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Recollecting Jack Schwartz

Jack had the most powerful mind of anyone I knew, except von Neumann. These
two had in common a fantastic ability to learn a new subject extremely rapidly; both
had an incredibly wide range of interest.

When Jack left the Department of Mathematics to lead the Department of Com-
puter Science newly created by him, he related to me that when he came to the
Courant Institute he had decided to teach all courses listed in our bulletin, and that
he had carried out his plan. When I pointed out that there must have been some
subjects about which he knew little or nothing, he replied that in those cases he took
from the library the Summer before the leading text on the subject and learned it.
When I asked him if there was a subject he had trouble learning, he admitted that he
did, fluid dynamics. “It is not a subject that can be expressed in terms of theorems
and their proofs”.

Jack first came to the attention of the mathematical community as the coauthor
of Dunford-Schwartz, an impressive exposition of functional analysis. It was much
more than a compilation and organization of known material; there is much original
work in it. A striking example is the theorem that the trace of a trace class operator in
Hibert space is the sum of its eigenvalues. This theorem and its proof are presented
in Vol. II, but no attribution is given to Lidskii, to whom it is due. Since D-S is
compulsive about giving references, this was mystifying, The explanation is that
D-S vol. II came out before the publication of the English translation of Lidskii’s
paper; Jack had proved the result independently.

Jack has made valuable contributions to operator algabras, a subject founded
by von Neumann and Murray. Jack described von Neumann’s work as “coming
repeatedly to a stone wall and crashing through it.”

Jack had a delicious sense of humor. In a paper titled “The pernicious influence of
mathematics on science”, he starts with the observation that “computer intelligence”
has three major shortcomings: single-mindedness, literal-mindedness, and simple-
mimdedness. He then makes the point that mathematics also has these shortcomings,
although to a lesser extent. As an example he points to the claim that the Birkhoff
ergodic theorem is the basis of the foundation of statistical mechanics, and then
neatly demolishes it.
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viii Recollecting Jack Schwartz

As another example Jack quotes Keynes’ criticism of some mathematical eco-
nomics as “. . . a mere concoction, as imprecise as the initial assumptions they rest
on, which allow the author to lose sight of the complexities and interdependencies
of the real world in a maze of pretensions and unhelpful symbols.”

Hans Bethe once remarked,only half in jest,that von Neumann’s brain was an
upward mutation of the human brain; the same could have been said about Jack.

We shall not see the like of him for a long time.

Peter D. LaxCourant Institute of Mathematical Sciences
NYC, NY, USA
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From Linear Operators to Computational
Biology: Essays in Honor of Jacob T. Schwartz

Martin Davis and Edmond Schonberg

Abstract We present a thumbnail sketch of the scientific career of Jack Schwartz,
in order to place the essays in this volume in the proper chronological context.

1 Introduction

This volume of essays honors the memory of Jacob T. Schwartz (“Jack”) a dis-
tinguished mathematician and computer scientist who was our friend, colleague,
mentor and inspiration in the course of an amazingly prolific trajectory as a scientist
and teacher.

In his long and distinguished career as a mathematician and computer scientist,
Jacob T. Schwartz made numerous important contributions to a remarkable variety
of different subject areas. His style was to enter a new field, to master quickly the
existing research literature, to add the stamp of his own forceful vision in a series
of research contributions, and finally to leave behind an active research group that
would continue fruitful research for many years along the lines he laid down. A brief
list of some of the areas to which Schwartz made major contributions will give some
notion of the breath of his interests: spectral theory of linear operators, von Neu-
mann algebras, macro economics, the mathematics of quantum field theory, parallel
computation, computer time-sharing, high-level programming languages, compiler
optimization, transformational programming, computational logic, motion planning
in robotics, multimedia and educational software, and finally computational biol-
ogy. He had an enormous talent for conveying his enthusiasms, and the essays that
follow reflect the impact that he has had on the scientific interests of his students
and collaborators.

M. Davis (�) · E. Schonberg
Courant Institute of Mathem. Science, New York University, Mercer Street 251, New York, 10012
NY, USA
e-mail: martin@eipye.com

E. Schonberg
e-mail: schonberg@adacore.com

M. Davis, E. Schonberg (eds.), From Linear Operators to Computational Biology,
DOI 10.1007/978-1-4471-4282-9_1, © Springer-Verlag London 2013
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2 M. Davis and E. Schonberg

This is not the place for a full biography, and the brief sketch that follows only
aims to place the essays in this volume in the perspective of Jack’s interests over the
decades. A fuller biographical essay can be found in [1].

Jack Schwartz began his career in mathematical analysis, specifically in the the-
ory of linear operators. The monumental three volume treatise Linear Operators
written with Nelson Dunford, for which the authors were awarded the Leroy P.
Steele prize by the American Mathematical Society, is not only the definitive work
in the area, but is also a wonderful compendium bringing together results from var-
ious branches of analysis and much that was new, all presented in an exciting man-
ner. What is probably Schwartz’s best known work in analysis settled an important
problem regarding von Neumann algebras that had been posed by von Neumann
himself.

Inevitably, his work on Hilbert Spaces led him to theoretical Physics and the
foundations of quantum theory. The essay by David Finkelstein Nature as Quantum
Computation responds to scientific discussions with Jack over the past half-century.

In the nineteen fifties, While participating in a study of Karl Marx’s classic Cap-
ital with a like-minded group in New York, Jack came to the conclusion that Marx
had failed to confront adequately a contradiction between his economic analysis and
empirical reality. Jack developed some simple economic models in an unavailing ef-
fort to convince the others in the group. Later, examining both Marx and Keynes,
through the eyes of a supremely gifted mathematician, he produced a sharp critique
of their work, and synthesized his ideas on economic phenomena. A selected bibli-
ography of Jack’s works can be found in the appendix. The genesis of this work is
described by Martin Davis in Jack Schwartz meets Karl Marx.

The pioneering Compilers and Computer Languages by John Cocke and Jack
Schwartz was the first systematic treatise on the problems of translation of program-
ming languages. It provided a general framework for understanding complex itera-
tive and elimination methods for solving global optimization problems and initiated
extensive research seeking to implement these methods efficiently. These methods
are the heart of modern compilers and static analysis techniques for programming
languages.

Jack was a prolific software writer. His experiences with the programming lan-
guages available in the 1960s led him to reflect on the enormous difficulties involved
in going from a mathematical description of an algorithm (what a mathematician
would consider the completion of the task) to its embodiment in a running program.
These reflections led to On Programming a treatise on software construction and
an encyclopedic survey of Algorithms in different field of Computer science. The
centerpiece of the work is a new programming language: SETL (for Set Language).
SETL, though never widely adopted in its original form, proved highly influential
and useful. Drawing on the experience of mainstream mathematics that has made
set theory its lingua franca, SETL makes the task of the programmer easier by draw-
ing on a fixed but powerful collection of set-theoretic primitives in terms of which
data structures can be modelled and algorithms can be specified clearly and suc-
cinctly. Apart from its pervasive influence in the presentation of algorithms in the
literature (where the term “SETL-like notation” is commonly used) SETL proved to
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be well-suited for what came to be known a decade later as Software Prototyping.
The development of the first validated Ada compiler, written in SETL in the form of
an operational definition of the language, showed the usefulness of very-high level
languages in the construction of executable specifications. Robert Dewar discusses
the impact of SETL and its influence on modern programming languages in SETL
and the Evolution of Programming.

Developing efficient implementations, that is to say optimizing compilers for
SETL and similar languages has been the focus of considerable effort over the
decades. Two major goals for compiling SETL programs into efficient code, rec-
ognized from the outset, were (1) the automatic selection of appropriate storage
structures for abstract sets and maps, and (2) the implementation of mathemati-
cal value semantics (as opposed to reference semantics) while avoiding expensive
copy operations in imperative languages. To these ends, Jack extended the meth-
ods of global analysis to deal with three new optimization problems: type inference,
analysis for set theoretic inclusion and membership, and alias analysis. Schwartz’s
pioneering work in type inference has been particularly influential. Schwartz also
examined more general optimizing transformations that could affect the asymptotic
behavior of algorithms by generalizing finite difference techniques to apply to iter-
ative programs.

Schwartz’s hope was that the set theoretic locutions that form the basis of SETL
as well as of contemporary mathematics could make possible a seamless link be-
tween the two, in which computer generated proofs in set theory could serve to
insure the correctness of programs. Towards this end, he developed correctness pre-
serving transformational methods, to allow the step-wise refinements of programs
originally written in high-level concise fashion, into efficient programs written at
the semantic level of C. In addition he initiated a research program investigating
decidable fragments of set theory. This program has been actively pursued his stu-
dents and collaborators. The papers by Cantone Decision procedures for elementary
sublanguages of set theory XVII: commonly occurring extensions of multi-level syl-
logistic of which Jack is a posthumous author, and by and Omodeo The Ref proof-
checks and its common shared scenario present recent results in this fruitful area,
which lies at the intersection of logic, theorem proving, and program-proof technol-
ogy.

Although parallel processing is now recognized as a major discipline in com-
puter science, this was hardly the case almost four decades ago when Jack Schwartz
began his work in this area. A paper published in 1966 introduced a class of ar-
chitectures he called Athene, nowadays called shared-memory MIMD computers.
In this early work, Schwartz already anticipated the major challenges in obtain-
ing an effective implementation of this class: memory latency and contention. Like
its modern counterparts, the Athene architecture featured a uniform address space,
“public” and “private” variables, and special coordination primitives. Although the
technology of the sixties was clearly inadequate for the actual construction of an
Athene computer, interesting simulation studies were carried out. By the beginning
of the eighties, Schwartz felt that technology had caught up. His seminal paper Ul-
tracomputers presented a collection of parallel algorithms for a computer using a
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shuffle-exchange interconnection network complete with complexity analyses. This
work served to initiate a substantial research effort in both hardware and software
design, that continued at NYU for the following 15 years.

After parallel computing, Jack turned his interests towards Robotics, both in its
theoretical aspects (kinematics, motion planning, the Physics of grasping) as well
as its industrial applications. During his tenure as head of the Robotics laboratory
that he created, he wrote seminal papers on motion planning (The piano Movers
problem). The paper by Sharir: Jack Schwartz and Robotics: the Roaring eighties
describes some of the pioneering work of the Robotics Lab. The paper by Mishra:
Mathematics’ Mortua Manus: Discovering Dexterity discusses recent work in the
theory of prehension.

From Robotics Schwartz turned his interests to the then burgeoning field of mul-
timedia, and created the Multimedia Laboratory at NYU. From there it was compu-
tational biology, a topic in which he created some of the first courses on the topic as
NYU. His late involvement in the field is described by Mike Wigler in The last ten
yards.

References
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Nature as Quantum Computer

David Ritz Finkelstein

Abstract Set theory reduces all processes to assembly and disassembly. A similar
architecture is proposed for nature as quantum computer. It resolves the classical
space-time underlying Feynman diagrams into a quantum network of creation and
annihilation processes, reducing kinematics to quantum statistics, and regularizing
the Lie algebra of the Einstein diffeomorphism group. The usually separate and
singular Lie algebras of kinematics, statistics, and conserved currents merge into
one regular statistics Lie algebra.

1 Quantum Theories

I once asked Jack Schwartz what the difference was between mathematics and
physics. At the time both were just equation-juggling to me. He was strap-hanging
homeward from Stuyvesant High School, where we had just met, and he answered
by drawing a hat in the subway air with his free hand:

�

�
�

� (1)

He explained that the bottom line is the real world and the top line is a mathematical
theory. At its left-hand edge we take data from the real world and put them into a
mathematical computation, and at the right-hand side we compare the output of the
computation with nature. The loop closes if the theory is right.

This diagram also applies to quantum systems, if the statistical nature of quantum
theory is taken into account. Then the bottom line is not one experiment on the
system but a statistical population of them.

The question remains of what the symbols of mathematics mean to a mathemati-
cian. Some decades later I asked Jack Schwartz what “1” means, and he replied that

D.R. Finkelstein (�)
Georgia Institute of Technology, Atlanta, GA 30342, USA
e-mail: finkelstein@gatech.edu

M. Davis, E. Schonberg (eds.), From Linear Operators to Computational Biology,
DOI 10.1007/978-1-4471-4282-9_2, © Springer-Verlag London 2013
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6 D.R. Finkelstein

it means itself. This took me aback. I had not considered that possibility. Symbols
generally mean something not themselves. Memorandum:

1 = “1”. (2)

After mathematizing aspects of economics, robotics, computing, relativity, and
even knots, with a theory that predicted when ropes would slip on capstans, Jack
Schwartz turned to the problem of putting quantum theory on firm foundations. His
concern was not with mathematical rigor but physical. In a paper on “the pernicious
influence of mathematics on science”, obviously conversing with Wigner’s famous
lecture at the Courant Institute on “the unreasonable effectiveness of mathematics
in the natural sciences” [14], Schwartz wrote:

The mathematical structure of operators in Hilbert space and unitary transformations is
clear enough, as are certain features of the interpretation of this mathematics to give phys-
ical assertions, particularly assertions about general scattering experiments. But the larger
question here, a systematic elaboration of the world-picture which quantum theory pro-
vides, is still unanswered. Philosophical questions of the deepest significance may well be
involved. Here also, the mathematical formalism may be hiding as much as it reveals. [10]

I respond to this call here, though my answer might not be acceptable to him.
He takes it for granted that quantum theory provides a mathematical world-picture,
faithful or not, as classical physics did. It is not clear how literally he intended this.
Some writings on physics assume that there are complete world pictures; in Gödel’s
sense of deciding all well-formed questions, not Bohr’s weaker one, of answering
all physical questions that can be answered. Bohr’s “complete” is von Neumann’s
“maximal”. One of the critical differences between quantum and classical physics
is that quantum physics denies the existence of complete world pictures, yet asserts
the existence of merely maximal ones. Perhaps mathematics is the most “pernicious
influence” when it has been the most “unreasonably effective”.

Classically, a mathematical model of a physical system is an isomorphism be-
tween physical predicates about the system and mathematical predicates about the
model. Physical predicates are defined by physical processes of filtration or catego-
rization. The stock example is a polarizing filter.

Boole already defined predicates by “acts of election”. Mental predicates were
mental acts in his theory; physical predicates are physical acts in quantum theory.
There are then both input and outtake predicate logics, corresponding to input and
outtake filtrations. These are dual lattices. They may be operationally defined as
the Galois lattices of the relation “Inputs through filter A do not trigger counters
following filter B”.

Mathematical predicates, however, are defined axiomatically and form Boolean
predicate lattices by fiat. Since models have Boolean predicate lattices and quantum
systems have projective predicate lattices, the two cannot be isomorphic. Quantum
systems do not have exact mathematical models because they have different logics
than models.

Here the pernicious influence of mathematics is the highly infectious convic-
tion that there must be an objective public reality, despite empirical evidence to the
contrary. The mathematics of the quantum theory was invented shortly before the
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quantum theory was born, demonstrating the unreasonable effectiveness of mathe-
matics. The quantum evolution has made mathematics more important for physics,
not less. Mathematics still provides classical models for classical theories and now
it also provides statistical models for quantum systems, in the following sense.

In classical mechanics a “state” completely describes the system, answering all
experimental questions about it. Plato said clearly that what is real must have an
objective state.

Quantum thought relinquishes this idea. This is no great loss, since we never
came close to having the state of any physical system. When theorists speak of the
state of Mars, they often mean its position and momentum, or possibly its orientation
and angular velocity as well, ignoring trillions of coordinates of Martian atoms.

Some give the word “state” a new statistical meaning that can serve quantum
theories, but the result has been continuing widespread confusion. We should keep
the old meaning of complete information for “state” until the dust settles, so we can
tell our students something important: quantum systems have none.

A pure population is one that cannot be imitated by mixing statistically distin-
guishable ones. It goes with an atom of the lattice of predicates. Classically, a pure
state, when such exist, is described by a probability distribution supported by one
point: pure implies complete. A classical point particle with continuous coordinates,
however, already has no pure state, because a point in a homogeneous continuum
has probability 0.

In quantum theory, all systems admit pure probability distributions, represented
by points in a projective geometry, of probability measure 1, not 0; and in analytic
projective geometry, by a ray {λψ} ⊂ V in a linear space V that we associate with
the system.

Von Neumann was drawn to projective geometries that have a continuous range
of dimensionalities. They can have no singlets. This ignores the problem of the
infinities; singlets are the solution. Classical space-time already has no singlets.

As Malus found for linear polarization, the transition probability from one pred-
icate ray to another is the squared cosine of the angle between them, almost never
0 or 1. Heisenberg therefore called a vector with this probabilistic interpretation a
“probability vector”. Its components are probability amplitudes, their squares are
relative probabilities. Quantum logic is a square root of classical logic.

But a lone classical system has no probability distribution, nor has the individ-
ual quantum system. Schrödinger and many others believed, at least at first, that a
vector ψ , up to a factor, exists and evolves in a single quantum experiment, and
that it was the state of a real physical object, a wave running around the atom.
For brevity, call holders of this ontological interpretation “wavers”, and holders of
Heisenberg’s more pragmatic one “chancers”. Since the state of a real wave is in-
deed a wave-function. the term “wave-function” is a Trojan horse, smuggling waves
into the camp of the chancers.

On the other hand, a population of similar experiments has at least two prob-
ability vectors or distributions, one for the input operation and a dual one for the
outtake operation. To cope with this ancient duality wavers say that “the state vector
collapses” from one to the other during a measurement. This locution is not part
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of Heisenberg’s or Kolomogorov’s probability theory, for a probability distribution
or vector, classical or quantum, is unaffected by what happens to one member of
its statistical population. It is not necessarily part of von Neumann’s system either,
since it was contributed to his book on quantum mechanics by a friend, and does
not seem to occur in his later writings. When we interact with one quantum in a
statistical population, we may wish to transfer the quantum to another statistical
population but neither probability distribution changes; the quantum does.

Quantum theory eliminated what had been taken for granted: the possibility of
a mathematical model of the physical system. Some classical conceptions assumes
a complete picture of nature, as though taken from a preferred viewpoint outside
nature. The corresponding quantum conception would be a plurality of partial rep-
resentations of interactions with small parts of nature.

It is not obviously possible to visualize an atom completely, since on the atomic
scale photons are not immaterial messengers but massive projectiles. Receiving
them changes us, so emitting them must change their sources as much. On the
atomic scale this reaction by the atom is greater than the action upon us is in the
human scale. The smaller the system, the more its perception exhibits hysteresis,
memory, non-commutativity. Moreover, we see one atomic transition by absorbing
one photon that we cannot share. Quantum perception is ultimately private as well
as non-commutative.

Yet all these impediments to depiction could have classical models. They make
room for quantum theory, but do not determine its specific features. If it is obvious
that complete descriptions are impossible, it is amazing that maximal descriptions
are possible. Partially order classes (predicates) by proper inclusion, and call classes
that are n steps away from the empty class, n-plets. The points of the projective
geometry are the singlets the maximal descriptions of the quantum theory.

A classical doublet includes exactly two singlets. It cannot have a continuous
symmetry group, only S2.

A quantum doublet has a theoretical infinity of statistically distinguishable sin-
glets and an SO(2) symmetry.

Before studies of polarization, no physicist came close to a singlet of any system;
Newton prepared polarization singlets with his crystals of Iceland spar. It is likely
that when we reach the bottom of the world, we will find polarizations and spins on
the beach; not strings, which have no singlets.

Heisenberg called his probabilistic brand of physics non-objective; it does not
represent objects but laboratory actions and their probabilities. In the language of
categories, a classical system can be presented as a category, whose objects are
its states. There is a category of quantum systems too, but one quantum system
is not a category, precisely because it has not enough objects (states, identities)
in the categorical sense. Instead it is represented by an operator algebra, and only
statistically.

“Philosophical questions of the deepest significance” are indeed involved. Jack
Schwartz agreed with Kolmogorov that probability was not objective, that physics
ought to be objective, and that therefore probability had no role in a fundamental
physical theory. Some physicists who use quantum theory to great effect declare that
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they do not understand it, and expect it to devolve into a more objective theory. This
likely results from a deep philosophical preference for objects, which are supposed
to be knowable “as they are”. This may be a pernicious influence of the unreasonable
success of classical mathematical models in astronomy. But it might be innate, as if
we are hard-wired to see objects.

Exercises in physics often give a complete mathematical model of the system.
This does not prepare the student for quantum physics. No one has ever encountered
anything near a complete description of any physical system, classical or quantum.
If quantum theory is right, there are none. Those who study physical systems only
through such mathematical models may find it absurd and incomprehensible to say
that physical systems have none.

Again, some note that quantum theory is “merely” instrumental, and find it unsat-
isfactory on that ground. This conveys more about the critic’s philosophy than about
the quantum theory. A Beethoven score too is “merely” instrumental. Physics is a
performing art, and physicists are the performers, not the spectators; experimenters,
not observers. The relation of a physical theory to physics is that of a menu to a
meal. It is natural but naive to think that anything in nature has a complete objective
description; in the sense that stoning the villain in a movie is naive.

Again, Heisenberg has been criticized by wavists for providing no mathematical
description of the measurement process in his theory; although his main point is that
none exists.

We can view any regular quantum system and its co-system as a quantum digital
computer and its user. The quantum universe as computer system I sometimes call
Qunivac for short. Qunivac differs crucially from artificial computers, however: It
has no fixed hardware; it is all quantum jumping. It includes both computer and user.
The interface between them is relatively fixed in artificial computers, but highly
movable in Qunivac. Science is a Promethean attempt to hack into Qunivac.

1.1 Canonical Quantum Theories

Classical momentum and position coordinates commute: pq − qp = 0. Classical
physicists were never aware of this as a physical hypothesis; it seems to have been
an unconscious assumption. Canonical quantization corrected this commutation re-
lation to p̌q̌ − q̌p̌ = ih̄. This has led physicists to search out other unconscious
assumptions, make them conscious, and test them.

One operational meaning of this non-commutativity is that filters defining pred-
icates about p and q do not commute. Such quantum or non-commutative logic
was found in the laboratory by Newton for polarizations of light corpuscles, and
was described in a quantum-theoretical way by Malus, who unwittingly used a
two-dimensional real Hilbert space of linear polarizations. When Boole first ax-
iomatized what eventually became Boolean algebra, he noted excitedly that such a
non-commutative logic was possible, without bringing up Newton’s polarizers.
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1.2 Regular Quantum Theories

In kinematics we represent our physical operations on the system by operators on
a space of probability vectors. A regular quantum system is one with a finite-
dimensional probability vector space, like a spin or a system of spins [1]. Its Lie
algebra is simple. Its observable or normal operators have finite spectra. A regular
theory still mentions infinities, such as the real number system R, but these result
from regarding the co-system as infinite and are harmless if we abstain from ques-
tions about the co-system.

2 Yang Space-Times

Quantizing space-time to avoid infinities was proposed in about 1930 by Heisen-
berg, Ivanenko, and others. The first example was provided by Snyder in 1947
and its commutation relations were immediately simplified by Yang to those of
y := so(5;1), precisely for the sake of simplicity [15]. A Yang space-time (in the
general sense) is one whose orbital variables span a semisimple Lie algebra, called
the Yang Lie algebra.

Yang so(5,1) is not conformal so(5,1). It defines a quantum space, while con-
formal so(5,1) acts on a classical one. Snyder and Yang did not complete their
regularizations but continued to represent their Lie algebras in the singular su(∞)

of Hilbert space.
Earlier, R.P. Feynman had quantized space-time by replacing continuous space-

time coordinates by sums of Dirac spin operators (apparently unpublished), which
also leaves Hilbert space; though he broke off this work in an early phase to study
the Lamb shift for Bethe. Feynman quantized space-time but not momenta. The
Yang model quantizes space-time and momentum-energy, but is still singular. The
Penrose position vector x is a finite sum of Pauli spin operators; the momentum
vector is not represented.

Here are the quantum space-time variables of Feynman, Yang, and Penrose, in
quantum units:

Feynman [3] δx̌μ = γ μ,

Yang [15] x̌μ = L5μ = iη[5∂μ], p̌μ = L6μ = iη[6∂μ],
Penrose [8] δx̌k = σk.

(3)

In such theories, particles do not define irreducible unitary representations of
the Poincaré group as Wigner proposed, but irreducible normal representations of
a slightly different simple Lie algebra. The physical constants of the Feynman or
Yang groups are the speed and action units c, h̄ of earlier group de-contractions,
with additional elementary time and energy units X and E with XE = h̄, and a huge
integer N. The quantum units X of time and E of energy are here called the chrone
and the erge; it is not yet clear whether these are the Planck units. Under the Yang
relativity group, time in chrones in one frame is just energy in erges in another; time
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converts into energy, mass. The conversion factor is a huge quantum of power, one
erge per chrone, perhaps the Planck power. The conversion is not easy but requires
melting the vacuum organization that distinguishes energy and time.

The synthesis described here is finite-dimensional, quantizes all the orbital and
field variables, and includes spin. The other internal coordinates of the Standard
Model are easily tacked on, but it would be disappointing if the quantization of
space-time did not lead us to a deeper synthesis of the internal variables.

Einstein’s local equivalence principle again suggests that space-time must be
quantized. Following Galileo, Einstein equates a gravitational field and an accel-
eration. Since the field is quantized, so is the acceleration. This is a second time
derivative of spacial coordinates with respect to time; if the space and time coordi-
nates were commutative, the acceleration would be too.

Since i and −i are interchanged by Wigner time reversal, they can be regarded
as two values of a discrete dynamical variable i that happens to be central. This
centrality makes the Heisenberg Lie algebra singular and leads to infinities. The
Yang simplification suspended the centrality of i. It is therefore a real quantum
theory of the Stückelberg kind [13]. For correspondence with the standard complex
theory, Yang provides a quantized imaginary ı̌ ∈ S whose classical correspondent is
i, with ı̌ ◦→ i, but a self-organization must be invoked to single one i out of many
possibilities.

The Standard Model spinlike groups can all be defined by their actions on a prob-
ability vector space of about 16 dimensions. The orbital group seems to act on a
much larger number of dimensions N � 16. Therefore events of history are not ran-
domly scattered but highly organized locally into something like a thin truss dome
in four dimensions. This dome must support the particle spectrum, sharp bands of
highly coherent transmission, and so is presumably crystalline, as Newton inferred
from transverse photon polarization.

Regular space-times call for regular Lie algebras. Here is one suggested by those
of (3), based on the contraction spin(3,3) ◦→ hp(3,3):

x̌μ = L5μ = ψγ [5μ]ψ,

p̌μ = L6μ = ψγ[6μ]ψ,

ǐ = N−1L65 = ψγ �ψ.

(4)

Here ψ is a chronon IO operator and ψ = βψ is its Pauli adjoint. The combination
ψ . . .ψ is the usual covariant accumulator, summing many replicas of its argument
with attention to polarity. The eight γ ν generate the Clifford algebra of spin(4,4),
with top (volume) element γ � = γ 8 . . . γ 1.

3 Whither Physics?

First the ancient axioms of space and time failed us in physical experiments and then
the axioms of Boolean logic. There are now well-known physical geometries and
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lower-order physical logic side by side with the older mathematical ones. Higher-
order logic is evidently next in line to join the empire of the empirical.

Define an operational theory of a system as a semigroup whose elements are the
feasible operations on the system by the co-system (the rest of the cosmos, including
us), provided with their probabilities. The kinematics gives the possibilities, the
dynamics attaches probabilities.

In quantum theories, each operation is represented by a projective transformation
of a specified projective geometry whose points are singlet quantum input or out-
take operations. A special conic section in the projective geometry defines transition
probability amplitudes.

The first-order logic of the system is the sub-semigroup of filtration operations.
The set theory of the system deals with operations of system assembly and disas-
sembly.

Our operations ordinarily rely on the organization of the co-system, natural or ar-
tificial, as do operating manuals or cookbooks. Highly organized complex elements
of the co-system may enter the system theory only through several of their many
parameters.

Thus the idea of a Universal Theory is absurd. Measurements do not bring us
ever closer to Truth, but invalidate earlier facts as fast as they validate new ones,
and omit much about the co-system. A dynamical law cannot be universal if it is
overridden whenever we measure anything.

Then what shapes our course? Two processes by which physical theories evolve
correspond to biological evolutionary processes studied by Charles Darwin and
Lynn Margulis. The Darwinian one is implicit in Yang space-time and explicit in
work of Segal: Physical theory evolves towards semisimple Lie algebras [11].

Almost all Lie groups have regular Killing forms. A singular Killing form is a
very rare fish; the least change in its structure tensor can regularize it. Singularity
is structurally unstable. As measurements of structure constants improve, a singu-
lar Lie algebra has survival probability 0 relative to its regular neighbors, which
outnumber it ∞-to-1.

Gerstenhaber, influenced by Segal, described homologically a rich terrain of Lie
groups connected by contractions that carry groups out of stable valleys of simplic-
ity, along ridges between the valleys, and up to singular peaks [5]. According to the
simplicity principle, physics today is a glacier flowing down the simplicity-gradient
to valleys in Gerstenhaber-land.

Thus the Galileo Lie algebra lies on a singular ridge between the valleys of
Lorentz so(3,1) and Euclidean so(4). Poincaré iso(3;1) perches on a higher sin-
gular ridge between the valleys of deSitter so(3;2) and so(4;1).

The special relativity Lie algebra iso(3,1) makes the observer a rigid body with
10 degrees of freedom, like a speck of diamond dust. The general relativity group
Diff, however, makes the observer an infinite squid, unaffected by gravity, crossing
all horizons freely, continuously deformable without limit. This surely overcom-
pensates. It still works at the level of astronomy, and it greatly influenced the Weyl,
Yang-Mills, Schwinger, and Standard Model theories of gauge. Yet general rela-
tivity is much more singular than special relativity, and so disproves the theory of
evolution as regularization.
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The Margulis evolutionary process is expressed in biology by symbiogenesis [6]
and in technology by modular architecture [12]. In modular evolution, two modules
of some complexity unite with each other to form a more complex system that can
use survival strategies of both.

To cope with complexity, physics has united singular modules rather than wait
for regular ones. Stability and complexity are both vital for theories, and they pull
in opposite directions at present. They must be harnessed to pull together. General
covariance cannot be right in its present form. Its group Diff(4) too must be de-
contracted.

The de-contraction of Diff should be compatible with the Yang de-contraction of
the Heisenberg-Poincaré Lie algebra hp(3,1) ←◦ Y . Here Y is a high-dimensional
orthogonal representation R : y → so(N), Y = R(y), of the simple Yang Lie alge-
bra y. The most obvious candidate for the de-contracted diff is so(N), assuming a
commutative diagram of Lie algebra transformations

Y ◦→ hp(3,1)

↓ ↓
so(N) ◦→ diff(4)

(5)

Gauge theories like gravity theory combine identical gauge modules at every
point of space-time. This is a quantification too. It brings together three Lie alge-
bras: a kinematic one for orbital variables, a statistical one for the gauge vector
quanta, and a gauge Lie algebra for conserved currents. All need regularization. In a
quantum set theory, all operations are reduced to assembly and disassembly. Kine-
matics is all statistics. The three singular Lie algebras must then become aspects of
one regular one.

4 Below Hilbert Space

Canonical quantization uses an infinite-dimensional Hilbert space H of probability
vectors. This space is still too weak and already too large for quantum theory.

Too large, in that there are infinitely more orthogonal rays in H than there can
be disjoint pure populations in any physical laboratory. This makes its unitary Lie
algebra singular and leads to divergent sums.

Too weak, in that H lacks fundamental concepts of modular structure and inter-
action. True, it can represent general actions; but under close inspection all actions
resolve into interactions. Hilbert space has to become smarter to express these.

I no longer believe that a quantum set theory will work for quantum physics as
classical set theory works for classical physics [4]. The main problem is that set
theory formulates “laws of thought”, not of physics. A set is a collection “thought
of as one”. A proton’s position and spin are usually united by bracing, as one unites
sets, but presumably not by our thinking of them as one. Higher-order logic cannot
be given operational meaning like the first-order logic.
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One may regard Cantor and Peano as proposing basic vertices x ∈ y and y = {x},
respectively, for the graph (category) of all mathematical objects. Quantum theory
must replace these ideational vertices by operational ones adequate for the non-
category of physical processes (Sect. 9). The result does not resemble set theory
enough to warrant the name.

5 Quantification

Quantification is a logical process that turns a theory of an individual into a the-
ory of a multiplicity of like individuals. Set theory iterates it. The logician William
Hamilton introduced the term in 1850. It has two famous quantum correspondents:
Fermi quantification is regular, and Bose quantification is singular but is regularized
by Palev (Sect. 6).

Quantization and quantification traverse the same road in opposite directions.
Quantification assembles individuals into an individual of higher rank. Quantiza-
tion resolves an individual into individuals of lower rank. Quantization introduces
a quantum constant when it begins from a classical limit in which that constant has
approached 0. In quantification a quantum constant provided by the lower-rank in-
dividual vanishes in a singular limit. A “second quantization” is well-known to be a
quantification, but it is also a “second quantification” since it follows a quantization,
which implies a first quantification. In this project we express all quantizations, in-
cluding Yang space-time quantization (Sect. 2), as inverse quantifications, to arrive
at the modular architecture of the quantum universe. All kinematics is statistics.

The Standard Model uses bracing or uniting operation {a, b, . . .}, at least tacitly,
to assemble quanta from their various conceptual parts: orbital, spin, isospin, color,
and so forth. The lowest-order predicate algebrahas been quantized. The higher-
order set theory rests on the lower-order; it must be quantized or dropped out of
physics. Here we quantize it.

Cantor intended to represent the workings of the infinite Mind of God, while
physicists seek merely to represent the workings of finite quantum systems. For
finite algebraic purposes, Peano’s one-to-one uniting operation y = ιx = {x}, some-
times written x here, will do as the key construct of a truncated set theory. ι turns
what it touches into a monad, a unit set. Polyads are built from monads by disjoint
union a ∨ b. For example {a, b} := ιa ∨ ιb is a dyad; not to be confused with a
doublet. An n-ad is a product of n factors; an m-tuplet is a sum of m terms.

Uniting (bracing) occurs in many important constructs of the Standard Model and
gravity theory. It is used to suspend associativity of the tensor product. For example
it associates spin variables with their proper orbital variables. Again, a hadron is a
triad of quarks, and so the triads must be united to associate their quarks properly
when a pair of hadrons forms a deuteron. This hierarchy of unitings is commonly
tacit.

Let

S= 2S = exp2 S (6)
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designate the group of perfinite sets (sets that are ancestrally finite, hereditarily fi-
nite, finite all the way down). S is an infinite N-graded group generated recursively
from the empty set 1 by

• the monadic uniting operation ιx; and
• the dyadic product operation x�y = x XOR y, for the symmetric union or XOR.

All x ∈ S obey the Clifford-like rule

x�x = 1. (7)

S is N-graded by cardinality (“adicity”). S is also N-graded by rank, the number of
nested ι operations. S also has a product x ∨ y = x POR y, the Peircian or partial
OR, determined by �. POR formalizes Boole’s original partial-addition operation +̇
and obeys the Grassmann-like rule

x ∨ x = 0. (8)

This 0 is the OM (for Ω) of Jack Schwartz’s programming language SETL: a space-
filler indicating the intentional omission of any meaningful symbol. It is the seman-
tic 0.

A plausible probability space for quantum sets is a linearized S,

Š = 2̌Š = exp2̌ 1̌S, (9)

the least linear space that is its own Clifford algebra. It is generated recursively from
the linear space R ⊂ Š representing the empty set by three operations:

• a monadic uniting operation ι : Š → Š;
• a dyadic Clifford product x�y, sometimes written xy, for the symmetric union;

and
• the dyadic addition operation x + y for quantum superposition

Š also has a Grassmann product x ∨ y determined by �. For all x in a certain basis
called classical, x�x = ±1 and x ∨ x = 0, as in the classical theory and with the
classical meanings.

Š is N-graded by a cardinality operator Grade Š is also graded by the operator
Rank, the number of nested ι operations.

A physical theory needs only a finite-dimensional probability tensor space, but
it is convenient to keep Š infinite-dimensional so that it also contains the singular
limits presently in common use.

6 Palev Statistics

Palev regularized quantum statistics [7] as Yang regularized quantum kinematics
[15]: by de-contracting a singular Lie algebra into a nearby regular one.

In an even statistics of Palev type p [7],

1. p is a classical (simple) Lie algebra.
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2. The probability vector space of the individual quantum is p.
3. The probability algebra of the aggregate is P = polyp, an algebra of non-

commutative polynomials over p identified modulo the commutation relations
of p, defining a representation of p.

Palev also considers mixed even and odd statistics, where p is a Lie superalgebra.
In the present instance p = so(N,N) with N � 1. Bose statistics is merely a useful
singular limit of an even Palev statistics, ultimately unphysical [4].

There is no physical boundary between statistics and kinematics (Sect. 5), only
a historical one. It is natural to regularize both at once. Di-fermions obey a Bose
statistics only approximately, a Palev statistics exactly. The Palev Lie algebra can
even be the Yang Lie algebra.

A brief review: The three-dimensional Heisenberg Lie algebra h(1), with the
singular canonical commutation relation

h(1): [q,p] = ih̄, (10)

underlies both quantum oscillator kinematics and Bose statistics. h(1) lies on the
ridge between spin(2,1) and spin(3). Quantum relativity needs an indefinite metric,
so choose the indefinite case in this toy example:

spin(2,1): [q,p] = r, [p, r] = q, [q, r] = p (11)

To contract spin(2,1) to h(1), the variable r must freeze to a central imaginary as the
dimension D of the representation goes to infinity: r ≈ Ni, where N → ∞ with D.
Call such a process an “organized singular limit” and write, for example,

spin(2,1) ◦→ h(1), q̌ ◦→ q, p̌ ◦→ p, ř ◦→ Ni. (12)

The circle in “◦→” represents the regular algebra, the tip of the arrow the singular
one, and the connecting line the self-organization, if any, and the homotopy that
connect the regular to the singular.

7 Neutral Metrics

The metric in the Clifford algebra must be specified. To represent in the one space
Š the duality between source and sink that each experimenter sees, the probability
form should be neutral, like that of a quantum space in the sense of [9], and like
the Pauli-Cartan metric β of spinor space. To fix the sign convention: source vectors
have positive norm, sink vectors negative.

Every finite-dimensional Grassmann algebra, and therefore every subspace
Š[r] ⊂ Š of finite rank r , has a natural neutral norm, the Berezin L(2) norm

‖w‖ :=
∫

dγ �w ∨ w = d

dγ � w ∨ w = βww (13)

where γ � ∈ Š[r] is a top Grassmann element, and βww is the polarization of ‖w‖.
The Berezin norm is identical to the Cartan norm for spinors.
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There is a frame-dependent scalar factor in this top element, and therefore in the
norm (13); but all physical quantities, which are of degree 0 in the norm, so this
factor drops out.

The previous rank Š[r − 1] is an isotropic space of this norm, representing linear
combinations of sinks and sources with equal probability.

The norm β defines the Clifford product x � y on Š[r] by the Clifford rule

x � x = ‖x‖ (14)

for vectors (of grade 1) and dual vectors (of grade Dim Š[r] − 1). Here this is the
exclusion principle.

In this quantum set theory as in classical set theory, any set can be in any set only
0 or 1 times. Multiple occupancy is forbidden by fiat. Sets with even statistics have to
be pairs of monads. This set theory does not acknowledge elementary bosons, which
violate Leibniz’s principle that indistinguishable objects are one. Indistinguishable
laser photons can be 1010 and more. The grade parity operator g(x)

.= 0,1 of a set
x is the parity of the grade (= cardinality) of x. It defines the “statistics” of x; called
even (or bosonic) if g = 0, and odd (fermionic) if g = 1.

The quantum set theory of Š immediately conflicts with the Standard Model
on the conservation of exchange parity (statistics). For any x, y ∈ Š, ιx and ιy are
monadic (of grade 1) and so is their uniting {{x, y}} = ι(ιx ∨ ιy). But in nature
so far, and in the Standard Model, a composite of two odd quanta is always even.
In nature, composition conserves grade parity but not in Š. The question was not
considered explicitly in S, which opted to deal in sets alone, although other modes
of aggregation exist in classical thought. Sets are all of odd parity in that they obey
the exclusion principle x ∨ x = 0. The functor Grass works well on the probability
space of fermions. But its iteration Grass2 violates the conservation of statistics
(exchange parity X = 0,1).

Another problem with Š as a paradigm is that its ι is infinitely reducible. This
has classical roots. The classical ι is a formal sum of its restrictions ι(m) to sets of
cardinality m. Correspondingly, the quantum ι reduces to a sum

ι =
∑
m

ι(m) (15)

of its projections on m-adics. In the classical basis {1s} ⊂ Š, the operator ι(m) has
the matrix elements

ι{s1...sm}
s1...sm (16)

in which for any s1, . . . , sm, {s1 . . . sm} is a single collective index of one higher rank
than any of s1, . . . , sm. The repeated unsummed indices break the linear group, but
the tensor

ι{s3s4}
s1s2 := δs3s4

s1s2 (17)

is invariant under the linear group and reduces to ι(2) in the classical basis. Such ι(m)

are the irreducible vertices of this quantum set theory. If they occur in nature, their
occurrences supply their operational definitions. If they do not occur in nature, we
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have to remove them from the physical theory, by burying them in its infrastructure
if necessary.

There is also a problem with relativity. Set theory takes the Eternal view and has
a distinguished frame, while a quantum theory admits only the secular perspectives
of many limited experimenters. S and Š both have preferred frames.

Here Š will be truncated to two ranks, the points and links required to build a
network of interactions. The rest of the usual hierarchy of ranks is replaced by a
hierarchy of clusterings of clusters in the network. The points have Fermi statistics,
the links Palev.

8 Quantum Events

Einstein understood an event to be a smallest possible occurrence, and took the col-
lision of two small hard balls as an approximation to an event. Collisions of much
smaller things have been studied since then, and they have more internal variables
than Einstein’s idealized buckshot, such as spins and Standard Model charges. It
is remarkable that the Standard Model still uses the same mathematical represen-
tation of space-time events that Einstein did. Is this unreasonable effectiveness or
pernicious influence?

To infer new classical space-time dimensions from the internal quantum num-
bers is archaic today. Any classical description is a low-resolution many-quantum
description. Quanta are not born out of continua; continua are assembled quanta. To
be sure, the first quanta were explained by quantization. Similarly, Swift tells us, the
first roast pig was discovered when a barn burnt down, and for some time, a barn
was burnt down for every roast pig. The continua of string theory and of modern
followers of Kaluza are our barns. Eventually it will be recognized as Dirac did,
that one can have a quantum without quantizing some continuum.

The charges of the elementary particles have small discrete spectra, in stark con-
trast to the quasi-continuous spectra of position coordinates. This tells us that the
charge degrees of freedom do not organize themselves into quasi-continua as spins
do in the models of Feynman and Penrose. Conceivably this is the salient difference
between the charges and spin.

According to present physical theory, we never perceive space-time but only
quanta. Quantizing space-time is best understood as extending the familiar quanti-
zation of orbital angular momentum to the other orbital variables xμ, pμ, like Feyn-
man, Snyder, Penrose, and Yang. It resolves a fine-structure of quanta that canonical
quantum theories smear out. Since our measurements always concern quanta, we
have no need for both quanta and space-time. Regard space-time as another classi-
cal reification, a mental extension of the solid laboratory floor beam to the distant
stars.

Particle collisions take the place of Einstein’s buckshot collisions. In the rela-
tivistic canonical quantum theory the 15 orbital operators of en event,

xμ,pμ,Lμ′μ, i ∈ hp(3,1). (18)
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span the singular Heisenberg-Poincare Lie algebra. In addition quanta have the in-
ternal variables of the Standard Model. To describe one quantum in a canonical
theory it suffices to tensor-multiply certain of these spaces and unite the product
with braces or ι. In the canonical theory, however, collisions break up into several
IO processes for quanta. One space-time quantization resolves these in turn into
chronons two ranks of aggregation lower, the fundamental actions of the theory.

Since fermions exist, we cannot begin the inductive construction of the quantum
universe as computer with the empty set alone, which is even. Begin with a foun-
dation of N primal odd chronons represented by basis spinors χa ∈ X , a ∈ N � 1.
A set-theoretic fermion field hierarchically unites an odd number of chronons first
into events ε = {χe ∨ · · · ∨ χe}, and then into fields φ = εa ∨ · · · ∨ εb. To form a
gauge boson, unite chronons into di-chronons, into gaugeon events, into a gaugeon
field.

Set theory envisages the construction of its universe from the empty set in an in-
finity of ranks, by a Mathematician outside the theory. A similar construction within
superset theory Š requires on the order of 10 ranks or less to accommodate physics.
It does not represent the entire universe, since mundane experimenters, like the ex-
tramundane Mathematician, are there from start to finish, controlling the system but
largely undescribed in the theory.

Nevertheless it is advantageous for Š to be infinite-dimensional. so that the sin-
gular limit of classical space-time can be carried out within Š.

Absolute Space and Absolute Time have left the theater but Absolute Space-Time
remains in the Standard Model and general relativity. How did this myth begin?

Etymologically, a “line” is a linen string, a “point” is a puncture or stick, and “ge-
ometry” is earth-measurement. Sticks connected by linen strings used to puncture
the Nile flood-plain each spring. This is supposed to be the origin of geometry. These
sticks, however, have position, momentum, angular momentum, time, and energy.
Presumably these were first neglected and then lost on the way to Greece, giving
rise ultimately to the constructs of space-time. In quantum field theory space-time
is merely an index on some variables, part of the infrastructure. Space-time coordi-
nates are actually carried by physical quanta, not by mythical space-time points.

The fundamental events in nature are then IO operations for quanta. In the Stan-
dard Model every fermion carries many variables: one hypercharge y, one genera-
tion index g, three isospin τ k , four Dirac γ μ, eight color charges χc , four space-
time xμ, four energy-momentum pμ, and six angular momenta Lμ′μ. Like atomic
number and atomic weight, these variables tell us something about the structure and
composition of the fermion. We are to fit them all into a semisimple operator algebra
E of event variables.

To recover the canonical quantum theory from a Yang spin(3,3) theory, one
freezes one rotational degree of freedom L65 ◦→ Ni, as a step in the organized sin-
gular limit in which h̄,X → 0 and N → ∞. Like the Higgs and gravitational fields,
i is the non-zero vacuum value of a non-commutative field operator ı̌ = Ł65/N .
Presumably all vacuum values result from freezing and self-organization. The pos-
sibility that the Yang ı̌ is the Higgs field has not been excluded.
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In the Standard Model, odd probability vectors form a Clifford algebra, even ones
a Heisenberg Lie algebra, and orbital coordinates x,p another Heisenberg algebra
of lower rank. This singular structure is presumably a jury-rig. A nearby finite-
dimensional algebra arises from the construction out of fermion pairs; not a Bose
Lie algebra but a Palev one based on so(N,N).

Since the noncompact Lorentz group will not fit into a compact unitary group,
a finite-dimensional relativistic quantum theory has to renounce definiteness of the
probability norm as well as the space-time norm. Relativistic spinor theory provides
one resolution [2]. The space R of real Majorana Dirac spinors has no invariant
definite metric form. Instead it has one Pauli form β that is invariant but not definite,
and a plethora of Hilbert forms h that are definite but not invariant, associated with
different time axes; and nevertheless it works.

Take spinor spaces as elementary building blocks, so that their aggregates in-
herit this multi-metric structure. Correspondence with present physics requires that
a unique invariant global hermitian form H ←◦ h exist in the singular limit of clas-
sical space-time.

9 Quantum Gauges

Experience severely breaks the kinematic symmetry between position and momen-
tum in quantum mechanics. So does the locality principle, which requires field vari-
ables coupled in the Lagrangian or action to share a space-time point, not a point in
the Fourier transform momentum-energy space. So does gauge field theory, includ-
ing general relativity. We must resolve this discord between the diffeomorphism and
canonical groups into a harmony; they work too well to be merely discarded.

Gauge theories today rest on the following relation, with readings depending on
context; “energy” stands for “energy-momentum” here:

Dμ = ∂μ − Δμ,

covariant derivative = Lie derivative − connection,

kinetic energy = total energy − potential energy.

(19)

In a Yang-Feynman quantum event space, the invariant concept is the Yang-
Feynman quantized coordinate p̌y′y , This is a cumulation

p̌y′y = ψγy′yψ (20)

of many spin-matrix terms γy′y , generating a regular Lie algebra y. In turn, p̌y′y
has a singular semi-classical contraction py′y ∈ hp(3,1) ←◦ y, the usual 15 canoni-
cal quantum event coordinates py′y = (xμ,pμ,Lμ′μ, i). Then underlying the usual
gauge field kinematics (19) is the single-event relation

p̌y′y = py′y − Py′y,

Yang coordinate = canonical coordinate − quantum correction.
(21)
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Both terms on the right-hand side are singular; only the left-hand side is physically
meaningful. Accumulate this relation over all events in a field by a higher-rank
cumulation φ̌ . . . φ and we arrive at the regular correspondent of (19).

In older terms: classical gravitational curvature and the electromagnetic field are
higher order corrections that remain when we contract quantum event space to a flat,
field-free, classical space-time. They are classical effective descriptions of quantum
non-commutativity at the chronon level.

C.S. Peirce noted that while only line graphs can be built up from a 2-vertex
alone, the most general graph can be simulated with a triadic vertex alone. The
natural physical candidate for a universal vertex is indeed triadic, that of gauge
physics, with three limbs: a chiral spinor ψ , its dual ψ , and a gauge vector boson
(actually, palevon) φ:

ψγ mAmψ =: ψφψ = γ y′′y′yψy′′φy′ψy. (22)

Here spin(8) triality cries out for physical interpretation, so far in vain.
The proposed probability space consists of all tensors constructed inductively

from a finite number of triadic vertices γ of (22), by tensor multiplication, linear
combination, contraction (connecting two compatible lines), and identification mod-
ulo commutation relations of the Yang-Palev kind. Odd lines obey Fermi statistics.
Even lines obey the unique Palev statistics induced by this Fermi statistics.

The outstretched arms of γ represent chiral spinors, and the leg represents a
vector in the first grade of a Clifford algebra associated with the spinor space. The
spinors have exchange parity 1 and the vector exchange parity 0. All the terminals
of γ are polarized. Spinors plug only into dual spinors, and dyads only into dyads.

Call the quantum structure whose history probability tensors are so constructed a
quantum interaction network. Its probability tensors derive from Feynman diagrams
and Penrose spin networks more than Cantor sets.

This diagram algebra will be developed further.
But it begins to seem likely that the three simple physical Lie algebras introduced

by Yang into kinematics, Palev into statistics, and Yang-Mills into differential geom-
etry are actually different representations of one. Whether this shows the pernicious
influence or the unreasonable effectiveness of mathematics remains to be seen.
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Jack Schwartz Meets Karl Marx

Martin Davis

Abstract Participating in a group study of Karl Marx’s classic Capital led Jack
Schwartz in unexpected directions. He was surprised to find, not only that Marx’s
celebrated labor theory of value is in blatant contradiction to empirical reality, but
also that Marx was quite aware of this. To get around this roadblock, Marx had
returned to the Hegelian dialectic that he and Friedrich Engels had previously aban-
doned and even ridiculed.

More than one-third of the way through the first volume of Marx’s acknowledged
masterpiece Capital, the author had to confront the fact that, reasoning from his
basic assumptions, he had been led to the to the conclusion that lines of industry
that employ much human labor and little machinery would be more profitable than
those that are more mechanized. Marx notes that this is in “apparent contradiction”
with “all experience based on appearance”. What Marx says next is bound to arouse
the curiosity of any mathematician who reads it: “For the solution of this apparent
contradiction, many intermediate terms are as yet wanted, as from the standpoint of
elementary algebra many intermediate terms are wanted to understand that 0

0 may
represent an actual quantity.”1

During the late 1950s, Jack Schwartz and I were part of a radical group that, over
a period of several years, and in addition to other activities, had embarked on a study
of Capital. One byproduct of Jack’s study of Marx’s economic system was his own
work in mathematical economics.2 Another was a novel understanding of the role
of Hegel’s philosophy in Marx’s system.

1[9], p. 335.
2[13, 14].

I am grateful to Judith Dunford who read a draft of this article and made a number of very helpful
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1 Prologue: Contemporary Issues

I was an advanced undergraduate mathematics student at City College in New York
when Jack Schwartz arrived there from Stuyvesant High School. He was in the pro-
cess of changing his main interest from chemistry to mathematics, and we became
friends right away. I was astonished at the way he absorbed difficult treatises one af-
ter another. He did his graduate work at Yale, while I did mine at Princeton, but we
remained in close touch. In the summer of 1949 Jack and I, along with my Prince-
ton roommate Mel Hausner, were living together in Jack’s parents’ apartment, while
his parents and sister were escaping the summer heat in a bungalow at Rockaway
Beach. During that summer I became engaged to Beatrice Appelstein, and I believe
it was then that Jack met her. It was also during that summer that Beatrice introduced
me to Murray Bookchin.3

Although Murray and I had both grown up in the Bronx, our lives had been utterly
different. Seven years older than me, Murray had been an adolescent during the
Great Depression while I had been a small child. Self-educated, first a Communist
and then a Trotskyist, by the time I met him he had become a follower of the program
of the German radical Joseph Weber. If I were forced to summarize Weber’s program
in a succinct formula, the phrase “Marxism with full democracy but without the
proletariat” might come close. In a programmatic article [15] Weber wrote:

To have elaborated the simple fact that the dream of humanity was not realizable without
definite material prerequisites (while at the same time proving that these prerequisites were
maturing) remains an historical fact of sweeping significance—the great merit of . . . Marx
and Engels. . . . The conception that the organized workers would overcome the capitalist
system . . . is at least historically obsolete.. . . the task falls directly on the overwhelming ma-
jority of mankind . . . A new consciousness of the practicality of the old ‘Utopias of reason’
is necessary . . .

Weber asserted that the environment would continue to be seriously damaged as
long as “the profit motive determines [the] economy”:

. . . the contamination, dangerous to life, of rivers and coasts through their excessive dis-
charge of industrial refuse (including many chemicals), urban dirt and human excrement
. . .

Weber proposed a “party” that in effect was to be the new society in embryo. As
such it was to be free of institutional apparatus: it was to have no officials and to
own no property.4

I don’t remember how much of this came across during my first meeting with
Murray, but I do remember being immediately struck by his knowledge and intel-
ligence. I also remember finding some of what I heard very hard to accept. In any
case I did not see Murray again until the following summer. By then I was married

3See the obituary http://www.nytimes.com/2006/08/07/us/07bookchin.html.
4Of course this brief summary does not give an adequate account of Weber’s ideas. See also:
http://www.bopsecrets.org/images/weber.pdf and http://en.wikipedia.org/wiki/The_Movement_
For_a_Democracy_of_Content.
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to Beatrice, had completed my doctorate, and had accepted a faculty position at the
University of Illinois in Champaign-Urbana to begin in the fall. The marriage did
not last very long. When I moved to Urbana, Beatrice remained in New York. Later
she and Murray married.

Back in New York in December 1950 for the Christmas vacation, I was very
surprised to learn that Jack had been having extensive conversations with Murray
and had become part of the movement based on Weber’s ideas. I spent two academic
years in Champaign-Urbana, and then was a Visiting Member at the Institute for
Advanced Study in Princeton until the fall of 1954. Being near New York, I began
attending some of the Saturday evening CI meetings, “CI” being the initials of the
name of our quarterly magazine Contemporary Issues. Typically present at these
meetings in a New York apartment were Joseph Weber (we called him “Joe”), Jack
and his first wife Sandra, Murray and Beatrice, my wife Virginia (whom I had met
and married in Urbana), and perhaps half a dozen others. There was a sister German
publication called Dinge der Zeit. In New York there was also a Friday evening CI
group with little overlap between the two New York groups. Part of each meeting
would be taken up with reading correspondence from affiliates. There was Philip
MacDougal in Carmel Heights, California who had a monthly commentary program
on the Pacifica radio station KPFA. (When Phil retired from this, Virginia took over
the program and continued for about two years.) There were also affiliates in London
and there was a small group in South Africa vigorously fighting apartheid.

In addition to the magazine, we published occasional leaflets that we distributed
to the public. Virginia and I put Murray’s leaflet against nuclear testing into all the
mailboxes at the Institute for Advanced Study. Jack wrote a powerful leaflet Amer-
ica on the Road of Hitler and Stalin on the erosion of civil liberty that was being
justified by the Cold War. We published an article on the plight of the Palestinian
refugees from the 1948 war long before the issue had any prominence. We were
very conscious of the weakness of the Russian economy and believed that in spite
of the bellicosity of the Cold War and episodes like the wars in Korea and Viet-
nam, the essential truth was that neither side really wanted to upset the stability of
the postwar settlement. We felt that the Stalinist Empire was hollow in the middle
and hoped to see it collapse from within. Therefore when the Hungarian Revolution
broke out in 1956, and students in Moscow met in solidarity with the Hungarians,
we agitated for arms to be made available to the Hungarian fighters. We distributed
leaflets, marched with Hungarian immigrants, and organized public meetings.

CI meetings in New York were contentious affairs. Speakers were often inter-
rupted followed by their cries of “Let me finish!”. Nevertheless consensus was gen-
erally achieved, and our activities were carried out with verve and enthusiasm. What
tore us apart was not disagreement about contemporary affairs, but a group study of
Marx’s classic Capital. The discussions and written documents to which this study
gave rise over a period of three years ranged far and wide. Dissension arose over the
first few pages in which Marx asserted what was later called his Law of Value to the
effect that commodities exchange in the marketplace in proportion to the quantity
of human labor required for their production. Jack and others found Marx’s argu-
ment in favor of this proposition unpersuasive. Well, we were told, all this would be
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resolved in Volume III of Capital. Anyhow, we were assured, none of it could re-
ally be understood without a thorough grounding in Hegelian Philosophy. We were
supposed to make sense of the impenetrable gobbledygook of Hegel’s Science of
Logic. Hegel’s first propositions were the pair: Being is nothing and Nothing is be-
ing. Living in Eastern Connecticut at the time, I attended few of these meetings. But
I do remember a meeting, apparently including people from the Friday and Satur-
day groups, in which Chester Manes (of the Friday group) recited verbatim Hegel’s
alleged demonstration of these assertions:

Being, pure being, without any further determination. In its indeterminate immediacy it is
equal only to itself. It is also not unequal relatively to an other; it has no diversity within
itself nor any with a reference outwards. It would not be held fast in its purity if it contained
any determination or content which could be distinguished in it or by which it could be
distinguished from an other. It is pure indeterminateness and emptiness. There is nothing to
be intuited in it, if one can speak here of intuiting; or, it is only this pure intuiting itself. Just
as little is anything to be thought in it, or it is equally only this empty thinking. Being, the
indeterminate immediate, is in fact nothing, and neither more nor less than nothing.
Nothing, pure nothing: it is simply equality with itself, complete emptiness, absence of all
determination and content—undifferentiatedness in itself. In so far as intuiting or thinking
can be mentioned here, it counts as a distinction whether something or nothing is intuited
or thought. To intuit or think nothing has, therefore, a meaning; both are distinguished
and thus nothing is (exists) in our intuiting or thinking; or rather it is empty intuition and
thought itself, and the same empty intuition or thought as pure being. Nothing is, therefore,
the same determination, or rather absence of determination, and thus altogether the same
as, pure being.5

Joe had been insisting that it was pointless to continue studying Marx without
first obtaining a proper philosophical background. But people grew tired of this
and asked him to desist. Despite being near the end of his life he published in CI
a rambling fifty page paper dealing with philosophical matters.6 In his article, Joe
proposed that conceptual problems in physics and mathematics required “dialectical
thinking” for their resolution. Mathematicians were urged to embrace contradictions
rather than seek to avoid them. It was truly dispiriting to see someone whose breath-
taking vision had once enthralled us produce such junk.

Marx understood quite well that there is something, that at least in “appearance”,
is problematical about his Law of Value, as is exemplified by the passage quoted
at the very beginning of this article. Marx had worked out a very graphic way to
demonstrate the exploitation of workers in a quantitative manner using his concept
of surplus value. He pointed out that in the course of a working day, a laborer will
reach a point where the value his efforts have produced so far are sufficient for his
needs. Thus all the value produced beyond that point, the surplus value, accrues to
the capitalist and is the source of his profit. Marx made use of this analysis to portray

5I found this text on the Internet. For the original German, see [5], pp. 43–44.
6Joe’s article [16] was in #31 of CI dated October-November 1957, along with a brief article by
my wife Virginia based on one of her KPFA broadcasts and an article by Jack on the dangers of
nuclear experimentation.
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capitalist society as in effect stealing from the worker. In an extensive address he
gave to the First International in 1865 he did this very cleverly:7

. . . the peasant serf . . . worked, for example, three days on his own field . . . and the three
subsequent days he performed compulsory and gratuitous labour on the estate of his lord.
Here, then, the paid and unpaid parts of labour were visibly separated, separated in time
and space; and our Liberals overflowed with moral indignation at the preposterous notion
of making a man work for nothing.
In point of fact, however, whether a man works three days of the week on his own field and
three days for nothing on the estate of his lord, or whether he works in the factory or the
workshop six hours daily for himself and six for his employer, comes to the same, although
in the latter case the paid and unpaid portions of labour are inseparably mixed up with each
other, and the nature of the whole transaction is completely masked by the intervention of a
contract and the pay received at the end of the week.

This makes a fine polemic, but there is a conceptual problem. Tacitly, the Law
of Value is being assumed, and it is a logical consequence of this “law” that Marx
notes, is in “apparent contradiction” with “all experience based on appearance”.
Putting off for a subsequent volume the “many intermediate terms” needed “for the
solution of this apparent contradiction”, Marx sails blithely ahead and, basing his
analysis on the Law of Value, he proves that the proletariat will eventually be placed
in a position where they will be compelled to overthrow capitalism:

Centralization of the means of production and socialization of labour at last reach a point
where they become incompatible with their capitalist integument. This integument is burst
asunder. The expropriators are expropriated.8

The “intermediate terms” needed were to be supplied in volume III of Capital.
However Marx died before he had completed either volume II or volume III, and
it was left to Engels to reconstruct them from Marx’s rather chaotic notes.9 Jack
made a detailed study of the arguments in Volume III that were supposed to justify
the Law of Value, and convinced himself that they were just wrong. He wrote this
up in a detailed article in which he analyzed Marx’s assertions in the context of
a simple model economy in which the various quantities Marx discussed could be
calculated explicitly using nothing more than high school algebra. The discussion
in CI of Jack’s work was bitterly contentious. As Jack said in a letter written to a
friend at the time, “It became perfectly plain that I had touched upon a sensitive
fiber: that the majority of the group felt that a number of fundamental views had
been challenged, and were reacting with an angry blindness and hostility”.10 Jack
recalled one complaint: “Marx gave us a palace, you leave us only with a shack.”

In this atmosphere, Jack gave up trying to resolve the matter by further explana-
tions and discussions during meetings. He submitted a short article for publication
in our magazine. But the rupture had gone too far. Publication was refused despite
the words in #5 of CI immediately preceding Joe’s programmatic “Great Utopia”:

7[8], p. 43. The same comparison appears, but less pointedly, in Capital, [9], p. 591.
8[9], p. 837.
9See [6], pp. 298–301.
10I’m grateful to Diana Schwartz who provided me with a copy of this letter.
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Only through thorough-going discussion, unrestrictedly free but informed and objective ex-
change of opinions of individuals of the most diverse origins, convictions, and experiences,
can a comprehensive solution of the crucial issues of our time be arrived at.

Jack responded by resigning from CI. I had been working on a comprehensive re-
ply to Joe’s philosophical article in which I hoped to clarify some of the method-
ological issues for people with little education in those areas. Although my article
had reached the point of a first rough draft, it seemed pointless to continue, and I
also resigned along with two other members of the group. Our own group Cornu-
copia, in which we assumed a radical stance based on Keynesian economics, did
not last long. CI continued for several years before it died as well, although Mur-
ray Bookchin continued pursuing a radical agenda including pioneering work on
ecological issues.

2 Hegel and Marx11

Marxists and anti-Marxists disagree about many things, but all agree about Marx’s
relationship with Hegel’s philosophy: he was a Young Hegelian in his early writings,
and then, when he became a revolutionary communist, he adopted Hegel’s dialectic
to his own materialist philosophy. As we shall see the truth is more complicated.

By 1844, Marx and Engels had not only left the Young Hegelians behind, they
were thoroughly disillusioned with Hegel’s speculative philosophy as can be seen
in this hilarious send-up of Hegelianism:

If from real apples, pears, strawberries and almonds I form the general idea “Fruit”, if I go
further and imagine that my abstract idea “Fruit”, derived from real fruit, is an entity existing
outside me, is indeed the true essence of the pear, the apple, etc., then in the language of
speculative philosophy—I am declaring that “Fruit” is the “Substance” of the pear, the
apple, the almond, etc. I am saying, therefore, that to be a pear is not essential to the pear,
that to be an apple is not essential to the apple; that what is essential to these things is
not their real existence, perceptible to the senses, but the essence that I have abstracted
from them and then foisted on them, the essence of my idea—“Fruit”. I therefore declare
apples, pears, almonds, etc., to be mere forms of existence, modi, of “Fruit”. My finite
understanding supported by my senses does of course distinguish an apple from a pear
and a pear from an almond, but my speculative reason declares these sensuous differences
inessential and irrelevant. It sees in the apple the same as in the pear, and in the pear the
same as in the almond, namely “Fruit”. Particular real fruits are no more than semblances
whose true essence is “the substance”—“Fruit”.
. . . Having reduced the different real fruits to the one “fruit” of abstraction—“the Fruit”,
speculation must, in order to attain some semblance of real content, try somehow to find its
way back from “the Fruit”, from the Substance to the diverse, ordinary real fruits, the pear,
the apple, the almond, etc. It is as hard to produce real fruits from the abstract idea “the
Fruit” as it is easy to produce this abstract idea from real fruits. Indeed, it is impossible to
arrive at the opposite of an abstraction without relinquishing the abstraction.

11In bringing back to mind things I hadn’t thought about for many years, I was greatly helped by the
unpublished essay [3] by my son, Harold Davis. It was written as a term paper for an undergraduate
course in January 1973. Harold had access to unpublished documents by Jack and by me.
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The speculative philosopher . . . argues somewhat as follows:
If apples, pears, almonds and strawberries are really nothing but “the Substance”, “the
Fruit”, the question arises: Why does “the Fruit” manifest itself to me sometimes as an
apple, sometimes as a pear, sometimes as an almond? Why this semblance of diversity
which so obviously contradicts my speculative conception of Unity, “the Substance”, “the
Fruit”?
This, answers the speculative philosopher, is because “the Fruit” is not dead, undifferenti-
ated, motionless, but a living, self-differentiating, moving essence. The diversity of the or-
dinary fruits is significant not only for my sensuous understanding, but also for “the Fruit”
itself and for speculative reason. The different ordinary fruits are different manifestations
of the life of the “one Fruit”; they are crystallisations of “the Fruit” itself. Thus in the apple
“the Fruit” gives itself an apple-like existence, in the pear a pear-like existence. We must
therefore no longer say, as one might from the standpoint of the Substance: a pear is “the
Fruit”, an apple is “the Fruit”, an almond is “the Fruit”, but rather “the Fruit” presents itself
as a pear, “the Fruit” presents itself as an apple, “the Fruit” presents itself as an almond;
and the differences which distinguish apples, pears and almonds from one another are the
self-differentiations of “the Fruit” and make the particular fruits different members of the
life-process of “the Fruit”. Thus “the Fruit” is no longer an empty undifferentiated unity; it
is oneness as allness, as “totality” of fruits, which constitute an “organically linked series of
members”. In every member of that series “the Fruit” gives itself a more developed, more
explicit existence, until finally, as the “summary” of all fruits, it is at the same time the
living unity which contains all those fruits dissolved in itself just as it produces them from
within itself, just as, for instance, all the limbs of the body are constantly dissolved in and
constantly produced out of the blood.
. . . The ordinary man does not think he is saying anything extraordinary when he states
that there are apples and pears. But when the philosopher expresses their existence in the
speculative way he says something extraordinary. He performs a miracle by producing the
real natural objects, the apple, the pear, etc., out of the unreal creation of the mind “the
Fruit”, i.e., by creating those fruits out of his own abstract reason, which he considers as an
Absolute Subject outside himself, represented here as “the Fruit”. And in regard to every
object the existence of which he expresses, he accomplishes an act of creation.
It goes without saying that the speculative philosopher accomplishes this continuous cre-
ation only by presenting universally known qualities of the apple, the pear, etc., which exist
in reality, as determining features invented by him, by giving the names of the real things to
what abstract reason alone can create, to abstract formulas of reason, finally, by declaring
his own activity, by which he passes from the idea of an apple to the idea of a pear, to be
the self-activity of the Absolute Subject, “the Fruit”.
In the speculative way of speaking, this operation is called comprehending Substance as
Subject, as an inner process, as an Absolute Person, and this comprehension constitutes the
essential character of Hegel’s method.
. . . On the one hand, Hegel with masterly sophistry is able to present as a process of the
imagined creation of the mind itself, of the Absolute Subject, the process by which the
philosopher through sensory perception and imagination passes from one subject to an-
other. On the other hand, however, Hegel very often gives a real presentation, embracing
the thing itself, within the speculative presentation. This real development within the specu-
lative development misleads the reader into considering the speculative development as real
and the real as speculative.12

Although this was written with the young Hegelians, and especially one F.Z. Zy-
chlinski writing under the pen name Szeliga, in mind, the last paragraph particularly

12[12], pp. 68–72.
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makes it clear that Marx and Engels are scoffing at Hegelian speculative philosophy
in general.

Contrast this with what Marx had to say in 1873 in his preface to the second
edition of Capital responding to criticism asserting that Capital used the Hegelian
dialectic:

My dialectic method is not only different from the Hegelian, but is its direct opposite. To
Hegel, the life-process of the human brain, i.e., the process of thinking, which, under the
name of “the Idea,” he even transforms into an independent subject, is the demiurgos of the
real world, and the real world is only the external, phenomenal form of “the Idea.” With
me, on the contrary, the ideal is nothing else than the material world reflected by the human
mind, and translated into forms of thought.
The mystifying side of Hegelian dialectic I criticised nearly thirty years ago, at a time when
it was still the fashion. But just as I was working at the first volume of “Das Kapital,” it
was the good pleasure of the peevish, arrogant, mediocre Epigones [Büchner, Dühring and
others] who now talk large in cultured Germany, to treat Hegel in same way as the brave
Moses Mendelssohn in Lessing’s time treated Spinoza, i.e., as a “dead dog.” I therefore
openly avowed myself the pupil of that mighty thinker, and even here and there, in the
chapter on the theory of value, coquetted with the modes of expression peculiar to him.
The mystification which dialectic suffers in Hegel’s hands, by no means prevents him from
being the first to present its general form of working in a comprehensive and conscious
manner. With him it is standing on its head. It must be turned right side up again, if you
would discover the rational kernel within the mystical shell.13

Coquetted? Here and there? Modes of expression? Does Marx’s economic anal-
ysis really depend in some significant way on Hegelian methods or not? V.I. Lenin
in Switzerland during the years before revolution broke out in Russia was studying
philosophy and kept notes on his reading. Because of the Lenin hagiography in the
Soviet Union, these scribbled notes were carefully edited and published as Lenin’s
“Philosophical Notebooks”. In his notes on Hegel’s Logic the following “aphorism”
occurs:

It is impossible completely to understand Marx’s Capital, and especially its first chapter,
without having thoroughly studied and understood the whole of Hegel’s Logic. Conse-
quently, half a century later none of the Marxists understood Marx!!14

So, Lenin insisted that it’s not a matter of a mere mode of expression, that the first
chapter of Capital, “the chapter on the theory of value”, can’t be understood without
a full understanding of Hegel’s Logic. This was also very much what Joe Weber was
trying to tell us in CI. They were telling us that Marx was not having a coquettish
flirtation with Hegel, but rather a serious full-blooded relationship. However, if we
look back to 1844, to The Holy Family, we have Marx and Engels telling us in effect
that what the Hegelian method could contribute to a proper discussion of “common
sense” matters was a “distorted” vacuity:

Speculative philosophy, namely Hegel’s philosophy, had to transpose all questions from the
form of common sense to the form of speculative reason and convert the real question into
a speculative one to be able to answer it. Having distorted my question on my lips and, like

13[9], p. 25.
14[7], p. 180.
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the catechism, put its own question into my mouth, it could of course, like the catechism,
have its ready answer to all my questions.15

In order to begin to make sense of all of this, it is necessary to understand what
Marx had been trying to accomplish. He was going to deepen the “political econ-
omy” of Adam Smith and Ricardo into a profound analysis of capitalism that would
prove “scientifically” that capitalism as a socio-economic system was bound to col-
lapse. Thus the coming of socialism would be seen as grounded in scientific law as
opposed to the “utopian” socialism he and Engels viewed as pathetic. Engels rec-
ognized Marx’s genius and was enthusiastic about this project. Engels work in his
father’s firm, which he hated, helped to finance this undertaking.16

While browsing in the voluminous correspondence of Marx and Engels, Jack
Schwartz found a remarkable letter from Marx to Engels dated January 14, 1858:

. . . I am getting some nice developments. For instance, I have overthrown the whole doctrine
of profit as it has existed up to now. In the method of treatment the fact that by mere accident
I have again glanced through Hegel’s Logic has been of great service to me—Freilgrath
found some volumes of Hegel which originally belonged to Bakunin and sent them to me
as a present.17

So after years of treating Hegel’s philosophy with scorn, of dismissing it as trans-
posing every “real question” into a “speculative” one, Marx found Hegel’s Logic
“of great service” in his economic theories. Here is Marx’s exposition of his “Law
of Value” in the first few pages of the first chapter of Capital:

Exchange value, at first sight, presents itself as a quantitative relation, as the proportion in
which values in use of one sort are exchanged for those of another sort, a relation constantly
changing with time and place. Hence exchange value appears to be something accidental
and purely relative, and consequently an intrinsic value, i.e., an exchange value that is in-
separably connected with, inherent in commodities, seems a contradiction in terms. Let us
consider the matter a little more closely.
A given commodity, e.g., a quarter of wheat is exchanged for x blacking, y silk, or z gold,
& c.—in short, for other commodities in the most different proportions. Instead of one
exchange value, the wheat has, therefore, a great many. But since x blacking, y silk, or z

gold & c., each represents the exchange value of one quarter of wheat, x blacking, y silk, z

gold, & c., must, as exchange values, be replaceable by each other, or equal to each other.
Therefore, first: the valid exchange values of a given commodity express something equal;
secondly, exchange value, generally, is only the mode of expression, the phenomenal form,
of something contained in it, yet distinguishable from it.
Let us take two commodities, e.g., corn and iron. The proportions in which they are ex-
changeable, whatever those proportions may be, can always be represented by an equa-
tion in which a given quantity of corn is equated to some quantity of iron: e.g., 1 quarter
corn = x cwt. iron. What does this equation tell us? It tells us that in two different things—
in 1 quarter of corn and x cwt. of iron, there exists in equal quantities something common
to both. The two things must therefore be equal to a third, which in itself is neither the one
nor the other. Each of them, so far as it is exchange value, must therefore be reducible to
this third.

15[12], p. 106.
16Engels’s unflagging support for Marx and his family continued for many years as the projected
publication dates of the successive volumes of Capital receded into the future. See [6].
17[11], p. 102.
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A simple geometrical illustration will make this clear. In order to calculate and compare the
areas of rectilinear figures, we decompose them into triangles. But the area of the triangle
itself is expressed by something totally different from its visible figure, namely, by half
the product of the base multiplied by the altitude. In the same way the exchange values of
commodities must be capable of being expressed in terms of something common to them
all, of which thing they represent a greater or less quantity.
This common “something” cannot be either a geometrical, a chemical, or any other natural
property of commodities. Such properties claim our attention only in so far as they affect
the utility of those commodities, make them use values. But the exchange of commodities
is evidently an act characterised by a total abstraction from use value. Then one use value
is just as good as another, provided only it be present in sufficient quantity.
. . . As use values, commodities are, above all, of different qualities, but as exchange values
they are merely different quantities, and consequently do not contain an atom of use value.
If then we leave out of consideration the use value of commodities, they have only one
common property left, that of being products of labour. But even the product of labour itself
has undergone a change in our hands. If we make abstraction from its use value, we make
abstraction at the same time from the material elements and shapes that make the product
a use value; we see in it no longer a table, a house, yarn, or any other useful thing. Its
existence as a material thing is put out of sight. Neither can it any longer be regarded as the
product of the labour of the joiner, the mason, the spinner, or of any other definite kind of
productive labour. Along with the useful qualities of the products themselves, we put out
of sight both the useful character of the various kinds of labour embodied in them, and the
concrete forms of that labour; there is nothing left but what is common to them all; all are
reduced to one and the same sort of labour, human labour in the abstract.
Let us now consider the residue of each of these products; it consists of the same unsub-
stantial reality in each, a mere congelation of homogeneous human labour, of labour power
expended without regard to the mode of its expenditure. All that these things now tell us
is, that human labour power has been expended in their production, that human labour is
embodied in them. When looked at as crystals of this social substance, common to them all,
they are—Values.18

On the basis of this discussion, and of nothing else, Marx goes on to develop his
economic analysis presuming that commodities exchange in proportion to the quan-
tity of labor “embodied in them”. When the discussion of Capital in CI began, Jack
and others objected at once complaining that in no way was this justified. One has
no difficulty seeing that the relation of quantity x of commodity A exchanging with
quantity y of commodity B is an equivalence relation. But then Marx concludes:
“. . . in two different things—in 1 quarter of corn and x cwt. of iron, there exists in
equal quantities something common to both. The two things must therefore be equal
to a third, which in itself is neither the one nor the other. Each of them, so far as it
is exchange value, must therefore be reducible to this third.” Taking the example of
the area of triangle being represented quantitatively by the usual formula, he states:
“In the same way the exchange values of commodities must be capable of being ex-
pressed in terms of something common to them all, of which thing they represent a
greater or less quantity.” Must? Why so? By no means is every equivalence relation
mediated by a quantitative measure in that manner. It is in the process of identify-
ing this thing “common to them all” as a quantity of human labor that he adopts
the “modes of expression” of Hegel’s speculative philosophy. Like “the fruit” as an

18[9], pp. 43–45.
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abstraction, Marx offers us not the concrete actual labor of actual people, but rather
“crystals of this social substance . . . Values”.

3 Marx’s Enigmatic 0
0

This essay begins with what Marx said when he explicitly confronted the contra-
diction between his Law of Value and the fact that in a market economy in which
capital flows fairly readily towards profitable opportunities, the rate of profit tends
to be constant across the entire economy. In more detail:

Everyone knows that a cotton spinner . . . does not pocket less profit or surplus value than a
baker . . . For the solution of this apparent contradiction, many intermediate terms are as yet
wanted, as from the standpoint of elementary algebra many intermediate terms are wanted
to understand that 0

0 may represent an actual quantity.19

This apparently refers to the differential calculus in which the derivative is de-
fined by

f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

If we actually set h equal to 0 in the “difference quotient”

f (x + h) − f (x)

h
,

we do end up with the meaningless 0
0 . But what is involved in the definition of the

derivative is the “limit” as h → 0 of the difference quotient; it is not at all a question
of setting h = 0. It was clear that the calculus developed by Newton and Leibniz
yielded valuable results, but from the outset there were questions about the validity
of the methods used. Consider the simple example of computing the derivative of x2.
The difference quotient

(x + h)2 − x2

h
= 2hx + h2

h
= 2x + h.

Therefore

lim
h→0

(x + h)2 − x2

h
= lim

h→0
(2x + h) = 2x.

Now, when one divides by h to obtain 2x + h, one tacitly assumes that h �= 0 since
division by 0 is undefined.20 However, when one proceeds from 2x + h to 2x, isn’t
the limit talk just a subterfuge? Isn’t one just setting h = 0? This criticism was made
in 1734 by the philosopher Bishop Berkeley in a witty polemic against the calculus:

19[9], p. 335.
20To emphasize the point, note that although 1 × 0 = 2 × 0, if it were permissible to divide both
sides of this equality by 0, we would reach the absurd conclusion 1 = 2.



34 M. Davis

For when it is said, let the Increments vanish, i.e. let the Increments be nothing, or let there
be no Increments, the former Supposition that the Increments were something, or that there
were Increments, is destroyed, and yet a Consequence of that Supposition, i.e. an Expression
got by virtue thereof, is retained.21

It was not until well into the 19th century that these matters were cleared up. Hegel
himself was not too shy to provide mathematicians with his explanation of the un-
derlying concepts of the calculus, devoting almost fifty pages of his “Science of
Logic” to this matter. How useful Hegel’s insights were can be judged by his sup-
posed clarification of how the “increment” h could both be and not be equal to 0:

Although the mathematics of the infinite maintained that these quantitative determinations
are vanishing magnitudes, i.e. magnitudes which are no longer any particular quantum and
yet are not nothing but are still a determinateness relatively to an other, it seemed perfectly
clear that such an intermediate state, as it was called, between being and nothing does
not exist. What we are to think of this objection and the so-called intermediate state, has
already been indicated above in [regard] to the category of becoming. The unity of being
and nothing is, of course, not a state; a state would be a determination of being and nothing
into which these moments might be supposed to have lapsed only by accident, as it were,
into a diseased condition externally induced through erroneous thinking; on the contrary,
this mean and unity, the vanishing or equally the becoming is alone their truth.22

So Hegel’s doctrine of Being and Nothing makes everything clear!
Hegel’s Logic appeared in 1812 well after d’Alembert’s article in Diderot’s Ency-

clopedia of 1754 had emphasized that the theory of limits was the proper foundation
of the calculus. D’Alembert is not mentioned by Hegel although he does discuss at
length a rather foolish proposal by his contemporary Lagrange. Cauchy’s Cours
d’Analyse of 1821 showed that the calculus could be developed as a rigorous de-
ductive science with definitions and proofs. However, in his Capital of 1867, Marx
had written as though the calculus was still sufficiently mysterious in a metaphysical
way that he could use its alleged need for “many intermediate terms” such as those
provided by Hegel to cover up the huge hole in his own economic analysis and help
justify his own resort to Hegel.23

Marx died leaving for Engels the task of transforming Marx’s notes and jottings
into manuscripts suitable for publication as volumes II and III of Capital.24 In his
preface to Volume II, Engels promises that the problem of justifying equal prof-
itability in the context of Marx’s Law of Value would be solved in Volume III. In
the meantime, he challenges critics:

If they can show how an equal average rate of profit can and must come about, not only
without a violation of the law of value, but rather on the very basis of it, we are willing to
discuss the matter further with them.25

21[2], p. 57.
22[5], p. 165. Again the reference is to the German original; the translation is from the Internet.
23For a coherent account of the gradual development of a proper foundation for the calculus, see
[1], pp. 260–273.
24See [6], pp. 298–301 for a description of the poor state of the papers from which Engels had to
work in preparing Volume II and especially, Volume III.
25[10], p. 28.
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In fact when Volume III did appear, no such solution was apparent.
In Engel’s polemic Anti-Dühring [4] published in 1878, he continues to use the

allegedly dialectical nature of the calculus as justification for Marx’s reliance on
Hegel:

But, regardless of all protests made by common sense, the differential calculus assumes
that under certain circumstances straight lines and curves are . . . identical, and with this
assumption reaches results which common sense, insisting on the absurdity of straight lines
being identical with curves, can never attain.26

Of course the differential calculus assumes no such thing. For curves for which
derivatives can be defined, the differential calculus associates with each point on the
curve the line that is tangent to the curve at that point. So the differential calculus
provides a curve with a whole collection of lines each of which shows the direction
of the curve at a particular point on the curve. No contradiction and no Hegelian
dialectics. Nevertheless, Engels continued to insist that with the use of “variable
magnitudes” as in the calculus, “mathematics itself enters the field of dialectics. . . .
The relation between the mathematics of variable and the mathematics of constant
magnitudes is in general the same as the relation of dialectical to metaphysical
thought.”27

Berkeley’s critique of the calculus, addressed to “an infidel mathematician” was
intended to show that the reasoning used by mathematicians was no sounder than
that used by theologians. Marx and Engels similarly invoke the alleged dependence
of the calculus on the Hegelian dialectic to justify its use in Marx’s economic sys-
tem.

4 Conclusion

Jack Schwartz had come to the conclusion that Marx had left his Hegelian past
behind when he became a revolutionary communist and that he returned to Hegel
only when he found no other way to deal with the contradiction that threatened
to ruin his economic system. If labor content did not really control profit in the
mundane world of reality, one could still claim that it did so in some more profound
conceptual domain. It was to provide such a framework that Marx returned to the
Hegelian idealism of his youth. Although Marx had asserted that Hegel’s philosophy
“must be turned right side up . . . if you would discover the rational kernel within the
mystical shell”, in fact it was precisely that “mystical shell” that he brought to bear
on his economic system.

In the article written for CI, the one that was refused publication, Jack em-
phasized the burden that would-be Marxist thinkers faced in reconciling Capital
with material reality. He analyzed the work of three of these Hilferding, Meek, and

26[4], p. 132.
27[4], p. 134.
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Sweezy critically and in detail. In addition, it should be said that relying on an in-
valid theory based on an ideal world that differed too greatly from the world as it
is has consequences. When the predicted collapse of capitalism from the lack of
surplus value as industry became more and more machine driven failed to occur, the
revisionism of Bernstein and Kautsky that so upset Lenin took hold.28

I conclude this article with a quotation from Jack’s never published essay:

Defenders of Marx have often claimed that Capital could not be comprehended in terms of
. . . customary logic, but required for its understanding some special “dialectical” mode of
thought. . . . such a situation is typical for every false theory. Catholicism can also be elab-
orated logically in the logic of Saint Thomas, and on the basis of an initial act of faith. . . .

All science, economics included, is . . . the imitation of reality by notions. The imitation can
be more or less exact in the sense of fidelity to detail; and it is an almost invariable rule in
science that the more exact a picture becomes in this sense, the harder it is to work with,
to see the forest for the trees . . . Thus it is that at many points in science, one rough and
ready generalization is worth more than a thousand exact theories which lose themselves
in a mass of unwieldy theoretical detail. Thus it is that science so often develops . . . from a
broad and very qualified generalization, to a more exact and less qualified improved theory,
of which the original approximate idea is seem to be an approximation valid in a common
special case or in common, but theoretically extreme, conditions.
Nevertheless, science is and remains the imitation of reality by notions. Thus the maxim
“A is true in theory, but B is true in practice” is absurd, and proves only the falsity of the
theory in which A is true. Theory, in order to simplify certain of the notions by which it
seeks to imitate reality, is legitimately accustomed to ignoring certain aspects of reality, but
this does not make these aspects disappear. Here science becomes an art. To say that the
earth is a sphere is to express a relative truth; and is not to be refuted by the first person who
points to a sharp cliff. But when it is pointed out that the earth is not a sphere but an oblate
spheroid, and not an oblate spheroid but a spherical mass of plastic rock in which continental
irregularities float, the relative truth must yield to the less relative. Nor must we think that the
bulge at the earth’s equator is to be taken as its perversity for not being perfectly spherical—
it is only our own incompetence in the manipulation of the more complex notion of oblate
spheroid, our perverse insistence on saying “sphere” rather than “oblate spheroid, almost a
sphere” that is involved. To be blinded in theory by one’s own constructions . . . is among
the most common of theoretical errors.
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SETL and the Evolution of Programming

Robert Dewar

Abstract The idea that programming should focus on the “what” rather than the
“how” has generally been realized in language features for modularization and data
type abstraction (classes and inheritance, for example). But equally important is
having a notation to express functionality rather than algorithm and data structure
detail, in effect to think like a mathematician rather than a programmer. That was
Jack Schwartz’s goal for the SETL project at NYU when it originated some 40 years
ago. Based around the fundamental concepts of set and mapping, SETL has been
used in practice to write executable specifications, effectively integrating require-
ments and design into compilable source code. As modern compiler technology, as
well as modern hardware performance, make run-time efficiency issues much less
of a concern, SETL’s high-level worldview shows how to make programming eas-
ier and more productive. SETL has had a quiet but pervasive influence on language
design, as seen for example in languages such as Python.

1 The Origins of the SETL Project

Computers are becoming very fast, with very large memories, and programmers will
steadily become more and more expensive in relation to hardware costs. Given these circum-
stances, it makes sense to shift programming towards the use of very high level languages
which will decrease programmer effort at the expense of some inefficiency, which becomes
easy to accommodate given these trends.

What makes this nearly four-decade old observation extraordinary was that the
machine that inspired Jack’s thoughts was the CDC 6600 that NYU had recently
acquired. It is instructive to compare this machine with modern PCs. The cost was in
the region of 5 million dollars, approximately 10,000 times the cost of a modern PC.
The clock rate was 10 megahertz, and although this was one of the earliest pipelined
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machines, it had nothing like the hardware parallelism of a modern processor, not to
mention the multi-core trend, so it is probably reasonable to estimate that there is a
factor of 2000 in processing performance. Finally the memory of the CDC 6600 was
128K 60-bit words, or the equivalent of about one megabyte, and our inexpensive
PC would typically have 4000 times that much memory. So we are talking about a
machine whose price/performance was at least 20 million times poorer than a cheap
modern PC.

Yet Jack had the vision to see this trend far into the future, and although the
notion of everyone buying multi-million dollar machines and then being prepared
to waste a substantial factor in their processing power seemed at the time absurd,
his view of the future was clearly remarkably accurate. The history of program-
ming had already gone through a similar revolution with the replacement of efficient
hand-coded machine language by the use of portable “high level” languages such
as Algol-60, FORTRAN, and COBOL. The loss of efficiency (often a significant
factor) was found acceptable in return for higher programming productivity and in-
creased portability. By high level here, we refer to languages that allow writing in a
form closer to the problem, and further away from low level implementation details.
As a simple example, a writer in a language like FORTRAN no longer has to worry
about which registers will hold which values.

Jack saw the SETL project as the next logical step in this progression. The overar-
ching idea was simple: create a language in which the compiler and implementation
take care of details so that the programmer does not have to waste time with low-
level error-prone arcana. Conventional programming languages are characterized by
design nits that are obviously undesirable but are needed for efficiency. For exam-
ple, when we pass an integer to a procedure, we typically pass a copy, but when we
pass an array, we typically pass a pointer, resulting in the entire set of issues that
arise from undesirable aliasing. Why is this done? Simply because we have the view
that copying an array is expensive. Arrays are in fact a source of other efficiency-
imposed problems. In conventional programming languages we have to set definite
limits for the bounds of an array in advance. Why? Simply because it allows a very
efficient representation at run-time.

SETL [6] starts with some fundamental decisions. First, it is an entirely value-
oriented language: composite objects are treated like integers, and copies are made
freely. The implementation may strive to reduce copying (there are many SETL
newsletters devoted to the interesting issues in such optimizations), but ultimately
we don’t care if we “waste” some time copying. There are no pointers of any kind,
and no concerns about storage management, since we operate in an environment
with secure type-accurate garbage collection. The fundamental data structures are
sequences, sets, and maps. As mathematicians have known for at least a hundred
years, sets and maps provide a universal mechanism for representing and manip-
ulating all mathematical concepts. For example, the notion of pointer is all about
representing mappings between arbitrary domains, and it is far more natural to think
of these mappings as sets of ordered pairs, rather than as low level data structures.

For example, given the need to represent a binary tree structure, a conventional
language such as C++ would use pointers to the structures representing the left and
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right subtrees. The use of such pointers comes with all the care necessary to avoid
memory leaks, allocation errors, dangling references, and unintended aliasing, not
to mention that setting such pointers often involves error-prone low level code. In
SETL, we would represent such a structure using two mappings Left_Subtree and
Right_Subtree which map from nodes to nodes. These mappings are simply values
and just as we can add one to an integer, we can add an element to such a mapping.
There are of course worrisome implications of having to copy the whole structure,
e.g. to pass it to a procedure, or to return a modified value. But the whole point
is to forget about such implications in the process of programming. The compiler
will do its best to minimize such problems by playing various (transparent to the
programmer) tricks, and in cases where we end up with extra copying and waste
machine power, we don’t care: we have plenty of machine power available to waste.

The built in notions of set and map abstraction allow convenient expression of
algorithms at any level of detail, and in particular allow high level algorithms to
be easily specified. Consider the following program to display the primes less than
1000. In addition to iteration over an (implicit) set it shows the use of the quantified
expressions of first-order logic:

print {P in 2 .. 1000 | not exists D in 2 .. P-1 | P mod D = 0};
To most readers this looks more like a definition of what primes are. It is essentially
just a high level specification of the problem statement. But in SETL this is an exe-
cutable program. It can be executed and will print the primes in some arbitrary order
(if you want them printed in order, you can replace the {} by [] to get an ordered
sequence). Once I was teaching SETL in a programming class, and a mathematics
professor was auditing the class because she thought that she should acquire some
knowledge of computers and programming. Half way through, after we had written
many sample programs, she came to me and said something like “This is interesting
mathematics, but when do we get to programming?”

An important note here is that this program is indeed concise, but that’s not its
primary virtue. The important thing is that it is clear. A language like APL gives
plenty of opportunity for amazingly concise representations of algorithms, and in-
deed clever compact C code can accomplish astounding feats in a small number of
C symbols, but neither case is an example of clarity, and that is the virtue we seek
here.

Now let’s think about the efficiency of this program. It pretty clearly corresponds
to two nested loops, and represents a rather inefficient implementation of finding
primes. If we compare it to a conventional program with these same loops, it will
execute in a comparable amount of time. But of course there are faster ways of find-
ing primes, and of course we can explicitly program these in SETL easily enough.
But let’s ask two interesting questions.

2 Executable Specifications

Is the primes program in the previous section a specification or an implementation?
If we wrote the specification in a non-executable specification language, it would
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look remarkably similar, so we can certainly regard this as a specification. But at
the same time it is executable. In the context of the SETL project, the notion of
“executable specifications” plays an important role. One significant advantage of
an executable specification is that it can be tested. Testing does not ensure freedom
from errors, but we sure feel more confident about a program that has been tested
than one that has not, and this applies to specifications as well.

As an example of large scale use of SETL as an instrument for creating high level
executable specifications, let’s look at the early days of the Ada project at NYU [3].
Around 1980, I and some colleagues at NYU became interested in the Ada language,
but it was clearly in a rather preliminary state with many detailed questions about the
semantics still unanswered. We decided to build what was basically a denotational
semantic definition of Ada, to understand these issues better, and we decided to build
this as an executable specification in SETL. Now you may think that the fact that the
specification was executable would mean that we were really doing an operational
definition, but that’s not the case. For example, an if statement was “executed” by
replacing it in the executable representation of the program with either the then part
or the else part depending on the condition. There was no notion of representing an if
statement with a series of gotos. Indeed, as is typical of denotational specifications,
gotos posed a challenging problem, and were represented as mappings from labels
to program states.

Programming at this level required complex dynamic data structures, which in
a traditional language would have overwhelmed the clarity of the definition with
low level details, but in SETL these structures were represented with high level sets
and mappings and were easily programmed at a level of clarity that compared well
with existing attempts at producing denotational semantic definitions of program-
ming languages. But of course the huge advantage of the SETL model was that the
definition was executable, and indeed in 1983, this SETL “definition” was the first
Ada translator to be validated by running the official test suite, and the use of this
definition turned out to be helpful in defining the first version of the Ada standard.

As a contrast, a few years later, the EU decided to fund an effort (at a level of
nearly two million dollars) to produce a formal definition of Ada, based on the work
of Astesiano [1]. We participated in the discussions leading up to the grant award,
and at our insistence, there was a requirement that the definition be executable, and
everyone agreed this was a good idea. Unfortunately in subsequent negotiations with
the European teams producing the definition, this requirement was dropped to save
money. The result is that the definition was produced, but never had any significant
impact. I still have sitting on my shelf two big telephone-directory-sized volumes
full of formulae and really it is nothing more than impressive shelf decoration. With-
out the ability to show that the definition was consistent with the official test suite,
it had no chance of being useful.

Of course this definition as an executable specification for Ada was drastically
inefficient. Ed Schonberg once described it as an effective real time implementation
of pencil and paper calculations. The generated code was perhaps six decimal orders
of magnitude slower than code that would be produced by an efficient Ada compiler.
Nevertheless it was fast enough to execute the test suite, even on the relatively slow



SETL and the Evolution of Programming 43

machines of the day, and since student programs typically take close-to-zero time
to execute and a million times close-to-zero is still close-to-zero, it was suitable for
student use, and used in hundreds of universities teaching Ada to their students. It
also served as a model for the implementation of a more efficient version written
in C, and later of GNAT, which is one of the main commercial implementations of
Ada.

3 Optimizing at the Algorithmic Level

The second question to ask about our simple primes example is what can be done to
optimize the underlying algorithm. In general if we express a problem using a high
level representation of what looks like on the surface a very inefficient algorithm, it
is interesting to ask whether some automatic process can refine the program to use a
more efficient algorithm. Let’s take another example, the following SETL program
outputs a partial order of the elements in a set S.

while S /= {} do

Nopreds := {P in S | not exists Q in S | Q/= P and Q < P};

Next := arb Nopreds

Print (Next);

S := S - {Next};

end;

Again this is pretty much the definition and specification of what a partial order is.
You repeatedly choose an arbitrary element from the remaining elements for which
there is no smaller element available. The expression in SETL uses the key operator
arb to select an arbitrary element, avoiding any over-specification of the result. An
attempt to program this in a language like C would not only be full of low level
detail and data structures to represent the set, but would inevitably over-specify the
result.

This is of course on its surface an inefficient algorithm, but let’s ask the question
of whether an automatic process could, starting with this clear high-level expression,
derive an efficient algorithm. The answer at least for this example is a definite yes.
The work of Robert Paige [4] shows how this and many other similar examples
can be optimized to obtain an efficient algorithm. The basic approach, called “finite
differencing”, is to avoid redundant computations. Instead of repeatedly computing
the set Nopreds, we keep it around and update it as elements are removed from S.
This technique is widely applicable.

The ability to easily specify algorithms at a high level is very valuable, and the
SETL notation facilitates this approach. Of course we can write things in a lower
level language like C by implementing a set of library routines, but the messy syntax
of using these routines gets badly in the way of clarity, and is not a natural way of
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using a language like C, which invites low level detail. For example, consider the
following program for sorting a sequence S

print (arb (P in permutations (S) |

forall q in 1 .. #s - 1 | p (q) <= p (q + 1)));

This is again a high level specification of the notion of sorting, avoiding any over-
specification of how the sorted sequence is to be found, and any implication of an
efficient algorithm. Executed naively, this is a spectacularly inefficient algorithm,
but again we can wonder if it can be optimized automatically. In the work “On Pro-
gramming” [5] which is a remarkable collection of observations and musings on the
future of programming, Jack wonders if there is a way of writing what you want
instead of how to get there, something like

(forall q in 1 .. #s – 1 | p (q) < p (q + 1)) := True;

Here we simply say we want the sequence to be sorted, without giving any hint as
to how that might be done. Jack postulates a set of assumptions under which the
above statement can result in a reasonably efficient sorting algorithm automatically.
We are certainly far from this level of programming, but it is a bolder speculation
than what is found in existing declarative languages.

4 Improving Programming Productivity

Many studies show that programming productivity expressed in correct lines/day
is pretty constant over a wide range of programming. This means that the fact that
SETL programs are typically far smaller (by a factor of 5–10) than programs in con-
ventional lower level languages of itself results in faster programming. The expense
comes from giving away some performance, due to both the interpretive overhead
and the natural tendency to use higher level less efficient algorithms that are easier
to express. But that was a tradeoff that was at the heart of the decision to design
SETL in the first place.

Another important boost to programmer productivity is to reduce debugging
time. If you look at conventional program development in a language like C, the typ-
ical approach is to write a program that is initially full of bugs, and then painfully
get rid of them by debugging. “Painfully” here refers to the costs associated with
this extended debugging effort. One way to reduce this effort is to design the pro-
gramming language to prevent bugs in the first place. SETL takes the viewpoint that
we should never design bug-prone stuff into languages in the name of performance.

One well-known example is the buffer overrun error (exceeding the size of an
array), which is a major source of errors in C programs (one Microsoft study of
the Windows source code base shows thousands of instances of potential buffer
overruns). A language like Ada makes some advances in clearly raising a run-time
exception in such circumstances, rather than causing unpredictable chaos as in C,
but you still have to decide how to handle the exception. As Ariane-5 [2] showed, an
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unhandled exception can be as deadly as undefined behavior. SETL simply arranges
that arrays expand as needed. Yes, this involves some complex data structures. Yes,
we could program these structures explicitly in lower level languages. But in SETL,
this approach comes automatically.

As another example, pointers, aliasing, and storage management represent a huge
source of errors in low level programming languages. SETL simply eliminates these
concerns by using a pure value-oriented approach with no trace of pointers. There
is no more effective way of preventing a particular class of bugs than by making it
simply impossible to inject such a bug into the program in the first place.

5 The Status and Influence of SETL

SETL has continued to develop, and complete implementations of a follow-on ver-
sion of the language SETL-2 are available on a wide variety of machines, including
PCs. A community of researchers continues to explore the possibility of improving
the programming process using this approach.

Has Jack’s vision come to pass of wide spread use of very high level program-
ming languages? A short answer is no. In the decades since SETL was first intro-
duced, it has surprised Jack and others of us that such is the case, but the fact of the
matter is that the vast majority of programming is still done in low level languages
like C. Java shows some signs of advancing in the right direction, but ultimately is
a disappointment, with many low level features like integer arithmetic that wraps
silently on overflow, fixed-size arrays, and an error-prone thread model.

A more interesting and encouraging sign is the widespread adoption of Python
and similar languages which indeed share SETL’s vision of very high level lan-
guages with abstract data structures and operations (such as Dictionaries, which are
general mapping structures). In the case of Python, we can trace a direct ancestry
to SETL. The design of SETL strongly influenced the design of the ABC teaching
language of Lambert Meertens, and in turn the design of ABC influenced the design
of Python, so it is no accident to see some of the same design principles at work.

We are still far from reaching Jack’s vision of most programming being done
using very high level languages, even in this day of machines millions of times
faster than the CDC 6600 which inspired Jack’s original thoughts in this direction,
but we do see definite progress in the right direction. The quote that started this
article is even more true today than it was decades ago.
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Decision Procedures for Elementary
Sublanguages of Set Theory. XVII.
Commonly Occurring Decidable Extensions
of Multi-level Syllogistic

Domenico Cantone

Abstract The paper focuses on extending existing decision procedures for set the-
ory and related theories commonly used in mathematics to handle such notions as
monotonicity, ordering, inverse functions, etc. After presenting two decision pro-
cedures for the basic multilevel syllogistic fragment of set theory and studying the
computational complexity of its decision problem, we illustrate a technique based
on a syntactic translation of formulae with the special function and predicate sym-
bols above into multilevel syllogistic that, in most cases, yields nondeterministic
polynomial-time decision procedures. Such results can be quite useful for tool de-
velopers who aim at providing assistance to common mathematical reasoning. A se-
mantically oriented approach is illustrated in the second part of the paper, where
nondeterministic exponential-time decision procedures, of theoretical interest only,
are briefly sketched for two extensions of multilevel syllogistic, with the general
union operator and with the powerset operator.

1 Prologue

At the end of our first technical conversation in late August 1983, when I first met
him and I was about to begin my PhD studies at NYU under his supervision, Jack
Schwartz predicted that the (at that time novel) field of Computable Set Theory
would have remained an active source of more and more challenging research prob-
lems “for at least five years, maybe ten, or even better for more than twenty years.”
Today I can say that he was completely right, while at that time I was just a little bit
afraid that he meant it could have taken as many as twenty years for me to complete
my Ph.D.!

Jack’s interests in the field of proof correctness can be traced back to at least
1967, when he chaired a symposium on Mathematical Aspects of Computer Science,
which was almost entirely devoted to various aspects of theorem proving (cf. [26]).
Most certainly, they grew in parallel with his efforts in compiler and language design
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which culminated in the development of the SETL language, a pearl of elegance in
the realm of programming languages (cf. [27, 30]).

The seminal ideas on program and proof verification systems were already con-
tained in the paper A survey of program proof technology (cf. [28]) which in 1978
inaugurated the Technical Report series of the NYU Computer Science Department.

A proof checker is an interactive programmed system into which one can enter sequences
of logical/mathematical formulae, each of which is a consequence, according to the laws of
logic, of preceding formulae. Such a system will continue to accept new formulae as long as
it can verify that each formula is indeed a correct consequence of what has gone before. Any
step which is too complex for the verifier to follow (or which is incorrect) will be rejected,
forcing the verifier’s user to enter a number of intermediate formulae in order to get the
verifier to accept the formula which really interests him. Thus the verifier ensures rigorously
against logical error, possibly at the price of requiring its user to key in a burdensome mass
of intermediate detail. The designer of such a proof verifier must aim to provide it with
enough internal power for the mass of detail which is demanded to be reduced to reasonable
levels.
[· · · ] Full-scale proof verifiers can be expected to consist of three principal components:
(a) An inner core of procedures which handle what the system regards and user perceives
as elementary inferential steps.
[· · · ] The most challenging and critical part of a proof verifier having this general
structure is its inferential core. If this core is powerful enough, the system user will be
able to make comfortably large and intuitive formal steps; if not, then large and coun-
terintuitive masses of detail may be required to prove even rather simple statements.
The size of the elementary inferential steps which a proof verifier permits directly controls
the cost of program proofs in a system based upon the verifier.

(Jacob T. Schwartz, [28, pp. 6–7])

Much at that time, Jack started an investigation on decision procedures for frag-
ments of set theory, which among others initially involved Alfredo Ferro and Eu-
genio Omodeo, aiming at the compilation of a large library of procedures to be in-
cluded in the inferential core of the proof verifier he envisaged. Several of the initial
results were collected in the series of papers on Decision procedures for elementary
sublanguages of set theory, opened with the seminal paper [18] on a decision proce-
dure for multi-level syllogistic and some of its extensions. The present paper revives
the old paper series to honor Jack’s memory.1

2 Introduction

Engaging formal proofs, such as those founding the field of mathematical analysis,
very often rely on routine forms of set-theoretical reasoning which a human expert
exploits almost unconsciously and a computerized proof-checker must encompass
as basic inferential services. This paper focuses on situations when such reason-
ing services are implemented as decision algorithms for fragments of set theory.

1Thanks are due to Eugenio Omodeo and Andrea Formisano for their contribution to a very pre-
liminary version of this paper which was presented at the Workshop on Pragmatics of Decision
Procedures in Automated Reasoning held in Miami in 2003.
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We will start with a specific satisfiability test which, despite being rather limited
in the constructs it can deal with, proved to be very useful in practice (whereas
decision algorithms for more expressive sub-languages of set theory tend to be ut-
terly unmanageable due to their high complexity). We will address the issue: how
can we extend the realm of applicability of this decision algorithm without substan-
tial reworking of its internals, but rather via systematic preprocessing techniques?
A variant of the method which we will propose as an answer is already at work in
the proof-verification system ÆtnaNova/Referee described in [12, 20, 22, 25, 29].

The ideas reported in this paper have connections with the work of Armando
et al. (cf. [1]).

3 Multi-level Syllogistic

MLS (multilevel syllogistic) is the unquantified fragment of set theory consisting of
a denumerable infinity u, v, w, x, y, z, . . . of set variables, the ‘null set’ constant
∅, the set operators · ∩ ·, · \ ·, · ∪ ·, the set predicates · ∈ ·, · = ·, · ⊇ ·, · ⊆ ·,
and propositional connectives. If also the set operator {·, . . . , ·} is admitted, one
obtains the fragment MLSS (multilevel syllogistic with singleton). Simple examples
of statements that can be formed using the constructs of MLSS are

(a ⊇ b &b ⊇ c) ⇒ (a ⊇ c),

(a ⊇ b &b ∩ c = ∅) ⇒ (a \ c ⊇ b),
(
a = {b}&a = c ∪ d &b /∈ c

) ⇒ (a = d & c = ∅).

These are easily seen to be universally valid or, equivalently, their negations are
unsatisfiable. To be more precise on the intended semantics of MLSS, this is based
upon the von Neumann’s cumulative hierarchy V of sets defined as follows (where
Ord and P (X) designate the class of all ordinals and the power-set of X):

V0 =Def ∅;
Vα+1 =Def P (Vα) , for each ordinal α;

Vλ =Def

⋃

μ<λ

Vμ, for each limit ordinal λ;

V =Def

⋃

α∈Ord

Vα.

An assignment M over a collection of variables V is any map from V into V . Given
an MLSS-formula F over a collection V of variables, and an assignment M over V ,
we denote by FM the truth-value of F obtained by interpreting each variable x ∈ V

with the set xM and the set operators and propositional connectives according to
their standard meanings. Such an F is said to be satisfiable if it has a model, namely,
if there exists an assignment M making FM true. The satisfiability problem for
MLSS is then the problem of determining for any given MLSS-formula F whether
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or not F is satisfiable. It was first solved in [18]. For the sake of completeness, we
describe below a decision procedure for MLSS.

To begin with, given an MLSS-formula F with the goal of testing it for sat-
isfiability, let PF be its propositional blobbing, namely the propositional formula
obtained by descending the syntax tree of F and reducing each node not marked
with a propositional operator to a single propositional variable, in such a way that
two subnodes are reduced to distinct propositional variables if and only if they cor-
respond to distinct MLSS-atoms. Observe that the truth-value assignment over the
propositional variables of PF induced by a set model of F plainly satisfies PF . Thus,
to test whether F is satisfiable at the set-theoretical level one can first determine, us-
ing for instance the Davis-Putnam algorithm (or any other propositional-level algo-
rithm of the same kind), all the truth-value assignments which satisfy PF and then
separately check for satisfiability the collections of negated and non-negated atomic
formulae in F corresponding to each of these truth-value assignments. If any such
collection of literals is satisfiable, then so is our original formula F . If no truth-value
pattern satisfying PF at the propositional level gives rise to a collection of MLSS-
literals which can be satisfied at the underlying set-theoretic level, then our original
formula F is plainly unsatisfiable. We shall refer to this preliminary propositional
level step as decomposition at the propositional level.

Decomposition at the propositional level, as described above, may take exponen-
tial time in the number of distinct atoms present in the initial formula F . However,
when the formula F is satisfiable, for the purpose of certifying its satisfiability one
can just guess in linear time a truth-value assignment over the propositional vari-
ables of PF (which satisfies PF and) whose corresponding collection C of negated
and non-negated atomic formulae in F is satisfiable at the set-theoretical level, and
then verify that C is indeed satisfiable. If such verification can in turn be done in
nondeterministic polynomial time, then it will plainly follow that the whole satisfia-
bility verification process of our initial formula F can be accomplished in nondeter-
ministic polynomial time in the size of F , yielding that the satisfiability problem for
MLSS is in NP. This fact, coupled with the NP-hardness of (the satisfiability prob-
lem for) MLSS, which will be shown later, will also imply the NP-completeness of
MLSS. So, our next step will be to exhibit such a decision test for conjunctions of
MLSS-literals. In fact, we will further limit ourselves to the decision problem for
conjunctions of MLSS-literals of very simple types, as argued next.

Any compound set term involving the available operators ∩,∪,\, {·} and the con-
stant ∅ can be rewritten as a new auxiliary variable, subject to suitable conditions of
particularly simple forms, possibly involving other auxiliary variables. For instance,
a compound expression of the form {∅, a} ∩ (b \ (c ∪ d)) can be expressed as the
auxiliary set variable u6, subject to the equational conditions

u0 = u0 \ u0, u1 = {u0}, u2 = {a}, u3 = u1 ∪ u2,

u4 = c ∪ d, u5 = b \ u4, u6 = u3 ∩ u5,

each involving exactly one of the allowed set operators ∩,∪,\, {·}.
The above observation, together with the fact that any equality of the form x = y

can be replaced by the equivalent atomic formula x = y ∪ y, allows one to express
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any set equality of the form t1 = t2, where each of t1 and t2 is either a set variable or
a compound set term, by a conjunction of equational conditions each involving ex-
actly one set operator. Similarly, an inequality of the form t1 	= t2 can be reduced to a
conjunction of an inequality of the simpler form u 	= v, where u and v are variables,
with equational conditions each involving one set operator. Likewise, literals of the
form t1 ∈ t2 and t1 /∈ t2, with t1 and t2 variables or compound terms, can be reduced
to literals of the simpler forms u ∈ v and u /∈ v, respectively, conjoined with equa-
tional conditions each involving one set operator. Finally, inclusions like y ⊇ x and
x ⊆ y can be replaced by the equivalent atomic formulae y = x ∪ y.2 By system-
atically applying simplifications of this second kind, which we will call secondary
decomposition, and the decomposition at the propositional level discussed earlier, it
turns out that the satisfiability problem for MLSS can be reduced to the satisfiability
problem for conjunctions of MLSS-literals, each having one of the ‘flat’ forms

x = y ∪ z, x = y ∩ z, x = y \ z, x 	= y,

x ∈ y, x /∈ y, y = {x}, (1)

where x, y, z stand for set variables. In fact, though we will not do it, it would be
possible to further reduce the number of different forms present in (1) by observing,
for instance, that

• x ∩ y can be rewritten as x \ (x \ y),
• x 	= y is equisatisfiable with (u ∈ x &u /∈ y) ∨ (u /∈ x &u ∈ y), where u is any

newly introduced variable,
• etc.

Observe that secondary decomposition can be carried out in deterministic linear
time.

We next solve the satisfiability problem for conjunctions of MLSS-literals of the
forms (1). Thus, let C be such a conjunction.

We begin by deriving some necessary (computable) conditions for the satisfiabil-
ity of C and later show that they are also sufficient, thereby proving the decidability
of the theory MLSS. Thus, assume that C is satisfiable and let M be a model of C.
Let ∼M be the equivalence relation over the set variables occurring in C such that

x ∼M y iff xM = yM.

We select a representative in any of the equivalence classes of ∼M and replace
each occurrence in C of a variable by its selected representative. Let C′ be the
resulting MLSS-formula. It follows immediately that M satisfies C′ (therefore C′
cannot contain any clause of the form x 	= x), but now xM 	= yM holds, for any two
distinct set variables x, y occurring in C′: in other words, M is an injective model
of C′.

2From a practical point of view, it would be more convenient to eliminate equalities of the form
x = y by replacing all occurrences of x and y in our set of statements by a selected representative
of x, y, and then drop the atom x = y.
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Let V be the collection of set variables occurring in C′ and let U = ⋃
x∈V xM

be the universe of M. We form the collection Σ of the nonempty disjoint regions
σ of the Venn diagram of the sets xM, for x ∈ V , over the universe U (called parts
of the Venn diagram of M): these are the equivalence classes of the equivalence
relation ∼ defined on U by

s ∼ t iff s ∈ xM ⇔ t ∈ xM, for all set variables x ∈ V.

Observe that for any set xM, each σ in Σ is either fully contained in xM or is com-
pletely disjoint from it. Therefore, to each set σ ∈ Σ we can associate a Boolean-
valued map πσ over V by putting

πσ (x) =
{

true if σ ⊆ xM

false if σ ∩ xM = ∅.
(2)

Let Π be the collection of all such maps. The following properties hold for the maps
π in Π :

(a) π(x) ⇔ π(y) ∨ π(z) whenever x = y ∪ z appears in C′,
(b) π(x) ⇔ π(y)&π(z) whenever x = y ∩ z appears in C′,
(c) π(x) ⇔ π(y)&¬π(z) whenever x = y \ z appears in C′.

Boolean-valued maps defined on the set variables in V and satisfying the prop-
erties (a)–(c) above are called places for C′.

Observe that for each variable y occurring in any statements of C′ we have

yM =
⋃{

σ : σ ∈ Σ
∣∣πσ (y)

}
, (3)

where
⋃

S (the union of S) stands for
⋃

s∈S s.
Next we look a bit more closely at the structure of the model M, with an eye

toward accumulating enough properties of its places to guarantee the existence of at
least one model of C′. To begin with, we show that the collection Π of places for
C′ is ample, in the sense that for any two distinct set variables x, y occurring in C′
there is a place π in Π such that π(x) 	= π(y). Indeed, let x, y be two distinct set
variables in C′. Then, as observed above, xM 	= yM, so that for some region σ ∈ Σ

of the Venn diagram of M we must have

σ ⊆ xM iff σ 	⊆ yM

and therefore, for the place π in Π corresponding to σ , we have π(x) 	= π(y).
It could be shown that the existence of an ample collection Π of places for C′ is

already sufficient for the injective satisfiability of C′, provided that no literal of any
of the forms x ∈ y, x /∈ y, and y = {x} be present in C′. To take into account also
literals of the latter types, we reason as follows.

We first form the collection L of all the variables x in V which appear in state-
ments of C′ of the form x ∈ y or x = {y}. These we call left-hand variables. All
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left-hand variables are modeled by M with sets belonging as elements to the uni-
verse U of M. Hence, for any given left-hand variable x, there is a unique part σx

of the Venn diagram of M for which xM ∈ σx . It is immediate to check that the
following properties hold for the corresponding place πx ∈ Π :

(a′) πx(y) is true if a statement x ∈ y or a statement y = {x} appears in C′;
(b′) πx(y) is false if a statement x /∈ y appears in C′.

We call any place π having these two properties a place at x. Some of the places
in Π are places at x for some left-hand variable x in the set C′ of statements, others
are not.

In terms of the definition just given, we have shown that there is a map x �→ πx

from the collection L of left-hand variables into the collection of places Π , such
that πx is a place at x, for any left-hand variable x.

If a statement y = {x} appears in C′, then yM must be a singleton, so that, by (3),
there must be a unique place π in Π for which π(y) is true, and since πx(y) is true,
the place πx at x must be indeed the only place π in Π such that π(y) is true.

Finally, since set theory forbids all cycles

s1 ∈ s2 ∈ · · · ∈ sk ∈ s1

of membership, it must be possible to arrange the sets xM of our model into an
order ≺ for which x ≺ y whenever xM ∈ yM. Note that for any left-hand variable
x and variable y,

if πx(y) then x ≺ y.

We will call any order of the variables of C′ satisfying the latter property an accept-
able ordering.

The following theorem shows that the conditions that we have just enumerated
are also sufficient to guarantee the existence of a model of C, and so gives us a
procedure for determining the satisfiability of conjunctions of MLSS literals of the
form (1).

Theorem 1 Let C be a collection of statements of the form (1). Then C is satisfiable,
i.e. it has a model M, if and only if there exists an equivalence relation ∼ over the
set variables occurring in C such that by letting C′ be the collection of statements
obtained when each occurrence of any variable in C is replaced by the selected
representative in its ∼-equivalence class, the following conditions hold:

(i) C′ does not contain any literal of the form x 	= x.
(ii) C′ has an ample set Π of places (for C′), i.e., for each pair x, y of distinct set

variables occurring in C′ there is a π in Π such that π(x) 	= π(y).
(iii) For each left-hand variable x appearing in a statement of C′, there is a place

πx at x in Π . Moreover, the variables appearing in the statements of C′ can be
arranged in an order such that πx(y) is false unless x precedes y in this order,
where x is a left-hand variable.
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(iv) If a statement y = {x} appears in C′, then πx is the only place π in Π for
which π(y) is true.

Proof We have already shown that conditions (i)–(iv) are necessary.
Suppose conversely that they are satisfied. For each place π ∈ Π such that π(x)

holds for some left-hand variable x for which a statement y = {x} appears in C′, we
put π = ∅; for each remaining place π we choose a distinct singleton π in such way
that its only member has cardinality larger than m + n, where m is the total number
of left-hand variables appearing in C′ and n is the cardinality of Π . Thus, all the
sets π are pairwise disjoint. Then we use the formula

yM = {
xM : x ∈ L

∣∣πx(y)
} ∪

⋃{
π : π ∈ Π

∣∣π(y)
}

(4)

to define yM for each variable y appearing in C′, following the order in which
the variables of C′ are arranged, according to condition (iii). This is possible, since
if xM is needed to define yM, then πx(y) holds and therefore the variable x must
precede y, so that the value xM is available when needed to construct the value yM.
We will refer to M as a canonical model (after we prove that M satisfies C′).

In view of the cardinality conditions on the member of each of the (singleton)
sets π , it follows from (4) that the cardinality of each set yM is at most m+n. This
ensures that

{
zM : z ∈ L

} ∩
⋃

{π : π ∈ Π} = ∅,

and therefore

{
zM : z ∈ L

∣∣πz(x)
} ∩

⋃{
π : π ∈ Π

∣∣π(y)
} = ∅ (5)

for every pair of variables x, y in C′.
We now show that the map M defined by (4) satisfies all the statements x 	= y

in C′. To this purpose, since, by (i), C′ does not contain any literal of the form x 	= x,
it is sufficient to show that M is injective.

So, let x and y be two distinct variables in C′ and assume by way of contradiction
that xM = yM; in fact, let us assume that x is the first variable, in the ordering
mentioned in condition (iii), for which there exists a variable v in C′, distinct from
x, such that xM = vM. Then, by (5), we have

{
zM : z ∈ L

∣∣πz(x)
} = {

zM : z ∈ L
∣∣πz(y)

}

and
⋃{

π : π ∈ Π
∣∣π(x)

} =
⋃{

π : π ∈ Π
∣∣π(y)

}
.

Since the set Π of places is ample, there must exist a place π ′ in Π such that one
of π ′(x),π ′(y) is true and the other is false. Suppose for definiteness that π ′(x) is
true, so π ′(y) is false. But then, because of the mutual disjointness of the sets π , we
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must have both

π ′ ⊆
⋃{

π : π ∈ Π
∣∣π(x)

}

and

π ′ ∩
⋃{

π : π ∈ Π
∣∣π(x)

} = π ′ ∩
⋃{

π : π ∈ Π
∣∣π(y)

} = ∅,

which imply that π ′ = ∅, so that π ′ must be of the form π ′ = πz, where z is some
left-hand variable. Since zM ∈ xM = yM and πz(y) is false, from (5) it follows
that zM must be identical with some vM for which πv(y) is true. Both z and v must
be left-hand variables, and they must be distinct, since πz(y) is false while πv(y) is
true. But now zM = vM contradicts our assumption that x is the first variable in the
ordering mentioned in condition (iii) for which there exists a y such that xM = yM,
as z precedes x in the same ordering. This contradiction proves our claim that the
function M is injective and so shows that all clauses of the form x 	= y in C′ are
correctly modeled by M.

Next we show that all other statements of C′ are correctly modeled also.
If a statement y = {x} occurs in C′, then from condition (iv) of our theorem πx

is the only place π ∈ Π for which π(y) is true. Hence, by (4),

yM = {
xM

} ∪ πx = {
xM

}
,

as πx = ∅, i.e. M satisfies the statement y = {x}. Statements x ∈ y are correctly
modeled by M since the presence of such a statement implies that πx(y) must be
true and therefore xM must belong to the first term of (4). Statements x /∈ y are
correctly modeled, since if xM ∈ yM, then πx(y) must be true (by (5) and the
injectivity of M), which is impossible if x /∈ y appears in C′.

Statements x = y ∪ z are correctly modeled since

xM = {
uM : u ∈ L

∣∣πu(x)
} ∪

⋃{
π : π ∈ Π

∣∣π(x)
}

= {
uM : u ∈ L

∣∣πu(y) ∨ πu(z)
} ∪

⋃{
π : π ∈ Π

∣∣π(y) ∨ π(z)
}

= ({
uM : u ∈ L

∣∣πu(y)
} ∪ {

uM : u ∈ L
∣∣πu(z)

})

∪
(⋃{

π : π ∈ Π
∣∣π(y)

} ∪
⋃{

π : π ∈ Π
∣∣π(z)

})

=
({

uM : u ∈ L
∣∣πu(y)

} ∪
⋃{

π : π ∈ Π
∣∣π(y)

})

∪
({

uM : u ∈ L
∣∣πu(z)

} ∪
⋃{

π : π ∈ Π
∣∣π(z)

})

= yM ∪ zM,

if x = y ∪ z occurs in C′.
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Similarly, in view of the pairwise disjointness of the sets π , the injectivity of M
and condition (5), if a statement x = y \ z appears in C′ we have

xM = {
uM : u ∈ L

∣∣πu(x)
} ∪

⋃{
π : π ∈ Π

∣∣π(x)
}

= {
uM : u ∈ L

∣∣πu(y)&¬πu(z)
} ∪

⋃{
π : π ∈ Π

∣∣π(y)&¬π(z)
}

= ({
uM : u ∈ L

∣∣πu(y)
} \ {

uM : u ∈ L
∣∣πu(z)

})

∪
(⋃{

π : π ∈ Π
∣∣π(y)

} \
⋃{

π : π ∈ Π
∣∣π(z)

})

=
({

uM : u ∈ L
∣∣πu(y)

} ∪
⋃{

π : π ∈ Π
∣∣π(y)

})

∖({
uM : u ∈ L

∣∣πu(z)
} ∪

⋃{
π : π ∈ Π

∣∣π(z)
})

= yM \ zM,

proving that M models correctly the statement x = y \ z.
A similar argument handles the case of statements x = y ∩ z, thus completing the

proof that M models correctly C′.
It is an easy matter to show that M can be extended to a model of our initial

conjunction C, by putting xM =Def repr(x)M, for every variable x in C, where
repr(x) is the representative of the ∼-equivalence class of x.

This completes the proof of our theorem. �

Theorem 1, together with the correctness of the decomposition at the proposi-
tional level and of the secondary decomposition seen earlier, readily implies the
decidability of the full MLSS fragment. However, from it we can only infer that
the satisfiability problem for conjunctions of MLSS-literals of the simple forms (1)
takes nonderministic exponential time, rather than nonderministic polynomial time,
as anticipated earlier. This is due to the fact that Theorem 1 does not provide any
polynomial upper bound on the size of the set of places Π mentioned in condition
(ii): we know only that Π must have size at most 2p , where p is the number of
variables occurring in the collection of statements C′ cited in the same theorem.

In the informal derivation of the (necessity of the) conditions of Theorem 1, as
set of places Π we selected the collection of all maps πσ defined by (2), for σ ∈ Σ ,
where Σ was the collection of all nonempty disjoint regions σ of the Venn dia-
gram of the sets xM in the universe U = ⋃

x∈V xM and V was the collection of set
variables occurring in C′. However, a closer examination of the line of reasoning
given there makes it clear that it is enough that Π contain a place πx at x for each
left-hand variable x occurring in C′ and a place π such that π(x) and π(y) have
different truth values, for every pair of distinct variables x, y in C′. It therefore fol-
lows that the size of Π can be constrained to be not larger than p(p+1)

2 , where p is
again the number of distinct variables in C′, yielding, as promised, a nondeterminis-
tic polynomial time satisfiability test for conjunctions of flat MLSS-literals. In fact,
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the size of Π can be further constrained to be linear in p, as will be shown next, for
the sake of completeness.

Let C′, V , L, M, Σ , Π be as before, so that, in particular, Π is the collection of
all places πσ defined by (2), for σ ∈ Σ and M is an injective model of C′. Given
Σ ′ ⊆ Σ and V ′ ⊆ V , we say that Σ ′ distinguishes V ′ if for every pair of distinct
variables x, y ∈ V ′ there exists a set σ ∈ Σ ′ such that σ is contained in exactly
one of the two sets xM and yM and is disjoint from the other (in this case we
say that σ distinguishes the variables x and y). A useful property is the following:
if Σ ′ distinguishes V ′, then for every x in V there exists a set σ ∈ Σ such that
Σ ′ ∪ {σ } distinguishes V ′ ∪ {x}. Indeed, if Σ ′ does not distinguish V ′ ∪ {x} (but
distinguishes V ′), there must be a variable y in V ′ (therefore distinct from x) such
that x and y are not distinguished by Σ ′. On the other hand, xM 	= yM (by the
injectivity of M) and therefore for some region σ of the Venn diagram Σ of M it
must be the case that σ is contained in exactly one of the two sets xM and yM and
is disjoint from the other. We claim that Σ ′ ∪ {σ } distinguishes V ′ ∪ {x}. Indeed,
if this were not the case, then, as before, there must be a variable z in V ′, distinct
from x, such that x and z are not distinguishable by Σ ′ ∪ {σ }. In addition, z must
be distinct from y, since by construction σ distinguishes x and y. Hence z and y

are distinguished by a region σ ′ ∈ Σ ′ (as, by assumption, Σ ′ distinguishes V ′).
Since x and y are not distinguished by Σ ′, it follows that σ ′ distinguishes also x

and z, contradicting our initial assumption that x and z were not distinguishable
by Σ ′ ∪ {σ }, thus proving that Σ ′ ∪ {σ } distinguishes V ′ ∪ {x}. The property that
we have just proved together with the fact that {x} is vacuously distinguished by
the empty set of Venn regions, for every variable x ∈ V , allow us to conclude, by
induction, that there exist a subset Σ ′ of Σ of size at most p − 1, where p is the
cardinality of V , which distinguishes V . It can easily be checked then that any subset
of Π which contains the set of places {πσ : σ ∈ Σ ′} is ample. This, for instance, is
the case for the set of places

Π ′ = {
πσ : σ ∈ Σ ′} ∪ {

πx : x ∈ L
}
,

whose cardinality is bounded by p+m−1, where m is the total number of left-hand
variables appearing in C ′.

In view of the above observations, it follows that condition (ii) in Theorem 1 can
be strengthened as follows:

(ii′) C′ has an ample set Π of places (for C′), whose cardinality is bounded by
p + m − 1, where p and m are respectively the number of variables and of
left-hand variables in C′.

Theorem 1, but with condition (ii) replaced by condition (ii′) above, now implies
that one can verify in nondeterministic polynomial time the satisfiability of a given
satisfiable conjunction C of flat MLSS-literals. Indeed, one has to guess

• a suitable equivalence relation ∼ over the set variables occurring in C (linear
nondeterministic time),
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• a suitable set Π of places for C′, where C′ is the collection of statements obtained
when each occurrence of any variable in C is replaced by the selected represen-
tative in its ∼-equivalence class (linear nondeterministic time),

• a suitable ordering of the variables in C ′ (linear nondeterministic time)

and then verify that conditions (i), (ii′), (iii), and (iv) are satisfied (polynomial de-
terministic time).

Since, as already observed, decomposition at the propositional level and sec-
ondary decomposition can be performed in nondeterministic linear time, it follows
that the satisfiability problem for the whole fragment MLSS is in NP.

To prove the NP-completeness of MLSS, it is now enough to show its NP-
hardness, which we do by exhibiting a polynomial-time reduction of SAT to MLSS.

Let X be any propositional formula. For each propositional variable P in X,
introduce a set variable xP . Let also z be any new set variable, distinct from all
variables xP just introduced. Finally, let CX be the MLSS-formula obtained by
replacing in X each occurrence of a propositional variable P by the corresponding
MLSS-atom xP ∈ z. It is an easy matter to show that X is propositionally satisfiable
if and only if CX is satisfiable at the set-theoretical level, thus proving the NP-
hardness of the satisfiability problem for MLSS.

Summing up, we have proved the following result.

Theorem 2 The satisfiability problem for MLSS is NP-complete.

Similarly, it is easy to exhibit a polynomial-time reduction of 3SAT to the collec-
tion of conjunctions of flat MLSS-literals (of the form (1)), thus establishing also
the following result.

Theorem 3 The satisfiability problem for conjunctions of flat MLSS-literals is NP-
complete.3

Another consequence of the strengthened form of Theorem 1 is that a conjunction
of flat MLSS-literals C is satisfiable if and only if it has a set model M whose size
is bounded by p + m − 1 (i.e., xM has at most p + m − 1 members, for each set
variable x in C), where p and m are respectively the number of variables and the
number of left-hand variables in C. It would not be hard to derive a bound on the
size of a “canonical” model for general MLSS-formulae. Similar bounds could also
be derived for the rank of canonical models of MLSS-formulae, where the rank
measures the nesting depth of a set.

3NP-completeness of flat conjunctions of MLSS-literals was first proved in [10], using a different
approach.
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3.1 A Tableau-Based Decision Procedure for MLSS

The decision procedure for MLSS contained in Theorem 1 is not very efficient from
a practical point of view, though initially all implementations of the decision test for
MLSS were based on the ‘place’ approach. A more efficient approach uses semantic
tableaux (for general notions on semantic tableaux, the reader is referred to [19].)

The advantages of implementing decision procedures as complete and effective
saturation strategies for tableau calculi over ad hoc methods are manyfold: firstly,
tableaux maintain information on proof attempts in a very natural and readable way;
such information can then be used either to reconstruct proofs or, in case of formu-
lae which are not theorems, to construct counter-examples (this can be particularly
useful to understand what was wrong in the conjecture one was about to prove);
secondly, tableau calculi can easily be extended by new rules, thus allowing, in
favourable cases, smooth generalizations to more expressive decidable fragments;
thirdly, implementations of saturation strategies for tableau calculi can be equipped
with heuristics (for instance a user could easily deactivate some of the rules, impose
restrictions on their applicability, etc.).

The current implementation of the decision test for MLSS in the proof-
verification system ÆtnaNova/Referee is mainly based on a variant of the tableau
system examined in [16]. Other related versions have been presented in [4, 11].

Since one of the rules of the tableau calculus for MLSS, which we are about to
illustrate, can introduce literals of the form x = y (specifically, rule (9) in Table 1),
we will not bother to eliminate these equalities from the flat forms, as was done pre-
viously. We therefore assume that after decomposition at the propositional level and
subsequent secondary decomposition, we are left with a collection of formulae to
be tested for satisfiability each of which is a conjunction of literals of the following
forms

x = y ∪ z, x = y ∩ z, x = y \ z, x = y,

x 	= y, x ∈ y, x /∈ y, y = {x}, (6)

where, as before, x, y, z range over set variables.
The rules of the tableau calculus for MLSS of our interest are listed in Table 1.

Rules (2), (7), and (11) are called splitting rules, while the remaining ones are the
linear rules.

Given a finite collection S of MLSS-literals of the form (6), an INITIAL MLSS-
TABLEAU for S is a one-branch tree whose nodes are labeled by the literals in S (in
any order). Then, an MLSS-TABLEAU for S is a finite tree whose nodes are labeled
by MLSS-literals and which can be constructed from an initial tableau for S by a
finite number of applications of the rules (1)–(13) in Table 1. More specifically, the
application of one of the rules (1)–(13) to a given MLSS-tableaux T consists in
(i) selecting a branch � of T , then (ii) selecting on � a number of nodes equal to
the number of premises present in the rule, whose labels match the rule premises
via a suitable matching substitution, and finally (iii) prolonging � with new nodes
labeled by the literals present in the rule conclusion, after the same matching substi-
tution has been applied to them. In particular, in the case of a linear rule, the branch



60 D. Cantone

Table 1 Tableau rules for MLSS

x = y1 ∪ y2

z ∈ yi

z ∈ x
(i)

x = y1 ∪ y2

z ∈ x

z ∈ y1 | z ∈ y2

(ii)

x = y1 ∩ y2

z ∈ y1

z ∈ y2

z ∈ x
(iii)

x = y1 ∩ y2

z ∈ x

z ∈ y1

z ∈ y2

(iv)

x = y1 \ y2

z ∈ x

z ∈ y1

z /∈ y2

(v)

x = y1 \ y2

z ∈ y1

z /∈ y2

z ∈ x
(vi)

x = y1 \ y2

z ∈ y1

z ∈ y2 | z /∈ y2

(vii)
x = {y}
y ∈ x

(viii)

x = {y}
z ∈ x

z = y
(ix)

y1 ∈ x

y2 /∈ x

y1 	= y2
(x)

x 	= y

w ∈ x

w /∈ y

w /∈ x

w ∈ y

(xi)a

x = y

	

	x
y

(xii)b

y = x

	

	x
y

(xiii)b

aw must be a new variable not occurring on the branch to which the rule is applied
bBy 	x

y we denote the literal resulting from 	 by replacing each occurrence of x by y

is prolonged linearly, whereas in the case of a splitting rule the branch is split into
two branches. Figure 1 shows an MLSS-tableau for the collection of literals x = {y},
x = z ∪ v, y /∈ z, x 	= v.

Let T be an MLSS-tableau for S . A branch � of T is said to be

• STRICT, if no rule has been applied more than once on � to the same literal
occurrences;

• SATURATED, if each of the tableau rules (1)–(13) has been applied at least once
on each instance of its premises on � ;

• CLOSED, if either � contains a set of literals of the form

x ∈ x1, x1 ∈ x2, . . . , xn−1 ∈ xn, xn ∈ x,

(with n � 0) forming a membership cycle, or it contains a pair of complementary
literals X, ¬X;

• OPEN, if it is not closed;
• SATISFIABLE, if there exists a set model for the literals occurring on � .
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Fig. 1 A closed
MLSS-tableau

A tableau T is said to be

• STRICT, or SATURATED, or CLOSED, if such are all of its branches;
• SATISFIABLE, or OPEN, if such is at least one of its branches.

Notice that according to the above definition, any closed branch, and therefore
any closed MLSS-tableau, is clearly unsatisfiable.

The system of rules (1)–(13) is plainly sound, namely every MLSS-tableau for
a satisfiable collection of MLSS-literals must be satisfiable, and therefore must be
open.

In addition, it can be shown that the tableau calculus in Table 1 is complete, in the
sense that any unsatisfiable collection of MLSS-literals has a closed MLSS-tableau.

Though our tableau calculus is complete, in order to use it effectively to decide
whether a given collection of MLSS-literals is satisfiable or not, one has to find a
systematic way to apply its rules in such a way that after a finite number of rule
applications (no greater than a suitable computable function of the size of the initial
formula of MLSS) one ends up either with a closed tableau (in which case the
initial formula is unsatisfiable) or with the knowledge that no closed tableau for the
initial formula exists (in which case the initial formula is satisfiable). Two are the
possible sources of problems with such approach. The first problem is that the same
rule could be applied repeatedly with the same premises on a same branch. This
problem is solved by imposing the restriction:

R1. All applications of any tableau rule are strict.

The second problem is that each use of rule (11) introduces a fresh set variable and,
therefore, can lead in some cases to an unbounded sequence of new applications of
the same rule, even under the strictness restriction R1. We address such problem by
imposing the following restriction:
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R2. Rule (11) can be applied only to literals of the form x 	= y involving variables
already occurring in the initial formula.

We observe that completeness of our tableau calculus is not disrupted by re-
strictions R1 and R2. More generally, it can be shown that starting with an initial
collection S of flat MLSS-literals, any tableau construction strategy subject to the
above restrictions R1 and R2 terminates in a finite number of steps, generating a
saturated tableau TS for S . Hence the decidability of MLSS follows from the fact
that S is satisfiable if and only if the tableau TS is open. In view of the soundness
of the tableau rules (1)–(13), one only needs to check that if TS is open then S is
satisfiable. We sketch the proof of this fact, so let us assume that TS is open and let
� be an open (saturated) branch of TS . It is enough to show that the branch � is
satisfiable. To this purpose, let us introduce the following notations

VS : the collection of variables occurring in S ;
T : the collection of variables occurring on � other than VS ;
∼S : the equivalence relation induced on VS ∪ T by equality literals x = y in � ;
T ′: the set {t ∈ T : t 	∼S x, for all x ∈ VS};
V ′: the set (VS ∪ T ) \ T ′;
∈̂� : the dyadic relation on V ′ ∪ T ′ defined as follows:

x∈̂� y iff the literal x ∈ y is in �.

In addition, for each t ∈ T ′, let ut be an assigned set.
Since the branch � is not closed, the relation ∈̂� is acyclic. Therefore we can

recursively define the following assignment, called the realization of the branch �

relative to S and to the sets ut , for t ∈ T ′:

xR� = {
yR�

∣∣y∈̂� x
}
, if x ∈ V ′;

tR� = ut , if t ∈ T ′.

It can easily be checked that if the sets ut satisfy the conditions

(a) ut1 	= ut2 , for every pair of distinct t1, t2 ∈ T ′,
(b) ut 	= xR� , for all t ∈ T ′ and x ∈ V ′,

then the realization R� is a model for � , and in turn for S . Since conditions (a)
and (b) can always be enforced, for instance by choosing |T ′| distinct sets ut of
large enough cardinalities (cf. the cardinality condition in the proof of Theorem 1),
completeness of our tableau calculus follows.

It is also interesting to note that the realization of an open non-saturated branch,
called partial realization, can guide the saturation process, as discussed in depth
in [4].

Figure 1 contains a closed MLSS-tableau for the collection

S = {
x = {y}, x = z ∪ v, y /∈ z, x 	= v

}

of flat MLSS-literals. Closed branches are terminated with the symbol ⊥.



Commonly Occurring Decidable Extensions of Multi-level Syllogistic 63

Notice that in the above MLSS-tableau

• literals 1–4 form the initial tableau for S ;
• literal 5 has been added by rule (8);
• literals 6 and 7 have been added by rule (2);
• literals 8–11 have been added by rule (11);
• literal 12 has been added by rule (9);
• literal 13 has been added by rule (12);
• literal 14 has been added by rule (1).

To better understand the above remark about using the realization of an open non-
saturated branch to guide the saturation process, consider the tableau in Fig. 1 just
after the introduction of literals 6 and 7 (and therefore before any of the literals 8–14
have been added to the tableau). The sub-branch ending at node 6 is closed because
it contains the pairs of complementary literals y /∈ z and y ∈ z and therefore does not
require any further attention. Next, let us consider the subbranch � ending at node 7
and let ∈̂� and R� be their associated dyadic relation and realization, respectively.
Plainly, we have ∈̂� = {〈y, x〉, 〈y, v〉}, so that:

yR� = zR� = ∅ and xR� = vR� = {∅}.
It can easily be checked that R� already satisfies all literals on the branch � but
literal 4. This hints at the fact that some tableau rule must be applied to literal 4.
The only possible rule is (11). After its application, and subsequent saturation with
respect to the other rules, we end up with a closed tableau and the procedure stops,
proving the unsatisfiability of the initial set of MLSS literals.

It may also happen that a partial realization R� satisfies its branch � , well before
the tableau is saturated. In such lucky cases, there is no need to bring the saturation
process to completion, since one already knows that the initial formula is satisfiable
(and, in fact, R� is a model of it). In fact, the interleaving of model checking and
deduction steps can lead to relevant practical speed-up of the decision test, as argued
in [4, 14].

4 Extensions of Multi-level Syllogistic

The satisfiability algorithm for MLSS presented in the preceding section can be ex-
tended in several ways by allowing otherwise uninterpreted function symbols, con-
stants and predicates, subject to certain implicit universally quantified statements
(side conditions), to be intermixed with the other operators of MLSS. Note how-
ever that the statements decided by the method to be described are not explicitly
unquantified.

The pairing operator cons and the two associated component extraction opera-
tors car and cdr exemplify the operator families to which our extension technique
is applicable. Assume that an ‘arbitrary selection’ operator arb is available which
satisfies the condition

[∀x | arb(x) ∈ x ∪ {x}& arb(x) ∩ x = ∅]
,
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that is, arb(x) returns an element of x which—as a set—does not have elements in
common with x, except when x = ∅, in which case arb(x) = ∅.4 Then cons, car,
and cdr could be characterized by the following formal set-theoretic definitions:

cons(x, y) =Def
{{{x},{{y}, y}}

, {x}},
car(p) =Def arb

(
arb(p)

)
,

cdr(p) =Def arb
(
arb

(
arb

(
p \ {

arb(p)
}) \ {

arb(p)
}))

.

However, in most settings, the details of these definitions are irrelevant. Only the
following properties of these operators matter:

• the object cons(x, y) can be formed for any two sets x, y;
• both of the sets x, y from which cons(x, y) is formed can be recovered uniquely

from the single object cons(x, y), since
– car(cons(x, y)) = x, and
– cdr(cons(x, y)) = y.

Almost all proofs in which the operators cons, car, and cdr appear use only these
facts about this triple of operators. That is, they implicitly treat these operators as a
family of three otherwise uninterpreted operators, subject only to the conditions

[∀ x, y
∣
∣ car

(
cons(x, y)

) = x
]

&
[∀ x, y

∣
∣ cdr

(
cons(x, y)

) = y
]
.

The treatment indicated throws away information about these operators (e.g. it hides
that car(x) is always a member of a member of x) that may become relevant only in
quite unusual situations.

Even the more fundamental issue of extending MLSS with the arb operator can
be tackled in this frame of mind. It was shown in [17] how to constrain the se-
mantics of arb so strongly as to take a commitment concerning the truth value
of the existential closure of any conjunction ϕ of MLSS extended with arb. On
the other hand, it is more in the spirit of this paper to remain neutral concerning
infinitely many such statements which involve arb: by leaving, e.g., the value of
[∃x, y | arb({{x}, {x, y}}) 	= {x}] undefined.

Similar remarks apply to other important families of operators. We list some of
these, along with their associated universally quantified statements:

(i) monotone functions:
[∀x, y

∣∣x ⊇ y ⇒ f (x) ⊇ f (y)
];

(ii) monotone functions having a known order relationship:
[∀x, y

∣∣x ⊇ y ⇒ f (x) ⊇ f (y)
]

&
[∀x, y

∣∣x ⊇ y ⇒ g(x) ⊇ g(y)
]

&
[∀x

∣∣f (x) ⊇ g(x)
];

4Note, in passing, that a choice set for any family F of disjoint non-null sets can be formed as
{arb(x) : x ∈ F }; hence, the assumed availability of arb, jointly with the replacement axiom of
set theory, yields as a consequence the somewhat controversial postulate of choice.
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(iii) monotone functions of several variables:

[∀x, y,u, v
∣∣ (x ⊇ y &u ⊇ v) ⇒ f (x,u) ⊇ f (y, v)

];
(iv) additive functions:

[∀x, y
∣
∣f (x ∪ y) = f (x) ∪ f (y)

];
(v) arb function:

[∀x
∣∣ (x = ∅& arb(x) = ∅) ∨ (

arb(x) ∈ x & arb(x) ∩ x = ∅)];
(vi) idempotent functions on a set w:

[∀x ∈ w
∣∣f (x) ∈ w &f

(
f (x)

) = f (x)
];

(vii) total ordering relationships on sets:

[∀x ∈ w,y ∈ w
∣∣R(x, y) ∨ R(y, x)

]

&
[∀x ∈ w,y ∈ w,z ∈ w

∣∣R(x, y)&R(y, z) ⇒ R(x, z)
];

(viii) multiple functions with known ranges wj and domains vj :

k

&
j=1

[∀x ∈ vj

∣∣fj (x) ∈ wj

];

(ix) pairs of mutually inverse functions:

[∀x ∈ w
∣∣f (x) ∈ w &g(x) ∈ w &f

(
g(x)

) = x &g
(
f (x)

) = x
];

(x) self-inverse functions:

[∀x ∈ w
∣∣f (x) ∈ w &f

(
f (x)

) = x
];

(xi) car, cdr, and cons functions:

[∀x, y
∣∣ car

(
cons(x, y)

) = x
]

&
[∀ x, y

∣∣ cdr
(
cons(x, y)

) = y
]
.

These are all mathematically significant relationships, as the existence of names
associated with them attests.

These cases can all be handled by a common method under the following con-
ditions. Suppose that we are given an unquantified collection C of statements in-
volving the operators of MLSS plus certain other function symbols f,g of vari-
ous numbers of arguments. We can suppose that all occurrences of these additional
symbols are in simple flat statements of forms like y = f (x), y = g(x, z), etc. From
these initially given statements we must be able to draw a ‘complete’ collection S of
consequences involving the variables which appear in them, along with some finite
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number of additional variables that it may be necessary to introduce. The translated
formula, comprising S and some residue of the original C, will be entirely within the
language of MLSS. ‘Completeness’ means that we can be sure that any model M
of the translated formula can be extended to include the original function symbols
f in such a way that their interpretation fM actually satisfies the desired properties
(monotonicity, etc.).

Call these added statements S the extension conditions for the given set of func-
tions: e.g., in most of the cases listed above, S will comprise single-valuedness
conditions x = u ⇒ y = v for all pairs y = f (x), v = f (u) originally present in C.
If we can find them, the extension conditions will encapsulate everything which
the appearance of the functions in question tells us about the set variables which
also appear. Hence satisfiability can be determined by replacing all the statements
y = f (x), y = g(x, z) in our original collection by the extension conditions derived
from them.

This gives us a systematic way of reducing various languages extending MLSS
to pure MLSS. As we will see, this approach can be exploited, to some extent, with
predicates too, thanks to the fact that certain properties of predicates can be rendered
via representing functions.

Note that the ‘extension conditions’ technique can be applied even if the recipe
for removing function or predicate occurrences by adding compensating extension
clauses is not complete, as long as it is sound, i.e. all the clauses added do follow
from known properties of the functions or predicates removed.

4.1 Monotone Functions

Consider the extension of MLSS with statements of the forms

y = f (x), increasing(f ), decreasing(f ) (7)

involving uninterpreted function symbols. The extension conditions can be derived
as follows. Let the function symbols known to designate monotone functions be f ,
g, etc. For each triple of statements y = f (x), v = f (u), increasing(f ), originally
present in our collection C, add the following two clauses

x ⊇ u ⇒ y ⊇ v, u ⊇ x ⇒ v ⊇ y. (8)

Likewise, for each triple of statements y = f (x), v = f (u), decreasing(f ), origi-
nally present in our collection C, add the following two clauses

x ⊆ u ⇒ y ⊇ v, u ⊆ x ⇒ v ⊇ y. (9)

After having added clauses (8) and (9),5 we drop from C all clauses of the types
(7). The added clauses ensure that if a model M exists, the set of pairs 〈xM, yM〉,

5Note that these imply the single-valuedness conditions for all functions involved.
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formed for all the x and y initially appearing in clauses y = f (x) for a function sym-
bol f , defines a function F which is monotone increasing (resp., decreasing) on its
domain, provided that a clause increasing(f ) (resp., decreasing(f )) was originally
in C. This can be extended to a function F ′ defined everywhere by letting F ′(s)
be the union (resp., intersection) of all the F(t), extended over all the elements t

of the domain of F for which s ⊇ t .6 It is clear that the F ′ defined in this way is
also monotone and extends F . This proves that the clauses (8) and (9) are adequate
extension conditions for the extension of MLSS with monotone functions. Note that
the required number of such clauses is roughly as large as the square of the number
of clauses y = f (x) originally present in C. Therefore, the satisfiability problem for
the extension of MLSS with clauses of types (7) is still NP-complete.

To make this method of proof entirely clear we give an example. Suppose that
we need to prove the following conjunction

f
(
f (x ∪ y)

) ⊇ f
(
f (x)

)
& increasing(f ). (10)

By flattening the compound terms which appear in this statement, we get the collec-
tion

z = x ∪ y, u = f (z), w = f (u), u1 = f (x),

v1 = f (u1), increasing(f ), ¬(w ⊇ v1),

which we must prove to be unsatisfiable. The four statements

u = f (z), w = f (u), u1 = f (x), v1 = f (u1) (11)

in this collection give rise to the 12 extension conditions

z ⊇ u ⇒ u ⊇ w, z ⊇ x ⇒ u ⊇ u1, z ⊇ u1 ⇒ u ⊇ v1,

u ⊇ z ⇒ w ⊇ u, x ⊇ z ⇒ u1 ⊇ u, u1 ⊇ z ⇒ v1 ⊇ u,

x ⊇ u ⇒ u1 ⊇ w, x ⊇ u1 ⇒ u1 ⊇ v1, u ⊇ u1 ⇒ w ⊇ v1,

u ⊇ x ⇒ w ⊇ u1, u1 ⊇ x ⇒ v1 ⊇ u1, u1 ⊇ u ⇒ v1 ⊇ w,

which replace (11). It is now an easy matter to check that

z = x ∪ y, z ⊇ x ⇒ u ⊇ u1, u ⊇ u1 ⇒ w ⊇ v1, ¬(w ⊇ v1)

is an unsatisfiable conjunction, proving the validity of (10).

4.2 Monotone Functions Having a Known Order Relationship

This case can be treated in much the same way as the somewhat simpler case in
Sect. 4.1. For example, given monotone, say increasing, f , g, where it is known

6To avoid intersections of empty families of sets, it is convenient to assume that C contains a clause
x = f (∅), for each function symbol f present in C.
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that f (x) ⊇ g(x) is universally true, first force the known part of their domains to
be equal by introducing a u satisfying g(x) = u for each initially given clause y =
f (x) and vice versa. Then proceed as in the preceding case, but now add inclusions
x = v ⇒ y ⊇ u for every pair g(v) = u, f (x) = y of clauses originally present. It is
clear that the extensions of g and f eventually satisfied stand in the proper ordering
relationship.

The NP-completeness of the resulting decision problem can be easily established.

4.3 Monotone Functions of Several Variables

The case of monotone functions of several variables is also easy. We can proceed as
follows. Given a function f (x, y) which is to be monotone in both its variables, and
also a set of clauses like z = f (x, y), w = f (u, v), introduce clauses

(x ⊇ u&y ⊇ v) ⇒ (z ⊇ w).

Then plainly the set of pairs 〈〈xM, yM〉, zM〉, formed for all the x, y, z initially
appearing in clauses z = f (x, y) defines a function F of two arguments which is
monotone on its domain. This can be extended to a function F ′ defined everywhere
by defining F ′(s, t) as the union of all the F(p,q), extended over all the pairs p,q

of the domain of F for which s ⊇ p and t ⊇ q . Again, the NP-completeness of the
related decision problem can be easily shown.

The reader is referred to [15, 31] for further elaborations.

4.4 Additive Functions

The related case of additive functions of a set variable can also be treated in the
way which we will now explain (but the very many clauses which this technique
introduces hints that ‘additivity’ is a significantly harder case than ‘monotonicity’).
A set-valued function f of sets is called ‘additive’ if f (x ∪ y) = f (x) ∪ f (y) for
all x and y.

Given an otherwise uninterpreted function f which is supposed to be additive,
and clauses y = f (x), introduce all the ‘atomic parts’ of all the variables x which
appear in such clauses. These are variables, named uj in what follows, representing
all the intersections of some of the sets represented by variables occurring in the
original clauses with the complements of the other similar sets. In terms of these
intersections, which clearly are all disjoint, express each x in terms of its atomic
parts uj , namely as

x = uj1 ∪ · · · ∪ ujk
.

Likewise, after introducing clauses

vj = f (uj )



Commonly Occurring Decidable Extensions of Multi-level Syllogistic 69

giving names to the range elements f (uj ), write out all the relationships

y = vj1 ∪ · · · ∪ vjk

that derive from clauses y = f (x). Finally, writing ∅ and f (∅) for uniformity as u0
and v0, add implications

uj = u0 ⇒ vj = v0 and v0 ⊆ vj ,

along with statements

uj ∩ ui = ∅
(for i 	= j ) which express the disjointness of distinct sets uj .

Now suppose that the set of clauses we have written has a model M in which
the uj , vj , x, y, etc. appearing above are represented by sets (uj )

M, (vj )
M, xM,

yM, etc. and for each s, define the set-valued function F(s) to be the union of all
the sets (vj )

M for which s intersects (uj )
M. The function F defined in this way

is clearly additive. It is also clear that if a clause y = f (x) is present in our initial
collection, and the variables x and y are represented by sets xM and yM, then
yM = F(xM). Hence F can represent f in the model we have constructed; so f

can be represented by an additive function, proving that the clauses we have added
to our original collection are the appropriate extension conditions.

Observe that the above reduction generates MLSS-formulae of exponential size,
yielding an exponential nondeterministic decision procedure. Though we have not
proved it, we strongly believe that the decision problem for the extension of MLSS
with additive functions is not NP-complete.

A more formal treatment of such an extension of MLSS, also with other con-
structs, can be found in [15, 31].

4.5 arb Function

To seek a model for a collection of MLSS clauses, plus statements of the form w =
arb(z), we could proceed, in analogy with the extension of MLSS with monotone
functions considered in Sect. 4.1, by firstly adding for each statement y = arb(x)

the extension condition

(x = ∅&y = ∅) ∨ (y ∈ x &y ∩ x = ∅), (12)

then adding, for each pair of statements y = arb(x) and v = arb(u) originally given,
the corresponding extension condition

x = u ⇒ y = v (13)

(namely the single-valued functional dependence condition), and finally dropping
all clauses of the form y = arb(x) from the original collection of statements.
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Suppose now that M models the resulting collection of MLSS clauses. Then
plainly the set of pairs 〈xM, yM〉, formed for all the x and y appearing in the
statements y = arb(x) originally present, defines a single-valued function A on its
finite domain which satisfies

(
s = ∅&A(s) = ∅) ∨ (

A(s) ∈ s &A(s) ∩ s = ∅)
,

for all the elements of its domain. We can extend this to a function A′ defined ev-
erywhere by writing

A′(s) = if s in domain(A) then A(s) else arb(s) end if,

where arb is the built-in choice operator of our version of set theory. A′ then satisfies
the originally universally quantified condition for arb, verifying that the clauses (12)
and (13) are the proper extension conditions.

Again, it is immediate to check that the decision problem for the extension of
MLSS with the arb function is NP-complete.

4.6 Idempotent Functions on a Set

The case of idempotent functions is also easy. We can proceed as before, but adding
a clause y = f (y) whenever a clause y = f (x) is present. Then we add the ‘single-
valuedness’ implications u = x ⇒ z = y whenever two clauses y = f (x), z = f (u)

are present, and remove all the clauses y = f (x). The added clauses ensure that if a
model M exists, the mapping F which sends xM to yM for each clause y = f (x)

initially present is single-valued; moreover, thanks to the added clauses y = f (y),
this mapping is clearly idempotent where defined. It can be extended by mapping
all elements not in the domain of F to any selected element of the range of F .

The ‘self-inverse’ function case

[∀x ∈ w
∣∣f (x) ∈ w &f

(
f (x)

) = x
]

can be handled in much the same way, but we omit the details since this can also
be viewed as a special subcase of the extension of MLSS with pairs of mutually
inverse functions which we will discuss later in Sect. 4.9.

Plainly, MLSS with idempotent functions on a set is still NP-complete.

4.7 Total Ordering Relationships on Sets

The case of total ordering relationships on sets can be handled in the following
way, which derives from the immediately preceding remarks. Let R be such a re-
lationship. Introduce the representing function f for it, i.e. a function such that
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f (y) = {x | R(x, y)}, so that f (x) ⊇ f (y) ⇔ R(x, y) holds. Then R is a total or-
dering if and only if the range elements f (x) all belong to a collection of sets to-
tally ordered by inclusion. So write a clause y ⊇ v ∨ v ⊇ y for each pair of clauses
y = f (x), v = f (u), and also write the conditions needed to ensure that f is single-
valued. In the resulting model f plainly maps its domain into a collection of sets
totally ordered by inclusion, and then f can be extended to all other sets by sending
them to ∅.

The above remarks readily yield that the decision problem for MLSS with total
ordering relationships on sets is still NP-complete.

4.8 Multiple Functions with Known Ranges and Domains

The present case is also very easy. For clarity, we will consider the special subcase
in which two functions f , g are given, along with two domain sets d1, d2, and two
range sets r1, r2. The universally quantified conditions which must be satisfied are
then

[∀x ∈ d1
∣∣f (x) ∈ r1

]
, (14)

[∀x ∈ d2
∣∣g(x) ∈ r2

]
, (15)

along with some collection of unquantified clauses of MLSS.
We proceed as follows. For any two clauses y = f (x), y′ = f (x′) and any two

clauses y = g(x), y′ = g(x′) present in our set C of statements write a ‘single-
valuedness’ condition

x = x′ ⇒ y′ = y′. (16)

For any clause y = f (x) in S, write a condition

x ∈ d1 ⇒ y ∈ r1, (17)

and, similarly, for any clause y = g(x) in S, write a condition

x ∈ d2 ⇒ y ∈ r2. (18)

Finally, write the conditions

d1 	= ∅ ⇒ r1 	= ∅, d2 	= ∅ ⇒ r2 	= ∅, (19)

and drop from C all clauses involving the functions f , g.
Plainly, if our original set of clauses is consistent, so is the resulting set S of

clauses. Conversely, suppose that the clauses S have a model M. Define a prelim-
inary function F (resp. G) as the set of all pairs 〈xM, yM〉 for which a clause
y = f (x) (resp. y = g(x)) is present in S. The clauses (16) plainly imply that F

and G are single-valued on their domain, and the clauses (17) ensure that F maps
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the intersection of its domain with d1
M into r1

M. Likewise, the clauses (18) ensure
that G maps the intersection of its domain with d2

M into r2
M. If d1

M = ∅, the
quantified condition (14) is automatically satisfied. On the other hand, if d1

M 	= ∅,
the clause (19) ensures that r1

M 	= ∅, so we can extend F to map all elements of
d1

M not in its initial domain to any element of r1
M we choose. Repeating this

construction for g, d2, and r2 plainly gives us a model of all our clauses in which
f and g are represented by single-valued functions satisfying (14) and (15). Hence
the clauses (16), (17), (18), and (19) we have added are the extension conditions we
require.

Observe that the number of clauses added as extension conditions is at most
quadratic in the size of the initial set C of statements.7 Therefore we have immedi-
ately the NP-completeness of the decision problem for the fragment at hand.

4.9 Pairs of Mutually Inverse Functions f , g

Extension conditions for the present case of mutually inverse functions f and g can
be formulated as follows. Write the clauses, described above, that force f and g to
be single-valued, namely

x = u ⇒ y = v, (20)

for all pairs y = f (x), v = f (u) and all pairs y = g(x), v = g(u) originally present
in the given set of clauses. To these, add clauses

y = v ⇒ x = u (21)

derived from all the given statements y = f (x), v = f (u). These force f to be 1-1
on the collection of elements x known to be in its domain. (Note that this much also
handles the case of functions known to be 1-1.) Do the same thing for g. Then add
clauses

y = u ⇔ x = v (22)

derived from all the statement pairs y = f (x), v = g(u) to take care of fact that
f and g must be mutually inverse functions. Then, in the resulting model M, the
model functions F and G of f and g must both be 1-1 on their domains (e.g. for
F this is the collection of sets xM modeling points x for which some clause y =
f (x) appears in our original set of statements), and G must be the inverse of F

on domain(G) ∩ range(F ). Since G is 1-1 on its domain, it follows that the range
of G on domain(G) \ range(F ) must be disjoint from domain(F ). Indeed, if a set
s is in domain(F ) ∩ range(G) it must have the form s = xM where clauses y =
f (x) and x = g(u) both appear in our original set of statements. But then uM =

7In fact, introduction of ‘single-valuedness’ conditions (16) can easily be constrained so as only a
linear number of such clauses need to be added.
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yM is implied by one of the clauses of type (22), and hence uM is in the range
of F . Similarly the range of F on domain(F ) \ range(G) must be disjoint from the
domain(G). Therefore, F can be extended to

range(G|domain(G)\range(F )) (the range on the restriction)

as the inverse of G, and similarly G extended to

range(F |domain(F )\range(G))

as the inverse of F . Let F ′ and G′ be these extensions. Then plainly domain(F ′) =
domain(F ) ∪ range(G), and so range(G′) = range(G) ∪ domain(F ) = domain(F ′)
and vice versa. Hence the extensions F ′ and G′ are mutually inverse with
domain(F ′) = range(G′) and domain(G′) = range(F ′). F ′ and G′ can now be ex-
tended to mutually inverse maps defined everywhere by using any 1-1 map of the
complement of domain(F ′) onto the complement of range(F ′). This shows that the
clauses listed above are the correct extension conditions for the extension of MLSS
with pairs of mutually inverse functions.

Again, it is an easy matter to check that the number of extension conditions of
the forms (20), (21), and (22) is at most quadratic in the size of the initial collection
C of statements, so that even the present extension of MLSS turns out to have an
NP-complete satisfiability problem.

4.10 Self-inverse Functions

The case of self-inverse functions is a special case of the preceding case of pairs of
mutually inverse functions f,g.

4.11 car, cdr, and cons Functions

The extension conditions for the important car, cdr, and cons case can be worked
out in somewhat similar fashion as follows. Regard cons(x, y) as a family of one
parameter functions consx(y) dependent on the subsidiary parameter x. The ranges
of all the functions consx in the family are disjoint (since cons(x, y) can never
equal cons(u, v) if x 	= u). For the same reason, each consx is 1-1, and cdr is its
(left) inverse, i.e. cdr(consx(y)) = y. Also, car(consx(y)) = x everywhere. The
required extension conditions are the following. For each pair of initial clauses
z = cons(x, y), w = cons(u, v), add the clauses

(x 	= u ∨ y 	= v) ⇒ z 	= w and (x = u&y = v) ⇒ z = w (23)
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to force cons to be ‘doubly 1-1’ and well defined. Also, for each pair of initial
clauses z = cons(x, y), v = car(u), add the clause

u = z ⇒ x = v (24)

to force car to stand in the proper inverse relationship to cons. And, likewise, for
each pair of initial clauses z = cons(x, y), v = cdr(u), add the clause

u = z ⇒ y = v (25)

to force cdr to stand in the proper inverse relationship to cons.
The number of extension conditions (23), (24), and (25) added for the case at

hand is easily seen to be at most quadratic in the size of the initial set of clauses,
showing that also the extension of MLSS with the operators car, cdr, and cons has
an NP-complete decision problem.

4.12 Other Cases

We note a few more cases, whose details we omit, which can be handled by the ‘ex-
tension conditions’ technique. Uninterpreted commutative arguments of two vari-
ables, having the property

[∀x, y
∣∣f (x, y) = f (y, x)

]
,

can readily be handled by methods like those shown above. It might be possible to
treat associativity also, possibly based on a prior MLSS-like theory of the concate-
nation operator. A further known case (cf. [2] and [6, Chap. 7]) is that in which we
allow the special constant symbols N and Ord for the set of non-negative integers
and for the class of all ordinals, respectively.

4.13 Predicates Representable by Functions

Predicates representable by functions in one of the above classes can be removed
automatically by first replacing them by the functions that represent them, and then
removing these functions by writing the appropriate extension conditions. For exam-
ple, equivalence relationships R(x, y) can be written using a representing function f

as f (x) = f (y); f only needs to be single-valued. Any partial ordering relationship
R(x, y) can be written as f (x) ⊇ f (y), where f only needs to be single-valued,
and f is monotone if and only if the ordering relationship R(x, y) is compatible
with inclusion in the sense that

[∀x, y
∣∣x ⊇ y ⇒ R(x, y)

]
.
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For the purpose of decidability, monadic predicates P(x) satisfying the condition
[∀x, y

∣∣P(x)&P(y) ⇒ P(x ∪ y)
]

&
[∀x, y

∣∣P(x)&x ⊇ y ⇒ P(y)
]

can be written in the form

P(x) ⇔Def p ⊇ f (x),

where f is additive and p is a set large enough to include as subset the set f (x), for
each variable x such that P(x) is present in the formula. The predicates Finite(x)

(which states that x is finite), Countable(x) (which states that x is countable, i.e.
either finite or denumerable), and Is_map(x), where

Is_map(s) ⇔Def
[∀x ∈ s

∣∣ [∃u,v
∣∣x = cons(u, v)

]]
,

illustrate this last remark. However, though sound, in general the extension condi-
tions derived just from the additivity of the representing function f could be incom-
plete and therefore might need to be integrated with additional conditions.

We illustrate the latter point by studying the generalization of MLSS by the two
additional set predicates Finite(x) and Countable(x) just discussed. Thus, let C be
a collection of statements which in addition to literals of the form (1) contains also
literals of the following form

Finite(x), Countable(x), ¬Finite(x), ¬Countable(x).

We introduce two new variables Fi and Co, and for these variables add to C the
following statements:

• Co ⊇ Fi;
• Fi ⊇ x, for each x for which a statement x = {y} or a statement Finite(x) is

present in C;
• Co ⊇ x, for each x for which a statement Countable(x) is present in C;
• ¬(Fi ⊇ x), for each x for which a statement ¬Finite(x) is present in C;
• ¬(Co ⊇ x), for each x for which a statement ¬Countable(x) is present in C.8

Let C′ be the resulting collection of statements after all statements of the form
Finite(x), Countable(x), ¬Finite(x), and ¬Countable(x) have been dropped.

It is plain from what was said above that if our original collection C of statements
has a model, so does our modified collection C′. Conversely, if C′ has a model,
then, as shown in Theorem 1, there must exist an equivalence relation ∼ such that
conditions (i)–(iv) of the same theorem hold for the collection C′′ of statements
obtained when each occurrence of any variable in C′ is replaced by the selected
representative in its ∼-equivalence class. In particular, let Π be the ample set of
places for C′′, whose existence is stated in condition (ii) of Theorem 1. To the places
π in Π we assign disjoint sets π according to the following rule:

8Thus, in this case, the function f is just the identity.
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• if π is of the form πx for some variable x appearing in a statement y = {x}, let π

be null;
• otherwise, if π(Fi) = true, then let π be some single element;
• otherwise, if π(Co) = true, then let π be some countably infinite set;
• otherwise, let π be some uncountable set.

We also suppose, much as in the proof of Theorem 1, that each member of π

has larger cardinality than the largest cardinality of any set π (here we are assuming
that some set π is infinite), and then use (4) to define a model M. The analysis
given in the proof of Theorem 1 shows that this M correctly models all statements
not involving the predicates ‘Finite’ and ‘Countable’. It is plain that FiM is finite
and CoM is countable; hence all statements Finite(x) and Countable(x) originally
present are correctly modeled also.

If any statement ¬Finite(x) is present in C, then there exists a place π in Π

such that π(x) is true and π(Fi) is false.9 The place π cannot have the form πz for
any variable x appearing in any statement y = {z} in C′′, since if it did then the
facts that πz(y) must be true and the statement Fi ⊇ y has been added to C′′ would
imply that πz(Fi) is true. Hence π is infinite and so, by (4), xM is infinite also. This
shows that all statements ¬Finite(x) are correctly modeled. The case of statements
¬Countable(x) can be handled in much the same way, showing that our original
and modified sets of statements are equisatisfiable.

Again, it is an easy matter to observe that the number of extension conditions is
linear in the size of the initial collection C of statements, and therefore the exten-
sion of MLSS with the set predicates ‘Finite’ and ‘Countable’ has an NP-complete
decision problem.

5 Further Extensions of Multi-level Syllogistic

The extension technique discussed at length in the preceding section is not able to
deal with constructs which allow one to establish connections among the disjoint
regions of the Venn diagram of a model that are hardly describable by cardinality
constraints. This is the case, for instance, of the general union operator

⋃
(·) and

the powerset operator P (·). Consider for example a formula C involving a clause
x = P (y). Then in any model M of C, one must have that any member of any
disjoint Venn region of xM is a subset of the union of all disjoint Venn regions of
yM, and conversely. Plainly, such relationship can not be described by cardinality
constraints only.

As exemplified in the sufficiency part of the proofs of Theorem 1 and of the
correctness of the extension conditions for the MLSS extension with the predicates
Finite(x) and Countable(x) in Sect. 4.13, a common approach was to find effec-
tively verifiable conditions on the places and variables of a given formula C which

9For simplicity, we are assuming that the ∼-representative of the variable x in ¬Finite(x) is x

itself.
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when satisfied enable one to construct a model M of C by executing an instantiation
procedure of the following form:

Initialization

{
For every place π ∈ Π let

π := π(0)

∈-phase

{
Following an admissible ordering < of the variables y in C do

yM := {xM : x ∈ L | πx(y)} ∪ ⋃{π : π ∈ Π | π(y)},
where Π is a collection of places for C, L is a suitable subset of the collection of the
variables occurring in C, and the π(0)’s are suitable sets assigned to the places for C.
In connection with it (and with its extension below), it is convenient to introduce the
following useful notion of approximant assignment M|i . Let x1 < x2 < · · · < xm be
the admissible ordering used in the ∈-phase. Then, we put

yM|i =Def
{
xM : x ∈ L

∣∣πx(y) & x < xi

} ∪
⋃{

π : π ∈ Π
∣∣π(y)

}
, (26)

for each variable y in C and 1 � i � m. Thus, for instance, for the first approximant
we have yM|1 = ⋃{π : π ∈ Π | π(y)}. Additionally, yM = yM|i , provided that
y � xi , or, more generally, provided that πx(y) is true for no x such that xi � x.

The rationale behind the above instantiation procedure is that at the end of the
initialization phase all equalities and cardinality predicates in C are satisfied by the
initial approximant assignment M|1 and that membership clauses are made true by
the subsequent ∈-phase (obviously, without disrupting satisfaction of the equality
and membership clauses already established).

To take into consideration also relationships among places such as the ones hinted
to above that are forced by operators like

⋃
and P , a suitable ‘stabilization’ phase

follows the initialization phase, so that equality clauses are satisfied (at least as
inclusions) and, likewise, a stabilization step follows each single step in the ∈-phase,
yielding an instantiation procedure of the more general type:

Initialization

⎧
⎨

⎩

For every place π ∈ Π let

π := π(0)

Stabilize

∈-phase

⎧
⎪⎨

⎪⎩

Following an admissible ordering < of the variables y in C do

yM := {xM : x ∈ L | πx(y)} ∪ ⋃{π : π ∈ Π | π(y)}
Stabilize

In the case of the instantiation procedure with stabilization, (26) becomes

yM|i =Def
{
xM : x ∈ L

∣∣πx(y) & x < xi

} ∪
⋃{

π(i) : π ∈ Π
∣∣π(y)

}
, (27)

where π(i) is the value of the variable π in the instantiation procedure after the
ith stabilization step in the ∈-phase. It is understood that stabilization is monotone,
namely π(0) ⊆ π(1) ⊆ · · · ⊆ π(m) hold for each place π in Π .
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We illustrate such a technique with two extensions of MLS, with the general
union operator

⋃
and with the powerset operator P .

5.1 MLS with the General Union Operator

We first consider the unquantified theory MLSU obtained from MLS by also allow-
ing an unrestricted number of occurrences of the general union operator

⋃
, where

we recall that
⋃

S = ⋃
s∈S s.

By way of a decomposition at the propositional level and a secondary decom-
position of the kind shown in Sect. 3, we can limit ourselves to considering only
formulae C of MLSU which are conjunctions of MLS-literals having one of the flat
forms

x = y ∪ z, x = y ∩ z, x = y \ z,

x 	= y, x ∈ y, x /∈ y,
(28)

plus atoms of the following type

u =
⋃

y. (29)

Thus, let C be a conjunction of MLSU-literals of the forms (28) and (29) and let
M be a model of C. Let Σ , Π , etc., be as in Sect. 3 and let < be an ordering of
the variables in C such that if xM ∈ yM then x < y. The heuristic technique used
in order to derive conditions which are both necessary and sufficient for C to be
satisfiable resembles that used in the MLSS case.

A first necessary condition is suggested by the following observation. Let x be
a left-hand variable such that πx(y) is true, for a variable y occurring in a clause
u = ⋃

y in C. Then xM ∈ σx ⊆ yM, where πx is the place in Π corresponding to
the Venn region σx ∈ Σ . But since uM = ⋃

yM, it follows that xM ⊆ uM, so that
for each Venn region σ ∈ Σ such that σ ⊆ xM, we have also σ ⊆ uM. Therefore
π(u) is true, for each π ∈ Π such that π(x) is true. Thus, a first obviously necessary
condition is:

(C1) if πx(y) is true for variables x, y in C such that C contains a clause of type
u = ⋃

y, then π(u) is true whenever π(x) is true, for every place π ∈ Π .

The remaining conditions necessary and sufficient for satisfiability can be derived
by closer analysis of the initialization- and ∈-phases. A first problem is how to find
values π(0) such that the initial approximant assignment

xM|1 =
⋃{

π(0) : π ∈ Π
∣∣π(x)

}

satisfies all conjuncts in C which do not involve the membership relation ∈. For this,
we begin with a set of places in which individuals can be put without exercising
any special care (except that certain rank restrictions must be satisfied). Then we
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proliferate individuals in such a way as to initialize the sets π appropriately. It turns
out that all inclusion relationships

⋃(⋃{
π : π ∈ Π

∣∣π(y)
}) ⊆

⋃{
π : π ∈ Π

∣∣π(u)
}
,

where u = ⋃
y occurs in C, can be forced by the first part of the initialization

phase (proper initialization). A subsequent stabilization subphase then turns these
inclusions into equalities. During the ∈-phase, the insertion of a set zM into a yM

(precisely in the (i + 1)st step of the ∈-phase, where z is the ith variable in the
given admissible ordering) can disrupt an already established inclusion of the form
uM|i ⊆ ⋃

yM|i , where the clause u = ⋃
y occurs in C. This may happen if πz(u)

is true and zM|i 	⊆ ⋃
yM|i (the reverse of such inclusions are maintained because

of condition (C1) above). To get around this problem it is enough that each step in
the ∈-phase is followed by a suitable stabilization step which enlarges the sets π ’s
in such a way that zM|i ⊆ ⋃⋃{π(i+1) : π ∈ Π | π(y)} holds, without disrupting
other already established equalities or inclusions.

In order that the various stabilization steps that we have just sketched function
properly, some relationship among places is required. This suggests the following
definition, which associates a graph to the conjunction C and its set Π of places.

Definition 1 Given a conjunction C and a set Π of places of C as above, the Ugraph
G of C, Π is the graph whose set of nodes is Π , plus one additional node Ω , and
whose edges are as follows:

(i) a directed edge connects π to Ω if and only if π(y) is false for every variable
y for which u = ⋃

y is in C (intuitively this means that clauses u = ⋃
y of C

tell us nothing about the set
⋃

π , which allows the proper initialization phase
to start with such places);

(ii) otherwise, a directed edge connects the place α to the place β if and only if
β(u) is true for all clauses u = ⋃

y such that α(y) is true (intuitively, the nodes
β such that α → β is an edge of G represent all the sets β in which elements
of

⋃
π can appear. Indeed, let yi1, . . . , yik be all variables y such that u = ⋃

y

is in C and α(y) is true, so that α ⊆ yMi1 ∪ · · · ∪ yMik . It follows that
⋃

α ⊆
uMi1 ∪ · · ·∪uMik , i.e.

⋃
α is contained in the union of all sets β such that α → β

is an edge of G.)

In the graph just introduced we can distinguish three kinds of nodes. Those from
which there is a directed path which reaches Ω are called safe. A node is called
trapped if every sufficiently long path from it eventually reaches a node from which
no edge branches off (null node π∅). Finally, a node is cyclic if it is neither safe nor
trapped. Intuitively speaking, trapped places are those places whose elements are
subject to severe restrictions. Consider for example the following formula:

⋃
x = ∅ &

⋃
y = x &

⋃
z = y & x = ∅.
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It is easy to see that in any set of places of the formula above, all places are trapped.
It is also evident that variables x, y, z can assume just a few values; this ‘semantic’
fact reflects the ‘syntactic’ fact that we have just noted. Trapped places are dealt
with by observing that such places can be assigned only sets having rank at most
one more than the maximum length of a longest path forward from each of them to
a null node. Therefore only a finite number of possible choices must be checked in
order to determine the value π to associate with such a π . On the other hand it turns
out that each nontrapped place π can be assigned an infinite π . This fact simplifies
greatly the initialization phase, since the ‘individuals’ which we initially place in π

easily propagate along the Ugraph via singletons or pairs.
A rough description of the first initialization phase is as follows (for simplicity

we only consider the case in which no trapped place exists). First of all infinitely
many individuals are associated with every place π of C such that π → Ω is an
edge of the graph G. Then any safe place can iteratively be given an infinite supply
of elements by drawing elements from its descendants and forming their singletons.
The same technique can also be used to initialize cyclic places, once we observe
that the null node π∅ must lie on a cycle which can be given elements by succes-
sive formation of singletons of the empty set ∅ (which is assigned to π∅) and that
the null node must be reachable along edges of G from every other node, by the
regularity axiom of set theory. This observation, which in substance gives us a sec-
ond condition for the satisfiability of C, guarantees that proper initialization can
be accomplished successfully. Once this phase is completed, all equality clauses of
C are correctly modeled; however for literals u = ⋃

y in C all we can say is that⋃
(
⋃{π : π ∈ Π | π(y)}) ⊆ ⋃{π : π ∈ Π | π(u)}. To get equalities in place of these

inclusions, the following stabilization phase is then performed. For each element s

which has been put into π and for every clause u = ⋃
y such that π(u) is true

(i.e., intuitively, π ⊆ uM), an element A is found such that after inserting A into
π no inclusion of the type above is disrupted. Then the pair {p,A} is inserted in a
place β such that β → π is an edge of the Ugraph G. We refrain from stating the
exact conditions which guarantee that such a stabilization phase can actually take
place, since they are quite involved. The interested reader can find a complete ac-
count in [7]. It turns out that the resulting decision procedure has a nondeterministic
exponential-time complexity in the size of the input formula.

5.2 MLS with the Powerset Operator

Next we consider the case of the unquantified theory MLSP, namely the extension
of MLS with an unrestricted number of occurrences of the powerset operator P (·),
where we recall that P (s) = {t | t ⊆ s}.

Much as in the previous case, by way of a decomposition at the propositional
level and a secondary decomposition of the kind shown in Sect. 3, the satisfiability
problem for MLSP can be reduced to the satisfiability problem for conjunctions C
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of flat MLS-literals having the form (28) plus conjuncts of the form

p = P (q) (30)

In the preceding section it was convenient to introduce a graph structure among
places of flat conjunctions of MLSU. In the present case we will see that what is
needed instead is a relation between sets of places and places.

We begin with some general considerations on the powerset operator. Let
s1, s2, . . . , sn be nonempty disjoint sets. Then we have

P (s1 ∪ s2 ∪ · · · ∪ sn) =
⋃{

P ∗(A)
∣∣A ⊆ {s1, s2, . . . , sn}

}
,

where P ∗(A) stands for the collection of those subsets of
⋃

s∈A s which have
nonempty intersection with every element of A. The above formula can be eas-
ily verified by observing that every element on the right-hand side of the equal-
ity is a subset of s1 ∪ s2 ∪ · · · ∪ sn. On the other hand, if t is an element of
P (s1 ∪ s2 ∪ · · · ∪ sn), then t ∈ P ∗(At ), where At = {si | si ∩ t 	= ∅, i = 1, . . . , n}.
Hence, if p = P (q) is a powerset clause in a given flat MLSP-conjunction C, and
α1, . . . , α	 are places for C such that α1(q), . . . , α	(q) are all true, there must ex-
ist places β1, . . . , βk such that β1(p), . . . , βk(p) are true, and such that elements of
P ∗(α1, . . . , α	) can lie in β1 ∪ · · · ∪ βk only. We indicate such relationship by writ-
ing {α1, . . . , α	} → βi , for each i = 1, . . . , k. (The notation used suggests the idea
of a “flow” from the places α1, . . . , α	 to the place β .) In order to be more precise,
we give the following definition.

Definition 2 A nonempty set {α1, . . . , α	} of places of C is called a P -node if there
is a powerset clause p = P (q) in C such that αj (q) is true, for all j = 1, . . . , 	.

If A is a P -node, then a place β is called a target of A if for every powerset
clause p = P (q) we have that β(p) ↔ α(q) is true, for all α ∈ A.

A place β is called initial if it is not the target of any P -node A. (Intuitively
speaking, initial places are those places which are not constrained by powerset
clauses. It is then reasonable to start initialization from these places.)

A first condition for C to be satisfiable follows immediately from the fact that if
s = P (t), then u ∈ s if and only if u ⊆ t . In terms of places, this translates into the
following:

“if p = P (q) is a clause in C, then πx(p) is true if and only if π(x) → π(q) is true, for
every place π .”

This condition ensures that during the ∈-phase, insertion of zM in sets of type
{xM : x ∈ L | πx(p) & x � z} will not disrupt any (already established) inclusion
of the type

{
xM : x ∈ L

∣∣πx(p) & x < z
} ∪

⋃{
π : π ∈ Π

∣∣π(p)
}

⊆ P
({

xM : x ∈ L
∣∣πx(q) & x < z

} ∪
⋃{

π : π ∈ Π
∣∣π(q)

})
,

for any powerset clause p = P (q) in C.
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In order to force equalities in place of the above inclusions, a stabilization phase
is needed each time a new variable z of C is processed during the ∈-phase. Such a
stabilization will proceed in a manner defined by certain special edges of the type
{α1, . . . , α	} → β . (These special edges are those ones whose target is a “set” of
maximum rank; this idea guarantees against circularity.)

In this case stabilization steps are easy to describe; they just consist of assign-
ments of the form

β := P ∗(α1, . . . , α	)
∖ ⋃

{α1,...,α	)→γ

γ ,

where {α1, . . . , α	} → β is a special edge.
The initialization phase can be described roughly as follows. Since initial places

are not restricted by any powerset clause, we can initialize them freely using a suffi-
ciently large number of individuals. Moreover the empty set can be assigned to the
place π∅ (for simplicity, it is convenient to assume that ∅ is a variable occurring in
C which stands for the empty set). At this point proliferation of elements can start.
This will continue until each place has been assigned at least one element. More
specifically, for each P -node {α1 . . . , α	}, with α1, . . . , α	 nonempty, elements in
P ∗(α1, . . . , α	) \ ⋃

{α1,...,α	}→γ γ are distributed among all its targets γ in a suit-
able manner. Reference [8] states conditions which ensure that the initialization and
subsequent stabilization phases can execute properly.

Note, finally, that it can be proved that if m is the number of different variables
occurring in C, then C is satisfiable if and only if it has a model of rank at most
22m+1+m+2 + 1. The resulting search-based decision procedure for MLSP is not
even elementary and is of theoretical interest only.

It is interesting to contrast this last result with the fact that there are formulae
of the theory MLSU which admit only infinite models. For example, the formula
x 	= ∅&x ⊆ ⋃

x is not finitely satisfiable, but the assignment Mx = {∅0,∅1, . . .},
where ∅0 = ∅ and ∅n+1 = {∅n}, for n = 0,1, . . . , clearly satisfies it.

We close this section by noticing that the extension MLSSP of MLSP with
also the singleton operator has been shown decidable in [3] and, using the forma-
tive processes approach, in [13]. Roughly speaking, it is shown that an MLSSP-
formula C is injectively satisfiable if and only if a certain nondeterministic as-
sociation procedure can produce a canonical model of C in time bounded by
a doubly exponential expression in the number m of variables occurring in C.
To prove the necessity of such condition, an existing model M of C is used
as an oracle to instantiate a computation of the association procedure. Again,
matters are complicated by the presence of singleton clauses, which cause some
of the places of C to become trapped. Trapped places are handled by main-
taining a one-one partial map from the canonical model under construction into
the oracle model. Such a map is intended to guide a correct instantiation of
the association algorithm. At each step of a computation of the association al-
gorithm, the rank of any set can increase at most by one. Therefore, as a by-
product, it follows that any formula C of MLSSP is injectively satisfiable if and
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only if it has a model of rank doubly exponential in the number of variables
in C.

6 Epilogue

Much work still remains to be done to bring to completion Jack’s initial project.
This includes the reimplementation of the ÆtnaNova/Referee verifier in a currently
supported programming language, like Javascript and Java, and the completion of
the full formalization in Referee of the proof of the Cauchy integral theorem (cf.
[29]), as pointed out in [21].

In addition, Computable Set Theory is still a source of challenging problems and
interesting applications. Indeed, just very recently the long-standing open problem
concerning the decidability of the prenex sentences in the set-theoretic Bernays-
Shönfinkel-Ramsey (BSR) class over von Neumann’s cumulative hierarchy has re-
ceived a positive solution (cf. [23, 24]). We recall that BSR-sentences have the form

(∃x1) . . . (∃xn)(∀y1) . . . (∀ym)ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is any Boolean combination of atoms of the types x = y and x ∈ y. We
also mention a recent proof of the NP-completeness of the consistency problem
for certain description logic knowledge bases via a reduction to the satisfiability
problem for a quantified fragment of set theory involving ordered pairs and some
operators to manipulate them (cf. [9]).

A further line of research (still active) concerns the investigation of the satisfi-
ability problem for extensions of MLSS with various combinations of constructs
such as the finiteness predicate Finite, the general union operator

⋃
, the powerset

operator P , the Cartesian product ×, etc. We expect that the technique of forma-
tive processes, developed in [13], can be a valuable starting point to tackle such
problems. A particularly significant problem in this area is the satisfiability prob-
lem for MLSS with the Cartesian product, which can be regarded as a set-theoretic
counterpart of the celebrated Hilbert’s tenth problem, concerning the solvability of
Diophantine polynomial equations by a mechanical procedure.10 As is well known,
a negative answer to Hilbert’s tenth problem was the result of the combined work of
Yuri Matiyasevich, Hilary Putnam, Julia Robinson, and Martin Davis.
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Jack Schwartz and Robotics: The Roaring
Eighties

Micha Sharir

Abstract This article reviews the birth and growth of algorithmic motion planning
in robotics, and the immense contributions of Jack Schwartz to the creation and
development of this area during the 1980s. These contributions have started with
the series of works on the “Piano Movers” problem, by Jack and myself (reviewed
in detail in this article), and continued in many other works, mostly theoretical but
with a strong practical motivation. These works, by Jack and others, have brought
together many disciplines in mathematics and computer science, and have had enor-
mous impact on the development of computational geometry.

1 Prologue

1.1 Jack Schwartz and Robotics, and Me

It is a great honor for me to contribute this essay, attempting to summarize Jack
Schwartz’s work in robotics during the 1980s, to this volume, commemorating the
life and work of this amazing person. It has been a double honor for me to have
had the opportunity to meet Jack and to serve for about a decade as one of his
disciples. This has had a tremendous influence on my scientific work. Jack has been
a role model whom I desperately tried to imitate, impossible as it may have been.
Working with him was like being with Lewis Carroll’s red queen: One had to run
twice as fast to get somewhere, and this is one of the main things I learnt from him,
although he himself had no difficulty running ten times as fast, without the slight
indication of any perspiration.
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My collaboration with Jack has started in 1977, when I joined the SETL project
as a new postdoc and worked with him on high-level program optimization. For me
this was a rather shocking metamorphosis, as my Ph.D. dissertation was on extreme
operators in Banach spaces. Of course, I already knew of Jack from that period,
mainly through the monumental trilogy of books, Linear Operators, by Dunford and
Schwartz (the first book [16] cost only $23 at the time of publication, 1958), which
was at that time the bible of functional analysis. Thus working on optimizing com-
pilers was a rather drastic change in my career, but I survived it reasonably well, with
many fond memories of this period. I remember the weekly lunch meetings of the
group that Jack has organized, in which everything, technical and non-technical, was
discussed, and the routine lunches, on most other days, at the legendary Szechuan
Taste restaurant (which closed one day “for renovation” and never opened again).
There were the many SETL Newsletters, most of which remained unpublished, so
it was a non-trivial task to convince Tel Aviv University to recognize them as “real”
papers during my appointment process. I also remember Jack’s way of correcting
the technical papers I have written in my poor English back then, with many itera-
tions of red miniature-size handwritten scribbles. Semi-unconsciously, I have been
doing the same to my students ever since.

The work on SETL has proceeded quite well, but in the early 80s Jack was al-
ready looking for a new area to explore. I remember quite sharply one day in 1981,
as I was sitting in his office during a visit to NYU, when all of a sudden he has pro-
posed to me the problem of planning a collision-free motion of a line segment amid
polygonal obstacles in the plane, and already sketched a possible solution, based
on the notion of critical curves. In no time at all, we were “trapped” in this prob-
lem, Jack in his usual zeal of looking over the horizon for something new, and me
in great relief, as this has been a topic much closer to my mathematical heart than
optimizing compilers. This has started an avalanche of research, that has drawn me
into the fascinating area of robotics and computational geometry, and has led to the
series of joint papers with Jack “On the Piano Movers’ Problem”, which have laid
down the foundation for algorithmic motion planning.

The first paper in the series [36] presented an algorithm for solving Jack’s ini-
tial problem, but it was the second one [37] which has been the most influential,
as it gave a general solution to the motion planning problem, using and refining
techniques from algebraic geometry. Specifically, given a moving system B with k

degrees of freedom, a collection of obstacles, whose shape and locations are known
to the planning system, and a start and goal placements of B , we want to deter-
mine whether there exists a continuous collision-avoiding motion of B from the
start placement to the goal placement, and, if so, produce such a motion. The algo-
rithm is based on Collins’ cylindrical algebraic decomposition [15], but refines it to
handle the topology of the resulting free configuration space of B , namely, the sub-
set of the parametric k-space (in which placements of B are represented as points),
consisting of those placements in which B does not intersect any obstacle. Under
reasonable assumptions on the shape of B and the obstacles, and on the motion of
B , the resulting algorithm is exact, and takes time which is doubly exponential in
k, but polynomial in the other parameters of the problem. Thus, for any fixed sys-
tem B , one gets an exact polynomial-time algorithm for planning its motion amid a
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given collection of obstacles (again, under reasonable assumptions on the shape of
the moving system and the obstacles).

(I feel “safe” in praising that paper, because it was to a large extent Jack’s cre-
ation. My role has been that of a disciple, running after the master, twice as fast,
learning a lot from him, and helping wherever I could.)

This was only the beginning. There have been two main developments that grew
out of this initial venture. First, as in the famous story about a person who finds a
button and makes a suit out of it, Jack entered the world of robotics, with his usual
unbounded energy, vigor, and stamina. With the aid of a large NSF Infrastructural
Grant, he has founded, a few years later, the Robotics Lab at the Courant Institute,
which has become one of the major centers for robotics research during the 1980s.
I had the privilege of serving as the Deputy Director of the Lab for four years, from
1985 to 1989, during which I experienced intensive and productive interaction with
Jack. As usual, he was interested in everything: Many fundamental questions in
motion planning, questions related to shape and pattern recognition (for which he
has introduced the technique of geometric hashing [9, 24], which is still used to-
day, quite effectively, in the analysis of molecular structures in bioinformatics [54]),
questions related to friction and grips of objects [32, 43], and many others. A large
portion of this work, and several other parallel developments, is recorded in a book
edited by John Hopcroft, Jack and myself [23], and in several surveys [39, 41, 44].

The other development was an extensive study of motion planning algorithms as
a new sub-area within computational geometry, a field which was founded about
10 years earlier, and which experienced a tremendous growth during the 1980s, for
which the motion planning problem has been a major motivating factor. Among
the main developments resulting from this interaction were the study of arrange-
ments, Davenport-Schinzel sequences and their geometric applications, and space-
decomposition techniques. See [49] for details.

During the 1980s I have drifted from robotics into computational geometry, and
have stayed there ever since. Jack dabbled a bit in this area too (see, e.g., [21, 42]),
but was never really attracted to it. Towards the end of the 1980s and beginning
of the 1990s, his interests have shifted to other topics (ultracomputers, multimedia,
logic, bioinformatics, and what not), and our scientific ways, but not our friendship,
have slowly drifted apart.

2 Jack and Motion Planning: The Piano Movers Papers I, II

As already noted, the theory of algorithmic motion planning has been presented
in numerous survey papers, some by Jack and me [41, 44]; see also [45–47], so I
prefer not to recreate here yet another survey of this kind. Instead, I will present the
theory as it was developed by Jack and myself. I will then describe several other
developments in the theory of robotics, in which Jack played an instrumental role
too.
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2.1 Piano Movers I

As described above, this was Jack’s first encounter with motion planning. The (sim-
plest instance of the) problem is: Let e be a given line segment, and let O be a
collection of pairwise-disjoint polygonal obstacles in the plane, consisting of a total
of n edges. Let s and t denote the start the target configurations (i.e., placements)
of e, both assumed to be free, i.e., not to intersect any obstacle in O. The goal is to
determine whether there exists a continuous collision-free motion of e from s to t ,
during which it never collides with any obstacle, and if so, to plan such a motion.

A few observations are in order. First, placements of a line segment in the plane
have three degrees of freedom. For example, we may represent each placement by
the triple (x, y, θ), where (x, y) are the coordinates of a fixed endpoint a of e, and
where θ is its orientation.1 We can therefore represent placements of e as points in
a 3-dimensional parametric space; topologically, it is the cylinder R2 × S

1, but, for
simplicity of presentation, let us think of it as the real Euclidean 3-space R

3. We
refer to this parametric space as the configuration space of e.

Now, each obstacle C in O is mapped to a region C∗ in configuration space,
consisting of all (points representing) placements of e in which e intersects C.
Many names have been given to such a region C∗, including expanded obstacle,
C-obstacle, configuration-space obstacle, and forbidden region. The simple obser-
vation is that the union K of the regions C∗, over all obstacles C ∈O, is the non-free
portion of the configuration space. It consists precisely of those placements in which
a collision occurs between e and some obstacle. Hence, its complement F = Kc is
the free configuration space, the subset of all free placements of e.

By assumption, both s and t belong to F . Moreover, a collision-free motion of
e from s to t maps to a connected arc between s and t which lies fully in F . In
other words, there exists a collision-free motion of e from s to t if and only if s

and t belong to the same connected component of F . Hence, one approach to the
problem is to construct F and to decompose it into its connected components. We
want to represent the components in an effective manner that will allow us to (a)
to determine whether s and t lie in the same component of F , and (b) of they do,
construct a connected arc from s to t within F .

(We note that in this formulation we only consider the purely geometric aspect of
the problem, and ignore issues related to physical constraints that might affect the
realizability of certain kinds of motions that we might want e to undertake, such as
sharp turns or some other combinations of translation and rotation. For example, if e

represents a moving vehicle, we cannot translate it sideways. There have been many
studies of this more realistic nonholonomic motion planning [29]. Other realistic
aspects of motion planning are motion planning in unknown environments, motion

1We note in passing that θ is not a good choice of parameter, because it makes the equations
that will arise in the analysis non-algebraic, whereas algebraicity will be a crucial ingredient of
the analysis. This is not a serious issue, because we can replace θ by tan(θ/2) and make all the
relevant equations algebraic. Still, to make the presentation more readable, we stick to using θ .
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Fig. 1 Critical curves in the motion of a line segment

planning with uncertainty, optimal motion planning, and many others. However, in
this initial encounter with motion planning, we push aside all these issues.)

The considerations made so far are very general, and apply to essentially all
motion planning problems. We will get back to them later on, but for now let us go
back to our simple special case of a line segment in the plane.

Jack’s idea was to project the 3-dimensional free configuration space F onto the
xy-plane, and to construct a cell decomposition of the projected F∗. Specifically,
consider a fixed point (x, y) in the plane. When we place e with its endpoint a

at (x, y), it is left with one degree of freedom of rotation about a. As e rotates
about a from a free placement it may swing freely through the entire 360◦ range
of orientations, but typically it will stop being free by hitting some obstacle, both
in the clockwise and the counterclockwise directions. This defines a collection of
free arcs, each of which can be described symbolically by the pair of obstacles that
determine its endpoint orientations.

In general, as we move (x, y) slightly, each of the free arcs will vary continu-
ously, and will continue to have the same discrete label of the pair of delimiting
obstacles. However, at certain critical placements, there will be a discrete change in
the number of arcs or in its labels. For example, two free arcs may fuse into a single
free arc, a free arc may split into two subarcs, a free arc may shrink to a point and
then disappear, a new free arc may emerge, or the label of a free arc may change, so
that instead of terminating at a contact with one obstacle it now terminates at a con-
tact with a different obstacle. See Fig. 1 for illustrations of such critical placements.

The locus of all points (x, y) at which one of these criticalities occurs, for a fixed
type of transition involving a fixed set of labeling obstacles, is a curve, referred to
as a critical curve. These curves are of several kinds:



92 M. Sharir

(i) Displacements of edges and convex corners of the obstacles by distance |e|.
They are straight segments and circular arcs.

(ii) Curves that trace the position of a as e moves so that its relative interior touches
a convex corner of an obstacle and either its other endpoint touches some ob-
stacle edge or its relative interior also touches a second convex obstacle corner.
These are either straight segments (in the latter case) or fourth-degree curves,
known as conchoids of Nicomedes [30] (in the former case).

Altogether we have O(n2) critical curves, and they partition the xy-plane into
O(n4) non-critical regions, each being a maximal connected portion of the comple-
ment of the union of the critical curves. Technically, each non-critical region is a
face in the arrangement A of the critical curves. Each such face f has the property
that the sequence σf of the labels of the free arcs around (x, y) is the same for all
points (x, y) ∈ f .

This leads to the following cell decomposition D of F . Each cell c of D is of
the form (f, o1, o2), where f is a face of the planar arrangement A, and o1, o2
are the obstacles delimiting a free arc around any point in f . Formally, c con-
sists of all placements (x, y, θ), such that (x, y) ∈ f and θo1(x, y) < θ < θo2(x, y),
where θo1(x, y), θo2(x, y) are the orientations that delimit the corresponding free
arc around (x, y).

Clearly, each cell in the above decomposition is an open connected portion of F ,
the cells are pairwise disjoint, and the closure of F is the union of the closures of
the cells.

This is not yet sufficient to construct the connected components of F , because a
connected component consists in general of several cells of D. The extra information
that we need is the adjacency relationship between the cells. We want to find all pairs
of cells (c1, c2) for which there exists a free motion from some point in c1 to some
point in c2, which stays within the union of the closures of c1 and c2. (Informally,
the boundaries of the two cells should overlap in an appropriately defined manner.)
As one can show, adjacency is always realized by crossing a critical curve which
separates the xy-projections of c1 and c2.

To recap, the algorithm first constructs all the critical curves and computes their
arrangement A. For each face f of A, we can then simply pick an arbitrary point
(x, y) in f , construct the free arcs about (x, y), obtain their labels, and thereby
obtain the stack of cells of D that lie above f . The adjacency relation is also easy to
construct, but we omit details of this step.

Now we can view the adjacency relation as a graph, called the adjacency graph
(or connectivity graph G, whose nodes are the cells of D and whose edges record
adjacencies between cells. It is now fairly obvious that the connected components
of F correspond in a one-to-one manner to the connected components of G, which
we compute by a trivial depth-first search, say.

Now, given the start and target configurations s and t , we find the cells cs , ct

that contain s and t , respectively, and test whether they lie in the same connected
component of G. If so, we determine that e can be moved from s to t without
colliding with any obstacle. Otherwise, no collision-free motion is possible between
s and t .
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In the former case we can also plan a collision-free motion. For this, we store
with each edge (c1, c2) of G, a point on the common boundary of c1 and c2, through
which we can freely cross from c1 to c2. Navigation between any two points u,v

of a fixed cell c, or between a point in the cell and a “border-crossing” point, or
between two border-crossing points is easy: We move the endpoint a of e within
the xy-projection f of c from the xy-projection of u to that of v, while varying
the orientation of e so that it stays within the corresponding free arc; the further
easy details are omitted. With some care, we can output the motion plan as a finite
sequence of “elementary motions”, each consisting of a pure translation, a pure
rotation, or a mixed “sliding” motion which moves in configuration space along
some small-degree algebraic curve. Again, we omit the details.

The case of a line segment (a “ladder” or a “rod”), as just described, is a special
case of the more general problem where the moving object B is an arbitrary rigid
polygonal region. This latter case was also treated in the Piano Movers I paper. The
same basic approach was used, except that the critical curves becomes somewhat
more complicated and more diverse.

Discussion The algorithm described above runs in O(n5) time. In retrospect, this
is a rather inefficient solution. As the study of motion planning has progressed dur-
ing the 1980s, much faster algorithms have been designed. The current best solu-
tions run in nearly-quadratic time, both for the case of a ladder and for the case
of a convex polygonal object (with a constant number of edges) see [4, 26–28, 51].
Nevertheless, the algorithm had several significant merits. First, it was the first exact
“combinatorial” algorithm for this problem with a provable worst-case bound on its
running time, which depends (polynomially) only on the number n of edges of the
obstacles and not on any physical parameter, like how cluttered together are the ob-
stacles. Second, it has introduced the idea of constructing and representing the free
configuration space via the cell decomposition method, which Jack has later applied
in fairly full generality in the Piano Movers II paper (reviewed next). Third, it has
defined algorithmic motion planning as a solid subdiscipline within computational
geometry, which has been a strong motivating force for the study of arrangements
and for several major discoveries that were made during this study; see below for a
few comments on these developments.

There has been one additional merit, very significant from my personal point of
view. As my earlier collaboration with Jack was on the SETL project, I came to
be fond of implementing complex algorithms in this language, using its high-level
set-theoretical features. So I thought of trying to implement the Piano Movers I al-
gorithm in SETL. This attempt has aborted right away: One of the very first steps
was to test whether the input is valid: Assuming that one specifies each polygonal
obstacle as a cyclic sequence of its vertices along its boundary, we need to verify
(a) that the resulting boundary is not self-intersecting, and (b) that no pair of distinct
obstacles intersect each other. Of course, each of these steps could be implemented,
by a brute force approach, in quadratic time, but I felt that there ought to be a bet-
ter way of doing that. I snooped around, and discovered computational geometry,
a budding young field at that time, which nevertheless had already possessed sev-
eral important tools and techniques (including solutions to the intersection detection
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problem I got stuck at). I was fascinating by this field and got drawn into it, and got
stuck there ever since, for better or worse.

2.2 Piano Movers II

While the Piano Movers I paper was a first step into the realm of algorithmic motion
planning, the second paper, Piano Movers II [37], has covered the entire landscape.
In a sense, it provided a complete solution to any motion planning problem, using
standard, albeit somewhat complex, techniques from algebraic geometry and topol-
ogy. I will not describe here the full details of the technique, but will try to present
its main highlights.

Let B be a mechanical system with k degrees of freedom, moving in d-space (for
d = 2 or 3) amid a collection O of obstacles of known shapes and locations. One as-
sumes that B , its degrees of freedom, and the obstacles are such that the conditions
for a placement of B to be collision-free can be specified as a Boolean combina-
tion of finitely many polynomial equalities and inequalities in a fixed number of
variables (the degrees of freedom, possibly plus some auxiliary variables), possibly
defined with the aid of some quantifiers. In other words, we assume that F is a real
semi-algebraic set, specified in this manner, and we want to construct it (or, more
precisely, its connected components) in a more explicit manner.

This was not a really new problem. Back around 1950, Tarski [52] has considered
the decidability of predicates in the first-order theory of the reals, and has provided a
decision procedure, which was guaranteed to terminate, but with no elementary up-
per bound on its running time. This has been considerably improved by Collins [15],
who, in 1975, has devised the method of cylindrical algebraic decomposition, or
CAD in short, which constructs a cell decomposition of the input semi-algebraic
set, with an elementary upper bound (which is doubly exponential in k but polyno-
mial in the number of constraints and in their maximum degree) on the number of
cells that it produces. The analysis in the Piano Movers II paper was based on con-
structing a CAD of F , but has further extended the analysis to obtain the adjacency
relation between the cells of the CAD, from which the connectivity (and in fact the
full topological structure) of F could be derived.

Here is a brief, rather informal review of the CAD technique. Let k be the number
of variables in the specification of F . We proceed recursively on k. For k = 1, F is
a collection of intervals and points, which we can find by computing and collecting
the roots of each of the input polynomials, and then by testing explicitly each root,
and each (open) interval between two consecutive roots, whether it belongs to F .
The resulting collection of points and intervals is the CAD representation of F . For
k > 1 we eliminate the last variable xk from the given collection of polynomials,
using the theory of resultants and sub-resultants, and obtain a new collection of
(k − 1)-variate polynomials, and we construct its CAD recursively. For each cell c

of the (k − 1)-dimensional CAD, we consider the cylinder c × R, and note that F
meets this cylinder in pairwise-disjoint layers, stacked above each other, where each
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layer is either of the form xk = f (x1, . . . , xk−1) or of the form f (x1, . . . , xk−1) <

xk < g(x1, . . . , xk−1), where f and g are algebraic functions. The union of these
layers, over all cells c, is the desired CAD for the k-dimensional F .

Note that each cell c is homeomorphic to an open ball of some dimension ≤ k.
Moreover, c can be specified in terms of at most 2k algebraic functions, at most
two for each dimension. However, the degrees of these function keep growing as we
go down the recursion, essentially doubling at each recursive stage. This is because
each of these functions arises from some resultant or sub-resultant constructed from
a pair of functions from the preceding stage. Thus, the maximum degree is doubly
exponential in k. The number of cells is O(n2k) times the degree bound. Hence, so
far we have an algorithm which is doubly exponential in k, the number of degrees
of freedom, but polynomial in all the other parameters (the number of constraints n

and their maximum degree b) of the problem.
However, as in the Piano Movers I case, we need to augment this CAD with the

adjacency information between cells. One of Jack’s main contributions was to pro-
vide a procedure for doing that, yielding complete information about the topological
structure of the CAD, and thus of F . This part of the analysis is too technical, and I
will omit its details in this survey. The cost of the adjacency computation is asymp-
totically the same as the cost of constructing the CAD, namely doubly exponential
in k. (There is a slight technical issue here: One needs to ensure that the coordinate
frame is in generic position, for otherwise the adjacency structure may involve sin-
gularities that might hamper proper reconstruction of the topology of F . A simple
solution is to apply a random rotation to the frame, which will then ensure, with
probability 1, that no degeneracy of this sort can arise.)

To recap, under reasonable assumptions on the moving system B and on the ob-
stacles, the free configuration space F is a semi-algebraic set in k-space, and the
Piano Movers II algorithm provides a general procedure for decomposing it into
finitely many simple cells, each homeomorphic to a ball and having succinct rep-
resentation, together with the adjacency relation between the cells. The structure
can be further processed, so that, given any two free placements s, t of B , we can
determine whether t can be reached from s by a collision-free motion, and, if so,
plan such a motion. For the last part, we simply locate (by brute force) the cells cs ,
ct which contain s and t , respectively, and check whether cs and ct lie in the same
connected component of the adjacency graph G. If so, we retrieve the path π in G

from cs to ct , and transform it into a free motion from s to t , using a fairly straight-
forward mechanism for navigating between any pair of points within the same cell,
including crossings between cells through points on their common boundary.

3 Further Developments

Piano Movers III, IV, and V The three consecutive papers in the Piano Movers
sequence were definitely an anti-climax (and one of them, the fourth, was not even
co-authored with Jack). They presented concrete motion planning algorithms for
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some specific systems, using ad-hoc techniques (which nevertheless were inspired
by the methodology of the first paper) which aimed to improve the rather monstrous
bounds yielded by the general technique in the Piano Movers II paper.

The Piano Movers III paper [38] dealt with coordinated motion planning of sev-
eral independent bodies. Specifically, it studied the cases of two or three disks mov-
ing simultaneously in the plane, where, in addition to avoiding the obstacles, they
also need to avoid colliding with each other. The Piano Movers IV paper [50] con-
sidered the problem of moving a “spider”, namely a multi-arm robot, consisting
of many straight segments, all hinged around a common endpoint, amid polygonal
obstacles in the plane. The Piano Movers V paper [40] considered the problem of
moving a line segment (a “rod”) in three dimensions amid polyhedral obstacles.

As these papers have explored a yet uncharted area, they were very careful and
detailed in the analysis, enumerating a large number of types of critical curves, with
detailed analysis of the effect of crossing such a curve on the free motion of the
system. This is clearly a trait that Jack could not be blamed for not having it.

Roadmaps and Other Techniques for Semi-algebraic Sets The main disadvan-
tage of the CAD decomposition used in the Piano Movers II paper is its size, which
is typically doubly exponential in the number of degrees of freedom. This has mo-
tivated extensive further studies, looking for alternative techniques with smaller
(singly exponential) storage and running time. We briefly describe two such im-
provements. The first one is based on roadmaps, where a roadmap is a network N

of 1-dimensional curves within F which captures the topology of F in the following
sense. (i) There is a mapping (retraction) ϕ : F �→ N which sends each w ∈ F to a
point ϕ(w) ∈ N along a trajectory contained in F , so w and ϕ(w) lie in the same
connected component of F . (ii) Two points w,w′ ∈ F lie in the same connected
component of F if and only if ϕ(w) and ϕ(w′) lie in the same connected compo-
nent of N . (iii) For algorithmic purposes, the complexity of the retraction ϕ, and the
algebraic and combinatorial complexity of N , should all be reasonably small.

Given such a network, motion planning becomes simple. Given the start and
target configurations s, t , we compute ϕ(s) and ϕ(t), and then search for a path π

in N from (the edge containing) ϕ(s) to (the edge containing) ϕ(t). If such a path
exists, we concatenate it to the motion from s to ϕ(s) and to the reverse motion from
ϕ(t) to t to obtain the desired motion from s to t . If no such path is found, t cannot
be reached from s.

Canny [10, 11] was the first to come up with a method for constructing roadmaps
in general semi-algebraic sets, whose combinatorial complexity is only singly ex-
ponential in the number of degrees of freedom. Basu et al. [7] have later refined and
improved his construction. See a detailed description in [8, Chap. 15]. The general
idea is to use Morse theory, compute the critical points of ∂F in some direction v,
connect the critical points by monotone curves along ∂F , and then recursively com-
plete the roadmap within each of the v-orthogonal hyperplanes passing through the
critical points. More details can be found in [8].

Cell Decompositions One obvious disadvantage of the CAD structure is that it
contains too many cells. To see this, consider the situation in the plane. In this case
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Fig. 2 Left: The CAD of a collection of curves in the plane. Right: The vertical decomposition

we have a collection of algebraic curves, and the CAD decomposes its arrange-
ment into simple, trapezoidal-like cells. (More precisely, in the CAD construction
each cell is either a point, an open vertical segment, an open x-monotone arc, or a
trapezoidal-like open cell bounded by up to two vertical segments and by up to two
arcs of the above kind.) The CAD construction finds all intersection points between
the curves, all the singular points, and all the points with vertical tangency, and then
draws a vertical line through each of these points. The vertical lines and the original
curves partition the plane into cells of the desired shape, and the concrete set F is
the union of some of these cells. See Fig. 2 (left).

In this case, the number of cells is O(n3), where n is the number of curves (ig-
noring the dependence on the algebraic degree), because there are O(n2) critical
points of the above kind, and the vertical line through each of them (potentially)
crosses each of the curves. This is too much. An obvious simple improvement is to
draw, from each of the critical points a vertical line segment, upwards and down-
wards, only until it hits the next curve. This produces the same kind of cells as does
the CAD, but their number drops to only O(n2). See Fig. 2 (right). This improved
decomposition, known as vertical decomposition, is trickier to define in higher di-
mensions. See [12, 49] for details. The best known bound on the number of result-
ing cells is close to O(n2d−4) (again, ignoring the dependence on the degree). This
bound was not easy to obtain, and required a rather sophisticated analysis in three
and four dimensions. While strongly suspected not to be (nearly) tight for d ≥ 5, it
beats by far the bound on the size of a CAD. One price we have to pay for this im-
provement is that the resulting decomposition is not a cell complex (as is the CAD),
so deriving topological properties from this decomposition becomes more involved.

It is one of the hard open problems in computational geometry to derive sharper
upper bounds on the complexity of vertical decompositions. Even more challeng-
ing is to find alternative, more efficient decomposition techniques for the general
case. So far, the CAD and the improved vertical decomposition are the only known
general-purpose techniques for this problem.

Lower Bounds Given that all general-purpose solutions of the motion planning
problem are so inefficient (at least exponential in the number of degrees of free-
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Fig. 3 The Peaucellier
straight line motion linkage.
E and F are fixed to the
plane. As D rotates around E

along the dashed circle, B

traces the dashed vertical line
segment

dom), one is led to the problem of showing that the problem is indeed computation-
ally hard. Several papers have addresses this question during the 1980s, and I would
like to mention three of them, each showing that the motion planning problem is
PSPACE-hard, when the number of degrees of freedom is part of the input. Each of
the papers uses a different system of (many) moving parts, and reduces some classi-
cal PSPACE-hard problem to the respective motion planning problem. Interestingly,
what these papers effectively produce is a recipe for simulating any Turing machine
with bounded tape “mechanically”, where each step of the machine is realized by a
sequence of moves of the mechanical system.

The first paper [22], by Jack, John Hopcroft (who was also interested in robotics
at that time, and with whom Jack tried to establish some sort of collaboration) and
myself, considered the “warehouseman’s problem”, in which one has a warehouse
(a large rectangle), nearly packed with many rectangular boxes (of different sizes)
lying on the floor, leaving very little free space. The goal is to move one specific
box from one corner of the warehouse to another corner, by a sequence of moves,
each sliding a single box on the floor of the warehouse. This is reminiscent of Sam
Lloyd’s 15 puzzle (see a brief history in [33, Chap. 9]), but is considerably more
involved. It is shown in [22] that such a motion sequence can simulate a Turing
machine with bounded tape, which implies that this instance of the motion planning
problem is indeed PSPACE-hard.

The second paper [20], by Hopcroft, Joseph and Whitesides, considers mechan-
ical linkages. These are collections of rigid links (line segments) in the plane, at-
tached to each other at certain joints, about which they can rotate, and fixed to the
plane at certain other points. The goal is to bring a designated endpoint of one of
the links to a specified point or region in the plane.

Mechanical linkages have been studied already in the 19th century. An ingenious
construction by Peaucellier [34] gives such a linkage to convert circular motion
to linear motion (see Fig. 3), and many other sophisticated mechanisms were also
developed. What Hopcroft et al. have shown is that one can construct such mech-
anisms for simulating the addition and multiplication of real numbers, and that a
suitable combination of such components leads to a procedure for simulating an
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arbitrary linear bounded automaton, implying that this motion planning instance is
also PSPACE-hard.

The third paper [35], by Reif (it originally appeared in 1979, so it is the oldest in
this trilogy), uses a multi-arm robot navigating through a complex system of narrow
tunnels in 3-space. It shows that such a system can simulate any symmetric Turing
machine with bounded tape, making this instance also PSPACE-hard.

Efficient Motion Planning Algorithms The studies of the general motion plan-
ning problem, as reviewed above, have sent mixed signals to the community. On the
positive side, they provided general frameworks for solving the problem in exact (al-
gebraic) form and in fairly full generality. On the negative side, the general solutions
were hopelessly inefficient. Moreover, the lower bounds just reviewed indicate that
this inefficiency is probably inherent in the problem (when the number of degrees
of freedom is arbitrarily large). This has led to an intensive study of techniques for
solving efficiently the motion planning problem for specific systems with a small
number of degrees of freedom.

For example, the problem with which it all started, namely motion planning of
a ladder (line segment) in a planar polygonal environment, was solved in the Piano
Movers I paper by an O(n5) algorithm, where n is the overall number of edges of
the obstacles. Considerably improved algorithms, with (nearly) quadratic running
time, have been obtained in [27, 51, 53], by a better exploitation of the geometry
and combinatorics of the free configuration space.

Overall, the study of efficient motion planning algorithms has been very success-
ful. As a matter of fact, motion planning was a driving force in the development
of a large battery of sophisticated tools and techniques in computational geometry,
including the study of arrangements of curves and surfaces, Davenport–Schinzel
sequences, union of geometric objects, and many others. See [49] for a book sum-
marizing many of these developments, and [1–3, 19, 48] for several related surveys.

Here is one example that illustrates this direction. The general techniques aim to
construct some representation of the entire free configuration space. However, as-
suming that the start configuration s of the moving system is known in advance, we
only need to construct the connected component C of F that contains s, because any
target configuration not in C cannot be reached from s by a collision-free motion.
This has led to the problem of computing a single cell in an arrangement of surfaces
in higher dimensions, which in turn has led to the combinatorial question of bound-
ing the combinatorial complexity of such a cell. For systems with two degrees of
freedom, it was shown in [17] that the complexity of a single face in an arrangement
of n low-degree algebraic curves is nearly linear in n, as opposed to the complexity
of the entire arrangement, which is typically quadratic in n. This paper also gave a
nearly-linear algorithm for constructing a single face (see also [13]). The problem
was more challenging in higher dimensions. After an initial analysis in [18] for the
three-dimensional case, the problem was solved in [6] in any dimension d , showing
that the complexity of a single cell is close to nd−1. See also [5] for the special case
where the underlying surfaces are simplices.

On the theoretical side, this effort has been very successful, but the practical side
was still suffering. The efficient solutions were quite complicated to implement, and
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were still time-consuming to be of any real practical value. This has led researchers
back to the heuristic domain, albeit now backed up by better understanding of the
overall structure of the problem. This has resulted, in the mid 1990s, in a general
technique, called probabilistic roadmaps [25], which has proved successful in solv-
ing fairly complex motion planning problems in practice. Briefly, the idea is to sam-
ple many random free configurations of the system (essentially by sampling many
configurations and selecting those that are free), including also the start and target
configurations s, t , and then to use some simple-minded local planner to find pairs
of these configurations that can be reached from one another by some sort of simple
collision-free motion. This yields a connectivity graph, and the hope is that if the
sampling is sufficiently dense then the graph will contain a path from s to t , if they
are indeed reachable from one another within F . Of course, many details have to be
confronted, such as the possible existence of “narrow passages” in F , which can be
missed by the sampling process. Nevertheless, the method has been fairly successful
in practice. See [14] for a recent account.

Motion Planning and Computational Geometry Although Jack realized the sig-
nificance of computational (and combinatorial) geometry as a tool for tackling the
motion planning problem, these fields have never really “gripped” him. He wrote
with me a few papers in these areas, such as [42], but generally stayed away. I think
he regarded computational geometry as being too low-level and technical for his
taste, which was always to look for general principles of broader nature. As the
1980s have ended, Jack has drifted away from Robotics, turning his attention to
multimedia as well as to his ongoing project of proof systems and computer logic,
while I was “stuck” in computational geometry, still using motion planning as a
major motivation and application area.

3.1 Jack and Robotics at Large

Motion planning was a cornerstone in Jack’s involvement in robotics during the
1980s, but Jack’s interest in the area grew in many other directions too. The Robotics
Lab, put up in the 12th floor of 715 Broadway, was in fact a huge playground in
which Jack could play with many shiny toys, some bought and some constructed
on site. This has triggered many fundamental questions that Jack encountered, most
of which without any known good solution at the moment, and Jack studied them
too. Among those was the problem of pattern recognition, for which Jack developed
several simple but very effective techniques for matching curves and point sets, in-
cluding the geometric hashing technique mentioned above. Another problem was
that of multi-finger grips of objects, which Jack has related, very elegantly, to ba-
sic machinery in convexity theory. See Mishra’s paper in this collection [31] for a
detailed account of this problem.
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4 Epilogue

After Jack passed away in early 2009, the family and the Courant Institute held a
memorial event “to celebrate the life of Jack Schwartz”. I was unable to attend it,
and instead sent a eulogy that was read at the event. I would like to conclude this
tribute to Jack with that eulogy.

I am very sorry that I was unable to attend this celebration of Jack’s life. My deepest con-
dolences to Diana and the family.
In hebrew we say “Mori ve-Rabi”—my teacher and my rabbi, or, rather, my teacher and my
spiritual guide. This is what Jack was to me, since I first met him in 1977, when I started my
postdoc studies at NYU with him, working on the SETL project. I have never seen a person
that better fits the notion of a scholar than Jack—a person with an infinite and unsatiable
intellectual curiosity and prowess, with immense knowledge of practically everything, and
with the ability to grasp and cope with new topics, diverse as they might be, and to form his
own theories and discoveries, almost in a flash.
In the first years of our acquaintance, I more or less served as his disciple, running after him
and trying to catch up. It was indeed quite difficult to do so. His mind would continuously
swivel around, always looking for new ideas and new fields and problems to invest in. Jack
seemed to me like a butterfly, or perhaps, more appropriately, a busy bee, hopping from one
flower to another, without ever getting tired. This was way too much for me; I only managed
to execute one hop with him—from programming languages and optimizing compilers to
robotics. This took place as I was sitting in his office, during a visit to NYU, where all
of a sudden, he suggested the motion planning problem, sketched an initial solution, and
started the ball rolling, leading to the founding of the NYU robotics lab, and to a very
intense and successful collaboration between us. I stayed put, while he has continued to
hop—to parallel computers, program verification, bioinformatics, multimedia, you name it.
Jack kept on trying to get me to join him in this roller coaster ride, always selling me new
ideas and new problems, and at some point almost managed to drag me into bioinformatics,
but in the end it didn’t work out—I just didn’t have his energy.
There are many other aspects of Jack that can be told, as I am sure other people will do in
this gathering, such as his great interest in history, his special fondness for china (and for
chinese food!), his generosity and caring, and so on. To me he was a friend and colleague,
and I feel very fortunate to have met him. Meeting him has changed my life, and he has
played a key role in the development of my career, for which I owe him my deepest and
infinite gratitude. To me he was a giant, a constant source of admiration on one hand, and
of frustration, realizing the impossibility of getting even close to what he was.
The last years have been difficult. Jack fought the disease with courage, and at times with his
usual approach of scientific curiosity. We have lost a great man, and stand in awe, clinging
to his memory and vowing to continue with his legacy.
Yehi zikhro barukh—may his memory be blessed.

Micha Sharir
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Mathematics’ Mortua Manus:
Discovering Dexterity

B. Mishra

Abstract Dexterous manipulation, a major subfield of robotics and manufacturing,
experienced a mathematical rebirth in the mid 80’s, when this nascent field estab-
lished many beautiful connections to convexity theory and computational geometry.
Jack Schwartz played a seminal role in its inception and development. Here, I spec-
ulate on where Jack might have liked this field to go in the future.

1 Opening

After meeting Jack Schwartz, I promptly made up my mind to abandon theoretical
(FOCS/STOC) computer science and embark upon a new career, combining mathe-
matics, computer science and robotics. Jack promised to help. During my first year
at Courant, a suspiciously simple-looking but thorny robotics problem kept popping
up at our lunch and dinner conversations. Eventually, it led to the discovery of a
surprisingly intimate relation between robot grasping and an elegant theorem due to
Constantin Carathéodory.

Later, it dawned on me that Jack might have been mentoring me on the art of
blending mathematics, computer science and robotics (or for that matter, any other
applied field). After that experience, it has never been too difficult to be a “Bud-of-
all-trades.” But that’s only a small part of all I have learned from Jack.

Carathéodory’s theorem (belonging to a larger family of Helly-type theo-
rems) [2, 3] is usually stated as follows: If a point p of R

d lies in the convex hull
of a set X, there is a subset Y = {y1, . . . , yr+1} of X consisting of d + 1 or fewer
points such that p lies in the convex hull of Y . Equivalently, p lies in an r-simplex
with vertices in X, where r ≤ d .

Carathéodory proved his theorem in 1907 [2] for the case when X is compact. In
1914 Steinitz expanded Carathéodory’s theorem for any sets X in R

d . If one visu-
alizes Carathéodory’s theorem in 2 dimensions, it can be seen to state the existence
of a triangle consisting of points from X that encloses any point enclosed by X—
the theorem can be made constructive (Fig. 1). For instance, when X has finitely
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Fig. 1 Example of
Carathéodory’s theorem for
d = 2

many points, a triangulation of X’s convex-hull will have a triangle containing any
point in the convex hull of X. Consider a set X = {(0,0), (0,1), (1,0), (1,1)},
a subset of R

2. The convex hull of this set is a square. Consider now a point
p = (1/4,1/4) ∈ convX. We can then construct a set {(0,0), (0,1), (1,0)} = Y

(|Y | = 3), the convex hull of which is a triangle and encloses p. Another set,
containing p in its convex hull, of course is {(0,0), (1,1)} = Y ′ (|Y ′| ≤ 3), but it
presents a degenerate example. Similar arguments extend the theorem to higher di-
mensions.

Carathéodory was born in Berlin in 1873, to a prominent Greek family, closely
involved with the Ottoman Empire. After attending a variety of schools in Belgium,
Carathéodory finally enrolled as a student of artillery and engineering at the Belgian
Military Academy in 1891, where he received extensive technical training in engi-
neering. It covered some antiquated calculus but also courses in mechanics, prob-
ability, astronomy, geography, and thermodynamics. His lifelong fascination with
descriptive geometry, a core area of engineering mechanics, began at the academy.

When in 1897 an annual Nile flood interrupted his job as an engineer, to kill
time, he started studying mathematics: Jordan’s Cours d’Analyze, Salmon’s book on
conics, etc. During this process, he became enamored with pure mathematics and
decided—to the chagrin of his entire extended aristocratic family—to relinquish en-
gineering. Soon, he was attending lectures in pure mathematics by Schwartz, Fuchs,
and Frobenius, and on symbolic logic by Carl Friedrich Stumpf.

Carathéodory came to Göttingen in the summer of 1902, and met Zermelo, Born,
Blumenthal, the Youngs (William and Grace), Minkowski, Klein and Hilbert. When
he proved the theorem presented earlier, with its centrality in convexity theory, nei-
ther he nor his colleagues could foresee any possible application of the theorem—
physical or otherwise. The purity (rather absence of any obvious usefulness) seemed
to have delighted Carathéodory. Five decades later, when Carathéodory’s work be-
gan to find applications in economic theories of markets and equilibria, they were
dismissed as non-physical (hence artificial) applications, not affecting the utter pu-
rity with which Carathéodory had held his theorem.

However, our initial work (started with Schwartz and Sharir) [11] and its se-
quels [5, 12, 20] showed how the theorem can be directly related to static problems
in classical mechanics and applied for robots to plan “grasping,” “work-holding”
and “fixturing.” With that, alas, whatever purity (imagined or real) Carathéodory
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might have bestowed on his theorem, seemed to have evaporated irrevocably. On
the other hand, this might be seen as yet another example of marvels of mathemat-
ics: “The Unreasonable Effectiveness of Mathematics in the Natural Sciences [21],”
of which Wigner wrote about so eloquently. “The miracle of the appropriateness of
the language of mathematics for the formulation of the laws of physics is a wonder-
ful gift, which we neither understand nor deserve. We should be grateful for it . . . ”

Jack seemed to have been rather skeptical of the claims of mathematics’ un-
reasonable effectiveness. “. . . The intellectual attractiveness of a mathematical ar-
gument, as well as the considerable mental labor involved in following it, makes
mathematics a powerful tool of intellectual prestidigitation—a glittering deception
in which some are entrapped, and some, alas, entrappers,” Jack wrote in his 1986
essay entitled “The Pernicious influence of Mathematics on Science [18].”

In the following few paragraphs, I will outline the intellectual prestidigitation
necessary to claim the robot grasping problem as solved—with its elegant refor-
mulation in convexity theory [3] and computational geometry [4, 16]. It is worth
pondering how dexterously the assumptions might have been manipulated to bring
about this mental entrapment—a reach exceeding our grasp, perhaps. But then, can
we rebuild a more realistic theory and algorithms for robot grasping, which would
also include hand design as well as kinematics, dynamics and control in their for-
mulations? Few such ideas have been explored preliminarily and tentatively, as in
the paradigm of “reactive robotics,” a topic to which we will return eventually.

2 Gripping

Imagine an idealized dextrous hand, consisting of several independently movable
force-sensing fingers. These fingers move as points in three-dimensional space. The
problem of grip selection for an object is to study how to hold that object in equi-
librium with point fingers—in the absence of static friction between the surface of
the object and the fingers. Since the fingers are assumed to be point fingers, a finger
can only apply a force on the object along the surface-normal at the point of contact,
directed inward.

When the shape of the object is precisely known, the problem of grip selection
reduces to that of choosing a set of GRIP POINTS and a set of associated FORCE

TARGETS. We may then ask two questions:

• Can an arbitrary object be gripped with a finite number of fingers?
• If so, what are the grip points and the magnitudes of the forces exerted by the

fingers (force targets) for such a grip?

From elementary study of statics in classical mechanics, we know how an object
in equilibrium can be characterized. We may think of the forces as polygenic (the
force/torques applied at the fingers are generated by some actuators whose mechan-
ics need not concern us). Equilibrium can be characterized by the resultant force
and torque equation, as in the classical Newtonian mechanics.
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Fig. 2 A planar object
subject to four forces f1, f2,
f3 and f4

Consider a rigid body subject to a set of external polygenic forces f1, . . . , fk ,
applied respectively at the points p1, . . . , pk , as in Fig. 2. Then the necessary and
sufficient condition for the rigid body to be in equilibrium is that the resultant force
and the resultant torque must be null vectors. In mathematical notations, this condi-
tion can be stated as follows:

k∑

i=1

fi = 0 and
k∑

i=1

pi × fi = 0,

where the cross product τ = p × f gives a torque.1

Thus, in order to hold an object in equilibrium with a multi fingered hand (say,
with k fingers), we need to place these fingers at points p1, . . . , pk on the boundary
of the objects and apply forces f1, . . . , fk in such a manner that the equilibrium
condition is satisfied.

For example, consider a planar rectangular object with four grip points at the mid
points of the edges (shown in Fig. 3). In this example, let the grip points be denoted
as p1, p2, p3 and p4 and the respective unit surface normals as n1, n2, n3 and n4.
Then we wish to determine if there are four scalar quantities α1, α2, α3 and α4 such
that

α1n1 + α2n2 + α3n3 + α4n4 = 0

α1(p1 × n1) + α2(p2 × n2) + α3(p3 × n3) + α4(p4 × n4) = 0

α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0 and not all 0.

1The cross product τ = p × f is defined as

τx = pyfz − pzfy,

τy = pzfx − pxfz, and

τz = pxfy − pyfx.
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Fig. 3 A planar rectangular
object with designated grip
points {p1,p2,p3,p4}

Note that, for this example, any choice of α1 = α3 and α2 = α4 will satisfy the
conditions (assuming that at least two of them are nonzero and all of them are non-
negative). In particular, we could have chosen all the α’s to be 1/4!

To make matters little more abstract, we may define a wrench map, Γ , taking a
point on the boundary of the object B to a point in the d-dimensional wrench space
R

d . Note that the term wrench space is used to denote a vector space consisting
of all the wrenches. Its dimension d is 1, 3 or 6, depending on whether the object
belongs to 1, 2 or 3-dimensional space.

Γ : ∂B →R
d

: pi �→ (ni,pi × ni).

Thus the wrench map Γ maps a point pi ∈ ∂B on the boundary of the body B to a
wrench (a force/torque combination) that would be created if we apply a unit normal
force directed inward at the point pi . Then the feasibility of a positive grip can be
expressed in terms of the existence of a solution of the following system of linear
equations and inequalities:

k∑

i=1

αiΓ (pi) = 0

αi ≥ 0, i = 1, . . . , k,

k∑

i=1

αi = 1.

The last condition is added only for convenience. Geometrically, we were then ask-
ing if some convex combination of the Γ (pi)’s would yield the null vector. More
compactly,

0 ∈ convex hull
(
Γ (p1), . . . ,Γ (pk)

)
?

If the answer to the preceding question is yes, then we can hold the object in equi-
librium with the given grip points by applying forces whose magnitudes simply
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correspond to the coefficients used in the convex combination to express the null
vector.

2.1 Closure Grasps

One of the simplest problems in grasping theory can be stated as below:

Given: An arbitrary rigid 3-dimensional object B and some number k.
Determine: Whether one can choose k (finite) grip points, {p1,p2, . . . , pk} ⊆ ∂B

on the boundary of B such that the object can be grasped (positively) by placing
fingers at those grip points.

(∃?{p1, . . . , pk} ⊆ ∂B
) [

0 ∈ conv
(
Γ (p1), . . . ,Γ (pk)

)]
.

The answer to the problem turns out to be “yes” and the necessary number of
fingers is SEVEN (and not five!).

The proof proceeds in three simple steps:

STEP 1: Show that

0 ∈ convΓ (∂B),

where Γ : ∂B →R
6 : p �→ (n,p ×n). This is a simple consequence of the fact that

an object under uniform pressure remains in equilibrium. The proof of this claim
can be given rigorously using the Divergence theorem of Gauss.

STEP 2: By Carathéodory’s theorem
(∃{

Γ (p1), . . . ,Γ (pk)
} ⊆ Γ (∂B)

) [
k ≤ 7 and 0 ∈ conv

(
Γ (p1), . . . ,Γ (pk)

)]
.

Hence there are positive nonnegative scalar quantities α1, . . . , αk such that:

α1n1 + · · · + αknk = 0,

α1(p1 × n1) + · · · + αk(pk × nk) = 0.

STEP 3: The positive grip is then selected by choosing as grip points

Grip Points = {p1, . . . , pk} ⊆ ∂B,

Force Magnitudes = α1, . . . , αk,

with k no larger than 7.

Similar arguments in the plane imply that one would need FOUR fingers. The
number four is arrived at by taking the dimension of the wrench space and adding
one to it, as implied by the Carathéodory’s theorem. It is also instructive to examine
a set of equilibrium grasps for three planar objects: a rectangle, a triangle and a disc
(Fig. 4). First consider the grasps for the rectangle. Clearly, the grasps (a) and (d)
are not as secure as (g)—a horizontal external force will break the grasp (a) and an
external torque about the center of the rectangle will break the grasp (d). In compar-
ison, the grasp (g) is immune to such external disturbances, provided of course that
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Fig. 4 Grasping planar objects

such disturbances are relatively small in magnitude. Similar examination will show
that the grasp (h) is the most secure for a triangle. However, in the case of the disc,
while the grasps (f) and (i) are better than (c), there is simply no way to resist an
external torque about the center irrespective of how many fingers are used.

The kinds of secure grasps described in the preceding paragraph have been char-
acterized as closure grasps. Furthermore, exactly those objects that do not allow
closure grasps can also be characterized in purely geometric terms, and are referred
to as exceptional objects. While we shall not go into a detailed description of closure
grasps and exceptional objects (see [11]), it should suffice for the present purpose
to say that the only planar bounded exceptional object is a disc and the only spatial
bounded exceptional object is an object bounded by a surface of revolution.2

2If one allows unbounded objects then in 3-D, we have to include unbounded prisms and helical
objects and in 2-D an unbounded strip of constant width. These objects in 3-D describe the so-
called Reuleux pairs, studied almost a century ago.
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2.2 Synthesizing a Grasp

At this point, it is natural for a roboticist to ask how one (a robot) can construct a
grasp for a specific object and what sorts of computation this may entail. The answer
turns out to be very interesting and shows a close connection of this problem to
a classical algorithm, “the simplex method,” used for solving linear programming
problems.

Thus, suppose we have a polyhedral object with n faces. We proceed in a manner
not very dissimilar from the ways we proved the existences of such a grasp. We first
create a grasp with extremely large number of fingers: about 15n grip points, where
n is the number of faces of the polyhedron. Next, step by step, we can eliminate
one finger in each step while maintaining grasp as long as the number of grip points
at the beginning of that step is strictly larger than the lower bound. The algorithm
terminates when we are left with appropriate number of grip points (or fewer).

In order to understand the process by which the fingers are eliminated, we shall
digress to consider an algorithmic approach to algebraic manipulation with positive
linear combinations.

Given: A set of vectors {V1,V2, . . . , Vl} ⊆ R
d and V ∈R

d such that

α1V1 + · · · + αlVl = αV

αi ≥ 0, α > 0,V 
= 0.

Find: A subset m ≤ d vectors

{Vi1,Vi2 , . . . , Vim} ⊆ {V1, . . . , Vl} and α′ > 0

such that

α′
1Vi1 + · · · + α′

mVim = α′V
α′

i ≥ 0 (α′ > 0,V 
= 0).

Reduction Algorithm
if l ≤ d then HALT;
else repeat

Choose d vectors from {V1, . . . , Vl}
(Say, the first d): {V1, . . . , Vd}
There are two cases to consider, depending on whether the vectors V1, . . . , Vd

are linearly dependent or not.
Case 1: V1, . . . , Vd are linearly dependent.

We can write

β1V1 + · · · + βdVd = 0,

not all βi = 0.
Assume that at least one βi < 0 (otherwise, replace each βi by −βi in the
equation to satisfy the condition).
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Let

γ = min
βi<0

(αi/βi) < 0.

(For specificity, we may assume γ = α1/β1.)
Put α′

i = αi − γβi for 1 ≤ i ≤ d .

Hence by adding the equation (
∑l

i=1 αiVi = αV ) to (−γ
∑d

i=1 βiVi = 0), we
get

α′
2V2 + · · · + α′

dVd + αd+1Vd+1 + · · · + αlVl = αV,

and by construction α′
2, . . . , α

′
d ≥ 0.

Case 2: V1, . . . , Vd are linearly independent.
We can write

β1V1 + · · · + βdVd = V.

Assume that at least one βi < 0 (otherwise, we have nothing more to do!).
Let

γ = min
βi<0

(αi/βi) < 0.

(For specificity, we may assume γ = α1/β1.)
Put α′

i = αi − γβi for 1 ≤ i ≤ d , and α′ = α − γ > 0.

Hence by adding the equation (
∑l

i=1 αiVi = αV ) to (−γ
∑d

i=1 βiVi = −γV ),
we get

α′
2V2 + · · · + α′

dVd + αd+1Vd+1 + · · · + αlVl = α′V,

and by construction α′
2, . . . , α

′
d ≥ 0.

In algorithmic terminology, we can prove that “the reduction algorithm has a time
complexity of O(ld3).” In our grasping application, d will turn out to be a constant
(=6) and l no more than 15n.

Let us get back to our original question about grasping a polyhedron B with n

faces. As hinted earlier, we shall start with a closure grasp of B using no more than
15n grip points. Assume that B is provided with a triangulation of each face, and

t1, t2, . . . , tN

is the set of triangles partitioning ∂B . For each triangle ti , choose three non-collinear
grip points pi1 , pi2 and pi3 ∈ ti such that (pi1 + pi2 + pi3)/3 is the centroid of ti . In
totality they will give us the initial 3N grip points. Using Euler’s formula and some
simple combinatorics, one can show that N ≤ 5n − 12 and the total number of grip
points is no more than 15n − 36 (see [11]).

Now, it can be shown that if one chooses pij ’s, 1 ≤ i ≤ N , j = 1, 2, 3, as the grip
points then they give rise to a closure grasp. In particular, we can see [11] (by using
linear algebraic manipulations) that
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Area (t1)

3
Γ (p11) + Area (t1)

3
Γ (p12) + Area (t1)

3
Γ (p13)

+ · · · + Area (tN )

3
Γ (pN1) + Area (tN )

3
Γ (pN2) + Area (tN )

3
Γ (pN3) = 0,

and that

pos
(
Γ (p11),Γ (p12), . . . ,Γ (pN3)

) = R
6.

Henceforth, rewriting these grip points as {p1,p2, . . . , pl}, and the “area terms”
as magnitude of coefficients: α1, α2, . . . , αl , we have

α1Γ (p1) + α2Γ (p2) + · · · + αlΓ (pl) = 0, (1)

where αi > 0. Furthermore, since

lin
(
Γ (p1),Γ (p2), . . . ,Γ (pl)

) = R
6,

without loss of generality, assume that the first six wrenches are linearly indepen-
dent, thus spanning the entire wrench space, i.e.,

lin
(
Γ (p1), . . . ,Γ (p6)

) = R
6.

Synthesizing a Equilibrium Grasp with Seven Fingers Let us now see how we
can go from here to get a simple equilibrium grasp with no more than seven fingers.
Note first that we can rewrite our equation 1 (for l-fingered grip) as

α1

αl

Γ (p1) + · · · + αl−1

αl

Γ (pl−1) = −Γ (pl),

where αi > 0 and Γ (pi) ∈R
6. Now, we can use the “Reduction Algorithm” to find

{pi1,pi2 , . . . , pim} ⊆ {p1, . . . , pl−1}
satisfying the conditions below:

α′
1Γ (pi1) + · · · + α′

mΓ (pim) = −α′Γ (pl),

and m ≤ 6. Thus we have

α′
1Γ (pi1) + · · · + α′

mΓ (pim) + α′Γ (pl) = 0,

with α′
1 ≥ 0, . . . , α′

m ≥ 0 and α′ > 0. Of course, this is our equilibrium grasp using
no more than m+1 ≤ 7 fingers, placed at grip points pi1 , . . . , pim , pl with associated
force magnitudes α′

1, . . . , α
′
m,α′.

As analyzed earlier, our grasping algorithm could be shown to take O(n) time
with a constant in the complexity growing as O(d3).

A few years later, in 1990, Papadimitriou and his colleagues revisited the prob-
lem [7], and proved (without appealing to Carathéodory-like theorems) similar
bounds on number of fingers. They also showed how to turn the algorithmic problem
into a linear programming problem in certain special cases (e.g., planar convex ob-
jects or non-convex objects with bounded number of concave angles). As Megiddo
had shown that these linear programming problems have linear time solutions, when
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the dimension d is treated as a constant, Papadimitriou et al. had also demonstrated
that grasping could be done in linear time—at least, for certain special geometries.

Thus, it seemed that any comprehensible formulation of the grasping problem
would unavoidably appeal to convexity theory (to Carathéodory’s dismay). How-
ever, the complexity of the algorithms (thus applicability) depended crucially on the
exact formulation—going the Megiddo [9] route meant that the algorithm would
have an O(d2O(d)n) time complexity. Big Ouch!

However, except for few such theoretical quibbles, the grasping problem had
been more or less solved and with panache blanc—or so we thought.

3 Groping

In an article [1] appearing about a decade later, it was lamented that, “Notwith-
standing the great effort spent, and the [impressive] technological and theoretical
results achieved by the robotics community in building and controlling dexterous
robot hands, the number of applications in the real-world and the performance of
such devices in operative conditions should be frankly acknowledged as not yet sat-
isfactory. In particular, the high degree of sophistication in the mechanical design
prevented so far dexterous robotics hand to succeed in applications where factors
such as reliability, weight, small size, or cost, are at a premium. One figure partially
representing such complexity is the number of actuators, which ranges between 9
and 32 for hands considered above. Further reduction of hardware complexity, even
below the theoretically minimum number of 9, is certainly one of the avenues for
overcoming this impasse.” Thus, while the elegant theory we had developed gave
many insights into how to create a field of dexterous manipulation, the industrial (or
elsewhere) applications of robot hands have never really embraced the needed com-
plexity. Instead, simple parallel-jaw grippers still rules the manufacturing world.

What could be done? How can we connect the mathematical theories with appli-
cations. Jack [18] had worried that, “Related to this deficiency of mathematics . . . is
the simple-mindedness of mathematics—its willingness to elaborate upon any idea,
however absurd; to dress scientific brilliancies and scientific absurdities alike in the
impressive uniform of formulae and theorems. Unfortunately however, an absurdity
in uniform is far more persuasive than an absurdity unclad.” We may wish to return
to the various underlying assumptions of the grasping theories to separate the ones
that are apt from those that are absurd.

Setting aside the issues of finger properties (friction, softness, compliance,
etc.) [15], object properties (degrees of freedom, deformability, elasticity, etc.), clo-
sure grasps [12], grasp quality [5, 10], grasp stability, robustness, gaiting, grasp
planning, hand kinematics, dynamics and control, one may just focus on one issue:
why simple hands have done so much better. For instance, a parallel-jaw gripper
works well only with objects with antipodal grip points and of simple geometry
(e.g., 2 1

2 -dimensional), and yet it is ubiquitous.
In a recent publication, Matt Mason and colleagues [8] asked, “While complex

hands offer the promise of generality, simple hands are more practical for most
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robotic and telerobotic manipulation tasks, and will remain so for the foreseeable
future. This raises the question: how do generality and simplicity trade off in the
design of robot hands?” Their answer was to focus on using “knowledge of stable
grasp poses as a cue for object localization.” Yet, a different approach is to integrate
the hand design, grasp control algorithm and grasp selection into one framework—
as done in our work on “Reactive Robotics.”

With my students and colleagues, we invented a clever parallel-jaw reactive grip-
per, and showed how to drive its grasp control algorithm by a set of discrete rules,
that simply translate certain boolean conditions determined by the sensors into im-
mediate (“reactive”) actions of the actuators. The gripper could very quickly grasp
any convex object in just two antipodal points and enjoys many robustness proper-
ties.

Similar ideas can be extended to three-finger-hands, such as the commercially-
available Barrett hand [19], which is stiff, not frictionless and has 7 DOFs (degrees
of freedom), four of which are active. The key idea is to use the local geometry
of the object to find a set of grip points, while solving the local motion planning
problem of getting the fingers to their grasping positions. The object is assumed to
have a smooth boundary and be convex. The grasping algorithm can be shown to be
“non-disturbing,” (i.e., it does not affect the object’s location or motion, until it is
grasped).

The gripper consists of 3 fingers, simplified by the constraint to have their end-
points move in a plane. The fingers move arbitrarily, but their order (around the tri-
angle they form) remains fixed. The “reactive 3-finger hand” searches for three grip
points by following the object boundary until some geometric condition is satisfied.
Each finger is equipped with simple sensors that allow them to follow the object’s
contour and can determine the angle of the object boundary (it is close to). The sen-
sors that may be considered are: (1) an omni-directional distance sensor (measuring
distance to the object in any direction), and (2) an angle sensor (measuring angle of
the object boundary at the closest point). Such sensors can be easily built using a
pair of simple IR reflective sensors.

The key idea behind the grasping algorithm is for the hand to discover “reac-
tively” a locally minimal area triangle that encloses the object. The grip points can
be determined from this triangle via a theorem of Klee [6]: if T has a locally min-
imum area among all triangles containing a convex body B , then the midpoints of
each side of T touches B . It can also been shown that [17] if the midpoint of an edge
e of a triangle does not touch the object then e can be perturbed such that its mid-
point after perturbation lies inside the original triangle. This perturbation reduces
the triangle area. Thus, the grasping algorithm has two phases:

• Phase 1: Find a triangle that contains the object, by, say, closing the fingers along
three concurrent lines spaced at equal angles (120◦) from each other, until they
come to close proximity of the object boundary. If the triangle is not “bounded,”
the hand can fix it by a small perturbing rotation.

• Phase 2: Find a locally minimal triangle enclosing the object. The basic step
requires a finger to do the following: the finger divides its triangle edge into two
segments and moves in the direction of the larger segment. Consequently, both
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the ratio of the larger segment to smaller segment for each edge will be reduced;
so will the area of the enclosing triangle. It may seem that each finger has to
move one at a time synchronously, but that is really not necessary, if certain care
is taken as one approaches convergence to a grasp.

The reactive hand works (like an analog computer) by minimizing a potential
function defined by the triangle area, and from this an appropriate notion of stabil-
ity and robustness can be derived. Once the triangle is determined, since the lines
through edge mid-points and perpendicular to the corresponding edges are concur-
rent at the point which is at the center of the circumscribing circle of the triangle,
we can use these midpoints to get a planar (force-closure) grasp without relying on
friction. If the object and finger-tips have some static friction (which is true of Bar-
rett hands) then the resulting grasp also has a planar torque closure. More details
can be found in [13, 14].

What is more interesting is the way the reactive gripper may be anthropomor-
phized: The corresponding reactive algorithm will appear to have three fingers grop-
ing around an object blindly (as they have not performed any a priori computation
on a model of the object) until deciding on a grip. What separates groping from grip-
ping? Isn’t groping just an analog computation performed by the finger sensors and
actuators to solve an optimization problem (namely, the minimal point of a potential
function, determined by the area of an enclosing triangle)? So then what exactly is a
computation in robotics? How does a robotic algorithm separate sensing, planning
and actuation?

I wish I knew how Jack might have thought about these questions . . . .

4 Closing

Over the last year, I have realized how much we all miss Jack, his polymathic
and eclectic conversational topics and gentle mentoring. With Jack’s death, Courant
seems to have lost a significant part of its basic character.

Soon after my arrival at Courant in 1985, Jack had walked me over to the intersec-
tion of Mercer and fourth, and given me my first and the shortest tour of Manhattan:
At the time, there was a Swensen’s right across from Courant, a music place called
Bottom Line on fourth and a Yeshiva in the opposite corner which still stands. He
pointed out that without going too far I could now have food, religion, music and
mathematics—that was all the Manhattan I needed. Jack never ever mentioned reli-
gion after that.

Later Jack took it upon himself to introduce me to all sorts of exotic food and
information: Alexander’s campaign route through Bactria and Parthia to India, ex-
plained over Matzo ball soup in Second Avenue Deli; Ferdowsi’s Shahnameh and its
significance to Persian culture over some ultra-hot vindaloo in Curry in a Hurry and
how to design a balloon robot over many many servings of twice-cooked pork. He
also told me that he considered himself a gourmet diner who likes to try the best and
the tastiest from every cuisine—that too was his style in science and mathematics.
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Jack seemed to have found interesting mathematics in almost everything: how
to move a piano, how to grasp a greasy pig, how to manage personal relationships,
how to trade in foreign exchange markets, how to visualize a genome, how to write
music to be read by a computer, how to use cartoons to explain special theory, how
to become immortal and a zillion other things like that.

With Jack, everything led to voracious gourmet feasting. Jack always skipped his
appetizers, and never lingered on for the desserts.

Acknowledgements The paper has improved considerably following many insightful sugges-
tions from several colleagues: most notably, S. Kleinberg and E. Schonberg of NYU, M. Mason of
CMU and M. Wigler of CSHL.

References

1. Bicchi, A.: Hands for dextrous manipulation and robust grasping: a difficult road towards
simplicity. IEEE Trans. Robot. Autom. 16(6), 652–662 (2000)

2. Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen die
gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907)

3. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. Convexity 7, 101–180
(1963)

4. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Berlin (1987)
5. Kirkpatrick, D., Mishra, B., Yap, C.: Quantitative Steinitz’s theorem with applications to mul-

tifingered grasping. Discrete Comput. Geom. 7, 295–318 (1992)
6. Klee, V.: Facet Centroids and Volume Minimization (1986)
7. Markenscoff, X., Ni, L., Papadimitriou, C.: The geometry of grasping. Int. J. Robot. Res. 9,

61–74 (1990)
8. Mason, M., Srinivasa, S., Vazquez, A.: Generality and simple hands. In: International Sympo-

sium on Robotics Research (2009)
9. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1),

114–127 (1984)
10. Mishra, B.: Grasp Metrics: Optimality and Complexity, pp. 137–166. AK Peters, Wellesley

(1995)
11. Mishra, B., Schwartz, J., Sharir, M.: On the existence and synthesis of multifinger positive

grips. Algorithmica 2, 541–558 (1987)
12. Mishra, B., Silver, N.: Some discussion of static gripping and its stability. IEEE Trans. Syst.

Man Cybern. 19, 783–796 (1989)
13. Mishra, B., Teichmann, M.: Reactive algorithms for 2 and 3 finger grasping. In: Proceedings

of the 1994 International Workshop on Intelligent Robots and Systems, IRS 94 (1994)
14. Mishra, B., Teichmann, M.: Reactive algorithms for grasping using a modified parallel jaw

gripper. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automa-
tion, ICRA 94 (1994)

15. Mishra, B., Teichmann, M.: The Power of Friction: Quantifying the ‘Goodness’ of Frictional
Grasps, pp. 311–320. AK Peters, Wellesley (1997)

16. O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1994)
17. O’Rourke, J., Aggarwal, A., Maddila, S., Baldwin, M.: An optimal algorithm for find-

ing minimal enclosing triangles. J. Algorithms 7(2), 258–269 (1986). doi:10.1016/0196-
6774(86)90007-6

18. Schwartz, J.: The Pernicious Influence of Mathematics on Science, pp. 230–235. Springer,
Berlin (2006)



Mathematics’ Mortua Manus:Discovering Dexterity 119

19. Technolgies, B.: The Barrett Hand. http://www.barrett.com/robot/products-hand.html
20. Teichmann, M.: Grasping and fixturing: a geometric study and an implementation. Ph.D. the-

sis, New York University, New York (1995)
21. Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Commun.

Pure Appl. Math. 13, 1–14 (1960)



The Ref Proof-Checker and Its “Common
Shared Scenario”

Eugenio G. Omodeo

Abstract In his later years, Jack Schwartz devoted much energy to the implemen-
tation of a proof-checker based on set theory and to the preparation of a large script
file to be fed into it. His goal was to attain a verified proof of the Cauchy integral
theorem of complex analysis.

This contribution to the memorial volume for Jack reflects that effort: it briefly
reports the chronicle of his proof-checking project and highlights some features of
the system as implemented; in an annex, it presents a proof scenario leading from
bare set theory to two basic theorems about claw-free graphs.

. . . l’histoire géologique nous montre que la vie n’est qu’un court épisode entre deux éter-
nités de mort, et que, dans cet épisode même, la pensée consciente n’a duré et ne durera
qu’un moment. La pensée n’est qu’un éclair au milieu d’une longue nuit.
Mais c’est cet éclair qui est tout.1

(H. Poincaré, La valeur de la science, 1905)

1 Introduction

When I visited him at the New York University in June 2000, Jack Schwartz invited
me to read what he called the “common shared scenario”: a wide, carefully assem-
bled, sequence of definitions, theorems, and proofs, leading from the bare rudiments

1. . . geological history shows us that life is only a short episode between two eternities of death,
and that, even inside that episode, conscious thinking has only lasted and will last only one moment.
Thought is but a flash in the middle of a long night.

But this flash is all we have.
An epigraph (in French) drawn from here appears at the beginning of the 2nd part of Dunford–

Schwartz’s Linear Operators.
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of set theory to the beginning of mathematical analysis. Proofs began to be gappy
after a few hundred pages, and then totally absent, but the flow of definitions and
theorem statements went on, to culminate in the definition of complex line integral
and in the following claim, closely akin to the celebrated Cauchy integral theorem
of complex analysis:

Is_analytic
CF

(F) → 〈∃ε ∈ R| ε >
R

0
R

& 〈∀crv1, crv2 |

Is_CD_curv(crv1,0
R
,1

R
) & Is_CD_curv(crv2,0

R
,1

R
) &

crv1�0R
= crv1�1R

& crv2�0R
= crv2�1R

&

〈∀x ∈ Interval(0
R
,1

R
)| ε �

R

∣
∣crv1�x−

C
crv2�x

∣
∣

C
〉 →

∮ 1
R

0
R

(F, crv1) =
∮ 1

R

0
R

(F, crv2)〉〉 .

This was followed by the statement of Cauchy’s integral formula, and by the fol-
lowing conclusive comment:

Beyond this point, the number of steps of definition needed to reach any concept, say, of
classical functional analysis can be estimated by counting the number of definitions needed
to reach the corresponding point in any standard reference on this subject, e.g. Dunford–
Schwartz.

What charmed me as a monumental craft-work was, in Jack’s own words, “an es-
sential part of the feasibility study that must precede the development of any ambi-
tious proof-checker” [3, p. 229].—Eventually it would also serve as a testing-bench
for the concrete implementation, in sight of which Jack had begun to cast a sig-
nificant piece of mathematics in formal detail, constantly asking himself whether a
computer program could conceivably process and validate every single step.

At the time, Jack debated a proof-modularization mechanism named ‘theory’,
which would enable one to “avoid repeating similar steps when the proofs of two
theorems are closely analogous” and to “conceal the details of a proof once they
have been fed into the system and successfully certified”. ‘Theories’ added a touch
of second-order logic capability to the first-order system of set theory underlying
the scenario; and their prominence among Jack’s concerns revealed how large was
the scale of the goals he had in mind.

Jack and I made plans to write a book on computational logic together with
Domenico Cantone, who was about to visit New York in his turn; actually, it is under
his solicitation that, short after my departure, Jack set ahead the implementation
work, speedily bringing into existence the proof-checker Referee, also known as
Ref, or as ÆtnaNova. Ref is written in the SETL programming language [7], save
for a small part written in PHP, which makes it accessible on the Web.

Year after year, I witnessed the progresses of Ref, of the book (now posthumously
published as [6]), and of the main proof scenario, titled The Formal Foundations
of Mathematical Analysis. When I was his guest, Jack left his many other interests
aside, and gave absolute priority to the work on Ref, showing unbelievable resources
of energy in debugging it and in “scrabbling”—as he used to say—the scenario.

I became myself fluent in the formal proof system underlying Ref, and con-
tributed variously to the scenario. Among others, when Jack became disappointed
with the length of the proofs resulting from the definition
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R =Def { c ⊆ Q| 〈∀y ∈ c, ∃z ∈ c| y < z〉 &

〈∀y ∈ c, ∀z ∈Q| z < y → z ∈ c〉}\{∅,Q}
of the reals as Dedekind cuts (cf. [8, p. 43]), I was invited to formalize anew the
chapter about the field of reals, with Cantor’s alternative definition that sees real
numbers as equivalence classes of rational Cauchy sequences:2

Seq
Q

=Def
{

f ⊆N×Q| domain(f) = N & Svm(f)
}

,

Cau
Q

=Def

{

f ∈ Seq
Q
|〈∀ε ∈Q| ε >
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∣
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0
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∣
∣
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>
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But I was reluctant to become over-committed to the Cauchy integral theorem; and
tended, rather than working on the foundations of analysis, to belabor various asides
(Stone representation theorem for Boolean algebra, finite state automata, correctness
of the Davis–Putnam procedure, von Neumann’s cumulative hierarchy, bisimula-
tions, etc. [5, 9, 10]). On occasions, even Jack swerved from the royal road: when
for example, “out of self-indulgence” as he said, he wrote proofs of Zorn’s lemma
and of the ultrafilter lemma.

His and my diversions may partly explain why Jack’s original work program is
still unachieved. A self-contained section of the “common shared scenario” appears
in [6, Chap. 7]: this reaches in a small number of pages many results about ordinals,
various properties of the transitive closure operation, transfinite induction, and then
Zorn’s lemma. A scenario accompanying this article presents new proofs, likewise
certified correct by Ref, of two basic theorems about claw-free graphs.

2 Architecture of a Proof Scenario

The Ref verifier is fed script files, called scenarios, consisting of successive definitions, the-
orems, and auxiliary commands, which Ref either certifies as constituting a valid sequence
or rejects as defective. In the case of rejection, the verifier attempts to pinpoint the trouble-
some locations within a scenario, so that errors can be located and repaired. Step timings
are produced for all correct proofs, to help the user in spotting places where appropriate
modifications could speed up proof processing.
The bulk of the text normally submitted to the verifier consists of theorems and proofs.
Some theorems (and their proofs) are enclosed within so-called theories, whose external
conclusions are justified by these internal theorems. This lets scenarios be subdivided into
modules, which increases the readability and supports proof reuse.3

2Within these definitions: Svm means ‘single-valued map’, i.e. a function represented as a set of
pairs; and F �x designates the value resulting from application of a single-valued map F to an
element x of the domain of F .
3This is the beginning of A user’s manual for the Ref verifier, see http://setl.dyndns.org/EtnaNova/
login/Ref_user_manual.html.
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THEORY eq_classes(s,Eq(X,Y))
〈∀v,w, z| {v,w, z} ⊆ s → Eq(v, v) &

(

Eq(v,w)&Eq(z,w) → Eq(v, z)
)〉

⇒ (quotΘ , cl_ofΘ ) -- quotient-set and canonical embedding

∅ /∈ quotΘ & 〈∀b ∈ quotΘ, ∀x ∈ b| x ∈ s & cl_ofΘ(x) = b〉
〈∀x ∈ s| x ∈ cl_ofΘ(x) & cl_ofΘ(x) ∈ quotΘ〉
〈∀x ∈ s, ∀y ∈ s| Eq(x, y) ↔ cl_ofΘ(x) = cl_ofΘ(y)〉

END eq_classes

Fig. 1 Split of a set into equivalence classes, specified as a reusable module

Like procedures in a programming language, Ref’s theories have lists of formal
input parameters (s and Eq(−,−) in the example of Fig. 1). Each THEORY requires
its parameters to meet a set of assumptions (in the example at hand, the assumptions
state that Eq behaves as an equivalence relation over s). When “applied” to a list
of actual parameters that have been shown to meet the assumptions, a theory will
instantiate several additional “output” symbols (such as the quotΘ and cl_ofΘ(−)

of Fig. 1)4 standing for sets, predicates, and functions, and then supply a list of
claims initially proved explicitly by the user inside the theory itself. These are theo-
rems generally involving the new symbols. (In the example at hand, the new symbol
quotΘ designates the quotient set s/Eq, and the output function symbol cl_ofΘ(−)

designates a global function, i.e. one whose operand ranges over all sets.)
For example, the following “invocation” of the THEORY ‘eq_classes’ shown in

Fig. 1 produces the set R of all real numbers from the rational Cauchy sequences
(cf. Introduction), along with the canonical mapping Cau_to_R sending every such
sequence to its limit:

APPLY
〈

quotΘ : R, cl_ofΘ : Cau_to_R
〉

eq_classes
(

Eq(f,g) �→ (f ≈
QS

g), s �→ Cau
Q

)⇒
THEOREM.

〈∀f ∈ Cau
Q
| f ∈ Cau_to_R(f) & Cau_to_R(f) ∈R

〉

&
〈∀f ∈ Cau

Q
,g ∈ Cau

Q
| f ≈

QS
g ↔ Cau_to_R(f) = Cau_to_R(g)

〉

.

Besides defining R and Cau_to_R, this invocation simultaneously acquires vari-
ous facts about these two entities, while putting into oblivion other facts drawable
from the THEORY, namely the information that ∅ /∈ R, that

⋃
R⊆ Cau

Q
, and that

Cau_to_R(x) = b always ensues from x ∈ b ∈R.
If taken alone, this down-to-earth example may be inadequate to illustrate the

strength of the modularization construct THEORY: after all, we have simply stated
that R=Def Cau

Q
/ ≈

QS
. But we can, at times, raise considerably the import of a

THEORY: look for example, in Fig. 2, at the much enhanced version of the THEORY

just seen. Here Eq is no longer required to behave as an equivalence relation locally,
i.e. over a set s, but globally, i.e. over the universe of all sets. Notwithstanding, as we
will now discuss, one can select a representative from each equivalence class, thanks

4Such output symbols, whose meanings are specified inside the theory, carry the Θ subscript.
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THEORY circumscribed_eq_classes(Eq(X,Y),R(X), c(X))
〈∀v,w, z| Eq(v, v) &

(

Eq(v,w) & Eq(z,w) → Eq(v, z)
)〉

〈∀v|
〈∃u| Eq(u, v) & R(u)

〉〉

〈∀v,u| Eq(u, v) & R(u) → u ∈ c(v)
〉

⇒ (chΘ ) -- choice of an ∈-minimal representative from each Eq-class
〈∀v| Eq(chΘ(v), v)

〉

〈∀v,w| Eq(v,w) ↔ chΘ(v) = chΘ(w)
〉

〈∀v,w| Eq(v,w) → v /∈ chΘ(w)
〉

END circumscribed_eq_classes

Fig. 2 Enhanced version of the selection of class representatives

to the criterion supplied by the parameters R(−) and c(−) for “circumscribing”,
given any set X, a non-null set all of whose members are equivalent to X.

In developing the internals of this new THEORY, one should bear in mind that
by von Neumann’s regularity axiom any nonnull set k owns an ∈-minimal member;
that is, an element arb(k) ∈ k such that arb(k) ∩ k = ∅. Thanks to the regularity
axiom, ensuring that the membership relation is well-founded, a recursive definition
such as

ult_membs(S)=Def S ∪
⋃

{ult_membs(t) : t ∈ S }
(where

⋃
T =Def {y : u ∈ T , y ∈ u}) makes sense (its base-case being

ult_membs(∅) = ∅), always producing a set as its result. Actually, Ref will ac-
cept without any ado this definition of the set of all “ultimate members” of S, pre-
cisely in this formulation. As should be intuitive, ult_membs(S) consists of those
y’s which can reach S through a membership chain in a finite number n+1 of steps:
y = y0 ∈ y1 ∈ · · · ∈ yn ∈ S.

Inside circumscribed_eq_classes one can define chΘ(X) to be an ∈-minimal ele-
ment of {w ∈ ult_membs(x0)|Eq(w,X)}, where x0 = {u ∈ c(X)|Eq(u,X) & R(u)}.
Thus, even when the Eq-class of X is not a set, chΘ(X) will be an ∈-minimal element
of this class, depending solely on the class and not on X.

The construction just outlined is paradigmatic of a method by which one often
reduces a class of intimidating or unknown size first to a set x1 and then to an ∈-
minimal member x2 of x1. In its most basic form, the method is applied to a property
P(Y ) whatsoever, so that a priori the x’s for which P(x) holds might form a proper
class κ ; anyway, unless κ is void, we can pick an x0 in it, then consider the set
x1 = {w ∈ ult_membs({x0})| P(w)} (plainly nonnull, since x0 ∈ x1), and then put
x2 = arb(x1). Thus P(x2) will hold, whereas ¬P(z) holds for any z ∈ x2.

Once cast in the form of a THEORY, this construction gives us a transfinite in-
duction principle: seen here, rather than as a new inference rule, as a mechanism
enabling us to construct an entity which promises to play a key role in a refuta-
tion. Its exploitation goes as follows: Suppose we must prove 〈∀x |Q(x)〉. Arguing
by contradiction, assume that ¬Q(x1); by actualizing the input parameter P(Y )

of transfinite induction as ¬Q(Y), get an ∈-minimal x2 for which ¬Q(x2) holds.
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Through details that depend on the peculiarities of Q(Y), strive to get a contradic-
tion from the alleged minimality of x2.

Let us now look at the issue of specifying transfinite induction as a ‘theory’ to
be placed among the exordia of a brand new scenario, relying on very few preex-
isting theorems and definitions. I suspect that Jack found himself at odds with the
definition of ult_membs seen earlier, because he momentarily resorted to an alterna-
tive but equivalent notion. Indeed, that definition is not readily usable in an almost
empty scenario; and so he adopted something akin in spirit to the following charac-
terization of the transitive closure of a set S:

trCl(S) = ⋃

i∈N descsi (S), where

descs0(S) = S, and descsj+1(S) = ⋃
descsj for all j ∈N.

But, unfortunately, neither the set N of all integers, nor this form of recursive defini-
tion, are available at the outset: one only knows (from the axioms) of the existence of
an infinite ‘ur-set’ s∞ meeting the conditions s∞ �= ∅, and 〈∀x ∈ s∞ | {x} ∈ s∞〉.
A formally impeccable surrogate of the above must hence be specified in slightly
more roundabout terms:

trCl(S)=Def{x : i ∈ s∞, x ∈ descs(i, S) }, where descs(I, S)=Def

if I = arb(s∞) then S else
⋃

arb({descs(j, S) : j ∈ I | j ∈ s∞}) fi.

The construction just seen is so ingenious and so ugly that it well deserves being
encapsulated and concealed inside a THEORY which only shows, of it, what is rel-
evant for subsequent use; but we would miss an opportunity to increase reusability
if we did not generalize it somewhat. In fact the reader can find in [6, pp. 378–
386] a THEORY of ‘reachability’ which gets in input a digraph G = (V ,E) and
produces as output the function sending every node, i.e. element υ of V , to the set
of all nodes reachable from υ through paths of G. The digraph can be ‘big’, in the
sense that its nodes might form a proper class—e.g., the universe of all sets—and
its edges a proper class of pairs—e.g., the converse  of membership. Actually, a
very simple assumption suffices for a generalized notion of the set of all descen-
dants; namely, that the children (i.e. immediate descendants) of each node form a
set.

3 Definition Mechanisms

Definitions serve various purposes. At their simplest they are merely abbreviations which
concentrate attention on interesting constructs by assigning them names which shorten their
syntactic form. (But of course the compounding of such abbreviations can change the ap-
pearance of a discourse completely, transforming what would otherwise be an exponen-
tially lengthening welter of bewildering formulae into a sequence of sentences which carry
helpful intuitions.) Beyond this, definitions serve to ‘instantiate’, that is, to introduce the
objects whose special properties are crucial to an intended argument. Like the selection
of crucial lines, points, and circles from the infinity of geometric elements that might be
considered in a Euclidean argument, definitions of this kind often carry a proof’s most vital
ideas.
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We use the dictions of set theory, in particular its general set formers, as an essential means
of instantiating new objects. As we will show by writing a hundred or so short statements
which define all the essential foundations of standard mathematics, set theory gives us a
very flexible and powerful tool for making definitions. [6, p. 9]

The key role played by definitions in proof development should have already
emerged from Sect. 2, where we have insisted on the usefulness of the construct
THEORY as a means to “associate some highly compound meaning”5 with its out-
put symbols. Ref owns, among others, built-in theories which perform first-order
Skolemization: these are used to constrain a brand new function symbol f to meet
the condition

〈∀x1, . . . , xn | ϕ(

x1, . . . , xn, f (x1, . . . , xn)
)〉

(in any number n of arguments) once a theorem of the form
〈∀x1, . . . , xn, ∃y | ϕ(x1, . . . , xn, y)

〉

has been proved.
Already at a much lower level than the THEORY construct, Ref offers many pos-

sibilities. The strength of Ref’s definition mechanisms originates in part from the
SET-FORMER notation: By (possibly transfinite) element-iteration over the sets rep-
resented by the terms t0, t1 ≡ t1(z0), . . . , tm ≡ tm(z0, . . . , zm−1), we can form the
set

{e : z0 ∈ t0, z1 ∈ t1, . . . , zm ∈ tm | γ },
where e ≡ e(z0, . . . , zm) and γ ≡ γ (z0, . . . , zm) are a set-term and a condition in
which the pairwise distinct variables zi can occur free (similarly, each tj+1 may
involve z0, . . . , zj ). If the condition γ is omitted, then γ is understood to be true,
and if the term e is omitted, then e is understood to be the same as the first variable
inside the braces.

Set-formers can be boosted by ∈-recursion in definitions, as we have illustrated
above through the introduction of ult_membs(−) and trCl(−). To now see a series
of interrelated low-level definitions at work, let us consider one way (by no means
standard) of characterizing a finite ordered list [hn, . . . , h2, h1], with n � 0. We can
view this as just being a special set {q1, . . . , qn} within which each qi indicates

5This is part of the passage

Wir haben oft ein Zeichen nötig, mit dem wir einen sehr zusammengesetzten Sinn verbinden.
Dieses Zeichen dient uns sozusagen als Gefäß, in dem wir diesen Sinn mit uns führen kön-
nen, immer in dem Bewußtsein, daß wir dieses Gefäß öffnen können, wenn wir seines Inhalts
bedürfen.

by Gottlob Frege as worded by Jack at the beginning of [1]:

We often need to associate some highly compound meaning with a symbol. Such a symbol
serves us as a kind of container carrying this meaning, always with the understanding that
it can be opened if we need its content.
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add(H,B) =Def
{

{ {H,∅} } ∪ B
} ∪ B

final(L) =Def
{

q ∈ L | L\ {q} ⊆ q
}

sel(X,Y) =Def arb
(

arb
(

arb(X)\Y
)\{∅}

)

top(L) =Def sel
(

final(L),L
)

bot(L) =Def sel
(

L,L
)

[X,Y] =Def add
(

Y,add(X,∅)
)

del(L) =Def L\final(L)

sub(I,L) =Def if I = ∅ then L else del
(

arb({sub(j,L) : j ∈ I | j ∈ final(I)}) )

fi

next(X) =Def X ∪ {X}
len(L) =Def if ∅ ∈ next(L) then ∅ else next

(⋃ {len(q) : q ∈ L} )

fi

th(I,L) =Def if I = ∅ then len(L) else top
(

sub
(

del(I),L
))

fi

cat(L,M) =Def if ∅ ∈ M then M else L ∪ {cat(L,q) : q ∈ M} fi

Is_list(L) ↔ Def
〈∀q ∈ L,q′ ∈ L | q ∈ q′ ∨ q′ ∈ q ∨ q = q′〉 &
〈∀q ∈ L,∃h | q\L =

{ {h,∅}}〉

&
〈∀q′ ∈ L,∃q ∈ L | q′ ∩ L ∈ {∅, (q ∩ L) ∪ {q}}〉

Fig. 3 Basic definitions referring to lists

that hi must occur in the i-th position from the right. To this aim, it suffices to
put qi = {q1, . . . , qi−1, {∅, hi}} for each i. One easily recognizes in the constructs
add(−,−), top(−), and del(−) shown in Fig. 3 analogues of LISP’s classical triad
cons(H,L), car(L), and cdr(L). Various other basic operations related to lists are
also shown: in particular, we specify the extraction th(I,L) of the I -th component
(reading from the left) of a list L in terms of a recursive operation sub(J,L) which
gives (for J = 0,1, . . .) successive sublists [hn, . . . , h1], [hn−1, . . . , h1], . . . , [h1],
[ ] of a given L = [hn, . . . , h1]. Ordered pair formation [X,Y ] has its associated
projections specified as bot(−) and top(−). To end, we specify the general form of
a list by means of the predicate Is_list(−).

The definitions we have been examining are neither particularly transparent nor
very profound: nevertheless they can serve to illustrate how the definition mecha-
nisms of a set-based verifier like Ref retain, even “at their simplest”, a lot of seman-
tics. The case when definitions are mere abbreviations is relatively rare: in Fig. 3,
the only construct introduced for the ‘technical reason’ of saving ink is sel(−,−).

Beyond training examples, since a large-scale scenario will certainly be pervaded
by numbers, one will prefer to define a list as being a function whose domain is a
natural number—identified, à la von Neumann, with the set of all its predecessors.

4 Inferential Armory

What is understanding? Has the word the same meaning for everybody? Does understand-
ing the demonstration of a theorem consist in examining each of the syllogisms of which it
is composed in succession, and being convinced that it is correct and conforms to the rules
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DEF powerset: [family of all subsets of a set] P X =Def {y : y ⊆ X}
DEF transitivity: [transitive set] Trans(T) ↔ Def {y ∈ T | y 	⊆ T} = ∅
THEOREM xxx: [Peddicord’s lemma]

Trans(T) & S ⊆ T & S �= T → ∅ �= (T\S) ∩ P S. PROOF:
Suppose_not(t0, s0) ⇒ AUTO

Use_def(P s0) ⇒ AUTO
∥
∥
∥
∥
∥

For if our assertion has a counterexample t0, s0, then s0 must be strictly included in t0 and
hence the axiom of regularity tells us that t0\s0 has an element, a = arb(t0\s0), disjoint
from t0\s0. Plainly a is also a member of the superset t0 of t0\s0 and is not included in s0.

Loc_def ⇒ Stat1 : a = arb(t0\s0)

Use_def(Trans) ⇒ Stat2 : {y ∈ t0 | y 	⊆ t0} = ∅ & a /∈ {

y′ : y′ ⊆ s0
}

∥
∥
∥
∥

But then, by the definition of transitive set, a must be a subset of s0, because it is disjoint
from t0\s0. This readily leads us to the desired contradiction.

〈a,a〉↪→Stat2(Stat1) ⇒ false
Discharge ⇒ QED

Fig. 4 Tiny scenario, consisting of two definitions and a 6-line proof

of the game? In the same way, does understanding a definition consist simply in recognizing
that the meaning of all the terms employed is already known, and being convinced that it
involves no contradiction?
Yes, for some it is; when they have arrived at the conviction, they will say, I understand. But
not for the majority. Almost all are more exacting; they want to know not only whether all
the syllogisms of a demonstration are correct, but why they are linked together in one order
rather than in another. As long as they appear to them engendered by caprice, and not by
an intelligence constantly conscious of the end to be attained, they do not think they have
understood.6

(H. Poincaré, Science et méthode, 1909)

For a presentation of the inferential armory of Ref, the interested reader is re-
ferred to [4]: here I will limit myself to sparse remarks about some salient peculiar-
ities of this system.

Figure 4 displays the six-liner proof of a variant of Theorem 4a of the scenario
accompanying this paper. An arrow within each line separates a HINT, specifying
the inference rule that justifies the step, from the STATEMENT being derived at that
particular line. In two lines the statement is represented by the placeholder AUTO.
This happens once when, as the keyword Suppose_not suggests, an argument by
contradiction begins: here AUTO stands for

¬(

Is_full(t0) & s0 ⊆ t0 & s0 �= t0 → ∅ �= (t0\s0) ∩ P s0
)

,

opposite to the theorem’s claim, where the new names t0, s0 have superseded the
variables T,S, as requested by the hint. AUTO is exploited again in the next step,
whose hint suggests that the instantiated definition P s0 = {y : y ⊆ s0} be tran-
scribed verbatim.

It is very unusual, though, that the statement of a proof line is fully determined by
its hint. One cause of this lack of uniqueness is that most inference primitives do not

6Taken from: Henri Poincaré, “Science and method”, London: Routledge, 1996, p. 118.
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DEF transitivity: [transitive set] Trans(T) ↔ Def {y ∈ T | y 	⊆ T} = ∅
THEOREM yyy: [Peddicord’s lemma]

Trans(T) & S ⊆ T & S �= T & A = arb(T\S) → A ⊆ S & A ∈ T\S. PROOF:
Suppose_not(t, s,a) ⇒ Trans(t) & s ⊆ t & s �= t & a = arb(t\s) & (a 	⊆ s ∨ a /∈ t\s)

Use_def(Trans) ⇒ Stat1 : a /∈ {y ∈ t | y 	⊆ t}〈a〉↪→Stat1 ⇒ a ⊆ t
Discharge ⇒ QED

THEOREM zzz: [for any transitive t : ∅ ∈ t if t �= ∅, {∅} ∈ t if t 	⊆ {∅}, etc.]
Trans(T) & N ∈ {∅, {∅} , {∅, {∅}}} & T 	⊆ N →

N ⊆ T &
(

N ∈ T ∨ (N = {∅, {∅}} & {{∅}} ∈ T)
)

. PROOF:
Suppose_not(t,n) ⇒ AUTO
∥
∥
∥
∥
∥
∥

The ‘(�)’ context restriction in the following three lines serves to hide the semantics of arb:
which, to the limited extent necessary here, has been captured by the preceding
Peddicord’s lemma.

〈

t,∅,arb(t\∅)
〉

↪→T yyy(�) ⇒ ∅ ∈ t
〈

t, {∅} ,arb(t\ {∅}) 〉

↪→T yyy(�) ⇒ {∅} ∈ t
〈

t, {∅, {∅}} ,arb(t\ {∅, {∅}}) 〉

↪→T yyy(�) ⇒ false
Discharge ⇒ QED

Fig. 5 Variant of the tiny scenario of Fig. 4, showing use of a lemma

have a fixed number of premisses from which their consequent must follow, and pre-
cise indication of the premisses is not mandatory. Different consequents can hence
be drawn, at a given place and by means of the same form of inference, depending
on which subset of the preceding lines of the proof enters into play. Consider, for
example, the penultimate proof line of Fig. 4: here the hint indicates that a must be
used twice, to instantiate both bound variables, y and y′, of the statement labeled
Stat2; moreover, the (optional) context restriction ‘(Stat1)’ appearing in the hint of
this line indicates that Stat1 and Stat2 are the only statements worth being taken into
account to get the consequent false. It would be perfectly legitimate to replace the
statement false by

(a ∈ t0 → a ⊆ t0) & a 	⊆ s0,

although the latter would only depend on the line labeled Stat2. Notice that af-
ter this change—and, of course, also if the context restriction were tightened into
‘(Stat2)’—the entire proof would remain correct, as the Discharge primitive would
still be able to see the contradiction.

Another source of freedom in the statement of a line arises from the presence,
among the fifteen or so inference mechanisms which constitute the inferential ar-
mory of Ref, of an inference primitive which gets often tacitly combined with other
forms of inference. This is the mechanism ELEM, which implements the multi-level
syllogistic decision algorithm [1, 2], also invocable directly on its own right. The
tacit use of ELEM explains, in particular, why Discharge can still do its duty after
the change discussed in the preceding paragraph. One can catch ELEM at work in
almost every proof line of Fig. 5.

Much of the usability of Ref stems from ELEM and, to a lesser extent, from other
behind-the-scenes proof mechanisms, e.g., proof-by-structure which, once switched
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on, performs many kinds of type inference as explained in [4, Sect. 4]. These mech-
anisms shroud the collection of statements already accepted as proved in a ‘penum-
bra’ of additional statements which follow from them as elementary consequences.
In a talk given at City College in New York in September 2003, Jack said:

Putting mathematical discourse into a form every one of whose details can be checked by a
computer forces us to ‘walk in shackles’

—but then we want these shackles to be as light as possible.

5 Conclusions

This is my valedictory to Jack, who honored me with a valedictory when, at the
beginning of 1981, I left New York and returned to Italy.

I hope I will be energetic enough to bring to completion various items that
Jack left unaccomplished. These include a full formalization of the proof of the
Cauchy integral theorem on which (years ago) Jack encouraged me to work “mani-
acally”.

I spent many days working with Jack in August 2008, when he began to regard
as an absolute priority the reimplementation of Ref/ÆtnaNova in Javascript (and
partly in Java), because nobody was any longer in charge of maintaining SETL.
To be frank, neither of us was very fluent in Javascript, and we had 25,000 lines
or so of SETL code to translate; so the amount of work we then did was im-
mense but inconclusive. Not discouraged, when I had my last chances to speak with
Jack in February 2009, he recommended that this translation work was brought for-
ward.

Definitely I would prefer to see (and would be, with all my limits, ready to concur
to) an effort to bring SETL out of its current limbo, possibly in a more modern
implementation that Salvatore Paxia seems to have in mind: this would be, I deem,
a worthwhile tribute to a long-winged project which also absorbed much of Jack’s
energies over the years. But this, of course, is just my personal taste—and relates to
a different story.

Appendix: Claw-Free Graphs as Sets

Eugenio G. Omodeo and Alexandru I. Tomescu

∥
∥
∥
∥
∥

This scenario contains the formal proofs, checked by J. T. Schwartz’s proof-
verifier Ref, of two classical results on connected claw-free graphs; namely, that
any such graph:
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

• owns a perfect matching if its number of vertices is even,
• has a Hamiltonian cycle in its square if it owns three or more vertices.

The original proofs (cf. [14, 15] and [11]) referred to undirected graphs, the
ones to be presented refer to a special class of digraphs whose vertices are hered-
itarily finite sets and whose edges reflect the membership relation. Ours is a legit-
imate change of perspective in the light of [12], as we will briefly explain at the
end.

To make our formal development self-contained, we proceed from the bare
set-theoretic foundation built into Ref (cf. [13]). The lemmas exploited without
proof in what follows are indeed very few, and their full proofs are available in
[13].

A.1 Basic Laws on the Union-Set Global Operation

DEF unionset: [Members of members of a set]
⋃

X =Def {u : v ∈ X,u ∈ v}
∥
∥
∥
∥

The proof of the following claim, that the union set of a set s is the set-theoretic
‘least upper bound’ of all its elements, can be found in [13, p. 387].

THEOREM 2: [l.u.b.] (X ∈ S → X ⊆ ⋃
S) & (〈∀y ∈ S | y ⊆ X〉 → ⋃

S ⊆ X).

THEORY imageOfDoubleton
(

f(X), x0, x1
)

END imageOfDoubleton

ENTER_THEORY imageOfDoubleton

THEOREM imageOfDoubleton: [Image of an ‘elementary set’]
{f(v) : v ∈ ∅} = ∅ & {f(v) : v ∈ {x0}} = {f(x0)} &

{f(v) : v ∈ {x0, x1}} = {f(x0), f(x1)} . PROOF:
Suppose_not() ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Ref has the built-in ability to reduce {f(v) : v ∈ ∅} to ∅ and {f(v) : v ∈ {x0}} to
{f(x0)}; hence we are left with only the doubleton to consider. Let c belong to
one of {f(v) : v ∈ {x0, x1}} and {f(x0), f(x1)} but not to the other. After excluding,
through variable-substitution, the case c /∈ {f(v) : v ∈ {x0, x1}}, we easily exclude
both possibilities c = f(x0) and c = f(x1), through variable-substitution and equal-
ity propagation.

SIMPLF ⇒ Stat1 : {f(v) : v ∈ {x0, x1}} �= {f(x0), f(x1)}〈c〉↪→Stat1 ⇒ c ∈ {f(v) : v ∈ {x0, x1}}� c ∈ {f(x0), f(x1)}
Suppose ⇒ Stat2 : c /∈ {f(v) : v ∈ {x0, x1}}〈x0〉↪→Stat2 ⇒ AUTO

〈x1〉↪→Stat2 ⇒ AUTO
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Discharge ⇒ Stat3 : c ∈ {f(v) : v ∈ {x0, x1}} & c /∈ {f(x0), f(x1)}〈x′〉↪→Stat3 ⇒ x′ ∈ {x0, x1} & f(x′) �= f(x0) & f(x′) �= f(x1)

Suppose ⇒ x′ = x0
EQUAL ⇒ false; Discharge ⇒ x′ = x1

EQUAL ⇒ false; Discharge ⇒ QED

ENTER_THEORY Set_theory
DISPLAY imageOfDoubleton

THEORY imageOfDoubleton
(

f(X), x0, x1
)

{f(v) : v ∈ ∅} = ∅ & {f(v) : v ∈ {x0}} = {f(x0)} &
{f(v) : v ∈ {x0, x1}} = {f(x0), f(x1)}

END imageOfDoubleton

THEOREM 2a: [
⋃

of double-/single-tons] Z = {X,Y} → ⋃
Z = X ∪ Y. PROOF:

Suppose_not(z0, x0, y0) ⇒ AUTO

∥
∥
∥
∥

Under the assumption that z0 = {x0, y0} &
⋃

z0 �= x0 ∪ y0 can hold, two citations
of Theorem 2 readily yield x0 ⊆ ⋃

z0 and y0 ⊆ ⋃
z0.

〈x0, z0〉↪→T 2 ⇒ AUTO

〈y0, z0〉↪→T 2 ⇒ AUTO

∥
∥
∥
∥
∥

A third citation of the same Theorem 2 enables us to derive from
⋃

z0 �= x0 ∪ y0
that some element of z0 = {x0, y0} is not included in x0 ∪ y0, which is manifestly
absurd.

〈x0 ∪ y0, z0〉↪→T 2 ⇒ Stat1 : ¬〈∀y ∈ z0 | y ⊆ x0 ∪ y0〉〈v〉↪→Stat1 ⇒ v ∈ {x0, y0} & v 	⊆ x0 ∪ y0

(Stat1�)Discharge ⇒ QED

THEOREM 2b: [Union of union]
⋃⋃

X =
⋃ {⋃

y : y ∈ X
}

. PROOF:
Suppose_not(x0) ⇒ AUTO

Use_def(
⋃

) ⇒ {z : y ∈ {u : v ∈ x0,u ∈ v} , z ∈ y} �=
{

s : r ∈ {⋃
y : y ∈ x0

}

, s ∈ r
}

SIMPLF ⇒ Stat1 : {z : v ∈ x0,u ∈ v, z ∈ u} �= {

s : y ∈ x0, s ∈ ⋃
y
}

〈z0〉↪→Stat1 ⇒ AUTO

Suppose ⇒ Stat3 : z0 ∈ {z : v ∈ x0,u ∈ v, z ∈ u} &

z0 /∈ {

s : y ∈ x0, s ∈ ⋃
y
}

Use_def(
⋃

v0) ⇒ AUTO

〈v0,u0, z, v0, z0〉↪→Stat3(Stat1�) ⇒
Stat4 : z0 /∈ {z : u ∈ v0, z ∈ u} & v0 ∈ x0 & u0 ∈ v0 & z0 ∈ u0〈u0, z0〉↪→Stat4(Stat4�) ⇒ false

Discharge ⇒ Stat5 : z0 ∈ {

s : y ∈ x0, s ∈ ⋃
y
}

&

Stat6 : z0 /∈ {z : v ∈ x0,u ∈ v, z ∈ u}
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Use_def(
⋃

y0) ⇒ AUTO

〈y0, s0〉↪→Stat5(Stat5�) ⇒ Stat7 : z0 ∈ {s : u ∈ y0, s ∈ u} & y0 ∈ x0

〈u1, s1〉↪→Stat7(Stat7�) ⇒ z0 ∈ u1 & u1 ∈ y0〈y0,u1, z0〉↪→Stat6(Stat7�) ⇒ false; Discharge ⇒ QED

THEOREM 2c: [Additivity and monotonicity of monadic union]⋃
(X ∪ Y) =

⋃
X ∪ ⋃

Y & (Y ⊇ X → ⋃
Y ⊇ ⋃

X). PROOF:
Suppose_not(x0, y0) ⇒ AUTO

Suppose ⇒ ⋃
(x0 ∪ y0) �= ⋃

x0 ∪ ⋃
y0〈 {x0, y0} 〉↪→T 2b ⇒ ⋃⋃ {x0, y0} =

⋃ {⋃
v : v ∈ {x0, y0}

}

APPLY 〈 〉 imageOfDoubleton
(

f(X) �→ ⋃
X, x0 �→ x0, x1 �→ y0

) ⇒
{⋃

v : v ∈ {x0, y0}
}

=
{⋃

x0,
⋃

y0
}

〈 {x0, y0} , x0, y0〉↪→T 2a ⇒ ⋃ {x0, y0} = x0 ∪ y0〈 {⋃
x0,

⋃
y0

}

,
⋃

x0,
⋃

y0〉↪→T 2a ⇒ ⋃ {⋃
x0,

⋃
y0

}

=
⋃

x0 ∪ ⋃
y0

EQUAL ⇒ false
Discharge ⇒ ⋃

(x0 ∪ y0) =
⋃

x0 ∪ ⋃
y0 & y0 = x0 ∪ y0 &

⋃
y0 	⊇ ⋃

x0
EQUAL ⇒ ⋃

y0 =
⋃

x0 ∪ ⋃
y0

Discharge ⇒ QED

THEOREM 2e: [Union of adjunction]
⋃

(X ∪ {Y}) = Y ∪ ⋃
X. PROOF:

Suppose_not(x0, y0) ⇒ Stat0 : ⋃
(x0 ∪ {y0}) �= y0 ∪ ⋃

x0〈a〉↪→Stat0 ⇒ a ∈ ⋃
(x0 ∪ {y0}) �= a ∈ y0 ∪ ⋃

x0

∥
∥
∥
∥
∥
∥
∥
∥
∥

Arguing by contradiction, let x0, y0 be a counterexample, so that in either one of⋃
(x0 ∪ {y0}) and y0 ∪ ⋃

x0 there is an a not belonging to the other set. Taking
the definition of

⋃
into account, by monotonicity we must exclude the possibility

that a ∈ ⋃
x0\⋃

(x0 ∪ {y0}); through variable-substitution, we must also discard
the possibility that a ∈ ⋃

(x0 ∪ {y0})\⋃
x0\y0.

Set_monot ⇒ {u : v ∈ x0,u ∈ v} ⊆ {u : v ∈ x0 ∪ {y0} ,u ∈ v}
Suppose ⇒ Stat1 : a ∈ {u : v ∈ x0 ∪ {y0} ,u ∈ v} &

a /∈ {u : v ∈ x0,u ∈ v} & a /∈ y0〈v0,u0, v0,u0〉↪→Stat1 ⇒ false; Discharge ⇒ AUTO

Use_def(
⋃

) ⇒ Stat2 : a /∈ {u : v ∈ x0 ∪ {y0} ,u ∈ v} & a ∈ y0

∥
∥
∥

The only possibility left, namely that a ∈ y0\⋃
(x0 ∪ {y0}), is also manifestly

absurd. This contradiction leads us to the desired conclusion.

〈y0,a〉↪→Stat2 ⇒ false; Discharge ⇒ QED

A.2 Transitive Sets

DEF transitivity: [Transitive set] Trans(T) ↔ Def {y ∈ T | y 	⊆ T} = ∅
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THEOREM 3a: [Transitive sets include their unionsets] Trans(T) ↔ T ⊇ ⋃
T.

Suppose_not(t) ⇒ AUTO

Use_def(
⋃

t) ⇒ AUTO

Use_def
(

Trans(t)
) ⇒ AUTO

Suppose ⇒ Stat1 : t 	⊇ ⋃
t & Trans(t)

〈c〉↪→Stat1(�) ⇒ Stat2 : c ∈ {u : v ∈ t,u ∈ v} &
{y ∈ t | y 	⊆ t} = ∅ & c /∈ t

〈v,u, v〉↪→Stat2(Stat2�) ⇒ false
Discharge ⇒ Stat3 : {y ∈ t | y 	⊆ t} �= ∅ & t ⊇ {u : v ∈ t,u ∈ v}
Loc_def ⇒ a = arb(d\t)
〈d〉↪→Stat3(Stat3) ⇒

Stat4 : a /∈ {u : v ∈ t,u ∈ v} & d ∈ t & a ∈ d & a /∈ t
〈d,a〉↪→Stat4(Stat4�) ⇒ false; Discharge ⇒ QED

THEOREM 3c: [For a transitive set, elements are also subsets]
Trans(T) & X ∈ T → X ⊆ T. PROOF:
Suppose_not(t, x) ⇒ AUTO

〈t〉↪→T 3a ⇒ Stat1 : t = t ∪ {x} &
⋃

t 	⊇ x ∪ ⋃
t

〈t, x〉↪→T 2e ⇒ AUTO

EQUAL(Stat1) ⇒ false; Discharge ⇒ QED

THEOREM 3d: [Trapping phenomenon for trivial sets]
Trans(S) & X,Z ∈ S & X /∈ Z & Z /∈ X & S\ {X,Z} ⊆ {∅, {∅}} →

S ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}} . PROOF:
Suppose_not(s, x, z) ⇒ AUTO

〈s, x〉↪→T 3c ⇒ AUTO

〈s, z〉↪→T 3c ⇒ AUTO

Discharge ⇒ QED

∥
∥
∥

Any strict subset of a transitive set t, owns a subset in t which does not belong to
it.

THEOREM 4a: [Peddicord’s lemma] Trans(T) & Y ⊆ T &
Y �= T & A = arb(T\Y) → A ⊆ Y & A ∈ T\Y. PROOF:

Suppose_not(t, y,a) ⇒ AUTO

〈t,a〉↪→T 3c ⇒ a ⊆ t
Discharge ⇒ QED

THEOREM 4b: [∅ belongs to any transitive t �= ∅, so does {∅} if t 	⊆ {∅}, etc.]
Trans(T) & N ∈ {∅, {∅} , {∅, {∅}}} & T 	⊆ N →

N ⊆ T &
(

N ∈ T ∨ (N = {∅, {∅}} & {{∅}} ∈ T)
)

. PROOF:
Suppose_not(t,n) ⇒ AUTO

∥
∥
∥
∥
∥

The ‘(�)’ context restriction in the following three steps serves to hide the seman-
tics of arb: which, to the limited extent necessary here, has been captured by the
preceding Peddicord’s lemma.
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〈t,∅,arb(t\∅) 〉↪→T 4a(�) ⇒ ∅ ∈ t

〈t, {∅} ,arb(t\ {∅}) 〉↪→T 4a(�) ⇒ {∅} ∈ t
〈t, {∅, {∅}} ,arb(t\ {∅, {∅}}) 〉↪→T 4a(�) ⇒ false; Discharge ⇒ QED

THEOREM 4c: [Source removal does not disrupt transitivity]
Trans(S) & S ⊇ T & (S\T) ∩ ⋃

S = ∅ → Trans(T). PROOF:
Suppose_not(s, t) ⇒ AUTO

Use_def(Trans) ⇒ Stat1 : {y ∈ t | y 	⊆ t} �= ∅ & {y ∈ s | y 	⊆ s} = ∅
∥
∥
∥
∥
∥
∥
∥
∥
∥

Assuming that s is transitive, that t equals s deprived of some sources and that t is
not transitive, there must be an element y of t which is not a subset of t, so that a
z ∈ y exists which does not belong to t. Due to the transitivity of s, y is included
in s and hence z belongs to s; hence, under the assumption that s\t and

⋃
s are

disjoint, z does not belong to
⋃

s.

〈y, y〉↪→Stat1 ⇒ Stat2 : y 	⊆ t & y ∈ s & y ⊆ s
Use_def(

⋃
s) ⇒ AUTO

〈z〉↪→Stat2 ⇒ Stat3 : z /∈ {u : v ∈ s,u ∈ v} & z ∈ y

‖ However, this is untenable.

〈y, z〉↪→Stat3 ⇒ false; Discharge ⇒ QED

A.3 Basic Laws on the Finitude Property

∥
∥
∥
∥
∥
∥
∥
∥
∥

To begin developing an acceptable treatment of finiteness without much prepara-
tory work, we adopt here the definition (reminiscent of Tarski’s 1924 paper “Sur
les ensembles finis”): a set F is finite if every non-null family of subsets of F
owns an inclusion-minimal element. This notion is readily specified in terms of
the power-set operator, as follows:

DEF P : [Family of all subsets of a given set] P S =Def {x : x ⊆ S}

DEF Fin: [Finitude] Finite(F) ↔ Def 〈∀g ∈ P (P F)\ {∅} ,∃m | g ∩ P m = {m} 〉
∥
∥
∥
∥
∥

The lemma on the monotonicity of finitude and the THEORY of finite induction
displayed below are proved in full—together with various other laws on finiteness
which we will not need here—in [13, pp. 405–407].

THEOREM 24: [Monotonicity of finitude] Y ⊇ X & Finite(Y) → Finite(X).
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THEORY finiteInduction
(

s0,P(S)
)

Finite(s0) & P(s0)

⇒ (finΘ)〈∀S | S ⊆ finΘ → Finite(S) &
(

P(S) ↔ S = finΘ

)〉
END finiteInduction

A.4 Some Combinatorics of the Union-Set Operation

THEOREM 31d: [Unionset of ∅ and {∅}] Y ⊆ {∅} ↔ ⋃
Y = ∅. PROOF:

Suppose_not(x0) ⇒ AUTO

Use_def(
⋃

x0) ⇒ AUTO

Suppose ⇒ x0 ⊆ {∅}
ELEM ⇒ Stat1 : {z : y ∈ x0, z ∈ y} �= ∅
〈y0, z1〉↪→Stat1 ⇒ false

Discharge ⇒ Stat2 : x0 	⊆ {∅} & {z : y ∈ x0, z ∈ y} = ∅
〈y1, y1,arb(y1) 〉↪→Stat2 ⇒ false; Discharge ⇒ QED

THEOREM 31e: [Unionset of a set obtained through single removal]⋃
(X\ {Y}) ⊇ ⋃

X\Y &
⋃

X ⊇ ⋃
(X\ {Y}). PROOF:

Suppose_not(x, y) ⇒ AUTO

〈x\ {y} , x〉↪→T 2c(�) ⇒ Stat1 : ⋃
(x\ {y}) 	⊇ ⋃

x\y
〈c〉↪→Stat1(Stat1�) ⇒ Stat2 : c ∈ ⋃

x\y & c /∈ ⋃
(x\ {y})

Use_def(
⋃

) ⇒ Stat3 : c ∈ {u : v ∈ x,u ∈ v} &

c /∈ {u : v ∈ x\ {y} ,u ∈ v} & c /∈ y
〈v0,u0, v0,u0〉↪→Stat3(Stat3�) ⇒ false; Discharge ⇒ QED

THEOREM 31f : [Unionset, after a removal followed by two adjunctions]⋃
M ⊇ P & Q ∪ R = P ∪ S → ⋃

(M\ {P} ∪ {Q,R}) =
⋃

M ∪ S. PROOF:
Suppose_not(m,p,q, r, s) ⇒ AUTO

TELEM ⇒ m\ {p} ∪ {q} ∪ {r} = m\ {p} ∪ {q, r}
EQUAL ⇒ ⋃

(m\ {p} ∪ {q} ∪ {r}) =
⋃

(m\ {p} ∪ {q, r})
〈m\ {p} ,q〉↪→T 2e ⇒ AUTO

〈m\ {p} ∪ {q} , r〉↪→T 2e(�) ⇒⋃
(m\ {p} ∪ {q, r}) =

⋃
(m\ {p}) ∪ (p∪s)

〈m,p〉↪→T 31e(�) ⇒ false; Discharge ⇒ QED

THEOREM 31g: [Incomparability of pre-pivotal elements]
Y ∈ X & X ∈ Z & X,Z ∈ S → Y ∈ ⋃

(S ∩ ⋃
S). PROOF:

Suppose_not(y, x, z, s) ⇒ y ∈ x & x ∈ z & x, z ∈ s & y /∈ ⋃
(s ∩ ⋃

s)
Use_def(

⋃
) ⇒ Stat1 : y /∈ {

v : u ∈ s ∩ ⋃
s, v ∈ u

}

Use_def(
⋃

s) ⇒ AUTO

〈x, y〉↪→Stat1(�) ⇒ Stat2 : x /∈ {t : w ∈ s, t ∈ w}
〈z, x〉↪→Stat2(�) ⇒ false; Discharge ⇒ QED
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∥
∥
∥
∥

Preparatory to a technique to which we will resort for extending perfect match-
ings, we introduce the following trivial combinatorial lemma:

THEOREM 31h: [Less-one lemma for unionset]⋃
M = T\ {C} & S = T ∪ X ∪ {V} &

(

Y = V ∨ (C = Y & Y ∈ S)
) →

〈∃d | ⋃(M ∪ {X ∪ {Y}}) = S\ {d} 〉. PROOF:
Suppose_not(m, t, c, s, x, v, y) ⇒ Stat0 : ¬〈∃d | ⋃(m ∪ {x ∪ {y}}) = s\ {d} 〉&⋃

m = t\ {c} & s = t ∪ x ∪ {v} &
(

y = v ∨ (c = y & y ∈ s)
)

∥
∥
∥
∥
∥
∥
∥
∥
∥

For, supposing the contrary,
⋃

(m ∪ {x ∪ {y}}) would differ from each of s\ {s},
s\ {c}, and s\ {v}, the first of which equals s. Thanks to Theorem 2e, we can
rewrite

⋃
(m ∪ {x ∪ {y}}) as x ∪ {y} ∪ ⋃

m; but then the decision algorithm for a
fragment of set theory known as ‘multi-level syllogistic with singleton’ yields an
immediate contradiction.

〈s〉↪→Stat0 ⇒ ⋃
(m ∪ {x ∪ {y}}) �= s

〈c〉↪→Stat0 ⇒ ⋃
(m ∪ {x ∪ {y}}) �= s\ {c}

〈v〉↪→Stat0 ⇒ ⋃
(m ∪ {x ∪ {y}}) �= s\ {v}

〈m, x ∪ {y} 〉↪→T 2e ⇒ AUTO

EQUAL ⇒ Stat1 : x ∪ {y} ∪ ⋃
m �= s\ {c} &

x ∪ {y} ∪ ⋃
m �= s\ {v} & x ∪ {y} ∪ ⋃

m �= s
(Stat0,Stat1)Discharge ⇒ QED

THEOREM 32: [Finite, non-null sets own sources]
Finite(F) & F �= ∅ → F\⋃

F �= ∅. PROOF:
Suppose_not(f1) ⇒ AUTO

∥
∥
∥
∥

Arguing by contradiction, suppose that there are counterexamples to the claim.
Then, by exploiting finite induction, we can pick a minimal counterexample, f0.

APPLY 〈finΘ : f0〉 finiteInduction
(

s0 �→ f1,P(S) �→ (S �= ∅ & S\⋃
S = ∅)

) ⇒
Stat0 : 〈∀s | s ⊆ f0 → Finite(s) & (s �= ∅ & s\⋃

s = ∅ ↔ s = f0)〉
Loc_def ⇒ a = arb(f0)〈f0〉↪→Stat0 ⇒ Stat1 : Finite(f0) & a ∈ f0 & f0\⋃

f0 = ∅
∥
∥
∥
∥
∥
∥
∥

Momentarily supposing that f0 = {a}, one gets
⋃

f0 	⊆ a, because
⋃

f0 ⊆ a would
imply f0\⋃

f0 ⊇ {a}\a and hence would imply the emptiness of {a}\a, whence
the manifest absurdity a ∈ a follows. But, on the other hand,

⋃ {a} ⊆ a trivially
holds; therefore we must exclude that f0 is a singleton {a}.

Suppose ⇒ f0 = {a} &
⋃

f0 	⊆ a
EQUAL ⇒ ⋃ {a} 	⊆ a
Use_def(

⋃
) ⇒ {u : v ∈ {a} ,u ∈ v} 	⊆ a

SIMPLF ⇒ false; Discharge ⇒ AUTO
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∥
∥
∥
∥
∥
∥

Due to our minimality assumption, the strict non-null subset f0\ {arb(f0)} of f0
cannot be a counterexample to the claim; therefore it has sources and hence
f0\⋃

(f0\ {arb(f0)}) �= ∅.

〈f0\ {a} ,a〉↪→T 2e(�) ⇒ ⋃
(f0\ {a} ∪ {a}) =

⋃
(f0\ {a}) ∪ a &

f0\ {a} ∪ {a} = f0〈f0\ {a} 〉↪→Stat0(�) ⇒ f0\⋃
(f0\ {a}) �= ∅

∥
∥
∥
∥
∥

Since arb(f0) does not intersect f0, the inequality just found conflicts with the
equality f0\

(⋃
(f0\ {arb(f0)}) ∪ arb(f0)

)

= ∅ which one gets from THEOREM 2e
through equality propagation.

EQUAL ⇒ f0\
(⋃

(f0\ {a}) ∪ a
)

= ∅
Discharge ⇒ QED

A.5 Claw-Free, Transitive Sets and Their Pivots

∥
∥
∥
∥
∥

A claw is defined to be a pair Y,F such that (1) F has at least three elements,
(2) no element of F belongs to any other element of F, (3) either Y belongs to all
elements of F or there is a W in Y such that Y belongs to all elements of F\ {W}.

DEF claw: [Pair forming a claw, perhaps endowed with more than 3 el’ts]
Claw(Y,F) ↔ Def F ∩ ⋃

F = ∅ & 〈∃x, z,w | F ⊇ {x, z,w} &

x �= z & w /∈ {x, z} & {w} ∩ Y ⊇ {v ∈ F | Y /∈ v} 〉
∥
∥
∥
∥
∥

To really interest us, a claw-free set must be transitive: we omit this requirement in
the definition given here below, but we will make it explicit in the major theorems
pertaining to claw-freeness (Fig. 6).

DEF clawFreeness: [Claw-freeness in a membership digraph]
ClawFree(S) ↔ Def 〈∀y ∈ S,e ⊆ S | ¬Claw(y,e)〉

Fig. 6 The forbidden
orientations of a claw in a
claw-free set
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THEOREM clawFreenessa: [Subsets of claw-free sets are claw-free]

ClawFree(S) & T ⊆ S → ClawFree(T). PROOF:

Suppose_not(s, t) ⇒ AUTO

Use_def(ClawFree) ⇒ Stat1 : ¬〈∀y ∈ t,e ⊆ t | ¬Claw(y,e)〉 &

〈∀y ∈ s,e ⊆ s | ¬Claw(y,e)〉
〈y,e, y,e〉↪→Stat1(�) ⇒ false; Discharge ⇒ QED

THEOREM clawFreenessb: [Any potential claw must have a bypass]

ClawFree(S) & S ⊇ {Y,X,Z,W} & Y ∈ X ∩ Z &

W ∈ Y & X /∈ Z ∪ {Z} & Z /∈ X → W ∈ X ∪ Z. PROOF:

Suppose_not(s, y, x, z,w) ⇒ AUTO

Use_def(ClawFree) ⇒ Stat0 : 〈∀y ∈ s,e ⊆ s | ¬Claw(y,e)〉 &

x /∈ w & z /∈ w & x /∈ z & w /∈ x & w /∈ z &

z /∈ x & x �= z & w ∈ y & y ∈ x ∩ z

Loc_def ⇒ Stat1 : e = {x, z,w}
Use_def

(

Claw(y,e)
) ⇒ AUTO

〈y,e〉↪→Stat0(Stat1�) ⇒ ¬
(

e ∩ ⋃
e = ∅ & 〈∃x, z,w | e ⊇ {x, z,w} &

x �= z & w /∈ {x, z} & {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉)
EQUAL ⇒ ⋃

e =
⋃ {x, z,w}

Suppose ⇒ Stat2 : e ∩ ⋃
e �= ∅

Use_def(
⋃

e) ⇒ AUTO

〈c〉↪→Stat2(�) ⇒ Stat3 : c ∈ {u : v ∈ e,u ∈ v} & c ∈ e

〈v0,u0〉↪→Stat3(Stat1,Stat1�) ⇒ Stat4 : v0, c ∈ {x, z,w} & c ∈ v0

(Stat0,Stat4�)Discharge ⇒ Stat5 : 〈∃x, z,w | e ⊇ {x, z,w} & x �= z &

w /∈ {x, z} & {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉
〈x, z,w〉↪→Stat5(Stat0�) ⇒ Stat6 : {w} ∩ y 	⊇ {v ∈ e | y /∈ v}
〈d〉↪→Stat6(Stat6�) ⇒ Stat7 : d ∈ {v ∈ e | y /∈ v} & d /∈ {w} ∩ y

〈 〉↪→Stat7(Stat1,Stat1�) ⇒ Stat8 : d ∈ {x, z,w} & y /∈ d

(Stat0,Stat8,Stat7�)Discharge ⇒ QED

THEORY pivotsForClawFreeness(s0)

ClawFree(s0) & Finite(s0) & Trans(s0)

s0 	⊆ {∅}
END pivotsForClawFreeness

ENTER_THEORY pivotsForClawFreeness
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

By way of first approximation, we want to select from each finite transitive set s
not included in {∅} a ‘pivotal pair’ consisting of an element x of maximum rank
in s and an element y of maximum rank in x. To avoid introducing the recursive
notion of rank of a set, we slightly generalize the idea: for any set s (not neces-
sarily finite or transitive) we define the frontier of s to consist of those elements x
of s which own elements y belonging to s such that the length of no membership
chain issuing from y, ending in s, and contained in s ever exceeds 2. Any element
y which is thus related to an element x of the frontier of s will be called a pivot
of s.

DEF frontier: [Frontier of a set] front(S) =Def
{

x ∈ S | x ∩ S\⋃
(S ∩ ⋃

S) �= ∅}

THEOREM frontier1: [Non-trivial finite sets have a non-null frontier]
Finite(S ∩ ⋃

S) & S ∩ ⋃
S �= ∅ → front(S) �= ∅. PROOF:

Suppose_not(s) ⇒ AUTO

〈s ∩ ⋃
s〉↪→T 32 ⇒ Stat1 : s ∩ ⋃

s\⋃
(s ∩ ⋃

s) �= ∅
Use_def(

⋃
s) ⇒ AUTO

〈y〉↪→Stat1 ⇒ Stat2 : y ∈ {u : v ∈ s,u ∈ v} & y ∈ s & y /∈ ⋃
(s ∩ ⋃

s)
Use_def

(

front(s)
) ⇒ AUTO

〈x,u〉↪→Stat2 ⇒
Stat3 : x /∈ {

x1 ∈ s | x1 ∩ s\⋃
(s ∩ ⋃

s) �= ∅}

& x ∈ s & y ∈ x
〈x〉↪→Stat3 ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥
∥

Our next claim is that if we choose a pivot element y of a transitive set s from an
element of the frontier of s, then removal of all predecessors of y from s leads to
a transitive set t such that y is a source of t.

THEOREM frontier2: [Transitivity-preserving reduction of a transitive set]
Trans(S) & X ∈ front(S) & Y ∈ X\⋃⋃

S & T = {z ∈ S | Y /∈ z} →
Trans(T) & T ⊆ S & X /∈ T & Y ∈ T\⋃

T. PROOF:
Suppose_not(s, x, y, t) ⇒ AUTO

∥
∥
∥
∥
∥

Arguing by contradiction, let s, x, y, t be a counterexample to the claim. Taking
the definition of t into account to exploit monotonicity, we readily get t ⊆ s and
x ∈ t.

Set_monot ⇒ {z ∈ s | y /∈ z} ⊆ {z : z ∈ s}
Suppose ⇒ Stat0 : x ∈ {z ∈ s | y /∈ z}
〈 〉↪→Stat0 ⇒ false; Discharge ⇒ x /∈ t

∥
∥
∥
∥

Now taking the definition of front into account, we can simplify our initial as-
sumption to the following:

Use_def(front) ⇒ Stat1 : x ∈ {

x′ ∈ s | x′ ∩ s\⋃
(s ∩ ⋃

s) �= ∅}

〈 〉↪→Stat1 ⇒ Trans(s) & x ∈ s & x ∩ s\⋃
(s ∩ ⋃

s) �= ∅ & y ∈ x\⋃⋃
s &

t = {z ∈ s | y /∈ z} & Trans(s) & ¬(

Trans(t) & y ∈ t\⋃
t
)
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∥
∥
∥
∥
∥

Since s is transitive, if t were not transitive then by Theorem 4c s\t would have
an element z not being a source of s. But then y would belong to z ∈ ⋃

s, which
conflicts with y being a pivot.

Suppose ⇒ ¬Trans(t)
〈s, t〉↪→T 4c ⇒ Stat2 : (s\t) ∩ ⋃

s �= ∅
Use_def(

⋃
s) ⇒ AUTO

〈z〉↪→Stat2 ⇒ Stat3 : z ∈ {

u′ : w′ ∈ s,u′ ∈ w′} &

z /∈ {

z′ ∈ s | y /∈ z′} & z ∈ s
〈v,a, z〉↪→Stat3(Stat3�) ⇒ y ∈ z & z ∈ v & v ∈ s
Use_def

(⋃⋃
s
) ⇒ AUTO

EQUAL(Stat1) ⇒ y /∈ {

u : w ∈ {

u′ : w′ ∈ s,u′ ∈ w′} ,u ∈ w
}

SIMPLF ⇒ Stat4 : y /∈ {

u : w′ ∈ s,w ∈ w′,u ∈ w
}

〈v, z, y〉↪→Stat4(Stat1�) ⇒ false; Discharge ⇒ y ∈ ⋃
t ∨ y /∈ t

∥
∥
∥
∥

Now knowing that Trans(t), we must consider the other possibility, namely that
y /∈ t\⋃

t. However, after expanding t and
⋃

t according to their definitions, . . .

Use_def(
⋃

t) ⇒ AUTO

Use_def
(

Trans(s)
) ⇒ AUTO

EQUAL ⇒ Stat5 : {y ∈ s | y 	⊆ s} = ∅ &
(

y ∈ {u : v ∈ {z ∈ s | y /∈ z} ,u ∈ v} ∨ y /∈ {z ∈ s | y /∈ z} )

∥
∥ . . . we see that neither one of the possibilities y ∈ ⋃

t, y /∈ t is tenable.

〈x〉↪→Stat5(Stat1�) ⇒ y ∈ s
SIMPLF ⇒ Stat6 : y ∈ {u : v ∈ s,u ∈ v | y /∈ v} ∨ y /∈ {z ∈ s | y /∈ z}

〈w,u, y〉↪→Stat6(Stat5�) ⇒ false; Discharge ⇒ QED

DEF clawFreenessfrontEl: [Frontier el’t of a claw-free transitive non-trivial set]
xΘ =Def arb(front(s0))

DEF clawFreenesspivotEl: [Pivotal el’t of a claw-free transitive non-trivial set]
yΘ =Def arb

(

xΘ\⋃⋃
s0

)

THEOREM clawFreenessc: [xΘ truly belongs to the frontier of s0]
xΘ ∈ front(s0) & xΘ\⋃⋃

s0 �= ∅ & xΘ ∈ s0. PROOF:
Suppose_not() ⇒ AUTO

Assump ⇒ Stat0 : ClawFree(s0) & Finite(s0 ∩ ⋃
s0) & Trans(s0) &

s0 	⊆ {∅}
〈s0〉↪→T 3a ⇒ s0 ∩ ⋃

s0 =
⋃

s0〈s0〉↪→T 31d ⇒ s0 ∩ ⋃
s0 �= ∅

〈s0〉↪→T frontier1 ⇒ Stat1 : front(s0) �= ∅
Use_def

(

front(s0)
) ⇒ AUTO

Use_def(xΘ) ⇒ Stat2 : xΘ ∈ {

x ∈ s0 | x ∩ s0\⋃
(s0 ∩ ⋃

s0) �= ∅}

&

xΘ ∈ front(s0)
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〈 〉↪→Stat2(Stat2�) ⇒ xΘ ∈ s0 & xΘ\⋃
(s0 ∩ ⋃

s0) �= ∅
EQUAL ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥

Pivotal elements, in a transitive claw-free set such as the one treated in this THE-
ORY, own at most two predecessors.

THEOREM clawFreeness0: [Pivots own at most two predecessors]
Y ∈ X\⋃⋃

s0 & X ∈ s0 → 〈∃z | {v ∈ s0 | Y ∈ v} = {X, z} 〉. PROOF:
Suppose_not(y, x) ⇒ Stat1 : ¬〈∃z | {v ∈ s0 | y ∈ v} = {x, z} 〉 &

x ∈ s0 & y ∈ x\⋃⋃
s0

∥
∥
∥
∥

Suppose that y, x constitute a counter-example, so that y has, in addition to x, at
least two predecessors z and w in s0.

Suppose ⇒ Stat2 : x /∈ {v ∈ s0 | y ∈ v}
〈x〉↪→Stat2(�) ⇒ false; Discharge ⇒ AUTO

〈x〉↪→Stat1(�) ⇒ Stat3 : {v ∈ s0 | y ∈ v} �= {x}
〈z〉↪→Stat3(�) ⇒ Stat4 : z ∈ {v ∈ s0 | y ∈ v} & x �= z

〈 〉↪→Stat4(Stat4�) ⇒ Stat5 : z ∈ s0 & y ∈ z

〈z〉↪→Stat1(�) ⇒ Stat6 : {v ∈ s0 | y ∈ v} �= {z, x}
〈w〉↪→Stat6(�) ⇒ Stat7 : w ∈ {v ∈ s0 | y ∈ v} & w /∈ {x, z}
〈 〉↪→Stat7(Stat7�) ⇒ Stat8 : w ∈ s0 & y ∈ w

Loc_def ⇒ e = {x, z,w}
Suppose ⇒ Stat9 : {v ∈ e | y /∈ v} �= ∅
〈v〉↪→Stat9(�) ⇒ false; Discharge ⇒ AUTO

∥
∥
∥
∥

The transitivity of s0, since y ∈ x and x ∈ s0, implies that y ∈ s0; therefore, in view
of the claw-freeness of s0, y and e = {x, z,w} do not form a claw.

Assump ⇒ ClawFree(s0) & Trans(s0)

Use_def(ClawFree) ⇒ Stat10 : 〈∀y ∈ s0,e ⊆ s0 | ¬Claw(y,e)〉
〈s0, x〉↪→T 3c(�) ⇒ y ∈ s0〈y,e〉↪→Stat10(�) ⇒ ¬Claw(y,e)

∥
∥
∥
∥

It readily follows from the definition of claw that {x, z,w} and
⋃ {x, z,w} inter-

sect; therefore, we can pick an element a common to the two.

Use_def(Claw) ⇒ Stat11 :¬〈∃x, z,w | e ⊇ {x, z,w} & x �= z & w /∈ {x, z}
& {w} ∩ y ⊇ {v ∈ e | y /∈ v} 〉 ∨ e ∩ ⋃

e �= ∅
〈x, z,w〉↪→Stat11(Stat4�) ⇒ e ∩ ⋃

e �= ∅
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EQUAL(Stat8) ⇒ Stat12 : {x, z,w} ∩ ⋃ {x, z,w} �= ∅
〈a〉↪→Stat12(Stat12�) ⇒ Stat13 : a ∈ {x, z,w} & a ∈ ⋃ {x, z,w}

∥
∥
∥
∥
∥
∥

But then y ∈ a, a ⊆ ⋃⋃ {x, z,w}, and
⋃⋃ {x, z,w} ⊆ ⋃⋃

s0 must hold, imply-
ing that y ∈ ⋃⋃

s0; but we have started with the assumption that y /∈ ⋃⋃
s0. This

contradiction proves the claim.

〈 {x, z,w} , s0〉↪→T 2c(Stat1,Stat5,Stat8,Stat13�) ⇒ y ∈ a &⋃
s0 ⊇ ⋃ {x, z,w}

〈⋃ {x, z,w} ,
⋃

s0〉↪→T 2c(Stat13�) ⇒ ⋃⋃
s0 ⊇ ⋃⋃ {x, z,w}

〈a,
⋃ {x, z,w} 〉↪→T 2 (Stat13�) ⇒ Stat14 : y ∈ ⋃⋃

s0

(Stat1,Stat14�)Discharge ⇒ QED

THEOREM clawFreenessd: [Shape of the frontier at a pivotal pair]
〈∃z | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} & yΘ ∈ z〉. PROOF:

Suppose_not() ⇒ AUTO

〈 〉↪→T clawFreenessc ⇒ Stat1 : xΘ\⋃⋃
s0 �= ∅ & xΘ ∈ s0

Use_def(yΘ) ⇒ yΘ ∈ xΘ\⋃⋃
s0〈yΘ, xΘ〉↪→T clawFreeness0 ⇒

Stat2 : 〈∃z | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} 〉 &

¬〈∃z | {v ∈ s0 | yΘ ∈ v} = {xΘ, z} & yΘ ∈ z〉
〈z0, z0〉↪→Stat2 ⇒ Stat3 : z0 ∈ {v ∈ s0 | yΘ ∈ v} & yΘ /∈ z0〈 〉↪→Stat3 ⇒ false; Discharge ⇒ QED

‖ Via Skolemization, we give a name to the third item in a pivotal tripleton:

APPLY 〈v1Θ : zΘ〉 Skolem⇒
THEOREM clawFreenesse. {v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & yΘ ∈ zΘ.

THEOREM clawFreenessf: [Tripleton pivot in claw-free, transitive set]
{v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & {xΘ, yΘ, zΘ} ⊆ s0 &

yΘ ∈ xΘ ∩ zΘ\⋃⋃
s0 & xΘ /∈ zΘ & zΘ /∈ xΘ. PROOF:

Suppose_not() ⇒ AUTO

〈 〉↪→T clawFreenessc ⇒ Stat3 : xΘ\⋃⋃
s0 �= ∅

Use_def(yΘ) ⇒ yΘ /∈ ⋃⋃
s0 & yΘ ∈ xΘ〈 〉↪→T clawFreenesse ⇒ Stat1 : xΘ ∈ {v : v ∈ s0 | yΘ ∈ v} &

zΘ ∈ {v ∈ s0 | yΘ ∈ v} &

{v : v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} & yΘ ∈ zΘ〈v0, v1〉↪→Stat1 ⇒ xΘ ∈ s0 & zΘ ∈ s0

Assump ⇒ Trans(s0)〈s0, zΘ〉↪→T 3c ⇒ yΘ ∈ s0〈s0〉↪→T 3a ⇒ s0 ∩ ⋃
s0 =

⋃
s0

EQUAL ⇒ yΘ /∈ ⋃
(s0 ∩ ⋃

s0)
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〈yΘ, xΘ, zΘ, s0〉↪→T 31g ⇒ xΘ /∈ zΘ

〈yΘ, zΘ, xΘ, s0〉↪→T 31g ⇒ false; Discharge ⇒ QED

DEF clawFreenessrmv: [Removing el’ts above pivot] tΘ =Def {v ∈ s0 | yΘ /∈ v}

∥
∥
∥
∥

The removal of the predecessors of a pivot from a claw-free, transitive non-trivial
set such as the one treated by this THEORY does not disrupt transitivity.

THEOREM clawFreenessg: [Removing el’ts above pivot preserves transitivity]
Trans(tΘ) & ClawFree(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\⋃

tΘ &

tΘ = s0\ {xΘ, zΘ} . PROOF:
Suppose_not() ⇒ AUTO

Use_def(tΘ) ⇒ Stat1 : tΘ = {v ∈ s0 | yΘ /∈ v}
Set_monot ⇒ {v ∈ s0 | yΘ /∈ v} ⊆ {v : v ∈ s0}
Assump ⇒ Trans(s0) & ClawFree(s0)

〈s0, tΘ〉↪→T clawFreenessa(Stat1�) ⇒ ClawFree(tΘ)

〈 〉↪→T clawFreenessc ⇒ xΘ ∈ front(s0)

〈 〉↪→T clawFreenessf ⇒ Stat2 : {v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ} &

yΘ ∈ xΘ\⋃⋃
s0 & yΘ /∈ ⋃⋃

s0

〈s0, xΘ, yΘ, tΘ〉↪→T frontier2(�) ⇒ Stat3 : tΘ �= s0\ {xΘ, zΘ } &

Trans(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\⋃
tΘ

〈e〉↪→Stat3(Stat3�) ⇒ e ∈ tΘ �= e ∈ s0\ {xΘ, zΘ}
Suppose ⇒ Stat4 : e ∈ {v ∈ s0 | yΘ /∈ v} & e /∈ s0\ {xΘ, zΘ}
〈 〉↪→Stat4(Stat2�) ⇒ Stat5 : e ∈ {v ∈ s0 | yΘ ∈ v} & e ∈ s0 & yΘ /∈ e

〈 〉↪→Stat5(Stat5�) ⇒ false; Discharge ⇒
Stat6 : e /∈ {v ∈ s0 | yΘ ∈ v} & e /∈ {v ∈ s0 | yΘ /∈ v} & e ∈ s0

〈e,e〉↪→Stat6(Stat6�) ⇒ false; Discharge ⇒ QED

ENTER_THEORY Set_theory

DISPLAY pivotsForClawFreeness

THEORY pivotsForClawFreeness(s0)

ClawFree(s0) & Finite(s0) & Trans(s0)

s0 	⊆ {∅}
⇒ (xΘ, yΘ, zΘ, tΘ)〈∀y, x | y ∈ x\⋃⋃

s0 & x ∈ s0 → 〈∃z | {v ∈ s0 | y ∈ v} = {x, z} 〉〉
{v ∈ s0 | yΘ ∈ v} = {xΘ, zΘ } & {xΘ, yΘ, zΘ } ⊆ s0 & yΘ ∈ xΘ ∩ zΘ\⋃⋃

s0 &
xΘ /∈ zΘ & zΘ /∈ xΘ

tΘ = {v ∈ s0 | yΘ /∈ v}
ClawFree(tΘ) & Trans(tΘ) & tΘ ⊆ s0 & xΘ /∈ tΘ & yΘ ∈ tΘ\⋃

tΘ &
tΘ = s0\ {xΘ, zΘ }

END pivotsForClawFreeness
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A.6 Hanks, Cycles, and Hamiltonian Cycles

∥
∥
∥
∥
∥
∥
∥

The following notion approximately models the concept of a graph where every
vertex has at least two incident edges. However, we neither require that (1) edges
be doubletons, nor that (2) the set H of edges and the one of vertices—which is
understood to be

⋃
H—be disjoint.

DEF cycle0: [Collection of edges whose endpoints have degree greater than 1]
Hank(H) ↔ Def ∅ /∈ H & 〈∀e ∈ H | e ⊆ ⋃

(H\ {e})〉
DEF cycle1: [Cycle (unless null)]

Cycle(C) ↔ Def Hank(C) & 〈∀d ⊆ C | Hank(d) & d �= ∅ → d = C〉
THEOREM hank0: [Alternative characterization of a hank]

Hank(H) ↔ (∅ /∈ H & 〈∀e ∈ H, x ∈ e,∃q ∈ H | q �= e & x ∈ q〉). PROOF:
Suppose_not(h) ⇒ AUTO

Suppose ⇒ ¬〈∀e ∈ h, x ∈ e,∃q ∈ h | q �= e & x ∈ q〉 &

〈∀e ∈ h | e ⊆ ⋃
(h\ {e})〉

Use_def
(⋃) ⇒ Stat1 : ¬〈∀e ∈ h, x ∈ e,∃q ∈ h | q �= e & x ∈ q〉 &

〈∀e ∈ h | e ⊆ {v : u ∈ h\ {e0} , v ∈ u} 〉
〈e0, x0,e0〉↪→Stat1 ⇒ Stat2 : x0 ∈ {v : u ∈ h\ {e0} , v ∈ u} &

¬〈∃q ∈ h | q �= e0 & x0 ∈ q〉 & e0 ∈ h & x0 ∈ e0〈q0, v0,q0〉↪→Stat2 ⇒ false; Discharge ⇒ AUTO

Use_def(Hank) ⇒ Stat3 : ¬〈∀e ∈ h | e ⊆ ⋃
(h\ {e})〉 &

〈∀e ∈ h, x ∈ e,∃q ∈ h | q �= e & x ∈ q〉
〈e1〉↪→Stat3 ⇒ Stat4 : e1 	⊆ ⋃

(h\ {e1}) &

〈∀e ∈ h, x ∈ e,∃q ∈ h | q �= e & x ∈ q〉 & e1 ∈ h
Use_def

(⋃
(h\ {e1})) ⇒ AUTO

〈x1,e1, x1〉↪→Stat4 ⇒ Stat5 : 〈∃q ∈ h | q �= e1 & x1 ∈ q〉 &

x1 /∈ {v : u ∈ h\ {e1} , v ∈ u} & x1 ∈ e1〈q1,q1, x1〉↪→Stat5 ⇒ false; Discharge ⇒ QED

THEOREM hank1: [No singleton or doubleton set is a cycle]
H ⊆ {X,U} & Hank(H) → H = ∅. PROOF:
Suppose_not(h0, x0,u0) ⇒ Stat0 : h0 �= ∅ & h0 ⊆ {x0,u0} & Hank(h0)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

For, assuming that h0 is a hank, non-null, and a subset of a doubleton {x0,u0},
we will reach a contradiction arguing as follows. If a is one of the (at most
two) elements of h0, since ∅ �= a & a ⊆ ⋃

(h0\ {a}) ensues from the defini-
tion of hank,

⋃
(h0\ {a}) must be non-null; hence h0 = {a,b}, where b �= a.

But then
⋃

(h0\ {a}) =
⋃ {b} and

⋃
(h0\ {b}) =

⋃ {a}, i.e.,
⋃

(h0\ {a}) = b and⋃
(h0\ {b}) = a; therefore a ⊆ b and b ⊆ a ensue from the definition of hank, lead-

ing us to the identity a = b, which contradicts an earlier inequality.
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〈a〉↪→Stat0(Stat0�) ⇒ Stat1 : a ∈ h0
Use_def(Hank) ⇒ Stat2 : 〈∀e ∈ h0 | e ⊆ ⋃

(h0\ {e})〉 & ∅ /∈ h0〈a〉↪→Stat2 ⇒ a ⊆ ⋃
(h0\ {a})

〈h0\ {a} 〉↪→T 31d ⇒ Stat3 : h0 �= {a}
〈b〉↪→Stat3 ⇒ Stat4 : b ∈ h0 & b �= a
〈b〉↪→Stat2 ⇒ b ⊆ ⋃

(h0\ {b})
〈 {a} ,a,a〉↪→T 2a ⇒ ⋃ {a} = a
〈 {b} ,b,b〉↪→T 2a ⇒ ⋃ {b} = b
(Stat0,Stat1,Stat4�)ELEM ⇒ h0\ {a} = {b} & h0\ {b} = {a}

EQUAL ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥

The following is the basic case of a general theorem scheme where the length of
the chain can be any number > 2.

THEOREM hank2: [A membership chain and an extra edge form a hank]
X ∈ Y & Y ∈ Z → Hank({{X,Y} , {Y,Z} , {Z,X}}). PROOF:
Suppose_not(x0, y0, z0) ⇒ AUTO

Use_def(Hank) ⇒ Stat0 : ¬〈∀e ∈ {{x0, y0} , {y0, z0} , {z0, x0}} |
e ⊆ ⋃

({{x0, y0} , {y0, z0} , {z0, x0}}\ {e})〉 & x0 ∈ y0 & y0 ∈ z0〈e0〉↪→Stat0 ⇒ e0 ∈ {{x0, y0} , {y0, z0} , {z0, x0}} &

e0 	⊆ ⋃
({{x0, y0} , {y0, z0} , {z0, x0}}\ {e0})

Suppose ⇒ e0 = {x0, y0} &
{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{y0, z0} , {z0, x0}}〈 {{y0, z0} , {z0, x0}} , {y0, z0} , {z0, x0} 〉↪→T 2a ⇒⋃ {{y0, z0} , {z0, x0}} = {y0, z0, x0}

EQUAL ⇒ {x0, y0} 	⊆ {y0, z0, x0}; Discharge ⇒ AUTO

Suppose ⇒ e0 = {y0, z0} &
{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{x0, y0} , {z0, x0}}〈 {{x0, y0} , {z0, x0}} , {x0, y0} , {z0, x0} 〉↪→T 2a ⇒⋃ {{x0, y0} , {z0, x0}} = {x0, y0, z0}

EQUAL ⇒ {y0, z0} 	⊆ {x0, y0, z0}; Discharge ⇒ AUTO

〈 {{x0, y0} , {y0, z0}} , {x0, y0} , {y0, z0} 〉↪→T 2a ⇒⋃ {{x0, y0} , {y0, z0}} = {x0, y0, z0} & e0 = {z0, x0} &
{{x0, y0} , {y0, z0} , {z0, x0}}\ {e0} = {{x0, y0} , {y0, z0}}

EQUAL ⇒ {z0, x0} 	⊆ {x0, y0, z0}; Discharge ⇒ QED

∥
∥
∥
∥
∥

The following is the basic case of a general theorem scheme where the length
of the path can be any number > 1: Replacing an edge by a path with the same
endpoints does not disrupt a hank.

THEOREM hank3: [Hank enrichment]
(

Hank(H) & {W,Y} ∈ H & W �= Y &

X /∈ ⋃
H & H′ = H\ {{W,Y}}∪{{W,X} , {X,Y}} ) → Hank(H′). PROOF:

Suppose_not(h0,w0, y0, x1,h1) ⇒ Stat0 : (

Hank(h0) & {w0, y0} ∈ h0 &
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w0 �= y0 & x1 /∈ ⋃
h0 & h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}

)

&

¬Hank(h1)

∥
∥
∥
∥
∥

Suppose that the premisses are met by h0,w0, y0, x1, and h1. In order to prove
Hank(h1), we assume it to be false, so that the definition of hank implies the
existence of an e1 ∈ h1 and a z1 ∈ e1 such that z1 /∈ ⋃

(h1\ {e1}).

Use_def(Hank) ⇒ Stat1 : ¬〈∀e ∈ h1 | e ⊆ ⋃
(h1\ {e})〉 &

Stat2 : 〈∀e ∈ h0 | e ⊆ ⋃
(h0\ {e})〉

〈e1,e1〉↪→Stat1 ⇒ Stat3 : e1 	⊆ ⋃
(h1\ {e1}) & e1 ∈ h1 &

(

e1 ∈ h0 → e1 ⊆ ⋃
(h0\ {e1})

)

Use_def
(⋃

(h1\ {e1})) ⇒ AUTO

〈z1〉↪→Stat3(Stat3�) ⇒ Stat4 : z1 /∈ {v : u ∈ h1\ {e1} , v ∈ u} & z1 ∈ e1

‖ Since x1 belongs to the distinct edges {w0, x1} , {x1, y0} of h1, clearly z1 �= x1.

Suppose ⇒ z1 = x1〈 {w0, x1} , x1〉↪→Stat4 ⇒ {w0, x1} = e1〈 {x1, y0} , x1〉↪→Stat4 ⇒ false; Discharge ⇒ AUTO

‖ Moreover, e1 cannot be one of the edges of h1\h0.

Suppose ⇒ e1 ∈ {{w0, x1} , {x1, y0}}
Use_def

(⋃
(h0\ {{w0, y0}})) ⇒ AUTO

〈 {w0, y0} 〉↪→Stat2 ⇒ Stat5 : z1 ∈ {v : u ∈ h0\ {{w0, y0}} , v ∈ u}
〈e′, z′〉↪→Stat5 ⇒ e′ ∈ h0\ {{w0, y0}} & z1 ∈ e′
Use_def(

⋃
h0) ⇒ AUTO

〈e′, z1〉↪→Stat4 ⇒ x1 ∈ e′ & Stat6 : x1 /∈ {v : u ∈ h0, v ∈ u}
〈e′, x1〉↪→Stat6 ⇒ false; Discharge ⇒ AUTO

Use_def
(⋃

(h0\ {e1})) ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥
∥
∥

We know, at this point, that e1 ∈ h0\ {{w0, y0}}. Since h0 is a hank, z1 has in h0 at
least one incident edge different from e1; since the latter is no longer available in
h1\ {e1}, it must be {w0, y0}, and either z1 = w0 or z1 = y0 hence holds. Both cases
lead to a contradiction, though; in fact {w0, x1} , {x1, y0} differ from e1 and these
edges of h1 are, respectively, incident to w0 and to y0.

(Stat0�)ELEM ⇒ e1 ∈ h0 &

Stat7 : z1 ∈ {v : u ∈ h0\ {e1} , v ∈ u} &z1 /∈ {v : u ∈ h1\ {e1} , v ∈ u}
〈e0, z0,e0, z1〉↪→Stat7 ⇒ Stat8 : z1 ∈ {w0, y0}〈 {w0, x1} ,w0〉↪→Stat4 ⇒ z1 �= w0〈 {x1, y0} , y0〉↪→Stat4 ⇒ z1 �= y0

(Stat8�)Discharge ⇒ QED
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THEOREM cycle0: [A membership 2-chain and an extra edge make a cycle]
X ∈ Y & Y ∈ Z → Cycle({{X,Y} , {Y,Z} , {Z,X}}). PROOF:
Suppose_not(x0, y0, z0) ⇒ AUTO

Use_def
(

Cycle({{x0, y0} , {y0, z0} , {z0, x0}})) ⇒ AUTO

〈x0, y0, z0〉↪→T hank2(�) ⇒ Stat0 : ¬〈∀d ⊆ {{x0, y0} , {y0, z0} , {z0, x0}} |
Hank(d) & d �= ∅ → d = {{x0, y0} , {y0, z0} , {z0, x0}} 〉〈d〉↪→Stat0 ⇒ Stat2 : Hank(d) & d �= ∅ &

d �= {{x0, y0} , {y0, z0} , {z0, x0}} & d ⊆ {{x0, y0} , {y0, z0} , {z0, x0}}〈d, {y0, z0} , {z0, x0} 〉↪→T hank1(Stat2�) ⇒ d �= {{y0, z0} , {z0, x0}} &

d �= {{y0, z0}} & d �= {{z0, x0}}〈d, {x0, y0} , {z0, x0} 〉↪→T hank1(Stat2,Stat2�) ⇒ d �= {{x0, y0} , {z0, x0}} &

d �= {{x0, y0}}〈d, {x0, y0} , {y0, z0} 〉↪→T hank1(Stat2,Stat2�) ⇒ d �= {{x0, y0} , {y0, z0}}
(Stat2�)ELEM ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥

The replacement of an edge by a 2-path with the same endpoints does not disrupt
a cycle.

THEOREM cycle1: [Cycle enrichment] Cycle(C) & {W,Y} ∈ C & W �= Y &

X /∈ ⋃
C & C′ = C\ {{W,Y}}∪{{W,X} , {X,Y}} → Cycle(C′). PROOF:

Suppose_not(h0,w0, y0, x1,h1) ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥

Supposing that h0,w0, y0, x1,h1 constitute a counter-example to the claim, ob-
serve that Hank(h1) must hold; hence we can consider a strictly smaller hank d1
than h1. It readily turns out that either {w0, x1} ∈ d1 or {x1, y0} ∈ d1; for otherwise
h0 would strictly include d1, since d1 �= h0 follows from {w0, y0} ∈ h0\h1.

〈h0,w0, y0, x1,h1〉↪→T hank3 ⇒ AUTO

Use_def(Cycle) ⇒ Stat0 : {w0, y0} ∈ h0 & w0 �= y0 &

x1 /∈ ⋃
h0 & h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} &

Stat1 : ¬〈∀d ⊆ h1 | Hank(d) & d �= ∅ → d = h1〉 &

Stat2 : 〈∀d ⊆ h0 | Hank(d) & d �= ∅ → d = h0〉 & Hank(h0) & Hank(h1)〈d1,d1〉↪→Stat1(Stat0�) ⇒ Stat3 : d1 ⊆ h1 & d1 �= h1 & d1 �= ∅ & Hank(d1) &

¬({w0, x1} /∈ d1 & {x1, y0} /∈ d1)

Use_def(
⋃

h0) ⇒ AUTO

〈d1〉↪→T hank0 ⇒ Stat4 : 〈∀e ∈ d1, x ∈ e,∃q ∈ d1 | q �= e & x ∈ q〉 &

Stat4a : x1 /∈ {v : u ∈ h0, v ∈ u} & ∅ /∈ d1

∥
∥
∥
∥
∥

Should one of {w0, x1} , {x1, y0}, but not the other, belong to d1, we would easily
get a contradiction: the two cases are treated symmetrically. At this point we have
derived that both {w0, x1} and {x1, y0} belong to d1.

〈 {w0, x1} , x1,q0,q0, x1〉↪→Stat4(Stat0�) ⇒ ¬({w0, x1} ∈ d1 & {x1, y0} /∈ d1)

〈 {x1, y0} , x1,q1,q1, x1〉↪→Stat4(Stat0�) ⇒ Stat5 : {w0, x1} , {x1, y0} ∈ d1
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∥
∥
∥
∥
∥

We will show that the set d0 obtained by replacing {w0, x1} and {x1, y0} by
{w0, y0} in d1 is non-null and is a cycle strictly included in h0. Obviously
{w0, x1} �= {w0, y0} & {x1, y0} �= {w0, y0}, because x1, y0, and w0 are distinct.

〈 {w0, y0} , x1〉↪→Stat4a(Stat0�) ⇒ Stat6 : x1 �= w0 & x1 �= y0 & w0 �= y0 &
{w0, y0} /∈ d1

Loc_def ⇒ Stat7 : d0 = d1 ∪ {{w0, y0}}\ {{w0, x1} , {x1, y0}}
(Stat5,Stat7,Stat6,Stat3,Stat0,Stat4�)ELEM ⇒ d0 ⊆ h0 & d0 �= ∅ &

d0 �= h0 & ∅ /∈ d0
Use_def(

⋃
d0) ⇒ AUTO

〈d0,h0〉↪→T 2c (Stat0�) ⇒ Stat8 : x1 /∈ {u : v ∈ d0,u ∈ v}
∥
∥
∥
∥
∥

Despite us having assumed at the beginning that h0 contains no proper cycle, so
that in particular Hank(d0) cannot hold, due to an edge e0 of d0 and to an endpoint
x0 of e0 which is not properly covered in d0, . . .

〈d0〉↪→T hank0 ⇒ AUTO

〈d0〉↪→Stat2(Stat7�) ⇒ Stat9 : ¬〈∀e ∈ d0, x ∈ e,∃q ∈ d0 | q �= e & x ∈ q〉
〈e0, x0〉↪→Stat9 ⇒

Stat10 : ¬〈∃q ∈ d0 | q �= e0 & x0 ∈ q〉 & e0 ∈ d0 & x0 ∈ e0

∥
∥
∥
∥
∥

. . . we now aim at showing that this offending edge e0 of d0 will also offend d1,
which contradicts a fact noted at the beginning. Here we shortly digress to prove
that e0 = {w0, y0} must hold, else e0 would offend d1.

Suppose ⇒ Stat11 : e0 �= {w0, y0}
∥
∥
∥
∥
∥
∥
∥

Indeed, assuming e0 �= {w0, y0}, e0 would also belong to d1, and each one of its
endpoints must have edges distinct from e0 incident to it in d1. However, it will
turn out that this cannot be the case for the endpoint x0, which hence is not prop-
erly covered in d1.

〈e0, x0〉↪→Stat4(Stat7,Stat10,Stat11�) ⇒ Stat12 : 〈∃q ∈ d1 | q �= e0 & x0 ∈ q〉
〈q2〉↪→Stat12(Stat12�) ⇒ Stat13 : x0 ∈ q2 & q2 �= e0 & q2 ∈ d1

‖ To see this, let q2 �= e0 be the edge that covers x0 in d1.

Suppose ⇒ Stat14 : q2 = {w0, x1} ∨ q2 = {x1, y0}
∥
∥
∥
∥

If this edge q2 were one of the two which have been removed, the edge {w0, y0}
would satisfactorily cover x0 in d0.

〈 {w0, y0} 〉↪→Stat10(Stat7,Stat6,Stat11�) ⇒ Stat15 : x0 /∈ {w0, y0}〈e0, x0〉↪→Stat8 ⇒ AUTO

(Stat10�)Discharge ⇒ Stat16 : ¬(q2 = {w0, x1} ∨ q2 = {x1, y0})
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∥
∥
∥
∥

q2 must hence belong to d0; but again, this implies that q2 would satisfactorily
cover x0 in d0. Therefore, e0 = {w0, y0} must hold.

〈q2〉↪→Stat10(Stat7,Stat16,Stat13�) ⇒ false;
Discharge ⇒ Stat17 : e0 = {w0, y0}

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

The only remaining possibility, e0 = {w0, y0}, is also untenable. Indeed, d1 has
two edges incident to w0, one of which is {w0, x1}; likewise, d1 has two edges
incident to y0, one of which is {x1, y0}. For either one of the endpoints w0, y0
of e0, the second incident edge belongs to d1 and differs from {w0, y0}, so it
must belong to d0 as well; since d0 also owns the edge {w0, y0} incident to either
endpoint, it is not true that e0 is an offending edge for d0, a fact that contradicts
one of the assumptions made.

〈 {w0, x1} ,w0,q4〉↪→Stat4(Stat5,Stat7,Stat6,Stat17�) ⇒
Stat19 : q4 �= e0 & q4 ∈ d0 & w0 ∈ q4〈 {x1, y0} , y0,q5〉↪→Stat4(Stat5,Stat5�) ⇒
Stat20 : y0 ∈ q5 & q5 �= {x1, y0} & q5 ∈ d1

(Stat20,Stat7,Stat6,Stat17�)ELEM ⇒ Stat21 : q5 �= e0 & q5,e0 ∈ d0〈q5〉↪→Stat10(Stat21,Stat17,Stat20�) ⇒ Stat22 : x0 /∈ q5 & x0 = w0

〈q4〉↪→Stat10(Stat19,Stat22�) ⇒ false; Discharge ⇒ QED

DEF hamiltonian1: [Hamiltonian cycle, in graph devoid of isolated vertices]
Hamiltonian(H,S,E) ↔ Def Cycle(H) &

⋃
H = S & H ⊆ E

∥
∥
∥
∥
∥
∥
∥

In our specialized context, where edges are 2-sets whose elements satisfy a pecu-
liar membership constraint, we do not simply require that a Hamiltonian cycle H
touches every vertex, but also that every source has an incident membership edge
in H.

DEF hamiltonian2: [Edges in squared membership]
sqEdges(S) =Def {{x, y} : x ∈ S, y ∈ S\ {x} , z ∈ S ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

DEF hamiltonian3: [Restraining condition for Hamiltonian cycles]
SqHamiltonian(H,S) ↔ Def Hamiltonian

(

H,S, sqEdges(S)
)

&

〈∀x ∈ S\⋃
S,∃y ∈ x | {x, y} ∈ H〉

THEOREM hamiltonian1: [Enriched Hamiltonian cycles]
S = T ∪ {X} & X /∈ T & Y ∈ X & SqHamiltonian(H,T) & {W,Y} ∈ H &

(

W ∈ Y ∨ (Y ∈ W & K �= Y & {W,K} ∈ H & K ∈ W)
) →

SqHamiltonian(H\ {{W,Y}} ∪ {{W,X} , {X,Y}} ,S). PROOF:
Suppose_not(s0, t0, x1, y0,h0,w0, k0) ⇒ AUTO

Use_def(SqHamiltonian) ⇒ Stat0 : 〈∀x ∈ t0\⋃
t0,∃y ∈ x | {x, y} ∈ h0〉 &

Hamiltonian
(

h0, t0, sqEdges(t0)
)

&

¬
(

Hamiltonian
(

h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} , s0, sqEdges(s0)
)

&
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〈∀x ∈ s0\⋃
s0,∃y ∈ x | {x, y} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} 〉

)

Suppose ⇒ Stat1 :
¬〈∀x ∈ s0\⋃

s0,∃y ∈ x | {x, y} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} 〉
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Suppose that s0, t0, x1, y0,h0,w0, k0 make a counterexample to the claim. One
reason why

SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0)

is violated might be
¬〈∀x ∈ s0\⋃

s0,∃y ∈ x | {x, y} ∈ h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} 〉
; if this is the case, we can choose an x′ witnessing this fact.

〈x′〉↪→Stat1 ⇒ Stat2 :
¬〈∃k ∈ x′ | {x′, k

} ∈ h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}}〉 & x′ ∈ s0\⋃
s0

∥
∥
∥
∥
∥
∥
∥
∥
∥

To see that x′ ∈ t0\⋃
t0 follows from the constraint x′ ∈ s0\⋃

s0, we assume
the contrary and argue as follows: (1) Unless x′ belongs to t0, we must have
x′ = x1, which however has an incident membership edge, namely {x1, y0}, in
h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}. (2) Thus, since x′ ∈ t0, we have x′ ∈ t0 ∩ ⋃

t0
and hence x′ ∈ s0 ∩ ⋃

s0, contradicting the constraint on x′.

Suppose ⇒ x′ /∈ t0\⋃
t0〈y0〉↪→Stat2(�) ⇒ x′ ∈ t0 & s0 = t0 ∪ {x1} & x1 /∈ t0 & y0 ∈ x1〈t0, s0〉↪→T 2c (Stat2�) ⇒ ⋃

s0 ⊇ ⋃
t0

(Stat2�)Discharge ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥
∥

Knowing that x′ ∈ t0\⋃
t0, we can find a y1 ∈ x′ such that

{

x′, y1
} ∈ h0. Since

this membership edge is no longer available after the modification of h0, it must
be {w0, y0}; therefore, x′ = w0, for otherwise x′ = y0 would (in view of the fact
y0 ∈ x1) contradict the assumption x′ ∈ s0\⋃

s0.

〈x′, y1〉↪→Stat0(�) ⇒ Stat3 : y1 ∈ x′ &
{

x′, y1
} ∈ h0 & x1 ∈ s0 & y0 ∈ x1

Use_def(
⋃

s0) ⇒ AUTO

〈y1〉↪→Stat2(Stat3�) ⇒ Stat4 : x′ /∈ {u : v ∈ s0,u ∈ v} &
{

x′, y1
}

= {w0, y0}〈x1, y0〉↪→Stat4(Stat2�) ⇒ x′ = w0

∥
∥
∥
∥
∥
∥

If x′ ∈ y0, the assumption x′ ∈ s0\⋃
s0 would be contradicted similarly: but then,

by the initial assumption, we must have
{

x′, k0
} ∈ h0 & k0 �= y0 & k0 ∈ x′, conflict-

ing with Stat2, because
{

x′, k0
}

= {w0, y0} would imply k0 = y0.

〈x1, y0〉↪→Stat4(�) ⇒ x′ /∈ y0 &
{

x′, k0
} ∈ h0 & k0 ∈ x′ & k0 �= y0〈k0〉↪→Stat2(Stat4�) ⇒ false; Discharge ⇒

Stat5 : Hamiltonian
(

h0, t0, sqEdges(t0)
)

&

¬Hamiltonian
(

h0\{{w0, y0}}∪{{w0, x1} , {x1, y0}} , s0, sqEdges(s0)
)
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∥
∥
∥
∥
∥
∥
∥
∥
∥

At this point the reason why
SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0)

is false must be that
Hamiltonian

(

h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}} , s0, sqEdges(s0)
)

is false; however, we will derive a contradiction also in this case.

Use_def
(

Hamiltonian
(

h0, t0, sqEdges(t0)
)) ⇒ AUTO

ELEM ⇒ Stat6 : s0 = t0 ∪ {x1} & x1 /∈ t0 & y0 ∈ x1 & {w0, y0} ∈ h0 &
(

w0 ∈ y0 ∨ (y0 ∈ w0 & k0 �= y0 & {w0, k0} ∈ h0 & k0 ∈ w0)
)

Loc_def ⇒ Stat7 : h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}
Use_def

(

Hamiltonian
(

h1, s0, sqEdges(s0)
)) ⇒ AUTO

EQUAL(Stat5) ⇒ Stat8 : (

Cycle(h0) &
⋃

h0 = t0 & h0 ⊆ sqEdges(t0)
)

&

¬(

Cycle(h1) &
⋃

h1 = s0 & h1 ⊆ sqEdges(s0)
)

∥
∥
∥
∥
∥
∥

In fact, after observing that {w0, y0} ⊆ ⋃
h0 must hold, we will be able to

discard one by one each potential reason why Hamiltonian
(

h0\ {{w0, y0}} ∪
{{w0, x1} , {x1, y0}} , s0, sqEdges(s0)

)

should be false.

〈h0,w0, y0, x1,h1〉↪→T cycle1 (Stat6�) ⇒ Stat9 : (

Cycle(h0) &
⋃

h0 = t0 &

h0 ⊆ sqEdges(t0)
)

& ¬(⋃
h1 = s0 & h1 ⊆ sqEdges(s0)

)

Suppose ⇒ Stat10 : {w0, y0} 	⊆ ⋃
h0

Use_def(
⋃

h0) ⇒ AUTO

〈b〉↪→Stat10(Stat10�) ⇒ Stat11 : b /∈ {u : v ∈ h0,u ∈ v} & b ∈ {w0, y0}〈 {w0, y0} ,b〉↪→Stat11(Stat11,Stat6�) ⇒ false; Discharge ⇒
Stat12 : w0, y0 ∈ t0

Suppose ⇒ Stat13 : h1 	⊆ sqEdges(s0)

Use_def
(

sqEdges(s0)
) ⇒ AUTO

〈e〉↪→Stat13(Stat7�) ⇒ (e ∈ h0 ∨ e = {w0, x1} ∨ e = {x1, y0}) & Stat14 :
e /∈ {{x, y} : x ∈ s0, y ∈ s0\ {x} , z ∈ s0 ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

(Stat6,Stat12�)ELEM ⇒ Stat15 :
x1, y0,w0 ∈ s0 & y0 ∈ x1 & (w0 ∈ y0 ∨ y0 ∈ w0) & x1 �= w0〈x1, y0, y0〉↪→Stat14(Stat15�) ⇒ e �= {x1, y0}〈x1,w0, y0〉↪→Stat14(Stat15�) ⇒ e �= {w0, x1}

Use_def
(

sqEdges(t0)
) ⇒ AUTO

(Stat8�)ELEM ⇒ Stat16 :
e ∈ {{x, y} : x ∈ t0, y ∈ t0\ {x} , z ∈ t0 ∩ x | y = z ∨ y ∈ z ∨ z ∈ y}

〈x2, y2, z2〉↪→Stat16(Stat16�) ⇒ Stat17 : e = {x2, y2} & x2, y2, z2 ∈ t0 &

x2 �= y2 & z2 ∈ x2 & (y2 = z2 ∨ y2 ∈ z2 ∨ z2 ∈ y2)

(Stat6�)ELEM ⇒ s0 ⊇ t0〈x2, y2, z2〉↪→Stat14(Stat17�) ⇒ false; Discharge ⇒ Stat18 : ⋃
h1 �= s0

∥
∥ We prove first that

⋃
h1 ⊆ s0.
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〈 {{w0, x1} , {x1, y0}} , {w0, x1} , {x1, y0} 〉↪→T 2a(Stat18�) ⇒⋃ {{w0, x1} , {x1, y0}} = {w0, x1, y0}〈h0\ {{w0, y0}} , {{w0, x1} , {x1, y0}} 〉↪→T 2c(Stat18�) ⇒⋃
(h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}})

=
⋃

(h0\ {{w0, y0}}) ∪ ⋃ {{w0, x1} , {x1, y0}}〈h0\ {{w0, y0}} ,h0〉↪→T 2c(Stat8�) ⇒⋃
h0 ⊇ ⋃

(h0\ {{w0, y0}}) & {w0, y0} ⊆ ⋃
h0

EQUAL(Stat7) ⇒ ⋃
h1 =

⋃
(h0\ {{w0, y0}}) ∪ {w0, x1, y0}

(Stat6�)ELEM ⇒ ⋃
h1 ⊆ s0

∥
∥ The remaining case is s0 	⊆ ⋃

h1, which entails that we can find an a ∈ t0\⋃
h1.

Use_def(
⋃

h1) ⇒ AUTO

〈a〉↪→Stat18(Stat18�) ⇒ Stat23 : a /∈ {u : v ∈ h1,u ∈ v} & a ∈ s0\ {x1}
∥
∥ Since a ∈ t0 and t0 =

⋃
h0, we can find an e′ ∈ h0 such that a ∈ e′.

Use_def(
⋃

) ⇒ Stat24 : a ∈ {u : v ∈ h0,u ∈ v}
〈e′,u′〉↪→Stat24(Stat25�) ⇒ Stat25 : e′ ∈ h0 & a ∈ e′

∥
∥
∥
∥
∥

Since h1 = h0\ {{w0, y0}} ∪ {{w0, x1} , {x1, y0}}, we conclude that e′ = {w0, y0}
must hold. Hence, either a = w0 or a = y0 must hold, both of which yield a contra-
diction.

〈e′,a〉↪→Stat23(Stat7,Stat25�) ⇒ e′ = {w0, y0}〈 {w0, x1} ,w0〉↪→Stat23(Stat7�) ⇒ a = y0〈 {x1, y0} , y0〉↪→Stat23(Stat7�) ⇒ false; Discharge ⇒ QED

THEOREM hamiltonian2: [Doubly enriched Hamiltonian cycles]
S = T ∪ {X,Z} & {X,Z} ∩ T = ∅ & X �= Z & Y ∈ X ∩ Z &

SqHamiltonian(H,T) & {W,Y} ∈ H & W ∈ Y ∩ X →
SqHamiltonian(H\{{W,Y}}∪{{W,X} , {X,Z} , {Z,Y}} ,S). PROOF:

Suppose_not(s0, t0, x0, z0, y0,h0,w0) ⇒ AUTO

〈t0 ∪ {x0} , t0, x0, y0,h0,w0,∅〉↪→T hamiltonian1 ⇒
SqHamiltonian(h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, y0}} , t0 ∪ {x0})

Loc_def ⇒ Stat1 :
h1 = h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, y0}} & t1 = t0 ∪ {x0}

ELEM ⇒ Stat2 : s0 = t1 ∪ {z0} & x0 /∈ t0
EQUAL ⇒ SqHamiltonian(h1, t1)
Suppose ⇒ {x0, y0} ∈ h0

∥
∥
∥
∥
∥

Notice that since h0 is a Hamiltonian path in t0, its unionset must equal t0; since
x0 does not belong to t0, but it belongs to {x0, y0}, it follows that {x0, y0} cannot
belong to h0.
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Use_def
(

SqHamiltonian(h0, t0)
) ⇒ AUTO

Use_def
(

Hamiltonian
(

h0, t0, sqEdges(t0)
)) ⇒ AUTO

Use_def(
⋃

) ⇒ Stat3 : x0 /∈ {u : v ∈ h0,u ∈ v}
〈 {x0, y0} , x0〉↪→Stat3(Stat2�) ⇒ false; Discharge ⇒ AUTO

ELEM ⇒ {x0, y0} �= {w0, x0} & z0 /∈ t1 &

y0 ∈ z0 & y0 ∈ x0 & w0 ∈ y0 & w0 ∈ x0〈t1 ∪ {z0} , t1, z0, y0,h1, x0,w0〉↪→T hamiltonian1 (Stat1�) ⇒
SqHamiltonian(h1\ {{x0, y0}} ∪ {{x0, z0} , {z0, y0}} , t1 ∪ {z0})

(Stat1�)ELEM ⇒ h1\ {{x0, y0}} = h0\ {{w0, y0}} ∪ {{w0, x0}}
(Stat1�)ELEM ⇒ h1\ {{x0, y0}} ∪ {{x0, z0} , {z0, y0}}

= h0\ {{w0, y0}} ∪ {{w0, x0} , {x0, z0} , {z0, y0}}
EQUAL ⇒ false; Discharge ⇒ QED

THEOREM hamiltonian3: [Trivial Hamiltonian cycles]
S = {X,Y,Z} & X ∈ Y & Y ∈ Z →

SqHamiltonian({{X,Y} , {Y,Z} , {Z,X}} ,S). PROOF:
Suppose_not(s, x0, y0, z0) ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Arguing by contradiction, assume that {{x0, y0} , {y0, z0} , {z0, x0}} is not a ‘square
Hamiltonian’ cycle for s = {x0, y0, z0}, where x0 ∈ y0 and y0 ∈ z0 holds. We will
first exclude the possibility that {{x0, y0} , {y0, z0} , {z0, x0}} is not a Hamiltonian
cycle in the ‘square edges’ of s; after discarding this, we will also exclude that this
cycle may fail to satisfy the restraining condition that it has a genuine membership
edge incident into each source of s.

Use_def
(

SqHamiltonian({{x0, y0} , {y0, z0} , {z0, x0}} , s)
) ⇒ AUTO

Use_def
(

Hamiltonian
( {{x0, y0} , {y0, z0} , {z0, x0}} , s, sqEdges(s)

)) ⇒ AUTO

〈x0, y0, z0〉↪→T cycle0 ⇒ AUTO

ELEM ⇒ Stat1 : s = {x0, y0, z0} & x0 ∈ y0 & y0 ∈ z0
Suppose ⇒ Stat8 : {{x0, y0} , {y0, z0} , {z0, x0}} 	⊆ sqEdges(s)

Use_def
(

sqEdges(s)
) ⇒ AUTO

〈e0〉↪→Stat8(Stat8�) ⇒ Stat9 :
e0 /∈ {{x, y} : x ∈ s, y ∈ s\ {x} , z ∈ s ∩ x | y = z ∨ y ∈ z ∨ z ∈ y} &

e0 ∈ {{x0, y0} , {y0, z0} , {z0, x0}}〈z0, y0, y0〉↪→Stat9(Stat1,Stat1�) ⇒ e0 �= {y0, z0}
〈z0, x0, y0〉↪→Stat9(Stat1,Stat9�) ⇒ e0 �= {z0, x0}
〈y0, x0, x0〉↪→Stat9(Stat1,Stat1�) ⇒ e0 �= {x0, y0}

(Stat9�)Discharge ⇒ AUTO

Suppose ⇒ Stat4 : ⋃ {{x0, y0} , {y0, z0} , {z0, x0}} �= s
(Stat1,Stat1�)ELEM ⇒ s = {x0, y0, z0} &

{{x0, y0} , {y0, z0} , {z0, x0}} = {{x0, y0} , {y0, z0}}∪{{z0, x0}} &
{x0, y0, z0} ∪ {z0, x0} = {x0, y0, z0}〈 {{x0, y0} , {y0, z0}} , {{z0, x0}} 〉↪→T 2c (Stat5�) ⇒ Stat5 :⋃

({{x0, y0} , {y0, z0}} ∪ {{z0, x0}})
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=
⋃ {{x0, y0} , {y0, z0}} ∪ ⋃ {{z0, x0}}〈 {{x0, y0} , {y0, z0}} , {x0, y0} , {y0, z0} 〉↪→T 2a (Stat6�) ⇒ Stat6 :⋃ {{x0, y0} , {y0, z0}} = {x0, y0, z0}〈 {{z0, x0} , {z0, x0}} , {z0, x0} , {z0, x0} 〉↪→T 2a (Stat7�) ⇒ Stat7 :⋃ {{z0, x0} , {z0, x0}}={z0, x0} & {{z0, x0} , {z0, x0}}={{z0, x0}}

EQUAL(Stat4) ⇒ false; Discharge ⇒ Stat10 :
¬〈∀z ∈ s\⋃

s,∃y ∈ z | {z, y} ∈ {{x0, y0} , {y0, z0} , {z0, x0}} 〉
∥
∥
∥
∥
∥

We conclude by checking that {{x0, y0} , {y0, z0} , {z0, x0}} owns a genuine mem-
bership edge incident into each source of s; as a matter of fact, z0 is the only
source of s and {y0, z0} is a membership edge.

〈z′〉↪→Stat10(Stat10�) ⇒ Stat11 :
¬〈∃y ∈ z′ | {

z′, y
} ∈ {{x0, y0} , {y0, z0} , {z0, x0}} 〉 & z′ ∈ s\⋃

s
〈y0〉↪→Stat11(Stat11�) ⇒ Stat12 :

y0 /∈ z′ ∨
{

z′, y0
}

/∈ {{x0, y0} , {y0, z0} , {z0, x0}}
Use_def(

⋃
) ⇒ Stat13 : z′ /∈ {u : v ∈ s,u ∈ v} & z′ ∈ s

〈z0, y0〉↪→Stat13(Stat12,Stat1�) ⇒ Stat14 : z′ = x0〈y0, x0〉↪→Stat13(Stat14,Stat13,Stat12,Stat1�) ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥

Any non-trivial transitive set whose square is devoid of Hamiltonian cycles must
strictly comprise certain sets.

THEOREM hamiltonian4: [Potential revealers of non-Hamiltonicity]
Trans(S) & S 	⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h,S)〉 →

S �= {∅, {∅} , {{∅}}} & S �= {∅, {∅} , {∅, {∅}}} &

S �= {∅, {∅} , {{∅}} , {∅, {∅}}} & S ⊇ {∅, {∅}} &
( {{∅}} ∈ S ∨ {∅, {∅}} ∈ S

)

. PROOF:
Suppose_not(t) ⇒ AUTO

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Indeed, any set satisfying the premises of our present claim must, due to its tran-
sitivity and non-triviality, include either one of the Hamiltonian cycles endowed
with the vertices ∅, {∅} , {{∅}} and ∅, {∅} , {∅, {∅}}, respectively; but it must also
own additional elements, else the last premise would be falsified. Moreover, it
cannot have exactly the elements ∅, {∅} , {{∅}} , {∅, {∅}}, as these form a Hamilto-
nian cycle.

〈t, {∅, {∅}} 〉↪→T 4b ⇒ Stat1 : ¬〈∃h | SqHamiltonian(h, t)〉 &
(

t ⊇ {∅, {∅} , {{∅}}} ∨ t ⊇ {∅, {∅} , {∅, {∅}}} )

∥
∥
∥
∥
∥
∥
∥
∥

The cases t = {∅, {∅} , {{∅}}} and t = {∅, {∅} , {∅, {∅}}} must be excluded, because
we have the respective Hamiltonian cycles

{{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}} ,

{{∅, {∅}} , {{∅} , {∅, {∅}}} , {{∅, {∅}} ,∅}} .
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〈t,∅, {∅} , {{∅}} 〉↪→T hamiltonian3 ⇒ AUTO

〈 {{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}} 〉↪→Stat1(�) ⇒ t �= {∅, {∅} , {{∅}}}
〈t,∅, {∅} , {∅, {∅}} 〉↪→T hamiltonian3 ⇒ AUTO

〈 {{∅, {∅}} , {{∅} , {∅, {∅}}} , {{∅, {∅}} ,∅}} 〉↪→Stat1(�) ⇒
Stat2 : t = {∅, {∅} , {{∅}} , {∅, {∅}}}

∥
∥
∥
∥
∥

Having thus established that t = {∅, {∅} , {{∅}} , {∅, {∅}}}, we can now exploit The-
orem hamiltonian2 to enrich the Hamiltonian cycle for {∅, {∅} , {{∅}}} into one
which does to our case.

〈 {∅, {∅} , {{∅}}} ,∅, {∅} , {{∅}} 〉↪→T hamiltonian3(Stat2�) ⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}} , {∅, {∅} , {{∅}}})

〈 {∅, {∅} , {{∅}}} ,∅, {∅} , {{∅}} 〉↪→T hamiltonian3 ⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}} , {∅, {∅} , {{∅}}})

〈 {∅, {∅} , {{∅}} , {∅, {∅}}} , {∅, {∅} , {{∅}}} , {∅, {∅}} , {∅} ,

{{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}} ,∅〉↪→T hamiltonian1(Stat2�) ⇒
SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}}\ {{∅, {∅}}} ∪

{{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} ,

{∅, {∅} , {{∅}} , {∅, {∅}}})
EQUAL(Stat2) ⇒

SqHamiltonian({{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}}\ {{∅, {∅}}} ∪
{{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} , t)

〈 {{∅, {∅}} , {{∅} , {{∅}}} , {{{∅}} ,∅}}\{{∅, {∅}}} ∪ {{∅, {∅, {∅}}} , {{∅, {∅}} , {∅}}} 〉
↪→Stat1(Stat2�) ⇒ false; Discharge ⇒ QED

A.7 Hamiltonicity of Squared Claw-Free Sets

‖ Non-trivial, claw-free, finite transitive sets have Hamiltonian squares.

THEOREM clawFreeness1: [Hamiltonicity of non-trivial, claw-free sets]
Finite(S) & Trans(S) & ClawFree(S) & S 	⊆ {∅, {∅}} →

〈∃h | SqHamiltonian(h,S)〉. PROOF:
Suppose_not(s1) ⇒ AUTO

∥
∥
∥
∥

For, assuming the opposite, there would exist an inclusion-minimal, finite transi-
tive non-trivial claw-free set whose square lacks a Hamiltonian cycle.

APPLY 〈finΘ : s0〉 finiteInduction
(

s0 �→ s1,P(S) �→ (

Trans(S) & ClawFree(S) &

S 	⊆ {∅, {∅}} & ¬〈∃h |SqHamiltonian(h,S)〉)) ⇒

Stat1 : 〈∀s | s ⊆ s0 → Finite(s) &
(

Trans(s) & ClawFree(s) &

s 	⊆ {∅, {∅}} & ¬〈∃h | SqHamiltonian(h, s)〉 ↔ s = s0
)〉
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〈s0〉↪→Stat1(Stat1�) ⇒ Stat2 : ¬〈∃h | SqHamiltonian(h, s0)〉 & Finite(s0) &

Trans(s0) & ClawFree(s0) & s0 	⊆ {∅, {∅}}
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Thanks to the finiteness of such an s0, the THEORY pivotsForClawFreeness can
be applied to s0. We thereby pick an element x from the frontier of s0, and an
element y of x which is pivotal relative to s0. This y will have at most two in-
neighbors (one of the two being x) in s0. We denote by z an in-neighbor of y in
s0, such that z differs from x if possible. Observe, among others, that neither one
of x, z can belong to the other.

APPLY 〈xΘ : x, yΘ : y, zΘ : z, tΘ : t〉 pivotsForClawFreeness(s0 �→ s0) ⇒
Stat3 : {v ∈ s0 | y ∈ v} = {x, z} & z ∈ s0 & y ∈ z & y ∈ x & y, x ∈ s0 &

y /∈ ⋃⋃
s0 & t = {u ∈ s0 | y /∈ u} & Trans(t) & ClawFree(t) &

s0 ⊇ t & x /∈ t & y ∈ t\⋃
t & t = s0\ {x, z} & x /∈ z & z /∈ x

∥
∥
∥
∥
∥

Thus it turns out readily that removal of x, z from s0 leads to a set t to which,
unless t is ‘trivial’ (i.e. a subset of {∅, {∅}}), the inductive hypothesis applies;
hence, by that hypothesis, there is a Hamiltonian cycle h0 for t.

Suppose ⇒ t ⊆ {∅, {∅}}
∥
∥
∥
∥
∥
∥
∥
∥
∥

In order that t be trivial, we should have s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}; but then, as
already shown in the proof of Theorem hamiltonian4, we have the ability, either
directly, or by enrichment of a Hamiltonian cycle for {∅, {∅} , {{∅}}}, to construct
a Hamiltonian cycle for s0: thus, if we suppose t ⊆ {∅, {∅}} then we get a contra-
diction.

〈s0, x, z〉↪→T 3d(Stat2�) ⇒ Stat7 : s0 ⊆ {∅, {∅} , {{∅}} , {∅, {∅}}}
〈s0〉↪→T hamiltonian4(Stat2,Stat7�) ⇒ false; Discharge ⇒ AUTO

〈t〉↪→Stat1(Stat3�) ⇒ Stat9 : 〈∃h | SqHamiltonian(h, t)〉 & t 	⊆ {∅, {∅}}
〈h0〉↪→Stat9(Stat9�) ⇒ Stat10 : SqHamiltonian(h0, t)

Use_def
(

Hamiltonian
(

h0, t, sqEdges(t)
)) ⇒ AUTO

Use_def(SqHamiltonian) ⇒
Stat11 : 〈∀x ∈ t\⋃

t,∃y ∈ x | {x, y} ∈ h0〉 & Cycle(h0) &⋃
h0 = t & h0 ⊆ sqEdges(t)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

It follows from y being a source of t =
⋃

h0 that there is an edge {y,w}, with
w ∈ y, in h0, If x = z, to get a Hamiltonian cycle h1 for s0 (a fact conflicting with
the inductive hypothesis) it will suffice to take h1 = h0\ {{y,w}} ∪ {{x, y} , {x,w}},
where {x,w} is a square edge because w ∈ y and y ∈ x both hold. On the other
hand, if x �= z, claw-freeness implies that either w ∈ x or w ∈ z. Assume the former
for definiteness, and put h2 = h0\ {{y,w}} ∪ {{y, z} , {z, x} , {x,w}}, where {x, z} is
a square edge and {x,w} and {y, z} are genuine edges incident in the sources x, z.
We are again facing a contradiction, because h2 is a Hamiltonian cycle for s0.
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〈y,w〉↪→Stat11(Stat3�) ⇒ Stat12 : w ∈ y & {w, y} ∈ h0

Suppose ⇒ x = z
〈s0, t, x, y,h0,w,∅〉↪→T hamiltonian1(Stat3�) ⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, y}} , s0)〈h0\ {{w, y}} ∪ {{w, x} , {x, y}} 〉↪→Stat2(Stat2�) ⇒ false;
Discharge ⇒ Stat13 : x �= z

〈s0, y〉↪→T 3c(Stat2�) ⇒ Stat14:w ∈ s0〈s0,y,x, z,w〉↪→T clawFreenessb(Stat2,Stat3,Stat12,Stat13,Stat14�)⇒ w∈x∪z
Suppose ⇒ Stat15 : w ∈ x
〈s0, t, x, z, y,h0,w〉↪→T hamiltonian2(Stat3,Stat13, Stat10,Stat12,Stat15�) ⇒

SqHamiltonian(h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} , s0)〈h0\ {{w, y}} ∪ {{w, x} , {x, z} , {z, y}} 〉↪→Stat2(Stat2�) ⇒ false;
Discharge ⇒ Stat16 : w ∈ z

〈s0, t, z, x, y,h0,w〉↪→T hamiltonian2(Stat3,Stat13,Stat10,Stat12,Stat16�) ⇒
SqHamiltonian(h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} , s0)〈h0\ {{w, y}} ∪ {{w, z} , {z, x} , {x, y}} 〉↪→Stat2(Stat2�) ⇒ false;

Discharge ⇒ QED

A.8 Perfect Matchings

∥
∥
∥
∥
∥
∥
∥

Next we introduce the notion of perfect matching. This is a partition consisting
of doubletons one of whose elements belongs to the other. Special cases of a
perfect matching are: the empty set and, more generally, all subsets of a perfect
matching.

DEF perfect_matching: [Set of disjoint membership pairs]
PerfectMatching(M) ↔ Def〈∀p ∈ M,∃x ∈ p, y ∈ x,∀q ∈ M | x ∈ q ∨ y ∈ q → {x, y} = q〉

THEOREM perfectMatching0: [The null set is a perfect matching]
PerfectMatching(∅). PROOF:
Suppose_not() ⇒ AUTO

Use_def(PerfectMatching) ⇒ Stat0 : ¬〈∀p ∈ ∅,∃x ∈ p, y ∈ x,∀q ∈ ∅ |
x ∈ q ∨ y ∈ q → {x, y} = q〉

〈p1〉↪→Stat0 ⇒ false; Discharge ⇒ QED

THEOREM perfectMatching1: [Perfect matchings consist of true doubletons]
PerfectMatching(M) & P ∈ M → P /∈ {∅, {X}} . PROOF:
Suppose_not(m,p0, x0) ⇒ AUTO

Use_def(PerfectMatching) ⇒ Stat1 : 〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m |
x ∈ q ∨ y ∈ q → {x, y} = q〉

〈p0, x, y,p0〉↪→Stat1(�) ⇒ false; Discharge ⇒ QED
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THEOREM perfectMatching2: [All subsets of a perfect matching are perfect]
PerfectMatching(M) & M ⊇ N → PerfectMatching(N). PROOF:
Suppose_not(m,n) ⇒ AUTO

Set_monot ⇒
〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m | x ∈ q ∨ y ∈ q → {x, y} = q〉 →

〈∀p ∈ n,∃x ∈ p, y ∈ x,∀q ∈ n | x ∈ q ∨ y ∈ q → {x, y} = q〉
Use_def(PerfectMatching) ⇒ false; Discharge ⇒ QED

∥
∥
∥
∥

By adjoining a pair {x, y} with y ∈ x to a perfect matching none of whose blocks
has either x or y as an element, we always obtain a perfect matching.

THEOREM perfectMatching3: [Bottom-up assembly of a perfect matching]
PerfectMatching(M) & X /∈ ⋃

M & Y /∈ ⋃
M & Y ∈ X →

PerfectMatching(M ∪ {{X,Y}}). PROOF:
Suppose_not(m, x0, y0) ⇒ Stat2 : PerfectMatching(m) & x0 /∈ ⋃

m &
y0 /∈ ⋃

m & y0 ∈ x0 & ¬PerfectMatching(m ∪ {{x0, y0}})
Suppose ⇒ Stat3 : ¬〈∀q ∈ m | x0 /∈ q & y0 /∈ q〉

Use_def(
⋃

) ⇒ Stat4 : x0 /∈ {v : u ∈ m, v ∈ u} &
y0 /∈ {v : u ∈ m, v ∈ u}

〈q2〉↪→Stat3(Stat3�) ⇒ q2 ∈ m & x0 ∈ q2 ∨ y0 ∈ q2〈q2, x0,q2, y0〉↪→Stat4(Stat4�) ⇒ false; Discharge ⇒
Stat5 : 〈∀q ∈ m | x0 /∈ q & y0 /∈ q〉

Use_def(PerfectMatching) ⇒
Stat6 : ¬〈∀p ∈ m ∪ {{x0, y0}} ,∃x ∈ p, y ∈ x,

∀q ∈ m ∪ {{x0, y0}} | x ∈ q ∨ y ∈ q → {x, y} = q〉 &
Stat7 : 〈∀p ∈ m,∃x ∈ p, y ∈ x,

∀q ∈ m | x ∈ q ∨ y ∈ q → {x, y} = q〉
〈p0〉↪→Stat6(Stat6�) ⇒

Stat8 : ¬〈∃x ∈ p0, y ∈ x,∀q ∈ m ∪ {{x0, y0}} | x ∈ q ∨ y ∈ q →
{x, y} = q〉 & p0 ∈ m ∪ {{x0, y0}}

Suppose ⇒ Stat9 : p0 = {x0, y0}〈x0, y0〉↪→Stat8(Stat2,Stat9�) ⇒
Stat10 :¬〈∀q ∈ m ∪ {{x0, y0}} | x0 ∈ q ∨ y0 ∈ q → {x0, y0} = q〉
〈q1〉↪→Stat9(Stat9�) ⇒ q1 ∈ m & x0 ∈ q1 ∨ y0 ∈ q1〈q1〉↪→Stat5(Stat10�) ⇒ false; Discharge ⇒ AUTO

〈p0, x1, y1〉↪→Stat7 ⇒ AUTO

〈x1, y1〉↪→Stat8(Stat8�) ⇒
Stat13 :¬〈∀q ∈ m ∪ {{x0, y0}} | x1 ∈ q ∨ y1 ∈ q →{x1, y1} = q〉&
Stat12 : 〈∀q ∈ m | x1 ∈ q ∨ y1 ∈ q → {x1, y1} = q〉 & p0 ∈ m &

x1 ∈ p0 & y1 ∈ x1〈q0,q0〉↪→Stat13(Stat13�) ⇒ Stat14 : q0 = {x0, y0} & x1 ∈ q0 ∨ y1 ∈ q0〈p0〉↪→Stat5(�) ⇒ x0 /∈ p0 & y0 /∈ p0〈p0〉↪→Stat12(Stat13,Stat13�) ⇒ {x1, y1} = p0
(Stat14�)Discharge ⇒ QED
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∥
∥
∥
∥
∥

If, in a perfect matching m, we replace one block {y,w} by pairs {y, z} , {x,w},
then, under suitable conditions ensuring disjointness between blocks and mem-
bership within each block, we get a perfect matching again.

THEOREM perfectMatching4: [Deviated perfect matching]
PerfectMatching(M) & {Y,W} ∈ M & X /∈ ⋃

M & Z /∈ ⋃
M & Y ∈ Z &

Y �= X & X �= Z & W ∈ X →
PerfectMatching(M\ {{Y,W}} ∪ {{Y,Z} , {X,W}}). PROOF:

Suppose_not(m, y0,w0, x0, z0) ⇒ AUTO

∥
∥
∥
∥
∥

For assuming that m, y0,w0, x0, z0 are a counterexample to the claim, we could
get a contradiction arguing as follows. Begin by observing that neither y0 nor w0
can belong to the unionset of the perfect submatching m\ {{y0,w0}} of m.

Suppose ⇒ Stat1 : {y0,w0} ∩ ⋃
(m\ {{y0,w0}}) �= ∅

Use_def(PerfectMatching) ⇒ Stat2 :
〈∀p ∈ m,∃x ∈ p, y ∈ x,∀q ∈ m | x ∈ q ∨ y ∈ q → {x, y} = q〉

Use_def
(⋃

(m\ {{y0,w0}})) ⇒ AUTO

〈w1〉↪→Stat1 ⇒ Stat3 :
w1 ∈ {u : v ∈ m\ {{y0,w0}} ,u ∈ v} & w1 ∈ {y0,w0}〈p0,w2〉↪→Stat3 ⇒ p0 ∈ m\ {{y0,w0}} & w1 ∈ p0〈p0, x2, y2〉↪→Stat2 ⇒ Stat4 :
〈∀q ∈ m | x2 ∈ q ∨ y2 ∈ q → {x2, y2} = q〉 & x2 ∈ p0 & y2 ∈ x2〈p0〉↪→Stat4 ⇒ p0 = {x2, y2}〈 {y0,w0} 〉↪→Stat4(�) ⇒ false; Discharge ⇒ AUTO

〈m,m\ {{y0,w0}} 〉↪→T perfectMatching2 ⇒ PerfectMatching(m\ {{y0,w0}})
∥
∥
∥
∥
∥

Thus, taking into account that w0 ∈ x0 and that x0 /∈ ⋃
m which is a superset

of
⋃

(m\ {{y0,w0}}), we can extend the perfect matching m\ {{y0,w0}} with the
doubleton {x0,w0}.

〈m\ {{y0,w0}} ,m〉↪→T 2c ⇒ x0 /∈ ⋃
(m\ {{y0,w0}})〈m\ {{y0,w0}} , x0,w0〉↪→T perfectMatching3 ⇒

PerfectMatching(m\ {{y0,w0}} ∪ {{x0,w0}})
∥
∥
∥
∥
∥
∥
∥

Observe next that x0 �= y0 and z0 �= w0, because x0 /∈ ⋃
m and z0 /∈ ⋃

m whereas
y0 ∈ ⋃

m and w0 ∈ ⋃
m. It then follows from z0 �= w0, thanks to the assump-

tion z0 �= x0, that z0 does not belong to the unionset of the perfect matching
m\ {{y0,w0}} ∪ {{x0,w0}}.

Suppose ⇒ x0 = w0 ∨ z0 = w0
Use_def(

⋃
) ⇒ Stat5 : z0 /∈ {u : v ∈ m,u ∈ v} & x0 /∈ {u : v ∈ m,u ∈ v}

〈 {y0,w0} ,w0, {y0,w0} , y0〉↪→Stat5 ⇒ false; Discharge ⇒ AUTO

Suppose ⇒ z0 ∈ ⋃
(m\ {{y0,w0}} ∪ {{x0,w0}})〈m\ {{y0,w0}} ,m〉↪→T 2c ⇒ z0 /∈ ⋃

(m\ {{y0,w0}})〈m\ {{y0,w0}} , {x0,w0} 〉↪→T 2e ⇒ false; Discharge ⇒ AUTO
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∥
∥
∥
∥
∥
∥
∥

y0 cannot equal w0 either, the reason being that the set {y0,w0} is a block
of a perfect matching and hence it cannot be a singleton. If follows, thanks
to the assumption y0 ∈ x0 (entailing that y0 �= x0), that y0 does not belong to⋃

(m\ {{y0,w0}} ∪ {{x0,w0}}) either.

〈m, {y0,w0} ,w0〉↪→T perfectMatching1 ⇒ y0 �= w0〈m\ {{y0,w0}} , {x0,w0} 〉↪→T 2e ⇒ y0 /∈ ⋃
(m\ {{y0,w0}} ∪ {{x0,w0}})

∥
∥
∥
∥
∥

We now know that the perfect matching m\ {{y0,w0}} ∪ {{x0,w0}} can be ex-
tended with the doubleton {y0, z0}, which readily leads us to the sought contra-
diction.

〈m\ {{y0,w0}} ∪ {{x0,w0}} , z0, y0〉↪→T perfectMatching3 ⇒
PerfectMatching(m\ {{y0,w0}} ∪ {{x0,w0}} ∪ {{y0, z0}}) &

m\ {{y0,w0}} ∪ {{x0,w0}} ∪ {{y0, z0}} =
m\ {{y0,w0}} ∪ {{y0, z0} , {x0,w0}}

EQUAL ⇒ false; Discharge ⇒ QED

A.9 Each Claw-Free Set Admits a Near-Perfect Matching

∥
∥
∥

Every claw-free finite, transitive set admits a perfect matching perhaps omitting
one of its elements.

THEOREM clawFreeness2: [Claw-free sets admit near-perfect matchings]
Finite(S) & Trans(S) & ClawFree(S) →

〈∃m, y | PerfectMatching(m) & S\ {y} =
⋃

m〉. PROOF:
Suppose_not(s1) ⇒ AUTO

∥
∥
∥
∥
∥

For, supposing the contrary, there would be an inclusion-minimal finite set s0
which is transitive and claw-free, and such that no perfect matching m partitions
the set s0 possibly deprived of an element y0.

APPLY 〈finΘ : s0〉 finiteInduction
(

s0 �→ s1,P(S) �→ (

Trans(S) & ClawFree(S) &

¬〈∃m, y | PerfectMatching(m) & S\ {y} =
⋃

m〉)) ⇒
Stat1 : 〈∀s | s ⊆ s0 → Finite(s) &

(

Trans(s) & ClawFree(s) &

¬〈∃m, y | PerfectMatching(m) & s\ {y} =
⋃

m〉 ↔ s = s0
)〉

〈s0〉↪→Stat1(Stat1�) ⇒
Stat2 : ¬〈∃m, y | PerfectMatching(m) & s0\ {y} =

⋃
m〉 &

Trans(s0) & ClawFree(s0) & Finite(s0)

∥
∥
∥

We observe that such an s0 cannot equal ∅ or {∅}, else the null perfect matching
would cover it.
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Suppose ⇒ Stat3 : s0 ∩ ⋃
s0 = ∅

〈s0〉↪→T 3a ⇒ AUTO

〈s0〉↪→T 31d ⇒ AUTO

〈∅〉↪→T 31d ⇒ AUTO

〈∅,∅〉↪→Stat2 ⇒ ¬PerfectMatching(∅)

〈 〉↪→T perfectMatching0(Stat3�) ⇒ false; Discharge ⇒ s0 ∩ ⋃
s0 �= ∅

∥
∥
∥
∥
∥
∥
∥
∥
∥

Thanks to the finiteness of s0, the THEORY pivotsForClawFreeness can be ap-
plied to s0. We thereby pick an element x from the frontier of s0 and an element
y of x which is pivotal relative to s0. This y will have at most two ∈-predecessors
(one of the two being x) in s0. We denote by z a predecessor of y in s0, such that
z differs from x if possible.

APPLY 〈xΘ : x, yΘ : y, zΘ : z, tΘ : t′〉 pivotsForClawFreeness(s0 �→ s0) ⇒
Stat4 : {v ∈ s0 | y ∈ v} = {x, z} & z ∈ s0 & y ∈ z & y ∈ x& y, x ∈ s0 &

y /∈ ⋃⋃
s0 & t′ = {z ∈ s0 | y /∈ z} & Trans(t′) & ClawFree(t′) &

s0 ⊇ t′ & x /∈ t′ & y ∈ t′\⋃
t′ & t′ = s0\ {x, z} & x /∈ z & z /∈ x

∥
∥
∥
∥

Moreover, we take t′ to be s0 deprived of the predecessors of y and, if x �= z, we
take t = t′ else we take t = t′\ {y}.

Loc_def ⇒ t = if x = z then t′\ {y} else t′ fi

∥
∥
∥
∥

Thus it turns out readily that t is transitive; hence, by the inductive hypothesis,
there is a perfect matching m0 for t.

〈t′, t〉↪→T clawFreenessa(Stat4�) ⇒ Stat5 : ClawFree(t) & x /∈ t & s0 ⊇ t &

t′ ⊇ t & t′ = s0\ {x, z} & y ∈ t′
〈t′, t〉↪→T 4c(Stat4�) ⇒ Trans(t)
〈t〉↪→Stat1(Stat4�) ⇒ Stat6 : 〈∃m, y | PerfectMatching(m) & t\ {y} =

⋃
m〉

〈m0, y0〉↪→Stat6(Stat6�) ⇒ Stat7 : PerfectMatching(m0) &
⋃

m0 = t\ {y0}
∥
∥
∥
∥
∥
∥
∥

The possibility that y does not belong to
⋃

m0 is then discarded; in fact, if this
were the case, then by adding the pair {x, y} to m0 we would get a perfect matching
for s0, while we have assumed that such a matching does not exist. From the fact
y ∈ ⋃

m0 it follows that y belongs to t, hence that t = t′ and that x, z are distinct.

Suppose ⇒ Stat8 : y /∈ ⋃
m0〈m0, x, y〉↪→T perfectMatching3(Stat4�) ⇒

Stat9 : PerfectMatching(m0 ∪ {{x, y}})
Loc_def ⇒ Stat10 : v = if x = z then y else z fi
(Stat4�)ELEM ⇒ Stat11 : s0 = t ∪ {x, v} & {x} ∪ {y} = {x, y}
(Stat5,Stat11,Stat8,Stat7�)ELEM ⇒ y = v ∨ y = y0〈m0, t, y0, s0, {x} , v, y〉↪→T 31h(Stat4�) ⇒
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Stat12 : 〈∃d | ⋃(m0 ∪ {{x} ∪ {y}}) = s0\ {d} 〉
〈d0〉↪→Stat12(Stat12�) ⇒ ⋃

(m0 ∪ {{x} ∪ {y}}) = s0\ {d0}
EQUAL(Stat11) ⇒ Stat13 : ⋃

(m0 ∪ {{x, y}}) = s0\ {d0}〈m0 ∪ {{x, y}} ,d0〉↪→Stat2(Stat9,Stat13�) ⇒ false; Discharge ⇒
Stat14 : y ∈ ⋃

m0
Use_def(

⋃
) ⇒ Stat15 : y ∈ {h : p ∈ m0,h ∈ p} & y ∈ x ∩ z & x �= z &

t = t′ & x /∈ z & z /∈ x &
⋃

m0 = {h : p ∈ m0,h ∈ p}
∥
∥
∥
∥
∥
∥
∥

It also follows that y is the tail of that arc p1 of m0 to which it belongs. In fact,
if y were instead the head of p1, then the tail x2 of p1, which must belong to⋃

m0 would belong to s0\ {x, z}, hence would be inside s0 but outside the set of
predecessors of y, which is absurd.

Suppose ⇒ Stat16 : ¬〈∃w | {y,w} ∈ m0 & w ∈ y〉
〈p1,h1〉↪→Stat15(Stat16�) ⇒ p1 ∈ m0 & y ∈ p1
Use_def(PerfectMatching) ⇒ Stat17 : 〈∀p ∈ m0,∃x ∈ p, y ∈ x,∀q ∈ m0 |

x ∈ q ∨ y ∈ q → {x, y} = q〉
〈p1, x2,w2,p1〉↪→Stat17(Stat16�) ⇒ x2 ∈ p1 & w2 ∈ x2 & p1 ∈ m0 &

{x2,w2} = p1〈w2〉↪→Stat16(Stat16�) ⇒ Stat18 : y ∈ x2 & {y, x2} ∈ m0
Suppose ⇒ Stat19 : x2 /∈ {u : v ∈ m0,u ∈ v}
〈 {y, x2} , x2〉↪→Stat19(Stat18�) ⇒ false; Discharge ⇒ AUTO

EQUAL(Stat4) ⇒ Stat20 : {v ∈ s0 | y ∈ v} = {x, z} & x2 ∈ ⋃
m0

(Stat7,Stat5,Stat20�)ELEM ⇒ Stat21 : x2 /∈ {v ∈ s0 | y ∈ v} & x2 ∈ s0〈x2〉↪→Stat21(Stat18,Stat21�) ⇒ false; Discharge ⇒
Stat22 : 〈∃w | {y,w} ∈ m0 & w ∈ y〉

∥
∥
∥
∥

Call w the head of the arc issuing from y in m0. Then y, x, z,w form a potential
claw; this implies, since s0 is claw-free that either w ∈ x or w ∈ z.

〈w〉↪→Stat22(Stat22�) ⇒ Stat23 : w ∈ y & {y,w} ∈ m0〈s0, y〉↪→T 3c(Stat2,Stat4,Stat23,Stat4,Stat5,Stat15�) ⇒
Stat24 : w, y, x, z ∈ s0

(Stat2,Stat7,Stat15�)ELEM ⇒
ClawFree(s0) & PerfectMatching(m0) & y ∈ x ∩ z

〈s0, y, x, z,w〉↪→T clawFreenessb(Stat15�) ⇒ w ∈ x ∪ z

∥
∥
∥
∥
∥
∥
∥

Obviously, w ∈ ⋃
m0. Moreover, through elementary reasoning we derive⋃

m0 ∪ {z, x} = s0\ {y1}, where y1 lies outside s0 if both x and z has been covered
by the matching m0, otherwise y1 equals the one of x, z (which might be the same
set) left over by m0.

Suppose ⇒ Stat25 : w /∈ {u : v ∈ m0,u ∈ v}
〈 {y,w} ,w〉↪→Stat25(Stat23,Stat23�) ⇒ false; Discharge ⇒ AUTO

(Stat7,Stat5�)ELEM ⇒ x /∈ ⋃
m0 & z /∈ ⋃

m0
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Loc_def ⇒ Stat26 : y1 = if y0 ∈ {x, z} then s0 else y0 fi
(Stat24,Stat26�)ELEM ⇒ s0\ {x, z, y0} ∪ {z, x} = s0\ {y1}
(Stat7,Stat15,Stat5�)ELEM ⇒ ⋃

m0 ∪ {z, x} = s0\ {x, z, y0} ∪ {z, x}
EQUAL(Stat15) ⇒ Stat27 : ⋃

m0 ∪ {z, x} = s0\ {y1} & w ∈ ⋃
m0

∥
∥
∥
∥
∥
∥
∥

If there is an edge between w and x, then we deviate the perfect matching by
replacing {y,w} by {y, z} and {x,w}; otherwise we replace {y,w} by {y, x} and
{z,w}. Plainly we get a perfect matching for s0 in either case, which leads us to
the desired contradiction.

Suppose ⇒ w ∈ x
〈m0, y,w, x, z〉↪→T perfectMatching4(Stat15�) ⇒

Stat28 : PerfectMatching(m0\ {{y,w}}∪{{y, z} , {x,w}})
〈m0, {y,w} , {y, z} , {x,w} , {z, x} 〉↪→T 31f (Stat15,Stat27�) ⇒⋃

(m0\{{y,w}} ∪ {{y, z} , {x,w}}) = s0\ {y1}〈m0\ {{y,w}} ∪ {{y, z} , {x,w}} , y1〉↪→Stat2(Stat28�) ⇒ false
Discharge ⇒ AUTO

〈m0, y,w, z, x〉↪→T perfectMatching4(Stat15�) ⇒
Stat29 : PerfectMatching(m0\ {{y,w}}∪{{y, x} , {z,w}})

〈m0, {y,w} , {y, x} , {z,w} , {z, x} 〉↪→T 31f (Stat15,Stat27�) ⇒⋃
(m0\{{y,w}} ∪ {{y, x} , {z,w}}) = s0\ {y1}〈m0\ {{y,w}} ∪ {{y, x} , {z,w}} , y1〉↪→Stat2(Stat29�) ⇒ false;

Discharge ⇒ QED

A.10 From Membership Digraphs to General Graphs

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Let us now place the results presented so far under the more general perspective
that motivates this work. We display in this section the interfaces of two THEORYs
(not developed formally with Ref, as of today), explaining why we can work with
membership as a convenient surrogate for the edge relationship of general graphs.

One of these, THEORY finGraphRepr, will implement the proof that any
finite graph (v0,e0) is ‘isomorphic’, via a suitable orientation of its edges and
an injection 	Θ of v0 onto a set νΘ , to a digraph (νΘ, {(x, y) : x ∈ νΘ, y ∈ x ∩
νΘ }) that enjoys the weak extensionality property: “distinct non-sink vertices have
different out-neighborhoods”.
Although accessory, the weak extensionality condition is the clue for getting the
desired isomorphism; in fact, for any weakly extensional digraph, acyclicity al-
ways ensures that a variant of Mostowski’s collapse is well-defined: in order to
get it, one starts by assigning a distinct set Mt to each sink t and then proceeds
by putting recursively

Mw = {Mu : (w,u) is an arc }
for all non-sink vertices w; plainly, injectivity of the function u �→ Mu can be

ensured globally by a suitable choice of the images Mt of the sinks t .
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DISPLAY finGraphRepr

THEORY finGraphRepr(v0,e0)

Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x �= y}
⇒ (	Θ, νΘ)

1–1(	Θ) & domain(	Θ) = v0 & range(	Θ) = νΘ〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0 ↔ 	Θ�x ∈ 	Θ�y ∨ 	Θ�y ∈ 	Θ�x〉
{x ∈ νΘ | x ∩ νΘ �= ∅} ⊆ P

(

νΘ

)

END finGraphRepr

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

The other THEORY, cfGraphRepr, will specialize finGraphRepr to the case of a
connected, claw-free (undirected, finite) graph—connectedness and claw-freeness
are specified, respectively, by the second and by the third assumption of this
THEORY. For these graphs, we can insist that the orientation be so imposed as to
ensure extensionality in full: “distinct vertices have different out-neighborhoods”.
Consequently, the following will hold:
• there is a unique sink, ∅; moreover,
• the set νΘ of vertices underlying the image digraph is transitive. And, trivially,
• νΘ is a claw-free set, in an even stronger sense than the definition with which

we have been working throughout this proof scenario.
(As regards the third of these points, it should be clear that none of the four non-
isomorphic membership renderings of a claw are induced by any quadruple of
elements of νΘ ; our definition forbade only two of them, though!)

DISPLAY cfGraphRepr

THEORY cfGraphRepr(v0,e0)

Finite(v0) & e0 ⊆ {{x, y} : x, y ∈ v0 | x �= y}〈∀x ∈ v0, y ∈ v0 | x �= y & {x, y} /∈ e0 → 〈∃p ⊆ e0 | Cycle(p ∪ {{y, x}})〉〉〈∀w ∈ v0, x ∈ v0, y ∈ v0, z ∈ v0 | {w, y} , {y, x} , {y, z} ∈ e0 →
x = z ∨ w ∈ {z, x} ∨ {x, z} ∈ e0 ∨ {z,w} ∈ e0 ∨ {w, x} ∈ e0〉

⇒ (ρΘ, νΘ)

1–1(ρΘ) & domain(ρΘ) = v0 & range(ρΘ) = νΘ〈∀x ∈ v0, y ∈ v0 | {x, y} ∈ e0 ↔ ρΘ�x ∈ ρΘ�y ∨ ρΘ�y ∈ ρΘ�x〉
Trans(νΘ) & ClawFree(νΘ)

END cfGraphRepr

∥
∥
∥
∥
∥
∥
∥

Via the THEORY cfGraphRepr, the above-proved existence results about perfect
matchings and Hamiltonian cycles can be transferred from a realm of special
membership digraphs to the a priori more general realm of the connected claw-
free graphs.
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Computational Approaches to RNAi and Gene
Silencing

Alessandro Laganà, Rosalba Giugno, Alfredo Pulvirenti, and Alfredo Ferro

Abstract The discovery of small regulatory RNAs in the past few years has deeply
changed the RNA molecular biology, revealing more complex pathways involved
in the regulation of gene expression and in the defense of the genome against ex-
ogenous nucleic acids. These small RNA molecules play a crucial role in many
physiological processes. Aberrations in their sequences and expression patterns are
often related to the development of malignant diseases. The underlying biologi-
cal mechanisms are known as gene silencing and RNA interference (RNAi). This
discovery not only changes our conception of gene expression regulation but, at the
same time, opens new frontiers for the development of therapeutic approaches, more
specific and less toxic, especially against all those diseases which are still resistant
to traditional treatment. Computational techniques constitute an essential tool in the
study of these complex systems. Many existing bioinformatics methods and newly
developed approaches have been used to analyze and classify RNAi data and more
sophisticated tools are needed to allow a better understanding of the small RNAs
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biogenesis, processing and functions. In this essay we will review the basics of gene
expression regulation by small RNA molecules and discuss the main computational
issues in RNAi research, focusing on the most popular algorithms and addressing
the open challenges.

1 Introduction

In the last decade, a revolution has occurred in the field of RNA biology, with
the discovery of the small non-coding RNAs (ncRNAs) involved in the regulation
of gene expression and in the defense of the genome against exogenous nucleic
acids [1]. This regulation can occur at different levels of the gene expression pro-
cess, including transcription, mRNA processing and translation. The corresponding
mechanisms are known as Gene Silencing and RNA interference (RNAi). These
small RNA molecules play a specific role in guiding effector protein complexes
towards their nucleic acids targets by partial or full complementarity bounds [2].

Although several classes of regulatory ncRNAs have been identified, they can
be classified into three categories, based on their origin, structure, associated effec-
tor complexes and function: short interfering RNA (siRNA), microRNA (miRNA)
and piwi interacting RNA (piRNA) [3]. These molecules seem to be present only in
eukaryotes and in some viruses. siRNAs and miRNAs are the most abundant regula-
tory molecules in terms of both phylogeny and physiology and are characterized by
double strand precursors. Conversely, piRNAs are mainly present in animals, exert
their functions in germ lines and derive from precursor about which very little is
known but for which single stranded nature has been hypothesized.

Many computational tools have been developed in the last years for the analy-
sis and the classification of the RNAi related data. Machine learning, probabilistic
models and heuristic approaches have been successfully applied for the identifica-
tion of miRNA genes, prediction of miRNA and siRNA targets and design of syn-
thetic regulatory RNAs. In this essay we will review the basics of gene expression
regulation by miRNAs and siRNAs and discuss the main computational issues in
RNAi research. We will give an overview of the most successful approaches and
briefly describe the most popular tools, highlighting the significant results and open
challenges.

2 Gene Silencing and RNA Interference

The first miRNA, the C. elegans lin-4, was discovered by Ambros et al. in 1993,
as endogenous regulator of genes controlling the developmental timing [4]. Five
years later, Fire, Mello et al., reported the capability of exogenous double stranded
RNAs to silence genes in a specific manner, giving rise to the RNAi mechanism [5].
In 1999, a similar process was found to take place in plants, based on short RNA
sequences (∼20–25 nt), able to bind their target through perfect base complemen-
tarity [6].
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In 2001 the two classes of regulatory ncRNAs were characterized: miRNAs as
regulators of endogenous genes, and siRNAs as defenders of the genome integrity
against exogenous nucleic acids such as transposons and viruses [4]. In 2004, single
stranded forms of miRNAs and siRNAs were found associated to effector protein
complexes known as RNA-induced silencing complexes (RISC) [7]. In both cases,
the regulated genes are specified by the small RNA molecules, which recognize their
targets through base complementarity mechanism.

miRNAs and siRNAs differ in terms of their origin. miRNAs are endogenous
genome products, derived from partially complementary double strand hairpin pre-
cursors, while siRNAs are mainly exogenous molecules coming from viruses and
transposons and obtained by perfectly complementary long double stranded precur-
sors (dsRNA) [6]. Nevertheless, their common features, such as the length of their
mature products and their sequence-specific inhibitory functions, suggest similar
biogenesis and common mechanisms. Both classes of RNAs indeed depend on the
same two protein families: the Dicer and the Ago proteins [7]. In the following sub-
sections the main biological features of siRNAs and miRNAs and the implications
of miRNAs in physiological and pathological pathways will be briefly discussed.

2.1 siRNA

siRNAs are RNA molecules which are usually 20–24 nucleotides long. Their role
is the defense of the cell against exogenous nucleic acids, and the maintenance of
genome integrity through the silencing of undesired transcripts (like transposones
and repetitive elements) [2, 3].

siRNA precursors are linear long dsRNAs, processed by an enzyme called Dicer,
which cleaves them into smaller double strand molecules. Dicer, together with the
TRBP and Ago2 proteins, form the RISC-loading complex. Then, Ago2 cleaves
one of the two strands of the siRNA, the passenger strand, generating the functional
RISC [8–12]. The selection of the guide strand depends on the relative thermody-
namic stabilities of the two duplex ends. The strand whose 5′ end is less stably
paired is usually recognized as the guide strand [6]. This directs the RISC towards
perfectly complementary target mRNAs, causing their degradation. In particular,
the PIWI domain in the Ago protein is responsible of the cleavage, which occurs
between the nucleotides paired to the siRNA bases 10 and 11. This is a very precise
process and pairing mismatches in the siRNA/target duplex can suppress the cleav-
age. However, partially complementary targets can still be translationally repressed
by the RISC, as in the case of miRNA mediated silencing [6].

Endogenous siRNAs have been found only in plants and in some simple animal
species. Trans-acting short interfering RNAs (ta-siRNA) are present in plants, in
which they bind their targets with partial complementarity, leading to their transla-
tional repression [13, 14]. Repeat-associated short interfering RNAs (rasi-RNA) are
derived from dsRNAs presumably originated from transposable elements. They play
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a fundamental role in the gametogenesis in flies and worms, through chromatin mod-
elling and the silencing of viral transcripts [15, 16]. Scan RNAs (scnRNA) are rela-
tively longer siRNAs, found in the protozoa Tetrahymena thermophila and involved
in the control of genomic rearrangements [17]. Finally, Long siRNAs (lsiRNA) are
longer siRNAs found in plants and induced in response to bacterial infections. It
has been demonstrated the role of these siRNAs in conferring resistance to bacteria,
through the silencing of a gene involved in the defense regulation [18].

2.2 miRNA

microRNAs (miRNAs) are small single stranded regulatory RNAs (20–22 nt long),
able to modulate gene expression through the degradation or the translational repres-
sion of specific target molecules [4]. It has been estimated that miRNA coding genes
represent the 1 % of the total gene population, being the biggest class of regulatory
molecules.

miRNAs are present in plants, in higher eukaryotes and in some viruses. They are
encoded by miRNA genes, which are usually located in the introns of protein coding
genes, in intergenic regions or, more rarely, in the exons of coding genes. miRNAs
are usually transcribed by polymerase II and are often encoded in clusters [4]. Pri-
mary transcripts (pri-miRNA) are single stem-loops or multi-hairpin structures, in
the case of clustered miRNAs. The first step of miRNA biogenesis occurs in the
nucleus, and consists of the excision of the stem-loop from the longer transcript,
in order to obtain the pre-miRNA. This cleavage reaction is performed by Dcl1 in
plants and by Drosha in animals [19].

The second step is the excision of the loop from the stem, in order to create the
mature miRNA duplex, usually ∼22 nt long. In plants, this reaction is carried out by
Dcl1 in the nucleus, while in animals the pre-miRNA is exported to the cytoplasm
and then processed by Dicer [4, 19].

As in siRNA processing, one of the two strands of the mature miRNA duplex
is incorporated into the RISC complex, although the passenger strand is sometimes
found associated to Ago proteins as well. The most commonly associated strand is
called the mature miRNA, while the other one is called miRNA∗ [20].

miRNAs act as adaptors of RISC complexes to specific mRNA targets. miRNA
binding sites in animals are usually located in the 3′ UTR sequences and are often
present in multiple copies. Most animal miRNAs bind their target with partial com-
plementarity, allowing bulges and loops in the duplexes. However, a key feature in
target recognition is the perfect pairing of the nucleotides 2–8 of the miRNA, which
is called the seed region (see Fig. 1). Conversely, most miRNAs in plants bind their
targets in their coding regions with perfect complementarity.

The kind of binding of miRNAs to their targets is considered a key factor in the
regulatory mechanism. The presence of mismatches in the central part of the duplex
is usually associated to translational repression, which seems to be the default mech-
anism of miRNA mediated silencing. The cleavage of perfectly paired duplexes is
considered an additional feature leading to the same effect on the protein level.
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Fig. 1 Types of miRNA canonical target sites. Seed is underlined

2.3 miRNAs in Development and Disease

The biological functions of miRNAs are currently being intensively investigated
and the involvement of miRNAs in fundamental processes, such as apoptosis,
metabolism and cell proliferation, has been demonstrated. miRNAs play also an
essential role in development [21]. Dicer knock-out mouse models provided sig-
nificant evidence for the specific role of miRNAs in the morphogenesis of sev-
eral organs, including lungs, limbs and muscles, and in the differentiation of T
cells [22–26]. miRNAs can also act as switches of regulatory pathways, as in the
control of alternative splicing contributing to tissue-specificity. For example, the
muscle-specific miR-133 is able to silence a protein involved in alternative splicing
during the differentiation of myoblasts, in order to control the splicing of certain
exons combinations [27].

Although the miRNA regulatory mechanisms have not been yet completely eluci-
dated, their importance in the normal development of many organs and their impact
on many pathologies, including cancer, is evident.

The altered expression of miRNAs is often associated to the development of dis-
eases [28]. Recent evidence suggests a potential involvement of miRNAs in neu-
rodegeneration. A significant under-expression of miR-107 in Alzheimer’s disease
patients have been associated to higher levels of the BACE1 protein, which is re-
sponsible of the cleavage of the myeloid precursor protein and the consequent re-
lease of neurotoxic amyloid-beta peptides. This dysregulation could be one involved
in the pathogenesis of Alzheimer’s disease [29].

miRNAs are also involved in primary muscle disorders, including muscular dys-
trophy and congenital inflammatory myopathies. The frequent over-expression of
5 miRNAs (miR-146b, miR-221, miR-155, miR-214 and miR-222) observed in
Duchenne muscular dystrophy, Miyoshi myopathy and dermatomyositis patients,
suggests their possible involvement in a common regulatory pathway [30].
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miRNAs also play a crucial role in cardiac pathologies. It has been recently de-
scribed the correlation between miR-133, which regulates the proteins RhoA and
Nelf-A/WHSC2, and cardiomyocyte hypertrophy [31]. miR-1 is over-expressed in
coronary disease patients and this alteration is associated to arrhythmias through the
silencing of the genes GJA1 and KCNJ2 [32]. The knock-out of miR-1 can inhibit
ischemic arrhythmias, suggesting a possible therapeutic application.

There is now a wide literature demonstrating the crucial role of miRNAs in the
cancer pathogenesis [33]. The first evidence of the involvement of miRNAs in can-
cer is the observed under-expression or deletion of miR-15 and miR-16 in a sig-
nificant number of chronic lymphocytic leukemia (CLL) patients [34]. Following
studies reveal the differential expression of miRNAs between normal and tumour
tissues, but also between primary and metastatic tumours. These differences are of-
ten tumour-specific and sometimes have prognostic value. Evidence suggests a role
of miRNAs both as oncogenes and tumour suppressors.

The let-7 family contains miRNAs able to regulate the activity of the oncogene
Ras, through post-transcriptional repression [35]. A recent study shows that the ex-
pression of let-7g in lung cancer cells expressing K-Ras in mouse models, induces
the arrest of cell cycle and cell death, thus revealing the therapeutic potential of let-7
family as oncosuppressors [36].

Another study reports the capability of a miRNA to induce a neoplastic disease.
The over-expression of miR-155 in mice B-Cells, indeed, induces a preleukemic
proliferation, followed by the malignant disease [37].

It has also been demonstrated the role of miRNAs in the development of metasta-
sis. miR-10b is found to be highly expressed in the metastatic cells of breast cancer.
Such over-expression, induced by the transcription factor Twist, starts the invasion
and the metastatic process through the inhibition of the translation of the home-
obox D10 gene, followed by the related over-expression of the pro-metastatic gene
RHOC [38].

All these studies demonstrate the potential regulatory functions of miRNAs in the
diverse cellular and tissue types. miRNAs could be involved in the pathophysiology
of several human diseases, through the modulation of pathways involving hundreds
or thousands of different genes. Moreover, a single miRNA could affect several
pathological pathways, due to its different targets.

miRNA targets comprise genes involved in development and transformation,
such as transcription factors and cell cycle control proteins. Diseases could be the
result of the perturbation of these pathways due to the mutation of miRNA genes
and their binding sites on targets or in the pathways regulating their expression.

The numerous computational tools designed for the study of RNAi are essen-
tial for the understanding of its basic mechanisms and the effect on the phenotype.
The computational prediction of miRNA and siRNA genes and their targets, to-
gether with Data Mining analysis constitutes the fundamental basis of a promising
research in the field of regulatory RNAs. The aim is to uncover significant correla-
tions between regulatory RNAs, their targets and the physio-pathological processes
in which they are involved. In the following sections, the main computational is-
sues of RNAi will be described, with particular emphasis on the open questions and
challenges still awaiting efficient solutions.
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3 miRNA Genes Prediction

miRNAs are present in several eukaryotes and in some viruses and, to date, over
700 miRNAs have been identified in human [39]. As discussed in the previous sec-
tion, miRNAs are encoded by particular non coding genes which are transcribed
into hairpins.

Most eukaryotic genomes contain very high numbers of inverted repeats that,
when transcribed, can form hairpins. It has been estimated that the human genome
can encode about 11 million hairpins [40], thus the challenge is the selection of the
right hairpins, that is, the true miRNA genes. The search for hairpins is the first step
in miRNA genes prediction, common to many computational approaches. The next
step is the evaluation of the “miRNA-ness” of the hairpins, based on the empirical
rules inferred from the validated miRNA genes and on the thermodynamics of the
candidate molecules.

Pre-miRNAs have low folding free energy, which is dependant on the sequence
length [41]. The length of pre-miRNAs can be variable, sometimes depending on
the organism [42]. For example, a typical human pre-miRNA is about 100 nt long,
while miRNA precursors length in plants can range from 60 to 400 nucleotides [43].
Thus, the length of the sequence must be taken into account when evaluating the
folding free energy. Recent studies showed that the average adjusted minimal fold-
ing free energy of a miRNA, obtained as a combination of folding free energy and
miRNA length, is significantly lower than other RNAs, including tRNAs, rRNAs
and mRNAs and thus can help discriminating between miRNA precursors and other
RNAs [44].

Evolutionary conservation is another important feature of miRNAs. Mature miR-
NAs are usually more conserved than their precursors across the evolution but
many non-conserved miRNAs have also been identified in several species [4, 45].
Nonetheless, conservation is one of the most used criteria for the identification of
pre-miRNAs [46].

Many prediction algorithms make use of BLAST and other similar tools in or-
der to perform homology searches in DNA or Expressed Sequence Tags (EST)
databases against known experimentally validated miRNAs. By using this approach
many miRNAs have been identified in human, mouse and plants genomes. miR-
Align is a tool which uses a combination of homology search and secondary struc-
ture evaluation and it was used to identify 59 miRNA genes in Anopheles gam-
biae [47]. Also based on homology search, the tool microHarvester allowed the
identification of novel miRNA genes in plants [48]. Sequence and structural features
are integrated in a Hidden Markov Model (HMM) based tool, ProMir, in which the
miRNA stem-loop is modelled as a paired sequence [49]. Candidate stem-loops are
filtered using various structural criteria concerning stem length, loop size, Minimum
Free Energy (MFE) and other features like the pattern of base-pairing and the lo-
cation of the mature miRNA in the precursor. ProMir was used to identify 9 novel
miRNAs in human.

The tool miRseeker performs an analysis of the genome for conserved sequences
with stem-loop secondary structure and uses sequence features inferred from known
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miRNAs as a posterior filter [50]. The tool was able to identify 75 % of previously
reported miRNAs in Drosophila.

A similar filter-based approach is used in miRScan, a tool which tries to identify
miRNAs based on common characteristics of previously known miRNAs, like the
base pairing rules [51]. miRScan initially identifies hairpins in the genome of C. el-
egans and looks for potential homologues in the genome of C. briggsae. Then, the
aligned segments from the two different genomes are scored based on several fea-
tures such as the amount of base pairing to the proposed mature miRNA, the amount
of base pairing in the stem excluding the mature miRNA, the conservation in the 5′
and 3′ ends of the two aligned sequences, the bulge symmetry, the distance from
mature miRNA to the loop of the hairpin and the presence of specific bases at the
first five positions of the candidate mature miRNA. By using this method, the au-
thors were able to identify 50 of the 53 miRNAs known at the time to be conserved
in both species.

The tool MirFinder is a tool for finding miRNAs in plants, based on a compar-
ative genomic approach. It finds miRNAs through the identification of conserved
hairpin structures in the genomes of A. thaliana and Oryza sativa and the applica-
tion of several filters, based on core features derived from known miRNAs [52].

All of these tools make extensive use of conservation criteria and are therefore
unable to identify non conserved or poorly conserved miRNAs.

A different kind of approach, based on intragenomic matching, is built on the idea
that a functional miRNA should have at least one target. The tool miMatcher tries
to simultaneously predicts miRNAs and their targets [53]. Given one or more po-
tential target mRNAs, it finds all the complementary matches between these targets
and the genome. All the matches are candidate mature miRNA sequences, which
are then filtered by assessing their “miRNAness” through structural and sequence
analysis.

All the described tools were able to identify new or already reported miRNAs
in various species and, although they differ in the implemented models, they are
mostly based on conservation and on sequence and structural features inferred from
known miRNAs. Table 1 summarizes the main features of the presented tools.

The combination of deep sequencing and computational methods is the key for
the identification of new miRNAs and other non coding RNAs. The use of Data
Mining based approaches could help to identify new sequence and structure features
of the miRNA genes and their surroundings (e.g. promoters and protein binding
sites). This will allow a better understanding of miRNA biogenesis and processing
as well as the prediction of new miRNA genes.

4 Prediction of miRNA Targets

The fundamental step in determining miRNA functions is to find their targets.
The computational prediction of miRNA targets in plants is easier than in ani-
mals due to the perfect complementarity that plant miRNAs usually exhibit to their
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Table 1 Overview of the described tools for miRNA genes prediction

Name Approach Species Link

MiR-Align Homology search and
secondary structure
evaluation

Animals
and plants

http://bioinfo.au.tsinghua.edu.cn/miralign/

ProMir Pre-miRNA features
(probabilistic-hidden
Markov model)

Animals
and plants

http://cbit.snu.ac.kr/~ProMiR2/index.php

MiRseeker Conservation and
Pre-miRNA features

Drosophila –

microHarvester Conservation and
Pre-miRNA features

Plants http://www-ab.informatik.uni-tuebingen.
de/brisbane/tb/index.php?view=
microharvester

MirScan Conservation and
Pre-miRNA features

Animals http://genes.mit.edu/mirscan/

MiRFinder Comparative
genomics

Plants http://www.bioinformatics.org/mirfinder/

miMatcher Intra-genomic
matching

Plants http://wiki.binf.ku.dk/MiRNA/miMatcher2

targets. In animals, the perfect complementarity is usually limited to the 5′ end
of the miRNA, which is usually referred to as the seed (∼6–9 nt long) [4]. The
target sites are usually located in the 3′ UTR sequences of mRNAs. The short
length of the miRNA seeds raises the probability of finding random matches that
don’t correspond to functional sites, thus other determinants are needed, in or-
der to significantly reduce the number of false positives [54]. Such rules should
be primarily inferred from experimentally verified targets, therefore having good
sources of data is the basic step in the development of prediction tools. A signifi-
cant amount of miRNA/target interactions data, usually coming from the literature,
is publicly available on web databases, such as Tarbase [55] and miRecords [56].
These data usually provide information on the binding sites of miRNAs in their
verified targets, but the details of the paired bases are generally computationally
predicted. Recently, the high-throughput sequencing of RNAs isolated by crosslink-
ing immunoprecipitation (HITS-CLIP) has identified functional RISC interaction
sites on mRNAs, allowing the creation of a library of reliable miRNA binding
sites [57]. The analysis of these sequences through Data Mining techniques could
help to identify important discriminant features for the prediction of new binding
sites.

The miRNA/target interaction rules are generally not sufficient to predict func-
tional targets, due to the high number of false positives deriving from random
matches of the short seed region of miRNAs to false targets. Thus, other kind of
data is used in order to improve the prediction algorithms. A widely used criterion is
target conservation. The alignment of miRNAs in different species, indeed, reveals
high sequence conservation, especially in the seed regions, which often corresponds
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to high conservation of their targets. Thus, the identification of conserved regions in
the 3′ UTR of a gene may help to detect functional sites, although this approach is
not useful in the case of non-conserved miRNAs [58].

Many prediction methods make use of thermodynamics properties. The free en-
ergy �G can be used to evaluate the stability of the predicted duplexes. All the
validated miRNA/target pairs are indeed characterized by low values of free en-
ergy, usually below −20 Kcal/mol [59]. However, low energy value is a necessary
but not sufficient condition, since not all the energetically favourable miRNA/target
duplexes are functional. Another thermodynamic feature used by computational
methods is the structural accessibility of the target molecule. miRNA binding sites
shouldn’t be involved in any intra-molecular base pairing, and any existing sec-
ondary structure should be disrupted in order to make the site accessible to the
miRNA [60]. This very complex problem mostly relies on secondary structure pre-
diction computation, which is still one of the challenges of computational biol-
ogy [61].

Other features used by prediction tools include the nucleotide composition sur-
rounding the binding sites and the position of the sites in the UTR, as well as
the presence of multiple sites on the same UTR. It is known, indeed, that a sin-
gle miRNA can have more binding sites on the same target and that a target can
have multiple sites for different miRNAs [62].

4.1 Tools for the Prediction of miRNA Targets

Many computational tools for the prediction of miRNA targets are currently avail-
able on the web [63]. In this subsection we will review the basic ideas behind the
most popular ones, which are TargetScan, miRanda, Pictar, Diana-microT, RNA22,
RNAHybrid, StarMir and PITA (Table 2).

One of the most popular tools for miRNA targets prediction is TargetScan, a so-
phisticated algorithm based on both conservation and base pairing rules [58, 62].
TargetScan searches for miRNA seed matches on UTRs, considering different kinds
of seed (see Fig. 1). It also makes use secondary structure prediction in order to
calculate the free energy of the predicted duplexes. The presence of multiple sites
for the same miRNA on a target contributes positively to the score of the prediction.
TargetScan also takes into account the conservation on different species, computed
through sequence alignment, for the identification of the most probable targets. All
the predictions, computed for different species like human, mouse and rat, are avail-
able on the TargetScan website.

The tool miRanda gives its predictions on human, mouse and rat on a website as
well [64, 65]. It is based on an alignment algorithm which uses a weighted matrix
aimed at promoting the binding of the seed of the miRNA rather than its 3′ end. It
also uses the free energy of predicted duplexes and the conservation criteria to select
the most probable targets.
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Table 2 Overview of the described tools for miRNA target prediction

Name Approach Species Link

miRanda Conservation and
empirical rules

Human, mouse
and rat

http://www.microrna.org

TargetScan Conservation and
empirical rules

Human, mouse,
worm and fly

http://www.targetscan.org/

PicTar Conservation and
empirical rules

Vertebrates, flies
and nematodes

http://pictar.mdc-berlin.de/

Diana-MicroT Empirical rules Human http://diana.cslab.ece.ntua.gr/microT/

RNA22 Pattern based Human, mouse,
worm and fly

http://cbcsrv.watson.ibm.com/rna22.html

RNAHybrid Thermodynamics
and empirical
rules

Animals http://bibiserv.techfak.uni-bielefeld.de/
rnahybrid/

StarMir Thermodynamics
(structural
accessibility)

Animals http://sfold.wadsworth.org/starmir.pl

PITA Thermodynamics
(structural
accessibility)

Animals http://genie.weizmann.ac.il/pubs/mir07/

PicTar is another popular tool for the prediction of miRNA targets on vertebrates,
nematodes and flies [66]. The algorithm is trained to identify binding sites for a sin-
gle miRNA and multiple sites regulated by different miRNAs acting cooperatively. It
makes use of a pairwise alignment algorithm in order to find sites conserved in many
species (7 Drosophila species and 8 vertebrate species). It also considers the clus-
tering and co-expression of miRNAs together with ontological information, such as
the time and tissue specificity of miRNAs and their potential targets, to enhance its
predictions.

The algorithm of Diana-MicroT is trained to identify targets with a single binding
site for a miRNA [67]. It is based on a sequence alignment algorithm which focuses
on the search for miRNA/target duplexes characterized by central bulges and paired
5′ and 3′ ends.

The RNA22 tool uses a different approach, based on the analysis of miRNA se-
quences to find intra- and inter-species patterns of conserved sequence features [68].
The algorithm generates the reverse complement of the most significant patterns and
search for their instances in the UTRs. Then, the target islands supported by a mini-
mum number of pattern hits are identified. A target island is defined as any hot spot
where the reverse complement of mature miRNA patterns aggregate. The pairing of
each target island with each candidate miRNA is then computed and the thermody-
namic stability of the duplex is evaluated.

RNAHybrid is a miRNA target prediction tool conceived as an extension of the
RNA secondary structure prediction algorithm by Zuker and Stiegler to two se-
quences [59]. The miRNA is hybridized to the target in an energetically optimal
way, i.e. yielding the Minimum Free Energy (MFE). Intra-molecular base pairing
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and multi-loops are forbidden. The MFE hybridization of the miRNA and its can-
didate target is computed by dynamic programming, forcing the perfect match of
the seed. Bulges and internal loops are restricted to a constant maximum length in
either sequence.

The main feature of the tools StarMir and PITA is instead the computation of
the structural accessibility of the targets. StarMir is based on the secondary struc-
ture of the target predicted by the tool Sfold [69]. The miRNA/target interaction is
modelled as a two-step hybridization reaction: the nucleation at an accessible site
and the hybrid elongation to disrupt local target secondary structure and form the
complete duplex. PITA is based on a slightly different model which computes the
difference between the free energy gained from the formation of the miRNA/target
duplex and the energetic cost of unpairing the target to make it accessible to the
miRNA [70].

Although all of the mentioned tools were rather successful in predicting effective
miRNA targets, the problem still remains a big challenge. The high number of false
positives and the use of conservation criteria reveal our partial knowledge in the
targeting mechanisms. The combined approach of Data Mining, Pattern Discovery
and Machine Learning techniques together with thermodynamics and the availabil-
ity of more reliable experimental data, will allow the improvement of predictions
and enhance our knowledge of RNAi mechanisms.

5 Design of Synthetic miRNAs

The experiments of Fire and Mello on gene silencing artificially induced by small
dsRNAs complementary to their targets earned them the Nobel Prize for medicine in
2006 and gave rise to the development of new therapeutic strategies for cancer and
other diseases [5]. Small siRNA molecules were initially designed for gene knock
out experiments and, later, short-hairpin-RNAs (shRNA) and artificially designed
miRNAs revealed their efficacy in inhibiting specific proteins, thus constituting a
new potential class of smart drugs, for the treatment of infections and all the other
diseases which are related to over-expressed proteins [71].

A siRNA can be introduced into a cell as a double strand RNA molecule perfectly
complementary to a site of the target RNA and, then, it enters the RNAi cellular
pathway directly in the RISC loading phase which occurs in the cytoplasm [72, 73].
shRNAs, which are hairpin shaped siRNAs, and artificial pre-miRNAs need to enter
the nucleus first, in order to exert their function [74]. These molecules are exogenous
regulators of mRNA levels and they can be used to partially or totally reduce the
expression of one or more genes. In some cases, a partial regulation is needed in
order to restore the normal expression of a protein and to let it perform its functions.
In other cases, the complete silencing of the target molecule is required.

The main issue of the small RNA-based therapeutic approach is the high number
of potential side effects due to the partial complementarity of the synthetic RNAs
to undesired targets. However, the potential off target genes can be easily identified
through simple sequence analysis and reduced, as far as possible, by refining the
designed molecules.
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As for the other classes of drugs, the main challenge of small RNA-based therapy
is the delivery of the molecules into the cell and then, for shRNAs and miRNAs, into
the nucleus [73]. Viral vectors are among the most used delivery systems. A recent
work showed a significant effect on tumor growth of the injection of an adenovirus
encoding a siRNA designed to target the gene HIF-1, combined with ionizing radia-
tions [75]. Another delivery system consists of cancer cell-specific antibodies. Song
et al. showed that an antibody against the gene ErbB2 is able to specifically deliver
siRNAs only to ErbB2-expressing breast cancer cells [76].

Compared to traditional drugs, small RNAs allow a faster and simpler design and
are capable of inhibiting whatever kind of protein, including those known as non-
druggable proteins, which have conformations not favourable to small molecule
binding [73]. So far, many classes of targets have been successfully inhibited
by small RNAs, including neuro-transmitters and neuro-transmitter receptors, cy-
tokines, growth and transcription factors [77–80].

The use of small regulatory RNAs as therapeutic agents is thus promising. The
main challenges are related to the specificity, the efficacy and the safety of deliv-
ery systems. In the next subsection the most significant computational tools for the
design of synthetic small regulatory RNAs will be reviewed.

5.1 Tools for the Design of siRNA and miRNA

Several online tools for the design of siRNA, shRNA and synthetic miRNA have
been proposed in the last years for plants and animals. In 2004, Reynolds et al. pub-
lished the guidelines for rational siRNA design [81]. They performed a systematic
analysis of 180 siRNAs targeting the mRNA of two genes, in order to identify spe-
cific features likely to contribute to efficient processing at each step of the siRNA
pathway. They identified a few characteristics associated with siRNA functionality
like low G/C content, the lack of inverted repeats and sense strand base preferences
like, for example, A at position 19 and U at position 10. All the identified deter-
minants, applied together, enhanced the selection of functional siRNAs. Similarly,
Ui-Tei et al. identified sequence conditions capable of inducing highly effective gene
silencing in mammalian cells, like A/U at the 5′ end of the antisense strand, G/C at
the 5′ end of the sense strand and the absence of any GC stretch of more than 9 nt
length, thus confirming the findings of Reynolds [82]. Similar sequence properties
are implemented into Deqor, a web-based tool for the design and quality control
of siRNAs, which combines the previous knowledge about the features of effec-
tive siRNAs with a scoring system designed to evaluate the inhibitory potency of
siRNAs and the off target effects [83].

A work by Siolas et al. showed that synthetic shRNAs, mimicking the natural
small regulatory RNA molecules, were more potent inducers of RNAi than siR-
NAs [84]. Chang et al. found that expression of the artificial miRNA in the context
of a natural miRNA primary transcript provides the highest levels of mature miRNA
in RISC and generally effective silencing [85]. According to previous studies, indi-
cating that the presence of sequences flanking the native miRNA is essential for
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its efficient processing, and to reports of artificial miRNAs based upon the pre-
cursor of the endogenous miR-30 [86–89], they constructed shRNA libraries mod-
elled after the precursor and the primary transcript of miR-30. Furthermore, a re-
cent work showed that artificial miRNAs are safer and processed more efficiently
than shRNA-based siRNAs, suggesting their better suitability for therapeutic silenc-
ing [90].

Tools have also been developed for the design of artificial miRNAs for plants.
A work by Schwab et al., in 2006, showed the highly specific gene silencing per-
formed by artificial miRNAs in Arabidopsis [91]. The authors developed a web-
based tool for the design of artificial miRNA sequences. Another similar work shows
similar results in rice [92].

Finally, a new computational tool for the design of highly specific synthetic miR-
NAs, called miR-Synth, have been proposed [93]. The basic ideas behind miR-Synth
is the design of a single miRNA able to bind different targets simultaneously, mim-
icking the endogenous miRNAs’ mode of action. Furthermore, miR-Synth tries to
avoid negative side effects, reducing the number of potential off-target genes by dis-
carding all those miRNAs that might bind well to other UTRs sites. Given a target
mRNA, the structural accessibility analysis is performed through the use of base
pairing probabilities, computed by the RNA fold program from the Vienna Pack-
age [94]. In this phase, regions which are more likely to be single stranded are iden-
tified and then screened for repeated patterns. These will constitute the binding sites
for the synthetic miRNAs seeds. Indeed, as already discussed earlier, the presence of
multiple binding sites for a miRNA is a key feature for efficient silencing. In order
to reduce as much as possible the number of potential off-target genes, all those pat-
terns which appear in multiple copies in other UTRs are discarded. Other features
coming from the experimentally validated endogenous miRNA/target pairs are also
taken into account. These include, among others, the AU-rich nucleotide composi-
tion near the seeds’ binding sites and constraints on the position of the sites. For each
seed a synthetic miRNA is then designed, according to the endogenous miRNAs’
features, by using a consensus criterion based on sequence profiles. miR-Synth’s
output consists of the designed miRNAs, their binding sites on the target gene and
the list of all possible off-target genes to which a synthesized miRNA might bind.
Although miR-Synth has not yet been experimentally validated, the produced miR-
NAs satisfy the empirical binding rules inferred from validated miRNA/target pairs,
thus confirming the plausibility of the proposed method.

The development of more reliable synthetic miRNA design tools is strictly re-
lated to the progresses in the prediction of endogenous miRNA targets. Indeed,
a better understanding of the rules underlying the natural miRNA processing and
function could surely improve the design of the artificial ones. Moreover, further
wet biology experiments on these synthetic molecules are needed, in order to in-
vestigate the relationships between the designed sequences and their effects on the
cells and learn the determinants that allow to modulate the degree of silencing of the
targets.
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6 A miRNA Knowledge Base

As discussed in Sect. 4, many computational predictions of miRNA targets are avail-
able on the web, but a precise association between miRNAs and phenotypes has
been demonstrated only for few cases. Much more is known about genes: for ex-
ample, the Gene Ontology database (GO) [95] provides annotations for processes
and functions in which they are involved. Moreover, there is a vast literature con-
cerning genetic roles in pathologies. Nonetheless, miRNAs may be annotated with
information about their validated or predicted targets.

A common approach in the study of diseases or biological processes involving
miRNAs, requires the extraction of data from several independent sources, such as
miRNA/target prediction databases, gene functional annotations, expression profiles
and biomedical literature. Thus, there is a need for a system that integrates data from
heterogeneous sources in order to build extensible and updatable knowledge bases.
This system should be equipped with mining algorithms capable of inferring new
knowledge.

The first system for functional annotation of miRNAs is miRGator [96], a
database which integrates data from different sources, like target prediction tools
and Gene Ontology, and makes it available through a set of standard queries. Al-
though miRGator represents a first attempt at the integration of such data, it has
several limitations. It does not provide information about the diseases, nor does it
implement customizable queries or data mining facilities.

Here we will describe miRò, a new system which provides users with miRNA-
phenotype associations in humans [97]. miRò is a web-based environment that al-
lows users to perform simple searches and sophisticated data mining queries. The
main goal of miRò is to provide users with powerful query tools for finding non-
trivial associations among heterogeneous data and thereby to allow the identification
of relationships among genes, processes, functions and diseases at the miRNA level.
Finally, the data mining module includes a specificity function allowing selection of
the most significant associations among validated data.

6.1 The miRò System

The miRò web-site integrates data from different sources, as shown in Fig. 2.
miRNAs are annotated with information about their precursor and mature sequences
coming from miRBase [39], and with expression profiles obtained from the Mam-
malian microRNA Atlas [98]. The miRNA Atlas contains expression patterns of
pre-miRNAs and mature miRNAs in several kinds of tissues, both normal and ma-
lignant. miRNAs are also associated to GO terms and diseases through their targets:
each miRNA inherits all the annotations of its target genes. Experimentally sup-
ported miRNA/target pairs come from miRecords [56]. The predicted targets are
taken from the TargetScan [58, 62], PicTar [66] and miRanda [64, 65] web-sites.
The target genes records are enriched with general information such as genomic
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Fig. 2 The miRò knowledge base schema. (a) miRNAs are annotated with their features coming
from miRBase and their expression profiles coming from the miRNA Atlas. They are linked to
processes, functions and diseases through their predicted (by TargetScan, PicTar and miRanda)
or validated target genes (miRecords). (b) In this case, miR-16 has two validated targets, BCL2
and CCND1, among others. These genes are annotated with GO terms and diseases, thus miR-16
inherits these annotations

context and transcript-related data coming from the NCBI Gene and Nucleotide
databases. The ontological terms with which the target genes are annotated (pro-
cesses and functions) are obtained from the Gene Ontology Database. Finally, the
gene-disease relations come from the Genetic Association Database (GAD) [99],
which is a database of human genetic association studies of complex diseases and
disorders.

All the data are collected and maintained up-to-date in a MySQL database. In
particular, the most relevant data about the miRNAs and the target genes, such as
the genomic contexts and the sequences, are stored in the database for an immedi-
ate availability, while links to the original sources are provided for more detailed
information. The data are retrieved from the source websites as flat files except
for GO, which is provided as a mySQL db dump and the miRNA Atlas, which is
given as a collection of Excel spreadsheets. Initially, miRNA information from the
miRBase files is stored. Then, all the target prediction data are screened and stored
together with information on the target genes, retrieved from the NCBI Gene files.
Gene aliases are also stored, in order to facilitate the subsequent integrations. In the
prediction files, the genes are identified by their NCBI IDs, while the miRNAs are
identified either by their accessions (miRanda) or their IDs (TargetScan and PicTar).
The genes are then annotated with their GO terms, coming from the GO Database,
and their associated diseases, retrieved from GAD. Since in both cases the genes
are identified by their names, the gene aliases are often used in this step, in order
to correctly identify all of them. Finally, miRNA expression profiles are integrated.
For each miRNA, identified by its ID, all the expressing tissues, together with the
expression values, are stored. The percentage distribution of miRNA clones in the
tissues is also computed and then stored for fast retrieval.
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Inconsistencies in data integration are prevented by a semi-automatic process:
the system automatically detects and reports in a logfile any mismatches, which
are then resolved manually. For example, all the miRNA names in the prediction
files (PicTar and TargetScan) which can not be found in the miRBase data (e.g.
their IDs have been changed), are reported in the logfile. The automatic proce-
dure also retrieves all the similar names in the database. These are then manually
screened, sometimes using also sequence information, in order to find the correct
ones.

The system also automatically checks for new releases of the source databases
every three months and performs an update if needed.

6.2 The miRò Web Interface

The miRò web interface allows the user to perform four different types of queries.
A simple search is used to get information about a single object, which can be
a miRNA, a gene, a process, a function, a disease or a tissue. For example, it is
possible to specify a miRNA or to choose one from the complete miRNA catalog to
get the list of all the diseases and GO Terms (Processes and functions) which can be
associated to that miRNA through its targets. The results are ordered by the number
of tools which predict the corresponding miRNA/target pairs and the experimentally
supported associations are always given first. Using the “AND” constraint enables
users to select only the terms associated to the targets predicted by all the selected
tools. This may help to identify the most strongly supported associations, and reduce
the falsely predicted associations.

Similarly, the user can search for all the miRNAs associated to a certain gene,
disease, process or function, and obtain a list of all the miRNAs expressed in a
certain tissue with their expression levels.

A customized search also allows users to extend the knowledge base by a per-
sonal set of miRNA/target pairs. These pairs will be temporarily stored and used
in all the session queries. This feature may be helpful in testing new miRNA/target
data.

The advanced search form can be used to perform more sophisticated queries.
The user chooses a “subject” among miRNA, gene, disease, process and function,
then specifies a list of constraints that the subject must satisfy.

For example, it is to possible to ask miRò to show all the miRNAs (the sub-
ject is “miRNA”) which are associated to heart failure, RNA binding and apoptosis,
but not to congenital heart diseases. The user may also choose the sources of the
miRNA/target pairs. This allows to tighten or relax the query conditions, in order to
get a smaller or a larger output, respectively. The system will show the list of all the
miRNAs which satisfy these constraints, with details about the involved targets (see
Fig. 3). This query tool links objects through miRNA-based associations. For ex-
ample, a disease d and a process p which are not linked through any common gene
might be associated through a miRNA which regulates a gene gd , involved in d ,
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Fig. 3 An example of Advanced Query execution. (a) The advanced search form with the selected
constraints: miRNAs involved in Heart failure, apoptosis and RNA binding, but not in Congenital
heart disease will be returned. (b) A subset of the corresponding results. For example, the miRNA
let-7a satisfies the specified requirements. In particular it is predicted to bind seven genes, which
are involved in the Heart Failure disease. The details about the other constraints (apoptosis and
RNA binding) are shown in the GO Terms folder

and a gene gp, involved in p. This introduces a new layer of associations between
genes and processes inferred based on miRNAs annotations. These associations are
given in the Advanced Search results pages, when the subject of the query is a GO
term or a disease.

6.3 The miRò Data Mining Facilities

Since miRNAs are associated to GO terms and diseases, they can be clustered ac-
cording to their common terms, i.e. miRNAs which are associated to the same set
of terms are grouped together. miRò is equipped with a data mining module, based
on a maximal frequent itemset computation [100, 101], which allows users to query
the database and extract non-trivial subsets of miRNAs sharing some features. The
analysis is performed using different support thresholds: a high threshold allows to
obtain a small number of miRNA subsets associated to a great number of terms,
while a low threshold gives more subsets associated to fewer terms. All the subsets
have been pre-computed off-line on the dataset of the validated miRNA/target pairs.

In the miRò interface, the user may choose up to n miRNAs together with an
association criteria (i.e. process or disease). The system will find all the subsets of
the selected miRNAs and the processes or diseases which they are most closely
associated to. This may suggest that a set of miRNAs acting cooperatively carry
out certain biological functions, as will be shown in the next section. Moreover,
miRNA/term associations are scored in order to highlight the most significant ones,
as discussed in the next subsection.

Each miRNA/process or miRNA/disease pair, in each subset, is scored accord-
ing to a specificity scoring function. This evaluates the relationships between the
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Fig. 4 An example of an miRNA subset containing 2 miRNAs (miR-124 and miR-137) both
involved in 17 processes. The entries contain the miRNA/process specificity scores. The entries
are colored based on their value: the red entries indicate the maximum value of the subset, while
the blue ones indicate the minimum values. In this case, the most relevant associations in the subset
are between miR-137 and the four processes corresponding to the red entries. This may suggest
a specific role of miR-137 in such processes and is due to the number of targets of the miRNA
involved in such processes and to their specificity to the processes (Color figure online)

miRNAs and their annotation terms (processes and diseases). The specificity of a
miRNA mk for a process pj is defined as follows:
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where Gmk,pj
is the set of the target genes of miRNA mk involved in the process

pj , and Gmk
is the set of all the target genes of mk . The specificity of a gene Sgi

is
inversely proportional to the number of processes in which the gene is involved:

Sgi
= 1
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|

where Pgi
is the set of the processes in which the gene gi is involved.

Intuitively, a gene associated with fewer processes is more focused on the ones
remaining. The specificity of a miRNA for a process relies on the number of targets
and their specificity to the process.

This function has been applied to the set of validated miRNA/target interactions.
The subsets of frequently associated miRNAs are visualized by tables showing the
miRNAs and the processes/diseases to which they are all associated, with their
specificity scores. The table entries are colored based on the specificity value rang-
ing from blue (lowest value) to red (highest value) (see Fig. 4).
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6.4 Validation of miRò

The system has been tested on some known cases coming from the literature. It has
been able to identify miRNA-disease and miRNA-process associations previously
reported. The role of the miR-17-92 cluster in development and disease had been
well established [102]. The expression of these miRNAs promotes cell proliferation,
suppresses apoptosis of cancer cells, and induces tumor angiogenesis. In particular
they are involved in lymphoma, melanoma and other types of cancer (breast, col-
orectal, lung, ovarian, pancreas, prostate and stomach). The miR-17-92 cluster also
plays an essential role during normal development of the heart, lungs, and immune
system.

Performing an advanced search on miRò looking for the diseases related to sub-
groups of the miRNAs of the miR-17-92 cluster, one finds that four of them (miR-
17, miR-19a, miR-19b and miR-92a) are associated to those tumors together with
other pathologies. Moreover, an advanced search for the processes involving the
cluster returns, among others, angiogenesis, apoptosis, cell cycle, cell growth and
proliferation, heart and lung development. These processes are also linked to the
diseases reported in [102].

The search through the miRò Advanced Search form for the miRNAs miR-
1, miR-206 and miR-133a, independently known to be involved in muscle activ-
ity [103], shows the involvement of such miRNAs in muscle contraction. Moreover,
the data mining analysis detects a high correlation of miR-1 and miR-206, which
are frequently associated in terms of both biological processes and pathologies.

Similarly, miR-124 and miR-137, which have been independently reported to be
involved in glioblastoma [104], are associated together to several processes, among
which gliogenesis.

The specificity function, introduced in the previous section, aims at scoring the
miRNA annotations in order to highlight the most significant ones.

Among the top ranking miRNA/disease and miRNA/process associations, there
are cases which have been reported in literature, as shown in Tables 3 and 4. For
example, the top scoring miRNA/disease association links miR-433 to Parkinson’s
disease. This result is confirmed by a study which has shown that the disruption
of the miR-433 binding site of the gene FGF20, confers risk for Parkinson’s dis-
ease. Indeed, the increase in translation of FGF20 is correlated with increased alpha-
synuclein expression, which is known to cause Parkinson’s diseases [105].

Similarly, the association between miR-224 and apoptosis is among the top rank-
ing miRNA/Process associations. This is supported by a study showing that miR-
224, which is up-regulated in Hepatocellular carcinoma patients, increases apoptotic
cell death by targeting the apoptosis inhibitor-5 (API-5) [106].

7 Conclusions

The discovery of gene silencing and RNAi represents a revolution in the RNA
molecular biology field. RNAi also constitutes a promising new therapeutic ap-
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Table 3 Top ranking
miRNA/disease associations
reported in literature

Rank miRNA Disease Reference

1 miR-23b Leukemia [107]

1 miR-433 Parkinson’s disease [105]

2 miR-107 Alzheimer’s disease [108]

2 miR-27b Leukemia [109]

2 miR-9 Alzheimer’s disease [110]

3 miR-20a Lung carcinoma [111]

3 miR-29a Alzheimer’s disease [110]

Table 4 Top ranking
miRNA/process associations
reported in literature

Rank miRNA Process Reference

2 miR-212 Cell-cell junction assembly [112]

6 miR-224 Apoptosis [106]

7 miR-433 Fibroblast growth factor
receptor signaling pathway,
Cell growth

[105]

9 miR-221 Cell cycle arrest [113]

9 miR-222 Cell cycle arrest [113]

11 miR-219-5p Apoptosis [114]

proach. In this essay we reviewed the basic principles of gene silencing and the
computational approaches used for the analysis of this complex mechanism. The
combination of both computational and experimental methods, working strictly to-
gether, have given a big contribution to this field, helping to uncover the biological
mechanisms that underlie this powerful phenomenon. As new experimental tech-
niques will allow to obtain more and more reliable data, bioinformatics methods
will keep constituting a fundamental resource for their analysis and classification.
The rules that govern RNAi are already written in the genome and in the complex
interaction networks involving the small RNAs, the genes and their products. So
there is a need for more intense application of Data Mining and Machine Learn-
ing techniques, able to infer and predict new knowledge, apart from evolutionary
conservation which can be a useful criterion but unknown to the cell itself for the
maintenance of its functions. This clearly indicates that more effort is needed in
the development on new analysis tools and that small RNA molecules should be
considered in the context of a more complex environment, involving other RNA
molecules, proteins and chemicals [115]. The complex regulatory networks inferred
from expression and interaction data needs to be mined in order to extract signifi-
cant patterns that would allow a better comprehension of the sophisticated regula-
tion mechanisms. The development of new therapeutic approaches based on small
RNAs is strictly connected to the progresses in the target prediction. As our knowl-
edge in miRNA/target interactions increases, we will become able to design more
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and more efficient molecules mimicking the endogenous ones, less toxic as possible.
Deep laboratory experiments will also help to determine the relationships between
the design rules and their effects on the synthesized molecules. Finally, a great con-
tribution to biomedicine is given by knowledge bases equipped with sophisticated
analysis tools, able to find direct and hidden associations between the expression of
regulatory RNAs and the phenotype, allowing a better understanding of the molec-
ular basis of diseases and the identification of the most important targets for thera-
peutic applications.
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The Last Ten Yards

Michael Wigler

Abstract Jack Schwartz was drawn to the biological science late in life. He took a
two year sabbatical at Cold Spring Harbor Laboratory, where he demonstrated how
computer generated graphics could provide a window into visual processing, and
found signatures in the permutation of mitochondrial gene order useful for phylo-
genetic analysis. He made a lasting impact on computational genomics at the lab by
emphasizing the utility of the sort and exact matching. This led to the application
of the Burrough-Wheeler algorithm, now a central component to many widely used
genome mapping algorithms.

I met Jack just before he retired from the Courant Institute, and we developed a
friendship that lasted through his final decade. These notes chronicle a slice of his
thinking post retirement, and document Jack’s creativity and analytical abilities en-
during far past the time when he ceased to care about publishing.

By the end of last century I had become convinced of the need for an influx of
sharply quantitative minds into biology, especially genomics. I actively sought such
people to join my cancer genetics group at Cold Spring Harbor Laboratory. Bud
Mishra, a Professor of Computer Science and Mathematics at the Courant Institute,
represented NYU at a small meeting on genomics that we jointly attended. Bud
seemed to be a deep fellow with broad interests. Upon my active pursuit, Bud and
I collaborated (and still do) on several projects, and it was he who introduced me to
Jack. Bud thought Jack and I would get along, and he was right.

1 Taming the Robot

I invited Jack to visit my lab in its bucolic setting on the harbor on the North Shore
of Long Island, facing the Sound and Connecticut across the way. He came with his
wife Diana on a sunny spring day. I cannot recall our discussions, but I do recall the
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events. My lab had recently purchased an all purpose liquid handling robot which
had proven difficult to operate. I knew Jack had worked on robotics, and I asked him
and Diana to have a look. Shortly after, they reported that the operator’s “program-
ming” through a clunky interface of key board and buttons was translated into a text
file, the real input to the robot. This file could be downloaded, and Jack and Diana
decoded it. Thereafter we programmed the robot with text instructions.

The robot had been tamed, and the visit matured into a sabbatical, and then a
friendship that lasted until Jack’s death. Although Jack took interest in all matters
biological, the historical vector of his own training aimed his thought and experi-
mentation upon three topics: genomics, visual perception and cognitive structure.
Of these, I have expert1 knowledge in only the first, and so I will describe that area
of Jack’s interest in greatest detail.

2 Genomes as Searchable Strings

The parallels of an organism’s genetic instructions to a programming language had
great appeal to theoretical computer scientists.2 These genetic instructions, or the
“genome”, can be (incompletely) described as a string of characters drawn from
a four nucleotide alphabet which ultimately instructs the cell how to make other
macromolecules such as RNA and protein.3 The fundamental human query of the
genomic string is the “substring exact match”, and Jack argued persuasively that
fundamental to that was the “sort”. This simple idea germinated in a young com-
puter scientist named John Healy, who had joined the lab at about the same time
as Jack, and both shared my office. Computational efficiency of genome searches
is a significant problem when the genomes are 3 × 109 nucleotides long, the size
of the human genome. John saw how to use a sort on a transformed string so that
the original string could be searched rapidly for exact matches. Jack grasped John’s
difficult algorithm immediately, and was able to explain it to me. After researching
his method, John discovered that he had re-invented the then obscure Burroughs-
Wheeler algorithm (BWA) [1], created for string compression. The utility of an
indexed BWA for searches had also been previously discovered [2] but not widely
appreciated. John had rediscovered both these inventions. The algorithm became
the basis for our microarray designs for several years [3], the only paper on which
Jack and I were co-authors. Today, the BWA is the core for many of the software
programs used in DNA sequence analysis.

1Jack defined an expert as someone who has made every possible mistake.
2See for example Jack’s 8th and 9th slides from his presentation at Johns Hopkins at
http://roma.cshl.edu/jack.
3Genes are substrings of DNA. DNA is double stranded, so each element of the genome “string”
is really a complementary pair of single stranded nucleotides. Messenger or coding RNA is made
by transcribing one strand of the DNA as template. Parts of the RNA are edited, and the sections
of RNA removed are called “introns”, leaving intact but joining together the “exons”. Only then is
the RNA is used to make protein.
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3 Phylogeny of Mitochondria

Beginning with the Human Genome Sequence Initiative there was a National Insti-
tutes of Health mandate to place DNA sequence data into the public domain. Jack
loved data, especially free data. There was much that could be done with the de-
posited sequence data, but in particular Jack was interested in phylogeny, as it was
natural to organize the genomes by descent. Most phylogenies are based on compar-
ison of protein sequences and nucleic acid sequences, where the distance between
strings is measured roughly as the number of mutations, one nucleotide at a time,
that convert one string into another. Jack devised different methods.

In the early 2000’s he showed me his results based on study of the circular mi-
tochondrial genome.4 The mitochondrial genes are highly conserved, so conserved
that using single nucleotide mutation is insufficient to establish a phylogeny. Jack
observed that the order of the genes (coherent blocks of nucleotides) was not con-
served, and suffered permutation during the long course of evolution. Furthermore,
Jack saw that there was a minimizing “rule” to describe the permutations: excise
a segment of genes from the circle, circularize that segment, and insert that new
circle anywhere between the remaining genes of the old circle such that the gene
order after insertion is preserved or reversed. If reversed, there was also a reversal
of the orientation of each gene.5 There was a preference for reinsertion with reversal
at the site of excision. Unknown to Jack at the time he made his observations, his
rules corresponded precisely to the expectations of recombination within a circular
genome predicted from the resolution of recombinant intermediates called Holli-
day structures (see Fig. 1). The minimum number of applications of Jack’s rules to
transform one genome into another was a measure of the evolutionary distance.

Using his method, the genomes of vertebrates and those of crustaceans could be
lumped into two groupings that were very clearly separable but also related. The mi-
tochondrial gene order of lobsters closely resembled mosquitoes. Hippos resembled
fish. There were minor variations off the vertebrate theme, or the crustacean theme,
and these variations illustrated the minimal rules. But three types of crustaceans
stood out: ticks, fleas and mites. These bore no obvious relation to each other or
to the crustaceans. This surprised and delighted Jack, as he had thought that all the
modern animals with exoskeletons were derived from the same explosion of meta-
zoans. On several occasions I urged Jack to formulate this work and write a paper,
and I thought there was interesting mathematics in viewing mutations as elements
of a group, and how sets of group generators established “efficient” descriptors of
a distance metric on the group of mutations. But he balked, saying that computing
precise distances was not feasible. He would have guided a graduate student, but
he no longer had any interest in publishing findings or in expanding his Curricu-
lum Vitae. So the work remained unpublished, although Jack spoke of it at various

4Mitochondria are the tiny intracellular “engines” within every eukaryotic cell that produce ATP,
the energy currency. They have their own genomes.
5The gene unit itself, being a string, has an orientation.
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Fig. 1 Recombination in Mitochondrial circular genomes as inferred from gene order mutation.
From Jack’s 16th and 17th slide at his IBM talk (see footnote 6)

meetings on computational biology to which he was invited.6 With hindsight, and
the assistance of Google, I recently discovered a much earlier paper that had exam-
ined mitochondrial gene order as a means to compute phylogeny that had used far
fewer genomes [5]. As far as I know, Jack’s insight into the crustaceans was new, as
was the precision he brought to the problem.

6See for example Jack’s slide talk at IBM. http://roma.cshl.edu/jack. Recently, I looked again at the
difficulty of computing precise distances between species, measured as the number of applications
of Jack’s rule. I now concur with his opinion about its difficulty.
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4 The Clocks of Evolution

Jack discovered other methods of phylogenetic mapping. One was based on the
conservation of the intron-exon structure of transcripts (see footnote 3). Overall, his
various methods can be viewed as clocks that run on different time scales, as do
the minute and hour hands of a clock. One hand might be useful for measuring fast
events, and the other for slow events. What would it say for our confidence in phy-
logeny if these clocks depicted different trees? Or if the branches were of different
duration, depending on the clock used to measure it? The synthesis of these ideas
into a coherent method never occurred under Jack’s watch. He was more interested
in the thrill of a logically solid novel insight than in exhausting its implications.
But these ideas will eventually be useful in understanding cancer evolution, where
the rates of different types of genome instability (point mutation, rearrangements,
and changes in copy number) become uncoupled, and each can be measured rela-
tive to each other, and to the absolute rate of mutation in normal cells. The rates
of these clocks in individual tumors are likely to predict patient survival (see for
example [4]).

5 Illusions

Jack had a keen interest in human cognition, especially vision. This choice was dic-
tated by several considerations: Jack was gifted in visualization, he had mastery of
the design of computer images, and he had himself as a willing subject. The five
areas he explored were illusions of motion, distortion in parallelism, and depth per-
ception, as well as the ability to distinguish textures and perceive objects against var-
ious backgrounds (see for example Fig. 2). He was especially adept at crafting three
dimensional illusions, provided the user wore red-green colored glasses. He found
how to make a static object on the computer screen glisten with metallic sheen by
separately controlling left and right visual inputs. In all these instances he was able
to use his command of the computed image to explore how the illusions fared under
manipulation of the underlying parameters (such as contrast, graininess or rotation).
He had little difficulty recruiting other willing subjects, and used this opportunity to
probe human visual capability. To his surprise, he found some robust differences in
the human responses. He never took this to the level of exploring patho-physiology,
for example testing stroke victims or patients suffering from visual migraines, or in-
dividual genetic variation. This would have required far greater resources than was
available to him. To my knowledge Jack never published his methods or observa-
tions.7 Overall, Jack believed that vision was a composition of discrete hardwired

7Some of Jack’s creations can be found at http://www.settheory.com/Glass_paper/cafe_wall_
study.html, http://www.multimedialibrary.com/Articles/Jack/Illusions/index.asp, http://www.
multimedialibrary.com/education/illusions/index.asp, http://www.settheory.com/hole_illusion/dill.
html.
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Fig. 2 Jacks’s hole illusion. The yellow disk can be variously seen as floating or as a hole, or
coplanar with the blue background, depending on the viewer’s cognitive apparatus or disposition.
See http://www.settheory.com/hole_illusion/dill.html (Color figure online)

processing subprograms. The discreteness is not ordinarily apparent to the user. For
any new space of operation, he sought a “basis” of elementary operations, which
when combined spanned the full space. I think this is what he was attempting to do
in vision.

6 Memory

The organization of memories was a frequent subject of our discussions, although
neither of us knew neurobiology. Jack would of course make use of his knowledge
of computer architecture and algorithms to reason about the cognitive processes
of the brain. A few of his observations had strong resonance with me. Here is the
most important one. Human memory has a feature, as he put it, similar to “filename
completion”. If a Unix user specifies part of a filename, the rest of the filename is
suggested by the computer system. Jack was in fact working on algorithms at the
time that did much more than this: produce a list of candidate names given only a
part of the last name of the person, perhaps the street name of their address, and
perhaps a fragment of their home phone number (such as an area code plus a few
digits). How would you organize your contact databases to execute such a task?
Humans cannot do this particular task very well, but we do other things like it very
well: “Who is the young actress, very pretty, the heroine in one of Woody Allen’s
murder mysteries and the victim in another?” Jack thought this was a fundamental
property of memory.

In fact, it is easier to “imagine” how to set up such memory out of brain stuff than
out of programmable silicon circuits. First, the “clues” to the full memory are dis-
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seminated broadly throughout the brain, recruiting various neurons8 reactive to the
clues. A pre-existant but dormant original circuit, created by prior experience, con-
nects a subset of these recruited neurons along with many others, not yet activated.
This circuit becomes activated by the initial recruits, firing up the other neurons of
the original circuit that were not in the initially recruited set. The “name” or missing
parts of the full memory reside in the full circuit. In other words, a neural circuit that
can keep a set of member neurons stably stimulated, and be driven into that stable
firing state by activation of only a few of its members, seems all that is needed for
associative memory. The creation and management of such highly connected cir-
cuits does not have parallels in common computer architecture. Jack chose not to
think too deeply about this, because his years as Director at DARPA/ISTO funding
research9 into neural nets left an indelibly negative impression. He was well aware
of the gulf between how Nature conducts herself and how humans imagine she does.

7 The End Game

Jack remained very active after retirement. Aside from the mental preoccupations
described here, Jack took an active interest in defense against bioterrorism and orga-
nized meetings on the subject. He developed a project to enhance the mathematical
curriculum for gifted high school teachers and their students. He funded it himself,
and scripted easily comprehensible and web accessible visual proofs of important
theorems in mathematics, such as the fundamental theorem of algebra.

Jack loved Cold Spring Harbor, with its invigorating empirical tradition and its
natural beauty, but his sabbatical ended upon his first serious illness. Once he recog-
nized that his time was limited, he returned home to the city, teeming with the ethnic
restaurants he adored, to the project on the application of computational logic to the
foundations of mathematics. He maintained his contacts with his colleagues, and
continued to visit from time to time, as I did him, often bringing vexing problems or
new results. I love mathematics, and Jack loved biology, so we happily exchanged
roles as teacher and student and kept each other amused. We discussed a myriad
of subjects: cellular architecture, recombinant DNA, cloning, principles of exper-
imental design, olfaction, transcriptional networks, cancer biology, Galois theory,
the nature of proofs, the relationship of science to mathematics, the limits of the lat-
ter, computer architecture, programming languages, principles of algorithm design,
and the uses of computers in musical annotation10 among others. I still use Jack’s
lessons in my everyday professional research.

8Roughly speaking, a neuron can be resting and have a low rate of firing, or be in an active state
with a high rate of firing.
9Jack summarized his experience as Director this way: “The fastest way to make enemies is to give
away money.”
10See for example http://www.settheory.com/drum_machine/drums.html.
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I do not understand fully the intellectual journey he took from math to computa-
tion to empiricism. Jack was in some ways a thrill seeker, although the thrills had to
have very great logical rigor. He loved to challenge his intellect in new ways, and
I assume math failed to do this eventually. As related by his granddaughter, Adri-
enne Fainman, during her moving eulogy at Jack’s memorial, Jack would comfort
her when she was studying math with these words: be happy when you are confused,
because you are poised to learn something. Jack was fascinated and endlessly sur-
prised by the universe, of which life was the crowning part. Logic and computation
were his sensory organs and muscles by which he grasped the things around him.

Jack held that a mathematician’s emotional age, often measured in single digits
or low teens, was set by the year in which he discovered his intellectual gifts. But
Jack escaped this tyranny of arrested development. His intellect was matched by a
graceful emotional maturity and an almost serene detachment. An indifferent shrug
was the most he would concede to a temporary setback. He lived so as to be free
of the folly of others. He neither internalized nor identified with such, and happily
dealt with his own. He drew his ability to grow from his curiosity, his autonomous
powers for discovery, and the joy he took in sharing his thoughts and findings with
others. By such means, and with the support of a loving wife and sister, and highly
appreciative friends and other relatives, he experienced a unique and richly reward-
ing life.
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