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CHAPTER VII
Cartan Subalgebras and Regular Elements

In this chapter, k denotes a (commutative) field. By a “vector space”, we
mean a “vector space over k”; similarly for “Lie algebra”, etc. All Lie algebras
are assumed to be finite dimensional.

¢1. PRIMARY DECOMPOSITION OF LINEAR
REPRESENTATIONS

1. DECOMPOSITION OF A FAMILY OF ENDOMORPHISMS

Let V be a vector space, S a set, and r a map from S to End(V). Denote by
P the set of maps from S to k. If A € P, denote by V,(S) (resp. VX(S)) the
set of v € V such that, for all s € S, r(s)v = A(s)v (resp. (r(s) — A(s))"v =0
for n sufficiently large). The sets V(S) and V*(S) are vector subspaces of V,
and V(S) C VX(S). We say that V(S) is the eigenspace of V relative to A
(and to r), that V*(S) is the primary subspace of V relative to A (and to 7),
and that VO(S) is the nilspace of V (relative to r). We say that X is a weight
of S in V if V*(S) # 0.

In particular, if S reduces to a single element s, P can be identified with
k; we use the notations V(4 (s) and VM) (s), or V() (r(s)) and VX&) (r(s)),
instead of Vy({s}), VA({s}); we speak of eigenspaces, primary subspaces
and the nilspace of r(s); an element v of V), (s) is called an eigenvector of
r(s), and, if v # 0, A(s) is called the corresponding eigenvalue (cf. Algebra,
Chap. VII, §5).

For all A € P, the following relations are immediate:

VA©) = [V )(s), (1)
sES

Va(S) = ﬂ Vas)(s)- (2)
sES

Let k' be an extension of k. The canonical map from End(V) to End(V®gk')
gives, by composition with r, a map r’ : S — End(V ®j k). Similarly, every
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map A from S to k defines canonically a map, also denoted by A, from S to
k’. With these notations, we have the following proposition:

PROPOSITION 1. For all A € P,
(Var kHNS) = VAS) @k & and (V@ k)A(S) = VA(S) @k k.

Let (a;) be a basis of the k-vector space k. If v € V ®; k', v can be
expressed uniquely in the form Y v; ® a; where (v;) is a finitely-supported
family of elements of V. For all s € S,

(r'(s) = M()™(v) = Y _(r(s) = A(5))"v; @ a;.
It follows that

ve (Vear k)NS) < v; € VMS) for all 4,
v e (Ve k'))\(S) < v; € V5(S) for all 4,

which implies the proposition.

PROPOSITION 2. Let V,V',W be vector spaces. Let r : S — End(V),
r":S — End(V’') and ¢ : S — End(W) be maps.

(i) Let f : V. — W be a linear map such that q(s)f(v) = f(r(s)v) fors €S
and v € V. Then, for all X\ € P, f maps V*(S) (resp. VA(S)) into WA(S)
(resp. Wx(S)).

(ii) Let B: V. x V' — W be a bilinear map such that

q(s)B(v,v") = B(r(s)v,v") + B(v,r'(s)v")

fors €S,veV,v €V'. Then, for all \,; € P, B maps V*(S) x V'*(S)
(resp. Va(S) x V/,(S)) into WATH(S) (resp. Wayn(S)).

(iii) Let B: V x V' — W be a bilinear map such that

q(s)B(v,v") = B(r(s)v,r'(s)v")
fors €S, veV,v € V. Then, for all \,u € P, B maps V>(S) x V'*(S)
(resp. Va(S) x V/,(S)) into W(S) (resp. Wi, (S)).

In case (i), (g(s) = A(8))"f(v) = f((r(s) = A(s))"™v) for s€ Sand v € V,

hence the conclusion. In case (ii),

(4(s) = A(s) = u(s))B(v, v) = B((r(s) = A(s))v,v") + B(v, (r'(s) — u(s))1')

for s €S, v eV, v € V/, hence by induction on n

(a(s) = A(s) = () B(o, o) = > (

i+j=n

n

) BU(r(s) = A(s) v, ((s) = ().

7

The assertions in (ii) follow immediately. In case (iii),
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(a(s)=A(s)u(s))B(v,v") =B((r(s) = A(s))v, 7' (s)v") +B(A(s)v, (r'(s) — u(s))v")
for s€ S, v eV, v € V', hence by induction on n
(q(s) = A(s)u(s))"B(v, )
= > () BOGY (r(s) = A(s) 0,7 ()" (0 () = uls)) ).

L= (3
i+j=n

The assertions in (iii) follow immediately.

PROPOSITION 3. The sum )\ZP VA(S) is direct. The sum /\ZP VA(S) is direct.
€ €

The second assertion is a consequence of the first; hence it suffices to prove
that. We distinguish several cases.
a) S is empty. The assertion is trivial.

b) S is reduced to a single element s. Let Ao, A1, ..., A, be distinct elements
of k. For i = 0,1,...,n, let v; € V i(s) and assume that vg = vy + -+ + v,,.
It suffices to prove that vg = 0. For ¢ = 0,...,n, there exists an in-

teger ¢; > 0 such that (r(s) — \;)%v; = 0. Consider the polynomials
P(X) = l;Il(X — )% and Q(X) = (X — X\g)%. We have Q(r(s))vg = 0, and
- n

P(r(s))vo = ; P(r(s))v; = 0. Since P and Q are relatively prime, the Bezout
identity prove_s that vg = 0.

¢) S is finite and non-empty. We argue by induction on the cardinal of

S. Let s € S and S’ = S={s}. Let (v)\)acp be a finitely-supported family of

elements of V such that /\ZP vy = 0 and vy € VA(S). Let Ay € P. Let P’ be
€

the set of A € P such that A|S" = A\g|S’. By the induction hypothesis applied
to S’, we have /\Z; vy = 0. If A\, are distinct elements of P/, A(s) # u(s).
e ’

Since the sum Zk Ve(s) is direct by b), and since vy € V*®)(s), vy = 0 for
[e1S

all A € P/, and in particular vy, = 0, which we had to prove.
d) General case. Let (vy)aep be a finitely-supported family of elements of
V such that )\Z vy = 0 and vy € VA(S). Let P’ be the finite set of A € P such
ep

that vy # 0, and let S’ be a finite subset of S such that the conditions A € P,
€ P NS" = p|S imply that X = u. We have vy € V¥ (S'); applying c),
we see that vy = 0 for A € P/, which completes the proof.

Recall that, if z € End(V), we denote by ad « the map y — xy—yz = [z, y]
from End(V) to itself.

Lemma 1. Let x,y € End(V).
(i) Assume that V is finite dimensional. Then x is triangularizable if and
only if V= Zk Ve(x).
ack
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(ii) If there exists an integer n such that (adz)"y = 0, each V*(x) is
stable under y.
(iii) Assume that V is finite dimensional. If V = ZkV“(m) and if each
ac

Ve (x) is stable under y, there exists an integer n such that (ad z)"y = 0.

Part (i) follows from Algebra, Chap. VII, §5, no. 2, Prop. 3.
Let E = End(V). Let B be the bilinear map (u,v) — u(v) from E X V to
V. By the definition of ad z,

2(B(u,v)) = B(u, z(v)) + B((ad z)(u), v)

for v € E, u € E, v € V. Let « operate on E via adz. By Prop. 2 (ii),
B(EY(z),V%(x)) C V4(x) for all a € k. If (adx)"y = 0, then y € E°(x), so
y(V*(z)) C V*(z), which proves (ii).

To prove (iii), we can replace V by V®(z) and x (resp. y) by its restriction
to V*(z). Replacing © by = — a, we can assume that x is nilpotent. Then,
(ad x)24m V=1 — ( (Chap. I, §4, no. 2), which proves (iii).

Remark. The argument proves that, if V is finite dimensional and if there
exists an integer n such that (ad )"y = 0, then (ad z)2dmV—1y = 0.

In the sequel, we shall say that the map r : S — End(V) satisfies condition
(AC) (“almost commutative”) if:

(AC) For every pair (s,s") of elements of S, there exists an integer n such
that

(ad r(s))"r(s") = 0.

THEOREM 1. Assume that V is finite dimensional. The following conditions
are equivalent:
(i) Condition (AC) is satisfied and, for all s € S, r(s) is triangularizable.
(ii) For all A € P, VX(S) is stable under (S), and V = AEE:P VA(S).

IfV = AZP VA(S), then V = Zk Va(s) for all s € S, and it follows from
€ ac

Lemma 1 that (ii) implies (i). Assume that condition (i) is satisfied. Lemma 1

and formula (1) imply that each V*(S) is stable under r(S). It remains to

prove that V = )\ZP VA(S). We argue by induction on dim V. We distinguish
€

two cases.

a) For all s € S, r(s) has a single eigenvalue A(s). Then V = VA(S).

b) There exists s € S such that r(s) has at least two distinct eigenvalues.
Then V is the direct sum of the V(s) for a € k, and dim V%(s) < dim'V for
all a. Each V*(s) is stable under r(S), and it suffices to apply the induction
hypothesis.

COROLLARY 1. Assume that V is finite dimensional and that condition
(AC) is satisfied. Let k' be an extension of k. Assume that, for all s € S, the



§1. PRIMARY DECOMPOSITION OF LINEAR REPRESENTATIONS 5

endomorphism 7(s) @ 1 of V ®y k' is triangularizable. Let P’ be the set of
maps from S to k'. Then V@ k' = )\EP (V@i KN (S).
/e /

Let ' : S — End(V ®j k') be the map defined by r. If s1, 55 € S, there ex-
ists an integer n such that (adr(s1))"r(s2) = 0, hence (ad /(s1))™r'(s2) = 0.
It now suffices to apply Th. 1.

COROLLARY 2. Assume that V is finite dimensional and that condition
(AC) is satisfied. Denote by VT(S) the vector subspace > <D r(s)iV>.
i>1

s€S
Then:
(i) VO(S) and VT (S) are stable under r(S);
i) V.=VoS)a V*(S);
i) every wector subspace W of V, stable under r(S) and such that
) =0, is contained in V*(S);
v) Z r(s)VF(S) = V*¥(S).
Moreover, VT(S) is the only vector subspace of V with properties (i) and
(ii). For any extension k' of k, (V ®r k')T(S) = VT (S) @ &'.
The last assertion is immediate. Thus, taking Prop. 1 into account, in

proving the others we can assume that k is algebraically closed. By Th. 1, V =
>~ VX(S), and the VX(S) are stable under r(S). If s € S, the characteristic

AEP
polynomial of 7(s)|[VA(S) is (X — A(s))dmV*®); it follows that 'D1 r(s)'VA(s)
is zero if A(s) = 0 and is equal to V*(S) if A(s) # 0; hence, -

> V), (3)

AEP, A0

(i
(ii
WY(S
(i

which proves (i), (ii) and (iv). If W is a vector subspace of V stable under
7(S), then W = AZPWA(S) and WA(S) = W N VA(S). If WO(S) = 0, we see
€

that W C V*(S), which proves (iii).

Let V' be a vector subspace of V stable under r(S) and such that
V' NVO(S) = 0. Then V'°(S) = 0, so V! C V*(S) by (iii). If, in addition,
V =V9(S) + V', we see that V' = VT (S). Q.E.D.

We sometimes call (VO(S), V¥ (S)) the Fitting decomposition of V, or of
the map r : S — End(V). If S reduces to a single element s, we write VT (s)
or V*(r(s)) instead of V¥ ({s}). We have that V = V°(s) @ V*(s), VO(s)
and V7T (s) are stable under r(s), r(s)|V°(s) is nilpotent and r(s)|[VT(s) is
bijective.

COROLLARY 3. Let V and V' be finite dimensional vector spaces, and let
r:S—=End(V) and v : S — End(V’) be maps satisfying condition (AC).
Let f: V= V' be a surjective linear map such that f(r(s)v) =r'(s)f(v) for
seS andv e V. Then f(VMS)) = V'(S) for all X € P.
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In view of Prop. 1, we are reduced to the case in which & is algebraically
closed. We have V = AEBP VA(S), V! = AEBP V/2(S) by Th. 1, and V! = f(V) =
€ €

AZP FOVA(S)). Finally, f(VX(S)) € V/*(S) by Prop. 2 (i), hence the corollary.
€

PROPOSITION 4. Assume that k is perfect. Let V be a finite dimensional
vector space, u an element of End(V), us, u, the semi-simple and nilpotent
components of u (Algebra, Chap. VII, §5, no. 8).

(i) For all A € k, VMu) = V*(us) = Vi(us).

(ii) If V has an algebra structure and if u is a derivation of V, ugs and uy,
are derivations of V.

(iii) If V has an algebra structure and if u is an automorphism of V, then
us and 1+ u;lun are automorphisms of V.

In view of Prop. 1, we can assume that k is algebraically closed, so

V=> Vu).

A€k

The semi-simple component of u|V*(u) is the homothety with ratio A in
V> (u). This proves (i).

Assume from now on that V has an algebra structure. Let z € V*(u),
y € VF(u).

If u is a derivation of V, then zy € VA #(u) (Prop. 2 (ii)), so

us(zy) = (A + p)(2y) = A\2)y + 2(py) = (usr)y + 2(usy).

This proves that u, is a derivation of V. Then u,, = u — u, is a derivation of
V.

If u is an automorphism of V, Ker(u,) = VO(u) = 0, so us is bijective. On
the other hand, xy € VM (u) (Prop. 2 (iii)), so

us(zy) = (M) (zy) = (Az)(ny) = us(z).us(y).
This proves that us is an automorphism of V; but then so is
1+ u; tuy, = uy tu.

2. THE CASE OF A LINEAR FAMILY OF ENDOMORPHISMS

Assume now that S has a vector space structure, that the map r : S — End(V)
is linear, and that V and S are finite dimensional.

PROPOSITION 5. Assume that condition (AC) is satisfied, and let X : S — k
be such that VN(S) # 0. If k is of characteristic 0, the map X\ is linear. If
k is of characteristic p # 0, there exists a power q of p dividing dim V*(S),
and a homogeneous polynomial function P : S — k of degree q, such that
A(s)? =P(s) for all s € S.
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Since VA(S) is stable under 7(S) (Lemma 1 and formula (1) of no. 1), we
can assume that V = V*(S). Let n = dim V. Thus, for s € S,

det(X —r(s)) = (X — A(s))™.
On the other hand, the expansion of the determinant shows that
det(X —7(5)) = X" + a1 (s)X" L4 - 4 a;(s) X" 4 -

where a; : S — k is a homogeneous polynomial function of degree i. Write
n = gm where ¢ is a power of the characteristic exponent of k and (g, m) = 1.
Then (X — A(s))™ = (X2 — A(s)9)™; hence —mA(s)? = aq4(s), which implies
the result.

PROPOSITION 6. Assume that k is infinite and that condition (AC) is sat-
isfied. Let k' be an extension of k. Put V. = V@i k', S = S®y k'. Let
r’ ' S" — End(V’) be the map obtained from r by extension of scalars. Then

VO(S) @k k' = V'(S) = V'(S").

The first equality follows from Prop. 1. To prove the second, we can
assume that V = V°(S) and so V' = V/°(S). Let (s1,...,5mn) be a basis of S
and (e1,...,e,) a basis of V. There exist polynomials P;;(X,...,X,,) such
that

n

7“/(@181 + -+ amSm)"ej = ZPij(ala ey Q)€

i=1

for 1 < j <nanday,...,a, € k. By hypothesis, r'(s)" = 0 for all s € S,
in other words Pj;(ai,...,am,) =0for 1 <i,j <nandas,...,an, € k. Since
k is infinite, P;; = 0. Consequently, every element of /(S’) is nilpotent and
V/ — VIO(S/).

PROPOSITION 7. Assume that k is infinite and that condition (AC) is sat-
isfied. Let S be the set of s € S such that VO(s) = VO(S). If s € S, let P(s)
be the determinant of the endomorphism of V/V°(S) defined by r(s) (no. 1,
Cor. 2 (i) of Th. 1).

(i) The function s P(s) is polynomial on'S. We have S={s€S|P(s)# 0};
this is an open subset of S in the Zariski topology (App. 1).

(i) S is non-empty, and V*(s) = V*(S) for all s € S.

The fact that s — P(s) is polynomial follows from the linearity of r. If
s €8S, V(s) D VO(S), with equality if and only if r(s) defines an automor-
phism of V/V?(S), hence (i).

Now let k' be an algebraic closure of k, and introduce V’,S’,7’ as in
Prop. 6. We remark that S’ satisfies condition (AC) by continuation of the
polynomial identity (adr(s;))24™V=1r(sy) = 0 valid for 51,52 € S (no. 1,
Remark). Applying Th.1, we deduce a decomposition
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Vl _ V/O(S/) ® Z Vl/\i (Sl)
=1

with \; # 0 for 1 <4 < m. For 1 <1i < m, there exists a polynomial function
P; non-zero on S’ and an integer g; such that A\ = P; (Prop. 5). Since k is
infinite, there exists s € S such that (P;...P,,)(s) # 0, cf. Algebra, Chap. IV,
§2, no. 3, Cor. 2 of Prop. 9. Then \;(s) # 0 for all i, so V/°(S’) = V/%(s) and
consequently VO(S) = VO(s) (Prop. 6), which shows that S # @. If s € S,
the fact that V*(S) is stable under 7(s) and is a complement of V%(s) in V
implies that V*(S) = V*(s) (Cor. 2 of Th. 1).

3. DECOMPOSITION OF REPRESENTATIONS OF A
NILPOTENT LIE ALGEBRA

Let h be a Lie algebra and M an h-module. For any map A from b to k, we
have defined in no. 1 vector subspaces M*(h) and M, (h) of M. In particular,
if g is a Lie algebra containing h as a subalgebra, and if x € g, we shall
often employ the notations g*(h) and g (bh); it will then be understood that
b operates on g by the adjoint representation ad 4.

PROPOSITION 8. Let b be a Lie algebra, and L, M, N h-modules. Denote by
P the set of maps from b to k.

(i) The sum > LM(P) is direct.
AEP

(i) If f : L — M is a homomorphism of h-modules, f(L*(h)) C M*(h)
for all X € P.
(iii) If f : L x M — N is a bilinear h-invariant map,

FLA(D) x M¥(h)) € NM#(p)

for all A\, u € P.
This follows from Props. 2 and 3.

PROPOSITION 9. Let b be a nilpotent Lie algebra and M a finite dimensional
h-module. Denote by P the set of maps from b to k.

(i) Each M (h) is an b-submodule of M. If xp; is triangularizable for all
z€h, then M = %P M>(h).

(ii) If k is infinite, there exists x € b such that M°(x) = M°(b).

(iii) If k is of characteristic 0, and if X € P is such that M*(h) # 0, then
X is a linear form on b vanishing on [h, b], and My (h) # 0.

(iv) If f : M — N is a surjective homomorphism of finite dimensional
h-modules, then f(M*(h)) = N*(b) for all X € P.

(v) If N is a finite dimensional h-module, and B a bilinear form on
M x N invariant under b, then M*(h) and N*(b) are orthogonal relative to
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B if A+ p # 0. Moreover, if B is non-degenerate then so is its restriction to
M?A(h) x N=A(h) for all X € P.

Part (i) follows from no. 1, Lemma 1 and Th. 1. Part (ii) follows from
no. 2, Prop. 7. Part (iv) follows from no. 1, Cor. 3 of Th. 1. We prove (iii). We
can assume that M = M*(h). Then, for all z € h, A(x) = (dim M)~ Tr(xy);
this proves that A is linear (which also follows from Prop. 5) and that A
vanishes on [h, h]. Consider the map p : h — Endy (M) defined by

plx) = aym — Aa) 1w

from the above, this is a representation of h on M, and p(z) is nilpotent for
all x € h. By Engel’s theorem (Chap. I, §4, no. 2, Th. 1), there exists m # 0
in M such that p(x)m = 0 for all x € §, so m € My (h).

The first assertion of (v) follows from no. 1, Prop. 2 (ii). To prove the
second, we can assume that k is algebraically closed in view of Prop. 1 of no. 1;
it then follows from the first and the fact that M = ; M*(h), N = ; N*(h),

cf. (i).
Remark. Assume that k is perfect and of characteristic 2. Let h = s[(2, k), and

let M be the h-module k* (for the identity map of ). If z = (Z Z) is an

arbitrary element of fj, denote by A(z) the unique A € k such that A2 =a?+be.
A calculation shows immediately that M = M*(h); on the other hand, M (h) = 0
and A is neither linear nor zero on [, h], even though b is nilpotent.

COROLLARY. Let b be a nilpotent Lie algebra, and M a finite dimensional
h-module such that M°(h) = 0. Let f : h — M be a linear map such that

fl2,y)) = 2. f(y) —y.f(z) forz,y€h.

There exists a € M such that f(x) = x.a for all x € h.
Let N =M x k. Make h operate on N by the formula

x.(m,\) = (xz.m — Af(x),0).

The identity satisfied by f implies that N is an h-module (Chap. I, §1, no. 8,
Example 2). The map (m,A) — A from N to & is a homomorphism from N
to the trivial h-module k. By Prop. 9 (iv), it follows that N°(h) contains an
element of the form (a, 1) with a € M. In view of the hypothesis on M,

(M x 0) N N°(h) =0,

so NY(h) is of dimension 1 and hence is annihilated by h. Thus, x.a— f(x) = 0
for all x € b, which proves the corollary.

PROPOSITION 10. Let g be a Lie algebra, b a nilpotent subalgebra of g.
Denote by P the set of maps from b to k.
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(i) For A, € P, [g*(h),g"(h)] C g***(b); in particular, g°(h) is a Lie
subalgebra of g containing b, and the g*(h) are stable under ad g°(h). More-
over, g°(b) is its own normalizer in g.

(i) If M is a g-module, g*(h)M*(h) € M MH(h) for A, i € P; in particular,
each M*(h) is a g°(h)-module.

(iii) If B is a bilinear form on g invariant under b, g*(h) and gt(h) are
orthogonal relative to B for A + u # 0. Assume that B is non-degenerate.
Then, for all X € P, the restriction of B to g*(h) x g~*(h) is non-degenerate;
in particular, the restriction of B to g°(h) x g°(h) is non-degenerate.

(iv) Assume that k is of characteristic 0. Then, if x € g (h) with X\ # 0,
ad x is nilpotent.

The map (z,y) — [z,y] from g X g to g is g-invariant by the Jacobi
identity, hence h-invariant. The first part of (i) thus follows from Prop. 2 (ii).
Part (ii) is proved similarly.

If 2 belongs to the normalizer of g(h) in g, (ady).z = —[z,y] € g°(h) for
all y € b, so (ady)™.z = 0 for n sufficiently large. This proves that = € g®(h).
Assertion (i) is now completely proved.

Assertion (iii) follows from Prop. 9 (v).

To prove (iv), we can assume that k is algebraically closed. Let = € g*(b),
with A # 0. For all u € P and any integer n > 0, (adx)"gH(h) C g"*t"(h);
let Py be the finite set of u € P such that g*(h) # 0; if k is of characteristic
0 and A #£ 0, (P; +nA) NPy = & for n sufficiently large, so (adz)™ = 0.

Lemma 2. Assume that k is of characteristic 0. Let g be a semi-simple Lie
algebra over k, B the Killing form of g, m a subalgebra of g. Assume that the
following conditions are satisfied:

1) the restriction of B to m is non-degenerate;

2) if x € m, the semi-simple and nilpotent components' of x in g belong
to m.

Then m is reductive in g (Chap. I, § 6, no. 6).

By Chap. I, §6, no. 4, Prop. 5 d), m is reductive. Let ¢ be the centre of m.
If z € cis nilpotent, then x = 0; indeed, for all y € m, ad z and ad y commute,
their composition ad z o ad y is nilpotent, and B(z,y) = 0, so © = 0. Now let
z be an arbitrary element of ¢; let s and n be its semi-simple and nilpotent
components. We have n € m. Since adn is of the form P(ad z), where P is a
polynomial with no constant term, (adn).m = 0 and son € ¢, and then n =0
by the above. Thus ad x is semi-simple. Consequently, the restriction to m of
the adjoint representation of g is semi-simple (Chap. I, §6, no. 5, Th. 4 b)).

PROPOSITION 11. Assume that k is of characteristic 0. Let g be a semi-
simple Lie algebra, b a nilpotent subalgebra of g. The algebra g°(h) satisfies
conditions (1) and (2) of Lemma 2; it is reductive in g.

L By Chap. I, §6, no. 3, Th. 3, every = € g can be written uniquely as the sum of a
semi-simple element s and a nilpotent element n that commute with each other;
the element s (resp. n) is called the semi-simple (resp. nilpotent) component of x.
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Let z,2' € g, s and s’ their semi-simple components, n and n’ their
nilpotent components. We have
2’ € g°(x) <= (ads)(2’) =0 (Prop. 4)
— (ad2')(s) =
= (ads')(s) =
<= (ad s)(s)
«— s cg(z) (Prop. 4)

so 2’ € g°(z) = n’ € g°(z) and (2) is proved. The Killing form of g is non-
degenerate, so its restriction to g°(h) is non-degenerate (Prop. 10 (iii)). The
fact that g°(h) is reductive in g thus follows from Lemma 2.

4. DECOMPOSITION OF A LIE ALGEBRA RELATIVE TO
AN AUTOMORPHISM

PROPOSITION 12. Let g be a Lie algebra, a an automorphism of g.

(i) For A\, € k, [g*(a), g"(a)] C g™ (a); in particular, g*(a) is a subalge-
bra of g.

(ii) If B is a symmetric bilinear form on g invariant under a, g*(a)
and gH(a) are orthogonal relative to B for Ay # 1. Assume that B is non-
degenerate. Then, if X\ # 0, the restriction of B to g*(a) x g'/*(a) is non-
degenerate.

Assertion (i) and the first half of (ii) follow from Prop. 2 (iii) applied to
the composition law g x g — g and the bilinear form B. To prove the second
half of (ii), we can assume that k is algebraically closed. Then g = EEBkg”(a).

In view of the above, g*(a) is orthogonal to g”(a) if A\v # 1; since B is
non-degenerate, it follows that its restriction to g*(a) x g'/*(a) is also.

COROLLARY. Assume that k is of characteristic zero and that g is semi-
simple. Then the subalgebra g (a) satisfies conditions (1) and (2) of Lemma 2;
it is reductive in g.

Condition (1) follows from part (ii) of Prop. 12; condition (2) follows from
Prop. 4 of no. 1.

5. INVARIANTS OF A SEMI-SIMPLE LIE ALGEBRA
RELATIVE TO A SEMI-SIMPLE ACTION

In this no., k is assumed to be of characteristic zero.

PROPOSITION 13. Let g be a semi-simple Lie algebra, a a subalgebra of g
reductive in g, and m the commutant of a in g. The subalgebra m satisfies
conditions (1) and (2) of Lemma 2 of no. 3; it is reductive in g.
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By Prop. 6 of Chap. I, §3, no. 5, applied to the a-module g, we have
g = m® [a,g]. Let B be the Killing form of g, and let € a,y € m,z € g.
Then,

B([z,z],y) = B(z,[z,y]) =0 since [z,y] = 0,

which shows that m is orthogonal to [a,g] relative to B. Since B is non-
degenerate, and since g = m @ [a, g|, this implies that the restriction of B to
m is non-degenerate; condition (1) of Lemma 2 is thus satisfied.

Now let x € m and let s and n be its semi-simple and nilpotent compo-
nents. The semi-simple component of ad = is ad s, cf. Chap. I, §6, no. 3. Since
ad z is zero on a, so is ad s, by Prop. 4 (i). Thus s € m, son =z — s € m,
and condition (2) of Lemma 2 is satisfied.

Remark. The commutant of m in g does not necessarily reduce to a, cf.
Exerc. 4.

PROPOSITION 14. Let g be a semi-simple Lie algebra, A a group and v a
homomorphism from A to Aut(g). Let m be the subalgebra of g consisting of
the elements invariant under r(A). Assume that the linear representation r
is semi-simple. Then m satisfies conditions (1) and (2) of Lemma 2 of no.
it is reductive in g.

The proof is analogous to that of the preceding proposition:

Let g* be the vector subspace of g generated by the r(a)z—z,a € A,z € g.
The vector space g’ = m + g% is stable under r(A). Let n be a complement
of g’ in g stable under r(A). If z €n,a € A, r(a)r—z €nngt =0,s0z €m
and then z = 0 since mNn = 0. Thus, g = g’ = m+g". Let B be the Killing
form of g and let y € m,a € Az € g. Then

B(yv T(CL):E - IE) = B(y7 r(a)x) - B(ya .’b)
= B(T(a_l)yv {E) - B(y7 217)
Thus m and g* are orthogonal relative to B. It follows that the restriction of

B to m is non-degenerate; hence condition (1) of Lemma 2. Condition (2) is
immediate by transport of structure.

§2. CARTAN SUBALGEBRAS AND REGULAR
ELEMENTS OF A LIE ALGEBRA

From mno. 2 onwards, the field k is assumed to be infinite.
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1. CARTAN SUBALGEBRAS

DEFINITION 1. Let g be a Lie algebra. A Cartan subalgebra of g is a nilpo-
tent subalgebra of g equal to its own normalizer.

Later we shall obtain the following results:

1) if k is infinite, g has Cartan subalgebras (no. 3, Cor. 1 of Th. 1);

2) if k is of characteristic zero, all Cartan subalgebras of g have the same
dimension (§3, no. 3, Th. 2);

3) if k is algebraically closed and of characteristic 0, all Cartan subalgebras
of g are conjugate under the group of elementary automorphisms of g (§3,
no. 2, Th. 1).

Ezamples. 1) If g is nilpotent, the only Cartan subalgebra of g is g itself
(Chap. I, §4, no. 1, Prop. 3).

2) Let g = gl(n, k), and let b be the set of diagonal matrices belonging to
g. We show that h is a Cartan subalgebra of g. First, h is commutative, hence
nilpotent. Let (E;;) be the canonical basis of gl(n, k), and let z = > p;; Eyj
be an element of the normalizer of § in g. If ¢ # j, formulas (5) of Chap. I,
§1, no. 2 show that the coefficient of E;; in [Ej;,x] is p;. Since E;; € b,
[Ei;, z] € b, and the coefficient in question is zero. Thus p;; = 0 for ¢ # j, so
x € b, which shows that § is indeed a Cartan subalgebra of g.

3) Let h be a Cartan subalgebra of g and let g; be a subalgebra of g
containing h. Then b is a Cartan subalgebra of g;; this follows immediately
from Def. 1.

PROPOSITION 1. Let g be a Lie algebra and let i be a Cartan subalgebra of
g. Then by is a maximal nilpotent subalgebra of g.

Let b’ be a nilpotent subalgebra of g containing §. Then b is a Cartan
subalgebra of h’ (Example 3), so h = b’ (Example 1).

There exist maximal nilpotent subalgebras that are not Cartan subalgebras
(Exerc. 2).

PROPOSITION 2. Let (g;)ie1 be a finite family of Lie algebras and g = ng,-.
1€
The Cartan subalgebras of g are the subalgebras of the form thl-, where b;
1€

is a Cartan subalgebra of g;.

If h; is a subalgebra of g; with normalizer n;, then [] b; is a subalgebra of g
with normalizer [] n;; if the b; are nilpotent, [ ] §; is nilpotent; thus, if b; is a
Cartan subalgebra of g; for all i, [ ; is a Cartan subalgebra of g. Conversely,
let h be a Cartan subalgebra of g; the projection h; of h onto g; is a nilpotent
subalgebra of g;, and [] b; is a nilpotent subalgebra of g containing b; hence
h =T1bh: (Prop. 1); thus, for all 4, h; is its own normalizer in g;, and so is a
Cartan subalgebra of g;.

L
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Ezample 4. If k is of characteristic 0, gl(n, k) is the product of the ideals
sl(n, k) and k.1. Tt follows from Example 2 and Prop. 2 that the set of diagonal
matrices of trace 0 in sl(n, k) is a Cartan subalgebra of sl(n, k).

PROPOSITION 3. Let g be a Lie algebra, b a subalgebra of g, and k' an
extension of k. Then b is a Cartan subalgebra of g if and only if h Qi k' is a
Cartan subalgebra of g ®x k.

Indeed, § is nilpotent if and only if h ® k" is (Chap. I, §4, no. 5). On the
other hand, if n is the normalizer of § in g, the normalizer of h @ k' in g @ &’
is n®g k' (Chap. I, §3, no. 8).

PROPOSITION 4. Let g be a Lie algebra, b a nilpotent subalgebra of g. Then
b is a Cartan subalgebra of g if and only if g°(h) = b.

If g°(h) = b, b is its own normalizer (§1, Prop. 10 (i)), so b is a Cartan
subalgebra of g. Assume that g°(h) # h. Consider the representation of h on
3°(h)/h obtained from the adjoint representation by passage to the quotient.
By applying Engel’s theorem (Chap. I, §4, no. 2, Th. 1), we see that there
exists z € g°(h) such that = ¢ b and [h,2] C bh; then z belongs to the
normalizer of h in g, so § is not a Cartan subalgebra of g.

COROLLARY 1. Let g be a Lie algebra, h a Cartan subalgebra of g. If k is
infinite, there exists x € b such that h = g°(x).
Indeed, h = g°(h) and we can apply Prop. 9 (ii) of §1.

COROLLARY 2. Let f : g — g’ be a surjective homomorphism of Lie alge-
bras. If b is a Cartan subalgebra of g, f(h) is a Cartan subalgebra of g'.

Indeed, f(h) is a nilpotent subalgebra of g’. On the other hand, consider
the representation x — ad f(z) of § on g’. By Prop. 9 (iv) of §1, no. 3,
f(@° () = ¢°(h). Now g°(h) = b, and on the other hand it is clear that
g/O(h) = g’o(f(h)). Hence, f(h) = g'o(f(f))) and it suffices to apply Prop. 4.

COROLLARY 3. Let b be a Cartan subalgebra of a Lie algebra g, and let
¢"g (n > 1) be a term of the descending central series of g (Chap. I, §1,
no.5). Theng=h+%"g.

Indeed, Corollary 2 shows that the image of § in g/%"g is a Cartan
subalgebra of g/%"g, hence is equal to g/%"g since g/%"g is nilpotent
(Example 1).

COROLLARY 4. Let g be a Lie algebra, b a Cartan subalgebra of g, and a a
subalgebra of g containing b.

(i) a is equal to its own normalizer in g.

(ii) Assume that k = R or C; let G be a Lie group with Lie algebra g, A
the integral subgroup of G with Lie algebra a. Then A is a Lie subgroup of G,
and it is the identity component of the normalizer of A in G.
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Let n be the normalizer of a in g. Since § is a Cartan subalgebra of n
(Example 3), {0} is a Cartan subalgebra of n/a (Cor. 2), hence is equal to its
normalizer in n/a; in other words, n = a. Assertion (ii) follows from (i) and
Chap. III, §9, no. 4, Cor. of Prop. 11.

COROLLARY 5. Let g be a Lie algebra, E a subset of g. Let E operate on g
by the adjoint representation. Then E is a Cartan subalgebra of g if and only
if E=g°(E).

The condition is necessary (Prop. 4). Assume now that E = g°(E). By
Prop. 2 (ii) of §1, no. 1, E is then a subalgebra of g. If € E, adgx is nilpotent
since E C g°(E); hence the algebra E is nilpotent. But then E is a Cartan
subalgebra by Prop. 4.

COROLLARY 6. Let g be a Lie algebra, let ko be a subfield of k such that
[k : ko] < 400, and let go be the Lie algebra obtained from g by restricting the
field of scalars to ko. Let h be a subset of g. Then § is a Cartan subalgebra
of g if and only if b is a Cartan subalgebra of gq.

This follows from Cor. 5, since the condition b = g°(f) does not involve
the base field.

PROPOSITION 5. Let g be a Lie algebra, ¢ its centre, § a vector subspace of
g. Then by is a Cartan subalgebra of g if and only if b contains ¢ and h/c is
a Cartan subalgebra of g/c.

Assume that b is a Cartan subalgebra of g. Since [c, g] C b, we have ¢ C b.
On the other hand, /¢ is a Cartan subalgebra of g/c by Cor. 2 of Prop. 4.

Assume that h D ¢ and that h/c is a Cartan subalgebra of g/c. Let f
be the canonical morphism from g to g/c. The algebra b, which is a central
extension of h/c, is nilpotent. Let n be the normalizer of b in g. If = € n,
[f(x),b/c] C b/c, hence f(x) € h/c, and so x € h. This proves that h is a
Cartan subalgebra of g.

COROLLARY. Let Gsg be the union of the ascending central series of the
Lie algebra g (Chap. I, §1, no. 6). The Cartan subalgebras of g are the inverse
images of the Cartan subalgebras of §/%09.

Indeed, the centre of g/%;g is %;+19/%:8, and the corollary follows imme-
diately from Prop. 5 by induction.

Remark. %9 is the smallest ideal n of g such that the centre of g/n is zero;
it is a characteristic and nilpotent ideal of g.
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2. REGULAR ELEMENTS OF A LIE ALGEBRA

[Recall that k is assumed to be infinite from now on.]
Let g be a Lie algebra of dimension n. If z € g, write the characteristic
polynomial of ad z in the form

det(T —adz) = Zai(oc)Tl7 with a,;(x) € k.
=0

We have a;(z) = (—1)""Tr (/\"ﬂ adx), cf. Algebra, Chap. III, §8, no. 11.
This shows that « — a;(z) is a homogeneous polynomial map of degree n — i
from g to k (Algebra, Chap. IV, §5, no. 9).

Remarks. 1) If g # {0}, ap = 0 since (ad z)(x) = 0 for all = € g.
n
2) Let k' be an extension of k. Write det(T — adz’) = Z:Oa;(x’)Ti for
2’ € gy k'. Then a}|g = a; for all 1.

DEFINITION 2. The rank of g, denoted by tk(g), is the smallest integer
such that a; # 0. An element x of g is called regular if a;(z) # 0.

For all x € g, tk(g) < dim g°(z), and equality holds if and only if x is
regular.
The set of regular elements is dense and open in g for the Zariski topology

(App. I).

Ezamples. 1) If g is nilpotent, rk(g) = dim g and all elements of g are regular.

2) Let g =sl(2,k). If x = (g _047) € g, an easy calculation gives

det(T —adz) = T? — 4(af +~+*)T.

If the characteristic of k is # 2, then rk(g) = 1 and the regular elements are
those x such that a3+ ~2 # 0.

3) Let V be a vector space of finite dimension n, and g = gl(V). Let k
be an algebraic closure of k. Let « € g, and let \q,...,\, be the roots in k
of the characteristic polynomial of x (each root being written a number of
times equal to its multiplicity). The canonical isomorphism from V* ® V to
g is compatible with the g-module structures of these two spaces, in other
words it takes 1 ®  — 'z ® 1 to adz (Chap. I, §3, no. 3, Prop. 4). In view
of §1, Prop. 4 (i), it follows that the roots of the characteristic polynomial
of adz are the \; — Aj for 1 <i<n,1<j<n (each root being written a
number of times equal to its multiplicity). Thus, the rank of g is n, and z is
regular if and only if each \; is a simple root of the characteristic polynomial
of x.
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PROPOSITION 6. Let g be a Lie algebra, k' an extension of k, and g’ =
g k.
(i) An element x of g is reqular in g if and only if v @ 1 is regular in g'.
(i) rk(g) = rk(g’).
This follows from Remark 2.

PROPOSITION 7. Let (g;)ic1 be a finite family of Lie algebras, and let g =

i€l

(i) An element (z;);c1 of g is regular in g if and only if, for all i € 1, x;
is regular in g;.

(i) rk(g) = 2 k(s:)

Indeed, for any = = (x;);e1 € g, the characteristic polynomial of adgz is
the product of the characteristic polynomials of the adg, ;.

PROPOSITION 8. Let f : g — ¢ be a surjective homomorphism of Lie
algebras.

(1) If z is a reqular element of g, f(x) is reqular in g'. The converse is
true if Ker f is contained in the centre of g.

(i) k(g) > rk(g').

Put rk(g) = r,1k(g’) = . Let « € g. The characteristic polynomials of
ad x, ad f(z) and ad z|Ker f are of the form

P(T) =T" +ap_1(z)T" ' + -+ a,(x)T",

Q(T) = T + b1 (2)T" " 4 -+« + by (2)T",

R(T) = T + o1 (&) T 1 4+ 4 ()T,
where the a;, b;, ¢; are polynomial functions on g, with a, # 0,b,» # 0, c,» # 0.
We have P = QR, so r = 7/ + " and a,(x) = by ()¢ (x), which proves

(ii) and the first assertion of (i). If Ker f is contained in the centre of g,
R(T)=T" and so a,(z) = b (z), hence the second assertion of (i).

COROLLARY. Let 6,9 (n > 0) be a term of the ascending central series of
g (Chap. I, §1, no. 6). The regular elements of g are those whose image in
9/%ng is regular.

PROPOSITION 9. Let g be a Lie algebra, g’ a subalgebra of g. Every element
of ¢’ regular in g is reqular in g'.

For € ¢, the restriction of adgz to g’ is adg/z, and so defines an endo-
morphism u(z) of the vector space g/g’ by passage to the quotient. Let do(x)
(resp. di(z)) be the dimension of the nilspace of adg (x) (resp. of u(z)), and
let ¢o (resp. ¢1) be the minimum of dy(z) (resp. di(x)) when 2 belongs to g’.
There exist non-zero polynomial maps pg,p1 from g’ to k such that

do(z) = co <= po(x) #0, di(z) =c1 <> p1(z) #0.
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Since k is infinite, the set S of € g’ such that do(z) = ¢p and dy(z) = ¢ is
non-empty. Every element of S is regular in g’. On the other hand, S is the
set of elements of g’ such that the nilspace of adgz has minimum dimension,
and thus contains every element of g’ regular in g.

Remark. 3) Elements of g’ regular in g do not necessarily exist. If at least
one does exist, the set of these elements is precisely the set denoted by S in
the above proof.

3. CARTAN SUBALGEBRAS AND REGULAR ELEMENTS

THEOREM 1. Let g be a Lie algebra.

(i) If z is a regular element of g, g°(x) is a Cartan subalgebra of g.

(ii) If b is a mazimal nilpotent subalgebra of g, and if x € b is regular in
g, then h = g°(x).

(iii) If b is a Cartan subalgebra of g, then dim(h) > rk(g).

(iv) The Cartan subalgebras of g of dimension vk(g) are the g°(x) where
x s a reqular element.

Let x be a regular element of g and let h = g°(z). Clearly h°(z) = b.
Since x is regular in § (Prop. 9), rk(h) = dim(h), so b is nilpotent. On the
other hand, h = g°(x) D g°(h) D b, so h = g°(h) is a Cartan subalgebra of g
(Prop. 4). This proves (i).

If h is a maximal nilpotent subalgebra of g, and if z € § is regular in g,
then b C g%(z) and g%(z) is nilpotent by (i), so h = g°(x), which proves (ii).

If h is a Cartan subalgebra of g, there exists # € h such that h = g°(x)
(Cor. 1 of Prop. 4), so dim(h) > rk(g), which proves (iii). If in addition
dim(h) = rk(g), z is regular. Finally, if 2’ is regular in g, g°(2’) is a Cartan
subalgebra by (i), and is obviously of dimension rk(g). This proves (iv).

We shall see in §3, Th. 2 that, when k is of characteristic zero, all the Cartan
subalgebras of g have dimension rk(g).

COROLLARY 1. Every Lie algebra g has Cartan subalgebras, and the rank
of g is the minimum dimension of a Cartan subalgebra.

COROLLARY 2. Let f : g — ¢’ be a surjective homomorphism of Lie alge-
bras. If b’ is a Cartan subalgebra of g, there exists a Cartan subalgebra b of
g such that b’ = f(h).

Let a = f~1(p’). By Cor. 1, a has a Cartan subalgebra h. By Cor. 2 of
Prop. 4, f(h) = h’. We show that b is a Cartan subalgebra of g. Let n be
the normalizer of h in g. It is enough to prove that h = n. If € n, f(z)
belongs to the normalizer of h’ in g’, so f(z) € ' and = € a; but h is its own
normalizer in a, so x € b.

COROLLARY 3. Every Lie algebra g is the sum of its Cartan subalgebras.
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The sum s of the Cartan subalgebras of g contains the set of regular
elements of g (Th. 1 (i)). Since this set is dense in g for the Zariski topology,

s=g.

PROPOSITION 10. Let g be a Lie algebra, a a commutative subalgebra of g
and ¢ the commutant of a in g. Assume that adgx is semi-simple for all x € a.
Then the Cartan subalgebras of ¢ are the Cartan subalgebras of g containing
a.

Let h be a Cartan subalgebra of ¢. Since a is contained in the centre 3 of
¢, a C 3 Cbh (Prop. 5). Let n be the normalizer of ) in g. Then

[a,n] C [h,n] C h.

Since the adgz, * € a, are semi-simple and commute with each other, it
follows from Algebra, Chap. VIII, §5, no. 1, that there exists a vector subspace
0 of n stable under adga and such that n = h @ 0. Then [a,0] C hNd =0, so
0 C ¢. Thus, n is the normalizer of § in ¢, and hence n = h, so b is a Cartan
subalgebra of g containing a.

Conversely, let h be a Cartan subalgebra of g containing a. Then h =
g’(h) C g%(a), and by hypothesis go(a) = g°(a) = ¢. Hence a C h C ¢ and b
is a Cartan subalgebra of ¢ (for it is equal to its own normalizer in g, and so
a fortiori in c).

PROPOSITION 11. Let n be a nilpotent subalgebra of a Lie algebra g. There
exists a Cartan subalgebra of g contained in g°(n).

Put a = g°(n). Then n C a since n is nilpotent. If z € a, let P(z) be the
determinant of the endomorphism of g/a defined by ad z. Denote by a’ the
set of & € a such that P(x) # 0, which is an open subset of a in the Zariski
topology; the relations z € a’ and g°(z) C a are equivalent. By Prop. 7 (ii)
of §1, no. 2, there exists y € n such that g°(y) = a, and y € o so d is
non-empty. Since a’ is open, its intersection with the set of regular elements
of a is non-empty. Let x be an element of this intersection. Then g%(z) C a
and g°(x) is a Cartan subalgebra of a, hence is nilpotent. On the other hand,
Prop. 10 (i) of §1, no. 3, shows that g°(x) is its own normalizer in g; it is
therefore a Cartan subalgebra of g, which completes the proof.

4. CARTAN SUBALGEBRAS OF SEMI-SIMPLE LIE
ALGEBRAS

THEOREM 2. Assume that k is of characteristic 0. Let g be a semi-simple
Lie algebra, b a Cartan subalgebra of g. Then b is commutative, and all of
its elements are semi-simple in g (Chap. I, §6, no. 3, Def. 3).

Since h = g°(h), b is reductive (§1, Prop. 11), hence commutative since it
is nilpotent. On the other hand, the restriction of the adjoint representation
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of g to b is semi-simple (loc. cit.), so the elements of h are semi-simple in g
(Algebra, Chap. VIII, §5, no. 1).

COROLLARY 1. If x € b and y € g*(h), we have [z,y] = \(z)y.
Indeed, g*®)(z) = gx(z) () since ad z is semi-simple.

COROLLARY 2. Every regular element of g is semi-simple.
Indeed, such an element belongs to a Cartan subalgebra (no. 3, Th. 1 (i)).

COROLLARY 3. Let b be a Cartan subalgebra of a reductive Lie algebra g.

a) b is commutative.

b) If p is a finite dimensional semi-simple representation of g, the elements
of p(h) are semi-simple.

Let ¢ be the centre of g, and s its derived algebra. Then g = ¢ X s, so
h = cxb’, where b’ is a Cartan subalgebra of s (Prop. 2). In view of Th. 2, b’ is
commutative, hence so is h. Moreover, p(h’) consists of semi-simple elements
and so does p(c) (Chap. I, §6, no. 5, Th. 4); assertion b) follows.

§3. CONJUGACY THEOREMS

In this paragraph, the base field k is of characteristic 0.

1. ELEMENTARY AUTOMORPHISMS

Let g be a Lie algebra. Denote its group of automorphisms by Aut(g). If z € g
and if ad z is nilpotent, e** € Aut(g) (Chap. I, §6, no. 8).

DEFINITION 1. A finite product of automorphisms of g of the form e*d®
with ad x nilpotent is called an elementary automorphism of g. The group of
elementary automorphisms of g is denoted by Aut.(g).

If u € Aut(g), ued®u—! = e2d%®) Tt follows that Aut.(g) is a normal
subgroup of Aut(g). If k = R or C, Aut.(g) is contained in the group Int(g)
of inner automorphisms of g (Chap. III, §6, no. 2, Def. 2).

* In the general case, Aute(g) is contained in the identity component of the
algebraic group Aut(g).«

Lemma 1. Let V be a finite dimensional vector space, n a Lie subalgebra of
a = gl(V) consisting of nilpotent elements.

(i) The map x — expx is a bijection from n to a subgroup N of GL(V)
consisting of unipotent elements (Chap. II, §6, no. 1, Remark 4). We have
n = log(expn). The map f +— f olog is an isomorphism from the algebra of
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polynomial functions on n to the algebra of restrictions to N of polynomial
functions on End(V).
(ii) Ifrenanda € a,

(expadax).a = (exp x)a(exp(—x)).

(iii) Let V' be a finite dimensional vector space, ' a Lie subalgebra of
gl(V') consisting of nilpotent elements, p a homomorphism from n to n'. Let
m be the map expx +— expp(x) from expn to expn'. Then T is a group
homomorphism.

By Engel’s theorem, we can identify V with k™ in such a way that n is
a subalgebra of n(n, k) (the Lie subalgebra of M,, (k) consisting of the lower
triangular matrices with zeros on the diagonal). For s > 0, let ns(n, k) be the
set of (2i5)1<i,j<n € My (k) such that z;; =0 for ¢ — j < s. Then

[ns(n, k), ng (n, k)] C ngys(n, k)

(Chap. II, §4, no. 6, Remark), and the Hausdorff series defines a polynomial
map (a,b) — H(a,b) from n(n,k) x n(n,k) to n(n, k) (Chap. II, §6, no. 5,
Remark 3); this map makes n(n, k) into a group (Chap. II, §6, no. 5, Prop. 4).
By Chap. II, §6, no. 1, Remark 4, the maps = — expz from n(n,k) to
1+n(n, k) and y — logy from 1+n(n, k) to n(n, k) are inverse bijections and
are polynomial; by Chap. II, §6, no. 5, Prop. 3, these maps are isomorphisms
of groups if n(n, k) is given the group law (a,b) — H(a,b) and if 1 4 n(n, k)
is considered as a subgroup of GL,, (k). Assertions (i) and (iii) of the lemma
now follow. Let € n. Denote by L;, R, the maps u — zu,u — ux from a
to a, which commute and are nilpotent. We have ad,z = L, — Ry, so, for all
a€a,

(expadqx)a = (exp(Ly f_Rr))a = (expLy)(expR_;)a (1)
= Z L_—:mR;xa = (exp z)a(exp(—x)).
=t

With the notation in Lemma 1, 7 is called the linear representation of
expn compatible with the given representation p of n on V. When k is R,
C, or a non-discrete complete ultrametric field, p = L(7) by the properties
of exponential maps (Chap. III, §4, no. 4, Cor. 2 of Prop. 8).

PROPOSITION 1. Let g be a Lie algebra, n a subalgebra of g such that adgx
is nilpotent for all x € n. Then €*d™ is a subgroup of Aut.(g).

This follows immediately from Lemma 1 (i).

adgn

In particular, if n is the nilpotent radical of g, e is the group of special

automorphisms of g (Chap. I, §6, no. 8, Def. 6).
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Remarks. 1) Let V be a finite dimensional vector space, g a Lie subalgebra of
a = gl(V), z an element of g such that adgz is nilpotent. Then there exists a
nilpotent element n of a such that ad,n extends adgz. Indeed, let s,n be the
semi-simple and nilpotent components of x; then ad,s and ad,n are the semi-
simple and nilpotent components of ad,z (Chap. I, §5, no. 4, Lemma 2), so
adqs and adqn leave g stable, and ad,s|g and adyn|g are the semi-simple and
nilpotent components of adgz; consequently, adge = ad,n|g, which proves
our assertion. In view of Lemma 1 (ii), every elementary automorphism of g
extends to an automorphism of a of the form u — mum =" where m € GL(V).

2) Let V be a finite dimensional vector space. For all g € SL(V), let ¢(g)
be the automorphism x — grg~! of gl(V). Then

Aute(gl(V)) = ¢(SL(V)).

Indeed, by (1), Aut.(gl(V)) is contained in p(SL(V)), and the opposite in-
clusion follows from Algebra, Chap. III, §8, no. 9, Prop. 17 and (1). An anal-

ogous argument shows that Aut.(sl(V)) is the set of restrictions of elements
of (SL(V)) to sl(V).

2. CONJUGACY OF CARTAN SUBALGEBRAS

Let g be a Lie algebra, § a nilpotent subalgebra of g and R the set of non-zero
weights of b in g, in other words the set of linear forms A # 0 on h such that
g*(h) # 0, cf. §1, no. 3, Prop. 9 (iii). Assume that

g=g'(h @Y a*h),

AER

which is the case if k is algebraically closed (§1, no. 3, Prop. 9 (i)). For A € R
and = € g*(h), adz is nilpotent (§1, no. 3, Prop. 10 (iv)). Denote by E(h)
the subgroup of Aut,(g) generated by the e*d% where z is of the form above.
If u € Aut(g), it is immediate that uE(h)u~! = E(u(h)).

Lemma 2. (i) Let b, be the set of x € b such that g°(x) = g°(); this is the
set of x € b such that AM(z) # 0 for all X € R, and b, is open and dense in b
i the Zariski topology.

(if) Put R = {1, Ae,..., A\, } where the \; are mutually distinct. Let F be
the map from g°(h) x gt (h) x - x g*»(b) to g defined by the formula

F(h,z1,...,2p) = e | eadzpp

Then F is a dominant polynomial map (App. I).

Assertion (i) is clear. We prove (ii). Let n = dim g. If A € R and x € g*(h),
we have (ad z)"™ = 0. It follows that (y, ) — e*!%y is a polynomial map from
g x g*(h) to g; it follows by induction that F is polynomial. Let hg € b, and
let DF be the tangent linear map of F at (hg,0,...,0); we show that DF is
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surjective. For h € g°(h), F(ho + h,0,...,0) = hg + h, so DF(h,0,...,0) = h
and Im(DF) D g°(h). On the other hand, for = € g*:(h),
(ad x)?

2!
so DF(0,,0,...,0) = (adx).hg = —(ad ho)x; since ad hy induces an auto-
morphism of g* (), Im(DF) D g*t (). Similarly,

Im(DF) > g™ (h)

F(ho,x,O, .. .,0) = 6adxh0 =ho + (adl‘)ho +

ho+ -

for all 4, hence the surjectivity of DF. Prop. 4 of App. I now shows that F is
dominant.

PROPOSITION 2. Assume that k is algebraically closed. Let g be a Lie al-
gebra, b and §’ Cartan subalgebras of g. There exist u € E(h) and v’ € E(h’)
such that u(h) = u'(§").

We retain the notation of Lemma 2. From the fact that § and b’ are
Cartan subalgebras, it follows that g°(h) = b and g°(h’) = b’. By Lemma 2
and Prop. 3 of App. I, E(h)h, and E(h')h!. contain open dense subsets of g in
the Zariski topology. Thus E(h)h,. NE(§')h!. # &. In other words, there exist
u € E(h),v € E(h),h €b,,h" €b. such that u(h) = u'(h’); then

u(h) = u(g’(h)) = ¢°(u(h)) = ¢° (W' (1)) = u' ().
COROLLARY. E(h) = E(p').

Let u,u be as in Prop. 2. Then

E(h) = uE(h)u~" = E(u(h)) = E(u'(h')) = W'E(h)u’" =E(h'),
hence the corollary.

Because of this result, if &k is algebraically closed we shall denote simply
by E the group E(h), where b is a Cartan subalgebra of g.

In general, Aute(g) # E (for example, if g is nilpotent, E reduces to the identity
element, even though non-trivial elementary automorphisms exist provided g is
non-commutative). However, it can be shown (Chap. VIII, §10, Exerc. 5) that

Aute(g) = E for g semi-simple.

THEOREM 1. Assume that k is algebraically closed. Let g be a Lie algebra.
The group E is normal in Aut(g) and operates transitively on the set of
Cartan subalgebras of g.

Let h be a Cartan subalgebra of g, and v € Aut(g). Then

vE(h)v™! = E(v(h)) = E(h),

so E(h) = E is normal in Aut(g). If h’ is another Cartan subalgebra of g,
then, in the notation of Prop. 2, u’flu(f)) =p, and v 'u € E.



24 CARTAN SUBALGEBRAS AND REGULAR ELEMENTS Ch. VII
3. APPLICATIONS OF CONJUGACY

THEOREM 2. Let g be a Lie algebra.

(i) The Cartan subalgebras of g are all of the same dimension, namely
rk(g), and the same nilpotency class.

(ii) An element x € g is regular if and only if g°(x) is a Cartan subalgebra
of g; every Cartan subalgebra is obtained in this way.

To prove (i), we can assume that k is algebraically closed (cf. §2, Prop. 3
and Prop. 6), in which case it follows from Th. 1 of no. 2. Assertion (ii)
follows from (i) and §2, Th. 1 (i) and (iv).

PROPOSITION 3. Let g be a Lie algebra, g' a subalgebra of g. The following
conditions are equivalent:

(i) ¢’ contains a regular element of g, and rk(g) = rk(g’);

(ii) ¢’ contains a Cartan subalgebra of g;

(iii) every Cartan subalgebra of g’ is a Cartan subalgebra of g.

(i) = (ii): Assume that rk(g) = rk(g’), and that there exists = € ¢’
regular in g. Put h = g%(z), 5 = ¢’°(#) = h N g’. Then

rk(g’) < dimbp’ < dimb = rk(g) = rk(g’)

so h =b’ C g’. This proves (ii).

(ii) = (iii): Assume that g’ contains a Cartan subalgebra b of g, and
let h; be a Cartan subalgebra of g’. To prove that h; is a Cartan subalgebra
of g, we can assume that k is algebraically closed. Let E() and E'(h) be
the groups of automorphisms of g and g’ associated to b (no. 2). By Th. 1,
there exists f € E'(h) such that f(h) = h;. Now every element of E'(h) is
induced by an element of E(h); indeed, it suffices to verify this for e, with
z € g™(h), A # 0, in which case it follows from the inclusion g'*(h) C g*().
Thus b, is a Cartan subalgebra of g.

(ili) = (i): Assume that condition (iii) is satisfied. Let h be a Cartan
subalgebra of g’. Since this is a Cartan subalgebra of g, it contains a regular
element of g (Th. 2 (ii)), and on the other hand rk(g) = dim(h) = rk(g’).

COROLLARY. Let b be a nilpotent subalgebra of g. The subalgebra g°(b) has
properties (1), (ii), (iii) in Prop. 3.
Indeed, Prop. 11 of §2, no. 3, shows that g°(h) has property (ii).

PROPOSITION 4. Let g be a Lie algebra, | the rank of g, ¢ the nilpotency
class of the Cartan subalgebras of g, and x € g. There exists an l-dimensional
subalgebra of g whose nilpotency class is < ¢ and which contains x.

Let T be an indeterminate. Let k' = k(T) and ¢’ = g®i k. If h is a
Cartan subalgebra of g, h ®; k' is a Cartan subalgebra of g', hence the rank
of g’ is [ and the nilpotency class of the Cartan subalgebras of g’ is c.
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Choose a regular element y of g. With the notations of §2, no. 2, we have
a;(y) # 0. Denote also by a; the polynomial function on g’ that extends
a;. Then the element a;(z + Ty) of k[T] has dominant coefficient a;(y). In
particular, z + Ty is regular in g’. Let b’ be the nilspace of ad(x + Ty) in g'.
Then dim §’ = [ and the nilpotency class of b’ is ¢. Put € = b’ N (g @ k[T]);
then E®k[T] k(T) = b/.

Let ¢ be the homomorphism from k[T] to k such that ¢(T) = 0, and let
1 be the homomorphism 1® ¢ from g®y k[T] to g. Then () is a subalgebra
of g whose nilpotency class is < ¢ and which contains ¢(z + Ty) = x.

In the free k[T]-module g ® k[T], ¢ is a submodule of rank [, and
(g @k k[T])/t is torsion free, so the submodule £ is a direct summand of
g @y k[T] (Algebra, Chap. VII, §4, no. 2, Th. 1). Hence dimy, ¢ (&) = I, which
completes the proof.

4. CONJUGACY OF CARTAN SUBALGEBRAS OF SOLVABLE
LIE ALGEBRAS

Let g be a solvable Lie algebra. Denote by 4°°(g) the intersection of the
terms of the descending central series of g (Chap. I, §1, no. 5). This is a
characteristic ideal of g, and is the smallest ideal m of g such that g/m is
nilpotent. Since ¥°°(g) C [g, 9], €°°(g) is a nilpotent ideal of g (Chap. I, §5,
no. 3, Cor. 5 of Th. 1). By Prop. 1 of no. 1, the set of e**, for z € €>(g),
is a subgroup of Aut(g) contained in the group of special automorphisms
(Chap. I, §6, no. 8, Def. 6).

THEOREM 3. Let g be a solvable Lie algebra, and let b, b’ be Cartan subal-
gebras of g. There exists © € €°°(g) such that e*17h = p'.

We argue by induction on dim g, the case where g = 0 being trivial. Let
n be a minimal non-zero commutative ideal of g. Let ¢ : g — g/n be the
canonical morphism. Then ¢(4*g) = ¢°°(g/n) (Chap. I, §1, no. 5, Prop.
4). Since ¢(h) and (') are Cartan subalgebras of g/n (§2, no. 1, Cor. 2 of
Prop. 4), there exists, by the induction hypothesis, an x € ¥ (g) such that
e21¢@) r(h) = p(b’). Replacing b by €21?h, we can assume that ©(h) = p(h’),
in other words that

h+n=1h +n.

Then b and b’ are Cartan subalgebras of h +n. If h +n # g, the assertion to
be proved follows from the induction hypothesis. Assume from now on that
hb+n=H+n=g.

By the minimality of n, [g,n] = {0} or [g,n] = n. If [g,n] = {0}, then
nC handnCh (§2, no. 1, Prop. 5), 80 h =h+n =05 +n=0p.It remains
to consider the case where [g,n] =1, so n C €°°(g). The ideal n is a simple
g-module; since g = b+ n, and since [n,n] = {0}, it follows that n is a simple
h-module. If h N n #£ {0}, then n C b, so g = h and ' = h. Assume now that
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hNn={0}. Then g = h®n and hence g = h’ ® n, since h and h’ have the
same dimension.

For all x € b, let f(z) be the unique element of n such that z — f(z) € b’;
ifz,y €,

[z, y] = [z, f(y)] = [f(@),y] =[x = f(x),y — fFy)] €,

so f([z,y]) = [z, f(v)] + [f(2),y]. By §1, no. 3, Cor. of Prop. 9, there exists
a € nsuch that f(x) = [z,a] for all z € h. We have (ada)?(g) C (ad a)(n) = 0,
so, for all x € b,

e =g 4 [a,2] =z — f(z).

Thus e2d2(h) = b’. Since a € €*°(g), this completes the proof.

Lemma 3. Let g be a Lie algebra, v its radical, ¢ the canonical homomor-
phism from g to g/t, v an elementary automorphism of g/t. There exists an
elementary automorphism u of g such that p ou = v o .

We can assume that v is of the form e*® where b € g/t and adb is
nilpotent. Let s be a Levi subalgebra of g (Chap. I, §6, no. 8, Def. 7) and
let a be the element of s such that ¢(a) = b. Since adsa is nilpotent, adga is
nilpotent (Chap. I, §6, no. 3, Cor. of Prop. 3), and u = ¢*d? is an elementary
automorphism of g such that pou =wvo .

PROPOSITION 5. Let g be a Lie algebra, v its radical, b and b’ Cartan
subalgebras of g, and ¢ the canonical homomorphism from g to g/t. The
following conditions are equivalent:

(i) b and b’ are conjugate by an elementary automorphism of g;

(ii) ¢(bh) and (h') are conjugate by an elementary automorphism of g/t.

(i) = (ii): This is clear.

(i) = (i): We assume that condition (ii) is satisfied and prove (i).
By Lemma 3, we are reduced to the case where p(h) = p(h’). Put ¢ =
b+t = b’ + ¢, which is a solvable subalgebra of g. Then § and b’ are Cartan
subalgebras of €, so there exists * € ¥°°(£) such that e*d®h = p’ (Th. 3).
Since €/t is nilpotent, ¥°°(¢) C t; on the other hand, €°°(¢) C [¢, €] C [g, g],
so z € tM[g, g); by Chap. I, §5, no. 3, Th. 1, adgz is nilpotent, so e*ds® is an
elementary automorphism of g transforming b to b’.

5. LIE GROUP CASE

PROPOSITION 6. Assume that k is R, C or a non-discrete complete ultra-
metric field of characteristic 0. Let G be a finite dimensional Lie group over
k, e its identity element, g its Lie algebra, h a Cartan subalgebra of g, b, the
set of reqular elements of g belonging to b.
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(i) Let s be a vector space complement of b in g, 5o a neighbourhood
of 0 in s on which an exponential map is defined, and hg € b,.. The map
(s,h) — F(s,h) = (expad s).h from sqg X § to g is étale at (0, ho).

(ii) The map (g, h) — F'(g, h) = (Ad g).h from Gxb, to g is a submersion.
In particular, its image §2 is open. For all x € 2, g°(x) is a Cartan subalgebra
of g conjugate to b under Ad(G).

(iii) Let ho € b,. For any neighbourhood U of e in G, the set gU(Ad a)(b,)

is a neighbourhood of hgy in g.

Let hg and s be as in (i). Let T be the tangent linear map of F at (0, ho).
Then F(0,h) = hfor all h € b, so T(0,h) = h for all h € h. On the other hand,
for sg sufficiently small, the tangent linear map at 0 of the map s — expad s
from so to End(g) is the map s — ad s from s to End(g). Thus T(s, 0) = [s, ho]
for all s € s. Now the map from g/h to g/h induced by ad hy by passage
to the quotient is bijective. It follows that T is bijective, hence (i). Since
expads = Adexps for all s € s sufficiently close to 0, (iii) and the first
assertion of (ii) follow. Every x € {2 is of the form (Ada)(h) with a € G and
h € b, so g°(x) = (Ada)(g’(h)) = (Ada)(bh) is a subalgebra of g conjugate
to b under Ad(G).

¢4. REGULAR ELEMENTS OF A LIE GROUP

In nos. 1, 2 and 3 of this paragraph, we assume that k is R, C or a non-
discrete complete ultrametric field of characteristic 0. We denote by G a
finite dimensional Lie group over k, by g its Lie algebra, and by e its identity
element. If a € G, we denote by g*(a) the nilspace of Ad (a) — 1, in other
words the space g*(Ad(a)) (cf. §1, no. 1).

1. REGULAR ELEMENTS FOR A LINEAR
REPRESENTATION

Lemma 1. Let M be an analytic manifold over k and a = (ag, ..., an—1,a,=1)
a sequence of analytic functions on M. For all x € M, let ro(x) be the upper
bound of those i € (0,n) such that a;(z) = 0 for j < i and let r%(z) be the
upper bound of those i € (0,n) such that a; is zero on a neighbourhood of x
for g <.

(i) The function r, is upper semi-continuous.

(ii) For all z € M, r(z) = liminf, ., 74(y).

(iii) The function 0 is locally constant.

(iv) The set of points x € M such that r0(z) = r,(z) is the set of points
of M on a neighbourhood of which r, is constant. This is a dense open subset
of M. If k = C and M 1is finite dimensional and connected, it is open and
connected.
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(i) If ro(x) =i, then a;(z) # 0 and, for all y in a neighbourhood of z, we
have a;(y) # 0, so rq(y) < i.

(ii) If 72(x) = 4, the functions ag,...,a;_1 are zero on a neighbour-
hood of z and, for any y in this neighbourhood, r,(y) > 4. Consequently,
liminfy ., rq(y) > i. Every neighbourhood of = contains a point y such that
a;(y) # 0 and hence r,(y) < i. Thus liminf, ., 7,(y) = 1.

(iii) Let ¢ = 70(x) and let V be a neighbourhood of @ such that a;(y) =0
for all y € V and all j < i. Then x € M =7, where Z denotes the set of points
of M in a neighbourhood of which the function a; is zero. Since Z is closed
in M (Differentiable and Analytic Manifolds, Results, 5.3.5), VN (M=Z) is a
neighbourhood of z. For every point y in this neighbourhood, r%(y) = i.

(iv) The function 7, — 70 is upper semi-continuous and its value at any
point is > 0. If 7, (x) = (), r, — 70 is zero on a neighbourhood of , which
shows that r, is constant on a neighbourhood of x by (iii). Conversely, if r,
is constant on a neighbourhood of x, then r%(z) = r,(z) by (ii). The set of
points z € M such that r0(z) = r,(x) is thus an open subset {2 of M. If
x € M and if r(z) < r,(z), every neighbourhood of x contains a point y
such that r,(y) < r.(z) and rl(y) = r9(z). Every neighbourhood of x thus
contains a point y such that

ra(y) —ra(y) < ra(z) —ro().

It follows that 2 is dense in M.

If M is connected and if p is the value of ) on M, the points of §2 are the
points € M such that a,(z) # 0. If £ = C, this implies that {2 is connected
by Lemma 3 of Appendix II.

Let p be an analytic linear representation of G on a vector space V of
finite dimension n over k. Put

det(T - P(g) + 1) = ao(g) + al(g)T 4+ anfl(g)T"_l + T

The functions r, and 7"2 associated to the sequence (ag, a1, ...,a,—1,1) will
be denoted by r, and 7“2, respectively. Then, for all g € G,

rp(g9) = dim V' (p(g))
r9(g) =1lim inf dimV'(p(g")).
9’ =g
Lemma 2. Let 0 - V' — V — V" — 0 be an exact sequence of G-modules
defined by analytic linear representations p', p, p”" of G, respectively. Then:

0

0 0
Tp =Ty +7Tpr, and 1, =7, +71,.

Indeed, for all g € G, there is (§1, no. 1, Cor. 3 of Th.1 ) an exact sequence

0— (V'K (9)) = V'(p(g)) = (V") (0" (9)) = 0,
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which proves the first assertion. The second follows from it since, by Lemma 1
(iv), 7‘2 =7, 7‘2, =71, and 7“2,, =1, on a dense open subset of G.

DEFINITION 1. An element g € G is called regular for the linear represen-
tation p if r,(g) = r5(g)-

PROPOSITION 1. The regular points for an analytic linear representation
p of G are the points of G in a neighbourhood of which r, is constant. They
constitute a dense open subset of G. If k = C and G is connected, the set of
regular points for p is connected.

This follows from Lemma 1 (iv).

Remark. Let G* be an open subgroup of G. An element a € G* is a regular
element of G for the linear representation p of G if and only if it is a regular
element of G* for the linear representation p|G*.

2. REGULAR ELEMENTS OF A LIE GROUP

DEFINITION 2. An element of G is said to be regular if it is reqular for the
adjoint representation of G.

In other words (Prop. 1), an element g € G is regular if, for all elements
¢’ in a neighbourhood of g in G, the dimension of the nilspace of Ad(g’") — 1
is equal to the dimension of the nilspace of Ad(g) — 1.

PROPOSITION 2. Let G’ be a finite dimensional Lie group over k and [ an
open morphism from G to G'. The image under f of a reqular element of G
is a reqular element of G'. If the kernel of f is contained in the centre of G,
an element g € G is regular if and only if f(g) is reqular.

Indeed, let g’ be the Lie algebra of G’ and b the ideal in g given by
the kernel of Tf|g. Let p be the linear representation of G on h defined by
p(g) = Adglp for all g € G, and let Ad o f be the linear representation of
G on g’ given by the composite of f with the adjoint representation of G'.
These linear representations define an exact sequence of G-modules:

0—-h—g—g —0.

By Lemma 2, 7aq = 7 +TAdof. Since 7adof = 7ad © f and since f is an open
map, ToAdof = ng o f. Consequently:

rad —TRa =Tp — 7y + (raa —ria) o f-

Thus, if g is regular, (raqa —7%4)(f(g)) = 0, which means that f(g) is regular.
If the kernel of f is contained in the centre of G,

rp(g9) =19(g) = dimb
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for all g € G. Consequently, if f(g) is regular, raq(g) = rQ4(g), in other
words, ¢ is regular.

PROPOSITION 3. Let G1 and G be two finite dimensional Lie groups over
k. An element (g1,92) of G1 X Gg is regular if and only if g1 and go are
reqular elements of Gy and Go, respectively.

The condition is necessary by Prop. 2. We show that it is sufficient. For all
g =1(91,92) € G1 X Ga, raq(g9) = rada(g1) + raa(g2). In view of Lemma 1 (ii),
it follows that 79 ;(g) = rQ4(g91) +7%4(g2)- If g1 and g are regular, 7 4(g1) =

rad(g1) and rgd(gg) = rad(gz2), so roAd(g) = rad(g), which means that g is
regular.

Lemma 3. Let a € G and let m be a complement of g'(a) in g. Let U be a
neighbourhood of 0 in g and exp an exponential map from U to G. The map

f i (@) = (exp y)a(exp z)(exp y) ™
from (gt(a) x m)NU to G is étale at (0,0).

The tangent linear maps at 0 of the maps z +— a(exp ) and y +—
(exp y)a(exp y)~! are the maps x + ax and y — ya—ay = a(a”ya—y) from
g to T,G = ag (Chap. III, §3, no. 12, Prop. 46). Consequently, the tangent
map of f at (0,0) is the map (z,y) — ax +a(a”tya —y) = a(x +a " tya —y)
from g!(a) x m to ag. This map is injective. Indeed, if x € g'(a),y € m
and if z + a”'ya —y = 0, then (Ad(a) — 1)y = Ad(a)z € g'(a) since
Ad(a)g'(a) C g'(a). This implies that y € g'(a) and consequently that
y = 0. Since Ad(a) is injective on g'(a), it follows that # = 0. Since
dim g = dim g' (a) + dimm, this shows that f is étale at (0,0).

PROPOSITION 4. Let a € G and H be a Lie subgroup germ of G with Lie
algebra g'(a). The map (b,c) + cabc™! from H x G to G is a submersion at
(e,e).

Indeed, let m be a complement of g'(a) in g and exp an exponential map
of G defined on an open neighbourhood U of 0 in g. We can choose U so that
exp(UNg!'(a)) C H. The map f: (z,y) — (exp z,exp y) is an analytic map
on a neighbourhood of (0,0) in g*(a) x m with values in H x G. By Lemma 3,
the composite of f with the map ¢ : (b,¢) — cabc™! is étale at (0,0). It
follows that ¢ is a submersion at f(0,0) = (e, e).

PROPOSITION 5. Let a € G and let W be a neighbourhood of e in G. There
exists a neighbourhood V of a with the following property: for all a’ € V, there
ezists an element g € W such that g*(a’) C Ad(g)g(a).

Put g' = g'(a) and let g = g* + g* be the Fitting decomposition of
Ad(a) — 1 (81, no. 1). Let H be a Lie subgroup germ of G with Lie algebra
gt. For all h € H, Ad(h)g* C g'. Since [g},g"] C g™, there exists a neighbour-
hood U of e in H such that Ad(h)g* C g* for all h € H. Since the restriction
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of Ad(a) — 1 to g is bijective, U can be chosen so that the restriction of
Ad(ah) — 1 to gt is bijective for all h € U. Then g'(ah) C g'(a) = g' for
all h € U. By Proposition 4, Int(W)(aU) is a neighbourhood of a in G. If
a’ € Int(W)(aU), then @’ = g(ah)g~—" with g € W and h € U; it follows that

g'(a’) = Ad(g)g' (ah) C Ad(g)g' (a).

COROLLARY. Let G* be an open subgroup of G. If a € G is regular, there
exists a neighbourhood V of a such that, for all a’ € V, g*(a’) is conjugate to
g'(a) under Ad(G*).

3. RELATIONS WITH REGULAR ELEMENTS OF THE LIE
ALGEBRA

PROPOSITION 6. Let V be an open subgroup of g and let exp : V. — G be
an exponential map defined on V.

(i) There exists a neighbourhood W of 0 in V such that g* (exp z) = g%(z)
forallz e W.

(i) If k =R or C, g'(exp z) D g°(z) for all x € g.

By Cor. 3 of Prop. 8 of Chap. III, §4, no. 4, there exists a neighbourhood
V' of 0 in V such that, for all x € V', exp(ad(x)) = Zo Lad(z)" is defined
and Ad(exp z) = exp(ad(z)). If P € k[X] and « € End(g), it is easy to check
that g*(a) € g"M(P(a)) for all X € k. Consequently,

g°(ad(z)) C g'(exp(ad(z))) = g' (Ad(exp z)) = g'(exp )

for all z € V.. If k = R or C, V = g and we can take V' = V, which

proves (ii). We prove (i). Let U be a neighbourhood of 0 in End(g) such that

Log(l + ) = ZO(—l)”‘H%a" is defined for all & € U. Then Logoexp = 1
n>

on a neighbourhood of 0 and g'(1 + «) C g°(Log(l + «)) for all a € U.
Let W be the neighbourhood of 0 in g consisting of those z € V' such that
expadz € 14+ U and

Log(exp(ad(z))) = ad(z).
Then, for all x € W,
g'(exp z) = g' (Ad(exp @) = g (exp(ad()))
C g°(Log(exp(ad(2)))) = g”(ad(x)) = g°(x).
This shows that g!(exp z) = g"(z) for all z € W.
Lemma 4. Let U be a neighbourhood of 0 in g and exp an exponential map

from U to G, étale at every point of U and such that g'(exp z) = g°(x) for
allz € U.
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(i) The function rQ, is constant and equal to the rank of g on exp(U).

(ii) If x € U, exp x is regular if and only if x is a reqular element of g.

(iii) An element a € exp(U) is regular if and only if g'(a) is a Cartan
subalgebra of g.

Let I =rk(g). If z € U is a regular element of g,
raa(exp ) = dim g*(exp z) = dim g°(z) = L.

Since the regular elements of g belonging to U constitute a neighbourhood of
and exp is étale at x, this shows that exp x is regular and that rgd(exp x)=1.
The regular elements of g belonging to U being dense in U, we have r{ ;(a) =
I for all a € exp(U). Let a € exp(U) be a regular element of G and let
z € U be such that a = exp z. Since g°(x) = g'(a), dimg®(z) = rQ4(a) = 1.
Consequently, z is a regular element of g and g'(a) is a Cartan subalgebra of
g. Finally, if a € exp(U) and g'(a) is a Cartan subalgebra of g,

raa(a) = dimg'(a) =1 =r%4(a),

so a is regular.

PROPOSITION 7. Let V be a neighbourhood of e in G. Every Cartan sub-
algebra of g is of the form g*(a) where a is a regular element of G belonging
to V.

By Prop. 6, there exists an open neighbourhood U of 0 in g and an ex-
ponential map exp : U — G satisfying the conditions of Lemma 4. If § is
a Cartan subalgebra of g, there exists a regular element x € h such that
h = g°(x) (§3, Th. 2). On the other hand, there exists an element ¢ € k* such
that tx € U and exp(tz) € V. Then h = g°(x) = g°(tz) = g'(exp(tz)), and
by Lemma 4 (ii), exp(tzx) is a regular element of G.

PROPOSITION 8. Let | be the rank of g. There exists an open subgroup G*
of G such that:

(i) the function rQy is constant on G* and its value is I;

(i) an element a € G* is regular if and only if g*(a) is a Cartan subalgebra
of g;

(iii) if a € G*, every Cartan subalgebra of g*(a) is a Cartan subalgebra of
g.

(i) By Prop. 6, there exists an open neighbourhood U of 0 in g and an
exponential map exp from U to G satisfying the conditions of Lemma 4. In
what follows, G* will denote the identity component of G if £k = R or C and
an open subgroup of G contained in exp(U) if k is ultrametric. Since 7% is
locally constant and its value at any point of exp(U) is [ (Lemma 4 (i)), it
follows that 79 is constant and equal to [ on G*.

(ii) Let R* (resp. S*) be the set of regular elements of G* (resp. the set of
elements a € G* such that g'(a) is a Cartan subalgebra of g). Then S* C R*.
Indeed, if a € S*, then raq(a) =1 = rQ4(a). We show that R* C S*. If k is
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ultrametric, this follows from the inclusion G* C exp(U) and Lemma 4 (iii).
Assume that £k = C. By the Cor. of Prop. 5, if a € R*, then for every
a’ belonging to a neighbourhood of a, g*(a’) is conjugate to g'(a) by an
automorphism of g. This proves that S* and R* = S* are open subsets of G*.
We have seen that S* contains all the regular elements in a neighbourhood
of e (Lemma 4 (iii)); consequently, S* is non-empty. Since G* is connected,
so is R* (Prop. 1) and consequently S* = R*.

It remains to study the case k = R. Assume first of all that G* is an
integral subgroup of GL(E) where E denotes a finite dimensional real vector
space. Let G be the integral subgroup of GL(E ®gr C) with Lie algebra
gc = g ® C. There exists an analytic function on G} whose set of zeros is
the complement of the open set of regular elements of G%. By Differentiable
and Analytic Manifolds, Results, 3.2.5, this function cannot vanish at every
point of G*. Consequently, G* contains a regular element of G}. Let Ad.
be the adjoint representation of GZ. For any a € G*, gl(a) = g'(a) ® C,
50 7Taq,(a) = raqa(a). If a € G* is a regular element of G, this is a regular
element of G* and 34 (a) = rQ4(a). The functions 3, and rQ, being
constant on G} and on G*, respectively, it follows that the regular elements
of G* are the regular elements of G} belonging to G*. From the above, if a
is a regular element of G*, gl(a) = g'(a) ® C is a Cartan subalgebra of g.;
this implies that g'(a) is a Cartan subalgebra of g (§2, Prop. 3).

Assume now that G is simply connected. There exists a finite dimensional
real vector space E and an étale morphism f from G to an integral subgroup
G’ of GL(E) (Chap. III, §6, no. 1, Cor. of Th. 1). By Prop. 2, if a € G is regu-
lar, f(a) is regular. By the preceding, g’l(f(a)) is a Cartan subalgebra of the
Lie algebra g’ of G/. Since g (f(a)) = (Tf)g'(a) and Tf is an isomorphism
from g to g/, this proves that g'(a) is a Cartan subalgebra of g.

We turn finally to the general case (k = R). Let G be a universal covering
of G*, g = L(G), and ¢ the canonical map from G to G*. Since the kernel of
¢ is contained in the centre of G, if a € G* is regular and if a’ € q (a), then
a’ is regular (Prop. 2). By the preceding, g'(a’) is a Cartan subalgebra of g.
Since g!(a) = (Tq)g'(a’) and since Tq is an isomorphism from § to g, this
proves that g'(a) is a Cartan subalgebra of g.

(iii) By Prop. 5, there exists a neighbourhood V of a such that, for all
a' € V, gt(a’) is conjugate to a subalgebra of g!(a) by an automorphism of g.
Since every neighbourhood of a contains a regular element of G*, it follows
from (ii) that g'(a) contains a Cartan subalgebra of g. Thus, by Prop. 3 of
§3, every Cartan subalgebra of g'(a) is a Cartan subalgebra of g.

Remark. If k = C, the subalgebras g!(a), for a regular and belonging to a
connected component M of G, are conjugate under Int(g). Indeed, let R be
the set of regular elements of G. For all @ € RN M, let M, be the set of
those b € RN M such that g'(a) is conjugate to g'(a) under Int(g). We have
Int(g) = Ad(G?), where G° is the identity component of G. By the Corollary
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to Prop. 5, M, is open in R. It follows that M, is open and closed in R. Since
k= C, RNM is connected (Lemma 1), hence M, = RNM.

4. APPLICATION TO ELEMENTARY AUTOMORPHISMS

PROPOSITION 9. Let k be a field of characteristic 0 and g a Lie algebra
over k. If a € Aute(g), the dimension of the nilspace of a — 1 is greater than
or equal to the rank of g.

By the “Lefschetz principle” (Algebra, Chap. V, §14, no. 6, Cor. 2 of
Th. 5), k is an ascending directed union of subfields (k;);e1 which admit C
as extension field. Let (e, ) be a basis of g over k and z1, ..., z,, elements of
g such that ad(z),...,ad(x,,) are nilpotent and a = e2d(®1) | ¢2d(@m) Let
c,p be the structure constants of g with respect to the basis (eq) and (z7)
the components of x,. with respect to this basis (1 < r < m). There exists an
index j € I such that the czﬁ and the z¥ all belong to k;. Let g; = Zo; kjeq;

this is a Lie algebra over k; containing 21, ..., 2y, and the restriction a; of a
to g; is an elementary automorphism of g;. The extension of a; to g; ®, C
is an elementary automorphism a; ® 1 of g; ® C. So let G; be a connected
complex Lie group with Lie algebra g; ® C, and s an element of G; such that
Ad(s) = a; ® 1. Prop. 8, applied to the pair (G;, s), shows that the nilspace
of a; ® 1 —1 is of dimension 7, so

n > 1k(g; ® C) =rk(g;) = rk(g).

But this nilspace has the same dimension as that of a; —1 and that of a — 1.
Hence the proposition.

5. DECOMPOSABLE LINEAR LIE ALGEBRAS

In this paragraph, k is assumed to be of characteristic 0. We denote by V a
finite dimensional vector space.

1. DECOMPOSABLE LINEAR LIE ALGEBRAS

DEFINITION 1. Let g be a Lie subalgebra of gl(V). Then g is said to be
decomposable if g contains the semi-simple and nilpotent components of each
of its elements (Algebra, Chap. VII, §5, no. 8).

Ezamples. 1) Let V' and V" be vector subspaces of V such that V/ D V.
The set of z € gl(V) such that (V") C V' is a decomposable Lie subalgebra
of gl(V); indeed, for all x € gl(V), the semi-simple and nilpotent components
of = are of the form P(z) and Q(x), where P and Q are polynomials without
constant term.
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2) Assume that V has an algebra structure. The set of derivations of V is
a decomposable Lie subalgebra of gl(V) (§1, no. 1, Prop. 4 (ii)).

3) *More generally, it can be shown that the Lie algebra of any algebraic
subgroup of GL(V) is decomposable.,

PROPOSITION 1. Let g be a decomposable Lie subalgebra of gl(V), x € g, s
and n the semi-simple and nilpotent components of x.

(i) The semi-simple and nilpotent components of adgx are adgs and adgn,
respectively.

(ii) = is regular in g if and only if s is.

(iil) If g’ is a subalgebra of gl(V) containing g, every elementary auto-
morphism of g extends to an elementary automorphism of g'.

Put a = gl(V). By Chap. I, §5, no. 4, Lemma 2, the semi-simple and
nilpotent components of ad,x are adyss and adyn; assertion (i) follows from
this. We deduce that the characteristic polynomials of adgz and adys are the
same; hence (ii). If adgz is nilpotent, adgz = adgn, so adg'n extends adgz,
and n is a nilpotent element of g’, hence (iii).

Let g be a Lie subalgebra of gl(V). We know (Chap. I, §6, no. 5, Th. 4)
that the following conditions are equivalent:

(i) the identity representation of g is semi-simple;

(ii) g is reductive and every element of the centre of g is a semi-simple
endomorphism.

These conditions are actually equivalent to the following:

(iii) g is a reductive subalgebra in gl(V).

Indeed, (i) = (iii) by Chap. I, §6, no. 5, Cor. 3 of Th. 4, and (iii) = (i)
by Chap. I, §6, no. 6, Cor. 1 of Prop. 7. We are going to show that if g satisfies
these conditions, g is decomposable. More generally:

PROPOSITION 2. Let g be a Lie subalgebra of gl(V) reductive in gl(V), E
a finite dimensional vector space and w : g — gl(E) a semi-simple linear
representation of g on E. Then:

(i) g and w(g) are decomposable.

(ii) The semi-simple (resp. nilpotent) elements of w(g) are the images
under 7 of the semi-simple (resp. nilpotent) elements of g.

(i) If b is a decomposable subalgebra of gl(V) contained in g, w(h) is a
decomposable subalgebra of gl(E).

(iv) If b/ is a decomposable subalgebra of gl(E), 7= 1(b’) is a decomposable
subalgebra of gl(V).

Let s = [g,g] and let ¢ be the centre of g. Then g = s x ¢, and 7(g) =
m(s) x w(¢) by Chap. I, §6, no. 4, Cor. of Prop. 5. Let y € 5,2 € ¢,ys and y,
the semi-simple and nilpotent components of y. Then ys, vy, € s (Chap. I, §6,
no. 3, Prop. 3), ys + z is semi-simple (Algebra, Chap. VII, §5, no. 7, Cor. of
Prop. 16), and y,, commutes with y;+z. Hence, the semi-simple and nilpotent
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components of y + z are ys + z and y,,. Thus, g is decomposable. Since 7(g)
is reductive in gl(E), the same argument applies to 7(g) and shows that m(g)
is decomposable. Moreover, the nilpotent elements of g (resp. 7(g)) are the
nilpotent elements of s (resp. 7(s)). Hence the nilpotent elements of 7(g) are
the images under 7 of the nilpotent elements of g (Chap. I, §6, no. 3, Prop. 4).
The semi-simple elements of g (resp. 7(g)) are the sums of the semi-simple
elements of s (resp. m(s)) and the elements of ¢ (resp. m(c)). Thus the semi-
simple elements of 7(g) are the images under 7 of the semi-simple elements
of g (Chap. I, loc. cit.). Hence (ii).
Assertions (iii) and (iv) follow immediately from (i) and (ii).

Remarks. 1) The semi-simplicity assumption on 7 is equivalent to saying
that 7(x) is semi-simple for all = € ¢. Note that this assumption is satisfied
when 7 is obtained from the identity representation g — gl(V) by the succes-
sive application of the following operations: tensor product, passage to the
dual, to a subrepresentation, to a quotient, to a direct sum.

2) Let g C gl(V), ¢’ C gl(V’') be decomposable Lie algebras, ¢ an isomor-
phism from g to g’. Note that ¢ does not necessarily transform semi-simple
(resp. nilpotent) elements of g to semi-simple (resp. nilpotent) elements of g’
(Exerc. 2). However, this is the case if g is semi-simple (Chap. I, §6, no. 3,
Th. 3).

PROPOSITION 3. Let a be a decomposable Lie subalgebra of gl(V) and let b
and ¢ be vector subspaces of gl(V) such that b C ¢. Let o’ be the set of v € a
such that [z,c] C b. Then o' is decomposable.

Put g = gl(V); the subalgebra b’ of gl(g) consisting of the z € gl(g)
such that z(c) C b is decomposable (Example 1). Let 7 : g — gl(g) be the
adjoint representation of g. Prop. 2 (iv), applied to 7, shows that 7=1(b’) is
decomposable. Hence so is a’ = ana~1(h’).

COROLLARY 1. If a is a decomposable Lie subalgebra of gl(V), and n a Lie
subalgebra of a, the normalizer (resp. centralizer) of n in a is decomposable.

This follows from Prop. 3 by taking ¢ =n,b =n (resp. ¢ = n, b = {0}).

COROLLARY 2. The Cartan subalgebras of a decomposable Lie subalgebra
of gl(V) are decomposable.

This follows from Corollary 1.

Remark. We shall prove later (no. 5, Th. 2) a converse of Cor. 2.
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2. DECOMPOSABLE ENVELOPE

The intersection of a family of decomposable Lie subalgebras of gl(V) is
clearly decomposable. Consequently, if g is a Lie subalgebra of gl(V), the set
of decomposable Lie subalgebras of gl(V) containing g has a smallest element,
called the decomposable envelope of g; in this paragraph, this envelope will
be denoted by e(g).

PROPOSITION 4. Let g be a Lie subalgebra of gl(V) and n an ideal of g.
Then n and e(n) are ideals of e(g), and [e(g),e(n)] = [g,n].

Let gy be the set of x € gl(V) such that [x,n] C [g,n]. This is a decompos-
able Lie subalgebra of gl(V), containing g and hence e(g), cf. no. 1, Prop. 3;
in other words, [e(g),n] C [g,n]. Let ny be the set of y € gl(V) such that

le(9),y] C [g,n].

This is a decomposable Lie subalgebra of gl(V) containing n by the preceding,
and hence containing e(n); in other words [e(g), e(n)] C [g,n], so

[e(g), e(n)] = g, n].
It follows that [e(g),n] C [e(g), e(n)] C n, so n and e(n) are ideals of e(g).

COROLLARY 1. (i) Z'g = Z'e(g) fori > 1, and €'g = €"e(g) fori> 2.
(ii) If g is commutative (resp. nilpotent, resp. solvable), then e(g) is com-
mutative (resp. nilpotent, resp. solvable).

Assertion (i) follows from Prop. 4 by induction on i and (ii) follows from

(i).

COROLLARY 2. Let t be the radical of g. If g is decomposable, t is decom-
posable.

Indeed, e(t) is a solvable ideal of g by Prop. 4 and Cor. 1, hence e(t) = t.

3. DECOMPOSITIONS OF DECOMPOSABLE ALGEBRAS

If g is a Lie subalgebra of gl(V) with radical ¢, the set of nilpotent elements
of v is a nilpotent ideal of g, the largest nilpotency ideal of the identity
representation of g (Chap. I, §5, no. 3, Cor. 6 of Th. 1). In this paragraph,
we shall denote this ideal by ny(g). It contains the nilpotent radical [g,g] Nt
of g (Chap. I, §5, no. 3, Th. 1).

PROPOSITION 5. Let g be a decomposable nilpotent Lie subalgebra of gl(V).
Let t be the set of semi-simple elements of g. Then t is a central subalgebra
of g, and g is the product of t and ny(g) as Lie algebras.
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If x € t, adgz is semi-simple and nilpotent, hence zero, so that x is cen-
tral in g. Consequently, t is an ideal of g, and t N ny(g) = 0. Since g is
decomposable, g = t + ny(g), hence the proposition.

PROPOSITION 6. Let g be a decomposable Lie subalgebra of gl(V). Let T be
the set of commutative subalgebras of g consisting of semi-simple elements,
and J the set of maximal elements of . Let 7€ be the set of Cartan subal-
gebras of g.

(i) For by € 4, let p(h) be the set of semi-simple elements of h. Then
o(h) € 7.

(ii) For t € 74, let () be the commutant of t in g. Then ¢ (t) €

(iii) The maps ¢ and ¢ are inverse bijections from to F; and from J;
to

(iv) If k is algebraically closed, Aut.(g) operates transitively on 7.

Let h € JZ and put t = p(h). By Prop. 5 and Cor. 2 of Prop. 3, t € Tand
h =t x ny(h). For any subalgebra u of g, we denote by 1(ut) the commutant
of uin g. Then h C 9(t), and 1 (t) C g°(h) since the elements of ny(h) are
nilpotent, so h = (t). If ' € Tand t C t', we have ' C ¢¥(t) =hsot =1t
and hence t € ;.

Let t € 97, and put ¢ = 9(t). Let h be a Cartan subalgebra of ¢. By §2,
no. 3, Prop. 10, h € and t C h. Put t; = p(h) € . Then t C t; so t = ty,
and h = ¢(t1) = ¥ (t) = ¢ by the preceding. Thus, ¢(t) € 7 and (¢ (t)) = t.

We have thus proved (i), (ii) and (iii). Assume that k is algebraically
closed. Since Aut.(g) operates transitively on 52 (83, no. 2, Th. 1), Aut.(g)
operates transitively on .77.

COROLLARY 1. The Cartan subalgebras of g are the centralizers of the reg-
ular semi-simple elements of g.

If x € g is regular, g°(x) is a Cartan subalgebra of g (§2, no. 3, Th. 1 (i));
moreover, if  is semi-simple g°(x) is the centralizer of z in g. Conversely,
let b be a Cartan subalgebra of g. There exists t € 77 such that h = ¥(t).
By §1, no. 2, Prop. 7, there exists # € t such that h = g°(x); since x € t,
¢%(z) = go(z). By §3, no. 3, Th. 2 (ii), z is regular.

COROLLARY 2. Assume in addition that g is solvable. Then:

(i) The subgroup of Aut(g) consisting of the 4% x € €*°g (cf. §3, no.
4), operates transitively on 9.

(ii) If t € 91, g is the semi-direct product of t and nvy(g).

Assertion (i) follows from the fact that the group of the e*4% x € g,
operates transitively on 2 (§3, no. 4, Th. 3).

We prove (ii). Let t € 77, and let h = ¢(t) be the corresponding Cartan
subalgebra of g. In view of Prop. 5, h = t+ ny(h) C t+ ny(g). On the other
hand, g = H + [g,9] (§2, no. 1, Cor. 3 of Prop. 4) and [g,g] C ny(g), so
g =t+ny(g). But it is clear that tNny(g) = {0}. The algebra g is thus the
semi-direct product of t and the ideal ny (g).



§5. DECOMPOSABLE LINEAR LIE ALGEBRAS 39

PROPOSITION 7. Let g be a decomposable Lie subalgebra of gl(V).

(i) There exists a Lie subalgebra m of g, reductive in gl(V), such that g is
the semi-direct product of m and ny(g).

(ii) Any two Lie subalgebras of g with the properties in (i) are conjugate
under Aut.(g).

The radical ¢ of g is decomposable (no. 2, Cor. 2 of Prop. 4). By Cor. 2
of Prop. 6, there exists a commutative subalgebra t of t, consisting of semi-
simple elements, such that v = t @ ny(v). Since adgt consists of semi-simple
elements, g is the direct sum of [t,g] and the centralizer 3 of t (Chap. I,
§3, no. 5, Prop. 6). Since [t,g] C v, g = 3 + v. Consequently, if s is a Levi
subalgebra of 3 (Chap. I, §6, no. 8), g = s + t, so s is a Levi subalgebra of
g. Put m = s @ t. Since [s,t = {0}, m is a Lie subalgebra of g, reductive in
gl(V) by Chap. I, §6, no. 5, Th. 4. Moreover,

g=5Dt=5DtDny(r) =sDtDny(g) = mdny(g)

since ny(g) = ny(r). Hence (i).

Now let m’ be a Lie subalgebra of g complementary to ny(g) and reduc-
tive in gl(V). We show that m’ is conjugate to m under Aut.(g). We have
m' =¢ @Y, where s’ = [m’, m'] is semi-simple and the centre t' of m’ consists
of semi-simple elements. Then t = t&ny(g) = ¢ &ny(g). In view of Cor. 2 of
Prop. 6, we are reduced to the case t = t'. Then s’ C 3; since dims’ = dim s,
s is a Levi subalgebra of 3. By Chap. I, §6, no. 8, Th. 5, there exists z € ny(3)
such that e2d%(s) = s'; since x commutes with t, we also have 12 (t) = t.

4. LINEAR LIE ALGEBRAS OF NILPOTENT
ENDOMORPHISMS

Lemma 1. Let n be a Lie subalgebra of gl(V) consisting of nilpotent endomor-
phisms, and N the subgroup expn of GL(V) (§3, no. 1, Lemma 1).

(i) Let p be a finite dimensional linear representation of n on W, such
that the elements of p(n) are nilpotent, W' a vector subspace of W stable
under p, p1 and ps the subrepresentation and quotient representation of p
defined by W', 7,1, mo the representations of N compatible with p, p1, p2 (83,
no. 1). Then 71,7 are the subrepresentation and quotient representation of
7 defined by W'.

(ii) Let p1, p2 be finite dimensional linear representations of n such that
the elements of p1(n) and pa(n) are nilpotent, and 71, 7o the representations
of N compatible with p1, p2. Then m1 ®9 is the representation of N compatible
with p1 ® pa.

(iii) Let p1, p2 be finite dimensional linear representations of n on vector
spaces V1, Va, such that the elements of p1(n) and p2(n) are nilpotent, p the
representation of n on Hom(Vy,Va) determined by pi1,pa. Let w1, 72 be the
representations of N compatible with p1,p2, and w the representation of N
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on Hom(V1,Vsa) determined by m,ma. Then m is the representation of N
compatible with p.

Assertion (i) is clear. Let pi, pa, 71,72 be as in (ii). If € n, we have,
since p1(z) ® 1 and 1 ® po(x) commute,

exp(p1(z) ® 1 +1® pa(z)) = exp(p1(z) @ 1). exp(1 ® pa(z))
= (expp1(z)) ® 1.1 ® (exp p2(x))
= (exp p1(z)) ® (exp pa (7))
= my(exp) © ma(exp )
= (m ® m2)(exp ),
hence (ii). Let p1, p2, p, 71,72, ™, V1, Vo be as in (iii). If v; € EndV; and
vy € EndVa, denote by R,, and L,, the maps u +— wv; and u +— vsu from
Hom(Vy, Vs) to itself; these maps commute and p(z)u = (L,, ) — Ry, (2))0,
SO
exp p(z).u = exp L, (). expR_,, (2).u
= Lexp pa (2) Rexp(—pi (2)) -4
= Ly (exp 2) By (exp(—2)) -4

= m(exp x).u,
hence (iii).

Lemma 22. (i) Let W be a vector subspace of V of dimension d, D the line
AW c AV, 0 the canonical representation of gi(V) on AV (Chap. III,
App.). Let x € gl(V). Then (W) C W if and only if 6(z)(D) C D.

(ii) Let (eq,...,en) be the canonical basis of k™, 0 the canonical represen-
tation of gl(n, k) on A(K™), and x € gl(n,k). Then x € n(n,k) if and only
if

O(x)(en—dat1 N+ Nep) =0

for1<d<n.

(i) If (W) € W, it is clear that 6(x)D C D. Conversely, assume that
6(x)D C D. Let u be a non-zero element of D and let y € W. Then y Au = 0.
Since 6(z) is a derivation of AV, this implies

O(x)y ANu+yAb(x)u=0.

Now 0(x)u € ku, so yAf(x)u = 0 and consequently 6(x)yAu = 0. By Algebra,
Chap. III, §7, no. 9, Prop. 13, this implies that O(x)y € W, i.e. z(y) € W,
which proves that z(W) C W.

(ii) The condition stated in (ii) is clearly necessary for x € n(n, k). Assume
that it is satisfied. By (i), « leaves

2 In this lemma, k can be an arbitrary (commutative) field.
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ken7d+1 +-+ ken
stable, and since this holds for d = 1,...,n, = is lower triangular. Put
T = (2ij)1<ij<n-

We have 0 = z(e,,) = Tpnén, S0 Tny = 0. Let ¢ < n, and assume that we have
proved that x;; = 0 for j > 7. Then

0= 0(1’)(61 /\6i+1 AREE /\en) = x”(el /\6i+1 VA /\en),

s0 z; = 0. Thus, = € n(n, k).

PROPOSITION 8. Let n be a Lie subalgebra of gl(V) consisting of nilpotent
elements, q the normalizer of n in gl(V). There exists a finite dimensional
vector space E, a representation p of gl(V) on E, and a vector subspace F of
E, satisfying the following conditions:

(i) the image under p of a homothety of V is diagonalizable;

(ii) F is stable under p(q);

(iii) n is the set of x € gl(V) such that p(z)(F) = 0.

Let n = dim V. By Engel’s theorem, V can be identified with £™ in such
a way that n C n(n,k). Let P be the algebra of polynomial functions on
gl(n, k). For i = 0,1,..., let P; be the set of elements of P homogeneous of
degree i. Let N = expn, which is a subgroup of the strictly lower triangular
group T. Let J be the set of elements of P that are zero on N; this is an ideal
in P. Let Nj be the set of z € gl(n, k) such that p(x) =0 for all p € J. Then
N C Nj. Conversely, let z € Nj. Denote by p;; the polynomial functions
giving the entries of an element of gl(n, k). The ideal J contains the p;; (for
i < j) and the p; — 1; hence € T. On the other hand, if w is a linear form
on gl(n, k) which is zero on n, there exists p,, € P such that p,(z) = u(log 2)
for all z € T (§3, no. 1, Lemma 1 (i)); we have p, € J, so u(logz) = 0. It
follows that log x belongs to n, so z € N, proving that N = Nj.

For all p € P and g € GL,(k), let A(g)p be the function x — p(g~1x) on
gl(n, k); then A\(g)p € P, A(g) is an automorphism of the algebra P, and A is
a representation of GL,, (k) on P which leaves each P; stable. We show that

N = {z € GL,(k) | A(z)J = J}. (1)

If z € N,p e J,y €N, then (\(z)p)(y) = p(x~ly) = 0 since x~ 'y € N; thus
Az)p € J, so Mx)J = J. Let z € GL,, (k) be such that A(z)J = J; let p € J;
then p(z~1) = (A(z)p)(e) = 0, so 271 € N; = N and = € N. This proves (i).
The ideal J is of finite type (Commutative Algebra, Chap. III, §2,
no. 10, Cor. 2 of Th. 2). Hence, there exists an integer ¢ such that, if
W =Py +P;+ - +Pgy then JN'W generates J as an ideal. Denote by \;
(resp. A’) the subrepresentation of A defined by Pj (resp. by W). By (1),

N ={z € GL,(k) | N(z)JNW) =JnW}. 2)
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We show that, for all j, there exists a representation o; of the Lie algebra

gl(n, k) on P; such that:
ojn(n, k) is compatible (§3, no. 1) with A;|T. (3)
For all x € k.1,,, o;(x) is a homothety. (4)

Since A; is the jth symmetric power of A1, it suffices to prove the existence
of 01, cf. Lemma 1. Now \; is the contragredient representation of the rep-
resentation v of GL,, (k) on gl(n, k) given by

v(z)y = zy, x € GL,(k), y € gl(n, k).
Let ¢ be the representation of the Lie algebra gl(n, k) on gl(n, k) given by
c(@)y =2y, 2,y € gl(n, k).

It is immediate that c[n(n,k) and 4|T are compatible, and that c(x) is a
homothety for all € k.1,,. Thus, it suffices to take for oy the dual represen-
tation of ¢ (Chap. I, §3, no. 3).

Now let ¢’ be the representation of gl(n, k) on W given by the direct sum
of the 0, 0 < j < ¢. In view of (2) and the relations

N (exp(z)) = exp(o’(x)) and o'(log(y)) = log(N'(y)), = e€n(n,k), yeT,
we have
n={zen(nk) | @)JINW)CINW). (5)

Let d = dim(JN'W), and let 7 = /\d o' . Let D = /\d(J N'W). By (5) and
Lemma 2 (i),

n={x en(nk) | 7(z)(D) C D}. (6)
But 7(n(n, k)) consists of nilpotent endomorphisms, so (6) can also be written
n={zen(nk) | 7(z)(D) = 0}. (7)
Nowlet E= AWa A' Ve A’ V- & A" V; let p be the direct sum of 7

and the canonical representations of gl(n,k) on A" V,..., A" V. Let E; C E

be the sum of D = A%(J N W) and the lines generated by en—jr1 N Neg
for j=1,...,n. By (7) and Lemma 2 (ii),

n={zegl(V) | p(z)(Eo) = 0}. (8)

It is immediate that, if z € k.1,,, p(z) is diagonalizable. Finally, if F is the
set of elements of E annihilated by p(n), F is stable under p(q) (Chap. I, §3,
no. 5, Prop. 5), and by (8),

n={zegl(V) | p(z)(F) = 0}. (9)
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5. CHARACTERIZATIONS OF DECOMPOSABLE LIE
ALGEBRAS

Every decomposable Lie algebra is generated as a vector space (and a fortiori
as a Lie algebra) by the set of its elements that are either semi-simple or
nilpotent. Conversely:

THEOREM 1. Let g be a Lie subalgebra of gl(V) and let X be a subset of g
generating g as a Lie algebra over k. If every element of X is either semi-
simple or nilpotent, g is decomposable.

a) g is commutative.

The semi-simple (resp. nilpotent) elements of g form a vector subspace g,
(resp. gn). The assumption is equivalent to g = g5 @ g,, hence the fact that
g is decomposable.

b) g is reductive.

Then g = g’ x ¢ with g’ semi-simple and ¢ commutative. By Prop. 2, ¢’ is
decomposable. Let z = a+b € g with @ € ¢/, b € ¢. Let ag, a,, bs, b, be the
semi-simple and nilpotent components of a,b. Since ag, an, bs, b, mutually
commute, the semi-simple and nilpotent components of x are as+ bs, a, + by,.
Now ag, a, € ¢'. If z is semi-simple, © = a, +by; since as € g, we have b, € g,
S0 bs € ¢ since by commutes with g; consequently, a = a5 and b = b,. Similarly,
if x is nilpotent, a = a,, and b = b,,. It follows that the projections on ¢ of the
elements of X are either semi-simple or nilpotent; by a), this implies that ¢ is
decomposable. Retaining the preceding notation, but without the assumption
on x, we now have by, b, € ¢, so as+bs,a,+b, € g, which proves the theorem
in this case.

¢) General case.

We assume that the theorem is proved for Lie algebras of dimension
< dim g and prove it for g.

Let n be the largest ideal of nilpotency of the identity representation of
g. If n = 0, g has an injective semi-simple representation, and so is reductive.
Assume that n # 0. Let p be the normalizer of n in gl(V). There exist E, p, F
satisfying the conditions of Prop. 8. Since g C p, p(g) leaves F stable; let pg be
the representation u — p(u)|F of g on F; we have n = Kerpy. The image under
p of every semi-simple (resp. nilpotent) element of gl(V) is semi-simple (resp.
nilpotent) (Prop. 2). The algebra po(g) is thus generated by its semi-simple
elements and its nilpotent elements. By the induction hypothesis, po(g) is
decomposable.

Let = € g, and let x4, x,, be its semi-simple and nilpotent components. By
Prop. 2, the semi-simple and nilpotent components of p(z) are p(xs), p(zn).
Since po(g) is decomposable, there exist y, z € g such that

po(y) = p(zs)[F, po(2) = p(zn)[F.
Then zs € y +n,x, € 2410, S0 Ts, Ty € @. Q.E.D.
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COROLLARY 1. Every subalgebra of gl(V) generated by its decomposable
subalgebras is decomposable.

This is clear.

COROLLARY 2. Let g be a Lie subalgebra of gl(V). Then [g, g] is decompos-
able.

Let v be the radical of g, s a Levi subalgebra of g (Chap. I, §6, no. 8).
Then

[0,0] = [s,8] + [s,¢] + [v,¢] = 5 + [g,1].

The algebra [g,t] is decomposable since all of its elements are nilpotent
(Chap. I, §5, no. 3). On the other hand, s is decomposable (Prop. 2). It
follows that [g, g] is decomposable (Cor. 1).

COROLLARY 3. Let g be a Lie subalgebra of gl(V), and let X be a subset of
g generating g (as a Lie algebra over k).

(i) The decomposable envelope e(g) of g is generated by the semi-simple
and nilpotent components of the elements of X.

(ii) If k' is an extension of k, e(gRr k') = e(g) R k’; and g is decomposable
if and only if g ® k' is decomposable.

Let g be the subalgebra of gl(V) generated by the semi-simple and nilpo-
tent components of the elements of X. Then g C g C e(g); by Th. 1, g is
decomposable, so § = e(g), which proves (i). Assertion (ii) follows, since X
generates the k'-algebra g @ k.

COROLLARY 4. Let g be a decomposable Lie subalgebra of gl(V). Let T be
the set of commutative subalgebras of g consisting of semi-simple elements
(cf. Prop. 6). The maximal elements of 7 all have the same dimension.

Let k' be an algebraically closed extension of k and V' =V @, k', g’ =
g ®y k'. Let t1,t2 be maximal elements of .7, t, = t; ®; k', h; the commutant
of t; in g, b, = h; @ k. Then h; is a Cartan subalgebra of g (Prop. 6) so b,
is a Cartan subalgebra of g’. Then b; = t; x ny(h;), hence b, = €, x ny/(h5),
so that t; is the set of semi-simple elements of h}. Since g’ is decomposable
(Cor. 3), t] and t, are conjugate under Aut.(g’) (Prop. 6), so dimt; = dim t,.

THEOREM 2. Let g be a Lie subalgebra of gl(V). The following conditions
are equivalent:

(i) g is decomposable;

(ii) every Cartan subalgebra of g is decomposable;

(iii) g has a decomposable Cartan subalgebra;

(iv) the radical of g is decomposable.

(i) = (ii): This follows from Cor. 2 of Prop. 3.

(ii) = (i): This follows from Cor. 1 of Th. 1, since g is generated by its
Cartan subalgebras (§2, no. 3, Cor. 3 of Th. 1).
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(ii) = (iii): This is clear.

(ili) = (ii): By Cor. 3 of Th. 1, we can assume that k is algebraically
closed. The Cartan subalgebras of g are then conjugate under the elementary
automorphisms of g (§3, no. 2, Th. 1); in view of Remark 1 of §3, no. 1, it
follows that, if one of these is decomposable, they all are.

(i) = (iv): This follows from Cor. 2 of Prop. 4.

(iv) = (i): Assume that the radical v of g is decomposable. Let s be
a Levi subalgebra of g; it is decomposable (Prop. 2). Hence g = s + t is
decomposable (Cor. 1 of Th. 1).

APPENDIX I
POLYNOMIAL MAPS AND ZARISKI TOPOLOGY

In this appendiz, k is assumed to be infinite.

1. ZARISKI TOPOLOGY

Let V be a finite dimensional vector space. We denote by Ay the algebra of
polynomial functions on V with values in k (Algebra, Chap. IV, §5, no. 10,
Def. 4). This is a graded algebra; its component of degree 1 is the dual V*
of V, and the injection of V* into Ay extends to an isomorphism from the
symmetric algebra S(V*) to Ay (Algebra, Chap. IV, §5, no. 11, Remark 2).

If (e1,...,e,) is a basis of V, and (Xy,...,X,,) a sequence of indeter-
minates, the map from k[Xy,...,X,] to Ay that takes any element f of
k[Xq,...,X,] to the function

D o Xiei e fAas - An)

i=1

is an isomorphism of algebras (Algebra, Chap. IV, §5, no. 10, Cor. of
Prop. 19).

PROPOSITION 1. Let H be the set of algebra homomorphisms from Ay to
k. For any x € V, let hy be the homomorphism f — f(x) from Ay to k.
Then, the map x — hy is a bijection from V to H.

Indeed, let H' be the set of algebra homomorphisms from k[Xi,...,X,]
to k. The map x — (x(X1),...,x(X,)) is clearly a bijection from H’ to k™.

COROLLARY. For any x € V, let m, = Ker(h,). Then the map x — m,, is
a bijection from V to the set of ideals m of Ay such that Ay /m = k.

A subset F of V is said to be closed if there exists a family (f;);er of
elements of Ay such that
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re€F <= xeVand fi(x) =0forall i € L.

It is clear that @ and V are closed, and that any intersection of closed sets
is closed. If F' is defined by the vanishing of the f; and F’ by that of the f,
FUF’ is defined by the vanishing of the f; f]’-7 and hence is closed. Thus, there
exists a topology on V such that the closed sets for this topology are exactly
the closed sets in the above sense. This topology is called the Zariski topology
on V. For any f € Ay, we denote by V the set of x € V such that f(z) # 0;
this is an open subset of V. It is clear that the V; form a base of the Zariski
topology. (If k is a topological field, the canonical topology of V is finer than
the Zariski topology.)

The map x — m,, of the Cor. of Prop. 1 can be considered as a map ¢ from
V to the prime spectrum Spec(Avy) of Ay (Commutative Algebra, Chap. 11,
84, no. 3, Def. 4). It is immediate that the Zariski topology is the inverse
image under ¢ of the topology of Spec(Avy).

PROPOSITION 2. The vector space V, equipped with the Zariski topology, is
an irreducible noetherian space. In particular, every non-empty open subset
of V is dense.

Since Ay is noetherian, Spec(Ay) is noetherian (Commutative Algebra,
Chap. II, §4, no. 3, Cor. 7 of Prop. 11), and every subspace of a noetherian
space is noetherian (loc. cit., no. 2, Prop. 8). With the notation of the Cor.
of Prop. 1, the intersection of the m, is {0}, and {0} is a prime ideal of Av;
thus V is irreducible (loc. cit., no. 3, Prop. 14).

2. DOMINANT POLYNOMIAL MAPS

Let V,W be finite dimensional vector spaces. Let f be a polynomial map
from V to W (Algebra, Chap. IV, §5, no. 10, Def. 4). If ¥ € Aw, Yo f € Ay
(loc. cit., Prop. 17). The map 9 — ¢ o f is a homomorphism from Aw to
Ay, said to be associated to f. Its kernel consists of the functions ¢ € Aw
which vanish on f(V) (and hence also on the closure of f(V) in the Zariski

topology).

DEFINITION 1. A polynomial map f:V — W is said to be dominant if the
homomorphism from Aw to Av associated to f is injective.

In view of the preceding, f is dominant if and only if f(V) is dense in W
in the Zariski topology.

PROPOSITION 3. Assume that k is algebraically closed. Let f : V. — W be
a dominant polynomial map. The image under f of any dense open subset of
V contains a dense open subset of W.

It suffices to prove that, for every non-zero element ¢ of Ay, f(V,) con-
tains a dense open subset of W. Identify Aw with a subalgebra of Ay by



APPENDIX I: POLYNOMIAL MAPS AND ZARISKI TOPOLOGY 47

means of the homomorphism associated to f. There exists a non-zero ele-
ment ¢ of Aw such that every homomorphism w : Ayw — k which does not
annihilate 9 extends to a homomorphism v : Ay — k which does not annihi-
late ¢ (Commutative Algebra, Chap. V, §3, no. 1, Cor. 3 of Th. 1). Now such
a w (resp. v) can be identified with an element of Wy, (resp. of V,) and to
say that v extends w means that f(v) = w. Hence, Wy, C f(V,). Q.E.D.

Let f: V — W be a polynomial map, and 2o € V. The map h — f(zo+h)
from V to W is polynomial. Decompose it into a finite sum of homogeneous
polynomial maps:

f(xo+h) = f(zo) + Di(h) + Da(h) +---

where D; : V. — W is homogeneous of degree i (Algebra, Chap. IV, §5, no. 10,
Prop. 19). The linear map D; is called the tangent linear map of f at xo. We
denote it by D f (o).

PROPOSITION 4. Let f: V. — W be a polynomial map. Assume that there
exists xg € V such that (Df)(xo) is surjective. Then f is dominant.

Applying a translation in V and one in W, we can assume that xg = 0
and f(xg) = 0. The decomposition of f as a sum of homogeneous elements
can then be written

f=f+fa+-- with deg f; =1,

and the linear map f; is surjective by hypothesis. Suppose that f is not
dominant. Then there exists a non-zero element 1) of Ay such that ¢o f = 0.
Let ¥ = ¥, + ¥my1 + -+ be the decomposition of ¢ into homogeneous
elements, with deg; =i and 1, # 0. Then

0:1/)0f:1/1m0f+1/1m+10f+"'
=tYmo f1 +p,

where p is a sum of homogeneous polynomial maps of degrees > m. It follows
that ¥,, o f1 = 0. Since f; is surjective, 1, = 0, a contradiction.

COROLLARY. If k is algebraically closed and if f satisfies the assumptions
of Prop. 4, the image under f of any dense open subset of V contains a dense
open subset of W.

This follows from Props. 3 and 4.
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APPENDIX II
A CONNECTEDNESS PROPERTY

Lemma 1. Let X be a connected topological space and §2 a dense open subset
of X. If, for any x € X, there exists a neighbourhood V of x such that V.N {2
s connected, then {2 is connected.

Indeed, let {2y be a non-empty open and closed subset of 2. Let z € X
and let V be a neighbourhood of = such that V N {2 is connected. If x € {2,

(VNR)N 2 =VN+0,

so VN 2 C 2. Thus, since £2 is dense in X, 2 is a neighbourhood of z.
Consequently, £2g is non-empty, open and closed, and since X is connected,
20 = X. Since (2 is closed in {2, this implies that 2y = 2 N 29 = §2, which
proves that {2 is connected.

Lemma 2. Let U be an open ball in C™ and f : U — C a holomorphic
function, not identically zero. Let A be a subset of U such that f =0 on A.
Then U= A is dense in U and connected.

The density of U= A follows from Differentiable and Analytic Manifolds,
Results, 3.2.5. Assume first that n = 1. If @ € A, the power series expansion
of f about a (Differentiable and Analytic Manifolds, Results, 3.2.1) is not
reduced to 0, and it follows that there exists a neighbourhood V, of a in
U such that f does not vanish on V,-{a}. Thus, a is isolated in A, which
proves that A is a discrete subset of U, hence countable since U is countable at
infinity. Let z,y € U= A. The union of the real affine lines joining x (resp. y)
to a point of A is meagre (General Topology, Chap. IX, §5, no. 2, Def. 2).
Hence, there exists z € U= A such that neither of the segments [z, z] and [y, 2]
meets A. The points z,y, z thus belong to the same connected component of
U= A, which proves the lemma in the case n = 1. We turn to the general case.
We can assume that A is the set of zeros of f (General Topology, Chap. I,
811, no. 1, Prop. 1). Let 2,y € U= A and let L be an affine line containing x
and y. The restriction of f to L N U is not identically zero since x € L N U.
By what has already been proved, x and y belong to the same connected
component of (LNU)-(LNA) and hence to the same connected component
of U=-A.

Lemma 3. Let X be a finite dimensional connected complex-analytic manifold
and let A be a subset of X satisfying the following condition:
For any x € X, there exists an analytic function germ f,, not vanishing
at x, such that the germ of A at x is contained in the germ at x of the set
of zeros of f.
Then X = A is dense in X and connected.
The density of X = A follows from Differentiable and Analytic Manifolds,
Results, 3.2.5. We can assume that A is closed (General Topology, Chap. I,
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§11, no. 1, Prop. 1). For any x € X, there exists an open neighbourhood V
of  and an isomorphism ¢ from V to an open ball in C" such that ¢c(ANV)
is contained in the set of zeros of a holomorphic function not identically zero
on ¢(V). Then, by Lemma 2, VN (X - A) is connected. In view of Lemma 1,
this proves that X - A is connected.



EXERCISES

All Lie algebras and modules over them are assumed to be finite dimensional
over k; from §3 onwards, k is assumed to be of characteristic zero.

§1

1) Assume that k has characteristic p > 0. Let V be a vector space, S a
finite set. A map r : S — End(V) satisfies condition (AC) if and only if there
exists a power g of p such that [s?,s'?] =0 for all s,s" € S. (Use Chap. I, §1,
Exerc. 19, formula (1).)

2) Assume that k is perfect. Let V be a finite dimensional vector space, and
u,v € End(V). Let ug, u,, vs, v, be the semi-simple and nilpotent components
of u,v. The following conditions are equivalent: (i) there exists an integer m
such that (ad u)™v = 0; (ii) us and v commute. (To prove (i) = (ii), reduce
to the case where k is algebraically closed and use Lemma 1 (ii).)

3) We make the assumptions in no. 2. Assume that k is infinite and that
condition (AC) is satisfied. Let k" be a perfect extension of k. Let A : S — k
be such that VA(S) # 0. Put

V =Veark, =S k.

Let 7/ : S — End(V’) be the linear map obtained from r by extension of
scalars. There exists a unique map \ : S’ — &’ such that V*(S) @ k' =
VA(S). (Reduce to the case where V. = V*(S). Let P be a polynomial
function on S and g a power of the characteristic exponent of k£ dividing dim V,
such that A? = P. Let P’ be the polynomial function on S’ which extends P.
For each s’ € S, there exists a X' (s") € k' such that X (s')? = P’(s"). Show
that the characteristic polynomial of 7/(s") is (X — N(s'))4m V)

4) Assume that k has characteristic zero. Let g = sl(3,%) and let a be the
subalgebra of g generated by a diagonal matrix with eigenvalues 1, —1,0.
Show that a is reductive in g, that the commutant m of a in g consists of the
diagonal matrices of trace zero, and that the commutant of m in g is equal
to m, and hence is distinct from a (cf. no. 5, Remark).
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€ 5) Assume that k is infinite. Let g be a Lie algebra and V a g-module. If
n is an integer > 0, denote by V,, the set of v € V such that z"v = 0 for all
T € g.

a) Show that, if v € V,,, z,y € g, then

(En: x"_iyxi_1> v =0.
i=1

(Use the fact that (z + ty)"v =0 for all ¢t € k.)

Replacing y by [z,y] in this formula, deduce?® that (z"y — ya2™)v = 0, and
hence that z"yv = 0.
b) Show that V,, is a g-submodule of V (use a)). In particular VO(g) = UV,
is a g-submodule of V. !

¢) Assume that kK = R or C, and denote by G a simply-connected Lie group
with Lie algebra g; the action of g on V defines a law of operation of G on V
(Chap. III, §6, no. 1). Show that an element v € V belongs to V,, if and only
if (s —1)"v =0 for all s € G; in particular V°(g) = V1(G).

6) The notations are those of Exerc. 12 of Chap. I, §3. In particular, g is a Lie
algebra, M a g-module, and H? (g, M) = ZP(g, M) /BP?(g, M) is the cohomology
space of degree p of g with values in M.

a) Show that BP(g, M) and ZP(g,M) are stable under the natural represen-
tation 6 of g on the space of cochains CP(g,M). It follows that there is a
representation of g on HP(g, M). Show that this representation is trivial (use
the formula 6 = di + id, loc. cit.).

b) Let k be an algebraic closure of k. Let z € g and let xy be the cor-
responding endomorphism of M. Let Aq,...,\, (resp. p1,...,m) be the
eigenvalues (in k) of adgz (resp. of xy1), repeated according to their multi-
plicity. Show that the eigenvalues of the endomorphism 6(x) of CP(g, M) are
the p; — (Aiy +---+ Ai, ), where 1 < j <m and

1§i1<ig<"'<ip§n.

Deduce, using a), that HP(g, M) = 0 if none of the p; — (A, +---+ A;,)
is zero.

¢) Assume that the representation g — End(M) is faithful, and that = satisfies
the condition:

:u’j1+"'+/1“jp7é1u’k1+"'+N’€p+1 (Sp)

for all ji,...,Jp k1,... . kps1 € (1, m).
Show that we then have H?(g,M) = 0 (remark that the eigenvalues A; of
adgz are of the form p; — py, and apply b)).

3 This proof was communicated to us by G. SELIGMAN.
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7) Let g be a nilpotent Lie algebra and V a g-module such that V°(g) = 0.
Show that HP(g,V) = 0 for all p > 0. (Reduce to the case where V =
VA (g), with A # 0 and choose an element 2 € g such that \(z) # 0. Apply
Exerc. 6 b), remarking that the A; are all zero and the p; are all equal to

Recover the Cor. of Prop. 9 (take p =1).%

9 8) Assume that k is of characteristic p > 0. Let g be a Lie algebra over k
with basis (eq,...,e,). Denote by U the enveloping algebra of g and C the
centre of U. For i = 1,...,n, choose a non-zero p-polynomial f;, of degree
d;, such that f;(ade;) = 0; then f;(e;) € C, cf. Chap. I, §7, Exerc. 5. Put
z; = files).

a) Show that z1,...,z, are algebraically independent. If A = k[z1,..., z,],
show that U is a free A-module with basis the monomials e{* ...eS", where
0 < a; < d;. (Use the Poincaré-Birkhoff-Witt theorem.) The rank [U : A]
of U over A is equal to dj...d,; it is a power of p. Deduce that C is an
A-module of finite type, hence a k-algebra of finite type and of dimension n
(Commutative Algebra, Chap. VIII).

b) Let K be the field of fractions of A, and let
Uk)y=UsaK, Cxk =CosK.

Then Uk) D Ck)y O K. Show that Uy is a field with centre C k), and that
this is the quotient field (both left and right) of U, cf. Chap. I, §2, Exerc. 10.
Deduce that [U) : C(k)] is of the from q%, where q is a power of p; we have
[C(k) : K] = g, where gc is a power of p, and [U: A] = qcq®.

c) Let d be a non-zero element of A, and let A be a subring of Uk such that
U C A C d'U. Show that A = U. [If z = b/a, a € A={0}, is an element
of A, show by induction on m that the relation b € Ua + U,, implies that
b € Ua+U,,_1, where {U,,} is the canonical filtration of U. (For this, use the
fact that gr U is integrally closed, and argue as in Prop. 15 of Commutative
Algebra, Chap. V, §1, no. 4.) For m = 0, this gives b € Uaq, i.e. z € U]

Deduce that C is integrally closed.

d) Assume that k is algebraically closed. Let p : g — gl(V) be an irreducible
linear representation of g and py the corresponding representation of U. The
restriction of py to C is a homomorphism ~, from C to k (identified with
the homotheties of V); let «, be its restriction to A. Show that for any
homomorphism « (resp. v) from the k-algebra A (resp. C) to k, there exists at
least one irreducible representation p of g such that a, = « (resp. 7, = v) and
that there are only finitely-many such representations (up to equivalence).
Show that dim V < ¢, with the notation of b).°

4 For more details, cf. J. DIXMIER, Cohomologie des algebres de Lie nilpotentes,
Acta Sci. Math. Szeged, Vol. XVI (1955), pp. 246-250.

5 For more details, cf. H. ZASSENHAUS, The representations of Lie algebras of
prime characteristic, Proc. Glasgow Math. Assoc., Vol. 11 (1954), pp. 1-36.
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€ 9) We retain the notations of the preceding exercise, and assume further
that g is nilpotent.

a) Show that the basis (e, ..., e,) can be chosen so that, for any pair (i, j),
lei, e;] is a linear combination of the ej, for A > sup(¢, j). Assume from now
on that the e; satisfy this condition. For ¢ = 1,...,n choose a power ¢(i) of
p such that ad(e;)?® = 0, and put z; = eg(i),A = k[z1,...,2n], cf. Exerc. 8.
b) Let p : g — gl(V) be a linear representation of g. Assume that p(e;) is
nilpotent for ¢ = 1,...,n. Show that p(x) is nilpotent for all z € g. (Argue by
induction on n = dim g and reduce to the case where p is irreducible. Show
that, in this case, p(e,) = 0 and apply the induction hypothesis.)

¢) Let p1 : g — gl(V1) and ps : g — gl(V2) be two linear representations of g.
Assume that Vi and Vy are # 0, and that V; = V*i(g), Vo = V*2(g), where
A1 and Ay are two functions on g, cf. no. 3. Show that, if A\j(e;) = Aa(e;) for
i=1,...,n, then Ay = Ao and there exists a non-zero g-homomorphism from
V1 to Vs (apply b) to the g-module V= AV, V) and use Engel’s theorem
to show that V contains a non-zero g-invariant element). Deduce that if, in
addition, V; and Vs are simple, they are isomorphic.

d) Assume that k is algebraically closed. Let R be the set of equivalence
classes of irreducible representations of g. If p € R, put

zp, = (x,(1),...,2,(n)) € k",

where x,(¢) is the unique eigenvalue of p(e;). Show that p — x, is a bijection
from R to k™. (Injectivity follows from ¢), and surjectivity from Exerc. 8 d).)
Deduce the following consequences:

(i) For any maximal ideal m of A, the quotient of U/mU by its radical is a
matrix algebra.

(ii) The degree of any irreducible representation of g is a power of p (this
follows from (i) and the fact that [U/mU : k] is a power of p).

(iii) Every homomorphism from A to k extends uniquely to a homomorphism
from C to k (use the fact that C/mC is contained in the centre of U/mU,
which is a local k-algebra with residue field k).

(iv) There exists an integer N > 0 such that 27 € A for all z € C (this
follows from (iii)).

€ 10) Assume that k is of characteristic p > 0. Denote by g a Lie algebra
with basis {eq, e2, e3}, with [eq, ea] = e3, [e1, €3] = [e2,e3] = 0.

a) Show that the centre of Ug is k[el, eb, es].

b) Assume that k is algebraically closed. Show that, for all (A1, A2, A\3) € k3,
there exists (up to equivalence) a unique irreducible representation p of g

6 For more details, cf. H. ZASSENHAUS, Uber Liesche Ringe mit Primzahlcharak-
teristik, Hamb. Abh., Vol. XIII (1939), pp. 1-100, and Darstellungstheorie nilpo-
tenter Lie-Ringe bei Charakteristik p > 0, Crelle’s J., Vol. CLXXXII (1940),
pp. 150-155.
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such that \; is the unique eigenvalue of p(e;) (i = 1,2, 3); the degree of p is
pif A3 # 0, and is 1 if A3 = 0. (Apply Exerc. 8 and 9, or argue directly.)

11) Let b be a nilpotent Lie algebra, V an h-module not reduced to 0, and A
a function on b such that V = V(). Prove the equivalence of the following
properties:
(i) A is a linear form on b, zero on [b, ).
(ii) There exists a basis of V with respect to which the endomorphisms defined
by the elements of § are triangular.
(To prove that (i) = (ii), apply Engel’s theorem to the h-module
AW, V), where W is the 1-dimensional h-module defined by A.)
Properties (i) and (ii) are true if k is of characteristic 0 (Prop. 9).

§2

1) The diagonal matrices of trace 0 form a Cartan subalgebra of sl(n, k),
except when n = 2 and k is of characteristic 2.

2) Let e be the element of sl(2,C). Show that Ce is a maximal

0 1
0 0
nilpotent Lie subalgebra of sI(2, C), but not a Cartan subalgebra of sl(2, C).
3) Assume that k is of characteristic 0. Let g be a semi-simple Lie algebra.
Let E be the set of commutative subalgebras of g all of whose elements are
semi-simple in g. Then the Cartan subalgebras of g are the maximal elements
of E. (Use Th. 2 and Prop. 10.)

In particular, the union of the Cartan subalgebras of g is equal to the set
of semi-simple elements of g.

4) Let g be a Lie algebra with a basis (z,y, z) such that [x,y] =y, [z, 2] = 2,
[y, 2] = 0. Let a be the ideal ky + kz of g. Then rk(a) = 2 and rk(g) = 1.

5) Assume that k is of characteristic 0. Let g be a Lie algebra, t its radical,
h a Cartan subalgebra of g. Show that

v=[g,t]+(HNv).
(Observe that the image of b in g/[g, t] contains the centre t/[g, t] of g/[g, t].)

6) Let g be a Lie algebra, b a nilpotent subalgebra of g. If g(h) is nilpotent,
g%(h) is a Cartan subalgebra of g.

7) Let s be a Lie algebra, a a Cartan subalgebra of s and V an s-module. Let
g = 5 X V be the semi-direct product of s by V. Show that a x V°(a) is a
Cartan subalgebra of g.

8) Assume that k is of characteristic p > 0. Denote by s a Lie algebra with ba-
sis {x, y} such that [z,y] = y. Let V be a k-vector space with basis {€; }icz/pz-
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a) Show that V has a unique s-module structure such that xe; = ie; and
ye; = e;41 for all 4. This s-module is simple.

b) Let g = s x V be the semi-direct product of s by V. Show that g is a
solvable algebra of rank 1 whose derived algebra is not nilpotent.

¢) An element of g is regular if and only if its projection on s is of the form
ax + by, with ab # 0.

d) We have VO(z +y) = 0 and V°(x) = keg. Deduce (cf. Exerc. 6) that g has
Cartan subalgebras of dimension 1 (for example that generated by  +y) and
Cartan subalgebras of dimension 2 (for example that generated by = and ey).

9) Let g be a Lie algebra with a basis (z,y) such that [x,y] = y. Let & = ky,
and ¢ : g — g/ the canonical morphism. The element 0 of g/t is regular in
g/t but is not the image under ¢ of a regular element of g.

10) Assume that k is infinite. Let g be a Lie algebra. Prove the equivalence
of the following properties:

(i) 1k(g) = dim(g).

(ii) g is nilpotent.

(iii) g has only finitely-many Cartan subalgebras of dimension rk(g).

(iv) g has only one Cartan subalgebra.

11) Let b be a commutative Lie algebra # 0, P a finite subset of h* containing
0. Show that there exists a Lie algebra g containing h as a Cartan subalgebra,
and such that the set of weights of § in g is P. (Construct g as the semi-direct
product of b by the h-module V which is the direct sum of the 1-dimensional
modules corresponding to the elements of P {0}, cf. Exerc. 7.)

An element x of b is such that h = g°(x) if and only if x is not orthogonal
to any element of P—{0}.

12) Assume that k is finite. Construct an example of a Lie algebra g having a
Cartan subalgebra b in which there exists no element = such that h = g°(z).
(Use the preceding exercise, and take P = h*.)

9 13) Assume that k is finite. Denote by k' an infinite extension of k. Let g
be a Lie algebra over k. The rank of g, denoted by rk(g), is the rank of the
k'-Lie algebra g’ = g ® k’; an element of g is said to be reqular if it is regular
in g'; these definitions do not depend on the choice of k’. Show that, if

Card(k) > dim g — rk(g),

g contains a regular element (hence also a Cartan subalgebra).
(Use the following result: if a is a non-zero homogeneous element of
E[X1,...,Xy], and if Card(k) > deg(a), there exists € k™ such that

a(z) #0.)
14) Assume that k is of characteristic zero. Let V be a finite dimensional k-

vector space, g a Lie subalgebra of gl(V), b a Cartan subalgebra of g and ny
the largest ideal of nilpotency of the g-module V (Chap. I, §4, no. 3, Def. 2).
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Show that an element of b is nilpotent if and only if it belongs to ny. (Reduce
to the case where the g-module V is semi-simple, and use Cor. 3 of Th. 2.)

9 15) Assume that k is infinite. Let g be a Lie algebra, g the union of the
ascending central series of g, and x an element of g. Prove the equivalence of
the following properties:

(i) = belongs to every Cartan subalgebra of g.

(i) z € g%(y) for all y € g (i.e. = € g°(g)).

(iii) # € Coog.

(The implications (iii) = (ii) => (i) are immediate. To prove that (i) = (ii),
remark that (i) is equivalent to saying that = € g%(y) for every regular element
y in g, and use the fact that the regular elements are dense in g in the Zariski
topology. To prove that (ii) = (iii), observe that n = g%(g) is stable under
g (81, Exerc. 5) and apply Engel’s theorem to the g-module n; deduce that n
is contained in % g.)

9 16) Let g be a solvable complex Lie algebra, h a Cartan subalgebra of g,
g = @ g*(h) the corresponding decomposition of g into primary subspaces,
with g°(h) = b.

a) Show that the restrictions to h of the linear forms called roots of g in
Chap. III, §9, Exerc. 17 ¢) are the weights of § in g, i.e. the A such that
g (h) # 0; deduce that such a \ vanishes on h N Zg.

b) Let (z,y) — [z,y]’ be the alternating bilinear map from g x g to g with
the following properties:
(i) T 2 € g7 (h), y € g(h), with A # 0, 1 0, then [z, 5]’ = [z, y];
(i) if = € g°(h). y € g (h), then [z, )" = [z, 4] — u(x)y.

Show that this gives a new Lie algebra structure on g (use a)). Denote it
by ¢’
¢) Show that, if = € g*(h), the map ad'z : y + [z,y]’ is nilpotent. Deduce
that g’ is nilpotent (apply Exerc. 11 of Chap. I, §4 to the set E of ad’x, where
x belongs to the union of the g*(h)).

83

1) Let g be a Lie algebra, g’ a Cartan subalgebra of g. Then the conditions
of Prop. 3 are satisfied. But an element of g’ even if it is regular in g’, is not
necessarily regular in g.

2) Let g be a real Lie algebra of dimension n, U (resp. H) the set of regular
elements (resp. of Cartan subalgebras) of g, and Int(g) the group of inner
automorphisms of g (Chap. III, §6, no. 2, Def. 2).

a) Show that, if z and y belong to the same connected component of U, g°(x)
and g°(y) are conjugate under Int(g).
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b) Show that the number of connected components of U is finite, and that this
number is bounded by a constant ¢(n) depending only on n (apply Exerc. 2
of App. II).

¢) Deduce that the number of orbits of Int(g) on H is < ¢(n).

3) Let g be a real Lie algebra, t the radical of g, h and b’ Cartan subalgebras
of g, ¢ the canonical homomorphism from g to g/t. The following conditions
are equivalent:

(i) b and b’ are conjugate under Int(g);

(ii) ¢(h) and @(h’) are conjugate under Int(g/t). (Imitate the proof of
Prop. 5.)

4) Let g = sl(2,R), z = ((1) 01>,y ((1) _01>.Showthat Ra and Ry

are Cartan subalgebras of g not conjugate under Aut(g).

5) a) Show that there exists a Lie algebra g over k with basis (z,y, z,t) such
that

[2,y] =z, [z,t] =t, [y,1] =0, [g,2] = 0.

Show that g is solvable and that ¢ = kx + ky + kz is a subalgebra of g.

b) Show that the elementary automorphisms of g are the maps of the form
1+ Xadgy + padgt where A\, i € k.

¢) Show that 1 + adex is an elementary automorphism of ¢ which does not
extend to an elementary automorphism of g.

d) Let s be a semi-simple subalgebra of a Lie algebra a. Show that every
elementary automorphism of s extends to an elementary automorphism of a.

6) Every element of a reductive Lie algebra g is contained in a commutative
subalgebra of dimension rk(g).

7) Let g be a Lie algebra and g’ a subalgebra of g reductive in g. Let a be
a Cartan subalgebra of g’. Show that there exists a Cartan subalgebra of g
which contains a (use Prop. 10 of §2). Deduce that rk(g’) < rk(g) and that
equality holds if and only if g’ has properties (i), (ii), (iii) of Prop. 3.

8) Let g be a Lie algebra, a an ideal of g, h a Cartan subalgebra of g and
%og the union of the ascending central series of g. Show that a C h implies
a C 69 (in other words €. g is the largest ideal of g contained in §). (Reduce
to the case where k is algebraically closed and remark that a is stable under
every elementary automorphism of g; the relation a C h then implies that a
is contained in every Cartan subalgebra of g; conclude by means of Exerc. 15
of §2.)

€ 9) Let g be a Lie algebra, h a Cartan subalgebra of g and = an element of

h. Let g = h @ g™ be the Fitting decomposition (§1, no. 1) of g with respect
to b.
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a) Let n be the largest semi-simple h-submodule contained in g°(x) N g*.
Show that n = 0 if and only if g"(z) = b, i.e. x is regular in g.

b) Show that h & n is a subalgebra of g. If ’ is the intersection of § with the
commutant of n, show that b’ is an ideal of b & n which contains 25 and z.
Conclude (Exerc. 8) that )’ C € (h@®n), and hence that x € € (h ®n) and
that x belongs to every Cartan subalgebra of h @ n.

¢) f n # 0, h @ n is not nilpotent and has infinitely-many Cartan subal-
gebras (§2, Exerc. 10). Conclude that x belongs to infinitely-many Cartan
subalgebras of g.

d) An element of g is regular if and only if it belongs to a unique Cartan
subalgebra.

9 10) Let g be a Lie algebra, t its radical, n its largest nilpotent ideal and a
one of its Levi subalgebras.

a) Put g’ = n+ Zg. Show that g’ = n@a. (Use the fact that [g, t] is contained
inn.) If g # 0, then g’ # 0.

b) Assume that k is algebraically closed. Let (V;);e1 be the quotients of a
Jordan-Holder sequence of the g-module g (with the adjoint representation).
If z € v, show that zvy, is a homothety and that zv, = 0 for all 7 if and only
if z belongs to n. Deduce that an element y € g belongs to g’ if and only if
Tr(yy,) =0 for all i € L.

¢) Denote by N the vector subspace of g generated by the elements = such
that ad x is nilpotent. Show that N is a subalgebra of g (use the fact that N
is stable under Aut.(g)). Show, by using b), that N C g'.

d) Let b be a Cartan subalgebra of g. Assume that there exists a subset R of
h* such that

g=bo P e*(b),

a€R

an assumption which is satisfied, in particular, if k is algebraically closed.
Show that N then contains the g*(h), Zh and n; deduce that N contains g,
soN =g

e) If k is algebraically closed and g # 0, g contains an element x # 0 such
that ad z is nilpotent. (Indeed, we then have g’ # 0.)

9 11) Let g be a Lie algebra, t its radical.

a) Let s be a Levi subalgebra of g, ¢ a Cartan subalgebra of s. Show that
¢ is contained in a Cartan subalgebra § of g which is the sum of ¢ and a
subalgebra of t. (Use §2, Th. 2, Prop. 10 and Cor. 2 of Th. 1.)

b) Let b’ be a Cartan subalgebra of g. Show that there exists a Levi subalgebra
s’ of g such that b’ is the sum of a Cartan subalgebra of s’ and a subalgebra
of t. (The subalgebras s,¥, 6 in a) can be chosen so that h + v =’ +t. Put
a = b + ¢, which is solvable. By Th. 3, there exists z € ¥ °°(a) such that
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e?da?h = p’. Then €*ds? is a special automorphism of g which transforms s
into the required Levi subalgebra.)

¢) Let s be a Levi subalgebra of g. Let h be a Cartan subalgebra of g which
is the sum of a Cartan subalgebra ¢ of s and a subalgebra [ of t. Let ¢ be
the commutant of € in r. Show that [ is a Cartan subalgebra of ¢. (For x € &,
adgz is semi-simple, but adyx is nilpotent, so [¢,h] = 0. If y € ¢ is such that
[y, ] C [, then [y,h] ChsoyehnNne=1)

d) Let s be a Levi subalgebra of g, € a Cartan subalgebra of s, ¢ the commutant
of ¢in v, [ a Cartan subalgebra of ¢. Then i) = £+ [ is a Cartan subalgebra of
g. (Let x =y + z (y € 5,2z € t) be an element of the normalizer u of f in g.
Show that [y, €] C ¢, so y € € and z € u. Then show that [z,8 C hNt Cc, so
[¢, ¢, 2]] = 0, and hence that [¢, 2] = 0 and z € ¢. Finally, [2,[] C [ hence z € [
and z € h.)

e) Let s, ¢ ¢ be as in d), and q = [g, t] the nilpotent radical of g. Let z € q and
u the special automorphism €24, If u(€) C €+ ¢, then € ¢. (Consider the
adjoint representation p of s on q, and let g; be a complement of " 'q in €"q
stable under p; let p; be the subrepresentation of p defined by q;. Let o; = p;|€.
Let g; be the commutant of ¢ in q; and g a complement of g} in ¢; stable
under o;. Let v = 2} +2f + -+ ), + 2/ with 2, € q}, 2] € q7. Arguing by
contradiction, assume that the x are not all zero and z{ =--- =z _; =0,
x, # 0, for example. If h € €, u(h) = h + [z}, h] +y with y € €PT1q. Since
u(h) € €+, this gives [z}, h] +y € q;, + q,, .1 + -+ qj,, hence [h, 2}] € qp,,
so [h,z] = 0. Then z;; = 0, a contradiction.)

f) Let b be a Cartan subalgebra of g. Then § can be expressed uniquely as
the sum of h Nt and a Cartan subalgebra of a Levi subalgebra of g. (For the
uniqueness, use e) and Th. 5 of Chap. I, §6, no. 8.) The Levi subalgebra in
question is not unique in general.

g) Let b be a Cartan subalgebra of g, and t = g°(h Nt). Then b is a Cartan
subalgebra of t. We have g = t + t (use a Fitting decomposition for the
adjoint representation of h Nt on g). The algebra t Nt is the radical of t and
is nilpotent (use Exerc. 5 of §2).

h) Assume that k is algebraically closed. Let ) be a Cartan subalgebra of g.
There exists a Levi subalgebra s of g such that, for all A € h*,

g*(h) = (g*(h) Ns) + (a*(h) N ).
(With the notations of g), take for s a Levi subalgebra of t such that h =
(hNs) + (hNr); this exists by b).)7

€ 12) a) Let g be a solvable Lie algebra, and G a finite subgroup (resp. com-
pact subgroup if ¥ = R or C) of Aut(g). Show that there exists a Cartan
subalgebra of g stable under G. (Argue by induction on dim g, and reduce to

7 For more details, cf. J. DIXMIER, Sous-algebres de Cartan et décompositions de
Levi dans les algebres de Lie, Trans. Royal Soc. Canada, Vol. L (1956), pp. 17-21.
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the case in which g is an extension of a nilpotent algebra g/n by a commuta-
tive ideal n which is a non-trivial simple g/n-module (cf. proof of Th. 3). The
Cartan subalgebras of g then form an affine space attached to n, on which G
operates. Conclude by an argument with the barycentre.)

b) Let g be a solvable Lie algebra and s a Lie subalgebra of Der(g). As-
sume that the s-module g is semi-simple. Show that there exists a Cartan
subalgebra of g stable under s. (Same method.)

9 13) Let g be a Lie algebra and G a finite subgroup of Aut(g). Assume that
G is hyper-solvable (Algebra, Chap. 1, §6, Exerc. 26). Show that there exists
a Cartan subalgebra of g stable under G.

(Argue by induction on dim g. Using Exerc. 12, reduce to the case where g
is semi-simple. If G # {1}, choose a normal subgroup C of G that is cyclic of
prime order (Algebra, loc. cit.). The subalgebra s consisting of the elements
invariant under C is reductive in g (§1, no. 5), and distinct from g. By the
induction hypothesis, s has a Cartan subalgebra a stable under G. We have
s # 0 (Chap. I, §4, Exerc. 21 ¢)), so a # 0. The commutant 3 of a in g is
distinct from g and stable under G; choose a Cartan subalgebra § of 3 stable
under G, and show that b is a Cartan subalgebra of g, cf. the Cor. to Prop. 3.)

Construct a finite group of automorphisms of s[(2, C) which is isomorphic
to 4 (and hence solvable) and which does not leave any Cartan subalgebra
stable.

14) *Show that every irreducible complex (resp. real) linear representation
of a hyper-solvable finite group G is induced by a representation of degree
1 (resp. of degree 1 or 2) of a subgroup of G. (Apply Exerc. 13 to the Lie
algebras gl(n, C) and gl(n,R).).

15) Assume that k is algebraically closed. Let g be a Lie algebra, § a Cartan
subalgebra of g, and A a subset of g. Assume that A is dense in g (in the
Zariski topology) and stable under Aut.(g). Show that A N§ is dense in bh.
(Let X be the closure of ANk, and U = h-X. Assume that U # @. With
the notations in Lemma 2, the image under F of U x g*1(h) x --- x g*#(h)
contains a non-empty open subset of g. Since this image is contained in g— A,
this contradicts the fact that A is dense in g.)

16) Let V be a finite dimensional k-vector space, and g a Lie subalgebra of
gl(V). We are going to show that the following three properties are equivalent:
(i) The Cartan subalgebras of g are commutative and consist of semi-simple
elements.

(ii) Every regular element of g is semi-simple.

(iii) The semi-simple elements of g are dense in g in the Zariski topology.

a) Show that (i) = (ii) = (iii).

b) Let A be the set of semi-simple elements of g. Show that A is stable under
Aut.(g).
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¢) Show that (iii) = (i). (Reduce (App. I, Exerc. 1) to the case where k is
algebraically closed. If b is a Cartan subalgebra of g, show, by using Exerc. 15,
that A N b is dense in b; since [z,y] =0 if z € ANb,y € b, deduce that b is
commutative, from which (i) is immediate.)

d) Assume that k is R, C or a non-discrete complete ultrametric field of
characteristic zero. Give g the topology defined by that of k. Show that
properties (i), (ii), (iii) are equivalent to the following:

(iv) The semi-simple elements of g are dense in g.

(Show that (iv) = (iii) and (ii) = (iv), cf. App. I, Exerc. 4.)

17) Assume that k is algebraically closed. Let g be a Lie algebra, h a Cartan
subalgebra, and A a subset of the centre of . Denote by Eg the subgroup
of Aut(g) denoted by E in no. 2. Show that, if s is an element of Aut(g)
such that sA = A, there exists ¢ € E4 such that th = b and t|/A = Ida; in
particular, ts|A = s|A. (Let a be the commutant of A in g; since h and sh
are Cartan subalgebras of a, there exists § € E; such that 6(sh) = b; choose
t from the elements of E4 that extend 6.)

9 18) Let g be a Lie algebra, h a Cartan subalgebra of g and Ug (resp. Ub)
the enveloping algebra of g (resp. h). A linear form ¢ on Ug is said to be
central if it vanishes on [Ug, Ug], i.e. if ¢(a.b) = ¢(b.a) for all a,b € Ug.

a) Let x,y € g. Assume that there exists s € Aut.(g) such that s(xz) = y.
Show that

@) = p(y")

for all n € N and for every central linear form ¢ on Ug.

b) Let ¢ be a central linear form on Ug whose restriction to Ul vanishes.
Show that ¢ = 0. (We can assume that k is algebraically closed. Deduce
from a) that we then have ¢(z™) = 0 for all n € N and all regular = € g; use
a density argument to remove the assumption of regularity.)

¢) Show that Ug = [Ug, Ug] + Ub.

d) Let V be a semi-simple g-module. Show that V is semi-simple as an
h-module. In particular, V*(h) = V() for all A € b*.

e) Let V' be a semi-simple g-module. Assume that V and V' are isomorphic as
h-modules. Show that they are isomorphic as g-modules. (If a € Up, remark
that Tr(av) = Tr(ay+). Deduce, by using b) or ¢), that Tr(ay) = Tr(zy/) for
all € Ug, and conclude by using Algebra, Chap. VIII.)

If k is algebraically closed, the assumption that “Vand V’are h-isomorphic”
is equivalent to saying that dim V() = dim V() for all A € h*.
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The notations and assumptions are those of nos. 1, 2, 3 of §4.

1) Take G = GL(k), n > 0.
a) Show that r§,(g) = n for all g € G.

b) Show that an element g € G is regular if and only if its characteristic
polynomial Py(T) = det(T — g) is separable; this is equivalent to saying that
the discriminant (Algebra, Chap. IV, §1, no. 10) of P,4(T) is # 0.

2) Construct a Lie group G such that the function 7% ; is not constant. (Take
g abelian # 0 and Ad non-trivial.)

3) Let (p;)icr be a countable family of analytic linear representations of G.
Prove that the elements of G which are regular for all the p; constitute a dense
subset of G. Construct an example showing that the countability assumption
cannot be omitted.

4) Assume that k¥ = C and that G is connected. Prove the equivalence of the
following properties:

(i) G is nilpotent.

(ii) Every element # 1 of G is regular.

(Show first that (ii) implies

(i)’ Every element # 0 of g is regular.

Remark next that, if g # 0, then g contains elements x # 0 such that ad x is
nilpotent, cf. §3, Exerc. 10. Deduce that g is nilpotent, hence (i).)

85

1) Show that the solvable Lie algebra considered in Chap. I, §5, Exerc. 6 is
not isomorphic to any decomposable Lie algebra.

2) Let u (resp. v) be a non-zero semi-simple (resp. nilpotent) endomorphism
of V. Then the map A\u — Av (A € k) is an isomorphism from g = ku to
g’ = kv which does not take semi-simple elements to semi-simple elements.

3) Let u be an endomorphism of V that is neither semi-simple nor nilpotent.
Then g = ku is non-decomposable, but adgg is decomposable.

9 4) Let g be a decomposable Lie subalgebra of gl(V). Let q be a Lie
subalgebra of g whose identity representation is semi-simple. There exists
a € Aut.(g) such that a(q) is contained in the subalgebra m of Prop. 7.
(Imitate the proof of Prop. 7 (ii).)

9 5) Let g be a Lie subalgebra of gl(V). Then g is said to be algebraic if,
for all z € g, the replicas of x (Chap. I, §5, Exerc. 14) belong to g. Such an
algebra is decomposable.
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a) Denote by a(g) the smallest algebraic subalgebra of gl(V) containing g.
Then

a(g) De(g) D g

Give an example where a(g) and e(g) are distinct (take V of dimension 2 and
g of dimension 1).

b) Show that, if n is an ideal of g, n and a(n) are ideals of a(g), and
[a(g),a(n)] = [g,n] (imitate the proof of Prop. 4). Deduce that Z'a(g) = Z'g
for i > 1 and that €"a(g) = ¢"g for i > 2.

¢) Show that every Lie algebra consisting of nilpotent elements is algebraic.®

9 6) Let g be a semi-simple subalgebra of gl(V), T(V) = E_BO T" (V) the

tensor algebra of V, T(V)? the set of elements of T(V) invariant under g
(cf. Chap. III, App.) and g the set of u € gl(V) such that u.x = 0 for all
x € T(V)?. We are going to show that g = g.

a) Show that the representation of g on the dual V* of V is isomorphic to its
representation on A" -t V, where p = dim V (use the fact that g is contained
in sI(V)). Deduce that every element of T, ,, = T"(V) ® T™(V*) invariant
under g is invariant under g, and that g is algebraic (Exerc. 5).

b) Let W be a vector subspace of one of the T, ,,. Assume that W is stable
under g. Show that W is stable under g (if e1, ..., e, is a basis of W, remark
that ey A --- A e, is invariant under g, and hence under g).

Deduce that g is an ideal of g, and that g/g is commutative (cf. proof of
Prop. 4). We have g = g x ¢, where ¢ is the centre of g.

¢) Let R be the associative subalgebra of gl(V) generated by 1 and g. Show
that ¢ is contained in the centre of R (remark that g is contained in the
bicommutant of R, which is equal to R). Deduce that the elements of ¢ are
semi-simple.

d) Let z € ¢. Show that the replicas of z belong to ¢ (Chap. I, §5, Exerc. 14).
Show that Tr(sz) = 0 for all s € g; deduce that Tr(sxz) = 0 for all s € g, and
hence that z is nilpotent (loc. cit).

e) Show that ¢ = 0 and g = g by combining ¢) and d).

7) Let g be a Lie subalgebra of gl(V). Let m, n be two integers > 0, W and W’
two vector subspaces of T™ (V) ® T"(V*) where V* is the dual of V. Assume
that W/ € W and that W and W’ are stable under the natural representation
of g on T™(V) ® T"(V*). Show that W and W’ are then stable under e(g).
If 7 denotes the representation of e(g) on W/W’ thus obtained, show that
me(g) is the decomposable envelope of 7(g) (use Th. 1).

Deduce that ad e(g) is the decomposable envelope of ad g in gl(g).

8 For more details, cf. C. CHEVALLEY, Théorie des groupes de Lie, II, Groupes
algébriques, Chap. I1, §14, Paris, Hermann, 1951.
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8) Let g be a Lie subalgebra of gl(V) and h a Cartan subalgebra of g.

a) Show that e(g) = e(h) + Zg = e(h) + g.

(Remark that e(h)+Zg is decomposable (Cor. 1 of Th. 1), contains g = h+ g,
and is contained in e(g); thus, it is e(g).)

b) We have e(h) N g = b (remark that e(h) N g is nilpotent).

c¢) Let  be an element of the normalizer of e(h) in e(g). Show that z € e(h).
(Write © = y+z with y € e(h), z € g, cf. a); remark that [z, h] C e(h)Ng = b,
hence z € h.)

d) Show that e(h) is a Cartan subalgebra of e(g).

9) Let g be a Lie subalgebra of gl(V). Show that conditions (i), (ii), (iii) of
Exerc. 16 of §3 are equivalent to:

(v) g is decomposable and has the same rank as g/nv(g).

(If b is a Cartan subalgebra of g, the condition “g has the same rank as
g/nv(g)” is equivalent to saying that hNny(g) = 0, i.e. that h has no nilpotent
element # 0 (cf. §2, Exerc. 14). Deduce the equivalence of (i) and (v).)

10) Let k' be an extension of k and g’ a k’-Lie subalgebra of
gl(Ver k) =gl(V) @, k.

a) Show that there exists a smallest Lie subalgebra g of gl(V) such that g®g &k’
contains g’.

b) Assume that k' is algebraically closed and denote by G the group of
k-automorphisms of k’; this group operates in a natural way on V ®; &'
Show that g ®; k' is the Lie subalgebra generated by the conjugates of g’
under G (use the fact that k is the field of G-invariants in &').

¢) Show that g is decomposable if g’ is decomposable. (Reduce to the case
where k' is algebraically closed, and use b) as well as Cor. 1 and 3 of Th. 1.)

9§ 11) Exceptionally, we assume in this exercise that k is a perfect field of
characteristic p > 0.

Let g be a Lie p-algebra (Chap. I, §1, Exerc. 20). If 2 € g, denote by (x)

the smallest Lie p-subalgebra containing . It is commutative and generated
as a k-vector space by the z?° where i = 0, 1,. ... Then z is said to be nilpotent
(resp. semi-simple) if the p-map of (x) is nilpotent (resp. bijective).
a) Show that x can be decomposed uniquely in the form = = s + n, with
s,n € (x), s semi-simple and n nilpotent (apply Exerc. 23 of Chap. I, §1).
If f is a p-homomorphism from g to gl(V), f(s) and f(n) are the semi-
simple and nilpotent components of the endomorphism f(x); this applies in
particular to f = ad.

b) A subalgebra of g is said to be decomposable if it contains the semi-simple
and nilpotent components of its elements. Show that, if b and ¢ are vector
subspaces of g such that b C ¢, the set of z € g such that [x,¢] C b is



66 CARTAN SUBALGEBRAS AND REGULAR ELEMENTS Ch. VII

decomposable (same proof as Prop. 3); in particular, every Cartan subalgebra
of g is decomposable.

¢) Let t be a commutative subalgebra of g consisting of semi-simple elements,
and maximal with this property. Let ) be the commutant of tin g. Let x € b
and let x = s 4+ n be its canonical decomposition; since h is decomposable
(cf. b)), s,n € h. Show that the subalgebra generated by t and s is commu-
tative and consists of semi-simple elements, hence coincides with t. Deduce
that adyz = adyn is nilpotent, and hence that b is nilpotent. Since h = g°(h),
b is a Cartan subalgebra of g (§2, Prop. 4).

In particular, every Lie p-algebra over a finite field has a Cartan subalgebra.”

Appendix I

Denote by V a finite dimensional vector space over k.

1) Let k" be an extension of k, and let V() = V ®; k’. Show that the Zariski
topology on V() induces the Zariski topology on V, and that V is dense in
V(k’)~

2) Assume that V is the product of two vector spaces Vi and Vj.

a) The Zariski topology on V is finer than the product topology of the Zariski
topologies on Vi and Vy; it is strictly finer if V; # 0 and Vg # 0.

b) If Ay (resp. Ag) is a subset of V; (resp. Va), the closure of A; x A, is the
product of the closures of A; and As.

3) Assume that k is algebraically closed. Let A and B be two closed subsets
of V, and a (resp. b) the set of f € Ay which vanish on A (resp. B). Prove
the equivalence of the following properties:
(i) AnNB=go.
(iii) There exists a polynomial function f on V which is equal to 1 on A and
to 0 on B.

(Use Hilbert’s theorem of zeros (Commutative Algebra, Chap. V, §3, no. 3)
to prove that (i) = (ii).)

4) Assume that k is a non-discrete complete valued field. Denote by 7
(resp. Z) the Banach space (resp. Zariski) topology on V.
a) Show that Jis finer than 2 (and strictly finer if V # 0).

b) Show that every non-empty Z-open subset of V is Fdense.

% For more details, cf. G. B. SELIGMAN, Modular Lie Algebras, Chap. V, §7,
Springer- Verlag, 1967.
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Appendix II

9 1) Let X be a locally connected topological space, €(X) the space of con-
tinuous real-valued functions on X, and d an integer > 0. Let F € 4(X)[T]
be a monic polynomial of degree d with coefficients in ¢(X):

F=T 4+ T4+ 4+ fa, fi € €X).
Identify F with a function on R x X by putting
F(t,z) =t"+t" ' fi(x) + -+ fa(z) if teR, z€X.

Let A € E(X) be the discriminant of the polynomial F (Algebra, Chap. IV,
§1, no. 10).

If U is an open subset of X, denote by Zy the set of (¢,z), with ¢t € R
and z € U, such that F(¢,2) = 0; this is a closed subset of R x U.
a) Show that the projection pry : Zy — U is proper (General Topology,
Chap. I, §10).
b) Assume that U is connected and that A(x) # 0 for all x € U. Show that

Zy — U is a covering of U (General Topology, Chap. XI) of degree < d, and
that the number of connected components of R x U=Zy is < d+ 1.

¢) Let X’ be the set of points of X at which A is # 0. Assume that X’ is dense
in X. Denote by « (resp. %) the set of connected components of X’ (resp. of
R x X-Zx). Show that

Card(#) < (d+ 1)Card(%) (use b)).
d) Assume that X is connected, and that d > 1. Show that

Card(#) < 1+ dCard(w).

9 2) Let V be a real vector space of finite dimension n, and F a polynomial
function on V of degree d. Let V' be the set of points of V at which F = 0.
Show that the number of connected components of V' is finite and bounded
by a constant depending only on n and d. (Argue by induction on n. Reduce
to the case in which F has no multiple factors, and show that V can be
decomposed as R x X in such a way that the results of Exerc. 1 are applicable
to F.)10

OFor other results in the same direction, cf. J. MILNOR, On the Betti numbers of
real varieties, Proc. Amer. Math. Soc., Vol. XV (1964), pp. 275-280.



CHAPTER VIII
Split Semi-simple Lie Algebras

In this chapter, k denotes a (commutative) field of characteristic 0. Unless
otherwise stated, by a “vector space”, we mean a “vector space over k”;
similarly for “Lie algebra”, etc.

§1. THE LIE ALGEBRA sl(2,k) AND ITS
REPRESENTATIONS

1. CANONICAL BASIS OF sl(2,k)

Lemma 1. Let A be an associative algebra over k, H and X elements of A
such that [H,X] = 2X.

(i) [H,X™] = 2nX™ for any integer n > 0.
(ii) If Z is an element of A such that [Z,X] = H, then, for any integer
n >0,

[Z, X" =nX""YH+n-1)=n(H-n+1)X""".

The map T +— [H,T] from A to A is a derivation, which implies (i). With
the assumptions in (ii),

2, X" = > X'HX
1+j=n—1
= Y (X'X7H+X'2jX7)
i+j=n—1
—1
:nxn71H+2anln(n2 )
=nX""YH+n-1).

On the other hand, X" '(H+n—1)=(H —n+1)X""! by (i). Q.E.D.

Recall that we denote by sl(2, k) the Lie algebra consisting of the square
matrices of order 2, trace zero, and with entries in k. This Lie algebra is
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simple of dimension 3 (Chap. I, §6, no. 7, Example). The canonical basis of
sl(2, k) is the basis (X4, X_, H), where

ne(30) x-(5 1) w3
We have
[H,X.]=2X, [HX_]|=-2X_ [X;, X_]=-H. (1)

Since the identity representation of sl(2, k) is injective, H is a semi-simple
element of s[(2, k) and X, X_ are nilpotent elements of (2, k) (Chap. I, §6,
no. 3, Th. 3). By Chap. VII, §2, no. 1, Example 4, kH is a Cartan subal-
gebra of 5[(2, k). The map U — —tU is an involutive automorphism of the
Lie algebra sl(2, k), called the canonical involution of sl(2,k); it transforms
(X4, X_,H) into (X_, X4, —H).

Lemma 2. In the enveloping algebra of sl(2,k),
[H,X7] =2nX" [H,X"]=—2nX"
for any integer n > 0, and

X, X! =nX"""H+n-1)=nH-n+1)X}""
X, X" =nX""Y(~H+n-1)=n(-H-n+1)X"!

ifn > 0.
The first and third relations follow from Lemma 1. The others can be
deduced from them by using the canonical involution of sl(2, k).

2. PRIMITIVE ELEMENTS OF s((2,k)-MODULES

Let E be an sl(2, k)-module. If A € s1(2,k) and = € E, we shall often write
Ax instead of Agx. Let A\ € k. If Hx = Az we say, by abuse of language,
that = is an element of E of weight A, or that A is the weight of x. If E is
finite dimensional, Hg is semi-simple, so the set of elements of weight A is
the primary subspace of E relative to Hg and A (cf. Chap. VII, §1, no. 1).

Lemma 3. If x is an element of weight X\, then X x is an element of weight
A+ 2 and X_x is an element of weight A — 2.

Indeed, HX yz = [H, Xi|o+ X He =2X o+ X A = (A+2) X, and
similarly HX_x = (A — 2)X_x (cf. also Chap. VII, §1, no. 3, Prop. 10 (ii)).

DEFINITION 1. Let E be an s((2, k)-module. An element of E is said to be
primitive if it is a non-zero eigenvector of Hg and belongs to the kernel of
Xip.
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A non-zero element e of E is primitive if and only if ke is stable under
the operation of kH + kX ; this follows for example from Lemma 3.

Ezxamples The element X is primitive of weight 2 for the adjoint representa-
tion of s[(2, k). The element (1,0) of k? is primitive of weight 1 for the identity

representation of s[(2,k) on k.

Lemma 4. Let E be a non-zero finite dimensional sI(2, k)-module. Then E has
primitive elements.

Since X is a nilpotent element of s[(2, k), X g is nilpotent. Assume that
X751 #0and X7y = 0. By Lemma 2,

m(Hg —m + 1) X7 = [X_g, XJ5] =0,
and hence the elements of X" (E)- {0} are primitive.

PROPOSITION 1. Let E be an sl(2, k)-module, and e a primitive element of
E of weight \. Put e,, = %Xﬁe forn >0, and e_1 = 0. Then

He, =(A—2n)e,
X_e, =—(n+1ept1 (2)
Xien =(A=—n+1ey_1.

The first formula follows from Lemma 3, and the second from the defini-
tion of the e,,. We prove the third by induction on n. It is satisfied for n =0
since e_1 = 0. If n > 0,

nXie,=-XiX ep1=—[X4, X Jen—1 — X_Xyien1
=He, 1 —X_(A—n+2)e,_o
=A=2n4+2+n—-1)A—n+2))e,_1
=nA—n+1)e,_1.

COROLLARY. The submodule of E generated by e is the vector subspace
generated by the e, .

This follows from the formulas (2).

The integers n > 0 such that e, # 0 constitute an interval in N, and the
corresponding elements e,, form a basis over k of the submodule generated by
e (indeed, they are linearly independent because they are non-zero elements
of distinct weights). This basis will be said to be associated to the primitive
element e.

PROPOSITION 2. If the submodule V of E generated by the primitive ele-
ment e is finite dimensional, then:

(i) the weight X of e is integral and equal to dim'V — 1;
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(i) (eo,e1,--.,€x) s a basis of V, and e, =0 for n > X;

(iii) the eigenvalues of Hy are A, A — 2, \ — 4,...,=X; they are all of
multiplicity 1;

(iv) every primitive element of V is proportional to e;

(v) the commutant of the module V is reduced to the scalars; in particular,
V is absolutely simple.

Let m be the largest integer such that e,, # 0. Then 0 = X e,41 =
(A —m)em, so A = m; since (eg,e1,...,6en,) is a basis of V, this proves (i)
and (ii). Assertion (iii) follows from the equality He,, = (A —2n)e,,. We have
Xyen, #0 for 1 <n <m, hence (iv). Let ¢ be an element of the commutant
of the module V. Then He(e) = cH(e) = Ac(e), so there exists u € k such
that ¢(e) = pe; then

cX%%e=X%cce=puX%e
for all ¢ > 0, so ¢ = p.1, proving (v).

COROLLARY. Let E be a finite dimensional s((2, k)-module.

(i) The endomorphism Hyg is diagonalizable and its eigenvalues are ratio-
nal integers.

(ii) For any p € Z, let E, be the eigenspace of Hy corresponding to the
eigenvalue p. Let © be an integer > 0. The map X1E|Ep Ep = Ep_o; s
injective for i < p, bijective for i = p, and surjective for i > p. The map
X' plE_p : E_, — BE_p19; is injective for i < p, bijective for i = p, and
surjective for i > p.

(iii) The length of E is equal to dimKerX g and to dimKerX_g.

(iv) Let E' (resp. E”) be the sum of the E, for p even (resp. odd). Then
E’' (resp. E”) is the sum of the simple submodules of E of odd (resp. even)
dimension; and E = E' ® E”. The length of E' is dimEg, and that of E" is
dim El-

(v) KerX g NImX g C ZO E, and KerX_gNImX_g C ZO E,.
p> p<

If E is simple, E is generated by a primitive element (Lemma 4), and it
suffices to apply Propositions 1 and 2. The general case follows since every
finite dimensional s((2, k)-module is semi-simple.

3. THE SIMPLE MODULES V(m)

Let (u,v) be the canonical basis of k2. For the identity representation of
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Consider the symmetric algebra S(k?) of k? (Algebra, Chap. 111, §6, no. 1,
Def. 1). The elements of sl(2,k) extend uniquely to derivations of S(k?),
giving S(k?) the structure of an sl(2, k)-module (Chap. I, §3, no. 2). Let
V(m) be the set of homogeneous elements of S(k?) of degree m. Then V(m)
is an sl(2, k)-submodule of S(k?) of dimension m + 1, the mth symmetric
power of V(1) = k? (Chap. III, Appendix). If m,n are integers such that
0 <n<m, put

elm) = (m) u™ "™ € V(m).
n
PROPOSITION 3. For any integer m > 0, V(m) is an absolutely simple
50(2, k)-module. In this module, e(()m) = u™ is primitive of weight m.

We have X u™ = 0 and Hu™ = mu™, so v is primitive of weight m.
The submodule of V(m) generated by u™ is of dimension m + 1 (Prop. 2 (i))
and so is equal to V(m). By Prop. 2 (v), V(m) is absolutely simple.

THEOREM 1. Every simple sl(2, k)-module of finite dimension n is isomor-
phic to V(n — 1). Every finite dimensional sl(2, k)-module is a direct sum of
submodules isomorphic to the modules V(m).

This follows from Lemma 4 and Prop. 1, 2 and 3.

Remarks. 1) The adjoint representation of s[(2,k) defines on s((2,%) the
structure of a simple s[(2, k)-module. This module is isomorphic to V(2) by
an isomorphism that takes u? to X, 2uv to —H, and v? to X _.

2) For n > 0 and m > n,

Xee? = =(m=m) (5 )™ = (o D
Hence, (e((Jm)7 egm)7 cey e,(ff)) is the basis of V(m) associated to the primitive
clement e{™ .

3) Let @ be the bilinear form on V(m) such that

B(elm) e(m)) =0 ifn+n #m

s ~n!

(e, e,y = (1 (7
If 2 = au+ bv and y = cu + dv, then @(z™,y™) = (ad — bc)™. It is now
easy to check that @ is invariant, and that @ is symmetric for m even, and
alternating for m odd.

PROPOSITION 4. Let E be a finite dimensional sl(2, k)-module, m an inte-
ger > 0, P, the set of primitive elements of weight m. Let L be the vector
space of homomorphisms from the sl(2, k)-module V(m) to the sl(2, k)-module
E. The map f — f(u™) from L to E is linear, injective, and its image is
P,, U{0}.
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This map is clearly linear, and it is injective because u™ generates the
sl(2, k)-module V(m). If f € L,

X (f(w™) = f(Xqu™) =0,  H(f(u™)) = f(Hu™) = mf(u™)

so f(u™) € P,, U{0}. Let e € P,,, and V the submodule of E generated
by e. By Prop. 1, there exists an isomorphism from the module V(m) to the
module V that takes v to e. Then L(u™) = P,,, U {0}.

COROLLARY. The isotypical component of E of type V(m) has length
dim(P,, U {0}.

4. LINEAR REPRESENTATIONS OF THE GROUP SL(2,k)

Recall (Algebra, Chap. II1, §8, no. 9) that we denote by SL(2, k) the group of
square matrices of order 2 with coefficients in k whose determinant is equal
to 1. If € s[(2, k) is nilpotent, then 22 = 0 (Algebra, Chap. VII, §5, Cor. 3
of Prop. 5) and e* = 1+ x € SL(2,k). If E is a finite dimensional vector
space and p is a linear representation of sl(2, k) on E, then p(z) is nilpotent
and so e”(*) is defined (Chap. I, §6, no. 3).

DEFINITION 2. Let E be a finite dimensional vector space, and p (resp. 7) a
linear representation of s1(2,k) (resp. SL(2,k)) on E. Then p and w are said
to be compatible if, for every nilpotent element x of s(2,k), w(e*) = ().

In other words, p and m are compatible if, for every nilpotent element x
of sl(2,k), the restriction of p to kx is compatible with the restriction of w to
the group 1+ ka (Chap. VII, §3, no. 1).

If p and 7 are compatible, so are the dual representations, the mth tensor
powers, and the mth symmetric powers of p and 7, respectively (Chap. VII,
§5, no. 4, Lemma 1 (i) and (ii)). Similarly for the representations induced by
p and 7 on a vector subspace stable under p and 7 (loc. cit.).

In particular, the representation p,, of s[(2,%) on V(m) (no. 3) is com-
patible with the mth symmetric power 7, of the identity representation my
of SL(2, k). Putting el™ = (™) um~"v™ as above, we have

n

mn()el = (1) (sw)m " (sv)" 3)

for s € SL(2,k) and 0 < n < m.

THEOREM 2. Let p be a linear representation of sl(2,k) on a finite
dimensional vector space E.
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(i) There exists a unique linear representation w of SL(2,k) on E that is
compatible with p.

(ii) A wvector subspace F of E is stable under 7 if and only if it is stable
under p.

(iii) Let x € E. Then w(s)x = x for all s € SL(2,k) if and only if x is
invariant under p (that is, p(a)x =0 for all a € s[(2,k)).

The existence of 7 follows from the preceding and Th. 1. On the other
hand, we know that the group SL(2, k) is generated by the elements of the
form

1t 1 0
tXy _ —tX_ _
wo=(o) = 00)

where t € k (Algebra, Chap. II1L, §8, no. 9, Prop. 17). This proves the unique-
ness of .

Assertions (ii) and (iii) follow from what we have said, together with
Chap. VII, §3, no. 1, Lemma 1 (i). Q.E.D.

Every finite dimensional s[(2, k)-module therefore has a unique SL(2, k)-
module structure, which is said to be associated to its sl(2, k)-module struc-
ture.

Remark. When k is R or C or a complete non-discrete ultrametric field,
5[(2, k) is the Lie algebra of SL(2,k). Let p and 7 be as in Th. 2. The ho-
momorphism 7 is a homomorphism of Lie groups from SL(2,k) to GL(E):
this is clear when E = V(m), and the general case follows, in view of Th. 1.
By Chap. VII, §3, no. 1, p(X;) = L(7)(X4), p(X-) = L(m)(X_). Hence
p = L(m) (for a converse, see Exerc. 18).

PROPOSITION 5. Let E, F be finite dimensional s\(2, k)-modules, and let
f € Homy (E,F). The following conditions are equivalent:

(i) f is a homomorphism of s1(2, k)-modules;

(ii) f is a homomorphism of SL(2, k)-modules.

Condition (i) means that f is an invariant element of the sl(2, k)-module
Homy (E,F), and condition (ii) means that f is an invariant element of the

SL(2, k)-module Homy, (E, F). Since these module structures are associated by
Chap. VII, §5, no. 4, Lemma 1 (iii), the proposition follows from Th. 2 (iii).

DEFINITION 3. The adjoint representation of the group SL(2,k) is the lin-
ear representation Ad of SL(2,k) on sl(2,k) defined by

Ad(s).a = sas™!
for all a € s1(2,k) and all s € SL(2,k).
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When & is R or C or a complete non-discrete ultrametric field, we recover Def. 7
of Chap. III, §3, no. 12 (cf. loc. cit., Prop. 49).

By Chap. VII, §5, no. 4, Lemma 1 (i) and (ii), the adjoint representations
of sl(2,k) and SL(2,k) are compatible. By Chap. VII, §3, no. 1, Remark 2,
Ad(SL(2,k)) = Aut.(sl(2,k)).

5. SOME ELEMENTS OF SL(2, k)

For any t € k*, put

(6

tTlX tX+et—1X,
With the notations of no. 3,

O(tyu = —t v O(t)v = tu

S0
B)el™ = (~1)" e (4)
Hence, the element 0(t)? = (01 _01 operates by (—1)™ on V(m). If

E is an odd-dimensional simple sl(2, k)-module, §(¢)g is thus an involutive
automorphism of the vector space E. In particular, taking E to be the adjoint
representation:

Ot)pXy =t 72X O0t)pX_ =t*X, O0t)pgH=-H (5)

so that 6(1)g = 0(—1)g is the canonical involution of s[(2, k).
For any t € k*, put

t 0
wo= (g ) =omec-
Then h(t)u = tu, h(t)v = t~1v, so
h(t)e(™ = ¢m=2ne(m), (6)

PROPOSITION 6. Let E be a finite dimensional (2, k)-module, and t € k*.
Let B, be the set of elements of E of weight p.

(i) 0(t)e|Ep is a bijection from E, to E_,,.



§2. ROOT SYSTEM OF A SPLIT SEMI-SIMPLE LIE ALGEBRA 77

(ii) h(t)g|Ep is the homothety with ratio t? on E,.
If E = V(n), the proposition follows from formulas (4) and (6). The
general case follows from Th. 1.

COROLLARY. Let E = E' & E” be the decomposition of E defined in the

Cor. of Prop. 2. The element (_01 _01) of SL(2, k) operates by +1 on E’
and by —1 on E”.

This follows from (ii), applied to ¢t = —1.

§2. ROOT SYSTEM OF A SPLIT SEMI-SIMPLE LIE
ALGEBRA

1. SPLIT SEMI-SIMPLE LIE ALGEBRAS

DEFINITION 1. Let g be a semi-simple Lie algebra. A Cartan subalgebra b
of g is called splitting if, for all x € b, adgz is triangularizable. A semi-simple
Lie algebra is called splittable if it has a splitting Cartan subalgebra. A split
semi-simple Lie algebra is a pair (g,h) where g is a semi-simple Lie algebra
and b is a splitting Cartan subalgebra of g.

Remarks. 1) Let g be a semi-simple Lie algebra, h a Cartan subalgebra of
g. For all z € b, adgx is semi-simple (Chap. VII, §2, no. 4, Th. 2). Thus, to
say that b is splitting means that adgx is diagonalizable for all x € b.

2) If k is algebraically closed, every semi-simple Lie algebra g is splittable,
and every Cartan subalgebra of g is splitting. When & is not algebraically
closed, there exist non-splittable semi-simple Lie algebras (Exerc. 2 a));
moreover, if g is splittable, there may exist Cartan subalgebras of g that
are not splitting (Exerc. 2 b)).

3) Let g be a semi-simple Lie algebra, h a Cartan subalgebra of g, and p
a finite dimensional injective representation of g such that p(h) is diagonaliz-
able. Then adgx is diagonalizable for all z € j (Chap. VII, §2, no. 1, Example
2), so b is splitting.

4) We shall see (§3, no. 3, Cor. of Prop. 10) that if h, h’ are splitting Cartan
subalgebras of g, there exists an elementary automorphism of g transforming
b into b'.

5) Let g be a reductive Lie algebra. Then g = ¢xs where ¢ is the centre of g
and s = Yg is semi-simple. The Cartan subalgebras of g are the subalgebras
of the form h = ¢ x h’ where b’ is a Cartan subalgebra of s (Chap. VII,
§2, no. 1, Prop. 2). Then § is called splitting if b’ is splitting relative to s.
This leads in an obvious way to the definition of splittable or split reductive
algebras.
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2. ROOTS OF A SPLIT SEMI-SIMPLE LIE ALGEBRA

In this number, (g,h) denotes a split semi-simple Lie algebra.

For any A € b*, denote by g*(h), or simply by g*, the primary subspace
of g relative to A (cf. Chap. VII, §1, no. 3). Recall that g = b (Chap. VII,
§2, no. 1, Prop. 4), that g is the direct sum of the g* (Chap. VII, §1, no. 3,
Prop. 8 and 9), that g* is the set of z € g such that [h,x] = A(h)z for all
h € § (Chap. VII, §2, no. 4, Cor. 1 of Th. 2), and that the weights of h on g
are the linear forms A on b such that g* # 0 (Chap. VII, §1, no. 1).

DEFINITION 2. A root of (g,h) is a non-zero weight of h on g.

Denote by R(g, h), or simply by R, the set of roots of (g,h). We have

g=bo P

a€R

PROPOSITION 1. Let o, 8 be roots of (g,b) and let (-,-) be a non-degenerate

invariant symmetric bilinear form on g (for example the Killing form of g).
() If a4+ B # 0, g* and g° are orthogonal. The restriction of (-,-) to

g% X g~ % is non-degenerate. The restriction of (-,-) to b is non-degenerate.

(ii) Let x € g%, y € g~ * and h € h. Then [x,y] € h and
(h, [z, y]) = a(h){z,y).

Assertion (i) is a particular case of Prop. 10 (iii) of Chap. VII, §1, no. 3.
Ifxeg* yeg *and h €h, we have [z,y] € g* > = b, and

(h, [z,9]) = ([h, 2], y) = (a(h)z,y) = a(h){z,y).

THEOREM 1. Let « be a root of (g, b).
(i) The vector space g% is of dimension 1.

(ii) The vector subspace ho, = [g%, 9~ %] of b is of dimension 1. It contains
a unique element H, such that a(H,) = 2.

[e3

(iii) The vector subspace 5o = ho + g% + g~ * is a Lie subalgebra of g.

(iv) If X4 is a non-zero element of g%, there exists a unique X_, € g~¢

such that [Xo, X_o] = —Hy. Let @ be the linear map from sl(2,k) to g that
takes X4 to Xo, X_ to X_q, and H to Hy; then ¢ is an isomorphism from
the Lie algebra s\(2,k) to the Lie algebra s, .

a) Let h, be the unique element of h such that a(h) = (h,,h) for all
h € h. By Prop. 1, [z,y] = (x,y)h, for all x € g%, y € g~%; on the other
hand (g*, g~ %) # 0. Hence b, = [g%, g~ %] = khq.

b) Choose z € g%, y € g~“ such that (z,y) = 1, so [z,y] = ha. Recall
that [ha,z] = alhe)z, [ha,y] = —a(hq)y. If a(hy) = 0, it follows that
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kx + ky + kh, is a nilpotent subalgebra t of g; since h, € [t,t], adgh, is
nilpotent (Chap. I, §5, no. 3, Th. 1), which is absurd since adgh, is non-zero
semi-simple. So a(hy) # 0. Hence there exists a unique H, € b, such that
a(H,) = 2, which proves (ii).

¢) Choose a non-zero element X, of g*. There exists X_, € g~
that [X4, X_o] = —H, (since [Xq, 9% = ho by b)). Then

@ such

[HouXa] = a(Ha)Xa = 2Xa7 [HaaXfa] = _a(Ha)Xfa = _2X7a7
[Xomeoz] = —Hy;

hence kX, + kX_, + kH, is a subalgebra of g and the linear map ¢ from
5((2,k) to kXo + kX_o + kH, such that o(Xy) = Xa, (X)) = X_,,
©(H) = H, is an isomorphism of Lie algebras.

d) Assume that dimg® > 1. Let y be a non-zero element of g=%. There
exists a non-zero element X, of g, such that (y, X,) = 0. Choose X_,, as in
c), and consider the representation p : u — adgp(u) from s((2,k) to g. We
have

p(H)y = [p(H),y] = [Ha,y] = —2y
p(X1)y = [p(X+),y] = [Xa,yl = (Xa,y)ha = 0.

Thus, y is primitive for p, of weight —2, which contradicts Prop. 2 of §1,
no. 2. This proves (i).

e) Assertion (iii) is now a consequence of ¢). On the other hand, if X, is
a non-zero element of g%, the element X_, constructed in ¢) is the unique
element of g—¢ such that [X,,X_,] = —H, since dimg~® = 1. The last
assertion of (iv) is a consequence of c). Q.E.D.

The notations hy, Hy, 5o will be retained in what follows. (To define hy,,
we take (-,-) equal to the Killing form.) If X,, is a non-zero element of g%,
the isomorphism ¢ of Th. 1 and the representation u — adgp(u) of sl(2, k)
on g will be said to be associated to X,.

COROLLARY. Let @ be the Killing form of g. For all a,b € b,

B(a,b) =Y y(a)y(b).

vER

Indeed, ad a.ad b leaves each g7 stable, and its restriction to g” is the
homothety with ratio y(a)y(b); if ¥ # 0, dimg” = 1.

PROPOSITION 2. Let o, 3 € R.
(i) B(Ha) € Z.
(ii) If @ denotes the Killing form of g, ®(H,, Hg) € Z.

Let X, be a non-zero element of g, and let p be the representation of
5[(2, k) on g associated to X,. The eigenvalues of p(H) are 0 and the 5(H,)
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for B € R. Hence (i) follows from §1, no. 2, Cor. of Prop. 2. Assertion (ii)
follows from (i) and the Cor. of Th. 1. Q.E.D.

Let a € R, X, a non-zero element of g%, X_, the element of g=* such

that [X,, X_o] = —Ha, and p the representation of sl(2, k) on g associated
to X4. Let 7 be the representation of SL(2, k) on g compatible with p (§1,
no. 4, Th. 2). Since ad X,, is nilpotent (Chap. VII, §1, no. 3, Prop. 10 (iv)),
m(eX+) = e2dXa is an elementary automorphism of g. Similarly, 7(eX-) =
e X-a is an elementary automorphism of g. Hence m(SL(2,k)) C Aut.(g).
We make use of the notation 6(t) of §1, no. 5. For ¢ € k*, put

aa(t) — W(Q(t)) — eathaeadtle,aeatha. (1)

Lemma 1. (i) For all h € by, 0,(t).h = h — a(h)H,.

(ii) For all B € R, 0,(t)(g?) = gP~PHa)e,

(iii) If o, B € R, B8 — B(Hy) € R.

Let h € b. If a(h) = 0, [Xa,h] = [X_a,h] =0, so Ha(t).h = h. On the
other hand, the formulas (5) of §1, no. 5 show that 6,(t).H, = —H,. This
proves assertion (i). It follows that 6, (t)?|h = Id. If z € g# and h e,

)?
[h, 00 (t)2] = Oa(t).[0a(t)h, 2] = B(0a(t)h).Oa(t)x
= (B(h) — a(h)B(Ha))-0a(t)x
= (8 = B(Ha)a)(h).Ou(t)x

50 0, (t)x € g8~ AHa) This proves (ii). Assertion (iii) follows from (ii).

THEOREM 2. (i) The set R =R(g, h) is a reduced root system in h*.

(ii) Let @ € R. The map Sa,m, : A —= A — MHqy)a from bh* to b* is the
unique reflection s of b* such that s(a) = —a and s(R) = R. For all t € k*,
s 1s the transpose of 0,,(t)[h.

First, R generates h*, for if h € b is such that «(h) = 0 for all & € R, then
adh = 0 and hence h = 0 since the centre of g is zero. By definition, 0 ¢ R.
Let o € R. Since a(H,) = 2, s = 4,1, is a reflection such that s(a) = —a.
Then s(R) = R by Lemma 1 (iii), and §(H,) € Z for all 3 € R (Prop. 2 (i)).
This shows that R is a root system in h*. For all h € h and A € h*,

(s(A),h) = (A= A(Ha)a, h) = (A h = a(h)Ha) = (A, 0a(t)h)

so s is the transpose of 0,(¢)|h. Finally, we show that the root system R
is reduced. Let o € R and y € g?*. Since 3a ¢ R (Chap. VI, §1, no. 3,
Prop. 8), [Xa,y] = 0; on the other hand, [X_,,y] € g7*"2® = g® = kX,, so
[Xo [X—a,y]] = 0; thus

dy =2a(Ha)y = [Ha,y] = —[[Xa, X 0]yl =0

so y = 0 and g?* = 0. In other words, 2« is not a root. Q.E.D.
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Identify b canonically with h**. With the notations of Chap. VI, §1, no. 1,
we then have, by Th. 2 (ii),

H,=a" forall a€R. (2)

The H, thus form the root system R in § inverse to R.

We shall call R(g, h) the root system of (g,h). The reflections sq, g, will
be denoted simply by s,. The Weyl group, group of weights, Coxeter number
... of R(g, h) are called the Weyl group, group of weights, Cozeter number . ..
of (g,h). As in Chap. VI, §1, no. 1, we consider the Weyl group as operating
not only on §*, but also on § by transport of structure, so that s, = 0, (t)[h.
Since the 6, (t) are elementary automorphisms of g, we have:

COROLLARY. Ewvery element of the Weyl group of (g,h), operating on b, is
the restriction to by of an elementary automorphism of g.

For a converse of this result, see §5, no. 2, Prop. 4.

Remark 1. If hq (resp. hg) denotes the Q-vector subspace of h (resp. h*)
generated by the H, (resp. the «), where a € R, then b (resp. h*) can
be identified canonically with hq ®q k (resp. with hg ®q k) and bhg can
be identified with the dual of hgq (Chap. VI, §1, no. 1, Prop. 1). We call
hq and hg the canonical Q-structures on h and h* (Algebra, Chap. 11, §8,
no. 1, Def. 1). When we mention Q-rationality for a vector subspace of §, for
a linear form on b, etc., we shall mean these structures, unless we indicate
otherwise. When we mention Weyl chambers, or facets, of R(g, h), we shall
work in hq ®q R or hg ®q R, that we shall denote by hr and bhg.

Remark 2. The root system RV in h defines a non-degenerate symmetric
bilinear form £ on § (Chap. VI, §1, no. 1, Prop. 3), namely the form (a,b) —
ZR(oz, a){c,b). By the Cor. to Th. 1, this form is just the restriction of the
ac

Killing form to §. The extension of Slhq X hq to hg ®q R is positive non-
degenerate (Chap. VI, §1, no. 1, Prop. 3). On the other hand, we see that
the inverse form on h* of the restriction to h of the Killing form on g is the
canonical bilinear form &g of R (Chap. VI, §1, no. 12).

Let (g1, b1), (g2, h2) be split semi-simple Lie algebras, ¢ an isomorphism
from gy to go such that ¢(h1) = ho. By transport of structure, the transpose
of the map ¢|h; takes R(gz,bh2) to R(g1,b1).

PROPOSITION 3. Let g be a semi-simple Lie algebra, b1 and by splitting
Cartan subalgebras of g. There exists an isomorphism from b to b5 that
takes R(g,h1) to R(g, b2).

(For more precise results, see §3, no. 3, Cor. of Prop. 10, and §5, no. 3,
Prop. 5).
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Let &’ be an algebraic closure of k, g’ = gQik’, h; = h;®@,k’. Then R(g’, b})
is the image of R(g, h;) under the map A — A ® 1 from b} to hF @ k' =",
By Chap. VII, §3, no. 2, Th. 1, there exists an automorphism of g’ taking
b} to bj, hence an isomorphism ¢ from h}* to h5" that takes R(g’,h}) to
R(g’,b%). Then ¢|b; takes R(g, h1) to R(g, h2), and hence b to h5. Q.E.D.

In view of Prop. 3, the root system of (g, h) depends, up to isomorphism,
only on g and not on h. In the same way, the Weyl group, group of weights
. of (g,h) are simply called, by abuse of language, the Weyl group, group
of weights ... of g (cf. also §5, no. 3, Remark 2). If the Dynkin graph of g is
of type A, or By, ... (cf. Chap. VI, §4, no. 2, Th. 3), we say that g is of type
Al, or Bl,

Recall that, if a and (8 are linearly independent roots, the set of j € Z
such that 8+ ja € R is an interval [—g, p] of Z containing 0, with p — ¢ =
—{(B,aV) = —(H) (Chap. VI, §1, no. 3, Prop. 9).

PROPOSITION 4. Let « and (3 be linearly independent roots. Let p (resp. q)
be the largest integer j such that 5+ ja (resp. § — ja) is a root.

(i) The wvector subspace - ;< g?ti® of g is a simple so-module of di-
mension p+q + 1. i

(ii) If a + B is a root, then [g*,gP] = g@*P.

Let X, (resp. ) be a non-zero element of g (resp. g®+P%). Then

[Xonx} € 9,6’+(p+1)a =0
[Ho, x| = (B(Ho) + pa(Ha))z = (=p +q + 2p)z = (p + q)=.

Thus, x is primitive of weight p 4+ ¢ for the representation of sl(2,k) on

g associated to X,; but the sl(2, k)-module 2. gPt% is of dimension
—q<j<p

p+ g+ 1; hence it is simple (§1, no. 2, Prop. 2). If a+ 8 € R, then p > 1, so

the elements of g are not primitive, and hence [X,, g°] # 0. Since [g*, g%] C

g P we see finally that [g°, g°] = g**+7.

Remark 3. Recall that, by Chap. VI, §1, no. 3, Cor. of Prop. 9, the integer
p+ q+ 1 can only take the values 1,2, 3,4.

Remark 4. Let (g, ) be a split reductive Lie algebra, ¢ the centre of g, g’ = Zg,
B =bhnNg. Then h = ¢ x b’, and we identify h’* with a vector subspace of
h*. For any A € b* such that A # 0, the primary subspace g* relative to
A is equal to g’)‘“’/. A non-zero weight of h on g is called a root of (g,b);
every root vanishes on ¢. Denote by R(g, b) the set of roots of (g,b); it can
be identified canonically with R(g’,h’). Let « € R(g,h). We define h,, H,,
Sq, the isomorphisms sl(2, k) — s,, and the representations of s[(2,k) on g
associated to «, as in the semi-simple case.
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3. INVARIANT BILINEAR FORMS

PROPOSITION 5. Let (g,h) be a split semi-simple Lie algebra, & an invari-
ant symmetric bilinear form on g, and W the Weyl group of (g,h). Then
the restriction @' of @ to § is invariant under W. Moreover, if & is non-
degenerate, so is @'.

Let a € R, let X,, be a non-zero element of g%, p the associated represen-
tation of sl(2, k) on g, and 7 the representation of SL(2,%) on g compatible
with p. Then @ is invariant under p, and hence under 7 (§1, no. 4). In par-
ticular, @' is invariant under 0, (¢)|h (no. 2), and hence under W. The last
assertion follows from Prop. 1 (i).

PROPOSITION 6. Let (g,h) be a split semi-simple Lie algebra,  a non-
degenerate invariant symmetric bilinear form on g. For all « € R, let X, be
a non-zero element of g*. Let (H;);cr be a basis of by, and (H});c; the basis
of b such that ®(H;, H}) = 6;5. The Casimir element associated to  in the
enveloping algebra of g (Chap. 1, §3, no. 7) is then

1
- XX, H,H'.
D XX + D HiH]
acR el
Indeed, by Prop. 1, &(H;, Xo) = P(H],X,) =0for alli € I, @ € R, and

b Xa, X,ﬁ) = §ap for all a, 3 € R.

( 1
F(Xa,X_a)

4. THE COEFFICIENTS N,g

In this number, we again denote by (g,h) a split semi-simple Lie algebra.

Lemma 2. There exists a family (X, )aer such that, for all o € R,
Xo €g® and [X,, X_o] = —H,.

Let Ry be a subset of R such that R =R; U(—R;) and Ry N (—Ry) = 2.
For a € Ry, choose an arbitrary non-zero element X, of g%. There exists a
unique X_,, € g~* such that [X,,X_o] = —Hy (Th. 1 (iv)). Then

(X _o,Xo] = Hy = —H_,. Q.ED.

If (Xo)acr is one family satisfying the conditions of Lemma 2, the most
general family satisfying these conditions is (t4Xa)aecr where t, € k* and
tat_o = 1 for all o € R.

In the remainder of this number, we denote by (Xa)aer a family satisfying
the conditions of Lemma 2. We denote by (-,-) a non-degenerate invariant
symmetric bilinear form on g.
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Every = € g can be written uniquely in the form
r=h+Y paXa (hED, pa€k)
a€R

The bracket of two such elements can be calculated by means of the following
formulas:

[h, Xa] = a(h)Xq

0 ifa+f¢RU{0}
[Xa,Xﬁ] =< —H, ifa+6=0
NogXats ifa+ 8 €R

the Nog being non-zero elements of k.
Lemma 3. For all o € R,
1
<Xa7Xfo¢> = _§<HouHa>~

Indeed,

2 X Xoa) = (@(Ha) Xa, X—0) = ([Ha, Xa], X—a)
= <Hou [XaaX—aD = _<HomHa>-

Lemma 4. Let o, 8 € R be such that a+ 3 € R. Let p (resp. q) be the largest
integer j such that 0+ ja € R (resp. 0 — ja € R). Then,

Na,BN—a,a—Q—ﬁ - *p(q + 1) (3)
N_q.a+8(Hp, Hg) = =N_qo,—g(Hat8, Hat8) (4)
NopNoa s = (g+1)% (5)

Let p be the representation of s[(2, k) on g defined by X,. The element
e = Xp34pa is primitive of weight p + ¢ (Prop. 4 (i)). Put

—1)n
en = Qp(X,)"e for n > 0.
By Prop. 1 of §1,

(ad Xa)ep = (¢ + L)ep
(ad X_o)(ad Xa)ep = —p(g + 1)ep.

This proves (3) since e, is a non-zero element of g°.
The form (-, ) being invariant, we have

<[X—a7X0t+ﬁ]7X—ﬁ> = _<Xa+ﬁ7 [X—OMX—,@D

SO
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N_oat8(Xp, X—p) = —Noa,-s{Xats, Xap)

which, in view of Lemma 3, proves (4).

The restriction of (-, -) to b is non-degenerate and invariant under the Weyl
group (Prop. 5). Identify § and h* by means of this restriction. If v € R, H,
is identified with 2v/(y,7) (Chap. VI, §1, no. 1, Lemma 2); hence, for all
7,0 € R,

(v,v)  (Hs, Hs)
<6’6> B <H’WH’Y>'

Now, by Chap. VI, §1, no. 3, Prop. 10,

(a+pf,a+P) q+1
(8,8) p

s0, by (3), (4), (6), (7),

(6)

<H57Hﬁ>
<H0z+ﬁvHOé+ﬂ>
q+1
= —NosN_aa+s P (¢+1)%

NagN-a,—p = —Na,sN_aatp

DEFINITION 3. A Chevalley system for (g,b) is a family (X4 )aer such that
(i) Xo € g“ for all a € R;
(i) [Xa,X—o] = —Hq for all a € R;
(iii) the linear map from g to g which is equal to —1 on b and which takes
Xy to Xy, for all a € R is an automorphism of g.

The extension of this definition to the case where (g, h) is split reductive is
immediate.

We shall show (§4, no. 4, Cor. of Prop. 5) that Chevalley systems for (g, h)

exist.

PROPOSITION 7. Let (Xu)acr be a Chevalley system for (g,h). We retain
the notation of Lemma 4. Then, N_, _g = No g and Nog = £(q¢ + 1) for
a,B,a+ 6 €R.
Let ¢ be the automorphism of g considered in Def. 3 (iii). Then
Noa,—pXoa-p = [Xoa, Xop] = [p(Xa), 9(Xp)] = o([Xa, X5])
= ¢(NagXa+p) = NapX-a-p
so N_o,—g =Ny ,g. Now N, g = ( 1) b (5)

PROPOSITION 8. Let (X4)acr be a Chevalley system for (g,h). Let M be
a Z-submodule of b containing the H, and contained in the group of weights
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of RV. Let gz be the Z-submodule of g generated by M and the X,. Then gz
is a Z-Lie subalgebra of g, and the canonical map from gz Rz k to g is an
isomorphism.

If o, 3 € R are such that o + 3 € R, then N, g € Z (Prop. 7). On the
other hand, if & € R and h € M, then a(h) € Z (Chap. VI, §1, no. 9). This
proves that gz is a Z-Lie subalgebra of g. On the other hand, M is a free
abelian group of rank dimb (Algebra, Chap. VII, §3, Th. 1), so gz is a free
abelian group of rank dim g; this implies the last assertion.

§3. SUBALGEBRAS OF SPLIT SEMI-SIMPLE LIE
ALGEBRAS

In this paragraph, we denote by (g,h) a split semi-simple Lie algebra, and by
R its root system.

1. SUBALGEBRAS STABLE UNDER ad

Lemma 1. Let V be a vector subspace of g and R(V) the set of o € R such
that g C V. Then, (VNYH) + E( )go‘ is the largest vector subspace of V
a€eR(V

stable under ad b.
A vector subspace W of V is stable under ad h if and only if

W= (Wnh)+ > (Wng?)
a€R

(Algebra, Chap. VII, §2, no. 2, Cor. 1 of Th. 1). The largest vector subspace
of V stable under ad b is thus (VN h) + ZR(V Ng*). But VNg* = g* for
ae

a €R(V),and VNg* =0 for a ¢ R(V) since dimg® = 1. Q.E.D.

For any subset P of R, put

" => g bp=> bha

aeP aeP
If P C R and Q C R, we clearly have
[h.¢"] Cg" (1)
[gP7gQ] _ g(P+Q)ﬂR + hPﬂ(fQ)- (2)

Recall (Chap. VI, §1, no. 7, Def. 4) that a subset P of R is said to be
closed if the conditions a € P, € P,a+ 3 € R imply a + 3 € P, in other
words if (P +P)NR C P.



§3. SUBALGEBRAS OF SPLIT SEMI-SIMPLE LIE ALGEBRAS 87

Lemma 2. Let b/ be a vector subspace of b and P a subset of R. Then b’ + g¥
is a subalgebra of g if and only if P is a closed subset of R and

b D bpa—p)-

Indeed,

' +g" 0" +6"] =1, 6"+ 87, 6"] = bpn(p) + [0, g7 + g TP
Hence b’ + g is a subalgebra of g if and only if

bpr—p) C H" and gFFRINR  gP

which proves the lemma.

PROPOSITION 1. (i) The subalgebras of g stable under ad b are the vector
subspaces of the form b’ + gv, where P is a closed subset of R and b’ is a
vector subspace of b containing hpn—p)-

(ii) Let ', b" be vector subspaces of b and P,Q closed subsets of R, with
b D bpa—p), " CH and Q C P. Then b” + g9 is an ideal of b’ + g* if and
only if
(P+QNRCQ and bhpr—qyCh'C [ Kera.
a€P,agQ

Assertion (i) follows immediately from Lemmas 1 and 2. Let §’, 5", P, Q
be as in (ii). Then

'+ 0", 0" + 8% = bpn—q) + [, 8% + b, g"] + g P TOR,
Hence, h” + g@ is an ideal of b’ + g% if and only if

gy C b, [h",g"] C g@, gFPFOMR  gQ
This implies (ii).

PROPOSITION 2. Let a be a subalgebra of g stable under ad by, and let b’ C b,
P C R be such that a =’ + gF.

(i) Let & be the set of x € b such that a(x) = 0 for all « € PN (=P).
The radical of a is €+ g, where Q is the set of a € P such that —a ¢ P.
Moreover, g® is a nilpotent ideal of a.

(i) a is semi-simple if and only if P = —P and h’ = hp.
(iii) a is solvable if and only if P N (—P) = @. In that case [a,a] = g°,
where

S=((P+P)NR)U{a € Pla(y) £ 0}.

(iv) a is reductive in g if and only if P = —P.
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(v) a consists of nilpotent elements if and only if h' = 0. Then PN(—P) =
J, and a is nilpotent.

We prove (v). If a consists of nilpotent elements, a is clearly nilpotent,
and §’ = 0 since the elements of § are semi-simple. Assume that §’ = 0. By
Prop. 1 (i), PN (=P) = @. By Chap. VI, §1, no. 7, Prop. 22, there exists a
chamber C of R such that P C Ry (C). Hence, there exists an integer n > 0
with the following properties: if a1,...,a, € P and 8 € RU {0}, then

o+ F+a,+0¢RU{0}.

This implies that every element of g¥ is nilpotent, hence (v).
We prove (iii). If PN (—P) = @, g¥ is a subalgebra of g (Prop. 1 (i)), and
is nilpotent by (v). Now

[a,a] = [b/,g"] + [a", a"] = [/, "] + g T PR g,

so a is solvable and [a,a] is given by the formula in the proposition. If
PN (-P)# @, let @ € P be such that —a € P. Then h, + g* + g is a
simple subalgebra of a so a is not solvable.

We prove (i). Since P is closed, (P 4+ Q)NR C P. If « € P,5 € Q and
a+ (3 € R, we cannot have a+ 3 € —P, for, P being closed, this would imply
that —8 = —(a + ) + a € P whereas § € Q; thus, (P + Q) NR C Q. This
proves that g is an ideal of a, nilpotent by (v). We have P N (—Q) = &,

and PN (—P) = PN CQ, so hpr_q) C & C ﬂg Ker . By Prop. 1 (ii),
acP,adQ

£+ g is an ideal of a. Since Q N (—Q) = @, this ideal is solvable by (iii).
It is therefore contained in the radical v of a. Since t is stable under every
derivation of a, v is stable under adh. Hence there exists a subset S of P
such that v = (vt N bh) + g°. Suppose that o € S and that —a € P. Then
ho = [8%,97% C 1,8 g% = [ha,8 % C vt =0, so that —a € S; by (iii),
this contradicts the fact that t is solvable. Consequently, S C Q. Finally, if
xz €rNnhandif @ € PN (=P), then [x,g%] C g* Nt =0, so a(z) = 0; this
shows that € €. Hence t C £ + g® and the proof of (i) is complete.

We prove (iv). By (i), the adjoint representation of a on g is semi-simple
if and only if adgx is semi-simple for all z € £+ g9 (Chap. 1, §6, no. 5, Th. 4);
by (v), this is the case if and only if Q = @, in other words P = —P.

We prove (ii). If a is semi-simple, P = —P by (i), so hp C §’; further,
a = [a,a] C bp + g and consequently b’ = hp. If P = —P and b’ = bhp, a is
reductive by (iv), and a = XE:P 50, 80 @ = [a,0a] and a is semi-simple.

(03

PROPOSITION 3. Let a be a semi-simple subalgebra of g stable under ad(h)
and let P be the subset of R such that a = hp + g©.

(i) bp is a splitting Cartan subalgebra of a.

(ii) The root system of (a,bhp) is the set of restrictions to hp of elements
of P.
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Since hp is stable under ad b, its normalizer in a is stable under ad §, and
hence is of the form hp + g® where Q C P (Lemma 1). If a € Q,

ga = [haaga] C [hPaga] C hp7

which is absurd. Thus Q = @ and bp is its own normalizer in a. This proves
that bp is a Cartan subalgebra of a. If x € hp, adgx, and a fortiori ad.x, are
triangularizable. Thus (i) is proved, and (ii) is clear.

By Prop. 1 (i), the subalgebras of g containing b are the sets h+ g where
P is a closed subset of R. By Chap. VII, §3, Prop. 3, every Cartan subalgebra
of h + g% is a Cartan subalgebra of g.

PROPOSITION 4. Let a be a subalgebra of g containing b, x an element of
a, s and n its semi-simple and nilpotent components. Then s € a and n € a.

We have (ad x)a C a, so (ad s)a C a and (ad n)a C a. Since a is its own
normalizer in g (Chap. VII, §2, no. 1, Cor. 4 of Prop. 4), s € a and n € a.

PROPOSITION 5. Let P be a closed subset of R.

(i) b + g is solvable if and only if P N (=P) = @. In that case,
h+g" b+g"]=g".

(i) b + g¥ is reductive if and only if P = —P.

Assertion (i) follows from Prop. 2 (iii). If P = —P, h + g% is reductive
(Prop. 2 (iv)). Assume that a = b + g% is reductive. Then

g =,g"]Cla,a] Ch+g",

so [a, a] is of the form b’ + g¥ with b’ C b; since [a, a] is semi-simple, P = —P
(Prop. 2 (ii)).

2. IDEALS

PROPOSITION 6. Let Ry, ..., R, be the irreducible components of R. For
i=1,...,p, put g; = br, + g%. Then g1,...,g, are the simple components
of g.

The g; are ideals of g (Prop. 1 (ii)). It is clear that g is the direct sum of
the g;, hence the product of the g;. Let a and b be complementary ideals of
g. Then a and b are semi-simple and stable under ad b, so there exist subsets
P,Q of R such that a = hp + g¥, b = hq + g®. Then hp, hq are orthogonal
complements of each other in h for the Killing form, so P and Q are unions
of irreducible components of R. This proves that the g; are minimal ideals of

g.

COROLLARY 1. g is simple if and only if R is irreducible (in other words,
its Dynkin graph is connected).
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This follows from Prop. 6.

A Lie algebra a is said to be absolutely simple if, for every extension k' of
k, the k'-Lie algebra a;y is simple.

COROLLARY 2. A splittable simple Lie algebra is absolutely simple.
This follows from Cor. 1.

Ifgisof type Ay (I>1)orB; (I>1)or C; (I >1)or D; (I > 3), g is said
to be a classical splittable simple Lie algebra. If g is of type Eg, E7, Eg, Fy4,
or Gg, g is said to be an exceptional splittable simple Lie algebra.

3. BOREL SUBALGEBRAS

PROPOSITION 7. Let b = b + g¥ be a subalgebra of g containing h. The
following conditions are equivalent:

(i) b is a mazimal solvable subalgebra of g;

(ii) there exists a chamber C of R such that P = Ry (C);

(iii) PN (-P) =@ and PU (-P) = R.

(i) = (ii): If b is solvable, PN (—P) = @. Then there exists a chamber C
of R such that P € Ry (C) (Chap. VI, §1, no. 7, Prop. 22). Then b + g"+(©)
is a solvable subalgebra of g containing b, hence equal to b if b is maximal.

(ii) == (iii): This is clear.

(iii) = (i): Assume that P N (—P) = @ and that P U (—P) = R. Then
b is solvable. Let b’ be a solvable subalgebra of g containing b. There exists
a subset Q of R such that b’ = h + g®. Then QN (-Q) = @ and Q D P, so
Q=Pand bt/ =b.

DEFINITION 1. A subalgebra of g containing b and satisfying the equivalent
condition in Prop. 7 is called a Borel subalgebra of (g,h).

A subalgebra b of a splittable algebra g is called a Borel subalgebra of g
if there exists a splitting Cartan subalgebra &' of g such that b is a Borel
subalgebra of (g,b').

Let (g, h) be a split reductive Lie algebra. Let g = ¢ x s with ¢ commutative and
s semi-simple. A subalgebra of g of the form ¢ x b, where b is a Borel subalgebra

of (s,hNs), is called a Borel subalgebra of (g, h).

With the notations of Prop. 7, we also say that b is the Borel subalgebra
of g defined by h and C (or by h and the basis of R associated to C).

Remark. The map which associates R4 (C) to a chamber C of R is injective
(Chap. VI, §1, no. 7, Cor. 1 of Prop. 20). Consequently, C — b 4 g"+(©) is
a bijection from the set of chambers of R to the set of Borel subalgebras of
(g,h). Thus, the number of Borel subalgebras of (g, ) is equal to the order
of the Weyl group of R (Chap. VI, §1, no. 5, Th. 2).
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PROPOSITION 8. Let b be a subalgebra of g, k' an extension of k. Then
b®y k' is a Borel subalgebra of (g @k k', h @k k') if and only if b is a Borel
subalgebra of (g,h).

This is clear from condition (iii) of Prop. 7.

PROPOSITION 9. Let b be the Borel subalgebra of (g,4) defined by a chamber

CofR. Letn=gR+© = > g° Letl=dimb.
acR,a>0

(i) If h € b and = € n, the characteristic polynomial of adg(h + x) is

T II (T — a(h)).

aER
(ii) The largest nilpotent ideal of b is equal to n and to [b,b]. This is also
the set of elements of b nilpotent in g.

(iii) Let B be the basis of R associated to C. For all a € B, let X4 be a
non-zero element of g*. Then (X, )acp generates the Lie algebra n. We have

[n,n] = > g%

a€R,a>0,a¢B
There exists a total order on hg, compatible with its vector space structure
and such that the elements of Ry (C) are > 0 (Chap. VI, §1, no. 7). Let h,x
be as in (i) and y € g*. Then [h + z,y] = a(h)y + z where z € 52>: g”. Then,

with respect to a suitable basis of g, the matrix of adg(h+x) has the following
properties:

1) it is lower triangular;

2) the diagonal entries of the matrix are the number 0 (I times) and the
a(h) for a € R.

This proves (i). It also shows that the characteristic polynomial of

adp(h + ) is T H( )(T — «a(h)). It follows from the preceding that the
a€R4 (C

set of elements of b nilpotent in g, as well as the largest nilpotent ideal of
b, are equal to n. We have n = [b, b] by Prop. 5 (i). Finally, assertion (iii)
follows from §2, Prop. 4 (ii) and Chap. VI, §1, no. 6, Prop. 19.

COROLLARY. Let b be a Borel subalgebra of g.

(i) Every Cartan subalgebra of b is a splitting Cartan subalgebra of g.

(ii) If b1, b2 are Cartan subalgebras of b, there exists x € [b,b] such that
s Thy = by,

Assertion (i) follows from Prop. 9 (i) and Chap. VII, §3, no. 3, Prop. 3.
Assertion (ii) follows from Prop. 9 (ii) and Chap. VII, §3, no. 4, Th. 3.

PROPOSITION 10. Let b, b’ be Borel subalgebras of g. There exists a splitting
Cartan subalgebra of g contained in bNb'.

Let h be a Cartan subalgebra of b, n = [b,b], ' = [0/, 0], p = bN b, and
s a vector subspace of g complementary to b + b’. Denote by s+, b+, b’'* the
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orthogonal complements of s, b, b’ with respect to the Killing form of g. Put
| =dimbh,n = dimn,p = dimp. Then dimb = dim b’ = [ + n,

dims® = dim(b 4+ b') = 2(1 +n) — p,
and so
dim(s™ Np) > dims* 4 dimp — dim g (3)
=2(l+n)—p+p—(1+2n)=1.

By Prop. 1 0f §2, no. 2, n C b, n’ C b’*. The elements of pMn are nilpotent in
g (Prop. 9 (ii)), and belong to b’, and hence to n’ (Prop. 9 (ii)). Consequently,
pNncnnw Cblnb™, sostnpnn = 0. In view of (3), we see that
st Np is a complement of n in b. Let z be an element of b regular in g; there
exists y € n such that y +z € s Np; by Prop. 9 (i), adg(y + 2) has the same
characteristic polynomial as adgz, so x = y + z is regular in g and a fortior:
in b and b’ (Chap. VII, §2, no. 2, Prop. 9). Since g, b, b’ have the same rank,
b%(z) = g°(z) = b’°(x) is simultaneously a Cartan subalgebra of b, of g and
of b’ (Chap. VII, §3, no. 3, Th. 2). Finally, this Cartan subalgebra of g is
splitting by the Cor. of Prop. 9.

COROLLARY. The group Aut.(g) operates transitively on the set of pairs
(t,b) where t is a splitting Cartan subalgebra of g and b is a Borel subalgebra
of (g,1).

Let (t1,b1) and (t2, b2) be two such pairs. There exists a splitting Cartan
subalgebra t of g contained in by N by (Prop. 10). By the Cor. of Prop. 9, we
are reduced to the case in which t; = t5 = t. Let S be the root system of
(g, t). There exists bases By, Bs of S such that b; is associated to B; (i = 1, 2),
and there exists s € W(S) which transforms B; into By. Finally, there exists
a € Aut.(g) such that a|t = s (§2, no. 2, Cor. of Th. 2). Then a(t) = t and
a(bl) = bg.

4. PARABOLIC SUBALGEBRAS

PROPOSITION 11. Let p = h + g© be a subalgebra of g containing h. The
following conditions are equivalent:

(i) p contains a Borel subalgebra of (g,h);

(ii) there exists a chamber C of R such that P D Ry (C);

(iii) P is parabolic, in other words (Chap. VI, §1, no. 7, Def. 4), PU(-P) =
R.

Conditions (i) and (ii) are equivalent by Prop. 7. Conditions (ii) and (iii)
are equivalent by Chap. VI, §1, no. 7, Prop. 20.

DEFINITION 2. A subalgebra of g containing b and satisfying the equivalent
conditions of Prop. 11 is called a parabolic subalgebra of (g,h). A parabolic
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subalgebra of g is a parabolic subalgebra of (g,b’) where b/ is a splitting Cartan
subalgebra of g.

This definition extends immediately to the case in which (g, b) is a split reductive
Lie algebra.

Remark. Let B be a basis of R, and b the corresponding Borel subalgebra. If
2} C B, denote by Q5 the set of roots that are linear combinations of elements
of X with coefficients < 0; put p(¥) = R, (B) UQyx and px = h @ g"*).
By Chap. VI, §1, no. 7, Lemma 3 and Prop. 20, px is a parabolic subalgebra
containing b and every parabolic subalgebra of g containing b is obtained in
this way.

Lemma 8. Let V be a finite dimensional real vector space, S a root system in
V*, P the set of parabolic subsets of S; let F be the set of Ker o for a € S,
and F the set of facets of V relative to 5 (Chap. V, §1, no. 2, Def. 1).
IfP € P, let F(P) be the set of v € V such that a(v) > 0 for all a € P.
IfF € Z, let P(F) be the set of & € R such that a(v) > 0 for allv € F.
Then F — P(F) is a bijection from F to &; for all F € Z, F(P(F)) is
the closure of F.

a) Let P € Z. There exists a chamber C of S and a subset X of the basis
B(C) such that P = S;(C) U Q where Q is the set of linear combinations
of elements of X' with non-positive integer coefficients (Chap. VI, §1, no. 7,
Prop. 20). Put

B(C) ={a1,...,q}, X ={a1,...,an}.
If v € V, we have the following equivalences:

a(v) >0forallaeP
= a1(v) >0,...0q(v) >0, a1 (v) <0,...,am(v) <0
— Oél(U) == Oém(’l}) = 07 am-‘rl(v) 2 07'“7@1(’0) Z Oa

so F(P) is the closure of the set
{veV]iaw) =" =an®) =0, amt1(v) >0,...,0q4(v) > 0},

a set which is a facet F relative to 7 since every element of S is a linear
combination of ai,...,q; in which the coefficients are either all > 0 or all
< 0. Moreover, if 8 =ujay + -+ way €S,
BePF) <= umi1>0,...,u4 >0
— fe€S;(C)or (- €S4(C) and Upy1 =...=u =0)
— eSS (C)uQ =P,

so P(F) =P.
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b) Let F € .Z. Tt is clear that P(F) € &. On the other hand, F is contained
in the closure of a chamber relative to s (Chap. V, §1, no. 3, formulas (6)),
and so is a facet relative to the set of walls of this chamber (Chap. V, §1, no.
4, Prop. 9). Consequently, F is of the form {v € V|a(v) > 0 for all « € T},
where T is a subset of S which we can clearly take to be equal to P(F). Thus,
F =F(P(F)). Q.E.D.

If P € 2, the facet F such that P = P(F) is said to be associated to P; we
denote it by F(P). We extend these conventions to the case in which (g, b) is
split reductive.

PROPOSITION 12. Let 5 be the set of hyperplanes of hr consisting of the
kernels of the roots in R. Let .F be the set of facets of br relative to F Let
7 be the set of parabolic subalgebras of (g,b). For every p = b + g¥ € .7, let
F(p) be the facet associated to P. Then p — F(p) is a bijection from ./ to F.
If p1,p2 € Z,

p1 D p2 <= F(p1) C F(p2).

This follows immediately from Lemma 3.

Ezample. The facets corresponding to the parabolic subalgebras of (g, h) con-
taining a Borel algebra b are the facets contained in the closure of the chamber
associated to b (cf. the Remark above).

PROPOSITION 13. Let p = b+ g% be a parabolic subalgebra of (g,h), Q the
set of « € P such that —a ¢ P, and s = h + g"?"P) Then p =s®g?, s
is reductive in g, and g is the largest nilpotent ideal of p and the nilpotent
radical of p. The centre of p is zero.

By Prop. 2, s is reductive in g and g® is a nilpotent ideal of p. If n is
the largest nilpotent ideal of p, g% C n C h + g@ (Prop. 2 (i)); if z € nNh,
adyz is nilpotent, so a(z) = 0 for all & € P, and hence « = 0; this proves
that n = g. Since [h, g®] = g@, the nilpotent radical of p contains g® and
consequently is equal to g@. Let z = h+ XE:P Uy (where h € h,u, € g%) be an

(03

element of the centre of p. For all i’ € h, 0 = [/, 2] = > a(h/)uq, so uq =0
for all o € P; it follows that [h,g%] =0 for all 3 € P, so h = 0.

5. NON-SPLIT CASE

PROPOSITION 14. Let k' be an extension of k and g’ = gy k. Let m be a
subalgebra of g and m' = m®y k. If m’ is a parabolic (resp. Borel ) subalgebra
of ¢/, m is a parabolic (resp. Borel ) subalgebra of g.

By Prop. 8 and 11, it suffices to prove that m contains a splitting Cartan
subalgebra of g. Let b be a Borel subalgebra of g. Then b’ = b®y k' is a Borel
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subalgebra of g/, so m’ N b’ contains a Cartan subalgebra of g’ (Prop. 10).
Let t be a Cartan subalgebra of m N b. Then t ®; k' is a Cartan subalgebra
of m' N, and hence of g’ (Chap. VII, §3, no. 3, Prop. 3). Consequently, t is
a Cartan subalgebra of g, and it is splitting since it is contained in b.

DEFINITION 3. Let a be a semi-simple (or more generally reductive) Lie
algebra and k an algebraic closure of k. A subalgebra m of a is said to be
parabolic (vesp. Borel ) if m ®y k is a parabolic (vesp. Borel ) subalgebra of
a®y k.

If a is splittable, Prop. 14 shows that this definition is equivalent to Def-
inition 2 (resp. to Definition 1).

PROPOSITION 15. Let a be a reductive Lie algebra, k' an extension of k,

and m a subalgebra of a. Then m is a parabolic (resp. Borel ) subalgebra of a

if and only if m @y k' is a parabolic (resp. Borel ) subalgebra of a @y k'.
This follows immediately from Prop. 14.

4. SPLIT SEMI-SIMPLE LIE ALGEBRA DEFINED
BY A REDUCED ROOT SYSTEM

1. FRAMED SEMI-SIMPLE LIE ALGEBRAS

PROPOSITION 1. Let (g,b) be a split semi-simple Lie algebra, R its root
system, B a basis of R, and (n(c, 8))a,peB the corresponding Cartan matri.
For alla € B, let X, € g%, X_o € g~%. Then, for o, 3 € B,

[Ho, Hg] =0 (1)

[Ha, Xp] =n(8,0)Xgs (2)

[Ha, X_p] = —n(B,a)X_g (3)

(X0, Xpl=0 ifa#p (4)

(ad X)) "BYXs =0 if a# 3 (5)
(ad X_,)'"BX 5 =0 if a#p. (6)

The family (Ha)aen ts a basis of §. If Xo # 0 and X_,, # 0 for all a € B,
the Lie algebra g is generated by the X, and the X_, (o € B).

(Recall that, if a, 8 € B and a # 3, n(f5, @) is an integer < 0, so formulas
(5) and (6) make sense.)

Formulas (1), (2) and (3) are clear. If o # 3, f—« is not a root since every
element of R is a linear combination of elements of B with integer coefficients
all of the same sign (Chap. VI, §1, no. 6, Th. 3). This proves (4). In view of
Chap. VI, §1, no. 3, Prop. 9, this also proves that the a-chain defined by 3 is
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{ﬁ»ﬁ+aa"'7ﬁ_n(ﬁaa)a};

hence 8+ (1—n(0, a))a ¢ R, which proves (5). The equality (6) is established
in a similar way. The family (H,)qecp is a basis of RV, and hence of §. If
Xo #0and X_,, # 0 for all @ € B, then [X,, X_,] = Ao Hy with A, # 0, so
the last assertion follows from §3, no. 3, Prop. 9 (iii).

DEFINITION 1. Let (g,5) be a split semi-simple Lie algebra, R its root sys-
tem. A framing of (g,h) is a pair (B, (Xa)aen), where B is a basis of R, and
where, for all o € B, X,, is a non-zero element of g*. A framed semi-simple
Lie algebra is a sequence (g,0,B, (Xa)acn) where (g,h) is a split semi-simple
Lie algebra, and where (B, (X4 )acn) s a framing of (g,h).

A framing of g is a framing of (g, ), where b is a splitting Cartan subal-
gebra of g.

Let a; = (g1, b1,B1, (X})aen, ) and az = (g2, b2, B2, (X2)4eB, ) be framed
semi-simple Lie algebras. An isomorphism from a; to as is an isomorphism
¢ from g; to go that takes by to b2, By to By, and X! to Xia for all a € By
(where v is the contragredient map of ¢|h;). In this case, ¢ is said to trans-
form the framing (By, (X!)aen,) to the framing (Bg, (X2)aeB,)-

If (B, (Xa)aen) is a framing of (g, ), there exists, for all & € B, a unique
element X_, of g~ such that [X,, X_o] = —H, (§2, no. 2, Th. 1 (iv)).
The family (Xa)aeBu(—B) is called the generating family defined by the fram-
ing (cf. Prop.1). This is also the generating family defined by the framing
(—B, (X4o)ae—B). For all @ € BU(—B), let t,, € k*, and assume that t,t_, =1
for all a € B. Then (o Xa)aeBu(—B) is the generating family defined by the
framing (B, (taXa)aeB)-

2. A PRELIMINARY CONSTRUCTION

In this number and the next, we denote by R a reduced root system in a
vector space V and by B a basis of R. We denote by (n(a, 5))a,sen the
Cartan matrix relative to B. Recall that n(a,8) = (a, 3Y). We are going
to show that R is the root system of a split semi-simple Lie algebra which
is unique up to isomorphism. In the main we shall be considering the Lie
algebra defined by the relations in Prop. 1.

The construction in this number applies to any square matrix (n(«, 3))a,seB
over k with non-zero determinant and such that n(a,a) = 2 for all @ € B (cf.
Chap. VI, §1, no. 10, formula (14)).

Let E be the free associative algebra of the set B over k. Recall that
E is N-graded (Algebra, Chap. 111, §3, no. 1, Example 3). We are going to
associate to each a € B endomorphisms XV, H?, X0 of the vector space E,

of degrees 1,0, —1 respectively. For any word (ayq,...,«,) in elements of B,
put
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Xga(al,...7an):(a,al,...,an) (7)

H(aq,...,0) = (-253740@7a)> (a1, ..., am). (8)

On the other hand, X°(a,...,a,) is defined by induction on n using the
formula

Xo(ar, ... an) = (X2, X0 — ba.a, Ho) (0, ..., ) (9)
where 0,4, is the Kronecker symbol; it is understood that X0 (az, ..., ay,) is
zero if (aq, ..., ay) is the empty word.

Lemma 1. For all o, B € B, we have

[XO XO ]=— . (10)
[Hy, Hp) = (11)
[Hy ]—n(ﬁ, )X (12)

[ 0 ] = _n(ﬂa ) (13)

[XOXO]—Olfa#ﬂ (14)

Indeed, relation (9) can be written

(X0X0  Nan, ... an) = (X2, XD (a2, ..., 00) — Saa, Ho(a, ..., a)

which proves (10) and (14). Relation (11) is clear. Next

(1O, X° glla, ... an) = Hg(ﬁ,oq,...,ozn)—i—(Zn(ai,a)> (B,a1,...,ap)

=—n(B,0)(B,a1,...,a,)
= fn(ﬁ,a)Xgﬂ(al, ce, Q)
hence (13) Finally,
= [Hg, [X5, X2,]] by (10), (11), (14) (15)
= [[Hq, X5], X2 ] + [X5, [Hq, X2 ]]
[Hg. X5 — n(y, @) X5, X2, by (13)
[Ha. X5 — n(B,0)Xg, X2] by (14);
now, considering the empty word immediately gives
([Hq, X5] —n(B,2)Xg) (@) =0
o (15) implies that
([Ha, X5 = n(B,0)X5) X2, X2 ... X2, (2)=0

-2 —Tn

for all v1,...,7n € B; this proves (12).
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Lemma 2. The endomorphisms X2, Hg, X0
independent.

Since X (@) = q, it is clear that the X°
Assume that 2 aoHY = 0; then, for all 8 € B,
«

5o where a, B,y € B, are linearly

are linearly independent.

0= [ZaaH&XO,@] = —Zaan(ﬁ,a)Xgﬁ;

since det(n

3 ,a)) # 0, it follows that a, = 0 for all a. Assume that
aa X0

(
0. In view of formulas (7), (8), (9),

Xg(ﬁ) =0,
Xa(B,8) = 20050
for all 3 € B. It follows that ag = 0 for all 3. Since X2, H, X° are of

-
degree —1,0, 1, respectively, the lemma follows from what has gone before.

Let T be the set B x {—1,0,1}. Put 2, = (a,—1), ha = (a,0), and
Z_o = (a, 1). Let a be the Lie algebra defined by the generating family I and
the following set Z of relators:

[haa hﬂ]

[how xﬁ] —n(, Ol)l‘g
Fras 2—g] + (6, 2)0_g
[art_s] if a# B

(cf. Chap. II, §2, no. 3). By Lemma 1, there exists a unique linear represen-
tation p of a on E such that

plra) = X0, plha) = Hy, plr—a) = X7,

xav

In view of Lemma 2, this proves the following result:

Lemma 3. The canonical images in a of the elements x, hg, v—,, where
a, 3,7 € B, are linearly independent.

In the following, we identify x4, hqo, £—, with their canonical images in a.

Lemma 4. There exists a unique involutive automorphism 6 of a such that
0(x0) =2—a, 0(x_n) =24, O(hy)=—hq
for all o € B.
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Indeed, there exists an involutive automorphism of the free Lie algebra
L(I) satisfying these conditions. It leaves Z U (—%) stable, and hence de-
fines by passage to the quotient an involutive automorphism of a satisfying
the conditions of the lemma. The uniqueness follows from the fact that a is
generated by the elements x4, hq, o (@ € B).

This automorphism is called the canonical involutive automorphism of a.

Let Q be the set of radical weights of R; this is a free Z-module with
basis B (Chap. VI, §1, no. 9). There exists a graduation of type Q on the free
Lie algebra L(I) such that x4, he, 2 are of degrees a, 0, —a, respectively
(Chap. II, §2, no. 6). Now the elements of #Z are homogeneous. Hence there
exists a unique graduation of type Q on a compatible with the Lie algebra
structure of a and such that z, hy, z_, are of degrees a, 0, —«, respectively.
For any p € Q, denote by a* the set of elements of a homogeneous of degree .

Lemma 5. Let z € a. Then z € a* if and only if [ha, 2] = (u,a")z for all
a € B.

For ;1 € Q, let al® be the set of 2 € a such that [ha, x| = (u, @)z for all
a € B. The sum of the a(® is direct. To prove the lemma, it therefore suffices
to show that a* C a®. Let o € B. The endomorphism u of the vector space
a such that ula” = (u, @¥).1 is a derivation of a such that uz = (ad hy).z for
r =1xg, * = hg, * = v_g; hence u = ad h,, which proves our assertion.

Remark. It follows from Lemma 5 that every ideal of a is homogeneous, since it
is stable under the ad hq.

Denote by Q4 (resp. Q_) the set of linear combinations of elements of
B with positive (resp. negative) integer coefficients, not all zero. Put ay =

> a*anda_ = 2 a* Since Qr+Qr C Qyand Q- +Q_ C Q_, ay
HEQ+ HEQ-
and a_ are Lie subalgebras of a.

PROPOSITION 2. (i) The Lie algebra a is generated by the family (2o)acB-
(ii) The Lie algebra a_ is generated by the family (x_o)aeB-
(iii) The family (ha)aeB is a basis of the vector space a°.
(iv) The vector space a is the direct sum of ar, a’, a_.

Let v (resp. n) be the Lie subalgebra of a generated by (z,)aen (resp.
(z—a)acn), and b the vector subspace of a generated by (ha)aep- Since the
o are homogeneous elements of ay, t is a graded subalgebra of a,; hence,
[h,t] Ct, 80 h+tis a subalgebra of a; since

[l',a, x,@] - 5aﬂho¢>

[_a,t] C h+rt for all @ € B. Similarly, n is a graded subalgebra of a_, one
has [h,n] C n, h+n is a subalgebra of n, and [z, n] C h+n for all @« € B. Put
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a’ = v+ b +n. The preceding shows that a’ is stable under ad z, ad h, and
ad x_, for all & € B, and hence is an ideal of a. Since a’ contains z, ha, T—a
for all a € B, o’ = a. It follows from this that the inclusions t C a,, h C a°,
n C a_ are equalities, which proves the proposition.

PROPOSITION 3. The Lie algebra ay (resp. a_) is a free Lie algebra with
basic family (zq)aen (resp. (T—q)aen) (cf. Chap. II, §2, no. 3).

Let L be the Lie subalgebra of E generated by B. By Chap. II, §3, Th. 1,
L can be identified with the free Lie algebra generated by B. The left regular
representation of E on itself is clearly injective, and defines by restriction to L
an injective representation p’ of the Lie algebra L on E. Let ¢ be the unique
homomorphism from L to a_ which takes « to xz_, for all &« € B. Then, for
all a € B, p(¢(a)) is the endomorphism of left multiplication by « on E, so
pow = p', which proves that ¢ is injective. Thus, (x_4)aep is a basic family
for a_. Since 8(x_o) = x4 for all a (cf. Lemma 4), (z4)aep is a basic family
for a,.

3. EXISTENCE THEOREM

We retain the hypotheses and notation of the preceding number. Recall that
if a,0 € B and if a # g, then n(8,a) < 0; moreover, if n(8,«a) = 0, then
n(a, f) =0 (Chap. VI, §1, no. 1, formula (8)). For any pair («, 3) of distinct
elements of B, put

Top = (ad 2,) 7" PYzs  yus = (ad o) P4

Then z,3 € a4,yas € a—. If 0 denotes the canonical automorphism of a,
0(zap) = Yap-

Lemma 6. Let o, 0 € B with a # 3. Then
[04,Yapl =0 [a_,zap] = 0.

The second formula follows from the first by using the automorphism 6.
To prove the first, it suffices to show that [z,,yas] = 0 for all v € B. We
distinguish three cases.

Case 1: v # o and vy # (3. In this case, z, commutes with z_, and z_g,
and hence with y.g.

Case 2: v = (3. In this case, x, commutes with x_,, so

[y o] = (ad 2_0) O 2y 2]

= —(ad 2_o)' 7P Yy = —n(a, f)(ad z_o) Yz,
If n(B, ) < 0, this expression is zero since (ad _,).2_o = 0. If n(5,a) =0,

then n(c, §) = 0. In both cases, [z, yaps] = 0.
Case 3: v = «. In the algebra of endomorphisms of a,
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[—ad ha,ad 2_,]) =2ad z_,
and [ad z4,ad _,] = —ad hy; thus, by §1, Lemma 1,
[ad 24, (ad z_4) Y] = (1 — (3, @) (ad z_o) ") (—ad he — n(3, @)).
Consequently,

[+, Yap] = [ad Ta, (ad 2_0) 7" PNz 5+ (ad 2_4) 7" F Y (ad 24)7_5
= —(1-n(8,a))(ad z_a) " (ad hy +n(6,a))z_gs
+ (ad z_o) "B (ad z4)z_5.

Now [ha,z—g] + n(B,0)z_5 =0 and [z4,2z_g] =0, 50 [, Yas] = 0.

Lemma 7. The ideal n of ai generated by the xqp (o, 8 € B,a # B) is an
ideal of a. The ideal of a_ generated by the yo3 (o, 8 € B, # () is an ideal
of a and is equal to 6(n).

Let n' = ,BEZB: y kzop. Since each x5 is homogeneous in a, [a%,n'] C n/
(Lemma 5 and Prop. 2). Let U (resp. V) be the enveloping algebra of a
(resp. a4), and o the representation of U on a defined by the adjoint repre-
sentation of a. The ideal of a generated by n’ is o(U)n’. Now a = ay +a’+a_
(Prop. 2), o(a_)n’ = 0 (Lemma 6), and o(a’)n’ C n’ by the preceding. By
the Poincaré-Birkhoff-Witt theorem, o(U)n’ = o(V)n’, which proves the first
assertion of the lemma. It follows that the ideal of 6(ay) = a_ generated by
the 6(zas) = Yap (o, 8 € B, # () is the ideal §(n) of a. Q.E.D.

The ideal n + 6(n) of a is graded since it is generated by homogeneous
elements. Consequently, the Lie algebra a/(n+6(n)) is a Q-graded Lie algebra;
in the remainder of this paragraph, it is denoted by gg, or simply by g. By
Prop. 2, if g* # 0 then p € Q4, or p € Q_, or = 0. Denote by X, (resp.
H,, X_,) the canonical image of z, (resp. hy, T_,) in g. In view of the
definition of a, n and 6(n), it follows that g is the Lie algebra defined by the
generating family ((Xa, Ha, X—0))acn and the relations

[Ho, Hp] =0 (16)

[Ho, Xp] —n(8,0) X5 =0 (17)
[Ho, X—p] +n(B,0)X_5 =0 (18)
[Xo,X_o|+Ho =0 (19)

[Xa, X_p] =0 (a#p) (20)

(ad Xo)' P X5 =0 (a#p) (21)

(ad X o) "PNX 5 =0 (a#0). (22)

Let z € g and p € Q. Then 2 € g* if and only if [H,, 2] = (i, ")z for all
« € B. This follows from Lemma 5.
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Since a® N (n + 6(n)) = 0, the canonical map from a® to g° is an isomor-
phism. Consequently, (H,)aep is a basis of the vector space g°. The commu-
tative subalgebra g" of gg will be denoted by hp or simply by h. There exists
a unique isomorphism p — up from V to b* such that (up, Ha) = (u, ")
for all x € V and all « € B.

The involutive automorphism 6 of a defines by passage to the quotient
an involutive automorphism of g that will also be denoted by 6. We have
0(Xo) =X_q for a € BU(—B), and 0(H,) = —H,.

THEOREM 1. Let R be a reduced root system, B a basis of R. Let g be
the Lie algebra defined by the generating family (X, Ha, X—ao))acn and the
relations (16) to (22). Let h = ZB kH,. Then (g,b) is a split semi-simple Lie
algebra. The isomorphism p l—(>1€,u]3 from V to b* maps R to the root system
of (g,h). For all p € R, gt is the eigenspace relative to the root p.

The proof follows that of Lemmas 8, 9, 10, 11.

Lemma 8. Let « € BU (=B). Then ad X,, is locally nilpotent.!

Assume that o € B. Let g’ be the set of z € g such that (ad X,)Pz =0
for sufficiently large p. Since ad X, is a derivation of g, g’ is a subalgebra
of g. By (21), X3 € ¢’ for all § € B. By (17), (19), (20), Hz € ¢’ and
X_p € ¢ forall B € B. Hence g’ = g and ad X, is locally nilpotent. Since
ad X_, = f0(ad X, )01, we see that ad X_,, is locally nilpotent.

We shall see that g is finite dimensional, so that ad X, is actually nilpotent.

Lemma 9. Let p,v € Q and w € W(R) be such that wy = v. There exists an
automorphism of g that takes g to g”.

For all o € B, let s, be the reflection in V defined by «. Since W(R) is
generated by the s, (Chap. VI, §1, no. 5, Remark 1), it suffices to prove the
lemma when w = s,. In view of Lemma 8, we can define

904 — eaaneadX_aeaan.

It is verified as in Chap. I, §6, no. 8, that 6, is an automorphism of g. We
have

! An endomorphism u of a vector space V is called locally nilpotent (or almost
nilpotent) if, for every v € V, there exists a positive integer n such that «"(v) =0
(cf. Commutative Algebra, Chap. IV, §1, no. 4, Def. 2). Then exp(u), or e*, is

defined by the formula e*(v) = > (1/n!)u™(v) for all v € V.

n>0
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0o (Hy) = eadX”eadX‘“(Hg —n(a, ) Xa)
= e2d Xa (Hg —n(a, B)Xo+n(a, ) X_q—n(a, B)Ho— n(a2, 2) 2Xa>

= ¢*dXa (Hg —n(a, B)Hy — n(a, 8)Xo)
= H,@ - n(a7 )Ha - n(aa/B)on - TL(OZ,B)XQ - n(aa 6)(72){&)
= Hg —n(a, B)H,.

If z € g¥,
[Hg,ﬂglz] = 9;1[H5 —n(a, 8)Hq, 2]
=0, ({1, 8Y)z — n(e, B)(u, @) 2)
= (p— (", ma, )0, 2 = (sap, )0, 2,

so 051z € g®#. This shows that 6 1gt C g**. Since 6,, is an automorphism
and since this inclusion holds for all u € Q, we see that 6, 1gt = g** which
proves the lemma.

Lemma 10. Let p € Q, and assume that p is not a multiple of a root. There
exists w € W(R) such that certain of the coordinates of wu with respect to
the basis B are > 0 and certain of them are < 0.

Let Vg be the vector space Q ®z R, in which R is a root system. By
the assumption, there exists f € Vi such that (f,a) # 0 for all @ € R, and
(f, 1) = 0. There exists a chamber C of R" such that f € C. By Chap. VI, §1,
no. 5, Th. 2 (i), there exists w € W(R) such that wf belongs to the chamber
associated to B, in other words such that (wf,a) > 0 for all & € B. Write
wi = ZG:B toa. Then

0=(f,u) = (wf,wp) = > talwf,a

a€B

which proves that certain ¢, are > 0 and others are < 0.

Lemma 11. Let p € Q. If u ¢ RU{0}, then g = 0. If u € R, then dimg* = 1.

1) If u is not a multiple of an element of R, there exists w € W such
that wy ¢ Q4+ U Q_ (Lemma 10), so a** = 0, g** = 0, and hence g# = 0
(Lemma 9).

2) Let @ € B and let m be an integer. Since a4 is a free Lie algebra with
basic family (4 )aeB, we have dima® =1 and a™® = 0 for m > 1 (Chap. II,
§2, no. 6, Prop. 4). Hence dim g® < 1 and g"* = 0 for m > 1. We cannot have
g% =0, as this would imply that x, € n+6n, and hence that n+ 6n contains
ha = —[Ta,T_4], whereas a® N (n + n) = 0. Consequently, dim g* = 1.

3) If i € R, there exists w € W(R) such that w(p) € B (Chap. VI, §1,
no. 5, Prop. 15), so dim g" = dim g** = 1. Moreover, if n is an integer > 1
then g =0 and so g"* = 0.
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Proof of Theorem 1.

Since dim g® = Card B, it follows from Lemma 11 that g is of finite di-
mension equal to Card B+ Card R. We show that g is semi-simple. Let € be a
commutative ideal of g. Since ¢ is stable under ad(h), ¢ = (¢Nh)+ ;R(Eﬂg“).

“w

It is clear that, for all & € B, g*+g~“+kH, is isomorphic to s[(2, k). In view
of Lemma 9, for all 4 € R, g* is contained in a subalgebra of g isomorphic to
s[(2, k); consequently, €N gt = 0, so € C b; hence

[t,g'] Ctngt =0,

so up(t) = 0 for all 4 € R. It follows that ¢ = 0, which proves that g is
semi-simple.

Let pu € R. There exists a € B such that (u, ) # 0, and (ad H,)|g" is
then a non-zero homothety. Consequently, § is equal to its own normalizer in
g, and hence is a Cartan subalgebra of g. For all u € h, ad u is diagonalizable,
so (g, h) is a split semi-simple Lie algebra.

For all 4 € R, it is clear that up is a root of (g,h) and that g is the
corresponding eigenspace. The number of roots of (g,h) is dimg — dimbh =
Card R. Hence, the map p +— pp from V to h* maps R to the root system of

(8,h).

4. UNIQUENESS THEOREM

PROPOSITION 4. Let (g,h,B, (Xa)aen) be a framed semi-simple Lie alge-
bra. Let (n(a, B))a,peB and (Xa)aeBu(—B) be the corresponding Cartan ma-
triz and generating family.

(i) The family ((Xo, Ha, X—a))aen and the relations (16) to (22) of no. 3
constitute a presentation of g.

(ii) The family (Xo)aen and the relations (21) of no. 3 constitute a pre-
sentation of the subalgebra of g generated by (Xo)acB-

Let R be the root system of (g, h). Applying to R and B the constructions
of nos. 2 and 3, we obtain objects that we shall denote by o', ¢’, X!, H.,, ...
instead of a, g, Xo, Ha, - - -

There exists a homomorphism ¢ from the Lie algebra g’ to the Lie algebra
g such that (X)) = Xa, ¢(H.) = H,, p(X_,) = X_, for all « € B
(Prop. 1). Since dimg’ = CardR + CardB = dimg, ¢ is bijective. This
proves (i).

The subalgebra of g’ = o’ /(v ®60'n') = (a/, ®a’"®a’_) /(v ®6'n’) generated
by (X{,)aen can be identified with a/, /n’. In view of Prop. 3 and the definition
of ', this proves (ii).

COROLLARY. Every framed semi-simple Lie algebra is obtained from a
framed semi-simple Q-Lie algebra by extension of scalars from Q to k.

This follows immediately from the proposition.



§4. ALGEBRA DEFINED BY A ROOT SYSTEM 105

THEOREM 2. Let (g,5,B,(Xa)acn) and (¢/,0",B',(X))acn’) be framed
semi-simple Lie algebras, let R and R be the root systems of (g,h) and (g',b’),
let (n(e, B))a,peB (resp. (0'(e, B))a,pen’) be the Cartan matriz of R (resp.
R’) relative to B (resp. B'), and let A (resp. A’) be the Dynkin graph of R
(resp. R) relative to B (resp. B).

(i) If ¢ is an isomorphism from b* to b’ such that o(R) = R’ and
©(B) = B, there exists a unique isomorphism ¥ from (g,h,B, (Xa)acn) to
(¢, 0, B, (X)) aen’) such that p|h = to~t.

(ii) If f is a bijection from B to B’ such that n'(f(«), f(3)) = n(a, B)
for all a,B € B, there exists an isomorphism from (g,h,B,(Xa)aecB) to
(¢,0", B, (X})aen)-

(iii) If there exists an isomorphism from A to A’ there exists an isomor-
phlsm f’I"O’ITL (ga ha Ba (Xa)OIGB) to (9/7 b/a Bl? (X(/y)(!EB/)'

This follows immediately from Prop. 4 (i) (making use of Chap. VI, §4,
no. 2, Prop. 1 for part (iii)).

Scholium. To any splittable semi-simple Lie algebra g is associated a Dynkin
graph, which determines g up to isomorphism (Th. 2 (iii)). This graph is non-
empty and connected if and only if g is simple (§3, no. 2, Cor. 1 of Prop. 6).
By Th. 1 of no. 3, and Chap. VI, §4, no. 2, Th. 3, the splittable simple Lie
algebras are the algebras of type A; (1 >1),B; (1 >2),C; (1 >3),D; (I > 4),
Eg, E7, Eg, F4, Go. No two algebras in this list are isomorphic.

PROPOSITION 5. Let (g,h,B,(Xa)acB) be a framed semi-simple Lie alge-
bra, and (Xo)aeBu(—B) the corresponding generating family. There exists a
unique automorphism 0 of g such that 0(X,) = X_, for all « € BU (=B).
We have 6% = 1dg, and 6(h) = —h for all h € b.

The uniqueness is clear since (X, )aeBu(—B) generates the Lie algebra g.

In view of Prop. 4, the existence of 6 follows from what we said in no. 3 before
Th. 1.

COROLLARY. Let (g,bh) be a split semi-simple Lie algebra. Then (g,h) pos-
sesses a Chevalley system (§2, no. 4, Def. 3).

Let R be the root system of (g, h). For all « € R, let X, be a non-zero
element of g®. Assume that the X, are chosen so that [X,, X_,] = —H, for
all & € R (§2, no. 4, Lemma 2). Let B be a basis of R and 6 the automorphism
of g such that 0(X,,) = X_, for all @ € BU(—B). We have 6|h = —Id;. Hence,
for all o € R there exists t, € k* such that X, = t,X_,. We have

toztfaHa - [tozXfowtfozon] - [QXQ,GX,OJ = 8([Xowaa])
=6(—H,) = H,

50 tat_o = 1forall « € R. Introduce the N, asin §2, no. 4. If o, 8, a+-3 € R,
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Noa,—ptatpX—a-p = tatp[X—a, X—p] = [0 Xa, 0X5] = 0([Xa, Xp])
== NaﬁeXaJrﬁ == Naﬂta+ﬁX,a,B

S0, in view of §2, no. 4, Lemma 4,
(q + 1)2tatﬁ = Niﬁtoﬂrﬁ

where ¢ is an integer. It follows that if ¢, and ¢g are squares in k*, so is ¢4 3.
Since t, = 1 for all « € B, Prop. 19 of Chap. VI, §1, no. 6, proves that ¢, is
a square for all & € R. Choose, for all @ € R, a u, € k such that u? = t,.
This choice can be made so that uqu_, =1 for all « € R. Put X/, = u;lX,l.
Then, for all « € R,

X! eg® (X, X" ] =[Xa, X_o] = —Ha,

and 0(X)) = 0(uz' X)) = uzttaX o = uaX_0 = uqu_oX' , = X', so
that (X, )acr is a Chevalley system of (g, b).

§5. AUTOMORPHISMS OF A SEMI-SIMPLE LIE
ALGEBRA

In this paragraph, g denotes a semi-simple Lie algebra.

1. AUTOMORPHISMS OF A FRAMED SEMI-SIMPLE LIE
ALGEBRA

Recall (Chap. VII, §3, no. 1) that Aut(g) denotes the group of automorphisms
of g. If h is a Cartan subalgebra of g, we denote by Aut(g,h) the group of
automorphisms of g that leave h stable. Assume that h is splitting, and let
R be the root system of (g,h). If s € Aut(g,h), the contragredient map of
sl is an element of A(R) (the group of automorphisms of R) which we shall
denote by £(s) in this paragraph. Thus

e: Aut(g,h) = AR)

is a homomorphism of groups.

For any root system R and any basis B of R, we denote by Aut(R,B) the
group of automorphisms of R that leave B stable. Recall (Chap. VI, §1, no. 5,
Prop. 16 and §4, no. 2, Cor. of Prop. 1) that A(R) is the semi-direct product
of Aut(R,B) and W(R), and that A(R)/W(R) is canonically isomorphic to
the group of automorphisms of the Dynkin graph of R.

bra, and R the root system of (g,h). Let G be the set of s € Aut(g,h) that

PROPOSITION 1. Let (g,5,B,(X4)aen) be a framed semi-simple Lie alge-
)
leave B stable, and such that s(X,) = X (5o for all a € B (in other words
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the set of automorphisms of (g,5,B, (Xa)acn)). Then the restriction of € to
G is an isomorphism from G to Aut(R,B).
If s € G, it is clear that €(s) € Aut(R,B). On the other hand, the map

e|G: G = Aut(R,B)

is bijective by Th. 2 of §4, no. 4.

2. AUTOMORPHISMS OF A SPLIT SEMI-SIMPLE LIE
ALGEBRA

Let E be a commutative group, and A = GBEAW an E-graded algebra. For
S

any homomorphism ¢ from the group E to the multiplicative group k*, let
f(p) be the k-linear map from A to A whose restriction to each A7 is the
homothety with ratio ¢(7); it is clear that f(y) is an automorphism of the
graded algebra A, and that f is a homomorphism from the group Hom(E, £*)
to the group of automorphisms of the graded algebra A.

Let b be a splitting Cartan subalgebra of g, and R the root system of
(g,h). Recall that P(R) (resp. Q(R)) denotes the group of weights (resp.
radical weights) of R. Put

Tp = Hom(P(R),k*) Tq = Hom(Q(R), k™).

We can consider g = g% + ZR g% as a Q(R)-graded algebra. The preceding
(¢S

remarks define a canonical homomorphism from Tq to Aut(g, h), which will
be denoted by f in this paragraph. In the other hand, the canonical injection
from Q(R) to P(R) defines a homomorphism from Tp to Tq, which will be
denoted by g¢:

Ty -4 Toq -5 Aut(gb).

If s € Aut(g,b), let s* be the restriction of *(s[h)~! to Q(R). Then, for all
(RS TQ,

flpos*)y=s"tof(p)os. (1)
Indeed, let v € Q(R) and z € g7; then sz € g° 7 and

flpos® )z =(pos*)(y).x=s"(p(s*y)sz) = (57" 0 f(p) 0 8)().
PROPOSITION 2. The sequence of homomorphisms

1 — To -5 Aut(g,h) - AR) — 1

18 exact.
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a) Let ¢ € Ker f. Then ¢(a) = 1 for all @ € R. Since R generates the
group Q(R), ¢ is the identity element of Tq.
b) Let ¢ € Tq. The restriction of f(p) to h = g° is the identity, so

Im f C Kere.

c) Let s € Kere. Then s|h =Idy. For all o € R, we have s(g®) = g%, and
there exists a t, € k* such that sz = t,x for all € g®. Writing down the
condition that s € Aut(g), we obtain the relations

tal_a =1 for all « € R
taty = tots when «, 8, + (8 € R.

Under these conditions, there exists ¢ € Tq such that ¢(a) = ¢, for all
a € R (Chap. VI, §1, no. 6, Cor. 2 of Prop. 19). Then s = f(¢). Hence,
Kere C Im f.

d) The image of Aut(g,h) under ¢ contains W(R) by §2, no. 2, Cor. of
Th. 2, and contains Aut(R,B) by Prop. 1. Hence this image is equal to A(R).

COROLLARY 1. Let (B, (Xa)acn) be a framing of (g,b). Let G be the set
of s € Aut(g, h) that leave the framing invariant. Then Aut(g,h) is the semi-
direct product of G and e~1(W(R)).

Indeed, GNe 1 (W(R)) = {1} by Prop. 1, and
Aut(g. h) = G.e7H(W(R))

since ¢ is surjective (Prop. 2).

COROLLARY 2. The group e~*(W(R)) operates simply-transitively on the
set of framings of (g, b).

Indeed, Aut(g, ) operates transitively on the set of framings of (g, h) by
84, no. 4, Th. 2. Cor. 2 now follows from Cor. 1.

COROLLARY 3. Let B be a basis of R. The group Kere = f(Tq) operates
simply-transitively on the set of framings of (g,%) of the form (B, (Xa)acn)-

This follows immediately from Prop. 2.
Let a € R, X, € g%, X_o € g~ @ besuch that [X,, X_,] = —H,. We have

seen (§2, no. 2, Th. 2) that, for all ¢ € k*, the restriction of the elementary
automorphism

ea(t) _ eatha ead tilX,aead tX o

to b is the transpose of sq4; 80 (04 (t)) = s, and consequently 6, ()0, (—1) €
Kere.

Lemma 1. Let o € R and t € k*. Let ¢ be the homomorphism X — tNHe)
from Q(R) to k*. Then f(p) = 04(t)0n(—1).
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Let p be the representation of sl(2,k) on g associated to X,. Let 7 be
the representation of SL(2, %) compatible with p. Introduce the notations
0(t), h(t) of §1, no. 5. Since p(H) = ad H,, the elements of g* are of weight
A(Hy) for p. By §2, no. 2, 0,(t)0,(—1) = n(6(t)0(—1)) = w(h(t)). Hence the
restriction of 0, (t)0a(—1) to g* is the homothety of ratio t*(H«) (§1, no. 5,
Prop. 6), hence the lemma.

PROPOSITION 3. The image of the composite homomorphism
Ty -5 Tq -5 Aut(g,h)

is contained in Aut.(g).

Let B be a basis of R. Then (H,)acB is a basis of RV, and the dual basis of
(Ha)aen in h* is a basis of the group P(R). Hence the group Tp is generated
by the homomorphisms \ — t*() (t € k* o € B). If ¢ is the restriction of
such a homomorphism to Q(R), Lemma 1 proves that f(y) € Aut.(g), hence
the proposition.

Let k be an algebraic closure of k. The map which associates to any
automorphism s of g the automorphism s ® 1 of g ®, k is an injective ho-
momorphism from Aut(g) to Aut(g®x k). We denote by Auto(g) the normal
subgroup of Aut(g) which is the inverse image of Aut.(g®y k) under this ho-
momorphism; this is the set of automorphisms of g that become elementary
on extending the base field from k to k. It is clear that Aut.(g) is indepen-
dent of the choice of k, and that Aut.(g) C Auto(g). The groups Auto(g) and
Aut,(g) can be distinct (Chap. VII, §13, no. 1). If h is a Cartan subalgebra
of g, put

Aut.(g,bh) = Aut.(g) N Aut(g, b), Auto(g,h) = Auto(g) N Aut(g, b).

Lemma 2. Let b be a splitting Cartan subalgebra of g, and s € Auty(g,h).
Assume that the restriction of s to > g% does not have 1 as an eigenvalue.

a€R
Then e(s) = 1.

By extension of k, we are reduced to the case where s € Aut.(g,5). The
dimension of the nilspace of s — 1 is at least dim b (Chap. VII, §4, no. 4,
Prop. 9). Hence (s — 1)|h is nilpotent. Since slh € A(RY), s|h is of finite
order, and hence semi-simple (Chap. V, Appendix, Prop. 2). Consequently,
(s — 1)|h = 0, which proves that £(s) = 1.

Lemma 3. (i) Let m = (P(R) : Q(R)). If ¢ is the mth power of an element
of Tq, then ¢ € q(Tp).

(i) If k is algebraically closed, ¢(Tp) = Tq.

There exist a basis (A1,...,A;) of P(R) and integers n1 > 1,...,n; > 1
such that (niA1,...,m\) is a basis of Q(R). We have m = ny...n;. Let
1 € Tq and put ¥(n1 A1) = t1,...,0(mA) =t For i =1,...,1, put m; =
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1;[ nj. Let x be the element of Tp such that x(A1) = 7", ..., x(N) = t]"".
J#i
Then

x(nidi) =" =" = (") (ni\)

so x|Q(R) = ™. This proves (i). If k is algebraically closed, every element
of k* is the mth power of an element of £*, so every element of Tq is the
mth power of an element of Tq; hence, (ii) follows from (i).

PROPOSITION 4. We have f(Tq) C Auto(g, h) ande ' (W(R))=Auto(g, b).
a) Let ¢ € Tq and let k be an algebraic closure of k. By Lemma 3, ¢
extends to an element of Hom(P(R), k*). By Prop. 3,

flp)®1 € Aute(g @ E, h R E)

Hence f(yp) € Auto(g, h), and Kere C Auto(g, b).

b) The image of Aut.(g,h) under € contains W(R) (§2, no. 2, Cor. of
Th. 2). In view of a), we see that e"*(W(R)) C Auto(g, b).

c¢) It remains to prove that Auto(g,h) C e H(W(R)). In view of b), it
suffices to prove that e(Autg(g,h)) N Aut(R,B), where B denotes a basis of
R, reduces to {1}.

Let s € Autg(g, h) be such that £(s) € Aut(R,B). The subgroup of A(R)
generated by (s) has a finite number of orbits on R. Let U be such an orbit,
of cardinal r, and gV = B%Ugﬁ' Let 31 € U, and put 3; = &(s)"" 13, for

1 <i<r, sothat U= {8,...,3.}. Let X5, be a non-zero element of g’,
and put Xg, = si_lXﬁ1 for 1 < i < r. There exists cy € k* such that s" Xg, =
cuXg,, hence s"Xg, = cyXg, for all i, and consequently s"|g¥ = cy.1. Let
¢ € Tq, and s’ = so f(p), which by a) is an element of Auty(g,h). We have
s'"|g¥ = ¢;.1, where

v = cu [[e(B) = cup (Z ﬁi) :
=1 =1

r l
Put B = {a3,...,} and Zlﬁl = _Zl my a;. Since (s) € Aut(R,B), the
i= ji=

my are integers of the same sign and not all zero. We have

l
¢y = cu [[ elan)™.
j=1

Now ¢ can be chosen so that ¢{; # 1 for every orbit U; indeed, this reduces to
choosing elements ¢(ay) = t1,...,¢(ap) = t; of k* which are not annihilated
by a finite number of polynomials in ¢y, ...,t;, not identically zero. For such
a choice of ¢, e(s’) =1 by Lemma 2, so
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COROLLARY. Let B be a basis of R. The group Aut(g,b) is isomorphic to
the semi-direct product of the groups Aut(R,B) and Autg(g,h).

This follows from Prop. 1, Cor. 1 of Prop. 2, and Prop. 4.

Remark. Let €’,¢"” be the restrictions of € to Autg(g, h), Aut.(g,h). Let f’
be the homomorphism from Tp to Aut.(g,h) induced by f via the canoni-
cal injection from Q(R) to P(R). In the preceding we have established the
following commutative diagram:

1 — Tq -5 Aut(g,h) - AR) — 1

I
(

1 — Tq -5 Aute(gh) = WR) — 1

.|

Tp = Aut.(g,h) — WR) — 1
in which the vertical arrows other than ¢ denote the canonical injections. We
have seen (Prop. 2 and 4) that the first two rows are exact. In the third row,
the homomorphism &” is surjective (§2, no. 2, Cor. of Th. 2); it can be shown
that its kernel is f'(Tp) (§7, Exerc. 26 d)).

3. AUTOMORPHISMS OF A SPLITTABLE SEMI-SIMPLE LIE
ALGEBRA

PROPOSITION 5. Assume that g is splittable. The group Autg(g) operates
simply-transitively on the set of framings of g.

Let e; = (g,b1,B1, (X})aen, ), €2 = (g, b2, B2, (X2) e, ) be two framings
of g. There exists at least one element of Autg(g) that transforms e; into es
(Prop. 1 and Prop. 4). Let k be an algebraic closure of k. There exists an
element of Aut, (g ®y k) that transforms bh; @, k into by ®p k (Chap. VII, §3,
no. 2, Th. 1). Hence, by Prop. 4 and Cor. 2 of Prop. 2, there exists an element
¢ of Aut.(g®y k) that transforms the framing (g @z k, b1 @1 k, B, (X1)aeB,)
of g ®j k into the framing (g ®4, k, b2 @k k, Ba, (X2)aeB,)-Since by and the
X! (resp. bz and the X?2) generate g1 (resp. g2), we have ¢(g1) = ga, 50 ¢ is
of the form ¢ ® 1 where 1 € Autg(g), and ¢ transforms e; into es.

COROLLARY 1. Let (g,5,B, (Xa)acn) be a framing of g, and G the group
(isomorphic to Aut(R,B)) of automorphisms of g that leave this framing in-
variant. Then Aut(g) is the semi-direct product of G and Autg(g).

Indeed, every element of Aut(g) transforms (g, b, B, (X4 )aen) into a fram-
ing of g. By Prop. 5, every coset of Aut(g) modulo Auty(g) meets G in exactly
one point. Q.E.D.
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It follows from Cor. 1 that the group Aut(g)/Auto(g) can be identified
with Aut(R,B), and is isomorphic to the group of automorphisms of the
Dynkin graph of R.

COROLLARY 2. Aut(g) = Auto(g) when g is a splittable simple Lie al-
gebra of type A1, B, (n > 2), C, (n > 2), E7, Eg, Fy, Go. The quotient
Aut(g)/Auto(g) is of order 2 when g is of type A, (n >2), D, (n >5), Eg;
it is isomorphic to G5 when g is of type Dy.

This follows from Cor. 1 and Chap. VI, Plates I to IX.

Remarks. 1) Let e; = (g,b1,B1,(X))aen,), e2 = (g,h2, B2, (X2)aeB, ),
eh = (g,h2,B2, (Y2)aen,) be framings of g, and s (resp. s’) an element
of Auto(g) that transforms e; to ey (resp. e5). Then s|h; = §|h1. Indeed,
s’ 's € Autg(g,b1) and s’ 's(By) = By, so e(s''s) = 1.

2) Let X be the set of pairs (h, B) where b is a splitting Cartan subalgebra
of g and B a basis of the root system of (g,h). If z = (h,B) and 2’ = (§',B’)
are two elements of X, there exists s € Autg(g) that transforms z into z’
(Prop. 5), and the restriction s,/ , of s to h does not depend on the choice
of s (Remark 1). In particular, s;» 0 Sy 5 = Sgv o if z,2',2” € X, and
Sz = 1. The set of families (hy)zex satisfying the conditions

a) hy € hif x = (h,B)

b) Syt o(hy) = hy f 22" € X
is in a natural way a vector space h(g) which we sometimes call the canonical
Cartan subalgebra of g. For x = (§,B) and 2/ = (§',B’), s,/ , takes B to
B’, and hence the root system of (g,h) to that of (g,h’); it follows that the
dual h(g)* of h(g) is naturally equipped with a root system R(g) and with a
basis B(g) of R(g). We sometimes say that R(g) is the canonical root system
of g and that B(g) is its canonical basis. The group Aut(g) operates on h(g)
leaving R(g) and B(g) stable; the elements of Aut(g) that operate trivially
on h(g) are those of Autg(g).

PROPOSITION 6. Let § be a splitting Cartan subalgebra of g. We have, with
the notations in no. 1, Auto(g) = Aute(g).Kere = Aut.(g).f(Tq).

By §3, no. 3, Cor. of Prop. 10, Autg(g) = Aut.(g).Auto(g,h). On the
other hand, e(Aut.(g,h)) D W(R) by §2, no. 2, Cor. of Th. 2, so Autg(g,h) =
Aut.(g,h).Kere.

Remark 3. Prop. 6 shows that the canonical homomorphism
v: Tq/Im(Tp) — Auto(g)/Aute(g),

induced by the diagram in no. 2, is surjective. In particular, Aut.(g) contains
the derived group of Autg(g); we shall see (§11, no. 2, Prop. 3) that they are
actually equal. Moreover, it can be shown that ¢ is injective, in other words
that
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f(Tq) NAute(g) = f'(Tp),
(cf. §7, Exerc. 26 d)).

PROPOSITION 7. Let g be a splittable semi-simple Lie algebra, b a Borel
subalgebra of g, and p1 and po distinct parabolic subalgebras of g containing
b. Then p1 and pa are not conjugate under Auto(g).

We can assume that k is algebraically closed. Let s € Autg(g) be such
that s(p1) = p2. Let h be a Cartan subalgebra of g contained in b N s(b) (§3,
no. 3, Prop. 10). Since h and s(h) are Cartan subalgebras of s(b), there exists
u € [b, b] such that e*“(h) = s(h) (Chap. VII, §3, no. 4, Th. 3). Replacing s
by e~ s, we are reduced to the case in which s(h) = b, and s then induces
on b an element o of the Weyl group W of (g, ) (Prop. 4). Let C be the Weyl
chamber corresponding to b. Then p; and py correspond to facets F; and Fo
of hr contained in the closure of C. We have o(F;) = Fs. Since 0 € W, this
implies that F; = Fo (Chap. V, §3, no. 3, Th. 2) so p; = pa.

Remark 4. Let g be a splittable semi-simple Lie algebra, & the set of parabolic
subalgebras of g, a set on which Aut(g) operates. Retain the notations of
Remark 2. Let X' be a subset of B(g). Giving X' is equivalent to giving, for
every ¢ = (h,B) € X, a subset X, of B, such that s,/ , takes X, to X, for
any x,r € X. Let p, be the parabolic subalgebra of g corresponding to X,
(83, no. 4, Remark). The orbit of p,, under Autg(g) is the set of p, for z’ € X.
This defines a map from PB(B(g)) to F?/Auto(g). This map is surjective by
the Remark of §3, no. 4, and injective by Prop. 7.

4. ZARISKI TOPOLOGY ON Aut(g)

PROPOSITION 8. Let V be the set of endomorphisms of the vector space g.
Then Aut(g) is closed in V for the Zariski topology (Chap. VII, App. I).

Let K be the Killing form of g. If s € Aut(g),

sz, sy] = [z, 9] (2)
K(sz,sy) = K(z,y) (3)

for all z,y € g. Conversely, let s be an element of V satisfying (2) and (3)
for all z,y € g. Then Ker(s) = 0, so s is bijective and s € Aut(g). But, for
all z,y € g, the maps s — [sz, sy| and s — K(sx, sy) from V to g and k are
polynomial.

PROPOSITION 9. Let b be a splitting Cartan subalgebra of g.
(i) The group f(Tq) is closed in Aut(g) in the Zariski topology.
(ii) The group f(q(Tp)) is dense in f(Tq) in the Zariski topology.

Assertion (i) follows from the equality f(Tq) = Aut(g, h)NKere (Prop. 2).
Put m = (P(R) : Q(R)). Let F be a polynomial function on V; we assume
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that F vanishes on the mth power of every element of f(Tq), and show that
F|f(Tq) = 0; in view of Lemma 3, this will prove (ii).

The set V' of elements of V inducing the identity on h and leaving each
g“ stable can be identified with k®. Let F’ be the restriction of F to V/ = kR,
this is a polynomial function. We have f(Tq) C V. Let B = (a4, ..., q;) be
a basis of R. For all t = (t,...,t) € k*B, let ¢(t) be the homomorphism
from Q(R) to the group k* that extends ¢. Then F'(f(¢(t))) can be written
as a finite sum

> ettt =H(t, .. ).

ni,...,n €L

By assumption,

O=HE ...t = D Copm ™ "™
ni,...,n €Z
for all t1,...,t; € k*. The c,,,... »n, are thus the coefficients of a polynomial

in { variables which vanishes on k*'; hence they are all zero.

PROPOSITION 10. Assume that g is splittable.
(i) The group Aut.(g) is dense in Autg(g) in the Zariski topology.
(ii) The groups Aut.(g) and Autg(g) are connected in the Zariski topology.
By Prop. 3, f(¢(Tp)) C Aut.(g). For all s € Aut.(g), the closure of

s.f(¢(Tp)) in the Zariski topology contains s.f(Tq) by Prop. 9. Hence the
closure of Aut.(g) contains Aut.(g).f(Tq) = Auto(g) (Prop. 6). This proves

(i)

Let Aute(g) = 2U £ be a partition of Aut.(g) formed by relatively open
subsets in the Zariski topology, and with 2 # @. If w € (2 and if = is a
nilpotent element of g, the map 7 : ¢t — wexp(tadz) from k to Aut.(g) is
polynomial, hence continuous in the Zariski topology; consequently, 7(k) is
connected; since w € 7(k), we have 7(k) C §2. Thus, f2.(expad kz) C {2, so
2. Aut.(g) C 2 and 2 = Aut.(g). This proves that Aut.(g) is connected. It
follows, by (i), that Autg(g) is connected. Q.E.D.

We shall see (§8, no. 4, Cor. of Prop. 6) that Autg(g) is closed in V in
the Zariski topology, and that it is the connected component of the identity
element of Aut(g). On the other hand, Aut.(g) is not in general closed in the
Zariski topology.

*Assume that (g, h) is split. The group Auto(g) is the group G(k) of k-points of
a connected semi-simple algebraic group G with trivial centre (adjoint group).
The group f(Tq) is equal to H(k), where H is the Cartan subgroup of G with
Lie algebra b. The inverse image H of H in the universal covering G of G (in the
algebraic sense) has Tp as its group of k-points. The image of G(k) in G(k) =
Auto(g) is the group Aute(g).«
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5. LIE GROUP CASE

PROPOSITION 11. Assume that k is R, C or a non-discrete complete ul-
trametric field. Let b be a splitting Cartan subalgebra of g.

(i) Aut(g,b) is a Lie subgroup of Aut(g) with Lie algebra adb.

(ii) f(Tq) and (go f)(Tp) are open subgroups of Aut(g,h).

(iii) Aut.(g) is an open subgroup of Aut(g).

(iv) If k = R or C, Aut.(g) is the identity component of Aut(g), in other
words Int(g).

By Chap. I1I, §3, no. 8, Cor. 2 of Prop. 29, and no. 10, Prop. 36, Aut(g, h)
is a Lie subgroup of Aut(g) whose Lie algebra is the set of adx (x € g) such
that (adz)h C b, in other words ad b.

Let H € h. There exists € > 0 with the following properties: for ¢ € k and
[t| < e, exp(ty(H)) is defined for all v € P(R), and the map v — exp(ty(H))
is a homomorphism o} from P(R) to k*. For || < €, exp(tad H) is defined,
induces the identity on § and induces on g® the homothety with ratio o;(a);
hence exptadH € (g o f)(Tp). This proves, in view of (i), that (go f)(Tp)
contains a neighbourhood of 1 in Aut(g, ), and consequently is an open
subgroup of Aut(g, ). A fortiori, f(Tq) is an open subgroup of Aut(g, h).

For all & € R, expadg® C Aut.(g). In view of (ii), Aut.(g) contains a
neighbourhood of 1 in Aut(g), which proves (iii).

Assume that £ = R or C. Then Aut.(g) is contained in the identity
component C of Aut(g) (Chap. VII, §3, no. 1), and is open in Aut(g) by (iii).
Thus Aut.(g) = C. Finally, C = Int(g) by Chap. III, §9, no. 8, Prop. 30 (i).

§ 6. MODULES OVER A SPLIT SEMI-SIMPLE LIE
ALGEBRA

In this paragraph, (g,5) denotes a split semi-simple Lie algebra, R its root
system, W its Weyl group, B a basis of R, Ry (resp. R_) the set of positive
(resp. negative) roots relative to B. Put

ng = Z g%, n_= Z g% br=bh+npand b_=h+n_.
O’ER+ acR_

We have ny = [by,by], n_ =[b_,b_].
For all o € R, choose an element X, € g* such that

[Xon Xfa] =—-H,

(§2, no. 4); none of the definitions below will depend on this choice.
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1. WEIGHTS AND PRIMITIVE ELEMENTS

Let V be a g-module. For all A € h*, denote by V* the primary subspace,
relative to A\, of V considered as an h-module (Chap. VII, §1, no. 1). The
elements of V* are called the elements of weight A of the g-module V. The
sum of the V* is direct (Chap. VII, §1, no. 1, Prop. 3). For all a € h* and
A € b*, g®V* € Vet (Chap. VII, §1, no. 3, Prop. 10 (ii)). The dimension
of V* is called the multiplicity of X in V; if it is > 1, i.e. if VA £ 0, X is said
to be a weight of V. If V is finite dimensional, the homotheties of V defined
by the elements of b are semi-simple, so V* is the set of z € V such that
Hz = A(H)z for all H € .

Lemma 1. Let V be a g-module and v € V. The following conditions are
equivalent:

(i) byv C kv;

(ii) hv C kv and nyv = 0;

(iil) hv C kv and g*v =0 for all a € B.

(i) = (ii): Assume that b, v C kv. There exists A € h* such that v € V*.
Let o € Ry. Then g®.v C VA N VA® = (0. Hence ny v = 0.

(ii) = (iii): This is clear.

(iii) = (i): This follows from the fact that (X,)aecp generates ny (83,
no. 3, Prop. 9 (iii)).

DEFINITION 1. Let V be a g-module and v € V. Then v is said to be a
primitive element of V if v # 0 and v satisfies the conditions of Lemma 1.

A primitive element belongs to one of the V*. For all A\ € h*, V) denotes
the set of v € V* such that b, v C kv. Thus, the primitive elements of weight
A are the non-zero elements of V2.

PROPOSITION 1. Let V be a g-module, v a primitive element of V and w
the weight of v. Assume that V is generated by v as a g-module.
(i) If U(n_) denotes the enveloping algebra of n_, we have V.=U(n_).v.
(ii) For all A € b*, VX is the set of ¥ € V such that Hx = A(H)z for all
Hebh. We have V = )S%* VA, and each V* is finite dimensional. The space

V¥ is of dimension 1, and every weight of V is of the form w — > na.a,
aeB

where the ny are integers > 0.
(iii) V is an indecomposable g-module, and its commutant reduces to the
scalars.

(iv) Let U(g) be the enveloping algebra of g, and Z the centre of U(g).
There ezists a unique homomorphism x from Z to k such that, for all z € Z,
zy is the homothety with ratio x(z).
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Let U(b.) be the enveloping algebra of b.. We have U(g) = U(n_).U(b,.)
(Chap. I, §2, no. 7, Cor. 6 of Th. 1). Hence

V=U(g)v=Un_).U(by).v=TUn_).v.
Denote by ag, ..., a, the distinct elements of R;. Then

(XP X X Vo, p)ENT

S St 05} —Qn

is a basis of U(n_), so

V= > kX", X7 0. (1)

(P1yeeespn ) ENT

For A € h*, put

Ty = > EXPL L XP .

—ap

(P15--sPn)EN", W—pra1——ppan=XA

By Chap. VII, §1, no. 1, Prop. 2 (ii), if h € b, hy|T) is the homothety with
ratio A(h). So Ty C V*. On the other hand, (1) implies that

V= Z T,.

Aew—Naj—---—Nay,

The sum of the V* is direct (Chap. VII, §1, no. 1, Prop. 3). From these
observations it follows that V* = T}, that V is the direct sum of the V*, and
that V* is the set of z € V such that hx = A(h)z for all h € h. On the other
hand, dim V* is at most the cardinal of the set of (p1,...,p,) € N" such

that p1ag + -+ - + ppa, = w — A. This proves that V*=0ifw—\ ¢ > N,
acB

that dim V¥ = 1, and that the V* are all finite dimensional.
Let ¢ be an element of the commutant of V. For all h € b,

he(v) = ch(v) = w(h)c(v),
so ¢(v) € V¥; hence there exists t € k such that c(v) = tv. Now, for all
(p1,--.,pn) € N",

XV X o=XP X o =tXP X v
so that ¢ = t¢.1. Hence, the commutant of V reduces to the scalars. This

implies (iv) and the fact that V is indecomposable.

DEFINITION 2. The homomorphism x of Prop. 1 (iv) is called the central
character of the g-module V.

PROPOSITION 2. Let V be a g-module generated by a primitive element e of
weight w, and X a semi-simple g-module. Let @ be the set of homomorphisms
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from the g-module V to the g-module X. Then ¢ — (e) is an isomorphism
from the vector space @ to the vector space X%.

It is clear that p(e) € X¥ for all ¢ € @. If p € ® and ¢(e) = 0, then ¢ =0
since e generates the g-module V. We show that, if f is a non-zero element
of X¥, there exists ¢ € @ such that ¢(e) = f. Let X’ be the submodule of
X generated by f. By Prop. 1, X’ is indecomposable, hence simple since X is
semi-simple. The element (e, f) is primitive in the g-module V x X. Let N be
the submodule of V x X generated by (e, f). Then NN X C pry(N) = X/, so
NNX =0or X;if NNX = X’, N contains the linearly independent elements
(e, f) and (0, f) which are primitive of weight w; this is absurd (Prop. 1),
so NN X = 0. Thus prq|N is an injective map h from N to V; this map is
surjective since its image contains e. Thus ¢ = pry o h~! is a homomorphism
from the g-module V to the g-module X such that p(e) = f.

2. SIMPLE MODULES WITH A HIGHEST WEIGHT

Recall that fixing B defines an order relation on hg (Chap. VI, §1, no. 6).
The elements of ba that are > 0 are the linear combinations of elements of
B with rational coefficients > 0.

More generally, we shall consider the following order relation between
elements A, u € h*:

A — p is a linear combination of elements of B with rational coefficients > 0.

Lemma 2. Let V be a simple g-module, w a weight of V. The following con-
ditions are equivalent:

(i) every weight of V is of the form w — p where p is a radical weight > 0;
ii) w is the highest weight of V;
iii) for all a € B, w + a is not a weight of V;

i) = (ii) = (iii): This is clear.

(

(

(iv) there exists a primitive element of weight w.

(

(iii) = (iv): Assume that condition (iii) is satisfied. For all h € b,

Ker(hy — w(h))

is non-zero, contained in V¥, and stable under hy,. By induction on dim b,
we see that there exists a non-zero v in V¢ such that hv C kv. Condition (iii)
implies that nyv = 0, so v is primitive.

(iv) = (i): Let v be a primitive element of weight w. Since V is simple,

V is generated by v as a g-module. Assertion (i) now follows from Prop. 1.
Q.E.D.

Thus, for any simple g-module, the existence of a primitive element is
equivalent to that of a highest weight, or to that of a maximal weight.
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There exist simple s[(2, C)-modules V that have no weights for any Cartan
subalgebra b of sl(2,C) (§1, Exerc. 14 f)). These modules are of infinite

dimension over C (§1, no. 3, Th. 1).

PROPOSITION 3. Let V be a simple g-module with a highest weight w.

(i) The primitive elements of V are the non-zero elements of V.

(ii) V is semi-simple as an h-module.

(iii) We have V = )S%* VA, For all X € b*, V* is finite dimensional. We
have dim V¥ = 1.

(iv) The g-module V is absolutely simple.

Assertions (i), (ii) and (iii) follow from Prop. 1 and Lemma 2. Assertion
(iv) follows from Prop. 1 (iii) and Algebra, Chap. VIII, §7, no. 3.

COROLLARY. If V is finite dimensional, the canonical homomorphism
U(g) — End(V) is surjective.
This follows from (iv), cf. Algebra, Chap. VIII, §3, no. 3.

PROPOSITION 4. Let V be a simple g-module with a highest weight w, X a
semi-simple g-module, and X’ the isotypical component of type V in X. Then
X' is the submodule of X generated by X%. Its length is equal to the dimension
of X,

Let X” be the submodule of X generated by X¥. It is clear that every
submodule of X isomorphic to V is contained in X”. Hence X’ € X”. On the
other hand, let @ be the set of homomorphisms from the g-module V to the
g-module X. The length of X’ is dimy, @ (Algebra, Chap. VIII, §4, no. 4), that
is dimy, X¢ (Prop. 2).

3. EXISTENCE AND UNIQUENESS THEOREM

Let A € h*. Since by = hPn, and since ny = [by, by ], the map h+n — A(h)
(where h € h, n € ny) from b, to k is a 1-dimensional representation of b, .
Denote by L) the k-vector space k equipped with the b;-module structure
defined by this representation. Let U(g), U(b..) be the enveloping algebras of
g, by, so that U(by) is a subalgebra of U(g); recall that U(g) is a free right
U(b4)-module (Chap. I, §2, no. 7, Cor. 5 of Th. 1). Put

Z(A) = U(g) ®u(oby) L (2)
Then Z(\) is a left g-module. Denote by e the element 1 ® 1 of Z(\).

PROPOSITION 5. (i) The element e of Z(\) is primitive of weight A\ and
generates the g-module Z(\).
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(i) Let ZT(\) = /\; Z(MN)*. Every submodule of Z(\) distinct from Z(X)
m
is contained in 7 ().
(iil) There exists a largest submodule Fy of Z(\) distinct from Z(X). The
quotient module Z(\)/Fy is simple and has highest weight \.
It is clear that e generates the g-module Z(\). If € b,

ze=(z1)®l=(1zr)l=1@z1=Az)(1®1) = A(z)e,

hence (i).
The h-module Z(A) is semi-simple (Prop. 1). If G is a g-submodule of
Z()\), then G = 2~ (G N Z(A\)*). The hypothesis G N Z(A)* # 0 implies
“w

h*
that G = Z(\), since dim Z(\)* = 1 and e generates the g-module Z(\). If
G # Z()\), then G = %G NZA\H* C ZH(N).

o

Let F) be the sum of the g-submodules of Z(\) distinct from Z(\). By
(i), Fx C ZT()\). Hence F) is the largest submodule of Z(\) distinct from
Z(X). It is clear that Z(X)/Fy is simple and that the canonical image of e in
Z(X\)/Fy is primitive of weight A.

In the remainder of this chapter, the g-module Z(\)/Fx of Prop. 5 will be
denoted by E(N).

THEOREM 1. Let A € b*. The g-module E(\) is simple and has highest
weight . Every simple g-module of highest weight A is isomorphic to E(\).

The first assertion follows from Prop. 5 (iii). The second follows from
Prop. 4.

PROPOSITION 6. LetV be a g-module, A an element of b* and v a primitive
element of V of weight .

(i) There exists a unique homomorphism of g-modules 1) : Z(X\) — V such
that ¥(e) = v.

(ii) Assume that v generates V. Then 1 is surjective. Moreover, ¥ is
bijective if and only if, for every non-zero element u of U(n_), uvy is injective.

(iil) The map u— u® 1 from U(n_) to Z(N) is bijective.

Let K be the kernel of the representation of U(b4) on Ly; it is of codi-
mension 1 in U(by). Let J = U(g)K be the left ideal of U(g) generated by K;
then Ly can be identified with U(b,)/K as a left U(by)-module, and Z(X)
can be identified with U(g)/J as a left U(g)-module. We have K.v = 0, so
J.v = 0, which proves (i).

Now assume that v generates V. It is clear that ¢ is surjective.

By the Poincaré-Birkhoff-Witt theorem (Chap. I, §2, no. 7, Cor. 6 of
Th. 1), a basis of U(n_) over k is also a basis of U(g) as a right U(by)-
module. Hence the map ¢ : u +— u ® 1 from U(n_) to U(g) ®uy(p,) L is
bijective. Let v € U(n_). Then ¢! o uz(x) © ¢ is left multiplication by u on
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U(n_). In view of Chap. I, §2, no. 7, Cor. 7 of Th. 1, ug,) is injective if
u # 0. Consequently, if v is bijective, then wy is injective for non-zero u in
Un_).

Assume that 1 is not injective. There exists u € U(n_) such that u # 0
and ¥ (¢(u)) = 0. Then

uy v =uyp(l1®1) =9Yu®l) =19(plu)) =0.

COROLLARY 1. Let A € b* and o € B be such that A(H,) +1 € N. Then
Z(—a + saA) is isomorphic to a g-submodule of Z(\).

Put m = A(H,). Let x = X™I.e € Z(\), and let V be the submod-
ule of Z(X\) generated by z. Then = # 0 (Prop. 6). On the other hand,
z€ZW)M e For B € Band 8 # a, [g7%,¢°] = 0 and g°.e = 0, so
g°.x = 0. Finally, since [Xo,X_o]=—H,, we have

[Xo, X7 =(m + 1)X™, (—Ha+m)
(81, no. 1, Lemma 1 (ii)), so

Xox = Xo X" e = [Xo, X" e = (m +1)X™, (me — \(Hy)e) = 0.
Thus, x is primitive of weight A — (m 4 1)«. In view of Prop. 6, the g-module
V is isomorphic to Z(—a + A — ma) = Z(—a + s ).
COROLLARY 2. Let p = %a§t+ a, and A\, € h*. Assume that A+ p is a

dominant weight in R, and that there exists w € W with u+ p = w(\ + p).

Then Z(p) is isomorphic to a submodule of Z(X).

The assertion is clear when w = 1. Assume that it is established whenever
w is of length < ¢. If w is of length ¢, there exists a € B such that w = saw’fl7
with I[(w') = ¢ — 1. We have w'(a) € Ry (Chap. VI, §1, no. 6, Cor. 2 of

Prop. 17), and hence w' ™" (A+p)(Hy) = (A+p)(Hyo) is an integer > 0. Put
-1
p=w'" (A +p) —p.

By the induction hypothesis, Z(u') is isomorphic to a submodule of Z(A). On
the other hand, by Chap. VI, §1, no. 10, Prop. 29 (ii),

ot Sapl! = —a+ sa’ T A+ p) — sap=wA+p) — p= L.

Moreover, p(H,) = 1 (Chap. VI, §1, Prop. 29 (iii)), so p/(H4)+1 € N. Cor. 1
now implies that Z(u) is isomorphic to a submodule of Z('), and hence also
to a submodule of Z(\).
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4. COMMUTANT OF § IN THE ENVELOPING ALGEBRA
OF g

Let U be the enveloping algebra of g, V C U the enveloping algebra of §.
The algebra V can be identified with the symmetric algebra S(h) of b, and
also with the algebra of polynomial functions on h*. Denote by a,...,ay,
the pairwise distinct positive roots. Let (Hi,..., H;) be a basis of . By the
Poincaré-Birkhoff-Witt theorem, the elements

u((qi), (mq), (pi)) = X2, .. .XT&W’H{'“ CCHMXEE L XEn

(i, m;, p; integers > 0) form a basis of the vector space U. For all h € b, we
have

[hy u((gi),(ma),(pi)]= ((P1—q1)aa+t - +(pn—qn) ) (h)u((g:),(mi),(pi)- (3)

The vector space U is a g-module (hence also an h-module) under the
adjoint representation. If A € h*, the subspaces U* and U, are defined

(Chap. VII, §1, no. 3); formula (3) shows that U* = U, and that U = A@Q UA
€

(where Q is the group of radical weights of R). In particular, U° is the com-
mutant of h, or of V, in U.

Lemma 8. Put L = (n_U)NUY.
(i) We have L = (Uny) NU°, and L is a two-sided ideal of U°.
(ii) We have U° =V & L.
It is clear that n_U (resp. Uny) is the set of linear combinations of the

elements u((g;), (m;), (p;)) such that >~ g; > 0 (resp. > p; > 0). On the other
hand

U((‘]i)v (mz), (pi)) eVl = prog + -+ Ppap = o + -+ GO

This implies that (n_U) N U% = (Uny) N U° Finally, (n_U) N U (resp.
(Uny) N UY%) is a right (resp. left) ideal of U°, hence (i). Further, an ele-
ment u((g;), (mi), (p;)) that is in U® belongs to V (resp. to L) if and only if
pr==pp=q=:=¢, =0 (resp. pr+ - +pp+ @1+ +qn > 0),
hence (ii). Q.E.D.

In view of Lemma 3, the projection of U onto V with kernel L is a
homomorphism of algebras. It is called the Harish-Chandra homomorphism
from U to V (relative to B). Recall that V can be identified with the algebra
of polynomial functions on h*.

PROPOSITION 7. Let A € h*, E a g-module generated by a primitive ele-
ment of weight X, x the central character of E, and ¢ the Harish-Chandra

homomorphism from U° to V. Then, x(z) = (p(2))(A\) for all z in the centre
of U.
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Let v be a primitive element of E of weight A, and z an element of
the centre of U. There exist u;,...,u, € U and nq,...,n, € ny such that
z = (z) +urni + - - - + upn,. Then

X(2)v = 2v = p(2)v + urniv + - - + upnpv = e(2)v = ((2))(A)v.

COROLLARY. Let (-,-) be a non-degenerate invariant symmetric bilinear
form on g, C the Casimir element associated to (-,-). Denote also by (-,-)
the inverse form on §* of the restriction of (-,-) to b (§2, no. 3, Prop. 5).

Then x(C) = (\, A + 2p), where p = 3 z}% .
acRy

We recall the notations of §2, no. 3, Prop. 6. We have

1 1
c= Y o) >XaX_a+ Z+ 7<XQ7X7Q>X_QXQ

OtER+ el
SO
1
@(C) = Z <Xa X >[Xo¢7X—oz} +ZHZH1,
a€R e iel
By Prop. 7,

(C) = 21; mmxmxﬂ}) + 3 AH)AH)).

Let hy be the element of b such that (hy,h) = A(h) for all b € h. By §2,
no. 2, Prop. 1,

A ﬁ[xa,x_a] - hk,ﬁ[Xa,X_a] — a(hy) = (A ).
<< o X—a) (Xa, X_a)

Hence

x(C) = ( > </\,a>> + (A = (A + 2p).

aER
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§7. FINITE DIMENSIONAL MODULES OVER A
SPLIT SEMI-SIMPLE LIE ALGEBRA

In this paragraph, we retain the general notations of §6. We denote by P (resp.
Q) the group of weights of R (resp. radical weights of R). We denote by P4
(resp. Q) the set of elements of P (resp. Q) that are positive for the order
relation defined by B. We denote by P, the set of dominant weights of R
relative to B (Chap. VI, §1, no. 10). An element A of b* belongs to P (resp.
to Py4) if and only if all the A(H,), o € B, are integers (resp. integers > 0).
We have P4 C P4 (Chap. VI, §1, no. 6). If w € W, we denote by e(w) the

determinant of w, which is equal to 1 or —1. We put p = % 21% Q.
acR

1. WEIGHTS OF A FINITE DIMENSIONAL SIMPLE
¢-MODULE

PROPOSITION 1. Let V be a finite dimensional g-module.

(i) All the weights of V belong to P.
(i) V= @ v~
nep

(i) For all u € h*, V* is the set of x € V such that h.x = u(h)z for all
heb.

For all « € B, there exists a homomorphism from s((2, k) to g that takes
H to H,. Thus, by §1, no. 2, Cor. of Prop. 2, (H,)v is diagonalizable and its
eigenvalues are integers. Hence, the set of (H,)v, for a € B, is diagonalizable
(Algebra, Chap. VII, §5, no. 6, Prop. 13). Consequently, for all h € b, hy is

diagonalizable. By Chap. VII, §1, no. 3, Prop. 9, V = GBh V#. On the other
nebh*
hand, if V# # 0, the preceding shows that u(H,) € Z for all « € B, so u € P.

This proves (i) and (ii). We see in the same way that by is diagonalizable,
hence (iii).

COROLLARY. Let p be a finite dimensional representation of g and ® the
bilinear form associated to p.

(i) If z,y € bq, then ?(x,y) € Q and P(v,x) € Q.

(ii) If p is injective, the restriction of @ to Y is non-degenerate.

Assertion (i) follows from Prop. 1 since the elements of P have ratio-
nal values on hq. If p is injective, @ is non-degenerate (Chap. I, §6, no. 1,

Prop. 1), so the restriction of @ to b is non-degenerate (Chap. VII, §1, no. 3,
Prop. 10 (iii)).

Lemma 1. Let V be a g-module and p the corresponding representation of g.

(i) If a is a nilpotent element of g, and if p(a) is locally nilpotent,
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p(ead ap) = ep(a)p(b)e—p(a)

for allb e g.

(ii) If a € R and if the images under p of the elements of g¢ and g~ are
locally nilpotent, the set of weights of V is stable under the reflection s, .

With the assumptions in (i), we have p((ad a)"b) = (ad p(a))"p(b) for all
n >0, so p(e21h) = ¢242(4) p(b). On the other hand,

e2d f’(“)p(b) — ep(a)p(b)efp(a)

is assertion (ii) of Chap. VII, §3, no. 1, Lemma 1.

We now adopt the assumptions in (ii). Let 6, = e
(i), there exists S € GL(V) such that p(6,b) = Sp(b)S~! for all b € g. Now
049 is the transpose of s, (§2, no. 2, Lemma 1). Let A be a weight of V.
There exists a non-zero element x of V such that p(h)z = A(h)x for all h € b.
Then

p(h)S™ 'z =S p(tsuh)z = STIN(Psuh)x = (5,0 (R)S™

ad Xaead X,aead Xa . By

for all h € h. Consequently, s, is a weight of V.

PROPOSITION 2. Let V be a finite dimensional g-module and s € Auty(g).
(i) There exists S € GL(V) such that (s(x))y = SzyS™! for all x € g.
(ii) If s € Aute(g), S can be chosen to be an element of SL(V) leaving

stable all the g-submodules of V.

Assertion (ii) follows from Lemma 1 (i). Now let s € Auto(g) and denote
by p the representation of g defined by V. By (ii), the representations p
and p o s become equivalent after extension of scalars. They are therefore
equivalent (Chap. I, §3, no. 8, Prop. 13), hence the existence of S.

Remark 1. Let S satisfy the condition in Prop. 2 (i), and let §” = s(h); denote
by s* the isomorphism A — X o s~! from h* to h’*. It is clear that

S(VY) =V
In particular:

COROLLARY 1. The isomorphism s* takes the weights of V with respect
to b to those of V with respect to b'; corresponding weights have the same
multiplicity.

COROLLARY 2. Let w € W. For all A\ € b*, the vector subspaces V> and
V* have the same dimension. The set of weights of V is stable under W.

Indeed, w is of the form s* with s € Aut.(g,5) (§2, no. 2, Cor. of Th. 2).

Remark 2. By Cor. 1 of Prop. 2 and §5, no. 3, Remark 2, it makes sense to
speak of the weights of V with respect to the canonical Cartan subalgebra of
g, and of their multipicities.
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Remark 3. Lemma 1 (i) and Prop. 2 remain valid, with the same proof, even
if g is not assumed to be splittable.

2. HIGHEST WEIGHT OF A FINITE DIMENSIONAL SIMPLE
¢-MODULE

THEOREM 1. A simple g-module is finite dimensional if and only if it has
a highest weight belonging to P4 .

We denote by V a simple g-module and by 2 its set of weights.

a) Assume that V is finite dimensional. Then 2’is finite and non-empty
(Prop. 1) and so has a maximal element w. Let @ € B. Then w + a ¢ 2,
which proves that w is the highest weight of V (§6, no. 2, Lemma 2). On the
other hand, there exists a homomorphism from sl(2, k) to g that takes H to
H,; by §1, Prop. 2 (i), w(H,) is an integer > 0, so w € P .

b) Assume that V has a highest weight w € P, ;. Let o € B and let
e be a primitive element of weight w in V. Put ¢; = X7 e for j > 0,

m=w(H,) €N, and N = Zokjej. By §1, no. 2, Prop. 1, X,epe1 = 0.
j=

If 6€B and B # «, then [Xp, X_o] = 0 s0 Xgepp1 = XX e =
XT;IXge = 0. If e;p41 # 0, we conclude that e,, 41 is primitive, which
is absurd (86, Prop. 3 (i)); so ;1 = 0. Thus, by §1, no. 2, Cor. of Prop. 1,
N is stable under the subalgebra s, generated by H,, X, and X_,. Now s,
is reductive in g, so the sum of the finite dimensional subspaces of V that
are stable under s, is a g-submodule of V (Chap. I, §6, no. 6, Prop. 7); since
this sum is non-zero, it is equal to V. It follows from this that (X,)v and
(X_o)v are locally nilpotent. In view of Lemma 1 (ii), Z"is stable under s,
and this holds for all a. Hence 2 is stable under W. Now every orbit of W
on P meets P, (Chap. VI, §1, no. 10). On the other hand, if A € ZNP,,

then A = w — ZBnaoz = ZBn’aa with n, € N and n/, > 0 for all « € B
ae ac

(Chap. V, §3, no. 5, Lemma 6). So 2'N P, is finite and hence so is Z.
Since each weight has finite multiplicity (§6, no. 1, Prop. 1 (ii)), V is finite
dimensional.

COROLLARY 1. If A € h* and A ¢ P, the g-module E(X\) (§6, no. 3) is
infinite dimensional.

COROLLARY 2. The g-modules E(\) for A € Py constitute a set of repre-
sentatives of the classes of finite dimensional simple g-modules.

The g-modules E(\), where A is a fundamental weight, are called the fun-
damental g-modules; the corresponding representations are called the fun-
damental representations of g; they are absolutely irreducible (§6, no. 2,
Prop. 3 (iv)).
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If V is a finite dimensional g-module and A € P, the isotypical compo-
nent of V of type E()) is called the isotypical component of highest weight X
of V.

Remark 1. Let A € P4, py the representation of g on E(A), s € Aut(g),
and o the canonical image of s in Aut(R,B) (§5, no. 3, Cor. 1 of Prop. 5).
Then p)y o s is equivalent to p,»; indeed, if s € Autg(g), pa o s and p,y are
equivalent to py (Prop. 2); and, if s leaves ) and B stable, py o s is simple of
highest weight o .

In particular, the fundamental representations are permuted by s, and
this permutation is the identity if and only if s € Autg(g).

PROPOSITION 3. Let V be a finite dimensional g-module and Z its set of
weights. Let A € Z, a € R, 1 the set of t € Z such that A +ta € Z, p (resp.
—q) the largest (resp. smallest) element of 1. Let my be the multiplicity of
A +ta.

(i) I=0(—¢,p) and ¢ — p = \(H,).

(ii) For any integer u € (0,p+ @), A+ (p — w)a and A + (—q¢ + u)« are
conjugate under Sq, and M_gq1y = Mp_y.

(iii) If t € Z and t < (p — q)/2, (Xa)v maps VA injectively into
VAH(tDa

(iv) The function t — my is increasing on (—q, (p — q)/2) and decreasing

onl(p—q)/2,p).

Let @ € B. Give V the sl(2, k)-module structure defined by the elements
Xo, X_qo, H, of g. Every non-zero element of VAP is then primitive. Con-
sequently, (A + pa)(H,) > 0 and (X_,)" VAP £ 0 for

0<r<A+pa)(Ha)=A(Ha) +2p

L
4

ol

L 4

~q 01 p—¢ p
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(§1, no. 2, Prop. 2). It follows that VAt =£ 0 for p >t > p — (A(Hy) + 2p),
s0 p+q > A H,) + 2p. Applying this result to —a gives

p+q>MNH_o)+29=—-\H,) + 2q.

Hence ¢ — p = AM(H,) and A+ ta € Z for p > t > —q, which proves (i).

We have sq(a) = —a, and so(p) € po+ ka for all @ € h*. Since W leaves
Zstable (Cor. 2 of Prop. 2), s, leaves {\ —qa, \—ga+a, ..., \+pa} stable
and takes A — ga 4+ ua to A + pa — ua for all u € k. Using Cor. 2 of Prop. 2
again, we see that m_q4,, = my_, for every integer u € (0, p+¢). This proves
(ii).

By §1, Cor. of Prop. 2, (X,)v|V*** is injective for t < (p — ¢)/2. Now
(Xo)v maps VATt to VAT Hence my 1 > my for t < (p — q)/2.
Changing « to —a, we see that my11 < my for ¢ > (p— ¢q)/2. This proves (iii)
and (iv).

COROLLARY 1. If A\ € Z and AN(Hy) > 1, then A—a € Z. If A +a e X
and AN(Hy) =0, then A € Zand A\ —a € Z.

This follows immediately from Prop. 3 (i).

COROLLARY 2. Let p € Py andv e Qy. If u+v e Z, then pe Z.

Write v = ZB Co-0, where ¢, € N for all a € B. The corollary is clear
ac

when 2. ¢ = 0; assume that > o >0and argue by induction on > Ca.
a€B aeB a€eB

Let (-]-) be a W-invariant non-degenerate positive symmetric bilinear form
on hg. Then (v| > ¢q.a) > 0, so there exists 3 € B such that ¢z > 1 and
aeB

(v|8) > 0, hence v(Hg) > 1. Since p € P, it follows that (4 v)(Hg) > 1.
By Cor. 1, p+ (v — ) € Z, and it suffices to apply the induction hypothesis.

COROLLARY 3. Let v € V be primitive of weight w. Let X be the set of
a € B such that w(H,) = 0. The stabilizer in g of the line kv is the parabolic
subalgebra px associated to X (§3, no. 4, Remark).

Replacing V by the g-submodule generated by wv, if necessary, we can
assume that V is simple. Let s be the stabilizer. We have (ny)yv = 0,
(h)vv C kv. Let a € B be such that w(H,) = 0. We have w + o ¢ Z,
hence w—a ¢ 2 (Prop. 3 (i)) and consequently (g~)yv = 0. The preceding
proves that px C 5. If px; # 5, then s = pxv, where X’ is a subset of B strictly
containing . Let 3 € X’ - X. Then g~ stabilizes kv, and hence annihilates
v. But, since w(Hpg) > 0, this contradicts Prop. 3 (iii). Q.E.D.

A subset 2 of P is called R-saturated if it satisfies the following condition:
for all A € Z and all a € R, we have A — ta € 2 for all integers ¢ between 0
and A(Hy). Since $4(A) = A — A(Hq ), we see that an R-saturated subset of
P is stable under W. Let % C P. An element A of #'is called R-extremal in
#if, for all & € R, either A\ +a ¢ Zor \—a ¢ ¥
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PROPOSITION 4. Let V be a finite dimensional g-module and d an integer
> 1. The set of weights of V of multiplicity > d is R-saturated.

This follows immediately from Prop. 3.

PROPOSITION 5. Let 'V be a finite dimensional simple g-module, w its high-
est weight, Z its set of weights. Choose a W -invariant non-degenerate posi-
tive symmetric bilinear form (-|-) on by, and let X+ || X || = (A|N\)}/2be the
corresponding norm.

(i) Z is the smallest R-saturated subset of P containing w.

(ii) The R-extremal elements of 2 are the W-transforms of w.

(iii) If p € Z, we have || p | <|| w || If, in addition, p # w, we have
le+pll<||w+p|. If pis not R-extremal in Z, then ||p|| < |jw]-

(iv) We have Z'= W.(ZNP14). An element A of Py belongs to ZNP 44
if and only if w — X € Q.

(i) Let 2’ be the smallest R-saturated subset of P containing w. We have
2" € X (Prop. 4). Assume that 2 # 2’. Let A be a maximal element of
2= 2. Since A # w, there exists o € B such that A + o € 2. Introduce p
and ¢ as in Prop. 3. Since \ is maximal in 2= 2', A+ pa € 2’. By Prop. 3
(ii), A — gqa € 2 since 2’ is stable under W. Hence A + ua € 2’ for every
integer u in the interval (—gq, p). This contradicts A ¢ 2’ and proves (i).

(ii) It is clear that w is an R-extremal element of Z; its W-transforms
are therefore also R-extremal in 2. Let A be an R-extremal element of 2
we shall prove that A € W.w. Since there exists w € W such that wA € P4
(Chap. VI, §1, no. 10), we can assume that A € P, . Let a € B; introduce p
and ¢ as in Prop. 3. Since A is R-extremal, either p = 0 or ¢ = 0. Since

q—p=AHa) >0,

we cannot have p > 0. Hence p =0 and A = w.

(iii) Let p € ZNPoy. Then w+p € Poy and w — p € Qy (86, no. 1,
Prop. 1), 50 0 < (w — plw + p) = (w|w) — (u|p); hence, (u|p) < (w|w), and
this extends to all u € £ by using the Weyl group. If p € Z-{w},

(1 + plp+p) = (ple) +2(ulp) + (plp) < (wlw) + 2(ulp) + (plp)
= (w+plw+p) — 2(w — plp).

Now w — j1 = 2. nea with integers ng > 0 not all zero, so (w — plp) > 0

acB
since (p|a) > 0 for all @ € B (Chap. VI, §1, no. 10, Prop. 29 (iii)). If x is not
R-extremal in %2 there exists @ € R such that u +a € Zand p — a € Z;
then

el < sup(llpe + exll, [l — efl) < Sub JIA]
ex

and this last upper bound is ||w|| by the preceding.
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(iv) We have 2'= W.(2Z'NP,4) by Chap. VI, §1, no. 10. If A € 2] then
w—XA€Q4 (86, no. 1, Prop. 1). f A € Py and w — XA € Q4, then A € &
(Cor. 2 of Prop. 3).

COROLLARY. Let Z be a finite R-saturated subset of P. There exists a finite

dimensional g-module whose set of weights is Z.

Since £ is stable under W, Z"is the smallest R-saturated set containing

2NP,,. By Prop. 5 (i), 2 is the set of weights of @  BE(\).
AEZNP44

Remark 2. Recall (Chap. VI, §1, no. 6, Cor. 3 of Prop. 17) that there exists
a unique element wy of W that transforms B into —B; we have w? = 1. and
—wq respects the order relation on P. With this in mind, let V be a finite
dimensional simple g-module, w its highest weight. Then wq(w) is the lowest
weight of V, and its multiplicity is 1.

3. MINUSCULE WEIGHTS

PROPOSITION 6. Let A € P, and Z the smallest R-saturated subset of P
containing X. Choose a norm || - || as in Prop. 5. The following conditions
are equivalent:

(i) Z'=W.\

(ii) all the elements of 2 have the same norm;

(iii) for all @ € R, we have \(H,) € {0,1,—1}.

Every non-empty R-saturated subset of P contains an element \ satisfying
the above conditions.

Introduce the condition:

(ii’) for all @ € R and for every integer ¢ between 0 and A\(H,),
A =t = []A]]-

(i) = (ii) = (ii’): This is clear.

(ii') = (iii): Assume that condition (ii’) is satisfied. Let o € R. We have
IAl = 1A = AM(Hy)e], so ||A — ta]| < ||A|| for every integer ¢ strictly between
0 and A\(H,); hence, there can be no such integers, so |A\(H,)| < 1.

(iii) = (i): Assume that condition (iii) is satisfied. Let w € W and e € R.
Then (wA)(Hy) = A(Hy-14) € {0,1, —1}; thus, if ¢ is an integer between 0
and (wA)(Hy), wA — ta is equal to wA or sq(wl). This proves that W.A is
R-saturated, so Z'= W.\.

Let % be a non-empty R-saturated subset of P. There exists in # an
element \ of minimum norm. It is clear that \ satisfies condition (ii’), hence
the last assertion of the proposition.

PROPOSITION 7. Let V be a finite dimensional simple g-module, Z the set
of weights of V, and X the highest element of Z (cf. Prop. 5 (i)). Conditions
(i), (ii) and (iil) of Prop. 6 are equivalent to:
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(iv) for all a € R and all z € g, we have (zy)? = 0.

If these conditions are satisfied, all the weights of V have multiplicity 1.

If (i) is satisfied, then 2"= W.\ and the weights all have the same mul-
tiplicity as A (Cor. 2 of Prop. 2), in other words, multiplicity 1. Moreover, if
w € W and o € R, w\ + ta cannot be a weight of V unless [t| < 1; thus, if
€T e ga7

(ZV)2(Vw(A)) c Vw()\)+2a _ 0’

so (zy)? = 0, which proves that (i) = (iv).

Conversely, assume that (iv) is satisfied. Let o € R, and give V the s[(2, k)-
module structure defined by the elements X, X_, H, of g. Condition (iv),
applied to x = X,,, implies that the weights of the s[(2, k)-module V belong
to0 {0,1, =1} (cf. §1, no. 2, Cor. of Prop. 2). In particular, A\(H,) € {0,1,—1},
so (iv) = (iii).

PROPOSITION 8. Assume that g is simple. Denote by a,...,qp the ele-
ments of B. Let wi,...,w; be the corresponding fundamental weights. Let
H = niHy + -+ nH,, be the highest root of RY, and J the set of
i€ {1,...,1} such that n; = 1. Let A\ € P..-{0}. Then conditions (i),
(ii) and (iii) of Prop. 6 are equivalent to each of the following conditions:

(v) MH) = 1;
(vi) there exists i € J such that A\ = w;.

The w;, fori € J, form a system of representatives in P(R) of the non-
zero elements of P(R)/Q(R).

Let A = uywwy + - - - + wyoy, where uq, ..., u; are integers > 0 and not all
zero. Then A\(H) = winy + -+ +wmn; and ny > 1,...,n; > 1, which gives
the equivalence of (v) and (vi) immediately. On the other hand, A(H) =
SEUF%) A H,), and A(H) > 0 since A is a non-zero element of P, . Hence
a€R+

condition (v) is equivalent to the condition A\(H,) € {0,1} for all @ € R, in
other words to condition (iii) of Prop. 6.

The last assertion of the proposition follows from Chap. VI, §2, no. 3,
Cor. of Prop. 6.

DEFINITION 1. Assume that g is simple. A minuscule weight of (g,b) is an
element of P14 —{0} which satisfies the equivalent conditions (i), (ii), (iii),
(iv), (v) and (vi) of Prop. 6, 7 and 8.

Remark. Assume that g is simple. Let X’V be the Coxeter graph of the
affine Weyl group W, (R"Y). Recall that the vertices of X’V are the vertices
of the Coxeter graph XV of W(RY), together with a supplementary vertex
0. The group A(RVY) operates on X’V leaving 0 fixed. The group Aut(X"V)
is canonically isomorphic to the semi-direct product of A(RY)/W(RY) with
a group Ic (cf. Chap. VI, §2, no. 3, and Chap. VI, §4, no. 3); clearly
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(Aut X'V)(0) = I'c(0); and I'c(0) consists of 0 and the vertices of XV cor-
responding to the w; for i € J (cf. Chap. VI, §2, Prop. 5 and Remark 1 of
no. 3). In summary, the minuscule weights are the fundamental weights corre-

sponding to the vertices of XV which can be obtained from 0 by the operation
of an element of Aut(X'V).

With the notations of Chap. VI, Plates I to IX, we deduce from the
preceding that the minuscule weights are the following:

For type A; (I > 1): wy,...,w;.

For type B; (I > 2): .

For type C; (I > 2): w;.

For type D; (I > 3): wy, -1, ;-

For type Eg: w1, wg.

For type E7: wr.

For types Eg, Fy, Go there are no minuscule weights.

4. TENSOR PRODUCTS OF g-MODULES

Let E,F be g-modules. For all A\, € b*, E* @ F* C (E ® F)**# (Chap. VII,
§1, no. 1, Prop. 2 (ii)). If E and F are finite dimensional, then E = > EX

AeP
and F = > F#; consequently,
pnep
(E®F)” = >,  E@F~

AN pEP A +pu=v

In other words, equipped with its graduation of type P, E® F is the graded
tensor product of the graded vector spaces E and F.

PROPOSITION 9. Let E,F be finite dimensional simple g-modules, with
highest weights X\, u, respectively.

(i) The component of EQF of highest weight A+ p is a simple submodule,
generated by (E @ F)MH = E* @ F~.

(ii) The highest weight of any simple submodule of E® F is < A+ u (cf.
§9, Prop. 2).

If a,3 € P and if E* @ F? # 0, then o < X and 3 < pu. Consequently,
(E ® F)** is equal to E* ® F#, and hence is of dimension 1, and A + y is
the highest weight of E ® F. Every non-zero element of E* ® F* is primitive.
By Prop. 4 of §6, no. 2, the length of the isotypical component of E @ F of
highest weight A\ + p is 1.

Remark. Retain the notations of Prop. 9. Let C be the isotypical component of
E ® F of highest weight A + p. Then C depends only on E and F and not on
the choice of h and the basis B. In other words, let b’ be a splitting Cartan sub-
algebra of g, R’ the root system of (g,h’), and B’ a basis of R’; let X', ' be the
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highest weights of E, F relative to h’ and B’; let C’ be the isotypical component
of EQF of highest weight A + u’; then C’ = C. Indeed, to prove this we can
assume, by extension of the base field, that k is algebraically closed. Then there
exists s € Aute(g) that takes h to h’, R to R/, B to B'. Let S € SL(E®F) have
the properties in Prop. 2 of no. 1. Then S((E®@F)*#) = (E®F)’\/+“l and S(C)
= C. Hence (EQ F)) ' € ¢/NS(C) = C'NC, so ¢’ = C. Thus, to 2 classes of
finite dimensional simple g-modules we can associate canonically a third; in
other words, we have defined on the set G4 of classes of finite dimensional simple
g-modules a composition law. With this structure, G4 is canonically isomorphic

to the additive monoid P4 .

COROLLARY 1. Let (w4 )acn be the family of fundamental weights relative
to B. Let A = ZBmawa € Pyy. For all o € B, let E4 be a simple g-
ae

module of highest weight w,. In the g-module ®B (QmaE,), the isotypical
aE

component of highest weight X is of length 1.

This follows from Prop. 9 by induction on ZB M-
aec

COROLLARY 2. Assume that k is R or C or a non-discrete complete ultra-
metric field. Let G be a Lie group with Lie algebra g. Assume that, for any
fundamental representation p of g, there exists an analytic linear represen-
tation p' of G such that p = L(p’). Then, for any finite dimensional linear
representation ™ of g, there exists an analytic linear representation ' of G
such that m = L(x").

We use the notations of Cor. 1. There exists a representation o of G on

= @ (®™E,) such that L(c) corresponds to the g-module structure
acB

of X (Chap. III, §3, no. 11, Cor. 3 of Prop. 41). Let C be the isotypical
component of X of highest weight \. In view of Chap. I11, §3, no. 11, Prop. 40,
it suffices to prove that C is stable under o(G). Let g € G and ¢ = Ad(g).
Then o(g)axa(g)™ = (¢(a))x for all @ € g. On the other hand, ¢ is an
automorphism of g that takes h to h’, R to R’ = R(g,b’), B to a basis B’
of R’, and w, to the highest weight w!/ of E, relative to " and B’ (since
¢ transforms E, into a g-module isomorphic to E,). Hence ¢ takes A to
> mqwl,. By the Remark above, o(g)(C) = C.

PROPOSITION 10. Let A, € Py4. Let E;F,G be simple g-modules with
highest weights A, pu, A + . Let Z (vesp. 2', Z") be the set of weights of E
(resp. F,G). Then 2" = 2+ 2.

We have E = GBPE” F= @ F?, so E®F is the direct sum of the
ve

(E®F)T Z EY @ F°.

vt+o=1

By Prop. 9, G can be identified with a g-submodule of E®F, so 2" ¢ 24.2.
We have G = GN (E® F)7, and it is enough to show that, for v € 2 and
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o€ 2, wehave GN (E®F)"T7 £ 0. Let (eq,...,e,) (resp. (f1,..-,f»)) be
a basis of E (resp. F) consisting of elements each of which belong to some
E” (resp. F7), and such that e; € E* (resp. fi € F*). The e; ® f; form
a basis of E ® F. Suppose that the result to be proved is false. Then there
exists a pair (i,7) such that the coordinate of index (4, ) of every element
of G is zero. Let U be the enveloping algebra of g, U’ the dual of U, ¢ the
coproduct of U. For all u € U, let x;(u) (resp. y;j(u)) be the coordinate of
u(e1) (resp. u(f1)) of index i (resp. j); let z;;(u) be the coordinate of index
(2,7) of u(er ® f1). Then z;,y;,2; € U'. Now e; generates the g-module E,
so z; # 0, and similarly y; # 0. By the definition of the g-module E ® F
(Chap. I, §3, no. 2), if c(u) = > us ® v}, we have

2ij(w) = ) wius).y;(ul) = (e(u), 2 @ yj).

In other words, z; is the product of z; and y; in the algebra U’. But this
algebra is an integral domain (Chap. II, §1, no. 5, Prop. 10), so z;; # 0. Since
u(er ® f1) € G for all u € U, this is a contradiction.

5. DUAL OF A g-MODULE

Let E,F be g-modules. Recall (Chap. I, §3, no. 3) that Hom(E,F) has a
canonical g-module structure. Let ¢ be an element of weight A in Homy (E, F).
If o € b*, then (E*) C FAM# (Chap. VII, §1, no. 1, Prop. 2 (ii)). Thus, if E
and F are finite dimensional, the elements of weight A in Homy (E, F) are the
graded homomorphisms of degree A in the sense of Algebra, Chap. II, §11,
no. 2, Def. 4.

PROPOSITION 11. Let E be a finite dimensional g-module, and consider the
g-module E* = Homy (E, k).

(i) An element A € P is a weight of E* if and only if —X is a weight of E,
and the multiplicity of X in E* is equal to that of —\ in E.

(ii) If E is simple and has highest weight w, E* is simple and has highest
weight —wo(w) (cf. no. 2, Remark 2).

Consider k as a trivial g-module whose elements are of weight 0. By what
was said above, the elements of E* of weight A are the homomorphisms from
E to k which vanish on E# if y # —\. This proves (i). If E is simple, E* is
simple (Chap. I, §3, no. 3), and the last assertion follows from Remark 2 of
no. 2.

Remarks. 1) Let E,E* be as in Prop. 11, and o € Aut(g,h) be such that
e(0) = —wy in the notations of §5, no. 1 (§5, no. 2, Prop. 2). Let p, p’ be the
representations of g associated to E, E*. Then poo is a simple representation
of g with highest weight —w(w), so p o o is equivalent to p’.
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2) Assume that wyg = —1. Then, for any finite dimensional g-module E,
E is isomorphic to E*. Recall that, if g is simple, wy = —1 in the following
cases: g of type A1,B; (I > 2), C;, (I > 2), D; (I even > 4), E7, Eg,Fy, Go
(Chap. VI, Plates).

Lemma 2. Leth® = > H,. Then h® = > aoHy, where the a, are integers
a€Ry a€eB

> 1. Let (ba)acB; (Ca)acn be families of scalars such that boco = aq for all

a€B. Putz= 2 baXa,y = > CaX_o- There exists a homomorphism ¢
a€EB aceB

from sl(2,k) to g such that o(H) = h°, (X)) =z,p0(X_) = y.

The fact that the a, are integers > 1 follows from the fact that (Hy)aen
is a basis of the root system (H,)qep (cf. Chap. VI, §1, no. 5, Remark 5).
We have:

a(h®) =2 (1)

for all & € B (Chap. VI, §1, no. 10, Cor. of Prop. 29), so

[°,2] = > baa(h®) X, = 22 (2)
acB

(1%, y] = cal—a(h®) X0 = —2y. (3)
a€B

On the other hand,

[z,y]= Z bacs[Xa, X_g]= Z boColXas X—a]=— Z aoHy = —h°, (4)

a,BeB aeB aeB

hence the existence of the homomorphism .

PROPOSITION 12. Let E be a finite dimensional simple g-module, w its
highest weight, and % the vector space of g-invariant bilinear forms on E.
Let m be the integer Y- w(H,), so that m/2 is the sum of the coordinates

acR 4

of w with respect to B (Chap. VI, §1, no. 10, Cor. of Prop. 29). Let wqy be the
element of W such that wo(B) = —B.

(i) If wo(w) # —w, then £ = 0.
(ii) Assume that wo(w) = —w. Then A is of dimension 1, and every non-

zero element of B is non-degenerate. If m is even (resp. odd ), every element
of B is symmetric (resp. alternating).

a) Let @ € A. The map ¢ from E to E* defined, for z,y € E, by ¢(x)(y) =
&(x,y) is a homomorphism of g-modules. If ¢ # 0, then ¢ # 0, so ¢ is an
isomorphism by Schur’s lemma, and hence @ is non-degenerate. Consequently,
the g-module E is isomorphic to the g-module E*, so that wg(w) = —w. We
have thus proved (i).
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b) Assume from now on that wo(w) = —w. Then E is isomorphic to E*.
The vector space 4 is isomorphic to Homy(E, E*), and hence to Homgy(E, E)
which is of dimension 1 (§6, no. 1, Prop. 1 (iii)). Hence dim % = 1. Every
non-zero element ¢ of # is non-degenerate by a). Put @1 (z,y) = ¢(y, z) for
x,y € E. By the preceding, there exists A € k such that @, (z,y) = A\P(x,y)
for all 2,y € E. Then &(y, ) = A\P(x,y) = N2P(y,x), so A2 =1 and A\ = +1.
Thus, @ is either symmetric or alternating.

¢) By Chap. VII, §1, no. 3, Prop. 9 (v), E* and E* are orthogonal with
respect to @ if A + p # 0. Since & is non-degenerate, it follows that E¥, E~¢
are not orthogonal with respect to @.

d) There exists a homomorphism ¢ from sl(2, k) onto a subalgebra of g
that takes H to 621:% H, (Lemma 2). Consider E as an s[(2, k)-module via

a€Ry
this homomorphism. Then the elements of E* are of weight A ( eZR Ha>. If
a€Ry

A € P is such that E* # 0 and \ # w, A # —w, then —w < A < w, s0

—m = —w ZHa <A ZHa <w ZHa =m.

acRy acR4 acRy

Let G be the isotypical component of type V(m) of the sl(2, k)-module E. By
the preceding, G is of length 1 and contains E¥, E~“. By c¢), the restriction
of @ to G is non-zero. By §1, no. 3, Remark 3, m is even or odd according as
this restriction is symmetric or alternating. In view of b), this completes the
proof.

DEFINITION 2. A finite dimensional irreducible representation p of g is
said to be orthogonal (resp. symplectic) if there exists on E a non-degenerate
symmetric (resp. alternating) bilinear form invariant under p.

6. REPRESENTATION RING

Let a be a finite dimensional Lie algebra. Let %, (resp. &4) be the set of
classes of finite dimensional (resp. finite dimensional simple) a-modules. Let
Z(a) be the free abelian group Z(%) . For any finite dimensional simple a-
module E, denote its class by [E]. Let F be a finite dimensional a-module; let

(Frn,Fn_1,...,Fg) be a Jordan-Holder series for F; the element ;[Fz/Fl_l}

of #Z(a) depends only on F and not on the choice of Jordan-Holder series; we
denote it by [F]. If

0—F —F—F —0

is an exact sequence of finite dimensional a-modules, then [F] = [F'] + [F"].
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Let F be a finite dimensional semi-simple a-module; for all E € &, let
ng be the length of the isotypical component of F of type E; then [F] =

>~ ng.E.If F,F are finite dimensional semi-simple a-modules, and if [F] =
E€6,

[F’], then F and F’ are isomorphic.

Lemma 8. Let G be an abelian group written additively, and ¢ : F4 — G a
map; by abuse of notation, we denote by ¢(F) the image under ¢ of the class
of any finite dimensional a-module F. Assume that, for any exact sequence

0—F —F—F'—0

of finite dimensional a-modules, we have (F) = @(F’) + o(F"). Then, there
exists a unique homomorphism 0 : %(a) — G such that 0([F]) = ¢(F) for
every finite dimensional a-module F.

There exists a unique homomorphism 6 from %(a) to G such that
O([E]) = ¢(E) for every finite dimensional simple a-module E. Let F be a
finite dimensional a-module, and (F,,F,_1,...,Fy) a Jordan-Holder series
of F; if n > 0, we have, by induction on n,

O([F]) = ZW[Fi/Fi—lD = Z@(Fz‘/Fi—l) = ¢(F).

If n = 0 then [F] = 0 so §([F]) = 0; on the other hand, by considering the
exact sequence 0 — 0 — 0 — 0 — 0 we see that ¢(0) = 0.

Ezample. Take G = Z and ¢(F) = dim F. The corresponding homomorphism
from Z(a) to Z is denoted by dim. Let ¢ be the class of a trivial a-module of
dimension 1, and let ¢ be the homomorphism n +— nc from Z to Z(a). It is
immediate that

dim o) = Idz,

so that Z(a) is the direct sum of Kerdim and Zc.

Lemma 4. There exists on the additive group Z(a) a unique multiplication
distributive over addition such that [E|[F] = [EQF] for all finite dimensional
a-modules E, F. In this way %(a) is given the structure of a commutative
ring. The class of the trivial a-module of dimension 1 is the unit element of
this Ting.

The uniqueness is clear. There exists a commutative multiplication on
Z(a) = Z®) that is distributive over addition and such that [E][F] = [E®F]
for all E,F € &,. Let E1, E5 be finite dimensional a-modules, I; and [y their
lengths; we show that [Eq][E;] = [E; ® Es] by induction on l; + l. This is
clear if [{ + I < 2. On the other hand, let F; be a submodule of E; distinct
from 0 and E;. Then

[F1][E2] = [F1 @ Eo] and [E1/F1][Es] = [(E1/F1) ® Eq]
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by the induction hypothesis. On the other hand, (E; ® Es)/(F1 ® Eq) is
isomorphic to (E;/F1) ® Es. Hence

[E1][E2] = ([E1/F1] + [F1]).[E2] = [(E1/F1) ® E2] + [F1 ® Eo] = [E1 @ Es],

which proves our assertion. It follows immediately that the multiplication
defined above is associative, so %(a) has the structure of a commutative
ring. Finally, it is clear that the class of the trivial a-module of dimension 1
is the unit element of this ring.

Lemma 5. There exists a unique involutive automorphism X — X* of the
ring Z(a) such that [E]* = [E*] for every finite dimensional a-module E.

The uniqueness is clear. By Lemma 3, there exists a homomorphism
X — X* from the additive group Z(a) to itself such that [E]* = [E*] for
every finite dimensional a-module E. We have (X*)* = X, so this homomor-
phism is involutive. It is an automorphism of the ring #(a) since (E ® F)* is
isomorphic to E* ® F* for all finite dimensional a-modules E and F. Q.E.D.

Let U(a) be the enveloping algebra of a, U(a)* the vector space dual of
U(a). Recall (Chap. II, §1, no. 5) that the coalgebra structure of U(a) defines
on U(a)* a commutative, associative algebra structure with unit element.
For any finite dimensional a-module E, the map u — Tr(ug) from U(a) to
k is an element 7 of U(a)*. If 0 — E' — E — E” — 0 is an exact
sequence of finite dimensional a-modules, then 75 = 7/ 4+ 7g~. Hence, by
Lemma 3 there exists a unique homomorphism, which we denote by Tr, from
the additive group Z(a) to the group U(a)* such that Tr[E] = g for every
finite dimensional a-module E. If k£ denotes the trivial a-module of dimension
1, it is easy to check that Tr[k] is the unit element of U(a)*. Finally, let
E and F be finite dimensional a-modules. Let v € U(a) and let ¢ be the
coproduct of U(a). By definition of the U-module E ® F (Chap. I, §3, no. 2),
if c(u) = 2 u; @ ul,

URQF = Z(Uz)E @ (uz)p.

Consequently

TEgr (U E Tr(u; ) g Tr(u F—E T (U ) e (u

= (TE ® 1) (c(u)).
This means that Tg7r = Trgr. Thus, Tr: Z(a) — U(a)* is a homomorphism
of rings.

Let a; and ap be Lie algebras, f a homomorphism from a; to as. Every
finite dimensional as-module E defines by means of f an a;-module, hence
elements of #Z(az) and #(a1) that we denote provisionally by [E]s and [E];.
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By Lemma 3, there exists a unique homomorphism, denoted by Z(f), from
the group Z(az) to the group #(ay) such that Z(f)[E]s = [E]; for every
finite dimensional as-module E. Moreover, Z(f) is a homomorphism of rings.
If U(f) is the homomorphism from U(a;) to U(az) extending f, the following
diagram is commutative

Ra) P pa)
Tr Tr

Um)* 9% Ulay).

In what follows we take for a the splittable semi-simple Lie algebra g. The
ring Z#(g) is called the representation ring of g. For all A € P, we denote
by [A] the class of the simple g-module E(\) of highest weight .

7. CHARACTERS OF g-MODULES

Let A be a commutative monoid written additively, and Z[A] = Z?) the
algebra of the monoid A over Z (Algebra, Chap. III, §2, no. 6). Denote by
(eMaea the canonical basis of Z[A]. For all A\, u € A, we have e*# = eel.
If 0 is the neutral element of A, then e is the unit element of Z[A]; it is
denoted by 1.

Let E be a A-graded vector space over a field x, and let (E*)yea be its
graduation. If each E* is finite dimensional, the character of E, denoted by
ch(E), is the element (dim E})yea of Z4. If E itself is finite dimensional,

ch(E) = ) " (dimE*)e* € Z[A]. (5)
A€A

Let E',E,E” be A-graded vector spaces such that the E”\,E’\,E’”\ are
finite dimensional over x, and 0 — E’ — E — E” — 0 an exact sequence
of graded homomorphisms of degree 0. It is immediate that

ch(E) = ch(E’) + ch(E"). (6)

In particular, if Fy, Fy are A-graded vector spaces such that the F7 and the
F2 are finite dimensional over , then

Ch(F] (&) Fg) = Ch(Fl) + Ch(Fg). (7)
If F; and F5 are finite dimensional, we also have

Ch(Fl X FQ) = Ch(Fl)Ch(Fg) (8)

Ezample. Assume that A = N. Let T be an indeterminate. There exists a unique
isomorphism from the algebra Z[N] to the algebra Z[T] that takese™ to T™ for all
n € N. For any finite dimensional N-graded vector space E, the image of ch(E)

in Z[T] is the Poincaré polynomial of E (Chap. V, §5, no. 1).
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Let E be a g-module such that E = /\Z E* and such that each E* is
€h*

finite dimensional. We know that (E*)yecp« is a graduation of the vector
space E. In what follows we shall reserve the notation ch(E) for the character
of E considered as a h*-graded vector space. Thus, the character ch(E) is
an element of Z° . If E is finite dimensional, ch(E) € Z[P]. By formula (6)
and Lemma 3 of no. 6, there exists a unique homomorphism from the group
Z(g) to Z[P] that takes E to ch(E), for any finite dimensional g-module E;
this homomorphism will be denoted by ch. Relation (8) shows that ch is a
homomorphism from the ring %(g) to the ring Z[P].

Remark. Every element of P defines a simple h-module of dimension 1, hence
a homomorphism from the group Z[P] to the group Z(h), which is an injective
homomorphism of rings. It is immediate that the composite

Z(9) — Z[P] — Z(b)
is the homomorphism defined by the canonical injection of h into g (no. 6).

The Weyl group W operates by automorphisms on the group P, and hence
operates on Z'. For all A € P and all w € W, we have we* = ¢®*. Let Z[P]W
be the subring of Z[P] consisting of the elements invariant under W.

Lemma 6. If A\ € Py, then ch[\ € Z[P]V. The unique mazimal term of
ch[\] (Chap. VI, §3, no. 2, Def. 1) is e*.

The first assertion follows from no. 1, Cor. 2 of Prop. 2, and the second
from §6, no. 1, Prop. 1 (ii).

THEOREM 2. (i) Let (@a)acn be the family of fundamental weights relative
to B. Let (T,)acn be a family of indeterminates. The map f — f(([wa])acB)
from Z[(Tw)acn] to Z(g) is an isomorphism of rings.

(ii) The homomorphism ch from %(g) to Z[P] induces an isomorphism
from the ring %(g) to the ring Z[P]W.

(iii) Let E be a finite dimensional g-module. If chE = N %: mych[)], the
€Py4

isotypical component of E of highest weight A has length my.

The family ([A])xep,, is a basis of the Z-module %(g), and the family
(ch[A])xep,, is a basis of the Z-module Z[P]W (Lemma 6, and Chap. VI,
§3, no. 4, Prop. 3). This proves (ii) and (iii). Assertion (i) follows from (ii),
Lemma 6 and Chap. VI, §3, no. 4, Th. 1.

COROLLARY. Let E,E be finite dimensional g-modules. Then E is isomor-
phic to E' if and only if chE = chE'.
This follows from Th. 2 (ii) and the fact that E, E’ are semi-simple.
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8. SYMMETRIC INVARIANTS

In this paragraph, we denote by (g,4) a split semi-simple Lie algebra, by R
its root system, by W its Weyl group, and by P its group of weights.

1. EXPONENTIAL OF A LINEAR FORM

Let V be a finite dimensional vector space, S(V) its symmetric algebra. The
coalgebra structure of S(V) defines on S(V)* a commutative and associa-
tive algebra structure (Algebra, Chap. III, §11, pp. 579 to 582). The vector
space S(V)* can be identified canonically with 1;[0 S™(V)*, and S™(V)* can

be identified canonically with the space of symn_letric m-linear forms on V.
The canonical injection of V* = S!(V)* into S(V)* defines an injective ho-
momorphism from the algebra S(V*) to the algebra S(V)*, whose image is
S(V)* = 22 8™(V)* (Algebra, Chap. II1, §11, no. 5, Prop. 8). We identify

m>0
the algebras S(V*) and S(V)*9" by means of this homomorphism; we also
identify S(V*) with the algebra of polynomial functions on V (Chap. VII,
App. I, no. 1).
The elements (uy,,) € 1;[0 S™(V)* such that ug = 0 form an ideal J of

S(V)*; we give S(V)* the J-adic topology (Commutative Algebra, Chap. 111,
§2, no. 5), in which S(V)* is complete and S(V*) is dense in S(V)*. If
(ef)1<i<n is a basis of V*, and if Ty,..., T, are indeterminates, the ho-
momorphism from k[Ty,...,T,] to S(V*) that takes T; to e} (1 <14 <n)is
an isomorphism of algebras, and extends to a continuous isomorphism from
the algebra k[[Ty, ..., T,]] to the algebra S(V)*.

For all A € V*, the family A" /n! is summable in S(V)*. Its sum is called
the exponential of A and is denoted by exp(A) (conforming to Chap. II, §6,
no. 1). Let z1,...,x, € V; we have

Lo o) = uan) O )

(exp A\, z1...25) = p

by Algebra, Chap. 111, §11, no. 5, formula (29). It follows immediately that
exp(A) is the unique homomorphism from the algebra S(V) to k that extends
A

We have exp(A+ u) = exp(A) exp(p) for all A, € V* (Chap. 11, §6, no. 1,
Remark). Thus, the map exp : V* — S(V)* is a homomorphism from the
additive group V* to the multiplicative group of invertible elements of S(V)*.
The family (exp A)rev+ is a free family in the vector space S(V)* (Algebra,
Chap. V, §7, no. 3, Th. 1).

Lemma 1. Let II be a subgroup of V* that generates the vector space V*, and
m an integer > 0. Then pr,, (exp IT) generates the vector space S™(V*).
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By Algebra, Chap. I, §8, no. 2, Prop. 2, any product of m elements of
V* is a k-linear combination of elements of the form x™ where x € II. But
2™ =ml!pr,, (exp ). Q.E.D.

By transport of structure, every automorphism of V defines automor-
phisms of the algebras S(V) and S(V)*; this gives linear representations of
GL(V) on S(V) and S(V)*.

2. INJECTION OF k[P] INTO S(h)*

The map p — exp p from P to S(h)* is a homomorphism from the additive
group P to S(h)* equipped with its multiplicative structure (no. 1). Conse-
quently, there exists a unique homomorphism ¢ from the algebra k[P] of the
monoid P to the algebra S(h)* such that

Y(e*) =exp(d) (A €P)

(in the notations of §7, no. 7). By no. 1, ¢ is injective. By transport of
structure, ¥ (w(et)) = w((e})) for all A € P and all w € W. Hence, if k[P]W
(resp. S(h)*WV) denotes the set of elements of k[P] (resp. S(h)*) invariant
under W, we have ¥ (k[P]V) c S(h)*W.

PROPOSITION 1. Let S™(h*)W be the set of elements of S™(h*) invariant
under W. Then pr,,(¢(k[P]V)) = S™(h*)V.

It is clear from the preceding that pr,,(v¥(k[P]V)) c S™(h*)WV. Every
element of S™(h*) is a k-linear combination of elements of the form

Pry (exp A) = (pr,, 0 9) ()

where A € P (Lemma 1). Hence every element of S™(h*)
nation of elements of the form

> wl(pry, 0 ¥)(€Y) = (pry, 0 ¥) (Z w(eA)> ;

weW weW

W is a linear combi-

each of which belongs to pr,, (¥(k[P]V)).

PROPOSITION 2. Let E be a finite dimensional g-module. Let U(h) = S(h)
be the enveloping algebra of . If uw € U(h), then

Tr(ug) = (Y(ch E), u).

It suffices to treat the case in which w = h; ... h,, with hq, ..., h, € b. For
all A € P, let dy = dimE*. Then chE = %:dw*, so ¥(chE) = %:dA exp(\)

and hence
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(¥(chB),u) = > " drlexp A by ... hy)

A

= " d\A(h1) .. A(h) (0. 1)
A

= TI"LLE

COROLLARY 1. Let U(g) be the enveloping algebra of g. Let the homomor-
phism ¢ : U(g)* — U(h)* = S(h)* be the transpose of the canonical injection
U(h) — U(g). The following diagram commutes

%) 2 Z[P)

Tr P
Ulg)* - S(h)".

This is simply a reformulation of Prop. 2.

COROLLARY 2. Let m be an integer > 0. Every element of S™(h*)WV is a
linear combination of polynomial functions on b of the form x — Tr(p(x)™),
where p is a finite dimensional linear representation of g.

By Prop. 1, S™(h*)V = (pr,, o ¥)(k[P]V). Now Z[P]W = ch%(g)
(§7, no. 7, Th. 2 (ii)). Thus, by Chap. VI, §3, no. 4, Lemma 3, 1 (k[P]V)
is the k-vector subspace of S(h)* generated by ¥(chZ(g)) = ((TrZ(g)).
Consequently, S™(h*)W is the vector subspace of S (h*) generated by
(pr,, o CoTr)(#(g)). But, if p is a finite dimensional linear representation of

g7
((0r ¢ 0T (@) = { (€0 TP 2 ) = L Tr(p(e)™)

for all z € b.

3. INVARIANT POLYNOMIAL FUNCTIONS

Let a be a finite dimensional Lie algebra. In accordance with the conventions
of no. 1, we identify the algebra S(a*), the algebra S(a)*9", and the algebra
of polynomial functions on a. For all a € a, let 8(a) be the derivation of S(a)
such that 0(a)x = [a, z] for all x € a. We know (Chap. I, §3, no. 2) that 6 is
a representation of a on S(a). Let 6*(a) be the restriction of —0(a) to S(a*).
Then 6* is a representation of a. If f € S"(a*), then 6*(a)f € S™(a*) and,
for z1,...,x, € a,

(9*(a)f)(a:1,...,xn):— Z f(xl,...,xi_l,[a,xi],xi+1,...,mn). (1)

1<i<n
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We deduce easily from (1) that 6*(a) is a derivation of S(a*). An element of
S(a) (resp. S(a*)) that is invariant under the representation 6 (resp. 6*) of a
is called an invariant element of S(a) (resp. S(a*)).

Lemma 2. Let p be a finite dimensional linear representation of a, and m an
integer > 0. The function x — Tr(p(xz)™) on a is an invariant polynomial
function.

Put g(z1,...,2m) = Tr(p(z1) ... p(ay)) for 21,... .2, € a. If © € a, we
have

—(0"(x)g) (21, ..., Tm)
Tr(p(x1) - .. p(zi1)[p(x), p(zi)|p(@it1) - - p(2m))

= Te(p(@)p(21) . ) — Te(p(a1) ... plam)pla)) = O,

so 6*(x)g = 0. Let h be the symmetric multilinear form defined by

1
Z I(To(1ys - Ta(m))-

~om!
oeS,,

=
8
.
8

=
|

For all z € a, we have 0*(z)h = 0 and Tr(p(z)™) = h(x,...,x), hence the
lemma.

Lemma 3. Let E be a finite dimensional g-module, and x € E. Then x is an
invariant element of the g-module E if and only if (exp ag).x = x for every
nilpotent element a of g.

The condition is clearly necessary. Assume now that it is satisfied. Let a
be a nilpotent element of g. There exists an integer n such that af = 0. For
all t € k, we have

n—1_n—1
t" ap T,

Lo
0 = exp(tag).x — x = tagx + —t*agx + - +

2! (n—1)!

so agz = 0. But the Lie algebra g is generated by its nilpotent elements (84,
no. 1, Prop. 1). Hence z is an invariant element of the g-module E. Q.E.D.

For any £ € GL(g), let S(¢) be the automorphism of S(g) that extends
&, and S*(¢) the restriction to S(g*) of the contragredient automorphism of
S(€). Then S and S* are representations of GL(g). If a is a nilpotent element
of g, 6(a) is locally nilpotent on S(g) and S(expad a) = exp (a), so

S*(expad a) = exp 6*(a). (2)

PROPOSITION 3. Let f be a polynomial function on g. The following con-
ditions are equivalent:

(i) fos=f for all s € Aut.(g);
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(ii) fos = f for all s € Auty(g);

(iii) f is invariant.

The equivalence of (i) and (iii) follows from formula (2) and Lemma 3.
It follows from this that (iii) implies (ii) by extension of the base field. The
implication (ii) = (i) is clear.

Note carefully that, if f satisfies the conditions of Prop. 3, f is not in general

invariant under Aut(g) (Exerc. 1 and 2).

THEOREM 1. Let I(g*) be the algebra of invariant polynomial functions on
g. Let i : S(g*) — S(h*) be the restriction homomorphism.

(i) The map i|1(g*) is an isomorphism from the algebra1(g*) to the algebra
S(h*)W

(ii) For any integer n > 0, let I"(g*) be the set of homogeneous elements
of I(g*) of degree n. Then I"(g*) is the set of linear combinations of func-
tions on g of the form x — Tr(p(x)™), where p is a finite dimensional linear
representation of g.

(iii) Let I = rk(g). There exist | algebraically independent homogeneous
elements of 1(g*) that generate the algebra 1(g*).

a) Let f € I(g*) and w € W. There exists s € Aut.(g,h) such that
slh = w (§2, no. 2, Cor. of Th. 2). Since f is invariant under s (Prop. 3), i(f)
is invariant under w. Hence i(I(g*)) € S(p*)W

b) We prove that, if f € I(g*) is such that i(f) = 0, then f = 0. Extending
the base field if necessary, we can assume that k is algebraically closed. By
Prop. 3, f vanishes on s(f) for all s € Aut.(g). Hence f vanishes on every
Cartan subalgebra of g (Chap. VII, §3, no. 2, Th. 1), and in particular on the
set of regular elements of g. But this set is dense in g for the Zariski topology
(Chap. VII, §2, no. 2).

¢) Let n be an integer > 0. Let L™ be the set of linear combinations of
functions of the form = +— Tr(p(z)™) on g, where p is a finite dimensional
linear representation of g. By Lemma 2, L™ C I"(g*). Thus

i(L") ci(I*(g")) € 8"(h")™.

By Cor. 2 of Prop. 2, S"(h*)V C i(L"). Hence i(I"(g )) S™(h*)WV, which
proves (i), and ¢(L™) = ¢(I"(g*)) so L™ =I"(g*) by b). Thus (ii) is proved.
d) Assertion (iii) follows from (i) and Chap. V, §5, no. 3, Th. 3.

COROLLARY 1. Assume that g is simple. Let mq,...,m; be the exponents
of the Weyl group of g. There exist elements P1,...,P; of I(g*), homogeneous
of degrees

my+1,...,m;+1,

which are algebraically independent and generate the algebra I1(g*).
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This follows from Th. 2 (i) and Chap. V, §6, no. 2, Prop. 3.

COROLLARY 2. Let B be a basis of R, Ry (resp. R_) the set of positive

(resp. negative) roots of (g,h) relative to B, ny = > ge, n_ = > g%,
acRy acR_

S(h) the symmetric algebra of by, and J the ideal of S(g) generated by ny Un_.

(i) S(g) = S(h) & J.

(ii) Let j be the homomorphism from the algebra S(g) to the algebra S(h)
defined by the preceding decomposition of S(g). Let I(g) be the set of invariant
elements of S(g). Let S(h)W be the set of elements of S(bh) invariant under
the operation of W. Then j|1(g) is an isomorphism from I(g) to S(h)W.

Assertion (i) is clear. The Killing form defines an isomorphism from the
vector space g* to the vector space g, which extends to an isomorphism &
from the g-module S(g*) to the g-module S(g). We have £(I(g*)) = I(g). The
orthogonal complement of ) with respect to the Killing form is ny +n_ (§2,
no. 2, Prop. 1). If we identify h* with the orthogonal complement of n +n_
in g*, then £(h%) = b, so £(S(h*)) = S(b) and £(S(b*)™) = S(H)™. Finally,
£71(J) is the set of polynomial functions on g that vanish on h. This proves
that & transforms the homomorphism ¢ of Th. 1 into the homomorphism j of
Cor. 2. Thus assertion (ii) follows from Th. 1 (i).

PROPOSITION 4. Let a be a semi-simple Lie algebra, | its rank. Let 1 (resp.
I') be the set of elements of S(a*) (resp. S(a)) invariant under the represen-
tation induced by the adjoint representation of a. Let Z be the centre of the
enveloping algebra of a.

(i) T and U are graded polynomial algebras (Chap. V, §5, no. 1) of tran-
scendance degree [.

(ii) Z is isomorphic to the algebra of polynomials in | indeterminates over
k.

The canonical filtration of the enveloping algebra of a induces a filtration
of Z. By Chap. I, §2, no. 7, Th. 1 and p. 25, grZ is isomorphic to I'. In
view of Commutative Algebra, Chap. 111, §2, no. 9, Prop. 10, it follows that
(i) = (ii).

On the other hand, Th. 1 and its Cor. 2 show that (i) is true whenever a
is split. The general case reduces to that case in view of the following lemma:

Lemma 4.2 Let A = G>90 A™ be a graded k-algebra, k' an extension of k, and

A = A ® k. Assume that A’ is a graded polynomial algebra over k'. Then
A is a graded polynomial algebra over k.

We have A’0 = k', so A" = k. Put A, = @1 A™ and P = Ay /A%. Then

P is a graded vector space, and there is a grad_ed linear map f: P — Ay of

2 In Lemmas 4, 5 and 6, k can be any (commutative) field.
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degree zero such that the composite with the canonical projection A, — P
is the identity on P. Give S(P) the graded structure induced by that of P
(Algebra, Chap. III, p. 506). The homomorphism of k-algebras g : S(P) — A
that extends f (Algebra, Chap. III, p. 497) is a graded homomorphism of
degree 0; an immediate induction on the degree shows that g is surjective.

Lemma 5. A is a graded polynomial algebra if and only if P is finite dimen-
stonal and g is bijective.

If P is finite dimensional, S(P) is clearly a graded polynomial algebra, and
so is A if g is bijective. Conversely, assume that A is generated by algebraically
independent homogeneous elements z1, ..., z,, of degrees di,...,d,,. Let T;
be the image of x; in P. It is immediate that the Z; form a basis of P; since
Z; is of degree d;, it follows that S(P) and A are isomorphic; in particular,
dim S(P)™ = dim A™ for all n. Since g is surjective, it is necessarily bijective.

Lemma 4 is now immediate. Indeed, Lemma 5, applied to the k’-algebra
A’ shows that g®1: S(P) ® ¥’ — A ® k’ is bijective, and hence so is g.

PROPOSITION 5. We retain the notations of Prop. 4, and denote by p the
ideal of S(a*) generated by the homogeneous elements of I of degree > 1. Let
x € a. Then x is nilpotent if and only if f(x) =0 for all x € p.?

Extending the base field if necessary, we can assume that a = g is split-
table. Assume that x is nilpotent. For any finite dimensional linear represen-
tation p of g, and any integer n > 1, we have Tr(p(z)") =0, so f(x) =0 for
all homogeneous f € I(g*) of degree > 1 (Th. 1 (ii)), and hence f(z) =0 for
all f € p. Conversely, if f(x) =0 for all f € p, then Tr((ad z)™) = 0 for all
n > 1 (Th. 1 (ii)), so « is nilpotent.

*Remarks 1) Let Pq,...,P; be algebraically independent homogeneous ele-
ments of I that generate the algebra I. Then (Py,...,P;) s an S(a*)-regular
sequence (Chap. V, §5, no. 5). Indeed, extending the base field if necessary,
we can assume that a = g is splittable. Now let N = dim g, and let

(Q17 .. '7QN—l)

be a basis of the orthogonal complement of ) in g*. Let m be the ideal of
S(g*) generated by Pq,...,P;,Q1,...,Qn—;. Then S(g*)m is isomorphic to
S(h*)/J, where J is the ideal of S(h*) generated by i(P1),...,i(P;). By Th. 1
and Chap. V, §5, no. 2, Th. 2, S(h*)/J is a finite dimensional vector space,
and hence so is S(g*)/m. By a result of Commutative Algebra, it follows that
(P1,...,P;,Q1,...,Qn-;) is an S(g*)-regular sequence, and a fortiori so is
(P1,...,Pp).

3 It can be shown (B. KOSTANT, Lie group representations on polynomial rings,
Amer. J. Math., Vol. LXXXV (1963), pp. 327-404, Th. 10 and 15) that p is a
prime ideal of S(a*) and that S(a*)/p is integrally closed.
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2) The algebra S(a*) is a graded free module over 1. Indeed, this follows
from Prop. 4, Remark 1, and Chap. V, §5, no. 5, Lemma 5.,

4. PROPERTIES OF Autg

Lemma 6. Let V be a finite dimensional vector space, G a finite group of
automorphisms of V, and v and v' elements of V such that v' ¢ Guv. There
exists a G-invariant polynomial function f on V such that f(v') # f(v).
Indeed, for each s € G there exists a polynomial function g; on V equal
to 1 at v and to 0 at sv’. Then the function g = 1 — IG_IG gs is equal to 0 at
S

v and to 1 on Gv’. The polynomial function f = [1 t.g is G-invariant, equal
teg

to 0 at v and to 1 at v'.

PROPOSITION 6. Let a be a semi-simple Lie algebra and s € Aut(a). The
following conditions are equivalent:

(i) s € Autg(a);

(ii) for any invariant polynomial function f on a, we have fos = f.

By extending scalars if necessary, we can assume that k is algebraically
closed. The implication (i) = (ii) follows from Prop. 3. We assume that
condition (ii) is satisfied and prove (i). In view of Prop. 3, and §5, no. 3,
Cor. 1 of Prop. 5, we can assume that s € Aut(g, h) and that s leaves stable
a Weyl chamber C. Let z € CNbhg. We have sz € C. If g is a W-invariant
polynomial function on §, we have g(z) = g(sz) (Th. 1 (i)). By Lemma 6,
it follows that sz € Wz. Since sz € C, we have x = sz (Chap. V, §3, no. 3,
Th. 2). Then s|h =Idy, and s € Auto(g, ) (85, no. 2, Prop. 4).

COROLLARY. The group Auty(a) is open and closed in Aut(a) in the Zariski
topology.

Prop. 6 shows that Autg(a) is closed. Let k be an algebraic closure of k.
The group Aut(a ® k)/Auto(a ® k) is finite (§5, no. 3, Cor. 1 of Prop. 5);
a fortiori, the group Aut(a)/Autp(a) is finite. Since the cosets of Aut(a) in
Aut(a) are closed, it follows that Autg(a) is open in Aut(a).

5. CENTRE OF THE ENVELOPING ALGEBRA

In this number, we choose a basis B of R. Let Ry be the set of positive roots

relative to B. Let p = 1 2}; a, and 0 the automorphism of the algebra S(h)
acR4

that takes every = € b to  — p(x), and hence the polynomial function p on
h* to the function A — p(A — p).

THEOREM 2. Let U be the enveloping algebra of g, Z its centre, V.C U the
enveloping algebra of b (identified with S(h)), U the commutant of V in U,



§8. SYMMETRIC INVARIANTS 149

¢ the Harish-Chandra homomorphism (§6, no. 4) from U to V relative to B.
Let S(h)WV be the set of elements of S(h) invariant under the action of W.
Then (60¢)|Z is an isomorphism from Z to S(§)V, independent of the choice
of B.

a) Let P44 be the set of dominant weights of R, w € W, A € P4,
1= wA. Then Z(p — p) is isomorphic to a submodule of Z(A — p) (§6, no. 3,
Cor. 2 of Prop. 6), and o(u)(A — p) = @(u)(u — p) for all uw € Z (§6, no. 4,
Prop. 7). Thus, the polynomial functions (6 o ¢)(u) and (6 o ¢)(u) o w on h*
coincide on Py . But Py, is dense in h* in the Zariski topology: this can
be seen by identifying h* with kP by means of the basis consisting of the
fundamental weights w,, and by applying Prop. 9 of Algebra, Chap. IV, §2,
no. 3. Hence

(0op)(u) =(0op)(u)ow

which proves that (§ o ©)(Z) C S(h)W

b) Let n be the isomorphism from I(g) to S(h)" defined in no. 3, Cor. 2
of Th. 1. Consider the canonical isomorphism from the g-module U to the
g-module S(g) (Chap. I, §2, no. 8), and let 6 be its restriction to Z. Then
0(Z) =1(g). Let z be an element of Z with filtration < f in U.

z -5 I
wl 5 ln
S(h) — S(h).

Introduce the notations of §6, no. 4, and put

= > Alg) (ma) (o) (i), (Mi), (pi)-
SaitY mity pi<f

Let v((gi),(ms),(ps)) be the monomial X% ... X% H" . . H™XPE . . Xk

calculated in S(g). Denoting by S,4(g) the sum of the homogeneous compo-
nents of S(g) of degrees 0,1,...,d, we have

0(z) = > Mg, (m)(p)0((¢), (ma), (pi)) - (mod. Sy—1(g))
STaitd mity pi=f

o))=Y Aopm@v((0),(m:),(0)) (mod. Sy 1(h))
St
and consequently
(mo0)(z) = ¢(z) (mod. Sy_1(h)). (3)

¢) We show that dop : Z — S(h)W is bijective. The canonical filtrations on
U and S(g) induce filtrations on Z, I(g) and S(h)W, and 6, n are compatible
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with these filtrations, so that gr(n o ) is an isomorphism from the vector
space gr(Z) to the vector space gr(S(h)WV). By (3), gr(¢) = gr(n o ), and it
is clear that gr(d) is the identity. Hence gr(d o ¢) is bijective, so

Sop:7Z—SHV

is bijective (Commutative Algebra, Chap. III, §2, no. 8, Cor. 1 and 2 of Th. 1).

d) Recall the notations in a). Let E be a simple g-module of highest
weight A, and x its central character (§6, no. 1, Def. 2). Let ¢’ and §’ be the
homomorphisms analogous to ¢ and § relative to the basis w(B). The highest
weight of E relative to w(B) is w(A). By §6, no. 4, Prop. 7,

p(u)(A) = x(u) = @' (u)(wA)

for all u € Z, so, by a),

(00 @)(u)(wA +wp) = (5 09)(u)(A + p) = p(u)(A) = @' (u)(wA)
= (6" 0 @) (u) (WA + wp).

Thus, the polynomial functions (§ o ¢)(u) and (6" o ¢')(u) coincide on
w(P44) + wp, and hence are equal.

COROLLARY 1. For all A € b*, let xx be the homomorphism z — (p(2))(N)
from 7 to k.

(i) If k is algebraically closed, every homomorphism from Z to k is of the
form x for some X\ € h*.

(ii) Let A\, € b*. Then x» = x, if and only if u+p € WA+ p).

If k is algebraically closed, every homomorphism from S(h)W to k extends
to a homomorphism from S(h) to k (Commutative Algebra, Chap. V, §1, no. 9,
Prop. 22, and §2, no. 1, Cor. 4 of Th. 1), and every homomorphism from S()
to k is of the form f — f(\) for some A € h* (Chap. VII, App. I, Prop. 1).
Hence, if x is a homomorphism from Z to k, there exists (Th. 2) a u € b*
such that, for all z € Z,

x(2) = ((609)(2)) (1) = (¢(2)) (1 = p)

hence (i).
Let A, € b* and assume that x» = x,. Then, for all z € Z,

((009)(2))(A+p) = (0(2))(A) = xa(2) = xu(2) = ((60©)(2)) (1 + p);

in other words, the homomorphisms from S(h) to k defined by A+p and p+p
coincide on S(h)W; thus, assertion (ii) follows from Commutative Algebra,
Chap. V, §2, no. 2, Cor. of Th. 2.

COROLLARY 2. Let E,E’ be finite dimensional simple g-modules, and x, X’
their central characters. If x = X', E and E' are isomorphic.
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Let A, ) be the highest weights of E, E’. By §6, no. 4, Prop. 7, x» = x =
X' = X, so there exists w € W such that A’ + p = w(A+ p). Since A+ p and
M + p belong to the chamber defined by B, we have w = 1. Thus, A = X,
hence the corollary.

PROPOSITION 7. For any class v of finite dimensional simple g-modules,
let U, be the isotypical component of type v of the g-module U (for the ad-
joint representation of g on U). Let o be the class of the trivial g-module of
dimension 1. Let [U, U] be the vector subspace of U generated by the brackets
of pairs of elements of U.

(i) U is the direct sum of the U,.
(i) U,y = Z, and 2. U, =[U,U].
Y#Yo

(iii) Let u — u? be the projection of U onto Z defined by the decomposition
U=Za[U,U]. IfucUandv € U, we have (wv)? = (vu)t. If u € U and
z € Z, we have (uz)" = ufz.

(iv) Let @ be the Harish-Chandra homomorphism. Let A € Py, and let
E be a finite dimensional simple g-module of highest weight A. For allu € U,
we have

o Tr(um) = (o) (V).

The g-module U is a direct sum of finite dimensional submodules. This
implies (i).

It is clear that U,, = Z. Let U’ be a vector subspace of U defining a sub-
representation of class 7 of the adjoint representation. Then either [g, U'] = U’
or [g,U’] = 0. Thus, if v # v then [g, U] = U’, so ; U, C [U,U]. On the

Y7o

other hand, if u € U and z1,...,x, € g, then
[€1...2p,ul = (21.. . Zpu—2Tg ... Tpuxy)+ (T ... LU —T3 ... THUT1T2)
+ -+ (TpuTy .. T —uT1 ... Ty) € [g, U]
Hence [U,U] C [Q,ZUW} = [g, > UA,} C 2. U,. This proves (ii). Under
¥

YF#Y0 Y#0
these conditions, (iii) follows from Chap. I, §6, no. 9, Lemma 5.

Finally, let E, X be as in (iv). Then

Tr(ug) = Tr((uf)g)  since u —u? € [U, U]
Tr(p(u)(A).1) (86, no. 4, Prop. 7)
= (dim E).p(uf)(A).
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9. THE FORMULA OF HERMANN WEYL

In this paragraph, we retain the general notations of §6 and §7.

1. CHARACTERS OF FINITE DIMENSIONAL g-MODULES

Let (e*)xep- be the canonical basis of the ring Z[h*]. Give the space Z"" of
all maps from h* to Z the product topology of the discrete topologies on the
factors. If ¢ € Z" | the family (p(v)e”),cp- is summable, and

= plv)e”.

veh*

Let Z(P) be the set of ¢ € Z" whose support is contained in a finite union
of sets of the form v — P, where v € h*. Then Z[P] C Z(P) C Z"". Define
on Z(P) a ring structure extending that of Z[P] by putting, for ¢, € Z(P)
and v € h*,

() () = > e(u(v — p)
HED*

(the family (¢(p)¥(v — 1))uep+ has finite support, in view of the condition
satisfied by the supports of ¢ and ). If p = > x,e” and ¥ = D_y,e”, then

oY =2 Ty yue” .
v

Let v € b*. A partition of v into positive roots is a family (nq)acr,,

where the n, are integers > 0 such that v = 2. nga. We denote by PB(v)
acRy

the number of partitions of v into positive roots. We have
PBv) >0<=veQy.

In this paragraph, we denote by K the following element of Z(P):
K=Y By)e.
YEQ+

Now recall (Chap. VI, §3, no. 3, Prop. 2) that

d= H (e2/? — e72/2) = Z e(w)e™”

acRy weW

is an anti-invariant element of Z[P].

Lemma 1. In the ring Z{P), we have K. 1—111 (1—e*)=Ke?d=1.
acR4

Indeed,
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K= H (¥ +e *+e 4.

acR4
SO

KePd= [ G+e+e+-) J[] 01— =1

acR4 acR4

Lemma 2. Let \ € h*. The module Z(\) (86, no. 3) admits a character that

is an element of Z(P), and we have d.chZ(\) = e,
Let ai,...,aq be distinct elements of Ry. The X", X™2 ... Xﬁ‘jlq ®1

form a basis of Z(A) (§6, Prop. 6 (iii)). For h € b, we have
h(X™ X" X" ®1)

— Q1 — Q2 —Qgq
= [n, X" X @1+ (X X )@ hd
= (A —nia1 — - —ngag)(h) (X", .. .Xﬁ‘;q ®1).

Thus, the dimension of Z(A)*~# is B(u). This proves that ch Z()\) is defined,
is an element of Z(P), and that

chZ(\) = Z&B(M)ek_” = Ke’.

It now suffices to apply Lemma 1.

Lemma 3. Let M be a g-module which admits a character ch(M) whose sup-
port is contained in a finite union of the sets p—P,. Let U be the enveloping
algebra of g, Z the centre of U, A\g € b*, and x», the corresponding homo-
morphism from 7 to k (88, Cor. 1 of Th. 2). Assume that, for all z € Z, zu
is the homothety with ratio x»,(z). Let Dy be the set of A € W(Ag + p) — p
such that A + Q4+ meets Supp(ch M). Then ch(M) is a Z-linear combination
of the chZ(X) for A € Dy;.

If Supp(ch M) is empty, the lemma is clear. Assume that Supp(ch M) # @.
Let A be a maximal element of this support, and put dim M* = m. There
exists a g-homomorphism ¢ from (Z()\))™ to M which maps (Z(\)*)™ bijec-
tively onto M* (§6, no. 3, Prop. 6 (i)). Thus, the central character of Z()) is
X2, S0 A € W(Ag+p)—p (88, no. 5, Cor. 1 of Th. 2). This proves that Dy # &,
and allows us to argue by induction on Card Dy;. Let L and N be the kernel
and cokernel of ¢. Then we have an exact sequence of g-homomorphisms:

0—-L—->(ZN)"->M—=>N=0
ch(M) = —ch(L) + mch Z(\) + ch(N)

(87, no. 7, formula (6)). The sets Supp(ch L) and Supp(ch N) are contained in
a finite union of sets u—P . For z € Z, 21, and zn are homotheties with ratio
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X, (2). Clearly, Dy C Dyy. On the other hand, (A4 Q4 )NSupp(ch M) = {A},
and A ¢ Supp(chN), so A ¢ Dy and

Card Dy < Card Dy;.

On the other hand, L is a submodule of (Z(X))™; if X' € Dy, then X + Q4+
meets Supp(chL) C SuppchZ()), so A € X + Q4 (86, no. 1, Prop. 1 (ii)); it
follows that Dy, C Dy Since L N (Z(A)*)™ = 0, we have A ¢ Dy, so

Card Dy, < Card Dyy.

It now suffices to apply the induction hypothesis.

THEOREM 1 (Character Formula of H. Weyl). Let M be a finite dimensional
simple g-module, and X its highest weight. Then

(Z 5(w)e“’p> .chM = Z e(w)e?OHe),

weW weW

With the notations of Lemma 3, the central character of M is xx (86,
no. 4, Prop. 7). Hence, by Lemmas 2 and 3, d.ch M is a Z-linear combination
of the e#** such that

pw+p e WA+ p).

On the other hand, by §7, no. 7, Lemma 7, d.ch M is anti-invariant, and its
unique maximal term is e’*?, hence the theorem.

Ezample. Take g = sl(2,k), b = kH. Let a be the root of (g,h) such that
a(H) = 2. The g-module V(m) has highest weight (m/2)a. Hence

1

ch(V(m)) = (em/Dtae —em(m/2amze) (e — 737
= e~ (/2 (em D _ 1) /(e — 1)
= e~(m/Da(gma | o(m—Da 4 4 1)
— em/2a 4 ((m=2)a/2 | 4 ~(m/2a

which also follows easily from §1, no. 2, Prop. 2.

2. DIMENSIONS OF SIMPLE g-MODULES

If o € b*, put J(et) = Zws(w)e“’“, cf. Chap. VI, §3, no. 3.
we
THEOREM 2. Let E be a finite dimensional simple g-module, \ its highest

weight and (-|-) a W-invariant non-degenerate positive symmetric bilinear
form on b*. Then:
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T A (o)
ame= [T E057 =TT (1+Gay)-

acR4 acRy

Let T be an indeterminate. For all v € P, denote by f,, the homomorphism
from Z[P] to R[[T]] that takes e* to e!"T for all 4 € P. Then dim E is the
constant term of the series f,(chE).

For all p,v € P, we have

F3Em) = 3 e(w)elonT

weW

= > @) T = £ (3(e)).

weW

In particular, in view of Chap. VI, §3, no. 3, formula (3),

Fo(J(e") = fu(I(e?)) _e(ulp)T H e~ (1la)T ).

a€R4
Hence, setting Card(R+) = N,

Fo(3(e)) =T [T (ula)  (mod TNFIR[[T])).
acR

The equality J(e’?) = ch(E).J(e”) (Th. 1) thus implies that

™ [ A +ple) = f,(cbE).TY I (pla)  (mod TNF'R[[T]))

acR, a€Ry
ime=( J[ 0+olo) / (agfpa)) -1 (1+ Gy,

Now, if @ € R4, a can be identified with an element of hr proportional to
H,, so

(A +pla)/(ple) = (A + p, Ha)/(p, Ha)-
Ezamples. 1) In the Example of no. 1, we find that
- (M, a -
dim V(m) = (Ga+ 5 ) (Ha)/ 5 (Ha) =m+ 1,

which we knew in §1.

2) Take g to be the splittable simple Lie algebra of type G, and adopt the
notations of Chap. VI, Plate IX. Give hi the W-invariant positive symmetric
form (-|-) such that (a1]ay) = 1. Then p = w; + wy and
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1 1

(wi]an) = 5 (wilaz) =0, (wi|az +a1) = 5
3 3
(w1]as +2a1) =1, (wi|ag +3a1) = 2 (w1]202 + 3a1) = 2

3 3

(w2]anr) =0, (w2laz) = > (walas +a1) = >

3 3

(WQ‘OQ =+ 2041) = 5, (WQ|O(2 + 30&1) 5, (WQ‘QOZQ + 30&1) = 3.

Thus, if n1,ng are integers > 0, the dimension of the simple representation
of highest weight niw; + nows is

<1+n11/2> <1+3n2/2> (Hnl/z+3;12/2> <1+n1 ﬁ?ﬂ>
i (1+321/2+3n2/2)z 3n1/2—|—3n2) :

2
:(1+n1)(1+n2) <1+n1+3n2) (1+ n1+3n2> <1+n1+n2>

2
2
()

. (1—|—n1)(1+n2)(2—|—n1 —|—n2)(3+n1 —|—2n2)(4—|—n1 +3n2)(5+2n1 +3n2)
B 5! '

In particular, the fundamental representation of highest weight wy (resp. ws)
is of dimension 7 (resp. 14).

3. MULTIPLICITIES OF WEIGHTS OF SIMPLE g-MODULES

PROPOSITION 1. Let w € Py . For all X € P, the multiplicity of X in E(w)
18
ma= Y e(w)Pww+p) — (A+p)).

weW

By Th. 1 and Lemma 1,

chE(w) =Ke 7dchE(w) =Ke™ Y e(w)e” )
weW
SO
chEw)= Y e(w)Py)e rHern
weW,yeQy
and
my = > (w)B(v).

wEW,YEQ4,y=—A—ptw(w+p)
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COROLLARY. If X is a weight of E(w) distinct from w,

my = — Z e(W)Mxry p—wp-
weW, w#1

Apply Prop. 1 with w = 0. If u € P={0}, we find that

0= e(w)Bwp+pn—p)

weW

B)=— D ePu+wp—p). (1)

weW,w#1

Prop. 1 also gives

ma=— S cw) S @) Blwlw+p) - (A+p)+wp—p)

weW w €W, w’#1

since w(w + p) # A+ p for all w € W (§7, Prop. 5 (iii)). Hence,

my=— Y e(w) Y ePlww+p) — A+ p—wp+p)
w' €W, w’#1 wEW
== Z e(wymayp—w, (Prop. 1).
w' €W, w’#1

4. DECOMPOSITION OF TENSOR PRODUCTS OF SIMPLE
¢-MODULES

PROPOSITION 2. Let A\, u € Pyy. In %(g), we have
Nl = D m )]
vePiy
with

m\pv) =Y elww)Pw\+ p) +w' (1 + p) — (v + 2p)).

w,w' eW

Let E, F be finite dimensional simple g-modules of highest weights A, u.
Let 1, be the length of the isotypical component of E ® F of highest weight
v. It suffices to show that

L, = Zwe(ww’)m(w(/\ +p)+w'(p+p) — (v +2p)). 2)

Put ¢; = ch(E) =) .pmoe?, co = ch(F), and d = J(e”), where J is defined
as in no. 2. We have
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> lech§] =ch(E®F) = cic,
£ePyy

so, after multiplying by d and using Th. 1,

Z 1eJ(e5TP) = e J (et TP = (Z mee ) (Z E(w)e“’(“'“’)) (3)

£ePy 4 oeP weW
— T+p
= Z (Z a(w)m,,+pw(ﬂ+p)> e’rr.
T7€P \weWw

Now, if £ € Py, £ + p belongs to the chamber defined by B (Chap. VI,
§1, no. 10); thus, for all w € W distinct from 1, we have w(§ + p) ¢ Py,

Consequently, the coefficient of e¥** in Z ng(eerp) is equal to [,,. In view
§eP 1

of (3), we obtain

L, = Z E(w)mv+p7w(y‘+p)7
weW

that is, by Prop. 1,

L= > ee)Pw A+p) - v+p—wp+p) +p)
w,w' €W

which proves (2).

Ezample. We return to the Example of no. 1. Let A = (n/2)a, p = (p/2)a,
v = (¢/2)a with n > p. We have

m()\7/,L,V):%(ga—i—%—kia—kg—ia—a)
T T N0
—%(—ﬁa— + o
+‘I3(f—a
a2 e(r5e)
This is zero if n + p + ¢ is not divisible by 2, or if ¢ > n + p. If
g=n+p-—2r

with r an integer > 0, we have

m()‘v s V) = ‘B(TO[) - ‘B((T —DP— 1)04)
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hence m(A, u,v) = 1 if r < p and m(A, u,v) = 0 if » > p. Finally, the
g-module V(n) ® V(p) is isomorphic to

Vin+p)@Vin+p-2)&V(n+p—-4) & - & V(n—p)
(Clebsch-Gordan formula).

§10. MAXIMAL SUBALGEBRAS OF SEMI-SIMPLE
LIE ALGEBRAS

THEOREM 1. Let V be a finite dimensional vector space, g a reductive Lie
subalgebra in gl(V), q a Lie subalgebra of g and ® the bilinear form (x,y) —
Tr(zy) on g x g. Assume that the orthogonal complement n of q with respect
to @ is a Lie subalgebra of g consisting of nilpotent endomorphisms of V.
Then q is a parabolic subalgebra of g.

a) q is the normalizer of n in g: let p be this normalizer. Let 2 € q and
y € n; for all z € q, we have [z, 2] € g, so

45([3379]7 Z) = QS(y’ [z,x]) =0

in other words, [x,y] € n. Hence q C p. Since n is an ideal of p consisting
of nilpotent endomorphisms of V, P is orthogonal to n with respect to @
(Chap. I, no. 3, Prop. 4 d)). Since @ is non-degenerate*, p C ¢, hence our
assertion.

b) There exists a reductive Lie subalgebra m in gl(V) such that q is the
semi-direct product of m and n: let ny(q) be the largest ideal of q consisting of
nilpotent endomorphisms of V. Then ny(q) contains n, and it is orthogonal to
q (loc. cit.); hence n = ny (q). Moreover, g is reductive in gl(V) by hypothesis,
hence decomposable (Chap. VII, §5, no. 1, Prop. 2); since q is the intersection
of g with the normalizer of n in gl(V), it is a decomposable Lie algebra (loc.
cit., Cor. 1 of Prop. 3). Thus, our assertion follows from Prop. 7 of Chap. VII,
85, no. 3.

Choose a Cartan subalgebra h of m; denote by g; the commutant of § in
g, and put g1 =qNg,m =nNgp.

¢) The Lie algebras g1,q1 and ny satisfy the same hypotheses as g,q and
n: since m is reductive in gl(V), b is commutative and is composed of semi-
simple endomorphisms of V (Chap. VII, §2, no. 4, Cor. 3 of Th. 2). Thus
g1 = g%(h) is reductive in g (Chap. VII, §1, no. 3, Prop. 11), hence also in
gl(V) (Chap. I, §6, no. 6, Cor. 2 of Prop. 7). It is clear that n; is composed

4 Let 3 be the orthogonal complement of g with respect to @; this is an ideal of g
contained in n, so every element of 3 is nilpotent. The identity representation of
g is semi-simple (Chap. I, §6, Cor. 1 of Prop. 7). Hence z = 0 (Chap. I, §4, no. 3,
Lemma 2).
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of nilpotent endomorphisms of V. Since b is a subalgebra of g, reductive in
gl(V), the adjoint representation of h on g is semi-simple; by construction,
g1 is the set of invariants of adq(h), so q = q1 + [, q] (Chap. I, §3, no. 5,
Prop. 6). Since

gp(gla [ba q]) - Qj([r%gl]a q) = 07

an element of g; is orthogonal to g; if and only if it is orthogonal to g;
consequently, ny = g; Nn is the orthogonal complement of ¢; in g;.

d) The Cartan subalgebra b of m is a Cartan subalgebra of g: We have
g=m®nand h = mN gy, so it is immediate that q; = h & n;. Moreover,
[h,n1] = 0, b is commutative and ny is nilpotent, so the Lie algebra gy is
nilpotent. By a) and ¢), q; is the normalizer of ny in g1; a fortiori, q; is
equal to its normalizer in g;, hence is a Cartan subalgebra of g;. Since gy is
reductive in gl(V), it follows from Cor. 3 of Th. 2 of Chap. VII, §2, no. 4,
that g1 is composed of semi-simple endomorphisms of V; thus, since n; is
composed of nilpotent endomorphisms of V, we have n; = 0. Consequently,
b = q1 is a Cartan subalgebra of g1, and since g; normalizes b, we have h = g;.
Thus, we have proved that every element of § is a semi-simple element of g,
and that the commutant of b in g is equal to b; it follows that h = g°(h), so
b is a Cartan subalgebra of g.

e) q is a parabolic subalgebra of g: by the preceding, b is a Cartan subal-
gebra of g, n consists of nilpotent elements of g, and [h,n] C n. Let k be an
algebraic closure of k; by definition, g is parabolic in g if and only if k ®y, q is
a parabolic subalgebra of k®;, g. The properties stated above being preserved
by extension of scalars, for the proof we can restrict ourselves to the case in
which b is splitting. Let R be the root system of (g, h); by Prop. 2 (v) of §3,

no. 1, there exists a subset P of R such that PN (—P) = @ and n = ZP g%
(¢S

Let P’ be the set of roots « such that —« ¢ P; we have P’ U (—P’) = R,
and the orthogonal complement g of n in g is equal to b + > g“. We have
acP’

proved that g is parabolic. Q.E.D.

Lemma 1. Let g be a semi-simple Lie algebra, V a finite dimensional vector
space, p a linear representation of g on V, D a vector subspace of V, b a
Cartan subalgebra of g, s (resp. §') the set of x € b such that p(x)D C D
(resp. p(z)D = 0), and @ the bilinear form on g associated® to p.

(i) If b is splitting, the vector subspaces s and s’ of b are rational over Q.
(ii) If p is injective, the restriction of @ to s (resp. s') is non-degenerate.
Assume that the Cartan subalgebra § is splitting. Let d be the dimension
of D; put W = /\d(V) and ¢ = /\d(p); denote also by (eq,...,eq) a basis
of Dand e = ey A--- A eq a decomposable d-vector associated to D. Let P
be the set of weights of o with respect to h; denote by W# the subspace of

® In other words, &(z,y) = Tr(p(z)p(y)) for z,y € g.
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W associated to the weight u, and put e = ZP et (with e € WH for all
ne

1 € P); finally, let P’ be the set of weights p such that e# # 0 and let P” be
the set of differences of elements of P’. Let = be in h; then = belongs to s if
and only if there exists ¢ in k such that p(z).e = c.e (Chap. VII, §5, no. 4,
Lemma 2 (i)). Since p(x).e* = p(z).e”, we see that x € s is equivalent to the
relation “u(x) = 0 for all p € P””. Now, the Q-structure of f is the Q-vector
subspace hq of h generated by the coroots H, and all p in P” take rational
values on hq; it follows (Algebra, Chap. II, §8, no. 4, Prop. 5) that s is a
subspace of h rational over Q.

For any weight u € P, let p, be the projection onto V# associated to

the decomposition V = Q% V*#; denote by P; the set of 4 € P such that
nep

pp(D) # 0. It is immediate that s’ is the intersection of the kernels (in h) of
the elements of Py; it follows, in the same way as for s, that s’ is a subspace
of h rational over Q. This proves (i).

By extension of scalars, it suffices to prove (ii) when k is algebraically
closed, hence when b is splitting. Let m be a vector subspace of h rational
over Q; for all non-zero « in mg = mNbq, we have $(z, ) > 0 by the Cor. of
Prop. 1 of §7, no. 1. The restriction of @ to mq is non-degenerate, and hence
so is the restriction of @ to m since m is canonically isomorphic to £ ®q mq.

DEFINITION 1. Let q be a Lie subalgebra of the semi-simple Lie algebra g.
Then q is said to be decomposable in g if, for all x € q, the semi-simple
and nilpotent components of x in g belong to q. Denote by ng(q) the set of
elements x of the radical of q such that adgx is nilpotent.

Let p be an injective representation of g on a finite dimensional vector
space V. We know (Chap. I, §6, no. 3, Th. 3) that an element x of g is
semi-simple (resp. nilpotent) if and only if the endomorphism p(z) of V is
semi-simple (resp. nilpotent). It follows immediately that the algebra q is
decomposable in g if and only if p(q) is a decomposable subalgebra of gl(V)
in the sense of Definition 1 of Chap. VII, §5, no. 1. With the notations of
Chap. VII, §5, no. 3, we also have

p(ng(a)) = nv(p(q)).

THEOREM 2. Let g be a semi-simple Lie algebra, n a subalgebra of g con-
sisting of nilpotent elements, q the normalizer of n in g. Assume that n is the
set of milpotent elements of the radical of q. Then q is parabolic.

Note first of all that q is decomposable (Chap. VII, §5, no. 1, Cor. 1 of
Prop. 3). By Th. 1, it suffices to prove that q is the orthogonal complement n°
of n with respect to the Killing form & of g. We know that q C n° (Chap. I, §4,
no. 3, Prop. 4 d)). By Chap. VII, §5, no. 3, Prop. 7, there exists a subalgebra
m of g, reductive in g, such that q is the semi-direct product of m and n. We
show that the restriction of @ to m is non-degenerate. Let ¢ be the centre of
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m. We have @([m, m],c) = 0 by Chap. I, §5, no. 5, Prop. 5, and the restriction
of @ to [m,m] is non-degenerate by Chap. I, §6, no. 1, Prop. 1. It remains
to see that the restriction of @ to ¢ is non-degenerate. Let £ be a Cartan
subalgebra of [m, m]; then € @ ¢ is commutative and reductive in g. Let ) be
a Cartan subalgebra of g containing € @ ¢ (Chap. VII, §2, no. 3, Prop. 10).
Then h N g is a commutative subalgebra of q containing &€ @ ¢, and adq is
semi-simple for all z € h N q; hence h N q is contained in a Cartan subalgebra
b’ of q (Chap. VII, §2, no. 3, Prop. 10); let f be the projection of q onto m
with kernel n; then f(h’) is a Cartan subalgebra of m (Chap. VII, §2, no. 1,
Cor. 2 of Prop. 4) containing ¢@ ¢, and consequently equal to €@ ¢; this proves
that f(hNq) = P ¢, and since every element of h is semi-simple in g, we
have h Ng = € P ¢. Thus,

c={ze€bh|[z,n] Cnand [z,[m,m]] =0}

By Lemma 1, the restriction of @ to ¢ is non-degenerate.

Let q° be the orthogonal complement of q in g relative to @. The preceding
proves that g N q° = n. Assume that q # q°, so ¢° # n (and q° D n). Since
adgn leaves q stable, adgn leaves q° stable; Engel’s theorem proves that there
exists © € q° such that # ¢ n and [z,n] C n. But then z € ¢ Ng =n, a
contradiction. Hence q = nY.

COROLLARY 1. Let q be a mazimal element of the set of subalgebras of g
distinct from g. Then q is either parabolic or reductive in g.

We can assume that g is a Lie subalgebra of gl(V) for some finite dimen-
sional vector space V. Let ¢(q) C g be the decomposable envelope of q. If
¢(q) = g, q is an ideal of g (Chap. VIIL, §5, no. 2, Prop. 4), hence is semi-
simple, and consequently q is reductive in g. Assume that e(q) # g. Then
¢(q) = q, so q is decomposable. Assume that q is not reductive in g. Let n be
the set of nilpotent elements of the radical of q. Then n # 0 (Chap. VII, §5,
no. 3, Prop. 7 (i)). Let p be the normalizer of nin g. Then p D g, and p # g
since g is semi-simple. Hence p = q. Thus q is parabolic (Th. 1).

COROLLARY 2. Let n be a subalgebra of g consisting of nilpotent elements.
There exists a parabolic subalgebra q of g with the following properties:

(i) n C ng(q);

(ii) the normalizer of n in g is contained in q;

(iii) every automorphism of g leaving n invariant leaves q invariant.

If g is splittable, n is contained in a Borel subalgebra of g.

Let g1 be the normalizer of n in g. This is a decomposable subalgebra
of g. Let ny = ng(q1). Define inductively q; to be the normalizer of n;_; in
g, and n; to be equal to ng(q;). The sequences (n,ni,ny,...) and (q1,92,...)
are increasing. There exists j such that q; = q,41, in other words q; is the
normalizer of ng(q;) in g. Thus q; is parabolic (Th. 1). We have n C n; =
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ng(q;), and q; C q;; every automorphism of g leaving n invariant evidently
leaves nq,ng, ... and g1, q2, . . . invariant. If g is splittable, q; contains a Borel
subalgebra b, and consequently (§3, no. 4, Prop. 13), we have b D ng(q;) D n.

THEOREM 3. Assume that k is algebraically closed. Let g be a semi-simple
Lie algebra. Let a be a solvable subalgebra of g. There exists a Borel subalgebra
of g containing a.

By Chap. VII, §5, no. 2, Cor. 1 (ii) of Prop. 4, we can assume that a is
decomposable. There exists a commutative subalgebra t of g, consisting of
semi-simple elements, such that a is the semi-direct product of t and ny(a)
(Chap. VII, §5, no. 3, Cor. 2 of Prop. 6). There exists (Cor. 2 of Th. 2)
a parabolic subalgebra q of g such that ng(a) C ny(q), and such that the
normalizer of ng(a) in g is contained in q; a fortiori, a C q. Let b be a Borel
subalgebra of g contained in q and h a Cartan subalgebra of g contained in
b. Then b is a Cartan subalgebra of ¢, so there exists s € Aut.(q) such that
s(t) € b (Chap. VII, §2, no. 3, Prop. 10 and Chap. VII, §3, no. 2, Th. 1). We
have s(ng(q)) = ng(q) (Chap. VII, §3, no. 1, Remark 1), so

s(a) = s(t) + s(ng(a)) C b+ s(ng(a)) = b+ ng(q) Cb.

COROLLARY. Ifk is algebraically closed, every maximal solvable subalgebra
of g is a Borel subalgebra.

§11. CLASSES OF NILPOTENT ELEMENTS AND
5l,-TRIPLETS

In this paragraph, g denotes a finite dimensional Lie algebra.

1. DEFINITION OF sl,-TRIPLETS

DEFINITION 1. An slo-triplet in g is a sequence (x,h,y) of elements of g,
distinct from (0,0,0), such that

[h’x] =2z, [hvy] = —2y, [x,y] = —h.

Let (z, h,y) be an sly-triplet in g. The linear map 7 from s((2, k) to g such
that 7(X4) =z, 7(H) = h,7(X_) = y is a homomorphism which is non-zero
and hence injective (since s[(2, k) is simple), and with image kx + kh + ky.
We thus obtain a canonical bijection from the set of sls-triplets in g to the
set of injective homomorphisms from sl(2, k) to g. If g is semi-simple and if
(x,h,y) is an slp-triplet in g, then  and y are nilpotent elements of g and h
is a semi-simple element of g (Chap. I, §6, no. 3, Prop. 4).
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Lemma 1. Let x,h,y,y € g. If (x,h,y) and (z,h,y") are sly-triplets in g,
theny =1vy'.

Indeed, y — ' € Ker(adgz) and (adgh)(y —y') = —2(y —¥'). But adgz is
injective on Ker(p+adgh) for every integer p > 0 (§1, no. 2, Cor. of Prop. 2).

Lemma 2. Let n be a subalgebra of g such that, for all n € n, adg(n) is
nilpotent. Let h € g be such that [h,n] = n. Then e*ds™ h = h +n.

It is clear that e*de(™ b C h + n. We shall prove that, if v € n, then
h+wv € eds(W) h Tt suffices to prove that h+v € e2de(™) b4+ €0n for all p > 1
(since €Fn = 0 for sufficiently large p). This is clear for p = 1 since €'n=n.
Assume now that we have proved the existence of y, € n and z, € €"n such
that h + v = e*ds¥% h 4 z,. Since (adgh)(n) = n, (adgh)|n is a bijection from
n to n, hence its restriction to ¥”n, which leaves € n stable, is also bijective;
consequently, there exists z € ¥”n such that z, = [z, h]. Then

et erdatioy € [z, h] + €'
$0
e Wt p e h 4 v — 2, + [2,h] + €T n=h+ v+ € n

which establishes our assertion by induction on p.

Lemma 3. Let x € g, p = Ker(adz), g = Im(ad ). Then [p,q] Cq, andpNq
1s a subalgebra of g.
If u € p and v € q, there exists w € g such that v = [z, w], so

[u7 U] = [u’ [x7w]] = [.7;‘, [u’w]] - Hxau]’w] = [.’E, [u’w]] €q.

On the other hand, p is a subalgebra of g, so [pNgq,pNgl CpNyq.

Lemma 4. Let (x,h,y) and (z,h',y") be sly-triplets in g. There exists z € g
such that adg 2z is nilpotent and such that

eadg Zy — z, eadg 2 = h/, 6adg zy _ y/'

Let n = Ker(ad z) NIm(ad z). For all p € Z, let g, = Ker(ad h — p). By
81, no. 3 (applied to the adjoint representation of kx + ky + kh on g), we
have that n C Z>:O gp, s0 adgn is nilpotent for all n € n, and [h,n] = n. We

2
have [x,h' — h] = 0 and [z,y —y'] = h' — h, so ' — h € n. By Lemmas 2
and 3, there exists z € n such that e*ds *h = h’. Since z € Ker adg z, we have
e®ds 23 = . Lemma 1 now proves that eds 7y =4/ Q.E.D.

Let G be a group of automorphisms of g. Then two sly-triplets (x, h,y),
(2, k', y’) are said to be G-conjugate if there exists g € G such that gz = 2/,

gh="n,gy=1y".
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PROPOSITION 1. Let G be a group of automorphisms of g containing
Aute(g). Let (x,h,y) and (z',h',y") be sly-triplets in g. Let

t=kx+kh+ky, =k +kh +ky.

Consider the following conditions:

(i) = and x' are G-conjugate;

(ii) (z, h,y) and (&', ', y") are G-conjugate;

(iii) t and ¥ are G-conjugate.

We have (1) <= (ii) = (iii). If k is algebraically closed, the three conditions
are equivalent.

(i) <= (ii): This follows from Lemma 4.

(ii) = (iii): This is clear.

We assume that k is algebraically closed and prove that (iii) = (i). We
treat first the case in which t = ' = g = sl(2, k). Since ady « is nilpotent, the
endomorphism x of k2 is nilpotent (Chap. I, §6, Th. 3), so there exists a matrix
A € GL(2,k) such that AxrA~! = X, and consequently an automorphism «
of sl(2, k) such that a(x) = 2’; now a € Aut(g) (85, no. 3, Cor. 2 of Prop. 5).
We now pass to the general case; we assume that t and t' are G-conjugate
and prove that x and 2’ are G-conjugate. We can assume that t = t'. By the
preceding, there exists § € Aut,(t) such that Sz = 2’. Now, if t € t is such

that adt is nilpotent, then ady ¢ is nilpotent; so 3 extends to an element of
Aut.(g).

Remark. The three conditions of Prop. 1 are equivalent if we assume only
that k = k? (cf. Exerc. 1).

2. 5[,-TRIPLETS IN SEMI-SIMPLE LIE ALGEBRAS

Lemma 5. Let V be a finite dimensional vector space, A and B endomor-
phisms of V. Assume that A is nilpotent and that [A,[A,B]] = 0. Then AB
18 nilpotent.

Put C = [A, B]. Since [A,C] =0,
[A,BCP] = [A,B]CP = cPH!

for every integer p > 0. Consequently, Tr(C?) = 0 for p > 1, which proves that
C is nilpotent (Algebra, Chap. VII, §3, no. 5, Cor. 4 of Prop. 13). Now let k be
an algebraic closure of k, and let A € k, € V ®;, k be such that ABz = \z,
x # 0. The relation [[B, A], A] = 0 shows that [B, AP] = p[B, A]AP~! for every
integer p > 0. Let r be the smallest integer such that A"z = 0. Then

AA""1z = A" 'ABz = A"Bz = BA"z — [B, A"z = —r[B, AJA" 2.

Since [B, A] is nilpotent and since A" ~!x # 0, this proves that A = 0. Thus,
all the eigenvalues of AB are zero, hence the lemma.
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Lemma 6. Let h,x € g be such that [h,x] = 2z and h € (ad x)(g). Then there
exists y € g such that (x, h,y) is either (0,0,0) or an sla-triplet.

Let g’ be the solvable Lie algebra kh + kx. Since z € [¢/,¢'], adgz is
nilpotent (Chap. I, §5, no. 3, Th. 1); let n be its kernel. Since [ad h,ad z] =
2ad z, we have (ad h)n C n. Let z € g be such that h = —[z, 2]. For any
integer n > 0, put M,, = (ad z)"g. If n > 0, we have (§1, no. 1, Lemma 1)

[ad z, (ad 2)"] = n((ad h) —n + 1)(ad z)"~!
so, if u € M,,_1,

n((ad h) —n+ lu € (ad z)(ad z)u + M,
Since (ad h)n C n, it follows that

((ad h) —n+1)(nNM,_1) C nNM,.

Since ad z is nilpotent, M,, = 0 for sufficiently large n. Consequently, the
eigenvalues of ad h|n are integers > 0. Thus, the restriction of ad h + 2 to n
is invertible.

Now [h, z] + 2z € n since

[z, [h, 2] + 22] = [[z, h], 2] + [h, [z, 2]] + 2|z, 2]
= [-2z, 2] + [h, —h] + 2[z, 2] = 0.

Hence there exists z’ € n such that [h,2'] + 22" = [h,z] + 2z, that is,
[h,y] = —2y, putting y = z— 2’. Since [z, y] = [z, 2] = —h, this completes the
proof.

PROPOSITION 2 (Jacobson-Morozov). Assume that g is semi-simple. Let x
be a non-zero nilpotent element of g. There exist h,y € g such that (z,h,y)
s an sla-triplet.

Let n = Ker(ad z)2. If z € n, then [ad z, [ad z,ad 2]] = ad([z, [z, 2]]) = 0.
By Lemma 5, ad zoad z is nilpotent, so Tr(ad zoad z) = 0. This shows that
x is orthogonal to n with respect to the Killing form @ of g. Since

P((ad 2)*y,y') = B(y, (ad z)%y’)

for all y,4" € g, and since @ is non-degenerate, the orthogonal complement of
n is the image of (ad z)2. Hence there exists ¥’ € g such that z = (ad z)?%y’.
Put

h = 72[357 y/]7
we have [h,z] = 22 and h € (ad z)(g). It now suffices to apply Lemma 6.

COROLLARY. Assume that g is semi-simple. Let G be a group of automor-
phisms of g containing Aut.(g). The map which associates to any sly-triplet
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(z,h,y) in g the nilpotent element = defines, by passage to the quotient, a
bijection from the set of G-conjugacy classes of sla-triplets to the set of G-
congugacy classes of non-zero nilpotent elements.

This follows from Prop. 1 and 2.
Lemma 7. Let K be a commutative field with at least 4 elements. Let G be

0 ot
of such matrices such that « = 1. Then G’ = (G, G).
If ,0 € K* and 3,5 € K,

a ﬁ O/ ﬂ/ a /61 -1 O[/ ﬂ/ -1

0 ot 0 o ! 0 ot 0 o'
(1 =B —aBd?+ 2B+ af
=1 ) .

the group of matrices <a s > where o € K*, 8 € K. Let G’ be the group

In particular,

GG (65 =6

But there exists af, € K* such that oy # 1 and ajy # —1, and then k.(1—a}?)
= k, hence the lemma.

PROPOSITION 3. Assume that g is semi-simple. The group Aute(g) is equal
to its derived group. If g is splittable, Aut.(g) is the derived group of Auto(g).

Let z be a non-zero nilpotent element of g. Choose h,y € g be such
that (x, h,y) is an slo-triplet (Prop. 2). The subalgebra s of g generated by
(@, h,y) can be identified with s[(2, k). Let p be the representation z — adg z
of s = s5l(2,k) on g, and let w be the representation of SL(2, k) compatible
with p (§1, no. 4). The image of 7 is generated by the exp(tady ) and the
exp(tadgy) with ¢t € k (Algebra, Chap. III, §8, no. 9, Prop. 17), hence is
contained in Aut.(g). Since SL(2, k) is equal to its derived group (Lemma 7
and loc. cit.), exp(adg x) belongs to the derived group G of Aut.(g). Hence
Aut,(g) is equal to G. Assume now that g is splittable. Since Auto(g)/Aut.(g)
is commutative (§5, no. 3, Remark 3), the preceding proves that the derived
group of Autg(g) is Aut.(g).

3. SIMPLE ELEMENTS

DEFINITION 2. An element h of g is said to be simple if there exist x,y € g
such that (xz, h,y) is an sly-triplet in g.

We also say that h is the simple element of the sly-triplet (z, h,y).
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PROPOSITION 4. Let h be a non-zero element of g. Then h is simple if and
only if there exists x € g such that [h,z] = 2z and h € (ad z)(g).

The condition is clearly necessary. It is sufficient by Lemma 6.

PROPOSITION 5. Assume that g is splittable semi-simple. Let b be a split-
ting Cartan subalgebra of g, R the set of roots of (g,h), and B a basis of R.
Let h be a simple element of g belonging to . Then h is conjugate under
Aut.(g,h) to an element h' of § such that a(h') € {0,1,2} for all a € B.
The eigenvalues of adgh belong to Z (§1, no. 2, Cor. of Prop. 2). Hence
h € hq. There exists an element w of the Weyl group of (g, h) such that
a(wh) > 0 for all & € B (Chap. VI, §1, no. 5, Th. 2 (i)). In view of §2,
no. 2, Cor. of Th. 2, we are reduced to the case in which a(h) € N for all
o € B. Let R4 be the set of positive roots relative to B, and R_ = —Ry.
There exists an sly-triplet in g of the form (z, h,y). Let T be the set of roots
B such that G(h) = —2. Then T C R_ and y € ﬁ;T g”. Assume that there

exists @ € B such that a(h) > 2. For all § € T, we have (o + 3)(h) > 0, so
a+ 3¢ R_ and a+ § # 0; on the other hand, since § € R_ and «a € B, we
have o+ 3 ¢ R, ; hence a + 3 ¢ RU {0}, so [g%, ¢°] = 0. Thus, [y, g%] = 0.
But adgy|g® is injective since a(h) > 0 (§1, no. 2, Cor. of Prop. 2). This
contradiction proves that a(h) < 2 for all « € B.

COROLLARY. If k is algebraically closed and if g is semi-simple of rank [,
the number of conjugacy classes of simple elements of g, relative to Aut.(g),
is at most 3.

Indeed, every semi-simple element of g is conjugate under Aut.(g) to an
element of b.

Lemma 8. Assume that k is algebraically closed and that g is semi-simple. Let
h be a semi-simple element of g such that the eigenvalues of ad h are rational.
Let g° = Ker(ad h), g2 = Ker(ad h — 2). Let Gy, be the set of elementary
automorphisms of g leaving h fized. Let v € g2 be such that [z, g°] = g2. Then
Gnx contains a subset of g* that is dense and open in the Zariski topology.

Let h be a Cartan subalgebra of g°. This is a Cartan subalgebra of g
containing h (Chap. VII, §2, no. 3, Prop. 10). We have h € hq. Let R be the
root system of (g,h), Q the group of radical weights. There exists a basis B
of R such that a(h) > 0 for all a € B.

Let U be the set of z € h such that a(z) # 0 for all & € B. Let (H),)aen
be the basis of h dual to B. If z € U, there exists a homomorphism from
Q to k* that takes any v € Q to I;[Boz(z)V(Hé). By §5, Prop. 2 and 4, the

endomorphism ¢(z) of the vector space g which induces on g” the homothety
with ratio HBa(z)V(H;) is an elementary automorphism of g, which clearly
€

[0}
belongs to Gy.
Let s € h. If v € R is such that g¥ N g2 # 0,
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2=r(h) =7 (Z a(h)H,;> = a(h)y(H);

aeB acB

since a(h) > 0 for all € B, and since the y(H/,) are integers either all > 0 or
all <0, we have y(H/) € N for all & € B. Thus, we can consider (for z € b)
the endomorphism (z) of the vector space g? that induces on g” N g2 the

homothety with ratio HB a(z)YHe) | The map z — 1(z) from b to End(g?)
[e1S

is polynomial. For z € U, we have ¥(z) = ¢(2)|g%.

Let 71, ..., be the distinct roots of (g, h) vanishing on h. If y; € g7,. ..,
yr € g7, we have e2d¥1 . e ¥r ¢ Gj,. We can thus define a map p from
hx g’ x --- x g7 to g2 by putting

p(zayh cee ,yr) = w(z)ead vi .ead Yr g

for zebh, y1 €¢™, ...,y €g" . This map is polynomial, and p(U, g",...,g")
C Gpa. By Chap. VII, App. I, Prop. 3 and 4, it suffices to prove that the
tangent linear map of p is surjective at some point.
Now let T be the tangent linear map of z — ¥(z) at hg = %:B H! . Then
«

T(z) is the endomorphism of g? that induces on g” N g% the homothety with
ratio

ST ahe) T a(z) T Blho) ) =37 A(HL)a(z) = (2).

aEeB BEB,B#x a€B

Thus, the tangent linear map of z +— p(z,0,...,0) at hg is the map
z — [z,x]; its image is [z,h]. The tangent linear map at 0 of the map
y1 — p(ho,y1,0,...,0) is the map y; — 1 (ho)[y1, z]; this last map has image
Y(ho)[x,g"] = [x,g"]. Similarly, the tangent linear map at 0 of the map
yi — p(ho,0,...,0,9;,0,...,0) has image [z, g"]. Finally, the tangent linear
map of p at (ho,0,...,0) has image

[I, h+ g’Yl 4+ 4 g'Yr} = [x’go} = 92, Q.E.D.
*The group Gy, is an algebraic group with Lie algebra ad g°..

PROPOSITION 6. Assume that k is algebraically closed and that g is semi-
simple. Let G be a group of automorphisms of g containing Aut.(g). Let
(z,h,y) and (z', b, y') be sly-triplets in g. The following conditions are equiv-
alent:

(i) h and b’ are G-conjugate;

(ii) (z, h,y) and (', k', y") are G-conjugate.

We only have to prove the implication (i) = (ii), and we are reduced
immediately to the case in which h = h’. Introduce g and G, as in Lemma 8.
We have = € g2, and [z,g"] = g? by §1, no. 2, Cor. of Prop. 2. Hence G
contains a subset of g? that is dense and open in the Zariski topology, and
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so does Gpa'. So there exists a € Gy, such that a(z) = z’. We have a(h) = h,
and consequently a(y) = ¢’ (no. 1, Lemma 1).

COROLLARY 1. The map which associates to any sla-triplet its simple el-
ement defines by passage to the quotients a bijection from the set of G-
conjugacy classes of sla-triplets to the set of G-conjugacy classes of simple
elements.

COROLLARY 2. If rk(g) = I, the number of conjugacy classes, relative to
Aut.(g), of non-zero nilpotent elements of g is at most 3!.

This follows from Cor. 1, the Cor. of Prop. 2, and the Cor. of Prop. 5.

COROLLARY 3. If tk(g) = I, the number of conjugacy classes, relative to
Aut.(g), of subalgebras of g isomorphic to sl(2,k) is at most 3'.

This follows from Cor. 1, Prop. 1, and the Cor. of Prop. 5.

4. PRINCIPAL ELEMENTS

DEFINITION 3. Assume that g is semi-simple.

(i) A nilpotent element x of g is said to be principal if the dimension of
Kerad x is the rank of g.

(ii) A simple element h of g is said to be principal if h is regular and the
eigenvalues of ad h in an algebraic closure of k belong to 27Z.

(iii) An sly-triplet (x,h,y) of g is said to be principal if the length of g,
considered as a module over kx 4+ kh + ky, is equal to the rank of g.

PROPOSITION 7. Assume that g is semi-simple. Let (x,h,y) be an sly-
triplet in g. The following conditions are equivalent:

(i) = is principal;

(ii) h is principal;

(iii) (x, h,y) is principal.

For p € Z, let g = Ker(ad h — p). Let g’ = ;Zgzp. If g is considered as
a module over a = kx + kh + ky, ¢’ is the sum I;f the simple submodules of

odd dimension (§1, no. 2, Cor. of Prop. 2). Let [ (resp. I') be the length of g
(resp. ¢g') considered as an a-module. By §1, no. 2,

dim(Keradz) =1 >l = dim(Ker ad h) > rk(g).

The equivalence of (i) and (iii) follows immediately. On the other hand, con-
dition (ii) means that dim(Keradh) = rk(g) and g’ = g, in other words
that

dim(Ker ad h) = rk(g)
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and [ = I'. The equivalence of (ii) and the other conditions follows.

PROPOSITION 8. Assume that g is semi-simple # 0. Let b be a splitting
Cartan subalgebra of g, R the root system of (g,h), B a basis of R, h" the
element of b such that a(h®) = 2 for all o € B.

(i) The element h° is simple and principal.

(ii) The elements x of g such that there exists an sly-triplet of the form
(x,h%,y) are the elements of 2. g% that have a non-zero component in each
aEB
g%
The element h° is that considered in §7, no. 5, Lemma 2 (cf. loc. cit.,
formula (1)). It follows from this lemma that k" is simple principal and that,

ifz e 2 g% has a non-zero component in each g%, there exists an sls-
aeB

triplet of the form (x,h° y). Conversely, let (z,h° y) be a sly-triplet. We
have [h°, 2] = 2z, so x € > g7’ = 2 g“ Similarly, y € EBg_"‘.
ac

YER,y(h9)=2 a€eB
Write
RO = Z aoH, where a, > 0 for all a € B,
aEeB
T = Z Xa where X, € g° for all a € B,
a€B
Y= Z X_o  where X_, € g7 for all a € B.
aEeB
Then
Z aaHa = ho = [yvl'] = Z [XfﬂaXa] = Z[Xfomon]
a€B «a,BeB a€B

$0 [X_q, Xo] #0 for all @ € B.

COROLLARY. In a splittable semi-simple Lie algebra, there exist principal
nilpotent elements.

In a non-splittable semi-simple Lie algebra, 0 may be the only nilpotent element.

PROPOSITION 9. Assume that k is algebraically closed and that g is semi-
simple. All the principal simple (resp. nilpotent) elements of g are conjugate
under Aut.(g).

We retain the notations of Prop. 8. Let A be a principal simple element.
It is conjugate under Aut.(g) to an h’ € h such that a(h') € {0,1,2} for all
a € B (no. 3, Prop. 5). Since A’ is principal simple, a(h’) # 0 and «(h') € 2Z
for all o € B, so a(h/) = 2 for all a € B, and hence h’ = h®. This proves the
assertion for principal simple elements.
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Let z, 2’ be principal nilpotent elements. There exist sly-triplets (z, h,y),
(z',1,y"). By Prop. 7, h and &' are principal simple, hence conjugate under
Aut,(g) by the preceding. So x and «’ are conjugate under Aut.(g) (Prop. 6).

Lemma 9. With the notations of Prop. 8, put gP = Ker(ad h® — p) for p € Z.
Let g2 be the set of elements of g° = ZB g% that have a non-zero component
[e1S
in each g*. Let Ry be the set of positive roots relative to B, ny = ZI:{ g%,

acRy
and x € g2. Then e*d™ . x =z + [ny ny].
It is clear that e "+ .z C x+[n,,ny]. We prove that, if v € [ny,n,], then

z+v e e g Put n® = Z>: g%, it suffices to prove that
r>p

T +v e e g4 n®

for all p > 2. This is clear for p = 2 since n® = [n_,n,] (§3, no. 3,
Prop. 9 (iii)). Assume that we have found 2z € ny such that v+ — 4%z €
n®). Since there exists an slo-triplet of the form (z,h°,y) (Prop. 8), §1,
no. 2, Cor. of Prop. 2 proves that [z,g?’2] = g°!; hence, there exists
2’ € =2 C ny such that

v+a—e e x] Pty

So v+ € 2d(=+2) g 4 nP+D) and our assertion is established by induction.

PROPOSITION 10. Assume that g is semi-simple. Let b be a splitting Car-
tan subalgebra of g, R the root system of (g,h), B a basis of R, Ry the set

of positive roots relative to B, and ny = > g“. The principal nilpotent el-
acR

ements belonging to ny are the elements of ny having a non-zero component
in g% for all a € B.

Prop. 8 and Lemma 9 prove that such elements are principal nilpotent.
We prove the converse. Evidently we can assume that g is simple. Let h°
and gP be as in Prop. 8 and Lemma 9. Let w be the highest root, and put
w(h®) = 2¢; we have ¢ = h — 1, where h is the Coxeter number of R, cf.
Chap. VI, §1, no. 11, Prop. 31. Then g%¢ = g¥, g=2¢ = g=¥, and g?* = 0 for
|k| > q. There exists a principal sla-triplet (z°, h%,4°). By §1, no. 2, Cor. of
Prop. 2, (adz°)%9(g~) = g%, so (ad 2°)?? # 0. Let x be a principal nilpotent
element of g belonging to n,.. If k is an algebraic closure of k, z®1 and z°®1
are conjugate under an automorphism of g ®; k (Prop. 9), so (ad z)?? # 0.
There exists A € R such that (ad z)?9g* # 0. Put = = Z>:1 T, where z,, € g°".

n>
Then

(ad2)?g* C (adx1)?%g> + Z g* = (ad z1)%g?,
k>4q+A(hO)
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since 4q+\(h°) > 49 —2q = 2q. Now (ad z1)%7g* C g1t M) where \ = —w.

Thus, (adx1)?7g™* = g¥. We have w = ZBnaoz with n, > 0 for all o €
a€E

B (Chap. VI, §1, no. 8, Remark). If there exists ag € B such that z; €

g, the relation
a€B,a#ag

wé¢—w+ Z ka

a€B,a#ag

implies that g¥ ¢ (adz1)Pg~* for all p; this is absurd, so the component of
x1 in g% is non-zero for all « € B.

§12. CHEVALLEY ORDERS

1. LATTICES AND ORDERS

Let V be a Q-vector space. A lattice in V is a free Z-submodule ¥ of V such
that the Q-linear map ayv : ¥®z Q — V induced by the injection of #'into
V is bijective. When V is finite dimensional, this is the same as saying that ¥
is a Z-submodule of finite type which generates the Q-vector space V (recall
that a torsion-free Z-module of finite type is free by Algebra, Chap. VII, §4,
no. 4, Cor. 2); moreover, in this case our definition is a special case of that of
Commutative Algebra, Chap. VII, §4, no. 1, Def. 1 (loc. cit., Example 3). If
W is a vector subspace of V, and ¥is a lattice in V, then ¥N'W is a lattice
in W.

If V is a Q-algebra, an order in V is a lattice #in the underlying vector
space that is a Z-subalgebra of V; the map ay;yv is then an isomorphism of
Q-algebras. If V is a unital Q-algebra, a unital order in V is an order in V
containing the unit element.

Assume that V is a Q-bigebra, with coproduct ¢ and counit ~. If #is a
lattice in the vector space V, the canonical map i : Y®z ¥ — V ®q V is
injective; a biorder in V is a unital order #'in the unital algebra V such that
¥(¥) C Z and ¢(¥) C i(¥®z ¥); the maps

Yy:V—2Z and cy:V— VRz YV

induced by v and c give ¥ the structure of a Z-bigebra, and the map ay v is
then an isomorphism of Q-bigebras.

2. DIVIDED POWERS IN A BIGEBRA

Let A be a unital k-algebra, z € A, d € k, n € N. Put
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Snd) — x(x—d)...gi—d(n— D) _ ﬁ(x—id)/(i+ 0. (1)
i=0

In particular, (0@ = 1, (14 = 2. We agree that (% = 0 for n an integer
< 0. Put
() _ p(n0) _ 2"
2t =0 = = (2)
(x):m(n’l):x(x—l)...(xfnJrl). 3)
n n!

PROPOSITION 1. Let A be a bigebra, with coproduct ¢, and x a primitive
element (Chap. II, §1, no. 2) of A. Then

c(zmdy = Z 2Pd) g p(a:d) (4)
pEN,gEN,p+g=n

The proposition is trivial for n < 0. We argue by induction on n. If formula
(4) is true for n, then

(n+ 1)e(z" 1)) = ¢(z — dn)e(z™)
=(@x@1+1®0z—dnl®1)cz™)
= Z [xx(p,d) @ 20D 4 2Pd) @ polad) _ (p+ q)dx(p’d) ® x(q’d)]

ptg=n

= Z (z — pd)z®D @ 20D 4 Z @D @ (z — qd)z(®?
pt+g=n ptq=n

= Z (p+ 1)z® 1D g gled) 4 Z (¢ + 1)z g glatld)
p+q=n p+g=n

— Z re™d @ (&4 L Z sz(Md) @ (54
r+s=n+1 r+s=n+1

= (n + 1) Z x(rad) ® x(s,d)’

r+s=n-+1

hence formula (4) for n + 1.

3. INTEGRAL VARIANT OF THE POINCARE-BIRKHOFF-
WITT THEOREM

Let g be a finite dimensional Q-Lie algebra, U(g) its enveloping bigebra. If
I is a totally ordered set, x = (x;)ie1 a family of elements of g, and n =
(n:)ier € NU a multi-index, put

Yz

n Ty
X = ]2 (5)

the product being calculated in U(g) in accordance with the ordered set I.
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THEOREM 1. Let % be a biorder in the bigebra U(g). Let = %N g, which
is an order in the Lie algebra g. Let (z;):c1 be a basis of 4. Give 1 a total
order, and assume that we are given, for all n € N', an element [n] of %
such that [n] — x™) has filtration < |n| in U(g). Then, the family of the [n]
for n € N is a basis of the Z-module .

For p € N, let U,(g) be the set of elements of U(g) of filtration < p; then
the images in U,(g)/U,_1(g) of the x™ such that |n| = p form a basis of
this Q-vector space (Chap. I, §2, no. 7, Th. 1); hence the [n] form a basis
of the Q-vector space U(g). It remains to prove the following assertion (in
which we put M = N'):

(*)if u € % (an) € Z™, and d € N={0} are such that
du = Z an[nl, (6)
neM
then d divides each ay.

For each integer r > 0, introduce the iterated coproduct
G U-T (U =ULUR - QU

by definition, ¢q is the counit of %, ¢; = Idy, ca = ¢ (the coproduct of %),
and, for r > 2, ¢,41 is defined as the composite po (¢, ® 1) o c:

U - URaU “2 T U)o - T (D)

where p is defined by using the multiplication in the algebra T(%). Further,
consider the canonical projection 7 of Zonto " = Ker ¢y, and the composite

=T (n)oc,: W— T (UT).
Lemma 1. Let n € N'. If |n| < r, then ¢} ([n]) = 0. If |n| = r, then

&f([n)) =D wp) ®zpz) @ - © Ty, (7)

©

where @ belongs to the set of maps from {1,2,...,r} to I which take each
value © € I n; times.

By Prop. 1,
er(xM™) = Zx(pl) ® - @xPr)

where the summation extends over the set of sequences (py,...,p,) of r
elements of M such that p; + -+ + p,, = n. In view of Chap. II, §1, no. 3,
Prop. 6, the map ¢, extended by linearity to a map from U(g) to T" (U™ (g)),
vanishes on U,_;(g). It follows that, for > |n|,
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¢f () = (x™) =3 axP) @ @ n(x®)). (®)

For r > |n|, the relation p; + --- + p, = n implies that at least one of the
p, is zero, so ¢ ([n]) = 0. For r = |n|, the only non-zero terms of the third
member of (8) are those for which |p;| =+ = |p,| = 1, hence (7).

We return to the proof of Th. 1. We retain the notations of (*) and prove,
by descending induction on |n|, that d divides ay, which is clear when |n| is
sufficiently large. If d divides a, for |n| > r then, putting

w=u-— Z (an/d)[n] € %,
In|>r
we have
du’ = Z an[nl. 9)
In|<r
For any map ¢ from {1,2,...,7} to I, put
€p = Tp(1) ® - @ To(r)
and a, = a, where n = (Card o1 (4));e1. By Lemma 1, (9) implies that
def () = 3 age, (10)
pelr

so¢f(u') € TN(ZT)NQT"(¥). But the submodule & of ™ is a direct factor
(Algebra, Chap. VII, §4, no. 3, Cor. of Th. 1), so the submodule T"(9) is a
direct factor of T"(% ™), and hence ¢} (u') € T"(%). On the other hand, the
x; form a basis of ¢ by hypothesis, so the e, form a basis of T"(%). Then
(10) proves that d divides the a, that is, the ay for |n| = r. This proves (*).

4. EXAMPLE: POLYNOMIALS WITH INTEGER VALUES

Let V be a finite dimensional Q-vector space, V* its dual, # a lattice in V,
¥ the dual Z-module of ¥, which can be identified canonically with a lattice
in V*, S(V) the symmetric algebra of V, and

A:S(V) = A(VY)

the canonical bijection from S(V) to the algebra of polynomial functions on
V* (Algebra, Chap. IV, §5, no. 11, Remark 1). If we identify A(V* x V*) with
A(V*) ®q A(V*), then X transforms the coproduct of S(V) into the map
A(V*) — A(V* x V*) which associates to the polynomial function ¢ on V*
the polynomial function

(z,y) = oz +y)
on V* x V* (Algebra, Chap. IV, §5, no. 11, Remark 2).



§12. CHEVALLEY ORDERS 177

Denote by (;/ ) the subset of S(V) consisting of the elements which cor-

respond to polynomial maps from V* to Q that take integer values on ¥™.

PROPOSITION 2. (i) (“ZV ) is a biorder in the bigebra S(V), and (“ZV ) AV=".

(ii) The Z-algebra (Z) is generated by the (Z) for h € ¥;n € N.
(iii) If (h1,...,hy) is a basis of ¥, the elements

(w)= () ()

where n = (nq,...,n,) belongs to N, form a basis of the Z-module (Z)
For m € N, put S,,(V) = ; SY(V), Sm(¥) = ; S'(#). By Algebra,
Chap. IV, §5, no. 9, Prop. 15 and Remark, -

8,00 8,10 (7 ) € 2i8n”

SO (;/) NV = ¥ Since S,,(¥) is a lattice in S,,(V), S, (V) N (;) is also
a lattice in S,,,(V). On the other hand, S,,(V) N (é/) is a direct factor of
Smt1(V)N (Z) (since the quotient is torsion-free), hence it admits a com-
Z) is a free Z-module.
It is clear that this is a unital order in the algebra S(V). Let (u,)nen be a
basis of the Z-module (;/) This is also a basis of the Q-module S(V) and,
for all

¢ € S(VxV)=8(V)2qS(V),

plement which is a free Z-module. It follows that (

there exists a unique sequence (v,,) of elements of S(V) such that o =3 u,, ® vy,.
As above, identify S(V) with A(V*) and S(V) ® S(V) with A(V* x V*). If

p € (7/27/)7 the polynomial function  — @(z,y) belongs to (Z) for all

y € V. It follows that v, (y) € Z for all n and all y € ¥™, in other words that
Uy, € (Z) This proves that the coproduct maps (Z) to (Z) ®7z (Z) Ifheyv

and n € N, then (Z) maps u € ¥~ to the integer (“%h)), SO (h) € (Z)

Assertion (iii) is now obtained by applying Th. 1 to the commutative Lie
algebra V, and (ii) follows.

COROLLARY. Let X be an indeterminate. The polynomials ();), where

n € N, form a basis of the Z-module consisting of the polynomials P € k[X]
such that P(Z) C Z.
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If P(Z) C Z, the Lagrange interpolation formula (Algebra, Chap. IV, §2,

no. 1, Prop. 6) shows that the coefficients of P belong to Q; thus, we can
assume that ¥ = Q and apply Prop. 2 with V=Q, ¥=Z.

5. SOME FORMULAS

In this number, A denotes a unital associative algebra. If x € A, we write
ad z instead of adax.

Lemma 2. If v,y € A andn € N,

(adx)”y: Z (71)q~’5p z? Z (—1)22P)yg (@), (11)

n! P
p+g=n ptq=n

Indeed, if we denote by L, and R, the maps z — zz and z — zz from A
to A, we have, since L, and R, commute,

1 n 1 " 1 1
E(adx) :a(LI_RI) = Z (_l)qﬁLga

p+q=n

R,

Lemma 8. Let x,h € A and X € k be such that (ad h)x = Az. For alln € N,
and all P € k[X], we have

P(h)z™ = 2P (h +n)). (12)

Since ad h is a derivation of A and since (ad h)r commutes with z, we
have

(ad h)z™ = na""((ad h)x) = nAz™, (13)
S0

(ad h)z™ = nz™.
Thus, formula (12) follows from the special case

P(h)x = 2P(h + ) (14)

by replacing = by (™ and X by n\. It suffices to prove (14) when P = X™,
by induction on m. It is clear when m = 0, 1. If (14) is true for P = X™, then

R e = h.h™x = ha(h + \)™ = z(h + )™ !
which proves (12).
Lemma 4. Let x,y,h € A be such that

ly,z] = h, [h,x] =2z, [h,y]=—2y. (15)
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(i) For m,n € N, we have

2y = 3 ymep) (m +n—p—1- h) L (n=p). (16)
p>0 p

(i) Let A’ be the Z-subalgebra of A generated by the (™ and the y(™
for m € N. Then (Z) € A’ for alln € N.

Formula (16) can be written in the equivalent form
—p_1-—
(ad ™)y = 3~ ymp) (m Tn=p h) 2(=p) (17.m)
p>1 p

This is trivial for m = 0. We argue by induction on m. From (17,,), we obtain

(m + 1)(ad ™)y™m+D) = (ad ™)y ™ y + ™ (ad 2™y (18)
_ Zy(mfp) <m +n—p— 1-— h) x(n,p)y + y(m)(n 11— h)x(nfl)
p>1 P

(81, no. 1, Lemma 1). Now, applying the same lemma, and then Lemma 3,
we have

<m+np 1 h)x(”p)y
p

—p—1—h
= <m—|—n ; > (yz"P) 4 (n—p—1—h)z(PY)

= (m—l—n—p—&—l—h)x(n_p)
p
+n—p—1-h
+(m n—op

n—p—1-h)z"P=D,
et

Inserting this into (18), we obtain

(m + 1) (ad ™)y "+

=> (m—p+1ymrth <m tn-ptl- h) z(n=P)

p>1 p
—p—1—
Yy <m+n 5 h) (n—p—1—h)z(—P=H
p>1

+y™(n—1—h)z™Y

- Z(m —p+ 1ym=rD) (m tn-ptl- h) (D)
p=>1 p

p
p>0
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Changing p to p — 1 in the second sum, and regrouping the terms, we obtain

(m + 1)(ad ™)y (m+1) = Zy(m_PH)Apx("_p) (19)
p>1
with
_ 1— oy
Ap:(m—p+1)<m+n ;+ h>+(n—p—h)<m+;_1p h>.

Putting 2z = m + n — p — h, this can also be written as

Ap:l(mprrl)(erl)z(z—1)...(zfp+2)

p!
1
+ (p_l)!(z—m)z(z—1)...(z—p+2)
:%Z(Zf1)...(z—p+2)[(m*p+1)(2+1)+P(Z*m)]
B 2\ (m+1)+n-—p—-1-h
_(m—|—1)<p>—(m+1)( » )

Inserting this into (19), we obtain (17,,+1), hence (i).
Assume that (Z) € A’ for p < n. Then, for all P € Q[T] of degree < n

such that P(Z) C Z, we have P(h) € A’ (no. 4, Cor. of Prop. 2). Hence, in
view of (16) with m = n,

()=

n—1
= oy L 3 ) <2” —p-1- h) £P) ¢ A,

p=0 p

hence (ii) by induction on n.

6. BIORDERS IN THE ENVELOPING ALGEBRA OF A SPLIT
REDUCTIVE LIE ALGEBRA

Let g be a reductive Lie algebra over Q, h a splitting Cartan subalgebra of
g, and R = R(g,h) (§2, no. 1, Remark 5).

DEFINITION 1. A lattice S in b is said to be permissible (relative to g) if,
for all « € R, we have H, € 5 and o(H#) C Z.

Remarks. 1) Let B be a basis of R. A lattice 5#in b is permissible if and only
if Hy, € #and a(s) C Z for all a € B.

2) Let ¢ be the centre of g. Then, a lattice ##in b is permissible if and
only if Q(RY) C ##C P(RY) @ ¢. The lattice N g is then permissible in
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the Cartan subalgebra h N Zg of Zg. There may exist permissible lattices 7
such that # (AN Zg) @ (AN ¢) (cf. §13, no. 1.IX).

3) If g is semi-simple, the permissible lattices in b are the subgroups ¢
of b such that Q(RY) C s#C P(RY).

In the remainder of this number, we assume fixed a split reductive Lie
algebra (g, h), a basis B of R = R(g, h) and, for each a € B, a pair (24, Ya)
with

e}

Ya €9 Y Za €8% [Ya,Ta| = Ha. (20)
If we denote by n (resp. n_) the subalgebra of g generated by the z,, (resp.
the y4 ), we know (§3, no. 3, Prop. 9 (iii)) that
g=n_ohony (21)
U(g) = U(n-) ®q U(h) ®q U(ny) (22)
(where U(g), ... are the enveloping algebras of g, .. .).

Denote by %, the Z-subalgebra of U(n,) generated by the ™ fora € B
and n € N. Let W be the Weyl group of R, Ry the set of positive roots
relative to B.

Lemma 5. () %y is a lattice in the vector space U(ng).
(ii) For all o € B, we have %y NU(g®) = @N Zzl.
ne

By definition, %, is generated as a Z-module by the elements

() _ (n(3)
)= 11 =)

1<:i<r
where r € N, ¢ = (¢(i)) € B", and n = (n(i)) € N". Give the algebra U(n,)
the graduation of type Q(R) for which each g (o € Ry ) is homogeneous of
degree . A monomial ;v&,n) of the preceding type is homogeneous of degree

> n@)eli) € QR).

1<i<r
The monomials of this kind having a given degree ¢ are finite in number,
and generate over Q the homogeneous component of U(n,) of degree ¢. This
proves (i).

If a € B, ;- NU(g?®) is contained in the sum of the homogeneous compo-
nents of degrees which are multiples of «; thus, by the preceding, %, NU(g®)
is generated by the xfpn) such that > n(i)¢(i) € Na, which forces ¢(i) = «
for all 4 (since B is a basis of R), so

L0 _ o) gy _ @)+ A0 @y egn)
v T Ta « Al n(r) e

Thus, %, N %(g®) C D Zz{", hence (ii). Q.E.D.
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In the remainder of this paragraph, if E and F are Z-submodules of U(g),
we denote by E.F the Z-submodule of U(g) generated by the products ab,
where a € E,b € F.

PROPOSITION 3. Let JZ be a permissible lattice in Y. Let Uy, U_, %

be the Z-subalgebras of U(g) generated respectively by the elements x&n)

(@e€BneN), y{" (a € B,neN), (f;) (h € #n e N). Let U be the Z-
subalgebra of U(g) generated by Uy, U—, %.

(i) % is a biorder in the bigebra U(g).

(ii) We have % = U_ .U Uy, %NY = 5 and, for all o € B,

wNgt =2Zx,, VNg =2y,

By Lemma 5 and Prop. 2, %, %_,% are orders in the Q-algebras
U(ng),U(n_), U(h), respectively, and

+h

( p+q>e% for h e #qeZ,peN. (23)
Put X = %_.% %, C U(g). By (22), Zis a lattice in U(g). By construction,

UL L (24)

LU C L (25)
while Lemma 3 and (23) imply that

UL L (26)

LUy L (27)

Let « € B,n € N,r € N, = (p(7)) € B", and
(m(1),...,m(r)) € N".
We show that

(m(1)) (m(r))
w&")yw(l) Yoy €L (28)

or equivalently, in view of (25), that

n m(1 m(r
e,y e 2 (29)

We argue by induction on 7. The bracket to be studied is the sum of the
terms

() (mN () (D)) (m(42)  (m(r)
Yor) - Yoy 1Ta Yothrt) Wotka) - Yo(r) - (30)
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For a # ¢(k + 1), o and y,41) commute, so [x&n),y;%(_ﬁr;))] = 0. If
a = @(k + 1), the expression (30) is, by (17), the sum of expressions of the

form

m)  (mk), (mE+)-p) (=R (nep), mE+2) ()
Yor) = Yoty Yolkt1) < » >x<(x DY v Yt (31)

where ¢ € Z,p € N={0},h € 5 The induction hypothesis, together with
(24) and (26), proves that the expression (31) belongs to .. We have thus
proved (28).

By (28), sMu Z, thus, by (25) and (27), e 7 Zoso U, LCTL
and

LLCU_ UL UL YL

Thus, £ is a Z-subalgebra of U(g), so % = £ If ¢ is the coproduct of
U(g), c(%) C % ®z % (no. 2, Prop. 1). Let v be the counit of U(g). Since

(n

'y(:c&")) =v(ya ') =7 ((Z)) = 0 for n > 0, we have y(%) C Z. This proves
(i). On the other hand,

UNh=ZLNY=%Nhy=X
by Prop. 2 of no. 4; similarly,
UNgt =U Ng*=Zz,
by Lemma 5. This proves (ii).

Remark 4. By Prop. 5 of §4, no. 4, there exists a unique automorphism 6 of
g such that 6(z,) = yo and 6(y,) = x4 for all @ € B, and 6(h) = —h for all
h € b; we have #? = 1. By construction of %, we see that the automorphism
of U(g) that extends 6 leaves % stable.

COROLLARY 1. Put Y= %N g. Then ¢4 is an order in the Lie algebra g,

stable under 6. We have ¥ = 0+ ZR(gﬂ g%). For alla € B and alln € N,
ac

the maps (ad z4)™/n!, (ady)™/n! leave % and ¥ stable.

The first assertion is clear. The second follows by considering the grad-
uation of type Q(R) on U(g) and %. The third follows from Lemma 2 of
no. 5.

COROLLARY 2. Let w € W. There exists an elementary automorphism ¢
of g that commutes with 0, leaves ¥ and % stable, and extends w.

It suffices to treat the case in which w is of the form s, (a € B). Note first
of all that ad z,, and ad y,, are locally nilpotent on U(g), in other words that
for all u € U(g) there exists an integer n such that (ad x,)"u = (ad y)"u = 0.

This enables us to define the automorphisms eI« = Zo L(adz,)™ and
=l
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e*d¥a of U(g); we verify immediately that these automorphisms of U(g) leave
U stable. Put o = e %aeddvacad@a ) — gadyacadzacgadya We have ¢ |g =
wa2lg (§2, no. 2, formula (1)), so 1 = pa. Put 1 = w2 = ¢. We have
0pf~1 = ¢, so 0 and ¢ commute. On the other hand, ¢|h = w by §2, no. 2,
Lemma 1.

COROLLARY 3. Let a € R. If x € 9N g and n € N, we have ™) € %,
and (ad z)™/n! leaves ¥ and % stable.

This is clear if @ € B, by construction of % and Cor. 1. In the general
case, there exists w € W such that w(«) € B (Chap. VI, §1, no. 5, Prop. 15).
By Cor. 2, there exists an automorphism ¢ of g that leaves ¢4 and % stable
and takes g® to g*(®), hence the corollary by transport of structure.

COROLLARY 4. There exists a Chevalley system (Xa)aer in (g,0h) (§2,
no. 4, Def. 3) such that X, = x4 and X_, = y, for a € B. For every
Chevalley system (X))aer having these properties, and for all « € R, X! is
a basis of 9N g~.

For a € B, put X, = 2, X_o = yo. For a € Ry - B, choose a w € W
such that w(«) € B and an automorphism ¢ of g such that ¢ = 0, p(¥9) =4
and p(h) = w~t(h) for h € h (Cor. 2); put X, = O(Tw(a)) X—a = P(Yuw(a))-
Then

[X—OﬁXa] = Qa([yw(a)aww(a)]) = @(Hw(a)) = wil(Hw(a)) = H,
Q(Xoc) = 9@($w(a)) = @e(xw(a)) = (P(yw(oz)) =X .

50 (Xo)acr is a Chevalley system. Moreover,

INg* =o(@Ng" ) = p(Zrya) = ZXa (32)
GNg " =p@Ng ") = 0(Zyu(w) = ZX-a. (33)

Let (X))aer be a Chevalley system such that X = x4, X', = yq for
a € B. Let S be the set of a € R such that X! = +£X,,. By §2, no. 4, Prop. 7,
S is a closed set of roots. Since S D B U (—B), we have S = R (Chap. VI,
§1, no. 6, Prop. 19). Thus, by (32) and (33), we have ¥Ng* = Z X/, for all
a € R.

Remarks. 5) Let (Xo)acr be the Chevalley system constructed above. If
a,B,a+ 3 € R and if we put [Xo, Xg] = NogXats, we have [Xq, Xg] €
9N g**P, and we recover the fact that N, g € Z (cf. §2, no. 4, Prop. 7).

6) We have obtained in passing a new proof of the existence of Chevalley
systems (cf. §4, no. 4, Cor. of Prop. 5), independent of Lemma 4, §2.
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7. CHEVALLEY ORDERS

Let (g,h) be a split reductive Lie algebra over Q, R its root system. Choose:

a) a permissible lattice Zin b (no. 6, Def. 1);
b) for all « € R, a lattice ¥ in g~.

Put ¥ = 70 ZRga. This is a lattice in g. Denote by % the Z-subalgebra
aec

of U(g) generated by the (Z) (h € #,n € N) and the (") (z € 4%, a € R,
n € N). Finally, for « € R and x € g®- {0}, put

wq(x) = (expad z)(expady)(expad x),

where y is the unique element of g= such that [y,z] = H,. With these
notations:

THEOREM 2. The following conditions are equivalent:

(i) There exists a Chevalley system (Xa)aer 0f (8, h) such that Y, = Z X,
for all a € R.

(i) Ng=% and (9,9 | =Z H, for all « € R.

(iii) For all @ € R,z € 9%, n € N, the endomorphism (adx)™/n! of g
maps 9 to Y, and (9,9 =Z H,,.

(iv) For all « € R and every basis x of 9%, wa(x) maps 4 to 4 (that is,
maps 4° to 9°®) for all B € R).

(i) = (ii): let (X4)aer be a Chevalley system in (g, ) such that ¥ =
Z X, for all @ € R, and let B be a basis of R. For a € B, put z, = X4, ya =
X_,. Let %/ be the biorder associated by Prop. 3 of no. 6 to . the =, and
the y,. It is clear that %/ C %. By Cor. 3 and 4 of Prop. 3, (™ € % for all
a€R, z €9 and n € N. Thus % = %, which proves (ii).

(ii) = (iii): this is clear by Lemma 2 of no. 5.

(iii) = (iv): let @ € R and let = be a basis of ¥“. Since [¢*, 9 %] = Z H,,,
the unique y € g~ such that [y, z] = H, belongs to ¢~ *. Since exp ad x and
exp ad y leave ¥ stable by (iii), so does wq ().

(iv) = (i): let B be a basis of R. Choose a basis x, of ¥ for all a € B.
Let yo € 4~ be such that [ya,xs] = He- By §1, no. 5, formulas (5), we
have Yo = Wa(2a).To 50 Yo is a basis of ¥~ by (iv). Let ¢ be the order in g
defined by %7, the x,, and the y, (no. 6, Cor. 1 of Prop. 3). Then ¢ is stable
under the (ad z,)"/n!, (ad y,)"™/n! (loc. cit.), and hence under the wey(z4).

Now let 8 € R. There exist ag, ay,...,a, € B such that

0= Sa,Sa,_; - - Sa, ()

(Chap. VI, §1, no. 5, Prop. 15). Then wq, (Za,.) Way_y (Tay_y) - - - Way (Tay)
maps 4°° to @° by (iv), and maps ¢ Ng® to ¥ Ng® by the preceding. Since
4 Ng =4 (Prop. 3 (ii)), we have ¢ N g° = ¥”. Thus
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G =H0Y Gng)=a0> 9" =9
BER BeR

and Cor. 4 of Prop. 3 concludes the proof.

DEFINITION 2. When conditions (i) to (iv) of Th. 2 are satisfied, 4 is said
to be a Chevalley order in (g,b).

Remark. Chevalley orders in (g, h) always exist. Indeed, the Chevalley orders
are the sets of the form J7® ZR Z X, where (X4 )acr is a Chevalley system
ae

in (g,h) and SZis a lattice in b such that
QRY)c #ACPRY) D¢
(¢ being the centre of g).

THEOREM 3. We retain the notations at the beginning of no. 7, and assume
that 4 is a Chevalley order in (g, h).

(i) % is a biorder in U(g).

(ii) Let B be a basis of R, and (Xa)aepu(—B) @ family of elements of g
such that 9% = Z X,, for « € BU(—B). The Z-algebra % is generated by the
(Z) and the X\ (h € #,a € BU(—B),n € N). If g is semi-simple and

= Q(RY), the Z-algebra % is generated by the x (0 € BU(—B),n € N).
(iii) Let B be a basis of R, Ry the corresponding set of positive roots,
R.=-R,,n.= 2 g*n_= > g° Then,
acR4 acR_

U= (UNU_)) (%N U®)).(%NU(n,)).

Let (h;)ic1 be a basis of F. For all a € R, let X, be a basis of 9%. Give
the set TUR a total order (we assume that INR = @). For A € TUR and
n € N, put eg\m = (hn*) if A el eﬁ\m = Xg\n) if A € R. Then the products
\ IIIReym, where (ny) belongs to N"R form a basis of the Z-module %. The

€U

products )HI (Zi), where (ny) belongs to NI, form a basis of the Z-module
€

wNU(h). The products Al_l?[{ Xin*), where (ny) belongs to N™ | form a basis
€R4

of the Z-module %N U(ny).

Let B and (Xa)aeBu(—B) be as in (ii), and such that [X_,, X,] = Ha.
Let %/ be the Z-subalgebra of U(g) generated by the (Z) and the X"
(h € #, a0 € BU(—B),n € N). We have seen in the proof of Th. 2, (i) => (ii),
that %/ is equal to % and is a biorder in U(g). This proves (i) and the first

assertion of (ii); the second follows from Lemma 4 (ii). Assertion (iii) follows
from Th. 1 (no. 3) and Prop. 3 (no. 6).
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8. ADMISSIBLE LATTICES

Generalizing the terminology adopted for vector spaces, an endomorphism u
of a module M is said to be diagonalizable if there exists a basis of M such
that the matrix of u relative to this basis is diagonal.

Lemma 6. Let M be a free Z-module of finite type, u an endomorphism of M,
and v the endomorphism u®1 of M®z Q. Assume that (:L) (M) Cc M for all
n € N. Then u is diagonalizable.

a) For any polynomial P € Q[T] such that P(Z) C Z, we have P(v)(M)CM
(no. 4, Cor. of Prop. 2), so det P(v) € Z.

b) Denote by x,(t) = t4 + a;t?~! + ... the characteristic polynomial of
v. Let k € Z,n € N. Applying a) to the polynomial (T;k), we see that the
number

det (U F L det(v — k) det(v — k —1)...det(v — k—n+1)
an= =—— v— v—k—1)...det(v —k—n
n (nh)d

(="

(n!)4 XU

(k)Xo(k+1)...xo(k+n—1)

is an integer. Take kK — 1 < —a/d. Then
xolk+n—1)=n%+ (g + (k—Dd)n®t + ...

and

|Xv(k +n— 1)

lan] = =Dl

n
hence, if a,, # 0 for all n € N, the sequence of the |a,| is strictly decreasing for
n sufficiently large, which is absurd. It follows that v has an integer eigenvalue
A. Put M/ = Ker(u— A.1) and M” = M/M’. Then M’ is the intersection with
M of a vector subspace of M ®z Q, so the Z-module M” is torsion-free of
finite type, and consequently free of rank < d. Arguing by induction on d and
applying the induction hypothesis to the endomorphism of M” induced by u,
we conclude that all the eigenvalues of v in an algebraically closed extension
of Q are integers.

¢) We show that v is diagonalizable. Let A be an eigenvalue of v and let
r € M ®z Q be such that (v — )%z = 0. We have v(vz — Az) = A(vz — Az),
SO

i(vf)\fnJrl)(’uf)\fnJrQ)...(’uf)\f1)(117)\)3n

n!
_1\n—1
= %(vm — Az).

By a), this implies that va — Az € nM for all n € N, so (v — A)z = 0.
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d) Let A be an eigenvalue of v and let (A — a, A + b) be an interval in Z
containing all the eigenvalues of v. Consider the polynomial

J(T=A=1)(T=A=2)...(T—\—b)
bl
(T—=A+1)(T=XA+2)...(T—X+a)

X .
a!

We have P(Z) C Z,P(\) = 1,P(u) = 0 for p € ZN(A—a, A+b) and u # \. By
a), P(v)(M) C M. By ¢), P(v) is a projection of M ®z Q onto the eigenspace
corresponding to . Q.E.D.

P(T) = (-1)

Remark 1. If we only assume that v is diagonalizable with integer eigenvalues,
u is not necessarily diagonalizable (for example, take M = Z? and u(z,y) =
(y, x) for all (z,y) € M).

Let g,b,R, 7£%9% 9 % be as in no. 7, and assume that ¢ is a Chevalley
order in (g, b).

DEFINITION 3. Let E be a g-module. A lattice & in E is said to be admissible
(relative to 9) if the following conditions are satisfied:

(i) % maps & to &
(ii) & is stable under (Z) and ™ for alla € R,z € 9%, n € N,h € A

Remarks. 2) Let p be the adjoint representation of g on U(g). Let o, x,n, h
be as in (ii) above. We have p(x(™).% C % by Lemma 2. On the other hand,
ifpe N,

()= ()= ()

(no. 5, formula (13)), so p ((;)) % C 7. This proves that % is an admissible

lattice in U(g), and it follows that ¢ is an admissible lattice in g (for the
adjoint representation).

3) Let E be a finite dimensional g-module, & an admissible lattice in E,
¢ the centre of g. By Lemma 6, every element of ¢ defines a diagonalizable
endomorphism of E. Hence E is semi-simple (Chap. I, §6, no. 5, Th. 4). Thus,
E is a direct sum of simple Zg-modules on which ¢ induces homotheties. By
Lemma 6, &= ®(&NE*) and, for all weights A of E, we have

AN C Z.

4) If g is semi-simple and #= Q(R"), conditions (i) and (ii) of Def. 3
are equivalent, by Th. 3 (ii), to
(iii) &is stable under z(™) for all & € R,z € 9*,n € N.
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5) Let B be a basis of R; in conditions (i) and (ii) above, “a € R” can be
replaced by “a € BU (—B)” (loc. cit).

THEOREM 4. Let E be a finite dimensional g-module. The following condi-
tions are equivalent:

(i) E has an admissible lattice;

(ii) every element of € defines a diagonalizable endomorphism of E with
integer eigenvalues.

(i) = (ii): this follows from Remark 3.

(ii) = (i): we assume that condition (ii) is satisfied and prove (i). By
Th. 4 of Chap. I, §6, no. 5, we can assume that the elements of ¢ define
homotheties of E, and that E is a simple Zg-module. Let B be a basis of R,
and g = n_ @ h d ny the corresponding decomposition of g. Let A be the
highest weight of the Zg-module E, and let e € E* = {0}. Put &= %.e. It is
clear that .6 C &. Since E is simple, U(g).e = E and hence & generates E as
a Q-vector space. For h € s#and n € N, we have (2) e= (’\glh)) e€Ze,so

(ZnU(h)).e =Ze.

Since U(ny).e = 0, we have & = (N U(n_)).e by Prop. 3. It now follows
from Th. 3 (iii) that &is a Z-module of finite type.

COROLLARY. If g is semi-simple and 7= Q(RY), every finite dimensional
g-module has an admissible lattice.

§13. CLASSICAL SPLITTABLE SIMPLE LIE
ALGEBRAS

In this paragraph we describe explicitly, for each type of classical splittable
simple Lie algebra:
(I) an algebra of this type, its dimension and its splitting Cartan
subalgebras;
(II) its coroots;
(ITI) its Borel subalgebras and its parabolic subalgebras;
(IV) its fundamental simple representations;
(V) those of its fundamental simple representations which are
orthogonal or symplectic;

(VI) the algebra of invariant polynomial functions;
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(VII) certain properties of the groups Autg, Auteg, Auteg;
(VIII) the restriction of the Killing form to a Cartan subalgebra;
(IX) the Chevalley orders.

1. ALGEBRAS OF TYPE A, (I > 1)

(I) Let V be a vector space of dimension [+ 1 over k, and let g be the algebra
sl(V) of endomorphisms of V of trace zero. Let (e;)1<i<i4+1 be a basis of V;
the map which associates to an element of g its matrix with respect to this
basis is an identification of g with the algebra s[(l + 1, k) of matrices of trace
zero. We know that g is semi-simple (Chap. I, §6, no. 7, Prop. 8).

Recall (Algebra, Chap. II, §10, no. 3) that E;; denotes the matrix (cmyp)
such that a;; =1 and auy,, = 0 for (m,p) # (4, 7). The matrices

By (1<i,j<i+1,1i#7)
Eii— Fit1,41 1<i<i)

form a basis of g. Hence
dimg = (I + 2).

Let h be the set of diagonal elements of gl(l + 1,k); the sequence
(Eii)1<i<i+1 is a basis of the vector space b; let (€;)1<i<i+1 be the basis
of b* dual to (Ej;)1<i<i+1. For all h € b,

[h, Eij] = (&i(h) — &;(h)) Eyj (1)

by Chap. I, §1, no. 2, formulas (5). Let h be the set of elements of 6 of trace
zero, and put &; = &;|h. Then b is a Cartan subalgebra of g (Chap. VII,
82, no. 1, Example 4). Relation (1) proves that this Cartan subalgebra is
splitting, and that the roots of (g,h) are the &; —&; (¢ # j). Let b be the
set of elements of h* the sum of whose coordinates with respect to (&) is
zero. The map A — Alh from 63 to h* is bijective. Thus, the root system R
of (g,h) is of type A; (Chap. VI, &4, no. 7). Consequently, g is simple (§3,
no. 2, Cor. 1 of Prop. 6). Thus, g is a splittable simple Lie algebra of type A;.

Every splitting Cartan subalgebra b’ of g is a transform of § under an
elementary automorphism (§3, no. 3, Cor. of Prop. 10). Since Aut.g is the
set of automorphisms z — szs~! of g with s € SL(V) (Chap. VII, §3, no. 1,
Remark 2; cf. also (VII)), there exists a basis § of V such that b’ is the set hg
of elements of g whose matrix with respect to the basis 3 is diagonal. Since
hs contains an element with distinct eigenvalues, the only vector subspaces
of V stable under the elements of iz are those generated by a subset of 3. It
follows that the map 3 +— hg induces by passage to the quotient a bijection
from the set of decompositions of V into the direct sum of [ 4+ 1 subspaces of
dimension 1 to the set of splitting Cartan subalgebras of g.
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(IT) Let o« = ¢; —¢; (i # j) be a root. We have g* = kE;;. Since
[Eij, Eji] = Eii — Ejj

and since a(E;; — Ej;) = 2, we have (§2, no. 2, Th. 1 (ii))
Ha = E” — Ejj~

(III) Put ] = &1 —&2,0p = &2 —E&3,...,0] = & — &E[41- By Chap. VI, §47
no. 7.1, (ay,...,q;) is a basis B of R; the positive roots relative to B are the
g; — €5 for i < j. The corresponding Borel subalgebra b is the set of upper
triangular matrices of trace zero.

A flag in V is a set of vector subspaces of V, distinct from {0} and V,
totally ordered by inclusion. Order the set of flags of V by inclusion. The
maximal flags are the sets {Wy, ..., W;}, where W, is an i-dimensional vector
subspace and

W, cC---CW,.

For example, if V; denotes the subspace of V generated by eq,...,e;, then
{V1,...,V;} is a maximal flag.

It is immediate that b is the set of elements of g leaving stable the elements
of the maximal flag {Vy,...,V,;}. Conversely, since b contains § and the
matrices E;; for ¢ < j, we see that the V; are the only non-trivial vector
subspaces stable under b.

Now let & be a maximal flag in V. It follows from the preceding that
the set bs of elements of g leaving stable all the elements of ¢ is a Borel
subalgebra of g. Since every Borel subalgebra of g is a transform of b under
an elementary automorphism, we see that the map § — bs is a bijection from
the set of maximal flags to the set of Borel subalgebras of g.

Let 3 be a basis of V. By (I) and the preceding, the Borel subalgebras
containing hs are those corresponding to the maximal flags each of whose
elements is generated by a subset of 3. These flags correspond bijectively to
the total orders on 3 in the following way: to a total order w on (3 is associated
the flag {W1, ..., W;}, where W; is the vector subspace generated by the first
i elements of § for the order w. Since there are (I + 1)! total orders on 3, we
recover the fact that there exist (I + 1)! Borel subalgebras of (s((V), hg) (§3,
no. 3, Remark).

Let v be a flag in V. Since + is contained in a maximal flag, the set p,
of elements of g leaving stable the elements of v is a parabolic subalgebra
of g. We show that the only non-trivial vector subspaces stable under p,
are the elements of . For this, we can assume that v = {V;,,...,V, } with
1<i <+ <ig <. Put ig = 0,441 = [ + 1. The non-empty intervals

Gio 4 1,i1), Uiy + 1,i9), ..., lig + 1,ig11)

form a partition of {1,...,l+ 1}, so that any square matrix of order  + 1
can be written as a block matrix (X,p)1<q,b<q+1. The algebra p, is then the
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set pi,.....i, of elements (Xap)1<ab<q+1 of sI(l + 1,k) such that Xq, = 0 for
a > b. Since Pir,.iy 0 by a non-trivial vector subspace stable under Piv,...ig
is one of the V;; if ip <4 < ijy1, the algebra p;, .. ;, contains E;, ., ; and V;
is not stable, hence our assertion.

Consequently, the 2! flags contained in the maximal flag {Vy,...,V;} give
rise to 2! distinct parabolic subalgebras containing b; since there are exactly
2! parabolic subalgebras containing b (§3, no. 4, Remark), it follows that the
map y — P, is a bijection from the set of flags of V to the set of parabolic
subalgebras of g. Moreover, p., D p,/ if and only if v C 7.

Recall the parabolic subalgebra p = p;; i, (1 < iy < -+ <ig <1). Let
s (resp. n) be the set of (Xop)1<a,p<q+1 in sI(I 4+ 1, k) such that X, = 0 for
a # b (resp. a > b). In view of Prop. 13 of §3, no. 4, we have p = s @ n, the
subalgebra s is reductive in g and n is both the largest nilpotent ideal and
the nilpotent radical of p.

k+1,

(IV) Forr =1,2,...,l,let w, = €1 +---+¢&,. We have w;(H,,) = d;j, so @,
is the fundamental weight corresponding to ..

Let o be the identity representation of g on V. The exterior power A" o
of o is a representation on E = A"(V). Let (eq,...,e;+1) be the chosen basis
of V. The e;;, A--- Ae;., where i1 < --- < i,, form a basis of E. If h € b,

(N o) (h).eiy Ao AN, = (e + -+ ) (Wei, Ao Ny,

Thus, every weight is of multiplicity 1, w, is a weight of A" o, and every
other weight is of the form w, — pu, where p is a positive radical weight.
Consequently, w, is the highest weight of A" o, and e; A---Ae, is a primitive
element. By Chap. VI, §4, no. 7.IX, the Weyl group can be identified with
the symmetric group of

{517 s >€l+1}-

The orbit of w, under the Weyl group thus contains all the ¢;, + --- + ¢,
with 47 < --- < 4,.. The simple submodule generated by the primitive element
e1 A+ Aep thus admits all the ¢;, +--- +¢;, as weights and consequently is
equal to E. Thus, A" o is irreducible with highest weight to,..

Thus, the representations A" o (1 <r <) are the fundamental represen-

tations. We have dim(A\" o) = (l“).

T

(V) We have wo(a1) = —ay, wo(ae) = —ay—1,... (Chap. VI, §4, no. 7, XI),
S0

—wo(w1) = @, —wo(wa) =wi—1,....
Let
w=nwi+- - +mw (ng,...,n €N)

be a dominant weight. Then, the simple representation with highest weight
w is orthogonal or symplectic if and only if
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ny = ny, No =Nj—1,-..

(87, no. 5, Prop. 12). In particular, if [ is even, none of the fundamental
representations of sl(l + 1,k) is orthogonal or symplectic. If [ is odd, the
representation \' o for i # (I +1)/2 is neither orthogonal nor symplectic; by
Chap. VI, §4, no. 7.VI, the sum of the coordinates of w1)/2 with respect
to (al,...,al) is

1 [+1 -1 I+1 I+1

-1 I+1

= 1494 .- 4=
+24---+ 5 + 1

SO /\(H'l)/2 o is orthogonal if | = —1 (mod. 4) and symplectic if /| = 1 (mod. 4)

(87, no. 5, Prop. 12). This last result can be made more precise as follows.

Choose a non-zero element e in A" (V). The multiplication in the exterior

algebra V defines a bilinear map from

/\(l+1)/2 (V) « /\(l+1)/2 (V)

to /\l+1 (V), which can be written (u,v) — @(u,v)e, where @ is a bilinear form
on /\(Hl)/ 2 (V). It is immediately verified that & is non-zero, invariant under

g (and hence non-degenerate), symmetric if (14 1)/2 is even, and alternating
if (1+1)/2 is odd.

(VI) For all x € g, the characteristic polynomial of o(x) = x can be written

TH 4 fo(2) T + fo(@) T2 4+ + fria(2)

where fa,..., fi+1 are polynomial functions invariant under g (§8, no. 3,
Lemma 2).

If e = §F1 + -+ &i1Eir1141 € b, the fi(x) are, up to sign, the
elementary symmetric functions of &;,...,&1 of degree 2,...,1 4 1. Thus,

by Chap. VI, §4, no. 7.IX, the f;|h generate the algebra of elements of S(h*)
invariant under the Weyl group, and are algebraically independent. Hence (88,
no. 3, Prop. 3) fa, f3,..., fix1 generate the algebra of polynomial functions
invariant under g, and are algebraically independent.

(VII) For all ¢ € GL(I + 1,k), let vr(9) = ¢(g) be the automorphism
2+ grg~' of g. Then ¢ is a homomorphism from GL(I + 1,k) to Aut(g).
We have

¢(SL(l + 1,k)) = Autc(g)
(Chap. VII, §3, no. 1, Remark 2). Let k be an algebraic closure of k. We have
GL(l + 1,k) = k*.SL(l + 1, k),
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so 0p(GL(l + 1,k)) = ¢r(SL(I + 1,k)) = Aut.(g ® k); it follows that
o(GL(l +1,k)) C Autg(g). On the other hand, Autg(g) C p(GL(l + 1,k)),
by Prop. 2 of §7, no. 1, applied to the identity representation of g. Hence,

Auto(g) = o(GL(1 + 1,k)).

The kernel of ¢ is the set of elements of GL(I 4 1, k) that commute with
every matrix of order /41, that is the set k* of invertible scalar matrices. Thus,
Auto(g) can be identified with the group GL(l + 1,k)/k* = PGL(l + 1, k).
The kernel of ¢’ = ¢|SL(I+1, k) is p41(k), where 41 (k) denotes the set of
(I + 1)th roots of unity in k. Thus, Aut.(g) can be identified with the group
SL(I+1,k)/p+1(k) = PSL(I + 1, k). On the other hand, we have the exact
sequence

1 — SLI+1,k) — GLI+1,k) <% & — 1
and the image of k* under det is k*!*1. It follows that there are canonical
isomorphisms

Auto(g)/Aute(g) — PGL(I + 1,k)/PSL(I + 1, k)
— GL(I+ 1,k)/k* SL(l + 1, k) — k* /k*1*1.

If £ = R, we see that Auto(g) = Aute(g) if  + 1 is odd, and that
Auto(g)/Aut.(g) is isomorphic to Z/2Z if [ + 1 is even.

With the notations of §5, f(Tq) is the set of automorphisms of g that
induce the identity on b, and hence is equal to ¢(D), where D is the set of
diagonal elements of GL(l+ 1, k) (§5, Prop. 4). Let D’ be the set of diagonal
elements of SL(I+ 1, k). By Prop. 3 of §5, and the determination of Aut.(g),
we have f(q(Tp)) C ¢(D’). We show that f(q(Tp)) = ¢(D’). Let
A1 0
d = T .
0 Al+1

be an element of D’. There exists a ( € Hom(Q(R),k*) = Tq such that
Clei —¢j) = )\Z-)\jfl for all 7 and j. It is easy to verify that f(¢) = ¢(d). By
Chap. VI, §4, no. 7.VIII, P(R) is generated by Q(R) and the element ¢ = ¢4,
whose image in P(R)/Q(R) is of order [ 4+ 1; but

C(I+1)e) =C((e1 —e2) + (1 —&3) + -+ + (61 — €141))
=N OAS, = A

so ¢ extends to a homomorphism from P(R) to k*. This proves that ¢ € ¢(Tp),
so ¢(d) € f(q(Tp)).

Recall (85, no. 3, Cor. 2 of Prop. 5) that Aut(g) = Auty(g) for [ = 1, and
that Aut(g)/Autg(g) is isomorphic to Z/2Z for [ > 2. The map 6 : x — —'z
is an automorphism of sl(l + 1, k) and ag = 0|h ¢ W if [ > 2 (Chap. VI, §4,
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no. 7.XI), so the class of ag in Aut(g)/Aute(g) is the non-trivial element of
this group (85, no. 2, Prop. 4).
(VIII) The restriction to h of the Killing form is

PGB+ 4GB, 8 FBun + -+ & By i)

=Y E-&)E-&) =) (&-&)E-¢€)

i#j irj
=(+1)) &G+ 1+ gE -2 (Z&) > &
i J i J
=20 +1) Z&fé-

(IX) For 1 <i<j<Il+1, put
X&j—aj = El] ij—s;, = 7Ejl

Then, for all o € R, we have [X,, X_o] = —H, and 6(X,,) = X_, (where 0
is the automorphism = + —'z introduced in (VII)). Consequently, (X, )acr
is a Chevalley system in (g, h).

Take k = Q. The permissible lattices in b (§12, no. 6, Def. 1) are those
lying between the Z-module Q(RY) generated by the E;; — E;tq 41, that
is, consisting of the diagonal matrices belonging to sl(l + 1,Z), and the Z-
module P(RY) generated by Q(RY) and Ey; — (I+1)7' Y Ey; (Chap. VI, §4,
no. 7.VIII), that is, consisting of the diagonal matrices of trace zero of the
form x + (I + 1)~ la.1, where = has integer entries and a € Z. It follows that
sl(l+1,Z) is the Chevalley order in (g, ) associated to the permissible lattice
Q(RY) and the Chevalley system (X, ). It is easy to verify that A" Z"™ is an
admissible lattice in A" Q'™ relative to sl(l + 1,Z) (§12, no. 8, Def. 3).

On the other hand, gl(l + 1,Z) is a Chevalley order in the split reductive
algebra gl(l 4+ 1, Q); its projection onto sl(I + 1, Q) parallel to the centre Q.1
of gl(I+1, Q) is the Chevalley order in (g, h) defined by the permissible lattice
P(RY) in b and the Chevalley system (X,). We remark that gl(l + 1,Z) is
not the direct sum of its intersections with sl(l + 1, Q) and the centre of

gl(l+1,Q).

2. ALGEBRAS OF TYPE B, (I > 1)

(I) Let V be a finite dimensional vector space, and ¥ a non-degenerate sym-
metric bilinear form on V. The set of endomorphisms z of V such that
U(zv,v') +¥(v,2v") = 0 for all v,v" € V is a Lie subalgebra of sl(V), semi-
simple for dim'V # 2 (Chap. I, §6, no. 7, Prop. 9). We denote it by o(¥) and
call it the orthogonal Lie algebra associated to W.

Assume that V is of odd dimension 2/ + 1 > 3 and that ¥ is of maximum
index [. Denote by Q the quadratic form such that ¥ is associated to Q. We
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have Q(z) = %W(x,x) for z € V. By Algebra, Chap. IX, §4, no. 2, V can be
written as the direct sum of two maximal totally isotropic subspaces F and
F’ and the orthogonal complement G of F + F/, which is non-isotropic and
1-dimensional. Up to multiplying ¥ by a non-zero constant, we can assume
that there exists eg € G such that ¥(eg, eg) = —2. On the other hand, F and
F’ are in duality via ¥; let (e;)1<i<; be a basis of F and (e—;)1<i<; the dual
basis of F/. Then

(ela -, €1,€0,€-1, .- '76—1)

is a basis of V; we have

i=l
Q (Z l‘iei) = —l‘g + inx_i
i=1

and the matrix of ¥ with respect to this basis is the square matrix of order
2041

0 0 0 1

0 0 s 0 0 1 0
S={0 -2 0], s=|1 1 1],

s 0 0 0 1 00

1 0 --- 0 0

where s is the square matrix of order [ all of whose entries are zero except
those on the second diagonal® which are equal to 1. A basis of V with the
preceding properties will be called a Witt basis of V. The algebra g = o(¥)
can then be identified with the algebra 0g(2l + 1, k) of square matrices a of
order 2/ + 1 such that a = —S~'aS (Algebra, Chap. IX, §1, no. 10, formulas
(50)). An easy calculation shows that g is the set of matrices of the form

A 2stz B
Y 0 T (2)
C 2s'y D

where x and y are matrices with 1 row and [ columns and A, B,C, D are
square matrices of order [ such that B = —s'Bs,C = —s'Cs,and D = —s?As.
Since the map A — st As from M;(k) to itself is the symmetry with respect
to the second diagonal, it follows that

I(1—1
dimg:21+12+2%:l(21+1).

Let h be the set of diagonal elements of g. This is a commutative subal-
gebra of g, with basis the elements

6 The second diagonal of a square matrix (a;;)1<i,j<n is the family of a;; such that
i1+j=n+1
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Hi = Ei,i — E,i7,i (1 <1< l)

Let (g;) be the basis of h* dual to (H;). Put
X, = 2E;0+ Eo,—; (1<i<li)
X g, = 2F ;0—-Eo; (1<i<l)
Xai—aj = E’i,j — E—j,—i (1 <1< j < l) (3)
ij_si = *Ej,i + E—i,—j (1 <1 <] < l)
X€i+&~j = Eiyfj — Ejyfi (]. <i<g< l)
X oo = -E;,+E,; (<i<j<l).

It is easy to verify that these elements form a basis of a complement of h in
g and that, for h € b,

[h, Xa] = a(h) X, (4)

for all @ € R, where R is the set of the +¢; and the te;,£¢; (1 <i < j <I). It
follows that b is equal to its normalizer in g, and hence is a Cartan subalgebra
of g, that b is splitting, and that the roots of (g,h) are the elements of R.
The root system R of (g, ) is of type B; for I > 2, and of type A; (also said
to be of type By) for I = 1 (Chap. VI, §4, no. 5.1, extended to the case I = 1).
Consequently, g is a splittable simple Lie algebra of type B;.

Every splitting Cartan subalgebra of o(¥) is a transform of § by an ele-
mentary automorphism of o(¥), and hence by an element of O(¥) (cf. (VII)),
and consequently is the set h of elements of g whose matrix with respect to
a Witt basis 3 of V is diagonal. We verify immediately that the only vector
subspaces invariant under hg are those generated by a subset of 3.

If | = 1, the algebras o(¥) and sl(2, k) have the same root systems, and
are thus isomorphic (cf. also §1, Exerc. 16). From now on, we assume that
1>2.

(IT) The root system RV is determined by means of Chap. VI, §4, no. 5.V,
and we find that

HEi = 2HZ; Hsi—sj = HZ - H]a H61,+Ej = Hl +Hj

(III) Put o = ¢ —E€2,...,0 1 =E&]—1—€&, ] = ¢&]. By Chap. VI, §4, no. 5.11,
(a1,...,0q) is a basis B of R; the positive roots relative to B are the &; and
the e; £ ¢; (i < j). The corresponding Borel subalgebra b is the set of upper
triangular matrices in g.

It is immediately verified that the only vector subspaces of V distinct
from {0} and V stable under b are the elements of the maximal flag corre-
sponding to the basis (e;), that is, the totally isotropic subspaces Vi,...,V,
where V; is generated by eq,...,e;, together with their orthogonal comple-
ments V_q,...,V_;: the orthogonal complement V_; of V; is generated by
€1,.--,€1,€0,€6_1,...,6_;—1 and is not totally isotropic. On the other hand, if
an element of g leaves stable a vector subspace, it leaves stable its orthogonal
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complement. Consequently, b is the set of elements of g leaving stable the
elements of the flag {V1,...,V;}.

A flag is said to be isotropic if each of its elements is totally isotropic. The
flag {Vy,...,V,;} is a maximal isotropic flag. Since the group O(¥) operates
transitively both on the Borel subalgebras of g (cf. (VII)) and on the maximal
isotropic flags (Algebra, Chap. IX, §4, no. 3, Th. 1), we see that, for any
maximal isotropic flag ¢ in V, the set bs of elements of g leaving stable the
elements of § is a Borel subalgebra of g and that the map § — bj is a bijection
from the set of maximal isotropic flags to the set of Borel subalgebras of g.

Let § be an isotropic flag and let ps be the set of elements of g leaving
stable the elements of §. If § C {V1,...,V;}, then ps is a parabolic subalgebra
of g containing b, and it is easy to verify that the only totally isotropic
subspaces # {0} stable under ps are the elements of &. This gives 2! parabolic
subalgebras of g containing b. We see as above that the map § — ps is a
bijection from the set of isotropic flags in V to the set of parabolic subalgebras
of g. Moreover, ps C ps if and only if § D ¢'.

(IV) The fundamental weights corresponding to aq, ..., q; are, by Chap. VI,
84, no. 5.VI,

wi=e1+--+e (1<i<l-1)

1
wl=*(5‘1+~--+€l).

2

Let o be the identity representation of g on V. The exterior power A" o
operates on E= A\"V.If h € b,

o(h).e; =¢;(h)e; for1<i<lI
J(h) €p = 0
o(h).e—; = —gi(h)e—; for1<i<lI.

It follows that, for 1 < r < I, e; + --- + &, is the highest weight of \" o,
the elements of weight €1 + - -- + ¢, being those proportional to e; A --- A
e,. We shall show that for 1 < r < [ — 1, the representation /\TO' s a
Sfundamental representation of g of highest weight w,. For this, it is enough
to show that /\T o is irreducible for 0 < r < 2] + 1. But the bilinear form &
on A"V x A2V defined by

xAy=®(z,y)es N---NegAegANe_j A---Ne_q

is invariant under g and puts A"V and A*"'7"V in duality. Thus, the
representation /\2l+140 is the dual of A\" o and it suffices to prove the
irreducibility of /\TO' for 0 < r < [, or that the smallest subspace T, of
A"V containing e; A --- A e, and stable under g is the whole of A" V. This
is immediate for r = 0 and r = 1 (cf. formula (2)). For r = 2 (and hence

1 > 2), the representation /\2 o and the adjoint representation of g (which is
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irreducible) have the same dimension /(2] 4+ 1) and the same highest weight
£1 4 &2 (Chap. VI, §4, no. 5.IV). We conclude that A® o is equivalent to the
adjoint representation, and hence is irreducible. This proves our assertion for
l=1andl=2.

We now argue by induction on [/, and assume that [ > r > 3. We remark
first of all that if W is a non-isotropic subspace of V of odd dimension, with
orthogonal complement W', the restriction ¥y of ¥ to W is non-degenerate
and o(Wy) can be identified with the subalgebra of g consisting of the ele-
ments vanishing on W’. If dimW < dimV, and if Yy is of maximal index,
the induction hypothesis implies that if T, contains a non-zero element of
the form w' A w, with w’ € A" "W’ and w € A*W (0 < k < r), then T,
contains w’ A A W: indeed, we have a.(w’ Aw) = w' Aa.w for all a € o(Py).
We show by induction on p € (0,7) that T, contains the elements

T=ey N Nej_ Nej N Nej,

for1 <ip <+ <ipp <land =1 < j; < -+ < jp < 0. For p = 0, this
follows from the irreducibility of the operation of gl(F) on A" F (no. 1), since
1

g contains the elements leaving F = V; = > ke; fixed and inducing on it any
i=1

endomorphism (cf. formula (2)). If p =1, let ¢ € (1,1) be such that ¢ # —j1
and such that there exists A € (1,7 — p) with ¢ = iy; if p > 2, let ¢ € (1,0)
be such that —¢ € {j1,...,j,}. Permuting the e; if necessary, we can assume
that ¢ = 1. Now take for W the orthogonal complement of W’ = ke + ke_.
If p=1, we have x € e; /\/\Tﬁ1 W, since T, contains e; A---Ae,., we see that
T, contains z. If p > 2, either z € e_;1 AA" "W orz € ey Ae_y A /\Tﬁ2 W;:
since T, contains e_1 Aes A---Ae._1 and e_1 Aeg Aea A--- Ae._o by the
induction hypothesis, we see that T, contains x, which completes the proof.

For another proof of the irreducibility of A" o, see Exerc. 6.

We shall now determine the fundamental representation with highest
weight ;.

Lemma 1. Let V be a finite dimensional vector space, Q a mon-degenerate
quadratic form on V, ¥ the symmetric bilinear form associated to Q, C(Q)
the Clifford algebra of V relative to Q, fo the composite of the canonical maps

o) —gl(V) — VeV  — VeV — CH(Q)

(the 1st is the canonical injection, the 3rd is defined by the canonical isomor-
phism from V* to V corresponding to ¥, the 4th is defined by the multiplica-
tion in C(Q), cf. Algebra, Chap. IX, § 9, no. 1). Put f = %fo.

(i) If (er), (el.) are bases of V such that ¥(e,,el,) = 5, we have fo(a) =

(s

;(aer)e; for all a € o(¥).
(ii) If a,b € o(¥), we have ;(aer)(be’r) = — > (abe,)e...

r
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(ii) If a € o(¥) and v € V, we have [f(a),v] = av.
(iv) If a,b € o(¥), we have [f(a), f(b)] = f([a,b]).
(v) f(o(¥)) generates the associative algebra C*(Q).

(vi) Let N be a left C(Q)-module and p the corresponding homomorphism
from Ct(Q) to Endg(N). Then po f is a representation of o(¥) on N. If N
is simple, po f is irreducible.

Assertion (i) is clear. If a,b € o(¥), we have (putting ¥(z,y) = (z,y)):

Z(ae,«)(be;) = Z(aer, el (bel, er)eser, = Z(er, ael) (el be;)ese,

r r,8,t T,8,t
= Z(ae’s, bei)ese, = — Z(e’s,abet>ese; =— Z(abet)eg
s,t s,t t
which proves (ii). Next, for all v € V, we have by (i),
1
@)= 3 (e = vfaer)e)
1 /
5 ((ae)elv + (ae,)vel. — (ae,)vel. — v(ae,)el.)
1 /
=3 ((aer){ — (aey,v)e))

T

1 1 1
< ) 3 Z(er,awe; = jav + jav = av,

which proves (iii). Then

[f(a% % > (ben)e,

r

by (i)

[ (a), £(b)]

= *Z ), be,Jel + (be,)[f (a), eh])
= 3 3 (aber)é, + (ber)ach)) by (i)

= EZ((aber)e;n — (baey)e,) by (ii)
2
= f([a,b]) by (i)

which proves (iv). To prove (v), we can, by extending scalars, assume that k is
algebraically closed. Choose then a basis (e;,) of V such that ¥(e,, es) = d,,
so e, =e,. If i # j, then E;; — Ej;; € o(¥) and
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1
f(Byj = Eji) = 5 (eie; — ejei) = eieys

but the e;e; generate CT(Q).
Assertion (vi) follows from (iv) and (v). Q.E.D.

Recall now the notations used at the beginning of this number. Put
V = F+ F and let Q (resp. ¥) be the restriction of Q (resp. ¥) to V.
Then Q is a non-degenerate quadratic form of maximum index [ on the space
V of dimension 2! and the Clifford algebra C(Q) is a central simple algebra
of dimension 22! (Algebra, Chap. IX, §9, no. 4, Th. 2). Let N be the exte-
rior algebra of the maximal isotropic subspace F/ generated by e_1,...,e_;.
Identify F with the dual of F' by means of ¥ and for € F/ (resp. y € F)
denote by A(x) (resp. A(y)) the left exterior product with x (resp. the left
interior product with y) in N; if aq,...,a; € F/, then

AMz).(ar AN Nag) =z Nag A+ Nag
k

AMy).(ar A ANag) = Z(—l)i_1W(ai,y)a1 Ao ANai—1 ANaipr N A ag.
i=1

It is easily verified that A(x)? = A(y)? = 0 and that
A@)AMy) + My)A(z) = ¥ (z,y).1.
It follows (Algebra, Chap. IX, §9, no. 1) that there exists a unique homo-

morphism (again denoted by \) from C(Q) to End(N) extending the map
A : FUF — End(N). Since dim N = 2! and since C(Q) has a unique class
of simple modules, of dimension 2! (Algebra, Chap. IX, §9, no. 4, Th. 2),

the representation of C(Q) on N defined by A is irreducible and is a spinor

representation of C(Q) (loc. cit.). 3 }
Consider now the map 1 : v + egv from V to CT(Q). For v € V, we have

(eov)? = —egv® = —Q(e0)Q(v) = Q(v) = Q(v)
and p extends uniquely to a homomorphism, again denoted by u, from C(Q)

to C*(Q). Since C(Q) is simple and since

dim CT(Q) = dim C(Q) = 2%,
we see that p is an isomorphism. Consequently, A o u~' defines a simple
C*(Q)-module structure on N and p = Aopu~! o f is an irreducible represen-
tation of g on N (Lemma 1 (vi)).

On the other hand, in view of Lemma 1 (i), we have

f(Hz) = %(ez‘@ﬂ' - 67161').

Since e;e_; = —e%eie,i = ege;epe_; and e;e_; +e_;e; = 1, we have
1

1
,u_l o f(Hl) = 5 —e_;e, = —5 +ee_;.
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We deduce that, for 1 <i; < --- <ip <1I:

) e oo he) = L Ea e e
and for h € b
p(h)(e—iy A+ Ne—iy) (5)
= (1(61 +ootey) = (g +FE)) (M) ey Ao ANey,).

2

This shows that the highest weight of p is w;. We call p the spinor represen-
tation of g. Note that its weights are all simple (moreover, o; is a minuscule
weight).

(V) We have wy = —1, so every finite dimensional simple representation of
g is orthogonal or symplectic. By Chap. VI, §4, no. 5.VI, the sum of the
coordinates of w, with respect to (aq,...,q;) is integral for 1 <r <[ —1:
thus, the representation /\" o is orthogonal. Moreover, it leaves invariant the
extension ¥,y of ¥ to \" V.

For the spinor representation, the sum of the coordinates of w; with re-
spect to (aq,...,qp) is %(1—|—~ +l) = % (loc. cit.). Thus, it is orthogonal
for | = 0 or —1 (mod. 4) and symplectic for I = 1 or 2 (mod. 4). In fact,
consider the bilinear form @ on N = A\ F’ defined as follows: if z € A’ F/ and
ye NF, put (z,y) =0if p+q#1 and

(p+1)
alc/\y:(—l)pp';rl D(x,y)e_1 N+~ Ne_,

if p+q = 1. It is easily verified that @ is non-degenerate and is orthogonal for
1 =0,—1 (mod. 4) and alternating for { = 1,2 (mod. 4). On the other hand,
in view of Lemma 1 (i),

J(Xe,) =eoes,  f(X_:,)=—eoe;

for 1 <i <[ and

1
f(Xei—aj) = f(eie_j - 6_]‘81‘) = €i€_j = €0€;€0€—j
2
for 1 <i < j <, and similarly
J(Xe,—c,)=—eoejeoes, f(Xeite;)=eoeicoej, f(X_c,—c;)=eoe_iepe_j;

hence

N_lof(Xﬁz‘) = €, N_lf(X*Ei) = €

pt o f(Xieite,) = cexien; for 1<i,j <1, i+ j withce {1,—1}.
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It is now painless to verify that @ is actually g-invariant (cf. Exerc. 18).

(VI) For x € g, the characteristic polynomial of o(z) takes the form

TP 4 f1(2) T + fo(2) T 4+ farga(2)

where f1,..., fo41 are invariant polynomial functions on g.
Iftae=&H + -+ &§H €b, the f;(x) are, up to sign, the elementary
symmetric functions of &1,...,&, —&1,. .., —&; these symmetric functions are

zero in odd degrees, and
T+ fo(2) T + fa(2) T2 4+ for ()T = T(T? = &7) ... (T? = &)

so that fs,..., foy are, up to sign, the elementary symmetric functions
of 5%,...,512, which are algebraically independent generators of S(h*)W
(Chap. VI, §4, no. 5.IX). In view of §8, no. 3, Th. 1 (i), we see that
fi=fs=fs = =0 and that (f2, fa,..., for) is an algebraically free
family generating the algebra of invariant polynomial functions on g.

(VII) Since the only automorphism of the Dynkin graph is the identity, we
have Aut(g) = Auto(g).

Let X be the group of similarities of V relative to ¥. For all g € X, let
©(g) be the automorphism z + grg~! of g. Then ¢ is a homomorphism from
XY to Aut(g). We show that it is surjective. Let o € Aut(g) = Autg(g). By
Prop. 2 of §7, no. 1, there exists s € GL(V) such that a(z) = szs™! for all
z € g. Then s transforms ¥ into a bilinear form ¥’ on V that is invariant
under g, and hence proportional to ¥ (§7, no. 5, Prop. 12). This proves that
se M.

Since the identity representation of g is irreducible, its commutant reduces
to the scalars (§6, no. 1, Prop. 1), so the kernel of ¢ is k*. Thus, the group
Aut(g) = Autg(g) can be identified with X'/k*. But, it follows from Algebra,
Chap. IX, §6, no. 5, that the group X is the product of the groups k* and
SO(¥); hence Aut(g) = Autp(g) can be identified with SO(¥).

Let Og (¥) be the reduced orthogonal group of ¥ (Algebra, Chap. IX, §9,
no. 5). Since SO(¥)/O¢ (¥) is commutative (loc. cit.), the group Aut.(g) is
contained in OF (¥) (§11, no. 2, Prop. 3); in fact, it is equal to it (Exerc. 7).

(VIII) The canonical bilinear form @ on h* is given by

Pr(&rer + -+ e, & + -+ Gar) = ﬁ(flfi + -4 &8)

(Chap. VI, §4, no. 5.V). The isomorphism from b to h* defined by P takes
H; to (41 — 2).g;. Thus, the inverse form of @, that is the restriction to b of
the Killing form, is

DG H 4+ GHL, G H 4 -+ G H) = (41— 2) (68 + -+ &&)).
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(IX) Recall the X, (o € R) defined by the formulas (3). It is easy to verify
that [Xa, X_o] = —H, for a € R. On the other hand, let M be the matrix
I+ Epp; since M = S*M~1S, the map

0:9— —MtgM

is an automorphism of g and 6(X,,) = X_,, for all & € R. Consequently, (X,)
is a Chevalley system in (g,h).

Assume that £ = Q. The Cartan subalgebra h has two permissible lattices:
the lattice Q(RY) generated by the H,, and the lattice P(RY) that is generated
by the H; and consists of the diagonal matrices in h with integer entries. It
follows that 05(20 4+ 1,Z) (the set of matrices in g with integer entries) is the
Chevalley order P(RY)+>" Z.X,, in g. Since (X1.,)? = 2E4; 4, (X4c,)> =0
and (Xigiiaj)Q = 0, we see that the lattice ¥ generated by the Witt basis
(e;)—i1<i<i is an admissible lattice for 0g(2/ 4 1,Z) in V. The same is true for
A ¥in \"V.

Now consider the spinor representation p of gon N = A F’. As its weights
do not map P(RY) to Z, it has no admissible lattice for 0g(2] + 1,Z). On the
other hand, the lattice .4 generated by the canonical basis (e_;; A+ Ae_;,)
of N (for 1 < i < -+ < i <) is an admissible lattice for the Chevalley
order = Q(RY) + gRZ.Xa. Indeed, it is immediate that .47is stable under

the exterior product with the e_; and the interior product with the e; (for
1 < i < 1). The formulas of (V) then show that .4 is stable under p(%9).
Moreover, since p(X,)? = 0 for all a € R, it follows that .#'is admissible.

3. ALGEBRAS OF TYPE C; (I > 1)

(I) Let ¥ be a non-degenerate alternating bilinear form on a vector space
V of finite dimension 2] > 2; the set of endomorphisms x of V such that
U(zv,v") + ¥(v,2v") = 0 for all v,v" € V is a semi-simple Lie subalgebra
of s5[(V) (Chap. I, §6, no. 7, Prop. 9). We denote it by sp(¥) and call it the
symplectic Lie algebra associated to V.

By Algebra, Cap. IX, §4, no. 2, V can be written as the direct sum of two
maximal totally isotropic subspaces F and F/, which are in duality relative
to W. Let (e;)1<i<; be a basis of F, and (e_;)1<i<; the dual basis of F’. Then

(e1,...,e,e_1,...,e_1)

is a basis of V; we say that it is a Witt basis (or symplectic basis) of V. The
matrix of ¥ with respect to this basis is the square matrix of order 2!

=(%0)

where s is the square matrix of order [ all of whose entries are zero except
those on the second diagonal which are equal to 1, cf. no. 2.1.
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The algebra g = sp(¥) can be identified with the algebra sp(2l,k) of
square matrices a of order 2! such that a = —J 'taJ = J'aJ (Algebra,
Chap. IX, §1, no. 10, formulas (50)), that is of the form

(A B
=\ —stas

where A, B, C' are square matrices of order [ such that B = s!Bs and C =
c'Cs; in other words, B and C are symmetric with respect to the second
diagonal. It follows that

dim g = 12 +2l(l‘2H)

1(2041).

Let b be the set of diagonal matrices in g. This is a commutative sub-
algebra of g, with basis the elements H; = E;; — E_; _; for 1 <13 <. Let
(€i)1<i<i be the dual basis of (H;). For 1 <4 < j <1, put

Xoe, = F;

X o, = —E_i;

e Z B B (6)
—eite; = —Ejit+E_i

KXeite; = Ei—j+Ej—

X—Eq‘,—Ej = *E—i,j — E_jJ'.

It is easily verified that these elements form a basis of a complement of § in
g and that, for h € b,

[h, Xo] = a(h) X, (7)

for all & € R, where R is the set of the +2¢; and the ¢;+¢; (i < 7). It follows
that b is equal to its own normalizer in g, and hence is a Cartan subalgebra
of g, that b is splitting, and that the roots of (g,h) are the elements of R.
The root system R of (g, ) is of type C; for I > 2, and of type A; (in other
words of type C1) for I = 1 (Chap. VI, §4, no. 6.1 extended to the case | = 1).
Consequently, g is a splittable simple Lie algebra of type C;.

Every splitting Cartan subalgebra of g is transformed into h by an ele-
mentary automorphism, hence by an element of the symplectic group Sp(¥)
(cf. (VII)), and consequently is the set hz of elements of g whose matrix with
respect to a Witt basis [ of g is diagonal. It is immediately verified that the
only vector subspaces of V stable under hz are those generated by a subset
of 3.

We have sp(2, k) = s[(2,k). On the other hand, the algebras sp(4, k) and
0s(5, k) have the same root system, and hence are isomorphic (cf. Exerc. 3).
From now on, we assume that | > 2.

(IT) The root system R" is determined by means of Chap. VI, §4, no. 6.1 and
6.V; we find that
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H2€i :H’i7 Hﬁifif]' :Hl_Hj) HEiJrEj :H1+Hj

(ITI) Put oy = &1 — €2,..., 041 = €1 — €1, = 2¢;. By Chap. VI, &4,
no. 6.1I, {ai,...,q} is a basis B of R; the positive roots relative to B are
the 2¢; and the ¢; £ ¢; (¢ < j). The corresponding Borel subalgebra b is the
set of upper triangular matrices in g.

Let ¢ be an isotropic flag in V (that is, whose elements are all totally
isotropic subspaces for ¥), and let ps be the subalgebra consisting of the
elements of g leaving stable the elements of §. We show as in no. 2.11I that the
map d — ps is a bijection from the set of isotropic flags (resp. the maximum
isotropic flags) to the set of parabolic (resp. Borel) subalgebras of g; we have
ps D ps if and only if § C 4’

(IV) The fundamental weights corresponding to aq, ..., «q; are, by Chap. VI,
84, no. 6.VI, the w; =e1 +---+¢; (1 <i<lI).

We are going to show how the fundamental representation o, of weight
w, can be realised as a subrepresentation of A" o, where o is the identity
representation of g on V, and for this we shall study the decomposition of
the representation A o of g on the exterior algebra A V.

Let (ef) be the basis of V* dual to (e;). The alternating bilinear form ¥

can be identified with an element I'™* € /\2 V* (Algebra, Chap. III, §7, no. 4,
Prop. 7 and §11, no. 10) and it is easy to verify that

l

F*:—Ze:/\e*_i.

i=1
Let ¥* be the inverse form of ¥ (Algebra, Chap. IX, §1, no. 7); it is

immediate that

U (ej,e;) =0
for i # —j and ¥*(ef,e*;) = —1 for 1 < i < [. If we identify ¥* with an

element I' € A®V, then

l
I = Zei Ne_;.
i=1

Denote by X_ the endomorphism of A\ V given by the left exterior product
with I and by X the endomorphism of A V given by the left interior product
with —I™:

l
X_u= (Z ei N\ e_i> Au,

=1

1
Xyu= (Z e /\e*_i> Au.

=1
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To calculate X and X_, introduce a basis of A V in the following way:
for any triplet (A, B, C) formed by three disjoint subsets of (1, 1), put

€AB,C =€q, N - Neg,, Ne_p, N~ Ne_p, Necg Ne_¢y Ao N €cp A\ €_c,

where (a1, ..., am) (resp. (b1,...,by), (c1,...,¢p)) are the elements of A (resp.
B, C) arranged in increasing order. We obtain in this way a basis of A V and
simple calculations show that

X easc= >, eaBouy) ®
jea,n,j¢ AUBUC
XyeaBc=— Z €A,B,C—{j} )
jecC

Let H be the endomorphism of AV that reduces to multiplication by
(I—7r)on A"V (0 <r <2l). It is painless to verify (cf. Exerc. 19) that

[XJrvX*] =—-H
[H, X4] =2X4
[H,X_]=-2X_.

In other words, the vector subspace s generated by X, X_ and H is a
Lie subalgebra of End(/ V), isomorphic to sl(2, k), and A" V is the subspace
of elements of weight [ — 7. Denote by E, the subspace of A"V consisting
of the primitive elements, that is, E, = (A" V) N KerX . It follows from §1
that, for r < I, the restriction of X_ to A"V is injective and that, for r <,
A"V decomposes as a direct sum

NV=E ®X (E _2)&X2(E, 4)®---
=E. & X_(A"?V).

This shows in particular that dim E, = (2:) — (r2_12) for0 <r <l

On the other hand, the very definition of sp(¥) shows that I is annihi-
lated by the second exterior power of the dual of o. Similarly, I" is annihilated
by /\2 0. We deduce immediately that X, and X_, and hence also H, com-
mute with the endomorphisms A o(g) for g € g. Consequently, the subspaces
E, for 0 <7 <[ are stable under A" o; we shall show that the restriction of
N o to E, is a fundamental representation o, of weight w, (1 <r <1).

We remark first of all that the weights of A" o relative to b are the

€y Tt &y — (Ejl +'..+€j7‘—k)7

where i1,...,i; (resp. j1,...,Jr—k) are distinct elements of (1,1); thus, the
highest weight of A" o is indeed

Wy =€1+ -+ ¢&r
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and the vectors of weight w, are those proportional to e; A -+ A e, =
e{1,...r},2,2- Formula (9) shows that e; A --- Ae, € E,. Thus, it suffices
to prove that the restriction of A" o to E,. is irreducible.

If s € Sp(¥), the extension of s to AV (resp. A V*) fixes I' (resp. I'*),
and hence commutes with X and X_ and leaves E,. stable. Consequently, E,.
contains the vector subspace F,. generated by the transforms of e; A- - - Ae,. by
Sp(¥). The theorem of Witt shows that these are the non-zero decomposable
r-vectors such that corresponding vector subspace of V is a totally isotropic
subspace, r-vectors that we shall call isotropic.

Lemma 2. For 1 < r <, let F,. be the subspace of \"V generated by the
isotropic r-vectors. Then

l
ANV=F.+X_(N?V)=F, + <Zl e; A e_z-> ANTEV.

We show first of all how Lemma 2 implies our assertion. Since F,. C E,.
and E, N X_(A\""?V) = {0}, the lemma implies that F, = E,.. On the other
hand, let s € Sp(¥); the automorphism a +— sas™! of End(V) preserves g
and induces on it an element of Autg(g) (cf. (VII)), and hence transforms
every irreducible representation of g into an equivalent representation (87,
no. 1, Prop. 2). Since e; A --- A e, belongs to an irreducible component of
/\r o, and since E, = F,. is generated by the transforms of e; A --- A e, by
Sp(¥), it follows that the representation of g on E, is isotypical. But the
multiplicity of its highest weight w, is 1, so it is irreducible.

It remains to prove the lemma. It is clear for r = 1. We argue by induction,
and assume that r > 2. By the induction hypothesis, we are reduced to
proving that

F, i AVCFE.+T ANV,
or that, if y is a decomposable (r — 1)-vector and = € V, then
z:y/\xGFTJrF/\/\T_QV.

Let (fi)i<+i<i be a Witt basis of V such that y = f1 A -+ A fr_1. It suf-
fices to carry out the proof when x = f;. If i« ¢ (1 — r,—1), the r-vector
fiN-- A fr_1 A f; is isotropic. Otherwise, we can assume, renumbering the

1
fi if necessary, that ¢ =1 —r. Then I' = ]21 fiNf-j,s0

1 r—2 1
fr—l/\fl—r:m F*;fi/\f—i+jzr(fr_1 /\fl—r*fj/\f_j) ,
1
it M M
1 l
g A A fee) A frmt A i =y A ).

Jj=r
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But

frfl A flfr_fj /\f*j = (f'r‘fl + fj) A (flfr - f*j)_fj A f17r+fr71 A f*j
and we verify immediately that the r-vectors

FIN A foma Aot + ) A (Fime — f=))s
fANANfrcaNfjA fiy and fi A A froi A foj

are isotropic for r < j < [. Consequently, z € F,. + "' A /\Tﬁ2 V, which
completes the proof.

(V) We have wg = —1, so every finite dimensional simple representation of
g is orthogonal or symplectic. By Chap. VI, §4, no. 6.VI, the sum of the
coordinates of w, with respect to (aq,...,qq) is

r
1+2+-~-—|-(r—1)+r+r+~--+r+§

so o, is orthogonal for r even and symplectic for r odd.
Since ey A---Ae.and e_1 A--- Ae_, belong to E,. and since

W(T)(el/\'“/\e?«,6_1/\-~-/\e_r):1’

we see that the restriction of ¥, to E,. is non-zero: this is, up to a constant
factor, the bilinear form; it is symmetric if r is even, alternating if r is odd,
and invariant under o,..

(VI) For all x € g, the characteristic polynomial of o(x) takes the form

T + fi(2) T 4 4 fo()

where f1,..., fo; are invariant polynomial functions on g.
Ifx =&H + -+ &H;, € b, the f;(x) are, up to sign, the elementary
symmetric functions of £, ...,&, —&1, ..., —&;; these symmetric functions are

zero in odd degrees, and
T + fo(@) T2 4 4 fa(z) = (T2 = €7) ... (T2 = &).
As in no. 2.VI, it follows that f; = f3 = f5 =--- =0, and that

(f27f47~"7f21)

is an algebraically free family generating the algebra of invariant polynomial
functions on g.

(VII) Since the only automorphism of the Dynkin graph is the identity, we
have Aut(g) = Auto(g).

Let X be the group of similarities of V relative to ¥ (Algebra, Chap. IX|
§6, end of no. 5). One proves as in no. 2.VII that the automorphisms of g
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are the maps = +— sxs~ ! where s € X, so that Aut(g) = Auto(g) can be
identified with X'/k*.

For all s € X, let u(s) be the multiplier of s. The map s + pu(s) mod k*?
from X to k*/k*? is a homomorphism whose kernel contains k*.1, and hence
gives a homomorphism \ from X'/k* to k* /k*2. We have Sp(¥)Nnk* = {1, —1}.
Consider the sequence of homomorphisms

1 — Sp@)/{1,-1} % I/ 2 /2 — 1. (10)
The map ¢ is injective, and Im(¢) C KerA since the multiplier of an element of
Sp(¥) is 1. If the multiplier of s € X is an element of k*2, there exists v € k*
such that vs € Sp(¥); thus, Im(¢) = Ker(A). In summary, the sequence (10)
is exact. We identify Sp(¥)/{1, —1} with a subgroup of ¥'/k*. Since k*/k*?
is commutative, Sp(¥)/{1,—1} contains the derived group of X/k*. Thus,
Aut.(g) is contained in Sp(¥)/{1,—1} (§11, no. 2, Prop. 3). In fact, it is
equal to it, and Aut(g)/Aut.(g) is identified with k*/k*? (Exerc. 9).

(VIII) The canonical bilinear form @i on §* is given by
1 / /
4(l + 1) (5151 + e + glfl)

(Chap. VI, §4, no. 6.V). Thus, the inverse form of @, that is, the restriction
to b of the Killing form, is

P& Hy + -+ GHLGH + -+ §H) =41+ 1)(&& + - +&&))-
(IX) Recall the X, defined by formulas (6) (o € R). It is easily verified that
[Xo, X_o] = —H, for a € R. On the other hand, the map 6 : a — —'a is an
automorphism of g and 0(X,) = X_,, for all @ € R. Consequently, (X4)acr

is a Chevalley system in (g, b).
Assume that k = Q. The Cartan subalgebra b has two permissible lat-

Pp(rer +---+&e, §er+ -+ §e) =

tices Q(RY) = Z Z.H; and P(RY) = QRY) + 1Z. ZH (Chap. VI, §4,

no. 5.VIII). We see that Q(RY) is the set of matrlces Wlth integer entries
belonging to b. It follows that the Chevalley order Q(RY) + ZRZ.XQ is the
(¢S

set sp(21,Z) of matrices in g with integer entries.

Consider the reductive Lie algebra sp(¥) + Q.1. It is easy to see that the
set of its elements with integer entries is a Chevalley order, whose projection
onto sp(¥) parallel to Q.1 is the Chevalley order P(RY) + >~ Z.X,.

Finally, X2 = 0 for all @ € R. It follows that the lattice #'in V generated
by the e; is admissible for the Chevalley order sp(2l,Z). The same holds for
the lattice E. N A" ¥in E,.

Finally, E, has an admissible lattice for the Chevalley order

P(RY)+ ) Z.X,

only if 7 is even; then E, N A" #is such a lattice.
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4. ALGEBRAS OF TYPE D (I > 2)

(I) Let V be a vector space of even dimension 2/ > 4 and let ¥ be a non-
degenerate symmetric bilinear form of maximum index [ on V. By Algebra,
Chap. IX, §4, no. 2, V can be written as the direct sum of two maximal totally
isotropic subspaces F and F’. Let (e;)1<i<; be a basis of F and (e_;)1<i<y
the dual basis of F/ (for the duality between F and F’ defined by ¥). Then
€1,...,€,€6_1,...,e_1 is a basis of V; we shall call it a Witt basis of V. The
matrix of ¥ with respect to this basis is the square matrix S of order 2 all of
whose entries are zero, except those situated on the second diagonal, which are
equal to 1. The algebra g = o(¥) can be identified with the algebra og(2l, k)
of square matrices g of order 2/ such that ¢ = —S%gS. It has dimension
[(20 — 1). An easy calculation shows that g is the set of matrices of the form

A B

(& 3)
where A, B,C, D are square matrices of order [ such that B = —s'Bs,C =
—stCs and D = —stAs (s is the matrix of order [ all of whose entries are
zero except those situated on the second diagonal which are equal to 1).

Let b be the set of diagonal matrices belonging to g. This is a commutative
subalgebra of g, with basis formed by the elements H; = E,;; — E_, _; for
1 <4 <. Let (g;) be the basis of h* dual to (H;). Put, for 1 <i < j <,

XEi*EJ‘ = Ei,j - Eij—i
X,E.Jre, = —Ejiﬂ—E,i —j

i bl 3 s 11
Xeye, = Ei—j—Ej_; (11)
Xoci—e;, = —E_ji+E_.

These elements form a basis of a complement of h in g. For h € b,
[h, Xo] = a(h) X,

for all & € R, where R is the set of the +¢; +¢; (i < j). Thus, b is a splitting
Cartan subalgebra of g, and the roots of (g,h) are the elements of R. The
root system R of (g, ) is thus of type D; for I > 3, of type A; x A; (in other
words of type D) for I = 2 (Chap. VI, §4, no. 8.1 extended to the case | = 2).
Consequently, g is a splittable simple Lie algebra of type Dy if | > 3.

Every splitting Cartan subalgebra of g is transformed into h by an ele-
mentary automorphism of g, and hence by an element of O(¥) (cf. (VII)) and
consequently is the set bz of elements of g whose matrix with respect to a
Witt basis § of V is diagonal. We verify immediately that the only subspaces
invariant under hg are those generated by a subset of f3.

Since the algebras 0g(4, k) and sl(2, k) x s[(2, k) have the same root sys-
tems, they are isomorphic. Similarly, 05(6, k) and s((4, k) are isomorphic (cf.
also Exerc. 3). From now on, we assume that 1 > 3.
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(IT) We determine RY by means of Chap. VI, §4, no. 8.V. We find that
H.,_. =Hi—H;, H.,. =H+H,.

(III) Put ay = &1 —€9,00 = €9 —€3,...,y_1 = €11 — €], = £—1 + £&;.
By Chap. VI, 84, no. 811, (aq,...,q;) is a basis B of R; the positive roots
relative to B are the ; £¢; (i < j). The corresponding Borel subalgebra b is
the set of upper triangular matrices belonging to g.

It is easily verified that the only non-trivial vector subspaces invariant
under b are the totally isotropic subspaces Vi,...,V;, V], where V; is gen-
erated by e1,...,e; and V] by e1,...,e;_1,e_;, and the orthogonal comple-
ments V_q1,...,V_;41 of Vq,...,V;_y; the orthogonal complement V_; of
V; is generated by ey,...,e;, e, ..., e_¢41). But an immediate calculation
shows that, if an element a € g leaves V;_; stable, its matrix is of the form

A B
A0
0 0 D

where A, B, D are square matrices of order [ — 1, z (resp. y) is a matrix with
2 columns and [ — 1 rows (resp. 2 rows and [ — 1 columns), and A € k. It
follows that a leaves V; and V] stable. Consequently, b is the set of a € g
leaving all the elements of the isotropic flag (V1,...,V;_1) stable. Note that
the preceding and Witt’s theorem (Algebra, Chap. IX, §4, no. 3, Th. 1) imply
that V; and V] are the only maximal totally isotropic subspaces containing
Vi_1.

We say that an isotropic flag is quasi-mazimal if it is composed of [ — 1
totally isotropic subspaces of dimensions 1,...,l — 1. We then see as in no. 2
that, for any quasi-maximal isotropic flag J, the set bs of a € g leaving the
elements of § stable is a Borel subalgebra of g and that the map § — by is
a bijection from the set of quasi-maximal isotropic flags to the set of Borel
subalgebras.

We say that an isotropic flag is proper if it does not contain both a
subspace of dimension [ and a subspace of dimension [ — 1. Let § be such an
isotropic flag and let ps be the set of a € g leaving stable the elements of 4.
If 6§ C {V1,...,V;,V}, then ps is a parabolic subalgebra of g, containing b,
and it is easy to verify that the only totally isotropic subspaces # {0} stable
under ps are the elements of §. Since there are 2!=2 proper isotropic flags
contained in {V1y,...,V;, V;} and containing V;_; (resp. Vy, resp. Vj, resp.
containing neither V;_1, nor V;, nor V), this gives 2! parabolic subalgebras
containing b. It follows as above that the map § — ps is a bijection from the
set of proper isotropic flags to the set of parabolic subalgebras of g.

(IV) The fundamental weights corresponding to aq, ..., q; are, by Chap. VI,
84, no. 8.VI,
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w; =1+ +--+¢; (1§i§l—2)

1
wi_ = 5(51 +eat...Feote1—€)

1
w = 5(81 text .. teateatea)

Let o be the identity representation of g on V. The exterior power A" o
operates on E = A\"(V). If h € h, we have

a(h)ei = Ei(h)ei, a(h)e_i = —€i(h)6_i

for 1 < i < I. It follows that, for 1 < r <[, e; + --- + ¢, is the highest
weight of A" o, the elements of weight €; + - - - + ¢, being those proportional
toer A Ne,.

We shall show that, for 1 < r < [ — 2, the representation /\TO' s a
fundamental representation of weight w,..

For this, it suffices to show that A" o is irreducible for 1 < r < 1 —1
(note that the representation A\’ is not irreducible, cf. Exerc. 10), or that
the smallest subspace T, of /\TV containing e; A --- A e, and stable under
g is the whole of A" V. This is immediate for r = 1. For r = 2, we see as
in no. 2 that /\2 o is equivalent to the adjoint representation of g, which is
irreducible since g is simple. The proof is completed by arguing by induction
on [, as in no. 2, but assuming that [ —1 > r > 3.

We are now going to determine the fundamental representations of highest
weight @;_1 and ;. Let Q be the quadratic form z %LT/(JU, x). We have
defined in no. 2.IV the spinor representation A of the Clifford algebra C(Q)
on N = AF'. We verify immediately that the subspace Ny (resp. N_) of
N given by the sum of the AP F’ for p even (resp. odd) is stable under the
restriction of A to C*(Q). Consequently, the representations A; and A_ of
CT(Q) on N, and N_ respectively are the semi-spinor representations of
C*(Q) (Algebra, Chap. IX, §9, no. 4); they are irreducible, of dimension 2!~!
and inequivalent. Let py = Ay o f and p_ = A_ o f be the corresponding
irreducible representations of g (no. 2, Lemma 1 (vi)). In view of Lemma 1
(i), we have

1 1 1

f(H;) = 5(616—1 —e_i€;) = eje_; — 5 =5 it

and we see, as in no. 2.IV, that, for he hand 1 <3 < -+ <4 <,
Ao f(h)(e*il ARERRA e*ik)

= (et e = (e + o e )R e Ao Aey,)

Consequently, the highest weight of py (resp. p_) is w; (resp. wi—1).
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We say that py and p_ are the semi-spinor representations of g. All their
weights are simple. We also say that p = Ao f = py @ p_ is the spinor
representation of g.

(V) For 1 <r <[ — 2, the fundamental representation \" o is orthogonal: it
leaves invariant the extension of ¥ to A" V.

Consider now the spinor representation p of g. We show as in no. 2 that,
for 1 <i,5 <l,i#j,

f(XEi—sj) = ieie—j

f(XEiJFEj) = :l:eiej
J(X_c—¢;) = Feie_j.

It follows that the non-degenerate bilinear form @ introduced in no. 2.V is
invariant under p(g). Thus, the spinor representation p leaves invariant a non-
degenerate form that is symmetric for I = 0, —1 (mod. 4) and alternating for
1=1,2 (mod. 4).

If I is even, the restrictions of @ to N} and N_ are non-degenerate and the
semi-spinor representations are orthogonal for [ = 0 (mod. 4) and symplectic
for I = 2 (mod. 4). Moreover, we remark that wg = —1 (Chap. VI, §4,
no. 8.XI).

On the other hand, if [ is odd, N, and N_ are totally isotropic for @. More-
over, —wp(a;) = a; for 1 <i <1 —2, —wo(ay) = ay—1 and —wp(y—1) =
(Chap. VI, §4, no. 8.XI), so —wg(w;) = w;—1 and the semi-spinor represen-
tations are neither orthogonal nor symplectic; each of them is isomorphic to
the dual of the other.

(VI) For all z € g, the characteristic polynomial of o(x) takes the form
T2 + f1 ()T o for().

We see as in no. 3 that fi = fs = fs = --- = 0. By Chap. VI, §4, no. 8.IX
and §8, no. 3, Th. 1, there exists a polynomial function f on g such that
fa, fas- -, fai—a, [ generate the algebra I(g*) of invariant polynomial func-
tions on g, are algebraically independent, and further f2 = (—1)!fo.

For all z € g, we have *(Sz) = xS = —Sz, so we can consider Pf(Sz),
which is a polynomial function of x. Now:

far(z) = det(z) = (=1)! det(Sz) = (—1) (Pf(Sz))>.
Thus, we can take f(z) = Pf(Sz).

(VII) Recall (§5, no. 3, Cor. 1 of Prop. 5) that Aut(g)/Auto(g) can be iden-
tified with the group Aut(D) of automorphisms of the Dynkin graph D of
(g,bh). When [ # 4, Aut(D) is the group of order 2 consisting of the permuta-
tions of aq, ...,y that leave a1, ..., aq_o fixed. When [ = 4, Aut(D) consists
of the permutations of aq, ..., a4 that leave as fixed; it is isomorphic to S3
(cf. Chap. VI, §4, no. 8.XI). In all cases, the subgroup of Aut(D) consisting
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of the elements that leave a; fixed is of order 2. We denote by Aut’(g) the
corresponding subgroup of Aut(g); we have Aut’(g) = Aut(g) if | # 4 and
(Aut(g) : Aut’(g)) = 3 if [ = 4; moreover,

(Aut'(g) : Auto(g)) = 2.

An element s € Aut(g) belongs to Aut’(g) if and only if oo s is equivalent
to o (this follows from the fact that oy is the highest weight of o). We
conclude as in no. 2.VII that Aut’(g) can be identified with X /k*, where ¥
is the group of similarities of V relative to W.

Let s € X, and let A(s) be the multiplier of s. We have det(s) = A(s)" if
s is direct, and det(s) = —\(s)" if s is inverse (Algebra, Chap. IX, §6, no. 5).
The direct similarities form a subgroup Xy of index 2 in X'; we have Xy D k*.
The group Xo/k* is equal to the subgroup Autg(g) of Aut’(g) = X'/k*. Indeed,
it suffices to verify this when k is algebraically closed: in that case Autg(g) =
Aut.(g) is equal to its derived group (§11, no. 2, Prop. 3), hence is contained
in Xy /k*, and since they are both of index 2 in X'/k*, they are equal.

On the other hand, as in no. 3.VII there is an exact sequence

1 —SOW)/{1,-1} — Xo/k* — k*/k** — 1.

Identify SO(¥)/{1, —1} with a subgroup of Xy/k* = Autg(g). Since k*/k*?
is commutative, we have Aut.(g) C SO(¥)/{1, —1}. In fact, it can be shown
(Exerc. 11) that Aut.(g) is equal to the image in SO(¥)/{1,—1} of the
reduced orthogonal group Of (¥) of ¥ (Algebra, Chap. IX, §9, no. 5).

(VIII) The canonical bilinear form @y on h* is given by

1

D (&e1+ -+ &e, e+ -+ e) = m(&fi + -+ &&)

(Chap. VI, 84, no. 8.V). Thus, the restriction of the Killing form to b is
P(&Hy + -+ GHLE H + -+ §H) = 4(1 - 1)(&&) + -+ &&)).

(IX) Recall the X, (o € R) defined by formulas (11). We verify easily that
[Xo, X_o] = —H, for a € R. On the other hand, the map 6 : a — —'a is an
automorphism of g and 6(X,) = X_,, for all « € R. Consequently (X, )acr
is a Chevalley system in (g, ).

Assume that k£ = Q. By Chap. VI, §4, no. 8.VIII, the subalgebra h has
three permissible lattices if [ is odd and four permissible lattices if [ is even. In
particular, the lattice J#generated by the H; is permissible. But this lattice is
the set of diagonal matrices in g with integer entries. It follows that og(2l, Z)
is the Chevalley order #+ > Z.X, in g. Since X2 = 0 for all a € R, we
see that the lattice #in V generated by the Witt basis (e;) is an admissible
lattice in V for 0g(2l,Z). The same holds for A" ¥in \" V.



216 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

!
On the other hand, if we take P(RY) = Z.1 ;HZ + J¢ as permissible

lattice and ¥ = P(RY) + Y. Z.X,, as Chevalley order, we see that A"V has
an admissible lattice only if r is even; A" ¥'is then admissible.

Consider the reductive Lie algebra o(¥) + Q.1; we see immediately that
the lattice = (o(¥) + Q.1) N gl(2l, Z) is a Chevalley order. The Chevalley
order ¢ is the projection of & onto o(?¥) parallel to the centre Q.1.

Finally, we see as in no. 2 that the lattice A4 (resp. .#_) generated by the
e_iy N---Ne_gy, (resp. e_i A---ANe_y, ) is admissible for the semi-spinor

representation of the Chevalley order Q(RY) + ZRZ.XQ. On the other hand,
ae
A, and AZ have no admissible lattice for 0g(2l, Z).
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TABLE 1

We associate to each fundamental weight the number 1 (resp. —1,0) if the
corresponding simple representation is orthogonal (resp. symplectic, resp.
neither orthogonal nor symplectic). The calculation of this number has in
essence been given in §13 for types A;, B;, C;, D;. The results are also indi-
cated below for types Eg, E7, Eg, Fy, Go (it suffices to apply §7, Prop. 12, and
Chap. VI, §4, nos. 9.VI, 9.XI, 10.VI, 10.XI, 11.VI, 11.X1, 12.VI, 12.X1, 13.VI,
13.XI).

A=) =2
_ {0 r# Bt @ 1 r#l
A S e @ (—1)HD/2
Cr(1>2) Drit=2)
@ (1) @ 1 r#l-Ll
1 0 if [ is odd
@ and w1 (=1)/2 if [ is even
Eq E, Es Fy Go
@ 0 w1 @ 1 @ 1 =l
we 1 we —1 wy 1 w2 1 @z 1
w3 0 wy 1 ws 1 @ 1
wy 1 Ty 1 @y 1 w1
ws 0 @5 — 1 ws 1
Y @ 1 we 1
ws 1
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TABLE 2

Ch. VIII

We associate to each fundamental weight the dimension of the corresponding
simple representation, calculated by means of Th. 2 of §9.

A (>1)

E¢
27 =33
78 = 2.3.13
351 =33.13
2925 = 3%2.5%.13
351 = 33.13
27 =33

Eg
3875 = 5%.31
147250 = 2.53.19.31
6696000 = 26.33.5%.31
6899079264 = 2°.3.72.112.17.23.31
146325270 = 2.3.5.7%.132.19.31
2450240 = 26.5.13.19.31
30380 = 2%.5.72.31
248 = 23.31

B, (I >2)
20+1
(1<r<i-1) .
o
D, (l>2)

Er

133 =7.19
912 = 2%.3.19
8645 = 5.7.13.19
365750 = 2.5%.7.11.19
27664 = 21.7.13.19
1539 = 3%.19
56 = 23.7

Fy
52 = 22.13
1274 = 2.7%.13

273 =3.7.13
26 =2.13

Go

14 =2.7



EXERCISES

The base field k is assumed to be of characteristic zero.
Unless explicitly stated otherwise, Lie algebras are assumed to be finite
dimensional.

81

We denote by s the Lie algebra s((2, k).
1) Let U be the enveloping algebra of s. Show that the element

C=H>-2(X,X_+X X,)=H?+2H—-4X_X,

belongs to the centre of U, and that its image in the representation associated
to V(m) is the homothety with ratio m(m + 2).

2) Let A\ € k, let Z(\) be a vector space having a basis (e, ), withn =0,1,.. .,
and let X, X | H be the endomorphisms of Z(\) defined by formulas (2) of
Prop. 1.

a) Verify that this gives an s-module structure on Z(\).

b) Assume that A is not an integer > 0. Show that the s-module Z()\) is
simple.

¢) Assume that A is an integer > 0. Let Z’ be the subspace of Z()\) generated
by the e,, n > A. Show that Z’' is an s-submodule of Z(\), isomorphic to
Z(—A—2), and that the quotient Z(\)/Z’ is isomorphic to the simple s-module
V(). Show that the only s-submodules of Z(\) are 0,Z" and Z(\).

3) Let E be a vector space having a basis (e, )nez. Let
a(n) = ag + an, b(n) =by +bin, c(n)=co+cin

be three affine functions with coefficients in k. Define endomorphisms X, X_|
H of E by the formulas

Xien, =a(n)e,—1, X_e, =0bn)e,y1, He, = c(n)e,.
This gives an s-module structure on E if and only if:

a1b1 = 17 Cc1 = —2, Co — —aob1 - albo.
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Under what condition is this s-module simple?

9 4) Let g be a Lie algebra. A g-module E is said to be locally finite if it is
a union of finite dimensional g-submodules; equivalently, every g-submodule
of E of finite type (as a U(g)-module) is finite dimensional.

a) Let 0 - E' - E — E” — 0 be an exact sequence of g-modules. Show
that, if E' and E” are locally finite, so is E (reduce to the case in which E is
of finite type, and use the fact that U(g) is noetherian, cf. Chap. I, §2, no. 6).

b) Assume that g is semi-simple. Show that E is locally finite if and only if
E is a direct sum of finite dimensional simple g-modules.

¢) Assume that g = s. Show that E is locally finite if and only if the following
conditions are satisfied:
¢1) E has a basis consisting of eigenvectors of H,
¢2) the endomorphisms X g and X_g are locally nilpotent.

(Begin by showing that, if E satisfies ¢1) and c¢2), and is not reduced to
0, it contains a primitive element e of integer weight m > 0; prove next that
Xm+le = 0, and hence that E contains V(m). Conclude by applying a) to
the largest locally finite submodule E’ of E.)

5) Let E be a locally finite s-module (Exerc. 4). For all m > 0, denote by
L(m) the vector space of s-homomorphisms from V(m) to E.

a) Define an isomorphism from E to @D L,, ® V(m).

b) Denote by &, the invariant bilinear form on V(m) defined in no. 3,
Remark 3. For all m € N, let b,, be a bilinear form on L,,; let b be the bi-
linear form on E which corresponds, via the isomorphism in a), to the direct
sum of the forms b,, ® ®@,,. Show that b is invariant, and that every invariant
bilinear form on E is obtained in this way in a unique manner. The form b
is symmetric (resp. alternating) if and only if the b,,, m even, are symmetric
(resp. alternating), and the b,,, m odd, are alternating (resp. symmetric).
The form b is non-degenerate if and only if the b,, are non-degenerate.

c¢) Assume that E is finite dimensional. Show that E is monogenic (as a U(s)-
module) if and only if dim L,, <m + 1 for all m > 0.

6) If E is a finite dimensional s-module, and n an integer, denote by a,, the
dimension of the eigenspace of Hg relative to the eigenvalue n. Denote by

ce(T) the element of Z[T, T~!] defined by cg(T) = ZZ a, T™.
ne

a) Define Ly, as in Exerc. 5. Show that
dimL,, = amy — @m4e  for every integer m > 0.

Deduce that cg(T) = cg/(T) if and only if E and E’ are isomorphic. Recover
this result by using Exerc. 18 €) of Chap. VII, §3.

b) Show that cggr = cg + ¢r and cggr = CE.CF.

¢) We have cy(m)(T) = (T —T-™"1) /(T - T~ 1).
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d) Deduce from a), b), ¢) that, if m > m’ > 0, the s-module V(m) ® V(m’)
is isomorphic to

Vim+m)eV(m+m' —2)eV(m+m' —4)@--- & V(m—m').
If m is > 0, the s-module S*V(m) is isomorphic to

V(0) if m is even
V(2m) & V(2m —4) & V(Em - 8) @ - o {V@) if m is odd

and the s-module A V(m) is isomorphic to

V(2) if m is even
V(2m—2)@V(2m—6)@V(2m—10)®---€B{V(()) i mis odd.
7) Let E be a finite dimensional s-module. Show that the dual of E is iso-
morphic to E.

8) Show that the s-module V(m) can be realized as the space of homogeneous
polynomials f(u,v) of degree m in two variables, the operators X, X_ and
H being given by:

of of of  of

X+f:u%7 Xff:_’()%, Hf:'uaiu_’l)%

99) Consider the operation of s, via the adjoint representation, on its en-
veloping algebra U and on its symmetric algebra S = @ S™.

a) Determine the weights of the s-module S". Deduce the following isomor-
phisms of s-modules:

S"—V2n)eV(2n—-4) e V(2n—-8)@---®V(0) n even
S" —V(2n)aV(ie2n—-4)aeV(2n—-8)@ - & V(2) nodd.

In particular, the elements of S™ invariant under s form a space of dimension 1
(resp. 0) if n is even (resp. odd).

b) Show that the subalgebra of S consisting of the elements invariant under
s is the polynomial algebra k[I'], where I' = H? — 4X_X,. The module
S"/I.8"? is isomorphic to V(2n).

¢) Show that the centre of U is the polynomial algebra k[C], where C is the
element defined in Exerc. 1 (use b) and the Poincaré-Birkhoff-Witt theorem).

10) Let m be an integer > 0, S the graded algebra k[Xi,...,X,,], and

ai,...,a,, elements of k*. Let & = Hzlainin be a quadratic form; put
. i,j=
D, = % and D= 2. b;;D;D; where (b;;) is the inverse matrix of (a;;).

1,j=1
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a) Show that there exists a unique s-module structure on S such that X, f =
iD(f),X_f=131df and Hf = —(m/2+n)f if f is homogeneous of degree n.
b) Put A™ = 8" NKer(D). Show that S™ is the direct sum of the subspaces
@P_ A7 for 2p + ¢ = n. Deduce the identity

i dim(A™)T" = (1+T)/(1 - T)™ L.
n=0

¢) If f is a non-zero element of A", the P f, p > 0, form a basis of a simple
s-submodule of S, isomorphic to the module Z (—% — n) of Exerc. 2.

d) Make the cases m = 1 and m = 2 explicit. Use the case m = 3 to recover
the results of Exerc. 9.

11) Assume that k is algebraically closed. Let g be a Lie algebra, V a simple
g-module, and D the field of endomorphisms of the g-module V. Show that, if
k is uncountable,” then D = k. (If not, D would contain a subfield isomorphic
to k(X), X being an indeterminate, and we would have dimj; D > Ry, hence
also dimy V > RNy, which is absurd since V is a monogenic U(g)-module.)

912) Let ¢ € k, and let W be a vector space with basis (e, e1, ea,. . .).

a) Show that there exists a unique representation p, of § on W such that

1
pg(H)en = 2ent1, po(Xi)en = (ipq(H) —1)"eo,

1
pq(X—)en = (§Pq(H) + 1)n(_q60 +e1+ 62)-
We have p,(C) = 4q, where C = H? + 2H — 4X_X_ (cf. Exerc. 1). The
representation p, is simple. The elements « € s such that p,(r) admits an
eigenvalue are the multiples of X . The endomorphism p,(X ) admits 1 as
an eigenvalue, with multiplicity 1.

b) Let p be a simple representation of s such that p(C) = 4¢ and such that
p(X1) has 1 as an eigenvalue. Show that p is equivalent to p,,.

€ 13) Assume that k = C. Put C = H? + 2H — 4X_X,, cf. Exerc. 1. A
representation p of s = sl(2, C) is said to be H-diagonalizable if the underly-
ing space of p has a basis consisting of eigenvectors of p(H). Let ¢ € C and
veEQ/Z.

a) Let S be a vector space with a basis (e, )wec indexed by the elements of
C. Let S, = > Ce,,. There exists a unique representation p, 4 of s on S,

wev
such that
7 The conclusion remains true even if k is countable, c¢f. D. QUILLEN, On the

endomorphism ring of a simple module over an enveloping algebra, Proc. Amer.
Math. Soc., Vol. XXI (1969), pp. 171-172.
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pv,q(X+)ew =(q— w? — w)1/2

pog(X-)ew = (¢ — w? + w)
Pu.q(H)ey = 2wey,.

ew+1

1/2
/ Ew—1

(We agree that, for all z € C, 21/2 is the square root of z whose amplitude
belongs to (0,7).) Denote by S, , the s-module defined by p, . We have
pv,q(c) = 4q.

b) If ¢ # u? + u for all u € v, S, 4 is simple.

c) Assume that 2v # 0, and that ¢ is of the form u? + u, where u € v,u > 0
(which defines u uniquely). Let S (resp. S} ) be the vector subspace of S,
generated by the e,, for w < u (resp. w > u). Then S and Sf; 4 are simple
s-submodules of S, 4.

d) Assume that 2v = 0, and that ¢ is of the form u? + u, where u € v,u > 0
(which defines u uniquely). Let S, (resp. Squ, S;L,q) be the vector subspace
of S, generated by the e, for w < —u (resp. —u < w < u,w > u). Then

_ 0 + .
Sy.4:Sy 4 and S7 are simple s-submodules of S, 4.

e) Assume that v = f% +Z and g = *i' Let 8:1/2 Y (resp. Sfl/Q 71/4) be
the vector subspace of S_ /; generated by the e,, for w < —% (resp. w > —%)

Then S™ and ST

—1/2,-1/4 T1/2,-1/4 T€ simple s-submodules of S_1 /5 _1/4.

f) Denote by pﬂf’q, p&q the representations corresponding to Svi’q, Squ. In case

b), the elements = € s such that p, () admits an eigenvalue are those in CH.
In cases c), d), e), the elements x € s such that p, () admits an eigenvalue
are those in CH+CX; if, in addition, z is nilpotent (and hence proportional
to X) and non-zero, p, ,(z) admits 0 as its only eigenvalue, and this of
multiplicity 1; on the other hand, if x is semi-simple, the underlying space
of p, , has a basis consisting of eigenvectors of p, q(as). There are analogous
results for p;f, replacing X by X_.

g) Let V be a simple s-module and p the corresponding representation. Then
p(C) is a homothety (use Exerc. 11). Assume that p(C) = 4¢. Show that, if
p is H-diagonalizable, V is isomorphic to one of the modules S, 4, Sfﬁq, S,g,q
considered in b), ¢), d), e). Moreover, p is H-diagonalizable if and only if

p(H) admits an eigenvalue; it suffices that p(X ) admits the eigenvalue 0.

9 14) The notations are those of the preceding exercise. Denote by B, the
quotient of U(s) by the two-sided ideal generated by C — 4¢, and denote
by w — u® the canonical map U(s) — B,. Consider the representations of
Exerc. 12 and 13 as representations of B,.

a) Every element of B, can be expressed uniquely in the form
STOXS D (H)+ Y qu(H*)X®,
r>0 s>0

where the p, and the ¢, are polynomials. If two elements of B, generate the
same left ideal, they are proportional.
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b) Consider case b) of Exerc. 13. Let a be a non-zero element of S, ,. If a
is an eigenvector of p, ((H), with eigenvalue A, the annihilator of a in By is
the left ideal generated by H® — X; if a is not an eigenvector of p, ,(H), its
annihilator is a non-monogenic left ideal.

¢) Consider the case of the representations pﬁq of Exerc. 13. If a is a non-
zero element of the space of such a representation, its annihilator in By is a
non-monogenic left ideal.

d) Consider the representation p, of Exerc. 12. The annihilator of e in By is
generated by X{ — 1. If a € W is not proportional to g, its annihilator is a
non-monogenic left ideal.

e) Every automorphism of s extends to U(s) and defines by passage to the
quotient an automorphism of By; let A’ be the subgroup of A = Aut(B,)
thus obtained. Show that A’ # A. (Let ¢ be the endomorphism z — [X$2, 2]
of By; this automorphism is locally nilpotent, and e? € A, e? ¢ A’.)

f) The group A operates by transport of structure on the set of classes of
simple representations of By. Let m; (resp. ma,73) be a representation of
type puq of Exerc. 13 b) (resp. of type piq of Exerc. 13, resp. of type p, of
Exerc. 12). Then Amy, Amy and Ams are pairwise disjoint. (Use a), b), ¢), d).)
If ¢ € A is such that ¢ is of type p, 4 of Exerc. 13 b), then ¢ € A’ (use a)
and b)). Deduce that, if ¢ is the automorphism e¥ of e), the representation
o = m o ¢ has the following property: for all z € s-{0}, o(x) has no
eigenvalue.®

15) Let g be a Lie algebra of dimension 3. Show the equivalence of the fol-
lowing conditions (cf. Chap. I, §6, Exerc. 23).

(i) g =[g,]-

(ii) The Killing form of g is non-degenerate.

(iil) g is semi-simple.

(iv) g is simple.

9 16) Let g be a simple Lie algebra of dimension 3, and let @ be its Killing
form. Denote by o(®) the orthogonal algebra of @, i.e. the subalgebra of gl(g)
consisting of the elements leaving ¢ invariant.

a) Show that ad : g — o(®) is an isomorphism.

b) Prove the equivalence of the following properties:

(i) g contains a non-zero isotropic vector (for @).

(ii) g contains a non-zero nilpotent element.

(iii) g is isomorphic to s.
¢) Show that there exists an extension ki of k, of degree < 2, such that
9(k,) = k1 @k g is isomorphic to s(,).

8 For more details on Exerc. 12, 13 and 14, see: D. ARNAL and G. PINCZON,
Sur les représentations algébriquement irréductibles de ’algebre de Lie s((2), J.
Math. Phys., Vol. 15 (1974), pp. 350-359.
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d) Give the vector space A = k @ g the unique algebra structure admitting 1
as unit element, and such that the product g x g — A is given by the formula

P14 5oyl (nyca)
Show that A is a quaternion algebra over k, and that g is the Lie subalgebra
of A consisting of the elements of trace zero (reduce, by extension of the base
field, to the case where g = s, and show that A can then be identified with
the matrix algebra Ms(k)).

Conversely, if D is a quaternion algebra over k, the elements of D of trace
zero form a simple Lie algebra of dimension 3, and the corresponding algebra
A can be identified with D.

e) Prove the formulas

xy =

&(x,x) = —8Nrda(z), P(x,y) = 4Trda(zy)
20z, [y, 2l = P(x,y)z — P(w,2)y (2,2 € g).

f) Show that the discriminant of ¢ (with respect to any basis of g) is of the
form —2\2, with A € k*.

g) Let n be an integer > 0. Show that the g-module S"(g) has a unique
simple submodule of dimension 2n + 1, and that this module is absolutely
simple (reduce to the case where g = s, and use Exerc. 9).

Show that g has an absolutely simple module of dimension 2n only if g
is isomorphic to s, i.e. only if A is isomorphic to My (k). (Let V be such a
module. If n > 2, show by means of Exerc. 6 ¢) that the g-module V ® g has
a unique absolutely simple submodule of dimension 2n — 2. Then reduce to
the case n = 1, which is trivial.)

9§ 17) We retain the notations of the preceding exercise. Show that, for all
n > 1, the algebra U(g) has a unique two-sided ideal m,, such that U(g)/m,, is
a central simple algebra of dimension n? (extend scalars to reduce to the case
in which g = s and show that m,, is then the kernel of the homomorphism
U(g) — End(V(n—1))). Every two-sided ideal of U(g) of finite codimension is
of the form m,,, "m,,,N- - -Nm,,, , where n, ..., np are distinct; its codimension
is n? + --- 4+ n? (apply the density theorem). The m,, are the only maximal
two-sided ideals of U(g) of finite codimension.

Show that mg is generated (as a two-sided ideal) by the elements
2? — 1&(x,x) (z € g), and that the quotient U(g)/mz can be identified with
the quaternion algebra A of Exerc. 16.

When g is isomorphic to s, U(g)/m,, is isomorphic to M,, (k). Show that,
when g is not isomorphic to s, U(g)/m,, is isomorphic to M, (k) if and only
if n is odd (use Exerc. 16 g)).%

% It can be shown that, when n is even, U(g)/m,, is isomorphic to M,, /2(A).
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€ 18) Assume that k = R, C or a field complete for a discrete valuation and
with residue field of characteristic p # 0 (for example a finite extension of
the p-adic field Q,,).

a) Let n be a nilpotent Lie algebra, N the Lie group obtained by giving n the
Hausdorff law (Chap. I1I, §9, no. 5), and p : n — gl(E) a linear representation
of n on a finite dimensional vector space E. Assume that p(x) is nilpotent for
all z € n, and put m(z) = exp(p(x)). Show that 7 is the only homomorphism
of Lie groups ¢ : N - GL(E) such that L(y) = p.

(When k£ = R or C, use the fact that N is connected. When k is ultra-
metric, show that the eigenvalues of ¢(x), z € N, are equal to 1; for this,
prove first of all that, if &’ is a finite extension of k, and if (A,..., \p,...) is
a sequence of elements of k" such that A, = AP | for all n and A\; = 1, then
An =1 for all n.)

b) Let p : s — gl(E) be a finite dimensional linear representation of s, and let
7 be the homomorphism from SL(2, k) to GL(E) compatible with p (no. 4).
Show that 7 is the unique homomorphism of Lie groups ¢ : SL(2,k) —
GL(E) such that L(¢) = p. (Use a) to prove that = and p coincide on the
exp(n), with n nilpotent in s, and remark that SL(2, k) is generated by the

exp(n).)
82
1) Let g be a simple Lie algebra of dimension 3, and & its Killing form (cf.

§1, Exerc. 15, 16, 17).

a) An element = € g is regular if and only if &(x,x) # 0. Let b, = kx be the
Cartan subalgebra generated by such an element. Show that b, is splitting if
and only if 2¢(x, z) is a square in k.

b) Show that
g is splittable <= g is isomorphic to s[(2, k).

2

a

) Let k1 be an extension of k of finite degree n > 2.
)
b) Show that the splittable simple k-algebra sl(n, k) contains a Cartan sub-

algebra bh; that is not splitting. (Choose an embedding of the algebra k; into
M, (k), and take h; = k1 Nsl(n, k).)

Show that the semi-simple k-algebra s((2, k1) is not splittable.

3) Let (g,h) be a split semi-simple Lie algebra, R its root system, and K the
restriction of the Killing form of g to hh. With the notations of Chap. VI, §1,
no. 12, we have K = Bgrv and K = 4v(R)®gv if R is irreducible; moreover, if
all the roots of R have the same length, then

K(H,,H,) =4h for all o« € R,

where h is the Coxeter number of W(R).
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If for example g is simple of type Eg, E7 or Eg, K(H,, H,) is equal to
48,72 or 120.

4) Let (g,h) be a split semi-simple Lie algebra, and (X,)aer & family of
elements satisfying the conditions of Lemma 2. If a, 8 € R and a4+ § € R,
define Nyg by the formula [X,, Xg] = NogXa+s; if a+ 8 ¢ R, put Nyg = 0.
Prove the following formulas:

a) Naﬁ = —Nga.
b) If o, 3,y € R are such that a+ 8+ v = 0, then
Nag _ Nﬁv _ Nva

() Aasa) (B,8)

¢) If a,3,v,0 € R are such that « + f+ v+ J = 0, and if no pair has sum
zero, we have:

NapNys NgyNas NyaNgs
(y+6,v+6)  {a+da+d)  (B+6,8+0)

5) Let (g,h) be a split semi-simple Lie algebra, and (X,)aer a family of
elements satisfying the conditions of Lemma 2. Let B be a basis of R. The
H, (o« € B) and the X,, (o € R) form a basis of the vector space g. Show that
the discriminant of the Killing form of g with respect to this basis (Algebra,
Chap. IX, §2) is a rational number, independent of the choice of §, of B, and
of the X,.1° Deduce that, if n = dim g, the element of A" g defined by the
exterior product of the H, (a € B) and the X, (a € R) is independent, up
to sign, of the choice of f, of B, and of the X,.

6) Let (Xuo)aer be a Chevalley system in the split semi-simple Lie algebra
(g,h). Let o, 8 € R, and let p (resp. q) be the largest integer j such that
B+ ja € R (resp. B — ja € R), cf. Lemma 4. Show that

ad(Xa)"(Xp-ga) = k' X g1 (ko for 0<k<p+aq.

Deduce that the algebra gz of Prop. 8 is stable under the ad(X,)*/k! and
under the e2d(Xe) (cf. §12).

7) Assume that k is an ordered field. Let (g,h) be a split semi-simple Lie
algebra of rank [; put dimg = [ + 2m.

a) Show that the Killing form & of g is the direct sum of a neutral form of
rank 2m and a positive non-degenerate form of rank /; in particular, its index
is m.

b) Let ¢ be an involutive automorphism of g whose restriction to b is —Id.
Show that the form

For an explicit calculation of this discriminant, see: T. A. SPRINGER and R.
STEINBERG, Conjugacy Classes (no. 4.8), Seminar on Algebraic Groups and
Related Finite Groups, Lect. Notes in Math. 131, Springer-Verlag (1970).
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(z,y) = —P(z,0(y)), =,y

is symmetric, non-degenerate, and positive.

c) Let k' = k(y/a), where « is an element < 0 in k. Denote by ¢ the non-trivial
k-automorphism of k. Let g. be the k-subspace of g,y = k' ®; g formed by
the elements y such that

1®e)y=(c®1)y.

Show that g. is a k-Lie subalgebra of g(;/) and that the injection of g. into
g(y extends to an isomorphism from &' ®j g. to gx). The algebra g. is
semi-simple, and /a b is a Cartan subalgebra of it.

d) Show that the Killing form of g.. is negative. Deduce that g. is not splittable
(unless g = 0).

e) When k& = R, show that Int(g.) is compact.

8) a) Let g be a Lie algebra and n an integer > 0. Let X,,(g) be the subset
of g" cousisting of the families (z1,...,z,) that generate g as a k-algebra.
Show that X, (g) is open in g” in the Zariski topology (Chap. VII, App. I).
If k" is an extension of k, then X, (g(x)) N g™ = X, (g). Deduce that, if g
can be generated by n elements, so can g.

b) Let (g, h) be a split semi-simple Lie algebra. Let = be an element of h such
that a(x) # 0 for all @ € R and «a(z) # B(x) for any pair of distinct elements
a, € R. For all « € R, let y, be a non-zero element of g*, and let y = EG:R Yo-

Show that, for all a € R, there exists a polynomial P, (T) € k[T], without
constant term, such that y, = P,(ad x).y. Deduce that g is generated by
{z,y}-

¢) Show, by means of a) and b), that every semi-simple Lie algebra can be
generated by two elements.

99) Let G be a connected finite dimensional real Lie group. Let g be its Lie
algebra, and let {z1,...,z,} be a generating family of g. For m > 0, denote
by I, the subgroup of G generated by the exp(27"x;), 1 <4 < n. We have
F() C Fl (@I

a) Show that the union of the I, is dense in G.

b) Let H,, be the identity component of the closure I, of I},. We have
Ho € H; C ---, and the family (H,,) is stationary; let H be the common
value of the H,,, for m sufficiently large. Show that H is normal in G (observe
that H is normalized by all the I7,,), and that the image of I, in G/H is a
discrete subgroup of G/H. The union of these subgroups being dense in G/H,
deduce (cf. Chap. III, §6, Exerc. 23 d)) that G/H is nilpotent.

¢) Assume that g = 9g. Show that G = H, in other words, that I}, is dense
in G if m is sufficiently large.
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10) Let G be a connected semi-simple real Lie group. Show, by using Exerc. 8
and 9, that there exists a dense subgroup of G generated by two elements.

11) Let R be a root system of rank [, and @ the corresponding canonical
bilinear form (Chap. VI, §1, no. 12). The matrix ¢ = (Pr(«, 5))a,ger is of
rank [, and @2 = @. Deduce the formula ZR Pr(a,a) =Trd =1.

aec

§3

1) Let I" be a subgroup of Q(R) of finite index, and P = I'N R. The algebra
h + g® is reductive, and any reductive subalgebra of g containing h can be
obtained in this way (use Chap. VI, §1, Exerc. 6 b)).

2) Let X be the set of reductive subalgebras of g, distinct from g, and con-
taining f. Determine the minimal elements of X by means of Chap. VI, §4,
Exerc. 4. Show that the centre of such a maximal subalgebra is of dimension
0 or 1, according to whether we are in case a) or case b) of the exercise in
question.

3) Let b be a Borel subalgebra of g, and let [ = rk(g). Show that the minimum
number of generators of the algebra b is [ if [ # 1, and 2 if [ = 1.

4) Assume that £k = R or C. Put G = Int(g), and identify the Lie algebra of
G with g. Let b be a Borel subalgebra of (g,h), and n the set of its nilpotent
elements. Denote by H, B, N the integral subgroups of G with Lie algebras
b, b,n, respectively. Show that H,B,N are Lie subgroups of G, that N is
simply-connected, and that B is the semi-direct product of H by N.

5) Let m be a parabolic subalgebra of a semi-simple Lie algebra a.

a) Let p be a subalgebra of m. Then p is a parabolic subalgebra of a if and
only if p contains the radical  of m and p/t is a parabolic subalgebra of the
semi-simple algebra m/t.

b) If m’ is a parabolic subalgebra of a, every Cartan subalgebra of m Nm’ is
a Cartan subalgebra of a. (Reduce to the split case, and apply Prop. 10 to
the Borel subalgebras contained in m and m’.)

6) Two Borel subalgebras of a semi-simple Lie algebra a are said to be op-
posite if their intersection is a Cartan subalgebra. Show that, if b is a Borel
subalgebra of a, and h is a Cartan subalgebra of b, there exists a unique
Borel subalgebra of a that is opposite to b and contains h. (Reduce to the
split case.)

7) Let a be a semi-simple Lie algebra, h a Cartan subalgebra of a, and s a
semi-simple subalgebra of a containing f. Show that:

(a,b) is split < (s, ) is split.
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Construct an example in which a is splittable but s is not. (Take a = sp(4, k)
and s = sl(2, k'), where k" is a quadratic extension of k.)

8) Choose a basis of R, and hence a set of positive roots Ry. Assume that R
is irreducible. Let & be the highest root, S the set of roots orthogonal to &,
and S+ =SSN R+.
a) Let

g=d@bs, mi=) g% m. =) g

aES aES

Then g’ is semi-simple and g’ = hs ®m, dm_.

b) Put:
np=> 8% p= Y 8% p= >, "
CEER+ OCER+—S+ (XER+—S+—{5{}
Then

ny=my ®p, [my,po] Cpo, [ny,0%]=0.
In particular, p is an ideal of n .
¢) For all & € Ry -S; —{a}, there exists a unique o/ € Ry -S; - {a} such
that o+ o' = @. For all @ € Ry =S4 -{a}, a non-zero element X, of g* can
be chosen so that

[Xo, Xo]=+Xs ifa€eRy—S;—{a}
[Xo, X5 =0 if a,€Ry — Sy, B#a/ M
9) Construct examples of semi-simple Lie algebras a such that:
i) a has no Borel subalgebra,
ii) a has a Borel subalgebra, but is not splittable.
910) Let a be a semi-simple Lie algebra, and  an element of a. We say that

x is diagonalizable if ad x is diagonalizable (Algebra, Chap. VII), in other
words, if there exists a basis of a consisting of eigenvectors of ad x.

a) Let ¢ be a commutative subalgebra of a consisting of diagonalizable ele-
ments, and let L be the set of weights of ¢ in the representation ad,. The set

L is a finite subset of ¢* containing 0 (unless a = 0) and a = /\GBL a*(c). Show
€
that there exists a subset M of L such that L—{0} is the disjoint union of

M and —M, and such that (M + M) NL C M. If M has these properties, put
aM = ,\G?\/I a*(c), and pM = a%(c) @ aM. The algebra a’(c) is the commutant of
€

¢ in g; it is reductive in a (Chap. VII, §1, no. 5), and its Cartan subalgebras
are the Cartan subalgebras of a (Chap. VII, §2, no. 3). Show that p™ is a

" This exercise was communicated to us by A. JOSEPH.
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parabolic subalgebra of a, and that aM is the set of nilpotent elements of the
radical of pM. (Use the fact that ¢ is contained in a Cartan subalgebra of a
and reduce, by extension of scalars, to the case in which this subalgebra is
splitting.)

b) Retain the hypotheses and notations of a), and assume in addition that a
is splittable. Show that ¢ is contained in a splitting Cartan subalgebra of a.
(Take a splitting Cartan subalgebra b of a contained in p™; then there exists
a unique Cartan subalgebra b’ of a®(c) such that b is contained in b’ @ a™;
show that h’ is a splitting Cartan subalgebra of a, and that b’ contains c.)

11) Let a = ] a; be a finite product of semi-simple Lie algebras. A subalgebra
q of a is a parabolic (resp. Borel) subalgebra if and only if it is of the form
q = [ q; where, for all i, g; is a parabolic (resp. Borel) subalgebra of a;.

912) Let k' be a finite extension of k, a’ a semi-simple k’-Lie algebra, and a
the underlying k-Lie algebra. Show that the parabolic (resp. Borel) subalge-
bras of a are the same as those of a’. (Extend scalars to an algebraic closure
of k, and use Exerc. 11.)

13) Let p and q be two parabolic subalgebras of a semi-simple Lie algebra
a, and let n be the nilpotent radical of p. Show that m = (pNgq) +n is a
parabolic subalgebra of a. (Reduce to the case where a is split and q is a Borel
subalgebra; choose a Cartan subalgebra h contained in p N ¢, and determine
the subset P of the corresponding root system such that m = h + g¥.)

14) Retain the notations of Prop. 9.

a) Let a € B. Show that n N Kerad X, is the direct sum of the g?, where
belongs to the set of elements of Ry such that « + 5 ¢ R.

b) Deduce that, if g is simple, the centre of n is equal to g&, where & is the
highest root of R;. In the general case, the dimension of the centre of n is
equal to the number of simple components of g.

54

The Lie algebras considered in this paragraph are not necessarily finite di-
mensional.

1) Retain the notations of no. 2. Let A € kB. Associate to any o € B the
endomorphisms X*_, H, X of the vector space E such that

—a

XA (a1,...,a0) = (a,a1,...,ap)

n

Hé(alv s 7an) = ()\(CM) - Zn<ai>a))(a1ﬂ e .,Oén).

i=1
The vector X2 (av, ..., qy) is defined by induction on n by the formula

X()!‘(al, o) = (XC X(;\ — 6a7a1H2)(a2, cey ),

—aq
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where 04,0, is the Kronecker symbol; we agree that, if (a1,...,q,) is the
empty word, then X2 (a1, ...,q,) is zero.

Show that Lemmas 1 and 2 remain true for these endomorphisms. We
thus obtain a representation py : a — gl(E) such that

P)\(l‘a) = X27 PA(ha) = H27 pk(z—a) = Xéa

€ 2) Retain the notations of no. 3. Let m be an ideal of a.

a) Let a and 3 be two distinct elements of B. Assume that (ad z,)Nxg
belongs to m for N sufficiently large. Show that z,3 € m. (Apply the results
of §1, no. 2 to a/m, provided with a suitable s((2, k)-module structure.)

b) Show that n + On is the smallest finite codimensional ideal of a. Show
that this is also the smallest ideal containing the (ad z,)*zs and the
(ad z_o) z_p.

3) Let (g,h) be a split semi-simple Lie algebra, R the corresponding root
system, and B a basis of R. For any a € B (resp. for any pair (a, 8) € B?),
let R(a) (resp. R(a, B)) be the closed subset of R formed by the +a (resp. the
smallest closed subset of R containing +« and +43). Let g(a) (resp. g(a, 3))
be the derived algebra of the algebra b 4+ g*(®) (resp. b + gi(@#)), cf. §3.

a) Show that g(a) = kH, @ g* @ g~ %; it is isomorphic to s((2, k).

b) Show that g(a, B) is semi-simple, and that it is generated by g(a) and
g(8). Tts root system can be identified with R(c, 3).

¢) Let s be a Lie algebra (not necessarily finite dimensional). For all o € B,
let f, be a homomorphism from g(«) to s. Assume that, for any pair («, 3),
there exists a homomorphism f.5 : g(e, §) — s that extends both f, and fs.
Show that, in that case, there exists a unique homomorphism f : g — s that
extends the f,. (Use Prop. 4 (i).)

4) Let g be a splittable semi-simple Lie algebra, and ¢ an automorphism of
k. Let g, be the Lie algebra obtained from g by extending scalars by means
of o. Show that g, is isomorphic to g. (Use the Cor. of Prop. 4.)

5) a) Let g be a simple Lie algebra, and k; the commutant of the adjoint
representation of g. Show that k; is a commutative field, a finite extension
of k, and that g is an absolutely simple k;-Lie algebra.

Conversely, if k1 is a finite extension of k, and g an absolutely simple
ki-Lie algebra, then g is a simple k-Lie algebra, and the commutant of its
adjoint representation can be identified with k;.

b) Let &’ be a Galois extension of k containing k1. Show that g(;) is a product
of [k1 : k] absolutely simple algebras. When gy is split, these algebras are
mutually isomorphic. (Use Exerc. 4.)

6) Let A be a commutative ring, and let u be the A-Lie algebra defined by
the family of generators {z,y} and the relations
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[z, [z, y]] =0, [y,[y, [y, =]]] = 0.

Show that u is a free A-module with basis

{z,y, [z, 9], [y, [z, yl]}-

Show that, when A = k, u is isomorphic to the algebra a, /n corresponding
to a root system of type Bs.

97) Let A be a commutative ring in which 2 is invertible, and let u be the
A-Lie algebra defined by the family of generators {z,y} and the relations

[, [z, 9]l = 0, [y, [y, [y, [y, 2]]]] = 0.

Show that u is a free A-module with basis

{z,y, [z, 9], [y, [z, 911, [y, [y, [=, ¥]1], [, [y, [y, [, ¥]]]] }-

Show that, when A = k, u is isomorphic to the algebra a, /n corresponding
to a root system of type Ga.

§5

1) The index of Autg(g) in Aut(g) is finite.

2) We have Aut.(g) = Aut(g) if g is splittable, simple, and of type Go,F4 or
Es.

3) Let b be a splitting Cartan subalgebra of g, b a Borel subalgebra of (g, b),
n = [b,b] and N = exp adgn. Then

Aut(g) = N.Aut(g, h).N.

(Let s € Aut(g). Apply Prop. 10 of §3, no. 3 to bNs(b), then apply Chap. VII,
§3, no. 4, Th. 3.)

4) Let b be a Cartan subalgebra of g, and s an element of Aut(g, h) such that
sH # H for all non-zero H in h. Show that s is of finite order. (Reduce to the
case in which b is splitting, and choose an integer n > 1 such that e(s)™ = 1.
Then there exists ¢ € Tq such that f(p) = s™. Let o be the ‘;ranspose of
s|h. Show that 1 + o + 0% +---+ 0" 1 =0, and deduce that s” = 1.)

9 5) a) Let a € Aut(g), and n the nilspace of a — 1. Show that the following
conditions are equivalent:

(i) Ker(a — 1) is a Cartan subalgebra of g.

(ii) n is a Cartan subalgebra of g, and a € Auto(g).

(iii) dimn = rk(g) and a € Auty(g).

b) Assume from now on that k is algebraically closed. Let V be a vector space,
R a root system in V, Tq the group Hom(Q(R), k*), n an integer > 1 and
T,, the subgroup of Tq consisting of the elements whose order divides n. Let
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¢ be a primitive nth root of unity in k. For all H € P(RY), let ¥/(H) be the
element v — ¢7) of Tq. The map 1 is a homomorphism from P(RY) to
T, with kernel nP(RY). Let ¢t € T,,, and let C be an alcove in P(RY) @ R.
There exists w € W(R) and H € P(RY) such that 2H € C and (wH) = t.
(Use Chap. VI, §2, no. 1.)

c¢) Let h be a Cartan subalgebra of g, and R the root system of (g,h). Let

n,(,1 be as in b), and f as in no. 2. Let H € P(RY). The set of elements of

g invariant under f(y(H)) is h @ 21% g, where R’ is the set of o € R such
a€R/

that a(H) € nZ, and f(1)(H)) satisfies the conditions of a) if and only if 2 H
belongs to an alcove.

d) Assume from now on that g is simple. Let h and R be as in ¢), (aq,...,q)
a basis of R, h the Coxeter number of R, ¢ a primitive hth root of unity in
k, and H the element of § such that a;(H) = 1 for i = 1,...,l. Prove the
following properties:

(i) The homomorphism v + (Y1) from Q(R) to k* defines an element
of Aut(g,h) which satisfies the conditions in a), and has order h. (Use c),
Chap. VI, §2, Prop. 5 and Chap. VI, §1, Prop. 31.)

(ii) Every automorphism of g of finite order satisfies the conditions in a) and
is of order > h.

(iii) The automorphisms of g of order h satisfying the conditions of a) form
a conjugacy class in Aut.(g). (Use Prop. 5 of no. 3.)

e) Let h and R be as in ¢), and let w be a Coxeter transformation in W(R).
Let s € Aut(g, b) be such that £(s) = w. Show that s satisfies the conditions
in a), and is of order h. (Use Chap. VI, §1, Prop. 33, Chap. V, §6, no. 2 and
Chap. VII, §4, Prop. 9.)

f) If s € Aut(g), the following conditions are equivalent:

(i) s satisfies the conditions in a), and is of order h;

(ii) there exists a Cartan subalgebra § of g stable under s such that s|h is a
Coxeter transformation in the Weyl group of (g, ). (Use d) and e).)

g) The characteristic polynomial of the automorphism in d) (i) is

A(T) = (T - 1)' [T(T—¢*).

aER

That of the automorphism s in e) is

B(T) = (T" — 1)!

?

(Use Prop. 33 (iv) of Chap. VI, §1, no. 11.) Deduce from the relation A(T) =
B(T) that, for all j > 1, the number of ¢ such that m; > j is equal to the

(T —¢™) (m,; being the exponents of R).

l
=1
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number of a € Ry such that a(H) = j; hence recover the result of Exerc. 6
¢) of Chap. VI, §4.12

6) Assume that £ = R or C. Let G be the Lie group Aut(g). Show that an
element a € G is regular (in the sense of Chap. VII, §4, no. 2) if and only if
it satisfies the conditions of Exerc. 5 a).

7) Assume that g is splittable. Let B(g) be the canonical basis of the canon-
ical Cartan subalgebra of g (no. 3, Remark 2). If s € Aut(g), s induces a
permutation of B(g); denote by sgn(s) the sign of this permutation. Show
that s operates on A" g (with n = dim g) by

x +— sgn(s).x.

€8) Let k be an algebraic closure of k, and g = k ®; g. The Galois group
Gal(k/k) operates naturally on g, on the canonical Cartan subalgebra of g
(no. 3, Remark 2), as well as on its root system R and its canonical basis B.
We thus obtain a continuous homomorphism (i.e. with open kernel)

7 : Gal(k/k) — Aut(R, B).

Show that g is splittable if and only if the following two conditions are sat-
isfied:

(i) The homomorphism 7 is trivial.

(ii) g has a Borel subalgebra b.

(Show that a Cartan subalgebra b contained in b is splitting if and only if 7
is trivial.)

9) Let R be a reduced root system, B a basis of R, and (go, ho, B, (Xa)aeB)
a corresponding framed semi-simple Lie algebra (§4). Let k be an algebraic
closure of k, and p : Gal(k/k) — Aut(R,B) a continuous homomorphism
(cf. Exerc. 8); if o € Gal(k/k), denote by p, the k-linear automorphism of
g0 = k @k go such that py(Xa) = Xy(g)a- On the other hand, the natural
operation of Gal(k/k) on k can be extended to an operation on gg. Let g be
the subset of gy consisting of the elements x such that p,(z) = o~1.z for all
o € Gal(k/k).

a) Show that g is a k-Lie subalgebra of gy, and that the injection of g into g
extends to an isomorphism from k ®y g to go. In particular, g is semi-simple.

b) Let bg be the subalgebra of gg generated by hy and the X, . Put
bo =k ®rbo, h=gNbo, bo=k®krbo, bh=gnNho.

Show that k ®j, b = bg and that k ®j, h = bo, so that b is a Borel subalgebra
of g and b is a Cartan subalgebra contained in it.

2For more details on this exercise, see: B. KOSTANT, The principal three-
dimensional subgroup and the Betti numbers of a complex simple Lie group,
Amer. J. Math., Vol. LXXXI (1959), pp. 973-1032.
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¢) Show that the homomorphism 7 associated to the algebra g (cf. Exerc. 8)
is equal to p.

910) Let b be a splitting Cartan subalgebra of g, and (X, )aer a Chevalley
system in (g, h), cf. §2, no. 4. If « € R, put

ea — ead Xaead X,aead Xa’

and denote by W the subgroup of Aut. (g, h) generated by the 0,,.

a) Show that ¢(W) = W(R).
b) Let s € W, and let w = £(s). Show that

5(Xa) = £ Xy forallaeR.

(Use Exerc. 5 of §2.)

¢) Let M be the kernel of € : W — W(R). Show that M is contained in the
subgroup of f(Tq) consisting of the elements f(¢) such that ¢? = 1. Show
that M contains the elements f(p,) defined by @q(8) = (—1)%*") (remark
that 02 = [(pa).

d) *Let ¢ € Hom(Q, {£1}). Show that f(y) belongs to M if and only if ¢
extends to a homomorphism from P to {£1}. (Sufficiency follows from the
fact that M contains the f(p, ). To prove necessity, reduce to the case in which
k = Q, and use the fact that M is contained in f(Tq) N Aut.(g) = Im(Tp),
cf. §7, Exerc. 26 d).) Deduce that M is isomorphic to the dual of the group
Q/(QN2P).19,

11) With the notations of no. 2, assume that k is non-discrete and locally
compact, hence isomorphic to R, C or a finite extension of Q, (Commutative
Algebra, Chap. VI, §9, no. 3). For all n > 1, the quotient k*/k*™ is finite
(cf. Commutative Algebra, Chap. VI, §9, Exerc. 3 for the ultrametric case).
Deduce that the quotients Tq/Im(Tp) and Aut(g)/Aut.(g) are finite.

When k£ = R, show that Tq/Im(Tp) is isomorphic to the dual of the
Fy-vector space (Q N 2P)/2Q. When k = C, we have Tq = Im(Tp); this is
the integral subgroup of the Lie group Aut(g) with Lie algebra b.

912) Let b be a splitting Cartan subalgebra of g, A a subset of h, and
s € Aut(g) such that sA = A. Show that there exists ¢t € Aut(g, ) such that
t|A = s|A and ts~! € Aut.(g). (Let a be the commutant of A in g; this is a
reductive subalgebra of g, of which sh and h are splitting Cartan subalgebras;
deduce the existence of u € Aut.(a) such that uslh = b; show that there exists
v € Aut.(g) extending u such that v|A = Ida; take ¢ = vs.) Deduce that, if
s € Auto(g), there exists w € W(R) such that w|A = s|A.

913) Let (g,5,B, (Xa)aen) be a framed semi-simple Lie algebra, R the root
system of (g,h), A the corresponding Dynkin graph, and ¢ a subgroup of

BFor more details on this exercise, see: J. TITS, Normalisateurs de tores. I. Groupes
de Coxeter étendus, J. Alg., Vol. IV (1966), pp. 96-116.
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Aut(R,B) = Aut(A).

If s € @, extend s to an automorphism of g by the conditions
$(Xao) = Xso, and s(H,) = Hg, forall a € B, cf. Prop. 1.

We thus identify @ with a subgroup of Aut(g, h); denote by g (resp. 6) the
subalgebra of g (resp. h) consisting of the elements invariant under &.

a) Let a € B, and let X = @.a. Show, by using the Plates in Chap. VI, that
only two cases are possible:

(i) every element of X distinct from « is orthogonal to «;

(ii) there exists a unique element o’ of X - {a} that is not orthogonal to «,
and n(a,a’) = n(a/,a) = —1.

b) Let i be the restriction map §* — §*, and let B = i(B); the map B — B
identifies B with B/®. Show that g is a semi-simple Lie algebra, that hisa
splitting Cartan subalgebra of it, and that B is a basis of R(g, h) (Observe
that B is contained in R(, b) and that every element of R(g, ) is a linear
combination of elements of B with integer coefficients of the same sign.) If
& € B, the corresponding inverse root Hgs € § is given by

Z H, in case (i) of a)

i(a)=a&

Hz =2 Z H, in case (ii) of a),

i(a)=a&

where the summation is over those elements o € B such that i(a) = a. If
8 € B has image § € B, then

n(B,a) = Z~ n(B,a) in case (i)

n(B,a) =2 Z n(B,a) in case (ii).

i(a)=&

Deduce how the Dynkin graph of R(g, 6) is determined starting from the pair
(A, ).
¢) Show that, if g is simple, so is g.

If g is of type Ay, I > 2, and @ is of order 2, then g is of type By if [ is
even, and of type C(;11)/2 if [ is odd.

If g is of type Dy, [ > 4, and & is of order 2, then g is of type B;_;.

If g is of type Dy, and @ is of order 3 or 6, then g is of type Ga.

If g is of type Eg, and @ is of order 2, then g is of type Fy.
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86

1) Show that Z()\) can be defined as a quotient of the representation py of
84, Exerc. 1.

2) Let p be a weight of Z(A) (resp. E(\)). Show that there exists a sequence
of weights pg, ..., un of Z(A) (resp. of E(N)) such that ug = A, upn, = p, and
wi—1 — p; € Bfor 1 <i<n.

3) Assume that g is simple, and denote by & the highest root of R. The
module E(&) is isomorphic to g, equipped with the adjoint representation. If
C is the Casimir element associated to the Killing form of g, the image of
C in End E(@) is the identity (cf. Chap. I, §3, no. 7, Prop. 12). Deduce, by
using the Cor. of Prop. 7, that

QSR(&7 a+ 2p) =1,
where @g is the canonical bilinear form on h* (Chap. VI, §1, no. 12).

4) We use the notations of no. 4.

a) Let m € N. Give N™ the product order. Show that, for any subset S of

N™, the set of minimal elements of S is finite.

b) Let ay,...,q, be distinct elements of R, X; € g® {0}, S the set of

non-zero sequences (p;) € N™ such that > p;a; = 0, M the set of minimal

elements of S. Then h and the X7* ... XPm where (p1,...,pm) € M, generate

the algebra U°.

¢) Show that U is both a left- and right-noetherian algebra. (Give U° the

filtration induced by that of U(g), and show, by using a) and b), that gr U°

is commutative of finite type.)

d) Show that, for all A € h*, U* is a left (resp. right) U%module of finite

type.

e) Let V be a simple g-module such that V = )\G% V. If one of the V) # 0
pr

is finite dimensional, then all of the V) are finite dimensional. (Use d).)

5) Show that, if g = s[(2, k), the modules Z(\) of this paragraph are isomor-
phic to the modules Z(A) of §1, Exerc. 2.

§7

All the g-modules considered (except those in Exerc. 14 and 15) are assumed
to be finite dimensional.

1) Let w € P44; denote by S(w) the set of weights of E(w), in other words
the smallest R-saturated subset of P containing w (Prop. 5). If A € S(w), we
have A = w (mod. Q). Conversely, let A € P be such that A = w (mod. Q);
prove the equivalence of the following properties:
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(i) A € S(w)

(11)w—w)\eQ+ for all w € W;

(iii) A belongs to the convex hull of W.w in hj.

(To prove that (iii) == (ii), remark that w — ww is a linear combination of
elements of Ry with coefficients > 0; deduce, by convexity, that w — wA has
the same property; since w —wA belongs to Q, this implies that w—wA € Q..
To prove that (ii) = (i), choose w such that w\ € Py, and apply Cor. 2
of Prop. 3. The implication (i) = (iii) is immediate.)

2) Let (R;);c1 be the family of irreducible components of R, and g = HI g; the
ic

corresponding decomposition of g into a product of simple algebras. Identify
P with the product of the P(R;), and give each P(R;) the order relation
defined by the basis B; = BN R;.

a) Let w = (w;);e1 be an element of P4 = 1;[1 P41 (R;). Show that the simple

g-module E(w) is isomorphic to the tensor product of the simple g,-modules
E(wz)

b) Let . (resp. .#;) be the set of elements of P44 (resp. of P4 (R;)) having
the equivalent properties (i), (ii), (iii), (iv) of Prop. 6 and 7. Show that
M= 1;[1//4, in other words that w € . if and only if, for all ¢ € I, w;

is either zero or a minuscule weight of R;. Deduce that .# is a system of
representatives in P of the elements of P/Q.

¢) Let E be a simple g-module, and Z"its set of weights. Show that 2 contains
a unique element of .Z, and that the multiplicity of this element is equal to
the upper bound of the multiplicities of the elements of 2.

3) a) Let E be a g-module. Show the equivalence of the conditions:
(i) The rank of the semi-direct product of g by E is strictly larger than that
of g.
(ii) 0 is a weight of E.
(iii) There exists a weight of E that is radical (i.e. belongs to Q).
b) Assume that E is simple. Show that (i), (ii), (iii) are equivalent to
(iv) The highest weight of E is radical.
If these conditions are satisfied, there exists no non-zero invariant alter-
nating bilinear form. (Use Prop. 12 and Prop. 1 (ii) of §6.)

4) Let k' be an extension of k, and g’ = g(;/). Show that every g’-module
arises, by extension of scalars, from a g-module that is unique up to isomor-
phism.

5) Let E be a g-module. Show the equivalence of the conditions:

(i) E is faithful (i.e. the canonical map from g to gl(E) is injective).

(ii) Every root of g is the difference between two weights of E.

96) Let ¢ be an involutive automorphism of g whose restriction to b is

—Id. Show that, if E is a g-module, there exists a non-degenerate symmetric
bilinear form ¥ on E such that
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U(x.a,b) +P(a,p(x).b) =0 forxzeg, abeE.

(Reduce to the case in which E is simple. Show that the transform of E by ¢ is
isomorphic to the dual E* of E, and deduce the existence of a non-degenerate
bilinear form ¥ satisfying the conditions above. Show next that, if e is a
primitive vector in E, then ¥(e, e) # 0. Deduce that ¥ is symmetric.)

7) If A € P4, denote by py : U(g) — End(E(\)) the representation defined
by the simple module E(A). We have Im(py) = End(E())); put my = Ker(py).

a) Show that the m) are pairwise distinct, and that they are the only two-
sided ideals m of U(g) such that U(g)/m is a finite dimensional simple k-
algebra.

b) If I is a finite subset of P44, put my = )\ﬂl my. Show that the canonical
€

map U(g)/m; — /\I;IIU(g)/mA is an isomorphism, and that every two-sided

ideal of U(g) of finite codimension is equal to exactly one of the m;.

¢) Show that the principal anti-automorphism of U(g) transforms my to my-,
where A* = —wgA (cf. Prop. 11).

98) Let g be a semi-simple Lie algebra; exceptionally, we do not assume in
this exercise that g is split. Let k£ be an algebraic closure of k and let

7 : Gal(k/k) — Aut(R, B)

be the homomorphism defined in §5, Exerc. 8. Let Ggl(l}/k) operate, via T,
on the set P, of dominant weights of R relative to B; let {2 be a system of
representatives of the elements of the quotient Py /Gal(k/k).

a) Put g = k ®;, g. If I is a finite subset of P, stable under Gal(k/k), the
two-sided ideal m; of U(g) associated to I (cf. Exerc. 7) is of the form k®j, m;,
where my is a two-sided ideal of U(g). Show that every two-sided ideal of U(g)
of finite codimension is obtained in this way exactly once.

b) Let w € £2, I(w) its orbit under Gal(k/k), and G, the stabilizer of w; let
k. be the sub-extension of k corresponding to G, by Galois theory. Show
that U(g) /ml(w) is a simple algebra whose centre is isomorphic to k. Every
two-sided ideal m of U(g) such that U(g)/m is a finite dimensional simple
algebra is equal to exactly one of the my(,).

¢) The group Gal(k/k) operates, via 7, on the ring R(g); denote by R(g)™"
the subring of R(g) consisting of the elements invariant under Gal(k/k). Show
that the map [E] — [k®},E] extends to an injective homomorphism from R(g)
to R(g)™ whose cokernel is a torsion group; this is an isomorphism if and
only if, for all w € £2, U(g)/my(,,) is an algebra of matrices over k, ; show that
this is the case when g has a Borel subalgebra. 4

For more details on this exercise, see: J. TITS, Représentations linéaires irréduc-
tibles d’un groupe réductif sur un corps quelconque, J. fiir die reine und ange-
wandte Math. Vol. CCXLVII (1971), pp. 196-220.
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9) Let a; and as be Lie algebras. Show that there exists a unique homomor-
phism

f:R(a1) ®z R(a2) = R(ay X ag)

such that f([E1]®[Ez]) = [E1 QEq] if E; is an a;-module (¢ = 1,2). Show that
f is injective, and that it is bijective if a; and ay are splittable semi-simple.

10) Let I" be a subgroup of P containing Q. Such a subgroup is stable under
W.

a) Show that, if A € P14, NI, every weight of E(\) belongs to I

b) Let Rr(g) be the subgroup of R(g) with basis the [A], with A e P, N T
If E is a g-module, [E] € Rp(g) if and only if the weights of E belong to I'.
Deduce that Rp(g) is a subring of R(g).

¢) Show that the homomorphism ch : Rp(g) — Z[I'] is an isomorphism from
Rr(g) to the subring of Z[I'] consisting of the elements invariant under W.
(Use Th. 2 (ii).)

d) Describe R(g) and Rp(g) explicitly when g = s[(2,k) and I' = Q.

911) The notations are those of no. 7. For any integer m > 1, denote by
U™ the endomorphism of Z[A] that takes e* to ™. We have ¥! = Id and
g oyt =gmn,

Let E be a finite dimensional A-graded vector space. For all n > 0, denote
by a,E (resp. s,E) the nth exterior (resp. symmetric) power of E, equipped
with its natural grading.

a) Show that

n

nch(s,E Z E))ch(sp—mE)

and

nch(a,E Z )™ (ch(E))ch(ay_mE).

Deduce that ch(s,E) and ch(a,E) can be expressed as polynomials, with
rational coefficients, in the ¥ (ch(E)), 1 < m < n. For example:

ch(s9E) = %ch(E)Q + %WQ(ch(E))

1 1
ch(azE) = 5ch(E)2 - §W2(ch(E)).
b) Prove the following identities (in the algebra of formal power series in a

variable T, with coefficients in Q[A]):
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Z ch(s, E)T" = exp { Z U™ (ch(E T’”/m}

and
> ch(a,B)T" = exp { > (=" (ch(B))T™ /m} .
n=0 m=1

¢) Assume that A is a group, so that U™ can be defined for all m € Z. Show
that, if E* is the graded dual of E,

ch(E*) = v~ (ch(E)).

d) Identify R(g), by means of ch, with a subring of Z[P]. Show that R(g) is
stable under the ¥, m € Z, and that so is the subring Ry (g) defined in the
preceding exercise.

12) Let A € P4 and let 2 be the set of weights of E(A). Show that
ANCA=Pyy

does not hold in general. (Consider, for example, the adjoint representation

of s1(3,k).)

13) Let A = ZB aqa be an element of P, . For n =0,1,..., denote by Z,,
ae

the set of weights p of E(\) such that A — u is the sum of n elements of B.
Let s, be the sum of the multiplicities of the elements of 2, (as weights of
E(\)). Let T =2 > a,. Show that:

acB
a) T is an integer > 0.
b) s, =0 for n>T, and sT_, = sp.
¢) If r is the integer part of T/2, then s1 < 59 < -+ < 8,47.

§14) Let A € P44, F be the largest proper submodule of Z()\) and v a
primitive element of Z()\) of weight A, cf. §6, no. 3. Show that

Fr= Y U@X %y = 37 Uno) x0T,
a€B aEeB

15) Let A € b* and let v (resp. v) be a primitive element of Z(\) (resp. of
E(\)) of weight A. Let I (resp. I') be the annihilator of v (resp. v’) in U(g).

@) 1= Ul + 2 Ula)(h = Ah)).

b) I is the largest left ideal of U(g) distinct from U(g) and containing I.
C) If e P++, then

U=1+ > U@x " =14 3" Un_
a€eB aEeB

(Use the preceding exercise.)
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916) Let V and V' be two g-modules. Then V' is said to be subordinate to
V if there exists a linear map f : V — V' such that:

a) f is surjective; B) the image under f of a primitive element of V is
either 0 or a primitive element of V’; ) f is an n_-homomorphism.
a) Let f:V — V' satisfy a), 8), 7). Let v be a primitive element of V. Then
the image under f of the g-submodule generated by v is the g-submodule
generated by f(v).
b) Let f: V — V’ satisfy ), §), 7). Let W be a g-submodule of V. Then
f(W) is a g-submodule of V' that is subordinate to W.
¢)Let V=E;® - -®E; and V' = E| @ - - E/, be decompositions of V and V’
into sums of simple modules. Then V' is subordinate to V if and only if s’ < s

and there exists o € &, such that Ej is subordinate to E,(;) fori=1,...,s".

d) If V' is subordinate to V and if V is simple, then V' is simple or reduced
to 0.

e) Assume that V and V' are simple. Let A and )\ be their highest weights.
Then V' is subordinate to V if and only if N(H,) < A(H,) for all & € B.
(For the sufficiency, use the preceding exercise.)

17) Let A\, € P44 and o € B be such that A(H,) > 1 and pu(H,) > 1. Let
F =E(\) Q E(u).

a) Show that dim F*** = 1 and dim FA+#—2 = 2.

b) Show that X, : FAMH—a — FAM4 s surjective, and that the non-zero
elements of its kernel are primitive (remark that, if 5 € B is distinct from «,
A+ 1 —a+ (3 is not a weight of F).

¢) Deduce that E(\) ® E(u) contains a unique submodule isomorphic to

EA+p—a).

d) Show that S?(E())) (resp. A>E())) contains a unique submodule isomor-
phic to E(2)) (resp. to E(2A — a)).

9 18) Choose a positive non-degenerate symmetric bilinear form (-|-) on hg
invariant under W. Let A € P .

a) Let p be a weight of E(A). Write A — p in the form ZB kqa. Let a € B be
ac

such that k, # 0. Show that there exists ay, ..., a, € B such that (A|a;) # 0,
(a1|ag) #0,..., (ap—1]an) # 0, (apla) # 0.

b) Let v be a primitive element of E()\), and let aq,...,a, € B satisfy the
following conditions:

(i) (i]aig1) #0fori=1,2,...,n—1;

(ii) (oulay) =0for j > i+ 1;

(iii) M(Hy,) # 0 and A(H,,) =+ = A(H,,, ) = 0.

Show that X_,, X_ ... X_0,v # 0. (Observe that, for 1 <s < mn,

Ap—1
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A—ar — - —aso1 + g

is not a weight of E()), and deduce that Xo X o X o, ;... X_a,v # 0 by
inductionon s.) If 0 € &,, and 0 #1, then X_%(H)X_%(%U ... X_aa(l)v =0.
(Let 7 be the smallest integer such that o(r) # r. Use a) to show that
A= Qg(1) = ... — Qu(y) is nOt a weight of E(X).)

c) Let N € P44. A chain joining A to A is a sequence (aq,...,ay,) of ele-
ments of B such that n > 1, (AMai) # 0, (aa]az) # 0,..., (@n—1]am) # 0,
(an|X) #0. Such a chain is called minimal if no strict subsequence of

(o1,...,qy) joins X to X. In that case, we have (ay]a;) = 0 if |i — j| > 2,
AMay)=0if i >2and (N|oy) =0if i <n—1.
d) Let (ai,...,a,) be a minimal chain joining A to . If ¢’ is a primitive

vector in E(X), put:

Vs=X_ 0. X 6., Xquv (s=0,1,...,n)
vh=X_ X X v (s=0,1,...,n)

Qsi1 Qgq2 "

ap = (Nai),an = (=1)"(N|an),as = (1) (aslasi1), 1 < s <n—1. Show
that

n
/
g AsVs & Vg
s=0

is a primitive element of E(A) ® E(X) of weight A+ X —a; — -+ — a,, and
that it is unique up to homothety.
(Use b) and c¢) to show that every element of E(A\) ® E()) of weight

AN —a;—-—ay,

is a linear combination of the vy ® v,. Then write down the condition for such
a linear combination to be a primitive vector.)
Deduce that E(A\) ® E()) contains a unique g-submodule isomorphic to

EQA+N —a; — - —ay).

(When n = 1 we recover Exerc. 17.)

e) Let w be a primitive element of E(A\) @ E(\). Assume that the weight v of
w is distinct from A+ A’. Show that there exists a chain (ayq, ..., a,) joining
A to X such that

v<A+N—a;— - —a,.

(Let C be the set of o € B such that the coordinate of index o of A+ X —v is
# 0. Let D (resp. D’) be the set of a € C such that there exists v1,...,7 € C
satisfying (Ajy1) # 0 (vesp. (Ny1) # 0), (mly2) # 0, (vealye) # 0,
(ve|la) # 0. Let Y (resp. Y’) be the set of weights of E(X) (resp. E(X')) of the
form A — %:C koo (resp. N — %:C kqa), with k, € N. Show that w belongs

[e3%



87 EXERCISES 245

to (Z E(A)“) ® < > E(X)“'). Using a) and the fact that v # X+ X,
neyY ey’
show that DND’ # @.)

f) Show the equivalence of the following properties:

(i) E(A) ® E(X) is isomorphic to E(A + X).

(ii) E(\) @ E(V) is a simple module.

(iii) There is no chain joining A to \'.

(iv) R is the direct sum of two root systems R; and R} such that A € P(R;)
and X € P(R)).

(v) g is the product of two ideals s and s’ such that §'.E(A\) = 0 and
s.E(\) =0.

(Use d) to prove the equivalence of (ii) and (iii).)!"

19) We recall the notations of Prop. 10. Let & be an algebraic closure of .
If x € g, denote by Zg(x) (resp. Zr(z), resp. Za(z)) the set of eigenvalues
of g (resp. x, resp. zg) in k. Show that 2g(z) = 2g(z) + Zr(x) for
all z € g and that, when E and F are given, this property characterizes the
simple g-module G up to isomorphism.

20) Assume that £k = R or C. Let I' be a simply-connected Lie group with
Lie algebra g. Let A\, u,E,F,G be as in Prop. 10. Let (ej,...,e,) (resp.
(f1,---, fp)) be a basis of E (resp. F) consisting of eigenvectors of h, with
e; € EN and f; € F#. We can consider E,F, G as I'-modules. If v € I", de-
note by a;(y) the coordinate of v.e; with index ¢, and b;(7) the coordinate of
~.f1 with index j. Show that the function a;b; on I" is not identically zero.
Deduce that, for all (7, j), there exists an element of G C E®F whose coordi-
nate of index (i, j) is # 0; for kK = R or C, this gives a new proof of Prop. 10.
Pass from this to the case k = Q, and then to the case of an arbitrary field,
cf. Exerc. 4.

21) Let A\, € Poy. Let E,F,G be simple g-modules of highest weights
A, A+ p, and let n be an integer > 1. If w is a weight of E of mul-
tiplicity n, then w + u is a weight of G of multiplicity > n. (We have

GQwtr . D . EY @ F. If dim G¥*t# < n, the projection of G*T# onto
vto=w+tp

E¥ ® F# is of the form E’ ® F#, with E’ strictly contained in E“. Derive a
contradiction from this by choosing adapted bases of E and F and imitating
the proof of Prop. 10.)

22) Assume that g is simple, in other words that R is irreducible. Show that
there exists a unique dominant weight A # 0 such that the set of weights
of E(A) is W.A U {0}: we have A\ = «, where o € R is such that H, is
the highest root of RY. When all the roots are of the same length (cases
A;, Dy, Eg,E7,Eg), we have A = &; this is the only root that is a dominant

5For more details, cf. E. B. DYNKIN, Maximal subgroups of classical groups [in
Russian], Trudy Moskov. Mat. Obsé., Vol. 1 (1952), pp. 39-166 (= Amer. Math.
Soc. Transl., Vol. 6 (1957), pp. 245-374).
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weight; the corresponding representation is the adjoint representation of g.
In the other cases, A is the only root of minimum length that is a dominant
weight; with the notations of Chap. VI, Plates, we have: A = w; (type B));
A =3 (type Ci); A = wa (type Fa); A = w1 (type G2).

23) Let UY be the commutant of h in U(g) (cf. §6, no. 4).

a) Let V be a (finite dimensional) g-module. Show that the V*, A\ € P,
are stable under U°, and that, if V is simple and V* # 0, V* is a simple
U%module (use the decomposition U(g) = @U?, loc. cit.).

b) Show that, for every element ¢ # 0 of U°, there exists a finite dimensional
simple representation p of U? such that p(c) # 0. (Use a) and Chap. I, §7,
Exerc. 3 a).)

24) Let A be a unital associative algebra and M the set of its finite codimen-
sional two-sided ideals.

a) Let U* be the vector space dual of U. If § € U*, show the equivalence of
the following properties:

(i) there exists m € M such that §(m) = 0;

(ii) there exist two finite families (6;) and () of elements of U* such that

29’ 10! (y)  for all x,y € U.

The elements 6 with these properties form a subspace U’ of U*, which coin-
cides with that denoted by B’ in Algebra, Chap. III, §11, Exerc. 27. There
exists a unique coalgebra structure on U’ whose coproduct ¢ : U — U’ @ U’
is given by

0)=> 0,20,

where 6),607 € U’ are such that 6(xy) = 2_ 0(x)0” (y) for all z,y € U, cf. (ii).

The coalgebra U’ is the union of the increasing filtration by the subspaces
(U/m)*, m € M, which are finite dimensional. The dual of U’ can be identified
with the algebra U= hm U/m; if Uis given the projective limit of the discrete

topologies on the U/m7 m € M, the continuous linear forms on U are given
by the elements of U’.

b) Let E be a finite dimensional left U-module. Its annihilator mg belongs
to M; the composite U — U/mg — End(E) gives E the structure of a left
U-module. If F is a finite dimensional left U-module, a linear map f:E—=F
is a U-homomorphism if and only if it is a U—homomorphism. Ifae Ebe EY
the linear form 6, : © — (xa,b) belongs to U’, and

(2,003) = (xa,b) forall z € U.

The 6, (for varying E, a,b) generate the k-vector space U’.
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¢) Let Xy be the set of isomorphism classes of finite dimensional left U-
modules. For all E € Xy, let ug be a k-linear endomorphism of E; assume
that

foug=upof foral E,Fe Xy and f € Homy(E, F).

Show that there exists a unique element z € U such that g = ug for all
E € Xy. (Reduce to the case in which U is finite dimensional.)

9§ 25) Let a be a Lie algebra and U its enveloping algebra. Apply the defini-
tions and results of Exerc. 24 to the algebra U. In particular, U’ c U* and
the dual of U’ can be identified with the algebra U = {iLnU /m; the canonical

map U — U is injective (Chap. I, §7, Exerc. 3).
a) The coalgebra structure of U (Chap. II, §1, no. 4) defines an algebra

structure on the dual U* (cf. Chap. II, §1, no. 5, Prop. 10, and Algebra,
Chap. III, §11, no. 2). If E, F are finite dimensional a-modules,

Oap©bcd=00wcped foracE;be E*, ceF,deF*.

Deduce that U’ is a subalgebra of U*. The coalgebra and algebra structures
of U’ make it a commutative bigebra (Algebra, Chap. 111, §11, no. 4).

b) Let = be an element of f]; identify x with a linear form U’ — k. Prove the
equivalence of the following properties:
(i)  is a homomorphism of algebras from U’ to k.
(ii) zggr = zg ® zF for all finite dimensional a-modules E and F.
(Prove first that (ii) is equivalent to
(ii") 2(Oupebod) = ©(0ap)x(0cq) if a € E;b € E* c € F,d € F*,
and use the fact that the 6, generate U’.)

¢) Let  be an element of U satisfying conditions (i) and (i) of b). Show the
equivalence of the following conditions:

(iii) « takes the unit element of U’ to the unit element of k.

(iv) z # 0.

(v) If k is given the trivial a-module structure, we have x; = Id.

(vi) zg is invertible for all E.

(The equivalence (iii) <= (iv) follows from the fact that x is a homo-
morphism of algebras. On the other hand, z; = AId, with A € k. Using the
a-isomorphism kQE — E, deduce that Axg = g for all E, and, in particular,
that A2 = \ by taking E = k. The case A\ = 1 corresponds to = # 0, hence
(iv) <= (v), and (vi) = (v). To prove that (v) = (vi), show that, if F is
the dual of E, then 'z o zg = A 1dg.)

d) Let G be the set of elements of U satisfying conditions (i) to (vi) above.
Show that G is a subgroup of the group of invertible elements of U.

Let z € G. If E is a finite dimensional a-module, then zg € GL(E). This
applies in particular to E = a, equipped with the adjoint representation;
this gives an element z, € GL(a). Show that z, is an automorphism of a
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(use the a-homomorphism a ® a — a given by the bracket). This gives a
homomorphism v : G — Aut(a). If E is a finite dimensional a-module,

zi(y.e) =v(x)(y).xg(e) if y€aecE

(use the a-homomorphism a ® E — E given by the operation of a on E).

e) The principal anti-automorphism o of U extends by continuity to U. Its
transpose leaves U’ stable and induces an inversion on U’ (Algebra, Chap.
111, §11, Exerc. 4). If x € G, then o(z) = 2~ L.

f) Assume that a is semi-simple!S. Let n be a nilpotent element of a. Then
there exists a unique element e of G such that (e")g = exp(ng) for every
finite dimensional a-module E. We have v(e™) = exp(ad n) € Aut(a), so
Aut.(a) C v(G).

Show that, if b is a subalgebra of a consisting of nilpotent elements, then

nom _ eH(n,m)

e’.e for n,m € b,

where H denotes the Hausdorff series (Chap. II, §6).

926) Apply the notations and results of Exerc. 25 to the case in which a = g
(split case).

a) Let z € G and let 0 = v(z) be its image in Aut(g). If p is a representation
of g, p and p oo are equivalent. Deduce (cf. no. 2, Remark 1) that ¢ belongs
to Autg(g). Extend this result to arbitrary semi-simple algebras.

b) Let ¢ € Tp = Hom(P, k*), where P = P(R). If E is a g-module, let ¢g be
the endomorphism of E whose restriction to each E* (A € P) is the homothety
of ratio ¢(A). Show that there exists a unique element t(¢) € G such that
t(p)r = ¢g for all E (Use Exerc. 24 ¢), and the characterizations (ii) and
(vi) of Exerc. 25.) This gives a homomorphism ¢ : Tp — G. Show that ¢ is
injective. We use this to identify Tp with a subgroup of G. The composite
Tp — G — Aut(g) is the homomorphism denoted by f o ¢ in §5, no. 2.

¢) Let x € G be such that o = v(z) belongs to the subgroup f(Tq) of Auty(g)
(85, no. 2), in other words, such that it operates trivially on h; denote the
element of Tq = Hom(Q, k*) corresponding to = by 1. We are going to show
that z belongs to Tp. Prove successively:

¢1) If E is a g-module, zg is an h-endomorphism of E.
(Use the g-homomorphism g ® E — E, and the fact that = operates
trivially on h.) In particular, the E# are stable under zg.

¢2) There exists ¢ € Tp such that, for every g-module E, and every
primitive element e of E of weight A, we have xge = p(\)e.

(Choose ¢ such that this relation is true when E is a fundamental module
E(wq). Deduce the case of the E(A), A € P4, by using the embedding of

16+Tn this case, it can be shown that U’ is the bigebra of the simply-connected
semi-simple algebraic group A with Lie algebra a, and that G is the group of
k-points of A..
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such a module in a tensor product of the E(w,,). Pass from this to the general
case.)

c3) Choose ¢ as in ¢2). Let E be a simple g-module of highest weight A,
and let p be a weight of E; then A — u € Q. Show that the restriction of zg
to E# is the homothety of ratio ¢(A)¢(p — A). (Same method as for ¢;).)

cq) It X\, € Poy, and if @ € B is not orthogonal to either A or u, then

eA 41— ) = oA+ p)p(-a),
so p(a) = YP(a). (Use ¢2), c3), and the embedding of E(A + u — «) in
E(X) @ E(u), cf. Exerc. 17.)

¢5) Deduce from c¢4) that ¢|Q = 1, and use c3) to deduce that z = ¢(p).
d) Identify Tq with a subgroup of Auty(g) by means of f. By a), we have

Aut.(g) C v(G) C Auto(g)

and, by ¢), v(G) NTq = Im(Tp). Deduce (cf. §5, no. 3) that Aut.(g) N Tq =
Im(Tp) and that f(G) = Aut.(g). The canonical map

v: Tq/Im(Tp) — Auto(g)/Aut.(g)

is therefore an isomorphism.

e) The kernel of v : G — Aut.(g) is equal to the kernel of Tp — Tq; it is
isomorphic to

Hom(P/Q, k*);

this is a finite abelian group contained in the centre of G, and its order
divides (P : Q); if k is algebraically closed, it is isomorphic to the dual of
P/Q (Algebra, Chap. VII, §4, no. 8).

f)Let « € R, X, € g* and X_,, € g~ be such that [X,, X_,] = —H,, and
let p, be the corresponding representation of sl(2, k) on g. If E is a g-module,
deduce (§1, no. 4) a representation of SL(2,%) on E, and hence (Exerc. 25
b), ¢)) a homomorphism

Yo : SL(2,k) = G.

Show that Im(¢,) contains the elements of Tp of the form X — tA(He) ¢ € k*,
Deduce that the Im(p4), @ € B, generate G (show first that the group they
generate contains Tp). In particular, G is generated by the e”, with n € g2,
a € BU —B. The derived group of G is equal to G.

g) If a subgroup G’ of G is such that v(G’) = Aut.(g), then G’ = G (use f)).
h) Let E be a faithful g-module, and let I" be the subgroup of P generated
by the weights of E. Then P O I' O Q, cf. Exerc. 5. Show that the ker-
nel of the canonical homomorphism G — GL(E) is equal to the subgroup
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of Tp consisting of the elements ¢ whose restriction to I' is trivial. In par-
ticular, if I' = P the homomorphism G — GL(E) is injective. If I' = Q,
this homomorphism factorizes as G —— Aut.(g) — GL(E), and the
homomorphism Aut.(g) — GL(E) is injective.

27) Let 2 =P/Q. lf w € 2, and if E is a g-module, denote by E,, the direct
sum of the E*, for A € w. We have E = @Q E,.
we

a) Show that E, is a g-submodule of E. We have (E*),, = (E_,,)* and

(E@F),= @ EaeFs
a+pB=w

if F is another g-module.

b) Let x € Hom(£2,k*) = Ker(Tp — Tq). Identify x with an element of the
kernel of f: G — Aute(g), cf. Exerc. 26 ¢). Show that the operation of x on
E,, is the homothety of ratio y(w).

¢) What are the E,, when g = sl(2,k) ?

§8

1) Let f be an invariant polynomial function on g. Show that f is invariant
under Aut(g) if and only if f|h is invariant under Aut(R). Deduce that, if the
Dynkin graph of R has a non-trivial automorphism, there exists an invariant
polynomial function on g that is not invariant under Aut(g).

2) Take g = sl(3, k). Show that z — det(z) is an invariant polynomial func-
tion on g that is not invariant under Aut(g) (use the automorphism z + —tx).

3) Let a be a semi-simple Lie algebra, and s € Aut(a). Show the equivalence
of:
(i) s € Autg(a).
(ii) s operates trivially on the centre of U(a).
(iii) For all = € a, there exists ¢t € Autg(a) such that tx = sx.
(Use Prop. 6 to show that (iii) = (i).)
4) Show that, in Cor. 2 of Prop. 2, and in Th. 1 (ii), we can restrict ourselves
to representations p whose weights are radical weights (remark that Prop. 1

remains valid when k[P]W is replaced by k[Q]Y, where Q is the group of
radical weights).

5) We retain the notations of §6 and §7. Let A € h*. If, for any w € W, w # 1,
we have (A + p) —w(A+ p) ¢ Q4, then Z()\) is simple.
(Use Cor. 1 (ii) of Th. 2.)

6) Let a be a Lie algebra, f a polynomial function on a, and z, y two elements
of a. Put f, = 0*(y)f (cf. no. 3), and denote by D, f the tangent linear map
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of f at  (Chap. VII, App. I, no. 2). Show that f,(z) = (D, f)([z,y]). Deduce
that D, f vanishes on Im(ad x) when f is invariant.

7) *Let dy, . . ., d; be the characteristic degrees of the algebra I(g), cf. Chap. V,
§5, no. 1. For any integer n > 0, denote by r,, the number of elements of degree
n in a homogeneous basis of S(g) over I(g) (cf. no. 3, Remark 2), and put

r(T) = Zo r, T™. Show that

!
r(T)=(1-T) N[](1 - T%), where N = dim(g)..
i=1
8) Put | = rk(g),N = dim(g). If € g, define a;(x), 0 < ¢ < N, by the

formula
det(T + ad x) Z TN=q

The function a; thus defined is homogeneous polynomial of degree i, and

invariant under Aut(g). If z € h and i < N — [, a;(x) is the ith elementary

symmetric function of the a(z), o € R; in particular, ax_;(z) = I a(x).
a€cR

Construct an example in which the a; do not generate the algebra of poly-
nomial functions on g invariant under Aut(g).

9) The notations are those of no. 5. Let A € h*,z € Z, 2’ the image of z
under the principal anti-automorphism of U(g), and wy the element of W
that transforms B into —B. Show that xa(z) = X—wor(2)-

(It suffices to prove this for A € P . Consider the operation of z on E())
and E(M)*; use Prop. 11 of §7.)

10) (In this exercise, and in the following three, we retain the notations of
§6.) Let A € bh*.

a) Let N, N’ be g-submodules of Z(\) such that N’ € N and N/N’ is simple.
Show that there exists u € A — Q4 such that N/N’ is isomorphic to E(u)
(apply Th. 1 of §6), and such that u+p € W.(A+p) (apply Cor. 1 of Th. 2).

b) Show that Z(A) admits a Jordan-Holder sequence. (Apply @) and the fact
that the weights of Z(\) are of finite multiplicity.)

11) Let A € h* and let V be a non-zero g-submodule of Z(\). Show that there
exists u € h* such that V contains a simple g-submodule isomorphic to Z(u).

(Let A be the set of v € h* such that V contains a g-submodule isomorphic
to Z(v). By using Prop. 6 of no. 6, show first that A # &. Then show that A
is finite, and consider an element u of A such that (u— Q) NA = {u}.)

912) a) Let A\, u € b*. Every non-zero g-homomorphism from Z(u) to Z(\)
is injective. (Use Prop. 6 of no. 6.)
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b) Let r € N, A a finite subset of N", m = Card(A). For all £ € N", let

s(€) be the sum of the coordinates of £, and Pa(£) the number of families

(na)aca of integers > 0 such that & = ZAnaoz. Then Pa(§) < (s(§) +1)™
ac

for all £ € N". (Argue by induction on m.)

c) Let A\,p € h*. Show that dimHomg(Z(x),Z(A)) < 1. (Let 1 and @2
be non-zero g-homomorphisms from Z(u) to Z(A). If Im(gol) Im(p2), ©1
and ¢y are linearly dependent by Prop. 1 (iii) of §6. Assume that Im(¢;) #
Im(ps). If Z(p) is simple, the sum Im(p;) 4+ Im(p2) is direct; deduce that
PE+N—p) > 29B(¢) for all £ € h*, contradicting b). In the general case, use
Exerc. 11.)

When dim Homg(Z(p), Z(X)) = 1, write Z(n) C Z(\) by abuse of notation.

d) Let v € h*. The set of A € h* such that Z(A — v) C Z()) is closed in h* in
the Zariski topology.

913) a) Let a be a nilpotent Lie algebra, € a,n € N,p € N. There exists
I € N such that z'y; ...y, € U(a)z? for all yy,...,y, € a.

b) Let A\, u € h*, and « € B be such that

Z(sap— p) C L{p — p) CZ(A — p).

Assume that X € P. Let p = A\(H,) € Z. Show that:
b1) If p <0, then Z(\ — p) C Z(sa X — p).
by) If p > 0, then Z(squ — p) C Z(saX — p) C Z(A — p).
(Use a), and §6, Cor. 1 of Prop. 6.)
¢) Let A € b*,a € R, and m = A(H,). Assume that m € N. Show that

Z(sqA — p) CZ(A —p).

(Prove this first for A € P by using b), and then in the general case by using
Exerc. 12 d).)'7

14) *Let a be a semi-simple Lie algebra, and Z(a) the centre of U(a). Show
that U(a) is a free Z(a)-module. (Remark that gr U(a) is isomorphic to S(a)
and S(a*), and use Remark 2 of no. 3.),

15) Let z be a diagonalizable element of g (§3, Exerc. 10), and y a semi-simple
element of g such that f(z) = f(y) for every invariant polynomial function
f on g. Show that there exists s € Aut.(g) such that sy = . (Remark that
ad x and ad y have the same characteristic polynomial, cf. Exerc. 8, hence

For more details on Exercises 10 to 13, see: I. N. BERNSTEIN, I. M. GELFAND

and S. I. GELFAND, Structure of representations generated by highest weight
vectors [in Russian], Funct. Anal. i evo prilojenie, Vol. V (1971), pp. 1-9.
In this memoir, it is further proved that, if A, \’ € h* are such that Z(\ — p) C
Z(N — p), there exist y1,...,7n € R4 such that A = s, ...57,5,\ and
(Sy; -85 A)(Hyy) € N for 0 < i < n. It follows that Z(X — p) is simple if
and only if A(H,) € N* for all « € R
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the fact that y is diagonalizable. Next, reduce to the case in which z and y
are contained in h by using Exerc. 10 of §3, and use Th. 1 (i) and Lemma 6
to prove that x and y are conjugate under W.)

16) Let a be a semi-simple Lie algebra, 2 an element of a, and x4 the semi-
simple component of z. Show that, if f is an invariant polynomial function
on a, then f(z) = f(xs). (Reduce to the case in which f is of the form
x — Trp(x)™.)

17) Assume that k is algebraically closed, and put G = Aut.(g). Let z,y € g.

Show the equivalence of:

(i) The semi-simple components of z and y are G-conjugate.

(ii) For every invariant polynomial function f on g, we have f(x) = f(y).
(Use Exerc. 15 and 16.)

18) Let a be a semi-simple Lie algebra, ! = rk(a), I the algebra of invariant
polynomial functions on a, and Py, ..., P; homogeneous elements of I gener-
ating I as an algebra. The P; define a polynomial map P : a — k!. If z € q,
denote by D, P : a — k! the tangent linear map of P at # (Chap. VII, App. I,
no. 2).

a) Let h be a Cartan subalgebra of a, and let « € h. Prove the equivalence
of:

(i) D.P|h is an isomorphism from b to k';

(ii) « is regular.

(Reduce to the split case. Choose a basis of f, and denote by d(z) the determi-
nant of the matrix of D, P|h relative to this basis. Show, by means of Prop. 5
of Chap. V, §5, no. 4, that there exists ¢ € k* such that d(z)? = ¢ l;IRoz(z),

where o« belongs to the set R of roots of (a,b).)
If these conditions are satisfied, a = h@Im ad(z), and Ker D, P = Im ad(x)
(use Exerc. 6 to show that D,P vanishes on Imad(z)).

b) Show that the set of z € a such that D,P is of rank [ is a dense open
subset of a in the Zariski topology.

§9

All the g-modules considered are assumed to be finite dimensional.

1) If m is an integer > 0, we have dimE(mp) = (m + 1)N, where N =
Card(R4).

2) Show that there exists a unique polynomial function d on h* such that
d(A) = dimE(X) for all A € P y; its degree is Card(R4.). We have

d(w —p) =e(w)dA—p) ifweW,Aebp”.

In particular, the function A +— d(\ — p)? is invariant under W. Deduce that
there exists a unique element u of the centre of U(g) such that y(u) = d(\)?
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for all A € h* (apply Th. 2 of §8, no. 5). When g = sl(2, k), we have u = C+1,
where C is the element defined in Exerc. 1 of §1.

3) Let ki, ..., k; be the characteristic degrees of the algebra of invariants of
W (cf. Chap. V, §5).
a) Show that, for all j > 1, the number of ¢ such that k; > j is equal to the

number of o € Ry such that (p, H,) = j. (Reduce to the case in which R is
irreducible, and use Chap. VI, §4, Exerc. 6 ¢).) (Cf. §5, Exerc. 5 g).)

b) Deduce the formula

l

IT (o Ho) = ] (ki = 1)

a€Ry =1

9 4) Assume that g is simple, and denote by v the element of R, such that
H., is the highest root of RY; write Hy, = QXE:B noHs. We have (p, Hy) =
> n, = h — 1, where h is the Coxeter number of R (Chap. VI, §1, no. 11,
Prop. 31).

a) Let a € B. Show that, for all 5 € R,

(wa +p, Hg) <h+mng—1,
and that equality holds if 3 = 7. Deduce that every prime factor of dim E(w,,)
is<h+mnq,—1.
b) Assume that w, is not minuscule, i.e. n, > 2. Let m € (2,n,) and
p = h+m — 1. Verify (cf. Chap. VI, Plates) that there exists § € Ry such
that (wq, Hg) = ng and (p, Hz) = h—1— (n, —m), hence (wq +p, Hg) = p.
Deduce that, if p is prime, p divides dim E(w, ). (Remark that p does not
divide any of the (p, Hg) for 5 € R4, cf. Exerc. 3.)
¢) When g is of type Go (resp. F4,Eg), we have h = 6 (resp. 12, 30), and
dim E(w,,) is divisible by 7 (resp. 13, 31), When g is of type Eg (resp. E7),
and @, is not minuscule, dim E(w,,) is divisible by 13 (resp. 19).
95) a) Let « € R,z € g*,y € g~°, and let E be a g-module. Show that, for
all A e P,

Tr((2y)elE) = Tr((wy)s[EM2) + ([, y]) dim B,
Deduce that

Z [z, y]) dimEX. e* = (1 —e™®) Z Tr((zy)g|EY). e

AEP AeP

b) Give h* a non-degenerate W-invariant symmetric bilinear form (, ). Let
A be the endomorphism of the vector space k[P] such that A(e*) = (u, p)e
for all u € P; if a,b € k[P], put

A'(a,b) = A(ab) — aA(b) — bA(a).
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Prove that
A(J(e")) = (u, p)I(e") for p e P,
Al et) =20\, pyerH for A\, u € P,
Al(ab,c) = aA'(b,c) +bA'(a,c) for a,b,c € k[P].
¢) Let A € P44, ey = ch(E(X)) and d = J(e”). Prove that
Aexd) = A+ p, A+ p)ead.

(Use a), b), §6, Cor. of Prop. 7, and Chap. VI, §3, no. 3, formula (3).)

d) Deduce another proof of the formula of H. Weyl from the above and §7,
no. 2, Prop. 5 (iii).

e) For all A € h*, put dim E* = m(\). Deduce from a) that

+oo

Te((xy)eBY) = > (A +ia) [z, y)m(\ + i)
=0
+o0
_Z (A +ia) ([z, y])m(A + ia) = 0.

f) Let (-, -) be a non-degenerate invariant symmetric bilinear form on g
whose restriction to h is the inverse of the form chosen above. Let I" be
the corresponding Casimir element. Assume that E is simple; put I'g = .1,
where v € k. By using e) and §2, no. 3, Prop. 6, show that

400
ym(A) = (A NmA) + Y Y (A +ia, a)ym(A +iq)
a€eR =0

for all A € h*, and then that

—+o00
ym(A) = A NmA) + > mA N a) +2> Y mA+ia)(A + i, o)
acR4 acRy i=1
+oo
= (A A+2p)m(A) +2 Z Z m(A +ia){(A + ia, a).

acRy i=1

g) Continue to assume that E is simple; let w be its highest weight. Deduce
from f) that, for all A € h*,

+oo
(wHpw+p) = A+pA+p))mN) =2 > > mA+ia)(A+ia, ).

a€R4 i=1
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(Recall that, by Prop. 5 of §7, (w+p,w+p) > (A4p, A+p) if X is a weight of E

distinct from w. The preceding formula thus gives a procedure for calculating

m(\) step by step.)!®

6) Let = — 2* be the involution of k[P] that takes e? to e~? for all p € P.

a) Put D = d*d = HR(lfeo‘). Show that d* = (—1)Nd, where N = Card(R.),
(¢S

and hence that D = (—1)Nd?.

b) Define two linear forms ¢ and I on k[P] by the formulas:
e(l)=1, e(?)=0 ifpeP-{0}

and

I(f)

Show, by using the formula d = J(e”), that I(1) = 1.
c) Let A € Py, and ¢y = chE(\) = J(e***)/d. Show that I(cy) = 0 if A # 0.
(Same method as for b).)

d) Show that I takes integer values on the subalgebra Z[P]W = chR(g) of
E[P]. If E is a g-module, the dimension of the space of invariants of g in E is
equal to I(chE). (Reduce to the case in which E is simple and use b) and ¢).)

e) We have dimE = N ; I(c5chE)d()), where d(A) = dimE(A). In partic-
€Py+

1

= Ee(D.f), where m = Card(W).

ular:

I(chep) =05, M A, pePyy.
) If A, u,v € Py, the integer m(A, u,v) of Prop. 2 is equal to I(cacuc)).
Deduce the identity

d()‘)d(:u) = Z m()‘v s V)d(V) )‘a W,V e P++'
veP 4
(Apply e) to the g-module E = E(\) @ E(u).)
97) We retain the notations of the proof of Th. 2.
a) Show that
fr(J(e") = H (e(ula)T/2 _ e*(u\a)T/2).

a€R 4

b) Take (-|-) to be the canonical bilinear form &g (Chap. VI, §1, no. 12).
Show that

18For more details on this exercise, see: H. FREUDENTHAL, Zur Berechnung der
Charaktere der halbeinfachen Lieschen Gruppen, Proc. Kon. Akad. Wet. Ams-
terdam, Vol. LVII (1954), pp. 369-376.
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2
) = 4,7 (14 L) (mod. TPRIT),

where d, = 11 (pla).

a€R

¢) From b) and the equality J(e**?) = ch(E).J(e”), deduce the formula
d1m E

> (ulp)* dimEF =

pnep

(AIA+2p).

d) Assume that g is simple. Show that (p|p) = dimg/24. (Apply ¢) with A
the highest root of R, and use Exerc. 3 of §6.)

9 8) Let v be a polynomial function on h* of degree r. Show that there exists
a unique polynomial function ¥ on h* that is invariant under W, of degree
< r, and such that

Zz/J dimE* =¥ (A +p)dimE
acP

for any simple g-module E of highest weight .

(Treat first the case in which ¥(u) = (u|v)", where v € P is not orthogonal
to any root; for this use the homomorphism f, in the proof of Th. 2 and
Chap. V, §5, no. 4, Prop. 5 (i).)

9) We use the notations of Chap. VI, Plate I, in the case of an algebra g of
type As. Let n, p be integers > 0.

a) P(nay + pag) =1+ inf(n,p).

b) Let A = nwwy +pws. Then dimE(A) = (n+1)(p+1)(n+p+2). The mul-
tiplicity of the weight 0 of E(X) is 0 if X is not radical, i.e. if n £ p (mod. 3);
if A is radical, it is 1 + inf(n, p).

10) We use the notations of Chap. VI, Plate II, in the case of an algebra of
type Ba. Let n, p be integers > 0.

a) We have
1
PB(nay + plar + 2a2)) =1+ ip(P +3)

P(nas + plos + az)) = [p° /4] +p+1

PB(n(ag + az) + plag + 2a3)) = [n 2/4:]—i—n—|—1—l—np—|—;p(p—k?))

b) Let A = n(a1 + ag) + p(ag + 2az). The multiplicity of the weight 0 in E(X)
is
n/2] + 1+ np+p.

11) Assume that g is not a product of algebras of rank 1. Let n € N. Show
that there exists a simple g-module one of whose weights is of multiplicity
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> n. (Suppose not. Let Ey be the simple g-module of highest weight A € P, .
Compare dim Ey and the number of distinct weights of E) when (A|A) — oo
(with the notations of Th. 2).)

12) Let U° be the commutant of b in U(g). If g is of rank 1, U? is commutative.
If g is of rank > 2, UY admits simple representations of arbitrarily large finite
dimension. (Use Exerc. 11 and Exerc. 23 a) of §7.)

13) Let R be a root system in a vector space V. Two elements vy,vy of V
are said to be disjoint if R is the direct sum of two root systems R; and
Rs (Chap. VI, §1, no. 2) such that v; belongs to the vector subspace of V
generated by R;, ¢ = 1,2. Show that two elements of Vg that belong to the
same chamber of R are disjoint if and only if they are orthogonal.

914) a) Let p,v € P11 and let v be a weight of E(u). Let p, be the rep-
resentation of g on E(u). Let X, € g*={0},Y, € g7*={0}. If @ € B, put
Vo = V(H,), and

E (1,7, v) = B(u) "N () Ker py(Xo) ",
aEeB

E™ (1, 7,v) = BE(u)'n (1] Ker p, (Vo)
aEB
d+(/}ﬂ s V) = dimEJr(M,'Ya V)a di(,ufv Vs V) = dimE*(lb’Y? V)'

For all A € h*, put A* = —woA, where wy is the element of W that takes B
to —B. Show that

dt(p, v, v) =d~ (p, =", v").

b) Let A1, Ag € P44, V the g-module Homy (E(A}),E(\2)), U theset of p € V
such that Y,.o = 0 for all @ € B, and w a primitive vector in E(A}). Show

that ¢ +— @(w) is an isomorphism from U to the set of v € E(A2) such that
y i HaFL 0 for all o € B. (Use Exerc. 15 of §7 to prove surjectivity.)

¢) With the notations of Prop. 2, prove that, for Ay, Ao, \ € P4,
m(A, Ao, A) = dT (A Ao — A5 AT =d™ (A A — A5, )
=d (A, A= Ao, Xo) = d (A, A5 — A5, 05).

(Observe that m(A1, A2, A) is the dimension of the space of g-invariant ele-
ments of

E(A)" @ E(A1) @ E(A2),

and hence is equal to m(\j, A\, A2).)

d) Let A1, A2 € P44, and let A be the unique element of P4 NW.(A1 — A3).
We have

m()\l, )\2,/\) =1.
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(Use ¢).) Deduce that E(A) ®E(A2) contains a unique submodule isomorphic
to E(A).

e) We retain the notations of d). Show the equivalence of the following con-
ditions:

(D) A=A+ X

(i) | A= A+ % |

(iii) A\; and A3 are orthogonal

(iv) A1 and A} are disjoint (Exerc. 13)

(v) A1 and Ag are disjoint.

Conclude that E(A1) ® E(A2) is not a simple module unless A\; and A are
disjoint (and hence another proof of Exerc. 18 f) of §7).

15) Put N = Card(R4), ¢ = 1;[{ (p, Hy), and d(X) = dimE(\) if A € P
acR 4
Show that, for any real number s > 0,

0o N
> d) < (Zm_s> .
AeP 4 m=1

Deduce that >~ d(\)™* < 4oo if s > 1.

A€P

Q| =

916) a) Take g to be of type F4 and use the notations of Chap. VI, Plate VIIIL.
Ifi=1,2,3,4, put

Zi =Py 0 (wmi — Qq).

The set of weights of E(w;) is the disjoint union of the Ww, where w belongs
to Z; (cf. §7, Prop. 5 (iv)). We have:

21 ={0,w1, w4 };

25 ={0,w1, w2, w3, Wy, W1 + Wy, 2004 };
23 = {0, w1, ws, wa};

2y ={0,w04}.

b) Show, by means of Th. 2, that:

dimE(w) =52, dimE(ws) = 1274, dimE(ws) = 273, dimE(w,) = 26.

¢) By using Chap. V, §3, Prop. 1, and the plates of Chap. VI, show that
Card(Wwoy) = 2732273(3) 7! = 24.

Calculate Card(Wwsy), ..., Card(W.2w,) similarly. Deduce that the number
of weights of E(ws) is 553; since this number is strictly less than dim E(w,),
one of these weights is of multiplicity > 2.
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d) Make analogous calculations for ws,ws, wy. By using Exerc. 21 of §7,
deduce that, if p is a non-zero simple representation of g, p admits a weight
of multiplicity > 2.

e) Prove the same result for a simple algebra of type Es.

f) Let a be a splittable simple Lie algebra. Deduce from d), e) and Prop. 7
and 8 of §7 the equivalence of the following properties:

(i) a admits a non-zero simple representation all of whose weights are of
multiplicity 1;

(ii) a is neither of type Fy nor of type Es.

§10

1) Let s = sl(2, k) and g = s[(3, k). Identify s with a subalgebra of g by means
of an irreducible representation of s of degree 3. Show that every subspace of
g containing s and stable under adys is equal to either s or g; deduce that s
is maximal among the subalgebras of g distinct from g.

2) Let m = 1(dim(g) + rk(g)). Every solvable subalgebra of g is of dimen-
sion < m; if it is of dimension m, it is a Borel subalgebra. (Reduce to the
algebraically closed case, and use Th. 2.)

3) Assume that k is R, C, or a non-discrete complete ultrametric field. Give
the grassmannian G(g) of vector subspaces of g its natural structure of ana-
lytic manifold over k (Differentiable and Analytic Manifolds, Results, 5.2.6).
Consider the subsets of G(g) formed by:
(i) the subalgebras
(ii) the solvable subalgebras
(iii) the nilpotent subalgebras
(iv) the subalgebras consisting of nilpotent elements
(v) the Borel subalgebras.
Show that these subsets are closed (for (v), use Exerc. 2). Deduce that these
subsets are compact when k is locally compact.
Show by examples that the subsets of G(g) formed by:
(vi) the Cartan subalgebras
(vii) the subalgebras reductive in g
(viii) the semi-simple subalgebras
(ix) the decomposable subalgebras
are not necessarily closed, even when k = C.

4) Assume that k = C. Let G = Int(g) = Auto(g), and let B be an integral
subgroup of G whose Lie algebra b is a Borel subalgebra of g. Show that B
is the normalizer of b in G (use Exerc. 4 of §3 and Exerc. 11 of §5). Deduce
by means of Exerc. 3 that G/B is compact.

95) Assume that g is splittable. If b is a splitting Cartan subalgebra of g,
denote by E(h) the subgroup of Aut.(g) generated by the e ® z € g*(h),
a € R(g, b), cf. Chap. VII, §3, no. 2.
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a) Let b be a Borel subalgebra of g containing b, and let h; be a Cartan
subalgebra of b. Show that by is conjugate to h by an element of E(h). Deduce
that E(h) = E(by ).

b) Let b’ be a splitting Cartan subalgebra of g. Show that E(g) = E(p’). (If
b’ is a Borel subalgebra containing b’, choose a Cartan subalgebra b1 of bNb’
and apply a) to show that E(h) = E(h;) = E(h').)

¢) Let = be a nilpotent element of g. Show that e # € E(f). (Use b) and
Cor. 2 of Th. 1 to reduce to the case in which z € [b,b].) Deduce that
E(h) = Autc(g).

6) a) Show the equivalence of the properties:
(i) g has no nilpotent element # 0.
(ii) g has no parabolic subalgebra # g.
(Use Cor. 2 of Th. 1.)
Such an algebra is called anisotropic.

b) Let p be a minimal parabolic subalgebra of g, v the radical of p, and s = p/r.
Show that s is anisotropic. (Remark that, if ¢ is a parabolic subalgebra of s,
the inverse image of q in p is a parabolic subalgebra of g, cf. §3, Exerc. 5 a).)

9 7) a) Show that the following properties of k are equivalent:

(i) Every anisotropic semi-simple k-Lie algebra reduces to 0.

(ii) Every semi-simple k-Lie algebra has a Borel subalgebra.

(Use Exerc. 6 to prove that (i) = (ii).)

b) Show that (i) and (ii) imply!?:

(iii) Every finite dimensional k-algebra that is a field is commutative. (Or

again: the Brauer group of every algebraic extension of k reduces to 0.)
(Use the Lie algebra of elements of trace zero in such an algebra.)

¢) Show that (i) and (ii) are implied by:

(iv) For any finite family of homogeneous polynomials f, € k[(X;)e1] of

degrees > 1 such that %deg fa < Card(I), there exist elements z; € k, not

all zero, such that fo((z;);c1) = 0 for all a.
(Use Prop. 5 of §8.)

§11

1) Let g = sl(2,k). Put G = Aut.(g); this group can be identified with
PSL;y(k), cf. Chap. VII, §3, no. 1, Remark 2.

a) Every nilpotent element of g is G-conjugate to <8 3) for some A € k.

Such an element is principal if and only if it is non-zero.

9Tn fact, (iii) is equivalent to (i) and (ii). For this, see: R. STEINBERG, Regular
elements of semi-simple algebraic groups, Publ. Math. I.H.E.S., Vol. XXV (1965),
pp- 49-80.
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b) The elements (8 3), (8 8), where A\, u € k*, are G-conjugate if and

only if A1y is a square in k.

¢) Every simple element of g is G-conjugate to (é Pl >

2) Let A = (8 é) ,B= ((1) 8) Then A is nilpotent, AB is not, and

aasl=(y ).

Deduce that Lemma 5 does not extend to fields of characteristic 2.

3) Let t be the radical of g, and s = g/t. Show the equivalence of:
(i) g contains no sly-triplet;

(ii) s contains no sly-triplet;

(iii) s is anisotropic (§10, Exerc. 6);

(iv) s contains no non-zero diagonalizable element (§3, Exerc. 10).
(Use Prop. 2 and Exerc. 10 a) of §3.)

4) Let V be a vector space of dimension n > 2, g = s[(V) and G = PGL(V),
identified with a group of automorphisms of g. An slo-triplet in g gives V
a faithful sl(2, k)-module structure, and conversely any such structure arises
from an sl-triplet; an slo-triplet is principal if and only if the corresponding
s[(2, k)-module is simple; two sly-triplets are G-conjugate if and only if the
corresponding sl(2, k)-modules are isomorphic. Deduce that the G-conjugacy
classes of sly-triplets correspond bijectively with the families (mq,ma,...) of
integers > 0 such that

mi1+2ms+3ms+---=n and myg <n.

95) Assume that g is semi-simple. Let a be a subalgebra of g, reductive in g,
of the same rank as g, and containing a principal sly-triplet of g. Show that

a=g.

96) Assume that g is absolutely simple, and denote its Coxeter number by
h. Let = be a nilpotent element of g. Show that (ad z)?"~! = 0 and that
(ad x)2"=2 £ 0 if and only if z is principal. (Reduce to the case in which g is
split, and x is contained in the subalgebra n; of Prop. 10. Repeat the proof
of Prop. 10.)

97) Assume that g is semi-simple. Let x be a nilpotent element of g. Then
x is principal if and only if x is contained in a unique Borel subalgebra of
g. (Reduce to the case in which k is algebraically closed. Use Prop. 10 and
Prop. 10 of §3, no. 3.)

8) A semi-simple Lie algebra has an slo-triplet if and only if it is # 0 and has
a Borel subalgebra.
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9) Assume that g is semi-simple. Let N (resp. P) be the set of nilpotent (resp.
principal nilpotent) elements of g.

a) Show that P is an open subset of N in the Zariski topology (use Exerc. 6).

b) Assume that g is splittable. Show that P is dense in N. (Use Prop. 10 and
Cor. 2 of Th. 1 of §10.)

10) Assume that g is splittable semi-simple. Let (x, h,y) be an sly-triplet in
g.

a) Show that there exists a splitting Cartan subalgebra § of g containing h.
(Use Exerc. 10 b) of §3.)

b) Choose h as in a). Show that h € hq and that there exists a basis B of
R(g, h) such that a(h) € {0,1,2} for all @ € B (cf. Prop. 5). The element z
belongs to the subalgebra of g generated by the g%, a € B.

¢) Deduce from a) and b), and the Jacobson-Morozov theorem, a new proof of
the fact that every nilpotent element of g is contained in a Borel subalgebra
(cf. §10, Cor. 2 of Th. 1).

9 11) Let (z, h,y) be a principal sly-triplet in the semi-simple Lie algebra g.
Give g the sl(2, k)-module structure defined by this triplet. Show that the
1

module thus defined is isomorphic to @V(Zki — 2), where the k; are the

characteristic degrees of the algebra of invariant polynomial functions on g.
(Reduce to the case in which g is splittable simple. Use Cor. 1 of Th. 1 of §8,
no. 3, and Chap. VI, §4, Exerc. 6 ¢).)%°

€12) Assume that g is semi-simple. Let « € g and let s (resp. n) be the semi-
simple (resp. nilpotent) component of x. Let a, (resp. as) be the commutant
of z (resp. s) in g.

a) Show that n is a nilpotent element of the semi-simple algebra %(a;), and
that the commutant of n in a, is equal to a,. Deduce that dima, < dimay
if n # 0, i.e. if £ is not semi-simple.

b) Show that dima, = rk(g) if and only if n is a principal nilpotent element
of Y(as).

¢) Put G = Aut,(g). Show that, for all X\ € k, there exists o) € G such that
oz = s+ A?n. (Show that, if n # 0, there exists an slo-triplet in ay of which
the first component is n, and deduce a homomorphism ¢ : SL(2,k) — G;
take oy to be the image under ¢ of a suitable diagonal element of SL(2, k).)
Deduce that s belongs to the closure of G.x in the Zariski topology.

d) Show that, if  is not semi-simple, 2 does not belong to the closure of G.s
in the Zariski topology (use the inequality dima, < dimag, cf. a)).

20For more details on Exercises 6 to 11, see: B. KOSTANT, The principal three-
dimensional subgroup and the Betti numbers of a complex simple Lie group,
Amer. J. Math., Vol. LXXXI (1959), pp. 973-1032.
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e) Assume that k is algebraically closed. Prove the equivalence of the following
properties:

(i) = is semi-simple;

(ii) G.z is closed in g in the Zariski topology.

(The implication (ii) = (i) follows from c¢). If (i) is satisfied, and if 2’ is in
the closure of G.z, Exerc. 15 of §8 shows that the semi-simple component s’
of 2’ belongs to G.z, so ' belongs to the closure of G.s’; conclude by applying
d) to 2’ and §'.)

f) Assume that k is algebraically closed. Let F, be the set of elements y € g
such that f(z) = f(y) for every invariant polynomial function f on g; we
have y € F, if and only if the semi-simple component of y is G-conjugate to
s (§8, Exerc. 17). Show that F, is the union of a finite number of orbits of
G, and that this number is < 3/*), where I(z) is the rank of Z(a,). Only one
of these orbits is closed: that of s; only one is open in F,: that consisting of
the elements y € F, such that dima, = rk(g).

13) Assume that g is semi-simple.

a) Let (z, h,y) be a principal sly-triplet in g, and let b be the Borel subalgebra
containing z (Exerc. 7). Show that b is contained in Im ad .

b) Assume that k is algebraically closed. Show that, for any element z in g,
there exist z,t € g, with z principal nilpotent, such that z = [z,t] (apply a)
to a Borel subalgebra containing z).

14) Assume that g is semi-simple. Let p be a parabolic subalgebra of g, and let
f1 and fo be two homomorphisms from g to a finite dimensional Lie algebra.
Show that fi|p = fa|p implies that f; = fa. (Reduce to the case in which g
is split, then to the case in which g = s[(2, k), and use Lemma 1 of no. 1.)

9 15) Assume that g is semi-simple.

a) Let x be a nilpotent element of g. Show that x is contained in Im(ad z)?
(use Prop. 2). Deduce that (ad x)? = 0 implies x = 0.

b) Let (z,h,y) be an sly-triplet in g, and let s = kxz ® kh @ ky. Prove the
equivalence of the following conditions:

(i) Im(ad 2)? = k.x;

(ii) the s-module g/s is a sum of simple modules of dimension 1 or 2;

(iii) the only eigenvalues of adg h distinct from 0, 1 and —1 are 2 and —2,
and their multiplicity is equal to 1.

¢) Assume that g is splittable simple. Let h be a splitting Cartan subalgebra
of g, B a basis of R(g, ), and « the highest root of R(g, h) relative to B. Let
(z,h,y) be an slo-triplet such that h € hg and a(h) > 0 for all & € B (cf.
Prop. 5). Show that conditions (i), (ii), (iii) of b) are satisfied if and only if
h = H,, in which case z € g7 and y € g7".

d) Retain the hypotheses of ¢), and put G = Autg(g). Show that the sls-
triplets satisfying (i), (ii) and (iii) are G-conjugate (use Exerc. 10). Show
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that, if  is a non-zero nilpotent element of g satisfying (i), the closure of G.xz
in the Zariski topology is equal to {0} U G.z.

16) Let (z,h,y) be an slo-triplet in g. Show that, if —2 is a square in k,
the elements x — y and h are conjugate by an element of Aut.(g) (reduce
to the case in which g = s[(2,k)). Deduce that, if g is semi-simple, z — y is
semi-simple, and that it is regular if and only if A is regular.

917) Let (z, h,y) be a principal sly-triplet in the semi-simple algebra g. For

all i € Z, denote by g; the eigenspace of ad h relative to the eigenvalue i; we

have g = Gazgi7 and g; = 0 if ¢ is odd. The direct sum b of the g;, 7 > 0, is a
i€

Borel subalgebra of g, and gg is a Cartan subalgebra.

a) Show that, for all z € b, the commutant of y + z in g is of dimension
I =rk(g).

b) Let I be the algebra of invariant polynomial functions on g, and Py,..., P,
homogeneous elements of 1 generating I; put deg(P;) = k; = m; + 1. Show
that the commutant ¢ of x in g has a basis x1,...,2; with x; € gapm, (cf.
Exerc. 11).

¢) Let ¢ € (1,0, and let J; (resp. K;) be the set of j € (1,1) such that m; = m;
(resp. m; < my). Let f; € k[X4,...,X;] be the polynomial such that

Jj=l
filar,...,a;) =P;(y+ Zajxj) for (a;) € KL
j=1

Show that f; is the sum of a linear form L; in the X;, j € J;, and a polynomial
in the X, j € K;. (If t € k*, the automorphism of g equal to ¢* on g; belongs
to Auto(g) and takes y to 72y and x; to t*"ix;. Use the invariance of P;
under this automorphism.)

d) Let P be the map from g to k' defined by the P;. If z € g, denote by
D.P: g — k! the tangent linear map of P at z (Chap. VII, App. I, no. 2).

Show that ¢ NImad(y — ) = 0 (decompose g into a direct sum of simple
submodules relative to the subalgebra generated by the given sls-triplet).
Deduce that the restriction of D,_;P to ¢ is an isomorphism from ¢ to K
(use the preceding exercise and Exerc. 18 a) of §8). Show, by using this
result, that the determinant of the linear forms L; defined in ¢) is # 0, and
deduce the following results:

dy) the polynomials f1,..., f; are algebraically independent and generate
k‘[Xl, e ,Xl];

ds) the map z — P(y + 2) from ¢ to k! is bijective polynomial, and the
inverse map is polynomial;

ds) for all z € y + ¢, the linear map D, P|c is of rank .

In particular, the map P : g — k! is surjective.
e) If k is algebraically closed, every element of g whose commutant is of
dimension [ is conjugate under Autg(g) to a unique element of y + c.
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f) Give an example of a simple Lie algebra with no principal sls-triplet, for
which the map P is not surjective (take k = R and [ = 1).

§13

1) The dimensions < 80 of splittable simple Lie algebras are:

3 (A= =C ) (A2), 10 (B2 = Cy), 14 (G2), 15 (A3 = D3), 21 (Bs
and C3) 24 (A4) (D4) 35 (A5)7 36 (B4 and C4), 45 (D5)7 48 (Ag), 52
(F4)7 955 (B5 and C5)7 63 (A7), 66 (Dﬁ), 78 (BG, CG and Ee)7 80 (As)

2) Let (g, b) be a split simple Lie algebra, and B a basis of R(g, h). The simple
g-modules E(A\), A € P41 — {0}, of minimum dimension are those for which
A is one of the following weights:
@1 (A1); w1 and @ (Ay, I > 2); w1 (B; and Cy, | > 2); w1, w3 and wy

(D4) w1 (Dl, l > 5) w1 and We (E6) w7 (E7) wsg (Es) Wy (F4) w1 (Gg)

Any two such modules can be transformed into each other by an auto-
morphism of g.

Type Eg is the only one for which the adjoint representation is of minimum
dimension.

3) a) Define an isomorphism from sl(4, k) to the orthogonal algebra 05(6, k).
(Use the fact that the representation A”o of no. 1.V is orthogonal and of
dimension 6.) The two types of irreducible representation of s[(4, k) of degree
4 correspond to the two semi-spinor representations of 0g(6, k).

b) Define an isomorphism from sp(4, k) to the orthogonal algebra 0g(5, k).
(Use the fact that the representation o of no. 3.V is orthogonal and of di-
mension 5.) The irreducible representation of sp(4, k) of degree 4 corresponds
to the spinor representation of 0g(5, k).

¢) Define an isomorphism sl(2, k) x sl(2,k) — 0g(4, k) by using the tensor
product of the identity representations of the two sl(2,k) factors. Recover
this result by means of Chap. I, §6, Exerc. 26.

4) Let S be the square matrix of order n

00 -~ 01
00 -~ 10
(Gins1—a) = | + . 1
01 0 0
10 --- 0 0
The elements of 0g(n, k) are the matrices (a;;) that are anti-symmetric with

n
respect to the second diagonal:
@i = —Qpt1—jnt+1—i for every pair (i,j).

The algebra 0g(n, k) is splittable simple of type D,, 5 if n is even and > 6, and
of type B(,,—1)/2 if n is odd and > 5. The diagonal (resp. upper triangular)
elements of 0g(n, k) form a splitting Cartan (resp. Borel) subalgebra.
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5) The notations are those of no. 1.IV, type A;. Show that, if n is > 0, S"¢
is an irreducible representation of s[(I + 1, k) of highest weight nw;. (Realise
S" 0o on the space of homogeneous polynomials of degree n in Xg, ..., X;, and
observe that, up to homothety, the only polynomial f such that 0f/9X; =0
for ¢ > 1 is X§.) Show that all the weights of this representation are of
multiplicity 1.

6) The notations are those of no. 2.1V, type B;. Show that, if 1 <r <1 —1,
the dimension of E(w,) is <2l+1 ), and deduce another proof of the fact that

T

A" o is a fundamental representation of highest weight .

7) The notations are those of no. 2.VII, type B;. Show that OF (¥) is the com-
mutator subgroup of SO(¥). (Remark that O(¥) is equal to {£1} x SO(¥),
hence has the same commutator subgroup as SO(¥), and apply Algebra,
Chap. IX, §9, Exerc. 11 b).) Deduce that Aut.(g) = OF (¥).

8) The notations are those of no. 3.V, type C; (I > 1). Show that S%o is
equivalent to the adjoint representation of g.

9) The notations are those of no. 3.VII, type C; (I > 1). In particular, we
identify Aut.(g) with a subgroup of Sp(¥)/{%1}. Show that the image in
Sp(¥)/{£1} of a symplectic transvection (Algebra, Chap. IX, §4, Exerc. 6)
belongs to Aut.(g). Deduce that Aut.(g) = Sp(¥)/{£1} (Algebra, Chap. IX,
§5, Exerc. 11), and that Aut(g)/Aute(g) can be identified with k*/k*2.

€10) The notations are those of no. 4.1V, type D; (I > 2).
a) Let 2 and y be the elements of \' V defined by

r=e1AN---ANe_1Ne and y=e  A---ANe_1ANe_y.

The element x is primitive of weight 2cv; and y is primitive of weight 2w; 1.
The submodule X (resp. Y) of A"V generated by z (resp. y) is isomorphic
to E(2w;) (resp. E(2w;_1)). Show, by calculating dimensions, that A\'V =
X @Y; in particular, /\l V is the sum of two non-isomorphic simple modules.
b)Lete=er A---ANegANe_1 A~ Ne_j € /\21\/, and ¥; the extension of ¥
to A" V. Let z € A\' V. Prove the equivalences:

z€X <= 2zAt=V(z,t)e for allte/\lV
z€Y <= zAt=-Y(z,t)e forallte /\lV.

(If X’ and Y’ denote the subspaces defined by the right-hand sides, prove
first that X’ and Y’ are stable under g and contain = and y, respectively.)

¢) Assume that z is pure (Algebra, Chap. III, §11, no. 13), and denote by
M, the I-dimensional subspace of V associated to it. Show that M, is totally
isotropic if and only if z belongs to X or to Y. (Use the fact that, when M, is
totally isotropic, there exists an orthogonal transformation that transforms
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it into M, ; when M., is not totally isotropic, construct an I-vector ¢ such that
zAt = 0,%(z,t) = 1, and apply b) above.) When z € X (resp. z € Y),
the dimension of M, /(M, N M,) is an even (resp. odd) integer, cf. Algebra,
Chap. IX, §6, Exerc. 18 d).

d) Let s be a direct (resp. inverse) similarity of V. Show that A's leaves X
and Y stable (resp. interchanges X and Y).

11) The notations are those of no. 4.VII, type D; (I > 3). Show that
O¢ (¥) is the commutator subgroup of SO(¥). (Apply Algebra, Chap. IX, §6,
Exerc. 17 b) and Algebra, Chap. IX, §9, Exerc. 11 b).) Deduce that Aut.(g)
is equal to the image of Of (¥) in SO(¥)/{+1}. Moreover, —1 belongs to
O{ (W) if and only if [ is even or —1 is a square in k (Algebra, Chap. IX, §9,
Exerc. 11 ¢)).

12) The Killing form of sl(n, k) is (X,Y) — 2nTr(XY'). That of sp(n, k), n
even, is (X,Y) — (n+2)Tr(XY). That of 0g(n, k), where S is non-degenerate
symmetric of rank n, is (X,Y) — (n — 2)Tr(XY).

13) The algebra of invariant polynomial functions of g is generated:
a) in case A, by the functions X — Tr(X?), 2 <i <[+ 1;

b) in case By, by the functions X — Tr(X?%), 1 <i <1[;

¢) in case Cy, by the functions X ~ Tr(X?%), 1 <i <1

d) in case Dy, by the functions X — Tr(X?'), 1 <4 <1 —1, and by one of
the two polynomial functions f such that f(X)? = (—1)'det(X).

14) a) Let G be the group associated to g = sl(n, k) by the procedure of §7,
Exerc. 26. The natural g-module structure on k™ gives rise to a homomor-
phism ¢ : G = GL(n, k). Use loc. cit. h) to prove that ¢ is injective, and
loc. cit. f) to prove that

Im(p) = SL(n, k).

b) Let E be a finite dimensional sl(n, k)-module, and p the corresponding
representation of sl(n, k). Show that there exists a unique representation
7 : SL(n, k) — GL(E) such that m(e*) = e?(*) for every nilpotent element x
of sl(n, k) (use a)). We say that p and 7 are compatible. Generalize the results
proved for n = 2 in §1, no. 4.

¢) Assume that k is R, C or a complete field for a discrete valuation with
residue field of characteristic # 0. Show that p and 7 are compatible if and
only if 7 is a homomorphism of Lie groups such that L(7) = p (same method
as in Exerc. 18 b) of §1).

d) Prove analogous results for sp(2n, k) and Sp(2n, k).
915) Let V be a vector space of finite dimension > 2, g a Lie subalgebra of

End(V) and 6 an element of g. We make the following assumptions:
(i) V is a semi-simple g-module;
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(ii) 6 is of rank 1 (i.e. dimIm(0) = 1);

(iii) the line Im(0) generates the U(g)-module V.

a) Show that these assumptions are satisfied (for a suitable choice of ) when
g = sl(V), when g = gl(V), or when there exists a non-degenerate alternating
bilinear form ¥ on V such that g = sp(¥) or g = k.1®sp(¥). In each of these
cases, 6 can be taken to be a nilpotent element; in the second case (and only
in that case) 6 can be taken to be a semi-simple element.

b) We shall prove that the four cases above are the only ones possible. We
are reduced immediately to the case in which & is algebraically closed. Show
that V is then a simple g-module, and that g = ¢ @ s, where s is semi-simple,
and ¢ = 0 or ¢ = k.1; show that V is not isomorphic to a tensor product of
g-modules of dimension > 2; deduce that s is simple.

¢) Choose a Cartan subalgebra b of s, and a basis B of R(s, ). Let A be
the highest weight (with respect to B) of the s-module V, and let e be a
non-zero element of V of weight A. The highest weight of the dual module
V*is A* = —wpA (§7, no. 5); let e* be a non-zero element of V* of weight A\*.
Identify V ® V* with End(V) as usual. Show that there exist z € V,y € V*
such that z ® y € g and (x,e*) # 0,(e,y) # 0 (take the conjugate of
by e”, where n is a suitable nilpotent element of g). Use the fact that g is
an h-submodule of V ® V* to conclude that g contains e ® e*. Deduce that
A+ A" = @, where @ is the highest root of s.

d) Show that s is not of type B; (I > 2), D; (I > 4), Eg,E7, Eg,Fy4,Gs (by
Chap. VI, Tables, & would be a fundamental weight, and hence could not
be of the form A + \* above). Deduce that s is either of type A; or of type
Ci, and that in the first case A = w; or w; = w], and in the second case
& = 2w = w1 +wj; since ¢ = 0 or k.1, this indeed gives the four possibilities
in a)?.

€16) Let g be an absolutely simple Lie algebra of type A; (I > 2), k an
algebraic closure of k, and 7 : Gal(k/k) — Aut(R,B) the homomorphism
defined in Exerc. 8 of §5.

a) Assume that 7 is trivial. Show that there exist exactly two two-sided
ideals m and m’ of U(g) such that D = U(g)/m and D’ = U(g)/m’ are central
simple algebras of dimension (I +1)? (use Exerc. 8 of §7). The principal anti-
automorphism of U(g) interchanges m and m’; in particular, D’ is isomorphic
to the opposite of D. The composite g — U(g) — D identifies g with the Lie
subalgebra slp of D consisting of the elements of trace zero. Moreover, g is
splittable (and hence isomorphic to sl(I+ 1, %)) if and only if D is isomorphic
to Ml+1 (k)

Conversely, if A is a central simple algebra of dimension (I + 1), the Lie
algebra sl is absolutely simple of type A;, and the corresponding homomor-

21For more details on this exercise, see: V. W. GUILLEMIN, D. QUILLEN and S.
STERNBERG, The classification of the irreducible complex algebras of infinite
type, J. Analyse Math., Vol. XVII (1967), pp. 107-112.
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phism 7 is trivial. Two such algebras s[4 and s[4/ are isomorphic if and only
if A and A’ are isomorphic or anti-isomorphic.

b) Assume that 7 is non-trivial. Since Aut(R, B) has two elements, the kernel
of 7 is an open subgroup of Gal(k/k) of index 2, which corresponds by Galois
theory to a quadratic extension k; of k. Denote the non-trivial involution of
ki1 by x — Z.

Show that there exists a unique two-sided ideal m of U(g) such that D =
U(g)/m is a simple algebra of dimension 2(/ +1)? whose centre is a quadratic
extension of k (same method). The centre of D can be identified with k;. The
ideal m is stable under the principal anti-automorphism of U(g); that defines
by passage to the quotient an involutive anti-automorphism o of D such that
o(x) = & for all x € k1. The composite map g — U(g) — D identifies g
with the Lie subalgebra sup , of D consisting of the elements x such that
o(x) = —x and Trp g, (z) = 0. Conversely, if A is a central simple k;-algebra
of dimension (I41)?2, equipped with an involutive anti-automorphism o whose
restriction to k; is x — Z, the Lie algebra sun , is absolutely simple of type
A;, and the corresponding homomorphism 7 is that associated to ki. Two
such algebras sus , and suas o are isomorphic if and only if there exists a
k-isomorphism f: A — A’ such that ¢’ o f = foo.

Show that, when D = M, (k;), there exists an invertible hermitian
matrix H of degree [ 4+ 1, unique up to multiplication by an element of k*,
such that

o(x)=H'z.H!

for all z € M;;1(k1); the algebra g can then be identified with the algebra
su(l + 1, H) consisting of the matrices = such that z.H + H.!z = 0 and
Tr(xz) = 0.

917) Let g be an absolutely simple Lie algebra of type B; (resp. C;, D;), with
1> 2 (resp. | > 3,1 > 4). Assume further that, when g is of type Dy, the
image of the homomorphism 7 : Gal(k/k) — Aut(R,B) defined in Exerc.
8 of §5 is of order < 2. Show that there exists a central simple algebra D
of dimension (21 + 1)? (resp. 4/2,4(?) and an involutive anti-automorphism
o of D such that g is isomorphic to the Lie subalgebra of D consisting of
the elements = such that o(x) = —z and Trp(z) = 0 (same method as in
Exerc. 16 a)).??

18) Let V be a finite dimensional vector space, Q a non-degenerate quadratic
form on V, and ¥ the symmetric bilinear form associated to Q. Denote the
Lie algebra o(¥) by g and the extension of ¥ to A*(V) by Ws.

a) Show that there exists an isomorphism of vector spaces 6 : /\2(\/) — g
characterized by the following equivalent properties:

22For more details on Exercises 16 and 17, see: N. JACOBSON, Lie Algebras, In-
terscience Publ. (1962), Chap. X and G. B. SELIGMAN, Modular Lie Algebras,
Springer-Verlag (1967), Chap. IV.
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(i) For a,b and = in V, we have 6(a A b).x = a.¥(x,b) — b.¥(x,a).

(i) For 2,y in V and u in A*(V) we have Wy (z Ay, u) = ¥(z,0(u).y).
Let o be the identity representation of g on V; then 6 is an isomorphism of
A’ (V) with the adjoint representation of g.

b) Define the linear map f : g — CT(Q) as in Lemma 1 of no. 2. Show that
f6(a Ab) = 3(ab— ba) for a,b in V, and deduce a new proof of assertions
(iii), (iv) and (v) of Lemma 1 of no. 2.

¢) The notations [, F,F’ eq, N, A and p are those of no. 2. Choose e # 0 in
A(F’) and define the bilinear form ¢ on N by

e Ay = (—1)PPI 2Pz ) e (z € /\p ),y € N).

Show that ®(A(a).z,y) + P(x,A(a).y) = 0 for z,y in N and a in F @ F'.
Deduce that @ is invariant under the representation p of g (remark that the
Lie algebra p(g) is generated by A(F @ F’) by a) and b) above).

19) Let V be a finite dimensional vector space and E = V & V*. Define a
non-degenerate bilinear form @ on E by

P((z,2%), (9,97) = (=,57) + {y, 7).

Put N = A(V) and Q(z) = 3&(z, z) for € E. Denote the spinor represen-
tation by A : C(Q) — End(N) as in no. 2.1V, define f : o(®) — CT(Q) as
in Lemma 1 of no. 2, and denote by p the linear representation A o f of the
algebra o(P) on N.

a) Associate to any endomorphism u of V the endomorphism @ of E by the
formula (z,2*) = (u(z), —'u(z*)). Show that u — @ is a homomorphism of
Lie algebras from gl(V) to o(®); moreover, for u in gl(V), p(@) is the unique
derivation of the algebra A(V) = N that coincides with v on V.

b) Let ¥ be a non-degenerate alternating bilinear form on V and v : V — V*
the isomorphism defined by ¥(z,y) = (z,v(y)) for 2,y in V. Show that the
endomorphisms X+ and X_ of E defined by

X+(Z,I*) = (771(‘%*)’0)7 X—(zaw*) = <Oa 77(x))
belongs to o(®). Put H = (—1) Show that (H, X, X_) is an sly-triplet in
the Lie algebra o(®).

¢) Show that p takes the endomorphisms H, X, X_ of o(®) to the endomor-
phisms of N denoted by H, X, and X_, respectively, in no. 3.IV. Deduce
that (H, X1, X_) is an sly-triplet in the Lie algebra gl(N).



SUMMARY OF SOME IMPORTANT
PROPERTIES OF SEMI-SIMPLE LIE
ALGEBRAS

In this summary, g denotes a semi-simple Lie algebra over k.

CARTAN SUBALGEBRAS

1) Let E be the set of commutative subalgebras of g that are reductive in g;
this is also the set of commutative subalgebras of g all of whose elements are
semi-simple. The Cartan subalgebras of g are the maximal elements of E.

2) Let = be a regular element of g. Then z is semi-simple. There exists a
unique Cartan subalgebra of g containing x; it is the commutant of = in g.

3) Let = be a semi-simple element of g. Then x belongs to a Cartan subalgebra
of g. The element x is regular if and only if the dimension of the commutant
of = is equal to the rank of g.

4) Let h be a Cartan subalgebra of g. Then h is said to be splitting if adgz
is triangularizable for all x € h. Moreover, g is said to be splittable if g has
a splitting Cartan subalgebra (this is the case if k is algebraically closed).
A split semi-simple Lie algebra is a pair (g, ) where g is a semi-simple Lie
algebra and b is a splitting Cartan subalgebra of g.

In the remainder of this summary, (g,h) denotes a split semi-simple Lie
algebra.

ROOT SYSTEMS

5) For any element « of the dual h* of b, let g* be the set of z € g such that
[h, 2] = a(h)zx for all h € h. If & = 0, then g* = . Any « € h* - {0} such that
g% # 0 is called a root of (g, h). Denote by R(g, h) (or simply by R) the set of
roots of (g,h). This is a reduced root system in h* in the sense of Chap. VI,
81, no. 4. The algebra g is simple if and only if R is irreducible.

6) For all @ € R, g® is of dimension 1. The vector space [g*, g~ %] is con-
tained in b, is of dimension 1, and contains a unique element H, such that
a(H,) = 2; we have H, = oV (Chap. VI, §1, no. 1); the set of H,, for « € R,
is the inverse root system R of R.
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7) We have g =h @ EBR g®. There exists a family (X, )aer such that, for all
ac

a € R, we have X, € g and [X,,X_o] = —H,. Every « € g can be written
uniquely in the form

z=h+Y AXa, whereh€h A, €k
a€eR

The bracket of two elements can be calculated by means of the formulas

[Xng :NaﬁXaJrﬁ if a+ 0 €R,
the Ny being non-zero elements of k.

8) Let B be a basis of R. The algebra g is generated by the X, and the X_,
for & € B. We have [X,, X_3|=01if o, € B and a # . Let (n(e, §))a,peB
be the Cartan matrix of R (relative to B). We have n(o,8) = a(Hg). If
a,f € B and a # 3, n(a, ) is a negative integer and

(ad Xg)! @A X, =0 and (ad X_g)t @A X, =0.

9) If a, 5, 4B € R, let o be the largest integer j such that §—ja € R. The
family (X, )aer in 7) can be chosen so that Ny 3 = N_, _gif o, 8,4+ 0 € R.
Then Nog = £(gag+1). There exists an involutive automorphism 6 of g that
takes X, to X_, for all & € R; we have 6(h) = —h for all h € . The Z-
submodule gz of g generated by the H, and the X, is a Z-Lie subalgebra of
g, and the canonical map gz ®z k — g is an isomorphism.

The pair (g,h) can be obtained by extension of scalars from a split semi-
simple Q-Lie algebra.

10) The Weyl group, group of weights, ... of R is called the Weyl group,
group of weights, ... of (g,h). The Weyl group will be denoted by W in
what follows. We consider its operation, not only on h*, but also on § (by
transport of structure). If hq (resp. hg) denotes the Q-vector subspace of
b (resp. b*) generated by the H, (resp. the «), then b (resp. h*) can be
canonically identified with hq ®qk (resp. hg ®q k), and hg can be identified
with the dual of hq. When we speak of the Weyl chambers of R, these are
understood to be in hr = hq ®q R or b = hg ®q R.

11) Let @ be the Killing form of g. If a+ 3 # 0, g¢* and g” are orthogonal with

respect to @. The restriction of @ to g¢ x g~ is non-degenerate. If z,y € b,

then &(z,y) = 2. a(z)a(y). We have &(H,, Hg) € Z. The restriction of &
acR

to b is non-degenerate and invariant under W its restriction to hq is positive.
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12) The root system of (g, h) depends, up to isomorphism, only on g and not
on h. By abuse of language, the Weyl group, group of weights, ... of (g,b)
are also called the Weyl group, group of weights, ... of g.

If R; is a reduced root system, there exists a split semi-simple Lie al-
gebra (g1, bh1) such that R(gi, h1) is isomorphic to Rq; it is unique, up to
isomorphism.

The classification of splittable semi-simple Lie algebras is thus reduced to
that of root systems.

SUBALGEBRAS

13) If P C R, put g* = @P g® and hp = ZP kH,. Let P C R, b’ a vector
ae ac

subspace of b, and a = b’ @ g". Then a is a subalgebra of g if and only if P is
a closed subset of R and b’ contains hpn(_p); a is reductive in g if and only
if P = —P; and a is solvable if and only if PN (-P) = @.

14) Let P be a closed subset of R, and b = h @ gF. The following conditions
are equivalent:

(i) b is a maximal solvable subalgebra of g;

(ii)) PN (=P) = @ and PU (-P) = R;

(iii) there exists a chamber C of R such that P = R4 (C) (cf. Chap. VI,
§1, no. 6).

A Borel subalgebra of (g, h) is a subalgebra of g containing b and satisfying
the above conditions. A subalgebra b of g is called a Borel subalgebra of g
if there exists a splitting Cartan subalgebra b’ of g such that b is a Borel
subalgebra of (g,h’); if k is algebraically closed, this is equivalent to saying
that b is a maximal solvable subalgebra of g.

Let b = h @ g®+(©) be a Borel subalgebra of (g,h). The largest nilpotent
ideal of b is [b,b] = g®+(©). Let B be the basis of R associated to C; the
algebra [b, b] is generated by the g* for o € B.

If b, b’ are Borel subalgebras of g, there exists a Cartan subalgebra of g
contained in b N b’; such a subalgebra is splitting.

15) Let P be a closed subset of R, and p = h @ gF. The following conditions
are equivalent:

(i) p contains a Borel subalgebra of (g, h);

(ii)) PU (-P) = R;

(iii) there exists a chamber C of R such that P D R4 (C).

A parabolic subalgebra of (g,h) is a subalgebra of g containing § and
satisfying the above conditions. A subalgebra p of g is called parabolic if
there exists a splitting Cartan subalgebra §’ of g such that p is a parabolic
subalgebra of (g, h’).

Let p = h @ g¥ be a parabolic subalgebra of (g,h), Q the set of o € P
such that —a ¢ P, and s = h @ g""(=F). Then p = s ® g?, s is reductive in g,
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and g@ is the largest nilpotent ideal of p and the nilpotent radical of p. The
centre of p is 0.

AUTOMORPHISMS

16) The subgroup of Aut(g) generated by the e2d® with z nilpotent, is the
group Aut.(g) of elementary automorphisms of g; it is a normal subgroup of
Aut(g); it is equal to its derived group.

If k is an algebraic closure of k, the group Aut(g) embeds naturally in
Aut(g @y k). Put

Auto(g) = Aut(g) N Aut. (g @ k);
this is a normal subgroup of Aut(g), independent of the choice of k. We have
Aut.(g) C Auto(g) C Aut(g).

The derived group of Autg(g) is Aut.(g). In the Zariski topology, Aut(g) and
Autg(g) are closed in Endg(g), Autg(g) is the connected component of the
identity in Aut(g), and Aut.(g) is dense in Auty(g).

Let B be a basis of R, and Aut(R,B) the group of automorphisms of R
that leave B stable. Then Aut(g) is the semi-direct product of a subgroup
isomorphic to Aut(R,B) and Autg(g); in particular, Aut(g)/Aute(g) is iso-
morphic to Aut(R, B), which is itself isomorphic to a group of automorphisms
of the Dynkin graph of g.

17) A framing of g is a triplet (b, B, (X4 )acB), where b’ is a splitting Cartan
subalgebra of g, B is a basis of R(g, §’), and where, for all « € B, X,, is a
non-zero element of g*. The group Auty(g) operates simply-transitively on
the set of framings of g.

The group Aut.(g) operates transitively on the set of pairs (¢, b), where
t is a splitting Cartan subalgebra of g and b is a Borel subalgebra of (g, £).

18) Denote by Aut(g, b) the set of s € Aut(g) such that s(h) = h. Put

Aut(g, h) = Aute(g) N Aut(g,h), Auto(g,h) = Aute(g) N Aut(g, b).

If s € Aut(g,bh), the contragredient map of s|h is an element of the group
A(R) of automorphisms of R; denote this element by £(s); the map ¢ is a
homomorphism from Aut(g, h) to A(R). We have Autg(g) = Aute(g).Kere,
and

e(Auto(g, b)) = e(Aute(g, b)) = W.

Let Tp = Hom(P(R), k*), Tq = Hom(Q(R), £*). The injection of Q(R)
into P(R) defines a homomorphism from Tp to Tq; let Im(Tp) be its image.
If t € Tq, let f(t) be the endomorphism of g such that, for all « € R U {0},
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f(®)|g™ is the homothety with ratio ¢(a); we have f(t) € Auto(g, h) and f is
an injective homomorphism from Tq to Aute(g, h). The sequences

1y — To L Aut(gh) - AR) — {1}
and
{1} — To -5 Aute(gh) = W — {1}

are exact. We have f(Im(Tp)) C Aute(g,b); f defines, by passage to the
quotient, a surjective?® homomorphism Tq/Im(Tp) — Auto(g)/Aut.(g). In
the Zariski topology, f(Tq) is closed in Aut(g), and f(Im(Tp)) is dense in

f(Tq).
FINITE DIMENSIONAL MODULES

19) Let V be a finite dimensional g-module. For all p € b*, let V# be the set
of v € V such that h.v = p(h)v for all A € h. The dimension of V# is called
the multiplicity of p in V; if it is > 1, i.e. if V# # 0, p is said to be a weight

of V. We have V = G% VH#. Every weight of V belongs to P(R). If u is a
neb*
weight of V, and if w € W, wp is a weight of V of the same multiplicity as

w. If v € V¥ and & € g%, then z.v € VAT,

20) Let B be a basis of R. Giving B determines an order relation on ha:
the elements of ha that are > 0 are the linear combinations of elements of B
with rational coefficients > 0. Denote by Q. (R) (resp. Ry ) the set of positive
elements of Q(R) (resp. of R).

Let V be a finite dimensional simple g-module. Then V has a highest
weight A. This weight is of multiplicity 1, and it is a dominant weight: if
a € Ry, A(H,) is an integer > 0. We have g®V* = 0 if o € R.. Every weight
of V is of the form A\ — v with v € Q4 (R); conversely, if a weight is dominant
and is of the form A — v with v € Q(R), then it is a weight of V.

21) Two finite dimensional simple g-modules with the same highest weight
are isomorphic. Every dominant weight is the highest weight of a finite di-
mensional simple g-module.

Every finite dimensional simple g-module is absolutely simple.

22) Let @ be the Killing form of g, C € U(g) the corresponding Casimir

element, (-,-) the inverse form on h* of @|h x h, and p = % ZF:{ a. Let V be
acR4

a finite dimensional simple g-module, of highest weight A\. Then Cy is the
homothety with ratio (A, A + 2p).

23) Let V be a finite dimensional g-module, and V* its dual. Then y € h* is a
weight of V* if and only if —p is a weight of V, and the multiplicity of yp € V*

23This homomorphism is, in fact, bijective (§7, Exerc. 26 d)).
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is equal to the multiplicity of —u in V. If V is simple of highest weight A, V*
is simple of highest weight —wg\, where wy is the element of W that takes
B to —B.

24) Let V be a finite dimensional simple g-module of highest weight A\, and
A the vector space of g-invariant bilinear forms on V. Let m be the integer
>~ A(Hy,), and let wy € W be as in 23). If woX # —A, V and V* are not

aERy

isomorphic, and & = 0. If wo\ = —A, then dim % = 1 and every non-zero
element of Z is non-degenerate; if m is even (resp. odd), every element of %
is symmetric (resp. alternating).

25) Let Z[P] be the algebra of the group P = P(R) with coefficients in Z. If
A € P, denote by e* the corresponding element of Z[P]; the e*, A € P, form
a Z-basis of Z[P], and e*et = 2T+ for \, u € P.
Let V be a finite dimensional g-module. The character of V, denoted
by chV, is the element Zezp(dim VH)et of Z[P]; this element belongs to the
o

subalgebra Z[P]W of Z[P] consisting of the elements invariant under W. We
have

ch(VeV)=chV+chV' and ch(V® V') = (chV).(chV’).

Two finite dimensional g-modules with the same character are isomorphic.

For all o € B, let V,, be a simple g-module with highest weight the
fundamental weight w,, corresponding to «. The elements ch'V,, a € B, are
algebraically independent and generate the Z-algebra Z[P]W.

26) Let p be half the sum of the roots > 0. For all w € W, let e(w) be the
determinant of w, equal to +1. If V is a finite dimensional simple g-module
of highest weight A, then

(Z €(w)ew”> .chV = Z e(w)e?Ar)

weW weW

and

o (A +p, Ha)
dimV = H W

a€R

27) For all v € P, let P(v) be the number of families (n4)acr,, where the

ne are integers > 0 such that v = > nqo. Let V be a finite dimensional
acR4

simple g-module of highest weight A. If p € P, the multiplicity of p in V is
S cw)PBwA+p) — (1 + p))-
weW

28) Let V,V’, V" be finite dimensional simple g-modules, A, u1, v their highest
weights. In V ® V', the isotypical component of type V" has length
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> e(ww)Pwh+p) + w'(n+ p) — (v +2p)).

w,w' eW

In particular, if v = A\ 4+ p, the isotypical component in question is simple,
and generated by (V ® V)2 H = VA @ V&,

INVARIANT POLYNOMIAL FUNCTIONS

29) The algebra of polynomial functions on g can be identified with the
symmetric algebra S(g*) of g*, and hence is a g-module in a canonical way;
hence the notion of an invariant polynomial function on g. Let f € S(g*).
Then f is invariant if and only if fos = f for all s € Autg(g), or that fos = f
for all s € Aut.(g).

30) Let I(g*) be the algebra of invariant polynomial functions on g, and
S(h*)WV the algebra of W-invariant polynomial functions on . Let

i:8(g") = S(h")

be the restriction homomorphism. The map ¢|I(g*) is an isomorphism from
I(g*) to S(h*)W. If  is the rank of g, there exist [ homogeneous elements of
I(g*) that are algebraically independent and generate the algebra I(g*).

31) An element a of g is nilpotent if and only if f(a) = 0 for every homoge-
neous element f of I(g*) of degree > 0.

32) Let s € Aut(g). Then s belongs to Autg(g) if and only if fos = f for all
fellg).

sl,-TRIPLETS

33) An sly-triplet in g is a sequence (z, h,y) of elements of g distinct from
(0,0,0) and such that [h,z] = 2z,[h,y] = =2y, [z,y] = —h. Then x,y are
nilpotent in g, and A is semi-simple in g.

34) Let x be a non-zero nilpotent element of g. There exist h,y € g such that
(z,h,y) is an sla-triplet.

35) Let (x,h,y) and (2/,h',y") be sly-triplets in g. The following conditions
are equivalent:

a) there exists s € Aut.(g) such that sz = 2';

b) there exists s € Aut.(g) such that sz = a’,sh =h', sy =v'.

36) If k is algebraically closed, conditions a) and b) of 35) are equivalent to:
¢) there exists s € Aute(g) such that sh = h'.

Moreover, the number of conjugacy classes, relative to Aut.(g), of non-zero
nilpotent elements of g is at most equal to 3!, where [ is the rank of g.
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37) A nilpotent element x of g is called principal if the dimension of the
centralizer of x is equal to the rank of g. There exist principal nilpotent
elements in g. If k is algebraically closed, the principal nilpotent elements of
g are conjugate under Aut.(g).



CHAPTER IX
Compact Real Lie Groups

In this chapter', the expression “Lie group” means “finite dimensional Lie
group over the field of real numbers”, the expression “Lie algebra” means,
unless stated otherwise, “finite dimensional Lie algebra over the field of real
numbers”, the expression “real Lie algebra” (resp. “complex Lie algebra”)
means “finite dimensional Lie algebra over the field of real numbers (resp.
“finite dimensional Lie algebra over the field of complex numbers”).

We denote by Gg the identity component of a topological group G. We
denote by C(G) the centre of a group G, by D(G) its derived group, and by
Ng(H) or N(H) (resp. Zg(H) or Z(H)) the normalizer (resp. centralizer) of
a subset H of a group G.

§1. COMPACT LIE ALGEBRAS

1. INVARIANT HERMITIAN FORMS

In this number, the letter k£ denotes the field R or C. Let V be a finite
dimensional k-vector space, @ a separating?® positive hermitian form on V,
G a group, g an R-Lie algebra, p : G — GL(V) a group homomorphism,
v :g— gl(V) a homomorphism of R-Lie algebras.

a) The form @ is invariant under G (resp. g) if and only if p(g) is unitary
with respect to @ for all g € G (resp. ¢(z) is anti-hermitian® with respect to
@ for all x € g). Indeed, denote by a* the adjoint of an endomorphism a of
V with respect to @; for g in G,  in g, v and v in V, we have

D(p(g)u, p(g)v) = (p(g9)"p(g)u, v),
D(p(2)u,v) + D(u, p(2)v) = D((p(x) + (2)").u,v);

! Throughout this chapter, references to Algebra, Chap. VIII, are to the new edition
(in preparation)

2 Recall (Algebra, Chap. IX, in preparation) that a hermitian form H on V is said
to be separating (or non-degenerate) if, for every non-zero element u of V, there
exists v € V such that H(u,v) # 0.

3 An element a € End(V) is said to be anti-hermitian with respect to @ if the
adjoint a* of a with respect to @ is equal to —a. When k = C (resp. k = R) this
also means that the endomorphism ia of V (resp. of C @gr V) is hermitian.
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thus, @(p(g)u, p(g)v) = P(u,v) for all u,v in V if and only if p(g)*p(g) =
Idy; similarly, ®(o(x)u,v) + @(u, p(z)v) = 0 for all u,v in V if and only if
o(x) + ¢(z)* = 0, hence the stated assertion.

b) If the form @ is invariant under G (resp. g), the orthogonal complement
of a stable subspace of V is stable; in particular, the representation p (resp.
) is then semi-simple (cf. Algebra, Chap. IX); moreover, for all g € G (resp.
x € g), the endomorphism p(g) (resp. ¢(z)) of V is then semi-simple, with
eigenvalues of absolute value 1 (resp. with purely imaginary eigenvalues);
indeed p(g) is unitary (resp. ip(z) is hermitian, cf. Algebra, Chap. IX).

¢) Assume that K = R. If G is a connected Lie group, p a morphism of
Lie groups, g the Lie algebra of G and ¢ the homomorphism induced by p,
then @ is invariant under G if and only if it is invariant under g (Chap. III,
§6, no. 5, Cor. 3).

d) There exists a separating positive hermitian form on V invariant under
G if and only if the subgroup p(G) of GL(V) is relatively compact (Integra-
tion, Chap. VII, §3, no. 1, Prop. 1).

2. CONNECTED COMMUTATIVE REAL LIE GROUPS

Let G be a connected commutative (real) Lie group. The exponential map
expg : L(G) —» G

is a morphism of Lie groups, surjective with discrete kernel (Chap. III, §6,
no. 4, Prop. 11), hence the fact that L(G) is a connected covering of G.

a) The following conditions are equivalent: G is simply-connected, expg; is
an isomorphism, G is isomorphic to R™ (n = dim G). In this case, transport-
ing the vector space structure of L(G) to G by the isomorphism expg gives
a vector space structure on G, which is the only one compatible with the
topological group structure of G. Simply-connected commutative Lie groups
are called vector (Lie) groups; unless stated otherwise, they are always given
the R-vector space structure defined above.

b) Denote by I'(G) the kernel of exps. By General Topology, Chap. VII,
81, no. 1, Th. 1, the group G is compact if and only if I'(G) is a lattice
in L(G), in other words (loc. cit.) if the rank of the free Z-module I'(G) is
equal to the dimension of G. Conversely, if L is a finite dimensional R-vector
space and I" a lattice in L, the quotient topological group L/I" is a compact
connected commutative Lie group.

The compact connected commutative Lie groups are called real tori, or
(in this chapter) tori.

¢) In the general case, let E be the vector subspace of L(G) generated by
I'(G), and let V be a complementary subspace. Then G is the direct product
of its Lie subgroups exp(E) and exp(V); the first is a torus, the second is
vector. Finally, every compact subgroup of G is contained in exp(E) (since
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its projection onto exp(V) is necessarily reduced to the identity element);
thus, the subgroup exp(E) is the unique mazimal compact subgroup of G.

For example, take G = C*; identify L(G) with C so that the exponential
map of G is ¢ — e®. Then I'(G) = 2miZ,E = iR, and so exp(E) = U;
if we take V.= R, then exp(V) = R and we recover the isomorphism
C* — UxR/ constructed in General Topology, Chap. VIII, §1, no. 3, Prop. 1.

d) Note finally that expg : L(G) — G is a universal covering of G, hence
I'(G) can be identified naturally with the fundamental group of G.

3. COMPACT LIE ALGEBRAS

PROPOSITION 1. Let g be a (real) Lie algebra. The following conditions are
equivalent:

(i) g is isomorphic to the Lie algebra of a compact Lie group.
(ii) The group Int(g) (Chap. III, §6, no. 2, Def. 2) is compact.

(i) g has an invariant bilinear form (Chap. I, §3, no. 6) that is symmetric,
positive and separating.

(iv) g is reductive (Chap. I, §6, no. 4, Def. 4); for all x € g, the endomorphism
ad x is semi-simple, with purely imaginary eigenvalues.
(v) g is reductive and its Killing form B is negative.

(i) = (ii): if g is the Lie algebra of a compact Lie group G, the group
Int(g) is separating and isomorphic to a quotient of the compact group Gg
(Chap. III, §6, no. 4, Cor. 4), hence is compact.

(ii) = (iii): if the group Int(g) is compact, there exists a symmetric
bilinear form on g that is positive, separating and invariant under Int(g)
(no. 1), hence also invariant under the adjoint representation of g.

(ili) = (iv): if (iii) is satisfied, the adjoint representation of g is semi-
simple (no. 1), hence g is reductive; moreover, the endomorphisms ad z, for
x € g, have the indicated properties (no. 1).

(iv) = (v): for all z € g, B(z,2) = Tr((ad 2)?); consequently, B(z, )
is the sum of the squares of the eigenvalues of ad z, and hence is negative if
these are purely imaginary.

(v) = (i): assume that g is reductive, hence the product of a commuta-
tive subalgebra ¢ and a semi-simple subalgebra s (Chap. I, §6, no. 4, Prop. 5).
The Killing form of s is the restriction of the form B to s, hence is negative
and separating if B is negative. The subgroup Int(s) of GL(s) is closed (it is
the identity component of Aut(s), Chap. III, §10, no. 2, Cor. 2) and leaves
the separating positive form —B invariant; thus, it is compact, and s is iso-
morphic to the Lie algebra of the compact Lie group Int(s). Further, since ¢
is commutative, it is isomorphic to the Lie algebra of a torus T. Thus g is
isomorphic to the Lie algebra of the compact Lie group Int(s) x T.
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DEFINITION 1. A compact Lie algebra® is a Lie algebra that has properties
(i) to (v) of Proposition 1.

Thus, the compact Lie algebras are the products of a commutative algebra
with a compact semi-simple algebra. In other words, a Lie algebra is compact
if and only if it is reductive and its derived Lie algebra is compact.

The Lie algebra of a compact Lie group is compact.

PROPOSITION 2. a) The product of a finite number of Lie algebras is a
compact Lie algebra if and only if each factor is compact.

b) A subalgebra of a compact Lie algebra is compact.

¢) Let b be an ideal of a compact Lie algebra g. Then the algebra g/ is
compact and the extension h — g — g/b is trivial.

Assertions a) and b) follow from the characterization (iii) of Prop. 1. Part
¢) follows from a) and the fact that, in a reductive Lie algebra, every ideal is
a direct factor (Chap. I, §6, no. 4, Cor. of Prop. 5).

PROPOSITION 3. Let G be a Lie group of which the group of connected
components is finite. The following conditions are equivalent:

(i) The Lie algebra L(G) is compact.

(ii) The group Ad(G) is compact.

(iil) There exists a separating positive symmetric bilinear form on L(G)
invariant under the adjoint representation of G.

*(iv) G has a riemannian metric invariant under left and right translations..

(i) = (ii): if L(G) is compact, the group Ad(Gg) = Int(L(G)) is compact;
since it has finite index in Ad(G), this latter group is also compact.

(ii) = (iii): this follows from no. 1.

(iil) = (i): since Int(L(G)) C Ad(G), this follows from the characteriza-
tion (iii) of Prop. 1.

*(iil) <= (iv): this follows from Chap. III, §3, no. 13.,

4. GROUPS WHOSE LIE ALGEBRA IS COMPACT

THEOREM 1. (H. Weyl) Let G be a connected Lie group whose Lie algebra
is compact semi-simple. Then G is compact and its centre is finite.

Since G is semi-simple, its centre D is discrete. Moreover, the quotient
group G/D is isomorphic to Ad(G) (Chap. III, §6, no. 4, Cor. 4), hence
compact (Prop. 3). Finally, the group G/D is equal to its derived group
(Chap. III, §9, no. 2, Cor. of Prop. 4). The theorem now follows from Inte-
gration, Chap. VII, §3, no. 2, Prop. 5.

PROPOSITION 4. Let G be a connected Lie group whose Lie algebra is com-
pact. There exist a torus T, a simply-connected compact semi-simple Lie

4 Note that a real topological vector space cannot be a compact topological space
unless it is reduced to 0.
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group S, a vector group V and a surjective morphism f : VxT xS — G with
finite kernel. If G is compact, the group V is reduced to the identity element.

Let C (resp. S) be a simply-connected Lie group whose Lie algebra is
isomorphic to the centre (resp. the derived algebra) of L(G). Then C is a
vector group, S is a compact group with finite centre (Th. 1) and G can
be identified with the quotient of C x S by a discrete subgroup D, which is
central (Integration, Chap. VII, §3, no. 2, Lemma 4). Since the image of the
projection of D onto S is central, hence finite, DN C is of finite index in D. Let
C’ be the vector subspace of C generated by DN C, and V a complementary
subspace. Then the group T = C’/(DNC) is a torus, and G is isomorphic to
the quotient of the product group V x T x S by a finite group.

If G is compact, so is V X T x S (General Topology, Chap. 111, §4, no. 1,
Cor. 2 of Prop. 2), hence so is V, which implies that V = {e}.

COROLLARY 1. Let G be a connected compact Lie group. Then C(G)g is a
torus, D(G) is a connected compact semi-simple Lie group and the morphism
(z,y) = xy from C(G)g x D(G) to G is a finite covering.

With the notation in Prop. 4, we have V = {e} and the subgroups f(T)
and f(S) of G are compact, hence closed. Thus it suffices to show that f(T) =
C(G)o, f(S) = D(G). Now, L(G) = L(f(T)) x L(f(S)); since S is semi-simple
and T is commutative, this implies that L(f(T)) = 4(L(G)) = L(C(G)o)
(Chap. II1, §9, no. 3, Prop. 8) and L(f(S)) = ZL(G) = L(D(G)) (Chap. III,
89, no. 2, Cor. of Prop. 4), hence the stated assertion.

COROLLARY 2. The centre and the fundamental group of a connected com-
pact semi-simple Lie group are finite. Its universal covering is compact.

With the notation in Prop. 4, the groups V and T are reduced to the
identity element; thus S is a universal covering of G, and the fundamental
group of G is isomorphic to Ker f, hence finite. The centre D of G is discrete
since G is semi-simple, so D is finite.

COROLLARY 3. The fundamental group of a connected compact Lie group
G is a Z-module of finite type, of rank equal to the dimension of C(G).

Indeed, with the notations in Cor. 1, the fundamental group of C(G)y is
isomorphic to Z", with n = dim C(G)g, and the fundamental group of D(G)
is finite (Cor. 2).

COROLLARY 4. Let G be a connected compact Lie group. The following
conditions are equivalent:

(i) G is semi-simple;

(ii) C(G) is finite;

(i) m1(G) is finite.

If G is simply-connected, it is semi-simple.

This follows from Cor. 1 to 3.
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COROLLARY 5. Let G be a connected compact Lie group. Then Int(G) is
the identity component of the Lie group Aut(G) (Chap. III, §10, no. 2).

Let f € Aut(G)o. Then f induces an automorphism f; of C(G)p and an
automorphism fy of D(G), and we have f; € Aut(C(G)g)o, f2 € Aut(D(G))o.
Since Aut(C(G)o) is discrete ( General Topology, Chap. VII, §2 no. 4, Prop. 5),
we have f; = Id; since D(G) is semi-simple, by Chap. III, §10, no. 2, Cor. 2
of Th. 1 there exists an element g of D(G) such that fo(x) = gzg~! for
all x € D(G). For all z € C(G)g, we have grg~! = = = fi(z); since
G = C(G)o.D(G), it follows that grg=t = f(z) for all z € G, so f = Int g.

PROPOSITION 5. Let G be a Lie group whose Lie algebra is compact.

a) Assume that G is connected. Then G has a largest compact subgroup
K; it is connected. There exists a closed central vector subgroup (no. 2) N of
G such that G is the direct product N x K.

b) Assume that the group of connected components of G is finite. Then:

(i) Every compact subgroup of G is contained in a mazximal compact sub-
group.

(ii) If Ky and Ky are two mazimal compact subgroups of G, there exists
g € G such that Ko = gKig7 1.

(i) Let K be a mazximal compact subgroup of G. Then KNGy is equal to
Ko; it is the largest compact subgroup of Gg.

(iv) There exists a closed central vector subgroup N of Go, normal in G,
such that, for any mazimal compact subgroup K of G, Gq is the direct product
of Ko by N, and G is the semi-direct product of K by N.

a) We retain the notations of Prop. 4. The projection of Ker f onto V
is a finite subgroup of the vector group V, hence is reduced to the identity
element. It follows that Ker f is contained in T x S, hence that G is the direct
product of the vector group N = f(V) and the compact group K = f(T x S).
Every compact subgroup of G has a projection onto N that is reduced to the
identity element, hence is contained in K. This proves a).

b) Assume now that G/Gy is finite. By a), Gy is the direct product of its
largest compact subgroup M and a vector subgroup P; the subgroup M of G
is clearly normal. Let n be a vector subspace complement of L(M) in L(G),
stable under the adjoint representation of G (no. 1 and no. 3, Prop. 3); this
is an ideal of L(G) and we have L(G) = L(M) x n. Let N be the integral
subgroup of G with Lie algebra n; by Chap. III, §6, no. 6, Prop. 14, it is
normal in G. The projection of L(G) onto L(P) with kernel L(M) induces
an isomorphism from n to L(P); it follows that the projection of Gy onto P
induces an étale morphism from N to P; since P is simply-connected, this is an
isomorphism, and N is a vector group. The morphism (z, y) — zy from M x N
to G is an injective étale morphism (since M NN is reduced to the identity
element), hence an isomorphism. It follows that N is a closed subgroup of G
and that the quotient G/N is compact, since Go/N is compact and G/Gy is
finite (General Topology, Chap. 111, §4, no. 1, Cor. 2 of Prop. 2).
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By Integration, Chap. VII, §3, no. 2, Prop. 3, every compact subgroup
of G is contained in a maximal compact subgroup, these are conjugate, and
for any maximal compact subgroup K of G, G is the semi-direct product of
K by N. Since Gg contains N, it is the semi-direct product of N by Gy N K;
it follows that Go N K is connected, hence equal to Ky, since K/(Gg NK) is
isomorphic to G/Gg, hence finite; finally, Ko is clearly the largest compact
subgroup of Gg by a).

COROLLARY. If N satisfies the conditions of b) (iv), and if K1 and Ka
are two mazximal compact subgroups of G, there exists n € N such that
’I'LKl’rlil = K.

Indeed, by (ii) there exists an element g € G such that gK;g~! = Ka; by
(iv), there exists n € N and k € K; such that g = nk. The element n then
has the required properties.

2. MAXIMAL TORI OF COMPACT LIE GROUPS

1. CARTAN SUBALGEBRAS OF COMPACT ALGEBRAS

Lemma 1. Let G be a Lie group, K a compact subgroup of G, and F an
invariant bilinear form on L(G). Let x,y € L(G). There exists an element k
of K such that F(u, [(Adk)(x),y]) =0 for all u € L(K).

The function v — F((Adv)(z),y) from K to R is continuous, and hence
has a minimum at some point k¥ € K. Let v € L(K) and put

h(t) = F((Adexp(tu).k)(z),y), te€R.
We have h(t) > h(0) for all ¢; moreover, by Chap. 111, §3, no. 12, Prop. 44,

dh
dt
hence the lemma (Functions of a Real Variable, Chap. I, §1, no. 7, Prop. 7).

(0) = F([u, (Ad k) (2)], y) = F(u, [(Ad k) (2), y]),

THEOREM 1. Let g be a compact Lie algebra. The Cartan subalgebras of g
(Chap. VII, §2, no. 1, Def. 1) are its mazimal commutative subalgebras; in
particular, g is the union of its Cartan subalgebras. The group Int(g) operates
transitively on the set of Cartan subalgebras of g.

Since g is reductive, its Cartan subalgebras are commutative (Chap. VII,
§2, no. 4, Cor. 3 of Th. 2). Conversely, let t be a commutative subalgebra
of g. By §1, no. 3, Prop. 1, ad x is semi-simple for all z € t; by Chap. VII,
§2, no. 3, Prop. 10, there exists a Cartan subalgebra of g containing t. This
proves the first assertion of the theorem.

Now let t and t’ be two Cartan subalgebras of g. We prove that there exists
u € Int(g) such that u(t) = . By Prop. 1 of §1, no. 3, we can assume that g is
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of the form L(G), where G is a connected compact Lie group, and can choose
a separating invariant symmetric bilinear form F on g. Let = (resp. 2’) be a
regular element of g such that t = g%(z) (resp. t = g°(2’)) (Chap. VII, §3,
no. 3, Th. 2). Applying Lemma 1 with K = G, we see that there exists k € G
such that [(Adk)(z),2’] is orthogonal to g with respect to F, and hence is
zero; then (Adk)(z) € g°(2’) = t', so g°((Adk)(x)) = t' since (Adk)(x) is
regular. We conclude that (Ad k)(t) = ¥, hence the theorem.

COROLLARY. Let t and t' be Cartan subalgebras of g, a a subset of t, and
u an automorphism of g that takes a into t'. There exists an element v of
Int(g) such that wowv takes t to t', and coincides with u on a.

Put G = Int(g), and consider the fixer Zg(a) of a in G; this is a Lie
subgroup of G, whose Lie algebra 34(a) consists of the elements of g that
commute with every element of a (Chap. III, §9, no. 3, Prop. 7). Then t
and u~!(¥') are two Cartan subalgebras of the compact Lie algebra 34(a). By
Th. 1, there exists an element v of Zg(a) such that v(t) = u=1(t'); any such
element has the desired properties.

2. MAXIMAL TORI

Let G be a Lie group. A torus of G is a closed subgroup that is a torus (§1,
no. 2), in other words any commutative connected compact subgroup. The
maximal elements of the set of tori of G, ordered by inclusion, are called the
mazximal tori of G.

THEOREM 2. Let G be a connected compact Lie group.

a) The Lie algebras of the maximal tori of G are the Cartan subalgebras
of L(G).

b) Let Ty and Tqy be two mazimal tori of G. There exists g € G such that
Ty =gTig™ "

¢) G is the union of its mazimal tori.

Let t be a Cartan subalgebra of L(G); the integral subgroup of G whose Lie
algebra is t is closed (Chap. VII, §2, no. 1, Cor. 4 of Prop. 4) and commutative
(Th. 1), and hence is a torus of G. If T is a maximal torus of G, its Lie algebra
is commutative, hence is contained in a Cartan subalgebra of L(G) (Th. 1).
It follows that the maximal tori of G are exactly the integral subgroups of G
associated to the Cartan subalgebras of L(G), hence a). Assertion b) follows
from Th. 1, since the canonical homomorphism G — Int(L(G)) is surjective
(Chap. III, §6, no. 4, Cor. 4 of Prop. 10).

Denote by X the union of the maximal tori of G, and let T be a maximal
torus of G. The continuous map (g,t) — gtg~! from G x T to G has image
X, which is therefore closed in G; thus, to prove ¢), it suffices to prove that
X is open in G; since X is invariant under inner automorphisms, it suffices to
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show that, for all a € T, X is a neighbourhood of a. We argue by induction
on the dimension of G and distinguish two cases:

1) a is not central in G. Let H be the identity component of the central-
izer of a in G; this is