

Besides equation (3.17) we also consider the corresponding homogeneous
equation

.

R= iBR. (3.23)

Let us prove that the operatorB is bounded, and, hence, it can be extended
to the whole space. From equations (3.19) it follows that

4ω2(vxvx + vyvy) − 4iω3W

(
vx
∂χ

∂x
+ vy

∂χ

∂y

)
+ 4iω3W

(
vx
∂χ

∂x
+ vy

∂χ

∂y

)

+4ω4WW

(
∂χ

∂x

∂χ

∂x
+
∂χ

∂y

∂χ

∂y

)
= (v1xv1x + v1yv1y + v1zv1z)

+
1
�2

(
∂p

∂x

∂p

∂x
+
∂p

∂y

∂p

∂y
+
∂p

∂z

∂p

∂z

)
+

1
�

[(
v1,x

∂p

∂x
+ v1,y

∂p

∂y
+ v1,z

∂p

∂z

)
−
(
v1,x

∂p

∂x
+ v1,y

∂p

∂y
+ v1,z

∂p

∂z

)]
.

Hence, integrating over V ,

‖v1‖2 +
1
�2

∫∫∫
V

(grad p · grad p) dv = 4ω2

∫∫∫
V

(vxvx + vyvy) dv

−4iω3W

∫∫∫
V

(
vx
∂χ

∂x
+ vy

∂χ

∂y

)
dv + 4iω3W

∫∫∫
V

(
vx
∂χ

∂x
+ vy

∂χ

∂y

)
dv

+4ω4WW

∫∫∫
V

(
∂χ

∂x

∂χ

∂x
+
∂χ

∂y

∂χ

∂y

)
dv. (3.24)
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If we assume that WW = ‖W‖2, ZZ = ‖Z‖2, then, using the Schwarz–
Bunyakovskii inequality, from (3.24) we have

‖v1‖2 ≤ 4ω2[‖v‖2 + 2
√

2κω‖v‖ ‖W‖ + 2κ2ω2‖W‖2],

or
‖v1‖ ≤ 2ω[‖v‖ +

√
2κ‖W‖]. (3.25)

If we approach now to the given vector R by using Rε such that vε has
continuous derivatives, then for Rε we can evaluate iBRε = Rε1 .

Making ε1, ε2 go to zero, we can see that ‖v1,ε1 − v1,ε2‖ → 0, and, hence,
there exists the limit vε, as ε → 0, from H, i.e., lim

ε→0
iBRε ∈ {R}, as required.

40. Let us compose the complex bilinear form on two elements R(1) and
R(2) of the space {R},

Q(R(1), R(2)) = (A1 + �κ2)w(1)w(2) + LωZ(1)Z
(2)

+
�

2ω2

∫∫∫
V

(
v(1)

x v(2)
x + v(1)

y v(2)
y + v(1)

z v(2)
z

)
dv. (3.26)

Obviously,

Q(R(1), R(2)) = Q(R
(2)
, R

(1)
), Q(λR(1), R(2)) = λQ(R(1), R(2)). (3.27)

The form Q(R(1), R(2)) is said to be the inner product of R(1) and R(2).
Let us prove the formula

Q(BR(1), R(2)) = Q(R(1), BR(2)). (3.28)

It is convenient to say that the operator B is generalized Hermitian in a
sense that it is defined on the entire space {R} and satisfies condition (3.28).
By condition, we have

Q(BR(1), R(2)) = Lωw(1)Z
(2)

+ LωZ(1)w(2) + (B1 + �E)ωw(1)w(2)

+�w(2)

∫∫∫
V

(
∂χ

∂y
v(1)

x − ∂χ

∂x
v(1)

y

)
dv + �w(1)

∫∫∫
V

(
∂χ

∂y
v(2)

x − ∂χ

∂x
v(2)

y

)
dv

+
�

2ω2

∫∫∫
V

{[
v(2)

x

(
2ωv(1)

y − 1
�

∂p(1)

∂x

)
+ v(2)

y

(
−2ωv(1)

x − 1
�

∂p(1)

∂y

)

−v(2)
z

1
�

∂p(1)

∂z

]
+
[
v(1)

x

(
2ωv(2)

y − 1
�

∂p(2)

∂x

)

+v(1)
y

(
−2ωv(2)

x − 1
�

∂p(2)

∂y

)
− v(1)

z

1
�

∂p(2)

∂z

]}
dv, (3.29)
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and in view of (3.15)

Q(BR(1), R(2)) = Lω(w(1)Z
(2)

+ w(2)Z(1)) + (B1 + �E)ωw(1)w(2)

+�

⎡⎣w(2)

∫∫∫
V

(
∂χ

∂y
v(1)

x − ∂χ

∂x
v(1)

y

)
dv

+w(1)

∫∫∫
V

(
∂χ

∂y
v(2)

x − ∂χ

∂x
v(2)

y

)
dv

⎤⎦ . (3.30)

Therefore, Q(BR(1), R(2)) = Q(BR
(2)
, R

(1)
), i.e., formula (3.28) is proved.

50. Proved formulas (3.28) and (3.25) imply a number of important con-
sequences. First, the convergence of the series

eiBtR(0) =
∞∑

k=0

tk(iB)k

k!
R(0) (3.31)

follows from them.
Indeed, let us agree to denote by the symbol ‖R‖ the value

‖R‖ = max{‖w‖, ‖Z‖, ‖v‖} (3.32)

and call it the norm R.
Each term of series (3.31) is defined for any element R(0). From inequal-

ity (3.25) it follows that it is possible to indicate a number M such that
‖BR‖ ≤ M‖R‖; the operator satisfying this condition is called, as is known,
bounded.

From the boundedness of the operator B it follows that

‖(iB)kR‖ ≤ Mk‖R‖, (3.33)

and, hence, the convergence of series (3.31).
The sum of series (3.31) is an analytic function of the variable t, satisfying

equation (3.23) and the initial conditions R = R(0) for t = 0.
Let us note that from (3.30) we have

d

dt
Q(eiBtR1, e

iBtR2) = 0 or Q(eiBtR1, e
iBtR2) = const. (3.34)

The behavior of the unknown solution depends substantially on the sign of
the constant L. Let us examine the cases when L > 0 and L < 0, separately.

In the case L = 0 the system splits, because in this case W , v are not at
all related to Z.

In the first case, the space {R} forms a complex Hilbert space with the
inner product Q(R1, R2), since from Q(R,R) = 0 the equality R = 0 follows.
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In this case the operator B is Hermitian. For this case, the existing detailed
spectral theory of operators in the Hilbert space gives the complete answer on
all the questions we can state. Without presenting this theory in detail, let us
just note the main fact that the motion in this case is stable; indeed, in view
of (3.34) the value Q(exp iβtR1, exp iβtR2) remains bounded, and therefore
for any initial conditions, the values ‖w‖, ‖Z‖, ‖v‖ for function (3.31) cannot
increase without bound, and if the initial value Q(R1, R2) is sufficiently small,
then these values will be arbitrarily small as well.

4 The Study of the Resolvent in the Non-Hilbert Case

10. It remains to consider the case L < 0. To find the solution of our problem
explicitly, let us again use the spectral theory of operators.

Let us consider the operator equation

(λE −B)R = R0, (4.1)

where R0 is an arbitrary element of {R}, and λ is a complex number.
We prove that this equation has a solution in the plane of the complex

variable λ everywhere except on the interval −2ω < λ < 2ω of the real axis,
and possibly at certain other isolated values, i.e.,

R = ΓλR0, (4.2)

where the right side is meromorphic everywhere in the plane of λ outside the
interval |λ| < 2ω of the real axis.

The operator Γλ is bounded and ‖Γλ‖ has a finite estimate for any domain
not containing the values mentioned.

The quadratic form

J(R1, R2) = Q(R1, R2), (4.3)

symmetric with respect to the arguments Q(R1, R2) = Q(R2, R1), is called
the inner product of two elements R1 and R2.

Two elements R1 and R2 are called orthogonal in the Fredholm sense if

J(R1, R2) = 0.

Operator A∗ is called adjoint to A if

J(AR1, R2) = J(R1, A
∗R2).

We say that for equation (4.1) the Fredholm theory is valid in a certain
domain O of the plane λ, if:
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Condition 4.1. For any λ from O an alternative holds:
either (a): equation (4.1) has a unique solution for any R0,
or (b): the corresponding homogeneous equation has nontrivial solution.
Case (b) can occur only for isolated values of λ.

Condition 4.2. For any λ the number of linearly independent solutions of the
equations

(λE −B)R = 0, (4.4)

(λE −B∗)R = 0 (4.5)

is finite and the same.

Condition 4.3. The solutions of equation (4.4) corresponding to some λ from
O are orthogonal in the Fredholm sense to all solutions of the adjoint homo-
geneous equations corresponding to another λ from O.

Condition 4.4. The necessary and sufficient condition for equation (4.1) to be
solvable is that R0 be orthogonal in the Fredholm sense to all solutions of
homogeneous adjoint equation (4.5) with the same λ.

The following theorem proved by J. Radon holds (we state it in somewhat
modified form).

Theorem 4.1. If the given operator B can be represented in the form
B = B1 + B2, where the resolvent B1 is regular in a certain domain O of
the plane λ, and the operator B2 is compact, then the Fredholm theory holds
for B in the domain O.

Remark 4.1. Condition 4.3 and the first part of Condition 4.4 (the necessity of
the orthogonality condition) are valid for all values independently of whether
λ belongs to the domain O or not.

Remark 4.2. Due to J. Radon, if the operator B1 has a bounded resolvent
in some norm, then the operator B in any subdomain of O, not containing
isolated singularities, also has a bounded resolvent.

Let us introduce the operator P1 of the projection of the vector R into the
subspace H. The components of P1B are (0, 0,v). Let us express the operator
B in the form

B = P1BP1 + [(E − P1)B + P1B(E − P1)] = B1 +B2. (4.6)

The operator B1 = P1BP1 is bounded, moreover, ‖B1‖ ≤ 2ω, and Her-
mitian, which can be seen directly from formula (3.28). Hence its resolvent
is regular (and, thus, bounded) for |λ| > 2ω and everywhere outside the real
axis.
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The operator B2 = B − B1 is compact, because the set of its values is of
finite dimension: if the image of its action on some vector is (Z ′, w′,v′), then3

v′ = αgradχ1 + βgradχ.

By the Radon theorem, outside the interval |λ| < 2ω of the real axis the
Fredholm theory is valid for B, as required. Outside this interval and the
singularities the resolvent is bounded.

It is also useful to note that, by the inequality ‖BR‖ ≤ M‖R‖, the series
for the resolvent

Γλ =
E

λ
+

B

λ2
+
B2

λ3
+ · · · (4.7)

converges for |λ| > M . Hence, in a neighborhood of the point at infinity, Γλ

is a regular function vanishing at λ = ∞.
20. Let us apply the Fredholm theory to the study of equation (4.1). First,

let us see how we can represent the operator adjoint to B. By definition,

J(BR1, R2) = J(R1, B
∗R2). (4.8)

Using expression (4.3) for J in terms of Q, we obtain

Q(BR1, R2) = Q(R1, B∗R2).

On the other side, Q(BR1, R2) = Q(R1, BR2); hence,

BR2 = B∗R2 or B∗R2 = BR2. (4.9)

Suppose that for certain λ0 the equality BR0 = λ0R0 is valid, i.e., λ0 is
an eigenvalue of the operator B, and R0 is the corresponding eigenvector. By
the above proved, λ0 is also the eigenvalue for the adjoint equation, i.e., there
exists a vector R1 such that

B∗R1 = λ0R1. (4.10)

By the definition of the operator B∗ we have BR1 = λ0R1; hence, conju-
gating both parts, we have

BR1 = λ0R1. (4.11)

Therefore, in this case the vector R1 is also the eigenvector of the operator
B corresponding to the eigenvalue λ0.

The opposite statement is proved in absolutely the same way. R0 is the
eigenvector of the operator B∗, corresponding to the number λ0. Indeed,

BR0 = λ0R0 = B∗R0,

as required. However, from this the orthogonality of R0 to all eigenvectors of
the operator B, except those corresponding to the eigenvalue λ0, follows, i.e.,
3 See formulas (3.14), (3.19). – Ed.
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J(Ri, R0) = Q(Ri, R0) = 0 for λi �= λ0. (4.12)

If λ0 is not real, then
Q(R0, R0) = 0. (4.13)

30. We now prove the following assertion.

Lemma 4.1. There exist no two linearly independent vectors R1 and R2 such
that

Q(R1, R1) = 0, Q(R2, R2) = 0, Q(R1, R2) = 0. (4.14)

Proof. To prove it, let us compose the expression

ααQ(R1, R1) + (αβ + βα)Q(R1, R2) + ββQ(R2, R2) = 0.

The left side of this expression can be transformed into

Q(αR1 + βR2, αR1 + βR2). (4.15)

Hence form (4.15) is identically zero for any α and β. Obviously, Z1 �= 0
and Z2 �= 0, otherwise from (4.14) it would follow that one of the vectors R1

and R2 is identically zero. Let α = Z2, β = −Z1, then αR1 + βR2 has the
component Z = 0. In this case from (4.15) we have that αR1 + βR2 becomes
identically zero. Hence R1 and R2 are linearly dependent. ��

The theorem follows immediately from this lemma.
40. Let us study spectral properties of the operator B.

Theorem 4.2. The operator B cannot have more than two complex conjugate
eigenvalues.

Proof. Let λ1 and λ2 be eigenvalues, λ1 �= λ2, and let R1 and R2 be the
eigenvectors, respectively. Then,

Q(R1, R2) = 0, Q(R1, R1) = 0, Q(R2, R2) = 0.

Hence R1 and R2 are linearly dependent. However, in this case λ1 cannot
differ from λ2. ��

Let us study now the question about multiple characteristic numbers. Con-
sider the equations

(λE −B)R = 0, (λE −B)2R = 0, . . . , (λE −B)kR = 0. (4.16)

The number of linearly independent solutions of all equations (4.16) is said
to be the multiplicity of an eigenvalue.

Theorem 4.3. The multiplicity of a complex eigenvalue of the operator B
cannot exceed 1.
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Proof. Indeed, if the multiplicity of a complex characteristic number is 2,
then either there exist two linearly independent vectors, or the equation
(λE −B)2R = 0 has the solution R1, different from the solution R0.

The first is impossible. However, if the second holds, then (λE −B)R1 is
a solution of the equation (λE −B)R = 0, and, hence,

(λE −B)R1 = αR0.

Let R2 be the solution of the adjoint equation. Then by the Fredholm
solvability condition (4.12),

J(R0, R2) = Q(R0, R2) = 0. (4.17)

By (4.17),R0 andR2 satisfy the conditionsQ(R0, R2) = 0, Q(R2, R2) = 0.
We come to a contradiction, thus proving our statement. ��
Theorem 4.4. The operator B cannot have more than one nonsimple real
eigenvalue.

Proof. Let
(λE −B)R1 = αR0, (λE −B)R0 = 0, (4.18)

and λ is real. Obviously, R0 is the solution of the adjoint equation. The neces-
sary condition of solvability of the first of equations (4.18), valid, as mentioned
before, also for real λ, yields

J(R0, R0) = Q(R0, R0) = 0.

If we combine this with the condition Q(R′
0, R0) = 0, where R′

0 is an
eigenvector corresponding to another eigenvalue, then Q(R′

0, R
′
0) cannot be

zero. The theorem is proved. ��
Theorem 4.5. The equation (λE−B)4R = 0 cannot have solutions different
from the solutions of (λE −B)3R = 0.

Proof. Indeed, suppose that

(λE −B)R3 = R2, (λE −B)R2 = R1,

(λE −B)R1 = R0, (λE −B)R0 = 0.
(4.19)

Then the equality holds
(λE −B)2R3 = R1. (4.20)

The vector R1 is a solution of the equation adjoint to (λE − B)2R = 0.
The Fredholm orthogonality conditions give

J(R0, R0) = J(R1, R0) = J(R1, R1) = 0

or
Q(R0, R0) = Q(R1, R0) = Q(R1, R1) = 0,

which is impossible. The theorem is proved. ��
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50. From these theorems the corollaries on the impossibility of existence
of certain special solutions of the equation

.

R= iBR

follow.
Indeed, for each eigenvalue λ0 and eigenvector R0 there is, as is easy to

see, a particular solution of this equation of the form

R = eiλ0tR0, (4.21)

and for each system of equations

(λE −B)Rk = Rk−1, (λE −B)Rk−1 = Rk−2, . . . , (λE −B)R0 = 0, (4.22)

there is a particular solution of the form

R = eiλ0t

(
tk

k!
R0 − tk−1

(k − 1)!
R1 + · · · + (−1)kRk

)
. (4.23)

Thus, the following is proved:
I. The solutions of form (4.21) can exist for no more than two complex

conjugated values, one for each.
II. The solutions of form (4.23) cannot exist for complex λ0.
III. The solutions of form (4.23) cannot exist more than for one real λ0.
IV. The solutions of form (4.23) cannot have k > 2.

5 Representation of a Solution in Terms of the Resolvent

The operator eiBt constructed in the form of series (3.31) can be written as
follows:

eiBtR(0) = − 1
2πi

∫
C

eiλtΓλR
(0) dλ, Γλ = (λE −B)−1, (5.1)

where C is a sufficiently large contour containing all singularities of Γλ.
Let us prove that the required solution of equation (3.17), satisfying the

condition R = R(0) at t = 0, can be represented in the form

R(t) = eiBtR(0) +

t∫
0

eiB(t−t1)R0(t1) dt1. (5.2)

First, let us prove the lemma.

Lemma 5.1. The operator − 1
2πi

∫
C

Γλ dλ is an identity operator.
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Proof. We have

(λE −B)ΓλR = R or λΓλR−BΓλR = R. (5.3)

Integrating the last equality over the contour C, we obtain

− 1
2πi

∫
C

ΓλRdλ+
1

2πi

∫
C

BΓλ

λ
Rdλ = − 1

2πi

∫
C

dλ

λ
R = R. (5.4)

To establish the lemma, it suffices to show that∫
C

Γλ

λ
Rdλ = 0. (5.5)

This equality immediately follows from the fact that, near λ = ∞, Γλ is a
regular function tending to zero. ��

Representation (5.2) follows directly from Lemma 5.1.
Indeed, assuming t = 0, we have R(0) = R(0).
Let us also note that

d

dt
eiBt = − 1

2πi

∫
C

iλeiλtΓλ dλ. (5.6)

Therefore,
dR

dt
− iBR = − 1

2π

∫
C

eiλt(λE −B)ΓλR
(0) dλ

−
t∫

0

1
2π

∫
C

eiλ(t−t1)(λE −B)ΓλR0(t1) dλ dt1 +R0(t).

However (λE −B)Γλ = E. Hence,

dR

dt
− iBR =

−1
2π

∫
C

eiλt dλR(0)

−
t∫

0

⎧⎨⎩ 1
2π

∫
C

eiλ(t−t1) dλ

⎫⎬⎭R0(t1) dt1 +R0(t) = R0(t),

which is required.
Let us pass now to the study of the question about stability of the motion.
We recall a well-known fact from the Fredholm theory.
At the point λ0, which is an eigenvalue of the operator B of multiplicity

1, the expansion of the function ΓλR0 in powers of λ− λ0 has the form
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ΓλR0 =
J(R0, R1)
λ− λ0

R∗ + · · · , (5.7)

where R∗ is an eigenvector, and R1 is an eigenvector of the adjoint operator
such that

J(R∗, R1) = 1. (5.8)

The omitted terms in formula (5.7) contain nonnegative powers of (λ−λ0).
The solution of the problem on vibrations of the top with a cavity is called

roughly unstable with the exponent ε0, if Z increases as eε0t or faster. If, on
the contrary, Z increases slower than eε0t, then we say that the motion up to
exponent ε0 is roughly stable. Let us now prove the theorem.

Theorem 5.1. If the resolvent Γλ has a pair of complex conjugated poles at
the points

λ = σ ± iτ, (5.9)

and R0(t) increases slower than eε0t, then the solution of the problem is
roughly stable up to any exponent ε0 > τ and roughly unstable with the expo-
nent ε0 ≤ τ .

Proof. For the proof let us come back to our formula (5.2).
The integral over the contour C can be transformed in this case into an

integral over the contour C1, located arbitrarily close to the real axis, by
adding two residues at the poles of the resolvent.

Thus, we obtain

eiBtR(0) = − 1
2πi

∫
C1

eiλtΓλR
(0) dλ+ eiλ0tJ(R(0), R1)R∗ + eiλ0tJ(R(0), R∗)R1.

By estimating each term, we have∥∥∥∥∥∥− 1
2πi

∫
C1

eiλtΓλR
(0) dλ

∥∥∥∥∥∥ ≤ eτt 1
2π

∫
C1

‖ΓλR
(0)‖ dλ,

however,
‖ΓλR

(0)‖ ≤ KC1‖R(0)‖,
where the constant KC1 depends possibly on the contour C1. Similarly, one
also estimates the second term of formula (5.2). The theorem is proved. ��
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Chapter 2 Top with Cavity Shaped as an Ellipsoid of
Rotation

6 The Derivation of Main Relations

10. Let us return to system D and consider its properties in the particular
case when the domain filled with fluid is an ellipsoid of rotation with the axes
a, a, and c.

In this case we have the parametric equation of the surface S

z = c sinϕ+ l2, x+ iy = a cosϕeiθ. (6.1)

Here l2 is the z coordinate of the center of gravity for the ellipsoid. Let us
also compute cosnx and cosny. We obtain

cosnx+ i cosny =
c cosϕeiθ√

a2 sin2 ϕ+ c2 cos2 ϕ
, (6.2)

cosnz =
a sinϕ√

a2 sin2 ϕ+ c2 cos2 ϕ
, (6.3)

and, hence4,

µ = (c2 − a2)eiθ sinϕ cosϕ√
a2 sin2 ϕ+ c2 cos2 ϕ

+ l2ce
iθ cosϕ√

a2 sin2 ϕ+ c2 cos2 ϕ
. (6.4)

Finally, we are ready to compute the function χ. Indeed, let

χ = reiθ[m(z − l2) + l2] = (x+ iy)[(m(z − l2) + l2)],

χ = (x− iy)
(
mz +

2a2

c2 + a2
l2

)
, m =

c2 − a2

c2 + a2
. (6.5)

It is not difficult to get convinced that

dχ

dn

∣∣∣∣
S

= µ. (6.6)

Indeed,

∂χ

∂x
= (z − l2)m+ l2,

∂χ

∂y
= i[(z − l2)m+ l2],

∂χ

∂z
= (x+ iy)m,

∂χ

∂n

∣∣∣∣
S

= (z − l2)m(cosnx+ i cosny)

4 By definition, µ = z(cos nx + i cos ny) − (x + iy) cos nz. – Ed.
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+(x+ iy)m cosnz + l2(cosnx+ i cosny)
∣∣∣∣
S

= µ.

Let us compute the values

(iB)k(Z,w, 0). (6.7)

In view of the fact that
∂2χ

∂z2
= 0, the result of computations is an element

of a certain three-dimensional subspace {R}3 independent of A, C1, K, and
ω. Let us establish this proposition in a more general form.

Consider the vector v∗,

v∗x = (z − l2)a2mξ, v∗y = −i(z − l2)a2mξ, v∗z = −(x− iy)c2mξ, (6.8)

where m is defined in (6.5). It is easy to verify that

div v∗ = 0, vn|S = 0. (6.9)

Relations (6.9) are verified elementary, for example,

vn|S = m[a2(z − l2)(cosnx− i cosny) − c2(x− iy) cosnz]ξ|S = 0.

We define the subspace {R}3 as the subspace consisting of the elements of
the form (Z,w, iωξv∗).

Let v1 be an element of this subspace. Let us compute iBv1.
Substituting it into equation (3.10), we obtain

iω(z − l2)a2m(
.

ξ +2ωiξ) +
1
�

∂p

∂x
− 2ω2w[(z − l2)m+ l2] = 0,

ω(z − l2)a2m(
.

ξ +2ωiξ) +
1
�

∂p

∂y
+ 2iω2w[(z − l2)m+ l2] = 0,

−iω(x− iy)c2m
.

ξ +
1
�

∂p

∂z
= 0.

Hence p must be of the form

p = −i(x− iy)(z − l2)ω�m(a2
.

ξ +2ωia2ξ + 2ωiw) + 2ω2�wl2(x− iy)

= i(x− iy)(z − l2)ωc2�m
.

ξ +2ω2�wl2(x− iy). (6.10)

This is possible if

(c2 + a2)
.

ξ +2ωia2ξ + 2ωiw = 0. (6.11)

Let us evaluate now the quantities

κ2, E, and
∫∫∫

V

(
v∗x
∂χ

∂y
− v∗y

∂χ

∂x

)
dv.
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First, we obtain∫∫∫
V

(z − l2)2r dz dr dθ = 2π

c∫
0

z2a2

(
1 − z2

c2

)
dz

= 2π

c∫
0

(
z2a2 − a2z4

c2

)
dz =

4
15
πa2c3,

∫∫∫
V

r2 r dz dr dθ = π

c∫
0

a4

(
1 − z2

c2

)2

dz =
8
15
πa4c.

Hence,

C2 =
8
15
πa4c�. (6.12)

In view of ∫∫∫
V

(z − l2) dv = 0,

we obtain ∫∫∫
V

z2 r dz dr dθ

=
∫∫∫

V

[(z − l2)2 + 2l2(z − l2) + l22] dv =
4
15
πa2c3 + l22V, (6.13)

A2 = l22M2 +
4
15
π�a2c(a2 + c2) = l22M2 +A

(0)
2 , (6.14)

A2 − C2 = l22M2 +
4
15
π�a2c(c2 − a2).

Next,

2κ2 =
∫∫∫

V

(
∂χ

∂x

∂χ

∂x
+
∂χ

∂y

∂χ

∂y
+
∂χ

∂z

∂χ

∂z

)
dv = m2

∫∫∫
V

[2(z − l2)2 + r2] dv

+2l22

∫∫∫
V

dv + 4l2m
∫∫∫

V

(z − l2) dv = 2l22V +
8
15
π�a2c

(c2 − a2)2

c2 + a2
,

i.e.,

κ2� = l22M2 +
4
15
π�a2c

(c2 − a2)2

c2 + a2
, (6.15)

E = −i
∫∫∫

V

(
∂χ

∂x

∂χ

∂y
− ∂χ

∂y

∂χ

∂x

)
dv = −2

∫∫∫
V

m2(z − l2)2r dz dr dθ
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−2l22

∫∫∫
V

dv = − 8
15
πm2a2c3 − 2l22V

or
�E = − 8

15
π�a2c3m2 − 2l22M2. (6.16)

Finally, ∫∫∫
V

(
v∗x
∂χ

∂y
− v∗y

∂χ

∂x

)
dv

= i

∫∫∫
V

a2m22(z − l2)2 dv = i
8
15
πa4c3m2. (6.17)

Substituting these data into (3.9), we have(
A1 + l22M2 +

4π�
15

a2c
(c2 − a2)2

c2 + a2

)
.
w −

(
B1 − 2l22M2 − 8π�

15
a2c3m2

)
ωiw

+
( g

ω2
(l1M1 + l2M2) +A1 +A2 − C1 − C2

)
ωiZ +

8π�
15

a4c3m2ωiξ = 0,

or, assuming

A1 + l22M2 = A∗, B1 − 2l22M2 = C1 − 2A∗ = B,

A1 +A2 = A, C1 + C2 = C,

we obtain5(
A∗ +

4π�
15

a2c
(c2 − a2)2

c2 + a2

)
.
w −

(
B − 8π�

15
a2c3m2

)
ωiw

−LωiZ +
8π�
15

a4c3m2ωiξ = 0. (6.18)

Equations (6.11), (6.18), and
.

Z −iωw = 0 (6.19)

determine the motion of our ellipsoidal top. The nature of stability of the
motion is determined by the presence or absence of complex roots in the
determinant of the system

∆(λ) =

∣∣∣∣∣ a11 −Lω a13−ω λ 0
2ω 0 a33

∣∣∣∣∣ = 0,

a11 =
(
A∗ +

4π�
15

a2c
(c2 − a2)2

c2 + a2

)
λ−

(
B − 8π�

15
a2c3m2

)
ω,

5 The quantity L is defined by formula (1.7). – Ed.
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a13 =
8π�
15

a4c3m2, a33 = (c2 + a2)λ+ 2a2ω

or

∆(λ) = [(c2 + a2)λ+ 2a2ω]
[(

A∗ +
4π�
15

a2c
(c2 − a2)2

c2 + a2

)
λ2

−
(
B − 8π�

15
a2c3m2

)
ωλ− Lω2

]
− 16π�

15
a4c3m2ω2λ = 0.

If all three roots of ∆(λ) are real and simple, then the motion is stable; if
among the roots only one is real, then it is unstable. Suppose

L = L∗ + C2 −A
(0)
2 = L∗ − 4π�

15
a2c(c2 − a2).

Then
L∗ = C1 −A1 − l22M2 − (g/ω2)(l1M1 + l2M2).

In this case the quantity ∆(λ) can be rewritten as follows:

∆(λ) = [(c2 + a2)λ+ 2a2ω][A∗λ2 −Bωλ− L∗ω2]

+
4π�
15

a2cm[(c2 + a2)λ+ 2a2ω][(c2 − a2)λ2 + 2c2mωλ+ (c2 + a2)ω2]

−16π�
15

a4c3m2ω2λ = [(c2 + a2)λ+ 2a2ω][A∗λ2 −Bωλ− L∗ω2]

+
4π�
15

a2cm[(c2 + a2)(c2 − a2)λ3 + 2(c2 + a2)(c2 − a2)λ2ω

+(c2 + a2)2λ2ω + 2a2(c2 + a2)ω3]

= [(c2 + a2)λ+ 2a2ω][A∗λ2 −Bωλ− L∗ω2]

+
4π�
15

a2c(c2 − a2)(λ+ ω)[(c2 − a2)λ2 + (c2 − a2)λω + 2a2ω2]. (6.20)

It is convenient to note in some cases that

A∗λ2 −Bωλ− L∗ω2 = A∗λ2 − (C1 − 2A∗)λω − (C1 −A∗)ω2 +K

= A∗(λ+ ω)2 − C1ω(λ+ ω) +K.

Thus,

∆(λ) = [(c2 + a2)λ+ 2a2ω][A∗(λ+ ω)2 − C1ω(λ+ ω) +K]

+
4π�
15

a2c(c2 − a2)(λ+ ω)[(c2 − a2)λ2 + (c2 − a2)λω + 2a2ω2]. (6.21)

20. Let us study separately the case K = 0, i.e., we assume that the top
moves around the center of gravity. Then we obtain two equations for λ,

λ+ ω = 0,
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[(c2 + a2)λ+ 2a2ω][A∗(λ+ ω) − C1ω]

+
4π�
15

a2c(c2 − a2)[(c2 − a2)λ2 + (c2 − a2)λω + 2a2ω2] = 0. (6.22)

The root of the first of these equations λ = −ω gives the eigenvector
(Z, 0, 0), which corresponds to Z∗ = const, i.e., to the latent position of the de-
viating top. The roots of the second equation in (6.22) give vibrations around
the new state of equilibrium.

If we assume A∗ = C1 = 0, which means that the shell is weightless, then
for λ we obtain the equation

(c2 − a2)λ2 + (c2 − a2)λω + 2a2ω2 = 0. (6.23)

Its roots are

λ =
−(c2 − a2) ±√(c2 − a2)(c2 − 9a2)

2(c2 − a2)
ω = −ω

2
±
√
c2 − 9a2

c2 − a2

ω

2
. (6.24)

The motion is stable for c > 3a or for c < a. If a < c < 3a, then the
motion is unstable.

If � = 0, then for λ we again have two equations

(c2 + a2)λ+ 2a2ω = 0, A∗(λ+ ω)2 − C1ω(λ+ ω) +K = 0. (6.25)

The root of the first equation gives us the eigenvector (0, 0,v∗). The roots
of the second equation give the usual precessional-nutational motion of the
shell.

30. In the general form the equation ∆(λ) = 0, where ∆(λ) is from (6.21),
can be studied graphically. For this, let us rewrite it in the form

A∗

γ

(
λ

ω
+ 1
)2

− C1

γ

(
λ

ω
+ 1
)

+
ν

γ

+

(
λ
ω + 1

) [
(c2 − a2) λ2

ω2 + (c2 − a2) λ
ω + 2a2

]
(c2 + a2) λ

ω + 2a2

c2 − a2

c2
= 0. (6.26)

Here
ν =

K

ω2
, γ = A

(0)
2 − 1

2
C2 =

4π�
15

a2c3. (6.27)

The function on the left side of (6.26) can be easily constructed, if we
specify the ratio

c

a
, or, which is the same, the quantity m defined by (6.5). Let

ϕ

(
λ

ω

)
= −

(
λ
ω + 1

) (
m λ2

ω2 +m λ
ω + 1 −m

)
λ
ω + 1 −m

2m
m+ 1

. (6.28)
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Let us construct the curves ϕ = ϕ

(
λ

ω

)
for different values of m and

separately draw on a transparency the parabola

y =
A∗

γ

(
λ

ω
+ 1
)2

− C1

γ

(
λ

ω
+ 1
)

+
ν

γ
. (6.29)

Let us place this transparency on the graph ϕ = ϕ

(
λ

ω

)
. The motion is stable

if the parabola intersects the curve in three points; if the parabola intersects
the curve in one point, then the motion is unstable.

40. Instead of studying equation (6.21) graphically, we can do it analyti-
cally by using the theory of algebraic equations. It is known that the necessary
and sufficient condition for all three roots of the equation

a0x
3 + a1x

2 + a2x+ a3 = 0 (6.30)

to be real, has the form (D is the discriminant of the equation)

D = a2
1a

2
2 + 18a0a1a2a3 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 ≥ 0.

The substitution
λ

ω
+ 1 −m = t (6.31)

reduces equation (6.26) to the form

a0t
3 + a1t

2 + (a2 + ν)t+ a3 = 0. (6.32)

By equating to zero the discriminant of this equation, we obtain

4a0ν
3 + (12a0a2 − a2

1)ν
2 + (12a0a

2
2 − 2a2

1a2 − 18a0a1a3)ν

+(4a0a
3
2 − a2

1a
2
2 − 18a0a1a2a3 + 27a2

0a
2
3 + 4a3

1a3) = 0. (6.33)

This equation can have either three real roots ν1, ν2, ν3 or only one. In
the first case the interval of change of ν splits into four pieces,

−∞ < ν < ν1, ν1 < ν < ν2, ν2 < ν < ν3, ν3 < ν < ∞. (6.34)

In the first and third intervals the motion of the top is stable; in the second
and fourth intervals it is unstable.

If (6.30) has one root, then there will be only two intervals

−∞ < ν < ν1, ν1 < ν < ∞.

In the first interval the motion is stable, in the second interval it is unstable.
50. To compute the value ν3 in the case when the product A∗C1 is large,

compared with γ, and also m is not very small, we can replace ϕ
(
λ

ω

)
by its
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expansion in powers of
(
λ

ω
+ 1
)

. Here, neglecting the terms
(
λ

ω
+ 1
)3

and

higher, we obtain the equation(
A∗

γ
+

2m− 1
m2

)(
λ

ω
+ 1
)2

−
(
C1

γ
+

1 −m

m

)(
λ

ω
+ 1
)

+
ν

γ
= 0 (6.35)

or [
A∗ + 4π�a2c(c2 + a2)

c2 − 3a2

c2 − a2

](
λ

ω
+ 1
)2

−(C1 + 8π�a4c)
(
λ

ω
+ 1
)

+ ν = 0, (6.36)

or [
A∗ +A

(0)
2

(
1 − 2a2

c2 − a2

)](
λ

ω
+ 1
)2

− (C1 + C2)
(
λ

ω
+ 1
)

+ ν = 0,

i.e., [
A−A

(0)
2

2a2

c2 − a2

](
λ

ω
+ 1
)2

− C

(
λ

ω
+ 1
)

+ ν = 0.

In this case the condition for the roots to be real is

K

ω2
<

C2

4A(0)
, (6.37)

where

A(0) = A−A
(0)
2

2a2

c2 − a2
.

Hence,

ω > 2

√
A(0)K

C
. (6.38)

This condition is very similar to the one used usually in computations.
Suppose now that the shell of the top was first moving with the angular

velocity ω(0), and the fluid was stationary. According to the law of conservation
moment of momentum C1ω

(0) = Cω, hence, for the initial angular velocity,
we obtain the approximate condition

ω(0) > 2

√
A(0)K

C1
. (6.39)
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Chapter 3 Top with Cylindrical Cavity

7 Computation of a Resolvent

10. In the case when the cavity is a body of rotation, it is convenient to
introduce different variables. We chose as the independent variables instead
of x and y the coordinates r and θ, where

x = r cos θ, y = r sin θ. (7.1)

The unknowns are
Z,w, vr, vθ, vz, (7.2)

where

vz = 2iuz,(1)e
iθ, vr = iuζ,(0) + ie2iθuζ,(2), vθ = iuζ,(0) − ie2iθuζ,(2). (7.3)

Here the operations indicated by the indexes in the parenthesis are defined
by (2.21)–(2.26). The quantities

− i

2
vre

−iθ,
1
2
vθe

−iθ, − i

2
vze

−iθ

are the components on the r-axis, the θ-axis, and the z-axis of the velocity
vector, if the components of this vector in the Cartesian coordinates are vx,
vy, vz.

Let us write out equations for the new unknowns. It is convenient to use
for this purpose formulas (2.30). In this case the new unknowns depend only
on t and r =

√
ζζ.

Assuming for simplicity that Fζ = Fζ = 0 and performing necessary com-
putations, we obtain the homogeneous system

∂vr

∂t
+ 2ωivθ − i

�

∂p

∂r
= 0,

∂vθ

∂t
+ 2ωivr − i

�r

∂p

∂θ
= 0,

∂vz

∂t
− i

�

∂p

∂z
= 0,

(7.4)

∂(rvr)
∂r

− vθ + r
∂vz

∂z
= 0. (7.5)

Let us consider the boundary conditions and equations for Z. Let
µ = e−iθµ∗.
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Then,
[vr cosnr + vz cosnz]S = i

.

Z µ∗∗ = −ωwµ∗∗, (7.6)

N∗∗(p) =
i

2

∫∫
S

pµ∗∗ dS, (7.7)

Z − iωw = 0, A1
.
w −B1ωiw − LωiZ − 1

ω
N∗∗(p) = 0. (7.8)

20. In the case when the domain V is a cylinder of radius b with height
2h and center at the point (0, 0, l2), the function

µ∗∗ = µ∗∗ =
{
z for r = b,
∓r for z − l2 = ±h. (7.9)

Equations for determining the resolvent have the form

λvr + 2ωvθ − 1
�

∂p

∂r
= vr0 ,

λvθ + 2ωvr − 1
�r

∂p

∂θ
= vθ0 , (7.10)

λvz − 1
�

∂p

∂z
= vz0 ,

λZ − ωw = Z0, (A1λ−B1ω)w − LωZ +
i

ω
N∗∗(p) = Aw0, (7.11)

vr = −ωZw for r = b, vz = ωrw for z = ±h. (7.12)

We should add equation (7.5) here. From equations (7.5), (7.12), and (7.10)
we can find the expression for N∗∗(p) in terms of w, v0, and w0. Substituting
the expression into (7.11), we obtain a system of equations on Z and w. If we
know w, in turn, it is easy to find v.

The equality to zero of the determinant of the system obtained on Z and
w, gives us the formal condition of existence of fundamental frequencies, or
eigenvalues of the operator B. Let

vr0 = −ωw0z + ω
∑

cl,0(r) sin
(2l + 1)πz′

2h
,

vθ0 = −ωw0z + ω
∑

gl,0(r) sin
(2l + 1)πz′

2h
,

vz0 = ωw0r + ω
∑

bl,0(r) cos
(2l + 1)πz′

2h
,

(7.13)

where z′ = z − l2.
We search for the solution in the form
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vr = −ωwz + ω
∑

cl(r) sin
(2l + 1)πz′

2h
,

vθ = −ωwz + ω
∑

gl(r) sin
(2l + 1)πz′

2h
,

vz = ωwr + ω
∑

bl(r) cos
(2l + 1)πz′

2h
,

(7.14)

p

�
= (ωλw − ωw0)rz + ω

∑
al(r) sin

(2l + 1)πz′

2h

−2ω[(λ+ ω)w − w0]l2r. (7.15)

In this case equation of continuity (7.5) takes the form

[rcl,0(r)]′ − gl,0(r) − r
(2l + 1)π

2h
bl,0(r) = 0, (7.16)

[rcl(r)]′ − gl(r) − r
(2l + 1)π

2h
bl(r) = 0. (7.17)

Let us substitute (7.14) and (7.15) into equation (7.10). Using

z = z′ + l2 =
∞∑

l=0

8h(−1)l

π2(2l + 1)2
sin

(2l + 1)πz′

2h
+ l2, (7.18)

we obtain∑
ω

{
λcl + 2ωgl − a′l +

8h(−1)l

π2(2l + 1)2
(2w0 − 2(λ+ ω)w) − cl,0

}

× sin
(2l + 1)πz′

2h
= 0,

∑
ω

{
2ωλcl + λgl − al

r
+

8h(−1)l

π2(2l + 1)2
(2w0 − 2(λ+ ω)w) − gl,0

}
(7.19)

× sin
(2l + 1)πz′

2h
= 0,

λbl − (2l + 1)π
2h

al − bl,0 = 0.

By equating to zero the coefficients at sin
[
(2l + 1)πz

2h

]
and solving the

obtained system with respect to cl and gl, we have

[λ2 − 4ω2]cl − λa′l + 2ω
al

r
− 16h(−1)l

π2(2l + 1)2
(λ− 2ω)

×[(λ+ ω)w − w0] − λcl,0 + 2ωgl,0 = 0,
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[λ2 − 4ω2]gl + 2ωa′l − λ
al

r
− 16h(−1)l

π2(2l + 1)2
(λ− 2ω) (7.20)

×[(λ+ ω)w − w0] + 2ωcl,0 − λgl,0 = 0,

λbl − (2l + 1)π
2h

al − bl,0 = 0.

Using the equation of continuity, we obtain

−λ(ra′l)
′ +

λal

r
+

(2l + 1)2π2

4h2

λ2 − 4ω2

λ
ral − λ(rcl,0)′ − 2ωcl,0

+2ω(r, gl,0)′ + λgl,0 +
λ2 − 4ω2

λ

(2l + 1)π
2h

bl,0 = 0 (7.21)

or

(ra′l)
′ +
{

4ω2 − λ2

λ2

(2l + 1)π2

4h2
r − 1

r

}
al = fl, (7.22)

where

fl = −(rcl,0)′ − 2ω
λ
cl,0 +

2ω
λ

(rgl,0)′ + gl,0 − 4ω2 − λ2

λ2

(2l + 1)π
2h

bl,0. (7.23)

Equation (7.22) allows determining al, and the first of equations (7.20)
provides the boundary conditions for this function.

Indeed, cl,0 = 0, cl = 0 for r = b. Hence,

rλa′l|r=b − 2ωal|r=b = − 16h(−1)l

π2(2l + 1)2
(λ− 2ω)r[(λ+ ω)w − w0]. (7.24)

Assuming

k2 =
4ω2 − λ2

λ2

(2l + 1)2π2

4h2
,

for al we obtain the expression

al(r) = −16hb(−1)l(λ− 2ω)
π2(2l + 1)2

J1(kr)
λkbJ ′

1(kb) − 2ωJ1(kb)

×[(λ+ ω)w − w0] +

b∫
0

K(r, r1)fl(r1) dr1. (7.25)

Here

K(r, r1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π

2
J1(kr)

[
Y1(kr1) − λkbY ′

1(kb) − 2ωY1(kb)
λkbJ ′

1(kb) − 2ωJ1(kb)
J1(kr1)

]
, r ≤ r1,

(7.26)
π

2
J1(kr1)

[
Y1(kr) − λkbY ′

1(kb) − 2ωY1(kb)
λkbJ ′

1(kb) − 2ωJ1(kb)
J1(kr)

]
, r ≥ r1.
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The expression obtained for al allows us to compute

N∗∗(p) = βw +N1, (7.27)

where N1 depends only on w0, v0, but does not depend on w.
For the goals stated it suffices to know the value of β. Taking into account

that
h∫

−h

z′ sin
(2l + 1)πz′

2h
dz′ =

8h2(−1)l

π2(2l + 1)2
,

we obtain

1
ω
N∗∗(p) = i�[λw − w0]

⎧⎨⎩−2πh

b∫
0

r3 dr + πb2
l2+h∫

l2−h

z2 dz

⎫⎬⎭
−2πi�[(λ+ ω)w − w0]

l2+h∫
l2−h

b2l2z dz

+i�
∞∑

l=0

2π(−1)l

⎧⎨⎩
b∫

0

al(r)r2 dr − 4h2bal(b)
π2(2l + 1)2

⎫⎬⎭
= iw

{
−(C2 −A

(0)
2 )λ+ 2π�

16bh(λ− 2ω)(λ+ ω)
π2(2l + 1)2

×
∞∑

l=0

⎡⎣ 4h2bJ1(kb)
π2(2l + 1)2

−
b∫

0

J1(kr)r2 dr

⎤⎦− l22M2(λ+ 2ω)2ω
}

+
1
ω
N1,

where A(0)
2 and C2 denote the principal moments of inertia of the fluid

A
(0)
2 =

2
3
πh3b2�+

1
2
πhb4�, C2 = πhb4�, A2 = l22M2 +A

(0)
2 .

Let us calculate the quantity

ψ =
4h2bJ1(kb)
π2(2l + 1)2

−
b∫

0

J1(kr)r2 dr.

We have

b∫
0

J1(kr)r2 dr =
1
k3

kb∫
0

J1(x)x2 dx = − 1
k3

kb∫
0

J ′
0(x)x2 dx,



On Motion of a Symmetric Top with a Cavity Filled with Fluid 375

x2J ′
0(x) = x2J ′

0(x) + 2xJ0(x) + 2xJ ′′
0 (x) + 2J ′

0(x)

=
d

dx
[x2J0(x) + 2xJ ′

0(x)]

and, hence,

b∫
0

J1(kr)r2 dr = − 1
k3

[k2b2J0(kb) − 2kbJ1(kb)],

and

ψ =
b2

k
J0(kb) − 2b

k2
J1(kb)

[
1 − 4ω2 − λ2

2λ2

]
=

4h2b

(2l + 1)2π2

λ2kbJ0(kb) + (4ω2 − 3λ2)J1(kb)
4ω2 − λ2

.

Collecting together all the above calculations, we obtain

1
ω
N∗∗(p) = iw

{
−λ(C2 −A

(0)
2 ) +

128h3b2�

π3

(λ− 2ω)(λ+ ω)
4ω2 − λ2

×
∞∑

l=0

1
(2l + 1)4

λ2kbJ0(kb) + (4ω2 − 3λ2)J1(kb)
λkbJ0(kb) − (λ+ 2ω)J1(kb)

−l22M2(λ+ 2ω)
}

+
1
ω
N1. (7.28)

By substituting this expression into equations (7.11), we obtain the system[
(A1 + l22M2 −A

(0)
2 + C2)λ− (B1 − 2l22M2)ω +

128h3b2�

π3

(λ− 2ω)(λ+ ω)
4ω2 − λ2

×
∞∑

l=0

1
(2l + 1)4

λ2kbJ0(kb) + (4ω2 − 3λ2)J1(kb)
λkbJ0(kb) − (λ+ 2ω)J1(kb)

]
w − LωZ = Aw0 − i

N1

ω
,

λZ − ωw = Z0. (7.29)

The determinant of this system has the form

∆(λ) = (A∗ −A
(0)
2 + C2)λ2 − (Bωλ− Lω2)

−128h3b2�

π3

λ(λ+ ω)
λ+ 2ω

∞∑
l=0

1
(2l + 1)4

λ2kbJ0(kb) + (4ω2 − 3λ2)J1(kb)
λkbJ0(kb) − (λ+ 2ω)J1(kb)

. (7.30)

Here
A∗ = A1 + l22M2, B = B1 − 2l22M2.

For such values λ that∆(λ) = 0, there exists a solution of the homogeneous
system corresponding to (7.29). If we can find from this system the value w,
then (7.25) determines p, and, hence, all other unknowns.
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8 The Investigation of Results

10. The goal of the present section is to investigate the function ∆(λ) and
the conditions in which it has complex roots. Denoting λ = 2ωq, and dividing
both parts by ω2, we have

∆(λ) = (A∗ −A
(0)
2 + C2)4q2 − 2Bq − L− 256

π3
h3b2�

q(2q + 1)
q + 1

D1(q), (8.1)

where

D1(q) =
∞∑

l=0

1
(2l + 1)4

q2kbJ0(kb) − (3q2 − 4)J1(kb)
qkbJ0(kb) − (q + 1)J1(kb)

. (8.2)

Let us rewrite equations (8.1) in the form

A∗4q2 − 2Bq − L

=
(

(A(0)
2 − C2)4q2 +

256
π3

h3b2�
q(2q + 1)
q + 1

D1(q)
)

= ϕ1(q).

The quadratic trinomial on the left side sometimes is convenient to express
in another form6

4A∗q2 − 2Bq − L = 4A∗q2 − (C1 − 2A∗)2q + (K/ω2 +A∗ − C1)

+(A(0)
2 − C2) = A∗(2q + 1)2 − C1(2q + 1) +K/ω2 + (A(0)

2 − C2). (8.3)

Then equation (8.1) has the form

A∗(2q + 1)2 − C1(2q + 1) +
K

ω2

= (A(0)
2 − C2)(4q2 − 1) +

256
π3

h3b2�
q(2q + 1)
q + 1

D1(q). (8.4)

In such notation we see that the interval, cut off by the parabola

y = A∗(2q+1)2 −C1(2q+1)+
K

ω2
from the line q = −1

2
, is equal to the value

of the tilting moment K divided by the square of the angular velocity of the
top.

Let us first study the right side of equation (8.4). Let

ξ =
√

1
q2

− 1. (8.5)

Let us make a cut in the plane q along the interval −1 ≤ q ≤ 1 of the real
axis. In the remaining part of the plane, the quantity
6 S. L. Sobolev uses formulas L = C1 + C2 − A1 − A2 − K

ω2 , A1 = A∗ − l22M2,
A2 = A0

2 + l22M2. – Ed.
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kb =
(2l + 1)πb

2h
ξ (8.6)

is a regular function. Let us agree to chose always the values of the root such
that k has a positive imaginary part for q > 1. In this case the entire plane
q gets mapped into the twice repeated upper half-plane of k with a critical
point on the imaginary axis. The imaginary axis of q and the parts of the real
axis, where |q| > 1, correspond to the positive part of the imaginary axis. The
upper part of the interval −1 < q < 0 maps to 0 < k < ∞, and the upper
part of the interval 0 < q < 1 maps to −∞ < k < 0, and also on the upper
lip k is monotonically increasing on these intervals. On the lower lip k has a
sign opposite to the sign on the upper one. Near the point q = ∞ we have the
expansion

ξ = i

(
1 − 1

2
1
q2

+ · · ·
)
, (8.7)

and near q = 0 for the values from the upper half-plane

ξ = −1
q

+
q

2
+ · · · . (8.8)

It is obvious that for q from the upper half-plane

q = −1
ξ

(
1 − 1

2
1
ξ2

+ · · ·
)

= − 1√
1 + ξ2

. (8.9)

20. Let us establish convergence of the series D1(q) for all q outside the
cut |q| < 1. To do so, we consider the terms of this series as functions of ξ.
For any q outside the cut, the quantity ξ has a complex value from the upper

half-plane. In this case the quantity kb =
[
(2l + 1)πb

2h

]
ξ, as l increases, runs

over a sequence of discrete values located on the same ray passing through
the origin.

For a large in absolute value kb for integer n, the following formula [3] is
valid7

Jn(kb) =
(

2
πkb

)1/2(
cos(kb− 1

2
nπ − 1

4
π)Un(kb)

+ sin(kb− 1
4
nπ − 1

4
π)Vn(kb)

)
. (8.10)

Here

Un(z) = 1 +
∞∑

r=1

(−1)r(4n2 − 12)(4n2 − 32) . . . (4n2 − (4r − 1)2)
2r!26rz2r

,

Vn(z) =
∞∑

r=1

(−1)r(4n2 − 12)(4n2 − 32) . . . (4n2 − (4r − 3)2)
(2r − 1)!26r−3z2r−1

.

(8.11)

7 The Hankel asymptotical expansion. – Ed.
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Taking into account that for large y,

cos(x+ iy) ∼ 1
2
ey−ix, sin(x+ iy) ∼ i

2
ey−ix, (8.12)

and assuming kb = x+ iy, we have for sufficiently large y,

Ul(q) ≡
q2 (2l+1)πb

2h ξJ0

(
(2l+1)πb

2h ξ
)
− (3q2 − 4)J1

(
(2l+1)πb

2h ξ
)

q (2l+1)πb
2h ξJ0

(
(2l+1)πb

2h ξ
)
− (q + 1)J1

(
(2l+1)πb

2h ξ
) ≈ q. (8.13)

From (8.13) the uniform convergence of D1(q) immediately follows every-
where in the plane q, except for the cut mentioned.

Let us point out one important corollary. Let

N∑
l=0

1
(2l + 1)4

Ul(q) = D
(N)
1 (q). (8.14)

For
3b2

4
< h2 we consider the approximate equation

1

A
(0)
2 − C2

ϕ(q) = (4q2 − 1) +
384
π4

1
1 − 3b2

4h2

q(2q + 1)
q + 1

D
(N)
1 (q). (8.15)

The complex roots of equation (8.4), if they exist, are arbitrarily close to
the complex roots of the approximate equation. Therefore, instead of studying
complex roots of (8.4), we are going to consider the same roots of equation
(8.15).

30. Let us consider one auxiliary question. Let the equation

a−1

z
+ a0 + a1z = h(z) (8.16)

be given, where a−1, a0, a1 are real numbers, h(z) is an analytic function of
z, small for small values and real on the real axis.

Let us try to calculate its roots. Throwing the term h(z) off, we obtain

a−1 + a0z + a1z
2 = 0. (8.17)

Hence,

z
(1)
1,2 = − a0

2a1
±
√

a2
0

4a2
1

− a−1

a1
. (8.18)

Obviously, the roots are complex if a2
0 < 4a1a−1 or |a0| < 2√a1a−1.

The maximum value of the imaginary part of the root, as a function of the

parameter a0, is equal to
√
a−1

a1
.
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To find the exact solution, we apply the method of successive approxima-
tions. Let

a
(n)
0 = a0 − z

(n−1)
2 h(z(n−1)

1 ) − z
(n−1)
1 h(z(n−1)

2 )

z
(n−1)
2 − z

(n−1)
1

,

a
(n)
1 = a1 − h(z(n−1)

2 ) − h(z(n−1)
1 )

z
(n−1)
2 − z

(n−1)
1

.

(8.19)

In this case

[a(n)
0 + a

(n)
1 z]

z=z
(n−1)
1

= [a0 + a1z − h(z)]
z=z

(n−1)
1

,

[a(n)
0 + a

(n)
1 z]

z=z
(n−1)
2

= [a0 + a1z − h(z)]
z=z

(n−1)
2

,

(8.20)

and let
a−1

z(n)
+ a

(n)
0 + a

(n)
1 z(n) = 0. (8.21)

The convergence of successive approximations for sufficiently small h fol-
lows from usual estimates.

40. Equation (8.15) is such an equation whose right side contains a mero-
morphic function with simple poles at the points, where

qkbJ0(kb) − (q + 1)J1(kb) (8.22)

vanishes for different l.
Near each such pole we can investigate its complex roots by using the

arguments of 30. Let us set up a goal for ourselves to solve the following
problem.

To find for which values of the angular velocity a top with the given weight
and shape looses stability. As shown above, the solution of this problem re-
duces to finding complex roots of (8.15), having a large imaginary part.

It is convenient to define these roots graphically. For this, for a given value

of
b

h
we construct the curve

y = ϕN (q) =

(
1 − C2

A
(0)
2 − 1

2C2

)
(4q2 − 1) +

384
π4

q(2q + 1)
q + 1

D
(N)
1 (q). (8.23)

Roots of (8.15) are found at the intersection points of the parabola

y =
1
γ

[
A∗(2q + 1)2 − C1(2q + 1) +

K

ω2

]
(8.24)

with a curve defined by (8.23).
The equation in question has imaginary roots when the parabola passes

between two branches of function (8.23). If we draw curve (8.23) on paper,
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and parabola (8.24) on a transparency, then shifting it so that the axis of the
curves coincide, we can find all risky intervals of the change of frequency by

length of the interval cut off by the parabola on the line q = −1
2
.

It is not difficult to see that the polesD(N)
1 (q), are values of q corresponding

to fluid vibrations for the stationary cylinder. The equation

A∗(2q + 1)2 − C1(2q + 1) +
K

ω2
= 0,

roughly speaking, gives frequencies of fundamental vibrations of the top shell
with some corrections due to the moments of inertia of the fluid. Therefore,
the entire phenomenon bears the nature of peculiar resonance.

The domains of the risky values
K

ω2
lie approximately, where the funda-

mental frequency of the shell vibrations is close to one of the fundamental
frequencies of the fluid vibrations in the top with a stationary axis.

50. For the more convenient application of this method, let us indicate
how to determine the poles of functions (8.22) and values of residues of the
right side of (8.4) corresponding to these roots. From (8.22) we have

q =
J1(kb)

kbJ0(kb) − J1(kb)
. (8.25)

In this case, we have

kb =
(2l + 1)πb

2h

√
k2b2J2

0 (kb) − 2kbJ1(kb)J0(kb)
J1(kb)

(8.26)

or
h

(2l + 1)b
= π

√
(kbJ0(kb) − 2J1(kb))J0(kb)

4[J1(kb)]2kb
, (8.27)

i.e.,

h∗ =
h

(2l + 1)b
=
π

2

√
−J0(kb)J2(kb)

[J1(kb)]2
. (8.28)

We consider kb as the independent parameter, then (8.27) and (8.25) give
us a parametric equation for determining pairs of the values h∗ and those q, for
which equation (8.22) has a root. The reality of the values needed requires that
J0(kb)J2(kb) be negative. This circumstance occurs for distinct kb in different
intervals between two roots of these functions. Thus, we obtain many branches
of h∗ as functions of q, and vice versa.

60. To determine the values of residues for each root, let us use the theory
of the Riccati equations. Let us consider the equation

y′ + py2 + qy + r = 0 (8.29)
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with analytic coefficients in a certain interval of the domain of the independent
variable a < x < b. Suppose that in a neighborhood of a certain point x0 from
this interval,

p = p0 + p′0(x− x0) +
p′′0
2

(x− x0)2 + · · · ,

q = q0 + q′0(x− x0) + · · · , r = r0 + r′0(x− x0) + · · · .
(8.30)

Assume that p �= 0. If equation (8.29) has a solution with a pole at the
point x0, then this pole can be only the simple pole. In the neighborhood of
x0 the representation

y =
a−1

x− x0
+ a0 + a1(x− x0) + · · · . (8.31)

is valid in this case.
Substituting (8.31) into (8.29), we find

a−1 =
1
p0
, a0 = − 1

2p0

(
p′0
p0

+ q0

)
,

a1 = − 1
3p2

0

p′′0 +
1

12p0

(
p′0
p0

+ q0

)(
3p′0
p0

− 2q0

)
− 1

3

(
q′0
p0

+ r0

)
.

(8.32)

Each function

y =
αxJ0(x) + β1J1(x)
γxJ0(x) + δ1J1(x)

(8.33)

is a solution of some Riccati equation (8.29). The coefficients of this equation
are

p =
1
∆

[
δ

(
γ′ +

γ

x
+
δ

x

)
− γ

(
δ′ − γx− δ

x

)]
,

r =
1
∆

[
β

(
α′ +

α

x
+
β

x

)
− α

(
β′ − αx− β

x

)]
,

q =
1
∆

[
α

(
δ′ − γx− δ

x

)
− δ

(
α′ +

α

x
+
β

x

)

− β

(
γ′ +

γ

x
+
δ

x

)
+ γ

(
β′ − αx− β

x

)]
,

(8.34)

where ∆ = αδ − βγ.
If we use (8.34) and (8.32), then, after simple computations, we obtain

that at every pole the function

q(2q + 1)
q + 1

384
π4

1
(2l + 1)4

q2kbJ0(kb) − (3q2 − 1)J1(kb)
qkbJ0(kb) − (q + 1)J1(kb)

(8.35)

must have the residue
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resl (q0) =
384
π4

1
(2l + 1)4

q30(2q0 + 1)2(1 − q0)
(q0 + 1)[q0 + 1 + (2l + 1)2π2b2/4h2]

.

70. Comparing the tops with the ellipsoidal and cylindrical cavities, we
see that the behavior of such tops depends significantly on the shape of the
cavity.

The important distinction of the motion of the top with the ellipsoidal
cavity is the following: for arbitrary values of the fundamental angular velocity,
the vibrations of the shell are related only with the principal frequency of the
fluid vibrations in the rotating top with a stationary axis.

The generalized resonance discussed by us above, is possible here only in
one bounded interval of ν, and the instability, besides the values of ν from
this interval, can occur only for very small values of the angular velocity.

In the case of the cylinder the shell vibrations are connected with the
entire infinite set of the forms of the fluid vibrations, and therefore there are
infinitely many domains of resonance.

Hence the top with the ellipsoidal cavity should have calmer rotations. The
engaged top with the ellipsoidal cavity, as its angular velocity is decreasing,
either immediately leaves the stable state for good, or only once before that
passes the unstable state returning then to calm motion.

The behavior of a top with the cylindrical cavity is agitated. Engaged with
a certain angular velocity, it will, as the velocity decreases, loose and again
regain the stability for many times.
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11. On a Class of Problems
of Mathematical Physics∗

S. L. Sobolev

1. In statements of problems for partial differential equations of mathemat-
ical physics, as is known, one should assume that unknown functions are
sufficiently smooth. These equations describe physical phenomena in domains
large enough to be able to interpret in terms of differentiable functions such
statistical notions as density of a medium, pressure, velocity of a fluid, values
of mechanical, electrical, and magnetic stresses in a body, etc.

For all these quantities we have to consider partial derivatives with respect
to the spatial and the time variables instead of certain integral relations.

Obviously, the description of physical laws in terms of partial derivatives
assumes that the described functions and their derivatives do not vary much
in the domains where we apply these arguments.

Thus, it is quite natural under the study of these equations to seek so-
lutions which remain smooth for all moments t. The use of discontinuous
solutions, solutions with discontinuous derivatives and even weak solutions
such as, for example, distributions, is accepted in two cases.

1. A solution obtained with discontinuous derivatives or a distribution is a
good approximation of a smooth solution. This occurs, for instance, for
the vibrating string equation.

2. A discontinuous solution is used only as an intermediate auxiliary element
needed for construction of a smooth solution.

For the classical equations of vibrations of continuous media (string, mem-
brane, elastic body, gas, etc.) the existence of partial derivatives of a solution
can be guaranteed for an infinite interval of time, if initial conditions are
sufficiently smooth.

It is known that this circumstance, generally speaking, does not hold for
nonlinear equations, for example, for the equations of gas motion, where the

∗ Simpos. Internaz. Appl. Anal. Fis. Mat. (Cagliari-Sassari, 1964), Edizioni Cre-
monese, Rome (1965), pp. 192–208.
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classical solution exists only on a bounded interval t. Then strong discontinu-
ities appear, and the mechanical process can be studied by using a different
theory.

In my report one class of linear problems of mathematical physics will
be discussed, where there is no hope to obtain a physically sound solution.
However, the reasons are somewhat less transparent than the appearance of
discontinuities. Solutions of these problems have noncompact trajectory in a
corresponding abstract space.

Let us illustrate the above.
Consider the classical equation of vibrations corresponding to several phys-

ical problems

∆u− ∂2u

∂t2
= 0 (1)

in a domain Ω with boundary conditions

Bu|Γ = 0. (2)

It is convenient to consider as an element of a solution the pair w =(
u,
∂u

∂t

)
. In this case the natural metric can be defined as the energy metric

‖w‖2
X = ‖u‖2

W 1
2

+
∥∥∥∥∂u∂t

∥∥∥∥2
L2

, (3)

‖u‖2
W 1

2
=
∫
Ω

|gradu|2dx,
∥∥∥∥∂u∂t

∥∥∥∥2
L2

=
∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2dx.

In such a metric the compactness of a trajectory is related, generally speak-
ing, with the compactness of the domain Ω. The trajectory is compact for
finite domains and noncompact for infinite domains such as a half-space, a
semibounded or unbounded cylinder, etc.

For all domains with corresponding conditions (2) the law of energy preser-
vation holds,

d

dt
‖w‖2

X = 0. (4)

This law means that the set of all points of the trajectory is bounded.
For a set M of functions w(x) defined in a bounded domain to be compact

in the space X, it is necessary and sufficient that:

1) this set is bounded
‖w(x)‖X < M ; (5)

2) it is equicontinuous in the natural metric, i.e.,

‖w(x+∆x) − w(x)‖X < η(|∆x|), (6)

where neither M , nor η(|∆x|) depend on the choice of w, and η(ξ) tends
to zero as ξ tends to zero.
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The necessary condition of applicability of partial differential equations for
the study of a physical phenomenon is the condition that functions w(x, t),
expressing different physical fields in the problem, always have restrictions
wΩ(x, t) equicontinuous for all moments of t in each prescribed part Ω ⊂ En.
More exactly, the estimates of the norm must hold,

‖wΩ(x+∆x, t) − wΩ(x, t)‖X ≤ η(|∆x|, Ω), (7)

where η does not depend on t. If inequality (7) fails, it is easy to see that the
partial differential equations mentioned above make no sense.

Indeed, deriving these equations, we assume that we can describe fields of
velocities, for example, of a fluid by functions u(x, t) such that their values
present, in some sense, the average for a large number of molecules. However,
if (7) fails, then there exists a constant η0 such that for the given |∆x|, even
when this value is much less than the intermolecular distance, we can point
out a moment t, after which the shift by |∆x| gives a difference exceeding η0,
which is nonsense.

In my report I would like to indicate some quite simple problems of math-
ematical physics, whose solutions do not satisfy condition (6) uniformly in t,
therefore, they lose their physical meaning.

We should note one more circumstance playing a significant part in this
question. The noncompactness of trajectories means that it is impossible in
principle to construct an approximation of solutions of such problems for all
moments of time by a finite number of elements from a bounded set in a
finite-dimensional space.

Therefore, the usual methods of stability study, such as the Ritz method
or the Bubnov–Galerkin method of moments, are unacceptable in principle.

The stated problems are closely related to very important problems of
mathematical analysis.

2. We now move on to examples. Let Ω be filled with an ideal uncom-
pressible fluid, rotating with a constant angular velocity as a solid body.

The velocity and the pressure could be taken in the form

−→v = ω(
−→
k ×−→r ), p =

ω2(r2 − z2)
2

− gz + p0, (8)

where ω is the angular velocity, −→r is the coordinate vector1. Here
−→
k is the

unit vector parallel to the z-axis. Functions (8) satisfy the Euler equations.
In the rotating system of coordinates the fluid will be at rest.
Let us consider now small vibrations of the fluid about this equilibrium in

the rotating system.
If we keep only the linear terms on the left sides of the Euler equations,

then we have2

1 The density of the fluid ρ = 1. – Ed.
2 For details, see the paper [10] of Part I of this book. – Ed.
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∂−→v
∂t

+ 2ω(
−→
k ×−→v ) + grad p = 0, (9)

div−→v = 0. (10)

Without loss of generality, for convenience we replace equation (10) by

div
∂−→v
∂t

= 0. (11)

We consider two boundary value problems for this system.

Problem 1. Find a solution of system (9), (11) with conditions

p|Γ = const, (12)

−→v |t=0 = −→v 0(x). (13)

Problem 2. Find a solution of system (9), (11) with condition (13) and

−→v n |Γ = 0. (14)

These two problems will be studied either in a bounded domain, or in a
cylinder with generators parallel to the y-axis.

The problem of motion of a top with a cavity filled with an ideal uncom-
pressible fluid has been studied as well.

The equations of motion of this top and the boundary conditions for the
fluid can be easily written.

Solutions of Problems 1 and 2 can be obtained in the form of series in
powers of t. It is more convenient to consider the real Hilbert space H with
the inner product

(−→u 1,
−→u 2) =

∫
(u1

xu
2
x + u1

yu
2
y + u1

zu
2
z) dx dy dz. (15)

System (9), (11) can be expressed in the form

d−→v
dt

= A−→v . (16)

Here the operator A can be defined in the following way3. Consider the
subspace J1 of the space H generated by vector fields orthogonal to gradients
of all ϕ0, i.e., ∫

Ω

〈−→v , gradϕ0〉 dx = 0 (17)

for all ϕ0 compactly-supported in Ω with continuous first-order derivatives.
This space is the closure of the space of all rot

−→
ψ in H. Another subspace J0

3 For details, see the paper [9] of Part I of this book. – Ed.
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is the space of fields satisfying (17) for all ϕ0. J0 is the closure of the space
of all rot

−→
ψ satisfying the condition

rotn
−→
ψ |Γ = 0. (18)

For Problem 1 the operator A is the projector of the vector 2ω(
−→
k × −→v )

on J1, and for Problem 2 it is the projector of the same vector on J0. Since
the vector product 2ω(

−→
k ×−→v ) and the projectors are bounded operators, we

can see that the operator A is bounded

‖A‖ ≤ 2ω. (19)

Therefore, the solution of system (16) with condition (13) can be expressed
in the form of the series

−→v (x, t) = etA−→v 0(x) = −→v 0(x) +
t

1!
A−→v 0(x) +

t2

2!
A2−→v 0(x) + · · · , (20)

convergent for all t.
In the same way the Cauchy problem (16), (13) is studied in unbounded

domains.
From these formulas one easily observes that the three classical Hadamard

conditions of well-posedness hold: the existence of solution, uniqueness and
continuous dependence on initial conditions.

3. S. Bochner proved a remarkable theorem about the behavior of all so-
lutions of problems of mathematical physics with energy integral independent
of t. He proved that for trajectories in a corresponding space to be compact it
is necessary that u(t, x) be almost periodic in t, i.e., admit the Fourier series
expansion

u(x, t) =
∞∑

k=1

uk(x)eiλkt. (21)

The converse is also valid. Every almost periodic function, i.e., the function
of the form (21), generates also a compact trajectory in X.

In the classical problems of mathematical physics without relaxation, there
always exists an integral of energy, and the compactness of a trajectory is
simply related to the compactness of Ω, occupied by the vibrating medium.
In the case of one independent variable C. F. Muckenhoupt, and in the case
of several variables the author, proved this fact in the simplest cases by using
construction of positive integrals of higher order4.

4 Almost periodicity of solutions of the first and the second boundary value prob-
lems for the wave equation in cylindrical domains was proved in the works: Muck-
enhoupt, C. F.: J. Math. Phys. Massachusetts Inst. of Technology, 8, 163–199
(1929); Sobolev, S. L.: Dokl. Akad. Nauk SSSR, 48, 570–573 (1945); 48, 646–648
(1945); 49, 12–15 (1945). – Ed.
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It is impossible to build these positive integrals of higher order in our
problems. R. A. Aleksandryan directly proved in certain special cases the non-
compactness of trajectories in Hilbert space. In other cases, on the contrary,
the compactness of trajectories was directly proved (R. A. Aleksandryan,
R. T. Denchev)5.

Therefore R. A. Aleksandryan proved that, generally speaking, the behav-
ior of the solution depends on the domain Ω; however, this behavior is more
complicated than in the classical case. We will return later to the work of
R. A. Aleksandryan.

The alternative to the Fourier series is the Fourier integral, and the al-
ternative to the discrete spectrum is the continuous spectrum. Let us refine
these two points.

The classical Fourier method assumes that it is known how to find eigen-
functions of a problem of mathematical physics, i.e., solutions of the equation

Aw + λw = 0 (22)

in our Hilbert space X. Strictly speaking, a solution of the problem is obtained
by the superposition of solutions of the form eiλktwk(x).

Already in Fourier’s times, in unbounded domains, mathematicians used
solutions of (22), which do not belong to X, for example,

ei[(a,x)+λkt]. (23)

It is also known that instead of the Fourier series in this case we deal with
the integral

w(x, t) =

+∞∫
−∞

eiλtd(ελw), (24)

where ελ is the unit decomposition, and

w0(x) =

+∞∫
−∞

d(ελw), Aw0(x) =

+∞∫
−∞

λd(ελw). (25)

λ is called a point of the spectrum of A, if the operator A + λE does not
have a bounded inverse operator.

The study of problems included in my report has led in the present day
to a different notion of a point of the spectrum, which better suits our goal.

This notion, first introduced by R. A. Aleksandryan without rigorous the-
ory, was developed in the works of I. M. Gelfand, A. G. Kostyuchenko, and
somewhat later by Yu. M. Berezanskii6.
5 See, for instance, the works: Aleksandryan, R. A.: Tr. Moskov. Mat. Obshch., 9,

455–505 (1960); Denchev, R. T.: Dokl. Akad. Nauk SSSR, 126, 259–262 (1959). –
Ed.

6 See references in: Berezanskii, Yu. M.: Expansions in Eigenfunctions of Selfadjoint
Operators. Naukova Dumka, Kiev (1965). – Ed.
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The set S(λ) of values λ is called spectral if for all λ ∈ S(λ) we can find
a functional w(λ) defined on a dense set Xλ ⊂ X such that Aw + λw is
identically zero, in other words7,

(w,Aw1 + λw1) = 0 (26)

for all w1 from a set everywhere dense in X.
The functional w is called the eigenfunctional8. For differential equations,

eigenfunctionals are functionals continuous in a metric slightly stronger than
the metric of X. By eigenfunctionals, the Fourier expansion can be written as

v(x, t) =
∫
eiλtg(λ)d�(λ), (27)

where
g(λ) = (w(λ), v(x, 0)). (28)

A solution v(x, t) of a problem of mathematical physics generates a com-
pact trajectory in X if and only if the spectrum of the problem is a denumer-
able set.

The functionals ei(a,x), which were eigenfunctionals in the classical prob-
lems of mathematical physics, are equivalent to certain functions not square
integrable.

These investigations allowed discovery of new properties of the class of the
problems in question.

To find eigenvalues of the operator from equation (22), we need to con-
struct weak solutions of the system Aw + λw = 0, which can be reduced in
our special case to the problem

A1w + λA2w = 0, (29)

where A1 and A2 are differential operators of the second order with corre-
sponding boundary conditions.

Omitting calculations, let us just note that finding solutions of the system

of equations (9) and (11) of the rotating fluid for ω =
1
2

is reduced to finding

solutions of the equation9

∂2

∂t2
∆p+

∂2p

∂z2
= 0. (30)

For Problem 1 the boundary condition is still (12). The problem of eigen-
values is to find such a λ that the equation
7 Here the symbol of the inner product is taken not in the sense of the Hilbert

space.
8 The notion of the eigenfunctional or the generalized eigenfunction was intro-

duced by R. A. Aleksandryan in his Ph. D. Thesis (Moskovsk. Gosudarstv. Univ.,
Moscow (1949)). – Ed.

9 See appropriate arguments in the paper [9] of Part I of this book. – Ed.
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−λ2∆p+
∂2p

∂z2
= 0 (31)

with condition (12) has a nontrivial weak solution. For −1 < λ < 1, equa-
tion (31) is hyperbolic. For all other remaining values of λ (meaning complex
values) we can prove that equation (31) has no solutions except for p = 0.

Thus, generalized eigenfunctions are weak solutions of the boundary value
problem for the hyperbolic equation with the boundary condition p|Γ = 0.
This problem was solved only in some special cases, which I point out some-
what later.

First, R. A. Aleksandryan10 studied Problem 1 in the case when the do-
main Ω is a cylinder with generators parallel to the y-axis, and the solution
does not depend on y. In this case the problem is reduced to the search for
solutions of the equation(

−λ2 ∂2

∂x2
+ (1 − λ2)

∂2

∂z2

)
p = 0 (32)

in a domain Ω′ with two variables x and z, i.e., to the search of the set of
values of λ, for which there exist weak solutions of this equation, which is the
vibrating string equation vanishing on the contour.

The problem was studied in detail. Weak solutions were explicitly con-
structed. They are the step functions accepting at most three values: −1, 0,
and 1. Their structure is clear from Fig. 1, where the subdomains are marked
for which the solution takes its values.

Fig. 1.

10 The main results of R. A. Aleksandryan’s thesis (Moskovsk. Gosudarstv. Univ.,
1949) are published in the works: Dokl. Akad. Nauk SSSR, 73, 631–634 (1950);
73, 869–872 (1950); Izv. Akad. Nauk Arm. SSR, Ser. Fiz.-Mat. Nauk, 10, 69–83
(1957); Tr. Moskov. Mat. Obshch., 9, 455–505 (1960). – Ed.
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It was shown that the necessary and sufficient condition of the existence
of such solutions is the existence of a closed cycle compounded from segments
of straight lines

λx±
√

1 − λ2 z = C (33)

crossing in the contour.
R. A. Aleksandryan also proved that for some special domains, for exam-

ple, for a disk, an ellipse or a rectangle with sides parallel to the coordinate
axis, closed cycles exist for a denumerable set of values of λ everywhere dense
in the interval −1 < λ < 1. Thus, he proved that for these domains all weak
solutions are almost periodic and form compact sets in the corresponding
Hilbert space.

He also presented an example of a domain with the analytic contour

� ≤ 1 + ε sin4 θ (34)

arbitrarily close to the disk (see Fig. 2), where weak solutions exist for every
value of λ of a certain interval.

Fig. 2.

The noncompactness of trajectories of solutions for all ε follows from the
Bochner theorem.

Thus, the existence of compact trajectories does not depend continuously
on the shape of the domain.



392 S. L. Sobolev

An interesting result was established by T. I. Zelenyak11. For one class
of problems, somewhat more general than the class studied by R. A. Alek-
sandryan, he presented an explicit form of the asymptotic behavior of solu-
tions. The velocity is expressed as

v(x, z, t) = w(x, z)eiµ(x,z)t. (35)

This formula shows that for large enough values of t the difference in phases
between two arbitrary points (x1, z1) and (x2, z2), where the function µ(x, z)
has distinct values, is arbitrarily large, i.e., there are an arbitrary number of
maximums and minimums between these two points . The difference between

two extreme points is asymptotically equal to
2π

t|gradµ| for sufficiently large

t, and it can be significantly smaller than the distance between molecules of
the fluid. Obviously, this solution does not present any physical sense for large
t. This fact, known for nonlinear equations, holds also for linear equations in
the absence of viscosity.

4. The subject of my report is one more problem related to these studies.
Let us consider a finite interval 0 ≤ t ≤ T . Does the solution of the problem

depend continuously on the shape of the domain?
The answer is positive. I would like to present here a sketch of the proof12.
We can restrict ourselves to the case when Ωε ⊂ Ω. The general problem

can be reduced to this special case. Consider the Hilbert space H generated
by vector-functions v in Ω and given by (15)

(−→u 1,
−→u 2) =

∫
(u1

xu
2
x + u1

yu
2
y + u1

zu
2
z) dx dy dz.

Let
−→
k be the unit vector parallel to the z-axis, and ω =

1
2
.

The operator A in (16) is the projection operator (
−→
k × −→v ) on the space

J1 of all solenoidal vectors. For
−→
k ×−→v we have the representation

−→
k ×−→v = −→v 1 + grad p, (36)

where
∫
Ω

〈−→v 1, gradϕ〉 dx = 0 for each ϕ satisfying the condition

ϕ|Γ = 0,

and
p|Γ = 0.

11 Zelenyak, T. I.: Differ. Uravn., 2, 47–64 (1966) – Ed.
12 The continuous dependence of solutions of mixed problems for the Sobolev equa-

tion for n = 2, 3 were studied also in: Zelenyak, T. I.: Dokl. Akad. Nauk SSSR,
164, 1225–1228 (1965). – Ed.
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Then A−→v = −→v 1.
Let A∗

ε be the operator defined as follows.
Consider

−→
k × −→v in the domain Ωε. In the domain Ωε the operator Aε

is defined, as well as the operator A in Ω, by the projection
−→
k × −→v in the

corresponding space.
Assume that

A∗
ε
−→v =

{Aε
−→v , x ∈ Ωε,

A−→v , x �∈ Ωε.
(37)

We show that for all −→v ∈ H,

‖(A−A∗
ε)
−→v ‖L2(Ω) → 0, ε → 0.

Obviously,

(A−A∗
ε)
−→v =

{
grad pε − grad p, x ∈ Ωε,

0, x �∈ Ωε.

The difference p− pε is a function harmonic in Ωε.
Indeed, ∫

〈(−→k ×−→v ) − grad p, gradϕ〉 dx = 0

and ∫
〈(−→k ×−→v ) − grad pε, gradϕ〉 dx = 0

for any function ϕ compactly-supported in Ω. Hence,∫
〈grad(p− pε), gradϕ〉 dx = 0, (38)

which is equivalent to the existence of all derivatives of the function p − pε

such that
∆(p− pε) = 0. (39)

Boundary values of this function coincide with values of the function p,
since pε is equal to zero on Γε.

The norm of p− pε in the space W 1
2 (Ωε), i.e., the norm of grad(p− pε) in

the space L2(Ωε), satisfies the condition

‖grad(p− pε)‖L2(Ωε) ≤ c‖(p− pε)|Γε‖W
1/2
2 (Γε)

= c‖p|Γε‖W
1/2
2 (Γε)

(40)

(see E. Gagliardo, N. Aronszajn, V. M. Babich, M. Schechter, etc.).
Next, by the embedding theorem, the values of the function p on Γε are

arbitrarily close to the values of p on Γ in the norm of W 1/2
2 .

More exactly, if we have sufficiently regular one-to-one correspondence be-
tween points of Γ and Γε, then the following inequality holds (E. Gagliardo13),
13 Gagliardo, E.: Rend. Sem. Mat. Univ. Padova, 27, 284–305 (1957) – Ed.
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‖p|Γ − pε|Γε‖W
1/2
2 (Γ )

≤ δ(ε, p), (41)

where δ(ε, p) tends to zero for any p ∈ W 2
1 (Ω). From inequalities (40) and

(41) it follows that

‖grad(p− pε)‖L2(Ωε) ≤ c‖p|Γε
‖

W
1/2
2 (Γε)

≤ δ(ε, p). (42)

By the inequality

‖(A−A∗
ε)
−→v ‖L2(Ωε) ≤ ‖grad(p− pε)‖L2(Ωε),

we conclude that for any −→v ,

‖(A−A∗
ε)
−→v ‖L2(Ω) → 0 as ε → 0.

We can now prove that

‖(etAε − etA)−→v 0(x)‖L2(Ω) → 0 as ε → 0

for all −→v 0(x) and 0 ≤ t ≤ T . For all T and ε we can indicate a number N(ε, T )
such that ∥∥∥∥(E +

t

1!
A +

t2

2!
A2 + . . .+

tN

N !
AN

)
− etA

∥∥∥∥ < ε

for 0 ≤ t ≤ T and N > N(ε, T ). We have

Ak
ε −Ak =

k−1∑
s=0

As
ε(Aε −A)Ak−s−1.

Hence,

‖(etAε − etA)−→v 0(x)‖ ≤ 2ε‖−→v 0(x)‖ +
∥∥∥∥ N∑

k=0

tk

k!
(Ak

ε −Ak)−→v 0(x)
∥∥∥∥

= 2ε‖−→v 0(x)‖ +
∥∥∥∥ N∑

k=0

tk

k!

k−1∑
s=0

(
As

ε(Aε −A)Ak−s−1−→v 0(x)
)∥∥∥∥.

If we take here ε so small that

‖(Aε −A)Ak−s−1−→v 0(x)‖L2(Ω) <
ε

N
,

we obtain
‖(etAε − etA)−→v 0(x)‖L2(Ω) ≤ Kε,

which is required.
5. I would like to say a few words about some connections existing be-

tween these problems and other problems of the theory of partial differential
equations despite the fact that this is not our main goal.
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I would like to speak on three main directions of research.
1. The principal problems of the theory of partial differential equations.
I have already mentioned the works of I. M. Gelfand, A. G. Kostyuchenko

and Yu. M. Berezanskii in the theory of generalized eigenfunctions.
In these works, as we have already noted, they established that it is always

possible to expand a function in a series (or integral) in “eigenfunctionals”.
However, several questions still remain unexplained. There are no methods of
constructing of the complete system of eigenfunctionals. The classical theory,
dealing with integral equations with compact operators, does not present any
solution. Eigenfunctionals are weak solutions of the equations

(A1 + λA2)u = 0 (43)

with the boundary conditions

Bu|Γ = 0. (44)

We know what kind of relation exists between a nonhomogeneous problem
for partial differential equations and a corresponding homogeneous problem.
The study of eigenvalues of (43) is quite close to the study of boundary value
problems for these nonhomogeneous equations, which are ill-posed in the sense
of Hadamard.

In the works of several authors (F. John, N. N. Vakhaniya, R. T. Denchev,
V. I. Arnold, A. Finzi et al.) there were discovered certain remarkable and very
delicate properties of these problems14.

We do not have enough space here to consider it in detail.
2. Another direction, first introduced by R. A. Aleksandryan and his disci-

ples15, consists of the indication of a new sufficiently broad class of problems
for partial differential equations, similar to the problem on vibrations of a
rotating fluid. Classes of equations and systems of such type were considered.

If we abstract ourselves from spectral properties and study only the Cauchy
problem and mixed problems for partial differential equations not solvable
with respect to the highest derivative in t, we should point out some very
general results of M. I. Vishik and for certain special cases results of O. A. La-
dyzhenskaya16.
14 See the following: John, F.: Amer. J. Math., 63, 141–154 (1941); Vakhaniya, N. N.:

Dokl. Akad. Nauk SSSR, 116, 906–909 (1957); Arnold, V. I.: Izv. Akad. Nauk
SSSR, Ser. Mat., 25, 21–86 (1961); Finzi, A.: Ann. Sci. Ecole Norm. Sup., 69,
371–430 (1952). – Ed.

15 For the review and references see the paper by Aleksandryan R. A., Berezan-
skii Yu. M., Il’in V. A., Kostyuchenko A. G. in the book: Partial Differential
Equations (Proceedings of the Symposium Dedicated to the 60th Anniversary of
Academician S. L. Sobolev) Nauka, Moscow (1970), pp. 3–35. – Ed.

16 Vishik, M. I.: Mat. Sb., 39, 51–148 (1956); Ladyzhenskaya, O. A.: The Mathe-
matical Problems of Dynamics of Viscous Incompressible Fluid. Nauka, Moscow
(1961); English edition: Gordon and Breach Science Publishers, New York – Lon-
don (1963). – Ed.



396 S. L. Sobolev

3. The asymptotical behavior of solutions of one quite broad class of sys-
tems not solvable with respect to the highest derivative in t (systems not of
Kovalevskaya type) was the subject of the work of T. I. Zelenyak17. In several
cases he established that trajectories of solutions are noncompact in every
finite part of the space, i.e., unstable in some sense.

We have given an impression of one class of problems of mathematical
physics, and we see that it is still in its initial stages of study18.

17 The review and references can be found in the book: Zelenyak, T. I.: Selected
Questions of Qualitative Theory of Partial Differential Equations. Novosibirsk.
Gosudarstv. Univ., Novosibirsk (1970). – Ed.

18 S. L. Sobolev’s investigations of the problem on small oscillations of a rotating
fluid originated the most intense interest in equations not solvable with respect
to the highest-order derivative

A0D
l
tu +

l−1X
k=0

Al−kDk
t u = f,

where A0, A1, . . . ,Al are linear differential operators in x = (x1, . . . , xn). At
present, equations of such form are often called equations of Sobolev type in the
literature. Bibliographical comments and extensive references devoted to the the-
ory of boundary value problems for equations of Sobolev type can be found in the
book: Demidenko, G. V., Uspenskii, S. V.: Partial Differential Equations and Sys-
tems not Solvable with Respect to the Highest-Order Derivative. Marcel Dekker,
New York, Basel (2003). – Ed.



Part II

Computational Mathematics and
Cubature Formulas



1. Schwarz’s Algorithm in Elasticity Theory∗

S. L. Sobolev

The conventional Schwarz algorithm in potential theory allows us to con-
struct a solution of the Dirichlet problem in the domain D

′
12, which is the

set-theoretic sum of two domains D1 and D2, which are partially overlapping,
and we do it by solving the Dirichlet problems in each of these subdomains
successively. A similar algorithm was proposed by S. G. Mikhlin1 for solving
the problem of elasticity theory in the multiply-connected domain D12, which
is the set-theoretic product of D1 and D2. S. G. Mikhlin established the con-
vergence of this algorithm only in the case when individual boundary contours
of the multiply-connected domain under consideration are located sufficiently
far from each other.

Using established existence theorems for the problems of elasticity theory,
we show convergence of both the Schwarz algorithm, and the Mikhlin algo-
rithm in the problem of elastic displacements when D1 and D2 are domains
from a wider class.

Let the boundary of D1 be S1 and let the boundary of D2 be S2. Denote
by S

′
1 the part of S1 lying inside D2 and by S

′′
1 the part of S1 outside D2.

Similarly, let S
′
2 be the part of S2 inside D1, and let S

′′
2 be the part of S2

outside D1. Also, let L stand for the intersection line of S1 and S2, separating
S′

1 from S
′′
1 and S′

2 from S
′′
2 . We assume that all listed surfaces are piece-wise

smooth.
The first problem under study consists of solving the equations of elasticity

theory

Lαβuβ = (λ+ µ)∇α∇βuβ + µ∇2uα = (λ+ µ) grad div u + µ∆u = 0 (1)

in the domain D
′
12 under two conditions:

uβ

∣∣
S

′′
1

= ψβ and uβ

∣∣
S

′′
2

= χβ . (2)

∗ Dokl. Akad. Nauk SSSR, 4, 235–238 (1936)
1 Mikhlin, S. G.: The method of successive approximations in application to bihar-

monic problem. Tr. Seism. Inst., 39 (1934), 14 p. – Ed.
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The second problem consists of solving the same equations in the domain
D12 under two conditions:

uβ

∣∣
S

′
1

= ψβ and uβ

∣∣
S

′
2

= χβ . (3)

Here uβ stands for the unknown displacement vector, whose values are given
on the boundary of the corresponding domain.

To each vector vγ considered as an elastic displacement and given in the
domain D12, there corresponds the strain energy, which, as is known, may be
written as follows:

E(vγ) =
∫

D
′
12

[
λ(∇αvα)2 +

µ

2
(∇αvβ + ∇βv

α)2
]
dxdydz. (4)

The problem for solving (1) with boundary conditions on the boundary of a
given domain is equivalent to the problem of variational calculus that consists
of the search for the minimum of an integral of type (4), over the given domain
on the set of all vectors satisfying the given boundary conditions.

The sequence of functions {u(i)
β | i = 0, 1, 2, . . . }, converging to the solution

of the first problem under study, is constructed according to the following rule.
All vector functions u(2k)

β are regular in D2 and in D
′
1 = D1 \ D2, and

satisfy the system of equations (1) in these subdomains. In D
′
12 these vector

functions are continuous. Moreover, they satisfy the following conditions:

u
(2k)
β

∣∣
S

′′
1

= ψβ , u
(2k)
β

∣∣
S

′′
2

= χβ ; u
(2k)
β

∣∣
S

′
2

=

{
ωβ for k = 0,
u

(2k−1)
β

∣∣
S

′
2

for k > 0.
(5)

Here ωβ is an arbitrary sufficiently smooth vector function admitting on L
the same values as ψβ and χβ .

All vector functions u(2k+1)
β are continuous in D

′
12, regular in D1 and in

D
′
2 = D2 \D1, satisfy the system of equations (1) in D1 and D

′
2. Moreover,

they satisfy the following conditions:

u
(2k+1)
β

∣∣
S

′′
1

= ψβ , u
(2k+1)
β

∣∣
S

′′
2

= χβ , u
(2k+1)
β

∣∣
S

′
1

= u
(2k)
β

∣∣
S

′
1

for k ≥ 0. (6)

For k > 0 the vector u(2k)
β gives the minimum of E(uγ) on the set of all

uγ satisfying (5). In particular, u(2k−1)
γ can be chosen as uγ ; hence,

E
(
u(2k)

γ

)
≤ E

(
u(2k−1)

γ

)
. (7)

Similarly, we establish that

E
(
u(2k+1)

γ

)
≤ E

(
u(2k)

γ

)
. (8)
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The monotone decreasing sequence of the positive numbers E
(
u

(n)
γ

)
is

convergent. If c stands for its limit, then for sufficiently large k the following
inequalities hold:

E
(
u(2k−1)

γ

)
≤ c+ ε and E

(
u(2k)

γ

)
≤ c+ ε. (9)

Using the fact that the function (u(2k)
β +u

(2k−1)
β )/2 satisfies conditions (5),

we obtain

E

(
u

(2k)
β + u

(2k−1)
β

2

)
≥ c. (10)

Whence, and from (9), it follows that

E
(
u

(2k)
β − u

(2k−1)
β

)
= 2E

(
u

(2k)
β

)
+ 2E

(
u

(2k−1)
β

)

−4E

(
u

(2k)
β + u

(2k−1)
β

2

)
≤ 4ε, (11)

and, similarly,
E
(
u

(2k+1)
β − u

(2k)
β

)
≤ 4ε. (12)

By the means of usual estimates from these inequalities, we establish that the
sequence of the functions w(n)

β = u
(n)
β −u

(n−1)
β is uniformly convergent to zero

in the domain D
′
12 together with the sequence of the derivatives.

Let us now construct the Green function for the domain D
′
12, i.e., the

function Gαβ of two points P and P1 such that, as a function of P1, it has a
singularity at the point P , and is expressed as

Gαβ(P, P1) = gαβ +
λ+ µ

8πµ(λ+ 2µ)
∇α∇βr − 1

4πµ
1
r
δαβ . (13)

Here r stands for the distance between P1 and P , and, for a fixed α, gαβ is such
a solution of the equations of elasticity theory that the function Gαβ(P, P1)
vanishes on the boundary of the domain D

′
12.

Let n be an even number. Then u
(n)
β has a discontinuity of derivatives

on S
′
2, and u

(n−1)
β has a discontinuity of derivatives on S

′
1. In this case, the

function u
(n)
α can be represented in D2 as

u(n)
α =

∫
S

′′
2

(
w

(n)
β Γ β

αγ −GαβT
(n)β
γ

)
dSγ +

∫
S

′
1

ψβΓ
β
αγ dS

γ +
∫
S

′
2

χβΓ
β
αγ dS

γ , (14)

and the function u
(n−1)
α can be represented in D1 as
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u(n−1)
α =

∫
S

′′
1

(
GαβT

(n)β
γ −w(n)

β Γ β
αγ

)
dSγ +

∫
S

′
1

ψβΓ
β
αγ dS

γ +
∫
S

′
2

χβΓ
β
αγ dS

γ . (15)

Here T (n)αβ is a stress tensor corresponding to the displacements w(n)
β , i.e.,

the tensor expressed through w
(n)
β by the formula

T (n)αβ = λ∇γw(n)
γ δαβ + µ(∇αw(n)β + ∇βw(n)α), (16)

and, for a fixed α, Γαβγ is a stress tensor corresponding to the displacements
Gαβ , i.e.,

Γαβγ = λ∇ζG
αζδβγ + µ(∇βGαγ + ∇γGαβ). (17)

Indeed, the functions defined by the right sides of (14) and (15), obviously,
satisfy conditions in (2). Their difference coincides with w

(n)
β in D12, and each

of them is regular in the corresponding domain. Since the expansion of w(n)
β in

such a sum is unique, for this expansion is determined uniquely to within an
additive function vanishing on the boundary of D

′
12 and regular inside, then

the validity of (14) and (15) is established.
Using (14) and (15), it is already not difficult to show that both u

(2k)
α , and

u
(2k−1)
α converge to the same limit:

lim
n→∞u(n)

α =
∫
S

′
1

ψβΓ
β
αγ dS

γ +
∫
S

′
2

χβΓ
β
αγ dS

γ . (18)

As is known, this limit is the solution of the first problem under study. The
algorithm for the solution of the second problem is similar. We construct the
sequence of v(n)

β according to the following rule.

All functions v(2k)
β are regular in D2 and in D

′
1, and they satisfy the system

of equations (1) in these domains. In D
′
12 they are continuous. Moreover, they

satisfy the following conditions:

v
(0)
β

∣∣
S

′
2

= χβ , v
(0)
β

∣∣
S

′′
2

= ωβ , v
(0)
β

∣∣
S

′′
1

= λβ , (19)

where ωβ and λβ are two sufficiently smooth vector functions admitting on L
the same values as ψβ and χβ ;

v
(2k)
β

∣∣
S

′
2

= v
(2k−1)
β

∣∣
S

′
2
, v

(2k)
β

∣∣
S

′′
2

= 0, v
(2k)
β

∣∣
S

′′
1

= 0 for k ≥ 1. (20)

All functions v(2k+1)
β are continuous inD

′
12, regular inD

′
1 and inD2, satisfy

the system of equations (1) in D
′
1 and D2. Moreover, on the boundaries under

consideration, they satisfy the following conditions:

v
(1)
β

∣∣
S

′
1

= −ψβ + v
(0)
β

∣∣
S

′
1
, v

(1)
β

∣∣
S

′′
1

= 0, v
(1)
β

∣∣
S

′′
2

= 0, (21)
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v
(2k+1)
β

∣∣
S

′
1

= v
(2k)
β

∣∣
S

′
1
, v

(2k+1)
β

∣∣
S

′′
1

= 0, v
(2k+1)
β

∣∣
S

′′
2

= 0 for k ≥ 1. (22)

By the same way as in the case of the first problem, we establish that v(n)
β

converges to zero in D
′
12. Hence, the series

vβ = v
(0)
β − v

(1)
β + v

(2)
β − · · · + (−1)nv

(n)
β + . . . (23)

is regularly convergent on the boundary. Thus, it is also convergent in the
domain D12, where its sum is the required solution of the second problem
under study.

The same arguments can be applied in the infinite domain. In this case, it
is useful to note that the Green function Gαβ must satisfy the corresponding
conditions at infinity. In particular, if D

′
12 is the whole space, then the function

gαβ is equal to 0.
Based on the same principles it is possible to prove the convergence of the

method in many other cases: for example, in solving the Dirichlet problem
for the self-adjoint elliptic equation with variable coefficients, in solving the
fundamental problem for the biharmonic equation, etc. Moreover, the number
of overlapping or added domains is unessential; we can consider the case with
more than two such domains.



2. On Solution Uniqueness of Difference
Equations of Elliptic Type∗

S. L. Sobolev

Let us consider the equation

Lum,n =
1
4
{um+1,n+1 +um−1,n−1 +um+1,n−1 +um−1,n+1 − 4um,n} = 0, (1)

where
−∞ < m < +∞, −∞ < n < +∞,

for the function um,n defined at nodes of the net m + n = 2k + 1. We prove
the following theorem.

Theorem. The solution of equation (1), increasing at infinity slower than√
m2 + n2, can be reduced to a constant.

Proof. Let us consider differences of values of the function um,n in two adja-
cent points: um′+1,n′ −um′−1,n′ and um′,n′+1−um′,n′−1. We show that by the
assumptions of the theorem these differences are equal to zero. Let us choose
the coordinate origin at the point (m′, n′). Then it suffices to establish that
the differences

δ1 = u1,0 − u−1,0 and δ2 = u0,1 − u0,−1 (2)

are equal to zero.

∗ Dokl. Akad. Nauk SSSR, 87, 179–182 (1952)
In the same journal (88, p. 740) the following letter of the author is published in
relation to the article in question: “Yu. G. Reshetnyak pointed my attention on
the fact that all main results of my notes “On solution uniqueness of difference
equations of elliptic type” and “On one difference equation”, published in Vol. 87
of the journal “Doklady Akademii Nauk SSSR”, are contained in the paper by
A. Stöhr’a “Über einige lineare partielle Differenzengleichungen mit konstanten
Koeffizienten”, published in 1950 in the journal “Mathematische Nachrichten”
(Bd. 3, H. 4, 5, 6),which I have not noticed before. I express my sincere gratitude
to Yu. G. Reshetnyak for this indication. S. Sobolev. January 12, 1953.”
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Let us consider the square

|m| = 2p+ 1, |n| = 2p+ 1. (3)

For equation (1) the maximum principle holds, and, hence, we have the unique-
ness theorem for the solution of the Dirichlet problem. Thus, the function um,n

must coincide with the sum of four functions:

um,n = uI
m,n + uII

m,n + uIII
m,n + uIV

m,n,

satisfying, in turn, equation (1). Each of these functions is zero on three sides
of the square, and coincides with um,n on the fourth side. For example,

uI
m,n

∣∣
n=2p+1

= um,n

∣∣
n=2p+1

, uI
m,n

∣∣
n=−2p−1

= uI
m,n

∣∣
|m|=2p+1

= 0. (4)

In the same way, the remaining functions uII , uIII , and uIV are constructed.
If we establish that the differences δ1 and δ2 vanish on each u(j) separately,
then the theorem is proved.

By symmetry it suffices to establish the theorem only for one of the func-
tions u(j), for example, for uI

m,n. For the function uI
m,n we can give the explicit

expression

uI
m,n =

2p+1∑
k=1

akU
(k)
m,n, (5)

where

U (k)
m,n =

√
2

2p+ 1
sin (m+ 2p+ 1)αk sinh (n+ 2p+ 1)βk

sinh (4p+ 2)βk
, (6)

for k = 1, 2, . . . , 2p, αk =
kπ

4p+ 2
, eβk = cot

(αk

2
+
π

4

)
, (7)

and

U (2p+1)
m,n =

⎧⎨⎩(−1)m/2

√
2

2p+ 1
sin (m+ 2p+ 1)α2p+1 for n = 2p+ 1,

0 for n < 2p+ 1.
(8)

The system of functions (6) and (8), as is not difficult to see, satisfies
conditions (4). Moreover, they are linearly independent, since the orthogonal
conditions hold for them:

2p∑
m=−2p

U
(k)
m,2p+1U

(l)
m,2p+1 =

{
1 for k = l,

0 for k �= l.
(9)

The total number of these functions equals (2p + 1), and thus the system of
functions (6) and (8) is complete.

It is easy to see that
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2p+1∑
k=1

a2
k =

2p∑
m=−2p

u2
m,2p+1 =

(
AI
)2(p). (10)

In other words, the sum of squares of the Fourier coefficients is equal to the
sum of squares of values of the function u on the side n = 2p+ 1.

The differences δ1 and δ2 can be estimated by the quantity AI(p). Indeed,

δ1 =
2p+1∑
k=1

ak(U (k)
1,0 − U

(k)
−1,0) and δ2 =

2p+1∑
k=1

ak(U (k)
0,1 − U

(k)
0,−1).

Therefore, by the Cauchy inequality for sums, we have

δ21 + δ22 ≤
(

2p+1∑
k=1

a2
k

)
2p+1∑
k=1

[(
U

(k)
1,0 − U

(k)
−1,0

)2

+
(
U

(k)
0,1 − U

(k)
0,−1

)2
]
. (11)

The computation shows that

2p+1∑
k=1

[
(U (k)

1,0 − U
(k)
−1,0)

2 + (U (k)
0,1 − U

(k)
0,−1)

2
]

≤ 2
2p+ 1

2p+1∑
k=1

(
tan γk − cot γk

tan2p+1 γk − cot2p+1 γk

)2

, (12)

where γk = αk/2 + π/4 = kπ/(8p+ 4) + π/4. Assuming

2
2p+ 1

2p+1∑
k=1

(
tan γk − cot γk

tan2p+1 γk − cot2p+1 γk

)2

= S(p), (13)

from (11) and (12) we obtain

δ21 + δ22 ≤ (AI
)2(p)S(p). (14)

Let us estimate the sum S(p). To do this, it is convenient to compare it
with the integral

I(p) =
8
π

π/2∫
π/4

(
tan γ − cot γ

tan2p+1 γ − cot2p+1 γ

)2

dγ. (15)

The integrand in (15) is a decreasing function of the variable γ. Therefore the
sum S(p) is the value of the integral I(p), calculated using the Darboux sum
with deficiency, and, hence,

S(p) ≤ I(p). (16)

Estimating I(p) and taking cot γ = y as the new variable, we have
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I(p) =
8
π

1∫
0

(1 − y2)2

(1 − y4p+2)2
y4p

1 + y2
dy = I(1)(p) + I(2)(p), (17)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(1)(p) =
8
π

1− 1
4p+2∫

0

(1 − y2)2

(1 − y4p+2)2
y4p

1 + y2
dy,

I(2)(p) =
8
π

1∫
1− 1

4p+2

(1 − y2)2

(1 − y4p+2)2
y4p

1 + y2
dy.

(18)

Let us introduce the new independent variable

z = (1 − y)(4p+ 2) (19)

in the integral I(2)(p). This enables us to express I(2)(p) as

8
π(4p+ 2)3

1∫
0

(
2 − z

4p+ 2

)2

[
1 +
(

1 − z

4p+ 2

)2
](

1 − z

4p+ 2

)2

×

(
1 − z

4p+ 2

)4p+2

z2[
1 +
(

1 − z

4p+ 2

)4p+2
]2 dz.

The first factor under the integral sign is bounded, while the second factor

increases and tends to
e−zz2

(2 − e−z)2
. Hence,

I(2)(p) ≤ B

(4p+ 2)3

1∫
0

e−zz2

(1 − e−z)2
dz ≤ C

2p3
, (20)

where B and C are certain constants. In the case of I(1)(p), we have:(
1 − y4p+2

)2 ≥
[
1 −
(
1 − 1

4p+ 2

)4p+2]2
≥
(
1 − 1

e

)2

.

Therefore

I(1)(p) ≤ B

1− 1
4p+2∫

0

(1 − y)2y4pdy
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< B

1∫
0

(1 − y)2y4pdy = B
Γ (4p+ 1)Γ (3)
Γ (4p+ 4)

≤ C

2p3
. (21)

Whence and from (16), (17), and (20) it follows that

S(p) ≤ C

2p3
. (22)

If now (
AI
)2(p) = o

(
(2p+ 1)3

)
, (23)

then δ21 + δ22 = o(1), and, hence,

δ21 + δ22 = 0. (24)

Obviously, estimate (23) holds in the assumptions of the theorem, since from
these assumptions it follows that

1
4(2p+ 1)

[(
AI
)2(p) +

(
AII
)2(p) +

(
AIII

)2(p) +
(
AIV

)2(p)] = o(p2), (25)

from which (23) follows. ��



3. On One Difference Equation∗

S. L. Sobolev

In the present note we consider the equation

1
4
(
wm+1,n+1 + wm−1,n−1 + wm+1,n−1 + wm−1,n+1 − 4wm,n

)
=

{
1, m2 + n2 = 0,
0, m2 + n2 > 0

(1)

for the values of m and n in the whole plane:

−∞ < m < +∞, −∞ < n < +∞. (2)

We construct a solution of this equation which increases at infinity as
ln
√
m2 + n2 and is equal to zero for m = n = 0:

w00 = 0. (3)

Such solution, as follows from [1], is unique.
The unknown solution has the form:

wm,n = − 1
π2

∮
|u|=1

( ∮
|v|=1

umvn − 1
u2v2 + u2 + v2 + 1 − 4uv

dv
)
du. (4)

Let us indicate how to verify the validity of this formula, and also let us
explicitly calculate the solution and estimate its asymptotical behavior as m
and n → ∞.

Below it is shown that the integral in the right side of (4) has meaning for
all values of m and n. Therefore we can substitute (4) into equation (1), and
after this substitution, we have

Lwm,n = − 1
π2

∮
|u|=1

( ∮
|v|=1

L(umvn − 1)
G(u, v)

dv
)
du

∗ Dokl. Akad. Nauk SSSR, 87, 341–343 (1952)
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= − 1
4π2

∮
|u|=1

( ∮
|v|=1

um−1vn−1 dv
)
du = − 1

4π2

∮
|u|=1

um−1 du

∮
|v|=1

vn−1 dv.

Hence, the validity of equation (1) follows.
The denominator of the integrand in formula (4) may be written as

G(u, v) = u2v2 + u2 + v2 + 1 − 4uv = (u2 + 1)(v − v1)(v − v2), (5)

where
v1 = i

u− i

u+ i
, v2 =

1
v1

= −iu+ i

u− i
. (6)

Function G(u, v) has two roots for fixed u. These roots are both equal to
1 in module, if u is real; for u from the upper half-plane, |v1| < 1, |v2| > 1,
and for u from the lower half-plane, conversely, |v1| > 1, |v2| < 1.

Applying to (4) the residue theorem, we obtain:

wm,n =
1
π

∫
−π≤arg u≤0

|u|=1

um
(
−iu+ i

u− i

)n

− 1

u2 − 1
du

− 1
π

∫
0≤arg u≤π

|u|=1

um
(
i
u− i

u+ i

)n

− 1

u2 − 1
du. (7)

The integrand in the first term is regular in the complex plane, except for the
point u = i, where it has a pole, since the roots of the denominator at the
points u = ±1 cancel the roots in the numerator. In the second integral, the
integrand is regular in the complex plane, except for the point u = −i, where
it has a pole. The singularities at the points u = ±1 cancel each other. From
formula (4) it follows that

wm,n = w−m,n = wm,−n = w−m,−n

= wn,m = w−n,m = wn,−m = w−m,−n. (8)

Thus, the lines m = 0, n = 0, m = n, and m = −n are the symmetry axis for
the system of the values of wm,n.

Formula (7) allows us to compute the values of wm,n. After elementary
transformations we have:

w2k,0 = w0,2k = w−2k,0 = w0,−2k =
4
π

(
1 +

1
3

+
1
5

+ · · · + 1
2k − 1

)
. (9)

If we know the values of wm,n on the coordinate axis, using the symmetry
of this function, we can easily compute its values at the other points, using
directly equation (1). Obviously,
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w1,1 = w−1,1 = w1,−1 = w−1,−1 = 1. (10)

At any point (m,n) the function wm,n is the sum of two terms:

wm,n = wI
m,n + wII

m,n. (11)

Here wI
m,n is an integer number; wII

m,n is a transcendental number of the form
r/π, where r is rational. Both functions wI

m,n and wII
m,n for

√
m2 + n2 →

∞ increase significantly faster than logarithmically. The function wI
m,n is a

certain particular solution of equation (1), and wII
m,n is a particular solution

of the corresponding homogeneous equation.
The estimate of wm,n for a large value of

√
m2 + n2 follows from formula

(7). First, let us note that wm,n for m > n can be written as

wm,n =
4
π

Re

⎧⎪⎨⎪⎩
1∫

0

um
(
i
u− i

u+ i

)n

− 1

u2 − 1
du

⎫⎪⎬⎪⎭ . (12)

Estimating formula (12), instead of u, we introduce the new variable

ψ = ucos α
(
i
u− i

u+ i

)sin α

, (13)

where
cosα =

m√
m2 + n2

and sinα =
n√

m2 + n2
. (14)

Formula (12) in the new variables has the form

wm,n =
4
π

Re

⎧⎨⎩
1∫

0

ψ
√

m2+n2 − 1
ψ2 − 1

dψ +

1∫
0

ψ
√

m2+n2
( du

u2 − 1
− dψ

ψ2 − 1

)

+

1∫
0

( dψ

ψ2 − 1
− du

u2 − 1

)⎫⎬⎭ . (15)

Choosing the integration path so that the function ψ is real, and using the

boundedness of the function
(du/dψ
u2 − 1

− 1
ψ2 − 1

)
, we see that the second term in

parenthesis tends to zero as 1/
√
m2 + n2. The third term is, as computations

show, pure imaginary, and is equal to iα. Estimating the first term, we have:∣∣∣wm,n − 2
π

(
C + ln 2 + ln

√
m2 + n2

)∣∣∣ ≤ A√
m2 + n2

,

where C is the Euler constant. Thus, the order of growth of wm,n is
ln

√
m2 + n2, as required.
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4. Certain Comments on the Numeric
Solutions of Integral Equations∗

S. L. Sobolev

Summary. In this work we consider the algorithm of solving integral equations
of the second kind and of Fredholm type with a continuous kernel for the func-
tions of one independent variable that is based on replacement of the integral by
a sum. The possibility of this replacement is established using the theorem on a
regular approximation of completely continuous operators (the strong convergence
for uniform complete continuity of the approximating operators). We introduce a
definition of closure of the computational algorithm, and indicate the possibility
of the loss of significant digits in computations in the case when the algorithm is
irregularly closed. We also give other applications of the closure of computational
algorithms (see [1, 2]).

1 The Closure of Computational Algorithms

The solution of many problems of mathematical physics and of analysis in
general, when the unknowns are the functions of one or many independent
variables, or more generally, members of a certain functional space, is often
rather complicated and consists of a large number of arithmetic and logic
operations. Ultimately, these actions lead to an approximate solution that is
expressed through a finite set of elements and the values of the approximate
solution are written down as real numbers containing only finitely many digits.

Mostly, the approximate solution depends on one or several certain pa-
rameters determining the quality of this approximation. For example, such
parameters could be the mesh-sizes of the lattice in the method of finite dif-
ferences, or the number of successive approximations in iterations. When the
parameters tend to the limits (including, for example, infinity), the approx-
imate solution converges to the true solution in the sense of convergence of
the space in question.

The typical technique for solving the equation

∗ Izv. Akad. Nauk SSSR, Ser. Mat., 20, 413–436 (1956)
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Lu = f (1)

in the functional space U with the right side from the space F is replace-
ment of the operator L by an approximate operator Lk acting over the finite
approximation Uk of U and such that its inverse could be found in a finite
number of steps. To solve the equation

Lkuk = fk, (2)

where uk ∈ Uk and fk ∈ Fk, we transform it into a sequence of the equations

L
(m)
k uk = D

(m)
k fk, m = 1, 2, . . . , N. (3)

For m = N it is assumed that L(N)
k ≡ E, where E is the identity operator, i.e.,

uk = D
(N)
k fk. In general, the approximation depends on certain parameters

h1, h2, . . . , hr, and as hs → 0 for s = 1, 2, . . . , r the closure of the discrete set
Uk is the space U , the closure of the operator Lk is the operator L, and the
limit of fk is the function f .

Sequence (3) together with the methods of approximation of U , L, and f
by Uk, Lk, and fk constitutes the computational algorithm T of solving (1).

Sometimes, equalities (3) are written as

L
(m)
k uk = ϕ

(m)
k , m = 1, 2, . . . , N, (3∗)

where ϕ(m)
k = D

(m)
k fk is calculated in fact.

It could happen that not only uk, Lk, and fk tend to u, L, and f , respec-
tively, as hs → 0 for s = 1, 2, . . . , r, but also all of equations (3) (or (3∗)), or
more precisely, all of L(m)

k and D
(m)
k or ϕ(m)

k , make sense in the limit.
Suppose that there is an ordered set of the functions m(h1, . . . , hr, z) of

the real parameter z such that they are given on the set Ez and

m(h1, h2, . . . , hr, z1) ≥ m(h1, h2, . . . , hr, z2) for z1 > z2. (4)

Assume that with the corresponding definition of convergence (usually it does
not cause any difficulties) in this way and with hs → 0 for s = 1, 2, . . . , q
the space Uk passes into a certain space U

(z,hq+1,...,hr)
k , Fk passes into

F
(z,hq+1,...,hr)
k , while the operators L(m)

k and D
(m)
k tend to the limiting op-

erators
L

(z,hq+1,...,hr)
k and D

(z,hq+1,...,hr)
k

with the range in the space Φ(z,hq+1,...,hr)
k , and finally, ϕ(m)

k and fk also tend
to the limit. Thus, as a limit case of (3) or (3∗) we obtain the equalities

L
(z,hq+1,...,hr)
k u

(z,hq+1,...,hr)
k = D

(z,hq+1,...,hr)
k f

(z,hq+1,...,hr)
k (5)

or
L

(z,hq+1,...,hr)
k u

(z,hq+1,...,hr)
k = ϕ

(z,hq+1,...,hr)
k . (5∗)
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Definition. Let formulas (5) (or (5∗)) make sense. Then we call (5) (or (5∗))
the closure of the computational algorithm T .

It is easy to see that in general the closure of the computational algorithm
depends on the method of the passage to the limit.

Let us present an example of the closure of the computational algorithm.
Consider the Poisson equation in two variables:

∆u ≡ ∂2u

∂x2
+
∂2u

∂y2
= f(x, y) (6)

in the square
0 ≤ x ≤ 1, 0 ≤ y ≤ 1. (7)

Suppose that we are looking for the solution of this equation satisfying the
Dirichlet conditions:

u
∣∣∣
Q∈S

= ω(Q). (8)

In this case Lu is the operator sending a twice continuously differentiable
function u(x, y) to a pair of the functions: u

∣∣∣
S
, defined on the boundary S of

square (7), and ∆u, defined in the interior of this square. Thus, U is the space
of twice continuously differentiable functions in the square, and F is a space
of pairs of continuous functions, one of which is defined on the boundary of
the square, and the other of which is defined in the interior of it.

Let us study the computational algorithm of iterations Tit for this problem
consisting in the following. We replace the space of functions defined in the
square by the spaces of discrete functions given with accuracy η on the net

x = jh1, y = lh2, where h1 = 1/M1, h2 = 1/M2,

M1 and M2 are integer numbers. We define Lku by the following simplest way.
It simply assumes the values of u at the corresponding points of the boundary
of the square, and

Lku = − 1
h2

1

(
u(x+ h1, y) + u(x− h1, y) − 2u(x, y)

)
− 1
h2

2

(
u(x, y + h2) + u(x, y − h2) − 2u(x, y)

)
(9)

at the points in the interior of the square. We solve the equation Lku = fk

for h1 = h2 using the method of iterations. For the initial approximation we
take an arbitrary continuous function u0(x, y) satisfying the condition

u0

∣∣∣
Q∈S

= ω(Q). (10)

Performing the computation with accuracy η, we find the mth approximation
of u at all points in the interior of the square by means of the equality
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um(x, y) =
h2

4
f(x, y) +

1
4

(
um−1(x+ h, y)

+um−1(x− h, y) + um−1(x, y + h) + um−1(x, y − h)
)
. (11)

At the points of the boundary, um and u0 assume the values of ω(Q). At
sufficiently large m the function um provides the solution of the problem with
an arbitrary accuracy.

Already G. O’Brien, S. Kaplan, and M. Hymen [5] focused their atten-
tion on the analogue between the described algorithm and solving the heat
equation

∂v

∂z
=

∂2v

∂x2
+
∂2v

∂y2
− f(x, y) (12)

by the method of nets. Let us trace this connection in more detail.
If we replace the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z < ∞ by the net

x = jh, y = lh, z = mh2/4, and the operator ∂v/∂z −∆v by

4
h2

[
v(x, y, z + τ)

−v(x+ h, y, z) + v(x− h, y, z) + v(x, y + h, z) + v(x, y − h, z)
4

]
, (13)

then the formulas for v(jh, lh,mh2/4) are the same as formulas (11) for
um(jh, lh).

Hence, for the function um(x, y) given by recurrent formulas (11) the equal-
ity holds,

um(jh, lh) = v

(
jh, lh,

mh2

4

)
. (14)

Equality (14), where the values of v(jh, lh,mh2/4) are calculated in fact, is
the individual realization of sequence (3∗) for the problem under study. In
this event, v(jh, lh,mh2/4) coincides with ϕ

(m)
k .

It is easy to see that the algorithm Tit has a closure as h → 0. Let

m(h, η, z) =
[4z
h2

]
, (15)

where the brackets stands for the integer part of a number. If h → 0 and
η → 0, then instead of (14) we obtain the equality

u(x, y, z) = v(x, y, z). (16)

Equality (16), where v(x, y, z) is the solution of (12) under the conditions

v(x, y, 0) = u0(x, y), v
∣∣∣
Q∈S

= ω(Q),

is the closure of the algorithm Tit.
Similarly, we can also construct other examples of closures of algorithms.

For example, passing in (9) to the limit as h2 → 0, we obtain the formulas of
the so-called “method of lines” for equation (6).
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2 The Regular and Irregular Closures
of Computational Algorithms

Let Lzu = Dzf be the closure of the computational algorithm T . If Lz and
Dz are operators acting in a metric space, then they could be both bounded
and unbounded in the corresponding metric. We say that the algorithm T has
a regular closure provided that Lz and Dz are uniformly bounded. If Lz and
Dz are unbounded, we say that the algorithm T has an irregular closure.

It is not difficult to verify that if the algorithm T has an irregular closure,
one could experience serious difficulties using it, when we improve the accuracy
of computations.

In the following sections we demonstrate different circumstances, which
could occur in this case, on the example of integral equations of the second
kind and of Fredholm type with a continuous kernel for the functions of one
independent variable.

3 The Approximation of the Solution of Integral
Equations of Fredholm Type

In the present work we consider a linear integral equation of the second kind
and of Fredholm type for the function ϕ(x) of one independent variable x,
defined in the bounded interval 0 ≤ x ≤ 1:

ϕ(x) =

1∫
0

K(x, y)ϕ(y) dy + f(x), (17)

or (E −A)ϕ = f, Aϕ ≡
1∫

0

K(x, y)ϕ(y) dy. (18)

We assume that the kernel K(x, y) of the operator A is a continuous function
in both variables.

To solve equation (17), one often replaces it by a system of algebraic linear
equations

ϕi =
N∑

j=1

Kijϕj + fi, i = 1, 2, . . . , N, (19)

with N unknowns ϕ1, ϕ2, . . . , ϕN , where

ϕi = ϕ(ti), 0 ≤ t1 < t2 < · · · < tN ≤ 1, (20)

and Kij are certain quadrature coefficients of the approximate expression for
the operator A.
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There are many different techniques of solving (19). Mainly, they are re-
duced to the method of iterations or the method of successive elimination
of unknowns. As is known, the iterations do not always converge, while the
method of successive eliminations allows, in principle, finding a solution of the
problem, though sometimes we have to perform a very large number of steps
in this case.

However, in the method of successive eliminations one could also encounter
some difficulties of a fundamental nature, as we show further. We show that
the algorithm of solving equation (17), using its replacement by a finite system
and successive eliminations, could have an irregular closure. As we will see
later, this is also related to a number of further troubles: solving the equation
with the aid of such an algorithm, we lose significant digits in our calculations.
Therefore, to obtain solutions with a required accuracy, we would carry out
the computation with an excessive number of digits.

4 Approximations of the Linear Operator

The linear operator Aϕ ≡
1∫
0

K(x, y)ϕ(y) dy with the continuous kernel

K(x, y) is a completely continuous operator in the space C of continuous
functions defined in the interval (0, 1). If equation (17) has a solution for any
right side, then the operator E−A has the inverse (E−A)−1 = E+Γ , where

Γf(x) =
1∫
0

Γ (x, y)f(y) dy. The function Γ (x, y) is called the resolvent of the

kernel K(x, y). The solution of equation (18) can be written as

ϕ =
(
E + Γ

)
f. (21)

Let us recall that E +Γ is the left and right inverse of E −A simultaneously,
and, hence, it is the unique inverse of E −A.

From the formulas (E + Γ )(E − A) = E and (E − A)(E + Γ ) = E, after
opening the parenthesis, it follows that

Γ −A− ΓA = 0, (22)

Γ −A−AΓ = 0. (23)

These equations are the integral equations on the resolvent.
Let us consider a certain sequence of the linear operators AN . It is cus-

tomary to say that this sequence strongly converges to the operator A, if for
each function ϕ from C the sequence

ANϕ (24)

converges to Aϕ uniformly, i.e., it converges in the metric of the space C. Of
course, from strong convergence of the operators AN to A, convergence in the



Certain Comments on the Numeric Solutions of Integral Equations 421

norm (or so-called uniform convergence) of the operators AN to A does not
follow. In other words, the sequence

‖AN −A‖ (25)

does not have to converge to zero in this case (recall that ‖A‖ is defined by
the equality ‖A‖ = sup

‖ϕ‖C≤1

‖Aϕ‖). However, the following theorem holds.

Theorem (Banach). If the sequence AN strongly converges to A, then ‖AN‖
is bounded,

‖AN‖ ≤ M. (26)

This theorem is valid for all complete spaces (see, e.g., [6]).
We say that the set of linear completely continuous operators AN is uni-

formly completely continuous, if it transforms a bounded set Φ from C into a
compact set; in other words, if the union of sets ANΦ is compact.

Remark. The set of all uniformly completely continuous operators is bounded.

This remark is obvious, since if there exist elements ψN such that

‖ψN‖ = 1 and ANψN → ∞, (27)

then we would have the noncompact set {ANψN} for the bounded sequence
{ψN}, which contradicts the condition of the uniform complete continuity.

If the operators AN strongly converges to A, and also they are uniformly
completely continuous, then we say that the operators AN approximate A
properly.

Lemma. If there exists a sequence {ψN} such that

‖ψN‖ ≥ h > 0 and lim
N→∞

(E −AN )ψN = 0, (28)

and the operators AN approximate A properly, then the operator E − A has
no inverse.

Proof. Without loss of generality, we can assume that ‖ψN‖ = 1. Otherwise we

would consider the new sequence { 1
‖ψN‖ψN}, that also satisfies the conditions

of the lemma.
The sequence ANψN is compact, and we can take it strongly convergent

by keeping a convergent subsequence and discarding everything else. Let

lim
N→∞

ANψN = ξ0. (29)

We prove that ψN strongly converges to ξ0 in C. Indeed,

lim
N→∞

ψN = lim
N→∞

(E −AN )ψN + lim
N→∞

ANψN = ξ0.
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Obviously, ‖ξ0‖ = 1. Let us show that ξ0 is an eigenelement for A. Indeed,

(E −A)ξ0 = (AN −A)ξ0 + (E −AN )(ξ0 − ψN ) + (E −AN )ψN .

The first term on the right side of this equality tends to zero in view of strong
convergence of AN to A, and the second tends to zero by convergence of ψN

to ξ0 and the boundedness of E −AN . Finally, the last term tends to zero by
the condition of the lemma.

Hence, the norm of (E−A)ξ0 is less than any given number, and therefore
it is equal to zero, i.e., ξ0 is indeed the eigenelement of the operator A.

In view of the Fredholm theorems, the inverse of E −A does not exist, as
required. ��

Let us denote by Γ the operator of the resolvent for A, i.e., let

(E −A)−1 = E + Γ, (30)

and let ΓN be the resolvent for the operator AN .

Theorem. If the operators AN approximate the operator A properly, and
E − A has an inverse, then, from some N on, the operators E − AN also
have inverse operators. In this case the resolvents ΓN for AN approximate the
resolvent Γ for A properly.

Proof. Indeed, from some N on, the operators E − AN must have inverses.
Otherwise, by the Fredholm theorem, we could find a subsequence of E−AN

such that each its terms would have the normed eigenelement ψN :

(E −AN )ψN = 0, ‖ψN‖ = 1. (31)

By the previous lemma it would immediately imply that the operator E −A
has no inverse, which contradicts the condition of the theorem.

Let us establish that the operators E + ΓN strongly converge to E + Γ .
Assume the contrary. Then we can find such element ξ0 and such subsequence
ΓNk

of ΓN that the norm of the element

ψk = (E + ΓNk
)ξ0 − (E + Γ )ξ0 (32)

is positive; ‖ψk‖ > 0. By applying to both parts of (32) the operator E−ANk
,

we obtain
(E −ANk

)ψk = ξ0 − (E −ANk
)(E + Γ )ξ0

= ξ0 − (E −A)(E + Γ )ξ0 + (ANk
−A)(E + Γ )ξ0

= (ANk
−A)(E + Γ )ξ0. (33)

By strong convergence of ANk
to A, the right side of (33) tends to zero. Hence,

the left side also tends to zero, i.e.,

lim
k→∞

(E −ANk
)ψk = 0. (34)
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By applying the previous lemma, we obtain that (E − A)−1 does not ex-
ist, which contradicts the condition of the theorem. Hence, E + ΓN strongly
converges to E + Γ , i.e., ΓN strongly converges to Γ .

It remains to prove that ΓN is uniformly completely continuous. In view
of (23) we have

ΓN = AN (E + ΓN ). (35)

By the mentioned Banach theorem, the operators E + ΓN are uniformly
bounded. Moreover, by condition, AN is uniformly completely continuous.
Hence, AN (E + ΓN ) send a given bounded set to a compact set, and
ΓN = AN (E + ΓN ) is uniformly completely continuous, as required. ��

5 Approximations by Means of Sums

The completely continuous operator Aϕ ≡
1∫
0

K(x, y)ϕ(y) dy can be approxi-

mated by the operators of the form

ANϕ =
N∑

n=1

Kn(x)ϕ(tn), (36)

where the points t1, t2, . . . , tN lie in the interval 0 ≤ t ≤ 1. An example of such
approximations is the approximation using the replacement of the integral Aϕ
by the sum as in the rectangle rule, or using some other quadrature formula.

Dividing the interval 0 ≤ y ≤ 1 into N equal parts of the same length h,
where Nh = 1, and taking tn = h/2 + (n − 1)h and Kn(x) = hK(x, tn), we
obtain the approximate formula

1∫
0

K(x, y)ϕ(y) dy ∼=
N∑

n=1

Kn(x)ϕ(tn) = A∗
Nϕ. (37)

For a given continuous function ϕ at sufficiently large N the right side of (37)
is arbitrarily close to the left side uniformly. This follows from the fact that
by the Weierstrass theorem, the oscillation

osc
y
K(x, y)ϕ(y)

of the function K(x, y)ϕ(y) with respect to y converges to zero independent
of x in the interval (n− 1)h ≤ y ≤ nh, and the difference

1∫
0

K(x, y)ϕ(y) dy −
N∑

n=1

Kn(x)ϕ(tn)

does not exceed the value of
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sup
n

osc
(n−1)h≤y≤nh

K(x, y)ϕ(y).

The operators AN defined by (36) can approximate the operator A prop-
erly. In particular, this is valid for the approximations A∗

N constructed above
by using integration by the rectangle rule. Indeed, if

‖ϕ‖ = max
0≤y≤1

|ϕ(y)| = M, (38)

then |A∗
Nϕ| ≤ M

N∑
n=1

|Kn(x)| ≤ MA, where A ≥ sup
x,y

|K(x, y)|, and, hence,

‖A∗
N‖ ≤ MA.

Next, ∣∣∣A∗
Nϕ(x

′′
) −A∗

Nϕ(x
′
)
∣∣∣ = ∣∣∣ N∑

n=1

(
Kn(x

′′
) −Kn(x

′
)
)
ϕ(yn)

∣∣∣
≤ M max

n

∣∣∣K(x
′′
, tn) −K(x

′
, tn)
∣∣∣ N∑

n=1

h. (39)

For sufficiently small |x′′ −x
′ | the right side of (39) is arbitrarily small by the

Weierstrass theorem on the uniform continuity of the function K(x, y). Thus,
for uniformly bounded functions ϕm the family A∗

N (ϕm) is also uniformly
bounded and equicontinuous.

In what follows we are going to consider not only the operators A∗
N , but

also arbitrary operators approximating A properly.
Let a sequence of the operators ANϕ given by (36) approximate the oper-

ator Aϕ properly. Then, in view of the established lemmas, for the solutions
of equations

ϕ = ANϕ+ f, (40)

ϕ = Aϕ+ f, (41)

we obtain the formulas
ϕ = f + ΓNf, (42)

ϕ = f + Γf, (42∗)

where the operators ΓN approximate the operator Γ properly.
We refer the computational algorithm leading to the replacement of (41)

by (40) and solving (40) by the successive elimination of unknowns as the
algorithm of nets Tc. Let us consider this algorithm in detail.

The solution of (40) is essentially reduced to a solution of the system
of linear algebraic equations (19). Indeed, in order to calculate ANϕ, and,
hence, ϕ, satisfying (40), it suffices to know the values of ϕ at the points t1,
t2, . . . , tN .
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Let B1ϕ be the operator that sends continuous function ϕ to the vector
(ϕ1, ϕ2, . . . , ϕN ) from the space RN , where ϕs = ϕ(ts). The operator AN

acting on the function ϕ is, obviously, the product of two operators:

ANϕ = A∗
NB1ϕ, (43)

where A∗
N sends the vector (ϕ1, ϕ2, . . . , ϕN ) to the continuous function by the

rule

A∗
Nϕ =

N∑
n=1

Kn(x)ϕn. (44)

In these settings, equation (40) has the form

ϕ = A∗
NB1ϕ+ f. (45)

By applying to both parts of (45) the operator B1, we have

B1ϕ = B1A
∗
NB1ϕ+B1f. (46)

Let B1A
∗
N ≡ ÃN , B1ϕ ≡ ϕ̃, and B1f ≡ f̃ . Then (46) is equivalent to

ϕ̃ = ÃN ϕ̃+ f̃ . (47)

Denoting by E the identity operator in RN , we write the solution of (47)
as

ϕ̃ = (E + Γ̃N )f̃ , (48)

where
(E + Γ̃N )(E − ÃN ) = (E − ÃN )(E + Γ̃N ) = E , (49)

or
Γ̃N − ÃN − Γ̃N ÃN = Γ̃N − ÃN − ÃN Γ̃N = 0.

We can verify that the resolvent of the operator E−A∗
NB1 is given by the

formula (E −A∗
NB1)−1 = E +A∗

N (E + Γ̃N )B1, or, if we set

Γ ∗
N = A∗

N (E + Γ̃N ), (50)

by the formula
(E −A∗

NB1)−1 = E + Γ ∗
NB1. (51)

Indeed, in view of (49) we have:

(E −A∗
NB1)

(
E +A∗

N (E + Γ̃N )B1

)
= E −A∗

NEB1 +A∗
N (E + Γ̃N )B1 −A∗

N ÃN (E + Γ̃N )B1

= E +A∗
N (Γ̃N − ÃN − ÃN Γ̃N )B1 = E, (52)

and also (
E +A∗

N (E + Γ̃N )B1

)
(E −A∗

NB1)

= E −A∗
NEB1 +A∗

N (E + Γ̃N )B1 −A∗
N (E + Γ̃N )ÃNB1

= E +A∗
N (Γ̃N − ÃN − Γ̃N ÃN )B1 = E, (53)

as required.



426 S. L. Sobolev

6 Another Method of Reducing the Problem to an
Algebraic System

We can indicate one more method of reducing equation (41) to a system
of linear algebraic equations. Let us approximate the kernel K(x, y) by the
piece-wise constant function defined by

K
(1)
N (x, y) = K(tk, tl) for |x− tk| ≤ h

2
and |y − tl| ≤ h

2
, (54)

where tk and tl are given before. In this case the operator

A
(1)
N ϕ ≡

1∫
0

K
(1)
N (x, y)ϕ(y) dy

already maps C not in C, but in its isometric expansion M, the space of
bounded measurable functions. In the space M the operators A(1)

N converges
to A uniformly. Indeed,

‖(A(1)
N −A)ϕ‖ ≤ max

x

1∫
0

∣∣∣K(1)
N (x, y) −K(x, y)

∣∣∣ dy · sup
y

|ϕ(y)| ≤ ε‖ϕ‖, (55)

as required.
It is well-known that in the case of uniform convergence of A(1)

N to A
the existence of the inverse of E − A leads to the existence of the inverses
of all operators E − A

(1)
N , from some N on. Moreover, the operators Γ (1)

N =
(E − A

(1)
N )−1 − E approximate the operator Γ = (E − A)−1 − E uniformly.

The following equation
(E −A

(1)
N )ϕ = f (56)

can be solved by a method similar to the one used in solving (40).
To solve (56), we introduce the operator B2 mapping C (or M) in the

N -dimensional Euclidean space of the vectors ϕ = (ϕ1, ϕ2, . . . , ϕN ), where

ϕk =
1
h

kh+h/2∫
(k−1)h+h/2

ϕ(y) dy for k = 1, 2, . . . , N.

Further, let A(1)∗
N be the operator sending the vector ϕ = (ϕ1, ϕ2, . . . , ϕN ) to

the function

A
(1)∗
N ϕ =

N∑
k=1

K
(1)
N

(
x, (k − 1)h+

h

2

)
ϕk. (57)

Then, by the definition of A(1)
N ϕ, we have
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A
(1)
N ϕ = A

(1)∗
N B2ϕ. (58)

Writing (56) as ϕ − A
(1)∗
N B2ϕ = f , and acting on both parts of this equality

by B2, we obtain:
B2ϕ−B2A

(1)∗
N B2ϕ = B2f. (59)

Assuming B2ϕ =
≈
ϕ, B2A

(1)∗
N =

≈
AN , and B2f =

≈
f , we rewrite (59) as follows

(E− ≈
AN )

≈
ϕ=

≈
f . (60)

Obviously, this vector equation can be solved, if we find the inverse

(E− ≈
AN )−1 = E+

≈
ΓN . (61)

Hence, similarly to the case of equation (48), we conclude:

(E −A
(1)∗
N B2)−1 = E + Γ

(1)∗
N B2, (62)

where
Γ

(1)∗
N = A

(1)∗
N (E+

≈
ΓN ). (63)

7 Partially Solved Equations

Let us return to the study of the integral equation

ϕ(x) =

1∫
0

K(x, y)ϕ(y) dy + f(x). (64)

Let us consider the equation

ϕ(x) −
1∫

z

Γ (x, y, z)ϕ(y) dy = f(x) +

z∫
0

Γ (x, y, z)f(y) dy, (65)

assuming that for z = 0 it becomes equation (64). For z = 1 we have another
particular case of (65),

ϕ(x) = f(x) +

1∫
0

Γ (x, y)f(y) dy. (66)

Thus, the solution of (64) is expressed through the Fredholm resolvent. We
establish that, in general, for a given equation (64) we can find an equivalent
system of form (65), where z ranges over the interval 0 ≤ z ≤ 1.
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Let z1 < z2. For z = z1 equation (65) may be written as

ϕ(x) −
z2∫

z1

Γ (x, y, z1)ϕ(y) dy = f(x)

+

z1∫
0

Γ (x, y, z1)f(y) dy +

1∫
z2

Γ (x, y, z1)ϕ(y) dy. (67)

For z1 ≤ x ≤ z2 equation (67) may be considered as an integral equation with
respect to the function ϕ(x) in this interval.

For the sake of convenience, instead of the function ϕ(x) defined on the
interval 0 ≤ x ≤ 1, we temporarily introduce three functions:

ϕ1(x) for 0 ≤ x ≤ z1,
ϕ2(x) for z1 ≤ x ≤ z2,
ϕ3(x) for z2 ≤ x ≤ 1,

(68)

and rewrite (67) as

ϕ1 = A11ϕ1 +A12ϕ2 +A13ϕ3 + f1,
ϕ2 = A21ϕ1 +A22ϕ2 +A23ϕ3 + f2,
ϕ3 = A31ϕ1 +A32ϕ2 +A33ϕ3 + f3.

(69)

Suppose that
(E −A22)−1 = E + Γ22. (70)

Then
(E −A22)(E + Γ22) = (E + Γ22)(E −A22) = E,

or A22Γ22 = Γ22A22 = Γ22 −A22. (71)

By excluding ϕ2 from the right side of all equations (69) after calculations,
we obtain:

ϕ1 = B11ϕ1 +B12f2 +B13ϕ3 + f1,
ϕ2 = B21ϕ1 +B22f2 +B23ϕ3 + f2,
ϕ3 = B31ϕ1 +B32f2 +B33ϕ3 + f3,

(72)

where Bij = Aij +Ai2A2j +Ai2Γ22A2j . (73)

For i = 2 or j = 2 the equality in (73) is simplified. Using (71), we obtain

Bi2 = Ai2 +Ai2Γ22,
B2j = A2j + Γ22A2j ,
B22 = Γ22.

(74)

Obviously, formulas (72) are mutual with (69), which we can easily verify
by noticing that E − A22 = (E + Γ22)−1. Equations (73) and (72) may be
rewritten in integral form as
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Γ (x, y, z2) = Γ (x, y, z1) +

z2∫
z1

Γ (x, t, z1)Γ (t, y, z1) dt

+

z2∫
z1

z2∫
z1

Γ (x, t, z1)Γ (t, u, z2)Γ (u, y, z1) dtdu (75)

and

ϕ(x) = f(x) +

z2∫
0

Γ (x, y, z2)f(y) dy +

1∫
z2

Γ (x, y, z2)ϕ(y) dy, (76)

respectively. Similar equations have been studied by M. G. Krein [3] and
N. P. Sergeev [4].

From (65), holding for all z, it is possible to obtain one more important
equation of Volterra type. Setting in (65) z = x, we have

ϕ(x) −
1∫

x

Γ (x, y, x)ϕ(y) dy = f(x) +

x∫
0

Γ (x, y, x)f(y) dy.

Denoting Γ (x, y, x) by V (x, y), we obtain

ϕ(x) −
1∫

x

V (x, y)ϕ(y) dy = f(x) +

x∫
0

V (x, y)f(y) dy. (77)

Equation (77) is called the resolving Volterra equation for (64). The solution
of (77) can be obtained by the method of successive approximations, or by
some other method. By the construction itself we see that the solution of
(77) coincides with the solution of (64) provided that V (x, y) is a continuous
function.

Simultaneously with the partially solved integral equation for (41) we are
going to consider the partially solved equations for the sequences of equa-
tions (40) and (47).

It is not difficult to calculate the corresponding operators in fact. Let
us consider the vector (ϕ1, ϕ2, . . . , ϕN ) as a union of two vectors ϕ(1) =
(ϕ1, . . . , ϕk(z)) and ϕ(2) = (ϕk(z)+1, ϕk(z)+2, . . . , ϕN ). In this case the opera-
tor B1 introduced above is a pair of the operators B(z)

11 and B
(z)
12 . The first

of them B
(z)
11 sends ϕ to the k-dimensional vector ϕ(1), and the second oper-

ator B(z)
12 sends ϕ to the (N − k)-dimensional vector ϕ(2). Respectively, the

operator A∗
N is the sum of two operators A∗

N,1 and A∗
N,2:

A∗
Nϕ = A∗

N,1ϕ
(1) +A∗

N,2ϕ
(2),

while the operator ÃN has a form of the square matrix:
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ÃN =
(
ÃN,11 ÃN,12

ÃN,21 ÃN,22

)
=

(
B

(z)
11 A

∗
N,1 B

(z)
12 A

∗
N,1

B
(z)
11 A

∗
N,2 B

(z)
12 A

∗
N,2

)
.

Assuming (E − ÃN,11)−1 = E + Γ̃N,11, we can consider instead of (47) the
following partially solved system

ϕ(1) = B̃N,11ϕ
(1) + B̃N,12f

(2) + f (1),

ϕ(2) = B̃N,21ϕ
(1) + B̃N,22f̃

(2) + f̃ (1),
(78)

where
B̃N,22 = ÃN,22 + ÃN,21ÃN,12 + ÃN,21Γ̃N,11ÃN,12,

B̃N,21 = ÃN,21 + ÃN,21Γ̃N,11,

B̃N,12 = ÃN,12 + Γ̃N,11ÃN,12,

B̃N,11 = Γ̃N,11.

(79)

Multiplying the first of equalities (78) by A∗
N,1 from the left, and the second

of them by A∗
N,2, we obtain

ϕ = (A∗
N,1B̃N,11 +A∗

N,2B̃N,21)ϕ+ (A∗
N,1B̃N,12 +A∗

N,2B̃N,22)f + f. (80)

This equality is the partially solved equation corresponding to (47), since,
obviously, its right side depends only on the values of ϕ for x < z and on the
values of f for x ≥ z.

Let A
(z)
N stand for the operator A∗

N,1B̃N,11 + A∗
N,2B̃N,21. Then, by the

theorem proved in Sect. 4, we can conclude that if E − A(z) has an inverse
and (E−A(z))−1 = E+Γ (z), then, from some N on, there exist the operators
(E −A

(z)
N )−1 = E + Γ

(z)
N , and the operators Γ (z)

N approximate Γ (z) properly.
Thus, we can formulate an important corollary about the algorithm Tc.

More precisely, the algorithm Tc of solving integral equation (17) has a closure.
This closure is given by partially solved integral equations (65). Also, we have
the two theorems.

Theorem 1. Let all of the integral equations

ϕ(x) −
z∫

0

K(x, y)ϕ(y) dy = ψ(x), z ≤ 1, (81)

obtained by shortening the integration domain in (64), be nonsingular, which
means that for neither of these equations does the second case of the Fredholm
alternative hold. Then the algorithm of solving the integral equation under
study has a regular closure.

For sufficiently good replacement of (64) by a system of linear equations
we can solve the obtained algebraic system by the method of successive elim-
ination of unknowns.
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Theorem 2. Assume that equation (81) is unsolvable for some z and some
function ψ(x) on the right side of it. Then the successive elimination of un-
knowns in the corresponding system of algebraic equations leads to the algo-
rithm Tc for solving the equation with the irregular closure.

Under the conditions of Theorem 2, in the process of elimination of un-
knowns, we pass through the system that as the value of h varies, becomes
however close to the unsolvable system. The better we approximate the op-
erator, the worse the system is in intermediate computations. In Sect. 8 and
Sect. 9 there is an example establishing the importance of Theorem 2.

8 The Example of Construction of a Partially Solved
Equation

To illustrate certain applications, we present one example. Let

ϕ(x) =

1∫
0

K(x, y)ϕ(y) dy + f(x), K(x, y) = a+ b cos 2πx cos 2πy. (82)

Let us construct a partially solved equation. From (82) it obviously follows
that

ϕ(x) −
z∫

0

(a+ b cos 2πx cos 2πy)ϕ(y) dy = ω(x, z),

ω(x, z) = f(x) +

1∫
z

(a+ b cos 2πx cos 2πy)ϕ(y) dy.

(83)

From (83) we obtain

ϕ(x) = ω(x, z) + aC1(z) + bC2(z) cos 2πx, (84)

C1(z) =

z∫
0

ϕ(y) dy, C2(z) =

z∫
0

ϕ(y) cos 2πy dy. (85)

Inserting (84) in (85), we have:

C1(z) = C1(z) a

z∫
0

dy + C2(z) b

z∫
0

cos 2πy dy +

z∫
0

ω(y, z) dy,

C2(z) = C1(z) a

z∫
0

cos 2πy dy + C2(z) b

z∫
0

cos2 2πy dy +

z∫
0

ω(y, z) cos 2πy dy.
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Hence,

C1(z)(1 − az) − C2(z)
b sin 2πz

2π
=

z∫
0

ω(y, z) dy,

−C1(z)
a sin 2πz

2π
+ C2(z)

(
1 − b

(z
2

+
sin 4πz

8π

))
=

z∫
0

ω(y, z) cos 2πy dy.

Solving these equations for C1(z) and C2(z), we obtain

C1(z) =

z∫
0

ω(y, z)
((

1 − b
(z

2
+

sin 4πz
8π

))
+

b

2π
sin 2πz cos 2πy

)
dy

(1 − az)
(
1 − b

(z
2

+
sin 4πz

8π

))
− ab

4π2
sin2 2πz

,

C2(z) =

z∫
0

ω(y, z)
(
(1 − az) cos 2πy +

a

2π
sin 2πz

)
dy

(1 − az)
(
1 − b

(z
2

+
sin 4πz

8π

))
− ab

4π2
sin2 2πz

.

Finally, substituting the values of C1(z) and C2(z) in (84), we obtain

ϕ(x) = ω(x, z) +

z∫
0

ω(y, z)

⎡⎢⎢⎣ a
(
1 − b

(z
2

+
sin 4πz

8π
))

+
ab sin 2πz cos 2πy

2π

(1 − az)
(
1 − b

(z
2

+
sin 4πz

8π

))
− ab sin2 2πz

4π2

+
b cos 2πx

(
(1 − az) cos 2πy +

a sin 2πz
2π

)
(1 − az)

(
1 − b

(z
2

+
sin 4πz

8π

))
− ab sin2 2πz

4π2

⎤⎥⎥⎦ dy. (86)

From (86) it follows that for x ≤ z and y ≤ z the function Γ (x, y, z) is
expressed as fraction in brackets. We also see that the resolvent Γ (x, y, z) is
an analytic function of the variables (x, y, z), and, hence, it has to coincide
with K(x, y, z) for all values of (x, y, z). Finally, we obtain

ϕ(x) −
1∫

z

K(x, y, z)ϕ(y) dy = f(x) +

z∫
0

K(x, y, z)f(y) dy, (87)

where

K(x, y, z) =
a

(
1 − b

(z
2

+
sin 4πz

8π
))

(1 − az)
(
1 − b

(z
2

+
sin 4πz

8π

))
− ab sin2 2πz

4π2
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+
(cos 2πx+ cos 2πy)

ab sin 2πz
2π

+ (1 − az)b cos 2πx cos 2πy

(1 − az)
(
1 − b

(z
2

+
sin 4πz

8π

))
− ab sin2 2πz

4π2

. (88)

Formulas (87) and (88) explicitly express the closure of the algorithm Tc for
solving the equation in (82).

Let us study how the kernel K(x, y, z) behaves when z varies. The denom-
inator in (88) can vanish for certain values of z. Namely, it vanishes for those
z, for which the equation

ϕ(x) =

z∫
0

K(x, y, z)ϕ(y) dy + ω(x, z) (89)

has 1 as an eigenvalue of it. Depending on whether the roots of the denomi-
nator of the fraction in (88) lie in the interior of the interval (0, 1) or not, the
closure of the algorithm Tc will be either irregular or regular.

For example, let a = 2 and b �= 4. Then z = 1/2 is the root of the
denominator, since in this case both (1 − az) and sin2 2πz vanish, and the
closure of Tc is irregular. In this case let us consider the behavior of the kernel
K(x, y, z) as z tends to 1/2 in more detail.

Expanding the numerator and denominator of (88) in powers of (z − 1/2)
for a = 2 and b �= 4, we obtain

K(x, y, z) =

1
2
− 2b(

2b− 1
2

)(
z − 1

2

)
+ o
((
z − 1

2
)4)

−
(
z − 1

2
)
b
[
1 + cos 2πx+ cos 2πy + cos 2πx cos 2πy

]
+ o
((
z − 1

2
)3)(

2b− 1
2

)(
z − 1

2

)
+ o
((
z − 1

2
)4) . (90)

In a neighborhood about the point z = 1/2 the function K(x, y, z) may be
written as

K(x, y, z) =
2

1 − 2z
+

2b
1 − 4b

(1+cos 2πx)(1+cos 2πy)+o

((
z − 1

2
)2)

. (91)

Let us study how the system of algebraic equations corresponding to (82)
is solved.

In the case of a = 2 and b �= 4 solving the integral equation by the method
of reducing it to the system of algebraic equations, we replace the integral
using the quadrature formulas, i.e., we compose the equation (E−AN )ϕ = f .
For the values of z = 1/2 − η, as η tends to zero, the operator ΓN becomes

however close to Γ , and, hence, the matrix
1
h
ΓN,n,m becomes however large.
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In this case its singular part of the form 2/(2z − 1) dominates, and at a
certain step of the method of elimination the other terms of the matrix become
relatively insignificant in magnitude.

If we conduct calculations keeping the same relative error (for example,
the same number of digits), then the smaller we choose h, i.e., the better
approximate A using AN , the worse the accuracy of the final result is. This
remark emphasizes the significance of Theorem 2 from the previous section.

9 Differential Equation on the Resolvent

It is not difficult to obtain from equation (75) one interesting corollary. Moving
Γ (x, y, z1) to the left side of (75), and dividing both sides of the result by
z2 − z1, we have

Γ (x, y, z2) − Γ (x, y, z1)
z2 − z1

=
1

z2 − z1

z2∫
z1

Γ (x, t, z1)Γ (t, y, z1) dt

+
1

z2 − z1

z2∫
z1

z2∫
z1

Γ (x, t, z1)Γ (t, u, z2)Γ (u, y, z1) dudt. (92)

Obviously, the right side of (92) tends to

Γ (x, z1, z1)Γ (z1, y, z1)

as z2 → z1. Hence, the left side of (92) also has the limit, and we obtain

dΓ (x, y, z)
dz

= Γ (x, z, z)Γ (z, y, z). (93)

Equation (93) is a generalized ordinary differential equation in the variable z
with a functional right side.

Let us denote, as above, by ω(x, z) the function

ω(x, z) = f(x) +

z∫
0

Γ (x, y, z)f(y) dy. (94)

Obviously, ω(x, 1) = ϕ(x). Differentiating both parts of (94) with respect to
z and applying (93), we obtain

dω(x, z)
dz

= Γ (x, z, z)f(z) +

z∫
0

dΓ (x, y, z)
dz

f(y) dy
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= Γ (x, z, z)
(
f(z) +

z∫
0

Γ (z, y, z)f(y) dy
)

= Γ (x, z, z)ω(z, z). (95)

From (95) it follows that for the given function Γ (x, z, z) the problem of
determining the function ω(x, z) reduces to the simple quadrature. From (95)
it also follows that

ω(z, z) = ω(0, 0) exp

z∫
0

Γ (z1, z1, z1) dz1,

ω(x, z) = ω(x, 0) +

z∫
0

Γ (x, z1, z1)ω(z1, z1) dz1.

Hence, if we would try to find the solution of the integral equation under study
using the resolvent of it, it would be sufficient to know the function Γ (x, y, z)
only for y ≥ z.

Let us note that for (93) the existence and uniqueness theorems established
in the theory of ordinary differential equations keep their meaning. Let us
prove one of them.

Theorem. In a given interval α ≤ z ≤ β the bounded solution K(x, y, z)
of (93) such that

K(x, y, α) = ϕ(x, y), (96)

is unique.

Proof. Let K1(x, y, z) and K2(x, y, z) be two solutions of the problem in ques-
tion such that |K1(x, y, z)| ≤ M and |K2(x, y, z)| ≤ M in the considered
interval. Then

∂(K2 −K1)
∂z

= K2(x, z, z)K2(z, y, z) −K1(x, z, z)K1(z, y, z)

=
[
K2(x, z, z)−K1(x, z, z)

]
K2(z, y, z) +K1(x, z, z)

[
K2(z, y, z)−K1(z, y, z)

]
.

Hence,∣∣∣∂(K2 −K1)
∂z

∣∣∣ ≤ M (|K2(x, z, z) −K1(x, z, z)| + |K2(z, y, z) −K1(z, y, z)|) .

However, (K2 −K1)(x, y, z) =

z∫
α

∂(K2 −K1)
∂u

(x, y, u) du and, hence,

|(K2 −K1)(x, y, z)| ≤ M

z∫
α

(|K2(x, u, u) −K1(x, u, u)|
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+|K2(u, y, u) −K1(u, y, u)|) du. (96∗)

Hence, by induction, we obtain the estimate

|(K2 −K1)(x, y, z)| ≤ (2Mz)n

n!
. (97)

From the assumption that (97) holds for certain n, and from (96∗), as is easy
to see, the validity of (97) follows also for n+ 1. ��

If in the example of Sect. 8 b = 0, then (82) becomes the equation

ϕ(x) = a

1∫
0

ϕ(y) dy + f(x). (98)

In this case it is easy to find the resolvent by integrating equation (93) with
the initial condition Γ (x, y, 0) = a. It is natural to search the solution of the
problem as a function independent of x and y. We have

dΓ (z)
dz

= Γ 2(z), d
1

Γ (z)
= −dz, (99)

and, hence,
Γ (z) =

a

1 − az
, (100)

which coincides with the result obtained earlier. In this case the singularity
of the solution is movable, and it appears at z = 1/a.

It is interesting to trace the relation between the algorithm of successive
eliminations of unknowns in the algebraic system of equations and solving the
corresponding differential equation (93).

We establish that the method of successive eliminations of unknowns is
quite close to the polygonal Euler method applied to differential equation
(93).

Let us point out one important circumstance. In the example we just
considered all unknowns appear in the problem symmetrically, therefore the
elimination order makes no difference. Thus, generally speaking, we cannot
avoid the mentioned loss of significant digits applying the Gauss elimination
method. The origin of these losses depends on reasons deeper than unsuccess-
ful order of the elimination of unknowns.

Let us study in more detail the process of solving the system of the equa-
tions

ϕi =
N∑

j=1

Kijϕj + fi, i = 1, 2, . . . , N, (101)

by means of the successive elimination of unknowns. Let
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ϕi −
N∑

j=s+1

K
(s)
ij ϕj = fi +

s∑
j=1

K
(s)
ij fj , s = 0, 1, . . . , N, (102)

be the partially solved systems of equations. From the condition that all of
equations (102) must be mutually equivalent, it is not difficult to find the de-
pendence between the numbers K(s)

ij . This dependence is well known. Solving
the equation of system (102) with the number s + 1 with respect to ϕs+1,
we substitute the result in all other equations of the system. Then after some
simple calculations we obtain

ϕi −
N∑

j=s+2

(
K

(s)
ij +

K
(s)
i,s+1K

(s)
s+1,j

1 −K
(s)
s+1,s+1

)
ϕj

= fi +
s∑

j=1

(
K

(s)
ij +

K
(s)
i,s+1K

(s)
s+1,j

1 −K
(s)
s+1,s+1

)
fj , (103)

which immediately entails the known final formulas

K
(s+1)
ij = K

(s)
ij +

K
(s)
i,s+1K

(s)
s+1,j

1 −K
(s)
s+1,s+1

, (104)

K
(0)
ij = Kij . (105)

As is easy to see, (105) follows from (101) and (102) for s = 0.
The similarity between formulas (104) and (93) strikes. Introducing the

notation Γ
(s)
ij = hΓ (ti, tj , ts), where t1, t2, . . . , tN are the same points in the

interval [0, 1] as before, from (93) we approximately obtain:

Γ (ti, tj , ts+1) − Γ (ti, tj , ts)
h

= Γ
(s)
i,s+1Γ

(s)
s+1,j , (106)

which coincides with (104) with the accuracy to within small terms of higher
order.

Thus, the principal term in (104) is the same as one would obtain by
integrating (93) by the polygonal Euler method.

The remark makes it possible to expect that for solving the integral equa-
tion there are algorithms based on the approximate solution of (93), and they
lead to the solution faster than both algorithms indicated above. As is known,
the polygonal method is not the best in solving differential equations. It is
possible that we could apply to equation (93) the techniques based on more
exact formulas, for example, the Runge–Kutta method or the Adams method.

The singular points in the closure of the algorithm, as we have observed,
prevent the normal course of calculations. We indicate here one theoretical
method how to avoid these singular points.

Let us look for the solution ϕ(x) of equation (18) in the parametric form
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ϕ = ψ + Γ
(1)∗
N B2ψ = (E + Γ

(1)
N )ψ, (107)

where Γ (1)∗
N is defined by formula (63). In this case we obtain

(E + Γ
(1)
N )ψ = A(E + Γ

(1)
N )ψ + f. (108)

From (108) it follows that(
E + (Γ (1)

N −A
(1)
N +A

(1)
N Γ

(1)
N ) + (A(1)

N −A)(E + Γ
(1)
N )
)
ψ

≡
(
E + (A(1)

N −A)(E + Γ
(1)
N )
)
ψ = f.

Let
(A−A

(1)
N )(E + Γ

(1)
N ) ≡ D. (109)

Then we obtain the new equation

(E −D)ψ = f. (110)

If A(1)
N is sufficiently close to A, then the norm of the operator D, and even the

kernel of this integral operator, can be made less than 1, and then equation
(110) turns out to be solvable using both the algorithms of nets Tc, and the
algorithm of successive approximations Tit, having a regular closure in this
case. It is not difficult to compute the operator D by solving a finite number

of equations on
≈
ΓN .

If (E −A)−1 exists, then for some N the operator
≈
ΓN satisfies the condi-

tions stated. After that, by (107) it is not difficult to compute ϕ.
It seems to us that the closure of the computational algorithm could be

also useful in other cases, in particular, in solving different boundary value
problems for partial differential equations. The study of the closure of opera-
tors is also useful from one more side. It is possible to assume that the systems
of equations with many unknowns are closer in their properties to their clo-
sures than to their two or three dimensional analogues. Then we should think
on extension for solution of such systems of certain methods of mathemati-
cal analysis. If the present work attracts the attention of researchers to these
questions, then our goal will be achieved.
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5. Certain Modern Questions
of Computational Mathematics∗

S. L. Sobolev

1. The subject of numerical mathematics from the modern point
of view. The sets of functions and functional spaces. Tables, graphs,
approximate formulas, certain numeric values as finite-dimensional ap-
proximations in the functional space. How to study sets that cannot be
reduced to finite-dimensional? The bounded ε-net in finite-dimensional
spaces. Compactness as an important property of all objects of numerical
mathematics.

Numerical mathematics as one of the branches of functional analysis.
New methods, directly introduced by functional analysis into computa-
tional applications.

2. Numerical mathematics and the functions of a discrete ar-
gument. Binary representations of numbers. The two-valued functions of
many variables admitting only two values: 0 and 1.

Connection between numeric mathematics and mathematical logic.
Data and information. The problems of information theory related to the
large amount of information. The estimate of an algorithm by its complex-
ity (by a number of operations).

3. Mathematical machines. Universal high speed electronic computers.
Programming, its theory and practice. The influence of machine technology
on the problems of mathematics as a whole.

Mathematical logic and its applications.
Extension of the classes of solvable problems. Appearance of a need

for solution of complicated mathematical problems simultaneously with
enlargement of the possibilities of solutions.

Space problems and nonlinear problems.

∗ Tr. 3 Vsesoyuz. Mat. S’ezda, vol. 2 (1956), p. 77.
Resume of a lecture given at the Third All-Union Mathematical Congress in
Moscow (1956). – Ed.



442 S. L. Sobolev

4. Approximation theory. New problems in the theory of approximation
of functions related to the use of functions in calculations.

The problems of constructing algorithms for the best approximations.
The interpolation of functions of many variables.

5. Special questions of approximation of operators. Quadrature for-
mulas and representations of derivatives by differences in the case of func-
tions of many variables.

Inverses for approximate operators and the approximate operators
for the inverses. The explicit forms of certain inverses.

6. The Cauchy problem for differential and difference equa-
tions. Problems solved step by step, their stability, the stability of compu-
tations in different schemes. Purely computational effects related to round-
ing in calculations.

7. Systems with a large number of algebraic equations.
The border problems between algebra and analysis. Systems with a

large number of equations, corresponding to the given integral equation.
Elliptic equations and corresponding difference systems. The methods

of analysis in algebraic equations. Algorithmization of classical analysis as
a result of enlarged computational possibilities.

8. Conclusion.



6. Functional Analysis and
Computational Mathematics∗

L. V. Kantorovich, L. A. Lyusternik, and S. L. Sobolev

1. Historical review. Computational mathematics as one of the sources
of ideas in functional analysis.

2. Computational mathematics as the science about finite ap-
proximations of general compacts (not necessarily metric).

3. The main branches of computational mathematics in its histor-
ical order. The approximations of numbers, functions, and operators.

4. Approximations in spaces with different topologies. Approxima-
tions in Cn and in Cρ(∞) (integral transformations on the axis in L2). Weak
approximations. Integral as the limit of sums, convergence of quadrature
formulas. Partially ordered spaces.

5. The types of approximation of operators. Uniform approxima-
tions. Strong approximation. Regular approximation. Approximation by
n-dimensional manifolds. Preservation of the qualitative properties of an
operator in replacing it by its approximations. (The invertibility of the
operator, the maximum principle, integral estimates.)

6. Approximation of the functions of operators. Symbolic calculus
for functions of one and several variables. Application of these methods to
the quadrature and cubature formulas. Approximation of the resolvent by
operator polynomials. (The Chebyshev polynomials, continuous fractions,
orthogonalization of the sequence An

x .)

7. Difference approximations. The question on solutions of difference
equations. Stability of difference computations.

8. Computational algorithms and their direct study. General properties
of computational algorithms. Closures of computational algorithms.

∗ Tr. 3 Vsesoyuz. Mat. S’ezda, vol. 2 (1956), p. 43.
Resume of a lecture given at the Third All-Union Mathematical Congress in
Moscow (1956). – Ed.
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9. Transferring the computational ideas of algebra and elemen-
tary analysis to functional spaces. The method of successive ap-
proximations. Linearization. The Newton method and its different mod-
ifications. Chaplygin’s estimates. Generalization of the principle of root
separation. The Schauder theorem on rotation of a vector field. The deep-
est descent method.

10. New problems of computational nature in functional analy-
sis. Equations in variational derivatives. Integration in a functional space.



7. Formulas of Mechanical Cubatures
in n-Dimensional Space∗

S. L. Sobolev

For different classes of functions, formulas of mechanical cubature

(l, ϕ) ≡
∫
Ω

ϕ(x) dx−
N∑

k=1

ckϕ(x(k)) ∼= 0 (1)

give various degrees of approximation. In (1) x is a point in a bounded
n-dimensional domain Ω, the ck are coefficients, and the x(k) are nodes
of the formula. In what follows we assume that the error (l, ϕ) equals zero
for polynomials of a certain degree m1, and the domain Ω has a piece-wise
smooth boundary.

Of particular theoretical interest is a special case of cubature formulas,
when the function ϕ is periodic with periods Hβ, where H is the basic matrix
of periods

H = (h1,h2, . . . ,hn), (2)

each period hk is a column vector

hk =

⎛⎝h1k
...

hnk

⎞⎠ ; (3)

β is a column vector of integers

β =

⎛⎝β1
...
βn

⎞⎠ , −∞ < βk < +∞. (4)

In this case, the domain of integration Ω0 is a fundamental paralleloid such
that the system of all paralleloids Ωβ , obtained by translations of Ω0 by the
vectors Hβ, covers the whole space Rn without intersection. In this case, we
put m1 = 0. Hence, formula (1) is exact for ϕ = 1, and therefore
∗ Dokl. Akad. Nauk SSSR, 137, 527–530 (1961)
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N∑
k=1

ck = |Ω0|. (5)

The main problem of the theory of mechanical cubature is to find

min
ck,x(k)

[
max
ϕ∈X

|(l, ϕ)|] = d(X,N) (6)

for a given class X and a given number of nodes N . The values ck and x(k),
for which this minimax is attained, give the optimal formulas of mechanical
cubature. For n = 1, this problem was studied by S. M. Nikol’skii and his
students. A summary of the results obtained is given in [3] along with a
major bibliography on the subject. Many authors [7–13] have recently studied
cubature formulas for n > 1.

It is convenient to consider as X the unit sphere in a certain Banach space
B, where (l, ϕ) is a linear functional. In the space C of continuous functions
on Ω or Ω0, there are no functionals of the form (l, ϕ) such that they are
small on the unit sphere of C, even though they are all linear. In this event,
we have

sup
‖ϕ‖C=1

|(l, ϕ)| = |Ω0| +
N∑

k=1

|ck|. (7)

Therefore, the main problem has no meaning in C.
In the present note, we study the first half of the main problem. More

precisely, we look for
max
ϕ∈X

|(l, ϕ)| = d(ck, x(k)), (8)

where X is the unit sphere in the space of functions and the mth-order1

derivatives of functions under consideration are square integrable.
The second half of the main problem consists in finding min d(ck, x(k)).

This is the problem about the minimum of functions of (n + 1)N variables,
and we are not going to touch on it here.

Further we consider simultaneously spaces W̃
(m)
2 and L̃

(m)
2 of functions

periodic in Rn with periods Hβ for any integer vector β. In this event, as the
domain of integration Ω we take the fundamental paralleloid Ω0.

The W (m)
2 - and W̃

(m)
2 -norms are given by formulas [2]∥∥ϕ∥∥2

W
(m)
2

= ‖Πϕ‖2
Pm−1

+
∥∥ϕ∥∥2

L
(m)
2

= ‖Πϕ‖2
Pm−1

+D(ϕ), (9)

∥∥ϕ∥∥2fW (m)
2

=
(∫
Ω0

ϕ(x) dx
)2

+D(ϕ), (10)

where Π is a projection operator from W
(m)
2 into the space Pm−1 of polyno-

mials of degree m − 1, and L
(m)
2 is the quotient space W (m)

2 /Pm−1. Also in
(9) and (10) we use the notation
1 Here and in what follows m > n/2. – Ed.
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L

(m)
2

= D(ϕ) =
∫
Ω

∑
|α|=m

m!
α!

|Dαϕ(x)|2 dx. (11)

In the nonperiodic case we assume that m1 = m− 1, i.e.,

(l, ϕ) = 0 for ϕ ∈ Pm−1. (12)

The general case is reduced to (12) provided that Πϕ is an interpolation
operator.

The following inequalities are valid:

|(l, ϕ)| ≤ K
∥∥ϕ∥∥

L
(m)
2

≤ K
∥∥ϕ∥∥

W
(m)
2

, |(l, ϕ)| ≤ K
∥∥ϕ∥∥eL(m)

2
≤ K

∥∥ϕ∥∥fW (m)
2

. (13)

Let us consider three problems.

Problem 1. Find max
‖ϕ‖

W
(m)
2

=1
(l, ϕ).

Problem 2. Find min
(l,ϕ)=1

‖ϕ‖2

W
(m)
2

.

Problem 3. Find min
ϕ∈W

(m)
2

Hλ(ϕ), where Hλ(ϕ) = D(ϕ) + 2λ(l, ϕ).

These problems are reducible to one another.
Let us examine Problem 3 using a direct approach2. By (12) and (13), the

functional Hλ(ϕ) has a finite exact lower bound3:

Hλ(ϕ) ≥ [√D(ϕ) − λK
]2 − λ2K2 ≥ −λ2K2. (14)

From the identity

1
2
Hλ(uk) +

1
2
Hλ(um) −Hλ

(
uk + um

2

)
= D

(
uk − um

2

)
(15)

it follows that for a minimizing sequence uk the sequence (I − Π)uk is also
minimizing, and even fundamental in L

(m)
2 . Hence, there exists a unique limit

of the sequence such that it is the solution of Problem 3. Next, from the
identity
2 For given l and λ this is the Neumann problem for the polyharmonic equation

studied in Chap. XII of the book: Sobolev, S. L.: Introduction to the Theory of
Cubature Formulas. Nauka, Moscow (1974). – Ed.

3 The proof of estimate (14) is as follows:

Hλ(ϕ) ≥ D(ϕ) − 2|λ||(l, ϕ)|

≥ D(ϕ) − 2|λ|K
p

D(ϕ) =
“p

D(ϕ) − λK
”2

− λ2K2. – Ed.
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Hλ(ϕ) =
λ2

λ2
1

Hλ1

(
λ1

λ
ϕ

)
(16)

we can conclude that for varying λ the solutions of Problem 3 differ from each
other only by a factor and

uλ = λu1. (17)

An examination of the function ψ(µ) = Hλ(µuλ) leads to the conclusion that
under the consideration

Hλ(uλ) = min
u∈W

(m)
2

Hλ(u) = −dλ(ck, x(k)), (18)

the following equalities are valid4:

D(uλ) = dλ(ck, x(k)) and λ(l, uλ) = −dλ(ck, x(k)). (19)

Clearly, if (l, uλ) = 1, then the solution uλ of Problem 3 is the solution of
Problem 2 as well, and solutions of Problem 1 and Problem 2 differ from each
other by a factor. Hence, the solutions of Problems 1 and 2 may be written as

uI =
1
d1
u1 and uII = − 1√

d1

u1. (20)

In the periodic case Problems 1, 2 and 3 are solved analogously.
The search for the extremal function can now be reduced to the integration

of a partial differential equation. It is convenient to use the apparatus and
symbolism of the theory of generalized functions [4–6].

Solving Problem 3 with λ = 1 by classical methods of the calculus of
variations, we obtain the following equation5:

2D(u1, ξ) + 2
∫
Ω

ξ(x) dx− 2
N∑

k=1

ckξ(x(k)) = 0,

D(u1, ξ) =
∫
Ω

∑
|α|=m

m!
α!
Dαu1D

αξ dx.

(21)

Here ξ is a permissible variation, i.e., ξ is any function6 from W
(m)
2 or W̃ (m)

2 .
We rewrite equation (21) in the form

−D(u1, ξ) =
∫
Ω

[
1 −

N∑
k=1

ckδ(x− x(k))
]
ξ(x) dx, (22)

4 It is sufficient to use the equality ψ′(1) = 0. – Ed.
5 By the definition of u1, we have d

dλ
H1(u1 + λξ)

˛̨
λ=0

= 0. From this equality it
follows that (21) holds. – Ed.

6 For m > n/2 the values ξ(x(k)) are defined in view of the embedding
theorem. – Ed.
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where δ(x) is the Dirac delta function.
By a slight modification of classical arguments, we obtain the equation

∆mu1 = (−1)m+1
[
1 −

N∑
k=1

ckδ(x− x(k))
]

(23)

with the boundary conditions

Bk(u1)
∣∣∣
x∈ ∂ Ω

= 0 for k = 0, 1, . . . ,m− 1 (24)

in the nonperiodic case. In the periodic case, the boundary conditions are
absent.

In the nonperiodic case, as follows from (23), the equality holds7:

u1(x) = u∗1(x) +
(−1)m+1Γ (n/2)2−2m

Γ (n/2 +m)Γ (m+ 1)
r2m

−(−1)m+1
N∑

k=1

ck
in−12−2m+1π−n/2+1

Γ (m)Γ (m− n

2
+ 1)

r2m−n
k

⎧⎨⎩
1
2 , if n odd,
ln rk

πi
, if n even,

(25)

where r = |x|, rk = |x − x(k)|, ∆mu∗1 = 0, and u∗1 is chosen so that (24) is
satisfied.

To find u∗1 we can use the method of integral equations, the net method
or any other method. To find u1 it is convenient to apply any direct approach
such as, for example, the Ritz method.

Let us consider the periodic case. Let |Ω0| = 1 and let u(k) be the periodic
solution of the equation

∆mu(k) = (−1)m+1
[
1 − δ(x− x(k))

]
, where x ∈ Ω0, x(k) ∈ Ω0. (26)

Then

u1 =
N∑

k=1

cku
(k). (27)

Let x and y be coordinate vector columns; x = Hy. Let Λ(x) be the periodic
function with periods Hβ and let Λ(x) be equal to 1 − δ(x − x(k)) in the
paralleloid Ω0. Then M(y) = Λ(Hy) is a periodic function with the integer
periods β and its value in the basic cube is given by the equality M(y) =[
1 − δ(y − y(k))

]
, −1/2 < y ≤ 1/2, y(k) = H−1x(k). We expand the function

M(y) in the generalized Fourier series

7 Also the equality u1(x) = u∗
1(x) + (−1)m+1Gm,n(x) ∗ l(x) holds, where Gm,n(x)

is the fundamental solution of the polyharmonic operator ∆m. The explicit ex-
pression for Gm,n(x) can be found in the book: Sobolev, S. L.: Introduction to
the Theory of Cubature Formulas. Nauka, Moscow (1974), pp. 520–521. – Ed.
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M(y) =
∑
γ �=0

ei2π(γ,y−y(k)), (28)

where γ = (γ1, γ2, . . . , γn) ranges over all integer vectors. From (28) it follows
that

Λ(x) =
∑
γ �=0

ei2π(γ,H−1(x−x(k))) =
∑
γ �=0

ei2π(H−1∗γ,x−x(k)), (29)

whence

u(k) = −
(

1
2π

)2m∑
γ �=0

1
|H−1∗γ|2m

ei2π(H−1∗γ,x−x(k)). (30)

Formulas (27) and (30) provide an easy calculation of the sought for max-
imum of values of (l, ϕ).
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8. On Interpolation of Functions of n Variables∗

S. L. Sobolev

In order to find an approximate representation of a function ϕ(x) of n variables
by elements of a certain finite collection, it is possible to use values of this
function at some finite set of points

x(k), k = 1, 2, . . . , N. (1)

The corresponding problem is called the interpolation problem, and the points
x(k) the interpolation nodes. Most usual is the interpolation by means of a
linear combination of some set of functions:

ϕ(x) ∼=
M∑

ν=1

aνϕν(x). (2)

The ϕν(x) are frequently taken as all monomials xα of degree at most m (xα

denotes xα1
1 xα2

2 . . . xαn
n ). The number of such monomials equals

M =
(m+ n)!
m!n!

.

The values of a function ϕ(x) at the points x(k) form an N -dimensional row
vector

ϕk = ϕ(x(k)), k = 1, 2, . . . , N. (3)

Let us index all integer vectors α = (α1, α2, . . . , αn) with non-negative entries
and such that |α| = α1 +α2 + · · ·+αn ≤ m. The set of values of all monomials

x(k)α(j)

forms a matrix

S = (Sjk) =
(
x(k)α(j)

)
(4)

with N columns and M rows.
∗ Dokl. Akad. Nauk SSSR, 137, 778–781 (1961)
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An arbitrary polynomial Q =
M∑

j=1

ajx
α(j)

is considered to be equivalent to

the row vector a = (a1, a2, . . . , aM ). Clearly, the values of this polynomial at
the points x(k) may be arranged as the vector

Q(k) = aS. (5)

The interpolation problem is to solve equation (5) with respect to a vector a
for a given Q(k), i.e., to recover the polynomial Q by its values at the points
x(k).

The solution of equation (5) and the polynomial Q are uniquely defined
if1 r(S) = M , which is possible only for N ≥ M . In this case, there exists at
least one right inverse matrix S−1

d to S. Then

a = aSS−1
d = Q(k)S−1

d . (6)

Every such matrix S−1
d is called an interpolation matrix . For each polynomial

Q, we have
Q = Q(k)S−1

d xα, (7)

where xα is the vector (xα(1)
, xα(2)

, . . . , xα(M)
). Formula (7) is called the in-

terpolation formula with the nodes x(1), . . . , x(N). If N > M , then there are
infinite sets of the interpolation matrices and the interpolation formulas. The
given vector Q(k) can serve as the vector of values of the polynomial provided
that

r

(
S

Q(k)

)
= r(S). (8)

This is the solvability condition for equation (5).
However, the right side of (7) has a meaning for an arbitrary vector Q(k)

as well. Substituting instead of the vector Q(k) the vector ϕ(k), we have the
polynomial

Pϕ = ϕ(k)S−1
d xα =

M∑
k=1

Ck(x)ϕ
(
x(k)
)
. (9)

The polynomial Pϕ is called the interpolation polynomial for the function ϕ.
It can happen that the solution of (5) exists for any Q(k); this means that
r(S) = N and, hence, N ≤ M . In this case, there exists at least one left
inverse matrix S−1

g to S, and

Q(k)S−1
g S = Q(k). (10)

We do not consider the cases where r(S) < N and r(S) < M .
For r(S) = M = N , there exists a unique solution of (5) and the inter-

polation problem is classical. For an example of a solution of the classical

1 Here, r(S) is the rank of the matrix S. – Ed.
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interpolation problem, we can mention the interpolation formula with nodes
at points of a certain parallelepiped structure, which is called a Newtonian
system.

Let s be the n-dimensional integer vector with non-negative entries and
let s− 1 be the vector (s1 − 1, s2 − 1, . . . , sn − 1). Every s such that |s| ≤ m
is in one-to-one correspondence with a parallelepiped Πs, consisting of the
points of some cubic lattice with mesh-size h and lengths of the edges given
by s1h, s2h, . . . , snh, respectively. The inequality s(1) < s(2) will be taken to
mean that s(1)k ≤ s

(2)
k for all k, and that for at least one k, the strict inequality

s
(1)
k < s

(2)
k holds.

We say that the parallelepipeds Πs form a structure, if:

Property 1. From s(1) < s(2) it follows that Πs(1) ⊂ Πs(2) .

Let the points xk of the parallelepiped Πs be given by xk = ξsk
+ lh,

l = 0, 1, . . . , sk. From Property 1, it follows that the ξsk
cannot depend on the

other entries of s.
Let the system of polynomials Ps be given by the formula

Ps(x) =
Γ
(
(x− ξs−1)/h+ 1

)
Γ
(
(x− ξs−1)/h− s+ 1

) ≡
n∏

k=1

sk−1∏
l=0

(
xk − ξsk−1

h
− l

)
. (11)

Those k for which sk = 0 are not included in the product. The polynomial
Ps(x) is the product of generalized factorials with respect to each variable. It
becomes zero at all points belonging to any parallelepiped Πs∗ if at least one
of the inequalities s∗k < sk is satisfied.

Furthermore, let the operator

∆s = ∆s1
1 ∆s2

2 . . .∆sn
n (12)

be the product of the difference operators of orders sk with respect to the
variables xk computed for the given nodes

xk = ξsk−1 + lh, l = 0, 1, . . . , sk − 1. (13)

It is easy to verify that

∆sPq = 0 for s �= q and ∆sPq = s! for s = q. (14)

Each polynomial Q of degree m can be uniquely represented as

Q =
M∑

j=1

asjPsj .

By (14), these coefficients as are defined from the formulas

as =
1
s!
∆sQ, (15)
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i.e., they are found by the values of Q at all the nodes of the structure. In
this event the interpolation problem is classical, since the number of nodes is
precisely equal to M and r(S) = M .

For an arbitrary function ϕ, we have the interpolation polynomial defined
from values of ϕ at the nodes of the structure by

Pϕ =
∑

|s|≤m

∆sϕ

s!
Ps(x). (16)

An important problem in the interpolation theory is to find the maximum
of the error of the interpolation formula ϕ(x) ∼= Pϕ(x) in a given class of
functions. The value of this error at a fixed point z is a functional defined as

(j, ϕ) ≡ ϕ(z) − Pϕ(z) = ϕ(z) −
N∑

k=1

Ck(z)ϕ
(
x(k)
)
, (17)

where Ck(z) = S−1
d zα. The coefficients Ck(z) are obviously connected by the

linear conditions

(j, xα(s)
) = 0 for s = 1, 2, . . . ,M. (18)

The functional (j, ϕ) is bounded and linear in the space W
(m)
2 (Ω) of

functions for which themth-order derivatives are square integrable2. Therefore
it is convenient to consider the maximum of this functional on the unit sphere
of the space W (m)

2 (Ω).

Problem 1. Find
max

‖ϕ|W (m)
2 (Ω)‖=1

(j, ϕ). (19)

Problem 1 is solved in the same way as the problem of finding the maximal
error of the cubature formula. Repeating the reasoning of article [1], we find
that the corresponding extremal function is the solution of the equation

∆mu = (−1)m

[
δ(x− z) −

N∑
k=1

Ck(z)δ(x− x(k))

]
, (20)

which satisfies the conditions

Bt(u)
∣∣∣
x∈∂ Ω

= 0 for t = 1, 2, . . . ,m. (21)

Thus, the extremal function and the maximum of the error depend upon in
which domain Ω the functions under consideration are given.

We have the general estimate

2 For m > n/2. – Ed.
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|(j, ϕ)| ≤ K(Ω)
∥∥ϕ | W (m)

2 (Ω)
∥∥. (22)

Let Ω2 ⊂ Ω1. Then an extremal function in Ω1 is also defined in Ω2 and
satisfies there the same equation (20), but the function is probably not an
extremal function in Ω2. In addition, its norm in the domain Ω2 is less than
1. Thus,

max
‖ϕ|W (m)

2 (Ω1)‖=1

(j, ϕ) ≤ max
‖ϕ|W (m)

2 (Ω2)‖=1

(j, ϕ). (23)

Consequently, the constant K(Ω) decreases as the domain Ω expands. We
show that K(Ω) tends to some limit under an unlimited expansion of the
domain. For this, it is sufficient to establish that the equation (20) has a
solution belonging to W

(m)
2 in the whole space.

Let G(x) be an elementary solution of the equation

∆mG = (−1)mδ(x). (24)

It is known that3

G(x) = (−1)mκm,n|x|2m−n

{
1, if n odd or n>2m,
ln |x|, if n even and n≤2m.

(25)

We show that the function

ψ(x) = G(x− z) −
N∑

k=1

Ck(z)G(x− x(k)) (26)

belongs to W
(m)
2 and, hence, ψ(x) is a unique extremal element in W

(m)
2 for

the functional (j, ϕ).
For this, we expand the mth-order derivatives of the function G(x(0) − x)

into a Taylor series with respect to powers of x in a ball of radius A >
max {|z|, |x(k)|}. We have

DβG(x(0)− x) =
∑

|α|≤m

Dα+βG(x(0))
(−x)α

α!
+Rβ(x, x(0))

= Qβ(x, x(0)) +Rβ(x, x(0)), (27)

where Qβ(x, x(0)) is a polynomial in x of degree m, and Rβ(x, x(0)) satisfies
the inequality

|Rβ(x, x(0))| ≤ K |x(0)|−n ln |x(0)|, (28)

for sufficiently large |x(0)|. By condition (18), we have

3 The explicit expressions for κm,n can be found, for example, in the book:
Sobolev, S. L.: Introduction to the Theory of Cubature Formulas. Nauka, Moscow
(1974), pp. 520–521. – Ed.
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j,DβG(x(0) − x)

)
=
(
j, Rβ(x, x(0))

)
,

whence4 ∣∣(j,DβG(x(0) − x)
)∣∣ = ∣∣Dβψ(x(0))

∣∣
≤ K

(
1 +

N∑
k=1

|Ck(z)|
)
|x(0)|−n ln |x(0)|. (29)

From inequality (29) the convergence of the integral
∫ |Dβψ(y)|2dy and the

boundedness of the norm ‖ψ | W (m)
2 ‖ follow.

The problem of finding the optimal interpolation formula for given nodes
x(k) is also interesting when N > M . In this event, for minimizing the error
it stands to reason to use the arbitrariness in defining S−1

d .
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9. Various Types of Convergence of Cubature
and Quadrature Formulas∗

S. L. Sobolev

The error functional of the cubature formula

(l, f) ≡
∫
Ω

f(x) dx−
N∑

k=1

ckf(x(k)) (1)

can be studied in various topologies.
S. M. Nikol’skii [1], the author [2], and others studied the problem of the

maximum of (l, f) on the unit sphere of a Banach space B:

max
‖f‖B=1

(l, f) = d(l). (2)

From this point of view, the study of cubature formulas depending on N
reduces to the study of the convergence of d(l(N)) for the corresponding func-
tionals (l(N), f).

Another equally frequent approach to convergence of cubature and quadra-
ture formulas is the convergence in proximity order. In this note we adopt the
latter point of view.

In (1) we can consider instead of the numerical function f an abstract
function with values in a certain Banach space X or topological space τ :

f(x) ∈ X or f(x) ∈ τ. (3)

In this case, the function f itself, mapping Rn onto X or τ , is a member of a
certain Banach space B or, more generally, topological space T :

f(Rn → X) ∈ B or f(Rn → τ) ∈ T. (4)

The error functional (l, f) then becomes an error operator, mapping B or T
onto X or τ , since both

∗ Dokl. Akad. Nauk SSSR, 146, 41–42 (1962)
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Ω

f(x) dx and
N∑

k=1

ckf(x(k))

are members of B or T . In this event, the convergence of cubature formulas
to 0 is characterized by the convergence to 0 of the operators l(N).

It is convenient to take as X the space of countably dimensional vectors

a ∈ X, a = (a1, a2, . . . , an, . . . ), (5)

with any Banach norm, for example, the l2 or m norm. In this case an abstract
function f with values in X or τ has the form

f = (f1, f2, . . . , fn, . . . ). (6)

The convergence in proximity order is the convergence of l(N) to 0 defined
by the condition:

For a given k there is N(k) such that

(l(N), f) = (0, 0, . . . , fk+1, fk+2, . . . ) for N ≥ N(k). (7)

Let operators l(N) be bounded in the norm, i.e.,

‖(l(N), f)‖X ≤ K‖f‖B .

Then the convergence in proximity order is a special case of the weak conver-
gence.

In the linear space of countably dimensional vectors, instead of a norm we
introduce a topology by defining neighborhoods of zero Bα as vectors of the
form

(0, 0, . . . , aα+1, aα+2, . . . ). (8)

The neighborhoods of zero in the corresponding topology for the linear space
of functions f are defined as

Bα = (0, 0, . . . , fα+1, fα+2, . . . ). (9)

In this case, the convergence in proximity order is the uniform convergence.
For any given neighborhood Bα, we can find corresponding N(α) such that

(l(N), f) ∈ Bα for N > N(α). (10)

Let us consider two examples.

Example 1. Let f(x, y) be an analytic function of two variables (x, y); in a
neighborhood about zero, f(x, y) decomposes in the convergent Maclaurin
power series

f(x, y) = a0 + a10x+ a01y + a20x
2 + a11xy + a02y

2 + . . . . (11)

We identify the function f with the vector function

(a0, a10x+ a01y, a20x
2 + a11xy + a02y

2, . . . )

whose entries are the homogeneous polynomials constituting series (11).
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The convergence of l(N) to 0 in proximity order means that for polynomials
of an arbitrarily high degree (l(N), f) = 0, where N is sufficiently large.

Let fh(x, y) = f(hx, hy). From ‖fh‖X ≤ Ahα for f ∈ Bα it follows that the
set of functions from the unit sphere in X, which are in a smaller neighborhood
of zero Bα, appears for sufficiently small h in a smaller neighborhood of zero
in the sense of topology of X as well. One may say that a neighborhood in B
is sliced in a countable set of neighborhoods in T .

Example 2. Let the function f(ϑ, ϕ) be given on the unit sphere of the three-
dimensional space and belong to W

(2)
2 , i.e., for example,

‖f‖
W

(2)
2

=
∫
S

(∆f)2 dS +
(∫

S

f dS
)2

< ∞. (12)

Let us decompose f into a series of spherical harmonics

f =
∞∑

n=0

Yn(ϑ, ϕ). (13)

We identify f with an abstract vector function

(Y0(ϑ, ϕ), Y1(ϑ, ϕ), . . . , Yn(ϑ, ϕ), . . . ). (14)

In this case the convergence in proximity order means that for arbitrarily many
spherical harmonics the equality (l(N), f) = 0 holds, where N is sufficiently
large.

For values on the sphere of an analytic function f(x, y, z) of three vari-
ables, the neighborhoods of zero Bα are again sliced under the substitution
fh(x, y, z) = f(hx, hy, hz) into ε-neighborhoods in the topology B. In this
event, there is a feature that some of f may occasionally fall into a closer
neighborhood of zero than Ahα.
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10. Cubature Formulas on the Sphere Invariant
under Finite Groups of Rotations∗

S. L. Sobolev

A cubature formula on the surface of the sphere

(l, f) =
∫
S

f(ϑ, ϕ) dS −
N∑

k=1

ckf(x(k)) ∼= 0 (1)

is called invariant under transformations of a certain group G of sphere rota-
tions if (

l, f
(
ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ)

))
=
(
l, f(ϑ, ϕ)

)
, (2)

where
ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ) (3)

is a substitution in G.
L. A. Lyusternik and V. A. Ditkin [1, 2] have considered formulas with

nodes at the vertices of an icosahedron and centers of its faces. We will show
how to construct cubature formulas which are invariant under the groups of
rotations of the sphere corresponding to a regular polyhedron and are valid
for as many spherical harmonics as possible [3].

Theorem 1. Let a cubature formula be invariant under G. Then it is exact
for all harmonics of a given degree if and only if it is exact for all invari-
ant harmonics Y ∗

n (ϑ, ϕ) of this degree n, i.e., for those hormonics which are
unchanged under rotations of the sphere belonging to G:

Y ∗
n

(
ϑ1(ϑ, ϕ), ϕ1(ϑ, ϕ)

)
= Y ∗

n (ϑ, ϕ). (4)

The proof is based on the formula

(l, f) = (l, fG), (5)

where fG is the mean of the function f over the group1 G:
∗ Dokl. Akad. Nauk SSSR, 146, 310–313 (1962)
1 In this paper, M is the order of G. – Ed.
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fG(x) =
1
M

∑
g∈G

f(gx). (6)

Let S(n) be the number of invariant harmonics of degree n. This number
may be computed using the representation theory of groups, as was pointed
out to the author by D. K. Faddeev.

The spherical harmonics of degree n form a (2n + 1)-dimensional space,
whose basis may be chosen to be

eimϕP (|m|)
n (cosϑ), m = 0,±1, . . . ,±n. (7)

The group of rotations of the sphere induces the group of linear substitu-
tions which acts on harmonics (7) and is a linear representation of the former
group.

Every representation decomposes into irreducible representations on sub-
spaces of lower dimensionality. Among them some are identity representations.
The number S(n) of linearly independent invariant harmonics coincides with
the number of such one-dimensional identity representations included in the
representation A.

The traces of the matrices of irreducible representations (the so-called
characters of the representation) constitute M -dimensional vectors. It is well
known that characters of distinct irreducible representations are orthogonal:

M∑
k=1

χ
(
A

(j)
k

)
χ
(
A

(s)
k

)
=

{
M, A(j) ∼ A(s),

0, A(j) � A(s).
(8)

Obviously, all characters of the identity representations equal 1. Hence, for
the number S(n) we get the formula

S(n) =
1
M

M∑
k=1

χ(Ak), (9)

where Ak are the matrices representing the group rotations.
Similar matrices have the same trace; and the rotations by the same angle

about corresponding elements are similar.
There are t1 vertices, t2 faces, and t3 edges in a regular polyhedron. At

the vertices, q1 of elements meet; the faces are regular q2-gons; and the edges
are the axes of rotations of order q3 = 2. Obviously,

t1q1 = t2q2 = t3q3 = M, (10)

while also
1
2
[t1(q1 − 1) + t2(q2 − 1) + t3(q3 − 1)] + 1 = M ; whence

t1 + t2 + t3 = M + 2. (11)
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The sums of the traces of all rotations (including the identity) about an arbi-
trary vertex, center of face, or midpoint of edge are equal to2

qj−1∑
k=0

n∑
m=−n

ei2πmk/qj = qj

(
2
[
n

qj

]
+ 1
)
, j = 1, 2, 3. (12)

Summing these equalities over all the axes of rotations, we note that under
this summation the identity rotation is counted M + 2 times and each other
rotation twice. Considering this and using (9) and (10), we come to the fol-
lowing theorem.

Theorem 2.

S(n) =
[
n

q1

]
+
[
n

q2

]
+
[
k

q3

]
− n+ 1. (13)

A simple computation leads to the corollary:

S

(
M

2
− n− 1

)
+ S(n) = 1 for 0 ≤ n ≤ M

2
− 1. (14)

Let us transform (13) into another form. Let Q∗ be the set of those qj

for which n �= 0 (mod qj). Expressing in (13) the integral part through its
fractional part, we find3

S(n) = 1 +
1
M

(
2n−

∑
qj∈Q∗

tj

)
−
∑

qj∈Q∗

({
n

qj

}
− 1
qj

)
. (15)

Since 0 ≤ ∑
qj∈Q∗

({
n

qj

}
− 1
qj

)
< 1, (15) implies

S(n) =

[
1 +

1
M

(
2n−

∑
qj∈Q∗

tj

)]
. (16)

Hence,

S(n) =

⎧⎪⎪⎨⎪⎪⎩
[2n+ 1

M

]
for 2n+ 1 ≤ ∑

qj∈Q∗
tj ,[2n+ 1

M

]
+ 1 for 2n+ 1 >

∑
qj∈Q∗

tj .
(17)

From (17) it follows that

S

(
n+

M

2

)
= S(n) + 1. (18)

Formula (17) admits a simple interpretation based on the following theo-
rem.
2 Here [·] denotes the integral part of a number. – Ed.
3 Here {·} denotes the fractional part of a number. – Ed.
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Theorem 3. Let {(xk, yk, zk) | k = 1, 2, . . . , 2n + 1} be orthogonal coordi-
nate systems with the same origin, and let the directions of the zk-axes be all
distinct. Then the set of functions

ζn
k = (xk + iyk)n, k = 1, 2, . . . , 2n+ 1, (19)

constitute a basis for the space of spherical functions of degree n.

Proof. Let us introduce the complex variable z = x+ iy, mapping the sphere
onto the plane by stereographic projection4. For ζn

k we get the formula

ζn
k =

2nzn
k

(1 + |zk|2)n
, (20)

where
zk =

akz − ck
ckz + ak

, |ak|2 + |ck|2 = 1. (21)

Linear-fractional transformation (21) corresponds to rotation of the sphere
which brings the zk-axis to the z-axis of the initial coordinate system.

From (20) it follows that

ζn
k =

n∑
m=−n

an−m
k cn+m

k R(|m|)
n (zz), (22)

where the function

R(|m|)
n (zz) = c(m)

n eimϕP (|m|)
n (cosϑ) (23)

differs only by the constant multiplier from the element of basis (7). Thus,
the vector

(a2n
k , a2n−1

k ck, . . . , c
2n
k ) (24)

corresponds to the function ζn
k in basis (7). From (24) and the known formula

for the Vandermonde determinant, Theorem 3 follows. ��
From (24) it follows that for any of the 2n + 2 harmonics of the form ζn

k

with different zk-directions we have the equality

2n+2∑
k=1

ζn
k∏

j �=k

(akcj − ajck)
= 0. (25)

Consider the set
{gαx

(k) | gα ∈ G}, (26)

4 Issuing half-lines from the south pole of the sphere, S. L. Sobolev maps the
latter in one-to-one fashion onto the plane passing through the equator, i.e.,
z = tan ϑ

2
eiϕ. – Ed.
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where
x(1), x(2), . . . , x([ 2n+1

M ]) (27)

are points on the unit sphere which are not equivalent under G. The points
of set (26) together with an arbitrary system of points

x(2n+1), x(2n), . . . , x(M [ 2n+1
M ]+1), (28)

which are independent of (26), constitute a system of 2n + 1 independent
directions of the zk-axis. Hence, the corresponding functions ζn

k = (xk + iyk)n

constitute a basis for the space of spherical harmonics of degree n.
Clearly, the functions

1
M

∑
gα∈G

(
ζ(gαx

(k))
)n

, k = 1, 2, . . . ,
[
2n+ 1
M

]
, (29)

are linearly independent invariant harmonics of degree n.
Let (2n + 1) ≤ ∑

qj∈Q∗
tj . Then we can choose as (28) all those directions

of the axes which correspond to qj ∈ Q∗. In this event, all invariant spherical
harmonics of degree n are exhausted by functions (29), since the mean over
the group of each of (29) is zero. The proof of the first half of formula (17) is
complete.

For (2n+1) >
∑

qj∈Q∗
tj we can choose as (28) a system of mutually equiva-

lent points, and the mean of any of the corresponding ζn
k taken over the group

G yields one more invariant harmonic of degree n.
Let the group G∗ be generated by rotations and reflections. For G∗ we

have the following theorem.

Theorem 4. The group G∗ has no invariant harmonics of odd degree n. The
set of G∗-invariant harmonics of even degree n coincides with the set of G-
invariant harmonics of degree n.

In conclusion we present the table of values of S(n), 0 ≤ n < M/4, for the
groups GIV , GV III , and GXX of rotations of the tetrahedron, octahedron,
and icosahedron.

n SIV SV III SXX n SXX n SXX

0 1 1 1 6 1 11 0
1 0 0 0 7 0 12 1
2 0 0 0 8 0 13 0
3 0 0 9 0 14 0
4 1 0 10 1
5 0 0
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11. The Number of Nodes in Cubature
Formulas on the Sphere∗

S. L. Sobolev

In the preceding notes [1, 2] we considered cubature formulas on the sphere
convergent in proximity order in the space of all series of spherical functions.
In the present note we try to estimate asymptotically the gain obtained.

Theorem 1. Let a system of functions

ψ1(x), ψ2(x), . . . , ψK(x) (1)

be given with integrals∫
Ω

ψj(x) dx = bj , j = 1, 2, . . . ,K. (2)

Then the formula

(l, f) ≡
∫
Ω

f(x) dx−
N∑

k=1

ckf(x(k)) ∼= 0 (3)

with a given system of nodes is exact for all functions (1) if and only if the
formula is exact for all those linear combinations

a1ψ1 + a2ψ2 + · · · + aKψK , (4)

which vanish at the nodes x(k).

Theorem 1 establishes the duality between the problems of interpolation
and numeric integration. It is proved by comparing the system of equations

N∑
k=1

ψj(x(k))ck = bj , j = 1, 2, . . . ,K; ⇐⇒ Ac = b (5)

∗ Dokl. Akad. Nauk SSSR, 146, 770–773 (1962)
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for finding the coefficients ck of cubature formula (3), and the system

K∑
j=1

ajψj(x(k)) = 0, k = 1, 2, . . . , N ; ⇐⇒ aA = 0 (6)

for finding the coefficients a1, a2, . . . , aK of linear combination (4). The
symbol A denotes the matrix A =

(
ψj(x(k))

)
.

Remark. If the rank of A equals K then system (6) has no nontrivial solutions.
Hence, there exist coefficients ck such that (3) is valid for all ψj from set (1).

Theorem 2. Let

{x(1)
r , x(2)

r , . . . , x(N(r))
r | r = 1, 2, . . . } (7)

be a sequence of systems of nodes for cubature formulas (3). For all systems
(7) beginning with a certain r > R to admit of cubature formulas (3) exact
for all ψj in given finite set (1) of analytic functions, it is sufficient that the
following condition holds: there exists a domain Ω0 ⊂ Ω for which nodes (7)
form an ε-net for any ε > 0, beginning with a certain r > r(ε).

Proof. The idea of the proof is to consider Kth-order determinants of the
matrix A. These determinants are values of the function ∆ of K variables:

∆(x(1), x(2), . . . , x(K)) = det

[
ψ1(x(1)) . . . ψ1(x(K))
. . . . . . . . . . . . . . . . . . . . . .
ψK(x(1)) . . . ψK(x(K))

]
(8)

for different particular values of x(1), x(2), . . ., x(K).
In the domain Ω0 × · · · × Ω0 there exist points where determinant (8) is

not zero. Since nodes (7) fall in an arbitrarily small neighborhood of any such
point and ∆(x(1), x(2), . . . , x(K)) is an analytic function, the matrix contains
nonzero determinants. By virtue of our Remark, this implies Theorem 2. ��

As we have seen, the study of cubature formulas invariant under a group
of rotations can be confined to those harmonics which are invariant under
the same group. In trying to satisfy all conditions (5) we then have only the
coefficients ck for nonequivalent nodes. The number L of such nodes is greater
than N/M , where N is the total number of nodes and M is the order of the
group.

As n increases, the number σ(n) or σ∗(n) of invariant harmonics up to the
given degree n grows slower than L(n). Therefore, roughly speaking,

L(n) = σ(n) or L(n) = σ∗(n). (9)

If the symmetry was not invoked and all the parameters taken into account
were used, we would have in general the equality
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(n+ 1)2 = 3N. (10)

Here (n+ 1)2 is the total number of spherical harmonics up to degree n, and
3N is the number of degrees of freedom in formula (3): besides the coefficients
ck there are two parameters to specify each point x(k). For small N , formulas
invariant under the icosahedron group do give such an advantage. For large
N the advantage is less. It is convenient to estimate the advantage comparing
the functions N(L) and n(σ) or n(σ∗).

Let us compute N(L) for the two nets obtained by projecting onto the
sphere triangular nets symmetrically located on all the faces of the invariant
polyhedron (see Figs. 1 and 2).
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Fig. 1. Fig. 2.

For the first type (see Fig. 1) there are k nodes on each side of the triangle.
In this event, for the full rotation group and k = 6s+ r, r < 6, we get

N =
M

6
k2 + 2, L =

{
(s+ 1)(k − 3s) + 1 for r = 0,
(s+ 1)(k − 3s) for r > 0,

(11)

where M is the order of the rotation group of the polyhedron, equal to half
the total order of the group of symmetries.

For the second type (see Fig. 2), with k = 2s+ r and r < 2:

N =
M

2
k2 + 2, L =

{
(s+ 1)2 for r = 0,
(s+ 1)(s+ 2) for r = 1.

(12)

This yields, for example, for k = 6s+ 5 in the first case,

N(L) = 2M
(
L−

√
3L1/2 + . . .

)
, (13)

and for k = 2s+ 1 in the second case,
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N(L) = 2M
(
L− 2L1/2 + . . .

)
. (14)

Computing σ and σ∗ for

n =
KM

2
− 1 (15)

in the manner indicated in preceding note [2], we get

σ(K
M

2
− 1) = Kσ(

M

2
− 1) +

K(K − 1)
2

M

2
, (16)

σ∗(K
M

2
− 1) = Kσ∗(

M

2
− 1) +

K(K − 1)
2

M

4
, (17)

σ(M/2 − 1) = M/4, σ∗(M/2 − 1) =

{
5 for GV III ,

11 for GXX .

Hence, σ(KM/2 − 1) = K2M/4, which means that [n(σ) + 1]2 = Mσ, and
further that

(n∗ + 1)2 = 2M
(
σ∗ −

√
49/30σ∗1/2 + . . .

)
= 2M

(
σ∗ − 1.3σ∗1/2 + . . .

)
(18)

for the icosahedron group and

(n∗ + 1)2 = 2M
(
σ∗ −

√
4/3σ∗1/2 + . . .

)
= 2M

(
σ∗ − 1.16σ∗1/2 + . . .

)
(19)

for the octahedron group.
The comparison of (13) and (14) with (18) and (19) for large L exhibits the

gain obtained by using invariant formulas of the type described. It is apparent
that this gain is not large.

Setting L = σ∗ for the small values of n, we tabulate the functions n(N),
(n(N) + 1)2, and L(N) for the formulas of the first and second types which
are invariant under the group of octahedron and icosahedron.

GI
V III GII

V III GI
XX GII

XX

N n (n+1)2 L N n (n+1)2 L N n (n+1)2 L N n (n+1)2 L

6 3 16 1 14 5 26 2 12 5 36 1 32 9 100 2
18 5 32 2 50 9 100 4 42 9 100 2 122 15 256 4
38 7 64 3 110 11 144 6 92 11 144 3 272 19 400 6
66 9 100 4 194 15 256 9 162 15 258 4 482 25 676 9

102 11 144 5 262 17 324 5
146 13 196 7
198 15 256 8
258 17 324 10

Formulas with four points for the icosahedron group were given in the
paper of V. A. Ditkin and L. A. Lyusternik [3].
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12. Certain Questions of the Theory
of Cubature Formulas∗

S. L. Sobolev

Let l(x) be a generalized function such that

l(x) = χΩ(x) −
N∑

k=1

ckδ(x− x(k)), (1)

where χΩ(x) is the characteristic function of the domain Ω. The values of the
functional

(l, ϕ) =
∫
l(x)ϕ(x) dx (2)

are the errors of a certain cubature formula, and we discuss this functional
keeping in mind this formula. Suppose that

(l, xα) = 0 for |α| < m, (3)

and introduce the Lax norm

‖l | L(−m)
2 ‖ = inf

ϕ �=0

|(l, ϕ)|
‖ϕ | L(m)

2 ‖
. (4)

Here m > n/2 and
∥∥ϕ | L(m)

2

∥∥2 =
∫ ∑

|α|=m

m!
α!

|Dαϕ(x)|2 dx. The best is a

cubature formula whose error functional has a lesser norm.
The explicit expression of the norm of l(x) can be obtained by solving a

variation problem for the Euler equation

∆mu(x) = (−1)ml(x) (5)

with the corresponding boundary conditions. The equality holds

‖l | L(−m)
2 ‖ =

|(l(x), u(x))|
‖u | L(m)

2 ‖
.

∗ Proc. Joint Soviet-American Sympos. Partial Differential Equations (Novosibirsk,
1963). Inst. Mat., Akad. Nauk SSSR Sibirsk. Otdel., Novosibirsk (1963), 8 p.
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Theorem 1. In the norm∥∥ϕ | V (m)
2 (Ω)

∥∥ = infeϕ(x)=ϕ(x)
x∈Ω

∥∥ϕ̃ | L(m)
2 (Rn)

∥∥ (6)

the required solution of (5) can be explicitly written as

u0(x) = G(x) ∗ l(x), (7)

where

G(x) = (−1)mκm,n|x|2m−n

{
ln |x|, if n even and n ≤ 2m,
1, if n odd or n > 2m.

(8)

The proof of Theorem 1 is based on an estimate of convergence of the
integrals ∫

DαG(x− y) dx for |α| < m.

In the periodic case the problems under study can be also solved explicitly.
Let H be the matrix of periods,

H =
(
h1,h2, . . . ,hn

)
, (9)

det H = |H| = 1. (10)

Let us consider the set of functions such that

ϕ(x+Hβ) = ϕ(x), (11)

where x ∈ Rn is a coordinate column vector and β is an arbitrary integer col-
umn vector. We denote by Ω0 the fundamental parallelohedron of the matrix
H. It means that ∑

β

χΩ0(x+Hβ) = 1. (12)

Let the error functional of the cubature formula be defined as the gener-
alized function

l̂(x) = χΩ0(x) − δ(x). (13)

Then we have the next theorem.

Theorem 2. The norm of l̂(x) can be written as

‖l̂(x) | L̃(−m)
2 ‖ =

|(l̂(x), u0(x))|
‖u0(x) | L̃(m)

2 ‖
, (14)

where u0(x) is the periodic solution of equation (5) such that

u0(x) = −
(

1
2π

)2m∑
γ �=0

1
|H−1∗γ|2m

ei2πH−1x·γ . (15)
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From Theorem 2 it follows that

‖l̂(x) | L̃(−m)
2 ‖2 =

1
(2π)2m

∑
γ �=0

1
|H−1∗γ|2m

=
1

(2m)!
B2

n,m(H−1∗). (16)

The vectors H−1∗γ are the nodes of the lattice dual to the lattice with nodes
Hβ, and |H−1∗γ| is the distance of the nodes to the coordinate origin.

For large m, i.e., for many times differentiable functions, the term corre-
sponding to the shortest of the distances mentioned dominates in (16):

B2
n,m(H−1∗) ≈ s

r2m
min

. (17)

Here s is the number of nodes of the lattice H−1∗γ at minimal distance from
the coordinate origin. Therefore, the optimal lattice is given by the nodes
Hβ, for which the vectors H−1∗γ constitute the lattice corresponding to the
densest packing of balls in n-dimensional space.

For the bounded domain of integration and for the given lattice of nodes
hH with a small mesh-size h, we construct cubature formulas with uniform
boundary layer; they are obtained by summing cubature formulas for all ele-
mentary cells.

Assume that

l0(x) = χΩ

(x
h

)
−
∑

|β′|≤L

c[β′]δ
(x
h
−Hβ′

)
, (18)

and let (l0(x), xα) = 0 for |α| ≤ m. Let B1 be the set of all β such that
l0(x − hHβ) is supported in the interior of the domain Ω. We compose the
sum

l1(x) =
∑

β∈B1

l0(x− hHβ) = χΩ∗(x) −
∑

β′∈B

c∗[β′]δ(x− hHβ′), (19)

where B is the set of all β′ such that hHβ′ ∈ Ω. The equality holds

χΩ(x) − χΩ∗(x) =
∑

β∈B\B1

χΩ(x)χΩ0(x− hHβ). (20)

For each β from B \ B1 we consider a cubature formula with the error func-
tional defined by

lβ(x) = χΩ(x)χΩ0(x− hHβ) −
∑

|β′|≤L

H(β+β′)∈Ω

cβ
′
[β]δ(x−Hβ −Hβ′). (21)

Suppose that sup
β,β′

|cβ′
[β]| ≤ A, and let

l2(x) =
∑

β∈B\B1

lβ(
x

h
). (22)
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We refer to the cubature formula with the error functional l(x) = l1(x)+ l2(x)
as the normal cubature formula. Let

m(x) =
∑

|β′|≤L

d[β′]δ(x− hHβ′), (23)

(m(x), xα) = 0 for |α| < m. (24)

Then we consider the sum

M(x) =
∑

β∈B\B1

m(x− hHβ) =
∑

β

F [β]δ(x− hHβ). (25)

This sum is equal to zero at all nodes hHβ of the lattice lying at a distance
greater than 2Lh from the boundary of Ω. Hence, the discrete function F [β]
is supported inside a certain boundary layer of the boundary of Ω.

Theorem 3. Let the generalized function M(x) =
∑
β

F [β]δ(x−hHβ) be equal

to zero at all points hHβ lying at a distance greater than 2Lh from the bound-
ary of Ω, and let (M(x), xα) = 0 for |α| < m. Then M(x) can be written
as

M(x) =
∑

β∈B\B1

mβ(x), (26)

where mβ(x) =
∑
β′
F β [β′]δ(x− hH(β + β′)) for β ∈ B \ B1, (mβ(x), xα) = 0

for |α| < m, and the set B \ B1 consists of the nodes in a certain expanded
boundary layer with width KL.

We call the function expanded like (26) the normal homogeneous boundary
layer with the order m.

Corollary. Two normal cubature formulas differ from each other by a normal
boundary layer with the order m.

Theorem 3 is proved by using a special technique of the partial summation
over each variable in turn and the replacement of the integration domain by
an approximate domain with the coordinate planes taken for its boundaries.

There is an analogy between operators orthogonal to xα, |α| ≤ m, and
the differential operators with constant coefficients L(D) =

∑
γ
aγD

γ , where

|γ| > m. The integral over the volume of differential expressions with such
operators is expressed as a surface integral containing derivatives of order
higher than m− 1.

Theorem 4. In the space V
(m)
2 (Ω) the value of the extremal function of the

normal cubature formula of order m at any interior point of Ω tends to the
value of the periodic extremal function with the lattice hH. From above the
errors of the normal cubature formula can be estimated as

|(l, ϕ)| ≤ hmBn,m(H−1∗)
√
|Ω| ‖ϕ | V (m)

2 (Ω)‖ +O(hm+1).
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Proof. The extremal function of a normal cubature formula can be expanded
in the sum

G(x)∗
(
l1(x)+ l2(x)

)
=
∑

β∈B1

G(x)∗ l0(x−hHβ)+
∑

β∈B\B1

G(x)∗ lβ(x−hHβ).

Each term of the first sum on the right side decreases as |x|/h → ∞ not slower
than |Hβ|−n−1, and each term of the second sum decreases not slower than
|Hβ|−n. Therefore, as h → 0, the first sum converges to the periodic solution
of the equation ∆mu0(x) = (−1)m

[
1− hn

∑
γ
δ(x− hHγ)

]
absolutely, and the

second sum tends to zero. ��
From Theorem 4 it follows that the quality of normal cubature formulas

is determined mainly by the properties of the lattice. Therefore, for large m,
the optimal lattice is again dual to the lattice with nodes that are the centers
of the balls constituting a densest packing in n-dimensional space.

It is convenient to construct normal cubature formulas using the Fourier
transform.

Theorem 5. For the given generalized function l(x) to be orthogonal to all
polynomials of degree m − 1, it is necessary and sufficient that its Fourier
image l̃(p) would have a zero of multiplicity m at the coordinate origin and

the integrals
∫
l(x)xαdx for |α| < m would have meaning.

The proof is elementary.
Rejecting the second requirement of Theorem 5, we can construct normal

cubature formulas for infinite domains such as a half-space and s-faced solid
angles with rational faces. Also, we can construct boundary layers for poly-
hedral domains. In fact, such cubature formulas have been constructed in the
cases listed.

Theorem 6. In the case of a polyhedron, the cubature formula with boundary
layer coinciding in a neighborhood of each s-faced solid angle of the polyhedron
with the boundary layer constructed for the corresponding infinite solid angle
is a normal cubature formula.



13. A Method for Calculating the Coefficients
in Mechanical Cubature Formulas∗

S. L. Sobolev

For a given set of nodes, it is often possible to construct a mechanical cubature
formula that is exact for arbitrary polynomials of a given degree by means of
the Fourier transform. Let the problem require seeking for ck such that the
functional

(l, ϕ) =
∫
Ω

ϕ(x) dx−
N∑

k=1

ckϕ(x(k)) ≡
∫
l(x)ϕ(x) dx (1)

vanishes at all polynomials of degree m−1. Here the generalized function l(x)
is defined by

l(x) = χΩ(x) −
N∑

k=1

ckδ(x− x(k)), (2)

where χΩ(x) is the characteristic function of the domain Ω, and δ(x − x(k))
is the generalized Dirac delta function.

Theorem 1. For the functional l(x) to vanish at all polynomials of degree
m− 1, it is necessary and sufficient that its Fourier transform l̃(p) has a zero
of multiplicity m at the origin.

Proof. From the condition of the theorem it follows that for all α with |α| ≤
m− 1, we have

l(x) ∗ xα = 0, (3)

where xα = xα1
1 xα2

2 . . . xαn
n . Since the Fourier transform of the convolution is

transformed into a product of the Fourier images and the Fourier transform
of xα is (2π)n/2Dαδ(p), the equality holds

Dα l̃(p) = 0. (4)

Formula (4) means that there exists a zero of multiplicity m of the function
l̃(p) at the origin. ��
∗ Dokl. Akad. Nauk SSSR, 150, 1238–1241 (1963)
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It is convenient to apply Theorem 1 to that domain Ω for which the
Fourier transform of the characteristic function χΩ(x) can be calculated in a
finite form. For example, ellipsoids or polyhedrons possess this property. In
this case, the use of Theorem 1 leads to a system of linear equations for ck.
This system is generally underdetermined, i.e., the number of its equations is
less than the number of its unknowns. By finding the solutions of this system,
we construct the required coefficients.

Theorem 1 was formulated for bounded domains. If the domain Ω is un-
bounded, then in general integrals (3) do not exist. However, the Fourier trans-
form of the characteristic function χΩ(x) sometimes also retains its sense in
the case of unbounded domains.

The generalized function l(x) is called a function of order m if it has a
generalized Fourier transform l̃(p), which is an m times continuously differ-
entiable function in a neighborhood about the coordinate origin, and there
is a zero of order m of l̃(p) at the coordinate origin. Also an arbitrary linear
combination of functions of order m is a function of order m.

In certain cases the use of generalized functions of order m makes it possi-
ble to calculate coefficients for cubature formulas of degree m− 1. Let us give
an example.

Let functions of one variable be defined on the infinite interval as follows:

ψ0(x) = 1, Φ0(x) =
+∞∑

k=−∞
δ(x− k), ψ1(x) =

{
1 for x > 0,
0 for x ≤ 0,

Φ1(x) =
1
2
δ(x) +

∞∑
k=1

δ(x− k),

χ0(x) =
+∞∑

k=−∞
δ
(
x− k − 1

2
)
, χ1(x) =

∞∑
k=0

δ
(
x− k − 1

2
)
.

In n-dimensional space the characteristic functions of coordinate s-faced solid
angles Ω(j1,...,js) can be represented in the form

χ(j1,j2,...,js)(x) = ψ1(xj1)ψ1(xj2) . . . ψ1(xjs
). (5)

Using a linear transformation we may write the characteristic functions of the
s-faced solid angles between hyperplanes in arbitrary directions as a product
like (5).

The characteristic function of the parallelepiped {x | 0 < xj < aj} can
be written as a sum of functions like (5). For example, in two dimensions we
obtain

χΩ(x, y) = χ(1,2)(x, y) + χ(1,2)(a1 − x, y) + χ(1,2)(x, a2 − y)

+χ(1,2)(a1 − x, a2 − y) − χ(1)(x, y) − χ(1)(a1 − x, y)
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−χ(2)(x, y) − χ(2)(x, a2 − y) + 1.

There is an analogous formula for an arbitrary dimension n.
Let all differences

χ(j1,j2,...,js)(x) −
∑
k∈K

ckδ(x− x(k))

be generalized functions of order m. Then there exists a linear combinations
of these functions such that it is an error functional of a certain cubature
formula in a bounded parallelepiped. This cubature formula is exact for all
polynomials of degree m− 1.

Instead of the parallelepiped, we can consider an arbitrary convex polyhe-
dron with rational faces and seek for a cubature formula of order m for each
unbounded s-faced solid angle Ω(j1,j2,...,js) of the polyhedron in the form

χ(j1,j2,...,js)(x) − c
∑

k∈K1

δ(x− x(k)) −
∑

k∈K2

ckδ(x− x(k)).

Here nodes x(k) are members of some parallelepipedal system of points. For
k ∈ K1 the nodes x(k) are all points of the lattice which lie in the interior of the
domain Ω(j1,j2,...,js), and for k ∈ K2 the nodes x(k) are points of a boundary
layer which lie in Ω(j1,j2,...,js), at a finite distance from the boundary of the
domain. In future publications we will establish that the choice of c and ck
may be realized in such a way that the corresponding cubature formula is
close to an optimal formula in a known sense.

It is convenient to define the coefficients for the nodes in the boundary
layer by distinguishing these nodes according to their order. We call a set
K

(r)
2 a boundary layer of order r if it consists of points at distance r from the

coordinate planes. We have:

K
(n)
2 ∪ . . . ∪K

(2)
2 ∪K

(1)
2 = K2.

The coefficients ck for the nodes in K
(r)
2 are defined in such a way that

they are common for all domains

Ω(j1,j2,...,jr), Ω(j1,j2,...,jr+1), . . . , Ω(1,2,...,n).

The Fourier transform makes it possible to calculate all coefficients for nodes
in boundary layers of order r. The cubature formulas so obtained are regular
in a certain sense, which we shall indicate later.

Theorem 2. Let Ω be an arbitrary bounded convex polyhedron with rational
faces. For error functional

χΩ(x) − c
∑

k∈K1

δ(x− x(k)) −
∑

k∈K2

ckδ(x− x(k))
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to vanish at all polynomials of degree m−1, it is sufficient that the coefficients
for nodes in the boundary layer K2 are the same as the coefficients for nodes
in unbounded boundary layers of s-faced solid angles formed by the boundaries
of the polyhedron.

Given an optimal periodic lattice in three-dimensional space, we have car-
ried out the computation of the coefficients for nodes in the simplest boundary
layers.

In [1] it was established that for a lattice defined by a lattice matrix H

with |H| = 1 and for the space of periodic functions L̃(m)
2 the error has the

bound
|(l, ϕ)|2 ≤ 1

(2π)2m

∑
γ �=0

1
|H−1∗γ|2m

∥∥ϕ | L(m)
2

∥∥2.
Hence, the constant ∑

γ �=0

1
|H−1∗γ|2m

(6)

gives the quality measure of the lattice. In a later publication we will prove
that the same constant (6) also estimates the quality of the lattice in the
nonperiodic case.

From (6) it follows that at m large, only the first term 1/r2m
min of the total

sum (6) is significant. Here, rmin is the shortest distance between points of
the lattice with the lattice matrix H−1∗, i.e., rmin is the maximal diameter of
the disjoint spheres centered at the nodes of the lattice with the matrix H−1∗.
From this it follows that the optimal lattice is that for which the diameter
rmin is the largest. Hence, the volumes of the spheres are the largest as well.
In a large domain for different H with |H| = 1 the number of spheres is
constant and numerically equal to the volume V of the domain. Hence, the
optimal lattice H−1∗ must be the lattice with the closest packing of spheres
in n dimensions1.

From this it follows that for n = 3 the optimal H−1 is the face-centered
cubic lattice, and the optimal H is the centered cubic lattice. For the optimal
lattice we have constructed formulas for the two-faced and three-faced solid
angles.

In calculating the coefficients of such formulas, the method is based on the
Fourier transform of the functions Φj , ψj , and χj under consideration. The
formulas for these transforms are

Φ̃0(p) =
√

2π
+∞∑

k=−∞
δ(p− 2kπ),

1 The algorithm for finding the closest packing was proposed by G. F. Voronoi. For
small dimensions the description of the closest packing can be found in Chap. II
of the book: Sobolev, S. L.: Introduction to the Theory of Cubature Formulas.
Nauka, Moscow (1974). – Ed.
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χ̃0(p) =
√

2π
+∞∑

k=−∞
(−1)kδ(p− 2kπ),

ψ̃0(p) =
√

2πδ(p),

Φ̃1(p) =
√
π

2

+∞∑
k=−∞

δ(p− 2kπ) +
i

2
√

2π
cot

p

2
,

χ̃1(p) =
√
π

2

+∞∑
k=−∞

(−1)kδ(p− 2kπ) +
i

2
√

2π sin
p

2

,

ψ̃1(p) =
√
π

2
δ(p) +

i√
2πp

.

L. V. Voitisek has carried out numerical calculations of the coefficients for
the boundary layer in such formulas. For the three-faced solid angle x1 > 0,
x2 > 0, x3 > 0, one may write the formula for the error functional in the
following way:

l(x) = χ(1,2,3)(x) − 1
2
Φ1(x1)Φ1(x2)Φ1(x3) − 1

2
χ1(x1)χ1(x2)χ1(x3)

−Φ1(x1)Φ1(x2)Φ1(x3)
3∑

j3=1

2∑
k=0

α2k

Φ1(xj3)
δ(xj3 − k)

−χ1(x1)χ1(x2)χ1(x3)
3∑

j3=1

1∑
k=0

α2k+1

χ1(xj3)
δ(xj3 − k − 1

2
)

−Φ1(x1)Φ1(x2)Φ1(x3)
3∑

j2=1

3∑
j1=j2

2∑
k,l=0

α2k,2l

Φ1(xj1)Φ1(xj2)
δ(xj1 − k)δ(xj2 − l)

−χ1(x1)χ1(x2)χ1(x3)
3∑

j2=1

3∑
j1=j2

2∑
k,l=0

α2k+1,2l+1

χ1(xj1)χ1(xj2)
δ(xj1− k−1

2
)δ(xj2− l−1

2
)

−
2∑

k1,k2,k3=0

α2k1,2k2,2k3δ(x1 − k1)δ(x2 − k2)δ(x3 − k3)

−
1∑

k1,k2,k3=0

α2k1+1,2k2+1,2k3+1δ(x1 − k1 − 1
2
)δ(x2 − k2 − 1

2
)δ(x3 − k3 − 1

2
).

It turns out that, for the coefficients α, we may take the following values:
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α0 = −0.850694444 · 10−1 α000 = −0.335894549 · 10−2

α2 = −0.116666667 α002 = α020 = α200 = 0.309787330 · 10−2

α4 = −0.93750000 · 10−2 α022 = α202 = α220 = 0.527777778 · 10−1

α1 = +0.160416667 α222 = α224 = α242 = α442 = α333 = 0
α3 = +0.506944444 · 10−1 α004 = α040 = α400 = 0.969939054 · 10−1

α00 = +0.318612557 · 10−1 α024 = α042 = α204 = α402 =
α02 = α20 = 0.633680555 · 10−1 α240 = α420 = 0.63964836 · 10−2

α22 = +0.361111111 · 10−1 α440 = α404 = α044 = 0.210458262 · 10−3

α04 = α40 = 0.372902200 · 10−1 α442 = α424 = α244 = 0.969509547 · 10−2

α24 = α42 = 0.607638888 · 10−1 α444 = 0.927847402 · 10−2

α44 = +0.320818866 · 10−2 α111 = 0.114626736
α11 = −6.127097801 α113 = α131 = α311 = 0.247395833 · 10−1

α13 = α31 = −0.444299768 · 10−1 α133 = α313 = α331 = 0.742187498 · 10−2

α33 = +0.484664352 · 10−2 α333 = 0.

By the same method a boundary layer is computed near a boundary sep-
arating domains with lattices of different densities, if such domains exist.
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14. On the Rate of Convergence
of Cubature Formulas∗

S. L. Sobolev

The subject of the present note is the estimation of the norm of the error of
cubature formulas in a domain Ω of n independent variables. We consider the
error of a cubature formula as a linear functional of the form

l(x) = χΩ(x) −
N∑

t=1

ctδ(x− x(t)) (1)

in the space L
(m)
2 (Rn). The function ϕ(x) with domain Rn is a member of

L
(m)
2 (Rn) provided that it has all derivatives up to order m locally integrable

and the norm

∥∥ϕ | L(m)
2

∥∥ =

{∫ ∑
|α|=m

m!
α!

|Dαϕ(x)|2 dx
}1/2

(2)

is finite. The space L
(m)
2 (Rn) is the quotient space of W (m)

2 over the space
of polynomials of degree m − 1. By χΩ(x) in (1) we denote the character-
istic function of the domain Ω, the symbol |α| for a vector α with integer
entries means α1 + α2 + · · · + αn, and Dα = ∂|α|/∂xα1

1 ∂xα2
2 . . . ∂xαn

n . Here it
is necessary to assume that

m > n/2 (3)

and
(l(x), xα) = 0 for |α| < m. (4)

Let |Ω| be the volume of the domain Ω and let

|Ω|
N

= hn. (5)

∗ Dokl. Akad. Nauk SSSR, 162, 1005–1008 (1965)
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Theorem 1. There exists a constant K1 depending only on m and n such
that

‖l | L(m)∗
2 ‖ ≥ K1

√
|Ω|hm. (6)

Proof. The proof of this theorem is based on estimates similar to those given
by N. S. Bakhvalov in the proof of theorems like Theorem 1 in other functional
spaces.

Let
Qj =

{
x | ∣∣xs − x(j,0)

s

∣∣ < k/2, s = 1, 2, . . . , n
}

be a cube with the edge length k, and require that Qj does not contain the
nodes x(t) of the error (1) on its boundary or near it to a distance ηk, where
η > 0. If

(l(x), χQj (x)) > η2k
n, (7)

where η2 > 0, then Qj is called a cube with insufficient data for the error l(x).

Lemma 1. Let Qj, j = 1, 2, . . . , N1, be a system of disjoint cubes with insuf-
ficient data for the error l(x) in the domain Ω, and let the sum of volumes
Qj be greater than some positive constant

N1∑
j=1

|Qj | > |Ω1|.

Then the norm of the error l(x) satisfies the inequality

‖l(x) | L(m)∗
2 ‖ ≥ K1

√
|Ω1|km. (8)

Proof. As in the paper by N. S. Bakhvalov, the proof of (8) consists of a direct
estimate of the error l(x) on a certain function consisting of a sum of “hats”
over each cube of a system with insufficient data for the error l(x). ��

Theorem 1 follows from Lemma 1. Let us cover the domain Ω with a
system of cubes generating a cubic lattice with side k1 = 2−1/nh and consider
all cubes with the edge length k < (1 − η3)k1, concentric with the cubes of
this lattice. The number of these concentric cubes is obviously no less than
2N . Since they do not contain common points, at least half of them contain
none of the nodes x(t), and hence they are cubes with insufficient data for the
error l(x). Their total volume |Ω1| is greater than (1− η3)n|Ω|/2, from which
Theorem 1 follows. ��

Lemma 1 also shows that the main source of the error of the cubature for-
mula is the irregularity of distribution of the nodes x(t), and this distribution
cannot be made perfect.

The estimate given by Theorem 1 is attainable, as the following theorem
shows.
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Theorem 2. Let the error l(x) be written as the sum

l(x) =
∑

γ

lγ

(x
h
− γ
)
, (9)

where γ ranges over the points of the integral lattice, and let each lγ(y) satisfy
the conditions

(lγ(y), yα) = 0 for |α| ≤ m, (10)

‖lγ(y) | L(m)∗
2 ‖ ≤ A, (11)

supp lγ(y) ⊂ {y | |y| ≤ L}, (12)

where supp lγ(y) denotes the support of lγ(y). Then for the norm of l(x) the
following inequality is valid:

‖l | L(m)∗
2 ‖ ≤ K2h

m. (13)

Here the constant K2 depends on the domain Ω, the numbers A and L, but
K2 does not depend on the functionals lγ(y).

Proof. Before proving this theorem, it is useful to note that for a domain with
piece-wise smooth boundaries and given numbers A and L, it is always possible
to construct for sufficiently small h an infinite set of functionals permitting
representation (9). Indeed, we may always decompose the domain Ω in the
union of cells

Ω =
⋃
γ

Ωγ , (14)

where Ωγ is a cell lying at a distance not greater than Lh from the point
x = hγ:

dist (Ωγ , hγ) ≤ Lh. (15)

The characteristic function χΩγ (x) may be written as

χΩγ (x) = χΩ∗
γ
(
x

h
− γ), (16)

where χΩ∗
γ
(y) is the characteristic function of some bounded domain Ω∗

γ . By
the classical method of extrapolation, we can construct in the domain Ω∗

γ

a cubature formula, which is exact for all polynomials of degree m − 1 and
has the error functional

lγ(y) = χΩ∗
γ
(y) −

∑
|γ′|≤L

c(γ
′)

γ δ(y − γ′). (17)

The nodes of lγ(y) are those points of the lattice where

h(γ + γ
′
) ∈ Ω. (18)
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In this case, the error l(x) defined by (9) satisfies all the conditions of Theo-
rem 2.

Let us point out the idea of the proof of Theorem 2. As has been es-
tablished [1–3], the norm of the error l(x) may be expressed by means of a
solution of the polyharmonic equation

∆mu = (−1)ml(x). (19)

For the norm of l(x) the equality holds

‖l | L(m)∗
2 ‖ =

|(l, u)|
‖u | L(m)

2 ‖
= ‖u | L(m)

2 ‖. (20)

To find the solution u of (19) it is convenient to use the elementary solution
of the polyharmonic equation

G(x) = (−1)mκm,n|x|2m−n

{
1, for n odd or n > 2m,
ln |x|, for n even and n ≤ 2m.

(21)

In this case, we apply the known formula for the inner product:

(φ, ψ) =
(
φ(x) ∗ ψ(−x)

)∣∣∣
x=0

. (22)

From (20) and (22) it follows that

‖l | L(m)∗
2 ‖2 = (l, u) = l(x) ∗G(x) ∗ l(−x)

∣∣∣
x=0

. (23)

By virtue of the fact that l(x) and l(−x) are finite generalized functions, the
triple convolution on the right side of (23) is associative and commutative.
Substituting in (23) the expressions for l(x) and l(−x) from (9), we have

‖l | L(m)∗
2 ‖2 ≤

∑
γ1

∑
γ2

∣∣∣lγ1

(x
h
− γ1

)
∗G(x) ∗ lγ2

(
−x

h
+ γ2

) ∣∣∣
x=0

∣∣∣
=
∑
γ1

∑
γ2

∣∣∣G(x) ∗
(
lγ1

(x
h

)
∗ lγ2

(
−x

h

)) ∣∣∣
x=h(γ1+γ2)

∣∣∣. (24)

It is not difficult to establish the equalities

l1

(x
h

)
∗ l2
(x
h

)
= hnl3

(x
h

)
, (25)

where l3(y) = l1(y) ∗ l2(y), and∥∥∥l (x
h

)
| L(m)∗

2

∥∥∥ = hn/2+m‖l (y) | L(m)∗
2 ‖, (26)

‖ϕ(x) | L(m)
2 (hx ∈ Ω)‖ = hn/2−m‖ψ(y) | L(m)

2 (y ∈ Ω)‖, (27)
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where ψ(y) = ϕ(hy), i.e., ϕ(x) = ψ(x/h). The convolution l3(y) possesses the
properties

‖l3(y) | L(m)∗
2 ‖ ≤ ‖l1(y) | L(m)∗

2 ‖‖l2(y) | L(m)∗
2 ‖ ≤ A2; (28)

(l3(y), yα) = 0 for |α| ≤ 2m+ 1; (29)

supp l3(y) ⊂ {y | |y| ≤ 2L}. (30)

Lemma 2. The following estimate holds:∣∣∣G(x) ∗ lγ1

(x
h

)
∗ lγ2

(x
h

) ∣∣∣ ≤ K
A2h2n+2m+2

(h2 + |x|2)n/2+1
, (31)

where the constant K does not depend on h, lγ1 , and lγ2 .

Proof. For |x| ≤ 3Lh inequality (31) follows from (25)–(30). In order to prove
(31) for |x| ≥ 3Lh, we expand G(x−y) in a power series in y in a neighborhood
about the point y = 0:

G(x− y) =
∑

|α|<2m+2

(−y)α

α!
DαG(x) +R2m+2(x, y). (32)

It is obvious that for |y| ≤ 2L the function R2m+2(x, y) satisfies the inequality

|Dα
yR2m+2(x, y)| ≤ K |x|−n−2. (33)

Hence,

‖R2m+2(x, y) | L(m)∗
2 (|y| ≤ 2Lh)‖ ≤ K hm−n/2|x|−n−2. (34)

Since

G(x) ∗ lγ1

(x
h

)
∗ lγ2

(x
h

)
=
∫
l3(

y

h
)G(x− y) dy = (l3(

y

h
), G(x− y)),

where l3 = lγ1 ∗ lγ2 , (31) follows from (26)–(30) and (34). ��
Theorem 2 is obtained from Lemma 2 and (24). The double sum (24) may

be estimated from above by applying the integral criterion. ��
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15. Theory of Cubature Formulas∗

S. L. Sobolev

The connection between functional analysis and computational mathematics,
completely realized in the recent two decades, is too broad to discuss it as
a whole. Therefore, in this report I restrict myself only to one aspect of this
connection, the theory of approximate integration of functions of many inde-
pendent variables. In this area, it is possible to obtain a number of important
results by applying functional analytic methods.

To each formula of mechanical cubature used for integration of the function
ϕ from X, where X is a certain Banach space, there corresponds the linear
error functional defined by

(l, ϕ) =
∫
Ω

ϕ(x) dx−
N∑

k=1

ckϕ(x(k)), (1)

l(x) = χΩ(x) −
N∑

k=1

ckδ(x− x(k)). (2)

The subject of our study is the norm of this functional:

‖l | X∗‖. (3)

To the different nodes (x(k)) and the coefficients (ck) there correspond different
cubature formulas. It is important to study them, and to minimize the norm
‖l | X∗‖.

Of course, in practical questions the value of the error (l, ϕ) for each indi-
vidual function is more important than the norm of l(x). For any continuous
function this error tends to zero. There is always a weak convergence. How-
ever, it is difficult to estimate the error, and therefore it is useful to apply the
formula with the least norm of the error functional in the space X∗.
∗ Wiss. Z. Hochsch. Architektur Bauwesen Weimar. Jahrgang 12 (1965). Heft 5/6,

S. 537–546. (III International Colloquium on Application of Mathematics in En-
gineering, June 27 – July 4, 1965, Weimar)
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The choice of the space X, where we consider a cubature formula, is the
matter of the insight of a researcher and his intuition pointing to what proper-
ties of the function, e.g., its smoothness, we should pay the greatest attention.
This choice also determines the quality of chosen cubature formulas.

However, following the traditions accepted in mathematics from A. M. Lya-
punov’s times, a problem stated mathematically has to be mathematically
solved in strict terms.

The norm of the error functional l(x) characterizes the degree of approxi-
mation of the functional χΩ(x), the characteristic function of the domain Ω,
by the functionals of specific form

N∑
k=1

ckδ(x− x(k)) = RN (x), (4)

as N increases. The study of l(x) reduces to the study of different functionals
of form (4). To minimize the norm of the error functional, we can change:

a) the coefficients ck for given nodes x(k) and N ;
b) the disposition of the nodes x(k) for fixed N ;
c) the number N of the nodes.

These three problems, composing three steps of the search for the best
integration formulas, are the particular problems of such general problems of
functional analysis as approximations in the functional space. It is difficult
to point out traditional approaches to solving this problem because of its
enormous complexity, and generally speaking, choice of a solution method is
significantly based on the intuition of the researcher.

Many scientists have offered different approaches. The study of this branch
of mathematics has often resembled a list of more or less successful prescrip-
tions such as the formulas of Simpson, Gregory, Gauss, Chebyshev, and others.
It seems that in our time the state of the problem has begun to change, and
the general methods of functional analysis are changing the theory of cubature
formulas in front of our eyes.

As we have already mentioned, the main problem in question is the prob-
lem about the error functionals with the least norms. However, somewhat later
we will also consider certain questions about the rate of convergence to zero
of the error of the formula for individual functions. We will show that there
is an essential difference in the estimates obtained under the two approaches
to the problem.

It turns out that |(l, ϕ)| for an individual function ϕ is significantly less
than ‖l | X∗‖‖ϕ | X‖ in a large number of cases, and in particular, in the
Hilbert spaces that we study.

Besides the Banach spaces X, it is also convenient to consider approximate
integration in certain countably normed spaces, for example, in the spaces of
infinitely differentiable functions, which often appear in applications. We will
also discuss this question.
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Recently, approximate integration in different functional spaces X has
been studied in the literature. Many papers are devoted to approximate inte-
gration over cubes of periodic functions that have some derivatives integrable
with degrees exceeding 1. Also, there are some results in other spaces. How-
ever, it is not my task to discuss all such results here, and the major part of
my presentation is devoted to the mechanical cubature formulas in the spaces
L

(m)
2 of functions defined on the whole Euclidean n-dimensional space Rn,

whose derivatives of order m are square integrable. The norm squares of such
functions may be written as∥∥ϕ | L(m)

2

∥∥2 =
∫ ∑

|α|=m

m!
α!

|Dαϕ(x)|2 dx, (5)

with an integral that is invariant under orthogonal transformations of the
variable x from Rn. In (5), as commonly accepted today, α is a vector with

integer nonnegative entries, |α| =
n∑

j=1

αj , and Dαϕ stands for the derivative

∂mϕ

∂xα1
1 ∂xα2

2 . . . ∂xαn
n
.

It is surely assumed that the functional l(x) has to be defined on L
(m)
2 . Hence,

for all polynomials of degree m− 1 the values of l(x) must be equal to zero.
Also, the number m must satisfy the inequality m > n/2, for the value

of function ϕ(x) at a fixed point to be the linear functional in L
(m)
2 which

is defined on the whole space. In other words, for m > n/2 the following
embedding holds

L
(m)
2 ⊂ C, ‖ϕ | C‖ ≤ K‖ϕ | L(m)

2 ‖. (6)

Besides the functions ϕ with domain Rn, we also consider the periodic func-
tions ϕ defined in the bounded domain Ω0 with fixed periods.

Assuming that x is a column vector, and writing the periods of the function
ϕ(x) in the form of columns of the square matrix H of periods, we write the
periodicity condition for the function ϕ(x) as

ϕ(x+Hγ) = ϕ(x), ∀x ∈ Rn, (7)

with γ an arbitrary column vector with integer entries. In this case the inte-
gration domain is chosen as the fundamental domain Ω0, i.e., in such a way
that ∑

γ

χΩ0(x+Hγ) = 1. (8)

It is often assumed that the volume of the fundamental domain is equal to 1:

det H = |H| = 1. (9)
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For a domain with the volume hn, the matrix of periods may be written as
hH.

We consider the approximate integration formula over an arbitrary domain
Ω as the approximation of the functional χΩ(x) in the space L

(m)∗
2 . As we

know from the Calderon theory, an arbitrary function from L
(m)
2 (Ω) can be

continued to the whole space Rn. Hence, in L
(m)
2 (Ω) we can introduce the

new norm ∥∥ϕ | V (m)
2 (Ω)

∥∥ = inf
ϕ(x)=ϕ(x)

x∈Ω

∥∥ϕ | L(m)
2 (Rn)

∥∥. (10)

It is easy to see that ∥∥l | V (m)∗
2 (Ω)

∥∥ =
∥∥l | L(m)∗

2 (Rn)
∥∥, (11)

which simplifies our problem.
The computation of the L

(m)∗
2 -norm of a given functional is the sim-

plest problem of variations calculus on the minimum of the quadratic form∥∥l | L
(m)∗
2

∥∥2. It can be reduced in a classical fashion to the solution of the
partial differential equation

∆mu(x) = (−1)ml(x) (12)

in L
(m)
2 . Problem (12) turns out to be solvable because of the conditions

(l, xα) = 0 for |α| < m, (13)

where xα denotes the product xα1
1 xα2

2 . . . xαn
n . Equality (13) expresses the

orthogonality of l(x) to all polynomials of degree m− 1, which we mentioned
above.

Under condition (13) the solution of equation (12) may be explicitly ex-
pressed through the fundamental solution

Gm,n(x) = κm,n|x|2m−n

{
ln |x|, if n even and n ≤ 2m,
1, if n odd or n > 2m,

(14)

of the polyharmonic equation. The equality holds

u(x) = (−1)mGm,n(x) ∗ l(x) ≡ G(x) ∗ l(x). (15)

As usual, the symbol ∗ stands for the convolution of generalized (or regular)
functions

ϕ(x) ∗ ψ(x) =
∫
ϕ(x− y)ψ(y) dy. (16)

Using the convolution of two regular functions (or, the convolution of a gen-
eralized function with a regular one), their inner product can be written as(

ϕ,ψ
)

=
[
ϕ(x) ∗ ψ(−x)

]∣∣∣
x=0

. (17)
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From (16) we obtain the explicit expression for the norm of l(x):∥∥l | L(m)∗
2

∥∥2 = (l, u) = (l(x) ∗G(x), l(x)) =
[
l(x) ∗G(x) ∗ l(−x)

]∣∣∣
x=0

. (18)

Let us consider the periodic case with the matrix hH of periods in more
detail. Put

l0(x) = 1 − hn
∑

γ

δ(x− hHγ), (19)

where γ ranges over the set of all possible vectors with integer entries. Such
error functional is convenient for integration of functions with periods hHΛ
over the fundamental domain Ω0, where Λ is a diagonal integer matrix. It is
convenient to map the fundamental domain Ω0 onto the torus in Rn. In this
case the periods of the function ϕ(x) are multiples of periods of the generalized
function l0(x). Moreover, for integration of compactly-supported functions in
Rn, it is convenient to use the same error functionals, and hence, the same
cubature formula.

In the case of periodic functions, generating on the torus Ω0 the space
L̃

(m)
2 (Ω0), the norm of l0(x) is again computed using the solution of equa-

tion (13). This is convenient to do, using the Fourier expansions for generalized
functions, studied by L. Schwartz, and also by I. M. Gelfand and G. E. Shilov.
The solution of the equation

∆mu0(x) = (−1)ml0(x) (20)

in the class of functions that are members of L̃(m)
2 (Ω0) and have a zero average

over Ω0, can be written as the Fourier series

u0(x) = −
(
h

2π

)2m∑
γ �=0

1
|H−1∗γ|2m

ei2πH−1x·γ/h. (21)

From (21) it follows that in the periodic case the norm of the functional l0(x)
may be written as

∥∥l0 | L̃(m)∗
2

∥∥ = hm

√
|B2m(H−1∗)|

(2m)!

√
|Ω0|, (22)

where B2m(H−1∗) stands for the expression

B2m(H−1∗) = (−1)m−1 (2m)!
(2π)2m

ζ(H−1∗ | 2m)

= (−1)m−1(2m)!
(

1
2π

)2m∑
γ �=0

1
|H−1∗γ|2m

. (23)

Here ζ(H−1∗ | 2m) is the known Epstein zeta function of the quadratic form
ψ(γ) = |H−1∗γ|2m.
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The same parameters are involved in the estimate of the values of (l0, ϕ)
for an arbitrary compactly-supported function ϕ(x) from L

(m)
2 (Rn). Using the

Green identity and the Cauchy–Bunyakovskii–Schwarz inequality, we obtain
the estimate

∣∣(l0, ϕ)
∣∣ ≤ hm

√
|B2m(H−1∗)|

(2m)!

√
S(ϕ)

(
1 +O(h)

)
, (24)

where S(ϕ) is a finite volume of a support of the function ϕ.
The main idea of our theory is to connect the value of the norm of the

linear functional with the uniformity of its distribution. In what follows we
expose the specifics of this idea and systematically perform it. Let

h =
( |Ω|
N

)1/n

. (25)

Theorem 1. Let a system of cubes Ωj in the domain Ω be of total volume
|Ω′|, the length of the edge of Ωj be equal to K, and the part in Ωj of the
functional l(x) be insufficiently defined, i.e., let this part integrate the identity
over Ωj with the significant nonpositive error∫

χΩj
(x)l(x) dx > qKn, q > 0. (26)

Then the functional l(x) has a norm satisfying the condition∥∥l | L(m)∗
2

∥∥ ≥ ηKn
√
|Ω′|, (27)

where η is a positive constant.

Since the cubes with edges h/2, not containing the nodes x(k) of l(x),
always occupy more than half of the volume Ω and the functional l(x) is
insufficiently defined in each of these cubes, then for no cubature formula in
L

(m)
2 is it possible to obtain the norm of the functional l(x) less than Khm:∥∥l | L(m)∗

2

∥∥ ≥ Khm. (28)

We omit the proof. It consists of the construction of a certain special function
ϕ from L

(m)
2 , for which the value (l, ϕ) is greater than ηKhm

√|Ω′|∥∥ϕ | L(m)
2

∥∥.
By definition, the functional l(x) is completely equidistributed over Ω, if it

may be written as
l(x) =

∑
hHγ∈Ω

lγ

(x
h
−Hγ

)
, (29)

where the support of lγ(y) lies in the ball of radius L,

supp lγ(y) ⊂ {y : |y| ≤ L}, (30)
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lγ(y) is orthogonal to all polynomials of degree m− 1,

(lγ(y), yα) = 0 for |α| < m, (31)

and the norm of lγ(y) in C∗ is bounded by a constant A, the same for all γ,

‖lγ(y) | C∗‖ ≤ A. (32)

Theorem 1 solves the question about the order of the norm of the error,
while the following theorem establishes the attainability of this order.

Theorem 2. The norm of the completely equidistributed functional l(x) sat-
isfies the inequality ∥∥l(x) | L(m)∗

2

∥∥ ≤ Khm. (33)

Proof. The proof is based on the estimate of the quadratic form∥∥l | L(m)∗
2

∥∥2 =
∑

hHγ,hHγ′∈Ω

(
lγ

(x
h
−Hγ

)
, lγ′
(x
h
−Hγ′

)
∗G(x)

)
. (34)

It turns out that under the conditions

(lγ(y), yα) = 0 for |α| ≤ s1, (lγ′(y), yα) = 0 for |α| ≤ s2, (35)

where
s1 + s2 > 2m− n, (36)

the following estimate holds:∣∣∣G(x) ∗ lγ
(x
h

)
∗ lγ′

(x
h

)∣∣∣ ≤ K
A2h2n+s1+s2

(h2 + |x|2)−m+(n+s1+s2)/2
, (37)

where the constant K does not depend on h, lγ , lγ′ . Formula (37) means that
the functionals lγ (x/h−Hγ) and lγ′ (x/h−Hγ′) become “more orthogo-
nal” in the sense of the inner product (lγ (x/h−Hγ) , lγ′ (x/h−Hγ′) ∗G(x))
when their supports move away from each other. Using (37) and applying the
integral majorant we estimate the right side of (34) and prove (33). ��

Theorems 1 and 2 establish the order of convergence of cubature formu-
las. In the next part of the presentation we establish the principal term in
the expansion of the norm of the error functional with the given lattice of
nodes hHγ. Also, we consider cubature formulas where this optimal value
of the norm is attained. The corresponding conclusions are based on several
theorems.

Theorem 3. Let l∗(y) satisfy conditions (30), (32), and

(l∗(y), yα) = 0 for |α| < 2m+ 2. (38)
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Also, let ∑
γ

l∗
(x
h
−Hγ

)
= l0(x) = 1 − hn

∑
γ

δ(x− hHγ). (39)

Then the solution of equation (20) can be written as

u0(x) =
∑

γ

(
l∗(

y

h
), G(x− hHγ − y)

)
+ c. (40)

Proof. For example, the functional l∗(y) with the conditions of Theorem 3
may be constructed by integration of the interpolation formula.

To prove (40), it suffices to establish the estimate∣∣∣ (l∗(y
h

), G(x− y)
) ∣∣∣ = ∣∣∣G(x) ∗ l∗(x

h
)
∣∣∣ ≤ K|x|−n−1, (41)

from where the convergence of the series on the right side of (40) follows, and
to use the uniqueness of solution (20) to within an additive constant. ��

The functional of the form

k(y) =
∑
|γ|<L

cγδ(y −Hγ) (42)

with bounded coefficients and a bounded support, consisting of points of the
lattice, is called the point functional of order s provided that

(k(y), yα) = 0 for |α| < s. (43)

Theorem 4 (Summation by parts). Let Ω be a domain with a smooth
boundary and let k(y) be a point functional of order s. Then the sum

m(x) =
∑

hHγ∈Ω

k
(x
h
−Hγ

)
(44)

may be written as
m(x) =

∑
hHγ∈B2

kγ

(x
h
−Hγ

)
, (45)

where B2 is the set of points that lie at a distance less than Lh from the
boundary Γ of Ω, and each functional kγ(y) is the point functional of order
s− 1.

Proof. The proof is based on an easily established expansion of an arbitrary
point functional of order s in a sum of differences in each variable of certain
functionals of order s− 1:

k(y) =
n∑

j=1

∆̂jkj(y). (46)

��
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By definition, the error functional l(x) is an error functional with regular
boundary layer, width L, order m, and estimate A, if it may be written down as

l(x) =
∑

hHγ∈B1

l∗
(x
h
−Hγ

)
+

∑
hHγ∈B2

lγ

(x
h
−Hγ

)
, (47)

in which B1 = Ω \B2, all lγ and l∗ satisfy (30)–(32), and l∗ satisfies (38).
Let

(l1(y), yα) = 0 for |α| < m+ 1. (48)

Whence and from Theorem 4 it follows that∑
hHγ∈B1

l1

(x
h
−Hγ

)
−

∑
hHγ∈B1

l∗
(x
h
−Hγ

)
=

∑
hHγ∈B2

lγ

(x
h
−Hγ

)
, (49)

where lγ has order m. Hence, in (47) we could use just (48) instead of (38)
for l∗.

From (47) and (19) it follows that l(x) = l0(x) + l2(x), where

l2(x) =
∑

hHγ∈B2

lγ

(x
h
−Hγ

)
−
∑

hHγ /∈Ω

l∗
(x
h
−Hγ

)
. (50)

All coefficients cγ of the error functional with regular boundary layer are equal
to hn at the points that lie at a distance greater than 2Lh from the boundary
Γ of Ω, since in this condition cγ =

∑
γ′
c∗γ′ , where c∗γ′ are the coefficients

of l∗(y).

Theorem 5. The extremal function u(x) of the functional l(x) with regular
boundary layer may be written as

u(x) = G(x) ∗ l(x) + Pm−1(x),

where Pm−1(x) is a polynomial of degree m− 1 and

G(x) ∗ l(x) =
∑

hHγ∈B1

G(x) ∗ l∗
(x
h
−Hγ

)

+
∑

hHγ∈B2

G(x) ∗ lγ
(x
h
−Hγ

)
= u0(x) +

∑
hHγ∈B3

l′γ
(x
h
−Hγ

)
∗ G(x)

+
∑

hHγ∈B4

l∗
(x
h
−Hγ

)
∗ G(x) = u0(x) − w(x). (51)

The set B3 consists of points that lie at a distant less than Lh from the bound-
ary Γ of Ω, and B4 = (Rn \Ω) \B3.



500 S. L. Sobolev

Theorem 6. The norm of the error functional with regular boundary layer of
order m is expressed as

∥∥l | L(m)∗
2

∥∥ = hm

√
|B2m(H−1∗)|

(2m)!

√
|Ω| +O(hm+1). (52)

Proof. By (51) we have:∥∥l | L(m)∗
2

∥∥2 = (l, u) = (l, u0 − w) = (l, u0) − (l, w). (53)

The direct computation of (l, u0) gives

(l, u0) = h2m |B2m(H−1∗)|
(2m)!

|Ω0|(1 +O(h)). (54)

The second term (l, w) may be written as

(l, w) =
∑

hHγ∈B1∪B2

∑
hHγ′∈B3∪B4

[
lγ

(x
h
−Hγ

)
∗G(x) ∗ l′γ′

(x
h
−Hγ′

)]
, (55)

where hHγ ranges over the nodes lying in Ω, i.e., the set of nodes from B1∪B2,
and hHγ′ ranges over the set of nodes from B3 ∪B4.

Using (37) and applying the integral majorant, we have the final result,
i.e., the estimate

|(l, w)| ≤ Kh2m+1, (56)

where K depends only on L and A.
Theorem 6 immediately follows from (54) and (56). ��
In Theorem 6 we establish the principal term of the norm of the error

functional with regular boundary layer. As we see in the proof, we cannot
change the value of this principal term by increasing the order of l∗(y) from
m up to any other number. In the following theorems we establish directly
that the norm of the optimal error functional with the given lattice of nodes
hHγ has the same principal term.

Theorem (Babuška). For the given lattice of nodes hHγ, coefficients c(0)[γ]
of optimal error functional

l(0)(x) = χΩ(x) −
∑

hHγ∈Ω

c(0)[γ]δ(x− hHγ) (57)

are such that the solution u(x) of (12) vanishes at all nodes of the formula:

u(hHγ) = 0 for hHγ ∈ Ω. (58)
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Proof. Equalities (58) are equivalent to the fact that the convolution

G(x) ∗ l(0)(x) (59)

coincides with a certain polynomial of degree m−1 at all nodes hHγ from Ω.
If (58) would not hold, then on the set of all c[γ], subject to the conditions∑

hHγ∈Ω

c[γ] (hHγ)α =
∫
Ω

xα dx for |α| < m, (60)

there would exist directions such that the directional derivative of the poly-
nomial

ψ(c) = [l(x) ∗G(x) ∗ l(−x)]
∣∣∣
x=0

(61)

of the second degree with respect to the variables c[γ] would be nonzero, which
is impossible at the minimum point. ��
Theorem 7. The difference of the norm square of an arbitrary error func-
tional l(x) in L

(m)∗
2 and the norm square of the optimal error functional l(0)(x)

is expressed as ∥∥l | L(m)∗
2

∥∥2 − ∥∥l(0) | L(m)∗
2

∥∥2
=

∑
hHβ∈Ω
hHβ′∈Ω

G
(
hH(β − β′)

)
(c[β] − c(0)[β])(c[β′] − c(0)[β′]). (62)

In other words, this difference is a quadratic form with respect to the differ-
ences of coefficients of the cubature formulas under consideration, and the
matrix of this quadratic form has the elements G (hH(β − β′)).

Theorem 7 means that the difference between ψ(c) and its minimum is
the second-order value expressed by the quadratic form Ξ(c[β] − c(0)[β]) of
increments of the independent variables.

In view of Theorem 7, the deviation of the norm of the given error func-
tional from the least possible one reduces to the study of the quadratic form
of a large number of independent variables.

We use (62) to show that the norm of the optimal error functional differs
from the norm of an error functional with regular boundary layer by a value
of higher order of smallness.

Let us assume that the coefficients c[β] and c(0)[β] are given not only for
hHβ ∈ Ω, but also for all β, moreover, let

c[β] = c(0)[β] = 0 for hHβ /∈ Ω. (63)

Then, as it is easy to show, the form under consideration is reduced to the
infinite convolution∥∥l | L(m)∗

2

∥∥2 − ∥∥l(0) | L(m)∗
2

∥∥2 = Ξ
(
c[β] − c(0)[β]

)



502 S. L. Sobolev

=
[
(c[β] − c(0)[β]) ∗G(hHβ) ∗ (c[−β] − c(0)[−β])

] ∣∣∣
β=0

(64)

with respect to the discrete argument β. The quadratic form Ξ(c[β]− c(0)[β])
is the generalization of the form studied above,∫ ∑

|α|=m

m!
α!
Dαu(x)Dαv(x) dx =

[
l1

(x
h

)
∗G(x) ∗ l2

(
−x

h

)] ∣∣∣
x=0

, (65)

and it is the discrete analogue of (65).
Theorem 4 serves as the beginning of the theory of functions defined on a

lattice. Let us continue this theory. For our goals it is necessary to develop the
theory of the form Λ(U, V ), in the same way by which we develop the theory
of the corresponding integral form (65) using the polyharmonic equation.

First we consider the discrete potential

U∗[β] =
∑
β′

G[hH(β − β′)]c[β′] = G[hHβ] ∗ c[β], (66)

which is similar to the polyharmonic potential. It is useful to note that, by
Babuška’s theorem, for the given functional l(x), values of the potential

U [β] = G[hHβ] ∗ (c[β] − c(0)[β]) (67)

are known for hHβ ∈ Ω.
Indeed, it is easy to see that for hHβ ∈ Ω,

G[hHβ] ∗ (c[β] − c(0)[β]) =
[
G(x) ∗

(
l(x) − l(0)(x)

)] ∣∣∣
x=hHβ

. (68)

However, G(x) ∗ l(0)(x)
∣∣∣
x=hHβ

= Pm−1(hHβ), and therefore

G[hHβ] ∗ (c[β] − c(0)[β]) = u(hHβ) − Pm−1(hHβ) for hHβ ∈ Ω. (69)

Theorem 8. The operator of convolution with G[hHβ], i.e., the discrete po-
tential, has a difference inverse operator Lh[β] such that

Lh[β] ∗G[hHβ] = δ[β] =

{
1 for β = 0,
0 for β �= 0;

(70)

Lh[β] ∗ [β]α = 0 for |α| < 2m− 1; (71)

|Lh[β]| ≤ e−η|β|/h, (72)

where η is a positive constant.
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Thus, the operation Lh[β]∗ is an analogue of the usual discrete difference
polyharmonic operator ∆̂m with the only difference that the function Lh[β]
is not compactly-supported, but rather decreases exponentially at infinity.

The proof of Theorem 8 is based on an application of the Fourier transform,
and in the case of functions of a discrete argument it reduces to the search for
such periodic functions of the variable x with periods 2πh−1H−1, for which
G[hHβ] and Lh[β] are the Fourier coefficients.

Let U [β] and V [β] be compactly-supported functions. Let us compose the
bilinear form

Λ(U, V ) = U [β] ∗ Lh[β] ∗ V [−β]
∣∣∣
β=0

. (73)

Theorem 9. The form Λ(U, V ) can be extended by continuity on the space
l
(m)
2 of the functions U [β] and V [β] of the discrete argument with square
summable differences of order m. The corresponding quadratic form Λ(U,U)
satisfies the inequalities

0 < M1‖U | l(m)
2 ‖ ≤ Λ(U,U) ≤ M2‖U | l(m)

2 ‖ < ∞. (74)

The proof of this theorem can be conducted by study of the Fourier trans-
form in detail. We can also prove it directly using the following expansion of
the operator L1[β]:

L[β] ≡ L1[β] = (−1)m
∑

|α|=m

m!
α!
Lα[β] ∗ Lα[−β]. (75)

Equality (75) is the generalization of the known formula

∆m = (−1)m
∑

|α|=m

m!
α!
Dα(x) ∗Dα(−x). (76)

From (75) it follows that the form Λ(U,U) expands in the following sum of
squares:

Λ(U,U) =
∑

|α|=m

m!
α!

∣∣Lα(U,U)
∣∣2. (77)

First the expansion (77) is established for all compactly-supported functions,
and then for all functions from l

(m)
2 . The operator Lα[β]∗ turns out to be an

analogue of the finite difference ∆α of order α.
The proof of (77) is based on the following lemma, first proved for differ-

entiable functions from L
(m)
2 , and then for difference functions from l

(m)
2 .

Lemma (on the density of compactly-supported functions). Each
function ϕ from L

(m)
2 can be expressed as the limit of a sequence of compactly-

supported functions:
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ϕ(x) + Pm−1(x) = lim
η→∞
L

(m)
2

[
ϕ(x) + Pm−1(x)

]
ξ

(
ln |x|
ln η

)
, (78)

where Pm−1(x) is a polynomial of degree m− 1 and ξ(λ) is a truncator, i.e.,
a function with the properties

ξ(λ) =

{
0 for λ > 1,
1 for λ < 1/2,

(79)

|ξ(λ)| ≤ 1, and moreover ξ(λ) has continuous derivatives of all orders. A prop-
erty like (78) holds for the members of l(m)

2 as well.

Using the form Λ, let us introduce the Hilbert space S with the inner
product

{U, V } = U [β] ∗ Lh[β] ∗ V [−β]
∣∣∣
β=0

, (80)

defined for every pair of compactly-supported functions. Applying the lemma
on the density of compactly-supported functions we establish the formula

{U, V } = lim
η→∞{Uη, Vη} = (U [β], Lh ∗ V [β]) (81)

in the case when at least one of U [β] and V [β] is compactly-supported.

Theorem 10. Let �[β] relate with V [β] by

V [β] = G[hHβ] ∗ �[β], (82)

and �[β] ∗ [β]α = 0 for |α| < m. Then1

Ξ(�[β]) = Λ(V [β], V [β]). (83)

Equality (83) is the generalization of the usual equality

xFx∗ = yF−1y∗, y = xF, (84)

from the theory of quadratic forms on a finite number of variables. Equality
(84) is proved by accurate testing of the validity of the associative law in the
formula

yF−1FF−1y∗ = yF−1y∗ (85)

for symmetric finite matrices.
The continuous analogue of (83) may be written as∫ ∫

�(x)�(y)G(x− y) dxdy =
∫ ∑

|α|=m

m!
α!

∣∣∣Dαu(x)
∣∣∣2 dx, (86)

1 Here Ξ(�[β]) = �[β] ∗ G[hHβ] ∗ �[−β]
˛̨̨
β=0

. – Ed.
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where
u(x) = G(x) ∗ �(x). (87)

Equality (86) is valid for any compactly-supported function �(x) such that

(�(x), xα) = 0 for |α| < m, (88)

and we used this when deriving formula (18) for the norm of the error func-
tional.

Theorem 11. Let U∗[β] be a discrete potential with the compactly-supported
density �[β],

U∗[β] = G[hHβ] ∗ �[β], (89)

supp �[β] = Ω. (90)

The Λ(U∗, U∗) is less than Λ(U,U) for all those functions U [β], which take
the same values as U∗[β] at the points of Ω.

Proof. Let W [β] vanish at the points of Ω and be a member of l(m)
2 . Then

this function is orthogonal to U∗[β] in the inner product of S. Indeed, for
W [β] ∈ l

(m)
2 we have

Λ(U∗,W ) = (U∗[β] ∗ Lh[β],W [β]) =
∑

β

(U∗[β] ∗ Lh[β]) ·W [β].

In the last sum all terms are equal to zero, since the function W [β] vanishes
at the points of Ω, and the convolution Lh[β] ∗ U∗[β] is equal to zero at the
others. Hence, Λ(U∗,W ) = 0 and

Λ(U∗ +W,U∗ +W ) = Λ(U∗, U∗) + Λ(U∗,W ) + Λ(W,U∗) + Λ(W,W ). (91)

From this it follows that

Λ(U∗ +W,U∗ +W ) ≥ Λ(U∗, U∗). (92)

However, U∗ +W is an arbitrary function from l
(m)
2 coinciding with U∗ at the

points of Ω. ��
In order to complete the estimate of the norm of the optimal error func-

tional for the given lattice of nodes, we note that by Theorem 11 and (69) the
following inequality holds:

Λ(U∗, U∗) ≤ Λ(U [β], U [β]), (93)

where U [β] = u(hHβ), and u(x) is the extremal function of a cubature formula
with regular boundary layer of order m. This very important inequality allows
us to prove that
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2

∥∥2 − ∥∥l(0) | L(m)∗
2

∥∥2 = O(h2m+1), (94)

where l(0)(x) is the optimal error functional, and l(x) is an arbitrary error
functional with regular boundary layer of order m.

In many respects the derivation of estimate (94) is similar to the one
carried out above when estimating the norm

∥∥l | L(m)∗
2

∥∥ of an error functional
with regular boundary layer. From (52) it follows that it suffices to establish
(94) for the functional with regular boundary layer of order 2m+2, which we
are going to do.

Studying the form Λ(U,U), let us make use of (51):

Λ(U,U) = (Lh[β] ∗ U [β], U [β]) =
∑

β

(∑
β′

Lh[β − β′]U [β′]
)
U [β]

=
∑

β

(∑
β′

Lh[β − β′](u0(hHβ′) − w(hHβ′))
)
U [β]. (95)

Since the function u0(hHβ′) is constant at the points hHβ′, and the op-
erator Lh[β − β′] is orthogonal to the constant, we obtain

Λ(U,U) = −
∑

β

(∑
β′

Lh[β − β′]w(hHβ′)
)
U [β]

= −Λ(U,W ) = −{U,W}. (96)

The inner product {U,W} can be estimated in the same way as the corre-
sponding inner product in L

(m)
2 . We obtain

{U,W} =
∑

γ

∑
γ′

Lh[β] ∗ Uγ [β] ∗Wγ′ [−β]
∣∣∣
β=0

, (97)

where

Uγ [β] = G(x) ∗ lγ(
x

h
)
∣∣∣
x=hHβ

, Wγ′ [β] = G(x) ∗ lγ′(
x

h
)
∣∣∣
x=hHβ

, (98)

and
(lγ (x), xα) = 0 for |α| < 2m+ 1,

(lγ′(x), xα) = 0 for |α| ≤ 2m+ 1.
(99)

The convolution Lh[β] ∗ Uγ [β] can be written as

Lh[β] ∗ Uγ [β] =
∑
β′

Lh[β − β′]
(
lγ(

y

h
), G(hHβ′ − y)

)

=
(
lγ(

y

h
),
∑
β′

Lh[β − β′]G(hHβ′ − y)
)
.
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It turns out that the function ψ(y) =
∑
β′
Lh[β−β′]G(hHβ′−y) is regular in y

and decreases exponentially at infinity. Hence,

|Lh[β] ∗ Uγ [β]| ≤ Khne−η|β|/h. (100)

By the assumption that the order of the boundary layer is equal to 2m + 1,
we obtain

|Wγ′(x)| ≤ K

{
h2m+n+1|x|−n−1 for |x| ≥ L′h,
h2m for |x| ≤ Lh.

(101)

Comparing (100) and (101), and performing some natural computations, we
obtain an estimate similar to (37):

∣∣Uγ [β] ∗ Lh[β] ∗Wγ′ [−β]
∣∣ ≤ K

{
h2m+n for |hHβ| ≥ L′h,
h2m+2n+1 for |hHβ| ≤ Lh.

(102)

In the same way as above, we obtain∣∣U [β] ∗ Lh[β] ∗W [−β]
∣∣∣∣∣

β=0
≤ Kh2m+1. (103)

The next theorem follows from (103).

Theorem 12. For the given lattice of nodes the norm of the optimal error
functional is expressed as

∥∥l(0) | L(m)∗
2

∥∥ = hm

√
|B2m(H−1∗)|

(2m)!

√
|Ω| +O(hm+1). (104)

In particular, Theorem 12 tells us that the formulas with regular boundary
layer are asymptotically optimal.

For each particular computation a practical error of the cubature formula
can happen to be far away from the estimate that follows from (104). The
fact is that for each given value of the mesh-size h of the lattice, there is an
extremal function u0(x/h) such that

(l, u0) = ‖l | X∗‖ · ‖u0 | X‖. (105)

In this case, the sequence
1

‖u0(x/h) | X‖u0(x/h) is noncompact, and moreover

it has no condensation point w(x) in L
(m)
2 . On the contrary, we establish that

for every ϕ from L
(m)
2 the estimate |(l, ϕ)| as h → 0 is always substantially

better than the one that follows from the inequality |(l, ϕ)| ≤ ‖l | L(m)∗
2 ‖ ·‖ϕ |

L
(m)
2 ‖.

For function ϕ from L
(m)
2 we have
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(l, ϕ) = hm

∫ ∑
|α|=m

m!
α!
Dαu0(

x

h
)Dαϕ(x) dx. (106)

The right side of this formula can be conveniently estimated by considering
the integrals over each cell Ωγ , corresponding to the periods hHγ of the
function u0. Using the Cauchy–Bunyakovskii–Schwarz inequality, we obtain

|(l, ϕ)| ≤ hm
∑

hHγ∈Ω

(∫
Ωγ

∑
|α|=m

m!
α!

∣∣∣Dαu0(
x

h
)
∣∣∣2dx)1/2

×
(∫
Ωγ

∑
|α|=m

m!
α!

∣∣∣Dαϕ(x)
∣∣∣2dx)1/2

. (107)

One can show that the sum on the right side of (107) has a limit as h → 0.
Passing to the limit, we obtain the estimate

|(l, ϕ)| ≤ hm

√
|B2m(H−1∗)|

(2m)!
‖ϕ | L(m)

1 (Ω)‖
(
1 + η(h)

)
, (108)

where η(h) → 0 as h → 0, and ‖ϕ | L(m)
1 (Ω)‖ denotes the integral

‖ϕ | L(m)
1 (Ω)‖ =

∫
Ω

( ∑
|α|=m

m!
α!

∣∣∣Dαϕ(x)
∣∣∣2)1/2

dx. (109)

Estimate (108) is stronger than when it follows from (104). Indeed, from the
Cauchy–Bunyakovskii–Schwarz inequality we obtain

‖ϕ | L(m)
1 (Ω)‖ ≤

{∫
Ω

∑
|α|=m

m!
α!

∣∣∣Dαϕ(x)
∣∣∣2 dx}1/2{∫

Ω

dx

}1/2

=
√
|Ω| ‖ϕ | L(m)

2 (Ω)‖. (110)

The equality in (110) can only occur in such a case if∑
|α|=m

m!
α!

∣∣∣Dαϕ(x)
∣∣∣2 = 1. (111)

Since the extremal function of l(x) does not satisfy (111), we see that the
maximum of |(l, ϕ)| taken over the solutions of (111) is less than the max-
imum of |(l, ϕ)| taken over L

(m)
2 (Ω). Hence, estimate (108) is always more

advantageous than the estimate in the norm.
It is possible that estimate (108) is also nonoptimal. It would be quite

interesting from the theoretical point of view to find the exact estimate of the
functional K(ϕ) = lim

h→0
h−m|(l, ϕ)| in the whole L(m)

2 (Ω). As we have seen,
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K(ϕ) ≤
√

|B2m(H−1∗)|
(2m)!

‖ϕ | L(m)
1 (Ω)‖. (112)

Now we study the question about the rate of convergence to zero of the
error of cubature formulas in classes of infinitely differentiable functions. Let
us consider the set of such functions, which are periodic with the matrix H
of periods and define a space with a sequence of norms:

‖ϕ | L(m)
2 (Ω0)‖, m =

[n
2

]
+ 1,

[n
2

]
+ 2, . . . . (113)

As we observed above, on this space the simplest error functional

l0(x) = 1 − hn
∑

γ

δ(x− hHγ) = 1 − Φ0(h−1H−1x),

where
Φ0(h−1H−1x) = hn

∑
γ

δ(x− hHγ), (114)

has an infinite order of exactness, and its norm in any space L(m)∗
2 (Ω0) can

be explicitly estimated. Thus, for each fixed h and for all m the following
inequalities hold:

|(l0, ϕ)| ≤ hm

√
|B2m(H−1∗)|

(2m)!

√
|Ω| ‖ϕ | L(m)

2 (Ω0)‖. (115)

Estimating the order of the right side in (115) for different classes of functions,
and finding every time the best value of m, we obtain the estimate |(l0, ϕ)| in
terms of h.

Let us consider the Gevrey classes of functions, where the growth of the
mth-order derivatives obeys the following conditions∥∥∥Dαϕ

α !

∥∥∥ ≤ KeA|m|β for |α| = m, (116)

where K, A, and β are independent of m, and m = 1, 2, . . . There are
particular cases of Gevrey’s classes such as quasi-analytic functions, functions
regular in a certain strip of the complex plane surrounding the set of real
values of x, and, finally, entire functions of a particular order and type. As
we have seen, these classes are characterized by the pair of numbers A and β.
For the Gevrey classes we have the inequality

‖ϕ | L(m)
2 (Ω0)‖ ≤ KeA|m|β . (117)

Further, from the explicit expression for
|B2m(H−1∗)|

(2m)!
we obtain
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|B2m(H−1∗)|
(2m)!

=
(

1
2π

)2m 1
r2m
min

(
1 + η(m)

)
, (118)

where rmin denotes the shortest distance between the nodes of the lattice with
the matrix H−1∗ of periods. Formulas (117) and (118) lead to the following
corollaries:

a) for sufficiently large m the best optimal lattice with the matrix H−1∗ is
the one whose nodes coincide with the centers of balls from the densest
packing. The theory of such lattices has been a subject of numerous studies
in the geometry of numbers;

b) from (115) it follows that the best estimate has the form

|(l0, ϕ)| ≤ Ke−Bh−σ

, (119)

where B and σ are expressed through A and β by formulas, which we do
not discuss now. For example, we obtain the estimate of form (119) if ϕ(x)
is an analytic function with a given radius of convergence at each point x
of the integration domain.

From (119) it follows that beginning with a certain h the corresponding cu-
bature formulas are completely exact for each trigonometric polynomial of a
given degree.

In conclusion, let us discuss certain practical methods of the construction
of formulas with regular boundary layer.

If Ω is a polyhedron with the rational faces, then we can construct formu-
las with regular boundary layer by using the Fourier transform of the error
functional l(x). The following theorem holds.

Theorem 13. For the error functional l(x) in a bounded domain Ω to be
orthogonal to all polynomials of degree m − 1, it is necessary and sufficient
for its Fourier transform l̃(p) to have a zero of multiplicity m at the origin.

By using Theorem 13, the boundary layer can be found with the aid of
the method of undetermined coefficients. For certain cases these layers were
calculated in the Novosibirsk Computer Center of the Siberian Division of the
USSR Academy of Sciences.

In practice there are cases such that for a given function it is convenient
to choose a grid with different mesh-sizes in different parts of its domain.
For example, this occurs, when the integrand is changing rapidly in some
subdomains, and slowly in others. In order to keep a good order of accuracy, it
suffices to trace the fact that in different parts the coefficients of the formulas
would be equal to hn

1 and hn
2 , respectively, and to introduce the boundary

layer of the required order on the boundary between the subdomains. The
coefficients of the cubature formulas in this layer are computed by the same
method of the Fourier transform, provided that the boundary is formed by
parts of the rational planes.
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Conclusion

The problems of the theory of cubature formulas, when we study their error
functionals in the corresponding functional spaces, can be treated as prob-
lems of functional analysis. In particular, applying certain Hilbert metrics
and solving the appearing problems by the methods of variations calculus,
we can obtain exact estimates of the norms of error functionals, find an op-
timal lattice, and find asymptotically optimal coefficients. The formulas with
such nodes and coefficients are convenient for practical applications. These
formulas are called formulas with regular boundary layer, and they are gen-
eralizations of the Gregory quadrature formulas for one independent variable.
Apparently, in a number of cases they are also sufficiently convenient for prac-
tical applications.



16. Convergence of Approximate Integration
Formulas for Functions from∗ L

(m)
2

S. L. Sobolev

In the papers by the author [1,2] it was established that an extremal function
u(x) for which the error functional attains its maximum value on the unit
sphere in L

(m)
2 is a solution of the polyharmonic equation with a right side:

∆mu = (−1)ml(x). (1)

Let the nodes of a cubature formula be of the form

x(γ) = hHγ, (2)

where x(γ) is a column vector, γ is a column vector with integer entries, H is
a matrix with the unit determinant, and h is a small positive parameter. In
what follows we consider periodic functions of n variables defined on a torus
Ω. Let the periods of the torus Ω be multiples of the columns of the matrix
hH, i.e., periods of the lattice.

Theorem 1. All coefficients Cγ of the error

l(x) = 1 −
∑

γ

hnCγδ(x− x(γ)) (3)

with minimal L̃(m)∗
2 -norm are given by

Cγ = 1. (4)

Proof. The proof and the formulation of Theorem 1 are known, although for
other spaces. It is also known that the L̃(m)∗

2 -norm of l(x) is a strictly convex
function of Cγ . It means that for l1 �= l2 and ‖l1 | L̃(m)∗

2 ‖ = ‖l2 | L̃(m)∗
2 ‖ = C

the inequality holds ∥∥∥∥ l1(x) + l2(x)
2

| L̃(m)∗
2

∥∥∥∥ < C. (5)

∗ Dokl. Akad. Nauk SSSR, 162, 1259–1261 (1965)
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If the coefficients of some functional of form (3) are not all equal, then l(x)
and l(x− hHγ) do not coincide. At the same time their half-sum is an error
functional with the same nodes (2), but smaller in norm. Therefore the L̃(m)∗

2 -
norm of l(x) cannot be minimal. The proof of Theorem 1 is complete. ��

By the Fourier method, we obtain an explicit expression for the extremal
function of the error

l0(x) = 1 −
∑

γ

hnδ(x− hHγ). (6)

This function is

u(x) = −
(
h

2π

)2m∑
β �=0

e−i2πβh−1H−1x

[A(β)]m
. (7)

Here A(β) = (Aβ, β) is a quadratic form with the matrix

A = H−1H−1∗. (8)

From (7) it follows that

‖l0(x) | L̃(m)∗
2 ‖ =

(
h

2π

)m√
|Ω|
√
ζ(H−1∗ | 2m), (9)

where
ζ(H−1∗ | 2m) =

∑
γ �=0

1
[A(γ)]m

. (10)

By (9), the following estimate for the error of the cubature formula holds:

|(l0, ϕ)| ≤
(
h

2π

)m√
|Ω|
√
ζ(H−1∗ | 2m) ‖ϕ | L̃(m)

2 ‖. (11)

The purpose of the present note is to prove the following theorem.

Theorem 2. For every individual function ϕ in L̃
(m)
2 the estimate holds

|(l0, ϕ)| ≤
(
h

2π

)m√
ζ(H−1∗ | 2m) ‖ϕ | L(m)

1 (Ω)‖ + o(hm), (12)

where o(hm) depends on the function ϕ(x), h → 0, and

‖ϕ | L(m)
1 (Ω)‖ =

∫
Ω

( ∑
|α|=m

m!
α!

∣∣∣Dαϕ(x)
∣∣∣2)1/2

dx. (13)

Estimate (12) is sharper than (11) as h → 0.
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As follows from Theorem 2, estimate (11), which is exact for the total class
of periodic functions in L̃

(m)
2 , is not exact for every individual function. For

each given h the equality in (11) holds for the function ϕ(x) depending on h.
However, for all functions except solutions of∑

|α|=m

m!
α!

(Dαϕ)2 = const, (14)

we have the strict inequality

‖ϕ | L(m)
1 (Ω)‖ <

√
|Ω| ‖ϕ | L(m)

2 (Ω)‖, (15)

and extremal function (7) does not satisfy equation (14). Hence estimate (12)
is stronger than estimate (11) for every individual function and sufficiently
small h.

Proof. Let us present the idea of the proof of Theorem 2. For any function
ϕ(x) in L̃

(m)
2 the error (l, ϕ) is given by the formula

(l, ϕ) =
(
(−1)m∆mu, ϕ

)
=
∑

|α|=m

m!
α!

(Dαu,Dαϕ) ≡
∫
Ω

∑
|α|=m

m!
α!
DαuDαϕdx. (16)

We cover the domain Ω with a system of disjoint parallelepipeds Ωγ . The
sides of each Ωγ are given by the columns of the matrix hH, and the beginning
of Ωγ is hHγ. Using the Cauchy–Bunyakovskii–Schawrz inequality, we have

(l, ϕ) =
∑

γ

∫
Ωγ

∑
|α|=m

m!
α!
DαϕDαu dx

≤
∑

γ

{∫
Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2 dx
}1/2{∫

Ωγ

∑
|α|=m

m!
α!

(Dαu)2 dx
}1/2

=
( h
2π
)m√

ζ(H−1∗ | 2m)
∑

γ

hn/2

{∫
Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2 dx
}1/2

. (17)

To prove estimate (12) it remains to show that

∑
γ

hn/2

{∫
Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2dx
}1/2

=
∫
Ω

{ ∑
|α|=m

m!
α!

(Dαϕ)2
}1/2

dx+ o(1). (18)
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Consider the function

fγ(λ) =
∫

Ωγ

([ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

− λ

)2

dx. (19)

Clearly, the function fγ(λ) is a positive quadratic trinomial in λ, and

fγ(λ) = hnλ2−2λ
∫

Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx+
∫

Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2 dx. (20)

For every positive trinomial f(λ) = aλ2 − 2bλ+ c the equality holds

amin f(λ) = ac− b2. (21)

Let
min fγ(λ) = fγ(λγ) = εγ . (22)

Clearly, the function
[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

is square integrable over Ω.

Hence, it can be approximated in norm by a step function

ψ(x) = λγ for x ∈ Ωγ . (23)

From this it follows that the sum∑
γ

εγ = ε = τ (m)
ϕ (h) (24)

tends to zero as h → 0. However, from (21) and (22) it follows that

εγ =
∫

Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2 dx− 1
hn

(∫
Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx

)2

, (25)

and hence ∑
γ

hn/2

{∫
Ωγ

∑
|α|=m

m!
α!

(Dαϕ)2 dx
}1/2

=
∑

γ

hn/2

{
1
hn

(∫
Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx

)2

+ εγ

}1/2

=
∑

γ

{(∫
Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx

)2

+ hnεγ

}1/2

. (26)

Finally, from the triangle inequality it follows that
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Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx

)2

+ hnεγ

}1/2

−
∫

Ωγ

[ ∑
|α|=m

m!
α!

(Dαϕ)2
]1/2

dx ≤ hn/2√εγ , (27)

and further

∑
γ

hn/2√εγ ≤
(∑

γ

hn

)1/2(∑
γ

εγ

)1/2

=
√
|Ω|
√
τ

(m)
ϕ (h). (28)

Summing (27) over all γ, and using (26) and (28), we obtain (18). The proof
of Theorem 2 is complete. ��
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17. Evaluation of Integrals of Infinitely
Differentiable Functions∗

S. L. Sobolev

In previous note [1] of the author it was shown that for each individual func-
tion in the class of periodic functions from L

(m)
2 , the error estimate for the

numerical evaluation of the integral using the method of nets is always bet-
ter than the error estimate by means of the norm of the error functional.
Clearly, if we consider the whole space L

(m)
2 , the estimate of accuracy of a

formula by means of the norm of its error functional is unimprovable. Study-
ing countably-normed spaces of infinitely differentiable functions, we come to
another similar case. Each such space is the intersection of the sequence of
spaces L(m)

2 , m = 1, 2, . . .. The cubature formulas with equal coefficients men-
tioned in the note [1] are applicable for periodic functions which are members
of all spaces L(m)

2 simultaneously. Hence, for any function belonging to all of
L

(m)
2 simultaneously, we get the following sequence of estimates1:

|(l, ϕ)| ≤
(
h

2π

)m√
ζ(H−1∗ | 2m)

√
|Ω| ‖ϕ | L(m)

2 ‖, (1)

m = [
n

2
] + 1, [

n

2
] + 2, . . . .

Given some law of growth of L(m)
2 -norm of ϕ we may choose for each given

h the best estimate as the lower bound of all estimates (l). By this way we
can, in a number of cases, establish that the convergence of (l, ϕ) to zero as
h → 0 is far more rapid than polynomial decay of errors. The present note is
devoted to this question.

Lemma 1. The function ζ(A | m) at large m admits the estimate

ζ(H−1∗ | 2m) ≤ Kmin

r2m
min

(
1 + o(1)

)
, (2)

∗ Dokl. Akad. Nauk SSSR, 163, 33–35 (1965)
1 Here Ω is an integration domain. – Ed.
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where rmin is the shortest distance between the nodes of the integer lattice
βH−1, β is an integer row vector, and Kmin is the number of such lattice
nodes which are at the distance rmin from a given one.

The proof of Lemma 1 is easy from the definition of the Epstein zeta
function ζ(H−1∗ | 2m) (see [1]).

We consider classes of real infinitely differentiable periodic functions whose
derivatives of order α are subject to the inequalities

|D
αϕ(x)
α!

| ≤ KA|α||α|(β−1)|α|. (3)

Here, α! denotes α1! . . . αn! and the remaining notations are the same as
in [1,2]. We call the number β the order of growth of the derivatives of ϕ, and
the number A the type of this growth. When (3) is satisfied, we write

ϕ ∈ K(A, β). (4)

A long time ago, the basic properties of such classes were established for
functions of one independent variable, and we may translate these properties
almost without any change to functions of several independent variables.

We distinguish five cases, not all of which are of interest: a) β < 0; b) β = 0;
c) 0 < β < 1; d) β = 1; and e) β > 1.

In case a), the class K(A, β) contains no periodic function besides a con-
stant function, and we shall not consider it.

In case b), i.e., for β = 0, the class K(A, β) of periodic functions may
contain only polynomials whose degree n depends on the size of the constant
A: n ≤ K1A.

In case c), for 0 < β < 1, K(A, β) contains entire functions of order

� =
1

1 − β
(5)

and of type

σ =
1 − β

e
A1/(1−β). (6)

In case d), for β = 1, the class K(A, β) consists of functions, analytic with
a radius of convergence at each point determined by the constant A,

Im {xj} < e−K2A, (7)

where K2 is some constant.
Finally, for β > 1, the class K(A, β) consists of infinitely differentiable non-

analytic functions, and for each A the compactly-supported functions belong
to it. Various quasi-analytic functions belong to the intersection ∩A>0K(A, 1).
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Lemma 2. Let periodic function ϕ of the variable x in n dimensions be in
the class K(A, β). Then the following estimates of the L(m)

2 -norms are valid:

‖ϕ | L(m)
2 ‖ ≤ K3m

βm+1/2

(
A

e

)m

, m = 0, 1, 2, . . . . (8)

Here K3 is some constant depending on K and Ω.

Proof. The proof of this lemma is based on simple estimates. We may always
assume that

∑
|α|=m

f(α) denotes a summation as though the function f(α)

does not possess symmetry with respect to permutations of the entries of
the integer vector (α1, α2, . . . , αn). If f(α) possesses such symmetry, then the
sum can be taken with the corresponding repetitions. Hence, the norm of the
function ‖ϕ | L(m)

2 ‖ may be written as

‖ϕ | L(m)
2 ‖2 =

∫
Ω

∑
|α|=m

(Dαϕ)2 dx =
∫
Ω

∑
|α|=m

(
α!
Dαϕ

α!

)2

dx. (9)

Since ∑
|α|=m

(
α!
Dαϕ

α!

)2

≤ A2mm2m(β−1)
∑

|α|=m

(α!)2, (10)

we obtain

‖ϕ | L(m)
2 ‖ ≤ Ammm(β−1)

√
|Ω|
{ ∑

|α|=m

(α!)2
}1/2

. (11)

The inequality is valid∑
|α|=m

(α!)2 ≤ Khe
−2mm2m+1. (12)

It is proved by rearranging the sum∑
|α|=m

(α!)2 = m!
∑

|α(j)|=m

(α(j))!. (13)

The sum on the right side of (13) is taken over distinct integer vectors α(j)

without repetitions. Further, one establishes

∑
|α(j)|=m

(α(j))!
(m− 1)!

= n+O

(
1
m

)
. (14)

Inequality (12) follows immediately from (13), (14), and the Stirling for-
mula. Finally, from (11) and (12) inequality (8) follows. ��



522 S. L. Sobolev

Lemmas 1 and 2 allow us to prove the main theorem.

Theorem 1. For each periodic function ϕ of the class K(A, β), β > 0, and
for the cubature formula with nodes at the points hHγ the following estimate
of the error of this cubature formula holds

|(l, ϕ)| ≤ Kh−1/2 exp
[
−β

e

(
2πermin

Ah

)1/β]
. (15)

Proof. The proof of Theorem 1 is based on determining the minimum with
respect to m of the function on the right side of the inequality

‖l | L(m)∗
2 ‖ · ‖ϕ | L(m)

2 ‖

≤
(
h

2π

)m√
|Ω|
√
ζ(H−1∗ | 2m)Kmβm+1/2

(
A

e

)m

, (16)

which is easy to carry out in an elementary way. Incidentally, one establishes
which m is optimal for a given value of h, namely,

m =
1
e

(
2πermin

Ah

)1/β

, (17)

as required. ��
It is interesting to note the case which does not follow directly from The-

orem 1, namely, when β = 0. A direct estimate in this case gives Theorem 2.

Theorem 2. For a sufficiently small mesh-size h, the cubature formula with a
fixed lattice of nodes hHγ and equal coefficients is exact for any trigonometric
polynomial.
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18. Cubature Formulas with Regular
Boundary Layer∗

S. L. Sobolev

In one of the previous notes [1] we considered error functionals of cubature
formulas of the form1

l(x) = χΩ(x) −
N∑

j=1

cjδ(x− x(j)) =
∑

γ

lγ

(x
h
− γ
)
, (1)

where lγ(x) are functionals with bounded supports and finite norms in L
(m)
2 ,

and lγ(x) are orthogonal to all polynomials of degreem. The set of lγ(x), which
satisfy conditions (10), (11), and (12) of [1], is denoted by R(L,A,m+ 1).

Let H be the matrix of periods of some lattice with determinant equal
to 1, |H| = 1. Formula (1) is evidently equivalent to the equality

l(x) =
∑

γ

lγ

(x
h
−Hγ

)
. (2)

In what follows, we consider formulas for which:
a) the nodes of all lγ(x) are located at the points hHγ′,

lγ(x) = χγ(x) −
∑
γ′

cγ
′

γ δ(x− hHγ′),
∑

χγ

(x
h
−Hγ

)
= χΩ(x); (3)

b) all errors lγ(x) are members of R(L,A, s),

lγ(x) ∈ R(L,A, s); (4)

c) for all points hHγ such that dist (hHγ, Γ ) > 2Lh errors lγ(x) coincide,

lγ(x) = l0(x). (5)

Under these conditions we call l(x) the error with regular boundary layer
of order m.

The purpose of our note is to establish the following theorem.
∗ Dokl. Akad. Nauk SSSR, 163, 587–590 (1965)
1 Here Ω is a domain with piece-wise smooth boundary. – Ed.
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Theorem. Let l(x) be an error with regular boundary layer of order m. Then
the following equality holds:

‖l | L(m)
2 ‖ =

(
h

2π

)m√
ζ(H−1∗ | 2m)

√
|Ω| +O(hm+1) as h → 0. (6)

The proof is based on a series of auxiliary lemmas, which are given here.

Lemma 1. Let l(x) be an error with regular boundary layer. Then for all
nodes hHγ in Ω at a distance not less than Lh from the boundary Γ of Ω,
coefficients cγ are all equal to hn.

Proof. Indeed, for the node hHγ under consideration we have

cγ = hn
∑

|γ′|<L

c
(0)
γ−γ′ . (7)

Here c(0)γ are coefficients of l0(x). From the conditions that the volume of Ω0

equals 1 and (l0(x), 1) = 0 it follows that

cγ = hn, (8)

as required. ��
We call the set of nodes hHγ at which cγ �= hn the boundary layer . If

only nodes in the interior of Ω are used in integration, then the boundary
layer is interior. If we also use nodes in the exterior of Ω in approximating
the functional χΩ(x) in L

(m)
2 , then we can get a two-sided boundary layer

which is comprised by nodes hHγ at a distance not greater than Lh from
the boundary Γ , or else an exterior boundary layer which is comprised by
nodes hHγ in the exterior of Ω at a distance not greater than 2Lh from the
boundary Γ . Of course, for a function ϕ(x) in L

(m)
2 (Ω) only formulas with

interior boundary layer make sense. We call the number 2L the width of the
boundary layer.

Let mγ(x) =
∑

cγ
′

γ δ(x − hHγ′). We call such functionals the narrow-like
functionals. Further, let mγ(x) ∈ R(L,A, s) and

m(x) =
∑

γ∈Bj

mγ(x− hHγ), (9)

where γ ranges over some set Bj , and {hHγ| γ ∈ Bj} is a boundary layer
of width L. Then we call functional (9) a zero’s error with a boundary layer
of order s. A zero’s error with a boundary layer is exterior, interior, or two-
sided according to the location of its support. The width of this functional is
introduced analogously to the width of a boundary layer, and it is, generally
speaking, equal to 3L, but it may also be less. In all that follows it may be
taken equal to 2L.
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Lemma 2. Let l(1)(x) and l(2)(x) be errors with regular boundary layer of
orders s(1) and s(2), respectively. The difference of l(1)(x) and l(2)(x) is a
zero’s error with a boundary layer of order

min (s(1), s(2)) − 1. (10)

The proof of Lemma 2 is based on an auxiliary lemma.

Lemma 3. Let m(x) be a compactly-supported functional of the form

m(x) =
∑

|Hγ|<L

c[γ]δ(x− hHγ), (11)

and let m(x) be orthogonal to all polynomials of degree s:

(m(x), xα) =
∑

c[γ](hHγ)α = 0 for |α| ≤ s.

Then m(x) admits the equivalent representation as follows2:

m(x) =
n∑

j=1

(
Mj(x+ hHδj) −Mj(x)

)
, (12)

where (Mj(x), xα) = 0 for |α| ≤ s − 1 and suppMj(x) is a subset of the
smallest parallelepiped, with edges parallel to the columns of H, containing
suppm(x).

Proof. Lemma 3 is proved by the method of induction on the number n of
independent variables. We have to establish that the coefficients c[γ] may be
written as

c[γ] =
n∑

j=1

∆̂jcj [γ], (13)

where
∑

cj [γ]γα = 0 for |α| ≤ s− 1 and ∆̂jϕ[γ] = ϕ[γ + δj ] − ϕ[γ].
Let us show that for γ = (γ1, γ2, . . . , γn) the equality holds

c[γ] = cn[γ1, . . . , γn−1, γn+1]−cn[γ1, . . . , γn−1, γn]+c∗[γ1, γ2, . . . , γn−1], (14)

where the function c∗[γ1, γ2, . . . , γn−1] is orthogonal to all polynomials in the
variables (γ1, γ2, . . . , γn−1) of degree s, and the function cn[γ1, γ2, . . . , γn] is
orthogonal to polynomials of degree s − 1 and supp cn[γ] is a subset of the
smallest parallelepiped containing the support of c[γ]. From this Lemma 3
follows. ��

2 Here δj = (0, . . . , 0| {z }
j−1

, 1, 0, . . . , 0). – Ed.
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Functions cn[γ1, γ2, . . . , γn] and c∗[γ1, γ2, . . . , γn−1] may be written as

c∗[γ1, γ2, . . . , γn−1] =
L∑

γ′
n=−L

c[γ1, γ2, . . . , γn−1, γ
′
n]; (15)

cn[γ] =

⎧⎪⎪⎨⎪⎪⎩
0 for |γn| ≥ L,

γn−1∑
γ′

n=−L

c[γ1, γ2, . . . , γn−1, γ
′
n] − (γn + L)c∗[γ1, γ2, . . . , γn−1].

(16)

Hence, formula (14) and the orthogonality of c∗[γ1, γ2, . . . , γn−1] to polynomi-
als in the variables (γ1, γ2, . . . , γn−1) of degree s are clear. The orthogonality
of cn[γ1, γ2, . . . , γn] to all polynomials of degree s − 1 follows from the well-
known formula for summation by parts:∑

γ

[ϕ(γ + δn) − ϕ(γ)]ψ(γ) =
∑

γ

ϕ(γ)[ψ(γ) − ψ(γ − δn)]. (17)

It suffices to note that xαn
n =

1
αn + 1

∆̂nBαn+1(xn), where Bαn+1 is the

Bernoulli polynomial of degree αn + 1, and use (14).
Lemma 3 can be also proved in a different way, namely, by passing to the

Fourier transform. This is its dual statement.

Lemma 3a. Let Z be the class of rational functions Ψ(z) of the form
P (z)
zk

,

where P (z) is a polynomial in z = (z1, . . . , zn), and zk = zk1
1 . . . z

kn
n ;

k = (k1, k2, . . . , kn). Every function ϕ(z) with a zero of multiplicity m at
the point (1, 1, . . . , 1) may be written down as

ϕ(z) =
n∑

j=1

(zj − 1)ϕj(z), (18)

where the functions ϕj are members of the same class Z with the polynomials
Pj(z), and they have zeros of multiplicity m−1 at the point (1, 1, . . . , 1). Also,
the degree of the polynomial Pj(z) in the variable zj does not exceed the degree
of P (z) and kj ≤ k.

It seems the proof in the above text is no longer than any possible proof of
Lemma 3a, especially if we take into account the necessity to establish their
equivalence.

Lemma 3a and Lemma 3 are the particular examples of lemmas on the
expansion of an analytic function with a root of multiplicity m at a given
point z(0) into the sum

ϕ(z) =
∑

(zj − z(0))ϕj(z), (19)
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and of dual lemmas on the corresponding expansion of generalized functions
ψ in K(s), where (ψ(x) ∗ xα) = 0 for |α| ≤ s.

Essentially, the theorem of L. Schwartz on the representation of every
generalized function in the form of a differential operator on a continuous
function is like Lemma 3.

Corollary. Let m0(x) be a zero’s error from R(L,A, s+ 1). Then the sum∑
hHγ∈Ω

m0(x− hHγ) = M0(x), (20)

is a zero’s error with boundary layer of order s.

This corollary is obtained immediately, if we replace m0 in the left side of
(20) by its expansion into the sum (11) and change the order of summation.

Lemma 2 follows immediately from Lemma 3.

Corollary to Lemma 2. Each functional l(x) with a boundary layer of or-
der s ≥ m may be written as

l(x) =
∑

hHγ∈Ω

l∗
(x
h
−Hγ

)
+
∑
γ∈B

l∗∗γ

(x
h
−Hγ

)
, (21)

where B is a boundary layer of width L,

l∗
(x
h
−Hγ

)
∈ R(L,A, s1). (22)

The order s1 in (22) can be each number greater than s.

To prove (21) for given s1 it suffices to expand the difference between l(x)
and any given error functional with regular boundary layer of order s1 into a
sum like (9).

Let l(x) be a linear functional with regular boundary layer of order s ≥ m.
The equality is valid,

l(x) = 1 − Φ0(h−1H−1x) − l(1)(x), (23)

where l(1)(x) is a functional with exterior regular boundary layer for the do-
main Ω = Rn\Ω. As was established in [1], the extremal function for l(x) has
the form

u(x) = l(x) ∗G(x). (24)

From (23) and (24) it follows that

u(x) = u0(x) + C − l(1)(x) ∗G(x), (25)

where u0(x) is the elementary solution of the extremal problem in the periodic
case.
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Let us write down the norm of l(x) explicitly,

‖l(x)‖2 =
(
l(x), u(x)

)
=
(
l(x), u0(x)

)− l(x) ∗G(x) ∗ l(1)(−x)
∣∣∣
x=0

. (26)

Replacing l(x) and l(1)(x) by their expansions into sums like (21) and repeat-
ing the estimates mentioned in [1], we obtain

l(x) ∗G(x) ∗ l(1)(−x)
∣∣∣
x=0

= O(h2m+1). (27)

By a direct calculation one can also show that

(l(x), u0(x)) =
h2m

(2π)2m
ζ(H−1∗ | 2m)|Ω| +O(h2m+1). (28)

The main theorem follows from (26)–(28).
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19. A Difference Analogue of the Polyharmonic
Equation∗

S. L. Sobolev

Let x be a column vector in the n-dimensional space Rn, and let β be a column
vector with integer entries. The generalized function

ψ(x) =
∑

β

ϕ[β]δ(x− β)

is called a lattice function, and the function ϕ[β] of integer variables β is called
a discrete function. We denote the set of lattice functions by P , and the set
of discrete functions by R. To an arbitrary continuous function ϕ(x), there
correspond lattice and discrete functions defined by

ΩCR[β | ϕ] = ϕ(β);

ΩCP (x | ϕ) =
∑
β

ϕ[β]δ(x− β) = ϕ(x)Φ0(x) = ψ(x),
(1)

where Φ0(x) =
∑
β

δ(x− β). Equality (1) may be also written as

ψ(x) = ΩRP (x | ϕ) and ϕ[β] = ΩPR[β | ψ]. (2)

Also let us introduce the mappings

ΩPC(x | ϕ) and ΩRC(x | ϕ), (3)

where
ΩPC = (ΩCP )−1 and ΩRC = (ΩCR)−1. (4)

Mappings (3) and (4) are not uniquely defined. Indeed, we may explicitly
express ΩPC as a convolution

ΩPC(x | ϕ) = ϕ(x) ∗ Λ(x),

∗ Dokl. Akad. Nauk SSSR, 164, 54–57 (1965)
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where Λ(x) is an arbitrary solution of the equation Λ(x)Φ0(x) = δ(x); i.e.,

Λ(β) = 1 for β = 0 and Λ(β) = 0 for β �= 0.

It is surely assumed that the convolution of Λ(x) with the function ϕ(x) exists.
Below we expose the spaces containing the product and the convolution

of two functions from C or P . As regards the inner product

(ϕ,ψ) = c ∈ R1, (5)

it exists provided that ϕ and ψ are not simultaneously members of P .

a) ϕ · ψ = χ b) ϕ ∗ ψ = χ

ψ
ϕ C P

ψ
ϕ C P

C C P C C C

P P P C P

(6)

On the set of functions in R there are defined conventional operations. Ob-
viously, convolution is applicable not for an arbitrary pair of functions, but
only for sufficiently rapidly decreasing ones. The mappings Ω of the spaces C,
P , and R preserve the validity of (5) and (6a) in all cases, and the validity of
(6b) everywhere except for the case ϕ ∈ C and ψ ∈ C.

Also let us introduce the space Φ of functions decreasing at infinity suf-
ficiently rapidly. For example, compactly-supported functions are members
of Φ. Let Π be the space of periodic functions with integer periods, and let
T be the space of functions defined on the torus Ω0 obtained by identifying
all points of Rn that differ by an integer vector. Thus, we can consider the
mappings

ΞΦΠ , ΞΠΦ, ΞTΠ , ΞΠT , ΞΦT , and ΞTΦ.

The mapping ΞΠT sends a periodic function ϕ(p) with domain Rn into a
function defined on the torus with the same values. On the other hand, the
mapping ΞTΠ sends T into Π.

The mapping ΞΦΠ sends ϕ(p) ∈ Φ into the function

ψ(p) ≡ ΞΦΠ(p | ϕ) =
∑

γ

ϕ(p− γ) = ϕ(p) ∗ Φ0(p),

where the vector γ has integer entries. Further, ΞΦT = ΞΦΠΞΠT .
The inner product (ϕ,ψ) of the functions ϕ ∈ Φ ∪Π and ψ ∈ Φ ∪Π has

sense provided that ϕ and ψ are not simultaneously members of Π.
Below we expose the spaces containing the product and the convolution

of functions under consideration.
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a) ϕ · ψ = χ b) ϕ ∗ ψ = χ

ψ
ϕ Φ Π

ψ
ϕ Φ Π

Φ Φ Φ Φ Φ Π

Π Φ Π Π Π

Certainly, the product of functions in Π is defined only in the case when
neither ϕ nor ψ is a generalized function. Otherwise, we need the special
hypotheses for defining the product, and we shall not consider this case.

The mappings Ξ of the spaces Φ, Π, and P preserve the binary operations
and the inner product

(ϕ,ψ) =
∫
ϕψ dp,

except for the cases when the operation is the product ϕψ = χ or the operation
is the inner product (ϕ,ψ) with ϕ ∈ Φ and ψ ∈ Φ.

The Fourier transform and the inverse Fourier transform of functions with
domain Rn are defined by the formulas

f̃(p) =
∫
ei2πpxf(x) dx and

�
f (x) =

∫
e−i2πpxf(p) dp, (7)

respectively. In particular, (7) holds for an arbitrary function f(x) in L
(m)
2 .

The Fourier transform defined by (7) is a unitary operator. As well known,
using the weak continuity of the Fourier transform, we may extend it to the
space of generalized functions.

Theorem 1. The following equalities are valid:

�∼
f (x) =

∼�
f (x) and

∼∼
f (x) =

��
f (x) = f(−x).

Theorem 2 (Parseval’s identity).
(
f̃(p), ϕ̃(p)

)
=
(
f(x), ϕ(x)

)
.

Using Theorem 2, we may define the Fourier transforms for generalized
functions.

Theorem 3. The duality of the multiplication and convolution holds, i.e.,(
f̃ϕ
)

(p) = f̃(p) ∗ ϕ̃(p) and
( �
fϕ

)
(p) =

�
f (p)∗ �

ϕ (p).

The Fourier images of some simplest functions are given by the formulas:

δ̃(x) = 1, 1̃ = δ(p), ẽ−πx2 = e−πp2
, Φ̃0(x) = Φ0(p), D̃α(x) = (i2πp)α.
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By definition, the convolution of a function with the generalized function
Dα(x) is the derivative of order α for the function. The equality for the Fourier
transform of Φ0(x) is the well-known Poisson formula [1].

The Fourier transform maps periodic functions into lattice functions. On
the other hand, it sends lattice functions into periodic functions. The Fourier
transform extends to discrete functions if we suppose that

ϕ̃[β] = ϕ̃(p) ≡ ΩΠT
(
Ω̃RP (x | ϕ)

)
.

Theorems 1, 2, and 3 remain valid for discrete functions.

Theorem 4. The Fourier transform maps the spaces C, P , and R in a one-
to-one fashion onto Φ, Π, and T , respectively. Correspondences established
above for the operators Ω become analogous correspondences established above
for the operators Ξ.

All the theorems that we state above may be translated to the case of
lattice functions which have singularities at the nodes Aβ like the correspond-
ing translations of the Dirac delta function. To these lattice functions there
correspond periodic functions with periods γA−1. In this event the definitions
are as follows.

Let PA be the space of lattice functions of the form

ψ(x) =
∑

β

ϕ[β]δ(x−Aβ).

The spaces C, PA, and R are mapped into each other by means of the map-
pings

ΩCP
A , ΩPC

A , ΩPR
A , ΩRP

A , ΩCR
A , and ΩRC

A ,

whose definitions are similar to the definitions of the mappings Ω considered
above. In this case,

ΩCP
A (x | ϕ) = ϕ(x)|A|−1Φ0(A−1x) and ΩCR

A [β | ϕ] = ϕ(Aβ).

The remaining ΩA are formed similarly. All ΩA are easily expressed by means
of the corresponding Ω. The mappings Ω again preserve the elementary binary
operations.

Also let us consider the space ΠB of periodic functions ϕ(p) with periods
Bγ, i.e.,

ϕ(p) = ϕ(p+Bγ),

where B is a nonsingular matrix. The spaces Φ, ΠB , and TB are mapped into
each other by means of the mappings ΞB . To the space ΠB there corresponds
the space TB of functions defined on the torus. For ΞΦΠ

B we use the formula

ΞΦΠ
B (p | ϕ) = |B|

∑
γ

ϕ(p−Bγ) = ϕ(p) ∗ Φ0(B−1p).

The remaining ΞB are formed similarly. All ΞB are easily expressed in ele-
mentary form by means of the corresponding Ξ.
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Theorem 5. The Fourier transform maps the spaces C, PA, and R in a one-
to-one fashion onto Φ, ΠA−1 , and TA−1 , respectively. The image of the map-
ping ΩA under this transform is the mapping ΞA−1 , and vice versa.

Theorem 6. Let the inner product and the convolution of two functions in
TB be given by the formulas1

(ϕ(p), ψ(p)) =
1
|B|
∫
ϕ(p)ψ(p) dp, ϕ(p) ∗ ψ(p) =

1
|B|
∫
ϕ(p− q)ψ(q) dq.

In this event, the inner product is invariant under the Fourier transform; the
image of the convolution under the Fourier transform is the product of the
images, and vice versa.

The polyharmonic equation

∆mu = f (8)

with the inverse operator G(x) ∗ f(x) = u(x), where

G(x) = κm,n|x|2m−n

{
1, if n odd or n > 2m,
ln |x|, if n even and n ≤ 2m,

(9)

is often studied using the generalized inner product

D(ϕ,ψ) =
∫ ∑

|α|=m

DαϕDαψ dx = (−1)m

∫
ϕ∆mψ dx = (−1)m

∫
ψ∆mϕdx.

There are various analogues of ∆m, G, and D(ϕ,ψ) for discrete functions ϕ[β].
The finite differences ∆̂m[β] are often used, where2

∆̂ ∗ ϕ[β] =
n∑

j=1

(
δ[β + δj ] + δ[β − δj ] − 2δ[β]

) ∗ ϕ[β]

≡
n∑

j=1

[
ϕ[β + δj ] + ϕ[β − δj ]

]− 2nϕ[β].

The inverse operator to ∆̂m is a convolution with some discrete function which
behaves like G[β] at infinity. As regards the sum

∆(ϕ,ψ) =
∑

β

(∆̂αϕ[β], ∆̂αψ[β]),

1 Here the integration is carried out over the domain of functions ϕ(p) and ψ(p),
i.e., over the torus. – Ed.

2 Here, δj = (0, . . . , 0| {z }
j−1

, 1, 0, . . . , 0); δ[0] = 1 and δ[β] = 0 for β �= 0. – Ed.
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it plays the role of the inner product D(ϕ,ψ). We give here one more gener-
alization of these notions.

Let G(x) be the fundamental solution of the polyharmonic equation, i.e.,
let G be given by (9). Then we assume that

�
GhH (x) = ΩCP

hH (x | G) and GhH [β] = ΩCR
hH [β | G] = G(hHβ), (10)

where |H| = 1. We call the convolution GhH [β] ∗ �[β] = U [β] a discrete
potential . This is the natural generalization of the convolution G(x) ∗ �(x).

For the inverse operator LhH [β] of the convolution with GhH [β] the equal-
ity holds

GhH [β] ∗ LhH [β] = δ[β].

Passing to lattice functions and using the Fourier transform, we find the func-
tion L̃hH(p) as

L̃hH(p) =

((
1
2π

)2m∑
γ

h−n{
n∑

j=1

[pj − (h−1H−1∗γ)j ]2
}m

)−1

. (11)

From (11) a number of theorems follow.

Theorem 7. The convolution with LhH [β] is an orthogonal operator to all
polynomials of degree 2m− 1, i.e.,

LhH [β] ∗ βα = 0 for |α| < 2m.

Theorem 8. The discrete function LhH [β] can be written as

LhH [β] = hn−2mLH [β],

where LH [β] decreases exponentially with [β] growing, i.e., |LH [β]| ≤ e−η|β|.

Theorem 9. For an arbitrary 2m-times continuously differentiable function
ϕ we have

h−nLhH(x) ∗ ϕ(x)
weakly
=⇒ ∆mϕ as h → 0.

Theorem 10. The convolution τhH = LhH(x) ∗ G(x) = τH(h−1γ) decreases
exponentially at infinity, i.e., there exist positive constants K and η such that

|τhH(x)| = |τH(h−1x)| ≤ Ke−η|x|/h.

Theorem 11. For any two real discrete functions ϕ[β] and ψ[β], decreasing
exponentially at infinity, the bilinear form

DhH(ϕ,ψ) = (ϕ[β], LhH [β] ∗ ψ[β]) = ϕ[β] ∗ LhH [β] ∗ ψ[−β]
∣∣∣
β=0
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is symmetric and non-negative; moreover,

DhH(ϕ(hHβ), ψ(hHβ))
weakly
=⇒ D(ϕ,ψ) as h → 0.

There exist positive constants m and M such that

m∆(ϕ,ϕ) ≤ DhH(ϕ,ϕ) ≤ M∆(ϕ,ϕ),

and m and M are independent of ϕ.

Theorems 6–10 follow from the fact that L̃hH(p) is an analytic function
which is non-negative for all real p. Obviously, L̃hH(p) = hn−2mL̃H(hp). The
product of L̃hH(p) and G̃(p) is a regular function which is equal to hn at the
coordinate origin.

Theorem 11 follows from the fact that the ratio

L̃hH(p)/
( n∑

j=1

sin2 (hH∗p)j

2

)m

is bounded by finite positive limits, and the forms ∆(ϕ,ψ) and DhH(ϕ,ψ) are
reduced by the Fourier transform to the integrals

DhH(ϕ,ψ) =
∫
L̃hH(p)ϕ(p)ψ(p) dp

and

∆(ϕ,ψ) =
∫ ( n∑

j=1

sin2 (hHp)j

2

)m

ϕ(p)ψ(p) dp.

From the boundedness of the ratio of the integrands it follows that the ratio
of these integrals is also bounded by finite positive limits.
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20. Optimal Mechanical Cubature Formulas
with Nodes on a Regular Lattice∗

S. L. Sobolev

In preceding notes [1–5], we have studied the L
(m)∗
2 -norm of the error func-

tional for cubature formulas with equal coefficients and nodes on a regular lat-
tice. We have considered the error for compactly-supported functions, and also
formulas with a regular boundary layer in domains with sufficiently smooth
boundaries. In the present note we establish that there exists a main term in
the norm of the error functional for cubature formulas with optimal coeffi-
cients and the nodes on the regular lattice and this term is the same as in the
formulas with a regular boundary layer.

By I. Babuška’s theorem [6], the coefficients of optimal cubature formulas
with the error functional

l0(x) = χΩ(x) −
∑

β

c
(0)
β δ(x− hHβ)

are characterized by the fact that the solution from L
(m)
2 of the equation

∆mu0 = (−1)ml0(x)

agrees with a certain polynomial of degree m− 1 at all points hHγ. In other
words,

u0(hHβ) = G(x) ∗ l0(x)
∣∣∣
x=hHβ

= P (hHβ).

Let the cubature formula have the same nodes as the optimal formula and
let its error l1(x) be an error with a regular (2m + 2)-order boundary layer;
i.e.,

l1(x) =
∑
β′

l
(1)
β′

(x
h
−Hβ′

)
= χΩ(x) −

∑
β

cβδ(x− hHβ).

The norm square of the error of a cubature formula is a second degree
polynomial in the variables cβ ;

∗ Dokl. Akad. Nauk SSSR, 164, 281–284 (1965)
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‖l(x) | L(m)∗
2 ‖2 = l(x) ∗G(x) ∗ l(−x)

∣∣∣
x=0

= Ψ(c);

Ψ(c) ≡ χΩ(x) ∗G(x) ∗ χΩ(−x)
∣∣∣
x=0

− 2
∑

β

cβχΩ(x) ∗G(x− hHβ)
∣∣∣
x=0

+
∑

β

∑
β′

G
(
hH(β − β′)

)
cβcβ′ .

Hence, the difference Ψ(c) − Ψ(c(0)) is a second degree polynomial in the
variables cβ − c

(0)
β . It can be proved that this difference may be written as the

simple quadratic form

Ψ(c) − Ψ(c(0)) =
∑

β

∑
β′

G
(
hH(β − β′)

)
(cβ − c

(0)
β )(cβ′ − c

(0)
β′ ).

Let

�[β] =

{
0 for hHβ /∈ Ω,

cβ − c
(0)
β for hHβ ∈ Ω.

(1)

Then the equality holds

Ψ(c) − Ψ(c(0)) = ∆hH

(
UhH [β], UhH [β]

)
,

where UhH [β] = GhH [β] ∗ �[β] is the difference generalization of the polyhar-
monic potential, and the form ∆hH ≡ DhH was previously studied in [5].

Theorem 1. The difference potential UhH [β] = GhH [β] ∗ �[β] differs by a
polynomial of degree m−1 from the function u(hHβ) at interior points of the
domain Ω, where

u(x) = G(x) ∗ l(x). (2)

Proof. For the difference u(x) − u0(x) we have

u(x) − u0(x) =
(
l(x) − l0(x)

) ∗G(x) =
∑

(cβ − c
(0)
β )δ(x− hHβ) ∗G(x),

and therefore u(hHβ) − u0(hHβ) = �[β] ∗ GhH [β]. Whence and from I. Ba-
buška’s theorem it follows that

UhH [β] − u(hHβ) = −u0(hHβ) = −P (hHβ) for hHβ ∈ Ω,

as required. ��
Theorem 2. Among all functions ϕ[β] in l

(m)
2 coinciding with UhH [β] at

the points hHβ ∈ Ω, the potential UhH [β] yields the absolute minimum of
∆hH(ϕ[β], ϕ[β]); i.e.,

∆hH

(
UhH [β], UhH [β]

) ≤ ∆hH(ϕ,ϕ)

provided that ϕ[β] = UhH [β] for hHβ ∈ Ω, and ϕ[β] ∈ l
(m)
2 .
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The proof of Theorem 2 is based on several lemmas. We must first extend
the inner product ∆hH(·, ·) to some larger space, and then we use the Green
identity to transform this product.

Let M (l)
p (N) be the space of functions ϕ(x) with domain Rn and let the

norm be given by the equality

‖ϕ | M (l)
p (N)‖ =

⎧⎨⎩
∫ [

max
|yj−zj |<N

∑
|α|=l

(
Dαϕ(y)

)2]p/2

dz

⎫⎬⎭
1/p

.

Lemma 1. For different values of N , the spaces M (l)
p (N) are mutually equiv-

alent.

The proof of Lemma 1 is based on two inequalities:

‖ϕ | M (l)
p (N1)‖p ≥ ‖ϕ | M (l)

p (N2)‖p for N1 ≥ N2, (3)

‖ϕ | M (l)
p

(
(2k + 1)N

)‖p ≤ (2k + 1)n‖ϕ | M (l)
p (N)‖. (4)

Lemma 1 follows immediately from (3) and (4).

Lemma 2. Let ϕ[β] be in l
(l)
p , i.e., let ϕ[β] be a function whose differences of

order l are summable to the power p. Then, there exists a function ϕ(x) in
M

(l)
p (N) agreeing with ϕ[β] at all points x = hHβ: ϕ[β] = ϕ(hHβ), and such

that
‖ϕ | M (l)

p (N)‖ ≤ K
∥∥ϕ[β] | l(l)p

∥∥.
The proof of Lemma 2 does not differ from the proof of the similar theorem

for L(l)
p . V. S. Ryaben’kii and A. F. Filippov [7] constructed an interpolation

operator Πϕ[β] which yields a correspondence between any discrete function
ϕ[β] defined on the integral lattice Zn and a continuous function ϕ(x) in such
a way that:

1) ϕ(hHβ) = ϕ[β] and 2) |Dαϕ(x)| ≤ K max
|hHβ−x|≤Lh

∆̂αϕ[β].

The Ryaben’kii–Filippov operator is the interpolation operator that we need.

Lemma 3. For any continuous function ϕ(x) in M
(l)
p (N) the discrete func-

tion ϕ[β] = ϕ(hHβ) is a member of the space l(l)p .

Lemma 3 is proved by using the estimates of the l-order differences of ϕ[β],
and the integral representation of these differences in terms of derivatives.

Theorem 3. The compactly-supported functions are dense in the space M (l)
p .

The proof of Theorem 3 is rather tedious. However, it differs only slightly
from the proof of the denseness of compactly-supported functions in L

(m)
p

(see [8, 9]), and we do not review the corresponding reasoning here.
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Theorem 4. The compactly-supported functions are dense in the space l(l)p .

Theorem 4 follows from Theorem 3 and from the equivalence of l(l)p and
M

(l)
p , which is established by the methods indicated in Lemmas 2 and 3.

Lemma 4 (Green’s identity). The formula1

∆hH

(
u[β], v[β]

)
= (u[β], LhH [β] ∗ v[β]) (5)

defines the inner product ∆hH(· , ·) in the case when the functions u[β] and
v[β] decrease exponentially at infinity. It is also valid in the case when one
of these functions is an arbitrary member of l(m)

2 and the other function is
compactly-supported.

Lemma 4 follows from Theorem 4 and from the equivalence of the inner
product ∆hH(u, u) to the norm square of u[β] in l

(m)
2 (see [5]).

Lemma 5. Let the function �[β] be orthogonal to all polynomials of degree m−
1; i.e., (

�[β], [hHβ]α
)

= 0 for |α| ≤ m− 1.

Then the difference potential UhH [β] = GhH [β] ∗ �[β] is a member of l(m)
2 .

Lemma 5 is proved by the same way as the theorem for the convolution
G(x) ∗ l(x) [1, 10].

We now indicate the method for the proof of Theorem 2. Let

u[β] = 0 for hHβ ∈ Ω and LhH [β] ∗ v[β] = 0 for hHβ /∈ Ω,

where u ∈ l
(m)
2 and v ∈ l

(m)
2 . Then from (5) it easily follows that

∆hH(u[β], v[β]) = 0.
Suppose ϕ[β] − U [β] = u[β], where U [β] ≡ UhH [β]. Since u[β] = 0 for

hHβ ∈ Ω by the assumption of Theorem 2, and since

LhH [β] ∗ U [β] = 0 for hHβ /∈ Ω

by the definition of the operator LhH [β] as the inverse to the convolution
with GhH [β], we have formula (5) for the functions u[β] and U [β]. Whence
and from Lemma 5, we obtain

∆hH

(
ϕ[β], ϕ[β]

)
= ∆hH

(
ϕ[β] − U [β], ϕ[β] − U [β]

)
+2∆hH

(
ϕ[β] − U [β], U [β]

)
+∆hH

(
U [β], U [β]

)
= ∆hH

(
ϕ[β] − U [β], ϕ[β] − U [β]

)
+∆hH

(
U [β], U [β]

)
.

Theorem 2 follows from this equality.
1 There is a definition of the discrete function LhH [β] in [5]. – Ed.
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Theorem 5. For the given error functional l(x) the deviation of the norm
square from its minimum value satisfies the inequality

‖l(x) | L(m)∗
2 ‖2 − ‖l0(x) | L(m)∗

2 ‖2 ≤ ∆hH

(
u(hHβ), u(hHβ)

)
, (6)

where the function u(x) is given by (2).

Theorem 5 follows from Theorems 1 and 2.
In order to conclude the estimates of the error norms, it remains to prove

the following theorem.

Theorem 6. The inequality holds

∆hH

(
u(hHβ), u(hHβ)

) ≤ Kh2m+1. (7)

Before presenting the idea of the proof, we establish how the required
estimate of the norms follows from Theorem 6. For an error functional l(x)
with a regular boundary layer we have the formula (see [2])

‖l(x) | L(m)∗
2 ‖2 =

(
h

2π

)2m

ζ(H−1∗ | 2m)|Ω| +O(h2m+1). (8)

From (8), (7), and (6) it follows that for the optimal error functional l0(x) the
same estimate holds,

‖l0(x) | L(m)∗
2 ‖2 =

(
h

2π

)2m

ζ(H−1∗ | 2m)|Ω| +O(h2m+1).

Hence, ‖l0(x) | L(m)∗
2 ‖ = (h/2π)m

√
ζ(H−1∗ | 2m)

√|Ω| +O(hm+1).

Proof. The proof of Theorem 6 is based on the decomposition

u(x) = u0(x) − w(x),

where u0(x) is the periodic solution of the equation

∆mu = (−1)m(1 − Φ0(h−1H−1x));

the function u0(x) is given in [2], and w(x) = G(x) ∗ l2(x), where the error
functional l2(x) with a regular boundary layer for the exteriorΩ′ of the domain
Ω is given by

l2(x) = 1 − Φ0(h−1H−1x) − l1(x) =
∑

hHβ∈Ω′
l
(2)
β

(x
h
−Hβ

)
.

Here (l(2)β (x), xα) = 0 for |α| < 2m + 2, and for d(hHβ,Ω) > Lh all l(2)β are

equal one another; l(2)β (x) = l
(2)
0 (x).
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Calculating ∆hH

(
u1(hHβ), u1(hHβ)

)
, we obtain

∆hH(u1, u1) =
(
u1(hHβ), LhH [β] ∗ u0(hHβ)

)
−∆hH

(
w(hHβ), u1(hHβ)

)
. (9)

The first term on the right side of (9) is equal to zero. It follows from the fact
that u0(hHβ) is constant, and the convolution operator LhH [β]∗ is orthogonal
to all polynomials of degree m− 1. Let u(j)

β1
(x) = G(x) ∗ l(j)β1

(x), j = 1, 2. We
decompose the second term on the right side of (9) into a sum in the same
way as we do in [4]:

∆hH

(
w(hHβ), u1(hHβ)

)
=
∑
β1

∑
β2

∆hH

(
u

(1)
β1

(hHβ), u(2)
β2

(hHβ)
)
. (10)

Next, for the summand on the right side of (10) the equality holds

∆hH

(
u

(1)
β1

(hHβ), u(2)
β2

(hHβ)
)

= u
(1)
β1

(−hHβ)∗LhH [β]∗(G(x)∗ l(2)β2
(x)
)∣∣∣

x=hHβ
.

Further, we have

vβ2 [β] = LhH [β] ∗ [G(x) ∗ l(2)β2
(x)
∣∣∣
x=hHβ

]
=
∑
β′

LhH(β − β′)
∫
G(hHβ′ − x)l(2)β2

(x
h

)
dx

=
∫ [∑

β′
LhH(β − β′)G(hHβ′ − x)

]
l
(2)
β2

(x
h

)
dx.

As was proved in [5], the function τ(x) =
∑
β′
LhH(β − β′)G(hHβ′ − x) has

exponential decay at infinity. Hence, |vβ2 [β]| ≤ e−η|β|. By assumption, u(1)
β1

(x)
decreases at infinity and

|u(1)
β1

(x)| ≤ K
h2m+2n+2

(h2 + x2)(n+1)/2
.

Hence, the inequality holds

|∆hH(uβ1 [β], vβ2 [β])| ≤ K
h2m+2n+2

(h2 + |hH(β1 − β2)|2)(n+1)/2
.

In closing we estimate the sum
∑
β1

∑
β2

∆hH

(
uβ1 [β], vβ2 [β]

)
by the double inte-

gral in the same way as in [5]. ��
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21. Constructing Cubature Formulas
with Regular Boundary Layer∗

S. L. Sobolev

In author’s note [1], a convenient direct method for determining coefficients of
cubature formulas with boundary layer was published. This method is based
on the Fourier transform. Moreover, a numerical evaluation of coefficients of
certain 3-dimensional cubature formulas with boundary layer was given.

In the n-dimensional case, when the geometric visualization of all construc-
tions is lost, some further questions of a logical and combinatorial nature arise,
on whose solution the success in constructing such formulas depends. Here,
we clarify these questions.

A cubature formula with boundary layer appears (see [2,3]) when we con-
struct the error functional by adding the elementary functionals according to
the formula

l(x) =
∑

h−1H−1γ∈Ω

l0(x− h−1H−1γ) +
∑

γ∈B1

lγ(x− h−1H−1γ). (1)

We consider a convex polyhedron Ω and the lattice R with nodes at integer
points1. Since an affine transformation preserves all properties of the boundary
layer, the latter restriction does not affect the generality.

Suppose that all faces of dimension k of the polyhedron Ω in question are
rational2 and each such face Γ

(j)
k contains a k-dimensional sublattice Rk of

the fundamental lattice R. Extending Γ
(j)
k without limit, together with all

higher-dimensional faces which meet it, we get some angle Ω
(j)
k with a k-

dimensional blade. This angle remains invariant under arbitrary translations
of it by a vector of the lattice Rk.

In formula (1) among the terms lγ(x− h−1H−1γ) whose supports do not
contain any other points of the boundary besides Γ (j)

k and higher-dimensional

∗ Dokl. Akad. Nauk SSSR, 166, 295–297 (1966)
1 In this event, the matrix H is identical. – Ed.
2 By definition, the polyhedron is rational if the plane of every face is expressed by

equations with integer coefficients. – Ed.
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faces Γ (j)
k+l intersecting it, let us combine into one class all those whose differ-

ence of indices γ(1) − γ(2) belongs to Rk. In constructing the boundary layer,
we take the corresponding terms equal for the entire class. In this case, at the
points of the lattice, which lie in the neighborhood of such an angle and which
differ by a vector γ in Rk, the coefficients of the cubature formula are equal.
We arrive at the conclusion:

Theorem 1. For each rational polyhedron there exist cubature formulas with
errors of the form

l(x) = χΩ(x)
[
1 − Φ0(h−1x) −

∑
k,j

ψ
(j)
k (x)

]
, (2)

where ψ(j)
k (x) denotes the zero’s error; i.e.,

ψ
(j)
k (x) =

∑
h−1γ∈Ω

(j)
k

cγδ(x− h−1γ). (3)

The coefficients cγ of the zero’s error (3) are invariant under translations by
a vector γ in Rk.

In note [1], the error functionals with regular boundary layer of order m for
infinite domains were introduced. Their images under the Fourier transform
have a root of order m at the coordinate origin. These error functionals make it
possible to construct cubature formulas for conditionally compactly-supported
functions, i.e., for functions whose intersection of supports with the given
angle Ω(j)

k is bounded.

Theorem 2. The error functional (2) of polynomial degree m for a convex
(n − k)-faced angle with a k-dimensional face at the blade admits the repre-
sentation

l(x) =
∑
γ≥0

l0(x− h−1γ), (4)

where l0(x) is orthogonal to the polynomials xα for |α| ≤ m, i.e., l(x) is an
error with regular boundary layer.

Proof. We prove it for the case when the angle has a 0-dimensional blade,
the coordinate axes x1, x2, . . . , xn are its edges, and the lattice is the union of
several cubic integral lattices, shifted relative to each other by a vector whose
entries are proper rational fractions. The general case reduces to this one by
an affine transformation.

Under the above assumptions the functional l0(x) in formula (4) may be
written as

l0(x) =
∑

(−1)n+dim ρl(x− x(ρ)), (5)
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where ρ denotes, as in [4], an n-digit proper binary fraction, and the entries
of the vector x(ρ) are equal respectively to the binary digits of ρ, and dim ρ is
the total number of 1s among these digits. The validity of (4) is established
by a simple verification. ��
Theorem 3. The error functional (4) of polynomial degree m for a convex an-
gle with a k-dimensional face at the blade is a functional with regular boundary
layer.

Proof. For an (n − k)-faced angle this theorem is Theorem 2 just proved. In
the general case, we divide the angle into a finite number of (n − k)-faced
angles, which corresponds to the division into simplexes of a figure obtained
by the intersection of this angle with an (n−k−1)-dimensional plane. Adding
to each such elementary functional the mixed boundary layers, odd relative to
the boundaries, consisting of exterior and interior points, we convert each of
the functionals obtained again into an error functional of polynomial degree
m. The sum of functionals of polynomial degree m is again a functional of
polynomial degree m. ��
Theorem 4. For a bounded convex polyhedron Ω the error functional lΩ(x)
with regular boundary layer of order m may be written as

lΩ(x) = −
n∑

s=0

(−1)n−s

Q(s)∑
j=1

l
Ω

(j)
s

(x) (6)

with l
Ω

(j)
s

(x) standing for the error functionals with regular boundary layer

constructed in the same manner for all solid angles Ω(j)
s of various dimension

in Ω.

Proof. We prove first a formula like (6) for characteristic functions of polyhe-
drons

χΩ(x) +
n∑

s=0

(−1)n−s

Q(s)∑
j=1

χ
Ω

(j)
s

(x) = 0. (7)

For the interior of Ω, where each characteristic function on the left side of (7)
equals 1, formula (7) follows from the Euler theorem for the alternating sum
of the numbers of faces of various dimension for a convex polyhedron of genus
zero. For the exterior of Ω, as it is easy to verify, in the sum on the left side
of (7) only those summands which correspond to solid angles Ω(j)

s seen from
their interior side are nonzero. These solid angles form an open unbounded
polyhedron for which by the Euler theorem the corresponding alternating sum
equals zero (taking the term s = n into account), as required.

Returning to (2) and replacing the function χΩ(x) in [1−Φ0(h−1x)]χΩ(x)
by its expression from (7), we obtain formula (6). ��
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Let the sheet of a boundary layer ψ
(j)
k be a function of the form

c
(j,s)
k

∑
γ

δ(x− γ − γ
(j,s)
k ), (8)

where γ ranges over all possible values of the lattice Rk.
A portion of the boundary layer consists of portions of each sheet inside

some convex unbounded polyhedron in the corresponding linear space. Let
us decompose the characteristic function of this polyhedron in the alternating
sum of the characteristic functions of its solid angles with blades of dimensions
l < k in the same manner as this is carried out in Theorem 4. Then we replace
each such solid angle by the sum of (k− l)-faced ones, and express any portion
of the sheet ω(j,s) of the boundary layer ψ(j)

k as

ω
(j,s)
k,l = c

(j,s)
k,l

Q∑
r=1

q1∏
q=1

δ(a(q)x+ γ(q)
r )

q2∏
q=q1+1

Φ0(a(q)x+ γ(q)
r )

×
n∏

q=q2+1

Φ1(a(q)x+ γ(q)
r ). (9)

Here, it is surely assumed that the numbers Q, q1, q2, and the constants a(q),
γ

(q)
r depend on k, j, and l. Let us recall that

Φ0(x) =
+∞∑

k=−∞
δ(x− k) and Φ1(x) =

1
2
δ(x) +

∞∑
k=1

δ(x− k). (10)

The images of the functions Φ0(x), Φ1(x), and δ(x), under the Fourier trans-
form are given by (see [5]):

Φ̃0(p) = Φ0(p), Φ̃1(p) =
1
2
Φ0(p) +

1
2
ctgπp, δ̃(p) = 1, (11)

where
f̃(p) =

∫
ei2πpxf(x) dx. (12)

Using this, we can obtain the coefficients of a cubature formula with boundary
layer of a given order. To this end, we can start with the (n− 1)-dimensional
layer, and step by step determine the coefficients for lower-dimensional layers.
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22. Convergence of Cubature Formulas
on Infinitely Differentiable Functions∗

S. L. Sobolev

In Chap. XVIII of the book by the author [1], there is an estimate from above
for the rate of convergence of cubature formulas on certain classes of infinitely
differentiable functions. In the present note we revise this estimate and show
that it cannot be essentially improved. The same result has been established
for analytic functions by S. Yu. Prischepionok.

We define the class of functions H(κ, A, λ) given in a domain Ω as the
class of infinitely differentiable functions such that

‖ϕ | L(m)
2 (Ω)‖ =

⎧⎨⎩
∫
Ω

∑
|α|=m

m!
α!

(Dαϕ)2dx

⎫⎬⎭
1/2

≤ KmκmAmmλ. (1)

There are natural embeddings of classes H into each other, so that for all
ε > 0,

H(κ, A, λ− ε) ⊂ H(κ, A, λ); H(κ, A− ε, λ1) ⊂ H(κ, A, λ2);
H(κ − ε,A1, λ1) ⊂ H(κ, A2, λ2).

(2)

Let us denote

H(κ, A− 0) =
⋃
ε>0

H(κ, A− ε, λ), H(κ, A+ 0) =
⋂
ε>0

H(κ, A+ ε, λ). (3)

Instead of H one may also consider the classes C(κ, A, λ) consisting of the
functions for which the following inequalities hold:

‖ϕ | C(m)(Ω)‖ =

⎧⎨⎩max
Ω

∑
|α|=m

m!
α!

(Dαϕ)2

⎫⎬⎭
1/2

≤ KmκmAmmλ. (4)

For the classes H and C the following embeddings are valid:
∗ Dokl. Akad. Nauk SSSR, 223, 793–796 (1975)
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C(κ, A, λ) ⊂ H(κ, A, λ) ⊂ C(κ, A, λ+ kκ), (5)

where k = [n/2]+1. The embeddings (5) are proved by the routine embedding
theorems. The space Φ(β,A) of [1] is the same as C

(
β + 1, A/e− 0

)
.

Let a periodic function ϕ(x) with an identity matrix of periods be in
H(κ, A, λ), and let Ω be the unit cube 0 ≤ xj < 1. We estimate the error
|(l, ϕ)|, where

l(x) = 1 −
∑

hβ∈Ω

hnδ(x− hβ), h =
1
N
, βj = 0, 1, . . . , N − 1. (6)

For all m the error functional l is optimal in L̃
(m)
2 (Ω), i.e., it has the minimal

norm among all functionals with the same nodes. This norm is

‖l | L̃(m)∗
2 (Ω)‖ =

(
h

2π

)m√
ζ(I | 2m). (7)

In view of (1) and (7), and using the boundedness of the Epstein zeta function,
we have

|(l, ϕ)| ≤ Kmκm

(
Ah

2π

)m

mλ. (8)

The error |(l, ϕ)| does not depend on m and it is smaller than any value on
the right side of (8). Replacing m by the number

m0 =
1
e

(
2π
Ah

)1/κ

(9)

in (8), which makes the product of the first two factors minimal, we obtain
the estimate

|(l, ϕ)| ≤ Kh−λ/κe−Bh−1/κ

, B =
κ

e

(
2π
A

)1/κ

. (10)

Estimate (10) is a sharper form of formula (3.13) in [1, Chap. XVIII].
For the function

ϕ0(x) =
∑
β �=0

a(|β|)ei2πβx, (11)

where
a(|β|) = e−B|β|1/κ |β|µ, (12)

we have1

‖ϕ0 | L(m)
2 ‖2 =

∑
β �=0

(2π|β|)2m|a(|β|)|2 = (2π)2m
∑
β �=0

e−2B|β|1/κ |β|2µ+2m. (13)

1 Here |β| denotes the Euclidean norm of a vector β with integer entries. – Ed.
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Further, the equalities hold2

(l, ϕ0) = −
∑
β �=0

hna(|β|)
N−1∑
kj=0

ei2πkβ/N = −
∑
β �=0

a(N |β|)

= −
∑

β≡0(mod N)
β �=0

e−B|β|1/κ |β|µ = −
∑
β �=0

e−BN1/κ |β|1/κ

Nµ|β|µ. (14)

Let us estimate sums (13) and (14). We divide the set of points with integer
entries in Rn into subsets depending on the signs of the entries of these points.
The set of all β for which

βj1 > 0, βj2 > 0, . . . , βjs
> 0, βjs+1 < 0, βjs+2 < 0, . . . , βjr

< 0,

βjr+1 = βjr+2 = . . . = βjn
= 0,

we denote by B(�(1), �(2), �(3)), where �(1), �(2), and �(3) are the mantissas of
binary n-valued fractions such that

�
(1)
jk

=
{1, k = 1, 2, . . . , s,

0, k = s+ 1, . . . , n; �
(2)
jk

=
{1, k = s+ 1, s+ 2, . . . , r,

0, k �= s+ 1, s+ 2, . . . , r;

�
(3)
jk

=
{1, k = r + 1, r + 2, . . . , n,

0, k = 1, 2, . . . , r.

The sets B(�(1), �(2), �(3)) with �(1) ∪ �(2) ∪ �(3) �= 1 − 2−n are assumed to be
empty. For every function ψ(β), we have∑

β

ψ(β) =
∑

(�(1),�(2),�(3))

∑
β∈B(�(1), �(2), �(3))

ψ(β). (15)

For function ψ that depends only on |β| the equality holds∑
β∈B(�(1), �(2), �(3))

ψ(|β|) =
∑

β∈Kr

ψ(|β|),

where Kr is the set of points with positive integer entries in an r-dimensional
space. For a given r the total number of the different sets B(�(1), �(2), �(3)) is

equal to 2r n!
r!(n− r)!

. Whence and from (15) it follows that

∑
β

ψ(|β|) =
n∑

r=0

2r n!
r!(n− r)!

∑
β∈Kr

ψ(|β|). (16)

For example, if we put,
2 Here N = 1

h
. – Ed.
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ωx(|β|) =
{

1 for |β| < x,
0 for |β| ≥ x,

then
∑

β∈Kr

ωx(|β|) = Kr(x), where Kr(x) is the total number of points of Kr

lying in the interior of the ball |β| < x. From (16) it follows that

An(x)
n!

=
n∑

r=0

1
(n− r)!

2rKr(x)
r!

, (17)

where An(x) is the conventional numerical function indicating the total num-
ber of points with integer entries lying in the interior of the n-dimensional
ball of radius x. From (17) it follows that

2rKr(x)
r!

=
r∑

j=0

(−1)j

(r − j)!
Aj(x)
j!

. (18)

Let Nn(x) denote the number of points with nonnegative integer entries
on the boundary of the first coordinate angle lying in the interior of the ball
|β| < x. Then the function Nn(x) expresses via the functions Kr(x),

Nn(x) =
n−1∑
r=0

n!
r!(n− r)!

Kr(x). (19)

For the estimate of the norm of the function ϕ0(x), we consider the integral

Jn =
∫

xj>0

e−2Br1/κ

r2m+2µ dx =
πn/221−n

Γ
(

n
2

) κ
Γ
(
κ(2m+ 2µ+ n)

)
(2B)κ(2m+2µ+n)

.

We divide the domain of integration into cubes

Qβ = {x | βj ≤ xj < βj + 1}
with edges of unit length; and consider a half-line

xj = β
(0)
j + t, t > 0, (20)

for every point β(0) from Kn\Kn. Each half-line (20) consists of the diagonals
of the cubes Qβ placed on it like beads, and all the cubes of the first coordi-
nate angle are placed on such half-lines. The function r of x increases along
each half-line, and the function e−2Br1/κ

r2m+2µ increases monotonically for
r ≤ rmax = (κ(m+ µ)/B)κ ; it is equal to

(κ(m+ µ)/B)2κ(m+µ)

for r = rmax, and it decreases monotonically for r ≥ rmax. Replacing the
integral over every Qβ by the minimum value of the integrand, we obtain
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Jn ≥
∑

β∈B−
e−2B|β|1/κ |β|2m+2µ, (21)

where B− consists of points that are the minimum points of the function
e−2B|β|1/κ |β|2m+2µ in a cube Qβ . If there are two such points in Qβ , then β
is included in the set B−.

For |β0| < rmax there is a point on the half-line (20) such that it does not
belong to B−, and we denote the set of such points as Bexc. Obviously,∑

β∈Bexc
e−2B|β|1/κ |β|2m+2µ ≤ Nn(rmax)

(
κ(m+ µ)

B

)2κ(m+µ)

. (22)

From (13), (21), and (22) it follows that

ϕ0(x) ∈ H

(
κ, 2π

( κ

Be

)
κ

, κ(µ+
n

2
) + max

(−1
4
,−κ

2
))

= H(κ, A, λ). (23)

Preserving in the sum (14) only the first 2n terms for large N , we obtain the
estimate

|(l, ϕ0)| ≥ Ke−Bh−1/κ

h−λ/κ+n/2−min ( 1
4κ

,1/2). (24)

The discrepancy between estimates (10) and (24) consists only of the factor
hn/2−min ( 1

4κ
,1/2), which decreases slower than any exponential e−εh−1/κ

.
From the above it follows that the error estimate for the formulas with

boundary layer cannot be essentially improved. In this event it is of no use to
take formulas with boundary layer of an order greater than

m0 =
1
e

(
2π
Ah

)1/κ

.

Let us consider Nn functions ϕβ(x) = ϕ(x− hβ). The arithmetic mean of
the errors of an arbitrary cubature formula with the nodes hβ on the functions
ϕβ(x) is

1
Nn

∑
β

(l, ϕβ) =
∑

β

1
Nn

(l(x− hβ), ϕ) = (l0, ϕ),

where l0 is the optimal error functional. Hence, the module of this arithmetic
mean is greater than

Ke−Bh−1/κ

h−λ/κ+n/2−min ( 1
4κ

,1/2).

But if the arithmetic mean of Nn terms is greater than a certain number,
then at least one of these terms is greater than this number. Thus, there is at
least one ϕβ(x) for which the estimate of the error cannot be improved.
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23. Convergence of Cubature Formulas
on the Elements of∗ L̃

(m)
2

S. L. Sobolev

In the author’s book [1] it was established that the norm of the error functional
of an optimal cubature formula on the space L̃(m)

2 (Ω0) of periodic functions
with square-integrable mth-order derivatives is equal to Bhm, where1

h = 1/N, and B =
(

1
2π

)2m√
ζ(H−1∗ | 2m)

√
|Ω0|. (1)

Here, H is the normalized matrix of periods with determinant equal to 1,
ζ(H−1∗ | 2m) is the Epstein zeta function for the matrix H−1∗, and |Ω0| is
the volume of the fundamental domain.

In addition, it was proved that the convergence is more rapid for each
given individual element ϕ of L̃(m)

2 , namely,

|(l0, ϕ)| = o(hm), (2)

where l0 is the optimal error functional. In the present note we revise this
result.

Let gϕ[N ] denote the function

gϕ[N ] = Nm
(
l1/N (x), ϕ(x)

)
(3)

of the discrete variable N for 1 ≤ N < ∞.
We have the following theorem.

Theorem. Let ϕ(x) be in L̃
(m)
2 . Then:

1. For m > n the function gϕ[N ] of the discrete argument N belongs to
the space l2, and

‖gϕ[N ] | l2‖ =
{ ∞∑

N=1

|gϕ[N ]|2
}1/2

≤ K(m)‖ϕ | L̃(m)
2 ‖, (4)

∗ Dokl. Akad. Nauk SSSR, 228, 45–47 (1976)
1 Here N is a positive integer number and h is a mesh-size of the lattice. – Ed.
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with K(m) independent of ϕ.
2. If n/2 < m ≤ n, then the function gϕ[N ] of N belongs to lq∗ , where

q∗ > q and
1
q

=
m

n
− 1

2
. (5)

Moreover, the inequality holds

‖gϕ[N ] | lq∗‖ =
{ ∞∑

N=1

|gϕ[N ]|q∗
}1/q∗

≤ K(m, q∗)‖ϕ | L̃(m)
2 ‖, (6)

with K(m, q∗) independent of ϕ.

Proof. Let us prove this theorem. For the sake of simplicity we assume that
H is the identity matrix, and that ϕ(x) has the unit cube as the fundamental
parallelepiped Ω0. In this case, the function ϕ(x) ∈ L̃

(m)
2 can be decomposed

in the Fourier series:

ϕ(x) =
∑
β �=0

c[β]
|β|m ei2πβx + c[0], (7)

where ∑
β �=0

|c[β]|2 =
(

1
2π

)2m

‖ϕ | L̃(m)
2 ‖2. (8)

The optimal cubature formulas with nodes on the cubic lattice under con-
sideration are the formulas with equal coefficients and with the error functional

l1/N (x) = 1 −N−n
∑

0≤γj<N

δ(x− 1
N
γ). (9)

Inserting expansion (7) for ϕ(x) in the expression (l1/N (x), ϕ(x)), we ob-
tain

(l1/N (x), ϕ(x)) = − 1
Nn

∑
β �=0

⎛⎝ ∑
0≤γj<N

ei2πβγ/N

⎞⎠ c[β]
|β|m . (10)

The inner sum on the right side of (10) is equal to Nn if all βj are multiples
of N , and to zero if at least one βj is not a multiple of N . Hence, denoting β
by κN , we obtain

(l1/N (x), ϕ(x)) = −
∑
κ �=0

c[Nκ]
|Nκ|m .

Therefore, for gϕ[N ] the equality holds

gϕ[N ] = −
∑
κ �=0

c[Nκ]
|κ|m . (11)
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Let m > n. Using the Cauchy inequality for sums, we estimate gϕ[N ] from
above

|gϕ[N ]|2 ≤
⎛⎝∑

κ �=0

|c[Nκ]|2
|κ|m

⎞⎠⎛⎝∑
κ �=0

1
|κ|m

⎞⎠ .

This implies the inequality∑
N>0

|gϕ[N ]|2 ≤ K1(m)
∑
N>0

∑
κ �=0

|c[Nκ]|2
|κ|m .

Let us introduce the summation variable λ = Nκ. For a given integer vector
λ, the vector κ ranges over all divisors of λ: κ ∈ D(λ). Reducing the double
sum on the right side of the last inequality to the sum with respect to λ, we
obtain ∑

N>0

|gϕ[N ]|2 ≤ K1(m)

⎛⎝∑
λ �=0

|c[λ]|2
∑

κ∈D(λ)

1
|κ|m

⎞⎠ .

To strengthen the inequality, we let the multi-index κ in the inner sum range
over all non-zero multi-indices. Then we obtain∑

N>0

|gϕ[N ]|2 ≤ K2
1 (m)

∑
λ �=0

|c[λ]|2. (12)

The first part of the theorem follows from (12) and (8).
To prove the second part of the theorem, we use the Hölder inequality for

the product of three functions and estimate gϕ[N ] as

|gϕ[N ]| ≤
∑
κ �=0

|c[Nκ]|1−µ

( |c[Nκ]|µ
|κ|m−n/2−ε

)(
1

|κ|n/2+ε

)

≤
[∑

κ �=0

|c[Nκ]|2
] (1−µ)

2

⎡⎣∑
κ �=0

|c[Nκ]|2
|κ|(m−n/2−ε)2/µ

⎤⎦
µ
2
⎡⎣∑

κ �=0

1
|κ|n+2ε

⎤⎦
1
2

. (13)

By the assumptions of the theorem, there exist positive µ and ε such that

2
µ

(
m− n

2
− ε
)

= n+ 2ε and 0 < µ < 1. (14)

Estimating the first and the last factors in (13), by elementary calculations,
summing over n the inequalities

|gϕ[N ]|2/µ ≤ K2(m, ε)‖ϕ | L̃(m)
2 ‖2(1−µ)/µ

∑
κ �=0

|c[Nκ]|2
|κ|n+2ε

, N ≥ 1,

and setting q∗ = 2/µ, we obtain
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∑
N>0

|gϕ[N ]|q∗ ≤ K3(m, ε)‖ϕ | L̃(m)
2 ‖q∗−2

∞∑
N=1

∑
κ �=0

|c[Nκ]|2
|κ|n+2ε

.

Introducing again the summation multi-index λ = Nκ with N in [1,∞) and
κ in D(λ), we have∑

N>0

|gϕ[N ]|q∗ ≤ K4(m, ε)‖ϕ | L̃(m)
2 ‖q∗

. (15)

From (14) it follows that

q∗ =
n+ 2ε

m− n/2 − ε
=

1
m/n− 1/2

+ η = q + η, (16)

where η is a small positive number. Hence, inequality (15) implies (6), and
the proof of the theorem is complete. ��

It is useful to note that the Fourier coefficients of a continuous periodic
function

ϕ(x) =
∑

β

a[β]ei2πβx

can be expressed via the errors (lγ(x), ϕ(x)), where γ is a vector with nonneg-
ative integer entries, and lγ(x) is the error functional for a cubature formula

lγ(x) = 1 −
∑

1≤κj<γj

1
γ1γ2 . . . γn

δ

(
x− κj

γj

)
. (17)

In principle, this approach can be used to find necessary and sufficient con-
ditions under which a system of numbers τ [γ] is a system of the errors
(lγ(x), ϕ(x)). However, the resultant formulas are obscure, and it is practi-
cally difficult to verify these conditions.
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24. The Coefficients of Optimal
Quadrature Formulas∗

S. L. Sobolev

The coefficients of optimal quadrature formulas with error functional

l(x) ≡ w(x)χΩ(x) −
N∑

β=0

c[β]δ(x− β), (1)

Ω = {x | −η1 ≤ x ≤ N + η2}, 0 ≤ ηj < 1, (2)

in the space L(m)∗
2 (R) are studied by means of a variational method. Here w(x)

is a weight function, χΩ(x) is the characteristic function of the interval Ω, and
c[β] are the coefficients of the quadrature formula. The results generalize some
results by A. Sard, L. F. Meyers, I. J. Schoenberg, S. D. Silliman [1–4], and
others derived by the method of splines.

In [5] it was established that the norm square of the error functional of a
cubature formula in L

(m)∗
2 (Rn), n ≥ 1, is expressed as

‖l | L(m)∗
2 ‖2 = (l(x), l(x) ∗ (−1)mGm(x)), (3)

where Gm(x) is a fundamental solution of the polyharmonic equation

∆mGm(x) = δ(x). (4)

Since l(x) is defined in L
(m)
2 , we have

(l(x), xα) = 0 for |α| < m. (5)

Letting c′[β] = c[β]+ηk[β], where c[β] are the optimal coefficients, and setting
to zero the variation of the norm square of the error functional, we obtain

δ‖l|L(−m)
2 ‖2 = −2

(
l,

N∑
β=0

k[β]Gm(x− β)
)

= 0. (6)

∗ Dokl. Akad. Nauk SSSR, 235, 34–37 (1977)
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From (5), it follows that

N∑
β=0

k[β]βα = 0 for |α| < m, (7)

and this, in turn, means that the function ψ(x) =
N∑

β=0

k[β]Gm(x− β) belongs

to L
(m)
2 . If n = 1, then

Gm(x) =
x2m−1sgnx
2(2m− 1)!

. (8)

Consequently, ψ(x) is an arbitrary spline of degree m. This implies the fol-
lowing theorem.

Theorem 1 (Schoenberg). A necessary and sufficient condition for the
optimality of a formula with error functional (1) is that it must be exact for
all splines of degree m.

In the notation adopted in [5], the Lagrange equations for the optimal
coefficients of quadrature formulas with error (1) are

(−1)mGm[β] ∗ c[β] + Pm−1[β] = f [β] for β ∈ Ω; (9)

c[β] = 0 for β /∈ Ω; (10)
N∑

β=0

c[β]βα =
∫
χΩ(y)w(y)yα dy = fα for |α| < m. (11)

Here

Gm[β] =
β2m−1sgnβ
2(2m− 1)!

, f [β] ≡ [(−1)mGm(x) ∗ w(x)χΩ(x)]
∣∣∣
x=β

,

and Pm−1[β] ∈ πm−1 is an unknown polynomial of degree m− 1.
The solution of equations (9)–(11) was outlined in [5] by introducing the

new unknown function

u[β] = Gm[β] ∗ c[β] + Pm−1[β]. (12)

We now choose another approach. Let us introduce one more unknown

û[β] = Hm[β] ∗ c[β] + P̂m−1[β], (13)

where P̂m−1[β] is a new unknown polynomial that is connected with Pm−1[β]
in a one-to-one manner, and

Hm[β] =
(β −m+ 1) . . . (β − 1)β(β + 1) . . . (β +m− 1)

2(2m− 1)!
sgnβ. (14)
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The desired function c[β] can be found from the given û[β] by a simple calcu-
lation of the symmetric difference of order 2m:

c[β] = ∆
[m]
2 [β] ∗ û[β], (15)

which follows from the elementary verified formula

∆
[m]
2 [β] ∗Hm[β] = δ[β], (16)

where, as usual,

∆
[m]
2 =

(
δ[β+1]−2δ[β]+δ[β−1]

)[m] =
m∑

k=−m

(−1)k+m

(
2m

m+ k

)
δ[β−k]. (17)

The core of the argument is the following lemma.

Lemma. The functions Gm[β] and Hm[β] are connected through the differ-
ence equation with constant coefficients

B2m−2[β] ∗Hm[β] = Gm[β], (18)

where B2m−2[β] is a compactly-supported function of the discrete argument β,
and its values are the coefficients of the Euler polynomial of degree 2m− 2:

m−1∑
β=−m+1

B2m−2[β]λm+β−1 =
1

(2m− 1)!
E2m−2(λ), (19)

where, by definition,

λEk(λ) = (1 − λ)k+2

(
λ
d

dλ

)k
λ

(1 − λ)2
. (20)

Proof. Formula (19) follows from a comparison of the Fourier transforms of
the functions Gm[β] and Hm[β]:

G̃m(p) =
(−1)m

(2π)2m

∑
β

(p−β)−2m =
(−1)m

(2π)2m(2m− 1)!
d2m−2

dp2m−2

{
π2

sin2 πp

}
, (21)

H̃m(p) =
(−1)m

22m

1
sin2m πp

. (22)

��
It is known (see [6]) that zeros of the polynomial E2m−2(λ) are real, neg-

ative, distinct, and pairwise reciprocals of each other; moreover,

−1 < λ
(2m−2)
1 < λ

(2m−2)
2 < . . . < λ

(2m−2)
m−1 < 0,

−1 > λ
(2m−2)
−1 > λ

(2m−2)
−2 > . . . > λ

(2m−2)
−m+1 ,

(23)
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λ
(2m−2)
j λ

(2m−2)
−j = 1. (24)

Let P̂m−1[β] be a polynomial solution of the equation

B2m−2[β] ∗ P̂m−1[β] = Pm−1[β]. (25)

Such a solution exists and is unique, since λ = 1 is not a root of the equation

E2m−2(λ) = 0. (26)

A calculation shows that the principal terms of Pm−1[β] and P̂m−1[β] coincide.
Under such a choice of P̂m−1[β], the function û[β] satisfies the equation

B2m−2[β] ∗ û[β] = u[β] for β = 0, ±1, ±2, . . . . (27)

The function u[β] is given by equation (9) in the interval Ω. For β < 0
and β > N it is a polynomial of degree 2m− 1;

u[β] =

{
Q(2m−1,m)[β] +Q

(+)
m−1[β] for β > N,

−Q(2m−1,m)[β] −Q
(−)
m−1[β] for β < 0,

(28)

where

Q(2m−1,m)[β] =
m−1∑
k=0

(−1)kf̂k

k!
β2m−k−1

(2m− k − 1)!
. (29)

Furthermore, equalities (10) and (15) imply

∆
[m]
2 ∗ û[β] = 0 for β < 0 and β > N. (30)

In the intervals Ω1 = {β | β ≤ m− 1} and Ω2 = {β | β ≥ N −m+ 1} the
common solution of (27) and (30) is a polynomial of degree 2m− 1:

û[β] =

{
T (2m−1,m)[β] + T

(+)
m−1[β] for β ∈ Ω2,

−T (2m−1,m)[β] − T
(−)
m−1[β] for β ∈ Ω1,

(31)

where T (2m−1,m)[β] is a known polynomial, while polynomials T (+)
m−1[β] and

T
(−)
m−1[β] are unknown. In Ω3 = {β | −m + 1 ≤ β ≤ N +m− 1} the solution

of equation (27) is determined up to 2m− 2 arbitrary constants, and has the
form

û[β] = û0[β] +
m−1∑
j=1

ajλ
β
j +

m−1∑
j=1

bjλ
N−β
j , (32)

where û0[β] is a particular solution of (27), and λj are the roots of equa-
tion (26) that are less than 1 in modulus. The three expressions for û[β] in
Ω1, Ω2, and Ω3 are matched by properly choosing the arbitrary constants aj

and bj . It is easy to note that the functions
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χ(+)[β] = û0[β] +
m−1∑
j=1

ajλ
β
j +

m−1∑
j=1

bjλ
N−β
j + T (2m−1,m)[β]

for −m+ 1 ≤ β ≤ m− 1 and

χ(−)[β] = û0[β] +
m−1∑
j=1

ajλ
β
j +

m−1∑
j=1

bjλ
N−β
j − T (2m−1,m)[β]

for N −m+ 1 ≤ β ≤ N +m− 1

(33)

are polynomials of degree m − 1. By writing out the condition that their
differences of order m are equal to zero at the appropriate points, we obtain
a system of 2m− 2 equations for aj , bj ,

A
{
a
b

}
= F, (34)

with a nonsingular matrix A. The matrix A of system (34) consists of four
(m− 1) × (m− 1) blocks

A =
(
A11 A12
A21 A22

)
. (35)

The blocks A11 and A22 are the same and depend only on m. The blocks
A12 and A21 are arbitrarily small for sufficiently large N , which allows one
to solve the system iteratively. When N → ∞, the system splits into two
separate systems determining aj and bj .

Finally, in the case when w(x) ≡ 1, we obtain

c[β] = 1 +
m−1∑
j=1

gjλ
β
j +

m−1∑
j=1

hjλ
N−β
j for 1 ≤ β ≤ N − 1. (36)

The coefficients c[0] and c[N ] are calculated separately. The two sums in (36)
yield expressions for the right and left boundary layers.
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25. On the Roots of Euler Polynomials∗

S. L. Sobolev

The Euler polynomials play an important role in the theory of quadrature
formulas. They can be written as1

xEk(x) = (1 − x)k+2

(
x
d

dx

)[k]
x

(1 − x)2
, (1)

where [k] denotes the kth power of the (symbolic) convolution. It is known [1]
that the roots λ(k)

j , j = 1, 2, . . . , k, of these polynomials are real, negative,
and distinct. We assume that

λ
(k)
1 < λ

(k)
2 < . . . < λ

(k)
k < 0. (2)

One has the identity
λ

(k)
j λ

(k)
k+1−j = 1, (3)

and the inequality
λ

(k)
k > λ

(k−1)
k−1 . (4)

The goal of the present note is a further study of the behavior of these roots
when k → ∞.

Let two polynomials P1(x) and P2(x) have the same number s of real roots
α

(j)
i in the interval a ≤ x ≤ b, and

a ≤ α
(j)
1 < α

(j)
2 < . . . < α(j)

s ≤ b, j = 1, 2.

We say that the roots of P1(x) precede the roots of P2(x) on [a, b] and
write

rts {P1(x)} [a,b]≺ rts {P2(x)}, (5)

provided that the inequalities hold

α
(1)
j < α

(2)
j , α

(2)
1 > a, and α(1)

s < b. (6)

∗ Dokl. Akad. Nauk SSSR, 235, 277–280 (1977)
1 These polynomials are also called the Euler–Frobenius polynomials. – Ed.
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Theorem 1. The next relations are valid:

rts {E2m(x)} [−1,0]≺ rts {xE2m−2(x)}; (7)

rts {E2m+1(x)} [−1,0]≺ rts {xE2m−1(x)}. (8)

In other words, as k increases, the roots of the polynomials Ek(x) of the
same parity lying on the right of −1 move to the left, in the direction of −1,
and similarly the roots lying on the left of −1 move to the right.

Proof. Instead of Ek(x) let us consider the polynomialsKk(y) related to Ek(x)
as follows:

Kk(y) = (y − 1)kEk

(
y + 1
y − 1

)
, Ek(x) = 2−k(x− 1)kKk

(
x+ 1
x− 1

)
. (9)

From (1) there follows a representation of the polynomials Kk(y):

(y2 − 1)Kk(y) =
(

(y2 − 1)
d

dy

)[k]

(y2 − 1), (10)

which yields the recurrent relation

Kk(y) =
d

dy

(
(y2 − 1)Kk−1(y)

)
. (11)

The roots λ(k)
j of Euler polynomials are related to the roots µ(k)

j of Kk(y)
by the formula

λ
(k)
j =

µ
(k)
j + 1

µ
(k)
j − 1

. (12)

The degrees of all terms in Kk(y) have the same parity, and the evaluation of
the roots of these polynomials is more convenient than the evaluation of the
roots of Ek(y). Theorem 1 is equivalent to the following statements:

rts {K2m(y)} [0,1]≺ rts {(y2 − 1)K2m−2(y)}, (13)

rts {K2m+1(y)}
[0,1]≺ rts {(y2 − 1)K2m−1(y)}. (14)

From (3) and (12) it follows that µ(k)
k+1−j = −µ(k)

j .

Remark. Let f(y) and ψ(y) be nonnegative and continuously differentiable
functions in [a, b]; f(a) = 0; f(y) has a unique maximum in this interval at
the point y = b, and the derivative ψ′(y) is positive for 0 < y < b. Then
d

dy
(ψ(y)f(y)) has at least one root y = β′ < b.
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This remark clearly follows from the inequality

d

dy
ln
(
ψ(y)f(y)

)
< 0 for b− ε ≤ y ≤ b, (15)

where ε > 0.

Corollary 1. Let P (y) = (y2 − α2
1)(y

2 − α2
2) . . . (y

2 − α2
s),

P ∗(y) =
(y2 − α∗2

j )
(y2 − α2

j )
P (y), (16)

0 < α1 < α2 < . . . < α∗
j < αj < . . . < αs ≤ 1. (17)

Then

rts
{
dP ∗

dy
(y)
}

[0,1]≺ rts
{
dP

dy
(y)
}
,

rts
{

d
(
yP∗(y)

)
dy

}
[0,1]≺ rts

{
d
(
yP (y)

)
dy

}
.

(18)

Corollary 2.

rts {P1(y)}
[0,1]≺ rts {P2(y)} =⇒ rts

{
dP1(y)

dy

} [0,1]≺ rts
{

dP2(y)
dy

}
,

rts {yP1(y)}
[0,1]≺ rts {yP2(y)}

=⇒ rts
{

d[yP1(y)]
dy

} [0,1]≺ rts
{

d[yP2(y)]
dy

}
.

(19)

Corollary 3.

rts
{
d

dy
[(y2 − 1)P (y)]

}
[0,1]≺ rts

{
(y2 − 1)

dP

dy

}
. (20)

Theorem 1 can now be proved by induction on m.
Suppose that (13) holds. Using (19) and (11), we obtain

rts
{
dK2m

dy
(y)
}

[0,1]≺ rts
{
d

dy

[
(y2 − 1)K2m−2(y)

]}
= rts {K2m−1(y)}, (21)

and by adding the point y = 1 to the set of roots in [0, 1], we have

rts
{

(y2 − 1)
dK2m

dy
(y)
}

[0,1]≺ rts {(y2 − 1)K2m−1(y)}. (22)

On the other hand, from (11) and (20), we obtain

rts {K2m+1(y)} = rts
{
d

dy

[
(y2 − 1)K2m(y)

]}



570 S. L. Sobolev

[0,1]≺ rts
{

(y2 − 1)
dK2m

dy
(y)
}
. (23)

Comparing (22) and (23), we obtain (14).
By the same argument we obtain from (14) that

rts {K2m+2(y)}
[0,1]≺ rts {(y2 − 1)K2m(y)}. (24)

This means that rts {K2m(y)} [0,1]≺ rts {(y2 − 1)K2m−2(y)} implies

rts {K2m+2(y)}
[0,1]≺ rts {(y2 − 1)K2m(y)}. (25)

Hence, (13) holds for all m and (14) holds for all m. The proof of Theorem 1
is complete. ��

Theorem 2. Let the roots λ(k)
j of the polynomial Ek(x) be in the domain

−M ≤ λ
(k)
j ≤ − 1

M
, and k = 2m or k = 2m+ 1. (26)

For a sufficiently large m the roots λ(k)
j can be written as

λ
(2m)
j = − expπ

[
tan
(

jπ

2m+ 2
+

π

4m+ 4

)
+ ε

(2m)
j

]
(27)

and

λ
(2m−1)
j = − expπ

[
tan

jπ

2m+ 1
+ ε

(2m−1)
j

]
, (28)

where |ε(k)
j | ≤ Cηk with constants C > 0 and η < 1 depending only on M .

Proof. Let us introduce a new variable

q =
1
π

ln (−x), x = −eπq. (29)

Inserting (29) in (1), we obtain

Ek(x) =
(

2
π

)k+2

ekπq/2 coshk+2(
πq

2
)Sk(q), (30)

where

Sk(q) =
dk

dqk

(π/2)2

cosh2 πq/2
. (31)

The roots of Ek(x) can be expressed through the roots q
(k)
j of the func-

tion Sk(q):
λ

(k)
j = − exp q(k)

j . (32)
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Applying the familiar expansion in partial fractions of the function π2/ sin2 πz,
we obtain for z = (1 + iq)/2,

dk

dqk

(π/2)2

cosh2 πq/2
=

dk

dqk

+∞∑
β=−∞

1
(iq + 1 − 2β)2

= (k + 1)!(−i)k
+∞∑

β=−∞

1
(1 − 2β + iq)k+2

. (33)

For sufficiently large k, we need to take only the first two terms on the right
side of (33) for β = 0 and β = 1. In this case we obtain

Sk(q) = (k + 1)!
[

(−i)k

(1 + iq)k+2
+

ik

(1 − iq)k+2
+R(k)

]
, (34)

where ∣∣R(k)
∣∣ ≤ C|(1 + iq)|−kηk. (35)

Setting

(1 + iq) = �eiϕ, where ϕ = arctan q, � =
√

1 + q2, (36)

we have

S2m(q) = 2(2m+ 1)!(−1)m�−2m−2[cos(2m+ 2)ϕ+R(2m)] (37)

and
S2m−1(q) = 2(2m)!(−1)m�−2m−1[sin(2m+ 1)ϕ+R(2m−1)], (38)

which yields the desired formulas (27) and (28). ��
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26. On the End Roots of Euler Polynomials∗

S. L. Sobolev

In the author’s note [1] there have been given the asymptotic formula for those
roots of the Euler polynomial

Ek(x) = a
(k)
0 xk + a

(k)
1 xk−1 + . . .+ a

(k)
k = 0, (1)

that lie in the interval −M ≤ λ
(k)
s ≤ −1/M , for large values of k. It is known

that these roots are real, negative, and distinct:

λ
(k)
1 < λ

(k)
2 < . . . < λ

(k)
k < 0.

The roots equidistant from the ends of this sequence are mutually reciprocal:
λ

(k)
s λ

(k)
k+1−s = 1.

S. Kh. Sirazhdinov [2] has shown that the asymptotic formula given in [1]
is valid for almost all s. In the same paper [2] a formula is suggested for the
density of the limit distribution of the roots.

In this note we give an asymptotic formula for the end roots λ(k)
s , which

are sufficiently close to 0 and −∞. However, the asymptotic behavior of a
certain portion of the end roots remains unknown for now.

Theorem 1. For sufficiently large k we have the following asymptotic expan-
sions of the roots λ(k)

s ,

λ(k)
s =

(
s+ 1
s

)k+1

(1 + ε(k)
s ), (2)

where

|ε(k)
s | ≤

⎧⎨⎩Ce−ν(s0)k for s < s0; ν(s0) > 0,

ε, s+ 1 <

√
k + 1
ln 2

(1 − ε).

∗ Dokl. Akad. Nauk SSSR, 242, 1016–1019 (1978)
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Proof. It is clear1 that the roots λ(k)
s satisfy the system of equations(

k
s

)∑
t=1

ν
(k)
s,t = a(k)

s ,

where

ν
(k)
s,t =

∣∣λ(k)
j1(t)

λ
(k)
j2(t)

. . . λ
(k)
js(t)

∣∣, 1 ≤ t ≤
(
k

s

)
.

The coefficients a(k)
s are the Euler numbers. As was shown by Euler himself,

these number are expressed as

a(k)
s =

s∑
j=0

(−1)j

(
k + 2
j

)
(s+ 1 − j)k+1.

We also need the Lobachevskii equation for the squares of the roots λ(k)
s :

b
(k)
0 zk − b

(k)
1 zk−1 + b

(k)
2 zk−2 + . . .+ (−1)kb

(k)
k = 0,

where

b(k)
s =

(
a(k)

s

)2

− 2a(k)
s−1a

(k)
s+1 + . . .+ 2

⎧⎨⎩ (−1)sa
(k)
0 a

(k)
2s ,

(−1)k−sa
(k)
2s−ka

(k)
k .

The coefficients b(k)
s give on ν

(k)
s,t one more system of equations:(
k
s

)∑
t=1

(
ν

(k)
s,t

)2

= b(k)
s .

Lemma 1. Let the numbers ν1, ν2, . . . , νN be such that

ν1 > ν2 ≥ . . . ≥ νN ≥ 0,

ν1 + ν2 + . . .+ νN = a, and ν2
1 + ν2

2 + . . .+ ν2
N = b. If, moreover,

a2 < 2b, (3)

then the inequalities hold

1
2
(a+

√
2b− a2) ≤ ν1 ≤ 1

N

[
a+ (N − 1)

√
b− a2 − b

N − 1

]
<

√
b. (4)

1 According to Viéte’s formulas. – Ed.
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Proof. Put

ν2 + ν3 + . . .+ νN = ζ and ν2
2 + ν2

3 + . . .+ ν2
N = �2.

If ζ2 = A2�2, then the obvious inequality holds

1 ≤ A2 ≤ N − 1. (5)

The equality A2 = 1 holds if and only if ν2 = �, ν3 = ν4 = . . . = νN = 0, and
the equality A2 = N − 1 holds if and only if ν2 = ν3 = . . . = νN = �/

√
N − 1.

Expressing the quantity A2 through a, b, and ν1, and studying its behavior
as ν1 varies, we see that inequality (5) is satisfied only when (4) is fulfilled,
which proves Lemma 1. ��

Proof of Theorem 1. Applying Lemma 1, we estimate the numbers
ν

(k)
s,1 = |λ(k)

1 λ
(k)
2 . . . λ

(k)
s |, the largest among ν

(k)
s,t , t = 1, 2, . . . ,

(
k
s

)
. From in-

equality (4) it follows that

1
2

(
a(k)

s +
√

2b(k)
s − (a(k)

s )2
)
< ν

(k)
s,1 <

√
b
(k)
s .

By dividing the estimates for ν(k)
s,1 and ν

(k)
s−1,1, we obtain

a
(k)
s +

√
2b(k)

s − (a(k)
s )2

2
√
b
(k)
s−1

≤ ∣∣λ(k)
s

∣∣ ≤ 2
√
b
(k)
s

a
(k)
s−1 +

√
2b(k)

s−1 − (a(k)
s−1)2

. (6)

It remains to estimate both sides of (6). Suppose first that s < s0. From
the Euler formula for coefficients a(k)

j it follows that

a(k)
s = (s+ 1)k+1

(
1 − u

(k,s)
1 + u

(k,s)
2 − . . .

)
,

where

u
(k,s)
j =

(
k + 2
j

)(
s+ 1 − j

s+ 1

)k+1

.

The number of terms u(k,s)
j , j = 1, 2, . . . , s, is finite, and each of them decreases

exponentially when k increases. Hence,

a(k)
s = (s+ 1)k+1

[
1 +O(e−ν(s0)k)

]
, (7)

where ν(s0) > 0. Further,

b(k)
s = (a(k)

s )2
(
1 − v

(k,s)
1 + v

(k,s)
2 − . . .

)
, where v

(k,s)
j =

2a(k)
s−ja

(k)
s+j

(a(k)
s )2

. (8)

Using (7), we obtain
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|v(k,s)
j | = 2

(
(s+ 1)2 − j2

(s+ 1)2

)k+1 (
1 +O(e−ν(s0)k)

)
and, because the alternating sum in (8) terminates with finitely many sum-
mands, we finally infer the expansion

b(k)
s = (s+ 1)2k+2[1 −O(e−ν(s0)k)],

which proves the first part of Theorem 1.
To prove the second part of Theorem 1, we choose the values of s and k

such that the following conditions are satisfied:

u
(k,t)
1 < ε1 for t = 1, 2, . . . , 2s; (9)

u
(k,t)
j+1 /u

(k,t)
j ≤ 1 for j ≥ 1 and t = 1, 2, . . . , 2s; (10)

v
(k,s)
1 < ε; (11)

v
(k,s)
j+1 /v

(k,s)
j ≤ 1 for j ≥ 1. (12)

Under assumptions (9)–(12) the two-sided estimates are valid

(t+ 1)k+1(1 − ε1) ≤ a
(k)
t ≤ (t+ 1)k+1, t = 1, 2, . . . , 2s; (13)

(s+ 1)2k+2(1 − ε2) ≤ b(k)
s ≤ (s+ 1)2k+2, (14)

and further

1
2

(
a(k)

s +
√

2b(k)
s − (a(k)

s )2
)

≥ (s+ 1)k+1
(1
2
− 1

2
ε1 +

1
2
√

1 − 2ε3
)
.

For ε1 < 0.1 we obtain
√

1 − 2ε3 > 1 − 1.1ε2, and therefore

1
2

(
a(k)

s +
√

2b(k)
s − (a(k)

s )2
)

≥ (s+ 1)k+1
(
1 − 0.5ε1 − 0.6ε2

)
.

Inserting the last estimate in formula (6), we have

(1 − 0.5ε1 − 0.6ε2)
(
s+ 1
s

)k+1

≤ ∣∣λ(k)
s

∣∣ ≤ 1
1 − 0.5ε1 − 0.6ε2

(
s+ 1
s

)k+1

.

It is easy to show what the values of ε1 and ε2 should be in order for the
conclusion of Theorem 1 to be true.

Let us show how k and s should be chosen to satisfy conditions (9)–(12).
Compose the quotient

u
(k,t)
j

u
(k,t)
j−1

=
k + 3 − j

j

(
t+ 1 − j

t+ 2 − j

)k+1

=
(
k + 3
j

− 1
)(

1 − 1
t+ 2 − j

)k+1

,
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where j ≥ 1. Each factor on the right side decreases when j increases, and
therefore

u
(k,t)
j

u
(k,t)
j−1

≤ (k + 2)

[(
1 − 1

t+ 1

)t+1
](k+1)/(t+1)

.

When t increases, the expression in the brackets increases and tends to e−1.
This gives

u
(k,t)
j

u
(k,t)
j−1

≤ (k + 2)e−(k+1)/(t+1).

Both conditions (9) and (10) are satisfied if

ln (k + 2) − k + 1
2s+ 1

≤ ln ε1,

i.e.,

2s+ 1 ≤ k + 1
ln (k + 2) − ln ε1

. (15)

Passing to (11) and (12), because of (8) and (13), we have

v
(k,s)
1 ≤ 2

(
(s+ 1)2 − 1

(s+ 1)2

)k+1 1
(1 − ε1)2

≤ 2e−(k+1)/(s+1)2(1 − ε1)−2.

Condition (11) is satisfied if
k + 1

(s+ 1)2
> ln 2 − 2 ln(1 − ε1) − ln ε, i.e.,

s+ 1 <

√
k + 1

ln 2 − ln ε− 2 ln (1 − ε1)
. (16)

Finally, for j > 1 we have∣∣∣∣∣v
(k,s)
j

v
(k,s)
j−1

∣∣∣∣∣ ≤
(

(s+ 1)2 − j2

(s+ 1)2 − (j − 1)2

)k+1 1
(1 − ε1)2

.

The right side of this inequality decreases as j increases, hence,∣∣∣∣∣v
(k,s)
j

v
(k,s)
j−1

∣∣∣∣∣ < 1
(1 − ε1)2

(
(s+ 1)2 − 1

(s+ 1)2

)k+1

≤ 1
(1 − ε1)2

e−(k+1)/(s+1)2 .

Therefore, (12) is satisfied if

k + 1
(s+ 1)2

> −2 ln (1 − ε1), i.e., s+ 1 <

√
k + 1

−2 ln (1 − ε1)
. (17)

For sufficiently large k, conditions (15) and (17) follow from (16). The proof
of Theorem 1 is complete. ��
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The intervals, in which two consecutive roots λ(k)
s−1 and λ

(k)
s given in The-

orem 1 are located, do not overlap. Indeed, the difference between two ends
of these intervals is

limλ(k)
s − limλ

(k)
s−1 >

[(
s

s− 1

)k+1

−
(
s+ 1
s

)k+1
]

+ 2ε
(

s

s− 1

)k+1

.

Hence, this difference is obviously positive provided that

2εs

s− 1
< (k + 1)

(
s

s− 1
− s+ 1

s

)
=

k + 1
s(s− 1)

.

Let us also consider the relationship between the domains where the for-
mula from [1] and formula (2) are valid; the formula from [1] is called principal.
S. Kh. Sirazdinov established that the principal formula remains valid for

− exp
(

k

ln k

)1/2

< λ(k)
s < − exp

(
−
(

k

ln k

)1/2
)
.

He also proved that the number kFk(x) of roots located in the interval

−∞ < λ(k)
s < x, where x < 0,

is asymptotically equal to

k

(
1
2
− 1
π

arctan
ln (−x)

π
+
(

ln k
k

)1/2

θ

)
, where |θ| ≤ C.

Therefore, the number of larger in absolute value λ(k)
s , to which the principal

formula does not apply, is

k

(
1
2
− 1
π

arctan
1
π

(
k

ln k

)1/2

+
(

ln k
k

)1/2

θ

)
.

Replacing arctan y by arccos(1/y) ∼= π/2 − 1/y, we see that the number of
larger in absolute value λ(k)

s can be asymptotically expressed as

s < (1 + θ)
√
k ln k.

It has been shown that formula (2) is valid for s <
√
k/

√
ln 2 − ln ε2.

Thus, what has not been established is the asymptotic formula for those λ(k)
s

for which √
k√

ln 2 − ln ε2
< s < (1 + θ)

√
k ln k.

It is interesting to note that the formal application of the principal formula,
which in our system of enumeration of the roots is convenient to write in the
form
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λ(k)
s

∼= − exp
[
π cot

(s+ 1/2)π
k + 2

]
,

and of formula (2) to those points where s
√
k is near 1, gives the same result:

λ
(k)
s /

√
k ∼= 1.
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27. On the Asymptotics of the Roots
of the Euler Polynomials∗

S. L. Sobolev

In [1, 2] the author obtained two formulas for the asymptotic values of the
roots of the Euler polynomials: one of them is suitable in an interval isolated
from zero and infinity, and the other is appropriate in the neighborhoods of
these points. Later S. Kh. Sirazhdinov [3] extended the interval of validity
of the first formula, and his result became an important step in the solution
of the problem. The intervals of validity of the mentioned two formulas do
not overlap. In the present note, and in [4], we establish enlarged intervals
of validity for these formulas covering the negative semiaxis of the real line,
where the roots are located.

Instead of the roots λ(k)
j , j = 1, 2, . . . , k, of the Euler polynomial Ek(λ) of

degree k, we consider the logarithms of their magnitudes,

q
(k)
j =

1
π

ln(−λ(k)
j ). (1)

We study the roots with a relative error. In [1] the equation S̃k(q) = 0 was
obtained for the quantities q(k)

j , where

S̃k(q) =
+∞∑

β=−∞

ik+2

(2β + 1 + iq)k+2
. (2)

Let us rewrite the equation as

Re

⎧⎨⎩
∞∑

β=0

ik+2

(2β + 1 + iq)k+2

⎫⎬⎭ = 0. (3)

To each root λ(k)
j of the polynomial Ek(λ) there corresponds q = q

(k)
j such

that
arg S̃k(q(k)

j ) = (j + 1/2)π, (4)

∗ Dokl. Akad. Nauk SSSR, 245, 304–308 (1979)
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where j is an integer; 1 ≤ j ≤ k. For bounded q, cutting series (3) at the
first term, which is natural for large k, we obtain asymptotic formulas for the
corresponding roots given in [1]. Let the asymptotic values of the roots be
q

I(k)
j in this case. Obviously, the identity holds

arg
ik+2

(1 + iq)k+2
=

(k + 2)π
2

− (k + 2) arctan q = (k + 2)arccot q. (5)

Equating the argument in this formula to the half-integer part of π, we easily
obtain

q
I(k)
j = cot

(j + 1/2)π
k + 2

or λ
I(k)
j = − exp

(
π cot

(j + 1/2)π
k + 2

)
. (I)

Formula (I) differs from that given in [1] only in the order of roots’ enumera-
tion.

Instead of q let us introduce the new variable κ:

κ =
q√
k + 2

, q = κ
√
k + 2. (6)

Assuming κ bounded, we can obtain asymptotic expressions for the roots in
terms of the variable κ. In this case it is convenient to use another variable y
related to q as follows:

q = cot
πy

k + 2
=
k + 2
πy

+O(y−3). (7)

The approximate values qI(k)
j are given by the half-integer values of y. The

variable y makes the scale of qI(k)
j uniform. The standard series expansion of

arctan gives the following expression for y:

πy

k + 2
= arccotκ

√
k + 2 = arctan

1
κ
√
k + 2

=
1

κ
√
k + 2

+O(k−3/2), (8)

i.e., y =
√
k + 2/(πκ) + O(k−1/2). From this formula it is clear that, to

bounded κ, there correspond roots whose subscripts are of the order of the
square root of the degree k of the polynomial Ek(λ) as k tends to infinity.

Calculating the difference between two consecutive roots, we have

q
I(k)
j − q

I(k)
j−1 = πκ

(k)
j κ

(k)
j−1 +O(k−1). (9)

Let us estimate the difference q
(k)
j − q

I(k)
j . From the definition of S̃k(q) it

follows that

arg S̃k(q) = arg
ik+2

(1 + iq)k+2
+ arg

⎡⎣1 +
∞∑

β=1

(
1 + iq

2β + 1 + iq

)k+2
⎤⎦ . (10)
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Let us estimate the sum
∞∑

β=1

(
1 + iq

2β + 1 + iq

)k+2

. (11)

Inserting the expression from (6) for q in (11), we write a natural dominant
for this series:

∞∑
β=1

[
1 + κ2(k + 2)

(2β + 1)2 + κ2(k + 2)

](k+2)/2

=
∞∑

β=1

[(
1 +

1
κ2

1
k + 2

)k+2(
1 +

(2β + 1)2

κ2

1
k + 2

)−2−k
]1/2

. (12)

As k → ∞, series (12) becomes the convergent series

∞∑
β=1

e−2β(β+1)/κ
2

= ξ(κ),

whose sum can be expressed through the Jacobi theta function θ1.
Let us show that series (12) converges uniformly in k, and in the limit

produces ξ(κ),

lim
k→∞

∞∑
β=1

[
1 + κ2(k + 2)

(2β + 1)2 + κ2(k + 2)

]k/2+1

= ξ(κ). (13)

In order to do this, we first choose a number B such that

e−2B(B+1)/κ
2
< ε/3 and e−8B/κ

2
< 1/3. (14)

Considering the remainder of series (12)

RB =
∞∑

β=B

[
1 + κ2(k + 2)

(2β + 1)2 + κ2(k + 2)

]k/2+1

,

we show that for all sufficiently large k, k > k0, this remainder is less than ε.
Since the series converges for all k, there exists β0 such that Rβ < ε for β > β0

and k ≤ k0. Finally, Rβ < ε for β > max {B, β0}. This establishes the uniform
convergence of series (12).

Let us divide the remainder RB into two summands:

RB =
N−1∑
β=B

(·) +
∞∑

β=N

(·) = Σ1 +Σ2,

where N = N(ε,B,κ) is chosen so that the following inequalities hold:
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N − 1 ≤ 1
2

√
1 + κ2(k + 2) < N. (15)

For sufficiently large k the terms in the first sum Σ1 decrease faster than a
geometric series with a factor of 1/3, and thus

Σ1 <
3
2

(
1 + κ2(k + 2)

(2B + 1)2 + κ2(k + 2)

)(k+2)/2

<
ε

2
. (16)

The second sum Σ2 can be estimated by the integral

∞∫
N−1

(
1 + κ2(k + 2)

(2y + 1)2 + κ2(k + 2)

)k/2+1

dy ≤ 2

√
1 +

κ2(k + 2)
(2N − 1)2

× [1 + κ2(k + 2)]1/2

k + 1
exp
[
− k + 2

2[(2N − 1)2 + κ2(k + 2)]

]
, (17)

which is also less than ε/2 for sufficiently large k.
Returning to RB , we see that it is less than ε, and the proof of the uniform

convergence of series (12) is complete.
In the limit, series (12) produces the increasing function ξ(κ) of κ, which

is equal to 1 for κ = κmax = 3.0215 . . . . Hence, for κ < κmax the series
converges and the sum

ζk(q) = 1 +
∞∑

β=1

(
1 + iq

2β + 1 + iq

)k+2

, q = κ
√
k + 2, (18)

lies in a disk with radius ξ(κ) and center 1. This means that∣∣∣∣∣∣arg

⎡⎣1 +
∞∑

β=1

(
1 + iq

2β + 1 + iq

)k+2
⎤⎦∣∣∣∣∣∣ ≤ arcsin ξ(κ) <

π

2
. (19)

Whence and from equalities (3), (4) and (10) it follows that

cot
(j + 1/2)π + arcsin ξ(κ(k)

j )
k + 2

≤ q
(k)
j ≤ cot

(j + 1/2)π − arcsin ξ(κ(k)
j )

k + 2
.

(20)

From the identity cot(α + β) − cotα =
− sinβ

sin(α+ β) sinα
we obtain the final

estimate
|q(k)

j − q
I(k)
j | ≤ (κ(k)

j )2ξ(κ(k)
j )
(
1 +O(k−1/2)

)
. (21)

Let us study the error of formula (I) for the roots that are farther away
from 0 and −∞ than those just studied. Let q = σ

√
(k + 2)τ(k), where σ is

bounded, and let τ(k) be a decreasing function that tends to 0 as k → ∞. In
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this case, we may neglect in (12) all terms after the first one. Applying again
the integral estimate

∞∑
β=2

[
1 + q2

(2β + 1)2 + q2

](k+2)/2

≤ (1 + q2)k/2+1

∞∫
1

dy

[(2y + 1)2 + q2]k/2+1
, (22)

we obtain, similarly to the preceding,

∞∑
β=2

[
1 + q2

(2β + 1)2 + q2

](k+2)/2

≤ 8[1 + σ2(k + 2)τ(k)]k/2+1

3(k + 1)[9 + σ2(k + 2)τ(k)]k/2
. (23)

For the ratio to the first term of the sum of all the rest we have
∞∑

β=2

(
1 + q2

(2β + 1)2 + q2

)k/2+1( 1 + q2

32 + q2

)−(k+2)/2

≤ 8
3

(
1 + σ2(k + 2)τ(k)
9 + σ2(k + 2)τ(k)

)k/2 1 + σ2(k + 2)τ(k)
k + 2

.

This quantity tends to zero as k → ∞. Thus, in the first approximation the
sum of series (12) turns out to be equal to its first term and admits the
estimate

|ξ(σ√τ(k)
)| ≤ e−8/[9/(k+2)+σ2τ(k)]. (24)

For τ(k) decreasing faster than 1/(k + 2), we have

|ξ(σ√τ(k)
)| < e−8(k+2)/9 (25)

independent of σ, and for τ(k) going to zero slower than 1/(k + 2),

|ξ(σ√τ(k)
)| < e−8/[σ2τ(k)]. (26)
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28. More on the Zeros of Euler Polynomials∗

S. L. Sobolev

In the present note, complementing the results of [2], we revise the domain of
validity of the second asymptotic formula

λ
(k)
j

∼= −
(
j + 1
j

)k+1

(II)

for the roots of the Euler polynomial of high degree k. We also estimate its
error. Thus, between this note and [2], we establish the asymptotic distribution
of the roots of the Euler polynomials on the negative semiaxis of the real line.

In [1] the following formula was established for large values of q(k)
j :

1
π

ln (−λ(k)
j ) = q

(k)
j

∼= q
II(k)
j =

k + 1
π

ln
(

1 +
1
j

)
. (1)

Let us consider the continuous variable y′, connected with q by the rela-
tions

q =
k + 1
π

ln
y′ + 1/2
y′ − 1/2

=
k + 1
πy′

+O

(
1

(y′)3

)
, y′ =

1
2

coth
πq

2(k + 1)
. (2)

The variable y′ makes the scale of qII(k)
j uniform. The numbers qII(k)

j corre-
spond to half–integer values of y′.

Let us also introduce another variable κ′ connected with q by q =
κ′√k + 1. This formula is similar to formula (6) of [2]. Let us study those
roots for which κ′ is between certain bounds, and express, in terms of κ′, the
other quantities that are of interest.

In these assumptions, the variable q is large, and we can expand the func-

tion
1
2

coth
πq

2(k + 1)
in a series of negative powers of q, limiting ourselves to

the first term:

∗ Dokl. Akad. Nauk SSSR, 245, 801–804 (1979)
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y′ =
k + 1
πq

+O(q−3), (3)

and thus,

y′ =
√
k + 1
πκ′ +O(k−1/2). (4)

Formula (4) is analogous to formula (8) of [2].
Calculating the difference of two consecutive qII(k)

j , we have

q
II(k)
j − q

II(k)
j−1 = πκ′(k)

j κ′(k)
j−1 +O(k−1). (5)

This formula, in turn, is similar to formula (9) of [2].
In view of (4) and [2, formula (9)], for the same y the quantities qI(k)

j and

q
II(k)
j differ by a term of order O(k−1/2).

Let us turn to the study of the domain in which (II) is valid. In note [1] we
estimated the roots λ(k)

j , or equivalently q
(k)
j , in terms of the coefficients a(k)

s

of the Euler polynomial and the coefficients b(k)
s of the Lobachevskii equation,

whose roots are the squares of the roots of the Euler polynomial:

a
(k)
s

a
(k)
s−1

1 +
√

2b(k)
s /(a(k)

s )2 − 1

2
√
b
(k)
s−1/(a

(k)
s−1)2

≤ −λ(k)
s ≤ a

(k)
s

a
(k)
s−1

2
√
b
(k)
s /(a(k)

s )2

1 +
√

2b(k)
s−1/(a

(k)
s−1)2 − 1

. (6)

Formula (6) is valid if we assume that

b(k)
s /(a(k)

s )2 > 1/2 and b
(k)
s−1/(a

(k)
s−1)

2 > 1/2. (7)

For a(k)
s and b

(k)
s we have the representations

a(k)
s = (s+ 1)k+1 −

(
k + 2

1

)
sk+1 +

(
k + 2

2

)
(s− 1)k+1 − . . . ; (8)

b(k)
s = (a(k)

s )2
(

1 − 2
a
(k)
s−1a

(k)
s+1

(a(k)
s )2

+ 2
a
(k)
s−2a

(k)
s+2

(a(k)
s )2

− . . .

)
. (9)

Series (8) and (9) contain only a finite number of terms. Let

χ(k)
s =

a
(k)
s−1a

(k)
s+1

(a(k)
s )2

− a
(k)
s−2a

(k)
s+2

(a(k)
s )2

+
a
(k)
s−3a

(k)
s+3

(a(k)
s )2

− . . . , s = 1, 2, . . . , k. (10)

If χ(k)
s < 0.25 and χ

(k)
s−1 < 0.25, inequalities (7) are satisfied, and therefore

formula (6) holds. Taking logarithms, we rewrite it in the form

1
π

ln
1 +
√

1 − 4χ(k)
j

2
√

1 − 2χ(k)
j−1

≤ q
(k)
j − 1

π
ln

a
(k)
j

a
(k)
j−1

≤ 1
π

ln
2
√

1 − 2χ(k)
j

1 +
√

1 − 4χ(k)
j−1

. (11)
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For bounded κ′ = lim
k→∞

√
k + 1

π(j + 1/2)
and large k, for the nonzero quantities

a
(k)
s in formula (10) the following inequalities hold:

(s+ 1)k+1(1 − ε) ≤ a(k)
s ≤ (s+ 1)k+1, s = 1, 2, . . . , 2j. (12)

Therefore the series for χ
(k)
s , s = 1, 2, . . . , j, is majorized by a series with

positive decreasing terms

1
(1 − ε)2

min{k−s,s}∑
t=1

(
(s+ 1)2 − t2

(s+ 1)2

)k+1

≤ 1
(1 − ε)2

min{k−s,s}∑
t=1

[(
1 − t2

(j + 1)2

)(j+1)2
](k+1)/(j+1)2

. (13)

Increasing, the terms of series (13) tend to the terms of the absolutely con-
vergent series

∞∑
t=1

exp(−t2π2κ′2). (14)

The convergence of series (10) is, obviously, uniform in k. Thus,

lim
k→∞

χ(k)
s = η(κ′) =

∞∑
t=1

(−1)t+1 exp(−t2π2κ′2). (15)

For η < 0.25, estimate (11) gives in the limit∣∣∣∣q(k)
j − (k + 1)

π
ln
(
j + 1
j

)∣∣∣∣ < 1
π

ln
2
√

1 − 2η
1 +

√
1 − 4η

, (16)

and for small η we have

ln
2
√

1 − 2η
1 +

√
1 − 4η

=
1
2
η2 +O(η3).

The sum of series (15) can be expressed through the Jacobi theta function
θ4. The function η(κ′) is a decreasing function of the variable κ′. It tends to
zero as κ′ → ∞. Formula (16) has meaning for κ′ > κmin ≈ 0.3726, where
η(κmin) = 0.25.

Comparing this result with estimate (21) of [2], we see that formulas (I)
and (II) are valid, with the corresponding estimate of the errors, at least for

0.3726 < κ < 3.0215. (17)

Disregarding the distinction between κ and κ′, we equate the leading error

terms of both formulas:
1
4
e−2π2

κ
2

= e−4/κ
2
. This equality gives
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κ2
cr = 0.4189 or κcr = 0.6472. (18)

For κ = κcr the error in both formulas is e−4/κ
2cr = 0.000071. In this case

the difference between the roots in both formulas is

πκ
(k)
j κ

(k)
j−1 = 1.48.

Thus, the error for each root q(k)
j turns out to be 2 · 104 times less than the

distance between the roots. For κ < κcr one should use formula (I), and for
κ > κcr formula (II).

Let us also estimate the error in formula (II) for those q(k)
j for which the

order of increase of j is less than k1/2. Let

y′ =
1
πσ

√
k + 1
τ(k)

, (19)

where τ(k) → ∞ as k → ∞, and σ is bounded. Using an argument similar to
that in [2] for the case τ(k) → 0, we obtain the estimate

ln
2
√

1 − 2η
1 +

√
1 − 4η

< e−2π2σ2τ(k) or η = e−π2σ2τ(k). (20)

Together with formulas (16) and (20) above and (24)–(26) of [2], this
inequality settles the error estimate of the asymptotic quantities obtained.
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29. On the Algebraic Order of Exactness
of Formulas of Approximate Integration∗

S. L. Sobolev

1. Let x be a vector in Rn, γ be a vector in Zn, i.e., γ has n integer entries.
For the positive number h and the matrix H with determinant equal to 1,
we form a set of vectors {hHγ | γ ∈ Zn}. This set is usually called the point
geometrical lattice in Rn. Let also the function ϕ(x) be continuous in the
measurable domain Ω in Rn. Further, we are going to consider formulas of
approximate integration, or cubature formulas of the form∫

Ω

ϕ(x) �
∑

hHγ∈Ω

c[γ]ϕ(hHγ). (1)

Values of the function of the discrete variable {c[γ] | γ ∈ Zn, hHγ ∈ Ω} are
called the coefficients of the cubature formula, the points hHγ from Ω are
called its nodes, and the parameter h is called the mesh-size of the lattice.
The error functional of cubature formula (1) is a generalized function defined
by the formula

(l, ϕ) =
∫
Ω

(
1 −

∑
hHγ∈Ω

c[γ]δ(x− hHγ)
)
ϕ(x) dx

=
∫
Ω

ϕ(x) dx−
∑

hHγ∈Ω

c[γ]ϕ(hHγ). (2)

Specifying an error functional amounts to specifying the respective cubature
formula, and vise versa. Therefore, in what follows we mainly deal with the
error functionals.

∗ Partial Differential Equations. Proc. Int. Conf. (Novosibirsk, 1983). Nauka,
Sibirsk. Otdel., Novosibirsk (1986), pp. 4–11.
This lecture was delivered by S. L. Sobolev at the International Conference on
Partial Differential Equations in Novosibirsk, October 10–14, 1983. – Ed.
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We are interested in properties of cubature formula (1) on the vector space
X with the seminorm ‖· | X‖. To each error functional l(x) there corresponds
a number

‖l | X∗‖ = sup
ϕ �=0

|(l, ϕ)|
‖ϕ | X‖ . (3)

It is assumed that the quality of formula (1) is better if the value of ‖l | X∗‖
is smaller.

Definition 1. We refer to a natural number m as the algebraic order of ex-
actness of formula (1) on the class X, if

‖l | X∗‖ = O(hm) for h → 0.

Let us show how Definition 1 agrees with the usual one when the seminorm
‖· | X‖ is equivalent to⎛⎝∫

Ω

∑
|α|=m

m!
α!

|Dαϕ(x)|2 dx
⎞⎠1/2

.

In this case, if formula (1) has on X the algebraic order m of exactness, then
it must be exact for all polynomials of degree m− 1 from X, i.e.,

(l, P ) = 0 for P (x) =
∑

|α|<m

cαx
α ∈ X. (4)

For sufficiently broad classes of cubature formulas (for example, with regular
boundary layer), we have the following statement, converse to the preceding
one: if all polynomials of degree m − 1 from X are exactly integrated by
cubature formula (1), and there is a polynomial of degree m such that it is
not exactly integrated by (1), then formula (1) has the algebraic order m of
exactness on X (see [1]).

Now we assume that X consists of infinitely differentiable functions. In
this case, there are two interesting questions.

In the first place, we would like to know what should be taken for the
algebraic order of exactness of the error functional l(x) on the space X. We
show that it is convenient to take for this order not a number, but rather a
certain integer-valued function of h. The behavior of this function as h → 0
significantly depends on how the derivatives of functions from X increase,
when the order of differentiation tends to infinity.

In the second place, is it true that a bigger number of polynomials are
exactly integrated by the cubature formula, the smaller the norm of its error
functional? We show that this assumption, generally speaking, is not true.
Moreover, for the fixed mesh-size h the norm of the error functional can in-
crease from a given small number to infinity when the number of exactly
integrated polynomials tends to infinity.
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There are rigorous statements and justifications of these claims in what
follows.

2. In this and following sections we deal with spaces of periodic functions
with the period matrix H, i.e., of such functions ϕ(x) that

ϕ(x+Hγ) = ϕ(x) for γ ∈ Zn. (5)

Here Zn is the set of integer multi-indexes, H is a matrix, detH = 1. To the
matrix H there corresponds the fundamental parallelepiped

Ω = {x ∈ Rn | x = Hz; 0 ≤ zj < 1}. (6)

Obviously, the volume of Ω is equal to 1. Let us consider the following error
functional:

(l0, ϕ) =
∫
Ω

ϕ(x) dx− hn
∑

hHγ∈Ω

ϕ(hHγ). (7)

It is assumed that the number N of points of the set {hHγ ∈ Ω | γ ∈ Zn}
satisfies the condition1 Nhn = 1. The functional l0(x) possesses a remarkable
property in the spaces of periodic functions and we expose it for the case of
the space L̃(m)

2 (H), where m > n/2.
By definition, the function ϕ(x) belongs to L̃

(m)
2 (H), provided that first,

it has all derivatives in Rn up to order m locally integrable in Rn, second, ϕ
is a periodic function in the sense of (5), and, third,

(ϕ)m = ‖ϕ | L̃(m)
2 (H)‖ =

(∫
Ω

∑
|α|=m

m!
α!

|Dαϕ(x)|2 dx
)1/2

< ∞, (8)

∫
Ω

ϕ(x) dx = 0.

Obviously, the functional (· )m is the norm in L̃
(m)
2 (H). It turns out that

among all cubature formulas of form (1) with the condition∑
hHγ∈Ω

c[γ] = 1 (9)

the formula with the error functional l0(x) possesses the least error in the
norm of L̃(m)

2 (H) (see [1]).
Let now X be some Banach space of periodic infinitely differentiable func-

tions and let X be embedded in L̃(m)
2 (H) for all m. Then a function ϕ(x) from

X belongs to the space L̃(m)
2 (H) as well, and the inequality

‖ϕ | L̃(m)
2 (H)‖ ≤ C(m)‖ϕ | X‖ (10)

1 Here 1/h is a natural number. – Ed.
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holds, with the constant C(m) independent of ϕ.
Let us prove that in the terms of Definition 1 the functional l0(x) has an

algebraic order of exactness on X that is equal to infinity.
For a function ϕ(x) from X the inequalities hold

|(l0, ϕ)| ≤ ‖l0 | L̃(m)∗
2 (H)‖ · ‖ϕ | L̃(m)

2 (H)‖

≤ ‖l0 | L̃(m)∗
2 (H)‖ · C(m) · ‖ϕ | X‖. (11)

Whence and from the equality ‖l0 | L̃(m)∗
2 (H)‖ = O(hm), we conclude that

‖l |X∗‖ decreases more rapidly than each degree of h as h → 0. By Defi-
nition 1, it means that l0(x) has an infinite algebraic order of exactness on
X.

For fixed h the norm of l0(x) can be written as

‖l0 | L̃(m)∗
2 (H)‖2 =

(
h

2π

)2m

ζ(H−1∗ | 2m), (12)

where ζ(H−1∗ | 2m) is the Epstein zeta function defined by the equality

ζ(A | s) =
∑
γ �=0

1
(rγ)s

, where rγ =
( n∑

j=1

(Aγ)2j
)1/2

.

The Epstein zeta function is an obvious generalization of the doubled Riemann
zeta function. The detailed derivation of (12) can be found in [1].

3. Let ϕ(x) be an infinitely differentiable function, and let its L(m)
2 (Ω)-

norms increase accordingly to the inequalities

‖ϕ | L(m)
2 (Ω)‖ =

(∫
Ω

∑
|α|=m

m!
α!

|Dαϕ(x)|2dx
)1/2

≤ KmκmAmmλ, (13)

for m ≥ n/2. Here K is a constant that does not depend on m; κ, A are given
positive numbers, λ is a given real number.

All functions ϕ with condition (13) constitute a linear space, which is
denoted by H(κ, A, λ). This space is a specification of the known Gevrey
classes. Let us indicate certain properties of functions from H(κ, A, λ).

The product ϕ3 = ϕ1ϕ2, where ϕ1 and ϕ2 are members of H(κ, A1, λ1)
and H(κ, A2, λ2), respectively, belongs to H(κ, A3, λ3). If ϕ is a member of
H(κ, A, λ) and α > 0, then ϕ(αx) belongs to H(κ, αA, λ).

For κ < 1 the class H(κ, A, λ) consists of the entire functions ϕ(z) such
that, for all complex z, the inequality

|ϕ(z)| ≤ K|z|µ exp{σ|z|�} (14)

holds, where
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� =
1

1 − κ
, µ = (λ+

1
2

+ κ[
n

2
] + κ)�, and σ =

1 − κ

e
(Ae)�.

The constant K in (14) does not depend on z, and the quantities � and σ are
customarily called the order and the type of an entire function ϕ(z). We also
have the following statement in a sense converse to the preceding one:

An entire function ϕ satisfying (14) is also a member of H(κ, A, λ), with
κ = 1 − 1/�, σ�e = (Ae)�, and �λ = µ− �/2.

For κ = 1 the class H(κ, A, λ) consists of the analytic functions ϕ on Ω.
Moreover, for an arbitrary point x in Ω the radius of convergence Rϕ(x) of the
Taylor series for ϕ is bounded from below by the positive constant K/(Ae),
where K is completely defined by the geometry of Ω and K does not depend
on A, λ, ϕ.

The listed properties of H(κ, A, λ) are valid in a case of an arbitrary
bounded domain Ω in Rn.

Let now Ω be the fundamental parallelepiped for the matrix H and the
volume of Ω be equal to 1. We denote by H̃(κ, A, λ) the subspace of H(κ, A, λ)
that consists of the periodic, in the sense of (5), infinitely differentiable func-
tions ϕ with L̃

(m)
2 (H)-norms satisfying (13). It is not difficult to prove that

H̃(κ, A, λ) is a Banach space with respect to the norm

[ϕ]H = max

(
‖ϕ | L̃(0)

2 (H)‖, sup
m≥1

‖ϕ | L̃(m)
2 (H)‖

mκmAmmλ

)
. (15)

Whence and from (13) it follows that H̃(κ, A, λ) is embedded in L̃
(m)
2 (H) for

all m.
Recalling the arguments from Sect. 2, we see that the error functional

l0(x) has its norm in the dual space H̃∗(κ, A, λ) that decreases more rapidly
than each degree of h as h → 0. However, in this case we can obtain from
(13) much more precise information on the behavior of ‖l0 | H̃∗(κ, A, λ)‖ as
h → 0, which we are going to do.

Obviously, for a function ϕ from H̃(κ, A, λ) the inequality holds

|(l0, ϕ)| ≤ [ϕ]H‖l0 | L̃(m)
2 (H)‖mκmAmmλ. (16)

Further, for sufficiently large m the value of the Epstein zeta function can be
written as

ζ(H−1∗ | 2m) =
K0

r2m
min

(
1 +O(q2m)

)
, (17)

where q < 1, q depends on the matrix H; the constant K0 is independent of m,
and rmin is the distance from the origin to the set {H−1∗γ | γ ∈ Zn, γ �= 0}.
Using (12), (16), and (17), we obtain the inequality

‖l0 | H̃∗(κ, A, λ)‖ ≤ K1d(m)mλ, (18)

where
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d(t) = tκt

(
Ah

2πrmin

)t

(19)

and K1 does not depend on m. The function d(t) is nonmonotone. It attains
a minimum at the value of t = t0(h), where

t0(h) =
1
e

(
2πrmin

Ah

)1/κ

. (20)

In addition, d(t) decreases monotonically on the interval [1, t0(h)] and it in-
creases monotonically for t > t0(h). The values of d(t) at the point t0(h) is
expressed as

d(t0(h)) = exp

{
−κ

e

(
2πrmin

A

)1/κ

h−1/κ

}
. (21)

For sufficiently small h the value of t0(h) is arbitrarily large, while the value
of d(t0) is arbitrarily small.

Let m0(h) be the closest integer to t0(h). Inserting m = m0(h) in (19), we
obtain

‖l0 | H̃∗(κ, A, λ)‖ ≤ K2h
λ exp

{−sh−1/κ

}
. (22)

Here constants K2, s, and λ are independent of h, and

s =
κ

e

(
2πrmin

A

)1/κ

. (23)

4. Now we are going to show that estimate (22) is almost unimprovable.
To this end, we choose the function ϕ∗ in H̃(κ, A, λ) such that for all h > 0
the following inequalities hold:

‖l0 | H̃∗(κ, A, λ)‖ ≥ |(l0, ϕ∗)|
[ϕ∗]H

≥ K3h
µ exp

{−sh−1/κ

}
. (24)

Here s is defined in (23); the constants K3 and µ are independent of h. The
functions estimating the norm ‖l0 | H̃∗(κ, A, λ)‖ from above in (22) and
from below in (24) differ only by a factor of the form Chµ−λ that varies
slower than the exponential when h → 0. Let us construct the function ϕ∗
for the case of the identity matrix H with the fundamental parallelepiped
{x ∈ Rn | 0 ≤ xj < 1}.

The function ϕ∗ possessing the required property can be determined by
its expansion in the trigonometric series

ϕ∗(x) =
∑
β �=0

|β|µ exp
{−s|β|1/κ

}
ei2πβx. (25)

Here s is defined in (23) and |β| is the Euclidean length of the vector β. Let
us verify that ϕ∗ actually belongs to H̃(κ, A, λ).
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Obviously, the function ϕ∗ is periodic and infinitely differentiable. There-
fore it suffices to establish the validity of (13). From the Parseval identity we
obtain that

‖ϕ∗ | L̃(m)
2 (H)‖2 = (2π)2m

∑
β �=0

|β|2µ+2m exp
{−2s|β|1/κ

}
. (26)

Thus, to estimate ‖ϕ∗ | L̃(m)
2 (H)‖ from above, we need to dominate the sum

of the values of the function |x|ν exp{−q|x|1/κ} over all β with integer entries,
where q = 2s and ν = 2µ+2m. To estimate this sum, we compare it with the
integral

Jn =
∫

xj>0

rνe−qr1/κ

dx1 . . . dxn. (27)

To this end, we divide Jn into a sum of integrals over all elementary cubes of
unit volumes with vertices at those points which have integer entries. Then we
use the fact that the minimum and maximum of the integrand in each such
elementary cube are located at one of its vertices. Here we do not present the
detailed computations, for their awkwardness, but it is possible to find them
in [2] when desired.

Let us now compute (l0, ϕ∗). We note that l0(x) is exact for the exponen-
tials e−i2πβx when the multi-index β has at least one coordinate βj not being
a multiple of the natural number N = 1/h. The value of l0(x) on the other
exponentials is equal to −1. Whence and from (25) it follows that

(l0, ϕ∗) = −Nµ
∑
β �=0

|β|µ exp
{−sN1/κ |β|1/κ

}
.

Thus, the problem has been reduced to an estimate from below of the sum of
the values of the function |x|ν exp{−q|x|1/κ} over all β with integer entries,
where q = sN1/κ and ν = µ. Next, one can apply the procedure just described.
Inequality (24) is proved.

Formulas (22) and (24) can be conveniently gathered in the equality:

ln ‖l0 | H̃∗(κ, A, λ)‖ = −sh−1/κ

(
1 +O(h1/κ lnh)

)
. (28)

Let us make certain qualitative conclusions from the results obtained. The
statement that “the functional l0(x) has an infinite algebraic order of exactness
on H̃(κ, A, λ)” can be replaced with the much more informative equality (28)
that characterizes the behavior of the norm of l0(x) as h → 0.

The reasoning that led us to estimate (22) shows that it is natural to refer
not to a number, but to the integer-valued function m0(h) as the algebraic
order of exactness of the error functional l0(x) on the class H̃(κ, A, λ). Let us
recall that m0(h) is the integer number that is closest to t0(h).

5. In this final section we show that in general the increase of the number of
polynomials integrated exactly by a quadrature formula does not diminish the
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norm of the corresponding error functional, but, on the contrary, it increases
the norm unboundedly. We prove this claim by constructing an example.

Assume that n = 1 and the domain Ω is the interval [0, 1] of the real line.
For even m = 2ν and fixed h > 0, we consider the following error functional:

(lEM
m , ϕ) ≡

1∫
0

ϕ(x) dx− TN (ϕ) +
ν−1∑
k=1

B2k

(2k)!
h2k

[
ϕ(2k−1)(1) − ϕ(2k−1)(0)

]
.

Here Bk is the Bernoulli number with the index k, also N is an integer,
Nh = 1, and

TN (ϕ) =
h

2
[
ϕ(0) + ϕ(1)

]
+

N−1∑
α=1

hϕ(αh).

The quadrature formula with the error functional lEM
m (x) is the celebrated

Euler–Maclaurin formula.
It is known that lEM

m (x) is exact on all polynomials of degree m − 1 and
it has the L(m)

2 [0, 1]-norm that is expressed as

‖lEM
m | L(m)

2 [0, 1]∗‖2 = h2m

(∑
β �=0

1
(2πβ)m

)2

+ h2m
∑
β �=0

1
(2πβ)2m

. (29)

Let the function ϕ be a member of the class H(κ, A, λ) on the interval
[0, 1], i.e., let ϕ be infinitely differentiable and satisfy (13). The condition of
periodicity is not required. The class H(κ, A, λ) is Banach space with the
norm defined in (15). Obviously, H(κ, A, λ) is embedded in L

(m)
2 [0, 1] for all

m. Using this and (29), we estimate the error of the formula as follows:

|(lEM
m , ϕ)| ≤ [ϕ]H

∥∥lEM
m | L(m)∗

2 [0, 1]
∥∥mκmAmmλ ≤ C1[ϕ]H

(Ah
2π

)m

mκm+λ,

or
‖lEM

m | H∗(κ, A, λ)‖ ≤ C1

(Ah
2π

)m

mκm+λ. (30)

Here C1 does not depend on m and h.
Using (30), for given ε > 0 and m = 4 we find such h > 0 that

‖lEM
4 | H∗(κ, A, λ)‖ < ε.

Fixing this h, we then vary m from 4 to infinity. In this case the right side
of (30) will first decrease monotonically, and then increase monotonically,
tending to infinity in the limit. It turns out that we can say the same about
the sequence {‖lEM

m | H∗(κ, A, λ)‖}∞m=4. More precisely, for all m ≥ 4 the
following inequalities hold2:
2 The proof of this estimate is given in Chap. VII of the book: Sobolev, S. L.,

Vaskevich, V. L.: The Theory of Cubature Formulas. Kluwer Academic Publish-
ers, Dordrecht (1997). – Ed.
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‖lEM
m | H∗(κ, A, λ)‖ ≥ C2

(
Ah

2π

)m

mκm+γh1/κ ,

where the constants C2 and γ are independent of m and h. This estimate
was proved by V. L. Vaskevich (see [3]). The reproduction of the proof would
require too much space, therefore we omit it here.
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