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CHAPTER VII
Cartan Subalgebras and Regular Elements

In this chapter, k denotes a (commutative) field. By a “vector space”, we
mean a “vector space over k”; similarly for “Lie algebra”, etc. All Lie algebras
are assumed to be finite dimensional.

§ 1. PRIMARY DECOMPOSITION OF LINEAR
REPRESENTATIONS

1. DECOMPOSITION OF A FAMILY OF ENDOMORPHISMS

Let V be a vector space, S a set, and r a map from S to End(V). Denote by
P the set of maps from S to k. If λ ∈ P, denote by Vλ(S) (resp. Vλ(S)) the
set of v ∈ V such that, for all s ∈ S, r(s)v = λ(s)v (resp. (r(s) − λ(s))nv = 0
for n sufficiently large). The sets Vλ(S) and Vλ(S) are vector subspaces of V,
and Vλ(S) ⊂ Vλ(S). We say that Vλ(S) is the eigenspace of V relative to λ
(and to r), that Vλ(S) is the primary subspace of V relative to λ (and to r),
and that V0(S) is the nilspace of V (relative to r). We say that λ is a weight
of S in V if Vλ(S) �= 0.

In particular, if S reduces to a single element s, P can be identified with
k; we use the notations Vλ(s)(s) and Vλ(s)(s), or Vλ(s)(r(s)) and Vλ(s)(r(s)),
instead of Vλ({s}), Vλ({s}); we speak of eigenspaces, primary subspaces
and the nilspace of r(s); an element v of Vλ(s)(s) is called an eigenvector of
r(s), and, if v �= 0, λ(s) is called the corresponding eigenvalue (cf. Algebra,
Chap. VII, §5).

For all λ ∈ P, the following relations are immediate:

Vλ(S) =
⋂
s∈S

V λ(s)(s), (1)

Vλ(S) =
⋂
s∈S

Vλ(s)(s). (2)

Let k′ be an extension of k. The canonical map from End(V) to End(V⊗kk
′)

gives, by composition with r, a map r′ : S → End(V ⊗k k
′). Similarly, every
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map λ from S to k defines canonically a map, also denoted by λ, from S to
k′. With these notations, we have the following proposition:

PROPOSITION 1. For all λ ∈ P,

(V ⊗k k
′)λ(S) = Vλ(S) ⊗k k

′ and (V ⊗k k
′)λ(S) = Vλ(S) ⊗k k

′.

Let (ai) be a basis of the k-vector space k′. If v ∈ V ⊗k k
′, v can be

expressed uniquely in the form
∑
vi ⊗ ai where (vi) is a finitely-supported

family of elements of V. For all s ∈ S,

(r′(s) − λ(s))n(v) =
∑

(r(s) − λ(s))nvi ⊗ ai.

It follows that

v ∈ (V ⊗k k
′)λ(S) ⇐⇒ vi ∈ Vλ(S) for all i,

v ∈ (V ⊗k k
′)λ(S) ⇐⇒ vi ∈ Vλ(S) for all i,

which implies the proposition.

PROPOSITION 2. Let V,V′,W be vector spaces. Let r : S → End(V),
r′ : S → End(V′) and q : S → End(W) be maps.

(i) Let f : V → W be a linear map such that q(s)f(v) = f(r(s)v) for s ∈ S
and v ∈ V. Then, for all λ ∈ P, f maps Vλ(S) (resp. Vλ(S)) into Wλ(S)
(resp. Wλ(S)).

(ii) Let B : V × V′ → W be a bilinear map such that

q(s)B(v, v′) = B(r(s)v, v′) + B(v, r′(s)v′)

for s ∈ S, v ∈ V, v′ ∈ V′. Then, for all λ, µ ∈ P, B maps V λ(S) × V′µ(S)
(resp. Vλ(S) × V′

µ(S)) into Wλ+µ(S) (resp. Wλ+µ(S)).
(iii) Let B : V × V′ → W be a bilinear map such that

q(s)B(v, v′) = B(r(s)v, r′(s)v′)

for s ∈ S, v ∈ V, v′ ∈ V′. Then, for all λ, µ ∈ P, B maps V λ(S) × V′µ(S)
(resp. Vλ(S) × V′

µ(S)) into Wλµ(S) (resp. Wλµ(S)).
In case (i), (q(s) − λ(s))nf(v) = f((r(s) − λ(s))nv) for s ∈ S and v ∈ V,

hence the conclusion. In case (ii),

(q(s) − λ(s) − µ(s))B(v, v′) = B((r(s) − λ(s))v, v′) + B(v, (r′(s) − µ(s))v′)

for s ∈ S, v ∈ V, v′ ∈ V′, hence by induction on n

(q(s) − λ(s) − µ(s))nB(v, v′)=
∑

i+j=n

(n
i

)
B((r(s) − λ(s))iv, (r′(s) − µ(s))jv′).

The assertions in (ii) follow immediately. In case (iii),
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(q(s)−λ(s)µ(s))B(v, v′)=B((r(s)−λ(s))v, r′(s)v′)+B(λ(s)v, (r′(s)−µ(s))v′)

for s ∈ S, v ∈ V, v′ ∈ V′, hence by induction on n

(q(s) − λ(s)µ(s))nB(v, v′)

=
∑

i+j=n

(n
i

)
B(λ(s)j(r(s) − λ(s))iv, r′(s)i(r′(s) − µ(s))jv′).

The assertions in (iii) follow immediately.

PROPOSITION 3. The sum
∑

λ∈P
Vλ(S) is direct. The sum

∑
λ∈P

Vλ(S) is direct.

The second assertion is a consequence of the first; hence it suffices to prove
that. We distinguish several cases.
a) S is empty. The assertion is trivial.
b) S is reduced to a single element s. Let λ0, λ1, . . . , λn be distinct elements

of k. For i = 0, 1, . . . , n, let vi ∈ Vλi(s) and assume that v0 = v1 + · · · + vn.
It suffices to prove that v0 = 0. For i = 0, . . . , n, there exists an in-
teger qi > 0 such that (r(s) − λi)qivi = 0. Consider the polynomials
P(X) =

∏
i≥1

(X − λi)qi and Q(X) = (X − λ0)q0 . We have Q(r(s))v0 = 0, and

P(r(s))v0 =
n∑

i=1
P(r(s))vi = 0. Since P and Q are relatively prime, the Bezout

identity proves that v0 = 0.
c) S is finite and non-empty. We argue by induction on the cardinal of

S. Let s ∈ S and S′ = S -- {s}. Let (vλ)λ∈P be a finitely-supported family of
elements of V such that

∑
λ∈P

vλ = 0 and vλ ∈ Vλ(S). Let λ0 ∈ P. Let P′ be

the set of λ ∈ P such that λ|S′ = λ0|S′. By the induction hypothesis applied
to S′, we have

∑
λ∈P′

vλ = 0. If λ, µ are distinct elements of P′, λ(s) �= µ(s).

Since the sum
∑
α∈k

Vα(s) is direct by b), and since vλ ∈ Vλ(s)(s), vλ = 0 for

all λ ∈ P′, and in particular vλ0 = 0, which we had to prove.
d) General case. Let (vλ)λ∈P be a finitely-supported family of elements of

V such that
∑

λ∈P
vλ = 0 and vλ ∈ Vλ(S). Let P′ be the finite set of λ ∈ P such

that vλ �= 0, and let S′ be a finite subset of S such that the conditions λ ∈ P′,
µ ∈ P′, λ|S′ = µ|S′ imply that λ = µ. We have vλ ∈ Vλ|S′

(S′); applying c),
we see that vλ = 0 for λ ∈ P′, which completes the proof.

Recall that, if x ∈ End(V), we denote by adx the map y 	→ xy−yx = [x, y]
from End(V) to itself.

Lemma 1. Let x, y ∈ End(V).
(i) Assume that V is finite dimensional. Then x is triangularizable if and

only if V =
∑
a∈k

Va(x).
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(ii) If there exists an integer n such that (adx)ny = 0, each Va(x) is
stable under y.

(iii) Assume that V is finite dimensional. If V =
∑
a∈k

Va(x) and if each

Va(x) is stable under y, there exists an integer n such that (adx)ny = 0.
Part (i) follows from Algebra, Chap. VII, §5, no. 2, Prop. 3.
Let E = End(V). Let B be the bilinear map (u, v) 	→ u(v) from E × V to

V. By the definition of adx,

x(B(u, v)) = B(u, x(v)) + B((adx)(u), v)

for x ∈ E, u ∈ E, v ∈ V. Let x operate on E via adx. By Prop. 2 (ii),
B(E0(x),Va(x)) ⊂ Va(x) for all a ∈ k. If (adx)ny = 0, then y ∈ E0(x), so
y(Va(x)) ⊂ Va(x), which proves (ii).

To prove (iii), we can replace V by Va(x) and x (resp. y) by its restriction
to Va(x). Replacing x by x − a, we can assume that x is nilpotent. Then,
(ad x)2 dim V−1 = 0 (Chap. I, §4, no. 2), which proves (iii).

Remark. The argument proves that, if V is finite dimensional and if there
exists an integer n such that (adx)ny = 0, then (adx)2 dim V−1y = 0.

In the sequel, we shall say that the map r : S → End(V) satisfies condition
(AC) (“almost commutative”) if:

(AC) For every pair (s, s′) of elements of S, there exists an integer n such
that

(ad r(s))nr(s′) = 0.

THEOREM 1. Assume that V is finite dimensional. The following conditions
are equivalent:

(i) Condition (AC) is satisfied and, for all s ∈ S, r(s) is triangularizable.
(ii) For all λ ∈ P, Vλ(S) is stable under r(S), and V =

∑
λ∈P

Vλ(S).

If V =
∑

λ∈P
Vλ(S), then V =

∑
a∈k

Va(s) for all s ∈ S, and it follows from

Lemma 1 that (ii) implies (i). Assume that condition (i) is satisfied. Lemma 1
and formula (1) imply that each Vλ(S) is stable under r(S). It remains to
prove that V =

∑
λ∈P

Vλ(S). We argue by induction on dim V. We distinguish

two cases.
a) For all s ∈ S, r(s) has a single eigenvalue λ(s). Then V = Vλ(S).
b) There exists s ∈ S such that r(s) has at least two distinct eigenvalues.

Then V is the direct sum of the Va(s) for a ∈ k, and dimVa(s) < dimV for
all a. Each Va(s) is stable under r(S), and it suffices to apply the induction
hypothesis.

COROLLARY 1. Assume that V is finite dimensional and that condition
(AC) is satisfied. Let k′ be an extension of k. Assume that, for all s ∈ S, the
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endomorphism r(s) ⊗ 1 of V ⊗k k
′ is triangularizable. Let P′ be the set of

maps from S to k′. Then V ⊗k k
′ =

∑
λ′∈P′

(V ⊗k k
′)λ′

(S).

Let r′ : S → End(V⊗k k
′) be the map defined by r. If s1, s2 ∈ S, there ex-

ists an integer n such that (ad r(s1))nr(s2) = 0, hence (ad r′(s1))nr′(s2) = 0.
It now suffices to apply Th. 1.

COROLLARY 2. Assume that V is finite dimensional and that condition

(AC) is satisfied. Denote by V+(S) the vector subspace
∑
s∈S

( ⋂
i≥1
r(s)iV

)
.

Then:
(i) V0(S) and V+(S) are stable under r(S);
(ii) V = V0(S) ⊕ V+(S);
(iii) every vector subspace W of V, stable under r(S) and such that

W0(S) = 0, is contained in V+(S);
(iv)

∑
s∈S

r(s)V+(S) = V+(S).

Moreover, V+(S) is the only vector subspace of V with properties (i) and
(ii). For any extension k′ of k, (V ⊗k k

′)+(S) = V+(S) ⊗k k
′.

The last assertion is immediate. Thus, taking Prop. 1 into account, in
proving the others we can assume that k is algebraically closed. By Th. 1, V =∑
λ∈P

Vλ(S), and the Vλ(S) are stable under r(S). If s ∈ S, the characteristic

polynomial of r(s)|Vλ(S) is (X−λ(s))dim Vλ(S); it follows that
⋂

i≥1
r(s)iVλ(s)

is zero if λ(s) = 0 and is equal to Vλ(S) if λ(s) �= 0; hence,

V+(S) =
∑

λ∈P,λ �=0

Vλ(S), (3)

which proves (i), (ii) and (iv). If W is a vector subspace of V stable under
r(S), then W =

∑
λ∈P

Wλ(S) and Wλ(S) = W ∩ Vλ(S). If W0(S) = 0, we see

that W ⊂ V+(S), which proves (iii).
Let V′ be a vector subspace of V stable under r(S) and such that

V′ ∩ V0(S) = 0. Then V′0(S) = 0, so V′ ⊂ V+(S) by (iii). If, in addition,
V = V0(S) + V′, we see that V′ = V+(S). Q.E.D.

We sometimes call (V0(S),V+(S)) the Fitting decomposition of V, or of
the map r : S → End(V). If S reduces to a single element s, we write V+(s)
or V+(r(s)) instead of V+({s}). We have that V = V0(s) ⊕ V+(s), V0(s)
and V+(s) are stable under r(s), r(s)|V0(s) is nilpotent and r(s)|V+(s) is
bijective.

COROLLARY 3. Let V and V′ be finite dimensional vector spaces, and let
r : S → End(V) and r′ : S → End(V′) be maps satisfying condition (AC).
Let f : V → V′ be a surjective linear map such that f(r(s)v) = r′(s)f(v) for
s ∈ S and v ∈ V. Then f(Vλ(S)) = V′λ(S) for all λ ∈ P.
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In view of Prop. 1, we are reduced to the case in which k is algebraically
closed. We have V =

⊕
λ∈P

Vλ(S), V′ =
⊕
λ∈P

V′λ(S) by Th. 1, and V′ = f(V) =∑
λ∈P

f(Vλ(S)). Finally, f(Vλ(S)) ⊂ V′λ(S) by Prop. 2 (i), hence the corollary.

PROPOSITION 4. Assume that k is perfect. Let V be a finite dimensional
vector space, u an element of End(V), us, un the semi-simple and nilpotent
components of u (Algebra, Chap. VII, §5, no. 8).

(i) For all λ ∈ k, Vλ(u) = Vλ(us) = Vλ(us).
(ii) If V has an algebra structure and if u is a derivation of V, us and un

are derivations of V.
(iii) If V has an algebra structure and if u is an automorphism of V, then

us and 1 + u−1
s un are automorphisms of V.

In view of Prop. 1, we can assume that k is algebraically closed, so

V =
∑
λ∈k

Vλ(u).

The semi-simple component of u|Vλ(u) is the homothety with ratio λ in
Vλ(u). This proves (i).

Assume from now on that V has an algebra structure. Let x ∈ Vλ(u),
y ∈ Vµ(u).

If u is a derivation of V, then xy ∈ Vλ+µ(u) (Prop. 2 (ii)), so

us(xy) = (λ+ µ)(xy) = (λx)y + x(µy) = (usx)y + x(usy).

This proves that us is a derivation of V. Then un = u− us is a derivation of
V.

If u is an automorphism of V, Ker(us) = V0(u) = 0, so us is bijective. On
the other hand, xy ∈ Vλµ(u) (Prop. 2 (iii)), so

us(xy) = (λµ)(xy) = (λx)(µy) = us(x).us(y).

This proves that us is an automorphism of V; but then so is

1 + u−1
s un = u−1

s u.

2. THE CASE OF A LINEAR FAMILY OF ENDOMORPHISMS

Assume now that S has a vector space structure, that the map r : S → End(V)
is linear, and that V and S are finite dimensional.

PROPOSITION 5. Assume that condition (AC) is satisfied, and let λ : S → k
be such that Vλ(S) �= 0. If k is of characteristic 0, the map λ is linear. If
k is of characteristic p �= 0, there exists a power q of p dividing dimVλ(S),
and a homogeneous polynomial function P : S → k of degree q, such that
λ(s)q = P(s) for all s ∈ S.
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Since Vλ(S) is stable under r(S) (Lemma 1 and formula (1) of no. 1), we
can assume that V = Vλ(S). Let n = dimV. Thus, for s ∈ S,

det(X − r(s)) = (X − λ(s))n.

On the other hand, the expansion of the determinant shows that

det(X − r(s)) = Xn + a1(s)Xn−1 + · · · + ai(s)Xn−i + · · ·
where ai : S → k is a homogeneous polynomial function of degree i. Write
n = qm where q is a power of the characteristic exponent of k and (q,m) = 1.
Then (X − λ(s))n = (Xq − λ(s)q)m; hence −mλ(s)q = aq(s), which implies
the result.

PROPOSITION 6. Assume that k is infinite and that condition (AC) is sat-
isfied. Let k′ be an extension of k. Put V′ = V ⊗k k

′, S′ = S ⊗k k
′. Let

r′ : S′ → End(V′) be the map obtained from r by extension of scalars. Then

V0(S) ⊗k k
′ = V′0(S) = V′0(S′).

The first equality follows from Prop. 1. To prove the second, we can
assume that V = V0(S) and so V′ = V′0(S). Let (s1, . . . , sm) be a basis of S
and (e1, . . . , en) a basis of V. There exist polynomials Pij(X1, . . . ,Xm) such
that

r′(a1s1 + · · · + amsm)nej =
n∑

i=1

Pij(a1, . . . , am)ei

for 1 ≤ j ≤ n and a1, . . . , am ∈ k′. By hypothesis, r′(s)n = 0 for all s ∈ S,
in other words Pij(a1, . . . , am) = 0 for 1 ≤ i, j ≤ n and a1, . . . , am ∈ k. Since
k is infinite, Pij = 0. Consequently, every element of r′(S′) is nilpotent and
V′ = V′0(S′).

PROPOSITION 7. Assume that k is infinite and that condition (AC) is sat-
isfied. Let S̃ be the set of s ∈ S such that V0(s) = V0(S). If s ∈ S, let P(s)
be the determinant of the endomorphism of V/V0(S) defined by r(s) (no. 1,
Cor. 2 (i) of Th. 1).

(i) The function s 	→P(s) is polynomial on S. We have S̃={s∈S|P(s) �= 0};
this is an open subset of S in the Zariski topology (App. 1).

(ii) S̃ is non-empty, and V+(s) = V+(S) for all s ∈ S̃.
The fact that s 	→ P(s) is polynomial follows from the linearity of r. If

s ∈ S, V0(s) ⊃ V0(S), with equality if and only if r(s) defines an automor-
phism of V/V0(S), hence (i).

Now let k′ be an algebraic closure of k, and introduce V′,S′, r′ as in
Prop. 6. We remark that S′ satisfies condition (AC) by continuation of the
polynomial identity (ad r(s1))2 dim V−1r(s2) = 0 valid for s1, s2 ∈ S (no. 1,
Remark ). Applying Th.1, we deduce a decomposition
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V′ = V′ 0(S′) ⊕
m∑

i=1

V′λi(S′)

with λi �= 0 for 1 ≤ i ≤ m. For 1 ≤ i ≤ m, there exists a polynomial function
Pi non-zero on S′ and an integer qi such that λqi

i = Pi (Prop. 5). Since k is
infinite, there exists s ∈ S such that (P1 . . .Pm)(s) �= 0, cf. Algebra, Chap. IV,
§2, no. 3, Cor. 2 of Prop. 9. Then λi(s) �= 0 for all i, so V′0(S′) = V′0(s) and
consequently V0(S) = V0(s) (Prop. 6), which shows that S̃ �= ∅. If s ∈ S̃,
the fact that V+(S) is stable under r(s) and is a complement of V0(s) in V
implies that V+(S) = V+(s) (Cor. 2 of Th. 1).

3. DECOMPOSITION OF REPRESENTATIONS OF A
NILPOTENT LIE ALGEBRA

Let h be a Lie algebra and M an h-module. For any map λ from h to k, we
have defined in no. 1 vector subspaces Mλ(h) and Mλ(h) of M. In particular,
if g is a Lie algebra containing h as a subalgebra, and if x ∈ g, we shall
often employ the notations gλ(h) and gλ(h); it will then be understood that
h operates on g by the adjoint representation ad g.

PROPOSITION 8. Let h be a Lie algebra, and L,M,N h-modules. Denote by
P the set of maps from h to k.

(i) The sum
∑

λ∈P
Lλ(P) is direct.

(ii) If f : L → M is a homomorphism of h-modules, f(Lλ(h)) ⊂ Mλ(h)
for all λ ∈ P.

(iii) If f : L × M → N is a bilinear h-invariant map,

f(Lλ(h) × Mµ(h)) ⊂ Nλ+µ(h)

for all λ, µ ∈ P.
This follows from Props. 2 and 3.

PROPOSITION 9. Let h be a nilpotent Lie algebra and M a finite dimensional
h-module. Denote by P the set of maps from h to k.

(i) Each Mλ(h) is an h-submodule of M. If xM is triangularizable for all
x ∈ h, then M =

∑
λ∈P

Mλ(h).

(ii) If k is infinite, there exists x ∈ h such that M0(x) = M0(h).
(iii) If k is of characteristic 0, and if λ ∈ P is such that Mλ(h) �= 0, then

λ is a linear form on h vanishing on [h, h], and Mλ(h) �= 0.
(iv) If f : M → N is a surjective homomorphism of finite dimensional

h-modules, then f(Mλ(h)) = Nλ(h) for all λ ∈ P.
(v) If N is a finite dimensional h-module, and B a bilinear form on

M × N invariant under h, then Mλ(h) and Nµ(h) are orthogonal relative to
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B if λ+ µ �= 0. Moreover, if B is non-degenerate then so is its restriction to
Mλ(h) × N−λ(h) for all λ ∈ P.

Part (i) follows from no. 1, Lemma 1 and Th. 1. Part (ii) follows from
no. 2, Prop. 7. Part (iv) follows from no. 1, Cor. 3 of Th. 1. We prove (iii). We
can assume that M = Mλ(h). Then, for all x ∈ h, λ(x) = (dimM)−1Tr(xM);
this proves that λ is linear (which also follows from Prop. 5) and that λ
vanishes on [h, h]. Consider the map ρ : h → Endk(M) defined by

ρ(x) = xM − λ(x)1M;

from the above, this is a representation of h on M, and ρ(x) is nilpotent for
all x ∈ h. By Engel’s theorem (Chap. I, §4, no. 2, Th. 1), there exists m �= 0
in M such that ρ(x)m = 0 for all x ∈ h, so m ∈ Mλ(h).

The first assertion of (v) follows from no. 1, Prop. 2 (ii). To prove the
second, we can assume that k is algebraically closed in view of Prop. 1 of no. 1;
it then follows from the first and the fact that M =

∑
λ

Mλ(h), N =
∑
λ

Nλ(h),

cf. (i).

Remark. Assume that k is perfect and of characteristic 2. Let h = sl(2, k), and

let M be the h-module k2 (for the identity map of h). If x =
(

a b
c a

)
is an

arbitrary element of h, denote by λ(x) the unique λ ∈ k such that λ2 = a2 + bc.
A calculation shows immediately that M = Mλ(h); on the other hand, Mλ(h) = 0
and λ is neither linear nor zero on [h, h], even though h is nilpotent.

COROLLARY. Let h be a nilpotent Lie algebra, and M a finite dimensional
h-module such that M0(h) = 0. Let f : h → M be a linear map such that

f([x, y]) = x.f(y) − y.f(x) for x, y ∈ h.

There exists a ∈ M such that f(x) = x.a for all x ∈ h.
Let N = M × k. Make h operate on N by the formula

x.(m,λ) = (x.m− λf(x), 0).

The identity satisfied by f implies that N is an h-module (Chap. I, §1, no. 8,
Example 2). The map (m,λ) 	→ λ from N to k is a homomorphism from N
to the trivial h-module k. By Prop. 9 (iv), it follows that N0(h) contains an
element of the form (a, 1) with a ∈ M. In view of the hypothesis on M,

(M × 0) ∩ N0(h) = 0,

so N0(h) is of dimension 1 and hence is annihilated by h. Thus, x.a−f(x) = 0
for all x ∈ h, which proves the corollary.

PROPOSITION 10. Let g be a Lie algebra, h a nilpotent subalgebra of g.
Denote by P the set of maps from h to k.
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(i) For λ, µ ∈ P, [gλ(h), gµ(h)] ⊂ gλ+µ(h); in particular, g0(h) is a Lie
subalgebra of g containing h, and the gλ(h) are stable under ad g0(h). More-
over, g0(h) is its own normalizer in g.

(ii) If M is a g-module, gλ(h)Mµ(h) ⊂ Mλ+µ(h) for λ, µ ∈ P; in particular,
each Mλ(h) is a g0(h)-module.

(iii) If B is a bilinear form on g invariant under h, gλ(h) and gµ(h) are
orthogonal relative to B for λ + µ �= 0. Assume that B is non-degenerate.
Then, for all λ ∈ P, the restriction of B to gλ(h)× g−λ(h) is non-degenerate;
in particular, the restriction of B to g0(h) × g0(h) is non-degenerate.

(iv) Assume that k is of characteristic 0. Then, if x ∈ gλ(h) with λ �= 0,
adx is nilpotent.

The map (x, y) 	→ [x, y] from g × g to g is g-invariant by the Jacobi
identity, hence h-invariant. The first part of (i) thus follows from Prop. 2 (ii).
Part (ii) is proved similarly.

If x belongs to the normalizer of g0(h) in g, (ad y).x = −[x, y] ∈ g0(h) for
all y ∈ h, so (ad y)n.x = 0 for n sufficiently large. This proves that x ∈ g0(h).
Assertion (i) is now completely proved.

Assertion (iii) follows from Prop. 9 (v).
To prove (iv), we can assume that k is algebraically closed. Let x ∈ gλ(h),

with λ �= 0. For all µ ∈ P and any integer n ≥ 0, (adx)ngµ(h) ⊂ gµ+nλ(h);
let P1 be the finite set of µ ∈ P such that gµ(h) �= 0; if k is of characteristic
0 and λ �= 0, (P1 + nλ) ∩ P1 = ∅ for n sufficiently large, so (adx)n = 0.

Lemma 2. Assume that k is of characteristic 0. Let g be a semi-simple Lie
algebra over k, B the Killing form of g, m a subalgebra of g. Assume that the
following conditions are satisfied:

1) the restriction of B to m is non-degenerate;
2) if x ∈ m, the semi-simple and nilpotent components1 of x in g belong

to m.
Then m is reductive in g (Chap. I, § 6, no. 6).
By Chap. I, §6, no. 4, Prop. 5 d), m is reductive. Let c be the centre of m.

If x ∈ c is nilpotent, then x = 0; indeed, for all y ∈ m, adx and ad y commute,
their composition adx ◦ ad y is nilpotent, and B(x, y) = 0, so x = 0. Now let
x be an arbitrary element of c; let s and n be its semi-simple and nilpotent
components. We have n ∈ m. Since adn is of the form P(adx), where P is a
polynomial with no constant term, (adn).m = 0 and so n ∈ c, and then n = 0
by the above. Thus adx is semi-simple. Consequently, the restriction to m of
the adjoint representation of g is semi-simple (Chap. I, §6, no. 5, Th. 4 b)).

PROPOSITION 11. Assume that k is of characteristic 0. Let g be a semi-
simple Lie algebra, h a nilpotent subalgebra of g. The algebra g0(h) satisfies
conditions (1) and (2) of Lemma 2 ; it is reductive in g.
1 By Chap. I, §6, no. 3, Th. 3, every x ∈ g can be written uniquely as the sum of a

semi-simple element s and a nilpotent element n that commute with each other;
the element s (resp. n) is called the semi-simple (resp. nilpotent) component of x.
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Let x, x′ ∈ g, s and s′ their semi-simple components, n and n′ their
nilpotent components. We have

x′ ∈ g0(x) ⇐⇒ (ad s)(x′) = 0 (Prop. 4)
⇐⇒ (adx′)(s) = 0
=⇒ (ad s′)(s) = 0
⇐⇒ (ad s)(s′) = 0

⇐⇒ s′ ∈ g0(x) (Prop. 4)

so x′ ∈ g0(x) ⇒ n′ ∈ g0(x) and (2) is proved. The Killing form of g is non-
degenerate, so its restriction to g0(h) is non-degenerate (Prop. 10 (iii)). The
fact that g0(h) is reductive in g thus follows from Lemma 2.

4. DECOMPOSITION OF A LIE ALGEBRA RELATIVE TO
AN AUTOMORPHISM

PROPOSITION 12. Let g be a Lie algebra, a an automorphism of g.
(i) For λ, µ ∈ k, [gλ(a), gµ(a)] ⊂ gλµ(a); in particular, g1(a) is a subalge-

bra of g.
(ii) If B is a symmetric bilinear form on g invariant under a, gλ(a)

and gµ(a) are orthogonal relative to B for λµ �= 1. Assume that B is non-
degenerate. Then, if λ �= 0, the restriction of B to gλ(a) × g1/λ(a) is non-
degenerate.

Assertion (i) and the first half of (ii) follow from Prop. 2 (iii) applied to
the composition law g × g → g and the bilinear form B. To prove the second
half of (ii), we can assume that k is algebraically closed. Then g =

⊕
ν∈k

gν(a).

In view of the above, gλ(a) is orthogonal to gν(a) if λν �= 1; since B is
non-degenerate, it follows that its restriction to gλ(a) × g1/λ(a) is also.

COROLLARY. Assume that k is of characteristic zero and that g is semi-
simple. Then the subalgebra g1(a) satisfies conditions (1) and (2) of Lemma 2 ;
it is reductive in g.

Condition (1) follows from part (ii) of Prop. 12; condition (2) follows from
Prop. 4 of no. 1.

5. INVARIANTS OF A SEMI-SIMPLE LIE ALGEBRA
RELATIVE TO A SEMI-SIMPLE ACTION

In this no., k is assumed to be of characteristic zero.

PROPOSITION 13. Let g be a semi-simple Lie algebra, a a subalgebra of g
reductive in g, and m the commutant of a in g. The subalgebra m satisfies
conditions (1) and (2) of Lemma 2 of no. 3; it is reductive in g.
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By Prop. 6 of Chap. I, §3, no. 5, applied to the a-module g, we have
g = m ⊕ [a, g]. Let B be the Killing form of g, and let x ∈ a, y ∈ m, z ∈ g.
Then,

B([z, x], y) = B(z, [x, y]) = 0 since [x, y] = 0,

which shows that m is orthogonal to [a, g] relative to B. Since B is non-
degenerate, and since g = m ⊕ [a, g], this implies that the restriction of B to
m is non-degenerate; condition (1) of Lemma 2 is thus satisfied.

Now let x ∈ m and let s and n be its semi-simple and nilpotent compo-
nents. The semi-simple component of ad x is ad s, cf. Chap. I, §6, no. 3. Since
adx is zero on a, so is ad s, by Prop. 4 (i). Thus s ∈ m, so n = x − s ∈ m,
and condition (2) of Lemma 2 is satisfied.

Remark. The commutant of m in g does not necessarily reduce to a, cf.
Exerc. 4.

PROPOSITION 14. Let g be a semi-simple Lie algebra, A a group and r a
homomorphism from A to Aut(g). Let m be the subalgebra of g consisting of
the elements invariant under r(A). Assume that the linear representation r
is semi-simple. Then m satisfies conditions (1) and (2) of Lemma 2 of no. 3;
it is reductive in g.

The proof is analogous to that of the preceding proposition:
Let g+ be the vector subspace of g generated by the r(a)x−x, a ∈ A, x ∈ g.

The vector space g′ = m + g+ is stable under r(A). Let n be a complement
of g′ in g stable under r(A). If x ∈ n, a ∈ A, r(a)x−x ∈ n∩ g+ = 0, so x ∈ m
and then x = 0 since m ∩ n = 0. Thus, g = g′ = m + g+. Let B be the Killing
form of g and let y ∈ m, a ∈ A, x ∈ g. Then

B(y, r(a)x− x) = B(y, r(a)x) − B(y, x)

= B(r(a−1)y, x) − B(y, x)
= B(y, x) − B(y, x) = 0.

Thus m and g+ are orthogonal relative to B. It follows that the restriction of
B to m is non-degenerate; hence condition (1) of Lemma 2. Condition (2) is
immediate by transport of structure.

§2. CARTAN SUBALGEBRAS AND REGULAR
ELEMENTS OF A LIE ALGEBRA

From no. 2 onwards, the field k is assumed to be infinite.
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1. CARTAN SUBALGEBRAS

DEFINITION 1. Let g be a Lie algebra. A Cartan subalgebra of g is a nilpo-
tent subalgebra of g equal to its own normalizer.

Later we shall obtain the following results:
1) if k is infinite, g has Cartan subalgebras (no. 3, Cor. 1 of Th. 1);
2) if k is of characteristic zero, all Cartan subalgebras of g have the same

dimension (§3, no. 3, Th. 2);
3) if k is algebraically closed and of characteristic 0, all Cartan subalgebras

of g are conjugate under the group of elementary automorphisms of g (§3,
no. 2, Th. 1).

Examples. 1) If g is nilpotent, the only Cartan subalgebra of g is g itself
(Chap. I, §4, no. 1, Prop. 3).

2) Let g = gl(n, k), and let h be the set of diagonal matrices belonging to
g. We show that h is a Cartan subalgebra of g. First, h is commutative, hence
nilpotent. Let (Eij) be the canonical basis of gl(n, k), and let x =

∑
µijEij

be an element of the normalizer of h in g. If i �= j, formulas (5) of Chap. I,
§1, no. 2 show that the coefficient of Eij in [Eii, x] is µij . Since Eii ∈ h,
[Eii, x] ∈ h, and the coefficient in question is zero. Thus µij = 0 for i �= j, so
x ∈ h, which shows that h is indeed a Cartan subalgebra of g.

3) Let h be a Cartan subalgebra of g and let g1 be a subalgebra of g
containing h. Then h is a Cartan subalgebra of g1; this follows immediately
from Def. 1.

PROPOSITION 1. Let g be a Lie algebra and let h be a Cartan subalgebra of
g. Then h is a maximal nilpotent subalgebra of g.

Let h′ be a nilpotent subalgebra of g containing h. Then h is a Cartan
subalgebra of h′ (Example 3), so h = h′ (Example 1).

There exist maximal nilpotent subalgebras that are not Cartan subalgebras
(Exerc. 2).

PROPOSITION 2. Let (gi)i∈I be a finite family of Lie algebras and g =
∏
i∈I

gi.

The Cartan subalgebras of g are the subalgebras of the form
∏
i∈I

hi, where hi

is a Cartan subalgebra of gi.
If hi is a subalgebra of gi with normalizer ni, then

∏
hi is a subalgebra of g

with normalizer
∏

ni; if the hi are nilpotent,
∏

hi is nilpotent; thus, if hi is a
Cartan subalgebra of gi for all i,

∏
hi is a Cartan subalgebra of g. Conversely,

let h be a Cartan subalgebra of g; the projection hi of h onto gi is a nilpotent
subalgebra of gi, and

∏
hi is a nilpotent subalgebra of g containing h; hence

h =
∏

hi (Prop. 1); thus, for all i, hi is its own normalizer in gi, and so is a
Cartan subalgebra of gi.
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Example 4. If k is of characteristic 0, gl(n, k) is the product of the ideals
sl(n, k) and k.1. It follows from Example 2 and Prop. 2 that the set of diagonal
matrices of trace 0 in sl(n, k) is a Cartan subalgebra of sl(n, k).

PROPOSITION 3. Let g be a Lie algebra, h a subalgebra of g, and k′ an
extension of k. Then h is a Cartan subalgebra of g if and only if h ⊗k k

′ is a
Cartan subalgebra of g ⊗k k

′.
Indeed, h is nilpotent if and only if h ⊗k k

′ is (Chap. I, §4, no. 5). On the
other hand, if n is the normalizer of h in g, the normalizer of h⊗k k

′ in g⊗k k
′

is n ⊗k k
′ (Chap. I, §3, no. 8).

PROPOSITION 4. Let g be a Lie algebra, h a nilpotent subalgebra of g. Then
h is a Cartan subalgebra of g if and only if g0(h) = h.

If g0(h) = h, h is its own normalizer (§1, Prop. 10 (i)), so h is a Cartan
subalgebra of g. Assume that g0(h) �= h. Consider the representation of h on
g0(h)/h obtained from the adjoint representation by passage to the quotient.
By applying Engel’s theorem (Chap. I, §4, no. 2, Th. 1), we see that there
exists x ∈ g0(h) such that x /∈ h and [h, x] ⊂ h; then x belongs to the
normalizer of h in g, so h is not a Cartan subalgebra of g.

COROLLARY 1. Let g be a Lie algebra, h a Cartan subalgebra of g. If k is
infinite, there exists x ∈ h such that h = g0(x).

Indeed, h = g0(h) and we can apply Prop. 9 (ii) of §1.

COROLLARY 2. Let f : g → g′ be a surjective homomorphism of Lie alge-
bras. If h is a Cartan subalgebra of g, f(h) is a Cartan subalgebra of g′.

Indeed, f(h) is a nilpotent subalgebra of g′. On the other hand, consider
the representation x 	→ ad f(x) of h on g′. By Prop. 9 (iv) of §1, no. 3,
f(g0(h)) = g′0(h). Now g0(h) = h, and on the other hand it is clear that
g′0(h) = g′0(f(h)). Hence, f(h) = g′0(f(h)) and it suffices to apply Prop. 4.

COROLLARY 3. Let h be a Cartan subalgebra of a Lie algebra g, and let
C ng (n ≥ 1) be a term of the descending central series of g (Chap. I, §1,
no. 5). Then g = h + Cng.

Indeed, Corollary 2 shows that the image of h in g/C ng is a Cartan
subalgebra of g/C ng, hence is equal to g/C ng since g/C ng is nilpotent
(Example 1).

COROLLARY 4. Let g be a Lie algebra, h a Cartan subalgebra of g, and a a
subalgebra of g containing h.

(i) a is equal to its own normalizer in g.
(ii) Assume that k = R or C; let G be a Lie group with Lie algebra g, A

the integral subgroup of G with Lie algebra a. Then A is a Lie subgroup of G,
and it is the identity component of the normalizer of A in G.
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Let n be the normalizer of a in g. Since h is a Cartan subalgebra of n
(Example 3), {0} is a Cartan subalgebra of n/a (Cor. 2), hence is equal to its
normalizer in n/a; in other words, n = a. Assertion (ii) follows from (i) and
Chap. III, §9, no. 4, Cor. of Prop. 11.

COROLLARY 5. Let g be a Lie algebra, E a subset of g. Let E operate on g
by the adjoint representation. Then E is a Cartan subalgebra of g if and only
if E = g0(E).

The condition is necessary (Prop. 4). Assume now that E = g0(E). By
Prop. 2 (ii) of §1, no. 1, E is then a subalgebra of g. If x ∈ E, adEx is nilpotent
since E ⊂ g0(E); hence the algebra E is nilpotent. But then E is a Cartan
subalgebra by Prop. 4.

COROLLARY 6. Let g be a Lie algebra, let k0 be a subfield of k such that
[k : k0] < +∞, and let g0 be the Lie algebra obtained from g by restricting the
field of scalars to k0. Let h be a subset of g. Then h is a Cartan subalgebra
of g if and only if h is a Cartan subalgebra of g0.

This follows from Cor. 5, since the condition h = g0(h) does not involve
the base field.

PROPOSITION 5. Let g be a Lie algebra, c its centre, h a vector subspace of
g. Then h is a Cartan subalgebra of g if and only if h contains c and h/c is
a Cartan subalgebra of g/c.

Assume that h is a Cartan subalgebra of g. Since [c, g] ⊂ h, we have c ⊂ h.
On the other hand, h/c is a Cartan subalgebra of g/c by Cor. 2 of Prop. 4.

Assume that h ⊃ c and that h/c is a Cartan subalgebra of g/c. Let f
be the canonical morphism from g to g/c. The algebra h, which is a central
extension of h/c, is nilpotent. Let n be the normalizer of h in g. If x ∈ n,
[f(x), h/c] ⊂ h/c, hence f(x) ∈ h/c, and so x ∈ h. This proves that h is a
Cartan subalgebra of g.

COROLLARY. Let C∞g be the union of the ascending central series of the
Lie algebra g (Chap. I, §1, no. 6). The Cartan subalgebras of g are the inverse
images of the Cartan subalgebras of g/C∞g.

Indeed, the centre of g/Cig is Ci+1g/Cig, and the corollary follows imme-
diately from Prop. 5 by induction.

Remark. C∞g is the smallest ideal n of g such that the centre of g/n is zero;
it is a characteristic and nilpotent ideal of g.
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2. REGULAR ELEMENTS OF A LIE ALGEBRA

[Recall that k is assumed to be infinite from now on.]
Let g be a Lie algebra of dimension n. If x ∈ g, write the characteristic

polynomial of adx in the form

det(T − adx) =
n∑

i=0

ai(x)Ti, with ai(x) ∈ k.

We have ai(x) = (−1)n−iTr
(∧n−i adx

)
, cf. Algebra, Chap. III, §8, no. 11.

This shows that x 	→ ai(x) is a homogeneous polynomial map of degree n− i
from g to k (Algebra, Chap. IV, §5, no. 9).

Remarks. 1) If g �= {0}, a0 = 0 since (adx)(x) = 0 for all x ∈ g.

2) Let k′ be an extension of k. Write det(T − adx′) =
n∑

i=0
a′

i(x
′)Ti for

x′ ∈ g ⊗k k
′. Then a′

i|g = ai for all i.

DEFINITION 2. The rank of g, denoted by rk(g), is the smallest integer l
such that al �= 0. An element x of g is called regular if al(x) �= 0.

For all x ∈ g, rk(g) ≤ dim g0(x), and equality holds if and only if x is
regular.

The set of regular elements is dense and open in g for the Zariski topology
(App. I).

Examples. 1) If g is nilpotent, rk(g) = dim g and all elements of g are regular.

2) Let g = sl(2, k). If x =
(
γ α
β −γ

)
∈ g, an easy calculation gives

det(T − adx) = T3 − 4(αβ + γ2)T.

If the characteristic of k is �= 2, then rk(g) = 1 and the regular elements are
those x such that αβ + γ2 �= 0.

3) Let V be a vector space of finite dimension n, and g = gl(V). Let k
be an algebraic closure of k. Let x ∈ g, and let λ1, . . . , λn be the roots in k
of the characteristic polynomial of x (each root being written a number of
times equal to its multiplicity). The canonical isomorphism from V∗ ⊗ V to
g is compatible with the g-module structures of these two spaces, in other
words it takes 1 ⊗ x − tx ⊗ 1 to adx (Chap. I, §3, no. 3, Prop. 4). In view
of §1, Prop. 4 (i), it follows that the roots of the characteristic polynomial
of adx are the λi − λj for 1 ≤ i ≤ n, 1 ≤ j ≤ n (each root being written a
number of times equal to its multiplicity). Thus, the rank of g is n, and x is
regular if and only if each λi is a simple root of the characteristic polynomial
of x.
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PROPOSITION 6. Let g be a Lie algebra, k′ an extension of k, and g′ =
g ⊗k k

′.
(i) An element x of g is regular in g if and only if x⊗ 1 is regular in g′.
(ii) rk(g) = rk(g′).
This follows from Remark 2.

PROPOSITION 7. Let (gi)i∈I be a finite family of Lie algebras, and let g =∏
i∈I

gi.

(i) An element (xi)i∈I of g is regular in g if and only if, for all i ∈ I, xi

is regular in gi.
(ii) rk(g) =

∑
i∈I

rk(gi).

Indeed, for any x = (xi)i∈I ∈ g, the characteristic polynomial of adgx is
the product of the characteristic polynomials of the adgi

xi.

PROPOSITION 8. Let f : g → g′ be a surjective homomorphism of Lie
algebras.

(i) If x is a regular element of g, f(x) is regular in g′. The converse is
true if Ker f is contained in the centre of g.

(ii) rk(g) ≥ rk(g′).
Put rk(g) = r, rk(g′) = r′. Let x ∈ g. The characteristic polynomials of

adx, ad f(x) and adx|Ker f are of the form

P(T) = Tn + an−1(x)Tn−1 + · · · + ar(x)Tr,

Q(T) = Tn′
+ bn′−1(x)Tn′−1 + · · · + br′(x)Tr′

,

R(T) = Tn′′
+ cn′′−1(x)Tn′′−1 + · · · + cr′′(x)Tr′′

,

where the ai, bi, ci are polynomial functions on g, with ar �= 0, br′ �= 0, cr′′ �= 0.
We have P = QR, so r = r′ + r′′ and ar(x) = br′(x)cr′′(x), which proves
(ii) and the first assertion of (i). If Ker f is contained in the centre of g,
R(T) = Tn′′

and so ar(x) = br′(x), hence the second assertion of (i).

COROLLARY. Let Cng (n ≥ 0) be a term of the ascending central series of
g (Chap. I, §1, no. 6). The regular elements of g are those whose image in
g/Cng is regular.

PROPOSITION 9. Let g be a Lie algebra, g′ a subalgebra of g. Every element
of g′ regular in g is regular in g′.

For x ∈ g′, the restriction of adgx to g′ is adg′x, and so defines an endo-
morphism u(x) of the vector space g/g′ by passage to the quotient. Let d0(x)
(resp. d1(x)) be the dimension of the nilspace of adg′(x) (resp. of u(x)), and
let c0 (resp. c1) be the minimum of d0(x) (resp. d1(x)) when x belongs to g′.
There exist non-zero polynomial maps p0, p1 from g′ to k such that

d0(x) = c0 ⇐⇒ p0(x) �= 0, d1(x) = c1 ⇐⇒ p1(x) �= 0.
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Since k is infinite, the set S of x ∈ g′ such that d0(x) = c0 and d1(x) = c1 is
non-empty. Every element of S is regular in g′. On the other hand, S is the
set of elements of g′ such that the nilspace of adgx has minimum dimension,
and thus contains every element of g′ regular in g.

Remark. 3) Elements of g′ regular in g do not necessarily exist. If at least
one does exist, the set of these elements is precisely the set denoted by S in
the above proof.

3. CARTAN SUBALGEBRAS AND REGULAR ELEMENTS

THEOREM 1. Let g be a Lie algebra.
(i) If x is a regular element of g, g0(x) is a Cartan subalgebra of g.
(ii) If h is a maximal nilpotent subalgebra of g, and if x ∈ h is regular in

g, then h = g0(x).
(iii) If h is a Cartan subalgebra of g, then dim(h) ≥ rk(g).
(iv) The Cartan subalgebras of g of dimension rk(g) are the g0(x) where

x is a regular element.
Let x be a regular element of g and let h = g0(x). Clearly h0(x) = h.

Since x is regular in h (Prop. 9), rk(h) = dim(h), so h is nilpotent. On the
other hand, h = g0(x) ⊃ g0(h) ⊃ h, so h = g0(h) is a Cartan subalgebra of g
(Prop. 4). This proves (i).

If h is a maximal nilpotent subalgebra of g, and if x ∈ h is regular in g,
then h ⊂ g0(x) and g0(x) is nilpotent by (i), so h = g0(x), which proves (ii).

If h is a Cartan subalgebra of g, there exists x ∈ h such that h = g0(x)
(Cor. 1 of Prop. 4), so dim(h) ≥ rk(g), which proves (iii). If in addition
dim(h) = rk(g), x is regular. Finally, if x′ is regular in g, g0(x′) is a Cartan
subalgebra by (i), and is obviously of dimension rk(g). This proves (iv).

We shall see in §3, Th. 2 that, when k is of characteristic zero, all the Cartan
subalgebras of g have dimension rk(g).

COROLLARY 1. Every Lie algebra g has Cartan subalgebras, and the rank
of g is the minimum dimension of a Cartan subalgebra.

COROLLARY 2. Let f : g → g′ be a surjective homomorphism of Lie alge-
bras. If h′ is a Cartan subalgebra of g′, there exists a Cartan subalgebra h of
g such that h′ = f(h).

Let a = f−1(h′). By Cor. 1, a has a Cartan subalgebra h. By Cor. 2 of
Prop. 4, f(h) = h′. We show that h is a Cartan subalgebra of g. Let n be
the normalizer of h in g. It is enough to prove that h = n. If x ∈ n, f(x)
belongs to the normalizer of h′ in g′, so f(x) ∈ h′ and x ∈ a; but h is its own
normalizer in a, so x ∈ h.

COROLLARY 3. Every Lie algebra g is the sum of its Cartan subalgebras.
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The sum s of the Cartan subalgebras of g contains the set of regular
elements of g (Th. 1 (i)). Since this set is dense in g for the Zariski topology,
s = g.

PROPOSITION 10. Let g be a Lie algebra, a a commutative subalgebra of g
and c the commutant of a in g. Assume that adgx is semi-simple for all x ∈ a.
Then the Cartan subalgebras of c are the Cartan subalgebras of g containing
a.

Let h be a Cartan subalgebra of c. Since a is contained in the centre z of
c, a ⊂ z ⊂ h (Prop. 5). Let n be the normalizer of h in g. Then

[a, n] ⊂ [h, n] ⊂ h.

Since the adgx, x ∈ a, are semi-simple and commute with each other, it
follows from Algebra, Chap. VIII, §5, no. 1, that there exists a vector subspace
d of n stable under adga and such that n = h ⊕ d. Then [a, d] ⊂ h ∩ d = 0, so
d ⊂ c. Thus, n is the normalizer of h in c, and hence n = h, so h is a Cartan
subalgebra of g containing a.

Conversely, let h be a Cartan subalgebra of g containing a. Then h =
g0(h) ⊂ g0(a), and by hypothesis g0(a) = g0(a) = c. Hence a ⊂ h ⊂ c and h
is a Cartan subalgebra of c (for it is equal to its own normalizer in g, and so
a fortiori in c).

PROPOSITION 11. Let n be a nilpotent subalgebra of a Lie algebra g. There
exists a Cartan subalgebra of g contained in g0(n).

Put a = g0(n). Then n ⊂ a since n is nilpotent. If x ∈ a, let P(x) be the
determinant of the endomorphism of g/a defined by adx. Denote by a′ the
set of x ∈ a such that P(x) �= 0, which is an open subset of a in the Zariski
topology; the relations x ∈ a′ and g0(x) ⊂ a are equivalent. By Prop. 7 (ii)
of §1, no. 2, there exists y ∈ n such that g0(y) = a, and y ∈ a′ so a′ is
non-empty. Since a′ is open, its intersection with the set of regular elements
of a is non-empty. Let x be an element of this intersection. Then g0(x) ⊂ a
and g0(x) is a Cartan subalgebra of a, hence is nilpotent. On the other hand,
Prop. 10 (i) of §1, no. 3, shows that g0(x) is its own normalizer in g; it is
therefore a Cartan subalgebra of g, which completes the proof.

4. CARTAN SUBALGEBRAS OF SEMI-SIMPLE LIE
ALGEBRAS

THEOREM 2. Assume that k is of characteristic 0. Let g be a semi-simple
Lie algebra, h a Cartan subalgebra of g. Then h is commutative, and all of
its elements are semi-simple in g (Chap. I, §6, no. 3, Def. 3).

Since h = g0(h), h is reductive (§1, Prop. 11), hence commutative since it
is nilpotent. On the other hand, the restriction of the adjoint representation
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of g to h is semi-simple (loc. cit.), so the elements of h are semi-simple in g
(Algebra, Chap. VIII, §5, no. 1).

COROLLARY 1. If x ∈ h and y ∈ gλ(h), we have [x, y] = λ(x)y.
Indeed, gλ(x)(x) = gλ(x)(x) since ad x is semi-simple.

COROLLARY 2. Every regular element of g is semi-simple.
Indeed, such an element belongs to a Cartan subalgebra (no. 3, Th. 1 (i)).

COROLLARY 3. Let h be a Cartan subalgebra of a reductive Lie algebra g.
a) h is commutative.
b) If ρ is a finite dimensional semi-simple representation of g, the elements

of ρ(h) are semi-simple.
Let c be the centre of g, and s its derived algebra. Then g = c × s, so

h = c×h′, where h′ is a Cartan subalgebra of s (Prop. 2). In view of Th. 2, h′ is
commutative, hence so is h. Moreover, ρ(h′) consists of semi-simple elements
and so does ρ(c) (Chap. I, §6, no. 5, Th. 4); assertion b) follows.

§3. CONJUGACY THEOREMS

In this paragraph, the base field k is of characteristic 0.

1. ELEMENTARY AUTOMORPHISMS

Let g be a Lie algebra. Denote its group of automorphisms by Aut(g). If x ∈ g
and if adx is nilpotent, ead x ∈ Aut(g) (Chap. I, §6, no. 8).

DEFINITION 1. A finite product of automorphisms of g of the form ead x

with adx nilpotent is called an elementary automorphism of g. The group of
elementary automorphisms of g is denoted by Aute(g).

If u ∈ Aut(g), uead xu−1 = ead u(x). It follows that Aute(g) is a normal
subgroup of Aut(g). If k = R or C, Aute(g) is contained in the group Int(g)
of inner automorphisms of g (Chap. III, §6, no. 2, Def. 2).

∗ In the general case, Aute(g) is contained in the identity component of the
algebraic group Aut(g).∗

Lemma 1. Let V be a finite dimensional vector space, n a Lie subalgebra of
a = gl(V) consisting of nilpotent elements.

(i) The map x 	→ expx is a bijection from n to a subgroup N of GL(V)
consisting of unipotent elements (Chap. II, §6, no. 1, Remark 4). We have
n = log(exp n). The map f 	→ f ◦ log is an isomorphism from the algebra of
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polynomial functions on n to the algebra of restrictions to N of polynomial
functions on End(V).

(ii) If x ∈ n and a ∈ a,

(exp adax).a = (expx)a(exp(−x)).
(iii) Let V′ be a finite dimensional vector space, n′ a Lie subalgebra of

gl(V′) consisting of nilpotent elements, ρ a homomorphism from n to n′. Let
π be the map expx 	→ exp ρ(x) from exp n to exp n′. Then π is a group
homomorphism.

By Engel’s theorem, we can identify V with kn in such a way that n is
a subalgebra of n(n, k) (the Lie subalgebra of Mn(k) consisting of the lower
triangular matrices with zeros on the diagonal). For s ≥ 0, let ns(n, k) be the
set of (xij)1≤i,j≤n ∈ Mn(k) such that xij = 0 for i− j < s. Then

[ns(n, k), ns′(n, k)] ⊂ ns+s′(n, k)

(Chap. II, §4, no. 6, Remark), and the Hausdorff series defines a polynomial
map (a, b) 	→ H(a, b) from n(n, k) × n(n, k) to n(n, k) (Chap. II, §6, no. 5,
Remark 3); this map makes n(n, k) into a group (Chap. II, §6, no. 5, Prop. 4).
By Chap. II, §6, no. 1, Remark 4, the maps x 	→ expx from n(n, k) to
1+n(n, k) and y 	→ log y from 1+n(n, k) to n(n, k) are inverse bijections and
are polynomial; by Chap. II, §6, no. 5, Prop. 3, these maps are isomorphisms
of groups if n(n, k) is given the group law (a, b) 	→ H(a, b) and if 1 + n(n, k)
is considered as a subgroup of GLn(k). Assertions (i) and (iii) of the lemma
now follow. Let x ∈ n. Denote by Lx,Rx the maps u 	→ xu, u 	→ ux from a
to a, which commute and are nilpotent. We have adax = Lx − Rx, so, for all
a ∈ a,

(exp adax)a = (exp(Lx − Rx))a = (exp Lx)(exp R−x)a (1)

=
∑

i,j≥0

Li
x

i!
Rj

−x

j!
a = (expx)a(exp(−x)).

With the notation in Lemma 1, π is called the linear representation of
exp n compatible with the given representation ρ of n on V′. When k is R,
C, or a non-discrete complete ultrametric field, ρ = L(π) by the properties
of exponential maps (Chap. III, §4, no. 4, Cor. 2 of Prop. 8).

PROPOSITION 1. Let g be a Lie algebra, n a subalgebra of g such that adgx
is nilpotent for all x ∈ n. Then eadgn is a subgroup of Aute(g).

This follows immediately from Lemma 1 (i).

In particular, if n is the nilpotent radical of g, eadgn is the group of special
automorphisms of g (Chap. I, §6, no. 8, Def. 6).
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Remarks. 1) Let V be a finite dimensional vector space, g a Lie subalgebra of
a = gl(V), x an element of g such that adgx is nilpotent. Then there exists a
nilpotent element n of a such that adan extends adgx. Indeed, let s, n be the
semi-simple and nilpotent components of x; then adas and adan are the semi-
simple and nilpotent components of adax (Chap. I, §5, no. 4, Lemma 2), so
adas and adan leave g stable, and adas|g and adan|g are the semi-simple and
nilpotent components of adgx; consequently, adgx = adan|g, which proves
our assertion. In view of Lemma 1 (ii), every elementary automorphism of g
extends to an automorphism of a of the form u 	→ mum−1 wherem ∈ GL(V).

2) Let V be a finite dimensional vector space. For all g ∈ SL(V), let ϕ(g)
be the automorphism x 	→ gxg−1 of gl(V). Then

Aute(gl(V)) = ϕ(SL(V)).

Indeed, by (1), Aute(gl(V)) is contained in ϕ(SL(V)), and the opposite in-
clusion follows from Algebra, Chap. III, §8, no. 9, Prop. 17 and (1). An anal-
ogous argument shows that Aute(sl(V)) is the set of restrictions of elements
of ϕ(SL(V)) to sl(V).

2. CONJUGACY OF CARTAN SUBALGEBRAS

Let g be a Lie algebra, h a nilpotent subalgebra of g and R the set of non-zero
weights of h in g, in other words the set of linear forms λ �= 0 on h such that
gλ(h) �= 0, cf. §1, no. 3, Prop. 9 (iii). Assume that

g = g0(h) ⊕
∑
λ∈R

gλ(h),

which is the case if k is algebraically closed (§1, no. 3, Prop. 9 (i)). For λ ∈ R
and x ∈ gλ(h), adx is nilpotent (§1, no. 3, Prop. 10 (iv)). Denote by E(h)
the subgroup of Aute(g) generated by the ead x where x is of the form above.
If u ∈ Aut(g), it is immediate that uE(h)u−1 = E(u(h)).

Lemma 2. (i) Let hr be the set of x ∈ h such that g0(x) = g0(h); this is the
set of x ∈ h such that λ(x) �= 0 for all λ ∈ R, and hr is open and dense in h
in the Zariski topology.

(ii) Put R = {λ1, λ2, . . . , λp} where the λi are mutually distinct. Let F be
the map from g0(h) × gλ1(h) × · · · × gλp(h) to g defined by the formula

F(h, x1, . . . , xp) = ead x1 . . . ead xph.

Then F is a dominant polynomial map (App. I).
Assertion (i) is clear. We prove (ii). Let n = dim g. If λ ∈ R and x ∈ gλ(h),

we have (adx)n = 0. It follows that (y, x) 	→ ead xy is a polynomial map from
g × gλ(h) to g; it follows by induction that F is polynomial. Let h0 ∈ hr and
let DF be the tangent linear map of F at (h0, 0, . . . , 0); we show that DF is
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surjective. For h ∈ g0(h), F(h0 + h, 0, . . . , 0) = h0 + h, so DF(h, 0, . . . , 0) = h
and Im(DF) ⊃ g0(h). On the other hand, for x ∈ gλ1(h),

F(h0, x, 0, . . . , 0) = ead xh0 = h0 + (adx).h0 +
(adx)2

2!
h0 + · · ·

so DF(0, x, 0, . . . , 0) = (adx).h0 = −(adh0)x; since adh0 induces an auto-
morphism of gλ1(h), Im(DF) ⊃ gλ1(h). Similarly,

Im(DF) ⊃ gλi(h)

for all i, hence the surjectivity of DF. Prop. 4 of App. I now shows that F is
dominant.

PROPOSITION 2. Assume that k is algebraically closed. Let g be a Lie al-
gebra, h and h′ Cartan subalgebras of g. There exist u ∈ E(h) and u′ ∈ E(h′)
such that u(h) = u′(h′).

We retain the notation of Lemma 2. From the fact that h and h′ are
Cartan subalgebras, it follows that g0(h) = h and g0(h′) = h′. By Lemma 2
and Prop. 3 of App. I, E(h)hr and E(h′)h′

r contain open dense subsets of g in
the Zariski topology. Thus E(h)hr ∩ E(h′)h′

r �= ∅. In other words, there exist
u ∈ E(h), u′ ∈ E(h′), h ∈ hr, h

′ ∈ h′
r such that u(h) = u′(h′); then

u(h) = u(g0(h)) = g0(u(h)) = g0(u′(h′)) = u′(h′).

COROLLARY. E(h) = E(h′).
Let u, u′ be as in Prop. 2. Then

E(h) = uE(h)u−1 = E(u(h)) = E(u′(h′)) = u′E(h′)u′−1 = E(h′),

hence the corollary.

Because of this result, if k is algebraically closed we shall denote simply
by E the group E(h), where h is a Cartan subalgebra of g.

In general, Aute(g) �= E (for example, if g is nilpotent, E reduces to the identity
element, even though non-trivial elementary automorphisms exist provided g is
non-commutative). However, it can be shown (Chap. VIII, §10, Exerc. 5) that
Aute(g) = E for g semi-simple.

THEOREM 1. Assume that k is algebraically closed. Let g be a Lie algebra.
The group E is normal in Aut(g) and operates transitively on the set of
Cartan subalgebras of g.

Let h be a Cartan subalgebra of g, and v ∈ Aut(g). Then

vE(h)v−1 = E(v(h)) = E(h),

so E(h) = E is normal in Aut(g). If h′ is another Cartan subalgebra of g,
then, in the notation of Prop. 2, u′−1

u(h) = h′, and u′−1
u ∈ E.
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3. APPLICATIONS OF CONJUGACY

THEOREM 2. Let g be a Lie algebra.
(i) The Cartan subalgebras of g are all of the same dimension, namely

rk(g), and the same nilpotency class.
(ii) An element x ∈ g is regular if and only if g0(x) is a Cartan subalgebra

of g; every Cartan subalgebra is obtained in this way.
To prove (i), we can assume that k is algebraically closed (cf. §2, Prop. 3

and Prop. 6), in which case it follows from Th. 1 of no. 2. Assertion (ii)
follows from (i) and §2, Th. 1 (i) and (iv).

PROPOSITION 3. Let g be a Lie algebra, g′ a subalgebra of g. The following
conditions are equivalent:

(i) g′ contains a regular element of g, and rk(g) = rk(g′);
(ii) g′ contains a Cartan subalgebra of g;
(iii) every Cartan subalgebra of g′ is a Cartan subalgebra of g.
(i) =⇒ (ii): Assume that rk(g) = rk(g′), and that there exists x ∈ g′

regular in g. Put h = g0(x), h′ = g′0(x) = h ∩ g′. Then

rk(g′) ≤ dim h′ ≤ dim h = rk(g) = rk(g′)

so h = h′ ⊂ g′. This proves (ii).
(ii) =⇒ (iii): Assume that g′ contains a Cartan subalgebra h of g, and

let h1 be a Cartan subalgebra of g′. To prove that h1 is a Cartan subalgebra
of g, we can assume that k is algebraically closed. Let E(h) and E′(h) be
the groups of automorphisms of g and g′ associated to h (no. 2). By Th. 1,
there exists f ∈ E′(h) such that f(h) = h1. Now every element of E′(h) is
induced by an element of E(h); indeed, it suffices to verify this for ead x, with
x ∈ g′λ(h), λ �= 0, in which case it follows from the inclusion g′λ(h) ⊂ gλ(h).
Thus h1 is a Cartan subalgebra of g.

(iii) =⇒ (i): Assume that condition (iii) is satisfied. Let h be a Cartan
subalgebra of g′. Since this is a Cartan subalgebra of g, it contains a regular
element of g (Th. 2 (ii)), and on the other hand rk(g) = dim(h) = rk(g′).

COROLLARY. Let h be a nilpotent subalgebra of g. The subalgebra g0(h) has
properties (i), (ii), (iii) in Prop. 3.

Indeed, Prop. 11 of §2, no. 3, shows that g0(h) has property (ii).

PROPOSITION 4. Let g be a Lie algebra, l the rank of g, c the nilpotency
class of the Cartan subalgebras of g, and x ∈ g. There exists an l-dimensional
subalgebra of g whose nilpotency class is ≤ c and which contains x.

Let T be an indeterminate. Let k′ = k(T) and g′ = g ⊗k k
′. If h is a

Cartan subalgebra of g, h ⊗k k
′ is a Cartan subalgebra of g′, hence the rank

of g′ is l and the nilpotency class of the Cartan subalgebras of g′ is c.
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Choose a regular element y of g. With the notations of §2, no. 2, we have
al(y) �= 0. Denote also by al the polynomial function on g′ that extends
al. Then the element al(x + Ty) of k[T] has dominant coefficient al(y). In
particular, x+ Ty is regular in g′. Let h′ be the nilspace of ad(x+ Ty) in g′.
Then dim h′ = l and the nilpotency class of h′ is c. Put k = h′ ∩ (g ⊗k k[T]);
then k ⊗k[T] k(T) = h′.

Let ϕ be the homomorphism from k[T] to k such that ϕ(T) = 0, and let
ψ be the homomorphism 1⊗ϕ from g⊗k k[T] to g. Then ψ(k) is a subalgebra
of g whose nilpotency class is ≤ c and which contains ψ(x+ Ty) = x.

In the free k[T]-module g ⊗k k[T], k is a submodule of rank l, and
(g ⊗k k[T])/k is torsion free, so the submodule k is a direct summand of
g ⊗k k[T] (Algebra, Chap. VII, §4, no. 2, Th. 1). Hence dimk ψ(k) = l, which
completes the proof.

4. CONJUGACY OF CARTAN SUBALGEBRAS OF SOLVABLE
LIE ALGEBRAS

Let g be a solvable Lie algebra. Denote by C ∞(g) the intersection of the
terms of the descending central series of g (Chap. I, §1, no. 5). This is a
characteristic ideal of g, and is the smallest ideal m of g such that g/m is
nilpotent. Since C ∞(g) ⊂ [g, g], C ∞(g) is a nilpotent ideal of g (Chap. I, §5,
no. 3, Cor. 5 of Th. 1). By Prop. 1 of no. 1, the set of ead x, for x ∈ C ∞(g),
is a subgroup of Aut(g) contained in the group of special automorphisms
(Chap. I, §6, no. 8, Def. 6).

THEOREM 3. Let g be a solvable Lie algebra, and let h, h′ be Cartan subal-
gebras of g. There exists x ∈ C ∞(g) such that ead xh = h′.

We argue by induction on dim g, the case where g = 0 being trivial. Let
n be a minimal non-zero commutative ideal of g. Let ϕ : g → g/n be the
canonical morphism. Then ϕ(C ∞g) = C ∞(g/n) (Chap. I, §1, no. 5, Prop.
4). Since ϕ(h) and ϕ(h′) are Cartan subalgebras of g/n (§2, no. 1, Cor. 2 of
Prop. 4), there exists, by the induction hypothesis, an x ∈ C ∞(g) such that
ead ϕ(x)ϕ(h) = ϕ(h′). Replacing h by ead xh, we can assume that ϕ(h) = ϕ(h′),
in other words that

h + n = h′ + n.

Then h and h′ are Cartan subalgebras of h + n. If h + n �= g, the assertion to
be proved follows from the induction hypothesis. Assume from now on that
h + n = h′ + n = g.

By the minimality of n, [g, n] = {0} or [g, n] = n. If [g, n] = {0}, then
n ⊂ h and n ⊂ h′ (§2, no. 1, Prop. 5), so h = h + n = h′ + n = h′. It remains
to consider the case where [g, n] = n, so n ⊂ C ∞(g). The ideal n is a simple
g-module; since g = h + n, and since [n, n] = {0}, it follows that n is a simple
h-module. If h ∩ n �= {0}, then n ⊂ h, so g = h and h′ = h. Assume now that



26 CARTAN SUBALGEBRAS AND REGULAR ELEMENTS Ch. VII

h ∩ n = {0}. Then g = h ⊕ n and hence g = h′ ⊕ n, since h and h′ have the
same dimension.

For all x ∈ h, let f(x) be the unique element of n such that x− f(x) ∈ h′;
if x, y ∈ h,

[x, y] − [x, f(y)] − [f(x), y] = [x− f(x), y − f(y)] ∈ h′,

so f([x, y]) = [x, f(y)] + [f(x), y]. By §1, no. 3, Cor. of Prop. 9, there exists
a ∈ n such that f(x) = [x, a] for all x ∈ h. We have (ad a)2(g) ⊂ (ad a)(n) = 0,
so, for all x ∈ h,

ead ax = x+ [a, x] = x− f(x).
Thus ead a(h) = h′. Since a ∈ C ∞(g), this completes the proof.

Lemma 3. Let g be a Lie algebra, r its radical, ϕ the canonical homomor-
phism from g to g/r, v an elementary automorphism of g/r. There exists an
elementary automorphism u of g such that ϕ ◦ u = v ◦ ϕ.

We can assume that v is of the form ead b, where b ∈ g/r and ad b is
nilpotent. Let s be a Levi subalgebra of g (Chap. I, §6, no. 8, Def. 7) and
let a be the element of s such that ϕ(a) = b. Since adsa is nilpotent, adga is
nilpotent (Chap. I, §6, no. 3, Cor. of Prop. 3), and u = eadga is an elementary
automorphism of g such that ϕ ◦ u = v ◦ ϕ.

PROPOSITION 5. Let g be a Lie algebra, r its radical, h and h′ Cartan
subalgebras of g, and ϕ the canonical homomorphism from g to g/r. The
following conditions are equivalent:

(i) h and h′ are conjugate by an elementary automorphism of g;
(ii) ϕ(h) and ϕ(h′) are conjugate by an elementary automorphism of g/r.
(i) =⇒ (ii): This is clear.
(ii) =⇒ (i): We assume that condition (ii) is satisfied and prove (i).

By Lemma 3, we are reduced to the case where ϕ(h) = ϕ(h′). Put k =
h + r = h′ + r, which is a solvable subalgebra of g. Then h and h′ are Cartan
subalgebras of k, so there exists x ∈ C ∞(k) such that eadkxh = h′ (Th. 3).
Since k/r is nilpotent, C ∞(k) ⊂ r; on the other hand, C ∞(k) ⊂ [k, k] ⊂ [g, g],
so x ∈ r ∩ [g, g]; by Chap. I, §5, no. 3, Th. 1, adgx is nilpotent, so eadgx is an
elementary automorphism of g transforming h to h′.

5. LIE GROUP CASE

PROPOSITION 6. Assume that k is R, C or a non-discrete complete ultra-
metric field of characteristic 0. Let G be a finite dimensional Lie group over
k, e its identity element, g its Lie algebra, h a Cartan subalgebra of g, hr the
set of regular elements of g belonging to h.
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(i) Let s be a vector space complement of h in g, s0 a neighbourhood
of 0 in s on which an exponential map is defined, and h0 ∈ hr. The map
(s, h) 	→ F(s, h) = (exp ad s).h from s0 × h to g is étale at (0, h0).

(ii) The map (g, h) 	→ F′(g, h) = (Ad g).h from G×hr to g is a submersion.
In particular, its image Ω is open. For all x ∈ Ω, g0(x) is a Cartan subalgebra
of g conjugate to h under Ad(G).

(iii) Let h0 ∈ hr. For any neighbourhood U of e in G, the set
⋃

a∈U
(Ad a)(hr)

is a neighbourhood of h0 in g.
Let h0 and s be as in (i). Let T be the tangent linear map of F at (0, h0).

Then F(0, h) = h for all h ∈ h, so T(0, h) = h for all h ∈ h. On the other hand,
for s0 sufficiently small, the tangent linear map at 0 of the map s 	→ exp ad s
from s0 to End(g) is the map s 	→ ad s from s to End(g). Thus T(s, 0) = [s, h0]
for all s ∈ s. Now the map from g/h to g/h induced by adh0 by passage
to the quotient is bijective. It follows that T is bijective, hence (i). Since
exp ad s = Ad exp s for all s ∈ s sufficiently close to 0, (iii) and the first
assertion of (ii) follow. Every x ∈ Ω is of the form (Ad a)(h) with a ∈ G and
h ∈ hr, so g0(x) = (Ad a)(g0(h)) = (Ad a)(h) is a subalgebra of g conjugate
to h under Ad(G).

§4. REGULAR ELEMENTS OF A LIE GROUP

In nos. 1, 2 and 3 of this paragraph, we assume that k is R, C or a non-
discrete complete ultrametric field of characteristic 0. We denote by G a
finite dimensional Lie group over k, by g its Lie algebra, and by e its identity
element. If a ∈ G, we denote by g1(a) the nilspace of Ad (a) − 1, in other
words the space g1(Ad(a)) (cf. §1, no. 1).

1. REGULAR ELEMENTS FOR A LINEAR
REPRESENTATION

Lemma 1. Let M be an analytic manifold over k and a = (a0, . . . , an−1, an =1)
a sequence of analytic functions on M. For all x ∈ M, let ra(x) be the upper
bound of those i ∈ 0, n such that aj(x) = 0 for j < i and let r0a(x) be the
upper bound of those i ∈ 0, n such that aj is zero on a neighbourhood of x
for j < i.

(i) The function ra is upper semi-continuous.
(ii) For all x ∈ M, r0a(x) = lim infy→x ra(y).
(iii) The function r0a is locally constant.
(iv) The set of points x ∈ M such that r0a(x) = ra(x) is the set of points

of M on a neighbourhood of which ra is constant. This is a dense open subset
of M. If k = C and M is finite dimensional and connected, it is open and
connected.
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(i) If ra(x) = i, then ai(x) �= 0 and, for all y in a neighbourhood of x, we
have ai(y) �= 0, so ra(y) ≤ i.

(ii) If r0a(x) = i, the functions a0, . . . , ai−1 are zero on a neighbour-
hood of x and, for any y in this neighbourhood, ra(y) ≥ i. Consequently,
lim infy→x ra(y) ≥ i. Every neighbourhood of x contains a point y such that
ai(y) �= 0 and hence ra(y) ≤ i. Thus lim infy→x ra(y) = i.

(iii) Let i = r0a(x) and let V be a neighbourhood of x such that aj(y) = 0
for all y ∈ V and all j < i. Then x ∈ M --Z, where Z denotes the set of points
of M in a neighbourhood of which the function ai is zero. Since Z is closed
in M (Differentiable and Analytic Manifolds, Results, 5.3.5), V ∩ (M --Z) is a
neighbourhood of x. For every point y in this neighbourhood, r0a(y) = i.

(iv) The function ra − r0a is upper semi-continuous and its value at any
point is ≥ 0. If ra(x) = r0a(x), ra − r0a is zero on a neighbourhood of x, which
shows that ra is constant on a neighbourhood of x by (iii). Conversely, if ra
is constant on a neighbourhood of x, then r0a(x) = ra(x) by (ii). The set of
points x ∈ M such that r0a(x) = ra(x) is thus an open subset Ω of M. If
x ∈ M and if r0a(x) < ra(x), every neighbourhood of x contains a point y
such that ra(y) < ra(x) and r0a(y) = r0a(x). Every neighbourhood of x thus
contains a point y such that

ra(y) − r0a(y) < ra(x) − r0a(x).

It follows that Ω is dense in M.
If M is connected and if p is the value of r0a on M, the points of Ω are the

points x ∈ M such that ap(x) �= 0. If k = C, this implies that Ω is connected
by Lemma 3 of Appendix II.

Let ρ be an analytic linear representation of G on a vector space V of
finite dimension n over k. Put

det(T − ρ(g) + 1) = a0(g) + a1(g)T + · · · + an−1(g)Tn−1 + Tn.

The functions ra and r0a associated to the sequence (a0, a1, . . . , an−1, 1) will
be denoted by rρ and r0ρ, respectively. Then, for all g ∈ G,

rρ(g) = dimV1(ρ(g))

r0ρ(g) = lim inf
g′→g

dimV1(ρ(g′)).

Lemma 2. Let 0 → V′ → V → V′′ → 0 be an exact sequence of G-modules
defined by analytic linear representations ρ′, ρ, ρ′′ of G, respectively. Then:

rρ = rρ′ + rρ′′ , and r0ρ = r0ρ′ + r0ρ′′ .

Indeed, for all g ∈ G, there is (§1, no. 1, Cor. 3 of Th.1 ) an exact sequence

0 → (V′)1(ρ′(g)) → V1(ρ(g)) → (V′′)1(ρ′′(g)) → 0,
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which proves the first assertion. The second follows from it since, by Lemma 1
(iv), r0ρ = rρ, r

0
ρ′ = rρ′ and r0ρ′′ = rρ′′ on a dense open subset of G.

DEFINITION 1. An element g ∈ G is called regular for the linear represen-
tation ρ if rρ(g) = r0ρ(g).

PROPOSITION 1. The regular points for an analytic linear representation
ρ of G are the points of G in a neighbourhood of which rρ is constant. They
constitute a dense open subset of G. If k = C and G is connected, the set of
regular points for ρ is connected.

This follows from Lemma 1 (iv).

Remark. Let G∗ be an open subgroup of G. An element a ∈ G∗ is a regular
element of G for the linear representation ρ of G if and only if it is a regular
element of G∗ for the linear representation ρ|G∗.

2. REGULAR ELEMENTS OF A LIE GROUP

DEFINITION 2. An element of G is said to be regular if it is regular for the
adjoint representation of G.

In other words (Prop. 1), an element g ∈ G is regular if, for all elements
g′ in a neighbourhood of g in G, the dimension of the nilspace of Ad(g′) − 1
is equal to the dimension of the nilspace of Ad(g) − 1.

PROPOSITION 2. Let G′ be a finite dimensional Lie group over k and f an
open morphism from G to G′. The image under f of a regular element of G
is a regular element of G′. If the kernel of f is contained in the centre of G,
an element g ∈ G is regular if and only if f(g) is regular.

Indeed, let g′ be the Lie algebra of G′ and h the ideal in g given by
the kernel of Tf |g. Let ρ be the linear representation of G on h defined by
ρ(g) = Ad g|h for all g ∈ G, and let Ad ◦ f be the linear representation of
G on g′ given by the composite of f with the adjoint representation of G′.
These linear representations define an exact sequence of G-modules:

0 → h → g → g′ → 0.

By Lemma 2, rAd = rρ + rAd◦f . Since rAd◦f = rAd ◦ f and since f is an open
map, r0Ad◦f = r0Ad ◦ f . Consequently:

rAd − r0Ad = rρ − r0ρ + (rAd − r0Ad) ◦ f.
Thus, if g is regular, (rAd −r0Ad)(f(g)) = 0, which means that f(g) is regular.
If the kernel of f is contained in the centre of G,

rρ(g) = r0ρ(g) = dim h
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for all g ∈ G. Consequently, if f(g) is regular, rAd(g) = r0Ad(g), in other
words, g is regular.

PROPOSITION 3. Let G1 and G2 be two finite dimensional Lie groups over
k. An element (g1, g2) of G1 × G2 is regular if and only if g1 and g2 are
regular elements of G1 and G2, respectively.

The condition is necessary by Prop. 2. We show that it is sufficient. For all
g = (g1, g2) ∈ G1 × G2, rAd(g) = rAd(g1) + rAd(g2). In view of Lemma 1 (ii),
it follows that r0Ad(g) = r0Ad(g1)+r0Ad(g2). If g1 and g2 are regular, r0Ad(g1) =
rAd(g1) and r0Ad(g2) = rAd(g2), so r0Ad(g) = rAd(g), which means that g is
regular.

Lemma 3. Let a ∈ G and let m be a complement of g1(a) in g. Let U be a
neighbourhood of 0 in g and exp an exponential map from U to G. The map

f : (x, y) 	→ (exp y)a(exp x)(exp y)−1

from (g1(a) × m) ∩ U to G is étale at (0, 0).
The tangent linear maps at 0 of the maps x 	→ a(exp x) and y 	→

(exp y)a(exp y)−1 are the maps x 	→ ax and y 	→ ya−ay = a(a−1ya−y) from
g to TaG = ag (Chap. III, §3, no. 12, Prop. 46). Consequently, the tangent
map of f at (0, 0) is the map (x, y) 	→ ax+ a(a−1ya− y) = a(x+ a−1ya− y)
from g1(a) × m to ag. This map is injective. Indeed, if x ∈ g1(a), y ∈ m
and if x + a−1ya − y = 0, then (Ad(a) − 1)y = Ad(a)x ∈ g1(a) since
Ad(a)g1(a) ⊂ g1(a). This implies that y ∈ g1(a) and consequently that
y = 0. Since Ad(a) is injective on g1(a), it follows that x = 0. Since
dim g = dim g1(a) + dimm, this shows that f is étale at (0, 0).

PROPOSITION 4. Let a ∈ G and H be a Lie subgroup germ of G with Lie
algebra g1(a). The map (b, c) 	→ cabc−1 from H × G to G is a submersion at
(e, e).

Indeed, let m be a complement of g1(a) in g and exp an exponential map
of G defined on an open neighbourhood U of 0 in g. We can choose U so that
exp(U ∩ g1(a)) ⊂ H. The map f : (x, y) 	→ (exp x, exp y) is an analytic map
on a neighbourhood of (0, 0) in g1(a)×m with values in H×G. By Lemma 3,
the composite of f with the map ϕ : (b, c) 	→ cabc−1 is étale at (0, 0). It
follows that ϕ is a submersion at f(0, 0) = (e, e).

PROPOSITION 5. Let a ∈ G and let W be a neighbourhood of e in G. There
exists a neighbourhood V of a with the following property: for all a′ ∈ V, there
exists an element g ∈ W such that g1(a′) ⊂ Ad(g)g1(a).

Put g1 = g1(a) and let g = g1 + g+ be the Fitting decomposition of
Ad(a) − 1 (§1, no. 1). Let H be a Lie subgroup germ of G with Lie algebra
g1. For all h ∈ H, Ad(h)g1 ⊂ g1. Since [g1, g+] ⊂ g+, there exists a neighbour-
hood U of e in H such that Ad(h)g+ ⊂ g+ for all h ∈ H. Since the restriction
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of Ad(a) − 1 to g+ is bijective, U can be chosen so that the restriction of
Ad(ah) − 1 to g+ is bijective for all h ∈ U. Then g1(ah) ⊂ g1(a) = g1 for
all h ∈ U. By Proposition 4, Int(W)(aU) is a neighbourhood of a in G. If
a′ ∈ Int(W)(aU), then a′ = g(ah)g−1 with g ∈ W and h ∈ U; it follows that
g1(a′) = Ad(g)g1(ah) ⊂ Ad(g)g1(a).

COROLLARY. Let G∗ be an open subgroup of G. If a ∈ G is regular, there
exists a neighbourhood V of a such that, for all a′ ∈ V, g1(a′) is conjugate to
g1(a) under Ad(G∗).

3. RELATIONS WITH REGULAR ELEMENTS OF THE LIE
ALGEBRA

PROPOSITION 6. Let V be an open subgroup of g and let exp : V → G be
an exponential map defined on V.

(i) There exists a neighbourhood W of 0 in V such that g1(exp x) = g0(x)
for all x ∈ W.

(ii) If k = R or C, g1(exp x) ⊃ g0(x) for all x ∈ g.
By Cor. 3 of Prop. 8 of Chap. III, §4, no. 4, there exists a neighbourhood

V′ of 0 in V such that, for all x ∈ V′, exp(ad(x)) =
∞∑

n=0
1
n!ad(x)n is defined

and Ad(exp x) = exp(ad(x)). If P ∈ k[X] and α ∈ End(g), it is easy to check
that gλ(α) ⊂ gP(λ)(P(α)) for all λ ∈ k. Consequently,

g0(ad(x)) ⊂ g1(exp(ad(x))) = g1(Ad(exp x)) = g1(exp x)

for all x ∈ V′. If k = R or C, V = g and we can take V′ = V, which
proves (ii). We prove (i). Let U be a neighbourhood of 0 in End(g) such that
Log(1 + α) =

∑
n>0

(−1)n+1 1
nα

n is defined for all α ∈ U. Then Log ◦ exp = 1

on a neighbourhood of 0 and g1(1 + α) ⊂ g0(Log(1 + α)) for all α ∈ U.
Let W be the neighbourhood of 0 in g consisting of those x ∈ V′ such that
exp adx ∈ 1 + U and

Log(exp(ad(x))) = ad(x).

Then, for all x ∈ W,

g1(exp x) = g1(Ad(exp x)) = g1(exp(ad(x)))

⊂ g0(Log(exp(ad(x)))) = g0(ad(x)) = g0(x).

This shows that g1(exp x) = g0(x) for all x ∈ W.

Lemma 4. Let U be a neighbourhood of 0 in g and exp an exponential map
from U to G, étale at every point of U and such that g1(exp x) = g0(x) for
all x ∈ U.
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(i) The function r0Ad is constant and equal to the rank of g on exp(U).
(ii) If x ∈ U, exp x is regular if and only if x is a regular element of g.
(iii) An element a ∈ exp(U) is regular if and only if g1(a) is a Cartan

subalgebra of g.
Let l = rk(g). If x ∈ U is a regular element of g,

rAd(exp x) = dim g1(exp x) = dim g0(x) = l.

Since the regular elements of g belonging to U constitute a neighbourhood of x
and exp is étale at x, this shows that exp x is regular and that r0Ad(exp x) = l.
The regular elements of g belonging to U being dense in U, we have r0Ad(a) =
l for all a ∈ exp(U). Let a ∈ exp(U) be a regular element of G and let
x ∈ U be such that a = exp x. Since g0(x) = g1(a), dim g0(x) = r0Ad(a) = l.
Consequently, x is a regular element of g and g1(a) is a Cartan subalgebra of
g. Finally, if a ∈ exp(U) and g1(a) is a Cartan subalgebra of g,

rAd(a) = dim g1(a) = l = r0Ad(a),

so a is regular.

PROPOSITION 7. Let V be a neighbourhood of e in G. Every Cartan sub-
algebra of g is of the form g1(a) where a is a regular element of G belonging
to V.

By Prop. 6, there exists an open neighbourhood U of 0 in g and an ex-
ponential map exp : U → G satisfying the conditions of Lemma 4. If h is
a Cartan subalgebra of g, there exists a regular element x ∈ h such that
h = g0(x) (§3, Th. 2). On the other hand, there exists an element t ∈ k∗ such
that tx ∈ U and exp(tx) ∈ V. Then h = g0(x) = g0(tx) = g1(exp(tx)), and
by Lemma 4 (ii), exp(tx) is a regular element of G.

PROPOSITION 8. Let l be the rank of g. There exists an open subgroup G∗

of G such that:
(i) the function r0Ad is constant on G∗ and its value is l;
(ii) an element a ∈ G∗ is regular if and only if g1(a) is a Cartan subalgebra

of g;
(iii) if a ∈ G∗, every Cartan subalgebra of g1(a) is a Cartan subalgebra of

g.
(i) By Prop. 6, there exists an open neighbourhood U of 0 in g and an

exponential map exp from U to G satisfying the conditions of Lemma 4. In
what follows, G∗ will denote the identity component of G if k = R or C and
an open subgroup of G contained in exp(U) if k is ultrametric. Since r0Ad is
locally constant and its value at any point of exp(U) is l (Lemma 4 (i)), it
follows that r0Ad is constant and equal to l on G∗.

(ii) Let R∗ (resp. S∗) be the set of regular elements of G∗ (resp. the set of
elements a ∈ G∗ such that g1(a) is a Cartan subalgebra of g). Then S∗ ⊂ R∗.
Indeed, if a ∈ S∗, then rAd(a) = l = r0Ad(a). We show that R∗ ⊂ S∗. If k is
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ultrametric, this follows from the inclusion G∗ ⊂ exp(U) and Lemma 4 (iii).
Assume that k = C. By the Cor. of Prop. 5, if a ∈ R∗, then for every
a′ belonging to a neighbourhood of a, g1(a′) is conjugate to g1(a) by an
automorphism of g. This proves that S∗ and R∗ -- S∗ are open subsets of G∗.
We have seen that S∗ contains all the regular elements in a neighbourhood
of e (Lemma 4 (iii)); consequently, S∗ is non-empty. Since G∗ is connected,
so is R∗ (Prop. 1) and consequently S∗ = R∗.

It remains to study the case k = R. Assume first of all that G∗ is an
integral subgroup of GL(E) where E denotes a finite dimensional real vector
space. Let G∗

c be the integral subgroup of GL(E ⊗R C) with Lie algebra
gc = g ⊗ C. There exists an analytic function on G∗

c whose set of zeros is
the complement of the open set of regular elements of G∗

c . By Differentiable
and Analytic Manifolds, Results, 3.2.5, this function cannot vanish at every
point of G∗. Consequently, G∗ contains a regular element of G∗

c . Let Adc

be the adjoint representation of G∗
c . For any a ∈ G∗, g1

c(a) = g1(a) ⊗ C,
so rAdc

(a) = rAd(a). If a ∈ G∗ is a regular element of G∗
c , this is a regular

element of G∗ and r0Adc
(a) = r0Ad(a). The functions r0Adc

and r0Ad being
constant on G∗

c and on G∗, respectively, it follows that the regular elements
of G∗ are the regular elements of G∗

c belonging to G∗. From the above, if a
is a regular element of G∗, g1

c(a) = g1(a) ⊗ C is a Cartan subalgebra of gc;
this implies that g1(a) is a Cartan subalgebra of g (§2, Prop. 3).

Assume now that G is simply connected. There exists a finite dimensional
real vector space E and an étale morphism f from G to an integral subgroup
G′ of GL(E) (Chap. III, §6, no. 1, Cor. of Th. 1). By Prop. 2, if a ∈ G is regu-
lar, f(a) is regular. By the preceding, g′1(f(a)) is a Cartan subalgebra of the
Lie algebra g′ of G′. Since g′1(f(a)) = (Tf)g1(a) and Tf is an isomorphism
from g to g′, this proves that g1(a) is a Cartan subalgebra of g.

We turn finally to the general case (k = R). Let G̃ be a universal covering
of G∗, g̃ = L(G̃), and q the canonical map from G̃ to G∗. Since the kernel of
q is contained in the centre of G̃, if a ∈ G∗ is regular and if a′ ∈ q−1(a), then
a′ is regular (Prop. 2). By the preceding, g̃1(a′) is a Cartan subalgebra of g̃.
Since g1(a) = (Tq)g̃1(a′) and since Tq is an isomorphism from g̃ to g, this
proves that g1(a) is a Cartan subalgebra of g.

(iii) By Prop. 5, there exists a neighbourhood V of a such that, for all
a′ ∈ V, g1(a′) is conjugate to a subalgebra of g1(a) by an automorphism of g.
Since every neighbourhood of a contains a regular element of G∗, it follows
from (ii) that g1(a) contains a Cartan subalgebra of g. Thus, by Prop. 3 of
§3, every Cartan subalgebra of g1(a) is a Cartan subalgebra of g.

Remark. If k = C, the subalgebras g1(a), for a regular and belonging to a
connected component M of G, are conjugate under Int(g). Indeed, let R be
the set of regular elements of G. For all a ∈ R ∩ M, let Ma be the set of
those b ∈ R ∩ M such that g1(a) is conjugate to g1(a) under Int(g). We have
Int(g) = Ad(G0), where G0 is the identity component of G. By the Corollary
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to Prop. 5, Ma is open in R. It follows that Ma is open and closed in R. Since
k = C, R ∩ M is connected (Lemma 1), hence Ma = R ∩ M.

4. APPLICATION TO ELEMENTARY AUTOMORPHISMS

PROPOSITION 9. Let k be a field of characteristic 0 and g a Lie algebra
over k. If a ∈ Aute(g), the dimension of the nilspace of a− 1 is greater than
or equal to the rank of g.

By the “Lefschetz principle” (Algebra, Chap. V, §14, no. 6, Cor. 2 of
Th. 5), k is an ascending directed union of subfields (ki)i∈I which admit C
as extension field. Let (eα) be a basis of g over k and x1, . . . , xm elements of
g such that ad(x1), . . . , ad(xm) are nilpotent and a = ead(x1) . . . ead(xm). Let
cγαβ be the structure constants of g with respect to the basis (eα) and (xα

r )
the components of xr with respect to this basis (1 ≤ r ≤ m). There exists an
index j ∈ I such that the cγαβ and the xα

r all belong to kj . Let gj =
∑
α
kjeα;

this is a Lie algebra over kj containing x1, . . . , xm, and the restriction aj of a
to gj is an elementary automorphism of gj . The extension of aj to gj ⊗kj

C
is an elementary automorphism aj ⊗ 1 of gj ⊗ C. So let Gj be a connected
complex Lie group with Lie algebra gj ⊗C, and s an element of Gj such that
Ad(s) = aj ⊗ 1. Prop. 8, applied to the pair (Gj , s), shows that the nilspace
of aj ⊗ 1 − 1 is of dimension n, so

n ≥ rk(gj ⊗ C) = rk(gj) = rk(g).

But this nilspace has the same dimension as that of aj − 1 and that of a− 1.
Hence the proposition.

§5. DECOMPOSABLE LINEAR LIE ALGEBRAS

In this paragraph, k is assumed to be of characteristic 0. We denote by V a
finite dimensional vector space.

1. DECOMPOSABLE LINEAR LIE ALGEBRAS

DEFINITION 1. Let g be a Lie subalgebra of gl(V). Then g is said to be
decomposable if g contains the semi-simple and nilpotent components of each
of its elements (Algebra, Chap. VII, §5, no. 8).

Examples. 1) Let V′ and V′′ be vector subspaces of V such that V′′ ⊃ V′.
The set of x ∈ gl(V) such that x(V′′) ⊂ V′ is a decomposable Lie subalgebra
of gl(V); indeed, for all x ∈ gl(V), the semi-simple and nilpotent components
of x are of the form P(x) and Q(x), where P and Q are polynomials without
constant term.



§5. DECOMPOSABLE LINEAR LIE ALGEBRAS 35

2) Assume that V has an algebra structure. The set of derivations of V is
a decomposable Lie subalgebra of gl(V) (§1, no. 1, Prop. 4 (ii)).

3) ∗More generally, it can be shown that the Lie algebra of any algebraic
subgroup of GL(V) is decomposable.∗

PROPOSITION 1. Let g be a decomposable Lie subalgebra of gl(V), x ∈ g, s
and n the semi-simple and nilpotent components of x.

(i) The semi-simple and nilpotent components of adgx are adgs and adgn,
respectively.

(ii) x is regular in g if and only if s is.
(iii) If g′ is a subalgebra of gl(V) containing g, every elementary auto-

morphism of g extends to an elementary automorphism of g′.
Put a = gl(V). By Chap. I, §5, no. 4, Lemma 2, the semi-simple and

nilpotent components of adax are adas and adan; assertion (i) follows from
this. We deduce that the characteristic polynomials of adgx and adgs are the
same; hence (ii). If adgx is nilpotent, adgx = adgn, so adg′n extends adgx,
and n is a nilpotent element of g′, hence (iii).

Let g be a Lie subalgebra of gl(V). We know (Chap. I, §6, no. 5, Th. 4)
that the following conditions are equivalent:

(i) the identity representation of g is semi-simple;
(ii) g is reductive and every element of the centre of g is a semi-simple

endomorphism.
These conditions are actually equivalent to the following:
(iii) g is a reductive subalgebra in gl(V).
Indeed, (i) =⇒ (iii) by Chap. I, §6, no. 5, Cor. 3 of Th. 4, and (iii) =⇒ (i)

by Chap. I, §6, no. 6, Cor. 1 of Prop. 7. We are going to show that if g satisfies
these conditions, g is decomposable. More generally:

PROPOSITION 2. Let g be a Lie subalgebra of gl(V) reductive in gl(V), E
a finite dimensional vector space and π : g → gl(E) a semi-simple linear
representation of g on E. Then:

(i) g and π(g) are decomposable.
(ii) The semi-simple (resp. nilpotent) elements of π(g) are the images

under π of the semi-simple (resp. nilpotent) elements of g.
(iii) If h is a decomposable subalgebra of gl(V) contained in g, π(h) is a

decomposable subalgebra of gl(E).
(iv) If h′ is a decomposable subalgebra of gl(E), π−1(h′) is a decomposable

subalgebra of gl(V).
Let s = [g, g] and let c be the centre of g. Then g = s × c, and π(g) =

π(s) × π(c) by Chap. I, §6, no. 4, Cor. of Prop. 5. Let y ∈ s, z ∈ c, ys and yn

the semi-simple and nilpotent components of y. Then ys, yn ∈ s (Chap. I, §6,
no. 3, Prop. 3), ys + z is semi-simple (Algebra, Chap. VII, §5, no. 7, Cor. of
Prop. 16), and yn commutes with ys+z. Hence, the semi-simple and nilpotent
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components of y + z are ys + z and yn. Thus, g is decomposable. Since π(g)
is reductive in gl(E), the same argument applies to π(g) and shows that π(g)
is decomposable. Moreover, the nilpotent elements of g (resp. π(g)) are the
nilpotent elements of s (resp. π(s)). Hence the nilpotent elements of π(g) are
the images under π of the nilpotent elements of g (Chap. I, §6, no. 3, Prop. 4).
The semi-simple elements of g (resp. π(g)) are the sums of the semi-simple
elements of s (resp. π(s)) and the elements of c (resp. π(c)). Thus the semi-
simple elements of π(g) are the images under π of the semi-simple elements
of g (Chap. I, loc. cit.). Hence (ii).

Assertions (iii) and (iv) follow immediately from (i) and (ii).

Remarks. 1) The semi-simplicity assumption on π is equivalent to saying
that π(x) is semi-simple for all x ∈ c. Note that this assumption is satisfied
when π is obtained from the identity representation g → gl(V) by the succes-
sive application of the following operations: tensor product, passage to the
dual, to a subrepresentation, to a quotient, to a direct sum.

2) Let g ⊂ gl(V), g′ ⊂ gl(V′) be decomposable Lie algebras, ϕ an isomor-
phism from g to g′. Note that ϕ does not necessarily transform semi-simple
(resp. nilpotent) elements of g to semi-simple (resp. nilpotent) elements of g′

(Exerc. 2). However, this is the case if g is semi-simple (Chap. I, §6, no. 3,
Th. 3).

PROPOSITION 3. Let a be a decomposable Lie subalgebra of gl(V) and let b
and c be vector subspaces of gl(V) such that b ⊂ c. Let a′ be the set of x ∈ a
such that [x, c] ⊂ b. Then a′ is decomposable.

Put g = gl(V); the subalgebra h′ of gl(g) consisting of the z ∈ gl(g)
such that z(c) ⊂ b is decomposable (Example 1). Let π : g → gl(g) be the
adjoint representation of g. Prop. 2 (iv), applied to π, shows that π−1(h′) is
decomposable. Hence so is a′ = a ∩ π−1(h′).

COROLLARY 1. If a is a decomposable Lie subalgebra of gl(V), and n a Lie
subalgebra of a, the normalizer (resp. centralizer) of n in a is decomposable.

This follows from Prop. 3 by taking c = n, b = n (resp. c = n, b = {0}).

COROLLARY 2. The Cartan subalgebras of a decomposable Lie subalgebra
of gl(V) are decomposable.

This follows from Corollary 1.

Remark. We shall prove later (no. 5, Th. 2) a converse of Cor. 2.
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2. DECOMPOSABLE ENVELOPE

The intersection of a family of decomposable Lie subalgebras of gl(V) is
clearly decomposable. Consequently, if g is a Lie subalgebra of gl(V), the set
of decomposable Lie subalgebras of gl(V) containing g has a smallest element,
called the decomposable envelope of g; in this paragraph, this envelope will
be denoted by e(g).

PROPOSITION 4. Let g be a Lie subalgebra of gl(V) and n an ideal of g.
Then n and e(n) are ideals of e(g), and [e(g), e(n)] = [g, n].

Let g1 be the set of x ∈ gl(V) such that [x, n] ⊂ [g, n]. This is a decompos-
able Lie subalgebra of gl(V), containing g and hence e(g), cf. no. 1, Prop. 3;
in other words, [e(g), n] ⊂ [g, n]. Let n1 be the set of y ∈ gl(V) such that

[e(g), y] ⊂ [g, n].

This is a decomposable Lie subalgebra of gl(V) containing n by the preceding,
and hence containing e(n); in other words [e(g), e(n)] ⊂ [g, n], so

[e(g), e(n)] = [g, n].

It follows that [e(g), n] ⊂ [e(g), e(n)] ⊂ n, so n and e(n) are ideals of e(g).

COROLLARY 1. (i) Dig = Die(g) for i ≥ 1, and C ig = C ie(g) for i ≥ 2.
(ii) If g is commutative (resp. nilpotent, resp. solvable), then e(g) is com-

mutative (resp. nilpotent, resp. solvable).
Assertion (i) follows from Prop. 4 by induction on i and (ii) follows from

(i).

COROLLARY 2. Let r be the radical of g. If g is decomposable, r is decom-
posable.

Indeed, e(r) is a solvable ideal of g by Prop. 4 and Cor. 1, hence e(r) = r.

3. DECOMPOSITIONS OF DECOMPOSABLE ALGEBRAS

If g is a Lie subalgebra of gl(V) with radical r, the set of nilpotent elements
of r is a nilpotent ideal of g, the largest nilpotency ideal of the identity
representation of g (Chap. I, §5, no. 3, Cor. 6 of Th. 1). In this paragraph,
we shall denote this ideal by nV(g). It contains the nilpotent radical [g, g] ∩ r
of g (Chap. I, §5, no. 3, Th. 1).

PROPOSITION 5. Let g be a decomposable nilpotent Lie subalgebra of gl(V).
Let t be the set of semi-simple elements of g. Then t is a central subalgebra
of g, and g is the product of t and nV(g) as Lie algebras.
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If x ∈ t, adgx is semi-simple and nilpotent, hence zero, so that x is cen-
tral in g. Consequently, t is an ideal of g, and t ∩ nV(g) = 0. Since g is
decomposable, g = t + nV(g), hence the proposition.

PROPOSITION 6. Let g be a decomposable Lie subalgebra of gl(V). Let T be
the set of commutative subalgebras of g consisting of semi-simple elements,
and T1 the set of maximal elements of T. Let H be the set of Cartan subal-
gebras of g.

(i) For h ∈ H, let ϕ(h) be the set of semi-simple elements of h. Then
ϕ(h) ∈ T1.

(ii) For t ∈ T1, let ψ(t) be the commutant of t in g. Then ψ(t) ∈ H.
(iii) The maps ϕ and ψ are inverse bijections from H to T1 and from T1

to H.
(iv) If k is algebraically closed, Aute(g) operates transitively on T1.
Let h ∈ H, and put t = ϕ(h). By Prop. 5 and Cor. 2 of Prop. 3, t ∈ T and

h = t × nV(h). For any subalgebra u of g, we denote by ψ(u) the commutant
of u in g. Then h ⊂ ψ(t), and ψ(t) ⊂ g0(h) since the elements of nV(h) are
nilpotent, so h = ψ(t). If t′ ∈ T and t ⊂ t′, we have t′ ⊂ ψ(t) = h so t′ = t,
and hence t ∈ T1.

Let t ∈ T1, and put c = ψ(t). Let h be a Cartan subalgebra of c. By §2,
no. 3, Prop. 10, h ∈ H and t ⊂ h. Put t1 = ϕ(h) ∈ T. Then t ⊂ t1 so t = t1,
and h = ψ(t1) = ψ(t) = c by the preceding. Thus, ψ(t) ∈ H, and ϕ(ψ(t)) = t.

We have thus proved (i), (ii) and (iii). Assume that k is algebraically
closed. Since Aute(g) operates transitively on H (§3, no. 2, Th. 1), Aute(g)
operates transitively on T1.

COROLLARY 1. The Cartan subalgebras of g are the centralizers of the reg-
ular semi-simple elements of g.

If x ∈ g is regular, g0(x) is a Cartan subalgebra of g (§2, no. 3, Th. 1 (i));
moreover, if x is semi-simple g0(x) is the centralizer of x in g. Conversely,
let h be a Cartan subalgebra of g. There exists t ∈ T1 such that h = ψ(t).
By §1, no. 2, Prop. 7, there exists x ∈ t such that h = g0(x); since x ∈ t,
g0(x) = g0(x). By §3, no. 3, Th. 2 (ii), x is regular.

COROLLARY 2. Assume in addition that g is solvable. Then:
(i) The subgroup of Aut(g) consisting of the ead x, x ∈ C ∞g (cf. §3, no.

4), operates transitively on T1.
(ii) If t ∈ T1, g is the semi-direct product of t and nV(g).
Assertion (i) follows from the fact that the group of the ead x, x ∈ C ∞g,

operates transitively on H (§3, no. 4, Th. 3).
We prove (ii). Let t ∈ T1, and let h = ψ(t) be the corresponding Cartan

subalgebra of g. In view of Prop. 5, h = t + nV(h) ⊂ t + nV(g). On the other
hand, g = h + [g, g] (§2, no. 1, Cor. 3 of Prop. 4) and [g, g] ⊂ nV(g), so
g = t + nV(g). But it is clear that t ∩ nV(g) = {0}. The algebra g is thus the
semi-direct product of t and the ideal nV(g).
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PROPOSITION 7. Let g be a decomposable Lie subalgebra of gl(V).
(i) There exists a Lie subalgebra m of g, reductive in gl(V), such that g is

the semi-direct product of m and nV(g).
(ii) Any two Lie subalgebras of g with the properties in (i) are conjugate

under Aute(g).
The radical r of g is decomposable (no. 2, Cor. 2 of Prop. 4). By Cor. 2

of Prop. 6, there exists a commutative subalgebra t of r, consisting of semi-
simple elements, such that r = t ⊕ nV(r). Since adgt consists of semi-simple
elements, g is the direct sum of [t, g] and the centralizer z of t (Chap. I,
§3, no. 5, Prop. 6). Since [t, g] ⊂ r, g = z + r. Consequently, if s is a Levi
subalgebra of z (Chap. I, §6, no. 8), g = s + r, so s is a Levi subalgebra of
g. Put m = s ⊕ t. Since [s, t] = {0}, m is a Lie subalgebra of g, reductive in
gl(V) by Chap. I, §6, no. 5, Th. 4. Moreover,

g = s ⊕ r = s ⊕ t ⊕ nV(r) = s ⊕ t ⊕ nV(g) = m ⊕ nV(g)

since nV(g) = nV(r). Hence (i).
Now let m′ be a Lie subalgebra of g complementary to nV(g) and reduc-

tive in gl(V). We show that m′ is conjugate to m under Aute(g). We have
m′ = s′ ⊕ t′, where s′ = [m′,m′] is semi-simple and the centre t′ of m′ consists
of semi-simple elements. Then r = t⊕nV(g) = t′ ⊕nV(g). In view of Cor. 2 of
Prop. 6, we are reduced to the case t = t′. Then s′ ⊂ z; since dim s′ = dim s,
s′ is a Levi subalgebra of z. By Chap. I, §6, no. 8, Th. 5, there exists x ∈ nV(z)
such that ead x(s) = s′; since x commutes with t, we also have ead x(t) = t.

4. LINEAR LIE ALGEBRAS OF NILPOTENT
ENDOMORPHISMS

Lemma 1. Let n be a Lie subalgebra of gl(V) consisting of nilpotent endomor-
phisms, and N the subgroup exp n of GL(V) (§3, no. 1, Lemma 1).

(i) Let ρ be a finite dimensional linear representation of n on W, such
that the elements of ρ(n) are nilpotent, W′ a vector subspace of W stable
under ρ, ρ1 and ρ2 the subrepresentation and quotient representation of ρ
defined by W′, π, π1, π2 the representations of N compatible with ρ, ρ1, ρ2 (§3,
no. 1). Then π1, π2 are the subrepresentation and quotient representation of
π defined by W′.

(ii) Let ρ1, ρ2 be finite dimensional linear representations of n such that
the elements of ρ1(n) and ρ2(n) are nilpotent, and π1, π2 the representations
of N compatible with ρ1, ρ2. Then π1⊗π2 is the representation of N compatible
with ρ1 ⊗ ρ2.

(iii) Let ρ1, ρ2 be finite dimensional linear representations of n on vector
spaces V1,V2, such that the elements of ρ1(n) and ρ2(n) are nilpotent, ρ the
representation of n on Hom(V1,V2) determined by ρ1, ρ2. Let π1, π2 be the
representations of N compatible with ρ1, ρ2, and π the representation of N
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on Hom(V1,V2) determined by π1, π2. Then π is the representation of N
compatible with ρ.

Assertion (i) is clear. Let ρ1, ρ2, π1, π2 be as in (ii). If x ∈ n, we have,
since ρ1(x) ⊗ 1 and 1 ⊗ ρ2(x) commute,

exp(ρ1(x) ⊗ 1 + 1 ⊗ ρ2(x)) = exp(ρ1(x) ⊗ 1). exp(1 ⊗ ρ2(x))
= (exp ρ1(x)) ⊗ 1.1 ⊗ (exp ρ2(x))
= (exp ρ1(x)) ⊗ (exp ρ2(x))
= π1(expx) ⊗ π2(expx)
= (π1 ⊗ π2)(expx),

hence (ii). Let ρ1, ρ2, ρ, π1, π2, π,V1,V2 be as in (iii). If v1 ∈ EndV1 and
v2 ∈ EndV2, denote by Rv1 and Lv2 the maps u 	→ uv1 and u 	→ v2u from
Hom(V1,V2) to itself; these maps commute and ρ(x)u = (Lρ2(x) − Rρ1(x))u,
so

exp ρ(x).u = exp Lρ2(x). exp R−ρ1(x).u

= Lexp ρ2(x).Rexp(−ρ1(x)).u

= Lπ2(exp x).Rπ1(exp(−x)).u

= π(expx).u,

hence (iii).

Lemma 2 2. (i) Let W be a vector subspace of V of dimension d, D the line∧d W ⊂ ∧d V, θ the canonical representation of gl(V) on
∧

V (Chap. III,
App.). Let x ∈ gl(V). Then x(W) ⊂ W if and only if θ(x)(D) ⊂ D.

(ii) Let (e1, . . . , en) be the canonical basis of kn, θ the canonical represen-
tation of gl(n, k) on

∧
(kn), and x ∈ gl(n, k). Then x ∈ n(n, k) if and only

if

θ(x)(en−d+1 ∧ · · · ∧ en) = 0

for 1 ≤ d ≤ n.
(i) If x(W) ⊂ W, it is clear that θ(x)D ⊂ D. Conversely, assume that

θ(x)D ⊂ D. Let u be a non-zero element of D and let y ∈ W. Then y∧u = 0.
Since θ(x) is a derivation of

∧
V, this implies

θ(x)y ∧ u+ y ∧ θ(x)u = 0.

Now θ(x)u ∈ ku, so y∧θ(x)u = 0 and consequently θ(x)y∧u = 0. By Algebra,
Chap. III, §7, no. 9, Prop. 13, this implies that θ(x)y ∈ W, i.e. x(y) ∈ W,
which proves that x(W) ⊂ W.

(ii) The condition stated in (ii) is clearly necessary for x ∈ n(n, k). Assume
that it is satisfied. By (i), x leaves

2 In this lemma, k can be an arbitrary (commutative) field.
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ken−d+1 + · · · + ken

stable, and since this holds for d = 1, . . . , n, x is lower triangular. Put

x = (xij)1≤i,j≤n.

We have 0 = x(en) = xnnen, so xnn = 0. Let i < n, and assume that we have
proved that xjj = 0 for j > i. Then

0 = θ(x)(ei ∧ ei+1 ∧ · · · ∧ en) = xii(ei ∧ ei+1 ∧ · · · ∧ en),

so xii = 0. Thus, x ∈ n(n, k).

PROPOSITION 8. Let n be a Lie subalgebra of gl(V) consisting of nilpotent
elements, q the normalizer of n in gl(V). There exists a finite dimensional
vector space E, a representation ρ of gl(V) on E, and a vector subspace F of
E, satisfying the following conditions:

(i) the image under ρ of a homothety of V is diagonalizable;
(ii) F is stable under ρ(q);
(iii) n is the set of x ∈ gl(V) such that ρ(x)(F) = 0.
Let n = dim V. By Engel’s theorem, V can be identified with kn in such

a way that n ⊂ n(n, k). Let P be the algebra of polynomial functions on
gl(n, k). For i = 0, 1, . . ., let Pi be the set of elements of P homogeneous of
degree i. Let N = exp n, which is a subgroup of the strictly lower triangular
group T. Let J be the set of elements of P that are zero on N; this is an ideal
in P. Let NJ be the set of x ∈ gl(n, k) such that p(x) = 0 for all p ∈ J. Then
N ⊂ NJ. Conversely, let x ∈ NJ. Denote by pij the polynomial functions
giving the entries of an element of gl(n, k). The ideal J contains the pij (for
i < j) and the pii − 1; hence x ∈ T. On the other hand, if u is a linear form
on gl(n, k) which is zero on n, there exists pu ∈ P such that pu(z) = u(log z)
for all z ∈ T (§3, no. 1, Lemma 1 (i)); we have pu ∈ J, so u(log x) = 0. It
follows that log x belongs to n, so x ∈ N, proving that N = NJ.

For all p ∈ P and g ∈ GLn(k), let λ(g)p be the function x 	→ p(g−1x) on
gl(n, k); then λ(g)p ∈ P, λ(g) is an automorphism of the algebra P, and λ is
a representation of GLn(k) on P which leaves each Pi stable. We show that

N = {x ∈ GLn(k) | λ(x)J = J}. (1)

If x ∈ N, p ∈ J, y ∈ N, then (λ(x)p)(y) = p(x−1y) = 0 since x−1y ∈ N; thus
λ(x)p ∈ J, so λ(x)J = J. Let x ∈ GLn(k) be such that λ(x)J = J; let p ∈ J;
then p(x−1) = (λ(x)p)(e) = 0, so x−1 ∈ NJ = N and x ∈ N. This proves (i).

The ideal J is of finite type (Commutative Algebra, Chap. III, §2,
no. 10, Cor. 2 of Th. 2). Hence, there exists an integer q such that, if
W = P0 + P1 + · · · + Pq, then J ∩ W generates J as an ideal. Denote by λj

(resp. λ′) the subrepresentation of λ defined by PJ (resp. by W). By (1),

N = {x ∈ GLn(k) | λ′(x)(J ∩ W) = J ∩ W}. (2)
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We show that, for all j, there exists a representation σj of the Lie algebra
gl(n, k) on Pj such that:

σj |n(n, k) is compatible (§3, no. 1) with λj |T. (3)
For all x ∈ k.1n, σj(x) is a homothety. (4)

Since λj is the jth symmetric power of λ1, it suffices to prove the existence
of σ1, cf. Lemma 1. Now λ1 is the contragredient representation of the rep-
resentation γ of GLn(k) on gl(n, k) given by

γ(x)y = xy, x ∈ GLn(k), y ∈ gl(n, k).

Let c be the representation of the Lie algebra gl(n, k) on gl(n, k) given by

c(x)y = xy, x, y ∈ gl(n, k).

It is immediate that c|n(n, k) and γ|T are compatible, and that c(x) is a
homothety for all x ∈ k.1n. Thus, it suffices to take for σ1 the dual represen-
tation of c (Chap. I, §3, no. 3).

Now let σ′ be the representation of gl(n, k) on W given by the direct sum
of the σj , 0 ≤ j ≤ q. In view of (2) and the relations

λ′(exp(x)) = exp(σ′(x)) and σ′(log(y)) = log(λ′(y)), x ∈ n(n, k), y ∈ T,

we have

n = {x ∈ n(n, k) | σ′(x)(J ∩ W) ⊂ J ∩ W}. (5)

Let d = dim(J ∩ W), and let τ =
∧d
σ′. Let D =

∧d(J ∩ W). By (5) and
Lemma 2 (i),

n = {x ∈ n(n, k) | τ(x)(D) ⊂ D}. (6)

But τ(n(n, k)) consists of nilpotent endomorphisms, so (6) can also be written

n = {x ∈ n(n, k) | τ(x)(D) = 0}. (7)

Now let E =
∧d W ⊕∧1 V ⊕∧2 V ⊕ · · · ⊕∧n V; let ρ be the direct sum of τ

and the canonical representations of gl(n, k) on
∧1 V, . . . ,

∧n V. Let E0 ⊂ E
be the sum of D =

∧d(J ∩ W) and the lines generated by en−j+1 ∧ · · · ∧ en
for j = 1, . . . , n. By (7) and Lemma 2 (ii),

n = {x ∈ gl(V) | ρ(x)(E0) = 0}. (8)

It is immediate that, if x ∈ k.1n, ρ(x) is diagonalizable. Finally, if F is the
set of elements of E annihilated by ρ(n), F is stable under ρ(q) (Chap. I, §3,
no. 5, Prop. 5), and by (8),

n = {x ∈ gl(V) | ρ(x)(F) = 0}. (9)
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5. CHARACTERIZATIONS OF DECOMPOSABLE LIE
ALGEBRAS

Every decomposable Lie algebra is generated as a vector space (and a fortiori
as a Lie algebra) by the set of its elements that are either semi-simple or
nilpotent. Conversely:

THEOREM 1. Let g be a Lie subalgebra of gl(V) and let X be a subset of g
generating g as a Lie algebra over k. If every element of X is either semi-
simple or nilpotent, g is decomposable.

a) g is commutative.
The semi-simple (resp. nilpotent) elements of g form a vector subspace gs

(resp. gn). The assumption is equivalent to g = gs ⊕ gn, hence the fact that
g is decomposable.

b) g is reductive.
Then g = g′ × c with g′ semi-simple and c commutative. By Prop. 2, g′ is

decomposable. Let x = a + b ∈ g with a ∈ g′, b ∈ c. Let as, an, bs, bn be the
semi-simple and nilpotent components of a, b. Since as, an, bs, bn mutually
commute, the semi-simple and nilpotent components of x are as +bs, an +bn.
Now as, an ∈ g′. If x is semi-simple, x = as +bs; since as ∈ g′, we have bs ∈ g,
so bs ∈ c since bs commutes with g; consequently, a = as and b = bs. Similarly,
if x is nilpotent, a = an and b = bn. It follows that the projections on c of the
elements of X are either semi-simple or nilpotent; by a), this implies that c is
decomposable. Retaining the preceding notation, but without the assumption
on x, we now have bs, bn ∈ c, so as +bs, an +bn ∈ g, which proves the theorem
in this case.

c) General case.
We assume that the theorem is proved for Lie algebras of dimension

< dim g and prove it for g.
Let n be the largest ideal of nilpotency of the identity representation of

g. If n = 0, g has an injective semi-simple representation, and so is reductive.
Assume that n �= 0. Let p be the normalizer of n in gl(V). There exist E, ρ,F
satisfying the conditions of Prop. 8. Since g ⊂ p, ρ(g) leaves F stable; let ρ0 be
the representation u 	→ ρ(u)|F of g on F; we have n = Kerρ0. The image under
ρ of every semi-simple (resp. nilpotent) element of gl(V) is semi-simple (resp.
nilpotent) (Prop. 2). The algebra ρ0(g) is thus generated by its semi-simple
elements and its nilpotent elements. By the induction hypothesis, ρ0(g) is
decomposable.

Let x ∈ g, and let xs, xn be its semi-simple and nilpotent components. By
Prop. 2, the semi-simple and nilpotent components of ρ(x) are ρ(xs), ρ(xn).
Since ρ0(g) is decomposable, there exist y, z ∈ g such that

ρ0(y) = ρ(xs)|F, ρ0(z) = ρ(xn)|F.
Then xs ∈ y + n, xn ∈ z + n, so xs, xn ∈ g. Q.E.D.
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COROLLARY 1. Every subalgebra of gl(V) generated by its decomposable
subalgebras is decomposable.

This is clear.

COROLLARY 2. Let g be a Lie subalgebra of gl(V). Then [g, g] is decompos-
able.

Let r be the radical of g, s a Levi subalgebra of g (Chap. I, §6, no. 8).
Then

[g, g] = [s, s] + [s, r] + [r, r] = s + [g, r].

The algebra [g, r] is decomposable since all of its elements are nilpotent
(Chap. I, §5, no. 3). On the other hand, s is decomposable (Prop. 2). It
follows that [g, g] is decomposable (Cor. 1).

COROLLARY 3. Let g be a Lie subalgebra of gl(V), and let X be a subset of
g generating g (as a Lie algebra over k).

(i) The decomposable envelope e(g) of g is generated by the semi-simple
and nilpotent components of the elements of X.

(ii) If k′ is an extension of k, e(g⊗kk
′) = e(g)⊗kk

′; and g is decomposable
if and only if g ⊗k k

′ is decomposable.
Let g̃ be the subalgebra of gl(V) generated by the semi-simple and nilpo-

tent components of the elements of X. Then g ⊂ g̃ ⊂ e(g); by Th. 1, g̃ is
decomposable, so g̃ = e(g), which proves (i). Assertion (ii) follows, since X
generates the k′-algebra g ⊗k k

′.

COROLLARY 4. Let g be a decomposable Lie subalgebra of gl(V). Let T be
the set of commutative subalgebras of g consisting of semi-simple elements
(cf. Prop. 6). The maximal elements of T all have the same dimension.

Let k′ be an algebraically closed extension of k and V′ = V ⊗k k
′, g′ =

g ⊗k k
′. Let t1, t2 be maximal elements of T, t′i = ti ⊗k k

′, hi the commutant
of ti in g, h′

i = hi ⊗k k
′. Then hi is a Cartan subalgebra of g (Prop. 6) so h′

i

is a Cartan subalgebra of g′. Then hi = ti × nV(hi), hence h′
i = t′i × nV′(h′

i),
so that t′i is the set of semi-simple elements of h′

i. Since g′ is decomposable
(Cor. 3), t′1 and t′2 are conjugate under Aute(g′) (Prop. 6), so dim t1 = dim t2.

THEOREM 2. Let g be a Lie subalgebra of gl(V). The following conditions
are equivalent:

(i) g is decomposable;
(ii) every Cartan subalgebra of g is decomposable;
(iii) g has a decomposable Cartan subalgebra;
(iv) the radical of g is decomposable.
(i) =⇒ (ii): This follows from Cor. 2 of Prop. 3.
(ii) =⇒ (i): This follows from Cor. 1 of Th. 1, since g is generated by its

Cartan subalgebras (§2, no. 3, Cor. 3 of Th. 1).
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(ii) =⇒ (iii): This is clear.
(iii) =⇒ (ii): By Cor. 3 of Th. 1, we can assume that k is algebraically

closed. The Cartan subalgebras of g are then conjugate under the elementary
automorphisms of g (§3, no. 2, Th. 1); in view of Remark 1 of §3, no. 1, it
follows that, if one of these is decomposable, they all are.

(i) =⇒ (iv): This follows from Cor. 2 of Prop. 4.
(iv) =⇒ (i): Assume that the radical r of g is decomposable. Let s be

a Levi subalgebra of g; it is decomposable (Prop. 2). Hence g = s + r is
decomposable (Cor. 1 of Th. 1).

APPENDIX I
POLYNOMIAL MAPS AND ZARISKI TOPOLOGY

In this appendix, k is assumed to be infinite.

1. ZARISKI TOPOLOGY

Let V be a finite dimensional vector space. We denote by AV the algebra of
polynomial functions on V with values in k (Algebra, Chap. IV, §5, no. 10,
Def. 4). This is a graded algebra; its component of degree 1 is the dual V∗

of V, and the injection of V∗ into AV extends to an isomorphism from the
symmetric algebra S(V∗) to AV (Algebra, Chap. IV, §5, no. 11, Remark 2).

If (e1, . . . , en) is a basis of V, and (X1, . . . ,Xn) a sequence of indeter-
minates, the map from k[X1, . . . ,Xn] to AV that takes any element f of
k[X1, . . . ,Xn] to the function

n∑
i=1

λiei 	→ f(λ1, . . . , λn)

is an isomorphism of algebras (Algebra, Chap. IV, §5, no. 10, Cor. of
Prop. 19).

PROPOSITION 1. Let H be the set of algebra homomorphisms from AV to
k. For any x ∈ V, let hx be the homomorphism f 	→ f(x) from AV to k.
Then, the map x 	→ hx is a bijection from V to H.

Indeed, let H′ be the set of algebra homomorphisms from k[X1, . . . ,Xn]
to k. The map χ 	→ (χ(X1), . . . , χ(Xn)) is clearly a bijection from H′ to kn.

COROLLARY. For any x ∈ V, let mx = Ker(hx). Then the map x 	→ mx is
a bijection from V to the set of ideals m of AV such that AV/m = k.

A subset F of V is said to be closed if there exists a family (fi)i∈I of
elements of AV such that
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x ∈ F ⇐⇒ x ∈ V and fi(x) = 0 for all i ∈ I.

It is clear that ∅ and V are closed, and that any intersection of closed sets
is closed. If F is defined by the vanishing of the fi and F′ by that of the f ′

j ,
F∪F′ is defined by the vanishing of the fif

′
j , and hence is closed. Thus, there

exists a topology on V such that the closed sets for this topology are exactly
the closed sets in the above sense. This topology is called the Zariski topology
on V. For any f ∈ AV, we denote by Vf the set of x ∈ V such that f(x) �= 0;
this is an open subset of V. It is clear that the Vf form a base of the Zariski
topology. (If k is a topological field, the canonical topology of V is finer than
the Zariski topology.)

The map x 	→ mx of the Cor. of Prop. 1 can be considered as a map ε from
V to the prime spectrum Spec(AV) of AV (Commutative Algebra, Chap. II,
§4, no. 3, Def. 4). It is immediate that the Zariski topology is the inverse
image under ε of the topology of Spec(AV).

PROPOSITION 2. The vector space V, equipped with the Zariski topology, is
an irreducible noetherian space. In particular, every non-empty open subset
of V is dense.

Since AV is noetherian, Spec(AV) is noetherian (Commutative Algebra,
Chap. II, §4, no. 3, Cor. 7 of Prop. 11), and every subspace of a noetherian
space is noetherian (loc. cit., no. 2, Prop. 8). With the notation of the Cor.
of Prop. 1, the intersection of the mx is {0}, and {0} is a prime ideal of AV;
thus V is irreducible (loc. cit., no. 3, Prop. 14).

2. DOMINANT POLYNOMIAL MAPS

Let V,W be finite dimensional vector spaces. Let f be a polynomial map
from V to W (Algebra, Chap. IV, §5, no. 10, Def. 4). If ψ ∈ AW, ψ ◦ f ∈ AV
(loc. cit., Prop. 17). The map ψ 	→ ψ ◦ f is a homomorphism from AW to
AV, said to be associated to f . Its kernel consists of the functions ψ ∈ AW
which vanish on f(V) (and hence also on the closure of f(V) in the Zariski
topology).

DEFINITION 1. A polynomial map f : V → W is said to be dominant if the
homomorphism from AW to AV associated to f is injective.

In view of the preceding, f is dominant if and only if f(V) is dense in W
in the Zariski topology.

PROPOSITION 3. Assume that k is algebraically closed. Let f : V → W be
a dominant polynomial map. The image under f of any dense open subset of
V contains a dense open subset of W.

It suffices to prove that, for every non-zero element ϕ of AV, f(Vϕ) con-
tains a dense open subset of W. Identify AW with a subalgebra of AV by
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means of the homomorphism associated to f . There exists a non-zero ele-
ment ψ of AW such that every homomorphism w : AW → k which does not
annihilate ψ extends to a homomorphism v : AV → k which does not annihi-
late ϕ (Commutative Algebra, Chap. V, §3, no. 1, Cor. 3 of Th. 1). Now such
a w (resp. v) can be identified with an element of Wψ (resp. of Vϕ) and to
say that v extends w means that f(v) = w. Hence, Wψ ⊂ f(Vϕ). Q.E.D.

Let f : V → W be a polynomial map, and x0 ∈ V. The map h 	→ f(x0+h)
from V to W is polynomial. Decompose it into a finite sum of homogeneous
polynomial maps:

f(x0 + h) = f(x0) + D1(h) + D2(h) + · · ·
where Di : V → W is homogeneous of degree i (Algebra, Chap. IV, §5, no. 10,
Prop. 19). The linear map D1 is called the tangent linear map of f at x0. We
denote it by Df(x0).

PROPOSITION 4. Let f : V → W be a polynomial map. Assume that there
exists x0 ∈ V such that (Df)(x0) is surjective. Then f is dominant.

Applying a translation in V and one in W, we can assume that x0 = 0
and f(x0) = 0. The decomposition of f as a sum of homogeneous elements
can then be written

f = f1 + f2 + · · · with deg fi = i,

and the linear map f1 is surjective by hypothesis. Suppose that f is not
dominant. Then there exists a non-zero element ψ of AW such that ψ ◦f = 0.
Let ψ = ψm + ψm+1 + · · · be the decomposition of ψ into homogeneous
elements, with degψi = i and ψm �= 0. Then

0 = ψ ◦ f = ψm ◦ f + ψm+1 ◦ f + · · ·
= ψm ◦ f1 + ρ,

where ρ is a sum of homogeneous polynomial maps of degrees > m. It follows
that ψm ◦ f1 = 0. Since f1 is surjective, ψm = 0, a contradiction.

COROLLARY. If k is algebraically closed and if f satisfies the assumptions
of Prop. 4, the image under f of any dense open subset of V contains a dense
open subset of W.

This follows from Props. 3 and 4.
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APPENDIX II
A CONNECTEDNESS PROPERTY

Lemma 1. Let X be a connected topological space and Ω a dense open subset
of X. If, for any x ∈ X, there exists a neighbourhood V of x such that V ∩Ω
is connected, then Ω is connected.

Indeed, let Ω0 be a non-empty open and closed subset of Ω. Let x ∈ X
and let V be a neighbourhood of x such that V ∩Ω is connected. If x ∈ Ω0,

(V ∩Ω) ∩Ω0 = V ∩Ω0 �= ∅,

so V ∩ Ω ⊂ Ω0. Thus, since Ω is dense in X, Ω0 is a neighbourhood of x.
Consequently, Ω0 is non-empty, open and closed, and since X is connected,
Ω0 = X. Since Ω0 is closed in Ω, this implies that Ω0 = Ω ∩Ω0 = Ω, which
proves that Ω is connected.

Lemma 2. Let U be an open ball in Cn and f : U → C a holomorphic
function, not identically zero. Let A be a subset of U such that f = 0 on A.
Then U --A is dense in U and connected.

The density of U --A follows from Differentiable and Analytic Manifolds,
Results, 3.2.5. Assume first that n = 1. If a ∈ A, the power series expansion
of f about a (Differentiable and Analytic Manifolds, Results, 3.2.1) is not
reduced to 0, and it follows that there exists a neighbourhood Va of a in
U such that f does not vanish on Va -- {a}. Thus, a is isolated in A, which
proves that A is a discrete subset of U, hence countable since U is countable at
infinity. Let x, y ∈ U --A. The union of the real affine lines joining x (resp. y)
to a point of A is meagre (General Topology, Chap. IX, §5, no. 2, Def. 2).
Hence, there exists z ∈ U --A such that neither of the segments [x, z] and [y, z]
meets A. The points x, y, z thus belong to the same connected component of
U --A, which proves the lemma in the case n = 1. We turn to the general case.
We can assume that A is the set of zeros of f (General Topology, Chap. I,
§11, no. 1, Prop. 1). Let x, y ∈ U --A and let L be an affine line containing x
and y. The restriction of f to L ∩ U is not identically zero since x ∈ L ∩ U.
By what has already been proved, x and y belong to the same connected
component of (L ∩ U) -- (L ∩ A) and hence to the same connected component
of U --A.

Lemma 3. Let X be a finite dimensional connected complex-analytic manifold
and let A be a subset of X satisfying the following condition:

For any x ∈ X, there exists an analytic function germ fx, not vanishing
at x, such that the germ of A at x is contained in the germ at x of the set
of zeros of fx.

Then X --A is dense in X and connected.
The density of X --A follows from Differentiable and Analytic Manifolds,

Results, 3.2.5. We can assume that A is closed (General Topology, Chap. I,
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§11, no. 1, Prop. 1). For any x ∈ X, there exists an open neighbourhood V
of x and an isomorphism c from V to an open ball in Cn such that c(A ∩ V)
is contained in the set of zeros of a holomorphic function not identically zero
on c(V). Then, by Lemma 2, V ∩ (X --A) is connected. In view of Lemma 1,
this proves that X --A is connected.



EXERCISES

All Lie algebras and modules over them are assumed to be finite dimensional
over k; from §3 onwards, k is assumed to be of characteristic zero.

§1

1) Assume that k has characteristic p > 0. Let V be a vector space, S a
finite set. A map r : S → End(V) satisfies condition (AC) if and only if there
exists a power q of p such that [sq, s′q] = 0 for all s, s′ ∈ S. (Use Chap. I, §1,
Exerc. 19, formula (1).)

2) Assume that k is perfect. Let V be a finite dimensional vector space, and
u, v ∈ End(V). Let us, un, vs, vn be the semi-simple and nilpotent components
of u, v. The following conditions are equivalent: (i) there exists an integer m
such that (adu)mv = 0; (ii) us and v commute. (To prove (i) =⇒ (ii), reduce
to the case where k is algebraically closed and use Lemma 1 (ii).)

3) We make the assumptions in no. 2. Assume that k is infinite and that
condition (AC) is satisfied. Let k′ be a perfect extension of k. Let λ : S → k
be such that Vλ(S) �= 0. Put

V′ = V ⊗k k
′, S′ = S ⊗k k

′.

Let r′ : S′ → End(V′) be the linear map obtained from r by extension of
scalars. There exists a unique map λ′ : S′ → k′ such that Vλ(S) ⊗k k

′ =
V′λ′

(S′). (Reduce to the case where V = Vλ(S). Let P be a polynomial
function on S and q a power of the characteristic exponent of k dividing dimV,
such that λq = P. Let P′ be the polynomial function on S′ which extends P.
For each s′ ∈ S′, there exists a λ′(s′) ∈ k′ such that λ′(s′)q = P′(s′). Show
that the characteristic polynomial of r′(s′) is (X − λ′(s′))dim V.)

4) Assume that k has characteristic zero. Let g = sl(3, k) and let a be the
subalgebra of g generated by a diagonal matrix with eigenvalues 1,−1, 0.
Show that a is reductive in g, that the commutant m of a in g consists of the
diagonal matrices of trace zero, and that the commutant of m in g is equal
to m, and hence is distinct from a (cf. no. 5, Remark).
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¶ 5) Assume that k is infinite. Let g be a Lie algebra and V a g-module. If
n is an integer ≥ 0, denote by Vn the set of v ∈ V such that xnv = 0 for all
x ∈ g.
a) Show that, if v ∈ Vn, x, y ∈ g, then(

n∑
i=1

xn−iyxi−1

)
v = 0.

(Use the fact that (x+ ty)nv = 0 for all t ∈ k.)
Replacing y by [x, y] in this formula, deduce3 that (xny− yxn)v = 0, and

hence that xnyv = 0.
b) Show that Vn is a g-submodule of V (use a)). In particular V0(g) =

⋃
n

Vn

is a g-submodule of V.
c) Assume that k = R or C, and denote by G a simply-connected Lie group
with Lie algebra g; the action of g on V defines a law of operation of G on V
(Chap. III, §6, no. 1). Show that an element v ∈ V belongs to Vn if and only
if (s− 1)nv = 0 for all s ∈ G; in particular V0(g) = V1(G).

6) The notations are those of Exerc. 12 of Chap. I, §3. In particular, g is a Lie
algebra, M a g-module, and Hp(g,M) = Zp(g,M)/Bp(g,M) is the cohomology
space of degree p of g with values in M.
a) Show that Bp(g,M) and Zp(g,M) are stable under the natural represen-
tation θ of g on the space of cochains Cp(g,M). It follows that there is a
representation of g on Hp(g,M). Show that this representation is trivial (use
the formula θ = di+ id, loc. cit.).
b) Let k be an algebraic closure of k. Let x ∈ g and let xM be the cor-
responding endomorphism of M. Let λ1, . . . , λn (resp. µ1, . . . , µm) be the
eigenvalues (in k) of adgx (resp. of xM), repeated according to their multi-
plicity. Show that the eigenvalues of the endomorphism θ(x) of Cp(g,M) are
the µj − (λi1 + · · · + λip), where 1 ≤ j ≤ m and

1 ≤ i1 < i2 < · · · < ip ≤ n.

Deduce, using a), that Hp(g,M) = 0 if none of the µj − (λi1 + · · · + λip)
is zero.
c) Assume that the representation g → End(M) is faithful, and that x satisfies
the condition:

µj1 + · · · + µjp
�= µk1 + · · · + µkp+1 (Sp)

for all j1, . . . , jp, k1, . . . , kp+1 ∈ 1,m .
Show that we then have Hp(g,M) = 0 (remark that the eigenvalues λi of

adgx are of the form µj − µk, and apply b)).

3 This proof was communicated to us by G. SELIGMAN.
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7) Let g be a nilpotent Lie algebra and V a g-module such that V0(g) = 0.
Show that Hp(g,V) = 0 for all p ≥ 0. (Reduce to the case where V =
Vλ(g), with λ �= 0 and choose an element x ∈ g such that λ(x) �= 0. Apply
Exerc. 6 b), remarking that the λi are all zero and the µj are all equal to
λ(x).)

Recover the Cor. of Prop. 9 (take p = 1).4

¶ 8) Assume that k is of characteristic p > 0. Let g be a Lie algebra over k
with basis (e1, . . . , en). Denote by U the enveloping algebra of g and C the
centre of U. For i = 1, . . . , n, choose a non-zero p-polynomial fi, of degree
di, such that fi(ad ei) = 0; then fi(ei) ∈ C, cf. Chap. I, §7, Exerc. 5. Put
zi = fi(ei).
a) Show that z1, . . . , zn are algebraically independent. If A = k[z1, . . . , zn],
show that U is a free A-module with basis the monomials eα1

1 . . . eαn
n , where

0 ≤ αi ≤ di. (Use the Poincaré-Birkhoff-Witt theorem.) The rank [U : A]
of U over A is equal to d1 . . . dn; it is a power of p. Deduce that C is an
A-module of finite type, hence a k-algebra of finite type and of dimension n
(Commutative Algebra, Chap. VIII).
b) Let K be the field of fractions of A, and let

U(K) = U ⊗A K, C(K) = C ⊗A K.

Then U(K) ⊃ C(K) ⊃ K. Show that U(K) is a field with centre C(K), and that
this is the quotient field (both left and right) of U, cf. Chap. I, §2, Exerc. 10.
Deduce that [U(K) : C(K)] is of the from q2, where q is a power of p; we have
[C(K) : K] = qC, where qC is a power of p, and [U : A] = qCq

2.
c) Let d be a non-zero element of A, and let Λ be a subring of U(K) such that
U ⊂ Λ ⊂ d−1U. Show that Λ = U. [If x = b/a, a ∈ A -- {0}, is an element
of Λ, show by induction on m that the relation b ∈ Ua + Um implies that
b ∈ Ua+Um−1, where {Um} is the canonical filtration of U. (For this, use the
fact that gr U is integrally closed, and argue as in Prop. 15 of Commutative
Algebra, Chap. V, §1, no. 4.) For m = 0, this gives b ∈ Ua, i.e. x ∈ U.]

Deduce that C is integrally closed.
d) Assume that k is algebraically closed. Let ρ : g → gl(V) be an irreducible
linear representation of g and ρU the corresponding representation of U. The
restriction of ρU to C is a homomorphism γρ from C to k (identified with
the homotheties of V); let αρ be its restriction to A. Show that for any
homomorphism α (resp. γ) from the k-algebra A (resp. C) to k, there exists at
least one irreducible representation ρ of g such that αρ = α (resp. γρ = γ) and
that there are only finitely-many such representations (up to equivalence).
Show that dimV ≤ q, with the notation of b).5

4 For more details, cf. J. DIXMIER, Cohomologie des algèbres de Lie nilpotentes,
Acta Sci. Math. Szeged, Vol. XVI (1955), pp. 246-250.

5 For more details, cf. H. ZASSENHAUS, The representations of Lie algebras of
prime characteristic, Proc. Glasgow Math. Assoc., Vol. II (1954), pp. 1-36.
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¶ 9) We retain the notations of the preceding exercise, and assume further
that g is nilpotent.
a) Show that the basis (e1, . . . , en) can be chosen so that, for any pair (i, j),
[ei, ej ] is a linear combination of the eh for h > sup(i, j). Assume from now
on that the ei satisfy this condition. For i = 1, . . . , n choose a power q(i) of
p such that ad(ei)q(i) = 0, and put zi = e

q(i)
i ,A = k[z1, . . . , zn], cf. Exerc. 8.

b) Let ρ : g → gl(V) be a linear representation of g. Assume that ρ(ei) is
nilpotent for i = 1, . . . , n. Show that ρ(x) is nilpotent for all x ∈ g. (Argue by
induction on n = dim g and reduce to the case where ρ is irreducible. Show
that, in this case, ρ(en) = 0 and apply the induction hypothesis.)
c) Let ρ1 : g → gl(V1) and ρ2 : g → gl(V2) be two linear representations of g.
Assume that V1 and V2 are �= 0, and that V1 = Vλ1(g),V2 = Vλ2(g), where
λ1 and λ2 are two functions on g, cf. no. 3. Show that, if λ1(ei) = λ2(ei) for
i = 1, . . . , n, then λ1 = λ2 and there exists a non-zero g-homomorphism from
V1 to V2 (apply b) to the g-module V = L(V1,V2) and use Engel’s theorem
to show that V contains a non-zero g-invariant element). Deduce that if, in
addition, V1 and V2 are simple, they are isomorphic.
d) Assume that k is algebraically closed. Let R be the set of equivalence
classes of irreducible representations of g. If ρ ∈ R, put

xρ = (xρ(1), . . . , xρ(n)) ∈ kn,

where xρ(i) is the unique eigenvalue of ρ(ei). Show that ρ 	→ xρ is a bijection
from R to kn. (Injectivity follows from c), and surjectivity from Exerc. 8 d).)
Deduce the following consequences:
(i) For any maximal ideal m of A, the quotient of U/mU by its radical is a
matrix algebra.
(ii) The degree of any irreducible representation of g is a power of p (this
follows from (i) and the fact that [U/mU : k] is a power of p).
(iii) Every homomorphism from A to k extends uniquely to a homomorphism
from C to k (use the fact that C/mC is contained in the centre of U/mU,
which is a local k-algebra with residue field k).
(iv) There exists an integer N ≥ 0 such that xpN ∈ A for all x ∈ C (this
follows from (iii)).6

¶ 10) Assume that k is of characteristic p > 0. Denote by g a Lie algebra
with basis {e1, e2, e3}, with [e1, e2] = e3, [e1, e3] = [e2, e3] = 0.
a) Show that the centre of Ug is k[ep1, e

p
2, e3].

b) Assume that k is algebraically closed. Show that, for all (λ1, λ2, λ3) ∈ k3,
there exists (up to equivalence) a unique irreducible representation ρ of g

6 For more details, cf. H. ZASSENHAUS, Über Liesche Ringe mit Primzahlcharak-
teristik, Hamb. Abh., Vol. XIII (1939), pp. 1-100, and Darstellungstheorie nilpo-
tenter Lie-Ringe bei Charakteristik p > 0, Crelle’s J., Vol. CLXXXII (1940),
pp. 150-155.
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such that λi is the unique eigenvalue of ρ(ei) (i = 1, 2, 3); the degree of ρ is
p if λ3 �= 0, and is 1 if λ3 = 0. (Apply Exerc. 8 and 9, or argue directly.)

11) Let h be a nilpotent Lie algebra, V an h-module not reduced to 0, and λ
a function on h such that V = Vλ(h). Prove the equivalence of the following
properties:
(i) λ is a linear form on h, zero on [h, h].
(ii) There exists a basis of V with respect to which the endomorphisms defined
by the elements of h are triangular.

(To prove that (i) =⇒ (ii), apply Engel’s theorem to the h-module
L(Wλ,V), where W is the 1-dimensional h-module defined by λ.)

Properties (i) and (ii) are true if k is of characteristic 0 (Prop. 9).

§2

1) The diagonal matrices of trace 0 form a Cartan subalgebra of sl(n, k),
except when n = 2 and k is of characteristic 2.

2) Let e be the element
(

0 1
0 0

)
of sl(2,C). Show that Ce is a maximal

nilpotent Lie subalgebra of sl(2,C), but not a Cartan subalgebra of sl(2,C).

3) Assume that k is of characteristic 0. Let g be a semi-simple Lie algebra.
Let E be the set of commutative subalgebras of g all of whose elements are
semi-simple in g. Then the Cartan subalgebras of g are the maximal elements
of E. (Use Th. 2 and Prop. 10.)

In particular, the union of the Cartan subalgebras of g is equal to the set
of semi-simple elements of g.

4) Let g be a Lie algebra with a basis (x, y, z) such that [x, y] = y, [x, z] = z,
[y, z] = 0. Let a be the ideal ky + kz of g. Then rk(a) = 2 and rk(g) = 1.

5) Assume that k is of characteristic 0. Let g be a Lie algebra, r its radical,
h a Cartan subalgebra of g. Show that

r = [g, r] + (h ∩ r).

(Observe that the image of h in g/[g, r] contains the centre r/[g, r] of g/[g, r].)

6) Let g be a Lie algebra, h a nilpotent subalgebra of g. If g0(h) is nilpotent,
g0(h) is a Cartan subalgebra of g.

7) Let s be a Lie algebra, a a Cartan subalgebra of s and V an s-module. Let
g = s × V be the semi-direct product of s by V. Show that a × V0(a) is a
Cartan subalgebra of g.

8) Assume that k is of characteristic p > 0. Denote by s a Lie algebra with ba-
sis {x, y} such that [x, y] = y. Let V be a k-vector space with basis {ei}i∈Z/pZ.
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a) Show that V has a unique s-module structure such that xei = iei and
yei = ei+1 for all i. This s-module is simple.
b) Let g = s × V be the semi-direct product of s by V. Show that g is a
solvable algebra of rank 1 whose derived algebra is not nilpotent.
c) An element of g is regular if and only if its projection on s is of the form
ax+ by, with ab �= 0.
d) We have V0(x+ y) = 0 and V0(x) = ke0. Deduce (cf. Exerc. 6) that g has
Cartan subalgebras of dimension 1 (for example that generated by x+y) and
Cartan subalgebras of dimension 2 (for example that generated by x and e0).

9) Let g be a Lie algebra with a basis (x, y) such that [x, y] = y. Let k = ky,
and ϕ : g → g/k the canonical morphism. The element 0 of g/k is regular in
g/k but is not the image under ϕ of a regular element of g.

10) Assume that k is infinite. Let g be a Lie algebra. Prove the equivalence
of the following properties:
(i) rk(g) = dim(g).
(ii) g is nilpotent.
(iii) g has only finitely-many Cartan subalgebras of dimension rk(g).
(iv) g has only one Cartan subalgebra.

11) Let h be a commutative Lie algebra �= 0, P a finite subset of h∗ containing
0. Show that there exists a Lie algebra g containing h as a Cartan subalgebra,
and such that the set of weights of h in g is P. (Construct g as the semi-direct
product of h by the h-module V which is the direct sum of the 1-dimensional
modules corresponding to the elements of P -- {0}, cf. Exerc. 7.)

An element x of h is such that h = g0(x) if and only if x is not orthogonal
to any element of P -- {0}.

12) Assume that k is finite. Construct an example of a Lie algebra g having a
Cartan subalgebra h in which there exists no element x such that h = g0(x).
(Use the preceding exercise, and take P = h∗.)

¶ 13) Assume that k is finite. Denote by k′ an infinite extension of k. Let g
be a Lie algebra over k. The rank of g, denoted by rk(g), is the rank of the
k′-Lie algebra g′ = g⊗k k

′; an element of g is said to be regular if it is regular
in g′; these definitions do not depend on the choice of k′. Show that, if

Card(k) ≥ dim g − rk(g),

g contains a regular element (hence also a Cartan subalgebra).
(Use the following result: if a is a non-zero homogeneous element of

k[X1, . . . ,Xn], and if Card(k) ≥ deg(a), there exists x ∈ kn such that
a(x) �= 0.)

14) Assume that k is of characteristic zero. Let V be a finite dimensional k-
vector space, g a Lie subalgebra of gl(V), h a Cartan subalgebra of g and nV
the largest ideal of nilpotency of the g-module V (Chap. I, §4, no. 3, Def. 2).
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Show that an element of h is nilpotent if and only if it belongs to nV. (Reduce
to the case where the g-module V is semi-simple, and use Cor. 3 of Th. 2.)

¶ 15) Assume that k is infinite. Let g be a Lie algebra, C∞g the union of the
ascending central series of g, and x an element of g. Prove the equivalence of
the following properties:
(i) x belongs to every Cartan subalgebra of g.
(ii) x ∈ g0(y) for all y ∈ g (i.e. x ∈ g0(g)).
(iii) x ∈ C∞g.
(The implications (iii)=⇒(ii)=⇒(i) are immediate. To prove that (i) =⇒ (ii),
remark that (i) is equivalent to saying that x ∈ g0(y) for every regular element
y in g, and use the fact that the regular elements are dense in g in the Zariski
topology. To prove that (ii) =⇒ (iii), observe that n = g0(g) is stable under
g (§1, Exerc. 5) and apply Engel’s theorem to the g-module n; deduce that n
is contained in L∞g.)

¶ 16) Let g be a solvable complex Lie algebra, h a Cartan subalgebra of g,
g =

⊕
gλ(h) the corresponding decomposition of g into primary subspaces,

with g0(h) = h.
a) Show that the restrictions to h of the linear forms called roots of g in
Chap. III, §9, Exerc. 17 c) are the weights of h in g, i.e. the λ such that
gλ(h) �= 0; deduce that such a λ vanishes on h ∩ Dg.
b) Let (x, y) 	→ [x, y]′ be the alternating bilinear map from g × g to g with
the following properties:
(i) If x ∈ gλ(h), y ∈ gµ(h), with λ �= 0, µ �= 0, then [x, y]′ = [x, y];
(ii) if x ∈ g0(h), y ∈ gµ(h), then [x, y]′ = [x, y] − µ(x)y.

Show that this gives a new Lie algebra structure on g (use a)). Denote it
by g′.
c) Show that, if x ∈ gλ(h), the map ad′x : y 	→ [x, y]′ is nilpotent. Deduce
that g′ is nilpotent (apply Exerc. 11 of Chap. I, §4 to the set E of ad′x, where
x belongs to the union of the gλ(h)).

§3

1) Let g be a Lie algebra, g′ a Cartan subalgebra of g. Then the conditions
of Prop. 3 are satisfied. But an element of g′, even if it is regular in g′, is not
necessarily regular in g.

2) Let g be a real Lie algebra of dimension n, U (resp. H) the set of regular
elements (resp. of Cartan subalgebras) of g, and Int(g) the group of inner
automorphisms of g (Chap. III, §6, no. 2, Def. 2).
a) Show that, if x and y belong to the same connected component of U, g0(x)
and g0(y) are conjugate under Int(g).
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b) Show that the number of connected components of U is finite, and that this
number is bounded by a constant c(n) depending only on n (apply Exerc. 2
of App. II).
c) Deduce that the number of orbits of Int(g) on H is ≤ c(n).

3) Let g be a real Lie algebra, r the radical of g, h and h′ Cartan subalgebras
of g, ϕ the canonical homomorphism from g to g/r. The following conditions
are equivalent:
(i) h and h′ are conjugate under Int(g);
(ii) ϕ(h) and ϕ(h′) are conjugate under Int(g/r). (Imitate the proof of
Prop. 5.)

4) Let g = sl(2,R), x =
(

1 0
0 −1

)
, y =

(
0 −1
1 0

)
. Show that Rx and Ry

are Cartan subalgebras of g not conjugate under Aut(g).

5) a) Show that there exists a Lie algebra g over k with basis (x, y, z, t) such
that

[x, y] = z, [x, t] = t, [y, t] = 0, [g, z] = 0.

Show that g is solvable and that k = kx+ ky + kz is a subalgebra of g.
b) Show that the elementary automorphisms of g are the maps of the form
1 + λ adgy + µ adgt where λ, µ ∈ k.
c) Show that 1 + adkx is an elementary automorphism of k which does not
extend to an elementary automorphism of g.
d) Let s be a semi-simple subalgebra of a Lie algebra a. Show that every
elementary automorphism of s extends to an elementary automorphism of a.

6) Every element of a reductive Lie algebra g is contained in a commutative
subalgebra of dimension rk(g).

7) Let g be a Lie algebra and g′ a subalgebra of g reductive in g. Let a be
a Cartan subalgebra of g′. Show that there exists a Cartan subalgebra of g
which contains a (use Prop. 10 of §2). Deduce that rk(g′) ≤ rk(g) and that
equality holds if and only if g′ has properties (i), (ii), (iii) of Prop. 3.

8) Let g be a Lie algebra, a an ideal of g, h a Cartan subalgebra of g and
C∞g the union of the ascending central series of g. Show that a ⊂ h implies
a ⊂ C∞g (in other words C∞g is the largest ideal of g contained in h). (Reduce
to the case where k is algebraically closed and remark that a is stable under
every elementary automorphism of g; the relation a ⊂ h then implies that a
is contained in every Cartan subalgebra of g; conclude by means of Exerc. 15
of §2.)

¶ 9) Let g be a Lie algebra, h a Cartan subalgebra of g and x an element of
h. Let g = h ⊕ g+ be the Fitting decomposition (§1, no. 1) of g with respect
to h.
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a) Let n be the largest semi-simple h-submodule contained in g0(x) ∩ g+.
Show that n = 0 if and only if g0(x) = h, i.e. x is regular in g.
b) Show that h ⊕ n is a subalgebra of g. If h′ is the intersection of h with the
commutant of n, show that h′ is an ideal of h ⊕ n which contains Dh and x.
Conclude (Exerc. 8) that h′ ⊂ C∞(h ⊕ n), and hence that x ∈ C∞(h ⊕ n) and
that x belongs to every Cartan subalgebra of h ⊕ n.
c) If n �= 0, h ⊕ n is not nilpotent and has infinitely-many Cartan subal-
gebras (§2, Exerc. 10). Conclude that x belongs to infinitely-many Cartan
subalgebras of g.
d) An element of g is regular if and only if it belongs to a unique Cartan
subalgebra.

¶ 10) Let g be a Lie algebra, r its radical, n its largest nilpotent ideal and a
one of its Levi subalgebras.
a) Put g′ = n+Dg. Show that g′ = n⊕a. (Use the fact that [g, r] is contained
in n.) If g �= 0, then g′ �= 0.
b) Assume that k is algebraically closed. Let (Vi)i∈I be the quotients of a
Jordan-Hölder sequence of the g-module g (with the adjoint representation).
If x ∈ r, show that xVi

is a homothety and that xVi
= 0 for all i if and only

if x belongs to n. Deduce that an element y ∈ g belongs to g′ if and only if
Tr(yVi

) = 0 for all i ∈ I.
c) Denote by N the vector subspace of g generated by the elements x such
that adx is nilpotent. Show that N is a subalgebra of g (use the fact that N
is stable under Aute(g)). Show, by using b), that N ⊂ g′.
d) Let h be a Cartan subalgebra of g. Assume that there exists a subset R of
h∗ such that

g = h ⊕
⊕
α∈R

gα(h),

an assumption which is satisfied, in particular, if k is algebraically closed.
Show that N then contains the gα(h), Dh and n; deduce that N contains g′,
so N = g′.
e) If k is algebraically closed and g �= 0, g contains an element x �= 0 such
that adx is nilpotent. (Indeed, we then have g′ �= 0.)

¶ 11) Let g be a Lie algebra, r its radical.
a) Let s be a Levi subalgebra of g, k a Cartan subalgebra of s. Show that
k is contained in a Cartan subalgebra h of g which is the sum of k and a
subalgebra of r. (Use §2, Th. 2, Prop. 10 and Cor. 2 of Th. 1.)
b) Let h′ be a Cartan subalgebra of g. Show that there exists a Levi subalgebra
s′ of g such that h′ is the sum of a Cartan subalgebra of s′ and a subalgebra
of r. (The subalgebras s, k, h in a) can be chosen so that h + r = h′ + r. Put
a = h + r, which is solvable. By Th. 3, there exists x ∈ C ∞(a) such that
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eadaxh = h′. Then eadgx is a special automorphism of g which transforms s
into the required Levi subalgebra.)
c) Let s be a Levi subalgebra of g. Let h be a Cartan subalgebra of g which
is the sum of a Cartan subalgebra k of s and a subalgebra l of r. Let c be
the commutant of k in r. Show that l is a Cartan subalgebra of c. (For x ∈ k,
adgx is semi-simple, but adhx is nilpotent, so [k, h] = 0. If y ∈ c is such that
[y, l] ⊂ l, then [y, h] ⊂ h so y ∈ h ∩ r = l.)
d) Let s be a Levi subalgebra of g, k a Cartan subalgebra of s, c the commutant
of k in r, l a Cartan subalgebra of c. Then h = k + l is a Cartan subalgebra of
g. (Let x = y + z (y ∈ s, z ∈ r) be an element of the normalizer u of h in g.
Show that [y, k] ⊂ k, so y ∈ k and z ∈ u. Then show that [z, k] ⊂ h ∩ r ⊂ c, so
[k, [k, z]] = 0, and hence that [k, z] = 0 and z ∈ c. Finally, [z, l] ⊂ l hence z ∈ l
and x ∈ h.)
e) Let s, k, c be as in d), and q = [g, r] the nilpotent radical of g. Let x ∈ q and
u the special automorphism ead x. If u(k) ⊂ k + c, then x ∈ c. (Consider the
adjoint representation ρ of s on q, and let qi be a complement of C i+1q in C iq
stable under ρ; let ρi be the subrepresentation of ρ defined by qi. Let σi = ρi|k.
Let q′

i be the commutant of k in qi and q′′
i a complement of q′

i in qi stable
under σi. Let x = x′

1 + x′′
1 + · · · + x′

n + x′′
n with x′

i ∈ q′
i, x

′′
i ∈ q′′

i . Arguing by
contradiction, assume that the x′′

i are not all zero and x′′
1 = · · · = x′′

p−1 = 0,
x′′

p �= 0, for example. If h ∈ k, u(h) = h + [x′′
p , h] + y with y ∈ C p+1q. Since

u(h) ∈ k + c, this gives [x′′
p , h] + y ∈ q′

p + q′
p+1 + · · · + q′

n, hence [h, x′′
p ] ∈ q′

p,
so [h, x′′

p ] = 0. Then x′′
p = 0, a contradiction.)

f) Let h be a Cartan subalgebra of g. Then h can be expressed uniquely as
the sum of h ∩ r and a Cartan subalgebra of a Levi subalgebra of g. (For the
uniqueness, use e) and Th. 5 of Chap. I, §6, no. 8.) The Levi subalgebra in
question is not unique in general.
g) Let h be a Cartan subalgebra of g, and t = g0(h ∩ r). Then h is a Cartan
subalgebra of t. We have g = t + r (use a Fitting decomposition for the
adjoint representation of h ∩ r on g). The algebra t ∩ r is the radical of t and
is nilpotent (use Exerc. 5 of §2).
h) Assume that k is algebraically closed. Let h be a Cartan subalgebra of g.
There exists a Levi subalgebra s of g such that, for all λ ∈ h∗,

gλ(h) = (gλ(h) ∩ s) + (gλ(h) ∩ r).

(With the notations of g), take for s a Levi subalgebra of t such that h =
(h ∩ s) + (h ∩ r); this exists by b).)7

¶ 12) a) Let g be a solvable Lie algebra, and G a finite subgroup (resp. com-
pact subgroup if k = R or C) of Aut(g). Show that there exists a Cartan
subalgebra of g stable under G. (Argue by induction on dim g, and reduce to

7 For more details, cf. J. DIXMIER, Sous-algèbres de Cartan et décompositions de
Levi dans les algèbres de Lie, Trans. Royal Soc. Canada, Vol. L (1956), pp. 17-21.
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the case in which g is an extension of a nilpotent algebra g/n by a commuta-
tive ideal n which is a non-trivial simple g/n-module (cf. proof of Th. 3). The
Cartan subalgebras of g then form an affine space attached to n, on which G
operates. Conclude by an argument with the barycentre.)
b) Let g be a solvable Lie algebra and s a Lie subalgebra of Der(g). As-
sume that the s-module g is semi-simple. Show that there exists a Cartan
subalgebra of g stable under s. (Same method.)

¶ 13) Let g be a Lie algebra and G a finite subgroup of Aut(g). Assume that
G is hyper-solvable (Algebra, Chap. I, §6, Exerc. 26). Show that there exists
a Cartan subalgebra of g stable under G.

(Argue by induction on dim g. Using Exerc. 12, reduce to the case where g
is semi-simple. If G �= {1}, choose a normal subgroup C of G that is cyclic of
prime order (Algebra, loc. cit.). The subalgebra s consisting of the elements
invariant under C is reductive in g (§1, no. 5), and distinct from g. By the
induction hypothesis, s has a Cartan subalgebra a stable under G. We have
s �= 0 (Chap. I, §4, Exerc. 21 c)), so a �= 0. The commutant z of a in g is
distinct from g and stable under G; choose a Cartan subalgebra h of z stable
under G, and show that h is a Cartan subalgebra of g, cf. the Cor. to Prop. 3.)

Construct a finite group of automorphisms of sl(2,C) which is isomorphic
to A4 (and hence solvable) and which does not leave any Cartan subalgebra
stable.

14) ∗Show that every irreducible complex (resp. real) linear representation
of a hyper-solvable finite group G is induced by a representation of degree
1 (resp. of degree 1 or 2) of a subgroup of G. (Apply Exerc. 13 to the Lie
algebras gl(n,C) and gl(n,R).)∗

15) Assume that k is algebraically closed. Let g be a Lie algebra, h a Cartan
subalgebra of g, and A a subset of g. Assume that A is dense in g (in the
Zariski topology) and stable under Aute(g). Show that A ∩ h is dense in h.
(Let X be the closure of A ∩ h, and U = h --X. Assume that U �= ∅. With
the notations in Lemma 2, the image under F of U × gλ1(h) × · · · × gλp(h)
contains a non-empty open subset of g. Since this image is contained in g --A,
this contradicts the fact that A is dense in g.)

16) Let V be a finite dimensional k-vector space, and g a Lie subalgebra of
gl(V). We are going to show that the following three properties are equivalent:
(i) The Cartan subalgebras of g are commutative and consist of semi-simple
elements.
(ii) Every regular element of g is semi-simple.
(iii) The semi-simple elements of g are dense in g in the Zariski topology.
a) Show that (i) =⇒ (ii) =⇒ (iii).
b) Let A be the set of semi-simple elements of g. Show that A is stable under
Aute(g).
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c) Show that (iii) =⇒ (i). (Reduce (App. I, Exerc. 1) to the case where k is
algebraically closed. If h is a Cartan subalgebra of g, show, by using Exerc. 15,
that A ∩ h is dense in h; since [x, y] = 0 if x ∈ A ∩ h, y ∈ h, deduce that h is
commutative, from which (i) is immediate.)
d) Assume that k is R,C or a non-discrete complete ultrametric field of
characteristic zero. Give g the topology defined by that of k. Show that
properties (i), (ii), (iii) are equivalent to the following:
(iv) The semi-simple elements of g are dense in g.
(Show that (iv) =⇒ (iii) and (ii) =⇒ (iv), cf. App. I, Exerc. 4.)

17) Assume that k is algebraically closed. Let g be a Lie algebra, h a Cartan
subalgebra, and A a subset of the centre of h. Denote by Eg the subgroup
of Aut(g) denoted by E in no. 2. Show that, if s is an element of Aut(g)
such that sA = A, there exists t ∈ Eg such that th = h and t|A = IdA; in
particular, ts|A = s|A. (Let a be the commutant of A in g; since h and sh
are Cartan subalgebras of a, there exists θ ∈ Ea such that θ(sh) = h; choose
t from the elements of Eg that extend θ.)

¶ 18) Let g be a Lie algebra, h a Cartan subalgebra of g and Ug (resp. Uh)
the enveloping algebra of g (resp. h). A linear form ϕ on Ug is said to be
central if it vanishes on [Ug,Ug], i.e. if ϕ(a.b) = ϕ(b.a) for all a, b ∈ Ug.
a) Let x, y ∈ g. Assume that there exists s ∈ Aute(g) such that s(x) = y.
Show that

ϕ(xn) = ϕ(yn)

for all n ∈ N and for every central linear form ϕ on Ug.
b) Let ϕ be a central linear form on Ug whose restriction to Uh vanishes.
Show that ϕ = 0. (We can assume that k is algebraically closed. Deduce
from a) that we then have ϕ(xn) = 0 for all n ∈ N and all regular x ∈ g; use
a density argument to remove the assumption of regularity.)
c) Show that Ug = [Ug,Ug] + Uh.
d) Let V be a semi-simple g-module. Show that V is semi-simple as an
h-module. In particular, Vλ(h) = Vλ(h) for all λ ∈ h∗.
e) Let V′ be a semi-simple g-module. Assume that V and V′ are isomorphic as
h-modules. Show that they are isomorphic as g-modules. (If a ∈ Uh, remark
that Tr(aV) = Tr(aV′). Deduce, by using b) or c), that Tr(xV) = Tr(xV′) for
all x ∈ Ug, and conclude by using Algebra, Chap. VIII.)

If k is algebraically closed, the assumption that“VandV′are h-isomorphic”
is equivalent to saying that dim Vλ(h) = dimV′

λ(h) for all λ ∈ h∗.
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§ 4

The notations and assumptions are those of nos. 1, 2, 3 of § 4.

1) Take G = GLn(k), n ≥ 0.
a) Show that r0Ad(g) = n for all g ∈ G.
b) Show that an element g ∈ G is regular if and only if its characteristic
polynomial Pg(T) = det(T − g) is separable; this is equivalent to saying that
the discriminant (Algebra, Chap. IV, §1, no. 10) of Pg(T) is �= 0.

2) Construct a Lie group G such that the function r0Ad is not constant. (Take
g abelian �= 0 and Ad non-trivial.)

3) Let (ρi)i∈I be a countable family of analytic linear representations of G.
Prove that the elements of G which are regular for all the ρi constitute a dense
subset of G. Construct an example showing that the countability assumption
cannot be omitted.

4) Assume that k = C and that G is connected. Prove the equivalence of the
following properties:
(i) G is nilpotent.
(ii) Every element �= 1 of G is regular.
(Show first that (ii) implies
(ii)′ Every element �= 0 of g is regular.
Remark next that, if g �= 0, then g contains elements x �= 0 such that adx is
nilpotent, cf. §3, Exerc. 10. Deduce that g is nilpotent, hence (i).)

§ 5

1) Show that the solvable Lie algebra considered in Chap. I, §5, Exerc. 6 is
not isomorphic to any decomposable Lie algebra.

2) Let u (resp. v) be a non-zero semi-simple (resp. nilpotent) endomorphism
of V. Then the map λu 	→ λv (λ ∈ k) is an isomorphism from g = ku to
g′ = kv which does not take semi-simple elements to semi-simple elements.

3) Let u be an endomorphism of V that is neither semi-simple nor nilpotent.
Then g = ku is non-decomposable, but adgg is decomposable.

¶ 4) Let g be a decomposable Lie subalgebra of gl(V). Let q be a Lie
subalgebra of g whose identity representation is semi-simple. There exists
a ∈ Aute(g) such that a(q) is contained in the subalgebra m of Prop. 7.
(Imitate the proof of Prop. 7 (ii).)

¶ 5) Let g be a Lie subalgebra of gl(V). Then g is said to be algebraic if,
for all x ∈ g, the replicas of x (Chap. I, §5, Exerc. 14) belong to g. Such an
algebra is decomposable.
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a) Denote by a(g) the smallest algebraic subalgebra of gl(V) containing g.
Then

a(g) ⊃ e(g) ⊃ g.

Give an example where a(g) and e(g) are distinct (take V of dimension 2 and
g of dimension 1).
b) Show that, if n is an ideal of g, n and a(n) are ideals of a(g), and
[a(g), a(n)] = [g, n] (imitate the proof of Prop. 4). Deduce that Dia(g) = Dig
for i ≥ 1 and that C ia(g) = C ig for i ≥ 2.
c) Show that every Lie algebra consisting of nilpotent elements is algebraic.8

¶ 6) Let g be a semi-simple subalgebra of gl(V), T(V) =
∞⊕

n=0
Tn(V) the

tensor algebra of V, T(V)g the set of elements of T(V) invariant under g
(cf. Chap. III, App.) and g the set of u ∈ gl(V) such that u.x = 0 for all
x ∈ T(V)g. We are going to show that g = g.
a) Show that the representation of g on the dual V∗ of V is isomorphic to its
representation on

∧p−1 V, where p = dim V (use the fact that g is contained
in sl(V)). Deduce that every element of Tn,m = Tn(V) ⊗ Tm(V∗) invariant
under g is invariant under g, and that g is algebraic (Exerc. 5).
b) Let W be a vector subspace of one of the Tn,m. Assume that W is stable
under g. Show that W is stable under g (if e1, . . . , er is a basis of W, remark
that e1 ∧ · · · ∧ er is invariant under g, and hence under g).

Deduce that g is an ideal of g, and that g/g is commutative (cf. proof of
Prop. 4). We have g = g × c, where c is the centre of g.
c) Let R be the associative subalgebra of gl(V) generated by 1 and g. Show
that c is contained in the centre of R (remark that g is contained in the
bicommutant of R, which is equal to R). Deduce that the elements of c are
semi-simple.
d) Let x ∈ c. Show that the replicas of x belong to c (Chap. I, §5, Exerc. 14).
Show that Tr(sx) = 0 for all s ∈ g; deduce that Tr(sx) = 0 for all s ∈ g, and
hence that x is nilpotent (loc. cit).
e) Show that c = 0 and g = g by combining c) and d).

7) Let g be a Lie subalgebra of gl(V). Letm,n be two integers ≥ 0, W and W′

two vector subspaces of Tm(V)⊗Tn(V∗) where V∗ is the dual of V. Assume
that W′ ⊂ W and that W and W′ are stable under the natural representation
of g on Tm(V) ⊗ Tn(V∗). Show that W and W′ are then stable under e(g).
If π denotes the representation of e(g) on W/W′ thus obtained, show that
πe(g) is the decomposable envelope of π(g) (use Th. 1).

Deduce that ad e(g) is the decomposable envelope of ad g in gl(g).

8 For more details, cf. C. CHEVALLEY, Théorie des groupes de Lie, II, Groupes
algébriques, Chap. II, §14, Paris, Hermann, 1951.



§1 EXERCISES 65

8) Let g be a Lie subalgebra of gl(V) and h a Cartan subalgebra of g.
a) Show that e(g) = e(h) + Dg = e(h) + g.
(Remark that e(h)+Dg is decomposable (Cor. 1 of Th. 1), contains g = h+Dg,
and is contained in e(g); thus, it is e(g).)
b) We have e(h) ∩ g = h (remark that e(h) ∩ g is nilpotent).
c) Let x be an element of the normalizer of e(h) in e(g). Show that x ∈ e(h).
(Write x = y+z with y ∈ e(h), z ∈ g, cf. a); remark that [z, h] ⊂ e(h)∩g = h,
hence z ∈ h.)
d) Show that e(h) is a Cartan subalgebra of e(g).

9) Let g be a Lie subalgebra of gl(V). Show that conditions (i), (ii), (iii) of
Exerc. 16 of §3 are equivalent to:
(v) g is decomposable and has the same rank as g/nV(g).
(If h is a Cartan subalgebra of g, the condition “g has the same rank as
g/nV(g)” is equivalent to saying that h∩nV(g) = 0, i.e. that h has no nilpotent
element �= 0 (cf. §2, Exerc. 14). Deduce the equivalence of (i) and (v).)

10) Let k′ be an extension of k and g′ a k′-Lie subalgebra of

gl(V ⊗k k
′) = gl(V) ⊗k k

′.

a) Show that there exists a smallest Lie subalgebra g of gl(V) such that g⊗kk
′

contains g′.
b) Assume that k′ is algebraically closed and denote by G the group of
k-automorphisms of k′; this group operates in a natural way on V ⊗k k

′.
Show that g ⊗k k

′ is the Lie subalgebra generated by the conjugates of g′

under G (use the fact that k is the field of G-invariants in k′).
c) Show that g is decomposable if g′ is decomposable. (Reduce to the case
where k′ is algebraically closed, and use b) as well as Cor. 1 and 3 of Th. 1.)

¶ 11) Exceptionally, we assume in this exercise that k is a perfect field of
characteristic p > 0.

Let g be a Lie p-algebra (Chap. I, §1, Exerc. 20). If x ∈ g, denote by 〈x〉
the smallest Lie p-subalgebra containing x. It is commutative and generated
as a k-vector space by the xpi

where i = 0, 1, . . .. Then x is said to be nilpotent
(resp. semi-simple) if the p-map of 〈x〉 is nilpotent (resp. bijective).
a) Show that x can be decomposed uniquely in the form x = s + n, with
s, n ∈ 〈x〉, s semi-simple and n nilpotent (apply Exerc. 23 of Chap. I, §1).
If f is a p-homomorphism from g to gl(V), f(s) and f(n) are the semi-
simple and nilpotent components of the endomorphism f(x); this applies in
particular to f = ad.
b) A subalgebra of g is said to be decomposable if it contains the semi-simple
and nilpotent components of its elements. Show that, if b and c are vector
subspaces of g such that b ⊂ c, the set of x ∈ g such that [x, c] ⊂ b is
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decomposable (same proof as Prop. 3); in particular, every Cartan subalgebra
of g is decomposable.
c) Let t be a commutative subalgebra of g consisting of semi-simple elements,
and maximal with this property. Let h be the commutant of t in g. Let x ∈ h
and let x = s + n be its canonical decomposition; since h is decomposable
(cf. b)), s, n ∈ h. Show that the subalgebra generated by t and s is commu-
tative and consists of semi-simple elements, hence coincides with t. Deduce
that adhx = adhn is nilpotent, and hence that h is nilpotent. Since h = g0(h),
h is a Cartan subalgebra of g (§2, Prop. 4).

In particular, every Lie p-algebra over a finite field has a Cartan subalgebra.9

Appendix I

Denote by V a finite dimensional vector space over k.

1) Let k′ be an extension of k, and let V(k′) = V⊗k k
′. Show that the Zariski

topology on V(k′) induces the Zariski topology on V, and that V is dense in
V(k′).

2) Assume that V is the product of two vector spaces V1 and V2.
a) The Zariski topology on V is finer than the product topology of the Zariski
topologies on V1 and V2; it is strictly finer if V1 �= 0 and V2 �= 0.
b) If A1 (resp. A2) is a subset of V1 (resp. V2), the closure of A1 × A2 is the
product of the closures of A1 and A2.

3) Assume that k is algebraically closed. Let A and B be two closed subsets
of V, and a (resp. b) the set of f ∈ AV which vanish on A (resp. B). Prove
the equivalence of the following properties:
(i) A ∩ B = ∅.
(ii) a + b = AV.
(iii) There exists a polynomial function f on V which is equal to 1 on A and
to 0 on B.

(Use Hilbert’s theorem of zeros (Commutative Algebra, Chap. V, §3, no. 3)
to prove that (i) =⇒ (ii).)

4) Assume that k is a non-discrete complete valued field. Denote by T
(resp. Z ) the Banach space (resp. Zariski) topology on V.
a) Show that T is finer than Z (and strictly finer if V �= 0).
b) Show that every non-empty Z -open subset of V is T-dense.

9 For more details, cf. G. B. SELIGMAN, Modular Lie Algebras, Chap. V, §7,
Springer-Verlag, 1967.
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Appendix II

¶ 1) Let X be a locally connected topological space, C(X) the space of con-
tinuous real-valued functions on X, and d an integer ≥ 0. Let F ∈ C(X)[T]
be a monic polynomial of degree d with coefficients in C(X):

F = Td + Td−1f1 + · · · + fd, fi ∈ C(X).

Identify F with a function on R × X by putting

F(t, x) = td + td−1f1(x) + · · · + fd(x) if t ∈ R, x ∈ X.

Let ∆ ∈ C(X) be the discriminant of the polynomial F (Algebra, Chap. IV,
§1, no. 10).

If U is an open subset of X, denote by ZU the set of (t, x), with t ∈ R
and x ∈ U, such that F(t, x) = 0; this is a closed subset of R × U.
a) Show that the projection pr2 : ZU → U is proper (General Topology,
Chap. I, §10).
b) Assume that U is connected and that ∆(x) �= 0 for all x ∈ U. Show that
ZU → U is a covering of U (General Topology, Chap. XI) of degree ≤ d, and
that the number of connected components of R × U --ZU is ≤ d+ 1.
c) Let X′ be the set of points of X at which ∆ is �= 0. Assume that X′ is dense
in X. Denote by A (resp. B) the set of connected components of X′ (resp. of
R × X --ZX). Show that

Card(B) ≤ (d+ 1)Card(A) (use b)).

d) Assume that X is connected, and that d ≥ 1. Show that

Card(B) ≤ 1 + dCard(A).

¶ 2) Let V be a real vector space of finite dimension n, and F a polynomial
function on V of degree d. Let V′ be the set of points of V at which F �= 0.
Show that the number of connected components of V′ is finite and bounded
by a constant depending only on n and d. (Argue by induction on n. Reduce
to the case in which F has no multiple factors, and show that V can be
decomposed as R×X in such a way that the results of Exerc. 1 are applicable
to F.)10

10For other results in the same direction, cf. J. MILNOR, On the Betti numbers of
real varieties, Proc. Amer. Math. Soc., Vol. XV (1964), pp. 275-280.



CHAPTER VIII
Split Semi-simple Lie Algebras

In this chapter, k denotes a (commutative) field of characteristic 0. Unless
otherwise stated, by a “vector space”, we mean a “vector space over k” ;
similarly for “Lie algebra”, etc.

§ 1. THE LIE ALGEBRA sl(2, k) AND ITS
REPRESENTATIONS

1. CANONICAL BASIS OF sl(2, k)

Lemma 1. Let A be an associative algebra over k, H and X elements of A
such that [H,X] = 2X.

(i) [H,Xn] = 2nXn for any integer n ≥ 0.
(ii) If Z is an element of A such that [Z,X] = H, then, for any integer

n > 0,

[Z,Xn] = nXn−1(H + n− 1) = n(H − n+ 1)Xn−1.

The map T 	→ [H,T ] from A to A is a derivation, which implies (i). With
the assumptions in (ii),

[Z,Xn] =
∑

i+j=n−1

XiHXj

=
∑

i+j=n−1

(XiXjH +Xi2jXj)

= nXn−1H + 2Xn−1n(n− 1)
2

= nXn−1(H + n− 1).

On the other hand, Xn−1(H + n− 1) = (H − n+ 1)Xn−1 by (i). Q.E.D.

Recall that we denote by sl(2, k) the Lie algebra consisting of the square
matrices of order 2, trace zero, and with entries in k. This Lie algebra is
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simple of dimension 3 (Chap. I, §6, no. 7, Example). The canonical basis of
sl(2, k) is the basis (X+, X−, H), where

X+ =
(

0 1
0 0

)
X− =

(
0 0

−1 0

)
H =

(
1 0
0 −1

)
.

We have

[H,X+] = 2X+ [H,X−] = −2X− [X+, X−] = −H. (1)

Since the identity representation of sl(2, k) is injective, H is a semi-simple
element of sl(2, k) and X+, X− are nilpotent elements of sl(2, k) (Chap. I, §6,
no. 3, Th. 3). By Chap. VII, §2, no. 1, Example 4, kH is a Cartan subal-
gebra of sl(2, k). The map U 	→ −tU is an involutive automorphism of the
Lie algebra sl(2, k), called the canonical involution of sl(2, k); it transforms
(X+, X−, H) into (X−, X+,−H).

Lemma 2. In the enveloping algebra of sl(2, k),

[H,Xn
+] = 2nXn

+ [H,Xn
−] = −2nXn

−

for any integer n ≥ 0, and

[X−, Xn
+] = nXn−1

+ (H + n− 1) = n(H − n+ 1)Xn−1
+

[X+, X
n
−] = nXn−1

− (−H + n− 1) = n(−H − n+ 1)Xn−1
−

if n > 0.
The first and third relations follow from Lemma 1. The others can be

deduced from them by using the canonical involution of sl(2, k).

2. PRIMITIVE ELEMENTS OF sl(2, k)-MODULES

Let E be an sl(2, k)-module. If A ∈ sl(2, k) and x ∈ E, we shall often write
Ax instead of AEx. Let λ ∈ k. If Hx = λx we say, by abuse of language,
that x is an element of E of weight λ, or that λ is the weight of x. If E is
finite dimensional, HE is semi-simple, so the set of elements of weight λ is
the primary subspace of E relative to HE and λ (cf. Chap. VII, §1, no. 1).

Lemma 3. If x is an element of weight λ, then X+x is an element of weight
λ+ 2 and X−x is an element of weight λ− 2.

Indeed, HX+x = [H,X+]x+X+Hx = 2X+x+X+λx = (λ+2)X+x, and
similarly HX−x = (λ− 2)X−x (cf. also Chap. VII, §1, no. 3, Prop. 10 (ii)).

DEFINITION 1. Let E be an sl(2, k)-module. An element of E is said to be
primitive if it is a non-zero eigenvector of HE and belongs to the kernel of
X+E.
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A non-zero element e of E is primitive if and only if ke is stable under
the operation of kH + kX+; this follows for example from Lemma 3.

Examples The element X+ is primitive of weight 2 for the adjoint representa-
tion of sl(2, k). The element (1, 0) of k2 is primitive of weight 1 for the identity
representation of sl(2, k) on k2.

Lemma 4. Let E be a non-zero finite dimensional sl(2, k)-module. Then E has
primitive elements.

Since X+ is a nilpotent element of sl(2, k), X+E is nilpotent. Assume that
Xm−1

+E �= 0 and Xm
+E = 0. By Lemma 2,

m(HE −m+ 1)Xm−1
+E = [X−E, X

m
+E] = 0,

and hence the elements of Xm−1
+ (E) -- {0} are primitive.

PROPOSITION 1. Let E be an sl(2, k)-module, and e a primitive element of
E of weight λ. Put en = (−1)n

n Xn
−e for n ≥ 0, and e−1 = 0. Then⎧⎨⎩

Hen = (λ− 2n)en
X−en = −(n+ 1)en+1
X+en = (λ− n+ 1)en−1.

(2)

The first formula follows from Lemma 3, and the second from the defini-
tion of the en. We prove the third by induction on n. It is satisfied for n = 0
since e−1 = 0. If n > 0,

nX+en = −X+X−en−1 = −[X+, X−]en−1 −X−X+en−1

= Hen−1 −X−(λ− n+ 2)en−2

= (λ− 2n+ 2 + (n− 1)(λ− n+ 2))en−1

= n(λ− n+ 1)en−1.

COROLLARY. The submodule of E generated by e is the vector subspace
generated by the en.

This follows from the formulas (2).

The integers n ≥ 0 such that en �= 0 constitute an interval in N, and the
corresponding elements en form a basis over k of the submodule generated by
e (indeed, they are linearly independent because they are non-zero elements
of distinct weights). This basis will be said to be associated to the primitive
element e.

PROPOSITION 2. If the submodule V of E generated by the primitive ele-
ment e is finite dimensional, then:

(i) the weight λ of e is integral and equal to dimV − 1;
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(ii) (e0, e1, . . . , eλ) is a basis of V, and en = 0 for n > λ;
(iii) the eigenvalues of HV are λ, λ − 2, λ − 4, . . . ,−λ; they are all of

multiplicity 1;
(iv) every primitive element of V is proportional to e;
(v) the commutant of the module V is reduced to the scalars; in particular,

V is absolutely simple.
Let m be the largest integer such that em �= 0. Then 0 = X+em+1 =

(λ − m)em, so λ = m; since (e0, e1, . . . , em) is a basis of V, this proves (i)
and (ii). Assertion (iii) follows from the equality Hen = (λ− 2n)en. We have
X+en �= 0 for 1 ≤ n ≤ m, hence (iv). Let c be an element of the commutant
of the module V. Then Hc(e) = cH(e) = λc(e), so there exists µ ∈ k such
that c(e) = µe; then

cXq
−e = Xq

−ce = µXq
−e

for all q ≥ 0, so c = µ.1, proving (v).

COROLLARY. Let E be a finite dimensional sl(2, k)-module.
(i) The endomorphism HE is diagonalizable and its eigenvalues are ratio-

nal integers.
(ii) For any p ∈ Z, let Ep be the eigenspace of HE corresponding to the

eigenvalue p. Let i be an integer ≥ 0. The map Xi
−E|Ep : Ep → Ep−2i is

injective for i ≤ p, bijective for i = p, and surjective for i ≥ p. The map
Xi

+E|E−p : E−p → E−p+2i is injective for i ≤ p, bijective for i = p, and
surjective for i ≥ p.

(iii) The length of E is equal to dim KerX+E and to dim KerX−E.
(iv) Let E′ (resp. E′′) be the sum of the Ep for p even (resp. odd). Then

E′ (resp. E′′) is the sum of the simple submodules of E of odd (resp. even)
dimension; and E = E′ ⊕ E′′. The length of E′ is dimE0, and that of E′′ is
dimE1.

(v) KerX+E ∩ ImX+E ⊂
∑
p>0

Ep and KerX−E ∩ ImX−E ⊂
∑
p<0

Ep.

If E is simple, E is generated by a primitive element (Lemma 4), and it
suffices to apply Propositions 1 and 2. The general case follows since every
finite dimensional sl(2, k)-module is semi-simple.

3. THE SIMPLE MODULES V(m)

Let (u, v) be the canonical basis of k2. For the identity representation of
sl(2, k),

X+u = 0 Hu = u X−u = −v
X+v = u Hv = −v X−v = 0.
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Consider the symmetric algebra S(k2) of k2 (Algebra, Chap. III, §6, no. 1,
Def. 1). The elements of sl(2, k) extend uniquely to derivations of S(k2),
giving S(k2) the structure of an sl(2, k)-module (Chap. I, §3, no. 2). Let
V(m) be the set of homogeneous elements of S(k2) of degree m. Then V(m)
is an sl(2, k)-submodule of S(k2) of dimension m + 1, the mth symmetric
power of V(1) = k2 (Chap. III, Appendix). If m,n are integers such that
0 ≤ n ≤ m, put

e(m)
n =

(m
n

)
um−nvn ∈ V(m).

PROPOSITION 3. For any integer m ≥ 0, V(m) is an absolutely simple
sl(2, k)-module. In this module, e(m)

0 = um is primitive of weight m.
We have X+u

m = 0 and Hum = mum, so um is primitive of weight m.
The submodule of V(m) generated by um is of dimension m+1 (Prop. 2 (i))
and so is equal to V(m). By Prop. 2 (v), V(m) is absolutely simple.

THEOREM 1. Every simple sl(2, k)-module of finite dimension n is isomor-
phic to V(n− 1). Every finite dimensional sl(2, k)-module is a direct sum of
submodules isomorphic to the modules V(m).

This follows from Lemma 4 and Prop. 1, 2 and 3.

Remarks. 1) The adjoint representation of sl(2, k) defines on sl(2, k) the
structure of a simple sl(2, k)-module. This module is isomorphic to V(2) by
an isomorphism that takes u2 to X+, 2uv to −H, and v2 to X−.

2) For n ≥ 0 and m > n,

X−e(m)
n = −(m− n)

(m
n

)
um−n−1vn+1 = −(n+ 1)e(m)

n+1.

Hence, (e(m)
0 , e

(m)
1 , . . . , e

(m)
m ) is the basis of V(m) associated to the primitive

element e(m)
0 .

3) Let Φ be the bilinear form on V(m) such that

Φ(e(m)
n , e

(m)
n′ ) = 0 if n+ n′ �= m

Φ(e(m)
n , e

(m)
m−n) = (−1)n

(m
n

)
.

If x = au + bv and y = cu + dv, then Φ(xm, ym) = (ad − bc)m. It is now
easy to check that Φ is invariant, and that Φ is symmetric for m even, and
alternating for m odd.

PROPOSITION 4. Let E be a finite dimensional sl(2, k)-module, m an inte-
ger ≥ 0, Pm the set of primitive elements of weight m. Let L be the vector
space of homomorphisms from the sl(2, k)-module V(m) to the sl(2, k)-module
E. The map f 	→ f(um) from L to E is linear, injective, and its image is
Pm ∪ {0}.
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This map is clearly linear, and it is injective because um generates the
sl(2, k)-module V(m). If f ∈ L,

X+(f(um)) = f(X+u
m) = 0, H(f(um)) = f(Hum) = mf(um)

so f(um) ∈ Pm ∪ {0}. Let e ∈ Pm, and V the submodule of E generated
by e. By Prop. 1, there exists an isomorphism from the module V(m) to the
module V that takes um to e. Then L(um) = Pm ∪ {0}.

COROLLARY. The isotypical component of E of type V(m) has length

dim(Pm ∪ {0}.

4. LINEAR REPRESENTATIONS OF THE GROUP SL(2, k)

Recall (Algebra, Chap. III, §8, no. 9) that we denote by SL(2, k) the group of
square matrices of order 2 with coefficients in k whose determinant is equal
to 1. If x ∈ sl(2, k) is nilpotent, then x2 = 0 (Algebra, Chap. VII, §5, Cor. 3
of Prop. 5) and ex = 1 + x ∈ SL(2, k). If E is a finite dimensional vector
space and ρ is a linear representation of sl(2, k) on E, then ρ(x) is nilpotent
and so eρ(x) is defined (Chap. I, §6, no. 3).

DEFINITION 2. Let E be a finite dimensional vector space, and ρ (resp. π) a
linear representation of sl(2, k) (resp. SL(2, k)) on E. Then ρ and π are said
to be compatible if, for every nilpotent element x of sl(2, k), π(ex) = eρ(x).

In other words, ρ and π are compatible if, for every nilpotent element x
of sl(2, k), the restriction of ρ to kx is compatible with the restriction of π to
the group 1 + kx (Chap. VII, §3, no. 1).

If ρ and π are compatible, so are the dual representations, the mth tensor
powers, and the mth symmetric powers of ρ and π, respectively (Chap. VII,
§5, no. 4, Lemma 1 (i) and (ii)). Similarly for the representations induced by
ρ and π on a vector subspace stable under ρ and π (loc. cit.).

In particular, the representation ρm of sl(2, k) on V(m) (no. 3) is com-
patible with the mth symmetric power πm of the identity representation π1

of SL(2, k). Putting e(m)
n =

(
m
n

)
um−nvn as above, we have

πm(s)e(m)
n =

(m
n

)
(su)m−n(sv)n (3)

for s ∈ SL(2, k) and 0 ≤ n ≤ m.

THEOREM 2. Let ρ be a linear representation of sl(2, k) on a finite
dimensional vector space E.
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(i) There exists a unique linear representation π of SL(2, k) on E that is
compatible with ρ.

(ii) A vector subspace F of E is stable under π if and only if it is stable
under ρ.

(iii) Let x ∈ E. Then π(s)x = x for all s ∈ SL(2, k) if and only if x is
invariant under ρ (that is, ρ(a)x = 0 for all a ∈ sl(2, k)).

The existence of π follows from the preceding and Th. 1. On the other
hand, we know that the group SL(2, k) is generated by the elements of the
form

etX+ =
(

1 t
0 1

)
e−tX− =

(
1 0
t 1

)
where t ∈ k (Algebra, Chap. III, §8, no. 9, Prop. 17). This proves the unique-
ness of π.

Assertions (ii) and (iii) follow from what we have said, together with
Chap. VII, §3, no. 1, Lemma 1 (i). Q.E.D.

Every finite dimensional sl(2, k)-module therefore has a unique SL(2, k)-
module structure, which is said to be associated to its sl(2, k)-module struc-
ture.

Remark. When k is R or C or a complete non-discrete ultrametric field,
sl(2, k) is the Lie algebra of SL(2, k). Let ρ and π be as in Th. 2. The ho-
momorphism π is a homomorphism of Lie groups from SL(2, k) to GL(E):
this is clear when E = V(m), and the general case follows, in view of Th. 1.
By Chap. VII, §3, no. 1, ρ(X+) = L(π)(X+), ρ(X−) = L(π)(X−). Hence
ρ = L(π) (for a converse, see Exerc. 18).

PROPOSITION 5. Let E, F be finite dimensional sl(2, k)-modules, and let
f ∈ Homk(E,F). The following conditions are equivalent:

(i) f is a homomorphism of sl(2, k)-modules;
(ii) f is a homomorphism of SL(2, k)-modules.
Condition (i) means that f is an invariant element of the sl(2, k)-module

Homk(E,F), and condition (ii) means that f is an invariant element of the
SL(2, k)-module Homk(E,F). Since these module structures are associated by
Chap. VII, §5, no. 4, Lemma 1 (iii), the proposition follows from Th. 2 (iii).

DEFINITION 3. The adjoint representation of the group SL(2, k) is the lin-
ear representation Ad of SL(2, k) on sl(2, k) defined by

Ad(s).a = sas−1

for all a ∈ sl(2, k) and all s ∈ SL(2, k).
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When k is R or C or a complete non-discrete ultrametric field, we recover Def. 7
of Chap. III, §3, no. 12 (cf. loc. cit., Prop. 49).

By Chap. VII, §5, no. 4, Lemma 1 (i) and (ii), the adjoint representations
of sl(2, k) and SL(2, k) are compatible. By Chap. VII, §3, no. 1, Remark 2,
Ad(SL(2, k)) = Aute(sl(2, k)).

5. SOME ELEMENTS OF SL(2, k)

For any t ∈ k∗, put

θ(t) = etX+et
−1X−etX+

=
(

1 t
0 1

)(
1 0

−t−1 1

)(
1 t
0 1

)
=
(

0 t
−t−1 0

)
= et

−1X−etX+et
−1X− .

With the notations of no. 3,

θ(t)u = −t−1v θ(t)v = tu

so

θ(t)e(m)
n = (−1)m−nt2n−me

(m)
m−n. (4)

Hence, the element θ(t)2 =
(−1 0

0 −1

)
operates by (−1)m on V(m). If

E is an odd-dimensional simple sl(2, k)-module, θ(t)E is thus an involutive
automorphism of the vector space E. In particular, taking E to be the adjoint
representation:

θ(t)EX+ = t−2X− θ(t)EX− = t2X+ θ(t)EH = −H (5)

so that θ(1)E = θ(−1)E is the canonical involution of sl(2, k).
For any t ∈ k∗, put

h(t) =
(
t 0
0 t−1

)
= θ(t)θ(−1).

Then h(t)u = tu, h(t)v = t−1v, so

h(t)e(m)
n = tm−2ne(m)

n . (6)

PROPOSITION 6. Let E be a finite dimensional sl(2, k)-module, and t ∈ k∗.
Let Ep be the set of elements of E of weight p.

(i) θ(t)E|Ep is a bijection from Ep to E−p.
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(ii) h(t)E|Ep is the homothety with ratio tp on Ep.
If E = V(n), the proposition follows from formulas (4) and (6). The

general case follows from Th. 1.

COROLLARY. Let E = E′ ⊕ E′′ be the decomposition of E defined in the

Cor. of Prop. 2. The element
(−1 0

0 −1

)
of SL(2, k) operates by +1 on E′

and by −1 on E′′.
This follows from (ii), applied to t = −1.

§ 2. ROOT SYSTEM OF A SPLIT SEMI-SIMPLE LIE
ALGEBRA

1. SPLIT SEMI-SIMPLE LIE ALGEBRAS

DEFINITION 1. Let g be a semi-simple Lie algebra. A Cartan subalgebra h
of g is called splitting if, for all x ∈ h, adgx is triangularizable. A semi-simple
Lie algebra is called splittable if it has a splitting Cartan subalgebra. A split
semi-simple Lie algebra is a pair (g, h) where g is a semi-simple Lie algebra
and h is a splitting Cartan subalgebra of g.

Remarks. 1) Let g be a semi-simple Lie algebra, h a Cartan subalgebra of
g. For all x ∈ h, adgx is semi-simple (Chap. VII, §2, no. 4, Th. 2). Thus, to
say that h is splitting means that adgx is diagonalizable for all x ∈ h.

2) If k is algebraically closed, every semi-simple Lie algebra g is splittable,
and every Cartan subalgebra of g is splitting. When k is not algebraically
closed, there exist non-splittable semi-simple Lie algebras (Exerc. 2 a));
moreover, if g is splittable, there may exist Cartan subalgebras of g that
are not splitting (Exerc. 2 b)).

3) Let g be a semi-simple Lie algebra, h a Cartan subalgebra of g, and ρ
a finite dimensional injective representation of g such that ρ(h) is diagonaliz-
able. Then adgx is diagonalizable for all x ∈ h (Chap. VII, §2, no. 1, Example
2), so h is splitting.

4) We shall see (§3, no. 3, Cor. of Prop. 10) that if h, h′ are splitting Cartan
subalgebras of g, there exists an elementary automorphism of g transforming
h into h′.

5) Let g be a reductive Lie algebra. Then g = c×s where c is the centre of g
and s = Dg is semi-simple. The Cartan subalgebras of g are the subalgebras
of the form h = c × h′ where h′ is a Cartan subalgebra of s (Chap. VII,
§2, no. 1, Prop. 2). Then h is called splitting if h′ is splitting relative to s.
This leads in an obvious way to the definition of splittable or split reductive
algebras.
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2. ROOTS OF A SPLIT SEMI-SIMPLE LIE ALGEBRA

In this number, (g, h) denotes a split semi-simple Lie algebra.

For any λ ∈ h∗, denote by gλ(h), or simply by gλ, the primary subspace
of g relative to λ (cf. Chap. VII, §1, no. 3). Recall that g0 = h (Chap. VII,
§2, no. 1, Prop. 4), that g is the direct sum of the gλ (Chap. VII, §1, no. 3,
Prop. 8 and 9), that gλ is the set of x ∈ g such that [h, x] = λ(h)x for all
h ∈ h (Chap. VII, §2, no. 4, Cor. 1 of Th. 2), and that the weights of h on g
are the linear forms λ on h such that gλ �= 0 (Chap. VII, §1, no. 1).

DEFINITION 2. A root of (g, h) is a non-zero weight of h on g.

Denote by R(g, h), or simply by R, the set of roots of (g, h). We have

g = h ⊕
⊕
α∈R

gα.

PROPOSITION 1. Let α, β be roots of (g, h) and let 〈·, ·〉 be a non-degenerate
invariant symmetric bilinear form on g (for example the Killing form of g).

(i) If α + β �= 0, gα and gβ are orthogonal. The restriction of 〈·, ·〉 to
gα × g−α is non-degenerate. The restriction of 〈·, ·〉 to h is non-degenerate.

(ii) Let x ∈ gα, y ∈ g−α and h ∈ h. Then [x, y] ∈ h and

〈h, [x, y]〉 = α(h)〈x, y〉.

Assertion (i) is a particular case of Prop. 10 (iii) of Chap. VII, §1, no. 3.
If x ∈ gα, y ∈ g−α and h ∈ h, we have [x, y] ∈ gα−α = h, and

〈h, [x, y]〉 = 〈[h, x], y〉 = 〈α(h)x, y〉 = α(h)〈x, y〉.

THEOREM 1. Let α be a root of (g, h).
(i) The vector space gα is of dimension 1.
(ii) The vector subspace hα = [gα, g−α] of h is of dimension 1. It contains

a unique element Hα such that α(Hα) = 2.
(iii) The vector subspace sα = hα + gα + g−α is a Lie subalgebra of g.
(iv) If Xα is a non-zero element of gα, there exists a unique X−α ∈ g−α

such that [Xα, X−α] = −Hα. Let ϕ be the linear map from sl(2, k) to g that
takes X+ to Xα, X− to X−α, and H to Hα; then ϕ is an isomorphism from
the Lie algebra sl(2, k) to the Lie algebra sα.
a) Let hα be the unique element of h such that α(h) = 〈hα, h〉 for all

h ∈ h. By Prop. 1, [x, y] = 〈x, y〉hα for all x ∈ gα, y ∈ g−α; on the other
hand 〈gα, g−α〉 �= 0. Hence hα = [gα, g−α] = khα.
b) Choose x ∈ gα, y ∈ g−α such that 〈x, y〉 = 1, so [x, y] = hα. Recall

that [hα, x] = α(hα)x, [hα, y] = −α(hα)y. If α(hα) = 0, it follows that
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kx + ky + khα is a nilpotent subalgebra t of g; since hα ∈ [t, t], adghα is
nilpotent (Chap. I, §5, no. 3, Th. 1), which is absurd since adghα is non-zero
semi-simple. So α(hα) �= 0. Hence there exists a unique Hα ∈ hα such that
α(Hα) = 2, which proves (ii).
c) Choose a non-zero element Xα of gα. There exists X−α ∈ g−α such

that [Xα, X−α] = −Hα (since [Xα, g
−α] = hα by b)). Then

[Hα, Xα] = α(Hα)Xα = 2Xα, [Hα, X−α] = −α(Hα)X−α = −2X−α,

[Xα, X−α] = −Hα;

hence kXα + kX−α + kHα is a subalgebra of g and the linear map ϕ from
sl(2, k) to kXα + kX−α + kHα such that ϕ(X+) = Xα, ϕ(X−) = X−α,
ϕ(H) = Hα is an isomorphism of Lie algebras.
d) Assume that dim gα > 1. Let y be a non-zero element of g−α. There

exists a non-zero element Xα of gα such that 〈y,Xα〉 = 0. Choose X−α as in
c), and consider the representation ρ : u 	→ adgϕ(u) from sl(2, k) to g. We
have

ρ(H)y = [ϕ(H), y] = [Hα, y] = −2y
ρ(X+)y = [ϕ(X+), y] = [Xα, y] = 〈Xα, y〉hα = 0.

Thus, y is primitive for ρ, of weight −2, which contradicts Prop. 2 of §1,
no. 2. This proves (i).
e) Assertion (iii) is now a consequence of c). On the other hand, if Xα is

a non-zero element of gα, the element X−α constructed in c) is the unique
element of g−α such that [Xα, X−α] = −Hα since dim g−α = 1. The last
assertion of (iv) is a consequence of c). Q.E.D.

The notations hα, Hα, sα will be retained in what follows. (To define hα,
we take 〈·, ·〉 equal to the Killing form.) If Xα is a non-zero element of gα,
the isomorphism ϕ of Th. 1 and the representation u 	→ adgϕ(u) of sl(2, k)
on g will be said to be associated to Xα.

COROLLARY. Let Φ be the Killing form of g. For all a, b ∈ h,

Φ(a, b) =
∑
γ∈R

γ(a)γ(b).

Indeed, ad a.ad b leaves each gγ stable, and its restriction to gγ is the
homothety with ratio γ(a)γ(b); if γ �= 0, dim gγ = 1.

PROPOSITION 2. Let α, β ∈ R.
(i) β(Hα) ∈ Z.
(ii) If Φ denotes the Killing form of g, Φ(Hα, Hβ) ∈ Z.
Let Xα be a non-zero element of gα, and let ρ be the representation of

sl(2, k) on g associated to Xα. The eigenvalues of ρ(H) are 0 and the β(Hα)
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for β ∈ R. Hence (i) follows from §1, no. 2, Cor. of Prop. 2. Assertion (ii)
follows from (i) and the Cor. of Th. 1. Q.E.D.

Let α ∈ R, Xα a non-zero element of gα, X−α the element of g−α such
that [Xα, X−α] = −Hα, and ρ the representation of sl(2, k) on g associated
to Xα. Let π be the representation of SL(2, k) on g compatible with ρ (§1,
no. 4, Th. 2). Since adXα is nilpotent (Chap. VII, §1, no. 3, Prop. 10 (iv)),
π(eX+) = ead Xα is an elementary automorphism of g. Similarly, π(eX−) =
ead X−α is an elementary automorphism of g. Hence π(SL(2, k)) ⊂ Aute(g).
We make use of the notation θ(t) of §1, no. 5. For t ∈ k∗, put

θα(t) = π(θ(t)) = ead tXαead t−1X−αead tXα . (1)

Lemma 1. (i) For all h ∈ h, θα(t).h = h− α(h)Hα.
(ii) For all β ∈ R, θα(t)(gβ) = gβ−β(Hα)α.
(iii) If α, β ∈ R, β − β(Hα)α ∈ R.
Let h ∈ h. If α(h) = 0, [Xα, h] = [X−α, h] = 0, so θα(t).h = h. On the

other hand, the formulas (5) of §1, no. 5 show that θα(t).Hα = −Hα. This
proves assertion (i). It follows that θα(t)2|h = Id. If x ∈ gβ and h ∈ h,

[h, θα(t)x] = θα(t).[θα(t)h, x] − β(θα(t)h).θα(t)x
= (β(h) − α(h)β(Hα)).θα(t)x
= (β − β(Hα)α)(h).θα(t)x

so θα(t)x ∈ gβ−β(Hα)α. This proves (ii). Assertion (iii) follows from (ii).

THEOREM 2. (i) The set R = R(g, h) is a reduced root system in h∗.
(ii) Let α ∈ R. The map sα,Hα

: λ 	→ λ − λ(Hα)α from h∗ to h∗ is the
unique reflection s of h∗ such that s(α) = −α and s(R) = R. For all t ∈ k∗,
s is the transpose of θα(t)|h.

First, R generates h∗, for if h ∈ h is such that α(h) = 0 for all α ∈ R, then
adh = 0 and hence h = 0 since the centre of g is zero. By definition, 0 /∈ R.
Let α ∈ R. Since α(Hα) = 2, s = sα,Hα

is a reflection such that s(α) = −α.
Then s(R) = R by Lemma 1 (iii), and β(Hα) ∈ Z for all β ∈ R (Prop. 2 (i)).
This shows that R is a root system in h∗. For all h ∈ h and λ ∈ h∗,

〈s(λ), h〉 = 〈λ− λ(Hα)α, h〉 = 〈λ, h− α(h)Hα〉 = 〈λ, θα(t)h〉
so s is the transpose of θα(t)|h. Finally, we show that the root system R
is reduced. Let α ∈ R and y ∈ g2α. Since 3α /∈ R (Chap. VI, §1, no. 3,
Prop. 8), [Xα, y] = 0; on the other hand, [X−α, y] ∈ g−α+2α = gα = kXα, so
[Xα, [X−α, y]] = 0; thus

4y = 2α(Hα)y = [Hα, y] = −[[Xα, X−α], y] = 0

so y = 0 and g2α = 0. In other words, 2α is not a root. Q.E.D.
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Identify h canonically with h∗∗. With the notations of Chap. VI, §1, no. 1,
we then have, by Th. 2 (ii),

Hα = α∨ for all α ∈ R. (2)

The Hα thus form the root system R∨ in h inverse to R.
We shall call R(g, h) the root system of (g, h). The reflections sα,Hα

will
be denoted simply by sα. The Weyl group, group of weights, Coxeter number
. . . of R(g, h) are called the Weyl group, group of weights, Coxeter number . . .
of (g, h). As in Chap. VI, §1, no. 1, we consider the Weyl group as operating
not only on h∗, but also on h by transport of structure, so that sα = θα(t)|h.
Since the θα(t) are elementary automorphisms of g, we have:

COROLLARY. Every element of the Weyl group of (g, h), operating on h, is
the restriction to h of an elementary automorphism of g.

For a converse of this result, see §5, no. 2, Prop. 4.

Remark 1. If hQ (resp. h∗
Q) denotes the Q-vector subspace of h (resp. h∗)

generated by the Hα (resp. the α), where α ∈ R, then h (resp. h∗) can
be identified canonically with hQ ⊗Q k (resp. with h∗

Q ⊗Q k) and h∗
Q can

be identified with the dual of hQ (Chap. VI, §1, no. 1, Prop. 1). We call
hQ and h∗

Q the canonical Q-structures on h and h∗ (Algebra, Chap. II, §8,
no. 1, Def. 1). When we mention Q-rationality for a vector subspace of h, for
a linear form on h, etc., we shall mean these structures, unless we indicate
otherwise. When we mention Weyl chambers, or facets, of R(g, h), we shall
work in hQ ⊗Q R or h∗

Q ⊗Q R, that we shall denote by hR and h∗
R.

Remark 2. The root system R∨ in h defines a non-degenerate symmetric
bilinear form β on h (Chap. VI, §1, no. 1, Prop. 3), namely the form (a, b) 	→∑
α∈R

〈α, a〉〈α, b〉. By the Cor. to Th. 1, this form is just the restriction of the

Killing form to h. The extension of β|hQ × hQ to hQ ⊗Q R is positive non-
degenerate (Chap. VI, §1, no. 1, Prop. 3). On the other hand, we see that
the inverse form on h∗ of the restriction to h of the Killing form on g is the
canonical bilinear form ΦR of R (Chap. VI, §1, no. 12).

Let (g1, h1), (g2, h2) be split semi-simple Lie algebras, ϕ an isomorphism
from g1 to g2 such that ϕ(h1) = h2. By transport of structure, the transpose
of the map ϕ|h1 takes R(g2, h2) to R(g1, h1).

PROPOSITION 3. Let g be a semi-simple Lie algebra, h1 and h2 splitting
Cartan subalgebras of g. There exists an isomorphism from h∗

1 to h∗
2 that

takes R(g, h1) to R(g, h2).
(For more precise results, see §3, no. 3, Cor. of Prop. 10, and §5, no. 3,

Prop. 5).
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Let k′ be an algebraic closure of k, g′ = g⊗kk
′, h′

i = hi⊗kk
′. Then R(g′, h′

i)
is the image of R(g, hi) under the map λ 	→ λ⊗ 1 from h∗

i to h∗
i ⊗k k

′ = h′
i
∗.

By Chap. VII, §3, no. 2, Th. 1, there exists an automorphism of g′ taking
h′
1 to h′

2, hence an isomorphism ϕ from h′
1
∗ to h′

2
∗ that takes R(g′, h′

1) to
R(g′, h′

2). Then ϕ|h∗
1 takes R(g, h1) to R(g, h2), and hence h∗

1 to h∗
2. Q.E.D.

In view of Prop. 3, the root system of (g, h) depends, up to isomorphism,
only on g and not on h. In the same way, the Weyl group, group of weights
. . . of (g, h) are simply called, by abuse of language, the Weyl group, group
of weights . . . of g (cf. also §5, no. 3, Remark 2). If the Dynkin graph of g is
of type Al, or Bl, . . . (cf. Chap. VI, §4, no. 2, Th. 3), we say that g is of type
Al, or Bl, . . ..

Recall that, if α and β are linearly independent roots, the set of j ∈ Z
such that β + jα ∈ R is an interval [−q, p] of Z containing 0, with p − q =
−〈β, α∨〉 = −β(Hα) (Chap. VI, §1, no. 3, Prop. 9).

PROPOSITION 4. Let α and β be linearly independent roots. Let p (resp. q)
be the largest integer j such that β + jα (resp. β − jα) is a root.

(i) The vector subspace
∑

−q≤j≤p
gβ+jα of g is a simple sα-module of di-

mension p+ q + 1.
(ii) If α+ β is a root, then [gα, gβ ] = gα+β.
Let Xα (resp. x) be a non-zero element of gα (resp. gβ+pα). Then

[Xα, x] ∈ gβ+(p+1)α = 0
[Hα, x] = (β(Hα) + pα(Hα))x = (−p+ q + 2p)x = (p+ q)x.

Thus, x is primitive of weight p + q for the representation of sl(2, k) on
g associated to Xα; but the sl(2, k)-module

∑
−q≤j≤p

gβ+jα is of dimension

p+ q + 1; hence it is simple (§1, no. 2, Prop. 2). If α+ β ∈ R, then p ≥ 1, so
the elements of gβ are not primitive, and hence [Xα, g

β ] �= 0. Since [gα, gβ ] ⊂
gα+β , we see finally that [gα, gβ ] = gα+β .

Remark 3. Recall that, by Chap. VI, §1, no. 3, Cor. of Prop. 9, the integer
p+ q + 1 can only take the values 1, 2, 3, 4.

Remark 4. Let (g, h) be a split reductive Lie algebra, c the centre of g, g′ = Dg,
h′ = h ∩ g′. Then h = c × h′, and we identify h′∗ with a vector subspace of
h∗. For any λ ∈ h∗ such that λ �= 0, the primary subspace gλ relative to
λ is equal to g′λ|h′

. A non-zero weight of h on g is called a root of (g, h);
every root vanishes on c. Denote by R(g, h) the set of roots of (g, h); it can
be identified canonically with R(g′, h′). Let α ∈ R(g, h). We define hα, Hα,
sα, the isomorphisms sl(2, k) → sα, and the representations of sl(2, k) on g
associated to α, as in the semi-simple case.
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3. INVARIANT BILINEAR FORMS

PROPOSITION 5. Let (g, h) be a split semi-simple Lie algebra, Φ an invari-
ant symmetric bilinear form on g, and W the Weyl group of (g, h). Then
the restriction Φ′ of Φ to h is invariant under W. Moreover, if Φ is non-
degenerate, so is Φ′.

Let α ∈ R, let Xα be a non-zero element of gα, ρ the associated represen-
tation of sl(2, k) on g, and π the representation of SL(2, k) on g compatible
with ρ. Then Φ is invariant under ρ, and hence under π (§1, no. 4). In par-
ticular, Φ′ is invariant under θα(t)|h (no. 2), and hence under W. The last
assertion follows from Prop. 1 (i).

PROPOSITION 6. Let (g, h) be a split semi-simple Lie algebra, Φ a non-
degenerate invariant symmetric bilinear form on g. For all α ∈ R, let Xα be
a non-zero element of gα. Let (Hi)i∈I be a basis of h, and (H ′

i)i∈I the basis
of h such that Φ(Hi, H

′
j) = δij. The Casimir element associated to Φ in the

enveloping algebra of g (Chap. I, §3, no. 7) is then∑
α∈R

1
Φ(Xα, X−α)

XαX−α +
∑
i∈I

HiH
′
i.

Indeed, by Prop. 1, Φ(Hi, Xα) = Φ(H ′
i, Xα) = 0 for all i ∈ I, α ∈ R, and

Φ
(

1
Φ(Xα,X−α)Xα , X−β

)
= δαβ for all α, β ∈ R.

4. THE COEFFICIENTS Nαβ

In this number, we again denote by (g, h) a split semi-simple Lie algebra.

Lemma 2. There exists a family (Xα)α∈R such that, for all α ∈ R,

Xα ∈ gα and [Xα, X−α] = −Hα.

Let R1 be a subset of R such that R = R1 ∪ (−R1) and R1 ∩ (−R1) = ∅.
For α ∈ R1, choose an arbitrary non-zero element Xα of gα. There exists a
unique X−α ∈ g−α such that [Xα, X−α] = −Hα (Th. 1 (iv)). Then

[X−α, Xα] = Hα = −H−α. Q.E.D.

If (Xα)α∈R is one family satisfying the conditions of Lemma 2, the most
general family satisfying these conditions is (tαXα)α∈R where tα ∈ k∗ and
tαt−α = 1 for all α ∈ R.

In the remainder of this number, we denote by (Xα)α∈R a family satisfying
the conditions of Lemma 2. We denote by 〈·, ·〉 a non-degenerate invariant
symmetric bilinear form on g.
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Every x ∈ g can be written uniquely in the form

x = h+
∑
α∈R

µαXα (h ∈ h, µα ∈ k).

The bracket of two such elements can be calculated by means of the following
formulas:

[h,Xα] = α(h)Xα

[Xα, Xβ ] =

⎧⎨⎩
0 if α+ β /∈ R ∪ {0}
−Hα if α+ β = 0
NαβXα+β if α+ β ∈ R

the Nαβ being non-zero elements of k.

Lemma 3. For all α ∈ R,

〈Xα, X−α〉 = −1
2
〈Hα, Hα〉.

Indeed,

2〈Xα, X−α〉 = 〈α(Hα)Xα, X−α〉 = 〈[Hα, Xα], X−α〉
= 〈Hα, [Xα, X−α]〉 = −〈Hα, Hα〉.

Lemma 4. Let α, β ∈ R be such that α+ β ∈ R. Let p (resp. q) be the largest
integer j such that β + jα ∈ R (resp. β − jα ∈ R). Then,

Nα,βN−α,α+β = −p(q + 1) (3)
N−α,α+β〈Hβ , Hβ〉 = −N−α,−β〈Hα+β , Hα+β〉 (4)

Nα,βN−α,−β = (q + 1)2. (5)

Let ρ be the representation of sl(2, k) on g defined by Xα. The element
e = Xβ+pα is primitive of weight p+ q (Prop. 4 (i)). Put

en =
(−1)n

n!
ρ(X−)ne for n ≥ 0.

By Prop. 1 of §1,

(adXα)ep = (q + 1)ep−1

(adX−α)(adXα)ep = −p(q + 1)ep.

This proves (3) since ep is a non-zero element of gβ .
The form 〈·, ·〉 being invariant, we have

〈[X−α, Xα+β ], X−β〉 = −〈Xα+β , [X−α, X−β ]〉
so
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N−α,α+β〈Xβ , X−β〉 = −N−α,−β〈Xα+β , X−α−β〉
which, in view of Lemma 3, proves (4).

The restriction of 〈·, ·〉 to h is non-degenerate and invariant under the Weyl
group (Prop. 5). Identify h and h∗ by means of this restriction. If γ ∈ R, Hγ

is identified with 2γ/〈γ, γ〉 (Chap. VI, §1, no. 1, Lemma 2); hence, for all
γ, δ ∈ R,

〈γ, γ〉
〈δ, δ〉 =

〈Hδ, Hδ〉
〈Hγ , Hγ〉 . (6)

Now, by Chap. VI, §1, no. 3, Prop. 10,

〈α+ β, α+ β〉
〈β, β〉 =

q + 1
p

(7)

so, by (3), (4), (6), (7),

Nα,βN−α,−β = −Nα,βN−α,α+β
〈Hβ , Hβ〉

〈Hα+β , Hα+β〉
= −Nα,βN−α,α+β

q + 1
p

= (q + 1)2.

DEFINITION 3. A Chevalley system for (g, h) is a family (Xα)α∈R such that
(i) Xα ∈ gα for all α ∈ R;
(ii) [Xα, X−α] = −Hα for all α ∈ R;
(iii) the linear map from g to g which is equal to −1 on h and which takes

Xα to X−α for all α ∈ R is an automorphism of g.

The extension of this definition to the case where (g, h) is split reductive is
immediate.

We shall show (§4, no. 4, Cor. of Prop. 5) that Chevalley systems for (g, h)
exist.

PROPOSITION 7. Let (Xα)α∈R be a Chevalley system for (g, h). We retain
the notation of Lemma 4. Then, N−α,−β = Nα,β and Nα,β = ±(q + 1) for
α, β, α+ β ∈ R.

Let ϕ be the automorphism of g considered in Def. 3 (iii). Then

N−α,−βX−α−β = [X−α, X−β ] = [ϕ(Xα), ϕ(Xβ)] = ϕ([Xα, Xβ ])
= ϕ(Nα,βXα+β) = Nα,βX−α−β

so N−α,−β = Nα,β . Now Nα,β = ±(q + 1) by (5).

PROPOSITION 8. Let (Xα)α∈R be a Chevalley system for (g, h). Let M be
a Z-submodule of h containing the Hα and contained in the group of weights
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of R∨. Let gZ be the Z-submodule of g generated by M and the Xα. Then gZ

is a Z-Lie subalgebra of g, and the canonical map from gZ ⊗Z k to g is an
isomorphism.

If α, β ∈ R are such that α + β ∈ R, then Nα,β ∈ Z (Prop. 7). On the
other hand, if α ∈ R and h ∈ M, then α(h) ∈ Z (Chap. VI, §1, no. 9). This
proves that gZ is a Z-Lie subalgebra of g. On the other hand, M is a free
abelian group of rank dimh (Algebra, Chap. VII, §3, Th. 1), so gZ is a free
abelian group of rank dim g; this implies the last assertion.

§3. SUBALGEBRAS OF SPLIT SEMI-SIMPLE LIE
ALGEBRAS

In this paragraph, we denote by (g, h) a split semi-simple Lie algebra, and by
R its root system.

1. SUBALGEBRAS STABLE UNDER ad h

Lemma 1. Let V be a vector subspace of g and R(V) the set of α ∈ R such
that gα ⊂ V. Then, (V ∩ h) +

∑
α∈R(V)

gα is the largest vector subspace of V

stable under ad h.
A vector subspace W of V is stable under ad h if and only if

W = (W ∩ h) +
∑
α∈R

(W ∩ gα)

(Algebra, Chap. VII, §2, no. 2, Cor. 1 of Th. 1). The largest vector subspace
of V stable under ad h is thus (V ∩ h) +

∑
α∈R

(V ∩ gα). But V ∩ gα = gα for

α ∈ R(V), and V ∩ gα = 0 for α /∈ R(V) since dim gα = 1. Q.E.D.

For any subset P of R, put

gP =
∑
α∈P

gα hP =
∑
α∈P

hα.

If P ⊂ R and Q ⊂ R, we clearly have

[h, gP] ⊂ gP (1)
[gP, gQ] = g(P+Q)∩R + hP∩(−Q). (2)

Recall (Chap. VI, §1, no. 7, Def. 4) that a subset P of R is said to be
closed if the conditions α ∈ P, β ∈ P, α + β ∈ R imply α + β ∈ P, in other
words if (P + P) ∩ R ⊂ P.
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Lemma 2. Let h′ be a vector subspace of h and P a subset of R. Then h′ + gP

is a subalgebra of g if and only if P is a closed subset of R and

h′ ⊃ hP∩(−P).

Indeed,

[h′ + gP, h′ + gP] = [h′, gP] + [gP, gP] = hP∩(−P) + [h′, gP] + g(P+P)∩R.

Hence h′ + gP is a subalgebra of g if and only if

hP∩(−P) ⊂ h′ and g(P+P)∩R ⊂ gP

which proves the lemma.

PROPOSITION 1. (i) The subalgebras of g stable under ad h are the vector
subspaces of the form h′ + gP, where P is a closed subset of R and h′ is a
vector subspace of h containing hP∩(−P).

(ii) Let h′, h′′ be vector subspaces of h and P,Q closed subsets of R, with
h′ ⊃ hP∩(−P), h′′ ⊂ h′ and Q ⊂ P. Then h′′ + gQ is an ideal of h′ + gP if and
only if

(P + Q) ∩ R ⊂ Q and hP∩(−Q) ⊂ h′′ ⊂
⋂

α∈P,α/∈Q

Kerα.

Assertion (i) follows immediately from Lemmas 1 and 2. Let h′, h′′,P,Q
be as in (ii). Then

[h′ + gP, h′′ + gQ] = hP∩(−Q) + [h′, gQ] + [h′′, gP] + g(P+Q)∩R.

Hence, h′′ + gQ is an ideal of h′ + gP if and only if

hP∩(−Q) ⊂ h′′, [h′′, gP] ⊂ gQ, g(P+Q)∩R ⊂ gQ.

This implies (ii).

PROPOSITION 2. Let a be a subalgebra of g stable under ad h, and let h′ ⊂ h,
P ⊂ R be such that a = h′ + gP.

(i) Let k be the set of x ∈ h′ such that α(x) = 0 for all α ∈ P ∩ (−P).
The radical of a is k + gQ, where Q is the set of α ∈ P such that −α /∈ P.
Moreover, gQ is a nilpotent ideal of a.

(ii) a is semi-simple if and only if P = −P and h′ = hP.
(iii) a is solvable if and only if P ∩ (−P) = ∅. In that case [a, a] = gS,

where

S = ((P + P) ∩ R) ∪ {α ∈ P|α(h′) �= 0}.

(iv) a is reductive in g if and only if P = −P.
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(v) a consists of nilpotent elements if and only if h′ = 0. Then P∩(−P) =
∅, and a is nilpotent.

We prove (v). If a consists of nilpotent elements, a is clearly nilpotent,
and h′ = 0 since the elements of h are semi-simple. Assume that h′ = 0. By
Prop. 1 (i), P ∩ (−P) = ∅. By Chap. VI, §1, no. 7, Prop. 22, there exists a
chamber C of R such that P ⊂ R+(C). Hence, there exists an integer n > 0
with the following properties: if α1, . . . , αn ∈ P and β ∈ R ∪ {0}, then

α1 + · · · + αn + β /∈ R ∪ {0}.
This implies that every element of gP is nilpotent, hence (v).

We prove (iii). If P∩ (−P) = ∅, gP is a subalgebra of g (Prop. 1 (i)), and
is nilpotent by (v). Now

[a, a] = [h′, gP] + [gP, gP] = [h′, gP] + g(P+P)∩R ⊂ gP,

so a is solvable and [a, a] is given by the formula in the proposition. If
P ∩ (−P) �= ∅, let α ∈ P be such that −α ∈ P. Then hα + gα + g−α is a
simple subalgebra of a so a is not solvable.

We prove (i). Since P is closed, (P + Q) ∩ R ⊂ P. If α ∈ P, β ∈ Q and
α+β ∈ R, we cannot have α+β ∈ −P, for, P being closed, this would imply
that −β = −(α + β) + α ∈ P whereas β ∈ Q; thus, (P + Q) ∩ R ⊂ Q. This
proves that gQ is an ideal of a, nilpotent by (v). We have P ∩ (−Q) = ∅,
and P ∩ (−P) = P ∩ �Q, so hP∩(−Q) ⊂ k ⊂

⋂
α∈P,α/∈Q

Kerα. By Prop. 1 (ii),

k + gQ is an ideal of a. Since Q ∩ (−Q) = ∅, this ideal is solvable by (iii).
It is therefore contained in the radical r of a. Since r is stable under every
derivation of a, r is stable under ad h. Hence there exists a subset S of P
such that r = (r ∩ h) + gS. Suppose that α ∈ S and that −α ∈ P. Then
hα = [gα, g−α] ⊂ r, so g−α = [hα, g

−α] ⊂ r = 0, so that −α ∈ S; by (iii),
this contradicts the fact that r is solvable. Consequently, S ⊂ Q. Finally, if
x ∈ r ∩ h and if α ∈ P ∩ (−P), then [x, gα] ⊂ gα ∩ r = 0, so α(x) = 0; this
shows that x ∈ k. Hence r ⊂ k + gQ and the proof of (i) is complete.

We prove (iv). By (i), the adjoint representation of a on g is semi-simple
if and only if adgx is semi-simple for all x ∈ k+gQ (Chap. I, §6, no. 5, Th. 4);
by (v), this is the case if and only if Q = ∅, in other words P = −P.

We prove (ii). If a is semi-simple, P = −P by (i), so hP ⊂ h′; further,
a = [a, a] ⊂ hP + gP and consequently h′ = hP. If P = −P and h′ = hP, a is
reductive by (iv), and a =

∑
α∈P

sα, so a = [a, a] and a is semi-simple.

PROPOSITION 3. Let a be a semi-simple subalgebra of g stable under ad(h)
and let P be the subset of R such that a = hP + gP.

(i) hP is a splitting Cartan subalgebra of a.
(ii) The root system of (a, hP) is the set of restrictions to hP of elements

of P.
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Since hP is stable under ad h, its normalizer in a is stable under ad h, and
hence is of the form hP + gQ where Q ⊂ P (Lemma 1). If α ∈ Q,

gα = [hα, g
α] ⊂ [hP, g

α] ⊂ hP,

which is absurd. Thus Q = ∅ and hP is its own normalizer in a. This proves
that hP is a Cartan subalgebra of a. If x ∈ hP, adgx, and a fortiori adax, are
triangularizable. Thus (i) is proved, and (ii) is clear.

By Prop. 1 (i), the subalgebras of g containing h are the sets h+gP where
P is a closed subset of R. By Chap. VII, §3, Prop. 3, every Cartan subalgebra
of h + gP is a Cartan subalgebra of g.

PROPOSITION 4. Let a be a subalgebra of g containing h, x an element of
a, s and n its semi-simple and nilpotent components. Then s ∈ a and n ∈ a.

We have (ad x)a ⊂ a, so (ad s)a ⊂ a and (ad n)a ⊂ a. Since a is its own
normalizer in g (Chap. VII, §2, no. 1, Cor. 4 of Prop. 4), s ∈ a and n ∈ a.

PROPOSITION 5. Let P be a closed subset of R.
(i) h + gP is solvable if and only if P ∩ (−P) = ∅. In that case,

[h + gP, h + gP] = gP.
(ii) h + gP is reductive if and only if P = −P.
Assertion (i) follows from Prop. 2 (iii). If P = −P, h + gP is reductive

(Prop. 2 (iv)). Assume that a = h + gP is reductive. Then

gP = [h, gP] ⊂ [a, a] ⊂ h + gP,

so [a, a] is of the form h′ + gP with h′ ⊂ h; since [a, a] is semi-simple, P = −P
(Prop. 2 (ii)).

2. IDEALS

PROPOSITION 6. Let R1, . . . ,Rp be the irreducible components of R. For
i = 1, . . . , p, put gi = hRi

+ gRi . Then g1, . . . , gp are the simple components
of g.

The gi are ideals of g (Prop. 1 (ii)). It is clear that g is the direct sum of
the gi, hence the product of the gi. Let a and b be complementary ideals of
g. Then a and b are semi-simple and stable under ad h, so there exist subsets
P,Q of R such that a = hP + gP, b = hQ + gQ. Then hP, hQ are orthogonal
complements of each other in h for the Killing form, so P and Q are unions
of irreducible components of R. This proves that the gi are minimal ideals of
g.

COROLLARY 1. g is simple if and only if R is irreducible (in other words,
its Dynkin graph is connected).
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This follows from Prop. 6.

A Lie algebra a is said to be absolutely simple if, for every extension k′ of
k, the k′-Lie algebra a(k′) is simple.

COROLLARY 2. A splittable simple Lie algebra is absolutely simple.
This follows from Cor. 1.

If g is of type Al (l ≥ 1) or Bl (l ≥ 1) or Cl (l ≥ 1) or Dl (l ≥ 3), g is said
to be a classical splittable simple Lie algebra. If g is of type E6, E7, E8, F4,
or G2, g is said to be an exceptional splittable simple Lie algebra.

3. BOREL SUBALGEBRAS

PROPOSITION 7. Let b = h + gP be a subalgebra of g containing h. The
following conditions are equivalent:

(i) b is a maximal solvable subalgebra of g;
(ii) there exists a chamber C of R such that P = R+(C);
(iii) P ∩ (−P) = ∅ and P ∪ (−P) = R.
(i) =⇒ (ii): If b is solvable, P∩ (−P) = ∅. Then there exists a chamber C

of R such that P ⊂ R+(C) (Chap. VI, §1, no. 7, Prop. 22). Then h + gR+(C)

is a solvable subalgebra of g containing b, hence equal to b if b is maximal.
(ii) =⇒ (iii): This is clear.
(iii) =⇒ (i): Assume that P ∩ (−P) = ∅ and that P ∪ (−P) = R. Then

b is solvable. Let b′ be a solvable subalgebra of g containing b. There exists
a subset Q of R such that b′ = h + gQ. Then Q ∩ (−Q) = ∅ and Q ⊃ P, so
Q = P and b′ = b.

DEFINITION 1. A subalgebra of g containing h and satisfying the equivalent
condition in Prop. 7 is called a Borel subalgebra of (g, h).

A subalgebra b of a splittable algebra g is called a Borel subalgebra of g
if there exists a splitting Cartan subalgebra h′ of g such that b is a Borel
subalgebra of (g, h′).

Let (g, h) be a split reductive Lie algebra. Let g = c×s with c commutative and
s semi-simple. A subalgebra of g of the form c×b, where b is a Borel subalgebra
of (s, h ∩ s), is called a Borel subalgebra of (g, h).

With the notations of Prop. 7, we also say that b is the Borel subalgebra
of g defined by h and C (or by h and the basis of R associated to C).

Remark. The map which associates R+(C) to a chamber C of R is injective
(Chap. VI, §1, no. 7, Cor. 1 of Prop. 20). Consequently, C 	→ h + gR+(C) is
a bijection from the set of chambers of R to the set of Borel subalgebras of
(g, h). Thus, the number of Borel subalgebras of (g, h) is equal to the order
of the Weyl group of R (Chap. VI, §1, no. 5, Th. 2).
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PROPOSITION 8. Let b be a subalgebra of g, k′ an extension of k. Then
b ⊗k k

′ is a Borel subalgebra of (g ⊗k k
′, h ⊗k k

′) if and only if b is a Borel
subalgebra of (g, h).

This is clear from condition (iii) of Prop. 7.

PROPOSITION 9. Let b be the Borel subalgebra of (g, h) defined by a chamber
C of R. Let n = gR+(C) =

∑
α∈R,α>0

gα. Let l = dim h.

(i) If h ∈ h and x ∈ n, the characteristic polynomial of adg(h + x) is
Tl
∏

α∈R
(T − α(h)).

(ii) The largest nilpotent ideal of b is equal to n and to [b, b]. This is also
the set of elements of b nilpotent in g.

(iii) Let B be the basis of R associated to C. For all α ∈ B, let Xα be a
non-zero element of gα. Then (Xα)α∈B generates the Lie algebra n. We have
[n, n] =

∑
α∈R,α>0,α/∈B

gα.

There exists a total order on h∗
Q compatible with its vector space structure

and such that the elements of R+(C) are > 0 (Chap. VI, §1, no. 7). Let h, x
be as in (i) and y ∈ gα. Then [h+ x, y] = α(h)y+ z where z ∈

∑
β>α

gβ . Then,

with respect to a suitable basis of g, the matrix of adg(h+x) has the following
properties:

1) it is lower triangular;
2) the diagonal entries of the matrix are the number 0 (l times) and the

α(h) for α ∈ R.
This proves (i). It also shows that the characteristic polynomial of

adb(h+ x) is Tl
∏

α∈R+(C)
(T − α(h)). It follows from the preceding that the

set of elements of b nilpotent in g, as well as the largest nilpotent ideal of
b, are equal to n. We have n = [b, b] by Prop. 5 (i). Finally, assertion (iii)
follows from §2, Prop. 4 (ii) and Chap. VI, §1, no. 6, Prop. 19.

COROLLARY. Let b be a Borel subalgebra of g.
(i) Every Cartan subalgebra of b is a splitting Cartan subalgebra of g.
(ii) If h1, h2 are Cartan subalgebras of b, there exists x ∈ [b, b] such that

eadg xh1 = h2.
Assertion (i) follows from Prop. 9 (i) and Chap. VII, §3, no. 3, Prop. 3.

Assertion (ii) follows from Prop. 9 (ii) and Chap. VII, §3, no. 4, Th. 3.

PROPOSITION 10. Let b, b′ be Borel subalgebras of g. There exists a splitting
Cartan subalgebra of g contained in b ∩ b′.

Let h be a Cartan subalgebra of b, n = [b, b], n′ = [b′, b′], p = b ∩ b′, and
s a vector subspace of g complementary to b + b′. Denote by s⊥, b⊥, b′⊥ the
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orthogonal complements of s, b, b′ with respect to the Killing form of g. Put
l = dim h, n = dim n, p = dim p. Then dim b = dim b′ = l + n,

dim s⊥ = dim(b + b′) = 2(l + n) − p,
and so

dim(s⊥ ∩ p) ≥ dim s⊥ + dim p − dim g (3)
= 2(l + n) − p+ p− (l + 2n) = l.

By Prop. 1 of §2, no. 2, n ⊂ b⊥, n′ ⊂ b′⊥. The elements of p∩n are nilpotent in
g (Prop. 9 (ii)), and belong to b′, and hence to n′ (Prop. 9 (ii)). Consequently,
p ∩ n ⊂ n ∩ n′ ⊂ b⊥ ∩ b′⊥, so s⊥ ∩ p ∩ n = 0. In view of (3), we see that
s⊥ ∩ p is a complement of n in b. Let z be an element of h regular in g; there
exists y ∈ n such that y+ z ∈ s⊥ ∩ p; by Prop. 9 (i), adg(y+ z) has the same
characteristic polynomial as adgz, so x = y + z is regular in g and a fortiori
in b and b′ (Chap. VII, §2, no. 2, Prop. 9). Since g, b, b′ have the same rank,
b0(x) = g0(x) = b′0(x) is simultaneously a Cartan subalgebra of b, of g and
of b′ (Chap. VII, §3, no. 3, Th. 2). Finally, this Cartan subalgebra of g is
splitting by the Cor. of Prop. 9.

COROLLARY. The group Aute(g) operates transitively on the set of pairs
(t, b) where t is a splitting Cartan subalgebra of g and b is a Borel subalgebra
of (g, t).

Let (t1, b1) and (t2, b2) be two such pairs. There exists a splitting Cartan
subalgebra t of g contained in b1 ∩ b2 (Prop. 10). By the Cor. of Prop. 9, we
are reduced to the case in which t1 = t2 = t. Let S be the root system of
(g, t). There exists bases B1,B2 of S such that bi is associated to Bi (i = 1, 2),
and there exists s ∈ W(S) which transforms B1 into B2. Finally, there exists
a ∈ Aute(g) such that a|t = s (§2, no. 2, Cor. of Th. 2). Then a(t) = t and
a(b1) = b2.

4. PARABOLIC SUBALGEBRAS

PROPOSITION 11. Let p = h + gP be a subalgebra of g containing h. The
following conditions are equivalent:

(i) p contains a Borel subalgebra of (g, h);
(ii) there exists a chamber C of R such that P ⊃ R+(C);
(iii) P is parabolic, in other words (Chap. VI, §1, no. 7, Def. 4), P∪(−P) =

R.
Conditions (i) and (ii) are equivalent by Prop. 7. Conditions (ii) and (iii)

are equivalent by Chap. VI, §1, no. 7, Prop. 20.

DEFINITION 2. A subalgebra of g containing h and satisfying the equivalent
conditions of Prop. 11 is called a parabolic subalgebra of (g, h). A parabolic
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subalgebra of g is a parabolic subalgebra of (g, h′) where h′ is a splitting Cartan
subalgebra of g.

This definition extends immediately to the case in which (g, h) is a split reductive
Lie algebra.

Remark. Let B be a basis of R, and b the corresponding Borel subalgebra. If
Σ ⊂ B, denote by QΣ the set of roots that are linear combinations of elements
of Σ with coefficients ≤ 0; put p(Σ) = R+(B) ∪ QΣ and pΣ = h ⊕ gP(Σ).
By Chap. VI, §1, no. 7, Lemma 3 and Prop. 20, pΣ is a parabolic subalgebra
containing b and every parabolic subalgebra of g containing b is obtained in
this way.

Lemma 3. Let V be a finite dimensional real vector space, S a root system in
V∗, P the set of parabolic subsets of S; let H be the set of Kerα for α ∈ S,
and F the set of facets of V relative to H (Chap. V, §1, no. 2, Def. 1).

If P ∈ P, let F(P) be the set of v ∈ V such that α(v) ≥ 0 for all α ∈ P.
If F ∈ F, let P(F) be the set of α ∈ R such that α(v) ≥ 0 for all v ∈ F.

Then F 	→ P(F) is a bijection from F to P; for all F ∈ F, F(P(F)) is
the closure of F.
a) Let P ∈ P. There exists a chamber C of S and a subset Σ of the basis

B(C) such that P = S+(C) ∪ Q where Q is the set of linear combinations
of elements of Σ with non-positive integer coefficients (Chap. VI, §1, no. 7,
Prop. 20). Put

B(C) = {α1, . . . , αl}, Σ = {α1, . . . , αm}.
If v ∈ V, we have the following equivalences:

α(v) ≥ 0 for all α ∈ P
⇐⇒ α1(v) ≥ 0, . . . αl(v) ≥ 0, α1(v) ≤ 0, . . . , αm(v) ≤ 0
⇐⇒ α1(v) = · · · = αm(v) = 0, αm+1(v) ≥ 0, . . . , αl(v) ≥ 0,

so F(P) is the closure of the set

{v ∈ V |α1(v) = · · · = αm(v) = 0, αm+1(v) > 0, . . . , αl(v) > 0},
a set which is a facet F relative to H since every element of S is a linear
combination of α1, . . . , αl in which the coefficients are either all ≥ 0 or all
≤ 0. Moreover, if β = u1α1 + · · · + ulαl ∈ S,

β ∈ P(F) ⇐⇒ um+1 ≥ 0, . . . , ul ≥ 0
⇐⇒ β ∈ S+(C) or (−β ∈ S+(C) and um+1 = . . . = ul = 0)
⇐⇒ β ∈ S+(C) ∪ Q = P,

so P(F) = P.
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b) Let F ∈ F. It is clear that P(F) ∈ P. On the other hand, F is contained
in the closure of a chamber relative to H (Chap. V, §1, no. 3, formulas (6)),
and so is a facet relative to the set of walls of this chamber (Chap. V, §1, no.
4, Prop. 9). Consequently, F is of the form {v ∈ V |α(v) ≥ 0 for all α ∈ T},
where T is a subset of S which we can clearly take to be equal to P(F). Thus,
F = F(P(F)). Q.E.D.

If P ∈ P, the facet F such that P = P(F) is said to be associated to P; we
denote it by F(P). We extend these conventions to the case in which (g, h) is
split reductive.

PROPOSITION 12. Let H be the set of hyperplanes of hR consisting of the
kernels of the roots in R. Let F be the set of facets of hR relative to H. Let
S be the set of parabolic subalgebras of (g, h). For every p = h + gP ∈ S, let
F(p) be the facet associated to P. Then p 	→ F(p) is a bijection from S to F.
If p1, p2 ∈ P,

p1 ⊃ p2 ⇐⇒ F(p1) ⊂ F(p2).

This follows immediately from Lemma 3.

Example. The facets corresponding to the parabolic subalgebras of (g, h) con-
taining a Borel algebra b are the facets contained in the closure of the chamber
associated to b (cf. the Remark above).

PROPOSITION 13. Let p = h + gP be a parabolic subalgebra of (g, h), Q the
set of α ∈ P such that −α /∈ P, and s = h + gP∩(−P). Then p = s ⊕ gQ, s
is reductive in g, and gQ is the largest nilpotent ideal of p and the nilpotent
radical of p. The centre of p is zero.

By Prop. 2, s is reductive in g and gQ is a nilpotent ideal of p. If n is
the largest nilpotent ideal of p, gQ ⊂ n ⊂ h + gQ (Prop. 2 (i)); if x ∈ n ∩ h,
adpx is nilpotent, so α(x) = 0 for all α ∈ P, and hence x = 0; this proves
that n = gQ. Since [h, gQ] = gQ, the nilpotent radical of p contains gQ and
consequently is equal to gQ. Let z = h+

∑
α∈P

uα (where h ∈ h, uα ∈ gα) be an

element of the centre of p. For all h′ ∈ h, 0 = [h′, z] =
∑
α(h′)uα, so uα = 0

for all α ∈ P; it follows that [h, gβ ] = 0 for all β ∈ P, so h = 0.

5. NON-SPLIT CASE

PROPOSITION 14. Let k′ be an extension of k and g′ = g ⊗k k
′. Let m be a

subalgebra of g and m′ = m⊗k k
′. If m′ is a parabolic (resp. Borel ) subalgebra

of g′, m is a parabolic (resp. Borel ) subalgebra of g.
By Prop. 8 and 11, it suffices to prove that m contains a splitting Cartan

subalgebra of g. Let b be a Borel subalgebra of g. Then b′ = b⊗k k
′ is a Borel
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subalgebra of g′, so m′ ∩ b′ contains a Cartan subalgebra of g′ (Prop. 10).
Let t be a Cartan subalgebra of m ∩ b. Then t ⊗k k

′ is a Cartan subalgebra
of m′ ∩ b′, and hence of g′ (Chap. VII, §3, no. 3, Prop. 3). Consequently, t is
a Cartan subalgebra of g, and it is splitting since it is contained in b.

DEFINITION 3. Let a be a semi-simple (or more generally reductive) Lie
algebra and k̄ an algebraic closure of k. A subalgebra m of a is said to be
parabolic (resp. Borel ) if m ⊗k k̄ is a parabolic (resp. Borel ) subalgebra of
a ⊗k k̄.

If a is splittable, Prop. 14 shows that this definition is equivalent to Def-
inition 2 (resp. to Definition 1).

PROPOSITION 15. Let a be a reductive Lie algebra, k′ an extension of k,
and m a subalgebra of a. Then m is a parabolic (resp. Borel ) subalgebra of a
if and only if m ⊗k k

′ is a parabolic (resp. Borel ) subalgebra of a ⊗k k
′.

This follows immediately from Prop. 14.

§ 4. SPLIT SEMI-SIMPLE LIE ALGEBRA DEFINED
BY A REDUCED ROOT SYSTEM

1. FRAMED SEMI-SIMPLE LIE ALGEBRAS

PROPOSITION 1. Let (g, h) be a split semi-simple Lie algebra, R its root
system, B a basis of R, and (n(α, β))α,β∈B the corresponding Cartan matrix.
For all α ∈ B, let Xα ∈ gα, X−α ∈ g−α. Then, for α, β ∈ B,

[Hα, Hβ ] = 0 (1)
[Hα, Xβ ] = n(β, α)Xβ (2)

[Hα, X−β ] = −n(β, α)X−β (3)
[X−α, Xβ ] = 0 if α �= β (4)

(ad Xα)1−n(β,α)Xβ = 0 if α �= β (5)

(ad X−α)1−n(β,α)X−β = 0 if α �= β. (6)

The family (Hα)α∈B is a basis of h. If Xα �= 0 and X−α �= 0 for all α ∈ B,
the Lie algebra g is generated by the Xα and the X−α (α ∈ B).

(Recall that, if α, β ∈ B and α �= β, n(β, α) is an integer ≤ 0, so formulas
(5) and (6) make sense.)

Formulas (1), (2) and (3) are clear. If α �= β, β−α is not a root since every
element of R is a linear combination of elements of B with integer coefficients
all of the same sign (Chap. VI, §1, no. 6, Th. 3). This proves (4). In view of
Chap. VI, §1, no. 3, Prop. 9, this also proves that the α-chain defined by β is
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{β, β + α, . . . , β − n(β, α)α};

hence β+(1−n(β, α))α /∈ R, which proves (5). The equality (6) is established
in a similar way. The family (Hα)α∈B is a basis of R∨, and hence of h. If
Xα �= 0 and X−α �= 0 for all α ∈ B, then [Xα, X−α] = λαHα with λα �= 0, so
the last assertion follows from §3, no. 3, Prop. 9 (iii).

DEFINITION 1. Let (g, h) be a split semi-simple Lie algebra, R its root sys-
tem. A framing of (g, h) is a pair (B, (Xα)α∈B), where B is a basis of R, and
where, for all α ∈ B, Xα is a non-zero element of gα. A framed semi-simple
Lie algebra is a sequence (g, h,B, (Xα)α∈B) where (g, h) is a split semi-simple
Lie algebra, and where (B, (Xα)α∈B) is a framing of (g, h).

A framing of g is a framing of (g, h), where h is a splitting Cartan subal-
gebra of g.

Let a1 = (g1, h1,B1, (X1
α)α∈B1) and a2 = (g2, h2,B2, (X2

α)α∈B2) be framed
semi-simple Lie algebras. An isomorphism from a1 to a2 is an isomorphism
ϕ from g1 to g2 that takes h1 to h2, B1 to B2, and X1

α to X2
ψα for all α ∈ B1

(where ψ is the contragredient map of ϕ|h1). In this case, ϕ is said to trans-
form the framing (B1, (X1

α)α∈B1) to the framing (B2, (X2
α)α∈B2).

If (B, (Xα)α∈B) is a framing of (g, h), there exists, for all α ∈ B, a unique
element X−α of g−α such that [Xα, X−α] = −Hα (§2, no. 2, Th. 1 (iv)).
The family (Xα)α∈B∪(−B) is called the generating family defined by the fram-
ing (cf. Prop.1). This is also the generating family defined by the framing
(−B, (Xα)α∈−B). For all α ∈ B∪(−B), let tα ∈ k∗, and assume that tαt−α = 1
for all α ∈ B. Then (tαXα)α∈B∪(−B) is the generating family defined by the
framing (B, (tαXα)α∈B).

2. A PRELIMINARY CONSTRUCTION

In this number and the next, we denote by R a reduced root system in a
vector space V and by B a basis of R. We denote by (n(α, β))α,β∈B the
Cartan matrix relative to B. Recall that n(α, β) = 〈α, β∨〉. We are going
to show that R is the root system of a split semi-simple Lie algebra which
is unique up to isomorphism. In the main we shall be considering the Lie
algebra defined by the relations in Prop. 1.

The construction in this number applies to any square matrix (n(α, β))α,β∈B
over k with non-zero determinant and such that n(α, α) = 2 for all α ∈ B (cf.
Chap. VI, §1, no. 10, formula (14)).

Let E be the free associative algebra of the set B over k. Recall that
E is N-graded (Algebra, Chap. III, §3, no. 1, Example 3). We are going to
associate to each α ∈ B endomorphisms X0

−α, H
0
α, X

0
α of the vector space E,

of degrees 1, 0,−1 respectively. For any word (α1, . . . , αn) in elements of B,
put
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X0
−α(α1, . . . , αn) = (α, α1, . . . , αn) (7)

H0
α(α1, . . . , αn) =

(
−

n∑
i=1

n(αi, α)

)
(α1, . . . , αn). (8)

On the other hand, X0
α(α1, . . . , αn) is defined by induction on n using the

formula

X0
α(α1, . . . , αn) = (X0

−α1
X0

α − δα,α1H
0
α)(α2, . . . , αn) (9)

where δα,α1 is the Kronecker symbol; it is understood that X0
α(α1, . . . , αn) is

zero if (α1, . . . , αn) is the empty word.

Lemma 1. For all α, β ∈ B, we have

[X0
α, X

0
−α] = −H0

α (10)
[H0

α, H
0
β ] = 0 (11)

[H0
α, X

0
β ] = n(β, α)X0

β (12)

[H0
α, X

0
−β ] = −n(β, α)X0

−β (13)

[X0
α, X

0
−β ] = 0 if α �= β. (14)

Indeed, relation (9) can be written

(X0
αX

0
−α1

)(α2, . . . , αn) = (X0
−α1

X0
α)(α2, . . . , αn) − δα,α1H

0
α(α2, . . . , αn)

which proves (10) and (14). Relation (11) is clear. Next

[H0
α, X

0
−β ](α1, . . . , αn) = H0

α(β, α1, . . . , αn)+

(
n∑

i=1

n(αi, α)

)
(β, α1, . . . , αn)

= −n(β, α)(β, α1, . . . , αn)

= −n(β, α)X0
−β(α1, . . . , αn)

hence (13). Finally,

0 = [H0
α, [X

0
β , X

0
−γ ]] by (10), (11), (14) (15)

= [[H0
α, X

0
β ], X0

−γ ] + [X0
β , [H

0
α, X

0
−γ ]]

= [[H0
α, X

0
β ] − n(γ, α)X0

β , X
0
−γ ] by (13)

= [[H0
α, X

0
β ] − n(β, α)X0

β , X
0
−γ ] by (14);

now, considering the empty word immediately gives

([H0
α, X

0
β ] − n(β, α)X0

β)(∅) = 0

so (15) implies that

([H0
α, X

0
β ] − n(β, α)X0

β)X0
−γ1
X0

−γ2
. . . X0

−γn
(∅) = 0

for all γ1, . . . , γn ∈ B; this proves (12).
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Lemma 2. The endomorphisms X0
α, H0

β, X0
−γ , where α, β, γ ∈ B, are linearly

independent.
Since X0

−α(∅) = α, it is clear that the X0
−α are linearly independent.

Assume that
∑
α
aαH

0
α = 0; then, for all β ∈ B,

0 =

[∑
α

aαH
0
α, X

0
−β

]
= −

∑
α

aαn(β, α)X0
−β ;

since det(n(β, α)) �= 0, it follows that aα = 0 for all α. Assume that∑
α
aαX

0
α = 0. In view of formulas (7), (8), (9),

X0
α(β) = 0,

X0
α(β, β) = 2δαββ

for all β ∈ B. It follows that aβ = 0 for all β. Since X0
α, H

0
α, X

0
−α are of

degree −1, 0, 1, respectively, the lemma follows from what has gone before.

Let I be the set B × {−1, 0, 1}. Put xα = (α,−1), hα = (α, 0), and
x−α = (α, 1). Let a be the Lie algebra defined by the generating family I and
the following set R of relators:

[hα, hβ ]
[hα, xβ ] − n(β, α)xβ

[hα, x−β ] + n(β, α)x−β

[xα, x−α] + hα

[xα, x−β ] if α �= β

(cf. Chap. II, §2, no. 3). By Lemma 1, there exists a unique linear represen-
tation ρ of a on E such that

ρ(xα) = X0
α, ρ(hα) = H0

α, ρ(x−α) = X0
−α.

In view of Lemma 2, this proves the following result:

Lemma 3. The canonical images in a of the elements xα, hβ , x−γ , where
α, β, γ ∈ B, are linearly independent.

In the following, we identify xα, hα, x−α with their canonical images in a.

Lemma 4. There exists a unique involutive automorphism θ of a such that

θ(xα) = x−α, θ(x−α) = xα, θ(hα) = −hα

for all α ∈ B.
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Indeed, there exists an involutive automorphism of the free Lie algebra
L(I) satisfying these conditions. It leaves R ∪ (−R) stable, and hence de-
fines by passage to the quotient an involutive automorphism of a satisfying
the conditions of the lemma. The uniqueness follows from the fact that a is
generated by the elements xα, hα, x−α (α ∈ B).

This automorphism is called the canonical involutive automorphism of a.

Let Q be the set of radical weights of R; this is a free Z-module with
basis B (Chap. VI, §1, no. 9). There exists a graduation of type Q on the free
Lie algebra L(I) such that xα, hα, x−α are of degrees α, 0, −α, respectively
(Chap. II, §2, no. 6). Now the elements of R are homogeneous. Hence there
exists a unique graduation of type Q on a compatible with the Lie algebra
structure of a and such that xα, hα, x−α are of degrees α, 0, −α, respectively.
For any µ ∈ Q, denote by aµ the set of elements of a homogeneous of degree µ.

Lemma 5. Let z ∈ a. Then z ∈ aµ if and only if [hα, z] = 〈µ, α∨〉z for all
α ∈ B.

For µ ∈ Q, let a(µ) be the set of x ∈ a such that [hα, x] = 〈µ, α∨〉x for all
α ∈ B. The sum of the a(µ) is direct. To prove the lemma, it therefore suffices
to show that aµ ⊂ a(µ). Let α ∈ B. The endomorphism u of the vector space
a such that u|aµ = 〈µ, α∨〉.1 is a derivation of a such that ux = (ad hα).x for
x = xβ , x = hβ , x = x−β ; hence u = ad hα, which proves our assertion.

Remark. It follows from Lemma 5 that every ideal of a is homogeneous, since it
is stable under the ad hα.

Denote by Q+ (resp. Q−) the set of linear combinations of elements of
B with positive (resp. negative) integer coefficients, not all zero. Put a+ =∑
µ∈Q+

aµ and a− =
∑

µ∈Q−
aµ. Since Q+ + Q+ ⊂ Q+ and Q− + Q− ⊂ Q−, a+

and a− are Lie subalgebras of a.

PROPOSITION 2. (i) The Lie algebra a+ is generated by the family (xα)α∈B.
(ii) The Lie algebra a− is generated by the family (x−α)α∈B.
(iii) The family (hα)α∈B is a basis of the vector space a0.
(iv) The vector space a is the direct sum of a+, a0, a−.
Let r (resp. n) be the Lie subalgebra of a generated by (xα)α∈B (resp.

(x−α)α∈B), and h the vector subspace of a generated by (hα)α∈B. Since the
xα are homogeneous elements of a+, r is a graded subalgebra of a+; hence,
[h, r] ⊂ r, so h + r is a subalgebra of a; since

[x−α, xβ ] = δαβhα,

[x−α, r] ⊂ h + r for all α ∈ B. Similarly, n is a graded subalgebra of a−, one
has [h, n] ⊂ n, h+n is a subalgebra of n, and [xα, n] ⊂ h+n for all α ∈ B. Put
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a′ = r + h + n. The preceding shows that a′ is stable under ad xα, ad hα and
ad x−α for all α ∈ B, and hence is an ideal of a. Since a′ contains xα, hα, x−α

for all α ∈ B, a′ = a. It follows from this that the inclusions r ⊂ a+, h ⊂ a0,
n ⊂ a− are equalities, which proves the proposition.

PROPOSITION 3. The Lie algebra a+ (resp. a−) is a free Lie algebra with
basic family (xα)α∈B (resp. (x−α)α∈B) (cf. Chap. II, §2, no. 3).

Let L be the Lie subalgebra of E generated by B. By Chap. II, §3, Th. 1,
L can be identified with the free Lie algebra generated by B. The left regular
representation of E on itself is clearly injective, and defines by restriction to L
an injective representation ρ′ of the Lie algebra L on E. Let ϕ be the unique
homomorphism from L to a− which takes α to x−α for all α ∈ B. Then, for
all α ∈ B, ρ(ϕ(α)) is the endomorphism of left multiplication by α on E, so
ρ ◦ϕ = ρ′, which proves that ϕ is injective. Thus, (x−α)α∈B is a basic family
for a−. Since θ(x−α) = xα for all α (cf. Lemma 4), (xα)α∈B is a basic family
for a+.

3. EXISTENCE THEOREM

We retain the hypotheses and notation of the preceding number. Recall that
if α, β ∈ B and if α �= β, then n(β, α) ≤ 0; moreover, if n(β, α) = 0, then
n(α, β) = 0 (Chap. VI, §1, no. 1, formula (8)). For any pair (α, β) of distinct
elements of B, put

xαβ = (ad xα)1−n(β,α)xβ yαβ = (ad x−α)1−n(β,α)x−β .

Then xαβ ∈ a+, yαβ ∈ a−. If θ denotes the canonical automorphism of a,
θ(xαβ) = yαβ .

Lemma 6. Let α, β ∈ B with α �= β. Then

[a+, yαβ ] = 0 [a−, xαβ ] = 0.

The second formula follows from the first by using the automorphism θ.
To prove the first, it suffices to show that [xγ , yαβ ] = 0 for all γ ∈ B. We
distinguish three cases.

Case 1 : γ �= α and γ �= β. In this case, xγ commutes with x−α and x−β ,
and hence with yαβ .

Case 2 : γ = β. In this case, xγ commutes with x−α, so

[xγ , yαβ ] = (ad x−α)1−n(β,α)[xγ , x−β ]

= −(ad x−α)1−n(β,α)hβ = −n(α, β)(ad x−α)−n(β,α)x−α.

If n(β, α) < 0, this expression is zero since (ad x−α).x−α = 0. If n(β, α) = 0,
then n(α, β) = 0. In both cases, [xγ , yαβ ] = 0.

Case 3 : γ = α. In the algebra of endomorphisms of a,
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[−ad hα, ad x−α] = 2 ad x−α

and [ad xα, ad x−α] = −ad hα; thus, by §1, Lemma 1,

[ad xα, (ad x−α)1−n(β,α)] = (1 − n(β, α))(ad x−α)−n(β,α)(−ad hα − n(β, α)).

Consequently,

[xγ , yαβ ] = [ad xα, (ad x−α)1−n(β,α)]x−β + (ad x−α)1−n(β,α)(ad xα)x−β

= −(1 − n(β, α))(ad x−α)−n(β,α)(ad hα + n(β, α))x−β

+ (ad x−α)1−n(β,α)(ad xα)x−β .

Now [hα, x−β ] + n(β, α)x−β = 0 and [xα, x−β ] = 0, so [xγ , yαβ ] = 0.

Lemma 7. The ideal n of a+ generated by the xαβ (α, β ∈ B, α �= β) is an
ideal of a. The ideal of a− generated by the yαβ (α, β ∈ B, α �= β) is an ideal
of a and is equal to θ(n).

Let n′ =
∑

α,β∈B,α �=β
kxαβ . Since each xαβ is homogeneous in a, [a0, n′] ⊂ n′

(Lemma 5 and Prop. 2). Let U (resp. V) be the enveloping algebra of a
(resp. a+), and σ the representation of U on a defined by the adjoint repre-
sentation of a. The ideal of a generated by n′ is σ(U)n′. Now a = a+ +a0 +a−
(Prop. 2), σ(a−)n′ = 0 (Lemma 6), and σ(a0)n′ ⊂ n′ by the preceding. By
the Poincaré-Birkhoff-Witt theorem, σ(U)n′ = σ(V)n′, which proves the first
assertion of the lemma. It follows that the ideal of θ(a+) = a− generated by
the θ(xαβ) = yαβ (α, β ∈ B, α �= β) is the ideal θ(n) of a. Q.E.D.

The ideal n + θ(n) of a is graded since it is generated by homogeneous
elements. Consequently, the Lie algebra a/(n+θ(n)) is a Q-graded Lie algebra;
in the remainder of this paragraph, it is denoted by gB, or simply by g. By
Prop. 2, if gµ �= 0 then µ ∈ Q+, or µ ∈ Q−, or µ = 0. Denote by Xα (resp.
Hα, X−α) the canonical image of xα (resp. hα, x−α) in g. In view of the
definition of a, n and θ(n), it follows that g is the Lie algebra defined by the
generating family ((Xα, Hα, X−α))α∈B and the relations

[Hα, Hβ ] = 0 (16)
[Hα, Xβ ] − n(β, α)Xβ = 0 (17)

[Hα, X−β ] + n(β, α)X−β = 0 (18)
[Xα, X−α] +Hα = 0 (19)

[Xα, X−β ] = 0 (α �= β) (20)

(ad Xα)1−n(β,α)Xβ = 0 (α �= β) (21)

(ad X−α)1−n(β,α)X−β = 0 (α �= β). (22)

Let z ∈ g and µ ∈ Q. Then z ∈ gµ if and only if [Hα, z] = 〈µ, α∨〉z for all
α ∈ B. This follows from Lemma 5.
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Since a0 ∩ (n + θ(n)) = 0, the canonical map from a0 to g0 is an isomor-
phism. Consequently, (Hα)α∈B is a basis of the vector space g0. The commu-
tative subalgebra g0 of gB will be denoted by hB or simply by h. There exists
a unique isomorphism µ 	→ µB from V to h∗ such that 〈µB, Hα〉 = 〈µ, α∨〉
for all µ ∈ V and all α ∈ B.

The involutive automorphism θ of a defines by passage to the quotient
an involutive automorphism of g that will also be denoted by θ. We have
θ(Xα) = X−α for α ∈ B ∪ (−B), and θ(Hα) = −Hα.

THEOREM 1. Let R be a reduced root system, B a basis of R. Let g be
the Lie algebra defined by the generating family ((Xα, Hα, X−α))α∈B and the
relations (16) to (22). Let h =

∑
α∈B

kHα. Then (g, h) is a split semi-simple Lie

algebra. The isomorphism µ 	→ µB from V to h∗ maps R to the root system
of (g, h). For all µ ∈ R, gµ is the eigenspace relative to the root µ.

The proof follows that of Lemmas 8, 9, 10, 11.

Lemma 8. Let α ∈ B ∪ (−B). Then adXα is locally nilpotent.1

Assume that α ∈ B. Let g′ be the set of z ∈ g such that (adXα)pz = 0
for sufficiently large p. Since adXα is a derivation of g, g′ is a subalgebra
of g. By (21), Xβ ∈ g′ for all β ∈ B. By (17), (19), (20), Hβ ∈ g′ and
X−β ∈ g′ for all β ∈ B. Hence g′ = g and adXα is locally nilpotent. Since
adX−α = θ(adXα)θ−1, we see that adX−α is locally nilpotent.

We shall see that g is finite dimensional, so that ad Xα is actually nilpotent.

Lemma 9. Let µ, ν ∈ Q and w ∈ W(R) be such that wµ = ν. There exists an
automorphism of g that takes gµ to gν .

For all α ∈ B, let sα be the reflection in V defined by α. Since W(R) is
generated by the sα (Chap. VI, §1, no. 5, Remark 1), it suffices to prove the
lemma when w = sα. In view of Lemma 8, we can define

θα = ead Xαead X−αead Xα .

It is verified as in Chap. I, §6, no. 8, that θα is an automorphism of g. We
have

1 An endomorphism u of a vector space V is called locally nilpotent (or almost
nilpotent) if, for every v ∈ V, there exists a positive integer n such that un(v) = 0
(cf. Commutative Algebra, Chap. IV, §1, no. 4, Def. 2). Then exp(u), or eu, is
defined by the formula eu(v) =

∑
n≥0

(1/n!)un(v) for all v ∈ V.
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θα(Hα) = ead Xαead X−α(Hβ − n(α, β)Xα)

= ead Xα

(
Hβ−n(α, β)Xα+n(α, β)X−α−n(α, β)Hα−n(α, β)

2
2X−α

)
= ead Xα (Hβ − n(α, β)Hα − n(α, β)Xα)
= Hβ − n(α, β)Hα − n(α, β)Xα − n(α, β)Xα − n(α, β)(−2Xα)
= Hβ − n(α, β)Hα.

If z ∈ gµ,

[Hβ , θ
−1
α z] = θ−1

α [Hβ − n(α, β)Hα, z]

= θ−1
α (〈µ, β∨〉z − n(α, β)〈µ, α∨〉z)

= 〈µ− 〈α∨, µ〉α, β∨〉θ−1
α z = 〈sαµ, β∨〉θ−1

α z,

so θ−1
α z ∈ gsαµ. This shows that θ−1

α gµ ⊂ gsαµ. Since θα is an automorphism
and since this inclusion holds for all µ ∈ Q, we see that θ−1

α gµ = gsαµ, which
proves the lemma.

Lemma 10. Let µ ∈ Q, and assume that µ is not a multiple of a root. There
exists w ∈ W(R) such that certain of the coordinates of wµ with respect to
the basis B are > 0 and certain of them are < 0.

Let VR be the vector space Q ⊗Z R, in which R is a root system. By
the assumption, there exists f ∈ V∗

R such that 〈f, α〉 �= 0 for all α ∈ R, and
〈f, µ〉 = 0. There exists a chamber C of R∨ such that f ∈ C. By Chap. VI, §1,
no. 5, Th. 2 (i), there exists w ∈ W(R) such that wf belongs to the chamber
associated to B, in other words such that 〈wf, α〉 > 0 for all α ∈ B. Write
wµ =

∑
α∈B

tαα. Then

0 = 〈f, µ〉 = 〈wf,wµ〉 =
∑
α∈B

tα〈wf, α〉,

which proves that certain tα are > 0 and others are < 0.

Lemma 11. Let µ ∈ Q. If µ /∈ R∪{0}, then gµ = 0. If µ ∈ R, then dim gµ = 1.
1) If µ is not a multiple of an element of R, there exists w ∈ W such

that wµ /∈ Q+ ∪ Q− (Lemma 10), so awµ = 0, gwµ = 0, and hence gµ = 0
(Lemma 9).

2) Let α ∈ B and let m be an integer. Since a+ is a free Lie algebra with
basic family (xα)α∈B, we have dim aα = 1 and amα = 0 for m > 1 (Chap. II,
§2, no. 6, Prop. 4). Hence dim gα ≤ 1 and gmα = 0 form > 1. We cannot have
gα = 0, as this would imply that xα ∈ n+ θn, and hence that n+ θn contains
hα = −[xα, x−α], whereas a0 ∩ (n + θn) = 0. Consequently, dim gα = 1.

3) If µ ∈ R, there exists w ∈ W(R) such that w(µ) ∈ B (Chap. VI, §1,
no. 5, Prop. 15), so dim gµ = dim gwµ = 1. Moreover, if n is an integer > 1
then gnw(µ) = 0 and so gnµ = 0.
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Proof of Theorem 1.
Since dim g0 = Card B, it follows from Lemma 11 that g is of finite di-

mension equal to Card B+Card R. We show that g is semi-simple. Let k be a
commutative ideal of g. Since k is stable under ad(h), k = (k∩h)+

∑
µ∈R

(k∩gµ).

It is clear that, for all α ∈ B, gα +g−α +kHα is isomorphic to sl(2, k). In view
of Lemma 9, for all µ ∈ R, gµ is contained in a subalgebra of g isomorphic to
sl(2, k); consequently, k ∩ gµ = 0, so k ⊂ h; hence

[k, gµ] ⊂ k ∩ gµ = 0,

so µB(k) = 0 for all µ ∈ R. It follows that k = 0, which proves that g is
semi-simple.

Let µ ∈ R. There exists α ∈ B such that 〈µ, α∨〉 �= 0, and (adHα)|gµ is
then a non-zero homothety. Consequently, h is equal to its own normalizer in
g, and hence is a Cartan subalgebra of g. For all u ∈ h, adu is diagonalizable,
so (g, h) is a split semi-simple Lie algebra.

For all µ ∈ R, it is clear that µB is a root of (g, h) and that gµ is the
corresponding eigenspace. The number of roots of (g, h) is dim g − dim h =
Card R. Hence, the map µ 	→ µB from V to h∗ maps R to the root system of
(g, h).

4. UNIQUENESS THEOREM

PROPOSITION 4. Let (g, h,B, (Xα)α∈B) be a framed semi-simple Lie alge-
bra. Let (n(α, β))α,β∈B and (Xα)α∈B∪(−B) be the corresponding Cartan ma-
trix and generating family.

(i) The family ((Xα, Hα, X−α))α∈B and the relations (16) to (22) of no. 3
constitute a presentation of g.

(ii) The family (Xα)α∈B and the relations (21) of no. 3 constitute a pre-
sentation of the subalgebra of g generated by (Xα)α∈B.

Let R be the root system of (g, h). Applying to R and B the constructions
of nos. 2 and 3, we obtain objects that we shall denote by a′, g′, X ′

α, H
′
α, . . .

instead of a, g, Xα, Hα, . . ..
There exists a homomorphism ϕ from the Lie algebra g′ to the Lie algebra

g such that ϕ(X ′
α) = Xα, ϕ(H ′

α) = Hα, ϕ(X ′
−α) = X−α for all α ∈ B

(Prop. 1). Since dim g′ = Card R + Card B = dim g, ϕ is bijective. This
proves (i).

The subalgebra of g′ = a′/(n′⊕θ′n′) = (a′
+⊕a′0⊕a′

−)/(n′⊕θ′n′) generated
by (X ′

α)α∈B can be identified with a′
+/n

′. In view of Prop. 3 and the definition
of n′, this proves (ii).

COROLLARY. Every framed semi-simple Lie algebra is obtained from a
framed semi-simple Q-Lie algebra by extension of scalars from Q to k.

This follows immediately from the proposition.
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THEOREM 2. Let (g, h,B, (Xα)α∈B) and (g′, h′,B′, (X ′
α)α∈B′) be framed

semi-simple Lie algebras, let R and R′ be the root systems of (g, h) and (g′, h′),
let (n(α, β))α,β∈B (resp. (n′(α, β))α,β∈B′) be the Cartan matrix of R (resp.
R′) relative to B (resp. B′), and let ∆ (resp. ∆′) be the Dynkin graph of R
(resp. R′) relative to B (resp. B′).

(i) If ϕ is an isomorphism from h∗ to h′∗ such that ϕ(R) = R′ and
ϕ(B) = B′, there exists a unique isomorphism ψ from (g, h,B, (Xα)α∈B) to
(g′, h′,B′, (X ′

α)α∈B′) such that ψ|h = tϕ−1.
(ii) If f is a bijection from B to B′ such that n′(f(α), f(β)) = n(α, β)

for all α, β ∈ B, there exists an isomorphism from (g, h,B, (Xα)α∈B) to
(g′, h′,B′, (X ′

α)α∈B′).
(iii) If there exists an isomorphism from ∆ to ∆′, there exists an isomor-

phism from (g, h,B, (Xα)α∈B) to (g′, h′,B′, (X ′
α)α∈B′).

This follows immediately from Prop. 4 (i) (making use of Chap. VI, §4,
no. 2, Prop. 1 for part (iii)).

Scholium. To any splittable semi-simple Lie algebra g is associated a Dynkin
graph, which determines g up to isomorphism (Th. 2 (iii)). This graph is non-
empty and connected if and only if g is simple (§3, no. 2, Cor. 1 of Prop. 6).
By Th. 1 of no. 3, and Chap. VI, §4, no. 2, Th. 3, the splittable simple Lie
algebras are the algebras of type Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4),
E6, E7, E8, F4, G2. No two algebras in this list are isomorphic.

PROPOSITION 5. Let (g, h,B, (Xα)α∈B) be a framed semi-simple Lie alge-
bra, and (Xα)α∈B∪(−B) the corresponding generating family. There exists a
unique automorphism θ of g such that θ(Xα) = X−α for all α ∈ B ∪ (−B).
We have θ2 = Idg, and θ(h) = −h for all h ∈ h.

The uniqueness is clear since (Xα)α∈B∪(−B) generates the Lie algebra g.
In view of Prop. 4, the existence of θ follows from what we said in no. 3 before
Th. 1.

COROLLARY. Let (g, h) be a split semi-simple Lie algebra. Then (g, h) pos-
sesses a Chevalley system (§2, no. 4, Def. 3).

Let R be the root system of (g, h). For all α ∈ R, let Xα be a non-zero
element of gα. Assume that the Xα are chosen so that [Xα, X−α] = −Hα for
all α ∈ R (§2, no. 4, Lemma 2). Let B be a basis of R and θ the automorphism
of g such that θ(Xα) = X−α for all α ∈ B∪(−B). We have θ|h = −Idh. Hence,
for all α ∈ R there exists tα ∈ k∗ such that θXα = tαX−α. We have

tαt−αHα = [tαX−α, t−αXα] = [θXα, θX−α] = θ([Xα, X−α])
= θ(−Hα) = Hα

so tαt−α = 1 for all α ∈ R. Introduce the Nαβ as in §2, no. 4. If α, β, α+β ∈ R,



106 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

N−α,−βtαtβX−α−β = tαtβ [X−α, X−β ] = [θXα, θXβ ] = θ([Xα, Xβ ])
= NαβθXα+β = Nαβtα+βX−α−β

so, in view of §2, no. 4, Lemma 4,

(q + 1)2tαtβ = N2
αβtα+β

where q is an integer. It follows that if tα and tβ are squares in k∗, so is tα+β .
Since tα = 1 for all α ∈ B, Prop. 19 of Chap. VI, §1, no. 6, proves that tα is
a square for all α ∈ R. Choose, for all α ∈ R, a uα ∈ k such that u2

α = tα.
This choice can be made so that uαu−α = 1 for all α ∈ R. Put X ′

α = u−1
α Xα.

Then, for all α ∈ R,

X ′
α ∈ gα, [X ′

α, X
′
−α] = [Xα, X−α] = −Hα,

and θ(X ′
α) = θ(u−1

α Xα) = u−1
α tαX−α = uαX−α = uαu−αX

′
−α = X ′

−α, so
that (X ′

α)α∈R is a Chevalley system of (g, h).

§ 5. AUTOMORPHISMS OF A SEMI-SIMPLE LIE
ALGEBRA

In this paragraph, g denotes a semi-simple Lie algebra.

1. AUTOMORPHISMS OF A FRAMED SEMI-SIMPLE LIE
ALGEBRA

Recall (Chap. VII, §3, no. 1) that Aut(g) denotes the group of automorphisms
of g. If h is a Cartan subalgebra of g, we denote by Aut(g, h) the group of
automorphisms of g that leave h stable. Assume that h is splitting, and let
R be the root system of (g, h). If s ∈ Aut(g, h), the contragredient map of
s|h is an element of A(R) (the group of automorphisms of R) which we shall
denote by ε(s) in this paragraph. Thus

ε : Aut(g, h) → A(R)

is a homomorphism of groups.
For any root system R and any basis B of R, we denote by Aut(R,B) the

group of automorphisms of R that leave B stable. Recall (Chap. VI, §1, no. 5,
Prop. 16 and §4, no. 2, Cor. of Prop. 1) that A(R) is the semi-direct product
of Aut(R,B) and W(R), and that A(R)/W(R) is canonically isomorphic to
the group of automorphisms of the Dynkin graph of R.

PROPOSITION 1. Let (g, h,B, (Xα)α∈B) be a framed semi-simple Lie alge-
bra, and R the root system of (g, h). Let G be the set of s ∈ Aut(g, h) that
leave B stable, and such that s(Xα) = Xε(s)α for all α ∈ B (in other words
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the set of automorphisms of (g, h,B, (Xα)α∈B)). Then the restriction of ε to
G is an isomorphism from G to Aut(R,B).

If s ∈ G, it is clear that ε(s) ∈ Aut(R,B). On the other hand, the map

ε|G : G → Aut(R,B)

is bijective by Th. 2 of §4, no. 4.

2. AUTOMORPHISMS OF A SPLIT SEMI-SIMPLE LIE
ALGEBRA

Let E be a commutative group, and A =
⊕
γ∈E

Aγ an E-graded algebra. For

any homomorphism ϕ from the group E to the multiplicative group k∗, let
f(ϕ) be the k-linear map from A to A whose restriction to each Aγ is the
homothety with ratio ϕ(γ); it is clear that f(ϕ) is an automorphism of the
graded algebra A, and that f is a homomorphism from the group Hom(E, k∗)
to the group of automorphisms of the graded algebra A.

Let h be a splitting Cartan subalgebra of g, and R the root system of
(g, h). Recall that P(R) (resp. Q(R)) denotes the group of weights (resp.
radical weights) of R. Put

TP = Hom(P(R), k∗) TQ = Hom(Q(R), k∗).

We can consider g = g0 +
∑

α∈R
gα as a Q(R)-graded algebra. The preceding

remarks define a canonical homomorphism from TQ to Aut(g, h), which will
be denoted by f in this paragraph. In the other hand, the canonical injection
from Q(R) to P(R) defines a homomorphism from TP to TQ, which will be
denoted by q:

TP
q−→ TQ

f−→ Aut(g, h) .

If s ∈ Aut(g, h), let s∗ be the restriction of t(s|h)−1 to Q(R). Then, for all
ϕ ∈ TQ,

f(ϕ ◦ s∗) = s−1 ◦ f(ϕ) ◦ s. (1)

Indeed, let γ ∈ Q(R) and x ∈ gγ ; then sx ∈ gs∗γ and

f(ϕ ◦ s∗)x = (ϕ ◦ s∗)(γ).x = s−1(ϕ(s∗γ)sx) = (s−1 ◦ f(ϕ) ◦ s)(x).

PROPOSITION 2. The sequence of homomorphisms

1 −→ TQ
f−→ Aut(g, h) ε−→ A(R) −→ 1

is exact.
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a) Let ϕ ∈ Ker f . Then ϕ(α) = 1 for all α ∈ R. Since R generates the
group Q(R), ϕ is the identity element of TQ.
b) Let ϕ ∈ TQ. The restriction of f(ϕ) to h = g0 is the identity, so

Im f ⊂ Ker ε.

c) Let s ∈ Ker ε. Then s|h = Idh. For all α ∈ R, we have s(gα) = gα, and
there exists a tα ∈ k∗ such that sx = tαx for all x ∈ gα. Writing down the
condition that s ∈ Aut(g), we obtain the relations

tαt−α = 1 for all α ∈ R
tαtβ = tα+β when α, β, α+ β ∈ R.

Under these conditions, there exists ϕ ∈ TQ such that ϕ(α) = tα for all
α ∈ R (Chap. VI, §1, no. 6, Cor. 2 of Prop. 19). Then s = f(ϕ). Hence,
Ker ε ⊂ Im f .
d) The image of Aut(g, h) under ε contains W(R) by §2, no. 2, Cor. of

Th. 2, and contains Aut(R,B) by Prop. 1. Hence this image is equal to A(R).

COROLLARY 1. Let (B, (Xα)α∈B) be a framing of (g, h). Let G be the set
of s ∈ Aut(g, h) that leave the framing invariant. Then Aut(g, h) is the semi-
direct product of G and ε−1(W(R)).

Indeed, G ∩ ε−1(W(R)) = {1} by Prop. 1, and

Aut(g, h) = G.ε−1(W(R))

since ε is surjective (Prop. 2).

COROLLARY 2. The group ε−1(W(R)) operates simply-transitively on the
set of framings of (g, h).

Indeed, Aut(g, h) operates transitively on the set of framings of (g, h) by
§4, no. 4, Th. 2. Cor. 2 now follows from Cor. 1.

COROLLARY 3. Let B be a basis of R. The group Ker ε = f(TQ) operates
simply-transitively on the set of framings of (g, h) of the form (B, (Xα)α∈B).

This follows immediately from Prop. 2.

Let α ∈ R,Xα ∈ gα,X−α ∈ g−α be such that [Xα, X−α] = −Hα. We have
seen (§2, no. 2, Th. 2) that, for all t ∈ k∗, the restriction of the elementary
automorphism

θα(t) = ead tXαead t−1X−αead tXα

to h is the transpose of sα; so ε(θα(t)) = sα and consequently θα(t)θα(−1) ∈
Ker ε.

Lemma 1. Let α ∈ R and t ∈ k∗. Let ϕ be the homomorphism λ 	→ tλ(Hα)

from Q(R) to k∗. Then f(ϕ) = θα(t)θα(−1).
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Let ρ be the representation of sl(2, k) on g associated to Xα. Let π be
the representation of SL(2, k) compatible with ρ. Introduce the notations
θ(t), h(t) of §1, no. 5. Since ρ(H) = adHα, the elements of gλ are of weight
λ(Hα) for ρ. By §2, no. 2, θα(t)θα(−1) = π(θ(t)θ(−1)) = π(h(t)). Hence the
restriction of θα(t)θα(−1) to gλ is the homothety of ratio tλ(Hα) (§1, no. 5,
Prop. 6), hence the lemma.

PROPOSITION 3. The image of the composite homomorphism

TP
q−→ TQ

f−→ Aut(g, h)

is contained in Aute(g).
Let B be a basis of R. Then (Hα)α∈B is a basis of R∨, and the dual basis of

(Hα)α∈B in h∗ is a basis of the group P(R). Hence the group TP is generated
by the homomorphisms λ 	→ tλ(Hα) (t ∈ k∗, α ∈ B). If ϕ is the restriction of
such a homomorphism to Q(R), Lemma 1 proves that f(ϕ) ∈ Aute(g), hence
the proposition.

Let k̄ be an algebraic closure of k. The map which associates to any
automorphism s of g the automorphism s ⊗ 1 of g ⊗k k̄ is an injective ho-
momorphism from Aut(g) to Aut(g ⊗k k̄). We denote by Aut0(g) the normal
subgroup of Aut(g) which is the inverse image of Aute(g⊗k k̄) under this ho-
momorphism; this is the set of automorphisms of g that become elementary
on extending the base field from k to k̄. It is clear that Aute(g) is indepen-
dent of the choice of k̄, and that Aute(g) ⊂ Aut0(g). The groups Aut0(g) and
Aute(g) can be distinct (Chap. VII, §13, no. 1). If h is a Cartan subalgebra
of g, put

Aute(g, h) = Aute(g) ∩ Aut(g, h), Aut0(g, h) = Aut0(g) ∩ Aut(g, h).

Lemma 2. Let h be a splitting Cartan subalgebra of g, and s ∈ Aut0(g, h).
Assume that the restriction of s to

∑
α∈R

gα does not have 1 as an eigenvalue.

Then ε(s) = 1.
By extension of k, we are reduced to the case where s ∈ Aute(g, h). The

dimension of the nilspace of s − 1 is at least dim h (Chap. VII, §4, no. 4,
Prop. 9). Hence (s − 1)|h is nilpotent. Since s|h ∈ A(R∨), s|h is of finite
order, and hence semi-simple (Chap. V, Appendix, Prop. 2). Consequently,
(s− 1)|h = 0, which proves that ε(s) = 1.

Lemma 3. (i) Let m = (P(R) : Q(R)). If ϕ is the mth power of an element
of TQ, then ϕ ∈ q(TP).

(ii) If k is algebraically closed, q(TP) = TQ.
There exist a basis (λ1, . . . , λl) of P(R) and integers n1 ≥ 1, . . . , nl ≥ 1

such that (n1λ1, . . . , nlλl) is a basis of Q(R). We have m = n1 . . . nl. Let
ψ ∈ TQ and put ψ(n1λ1) = t1, . . . , ψ(nlλl) = tl. For i = 1, . . . , l, put mi =
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j �=i
nj . Let χ be the element of TP such that χ(λ1) = tm1

1 , . . . , χ(λl) = tml

l .

Then

χ(niλi) = tmini
i = tmi = (ψm)(niλi)

so χ|Q(R) = ψm. This proves (i). If k is algebraically closed, every element
of k∗ is the mth power of an element of k∗, so every element of TQ is the
mth power of an element of TQ; hence, (ii) follows from (i).

PROPOSITION 4. We have f(TQ)⊂Aut0(g, h) and ε−1(W(R))=Aut0(g, h).
a) Let ϕ ∈ TQ and let k̄ be an algebraic closure of k. By Lemma 3, ϕ

extends to an element of Hom(P(R), k∗). By Prop. 3,

f(ϕ) ⊗ 1 ∈ Aute(g ⊗k k̄, h ⊗k k̄).

Hence f(ϕ) ∈ Aut0(g, h), and Ker ε ⊂ Aut0(g, h).
b) The image of Aute(g, h) under ε contains W(R) (§2, no. 2, Cor. of

Th. 2). In view of a), we see that ε−1(W(R)) ⊂ Aut0(g, h).
c) It remains to prove that Aut0(g, h) ⊂ ε−1(W(R)). In view of b), it

suffices to prove that ε(Aut0(g, h)) ∩ Aut(R,B), where B denotes a basis of
R, reduces to {1}.

Let s ∈ Aut0(g, h) be such that ε(s) ∈ Aut(R,B). The subgroup of A(R)
generated by ε(s) has a finite number of orbits on R. Let U be such an orbit,
of cardinal r, and gU =

∑
β∈U

gβ . Let β1 ∈ U, and put βi = ε(s)i−1β1 for

1 ≤ i ≤ r, so that U = {β1, . . . , βr}. Let Xβ1 be a non-zero element of gβ1 ,
and putXβi

= si−1Xβ1 for 1 ≤ i ≤ r. There exists cU ∈ k∗ such that srXβ1 =
cUXβ1 , hence srXβi

= cUXβi
for all i, and consequently sr|gU = cU.1. Let

ϕ ∈ TQ, and s′ = s ◦ f(ϕ), which by a) is an element of Aut0(g, h). We have
s′r|gU = c′U.1, where

c′U = cU

r∏
i=1

ϕ(βi) = cUϕ

(
r∑

i=1

βi

)
.

Put B = {α1, . . . , αl} and
r∑

i=1
βi =

l∑
j=1

mU
j αj . Since ε(s) ∈ Aut(R,B), the

mU
j are integers of the same sign and not all zero. We have

c′U = cU

l∏
j=1

ϕ(αj)mU
j .

Now ϕ can be chosen so that c′U �= 1 for every orbit U; indeed, this reduces to
choosing elements ϕ(α1) = t1, . . . , ϕ(αl) = tl of k∗ which are not annihilated
by a finite number of polynomials in t1, . . . , tl, not identically zero. For such
a choice of ϕ, ε(s′) = 1 by Lemma 2, so
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ε(s) = ε(s′)ε(f(ϕ))−1 = 1.

COROLLARY. Let B be a basis of R. The group Aut(g, h) is isomorphic to
the semi-direct product of the groups Aut(R,B) and Aut0(g, h).

This follows from Prop. 1, Cor. 1 of Prop. 2, and Prop. 4.

Remark. Let ε′, ε′′ be the restrictions of ε to Aut0(g, h),Aute(g, h). Let f ′

be the homomorphism from TP to Aute(g, h) induced by f via the canoni-
cal injection from Q(R) to P(R). In the preceding we have established the
following commutative diagram:

1 −→ TQ
f−→ Aut(g, h) ε−→ A(R) −→ 1�⏐⏐ �⏐⏐ �⏐⏐

1 −→ TQ
f−→ Aut0(g, h) ε′

−→ W(R) −→ 1�⏐⏐q

�⏐⏐ �⏐⏐
TP

f ′
−→ Aute(g, h) ε′′

−→ W(R) −→ 1

in which the vertical arrows other than q denote the canonical injections. We
have seen (Prop. 2 and 4) that the first two rows are exact. In the third row,
the homomorphism ε′′ is surjective (§2, no. 2, Cor. of Th. 2); it can be shown
that its kernel is f ′(TP) (§7, Exerc. 26 d)).

3. AUTOMORPHISMS OF A SPLITTABLE SEMI-SIMPLE LIE
ALGEBRA

PROPOSITION 5. Assume that g is splittable. The group Aut0(g) operates
simply-transitively on the set of framings of g.

Let e1 = (g, h1,B1, (X1
α)α∈B1), e2 = (g, h2,B2, (X2

α)α∈B2) be two framings
of g. There exists at least one element of Aut0(g) that transforms e1 into e2
(Prop. 1 and Prop. 4). Let k̄ be an algebraic closure of k. There exists an
element of Aute(g ⊗k k̄) that transforms h1 ⊗k k̄ into h2 ⊗k k̄ (Chap. VII, §3,
no. 2, Th. 1). Hence, by Prop. 4 and Cor. 2 of Prop. 2, there exists an element
ϕ of Aute(g⊗k k̄) that transforms the framing (g⊗k k̄, h1 ⊗k k̄,B1, (X1

α)α∈B1)
of g ⊗k k̄ into the framing (g ⊗k k̄, h2 ⊗k k̄,B2, (X2

α)α∈B2).Since h1 and the
X1

α (resp. h2 and the X2
α) generate g1 (resp. g2), we have ϕ(g1) = g2, so ϕ is

of the form ψ ⊗ 1 where ψ ∈ Aut0(g), and ψ transforms e1 into e2.

COROLLARY 1. Let (g, h,B, (Xα)α∈B) be a framing of g, and G the group
(isomorphic to Aut(R,B)) of automorphisms of g that leave this framing in-
variant. Then Aut(g) is the semi-direct product of G and Aut0(g).

Indeed, every element of Aut(g) transforms (g, h,B, (Xα)α∈B) into a fram-
ing of g. By Prop. 5, every coset of Aut(g) modulo Aut0(g) meets G in exactly
one point. Q.E.D.
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It follows from Cor. 1 that the group Aut(g)/Aut0(g) can be identified
with Aut(R,B), and is isomorphic to the group of automorphisms of the
Dynkin graph of R.

COROLLARY 2. Aut(g) = Aut0(g) when g is a splittable simple Lie al-
gebra of type A1, Bn (n ≥ 2), Cn (n ≥ 2), E7, E8, F4, G2. The quotient
Aut(g)/Aut0(g) is of order 2 when g is of type An (n ≥ 2), Dn (n ≥ 5), E6;
it is isomorphic to S3 when g is of type D4.

This follows from Cor. 1 and Chap. VI, Plates I to IX.

Remarks. 1) Let e1 = (g, h1,B1, (X1
α)α∈B1), e2 = (g, h2,B2, (X2

α)α∈B2),
e′2 = (g, h2,B2, (Y 2

α )α∈B2) be framings of g, and s (resp. s′) an element
of Aut0(g) that transforms e1 to e2 (resp. e′2). Then s|h1 = s′|h1. Indeed,
s′−1

s ∈ Aut0(g, h1) and s′−1
s(B1) = B1, so ε(s′−1

s) = 1.
2) Let X be the set of pairs (h,B) where h is a splitting Cartan subalgebra

of g and B a basis of the root system of (g, h). If x = (h,B) and x′ = (h′,B′)
are two elements of X, there exists s ∈ Aut0(g) that transforms x into x′

(Prop. 5), and the restriction sx′,x of s to h does not depend on the choice
of s (Remark 1). In particular, sx′′,x′ ◦ sx′,x = sx′′,x if x, x′, x′′ ∈ X, and
sx,x = 1. The set of families (hx)x∈X satisfying the conditions
a) hx ∈ h if x = (h,B)
b) sx′,x(hx) = hx′ if x, x′ ∈ X

is in a natural way a vector space h(g) which we sometimes call the canonical
Cartan subalgebra of g. For x = (h,B) and x′ = (h′,B′), sx′,x takes B to
B′, and hence the root system of (g, h) to that of (g, h′); it follows that the
dual h(g)∗ of h(g) is naturally equipped with a root system R(g) and with a
basis B(g) of R(g). We sometimes say that R(g) is the canonical root system
of g and that B(g) is its canonical basis. The group Aut(g) operates on h(g)
leaving R(g) and B(g) stable; the elements of Aut(g) that operate trivially
on h(g) are those of Aut0(g).

PROPOSITION 6. Let h be a splitting Cartan subalgebra of g. We have, with
the notations in no. 1, Aut0(g) = Aute(g).Ker ε = Aute(g).f(TQ).

By §3, no. 3, Cor. of Prop. 10, Aut0(g) = Aute(g).Aut0(g, h). On the
other hand, ε(Aute(g, h)) ⊃ W(R) by §2, no. 2, Cor. of Th. 2, so Aut0(g, h) =
Aute(g, h).Ker ε.

Remark 3. Prop. 6 shows that the canonical homomorphism

ι : TQ/Im(TP) → Aut0(g)/Aute(g),

induced by the diagram in no. 2, is surjective. In particular, Aute(g) contains
the derived group of Aut0(g); we shall see (§11, no. 2, Prop. 3) that they are
actually equal. Moreover, it can be shown that ι is injective, in other words
that
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f(TQ) ∩ Aute(g) = f ′(TP),

(cf. §7, Exerc. 26 d)).

PROPOSITION 7. Let g be a splittable semi-simple Lie algebra, b a Borel
subalgebra of g, and p1 and p2 distinct parabolic subalgebras of g containing
b. Then p1 and p2 are not conjugate under Aut0(g).

We can assume that k is algebraically closed. Let s ∈ Aut0(g) be such
that s(p1) = p2. Let h be a Cartan subalgebra of g contained in b ∩ s(b) (§3,
no. 3, Prop. 10). Since h and s(h) are Cartan subalgebras of s(b), there exists
u ∈ [b, b] such that ead u(h) = s(h) (Chap. VII, §3, no. 4, Th. 3). Replacing s
by e−ad us, we are reduced to the case in which s(h) = h, and s then induces
on h an element σ of the Weyl group W of (g, h) (Prop. 4). Let C be the Weyl
chamber corresponding to b. Then p1 and p2 correspond to facets F1 and F2
of hR contained in the closure of C. We have σ(F1) = F2. Since σ ∈ W, this
implies that F1 = F2 (Chap. V, §3, no. 3, Th. 2) so p1 = p2.

Remark 4. Let g be a splittable semi-simple Lie algebra, P the set of parabolic
subalgebras of g, a set on which Aut0(g) operates. Retain the notations of
Remark 2. Let Σ be a subset of B(g). Giving Σ is equivalent to giving, for
every x = (h,B) ∈ X, a subset Σx of B, such that sx′,x takes Σx to Σx′ for
any x, x′ ∈ X. Let px be the parabolic subalgebra of g corresponding to Σx

(§3, no. 4, Remark). The orbit of px under Aut0(g) is the set of px′ for x′ ∈ X.
This defines a map from P(B(g)) to P/Aut0(g). This map is surjective by
the Remark of §3, no. 4, and injective by Prop. 7.

4. ZARISKI TOPOLOGY ON Aut(g)

PROPOSITION 8. Let V be the set of endomorphisms of the vector space g.
Then Aut(g) is closed in V for the Zariski topology (Chap. VII, App. I).

Let K be the Killing form of g. If s ∈ Aut(g),

[sx, sy] = [x, y] (2)
K(sx, sy) = K(x, y) (3)

for all x, y ∈ g. Conversely, let s be an element of V satisfying (2) and (3)
for all x, y ∈ g. Then Ker(s) = 0, so s is bijective and s ∈ Aut(g). But, for
all x, y ∈ g, the maps s 	→ [sx, sy] and s 	→ K(sx, sy) from V to g and k are
polynomial.

PROPOSITION 9. Let h be a splitting Cartan subalgebra of g.
(i) The group f(TQ) is closed in Aut(g) in the Zariski topology.
(ii) The group f(q(TP)) is dense in f(TQ) in the Zariski topology.
Assertion (i) follows from the equality f(TQ) = Aut(g, h)∩Ker ε (Prop. 2).

Put m = (P(R) : Q(R)). Let F be a polynomial function on V; we assume
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that F vanishes on the mth power of every element of f(TQ), and show that
F|f(TQ) = 0; in view of Lemma 3, this will prove (ii).

The set V′ of elements of V inducing the identity on h and leaving each
gα stable can be identified with kR. Let F′ be the restriction of F to V′ = kR;
this is a polynomial function. We have f(TQ) ⊂ V′. Let B = (α1, . . . , αl) be
a basis of R. For all t = (t1, . . . , tl) ∈ k∗B, let ϕ(t) be the homomorphism
from Q(R) to the group k∗ that extends t. Then F′(f(ϕ(t))) can be written
as a finite sum∑

n1,...,nl∈Z

cn1,...,nl
tn1
1 . . . tnl

l = H(t1, . . . , tl).

By assumption,

0 = H(tm1 , . . . , t
m
l ) =

∑
n1,...,nl∈Z

cn1,...,nl
tmn1
1 . . . tmnl

l

for all t1, . . . , tl ∈ k∗. The cn1,...,nl
are thus the coefficients of a polynomial

in l variables which vanishes on k∗l; hence they are all zero.

PROPOSITION 10. Assume that g is splittable.
(i) The group Aute(g) is dense in Aut0(g) in the Zariski topology.
(ii) The groups Aute(g) and Aut0(g) are connected in the Zariski topology.
By Prop. 3, f(q(TP)) ⊂ Aute(g). For all s ∈ Aute(g), the closure of

s.f(q(TP)) in the Zariski topology contains s.f(TQ) by Prop. 9. Hence the
closure of Aute(g) contains Aute(g).f(TQ) = Aut0(g) (Prop. 6). This proves
(i).

Let Aute(g) = Ω∪Ω′ be a partition of Aute(g) formed by relatively open
subsets in the Zariski topology, and with Ω �= ∅. If ω ∈ Ω and if x is a
nilpotent element of g, the map τ : t 	→ ω exp(t adx) from k to Aute(g) is
polynomial, hence continuous in the Zariski topology; consequently, τ(k) is
connected; since ω ∈ τ(k), we have τ(k) ⊂ Ω. Thus, Ω.(exp ad kx) ⊂ Ω, so
Ω.Aute(g) ⊂ Ω and Ω = Aute(g). This proves that Aute(g) is connected. It
follows, by (i), that Aut0(g) is connected. Q.E.D.

We shall see (§8, no. 4, Cor. of Prop. 6) that Aut0(g) is closed in V in
the Zariski topology, and that it is the connected component of the identity
element of Aut(g). On the other hand, Aute(g) is not in general closed in the
Zariski topology.

∗Assume that (g, h) is split. The group Aut0(g) is the group G(k) of k-points of
a connected semi-simple algebraic group G with trivial centre (adjoint group).
The group f(TQ) is equal to H(k), where H is the Cartan subgroup of G with
Lie algebra h. The inverse image H̃ of H in the universal covering G̃ of G (in the
algebraic sense) has TP as its group of k-points. The image of G̃(k) in G(k) =
Aut0(g) is the group Aute(g).∗
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5. LIE GROUP CASE

PROPOSITION 11. Assume that k is R, C or a non-discrete complete ul-
trametric field. Let h be a splitting Cartan subalgebra of g.

(i) Aut(g, h) is a Lie subgroup of Aut(g) with Lie algebra ad h.
(ii) f(TQ) and (q ◦ f)(TP) are open subgroups of Aut(g, h).
(iii) Aute(g) is an open subgroup of Aut(g).
(iv) If k = R or C, Aute(g) is the identity component of Aut(g), in other

words Int(g).
By Chap. III, §3, no. 8, Cor. 2 of Prop. 29, and no. 10, Prop. 36, Aut(g, h)

is a Lie subgroup of Aut(g) whose Lie algebra is the set of adx (x ∈ g) such
that (adx)h ⊂ h, in other words ad h.

Let H ∈ h. There exists ε > 0 with the following properties: for t ∈ k and
|t| < ε, exp(tγ(H)) is defined for all γ ∈ P(R), and the map γ 	→ exp(tγ(H))
is a homomorphism σt from P(R) to k∗. For |t| < ε, exp(t ad H) is defined,
induces the identity on h and induces on gα the homothety with ratio σt(α);
hence exp t ad H ∈ (q ◦ f)(TP). This proves, in view of (i), that (q ◦ f)(TP)
contains a neighbourhood of 1 in Aut(g, h), and consequently is an open
subgroup of Aut(g, h). A fortiori, f(TQ) is an open subgroup of Aut(g, h).

For all α ∈ R, exp ad gα ⊂ Aute(g). In view of (ii), Aute(g) contains a
neighbourhood of 1 in Aut(g), which proves (iii).

Assume that k = R or C. Then Aute(g) is contained in the identity
component C of Aut(g) (Chap. VII, §3, no. 1), and is open in Aut(g) by (iii).
Thus Aute(g) = C. Finally, C = Int(g) by Chap. III, §9, no. 8, Prop. 30 (i).

§ 6. MODULES OVER A SPLIT SEMI-SIMPLE LIE
ALGEBRA

In this paragraph, (g, h) denotes a split semi-simple Lie algebra, R its root
system, W its Weyl group, B a basis of R, R+ (resp. R−) the set of positive
(resp. negative) roots relative to B. Put

n+ =
∑

α∈R+

gα, n− =
∑

α∈R−

gα, b+ = h + n+ and b− = h + n−.

We have n+ = [b+, b+], n− = [b−, b−].
For all α ∈ R, choose an element Xα ∈ gα such that

[Xα, X−α] = −Hα

(§2, no. 4); none of the definitions below will depend on this choice.
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1. WEIGHTS AND PRIMITIVE ELEMENTS

Let V be a g-module. For all λ ∈ h∗, denote by Vλ the primary subspace,
relative to λ, of V considered as an h-module (Chap. VII, §1, no. 1). The
elements of Vλ are called the elements of weight λ of the g-module V. The
sum of the Vλ is direct (Chap. VII, §1, no. 1, Prop. 3). For all α ∈ h∗ and
λ ∈ h∗, gαVλ ⊂ Vα+λ (Chap. VII, §1, no. 3, Prop. 10 (ii)). The dimension
of Vλ is called the multiplicity of λ in V; if it is ≥ 1, i.e. if Vλ �= 0, λ is said
to be a weight of V. If V is finite dimensional, the homotheties of V defined
by the elements of h are semi-simple, so Vλ is the set of x ∈ V such that
Hx = λ(H)x for all H ∈ h.

Lemma 1. Let V be a g-module and v ∈ V. The following conditions are
equivalent:

(i) b+v ⊂ kv;
(ii) hv ⊂ kv and n+v = 0;
(iii) hv ⊂ kv and gαv = 0 for all α ∈ B.
(i) =⇒ (ii): Assume that b+v ⊂ kv. There exists λ ∈ h∗ such that v ∈ Vλ.

Let α ∈ R+. Then gα.v ⊂ Vλ ∩ Vλ+α = 0. Hence n+v = 0.
(ii) =⇒ (iii): This is clear.
(iii) =⇒ (i): This follows from the fact that (Xα)α∈B generates n+ (§3,

no. 3, Prop. 9 (iii)).

DEFINITION 1. Let V be a g-module and v ∈ V. Then v is said to be a
primitive element of V if v �= 0 and v satisfies the conditions of Lemma 1.

A primitive element belongs to one of the Vλ. For all λ ∈ h∗, Vλ
π denotes

the set of v ∈ Vλ such that b+v ⊂ kv. Thus, the primitive elements of weight
λ are the non-zero elements of Vλ

π.

PROPOSITION 1. Let V be a g-module, v a primitive element of V and ω
the weight of v. Assume that V is generated by v as a g-module.

(i) If U(n−) denotes the enveloping algebra of n−, we have V = U(n−).v.
(ii) For all λ ∈ h∗, Vλ is the set of x ∈ V such that Hx = λ(H)x for all

H ∈ h. We have V =
⊕

λ∈h∗
Vλ, and each Vλ is finite dimensional. The space

Vω is of dimension 1, and every weight of V is of the form ω −
∑

α∈B
nα.α,

where the nα are integers ≥ 0.
(iii) V is an indecomposable g-module, and its commutant reduces to the

scalars.
(iv) Let U(g) be the enveloping algebra of g, and Z the centre of U(g).

There exists a unique homomorphism χ from Z to k such that, for all z ∈ Z,
zV is the homothety with ratio χ(z).
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Let U(b+) be the enveloping algebra of b+. We have U(g) = U(n−).U(b+)
(Chap. I, §2, no. 7, Cor. 6 of Th. 1). Hence

V = U(g).v = U(n−).U(b+).v = U(n−).v.

Denote by α1, . . . , αn the distinct elements of R+. Then

(Xp1
−α1

Xp2
−α2

. . . Xpn

−αn
)(p1,...,pn)∈Nn

is a basis of U(n−), so

V =
∑

(p1,...,pn)∈Nn

kXp1
−α1

. . . Xpn

−αn
v. (1)

For λ ∈ h∗, put

Tλ =
∑

(p1,...,pn)∈Nn, ω−p1α1−···−pnαn=λ

kXp1
−α1

. . . Xpn

−αn
v.

By Chap. VII, §1, no. 1, Prop. 2 (ii), if h ∈ h, hV|Tλ is the homothety with
ratio λ(h). So Tλ ⊂ Vλ. On the other hand, (1) implies that

V =
∑

λ∈ω−Nα1−···−Nαn

Tλ.

The sum of the Vλ is direct (Chap. VII, §1, no. 1, Prop. 3). From these
observations it follows that Vλ = Tλ, that V is the direct sum of the Vλ, and
that Vλ is the set of x ∈ V such that hx = λ(h)x for all h ∈ h. On the other
hand, dimVλ is at most the cardinal of the set of (p1, . . . , pn) ∈ Nn such
that p1α1 + · · · + pnαn = ω− λ. This proves that Vλ = 0 if ω− λ /∈

∑
α∈B

Nα,

that dimVω = 1, and that the Vλ are all finite dimensional.
Let c be an element of the commutant of V. For all h ∈ h,

hc(v) = ch(v) = ω(h)c(v),

so c(v) ∈ Vω; hence there exists t ∈ k such that c(v) = tv. Now, for all
(p1, . . . , pn) ∈ Nn,

cXp1
−α1

. . . Xpn

−αn
v = Xp1

−α1
. . . Xpn

−αn
cv = tXp1

−α1
. . . Xpn

−αn
v

so that c = t.1. Hence, the commutant of V reduces to the scalars. This
implies (iv) and the fact that V is indecomposable.

DEFINITION 2. The homomorphism χ of Prop. 1 (iv) is called the central
character of the g-module V.

PROPOSITION 2. Let V be a g-module generated by a primitive element e of
weight ω, and X a semi-simple g-module. Let Φ be the set of homomorphisms



118 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

from the g-module V to the g-module X. Then ϕ 	→ ϕ(e) is an isomorphism
from the vector space Φ to the vector space Xω

π .
It is clear that ϕ(e) ∈ Xω

π for all ϕ ∈ Φ. If ϕ ∈ Φ and ϕ(e) = 0, then ϕ = 0
since e generates the g-module V. We show that, if f is a non-zero element
of Xω

π , there exists ϕ ∈ Φ such that ϕ(e) = f . Let X′ be the submodule of
X generated by f . By Prop. 1, X′ is indecomposable, hence simple since X is
semi-simple. The element (e, f) is primitive in the g-module V ×X. Let N be
the submodule of V × X generated by (e, f). Then N ∩ X ⊂ pr2(N) = X′, so
N∩X = 0 or X′; if N∩X = X′, N contains the linearly independent elements
(e, f) and (0, f) which are primitive of weight ω; this is absurd (Prop. 1),
so N ∩ X = 0. Thus pr1|N is an injective map h from N to V; this map is
surjective since its image contains e. Thus ϕ = pr2 ◦ h−1 is a homomorphism
from the g-module V to the g-module X such that ϕ(e) = f .

2. SIMPLE MODULES WITH A HIGHEST WEIGHT

Recall that fixing B defines an order relation on h∗
Q (Chap. VI, §1, no. 6).

The elements of h∗
Q that are ≥ 0 are the linear combinations of elements of

B with rational coefficients ≥ 0.
More generally, we shall consider the following order relation between

elements λ, µ ∈ h∗:
λ− µ is a linear combination of elements of B with rational coefficients ≥ 0.

Lemma 2. Let V be a simple g-module, ω a weight of V. The following con-
ditions are equivalent:

(i) every weight of V is of the form ω−µ where µ is a radical weight ≥ 0;
(ii) ω is the highest weight of V;
(iii) for all α ∈ B, ω + α is not a weight of V;
(iv) there exists a primitive element of weight ω.
(i) =⇒ (ii) =⇒ (iii): This is clear.
(iii) =⇒ (iv): Assume that condition (iii) is satisfied. For all h ∈ h,

Ker(hV − ω(h))

is non-zero, contained in Vω, and stable under hV. By induction on dim h,
we see that there exists a non-zero v in Vω such that hv ⊂ kv. Condition (iii)
implies that n+v = 0, so v is primitive.

(iv) =⇒ (i): Let v be a primitive element of weight ω. Since V is simple,
V is generated by v as a g-module. Assertion (i) now follows from Prop. 1.

Q.E.D.

Thus, for any simple g-module, the existence of a primitive element is
equivalent to that of a highest weight, or to that of a maximal weight.
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There exist simple sl(2,C)-modules V that have no weights for any Cartan
subalgebra h of sl(2,C) (§1, Exerc. 14 f)). These modules are of infinite
dimension over C (§1, no. 3, Th. 1).

PROPOSITION 3. Let V be a simple g-module with a highest weight ω.
(i) The primitive elements of V are the non-zero elements of Vω.
(ii) V is semi-simple as an h-module.

(iii) We have V =
⊕

λ∈h∗
Vλ. For all λ ∈ h∗, Vλ is finite dimensional. We

have dim Vω = 1.
(iv) The g-module V is absolutely simple.
Assertions (i), (ii) and (iii) follow from Prop. 1 and Lemma 2. Assertion

(iv) follows from Prop. 1 (iii) and Algebra, Chap. VIII, §7, no. 3.

COROLLARY. If V is finite dimensional, the canonical homomorphism
U(g) → End(V) is surjective.

This follows from (iv), cf. Algebra, Chap. VIII, §3, no. 3.

PROPOSITION 4. Let V be a simple g-module with a highest weight ω, X a
semi-simple g-module, and X′ the isotypical component of type V in X. Then
X′ is the submodule of X generated by Xω

π . Its length is equal to the dimension
of Xω

π .
Let X′′ be the submodule of X generated by Xω

π . It is clear that every
submodule of X isomorphic to V is contained in X′′. Hence X′ ⊂ X′′. On the
other hand, let Φ be the set of homomorphisms from the g-module V to the
g-module X. The length of X′ is dimk Φ (Algebra, Chap. VIII, §4, no. 4), that
is dimk Xω

π (Prop. 2).

3. EXISTENCE AND UNIQUENESS THEOREM

Let λ ∈ h∗. Since b+ = h⊕n+ and since n+ = [b+, b+], the map h+n 	→ λ(h)
(where h ∈ h, n ∈ n+) from b+ to k is a 1-dimensional representation of b+.
Denote by Lλ the k-vector space k equipped with the b+-module structure
defined by this representation. Let U(g), U(b+) be the enveloping algebras of
g, b+, so that U(b+) is a subalgebra of U(g); recall that U(g) is a free right
U(b+)-module (Chap. I, §2, no. 7, Cor. 5 of Th. 1). Put

Z(λ) = U(g) ⊗U(b+) Lλ. (2)

Then Z(λ) is a left g-module. Denote by e the element 1 ⊗ 1 of Z(λ).

PROPOSITION 5. (i) The element e of Z(λ) is primitive of weight λ and
generates the g-module Z(λ).
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(ii) Let Z+(λ) =
∑

λ�=µ
Z(λ)µ. Every submodule of Z(λ) distinct from Z(λ)

is contained in Z+(λ).
(iii) There exists a largest submodule Fλ of Z(λ) distinct from Z(λ). The

quotient module Z(λ)/Fλ is simple and has highest weight λ.
It is clear that e generates the g-module Z(λ). If x ∈ b+,

x.e = (x.1) ⊗ 1 = (1.x) ⊗ 1 = 1 ⊗ x.1 = λ(x)(1 ⊗ 1) = λ(x)e,

hence (i).
The h-module Z(λ) is semi-simple (Prop. 1). If G is a g-submodule of

Z(λ), then G =
∑

µ∈h∗
(G ∩ Z(λ)µ). The hypothesis G ∩ Z(λ)λ �= 0 implies

that G = Z(λ), since dim Z(λ)λ = 1 and e generates the g-module Z(λ). If
G �= Z(λ), then G =

∑
µ�=λ

G ∩ Z(λ)µ ⊂ Z+(λ).

Let Fλ be the sum of the g-submodules of Z(λ) distinct from Z(λ). By
(ii), Fλ ⊂ Z+(λ). Hence Fλ is the largest submodule of Z(λ) distinct from
Z(λ). It is clear that Z(λ)/Fλ is simple and that the canonical image of e in
Z(λ)/Fλ is primitive of weight λ.

In the remainder of this chapter, the g-module Z(λ)/Fλ of Prop. 5 will be
denoted by E(λ).

THEOREM 1. Let λ ∈ h∗. The g-module E(λ) is simple and has highest
weight λ. Every simple g-module of highest weight λ is isomorphic to E(λ).

The first assertion follows from Prop. 5 (iii). The second follows from
Prop. 4.

PROPOSITION 6. Let V be a g-module, λ an element of h∗ and v a primitive
element of V of weight λ.

(i) There exists a unique homomorphism of g-modules ψ : Z(λ) → V such
that ψ(e) = v.

(ii) Assume that v generates V. Then ψ is surjective. Moreover, ψ is
bijective if and only if, for every non-zero element u of U(n−), uV is injective.

(iii) The map u 	→ u⊗ 1 from U(n−) to Z(λ) is bijective.
Let K be the kernel of the representation of U(b+) on Lλ; it is of codi-

mension 1 in U(b+). Let J = U(g)K be the left ideal of U(g) generated by K;
then Lλ can be identified with U(b+)/K as a left U(b+)-module, and Z(λ)
can be identified with U(g)/J as a left U(g)-module. We have K.v = 0, so
J.v = 0, which proves (i).

Now assume that v generates V. It is clear that ψ is surjective.
By the Poincaré-Birkhoff-Witt theorem (Chap. I, §2, no. 7, Cor. 6 of

Th. 1), a basis of U(n−) over k is also a basis of U(g) as a right U(b+)-
module. Hence the map ϕ : u 	→ u ⊗ 1 from U(n−) to U(g) ⊗U(b+) Lλ is
bijective. Let u ∈ U(n−). Then ϕ−1 ◦ uZ(λ) ◦ ϕ is left multiplication by u on
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U(n−). In view of Chap. I, §2, no. 7, Cor. 7 of Th. 1, uZ(λ) is injective if
u �= 0. Consequently, if ψ is bijective, then uV is injective for non-zero u in
U(n−).

Assume that ψ is not injective. There exists u ∈ U(n−) such that u �= 0
and ψ(ϕ(u)) = 0. Then

uV.v = uV.ψ(1 ⊗ 1) = ψ(u⊗ 1) = ψ(ϕ(u)) = 0.

COROLLARY 1. Let λ ∈ h∗ and α ∈ B be such that λ(Hα) + 1 ∈ N. Then
Z(−α+ sαλ) is isomorphic to a g-submodule of Z(λ).

Put m = λ(Hα). Let x = Xm+1
−α .e ∈ Z(λ), and let V be the submod-

ule of Z(λ) generated by x. Then x �= 0 (Prop. 6). On the other hand,
x ∈ Z(λ)λ−(m+1)α. For β ∈ B and β �= α, [g−α, gβ ] = 0 and gβ .e = 0, so
gβ .x = 0. Finally, since [Xα,X−α]=−Hα, we have

[Xα, X
m+1
−α ]=(m+ 1)Xm

−α(−Hα+m)

(§1, no. 1, Lemma 1 (ii)), so

Xα.x = XαX
m+1
−α .e = [Xα, X

m+1
−α ].e = (m+ 1)Xm

−α(me− λ(Hα)e) = 0.

Thus, x is primitive of weight λ− (m+1)α. In view of Prop. 6, the g-module
V is isomorphic to Z(−α+ λ−mα) = Z(−α+ sαλ).

COROLLARY 2. Let ρ = 1
2

∑
α∈R+

α, and λ, µ ∈ h∗. Assume that λ + ρ is a

dominant weight in R, and that there exists w ∈ W with µ + ρ = w(λ + ρ).
Then Z(µ) is isomorphic to a submodule of Z(λ).

The assertion is clear when w = 1. Assume that it is established whenever
w is of length< q. If w is of length q, there exists α ∈ B such that w = sαw

′−1,
with l(w′) = q − 1. We have w′(α) ∈ R+ (Chap. VI, §1, no. 6, Cor. 2 of
Prop. 17), and hence w′−1(λ+ρ)(Hα) = (λ+ρ)(Hw′α) is an integer ≥ 0. Put

µ′ = w′−1(λ+ ρ) − ρ.
By the induction hypothesis, Z(µ′) is isomorphic to a submodule of Z(λ). On
the other hand, by Chap. VI, §1, no. 10, Prop. 29 (ii),

−α+ sαµ′ = −α+ sαw′−1(λ+ ρ) − sαρ = w(λ+ ρ) − ρ = µ.

Moreover, ρ(Hα) = 1 (Chap. VI, §1, Prop. 29 (iii)), so µ′(Hα)+1 ∈ N. Cor. 1
now implies that Z(µ) is isomorphic to a submodule of Z(µ′), and hence also
to a submodule of Z(λ).
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4. COMMUTANT OF h IN THE ENVELOPING ALGEBRA
OF g

Let U be the enveloping algebra of g, V ⊂ U the enveloping algebra of h.
The algebra V can be identified with the symmetric algebra S(h) of h, and
also with the algebra of polynomial functions on h∗. Denote by α1, . . . , αn

the pairwise distinct positive roots. Let (H1, . . . , Hl) be a basis of h. By the
Poincaré-Birkhoff-Witt theorem, the elements

u((qi), (mi), (pi)) = Xq1
−α1

. . . Xqn

−αn
Hm1

1 . . . Hml

l Xp1
α1
. . . Xpn

αn

(qi,mi, pi integers ≥ 0) form a basis of the vector space U. For all h ∈ h, we
have

[h, u((qi),(mi),(pi))]=((p1−q1)α1+ · · · +(pn−qn)αn)(h)u((qi),(mi),(pi)). (3)

The vector space U is a g-module (hence also an h-module) under the
adjoint representation. If λ ∈ h∗, the subspaces Uλ and Uλ are defined
(Chap. VII, §1, no. 3); formula (3) shows that Uλ = Uλ and that U =

⊕
λ∈Q

Uλ

(where Q is the group of radical weights of R). In particular, U0 is the com-
mutant of h, or of V, in U.

Lemma 3. Put L = (n−U) ∩ U0.
(i) We have L = (Un+) ∩ U0, and L is a two-sided ideal of U0.
(ii) We have U0 = V ⊕ L.
It is clear that n−U (resp. Un+) is the set of linear combinations of the

elements u((qi), (mi), (pi)) such that
∑
qi > 0 (resp.

∑
pi > 0). On the other

hand

u((qi), (mi), (pi)) ∈ U0 ⇐⇒ p1α1 + · · · + pnαn = q1α1 + · · · + qnαn.

This implies that (n−U) ∩ U0 = (Un+) ∩ U0. Finally, (n−U) ∩ U0 (resp.
(Un+) ∩ U0) is a right (resp. left) ideal of U0, hence (i). Further, an ele-
ment u((qi), (mi), (pi)) that is in U0 belongs to V (resp. to L) if and only if
p1 = · · · = pn = q1 = · · · = qn = 0 (resp. p1 + · · · + pn + q1 + · · · + qn > 0),
hence (ii). Q.E.D.

In view of Lemma 3, the projection of U0 onto V with kernel L is a
homomorphism of algebras. It is called the Harish-Chandra homomorphism
from U0 to V (relative to B). Recall that V can be identified with the algebra
of polynomial functions on h∗.

PROPOSITION 7. Let λ ∈ h∗, E a g-module generated by a primitive ele-
ment of weight λ, χ the central character of E, and ϕ the Harish-Chandra
homomorphism from U0 to V. Then, χ(z) = (ϕ(z))(λ) for all z in the centre
of U.
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Let v be a primitive element of E of weight λ, and z an element of
the centre of U. There exist u1, . . . , up ∈ U and n1, . . . , np ∈ n+ such that
z = ϕ(z) + u1n1 + · · · + upnp. Then

χ(z)v = zv = ϕ(z)v + u1n1v + · · · + upnpv = ϕ(z)v = (ϕ(z))(λ)v.

COROLLARY. Let 〈 ·, · 〉 be a non-degenerate invariant symmetric bilinear
form on g, C the Casimir element associated to 〈 ·, · 〉. Denote also by 〈 ·, · 〉
the inverse form on h∗ of the restriction of 〈 ·, · 〉 to h (§2, no. 3, Prop. 5).
Then χ(C) = 〈λ, λ+ 2ρ〉, where ρ = 1

2

∑
α∈R+

α.

We recall the notations of §2, no. 3, Prop. 6. We have

C =
∑

α∈R−

1
〈Xα, X−α〉XαX−α +

∑
α∈R+

1
〈Xα, X−α〉X−αXα

+
∑

α∈R+

1
〈Xα, X−α〉 [Xα, X−α] +

∑
i∈I

HiH
′
i

so

ϕ(C) =
∑

α∈R+

1
〈Xα, X−α〉 [Xα, X−α] +

∑
i∈I

HiH
′
i.

By Prop. 7,

χ(C) =
∑

α∈R+

1
〈Xα, X−α〉λ([Xα, X−α]) +

∑
i∈I

λ(Hi)λ(H ′
i).

Let hλ be the element of h such that 〈hλ, h〉 = λ(h) for all h ∈ h. By §2,
no. 2, Prop. 1,

λ

(
1

〈Xα, X−α〉 [Xα, X−α]
)

=
〈
hλ,

1
〈Xα, X−α〉 [Xα, X−α]

〉
= α(hλ) = 〈λ, α〉.

Hence

χ(C) =
( ∑

α∈R+

〈λ, α〉
)

+ 〈λ, λ〉 = 〈λ, λ+ 2ρ〉.
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§ 7. FINITE DIMENSIONAL MODULES OVER A
SPLIT SEMI-SIMPLE LIE ALGEBRA

In this paragraph, we retain the general notations of §6. We denote by P (resp.
Q) the group of weights of R (resp. radical weights of R). We denote by P+
(resp. Q+) the set of elements of P (resp. Q) that are positive for the order
relation defined by B. We denote by P++ the set of dominant weights of R
relative to B (Chap. VI, §1, no. 10). An element λ of h∗ belongs to P (resp.
to P++) if and only if all the λ(Hα), α ∈ B, are integers (resp. integers ≥ 0).
We have P++ ⊂ P+ (Chap. VI, §1, no. 6). If w ∈ W, we denote by ε(w) the
determinant of w, which is equal to 1 or −1. We put ρ = 1

2

∑
α∈R+

α.

1. WEIGHTS OF A FINITE DIMENSIONAL SIMPLE
g-MODULE

PROPOSITION 1. Let V be a finite dimensional g-module.
(i) All the weights of V belong to P.

(ii) V =
⊕
µ∈P

Vµ.

(iii) For all µ ∈ h∗, Vµ is the set of x ∈ V such that h.x = µ(h)x for all
h ∈ h.

For all α ∈ B, there exists a homomorphism from sl(2, k) to g that takes
H to Hα. Thus, by §1, no. 2, Cor. of Prop. 2, (Hα)V is diagonalizable and its
eigenvalues are integers. Hence, the set of (Hα)V, for α ∈ B, is diagonalizable
(Algebra, Chap. VII, §5, no. 6, Prop. 13). Consequently, for all h ∈ h, hV is
diagonalizable. By Chap. VII, §1, no. 3, Prop. 9, V =

⊕
µ∈h∗

Vµ. On the other

hand, if Vµ �= 0, the preceding shows that µ(Hα) ∈ Z for all α ∈ B, so µ ∈ P.
This proves (i) and (ii). We see in the same way that hV is diagonalizable,
hence (iii).

COROLLARY. Let ρ be a finite dimensional representation of g and Φ the
bilinear form associated to ρ.

(i) If x, y ∈ hQ, then Φ(x, y) ∈ Q and Φ(x, x) ∈ Q+.
(ii) If ρ is injective, the restriction of Φ to h is non-degenerate.
Assertion (i) follows from Prop. 1 since the elements of P have ratio-

nal values on hQ. If ρ is injective, Φ is non-degenerate (Chap. I, §6, no. 1,
Prop. 1), so the restriction of Φ to h is non-degenerate (Chap. VII, §1, no. 3,
Prop. 10 (iii)).

Lemma 1. Let V be a g-module and ρ the corresponding representation of g.
(i) If a is a nilpotent element of g, and if ρ(a) is locally nilpotent,
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ρ(ead ab) = eρ(a)ρ(b)e−ρ(a)

for all b ∈ g.
(ii) If α ∈ R and if the images under ρ of the elements of gα and g−α are

locally nilpotent, the set of weights of V is stable under the reflection sα.
With the assumptions in (i), we have ρ((ad a)nb) = (ad ρ(a))nρ(b) for all

n ≥ 0, so ρ(ead ab) = ead ρ(a)ρ(b). On the other hand,

ead ρ(a)ρ(b) = eρ(a)ρ(b)e−ρ(a)

is assertion (ii) of Chap. VII, §3, no. 1, Lemma 1.
We now adopt the assumptions in (ii). Let θα = ead Xαead X−αead Xα . By

(i), there exists S ∈ GL(V) such that ρ(θαb) = Sρ(b)S−1 for all b ∈ g. Now
θα|h is the transpose of sα (§2, no. 2, Lemma 1). Let λ be a weight of V.
There exists a non-zero element x of V such that ρ(h)x = λ(h)x for all h ∈ h.
Then

ρ(h)S−1x = S−1ρ(tsαh)x = S−1λ(tsαh)x = (sαλ)(h)S−1x

for all h ∈ h. Consequently, sαλ is a weight of V.

PROPOSITION 2. Let V be a finite dimensional g-module and s ∈ Aut0(g).
(i) There exists S ∈ GL(V) such that (s(x))V = SxVS−1 for all x ∈ g.
(ii) If s ∈ Aute(g), S can be chosen to be an element of SL(V) leaving

stable all the g-submodules of V.
Assertion (ii) follows from Lemma 1 (i). Now let s ∈ Aut0(g) and denote

by ρ the representation of g defined by V. By (ii), the representations ρ
and ρ ◦ s become equivalent after extension of scalars. They are therefore
equivalent (Chap. I, §3, no. 8, Prop. 13), hence the existence of S.

Remark 1. Let S satisfy the condition in Prop. 2 (i), and let h′ = s(h); denote
by s∗ the isomorphism λ 	→ λ ◦ s−1 from h∗ to h′∗. It is clear that

S(Vλ) = Vs∗λ.

In particular:

COROLLARY 1. The isomorphism s∗ takes the weights of V with respect
to h to those of V with respect to h′; corresponding weights have the same
multiplicity.

COROLLARY 2. Let w ∈ W. For all λ ∈ h∗, the vector subspaces Vλ and
Vwλ have the same dimension. The set of weights of V is stable under W.

Indeed, w is of the form s∗ with s ∈ Aute(g, h) (§2, no. 2, Cor. of Th. 2).

Remark 2. By Cor. 1 of Prop. 2 and §5, no. 3, Remark 2, it makes sense to
speak of the weights of V with respect to the canonical Cartan subalgebra of
g, and of their multipicities.
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Remark 3. Lemma 1 (i) and Prop. 2 remain valid, with the same proof, even
if g is not assumed to be splittable.

2. HIGHEST WEIGHT OF A FINITE DIMENSIONAL SIMPLE
g-MODULE

THEOREM 1. A simple g-module is finite dimensional if and only if it has
a highest weight belonging to P++.

We denote by V a simple g-module and by X its set of weights.
a) Assume that V is finite dimensional. Then X is finite and non-empty

(Prop. 1) and so has a maximal element ω. Let α ∈ B. Then ω + α /∈ X,
which proves that ω is the highest weight of V (§6, no. 2, Lemma 2). On the
other hand, there exists a homomorphism from sl(2, k) to g that takes H to
Hα; by §1, Prop. 2 (i), ω(Hα) is an integer ≥ 0, so ω ∈ P++.

b) Assume that V has a highest weight ω ∈ P++. Let α ∈ B and let
e be a primitive element of weight ω in V. Put ej = Xj

−αe for j ≥ 0,

m = ω(Hα) ∈ N, and N =
m∑

j=0
kej . By §1, no. 2, Prop. 1, Xαem+1 = 0.

If β ∈ B and β �= α, then [Xβ , X−α] = 0 so Xβem+1 = XβX
m+1
−α e =

Xm+1
−α Xβe = 0. If em+1 �= 0, we conclude that em+1 is primitive, which

is absurd (§6, Prop. 3 (i)); so em+1 = 0. Thus, by §1, no. 2, Cor. of Prop. 1,
N is stable under the subalgebra sα generated by Hα, Xα and X−α. Now sα

is reductive in g, so the sum of the finite dimensional subspaces of V that
are stable under sα is a g-submodule of V (Chap. I, §6, no. 6, Prop. 7); since
this sum is non-zero, it is equal to V. It follows from this that (Xα)V and
(X−α)V are locally nilpotent. In view of Lemma 1 (ii), X is stable under sα,
and this holds for all α. Hence X is stable under W. Now every orbit of W
on P meets P++ (Chap. VI, §1, no. 10). On the other hand, if λ ∈ X ∩ P++,
then λ = ω −

∑
α∈B

nαα =
∑

α∈B
n′

αα with nα ∈ N and n′
α ≥ 0 for all α ∈ B

(Chap. V, §3, no. 5, Lemma 6). So X ∩ P++ is finite and hence so is X.
Since each weight has finite multiplicity (§6, no. 1, Prop. 1 (ii)), V is finite
dimensional.

COROLLARY 1. If λ ∈ h∗ and λ /∈ P++, the g-module E(λ) (§6, no. 3) is
infinite dimensional.

COROLLARY 2. The g-modules E(λ) for λ ∈ P++ constitute a set of repre-
sentatives of the classes of finite dimensional simple g-modules.

The g-modules E(λ), where λ is a fundamental weight, are called the fun-
damental g-modules; the corresponding representations are called the fun-
damental representations of g; they are absolutely irreducible (§6, no. 2,
Prop. 3 (iv)).
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If V is a finite dimensional g-module and λ ∈ P++, the isotypical compo-
nent of V of type E(λ) is called the isotypical component of highest weight λ
of V.

Remark 1. Let λ ∈ P++, ρλ the representation of g on E(λ), s ∈ Aut(g),
and σ the canonical image of s in Aut(R,B) (§5, no. 3, Cor. 1 of Prop. 5).
Then ρλ ◦ s is equivalent to ρσλ; indeed, if s ∈ Aut0(g), ρλ ◦ s and ρσλ are
equivalent to ρλ (Prop. 2); and, if s leaves h and B stable, ρλ ◦ s is simple of
highest weight σλ.

In particular, the fundamental representations are permuted by s, and
this permutation is the identity if and only if s ∈ Aut0(g).

PROPOSITION 3. Let V be a finite dimensional g-module and X its set of
weights. Let λ ∈ X, α ∈ R, I the set of t ∈ Z such that λ+ tα ∈ X, p (resp.
−q) the largest (resp. smallest) element of I. Let mt be the multiplicity of
λ+ tα.

(i) I = −q, p and q − p = λ(Hα).
(ii) For any integer u ∈ 0, p + q , λ + (p − u)α and λ + (−q + u)α are

conjugate under sα, and m−q+u = mp−u.
(iii) If t ∈ Z and t < (p − q)/2, (Xα)V maps Vλ+tα injectively into

Vλ+(t+1)α.
(iv) The function t 	→ mt is increasing on −q, (p− q)/2 and decreasing

on (p− q)/2, p .
Let α ∈ B. Give V the sl(2, k)-module structure defined by the elements

Xα, X−α, Hα of g. Every non-zero element of Vλ+pα is then primitive. Con-
sequently, (λ+ pα)(Hα) ≥ 0 and (X−α)rVλ+pα �= 0 for

0 ≤ r ≤ (λ+ pα)(Hα) = λ(Hα) + 2p
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(§1, no. 2, Prop. 2). It follows that Vλ+tα �= 0 for p ≥ t ≥ p− (λ(Hα) + 2p),
so p+ q ≥ λ(Hα) + 2p. Applying this result to −α gives

p+ q ≥ λ(H−α) + 2q = −λ(Hα) + 2q.

Hence q − p = λ(Hα) and λ+ tα ∈ X for p ≥ t ≥ −q, which proves (i).
We have sα(α) = −α, and sα(µ) ∈ µ+ kα for all µ ∈ h∗. Since W leaves

X stable (Cor. 2 of Prop. 2), sα leaves {λ−qα, λ−qα+α, . . . , λ+pα} stable
and takes λ− qα+ uα to λ+ pα− uα for all u ∈ k. Using Cor. 2 of Prop. 2
again, we see that m−q+u = mp−u for every integer u ∈ 0, p+q . This proves
(ii).

By §1, Cor. of Prop. 2, (Xα)V|Vλ+tα is injective for t < (p − q)/2. Now
(Xα)V maps Vλ+tα to Vλ+(t+1)α. Hence mt+1 ≥ mt for t < (p − q)/2.
Changing α to −α, we see that mt+1 ≤ mt for t > (p− q)/2. This proves (iii)
and (iv).

COROLLARY 1. If λ ∈ X and λ(Hα) ≥ 1, then λ − α ∈ X. If λ + α ∈ X
and λ(Hα) = 0, then λ ∈ X and λ− α ∈ X.

This follows immediately from Prop. 3 (i).

COROLLARY 2. Let µ ∈ P++ and ν ∈ Q+. If µ+ ν ∈ X, then µ ∈ X.
Write ν =

∑
α∈B

cα.α, where cα ∈ N for all α ∈ B. The corollary is clear

when
∑

α∈B
cα = 0; assume that

∑
α∈B

cα > 0 and argue by induction on
∑

α∈B
cα.

Let ( · | · ) be a W-invariant non-degenerate positive symmetric bilinear form
on h∗

R. Then (ν|
∑

α∈B
cα.α) > 0, so there exists β ∈ B such that cβ ≥ 1 and

(ν|β) > 0, hence ν(Hβ) ≥ 1. Since µ ∈ P++, it follows that (µ+ ν)(Hβ) ≥ 1.
By Cor. 1, µ+(ν−β) ∈ X, and it suffices to apply the induction hypothesis.

COROLLARY 3. Let v ∈ V be primitive of weight ω. Let Σ be the set of
α ∈ B such that ω(Hα) = 0. The stabilizer in g of the line kv is the parabolic
subalgebra pΣ associated to Σ (§3, no. 4, Remark).

Replacing V by the g-submodule generated by v, if necessary, we can
assume that V is simple. Let s be the stabilizer. We have (n+)Vv = 0,
(h)Vv ⊂ kv. Let α ∈ B be such that ω(Hα) = 0. We have ω + α /∈ X,
hence ω−α /∈ X (Prop. 3 (i)) and consequently (g−α)Vv = 0. The preceding
proves that pΣ ⊂ s. If pΣ �= s, then s = pΣ′ , where Σ′ is a subset of B strictly
containing Σ. Let β ∈ Σ′ --Σ. Then g−β stabilizes kv, and hence annihilates
v. But, since ω(Hβ) > 0, this contradicts Prop. 3 (iii). Q.E.D.

A subset X of P is called R-saturated if it satisfies the following condition:
for all λ ∈ X and all α ∈ R, we have λ− tα ∈ X for all integers t between 0
and λ(Hα). Since sα(λ) = λ− λ(Hα)α, we see that an R-saturated subset of
P is stable under W. Let Y ⊂ P. An element λ of Y is called R-extremal in
Y if, for all α ∈ R, either λ+ α /∈ Y or λ− α /∈ Y.
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PROPOSITION 4. Let V be a finite dimensional g-module and d an integer
≥ 1. The set of weights of V of multiplicity ≥ d is R-saturated.

This follows immediately from Prop. 3.

PROPOSITION 5. Let V be a finite dimensional simple g-module, ω its high-
est weight, X its set of weights. Choose a W-invariant non-degenerate posi-
tive symmetric bilinear form (·|·) on h∗

R, and let λ 	→ ‖ λ ‖ = (λ|λ)1/2be the
corresponding norm.

(i) X is the smallest R-saturated subset of P containing ω.
(ii) The R-extremal elements of X are the W-transforms of ω.
(iii) If µ ∈ X, we have ‖ µ ‖ ≤ ‖ ω ‖. If, in addition, µ �= ω, we have

‖ µ+ ρ ‖< ‖ ω + ρ ‖. If µ is not R-extremal in X, then ‖µ‖ < ‖ω‖.
(iv) We have X = W.(X∩P++). An element λ of P++ belongs to X∩P++

if and only if ω − λ ∈ Q+.
(i) Let X′ be the smallest R-saturated subset of P containing ω. We have

X′ ⊂ X (Prop. 4). Assume that X �= X′. Let λ be a maximal element of
X --X′. Since λ �= ω, there exists α ∈ B such that λ + α ∈ X. Introduce p
and q as in Prop. 3. Since λ is maximal in X --X′, λ+ pα ∈ X′. By Prop. 3
(ii), λ − qα ∈ X′ since X′ is stable under W. Hence λ + uα ∈ X′ for every
integer u in the interval −q, p . This contradicts λ /∈ X′ and proves (i).

(ii) It is clear that ω is an R-extremal element of X; its W-transforms
are therefore also R-extremal in X. Let λ be an R-extremal element of X;
we shall prove that λ ∈ W.ω. Since there exists w ∈ W such that wλ ∈ P++
(Chap. VI, §1, no. 10), we can assume that λ ∈ P++. Let α ∈ B; introduce p
and q as in Prop. 3. Since λ is R-extremal, either p = 0 or q = 0. Since

q − p = λ(Hα) ≥ 0,

we cannot have p > 0. Hence p = 0 and λ = ω.
(iii) Let µ ∈ X ∩ P++. Then ω + µ ∈ P++ and ω − µ ∈ Q+ (§6, no. 1,

Prop. 1), so 0 ≤ (ω − µ|ω + µ) = (ω|ω) − (µ|µ); hence, (µ|µ) ≤ (ω|ω), and
this extends to all µ ∈ X by using the Weyl group. If µ ∈ X -- {ω},

(µ+ ρ|µ+ ρ) = (µ|µ) + 2(µ|ρ) + (ρ|ρ) ≤ (ω|ω) + 2(µ|ρ) + (ρ|ρ)
= (ω + ρ|ω + ρ) − 2(ω − µ|ρ).

Now ω − µ =
∑

α∈B
nαα with integers nα ≥ 0 not all zero, so (ω − µ|ρ) > 0

since (ρ|α) > 0 for all α ∈ B (Chap. VI, §1, no. 10, Prop. 29 (iii)). If µ is not
R-extremal in X, there exists α ∈ R such that µ + α ∈ X and µ − α ∈ X;
then

‖µ‖ < sup(‖µ+ α‖, ‖µ− α‖) ≤ sup
λ∈X

‖λ‖

and this last upper bound is ‖ω‖ by the preceding.
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(iv) We have X = W.(X ∩ P++) by Chap. VI, §1, no. 10. If λ ∈ X, then
ω − λ ∈ Q+ (§6, no. 1, Prop. 1). If λ ∈ P++ and ω − λ ∈ Q+, then λ ∈ X
(Cor. 2 of Prop. 3).

COROLLARY. Let X be a finite R-saturated subset of P. There exists a finite
dimensional g-module whose set of weights is X.

Since X is stable under W, X is the smallest R-saturated set containing
X ∩ P++. By Prop. 5 (i), X is the set of weights of

⊕
λ∈X∩P++

E(λ).

Remark 2. Recall (Chap. VI, §1, no. 6, Cor. 3 of Prop. 17) that there exists
a unique element w0 of W that transforms B into −B; we have w2

0 = 1. and
−w0 respects the order relation on P. With this in mind, let V be a finite
dimensional simple g-module, ω its highest weight. Then w0(ω) is the lowest
weight of V, and its multiplicity is 1.

3. MINUSCULE WEIGHTS

PROPOSITION 6. Let λ ∈ P, and X the smallest R-saturated subset of P
containing λ. Choose a norm ‖ · ‖ as in Prop. 5. The following conditions
are equivalent:

(i) X = W.λ;
(ii) all the elements of X have the same norm;
(iii) for all α ∈ R, we have λ(Hα) ∈ {0, 1,−1}.
Every non-empty R-saturated subset of P contains an element λ satisfying

the above conditions.
Introduce the condition:
(ii′) for all α ∈ R and for every integer t between 0 and λ(Hα),

‖λ− tα‖ ≥ ‖λ‖.
(i) =⇒ (ii) =⇒ (ii′): This is clear.
(ii′) =⇒ (iii): Assume that condition (ii′) is satisfied. Let α ∈ R. We have

‖λ‖ = ‖λ− λ(Hα)α‖, so ‖λ− tα‖ < ‖λ‖ for every integer t strictly between
0 and λ(Hα); hence, there can be no such integers, so |λ(Hα)| ≤ 1.

(iii) =⇒ (i): Assume that condition (iii) is satisfied. Let w ∈ W and α ∈ R.
Then (wλ)(Hα) = λ(Hw−1α) ∈ {0, 1,−1}; thus, if t is an integer between 0
and (wλ)(Hα), wλ − tα is equal to wλ or sα(wλ). This proves that W.λ is
R-saturated, so X = W.λ.

Let Y be a non-empty R-saturated subset of P. There exists in Y an
element λ of minimum norm. It is clear that λ satisfies condition (ii′), hence
the last assertion of the proposition.

PROPOSITION 7. Let V be a finite dimensional simple g-module, X the set
of weights of V, and λ the highest element of X (cf. Prop. 5 (i)). Conditions
(i), (ii) and (iii) of Prop. 6 are equivalent to:
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(iv) for all α ∈ R and all x ∈ gα, we have (xV)2 = 0.
If these conditions are satisfied, all the weights of V have multiplicity 1.
If (i) is satisfied, then X = W.λ and the weights all have the same mul-

tiplicity as λ (Cor. 2 of Prop. 2), in other words, multiplicity 1. Moreover, if
w ∈ W and α ∈ R, wλ + tα cannot be a weight of V unless |t| ≤ 1; thus, if
x ∈ gα,

(xV)2(Vw(λ)) ⊂ Vw(λ)+2α = 0,

so (xV)2 = 0, which proves that (i) =⇒ (iv).
Conversely, assume that (iv) is satisfied. Let α ∈ R, and give V the sl(2, k)-

module structure defined by the elements Xα, X−α, Hα of g. Condition (iv),
applied to x = Xα, implies that the weights of the sl(2, k)-module V belong
to {0, 1,−1} (cf. §1, no. 2, Cor. of Prop. 2). In particular, λ(Hα) ∈ {0, 1,−1},
so (iv) =⇒ (iii).

PROPOSITION 8. Assume that g is simple. Denote by α1, . . . , αl the ele-
ments of B. Let �1, . . . , �l be the corresponding fundamental weights. Let
H = n1Hα1 + · · · + nlHαl

be the highest root of R∨, and J the set of
i ∈ {1, . . . , l} such that ni = 1. Let λ ∈ P++ -- {0}. Then conditions (i),
(ii) and (iii) of Prop. 6 are equivalent to each of the following conditions:

(v) λ(H) = 1;
(vi) there exists i ∈ J such that λ = �i.
The �i, for i ∈ J, form a system of representatives in P(R) of the non-

zero elements of P(R)/Q(R).
Let λ = u1�1 + · · · + ul�l, where u1, . . . , ul are integers ≥ 0 and not all

zero. Then λ(H) = u1n1 + · · · + ulnl and n1 ≥ 1, . . . , nl ≥ 1, which gives
the equivalence of (v) and (vi) immediately. On the other hand, λ(H) =
sup

α∈R+
λ(Hα), and λ(H) > 0 since λ is a non-zero element of P++. Hence

condition (v) is equivalent to the condition λ(Hα) ∈ {0, 1} for all α ∈ R, in
other words to condition (iii) of Prop. 6.

The last assertion of the proposition follows from Chap. VI, §2, no. 3,
Cor. of Prop. 6.

DEFINITION 1. Assume that g is simple. A minuscule weight of (g, h) is an
element of P++ -- {0} which satisfies the equivalent conditions (i), (ii), (iii),
(iv), (v) and (vi) of Prop. 6, 7 and 8.

Remark. Assume that g is simple. Let Σ′∨ be the Coxeter graph of the
affine Weyl group Wa(R∨). Recall that the vertices of Σ′∨ are the vertices
of the Coxeter graph Σ∨ of W(R∨), together with a supplementary vertex
0. The group A(R∨) operates on Σ′∨ leaving 0 fixed. The group Aut(Σ′∨)
is canonically isomorphic to the semi-direct product of A(R∨)/W(R∨) with
a group ΓC (cf. Chap. VI, §2, no. 3, and Chap. VI, §4, no. 3); clearly
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(AutΣ′∨)(0) = ΓC(0); and ΓC(0) consists of 0 and the vertices of Σ∨ cor-
responding to the �i for i ∈ J (cf. Chap. VI, §2, Prop. 5 and Remark 1 of
no. 3). In summary, the minuscule weights are the fundamental weights corre-
sponding to the vertices of Σ∨ which can be obtained from 0 by the operation
of an element of Aut(Σ′∨).

With the notations of Chap. VI, Plates I to IX, we deduce from the
preceding that the minuscule weights are the following:

For type Al (l ≥ 1): �1, . . . , �l.
For type Bl (l ≥ 2): �l.
For type Cl (l ≥ 2): �1.
For type Dl (l ≥ 3): �1, �l−1, �l.
For type E6: �1, �6.
For type E7: �7.
For types E8,F4,G2 there are no minuscule weights.

4. TENSOR PRODUCTS OF g-MODULES

Let E,F be g-modules. For all λ, µ ∈ h∗, Eλ ⊗ Fµ ⊂ (E ⊗ F)λ+µ (Chap. VII,
§1, no. 1, Prop. 2 (ii)). If E and F are finite dimensional, then E =

∑
λ∈P

Eλ

and F =
∑

µ∈P
Fµ; consequently,

(E ⊗ F)ν =
∑

λ,µ∈P,λ+µ=ν
Eλ ⊗ Fµ.

In other words, equipped with its graduation of type P, E ⊗ F is the graded
tensor product of the graded vector spaces E and F.

PROPOSITION 9. Let E,F be finite dimensional simple g-modules, with
highest weights λ, µ, respectively.

(i) The component of E⊗F of highest weight λ+µ is a simple submodule,
generated by (E ⊗ F)λ+µ = Eλ ⊗ Fµ.

(ii) The highest weight of any simple submodule of E ⊗ F is ≤ λ+ µ (cf.
§9, Prop. 2).

If α, β ∈ P and if Eα ⊗ Fβ �= 0, then α ≤ λ and β ≤ µ. Consequently,
(E ⊗ F)λ+µ is equal to Eλ ⊗ Fµ, and hence is of dimension 1, and λ + µ is
the highest weight of E ⊗ F. Every non-zero element of Eλ ⊗ Fµ is primitive.
By Prop. 4 of §6, no. 2, the length of the isotypical component of E ⊗ F of
highest weight λ+ µ is 1.

Remark. Retain the notations of Prop. 9. Let C be the isotypical component of
E ⊗ F of highest weight λ + µ. Then C depends only on E and F and not on
the choice of h and the basis B. In other words, let h′ be a splitting Cartan sub-
algebra of g, R′ the root system of (g, h′), and B′ a basis of R′; let λ′, µ′ be the
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highest weights of E, F relative to h′ and B′; let C′ be the isotypical component
of E ⊗ F of highest weight λ′ + µ′; then C′ = C . Indeed, to prove this we can
assume, by extension of the base field, that k is algebraically closed. Then there
exists s ∈ Aute(g) that takes h to h′, R to R′, B to B′. Let S ∈ SL(E ⊗ F) have
the properties in Prop. 2 of no. 1. Then S((E⊗F)λ+µ) = (E⊗F)λ′+µ′

and S(C)
= C. Hence (E ⊗ F)λ′+µ′ ⊂ C′ ∩ S(C) = C′ ∩ C, so C′ = C. Thus, to 2 classes of
finite dimensional simple g -modules we can associate canonically a third; in
other words, we have defined on the set Sg of classes of finite dimensional simple
g-modules a composition law. With this structure, Sg is canonically isomorphic
to the additive monoid P++.

COROLLARY 1. Let (�α)α∈B be the family of fundamental weights relative
to B. Let λ =

∑
α∈B

mα�α ∈ P++. For all α ∈ B, let Eα be a simple g-

module of highest weight �α. In the g-module
⊗

α∈B
(
⊗

mαEα), the isotypical

component of highest weight λ is of length 1.
This follows from Prop. 9 by induction on

∑
α∈B

mα.

COROLLARY 2. Assume that k is R or C or a non-discrete complete ultra-
metric field. Let G be a Lie group with Lie algebra g. Assume that, for any
fundamental representation ρ of g, there exists an analytic linear represen-
tation ρ′ of G such that ρ = L(ρ′). Then, for any finite dimensional linear
representation π of g, there exists an analytic linear representation π′ of G
such that π = L(π′).

We use the notations of Cor. 1. There exists a representation σ of G on
X =

⊗
α∈B

(
⊗

mαEα) such that L(σ) corresponds to the g-module structure

of X (Chap. III, §3, no. 11, Cor. 3 of Prop. 41). Let C be the isotypical
component of X of highest weight λ. In view of Chap. III, §3, no. 11, Prop. 40,
it suffices to prove that C is stable under σ(G). Let g ∈ G and ϕ = Ad(g).
Then σ(g)aXσ(g)−1 = (ϕ(a))X for all a ∈ g. On the other hand, ϕ is an
automorphism of g that takes h to h′, R to R′ = R(g, h′), B to a basis B′

of R′, and �α to the highest weight �′
α of Eα relative to h′ and B′ (since

ϕ transforms Eα into a g-module isomorphic to Eα). Hence ϕ takes λ to∑
mα�

′
α. By the Remark above, σ(g)(C) = C.

PROPOSITION 10. Let λ, µ ∈ P++. Let E,F,G be simple g-modules with
highest weights λ, µ, λ + µ. Let X (resp. X′,X′′) be the set of weights of E
(resp. F,G). Then X′′ = X + X′.

We have E =
⊕
ν∈P

Eν ,F =
⊕
σ∈P

Fσ, so E ⊗ F is the direct sum of the

(E ⊗ F)τ =
∑

ν+σ=τ

Eν ⊗ Fσ.

By Prop. 9, G can be identified with a g-submodule of E⊗F, so X′′ ⊂ X+X′.
We have Gτ = G ∩ (E ⊗ F)τ , and it is enough to show that, for ν ∈ X and
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σ ∈ X′, we have G ∩ (E ⊗ F)ν+σ �= 0. Let (e1, . . . , en) (resp. (f1, . . . , fp)) be
a basis of E (resp. F) consisting of elements each of which belong to some
Eν (resp. Fσ), and such that e1 ∈ Eλ (resp. f1 ∈ Fµ). The ei ⊗ fj form
a basis of E ⊗ F. Suppose that the result to be proved is false. Then there
exists a pair (i, j) such that the coordinate of index (i, j) of every element
of G is zero. Let U be the enveloping algebra of g, U′ the dual of U, c the
coproduct of U. For all u ∈ U, let xi(u) (resp. yj(u)) be the coordinate of
u(e1) (resp. u(f1)) of index i (resp. j); let zij(u) be the coordinate of index
(i, j) of u(e1 ⊗ f1). Then xi, yj , zij ∈ U′. Now e1 generates the g-module E,
so xi �= 0, and similarly yj �= 0. By the definition of the g-module E ⊗ F
(Chap. I, §3, no. 2), if c(u) =

∑
us ⊗ u′

s, we have

zij(u) =
∑

s

xi(us).yj(u′
s) = 〈c(u), xi ⊗ yj〉.

In other words, zij is the product of xi and yj in the algebra U′. But this
algebra is an integral domain (Chap. II, §1, no. 5, Prop. 10), so zij �= 0. Since
u(e1 ⊗ f1) ∈ G for all u ∈ U, this is a contradiction.

5. DUAL OF A g-MODULE

Let E,F be g-modules. Recall (Chap. I, §3, no. 3) that Homk(E,F) has a
canonical g-module structure. Let ϕ be an element of weight λ in Homk(E,F).
If µ ∈ h∗, then ϕ(Eµ) ⊂ Fλ+µ (Chap. VII, §1, no. 1, Prop. 2 (ii)). Thus, if E
and F are finite dimensional, the elements of weight λ in Homk(E,F) are the
graded homomorphisms of degree λ in the sense of Algebra, Chap. II, §11,
no. 2, Def. 4.

PROPOSITION 11. Let E be a finite dimensional g-module, and consider the
g-module E∗ = Homk(E, k).

(i) An element λ ∈ P is a weight of E∗ if and only if −λ is a weight of E,
and the multiplicity of λ in E∗ is equal to that of −λ in E.

(ii) If E is simple and has highest weight ω, E∗ is simple and has highest
weight −w0(ω) (cf. no. 2, Remark 2).

Consider k as a trivial g-module whose elements are of weight 0. By what
was said above, the elements of E∗ of weight λ are the homomorphisms from
E to k which vanish on Eµ if µ �= −λ. This proves (i). If E is simple, E∗ is
simple (Chap. I, §3, no. 3), and the last assertion follows from Remark 2 of
no. 2.

Remarks. 1) Let E,E∗ be as in Prop. 11, and σ ∈ Aut(g, h) be such that
ε(σ) = −w0 in the notations of §5, no. 1 (§5, no. 2, Prop. 2). Let ρ, ρ′ be the
representations of g associated to E,E∗. Then ρ◦σ is a simple representation
of g with highest weight −w0(ω), so ρ ◦ σ is equivalent to ρ′.
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2) Assume that w0 = −1. Then, for any finite dimensional g-module E,
E is isomorphic to E∗. Recall that, if g is simple, w0 = −1 in the following
cases: g of type A1,Bl (l ≥ 2), Cl (l ≥ 2), Dl (l even ≥ 4), E7,E8,F4,G2
(Chap. VI, Plates).

Lemma 2. Let h0 =
∑

α∈R+

Hα. Then h0 =
∑

α∈B
aαHα, where the aα are integers

≥ 1. Let (bα)α∈B, (cα)α∈B be families of scalars such that bαcα = aα for all
α ∈ B. Put x =

∑
α∈B

bαXα, y =
∑

α∈B
cαX−α. There exists a homomorphism ϕ

from sl(2, k) to g such that ϕ(H) = h0, ϕ(X+) = x, ϕ(X−) = y.
The fact that the aα are integers ≥ 1 follows from the fact that (Hα)α∈B

is a basis of the root system (Hα)α∈B (cf. Chap. VI, §1, no. 5, Remark 5).
We have:

α(h0) = 2 (1)

for all α ∈ B (Chap. VI, §1, no. 10, Cor. of Prop. 29), so

[h0, x] =
∑
α∈B

bαα(h0)Xα = 2x (2)

[h0, y] =
∑
α∈B

cα(−α(h0))X−α = −2y. (3)

On the other hand,

[x, y]=
∑

α,β∈B

bαcβ [Xα, X−β ]=
∑
α∈B

bαcα[Xα, X−α]=−
∑
α∈B

aαHα = −h0, (4)

hence the existence of the homomorphism ϕ.

PROPOSITION 12. Let E be a finite dimensional simple g-module, ω its
highest weight, and B the vector space of g-invariant bilinear forms on E.
Let m be the integer

∑
α∈R+

ω(Hα), so that m/2 is the sum of the coordinates

of ω with respect to B (Chap. VI, §1, no. 10, Cor. of Prop. 29). Let w0 be the
element of W such that w0(B) = −B.

(i) If w0(ω) �= −ω, then B = 0.
(ii) Assume that w0(ω) = −ω. Then B is of dimension 1, and every non-

zero element of B is non-degenerate. If m is even (resp. odd ), every element
of B is symmetric (resp. alternating).
a) Let Φ ∈ B. The map ϕ from E to E∗ defined, for x, y ∈ E, by ϕ(x)(y) =

Φ(x, y) is a homomorphism of g-modules. If Φ �= 0, then ϕ �= 0, so ϕ is an
isomorphism by Schur’s lemma, and hence Φ is non-degenerate. Consequently,
the g-module E is isomorphic to the g-module E∗, so that w0(ω) = −ω. We
have thus proved (i).
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b) Assume from now on that w0(ω) = −ω. Then E is isomorphic to E∗.
The vector space B is isomorphic to Homg(E,E∗), and hence to Homg(E,E)
which is of dimension 1 (§6, no. 1, Prop. 1 (iii)). Hence dimB = 1. Every
non-zero element Φ of B is non-degenerate by a). Put Φ1(x, y) = Φ(y, x) for
x, y ∈ E. By the preceding, there exists λ ∈ k such that Φ1(x, y) = λΦ(x, y)
for all x, y ∈ E. Then Φ(y, x) = λΦ(x, y) = λ2Φ(y, x), so λ2 = 1 and λ = ±1.
Thus, Φ is either symmetric or alternating.
c) By Chap. VII, §1, no. 3, Prop. 9 (v), Eλ and Eµ are orthogonal with

respect to Φ if λ+ µ �= 0. Since Φ is non-degenerate, it follows that Eω,E−ω

are not orthogonal with respect to Φ.
d) There exists a homomorphism ϕ from sl(2, k) onto a subalgebra of g

that takes H to
∑

α∈R+

Hα (Lemma 2). Consider E as an sl(2, k)-module via

this homomorphism. Then the elements of Eλ are of weight λ
( ∑

α∈R+

Hα

)
. If

λ ∈ P is such that Eλ �= 0 and λ �= ω, λ �= −ω, then −ω < λ < ω, so

−m = −ω
⎛⎝ ∑

α∈R+

Hα

⎞⎠ < λ
⎛⎝ ∑

α∈R+

Hα

⎞⎠ < ω
⎛⎝ ∑

α∈R+

Hα

⎞⎠ = m.

Let G be the isotypical component of type V(m) of the sl(2, k)-module E. By
the preceding, G is of length 1 and contains Eω,E−ω. By c), the restriction
of Φ to G is non-zero. By §1, no. 3, Remark 3, m is even or odd according as
this restriction is symmetric or alternating. In view of b), this completes the
proof.

DEFINITION 2. A finite dimensional irreducible representation ρ of g is
said to be orthogonal (resp. symplectic) if there exists on E a non-degenerate
symmetric (resp. alternating) bilinear form invariant under ρ.

6. REPRESENTATION RING

Let a be a finite dimensional Lie algebra. Let Fa (resp. Sa) be the set of
classes of finite dimensional (resp. finite dimensional simple) a-modules. Let
R(a) be the free abelian group Z(Sa). For any finite dimensional simple a-
module E, denote its class by [E]. Let F be a finite dimensional a-module; let

(Fn,Fn−1, . . . ,F0) be a Jordan-Hölder series for F; the element
n∑

i=1
[Fi/Fi−1]

of R(a) depends only on F and not on the choice of Jordan-Hölder series; we
denote it by [F]. If

0 −→ F′ −→ F −→ F′′ −→ 0

is an exact sequence of finite dimensional a-modules, then [F] = [F′] + [F′′].
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Let F be a finite dimensional semi-simple a-module; for all E ∈ Sa, let
nE be the length of the isotypical component of F of type E; then [F] =∑
E∈Sa

nE.E. If F,F′ are finite dimensional semi-simple a-modules, and if [F] =

[F′], then F and F′ are isomorphic.

Lemma 3. Let G be an abelian group written additively, and ϕ : Fa → G a
map; by abuse of notation, we denote by ϕ(F) the image under ϕ of the class
of any finite dimensional a-module F. Assume that, for any exact sequence

0 −→ F′ −→ F −→ F′′ −→ 0

of finite dimensional a-modules, we have ϕ(F) = ϕ(F′) + ϕ(F′′). Then, there
exists a unique homomorphism θ : R(a) → G such that θ([F]) = ϕ(F) for
every finite dimensional a-module F.

There exists a unique homomorphism θ from R(a) to G such that
θ([E]) = ϕ(E) for every finite dimensional simple a-module E. Let F be a
finite dimensional a-module, and (Fn,Fn−1, . . . ,F0) a Jordan-Hölder series
of F; if n > 0, we have, by induction on n,

θ([F]) =
n∑

i=1

θ([Fi/Fi−1]) =
n∑

i=1

ϕ(Fi/Fi−1) = ϕ(F).

If n = 0 then [F] = 0 so θ([F]) = 0; on the other hand, by considering the
exact sequence 0 −→ 0 −→ 0 −→ 0 −→ 0 we see that ϕ(0) = 0.

Example. Take G = Z and ϕ(F) = dim F. The corresponding homomorphism
from R(a) to Z is denoted by dim. Let c be the class of a trivial a-module of
dimension 1, and let ψ be the homomorphism n 	→ nc from Z to R(a). It is
immediate that

dim ◦ψ = IdZ,

so that R(a) is the direct sum of Ker dim and Zc.

Lemma 4. There exists on the additive group R(a) a unique multiplication
distributive over addition such that [E][F] = [E⊗F] for all finite dimensional
a-modules E, F. In this way R(a) is given the structure of a commutative
ring. The class of the trivial a-module of dimension 1 is the unit element of
this ring.

The uniqueness is clear. There exists a commutative multiplication on
R(a) = Z(Sa) that is distributive over addition and such that [E][F] = [E⊗F]
for all E,F ∈ Sa. Let E1,E2 be finite dimensional a-modules, l1 and l2 their
lengths; we show that [E1][E2] = [E1 ⊗ E2] by induction on l1 + l2. This is
clear if l1 + l2 ≤ 2. On the other hand, let F1 be a submodule of E1 distinct
from 0 and E1. Then

[F1][E2] = [F1 ⊗ E2] and [E1/F1][E2] = [(E1/F1) ⊗ E2]
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by the induction hypothesis. On the other hand, (E1 ⊗ E2)/(F1 ⊗ E2) is
isomorphic to (E1/F1) ⊗ E2. Hence

[E1][E2] = ([E1/F1] + [F1]).[E2] = [(E1/F1) ⊗ E2] + [F1 ⊗ E2] = [E1 ⊗ E2],

which proves our assertion. It follows immediately that the multiplication
defined above is associative, so R(a) has the structure of a commutative
ring. Finally, it is clear that the class of the trivial a-module of dimension 1
is the unit element of this ring.

Lemma 5. There exists a unique involutive automorphism X 	→ X∗ of the
ring R(a) such that [E]∗ = [E∗] for every finite dimensional a-module E.

The uniqueness is clear. By Lemma 3, there exists a homomorphism
X 	→ X∗ from the additive group R(a) to itself such that [E]∗ = [E∗] for
every finite dimensional a-module E. We have (X∗)∗ = X, so this homomor-
phism is involutive. It is an automorphism of the ring R(a) since (E ⊗ F)∗ is
isomorphic to E∗ ⊗ F∗ for all finite dimensional a-modules E and F. Q.E.D.

Let U(a) be the enveloping algebra of a, U(a)∗ the vector space dual of
U(a). Recall (Chap. II, §1, no. 5) that the coalgebra structure of U(a) defines
on U(a)∗ a commutative, associative algebra structure with unit element.
For any finite dimensional a-module E, the map u 	→ Tr(uE) from U(a) to
k is an element τE of U(a)∗. If 0 −→ E′ −→ E −→ E′′ −→ 0 is an exact
sequence of finite dimensional a-modules, then τE = τE′ + τE′′ . Hence, by
Lemma 3 there exists a unique homomorphism, which we denote by Tr, from
the additive group R(a) to the group U(a)∗ such that Tr[E] = τE for every
finite dimensional a-module E. If k denotes the trivial a-module of dimension
1, it is easy to check that Tr[k] is the unit element of U(a)∗. Finally, let
E and F be finite dimensional a-modules. Let u ∈ U(a) and let c be the
coproduct of U(a). By definition of the U-module E ⊗ F (Chap. I, §3, no. 2),
if c(u) =

∑
i
ui ⊗ u′

i,

uE⊗F =
∑

i

(ui)E ⊗ (u′
i)F.

Consequently

τE⊗F(u) =
∑

i

Tr(ui)ETr(u′
i)F =

∑
i

τE(ui)τF(u′
i)

= (τE ⊗ τF)(c(u)).

This means that τEτF = τE⊗F. Thus, Tr : R(a) → U(a)∗ is a homomorphism
of rings.

Let a1 and a2 be Lie algebras, f a homomorphism from a1 to a2. Every
finite dimensional a2-module E defines by means of f an a1-module, hence
elements of R(a2) and R(a1) that we denote provisionally by [E]2 and [E]1.
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By Lemma 3, there exists a unique homomorphism, denoted by R(f), from
the group R(a2) to the group R(a1) such that R(f)[E]2 = [E]1 for every
finite dimensional a2-module E. Moreover, R(f) is a homomorphism of rings.
If U(f) is the homomorphism from U(a1) to U(a2) extending f , the following
diagram is commutative

R(a2)
R(f)−→ R(a1)⏐⏐!Tr

⏐⏐!Tr

U(a2)∗ tU(f)−→ U(a1)∗.

In what follows we take for a the splittable semi-simple Lie algebra g. The
ring R(g) is called the representation ring of g. For all λ ∈ P++, we denote
by [λ] the class of the simple g-module E(λ) of highest weight λ.

7. CHARACTERS OF g-MODULES

Let ∆ be a commutative monoid written additively, and Z[∆] = Z(∆) the
algebra of the monoid ∆ over Z (Algebra, Chap. III, §2, no. 6). Denote by
(eλ)λ∈∆ the canonical basis of Z[∆]. For all λ, µ ∈ ∆, we have eλ+µ = eλeµ.
If 0 is the neutral element of ∆, then e0 is the unit element of Z[∆]; it is
denoted by 1.

Let E be a ∆-graded vector space over a field κ, and let (Eλ)λ∈∆ be its
graduation. If each Eλ is finite dimensional, the character of E, denoted by
ch(E), is the element (dim Eλ)λ∈∆ of Z∆. If E itself is finite dimensional,

ch(E) =
∑
λ∈∆

(dimEλ)eλ ∈ Z[∆]. (5)

Let E′,E,E′′ be ∆-graded vector spaces such that the E′λ,Eλ,E′′λ are
finite dimensional over κ, and 0 −→ E′ −→ E −→ E′′ −→ 0 an exact sequence
of graded homomorphisms of degree 0. It is immediate that

ch(E) = ch(E′) + ch(E′′). (6)

In particular, if F1,F2 are ∆-graded vector spaces such that the Fλ
1 and the

Fλ
2 are finite dimensional over κ, then

ch(F1 ⊕ F2) = ch(F1) + ch(F2). (7)

If F1 and F2 are finite dimensional, we also have

ch(F1 ⊗ F2) = ch(F1).ch(F2). (8)

Example. Assume that ∆ = N. Let T be an indeterminate. There exists a unique
isomorphism from the algebraZ[N] to the algebraZ[T] that takesen to Tn for all
n ∈ N. For any finite dimensional N-graded vector space E, the image of ch(E)
in Z[T] is the Poincaré polynomial of E (Chap. V, §5, no. 1).
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Let E be a g-module such that E =
∑

λ∈h∗
Eλ and such that each Eλ is

finite dimensional. We know that (Eλ)λ∈h∗ is a graduation of the vector
space E. In what follows we shall reserve the notation ch(E) for the character
of E considered as a h∗-graded vector space. Thus, the character ch(E) is
an element of Zh∗

. If E is finite dimensional, ch(E) ∈ Z[P]. By formula (6)
and Lemma 3 of no. 6, there exists a unique homomorphism from the group
R(g) to Z[P] that takes E to ch(E), for any finite dimensional g-module E;
this homomorphism will be denoted by ch. Relation (8) shows that ch is a
homomorphism from the ring R(g) to the ring Z[P].

Remark. Every element of P defines a simple h-module of dimension 1, hence
a homomorphism from the group Z[P] to the group R(h), which is an injective
homomorphism of rings. It is immediate that the composite

R(g) −→ Z[P] −→ R(h)

is the homomorphism defined by the canonical injection of h into g (no. 6).

The Weyl group W operates by automorphisms on the group P, and hence
operates on ZP. For all λ ∈ P and all w ∈ W, we have weλ = ewλ. Let Z[P]W

be the subring of Z[P] consisting of the elements invariant under W.

Lemma 6. If λ ∈ P++, then ch[λ] ∈ Z[P]W. The unique maximal term of
ch[λ] (Chap. VI, §3, no. 2, Def. 1) is eλ.

The first assertion follows from no. 1, Cor. 2 of Prop. 2, and the second
from §6, no. 1, Prop. 1 (ii).

THEOREM 2. (i) Let (�α)α∈B be the family of fundamental weights relative
to B. Let (Tα)α∈B be a family of indeterminates. The map f 	→ f(([�α])α∈B)
from Z[(Tα)α∈B] to R(g) is an isomorphism of rings.

(ii) The homomorphism ch from R(g) to Z[P] induces an isomorphism
from the ring R(g) to the ring Z[P]W.

(iii) Let E be a finite dimensional g-module. If ch E =
∑

λ∈P++

mλch[λ], the

isotypical component of E of highest weight λ has length mλ.
The family ([λ])λ∈P++ is a basis of the Z-module R(g), and the family

(ch[λ])λ∈P++ is a basis of the Z-module Z[P]W (Lemma 6, and Chap. VI,
§3, no. 4, Prop. 3). This proves (ii) and (iii). Assertion (i) follows from (ii),
Lemma 6 and Chap. VI, §3, no. 4, Th. 1.

COROLLARY. Let E,E′ be finite dimensional g-modules. Then E is isomor-
phic to E′ if and only if ch E = ch E′.

This follows from Th. 2 (ii) and the fact that E,E′ are semi-simple.
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§8. SYMMETRIC INVARIANTS

In this paragraph, we denote by (g, h) a split semi-simple Lie algebra, by R
its root system, by W its Weyl group, and by P its group of weights.

1. EXPONENTIAL OF A LINEAR FORM

Let V be a finite dimensional vector space, S(V) its symmetric algebra. The
coalgebra structure of S(V) defines on S(V)∗ a commutative and associa-
tive algebra structure (Algebra, Chap. III, §11, pp. 579 to 582). The vector
space S(V)∗ can be identified canonically with

∏
m≥0

Sm(V)∗, and Sm(V)∗ can

be identified canonically with the space of symmetric m-linear forms on V.
The canonical injection of V∗ = S1(V)∗ into S(V)∗ defines an injective ho-
momorphism from the algebra S(V∗) to the algebra S(V)∗, whose image is
S(V)∗gr =

∑
m≥0

Sm(V)∗ (Algebra, Chap. III, §11, no. 5, Prop. 8). We identify

the algebras S(V∗) and S(V)∗gr by means of this homomorphism; we also
identify S(V∗) with the algebra of polynomial functions on V (Chap. VII,
App. I, no. 1).

The elements (um) ∈
∏

m≥0
Sm(V)∗ such that u0 = 0 form an ideal J of

S(V)∗; we give S(V)∗ the J-adic topology (Commutative Algebra, Chap. III,
§2, no. 5), in which S(V)∗ is complete and S(V∗) is dense in S(V)∗. If
(e∗i )1≤i≤n is a basis of V∗, and if T1, . . . ,Tn are indeterminates, the ho-
momorphism from k[T1, . . . ,Tn] to S(V∗) that takes Ti to e∗i (1 ≤ i ≤ n) is
an isomorphism of algebras, and extends to a continuous isomorphism from
the algebra k[[T1, . . . ,Tn]] to the algebra S(V)∗.

For all λ ∈ V∗, the family λn/n! is summable in S(V)∗. Its sum is called
the exponential of λ and is denoted by exp(λ) (conforming to Chap. II, §6,
no. 1). Let x1, . . . , xn ∈ V; we have

〈exp λ, x1 . . . xn〉 =
1
n!

〈λn, x1 . . . xn〉 = 〈λ, x1〉 . . . 〈λ, xn〉

by Algebra, Chap. III, §11, no. 5, formula (29). It follows immediately that
exp(λ) is the unique homomorphism from the algebra S(V) to k that extends
λ.

We have exp(λ+µ) = exp(λ) exp(µ) for all λ, µ ∈ V∗ (Chap. II, §6, no. 1,
Remark). Thus, the map exp : V∗ → S(V)∗ is a homomorphism from the
additive group V∗ to the multiplicative group of invertible elements of S(V)∗.
The family (expλ)λ∈V∗ is a free family in the vector space S(V)∗ (Algebra,
Chap. V, §7, no. 3, Th. 1).

Lemma 1. Let Π be a subgroup of V∗ that generates the vector space V∗, and
m an integer ≥ 0. Then prm(exp Π) generates the vector space Sm(V∗).
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By Algebra, Chap. I, §8, no. 2, Prop. 2, any product of m elements of
V∗ is a k-linear combination of elements of the form xm where x ∈ Π. But
xm = m! prm(exp x). Q.E.D.

By transport of structure, every automorphism of V defines automor-
phisms of the algebras S(V) and S(V)∗; this gives linear representations of
GL(V) on S(V) and S(V)∗.

2. INJECTION OF k[P] INTO S(h)∗

The map p 	→ exp p from P to S(h)∗ is a homomorphism from the additive
group P to S(h)∗ equipped with its multiplicative structure (no. 1). Conse-
quently, there exists a unique homomorphism ψ from the algebra k[P] of the
monoid P to the algebra S(h)∗ such that

ψ(eλ) = exp(λ) (λ ∈ P)

(in the notations of §7, no. 7). By no. 1, ψ is injective. By transport of
structure, ψ(w(eλ)) = w(ψ(eλ)) for all λ ∈ P and all w ∈ W. Hence, if k[P]W

(resp. S(h)∗W) denotes the set of elements of k[P] (resp. S(h)∗) invariant
under W, we have ψ(k[P]W) ⊂ S(h)∗W.

PROPOSITION 1. Let Sm(h∗)W be the set of elements of Sm(h∗) invariant
under W. Then prm(ψ(k[P]W)) = Sm(h∗)W.

It is clear from the preceding that prm(ψ(k[P]W)) ⊂ Sm(h∗)W. Every
element of Sm(h∗) is a k-linear combination of elements of the form

prm(exp λ) = (prm ◦ ψ)(eλ)

where λ ∈ P (Lemma 1). Hence every element of Sm(h∗)W is a linear combi-
nation of elements of the form∑

w∈W

w((prm ◦ ψ)(eλ)) = (prm ◦ ψ)

(∑
w∈W

w(eλ)

)
,

each of which belongs to prm(ψ(k[P]W)).

PROPOSITION 2. Let E be a finite dimensional g-module. Let U(h) = S(h)
be the enveloping algebra of h. If u ∈ U(h), then

Tr(uE) = 〈ψ(ch E), u〉.

It suffices to treat the case in which u = h1 . . . hm with h1, . . . , hm ∈ h. For
all λ ∈ P, let dλ = dimEλ. Then ch E =

∑
λ
dλe

λ, so ψ(ch E) =
∑
λ
dλ exp(λ)

and hence
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〈ψ(ch E), u〉 =
∑

λ

dλ〈exp λ, h1 . . . hm〉

=
∑

λ

dλλ(h1) . . . λ(hm) (no. 1)

= TruE.

COROLLARY 1. Let U(g) be the enveloping algebra of g. Let the homomor-
phism ζ : U(g)∗ → U(h)∗ = S(h)∗ be the transpose of the canonical injection
U(h) → U(g). The following diagram commutes

R(g) ch−→ Z[P]⏐⏐!Tr

⏐⏐!ψ

U(g)∗ ζ−→ S(h)∗.

This is simply a reformulation of Prop. 2.

COROLLARY 2. Let m be an integer ≥ 0. Every element of Sm(h∗)W is a
linear combination of polynomial functions on h of the form x 	→ Tr(ρ(x)m),
where ρ is a finite dimensional linear representation of g.

By Prop. 1, Sm(h∗)W = (prm ◦ ψ)(k[P]W). Now Z[P]W = ch R(g)
(§7, no. 7, Th. 2 (ii)). Thus, by Chap. VI, §3, no. 4, Lemma 3, ψ(k[P]W)
is the k-vector subspace of S(h)∗ generated by ψ(ch R(g)) = ζ(TrR(g)).
Consequently, Sm(h∗)W is the vector subspace of Sm(h∗) generated by
(prm ◦ ζ ◦ Tr)(R(g)). But, if ρ is a finite dimensional linear representation of
g,

((prm ◦ ζ ◦ Tr)(ρ))(x) =
〈

(ζ ◦ Tr)(ρ),
xm

m!

〉
=

1
m!

Tr(ρ(x)m)

for all x ∈ h.

3. INVARIANT POLYNOMIAL FUNCTIONS

Let a be a finite dimensional Lie algebra. In accordance with the conventions
of no. 1, we identify the algebra S(a∗), the algebra S(a)∗gr, and the algebra
of polynomial functions on a. For all a ∈ a, let θ(a) be the derivation of S(a)
such that θ(a)x = [a, x] for all x ∈ a. We know (Chap. I, §3, no. 2) that θ is
a representation of a on S(a). Let θ∗(a) be the restriction of −tθ(a) to S(a∗).
Then θ∗ is a representation of a. If f ∈ Sn(a∗), then θ∗(a)f ∈ Sn(a∗) and,
for x1, . . . , xn ∈ a,

(θ∗(a)f)(x1, . . . , xn) = −
∑

1≤i≤n

f(x1, . . . , xi−1, [a, xi], xi+1, . . . , xn). (1)
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We deduce easily from (1) that θ∗(a) is a derivation of S(a∗). An element of
S(a) (resp. S(a∗)) that is invariant under the representation θ (resp. θ∗) of a
is called an invariant element of S(a) (resp. S(a∗)).

Lemma 2. Let ρ be a finite dimensional linear representation of a, and m an
integer ≥ 0. The function x 	→ Tr(ρ(x)m) on a is an invariant polynomial
function.

Put g(x1, . . . , xm) = Tr(ρ(x1) . . . ρ(xm)) for x1, . . . , xm ∈ a. If x ∈ a, we
have

−(θ∗(x)g)(x1, . . . , xm)

=
∑

1≤i≤m

Tr(ρ(x1) . . . ρ(xi−1)[ρ(x), ρ(xi)]ρ(xi+1) . . . ρ(xm))

= Tr(ρ(x)ρ(x1) . . . ρ(xm)) − Tr(ρ(x1) . . . ρ(xm)ρ(x)) = 0,

so θ∗(x)g = 0. Let h be the symmetric multilinear form defined by

h(x1, . . . , xm) =
1
m!

∑
σ∈Sm

g(xσ(1), . . . , xσ(m)).

For all x ∈ a, we have θ∗(x)h = 0 and Tr(ρ(x)m) = h(x, . . . , x), hence the
lemma.

Lemma 3. Let E be a finite dimensional g-module, and x ∈ E. Then x is an
invariant element of the g-module E if and only if (exp aE).x = x for every
nilpotent element a of g.

The condition is clearly necessary. Assume now that it is satisfied. Let a
be a nilpotent element of g. There exists an integer n such that an

E = 0. For
all t ∈ k, we have

0 = exp(taE).x− x = taEx+
1
2!
t2a2

Ex+ · · · +
1

(n− 1)!
tn−1an−1

E x,

so aEx = 0. But the Lie algebra g is generated by its nilpotent elements (§4,
no. 1, Prop. 1). Hence x is an invariant element of the g-module E. Q.E.D.

For any ξ ∈ GL(g), let S(ξ) be the automorphism of S(g) that extends
ξ, and S∗(ξ) the restriction to S(g∗) of the contragredient automorphism of
S(ξ). Then S and S∗ are representations of GL(g). If a is a nilpotent element
of g, θ(a) is locally nilpotent on S(g) and S(exp ad a) = exp θ(a), so

S∗(exp ad a) = exp θ∗(a). (2)

PROPOSITION 3. Let f be a polynomial function on g. The following con-
ditions are equivalent:

(i) f ◦ s = f for all s ∈ Aute(g);
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(ii) f ◦ s = f for all s ∈ Aut0(g);
(iii) f is invariant.
The equivalence of (i) and (iii) follows from formula (2) and Lemma 3.

It follows from this that (iii) implies (ii) by extension of the base field. The
implication (ii) =⇒ (i) is clear.

Note carefully that, if f satisfies the conditions of Prop. 3, f is not in general
invariant under Aut(g) (Exerc. 1 and 2).

THEOREM 1. Let I(g∗) be the algebra of invariant polynomial functions on
g. Let i : S(g∗) → S(h∗) be the restriction homomorphism.

(i) The map i|I(g∗) is an isomorphism from the algebra I(g∗) to the algebra
S(h∗)W.

(ii) For any integer n ≥ 0, let In(g∗) be the set of homogeneous elements
of I(g∗) of degree n. Then In(g∗) is the set of linear combinations of func-
tions on g of the form x 	→ Tr(ρ(x)n), where ρ is a finite dimensional linear
representation of g.

(iii) Let l = rk(g). There exist l algebraically independent homogeneous
elements of I(g∗) that generate the algebra I(g∗).
a) Let f ∈ I(g∗) and w ∈ W. There exists s ∈ Aute(g, h) such that

s|h = w (§2, no. 2, Cor. of Th. 2). Since f is invariant under s (Prop. 3), i(f)
is invariant under w. Hence i(I(g∗)) ⊂ S(h∗)W.
b) We prove that, if f ∈ I(g∗) is such that i(f) = 0, then f = 0. Extending

the base field if necessary, we can assume that k is algebraically closed. By
Prop. 3, f vanishes on s(h) for all s ∈ Aute(g). Hence f vanishes on every
Cartan subalgebra of g (Chap. VII, §3, no. 2, Th. 1), and in particular on the
set of regular elements of g. But this set is dense in g for the Zariski topology
(Chap. VII, §2, no. 2).
c) Let n be an integer ≥ 0. Let Ln be the set of linear combinations of

functions of the form x 	→ Tr(ρ(x)n) on g, where ρ is a finite dimensional
linear representation of g. By Lemma 2, Ln ⊂ In(g∗). Thus

i(Ln) ⊂ i(In(g∗)) ⊂ Sn(h∗)W.

By Cor. 2 of Prop. 2, Sn(h∗)W ⊂ i(Ln). Hence i(In(g∗)) = Sn(h∗)W, which
proves (i), and i(Ln) = i(In(g∗)) so Ln = In(g∗) by b). Thus (ii) is proved.
d) Assertion (iii) follows from (i) and Chap. V, §5, no. 3, Th. 3.

COROLLARY 1. Assume that g is simple. Let m1, . . . ,ml be the exponents
of the Weyl group of g. There exist elements P1, . . . ,Pl of I(g∗), homogeneous
of degrees

m1 + 1, . . . ,ml + 1,

which are algebraically independent and generate the algebra I(g∗).
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This follows from Th. 2 (i) and Chap. V, §6, no. 2, Prop. 3.

COROLLARY 2. Let B be a basis of R, R+ (resp. R−) the set of positive
(resp. negative) roots of (g, h) relative to B, n+ =

∑
α∈R+

gα, n− =
∑

α∈R−
gα,

S(h) the symmetric algebra of h, and J the ideal of S(g) generated by n+∪n−.
(i) S(g) = S(h) ⊕ J.
(ii) Let j be the homomorphism from the algebra S(g) to the algebra S(h)

defined by the preceding decomposition of S(g). Let I(g) be the set of invariant
elements of S(g). Let S(h)W be the set of elements of S(h) invariant under
the operation of W. Then j|I(g) is an isomorphism from I(g) to S(h)W.

Assertion (i) is clear. The Killing form defines an isomorphism from the
vector space g∗ to the vector space g, which extends to an isomorphism ξ
from the g-module S(g∗) to the g-module S(g). We have ξ(I(g∗)) = I(g). The
orthogonal complement of h with respect to the Killing form is n+ + n− (§2,
no. 2, Prop. 1). If we identify h∗ with the orthogonal complement of n+ + n−
in g∗, then ξ(h∗) = h, so ξ(S(h∗)) = S(h) and ξ(S(h∗)W) = S(h)W. Finally,
ξ−1(J) is the set of polynomial functions on g that vanish on h. This proves
that ξ transforms the homomorphism i of Th. 1 into the homomorphism j of
Cor. 2. Thus assertion (ii) follows from Th. 1 (i).

PROPOSITION 4. Let a be a semi-simple Lie algebra, l its rank. Let I (resp.
I′) be the set of elements of S(a∗) (resp. S(a)) invariant under the represen-
tation induced by the adjoint representation of a. Let Z be the centre of the
enveloping algebra of a.

(i) I and I′ are graded polynomial algebras (Chap. V, § 5, no. 1) of tran-
scendance degree l.

(ii) Z is isomorphic to the algebra of polynomials in l indeterminates over
k.

The canonical filtration of the enveloping algebra of a induces a filtration
of Z. By Chap. I, §2, no. 7, Th. 1 and p. 25, gr Z is isomorphic to I′. In
view of Commutative Algebra, Chap. III, §2, no. 9, Prop. 10, it follows that
(i) =⇒ (ii).

On the other hand, Th. 1 and its Cor. 2 show that (i) is true whenever a
is split. The general case reduces to that case in view of the following lemma:

Lemma 4.2 Let A =
⊕
n≥0

An be a graded k-algebra, k′ an extension of k, and

A′ = A ⊗k k
′. Assume that A′ is a graded polynomial algebra over k′. Then

A is a graded polynomial algebra over k.
We have A′ 0 = k′, so A0 = k. Put A+ =

⊕
n≥1

An and P = A+/A2
+. Then

P is a graded vector space, and there is a graded linear map f : P → A+ of

2 In Lemmas 4, 5 and 6, k can be any (commutative) field.
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degree zero such that the composite with the canonical projection A+ → P
is the identity on P. Give S(P) the graded structure induced by that of P
(Algebra, Chap. III, p. 506). The homomorphism of k-algebras g : S(P) → A
that extends f (Algebra, Chap. III, p. 497) is a graded homomorphism of
degree 0; an immediate induction on the degree shows that g is surjective.

Lemma 5. A is a graded polynomial algebra if and only if P is finite dimen-
sional and g is bijective.

If P is finite dimensional, S(P) is clearly a graded polynomial algebra, and
so is A if g is bijective. Conversely, assume that A is generated by algebraically
independent homogeneous elements x1, . . . , xm of degrees d1, . . . , dm. Let x̄i

be the image of xi in P. It is immediate that the x̄i form a basis of P; since
x̄i is of degree di, it follows that S(P) and A are isomorphic; in particular,
dimS(P)n = dimAn for all n. Since g is surjective, it is necessarily bijective.

Lemma 4 is now immediate. Indeed, Lemma 5, applied to the k′-algebra
A′, shows that g ⊗ 1 : S(P) ⊗ k′ → A ⊗ k′ is bijective, and hence so is g.

PROPOSITION 5. We retain the notations of Prop. 4, and denote by p the
ideal of S(a∗) generated by the homogeneous elements of I of degree ≥ 1. Let
x ∈ a. Then x is nilpotent if and only if f(x) = 0 for all x ∈ p.3

Extending the base field if necessary, we can assume that a = g is split-
table. Assume that x is nilpotent. For any finite dimensional linear represen-
tation ρ of g, and any integer n ≥ 1, we have Tr(ρ(x)n) = 0, so f(x) = 0 for
all homogeneous f ∈ I(g∗) of degree ≥ 1 (Th. 1 (ii)), and hence f(x) = 0 for
all f ∈ p. Conversely, if f(x) = 0 for all f ∈ p, then Tr((ad x)n) = 0 for all
n ≥ 1 (Th. 1 (ii)), so x is nilpotent.
∗Remarks 1) Let P1, . . . ,Pl be algebraically independent homogeneous ele-
ments of I that generate the algebra I. Then (P1, . . . ,Pl) is an S(a∗)-regular
sequence (Chap. V, §5, no. 5). Indeed, extending the base field if necessary,
we can assume that a = g is splittable. Now let N = dim g, and let

(Q1, . . . ,QN−l)

be a basis of the orthogonal complement of h in g∗. Let m be the ideal of
S(g∗) generated by P1, . . . ,Pl,Q1, . . . ,QN−l. Then S(g∗)m is isomorphic to
S(h∗)/J, where J is the ideal of S(h∗) generated by i(P1), . . . , i(Pl). By Th. 1
and Chap. V, §5, no. 2, Th. 2, S(h∗)/J is a finite dimensional vector space,
and hence so is S(g∗)/m. By a result of Commutative Algebra, it follows that
(P1, . . . ,Pl,Q1, . . . ,QN−l) is an S(g∗)-regular sequence, and a fortiori so is
(P1, . . . ,Pl).

3 It can be shown (B. KOSTANT, Lie group representations on polynomial rings,
Amer. J. Math., Vol. LXXXV (1963), pp. 327-404, Th. 10 and 15) that p is a
prime ideal of S(a∗) and that S(a∗)/p is integrally closed.
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2) The algebra S(a∗) is a graded free module over I. Indeed, this follows
from Prop. 4, Remark 1, and Chap. V, §5, no. 5, Lemma 5.∗

4. PROPERTIES OF Aut0

Lemma 6. Let V be a finite dimensional vector space, G a finite group of
automorphisms of V, and v and v′ elements of V such that v′ /∈ Gv. There
exists a G-invariant polynomial function f on V such that f(v′) �= f(v).

Indeed, for each s ∈ G there exists a polynomial function gs on V equal
to 1 at v and to 0 at sv′. Then the function g = 1 −

∏
s∈G

gs is equal to 0 at

v and to 1 on Gv′. The polynomial function f =
∏
t∈g
t.g is G-invariant, equal

to 0 at v and to 1 at v′.

PROPOSITION 6. Let a be a semi-simple Lie algebra and s ∈ Aut(a). The
following conditions are equivalent:

(i) s ∈ Aut0(a);
(ii) for any invariant polynomial function f on a, we have f ◦ s = f .
By extending scalars if necessary, we can assume that k is algebraically

closed. The implication (i) =⇒ (ii) follows from Prop. 3. We assume that
condition (ii) is satisfied and prove (i). In view of Prop. 3, and §5, no. 3,
Cor. 1 of Prop. 5, we can assume that s ∈ Aut(g, h) and that s leaves stable
a Weyl chamber C. Let x ∈ C ∩ hQ. We have sx ∈ C. If g is a W-invariant
polynomial function on h, we have g(x) = g(sx) (Th. 1 (i)). By Lemma 6,
it follows that sx ∈ Wx. Since sx ∈ C, we have x = sx (Chap. V, §3, no. 3,
Th. 2). Then s|h = Idh, and s ∈ Aut0(g, h) (§5, no. 2, Prop. 4).

COROLLARY. The group Aut0(a) is open and closed in Aut(a) in the Zariski
topology.

Prop. 6 shows that Aut0(a) is closed. Let k̄ be an algebraic closure of k.
The group Aut(a ⊗ k̄)/Aut0(a ⊗ k̄) is finite (§5, no. 3, Cor. 1 of Prop. 5);
a fortiori, the group Aut(a)/Aut0(a) is finite. Since the cosets of Aut(a) in
Aut(a) are closed, it follows that Aut0(a) is open in Aut(a).

5. CENTRE OF THE ENVELOPING ALGEBRA

In this number, we choose a basis B of R. Let R+ be the set of positive roots
relative to B. Let ρ = 1

2

∑
α∈R+

α, and δ the automorphism of the algebra S(h)

that takes every x ∈ h to x − ρ(x), and hence the polynomial function p on
h∗ to the function λ 	→ p(λ− ρ).

THEOREM 2. Let U be the enveloping algebra of g, Z its centre, V ⊂ U the
enveloping algebra of h (identified with S(h)), U0 the commutant of V in U,
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ϕ the Harish-Chandra homomorphism (§6, no. 4) from U0 to V relative to B.
Let S(h)W be the set of elements of S(h) invariant under the action of W.
Then (δ◦ϕ)|Z is an isomorphism from Z to S(h)W, independent of the choice
of B.
a) Let P++ be the set of dominant weights of R, w ∈ W, λ ∈ P++,

µ = wλ. Then Z(µ− ρ) is isomorphic to a submodule of Z(λ− ρ) (§6, no. 3,
Cor. 2 of Prop. 6), and ϕ(u)(λ − ρ) = ϕ(u)(µ − ρ) for all u ∈ Z (§6, no. 4,
Prop. 7). Thus, the polynomial functions (δ ◦ ϕ)(u) and (δ ◦ ϕ)(u) ◦ w on h∗

coincide on P++. But P++ is dense in h∗ in the Zariski topology: this can
be seen by identifying h∗ with kB by means of the basis consisting of the
fundamental weights �α, and by applying Prop. 9 of Algebra, Chap. IV, §2,
no. 3. Hence

(δ ◦ ϕ)(u) = (δ ◦ ϕ)(u) ◦ w,
which proves that (δ ◦ ϕ)(Z) ⊂ S(h)W.
b) Let η be the isomorphism from I(g) to S(h)W defined in no. 3, Cor. 2

of Th. 1. Consider the canonical isomorphism from the g-module U to the
g-module S(g) (Chap. I, §2, no. 8), and let θ be its restriction to Z. Then
θ(Z) = I(g). Let z be an element of Z with filtration ≤ f in U.

Z θ−→ I(g)⏐⏐!ϕ ⏐⏐!η

S(h) δ−→ S(h).

Introduce the notations of §6, no. 4, and put

z =
∑∑

qi+
∑

mi+
∑

pi≤f

λ(qi),(mi),(pi)u((qi), (mi), (pi)).

Let v((qi),(mi),(pi)) be the monomial Xq1
−α1

. . . Xqn

−αn
Hm1

1 . . . Hml

l X
p1
α1
. . . Xpn

αn

calculated in S(g). Denoting by Sd(g) the sum of the homogeneous compo-
nents of S(g) of degrees 0, 1, . . . , d, we have

θ(z) ≡
∑∑

qi+
∑

mi+
∑

pi=f

λ(qi),(mi),(pi)v((qi), (mi), (pi)) (mod. Sf−1(g))

so

(η ◦ θ)(z) ≡
∑∑
mi=f

λ(0),(mi),(0)v((0), (mi), (0)) (mod. Sf−1(h))

and consequently

(η ◦ θ)(z) ≡ ϕ(z) (mod. Sf−1(h)). (3)

c) We show that δ◦ϕ : Z → S(h)W is bijective. The canonical filtrations on
U and S(g) induce filtrations on Z, I(g) and S(h)W, and θ, η are compatible
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with these filtrations, so that gr(η ◦ θ) is an isomorphism from the vector
space gr(Z) to the vector space gr(S(h)W). By (3), gr(ϕ) = gr(η ◦ θ), and it
is clear that gr(δ) is the identity. Hence gr(δ ◦ ϕ) is bijective, so

δ ◦ ϕ : Z → S(h)W

is bijective (Commutative Algebra, Chap. III, §2, no. 8, Cor. 1 and 2 of Th. 1).
d) Recall the notations in a). Let E be a simple g-module of highest

weight λ, and χ its central character (§6, no. 1, Def. 2). Let ϕ′ and δ′ be the
homomorphisms analogous to ϕ and δ relative to the basis w(B). The highest
weight of E relative to w(B) is w(λ). By §6, no. 4, Prop. 7,

ϕ(u)(λ) = χ(u) = ϕ′(u)(wλ)

for all u ∈ Z, so, by a),

(δ ◦ ϕ)(u)(wλ+ wρ) = (δ ◦ ϕ)(u)(λ+ ρ) = ϕ(u)(λ) = ϕ′(u)(wλ)
= (δ′ ◦ ϕ′)(u)(wλ+ wρ).

Thus, the polynomial functions (δ ◦ ϕ)(u) and (δ′ ◦ ϕ′)(u) coincide on
w(P++) + wρ, and hence are equal.

COROLLARY 1. For all λ ∈ h∗, let χλ be the homomorphism z 	→ (ϕ(z))(λ)
from Z to k.

(i) If k is algebraically closed, every homomorphism from Z to k is of the
form χλ for some λ ∈ h∗.

(ii) Let λ, µ ∈ h∗. Then χλ = χµ if and only if µ+ ρ ∈ W(λ+ ρ).
If k is algebraically closed, every homomorphism from S(h)W to k extends

to a homomorphism from S(h) to k (Commutative Algebra, Chap. V, §1, no. 9,
Prop. 22, and §2, no. 1, Cor. 4 of Th. 1), and every homomorphism from S(h)
to k is of the form f 	→ f(λ) for some λ ∈ h∗ (Chap. VII, App. I, Prop. 1).
Hence, if χ is a homomorphism from Z to k, there exists (Th. 2) a µ ∈ h∗

such that, for all z ∈ Z,

χ(z) = ((δ ◦ ϕ)(z))(µ) = (ϕ(z))(µ− ρ)
hence (i).

Let λ, µ ∈ h∗ and assume that χλ = χµ. Then, for all z ∈ Z,

((δ ◦ ϕ)(z))(λ+ ρ) = (ϕ(z))(λ) = χλ(z) = χµ(z) = ((δ ◦ ϕ)(z))(µ+ ρ);

in other words, the homomorphisms from S(h) to k defined by λ+ρ and µ+ρ
coincide on S(h)W; thus, assertion (ii) follows from Commutative Algebra,
Chap. V, §2, no. 2, Cor. of Th. 2.

COROLLARY 2. Let E,E′ be finite dimensional simple g-modules, and χ, χ′

their central characters. If χ = χ′, E and E′ are isomorphic.
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Let λ, λ′ be the highest weights of E,E′. By §6, no. 4, Prop. 7, χλ = χ =
χ′ = χλ′ , so there exists w ∈ W such that λ′ + ρ = w(λ+ ρ). Since λ+ ρ and
λ′ + ρ belong to the chamber defined by B, we have w = 1. Thus, λ = λ′,
hence the corollary.

PROPOSITION 7. For any class γ of finite dimensional simple g-modules,
let Uγ be the isotypical component of type γ of the g-module U (for the ad-
joint representation of g on U). Let γ0 be the class of the trivial g-module of
dimension 1. Let [U,U] be the vector subspace of U generated by the brackets
of pairs of elements of U.

(i) U is the direct sum of the Uγ .

(ii) Uγ0 = Z, and
∑

γ �=γ0

Uγ = [U,U].

(iii) Let u 	→ u� be the projection of U onto Z defined by the decomposition
U = Z ⊕ [U,U]. If u ∈ U and v ∈ U, we have (uv)� = (vu)�. If u ∈ U and
z ∈ Z, we have (uz)� = u�z.

(iv) Let ϕ be the Harish-Chandra homomorphism. Let λ ∈ P++, and let
E be a finite dimensional simple g-module of highest weight λ. For all u ∈ U,
we have

1
dimE

Tr(uE) = (ϕ(u�))(λ).

The g-module U is a direct sum of finite dimensional submodules. This
implies (i).

It is clear that Uγ0 = Z. Let U′ be a vector subspace of U defining a sub-
representation of class γ of the adjoint representation. Then either [g,U′] = U′

or [g,U′] = 0. Thus, if γ �= γ0 then [g,U′] = U′, so
∑

γ �=γ0

Uγ ⊂ [U,U]. On the

other hand, if u ∈ U and x1, . . . , xn ∈ g, then

[x1 . . . xn, u] = (x1 . . . xnu−x2 . . . xnux1)+(x2 . . . xnux1−x3 . . . xnux1x2)
+ · · · + (xnux1 . . . xn−1 − ux1 . . . xn) ∈ [g,U].

Hence [U,U] ⊂
[
g,
∑
γ

Uγ

]
=
[
g,
∑

γ �=γ0

Uγ

]
⊂
∑

γ �=γ0

Uγ . This proves (ii). Under

these conditions, (iii) follows from Chap. I, §6, no. 9, Lemma 5.
Finally, let E, λ be as in (iv). Then

Tr(uE) = Tr((u�)E) since u− u� ∈ [U,U]

= Tr(ϕ(u�)(λ).1) (§6, no. 4, Prop. 7)

= (dimE).ϕ(u�)(λ).
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§9. THE FORMULA OF HERMANN WEYL

In this paragraph, we retain the general notations of §6 and §7.

1. CHARACTERS OF FINITE DIMENSIONAL g-MODULES

Let (eλ)λ∈h∗ be the canonical basis of the ring Z[h∗]. Give the space Zh∗
of

all maps from h∗ to Z the product topology of the discrete topologies on the
factors. If ϕ ∈ Zh∗

, the family (ϕ(ν)eν)ν∈h∗ is summable, and

ϕ =
∑
ν∈h∗

ϕ(ν)eν .

Let Z〈P〉 be the set of ϕ ∈ Zh∗
whose support is contained in a finite union

of sets of the form ν − P+, where ν ∈ h∗. Then Z[P] ⊂ Z〈P〉 ⊂ Zh∗
. Define

on Z〈P〉 a ring structure extending that of Z[P] by putting, for ϕ,ψ ∈ Z〈P〉
and ν ∈ h∗,

(ϕψ)(ν) =
∑
µ∈h∗

ϕ(µ)ψ(ν − µ)

(the family (ϕ(µ)ψ(ν − µ))µ∈h∗ has finite support, in view of the condition
satisfied by the supports of ϕ and ψ). If ϕ =

∑
ν
xνe

ν and ψ =
∑
ν
yνe

ν , then

ϕψ =
∑
ν,µ
xνyµe

ν+µ.

Let ν ∈ h∗. A partition of ν into positive roots is a family (nα)α∈R+ ,
where the nα are integers ≥ 0 such that ν =

∑
α∈R+

nαα. We denote by P(ν)

the number of partitions of ν into positive roots. We have

P(ν) > 0 ⇐⇒ ν ∈ Q+.

In this paragraph, we denote by K the following element of Z〈P〉:

K =
∑

γ∈Q+

P(γ)e−γ .

Now recall (Chap. VI, §3, no. 3, Prop. 2) that

d =
∏

α∈R+

(eα/2 − e−α/2) =
∑

w∈W

ε(w)ewρ

is an anti-invariant element of Z[P].

Lemma 1. In the ring Z〈P〉, we have K.
∏

α∈R+

(1 − e−α) = Ke−ρd = 1.

Indeed,
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K =
∏

α∈R+

(e0 + e−α + e−2α + · · ·)

so

Ke−ρd =
∏

α∈R+

(1 + e−α + e−2α + · · ·)
∏

α∈R+

(1 − e−α) = 1.

Lemma 2. Let λ ∈ h∗. The module Z(λ) (§6, no. 3) admits a character that
is an element of Z〈P〉, and we have d. ch Z(λ) = eλ+ρ.

Let α1, . . . , αq be distinct elements of R+. The Xn1−α1
Xn2−α2

. . . X
nq

−αq
⊗ 1

form a basis of Z(λ) (§6, Prop. 6 (iii)). For h ∈ h, we have

h.(Xn1−α1
Xn2−α2

. . .X
nq

−αq
⊗ 1)

= [h,Xn1−α1
. . . X

nq

−αq
] ⊗ 1 + (Xn1−α1

. . . X
nq

−αq
) ⊗ h.1

= (λ− n1α1 − · · · − nqαq)(h)(Xn1−α1
. . . X

nq

−αq
⊗ 1).

Thus, the dimension of Z(λ)λ−µ is P(µ). This proves that ch Z(λ) is defined,
is an element of Z〈P〉, and that

ch Z(λ) =
∑

µ

P(µ)eλ−µ = Keλ.

It now suffices to apply Lemma 1.

Lemma 3. Let M be a g-module which admits a character ch(M) whose sup-
port is contained in a finite union of the sets µ−P+. Let U be the enveloping
algebra of g, Z the centre of U, λ0 ∈ h∗, and χλ0 the corresponding homo-
morphism from Z to k (§8, Cor. 1 of Th. 2). Assume that, for all z ∈ Z, zM
is the homothety with ratio χλ0(z). Let DM be the set of λ ∈ W(λ0 + ρ) − ρ
such that λ+ Q+ meets Supp(ch M). Then ch(M) is a Z-linear combination
of the ch Z(λ) for λ ∈ DM.

If Supp(ch M) is empty, the lemma is clear. Assume that Supp(ch M) �= ∅.
Let λ be a maximal element of this support, and put dim Mλ = m. There
exists a g-homomorphism ϕ from (Z(λ))m to M which maps (Z(λ)λ)m bijec-
tively onto Mλ (§6, no. 3, Prop. 6 (i)). Thus, the central character of Z(λ) is
χλ0 , so λ ∈ W(λ0+ρ)−ρ (§8, no. 5, Cor. 1 of Th. 2). This proves that DM �= ∅,
and allows us to argue by induction on Card DM. Let L and N be the kernel
and cokernel of ϕ. Then we have an exact sequence of g-homomorphisms:

0 → L → (Z(λ))m → M → N → 0

so

ch(M) = −ch(L) +m ch Z(λ) + ch(N)

(§7, no. 7, formula (6)). The sets Supp(ch L) and Supp(ch N) are contained in
a finite union of sets µ−P+. For z ∈ Z, zL and zN are homotheties with ratio
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χλ0(z). Clearly, DN ⊂ DM. On the other hand, (λ+Q+)∩Supp(ch M) = {λ},
and λ /∈ Supp(ch N), so λ /∈ DN and

Card DN < Card DM.

On the other hand, L is a submodule of (Z(λ))m; if λ′ ∈ DL, then λ′ + Q+
meets Supp(ch L) ⊂ Supp ch Z(λ), so λ ∈ λ′ + Q+ (§6, no. 1, Prop. 1 (ii)); it
follows that DL ⊂ DM. Since L ∩ (Z(λ)λ)m = 0, we have λ /∈ DL, so

Card DL < Card DM.

It now suffices to apply the induction hypothesis.

THEOREM 1 (Character Formula of H. Weyl). Let M be a finite dimensional
simple g-module, and λ its highest weight. Then(∑

w∈W

ε(w)ewρ

)
.ch M =

∑
w∈W

ε(w)ew(λ+ρ).

With the notations of Lemma 3, the central character of M is χλ (§6,
no. 4, Prop. 7). Hence, by Lemmas 2 and 3, d.ch M is a Z-linear combination
of the eµ+ρ such that

µ+ ρ ∈ W(λ+ ρ).

On the other hand, by §7, no. 7, Lemma 7, d.ch M is anti-invariant, and its
unique maximal term is eλ+ρ, hence the theorem.

Example. Take g = sl(2, k), h = kH. Let α be the root of (g, h) such that
α(H) = 2. The g-module V(m) has highest weight (m/2)α. Hence

ch(V(m)) = (e(m/2)α+ 1
2 α − e−(m/2)α− 1

2 α)/(e
1
2 α − e− 1

2 α)

= e−(m/2)α.(e(m+1)α − 1)/(eα − 1)

= e−(m/2)α(emα + e(m−1)α + · · · + 1)

= e(m/2)α + e(m−2)α/2 + · · · + e−(m/2)α

which also follows easily from §1, no. 2, Prop. 2.

2. DIMENSIONS OF SIMPLE g-MODULES

If µ ∈ h∗, put J(eµ) =
∑

w∈W
ε(w)ewµ, cf. Chap. VI, §3, no. 3.

THEOREM 2. Let E be a finite dimensional simple g-module, λ its highest
weight and ( · | · ) a W-invariant non-degenerate positive symmetric bilinear
form on h∗. Then:
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dim E =
∏

α∈R+

〈λ+ ρ,Hα〉
〈ρ,Hα〉 =

∏
α∈R+

(
1 +

(λ|α)
(ρ|α)

)
.

Let T be an indeterminate. For all ν ∈ P, denote by fν the homomorphism
from Z[P] to R[[T]] that takes eµ to e(ν|µ)T for all µ ∈ P. Then dim E is the
constant term of the series fν(ch E).

For all µ, ν ∈ P, we have

fν(J(eµ)) =
∑

w∈W

ε(w)e(ν|wµ)T

=
∑

w∈W

ε(w)e(w
−1ν|µ)T = fµ(J(eν)).

In particular, in view of Chap. VI, §3, no. 3, formula (3),

fρ(J(eµ)) = fµ(J(eρ)) = e(µ|ρ)T
∏

α∈R+

(1 − e−(µ|α)T).

Hence, setting Card(R+) = N,

fρ(J(eµ)) ≡ TN
∏
α∈R

(µ|α) (mod TN+1R[[T]]).

The equality J(eλ+ρ) = ch(E).J(eρ) (Th. 1) thus implies that

TN
∏

α∈R+

(λ+ ρ|α) ≡ fρ(ch E).TN
∏

α∈R+

(ρ|α) (mod TN+1R[[T]])

so

dim E =
( ∏

α∈R+

(λ+ ρ|α)
)/( ∏

α∈R+

(ρ|α)
)

=
∏

α∈R+

(
1 +

(λ|α)
(ρ|α)

)
.

Now, if α ∈ R+, α can be identified with an element of hR proportional to
Hα, so

(λ+ ρ|α)/(ρ|α) = 〈λ+ ρ,Hα〉/〈ρ,Hα〉.

Examples. 1) In the Example of no. 1, we find that

dimV(m) =
(m

2
α+

α

2

)
(Hα)/

α

2
(Hα) = m+ 1,

which we knew in §1.
2) Take g to be the splittable simple Lie algebra of type G2 and adopt the

notations of Chap. VI, Plate IX. Give h∗
R the W-invariant positive symmetric

form ( · | · ) such that (α1|α1) = 1. Then ρ = �1 +�2 and
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(�1|α1) =
1
2
, (�1|α2) = 0, (�1|α2 + α1) =

1
2
,

(�1|α2 + 2α1) = 1, (�1|α2 + 3α1) =
3
2
, (�1|2α2 + 3α1) =

3
2
,

(�2|α1) = 0, (�2|α2) =
3
2
, (�2|α2 + α1) =

3
2
,

(�2|α2 + 2α1) =
3
2
, (�2|α2 + 3α1) =

3
2
, (�2|2α2 + 3α1) = 3.

Thus, if n1, n2 are integers ≥ 0, the dimension of the simple representation
of highest weight n1�1 + n2�2 is(

1 +
n1/2

1
2

)(
1 +

3n2/2
3
2

)(
1 +

n1/2 + 3n2/2
1
2 + 3

2

)(
1 +

n1 + 3n2/2
1 + 3

2

)
×
(

1 +
3n1/2 + 3n2/2

3
2 + 3

2

)(
1 +

3n1/2 + 3n2
3
2 + 3

)
= (1 + n1)(1 + n2)

(
1 +

n1 + 3n2

4

)(
1 +

2n1 + 3n2

5

)(
1 +

n1 + n2

2

)
×
(

1 +
n1 + 2n2

3

)
=

(1+n1)(1+n2)(2+n1+n2)(3+n1+2n2)(4+n1+3n2)(5+2n1+3n2)
5!

.

In particular, the fundamental representation of highest weight �1 (resp. �2)
is of dimension 7 (resp. 14).

3. MULTIPLICITIES OF WEIGHTS OF SIMPLE g-MODULES

PROPOSITION 1. Let ω ∈ P++. For all λ ∈ P, the multiplicity of λ in E(ω)
is

mλ =
∑

w∈W

ε(w)P(w(ω + ρ) − (λ+ ρ)).

By Th. 1 and Lemma 1,

ch E(ω) = K e−ρd ch E(ω) = K e−ρ
∑

w∈W

ε(w)ew(ω+ρ)

so

ch E(ω) =
∑

w∈W,γ∈Q+

ε(w)P(γ)e−ρ+w(ω+ρ)−γ

and

mλ =
∑

w∈W,γ∈Q+,γ=−λ−ρ+w(ω+ρ)

ε(w)P(γ).
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COROLLARY. If λ is a weight of E(ω) distinct from ω,

mλ = −
∑

w∈W,w �=1

ε(w)mλ+ρ−wρ.

Apply Prop. 1 with ω = 0. If µ ∈ P -- {0}, we find that

0 =
∑

w∈W

ε(w)P(wρ+ µ− ρ)

hence

P(µ) = −
∑

w∈W,w �=1

ε(w)P(µ+ wρ− ρ). (1)

Prop. 1 also gives

mλ = −
∑

w∈W

ε(w)
∑

w′∈W,w′ �=1

ε(w′)P(w(ω + ρ) − (λ+ ρ) + w′ρ− ρ)

since w(ω + ρ) �= λ+ ρ for all w ∈ W (§7, Prop. 5 (iii)). Hence,

mλ = −
∑

w′∈W,w′ �=1

ε(w′)
∑

w∈W

ε(w)P(w(ω + ρ) − (λ+ ρ− w′ρ+ ρ))

= −
∑

w′∈W,w′ �=1

ε(w′)mλ+ρ−w′ρ (Prop. 1).

4. DECOMPOSITION OF TENSOR PRODUCTS OF SIMPLE
g-MODULES

PROPOSITION 2. Let λ, µ ∈ P++. In R(g), we have

[λ].[µ] =
∑

ν∈P++

m(λ, µ, ν)[ν]

with

m(λ, µ, ν) =
∑

w,w′∈W

ε(ww′)P(w(λ+ ρ) + w′(µ+ ρ) − (ν + 2ρ)).

Let E,F be finite dimensional simple g-modules of highest weights λ, µ.
Let lν be the length of the isotypical component of E ⊗ F of highest weight
ν. It suffices to show that

lν =
∑

w,w′∈W

ε(ww′)P(w(λ+ ρ) + w′(µ+ ρ) − (ν + 2ρ)). (2)

Put c1 = ch(E) =
∑

σ∈Pmσe
σ, c2 = ch(F), and d = J(eρ), where J is defined

as in no. 2. We have
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ξ∈P++

lξch[ξ] = ch(E ⊗ F) = c1c2

so, after multiplying by d and using Th. 1,

∑
ξ∈P++

lξJ(eξ+ρ) = c1J(eµ+ρ) =

(∑
σ∈P

mσe
σ

)(∑
w∈W

ε(w)ew(µ+ρ)

)
(3)

=
∑
τ∈P

(∑
w∈W

ε(w)mτ+ρ−w(µ+ρ)

)
eτ+ρ.

Now, if ξ ∈ P++, ξ + ρ belongs to the chamber defined by B (Chap. VI,
§1, no. 10); thus, for all w ∈ W distinct from 1, we have w(ξ + ρ) /∈ P++.
Consequently, the coefficient of eν+ρ in

∑
ξ∈P++

lξJ(eξ+ρ) is equal to lν . In view

of (3), we obtain

lν =
∑

w∈W

ε(w)mν+ρ−w(µ+ρ),

that is, by Prop. 1,

lν =
∑

w,w′∈W

ε(w)ε(w′)P(w′(λ+ ρ) − (ν + ρ− w(µ+ ρ) + ρ))

which proves (2).

Example. We return to the Example of no. 1. Let λ = (n/2)α, µ = (p/2)α,
ν = (q/2)α with n ≥ p. We have

m(λ, µ, ν) = P
(n

2
α+

α

2
+
p

2
α+

α

2
− q

2
α− α

)
− P

(n
2
α+

α

2
− p

2
α− α

2
− q

2
α− α

)
− P

(
−n

2
α− α

2
+
p

2
α+

α

2
− q

2
α− α

)
+ P

(
−n

2
α− α

2
− p

2
α− α

2
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2
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)
= P

(
n+ p− q

2
α

)
− P

(
n− p− q − 2

2
α

)
.

This is zero if n+ p+ q is not divisible by 2, or if q ≥ n+ p. If

q = n+ p− 2r

with r an integer ≥ 0, we have

m(λ, µ, ν) = P(rα) − P((r − p− 1)α)
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hence m(λ, µ, ν) = 1 if r ≤ p and m(λ, µ, ν) = 0 if r > p. Finally, the
g-module V(n) ⊗ V(p) is isomorphic to

V(n+ p) ⊕ V(n+ p− 2) ⊕ V(n+ p− 4) ⊕ · · · ⊕ V(n− p)
(Clebsch-Gordan formula).

§10. MAXIMAL SUBALGEBRAS OF SEMI-SIMPLE
LIE ALGEBRAS

THEOREM 1. Let V be a finite dimensional vector space, g a reductive Lie
subalgebra in gl(V), q a Lie subalgebra of g and Φ the bilinear form (x, y) 	→
Tr(xy) on g × g. Assume that the orthogonal complement n of q with respect
to Φ is a Lie subalgebra of g consisting of nilpotent endomorphisms of V.
Then q is a parabolic subalgebra of g.
a) q is the normalizer of n in g: let p be this normalizer. Let x ∈ q and

y ∈ n; for all z ∈ q, we have [z, x] ∈ q, so

Φ([x, y], z) = Φ(y, [z, x]) = 0;

in other words, [x, y] ∈ n. Hence q ⊂ p. Since n is an ideal of p consisting
of nilpotent endomorphisms of V, P is orthogonal to n with respect to Φ
(Chap. I, no. 3, Prop. 4 d)). Since Φ is non-degenerate4, p ⊂ q, hence our
assertion.
b) There exists a reductive Lie subalgebra m in gl(V) such that q is the

semi-direct product of m and n: let nV(q) be the largest ideal of q consisting of
nilpotent endomorphisms of V. Then nV(q) contains n, and it is orthogonal to
q (loc. cit.); hence n = nV(q). Moreover, g is reductive in gl(V) by hypothesis,
hence decomposable (Chap. VII, §5, no. 1, Prop. 2); since q is the intersection
of g with the normalizer of n in gl(V), it is a decomposable Lie algebra (loc.
cit., Cor. 1 of Prop. 3). Thus, our assertion follows from Prop. 7 of Chap. VII,
§5, no. 3.

Choose a Cartan subalgebra h of m; denote by g1 the commutant of h in
g, and put q1 = q ∩ g1, n1 = n ∩ g1.
c) The Lie algebras g1, q1 and n1 satisfy the same hypotheses as g, q and

n: since m is reductive in gl(V), h is commutative and is composed of semi-
simple endomorphisms of V (Chap. VII, §2, no. 4, Cor. 3 of Th. 2). Thus
g1 = g0(h) is reductive in g (Chap. VII, §1, no. 3, Prop. 11), hence also in
gl(V) (Chap. I, §6, no. 6, Cor. 2 of Prop. 7). It is clear that n1 is composed

4 Let z be the orthogonal complement of g with respect to Φ; this is an ideal of g
contained in n, so every element of z is nilpotent. The identity representation of
g is semi-simple (Chap. I, §6, Cor. 1 of Prop. 7). Hence z = 0 (Chap. I, §4, no. 3,
Lemma 2).



160 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

of nilpotent endomorphisms of V. Since h is a subalgebra of q, reductive in
gl(V), the adjoint representation of h on q is semi-simple; by construction,
q1 is the set of invariants of adq(h), so q = q1 + [h, q] (Chap. I, §3, no. 5,
Prop. 6). Since

Φ(g1, [h, q]) = Φ([h, g1], q) = 0,

an element of g1 is orthogonal to q1 if and only if it is orthogonal to q;
consequently, n1 = g1 ∩ n is the orthogonal complement of q1 in g1.
d) The Cartan subalgebra h of m is a Cartan subalgebra of g: We have

q = m ⊕ n and h = m ∩ g1, so it is immediate that q1 = h ⊕ n1. Moreover,
[h, n1] = 0, h is commutative and n1 is nilpotent, so the Lie algebra q1 is
nilpotent. By a) and c), q1 is the normalizer of n1 in g1; a fortiori, q1 is
equal to its normalizer in g1, hence is a Cartan subalgebra of g1. Since g1 is
reductive in gl(V), it follows from Cor. 3 of Th. 2 of Chap. VII, §2, no. 4,
that q1 is composed of semi-simple endomorphisms of V; thus, since n1 is
composed of nilpotent endomorphisms of V, we have n1 = 0. Consequently,
h = q1 is a Cartan subalgebra of g1, and since g1 normalizes h, we have h = g1.
Thus, we have proved that every element of h is a semi-simple element of g,
and that the commutant of h in g is equal to h; it follows that h = g0(h), so
h is a Cartan subalgebra of g.
e) q is a parabolic subalgebra of g: by the preceding, h is a Cartan subal-

gebra of g, n consists of nilpotent elements of g, and [h, n] ⊂ n. Let k̄ be an
algebraic closure of k; by definition, q is parabolic in g if and only if k̄⊗k q is
a parabolic subalgebra of k̄⊗k g. The properties stated above being preserved
by extension of scalars, for the proof we can restrict ourselves to the case in
which h is splitting. Let R be the root system of (g, h); by Prop. 2 (v) of §3,
no. 1, there exists a subset P of R such that P ∩ (−P) = ∅ and n =

∑
α∈P

gα.

Let P′ be the set of roots α such that −α /∈ P; we have P′ ∪ (−P′) = R,
and the orthogonal complement q of n in g is equal to h +

∑
α∈P′

gα. We have

proved that q is parabolic. Q.E.D.

Lemma 1. Let g be a semi-simple Lie algebra, V a finite dimensional vector
space, ρ a linear representation of g on V, D a vector subspace of V, h a
Cartan subalgebra of g, s (resp. s′) the set of x ∈ h such that ρ(x)D ⊂ D
(resp. ρ(x)D = 0), and Φ the bilinear form on g associated 5 to ρ.

(i) If h is splitting, the vector subspaces s and s′ of h are rational over Q.
(ii) If ρ is injective, the restriction of Φ to s (resp. s′) is non-degenerate.
Assume that the Cartan subalgebra h is splitting. Let d be the dimension

of D; put W =
∧d(V) and σ =

∧d(ρ); denote also by (e1, . . . , ed) a basis
of D and e = e1 ∧ · · · ∧ ed a decomposable d-vector associated to D. Let P
be the set of weights of σ with respect to h; denote by Wµ the subspace of

5 In other words, Φ(x, y) = Tr(ρ(x)ρ(y)) for x, y ∈ g.
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W associated to the weight µ, and put e =
∑

µ∈P
eµ (with eµ ∈ Wµ for all

µ ∈ P); finally, let P′ be the set of weights µ such that eµ �= 0 and let P′′ be
the set of differences of elements of P′. Let x be in h; then x belongs to s if
and only if there exists c in k such that ρ(x).e = c.e (Chap. VII, §5, no. 4,
Lemma 2 (i)). Since ρ(x).eµ = µ(x).eµ, we see that x ∈ s is equivalent to the
relation “µ(x) = 0 for all µ ∈ P′′ ”. Now, the Q-structure of h is the Q-vector
subspace hQ of h generated by the coroots Hα and all µ in P′′ take rational
values on hQ; it follows (Algebra, Chap. II, §8, no. 4, Prop. 5) that s is a
subspace of h rational over Q.

For any weight µ ∈ P, let pµ be the projection onto Vµ associated to
the decomposition V =

⊕
µ∈P

Vµ; denote by P1 the set of µ ∈ P such that

pµ(D) �= 0. It is immediate that s′ is the intersection of the kernels (in h) of
the elements of P1; it follows, in the same way as for s, that s′ is a subspace
of h rational over Q. This proves (i).

By extension of scalars, it suffices to prove (ii) when k is algebraically
closed, hence when h is splitting. Let m be a vector subspace of h rational
over Q; for all non-zero x in mQ = m∩hQ, we have Φ(x, x) > 0 by the Cor. of
Prop. 1 of §7, no. 1. The restriction of Φ to mQ is non-degenerate, and hence
so is the restriction of Φ to m since m is canonically isomorphic to k⊗Q mQ.

DEFINITION 1. Let q be a Lie subalgebra of the semi-simple Lie algebra g.
Then q is said to be decomposable in g if, for all x ∈ q, the semi-simple
and nilpotent components of x in g belong to q. Denote by ng(q) the set of
elements x of the radical of q such that adgx is nilpotent.

Let ρ be an injective representation of g on a finite dimensional vector
space V. We know (Chap. I, §6, no. 3, Th. 3) that an element x of g is
semi-simple (resp. nilpotent) if and only if the endomorphism ρ(x) of V is
semi-simple (resp. nilpotent). It follows immediately that the algebra q is
decomposable in g if and only if ρ(q) is a decomposable subalgebra of gl(V)
in the sense of Definition 1 of Chap. VII, §5, no. 1. With the notations of
Chap. VII, §5, no. 3, we also have

ρ(ng(q)) = nV(ρ(q)).

THEOREM 2. Let g be a semi-simple Lie algebra, n a subalgebra of g con-
sisting of nilpotent elements, q the normalizer of n in g. Assume that n is the
set of nilpotent elements of the radical of q. Then q is parabolic.

Note first of all that q is decomposable (Chap. VII, §5, no. 1, Cor. 1 of
Prop. 3). By Th. 1, it suffices to prove that q is the orthogonal complement n0

of n with respect to the Killing form Φ of g. We know that q ⊂ n0 (Chap. I, §4,
no. 3, Prop. 4 d)). By Chap. VII, §5, no. 3, Prop. 7, there exists a subalgebra
m of q, reductive in g, such that q is the semi-direct product of m and n. We
show that the restriction of Φ to m is non-degenerate. Let c be the centre of
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m. We have Φ([m,m], c) = 0 by Chap. I, §5, no. 5, Prop. 5, and the restriction
of Φ to [m,m] is non-degenerate by Chap. I, §6, no. 1, Prop. 1. It remains
to see that the restriction of Φ to c is non-degenerate. Let k be a Cartan
subalgebra of [m,m]; then k ⊕ c is commutative and reductive in g. Let h be
a Cartan subalgebra of g containing k ⊕ c (Chap. VII, §2, no. 3, Prop. 10).
Then h ∩ q is a commutative subalgebra of q containing k ⊕ c, and adqx is
semi-simple for all x ∈ h ∩ q; hence h ∩ q is contained in a Cartan subalgebra
h′ of q (Chap. VII, §2, no. 3, Prop. 10); let f be the projection of q onto m
with kernel n; then f(h′) is a Cartan subalgebra of m (Chap. VII, §2, no. 1,
Cor. 2 of Prop. 4) containing k⊕c, and consequently equal to k⊕c; this proves
that f(h ∩ q) = k ⊕ c, and since every element of h is semi-simple in g, we
have h ∩ q = k ⊕ c. Thus,

c = {x ∈ h | [x, n] ⊂ n and [x, [m,m]] = 0}.
By Lemma 1, the restriction of Φ to c is non-degenerate.

Let q0 be the orthogonal complement of q in g relative to Φ. The preceding
proves that q ∩ q0 = n. Assume that q �= q0, so q0 �= n (and q0 ⊃ n). Since
adgn leaves q stable, adgn leaves q0 stable; Engel’s theorem proves that there
exists x ∈ q0 such that x /∈ n and [x, n] ⊂ n. But then x ∈ q0 ∩ q = n, a
contradiction. Hence q = n0.

COROLLARY 1. Let q be a maximal element of the set of subalgebras of g
distinct from g. Then q is either parabolic or reductive in g.

We can assume that g is a Lie subalgebra of gl(V) for some finite dimen-
sional vector space V. Let e(q) ⊂ g be the decomposable envelope of q. If
e(q) = g, q is an ideal of g (Chap. VII, §5, no. 2, Prop. 4), hence is semi-
simple, and consequently q is reductive in g. Assume that e(q) �= g. Then
e(q) = q, so q is decomposable. Assume that q is not reductive in g. Let n be
the set of nilpotent elements of the radical of q. Then n �= 0 (Chap. VII, §5,
no. 3, Prop. 7 (i)). Let p be the normalizer of n in g. Then p ⊃ q, and p �= g
since g is semi-simple. Hence p = q. Thus q is parabolic (Th. 1).

COROLLARY 2. Let n be a subalgebra of g consisting of nilpotent elements.
There exists a parabolic subalgebra q of g with the following properties:

(i) n ⊂ ng(q);
(ii) the normalizer of n in g is contained in q;
(iii) every automorphism of g leaving n invariant leaves q invariant.
If g is splittable, n is contained in a Borel subalgebra of g.
Let q1 be the normalizer of n in g. This is a decomposable subalgebra

of g. Let n1 = ng(q1). Define inductively qi to be the normalizer of ni−1 in
g, and ni to be equal to ng(qi). The sequences (n, n1, n2, . . .) and (q1, q2, . . .)
are increasing. There exists j such that qj = qj+1, in other words qj is the
normalizer of ng(qj) in g. Thus qj is parabolic (Th. 1). We have n ⊂ nj =
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ng(qj), and q1 ⊂ qj ; every automorphism of g leaving n invariant evidently
leaves n1, n2, . . . and q1, q2, . . . invariant. If g is splittable, qj contains a Borel
subalgebra b, and consequently (§3, no. 4, Prop. 13), we have b ⊃ ng(qj) ⊃ n.

THEOREM 3. Assume that k is algebraically closed. Let g be a semi-simple
Lie algebra. Let a be a solvable subalgebra of g. There exists a Borel subalgebra
of g containing a.

By Chap. VII, §5, no. 2, Cor. 1 (ii) of Prop. 4, we can assume that a is
decomposable. There exists a commutative subalgebra t of g, consisting of
semi-simple elements, such that a is the semi-direct product of t and ng(a)
(Chap. VII, §5, no. 3, Cor. 2 of Prop. 6). There exists (Cor. 2 of Th. 2)
a parabolic subalgebra q of g such that ng(a) ⊂ ng(q), and such that the
normalizer of ng(a) in g is contained in q; a fortiori, a ⊂ q. Let b be a Borel
subalgebra of g contained in q and h a Cartan subalgebra of g contained in
b. Then h is a Cartan subalgebra of q, so there exists s ∈ Aute(q) such that
s(t) ⊂ h (Chap. VII, §2, no. 3, Prop. 10 and Chap. VII, §3, no. 2, Th. 1). We
have s(ng(q)) = ng(q) (Chap. VII, §3, no. 1, Remark 1), so

s(a) = s(t) + s(ng(a)) ⊂ h + s(ng(q)) = h + ng(q) ⊂ b.

COROLLARY. If k is algebraically closed, every maximal solvable subalgebra
of g is a Borel subalgebra.

§11. CLASSES OF NILPOTENT ELEMENTS AND
sl2-TRIPLETS

In this paragraph, g denotes a finite dimensional Lie algebra.

1. DEFINITION OF sl2-TRIPLETS

DEFINITION 1. An sl2-triplet in g is a sequence (x, h, y) of elements of g,
distinct from (0, 0, 0), such that

[h, x] = 2x, [h, y] = −2y, [x, y] = −h.

Let (x, h, y) be an sl2-triplet in g. The linear map τ from sl(2, k) to g such
that τ(X+) = x, τ(H) = h, τ(X−) = y is a homomorphism which is non-zero
and hence injective (since sl(2, k) is simple), and with image kx + kh + ky.
We thus obtain a canonical bijection from the set of sl2-triplets in g to the
set of injective homomorphisms from sl(2, k) to g. If g is semi-simple and if
(x, h, y) is an sl2-triplet in g, then x and y are nilpotent elements of g and h
is a semi-simple element of g (Chap. I, §6, no. 3, Prop. 4).
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Lemma 1. Let x, h, y, y′ ∈ g. If (x, h, y) and (x, h, y′) are sl2-triplets in g,
then y = y′.

Indeed, y − y′ ∈ Ker(adgx) and (adgh)(y − y′) = −2(y − y′). But adgx is
injective on Ker(p+adgh) for every integer p > 0 (§1, no. 2, Cor. of Prop. 2).

Lemma 2. Let n be a subalgebra of g such that, for all n ∈ n, adg(n) is
nilpotent. Let h ∈ g be such that [h, n] = n. Then eadgn.h = h+ n.

It is clear that eadg(n).h ⊂ h + n. We shall prove that, if v ∈ n, then
h+v ∈ eadg(n).h. It suffices to prove that h+v ∈ eadg(n).h+C 0n for all p ≥ 1
(since C pn = 0 for sufficiently large p). This is clear for p = 1 since C 1n = n.
Assume now that we have proved the existence of yp ∈ n and zp ∈ C pn such
that h+ v = eadgyp .h+ zp. Since (adgh)(n) = n, (adgh)|n is a bijection from
n to n, hence its restriction to C pn, which leaves C pn stable, is also bijective;
consequently, there exists z ∈ C pn such that zp = [z, h]. Then

eadg(yp+z)h− eadgyph ∈ [z, h] + C p+1n

so

eadg(yp+z)h ∈ h+ v − zp + [z, h] + C p+1n = h+ v + C p+1n

which establishes our assertion by induction on p.

Lemma 3. Let x ∈ g, p = Ker(adx), q = Im(adx). Then [p, q] ⊂ q, and p ∩ q
is a subalgebra of g.

If u ∈ p and v ∈ q, there exists w ∈ g such that v = [x,w], so

[u, v] = [u, [x,w]] = [x, [u,w]] − [[x, u], w] = [x, [u,w]] ∈ q.

On the other hand, p is a subalgebra of g, so [p ∩ q, p ∩ q] ⊂ p ∩ q.

Lemma 4. Let (x, h, y) and (x, h′, y′) be sl2-triplets in g. There exists z ∈ g
such that adg z is nilpotent and such that

eadg zx = x, eadg zh = h′, eadg zy = y′.

Let n = Ker(ad x) ∩ Im(ad x). For all p ∈ Z, let gp = Ker(ad h− p). By
§1, no. 3 (applied to the adjoint representation of kx + ky + kh on g), we
have that n ⊂

∑
p>0

gp, so adg n is nilpotent for all n ∈ n, and [h, n] = n. We

have [x, h′ − h] = 0 and [x, y − y′] = h′ − h, so h′ − h ∈ n. By Lemmas 2
and 3, there exists z ∈ n such that eadg zh = h′. Since z ∈ Ker adg x, we have
eadg zx = x. Lemma 1 now proves that eadg zy = y′. Q.E.D.

Let G be a group of automorphisms of g. Then two sl2-triplets (x, h, y),
(x′, h′, y′) are said to be G-conjugate if there exists g ∈ G such that gx = x′,
gh = h′, gy = y′.
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PROPOSITION 1. Let G be a group of automorphisms of g containing
Aute(g). Let (x, h, y) and (x′, h′, y′) be sl2-triplets in g. Let

t = kx+ kh+ ky, t′ = kx′ + kh′ + ky′.

Consider the following conditions:
(i) x and x′ are G-conjugate;
(ii) (x, h, y) and (x′, h′, y′) are G-conjugate;
(iii) t and t′ are G-conjugate.

We have (i) ⇐⇒ (ii) =⇒ (iii). If k is algebraically closed, the three conditions
are equivalent.

(i) ⇐⇒ (ii): This follows from Lemma 4.
(ii) =⇒ (iii): This is clear.
We assume that k is algebraically closed and prove that (iii) =⇒ (i). We

treat first the case in which t = t′ = g = sl(2, k). Since adg x is nilpotent, the
endomorphism x of k2 is nilpotent (Chap. I, §6, Th. 3), so there exists a matrix
A ∈ GL(2, k) such that AxA−1 = X, and consequently an automorphism α
of sl(2, k) such that α(x) = x′; now α ∈ Aute(g) (§5, no. 3, Cor. 2 of Prop. 5).
We now pass to the general case; we assume that t and t′ are G-conjugate
and prove that x and x′ are G-conjugate. We can assume that t = t′. By the
preceding, there exists β ∈ Aute(t) such that βx = x′. Now, if t ∈ t is such
that adt t is nilpotent, then adg t is nilpotent; so β extends to an element of
Aute(g).

Remark. The three conditions of Prop. 1 are equivalent if we assume only
that k = k2 (cf. Exerc. 1).

2. sl2-TRIPLETS IN SEMI-SIMPLE LIE ALGEBRAS

Lemma 5. Let V be a finite dimensional vector space, A and B endomor-
phisms of V. Assume that A is nilpotent and that [A, [A,B]] = 0. Then AB
is nilpotent.

Put C = [A,B]. Since [A,C] = 0,

[A,BCp] = [A,B]Cp = Cp+1

for every integer p ≥ 0. Consequently, Tr(Cp) = 0 for p ≥ 1, which proves that
C is nilpotent (Algebra, Chap. VII, §3, no. 5, Cor. 4 of Prop. 13). Now let k̄ be
an algebraic closure of k, and let λ ∈ k̄, x ∈ V ⊗k k̄ be such that ABx = λx,
x �= 0. The relation [[B,A],A] = 0 shows that [B,Ap] = p[B,A]Ap−1 for every
integer p ≥ 0. Let r be the smallest integer such that Arx = 0. Then

λAr−1x = Ar−1ABx = ArBx = BArx− [B,Ar]x = −r[B,A]Ar−1x.

Since [B,A] is nilpotent and since Ar−1x �= 0, this proves that λ = 0. Thus,
all the eigenvalues of AB are zero, hence the lemma.
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Lemma 6. Let h, x ∈ g be such that [h, x] = 2x and h ∈ (ad x)(g). Then there
exists y ∈ g such that (x, h, y) is either (0, 0, 0) or an sl2-triplet.

Let g′ be the solvable Lie algebra kh + kx. Since x ∈ [g′, g′], adg x is
nilpotent (Chap. I, §5, no. 3, Th. 1); let n be its kernel. Since [ad h, ad x] =
2 ad x, we have (ad h)n ⊂ n. Let z ∈ g be such that h = −[x, z]. For any
integer n ≥ 0, put Mn = (ad x)ng. If n > 0, we have (§1, no. 1, Lemma 1)

[ad z, (ad x)n] = n((ad h) − n+ 1)(ad x)n−1

so, if u ∈ Mn−1,

n((ad h) − n+ 1)u ∈ (ad z)(ad x)u+ Mn.

Since (ad h)n ⊂ n, it follows that

((ad h) − n+ 1)(n ∩ Mn−1) ⊂ n ∩ Mn.

Since ad x is nilpotent, Mn = 0 for sufficiently large n. Consequently, the
eigenvalues of ad h|n are integers ≥ 0. Thus, the restriction of ad h+ 2 to n
is invertible.

Now [h, z] + 2z ∈ n since

[x, [h, z] + 2z] = [[x, h], z] + [h, [x, z]] + 2[x, z]
= [−2x, z] + [h,−h] + 2[x, z] = 0.

Hence there exists z′ ∈ n such that [h, z′] + 2z′ = [h, z] + 2z, that is,
[h, y] = −2y, putting y = z−z′. Since [x, y] = [x, z] = −h, this completes the
proof.

PROPOSITION 2 (Jacobson-Morozov). Assume that g is semi-simple. Let x
be a non-zero nilpotent element of g. There exist h, y ∈ g such that (x, h, y)
is an sl2-triplet.

Let n = Ker(ad x)2. If z ∈ n, then [ad x, [ad x, ad z]] = ad([x, [x, z]]) = 0.
By Lemma 5, ad x◦ad z is nilpotent, so Tr(ad x◦ad z) = 0. This shows that
x is orthogonal to n with respect to the Killing form Φ of g. Since

Φ((ad x)2y, y′) = Φ(y, (ad x)2y′)

for all y, y′ ∈ g, and since Φ is non-degenerate, the orthogonal complement of
n is the image of (ad x)2. Hence there exists y′ ∈ g such that x = (ad x)2y′.
Put

h = −2[x, y′];

we have [h, x] = 2x and h ∈ (ad x)(g). It now suffices to apply Lemma 6.

COROLLARY. Assume that g is semi-simple. Let G be a group of automor-
phisms of g containing Aute(g). The map which associates to any sl2-triplet
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(x, h, y) in g the nilpotent element x defines, by passage to the quotient, a
bijection from the set of G-conjugacy classes of sl2-triplets to the set of G-
conjugacy classes of non-zero nilpotent elements.

This follows from Prop. 1 and 2.

Lemma 7. Let K be a commutative field with at least 4 elements. Let G be

the group of matrices
(
α β
0 α−1

)
where α ∈ K∗, β ∈ K. Let G′ be the group

of such matrices such that α = 1. Then G′ = (G,G).
If α, α′ ∈ K∗ and β, β′ ∈ K,(
α β
0 α−1

)(
α′ β′

0 α′−1

)(
α β
0 α−1

)−1(
α′ β′

0 α′−1

)−1

=
(

1 −α′β′ − αβα′2 + α2α′β′ + αβ
0 1

)
.

In particular,(
1 β
0 1

)(
α′ 0
0 α′−1

)(
1 β
0 1

)−1(
α′ 0
0 α′−1

)−1

=
(

1 β(1 − α′2)
0 1

)
.

But there exists α′
0 ∈ K∗ such that α′

0 �= 1 and α′
0 �= −1, and then k.(1−α′

0
2)

= k, hence the lemma.

PROPOSITION 3. Assume that g is semi-simple. The group Aute(g) is equal
to its derived group. If g is splittable, Aute(g) is the derived group of Aut0(g).

Let x be a non-zero nilpotent element of g. Choose h, y ∈ g be such
that (x, h, y) is an sl2-triplet (Prop. 2). The subalgebra s of g generated by
(x, h, y) can be identified with sl(2, k). Let ρ be the representation z 	→ adg z
of s = sl(2, k) on g, and let π be the representation of SL(2, k) compatible
with ρ (§1, no. 4). The image of π is generated by the exp(t adg x) and the
exp(t adg y) with t ∈ k (Algebra, Chap. III, §8, no. 9, Prop. 17), hence is
contained in Aute(g). Since SL(2, k) is equal to its derived group (Lemma 7
and loc. cit.), exp(adg x) belongs to the derived group G of Aute(g). Hence
Aute(g) is equal to G. Assume now that g is splittable. Since Aut0(g)/Aute(g)
is commutative (§5, no. 3, Remark 3), the preceding proves that the derived
group of Aut0(g) is Aute(g).

3. SIMPLE ELEMENTS

DEFINITION 2. An element h of g is said to be simple if there exist x, y ∈ g
such that (x, h, y) is an sl2-triplet in g.

We also say that h is the simple element of the sl2-triplet (x, h, y).
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PROPOSITION 4. Let h be a non-zero element of g. Then h is simple if and
only if there exists x ∈ g such that [h, x] = 2x and h ∈ (ad x)(g).

The condition is clearly necessary. It is sufficient by Lemma 6.

PROPOSITION 5. Assume that g is splittable semi-simple. Let h be a split-
ting Cartan subalgebra of g, R the set of roots of (g, h), and B a basis of R.
Let h be a simple element of g belonging to h. Then h is conjugate under
Aute(g, h) to an element h′ of h such that α(h′) ∈ {0, 1, 2} for all α ∈ B.

The eigenvalues of adgh belong to Z (§1, no. 2, Cor. of Prop. 2). Hence
h ∈ hQ. There exists an element w of the Weyl group of (g, h) such that
α(wh) ≥ 0 for all α ∈ B (Chap. VI, §1, no. 5, Th. 2 (i)). In view of §2,
no. 2, Cor. of Th. 2, we are reduced to the case in which α(h) ∈ N for all
α ∈ B. Let R+ be the set of positive roots relative to B, and R− = −R+.
There exists an sl2-triplet in g of the form (x, h, y). Let T be the set of roots
β such that β(h) = −2. Then T ⊂ R− and y ∈

∑
β∈T

gβ . Assume that there

exists α ∈ B such that α(h) > 2. For all β ∈ T, we have (α + β)(h) > 0, so
α+ β /∈ R− and α+ β �= 0; on the other hand, since β ∈ R− and α ∈ B, we
have α + β /∈ R+; hence α + β /∈ R ∪ {0}, so [gα, gβ ] = 0. Thus, [y, gα] = 0.
But adgy|gα is injective since α(h) > 0 (§1, no. 2, Cor. of Prop. 2). This
contradiction proves that α(h) ≤ 2 for all α ∈ B.

COROLLARY. If k is algebraically closed and if g is semi-simple of rank l,
the number of conjugacy classes of simple elements of g, relative to Aute(g),
is at most 3l.

Indeed, every semi-simple element of g is conjugate under Aute(g) to an
element of h.

Lemma 8. Assume that k is algebraically closed and that g is semi-simple. Let
h be a semi-simple element of g such that the eigenvalues of ad h are rational.
Let g0 = Ker(ad h), g2 = Ker(ad h − 2). Let Gh be the set of elementary
automorphisms of g leaving h fixed. Let x ∈ g2 be such that [x, g0] = g2. Then
Ghx contains a subset of g2 that is dense and open in the Zariski topology.

Let h be a Cartan subalgebra of g0. This is a Cartan subalgebra of g
containing h (Chap. VII, §2, no. 3, Prop. 10). We have h ∈ hQ. Let R be the
root system of (g, h), Q the group of radical weights. There exists a basis B
of R such that α(h) ≥ 0 for all α ∈ B.

Let U be the set of z ∈ h such that α(z) �= 0 for all α ∈ B. Let (H ′
α)α∈B

be the basis of h dual to B. If z ∈ U, there exists a homomorphism from
Q to k∗ that takes any γ ∈ Q to

∏
α∈B

α(z)γ(H′
α). By §5, Prop. 2 and 4, the

endomorphism ϕ(z) of the vector space g which induces on gγ the homothety
with ratio

∏
α∈B

α(z)γ(H′
α) is an elementary automorphism of g, which clearly

belongs to Gh.
Let s ∈ h. If γ ∈ R is such that gγ ∩ g2 �= 0,
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2 = γ(h) = γ

(∑
α∈B

α(h)H ′
α

)
=
∑
α∈B

α(h)γ(H ′
α);

since α(h) ≥ 0 for all α ∈ B, and since the γ(H ′
α) are integers either all ≥ 0 or

all ≤ 0, we have γ(H ′
α) ∈ N for all α ∈ B. Thus, we can consider (for z ∈ h)

the endomorphism ψ(z) of the vector space g2 that induces on gγ ∩ g2 the
homothety with ratio

∏
α∈B

α(z)γ(H′
α). The map z 	→ ψ(z) from h to End(g2)

is polynomial. For z ∈ U, we have ψ(z) = ϕ(z)|g2.
Let γ1, . . . , γr be the distinct roots of (g, h) vanishing on h. If y1 ∈ gγ1 , . . . ,

yr ∈ gγr , we have ead y1 . . . ead yr ∈ Gh. We can thus define a map ρ from
h × gγ1 × · · · × gγr to g2 by putting

ρ(z, y1, . . . , yr) = ψ(z)ead y1 . . . ead yrx

for z∈h, y1 ∈gγ1 , . . . , yr ∈gγr . This map is polynomial, and ρ(U, gγ1 , . . . , gγr )
⊂ Ghx. By Chap. VII, App. I, Prop. 3 and 4, it suffices to prove that the
tangent linear map of ρ is surjective at some point.

Now let T be the tangent linear map of z 	→ ψ(z) at h0 =
∑

α∈B
H ′

α. Then

T(z) is the endomorphism of g2 that induces on gγ ∩ g2 the homothety with
ratio∑

α∈B

γ(H ′
α)α(h0)γ(H′

α)−1α(z)
∏

β∈B,β �=α

β(h0)γ(H′
α) =

∑
α∈B

γ(H ′
α)α(z) = γ(z).

Thus, the tangent linear map of z 	→ ρ(z, 0, . . . , 0) at h0 is the map
z 	→ [z, x]; its image is [x, h]. The tangent linear map at 0 of the map
y1 	→ ρ(h0, y1, 0, . . . , 0) is the map y1 	→ ψ(h0)[y1, x]; this last map has image
ψ(h0)[x, gγ1 ] = [x, gγ1 ]. Similarly, the tangent linear map at 0 of the map
yi 	→ ρ(h0, 0, . . . , 0, yi, 0, . . . , 0) has image [x, gγi ]. Finally, the tangent linear
map of ρ at (h0, 0, . . . , 0) has image

[x, h + gγ1 + · · · + gγr ] = [x, g0] = g2. Q.E.D.

∗The group Gh is an algebraic group with Lie algebra ad g0.∗

PROPOSITION 6. Assume that k is algebraically closed and that g is semi-
simple. Let G be a group of automorphisms of g containing Aute(g). Let
(x, h, y) and (x′, h′, y′) be sl2-triplets in g. The following conditions are equiv-
alent:

(i) h and h′ are G-conjugate;
(ii) (x, h, y) and (x′, h′, y′) are G-conjugate.
We only have to prove the implication (i) =⇒ (ii), and we are reduced

immediately to the case in which h = h′. Introduce g2 and Gh as in Lemma 8.
We have x ∈ g2, and [x, g0] = g2 by §1, no. 2, Cor. of Prop. 2. Hence Ghx
contains a subset of g2 that is dense and open in the Zariski topology, and
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so does Ghx
′. So there exists a ∈ Gh such that a(x) = x′. We have a(h) = h,

and consequently a(y) = y′ (no. 1, Lemma 1).

COROLLARY 1. The map which associates to any sl2-triplet its simple el-
ement defines by passage to the quotients a bijection from the set of G-
conjugacy classes of sl2-triplets to the set of G-conjugacy classes of simple
elements.

COROLLARY 2. If rk(g) = l, the number of conjugacy classes, relative to
Aute(g), of non-zero nilpotent elements of g is at most 3l.

This follows from Cor. 1, the Cor. of Prop. 2, and the Cor. of Prop. 5.

COROLLARY 3. If rk(g) = l, the number of conjugacy classes, relative to
Aute(g), of subalgebras of g isomorphic to sl(2, k) is at most 3l.

This follows from Cor. 1, Prop. 1, and the Cor. of Prop. 5.

4. PRINCIPAL ELEMENTS

DEFINITION 3. Assume that g is semi-simple.
(i) A nilpotent element x of g is said to be principal if the dimension of

Ker adx is the rank of g.
(ii) A simple element h of g is said to be principal if h is regular and the

eigenvalues of adh in an algebraic closure of k belong to 2Z.
(iii) An sl2-triplet (x, h, y) of g is said to be principal if the length of g,

considered as a module over kx+ kh+ ky, is equal to the rank of g.

PROPOSITION 7. Assume that g is semi-simple. Let (x, h, y) be an sl2-
triplet in g. The following conditions are equivalent:

(i) x is principal;
(ii) h is principal;
(iii) (x, h, y) is principal.
For p ∈ Z, let gp = Ker(adh − p). Let g′ =

∑
p∈Z

g2p. If g is considered as

a module over a = kx + kh + ky, g′ is the sum of the simple submodules of
odd dimension (§1, no. 2, Cor. of Prop. 2). Let l (resp. l′) be the length of g
(resp. g′) considered as an a-module. By §1, no. 2,

dim(Ker adx) = l ≥ l′ = dim(Ker adh) ≥ rk(g).

The equivalence of (i) and (iii) follows immediately. On the other hand, con-
dition (ii) means that dim(Ker adh) = rk(g) and g′ = g, in other words
that

dim(Ker adh) = rk(g)
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and l = l′. The equivalence of (ii) and the other conditions follows.

PROPOSITION 8. Assume that g is semi-simple �= 0. Let h be a splitting
Cartan subalgebra of g, R the root system of (g, h), B a basis of R, h0 the
element of h such that α(h0) = 2 for all α ∈ B.

(i) The element h0 is simple and principal.
(ii) The elements x of g such that there exists an sl2-triplet of the form

(x, h0, y) are the elements of
∑

α∈B
gα that have a non-zero component in each

gα.
The element h0 is that considered in §7, no. 5, Lemma 2 (cf. loc. cit.,

formula (1)). It follows from this lemma that h0 is simple principal and that,
if x ∈

∑
α∈B

gα has a non-zero component in each gα, there exists an sl2-

triplet of the form (x, h0, y). Conversely, let (x, h0, y) be a sl2-triplet. We
have [h0, x] = 2x, so x ∈

∑
γ∈R,γ(h0)=2

gγ =
∑

α∈B
gα. Similarly, y ∈

∑
α∈B

g−α.

Write

h0 =
∑
α∈B

aαHα where aα > 0 for all α ∈ B,

x =
∑
α∈B

Xα where Xα ∈ gα for all α ∈ B,

y =
∑
α∈B

X−α where X−α ∈ g−α for all α ∈ B.

Then∑
α∈B

aαHα = h0 = [y, x] =
∑

α,β∈B

[X−β , Xα] =
∑
α∈B

[X−α, Xα]

so [X−α, Xα] �= 0 for all α ∈ B.

COROLLARY. In a splittable semi-simple Lie algebra, there exist principal
nilpotent elements.

In a non-splittable semi-simple Lie algebra, 0 may be the only nilpotent element.

PROPOSITION 9. Assume that k is algebraically closed and that g is semi-
simple. All the principal simple (resp. nilpotent) elements of g are conjugate
under Aute(g).

We retain the notations of Prop. 8. Let h be a principal simple element.
It is conjugate under Aute(g) to an h′ ∈ h such that α(h′) ∈ {0, 1, 2} for all
α ∈ B (no. 3, Prop. 5). Since h′ is principal simple, α(h′) �= 0 and α(h′) ∈ 2Z
for all α ∈ B, so α(h′) = 2 for all α ∈ B, and hence h′ = h0. This proves the
assertion for principal simple elements.
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Let x, x′ be principal nilpotent elements. There exist sl2-triplets (x, h, y),
(x′, h′, y′). By Prop. 7, h and h′ are principal simple, hence conjugate under
Aute(g) by the preceding. So x and x′ are conjugate under Aute(g) (Prop. 6).

Lemma 9. With the notations of Prop. 8, put gp = Ker(adh0 − p) for p ∈ Z.
Let g2

∗ be the set of elements of g2 =
∑

α∈B
gα that have a non-zero component

in each gα. Let R+ be the set of positive roots relative to B, n+ =
∑

α∈R+

gα,

and x ∈ g2
∗. Then ead n+ .x = x+ [n+, n+].

It is clear that ead n+ .x ⊂ x+[n+, n+]. We prove that, if v ∈ [n+, n+], then
x+ v ∈ ead n+ .x. Put n(p) =

∑
r≥p

g2r; it suffices to prove that

x+ v ∈ ead n+ .x+ n(p)

for all p ≥ 2. This is clear for p = 2 since n(2) = [n+, n+] (§3, no. 3,
Prop. 9 (iii)). Assume that we have found z ∈ n+ such that v+ x− ead z.x ∈
n(p). Since there exists an sl2-triplet of the form (x, h0, y) (Prop. 8), §1,
no. 2, Cor. of Prop. 2 proves that [x, g2p−2] = g2p; hence, there exists
z′ ∈ g2p−2 ⊂ n+ such that

v + x− ead z.x ∈ [z′, x] + n(p+1).

So v+x ∈ ead(z+z′).x+ n(p+1), and our assertion is established by induction.

PROPOSITION 10. Assume that g is semi-simple. Let h be a splitting Car-
tan subalgebra of g, R the root system of (g, h), B a basis of R, R+ the set
of positive roots relative to B, and n+ =

∑
α∈R+

gα. The principal nilpotent el-

ements belonging to n+ are the elements of n+ having a non-zero component
in gα for all α ∈ B.

Prop. 8 and Lemma 9 prove that such elements are principal nilpotent.
We prove the converse. Evidently we can assume that g is simple. Let h0

and gp be as in Prop. 8 and Lemma 9. Let ω be the highest root, and put
ω(h0) = 2q; we have q = h − 1, where h is the Coxeter number of R, cf.
Chap. VI, §1, no. 11, Prop. 31. Then g2q = gω, g−2q = g−ω, and g2k = 0 for
|k| > q. There exists a principal sl2-triplet (x0, h0, y0). By §1, no. 2, Cor. of
Prop. 2, (adx0)2q(g−ω) = gω, so (adx0)2q �= 0. Let x be a principal nilpotent
element of g belonging to n+. If k̄ is an algebraic closure of k, x⊗1 and x0 ⊗1
are conjugate under an automorphism of g ⊗k k̄ (Prop. 9), so (adx)2q �= 0.
There exists λ ∈ R such that (adx)2qgλ �= 0. Put x =

∑
n≥1

xn, where xn ∈ g2n.

Then

(adx)2qgλ ⊂ (adx1)2qgλ +
∑

k>4q+λ(h0)

gk = (adx1)2qgλ,



§12. CHEVALLEY ORDERS 173

since 4q+λ(h0) ≥ 4q−2q = 2q. Now (adx1)2qgλ ⊂ g4q+λ(h0), where λ = −ω.
Thus, (adx1)2qg−ω = gω. We have ω =

∑
α∈B

nαα with nα > 0 for all α ∈
B (Chap. VI, §1, no. 8, Remark). If there exists α0 ∈ B such that x1 ∈∑
α∈B,α �=α0

gα, the relation

ω /∈ −ω +
∑

α∈B,α �=α0

kα

implies that gω ⊂/ (adx1)pg−ω for all p; this is absurd, so the component of
x1 in gα is non-zero for all α ∈ B.

§12. CHEVALLEY ORDERS

1. LATTICES AND ORDERS

Let V be a Q-vector space. A lattice in V is a free Z-submodule V of V such
that the Q-linear map αV,V : V ⊗Z Q → V induced by the injection of V into
V is bijective. When V is finite dimensional, this is the same as saying that V
is a Z-submodule of finite type which generates the Q-vector space V (recall
that a torsion-free Z-module of finite type is free by Algebra, Chap. VII, §4,
no. 4, Cor. 2); moreover, in this case our definition is a special case of that of
Commutative Algebra, Chap. VII, §4, no. 1, Def. 1 (loc. cit., Example 3). If
W is a vector subspace of V, and V is a lattice in V, then V ∩ W is a lattice
in W.

If V is a Q-algebra, an order in V is a lattice V in the underlying vector
space that is a Z-subalgebra of V; the map αV,V is then an isomorphism of
Q-algebras. If V is a unital Q-algebra, a unital order in V is an order in V
containing the unit element.

Assume that V is a Q-bigebra, with coproduct c and counit γ. If V is a
lattice in the vector space V, the canonical map i : V ⊗Z V → V ⊗Q V is
injective; a biorder in V is a unital order V in the unital algebra V such that
γ(V) ⊂ Z and c(V) ⊂ i(V ⊗Z V); the maps

γV : V → Z and cV : V → V ⊗Z V

induced by γ and c give V the structure of a Z-bigebra, and the map αV,V is
then an isomorphism of Q-bigebras.

2. DIVIDED POWERS IN A BIGEBRA

Let A be a unital k-algebra, x ∈ A, d ∈ k, n ∈ N. Put
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x(n,d) =
x(x− d) . . . (x− d(n− 1))

n!
=

n−1∏
i=0

(x− id)/(i+ 1). (1)

In particular, x(0,d) = 1, x(1,d) = x. We agree that x(n,d) = 0 for n an integer
< 0. Put

x(n) = x(n,0) =
xn

n!
(2)(x

n

)
= x(n,1) =

x(x− 1) . . . (x− n+ 1)
n!

. (3)

PROPOSITION 1. Let A be a bigebra, with coproduct c, and x a primitive
element (Chap. II, §1, no. 2) of A. Then

c(x(n,d)) =
∑

p∈N,q∈N,p+q=n

x(p,d) ⊗ x(q,d). (4)

The proposition is trivial for n ≤ 0. We argue by induction on n. If formula
(4) is true for n, then

(n+ 1)c(x(n+1,d)) = c(x− dn)c(x(n,d))

= (x⊗ 1 + 1 ⊗ x− dn 1 ⊗ 1)c(x(n,d))

=
∑

p+q=n

[xx(p,d) ⊗ x(q,d) + x(p,d) ⊗ xx(q,d) − (p+ q)dx(p,d) ⊗ x(q,d)]

=
∑

p+q=n

(x− pd)x(p,d) ⊗ x(q,d) +
∑

p+q=n

x(p,d) ⊗ (x− qd)x(q,d)

=
∑

p+q=n

(p+ 1)x(p+1,d) ⊗ x(q,d) +
∑

p+q=n

(q + 1)x(p,d) ⊗ x(q+1,d)

=
∑

r+s=n+1

rx(r,d) ⊗ x(s,d) +
∑

r+s=n+1

sx(r,d) ⊗ x(s,d)

= (n+ 1)
∑

r+s=n+1

x(r,d) ⊗ x(s,d),

hence formula (4) for n+ 1.

3. INTEGRAL VARIANT OF THE POINCARÉ-BIRKHOFF-
WITT THEOREM

Let g be a finite dimensional Q-Lie algebra, U(g) its enveloping bigebra. If
I is a totally ordered set, x = (xi)i∈I a family of elements of g, and n =
(ni)i∈I ∈ N(I) a multi-index, put

x(n) =
∏
i∈I

xni
i

ni!
, (5)

the product being calculated in U(g) in accordance with the ordered set I.
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THEOREM 1. Let U be a biorder in the bigebra U(g). Let G = U ∩ g, which
is an order in the Lie algebra g. Let (xi)i∈I be a basis of G. Give I a total
order, and assume that we are given, for all n ∈ NI, an element [n] of U
such that [n] − x(n) has filtration < |n| in U(g). Then, the family of the [n]
for n ∈ NI is a basis of the Z-module U.

For p ∈ N, let Up(g) be the set of elements of U(g) of filtration ≤ p ; then
the images in Up(g)/Up−1(g) of the x(n) such that |n| = p form a basis of
this Q-vector space (Chap. I, §2, no. 7, Th. 1); hence the [n] form a basis
of the Q-vector space U(g). It remains to prove the following assertion (in
which we put M = NI):

(*) if u ∈ U, (an) ∈ Z(M), and d ∈ N-- {0} are such that

du =
∑
n∈M

an[n], (6)

then d divides each an.

For each integer r ≥ 0, introduce the iterated coproduct

ci : U → Tr(U) = U ⊗ U ⊗ · · · ⊗ U;

by definition, c0 is the counit of U, c1 = IdU, c2 = c (the coproduct of U),
and, for r ≥ 2, cr+1 is defined as the composite p ◦ (cr ⊗ 1) ◦ c:

U
c−→ U ⊗Z U

cr⊗1−→ Tr(U) ⊗Z U
p−→ Tr+1(U)

where p is defined by using the multiplication in the algebra T(U). Further,
consider the canonical projection π of U onto U + = Ker c0, and the composite

c+r = Tr(π) ◦ cr : U → Tr(U +).

Lemma 1. Let n ∈ NI. If |n| < r, then c+r ([n]) = 0. If |n| = r, then

c+r ([n]) =
∑
ϕ

xϕ(1) ⊗ xϕ(2) ⊗ · · · ⊗ xϕ(r), (7)

where ϕ belongs to the set of maps from {1, 2, . . . , r} to I which take each
value i ∈ I ni times.

By Prop. 1,

cr(x(n)) =
∑

x(p1) ⊗ · · · ⊗ x(pr)

where the summation extends over the set of sequences (p1, . . . ,pr) of r
elements of M such that p1 + · · · + pr = n. In view of Chap. II, §1, no. 3,
Prop. 6, the map c+r , extended by linearity to a map from U(g) to Tr(U+(g)),
vanishes on Ur−1(g). It follows that, for r ≥ |n|,
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c+r ([n]) = c+r (x(n)) =
∑

π(x(p1)) ⊗ · · · ⊗ π(x(pr)). (8)

For r > |n|, the relation p1 + · · · + pr = n implies that at least one of the
pi is zero, so c+r ([n]) = 0. For r = |n|, the only non-zero terms of the third
member of (8) are those for which |p1| = · · · = |pr| = 1, hence (7).

We return to the proof of Th. 1. We retain the notations of (*) and prove,
by descending induction on |n|, that d divides an, which is clear when |n| is
sufficiently large. If d divides an for |n| > r then, putting

u′ = u−
∑

|n|>r

(an/d)[n] ∈ U,

we have

du′ =
∑

|n|≤r

an[n]. (9)

For any map ϕ from {1, 2, . . . , r} to I, put

eϕ = xϕ(1) ⊗ · · · ⊗ xϕ(r)

and aϕ = an where n = (Cardϕ−1(i))i∈I. By Lemma 1, (9) implies that

dc+r (u′) =
∑
ϕ∈Ir

aϕeϕ (10)

so c+r (u′) ∈ Tr(U +)∩QTr(G). But the submodule G of U + is a direct factor
(Algebra, Chap. VII, §4, no. 3, Cor. of Th. 1), so the submodule Tr(G) is a
direct factor of Tr(U +), and hence c+r (u′) ∈ Tr(G). On the other hand, the
xi form a basis of G by hypothesis, so the eϕ form a basis of Tr(G). Then
(10) proves that d divides the aϕ, that is, the an for |n| = r. This proves (*).

4. EXAMPLE: POLYNOMIALS WITH INTEGER VALUES

Let V be a finite dimensional Q-vector space, V∗ its dual, V a lattice in V,
V ∗ the dual Z-module of V, which can be identified canonically with a lattice
in V∗, S(V) the symmetric algebra of V, and

λ : S(V) → A(V∗)

the canonical bijection from S(V) to the algebra of polynomial functions on
V∗ (Algebra, Chap. IV, §5, no. 11, Remark 1). If we identify A(V∗ ×V∗) with
A(V∗) ⊗Q A(V∗), then λ transforms the coproduct of S(V) into the map
A(V∗) → A(V∗ × V∗) which associates to the polynomial function ϕ on V∗

the polynomial function

(x, y) 	→ ϕ(x+ y)

on V∗ × V∗ (Algebra, Chap. IV, §5, no. 11, Remark 2).
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Denote by
(

V
Z

)
the subset of S(V) consisting of the elements which cor-

respond to polynomial maps from V∗ to Q that take integer values on V ∗.

PROPOSITION 2. (i)
(

V
Z

)
is a biorder in the bigebra S(V), and

(
V
Z

)
∩V=V.

(ii) The Z-algebra
(

V
Z

)
is generated by the

(
h
n

)
for h ∈ V, n ∈ N.

(iii) If (h1, . . . , hr) is a basis of V, the elements(
h

n

)
=
(
h1

n1

)
· · ·
(
hr

nr

)
,

where n = (n1, . . . , nr) belongs to Nr, form a basis of the Z-module
(

V
Z

)
.

For m ∈ N, put Sm(V) =
∑

i≤m
Si(V), Sm(V) =

∑
i≤m

Si(V). By Algebra,

Chap. IV, §5, no. 9, Prop. 15 and Remark,

Sm(V) ⊂ Sm(V) ∩
(

V

Z

)
⊂ 1
m!

Sm(V)

so
(

V
Z

)
∩ V = V. Since Sm(V) is a lattice in Sm(V), Sm(V) ∩

(
V
Z

)
is also

a lattice in Sm(V). On the other hand, Sm(V) ∩
(

V
Z

)
is a direct factor of

Sm+1(V) ∩
(

V
Z

)
(since the quotient is torsion-free), hence it admits a com-

plement which is a free Z-module. It follows that
(

V
Z

)
is a free Z-module.

It is clear that this is a unital order in the algebra S(V). Let (un)n∈N be a
basis of the Z-module

(
V
Z

)
. This is also a basis of the Q-module S(V) and,

for all

ϕ ∈ S(V × V) = S(V) ⊗Q S(V),

there exists a unique sequence (vn) of elements of S(V) such that ϕ=
∑
un ⊗ vn.

As above, identify S(V) with A(V∗) and S(V) ⊗ S(V) with A(V∗ × V∗). If
ϕ ∈

(
V×V
Z

)
, the polynomial function x 	→ ϕ(x, y) belongs to

(
V
Z

)
for all

y ∈ V ∗. It follows that vn(y) ∈ Z for all n and all y ∈ V ∗, in other words that
vn ∈

(
V
Z

)
. This proves that the coproduct maps

(
V
Z

)
to
(

V
Z

)
⊗Z

(
V
Z

)
. If h ∈ V

and n ∈ N, then
(

h
n

)
maps u ∈ V ∗ to the integer

(
u(h)

n

)
, so

(
h
n

)
∈
(

V
Z

)
.

Assertion (iii) is now obtained by applying Th. 1 to the commutative Lie
algebra V, and (ii) follows.

COROLLARY. Let X be an indeterminate. The polynomials
(

X
n

)
, where

n ∈ N, form a basis of the Z-module consisting of the polynomials P ∈ k[X]
such that P(Z) ⊂ Z.
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If P(Z) ⊂ Z, the Lagrange interpolation formula (Algebra, Chap. IV, §2,
no. 1, Prop. 6) shows that the coefficients of P belong to Q; thus, we can
assume that k = Q and apply Prop. 2 with V = Q, V = Z.

5. SOME FORMULAS

In this number, A denotes a unital associative algebra. If x ∈ A, we write
adx instead of adAx.

Lemma 2. If x, y ∈ A and n ∈ N,

(adx)n

n!
y =

∑
p+q=n

(−1)q x
p

p!
y
xq

q!
=
∑

p+q=n

(−1)qx(p)yx(q). (11)

Indeed, if we denote by Lx and Rx the maps z 	→ xz and z 	→ zx from A
to A, we have, since Lx and Rx commute,

1
n!

(adx)n =
1
n!

(Lx − Rx)n =
∑

p+q=n

(−1)q 1
p!

Lp
x

1
q!

Rq
x.

Lemma 3. Let x, h ∈ A and λ ∈ k be such that (adh)x = λx. For all n ∈ N,
and all P ∈ k[X], we have

P(h)x(n) = x(n)P(h+ nλ). (12)

Since adh is a derivation of A and since (adh)x commutes with x, we
have

(adh)xn = nxn−1((adh)x) = nλxn, (13)

so

(adh)x(n) = nλx(n).

Thus, formula (12) follows from the special case

P(h)x = xP(h+ λ) (14)

by replacing x by x(n) and λ by nλ. It suffices to prove (14) when P = Xm,
by induction on m. It is clear when m = 0, 1. If (14) is true for P = Xm, then

hm+1x = h.hmx = hx(h+ λ)m = x(h+ λ)m+1

which proves (12).

Lemma 4. Let x, y, h ∈ A be such that

[y, x] = h, [h, x] = 2x, [h, y] = −2y. (15)
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(i) For m,n ∈ N, we have

x(n)y(m) =
∑
p≥0

y(m−p)
(
m+ n− p− 1 − h

p

)
x(n−p). (16)

(ii) Let A′ be the Z-subalgebra of A generated by the x(m) and the y(m)

for m ∈ N. Then
(

h
n

)
∈ A′ for all n ∈ N.

Formula (16) can be written in the equivalent form

(adx(n))y(m) =
∑
p≥1

y(m−p)
(
m+ n− p− 1 − h

p

)
x(n−p). (17m)

This is trivial form = 0. We argue by induction onm. From (17m), we obtain

(m+ 1)(adx(n))y(m+1) = (adx(n))y(m).y + y(m).(adx(n))y (18)

=
∑
p≥1

y(m−p)
(
m+ n− p− 1 − h

p

)
x(n−p)y + y(m)(n− 1 − h)x(n−1)

(§1, no. 1, Lemma 1). Now, applying the same lemma, and then Lemma 3,
we have(

m+ n− p− 1 − h
p

)
x(n−p)y

=
(
m+ n− p− 1 − h

p

)
(yx(n−p) + (n− p− 1 − h)x(n−p−1))

= y

(
m+ n− p+ 1 − h

p

)
x(n−p)

+
(
m+ n− p− 1 − h

p

)
(n− p− 1 − h)x(n−p−1).

Inserting this into (18), we obtain

(m+ 1)(adx(n))y(m+1)

=
∑
p≥1

(m− p+ 1)y(m−p+1)
(
m+ n− p+ 1 − h

p

)
x(n−p)

+
∑
p≥1

y(m−p)
(
m+ n− p− 1 − h

p

)
(n− p− 1 − h)x(n−p−1)

+ y(m)(n− 1 − h)x(n−1)

=
∑
p≥1

(m− p+ 1)y(m−p+1)
(
m+ n− p+ 1 − h

p

)
x(n−p)

+
∑
p≥0

y(m−p)
(
m+ n− p− 1 − h

p

)
(n− p− 1 − h)x(n−p−1).
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Changing p to p− 1 in the second sum, and regrouping the terms, we obtain

(m+ 1)(adx(n))y(m+1) =
∑
p≥1

y(m−p+1)Apx
(n−p) (19)

with

Ap = (m− p+ 1)
(
m+ n− p+ 1 − h

p

)
+ (n− p− h)

(
m+ n− p− h

p− 1

)
.

Putting z = m+ n− p− h, this can also be written as

Ap =
1
p!

(m− p+ 1)(z + 1)z(z − 1) . . . (z − p+ 2)

+
1

(p− 1)!
(z −m)z(z − 1) . . . (z − p+ 2)

=
1
p!
z(z − 1) . . . (z − p+ 2)[(m− p+ 1)(z + 1) + p(z −m)]

= (m+ 1)
(
z

p

)
= (m+ 1)

(
(m+ 1) + n− p− 1 − h

p

)
.

Inserting this into (19), we obtain (17m+1), hence (i).
Assume that

(
h
p

)
∈ A′ for p < n. Then, for all P ∈ Q[T] of degree < n

such that P(Z) ⊂ Z, we have P(h) ∈ A′ (no. 4, Cor. of Prop. 2). Hence, in
view of (16) with m = n,

(−1)n

(
h

n

)
=
(
n− 1 − h

n

)
= −x(n)y(n) +

n−1∑
p=0

y(n−p)
(

2n− p− 1 − h
p

)
x(n−p) ∈ A′;

hence (ii) by induction on n.

6. BIORDERS IN THE ENVELOPING ALGEBRA OF A SPLIT
REDUCTIVE LIE ALGEBRA

Let g be a reductive Lie algebra over Q, h a splitting Cartan subalgebra of
g, and R = R(g, h) (§2, no. 1, Remark 5).

DEFINITION 1. A lattice H in h is said to be permissible (relative to g) if,
for all α ∈ R, we have Hα ∈ H and α(H) ⊂ Z.

Remarks. 1) Let B be a basis of R. A lattice H in h is permissible if and only
if Hα ∈ H and α(H) ⊂ Z for all α ∈ B.

2) Let c be the centre of g. Then, a lattice H in h is permissible if and
only if Q(R∨) ⊂ H ⊂ P(R∨) ⊕ c. The lattice H ∩ Dg is then permissible in
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the Cartan subalgebra h ∩ Dg of Dg. There may exist permissible lattices H
such that H �= (H ∩ Dg) ⊕ (H ∩ c) (cf. §13, no. 1.IX).

3) If g is semi-simple, the permissible lattices in h are the subgroups H
of h such that Q(R∨) ⊂ H ⊂ P(R∨).

In the remainder of this number, we assume fixed a split reductive Lie
algebra (g, h), a basis B of R = R(g, h) and, for each α ∈ B, a pair (xα, yα)
with

yα ∈ g−α, xα ∈ gα, [yα, xα] = Hα. (20)

If we denote by n+ (resp. n−) the subalgebra of g generated by the xα (resp.
the yα), we know (§3, no. 3, Prop. 9 (iii)) that

g = n− ⊕ h ⊕ n+ (21)
U(g) = U(n−) ⊗Q U(h) ⊗Q U(n+) (22)

(where U(g), . . . are the enveloping algebras of g, . . .).
Denote by U+ the Z-subalgebra of U(n+) generated by the x(n)

α for α ∈ B
and n ∈ N. Let W be the Weyl group of R, R+ the set of positive roots
relative to B.

Lemma 5. (i) U+ is a lattice in the vector space U(n+).

(ii) For all α ∈ B, we have U+ ∩ U(gα) =
⊕

n∈N
Zx(n)

α .

By definition, U+ is generated as a Z-module by the elements

x(n)
ϕ =

∏
1≤i≤r

x
(n(i))
ϕ(i)

where r ∈ N, ϕ = (ϕ(i)) ∈ Br, and n = (n(i)) ∈ Nr. Give the algebra U(n+)
the graduation of type Q(R) for which each gα (α ∈ R+) is homogeneous of
degree α. A monomial x(n)

ϕ of the preceding type is homogeneous of degree∑
1≤i≤r

n(i)ϕ(i) ∈ Q(R).

The monomials of this kind having a given degree q are finite in number,
and generate over Q the homogeneous component of U(n+) of degree q. This
proves (i).

If α ∈ B, U+ ∩U(gα) is contained in the sum of the homogeneous compo-
nents of degrees which are multiples of α; thus, by the preceding, U+ ∩U(gα)
is generated by the x(n)

ϕ such that
∑
n(i)ϕ(i) ∈ Nα, which forces ϕ(i) = α

for all i (since B is a basis of R), so

x(n)
ϕ = x(n(1))

α . . . x(n(r))
α =

(n(1) + · · · + n(r))!
n(1)! . . . n(r)!

x(n(1)+···+n(r))
α .

Thus, U+ ∩ U(gα) ⊂
⊕
n

Zx(n)
α , hence (ii). Q.E.D.
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In the remainder of this paragraph, if E and F are Z-submodules of U(g),
we denote by E.F the Z-submodule of U(g) generated by the products ab,
where a ∈ E, b ∈ F.

PROPOSITION 3. Let H be a permissible lattice in h. Let U+,U−,U0

be the Z-subalgebras of U(g) generated respectively by the elements x(n)
α

(α∈B,n∈N), y(n)
α (α ∈ B, n ∈ N),

(
h
n

)
(h ∈ H, n ∈ N). Let U be the Z-

subalgebra of U(g) generated by U+,U−,U0.
(i) U is a biorder in the bigebra U(g).
(ii) We have U = U−.U0.U+, U ∩ h = H and, for all α ∈ B,

U ∩ gα = Zxα, V ∩ g−α = Zyα.

By Lemma 5 and Prop. 2, U+,U−,U0 are orders in the Q-algebras
U(n+),U(n−),U(h), respectively, and(±h+ q

p

)
∈ U0 for h ∈ H, q ∈ Z, p ∈ N. (23)

Put L = U−.U0.U+ ⊂ U(g). By (22), L is a lattice in U(g). By construction,

U−.L ⊂ L (24)
L.U+ ⊂ L (25)

while Lemma 3 and (23) imply that

U0.L ⊂ L (26)
L.U0 ⊂ L. (27)

Let α ∈ B, n ∈ N, r ∈ N, ϕ = (ϕ(i)) ∈ Br, and

(m(1), . . . ,m(r)) ∈ Nr.

We show that

x(n)
α y

(m(1))
ϕ(1) . . . y

(m(r))
ϕ(r) ∈ L (28)

or equivalently, in view of (25), that

[x(n)
α , y

(m(1))
ϕ(1) . . . y

(m(r))
ϕ(r) ] ∈ L. (29)

We argue by induction on r. The bracket to be studied is the sum of the
terms

y
(m(1))
ϕ(1) . . . y

(m(k))
ϕ(k) [x(n)

α , y
(m(k+1))
ϕ(k+1) ]y(m(k+2))

ϕ(k+2) . . . y
(m(r))
ϕ(r) . (30)
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For α �= ϕ(k + 1), xα and yϕ(k+1) commute, so [x(n)
α , y

(m(k+1))
ϕ(k+1) ] = 0. If

α = ϕ(k + 1), the expression (30) is, by (17), the sum of expressions of the
form

y
(m(1))
ϕ(1) . . . y

(m(k))
ϕ(k) y

(m(k+1)−p)
ϕ(k+1)

(
q − h
p

)
x(n−p)

α y
(m(k+2))
ϕ(k+2) . . . y

(m(r))
ϕ(r) (31)

where q ∈ Z, p ∈ N-- {0}, h ∈ H. The induction hypothesis, together with
(24) and (26), proves that the expression (31) belongs to L. We have thus
proved (28).

By (28), x(n)
α U− ⊂ L; thus, by (25) and (27), x(n)

α L ⊂ L, so U+.L ⊂ L
and

L.L ⊂ U−.U0.L ⊂ U−.L ⊂ L.

Thus, L is a Z-subalgebra of U(g), so U = L. If c is the coproduct of
U(g), c(U) ⊂ U ⊗Z U (no. 2, Prop. 1). Let γ be the counit of U(g). Since
γ(x(n)

α ) = γ(y(n)
α ) = γ

((
h
n

))
= 0 for n > 0, we have γ(U) ⊂ Z. This proves

(i). On the other hand,

U ∩ h = L ∩ h = U0 ∩ h = H

by Prop. 2 of no. 4; similarly,

U ∩ gα = U+ ∩ gα = Zxα

by Lemma 5. This proves (ii).

Remark 4. By Prop. 5 of §4, no. 4, there exists a unique automorphism θ of
g such that θ(xα) = yα and θ(yα) = xα for all α ∈ B, and θ(h) = −h for all
h ∈ h; we have θ2 = 1. By construction of U, we see that the automorphism
of U(g) that extends θ leaves U stable.

COROLLARY 1. Put G = U ∩ g. Then G is an order in the Lie algebra g,
stable under θ. We have G = H +

∑
α∈R

(G ∩ gα). For all α ∈ B and all n ∈ N,

the maps (adxα)n/n!, (ad yα)n/n! leave U and G stable.
The first assertion is clear. The second follows by considering the grad-

uation of type Q(R) on U(g) and U. The third follows from Lemma 2 of
no. 5.

COROLLARY 2. Let w ∈ W. There exists an elementary automorphism ϕ
of g that commutes with θ, leaves G and U stable, and extends w.

It suffices to treat the case in which w is of the form sα (α ∈ B). Note first
of all that adxα and ad yα are locally nilpotent on U(g), in other words that
for all u ∈ U(g) there exists an integer n such that (adxα)nu = (ad yα)nu = 0.

This enables us to define the automorphisms ead xα =
∞∑

n=0
1
n! (adxα)n and



184 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

ead yα of U(g); we verify immediately that these automorphisms of U(g) leave
U stable. Put ϕ1 = ead xαead yαead xα , ϕ2 = ead yαead xαead yα . We have ϕ1|g =
ϕ2|g (§2, no. 2, formula (1)), so ϕ1 = ϕ2. Put ϕ1 = ϕ2 = ϕ. We have
θϕθ−1 = ϕ, so θ and ϕ commute. On the other hand, ϕ|h = w by §2, no. 2,
Lemma 1.

COROLLARY 3. Let α ∈ R. If x ∈ G ∩ gα and n ∈ N, we have x(n) ∈ U,
and (adx)n/n! leaves G and U stable.

This is clear if α ∈ B, by construction of U and Cor. 1. In the general
case, there exists w ∈ W such that w(α) ∈ B (Chap. VI, §1, no. 5, Prop. 15).
By Cor. 2, there exists an automorphism ϕ of g that leaves G and U stable
and takes gα to gw(α), hence the corollary by transport of structure.

COROLLARY 4. There exists a Chevalley system (Xα)α∈R in (g, h) (§2,
no. 4, Def. 3) such that Xα = xα and X−α = yα for α ∈ B. For every
Chevalley system (X ′

α)α∈R having these properties, and for all α ∈ R, X ′
α is

a basis of G ∩ gα.
For α ∈ B, put Xα = xα, X−α = yα. For α ∈ R+ --B, choose a w ∈ W

such that w(α) ∈ B and an automorphism ϕ of g such that θϕ = ϕθ, ϕ(G) = G
and ϕ(h) = w−1(h) for h ∈ h (Cor. 2); put Xα = ϕ(xw(α)), X−α = ϕ(yw(α)).
Then

[X−α, Xα] = ϕ([yw(α), xw(α)]) = ϕ(Hw(α)) = w−1(Hw(α)) = Hα

θ(Xα) = θϕ(xw(α)) = ϕθ(xw(α)) = ϕ(yw(α)) = X−α

so (Xα)α∈R is a Chevalley system. Moreover,

G ∩ gα = ϕ(G ∩ gw(α)) = ϕ(Zxw(α)) = ZXα (32)

G ∩ g−α = ϕ(G ∩ g−w(α)) = ϕ(Z yw(α)) = ZX−α. (33)

Let (X ′
α)α∈R be a Chevalley system such that X ′

α = xα, X
′
−α = yα for

α ∈ B. Let S be the set of α ∈ R such that X ′
α = ±Xα. By §2, no. 4, Prop. 7,

S is a closed set of roots. Since S ⊃ B ∪ (−B), we have S = R (Chap. VI,
§1, no. 6, Prop. 19). Thus, by (32) and (33), we have G ∩ gα = ZX ′

α for all
α ∈ R.

Remarks. 5) Let (Xα)α∈R be the Chevalley system constructed above. If
α, β, α + β ∈ R and if we put [Xα, Xβ ] = Nα,βXα+β , we have [Xα, Xβ ] ∈
G ∩ gα+β , and we recover the fact that Nα,β ∈ Z (cf. §2, no. 4, Prop. 7).

6) We have obtained in passing a new proof of the existence of Chevalley
systems (cf. §4, no. 4, Cor. of Prop. 5), independent of Lemma 4, §2.
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7. CHEVALLEY ORDERS

Let (g, h) be a split reductive Lie algebra over Q, R its root system. Choose:
a) a permissible lattice H in h (no. 6, Def. 1);
b) for all α ∈ R, a lattice G α in gα.

Put G = H ⊕
∑

α∈R
G α. This is a lattice in g. Denote by U the Z-subalgebra

of U(g) generated by the
(

h
n

)
(h ∈ H, n ∈ N) and the x(n) (x ∈ G α, α ∈ R,

n ∈ N). Finally, for α ∈ R and x ∈ gα -- {0}, put

wα(x) = (exp adx)(exp ad y)(exp adx),

where y is the unique element of g−α such that [y, x] = Hα. With these
notations:

THEOREM 2. The following conditions are equivalent:
(i) There exists a Chevalley system (Xα)α∈R of (g, h) such that Gα = ZXα

for all α ∈ R.
(ii) U ∩ g = G and [G α,G −α] = ZHα for all α ∈ R.
(iii) For all α ∈ R, x ∈ G α, n ∈ N, the endomorphism (adx)n/n! of g

maps G to G, and [G α,G −α] = ZHα.
(iv) For all α ∈ R and every basis x of G α, wα(x) maps G to G (that is,

maps G β to G sα(β) for all β ∈ R).
(i) =⇒ (ii): let (Xα)α∈R be a Chevalley system in (g, h) such that G α =

ZXα for all α ∈ R, and let B be a basis of R. For α ∈ B, put xα = Xα, yα =
X−α. Let U′ be the biorder associated by Prop. 3 of no. 6 to H, the xα and
the yα. It is clear that U′ ⊂ U. By Cor. 3 and 4 of Prop. 3, x(n) ∈ U′ for all
α ∈ R, x ∈ G α and n ∈ N. Thus U = U′, which proves (ii).

(ii) =⇒ (iii): this is clear by Lemma 2 of no. 5.
(iii) =⇒ (iv): let α ∈ R and let x be a basis of G α. Since [G α,G −α] = ZHα,

the unique y ∈ g−α such that [y, x] = Hα belongs to G −α. Since exp adx and
exp ad y leave G stable by (iii), so does wα(x).

(iv) =⇒ (i): let B be a basis of R. Choose a basis xα of G α for all α ∈ B.
Let yα ∈ G −α be such that [yα, xα] = Hα. By §1, no. 5, formulas (5), we
have yα = wα(xα).xα so yα is a basis of G −α by (iv). Let G′ be the order in g
defined by H, the xα and the yα (no. 6, Cor. 1 of Prop. 3). Then G′ is stable
under the (adxα)n/n!, (ad yα)n/n! (loc. cit.), and hence under the wα(xα).

Now let β ∈ R. There exist α0, α1, . . . , αr ∈ B such that

β = sαr
sαr−1 . . . sα1(α0)

(Chap. VI, §1, no. 5, Prop. 15). Then wαr
(xαr

).wαr−1(xαr−1) . . . wα1(xα1)
maps G α0 to G β by (iv), and maps G′ ∩gα0 to G′ ∩gβ by the preceding. Since
G′ ∩ gα0 = G α0 (Prop. 3 (ii)), we have G′ ∩ gβ = G β . Thus
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G′ = H ⊕
∑
β∈R

(G′ ∩ gβ) = H ⊕
∑
β∈R

G β = G

and Cor. 4 of Prop. 3 concludes the proof.

DEFINITION 2. When conditions (i) to (iv) of Th. 2 are satisfied, G is said
to be a Chevalley order in (g, h).

Remark. Chevalley orders in (g, h) always exist. Indeed, the Chevalley orders
are the sets of the form H⊕

∑
α∈R

ZXα, where (Xα)α∈R is a Chevalley system

in (g, h) and H is a lattice in h such that

Q(R∨) ⊂ H ⊂ P(R∨) ⊕ c

(c being the centre of g).

THEOREM 3. We retain the notations at the beginning of no. 7, and assume
that G is a Chevalley order in (g, h).

(i) U is a biorder in U(g).
(ii) Let B be a basis of R, and (Xα)α∈B∪(−B) a family of elements of g

such that G α = ZXα for α ∈ B ∪ (−B). The Z-algebra U is generated by the(
h
n

)
and the X(n)

α (h ∈ H, α ∈ B ∪ (−B), n ∈ N). If g is semi-simple and

H = Q(R∨), the Z-algebra U is generated by the X(n)
α (α ∈ B∪(−B), n ∈ N).

(iii) Let B be a basis of R, R+ the corresponding set of positive roots,
R− = −R+, n+ =

∑
α∈R+

gα, n− =
∑

α∈R−
gα. Then,

U = (U ∩ U(n−)).(U ∩ U(h)).(U ∩ U(n+)).

Let (hi)i∈I be a basis of H. For all α ∈ R, let Xα be a basis of G α. Give
the set I ∪ R a total order (we assume that I ∩ R = ∅). For λ ∈ I ∪ R and
n ∈ N, put e〈n〉

λ =
(

hλ

n

)
if λ ∈ I, e〈n〉

λ = X
(n)
λ if λ ∈ R. Then the products∏

λ∈I∪R
e
〈nλ〉
λ , where (nλ) belongs to NI∪R, form a basis of the Z-module U. The

products
∏
λ∈I

(
hλ

nλ

)
, where (nλ) belongs to NI, form a basis of the Z-module

U∩U(h). The products
∏

λ∈R+

X
(nλ)
λ , where (nλ) belongs to NR+ , form a basis

of the Z-module U ∩ U(n+).
Let B and (Xα)α∈B∪(−B) be as in (ii), and such that [X−α, Xα] = Hα.

Let U′ be the Z-subalgebra of U(g) generated by the
(

h
n

)
and the X(n)

α

(h ∈ H, α ∈ B∪(−B), n ∈ N). We have seen in the proof of Th. 2, (i) =⇒ (ii),
that U′ is equal to U and is a biorder in U(g). This proves (i) and the first
assertion of (ii); the second follows from Lemma 4 (ii). Assertion (iii) follows
from Th. 1 (no. 3) and Prop. 3 (no. 6).
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8. ADMISSIBLE LATTICES

Generalizing the terminology adopted for vector spaces, an endomorphism u
of a module M is said to be diagonalizable if there exists a basis of M such
that the matrix of u relative to this basis is diagonal.

Lemma 6. Let M be a free Z-module of finite type, u an endomorphism of M,
and v the endomorphism u⊗ 1 of M⊗Z Q. Assume that

(
v
n

)
(M) ⊂ M for all

n ∈ N. Then u is diagonalizable.
a) For any polynomial P ∈ Q[T] such that P(Z)⊂Z, we have P(v)(M)⊂M

(no. 4, Cor. of Prop. 2), so det P(v) ∈ Z.
b) Denote by χv(t) = td + α1t

d−1 + · · · the characteristic polynomial of
v. Let k ∈ Z, n ∈ N. Applying a) to the polynomial

(
T−k

n

)
, we see that the

number

an = det
(
v − k
n

)
=

1
(n!)d

det(v − k) det(v − k − 1) . . .det(v − k − n+ 1)

=
(−1)n

(n!)4
χv(k)χv(k + 1) . . . χv(k + n− 1)

is an integer. Take k − 1 < −α1/d. Then

χv(k + n− 1) = nd + (α1 + (k − 1)d)nd−1 + · · ·
and

|an| =
|χv(k + n− 1)|

nd
|an−1|;

hence, if an �= 0 for all n ∈ N, the sequence of the |an| is strictly decreasing for
n sufficiently large, which is absurd. It follows that v has an integer eigenvalue
λ. Put M′ = Ker(u−λ.1) and M′′ = M/M′. Then M′ is the intersection with
M of a vector subspace of M ⊗Z Q, so the Z-module M′′ is torsion-free of
finite type, and consequently free of rank < d. Arguing by induction on d and
applying the induction hypothesis to the endomorphism of M′′ induced by u,
we conclude that all the eigenvalues of v in an algebraically closed extension
of Q are integers.
c) We show that v is diagonalizable. Let λ be an eigenvalue of v and let

x ∈ M ⊗Z Q be such that (v − λ)2x = 0. We have v(vx− λx) = λ(vx− λx),
so

1
n!

(v − λ− n+ 1)(v − λ− n+ 2) . . . (v − λ− 1)(v − λ)x

=
(−1)n−1

n
(vx− λx).

By a), this implies that vx− λx ∈ nM for all n ∈ N, so (v − λ)x = 0.
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d) Let λ be an eigenvalue of v and let λ − a, λ + b be an interval in Z
containing all the eigenvalues of v. Consider the polynomial

P(T) = (−1)b (T − λ− 1)(T − λ− 2) . . . (T − λ− b)
b!

× (T − λ+ 1)(T − λ+ 2) . . . (T − λ+ a)
a!

.

We have P(Z) ⊂ Z,P(λ) = 1,P(µ) = 0 for µ ∈ Z∩(λ−a, λ+b) and µ �= λ. By
a), P(v)(M) ⊂ M. By c), P(v) is a projection of M ⊗Z Q onto the eigenspace
corresponding to λ. Q.E.D.

Remark 1. If we only assume that v is diagonalizable with integer eigenvalues,
u is not necessarily diagonalizable (for example, take M = Z2 and u(x, y) =
(y, x) for all (x, y) ∈ M).

Let g, h,R,H,G α,G,U be as in no. 7, and assume that G is a Chevalley
order in (g, h).

DEFINITION 3. Let E be a g-module. A lattice E in E is said to be admissible
(relative to G) if the following conditions are satisfied:

(i) U maps E to E;

(ii) E is stable under
(

h
n

)
and x(n) for all α ∈ R, x ∈ G α, n ∈ N, h ∈ H.

Remarks. 2) Let ρ be the adjoint representation of g on U(g). Let α, x, n, h
be as in (ii) above. We have ρ(x(n)).U ⊂ U by Lemma 2. On the other hand,
if p ∈ N,

ρ

((
h

p

))
x(n) =

(
adh
p

)
x(n) =

(
nα(h)
p

)
x(n)

(no. 5, formula (13)), so ρ
((

h
p

))
.U ⊂ U. This proves that U is an admissible

lattice in U(g), and it follows that G is an admissible lattice in g (for the
adjoint representation).

3) Let E be a finite dimensional g-module, E an admissible lattice in E,
c the centre of g. By Lemma 6, every element of c defines a diagonalizable
endomorphism of E. Hence E is semi-simple (Chap. I, §6, no. 5, Th. 4). Thus,
E is a direct sum of simple Dg-modules on which c induces homotheties. By
Lemma 6, E = ⊕(E ∩ Eλ) and, for all weights λ of E, we have

λ(H) ⊂ Z.

4) If g is semi-simple and H = Q(R∨), conditions (i) and (ii) of Def. 3
are equivalent, by Th. 3 (ii), to
(iii) E is stable under x(n) for all α ∈ R, x ∈ G α, n ∈ N.
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5) Let B be a basis of R; in conditions (i) and (ii) above, “α ∈ R” can be
replaced by “α ∈ B ∪ (−B)” (loc. cit).

THEOREM 4. Let E be a finite dimensional g-module. The following condi-
tions are equivalent:

(i) E has an admissible lattice;
(ii) every element of H defines a diagonalizable endomorphism of E with

integer eigenvalues.
(i) =⇒ (ii): this follows from Remark 3.
(ii) =⇒ (i): we assume that condition (ii) is satisfied and prove (i). By

Th. 4 of Chap. I, §6, no. 5, we can assume that the elements of c define
homotheties of E, and that E is a simple Dg-module. Let B be a basis of R,
and g = n− ⊕ h ⊕ n+ the corresponding decomposition of g. Let λ be the
highest weight of the Dg-module E, and let e ∈ Eλ -- {0}. Put E = U.e. It is
clear that U.E ⊂ E. Since E is simple, U(g).e = E and hence E generates E as
a Q-vector space. For h ∈ H and n ∈ N, we have

(
h
n

)
e =

(
λ(h)

n

)
e ∈ Z e, so

(U ∩ U(h)).e = Z e.

Since U(n+).e = 0, we have E = (U ∩ U(n−)).e by Prop. 3. It now follows
from Th. 3 (iii) that E is a Z-module of finite type.

COROLLARY. If g is semi-simple and H = Q(R∨), every finite dimensional
g-module has an admissible lattice.

§13. CLASSICAL SPLITTABLE SIMPLE LIE
ALGEBRAS

In this paragraph we describe explicitly, for each type of classical splittable
simple Lie algebra:

(I) an algebra of this type, its dimension and its splitting Cartan
subalgebras;

(II) its coroots;
(III) its Borel subalgebras and its parabolic subalgebras;
(IV) its fundamental simple representations;
(V) those of its fundamental simple representations which are

orthogonal or symplectic;
(VI) the algebra of invariant polynomial functions;
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(VII) certain properties of the groups Aut g, Aut0g, Auteg;
(VIII) the restriction of the Killing form to a Cartan subalgebra;

(IX) the Chevalley orders.

1. ALGEBRAS OF TYPE Al (l ≥ 1)

(I) Let V be a vector space of dimension l+1 over k, and let g be the algebra
sl(V) of endomorphisms of V of trace zero. Let (ei)1≤i≤l+1 be a basis of V;
the map which associates to an element of g its matrix with respect to this
basis is an identification of g with the algebra sl(l+ 1, k) of matrices of trace
zero. We know that g is semi-simple (Chap. I, §6, no. 7, Prop. 8).

Recall (Algebra, Chap. II, §10, no. 3) that Eij denotes the matrix (αmp)
such that αij = 1 and αmp = 0 for (m, p) �= (i, j). The matrices

Eij (1 ≤ i, j ≤ l + 1, i �= j)
Ei,i − Ei+1,i+1 (1 ≤ i ≤ l)

form a basis of g. Hence

dim g = l(l + 2).

Let ĥ be the set of diagonal elements of gl(l + 1, k); the sequence
(Eii)1≤i≤l+1 is a basis of the vector space ĥ; let (ε̂i)1≤i≤l+1 be the basis
of ĥ∗ dual to (Eii)1≤i≤l+1. For all h ∈ ĥ,

[h,Eij ] = (ε̂i(h) − ε̂j(h))Eij (1)

by Chap. I, §1, no. 2, formulas (5). Let h be the set of elements of ĥ of trace
zero, and put εi = ε̂i|h. Then h is a Cartan subalgebra of g (Chap. VII,
§2, no. 1, Example 4). Relation (1) proves that this Cartan subalgebra is
splitting, and that the roots of (g, h) are the εi − εj (i �= j). Let ĥ∗

0 be the
set of elements of ĥ∗ the sum of whose coordinates with respect to (ε̂i) is
zero. The map λ 	→ λ|h from ĥ∗

0 to h∗ is bijective. Thus, the root system R
of (g, h) is of type Al (Chap. VI, §4, no. 7). Consequently, g is simple (§3,
no. 2, Cor. 1 of Prop. 6). Thus, g is a splittable simple Lie algebra of type Al.

Every splitting Cartan subalgebra h′ of g is a transform of h under an
elementary automorphism (§3, no. 3, Cor. of Prop. 10). Since Auteg is the
set of automorphisms x 	→ sxs−1 of g with s ∈ SL(V) (Chap. VII, §3, no. 1,
Remark 2; cf. also (VII)), there exists a basis β of V such that h′ is the set hβ

of elements of g whose matrix with respect to the basis β is diagonal. Since
hβ contains an element with distinct eigenvalues, the only vector subspaces
of V stable under the elements of hβ are those generated by a subset of β. It
follows that the map β 	→ hβ induces by passage to the quotient a bijection
from the set of decompositions of V into the direct sum of l+ 1 subspaces of
dimension 1 to the set of splitting Cartan subalgebras of g.
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(II) Let α = εi − εj (i �= j) be a root. We have gα = kEij . Since

[Eij , Eji] = Eii − Ejj

and since α(Eii − Ejj) = 2, we have (§2, no. 2, Th. 1 (ii))

Hα = Eii − Ejj .

(III) Put α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl = εl − εl+1. By Chap. VI, §4,
no. 7.I, (α1, . . . , αl) is a basis B of R; the positive roots relative to B are the
εi − εj for i < j. The corresponding Borel subalgebra b is the set of upper
triangular matrices of trace zero.

A flag in V is a set of vector subspaces of V, distinct from {0} and V,
totally ordered by inclusion. Order the set of flags of V by inclusion. The
maximal flags are the sets {W1, . . . ,Wl}, where Wi is an i-dimensional vector
subspace and

W1 ⊂ · · · ⊂ Wl.

For example, if Vi denotes the subspace of V generated by e1, . . . , ei, then
{V1, . . . ,Vl} is a maximal flag.

It is immediate that b is the set of elements of g leaving stable the elements
of the maximal flag {V1, . . . ,Vl}. Conversely, since b contains h and the
matrices Eij for i < j, we see that the Vi are the only non-trivial vector
subspaces stable under b.

Now let δ be a maximal flag in V. It follows from the preceding that
the set bδ of elements of g leaving stable all the elements of δ is a Borel
subalgebra of g. Since every Borel subalgebra of g is a transform of b under
an elementary automorphism, we see that the map δ 	→ bδ is a bijection from
the set of maximal flags to the set of Borel subalgebras of g.

Let β be a basis of V. By (I) and the preceding, the Borel subalgebras
containing hβ are those corresponding to the maximal flags each of whose
elements is generated by a subset of β. These flags correspond bijectively to
the total orders on β in the following way: to a total order ω on β is associated
the flag {W1, . . . ,Wl}, where Wi is the vector subspace generated by the first
i elements of β for the order ω. Since there are (l+ 1)! total orders on β, we
recover the fact that there exist (l + 1)! Borel subalgebras of (sl(V), hβ) (§3,
no. 3, Remark).

Let γ be a flag in V. Since γ is contained in a maximal flag, the set pγ

of elements of g leaving stable the elements of γ is a parabolic subalgebra
of g. We show that the only non-trivial vector subspaces stable under pγ

are the elements of γ. For this, we can assume that γ = {Vi1 , . . . ,Viq
} with

1 ≤ i1 < · · · < iq ≤ l. Put i0 = 0, iq+1 = l + 1. The non-empty intervals

i0 + 1, i1 , i1 + 1, i2 , . . . , iq + 1, iq+1

form a partition of {1, . . . , l + 1}, so that any square matrix of order l + 1
can be written as a block matrix (Xab)1≤a,b≤q+1. The algebra pγ is then the
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set pi1,...,iq of elements (Xab)1≤a,b≤q+1 of sl(l + 1, k) such that Xab = 0 for
a > b. Since pi1,...,iq ⊃ b, a non-trivial vector subspace stable under pi1,...,iq

is one of the Vi; if ik < i < ik+1, the algebra pi1,...,iq contains Eik+1,i and Vi

is not stable, hence our assertion.
Consequently, the 2l flags contained in the maximal flag {V1, . . . ,Vl} give

rise to 2l distinct parabolic subalgebras containing b; since there are exactly
2l parabolic subalgebras containing b (§3, no. 4, Remark), it follows that the
map γ 	→ pγ is a bijection from the set of flags of V to the set of parabolic
subalgebras of g. Moreover, pγ ⊃ pγ′ if and only if γ ⊂ γ′.

Recall the parabolic subalgebra p = pi1,...,iq
(1 ≤ i1 < · · · < iq ≤ l). Let

s (resp. n) be the set of (Xab)1≤a,b≤q+1 in sl(l + 1, k) such that Xab = 0 for
a �= b (resp. a ≥ b). In view of Prop. 13 of §3, no. 4, we have p = s ⊕ n, the
subalgebra s is reductive in g and n is both the largest nilpotent ideal and
the nilpotent radical of p.

(IV) For r = 1, 2, . . . , l, let �r = ε1 + · · ·+ εr. We have �i(Hαj
) = δij , so �r

is the fundamental weight corresponding to αr.
Let σ be the identity representation of g on V. The exterior power

∧r
σ

of σ is a representation on E =
∧r(V). Let (e1, . . . , el+1) be the chosen basis

of V. The ei1 ∧ · · · ∧ eir
, where i1 < · · · < ir, form a basis of E. If h ∈ h,

(
∧r
σ)(h).ei1 ∧ · · · ∧ eir = (εi1 + · · · + εir )(h)ei1 ∧ · · · ∧ eir .

Thus, every weight is of multiplicity 1, �r is a weight of
∧r
σ, and every

other weight is of the form �r − µ, where µ is a positive radical weight.
Consequently, �r is the highest weight of

∧r
σ, and e1 ∧· · ·∧er is a primitive

element. By Chap. VI, §4, no. 7.IX, the Weyl group can be identified with
the symmetric group of

{ε1, . . . , εl+1}.
The orbit of �r under the Weyl group thus contains all the εi1 + · · · + εir

with i1 < · · · < ir. The simple submodule generated by the primitive element
e1 ∧ · · · ∧ er thus admits all the εi1 + · · · + εir

as weights and consequently is
equal to E. Thus,

∧r
σ is irreducible with highest weight �r.

Thus, the representations
∧r
σ (1 ≤ r ≤ l) are the fundamental represen-

tations. We have dim(
∧r
σ) =

(
l+1
r

)
.

(V) We have w0(α1) = −αl, w0(α2) = −αl−1, . . . (Chap. VI, §4, no. 7, XI),
so

−w0(�1) = �l, −w0(�2) = �l−1, . . . .

Let

ω = n1�1 + · · · + nl�l (n1, . . . , nl ∈ N)

be a dominant weight. Then, the simple representation with highest weight
ω is orthogonal or symplectic if and only if
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n1 = nl, n2 = nl−1, . . .

(§7, no. 5, Prop. 12). In particular, if l is even, none of the fundamental
representations of sl(l + 1, k) is orthogonal or symplectic. If l is odd, the
representation

∧i
σ for i �= (l+ 1)/2 is neither orthogonal nor symplectic; by

Chap. VI, §4, no. 7.VI, the sum of the coordinates of �(l+1)/2 with respect
to (α1, . . . , αl) is

1
l + 1

[
l + 1

2

(
1 + 2 + · · · +

l − 1
2

)
+
l + 1

2

(
1 + 2 + · · · +

l + 1
2

)]
= 1 + 2 + · · · +

l − 1
2

+
l + 1

4

so
∧(l+1)/2

σ is orthogonal if l ≡ −1 (mod. 4) and symplectic if l ≡ 1 (mod. 4)
(§7, no. 5, Prop. 12). This last result can be made more precise as follows.
Choose a non-zero element e in

∧l+1(V). The multiplication in the exterior
algebra V defines a bilinear map from∧(l+1)/2(V) ×∧(l+1)/2(V)

to
∧l+1(V), which can be written (u, v) 	→ Φ(u, v)e, where Φ is a bilinear form

on
∧(l+1)/2(V). It is immediately verified that Φ is non-zero, invariant under

g (and hence non-degenerate), symmetric if (l+1)/2 is even, and alternating
if (l + 1)/2 is odd.

(VI) For all x ∈ g, the characteristic polynomial of σ(x) = x can be written

Tl+1 + f2(x)Tl−1 + f3(x)Tl−2 + · · · + fl+1(x)

where f2, . . . , fl+1 are polynomial functions invariant under g (§8, no. 3,
Lemma 2).

If x = ξ1E11 + · · · + ξl+1El+1 l+1 ∈ h, the fi(x) are, up to sign, the
elementary symmetric functions of ξ1, . . . , ξl+1 of degree 2, . . . , l + 1. Thus,
by Chap. VI, §4, no. 7.IX, the fi|h generate the algebra of elements of S(h∗)
invariant under the Weyl group, and are algebraically independent. Hence (§8,
no. 3, Prop. 3) f2, f3, . . . , fl+1 generate the algebra of polynomial functions
invariant under g, and are algebraically independent.

(VII) For all g ∈ GL(l + 1, k), let ϕk(g) = ϕ(g) be the automorphism
x 	→ gxg−1 of g. Then ϕ is a homomorphism from GL(l + 1, k) to Aut(g).
We have

ϕ(SL(l + 1, k)) = Aute(g)

(Chap. VII, §3, no. 1, Remark 2). Let k̄ be an algebraic closure of k. We have

GL(l + 1, k̄) = k̄∗.SL(l + 1, k̄),
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so ϕk̄(GL(l + 1, k̄)) = ϕk̄(SL(l + 1, k̄)) = Aute(g ⊗k k̄); it follows that
ϕ(GL(l + 1, k)) ⊂ Aut0(g). On the other hand, Aut0(g) ⊂ ϕ(GL(l + 1, k)),
by Prop. 2 of §7, no. 1, applied to the identity representation of g. Hence,

Aut0(g) = ϕ(GL(l + 1, k)).

The kernel of ϕ is the set of elements of GL(l+ 1, k) that commute with
every matrix of order l+1, that is the set k∗ of invertible scalar matrices. Thus,
Aut0(g) can be identified with the group GL(l + 1, k)/k∗ = PGL(l + 1, k).
The kernel of ϕ′ = ϕ|SL(l+1, k) is µl+1(k), where µl+1(k) denotes the set of
(l + 1)th roots of unity in k. Thus, Aute(g) can be identified with the group
SL(l + 1, k)/µl+1(k) = PSL(l+ 1, k). On the other hand, we have the exact
sequence

1 −→ SL(l + 1, k) −→ GL(l + 1, k) det−→ k∗ −→ 1

and the image of k∗ under det is k∗ l+1. It follows that there are canonical
isomorphisms

Aut0(g)/Aute(g) −→ PGL(l + 1, k)/PSL(l + 1, k)

−→ GL(l + 1, k)/k∗.SL(l + 1, k) −→ k∗/k∗ l+1.

If k = R, we see that Aut0(g) = Aute(g) if l + 1 is odd, and that
Aut0(g)/Aute(g) is isomorphic to Z/2Z if l + 1 is even.

With the notations of §5, f(TQ) is the set of automorphisms of g that
induce the identity on h, and hence is equal to ϕ(D), where D is the set of
diagonal elements of GL(l+1, k) (§5, Prop. 4). Let D′ be the set of diagonal
elements of SL(l+1, k). By Prop. 3 of §5, and the determination of Aute(g),
we have f(q(TP)) ⊂ ϕ(D′). We show that f(q(TP)) = ϕ(D′). Let

d =

⎛⎝λ1 0
. . .

0 λl+1

⎞⎠
be an element of D′. There exists a ζ ∈ Hom(Q(R), k∗) = TQ such that
ζ(εi − εj) = λiλ

−1
j for all i and j. It is easy to verify that f(ζ) = ϕ(d). By

Chap. VI, §4, no. 7.VIII, P(R) is generated by Q(R) and the element ε = ε1,
whose image in P(R)/Q(R) is of order l + 1; but

ζ((l + 1)ε) = ζ((ε1 − ε2) + (ε1 − ε3) + · · · + (ε1 − εl+1))

= λl
1λ

−1
2 λ−1

3 . . . λ−1
l+1 = λl+1

1

so ζ extends to a homomorphism from P(R) to k∗. This proves that ζ ∈ q(TP),
so ϕ(d) ∈ f(q(TP)).

Recall (§5, no. 3, Cor. 2 of Prop. 5) that Aut(g) = Aut0(g) for l = 1, and
that Aut(g)/Aut0(g) is isomorphic to Z/2Z for l ≥ 2. The map θ : x 	→ −tx
is an automorphism of sl(l + 1, k) and a0 = θ|h /∈ W if l ≥ 2 (Chap. VI, §4,
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no. 7.XI), so the class of a0 in Aut(g)/Aut0(g) is the non-trivial element of
this group (§5, no. 2, Prop. 4).

(VIII) The restriction to h of the Killing form is

Φ(ξ1E11 + · · · + ξl+1El+1,l+1, ξ
′
1E11 + · · · + ξ′

l+1El+1,l+1)

=
∑
i�=j

(ξi − ξj)(ξ′
i − ξ′

j) =
∑
i,j

(ξi − ξj)(ξ′
i − ξ′

j)

= (l + 1)
∑

i

ξiξ
′
i + (l + 1)

∑
j

ξjξ
′
j − 2

(∑
i

ξi

)⎛⎝∑
j

ξ′
j

⎞⎠
= 2(l + 1)

∑
i

ξiξ
′
i.

(IX) For 1 ≤ i < j ≤ l + 1, put

Xεi−εj
= Eij Xεj−εi

= −Eji.

Then, for all α ∈ R, we have [Xα, X−α] = −Hα and θ(Xα) = X−α (where θ
is the automorphism x 	→ −tx introduced in (VII)). Consequently, (Xα)α∈R
is a Chevalley system in (g, h).

Take k = Q. The permissible lattices in h (§12, no. 6, Def. 1) are those
lying between the Z-module Q(R∨) generated by the Eii − Ei+1,i+1, that
is, consisting of the diagonal matrices belonging to sl(l + 1,Z), and the Z-
module P(R∨) generated by Q(R∨) and E11 − (l+1)−1∑Eii (Chap. VI, §4,
no. 7.VIII), that is, consisting of the diagonal matrices of trace zero of the
form x+ (l + 1)−1a.1, where x has integer entries and a ∈ Z. It follows that
sl(l+1,Z) is the Chevalley order in (g, h) associated to the permissible lattice
Q(R∨) and the Chevalley system (Xα). It is easy to verify that

∧r Zl+1 is an
admissible lattice in

∧r Ql+1 relative to sl(l + 1,Z) (§12, no. 8, Def. 3).
On the other hand, gl(l+ 1,Z) is a Chevalley order in the split reductive

algebra gl(l+ 1,Q); its projection onto sl(l+ 1,Q) parallel to the centre Q.1
of gl(l+1,Q) is the Chevalley order in (g, h) defined by the permissible lattice
P(R∨) in h and the Chevalley system (Xα). We remark that gl(l + 1,Z) is
not the direct sum of its intersections with sl(l + 1,Q) and the centre of
gl(l + 1,Q).

2. ALGEBRAS OF TYPE Bl (l ≥ 1)

(I) Let V be a finite dimensional vector space, and Ψ a non-degenerate sym-
metric bilinear form on V. The set of endomorphisms x of V such that
Ψ(xv, v′) + Ψ(v, xv′) = 0 for all v, v′ ∈ V is a Lie subalgebra of sl(V), semi-
simple for dim V �= 2 (Chap. I, §6, no. 7, Prop. 9). We denote it by o(Ψ) and
call it the orthogonal Lie algebra associated to Ψ .

Assume that V is of odd dimension 2l+ 1 ≥ 3 and that Ψ is of maximum
index l. Denote by Q the quadratic form such that Ψ is associated to Q. We
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have Q(x) = 1
2Ψ(x, x) for x ∈ V. By Algebra, Chap. IX, §4, no. 2, V can be

written as the direct sum of two maximal totally isotropic subspaces F and
F′ and the orthogonal complement G of F + F′, which is non-isotropic and
1-dimensional. Up to multiplying Ψ by a non-zero constant, we can assume
that there exists e0 ∈ G such that Ψ(e0, e0) = −2. On the other hand, F and
F′ are in duality via Ψ ; let (ei)1≤i≤l be a basis of F and (e−i)1≤i≤l the dual
basis of F′. Then

(e1, . . . , el, e0, e−l, . . . , e−1)

is a basis of V; we have

Q
(∑

xiei

)
= −x2

0 +
i=l∑
i=1

xix−i

and the matrix of Ψ with respect to this basis is the square matrix of order
2l + 1

S =

⎛⎝ 0 0 s
0 −2 0
s 0 0

⎞⎠ , s =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎠ ,
where s is the square matrix of order l all of whose entries are zero except
those on the second diagonal6 which are equal to 1. A basis of V with the
preceding properties will be called a Witt basis of V. The algebra g = o(Ψ)
can then be identified with the algebra oS(2l + 1, k) of square matrices a of
order 2l + 1 such that a = −S−1aS (Algebra, Chap. IX, §1, no. 10, formulas
(50)). An easy calculation shows that g is the set of matrices of the form⎛⎝A 2stx B

y 0 x
C 2sty D

⎞⎠ (2)

where x and y are matrices with 1 row and l columns and A,B,C,D are
square matrices of order l such thatB = −stBs,C = −stCs, andD = −stAs.
Since the map A 	→ stAs from Ml(k) to itself is the symmetry with respect
to the second diagonal, it follows that

dim g = 2l + l2 + 2
l(l − 1)

2
= l(2l + 1).

Let h be the set of diagonal elements of g. This is a commutative subal-
gebra of g, with basis the elements

6 The second diagonal of a square matrix (aij)1≤i,j≤n is the family of aij such that
i + j = n + 1.
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Hi = Ei,i − E−i,−i (1 ≤ i ≤ l).

Let (εi) be the basis of h∗ dual to (Hi). Put⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xεi
= 2Ei,0 + E0,−i (1 ≤ i ≤ l)

X−εi = −2E−i,0 − E0,i (1 ≤ i ≤ l)
Xεi−εj = Ei,j − E−j,−i (1 ≤ i < j ≤ l)
Xεj−εi

= −Ej,i + E−i,−j (1 ≤ i < j ≤ l)
Xεi+εj

= Ei,−j − Ej,−i (1 ≤ i < j ≤ l)
X−εi−εj

= −E−j,i + E−i,j (1 ≤ i < j ≤ l).

(3)

It is easy to verify that these elements form a basis of a complement of h in
g and that, for h ∈ h,

[h,Xα] = α(h)Xα (4)

for all α ∈ R, where R is the set of the ±εi and the ±εi±εj (1 ≤ i < j ≤ l). It
follows that h is equal to its normalizer in g, and hence is a Cartan subalgebra
of g, that h is splitting, and that the roots of (g, h) are the elements of R.
The root system R of (g, h) is of type Bl for l ≥ 2, and of type A1 (also said
to be of type B1) for l = 1 (Chap. VI, §4, no. 5.I, extended to the case l = 1).
Consequently, g is a splittable simple Lie algebra of type Bl.

Every splitting Cartan subalgebra of o(Ψ) is a transform of h by an ele-
mentary automorphism of o(Ψ), and hence by an element of O(Ψ) (cf. (VII)),
and consequently is the set hβ of elements of g whose matrix with respect to
a Witt basis β of V is diagonal. We verify immediately that the only vector
subspaces invariant under hβ are those generated by a subset of β.

If l = 1, the algebras o(Ψ) and sl(2, k) have the same root systems, and
are thus isomorphic (cf. also §1, Exerc. 16). From now on, we assume that
l ≥ 2.

(II) The root system R∨ is determined by means of Chap. VI, §4, no. 5.V,
and we find that

Hεi = 2Hi, Hεi−εj = Hi −Hj , Hεi+εj = Hi +Hj .

(III) Put α1 = ε1−ε2, . . . , αl−1 = εl−1−εl, αl = εl. By Chap. VI, §4, no. 5.II,
(α1, . . . , αl) is a basis B of R; the positive roots relative to B are the εi and
the εi ± εj (i < j). The corresponding Borel subalgebra b is the set of upper
triangular matrices in g.

It is immediately verified that the only vector subspaces of V distinct
from {0} and V stable under b are the elements of the maximal flag corre-
sponding to the basis (ei), that is, the totally isotropic subspaces V1, . . . ,Vl,
where Vi is generated by e1, . . . , ei, together with their orthogonal comple-
ments V−1, . . . ,V−i: the orthogonal complement V−i of Vi is generated by
e1, . . . , el, e0, e−l, . . . , e−i−1 and is not totally isotropic. On the other hand, if
an element of g leaves stable a vector subspace, it leaves stable its orthogonal
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complement. Consequently, b is the set of elements of g leaving stable the
elements of the flag {V1, . . . ,Vl}.

A flag is said to be isotropic if each of its elements is totally isotropic. The
flag {V1, . . . ,Vl} is a maximal isotropic flag. Since the group O(Ψ) operates
transitively both on the Borel subalgebras of g (cf. (VII)) and on the maximal
isotropic flags (Algebra, Chap. IX, §4, no. 3, Th. 1), we see that, for any
maximal isotropic flag δ in V, the set bδ of elements of g leaving stable the
elements of δ is a Borel subalgebra of g and that the map δ 	→ bδ is a bijection
from the set of maximal isotropic flags to the set of Borel subalgebras of g.

Let δ be an isotropic flag and let pδ be the set of elements of g leaving
stable the elements of δ. If δ ⊂ {V1, . . . ,Vl}, then pδ is a parabolic subalgebra
of g containing b, and it is easy to verify that the only totally isotropic
subspaces �= {0} stable under pδ are the elements of δ. This gives 2l parabolic
subalgebras of g containing b. We see as above that the map δ 	→ pδ is a
bijection from the set of isotropic flags in V to the set of parabolic subalgebras
of g. Moreover, pδ ⊂ pδ′ if and only if δ ⊃ δ′.

(IV) The fundamental weights corresponding to α1, . . . , αl are, by Chap. VI,
§4, no. 5.VI,

�i = ε1 + · · · + εi (1 ≤ i ≤ l − 1)

�l =
1
2
(ε1 + · · · + εl).

Let σ be the identity representation of g on V. The exterior power
∧r
σ

operates on E =
∧r V. If h ∈ h,

σ(h).ei = εi(h)ei for 1 ≤ i ≤ l

σ(h).e0 = 0
σ(h).e−i = −εi(h)e−i for 1 ≤ i ≤ l.

It follows that, for 1 ≤ r ≤ l, ε1 + · · · + εr is the highest weight of
∧r
σ,

the elements of weight ε1 + · · · + εr being those proportional to e1 ∧ · · · ∧
er. We shall show that for 1 ≤ r ≤ l − 1, the representation

∧r
σ is a

fundamental representation of g of highest weight �r. For this, it is enough
to show that

∧r
σ is irreducible for 0 ≤ r ≤ 2l + 1. But the bilinear form Φ

on
∧r V ×∧2l+1−r V defined by

x ∧ y = Φ(x, y)e1 ∧ · · · ∧ el ∧ e0 ∧ e−l ∧ · · · ∧ e−1

is invariant under g and puts
∧r V and

∧2l+1−r V in duality. Thus, the
representation

∧2l+1−r
σ is the dual of

∧r
σ and it suffices to prove the

irreducibility of
∧r
σ for 0 ≤ r ≤ l, or that the smallest subspace Tr of∧r V containing e1 ∧ · · · ∧ er and stable under g is the whole of

∧r V. This
is immediate for r = 0 and r = 1 (cf. formula (2)). For r = 2 (and hence
l ≥ 2), the representation

∧2
σ and the adjoint representation of g (which is
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irreducible) have the same dimension l(2l + 1) and the same highest weight
ε1 + ε2 (Chap. VI, §4, no. 5.IV). We conclude that

∧2
σ is equivalent to the

adjoint representation, and hence is irreducible. This proves our assertion for
l = 1 and l = 2.

We now argue by induction on l, and assume that l ≥ r ≥ 3. We remark
first of all that if W is a non-isotropic subspace of V of odd dimension, with
orthogonal complement W′, the restriction ΨW of Ψ to W is non-degenerate
and o(ΨW) can be identified with the subalgebra of g consisting of the ele-
ments vanishing on W′. If dimW < dimV, and if ΨW is of maximal index,
the induction hypothesis implies that if Tr contains a non-zero element of
the form w′ ∧ w, with w′ ∈ ∧r−k W′ and w ∈ ∧k W (0 ≤ k ≤ r), then Tr

contains w′ ∧∧k W: indeed, we have a.(w′ ∧w) = w′ ∧a.w for all a ∈ o(ΨW).
We show by induction on p ∈ 0, r that Tr contains the elements

x = ei1 ∧ · · · ∧ eir−p
∧ ej1 ∧ · · · ∧ ejp

for 1 ≤ i1 < · · · < ir−p ≤ l and −l ≤ j1 < · · · < jp ≤ 0. For p = 0, this
follows from the irreducibility of the operation of gl(F) on

∧r F (no. 1), since

g contains the elements leaving F = Vl =
l∑

i=1
kei fixed and inducing on it any

endomorphism (cf. formula (2)). If p = 1, let q ∈ (1, l) be such that q �= −j1
and such that there exists λ ∈ 1, r − p with q = iλ; if p ≥ 2, let q ∈ 1, l
be such that −q ∈ {j1, . . . , jp}. Permuting the ei if necessary, we can assume
that q = 1. Now take for W the orthogonal complement of W′ = ke1 + ke−1.
If p = 1, we have x ∈ e1 ∧∧r−1 W; since Tr contains e1 ∧· · ·∧er, we see that
Tr contains x. If p ≥ 2, either x ∈ e−1 ∧∧r−1 W or x ∈ e1 ∧ e−1 ∧∧r−2 W;
since Tr contains e−1 ∧ e2 ∧ · · · ∧ er−1 and e−1 ∧ e1 ∧ e2 ∧ · · · ∧ er−2 by the
induction hypothesis, we see that Tr contains x, which completes the proof.

For another proof of the irreducibility of
∧r σ, see Exerc. 6.

We shall now determine the fundamental representation with highest
weight �l.

Lemma 1. Let V be a finite dimensional vector space, Q a non-degenerate
quadratic form on V, Ψ the symmetric bilinear form associated to Q, C(Q)
the Clifford algebra of V relative to Q, f0 the composite of the canonical maps

o(Ψ) −→ gl(V) −→ V ⊗ V∗ −→ V ⊗ V −→ C+(Q)

(the 1st is the canonical injection, the 3rd is defined by the canonical isomor-
phism from V∗ to V corresponding to Ψ , the 4th is defined by the multiplica-
tion in C(Q), cf. Algebra, Chap. IX, § 9, no. 1). Put f = 1

2f0.
(i) If (er), (e′r) are bases of V such that Ψ(er, e′s) = δrs, we have f0(a) =∑

r
(aer)e′r for all a ∈ o(Ψ).

(ii) If a, b ∈ o(Ψ), we have
∑
r

(aer)(be′r) = −
∑
r

(aber)e′r.
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(iii) If a ∈ o(Ψ) and v ∈ V, we have [f(a), v] = av.
(iv) If a, b ∈ o(Ψ), we have [f(a), f(b)] = f([a, b]).
(v) f(o(Ψ)) generates the associative algebra C+(Q).
(vi) Let N be a left C+(Q)-module and ρ the corresponding homomorphism

from C+(Q) to Endk(N). Then ρ ◦ f is a representation of o(Ψ) on N. If N
is simple, ρ ◦ f is irreducible.

Assertion (i) is clear. If a, b ∈ o(Ψ), we have (putting Ψ(x, y) = 〈x, y〉):∑
r

(aer)(be′r) =
∑
r,s,t

〈aer, e′s〉〈be′r, et〉ese′t =
∑
r,s,t

〈er, ae′s〉〈e′r, bet〉ese′t

=
∑
s,t

〈ae′s, bet〉ese′t = −
∑
s,t

〈e′s, abet〉ese′t = −
∑

t

(abet)e′t

which proves (ii). Next, for all v ∈ V, we have by (i),

[f(a), v] =
1
2

∑
r

((aer)e′rv − v(aer)e′r)

=
1
2

∑
r

((aer)e′rv + (aer)ve′r − (aer)ve′r − v(aer)e′r)

=
1
2

∑
r

((aer)〈e′r, v〉 − 〈aer, v〉e′r)

=
1
2
a

(∑
r

〈e′r, v〉er
)

+
1
2

∑
r

〈er, av〉e′r =
1
2
av +

1
2
av = av,

which proves (iii). Then

[f(a), f(b)] =

[
f(a),

1
2

∑
r

(ber)e′r

]
by (i)

=
1
2

∑
r

([f(a), ber]e′r + (ber)[f(a), e′r])

=
1
2

∑
r

((aber)e′r + (ber)(ae′r)) by (iii)

=
1
2

∑
r

((aber)e′r − (baer)e′r) by (ii)

= f([a, b]) by (i)

which proves (iv). To prove (v), we can, by extending scalars, assume that k is
algebraically closed. Choose then a basis (er) of V such that Ψ(er, es) = δrs,
so e′r = er. If i �= j, then Eij − Eji ∈ o(Ψ) and
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f(Eij − Eji) =
1
2
(eiej − ejei) = eiej ;

but the eiej generate C+(Q).
Assertion (vi) follows from (iv) and (v). Q.E.D.

Recall now the notations used at the beginning of this number. Put
Ṽ = F + F′ and let Q̃ (resp. Ψ̃) be the restriction of Q (resp. Ψ) to Ṽ.
Then Q̃ is a non-degenerate quadratic form of maximum index l on the space
Ṽ of dimension 2l and the Clifford algebra C(Q̃) is a central simple algebra
of dimension 22l (Algebra, Chap. IX, §9, no. 4, Th. 2). Let N be the exte-
rior algebra of the maximal isotropic subspace F′ generated by e−1, . . . , e−l.
Identify F with the dual of F′ by means of Ψ and for x ∈ F′ (resp. y ∈ F)
denote by λ(x) (resp. λ(y)) the left exterior product with x (resp. the left
interior product with y) in N; if a1, . . . , ak ∈ F′, then

λ(x).(a1 ∧ · · · ∧ ak) = x ∧ a1 ∧ · · · ∧ ak

λ(y).(a1 ∧ · · · ∧ ak) =
k∑

i=1

(−1)i−1Ψ(ai, y)a1 ∧ · · · ∧ ai−1 ∧ ai+1 ∧ · · · ∧ ak.

It is easily verified that λ(x)2 = λ(y)2 = 0 and that

λ(x)λ(y) + λ(y)λ(x) = Ψ(x, y).1.

It follows (Algebra, Chap. IX, §9, no. 1) that there exists a unique homo-
morphism (again denoted by λ) from C(Q̃) to End(N) extending the map
λ : F ∪ F′ → End(N). Since dimN = 2l and since C(Q̃) has a unique class
of simple modules, of dimension 2l (Algebra, Chap. IX, §9, no. 4, Th. 2),
the representation of C(Q̃) on N defined by λ is irreducible and is a spinor
representation of C(Q̃) (loc. cit.).

Consider now the map µ : v 	→ e0v from Ṽ to C+(Q). For v ∈ Ṽ, we have

(e0v)2 = −e20v2 = −Q(e0)Q(v) = Q(v) = Q̃(v)

and µ extends uniquely to a homomorphism, again denoted by µ, from C(Q̃)
to C+(Q). Since C(Q̃) is simple and since

dimC+(Q) = dimC(Q̃) = 22l,

we see that µ is an isomorphism. Consequently, λ ◦ µ−1 defines a simple
C+(Q)-module structure on N and ρ = λ ◦µ−1 ◦ f is an irreducible represen-
tation of g on N (Lemma 1 (vi)).

On the other hand, in view of Lemma 1 (i), we have

f(Hi) =
1
2
(eie−i − e−iei).

Since eie−i = −e20eie−i = e0eie0e−i and eie−i + e−iei = 1, we have

µ−1 ◦ f(Hi) =
1
2

− e−iei = −1
2

+ eie−i.
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We deduce that, for 1 ≤ i1 < · · · < ik ≤ l:

ρ(Hi)(e−i1 ∧ · · · ∧ e−ik
) =
{− 1

2e−i1 ∧ · · · ∧ e−ik
if i ∈ {i1, . . . , ik}

1
2e−i1 ∧ · · · ∧ e−ik

if i /∈ {i1, . . . ik}
and for h ∈ h

ρ(h)(e−i1∧ · · · ∧ e−ik
) (5)

= (
1
2
(ε1 + · · · + εl) − (εi1 + · · · + εik

))(h)(e−i1 ∧ · · · ∧ e−ik
).

This shows that the highest weight of ρ is �l. We call ρ the spinor represen-
tation of g. Note that its weights are all simple (moreover, �l is a minuscule
weight).

(V) We have w0 = −1, so every finite dimensional simple representation of
g is orthogonal or symplectic. By Chap. VI, §4, no. 5.VI, the sum of the
coordinates of �r with respect to (α1, . . . , αl) is integral for 1 ≤ r ≤ l − 1:
thus, the representation

∧r
σ is orthogonal. Moreover, it leaves invariant the

extension Ψ(r) of Ψ to
∧r V.

For the spinor representation, the sum of the coordinates of �l with re-
spect to (α1, . . . , αl) is 1

2 (1+ · · ·+ l) = l(l+1)
4 (loc. cit.). Thus, it is orthogonal

for l ≡ 0 or −1 (mod. 4) and symplectic for l ≡ 1 or 2 (mod. 4). In fact,
consider the bilinear form Φ on N =

∧
F′ defined as follows: if x ∈ ∧p F′ and

y ∈ ∧q F′, put Φ(x, y) = 0 if p+ q �= l and

x ∧ y = (−1)
p(p+1)

2 Φ(x, y)e−1 ∧ · · · ∧ e−r

if p+ q = l. It is easily verified that Φ is non-degenerate and is orthogonal for
l ≡ 0,−1 (mod. 4) and alternating for l ≡ 1, 2 (mod. 4). On the other hand,
in view of Lemma 1 (i),

f(Xεi) = e0ei, f(X−εi) = −e0e−i

for 1 ≤ i ≤ l and

f(Xεi−εj ) =
1
2
(eie−j − e−jei) = eie−j = e0eie0e−j

for 1 ≤ i < j ≤ l, and similarly

f(Xεj−εi
)=−e0eje0e−i, f(Xεi+εj

)=e0eie0ej , f(X−εi−εj
)=e0e−ie0e−j ;

hence

µ−1 ◦ f(Xεi
) = ei, µ−1f(X−εi

) = −e−i

and

µ−1 ◦ f(X±εi±εj ) = ce±ie±j for 1 ≤ i, j ≤ l, i �= j with c ∈ {1,−1}.
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It is now painless to verify that Φ is actually g-invariant (cf. Exerc. 18).

(VI) For x ∈ g, the characteristic polynomial of σ(x) takes the form

T2l+1 + f1(x)T2l + f2(x)T2l−1 + · · · + f2l+1(x)

where f1, . . . , f2l+1 are invariant polynomial functions on g.
If x = ξ1H1 + · · · + ξlHl ∈ h, the fi(x) are, up to sign, the elementary

symmetric functions of ξ1, . . . , ξl,−ξ1, . . . ,−ξl; these symmetric functions are
zero in odd degrees, and

T2l+1 + f2(x)T2l−1 + f4(x)T2l−3 + · · · + f2l(x)T = T(T2 − ξ21) . . . (T2 − ξ2l )

so that f2, . . . , f2l are, up to sign, the elementary symmetric functions
of ξ21 , . . . , ξ

2
l , which are algebraically independent generators of S(h∗)W

(Chap. VI, §4, no. 5.IX). In view of §8, no. 3, Th. 1 (i), we see that
f1 = f3 = f5 = · · · = 0 and that (f2, f4, . . . , f2l) is an algebraically free
family generating the algebra of invariant polynomial functions on g.

(VII) Since the only automorphism of the Dynkin graph is the identity, we
have Aut(g) = Aut0(g).

Let Σ be the group of similarities of V relative to Ψ . For all g ∈ Σ, let
ϕ(g) be the automorphism x 	→ gxg−1 of g. Then ϕ is a homomorphism from
Σ to Aut(g). We show that it is surjective. Let α ∈ Aut(g) = Aut0(g). By
Prop. 2 of §7, no. 1, there exists s ∈ GL(V) such that α(x) = sxs−1 for all
x ∈ g. Then s transforms Ψ into a bilinear form Ψ ′ on V that is invariant
under g, and hence proportional to Ψ (§7, no. 5, Prop. 12). This proves that
s ∈ Σ.

Since the identity representation of g is irreducible, its commutant reduces
to the scalars (§6, no. 1, Prop. 1), so the kernel of ϕ is k∗. Thus, the group
Aut(g) = Aut0(g) can be identified with Σ/k∗. But, it follows from Algebra,
Chap. IX, §6, no. 5, that the group Σ is the product of the groups k∗ and
SO(Ψ); hence Aut(g) = Aut0(g) can be identified with SO(Ψ).

Let O+
0 (Ψ) be the reduced orthogonal group of Ψ (Algebra, Chap. IX, §9,

no. 5). Since SO(Ψ)/O+
0 (Ψ) is commutative (loc. cit.), the group Aute(g) is

contained in O+
0 (Ψ) (§11, no. 2, Prop. 3); in fact, it is equal to it (Exerc. 7).

(VIII) The canonical bilinear form ΦR on h∗ is given by

ΦR(ξ1ε1 + · · · + ξlεl, ξ′
1ε1 + · · · + ξ′

lεl) =
1

4l − 2
(ξ1ξ′

1 + · · · + ξlξ′
l)

(Chap. VI, §4, no. 5.V). The isomorphism from h to h∗ defined by ΦR takes
Hi to (4l− 2).εi. Thus, the inverse form of ΦR, that is the restriction to h of
the Killing form, is

Φ(ξ1H1 + · · · + ξlHl, ξ
′
1H1 + · · · + ξ′

lHl) = (4l − 2)(ξ1ξ′
1 + · · · + ξlξ′

l).
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(IX) Recall the Xα (α ∈ R) defined by the formulas (3). It is easy to verify
that [Xα, X−α] = −Hα for α ∈ R. On the other hand, let M be the matrix
I + E0,0; since M = StM−1S, the map

θ : g 	→ −M−1tgM

is an automorphism of g and θ(Xα) = X−α for all α ∈ R. Consequently, (Xα)
is a Chevalley system in (g, h).

Assume that k = Q. The Cartan subalgebra h has two permissible lattices:
the lattice Q(R∨) generated by theHα and the lattice P(R∨) that is generated
by the Hi and consists of the diagonal matrices in h with integer entries. It
follows that oS(2l+ 1,Z) (the set of matrices in g with integer entries) is the
Chevalley order P(R∨)+

∑
Z.Xα in g. Since (X±εi

)2 = 2E±i,∓i, (X±εi
)3 = 0

and (X±εi±εj )
2 = 0, we see that the lattice V generated by the Witt basis

(ei)−l≤i≤l is an admissible lattice for oS(2l+ 1,Z) in V. The same is true for∧r V in
∧r V.

Now consider the spinor representation ρ of g on N =
∧

F′. As its weights
do not map P(R∨) to Z, it has no admissible lattice for oS(2l + 1,Z). On the
other hand, the lattice N generated by the canonical basis (e−i1 ∧ · · · ∧ e−ik

)
of N (for 1 ≤ i1 < · · · < ik ≤ l) is an admissible lattice for the Chevalley
order G = Q(R∨)+

∑
α∈R

Z.Xα. Indeed, it is immediate that N is stable under

the exterior product with the e−i and the interior product with the ei (for
1 ≤ i ≤ l). The formulas of (V) then show that N is stable under ρ(G).
Moreover, since ρ(Xα)2 = 0 for all α ∈ R, it follows that N is admissible.

3. ALGEBRAS OF TYPE Cl (l ≥ 1)

(I) Let Ψ be a non-degenerate alternating bilinear form on a vector space
V of finite dimension 2l ≥ 2; the set of endomorphisms x of V such that
Ψ(xv, v′) + Ψ(v, xv′) = 0 for all v, v′ ∈ V is a semi-simple Lie subalgebra
of sl(V) (Chap. I, §6, no. 7, Prop. 9). We denote it by sp(Ψ) and call it the
symplectic Lie algebra associated to Ψ .

By Algebra, Cap. IX, §4, no. 2, V can be written as the direct sum of two
maximal totally isotropic subspaces F and F′, which are in duality relative
to Ψ . Let (ei)1≤i≤l be a basis of F, and (e−i)1≤i≤l the dual basis of F′. Then

(e1, . . . , el, e−l, . . . , e−1)

is a basis of V; we say that it is a Witt basis (or symplectic basis) of V. The
matrix of Ψ with respect to this basis is the square matrix of order 2l

J =
(

0 s
−s 0

)
where s is the square matrix of order l all of whose entries are zero except
those on the second diagonal which are equal to 1, cf. no. 2.I.
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The algebra g = sp(Ψ) can be identified with the algebra sp(2l, k) of
square matrices a of order 2l such that a = −J−1taJ = J taJ (Algebra,
Chap. IX, §1, no. 10, formulas (50)), that is of the form

a =
(
A B
C −stAs

)
where A,B,C are square matrices of order l such that B = stBs and C =
ctCs; in other words, B and C are symmetric with respect to the second
diagonal. It follows that

dim g = l2 + 2
l(l + 1)

2
= l(2l + 1).

Let h be the set of diagonal matrices in g. This is a commutative sub-
algebra of g, with basis the elements Hi = Ei,i − E−i,−i for 1 ≤ i ≤ l. Let
(εi)1≤i≤l be the dual basis of (Hi). For 1 ≤ i < j ≤ l, put⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X2εi
= Ei,−i

X−2εi = −E−i,i

Xεi−εj = Ei,j − E−j,−i

X−εi+εj
= −Ej,i + E−i,−j

Xεi+εj
= Ei,−j + Ej,−i

X−εi−εj
= −E−i,j − E−j,i.

(6)

It is easily verified that these elements form a basis of a complement of h in
g and that, for h ∈ h,

[h,Xα] = α(h)Xα (7)

for all α ∈ R, where R is the set of the ±2εi and the ±εi±εj (i < j). It follows
that h is equal to its own normalizer in g, and hence is a Cartan subalgebra
of g, that h is splitting, and that the roots of (g, h) are the elements of R.
The root system R of (g, h) is of type Cl for l ≥ 2, and of type A1 (in other
words of type C1) for l = 1 (Chap. VI, §4, no. 6.I extended to the case l = 1).
Consequently, g is a splittable simple Lie algebra of type Cl.

Every splitting Cartan subalgebra of g is transformed into h by an ele-
mentary automorphism, hence by an element of the symplectic group Sp(Ψ)
(cf. (VII)), and consequently is the set hβ of elements of g whose matrix with
respect to a Witt basis β of g is diagonal. It is immediately verified that the
only vector subspaces of V stable under hβ are those generated by a subset
of β.

We have sp(2, k) = sl(2, k). On the other hand, the algebras sp(4, k) and
oS(5, k) have the same root system, and hence are isomorphic (cf. Exerc. 3).
From now on, we assume that l ≥ 2.

(II) The root system R∨ is determined by means of Chap. VI, §4, no. 6.I and
6.V; we find that
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H2εi = Hi, Hεi−εj = Hi −Hj , Hεi+εj = Hi +Hj .

(III) Put α1 = ε1 − ε2, . . . , αl−1 = εl−1 − εl, αl = 2εl. By Chap. VI, §4,
no. 6.II, {α1, . . . , αl} is a basis B of R; the positive roots relative to B are
the 2εi and the εi ± εj (i < j). The corresponding Borel subalgebra b is the
set of upper triangular matrices in g.

Let δ be an isotropic flag in V (that is, whose elements are all totally
isotropic subspaces for Ψ), and let pδ be the subalgebra consisting of the
elements of g leaving stable the elements of δ. We show as in no. 2.III that the
map δ 	→ pδ is a bijection from the set of isotropic flags (resp. the maximum
isotropic flags) to the set of parabolic (resp. Borel) subalgebras of g; we have
pδ ⊃ pδ′ if and only if δ ⊂ δ′.

(IV) The fundamental weights corresponding to α1, . . . , αl are, by Chap. VI,
§4, no. 6.VI, the �i = ε1 + · · · + εi (1 ≤ i ≤ l).

We are going to show how the fundamental representation σr of weight
�r can be realised as a subrepresentation of

∧r
σ, where σ is the identity

representation of g on V, and for this we shall study the decomposition of
the representation

∧
σ of g on the exterior algebra

∧
V.

Let (e∗i ) be the basis of V∗ dual to (ei). The alternating bilinear form Ψ

can be identified with an element Γ ∗ ∈ ∧2 V∗ (Algebra, Chap. III, §7, no. 4,
Prop. 7 and §11, no. 10) and it is easy to verify that

Γ ∗ = −
l∑

i=1

e∗i ∧ e∗−i.

Let Ψ∗ be the inverse form of Ψ (Algebra, Chap. IX, §1, no. 7); it is
immediate that

Ψ∗(e∗i , e
∗
j ) = 0

for i �= −j and Ψ∗(e∗i , e
∗
−i) = −1 for 1 ≤ i ≤ l. If we identify Ψ∗ with an

element Γ ∈ ∧2 V, then

Γ =
l∑

i=1

ei ∧ e−i.

Denote byX− the endomorphism of
∧

V given by the left exterior product
with Γ and byX+ the endomorphism of

∧
V given by the left interior product

with −Γ ∗:

X−u =

(
l∑

i=1

ei ∧ e−i

)
∧ u,

X+u =

(
l∑

i=1

e∗i ∧ e∗−i

)
∧ u.
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To calculate X+ and X−, introduce a basis of
∧

V in the following way:
for any triplet (A,B,C) formed by three disjoint subsets of 1, l , put

eA,B,C = ea1 ∧ · · · ∧ eam ∧ e−b1 ∧ · · · ∧ e−bn ∧ ec1 ∧ e−c1 ∧ · · · ∧ ecp ∧ e−cp

where (a1, . . . , am) (resp. (b1, . . . , bn), (c1, . . . , cp)) are the elements of A (resp.
B,C) arranged in increasing order. We obtain in this way a basis of

∧
V and

simple calculations show that

X−.eA,B,C =
∑

j∈ 1,l ,j /∈A∪B∪C

eA,B,C∪{j} (8)

X+.eA,B,C = −
∑
j∈C

eA,B,C−{j}. (9)

Let H be the endomorphism of
∧

V that reduces to multiplication by
(l − r) on

∧r V (0 ≤ r ≤ 2l). It is painless to verify (cf. Exerc. 19) that

[X+, X−] = −H
[H,X+] = 2X+

[H,X−] = −2X−.

In other words, the vector subspace s generated by X+, X− and H is a
Lie subalgebra of End(

∧
V), isomorphic to sl(2, k), and

∧r V is the subspace
of elements of weight l − r. Denote by Er the subspace of

∧r V consisting
of the primitive elements, that is, Er = (

∧r V) ∩ KerX+. It follows from §1
that, for r < l, the restriction of X− to

∧r V is injective and that, for r ≤ l,∧r V decomposes as a direct sum∧r V = Er ⊕X−(Er−2) ⊕X2
−(Er−4) ⊕ · · ·

= Er ⊕X−(
∧r−2 V).

This shows in particular that dim Er =
(

2l
r

)
−
(

2l
r−2

)
for 0 ≤ r ≤ l.

On the other hand, the very definition of sp(Ψ) shows that Γ ∗ is annihi-
lated by the second exterior power of the dual of σ. Similarly, Γ is annihilated
by
∧2
σ. We deduce immediately that X+ and X−, and hence also H, com-

mute with the endomorphisms
∧
σ(g) for g ∈ g. Consequently, the subspaces

Er for 0 ≤ r ≤ l are stable under
∧r
σ; we shall show that the restriction of∧r

σ to Er is a fundamental representation σr of weight �r (1 ≤ r ≤ l).
We remark first of all that the weights of

∧r
σ relative to h are the

εi1 + · · · + εik
− (εj1 + · · · + εjr−k

),

where i1, . . . , ik (resp. j1, . . . , jr−k) are distinct elements of 1, l ; thus, the
highest weight of

∧r
σ is indeed

�r = ε1 + · · · + εr
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and the vectors of weight �r are those proportional to e1 ∧ · · · ∧ er =
e{1,...,r},∅,∅. Formula (9) shows that e1 ∧ · · · ∧ er ∈ Er. Thus, it suffices
to prove that the restriction of

∧r
σ to Er is irreducible.

If s ∈ Sp(Ψ), the extension of s to
∧

V (resp.
∧

V∗) fixes Γ (resp. Γ ∗),
and hence commutes with X+ and X− and leaves Er stable. Consequently, Er

contains the vector subspace Fr generated by the transforms of e1∧· · ·∧er by
Sp(Ψ). The theorem of Witt shows that these are the non-zero decomposable
r-vectors such that corresponding vector subspace of V is a totally isotropic
subspace, r-vectors that we shall call isotropic.

Lemma 2. For 1 ≤ r ≤ l, let Fr be the subspace of
∧r V generated by the

isotropic r-vectors. Then∧r V = Fr +X−(
∧r−2 V) = Fr +

(
l∑

i=1
ei ∧ e−i

)
∧∧r−2 V.

We show first of all how Lemma 2 implies our assertion. Since Fr ⊂ Er

and Er ∩X−(
∧r−2 V) = {0}, the lemma implies that Fr = Er. On the other

hand, let s ∈ Sp(Ψ); the automorphism a 	→ sas−1 of End(V) preserves g
and induces on it an element of Aut0(g) (cf. (VII)), and hence transforms
every irreducible representation of g into an equivalent representation (§7,
no. 1, Prop. 2). Since e1 ∧ · · · ∧ er belongs to an irreducible component of∧r
σ, and since Er = Fr is generated by the transforms of e1 ∧ · · · ∧ er by

Sp(Ψ), it follows that the representation of g on Er is isotypical. But the
multiplicity of its highest weight �r is 1, so it is irreducible.

It remains to prove the lemma. It is clear for r = 1. We argue by induction,
and assume that r ≥ 2. By the induction hypothesis, we are reduced to
proving that

Fr−1 ∧ V ⊂ Fr + Γ ∧∧r−2 V,

or that, if y is a decomposable (r − 1)-vector and x ∈ V, then

z = y ∧ x ∈ Fr + Γ ∧∧r−2 V.

Let (fi)1≤±i≤l be a Witt basis of V such that y = f1 ∧ · · · ∧ fr−1. It suf-
fices to carry out the proof when x = fi. If i /∈ 1 − r,−1 , the r-vector
f1 ∧ · · · ∧ fr−1 ∧ fi is isotropic. Otherwise, we can assume, renumbering the

fi if necessary, that i = 1 − r. Then Γ =
l∑

j=1
fj ∧ f−j , so

fr−1 ∧ f1−r =
1

l − r + 2

⎛⎝Γ −
r−2∑
i=1

fi ∧ f−i +
l∑

j=r

(fr−1 ∧ f1−r − fj ∧ f−j)

⎞⎠ ,
z =

1
l − r + 2

Γ ∧ f1 ∧ · · · ∧ fr−2

+
1

l − r + 2

l∑
j=r

(f1 ∧ · · · ∧ fr−2) ∧ (fr−1 ∧ f1−r − fj ∧ f−j).
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But

fr−1 ∧ f1−r−fj ∧ f−j = (fr−1 + fj) ∧ (f1−r − f−j)−fj ∧ f1−r+fr−1 ∧ f−j

and we verify immediately that the r-vectors

f1 ∧ · · · ∧ fr−2 ∧ (fr−1 + fj) ∧ (f1−r − f−j),
f1 ∧ · · · ∧ fr−2 ∧ fj ∧ f1−r and f1 ∧ · · · ∧ fr−1 ∧ f−j

are isotropic for r ≤ j ≤ l. Consequently, z ∈ Fr + Γ ∧ ∧r−2 V, which
completes the proof.

(V) We have w0 = −1, so every finite dimensional simple representation of
g is orthogonal or symplectic. By Chap. VI, §4, no. 6.VI, the sum of the
coordinates of �r with respect to (α1, . . . , αl) is

1 + 2 + · · · + (r − 1) + r + r + · · · + r +
r

2

so σr is orthogonal for r even and symplectic for r odd.
Since e1 ∧ · · · ∧ er and e−1 ∧ · · · ∧ e−r belong to Er and since

Ψ(r)(e1 ∧ · · · ∧ er , e−1 ∧ · · · ∧ e−r) = 1,

we see that the restriction of Ψ(r) to Er is non-zero: this is, up to a constant
factor, the bilinear form; it is symmetric if r is even, alternating if r is odd,
and invariant under σr.

(VI) For all x ∈ g, the characteristic polynomial of σ(x) takes the form

T2l + f1(x)T2l−1 + · · · + f2l(x)

where f1, . . . , f2l are invariant polynomial functions on g.
If x = ξ1H1 + · · · + ξlHl ∈ h, the fi(x) are, up to sign, the elementary

symmetric functions of ξ1, . . . , ξl,−ξ1, . . . ,−ξl; these symmetric functions are
zero in odd degrees, and

T2l + f2(x)T2l−2 + · · · + f2l(x) = (T2 − ξ21) . . . (T2 − ξ2l ).

As in no. 2.VI, it follows that f1 = f3 = f5 = · · · = 0, and that

(f2, f4, . . . , f2l)

is an algebraically free family generating the algebra of invariant polynomial
functions on g.

(VII) Since the only automorphism of the Dynkin graph is the identity, we
have Aut(g) = Aut0(g).

Let Σ be the group of similarities of V relative to Ψ (Algebra, Chap. IX,
§6, end of no. 5). One proves as in no. 2.VII that the automorphisms of g



210 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

are the maps x 	→ sxs−1 where s ∈ Σ, so that Aut(g) = Aut0(g) can be
identified with Σ/k∗.

For all s ∈ Σ, let µ(s) be the multiplier of s. The map s 	→ µ(s) mod k∗2

from Σ to k∗/k∗2 is a homomorphism whose kernel contains k∗.1, and hence
gives a homomorphism λ fromΣ/k∗ to k∗/k∗2. We have Sp(Ψ)∩k∗ = {1,−1}.
Consider the sequence of homomorphisms

1 −→ Sp(Ψ)/{1,−1} ι−→ Σ/k∗ λ−→ k∗/k∗2 −→ 1. (10)

The map ι is injective, and Im(ι) ⊂ Kerλ since the multiplier of an element of
Sp(Ψ) is 1. If the multiplier of s ∈ Σ is an element of k∗2, there exists ν ∈ k∗

such that νs ∈ Sp(Ψ); thus, Im(ι) = Ker(λ). In summary, the sequence (10)
is exact. We identify Sp(Ψ)/{1,−1} with a subgroup of Σ/k∗. Since k∗/k∗2

is commutative, Sp(Ψ)/{1,−1} contains the derived group of Σ/k∗. Thus,
Aute(g) is contained in Sp(Ψ)/{1,−1} (§11, no. 2, Prop. 3). In fact, it is
equal to it, and Aut(g)/Aute(g) is identified with k∗/k∗2 (Exerc. 9).

(VIII) The canonical bilinear form ΦR on h∗ is given by

ΦR(ξ1ε1 + · · · + ξlεl, ξ′
1ε1 + · · · + ξ′

lεl) =
1

4(l + 1)
(ξ1ξ′

1 + · · · + ξlξ′
l)

(Chap. VI, §4, no. 6.V). Thus, the inverse form of ΦR, that is, the restriction
to h of the Killing form, is

Φ(ξ1H1 + · · · + ξlHl, ξ
′
1H1 + · · · + ξ′

lHl) = 4(l + 1)(ξ1ξ′
1 + · · · + ξlξ′

l).

(IX) Recall the Xα defined by formulas (6) (α ∈ R). It is easily verified that
[Xα, X−α] = −Hα for α ∈ R. On the other hand, the map θ : a 	→ −ta is an
automorphism of g and θ(Xα) = X−α for all α ∈ R. Consequently, (Xα)α∈R
is a Chevalley system in (g, h).

Assume that k = Q. The Cartan subalgebra h has two permissible lat-

tices Q(R∨) =
l∑

i=1
Z.Hi and P(R∨) = Q(R∨) + 1

2Z.
l∑

i=1
Hi (Chap. VI, §4,

no. 5.VIII). We see that Q(R∨) is the set of matrices with integer entries
belonging to h. It follows that the Chevalley order Q(R∨) +

∑
α∈R

Z.Xα is the

set sp(2l,Z) of matrices in g with integer entries.
Consider the reductive Lie algebra sp(Ψ) + Q.1. It is easy to see that the

set of its elements with integer entries is a Chevalley order, whose projection
onto sp(Ψ) parallel to Q.1 is the Chevalley order P(R∨) +

∑
Z.Xα.

Finally, X2
α = 0 for all α ∈ R. It follows that the lattice V in V generated

by the ei is admissible for the Chevalley order sp(2l,Z). The same holds for
the lattice Er ∩∧r V in Er.

Finally, Er has an admissible lattice for the Chevalley order

P(R∨) +
∑

Z.Xα

only if r is even; then Er ∩∧r V is such a lattice.
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4. ALGEBRAS OF TYPE Dl (l ≥ 2)

(I) Let V be a vector space of even dimension 2l ≥ 4 and let Ψ be a non-
degenerate symmetric bilinear form of maximum index l on V. By Algebra,
Chap. IX, §4, no. 2, V can be written as the direct sum of two maximal totally
isotropic subspaces F and F′. Let (ei)1≤i≤l be a basis of F and (e−i)1≤i≤l

the dual basis of F′ (for the duality between F and F′ defined by Ψ). Then
e1, . . . , el, e−l, . . . , e−1 is a basis of V; we shall call it a Witt basis of V. The
matrix of Ψ with respect to this basis is the square matrix S of order 2l all of
whose entries are zero, except those situated on the second diagonal, which are
equal to 1. The algebra g = o(Ψ) can be identified with the algebra oS(2l, k)
of square matrices g of order 2l such that g = −StgS. It has dimension
l(2l − 1). An easy calculation shows that g is the set of matrices of the form(

A B
C D

)
where A,B,C,D are square matrices of order l such that B = −stBs,C =
−stCs and D = −stAs (s is the matrix of order l all of whose entries are
zero except those situated on the second diagonal which are equal to 1).

Let h be the set of diagonal matrices belonging to g. This is a commutative
subalgebra of g, with basis formed by the elements Hi = Ei,i − E−i,−i for
1 ≤ i ≤ l. Let (εi) be the basis of h∗ dual to (Hi). Put, for 1 ≤ i < j ≤ l,⎧⎪⎨⎪⎩

Xεi−εj
= Ei,j − E−j,−i

X−εi+εj
= −Ej,i + E−i,−j

Xεi+εj = Ei,−j − Ej,−i

X−εi−εj = −E−j,i + E−i,j .

(11)

These elements form a basis of a complement of h in g. For h ∈ h,

[h,Xα] = α(h)Xα

for all α ∈ R, where R is the set of the ±εi ± εj (i < j). Thus, h is a splitting
Cartan subalgebra of g, and the roots of (g, h) are the elements of R. The
root system R of (g, h) is thus of type Dl for l ≥ 3, of type A1 × A1 (in other
words of type D2) for l = 2 (Chap. VI, §4, no. 8.I extended to the case l = 2).
Consequently, g is a splittable simple Lie algebra of type Dl if l ≥ 3.

Every splitting Cartan subalgebra of g is transformed into h by an ele-
mentary automorphism of g, and hence by an element of O(Ψ) (cf. (VII)) and
consequently is the set hβ of elements of g whose matrix with respect to a
Witt basis β of V is diagonal. We verify immediately that the only subspaces
invariant under hβ are those generated by a subset of β.

Since the algebras oS(4, k) and sl(2, k) × sl(2, k) have the same root sys-
tems, they are isomorphic. Similarly, oS(6, k) and sl(4, k) are isomorphic (cf.
also Exerc. 3). From now on, we assume that l ≥ 3.
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(II) We determine R∨ by means of Chap. VI, §4, no. 8.V. We find that

Hεi−εj = Hi −Hj , Hεi+εj = Hi +Hj .

(III) Put α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl, αl = εl−1 + εl.
By Chap. VI, §4, no. 8.II, (α1, . . . , αl) is a basis B of R; the positive roots
relative to B are the εi ± εj (i < j). The corresponding Borel subalgebra b is
the set of upper triangular matrices belonging to g.

It is easily verified that the only non-trivial vector subspaces invariant
under b are the totally isotropic subspaces V1, . . . ,Vl,V′

l, where Vi is gen-
erated by e1, . . . , ei and V′

l by e1, . . . , el−1, e−l, and the orthogonal comple-
ments V−1, . . . ,V−l+1 of V1, . . . ,Vl−1; the orthogonal complement V−i of
Vi is generated by e1, . . . , el, e−l, . . . , e−(i+1). But an immediate calculation
shows that, if an element a ∈ g leaves Vl−1 stable, its matrix is of the form⎛⎜⎝A x B

0
(
λ 0
0 −λ

)
y

0 0 D

⎞⎟⎠
where A,B,D are square matrices of order l− 1, x (resp. y) is a matrix with
2 columns and l − 1 rows (resp. 2 rows and l − 1 columns), and λ ∈ k. It
follows that a leaves Vl and V′

l stable. Consequently, b is the set of a ∈ g
leaving all the elements of the isotropic flag (V1, . . . ,Vl−1) stable. Note that
the preceding and Witt’s theorem (Algebra, Chap. IX, §4, no. 3, Th. 1) imply
that Vl and V′

l are the only maximal totally isotropic subspaces containing
Vl−1.

We say that an isotropic flag is quasi-maximal if it is composed of l − 1
totally isotropic subspaces of dimensions 1, . . . , l− 1. We then see as in no. 2
that, for any quasi-maximal isotropic flag δ, the set bδ of a ∈ g leaving the
elements of δ stable is a Borel subalgebra of g and that the map δ 	→ bδ is
a bijection from the set of quasi-maximal isotropic flags to the set of Borel
subalgebras.

We say that an isotropic flag is proper if it does not contain both a
subspace of dimension l and a subspace of dimension l− 1. Let δ be such an
isotropic flag and let pδ be the set of a ∈ g leaving stable the elements of δ.
If δ ⊂ {V1, . . . ,Vl,V′

l}, then pδ is a parabolic subalgebra of g, containing b,
and it is easy to verify that the only totally isotropic subspaces �= {0} stable
under pδ are the elements of δ. Since there are 2l−2 proper isotropic flags
contained in {V1, . . . ,Vl,V′

l} and containing Vl−1 (resp. Vl, resp. V′
l, resp.

containing neither Vl−1, nor Vl, nor V′
l), this gives 2l parabolic subalgebras

containing b. It follows as above that the map δ 	→ pδ is a bijection from the
set of proper isotropic flags to the set of parabolic subalgebras of g.

(IV) The fundamental weights corresponding to α1, . . . , αl are, by Chap. VI,
§4, no. 8.VI,
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�i = ε1 + ε2 + · · · + εi (1 ≤ i ≤ l − 2)

�l−1 =
1
2
(ε1 + ε2 + . . .+ εl−2 + εl−1 − εl)

�l =
1
2
(ε1 + ε2 + . . .+ εl−2 + εl−1 + εl).

Let σ be the identity representation of g on V. The exterior power
∧r
σ

operates on E =
∧r(V). If h ∈ h, we have

σ(h)ei = εi(h)ei, σ(h)e−i = −εi(h)e−i

for 1 ≤ i ≤ l. It follows that, for 1 ≤ r ≤ l, ε1 + · · · + εr is the highest
weight of

∧r
σ, the elements of weight ε1 + · · · + εr being those proportional

to e1 ∧ · · · ∧ er.
We shall show that, for 1 ≤ r ≤ l − 2, the representation

∧r
σ is a

fundamental representation of weight �r.
For this, it suffices to show that

∧r
σ is irreducible for 1 ≤ r ≤ l − 1

(note that the representation
∧l
σ is not irreducible, cf. Exerc. 10), or that

the smallest subspace Tr of
∧r V containing e1 ∧ · · · ∧ er and stable under

g is the whole of
∧r V. This is immediate for r = 1. For r = 2, we see as

in no. 2 that
∧2
σ is equivalent to the adjoint representation of g, which is

irreducible since g is simple. The proof is completed by arguing by induction
on l, as in no. 2, but assuming that l − 1 ≥ r ≥ 3.

We are now going to determine the fundamental representations of highest
weight �l−1 and �l. Let Q be the quadratic form x 	→ 1

2Ψ(x, x). We have
defined in no. 2.IV the spinor representation λ of the Clifford algebra C(Q)
on N =

∧
F′. We verify immediately that the subspace N+ (resp. N−) of

N given by the sum of the
∧p F′ for p even (resp. odd) is stable under the

restriction of λ to C+(Q). Consequently, the representations λ+ and λ− of
C+(Q) on N+ and N− respectively are the semi-spinor representations of
C+(Q) (Algebra, Chap. IX, §9, no. 4); they are irreducible, of dimension 2l−1

and inequivalent. Let ρ+ = λ+ ◦ f and ρ− = λ− ◦ f be the corresponding
irreducible representations of g (no. 2, Lemma 1 (vi)). In view of Lemma 1
(i), we have

f(Hi) =
1
2
(eie−i − e−iei) = eie−i − 1

2
=

1
2

− e−iei

and we see, as in no. 2.IV, that, for h ∈ h and 1 ≤ i1 < · · · < ik ≤ l,

λ ◦ f(h)(e−i1 ∧ · · · ∧ e−ik
)

= (
1
2
(ε1 + · · · + εl) − (εi1 + · · · + εik

))(h)(e−i1 ∧ · · · ∧ e−ik
).

Consequently, the highest weight of ρ+ (resp. ρ−) is �l (resp. �l−1).
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We say that ρ+ and ρ− are the semi-spinor representations of g. All their
weights are simple. We also say that ρ = λ ◦ f = ρ+ ⊕ ρ− is the spinor
representation of g.

(V) For 1 ≤ r ≤ l − 2, the fundamental representation
∧r
σ is orthogonal: it

leaves invariant the extension of Ψ to
∧r V.

Consider now the spinor representation ρ of g. We show as in no. 2 that,
for 1 ≤ i, j ≤ l, i �= j,

f(Xεi−εj
) = ±eie−j

f(Xεi+εj
) = ±eiej

f(X−εi−εj
) = ±e−ie−j .

It follows that the non-degenerate bilinear form Φ introduced in no. 2.V is
invariant under ρ(g). Thus, the spinor representation ρ leaves invariant a non-
degenerate form that is symmetric for l ≡ 0,−1 (mod. 4) and alternating for
l ≡ 1, 2 (mod. 4).

If l is even, the restrictions of Φ to N+ and N− are non-degenerate and the
semi-spinor representations are orthogonal for l ≡ 0 (mod. 4) and symplectic
for l ≡ 2 (mod. 4). Moreover, we remark that w0 = −1 (Chap. VI, §4,
no. 8.XI).

On the other hand, if l is odd, N+ and N− are totally isotropic for Φ. More-
over, −w0(αi) = αi for 1 ≤ i ≤ l − 2, −w0(αl) = αl−1 and −w0(αl−1) = αl

(Chap. VI, §4, no. 8.XI), so −w0(�l) = �l−1 and the semi-spinor represen-
tations are neither orthogonal nor symplectic; each of them is isomorphic to
the dual of the other.

(VI) For all x ∈ g, the characteristic polynomial of σ(x) takes the form

T2l + f1(x)T2l−1 + · · · + f2l(x).

We see as in no. 3 that f1 = f3 = f5 = · · · = 0. By Chap. VI, §4, no. 8.IX
and §8, no. 3, Th. 1, there exists a polynomial function f̃ on g such that
f2, f4, . . . , f2l−2, f̃ generate the algebra I(g∗) of invariant polynomial func-
tions on g, are algebraically independent, and further f̃2 = (−1)lf2l.

For all x ∈ g, we have t(Sx) = txS = −Sx, so we can consider Pf(Sx),
which is a polynomial function of x. Now:

f2l(x) = det(x) = (−1)l det(Sx) = (−1)l(Pf(Sx))2.

Thus, we can take f̃(x) = Pf(Sx).

(VII) Recall (§5, no. 3, Cor. 1 of Prop. 5) that Aut(g)/Aut0(g) can be iden-
tified with the group Aut(D) of automorphisms of the Dynkin graph D of
(g, h). When l �= 4, Aut(D) is the group of order 2 consisting of the permuta-
tions of α1, . . . , αl that leave α1, . . . , αl−2 fixed. When l = 4, Aut(D) consists
of the permutations of α1, . . . , α4 that leave α2 fixed; it is isomorphic to S3
(cf. Chap. VI, §4, no. 8.XI). In all cases, the subgroup of Aut(D) consisting
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of the elements that leave α1 fixed is of order 2. We denote by Aut′(g) the
corresponding subgroup of Aut(g); we have Aut′(g) = Aut(g) if l �= 4 and
(Aut(g) : Aut′(g)) = 3 if l = 4; moreover,

(Aut′(g) : Aut0(g)) = 2.

An element s ∈ Aut(g) belongs to Aut′(g) if and only if σ ◦s is equivalent
to σ (this follows from the fact that �1 is the highest weight of σ). We
conclude as in no. 2.VII that Aut′(g) can be identified with Σ/k∗, where Σ
is the group of similarities of V relative to Ψ .

Let s ∈ Σ, and let λ(s) be the multiplier of s. We have det(s) = λ(s)l if
s is direct, and det(s) = −λ(s)l if s is inverse (Algebra, Chap. IX, §6, no. 5).
The direct similarities form a subgroup Σ0 of index 2 in Σ; we have Σ0 ⊃ k∗.
The group Σ0/k

∗ is equal to the subgroup Aut0(g) of Aut′(g) = Σ/k∗. Indeed,
it suffices to verify this when k is algebraically closed: in that case Aut0(g) =
Aute(g) is equal to its derived group (§11, no. 2, Prop. 3), hence is contained
in Σ0/k

∗, and since they are both of index 2 in Σ/k∗, they are equal.
On the other hand, as in no. 3.VII there is an exact sequence

1 −→ SO(Ψ)/{1,−1} −→ Σ0/k
∗ −→ k∗/k∗2 −→ 1.

Identify SO(Ψ)/{1,−1} with a subgroup of Σ0/k
∗ = Aut0(g). Since k∗/k∗2

is commutative, we have Aute(g) ⊂ SO(Ψ)/{1,−1}. In fact, it can be shown
(Exerc. 11) that Aute(g) is equal to the image in SO(Ψ)/{1,−1} of the
reduced orthogonal group O+

0 (Ψ) of Ψ (Algebra, Chap. IX, §9, no. 5).

(VIII) The canonical bilinear form ΦR on h∗ is given by

ΦR(ξ1ε1 + · · · + ξlεl, ξ′
1ε1 + · · · + ξ′

lεl) =
1

4(l − 1)
(ξ1ξ′

1 + · · · + ξlξ′
l)

(Chap. VI, §4, no. 8.V). Thus, the restriction of the Killing form to h is

Φ(ξ1H1 + · · · + ξlHl, ξ
′
1H1 + · · · + ξ′

lHl) = 4(l − 1)(ξ1ξ′
1 + · · · + ξlξ′

l).

(IX) Recall the Xα (α ∈ R) defined by formulas (11). We verify easily that
[Xα, X−α] = −Hα for α ∈ R. On the other hand, the map θ : a 	→ −ta is an
automorphism of g and θ(Xα) = X−α for all α ∈ R. Consequently (Xα)α∈R
is a Chevalley system in (g, h).

Assume that k = Q. By Chap. VI, §4, no. 8.VIII, the subalgebra h has
three permissible lattices if l is odd and four permissible lattices if l is even. In
particular, the lattice H generated by the Hi is permissible. But this lattice is
the set of diagonal matrices in g with integer entries. It follows that oS(2l,Z)
is the Chevalley order H +

∑
Z.Xα in g. Since X2

α = 0 for all α ∈ R, we
see that the lattice V in V generated by the Witt basis (ei) is an admissible
lattice in V for oS(2l,Z). The same holds for

∧r V in
∧r V.
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On the other hand, if we take P(R∨) = Z. 12
l∑

i=1
Hi + H as permissible

lattice and G = P(R∨) +
∑

Z.Xα as Chevalley order, we see that
∧r V has

an admissible lattice only if r is even;
∧r V is then admissible.

Consider the reductive Lie algebra o(Ψ) + Q.1; we see immediately that
the lattice G̃ = (o(Ψ) + Q.1) ∩ gl(2l,Z) is a Chevalley order. The Chevalley
order G is the projection of G̃ onto o(Ψ) parallel to the centre Q.1.

Finally, we see as in no. 2 that the lattice N+ (resp. N−) generated by the
e−i1 ∧ · · · ∧ e−i2k

(resp. e−i1 ∧ · · · ∧ e−i2k+1) is admissible for the semi-spinor
representation of the Chevalley order Q(R∨)+

∑
α∈R

Z.Xα. On the other hand,

N+ and N− have no admissible lattice for oS(2l,Z).
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TABLE 1

We associate to each fundamental weight the number 1 (resp. −1, 0) if the
corresponding simple representation is orthogonal (resp. symplectic, resp.
neither orthogonal nor symplectic). The calculation of this number has in
essence been given in §13 for types Al,Bl,Cl,Dl. The results are also indi-
cated below for types E6,E7,E8,F4,G2 (it suffices to apply §7, Prop. 12, and
Chap. VI, §4, nos. 9.VI, 9.XI, 10.VI, 10.XI, 11.VI, 11.XI, 12.VI, 12.XI, 13.VI,
13.XI).

Al (l ≥ 1) Bl (l ≥ 2)

�r

{
0 r �= l+1

2 �r 1 r �= l

(−1)r r = l+1
2 �l (−1)l(l+1)/2

Cl (l ≥ 2) Dl (l ≥ 2)

�r (−1)r �r 1 r �= l − 1, l

�l and �l−1

{
0 if l is odd
(−1)l/2 if l is even

E6 E7 E8 F4 G2

�1 0 �1 1 �1 1 �1 1 �1 1
�2 1 �2 − 1 �2 1 �2 1 �2 1
�3 0 �3 1 �3 1 �3 1
�4 1 �4 1 �4 1 �4 1
�5 0 �5 − 1 �5 1
�6 0 �6 1 �6 1

�7 − 1 �7 1
�8 1
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TABLE 2

We associate to each fundamental weight the dimension of the corresponding
simple representation, calculated by means of Th. 2 of §9.

Al (l ≥ 1) Bl (l ≥ 2)

�r (1 ≤ r ≤ l)
(
l + 1
r

)
�r (1 ≤ r ≤ l − 1)

(
2l + 1
r

)
�l 2l

Cl (l ≥ 2) Dl (l ≥ 2)

�r (1 ≤ r ≤ l)
(

2l
r

)
−
(

2l
r − 2

)
�r (1 ≤ r ≤ l − 2)

(
2l
r

)
�l−1 2l−1

�l 2l−1

E6 E7

�1 27 = 33 �1 133 = 7.19

�2 78 = 2.3.13 �2 912 = 24.3.19

�3 351 = 33.13 �3 8645 = 5.7.13.19

�4 2925 = 32.52.13 �4 365750 = 2.53.7.11.19

�5 351 = 33.13 �5 27664 = 24.7.13.19

�6 27 = 33 �6 1539 = 34.19

�7 56 = 23.7

E8 F4

�1 3875 = 53.31 �1 52 = 22.13

�2 147250 = 2.53.19.31 �2 1274 = 2.72.13

�3 6696000 = 26.33.53.31 �3 273 = 3.7.13

�4 6899079264 = 25.3.72.112.17.23.31 �4 26 = 2.13

�5 146325270 = 2.3.5.72.132.19.31

�6 2450240 = 26.5.13.19.31

�7 30380 = 22.5.72.31 G2

�8 248 = 23.31 �1 7
�2 14 = 2.7



EXERCISES

The base field k is assumed to be of characteristic zero.
Unless explicitly stated otherwise, Lie algebras are assumed to be finite

dimensional.

§1

We denote by s the Lie algebra sl(2, k).

1) Let U be the enveloping algebra of s. Show that the element

C = H2 − 2(X+X− +X−X+) = H2 + 2H − 4X−X+

belongs to the centre of U, and that its image in the representation associated
to V(m) is the homothety with ratio m(m+ 2).

2) Let λ ∈ k, let Z(λ) be a vector space having a basis (en), with n = 0, 1, . . .,
and let X+, X−, H be the endomorphisms of Z(λ) defined by formulas (2) of
Prop. 1.
a) Verify that this gives an s-module structure on Z(λ).
b) Assume that λ is not an integer ≥ 0. Show that the s-module Z(λ) is
simple.
c) Assume that λ is an integer ≥ 0. Let Z′ be the subspace of Z(λ) generated
by the en, n > λ. Show that Z′ is an s-submodule of Z(λ), isomorphic to
Z(−λ−2), and that the quotient Z(λ)/Z′ is isomorphic to the simple s-module
V(λ). Show that the only s-submodules of Z(λ) are 0,Z′ and Z(λ).

3) Let E be a vector space having a basis (en)n∈Z. Let

a(n) = a0 + a1n, b(n) = b0 + b1n, c(n) = c0 + c1n

be three affine functions with coefficients in k. Define endomorphismsX+, X−,
H of E by the formulas

X+en = a(n)en−1, X−en = b(n)en+1, Hen = c(n)en.

This gives an s-module structure on E if and only if:

a1b1 = 1, c1 = −2, c0 = −a0b1 − a1b0.
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Under what condition is this s-module simple?

¶ 4) Let g be a Lie algebra. A g-module E is said to be locally finite if it is
a union of finite dimensional g-submodules; equivalently, every g-submodule
of E of finite type (as a U(g)-module) is finite dimensional.
a) Let 0 → E′ → E → E′′ → 0 be an exact sequence of g-modules. Show
that, if E′ and E′′ are locally finite, so is E (reduce to the case in which E is
of finite type, and use the fact that U(g) is noetherian, cf. Chap. I, §2, no. 6).
b) Assume that g is semi-simple. Show that E is locally finite if and only if
E is a direct sum of finite dimensional simple g-modules.
c) Assume that g = s. Show that E is locally finite if and only if the following
conditions are satisfied:
c1) E has a basis consisting of eigenvectors of H,
c2) the endomorphisms X+E and X−E are locally nilpotent.

(Begin by showing that, if E satisfies c1) and c2), and is not reduced to
0, it contains a primitive element e of integer weight m ≥ 0; prove next that
Xm+1e = 0, and hence that E contains V(m). Conclude by applying a) to
the largest locally finite submodule E′ of E.)

5) Let E be a locally finite s-module (Exerc. 4). For all m ≥ 0, denote by
L(m) the vector space of s-homomorphisms from V(m) to E.
a) Define an isomorphism from E to

⊕
m

Lm ⊗ V(m).

b) Denote by Φm the invariant bilinear form on V(m) defined in no. 3,
Remark 3. For all m ∈ N, let bm be a bilinear form on Lm; let b be the bi-
linear form on E which corresponds, via the isomorphism in a), to the direct
sum of the forms bm ⊗Φm. Show that b is invariant, and that every invariant
bilinear form on E is obtained in this way in a unique manner. The form b
is symmetric (resp. alternating) if and only if the bm, m even, are symmetric
(resp. alternating), and the bm, m odd, are alternating (resp. symmetric).
The form b is non-degenerate if and only if the bm are non-degenerate.
c) Assume that E is finite dimensional. Show that E is monogenic (as a U(s)-
module) if and only if dim Lm ≤ m+ 1 for all m ≥ 0.

6) If E is a finite dimensional s-module, and n an integer, denote by an the
dimension of the eigenspace of HE relative to the eigenvalue n. Denote by
cE(T) the element of Z[T,T−1] defined by cE(T) =

∑
n∈Z

anTn.

a) Define Lm as in Exerc. 5. Show that

dimLm = am − am+2 for every integer m ≥ 0.

Deduce that cE(T) = cE′(T) if and only if E and E′ are isomorphic. Recover
this result by using Exerc. 18 e) of Chap. VII, §3.
b) Show that cE⊕F = cE + cF and cE⊗F = cE.cF.
c) We have cV(m)(T) = (Tm+1 − T−m−1)/(T − T−1).
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d) Deduce from a), b), c) that, if m ≥ m′ ≥ 0, the s-module V(m) ⊗ V(m′)
is isomorphic to

V(m+m′) ⊕ V(m+m′ − 2) ⊕ V(m+m′ − 4) ⊕ · · · ⊕ V(m−m′).

If m is ≥ 0, the s-module S2V(m) is isomorphic to

V(2m) ⊕ V(2m− 4) ⊕ V(2m− 8) ⊕ · · · ⊕
{

V(0) if m is even
V(2) if m is odd

and the s-module
∧2 V(m) is isomorphic to

V(2m− 2) ⊕ V(2m− 6) ⊕ V(2m− 10) ⊕ · · · ⊕
{

V(2) if m is even
V(0) if m is odd.

7) Let E be a finite dimensional s-module. Show that the dual of E is iso-
morphic to E.

8) Show that the s-module V(m) can be realized as the space of homogeneous
polynomials f(u, v) of degree m in two variables, the operators X+, X− and
H being given by:

X+f = u
∂f

∂v
, X−f = −v ∂f

∂u
, Hf = u

∂f

∂u
− v ∂f

∂v
.

¶ 9) Consider the operation of s, via the adjoint representation, on its en-
veloping algebra U and on its symmetric algebra S =

⊕
Sn.

a) Determine the weights of the s-module Sn. Deduce the following isomor-
phisms of s-modules:

Sn −→ V(2n) ⊕ V(2n− 4) ⊕ V(2n− 8) ⊕ · · · ⊕ V(0) n even
Sn −→ V(2n) ⊕ V(2n− 4) ⊕ V(2n− 8) ⊕ · · · ⊕ V(2) n odd.

In particular, the elements of Sn invariant under s form a space of dimension 1
(resp. 0) if n is even (resp. odd).
b) Show that the subalgebra of S consisting of the elements invariant under
s is the polynomial algebra k[Γ ], where Γ = H2 − 4X−X+. The module
Sn/Γ.Sn−2 is isomorphic to V(2n).
c) Show that the centre of U is the polynomial algebra k[C], where C is the
element defined in Exerc. 1 (use b) and the Poincaré-Birkhoff-Witt theorem).

10) Let m be an integer > 0, S the graded algebra k[X1, . . . ,Xm], and

a1, . . . , am elements of k∗. Let Φ =
m∑

i,j=1
aijXiXj be a quadratic form; put

Di = ∂
∂Xi

and D =
m∑

i,j=1
bijDiDj where (bij) is the inverse matrix of (aij).
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a) Show that there exists a unique s-module structure on S such that X+f =
1
2D(f), X−f = 1

2Φf and Hf = −(m/2+n)f if f is homogeneous of degree n.
b) Put An = Sn ∩ Ker(D). Show that Sn is the direct sum of the subspaces
Φp.Aq for 2p+ q = n. Deduce the identity

∞∑
n=0

dim(An)Tn = (1 + T)/(1 − T)m−1.

c) If f is a non-zero element of An, the Φpf , p ≥ 0, form a basis of a simple
s-submodule of S, isomorphic to the module Z

(−m
2 − n) of Exerc. 2.

d) Make the cases m = 1 and m = 2 explicit. Use the case m = 3 to recover
the results of Exerc. 9.

11) Assume that k is algebraically closed. Let g be a Lie algebra, V a simple
g-module, and D the field of endomorphisms of the g-module V. Show that, if
k is uncountable,7 then D = k. (If not, D would contain a subfield isomorphic
to k(X), X being an indeterminate, and we would have dimk D > ℵ0, hence
also dimk V > ℵ0, which is absurd since V is a monogenic U(g)-module.)

¶ 12) Let q ∈ k, and let W be a vector space with basis (e0, e1, e2, . . .).
a) Show that there exists a unique representation ρq of s on W such that

ρq(H)en = 2en+1, ρq(X+)en = (
1
2
ρq(H) − 1)ne0,

ρq(X−)en = (
1
2
ρq(H) + 1)n(−qe0 + e1 + e2).

We have ρq(C) = 4q, where C = H2 + 2H − 4X−X+ (cf. Exerc. 1). The
representation ρq is simple. The elements x ∈ s such that ρq(x) admits an
eigenvalue are the multiples of X+. The endomorphism ρq(X+) admits 1 as
an eigenvalue, with multiplicity 1.
b) Let ρ be a simple representation of s such that ρ(C) = 4q and such that
ρ(X+) has 1 as an eigenvalue. Show that ρ is equivalent to ρq.

¶ 13) Assume that k = C. Put C = H2 + 2H − 4X−X+, cf. Exerc. 1. A
representation ρ of s = sl(2,C) is said to be H-diagonalizable if the underly-
ing space of ρ has a basis consisting of eigenvectors of ρ(H). Let q ∈ C and
v ∈ Q/Z.
a) Let S be a vector space with a basis (ew)w∈C indexed by the elements of
C. Let Sv =

∑
w∈v

Cew. There exists a unique representation ρv,q of s on Sv

such that

7 The conclusion remains true even if k is countable, cf. D. QUILLEN, On the
endomorphism ring of a simple module over an enveloping algebra, Proc. Amer.
Math. Soc., Vol. XXI (1969), pp. 171-172.
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ρv,q(X+)ew = (q − w2 − w)1/2ew+1

ρv,q(X−)ew = (q − w2 + w)1/2ew−1

ρv,q(H)ew = 2wew.

(We agree that, for all z ∈ C, z1/2 is the square root of z whose amplitude
belongs to 0, π .) Denote by Sv,q the s-module defined by ρv,q. We have
ρv,q(C) = 4q.
b) If q �= u2 + u for all u ∈ v, Sv,q is simple.
c) Assume that 2v �= 0, and that q is of the form u2 + u, where u ∈ v, u ≥ 0
(which defines u uniquely). Let S−

v,q (resp. S+
v,q) be the vector subspace of Sv

generated by the ew for w ≤ u (resp. w > u). Then S−
v,q and S+

v,q are simple
s-submodules of Sv,q.
d) Assume that 2v = 0, and that q is of the form u2 + u, where u ∈ v, u ≥ 0
(which defines u uniquely). Let S−

v,q (resp. S0
v,q,S

+
v,q) be the vector subspace

of Sv generated by the ew for w < −u (resp. −u ≤ w ≤ u,w > u). Then
S−

v,q,S
0
v,q and S+

v,q are simple s-submodules of Sv,q.

e) Assume that v = − 1
2 +Z and q = − 1

4 . Let S−
−1/2,−1/4 (resp. S+

−1/2,−1/4) be
the vector subspace of S−1/2 generated by the ew for w ≤ −1

2 (resp. w > − 1
2 ).

Then S−
−1/2,−1/4 and S+

−1/2,−1/4 are simple s-submodules of S−1/2,−1/4.

f) Denote by ρ±
v,q, ρ

0
v,q the representations corresponding to S±

v,q,S
0
v,q. In case

b), the elements x ∈ s such that ρ−
v,q(x) admits an eigenvalue are those in CH.

In cases c), d), e), the elements x ∈ s such that ρ−
v,q(x) admits an eigenvalue

are those in CH+CX+; if, in addition, x is nilpotent (and hence proportional
to X+) and non-zero, ρ−

v,q(x) admits 0 as its only eigenvalue, and this of
multiplicity 1; on the other hand, if x is semi-simple, the underlying space
of ρ−

v,q has a basis consisting of eigenvectors of ρ−
v,q(x). There are analogous

results for ρ+v,q, replacing X+ by X−.
g) Let V be a simple s-module and ρ the corresponding representation. Then
ρ(C) is a homothety (use Exerc. 11). Assume that ρ(C) = 4q. Show that, if
ρ is H-diagonalizable, V is isomorphic to one of the modules Sv,q,S±

v,q,S
0
v,q

considered in b), c), d), e). Moreover, ρ is H-diagonalizable if and only if
ρ(H) admits an eigenvalue; it suffices that ρ(X+) admits the eigenvalue 0.

¶ 14) The notations are those of the preceding exercise. Denote by Bq the
quotient of U(s) by the two-sided ideal generated by C − 4q, and denote
by u 	→ u• the canonical map U(s) → Bq. Consider the representations of
Exerc. 12 and 13 as representations of Bq.
a) Every element of Bq can be expressed uniquely in the form∑

r≥0

X• r
+ pr(H•) +

∑
s>0

qs(H•)X• s
− ,

where the pr and the qs are polynomials. If two elements of Bq generate the
same left ideal, they are proportional.
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b) Consider case b) of Exerc. 13. Let a be a non-zero element of Sv,q. If a
is an eigenvector of ρv,q(H), with eigenvalue λ, the annihilator of a in Bq is
the left ideal generated by H• − λ; if a is not an eigenvector of ρv,q(H), its
annihilator is a non-monogenic left ideal.
c) Consider the case of the representations ρ±

v,q of Exerc. 13. If a is a non-
zero element of the space of such a representation, its annihilator in Bq is a
non-monogenic left ideal.
d) Consider the representation ρq of Exerc. 12. The annihilator of e0 in Bq is
generated by X•

+ − 1. If a ∈ W is not proportional to e0, its annihilator is a
non-monogenic left ideal.
e) Every automorphism of s extends to U(s) and defines by passage to the
quotient an automorphism of Bq; let A′ be the subgroup of A = Aut(Bq)
thus obtained. Show that A′ �= A. (Let ϕ be the endomorphism x 	→ [X• 2

+ , x]
of Bq; this automorphism is locally nilpotent, and eϕ ∈ A, eϕ /∈ A′.)
f) The group A operates by transport of structure on the set of classes of
simple representations of Bq. Let π1 (resp. π2, π3) be a representation of
type ρv,q of Exerc. 13 b) (resp. of type ρ±

v,q of Exerc. 13, resp. of type ρq of
Exerc. 12). Then Aπ1,Aπ2 and Aπ3 are pairwise disjoint. (Use a), b), c), d).)
If ψ ∈ A is such that ψπ1 is of type ρv,q of Exerc. 13 b), then ψ ∈ A′ (use a)
and b)). Deduce that, if ψ is the automorphism eϕ of e), the representation
σ = π1 ◦ ψ has the following property: for all x ∈ s -- {0}, σ(x) has no
eigenvalue.8

15) Let g be a Lie algebra of dimension 3. Show the equivalence of the fol-
lowing conditions (cf. Chap. I, §6, Exerc. 23).

(i) g = [g, g].
(ii) The Killing form of g is non-degenerate.
(iii) g is semi-simple.
(iv) g is simple.

¶ 16) Let g be a simple Lie algebra of dimension 3, and let Φ be its Killing
form. Denote by o(Φ) the orthogonal algebra of Φ, i.e. the subalgebra of gl(g)
consisting of the elements leaving Φ invariant.
a) Show that ad : g → o(Φ) is an isomorphism.
b) Prove the equivalence of the following properties:

(i) g contains a non-zero isotropic vector (for Φ).
(ii) g contains a non-zero nilpotent element.
(iii) g is isomorphic to s.

c) Show that there exists an extension k1 of k, of degree ≤ 2, such that
g(k1) = k1 ⊗k g is isomorphic to s(k1).

8 For more details on Exerc. 12, 13 and 14, see: D. ARNAL and G. PINCZON,
Sur les représentations algébriquement irréductibles de l’algèbre de Lie sl(2), J.
Math. Phys., Vol. 15 (1974), pp. 350-359.
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d) Give the vector space A = k⊕ g the unique algebra structure admitting 1
as unit element, and such that the product g×g → A is given by the formula

x.y =
1
8
Φ(x, y).1 +

1
2
[x, y] (x, y ∈ g).

Show that A is a quaternion algebra over k, and that g is the Lie subalgebra
of A consisting of the elements of trace zero (reduce, by extension of the base
field, to the case where g = s, and show that A can then be identified with
the matrix algebra M2(k)).

Conversely, if D is a quaternion algebra over k, the elements of D of trace
zero form a simple Lie algebra of dimension 3, and the corresponding algebra
A can be identified with D.
e) Prove the formulas

Φ(x, x) = −8NrdA(x), Φ(x, y) = 4TrdA(xy)
2[x, [y, z]] = Φ(x, y)z − Φ(x, z)y (x, y, z ∈ g).

f) Show that the discriminant of Φ (with respect to any basis of g) is of the
form −2λ2, with λ ∈ k∗.
g) Let n be an integer ≥ 0. Show that the g-module Sn(g) has a unique
simple submodule of dimension 2n + 1, and that this module is absolutely
simple (reduce to the case where g = s, and use Exerc. 9).

Show that g has an absolutely simple module of dimension 2n only if g
is isomorphic to s, i.e. only if A is isomorphic to M2(k). (Let V be such a
module. If n ≥ 2, show by means of Exerc. 6 c) that the g-module V ⊗ g has
a unique absolutely simple submodule of dimension 2n − 2. Then reduce to
the case n = 1, which is trivial.)

¶ 17) We retain the notations of the preceding exercise. Show that, for all
n ≥ 1, the algebra U(g) has a unique two-sided ideal mn such that U(g)/mn is
a central simple algebra of dimension n2 (extend scalars to reduce to the case
in which g = s and show that mn is then the kernel of the homomorphism
U(g) → End(V(n−1))). Every two-sided ideal of U(g) of finite codimension is
of the form mn1∩mn2∩· · ·∩mnh

, where n1, . . . , nh are distinct; its codimension
is n2

1 + · · · + n2
h (apply the density theorem). The mn are the only maximal

two-sided ideals of U(g) of finite codimension.
Show that m2 is generated (as a two-sided ideal) by the elements

x2 − 1
8Φ(x, x) (x ∈ g), and that the quotient U(g)/m2 can be identified with

the quaternion algebra A of Exerc. 16.
When g is isomorphic to s, U(g)/mn is isomorphic to Mn(k). Show that,

when g is not isomorphic to s, U(g)/mn is isomorphic to Mn(k) if and only
if n is odd (use Exerc. 16 g)).9

9 It can be shown that, when n is even, U(g)/mn is isomorphic to Mn/2(A).



226 SPLIT SEMI-SIMPLE LIE ALGEBRAS Ch. VIII

¶ 18) Assume that k = R,C or a field complete for a discrete valuation and
with residue field of characteristic p �= 0 (for example a finite extension of
the p-adic field Qp).
a) Let n be a nilpotent Lie algebra, N the Lie group obtained by giving n the
Hausdorff law (Chap. III, §9, no. 5), and ρ : n → gl(E) a linear representation
of n on a finite dimensional vector space E. Assume that ρ(x) is nilpotent for
all x ∈ n, and put π(x) = exp(ρ(x)). Show that π is the only homomorphism
of Lie groups ϕ : N → GL(E) such that L(ϕ) = ρ.

(When k = R or C, use the fact that N is connected. When k is ultra-
metric, show that the eigenvalues of ϕ(x), x ∈ N, are equal to 1; for this,
prove first of all that, if k′ is a finite extension of k, and if (λ1, . . . , λn, . . .) is
a sequence of elements of k′ such that λn = λp

n+1 for all n and λ1 = 1, then
λn = 1 for all n.)
b) Let ρ : s → gl(E) be a finite dimensional linear representation of s, and let
π be the homomorphism from SL(2, k) to GL(E) compatible with ρ (no. 4).
Show that π is the unique homomorphism of Lie groups ϕ : SL(2, k) →
GL(E) such that L(ϕ) = ρ. (Use a) to prove that π and ρ coincide on the
exp(n), with n nilpotent in s, and remark that SL(2, k) is generated by the
exp(n).)

§2

1) Let g be a simple Lie algebra of dimension 3, and Φ its Killing form (cf.
§1, Exerc. 15, 16, 17).
a) An element x ∈ g is regular if and only if Φ(x, x) �= 0. Let hx = kx be the
Cartan subalgebra generated by such an element. Show that hx is splitting if
and only if 2Φ(x, x) is a square in k.
b) Show that

g is splittable ⇐⇒ g is isomorphic to sl(2, k).

2) Let k1 be an extension of k of finite degree n ≥ 2.
a) Show that the semi-simple k-algebra sl(2, k1) is not splittable.
b) Show that the splittable simple k-algebra sl(n, k) contains a Cartan sub-
algebra h1 that is not splitting. (Choose an embedding of the algebra k1 into
Mn(k), and take h1 = k1 ∩ sl(n, k).)

3) Let (g, h) be a split semi-simple Lie algebra, R its root system, and K the
restriction of the Killing form of g to h. With the notations of Chap. VI, §1,
no. 12, we have K = BR∨ and K = 4γ(R)ΦR∨ if R is irreducible; moreover, if
all the roots of R have the same length, then

K(Hα, Hα) = 4h for all α ∈ R,

where h is the Coxeter number of W(R).
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If for example g is simple of type E6,E7 or E8, K(Hα, Hα) is equal to
48, 72 or 120.

4) Let (g, h) be a split semi-simple Lie algebra, and (Xα)α∈R a family of
elements satisfying the conditions of Lemma 2. If α, β ∈ R and α + β ∈ R,
define Nαβ by the formula [Xα, Xβ ] = NαβXα+β ; if α+ β /∈ R, put Nαβ = 0.
Prove the following formulas:
a) Nαβ = −Nβα.
b) If α, β, γ ∈ R are such that α+ β + γ = 0, then

Nαβ

〈γ, γ〉 =
Nβγ

〈α, α〉 =
Nγα

〈β, β〉 .

c) If α, β, γ, δ ∈ R are such that α + β + γ + δ = 0, and if no pair has sum
zero, we have:

NαβNγδ

〈γ + δ, γ + δ〉 +
NβγNαδ

〈α+ δ, α+ δ〉 +
NγαNβδ

〈β + δ, β + δ〉 = 0.

5) Let (g, h) be a split semi-simple Lie algebra, and (Xα)α∈R a family of
elements satisfying the conditions of Lemma 2. Let B be a basis of R. The
Hα (α ∈ B) and the Xα (α ∈ R) form a basis of the vector space g. Show that
the discriminant of the Killing form of g with respect to this basis (Algebra,
Chap. IX, §2) is a rational number, independent of the choice of h, of B, and
of the Xα.10 Deduce that, if n = dim g, the element of

∧n
g defined by the

exterior product of the Hα (α ∈ B) and the Xα (α ∈ R) is independent, up
to sign, of the choice of h, of B, and of the Xα.

6) Let (Xα)α∈R be a Chevalley system in the split semi-simple Lie algebra
(g, h). Let α, β ∈ R, and let p (resp. q) be the largest integer j such that
β + jα ∈ R (resp. β − jα ∈ R), cf. Lemma 4. Show that

ad(Xα)k(Xβ−qα) = ±k!Xβ+(k−q)α for 0 ≤ k ≤ p+ q.

Deduce that the algebra gZ of Prop. 8 is stable under the ad(Xα)k/k! and
under the ead(Xα) (cf. §12).

7) Assume that k is an ordered field. Let (g, h) be a split semi-simple Lie
algebra of rank l; put dim g = l + 2m.
a) Show that the Killing form Φ of g is the direct sum of a neutral form of
rank 2m and a positive non-degenerate form of rank l; in particular, its index
is m.
b) Let ϕ be an involutive automorphism of g whose restriction to h is −Id.
Show that the form

10For an explicit calculation of this discriminant, see: T. A. SPRINGER and R.
STEINBERG, Conjugacy Classes (no. 4.8), Seminar on Algebraic Groups and
Related Finite Groups, Lect. Notes in Math. 131, Springer-Verlag (1970).
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(x, y) 	→ −Φ(x, ϕ(y)), x, y ∈ g,

is symmetric, non-degenerate, and positive.
c) Let k′ = k(

√
α), where α is an element < 0 in k. Denote by c the non-trivial

k-automorphism of k′. Let gc be the k-subspace of g(k′) = k′ ⊗k g formed by
the elements y such that

(1 ⊗ ϕ).y = (c⊗ 1).y.

Show that gc is a k-Lie subalgebra of g(k′) and that the injection of gc into
g(k′) extends to an isomorphism from k′ ⊗k gc to g(k′). The algebra gc is
semi-simple, and

√
α h is a Cartan subalgebra of it.

d) Show that the Killing form of gc is negative. Deduce that gc is not splittable
(unless g = 0).
e) When k = R, show that Int(gc) is compact.

8) a) Let g be a Lie algebra and n an integer ≥ 0. Let Σn(g) be the subset
of gn consisting of the families (x1, . . . , xn) that generate g as a k-algebra.
Show that Σn(g) is open in gn in the Zariski topology (Chap. VII, App. I).
If k′ is an extension of k, then Σn(g(k′)) ∩ gn = Σn(g). Deduce that, if g(k′)
can be generated by n elements, so can g.
b) Let (g, h) be a split semi-simple Lie algebra. Let x be an element of h such
that α(x) �= 0 for all α ∈ R and α(x) �= β(x) for any pair of distinct elements
α, β ∈ R. For all α ∈ R, let yα be a non-zero element of gα, and let y =

∑
α∈R

yα.

Show that, for all α ∈ R, there exists a polynomial Pα(T) ∈ k[T], without
constant term, such that yα = Pα(ad x).y. Deduce that g is generated by
{x, y}.
c) Show, by means of a) and b), that every semi-simple Lie algebra can be
generated by two elements.

¶ 9) Let G be a connected finite dimensional real Lie group. Let g be its Lie
algebra, and let {x1, . . . , xn} be a generating family of g. For m ≥ 0, denote
by Γm the subgroup of G generated by the exp(2−mxi), 1 ≤ i ≤ n. We have
Γ0 ⊂ Γ1 ⊂ · · ·.
a) Show that the union of the Γm is dense in G.
b) Let Hm be the identity component of the closure Γm of Γm. We have
H0 ⊂ H1 ⊂ · · ·, and the family (Hm) is stationary; let H be the common
value of the Hm for m sufficiently large. Show that H is normal in G (observe
that H is normalized by all the Γm), and that the image of Γm in G/H is a
discrete subgroup of G/H. The union of these subgroups being dense in G/H,
deduce (cf. Chap. III, §6, Exerc. 23 d)) that G/H is nilpotent.
c) Assume that g = Dg. Show that G = H, in other words, that Γm is dense
in G if m is sufficiently large.
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10) Let G be a connected semi-simple real Lie group. Show, by using Exerc. 8
and 9, that there exists a dense subgroup of G generated by two elements.

11) Let R be a root system of rank l, and ΦR the corresponding canonical
bilinear form (Chap. VI, §1, no. 12). The matrix Φ = (ΦR(α, β))α,β∈R is of
rank l, and Φ2 = Φ. Deduce the formula

∑
α∈R

ΦR(α, α) = TrΦ = l.

§3

1) Let Γ be a subgroup of Q(R) of finite index, and P = Γ ∩ R. The algebra
h + gP is reductive, and any reductive subalgebra of g containing h can be
obtained in this way (use Chap. VI, §1, Exerc. 6 b)).

2) Let X be the set of reductive subalgebras of g, distinct from g, and con-
taining h. Determine the minimal elements of X by means of Chap. VI, §4,
Exerc. 4. Show that the centre of such a maximal subalgebra is of dimension
0 or 1, according to whether we are in case a) or case b) of the exercise in
question.

3) Let b be a Borel subalgebra of g, and let l = rk(g). Show that the minimum
number of generators of the algebra b is l if l �= 1, and 2 if l = 1.

4) Assume that k = R or C. Put G = Int(g), and identify the Lie algebra of
G with g. Let b be a Borel subalgebra of (g, h), and n the set of its nilpotent
elements. Denote by H,B,N the integral subgroups of G with Lie algebras
h, b, n, respectively. Show that H,B,N are Lie subgroups of G, that N is
simply-connected, and that B is the semi-direct product of H by N.

5) Let m be a parabolic subalgebra of a semi-simple Lie algebra a.
a) Let p be a subalgebra of m. Then p is a parabolic subalgebra of a if and
only if p contains the radical r of m and p/r is a parabolic subalgebra of the
semi-simple algebra m/r.
b) If m′ is a parabolic subalgebra of a, every Cartan subalgebra of m ∩ m′ is
a Cartan subalgebra of a. (Reduce to the split case, and apply Prop. 10 to
the Borel subalgebras contained in m and m′.)

6) Two Borel subalgebras of a semi-simple Lie algebra a are said to be op-
posite if their intersection is a Cartan subalgebra. Show that, if b is a Borel
subalgebra of a, and h is a Cartan subalgebra of b, there exists a unique
Borel subalgebra of a that is opposite to b and contains h. (Reduce to the
split case.)

7) Let a be a semi-simple Lie algebra, h a Cartan subalgebra of a, and s a
semi-simple subalgebra of a containing h. Show that:

(a, h) is split ⇐⇒ (s, h) is split.
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Construct an example in which a is splittable but s is not. (Take a = sp(4, k)
and s = sl(2, k′), where k′ is a quadratic extension of k.)

8) Choose a basis of R, and hence a set of positive roots R+. Assume that R
is irreducible. Let α̃ be the highest root, S the set of roots orthogonal to α̃,
and S+ = S ∩ R+.
a) Let

g′ = gS ⊕ hS, m+ =
∑

α∈S+

gα, m− =
∑

α∈S+

g−α.

Then g′ is semi-simple and g′ = hS ⊕ m+ ⊕ m−.
b) Put:

n+ =
∑

α∈R+

gα, p =
∑

α∈R+−S+

gα, p0 =
∑

α∈R+−S+−{α̃}
gα.

Then

n+ = m+ ⊕ p, [m+, p0] ⊂ p0, [n+, g
α̃] = 0.

In particular, p is an ideal of n+.
c) For all α ∈ R+ -- S+ -- {α̃}, there exists a unique α′ ∈ R+ -- S+ -- {α̃} such
that α+α′ = α̃. For all α ∈ R+ -- S+ -- {α̃}, a non-zero element Xα of gα can
be chosen so that

[Xα, Xα′ ] = ±Xα̃ if α ∈ R+ − S+ − {α̃}
[Xα, Xβ ] = 0 if α, β ∈ R+ − S+, β �= α′.11

9) Construct examples of semi-simple Lie algebras a such that:
i) a has no Borel subalgebra;
ii) a has a Borel subalgebra, but is not splittable.

¶ 10) Let a be a semi-simple Lie algebra, and x an element of a. We say that
x is diagonalizable if ad x is diagonalizable (Algebra, Chap. VII), in other
words, if there exists a basis of a consisting of eigenvectors of ad x.
a) Let c be a commutative subalgebra of a consisting of diagonalizable ele-
ments, and let L be the set of weights of c in the representation ada. The set
L is a finite subset of c∗ containing 0 (unless a = 0) and a =

⊕
λ∈L

aλ(c). Show

that there exists a subset M of L such that L -- {0} is the disjoint union of
M and −M, and such that (M + M) ∩ L ⊂ M. If M has these properties, put
aM =

⊕
λ∈M

aλ(c), and pM = a0(c)⊕aM. The algebra a0(c) is the commutant of

c in a; it is reductive in a (Chap. VII, §1, no. 5), and its Cartan subalgebras
are the Cartan subalgebras of a (Chap. VII, §2, no. 3). Show that pM is a

11This exercise was communicated to us by A. JOSEPH.
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parabolic subalgebra of a, and that aM is the set of nilpotent elements of the
radical of pM. (Use the fact that c is contained in a Cartan subalgebra of a
and reduce, by extension of scalars, to the case in which this subalgebra is
splitting.)
b) Retain the hypotheses and notations of a), and assume in addition that a
is splittable. Show that c is contained in a splitting Cartan subalgebra of a.
(Take a splitting Cartan subalgebra h of a contained in pM; then there exists
a unique Cartan subalgebra h′ of a0(c) such that h is contained in h′ ⊕ aM;
show that h′ is a splitting Cartan subalgebra of a, and that h′ contains c.)

11) Let a =
∏

ai be a finite product of semi-simple Lie algebras. A subalgebra
q of a is a parabolic (resp. Borel) subalgebra if and only if it is of the form
q =

∏
qi where, for all i, qi is a parabolic (resp. Borel) subalgebra of ai.

¶ 12) Let k′ be a finite extension of k, a′ a semi-simple k′-Lie algebra, and a
the underlying k-Lie algebra. Show that the parabolic (resp. Borel) subalge-
bras of a are the same as those of a′. (Extend scalars to an algebraic closure
of k, and use Exerc. 11.)

13) Let p and q be two parabolic subalgebras of a semi-simple Lie algebra
a, and let n be the nilpotent radical of p. Show that m = (p ∩ q) + n is a
parabolic subalgebra of a. (Reduce to the case where a is split and q is a Borel
subalgebra; choose a Cartan subalgebra h contained in p ∩ q, and determine
the subset P of the corresponding root system such that m = h + gP.)

14) Retain the notations of Prop. 9.
a) Let α ∈ B. Show that n ∩ Ker ad Xα is the direct sum of the gβ , where β
belongs to the set of elements of R+ such that α+ β /∈ R+.
b) Deduce that, if g is simple, the centre of n is equal to gα̃, where α̃ is the
highest root of R+. In the general case, the dimension of the centre of n is
equal to the number of simple components of g.

§4

The Lie algebras considered in this paragraph are not necessarily finite di-
mensional.

1) Retain the notations of no. 2. Let λ ∈ kB. Associate to any α ∈ B the
endomorphisms Xλ

−α, H
λ
α , X

λ
α of the vector space E such that

Xλ
−α(α1, . . . , αn) = (α, α1, . . . , αn)

Hλ
α(α1, . . . , αn) = (λ(α) −

n∑
i=1

n(αi, α))(α1, . . . , αn).

The vector Xλ
α(α1, . . . , αn) is defined by induction on n by the formula

Xλ
α(α1, . . . , αn) = (Xα

−α1
Xλ

α − δα,α1H
λ
α)(α2, . . . , αn),
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where δα,α1 is the Kronecker symbol; we agree that, if (α1, . . . , αn) is the
empty word, then Xλ

α(α1, . . . , αn) is zero.
Show that Lemmas 1 and 2 remain true for these endomorphisms. We

thus obtain a representation ρλ : a → gl(E) such that

ρλ(xα) = Xλ
α, ρλ(hα) = Hλ

α , ρλ(x−α) = Xλ
−α.

¶ 2) Retain the notations of no. 3. Let m be an ideal of a.
a) Let α and β be two distinct elements of B. Assume that (ad xα)Nxβ

belongs to m for N sufficiently large. Show that xαβ ∈ m. (Apply the results
of §1, no. 2 to a/m, provided with a suitable sl(2, k)-module structure.)
b) Show that n + θn is the smallest finite codimensional ideal of a. Show
that this is also the smallest ideal containing the (ad xα)4xβ and the
(ad x−α)4x−β .

3) Let (g, h) be a split semi-simple Lie algebra, R the corresponding root
system, and B a basis of R. For any α ∈ B (resp. for any pair (α, β) ∈ B2),
let R(α) (resp. R(α, β)) be the closed subset of R formed by the ±α (resp. the
smallest closed subset of R containing ±α and ±β). Let g(α) (resp. g(α, β))
be the derived algebra of the algebra h + gR(α) (resp. h + gR(α,β)), cf. §3.
a) Show that g(α) = kHα ⊕ gα ⊕ g−α; it is isomorphic to sl(2, k).
b) Show that g(α, β) is semi-simple, and that it is generated by g(α) and
g(β). Its root system can be identified with R(α, β).
c) Let s be a Lie algebra (not necessarily finite dimensional). For all α ∈ B,
let fα be a homomorphism from g(α) to s. Assume that, for any pair (α, β),
there exists a homomorphism fαβ : g(α, β) → s that extends both fα and fβ .
Show that, in that case, there exists a unique homomorphism f : g → s that
extends the fα. (Use Prop. 4 (i).)

4) Let g be a splittable semi-simple Lie algebra, and σ an automorphism of
k. Let gσ be the Lie algebra obtained from g by extending scalars by means
of σ. Show that gσ is isomorphic to g. (Use the Cor. of Prop. 4.)

5) a) Let g be a simple Lie algebra, and k1 the commutant of the adjoint
representation of g. Show that k1 is a commutative field, a finite extension
of k, and that g is an absolutely simple k1-Lie algebra.

Conversely, if k1 is a finite extension of k, and g an absolutely simple
k1-Lie algebra, then g is a simple k-Lie algebra, and the commutant of its
adjoint representation can be identified with k1.
b) Let k′ be a Galois extension of k containing k1. Show that g(k′) is a product
of [k1 : k] absolutely simple algebras. When g(k′) is split, these algebras are
mutually isomorphic. (Use Exerc. 4.)

6) Let A be a commutative ring, and let u be the A-Lie algebra defined by
the family of generators {x, y} and the relations
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[x, [x, y]] = 0, [y, [y, [y, x]]] = 0.

Show that u is a free A-module with basis

{x, y, [x, y], [y, [x, y]]}.
Show that, when A = k, u is isomorphic to the algebra a+/n corresponding
to a root system of type B2.

¶ 7) Let A be a commutative ring in which 2 is invertible, and let u be the
A-Lie algebra defined by the family of generators {x, y} and the relations

[x, [x, y]] = 0, [y, [y, [y, [y, x]]]] = 0.

Show that u is a free A-module with basis

{x, y, [x, y], [y, [x, y]], [y, [y, [x, y]]], [x, [y, [y, [x, y]]]]}.
Show that, when A = k, u is isomorphic to the algebra a+/n corresponding
to a root system of type G2.

§5

1) The index of Aut0(g) in Aut(g) is finite.

2) We have Aute(g) = Aut(g) if g is splittable, simple, and of type G2,F4 or
E8.

3) Let h be a splitting Cartan subalgebra of g, b a Borel subalgebra of (g, h),
n = [b, b] and N = exp adgn. Then

Aut(g) = N.Aut(g, h).N.

(Let s ∈ Aut(g). Apply Prop. 10 of §3, no. 3 to b∩s(b), then apply Chap. VII,
§3, no. 4, Th. 3.)

4) Let h be a Cartan subalgebra of g, and s an element of Aut(g, h) such that
sH �= H for all non-zero H in h. Show that s is of finite order. (Reduce to the
case in which h is splitting, and choose an integer n ≥ 1 such that ε(s)n = 1.
Then there exists ϕ ∈ TQ such that f(ϕ) = sn. Let σ be the transpose of
s|h. Show that 1 + σ + σ2 + · · · + σn−1 = 0, and deduce that sn

2
= 1.)

¶ 5) a) Let a ∈ Aut(g), and n the nilspace of a− 1. Show that the following
conditions are equivalent:
(i) Ker(a− 1) is a Cartan subalgebra of g.
(ii) n is a Cartan subalgebra of g, and a ∈ Aut0(g).
(iii) dim n = rk(g) and a ∈ Aut0(g).
b) Assume from now on that k is algebraically closed. Let V be a vector space,
R a root system in V, TQ the group Hom(Q(R), k∗), n an integer ≥ 1 and
Tn the subgroup of TQ consisting of the elements whose order divides n. Let
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ζ be a primitive nth root of unity in k. For all H ∈ P(R∨), let ψ(H) be the
element γ 	→ ζγ(H) of TQ. The map ψ is a homomorphism from P(R∨) to
Tn, with kernel nP(R∨). Let t ∈ Tn, and let C be an alcove in P(R∨) ⊗ R.
There exists w ∈ W(R) and H ∈ P(R∨) such that 1

nH ∈ C and ψ(wH) = t.
(Use Chap. VI, §2, no. 1.)
c) Let h be a Cartan subalgebra of g, and R the root system of (g, h). Let
n, ζ, ψ be as in b), and f as in no. 2. Let H ∈ P(R∨). The set of elements of
g invariant under f(ψ(H)) is h ⊕

∑
α∈R′

gα, where R′ is the set of α ∈ R such

that α(H) ∈ nZ, and f(ψ(H)) satisfies the conditions of a) if and only if 1
nH

belongs to an alcove.
d) Assume from now on that g is simple. Let h and R be as in c), (α1, . . . , αl)
a basis of R, h the Coxeter number of R, ζ a primitive hth root of unity in
k, and H the element of h such that αi(H) = 1 for i = 1, . . . , l. Prove the
following properties:
(i) The homomorphism γ 	→ ζγ(H) from Q(R) to k∗ defines an element
of Aut(g, h) which satisfies the conditions in a), and has order h. (Use c),
Chap. VI, §2, Prop. 5 and Chap. VI, §1, Prop. 31.)
(ii) Every automorphism of g of finite order satisfies the conditions in a) and
is of order ≥ h.
(iii) The automorphisms of g of order h satisfying the conditions of a) form
a conjugacy class in Aute(g). (Use Prop. 5 of no. 3.)
e) Let h and R be as in c), and let w be a Coxeter transformation in W(R).
Let s ∈ Aut(g, h) be such that ε(s) = w. Show that s satisfies the conditions
in a), and is of order h. (Use Chap. VI, §1, Prop. 33, Chap. V, §6, no. 2 and
Chap. VII, §4, Prop. 9.)
f) If s ∈ Aut(g), the following conditions are equivalent:
(i) s satisfies the conditions in a), and is of order h;
(ii) there exists a Cartan subalgebra h of g stable under s such that s|h is a
Coxeter transformation in the Weyl group of (g, h). (Use d) and e).)
g) The characteristic polynomial of the automorphism in d) (i) is

A(T) = (T − 1)l
∏
α∈R

(T − ζα(H)).

That of the automorphism s in e) is

B(T) = (Th − 1)l
l∏

i=1

(T − ζmi) (mi being the exponents of R).

(Use Prop. 33 (iv) of Chap. VI, §1, no. 11.) Deduce from the relation A(T) =
B(T) that, for all j ≥ 1, the number of i such that mi ≥ j is equal to the
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number of α ∈ R+ such that α(H) = j; hence recover the result of Exerc. 6
c) of Chap. VI, §4.12

6) Assume that k = R or C. Let G be the Lie group Aut0(g). Show that an
element a ∈ G is regular (in the sense of Chap. VII, §4, no. 2) if and only if
it satisfies the conditions of Exerc. 5 a).

7) Assume that g is splittable. Let B(g) be the canonical basis of the canon-
ical Cartan subalgebra of g (no. 3, Remark 2). If s ∈ Aut(g), s induces a
permutation of B(g); denote by sgn(s) the sign of this permutation. Show
that s operates on

∧n
g (with n = dim g) by

x 	→ sgn(s).x.

¶ 8) Let k̄ be an algebraic closure of k, and ḡ = k̄ ⊗k g. The Galois group
Gal(k̄/k) operates naturally on ḡ, on the canonical Cartan subalgebra of ḡ
(no. 3, Remark 2), as well as on its root system R̄ and its canonical basis B̄.
We thus obtain a continuous homomorphism (i.e. with open kernel)

π : Gal(k̄/k) → Aut(R̄, B̄).

Show that g is splittable if and only if the following two conditions are sat-
isfied:
(i) The homomorphism π is trivial.
(ii) g has a Borel subalgebra b.
(Show that a Cartan subalgebra h contained in b is splitting if and only if π
is trivial.)

9) Let R be a reduced root system, B a basis of R, and (g0, h0,B, (Xα)α∈B)
a corresponding framed semi-simple Lie algebra (§4). Let k̄ be an algebraic
closure of k, and ρ : Gal(k̄/k) → Aut(R,B) a continuous homomorphism
(cf. Exerc. 8); if σ ∈ Gal(k̄/k), denote by ρσ the k-linear automorphism of
ḡ0 = k̄ ⊗k g0 such that ρσ(Xα) = Xρ(σ)α. On the other hand, the natural
operation of Gal(k̄/k) on k̄ can be extended to an operation on ḡ0. Let g be
the subset of ḡ0 consisting of the elements x such that ρσ(x) = σ−1.x for all
σ ∈ Gal(k̄/k).
a) Show that g is a k-Lie subalgebra of ḡ0, and that the injection of g into ḡ0
extends to an isomorphism from k̄⊗k g to ḡ0. In particular, g is semi-simple.
b) Let b0 be the subalgebra of g0 generated by h0 and the Xα. Put

b̄0 = k̄ ⊗k b0, h = g ∩ b̄0, h̄0 = k̄ ⊗k h0, h = g ∩ h̄0.

Show that k̄ ⊗k b = b̄0 and that k̄ ⊗k h = h̄0, so that b is a Borel subalgebra
of g and h is a Cartan subalgebra contained in it.

12For more details on this exercise, see: B. KOSTANT, The principal three-
dimensional subgroup and the Betti numbers of a complex simple Lie group,
Amer. J. Math., Vol. LXXXI (1959), pp. 973-1032.
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c) Show that the homomorphism π associated to the algebra g (cf. Exerc. 8)
is equal to ρ.

¶ 10) Let h be a splitting Cartan subalgebra of g, and (Xα)α∈R a Chevalley
system in (g, h), cf. §2, no. 4. If α ∈ R, put

θα = ead Xαead X−αead Xα ,

and denote by W the subgroup of Aute(g, h) generated by the θα.
a) Show that ε(W) = W(R).
b) Let s ∈ W, and let w = ε(s). Show that

s(Xα) = ±Xw(α) for all α ∈ R.

(Use Exerc. 5 of §2.)
c) Let M be the kernel of ε : W → W(R). Show that M is contained in the
subgroup of f(TQ) consisting of the elements f(ϕ) such that ϕ2 = 1. Show
that M contains the elements f(ϕα) defined by ϕα(β) = (−1)〈β,α∨〉 (remark
that θ2α = f(ϕα)).
d) ∗Let ϕ ∈ Hom(Q, {±1}). Show that f(ϕ) belongs to M if and only if ϕ
extends to a homomorphism from P to {±1}. (Sufficiency follows from the
fact that M contains the f(ϕα). To prove necessity, reduce to the case in which
k = Q, and use the fact that M is contained in f(TQ) ∩ Aute(g) = Im(TP),
cf. §7, Exerc. 26 d).) Deduce that M is isomorphic to the dual of the group
Q/(Q ∩ 2P).13∗

11) With the notations of no. 2, assume that k is non-discrete and locally
compact, hence isomorphic to R,C or a finite extension of Qp (Commutative
Algebra, Chap. VI, §9, no. 3). For all n ≥ 1, the quotient k∗/k∗n is finite
(cf. Commutative Algebra, Chap. VI, §9, Exerc. 3 for the ultrametric case).
Deduce that the quotients TQ/Im(TP) and Aut(g)/Aute(g) are finite.

When k = R, show that TQ/Im(TP) is isomorphic to the dual of the
F2-vector space (Q ∩ 2P)/2Q. When k = C, we have TQ = Im(TP); this is
the integral subgroup of the Lie group Aut(g) with Lie algebra h.

¶ 12) Let h be a splitting Cartan subalgebra of g, A a subset of h, and
s ∈ Aut(g) such that sA = A. Show that there exists t ∈ Aut(g, h) such that
t|A = s|A and ts−1 ∈ Aute(g). (Let a be the commutant of A in g; this is a
reductive subalgebra of g, of which sh and h are splitting Cartan subalgebras;
deduce the existence of u ∈ Aute(a) such that ush = h; show that there exists
v ∈ Aute(g) extending u such that v|A = IdA; take t = vs.) Deduce that, if
s ∈ Aut0(g), there exists w ∈ W(R) such that w|A = s|A.

¶ 13) Let (g, h,B, (Xα)α∈B) be a framed semi-simple Lie algebra, R the root
system of (g, h), ∆ the corresponding Dynkin graph, and Φ a subgroup of

13For more details on this exercise, see: J. TITS, Normalisateurs de tores. I. Groupes
de Coxeter étendus, J. Alg., Vol. IV (1966), pp. 96-116.
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Aut(R,B) = Aut(∆).

If s ∈ Φ, extend s to an automorphism of g by the conditions

s(Xα) = Xsα, and s(Hα) = Hsα for all α ∈ B, cf. Prop. 1.

We thus identify Φ with a subgroup of Aut(g, h); denote by g̃ (resp. h̃) the
subalgebra of g (resp. h) consisting of the elements invariant under Φ.
a) Let α ∈ B, and let X = Φ.α. Show, by using the Plates in Chap. VI, that
only two cases are possible:
(i) every element of X distinct from α is orthogonal to α;
(ii) there exists a unique element α′ of X -- {α} that is not orthogonal to α,
and n(α, α′) = n(α′, α) = −1.
b) Let i be the restriction map h∗ → h̃∗, and let B̃ = i(B); the map B → B̃
identifies B̃ with B/Φ. Show that g̃ is a semi-simple Lie algebra, that h̃ is a
splitting Cartan subalgebra of it, and that B̃ is a basis of R(g̃, h̃). (Observe
that B̃ is contained in R(g̃, h̃), and that every element of R(g̃, h̃) is a linear
combination of elements of B̃ with integer coefficients of the same sign.) If
α̃ ∈ B̃, the corresponding inverse root Hα̃ ∈ h̃ is given by

Hα̃ =
∑

i(α)=α̃

Hα in case (i) of a)

Hα̃ = 2
∑

i(α)=α̃

Hα in case (ii) of a),

where the summation is over those elements α ∈ B such that i(α) = α̃. If
β ∈ B has image β̃ ∈ B̃, then

n(β̃, α̃) =
∑

i(α)=α̃

n(β, α) in case (i)

n(β̃, α̃) = 2
∑

i(α)=α̃

n(β, α) in case (ii).

Deduce how the Dynkin graph of R(g̃, h̃) is determined starting from the pair
(∆,Φ).
c) Show that, if g is simple, so is g̃.

If g is of type Al, l ≥ 2, and Φ is of order 2, then g̃ is of type Bl/2 if l is
even, and of type C(l+1)/2 if l is odd.

If g is of type Dl, l ≥ 4, and Φ is of order 2, then g̃ is of type Bl−1.
If g is of type D4, and Φ is of order 3 or 6, then g̃ is of type G2.
If g is of type E6, and Φ is of order 2, then g̃ is of type F4.
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§6

1) Show that Z(λ) can be defined as a quotient of the representation ρλ of
§4, Exerc. 1.

2) Let µ be a weight of Z(λ) (resp. E(λ)). Show that there exists a sequence
of weights µ0, . . . , µn of Z(λ) (resp. of E(λ)) such that µ0 = λ, µn = µ, and
µi−1 − µi ∈ B for 1 ≤ i ≤ n.

3) Assume that g is simple, and denote by α̃ the highest root of R. The
module E(α̃) is isomorphic to g, equipped with the adjoint representation. If
C is the Casimir element associated to the Killing form of g, the image of
C in End E(α̃) is the identity (cf. Chap. I, §3, no. 7, Prop. 12). Deduce, by
using the Cor. of Prop. 7, that

ΦR(α̃, α̃+ 2ρ) = 1,

where ΦR is the canonical bilinear form on h∗ (Chap. VI, §1, no. 12).

4) We use the notations of no. 4.
a) Let m ∈ N. Give Nm the product order. Show that, for any subset S of
Nm, the set of minimal elements of S is finite.
b) Let α1, . . . , αm be distinct elements of R, Xi ∈ gαi -- {0}, S the set of
non-zero sequences (pi) ∈ Nm such that

∑
piαi = 0, M the set of minimal

elements of S. Then h and the Xp1
1 . . . Xpm

m , where (p1, . . . , pm) ∈ M, generate
the algebra U0.
c) Show that U0 is both a left- and right-noetherian algebra. (Give U0 the
filtration induced by that of U(g), and show, by using a) and b), that gr U0

is commutative of finite type.)
d) Show that, for all λ ∈ h∗, Uλ is a left (resp. right) U0-module of finite
type.
e) Let V be a simple g-module such that V =

⊕
λ∈h∗

Vλ. If one of the Vλ �= 0

is finite dimensional, then all of the Vλ are finite dimensional. (Use d).)

5) Show that, if g = sl(2, k), the modules Z(λ) of this paragraph are isomor-
phic to the modules Z(λ) of §1, Exerc. 2.

§7

All the g-modules considered (except those in Exerc. 14 and 15) are assumed
to be finite dimensional.

1) Let ω ∈ P++; denote by S(ω) the set of weights of E(ω), in other words
the smallest R-saturated subset of P containing ω (Prop. 5). If λ ∈ S(ω), we
have λ ≡ ω (mod. Q). Conversely, let λ ∈ P be such that λ ≡ ω (mod. Q);
prove the equivalence of the following properties:
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(i) λ ∈ S(ω);
(ii) ω − wλ ∈ Q+ for all w ∈ W;
(iii) λ belongs to the convex hull of W.ω in h∗

R.
(To prove that (iii) =⇒ (ii), remark that ω − wω is a linear combination of
elements of R+ with coefficients ≥ 0; deduce, by convexity, that ω − wλ has
the same property; since ω−wλ belongs to Q, this implies that ω−wλ ∈ Q+.
To prove that (ii) =⇒ (i), choose w such that wλ ∈ P++, and apply Cor. 2
of Prop. 3. The implication (i) =⇒ (iii) is immediate.)

2) Let (Ri)i∈I be the family of irreducible components of R, and g =
∏
i∈I

gi the

corresponding decomposition of g into a product of simple algebras. Identify
P with the product of the P(Ri), and give each P(Ri) the order relation
defined by the basis Bi = B ∩ Ri.
a) Let ω = (ωi)i∈I be an element of P++ =

∏
i∈I

P++(Ri). Show that the simple

g-module E(ω) is isomorphic to the tensor product of the simple gi-modules
E(ωi).
b) Let M (resp. Mi) be the set of elements of P++ (resp. of P++(Ri)) having
the equivalent properties (i), (ii), (iii), (iv) of Prop. 6 and 7. Show that
M =

∏
i∈I

Mi, in other words that ω ∈ M if and only if, for all i ∈ I, ωi

is either zero or a minuscule weight of Ri. Deduce that M is a system of
representatives in P of the elements of P/Q.
c) Let E be a simple g-module, and X its set of weights. Show that X contains
a unique element of M, and that the multiplicity of this element is equal to
the upper bound of the multiplicities of the elements of X.

3) a) Let E be a g-module. Show the equivalence of the conditions:
(i) The rank of the semi-direct product of g by E is strictly larger than that
of g.
(ii) 0 is a weight of E.
(iii) There exists a weight of E that is radical (i.e. belongs to Q).
b) Assume that E is simple. Show that (i), (ii), (iii) are equivalent to
(iv) The highest weight of E is radical.

If these conditions are satisfied, there exists no non-zero invariant alter-
nating bilinear form. (Use Prop. 12 and Prop. 1 (ii) of §6.)

4) Let k′ be an extension of k, and g′ = g(k′). Show that every g′-module
arises, by extension of scalars, from a g-module that is unique up to isomor-
phism.

5) Let E be a g-module. Show the equivalence of the conditions:
(i) E is faithful (i.e. the canonical map from g to gl(E) is injective).
(ii) Every root of g is the difference between two weights of E.

¶ 6) Let ϕ be an involutive automorphism of g whose restriction to h is
−Id. Show that, if E is a g-module, there exists a non-degenerate symmetric
bilinear form Ψ on E such that
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Ψ(x.a, b) + Ψ(a, ϕ(x).b) = 0 for x ∈ g, a, b ∈ E.

(Reduce to the case in which E is simple. Show that the transform of E by ϕ is
isomorphic to the dual E∗ of E, and deduce the existence of a non-degenerate
bilinear form Ψ satisfying the conditions above. Show next that, if e is a
primitive vector in E, then Ψ(e, e) �= 0. Deduce that Ψ is symmetric.)

7) If λ ∈ P++, denote by ρλ : U(g) → End(E(λ)) the representation defined
by the simple module E(λ). We have Im(ρλ) = End(E(λ)); put mλ = Ker(ρλ).
a) Show that the mλ are pairwise distinct, and that they are the only two-
sided ideals m of U(g) such that U(g)/m is a finite dimensional simple k-
algebra.
b) If I is a finite subset of P++, put mI =

⋂
λ∈I

mλ. Show that the canonical

map U(g)/mI →
∏
λ∈I

U(g)/mλ is an isomorphism, and that every two-sided

ideal of U(g) of finite codimension is equal to exactly one of the mI.
c) Show that the principal anti-automorphism of U(g) transforms mλ to mλ∗ ,
where λ∗ = −w0λ (cf. Prop. 11).

¶ 8) Let g be a semi-simple Lie algebra; exceptionally, we do not assume in
this exercise that g is split. Let k̄ be an algebraic closure of k and let

π : Gal(k̄/k) → Aut(R̄, B̄)

be the homomorphism defined in §5, Exerc. 8. Let Gal(k̄/k) operate, via π,
on the set P̄++ of dominant weights of R̄ relative to B̄; let Ω be a system of
representatives of the elements of the quotient P̄++/Gal(k̄/k).
a) Put ḡ = k̄ ⊗k g. If I is a finite subset of P̄++ stable under Gal(k̄/k), the
two-sided ideal m̄I of U(ḡ) associated to I (cf. Exerc. 7) is of the form k̄⊗k mI,
where mI is a two-sided ideal of U(g). Show that every two-sided ideal of U(g)
of finite codimension is obtained in this way exactly once.
b) Let ω ∈ Ω, I(ω) its orbit under Gal(k̄/k), and Gω the stabilizer of ω; let
kω be the sub-extension of k̄ corresponding to Gω by Galois theory. Show
that U(g)/mI(ω) is a simple algebra whose centre is isomorphic to kω. Every
two-sided ideal m of U(g) such that U(g)/m is a finite dimensional simple
algebra is equal to exactly one of the mI(ω).
c) The group Gal(k̄/k) operates, via π, on the ring R(ḡ); denote by R(ḡ)inv

the subring of R(ḡ) consisting of the elements invariant under Gal(k̄/k). Show
that the map [E] → [k̄⊗kE] extends to an injective homomorphism from R(g)
to R(ḡ)inv whose cokernel is a torsion group; this is an isomorphism if and
only if, for all ω ∈ Ω, U(g)/mI(ω) is an algebra of matrices over kω; show that
this is the case when g has a Borel subalgebra. 14

14For more details on this exercise, see: J. TITS, Représentations linéaires irréduc-
tibles d’un groupe réductif sur un corps quelconque, J. für die reine und ange-
wandte Math. Vol. CCXLVII (1971), pp. 196-220.
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9) Let a1 and a2 be Lie algebras. Show that there exists a unique homomor-
phism

f : R(a1) ⊗Z R(a2) → R(a1 × a2)

such that f([E1]⊗ [E2]) = [E1⊗E2] if Ei is an ai-module (i = 1, 2). Show that
f is injective, and that it is bijective if a1 and a2 are splittable semi-simple.

10) Let Γ be a subgroup of P containing Q. Such a subgroup is stable under
W.
a) Show that, if λ ∈ P++ ∩ Γ , every weight of E(λ) belongs to Γ .
b) Let RΓ (g) be the subgroup of R(g) with basis the [λ], with λ ∈ P++ ∩ Γ .
If E is a g-module, [E] ∈ RΓ (g) if and only if the weights of E belong to Γ .
Deduce that RΓ (g) is a subring of R(g).
c) Show that the homomorphism ch : RΓ (g) → Z[Γ ] is an isomorphism from
RΓ (g) to the subring of Z[Γ ] consisting of the elements invariant under W.
(Use Th. 2 (ii).)
d) Describe R(g) and RΓ (g) explicitly when g = sl(2, k) and Γ = Q.

¶ 11) The notations are those of no. 7. For any integer m ≥ 1, denote by
Ψm the endomorphism of Z[∆] that takes eλ to emλ. We have Ψ1 = Id and
Ψm ◦ Ψn = Ψmn.

Let E be a finite dimensional ∆-graded vector space. For all n ≥ 0, denote
by anE (resp. snE) the nth exterior (resp. symmetric) power of E, equipped
with its natural grading.
a) Show that

n ch(snE) =
n∑

m=1

Ψm(ch(E))ch(sn−mE)

and

n ch(anE) =
n∑

m=1

(−1)m−1Ψm(ch(E))ch(an−mE).

Deduce that ch(snE) and ch(anE) can be expressed as polynomials, with
rational coefficients, in the Ψm(ch(E)), 1 ≤ m ≤ n. For example:

ch(s2E) =
1
2
ch(E)2 +

1
2
Ψ2(ch(E))

ch(a2E) =
1
2
ch(E)2 − 1

2
Ψ2(ch(E)).

b) Prove the following identities (in the algebra of formal power series in a
variable T, with coefficients in Q[∆]):
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∞∑
n=0

ch(snE)Tn = exp

{ ∞∑
m=1

Ψm(ch(E))Tm/m

}
and

∞∑
n=0

ch(anE)Tn = exp

{ ∞∑
m=1

(−1)m−1Ψm(ch(E))Tm/m

}
.

c) Assume that ∆ is a group, so that Ψm can be defined for all m ∈ Z. Show
that, if E∗ is the graded dual of E,

ch(E∗) = Ψ−1(ch(E)).

d) Identify R(g), by means of ch, with a subring of Z[P]. Show that R(g) is
stable under the Ψm, m ∈ Z, and that so is the subring RΓ (g) defined in the
preceding exercise.

12) Let λ ∈ P++ and let Xλ be the set of weights of E(λ). Show that

Xλ ⊂ λ− P++

does not hold in general. (Consider, for example, the adjoint representation
of sl(3, k).)

13) Let λ =
∑

α∈B
aαα be an element of P++. For n = 0, 1, . . ., denote by Xn

the set of weights µ of E(λ) such that λ − µ is the sum of n elements of B.
Let sn be the sum of the multiplicities of the elements of Xn (as weights of
E(λ)). Let T = 2

∑
α∈B

aα. Show that:

a) T is an integer ≥ 0.
b) sn = 0 for n > T, and sT−n = sn.
c) If r is the integer part of T/2, then s1 ≤ s2 ≤ · · · ≤ sr+1.

¶ 14) Let λ ∈ P++, Fλ be the largest proper submodule of Z(λ) and v a
primitive element of Z(λ) of weight λ, cf. §6, no. 3. Show that

Fλ =
∑
α∈B

U(g)Xλ(Hα)+1
−α v =

∑
α∈B

U(n−)Xλ(Hα)+1
−α v.

15) Let λ ∈ h∗ and let v (resp. v′) be a primitive element of Z(λ) (resp. of
E(λ)) of weight λ. Let I (resp. I′) be the annihilator of v (resp. v′) in U(g).

a) I = U(g)n+ +
∑
h∈h

U(g)(h− λ(h)).
b) I′ is the largest left ideal of U(g) distinct from U(g) and containing I.
c) If λ ∈ P++, then

I′ = I +
∑
α∈B

U(g)Xλ(Hα)+1
−α = I +

∑
α∈B

U(n−)Xλ(Hα)+1
−α .

(Use the preceding exercise.)
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¶ 16) Let V and V′ be two g-modules. Then V′ is said to be subordinate to
V if there exists a linear map f : V → V′ such that:
α) f is surjective; β) the image under f of a primitive element of V is

either 0 or a primitive element of V′; γ) f is an n−-homomorphism.
a) Let f : V → V′ satisfy α), β), γ). Let v be a primitive element of V. Then
the image under f of the g-submodule generated by v is the g-submodule
generated by f(v).
b) Let f : V → V′ satisfy α), β), γ). Let W be a g-submodule of V. Then
f(W) is a g-submodule of V′ that is subordinate to W.
c) Let V = E1 ⊕· · ·⊕Es and V′ = E′

1 ⊕· · ·E′
s′ be decompositions of V and V′

into sums of simple modules. Then V′ is subordinate to V if and only if s′ ≤ s
and there exists σ ∈ Ss such that E′

i is subordinate to Eσ(i) for i = 1, . . . , s′.
d) If V′ is subordinate to V and if V is simple, then V′ is simple or reduced
to 0.
e) Assume that V and V′ are simple. Let λ and λ′ be their highest weights.
Then V′ is subordinate to V if and only if λ′(Hα) ≤ λ(Hα) for all α ∈ B.
(For the sufficiency, use the preceding exercise.)

17) Let λ, µ ∈ P++ and α ∈ B be such that λ(Hα) ≥ 1 and µ(Hα) ≥ 1. Let
F = E(λ) ⊗ E(µ).
a) Show that dimFλ+µ = 1 and dimFλ+µ−α = 2.
b) Show that Xα : Fλ+µ−α → Fλ+µ is surjective, and that the non-zero
elements of its kernel are primitive (remark that, if β ∈ B is distinct from α,
λ+ µ− α+ β is not a weight of F).
c) Deduce that E(λ) ⊗ E(µ) contains a unique submodule isomorphic to

E(λ+ µ− α).

d) Show that S2(E(λ)) (resp.
∧2 E(λ)) contains a unique submodule isomor-

phic to E(2λ) (resp. to E(2λ− α)).

¶ 18) Choose a positive non-degenerate symmetric bilinear form ( · | · ) on h∗
R

invariant under W. Let λ ∈ P++.

a) Let µ be a weight of E(λ). Write λ−µ in the form
∑

α∈B
kαα. Let α ∈ B be

such that kα �= 0. Show that there exists α1, . . . , αn ∈ B such that (λ|α1) �= 0,
(α1|α2) �= 0, . . . , (αn−1|αn) �= 0, (αn|α) �= 0.
b) Let v be a primitive element of E(λ), and let α1, . . . , αn ∈ B satisfy the
following conditions:
(i) (αi|αi+1) �= 0 for i = 1, 2, . . . , n− 1;
(ii) (αi|αj) = 0 for j > i+ 1;
(iii) λ(Hα1) �= 0 and λ(Hα2) = · · · = λ(Hαn

) = 0.
Show that X−αn

X−αn−1 . . . X−α1v �= 0. (Observe that, for 1 ≤ s ≤ n,
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λ− α1 − · · · − αs−1 + αn

is not a weight of E(λ), and deduce that Xαs
X−αs

X−αs−1 . . . X−α1v �= 0 by
induction on s.) If σ ∈ Sn and σ �=1, thenX−ασ(n)X−ασ(n−1) . . . X−ασ(1)v = 0.
(Let r be the smallest integer such that σ(r) �= r. Use a) to show that
λ− ασ(1) − . . .− ασ(r) is not a weight of E(λ).)
c) Let λ′ ∈ P++. A chain joining λ to λ′ is a sequence (α1, . . . , αn) of ele-
ments of B such that n ≥ 1, (λ|α1) �= 0, (α1|α2) �= 0, . . . , (αn−1|αn) �= 0,
(αn|λ′) �= 0. Such a chain is called minimal if no strict subsequence of
(α1, . . . , αn) joins λ to λ′. In that case, we have (αi|αj) = 0 if |i − j| ≥ 2,
(λ|αi) = 0 if i ≥ 2 and (λ′|αi) = 0 if i ≤ n− 1.
d) Let (α1, . . . , αn) be a minimal chain joining λ to λ′. If v′ is a primitive
vector in E(λ′), put:

vs = X−αs
X−αs−1 . . . X−α1v (s = 0, 1, . . . , n)

v′
s = X−αs+1X−αs+2 . . . X−αn

v′ (s = 0, 1, . . . , n)

a0 = (λ|α1), an = (−1)n(λ′|αn), as = (−1)s+1(αs|αs+1), 1 ≤ s ≤ n−1. Show
that

n∑
s=0

asvs ⊗ v′
s

is a primitive element of E(λ) ⊗ E(λ′) of weight λ+ λ′ − α1 − · · · − αn, and
that it is unique up to homothety.

(Use b) and c) to show that every element of E(λ) ⊗ E(λ′) of weight

λ+ λ′ − α1 − · · · − αn

is a linear combination of the vs ⊗v′
s. Then write down the condition for such

a linear combination to be a primitive vector.)
Deduce that E(λ) ⊗ E(λ′) contains a unique g-submodule isomorphic to

E(λ+ λ′ − α1 − · · · − αn).

(When n = 1 we recover Exerc. 17.)
e) Let w be a primitive element of E(λ)⊗E(λ′). Assume that the weight ν of
w is distinct from λ+ λ′. Show that there exists a chain (α1, . . . , αn) joining
λ to λ′ such that

ν ≤ λ+ λ′ − α1 − · · · − αn.

(Let C be the set of α ∈ B such that the coordinate of index α of λ+λ′ −ν is
�= 0. Let D (resp. D′) be the set of α ∈ C such that there exists γ1, . . . , γt ∈ C
satisfying (λ|γ1) �= 0 (resp. (λ′|γ1) �= 0), (γ1|γ2) �= 0, . . . , (γt−1|γt) �= 0,
(γt|α) �= 0. Let Y (resp. Y′) be the set of weights of E(λ) (resp. E(λ′)) of the
form λ −

∑
α∈C

kαα (resp. λ′ −
∑

α∈C
kαα), with kα ∈ N. Show that w belongs
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to
( ∑

µ∈Y
E(λ)µ

)
⊗
( ∑

µ′∈Y′
E(λ′)µ′

)
. Using a) and the fact that ν �= λ + λ′,

show that D ∩ D′ �= ∅.)
f) Show the equivalence of the following properties:
(i) E(λ) ⊗ E(λ′) is isomorphic to E(λ+ λ′).
(ii) E(λ) ⊗ E(λ′) is a simple module.
(iii) There is no chain joining λ to λ′.
(iv) R is the direct sum of two root systems R1 and R′

1 such that λ ∈ P(R1)
and λ′ ∈ P(R′

1).
(v) g is the product of two ideals s and s′ such that s′.E(λ) = 0 and
s.E(λ′) = 0.

(Use d) to prove the equivalence of (ii) and (iii).)15

19) We recall the notations of Prop. 10. Let k̄ be an algebraic closure of k.
If x ∈ g, denote by XE(x) (resp. XF(x), resp. XG(x)) the set of eigenvalues
of xE (resp. xF, resp. xG) in k̄. Show that XG(x) = XE(x) + XF(x) for
all x ∈ g and that, when E and F are given, this property characterizes the
simple g-module G up to isomorphism.

20) Assume that k = R or C. Let Γ be a simply-connected Lie group with
Lie algebra g. Let λ, µ,E,F,G be as in Prop. 10. Let (e1, . . . , en) (resp.
(f1, . . . , fp)) be a basis of E (resp. F) consisting of eigenvectors of h, with
e1 ∈ Eλ and f1 ∈ Fµ. We can consider E,F,G as Γ -modules. If γ ∈ Γ , de-
note by ai(γ) the coordinate of γ.e1 with index i, and bj(γ) the coordinate of
γ.f1 with index j. Show that the function aibj on Γ is not identically zero.
Deduce that, for all (i, j), there exists an element of G ⊂ E⊗F whose coordi-
nate of index (i, j) is �= 0; for k = R or C, this gives a new proof of Prop. 10.
Pass from this to the case k = Q, and then to the case of an arbitrary field,
cf. Exerc. 4.

21) Let λ, µ ∈ P++. Let E,F,G be simple g-modules of highest weights
λ, µ, λ + µ, and let n be an integer ≥ 1. If ω is a weight of E of mul-
tiplicity n, then ω + µ is a weight of G of multiplicity ≥ n. (We have
Gω+µ ⊂

⊕
ν+σ=ω+µ

Eν ⊗ Fσ. If dimGω+µ < n, the projection of Gω+µ onto

Eω ⊗ Fµ is of the form E′ ⊗ Fµ, with E′ strictly contained in Eω. Derive a
contradiction from this by choosing adapted bases of E and F and imitating
the proof of Prop. 10.)

22) Assume that g is simple, in other words that R is irreducible. Show that
there exists a unique dominant weight λ �= 0 such that the set of weights
of E(λ) is W.λ ∪ {0}: we have λ = α, where α ∈ R is such that Hα is
the highest root of R∨. When all the roots are of the same length (cases
Al,Dl,E6,E7,E8), we have λ = α̃; this is the only root that is a dominant

15For more details, cf. E. B. DYNKIN, Maximal subgroups of classical groups [in
Russian], Trudy Moskov. Mat. Obšč., Vol. 1 (1952), pp. 39-166 (= Amer. Math.
Soc. Transl., Vol. 6 (1957), pp. 245-374).
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weight; the corresponding representation is the adjoint representation of g.
In the other cases, λ is the only root of minimum length that is a dominant
weight; with the notations of Chap. VI, Plates, we have: λ = �1 (type Bl);
λ = �2 (type Cl); λ = �4 (type F4); λ = �1 (type G2).

23) Let U0 be the commutant of h in U(g) (cf. §6, no. 4).
a) Let V be a (finite dimensional) g-module. Show that the Vλ, λ ∈ P,
are stable under U0, and that, if V is simple and Vλ �= 0, Vλ is a simple
U0-module (use the decomposition U(g) = ⊕Uλ, loc. cit.).
b) Show that, for every element c �= 0 of U0, there exists a finite dimensional
simple representation ρ of U0 such that ρ(c) �= 0. (Use a) and Chap. I, §7,
Exerc. 3 a).)

24) Let A be a unital associative algebra and M the set of its finite codimen-
sional two-sided ideals.
a) Let U∗ be the vector space dual of U. If θ ∈ U∗, show the equivalence of
the following properties:
(i) there exists m ∈ M such that θ(m) = 0;
(ii) there exist two finite families (θ′

i) and (θ′′
i ) of elements of U∗ such that

θ(xy) =
∑

i

θ′
i(x)θ

′′
i (y) for all x, y ∈ U.

The elements θ with these properties form a subspace U′ of U∗, which coin-
cides with that denoted by B′ in Algebra, Chap. III, §11, Exerc. 27. There
exists a unique coalgebra structure on U′ whose coproduct c : U′ → U′ ⊗ U′

is given by

c(θ) =
∑

i

θ′
i ⊗ θ′′

i ,

where θ′
i, θ

′′
i ∈ U′ are such that θ(xy) =

∑
i
θ′

i(x)θ
′′
i (y) for all x, y ∈ U, cf. (ii).

The coalgebra U′ is the union of the increasing filtration by the subspaces
(U/m)∗, m ∈ M, which are finite dimensional. The dual of U′ can be identified
with the algebra Û = lim

←− U/m; if Û is given the projective limit of the discrete

topologies on the U/m, m ∈ M, the continuous linear forms on Û are given
by the elements of U′.
b) Let E be a finite dimensional left U-module. Its annihilator mE belongs
to M; the composite Û → U/mE → End(E) gives E the structure of a left
Û-module. If F is a finite dimensional left U-module, a linear map f : E → F
is a U-homomorphism if and only if it is a Û-homomorphism. If a ∈ E, b ∈ E∗,
the linear form θa,b : x 	→ 〈xa, b〉 belongs to U′, and

〈x, θa,b〉 = 〈xa, b〉 for all x ∈ Û.

The θa,b (for varying E, a, b) generate the k-vector space U′.
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c) Let XU be the set of isomorphism classes of finite dimensional left U-
modules. For all E ∈ XU, let uE be a k-linear endomorphism of E; assume
that

f ◦ uE = uF ◦ f for all E,F ∈ XU and f ∈ HomU(E,F).

Show that there exists a unique element x ∈ Û such that xE = uE for all
E ∈ XU. (Reduce to the case in which U is finite dimensional.)

¶ 25) Let a be a Lie algebra and U its enveloping algebra. Apply the defini-
tions and results of Exerc. 24 to the algebra U. In particular, U′ ⊂ U∗ and
the dual of U′ can be identified with the algebra Û = lim

←− U/m; the canonical

map U → Û is injective (Chap. I, §7, Exerc. 3).
a) The coalgebra structure of U (Chap. II, §1, no. 4) defines an algebra
structure on the dual U∗ (cf. Chap. II, §1, no. 5, Prop. 10, and Algebra,
Chap. III, §11, no. 2). If E,F are finite dimensional a-modules,

θa,b ◦ θc,d = θa⊗c,b⊗d for a ∈ E, b ∈ E∗, c ∈ F, d ∈ F∗.

Deduce that U′ is a subalgebra of U∗. The coalgebra and algebra structures
of U′ make it a commutative bigebra (Algebra, Chap. III, §11, no. 4).
b) Let x be an element of Û; identify x with a linear form U′ → k. Prove the
equivalence of the following properties:
(i) x is a homomorphism of algebras from U′ to k.
(ii) xE⊗F = xE ⊗ xF for all finite dimensional a-modules E and F.

(Prove first that (ii) is equivalent to
(ii′) x(θa⊗c,b⊗d) = x(θa,b)x(θc,d) if a ∈ E, b ∈ E∗, c ∈ F, d ∈ F∗,
and use the fact that the θa,b generate U′.)

c) Let x be an element of Û satisfying conditions (i) and (ii) of b). Show the
equivalence of the following conditions:
(iii) x takes the unit element of U′ to the unit element of k.
(iv) x �= 0.
(v) If k is given the trivial a-module structure, we have xk = Id.
(vi) xE is invertible for all E.

(The equivalence (iii) ⇐⇒ (iv) follows from the fact that x is a homo-
morphism of algebras. On the other hand, xk = λ Id, with λ ∈ k. Using the
a-isomorphism k⊗E → E, deduce that λxE = xE for all E, and, in particular,
that λ2 = λ by taking E = k. The case λ = 1 corresponds to x �= 0, hence
(iv) ⇐⇒ (v), and (vi) =⇒ (v). To prove that (v) =⇒ (vi), show that, if F is
the dual of E, then txF ◦ xE = λ IdE.)
d) Let G be the set of elements of Û satisfying conditions (i) to (vi) above.
Show that G is a subgroup of the group of invertible elements of Û.

Let x ∈ G. If E is a finite dimensional a-module, then xE ∈ GL(E). This
applies in particular to E = a, equipped with the adjoint representation;
this gives an element xa ∈ GL(a). Show that xa is an automorphism of a
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(use the a-homomorphism a ⊗ a → a given by the bracket). This gives a
homomorphism v : G → Aut(a). If E is a finite dimensional a-module,

xE(y.e) = v(x)(y).xE(e) if y ∈ a, e ∈ E

(use the a-homomorphism a ⊗ E → E given by the operation of a on E).
e) The principal anti-automorphism σ of U extends by continuity to Û. Its
transpose leaves U′ stable and induces an inversion on U′ (Algebra, Chap.
III, §11, Exerc. 4). If x ∈ G, then σ(x) = x−1.
f) Assume that a is semi-simple16. Let n be a nilpotent element of a. Then
there exists a unique element en of G such that (en)E = exp(nE) for every
finite dimensional a-module E. We have v(en) = exp(ad n) ∈ Aut(a), so
Aute(a) ⊂ v(G).

Show that, if b is a subalgebra of a consisting of nilpotent elements, then

en.em = eH(n,m) for n,m ∈ b,

where H denotes the Hausdorff series (Chap. II, §6).

¶ 26) Apply the notations and results of Exerc. 25 to the case in which a = g
(split case).
a) Let x ∈ G and let σ = v(x) be its image in Aut(g). If ρ is a representation
of g, ρ and ρ ◦ σ are equivalent. Deduce (cf. no. 2, Remark 1) that σ belongs
to Aut0(g). Extend this result to arbitrary semi-simple algebras.
b) Let ϕ ∈ TP = Hom(P, k∗), where P = P(R). If E is a g-module, let ϕE be
the endomorphism of E whose restriction to each Eλ (λ ∈ P) is the homothety
of ratio ϕ(λ). Show that there exists a unique element t(ϕ) ∈ G such that
t(ϕ)E = ϕE for all E (Use Exerc. 24 c), and the characterizations (ii) and
(vi) of Exerc. 25.) This gives a homomorphism t : TP → G. Show that t is
injective. We use this to identify TP with a subgroup of G. The composite
TP → G → Aut(g) is the homomorphism denoted by f ◦ q in §5, no. 2.
c) Let x ∈ G be such that σ = v(x) belongs to the subgroup f(TQ) of Aut0(g)
(§5, no. 2), in other words, such that it operates trivially on h; denote the
element of TQ = Hom(Q, k∗) corresponding to x by ψ. We are going to show
that x belongs to TP. Prove successively:
c1) If E is a g-module, xE is an h-endomorphism of E.
(Use the g-homomorphism g ⊗ E → E, and the fact that x operates

trivially on h.) In particular, the Eµ are stable under xE.
c2) There exists ϕ ∈ TP such that, for every g-module E, and every

primitive element e of E of weight λ, we have xEe = ϕ(λ)e.
(Choose ϕ such that this relation is true when E is a fundamental module

E(�α). Deduce the case of the E(λ), λ ∈ P++, by using the embedding of

16∗In this case, it can be shown that U′ is the bigebra of the simply-connected
semi-simple algebraic group A with Lie algebra a, and that G is the group of
k-points of A.∗
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such a module in a tensor product of the E(�α). Pass from this to the general
case.)
c3) Choose ϕ as in c2). Let E be a simple g-module of highest weight λ,

and let µ be a weight of E; then λ− µ ∈ Q. Show that the restriction of xE
to Eµ is the homothety of ratio ϕ(λ)ψ(µ− λ). (Same method as for c1).)
c4) If λ, µ ∈ P++, and if α ∈ B is not orthogonal to either λ or µ, then

ϕ(λ+ µ− α) = ϕ(λ+ µ)ψ(−α),

so ϕ(α) = ψ(α). (Use c2), c3), and the embedding of E(λ + µ − α) in
E(λ) ⊗ E(µ), cf. Exerc. 17.)
c5) Deduce from c4) that ϕ|Q = ψ, and use c3) to deduce that x = t(ϕ).

d) Identify TQ with a subgroup of Aut0(g) by means of f . By a), we have

Aute(g) ⊂ v(G) ⊂ Aut0(g)

and, by c), v(G) ∩ TQ = Im(TP). Deduce (cf. §5, no. 3) that Aute(g) ∩ TQ =
Im(TP) and that f(G) = Aute(g). The canonical map

ι : TQ/Im(TP) → Aut0(g)/Aute(g)

is therefore an isomorphism.
e) The kernel of v : G → Aute(g) is equal to the kernel of TP → TQ; it is
isomorphic to

Hom(P/Q, k∗);

this is a finite abelian group contained in the centre of G, and its order
divides (P : Q); if k is algebraically closed, it is isomorphic to the dual of
P/Q (Algebra, Chap. VII, §4, no. 8).
f) Let α ∈ R, Xα ∈ gα and X−α ∈ g−α be such that [Xα, X−α] = −Hα, and
let ρα be the corresponding representation of sl(2, k) on g. If E is a g-module,
deduce (§1, no. 4) a representation of SL(2, k) on E, and hence (Exerc. 25
b), c)) a homomorphism

ϕα : SL(2, k) → G.

Show that Im(ϕα) contains the elements of TP of the form λ 	→ tλ(Hα), t ∈ k∗.
Deduce that the Im(ϕα), α ∈ B, generate G (show first that the group they
generate contains TP). In particular, G is generated by the en, with n ∈ gα,
α ∈ B ∪ −B. The derived group of G is equal to G.
g) If a subgroup G′ of G is such that v(G′) = Aute(g), then G′ = G (use f)).
h) Let E be a faithful g-module, and let Γ be the subgroup of P generated
by the weights of E. Then P ⊃ Γ ⊃ Q, cf. Exerc. 5. Show that the ker-
nel of the canonical homomorphism G → GL(E) is equal to the subgroup
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of TP consisting of the elements ϕ whose restriction to Γ is trivial. In par-
ticular, if Γ = P the homomorphism G → GL(E) is injective. If Γ = Q,
this homomorphism factorizes as G v−→ Aute(g) −→ GL(E) , and the
homomorphism Aute(g) → GL(E) is injective.

27) Let Ω = P/Q. If ω ∈ Ω, and if E is a g-module, denote by Eω the direct
sum of the Eλ, for λ ∈ ω. We have E =

⊕
ω∈Ω

Eω.

a) Show that Eω is a g-submodule of E. We have (E∗)ω = (E−ω)∗ and

(E ⊗ F)ω =
⊕

α+β=ω

Eα ⊗ Fβ

if F is another g-module.
b) Let χ ∈ Hom(Ω, k∗) = Ker(TP → TQ). Identify χ with an element of the
kernel of f : G → Aute(g), cf. Exerc. 26 e). Show that the operation of χ on
Eω is the homothety of ratio χ(ω).
c) What are the Eω when g = sl(2, k) ?

§8

1) Let f be an invariant polynomial function on g. Show that f is invariant
under Aut(g) if and only if f |h is invariant under Aut(R). Deduce that, if the
Dynkin graph of R has a non-trivial automorphism, there exists an invariant
polynomial function on g that is not invariant under Aut(g).

2) Take g = sl(3, k). Show that x 	→ det(x) is an invariant polynomial func-
tion on g that is not invariant under Aut(g) (use the automorphism x 	→ −tx).

3) Let a be a semi-simple Lie algebra, and s ∈ Aut(a). Show the equivalence
of:
(i) s ∈ Aut0(a).
(ii) s operates trivially on the centre of U(a).
(iii) For all x ∈ a, there exists t ∈ Aut0(a) such that tx = sx.

(Use Prop. 6 to show that (iii) =⇒ (i).)

4) Show that, in Cor. 2 of Prop. 2, and in Th. 1 (ii), we can restrict ourselves
to representations ρ whose weights are radical weights (remark that Prop. 1
remains valid when k[P]W is replaced by k[Q]W, where Q is the group of
radical weights).

5) We retain the notations of §6 and §7. Let λ ∈ h∗. If, for any w ∈ W, w �= 1,
we have (λ+ ρ) − w(λ+ ρ) /∈ Q+, then Z(λ) is simple.

(Use Cor. 1 (ii) of Th. 2.)

6) Let a be a Lie algebra, f a polynomial function on a, and x, y two elements
of a. Put fy = θ∗(y)f (cf. no. 3), and denote by Dxf the tangent linear map
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of f at x (Chap. VII, App. I, no. 2). Show that fy(x) = (Dxf)([x, y]). Deduce
that Dxf vanishes on Im(ad x) when f is invariant.

7) ∗Let d1, . . . , dl be the characteristic degrees of the algebra I(g), cf. Chap. V,
§5, no. 1. For any integer n ≥ 0, denote by rn the number of elements of degree
n in a homogeneous basis of S(g) over I(g) (cf. no. 3, Remark 2), and put

r(T) =
∞∑

n=0
rnTn. Show that

r(T) = (1 − T)−N
l∏

i=1

(1 − Tdi), where N = dim(g).∗

8) Put l = rk(g),N = dim(g). If x ∈ g, define ai(x), 0 ≤ i ≤ N, by the
formula

det(T + ad x) =
N∑

i=0

TN−iai(x).

The function ai thus defined is homogeneous polynomial of degree i, and
invariant under Aut(g). If x ∈ h and i ≤ N − l, ai(x) is the ith elementary
symmetric function of the α(x), α ∈ R; in particular, aN−l(x) =

∏
α∈R

α(x).

Construct an example in which the ai do not generate the algebra of poly-
nomial functions on g invariant under Aut(g).

9) The notations are those of no. 5. Let λ ∈ h∗, z ∈ Z, z′ the image of z
under the principal anti-automorphism of U(g), and w0 the element of W
that transforms B into −B. Show that χλ(z) = χ−w0λ(z′).

(It suffices to prove this for λ ∈ P++. Consider the operation of z on E(λ)
and E(λ)∗; use Prop. 11 of §7.)

10) (In this exercise, and in the following three, we retain the notations of
§6.) Let λ ∈ h∗.
a) Let N,N′ be g-submodules of Z(λ) such that N′ ⊂ N and N/N′ is simple.
Show that there exists µ ∈ λ − Q+ such that N/N′ is isomorphic to E(µ)
(apply Th. 1 of §6), and such that µ+ ρ ∈ W.(λ+ ρ) (apply Cor. 1 of Th. 2).
b) Show that Z(λ) admits a Jordan-Hölder sequence. (Apply a) and the fact
that the weights of Z(λ) are of finite multiplicity.)

11) Let λ ∈ h∗ and let V be a non-zero g-submodule of Z(λ). Show that there
exists µ ∈ h∗ such that V contains a simple g-submodule isomorphic to Z(µ).

(Let A be the set of ν ∈ h∗ such that V contains a g-submodule isomorphic
to Z(ν). By using Prop. 6 of no. 6, show first that A �= ∅. Then show that A
is finite, and consider an element µ of A such that (µ− Q+) ∩ A = {µ}.)

¶ 12) a) Let λ, µ ∈ h∗. Every non-zero g-homomorphism from Z(µ) to Z(λ)
is injective. (Use Prop. 6 of no. 6.)
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b) Let r ∈ N, A a finite subset of Nr, m = Card(A). For all ξ ∈ Nr, let
s(ξ) be the sum of the coordinates of ξ, and PA(ξ) the number of families
(nα)α∈A of integers ≥ 0 such that ξ =

∑
α∈A

nαα. Then PA(ξ) ≤ (s(ξ) + 1)m

for all ξ ∈ Nr. (Argue by induction on m.)
c) Let λ, µ ∈ h∗. Show that dimHomg(Z(µ),Z(λ)) ≤ 1. (Let ϕ1 and ϕ2
be non-zero g-homomorphisms from Z(µ) to Z(λ). If Im(ϕ1) = Im(ϕ2), ϕ1
and ϕ2 are linearly dependent by Prop. 1 (iii) of §6. Assume that Im(ϕ1) �=
Im(ϕ2). If Z(µ) is simple, the sum Im(ϕ1) + Im(ϕ2) is direct; deduce that
P(ξ+λ−µ) ≥ 2P(ξ) for all ξ ∈ h∗, contradicting b). In the general case, use
Exerc. 11.)

When dim Homg(Z(µ),Z(λ)) = 1, write Z(µ) ⊂ Z(λ) by abuse of notation.
d) Let ν ∈ h∗. The set of λ ∈ h∗ such that Z(λ− ν) ⊂ Z(λ) is closed in h∗ in
the Zariski topology.

¶ 13) a) Let a be a nilpotent Lie algebra, x ∈ a, n ∈ N, p ∈ N. There exists
l ∈ N such that xly1 . . . yn ∈ U(a)xp for all y1, . . . , yn ∈ a.
b) Let λ, µ ∈ h∗, and α ∈ B be such that

Z(sαµ− ρ) ⊂ Z(µ− ρ) ⊂ Z(λ− ρ).
Assume that λ ∈ P. Let p = λ(Hα) ∈ Z. Show that:
b1) If p ≤ 0, then Z(λ− ρ) ⊂ Z(sαλ− ρ).
b2) If p > 0, then Z(sαµ− ρ) ⊂ Z(sαλ− ρ) ⊂ Z(λ− ρ).
(Use a), and §6, Cor. 1 of Prop. 6.)

c) Let λ ∈ h∗, α ∈ R, and m = λ(Hα). Assume that m ∈ N. Show that

Z(sαλ− ρ) ⊂ Z(λ− ρ).
(Prove this first for λ ∈ P by using b), and then in the general case by using
Exerc. 12 d).)17

14) ∗Let a be a semi-simple Lie algebra, and Z(a) the centre of U(a). Show
that U(a) is a free Z(a)-module. (Remark that gr U(a) is isomorphic to S(a)
and S(a∗), and use Remark 2 of no. 3.)∗

15) Let x be a diagonalizable element of g (§3, Exerc. 10), and y a semi-simple
element of g such that f(x) = f(y) for every invariant polynomial function
f on g. Show that there exists s ∈ Aute(g) such that sy = x. (Remark that
ad x and ad y have the same characteristic polynomial, cf. Exerc. 8, hence

17For more details on Exercises 10 to 13, see: I. N. BERNSTEIN, I. M. GELFAND
and S. I. GELFAND, Structure of representations generated by highest weight
vectors [in Russian], Funct. Anal. i evo prilojenie, Vol. V (1971), pp. 1-9.
In this memoir, it is further proved that, if λ, λ′ ∈ h∗ are such that Z(λ − ρ) ⊂
Z(λ′ − ρ), there exist γ1, . . . , γn ∈ R+ such that λ = sγn . . . sγ2sγ1λ′ and
(sγi . . . sγ1λ′)(Hγi+1) ∈ N for 0 ≤ i ≤ n. It follows that Z(λ − ρ) is simple if
and only if λ(Hα) ∈ N∗ for all α ∈ R+.
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the fact that y is diagonalizable. Next, reduce to the case in which x and y
are contained in h by using Exerc. 10 of §3, and use Th. 1 (i) and Lemma 6
to prove that x and y are conjugate under W.)

16) Let a be a semi-simple Lie algebra, x an element of a, and xs the semi-
simple component of x. Show that, if f is an invariant polynomial function
on a, then f(x) = f(xs). (Reduce to the case in which f is of the form
x 	→ Tr ρ(x)n.)

17) Assume that k is algebraically closed, and put G = Aute(g). Let x, y ∈ g.
Show the equivalence of:
(i) The semi-simple components of x and y are G-conjugate.
(ii) For every invariant polynomial function f on g, we have f(x) = f(y).

(Use Exerc. 15 and 16.)

18) Let a be a semi-simple Lie algebra, l = rk(a), I the algebra of invariant
polynomial functions on a, and P1, . . . ,Pl homogeneous elements of I gener-
ating I as an algebra. The Pi define a polynomial map P : a → kl. If x ∈ a,
denote by DxP : a → kl the tangent linear map of P at x (Chap. VII, App. I,
no. 2).
a) Let h be a Cartan subalgebra of a, and let x ∈ h. Prove the equivalence
of:
(i) DxP|h is an isomorphism from h to kl;
(ii) x is regular.
(Reduce to the split case. Choose a basis of h, and denote by d(x) the determi-
nant of the matrix of DxP|h relative to this basis. Show, by means of Prop. 5
of Chap. V, §5, no. 4, that there exists c ∈ k∗ such that d(x)2 = c

∏
α∈R

α(x),

where α belongs to the set R of roots of (a, h).)
If these conditions are satisfied, a = h⊕Im ad(x), and Ker DxP = Im ad(x)

(use Exerc. 6 to show that DxP vanishes on Im ad(x)).
b) Show that the set of x ∈ a such that DxP is of rank l is a dense open
subset of a in the Zariski topology.

§9

All the g-modules considered are assumed to be finite dimensional.

1) If m is an integer ≥ 0, we have dimE(mρ) = (m + 1)N, where N =
Card(R+).

2) Show that there exists a unique polynomial function d on h∗ such that
d(λ) = dimE(λ) for all λ ∈ P++; its degree is Card(R+). We have

d(wλ− ρ) = ε(w)d(λ− ρ) if w ∈ W, λ ∈ h∗.

In particular, the function λ 	→ d(λ− ρ)2 is invariant under W. Deduce that
there exists a unique element u of the centre of U(g) such that χλ(u) = d(λ)2
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for all λ ∈ h∗ (apply Th. 2 of §8, no. 5). When g = sl(2, k), we have u = C+1,
where C is the element defined in Exerc. 1 of §1.

3) Let k1, . . . , kl be the characteristic degrees of the algebra of invariants of
W (cf. Chap. V, §5).
a) Show that, for all j ≥ 1, the number of i such that ki > j is equal to the
number of α ∈ R+ such that 〈ρ,Hα〉 = j. (Reduce to the case in which R is
irreducible, and use Chap. VI, §4, Exerc. 6 c).) (Cf. §5, Exerc. 5 g).)
b) Deduce the formula

∏
α∈R+

〈ρ,Hα〉 =
l∏

i=1

(ki − 1)!.

¶ 4) Assume that g is simple, and denote by γ the element of R+ such that
Hγ is the highest root of R∨; write Hγ =

∑
α∈B

nαHα. We have 〈ρ,Hγ〉 =∑
nα = h − 1, where h is the Coxeter number of R (Chap. VI, §1, no. 11,

Prop. 31).
a) Let α ∈ B. Show that, for all β ∈ R+,

〈�α + ρ,Hβ〉 ≤ h+ nα − 1,

and that equality holds if β = γ. Deduce that every prime factor of dim E(�α)
is ≤ h+ nα − 1.
b) Assume that �α is not minuscule, i.e. nα ≥ 2. Let m ∈ 2, nα and
p = h +m − 1. Verify (cf. Chap. VI, Plates) that there exists β ∈ R+ such
that 〈�α, Hβ〉 = nα and 〈ρ,Hβ〉 = h−1− (nα −m), hence 〈�α +ρ,Hβ〉 = p.
Deduce that, if p is prime, p divides dimE(�α). (Remark that p does not
divide any of the 〈ρ,Hβ〉 for β ∈ R+, cf. Exerc. 3.)
c) When g is of type G2 (resp. F4,E8), we have h = 6 (resp. 12, 30), and
dimE(�α) is divisible by 7 (resp. 13, 31), When g is of type E6 (resp. E7),
and �α is not minuscule, dim E(�α) is divisible by 13 (resp. 19).

¶ 5) a) Let α ∈ R, x ∈ gα, y ∈ g−α, and let E be a g-module. Show that, for
all λ ∈ P,

Tr((xy)E|Eλ) = Tr((xy)E|Eλ+α) + λ([x, y]) dimEλ.

Deduce that∑
λ∈P

λ([x, y]) dimEλ. eλ = (1 − e−α)
∑
λ∈P

Tr((xy)E|Eλ). eλ.

b) Give h∗ a non-degenerate W-invariant symmetric bilinear form 〈 , 〉. Let
∆ be the endomorphism of the vector space k[P] such that ∆(eµ) = 〈µ, µ〉eµ
for all µ ∈ P; if a, b ∈ k[P], put

∆′(a, b) = ∆(ab) − a∆(b) − b∆(a).
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Prove that

∆(J(eµ)) = 〈µ, µ〉J(eµ) for µ ∈ P,

∆′(eλ, eµ) = 2〈λ, µ〉eλ+µ for λ, µ ∈ P,
∆′(ab, c) = a∆′(b, c) + b∆′(a, c) for a, b, c ∈ k[P].

c) Let λ ∈ P++, cλ = ch(E(λ)) and d = J(eρ). Prove that

∆(cλd) = 〈λ+ ρ, λ+ ρ〉cλd.
(Use a), b), §6, Cor. of Prop. 7, and Chap. VI, §3, no. 3, formula (3).)
d) Deduce another proof of the formula of H. Weyl from the above and §7,
no. 2, Prop. 5 (iii).
e) For all λ ∈ h∗, put dimEλ = m(λ). Deduce from a) that

Tr((xy)E|Eλ) =
+∞∑
i=0

(λ+ iα)([x, y])m(λ+ iα)

+∞∑
i=−∞

(λ+ iα)([x, y])m(λ+ iα) = 0.

f) Let 〈 · , · 〉 be a non-degenerate invariant symmetric bilinear form on g
whose restriction to h is the inverse of the form chosen above. Let Γ be
the corresponding Casimir element. Assume that E is simple; put ΓE = γ.1,
where γ ∈ k. By using e) and §2, no. 3, Prop. 6, show that

γm(λ) = 〈λ, λ〉m(λ) +
∑
α∈R

+∞∑
i=0

〈λ+ iα, α〉m(λ+ iα)

for all λ ∈ h∗, and then that

γm(λ) = 〈λ, λ〉m(λ) +
∑

α∈R+

m(λ)〈λ, α〉 + 2
∑

α∈R+

+∞∑
i=1

m(λ+ iα)〈λ+ iα, α〉

= 〈λ, λ+ 2ρ〉m(λ) + 2
∑

α∈R+

+∞∑
i=1

m(λ+ iα)〈λ+ iα, α〉.

g) Continue to assume that E is simple; let ω be its highest weight. Deduce
from f) that, for all λ ∈ h∗,

(〈ω + ρ, ω + ρ〉 − 〈λ+ ρ, λ+ ρ〉)m(λ) = 2
∑

α∈R+

+∞∑
i=1

m(λ+ iα)〈λ+ iα, α〉.
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(Recall that, by Prop. 5 of §7, 〈ω+ρ, ω+ρ〉 > 〈λ+ρ, λ+ρ〉 if λ is a weight of E
distinct from ω. The preceding formula thus gives a procedure for calculating
m(λ) step by step.)18

6) Let x 	→ x∗ be the involution of k[P] that takes ep to e−p for all p ∈ P.

a) Put D = d∗d =
∏

α∈R
(1−eα). Show that d∗ = (−1)Nd, where N = Card(R+),

and hence that D = (−1)Nd2.
b) Define two linear forms ε and I on k[P] by the formulas:

ε(1) = 1, ε(ep) = 0 if p ∈ P -- {0}
and

I(f) =
1
m
ε(D.f), where m = Card(W).

Show, by using the formula d = J(eρ), that I(1) = 1.
c) Let λ ∈ P++ and cλ = ch E(λ) = J(eλ+ρ)/d. Show that I(cλ) = 0 if λ �= 0.
(Same method as for b).)
d) Show that I takes integer values on the subalgebra Z[P]W = ch R(g) of
k[P]. If E is a g-module, the dimension of the space of invariants of g in E is
equal to I(ch E). (Reduce to the case in which E is simple and use b) and c).)

e) We have dimE =
∑

λ∈P++

I(c∗λch E)d(λ), where d(λ) = dimE(λ). In partic-

ular:

I(c∗λcµ) = δλµ if λ, µ ∈ P++.

f) If λ, µ, ν ∈ P++, the integer m(λ, µ, ν) of Prop. 2 is equal to I(cλcµc∗ν).
Deduce the identity

d(λ)d(µ) =
∑

ν∈P++

m(λ, µ, ν)d(ν) λ, µ, ν ∈ P++.

(Apply e) to the g-module E = E(λ) ⊗ E(µ).)

¶ 7) We retain the notations of the proof of Th. 2.
a) Show that

fρ(J(eµ)) =
∏

α∈R+

(e(µ|α)T/2 − e−(µ|α)T/2).

b) Take ( · | · ) to be the canonical bilinear form ΦR (Chap. VI, §1, no. 12).
Show that

18For more details on this exercise, see: H. FREUDENTHAL, Zur Berechnung der
Charaktere der halbeinfachen Lieschen Gruppen, Proc. Kon. Akad. Wet. Ams-
terdam, Vol. LVII (1954), pp. 369-376.
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fρ(J(eµ)) ≡ dµTN
(

1 +
T2

48
(µ|µ)

)
(mod. TN+3R[[T]]),

where dµ =
∏

α∈R+

(µ|α).

c) From b) and the equality J(eλ+ρ) = ch(E).J(eρ), deduce the formula∑
µ∈P

(µ|ρ)2 dimEµ =
dimE

24
(λ|λ+ 2ρ).

d) Assume that g is simple. Show that (ρ|ρ) = dim g/24. (Apply c) with λ
the highest root of R, and use Exerc. 3 of §6.)

¶ 8) Let ψ be a polynomial function on h∗ of degree r. Show that there exists
a unique polynomial function Ψ on h∗ that is invariant under W, of degree
≤ r, and such that∑

α∈P

ψ(µ) dim Eµ = Ψ(λ+ ρ) dim E

for any simple g-module E of highest weight λ.
(Treat first the case in which ψ(µ) = (µ|ν)r, where ν ∈ P is not orthogonal

to any root; for this use the homomorphism fν in the proof of Th. 2 and
Chap. V, §5, no. 4, Prop. 5 (i).)

9) We use the notations of Chap. VI, Plate I, in the case of an algebra g of
type A2. Let n, p be integers ≥ 0.
a) P(nα1 + pα2) = 1 + inf(n, p).
b) Let λ = n�1 +p�2. Then dimE(λ) = 1

2 (n+1)(p+1)(n+p+2). The mul-
tiplicity of the weight 0 of E(λ) is 0 if λ is not radical, i.e. if n ≡/ p (mod. 3);
if λ is radical, it is 1 + inf(n, p).

10) We use the notations of Chap. VI, Plate II, in the case of an algebra of
type B2. Let n, p be integers ≥ 0.
a) We have

P(nα1 + p(α1 + 2α2)) = 1 +
1
2
p(p+ 3)

P(nα2 + p(α1 + α2)) = [p2/4] + p+ 1

P(n(α1 + α2) + p(α1 + 2α2)) = [n2/4] + n+ 1 + np+
1
2
p(p+ 3).

b) Let λ = n(α1 +α2)+p(α1 +2α2). The multiplicity of the weight 0 in E(λ)
is

[n/2] + 1 + np+ p.

11) Assume that g is not a product of algebras of rank 1. Let n ∈ N. Show
that there exists a simple g-module one of whose weights is of multiplicity
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≥ n. (Suppose not. Let Eλ be the simple g-module of highest weight λ ∈ P++.
Compare dim Eλ and the number of distinct weights of Eλ when (λ|λ) → ∞
(with the notations of Th. 2).)

12) Let U0 be the commutant of h in U(g). If g is of rank 1, U0 is commutative.
If g is of rank ≥ 2, U0 admits simple representations of arbitrarily large finite
dimension. (Use Exerc. 11 and Exerc. 23 a) of §7.)

13) Let R be a root system in a vector space V. Two elements v1, v2 of V
are said to be disjoint if R is the direct sum of two root systems R1 and
R2 (Chap. VI, §1, no. 2) such that vi belongs to the vector subspace of V
generated by Ri, i = 1, 2. Show that two elements of VR that belong to the
same chamber of R are disjoint if and only if they are orthogonal.

¶ 14) a) Let µ, ν ∈ P++ and let γ be a weight of E(µ). Let ρµ be the rep-
resentation of g on E(µ). Let Xα ∈ gα -- {0}, Yα ∈ g−α -- {0}. If α ∈ B, put
να = ν(Hα), and

E+(µ, γ, ν) = E(µ)γ∩
⋂

α∈B

Ker ρµ(Xα)να+1,

E−(µ, γ, ν) = E(µ)γ∩
⋂

α∈B

Ker ρµ(Yα)να+1,

d+(µ, γ, ν) = dimE+(µ, γ, ν), d−(µ, γ, ν) = dimE−(µ, γ, ν).

For all λ ∈ h∗, put λ∗ = −w0λ, where w0 is the element of W that takes B
to −B. Show that

d+(µ, γ, ν) = d−(µ,−γ∗, ν∗).

b) Let λ1, λ2 ∈ P++, V the g-module Homk(E(λ∗
1),E(λ2)), U the set of ϕ ∈ V

such that Yα.ϕ = 0 for all α ∈ B, and w a primitive vector in E(λ∗
1). Show

that ϕ 	→ ϕ(w) is an isomorphism from U to the set of v ∈ E(λ2) such that
Y

λ∗
1(Hα)+1

α .v = 0 for all α ∈ B. (Use Exerc. 15 of §7 to prove surjectivity.)
c) With the notations of Prop. 2, prove that, for λ1, λ2, λ ∈ P++,

m(λ1, λ2, λ) = d+(λ, λ2 − λ∗
1, λ

∗
1) = d−(λ, λ1 − λ∗

2, λ1)
= d+(λ1, λ− λ2, λ2) = d−(λ1, λ

∗
2 − λ∗, λ∗

2).

(Observe that m(λ1, λ2, λ) is the dimension of the space of g-invariant ele-
ments of

E(λ)∗ ⊗ E(λ1) ⊗ E(λ2),

and hence is equal to m(λ∗
1, λ, λ2).)

d) Let λ1, λ2 ∈ P++, and let λ be the unique element of P++ ∩ W.(λ1 − λ∗
2).

We have

m(λ1, λ2, λ) = 1.
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(Use c).) Deduce that E(λ1)⊗E(λ2) contains a unique submodule isomorphic
to E(λ).
e) We retain the notations of d). Show the equivalence of the following con-
ditions:
(i) λ = λ1 + λ2
(ii) ‖ λ ‖ = ‖ λ1 + λ2 ‖
(iii) λ1 and λ∗

2 are orthogonal
(iv) λ1 and λ∗

2 are disjoint (Exerc. 13)
(v) λ1 and λ2 are disjoint.
Conclude that E(λ1) ⊗ E(λ2) is not a simple module unless λ1 and λ2 are
disjoint (and hence another proof of Exerc. 18 f) of §7).

15) Put N = Card(R+), c =
∏

α∈R+

〈ρ,Hα〉, and d(λ) = dimE(λ) if λ ∈ P++.

Show that, for any real number s > 0,

∑
λ∈P++

d(λ)−s ≤ 1
c

( ∞∑
m=1

m−s

)N

.

Deduce that
∑

λ∈P++

d(λ)−s < +∞ if s > 1.

¶ 16) a) Take g to be of type F4 and use the notations of Chap. VI, Plate VIII.
If i = 1, 2, 3, 4, put

Xi = P++ ∩ (�i − Q+).

The set of weights of E(�i) is the disjoint union of the Wω, where ω belongs
to Xi (cf. §7, Prop. 5 (iv)). We have:

X1 = {0, �1, �4};
X2 = {0, �1, �2, �3, �4, �1 +�4, 2�4};
X3 = {0, �1, �3, �4};
X4 = {0, �4}.

b) Show, by means of Th. 2, that:

dimE(�1) = 52, dimE(�2) = 1274, dimE(�3) = 273, dimE(�4) = 26.

c) By using Chap. V, §3, Prop. 1, and the plates of Chap. VI, show that

Card(W�1) = 27322−3(3!)−1 = 24.

Calculate Card(W�2), . . . ,Card(W.2�4) similarly. Deduce that the number
of weights of E(�2) is 553; since this number is strictly less than dim E(�2),
one of these weights is of multiplicity ≥ 2.
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d) Make analogous calculations for �1, �3, �4. By using Exerc. 21 of §7,
deduce that, if ρ is a non-zero simple representation of g, ρ admits a weight
of multiplicity ≥ 2.
e) Prove the same result for a simple algebra of type E8.
f) Let a be a splittable simple Lie algebra. Deduce from d), e) and Prop. 7
and 8 of §7 the equivalence of the following properties:
(i) a admits a non-zero simple representation all of whose weights are of
multiplicity 1;
(ii) a is neither of type F4 nor of type E8.

§10

1) Let s = sl(2, k) and g = sl(3, k). Identify s with a subalgebra of g by means
of an irreducible representation of s of degree 3. Show that every subspace of
g containing s and stable under adgs is equal to either s or g; deduce that s
is maximal among the subalgebras of g distinct from g.

2) Let m = 1
2 (dim(g) + rk(g)). Every solvable subalgebra of g is of dimen-

sion ≤ m; if it is of dimension m, it is a Borel subalgebra. (Reduce to the
algebraically closed case, and use Th. 2.)

3) Assume that k is R,C, or a non-discrete complete ultrametric field. Give
the grassmannian G(g) of vector subspaces of g its natural structure of ana-
lytic manifold over k (Differentiable and Analytic Manifolds, Results, 5.2.6).
Consider the subsets of G(g) formed by:
(i) the subalgebras
(ii) the solvable subalgebras
(iii) the nilpotent subalgebras
(iv) the subalgebras consisting of nilpotent elements
(v) the Borel subalgebras.
Show that these subsets are closed (for (v), use Exerc. 2). Deduce that these
subsets are compact when k is locally compact.

Show by examples that the subsets of G(g) formed by:
(vi) the Cartan subalgebras
(vii) the subalgebras reductive in g
(viii) the semi-simple subalgebras
(ix) the decomposable subalgebras
are not necessarily closed, even when k = C.

4) Assume that k = C. Let G = Int(g) = Aut0(g), and let B be an integral
subgroup of G whose Lie algebra b is a Borel subalgebra of g. Show that B
is the normalizer of b in G (use Exerc. 4 of §3 and Exerc. 11 of §5). Deduce
by means of Exerc. 3 that G/B is compact.

¶ 5) Assume that g is splittable. If h is a splitting Cartan subalgebra of g,
denote by E(h) the subgroup of Aute(g) generated by the ead x, x ∈ gα(h),
α ∈ R(g, h), cf. Chap. VII, §3, no. 2.
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a) Let b be a Borel subalgebra of g containing h, and let h1 be a Cartan
subalgebra of b. Show that h1 is conjugate to h by an element of E(h). Deduce
that E(h) = E(h1).
b) Let h′ be a splitting Cartan subalgebra of g. Show that E(g) = E(h′). (If
b′ is a Borel subalgebra containing h′, choose a Cartan subalgebra h1 of b∩b′

and apply a) to show that E(h) = E(h1) = E(h′).)
c) Let x be a nilpotent element of g. Show that ead x ∈ E(h). (Use b) and
Cor. 2 of Th. 1 to reduce to the case in which x ∈ [b, b].) Deduce that
E(h) = Aute(g).

6) a) Show the equivalence of the properties:
(i) g has no nilpotent element �= 0.
(ii) g has no parabolic subalgebra �= g.
(Use Cor. 2 of Th. 1.)

Such an algebra is called anisotropic.
b) Let p be a minimal parabolic subalgebra of g, r the radical of p, and s = p/r.
Show that s is anisotropic. (Remark that, if q is a parabolic subalgebra of s,
the inverse image of q in p is a parabolic subalgebra of g, cf. §3, Exerc. 5 a).)

¶ 7) a) Show that the following properties of k are equivalent:
(i) Every anisotropic semi-simple k-Lie algebra reduces to 0.
(ii) Every semi-simple k-Lie algebra has a Borel subalgebra.
(Use Exerc. 6 to prove that (i) =⇒ (ii).)
b) Show that (i) and (ii) imply19:
(iii) Every finite dimensional k-algebra that is a field is commutative. (Or
again: the Brauer group of every algebraic extension of k reduces to 0.)

(Use the Lie algebra of elements of trace zero in such an algebra.)
c) Show that (i) and (ii) are implied by:
(iv) For any finite family of homogeneous polynomials fα ∈ k[(Xi)i∈I] of
degrees ≥ 1 such that

∑
α

deg fα < Card(I), there exist elements xi ∈ k, not

all zero, such that fα((xi)i∈I) = 0 for all α.
(Use Prop. 5 of §8.)

§11

1) Let g = sl(2, k). Put G = Aute(g); this group can be identified with
PSL2(k), cf. Chap. VII, §3, no. 1, Remark 2.

a) Every nilpotent element of g is G-conjugate to
(

0 λ
0 0

)
for some λ ∈ k.

Such an element is principal if and only if it is non-zero.

19In fact, (iii) is equivalent to (i) and (ii). For this, see: R. STEINBERG, Regular
elements of semi-simple algebraic groups, Publ. Math. I.H.E.S., Vol. XXV (1965),
pp. 49-80.
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b) The elements
(

0 λ
0 0

)
,
(

0 µ
0 0

)
, where λ, µ ∈ k∗, are G-conjugate if and

only if λ−1µ is a square in k.

c) Every simple element of g is G-conjugate to
(

1 0
0 −1

)
.

2) Let A =
(

0 1
0 0

)
, B =

(
0 0
1 0

)
. Then A is nilpotent, AB is not, and

[A, [A,B]] =
(

0 −2
0 0

)
.

Deduce that Lemma 5 does not extend to fields of characteristic 2.

3) Let r be the radical of g, and s = g/r. Show the equivalence of:
(i) g contains no sl2-triplet;
(ii) s contains no sl2-triplet;
(iii) s is anisotropic (§10, Exerc. 6);
(iv) s contains no non-zero diagonalizable element (§3, Exerc. 10).
(Use Prop. 2 and Exerc. 10 a) of §3.)

4) Let V be a vector space of dimension n ≥ 2, g = sl(V) and G = PGL(V),
identified with a group of automorphisms of g. An sl2-triplet in g gives V
a faithful sl(2, k)-module structure, and conversely any such structure arises
from an sl2-triplet; an sl2-triplet is principal if and only if the corresponding
sl(2, k)-module is simple; two sl2-triplets are G-conjugate if and only if the
corresponding sl(2, k)-modules are isomorphic. Deduce that the G-conjugacy
classes of sl2-triplets correspond bijectively with the families (m1,m2, . . .) of
integers ≥ 0 such that

m1 + 2m2 + 3m3 + · · · = n and m1 < n.

¶ 5) Assume that g is semi-simple. Let a be a subalgebra of g, reductive in g,
of the same rank as g, and containing a principal sl2-triplet of g. Show that
a = g.

¶ 6) Assume that g is absolutely simple, and denote its Coxeter number by
h. Let x be a nilpotent element of g. Show that (ad x)2h−1 = 0 and that
(ad x)2h−2 �= 0 if and only if x is principal. (Reduce to the case in which g is
split, and x is contained in the subalgebra n+ of Prop. 10. Repeat the proof
of Prop. 10.)

¶ 7) Assume that g is semi-simple. Let x be a nilpotent element of g. Then
x is principal if and only if x is contained in a unique Borel subalgebra of
g. (Reduce to the case in which k is algebraically closed. Use Prop. 10 and
Prop. 10 of §3, no. 3.)

8) A semi-simple Lie algebra has an sl2-triplet if and only if it is �= 0 and has
a Borel subalgebra.
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9) Assume that g is semi-simple. Let N (resp. P) be the set of nilpotent (resp.
principal nilpotent) elements of g.
a) Show that P is an open subset of N in the Zariski topology (use Exerc. 6).
b) Assume that g is splittable. Show that P is dense in N. (Use Prop. 10 and
Cor. 2 of Th. 1 of §10.)

10) Assume that g is splittable semi-simple. Let (x, h, y) be an sl2-triplet in
g.
a) Show that there exists a splitting Cartan subalgebra h of g containing h.
(Use Exerc. 10 b) of §3.)
b) Choose h as in a). Show that h ∈ hQ and that there exists a basis B of
R(g, h) such that α(h) ∈ {0, 1, 2} for all α ∈ B (cf. Prop. 5). The element x
belongs to the subalgebra of g generated by the gα, α ∈ B.
c) Deduce from a) and b), and the Jacobson-Morozov theorem, a new proof of
the fact that every nilpotent element of g is contained in a Borel subalgebra
(cf. §10, Cor. 2 of Th. 1).

¶ 11) Let (x, h, y) be a principal sl2-triplet in the semi-simple Lie algebra g.
Give g the sl(2, k)-module structure defined by this triplet. Show that the

module thus defined is isomorphic to
l⊕

i=1
V(2ki − 2), where the ki are the

characteristic degrees of the algebra of invariant polynomial functions on g.
(Reduce to the case in which g is splittable simple. Use Cor. 1 of Th. 1 of §8,
no. 3, and Chap. VI, §4, Exerc. 6 c).)20

¶ 12) Assume that g is semi-simple. Let x ∈ g and let s (resp. n) be the semi-
simple (resp. nilpotent) component of x. Let ax (resp. as) be the commutant
of x (resp. s) in g.
a) Show that n is a nilpotent element of the semi-simple algebra D(as), and
that the commutant of n in as is equal to ax. Deduce that dim ax < dim as

if n �= 0, i.e. if x is not semi-simple.
b) Show that dim ax = rk(g) if and only if n is a principal nilpotent element
of D(as).
c) Put G = Aute(g). Show that, for all λ ∈ k, there exists σλ ∈ G such that
σλx = s+λ2n. (Show that, if n �= 0, there exists an sl2-triplet in as of which
the first component is n, and deduce a homomorphism ϕ : SL(2, k) → G;
take σλ to be the image under ϕ of a suitable diagonal element of SL(2, k).)
Deduce that s belongs to the closure of G.x in the Zariski topology.
d) Show that, if x is not semi-simple, x does not belong to the closure of G.s
in the Zariski topology (use the inequality dim ax < dim as, cf. a)).

20For more details on Exercises 6 to 11, see: B. KOSTANT, The principal three-
dimensional subgroup and the Betti numbers of a complex simple Lie group,
Amer. J. Math., Vol. LXXXI (1959), pp. 973-1032.
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e) Assume that k is algebraically closed. Prove the equivalence of the following
properties:
(i) x is semi-simple;
(ii) G.x is closed in g in the Zariski topology.
(The implication (ii) =⇒ (i) follows from c). If (i) is satisfied, and if x′ is in
the closure of G.x, Exerc. 15 of §8 shows that the semi-simple component s′

of x′ belongs to G.x, so x′ belongs to the closure of G.s′; conclude by applying
d) to x′ and s′.)
f) Assume that k is algebraically closed. Let Fx be the set of elements y ∈ g
such that f(x) = f(y) for every invariant polynomial function f on g; we
have y ∈ Fx if and only if the semi-simple component of y is G-conjugate to
s (§8, Exerc. 17). Show that Fx is the union of a finite number of orbits of
G, and that this number is ≤ 3l(x), where l(x) is the rank of D(as). Only one
of these orbits is closed: that of s; only one is open in Fx: that consisting of
the elements y ∈ Fx such that dim ay = rk(g).

13) Assume that g is semi-simple.
a) Let (x, h, y) be a principal sl2-triplet in g, and let b be the Borel subalgebra
containing x (Exerc. 7). Show that b is contained in Imad x.
b) Assume that k is algebraically closed. Show that, for any element z in g,
there exist x, t ∈ g, with x principal nilpotent, such that z = [x, t] (apply a)
to a Borel subalgebra containing z).

14) Assume that g is semi-simple. Let p be a parabolic subalgebra of g, and let
f1 and f2 be two homomorphisms from g to a finite dimensional Lie algebra.
Show that f1|p = f2|p implies that f1 = f2. (Reduce to the case in which g
is split, then to the case in which g = sl(2, k), and use Lemma 1 of no. 1.)

¶ 15) Assume that g is semi-simple.
a) Let x be a nilpotent element of g. Show that x is contained in Im(ad x)2

(use Prop. 2). Deduce that (ad x)2 = 0 implies x = 0.
b) Let (x, h, y) be an sl2-triplet in g, and let s = kx ⊕ kh ⊕ ky. Prove the
equivalence of the following conditions:
(i) Im(ad x)2 = k.x;
(ii) the s-module g/s is a sum of simple modules of dimension 1 or 2;
(iii) the only eigenvalues of adg h distinct from 0, 1 and −1 are 2 and −2,
and their multiplicity is equal to 1.
c) Assume that g is splittable simple. Let h be a splitting Cartan subalgebra
of g, B a basis of R(g, h), and γ the highest root of R(g, h) relative to B. Let
(x, h, y) be an sl2-triplet such that h ∈ hQ and α(h) ≥ 0 for all α ∈ B (cf.
Prop. 5). Show that conditions (i), (ii), (iii) of b) are satisfied if and only if
h = Hγ , in which case x ∈ gγ and y ∈ g−γ .
d) Retain the hypotheses of c), and put G = Aut0(g). Show that the sl2-
triplets satisfying (i), (ii) and (iii) are G-conjugate (use Exerc. 10). Show
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that, if x is a non-zero nilpotent element of g satisfying (i), the closure of G.x
in the Zariski topology is equal to {0} ∪ G.x.

16) Let (x, h, y) be an sl2-triplet in g. Show that, if −2 is a square in k,
the elements x − y and h are conjugate by an element of Aute(g) (reduce
to the case in which g = sl(2, k)). Deduce that, if g is semi-simple, x − y is
semi-simple, and that it is regular if and only if h is regular.

¶ 17) Let (x, h, y) be a principal sl2-triplet in the semi-simple algebra g. For
all i ∈ Z, denote by gi the eigenspace of ad h relative to the eigenvalue i; we
have g =

⊕
i∈Z

gi, and gi = 0 if i is odd. The direct sum b of the gi, i ≥ 0, is a

Borel subalgebra of g, and g0 is a Cartan subalgebra.
a) Show that, for all z ∈ b, the commutant of y + z in g is of dimension
l = rk(g).
b) Let I be the algebra of invariant polynomial functions on g, and P1, . . . ,Pl

homogeneous elements of I generating I; put deg(Pi) = ki = mi + 1. Show
that the commutant c of x in g has a basis x1, . . . , xl with xi ∈ g2mi (cf.
Exerc. 11).
c) Let i ∈ 1, l , and let Ji (resp. Ki) be the set of j ∈ (1, l) such thatmj = mi

(resp. mj < mi). Let fi ∈ k[X1, . . . ,Xl] be the polynomial such that

fi(a1, . . . , al) = Pi(y +
j=l∑
j=1

ajxj) for (aj) ∈ kl.

Show that fi is the sum of a linear form Li in the Xj , j ∈ Ji, and a polynomial
in the Xj , j ∈ Ki. (If t ∈ k∗, the automorphism of g equal to ti on gi belongs
to Aut0(g) and takes y to t−2y and xj to t2mjxj . Use the invariance of Pi

under this automorphism.)
d) Let P be the map from g to kl defined by the Pi. If z ∈ g, denote by
DzP : g → kl the tangent linear map of P at z (Chap. VII, App. I, no. 2).

Show that c ∩ Im ad(y − x) = 0 (decompose g into a direct sum of simple
submodules relative to the subalgebra generated by the given sl2-triplet).
Deduce that the restriction of Dy−xP to c is an isomorphism from c to kl

(use the preceding exercise and Exerc. 18 a) of §8). Show, by using this
result, that the determinant of the linear forms Li defined in c) is �= 0, and
deduce the following results:
d1) the polynomials f1, . . . , fl are algebraically independent and generate

k[X1, . . . ,Xl];
d2) the map z 	→ P(y + z) from c to kl is bijective polynomial, and the

inverse map is polynomial;
d3) for all z ∈ y + c, the linear map DzP|c is of rank l.
In particular, the map P : g → kl is surjective.

e) If k is algebraically closed, every element of g whose commutant is of
dimension l is conjugate under Aut0(g) to a unique element of y + c.
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f) Give an example of a simple Lie algebra with no principal sl2-triplet, for
which the map P is not surjective (take k = R and l = 1).

§13

1) The dimensions ≤ 80 of splittable simple Lie algebras are:
3 (A1 = B1 = C1), 8 (A2), 10 (B2 = C2), 14 (G2), 15 (A3 = D3), 21 (B3

and C3), 24 (A4), 28 (D4), 35 (A5), 36 (B4 and C4), 45 (D5), 48 (A6), 52
(F4), 55 (B5 and C5), 63 (A7), 66 (D6), 78 (B6,C6 and E6), 80 (A8).

2) Let (g, h) be a split simple Lie algebra, and B a basis of R(g, h). The simple
g-modules E(λ), λ ∈ P++ -- {0}, of minimum dimension are those for which
λ is one of the following weights:
�1 (A1); �1 and �l (Al, l ≥ 2); �1 (Bl and Cl, l ≥ 2); �1, �3 and �4

(D4); �1 (Dl, l ≥ 5); �1 and �6 (E6); �7 (E7); �8 (E8); �4 (F4); �1 (G2).
Any two such modules can be transformed into each other by an auto-

morphism of g.
Type E8 is the only one for which the adjoint representation is of minimum

dimension.

3) a) Define an isomorphism from sl(4, k) to the orthogonal algebra oS(6, k).
(Use the fact that the representation

∧2
σ of no. 1.V is orthogonal and of

dimension 6.) The two types of irreducible representation of sl(4, k) of degree
4 correspond to the two semi-spinor representations of oS(6, k).
b) Define an isomorphism from sp(4, k) to the orthogonal algebra oS(5, k).
(Use the fact that the representation σ2 of no. 3.V is orthogonal and of di-
mension 5.) The irreducible representation of sp(4, k) of degree 4 corresponds
to the spinor representation of oS(5, k).
c) Define an isomorphism sl(2, k) × sl(2, k) → oS(4, k) by using the tensor
product of the identity representations of the two sl(2, k) factors. Recover
this result by means of Chap. I, §6, Exerc. 26.

4) Let S be the square matrix of order n

(δi,n+1−i) =

⎛⎜⎜⎜⎜⎝
0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎠ .
The elements of oS(n, k) are the matrices (aij) that are anti-symmetric with
respect to the second diagonal:

ai,j = −an+1−j,n+1−i for every pair (i, j).

The algebra oS(n, k) is splittable simple of type Dn/2 if n is even and ≥ 6, and
of type B(n−1)/2 if n is odd and ≥ 5. The diagonal (resp. upper triangular)
elements of oS(n, k) form a splitting Cartan (resp. Borel) subalgebra.
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5) The notations are those of no. 1.IV, type Al. Show that, if n is ≥ 0, Snσ
is an irreducible representation of sl(l+ 1, k) of highest weight n�1. (Realise
Snσ on the space of homogeneous polynomials of degree n in X0, . . . ,Xl, and
observe that, up to homothety, the only polynomial f such that ∂f/∂Xi = 0
for i ≥ 1 is Xn

0 .) Show that all the weights of this representation are of
multiplicity 1.

6) The notations are those of no. 2.IV, type Bl. Show that, if 1 ≤ r ≤ l − 1,
the dimension of E(�r) is

(
2l+1

r

)
, and deduce another proof of the fact that∧r

σ is a fundamental representation of highest weight �r.

7) The notations are those of no. 2.VII, type Bl. Show that O+
0 (Ψ) is the com-

mutator subgroup of SO(Ψ). (Remark that O(Ψ) is equal to {±1} ×SO(Ψ),
hence has the same commutator subgroup as SO(Ψ), and apply Algebra,
Chap. IX, §9, Exerc. 11 b).) Deduce that Aute(g) = O+

0 (Ψ).

8) The notations are those of no. 3.IV, type Cl (l ≥ 1). Show that S2σ is
equivalent to the adjoint representation of g.

9) The notations are those of no. 3.VII, type Cl (l ≥ 1). In particular, we
identify Aute(g) with a subgroup of Sp(Ψ)/{±1}. Show that the image in
Sp(Ψ)/{±1} of a symplectic transvection (Algebra, Chap. IX, §4, Exerc. 6)
belongs to Aute(g). Deduce that Aute(g) = Sp(Ψ)/{±1} (Algebra, Chap. IX,
§5, Exerc. 11), and that Aut(g)/Aute(g) can be identified with k∗/k∗2.

¶ 10) The notations are those of no. 4.IV, type Dl (l ≥ 2).

a) Let x and y be the elements of
∧l V defined by

x = e1 ∧ · · · ∧ el−1 ∧ el and y = e1 ∧ · · · ∧ el−1 ∧ e−l.

The element x is primitive of weight 2�l and y is primitive of weight 2�l−1.
The submodule X (resp. Y) of

∧l V generated by x (resp. y) is isomorphic
to E(2�l) (resp. E(2�l−1)). Show, by calculating dimensions, that

∧l V =
X ⊕ Y; in particular,

∧l V is the sum of two non-isomorphic simple modules.

b) Let e = e1 ∧ · · · ∧ el ∧ e−1 ∧ · · · ∧ e−l ∈ ∧2l V, and Ψl the extension of Ψ
to
∧l V. Let z ∈ ∧l V. Prove the equivalences:

z ∈ X ⇐⇒ z ∧ t = Ψl(z, t)e for all t ∈
∧

lV

z ∈ Y ⇐⇒ z ∧ t = −Ψl(z, t)e for all t ∈
∧

lV.

(If X′ and Y′ denote the subspaces defined by the right-hand sides, prove
first that X′ and Y′ are stable under g and contain x and y, respectively.)
c) Assume that z is pure (Algebra, Chap. III, §11, no. 13), and denote by
Mz the l-dimensional subspace of V associated to it. Show that Mz is totally
isotropic if and only if z belongs to X or to Y. (Use the fact that, when Mz is
totally isotropic, there exists an orthogonal transformation that transforms
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it into Mx; when Mz is not totally isotropic, construct an l-vector t such that
z ∧ t = 0, Ψl(z, t) = 1, and apply b) above.) When z ∈ X (resp. z ∈ Y),
the dimension of Mx/(Mx ∩ Mz) is an even (resp. odd) integer, cf. Algebra,
Chap. IX, §6, Exerc. 18 d).

d) Let s be a direct (resp. inverse) similarity of V. Show that
∧l
s leaves X

and Y stable (resp. interchanges X and Y).

11) The notations are those of no. 4.VII, type Dl (l ≥ 3). Show that
O+

0 (Ψ) is the commutator subgroup of SO(Ψ). (Apply Algebra, Chap. IX, §6,
Exerc. 17 b) and Algebra, Chap. IX, §9, Exerc. 11 b).) Deduce that Aute(g)
is equal to the image of O+

0 (Ψ) in SO(Ψ)/{±1}. Moreover, −1 belongs to
O+

0 (Ψ) if and only if l is even or −1 is a square in k (Algebra, Chap. IX, §9,
Exerc. 11 c)).

12) The Killing form of sl(n, k) is (X,Y ) 	→ 2nTr(XY ). That of sp(n, k), n
even, is (X,Y ) 	→ (n+2)Tr(XY ). That of oS(n, k), where S is non-degenerate
symmetric of rank n, is (X,Y ) 	→ (n− 2)Tr(XY ).

13) The algebra of invariant polynomial functions of g is generated:
a) in case Al, by the functions X 	→ Tr(Xi), 2 ≤ i ≤ l + 1;
b) in case Bl, by the functions X 	→ Tr(X2i), 1 ≤ i ≤ l;
c) in case Cl, by the functions X 	→ Tr(X2i), 1 ≤ i ≤ l;
d) in case Dl, by the functions X 	→ Tr(X2i), 1 ≤ i ≤ l − 1, and by one of
the two polynomial functions f̃ such that f̃(X)2 = (−1)ldet(X).

14) a) Let G be the group associated to g = sl(n, k) by the procedure of §7,
Exerc. 26. The natural g-module structure on kn gives rise to a homomor-
phism ϕ : G → GL(n, k). Use loc. cit. h) to prove that ϕ is injective, and
loc. cit. f) to prove that

Im(ϕ) = SL(n, k).

b) Let E be a finite dimensional sl(n, k)-module, and ρ the corresponding
representation of sl(n, k). Show that there exists a unique representation
π : SL(n, k) → GL(E) such that π(ex) = eρ(x) for every nilpotent element x
of sl(n, k) (use a)). We say that ρ and π are compatible. Generalize the results
proved for n = 2 in §1, no. 4.
c) Assume that k is R,C or a complete field for a discrete valuation with
residue field of characteristic �= 0. Show that ρ and π are compatible if and
only if π is a homomorphism of Lie groups such that L(π) = ρ (same method
as in Exerc. 18 b) of §1).
d) Prove analogous results for sp(2n, k) and Sp(2n, k).

¶ 15) Let V be a vector space of finite dimension ≥ 2, g a Lie subalgebra of
End(V) and θ an element of g. We make the following assumptions:
(i) V is a semi-simple g-module;
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(ii) θ is of rank 1 (i.e. dim Im(θ) = 1);
(iii) the line Im(θ) generates the U(g)-module V.
a) Show that these assumptions are satisfied (for a suitable choice of θ) when
g = sl(V), when g = gl(V), or when there exists a non-degenerate alternating
bilinear form Ψ on V such that g = sp(Ψ) or g = k.1⊕sp(Ψ). In each of these
cases, θ can be taken to be a nilpotent element; in the second case (and only
in that case) θ can be taken to be a semi-simple element.
b) We shall prove that the four cases above are the only ones possible. We
are reduced immediately to the case in which k is algebraically closed. Show
that V is then a simple g-module, and that g = c⊕ s, where s is semi-simple,
and c = 0 or c = k.1; show that V is not isomorphic to a tensor product of
g-modules of dimension ≥ 2; deduce that s is simple.
c) Choose a Cartan subalgebra h of s, and a basis B of R(s, h). Let λ be
the highest weight (with respect to B) of the s-module V, and let e be a
non-zero element of V of weight λ. The highest weight of the dual module
V∗ is λ∗ = −w0λ (§7, no. 5); let e∗ be a non-zero element of V∗ of weight λ∗.
Identify V ⊗ V∗ with End(V) as usual. Show that there exist x ∈ V, y ∈ V∗

such that x ⊗ y ∈ g and 〈x, e∗〉 �= 0, 〈e, y〉 �= 0 (take the conjugate of θ
by en, where n is a suitable nilpotent element of g). Use the fact that g is
an h-submodule of V ⊗ V∗ to conclude that g contains e ⊗ e∗. Deduce that
λ+ λ∗ = α̃, where α̃ is the highest root of s.
d) Show that s is not of type Bl (l ≥ 2), Dl (l ≥ 4), E6,E7,E8,F4,G2 (by
Chap. VI, Tables, α̃ would be a fundamental weight, and hence could not
be of the form λ + λ∗ above). Deduce that s is either of type Al or of type
Cl, and that in the first case λ = �1 or �1 = �∗

1 , and in the second case
α̃ = 2�1 = �1 +�∗

1 ; since c = 0 or k.1, this indeed gives the four possibilities
in a)21.

¶ 16) Let g be an absolutely simple Lie algebra of type Al (l ≥ 2), k̄ an
algebraic closure of k, and π : Gal(k̄/k) → Aut(R̄, B̄) the homomorphism
defined in Exerc. 8 of §5.
a) Assume that π is trivial. Show that there exist exactly two two-sided
ideals m and m′ of U(g) such that D = U(g)/m and D′ = U(g)/m′ are central
simple algebras of dimension (l+1)2 (use Exerc. 8 of §7). The principal anti-
automorphism of U(g) interchanges m and m′; in particular, D′ is isomorphic
to the opposite of D. The composite g → U(g) → D identifies g with the Lie
subalgebra slD of D consisting of the elements of trace zero. Moreover, g is
splittable (and hence isomorphic to sl(l+1, k)) if and only if D is isomorphic
to Ml+1(k).

Conversely, if ∆ is a central simple algebra of dimension (l+ 1)2, the Lie
algebra sl∆ is absolutely simple of type Al, and the corresponding homomor-

21For more details on this exercise, see: V. W. GUILLEMIN, D. QUILLEN and S.
STERNBERG, The classification of the irreducible complex algebras of infinite
type, J. Analyse Math., Vol. XVII (1967), pp. 107-112.
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phism π is trivial. Two such algebras sl∆ and sl∆′ are isomorphic if and only
if ∆ and ∆′ are isomorphic or anti-isomorphic.
b) Assume that π is non-trivial. Since Aut(R̄, B̄) has two elements, the kernel
of π is an open subgroup of Gal(k̄/k) of index 2, which corresponds by Galois
theory to a quadratic extension k1 of k. Denote the non-trivial involution of
k1 by x 	→ x̄.

Show that there exists a unique two-sided ideal m of U(g) such that D =
U(g)/m is a simple algebra of dimension 2(l+1)2 whose centre is a quadratic
extension of k (same method). The centre of D can be identified with k1. The
ideal m is stable under the principal anti-automorphism of U(g); that defines
by passage to the quotient an involutive anti-automorphism σ of D such that
σ(x) = x̄ for all x ∈ k1. The composite map g → U(g) → D identifies g
with the Lie subalgebra suD,σ of D consisting of the elements x such that
σ(x) = −x and TrD/k1(x) = 0. Conversely, if ∆ is a central simple k1-algebra
of dimension (l+1)2, equipped with an involutive anti-automorphism σ whose
restriction to k1 is x 	→ x̄, the Lie algebra su∆,σ is absolutely simple of type
Al, and the corresponding homomorphism π is that associated to k1. Two
such algebras su∆,σ and su∆′,σ′ are isomorphic if and only if there exists a
k-isomorphism f : ∆ → ∆′ such that σ′ ◦ f = f ◦ σ.

Show that, when D = Ml+1(k1), there exists an invertible hermitian
matrix H of degree l + 1, unique up to multiplication by an element of k∗,
such that

σ(x) = H.tx̄.H−1

for all x ∈ Ml+1(k1); the algebra g can then be identified with the algebra
su(l + 1, H) consisting of the matrices x such that x.H + H.tx̄ = 0 and
Tr(x) = 0.

¶ 17) Let g be an absolutely simple Lie algebra of type Bl (resp. Cl,Dl), with
l ≥ 2 (resp. l ≥ 3, l ≥ 4). Assume further that, when g is of type D4, the
image of the homomorphism π : Gal(k̄/k) → Aut(R̄, B̄) defined in Exerc.
8 of §5 is of order ≤ 2. Show that there exists a central simple algebra D
of dimension (2l + 1)2 (resp. 4l2, 4l2) and an involutive anti-automorphism
σ of D such that g is isomorphic to the Lie subalgebra of D consisting of
the elements x such that σ(x) = −x and TrD(x) = 0 (same method as in
Exerc. 16 a)).22

18) Let V be a finite dimensional vector space, Q a non-degenerate quadratic
form on V, and Ψ the symmetric bilinear form associated to Q. Denote the
Lie algebra o(Ψ) by g and the extension of Ψ to

∧2(V) by Ψ2.

a) Show that there exists an isomorphism of vector spaces θ :
∧2(V) → g

characterized by the following equivalent properties:

22For more details on Exercises 16 and 17, see: N. JACOBSON, Lie Algebras, In-
terscience Publ. (1962), Chap. X and G. B. SELIGMAN, Modular Lie Algebras,
Springer-Verlag (1967), Chap. IV.
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(i) For a, b and x in V, we have θ(a ∧ b).x = a.Ψ(x, b) − b.Ψ(x, a).
(ii) For x, y in V and u in

∧2(V) we have Ψ2(x ∧ y, u) = Ψ(x, θ(u).y).
Let σ be the identity representation of g on V; then θ is an isomorphism of∧2(V) with the adjoint representation of g.
b) Define the linear map f : g → C+(Q) as in Lemma 1 of no. 2. Show that
fθ(a ∧ b) = 1

2 (ab − ba) for a, b in V, and deduce a new proof of assertions
(iii), (iv) and (v) of Lemma 1 of no. 2.
c) The notations l,F,F′, e0,N, λ and ρ are those of no. 2. Choose e �= 0 in∧

(F′) and define the bilinear form Φ on N by

x ∧ y = (−1)p(p+1)/2Φ(x, y).e (x ∈
∧

p(F′), y ∈ N).

Show that Φ(λ(a).x, y) + Φ(x, λ(a).y) = 0 for x, y in N and a in F ⊕ F′.
Deduce that Φ is invariant under the representation ρ of g (remark that the
Lie algebra ρ(g) is generated by λ(F ⊕ F′) by a) and b) above).

19) Let V be a finite dimensional vector space and E = V ⊕ V∗. Define a
non-degenerate bilinear form Φ on E by

Φ((x, x∗), (y, y∗)) = 〈x, y∗〉 + 〈y, x∗〉.
Put N =

∧
(V) and Q(x) = 1

2Φ(x, x) for x ∈ E. Denote the spinor represen-
tation by λ : C(Q) → End(N) as in no. 2.IV, define f : o(Φ) → C+(Q) as
in Lemma 1 of no. 2, and denote by ρ the linear representation λ ◦ f of the
algebra o(Φ) on N.
a) Associate to any endomorphism u of V the endomorphism ũ of E by the
formula ũ(x, x∗) = (u(x),−tu(x∗)). Show that u 	→ ũ is a homomorphism of
Lie algebras from gl(V) to o(Φ); moreover, for u in gl(V), ρ(ũ) is the unique
derivation of the algebra

∧
(V) = N that coincides with u on V.

b) Let Ψ be a non-degenerate alternating bilinear form on V and γ : V → V∗

the isomorphism defined by Ψ(x, y) = 〈x, γ(y)〉 for x, y in V. Show that the
endomorphisms X̃+ and X̃− of E defined by

X̃+(x, x∗) = (γ−1(x∗), 0), X̃−(x, x∗) = (0,−γ(x))
belongs to o(Φ). Put H̃ = (−1)̃ . Show that (H̃, X̃+, X̃−) is an sl2-triplet in
the Lie algebra o(Φ).
c) Show that ρ takes the endomorphisms H̃, X̃+, X̃− of o(Φ) to the endomor-
phisms of N denoted by H,X+ and X−, respectively, in no. 3.IV. Deduce
that (H,X+, X−) is an sl2-triplet in the Lie algebra gl(N).



SUMMARY OF SOME IMPORTANT
PROPERTIES OF SEMI-SIMPLE LIE
ALGEBRAS

In this summary, g denotes a semi-simple Lie algebra over k.

CARTAN SUBALGEBRAS

1) Let E be the set of commutative subalgebras of g that are reductive in g;
this is also the set of commutative subalgebras of g all of whose elements are
semi-simple. The Cartan subalgebras of g are the maximal elements of E.

2) Let x be a regular element of g. Then x is semi-simple. There exists a
unique Cartan subalgebra of g containing x; it is the commutant of x in g.

3) Let x be a semi-simple element of g. Then x belongs to a Cartan subalgebra
of g. The element x is regular if and only if the dimension of the commutant
of x is equal to the rank of g.

4) Let h be a Cartan subalgebra of g. Then h is said to be splitting if adgx
is triangularizable for all x ∈ h. Moreover, g is said to be splittable if g has
a splitting Cartan subalgebra (this is the case if k is algebraically closed).
A split semi-simple Lie algebra is a pair (g, h) where g is a semi-simple Lie
algebra and h is a splitting Cartan subalgebra of g.

In the remainder of this summary, (g, h) denotes a split semi-simple Lie
algebra.

ROOT SYSTEMS

5) For any element α of the dual h∗ of h, let gα be the set of x ∈ g such that
[h, x] = α(h)x for all h ∈ h. If α = 0, then gα = h. Any α ∈ h∗ -- {0} such that
gα �= 0 is called a root of (g, h). Denote by R(g, h) (or simply by R) the set of
roots of (g, h). This is a reduced root system in h∗ in the sense of Chap. VI,
§1, no. 4. The algebra g is simple if and only if R is irreducible.

6) For all α ∈ R, gα is of dimension 1. The vector space [gα, g−α] is con-
tained in h, is of dimension 1, and contains a unique element Hα such that
α(Hα) = 2; we have Hα = α∨ (Chap. VI, §1, no. 1); the set of Hα, for α ∈ R,
is the inverse root system R∨ of R.
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7) We have g = h ⊕
⊕

α∈R
gα. There exists a family (Xα)α∈R such that, for all

α ∈ R, we have Xα ∈ gα and [Xα, X−α] = −Hα. Every x ∈ g can be written
uniquely in the form

x = h+
∑
α∈R

λαXα, where h ∈ h, λα ∈ k.

The bracket of two elements can be calculated by means of the formulas

[h,Xα] = α(h)Xα

[Xα, Xβ ] = 0 if α+ β /∈ R ∪ {0}
[Xα, X−α] = −Hα

[Xα, Xβ ] = NαβXα+β if α+ β ∈ R,

the Nαβ being non-zero elements of k.

8) Let B be a basis of R. The algebra g is generated by the Xα and the X−α

for α ∈ B. We have [Xα, X−β ] = 0 if α, β ∈ B and α �= β. Let (n(α, β))α,β∈B
be the Cartan matrix of R (relative to B). We have n(α, β) = α(Hβ). If
α, β ∈ B and α �= β, n(α, β) is a negative integer and

(adXβ)1−n(α,β)Xα = 0 and (adX−β)1−n(α,β)X−α = 0.

9) If α, β, α+β ∈ R, let qαβ be the largest integer j such that β−jα ∈ R. The
family (Xα)α∈R in 7) can be chosen so that Nα,β = N−α,−β if α, β, α+β ∈ R.
Then Nαβ = ±(qαβ +1). There exists an involutive automorphism θ of g that
takes Xα to X−α for all α ∈ R; we have θ(h) = −h for all h ∈ h. The Z-
submodule gZ of g generated by the Hα and the Xα is a Z-Lie subalgebra of
g, and the canonical map gZ ⊗Z k → g is an isomorphism.

The pair (g, h) can be obtained by extension of scalars from a split semi-
simple Q-Lie algebra.

10) The Weyl group, group of weights, . . . of R is called the Weyl group,
group of weights, . . . of (g, h). The Weyl group will be denoted by W in
what follows. We consider its operation, not only on h∗, but also on h (by
transport of structure). If hQ (resp. h∗

Q) denotes the Q-vector subspace of
h (resp. h∗) generated by the Hα (resp. the α), then h (resp. h∗) can be
canonically identified with hQ ⊗Q k (resp. h∗

Q ⊗Q k), and h∗
Q can be identified

with the dual of hQ. When we speak of the Weyl chambers of R, these are
understood to be in hR = hQ ⊗Q R or h∗

R = h∗
Q ⊗Q R.

11) Let Φ be the Killing form of g. If α+β �= 0, gα and gβ are orthogonal with
respect to Φ. The restriction of Φ to gα × g−α is non-degenerate. If x, y ∈ h,
then Φ(x, y) =

∑
α∈R

α(x)α(y). We have Φ(Hα, Hβ) ∈ Z. The restriction of Φ

to h is non-degenerate and invariant under W; its restriction to hQ is positive.
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12) The root system of (g, h) depends, up to isomorphism, only on g and not
on h. By abuse of language, the Weyl group, group of weights, . . . of (g, h)
are also called the Weyl group, group of weights, . . . of g.

If R1 is a reduced root system, there exists a split semi-simple Lie al-
gebra (g1, h1) such that R(g1, h1) is isomorphic to R1; it is unique, up to
isomorphism.

The classification of splittable semi-simple Lie algebras is thus reduced to
that of root systems.

SUBALGEBRAS

13) If P ⊂ R, put gP =
⊕

α∈P
gα and hP =

∑
α∈P

kHα. Let P ⊂ R, h′ a vector

subspace of h, and a = h′ ⊕ gP. Then a is a subalgebra of g if and only if P is
a closed subset of R and h′ contains hP∩(−P); a is reductive in g if and only
if P = −P; and a is solvable if and only if P ∩ (−P) = ∅.

14) Let P be a closed subset of R, and b = h ⊕ gP. The following conditions
are equivalent:

(i) b is a maximal solvable subalgebra of g;
(ii) P ∩ (−P) = ∅ and P ∪ (−P) = R;
(iii) there exists a chamber C of R such that P = R+(C) (cf. Chap. VI,

§1, no. 6).
A Borel subalgebra of (g, h) is a subalgebra of g containing h and satisfying

the above conditions. A subalgebra b of g is called a Borel subalgebra of g
if there exists a splitting Cartan subalgebra h′ of g such that b is a Borel
subalgebra of (g, h′); if k is algebraically closed, this is equivalent to saying
that b is a maximal solvable subalgebra of g.

Let b = h ⊕ gR+(C) be a Borel subalgebra of (g, h). The largest nilpotent
ideal of b is [b, b] = gR+(C). Let B be the basis of R associated to C; the
algebra [b, b] is generated by the gα for α ∈ B.

If b, b′ are Borel subalgebras of g, there exists a Cartan subalgebra of g
contained in b ∩ b′; such a subalgebra is splitting.

15) Let P be a closed subset of R, and p = h ⊕ gP. The following conditions
are equivalent:

(i) p contains a Borel subalgebra of (g, h);
(ii) P ∪ (−P) = R;
(iii) there exists a chamber C of R such that P ⊃ R+(C).
A parabolic subalgebra of (g, h) is a subalgebra of g containing h and

satisfying the above conditions. A subalgebra p of g is called parabolic if
there exists a splitting Cartan subalgebra h′ of g such that p is a parabolic
subalgebra of (g, h′).

Let p = h ⊕ gP be a parabolic subalgebra of (g, h), Q the set of α ∈ P
such that −α /∈ P, and s = h ⊕ gP∩(−P). Then p = s ⊕ gQ, s is reductive in g,
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and gQ is the largest nilpotent ideal of p and the nilpotent radical of p. The
centre of p is 0.

AUTOMORPHISMS

16) The subgroup of Aut(g) generated by the ead x, with x nilpotent, is the
group Aute(g) of elementary automorphisms of g; it is a normal subgroup of
Aut(g); it is equal to its derived group.

If k̄ is an algebraic closure of k, the group Aut(g) embeds naturally in
Aut(g ⊗k k̄). Put

Aut0(g) = Aut(g) ∩ Aute(g ⊗k k̄);

this is a normal subgroup of Aut(g), independent of the choice of k̄. We have

Aute(g) ⊂ Aut0(g) ⊂ Aut(g).

The derived group of Aut0(g) is Aute(g). In the Zariski topology, Aut(g) and
Aut0(g) are closed in Endk(g), Aut0(g) is the connected component of the
identity in Aut(g), and Aute(g) is dense in Aut0(g).

Let B be a basis of R, and Aut(R,B) the group of automorphisms of R
that leave B stable. Then Aut(g) is the semi-direct product of a subgroup
isomorphic to Aut(R,B) and Aut0(g); in particular, Aut(g)/Aut0(g) is iso-
morphic to Aut(R,B), which is itself isomorphic to a group of automorphisms
of the Dynkin graph of g.

17) A framing of g is a triplet (h′,B, (Xα)α∈B), where h′ is a splitting Cartan
subalgebra of g, B is a basis of R(g, h′), and where, for all α ∈ B, Xα is a
non-zero element of gα. The group Aut0(g) operates simply-transitively on
the set of framings of g.

The group Aute(g) operates transitively on the set of pairs (k, b), where
k is a splitting Cartan subalgebra of g and b is a Borel subalgebra of (g, k).

18) Denote by Aut(g, h) the set of s ∈ Aut(g) such that s(h) = h. Put

Aut(g, h) = Aute(g) ∩ Aut(g, h), Aut0(g, h) = Aut0(g) ∩ Aut(g, h).

If s ∈ Aut(g, h), the contragredient map of s|h is an element of the group
A(R) of automorphisms of R; denote this element by ε(s); the map ε is a
homomorphism from Aut(g, h) to A(R). We have Aut0(g) = Aute(g).Ker ε,
and

ε(Aut0(g, h)) = ε(Aute(g, h)) = W.

Let TP = Hom(P(R), k∗),TQ = Hom(Q(R), k∗). The injection of Q(R)
into P(R) defines a homomorphism from TP to TQ; let Im(TP) be its image.
If t ∈ TQ, let f(t) be the endomorphism of g such that, for all α ∈ R ∪ {0},



SUMMARY OF SOME IMPORTANT PROPERTIES 277

f(t)|gα is the homothety with ratio t(α); we have f(t) ∈ Aut0(g, h) and f is
an injective homomorphism from TQ to Aut0(g, h). The sequences

{1} −→ TQ
f−→ Aut(g, h) ε−→ A(R) −→ {1}

and

{1} −→ TQ
f−→ Aut0(g, h) ε−→ W −→ {1}

are exact. We have f(Im(TP)) ⊂ Aute(g, h); f defines, by passage to the
quotient, a surjective23 homomorphism TQ/Im(TP) → Aut0(g)/Aute(g). In
the Zariski topology, f(TQ) is closed in Aut(g), and f(Im(TP)) is dense in
f(TQ).

FINITE DIMENSIONAL MODULES

19) Let V be a finite dimensional g-module. For all µ ∈ h∗, let Vµ be the set
of v ∈ V such that h.v = µ(h)v for all h ∈ h. The dimension of Vµ is called
the multiplicity of µ in V; if it is ≥ 1, i.e. if Vµ �= 0, µ is said to be a weight
of V. We have V =

⊕
µ∈h∗

Vµ. Every weight of V belongs to P(R). If µ is a

weight of V, and if w ∈ W, wµ is a weight of V of the same multiplicity as
µ. If v ∈ Vµ and x ∈ gα, then x.v ∈ Vµ+α.

20) Let B be a basis of R. Giving B determines an order relation on h∗
Q:

the elements of h∗
Q that are ≥ 0 are the linear combinations of elements of B

with rational coefficients ≥ 0. Denote by Q+(R) (resp. R+) the set of positive
elements of Q(R) (resp. of R).

Let V be a finite dimensional simple g-module. Then V has a highest
weight λ. This weight is of multiplicity 1, and it is a dominant weight: if
α ∈ R+, λ(Hα) is an integer ≥ 0. We have gαVλ = 0 if α ∈ R+. Every weight
of V is of the form λ− ν with ν ∈ Q+(R); conversely, if a weight is dominant
and is of the form λ− ν with ν ∈ Q+(R), then it is a weight of V.

21) Two finite dimensional simple g-modules with the same highest weight
are isomorphic. Every dominant weight is the highest weight of a finite di-
mensional simple g-module.

Every finite dimensional simple g-module is absolutely simple.

22) Let Φ be the Killing form of g, C ∈ U(g) the corresponding Casimir
element, 〈·, ·〉 the inverse form on h∗ of Φ|h × h, and ρ = 1

2

∑
α∈R+

α. Let V be

a finite dimensional simple g-module, of highest weight λ. Then CV is the
homothety with ratio 〈λ, λ+ 2ρ〉.
23) Let V be a finite dimensional g-module, and V∗ its dual. Then µ ∈ h∗ is a
weight of V∗ if and only if −µ is a weight of V, and the multiplicity of µ ∈ V∗

23This homomorphism is, in fact, bijective (§7, Exerc. 26 d)).
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is equal to the multiplicity of −µ in V. If V is simple of highest weight λ, V∗

is simple of highest weight −w0λ, where w0 is the element of W that takes
B to −B.

24) Let V be a finite dimensional simple g-module of highest weight λ, and
B the vector space of g-invariant bilinear forms on V. Let m be the integer∑
α∈R+

λ(Hα), and let w0 ∈ W be as in 23). If w0λ �= −λ, V and V∗ are not

isomorphic, and B = 0. If w0λ = −λ, then dimB = 1 and every non-zero
element of B is non-degenerate; if m is even (resp. odd), every element of B
is symmetric (resp. alternating).

25) Let Z[P] be the algebra of the group P = P(R) with coefficients in Z. If
λ ∈ P, denote by eλ the corresponding element of Z[P]; the eλ, λ ∈ P, form
a Z-basis of Z[P], and eλeµ = eλ+µ for λ, µ ∈ P.

Let V be a finite dimensional g-module. The character of V, denoted
by ch V, is the element

∑
µ∈P

(dimVµ)eµ of Z[P]; this element belongs to the

subalgebra Z[P]W of Z[P] consisting of the elements invariant under W. We
have

ch(V ⊕ V′) = ch V + ch V′ and ch(V ⊗ V′) = (ch V).(ch V′).

Two finite dimensional g-modules with the same character are isomorphic.
For all α ∈ B, let Vα be a simple g-module with highest weight the

fundamental weight �α corresponding to α. The elements ch Vα, α ∈ B, are
algebraically independent and generate the Z-algebra Z[P]W.

26) Let ρ be half the sum of the roots ≥ 0. For all w ∈ W, let ε(w) be the
determinant of w, equal to ±1. If V is a finite dimensional simple g-module
of highest weight λ, then(∑

w∈W

ε(w)ewρ

)
.ch V =

∑
w∈W

ε(w)ew(λ+ρ),

and

dimV =
∏

α∈R+

〈λ+ ρ,Hα〉
〈ρ,Hα〉 .

27) For all ν ∈ P, let P(ν) be the number of families (nα)α∈R+ , where the
nα are integers ≥ 0 such that ν =

∑
α∈R+

nαα. Let V be a finite dimensional

simple g-module of highest weight λ. If µ ∈ P, the multiplicity of µ in V is∑
w∈W

ε(w)P(w(λ+ ρ) − (µ+ ρ)).

28) Let V,V′,V′′ be finite dimensional simple g-modules, λ, µ, ν their highest
weights. In V ⊗ V′, the isotypical component of type V′′ has length
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w,w′∈W

ε(ww′)P(w(λ+ ρ) + w′(µ+ ρ) − (ν + 2ρ)).

In particular, if ν = λ + µ, the isotypical component in question is simple,
and generated by (V ⊗ V′)λ+µ = Vλ ⊗ V′µ.

INVARIANT POLYNOMIAL FUNCTIONS

29) The algebra of polynomial functions on g can be identified with the
symmetric algebra S(g∗) of g∗, and hence is a g-module in a canonical way;
hence the notion of an invariant polynomial function on g. Let f ∈ S(g∗).
Then f is invariant if and only if f ◦s = f for all s ∈ Aut0(g), or that f ◦s = f
for all s ∈ Aute(g).

30) Let I(g∗) be the algebra of invariant polynomial functions on g, and
S(h∗)W the algebra of W-invariant polynomial functions on h. Let

i : S(g∗) → S(h∗)

be the restriction homomorphism. The map i|I(g∗) is an isomorphism from
I(g∗) to S(h∗)W. If l is the rank of g, there exist l homogeneous elements of
I(g∗) that are algebraically independent and generate the algebra I(g∗).

31) An element a of g is nilpotent if and only if f(a) = 0 for every homoge-
neous element f of I(g∗) of degree > 0.

32) Let s ∈ Aut(g). Then s belongs to Aut0(g) if and only if f ◦ s = f for all
f ∈ I(g∗).

sl2-TRIPLETS

33) An sl2-triplet in g is a sequence (x, h, y) of elements of g distinct from
(0, 0, 0) and such that [h, x] = 2x, [h, y] = −2y, [x, y] = −h. Then x, y are
nilpotent in g, and h is semi-simple in g.

34) Let x be a non-zero nilpotent element of g. There exist h, y ∈ g such that
(x, h, y) is an sl2-triplet.

35) Let (x, h, y) and (x′, h′, y′) be sl2-triplets in g. The following conditions
are equivalent:
a) there exists s ∈ Aute(g) such that sx = x′;
b) there exists s ∈ Aute(g) such that sx = x′, sh = h′, sy = y′.

36) If k is algebraically closed, conditions a) and b) of 35) are equivalent to:
c) there exists s ∈ Aute(g) such that sh = h′.
Moreover, the number of conjugacy classes, relative to Aute(g), of non-zero
nilpotent elements of g is at most equal to 3l, where l is the rank of g.
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37) A nilpotent element x of g is called principal if the dimension of the
centralizer of x is equal to the rank of g. There exist principal nilpotent
elements in g. If k is algebraically closed, the principal nilpotent elements of
g are conjugate under Aute(g).



CHAPTER IX
Compact Real Lie Groups

In this chapter1, the expression “Lie group” means “finite dimensional Lie
group over the field of real numbers”, the expression “Lie algebra” means,
unless stated otherwise, “finite dimensional Lie algebra over the field of real
numbers”, the expression “real Lie algebra” (resp. “complex Lie algebra”)
means “finite dimensional Lie algebra over the field of real numbers (resp.
“finite dimensional Lie algebra over the field of complex numbers”).

We denote by G0 the identity component of a topological group G. We
denote by C(G) the centre of a group G, by D(G) its derived group, and by
NG(H) or N(H) (resp. ZG(H) or Z(H)) the normalizer (resp. centralizer) of
a subset H of a group G.

§ 1. COMPACT LIE ALGEBRAS

1. INVARIANT HERMITIAN FORMS

In this number, the letter k denotes the field R or C. Let V be a finite
dimensional k-vector space, Φ a separating2 positive hermitian form on V,
G a group, g an R-Lie algebra, ρ : G → GL(V) a group homomorphism,
ϕ : g → gl(V) a homomorphism of R-Lie algebras.
a) The form Φ is invariant under G (resp. g) if and only if ρ(g) is unitary

with respect to Φ for all g ∈ G (resp. ϕ(x) is anti-hermitian3 with respect to
Φ for all x ∈ g). Indeed, denote by a∗ the adjoint of an endomorphism a of
V with respect to Φ; for g in G, x in g, u and v in V, we have

Φ(ρ(g)u, ρ(g)v) = Φ(ρ(g)∗ρ(g)u, v),
Φ(ϕ(x)u, v) + Φ(u, ϕ(x)v) = Φ((ϕ(x) + ϕ(x)∗).u, v);

1 Throughout this chapter, references to Algebra, Chap. VIII, are to the new edition
(in preparation)

2 Recall (Algebra, Chap. IX, in preparation) that a hermitian form H on V is said
to be separating (or non-degenerate) if, for every non-zero element u of V, there
exists v ∈ V such that H(u, v) �= 0.

3 An element a ∈ End(V) is said to be anti-hermitian with respect to Φ if the
adjoint a∗ of a with respect to Φ is equal to −a. When k = C (resp. k = R) this
also means that the endomorphism ia of V (resp. of C ⊗R V) is hermitian.
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thus, Φ(ρ(g)u, ρ(g)v) = Φ(u, v) for all u, v in V if and only if ρ(g)∗ρ(g) =
IdV; similarly, Φ(ϕ(x)u, v) + Φ(u, ϕ(x)v) = 0 for all u, v in V if and only if
ϕ(x) + ϕ(x)∗ = 0, hence the stated assertion.
b) If the form Φ is invariant under G (resp. g), the orthogonal complement

of a stable subspace of V is stable; in particular, the representation ρ (resp.
ϕ) is then semi-simple (cf. Algebra, Chap. IX); moreover, for all g ∈ G (resp.
x ∈ g), the endomorphism ρ(g) (resp. ϕ(x)) of V is then semi-simple, with
eigenvalues of absolute value 1 (resp. with purely imaginary eigenvalues);
indeed ρ(g) is unitary (resp. iϕ(x) is hermitian, cf. Algebra, Chap. IX).
c) Assume that k = R. If G is a connected Lie group, ρ a morphism of

Lie groups, g the Lie algebra of G and ϕ the homomorphism induced by ρ,
then Φ is invariant under G if and only if it is invariant under g (Chap. III,
§6, no. 5, Cor. 3).
d) There exists a separating positive hermitian form on V invariant under

G if and only if the subgroup ρ(G) of GL(V) is relatively compact (Integra-
tion, Chap. VII, §3, no. 1, Prop. 1).

2. CONNECTED COMMUTATIVE REAL LIE GROUPS

Let G be a connected commutative (real) Lie group. The exponential map

expG : L(G) → G

is a morphism of Lie groups, surjective with discrete kernel (Chap. III, §6,
no. 4, Prop. 11), hence the fact that L(G) is a connected covering of G.
a) The following conditions are equivalent: G is simply-connected, expG is

an isomorphism, G is isomorphic to Rn (n = dim G). In this case, transport-
ing the vector space structure of L(G) to G by the isomorphism expG gives
a vector space structure on G, which is the only one compatible with the
topological group structure of G. Simply-connected commutative Lie groups
are called vector (Lie) groups; unless stated otherwise, they are always given
the R-vector space structure defined above.
b) Denote by Γ (G) the kernel of expG. By General Topology, Chap. VII,

§1, no. 1, Th. 1, the group G is compact if and only if Γ (G) is a lattice
in L(G), in other words (loc. cit.) if the rank of the free Z-module Γ (G) is
equal to the dimension of G. Conversely, if L is a finite dimensional R-vector
space and Γ a lattice in L, the quotient topological group L/Γ is a compact
connected commutative Lie group.

The compact connected commutative Lie groups are called real tori, or
(in this chapter) tori.
c) In the general case, let E be the vector subspace of L(G) generated by

Γ (G), and let V be a complementary subspace. Then G is the direct product
of its Lie subgroups exp(E) and exp(V); the first is a torus, the second is
vector. Finally, every compact subgroup of G is contained in exp(E) (since
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its projection onto exp(V) is necessarily reduced to the identity element);
thus, the subgroup exp(E) is the unique maximal compact subgroup of G.

For example, take G = C∗; identify L(G) with C so that the exponential
map of G is x 	→ ex. Then Γ (G) = 2πiZ,E = iR, and so exp(E) = U;
if we take V = R, then exp(V) = R∗

+ and we recover the isomorphism
C∗ → U×R∗

+ constructed in General Topology, Chap. VIII, §1, no. 3, Prop. 1.
d) Note finally that expG : L(G) → G is a universal covering of G, hence

Γ (G) can be identified naturally with the fundamental group of G.

3. COMPACT LIE ALGEBRAS

PROPOSITION 1. Let g be a (real) Lie algebra. The following conditions are
equivalent:
(i) g is isomorphic to the Lie algebra of a compact Lie group.
(ii) The group Int(g) (Chap. III, §6, no. 2, Def. 2) is compact.
(iii) g has an invariant bilinear form (Chap. I, §3, no. 6) that is symmetric,
positive and separating.
(iv) g is reductive (Chap. I, §6, no. 4, Def. 4); for all x ∈ g, the endomorphism
adx is semi-simple, with purely imaginary eigenvalues.
(v) g is reductive and its Killing form B is negative.

(i) =⇒ (ii): if g is the Lie algebra of a compact Lie group G, the group
Int(g) is separating and isomorphic to a quotient of the compact group G0
(Chap. III, §6, no. 4, Cor. 4), hence is compact.

(ii) =⇒ (iii): if the group Int(g) is compact, there exists a symmetric
bilinear form on g that is positive, separating and invariant under Int(g)
(no. 1), hence also invariant under the adjoint representation of g.

(iii) =⇒ (iv): if (iii) is satisfied, the adjoint representation of g is semi-
simple (no. 1), hence g is reductive; moreover, the endomorphisms adx, for
x ∈ g, have the indicated properties (no. 1).

(iv) =⇒ (v): for all x ∈ g, B(x, x) = Tr((adx)2); consequently, B(x, x)
is the sum of the squares of the eigenvalues of ad x, and hence is negative if
these are purely imaginary.

(v) =⇒ (i): assume that g is reductive, hence the product of a commuta-
tive subalgebra c and a semi-simple subalgebra s (Chap. I, §6, no. 4, Prop. 5).
The Killing form of s is the restriction of the form B to s, hence is negative
and separating if B is negative. The subgroup Int(s) of GL(s) is closed (it is
the identity component of Aut(s), Chap. III, §10, no. 2, Cor. 2) and leaves
the separating positive form −B invariant; thus, it is compact, and s is iso-
morphic to the Lie algebra of the compact Lie group Int(s). Further, since c
is commutative, it is isomorphic to the Lie algebra of a torus T. Thus g is
isomorphic to the Lie algebra of the compact Lie group Int(s) × T.
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DEFINITION 1. A compact Lie algebra4 is a Lie algebra that has properties
(i) to (v) of Proposition 1.

Thus, the compact Lie algebras are the products of a commutative algebra
with a compact semi-simple algebra. In other words, a Lie algebra is compact
if and only if it is reductive and its derived Lie algebra is compact.

The Lie algebra of a compact Lie group is compact.

PROPOSITION 2. a) The product of a finite number of Lie algebras is a
compact Lie algebra if and only if each factor is compact.

b) A subalgebra of a compact Lie algebra is compact.
c) Let h be an ideal of a compact Lie algebra g. Then the algebra g/h is

compact and the extension h → g → g/h is trivial.
Assertions a) and b) follow from the characterization (iii) of Prop. 1. Part

c) follows from a) and the fact that, in a reductive Lie algebra, every ideal is
a direct factor (Chap. I, §6, no. 4, Cor. of Prop. 5).

PROPOSITION 3. Let G be a Lie group of which the group of connected
components is finite. The following conditions are equivalent:

(i) The Lie algebra L(G) is compact.
(ii) The group Ad(G) is compact.
(iii) There exists a separating positive symmetric bilinear form on L(G)

invariant under the adjoint representation of G.
∗(iv) G has a riemannian metric invariant under left and right translations.∗
(i) =⇒ (ii): if L(G) is compact, the group Ad(G0) = Int(L(G)) is compact;

since it has finite index in Ad(G), this latter group is also compact.
(ii) =⇒ (iii): this follows from no. 1.
(iii) =⇒ (i): since Int(L(G)) ⊂ Ad(G), this follows from the characteriza-

tion (iii) of Prop. 1.
∗(iii) ⇐⇒ (iv): this follows from Chap. III, §3, no. 13.∗

4. GROUPS WHOSE LIE ALGEBRA IS COMPACT

THEOREM 1. (H. Weyl) Let G be a connected Lie group whose Lie algebra
is compact semi-simple. Then G is compact and its centre is finite.

Since G is semi-simple, its centre D is discrete. Moreover, the quotient
group G/D is isomorphic to Ad(G) (Chap. III, §6, no. 4, Cor. 4), hence
compact (Prop. 3). Finally, the group G/D is equal to its derived group
(Chap. III, §9, no. 2, Cor. of Prop. 4). The theorem now follows from Inte-
gration, Chap. VII, §3, no. 2, Prop. 5.

PROPOSITION 4. Let G be a connected Lie group whose Lie algebra is com-
pact. There exist a torus T, a simply-connected compact semi-simple Lie

4 Note that a real topological vector space cannot be a compact topological space
unless it is reduced to 0.
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group S, a vector group V and a surjective morphism f : V×T×S → G with
finite kernel. If G is compact, the group V is reduced to the identity element.

Let C (resp. S) be a simply-connected Lie group whose Lie algebra is
isomorphic to the centre (resp. the derived algebra) of L(G). Then C is a
vector group, S is a compact group with finite centre (Th. 1) and G can
be identified with the quotient of C × S by a discrete subgroup D, which is
central (Integration, Chap. VII, §3, no. 2, Lemma 4). Since the image of the
projection of D onto S is central, hence finite, D∩C is of finite index in D. Let
C′ be the vector subspace of C generated by D ∩ C, and V a complementary
subspace. Then the group T = C′/(D ∩ C) is a torus, and G is isomorphic to
the quotient of the product group V × T × S by a finite group.

If G is compact, so is V × T × S (General Topology, Chap. III, §4, no. 1,
Cor. 2 of Prop. 2), hence so is V, which implies that V = {e}.

COROLLARY 1. Let G be a connected compact Lie group. Then C(G)0 is a
torus, D(G) is a connected compact semi-simple Lie group and the morphism
(x, y) 	→ xy from C(G)0 × D(G) to G is a finite covering.

With the notation in Prop. 4, we have V = {e} and the subgroups f(T)
and f(S) of G are compact, hence closed. Thus it suffices to show that f(T) =
C(G)0, f(S) = D(G). Now, L(G) = L(f(T))×L(f(S)); since S is semi-simple
and T is commutative, this implies that L(f(T)) = C(L(G)) = L(C(G)0)
(Chap. III, §9, no. 3, Prop. 8) and L(f(S)) = DL(G) = L(D(G)) (Chap. III,
§9, no. 2, Cor. of Prop. 4), hence the stated assertion.

COROLLARY 2. The centre and the fundamental group of a connected com-
pact semi-simple Lie group are finite. Its universal covering is compact.

With the notation in Prop. 4, the groups V and T are reduced to the
identity element; thus S is a universal covering of G, and the fundamental
group of G is isomorphic to Ker f , hence finite. The centre D of G is discrete
since G is semi-simple, so D is finite.

COROLLARY 3. The fundamental group of a connected compact Lie group
G is a Z-module of finite type, of rank equal to the dimension of C(G).

Indeed, with the notations in Cor. 1, the fundamental group of C(G)0 is
isomorphic to Zn, with n = dimC(G)0, and the fundamental group of D(G)
is finite (Cor. 2).

COROLLARY 4. Let G be a connected compact Lie group. The following
conditions are equivalent:

(i) G is semi-simple;
(ii) C(G) is finite;
(i) π1(G) is finite.
If G is simply-connected, it is semi-simple.
This follows from Cor. 1 to 3.
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COROLLARY 5. Let G be a connected compact Lie group. Then Int(G) is
the identity component of the Lie group Aut(G) (Chap. III, §10, no. 2).

Let f ∈ Aut(G)0. Then f induces an automorphism f1 of C(G)0 and an
automorphism f2 of D(G), and we have f1 ∈ Aut(C(G)0)0, f2 ∈ Aut(D(G))0.
Since Aut(C(G)0) is discrete (General Topology, Chap. VII, §2, no. 4, Prop. 5),
we have f1 = Id; since D(G) is semi-simple, by Chap. III, §10, no. 2, Cor. 2
of Th. 1 there exists an element g of D(G) such that f2(x) = gxg−1 for
all x ∈ D(G). For all x ∈ C(G)0, we have gxg−1 = x = f1(x); since
G = C(G)0.D(G), it follows that gxg−1 = f(x) for all x ∈ G, so f = Int g.

PROPOSITION 5. Let G be a Lie group whose Lie algebra is compact.
a) Assume that G is connected. Then G has a largest compact subgroup

K; it is connected. There exists a closed central vector subgroup (no. 2) N of
G such that G is the direct product N × K.

b) Assume that the group of connected components of G is finite. Then:
(i) Every compact subgroup of G is contained in a maximal compact sub-

group.
(ii) If K1 and K2 are two maximal compact subgroups of G, there exists

g ∈ G such that K2 = gK1g
−1.

(iii) Let K be a maximal compact subgroup of G. Then K ∩ G0 is equal to
K0; it is the largest compact subgroup of G0.

(iv) There exists a closed central vector subgroup N of G0, normal in G,
such that, for any maximal compact subgroup K of G, G0 is the direct product
of K0 by N, and G is the semi-direct product of K by N.
a) We retain the notations of Prop. 4. The projection of Ker f onto V

is a finite subgroup of the vector group V, hence is reduced to the identity
element. It follows that Ker f is contained in T×S, hence that G is the direct
product of the vector group N = f(V) and the compact group K = f(T×S).
Every compact subgroup of G has a projection onto N that is reduced to the
identity element, hence is contained in K. This proves a).
b) Assume now that G/G0 is finite. By a), G0 is the direct product of its

largest compact subgroup M and a vector subgroup P; the subgroup M of G
is clearly normal. Let n be a vector subspace complement of L(M) in L(G),
stable under the adjoint representation of G (no. 1 and no. 3, Prop. 3); this
is an ideal of L(G) and we have L(G) = L(M) × n. Let N be the integral
subgroup of G with Lie algebra n; by Chap. III, §6, no. 6, Prop. 14, it is
normal in G. The projection of L(G) onto L(P) with kernel L(M) induces
an isomorphism from n to L(P); it follows that the projection of G0 onto P
induces an étale morphism from N to P; since P is simply-connected, this is an
isomorphism, and N is a vector group. The morphism (x, y) 	→ xy from M×N
to G0 is an injective étale morphism (since M ∩ N is reduced to the identity
element), hence an isomorphism. It follows that N is a closed subgroup of G
and that the quotient G/N is compact, since G0/N is compact and G/G0 is
finite (General Topology, Chap. III, §4, no. 1, Cor. 2 of Prop. 2).
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By Integration, Chap. VII, §3, no. 2, Prop. 3, every compact subgroup
of G is contained in a maximal compact subgroup, these are conjugate, and
for any maximal compact subgroup K of G, G is the semi-direct product of
K by N. Since G0 contains N, it is the semi-direct product of N by G0 ∩ K;
it follows that G0 ∩ K is connected, hence equal to K0, since K/(G0 ∩ K) is
isomorphic to G/G0, hence finite; finally, K0 is clearly the largest compact
subgroup of G0 by a).

COROLLARY. If N satisfies the conditions of b) (iv), and if K1 and K2
are two maximal compact subgroups of G, there exists n ∈ N such that
nK1n

−1 = K2.
Indeed, by (ii) there exists an element g ∈ G such that gK1g

−1 = K2; by
(iv), there exists n ∈ N and k ∈ K1 such that g = nk. The element n then
has the required properties.

§2. MAXIMAL TORI OF COMPACT LIE GROUPS

1. CARTAN SUBALGEBRAS OF COMPACT ALGEBRAS

Lemma 1. Let G be a Lie group, K a compact subgroup of G, and F an
invariant bilinear form on L(G). Let x, y ∈ L(G). There exists an element k
of K such that F(u, [(Ad k)(x), y]) = 0 for all u ∈ L(K).

The function v 	→ F((Ad v)(x), y) from K to R is continuous, and hence
has a minimum at some point k ∈ K. Let u ∈ L(K) and put

h(t) = F((Ad exp(tu).k)(x), y), t ∈ R.

We have h(t) ≥ h(0) for all t; moreover, by Chap. III, §3, no. 12, Prop. 44,

dh

dt
(0) = F([u, (Ad k)(x)], y) = F(u, [(Ad k)(x), y]),

hence the lemma (Functions of a Real Variable, Chap. I, §1, no. 7, Prop. 7).

THEOREM 1. Let g be a compact Lie algebra. The Cartan subalgebras of g
(Chap. VII, §2, no. 1, Def. 1) are its maximal commutative subalgebras; in
particular, g is the union of its Cartan subalgebras. The group Int(g) operates
transitively on the set of Cartan subalgebras of g.

Since g is reductive, its Cartan subalgebras are commutative (Chap. VII,
§2, no. 4, Cor. 3 of Th. 2). Conversely, let t be a commutative subalgebra
of g. By §1, no. 3, Prop. 1, adx is semi-simple for all x ∈ t; by Chap. VII,
§2, no. 3, Prop. 10, there exists a Cartan subalgebra of g containing t. This
proves the first assertion of the theorem.

Now let t and t′ be two Cartan subalgebras of g. We prove that there exists
u ∈ Int(g) such that u(t) = t′. By Prop. 1 of §1, no. 3, we can assume that g is
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of the form L(G), where G is a connected compact Lie group, and can choose
a separating invariant symmetric bilinear form F on g. Let x (resp. x′) be a
regular element of g such that t = g0(x) (resp. t′ = g0(x′)) (Chap. VII, §3,
no. 3, Th. 2). Applying Lemma 1 with K = G, we see that there exists k ∈ G
such that [(Ad k)(x), x′] is orthogonal to g with respect to F, and hence is
zero; then (Ad k)(x) ∈ g0(x′) = t′, so g0((Ad k)(x)) = t′ since (Ad k)(x) is
regular. We conclude that (Ad k)(t) = t′, hence the theorem.

COROLLARY. Let t and t′ be Cartan subalgebras of g, a a subset of t, and
u an automorphism of g that takes a into t′. There exists an element v of
Int(g) such that u ◦ v takes t to t′, and coincides with u on a.

Put G = Int(g), and consider the fixer ZG(a) of a in G; this is a Lie
subgroup of G, whose Lie algebra zg(a) consists of the elements of g that
commute with every element of a (Chap. III, §9, no. 3, Prop. 7). Then t
and u−1(t′) are two Cartan subalgebras of the compact Lie algebra zg(a). By
Th. 1, there exists an element v of ZG(a) such that v(t) = u−1(t′); any such
element has the desired properties.

2. MAXIMAL TORI

Let G be a Lie group. A torus of G is a closed subgroup that is a torus (§1,
no. 2), in other words any commutative connected compact subgroup. The
maximal elements of the set of tori of G, ordered by inclusion, are called the
maximal tori of G.

THEOREM 2. Let G be a connected compact Lie group.
a) The Lie algebras of the maximal tori of G are the Cartan subalgebras

of L(G).
b) Let T1 and T2 be two maximal tori of G. There exists g ∈ G such that

T2 = gT1g
−1.

c) G is the union of its maximal tori.
Let t be a Cartan subalgebra of L(G); the integral subgroup of G whose Lie

algebra is t is closed (Chap. VII, §2, no. 1, Cor. 4 of Prop. 4) and commutative
(Th. 1), and hence is a torus of G. If T is a maximal torus of G, its Lie algebra
is commutative, hence is contained in a Cartan subalgebra of L(G) (Th. 1).
It follows that the maximal tori of G are exactly the integral subgroups of G
associated to the Cartan subalgebras of L(G), hence a). Assertion b) follows
from Th. 1, since the canonical homomorphism G → Int(L(G)) is surjective
(Chap. III, §6, no. 4, Cor. 4 of Prop. 10).

Denote by X the union of the maximal tori of G, and let T be a maximal
torus of G. The continuous map (g, t) 	→ gtg−1 from G × T to G has image
X, which is therefore closed in G; thus, to prove c), it suffices to prove that
X is open in G; since X is invariant under inner automorphisms, it suffices to
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show that, for all a ∈ T, X is a neighbourhood of a. We argue by induction
on the dimension of G and distinguish two cases:

1) a is not central in G. Let H be the identity component of the central-
izer of a in G; this is a connected compact subgroup of G distinct from G,
which contains T, and hence a. Since Ad a is semi-simple (§1, no. 1), the Lie
algebra of H is the nilspace of Ad a − 1; it now follows from Chap. VII, §4,
no. 2, Prop. 4, that the union Y of the conjugates of H is a neighbourhood
of a. By the induction hypothesis, H ⊂ X, and hence Y ⊂ X; thus, X is a
neighbourhood of a.

2) a is central in G. It suffices to prove that a expx belongs to X for all
x in L(G). Now every element x of L(G) belongs to a Cartan subalgebra of
G (Th. 1); the corresponding integral subgroup T′ contains expx; since it is
conjugate to T, it contains a and hence a expx, as required.

COROLLARY 1. a) The exponential map of G is surjective.
b) For all n ≥ 1, the map g 	→ gn from G to itself is surjective.
Indeed, exp(L(G)) contains all the maximal tori of G, hence a). Assertion

b) follows from the formula (expx)n = expnx for x in L(G).

Remark 1. There exists a compact subset K of L(G) such that expG(K) = G.
Indeed, if T is a maximal torus of G, there exists a compact subset C ⊂ L(T)
such that expT(C) = T; it suffices to take K =

⋃
g∈G

(Ad g)(C).

COROLLARY 2. The intersection of the maximal tori of G is the centre of
G.

Let x be an element of the centre of G; by Th. 2 c), there exists a maximal
torus T of G containing x; then x belongs to all the conjugates of T, hence
to all the maximal tori of G. Conversely, if x belongs to all the maximal tori
of G, it commutes with every element of G by Th. 2 c).

COROLLARY 3. Let g ∈ G, and let C be its centralizer. Then g belongs to
C0; the group C0 is the union of the maximal tori of G containing g.

There exists a maximal torus T of G containing g (Th. 2 c)), and hence
contained in C0. Moreover, the group C0 is a connected compact Lie group,
and hence the union of its maximal tori (Th. 2 c)); these all contain g (Cor. 2),
hence are exactly the maximal tori of G containing g.

COROLLARY 4. Let g ∈ G. If g is regular (Chap. VII, §4, no. 2, Def. 2),
it belongs to a unique maximal torus, which is the identity component of its
centralizer. Otherwise, it belongs to infinitely-many maximal tori.

Since Ad g is semi-simple, the dimension of the nilspace of Ad g−1 is also
that of the centralizer C of g. By loc. cit., Prop. 8, and Th. 1, g is regular
if and only if C0 is a maximal torus of G. The conclusion now follows from
Cor. 3.
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COROLLARY 5. a) Let S be a torus of G. The centralizer of S is connected;
it is the union of the maximal tori of G containing S.

b) Let s be a commutative subalgebra of L(G). The fixer of s in G is
connected; it is the union of the maximal tori of G whose Lie algebras contain
s.

To prove a), it suffices to prove that if an element g of G centralizes
S, there exists a maximal torus of G containing S and g. Now, if C is the
centralizer of g, we have g ∈ C0 (Cor. 3) and S ⊂ C0; if T is a maximal torus
of the connected compact Lie group C0 containing S, we have g ∈ T (Cor. 2),
hence a). Assertion b) follows from a) applied to the closure of the integral
subgroup with Lie algebra s, in view of Chap. III, §9, no. 3, Prop. 9.

Remark 2. It follows from Cor. 5 that a maximal torus of G is a maximal
commutative subgroup. The converse is not true: for example, in the group
SO(3,R), the maximal tori are of dimension 1, and thus cannot contain the
subgroup of diagonal matrices, which is isomorphic to (Z/2Z)2. Moreover,
if g ∈ SO(3,R) is a non-scalar diagonal matrix, g is a regular element of
SO(3,R) whose centralizer is not connected (cf. Cor. 4).

COROLLARY 6. The maximal tori of G are their own centralizers, and are
the fixers of their Lie algebras.

Let T be a maximal torus of G and C its centralizer; since L(T) is a
Cartan subalgebra of L(G), we have L(T) = L(C), hence C = T since C is
connected (Cor. 5).

COROLLARY 7. Let T and T′ be two maximal tori of G, A a subset of T
and s an automorphism of G that takes A into T′. There exists g ∈ G such
that s ◦ (Int g) takes T to T′ and coincides with s on A.

Let C be the centralizer of A. Then T and s−1(T′) are two maximal tori
of C0; every element g of C0 such that (Int g)(T) = s−1(T′) has the desired
properties.

COROLLARY 8. Let H be a compact Lie group, T a maximal torus of H.
Then H = NH(T).H0, and the injection of NH(T) into H induces an isomor-
phism from NH(T)/NH0(T) to H/H0.

Let h ∈ H. Then h−1Th is a maximal torus of H0, hence (Th. 2) there
exists g ∈ H0 such that hg ∈ NH(T); thus h belongs to NH(T).H0, hence the
first assertion. The second follows immediately.

Remarks. 3) Let G be a connected Lie group whose Lie algebra is compact. The
Cartan subgroups of G are the integral subgroups whose Lie algebras are the
Cartan subalgebras of L(G) (the Cartan subgroups of a connected compact
group are thus its maximal tori). Theorem 2 and its corollaries remain valid for
G, if we replace everywhere the expression “maximal torus” by “Cartan sub-
group”. This follows immediately from the fact that, in view of Prop. 5 of §1,
no. 4, G is the direct product of a vector group V and a connected compact
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group K and that the Cartan subgroups of G are the products of V with the
maximal tori of K. Moreover, note that it follows from Cor. 6 above that the
Cartan subgroups of G can also be defined as the fixers of the Cartan subalge-
bras of L(G).

∗ 4) Part c) of Theorem 2 can also be proved in the following way. Give G an
invariant riemannian metric (§1, no. 3, Prop. 3). Then, for any element g of G,
there exists a maximal geodesic passing through g and the identity element of
G (Hopf-Rinow theorem), and it can be verified that the closure of such a geo-
desic is a subtorus of G. ∗

3. MAXIMAL TORI OF SUBGROUPS AND QUOTIENT
GROUPS

PROPOSITION 1. Let G and G′ be two connected compact Lie groups.
a) Let f : G → G′ be a surjective morphism of Lie groups. The maximal

tori of G′ are the images under f of the maximal tori of G. If the kernel of f
is central in G (for example discrete), the maximal tori of G are the inverse
images under f of the maximal tori of G′.

b) Let H be a connected closed subgroup of G. Every maximal torus of H
is the intersection with H of a maximal torus of G.

c) Let H be a connected closed normal subgroup of G. The maximal tori
of H are the intersections with H of the maximal tori of G.
a) Let T be a maximal torus of G; then L(T) is a Cartan subalgebra of

L(G) (no. 2, Th. 2 a)), so L(f(T)) is a Cartan subalgebra of L(G′) (Chap. VII,
§2, no. 1, Cor. 2 of Prop. 4); it follows that f(T) is a maximal torus of G′

(no. 2, Th. 2 a)). If Ker f is central in G, it is contained in T (Cor. 2 of
Th. 2), so T = f−1(f(T)).

Conversely, let T′ be a maximal torus of G′; we show that there exists
a maximal torus T of G such that f(T) = T′. Let T1 be a maximal torus
of G; then f(T1) is a maximal torus of G′ and there exists g′ ∈ G′ such
that T′ = g′f(T1)g′−1 (Th. 2 b)); if g ∈ G is such that f(g) = g′, we have
T′ = f(T) with T = gT1g

−1.
b) Let S be a maximal torus of H; this is a torus of G so there exists a

maximal torus T of G containing S. Then T ∩ H is a commutative subgroup
of H containing S, hence is equal to S (no. 2, Remark 2).
c) By §1, no. 3, Prop. 2 c), L(G) is the direct product of L(H) with an

ideal; thus, the Cartan subalgebras of L(H) are the intersections with L(H) of
the Cartan subalgebras of L(G). Thus, for any maximal torus T of G, T ∩ H
contains a maximal torus S of H and S = T ∩ H (no. 2, Remark 2).

Remarks. 1) Proposition 1 generalizes immediately to connected groups with
compact Lie algebras. In particular, if G is a connected Lie group whose Lie
algebra is compact, the Cartan subgroups of G (cf. Remark 3, no. 2) are
exactly the inverse images of the maximal tori of the connected compact Lie
group Ad(G) (under the canonical homomorphism from G to Ad(G)).

2) Let G be a connected compact Lie group, D̃(G) the universal covering of
the group D(G) and f : D̃(G) → G the composite of the canonical morphisms
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from D̃(G) to D(G) and from D(G) to G. Then the map T �→ f−1(T) is a
bijection from the set of maximal tori of G to the set of maximal tori of D̃(G);
the inverse bijection associates to a maximal torus T̃ of D̃(G) the maximal torus
C(G)0.f(T̃) of G.

4. SUBGROUPS OF MAXIMAL RANK

We shall call the rank of a connected Lie group G the rank of its Lie algebra,
and we shall denote it by rk G. By Th. 2 a), the rank of a connected compact
Lie group is the common dimension of its maximal tori.

Let G be a connected compact Lie group and H a closed subgroup of G. If
H is connected, then rk H ≤ rk G (since the maximal tori of H are tori in G).
By Th. 2 c), to say that H is connected and of maximal rank (that is, of rank
rk G) means that H is a union of maximal tori of G. We deduce immediately
from Proposition 1:

PROPOSITION 2. Let f : G → G′ be a surjective morphism of con-
nected compact Lie groups whose kernel is central. The maps H 	→ f(H)
and H′ 	→ f−1(H′) are inverse bijections between the set of connected closed
subgroups of G of maximal rank and the analogous set for G′.

PROPOSITION 3. Let G be a connected compact Lie group, and H a con-
nected closed subgroup of maximal rank.
a) The compact manifold G/H is simply-connected.
b) The homomorphism π1(H) → π1(G), induced by the canonical injection

of H into G, is surjective.
Since H is connected, we have an exact sequence (General Topology,

Chap. XI, in preparation)

π1(H) → π1(G) → π1(G/H, ē) → 0

where ē is the image in G/H of the identity element of G. Since G/H is
connected, this immediately implies the equivalence of assertions a) and b).
Moreover, if f : G′ → G is a surjective morphism of connected compact Lie
groups whose kernel is central, proving the proposition (in the form a)) for
G is the same as proving it for G′ (Prop. 2). Thus, we can first of all replace
G by Ad(G), then assume that G is semi-simple, and then by replacing G by
a universal covering (§1, no. 4, Cor. 2), assume that G is simply-connected.
But then assertion b) is trivial.

PROPOSITION 4. Let G be a compact Lie group, H a connected closed sub-
group of G of maximal rank and N the normalizer of H in G. Then H is of
finite index in N and is the identity component of N.

Indeed, the Lie algebra of H contains a Cartan subalgebra of L(G). Thus,
by Chap. VII, §2, no. 1, Cor. 4 of Prop. 4, H is the identity component of N.
Since N is compact, H is of finite index in N.
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Remarks. 1) Every integral subgroup H of G such that rk H = rk G is closed:
indeed, the preceding proof shows that H is the identity component of its
normalizer, which is a closed subgroup of G.

2) With the notations of Prop. 4, every closed subgroup H′ of G containing
H and such that (H′ : H) is finite normalizes H, and hence is contained in N;
similarly, the normalizer of H′ is contained in N. In particular, N is its own
normalizer.

5. WEYL GROUP

Let G be a connected compact Lie group and T a maximal torus of G.
Denote by NG(T) the normalizer of T in G; by Prop. 4 (no. 4), the quotient
group NG(T)/T is finite. We denote it by WG(T), or by W(T), and call
it the Weyl group of the maximal torus T of G, or the Weyl group of G
relative to T. Since T is commutative, the operation of NG(T) on T by inner
automorphisms of G induces by passage to the quotient an operation, called
the canonical operation, of the group WG(T) on the Lie group T. By Cor. 6
of Th. 2 of no. 2, this operation is faithful: the associated homomorphism
WG(T) → Aut T is injective.

If T′ is another maximal torus of G and if g ∈ G is such that Int g maps
T to T′ (no. 2, Th. 2 b)), then Int g induces an isomorphism ag from WG(T)
to WG(T′) and ag(s)(gtg−1) = gs(t)g−1 for all s ∈ WG(T) and all t ∈ T.

PROPOSITION 5. a) Every conjugacy class of G meets T.
b) The intersections with T of the conjugacy classes of G are the orbits

of the Weyl group.
Let g ∈ G; by Th. 2 of no. 2, there exists h ∈ G such that g ∈ hTh−1,

hence a). By definition of the Weyl group, any two elements in the same orbit
of WG(T) on T are conjugate in G; conversely, let a, b be two elements of T
conjugate under G. There exists h ∈ G such that b = hah−1; applying Cor. 7
of Th. 2 (no. 2) with A = {a}, s = Inth, T′ = T, we see that there exists
g ∈ G such that Inthg maps T to T and a to b. The class of hg in WG(T)
then maps a to b, hence the proposition.

COROLLARY 1. The canonical injection of T into G defines by passage
to the quotient a homeomorphism from T/WG(T) to the space G/Int(G) of
conjugacy classes of G.

Indeed, this is a bijective continuous map between two compact spaces
(cf. General Topology, Chap. III, p. 29, Cor. 1).

COROLLARY 2. Let E be a subset of G stable under inner automorphisms.
Then E is open (resp. closed, resp. dense) in G if and only if E ∩ T is open
(resp. closed, resp. dense) in T.
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This follows from Cor. 1 and the fact that the canonical maps T →
T/WG(T) and G → G/Int(G) are open (General Topology, Chap. III, p. 10,
Lemma 2).

Denote the Lie algebra of G by g, and that of T by t. The operation of
WG(T) on T induces a representation, called the canonical representation, of
the group WG(T) on the R-vector space t.

PROPOSITION 6. a) Every orbit of G on g (for the adjoint representation)
meets t.
b) The intersections with t of the orbits of G are the orbits of WG(T)

on t.
Assertion a) follows from Th. 1 (no. 1). Let x, y be two elements of t

conjugate under Ad(G), and let h ∈ G be such that (Adh)(x) = y. Applying
the corollary of Th. 1 (no. 1) with a = {x}, u = Adh, t′ = t, we see that
there exists g ∈ G such that Adhg maps t to t and x to y. Then hg ∈ NG(T)
(Chap. III, §9, no. 4, Prop. 11), and the class of hg in WG(T) maps x to y,
hence the proposition.

COROLLARY. The canonical injection of t into g defines by passage to the
quotient a homeomorphism from t/WG(T) to g/Ad(G).

Denote this map by j; it is bijective and continuous (Prop. 6). We have a
commutative diagram

t
i−→ g⏐⏐!p ⏐⏐!q

t/WG(T)
j−→ g/Ad(G)

where p and q are quotient maps, and i is the canonical injection. Since i
and q are proper (General Topology, Chap. I, §10, no. 1, Prop. 2 and General
Topology, Chap. III, §4, no. 1, Prop. 2 c)) and since p is surjective, it follows
that j is proper (General Topology, Chap. I, §10, no. 1, Prop. 5), and hence
is a homeomorphism.

PROPOSITION 7. Let H be a closed subgroup of G containing T.
a) Denote by WH(T) the subgroup NH(T)/T of WG(T); the group H/H0

is isomorphic to the quotient group WH(T)/WH0(T).
b) H is connected if and only if every element of WG(T) that has a rep-

resentative in H belongs to WH0(T).
Assertion a) follows from Cor. 8 of Th. 2 (no. 2), and assertion b) is a

particular case of a).
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6. MAXIMAL TORI AND COVERING OF HOMOMORPHISMS

Let G be a connected compact Lie group, T a maximal torus of G. Con-
sider the derived group D(G) of G and its universal covering D̃(G); let
p : D̃(G) → G be the composite of the canonical morphisms D̃(G) → D(G)
and D(G) → G. Then D̃(G) is a connected compact Lie group (§1, no. 4,
Cor. 2 of Prop. 4); moreover, the inverse image T̃ of T under p is a maximal
torus of D̃(G) (no. 3, Prop. 1).

Lemma 2. Let H be a Lie group, fT : T → H and f̃ : D̃(G) → H morphisms
of Lie groups such that fT(p(t)) = f̃(t) for all t ∈ T̃. There exists a unique
morphism of Lie groups f : G → H such that f ◦ p = f̃ and such that the
restriction of f to T is fT.

Put Z = C(G)0; by §1, no. 4, Cor. 1 of Prop. 4, the morphism of Lie
groups g : Z× D̃(G) → G such that g(z, x) = z−1p(x) is a covering; its kernel
consists of the pairs (z, x) such that p(x) = z, for which x ∈ p−1(Z) ⊂ T̃.
Since the morphism (z, x) 	→ fT(z−1)f̃(x) from Z × D̃(G) to H maps Ker g
to {e}, there exists a morphism f from G to H such that f ◦ p = f̃ and
f(z) = fT(z) for z ∈ Z. But we also have f(t) = fT(t) for t ∈ p(T̃); since
T = Z.p(T̃), the restriction of f to T is indeed fT.

PROPOSITION 8. Let G be a connected compact Lie group, T a maximal
torus of G, H a Lie group and ϕ : L(G) → L(H) a homomorphism of Lie al-
gebras. There exists a morphism of Lie groups f : G → H such that L(f) = ϕ
if and only if there exists a morphism of Lie groups fT : T → H such that
L(fT) = ϕ|L(T); then fT = f |T.

If f : G → H is a morphism of Lie groups such that L(f) = ϕ, the
restriction fT of f to T is the unique morphism from T to H such that
L(fT) = ϕ|L(T). Conversely, let fT : T → H be a morphism of Lie groups
such that L(fT) = ϕ|L(T). Let D̃(G) and p be as above; the map L(p) induces
an isomorphism from L(D̃(G)) to the derived algebra b of L(G). There exists
a morphism of Lie groups f̃ : D̃(G) → H such that L(f̃) = (ϕ|b) ◦ L(p)
(Chap. III, §6, no. 1, Th. 1). The morphisms t 	→ f̃(t) and t 	→ fT(p(t)) from
T̃ to H induce the same homomorphism of Lie algebras, and hence coincide.
Applying Lemma 2, we deduce the existence of a morphism f : G → H such
that L(f) and ϕ coincide on L(T) and b. Since L(G) = b + L(T), we have
L(f) = ϕ.

PROPOSITION 9. Let G be a connected compact Lie group, T a maximal
torus of G, H a Lie group and f : G → H a morphism. Then f is injective if
and only if its restriction to T is injective.

Indeed, by Th. 2 (no. 2) the normal subgroup Kerf of G reduces to the
identity element if and only if its intersection with T reduces to the identity
element.
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§3. COMPACT FORMS OF COMPLEX SEMI-
SIMPLE LIE ALGEBRAS

1. REAL FORMS

If a is a complex Lie algebra, we denote by a[R] (or sometimes by a) the
real Lie algebra obtained by restriction of scalars. If g is a real Lie algebra,
we denote by g(C) (or sometimes by gC) the complex Lie algebra C ⊗R g
obtained by extension of scalars. The homomorphisms of real Lie algebras
g → a[R] correspond bijectively to the homomorphisms of complex Lie al-
gebras g(C) → a: if f : g → a[R] and g : g(C) → a correspond, we have
f(x) = g(1 ⊗ x) and g(λ⊗ x) = λf(x) for x ∈ g, λ ∈ C.

DEFINITION 1. Let a be a complex Lie algebra. A real form of a is a real
subalgebra g of a that is an R-structure on the C-vector space a (Algebra,
Chap. II, §8, no. 1, Def. 1).

This means that the homomorphism of complex Lie algebras g(C) → a
associated to the canonical injection g → a[R] is bijective. Thus, a real sub-
algebra g of a is a real form of a if and only if the subspaces g and ig of the
real vector space a are complementary. The conjugation of a relative to the
real form g is the map σ : a → a such that

σ(x+ iy) = x− iy, x, y ∈ g. (1)

PROPOSITION 1. a) Let g be a real form of a and σ the conjugation of a
relative to g. Then:

σ2 = Ida, σ(λx+ µy) = λ̄σ(x) + µ̄σ(y), [σ(x), σ(y)] = σ[x, y] (2)

for λ, µ ∈ C, x, y ∈ a. An element x of a belongs to g if and only if σ(x) = x.
b) Let σ : a → a be a map satisfying (2). Then the set g of fixed points of

σ is a real form of a, and σ is the conjugation of a relative to g.
The proof is immediate.

Note that if B denotes the Killing form of a, and if g is a real form of a,
the restriction of B to g is the Killing form of g; in particular, B is real-valued
on g × g. Assume that a is reductive; then the real Lie algebra g is compact
if and only if the restriction of B to g is negative (§1, no. 3). In that case we
say that g is a compact real form of a.
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2. REAL FORMS ASSOCIATED TO A CHEVALLEY SYSTEM

In this number, we consider a split semi-simple Lie algebra (a, h) over the field
C (Chap. VIII, §2, no. 1), with root system R(a, h) = R, and a Chevalley
system (Xα)α∈R of (a, h) (Chap. VIII, §2, no. 4, Def. 3).

Recall (loc. cit.) that the linear map θ : a → a that coincides with −Idh

on h and maps Xα to X−α for all α ∈ R is an automorphism of a. Moreover
(loc. cit., Prop. 7), if α, β, α+ β are roots, then

[Xα, Xβ ] = Nα,βXα+β (3)

with Nα,β ∈ R∗ and

N−α,−β = Nα,β . (4)

Denote by h0 the real vector subspace of h consisting of the H ∈ h such
that α(H) ∈ R for all α ∈ R. Then h0 is an R-structure on the complex
vector space h, we have [Xα, X−α] ∈ h0 for all α ∈ R, and the restriction of
the Killing form B of a to h0 is separating positive (Chap. VIII, §2, no. 2,
Remark 2). Moreover,

B(H,Xα) = 0, B(Xα, Xβ) = 0 if α+ β �= 0, B(Xα, X−α) < 0 (5)

(Chap. VIII, §2, no. 2, Prop. 1 and no. 4, Lemma 3).

PROPOSITION 2. a) The real vector subspace a0 = h0 +
∑

α∈R
RXα of a is a

real form of a, of which h0 is a Cartan subalgebra. The pair (a0, h0) is a split
semi-simple real Lie algebra, of which (Xα) is a Chevalley system.
b) Let σ be the conjugation of a relative to a0. Then σ ◦ θ = θ ◦ σ. The

set of fixed points of σ ◦ θ is a compact real form au of a, of which ih0 is a
Cartan subalgebra.

Part a) follows immediately from the preceding. We prove b). Since σ ◦ θ
and θ ◦ σ are two semi-linear maps from a to a that coincide on a0, they
coincide. Now σ ◦ θ satisfies conditions (2) of no. 1, hence is the conjugation
of a relative to the real form au consisting of the x ∈ a such that σ ◦ θ(x) = x
(Prop. 1). For all α ∈ R put

uα = Xα +X−α, vα = i(Xα −X−α). (6)

Then the R-vector space au is generated by ih0, the uα and the vα. More
precisely, if we choose a chamber C of R, then

au = ih0 ⊕
⊕

α∈R+(C)

(Ruα + Rvα). (7)

It is clear that ih0 is a Cartan subalgebra of au, and it remains to prove that
the restriction of B to au is negative. Now ih0 and the different subspaces of
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the form Ruα ⊕Rvα are orthogonal with respect to B, by (5); the restriction
of B to ih0 is negative and

B(uα, uα) = B(vα, vα) = 2B(Xα, X−α) < 0, B(uα, vα) = 0, (8)

hence the conclusion.

Remark. With the preceding notations, we have the following formulas:

[h, uα] = −iα(h)vα, [h, vα] = iα(h)uα, [uα, vα] = 2iHα, (h ∈ h) (9)
[uα, uβ ] = Nα,βuα+β + Nα,−βuα−β , α �= ±β, (10)
[vα, vβ ] = −Nα,βuα+β + Nα,−βuα−β , α �= ±β, (11)
[uα, vβ ] = Nα,βvα+β − Nα,−βvα−β , α �= ±β, (12)

(in the last three formulas, it is understood, as usual, that Nγ,δ = 0 if γ + δ
is not a root).

Note that
∑

Ruα is a real subalgebra of a, namely a0 ∩ au.

Let Q(R) be the group of radical weights of R (Chap. VI, §1, no. 9). Recall
that to any homomorphism γ : Q(R) → C∗ is associated an elementary
automorphism f(γ) of a such that f(γ)(h) = h for all h ∈ h and f(γ)Xα =
γ(α)Xα (Chap. VIII, §5, no. 2).

PROPOSITION 3. Let g be a compact real form of a such that g ∩ h = ih0.
There exists a homomorphism γ : Q(R) → R∗

+ such that g = f(γ)(au).
Let τ be the conjugation of a relative to g. By hypothesis τ(x) = x for

x ∈ ih0, so τ(x) = −x for x ∈ h0. Thus, for all α ∈ R and all h ∈ h0,

[h, τ(Xα)] = [−τ(h), τ(Xα)] = −τ([h,Xα]) = −τ(α(h)Xα);

it follows that [h, τ(Xα)] = −α(h)τ(Xα) for all h ∈ h0, hence also for
all h ∈ h. Hence there exists cα ∈ C∗ such that τ(Xα) = cαX−α. Since
[Xα, X−α] ∈ h0, we have [τ(Xα), τ(X−α)] = −[Xα, X−α], so cαc−α = 1;
similarly, formulas (3) and (4) give cα+β = cαcβ if α, β, α + β are roots.
By Chap. VI, §1, no. 6, Cor. 2 of Prop. 19, there exists a homomorphism
δ : Q(R) → C∗ such that δ(α) = cα for all α ∈ R.

We now show that each cα is strictly positive. Indeed, cαB(Xα, X−α) =
B(Xα, τ(Xα)), and since B(Xα, X−α) is negative, it suffices to show that
B(z, τ(z)) < 0 for every non-zero element z of a; but every element of a can
be written as x+ iy, with x and y in g, and

B(x+ iy, τ(x+ iy)) = B(x+ iy, x− iy) = B(x, x) + B(y, y),

hence the stated assertion, the restriction of B to g being negative and sepa-
rating by hypothesis.

It follows that the homomorphism δ takes values in R∗
+; hence there exists

a homomorphism γ : Q(R) → R∗
+ such that δ = γ−2. Then f(γ)−1(g) is a
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real form of a; the corresponding conjugation is τ ′ = f(γ)−1 ◦ τ ◦ f(γ). For
all α ∈ R, we have

τ ′(Xα) = f(γ)−1(τ(c−1/2
α Xα)) = f(γ)−1(c1/2

α X−α) = X−α,

and τ ′(h) = τ(h) = h for h ∈ ih0; it follows that τ ′ is the conjugation with
respect to au, and hence that f(γ)−1(g) = au.

3. CONJUGACY OF COMPACT FORMS

THEOREM 1. Let a be a complex semi-simple Lie algebra.
a) a has compact (resp. splittable) real forms.
b) The group Int(a) operates transitively on the set of compact (resp. split-

table) real forms of a.
Let h be a Cartan subalgebra of a. Then (a, h) is split (Chap. VIII, §2,

no. 1, Remark 2), and has a Chevalley system (Xα) (Chap. VIII, §4, no. 4,
Cor. of Prop. 5). Part a) now follows from Prop. 2. Let g be a compact real
form of a; we show that there exists v ∈ Int(a) such that v(au) = g. Let
t be a Cartan subalgebra of g; then t(C) is a Cartan subalgebra of a; since
Int(a) operates transitively on the set of Cartan subalgebras of a (Chap. VII,
§3, no. 2, Th. 1), we are reduced to the case in which t(C) = h. Since g is
a compact form, the eigenvalues of the endomorphisms ad h, for h ∈ t, are
purely imaginary (§1, no. 3, Prop. 1), so the roots α ∈ R map t to iR; this
implies that t = ih0. Then, by Prop. 3 (no. 2), there exists v ∈ Int(a) such
that v(au) = g, hence b) in the case of compact forms. Finally, let m1 and m2
be two splittable real forms of a. There exist framings (m1, h1,B1, (X1

α)) and
(m2, h2,B2, (X2

α)) (Chap. VIII, §4, no. 1). These extend in an obvious way to
bases e1 and e2 of a. An automorphism of a that maps e1 to e2 maps m1 to
m2; thus, it suffices to apply Prop. 5 of Chap. VIII, §5, no. 3, to obtain the
existence of an element u of Aut0(a) = Int(a) such that u(m1) = m2.

Remark. We shall see much later a general classification of real forms of a
complex semi-simple Lie algebra.

COROLLARY 1. Let g and g′ be two compact real Lie algebras. Then g and
g′ are isomorphic if and only if the complex Lie algebras g(C) and g′

(C) are
isomorphic.

The condition is clearly necessary. Conversely, assume that g(C) and g′
(C)

are isomorphic. Let c (resp. c′) be the centre of g (resp. g′) and s (resp.
s′) the derived algebra of g (resp. g′). Then c(C) and c′

(C) are the centres
of g(C) and g′

(C), respectively, and hence are isomorphic; it follows that the
commutative algebras c and c′ are isomorphic. Similarly, s(C) and s′

(C) are
isomorphic, hence s and s′, which are compact real forms of two isomorphic
complex semi-simple Lie algebras, are isomorphic by Th. 1 b).
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COROLLARY 2. Let a be a complex Lie algebra. The following conditions
are equivalent:

(i) a is reductive.
(ii) There exists a compact real Lie algebra g such that a is isomorphic to

g(C).
(iii) There exists a compact Lie group G such that a is isomorphic to

L(G)(C).
By Def. 1 of §1, no. 3, conditions (ii) and (iii) are equivalent and imply

(i). If a is reductive, it is the direct product of a commutative algebra, which
clearly has a compact real form, and a semi-simple algebra which has one by
Th. 1 a), hence (i) implies (ii).

COROLLARY 3. Let a1 and a2 be two complex semi-simple Lie algebras. The
compact real forms of a1 × a2 are the products g1 × g2, where, for i = 1, 2, gi

is a compact real form of ai.
Indeed, there exists a compact real form g1 (resp. g2) of a1 (resp. a2);

then g1 ×g2 is a compact real form of a1 ×a2. The corollary now follows from
Th. 1 b), applied to a1, a2 and a1 × a2.

Note that it follows from Cor. 3 above that a compact real Lie algebra g
is simple if and only if the complex Lie algebra g(C) is simple. We say that
g is of type An, or Bn, . . ., if g(C) is of type An, or Bn, . . . (Chap. VIII, §2,
no. 2). By Cor. 1 above, two compact simple real Lie algebras are isomorphic
if and only if they are of the same type.

Let G be an almost simple connected compact Lie group (Chap. III, §9,
no. 8, Def. 3). We say that G is of type An, or Bn, . . ., if its Lie algebra
is of type An, or Bn, . . .. Two simply-connected almost simple compact Lie
groups are isomorphic if and only if they are of the same type.

4. EXAMPLE I: COMPACT ALGEBRAS OF TYPE An

Let V be a finite dimensional complex vector space and Φ a separating positive
hermitian form on V. The unitary group associated to Φ (cf. Algebra, Chap.
IX) is the subgroup U(Φ) of GL(V) consisting of the automorphisms of
the complex Hilbert space (V, Φ); this is a (real) Lie subgroup of the group
GL(V), whose Lie algebra is the subalgebra u(Φ) of the real Lie algebra gl(V)
consisting of the endomorphisms x of V such that x∗ = −x (Chap. III, §3,
no. 10, Cor. 2 of Prop. 37), where x∗ denotes the adjoint of x relative to
Φ. Since the group U(Φ) is compact (§1, no. 1), u(Φ) is a compact real Lie
algebra. Similarly, the special unitary group SU(Φ) = U(Φ) ∩ SL(V) is a
compact Lie subgroup of SL(V), whose Lie algebra is su(Φ) = u(Φ) ∩ sl(V).

When V = Cn and Φ is the usual hermitian form (for which the canonical
basis of Cn is orthonormal), we write U(n,C), SU(n,C), u(n,C), su(n,C)
instead of U(Φ), SU(Φ), u(Φ), su(Φ). The elements of U(n,C) (resp. u(n,C))
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are the matrices A ∈ Mn(C) such that A.tĀ = In (resp. A = −tĀ), which
are said to be unitary (resp. anti-hermitian).

PROPOSITION 4. a) The compact real forms of the complex Lie algebra
sl(V) are the algebras su(Φ), where Φ belongs to the set of separating positive
hermitian forms on the complex vector space V.

b) The algebras u(Φ) are the compact real forms of gl(V).
Let Φ be a separating positive hermitian form on V. For all x ∈ gl(V),

put σ(x) = −x∗ (where x∗ is the adjoint of x relative to Φ). Then σ satisfies
conditions (2) of Prop. 1 of no. 1, so the set u(Φ) (resp. su(Φ)) of fixed points
of σ on gl(V) (resp. sl(V)) is a compact real form of gl(V) (resp. sl(V)). Since
GL(V) operates transitively on the set of separating positive hermitian forms
on V (Algebra, Chap. IX) and on the set of compact real forms of sl(V) (no. 3,
Th. 1 and Chap. VIII, §13, no. 1 (VII)), Prop. 4 is proved.

COROLLARY. Every compact simple real Lie algebra of type An (n ≥ 1) is
isomorphic to su(n+ 1,C).

Indeed, every complex Lie algebra of type An is isomorphic to sl(n+1,C)
(Chap. VIII, §13, no. 1).

Remarks. 1) We have gl(V) = sl(V) × C.1V, u(Φ) = su(Φ) × R.i1V; the
compact real forms of gl(V) are the su(Φ) × R.α1V, α ∈ C∗.

2) If the complex Lie algebra a = sl(n,C) is equipped with the splitting
and Chevalley system introduced in Chap. VIII, §13, no. 1 (IX), then, with
the notations in no. 2,

au = su(n,C), a0 = sl(n,R), au ∩ a0 = o(n,R).

5. EXAMPLE II: COMPACT ALGEBRAS OF TYPE Bn AND
Dn

Let V be a finite dimensional real vector space and Q a separating posi-
tive quadratic form on V. The orthogonal group associated to Q (Algebra,
Chap. IX) is the subgroup O(Q) of GL(V) consisting of the automorphisms
of the real Hilbert space (V,Q); this is a Lie subgroup of GL(V), whose Lie
algebra is the subalgebra o(Q) of gl(V) consisting of the endomorphisms x of
V such that x∗ = −x (Chap. III, §3, no. 10, Cor. 2 of Prop. 37), x∗ denoting
the adjoint of x relative to Q. Since the group O(Q) is compact, o(Q) is thus
a compact real Lie algebra. Put SO(Q) = O(Q) ∩ SL(V); this is a closed
subgroup of finite index of O(Q) (of index 2 if dimV �= 0), hence also with
Lie algebra o(Q).

When V = Rn and Q is the usual quadratic form (for which the canonical
basis of Rn is orthonormal), we write O(n,R), SO(n,R), o(n,R) instead of
O(Q),SO(Q), o(Q). The elements of O(n,R) (resp. o(n,R)) are the matrices
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A ∈ Mn(R) such that A.tA = In (resp. A = −tA), which are said to be
orthogonal (resp. anti-symmetric).

Let V(C) be the complex vector space associated to V and let Q(C) be the
quadratic form on V(C) associated to Q. Identify gl(V)(C) with gl(V(C)); then
o(Q)(C) is identified with o(Q(C)): this is clear since the map x 	→ x∗+x from
gl(V(C)) to itself is C-linear. Since o(Q(C)) is of type Bn if dimV = 2n+ 1,
n ≥ 1, and of type Dn if dimV = 2n, n ≥ 3 (Chap. VIII, §13, nos. 2 and 4),
we deduce:

PROPOSITION 5. Every compact simple real Lie algebra of type Bn, n ≥ 1
(resp. of type Dn, n ≥ 3) is isomorphic to o(2n+ 1,R) (resp. o(2n,R)).

6. COMPACT GROUPS OF RANK 1

By General Topology, Chap. VIII, §1, no. 4, Prop. 3, Prop. 4 and Remark 4,
the topological group SU(2,C) is isomorphic to the topological group S3
of quaternions of norm 1, and the quotient of SU(2,C) by the subgroup Z
consisting of the matrices I2 and −I2 is isomorphic to the topological group
SO(3,R). Note that Z is the centre of SU(2,C): indeed, since H = R.S3,
every element of the centre of the group S3 is in the centre R of the algebra
H and hence belongs to the group with two elements S3 ∩ R = {−1, 1}.

PROPOSITION 6. Every compact semi-simple real Lie algebra of rank 1 is
isomorphic to su(2,C) and to o(3,R). Every connected semi-simple compact
Lie group of rank 1 is isomorphic to SU(2,C) if it is simply-connected, and
to SO(3,R) if not.

The first assertion follows from the Cor. of Prop. 4 and Prop. 5. Since
SU(2,C) is homeomorphic to S3 (General Topology, Chap. VIII, §1, no. 4,
Remark 4), hence is simply-connected (General Topology, Chap. XI, in prepa-
ration), every simply-connected compact semi-simple Lie group of rank 1 is
isomorphic to SU(2,C); every connected compact semi-simple Lie group of
rank 1 that is not simply-connected is isomorphic to a quotient of SU(2,C)
by a subgroup of Z that does not reduce to the identity element, hence to
SO(3,R).

Remark. We have seen above that SU(2,C) is simply-connected and that
π1(SO(3,R)) is of order 2. We shall see much later that these results generalize
to SU(n,C) (n ≥ 1) and SO(n,R) (n ≥ 3), respectively (cf. also §3, Exerc. 4
and 5).

Recall (Chap. VIII, §1, no. 1) that the canonical basis of sl(2,C) is the
basis (X+, X−, H), where

X+ =
(

0 1
0 0

)
, X− =

(
0 0

−1 0

)
, H =

(
1 0
0 −1

)
.
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We thus obtain a basis (U, V, iH) of su(2,C), also called canonical, by putting

U = X+ +X− =
(

0 1
−1 0

)
, V = i(X+ −X−) =

(
0 i
i 0

)
,

iH =
(
i 0
0 −i

)
.

We have

[iH, U ] = 2V, [iH, V ] = −2U, [U, V ] = 2iH. (13)

If B denotes the Killing form of su(2,C) an immediate calculation gives

B(aU + bV + ciH, a′U + b′V + c′iH) = −8(aa′ + bb′ + cc′), (14)

so that, if we identify su(2,C) with R3 by means of the canonical basis,
the adjoint representation of SU(2,C) defines a homomorphism SU(2,C) →
SO(3,R) (cf. above).

Further, note that RiH is a Cartan subalgebra of su(2,C), that the max-
imal torus T of SU(2,C) that corresponds to it consists of the diagonal

matrices
(
a 0
0 ā

)
, where aā = 1, and that the exponential map

exp : RiH → T

maps xH, for x ∈ Ri, to the matrix
(

exp(x) 0
0 exp(−x)

)
, and thus has

kernel Z.K, where K is the element of su(2,C) defined by

K = 2πiH =
(

2πi 0
0 −2πi

)
. (15)

Further, the centre of SU(2,C) consists of the identity and exp(K/2).
Put

θ =
(

0 −1
1 0

)
∈ SU(2,C). (16)

By Chap. VIII, §1, no. 5,

θ2 =
(−1 0

0 −1

)
, (Int θ)t = t−1, t ∈ T, (17)

(Ad θ)X+ = X−, (Ad θ)X− = X+, (Ad θ)U = U, (Ad θ)V = −V. (18)

Finally, for t =
(
a 0
0 ā

)
∈ T, we have

(Ad t)X+ = a2X+, (Ad t)X− = a−2X−, (Ad t)H = H, (19)
(Ad t)U = R(a2)U + I(a2)V, (Ad t)V = −I(a2)U + R(a2)V. (20)
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§4. ROOT SYSTEM ASSOCIATED TO A COMPACT
GROUP

In paragraphs 4 to 8, we denote by G a connected compact Lie group and by
T a maximal torus of G. We denote by g (resp. t) the Lie algebra of G (resp.
T), by gC (resp. tC) the complexified Lie algebra of g (resp. t), and by W the
Weyl group of G relative to T (§2, no. 5).

1. THE GROUP X(H)

Let H be a compact Lie group. Denote by X(H) the (commutative) group
of continuous homomorphisms from H to the topological group C∗. By
Chap. III, §8, no. 1, Th. 1, the elements of X(H) are morphisms of Lie groups;
for all a ∈ X(H), the differential of a is an R-linear map L(a) : L(H) → L(C∗).
From now on we identify the Lie algebra of C∗ with C in such a way that the
exponential map of C∗ coincides with the map z 	→ ez from C to C∗. Then,
to any element a ∈ X(H) is associated an element L(a) ∈ HomR(L(H),C);
we denote by δ(a) the element of HomC(L(H)(C),C) that corresponds to it
(that is, whose restriction to L(H) ⊂ L(H)(C) is equal to L(a)).

For all x ∈ L(H) and all a ∈ X(H), we have

a(expHx) = eδ(a)(x),

by functoriality of the exponential map (Chap. III, §6, no. 4, Prop. 10).
We shall often denote the group X(H) additively; in that case, we denote

the element a(g) of C∗ by ga. With this notation, we have the formulas

ga+b = gagb, g ∈ H, a, b ∈ X(H),

and

(expHx)
a = eδ(a)(x), x ∈ L(H), a ∈ X(H).

Since H is compact, the elements of X(H) take values in the subgroup
U = U(1,C) of complex numbers of absolute value 1, so that X(H) can be
identified with the group of continuous (or analytic) homomorphisms from
H to U. It follows that, for all a ∈ L(H), the map L(a) takes values in the
subspace Ri of C, so δ(a) maps L(H) to Ri.

If H is commutative, X(H) is simply the (discrete) dual group of H (Spec-
tral Theories, Chap. II, §1, no. 1). If H is commutative and finite, X(H) can
be identified with the dual finite group D(H) = HomZ(H,Q/Z) (where, as in
Algebra, Chap. VII, §4, no. 9, Example 1, we identify Q/Z with a subgroup
of C∗ by the homomorphism r 	→ exp(2πir)).

For any morphism f : H → H′ of compact Lie groups, we denote by
X(f) the homomorphism a 	→ a ◦ f from X(H′) to X(H). If K is a closed
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normal subgroup of the compact Lie group H, we have an exact sequence of
Z-modules 0 → X(H/K) → X(H) → X(K).

PROPOSITION 1. For any compact Lie group H, the Z-module X(H) is of
finite type. It is free if H is connected.

Assume first that H is connected; every element of X(H) vanishes on the
derived group D(H) of H, hence we have a homomorphism X(H/D(H))→X(H).
But H/D(H) is connected and commutative, hence is a torus, and X(H/D(H))
is a free Z-module of finite type (Spectral Theories, Chap. II, §2, no. 1, Cor. 2
of Prop. 1). In the general case, it follows from the exactness of the sequence

0 → X(H/H0) → X(H) → X(H0),

where X(H0) is free of finite type and X(H/H0) is finite, that X(H) is of finite
type.

PROPOSITION 2. Let H be a commutative compact Lie group, and (ai)i∈I a
family of elements of X(H); the ai generate X(H) if and only if the intersection
of the Ker ai reduces to the identity element.

By Spectral Theories, Chap. II, §1, no. 7, Th. 4, the orthogonal comple-
ment of the kernel of ai is the subgroup Ai of X(H) generated by ai; by loc.
cit., Cor. 2 of Th. 4, the orthogonal complement of

⋂
Ker ai is the subgroup

of X(H) generated by the Ai, hence the proposition.

2. NODAL GROUP OF A TORUS

The nodal group of a torus S, denoted by Γ (S), is the kernel of the exponential
map L(S) → S. This is a discrete subgroup of L(S), whose rank is equal to
the dimension of S, and the R-linear map R ⊗Z Γ (S) → L(S) that extends
the canonical injection of Γ (S) into L(S) is bijective. It induces by passage
to the quotient an isomorphism R/Z ⊗Z Γ (S) → S.

For example, the nodal group Γ (U) of U is the subgroup 2πiZ of
L(U) = iR.

For any morphism of tori f : S → S′, denote by Γ (f) the homomorphism
Γ (S) → Γ (S′) induced by L(f). We have a commutative diagram

0 −→ Γ (S) −→ L(S)
expS−→ S −→ 0⏐⏐!Γ (f)

⏐⏐!L(f)

⏐⏐!f

0 −→ Γ (S′) −→ L(S′)
expS′−→ S′ −→ 0.

(1)

Let a ∈ X(S); applying the preceding to the morphism from S to U defined
by a, we see that the C-linear map δ(a) : L(S)(C) → C of no. 1 maps Γ (S)
to 2πiZ. Thus, we can define a Z-bilinear form on X(S) × Γ (S) by putting

〈a,X〉 =
1

2πi
δ(a)(X), a ∈ X(S), X ∈ Γ (S). (2)
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PROPOSITION 3. The bilinear form (a,X) 	→ 〈a,X〉 on X(S) × Γ (S) is
invertible.

Recall (Algebra, Chap. IX) that, by definition, this means that the linear
maps X(S) → HomZ(Γ (S),Z) and Γ (S) → HomZ(X(S),Z) associated to this
bilinear form are bijective.

It is immediate that if the conclusion of the proposition is true for two
tori, it is also true for their product. Thus, since every torus of dimension
n is isomorphic to Un, we are reduced to the case in which S = U. In this
particular case, the assertion is immediate.

Let f : S → S′ be a morphism of tori. Then, each of the linear maps
X(f) : X(S′) → X(S) and Γ (f) : Γ (S) → Γ (S′) is the transpose of the other:
for all a′ ∈ X(S′) and all X ∈ Γ (S),

〈X(f)(a′), X〉 = 〈a′, Γ (f)(X)〉. (3)

PROPOSITION 4. Let S and S′ be tori. Denote by M(S,S′) the group of
morphisms of Lie groups from S to S′. The maps f 	→ X(f) and f 	→ Γ (f)
are isomorphisms of groups from M(S,S′) to HomZ(X(S′),X(S)) and to
HomZ(Γ (S), Γ (S′)), respectively.

If f is a morphism of Lie groups from S to S′, the homomorphism X(f)
is simply the dual of f in the sense of Spectral Theories, Chap. II, §1, no. 7.
The map ϕ 	→ ϕ̂ from HomZ(X(S′),X(S)) to M(S,S′) defined in loc. cit. is
the inverse of the map f 	→ X(f) from M(S,S′) to HomZ(X(S′),X(S)); the
latter is thus bijective. If we identify Γ (S) (resp. Γ (S′)) with the dual Z-
module of X(S) (resp. X(S′)) (Prop. 3), Γ (f) coincides with the transpose of
the homomorphism X(f), hence the proposition.

Remarks. 1) Let f : S → S′ be a morphism of tori. The snake diagram
(Algebra, Chap. X, §1, no. 2) associated to (1) gives an exact sequence

0 −→ KerΓ (f) −→ Ker L(f) −→ Ker f d−→ (4)
d−→ CokerΓ (f) −→ Coker L(f) −→ Coker f −→ 0.

In particular, assume that f is surjective, with finite kernel N, so that we
have an exact sequence

0 −→ N i−→ S
f−→ S′ −→ 0 ,

where i is the canonical injection. Then, L(f) is bijective, and (4) gives an
isomorphism N → CokerΓ (f), hence an exact sequence

0 −→ Γ (S)
Γ (f)−→ Γ (S′) −→ N −→ 0. (5)

Moreover, by Spectral Theories, Chap. II, §1, no. 7, Th. 4, the sequence

0 −→ X(S′)
X(f)−→ X(S)

X(i)−→ X(N) −→ 0 (6)

is exact.
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2) By Prop. 4, the map f 	→ Γ (f)(2πi) from M(U,S) to Γ (S) is an
isomorphism; if a ∈ X(S) = M(S,U) and f ∈ M(U,S), then the composite
a ◦ f ∈ M(U,U) is the endomorphism u 	→ ur, where r = 〈a, Γ (f)(2πi)〉.
We shall identify M(U,U) = X(U) with Z from now on, the element r of
Z being associated to the endomorphism u 	→ ur; thus, with the notations
above,

a ◦ f = 〈a, Γ (f)(2πi)〉.
3) To the exact sequence 0 → Γ (S) → L(S)

expS−→ S → 0 is associated an
isomorphism from Γ (S) to the fundamental group of S, called canonical in
the sequel. For any morphism of tori f : S → S′, Γ (f) can then be identified
via the canonical isomorphisms Γ (S) → π1(S) and Γ (S′) → π1(S′) with
the homomorphism π1(f) : π1(S) → π1(S′) induced by f . Note that this
gives another interpretation of the exact sequence (5) (cf. General Topology,
Chap. XI, in preparation).

4) The homomorphisms of Z-modules δ : X(S) → HomC(L(S)(C),C) and
ι : Γ (S) → L(S)(C) (ι is induced by the canonical injection of Γ (S) into L(S))
extend to isomorphisms of C-vector spaces

u :C ⊗ X(S) → HomC(L(S)(C),C)

v :C ⊗ Γ (S) → L(S)(C)

which we shall call canonical in the sequel. Note that, if we extend the pair-
ing between X(S) and Γ (S) by C-linearity to a bilinear form � , � on
(C ⊗ X(S)) × (C ⊗ Γ (S)), then

〈u(a), v(b)〉 = 2πi � a, b � .

3. WEIGHTS OF A LINEAR REPRESENTATION

In this number k denotes one of the fields R or C.
Let V be a finite dimensional vector space over k, and ρ : G → GL(V)

a continuous (hence real-analytic, Chap. III, §8, no. 1, Th. 1) representation
of the connected compact Lie group G on V. Define a complex vector space
Ṽ and a continuous representation ρ̃ : G → GL(Ṽ) as follows: if k = C, set
Ṽ = V, ρ̃ = ρ; if k = R, set Ṽ = V(C) and ρ̃ to be the composite of ρ with
the canonical homomorphism GL(V) → GL(Ṽ).

For all λ ∈ X(G), denote by Ṽλ(G) the vector subspace of Ṽ consisting of
the v ∈ Ṽ such that ρ̃(g)v = gλv for all g ∈ G (cf. Chap. VII, §1, no. 1). By
loc. cit., Prop. 3, the sum of the Ṽλ(G) (for λ belonging to X(G)) is direct.
Moreover:

Lemma 1. If G is commutative, Ṽ is the direct sum of the Ṽλ(G) for
λ ∈ X(G).
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Since ρ is semi-simple (§1, no. 1), it suffices to prove the lemma in the
case in which ρ is simple. In that case, the commutant Z of ρ(G) in End(Ṽ)
reduces to homotheties (Algebra, Chap. VIII, §3, no. 2, Th. 1); thus, the
image of the homomorphism ρ̃ is contained in the subgroup C∗.1V of GL(Ṽ),
and there exists λ ∈ X(G) such that Ṽ = Ṽλ(G).

DEFINITION 1. The weights of the representation ρ of G, relative to a max-
imal torus T of G, are the elements λ of X(T) such that Ṽλ(T) �= 0.

Denote by P(ρ,T), or by P(ρ) if there is no possibility of confusion over
the choice of T, the set of weights of ρ relative to T. By Lemma 1,

Ṽ =
⊕

λ∈P(ρ,T)

Ṽλ(T). (7)

Let T′ be another maximal torus of G and g an element of G such that
(Int g)T = T′ (§2, no. 2, Th. 2). For all λ ∈ X(T),

ρ̃(g)(Ṽλ(T)) = Ṽλ′(T′), where λ′ = X(Int g−1)(λ). (8)

Consequently,

X(Int g)(P(ρ,T′)) = P(ρ,T). (9)

The Weyl group W = WG(T) operates on the left on the Z-module X(T)
by w 	→ X(w−1); thus, for t ∈ T, λ ∈ X(T), w ∈ W, we have twλ = (w−1(t))λ.

PROPOSITION 5. The set P(ρ,T) is stable under the operation of the Weyl
group W. Let n ∈ NG(T), and let w be its class in W; for λ ∈ X(T), we have
ρ(n)(Ṽλ(T)) = Ṽwλ(T) and dim Ṽwλ(T) = dim Ṽλ(T).

Formula (9), with T′ = T, g = n, implies that P(ρ,T) is stable under w;
further, ρ̃(n) induces an isomorphism from Ṽλ(T) to Ṽwλ(T) (formula (8)),
hence the proposition.

PROPOSITION 6. The homomorphism ρ : G → GL(V) is injective if and
only if P(ρ,T) generates the Z-module X(T).

The homomorphism ρ is injective if and only if its restriction to T is
injective (§2, no. 6, Prop. 9). Further, since the canonical homomorphism
GL(V) → GL(Ṽ) is injective, we can replace ρ by ρ̃. It then follows from (7)
that the kernel of the restriction of ρ to T is the intersection of the kernels of
the elements of P(ρ,T). Thus, the conclusion follows from Prop. 2 of no. 1.

The linear representation L(ρ) of t in gl(Ṽ) extends to a homomorphism
of C-Lie algebras

L̃(ρ) : tC → gl(Ṽ).
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Moreover, recall (no. 1) that we have associated to every element λ of X(T)
a linear form δ(λ) on tC such that

(expTx)
λ = eδ(λ)(x), x ∈ t. (10)

Recall finally (Chap. VII, §1, no. 1) that, for any map µ : tC → C, we
denote by Ṽµ(tC) the vector subspace of Ṽ consisting of the v such that
(L̃(ρ)(u))(v) = µ(u).v for all u ∈ tC.

We now deduce from (7) and loc. cit., Prop. 3:

PROPOSITION 7. a) For all λ ∈ X(T), we have Ṽλ(T) = Ṽδ(λ)(tC).
b) The map δ : X(T) → HomC(tC,C) induces a bijection from P(ρ,T) to

the set of weights of tC on Ṽ.
Note first that, if W operates on tC by associating to any element w of W

the endomorphism L(w)(C) of tC, the map δ is compatible with the operation
of W on X(T) and HomC(tC,C).

Assume now that k = R. Denote by σ the conjugation of Ṽ relative to
V, defined by σ(x + iy) = x − iy for x, y in V; for every complex vector
subspace E of Ṽ, the smallest subspace of Ṽ rational over R and containing
E is E + σ(E). In particular, for all λ ∈ X(T), there exists a real vector
subspace V(λ) of V such that the subspace V(λ)(C) of Ṽ is Ṽλ(T) + Ṽ−λ(T)
(note that σ(Ṽλ(T)) = Ṽ−λ(T)). We have V(λ) = V(−λ), and the V(λ) are
the isotypical components of the representation of T on V induced by ρ.

4. ROOTS

The roots of G relative to T are the non-zero weights of the adjoint repre-
sentation of G. The set of roots of G relative to T is denoted by R(G,T), or
simply by R if there is no risk of confusion. By Prop. 6, the map

δ : X(T) → t∗C

(t∗C denotes the dual of the complex vector space tC) maps R(G,T) bijec-
tively onto the set R(gC, tC) of roots of the split reductive algebra (gC, tC)
(Chap. VIII, §2, no. 2, Remark 4). If we put

gα = (gC)α(T) = (gC)δ(α)(tC), (11)

for all α ∈ R, then each gα is of dimension 1 over C (loc. cit., Th. 1) and

gC = tC ⊕
⊕
α∈R

gα. (12)

For each α ∈ R, denote by V(α) the 2-dimensional subspace of g such that
V(α)(C) = gα + g−α; the non-zero isotypical components of g for the adjoint
representation of T are t and the V(α). Further, let K be the quadratic form
associated to the Killing form of g; it is negative (§1, no. 3, Prop. 1) and its
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restriction K(α) to V(α) is negative and separating. For each element t of T,
Ad t leaves K(α) stable, and hence gives a morphism of Lie groups

ια : T → SO(K(α)).

There exists a unique isomorphism ρα : U → SO(K(α)) such that ια = ρα◦α.
Indeed, let X be a non-zero element of gα, and let Y be the image of X
under the conjugation of gC relative to g; then Y ∈ g−α, and we obtain a
basis (U, V ) of V(α) by putting U = X + Y, V = i(X − Y ); the matrix of
the endomorphism of V(α) induced by Ad t, t ∈ T, with respect to the basis
(U, V ) is(

R(tα) −I(tα)
I(tα) R(tα)

)
,

hence the assertion.

PROPOSITION 8. Let Q(R) be the subgroup of X(T) generated by the roots
of G.

a) The centre C(G) of G is a closed subgroup of T, equal to the intersection
of the kernels of the roots. The canonical map X(T/C(G)) → X(T) is injective
with image Q(R).

b) The compact group C(G) is isomorphic to the dual of the discrete group
X(T)/Q(R) (Spectral Theories, Chap. II, §1, no. 1, Def. 2).

c) C(G) reduces to the identity element if and only if Q(R) is equal to
X(T).

By §2, no. 2, Cor. 2 of Th. 2, C(G) is contained in T. Since this is the
kernel of the adjoint representation, it is the intersection of the kernels of
the roots, in other words the orthogonal complement of the subgroup Q(R)
of X(T). Thus, the proposition follows from Spectral Theories, Chap. II, §1,
no. 7, Th. 4 and no. 5, Th. 2.

PROPOSITION 9. Every automorphism of the Lie group G that induces the
identity on T is of the form Int t, with t ∈ T.

Assume first of all that C(G) reduces to the identity element, in other
words that X(T) = Q(R) (Prop. 8). Let f be an automorphism of G inducing
the identity on T, and ϕ = L(f)(C); then ϕ is an automorphism of gC inducing
the identity on tC. By Chap. VIII, §5, no. 2, Prop. 2, there exists a unique
homomorphism θ : Q(R) → C∗ such that ϕ induces on each gα the homothety
with ratio θ(α). Since ϕ leaves stable the real form g of gC, it commutes with
the conjugation σ of gC with respect to g; but σ(gα) = g−α, so θ(−α) = θ(α)
for all α ∈ R. This implies that θ(α)θ(α) = θ(α)θ(−α) = 1. It follows that
θ takes values in U, and hence corresponds by duality to an element t of T
such that (Ad t)(C) = ϕ, so Int t = f .

In the general case, the preceding applies to the group G/C(G), whose
centre reduces to the identity element, and to its maximal torus T/C(G).
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It follows that, if f is an automorphism of G inducing the identity on T,
there exists an element t of T such that f and Int t induce by passage to
the quotient the same automorphism of G/C(G). But, since the canonical
morphism D(G) → G/C(G) is a finite covering (§1, no. 4, Cor. 1 of Prop. 4),
f and Int t induce the same automorphism of D(G), hence of D(G) × C(G),
and hence also of G (loc. cit.).

COROLLARY. Let u be an automorphism of G and H the closed subgroup
of G consisting of the fixed points of u. Then, the automorphism u is inner
if and only if H0 is of maximal rank.

If u is equal to Int g, with g ∈ G, the subgroup H0 = Z(g)0 is of maximal
rank (§2, no. 2, Cor. 3). Conversely, if H contains a maximal torus S, the
automorphism u is of the form Int s with s ∈ S (Prop. 9).

5. NODAL VECTORS AND INVERSE ROOTS

Lemma 2. Let S be a closed subgroup of T and Z(S) its normalizer in G.
(i) R(Z(S)0,T) is the set of α ∈ R(G,T) such that α(S) = {1}.
(ii) The centre of Z(S)0 is the intersection of the Kerα for α∈R(Z(S)0,T).
(iii) If S is connected, Z(S) is connected.
The Lie algebra L(Z(S))(C) consists of the invariants of S on gC (Chap. III,

§9, no. 3, Prop. 8), and hence is the direct sum of tC and the gα for which
α(S) = {1}, hence (i). Assertion (ii) follows from Prop. 8 (no. 4), and assertion
(iii) has already been proved (§2, no. 2, Cor. 5 of Th. 2).

THEOREM 1. Let α ∈ R(G,T). The centralizer Zα of the kernel of α
is a connected closed subgroup of G; its centre is Kerα; its derived group
D(Zα) = Sα is a connected closed semi-simple subgroup of G of rank 1. We
have R(Zα,T) = {α,−α} and dimZα = dimT + 2.

Let Z′
α be the centralizer of (Kerα)0. By Lemma 2, this is a con-

nected closed subgroup of G, and R(Z′
α,T) is the set of β ∈ R(G,T)

such that β((Kerα)0) = {1}. Clearly, {α,−α} ⊂ R(Z′
α,T). Conversely, let

β ∈ R(Z′
α,T); since (Kerα)0 is of finite index in Kerα, there exists an integer

r �= 0 such that trβ = 1 for t ∈ Kerα. From the exactness of the sequence

0 −→ Z −→ X(T) −→ X(Kerα) −→ 0

corresponding by duality to the exact sequence

0 −→ Kerα −→ T α−→ U −→ 0 ,

it follows that rβ is a multiple of α; by Chap. VIII, §2, no. 2, Th. 2 (i), this
implies that β ∈ {α,−α}. Thus, R(Z′

α,T) = {α,−α}. It follows (Lemma 2)
that the centre of Z′

α is Kerα, so Z′
α = Zα. Finally, by Cor. 1 of Prop. 4 (§1,
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no. 4), D(Zα) is a connected closed semi-simple subgroup of G; it is of rank
1 because DL(Zα)(C) = gα + g−α + [gα, g−α].

COROLLARY. There exists a morphism of Lie groups ν : SU(2,C) → G
with the following properties:
a) The image of ν commutes with the kernel of α.

b) For all a ∈ U, we have ν
(
a 0
0 ā

)
∈ T and α ◦ ν

(
a 0
0 ā

)
= a2.

If ν1 and ν2 are two morphisms from SU(2,C) to G with the preceding

properties, there exists a ∈ U such that ν2 = ν1 ◦ Int
(
a 0
0 ā

)
.

By Th. 1 and Prop. 6 of §3, no. 6, there exists a morphism of Lie groups
ν : SU(2,C) → Sα that is surjective with discrete kernel. Then ν−1(T ∩ Sα)
is a maximal torus of SU(2,C) (§2, no. 3, Prop. 1). Since the maximal tori
of SU(2,C) are conjugate (§2, no. 2, Th. 2), we can assume, replacing ν by
ν ◦ Int s (with s ∈ SU(2,C)) if necessary, that ν−1(T ∩ Sα) is the group of

diagonal matrices in SU(2,C). Then ν
(
a 0
0 ā

)
∈ T for all a ∈ U, and the

map(
a 0
0 ā

)
	→ α ◦ ν

(
a 0
0 ā

)

is a root of SU(2,C), and hence is equal to one of the two maps
(
a 0
0 ā

)
	→ a2

or
(
a 0
0 ā

)
	→ a−2 (§3, no. 6, formulas (19)). In the first case, the homomor-

phism ν has the required properties; in the second case, the homomorphism
ν ◦ Int θ has them (loc. cit., formulas (18)).

If ν1 and ν2 are two morphisms from SU(2,C) to G satisfying the stated
conditions, they both map SU(2,C) into Sα (condition a)), hence are both
universal coverings of Sα. Hence, there exists an automorphism ϕ of SU(2,C)
such that ν2 = ν1 ◦ ϕ, and we conclude by using Prop. 9 of no. 4.

It follows from the preceding corollary that the homomorphism νT from

U to T, defined by νT(a) = ν

(
a 0
0 ā

)
for a ∈ U, is independent of the

choice of ν. Denote by Kα ∈ Γ (T) the image under Γ (νT) of the element 2πi
of Γ (U) = 2πiZ; it is called the nodal vector associated to the root α. We
have 〈α,Kα〉 = 2, in other words (no. 2, formula (2)) δ(α)(Kα) = 4πi; since
Kα belongs to the intersection of t and the L(Sα)(C), we have

Kα = 2πiHδ(α), (13)

where Hδ(α) is the inverse root associated to the root δ(α) of (gC, tC)
(Chap. VIII, §2, no. 2). In other words, when Γ (T) ⊗ R is identified with
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the dual of X(T) ⊗ R via the pairing 〈 , 〉, Kα is identified with the inverse
root α∨ ∈ (X(T) ⊗ R)∗.

Remark. For all x ∈ R, we have

ν

(
exp(2πix) 0

0 exp(−2πix)

)
= νT(e2πix) = exp(xKα). (14)

In particular:

ν

(−1 0
0 −1

)
= νT(−1) = exp

(1
2
Kα

)
. (15)

It follows that ν is injective if and only if Kα /∈ 2Γ (T), in other words if there
exists λ ∈ X(T) such that 〈λ, Kα〉 /∈ 2Z. When gC is simple, ν is injective unless
gC is of type Bn, C(G) = {1} and α is a short root (cf. Chap. VI, Plates).

In the remainder of this paragraph we denote by R∨(G,T) the set of nodal
vectors Kα for α ∈ R(G,T). This is a subset of Γ (T) that the canonical
injection of Γ (T) into tC identifies with the homothety with ratio 2πi of the
inverse root system R∨(gC, tC) = {Hδ(α)} of δ(R). It follows that R∨(G,T)
generates the R-vector space L(T ∩ D(G)), and hence that its orthogonal
complement in X(T) is X(T/(T ∩ D(G))).

Denote by Aut(T) the group of automorphisms of the Lie group T; the
Weyl group W = WG(T) (§2, no. 5) can be identified with a subgroup of
Aut(T). On the other hand, recall (Chap. VIII, §2, no. 2, Remark 4) that the
Weyl group W(gC, tC) of the split reductive algebra (gC, tC) operates on tC,
and thus is canonically identified with a subgroup of GL(tC).

PROPOSITION 10. The map u 	→ L(u)(C) from Aut(T) to GL(tC) induces
an isomorphism from W to the Weyl group of the split reductive Lie algebra
(gC, tC). For all α ∈ R, WZα(T) is of order 2, and the image under the
preceding isomorphism of the non-identity element of WZα(T) is the reflection
sHδ(α) .

The map under consideration is injective. It remains to show that its
image is equal to W(gC, tC).

Let g ∈ NG(T). With the notations in Chap. VIII, §5, no. 2, we have
Ad g ∈ Aut(gC, tC) ∩ Int(gC), so Ad g ∈ Aut0(gC, tC) (loc. cit., no. 5,
Prop. 11). By loc. cit., no. 2, Prop. 4, the automorphism of tC induced by
Ad g belongs to W(gC, tC). Thus, the image of W in GL(tC) is contained in
W(gC, tC).

Let α ∈ R(G,T), and let ν : SU(2,C) → G be a morphism of Lie groups
having the properties in the Cor. of Th. 1. The image under ν of the element
θ of SU(2,C) has the following properties (§3, no. 6, formulas (17)):
a) (Int ν(θ))(t) = t if t ∈ Kerα,
b) (Int ν(θ))(t) = t−1 if t ∈ T ∩ Sα.

It follows that Ad ν(θ) induces the identity on Ker δ(α) ⊂ tC, and induces the
map x 	→ −x on [gα, g−α], hence coincides with the reflection sHδ(α) . Thus,
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the image of W contains all the sHδ(α) , and hence is equal to W(gC, tC).
In particular WZα(T) is of order 2, and hence consists of the identity and
Int ν(θ). This completes the proof of the proposition.

COROLLARY. Assume that G is semi-simple. Then every element of G is
the commutator of two elements of G.

Let c be a Coxeter transformation of the Weyl group W(gC, tC) (Chap. V,
§6, no. 1), and let n be an element of NG(T) whose class in W is identified with
c by the isomorphism defined in the proposition. Denote by fc the morphism
t 	→ (n, t) from T to T; for x ∈ tC, we have L(fc)(C)(x) = (Adn)(x) − x =
c(x) − x.

By Th. 1 of Chap. V, §6, no. 2, the endomorphism c of tC has no eigenvalue
equal to 1. Consequently, L(fc) is surjective, and hence so is fc. It follows that
every element of T is the commutator of two elements of G, which implies
the corollary in view of Th. 2, §2, no. 2.

6. FUNDAMENTAL GROUP

In the following proposition, f(G,T) denotes the homomorphism from Γ (T)
to π1(G) that is the composite of the canonical isomorphism from Γ (T) to
π1(T) (no. 2, Remark 3) and the homomorphism π1(ι), where ι is the canon-
ical injection T → G.

PROPOSITION 11. The homomorphism f(G,T) : Γ (T) → π1(G) is surjec-
tive. Its kernel is the subgroup N(G,T) of Γ (T) generated by the family of
nodal vectors (Kα)α∈R(G,T).

The homomorphism f(G,T) is surjective by Prop. 3 (§2, no. 4). We denote
by A(G,T) the assertion: “the kernel of f(G,T) is generated by the Kα”
which it remains to prove, and distinguish several cases:
a) G is simply-connected. Let ρ : gC → gl(V) be a linear representation

of gC on a finite dimensional complex vector space V. Restricting to g, we
obtain a representation of g on the real vector space V(R); since G is simply-
connected, there exists an analytic linear representation π of G on V(R) such
that ρ = L(π). It follows from Prop. 7 of no. 3 that the image δ(X(T)) of
X(T) in t∗C contains all the weights of ρ on V. This being true for every
representation ρ of gC, it follows from Chap. VIII, §7, no. 2, Th. 1 that
δ(X(T)) contains the group of weights of δ(R), which is by definition the set
of λ ∈ t∗C such that λ(Hδ(α)) ∈ Z for all α ∈ R, in other words, λ(Kα) ∈ 2πiZ
for all α ∈ R. Thus, the group X(T) contains all the elements λ of X(T) ⊗ Q
such that 〈λ,Kα〉 ∈ Z for all α ∈ R, which implies by duality that Γ (T) is
generated by the Kα, hence the assertion A(G,T).
b) G is the direct product of a simply-connected group G′ and a torus S.

Then T is the direct product of a maximal torus T′ of G′ with S, Γ (T) can
be identified with Γ (T′)×Γ (S), π1(G) with π1(G′)×π1(S), and f(G,T) with
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the homomorphisms with components f(G′,T′) and f(S,S). Since f(S,S) is
bijective, the canonical map Γ (T′) → Γ (T) maps Ker f(G′,T′) bijectively
onto Ker f(G,T). Moreover, the Kα belong to the Lie algebra of the derived
group G′ of G, hence to the image of Γ (T′), so it is immediate that A(G′,T′)
implies A(G,T), hence assertion A(G,T), in view of a).
c) General case. There exists a surjective morphism p : G′ → G with

finite kernel, where G′ is the direct product of a simply-connected group by
a torus (§1, no. 4, Prop. 4). If T′ is the inverse image of T in G′ (this is a
maximal torus of G′ by §2, no. 3, Prop. 1), and N the kernel of p, we have
exact sequences 0 → N → G′ → G → 0 and 0 → N → T′ → T → 0,
hence a commutative diagram with exact rows (no. 2, Remark 1 and General
Topology, Chap. XI, in preparation)

0 −→ Γ (T′) −→ Γ (T) −→ N −→ 0⏐⏐!f(G′,T′)

⏐⏐!f(G,T)

⏐⏐!IdN

0 −→ π1(G′) −→ π1(G) −→ N −→ 0.

It follows immediately from the snake diagram (Algebra, Chap. X, p. 4,
Prop. 2) that A(G′,T′) implies A(G,T), hence the proposition, in view of
b).

COROLLARY 1. G is simply-connected if and only if the family (Kα)α∈R(G,T)
generates Γ (T).

COROLLARY 2. Let H be a connected closed subgroup of G containing T;
there is an exact sequence

0 −→ N(H,T) −→ N(G,T) −→ π1(H) −→ π1(G) −→ 0.

This follows from Algebra, Chap. X, p. 4, Prop. 2 (snake diagram), applied
to the commutative diagram

0 −→ N(H,T) −→ Γ (T) −→ π1(H) −→ 0⏐⏐! ⏐⏐! ⏐⏐!
0 −→ N(G,T) −→ Γ (T) −→ π1(G) −→ 0.

Remark. It can be shown (cf. Exercise 2 of §5) that π2(G/H) is zero. The
exactness of the preceding sequence then gives an isomorphism from
π2(G/H) to N(G, T)/N(H, T).

COROLLARY 3. The homomorphism π1(D(G)) → π1(G) corresponding to
the inclusion of D(G) into G induces an isomorphism from π1(D(G)) to the
torsion subgroup of π1(G).

Indeed, T∩D(G) is a maximal torus of D(G) (§2, no. 3, Prop. 1 c)); from
the exact sequence
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0 −→ Γ (T ∩ D(G)) −→ Γ (T) −→ Γ (T/(T ∩ D(G))) −→ 0

and Proposition 11, we obtain an exact sequence

0 −→ π1(D(G)) −→ π1(G) −→ Γ (T/(T ∩ D(G))) −→ 0,

hence the corollary, since π1(D(G)) is finite and Γ (T/(T ∩ D(G))) is free.

7. SUBGROUPS OF MAXIMAL RANK

Recall (Chap. VI, §1, no. 7) that a subset P of R = R(G,T) is said to be
closed if (P + P) ∩ R ⊂ P, and symmetric if P = −P.

PROPOSITION 12. Let H be the set of connected closed subgroups of G
containing T, ordered by inclusion. The map H 	→ R(H,T) is an increasing
bijection from H to the set of symmetric closed subsets of R(G,T), ordered
by inclusion.

IfH ∈ H, then L(H)(C) is the direct sum of tC and the gα for α ∈ R(H,T);
since this is a reductive subalgebra in gC, the subset R(H,T) of R satisfies the
stated conditions (Chap. VIII, §3, no. 1, Lemma 2 and Prop. 2). Conversely, if
P is a subset of R satisfying these conditions, then tC⊕

∑
α∈P

gα is a subalgebra

of gC (loc. cit.) which is rational over R (no. 3), and hence of the form h(C),
where h is a subalgebra of g. Let H(P) be the integral subgroup of G defined
by h; it is closed (§2, no. 4, Remark 1). We verify immediately that the maps
H 	→ R(H,T) and P 	→ H(P) are increasing and inverses of each other.

COROLLARY 1. There are only finitely-many closed subgroups of G con-
taining T.

Let H be such a subgroup; then H0 ∈ H, and H is finite. Moreover, H
is a subgroup of NG(H0) containing H0, and NG(H0)/H0 is finite (§2, no. 4,
Prop. 4 and Remark 2).

COROLLARY 2. Let H be a connected closed subgroup of G containing T,
and let WH

G(T) be the stabilizer in WG(T) of the subset R(H,T) of R. The
group NG(H)/H is isomorphic to the quotient group WH

G(T)/WH(T).
Indeed, it follows from Prop. 7 of §2, no. 5, applied to NG(H), that

NG(H)/H is isomorphic to WN(H)(T)/WH(T), where WN(H)(T) is the set
of elements of WG(T) whose representatives in NG(T) normalize H. Let
n ∈ NG(T), and let w be its class in WG(T). By Chap. III, §9, no. 4, Prop. 11,
n normalizes H if and only if (Adn)(L(H)) = L(H); in view of Prop. 5 of no. 3,
this also means that the subset R(H,T) of R is stable under w, hence the
corollary.

Remark 1. The group WH
G(T) is also the stabilizer in WG(T) of the subgroup

C(H) of T: this follows from Prop. 8 of no. 4.
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PROPOSITION 13. Let H be a connected closed subgroup of G of maximal
rank, and C its centre. Then C contains the centre of G, and H is the identity
component of the centralizer of C.

Let S be a maximal torus of H. Since the centre of G is contained in S, it
is contained in C. Put L = Z(C)0; this is a connected closed subgroup of G
containing H, hence is of maximal rank, and its centre is equal to C. Denote
by RH and RL the root systems of H and L, respectively, relative to S; then
RH ⊂ RL ⊂ R(G,S). Since C(H) = C(L), Prop. 8 (no. 4) implies the equality
Q(RH) = Q(RL); but Q(RH) ∩ RL = RH (Chap. VI, §1, no. 7, Prop. 23), so
RH = RL and H = L (Prop. 12).

Remark 2. Say that a subgroup C of G is radical if there exists a maximal
torus S of G and a subset P of R(G,S) such that C =

⋂
α∈P

Kerα. It follows

from Prop. 13 and Lemma 2 of no. 5 that the map H 	→ C(H) induces a
bijection from the set of connected closed subgroups of maximal rank to the
set of radical subgroups of G. The inverse bijection is the map C 	→ Z(C)0.

COROLLARY. The set of g ∈ G such that T ∩ gTg−1 �= C(G) is the union
of a finite number of closed analytic submanifolds of G distinct from G.

Indeed, put Ag = T ∩ gTg−1; we have T ⊂ Z(Ag) and gTg−1 ⊂ Z(Ag).
Hence, there exists x ∈ Z(Ag) such that xTx−1 = gTg−1 (§2, no. 2, Th. 2),
which implies that g ∈ Z(Ag).NG(T). Denote by A the finite (Cor. 1) set
of closed subgroups of G containing T and distinct from G, and put X =⋃
H∈A

H.NG(T); this is a finite union of closed submanifolds of G, distinct

from G. If Ag �= C(G), then Z(Ag) ∈ A, and g belongs to X. Conversely, if
g ∈ H.NG(T), with H ∈ A, then Ag contains C(H), so Ag �= C(G) (Prop. 13).

PROPOSITION 14. Let X be a subset of T, and let RX be the set of roots
α ∈ R(G,T) such that α(X) = {1}. The group ZG(X)/ZG(X)0 is isomorphic
to the quotient of the subgroup of WG(T) fixing X by the subgroup generated
by the reflections sα for α ∈ RX.

Put H = ZG(X); since L(H)(C) is the set of points of gC fixed by Ad(X), it
is the sum of tC and the gα for which α(X) = {1}. Consequently, R(H0,T) =
RX, so WH0(T) is generated by the reflections sα for α ∈ RX. It now suffices
to apply Prop. 7 of §2, no. 5.

We shall see below (§5, no. 3, Th. 1) that if G is simply-connected and X reduces
to a point, the centralizer Z(X) is connected.

8. ROOT DIAGRAMS

DEFINITION 2. A root diagram (or simply a diagram, if there is no risk of
confusion) is a triple D = (M,M0,R) where:

(RD0) M is a free Z-module of finite type and the submodule M0 is a
direct factor of M;
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(RDI) R is a finite subset of M; R ∪ M0 generates the Q-vector space
Q ⊗ M;

(RDII) for all α ∈ R, there exists an element α∨ of M∗ = HomZ(M,Z)
such that α∨(M0) = 0, α∨(α) = 2 and the endomorphism x 	→ x − α∨(x)α
of M leaves R stable.

By Chap. VI, §1, no. 1, for all α ∈ R the element α∨ of M∗ is uniquely
determined by α; we denote by sα the endomorphism x 	→ x−α∨(x)α of M.
Moreover (loc. cit.), the Q-vector space Q ⊗ M is the direct sum of Q ⊗ M0
and the vector subspace V(R) generated by R, and R is a root system in
V(R) (loc. cit., Def. 1).

The elements of R are called the roots of the root diagram D, and the ele-
ments α∨ of M∗ the inverse roots. The group generated by the automorphisms
sα of M is called the Weyl group of D and is denoted by W(D); the elements
of W(D) induce the identity on M0, and induce on V(R) the transformations
of the Weyl group of the root system R.

Examples. 1) For every free Z-module of finite type M, the triple (M,M,∅)
is a root diagram.

2) If D = (M,M0,R) is a root diagram, let M∗
0 be the orthogonal com-

plement of V(R) in M∗, and let R∨ be the set of inverse roots of D. Then
D∨ = (M∗,M∗

0,R
∨) is a root diagram, called the inverse of D. For all α ∈ R,

the symmetry sα∨ of M∗ is the contragredient automorphism of the symme-
try sα of M; the map w 	→ tw−1 is an isomorphism from W(D) to W(D∨).
Moreover, V(R∨) can be naturally identified with the dual of the Q-vector
space V(R), R∨ then being identified with the inverse root system of R.

If the dual of M∗ is identified with M, the inverse diagram of D∨ is iden-
tified with D.

3) Let (g, h) be a split reductive Q-Lie algebra, and M ⊂ h a permissible
lattice (Chap. VIII, §12, no. 6, Def. 1). Let M0 be the subgroup of M or-
thogonal to the roots of (g, h) and R∨ the set of the Hα, α ∈ R(g, h). Then
(M,M0,R∨) is a root diagram, and (M∗,M∗

0,R(g, h)) is the inverse diagram.
4) Let V be a vector space over Q and R a root system in V; denote by

P(R) the group of weights of R and by Q(R) the group of radical weights of R
(Chap. VI, §1, no. 9). Then (Q(R), 0,R) and (P(R), 0,R) are root diagrams.
A root diagram (M,M0,S) is isomorphic to a diagram of the form (Q(R), 0,R)
(resp. (P(R), 0,R)) if and only if M is generated by S (resp. M∗ is generated
by S∨).

For every subgroup X of P(R) containing Q(R), (X, 0,R) is a root diagram
and, up to isomorphism, every diagram (M,M0,S) such that M0 = 0, in other
words such that S generates a subgroup of M of finite index, arises in this
way.

The root diagram (M,M0,R) is said to be reduced if the root system R is
reduced (in other words (Chap. VI, §1, no. 4) if the relations α, β ∈ R, λ ∈ Z,
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β = λα imply that λ = 1 or λ = −1). The diagrams in Examples 1) and 3)
are reduced.

9. COMPACT LIE GROUPS AND ROOT SYSTEMS

With the terminology introduced in the preceding number, an important part
of the results of numbers 4 and 5 can be summarized in the following theorem:

THEOREM 2. a) (X(T),X(T/(T ∩ D(G)),R(G,T))) is a reduced root dia-
gram; its Weyl group consists of the X(w) for w ∈ W; the group X(C(G)) is
isomorphic to the quotient of X(T) by the subgroup generated by R(G,T).

b) (Γ (T), Γ (C(G)0),R∨(G,T)) is a reduced root diagram; its Weyl group
consists of the Γ (w), for w ∈ W; the group π1(G) is isomorphic to the quo-
tient of Γ (T) by the subgroup generated by R∨(G,T).

c) If each of the Z-modules X(T) and Γ (T) is identified with the dual of
the other (no. 2, Prop. 3), each of the preceding root diagrams is identified
with the inverse of the other.

Denote by D∗(G,T) the diagram (X(T),X(T/(T ∩ D(G)),R(G,T))) and
by D∗(G,T) the diagram (Γ (T), Γ (C(G)0),R∨(G,T)); these are called the
contravariant diagram and the covariant diagram of G (relative to T), re-
spectively.

Examples. 1) If G is semi-simple of rank 1, then D∗(G,T) and D∗(G,T)
are necessarily isomorphic to one of the two diagrams ∆2 = (Z, 0, {2,−2}),
∆1 = (Z, 0, {1,−1}). If G is isomorphic to SU(2,C), D∗(G,T) is isomorphic
to ∆1 (since G is simply-connected) so D∗(G,T) is isomorphic to ∆2. If G is
isomorphic to SO(3,R), D∗(G,T) is isomorphic to ∆1 (since C(G) = {1}),
so D∗(G,T) is isomorphic to ∆2.

2) If G and G′ are two connected compact Lie groups, with maximal
tori T and T′, respectively, and if D∗(G,T) = (M,M0,R) and D∗(G′,T′) =
(M′,M′

0,R
′), then D∗(G × G′,T × T′) can be identified with (M ⊕ M′,M0 ⊕

M′
0,R ∪ R′). Similarly for the covariant diagrams.
3) Let N be a closed subgroup of T, central in G, and let (M,M0,R) be

the contravariant diagram of G relative to T. Then the contravariant diagram
of G/N relative to T/N can be identified with (M′,M′

0,R), where M′ is the
subgroup of M consisting of the λ such that λ(N) = {1} and M′

0 = M′ ∩ M0.
4) Similarly, let N be a finite abelian group, and ϕ : π1(G) → N a sur-

jective homomorphism. Let G′ be the covering of G associated to this ho-
momorphism; this is a connected compact Lie group, of which N is a central
subgroup (General Topology, Chap. XI, in preparation), and G can be nat-
urally identified with G′/N. Let T′ be the maximal torus of G′ that is the
inverse image of T. If (P,P0,S) is the covariant diagram of G relative to T,
the covariant diagram of G′ relative to T′ can be identified with (P′,P′

0,S),
where P′ is the kernel of the composite homomorphism ϕ ◦ f(G,T) : P → N
(cf. no. 6, Prop. 11), and P′

0 = P0 ∩ P′.
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Remarks. 1) Let c be the centre of gC; then c = L(C(G))(C). We have the
following relations between the diagrams of G relative to T and the direct
and inverse root systems of the split reductive algebra (gC, tC):
a) The canonical isomorphism from C ⊗ Γ (T) to tC induces a bijection

from C⊗Γ (C(G)0) to c and a bijection from 1⊗R∨(G,T) to 2πi.R∨(gC, tC).
b) The canonical isomorphism from C⊗X(T) to the dual t∗C of tC induces

a bijection from C ⊗ X(T/(T ∩ D(G))) to the orthogonal complement of
tC ∩ D(g)C, and a bijection from 1 ⊗ R(G,T) to R(gC, tC).

2) Assume that the group G is semi-simple; denote by R (resp. R∨) the
root system R(G,T) (resp. R∨(G,T)), so that we have inclusions

Q(R) ⊂ X(T) ⊂ P(R) Q(R∨) ⊂ Γ (T) ⊂ P(R∨).

The finite abelian groups P(R)/Q(R) and P(R∨)/Q(R∨) are in duality
(Chap. VI, §1, no. 9); if Mˆdenotes the dual group of the finite abelian group
M, we deduce from the preceding canonical isomorphisms

Γ (T)/Q(R∨) → π1(G) P(R∨)/Γ (T) → C(G)
P(R)/X(T) → (π1(G))̂ X(T)/Q(R) → (C(G))̂ .

In particular, the product of the orders of π1(G) and C(G) is equal to the
connection index f of R(G,T) (loc. cit.).

Now let G′ be another connected compact Lie group, T′ a maximal torus
of G′. Let f : G → G′ be an isomorphism of Lie groups such that f(T) = T′;
denote by fT the isomorphism from T to T′ that it defines. Then X(fT) is an
isomorphism from D∗(G′,T′) to D∗(G,T), denoted by D∗(f), and Γ (fT) is
an isomorphism from D∗(G,T) to D∗(G′,T′), denoted by D∗(f). If t ∈ T, and
if we put g = f ◦ Int t = (Int f(t)) ◦ f , then D∗(g) = D∗(f), D∗(g) = D∗(f).

PROPOSITION 15. Let ϕ be an isomorphism from D∗(G′,T′) to D∗(G,T)
(resp. from D∗(G,T) to D∗(G′,T′)). There exists an isomorphism f : G → G′

such that f(T) = T′ and ϕ = D∗(f) (resp. ϕ = D∗(f)); if f1 and f2 are two
such isomorphisms, there exists an element t of T such that f2 = f1 ◦ Int t.

The second assertion follows immediately from Prop. 9 (no. 4); we prove
the first for the covariant diagrams, for example. Denote by g′ (resp. t′)
the Lie algebra of G′ (resp. T′), and by g′

C (resp. t′C) its complexified Lie
algebra. By Chap. VIII, §4, no. 4, Th. 2 (i), there exists an isomorphism
ψ : gC → g′

C that maps tC to t′C and induces on Γ (T) ⊂ tC the given
isomorphism ϕ : Γ (T) → Γ (T′). Then g and ψ−1(g′) are two compact forms
of gC that have the same intersection t with tC; by §3, no. 2, Prop. 3, there
exists an inner automorphism θ of gC inducing the identity on tC and such
that θ(g) = ψ−1(g′). By replacing ψ by ψ◦θ, we can assume that ψ maps g to
g′. Further, by Prop. 4 of no. 2, there exists a unique morphism fT : T → T′

such that Γ (fT) = ϕ. Then the restriction of ψ to t is L(fT), and by §2, no. 6,
Prop. 8, there exists a unique morphism f : G → G′ that induces fT on T
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and ψ on gC. Applying the preceding to ϕ−1 and ψ−1 we obtain an inverse
morphism to f , which is therefore an isomorphism. Then D∗(f) = Γ (fT) = ϕ,
hence the proposition.

Note that, if T and T′ are two maximal tori of G, the diagrams D∗(G,T)
and D∗(G,T′) are isomorphic (if g ∈ G is such that gTg−1 = T′, then Int g
is an isomorphism from G to G that maps T to T′). Denote by D∗(G) the
isomorphism class of D∗(G,T) (cf. Theory of Sets, Chap. II, §6, no. 2); this
is a root diagram that depends only on G and is called the contravariant
diagram of G. The covariant diagram D∗(G) of G is defined similarly, and we
obtain:

COROLLARY. Two connected compact Lie groups G and G′ are isomorphic
if and only if the diagrams D∗(G) and D∗(G′) (resp. D∗(G) and D∗(G′)) are
equal.

PROPOSITION 16. For every reduced root diagram D, there exists a con-
nected compact Lie group G such that D∗(G) (resp. D∗(G)) is isomorphic to
D.
a) By replacing D, if necessary, by its inverse diagram, we are reduced

to constructing G such that D∗(G) is isomorphic to D. Put D = (M,M0,R);
then Q ⊗ M is the direct sum of Q ⊗ M0 and the vector subspace V(R)
generated by R. Moreover, since the inverse roots take integer values on M,
the projection of M on V(R) parallel to Q ⊗ M0 is contained in the group
of weights P(R) of R, so that M is a subgroup of M0 ⊕ P(R) of finite index.
Denote by D′ the diagram (M0 ⊕ P(R),M0,R).
b) Let a be a complex semi-simple Lie algebra whose canonical root system

is isomorphic to R ⊂ C⊗V(R) (Chap. VIII, §4, no. 3), and let g1 be a compact
real form of a (§3, no. 2, Th. 1). Let G1 be a simply-connected real Lie group
whose Lie algebra is isomorphic to g1; then G1 is compact (§1, no. 4, Th. 1).
Let T1 be a maximal torus of G1. By Th. 1, the diagram D∗(G1,T1) is
isomorphic to (P(R), 0,R).
c) Let T0 be a torus of dimension equal to the rank of M0; then D∗(T0,T0)

is isomorphic to (M0,M0,∅), so D∗(G1 × T0,T1 × T0) is isomorphic to D′

(Example 2).
d) Finally, let N be the finite subgroup of T1 × T0 orthogonal to M. Put

G = (G1 × T0)/N, T = (T1 × T0)/N. Then G is a connected compact Lie
group, T a maximal torus of G, and D(G,T) is isomorphic to D (Example 3).

Scholium. The classification of connected compact Lie groups up to isomor-
phism is thus reduced to that of reduced root diagrams. The connected compact
semi-simple Lie groups correspond to the reduced root diagrams (M,M0,R)
such that M0 = 0; giving such a diagram is equivalent to giving a reduced
root system R in a vector space V over Q and a subgroup M of V such that
Q(R) ⊂ M ⊂ P(R).
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Remark 3. Let T′ be another maximal torus of G, B (resp. B′) a basis of the
root system R(G,T) (resp. R(G′,T′)) (Chap. VI, §1, no. 5, Def. 2). There
exist elements g ∈ G such that Int g maps T onto T′ and B onto B′, and these
elements form a unique coset modulo Int(T) (since T and T′ are conjugate,
we can assume that T = T′, and it suffices to apply Chap. VI, §1, no. 5,
Remark 4 and Prop. 9 of no. 4). It follows that the isomorphism from T
to T′ induced by Int g is independent of the choice of g; consequently the
same is true of D∗(Int g) and D∗(Int g). Paraphrasing Chap. VIII, §5, no. 3,
Remark 2, mutatis mutandis, we can now define the canonical maximal torus
of G, the canonical covariant and contravariant root diagrams of G, . . ..

10. AUTOMORPHISMS OF A CONNECTED COMPACT LIE
GROUP

Denote by Aut(G) the Lie group of automorphisms of G (Chap. III, §10,
no. 2), and by Aut(G,T) the closed subgroup of Aut(G) consisting of the
elements u such that u(T) = T. We have seen (§1, no. 4, Cor. 5 of Prop. 4)
that the identity component of Aut(G) is the subgroup Int(G) of inner au-
tomorphisms; denote by IntG(H) the image in Int(G) of a subgroup H of
G.

Let D be the covariant diagram of G relative to T; denote by Aut(D)
the group of its automorphisms, and by W(D) its Weyl group. The map
u 	→ D∗(u) is a homomorphism from Aut(G,T) to Aut(D). Prop. 15 of no. 9
immediately gives:

PROPOSITION 17. The homomorphism Aut(G,T) → Aut(D) is surjective,
with kernel IntG(T).

Note that Aut(G,T) ∩ Int(G) = IntG(NG(T)) and that the image of
IntG(NG(T)) in Aut(D) is W(D) (no. 5, Prop. 10). Thus, Proposition 17
gives an isomorphism

Aut(G,T)/(Aut(G,T) ∩ Int(G)) → Aut(D)/W(D).

Further, Aut(G) = Int(G).Aut(G,T). Indeed, if u belongs to Aut(G),
u(T) is a maximal torus of T, hence is conjugate to T, and there exists
an inner automorphism v of G such that u(T) = v(T), in other words
v−1u ∈ Aut(G,T). It follows that Aut(G)/Int(G) can be identified with
Aut(G,T)/(Aut(G,T)∩Int(G)), so in view of the preceding we have an exact
sequence

1 → Int(G) → Aut(G) → Aut(D)/W(D) → 1. (16)

Consequently:

PROPOSITION 18.The group Aut(G)/Int(G) is isomorphic to Aut(D)/W(D).
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In particular, assume that G is semi-simple; the group Aut(D) can then
be identified with the subgroup of A(R(G,T)) (Chap. VI, §1, no. 1) consisting
of the elements u such that u(X(T)) ⊂ X(T), and the subgroup W(D) can
be identified with W(R(G,T)).

COROLLARY. If G is simply-connected, or if C(G) reduces to the identity
element, the group Aut(G)/Int(G) is isomorphic to the group of automor-
phisms of the Dynkin graph of R(G,T).

This follows from the preceding and Chap. VI, §4, no. 2, Cor. of Prop. 1.

We are now going to show that the extension (16) admits sections.
For all α ∈ R(G,T), denote by V(α) the 2-dimensional vector subspace of

g such that V(α)(C) = gα + g−α; denote by K the quadratic form associated
to the Killing form of g.

DEFINITION 3. A framing of (G,T) is a pair (B, (Uα)α∈B), where B is a
basis of R(G,T) (Chap. VI, § 1, no. 5, Def. 2) and where, for all α ∈ B, Uα

is an element of V(α) such that K(Uα) = −1.

A framing of G is a maximal torus T of G together with a framing of
(G,T).

Lemma 3. Let B0 be a basis of R(G,T). The group IntG(T) operates simply-
transitively on the set of framings of (G,T) of the form (B0, (Uα)α∈B0).

For all α ∈ B0, denote by K(α) the restriction of the quadratic form K to
V(α); the operation of T on V(α) defines a morphism ια : T → SO(K(α)).
We have seen in no. 4 that SO(K(α)) can be identified with U in such a way
that ια is identified with the root α. Since B0 is a basis of R, it is a basis of
the Z-module Q(R) generated by the roots, hence a basis of the submodule
X(T/C(G)) of X(T). It follows that the product of the morphisms ια induces
an isomorphism from T/C(G) to the product of the groups SO(K(α)). But
the latter group operates simply-transitively on the set of framings of (G,T)
whose first component is B0.

PROPOSITION 19. The group Int(G) operates simply-transitively on the set
of framings of G.

Let e = (T,B, (Uα)) and e′ = (T′,B′, (U ′
α)) be two framings of G. There

exist elements g in G such that (Int g)(T) = T′, and these elements form a
single coset modulo NG(T). Thus, we can assume that T = T′, and we must
prove that there exists a unique element of IntG(NG(T)) that transforms e
to e′. By Chap. VI, §1, no. 5, Remark 4, there exists a unique element w of
W(R) such that w(B) = B′. Since W(R) can be identified with NG(T)/T,
there exists n ∈ NG(T) such that w = Intn, and n is uniquely determined
modulo T. Thus, we can assume that B = B′, and we must prove that there
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exists a unique element of IntG(T) that transforms e to e′, which is simply
Lemma 3.

COROLLARY. Let e be a framing of (G,T) and let E be the group of
automorphisms of G that leave e stable. Then Aut(G) is the semi-direct
product of E by Int(G), and Aut(G,T) is the semi-direct product of E by
Int(G) ∩ Aut(G,T) = IntG(NG(T)).

Indeed, every element of Aut(G) transforms e into a framing of G. By
Prop. 19, every coset of Aut(G) modulo Int(G) meets E in a single point,
hence the first assertion. The second is proved in the same way.

Remark. Let G and G′ be two connected compact Lie groups, and let e =
(T,B, (Uα)) and e′ = (T′,B′, (U ′

α)) be framings of G and G′, respectively.
Let X be the set of isomorphisms from G to G′ that take e to e′. The map
f 	→ D∗(f) (resp. D∗(f)) is a bijection from X to the set of isomorphisms
from D∗(G′,T′) to D∗(G,T) (resp. D∗(G,T) to D∗(G′,T′)) that map B′ to B
(resp. B to B′). Indeed, this follows immediately from Prop. 15 and Lemma 3.

§5. CONJUGACY CLASSES

We retain the notations of §4.

1. REGULAR ELEMENTS

By Cor. 4 of Th. 2 of §2, no. 2, the regular elements g of G can be characterized
by either of the following properties:
a) The subalgebra of g fixed by Ad g is a Cartan subalgebra.
b) Z(g)0 is a maximal torus of G.
The set of regular elements of G is open and dense in G.
In the remainder of this paragraph, we denote by Gr (resp. Tr) the set

of points of G (resp. T) that are regular in G. An element g of G belongs to
Tr if and only if Z(g)0 is equal to T; every element of Gr is conjugate to an
element of Tr (§2, no. 2, Th. 2).

An element t of T belongs to Tr if and only if tα �= 1 for every root
α ∈ R(G,T); consequently, T --Tr is the union of the subtori Kerα for α in
R(G,T).

PROPOSITION 1. Put n = dimG. There exists a compact real-analytic man-
ifold V of dimension n − 3 and an analytic map ϕ : V → G whose image is
G --Gr.

Let α ∈ R(G,T); put Vα = (G/Z(Kerα)) × (Kerα), and let ϕα be the
morphism from Vα to G such that, for all g ∈ G and all t ∈ Kerα, we have
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ϕα(ḡ, t) = gtg−1 (we denote by ḡ the coset of g modulo Z(Kerα)). Then Vα

is a compact real-analytic manifold of dimension

dimVα = dimG − dim Z(Kerα) + dimKerα
= n− (dimT + 2) + (dimT − 1) = n− 3

(§4, no. 5, Th. 1); ϕα is a morphism of real-analytic manifolds, and the
image of ϕα consists of the elements of G conjugate to an element of Kerα.
It now suffices to take V to be the sum of the manifolds Vα, and ϕ to be the
morphism inducing ϕα on each Vα.

Remark. Call an element g of G very regular if Z(g) is a maximal torus of G. If
g ∈ T, g is very regular if and only if w(g) �= g for every non-identity element
w of WG(T) (§4, no. 7, Prop. 14). Thus, the set of very regular elements is a
dense open subset of G (§2, no. 5, Cor. 2 of Prop. 5).

2. CHAMBERS AND ALCOVES

Denote by tr the set of elements x ∈ t such that expx is regular, in other words
belongs to Tr. An element x of t belongs to t -- tr if and only if there exists a
root α ∈ R(G,T) such that δ(α)(x) ∈ 2πiZ. For each root α ∈ R(G,T) and
each integer n, denote by Hα,n the set of x ∈ t such that δ(α)(x) = 2πin.
The Hα,n are called the singular hyperplanes of t, and t -- tr is the union of
the singular hyperplanes. The alcoves of t are the connected components of
tr, and the chambers are the connected components of the complement in t
of the union of those singular hyperplanes that pass through the origin (that
is, the Hα,0 = Ker δ(α), α ∈ R(G,T)).

We have Γ (T) ⊂ t -- tr; denote by N(G,T) the subgroup of Γ (T) gener-
ated by the nodal vectors (§4, no. 5); by Prop. 11 of §4, no. 6, the quotient
Γ (T)/N(G,T) can be identified with the fundamental group of G.

Finally, denote by W the Weyl group of G relative to T, considered as
a group of automorphisms of T and of t, and denote by Wa (resp. W′

a)
the group of automorphisms of the affine space t generated by W and the
translations tγ : x 	→ x+ γ for γ ∈ N(G,T) (resp. for γ ∈ Γ (T)).

Let w ∈ W, γ ∈ Γ (T), α ∈ R(G,T) and n ∈ Z. We have:

w(Hα,n) = Hwα,n, tγ(Hα,n) = Hα,n+〈γ,α〉.

It follows that, for all chambers C and all w ∈ W, w(C) is a chamber and
that for all alcoves A and all w ∈ W′

a, w(A) is an alcove. Note that, when
X(T) ⊗ R is identified with t∗ via the isomorphism (2πi)−1δ, the alcoves of
t and the group Wa are the alcoves and the affine Weyl group associated to
the root system R(G,T) (Chap. VI, §2, no. 1).

PROPOSITION 2. a) The group Wa (resp. W′
a) is the semi-direct product

of W by N(G,T) (resp. Γ (T)); the subgroup Wa of W′
a is normal.
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b) The group W (resp. Wa) operates simply-transitively on the set of
chambers (resp. alcoves ).

c) Let C be a chamber and A an alcove. Then C (resp. A, resp. A) is a
fundamental domain for the operation of W on t (resp. of Wa on t, resp. of
Wa on t -- tr). If x ∈ tr and w ∈ Wa are such that w(x) = x, then w = Id.

d) For every chamber C, there exists a unique alcove A such that A ⊂ C
and 0 ∈ A. For every alcove A, there exists a unique γ ∈ N(G,T) such that
γ ∈ A.

If w ∈ W and γ ∈ Γ (T), then wtγw−1 = tw(γ) and wtγw−1t−1
γ = tw(γ)−γ ,

with w(γ)−γ ∈ N(G,T); this immediately implies a). The rest of the propo-
sition follows from Chap. VI, §1, no. 5 and §2, nos. 1 and 2.

COROLLARY 1. Let A be an alcove of t, A its closure, and HA the stabilizer
of A in W′

a.
a) The group W′

a is the semi-direct product of HA by Wa.
b) The exponential map A → T and the canonical injection T → G induce

by passage to the quotients and to subsets homeomorphisms

A/HA → T/W → G/Int(G)
A/HA → Tr/W → Gr/Int(G).

Let w′ ∈ W′
a; then w′(A) is an alcove of t, and there exists (Prop. 2 b)) a

unique element w of Wa such that w(A) = w′(A), that is w−1w′ ∈ HA. Since
Wa is normal in W′

a, this proves a).
The canonical injection of A into t induces a continuous bijection θ : A →

t/Wa (Prop. 2 c)), and this is a homeomorphism since A is compact. Since
Wa is normal in W′

a, the group HA operates canonically on t/Wa (Algebra,
Chap. I, §5, no. 4) and t/W′

a can be identified with the quotient (t/Wa)/HA;
the map θ is compatible with the operations of HA, hence induces by passage
to the quotient a homeomorphism A/HA → t/W′

a. Further, expΓ induces a
homeomorphism from t/Γ (T) to T, hence also a homeomorphism from t/W′

a

to T/W. Assertion b) follows from that and Cor. 1 of Prop. 5 of §2, no. 4.

Remarks. 1) The group HA can be identified naturally with Γ (T)/N(G,T),
hence also with π1(G). Thus, it reduces to the identity element when G is
simply-connected.

2) Let x ∈ A; then expx ∈ Tr, so Z(expx)0 = T. Further, expx is very
regular (no. 1, Remark) if and only if w(x) �= x for all w ∈ W′

a distinct from
the identity. By Cor. 1, this also means that h(x) �= x for all h ∈ HA distinct
from the identity. In particular, if G is simply-connected, then ZG(t) = T for
all t ∈ Tr, and every regular element of G is very regular.

3) The special points of Wa (Chap. VI, §2, no. 2) are the elements x of
t such that δ(α)(x) ∈ 2πiZ for all α ∈ R(G,T) (loc. cit., Prop. 3), that is
such that expx ∈ C(G) (§4, no. 4, Prop. 8). For such an element x we have
wx − x ∈ N(G,T) for all w ∈ W (Chap. VI, §1, no. 9, Prop. 27), so the
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stabilizers of x in Wa and W′
a coincide. Let S be the set of special points of

A; it follows from the preceding and Cor. 1 that the group HA operates freely
on S, and that the exponential map induces a bijection from S/HA to C(G).

COROLLARY 2. Let C be a chamber of t and C its closure. The canonical
injections C → t → g induce by passage to the quotient homeomorphisms

C → t/W → g/Ad(G).

The canonical maps C → t and t → t/W are proper (General Topology,
Chap. III, §4, no. 1, Prop. 2 c)). The map C → t/W is continuous, proper
and bijective (Prop. 2 c)); thus, it is a homeomorphism, hence the corollary
in view of the Cor. of Prop. 6 of §2, no. 5.

Remark 4. Denote by greg the set of regular elements of g (Chap. VII, §2,
no. 2, Def. 2) and put treg = t ∩ greg. For x ∈ t, we have

det(X − ad gx) = Xdim t
∏

α∈R(G,T)

(X − δ(α)(x)),

and hence treg is the set of elements x of t such that δ(α)(x) �= 0 for all
α ∈ R(G,T), that is the union of the chambers of t (so tr ⊂ treg). Conse-
quently C ∩ treg = C, so we have homeomorphisms

C → treg/W → greg/Ad(G).

COROLLARY 3. Assume that G is simply-connected; let g be a regular el-
ement of G. There exist a maximal torus S of G, and an alcove A of L(S),
both uniquely determined, such that g ∈ exp(A) and 0 ∈ A.

We can assume that g belongs to Tr (§2, no. 2, Th. 2). Let x be an element
of tr such that expx = g, and let A′ be the alcove of t containing x. The
alcoves A of t such that g ∈ exp(A) are the alcoves A′ −γ for γ ∈ Γ (T); thus,
the assertion follows from Prop. 2 d).

3. AUTOMORPHISMS AND REGULAR ELEMENTS

Lemma 1. Let u be an automorphism of G, and H the set of its fixed points.
a) H is a closed subgroup of G.
b) If H0 is central in G, then G is commutative (so G = T).
Assertion a) is clear. To prove b), we can replace G by D(G) (§1, Cor. 1 of

Prop. 4), and hence can assume that G is semi-simple. Then, if H0 is central in
G, we have L(H) = {0}, so the endomorphism L(u)−Id of g is bijective. Let f
be the endomorphism of the manifold G defined by f(g) = u(g)−1g for g ∈ G;
it is étale, for if g ∈ G and x ∈ g, we have T(f)(xg) = u(g)−1(x− L(u)(x))g,
so the tangent map of f at g is bijective. It follows that the image of f is open
and compact, hence coincides with G since G is connected. Now let E be a
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framing of G (§4, no. 10, Def. 3) and u(E) its image under u. By Prop. 19
of loc. cit., there exists an element h of G such that (Inth)(E) = u(E). Let
g ∈ G be such that h = f(g) = u(g)−1g; then

u ◦ Int g = (Intu(g)) ◦ u = Int g ◦ (Inth)−1 ◦ u,
so the framing (Int g)(E) is stable under u. If (Int g)(E) = (T1,B, (Uα)α∈B),
then

∑
Uα ∈ L(H); since L(H) = {0}, this implies that B = ∅, so G = T1,

and G is commutative.

Lemma 2. Let x be an element of T and S a subtorus of T. If the identity
component of Z(x) ∩ Z(S) reduces to T, there exists an element s of S such
that xs is regular.

For all α ∈ R(G,T), let Sα be the submanifold of S consisting of the
elements s of S such that (xs)α = 1. If there is no element s of S such that
xs is regular, S is the union of the submanifolds Sα, hence is equal to one of
them. Hence there exists α in R(G,T) such that (xs)α = 1 for all s ∈ S; but
this implies that xα = 1 and α|S = 1, so Z(x) ∩ Z(S) ⊃ Z(Kerα), hence the
lemma.

Lemma 3. Assume that G is simply-connected. Let C be a chamber of t, and
u an automorphism of G such that T and C are stable under u. Then the set
of points of T fixed by u is connected.

Since G is simply-connected, Γ (T) is generated by the nodal vectors Kα

(α ∈ R(G,T)), and hence has a basis consisting of the family of the Kα

for which α belongs to the basis B(C) defined by C (Chap. VI, §1, no. 10).
Thus, it suffices to prove that, if ϕ is an automorphism of the torus T leaving
stable a basis of Γ (T), the set of fixed points of ϕ is connected. Decomposing
this basis into the disjoint union of the orbits of the group generated by
ϕ, we are reduced to the case in which T = Un and ϕ is the automorphism
(z1, . . . , zn) 	→ (z2, . . . , zn, z1); in this case the fixed points of ϕ are the points
(z, z, . . . , z) for z ∈ U, which form a connected subgroup of T.

PROPOSITION 3. Let u be an automorphism of G, and let x be a point of
G fixed by u.

a) There exists an element a of g, fixed by L(u) and by Adx, such that
x exp a is regular.

b) There exists a regular element g of G fixed by u and commuting with
x.

Let H be the group of fixed points of u, S a maximal torus of Z(x)∩H, and
K the identity component of Z(S)∩Z(x). This is a connected closed subgroup
of G; further, by Cor. 5 of Th. 2 of §2, no. 2, there exist maximal tori of G
containing S and x, so K is of maximal rank and contains S and x. On the
other hand, K is stable under u since S and x are; denote by V the set of
fixed points of u in K. Then
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S ⊂ V0 ⊂ K ∩ H ⊂ Z(S) ∩ Z(x) ∩ H,

so V0 is contained in the centralizer of S in (Z(x)∩H)0; but the latter reduces
to S (loc. cit., Cor. 6), hence finally V0 = S. Lemma 1 now implies that K
is commutative, hence is a maximal torus of G (since it is connected and of
maximal rank). It contains S and x, and is equal to the identity component of
Z(S)∩Z(x); assertion a) now follows from Lemma 2. We deduce b) by taking
g = x exp a.

COROLLARY. Let s be a compact Lie algebra, and let ϕ be an automorphism
of s. There exists a regular element of s fixed by ϕ.

Replacing s by Ds, we can assume that s is semi-simple. Let S be a
compact simply-connected Lie group with Lie algebra s, and let u be the
automorphism of S such that L(u) = ϕ. Prop. 3 implies the existence of an
element a of s, fixed by ϕ, such that exp a is regular in S; in particular, a is
regular in s (no. 2, remark 4).

THEOREM 1. Let u be an automorphism of a connected compact Lie group
G.

a) The identity component of the group of fixed points of u contains a
regular element of G.

b) There exists a maximal torus K of G and a chamber of L(K) that are
stable under u.

c) If G is simply-connected, the set of fixed points of u is connected.
Assertion a) is the particular case x = e of Prop. 3. We assume now that

G is simply-connected and prove b) and c). Let x be an element of G fixed
by u, and let g be a regular element of G, fixed by u and commuting with x
(Prop. 3). The centralizer K of g is a maximal torus of G (no. 2, Remark 2),
stable under u, and containing x and g. By Cor. 3 of Prop. 2 of no. 2, there
exists a unique alcove A of L(K) such that g ∈ exp A and 0 ∈ A; since g is
fixed by u, L(u) leaves A, and hence also the chamber of L(K) containing A,
stable. This proves b); further, the set of points of K fixed by u is connected
(Lemma 3) and contains x and e, hence c) (General Topology, Chap. I, §11,
no. 1, Prop. 2).

It remains to prove b) in the general case. Now, if D̃(G) is the universal
covering of D(G), and if f : D̃(G) → G is the canonical morphism, there
exists an automorphism ũ of D̃(G) such that f ◦ ũ = u ◦ f . If K̃ is a maximal
torus of D̃(G) and C̃ a chamber of L(K̃), stable under ũ (this exists by what
has already been proved), there exists (§2, no. 3, Remark 2) a unique maximal
torus K of G and a unique chamber C of L(K) such that K̃ = f−1(K) and
C̃ = L(f)−1(C), and we see immediately that K and C are stable under u,
hence assertion b) in the general case.

COROLLARY 1. Assume that the Z-module π1(G) is torsion-free.
a) The centralizer of every element of G is connected.
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b) Any two commuting elements of G belong to the same maximal torus.
By Cor. 3 of Prop. 11 of §4, no. 6, D(G) is simply-connected. We have

G = C(G)0.D(G); let x ∈ G; write x = uv, with u ∈ C(G)0 and v ∈ D(G).
Then Z(x) = C(G)0.ZD(G)(v). By Th. 1 c), ZD(G)(v) is connected, so Z(x) is
connected, hence a). Thus, by Cor. 3 of Th. 2 of §2, no. 2, Z(x) is the union
of the maximal tori of G containing x, hence b).

COROLLARY 2. Let Γ be a compact subgroup of Aut(G) with the following
property:

(*) There exist elements u1, . . . , un of Γ such that, for all i, the closure
Γi of the subgroup of Γ generated by u1, . . . , ui is a normal subgroup of Γ ,
and Γn = Γ .

Then, there exists a maximal torus of G stable under the operation of Γ .
We argue by induction on the dimension of G. Clearly, we can assume

that u1 �= Id; then the subgroup H of fixed points of u1 is distinct from G,
and is stable under the operation of Γ . Moreover, since Γ is compact, the
image of Γ in Aut(H0) is a quotient of Γ , hence it also satisfies condition (*).
By the induction hypothesis, there exists a maximal torus S of H stable under
Γ . The centralizer K of S in G is connected (§2, no. 2, Cor. 5) and stable
under Γ ; this is a maximal torus of G, since H0 contains a regular element
of G (Th. 1 a)) which is conjugate to an element of S (loc. cit., Cor. 4).

COROLLARY 3. Let H be a Lie group and Γ a compact subgroup of H.
Assume that H0 is compact and that Γ satisfies condition (*) of Cor. 2.
Then there exists a maximal torus T of H0 such that Γ ⊂ NH(T).

COROLLARY 4. Every nilpotent subgroup of a compact Lie group is con-
tained in the normalizer of a maximal torus.

Let H be a compact Lie group, N a nilpotent subgroup of H. Then the
closure Γ of N is also a nilpotent group (Chap. III, §9, no. 1, Cor. 2 of Prop. 1),
and it suffices, in view of Cor. 3, to prove that Γ satisfies condition (*). Now Γ0
is a connected compact nilpotent Lie group, hence is a torus (§1, no. 4, Cor. 1
of Prop. 4), and there exists an element u1 of Γ generating a dense subgroup
of Γ0 (General Topology, Chap. VII, §1, no. 3, text preceding Prop. 8). The
finite group Γ/Γ0 is nilpotent and there exist ũ2, . . . , ũn ∈ Γ/Γ0 generating
Γ/Γ0 and such that the subgroup of Γ/Γ0 generated by (ũ2, . . . , ũr) is normal
for r = 2, . . . , n (Algebra, Chap. I, §6, no. 5, Th. 1 and no. 7, Th. 4). Then,
if u2, . . . , un are representatives of ũ2, . . . , ũn in Γ , the sequence (u1, . . . , un)
has the required properties.

Example. Take G = U(n,C). We shall see later that the subgroup of diagonal
matrices in G is a maximal torus of G and that its normalizer is the set of
monomial matrices (Algebra, Chap. II, §10, no. 7, Example II) in G.

We conclude that, if Φ is a separating positive hermitian form on a finite
dimensional complex vector space V and Γ is a nilpotent subgroup of U(Φ),
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there exists a basis of V for which the matrices of the elements of Γ are
monomial (“Blichtfeldt’s theorem”).

4. THE MAPS (G/T) × T → G AND (G/T) × A → Gr

The map (g, t) 	→ gtg−1 from G × T to G induces by passage to the quotient
a morphism of analytic manifolds

f : (G/T) × T → G,

which is surjective (§2, no. 2, Th. 2). By restriction, f induces a surjective
morphism

fr : (G/T) × Tr → Gr.

By composition with IdG/T × expT, we obtain morphisms, also surjective,

ϕ : (G/T) × t → G,
ϕr : (G/T) × tr → Gr;

finally, if A is an alcove of t, ϕr induces a surjective morphism

ϕA : (G/T) × A → Gr.

We define a right operation of W on G/T as follows: let w ∈ W and
u ∈ G/T; lift w to an element n of NG(T) and u to an element g of G. Then
the image of gn in G/T does not depend on the choice of n and g; we denote
it by u.w.

For this operation, W operates freely on G/T: indeed, with the preceding
notations, assume that u.w = u; then gn ∈ gT, so n ∈ T and w = 1.

We define a right operation of W on (G/T) × T by

(u, t).w = (u.w,w−1(t)), u ∈ G/T, t ∈ T, w ∈ W

and a right operation of W′
a on (G/T) × t by

(u, x).ω = (u.ω, ω−1(x)), u ∈ G/T, x ∈ t, ω ∈ W′
a,

where ω is the image of ω in the quotient W′
a/Γ (T) = W.

If A is an alcove of t, and if HA is the subgroup of W′
a that stabilizes A,

we obtain by restriction an operation of HA on (G/T) × A.
These different operations are compatible with the morphisms f, ϕ and

ϕA: for u ∈ G/T, t ∈ T, x ∈ t, y ∈ A, w ∈ W, ω ∈ W′
a, h ∈ HA, we have

f((u, t).w) = f(u, t), ϕ((u, x).ω) = ϕ(u, x), ϕA((u, y).h) = ϕA(u, y).

Lemma 4. Let g ∈ G, t ∈ T, and let ḡ be the image of g in G/T. Identify
the tangent space of G/T (resp. T, resp. G) at ḡ (resp. t, resp. gtg−1) with
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g/t (resp. t, resp. g) by means of the left translation γ(g) by g (resp. t, resp.
gtg−1). The tangent linear map of f at (ḡ, t) is then identified with the linear
map f ′ : (g/t) × t → g defined as follows: if z ∈ g, x ∈ t, and if z̄ denotes the
image of z in g/t, then

f ′(z̄, x) = (Ad gt−1)(z − (Ad t)z + x).

Let F be the map from G × T to T such that F(g, t) = gtg−1. Since
F◦ (γ(g), IdT)= Int g◦ F, we have T(g,t)(F)(gz, tx)=Tt(Int g)◦T(e,t)(F)(z, tx);
by Chap. III, §3, no. 12, Prop. 46,

T(e,t)(F)(z, tx) = t((Ad t−1)z − z) + tx = t((Ad t−1)(z − (Ad t)z + x))

and consequently

T(g,t)(F)(gz, tx) = gtg−1((Ad gt−1)(z − (Ad t)z + x)).

The lemma follows immediately from this formula by passage to the quotient.

PROPOSITION 4. a) Let g ∈ G, t ∈ T, x ∈ t, and let ḡ be the image of g in
G/T. The following conditions are equivalent:

(i) t ∈ Tr (resp. x ∈ tr).
(i bis) The element f(ḡ, t) (resp. ϕ(ḡ, x)) is regular in G.
(ii) The map f (resp. ϕ) is a submersion at the point (ḡ, t) (resp. (ḡ, x)).
(ii bis) The map f (resp. ϕ) is étale at the point (ḡ, t) (resp. (ḡ, x)).
b) The map fr (resp. ϕr, resp. ϕA) makes (G/T) × Tr (resp. (G/T) × tr,

resp. (G/T) × A) a principal covering of Gr with group W (resp. W′
a, resp.

HA).
a) The equivalence of (i) and (i bis) is clear; that of (ii) and (ii bis) follows

from the relations dim((G/T)×T) = dim((G/T)×t) = dim(G). By Lemma 4,
f is a submersion at the point (ḡ, t) if and only if g = t+Im(Ad t− Id), which
means that t is regular. Finally, since ϕ = f ◦ (IdG/T × expT), ϕ is étale at
the point (ḡ, x) if and only if f is étale at the point (ḡ, expx), which by the
preceding means that x belongs to tr.

b) The morphisms fr, ϕr, ϕA are thus étale. On the other hand, W op-
erates freely on G/T, and a fortiori on (G/T) × T. Let g, g′ in G and t, t′

in Tr be such that f(ḡ, t) = f(ḡ′, t′); then Int g−1g′ maps t′ to t, and hence
normalizes T, since T = Z(t)0 = Z(t′)0, and the class w of g−1g′ in W maps
(ḡ, t) to (ḡ′, t′). It follows that fr is a principal covering with group W; this
immediately implies that ϕr is a principal covering with group W′

a, and hence
by restriction to the connected component (G/T)×A of (G/T)× tr, that ϕA
is a principal covering with group HA.

Remarks. 1) By Prop. 3 of §2, no. 4, the manifold (G/T) × A is simply-
connected. It follows that ϕA is a universal covering of Gr; since π1(Gr)
is canonically isomorphic to π1(G) (no. 1, Prop. 1 and General Topology,
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Chap. XI, in preparation), we recover the fact that π1(G) can be identified
with HA (that is with Γ (T)/N(G,T)).

2) The restriction of ϕA to W ×A ⊂ (G/T)×A makes W ×A a principal
covering of Tr with group HA. We thus recover Cor. 1 of Prop. 2 of no. 2.

3) Denote by gr the inverse image of Gr under the exponential map and
by ε : gr → Gr the map induced by expG. The map (g, x) 	→ (Ad g)(x) from
G × tr to gr defines by passage to the quotient a map ψr : (G/T) × tr → gr.
We have ε ◦ ψr = ϕr. Let w ∈ W, γ ∈ Γ (T) and ω ∈ W′

a be such that
ω(z) = w(z) + γ for all z ∈ t; then ψr((ḡ, x)ω) = ψr(ḡ, x) − (Ad g)(γ) for
g ∈ G, x ∈ tr, so ψr((ḡ, x)ω) = ψr(ḡ, x) if and only if γ = 0. It follows (cf.
General Topology, Chap. XI, in preparation) that ψr is a principal covering
of gr with group W, and that ε : gr → Gr is a covering associated to the
principal covering ϕr, with fibre isomorphic to the W′

a-set W′
a/W.

§6. INTEGRATION ON COMPACT LIE GROUPS

We retain the notations of §4; put w(G) = Card(WG(T)). Denote by dg
(resp. dt) the Haar measure on G (resp. T) with total mass 1, and by n (resp.
r) the dimension of G (resp. T).

1. PRODUCT OF ALTERNATING MULTILINEAR FORMS

Let A be a commutative ring and M an A-module. For each integer r ≥ 0,
denote by Altr(M) the A-module of alternating r-linear forms on M; it can
be identified with the dual of the A-module ∧∧r (M) (Algebra, Chap. III, §7,
no. 4, Prop. 7). Let u ∈ Alts(M) and v ∈ Altr(M); recall (Algebra, Chap. III,
§11, no. 2, Example 3) that the alternating product of u and v is the element
u ∧ v ∈ Alts+r(M) defined by

(u ∧ v)(x1, . . . , xs+r) =
∑

σ∈Ss,r

εσu(xσ(1), . . . , xσ(s))v(xσ(s+1), . . . , xσ(s+r)),

where Ss,r is the subset of the symmetric group Ss+r consisting of the per-
mutations whose restrictions to 1, s and s+ 1, s+ r are increasing.

Now let

0 −→ M′ i−→ M
p−→ M′′ −→ 0

be an exact sequence of free A-modules, of ranks r, r + s and s, respectively.

Lemma 1. There exists an A-bilinear map from Alts(M′′) × Altr(M′) to
Alts+r(M), denoted by (u, v) 	→ u ∩ v, and characterized by either of the
following two properties:



334 COMPACT REAL LIE GROUPS Ch. IX

a) Denote by u1 ∈ Alts(M) the form (x1, . . . , xs) 	→ u(p(x1), . . . , p(xs)),
and let v1 ∈ Altr(M) be a form such that v1(i(x′

1), . . . , i(x
′
r)) = v(x′

1, . . . , x
′
r)

for x′
1, . . . , x

′
r in M′; then u ∩ v = u1 ∧ v1.

b) For all x1, . . . , xs in M and x′
1, . . . , x

′
r in M′,

(u ∩ v)(x1, . . . , xs, i(x′
1), . . . , i(x

′
r)) = u(p(x1), . . . , p(xs))v(x′

1, . . . , x
′
r). (1)

The map ϕ : Alts(M′′)⊗AAltr(M′) → Alts+r(M) such that ϕ(u⊗v) = u∩v
is an isomorphism of free A-modules of rank one.

The existence of a form v1 satisfying condition a) follows from the fact
that ∧∧r (i) induces an isomorphism from ∧∧r (M′) to a direct factor submod-
ule of ∧∧r (M) (Algebra, Chap. III, §7, no. 2). Let v1 be such a form; put
u ∩ v = u1 ∧ v1. Formula (1) is then satisfied, since if we put i(x′

k) = xs+k

for 1 ≤ k ≤ r, the only element σ of Ss,r such that p(xσ(i)) �= 0 for 1 ≤ i ≤ s
is the identity permutation. On the other hand, formula (1) determines u∩ v
uniquely: indeed, let (e′1, . . . , e

′
r) be a basis of M′, (f ′′

1 , . . . , f
′′
s ) a basis of

M′′, and f1, . . . , fs elements of M such that p(fi) = f ′′
i for 1 ≤ i ≤ s.

Then (f1, . . . , fs, i(e′1), . . . , i(e
′
r)) is a basis of M (Algebra, Chap. II, §1,

no. 11, Prop. 21), and formula (1) can be written

(u ∩ v)(f1, . . . , fs, i(e′1), . . . , i(e
′
r)) = u(f ′′

1 , . . . , f
′′
s )v(e′1, . . . , e

′
r); (2)

but an element of Alts+r(M) is determined by its value on a basis.
It follows from the preceding that each of the conditions a) and b) de-

termines the product u ∩ v uniquely; it is clear that this product is bilinear.
Finally, the last assertion of the lemma follows from formula (2).

2. INTEGRATION FORMULA OF H. WEYL

Let e be the identity element of G and ē its class in G/T. Identify the tangent
space of G at e with g, the tangent space of T at e with t and the tangent
space of G/T at ē with g/t. Denote by (u, v) 	→ u ∩ v the R-bilinear map

Altn−r(g/t) × Altr(t) → Altn(g)

defined in number 1.
Recall (Chap. III, §3, no. 13, Prop. 50) that the map ω 	→ ω(e) is an

isomorphism from the vector space of left-invariant differential forms of degree
n (resp. r) on G (resp. T) to the space Altn(g) (resp. Altr(t)). Further, observe
that, since every connected compact subgroup of R∗ reduces to the identity
element, det Ad g = 1 for all g ∈ G, so that the left-invariant differential
forms of degree n on G are also right-invariant and invariant under inner
automorphisms (Chap. III, §3, no. 16, Cor. of Prop. 54): we shall speak
simply of G-invariant differential forms from now on.

Similarly, it follows from Chap. III, §3, no. 16, Prop. 56 and the preceding
that the map ω 	→ ω(ē) is an isomorphism from the space of G-invariant
differential forms of degree n− r on G/T to the space Altn−r(g/t).
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If ωG/T is a G-invariant differential form of degree n − r on G/T, and
ωT an invariant differential form of degree r on T, denote by ωG/T ∩ ωT the
unique invariant differential form of degree n on G such that

(ωG/T ∩ ωT)(e) = ωG/T(ē) ∩ ωT(e).

Recall finally that f : (G/T)×T → G denotes the morphism of manifolds
induced by the map (g, t) 	→ gtg−1 from G×T to G by passage to the quotient
(§5, no. 4). If α and β are differential forms on G/T and T, respectively,
denote simply by α ∧ β the form pr∗

1α ∧ pr∗
2β on (G/T) × T.

For t ∈ T, denote by Adg/t(t) the endomorphism of g/t induced by Ad t
by passage to the quotient. Put

δG(t) = det(Adg/t(t) − 1) =
∏

α∈R(G,T)

(tα − 1). (3)

Let x ∈ t and α ∈ R(G,T); denote by α̂ the element (2πi)−1δ(α) of t∗, so
that

((expx)α − 1)((expx)−α − 1) = (e2πiα̂(x) − 1)(e−2πiα̂(x) − 1) = 4 sin2 πα̂(x).

If R+(G,T) denotes the set of positive roots of R(G,T) relative to a basis B,
we have

δG(expx) =
∏

α∈R+(G,T)

4 sin2 πα̂(x),

so, in particular, δG(t) > 0 for all t ∈ Tr. We remark also that δG(t) = δG(t−1)
for t ∈ T.

PROPOSITION 1. Let ωG, ωG/T and ωT be invariant differential forms on
G,G/T and T, respectively, of respective degrees n, n − r and r. If ωG =
ωG/T ∩ ωT, then

f∗(ωG) = ωG/T ∧ δGωT.

Clearly we can assume that ωG/T and ωT are non-zero; then the differen-
tial form (u, t) 	→ ωG/T(u)∧ωT(t) on (G/T)×T is of degree n and everywhere
non-zero; hence there exists a numerical function δ on (G/T) × T such that

f∗(ωG)(u, t) = δ(u, t)ωG/T(u) ∧ ωT(t).

Observe now that, for h ∈ G, u ∈ G/T, t ∈ T, we have f(h.u, t) =
(Inth)f(u, t); since ωG is invariant under inner automorphisms, it follows
immediately that δ(h.u, t) = δ(u, t), so δ(u, t) = δ(ē, t).

Denote by p : g → g/t the quotient map and by ϕ : g/t → g the map
defined by

ϕ(p(X)) = (Ad t−1)X −X for X ∈ g;
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recall (§5, no. 4, Lemma 4) that the tangent map

T(e,t)(f) : Te(G/T) × Tt(T) → Tt(G)

takes (z, tH) to t(ϕ(z) +H) for z ∈ g/t, H ∈ t.
Let z1, . . . , zn−r be elements of g/t, H1, . . . , Hr elements of t. Then

f∗ωG(ē, t)(z1, . . . , zn−r, tH1, . . . , tHr)
= ωG(t)(tϕ(z1), . . . , tϕ(zn−r), tH1, . . . , tHr) by the calculation of T(ē,t)(f)

= ωG(e)(ϕ(z1), . . . , ϕ(zn−r), H1, . . . , Hr) since ωG is invariant
= ωG/T(ē)(pϕ(z1), . . . , pϕ(zn−r)).ωT(e)(H1, . . . , Hr) (no. 1, Lemma 1)

= det(pϕ)ωG/T(ē)(z1, . . . , zn−r).ωT(e)(H1, . . . , Hr)

= δG(t)ωG/T(ē)(z1, . . . , zn−r).ωT(t)(tH1, . . . , tHr)

since ωT is invariant
= δG(t)(ωG/T ∧ ωT)(ē, t)(z1, . . . , zn−r, tH1, . . . , tHr),

so f∗ωG(ē, t) = δG(t)(ωG/T ∧ωT)(ē, t); thus, δ(ē, t) = δG(t), hence the propo-
sition.

Give the manifolds G,T and G/T the orientations defined by the forms
ωG, ωT and ωG/T, respectively. These forms define invariant measures on G,T
and G/T (Chap. III, §3, no. 16, Props. 55 and 56), also denoted by ωG, ωT
and ωG/T.

Lemma 2. If ωG = ωG/T ∩ ωT, then∫
G
ωG =

∫
G/T

ωG/T.

∫
T
ωT.

Denote by π the canonical morphism from G to G/T. Let g ∈ G, and let
t1, . . . , tn−r be elements of Tπ(g)(G/T). Identify the fibre π−1(π(g)) = gT
with T by the translation γ(g). The relation ωG = ωG/T ∩ ωT now implies
the equality (Differentiable and Analytic Manifolds, Results, 11.4.5):

ωG�(t1, . . . , tn−r) = (ωG/T(t1, . . . , tn−r))ωT.

Thus
∫

π
ωG =

(∫
T ωT

)
ωG/T (Differentiable and Analytic Manifolds, Results,

11.4.6), and∫
G
ωG =

∫
G/T

∫
π

ωG =
∫

T
ωT.

∫
G/T

ωG/T

(Differentiable and Analytic Manifolds, Results, 11.4.8).

Lemma 3. The inverse image on (G/T)×Tr of the measure dg on Gr under
the local homeomorphism fr (Integration, Chap. V, § 6, no. 6) is the measure
µ⊗δG dt, where µ is the unique G-invariant measure on G/T of total mass 1.
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Choose an invariant differential form ωT (resp. ωG/T) on T (resp. G/T) of
maximal degree, such that the measure defined by ωT (resp. ωG/T) is equal
to dt (resp. µ). Put ωG = ωG/T ∩ ωT. Lemma 2 implies that the measure
defined by ωG is equal to dg. Let U be an open subset of (G/T) × Tr such
that fr induces an isomorphism from U to an open subset V of Gr. Let ϕ
be a continuous function with compact support in V; denote also by ϕ the
extension of ϕ to Gr which vanishes outside V. We have∫

V
ϕdg =

∫
V
ϕωG =

∫
U
(ϕ ◦ fr)f∗

r (ωG)

=
∫

U
(ϕ ◦ fr)ωG/T ∧ δGωT (Prop. 1)

=
∫

U
(ϕ ◦ fr)dµ.δG dt,

hence the lemma.

THEOREM 1 (H. Weyl). The measure dg on G is the image under the map
(g, t) 	→ gtg−1 from G × T to G of the measure dg ⊗ 1

w(G)δG dt, where

δG(t) = det(Adg/t(t) − 1) =
∏

α∈R(G,T)

(tα − 1).

Equivalently (Integration, Chap. V, §6, no. 3, Prop. 4), dg is the image
under the map f : (G/T) × T → G of the measure µ⊗ 1

w(G)δG dt.
We prove the last assertion. It follows from §5, no. 1 and Differentiable

and Analytic Manifolds, Results, 10.1.3 c) that G --Gr is negligible in G and
T --Tr is negligible in T. Further, the map fr makes (G/T) × Tr a principal
covering of Gr, with group W (§5, no. 4, Prop. 4 b)). The theorem now follows
from Lemma 3 and Integration, Chap. V, §6, no. 6, Prop. 11.

COROLLARY 1. (i) Let ϕ be an integrable function on G with values in a
Banach space or in R. For almost all t ∈ T, the function g 	→ ϕ(gtg−1) on
G is integrable for dg. The function t 	→ δG(t)

∫
G ϕ(gtg−1) dg is integrable on

T, and we have∫
G
ϕ(g) dg =

1
w(G)

∫
T

(∫
G
ϕ(gtg−1)dg

)
δG(t)dt (4)

(“Hermann Weyl’s integration formula”).
(ii) Let ϕ be a positive measurable function on G. For almost all t ∈ T, the

function g 	→ ϕ(gtg−1) on G is measurable. The function t 	→ ∫ ∗
G ϕ(gtg−1)dg

on T is measurable, and we have∫ ∗

G
ϕ(g)dg =

1
w(G)

∫ ∗

T

(∫ ∗

G
ϕ(gtg−1)dg

)
δG(t)dt. (5)
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Since the map f is induced by passage to the quotient from the map
(g, t) 	→ gtg−1 from G×T → G, it suffices to apply Integration, Chap. V, §5,
6, 8 and Integration, Chap. VII, §2.

COROLLARY 2. Let ϕ be a central function on G (that is, such that ϕ(gh) =
ϕ(hg) for all g and h in G) with values in a Banach space or in R.

a) ϕ is measurable if and only if its restriction to T is measurable.
b) ϕ is integrable if and only if the function (ϕ|T)δG is integrable on T,

and in that case we have∫
G
ϕ(g)dg =

1
w(G)

∫
T
ϕ(t)δG(t)dt. (6)

Denote by p : G/T × T → T the second projection. We have ϕ ◦ f =
(ϕ|T)◦p; further, the image under p of the measure µ⊗ 1

w(G)δG dt is
1

w(G)δG dt.
The corollary now follows from Th. 1 above and Th. 1 of Integration, Chap. V,
§6, no. 2, applied to the two proper maps f and p.

COROLLARY 3. Let H be a connected closed subgroup of G containing T,
h its Lie algebra, and dh the Haar measure on H of total mass 1. Let ϕ be
an integrable central function on G, with values in a Banach space or in R.
Then the function h 	→ ϕ(h)det(Adg/h(h) − 1) is integrable and central on H
and we have∫

G
ϕ(g)dg =

w(H)
w(G)

∫
H
ϕ(h)det(Adg/h(h) − 1)dh. (7)

Indeed, the function h 	→ ϕ(h)det(Adg/h(h) − 1) is a central function on
H whose restriction to T is the function t 	→ ϕ(t)δG(t)δH(t)−1. Thus, the
corollary follows from Cor. 2 applied to G and to H.

Remarks. 1) If we take ϕ = 1 in Cor. 3, we obtain∫
H

det(Adg/h(h) − 1)dh = w(G)/w(H) (8)

and in particular∫
T
δG(t)dt = w(G). (9)

2) Let ν be the measure on the quotient T/W defined by∫
T/W

ψ(τ)dν(τ) =
1

w(G)

∫
T
ψ(π(t))δG(t)dt,

where π denotes the canonical projection of T onto T/W. Cor. 2 means
that the homeomorphism T/W → G/Int(G) (§2, no. 5, Cor. 1 of Prop. 5)
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transports the measure ν to the image of the measure dg under the canonical
projection G → G/Int(G).

3) Assume that G is simply-connected. Let A be an alcove of t, and dx
the Haar measure on t such that

∫
A dx = 1. Then the measure ν can also be

obtained by transporting the measure 1
w(G)

∏
α∈R+(G,T)

4 sin2 πα̂(x)dx on A by

the homeomorphism A → T/W (§5, no. 2, Cor. 1 of Prop. 2).

Example. Take G to be the group SU(2,C) and T to be the subgroup of
diagonal matrices (§3, no. 6); identify t with R by the choice of basis {iH}
of t (loc. cit.). Put A = 0, π ; this is an alcove of t. The interval A = 0, π
can be identified with the space of conjugacy classes of G, the element θ of

A corresponding to the conjugacy class of
(
eiθ 0
0 e−iθ

)
. Let dθ be Lebesgue

measure on 0, π ; it follows from the preceding that the image on A of the
Haar measure on G is the measure 2

π sin2 θ dθ.

3. INTEGRATION ON LIE ALGEBRAS

PROPOSITION 2. Let H be a (real) Lie group of dimension m, h its Lie
algebra. Let ωH be a right-invariant differential form of degree m on H, and
let ωh be the translation-invariant differential form on h, of degree m, that
coincides with ωH(e) at the origin. We have

(expH)∗ωH = λhωh (10)

where λh is the Ad(H)-invariant function on h such that

λh(x) = det

⎛⎝∑
p≥0

1
(p+ 1)!

(ad x)p

⎞⎠ for x ∈ h.

Let x, x1, . . . , xm be elements of h. We have

(exp∗ωH)x(x1, . . . , xm) = (ωH(expx))(Tx(exp)(x1), . . . ,Tx(exp)(xm)).

Denote by �(x) : h → h the right differential of the exponential at x
(Chap. III, §3, no. 17, Def. 8); by definition,

Tx(exp)(y).(expx)−1 = �(x).y for all y ∈ h.

The form ωH being right invariant, we obtain

(ωH(expx))(Tx(exp)(x1), . . . ,Tx(exp)(xm))
= ωH(e)(�(x).x1, . . . , �(x).xm) = (det�(x))ωh(x1, . . . , xm);

thus, exp∗ωH = λhωh, with λh(x) = det�(x) = det exp ad x−1
ad x (Chap. III, §6,

no. 4, Prop. 12).
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Let h ∈ H; since Adh is an automorphism of h, we have

ad ((Adh)(x)) = Adh ◦ Adx ◦ (Adh)−1,

so λh((Adh)(x)) = λh(x). Thus, the function λh is invariant under Ad(H);
this completes the proof of the proposition.

Remark. Consider the function λg associated to a compact Lie group G; in
view of §2, no. 1, Th. 1, to calculate λg it suffices to know its values on t. But,
for x ∈ t, the endomorphism ad x of g is semi-simple, and has eigenvalues 0
(with multiplicity r) and, for all α ∈ R(G,T), δ(α)(x) (with multiplicity 1).
It follows immediately that

λg(x) =
∏

α∈R(G,T)

eδ(α)(x) − 1
δ(α)(x)

=
δg(x)
πg(x)

(11)

with δg(x) = δG(expx) and πg(x) =
∏

α∈R(G,T)
δ(α)(x) = det ad g/t(x).

Let ωG/T be an invariant differential form of degree n− r on G/T and ωt

a translation-invariant differential form of degree r on t. With the notation of
no. 1, denote by ωG/T ∩ ωt the unique translation-invariant differential form
ωg of degree n on g such that ωg(0) = ωG/T(ē) ∩ ωt(0).

Finally, denote by ψ : (G/T) × t → g the morphism of manifolds induced
by the map (g, x) 	→ (Ad g)(x) from G × t to g by passage to the quotient.

PROPOSITION 3. Let ωg, ωt, ωG/T be invariant differential forms on g, t,
G/T, respectively, of respective degrees n, r, n−r. If ωg = ωG/T ∩ωt, we have

ψ∗ωg = ωG/T ∧ πgωt

where πg is the function on t defined by πg(x) =
∏

α∈R(G,T)
δ(α)(x).

Denote by ωG (resp. ωT) the invariant differential form of maximum de-
gree on G (resp. T) that coincides with ωg (resp. ωt) at the origin. Consider
the commutative diagram

(G/T) × t
ψ−→ g⏐⏐!(Id,expT)

⏐⏐!expG

(G/T) × T
f−→ G

.

In view of Prop. 1 of no. 2 and the relation exp∗
TωT = ωt, we deduce the

equality

ψ∗exp∗
GωG = ωG/T ∧ δgωt.

By Prop. 2, ψ∗exp∗
GωG = (ψ∗λg)ψ∗ωg. Since the function λg is invariant

under Ad(G), we have
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(ψ∗λg)(ḡ, x) = λg(x) =
δg(x)
πg(x)

for ḡ ∈ G/T, x ∈ t.

It follows that the forms ψ∗ωG(ḡ, x) and ωG/T(ḡ)∧πg(x)ωt(x) coincide where
δg(x) is non-zero, that is on the dense open subset (G/T)× tr; thus, they are
equal, hence the proposition.

Choose invariant differential forms ωG on G and ωT on T, of maximum
degree, such that |ωG| = dg and |ωT| = dt; denote by ωg (resp. ωt) the
translation-invariant differential form on g (resp. t) that coincides with ωG(e)
(resp. ωT(e)) at the origin, and dz (resp. dx) the Haar measure |ωg| (resp.
|ωt|). Reasoning as in no. 2, mutatis mutandis, gives the following proposition:

PROPOSITION 4. The measure dz on g is the image under the proper map
(g, x) 	→ (Ad g)(x) from G × t to g of the measure dg ⊗ 1

w(G)πg dx.
We leave to the reader the statement and proof of the analogues of Cor. 1

to 3 and Remarks 1 to 3 of no. 2. For example, let ϕ be an integrable function
on g (with values in a Banach space or R); then∫

g

ϕ(z)dz =
1

w(G)

∫
t

(∫
G
ϕ((Ad g)x)dg

)
πg(x)dx, (12)

and, in particular, if ϕ is invariant under Ad(G),∫
g

ϕ(z)dz =
1

w(G)

∫
t

ϕ(x)πg(x)dx. (13)

4. INTEGRATION OF SECTIONS OF A VECTOR BUNDLE

In this number and the next, we denote by X a real manifold of class Cr

(1 ≤ r ≤ ∞), locally of finite dimension.
Let Y be a manifold of class Cr. If r < ∞, consider the map f 	→

jr(f) from C r(X; Y) to C(X; Jr(X,Y)) (Differentiable and Analytic Mani-
folds, Results, 12.3.7). The inverse image under this map of the topology
of compact convergence on C(X; Jr(X,Y)) is called the topology of compact
Cr-convergence on C r(X; Y); it is the upper bound of the topologies of uni-
form Cr-convergence on K (Differentiable and Analytic Manifolds, Results,
12.3.10), where K runs through the set of compact subsets of X.

When r = ∞, we call the topology of compact C∞-convergence on
C ∞(X; Y) the upper bound of the topologies of compact Ck-convergence,
in other words the coarsest topology for which the canonical injections
C ∞(X; Y) → C k(X; Y) are continuous for 0 ≤ k < ∞.

Let E be a real vector bundle with base X, of class Cr, and let S r(X; E)
be the vector space of sections of E of class Cr. In this number we give
S r(X; E) the topology induced by the topology of compact Cr-convergence
on C r(X; E), also called the topology of compact Cr-convergence; it makes
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S r(X; E) into a complete separated locally convex topological vector space
(cf. Differentiable and Analytic Manifolds, Results, 15.3.1 and Spectral The-
ories, in preparation).

Now let H be a Lie group, m : H × X → X a law of left operation of class
Cr; put hx = m(h, x) for h ∈ H, x ∈ X. Let E be a vector H-bundle with base
X, of class Cr (Chap. III, §1, no. 8, Def. 4). For s ∈ S r(X; E) and h ∈ H,
denote by hs the section x 	→ h.s(h−1x) of E; the map (h, s) 	→ hs is a law
of operation of H on the space S r(X; E).

Lemma 4. The law of operation H × S r(X; E) → S r(X; E) is continuous.
In view of the definition of the topology of S r(X; E) and General Topol-

ogy, Chap. X, §3, no. 4, Th. 3, it suffices to prove that for any integers k ≤ r,
the map f : H × X × S k(X; E) → Jk(X; E) such that f(h, x, s) = jkx(hs) is
continuous. For h ∈ H, denote by τh (resp. θh) the automorphism x 	→ hx of
X (resp. of E). Define maps

f1 :H × X → Jk(X,X)

f2 :H × E → Jk(E,E)

g :H × X × S k(X; E) → Jk(X,E)

by f1(h, x) = jkx(τh), f2(h, v) = jkv (θh), g(h, x, s) = jkhx(s). We have

f(h, x, s) = f2(h, s(h−1x)) ◦ g(h−1, x, s) ◦ f1(h−1, x),

and consequently it suffices, by Differentiable and Analytic Manifolds, Re-
sults, 12.3.6, to prove that f1, f2 and g are continuous.

Now g is the composite map

H × X × S k(X; E)
(m,Id)

−−−−−−−−−−→ X × S k(X; E)
(Id,jk)

−−−−−−−−−−→ X × C(X; Jk(X,E)) ε−→ Jk(X,E)

with ε(x, u) = u(x); the map ε being continuous (General Topology, Chap. X,
§3, no. 4, Cor. 1 of Th. 3), g is continuous.

Let (h0, x0) ∈ H×X; we shall prove that f1 is continuous at (h0, x0). There
exist charts (U, ψ,F) and (V, χ,F′) of X and an open subset Ω of H such that
x0 ∈ U, h0 ∈ Ω and m(Ω × U) ⊂ V. By using the expression for Jk(X,X)
in these charts, we are reduced to proving, for 1 ≤ l ≤ k, the continuity at
(h0, x0) of the map (h, x) 	→ ∆l

x(τh) fromΩ×U to Pl(F; F′), with∆l
x(τh)(v) =

1
l!D

lτh(x).v for v ∈ F (Differentiable and Analytic Manifolds, Results, 12.2).
But Dlτh(x) is simply the lth partial derivative of m(h, x) with respect to x,
which is continuous by hypothesis; consequently, f1 is continuous. The proof
that f2 is continuous is similar, hence the lemma.

PROPOSITION 5. Assume that the group H is compact and denote by dh
the Haar measure on H of total mass 1. Let s be a section of E of class Cr.



§6. INTEGRATION ON COMPACT LIE GROUPS 343

Denote by s� the vector integral
∫
H

hs dh. Then s� is a section of E of class
Cr, invariant under H; for x ∈ X, we have s�(x) =

∫
H hs(h

−1x) dh ∈ Ex.
The endomorphism s 	→ s� of S r(X; E) is a projection onto the subspace of
H-invariant sections.

Consider the map h 	→ hs from H to S r(X; E); it is continuous by Lemma
4. Since the space S r(X; E) is separated and complete, the integral s� =∫
H

hs dh belongs to S r(X; E) (Integration, Chap. III, §3, no. 3, Cor. 2). The
linear map s 	→ s(x) from S r(X; E) to Ex being continuous, we have s�(x) =∫
H

hs(x) dh for all x ∈ X. It is clear that s� is invariant under H; if s is an
H-invariant section, we have s� = s, hence the last assertion.

COROLLARY 1. Let F be a Banach space, ρ : H → GL(F) an analytic linear
representation, f ∈ C r(X; F). For x ∈ X, put

f �(x) =
∫

H
ρ(h).f(h−1x) dh.

Then f � is a morphism of class Cr from X to F, compatible with the operations
of H; for x ∈ X, we have (with τh denoting the automorphism x 	→ hx of X)

dxf
� =
∫

H
(ρ(h) ◦ dh−1xf ◦ Tx(τh−1)) dh ∈ L(Tx(X); F). (14)

The first assertion follows from the proposition applied to the bundle X×
F, equipped with the law of operation (h; (x, f)) 	→ (hx, ρ(h).f). The second
follows from Integration, Chap. III, §3, no. 2, Prop. 2, by applying to the
vector integral f � the homomorphism dx : C r(X; F) → L(Tx(X); F) which is
continuous by the definition of the topology of compact Cr-convergence.

COROLLARY 2. Let F be a Banach space, f ∈ C r(X; F); put

f �(x) =
∫

H
f(hx) dh

for x ∈ X. The function f � is of class Cr, and f �(hx) = f �(x) for x ∈ X,
h ∈ H.

COROLLARY 3. Let F be a Banach space, p an integer ≥ 0, kΩp(X; F) the
space of differential forms of degree p on X, with values in F, and of class
Ck (2 ≤ k + 1 ≤ r). For ω ∈ kΩp(X; F), put ω� =

∫
H τ

∗
hω dh. Then the

map ω 	→ ω� is a projection on kΩp(X; F) whose image is the subspace of
H-invariant forms. We have d(ω�) = (dω)� for all ω ∈ kΩp(X; F).

The first assertion follows from the proposition applied to the vector
H-bundle Altp(T(X); F) (Chap. III, §1, no. 8, Examples). To prove the second
assertion, it suffices, in view of Integration, Chap. III, §3, no. 2, Prop. 2, to
prove that the map d : kΩp(X; F) → k−1Ωp+1(X; F) is continuous when the
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first (resp. second) space is given the topology of compact Ck-convergence
(resp. Ck−1-convergence). But this follows immediately from the definition of
these topologies by means of semi-norms (Spectral Theories, in preparation)
and the fact that d is a differential operator of order ≤ 1 (Differentiable and
Analytic Manifolds, Results, 14.4.2).

5. INVARIANT DIFFERENTIAL FORMS

Let X be a locally finite dimensional real manifold of class C∞, and let
(g, x) 	→ gx be a law of left operation of class C∞ of a connected com-
pact Lie group G on X. For g ∈ G, denote by τg the automorphism x 	→ gx
of X. Denote by Ω(X) the algebra of real differential forms of class C∞ on X
(Differentiable and Analytic Manifolds, Results, 8.3.1).

For any element ξ of g, denote by Dξ the corresponding vector field on X
(Chap. III, §3, no. 5) and by θ(ξ), i(ξ) the corresponding operators on Ω(X),
so that we have the formulas (Differentiable and Analytic Manifolds, Results,
8.4.5 and 8.4.7)

θ(ξ)ω = d(i(ξ)ω) + i(ξ)dω (15)
d

dt
(τ∗

exp tξω) = τ∗
exp tξ(θ(ξ)ω). (16)

A differential form ω ∈ Ω(X) is invariant if τ∗
gω = ω for all g ∈ G; by formula

(16), this is equivalent to θ(ξ)ω = 0 for all ξ ∈ g. Denote by Ω(X)G the space
of invariant differential forms on X; if ω ∈ Ω(X)G, we have dω ∈ Ω(X)G, so
Ω(X)G is a subcomplex of the complex (Ω(X), d).

THEOREM 2. The canonical injection ι : Ω(X)G → Ω(X) is a homotopism
of complexes (Algèbre, Chap. X, p. 33, déf. 5); the map ω 	→ ω� =

∫
G τ

∗
gω dg

is a homotopism, inverse to it up to homotopy. In particular, the map
H(ι) : H(Ω(X)G) → H(Ω(X)) is bijective.

By Cor. 3 of no. 4, the map ω 	→ ω� is a morphism of complexes from
Ω(X) to Ω(X)G that induces the identity on the subcomplex Ω(X)G; thus, to
prove the theorem it suffices to construct a homomorphism s : Ω(X) → Ω(X),
graded of degree −1, such that

ω� − ω = (d ◦ s+ s ◦ d)(ω) for all ω ∈ Ω(X). (17)

By Lemma 1 of Integration, Chapter IX, §2, no. 4 and Remark 1 of §2,
no. 2, there exists a positive measure dξ on g of compact support whose image
under the exponential map is equal to dg. For ω ∈ Ω(X), put

s(ω) =
∫ 1

0

{∫
g

τ∗
exp tξ(i(ξ)ω).dξ

}
dt;

we have to show that formula (17) is satisfied. As in the proof of Cor. 1
(no. 4), we verify the formula
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ds(ω) =
∫ 1

0

{∫
g

τ∗
exp tξd(i(ξ)ω).dξ

}
dt.

We now deduce from formulas (15) and (16) the equalities

ds(ω) + s(dω) =
∫ 1

0

{∫
g

τ∗
exp tξ(d(i(ξ)ω) + i(ξ)dω).dξ

}
dt

=
∫ 1

0

{∫
g

τ∗
exp tξ(θ(ξ)ω).dξ

}
dt

=
∫

g

{∫ 1

0

d

dt
(τ∗

exp tξω)dt
}
dξ

=
∫

g

(τ∗
exp ξω − ω) dξ

= ω� − ω,
hence Th. 2.

We apply the theorem in the case X = G, for the action of G by left
translations. Recall (Chap. III, §3, no. 13, Prop. 50) that associating to a
differential form on G its value at the identity element gives an isomorphism
from Ω(G)G to the graded algebra Alt(g) of alternating multilinear forms on
g. Identify Ω(G)G with Alt(g) by means of this isomorphism. The operator
d is then given by the formula (Chap. III, §3, no. 14, Prop. 51)

dω(a1, . . . , ap+1)

=
∑
i<j

(−1)i+jω([ai, aj ], a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , ap+1)

for ω in Altp(g) and a1, . . . , ap+1 in g.
For ξ ∈ g, let Lξ be the corresponding left-invariant vector field (defined by

means of the action of G on itself by right translations, cf. Chap. III, §3, no. 6).
The operators θ(Lξ), i(Lξ) commute with the action of G on Ω(G) defined
by left translation, and hence induce operators θ(ξ), i(ξ) on Ω(G)G; with the
preceding identifications, these are expressed by the formulas (Differentiable
and Analytic Manifolds, Results, 8.3.2 and 8.4.2)

(θ(ξ)ω)(a1, . . . , ap) = −
∑

i

ω(a1, . . . , ai−1, [ξ, ai], ai+1, . . . , ap)

(i(ξ)ω)(a1, . . . , ap−1) = ω(ξ, a1, . . . , ap−1)

for ω in Altp(g) and a1, . . . , ap in g.
The subcomplex GΩ(G)G of biinvariant forms (Chap. III, §3, no. 13) can

be identified with the subcomplex Alt(g)G of alternating multilinear forms
on g invariant under the adjoint representation (that is, such that θ(ξ)ω = 0
for all ξ ∈ g). Thus, we have a commutative diagram of complexes
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GΩ(G)G −→ Ω(G)G −→ Ω(G)⏐⏐! ⏐⏐!
Alt(g)G −→ Alt(g)

(18)

where the horizontal arrows are the canonical injections, and the vertical
arrows are the isomorphisms induced by the map ω 	→ ω(e).

COROLLARY 1. a) In the diagram (18), all the morphisms are homotopisms.
b) Let ω ∈ Alt(g). Then ω belongs to Alt(g)G if and only if dω = 0 and

d(i(ξ)ω) = 0 for all ξ ∈ g. The differential of the complex Alt(g)G is zero.
c) The graded vector space H(Ω(G)) is isomorphic to Alt(g)G.
The theorem, applied to the action of G on G by left translations (resp.

to the action ((g, h);x) 	→ gxh−1 of G × G on G) implies that the canonical
injection Ω(G)G → Ω(G) (resp. GΩ(G)G → Ω(G)) is a homotopism; in view
of Algèbre, Chap. X, p. 34, Cor., assertion a) follows.

We prove b). By Prop. 51 of Chap. III, §3, no. 14, we have dα = −dα,
that is dα = 0, for every differential form α on G that is left and right
invariant. Thus, if ω ∈ Alt(g)G, then dω = 0, and consequently d(i(ξ)ω) =
θ(ξ)ω− i(ξ)dω = 0. Conversely, if dω = 0 and d(i(ξ)dω) = 0, then θ(ξ)ω = 0.

Assertion c) follows from a) and b).

Remark. Consider the subcomplexes Z(Ω(G)) and B(Ω(G)) of Ω(G) (Algèbre,
Chap. X, p. 25). It follows from the formula giving the differential of the
product of two forms (Differentiable and Analytic Manifolds, Results, 8.3.5)
that Z(Ω(G)) is a subalgebra of Ω(G) and that B(Ω(G)) is an ideal of
Z(Ω(G)); consequently, the exterior product induces a graded algebra struc-
ture on H(Ω(G)). The preceding now gives an isomorphism of graded algebras
H(Ω(G)) → Alt(g)G.

Let H be a closed subgroup of G; we apply Th. 2 to X = G/H. By
Chap. III, §1, no. 8, Cor. 1 of Prop. 17, the G-invariant differential forms on
G/H can be identified with the H-invariant elements of Alt(Te(G/H)), that
is with the elements of Alt(g) that are H-invariant and annihilated by the
operators i(ξ) for all ξ ∈ L(H). Consequently:

COROLLARY 2. Let H be a closed subgroup of G.
a) The canonical injection Ω(G/H)G → Ω(G/H) is a homotopism.
b) The complex Ω(G/H)G can be identified with the subcomplex of Alt(g)

consisting of the elements ω of Alt(g) that are invariant under the adjoint
representation of H and are such that i(ξ)ω = 0 for all ξ ∈ L(H). If, in
addition, H is connected, this subcomplex consists of the ω ∈ Alt(g) such that
θ(ξ)ω = 0 and i(ξ)ω = 0 for all ξ ∈ L(H).
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§7. IRREDUCIBLE REPRESENTATIONS OF
CONNECTED COMPACT LIE GROUPS

We retain the notations of §6. A representation of G is a continuous (hence
analytic) homomorphism from G to a group GL(V), where V is a finite di-
mensional complex vector space. Every representation of G is semi-simple
(§1, no. 1).

Choose a chamber C of t (§5, no. 2), and put Γ (T)++ = C ∩ Γ (T).

1. DOMINANT CHARACTERS

Denote by X+ the set of elements λ of X(T) such that 〈λ, x〉 ≥ 0 for all
x ∈ Γ (T)++, that is, such that the linear form δ(λ) : tC → C maps the
chamber C of t to iR+.

Give X(T) the ordered group structure for which the positive elements are
those of X+; put R+ = R(G,T)∩X+ and R− = −R+. The elements of R+ are
called positive roots, those of R− negative roots; every root is either positive
or negative (Chap. VI, §1, no. 6, Th. 3). A positive root that is not the sum
of two positive roots is said to be simple; every positive root is a sum of
simple roots (loc. cit.); the simple roots form a basis of the subgroup of X(T)
generated by the roots, a subgroup that can be identified with X(T/C(G))
(§4, no. 4); the reflections with respect to the simple roots generate the Weyl
group W = WG(T) (Chap. VI, §1, no. 5, Th. 2).

Lemma 1. Let λ be an element of X(T). The following conditions are equiv-
alent:

(i) λ− w(λ) ≥ 0 (resp. > 0) for all w ∈ W such that w �= 1;
(ii) for all w ∈ W such that w �= 1, λ−w(λ) is a linear combination with

positive coefficients (resp. positive coefficients not all zero) of simple roots;
(iii) 〈λ,Kα〉 ≥ 0 (resp. > 0) for every positive root α;
(iv) 〈λ,Kα〉 ≥ 0 (resp. > 0) for every simple root α.
The equivalence if (iii) and (iv) is immediate. Since the set of the Kα

can be identified with the inverse root system of R(G,T) (§4, no. 5), the
equivalence of (i) and (iii) follows from Chap. VI, §1, no. 6, Prop. 18 and
Cor. The implication (ii) ⇒ (i) is trivial, and the opposite implication follows
from loc. cit.

Denote by X++ the set of elements of X(T) such that 〈λ,Kα〉 ≥ 0 for
every positive root α. The elements of X++ are said to be dominant. They
form a fundamental domain for the operation of W on X(T) (Chap. VI, §1,
no. 10). We have X++ ⊂ X+.

If G is simply-connected, for each simple root α there exists an element�α

of X(T) such that 〈�β ,Kα〉 = δαβ for every simple root β, that is, sα(�α) =
�α − α, sβ(�α) = �α for every simple root β �= α; the �α are called the
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fundamental dominant weights; they form a basis of the commutative group
X(T) and of the commutative monoid X++; more precisely, every element λ
of X(T) can be written in the form λ =

∑
α

〈λ,Kα〉�α.

Denote by ρ the element of X(T) ⊗ Q such that

2ρ =
∑

α∈R+

α.

We have 〈ρ,Kα〉 = 1 for every simple root α (Chap. VI, §1, no. 10, Prop. 29).
If G is simply-connected, ρ is the sum of the fundamental dominant weights.

2. HIGHEST WEIGHT OF AN IRREDUCIBLE
REPRESENTATION

Associate to any representation τ : G → GL(V) the homomorphism L(τ)(C)
from the C-Lie algebra gC to End(V) extending the linear representation
L(τ) of g on the real vector space underlying V (Chap. III, §3, no. 11). By
Prop. 7 of §4, no. 3, the map δ from X(T) to HomC(tC,C) = t∗C induces a
bijection from the set of weights of τ relative to T to the set of weights of
L(τ)(C) relative to the Cartan subalgebra tC of gC.

Lemma 2. Let ϕ be a linear representation of the complex Lie algebra gC on
a finite dimensional complex vector space V. There exists a representation
τ of G on V such that L(τ)(C) = ϕ if and only if ϕ is semi-simple and the
weights of tC on V belong to δ(X(T)).

If there exists a representation τ of G such that L(τ)(C) = ϕ, then ϕ
is semi-simple because G is connected and τ is semi-simple (Chap. III, §6,
no. 5, Cor. 2 of Prop. 13), and the weights of tC on V belong to the image
of δ. Thus, the condition is necessary; we shall prove that it is sufficient. If
ϕ is semi-simple, V is the direct sum of the Vµ(tC), where µ belongs to the
set of weights of tC on V (Chap. VII, §2, no. 4, Cor. 3 of Th. 2); if all the
weights belong to the image of δ, there exists a representation τT of T on V
such that L(τT)(C) = ϕ|tC: indeed, it suffices to put τT(t)v = tλv for t ∈ T
and v ∈ Vδ(λ)(tC). The lemma now follows from Prop. 8 of §2, no. 6.

THEOREM 1. a) Let τ : G → GL(V) be an irreducible representation of G.
Then the set of weights of τ (relative to T) has a largest element λ, which is
dominant, and the space Vλ(T) is of dimension 1.

b) Two irreducible representations of G are equivalent if and only if their
highest weights are equal.

c) For every dominant element λ of X(T), there exists an irreducible rep-
resentation of G of highest weight λ.

By Lemma 2, the equivalence classes of irreducible representations of G
correspond bijectively to the classes of finite dimensional irreducible repre-
sentations of g whose weights belong to δ(X(T)).
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Denote by CgC the centre and by DgC the derived Lie algebra of gC, so
that gC = CgC ⊕ DgC. For every bilinear form µ on tC ∩ DgC, denote by
E(µ) the simple DgC-module introduced in Chap. VIII, §6, no. 3; for every
linear form ν on CgC, denote by C(ν) the 1-dimensional CgC-module over
C associated to it. Then the gC-modules C(ν) ⊗ E(µ) are simple, and by
Chap. VIII, §7, no. 2, Cor. 2 of Th. 1 and Algebra, Chap. VIII, §11, no. 1,
Th. 1, every finite dimensional simple gC-module is isomorphic to one of the
modules C(ν) ⊗ E(µ); moreover (loc. cit.) C(ν) ⊗ E(µ) is finite dimensional
if and only if µ(Hα) is a positive integer for every simple root α. If we denote
by ν + µ the linear form on tC that induces ν on CgC and µ on tC ∩ DgC,
then (ν + µ)(Hα) = µ(Hα); moreover, the weights of C(ν) ⊗ E(µ) are the
ν+λ, where λ is any weight of E(µ), and are thus of the form ν+µ− θ, with
θ ∈ δ(X+) (Chap. VIII, §6, no. 2, Lemma 2).

We conclude that the g-module C(ν) ⊗ E(µ) is finite dimensional if and
only if (ν + µ)(Hα) is a positive integer for every simple root α, and that
its weights belong to δ(X(T)) if and only if ν + µ belongs to δ(X(T)). The
conjunction of these two conditions means that ν + µ belongs to δ(X++); in
that case, ν+µ is the highest weight of C(ν)⊗E(µ). Thus, we have constructed
for every dominant weight λ of X(T) an irreducible representation of G of
highest weight λ, and have thus obtained, up to equivalence, all the irreducible
representations of G. Since the vectors of weight ν + µ in C(ν) ⊗ E(µ) form
a subspace of dimension 1, the proof is complete.

COROLLARY. The group G has a (finite dimensional) faithful linear repre-
sentation.

Observe first that every element of X(T) is equal to the difference of two
dominant weights: more precisely, let � be an element of X++ such that
〈�,Kα〉 > 0 for every simple root α; for all λ ∈ X(T) there exists a positive
integer n such that 〈λ+ n�,Kα〉 ≥ 0 for every simple root α, that is (no. 1,
Lemma 1) λ+ n� ∈ X++.

Consequently, there exists a finite family (λi)i∈I of elements of X++ gen-
erating the Z-module X(T). For i ∈ I, let τi be an irreducible representation
of G of highest weight λi (Th. 1); let the representation τ be the direct sum
of the τi. By construction the set P(τ,T) of weights of τ (relative to T) gen-
erates the Z-module X(T). It now follows from Prop. 6 of §4, no. 3 that the
homomorphism τ is injective, hence the corollary.

Remarks. 1) Let n+ be the subalgebra of gC that is the sum of the gα for
α > 0. Let τ : G → GL(V) be an irreducible representation, λ ∈ X++ its
highest weight and τ ′ : gC → gl(V) the representation induced by τ . Then
Vλ(T) is the subspace consisting of the vectors v in V such that τ ′(x)v = 0
for all x ∈ n+.

Indeed, this follows from the corresponding statement for the gC-modules
C(ν) ⊗ E(µ) (Chap. VIII, §6, no. 2, Prop. 3).
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2) Let Θ(G) be the algebra of continuous representative functions on G
with values in C (Algebra, Chap. VIII). Let G operate on Θ(G) by left and
right translations. For each λ ∈ X++, let (Vλ, τλ) be an irreducible repre-
sentation of G of highest weight λ (Th. 1), and (V∗

λ, τ̌λ) the contragredient
representation (Chap. III, §3, no. 11); by Spectral Theories, the representa-
tion of G×G on Θ(G) is isomorphic to the direct sum of the representations
(Vλ ⊗V∗

λ, τλ ⊗ τ̌λ) for all λ in X++. Remark 1 now implies the following state-
ment: Let λ ∈ X++, and let Eλ be the vector subspace of Θ(G) consisting of
the continuous representative functions f on G such that f(gt) = λ(t)−1f(g)
for all g ∈ G and all t ∈ T, and such that f ∗ x = 0 for all x ∈ n− =

⊕
α<0

gα.

Then Eλ is stable under left translations, and the representation of G on Eλ

by left translations is irreducible of highest weight λ.
3) Let τ : G → GL(V) be an irreducible representation. There exists

an element ν of X(C(G)) such that τ(s)v = ν(s)v for all s ∈ C(G), v ∈ V:
indeed, τ(C(G)) is contained in the commutant of τ(G), which is equal to
C∗.1V (Algebra, Chap. VIII, §3, no. 2, Th. 1). For every weight λ of τ , the
restriction of λ to C(G) is equal to ν.

4) The definitions and statements of Chap. VIII, §7, nos. 2 to 5 can be
generalized without difficulty to the present situation; we leave the details to
the reader.

PROPOSITION 1. Let τ : G → GL(V) be an irreducible representation of
G of highest weight λ ∈ X++. Let m be the integer

∑
α∈R+

〈λ,Kα〉, and let w0

be the element of the Weyl group such that w0(R+) = R− (Chap. VI, § 6,
Cor. 3 of Prop. 17). There are three possible cases:

a) w0(λ) = −λ and m is even. Then there exists a G-invariant sepa-
rating symmetric bilinear form on V; the representation τ is of real type
(Appendix II).

b) w0(λ) �= −λ. Every G-invariant bilinear form on V is zero; the repre-
sentation τ is of complex type (loc. cit.).

c) w0(λ) = −λ and m is odd. Then there exists a G-invariant separating
alternating bilinear form on V; the representation τ is of quaternionic type
(loc. cit.).

If the restriction of τ to C(G)0 is not trivial, we are in case b).
A bilinear form B on V is invariant under G if and only if it is invariant

under gC (Chap. III, §6, no. 5, Cor. 3). Thus, if G is semi-simple, the proposi-
tion follows from Chap. VIII, §7, no. 5, Prop. 12 and Prop. 3 of Appendix II.

In the general case, put C(G)0 = S, and identify X(T/S) with a subgroup
of X(T) (stable under W). If τ(S) = {1V}, τ induces by passage to the
quotient a representation τ ′ : G/S → GL(V) of highest weight λ; in this case
the proposition follows from the preceding, applied to G/S.

Assume that τ(S) �= {1V}. There exists a non-zero element ν of X(S) such
that τ(s) = ν(s)V for all s ∈ S (Remark 3). Then ν is the image of λ under
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the restriction homomorphism X(T) → X(S); since W operates trivially on
X(S), the equality w0(λ) = −λ implies that ν = −ν, which is impossible:
hence w0(λ) �= −λ. On the other hand, if B is a G-invariant bilinear form on
V, we have, for all x, y in V and s in S,

B(ν(s)x, ν(s)y) = B(x, y) = ν(s)2B(x, y)

which implies that B = 0, hence the proposition.

Let SR(G) be the set of classes of irreducible continuous representations
of G on finite dimensional real vector spaces. Prop. 1 and the results of
Appendix II give a bijection Φ : X++/Σ → SR(G), where Σ denotes the
subgroup {1,−w0} of Aut(X(T)). More precisely, let λ ∈ X++, and let Eλ be
a representation of G of highest weight λ; then

Φ({λ,−w0(λ)}) = Eλ[R] if λ �= −w0(λ) or if
∑

α∈R+

〈λ,Kα〉 /∈ 2Z

Φ({λ,−w0(λ)}) = E′
λ if λ = −w0(λ) and

∑
α∈R+

〈λ,Kα〉 ∈ 2Z

where E′
λ is an R-structure on Eλ invariant under G.

3. THE RING R(G)

Let R(G) be the ring of representations (continuous, on finite dimensional
complex vector spaces) of G (Algebra, Chap. VIII, §10, no. 6). If τ is a
representation of G, denote by [τ ] its class in R(G); if τ and τ ′ are two
representations of G, we have, by definition,

[τ ] + [τ ′] = [τ ⊕ τ ′]
[τ ][τ ′] = [τ ⊗ τ ′].

Since every representation of G is semi-simple, the Z-module R(G) is free
and admits as a basis the set of classes of irreducible representations of G, a
set that can be identified with X++ by Th. 1. The map τ 	→ L(τ)(C) induces
a homomorphism l from the ring R(G) to the ring R(gC) of representations
of gC (Chap. VIII, §7, no. 6).

Let τ : G → GL(V) be a representation of G; we consider the gradation
(Vλ(T))λ∈X(T) of the C-vector space V. Denote by Ch(V), or by Ch(τ), the
character of the graded vector space V (Chap. VIII, §7, no. 7); if (eλ)λ∈X(T)

denotes the canonical basis of the algebra Z[X(T)] = Z(X(T)), we have, by
definition,

Ch(τ) =
∑

λ∈X(T)

(dim Vλ(T)) eλ.
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We define in the same way (loc. cit.) a homomorphism of rings, also
denoted by Ch, from R(G) to Z[X(T)]. If G is semi-simple, we have a com-
mutative diagram

R(G) Ch−→ Z[X(T)]⏐⏐!l

⏐⏐!δ̃

R(gC) ch−→ Z[P]
(1)

where P denotes the group of weights of R(gC, tC) and δ̃ the homomorphism
induced by δ.

The Weyl group W operates by automorphisms on the group X(T), and
hence on the ring Z[X(T)]. By Prop. 5 of §4, no. 3, the image of Ch is
contained in the subring Z[X(T)]W consisting of the elements invariant under
W.

PROPOSITION 2. The homomorphism Ch induces an isomorphism from
R(G) to Z[X(T)]W.

For λ ∈ X++, denote by [λ] the class in R(G) of the irreducible repre-
sentation of highest weight λ. Since the family ([λ])λ∈X++ is a basis of the
Z-module R(G), it suffices to prove the following assertion:

The family (Ch[λ])λ∈X++ is a basis of the Z-module Z[X(T)]W.
For every element u =

∑
λ
aλe

λ of Z[X(T)], a term aλe
λ in u is called

maximal if λ is a maximal element of the set of µ ∈ X(T) such that aµ �= 0.
Th. 1 implies that Ch[λ] has a unique maximal term, namely eλ. Thus, the
proposition follows from the following lemma.

Lemma 3. For each λ ∈ X++, let Cλ be an element of Z[X(T)]W having
unique maximal term eλ. Then the family (Cλ)λ∈X++ is a basis of Z[X(T)]W.

The proof is identical to that of Prop. 3 of Chap. VI, §3, no. 4, replacing
A by Z, P by X(T) and P ∩ C by X++.

Let Θ(G) (resp. Θ(T)) be the C-algebra of continuous representative
functions on G (resp. T), and let ZΘ(G) (resp. Θ(T)W) be the subalge-
bra consisting of the central (resp. W-invariant) functions. The restriction
map Θ(G) → Θ(T) induces a homomorphism of rings r : ZΘ(G) → Θ(T)W.
On the other hand, the map that associates to a representation τ its char-
acter (that is, the function g 	→ Tr τ(g)) extends to a homomorphism of
C-algebras Tr : C ⊗Z R(G) → ZΘ(G) which, by Spectral Theories, is an
isomorphism. Similarly, the canonical injection X(T) → Θ(T) induces an iso-
morphism of C-algebras ι : C[X(T)] → Θ(T), which induces an isomorphism
ι : C[X(T)]W → Θ(T)W. The diagram

C ⊗Z R(G) 1⊗Ch−→ C[X(T)]W⏐⏐!Tr

⏐⏐!ι

ZΘ(G) r−→ Θ(T)W
(2)
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is commutative: indeed, for every representation τ : G → GL(V) and all
t ∈ T,

Tr τ(t) =
∑

λ∈X(T)

(dim Vλ(T))λ(t) = ι(Ch τ)(t),

that is, (r ◦ Tr)[τ ] = (ι ◦ Ch)[τ ].
We can now deduce from the proposition the following result.

COROLLARY. The restriction map r : ZΘ(G) → Θ(T)W is bijective.

4. CHARACTER FORMULA

In this number, we write the group X(T) multiplicatively, and regard its
elements as complex-valued functions on T. We assume that the element ρ
of X(T) ⊗ Q belongs to X(T).

Denote by L2(T) the Hilbert space of classes of square-integrable com-
plex functions on T, and by Θ(T) the subspace consisting of the continuous
representative functions. By Spectral Theories, X(T) is an orthonormal basis
of L2(T) and an algebraic basis of Θ(T).

For f ∈ L2(T) and w ∈ W, denote by wf the element of L2(T) defined
by wf(t) = f(w−1(t)); thus, for λ ∈ X(T) we have wλ = w(λ). Denote by
ε : W → {1,−1} the signature (the unique homomorphism such that ε(s) =
−1 for every reflection s); for f ∈ L2(T), put

J(f) =
∑

w∈W

ε(w) wf.

If λ ∈ X++, the characters w(λρ) are distinct; indeed, it suffices to prove that
w(λρ) �= λρ for all w �= 1; but this follows from Lemma 1 (no. 1) and the fact
that 〈λρ,Kα〉 = 〈λ,Kα〉 + 1 > 0 for every positive root α. Consequently,

‖J(λρ)‖2= Card(W) = w(G).

An element f ∈ L2(T) is said to be anti-invariant if wf = ε(w)f for
all w ∈ W (that is, if sf = −f for every reflection s). We shall show that

1
w(G)J is the orthogonal projection of L2(T) onto the subspace of anti-invariant
elements. Indeed, let f, f ′ be in L2(T), with f ′ anti-invariant; then J(f) is
anti-invariant and

〈f ′, J(f)〉 =
∑

w∈W

ε(w)〈f ′,wf〉 =
∑

w∈W

〈wf ′,wf〉

=
∑

w∈W

〈f ′, f〉 = w(G)〈f ′, f〉.
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PROPOSITION 3. The elements J(λρ)/
√
w(G), for λ ∈ X++, form an or-

thonormal basis of the subspace of anti-invariant elements of L2(T), and an
algebraic basis of the subspace of anti-invariant elements of Θ(T).

The proof is identical to that of Chap. VI, §3, no. 3, Prop. 1.

By Chap. VI, loc. cit., Prop. 2,

J(ρ) = ρ
∏
α>0

(1 − α−1) = ρ−1
∏
α>0

(α− 1), (3)

so

J(ρ)J(ρ) =
∏
α

(α− 1). (4)

By Cor. 2 of Th. 1 (§6, no. 2), we deduce:

Lemma 4. If ϕ and ψ are two continuous central functions on G,∫
G
ϕ(g)ψ(g) dg =

1
w(G)

∫
T

(ϕ(t)J(ρ)(t)).(ψ(t)J(ρ)(t)) dt.

For all λ ∈ X++, denote by χλ the character of an irreducible represen-
tation of G of highest weight λ.

THEOREM 2 (H. Weyl). For all λ ∈ X++, we have J(ρ).χλ|T = J(λρ).
The function J(ρ).χλ|T is anti-invariant under W, and is a linear com-

bination with integer coefficients of elements of X(T). Thus, by Chap. VI,
§3, no. 3, Prop. 1, it can be written as

∑
µ
aµJ(µρ), where µ belongs to

X++, and the aµ are integers all but finitely-many of which are zero; since∫
G |χλ(g)|2 dg = 1

(Spectral Theories), it follows from Prop. 3 and Lemma 4 that
∑
µ

(aµ)2 = 1;

thus, the aµ are all zero, except one which must be equal to 1 or −1. But the
coefficient of λ in χα|T is equal to 1 (Th. 1), hence the coefficient of λρ in
J(ρ).χλ|T is equal to 1 (Chap. VI, §3, no. 3, Remark 2), which implies that
aλρ = 1, hence the theorem.

COROLLARY 1. With the notations of no. 3, we have in Z[X(T)],(∑
w∈W

ε(w)ewρ

)
Ch[λ] =

∑
w∈W

ε(w)ewλewρ for all λ ∈ X++.

This follows from the theorem and commutative diagram (2) (no. 3).

COROLLARY 2. For all λ ∈ X++ and every regular element t of T,
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χλ(t) =
∑

w ε(w)λ(wt)ρ(wt)∑
w ε(w)ρ(wt)

(5)

where the two sums are over the elements w of W.
Indeed, J(ρ)(t) is non-zero, since t is regular (formula (4)).

If ϕ is a central function on G, the restriction of ϕ to T is invariant under
W, so J(ρ).ϕ|T is anti-invariant under W. Further, by Spectral Theories and
Th. 1, the family (χλ)λ∈X++ is an algebraic basis of the space of central
representative functions on G and an orthonormal basis of the space ZL2(G)
of classes of square-integrable central functions on G.

Thus, from Prop. 3 and Th. 2 we deduce:

COROLLARY 3. The map which associates to any continuous central func-
tion ϕ on G the function w(G)−1/2J(ρ)(ϕ|T) induces an isomorphism from
the space of central representative functions on G to the space of anti-
invariant elements of Θ(T); it extends by continuity to an isomorphism of
Hilbert spaces from ZL2(G) to the subspace of anti-invariant elements of
L2(T).

COROLLARY 4. Let ϕ be a continuous central function on G. Then,∫
G
χλ(g)ϕ(g) dg =

∫
T
λ(t)

∏
α>0

(1 − α(t)−1)ϕ(t) dt =
∫

T
λρ(t).ϕ(t)J(ρ)(t) dt.

Indeed, by Lemma 4 and Th. 2,∫
G
χλ(g)ϕ(g) dg =

1
w(G)

∫
T
χλ(t)J(ρ)(t)(ϕ(t)J(ρ)(t)) dt

=
1

w(G)

∫
T

J(λρ)(t)ϕ(t)J(ρ)(t) dt.

But the function t 	→ ϕ(t)J(ρ)(t) is anti-invariant and 1
w(G)J(λρ) is the or-

thogonal projection of λρ onto the subspace of anti-invariant elements of
L2(T), so

1
w(G)

∫
T

J(λρ)(t)ϕ(t)J(ρ)(t) dt =
∫

T
λρ(t)ϕ(t)J(ρ)(t) dt;

finally, by formula (3), we have ρ(t)J(ρ)(t) =
∏

α>0
(1 − α(t)−1), hence the

corollary.

Remarks. 1) For all w ∈ W, put ρw = wρ/ρ; then∑
w

ε(w)ρw =
∏
α>0

(1 − α−1) = ρ−2
∏
α>0

(α− 1). (6)

If t is a regular element of T, we deduce from (5) that
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χλ(t) =
∑

w ε(w) wλ(t)ρw(t)∑
w ε(w)ρw(t)

=
∑

w ε(w) wλ(t)ρw(t)∏
α>0(1 − α(t)−1)

. (7)

Note that ρw is a linear combination of roots with integer coefficients, and
hence belongs to X(T) even if we do not assume that ρ ∈ X(T). It follows that
formula (7) is valid without the assumption that ρ ∈ X(T): indeed, to prove
this we replace G by a suitable connected covering, and are then reduced to
Cor. 2.

2) Similarly, the first equality of Cor. 4 remains valid without the assump-
tion that ρ ∈ X(T).

3) We can deduce Th. 2 from the analogous infinitesimal statement
(Chap. VIII, §9, no. 1, Th. 1); the same is true for Th. 3 of the next number
(which is the analogue of Th. 2 of loc. cit., no. 2).

5. DEGREE OF IRREDUCIBLE REPRESENTATIONS

We now return to the additive notation for the group X(T) and we no longer
assume that ρ belongs to X(T).

THEOREM 3. The dimension of the space of an irreducible representation
of G of highest weight λ is given by

χλ(e) =
∏

α∈R+

〈λ+ ρ,Kα〉
〈ρ,Kα〉 .

Put γ = 1
2

∑
α>0

Kα, so δ(α)(γ) = 2πi for every simple root α (Chap. VI,

§1, no. 10, Prop. 29). The line Rγ is not contained in any of the hyperplanes
Ker δ(α), so exp(zγ) is a regular element of G for all sufficiently small z ∈ R∗;
for all µ ∈ X(T) and all z ∈ R, we have

J(µ)(exp(zγ)) =
∑

w∈W

ε(w) ezδ(µ)(w−1γ).

Let us accept provisionally the following lemma:

Lemma 5. We have

J(µ)(exp(zγ)) = ezδ(µ)(γ)
∏
α>0

(1 − e−zδ(µ)(Kα)).

Thus, the function J(µ)(exp(zγ)) is the product of a function that tends
to 1 when z tends to 0 and of

zN
∏
α>0

δ(µ)(Kα) = (2πiz)N
∏
α>0

〈µ,Kα〉

where N = Card R+.
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Assume first of all that ρ ∈ X(T); applying Cor. 2 of Th. 2 we see that,
as z tends to 0, χλ(zγ) tends to∏

α>0

〈λ+ ρ,Kα〉/
∏
α>0

〈ρ,Kα〉,

hence the theorem in this case.
In the general case, it suffices to remark that, in proving Th. 3, we can

always replace G by a suitable connected covering and thus reduce to the
preceding case.

We now prove Lemma 5. Let z ∈ C; denote by ϕz the map from t to the
C-algebra Map(X(T),C) of maps from X(T) to C that associates to H ∈ t
the map

ϕz(H) : µ 	→ µ(exp zH) = ezδ(µ)(H).

We have ϕz(H + H ′) = ϕz(H)ϕz(H ′), so there exists a homomorphism
of rings

ψz : Z[t] → Map(X(T),C)

such that ψz(eH)(µ) = ezδ(µ)(H). On the other hand, by Chap. VI, §3, no. 3,
Prop. 2, we have the following relation in Z[t]:∑

w∈W

ε(w) ewγ = eγ
∏
α>0

(1 − e−Kα).

Applying the homomorphism ψz, and using the equality

ψz(ewγ)(µ) = ezδ(µ)(wγ) = ezδ(w−1µ)(γ),

we deduce the stated formula.

COROLLARY 1. Let ‖ ‖ be a norm on X(T) ⊗ R. For all λ ∈ X++, let d(λ)
be the dimension of the space of an irreducible representation of G of highest
weight λ.

a) sup
λ∈X++

d(λ)/ ‖ λ+ ρ ‖N< ∞, where N = 1/2(dimG − dimT).

b) If G is semi-simple, inf
λ∈X++

d(λ)/ ‖ λ+ ρ ‖> 0.

a) For all α ∈ R+, there exists Aα > 0 with |〈λ+ ρ,Kα〉| ≤ Aα ‖ λ+ ρ ‖,
hence d(λ)/ ‖ λ+ ρ ‖N≤

∏
α>0

Aα/〈ρ,Kα〉.
b) Assume that G is semi-simple, denote by β1, . . . , βr the simple roots

and put Ni = Kβi . Then

d(λ) ≥
r∏

i=1

〈λ+ ρ,Ni〉
〈ρ,Ni〉 =

r∏
i=1

〈λ+ ρ,Ni〉;
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since 〈λ+ ρ,Ni〉 ≥ 〈ρ,Ni〉 = 1, this implies that

d(λ) ≥ sup
i

|〈λ+ ρ,Ni〉|.

If G is semi-simple, x 	→ sup|〈x,Ni〉| is a norm on X(T) ⊗ R, necessarily
equivalent to the given norm, hence b).

COROLLARY 2. Assume that G is semi-simple; let d be an integer. The set
of classes of representations of G of dimension ≤ d is finite.

Cor. 1 b) implies that the set Xd of elements λ of X++ such that d(λ) ≤ d
is finite. For all λ in Xd, let Vλ be an irreducible representation of highest
weight λ; every representation of dimension ≤ d is isomorphic to a direct sum⊕
λ∈Xd

Vnλ

λ , with nλ ≤ d, hence the corollary.

6. CASIMIR ELEMENTS

By Prop. 3 of §1, no. 3, there exist negative symmetric bilinear forms on g,
separating and invariant under Ad(G) (if G is semi-simple, we can take the
Killing form of g, for example). Let F be such a form. Recall (Chap. I, §3,
no. 7) that the Casimir element associated to F is the element Γ of the centre
of the enveloping algebra U(g) such that, for any basis (ei) of g satisfying
F(ei, ej) = −δij , we have Γ = −∑ e2i .

In the remainder of this chapter we shall call the Casimir elements of G
the elements of U(g) obtained in this way from negative separating invari-
ant symmetric bilinear forms on g. If Γ is a Casimir element of G and if
τ : G → GL(V) is an irreducible representation of G, the endomorphism ΓV
of V is a homothety (Algebra, Chap. VIII, §3, no. 2, Th. 1), whose ratio we
shall denote by Γ̃ (τ).

PROPOSITION 4. Let Γ be the Casimir element of G.
a) If τ is an irreducible representation of G, Γ̃ (τ) is real and positive. If

τ is not the trivial representation, Γ̃ (τ) > 0.
b) There exists a unique quadratic form QΓ on X(T) ⊗ R such that, for

every irreducible representation τ of G,

Γ̃ (τ) = QΓ (λ+ ρ) − QΓ (ρ),

where λ is the highest weight of τ . The form QΓ is positive, separating and
invariant under W.

Let F be a separating negative symmetric bilinear form on g defining Γ .
Let τ : G → GL(V) be an irreducible representation of G; let 〈 , 〉 be a
Hilbert scalar product on V invariant under G (§1, no. 1), and (ei) a basis
of g such that F(ei, ej) = −δij . Then, for every element v of V not invariant
under G we have
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Γ̃ (τ)〈v, v〉 = 〈v, ΓV(v)〉 = −
∑

i

〈v, (ei)2Vv〉 =
∑

i

〈v, (ei)∗
V(ei)Vv〉

=
∑

i

〈(ei)Vv, (ei)Vv〉 > 0,

hence a).
Let B be the inverse form on t∗C of the restriction to tC of the bilinear

form on gC induced by F by extension of scalars. By the Cor. of Prop. 7 of
Chap. VIII, §6, no. 4, we have5 Γ̃ (τ) = B(δ(λ), δ(λ+2ρ)). Extend δ : X(T) →
t∗C to an R-linear map from X(T) ⊗ R to t∗C and let QΓ be the quadratic
form x 	→ B(δ(x), δ(x)) on X(T)⊗R; it is separating and invariant under W,
and

Γ̃ (τ) = B(δ(λ+ ρ), δ(λ+ ρ)) − B(δ(ρ), δ(ρ)) = QΓ (λ+ ρ) − QΓ (ρ).

We show that the form QΓ is positive. Indeed, if x ∈ X(T) ⊗ Q, the element
δ(x) of t∗C takes purely imaginary values on t, hence real values on it; we
conclude by remarking that, for y ∈ it, we have F(y, y) ≥ 0.

It remains to prove the uniqueness assertion in b). Let Q be a quadratic
form on X(T) ⊗ R satisfying the required condition, and let Φ (resp. ΦΓ ) be
the bilinear form associated to Q (resp. QΓ ). For λ, µ ∈ X++, we have

Φ(λ, µ) = (Q(λ+ µ+ ρ) − Q(ρ)) − (Q(λ+ ρ) − Q(ρ)) − (Q(µ+ ρ) − Q(ρ))
= ΦΓ (λ, µ).

Since X(T)++ generates the R-vector space X(T) ⊗ R, we have Φ = ΦΓ , so
Q = QΓ .

Remark. Let x ∈ g. There exists a strictly positive real number A such
that, for every irreducible representation τ : G → GL(V) and every Hilbert
structure on V invariant under G,

‖L(τ)(x)‖2≤ A.Γ̃ (τ).

Indeed, with the notations in the preceding proof, we can choose the basis
(ei) of g so that x = ae1, a ∈ R. Then, for v ∈ V, we have

〈xVv, xVv〉 = |a|2〈e1v, e1v〉 ≤ |a|2Γ̃ (τ)〈v, v〉.

§8. FOURIER TRANSFORM

We retain the notations and conventions of the preceding paragraph.

5 The proof of loc. cit., which has been stated only for split semi-simple Lie algebras,
is valid without change in the case of split reductive Lie algebras.
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1. FOURIER TRANSFORMS OF INTEGRABLE FUNCTIONS

In this number, we recall some definitions and results from Spectral Theories6.
Denote by Ĝ the set of classes of irreducible representations of G (on finite

dimensional complex vector spaces). For all u ∈ Ĝ, denote by Eu the space of
u and d(u) its dimension. There exist separating positive hermitian forms on
Eu invariant under u, and any two such forms are proportional. Denote by
A∗ (resp. ‖ A ‖∞) the adjoint (resp. the norm) of an element A of End(Eu)
relative to one of these forms; for all g ∈ G, we have u(g)∗ = u(g)−1 = u(g−1)
and ‖u(g)‖∞ = 1; for all x ∈ g, we have u(x)∗ = −u(x) = u(−x).

Give End(Eu) the Hilbert space structure for which the scalar product is

〈A|B〉 = d(u)Tr(A∗B) = d(u)Tr(BA∗), (1)

and put

‖A‖2 = 〈A|A〉1/2 = (d(u)Tr(A∗A))1/2. (2)

We have√
d(u)‖A‖∞ ≤ ‖A‖2 ≤ d(u)‖A‖∞, (3)

so

|〈A|B〉| ≤ d(u)2‖A‖∞‖B‖∞. (4)

For all g ∈ G, we have ‖u(g)‖2 = d(u).
Denote by F(Ĝ) the algebra

∏
u∈Ĝ

End(Eu). Denote by L2(Ĝ) the Hilbert

sum of the Hilbert spaces End(Eu); this is the space of families A= (Au)∈F(Ĝ)
such that

∑
u

‖Au‖2
2 < ∞, with the scalar product

〈A|B〉 =
∑
u∈Ĝ

〈Au|Bu〉 =
∑
u∈Ĝ

d(u)Tr(A∗
uBu). (5)

Denote the Hilbert norm on L2(Ĝ) also by ‖ ‖2, so that ‖A‖2
2 =

∑
u∈Ĝ

‖Au‖2
2

for A ∈ L2(Ĝ).
If f is an integrable complex function on G, put

u(f) =
∫

G
f(g)u(g) dg ∈ End(Eu) (6)

for all u ∈ Ĝ. We have ‖u(f)‖∞ ≤ ∫G |f(g)| dg = ‖f‖1. The Fourier cotrans-
form of f , denoted by F(f), is the family (u(f))u∈Ĝ ∈ F(Ĝ). If f ∈ L2(Ĝ),

6 See note 1, §7, p. 66.
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‖f‖2
2 =

∑
u∈Ĝ

〈u(f)|u(f)〉 = ‖F(f)‖2
2,

so F induces an isometric linear map from the Hilbert space L2(G) to the
Hilbert space L2(Ĝ): in other words, for f and f ′ in L2(G), we have∫

G
f(g)f ′(g) dg = 〈F(f)|F(f ′)〉 =

∑
u∈Ĝ

d(u)Tr(u(f)∗u(f ′)). (7)

For f and f ′ in L1(G), the convolution product f ∗f ′ of f and f ′ is defined
by

(f ∗ f ′)(h) =
∫

G
f(hg−1)f ′(g) dg =

∫
G
f(g)f ′(g−1h) dg

(the integral makes sense for almost all h ∈ G).
We have f ∗ f ′ ∈ L1(G) and, for all u ∈ Ĝ, u(f ∗ f ′) = u(f)u(f ′), so

F(f ∗ f ′) = F(f).F(f ′). (8)

Conversely, let A = (Au)u∈Ĝ be an element of F(Ĝ); for all u ∈ Ĝ, let
FuA be the (analytic) function on G defined by

(FuA)(g) = 〈u(g)|Au〉 = d(u)Tr(Auu(g)−1). (9)

If A ∈ L2(Ĝ), the family (FuA)u∈Ĝ is summable in L2(G); the Fourier trans-
form of A, denoted by F(A), is the sum of this family. The maps F and F
are inverse isomorphisms between the Hilbert spaces L2(G) and L2(Ĝ).

In other words:

PROPOSITION 1. Every square integrable complex function f on G is the
sum in the Hilbert space L2(G) of the family (fu)u∈Ĝ where, for all h ∈ G
and all u ∈ Ĝ,

fu(h) = 〈u(h)|u(f)〉
= d(u)

∫
G
f(g)Tr(u(gh−1)) dg = d(u)

∫
G
f(gh)Tr(u(g)) dg. (10)

For all u ∈ Ĝ choose an orthonormal basis Bu of Eu, and denote by
(uij(g)) the matrix of u(g) in this basis. Prop. 1 also means that the family
of functions

√
d(u)uij , for u in Ĝ and i, j in Bu, is an orthonormal basis of

the space L2(G).
If f is an integrable function on G such that the family (fu) is uniformly

summable, then the sum of this family is a continuous function which coin-
cides almost everywhere with f ; in other words, if we assume in addition that
f is continuous, then for all h ∈ G,
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f(h) =
∑
u∈Ĝ

d(u)
∫

G
f(gh)Tr(u(g)) dg. (11)

Conversely, let A ∈ F(Ĝ); if the family (FuA)u∈Ĝ is uniformly summable,
the function

g 	→
∑
u∈Ĝ

(FuA)(g) =
∑
u∈Ĝ

d(u)Tr(Auu(g)−1)

is a continuous function on G whose Fourier cotransform is A.
Let f be an integrable function on G, and let s ∈ G. Denote by γ(s)f and

δ(s)f the functions on G defined by γ(s)f = εs ∗ f , δ(s)f = f ∗ εs−1 , that is,

(γ(s)f)(g) = f(s−1g), (δ(s)f)(g) = f(gs) for g ∈ G,

(Chap. III, §3, no. 4 and Integration, Chap. VII, §1, no. 1). We have

u(γ(s)f) =
∫

G
f(s−1g)u(g) dg =

∫
G
f(g)u(sg) dg,

so

u(γ(s)f) = u(s)u(f), (12)

and similarly

u(δ(s−1)f) = u(f)u(s). (13)

When G is commutative, Ĝ is the underlying set of the dual group of G
(Spectral Theories, Chap. II, §1, no. 1), d(u) = 1 for all u ∈ Ĝ, and we recover
the definitions of the Fourier transform given in Spectral Theories, Chap. II.

2. FOURIER TRANSFORMS OF INFINITELY-
DIFFERENTIABLE FUNCTIONS

Recall (Chap. III, §3, no. 1, Def. 2) that U(G) denotes the algebra of dis-
tributions on G with support contained in {e}. The canonical injection of g
into U(G) extends to an isomorphism from the enveloping algebra of the Lie
algebra g to U(G) (loc. cit., no. 7, Prop. 25); from now on we identify these
two algebras by this isomorphism. If f is an infinitely-differentiable complex
function on G and if t ∈ U(G), we denote by Ltf and Rtf the functions on
G defined by

Ltf(g) = 〈εg ∗ t, f〉, Rtf(g) = 〈t ∗ εg, f〉
(cf. loc. cit., no. 6). For all g ∈ G,

Lt ◦ γ(g) = γ(g) ◦ Lt, Rt ◦ δ(g) = δ(g) ◦ Rt.
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Let u ∈ Ĝ; denote by Eu the space of u. The morphism of Lie groups
u : G → GL(Eu) gives by differentiation a homomorphism of (real) Lie
algebras g → End(Eu), hence a homomorphism of algebras, also denoted by
u, from U(G) to End(Eu). If t ∈ U(G) and if f is an infinitely-differentiable
function on G, then

u(Ltf) = u(f)u(t∨), u(Rtf) = u(t∨)u(f), (14)

where t∨ denotes the image of t under the principal anti-automorphism of
U(G) (Chap. I, §2, no. 4); indeed, it suffices to verify this for t ∈ g, in which
case it follows by differentiation from formulas (12) and (13) (cf. Chap. III,
§3, no. 7, Prop. 27).

For all u ∈ Ĝ, denote by λ(u) the highest weight of u (§7, no. 2, Th. 1),
so u 	→ λ(u) is a bijective map from Ĝ to the set X++ of dominant elements
of X(T).

Let Γ ∈ U(G) be a Casimir element of G (§7, no. 6); for all u ∈ Ĝ, the
endomorphism u(Γ ) of Eu is a homothety, whose ratio we denote by Γ̃ (u),
so we have a map u 	→ Γ̃ (u) from Ĝ to C.

If ϕ and ψ are two functions on Ĝ with positive real values, denote by
“ϕ � ψ” or “ϕ(u) � ψ(u)” the relation “there exists M > 0 such that
ϕ(u) ≤ Mψ(u) for all u ∈ Ĝ”; this is a pre-order relation on the set of
functions on Ĝ with positive real values.

PROPOSITION 2. Let m 	→ ‖m‖ be a norm on the R-vector space R⊗X(T)
and Γ a Casimir element of G. Let ϕ be a function on Ĝ with positive real
values.

a) The following conditions are equivalent:
(i) There exists an integer n > 0 such that ϕ(u) � (‖λ(u)‖ + 1)n (resp.

for every integer n > 0, we have ϕ(u) � (‖λ(u)‖ + 1)−n).
(ii) There exists an integer n > 0 such that ϕ(u) � (Γ̃ (u) + 1)n (resp. for

every integer n > 0, we have ϕ(u) � (Γ̃ (u) + 1)−n).
b) If G is semi-simple, conditions (i) and (ii) are also equivalent to:
(iii) There exists an integer n > 0 such that ϕ(u) � d(u)n (resp. for every

integer n > 0, we have ϕ(u) � d(u)−n).
Note first of all that condition (i) is clearly independent of the choice of

norm. Thus we can use the norm defined by the quadratic form QΓ associated
to Γ (§7, no. 6, Prop. 4). Then

0 ≤ Γ̃ (u) = ‖λ(u) + ρ‖2 − ‖ρ‖2
,

so Γ̃ (u) + 1 � (‖λ(u)‖ + 1)2 � Γ̃ (u) + 1, hence a).
Further, if G is semi-simple,

‖λ(u) + ρ‖ � d(u) � ‖λ(u) + ρ‖N
, where N = 1/2(dimG − dimT)

(§7, no. 5, Cor. 1 of Th. 3), so ‖λ(u)‖ + 1 � d(u) � (‖λ(u)‖ + 1)N, hence b).



364 COMPACT REAL LIE GROUPS Ch. IX

It follows from Prop. 2 that condition (i) is independent of the choice of
maximal torus, chamber, and norm, and that condition (ii) is independent of
the choice of Casimir element. A function ϕ satisfying conditions (i) and (ii)
is said to be moderately increasing (resp. rapidly decreasing). The product of
two moderately increasing functions is moderately increasing; the product of
a moderately increasing function and a rapidly decreasing function is rapidly
decreasing. If ϕ is rapidly decreasing, the family (ϕ(u))u∈Ĝ is summable.

Examples. The function u 	→ d(u) is moderately increasing (§7, no. 5, Cor. 1
of Th. 3); for any norm ‖ ‖ on R ⊗ X(T), the function u 	→ ‖λ(u)‖ is mod-
erately increasing. For any Casimir element Γ , the function u 	→ Γ̃ (u) is
moderately increasing; more generally:

PROPOSITION 3. For all t ∈ U(G), the functions u 	→ ‖u(t)‖∞ and
u 	→ ‖u(t)‖2 on Ĝ are moderately increasing.

Since the product of two moderately increasing functions is moderately
increasing, it suffices to prove this when t ∈ g: in that case the assertion
follows from the Remark in §7, no. 6 and the inequality

‖u(t)‖2 ≤ d(u)‖u(t)‖∞.

THEOREM 1. a) Let f be an infinitely-differentiable complex function on G.
Then the family (fu)u∈Ĝ, where fu(g) = 〈u(g)|u(f)〉, is uniformly summable
on G and, for all h ∈ G,

f(h) =
∑
u∈Ĝ

〈u(h)|u(f)〉 =
∑
u∈Ĝ

d(u)
∫

G
f(g)Tr(u(gh−1)) dg.

b) Let f be an integrable function on G; then f is equal almost everywhere
to an infinitely-differentiable function if and only if the function u 	→ ‖u(f)‖∞
is rapidly decreasing on Ĝ.

Let f be an infinitely-differentiable function on G, and let Γ be a Casimir
element for G; by formula (14),

Γ̃ (u)nu(f) = u(f)u(Γ )n = u((LΓ )nf)

for all n ≥ 0, and consequently

Γ̃ (u)n‖u(f)‖∞ ≤ ‖(LΓ )nf‖1 ≤ sup
g∈G

|((LΓ )nf)(g)|; (15)

thus, the function u 	→ ‖u(f)‖∞ is indeed rapidly decreasing.
Conversely, let A = (Au)u∈Ĝ be an element of F(Ĝ) such that the func-

tion u 	→ ‖Au‖∞ is rapidly decreasing. Put fu(g) = 〈u(g)|Au〉; the function
g 	→ fu(g) is analytic, hence infinitely-differentiable. By Chap. III, §3, no. 7,
Prop. 27,

(Lxfu)(g) = 〈u(g)u(x)|Au〉
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for all x ∈ g. Let t ∈ U(G); by the preceding formula,

(Ltfu)(g) = 〈u(g)u(t)|Au〉
and consequently

|(Ltfu)(g)| = |〈u(g)u(t)|Au〉 ≤ d(u)2‖u(t)‖∞‖u(g)‖∞‖Au‖∞
= d(u)2‖u(t)‖∞‖Au‖∞.

Since d(u) and ‖u(t)‖∞ are moderately increasing (Prop. 3) and ‖Au‖∞ is
rapidly decreasing, the function u 	→ sup

g
|(Ltfu)(g)| is rapidly decreasing;

thus, the family (Ltfu)u∈Ĝ is uniformly summable. It follows7 that the sum
of the family (fu) is an infinitely-differentiable function on G, whose Fourier
cotransform is (Au), hence the theorem.

Denote by S(Ĝ) the vector subspace of L2(Ĝ) consisting of the fami-
lies A = (Au)u∈Ĝ such that the function u 	→ ‖Au‖∞ is rapidly decreas-
ing on Ĝ. It follows from the theorem that the maps F : f 	→ (u(f))u∈Ĝ

and F : A 	→
∑

u∈Ĝ
〈u(g)|Au〉 induce inverse isomorphisms between the complex

vector spaces C ∞(G;C) and S(Ĝ). Give the space C ∞(G;C) the topology
of uniform C∞-convergence (§6, no. 4) which can be defined by the family of
semi-norms f 	→ sup

g∈G
|Ltf(g)| for t ∈ U(G), and the space S(Ĝ) the topology

defined by the sequence of semi-norms pn : A 	→ sup
u∈Ĝ

(Γ̃ (u)+1)n‖Au‖∞. For-

mula (15) of the preceding proof shows that F is continuous. Let t ∈ U(G),
and let A = (Au)u∈Ĝ be an element of S(Ĝ); put fn(g) = 〈u(g)|Au〉. Let p
be an integer such that

∑
u∈Ĝ

Γ̃ (u)−p = M < ∞. By the preceding proof, there

exists a positive integer m such that, for all g ∈ G,

|(Ltfu)(g)| ≤ d(u)2‖u(t)‖∞‖Au‖∞ ≤ m.(1 + Γ̃ (u))mΓ̃ (u)−p‖Au‖∞

so |(LtF(A))(g)| ≤ mMpm(A); this proves that F is continuous. Conse-
quently:

COROLLARY. The maps F : f 	→ (u(f))u∈Ĝ and F : A 	→
∑

u∈Ĝ
〈u(g)|Au〉

induce inverse isomorphisms between the topological vector spaces C ∞(G;C)
and S(Ĝ).

7 This follows from the fact that the space C ∞(G;C), with the topology of uniform
C∞-convergence (§6, no. 4), is complete.
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3. FOURIER TRANSFORMS OF CENTRAL FUNCTIONS

For all u ∈ Ĝ, denote by χu the character of u; thus,

χu(g) = Tr(u(g)), (g ∈ G). (16)

Recall from Spectral Theory the formulas

χu ∗ χv = 0 (u, v ∈ Ĝ, u �= v) (17)

χu ∗ χu =
1
d(u)

χu (u ∈ Ĝ). (18)

For all u ∈ Ĝ, denote by εu the identity map of Eu. Recall (§7, no. 4)
that ZL2(G) denotes the subspace of L2(G) consisting of the classes of the
functions f that are central, that is, such that f ◦ Int s = f for all s ∈ G, or
equivalently that γ(s)f = δ(s−1)f for all s ∈ G.

PROPOSITION 4. Let f ∈ L2(G). Then f is central if and only if u(f) is a
homothety for all u ∈ Ĝ. In that case

u(f) =
εu
d(u)

∫
G
f(g)χu(g) dg. (19)

By Prop. 1 (no. 1), to say that f is central means that u(γ(s)f) =
u(δ(s−1)f) for all s ∈ G and all u ∈ Ĝ; but this can also be written as
u(s)u(f) = u(f)u(s) for all s ∈ G and all u ∈ Ĝ (formulas (12) and (13)),
hence the first assertion of Prop. 4 (Schur’s lemma). If u(f) is a homothety,
then u(f) = λuεu with

λu =
1
d(u)

Tr(u(f)) =
1
d(u)

∫
G
f(g)Tr(u(g)) dg =

1
d(u)

∫
G
f(g)χu(g) dg.

Consequently, for f ∈ ZL2(G) we have

u(f) = 〈χu|f〉 εu
d(u)

〉, (20)

so

F(f) =
(

〈χu|f〉 εu
d(u)

)
u∈Ĝ

(21)

with

‖F(f)‖2
2 =

∑
u

∣∣∣∣〈χu|f〉 εu
d(u)

∣∣∣∣2
2 =

∑
u

|〈χu|f〉|2.

Conversely, if ϕ is a square-integrable complex function on Ĝ, the element(
ϕ(u)
d(u) εu

)
u∈Ĝ

of F(Ĝ) belongs to L2(Ĝ), and we have (formula (9))
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Fu

(
ϕ(u)
d(u)

εu

))
(g) = d(u)Tr

(
ϕ(u)
d(u)

εuu(g)−1
)

= ϕ(u)χu(g),

so

F

((
ϕ(u)
d(u)

εu

))
=
∑
u∈Ĝ

ϕ(u)χu. (22)

Note, in particular, that formulas (20) and (21) give, for u, v in Ĝ,8

u(χv) = 0 if u �= v, (23)

u(χu) =
εu
d(u)

∈ End(Eu), (24)

F(χu) =
εu
d(u)

∈ End(Eu) ⊂ F(Ĝ). (25)

PROPOSITION 5. Let f be a continuous central function on G. Then f is
infinitely-differentiable if and only if the function u 	→ |〈χu|f〉| is rapidly
decreasing on Ĝ; in that case,

f(g) =
∑
u∈Ĝ

〈χu|f〉χu(g)

for all g ∈ G.
By Th. 1 b), the function f is infinitely-differentiable if and only if the

function u 	→ ‖u(f)‖∞ is rapidly decreasing; but, by (20),

‖u(f)‖∞ =
1
d(u)

|〈χu|f〉|,

hence the first assertion, since the functions d(u) and 1
d(u) are moderately

increasing.
Assume that f is infinitely-differentiable; by Th. 1 a), f(g) =

∑
u∈Ĝ

fu(g)

for all g ∈ G, so

fu(g) = 〈u(g)|u(f)〉 = d(u)Tr(u(g)−1.u(f)) = d(u)Tr
(
u(g)−1〈χu|f〉 εu

d(u)

)
= 〈χu|f〉Tr(u(g)−1) = 〈χu|f〉χu(g).

Hence, f(g) =
∑

u∈Ĝ
〈χu|f〉χu(g); but, for all u ∈ Ĝ, the contragredient repre-

sentation u′ of u satisfies χu = χu′ and the map u 	→ u′ is a permutation of
Ĝ; so we also have f(g) =

∑
u∈Ĝ

〈χu|f〉χu(g), hence the proposition.

8 We embed End(Eu) in the product F(Ĝ) =
∏

v∈Ĝ
End(Ev) by associating to any

A ∈ End(Eu) the family (Av)v∈Ĝ such that Au = A and Av = 0 for v �= u.
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COROLLARY. Let f be a continuous central function on G. Then f is
infinitely-differentiable if and only if the restriction of f to T is infinitely-
differentiable.

Indeed, by Cor. 4 of §7, no. 4,

〈χu|f〉 =
∫

G
λ(u)(t)ϕ(t) dt, where ϕ(t) =

∏
α>0

(1 − α(t)−1)f(t).

If f |T is infinitely-differentiable, so is ϕ; by Prop. 5, applied to the group T,
the function µ 	→ ∫

T µ(t)ϕ(t) dt on T̂ = X(T) is then rapidly decreasing, and
so is the function u 	→ 〈χu|f〉; hence the function f is infinitely-differentiable
(Prop. 5). The converse is clear.

4. CENTRAL FUNCTIONS ON G AND FUNCTIONS ON T

Denote by C(G) the space of continuous complex-valued functions on G and
by C ∞(G) the subspace of infinitely-differentiable functions. Then we have
a sequence of inclusions

Θ(G) ⊂ C ∞(G) ⊂ C(G) ⊂ L2(G).

Denote by ZΘ(G),ZC ∞(G),ZC(G),ZL2(G), respectively, the subspaces con-
sisting of the central functions in these various spaces. Introduce similarly the
spaces Θ(T),C ∞(T),C(T),L2(T); for any space E in this list, denote by EW

(resp. E−W) the subspace consisting of the invariant (resp. anti-invariant)
elements for the operation of the Weyl group W. We have a commutative
diagram

ZC(G) ac−→ C(T)W�⏐⏐ �⏐⏐
ZC ∞(G) a∞−→ C ∞(T)W�⏐⏐ �⏐⏐
ZΘ(G) aΘ−→ Θ(T)W

where the vertical arrows represent the canonical injections, and the maps
ac, a∞, aΘ are induced by the restriction map from C(G) to C(T).

The maps ac, a∞, aΘ are bijective (§2, no. 5, Cor. 1 of Prop. 5, §8, no. 3,
Cor. of Prop. 5, and §7, no. 3, Cor. of Prop. 2).

Assume now that the semi-sum ρ of the positive roots belongs to X(T)
and consider the map b which to every continuous function ϕ on T associates
ϕ.J(ρ). We have a commutative diagram
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ZL2(G)
u−−−−−−−−−−−−−−−−−−−−−−−→L2(T)−W�⏐⏐ �⏐⏐

ZC(G) ac−→ C(T)W bc−→ C(T)−W�⏐⏐ �⏐⏐ �⏐⏐
ZC ∞(G) a∞−→ C ∞(T)W b∞−→ C ∞(T)−W�⏐⏐ �⏐⏐ �⏐⏐
ZΘ(G) aΘ−→ Θ(T)W bΘ−→ Θ(T)−W

where the vertical arrows are the canonical inclusions, the maps bc, b∞, bΘ
are induced by b, and u extends bc ◦ ac by continuity (§7, no. 4, Cor. 3 of
Th. 2). The maps u and bΘ are bijective (loc. cit.); so is b∞ (Exerc. 5); on
the other hand, bc is not surjective in general (Exerc. 6).

§9. COMPACT LIE GROUPS OPERATING ON
MANIFOLDS

In this paragraph, X denotes a separated, locally finite dimensional, real man-
ifold of class Cr (1 ≤ r ≤ ω).

1. EMBEDDING OF A MANIFOLD IN THE
NEIGHBOURHOOD OF A COMPACT SET

Lemma 1. Let T and T′ be two topological spaces, A and A′ compact subsets
of T and T′, respectively, W a neighbourhood of A × A′ in T × T′. There
exists an open neighbourhood U of A in T and an open neighbourhood U′ of
A′ in T′ such that U × U′ ⊂ W.

Let x ∈ A; there exist open subsets Ux of T and U′
x of T′ such that

{x} × A′ ⊂ Ux × U′
x ⊂ W: indeed, the compact subset {x} × A′ of T × T′

can be covered by a finite number of open sets contained in W, of the form
Ui × U′

i, with x ∈ Ui; it suffices to take Ux =
⋂
i

Ui and U′
x =

⋃
i

U′
i.

Since A is compact, there exist points x1, . . . , xm of A such that A⊂
⋃
i

Uxi ;

put U =
⋃
i

Uxi
and U′ =

⋂
i

U′
xi

. Then A × A′ ⊂ U × U′ ⊂ W, hence the

lemma.

In the remainder of this number, Y denotes a separated manifold of class
Cr.

PROPOSITION 1. Let ϕ : X → Y be a morphism of class Cr, A a compact
subset of X. The following conditions are equivalent:
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(i) The restriction of ϕ to A is injective, and ϕ is an immersion at every
point of A;

(ii) there exists an open neighbourhood U of A such that ϕ induces an
embedding of U into Y.

When these conditions are satisfied, ϕ is said to be an embedding in the
neighbourhood of A.

We prove that (i) implies (ii), the other implication being clear. Assuming
(i), there exists an open neighbourhood V of X containing A such that the
restriction of ϕ to V is an immersion (Differentiable and Analytic Manifolds,
Results, 5.7.1). Denote by Γ the set of points (x, y) in V × V such that
ϕ(x) = ϕ(y), and by ∆ the diagonal in V × V. Then ∆ is an open subset of
Γ : indeed, for all x ∈ V, there exists an open neighbourhood Ux of x such
that the restriction of ϕ to Ux is injective, that is, such that Γ ∩ (Ux ×Ux) =
∆ ∩ (Ux × Ux).

Since Y is separated, Γ is closed in V × V; consequently the complement
W of Γ --∆ in V × V is open. By assumption, W contains A × A; Lemma 1
implies that there exists an open subset U′ of V containing A such that
U′×U′ ⊂ W, that is, such that the restriction of ϕ to U′ is injective. Moreover,
there exists an open neighbourhood U of A whose closure is compact and
contained in U′ (General Topology, Chap. I, §9, no. 7, Prop. 10). Then ϕ
induces a homeomorphism from U to ϕ(U), and consequently from U to
ϕ(U); it follows that the restriction of ϕ to U is an embedding (Differentiable
and Analytic Manifolds, Results, 5.8.3).

PROPOSITION 2. Assume that the manifold Y is paracompact; let A be a
subset of X, and let ϕ : X → Y be a morphism of class Cr that induces
a homeomorphism from A to ϕ(A), and that is étale at every point of A.
Then there exists an open neighbourhood U of A such that ϕ induces an
isomorphism from U to an open submanifold of Y.

Restricting X and Y if necessary, we can assume that ϕ is étale and
surjective. Denote by σ : ϕ(A) → A the inverse homeomorphism of ϕ|A.
Since Y is metrizable (Differentiable and Analytic Manifolds, Results, 5.1.6),
ϕ(A) admits a fundamental system of paracompact neighbourhoods; hence,
by General Topology, Chap. XI, there exist an open neighbourhood V of ϕ(A)
in Y and a continuous map s : V → X, that coincides with σ on ϕ(A) and
is such that ϕ(s(y)) = y for all y ∈ V. Moreover, s is topologically étale, so
s(V) is an open set U containing A. Then ϕ induces a homeomorphism ϕ′

from U to V; by Differentiable and Analytic Manifolds, Results, 5.7.8, ϕ′ is
an isomorphism.

In the remainder of this number, we assume that r �= ω.

PROPOSITION 3. Let A be a compact subset of X. The set P of morphisms
ϕ ∈ C r(X;Y) that are embeddings in the neighbourhood of A is open in
C r(X;Y) in the topology of compact Cr-convergence (§ 6, no. 4).
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Clearly, it suffices to prove the proposition for r = 1.
a) We show first that the subset J of C 1(X;Y) consisting of the mor-

phisms that are immersions at every point of A is open. Consider the map
jA : C 1(X;Y) × A → J1(X;Y) such that jA(ϕ, x) = j1x(ϕ) (Differentiable and
Analytic Manifolds, Results, 12.1).

By definition of the topology on C 1(X;Y), the map j̃A : ϕ → jA(ϕ, .)
from C 1(X;Y) to C(A;J1(X;Y)) is continuous; it now follows from General
Topology, Chap. X, §3, no. 4, Th. 3, that jA is continuous.

On the other hand, let M be the set of jets j in J1(X;Y) whose tangent
map T(j) : Ts(j)(X) → Tb(j)(Y) (Differentiable and Analytic Manifolds,
Results, 12.3.4) is injective. The set M is open in J1(X;Y); indeed, it suffices
to verify this assertion when X is an open subset of a finite dimensional vector
space E, and Y is an open subset of a Banach space F; we are then reduced
(Differentiable and Analytic Manifolds, Results, 12.3.1) to proving that the
set of injective continuous linear maps is open in L(E;F), which follows from
Spectral Theory, Chap. III, §2, no. 7, Prop. 16.

We conclude from the preceding that the set j−1
A (M) is open in C 1(X;Y)×A,

hence that its complement F is closed. Since A is compact, the projection
pr1 : C 1(X;Y) × A → C 1(X;Y) is a proper morphism, hence closed; conse-
quently, the set J, which is equal to C 1(X;Y) -- pr1(F), is open in C 1(X;Y).
b) Let H be the subset of J × A × A consisting of the elements (f, x, y)

such that f(x) = f(y). It is clear that H contains J × ∆, where ∆ denotes
the diagonal in the product A × A; we show that H′ = H -- (J ×∆) is closed
in J × A × A. Since P is the complement in J of the image of H′ under the
proper projection pr1 : J × A × A → J, this will imply the proposition.

The topology of C 1(X;Y) being finer than the topology of compact conver-
gence, the map (ϕ, x) 	→ ϕ(x) from C 1(X;Y)×A to Y is continuous (General
Topology, Chap. X, §3, no. 4, Cor. 1 of Th. 3); it follows that H is closed in
J×A×A. Hence, it suffices to show that J ×∆ is open in H, in other words,
that for all ϕ ∈ J and all x ∈ A there exists a neighbourhood Ω of ϕ in J
and a neighbourhood B of x in X such that, for any morphism ψ in Ω, the
restriction of ψ to A ∩ B is injective.

Thus, the proposition follows from the following lemma:

Lemma 2. Let x be a point of X, ϕ : X → Y a morphism of class C1 that is
an immersion at x. There exists a neighbourhood Ω of ϕ in C 1(X;Y) and a
neighbourhood B of x in X such that, for all ψ ∈ Ω, the restriction of ψ to B
is injective.

Let U be a relatively compact open neighbourhood of x isomorphic to
a finite dimensional vector space, and such that ϕ(U) is contained in the
domain V of a chart. The set Ω0 of ψ ∈ C 1(X;Y) such that ψ(U) ⊂ V is open
in C 1(X;Y), and the restriction map Ω0 → C 1(U;V) is continuous; we are
thus reduced to proving the lemma when X = U and Y = V, in other words,
we can assume that X is a finite dimensional vector space and Y is a Banach
space. Choose norms on X and Y.
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The linear map Dϕ(x) : X → Y is injective; denote its conorm by
q (Spectral Theory, Chap. III, §2, no. 6), so that, by definition, we have
‖Dϕ(x).t‖ ≥ q‖t‖ for all t ∈ X. Let ε ∈ R be such that 0 < ε < q/2, and let
B be a closed ball with centre x such that ‖Dϕ(u)−Dϕ(x)‖ ≤ ε for all u ∈ B.
Denote by Ω the subset of C 1(X;Y) consisting of the morphisms ψ such that
‖Dψ(u) − Dϕ(u)‖ ≤ ε for all u ∈ B; it is open by definition of the topology
of C 1(X;Y). For ψ ∈ Ω, put ψ0 = ψ − Dϕ(x). We have ‖Dψ0(u)‖ ≤ 2ε for
all u ∈ B, and consequently ‖ψ0(u) − ψ0(v)‖ ≤ 2ε‖u − v‖ for all u and v in
B (Differentiable and Analytic Manifolds, Results, 2.2.3). It follows that

‖ψ(u) − ψ(v)‖ ≥ ‖Dϕ(x).(u− v)‖ − ‖ψ0(u) − ψ0(v)‖ ≥ (q − 2ε)‖u− v‖.
Consequently, the restriction of ψ to B is injective, hence the lemma.

PROPOSITION 4. Let A be a compact subset of X. There exist a finite di-
mensional vector space E and a morphism ϕ ∈ C r(X;E) (r �= ω) that is an
embedding in the neighbourhood of A.

Let (Ui, ϕi,Ei)i∈I be a finite family of charts of X whose domains cover
A. We extend ϕi to a map from X to Ei (also denoted by ϕi) by putting
ϕi(x) = 0 for x /∈ Ui. Let (Vi)i∈I be a covering of A by open subsets of X
such that Vi ⊂ Ui for all i ∈ I (the existence of such a covering follows from
General Topology, Chap. IX, §4, no. 3, Cor. 1 of Th. 3, applied to the compact
space X′ obtained by adjoining to X a point at infinity and the covering of
X′ consisting of the open sets Ui (i ∈ I) and X′ --A). For all i ∈ I, let αi be
a numerical function of class Cr on X, equal to 1 at every point of Vi, and
with support contained in Ui (Differentiable and Analytic Manifolds, Results,
5.3.6).

Consider the map ϕ : X →
⊕
i∈I

(Ei ⊕ R) defined by

ϕ(x) = (αi(x)ϕi(x), αi(x))i∈I.

For all i ∈ I, the map αiϕi is of class Cr (since its restrictions to Ui and
to the complement of the support of αi are), and its restriction to Vi is an
embedding; it follows that ϕ is a morphism of class Cr and is an immersion
at every point of A. We show that the restriction of ϕ to A is injective. Let
x, y be two points of A such that ϕ(x) = ϕ(y), and let i ∈ I be such that
x ∈ Vi. Then αi(x) = 1, so αi(y) = 1, which implies that y ∈ Ui; but we also
have ϕi(x) = ϕi(y), so x = y since ϕi induces an embedding of Ui into Ei.

It can be shown9 that every separated manifold, countable at infinity and of
pure dimension n, embeds in R2n; for a weaker result, cf. Exercise 2.

9 See H. WHITNEY, The self-intersections of a smooth n-manifold in 2n-space,
Ann. of Math., 45 (1944), pp. 220-246.
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2. EQUIVARIANT EMBEDDING THEOREM

In this number, we assume that r �= ω.

Lemma 3. Let G be a compact topological group operating continuously on a
topological space X; let A be a subset of X, stable under G, and W a neigh-
bourhood of A. Then, there exists an open neighbourhood V of A stable under
G and contained in W.

Put F = X --W
◦

and V = X --GF. Then V is open (General Topology,
Chap. III, §4, no. 1, Cor. 1 of Prop. 1), stable under G, and A ⊂ V ⊂ W.

THEOREM 1. Let G be a compact Lie group, (g, x) 	→ gx a law of left
operation of class Cr of G on X, and A a compact subset of X. There exists
an analytic linear representation ρ of G on a finite dimensional vector space
E, a morphism ϕ : X → E of class Cr, compatible with the operations of G,
and an open neighbourhood U of A, stable under G, such that the restriction
of ϕ to U is an embedding.

Replacing A by the compact set GA, we are reduced to the case in which
A is stable under G.

Let E0 be a finite dimensional vector space such that there exists an el-
ement of C r(X;E0) that is an embedding in the neighbourhood of A (no. 1,
Prop. 4); the set P of morphisms having this property is a non-empty open
subset of C r(X;E0) (no. 1, Prop. 3). Consider the continuous linear represen-
tation of the compact group G on the space C r(X;E0) (§6, no. 4, Lemma 4).
By the Peter-Weyl theorem (Spectral Theory, in preparation), the union of
the finite dimensional subspaces stable under G is dense in C r(X;E0); hence,
there exists an element ϕ0 of P such that the maps x 	→ ϕ0(gx), for g ∈ G,
generate a finite dimensional vector subspace E1 of C r(X;E0), which is clearly
stable under the operation of G.

Take E to be the space HomR(E1,E0), ρ to be the representation of G on
E induced by the action on E1, and ϕ : X → E to be the map that associates
to x ∈ X the linear map ψ 	→ ψ(x) from E1 to E0. This is a morphism of class
Cr; for x ∈ X, g ∈ G, ψ ∈ E1, we have (denoting by τ(g) the automorphism
x 	→ gx of X):

ϕ(gx)(ψ) − ψ(gx) = ϕ(x)(ψ ◦ τ(g)) = (ρ(g)ϕ(x))(ψ).

Let α : HomR(E1,E0) → E0 be the linear map u 	→ u(ϕ0); we have
α ◦ ϕ = ϕ0, so ϕ is an embedding in the neighbourhood of A because ϕ0
is one. Hence, there exists an open neighbourhood U of A such that the
restriction of ϕ to U is an embedding; we can choose U stable under G by
Lemma 3, hence the theorem.

COROLLARY 1. Assume that X is compact. There exists an analytic linear
representation ρ of G on a finite dimensional vector space E and an embedding
ϕ : X → E such that ϕ(gx) = ρ(g)ϕ(x) for g ∈ G, x ∈ X.
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COROLLARY 2. Let H be a closed subgroup of G. There exists an analytic
linear representation of G on a finite dimensional vector space E and a point
v ∈ E with fixer H.

Apply Cor. 1 to the canonical operation of G on the compact manifold
G/H. This gives an analytic linear representation ρ : G → GL(E) and an
embedding ϕ : G/H → E such that ϕ(gx) = ρ(g)ϕ(x), g ∈ G, x ∈ G/H. Let
ē ∈ G/H be the class of e ∈ G, and v = ϕ(ē) its image. For all g ∈ G, we
have ρ(g)v = v ⇐⇒ ϕ(gē) = ϕ(ē) ⇐⇒ gē = ē ⇐⇒ g ∈ H.

COROLLARY 3. Assume that X is paracompact. There exists a real Hilbert
space E, a continuous unitary representation 10 ρ of G on E and an embedding
ϕ : X → E of class Cr such that ϕ(gx) = ρ(g)ϕ(x) for all g ∈ G and all x ∈ X.

The space X/G is locally compact (General Topology, Chap. III, §4, no. 5,
Prop. 11). Its connected components are the images of the connected com-
ponents of X, which are countable at infinity (General Topology, Chap. I,
§9, no. 10, Th. 5); thus, they are themselves countable at infinity, which im-
plies that X/G is paracompact (loc. cit.). Hence, there exists a locally finite
covering (U′

α)α∈I of X/G by relatively compact open sets, and a covering
(V′

α)α∈I such that V
′
α ⊂ U′

α for all α ∈ I (General Topology, Chap. IX, §4,
no. 3, Cor. 1 of Th. 3); taking the inverse image, we obtain two locally finite
coverings (Uα)α∈I and (Vα)α∈I of X by relatively compact open sets stable
under G, such that Vα ⊂ Uα for all α ∈ I.

For all α ∈ I, there exists a representation ρα of G on a finite dimensional
real vector space Eα and a morphism ϕα ∈ C r(X;Eα), compatible with the
operations of G, whose restriction to Uα is an embedding (Th. 1). For α ∈ I,
let aα be a numerical function of class Cr on X, equal to 1 on Vα and
to 0 outside Uα (Differentiable and Analytic Manifolds, Results, 5.3.6). Put
bα(x) =

∫
G aα(gx) dg for x ∈ X. The function bα is of class Cr, invariant

under G (§6, no. 4, Cor. 2), equal to 1 on Vα and to 0 outside Uα. Give each
Eα a Hilbert scalar product invariant under G (§1, no. 1), and R its canonical
Hilbert structure; let E be the Hilbert sum of the family (Eα ⊕ R)α∈I, and
let ρ be the representation of G on E induced by the ρα and the trivial
action of G on R. For x ∈ X, put ϕ(x) = (bα(x)ϕα(x), bα(x))α∈I. Then ϕ is
a morphism of class Cr from X to E, compatible with the operations of G;
we verify as in the proof of Prop. 4 (no. 1) that ϕ is an embedding, which
implies the corollary.

10That is (Spectral Theory, in preparation) a continuous linear representation (In-
tegration, Chap. VIII, §2, no. 1) such that the operator ρ(g) is unitary for all
g ∈ G.
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3. TUBES AND TRANSVERSALS

Lemma 4. Let H be a compact Lie group, ρ : H → GL(V) a continuous (hence
analytic) representation of H on a finite dimensional real vector space, and W
a neighbourhood of the origin in V. There exists an open neighbourhood B of
the origin, contained in W and stable under H, and an analytic isomorphism
u : V → B, compatible with the operations of H, such that u(0) = 0 and
Du(0) = IdV.

Choose a scalar product on V invariant under H (§1, no. 1). There exists a
real number r > 0 such that the open ball B of radius r is contained in W; it
is clearly stable under H. Put u(v) = r(r2 + ‖v‖2)−1/2v for all v ∈ V; then u
is a bijective analytic map from V to B, compatible with the operations of H,
and its inverse map w 	→ r(r2 − ‖w‖2)−1/2w is analytic. Moreover, u(0) = 0
and Du(0) = IdV.

PROPOSITION 5. Let H be a compact Lie group, (h, x) 	→ hx a law of left
operation of class Cr of H on X, and x a point of X fixed under the operation
of H. Then the group H operates linearly on the vector space T = Tx(X);
there exists an open embedding ϕ : T → X of class Cr, compatible with the
operations of H, such that ϕ(0) = x and T0(ϕ) is the identity map of T.

Let (U, ψ,E) be a chart of X at x, such that U is stable under H (no. 2,
Lemma 3) and such that ψ(x) = 0. Identify E with T by means of Tx(ψ),
and put

ψ�(y) =
∫

H
h.ψ(h−1y) dh for y ∈ U,

where dh is the Haar measure on H of total mass 1.
Then (§6, no. 4, Cor. 1) ψ� is a morphism of class Cr from U to T, com-

patible with the operations of H, such that ψ�(x) = 0 and dxψ
� = IdT. Hence,

there exists an open set U′ ⊂ U containing x, and an open neighbourhood
V of 0 in T, such that ψ� induces an isomorphism θ : U′ → V. Restricting
U′ and V if necessary, we can assume that they are stable under H and that
there exists an isomorphism u : T → V compatible with the operations of H
(Lemma 4). It now suffices to take ϕ = θ−1 ◦ u.

Recall (Differentiable and Analytic Manifolds, Results, 6.5.1) that if G is
a Lie group, H a Lie subgroup of G and Y a manifold on which H operates on
the left, we denote by G×HY the quotient of the product manifold G×Y by
the right operation ((g, y), h) 	→ (gh, h−1y) of H; this is a manifold on which
the Lie group G operates naturally on the left; the projection G×HY → G/H
is a bundle with fibre Y. Further, if Y is a finite dimensional vector space on
which H operates linearly, G×HY has a natural structure of vector G-bundle
with base G/H (Differentiable and Analytic Manifolds, Results, 7.10.2).

Let G be a Lie group operating properly on the manifold X (General Topol-
ogy, Chap. III, §4, no. 1, Def. 1) such that the law of operation (g, x) 	→ gx
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is of class Cr. Then, for every point x of X, the orbit Gx of x is a closed
submanifold of X, isomorphic to the Lie homogeneous space G/Gx, where
Gx is the fixer of x in G (cf. Chap. III, §1, no. 7, Prop. 14 (ii), and General
Topology, Chap. III, §4, no. 2, Prop. 4); this is a compact Lie group (loc. cit.).

PROPOSITION 6. Assume that the manifold X is paracompact; let x be a
point of X, Gx its fixer. There exists a finite dimensional analytic linear rep-
resentation τ : Gx → GL(W), and an open embedding α : G × GxW → X
of class Cr, compatible with the operations of G, that maps the class of
(e, 0) ∈ G × W to x.

Put T = Tx(X). Let W be a complementary subspace of Tx(Gx) in T,
stable under Gx (for example, the orthogonal complement of Tx(Gx) with
respect to a scalar product on T invariant under Gx). On the other hand, let
ϕ : T → X be a morphism with the properties stated in Prop. 5 (relative to
H = Gx). Consider the morphism λ : G×W → X defined by λ(g, w) = gϕ(w).
It induces by passage to the quotient a morphism µ : G × GxW → X of class
Cr, compatible with the operations of G, that maps the class z of (e, 0) to x.

We show that µ is étale at the point z. We have

dim(G × GxW) = dim(G) + dim(W) − dim(Gx)
= dim(Gx) + dim(W) = dim(T),

so it suffices to show that µ is submersive at z, or equivalently that λ is
submersive at (e, 0). But, the tangent map T(e,0)(λ) : Te(G)⊕W → T is equal
to Te(ρ(x)) + i, where ρ(x) is the orbital map g 	→ gx and i the canonical
injection from W to T; since Im Te(ρ(x)) = Tx(Gx), the map T(e,0)(λ) is
surjective, and µ is étale at z.

We are going to show that there exists an open neighbourhood Ω of Gz
in G × GxW, stable under G, such that µ induces an isomorphism from Ω
onto an open subset of X. This will imply the proposition: indeed, the inverse
image of Ω in G × W is stable under G, and hence is of the form G × B,
where B is an open subset of W containing the origin and stable under Gx;
restricting Ω if necessary, we can assume that there exists an isomorphism
u : W → B, compatible with the operations of Gx (Lemma 4). It is clear that
the composite morphism α : G × GxW

(Id,u)−→ G × GxB
µ−→ X satisfies

the conditions in the statement of the proposition.
Thus, the proposition is a consequence of the following lemma:

Lemma 5. Let Z be a separated manifold of class Cr, equipped with a law of
left operation m : G×Z → Z of class Cr, and µ : Z → X a morphism (of class
Cr) compatible with the operations of G. Let z be a point of Z, and x = µ(z).
Assume that µ is étale at z, and that the fixer of z in G is equal to the fixer
Gx of x. Then, there exists an open neighbourhood Ω of the orbit Gz, stable
under G, such that µ induces an isomorphism from Ω onto an open subset
of X.
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Since µ is compatible with the operations of G, it is étale at every point
of Gz; since the canonical map G/Gx → Gx is a homeomorphism, so is the
map from Gz to Gx induced by µ. Hence, it follows from Prop. 2 of no. 1
that there exists an open neighbourhood U of Gz in Z such that µ induces
an open embedding of U into X.

Since G operates properly on X, there exists an open neighbourhood V
of x and a compact subset K of G such that gV ∩ V = ∅ for g /∈ K (General
Topology, Chap. III, §4, no. 4, Prop. 7); in particular, e ∈ K. The set W1 of
points y ∈ Z such that Ky ⊂ U is open in Z: indeed, Z --W1 is the image of the
closed set (K×Z) --m−1(U) under the proper projection pr2 : K×Z → Z. Put
W = W1 ∩ µ−1(V); this is an open subset of Z, containing z, and satisfying
the following conditions:

(i) KW ⊂ U, and in particular W ⊂ U;
(ii) µ(W) ⊂ V.
Put Ω = GW and consider the restriction of µ to Ω. This is an étale

morphism, since every point of Ω is conjugate under G to a point of U. We
show that it is injective: let g, h in G and u, v in W be such that µ(gu) =
µ(hv). Put k = g−1h; then µ(u) = kµ(v), so k ∈ K by (ii). But kv and u
belong to U by (i); thus, u = kv because the restriction of µ to V is injective,
so gu = hv. Hence, the restriction of µ to Ω is injective, and consequently
(Differentiable and Analytic Manifolds, Results, 5.7.8) is an isomorphism onto
an open submanifold of X, which completes the proof.

Under the conditions of Prop. 6, the image of α is an open neighbourhood
T of the orbit A of x, equipped with the structure of vector bundle with base
A, for which the zero section is the orbit A itself. Such a neighbourhood is
called a linear tube (around the orbit in question). For each point a ∈ A, the
fibre Ya of this vector bundle is a submanifold of X, stable under the fixer Ga

of a, and such that the morphism from G × GaYa to X that maps the class
of (g, y) ∈ G × Ya to gy ∈ X induces a morphism of class Cr from G × GaYa

to T. Then Ya is said to be the transversal at a of the tube T. We remark
that the tangent space at a of Ya is canonically isomorphic to Ya and that it
is a complement of Ta(A) in Ta(X); thus, the vector bundle T with base A
is canonically isomorphic to the normal bundle of A in X (Differentiable and
Analytic Manifolds, Results, 8.1.3).

4. ORBIT TYPES

Let G be a topological group operating continuously on a separated topolog-
ical space E. For every point x of E, denote by Gx the fixer of x in G, and
assume that the canonical map G/Gx → Gx is a homeomorphism; this is
notably the case in the following two situations:
a) the topologies of G and E are discrete;
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b) G operates properly on E (General Topology, Chap. III, §4, no. 2,
Prop. 4), for example, G is compact (General Topology, Chap. III, §4, no. 1,
Prop. 2).

Denote by T the set of conjugacy classes of closed subgroups of G. For
every x ∈ E, we call the orbit type of x, or sometimes the type of x, the class
of Gx in T; two points of the same orbit are of the same orbit type (Algebra,
Chap. I, §5, no. 2, Prop. 2); two orbits are of the same type if and only if
they are isomorphic as G-sets (Algebra, Chap. I, §5, no. 5, Th. 1). For every
t ∈ T, denote by E(t) the set of points of E of type t, that is, the union of the
orbits of type t; this is a stable subset of E. For H ∈ t, we also write E(H) for
E(t); for example, E(G) is the closed subspace of E consisting of the points
fixed by G.

Give T the following preorder relation:

t ≤ t′ ⇐⇒ there exists H ∈ t and H′ ∈ t′ such that H ⊃ H′.

Let Ω and Ω′ be two orbits of G on E, t and t′ their types; then t ≤ t′ if
and only if there exists a G-morphism (necessarily surjective and continuous)
from Ω′ to Ω.

Let x, x′ be in E, and t, t′ their types; then t ≤ t′ if and only if there exists
a ∈ G such that aGx′a−1 ⊂ Gx.

Lemma 6. Let G be a Lie group.
a) Every decreasing sequence of compact subgroups of G is stationary.
b) Let H and H′ be two compact subgroups of G such that H ⊂ H′ and

such that there exists an isomorphism (of topological groups) from H′ to H.
Then H = H′.

c) With the relation t ≤ t′, the set T is a noetherian ordered set (Theory
of Sets, Chap. III, §6, no. 5, text preceding Prop. 7).
a) Let (Hi)i≥1 be a decreasing sequence of compact subgroups of G; these

are Lie subgroups of G (Chap. III, §8, no. 2, Th. 2). The sequence of integers
(dimHi)i≥1 is decreasing, hence stationary, so there exists an integer N such
that the subgroups Hi have the same identity component for i ≥ N. Then
the decreasing sequence of positive integers (Hi : (Hi)0)i≥N is stationary, so
Hi = Hi+1 for i sufficiently large.
b) Let f be an isomorphism from H′ to H. The sequence (fn(H))n≥0

is a decreasing sequence of compact subgroups of G, so fn(H) = fn+1(H)
for n sufficiently large, by a). Since f is an isomorphism, this implies that
f(H) = H = f(H′), so H = H′.
c) Let t, t′ ∈ T be such that t ≤ t′ and t′ ≤ t. Then, there exist H,H1 ∈ t

and H′,H′
1 ∈ t′ such that H ⊃ H′ and H1 ⊂ H′

1. Let g and g′ be two elements
of G such that H1 = gHg−1 and H′

1 = g′H′g′−1; put u = g′−1
g. Then

uHu−1 ⊂ H′ ⊂ H;
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by b), this implies that uHu−1 = H, so H′ = H and t′ = t. Thus, the set T is
ordered, and it is noetherian by a).

THEOREM 2. Let G be a Lie group operating properly on X, such that the
law of operation (g, x) 	→ gx is of class Cr. Assume that X is paracompact.

a) The map which associates to any point of X its orbit type has the
following semi-continuity property: let x ∈ X and let t ∈ T be its orbit type;
there exists a stable open neighbourhood U of x such that, for any u ∈ U, the
type of u is ≥ t.

b) For all t ∈ T, X(t) is a submanifold of X, the equivalence relation on
X(t) induced by the operation of G is regular (Differentiable and Analytic
Manifolds, Results, 5.9.5), and the morphism X(t) → X(t)/G is a bundle.

c) Assume that X/G is connected. Then the set of orbit types of elements
of X has a largest element τ ; moreover, X(τ) is a dense open subset of X and
X(τ)/G is connected.

Let x be a point of X and t ∈ T its type. To prove a) and b), we can
replace X by a stable open set containing x, and hence (Prop. 6) can assume
that X is of the form G × HW, where W is the space of a finite dimensional
analytic linear representation of a compact subgroup H of G, the point x
being the image p(e, 0) of (e, 0) ∈ G × W under the canonical projection
p : G×W → G×HW. If u = p(g, y) ∈ G×HW and a ∈ G, then au = u if and
only if there exists h ∈ H with (ag, y) = (gh−1, hy), that is, if a ∈ gHyg

−1.
Thus, Gu = gHyg

−1; in particular, Gx = H, so Gu is conjugate to a subgroup
of Gx, which proves that the type of u is ≥ t, hence a).

Moreover, u is of type t if and only if Gu is conjugate to H in G, or
equivalently that Hy is conjugate to H in G; by Lemma 6 b), this means that
Hy = H, and hence that y is fixed by H. If W′ is the vector subspace of W
consisting of the elements fixed by H, it follows that X(t) can be identified
with G × HW′, and hence also with G/H × W′, hence b).

To prove c), observe that the assumption that X/G is connected implies
that X is pure of finite dimension: indeed, for all k ≥ 0, denote by Xk the set
of points x ∈ X such that dimx X = k; then Xk is open and closed in X, and
stable under G, so X is equal to one of the Xk.

We now prove c) by induction on the dimension of X, the assertion being
clear for dim X = 0. Let τ be a maximal element among the orbit types of
the points of X (such an element exists by Lemma 6 c)). We shall prove the
following:
c′) For every subset A of X(t), open and closed in X(τ) and stable under

G, the closure A of A in X is open.
This assertion implies c). Indeed, note first that X(τ) is open in X, by

a); assertion c′) implies that X(τ) is open and closed in X, hence equal to
X since it is stable under G and X/G is connected. Let A be a non-empty
open and closed subset of X(τ) stable under G; by c′), A is open and closed
in X and stable under G, hence equal to X; this implies that A is dense in
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X(τ), hence equal to X(τ). Consequently, every non-empty open and closed
subset of X(τ)/G is equal to X(τ)/G, which proves that X(τ)/G is connected.
Finally, since X(τ) is dense in X, it follows from a) that every point of X is
of type ≤ τ ; in other words, τ is the largest element among the orbit types
of the points of X.

We now prove c′). We can assume that A is non-empty; let x ∈ A. It
suffices to prove that A is a neighbourhood of x. For this we can, as above,
assume that X = G × HW with H compact, x being the canonical image of
(e, 0). Assume first that H operates trivially on W: then X can be identified
with (G/H) × W, and X(τ)/G = X/G is homeomorphic to W, hence con-
nected; thus, A/G = X/G, so A = X. Assume from now on that H does not
operate trivially on W. Choose a scalar product on W invariant under the
compact group H; let S be the unit sphere in W (the set of vectors of norm 1).
Note that S/H is connected: indeed, if dim(W) ≥ 2, S is connected, and if
dim(W) = 1, S is a space of two points on which H operates non-trivially.
Put Y = G × HS; this is a closed submanifold of X, stable under G, of codi-
mension 1, and Y/G, which is homeomorphic to S/H, is connected. Thus, by
the induction hypothesis, there exists a maximal orbit type θ for Y, the set
Y(θ) is open and dense in Y, and Y(θ)/G is connected.

Consider the operation of R∗
+ on X induced by passage to the quotient

by the law of operation (λ, (g, w)) 	→ (g, λw) of R∗
+ on G×W. Two points of

X conjugate under this operation are of the same orbit type; consequently,
X(θ) contains R∗

+Y(θ), which is a dense open subset of X. But X(τ) is open
by a), and hence meets X(θ), so θ = τ .

On the other hand, the homeomorphism (λ,w) 	→ λw from R∗
+ × S to

W -- {0} (General Topology, Chap. VI, §2, no. 3, Prop. 3) induces a homeo-
morphism from R∗

+ × (S/H) to (R∗
+S)/H, hence also from R∗

+ × (Y/G) to
(R∗

+Y)/G, and from R∗
+ × (Y(θ)/G) to (R∗

+Y(θ))/G. Thus, (R∗
+Y(θ))/G is

connected, and X(τ)/G, which contains a connected dense subset, is itself
connected (General Topology, Chap. I, §11, no. 1, Prop. 1). Consequently, A
is equal to X(τ), hence is dense in X, and A is a neighbourhood of x. This
completes the proof of the theorem.

With the notations in Th. 2 c), the points of X(τ) are said to be principal
and their orbits are called principal orbits. If x is a point of X, and if G×GxW
is a linear tube in X around the orbit of x, the point x is principal if and only
if Gx operates trivially on W, that is, if the tube is of the form (G/Gx)×W.

Examples. 1) Let G be a connected compact Lie group, operating on itself by
inner automorphisms. The fixer of an element x of G is simply the centralizer
Z(x) of x in G; it contains every maximal torus containing x. It follows that
the largest orbit type τ is the conjugacy class of the maximal tori of G. The
open set G(τ) is the set of very regular elements of G (§5, no. 1, Remark). As-
sume that G is simply-connected. Then G(τ) is equal to the set Gr of regular
elements of G (§5, no. 2, Remark 2); if A is an alcove of a Cartan subalge-
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bra t of g = L(G), the composite map π : A
exp−→ Gr−→ Gr/Int(G) is

an isomorphism of analytic manifolds. Indeed, this is a homeomorphism (§5,
no. 2, Cor. of Prop. 2); let a ∈ A, put t = exp a and identify Tt(G) with g by
means of the translation γ(t). The tangent map Ta(π) can then be identified
with the composite of the canonical injection t → g and the quotient map
g → g/Im(Ad t−1 −1). Since t is regular, Ta(π) is an isomorphism, hence the
stated result (Differentiable and Analytic Manifolds, Results, 5.7.8).

2) Let E be a real euclidean affine space, H a set of hyperplanes of E, W
the group of displacements of E generated by the orthogonal reflections with
respect to the hyperplanes of H. Assume that H is stable under W and that
the group W, with the discrete topology, operates properly on E.

The preceding can be applied to the operation of W on E. The fixer
of a point x of E is the subgroup of W generated by the reflections with
respect to the hyperplanes of H containing x (Chap. V, §3, no. 3, Prop. 2).
Consequently, the largest orbit type τ is the class of the subgroup {IdE}, and
E(τ) is the union of the chambers of E. Note that in this case the covering
E(τ) → E(τ)/W is trivial, and in particular E(τ) is not connected if H is
non-empty.

APPENDIX I

STRUCTURE OF COMPACT GROUPS

1. EMBEDDING A COMPACT GROUP IN A PRODUCT OF
LIE GROUPS

PROPOSITION 1. Every compact topological group G is isomorphic to a
closed subgroup of a product of compact Lie groups.

Denote by Ĝ the set of classes of irreducible continuous unitary represen-
tations of G on finite dimensional complex Hilbert spaces (Spectral Theory,
in preparation). For all u ∈ Ĝ, let Hu be the space of u and ρu : G → U(Hu)
the homomorphism associated to u. By the Peter-Weyl theorem (Spectral
Theory, in preparation), the continuous homomorphism ρ = (ρu)u∈Ĝ from
G to

∏
u∈Ĝ

U(Hu) is injective; since G is compact, ρ induces an isomorphism

from G onto a closed subgroup of the group
∏

u∈Ĝ
U(Hu).

COROLLARY 1. Let V be a neighbourhood of the identity element of G. Then
V contains a closed normal subgroup H of G such that the quotient G/H is a
Lie group.

Let (Kλ)λ∈L be a family of compact Lie groups such that G can be iden-
tified with a closed subgroup of

∏
λ∈L

Kλ; for λ ∈ L, demote by pλ : G → Kλ
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the restriction to G of the canonical projection. There exists a finite subset
J ⊂ L, and for each λ ∈ J a neighbourhood Vλ of the origin in Kλ, such that
V contains

⋂
λ∈J

p−1
λ (Vλ). It now suffices to put H =

⋂
λ∈J

Ker(pλ).

Denote by (Hα)α∈I the decreasing filtered family of closed normal sub-
groups of G, such that the quotient G/Hα is a Lie group. Consider the pro-
jective system of compact Lie groups G/Hα (cf. General Topology, Chap. III,
§7, no. 2, Prop. 2).

COROLLARY 2. The canonical map G → lim
←−
α

G/Hα is an isomorphism of
topological groups.

Indeed, Cor. 1 implies that condition (PA) of General Topology, Chap. III,
§7, no. 2, is satisfied; the assertion now follows from Prop. 2 of loc. cit.

COROLLARY 3. G is a Lie group if and only if there exists a neighbourhood
of the identity element e of G that contains no normal subgroup distinct from
{e}.

The necessity of this condition has already been proved (Chap. III, §4,
no. 2, Cor. 1 of Th. 2), and the sufficiency is an immediate consequence of
Cor. 1.

2. PROJECTIVE LIMITS OF LIE GROUPS

Lemma 1. Let (Gα, fαβ) be a projective system of topological groups relative
to a filtered index set I, and G its limit. Assume that the canonical maps
fα : G → Gα are surjective.

a) The subgroups D(Gα) (resp. C(Gα), resp. C(Gα)0) form a projective
system of subsets of Gα.

b) We have D(G) = lim
←−
α

D(Gα) and C(G) = lim
←−
α

C(Gα).

c) If Gα is compact for all α ∈ I, then C(G)0 = lim
←−
α

C(Gα)0.

Let α, β be two elements of I, with α ≤ β. Then fαβ(D(Gβ)) ⊂ D(Gα),
and fαβ(C(Gβ)) ⊂ C(Gα) since fαβ is surjective; since fαβ is continuous,
it follows that fαβ(D(Gβ)) ⊂ D(Gα) and fαβ(C(Gβ)0) ⊂ C(Gα)0, hence
a). Since fα is surjective, fα(D(G)) = D(Gα) (Algebra, Chap. I, §6, no. 2,
Prop. 6), so D(G) = lim

←− D(Gα) (General Topology, Chap. I, §4, no. 4, Cor.

of Prop. 9). The surjectivity of fα also implies the inclusion fα(C(G)) ⊂
C(Gα) and hence C(G) ⊂ lim

←− C(Gα); the opposite inclusion is immediate.

Finally, assertion c) follows from b) and General Topology, Chap. III, §7,
no. 2, Prop. 4).

Lemma 2. Let (Sa)a∈A, (Tb)b∈B be two finite families of almost simple,
simply-connected Lie groups (Chap. III, § 9, no. 8, Def. 3), u :

∏
a∈A

Sa →
∏

b∈B
Tb
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a surjective morphism. Then there exist an injective map l : B → A and iso-
morphisms ub : Sl(b) → Tb (b ∈ B) such that u((sa)a∈A) = (ub(sl(b)))b∈B for
every element (sa)a∈A of

∏
a∈A

Sa.

Denote by sa (resp. tb) the Lie algebra of Sa (resp. Tb) for a ∈ A (resp.
b ∈ B), and consider the homomorphism L(u) :

∏
a∈A

sa →
∏

b∈B
tb. Its kernel

is an ideal of the semi-simple Lie algebra
∏

a∈A
sa, and hence is of the form∏

a∈A′′
sa, with A′′ ⊂ A (Chap. I, §6, no. 2, Cor. 1). Put A′ = A --A′′. By

restriction, L(u) induces an isomorphism f :
∏

a∈A′
sa →

∏
b∈B

tb. By loc. cit.,

for all a ∈ A′ the ideal f(sa) is equal to one of the tb; hence, there exists
a bijection l : B → A′ such that f(sl(b)) = tb for b ∈ B, and f induces
an isomorphism fb : sl(b) → tb. Since the groups Sa and Tb are simply-
connected, there exist isomorphisms ub : Sl(b) → Tb such that L(ub) = fb for
b ∈ B (Chap. III, §6, no. 3, Th. 3).

Denote by ũ :
∏

a∈A
Sa →

∏
b∈B

Tb the morphism defined by ũ((sa)a∈A) =

(ub(sl(b)))b∈B. By construction, L(ũ) = f = L(u), so ũ = u, which proves the
lemma.

Lemma 3. Under the hypotheses of Lemma 1, assume that the Gα are simply-
connected compact Lie groups. Then, the topological group G is isomorphic
to the product of a family of almost simple, simply-connected compact Lie
groups.

For all α ∈ I, the group Gα is the direct product of a finite family of
almost simple, simply-connected subgroups (Sλ

α)λ∈Lα
(Chap. III, §9, no. 8,

Prop. 28). Let β ∈ I, β ≥ α. By Lemma 2, there exists a map lβα : Lα → Lβ

such that fαβ(Slβα(λ)
β ) = Sλ

α for λ ∈ Lα. We have lγβ◦lβα = lγα for α ≤ β ≤ γ,
so (Lα, lβα) is an inductive system of sets relative to I. Let L be its limit;
the maps lβα being injective, Lα can be identified with a subset of L, so that
L =

⋃
α∈I

Lα.

Let λ ∈ L. Put Sλ
α = {1} when λ /∈ Lα, and denote by ϕλ

αβ : Sλ
β → Sλ

α the
morphism induced by fαβ ; this gives a projective system of topological groups
(Sλ

α, ϕ
λ
αβ), whose limit is isomorphic to Sλ. The canonical homomorphism of

topological groups

lim
←−
α∈I

( ∏
λ∈L

Sλ
α

)
→
∏

λ∈L

(
lim
←−
α∈I

Sλ
α

)

is bijective (Theory of Sets, Chap. III, §7, no. 3, Cor. 2); it is thus an isomor-
phism since the groups in question are compact. But the first of these groups
can be identified with G and the second with the product of the Sλ, hence
the lemma.
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3. STRUCTURE OF CONNECTED COMPACT GROUPS

Let G be a commutative compact group. Recall (Spectral Theory, Chap. II,
§1, no. 9, Prop. 11) that G is then isomorphic to the dual topological group
of a discrete commutative group Ĝ. The group G is connected if and only if
Ĝ is torsion-free (Spectral Theory, Chap. II, §2, no. 2, Cor. 1 of Prop. 4).

The following properties are equivalent (Spectral Theory, Chap. II, §2,
no. 2, Cor. 2 of Prop. 4 and §1, no. 9, Cor. 2 of Prop. 11):

(i) G is totally discontinuous;
(ii) Ĝ is a torsion group;
(iii) the topological group G is isomorphic to the limit of a projective

system of finite (commutative) groups, each having the discrete topology.
The proposition below generalizes Cor. 1 of Prop. 4 of §1, no. 4.

PROPOSITION 2. Let G be a connected compact group.
a) C(G)0 is a commutative connected compact group; D(G) is a connected

compact group, equal to its derived group.
b) The continuous homomorphism (x, y) 	→ xy from C(G)0 × D(G) to

G is surjective and its kernel is a central subgroup of C(G)0 × D(G) that is
compact and totally discontinuous.

c) There exists a family (Sλ)λ∈L of almost simple compact Lie groups and
a surjective continuous homomorphism

∏
λ∈L

Sλ → D(G), whose kernel is a

totally discontinuous, compact, central subgroup.
Let (Gα, fαβ) be a projective system of compact Lie groups, relative to a

filtered set I, such that G is isomorphic to lim
←− Gα and such that the canon-

ical maps fα : G → Gα are surjective (Cor. 2 of Prop. 1). For α ∈ I, let
πα : D̃(Gα) → D(Gα) be a universal covering of the group D(Gα). The fαβ

induce morphisms f̃αβ : D̃(Gβ) → D̃(Gα), and (D̃(Gα), f̃αβ) is a projective
system of topological groups satisfying the hypotheses of Lemma 3.

It follows from this lemma that the topological group lim
←− D̃(Gα) is iso-

morphic to the product of a family (Sλ)λ∈L of almost simple compact Lie
groups. By Lemma 1, the limit of the projective system of homomorphisms
(πα) can be identified with a continuous homomorphism π :

∏
λ∈L

Sλ → D(G),

which is surjective (General Topology, Chap. I, §9, no. 6, Cor. 2 of Prop. 8).
Now observe that the group

∏
λ∈L

Sλ is equal to its derived group: this

follows from §4, no. 5, Cor. of Prop. 10. The same is true for D(G), since π is
surjective. Consequently, D(G) ⊃ D(D(G)) = D(G). Thus, the group D(G)
is compact and equal to its derived group; this proves a), since the assertions
concerning C(G)0 are trivial.

On the other hand, the kernel of π :
∏

λ∈L
Sλ → D(G) can be identified

with lim
←− Ker(πα) (Algebra, Chap. II, §6, no. 1, Remark 1), and thus with a

compact, totally discontinuous, central subgroup, hence c).
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We prove b). For all α in I, the morphism sα : C(Gα)0 × D(Gα) → Gα

such that sα(x, y) = xy for x ∈ C(Gα)0, y ∈ D(Gα), is surjective and its
kernel is a finite central subgroup (§1, no. 4, Cor. 1 of Prop. 4). The sα form
a projective system of maps, whose limit can, by the preceding, be identified
with the homomorphism (x, y) 	→ xy from C(G)0 × D(G) to G. We now see
as before that this map is surjective and that its kernel is central and totally
discontinuous, hence b).

COROLLARY. Every solvable connected compact group is commutative.
Indeed, the derived group is then solvable and equal to its derived group

(Prop. 2 a)), hence reduced to the identity element.

APPENDIX II

REPRESENTATIONS OF REAL, COMPLEX OR
QUATERNIONIC TYPE

1. REPRESENTATIONS OF REAL ALGEBRAS

Denote by σ the automorphism α 	→ ᾱ of C; if W is a complex vector space,
denote by W the C-vector space σ∗(W) (that is, the group W with the law
of operation (α,w) 	→ ᾱw for α ∈ C, w ∈ W).

PROPOSITION 1. Let A be an R-algebra (associative and unital) and V a
finite dimensional simple A-module over R. Then, we must be in one of the
following three situations:
α) The commutant of V (Algebra, Chap. VIII, § 5, no. 1) is isomorphic

to R, and the A(C)-module V(C) is simple;
β) the commutant of V is isomorphic to C; the A(C)-module V(C) is the

direct sum of two non-isomorphic simple A(C)-submodules which are inter-
changed by σ ⊗ 1V;
γ) the commutant of V is isomorphic to H; the A(C)-module V(C) is the

direct sum of two isomorphic simple A(C)-submodules that are interchanged
by σ ⊗ 1V.

The commutant E of V is a field, a finite extension of R (Algebra,
Chap. VIII, §3, no. 2, Prop. 2), hence isomorphic to R, C or H (Algebra,
Chap. VIII, §15). The A(C)-module V(C) is semi-simple (Algebra, Chap. VIII,
§11, no. 4), and its commutant can be identified with C ⊗R E (Algebra,
Chap. VIII, §11, no. 2, Lemma 1).

If E is isomorphic to R, the commutant of V(C) is isomorphic to C, and
V(C) is a simple A(C)-module (Algebra, Chap. VIII, §11, no. 4).

If E is not isomorphic to R, it contains a field isomorphic to C; it follows
that V has an A(C)-module structure, denoted by Vc. Then Vc is a simple
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A(C)-module, and the C-linear map ψ : V(C) → Vc⊕V
c

such that ψ(α⊗v) =
(αv, ᾱv) for α ∈ C, v ∈ V, is an isomorphism (Algebra, Chap. V, §10, no. 4,
Prop. 8). Moreover, σ ⊗ 1V corresponds under this isomorphism to the R-
automorphism (v, v′) 	→ (v′, v) of Vc ⊕ V

c
, and hence interchanges the two

A(C)-submodules ψ−1(Vc) and ψ−1(V
c
).

The commutant E(C) of V(C) thus contains C × C, operating by homo-
theties on Vc ⊕ V

c
. There is no isomorphism of A(C)-modules from Vc to V

c

if and only if E(C) reduces to C × C, that is, if E is isomorphic to C. This
completes the proof.

PROPOSITION 2. Let A be an R-algebra (associative and unital), and W a
finite dimensional simple A(C)-module over C. Then, we must be in one of
the following three situations:

a) There exists an A(C)-isomorphism θ from W to W with θ ◦ θ = 1W.
Then the set V of fixed points of θ is an R-structure on W, and a simple
A-module with commutant R.1V. Moreover, W[R] is the direct sum of two
isomorphic simple A-modules.

b) The A(C)-modules W and W are not isomorphic; then W[R] is a simple
A-module with commutant C.1W.

c) There exists an A(C)-isomorphism θ from W to W with θ ◦ θ = −1W.
Then the A-module W[R] is simple, and its commutant is the field C.1W⊕C.θ,
which is isomorphic to H.

The complex vector space HomA(C)(W,W) is of dimension ≤ 1 (Algebra,
Chap. VIII, §3, no. 2); if θ ∈ HomA(C)(W,W), the endomorphism θ◦θ of W is
a homothety, with ratio α ∈ C. For all w ∈ W, we have αθ(w) = θ◦θ◦θ(w) =
θ(αw) = ᾱθ(w), so α is real. If θ′ = λθ, with λ ∈ C, then θ′ ◦ θ′ = |λ|2θ ◦ θ;
thus, exactly one of the following three possibilities is realised:
a) There exists θ ∈ HomA(C)(W,W) with θ ◦ θ = 1W;
b) HomA(C)(W,W) = {0};
c) There exists θ ∈ HomA(C)(W,W) with θ ◦ θ = −1W.
In case a), the set V of fixed points of θ is an R-structure on W (Algebra,

Chap. V, p. 61, Prop. 7); since V(C) is isomorphic to W, the A-module V is
simple with commutant R.1V (Prop. 1), and W[R] is not simple.

Conversely, if W[R] is not simple, let V be a simple A-submodule of W[R];
since the A(C)-module W is simple, V + iV = W and V ∩ iV = {0}, that is,
W = V ⊕ iV. Thus, V is an R-structure on W, and the isomorphism θ from
W to W such that θ(v + iv′) = v − iv′ for v and v′ in V satisfies θ ◦ θ = 1W.

Consequently, in cases b) and c), the A-module W[R] is simple; by Prop. 1,
its commutant E is isomorphic to C in case b), and to H in case c). Moreover,
it is clear that E contains C.1W, and C.θ in case c), hence the proposition.

With the assumptions in the proposition, the A(C)-module W is said to
be of real, complex or quaternionic type (relative to A) in case a), b) or c),
respectively.
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For K = R or C, denote by SK(A) the set of classes of finite dimensional
simple A(K)-modules over K. The group Γ = Gal(C/R) operates on SC(A);
the two preceding propositions establish a bijective correspondence between
SR(A) and the quotient set SC(A)/Γ .

2. REPRESENTATIONS OF COMPACT GROUPS

Let G be a compact topological group, and let ρ : G → GL(W) be a contin-
uous representation of G on a finite dimensional complex vector space. We
shall say that ρ is irreducible of real, complex or quaternionic type if this is
the case for the C(G)-module W (relative to the algebra A = R(G)). Let H
be a separating positive hermitian form on W, invariant under G.

PROPOSITION 3. Assume that ρ is irreducible.
a) The representation ρ is of real type if and only if there exists a non-zero

symmetric bilinear form B on W, invariant under G. In this case the form B
is separating; the set V of w ∈ W such that H(w, x) = B(w, x) for all x ∈ W
is an R-structure on W invariant under G.

b) The representation ρ is of complex type if and only if there exists no
non-zero bilinear form on W invariant under G.

c) The representation ρ is of quaternionic type if and only if there exists
a non-zero alternating bilinear form on W, invariant under G; such a form
is necessarily separating.

For θ ∈ HomC(G)(W,W) and x, y ∈ W, put Bθ(x, y) = H(θx, y). Then Bθ

is a bilinear form on W, invariant under G, and separating if θ is non-zero.
Denote by B(W)G the space of bilinear forms on W invariant under G; the
map θ 	→ Bθ from HomC(G)(W,W) to B(W)G is an isomorphism of C-vector
spaces. This implies, in particular, assertion b).

Let θ be a C(G)-isomorphism from W to W such that θ ◦ θ = αW, with
α ∈ {−1,+1} (Prop. 2); since B(W)G is of dimension 1, there exists ε ∈ C
such that

Bθ(y, x) = εBθ(x, y) for all x, y in W.

Iterating, we obtain Bθ(y, x) = εBθ(x, y) = ε2Bθ(y, x), so ε2 = 1 and
ε ∈ {−1,+1}. Moreover, for x in W,

H(θx, θx) = Bθ(x, θx) = εBθ(θx, x) = εH(θ ◦ θ(x), x) = εαH(x, x)

so εα > 0 since H is positive, that is, ε = α. Assertions a) and c) now follow
from Prop. 2.

Denote by dg the Haar measure of total mass 1 on G.

Lemma 1. Let WG be the subspace of W consisting of the elements invariant
under G. The endomorphism

∫
G ρ(g) dg of W is a projection with image WG,

compatible with the operations of G. In particular,
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dimWG =
∫

G
Tr ρ(g) dg.

Put p =
∫
G ρ(g) dg; for h ∈ G,

ρ(h) ◦ p =
∫

G
ρ(hg) dg =

∫
G
ρ(g) dg = p

and similarly p◦ρ(h) = p. Thus, p is compatible with the operations of G, and
its image is contained in WG. If w ∈ WG, we have p(w) =

∫
G ρ(g)w dg = w,

hence the lemma.

Lemma 2. Let u be an endomorphism of a finite dimensional vector space E
over a field K. Then

Tru2 = TrS2(u) − Tr ∧∧2(u).

Let χu(X) =
n∏

i=1
(X − αi) be a decomposition of the characteristic poly-

nomial of u into linear factors in a suitable extension of K. We have Tru2 =∑
i
α2

i , Tr ∧∧2(u) =
∑
i<j
αiαj , TrS2(u) =

∑
i≤j
αiαj (cf. Algebra, Chap. VII, §5,

no. 5, Cor. 3), hence the result.

PROPOSITION 4. Assume that ρ is irreducible. Then, ρ is of real (resp.
complex, resp. quaternionic) type if and only if the integral

∫
G Tr ρ(g2) dg is

equal to 1 (resp. 0, resp. −1).
Denote by ρ̌ the contragredient representation of ρ on W∗ (defined by

ρ̌(g) = tρ(g−1)). Applying Lemma 2 to ρ̌(g) and integrating over G gives∫
G

Tr ρ(g2) dg =
∫

G
Tr tρ(g−2) dg =

∫
G

TrS2(ρ̌(g))dg −
∫

G
Tr ∧∧2(ρ̌(g))dg

hence, by Lemma 1,∫
G

Tr ρ(g2)dg = dim(S2W∗)G − dim(∧∧2W∗)G.

But S2W∗ (resp. ∧∧2W∗) can be identified with the space of symmetric (resp.
alternating) bilinear forms on W. Thus, the proposition follows immediately
from Prop. 3.



EXERCISES

§1

1) Let G be a finite dimensional, connected, commutative complex Lie group,
and let V be its Lie algebra.
a) The map expG : V → G is a surjective homomorphism; its kernel Γ is a
discrete subgroup of V.
b) G is compact if and only if Γ is a lattice in V; then G is said to be a
complex torus.
c) Let Γ be the discrete subgroup of C2 generated by the elements e1 =
(1, 0), e2 = (0, 1), e3 = (

√
2, i); put G = C2/Γ , H = (Γ + Ce1)/Γ . Show that

H is isomorphic to C∗, that G/H is a complex torus of dimension 1, but that
G contains no non-zero complex torus.
d) Every finite dimensional connected compact complex Lie group is a com-
plex torus (cf. Chap. III, §6, no. 3, Prop. 6).

2) Let H be the set of complex numbers τ such that I(τ) > 0.
a) Show that an analytic law of left operation of the discrete group SL(2,Z)

on H can be defined by putting γτ = aτ+b
cτ+d for all γ =

(
a b
c d

)
∈ SL(2,Z)

and τ ∈ H.
b) For τ ∈ H, denote by Tτ the complex torus C/(Z + Zτ). Show that the
map τ 	→ Tτ induces by passage to the quotient a bijective map from the set
H/SL(2,Z) to the set of isomorphism classes of complex tori of dimension
one.

3) Let G be an integral subgroup of O(n) such that the identity representation
of G on Rn is irreducible. Show that G is closed (write G in the form K× N,
where K is compact and N is commutative, and prove that dim N ≤ 1).

4) Show that the conditions in Prop. 3 (no. 3) are equivalent to each of the
following conditions:
(ii′) The group Ad(G) is relatively compact in Aut(L(G)).
(ii′′) The group Ad(G) is relatively compact in End(L(G)).
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(v) Every neighbourhood of the identity element e of G contains a neigh-
bourhood of e stable under inner automorphisms (cf. Integration, §3, no. 1,
Prop. 1).

5) Let A be the closed subgroup of GL(3,R) consisting of the matrices (aij)
such that aij = 0 for i > j, aii = 1 for 1 ≤ i ≤ 3, a12 ∈ Z, a23 ∈ Z; let
θ ∈ R--Q and let B be the subgroup of A consisting of the matrices (aij)
such that a12 = a23 = 0 and a13 ∈ θZ, and let G = A/B.
a) Show that G is a Lie group of dimension one, whose Lie algebra is compact.
b) Show that C(G) = D(G) = G0, and that G0 is the largest compact sub-
group of G.
c) Show that G is not the semi-direct product of G0 with any subgroup.

6) Show that a (real) Lie algebra is compact if and only if it admits a basis
(eλ)λ∈L for which the structure constants γλµν are anti-symmetric in λ, µ, ν
(that is, they satisfy γλµν = −γµλν = −γλνµ).

7) An involutive Lie algebra is a (real) Lie algebra g equipped with an auto-
morphism s such that s ◦ s = 1g. Denote by g+ (resp. g−) the eigenspace of
g relative to the eigenvalue +1 (resp. −1) of s.
a) Show that g+ is a subalgebra of g and that g− is a g+-module; we have
[g−, g−] ⊂ g+, and g+ and g− are orthogonal with respect to the Killing
form.
b) Show that the following conditions are equivalent:
(i) The g+-module g− is simple.
(ii) The algebra g+ is maximal among the subalgebras of g distinct from g.
If these conditions are satisfied, and if g+ contains no non-zero ideal of g, the
involutive Lie algebra (g, s) is said to be irreducible.
c) Assume that g is semi-simple. Show that the following conditions are equiv-
alent:
(i) The only ideals of g stable under s are {0} and g;
(ii) g is either simple or the sum of two simple ideals interchanged by s.
Show that these conditions are satisfied when (g, s) is irreducible (observe
that g is the direct sum of ideals stable under s and satisfying (ii)).
d) Assume from now on that g is compact semi-simple. Show that the involu-
tive Lie algebra (g, s) is irreducible if and only if s is different from the identity
and (g, s) satisfies the equivalent conditions in c) (let p be a g+-submodule of
g− and q its orthogonal complement with respect to the Killing form; observe
that [p, q] = 0 and deduce that p + [p, p] is an ideal of g).
e) Prove that g is the direct sum of a family (gi)0≤i≤n of ideals stable under
s, such that g0 is fixed by s and such that the involutive algebras (gi, s|gi)
are irreducible for 1 ≤ i ≤ n.

8) Let G be a compact semi-simple Lie group, u an automorphism of G of
order two, K the identity component of the set of fixed points of u, and X
the manifold G/K (the homogeneous space X is then said to be symmetric).
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a) Show that, if G is almost simple, then K is maximal among the con-
nected closed subgroups of G distinct from G; in other words (Chap. III, §3,
Exerc. 8), the operation of G on X is primitive. The symmetric space X is
then said to be irreducible.
b) Assume that the manifold X is simply-connected; show that it is then
isomorphic to a product of manifolds each of which is isomorphic either to a
Lie group or to an irreducible symmetric space.

9) Let a be a real or complex Lie algebra, and let G be a compact subgroup
of Aut(a). Prove that a has a Levi subalgebra (Chap. I, §6, no. 8, Def. 7)
stable under G (reduce to the case in which the radical of a is abelian, and
use Integration, Chap. VII, §3, no. 2, Lemma 2).

§2

1) Let G be a connected compact Lie group, g an element of G.
a) Show that there exists an integer n ≥ 1 such that the centralizer Z(gn) is
connected (prove that, for suitable n, the closed subgroup generated by gn is
a torus).
b) Assume that the dimension of Ker(Ad gn − 1) is independent of n (n ≥ 1).
Prove that Z(g) is connected.
c) If gn is regular for all n ≥ 1, Z(g) is connected.

2) Show that every connected compact Lie group G is the semi-direct product
of its derived group by a torus (observe that, if T is a maximal torus of G,
then D(G) ∩ T is a torus).

3) Let G be a compact Lie group, g its Lie algebra, s a vector subspace of g
such that, for x, y, z in s, we have [x, [y, z]] ∈ s. Let L be the set of commu-
tative subalgebras of g contained in s. Show that the identity component of
the stabilizer of s in G operates transitively on the set of maximal elements
of L (argue as in the proof of Th. 1).

4) Let G be a connected compact Lie group, T a maximal torus of G and S
a sub-torus of T. Denote by Σ (resp. F) the stabilizer (resp. the fixer) of S
in WG(T).
a) Prove that the group NG(S)/ZG(S) is isomorphic to the quotient Σ/F.
b) Let H be a connected closed subgroup of G, such that S is a maximal torus
of H. Show that every element of WH(S), considered as an automorphism of
S, is the restriction to S of an element of Σ.

5) Let G be a connected compact Lie group and S a torus of G. Show that
the following conditions are equivalent:
(i) S is contained in a unique maximal torus;
(ii) ZG(S) is a maximal torus;
(iii) S contains a regular element.
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6) Let G be a connected compact Lie group, T a maximal torus of G, g
(resp. t) the Lie algebra of G (resp. T), and i : t → g the canonical injec-
tion. Prove that the map ti : g∗ → t∗ induces by passage to the quotient a
homeomorphism from g∗/G to t∗/WG(T).

¶ 7) Let X and Y be two real manifolds of class Cr (1 ≤ r ≤ ω), separated,
connected and of dimension n; let f : X → Y be a proper morphism of class
Cr, equipped with an orientation F (Differentiable and Analytic Manifolds,
Results, 10.2.5).
a) Show that there exists a unique real number d such that

∫
X f

∗α = d
∫
Y α

for every twisted differential form α of degree n on Y of class C1 and of
compact support (use Differentiable and Analytic Manifolds, Results, 11.2.4).
b) Let y ∈ Y be such that f is étale at every point of f−1(y). For x ∈ f−1(y),
put νx(f) = 1 (resp. νx(f) = −1) if the maps Fx and f̃x (Differentiable
and Analytic Manifolds, Results, 10.2.5, Example b)) from Or(Tx(X)) to
Or(Ty(Y)) coincide (resp. are opposite). Prove that d =

∑
x∈f−1(y)

νx(f) and,

in particular, that d ∈ Z.
We call d the degree of f and denote it by deg f . If X = Y and X is orientable,
we can take for F the orientation that preserves the orientation of X.
c) Show that, if deg f �= 0 then f is surjective.
d) If there exists x ∈ X such that f−1(f(x)) = {x} and such that f is étale
at x, then f is surjective.

8) Let G be a connected compact Lie group, dg the normalized Haar measure
on G.
a) Let f : G → G be a morphism of manifolds; for g ∈ G, the differential
Tg(f) can be identified by left translations with a linear map from L(G) to
L(G). Prove the formulas

deg f.
∫

G
ϕ(g) dg =

∫
G
ϕ(f(g))det Tg(f) dg

for every integrable (complex-valued) function ϕ on G, and

deg f =
∫

G
det Tg(f) dg.

b) Let ψk : G → G be the map g 	→ gk. Prove the formula

degψk =
∫

G
det(1 + Ad g + · · · + (Ad g)k−1)dg.

c) Let T be a maximal torus of G, and Tr the set of regular elements of T.
Show that exp−1

G (Tr) ⊂ L(T) and ψ−1
k (Tr) ⊂ Tr for all k ≥ 1.

d) Show that degψk = kdim(T); deduce the equality
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G

det(1 + Ad g + · · · + (Ad g)k−1)dg = kdim(T).

9) This exercise is devoted to another proof of Th. 2. Let G be a connected
compact Lie group, T a maximal torus of G, N its normalizer. Denote by
G ×N T the quotient manifold of G × T by N for the operation defined by
(g, t).n = (gn, n−1tn) (Differentiable and Analytic Manifolds, Results, 6.5.1).
a) Show that the morphism (g, t) 	→ gtg−1 from G×T to G defines by passage
to the quotient an analytic morphism f : G ×N T → G.
b) Let θ be an element of T whose set of powers is dense in T (General
Topology, Chap. VII, §1, no. 3, Cor. 2 of Prop. 7). Show that f−1(θ) = {x},
where x is the class of (e, θ) in G ×N T, and that f is étale at x.
c) Conclude from Exerc. 7 d) that f is surjective, and deduce another proof
of Th. 2.

10) ∗ In this exercise, we use the following result from algebraic topology
(Lefschetz’s formula11): let X be a finite dimensional compact manifold, and f
a morphism from X to itself. Assume that the set F of points x of X such that
f(x) = x is finite, and that for all x ∈ F the number δ(x) = det(1 − Tx(f))
is non-zero. If Hi(f) denotes the endomorphism of the vector space Hi(X,R)
induced by f (for i ≥ 0), then∑

x∈F

δ(x)/|δ(x)| =
∑
i≥0

(−1)iTr Hi(f).

Let G be a connected compact Lie group, T a maximal torus of G. For
g ∈ G, denote by τ(g) the automorphism of the manifold G/T induced by
left multiplication by g.
a) Let t be an element of T such that the subgroup generated by t is dense
in T. Show that the fixed points of τ(t) are the classes nT for n ∈ NG(T).
Deduce that (NG(T) : T) =

∑
i

(−1)i dimR Hi(G/T,R).

b) Let g be an arbitrary element of G; show that the set of fixed points of
τ(g) is non-empty, and deduce another proof of Th. 2.∗

11) Let G be a compact Lie group. A subgroup S of G is said to be of type
(C) if it is equal to the closure of a cyclic subgroup that is of finite index in
its normalizer.
a) Let S be a subgroup of type (C); show that S0 is a maximal torus of G0,
and that S is the direct product of S0 and a finite cyclic subgroup.
b) Prove that every element g of G is contained in a subgroup of type (C)
(consider the group generated by g and a maximal torus of Z(g)0).

11For a proof of this theorem, see for example S. LEFSCHETZ, Intersections and
transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28 (1926),
pp. 1-49.
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c) Let S be a subgroup of type (C), and s an element of S whose set of powers
is dense in S. Show that every element of sG0 is conjugate under Int(G0) to
an element of sS0 (use the method of Exerc. 10).
d) Denote by p : G → G/G0 the quotient map. Show that the map S 	→ p(S)
induces a bijection from the set of conjugacy classes of subgroups of G of
type (C) to the set of conjugacy classes of cyclic subgroups of G/G0.
e) Let S be a subgroup of G of type (C); denote by Sρ the set of elements of
S whose class in S/S0 generates S/S0. Show that two elements of Sρ that are
conjugate in G are conjugate in NG(S).

§3

1) Let G be a compact Lie group of dimension > 0. Then every finite commu-
tative subgroup of G is cyclic if and only if G is isomorphic to U, SU(2,C)
or the normalizer of a maximal torus in SU(2,C).

2) Denote by K one of the fields R, C or H, and by n an integer ≥ 1. Give
the space Kn

s the usual hermitian form.
a) Show that U(n,K) is a compact real Lie group.
b) Show that the sphere of radius 1 in Kn

s is a (real) Lie homogeneous space
for U(n,K); the fixer of a point is isomorphic to U(n− 1,K).
c) Deduce that the groups U(n,C) and U(n,H) are connected, and that
O(n,R) has two connected components.
d) Show that the groups SO(n,R) and SU(n,C) are connected.
e) Show that the group O(n,R) (resp. U(n,C)) is the semi-direct product
of Z/2Z (resp. T) by SO(n,R) (resp. SU(n,C)).

3) a) Show that the Lie algebra of the real Lie group U(n,H) is the set of
matrices x ∈ Mn(H) such that tx̄ = −x, with the bracket [x, y] = xy − yx.
Denote it by u(n,H).
b) Identify C with the subfield R(i) of H, and C2n with Hn by the iso-
morphism (z1, . . . , z2n) 	→ (z1 + jzn+1, . . . , zn + jz2n). Prove the equality
U(n,H) = U(2n,C) ∩ Sp(2n,C).
c) Deduce from b) that every compact simple (real) Lie algebra of type Cn is
isomorphic to u(n,H).

4) Let n be an integer ≥ 1.
a) Show that the group SU(n,C) is simply-connected (use Exerc. 2).
b) Show that the centre of SU(n,C) consists of the matrices λ.In for λ ∈ C,
λn = 1.
c) Every almost simple compact Lie group of type An is isomorphic to the
quotient of SU(n + 1,C) by the cyclic subgroup consisting of the matrices
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ζk.In+1 (0 ≤ k < d), where d divides n + 1 and ζ is a primitive dth root of
unity.
d) Prove that the group SL(n,C) is simply-connected (use Chap. III, §6,
no. 9, Th. 6).

5) For n an integer ≥ 1, denote by Spin(n,R) the reduced Clifford group
associated to the usual quadratic form on Rn (Algebra, Chap. IX, §9, no. 5).
a) Show that Spin(n,R) is a compact Lie group and that the surjective
homomorphism ϕ : Spin(n,R) → SO(n,R) (loc. cit.) is analytic, with kernel
{+1,−1}.
b) Show that, for n ≥ 2, Spin(n,R) is connected and simply-connected (use
Exerc. 2). The group π1(SO(n,R)) is cyclic of order 2.
c) Let Zn be the centre of Spin(n,R). Show that Zn = {+1,−1} if n is odd,
and Zn = {+1,−1, ε,−ε} if n is even, where ε = e1 . . . en is the product of
the elements of the canonical basis of Rn; the group Z2r is isomorphic to
(Z/2Z)2 (resp. to Z/4Z) if r is even (resp. odd).
d) Prove that every almost simple connected compact Lie group of type Bn

(n ≥ 2) is isomorphic to Spin(2n+ 1,R) or SO(2n+ 1,R).
e) If r is odd (resp. even) and ≥ 2, every almost simple connected com-
pact Lie group of type Dr is isomorphic to Spin(2r,R), SO(2r,R) or
SO(2r,R)/{±I2r} (resp. to one of the preceding groups or Spin(2r,R)/{1, ε}).

6) a) Show that the compact Lie group U(n,H) is connected and simply-
connected (use Exerc. 2), and that its centre is {±In}.
b) Every almost simple connected compact Lie group of type Cn (n ≥ 3) is
isomorphic to U(n,H) or U(n,H)/{±In}.

7) Let A be the algebra of Cayley octonions (Algebra, Chap. III, App., no. 3),
with the basis (ei)0≤i≤7 of loc. cit. Denote by V the subspace of pure oc-
tonions generated by e1, . . . , e7 and by E the subspace of V generated by
e1, e2, e3, e5, e6, e7. Identify the subalgebra of A generated by e0, e4 with the
field C of complex numbers, and denote by G the topological group of auto-
morphisms of the unital algebra A.
a) Denote by Q the quadratic form on V induced by the Cayley norm, so
that (ei)1≤i≤7 is an orthonormal basis of V. Prove that the map σ 	→ σ|V is
an injective homomorphism from G to the group SO(Q), which is isomorphic
to SO(7,R).
b) Show that the multiplication of A gives E the structure of a C-vector space
of dimension 3, of which {e1, e2, e3} is a basis. Denote by Φ the hermitian
form on E for which this basis is orthonormal. Let H be the fixer of e4 in G.
Show that the map σ 	→ σ|E is an isomorphism from H to the group SU(Φ),
which is isomorphic to SU(3,C). The map σ 	→ σ(e4) induces an embedding
of G/H in the sphere of V, which is isomorphic to S6.
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c) Let T be the torus in H consisting of the automorphisms σ such that
σ(e0) = e0, σ(e1) = αe1, σ(e2) = βe2, σ(e3) = γe3, σ(e4) = e4, σ(e5) =
ᾱe5, σ(e6) = β̄e6, σ(e7) = γ̄e7, where α, β, γ are three complex numbers of
modulus 1 such that αβγ = 1. Let N be the normalizer of T in G; show that
N/T is of order 12 (note that each element of N must stabilize the set of the
±ei, i �= 0); deduce that G is of rank 2.
d) Show that G is connected semi-simple of type G2 and that G/H can be
identified with S6 (show that G0 �= H; deduce that G0 is of type G2, then
use a dimension argument). Every compact group of type G2 is isomorphic
to G.

8) Let G be an almost simple, connected, compact Lie group of type
An,Bn,Cn,Dn or G2. Prove that π2(G) = 0 and π3(G) = Z (use Exerc. 2 to
7 and the fact that πi(Sn) is zero for i < n and cyclic for i = n (cf. General
Topology, Chap. XI).

9) Let g be a compact Lie algebra, t a Cartan subalgebra of g; let (Xα)α∈R
be a Chevalley system in the split reductive algebra (gC, tC) such that Xα

and X−α are conjugate (with respect to g) for all α ∈ R.
a) Let T be a Z-submodule of tC containing the iHα (α ∈ R) and such that
α(T) ⊂ Zi for all α ∈ R. Show that the Z-submodule G of gC generated by
T and the elements uα and vα (α ∈ R) is a Z-Lie subalgebra of g.
b) Assume that g (resp. t) is the Lie algebra of a compact group G (resp.
of a maximal torus T of G). Let Γ (T) be the kernel of the homomorphism
expT : t → T. Show that the Z-module (2π)−1Γ (T) satisfies the hypotheses
of a).
c) Let 〈 , 〉 be an invariant scalar product on g; let µ (resp. τ) be the Haar
measure on g (resp. t) corresponding to the Lebesgue measure when g (resp.
t) is identified with a space Rn by means of an orthonormal basis. Denote
also by µ (resp. τ) the measure on g/G (resp. t/T) that is the quotient of µ
(resp. τ) by the normalized Haar measure on G (resp. T). Prove the formula
µ(g/G) = τ(t/T).

∏
α∈R+

〈iHα,iHα〉.

§4

1) Take G to be one of the groups SU(n,C) or U(n,H); identify gC with
sl(n,C) or sp(2n,C), respectively, cf. §3, no. 4 and Exerc. 3. We use the
notations of Chap. VIII, §13, nos. 1 and 3, with k = C.
a) Show that the subgroup T of G consisting of the diagonal matrices with
complex coefficients is a maximal torus, and that L(T)(C) = h.
b) Identify X(T) with a subgroup of h∗ by means of the homomorphism δ.
Show that the linear forms εi and the dominant weights�j belong to X(T). If
t = diag(t1, . . . , tn) ∈ T, then εi(t) = ti and �j(t) = t1 . . . tj for 1 ≤ i, j ≤ n.
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c) Deduce from b) another proof of the fact that the groups SU(n,C) and
U(n,H) are simply-connected (cf. §3, Exerc. 4 and 6).

2) Take G = SO(n,R), with n ≥ 3; put n = 2l + 1 if n is odd, and n =
2l if n is even. The algebra gC can be identified with o(n,C); we use the
notations of Chap. VIII, §13, nos. 2 and 4. Denote by (fi)1≤i≤n the canonical
basis of Rn. Put ej = 1√

2
(f2j−1 + if2j) and e−j = 1√

2
(f2j−1 − if2j) for

1 ≤ j ≤ l, and e0 = i
√

2f2l+1 if n is odd; choose the Witt basis of Cn given
by e1, . . . , el, e−l, . . . , e−1 if n is even (resp. e1, . . . , el, e0, e−l, . . . , e−1 if n is
odd).
a) Let Hi be the subspace of Rn generated by f2i−1 and f2i (1 ≤ i ≤ l); show
that the subgroup of G consisting of the elements g such that g(Hi) ⊂ Hi and
det(g|Hi) = 1 for 1 ≤ i ≤ l is a maximal torus T of G, and that L(T)(C) = h.
b) Identify X(T) with a subgroup of h∗ by means of δ. Show that the linear
forms εi belong to X(T); if t ∈ T and if the restriction of t to Hj is a
rotation through an angle θj , then εj(t) = eiθj . The weights �1, . . . , �l−2;
2�l−1, 2�l, �l−1 ±�l belong to X(T). If n is odd, �l−1 belongs to X(T).
c) Let G̃ = Spin(n,R) and let ϕ : G̃ → G be the canonical covering. For

θθ = (θ1, . . . , θl) ∈ Rl, put t(θθ) =
l∏

i=1
(cos θi − f2i−1f2i sin θi) ∈ G̃. Show that

the set of the t(θθ) for θθ ∈ Rl is a maximal torus T̃ of G̃, such that ϕ(T̃) = T.
If X(T̃) is identified with a subgroup of h∗, we have εj(t(θθ)) = e2iθj .

d) Show that the weights�l−1 and�l belong to X(T̃); deduce that Spin(n,R)
is simply-connected (cf. §3, Exerc. 5).

3) a) Show that the automorphism σ : A 	→ A of SU(n,C) is not inner for
n ≥ 3. Every non-inner automorphism of SU(n,C) is of the form (Int g) ◦ σ,
g ∈ SU(n,C).
b) Show that for every almost simple connected compact group G of type An

(n ≥ 2), the group Aut(G)/Int(G) is cyclic of order 2 (cf. §3, Exerc. 4).

4) Let n be an integer ≥ 2.
a) Let g ∈ O(2n,R) with det g = −1; show that the automorphism Int g of
O(2n,R) induces an automorphism of SO(2n,R) that is not inner.
b) For n ≥ 2, the group Aut(SO(2n,R)) is equal to Int(O(2n,R)) (which is
isomorphic to O(2n,R)/{±I2n}).
c) Establish an analogous result for Spin(2n,R) and SO(2n,R)/{±I2n}. If
n is even and �= 2, every automorphism of the group Spin(2n,R)/{1, ε} (§3,
Exerc. 5) is inner.

5) Let R be a reduced and irreducible root system.
a) Show that the set of roots in R of greatest length is a symmetric closed
subset of R, stable under W(R).
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b) Show that every non-empty subset P of R that is closed, symmetric and
stable under W(R) is equal to R or to the set of roots of greatest length in
R.
c) Assume that P �= R. Show that the root system P is of type Dl (resp.
(A1)l,D4,A2) if R is of type Bl (resp. Cl,F4,G2).

6) Let H be a closed subgroup of G containing NG(T).
a) Show that H is equal to its own normalizer in G, and that H/H0 is iso-
morphic to W/WH0(T).
b) Show that R(H0,T) is stable under W. Conversely, if K is a connected
closed subgroup containing T such that R(K,T) is stable under W, the nor-
malizer of K contains that of T.
c) Assume that G is almost simple. Prove that H is equal to NG(T), or to G,
or that we are (up to isomorphism) in one of the following situations:
α) (resp. α′)) G = Spin(2l + 1,R) (resp. G = SO(2l + 1,R)) and H0 is
the fixer of a non-zero vector of R2l+1, isomorphic to Spin(2l,R) (resp.
SO(2l,R));
β) G = U(l,H) and H0 is the subgroup D consisting of the diagonal matrices;
β′) G = U(l,H)/{±1} and H0 = D/{±1};
γ) G is of type F4 and H0 is isomorphic to Spin(8,R);
δ) G is of type G2 and H0 is the subgroup (isomorphic to SU(3,C)) defined
in Exerc. 7 of §3.

7) Let τ : G → GL(V) be a continuous representation of G on a finite dimen-
sional real vector space. Assume that for all λ ∈ X(T), we have dimC Ṽλ ≤ 1.
a) Show that the representation τ is the direct sum of a finite family (τi)1≤i≤s

of irreducible representations, mutually non-isomorphic, whose commutants
Ki (1 ≤ i ≤ s) are isomorphic to R or C.
b) There exists a C-vector space structure on V for which the operations of
τ(G) are C-linear if and only if K1, . . . ,Ks are isomorphic to C; there are
then 2s structures of this type.

8) Let H be a connected closed subgroup of G of maximum rank, h its Lie
algebra, X the manifold G/H and V the tangent space of X at the point
corresponding to the class of H; identify V with the quotient g/h.

a) If j is an almost complex structure (Differentiable and Analytic Manifolds,
Results, 8.8.3) on X, denote by V′′(j) the subspace of the complex vector
space C ⊗ V consisting of the elements u such that j(u) = −iu, and by q(j)
the subspace of gC that is the inverse image of V′′(j), so that the canonical
map V → gC/q(j) is a C-linear isomorphism when V is given the C-vector
space structure induced by j. Prove that the map j 	→ q(j) is a bijection
from the set of almost complex structures on X invariant under G to the set
of complex subspaces p of gC satisfying the following conditions:
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p + p̄ = gC (1)
p ∩ p̄ = hC (2)
[h, p] ⊂ p. (3)

b) There exists such a structure on X if and only if the commuting fields of
the irreducible subrepresentations of the adjoint representation of H on V are
all isomorphic to C; in that case, there are 2s such structures, where s is the
number of irreducible subrepresentations of V (use Exerc. 7).
c) Let j be an almost complex structure on X, invariant under G, and p =
q(j) the associated subspace. Then, j is integrable (that is, associated to
a complex-analytic manifold structure on X, cf. Differentiable and Analytic
Manifolds, Results, 8.8.5 to 8.8.8) if and only if p satisfies the condition

[p, p] ⊂ p. (4)

d) There exists a complex structure (that is, an integrable almost complex
structure) on X invariant under G if and only if H is the centralizer of a torus
in G (show that conditions (1) to (4) above imply that p is a parabolic sub-
algebra of gC (Chap. VIII, §3, no. 5)); in that case, these complex structures
correspond bijectively to the parabolic subalgebras p of gC that are the direct
sum of hC and their unipotent radical (cf. Chap. VIII, §3, no. 4).
e) Prove that there exist exactly Card(W) complex structures on G/T in-
variant under G; if σ and σ′ are two such structures, there exists a unique
element w ∈ W such that the canonical operation of w on G/T (by inner
automorphisms) transforms σ into σ′. If w is a non-identity element of W,
the operation of w on G/T is not C-analytic for any complex structure on
G/T invariant under G.
f) Determine the complex structures on S2 invariant under SO(3).
g)∗ With the notations of Exerc. 8 d), let Gc be the complexification of G and
P the complex Lie subgroup of Gc with Lie algebra p. Show that the canonical
map G/H → Gc/P is an isomorphism of complex-analytic manifolds.∗

9) Let H be a connected closed subgroup of G, of maximum rank, distinct
from G and maximal for these properties. Denote by Z the quotient group
C(H)/C(G).
a) We have dim Z ≤ 1; if dim Z = 0, then Z is of order 2, 3 or 5 (reduce to
the case in which G is almost simple, with trivial centre; apply Chap. VI, §4,
Exerc. 4).
b) Assume that G is almost simple and that Z is of order 3 or 5; put z =
Card(Z) and π = Card(π1(H))/Card(π1(G)). Show that we must be in one
of the following seven cases:
(i) G is of type G2, H is of type A2, and z = 3, π = 1;
(ii) G is of type F4, H is of type A2 × A2, and z = π = 3;
(iii) G is of type E6, H is of type A2 × A2 × A2, and z = π = 3;
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(iv) G is of type E7, H is of type A2 × A5, and z = π = 3;
(v) G is of type E8, H is of type A8, and z = π = 3;
(vi) G is of type E8, H is of type A2 × E6, and z = π = 3;
(vii) G is of type E8, H is of type A4 × A4, and z = π = 5.
(Use loc. cit. and the plates of Chap. VI; to calculate π, remark that if f and
f ′ denote the connection indices of G and H, respectively, then zπf = f ′.)
c) In each of the preceding cases, determine the group H.

10) We retain the notations of the preceding exercise.
a) Assume that dim Z = 1. Then there are exactly two complex structures
on G/H invariant under G; there exists an automorphism of G that leaves H
stable and interchanges these two structures (use Exerc. 8).
b) Determine the complex structures on Pn(C) invariant under SU(n+1,C).
c) Assume that dim Z = 0 and Card(Z) �= 2. Show that there exist almost
complex structures on G/H invariant under G (if z is an element of C(H)
that is not central in G, Int z induces an automorphism of G/H of odd order
(Exerc. 9); use Exerc. 8 b)). Show that there is no complex structure on G/H
invariant under G (use Exerc. 8 d)).
d) There is no complex structure on S6 invariant under SO(7,R) (use
Exerc. 7 of §3).

11) We retain the notations of Exerc. 9 and 10.
a) The homogeneous space G/H is symmetric (§1, Exerc. 8) if and only if Z
is of order 2 or of dimension 1. The symmetric space G/H is then irreducible
(loc. cit.).
b) Assume that dim Z = 1; denote by X the complex-analytic manifold G/H.
Show that we are then in one of the following situations:
(i) G is of type Al and D(H) of type Ap−1 × Al−p; X is isomorphic to the
grassmannian Gp(Cl+1).
(ii) G is of type Bl and D(H) of type Bl−1; X is isomorphic to the submanifold
of P2l(C) defined by the vanishing of a separating quadratic form (smooth
projective quadric).
(ii′) G is of type Dl and D(H) of type Dl−1; X is isomorphic to a smooth
projective quadric in P2l−1(C).
(iii) G is of type Cl and D(H) of type Al−1; X is isomorphic to the subman-
ifold of Gl(C2l) consisting of the maximal isotropic subspaces for the usual
alternating bilinear form on C2l.
(iv) G is of type Dl and D(H) of type Al−1; X is isomorphic to the subman-
ifold of Gl(C2l) consisting of the maximal isotropic subspaces for the usual
symmetric bilinear form on C2l.
(v) G is of type E6 and D(H) of type D5.
(vi) G is of type E7 and D(H) of type E6.
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c) Assume that Card(Z) = 2; give the list of possible situations. If G is of
type Al, Bl, Cl or Dl, show that the real manifold G/H is isomorphic to a
grassmannian manifold Gp(Kq), with K = R,C or H.

¶ 12) Assume that G is simply-connected; for all α ∈ R(G,T), put tα =
exp(1

2Kα). Put N = NG(T), and denote by ϕ : N → W the canonical map.
Let B be a basis of R(G,T); choose an element nα of (N ∩ Sα) -- (T ∩ Sα) for
all α ∈ B.
a) Show that ϕ(nα) = sα and n2

α = tα, so that n4
α = 1.

b) Let α and β be two distinct elements of B, and let mαβ be the order of
sαsβ in W. Prove that

nαnβ = nβnα if mαβ = 2
nαnβnα = nβnαnβ if mαβ = 3

(nαnβ)2 = (nβnα)2 if mαβ = 4

(nαnβ)3 = (nβnα)3 if mαβ = 6

(if for example mαβ = 3, then (sαsβ)sα(sαsβ)−1 = sβ and sαsβ(α) = β;
show that nαnβnαn

−1
β n−1

α n−1
β belongs to Sβ , and conclude by remarking

that Sα ∩ Sβ ∩ T = {e}).
c) Deduce from b) that there exists a unique section ν : W → N of ϕ such
that ν(sα) = nα and ν(ww′) = ν(w)ν(w′) if l(ww′) = l(w) + l(w′) (where
l(w) denotes the length of w with respect to the generating system (sα)α∈B;
cf. Chap. VI, §1, no. 5, Prop. 5). Put nw = ν(w).
d) Let W∗ be the subgroup of N generated by the nα; show that W∗ ∩ T is
the subgroup T2 of T consisting of the elements of order ≤ 2 and that W can
be identified with W∗/T2.

e) Let w ∈ W be such that w2 = 1; show that n2
w =

∏
α∈Rw

tα, where Rw is

the set of positive roots α such that w(α) < 0 (write w = sα1 . . . sαr , with
r = l(w) and αi ∈ B; apply c) and Chap. VI, §1, no. 6, Cor. 2 of Prop. 17).
f) Assume that G is almost simple. Let c be a Coxeter transformation in
W and h the Coxeter number of W (Chap. VI, §1, no. 11). Show that nh

c =∏
α∈R+

tα (use c), e) and Exerc. 2 of Chap. V, §6).

13) a) Choose a basis B of R(G,T), and denote by R+ the set of positive
roots of R(G,T). Prove that zG =

∏
α∈R+

exp(1
2Kα) is an element of C(G),

independent of the choice of T and of B; we have z2G = e.
b) Let H be another connected compact Lie group. Then zG×H = (zG, zH);
prove that, if f : G → H is a surjective morphism of Lie groups, then f(zG) =
zH.
c) Put R = R(G,T); assume that G is simply-connected, so that X(T) can be
identified with P(R). Show that the kernel of the homomorphism χ 	→ χ(zG)
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from X(T) to {1,−1} is the subgroup P′(R) defined in Exerc. 8 of Chap. VI,
§1.
d) If G = SU(n,C), then zG = (−1)n+1In;

if G = SU(n,H), then zG = −In;
if G = Spin(n,R) with n ≡ 3, 4, 5 or 6 (mod 8), then zG = −1;
if G = Spin(n,R) with n ≡ 0, 1, 2, 7 (mod 8), then zG = 1;
if G is of type E6,E8,F4 or G2, then zG = e;
if G is simply-connected of type E7, then zG is the unique non-identity

element of C(G).
(Use Chap. VI, §4, Exerc. 5.)

14) Assume that the group G is almost simple; denote the Coxeter number
of R(G,T) by h (Chap. VI, §1, no. 11). An element g of G is said to be a
Coxeter element if there exists a maximal torus S of G such that g belongs
to NG(S) and its class in WG(S) is a Coxeter transformation (loc. cit.).
a) Show that any two Coxeter elements are conjugate (argue as in the proof
of the Cor. of Prop. 10, no. 5).
b) Every Coxeter element g is regular and satisfies gh = zG, where zG is the
element of C(G) defined in Exerc. 13; in particular, g is of order h or 2h
according as zG is or is not equal to e (use Exerc. 12 f)).
c) An element g ∈ G is a Coxeter element if and only if the automor-
phism Ad g ⊗ 1C of gC satisfies the equivalent conditions of Chap. VIII,
§5, Exerc. 5 f).
d) Show that every regular element g of G such that gh ∈ C(G) is a Coxeter
element; for p < h, there is no regular element k such that kp ∈ C(G).

15) Let H be a connected closed subgroup of G. Then H is said to be clean if
it is not contained in any connected closed subgroup of maximal rank distinct
from G.
a) Show that H is clean if and only if its centralizer in G is equal to C(G).
In particular, if H is clean then C(H) = C(G) ∩ H.
b) Assume from now on that H is clean. Show that, for every maximal torus
S of H, we have C(H) = S ∩ C(G).
c) Let H′ be a connected closed subgroup of G containing H. Prove that
rk H < rk H′, and deduce that H is clean in H′.
d) Let K be a connected closed subgroup of H, clean in H and containing a
regular element of G. Show that K is clean in G.

16) Let H be a connected closed subgroup of G such that T∩H is a maximal
torus S of H. Let λ ∈ R(H,S); denote by R(λ) the set of roots of R(G,T)
whose restriction to S is equal to λ.
a) Show that R(λ) is not empty.
b) Let w ∈ WH(S); show that there exists an element w̄ of WG(T) such that
R(wλ) = w̄R(λ) (use Exerc. 4 of §2).
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c) Let P(λ) be the intersection of R(G,T) with the subgroup of X(T) gener-
ated by R(λ). Show that there exists a closed subgroup Gλ of G containing
T such that P(λ) = R(Gλ,T). Deduce that the reflection sλ ∈ WH(S) is the
restriction to S of a product of reflections sα with α ∈ P(λ).
d) Show that the nodal vector Kλ ∈ L(S) associated to λ is a linear combi-
nation with integer coefficients of the Kα for α ∈ R(λ).
e) Let BH be a basis of R(H,S). Show that R(λ) is contained in the subgroup
of X(T) generated by the union of the R(µ) for µ ∈ BH (prove that the set
of λ ∈ R(H,S) having the stated property is stable under sµ for all µ ∈ BH,
and use c)).

¶ 17) We retain the notations of the preceding exercise; assume further that
the subgroup H is clean (Exerc. 15).
a) Show that R(G,T) is contained in the subgroup of X(T) generated by the
union of the R(λ) for λ ∈ BH.
b) Let ∆ be the identity component of the subgroup of S consisting of the
s ∈ S such that λ(s) = µ(s) for all λ, µ in BH. Show that there exists a basis
{α1, . . . , αl} of R(G,T) and an integer k, with 0 ≤ k ≤ l − 1, such that ∆ is
the identity component of the set of t ∈ T satisfying

α1(t) = · · · = αk(t) = 1, αk+1(t) = · · · = αl(t).

(Let x be the element of L(S) such that δ(λ)(x) = 2πi for all λ ∈ BH; deduce
from a) that expx ∈ C(G). Choose {α1, . . . , αl} so that iδ(αj)(x) is zero for
1 ≤ j ≤ k and < 0 for k + 1 ≤ j ≤ l; then show that for all λ ∈ BH every
root in R(λ) can be written

αj + n1α1 + · · · + nkαk,

with j ≥ k + 1 and ni ∈ N. Conclude by using a).)
c) Show that the integer k does not depend on the choice of the tori S,T or
of the bases BH, {α1, . . . , αl}; it is equal to the rank of the derived group of
ZG(∆).

18) We retain the notations of Exerc. 16 and 17. The subgroup H is said to
be principal if it is clean and if the sub-torus ∆ contains a regular element
(in other words, if k = 0).
a) Let K be a connected closed subgroup of H. Show that K is a principal
subgroup of G if and only if K is principal in H and H is principal in G (use
Exerc. 15 c) and d)).
b) Assume from now on that H is principal. Show that the union of the R(µ),
for µ ∈ BH, is a basis of R(G,T).
c) Let α ∈ R(G,T). Prove that the restriction of α to S is a non-zero integer
multiple of a root λ ∈ R(H,S); the root α is a sum of elements of R(λ) (show
that the intersection of L(S) with the hyperplane δ(α) = 0 is a wall of L(S)).
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d) Let λ ∈ R(H,S); show that the nodal vector Kλ is a linear combination
with non-negative integer coefficients of the Kα for α ∈ R(λ) (cf. Exerc. 16
d) and Chap. V, §3, no. 5, Lemma 6).

19) We retain the notations of Exerc. 16 to 18; assume that the subgroup H
is principal. Give X(T)⊗R (resp. X(S)⊗R) a scalar product invariant under
WG(T) (resp. under WH(S)). Let λ, µ be two roots in BH.
a) Show that, if λ and µ are orthogonal, the sets R(λ) and R(µ) are orthog-
onal. Deduce that if G is almost simple then so is H.
b) Assume from now on that n(λ, µ) = −1. Show that there exists a surjective
map u : R(λ) → R(µ) such that, for α ∈ R(λ), u(α) is the unique root of R(µ)
linked (that is, not orthogonal) to α; we have Kµ =

∑
β∈R(µ)

Kβ , and the roots

in R(µ) are pairwise orthogonal (write Kµ and Kλ as linear combinations of
the Kα, then identify the coefficients).
c) If n(µ, λ) = −1, the map u is bijective, and the only pairs of linked roots
in R(λ) ∪ R(µ) are the pairs (α, u(α)) for α ∈ R(λ).
d) Assume that n(µ, λ) = −2; let β ∈ R(µ). Show that u−1(β) contains either
one or two elements; if u−1(β) = {α1, α2}, the root αi (i = 1, 2) is orthogonal
to the other roots in R(λ), and has the same length as β; if u−1(β) = {α}
and ‖α‖ = ‖β‖, α is linked to a unique root α′ ∈ R(λ), of the same length as
α, and {α, α′} is orthogonal to the remainder of R(λ); if u−1(β) = {α} and
‖α‖ �= ‖β‖, α is orthogonal to the other roots in R(λ).
e) Study similarly the case n(µ, λ) = −3.

20) Assume that the group G is almost simple; let H be a principal subgroup
of G, of rank ≥ 2.
a) Show that H is semi-simple of type Bh,Ch,F4 or G2 (use Exerc. 19).
b) Assume that H is of rank ≥ 3. Show that G is of type Al,Dl,E6,E7 or E8
(consider the terminal vertices of the Dynkin graph of R(G,T), and apply
Exerc. 19).
c) Show that, if rk H ≥ 3, we are in one of the following situations:

G is of type A2l (l ≥ 3) and H of type Bl;
G is of type A2l−1 (l ≥ 3) and H of type Cl;
G is of type Dl (l ≥ 4) and H of type Bl−1;
G is of type E6 and H of type F4.

d) Show that, if H is of type B2, then G is of type A3 or A4.
e) Show that, if H is of type G2, then G is of type B3,D4 or A6.
(For a more explicit description of these situations, see §5, Exerc. 5.)
f) Let K be a connected closed subgroup of G containing H; show that either
K = G or K = H, or H is of type G2, K of type B3 and G of type D4 or A6.
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21) a) Let H be a connected closed subgroup of G of rank 1. Show that the
following conditions are equivalent:
(i) H is principal;
(ii) H is clean and contains a regular element of G;
(iii) there exists a principal sl2-triplet (x, h, y) in gC (Chap. VIII, §11, no. 4)
such that

L(H)(C) = Cx+ Ch+ Cy.

b) Show that G contains a principal subgroup of rank 1, and that any two
such subgroups are conjugate (with the notations of Exerc. 17, remark that
S = ∆).
c) Show that a connected closed subgroup of G is principal if and only if it
contains a principal subgroup of G of rank 1 (use Exerc. 18 a)).

22) Let H be a principal subgroup of G of rank 1; let Γ be the subgroup of
Aut(G) consisting of the automorphisms u such that u(H) = H. Show that
Aut(G) = Γ.Int(G).

§5

1) Assume that G is simply-connected; the alcoves of G are the subsets of G
of the form exp(A), where A is an alcove of a Cartan subalgebra of g.
a) Show that the alcoves of G form a partition of Gr.
b) Every alcove of G is contained in a unique maximal torus.
c) Show that the alcoves of G contained in T form a partition of Tr, and that
the set of such alcoves is a principal homogeneous space under W.
d) Every conjugacy class of regular elements of G has a unique point in each
alcove.
e) Let E be an alcove of G. Show that E is a contractible space; if g is simple,
E is homeomorphic to an open simplex in a euclidean space.

2) a) Let E be a simply-connected topological space and u : E → G a
continuous map such that u(E) ⊂ Gr. Show that u is homotopic (General
Topology, Chap. XI) to the constant map with value e (consider the covering
ϕr : (G/T) × tr → Gr; lift u to ũ : E → (G/T) × t, then use the fact that t is
contractible).
∗b) Prove that the group π2(G) is zero.
(Let u : S2 → G be a map of class C∞; by using Prop. 1 and the transversality
theorem, show that u is homotopic to a map with image contained in Gr,
then apply a).)∗

3) Let f : G̃ → G be a universal covering of G and π the kernel of f (isomor-
phic to π1(G)); put C = C(G) and C̃ = C(G̃). Let σ be an automorphism of
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G, σ̃ the automorphism of G̃ induced by σ. Denote by Gσ,Cσ, G̃σ, C̃σ the set
of points of G,C, G̃, C̃ fixed by σ, σ, σ̃, σ̃, respectively.
a) Show that the identity component (Gσ)0 of Gσ is f(G̃σ).
b) Denote by s the endomorphism of the Z-module π induced by σ̃. Show that
the quotient group Gσ/(Gσ)0 is isomorphic to a subgroup of Coker(1 − s),
and in particular is commutative. If 1 − s is surjective, Gσ is connected.
c) Let n ∈ N be such that sn = Idπ. Show that the group Gσ/(Gσ)0 can be
identified with a subgroup of the quotient Ker(1 + s+ · · · + sn−1)/Im(1 − s);
deduce that it is annihilated by n. If n is prime to the order of the torsion
subgroup of π, then Gσ is connected.
d) Recover the results of b) and c) by using Exerc. 23 of Algèbre, Chap. X,
p. 194.
e) Show that Gσ is connected in each of the following cases:
(i) G is semi-simple of type A2n (n ≥ 1) and σ is not inner;
(ii) G is semi-simple of type E6 and σ is not inner;
(iii) G is semi-simple of type D4 and σ is a triality (that is, of order 3 modulo
Int(G)).
f) Define an isomorphism from Cσ/(Cσ ∩ (Gσ)0) to ((1 − σ̃)C̃ ∩ π)/(1 − σ̃)π.
Deduce that if 1−s is not surjective and π ⊂ (1−σ̃)C, then Cσ is not contained
in (Gσ)0. For G = SO(2n,R) and σ not inner, we have −I2n /∈ (Gσ)0 and
Gσ is not connected.

4) Assume that G is semi-simple. Let e be a framing of G and Φ a group of
automorphisms of G respecting this framing; denote by H the subgroup of G
consisting of the elements fixed by Φ.
a) Show that H0 is semi-simple; if G is simply-connected, H is connected
(reduce to the case in which G is almost simple and Φ is cyclic, and apply
Th. 1 (no. 3) and Chap. VIII, §5, Exerc. 13).
b) Assume that G is almost simple. Show that
if G is of type A2l (l ≥ 1) and Φ is of order 2, H0 is of type Bl;
if G is of type A2l−1 (l ≥ 2) and Φ is of order 2, H0 is of type Cl;
if G is of type Dl (l ≥ 4) and Φ is of order 2, H0 is of type Bl−1;
if G is of type D4 and Φ is of order 3 or 6, H0 is of type G2;
if G is of type E6 and Φ is of order 2, H0 is of type F4.
In each case, determine the groups πi(H), i = 0, 1 (cf. Exerc. 3).
c) Prove that the subgroup H0 is principal (§4, Exerc. 18).
d) Prove that a semi-simple group of type B3 or A6 contains a principal
subgroup of type G2 (use b) and Exerc. 20 of §4).

5) Assume that the group G is almost simple; let H be a principal connected
closed subgroup of G (§4, Exerc. 18). Denote by Φ the group of automor-
phisms u of G that fix H, and by F the subgroup of elements of G fixed
by Φ.
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a) Show that there exists a framing of G stable under Φ.
b) Show that we must be in one of the following situations:
(i) H = F0;
(ii) G is of type B3, H of type G2 and Φ reduces to the identity;
(iii) G is of type A6, H of type G2 and Φ of order 2.
(Use Exerc. 4 and Exerc. 20 of §4.)

¶ 6) Assume that G is simply-connected. Let p be a prime number and g an
element of C(G) such that gp = e.
a) Show that there exist elements u ∈ T and w ∈ W such that
(i) w(u)u−1 = g;
(ii) wp = 1;
(iii) up = e if p �= 2, up = e or g if p = 2.
(Let A be an alcove in t; for i = 0, 1, . . . , p − 1, let xi ∈ A be such that
expxi = gi. Take u to be the element expx, where x is the barycentre of the
facet of A whose vertices are the xi, and w to be the element of W such that
w(A) = A − x.)
b) Prove that there exist u ∈ T and v ∈ NG(T) such that
(i) vuv−1u−1 = g;
(ii) vp = e if p �= 2, vp = e or g if p = 2;
(iii) up = e if p �= 2, up = e or g if p = 2.
(Use the construction in a), lifting w to nw as in Exerc. 12 of §4; take v = np+1

w

if p �= 2, v = nw if p = 2.)

7) Let p be a prime number. Show that the following conditions are equivalent:
(i) p does not divide the order of the torsion subgroup of π1(G);
(ii) for every element g of G of order p, the centralizer of g in G is connected;
(iii) every subgroup of G isomorphic to (Z/pZ)2 is contained in a maximal
torus.
(To prove that (i) =⇒ (ii), use Exerc. 3 c); to prove that (iii) =⇒ (i), use
Exerc. 6.)

8) Take G = SO(8,R)/{±I8}; denote by (αi)1≤i≤4 a basis of R(G,T) such
that α1, α3 and α4 are not orthogonal to α2 (Chap. VI, Plate IV). Let A be
the subgroup of T consisting of the t ∈ T such that

α1(t) = α3(t) = α4(t), α1(t)2 = α2(t)2 = 1.

Prove that A is isomorphic to (Z/2Z)2 and that its centralizer in G is a finite
non-commutative group.

9) Let R be an irreducible root system, R∨ the inverse system, B a basis of
R and α the highest root of R (relative to B). Put

α =
∑
β∈B

nββ and α∨ =
∑
β∈B

n∨
β β

∨ ;

let ν(R) = sup
β∈B

n∨
β .



408 COMPACT REAL LIE GROUPS Ch. IX

a) Show that the interval 1, ν(R) in N is the union of 1 and the n∨
β for

β ∈ B (put α0 = α; let (α1, . . . , αq) be a sequence of distinct elements of B
such that αi is not orthogonal to αi−1 for i = 1, . . . , q, such that n∨

αq
= ν(R)

and such that q is maximal with these properties; prove that n∨
αi

= i+ 1 for
i = 1, . . . , q).
b) Let p be a prime number. Show that the following three properties are
equivalent:
(i) p ≤ ν(R);
(ii) there exists β ∈ B such that p = n∨

β ;
(iii) there exists β ∈ B such that p divides n∨

β .
In this case p is called a torsion prime number of R.
c) For each type of irreducible root system, give the value of ν(R) and the
torsion prime numbers. Show that the set of the nβ and that of the n∨

β

coincide except for type G2.
d) Let R′ be a symmetric closed subset of R that is irreducible as a root
system. Show that ν(R′) ≤ ν(R).

10) Let R be a root system and p a prime number. Show that the following
properties are equivalent:
(i) p is a torsion prime number of an irreducible component of R (Exerc. 9 b));
(ii) there exists a symmetric closed subset R1 of R, distinct from R and
maximal for these properties, such that (Q(R∨) : Q(R∨

1 )) = p (Q(R∨) denotes
the Z-module generated by the inverse roots of R and Q(R∨

1 ) the submodule
generated by the α∨ for α ∈ R1);
(iii) there exists a symmetric closed subset R1 of R such that the p-torsion
submodule of Q(R∨)/Q(R∨

1 ) is non-zero.
(To prove that (i) =⇒ (ii), use Exerc. 4 of Chap. VI, §4; to prove that
(iii) =⇒ (i), use Exerc. 9 d).)
In this case p is said to be a torsion prime number of R.

11) Let p be a prime number. Then p is said to be a torsion prime number
of G if there exists a connected closed subgroup H of G, of maximum rank,
such that the p-torsion subgroup of π1(H) is non-zero. Put R = R(G,T).
a) The torsion prime numbers of G are the torsion prime numbers of R
(Exerc. 10) and the prime numbers that divide the order of the torsion group
of π1(G).
b) Show that every torsion prime number of G divides w/l!, where w is the
order of W and l the rank of the semi-simple group D(G) (use Chap. VI, §2,
no. 4, Prop. 7).
c) Let t ∈ T and n ∈ N be such that tn ∈ C(G). Let R1 be the set of α ∈ R
such that α(t) = 1, and m the order of the torsion group of Q(R∨)/Q(R∨

1 )
(cf. Exerc. 10). Show that every prime factor of m divides n (reduce to the
case in which G is simply-connected and almost simple).
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d) Assume that G is simply-connected. Let g ∈ G, n ∈ N be such that gn

belongs to C(G) and such that no torsion prime number of G divides n. Show
that the derived group of the centralizer of g is simply-connected.
e) Let g be an element of G and p a prime number, such that gp = e and p is
not a torsion prime number of G. Show that the centralizer Z(g) is connected
and that p is not a torsion prime number of Z(g).
f) Assume that G is simply-connected, and let p be a torsion prime number
of G. Prove that there exists an element g of G of order p such that π1(Z(g))
is cyclic of order p (use Exerc. 10 and Exerc. 4 of Chap. VI, §4).

12) Let p be a prime number. Show that the following conditions are equiv-
alent:
(i) p is not a torsion prime number of G;
(ii) for every subgroup F of G isomorphic to (Z/pZ)n (for n ∈ N), the
centralizer of F in G is connected;
(ii′) for every subgroup F of G isomorphic to (Z/pZ)2, the centralizer of F in
G is connected;
(iii) every subgroup of G isomorphic to (Z/pZ)n for some integer n is con-
tained in a maximal torus;
(iii′) every subgroup of G isomorphic to (Z/pZ)3 is contained in a maximal
torus.
(To prove that (i) =⇒ (ii), use Exerc. 11 e); to prove that (iii) =⇒ (i), use
Exerc. 11 f) and Exerc. 7.)

§6

1) Let R be a reduced root system in a real vector space V. Give the space V a
scalar product invariant under W(R), and the space S(V) the corresponding
scalar product (Topological Vector Spaces, Chap. V, §3, no. 3, formulas (13)
and (14)); thus, for x1, . . . , xn, y1, . . . , yn in V,

(x1 . . . xn | y1 . . . yn) =
∑

σ∈Sn

(x1|yσ(1)) . . . (xn|yσ(n)).

Choose a chamber C of R; put N = Card(R+), ρ = 1
2

∑
α∈R+

α and w(R) =

Card(W(R)). Let P be the element
∏

α∈R+

α of SN(V).

a) Show that P = 1
N!

∑
w∈W(R)

ε(w)(wρ)N (cf. Chap. VI, §3, no. 3, Prop. 2).

b) Deduce the equality (P|P) = w(R)
∏

α∈R+

(ρ|α).

c) Prove that (P|P)= 2−Nw(R)
l∏

i=1
mi!

∏
α∈R+

(α|α)= 2−N
l∏

i=1
(mi+1)!

∏
α∈R+

(α|α),

where m1, . . . ,ml are the exponents of W(R) (use Exerc. 3 of Chap. VIII,
§9).
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¶ 2) Let V be a finite dimensional real Hilbert space over R. Give the space
S(V∗) of polynomials on V the scalar product defined in Topological Vector
Spaces, Chap. V, §3, no. 3, formulas (13) and (14) (cf. Exerc. 1). Denote
by γ the canonical gaussian measure on V (Integration, Chap. IX, §6, nos. 4
to 6); thus, if (xi)1≤i≤n is an orthonormal basis of V∗, we have dγ(x) =
(2π)−n/2e−(x|x)/2dx1 . . . dxn.
a) Let q be the element of S2(V) that defines the scalar product on V∗, and
let ∆ : S(V∗) → S(V∗) be the operator given by taking the inner product
with q (Algebra, Chap. III, §11, no. 9). Show that, for every orthonormal basis

(xi)1≤i≤n of V∗ and every polynomial P ∈ S(V∗), we have ∆(P) = 1
2

n∑
i=1

∂2P
∂x2

i

.

b) For P ∈ S(V∗), put P∗ = P ∗ γ, so that P∗(x) =
∫
V P(x − y) dγ(y) for

x ∈ V. Prove the equality P∗ =
∞∑

n=1

∆n(P)
n! = e∆(P).

(Reduce to proving the analogous formula for the function x 	→ ei(x|u), for
u ∈ V.)
c) Prove the formula

∫
P∗(ix)Q∗(ix) dγ(x) = (P|Q) for P and Q in S(V∗)

(identified with a subspace of SC((V ⊗ C)∗)).
d) If P is a homogeneous polynomial on V such that ∆(P) = 0, then∫
V P(x)2 dγ(x) = (P|P).
e) Let W be a finite group of automorphisms of V generated by reflections;
denote by H the set of reflections in W. For h ∈ H, let eh ∈ V and fh ∈ V∗ be
such that h(x) = x+ fh(x)eh. Show that the polynomial P =

∏
h∈H

fh satisfies

∆(P) = 0 (use Chap. V, §5, no. 4, Prop. 5).

3) Let µ be a Haar measure on the additive group g.
a) There exists a unique Haar measure µG on G with the following property: if
ωG and ωg are invariant differential forms of degree n on G and g, respectively,
such that ωG(e) = ωg(0) and |ωg| = µ, then |ωG| = µG. The map µ 	→ µG is
a bijection from the set of Haar measures on g to the analogous set for G.
b) Choose a scalar product ( | ) invariant under g, and a Haar measure τ
on t such that µ (resp. τ) corresponds to the Lebesgue measure when g is
identified with Rn (resp. t with Rr) by means of an orthonormal basis. Prove
the formula∫

t

πg(x)e−(x|x)/2 dτ(x) = (2π)n/2 τT(T)
µG(G)

w(G).

c) Identify X(T) with a subset of the Hilbert space t∗ by means of the map
(2πi)−1δ (§4, no. 2), and put P(x) =

∏
α∈R+

〈α, x〉 for x ∈ t. With the notations

of Exerc. 1 and 2, show that

τT(T)
µG(G)

= (2π)Nw(G)−1(P|P) = πN
∏

α∈R+

(α|α)
l∏

i=1

mi!
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d) With the notations of Exerc. 9 of §3, let gZ be the Z-Lie subalgebra of
g generated by (2π)−1Γ (T) and the elements uα, vα for α ∈ R. Prove the
equality

µG(G) = µ(g/gZ)
2rπN+r∏

i
mi!

.

e) Assume that G is simply-connected. Show that l = r and that

µG(G) = 2l/2π−Nf1/2
∏

α∈R+

(α|α)−1
l∏

i=1

(αi|αi)−1/2
∏

i

(mi!)−1,

where {α1, . . . , αl} is a basis of R and f is the connection index of R.
f) Assume further that R is irreducible and that all its roots are of the same
length; take the scalar product on g to be the opposite of the Killing form.
Prove that µG(G) = (2π)N+r(2h)n/2f1/2

∏
i
(mi!)−1.

4) Let X be a differentiable manifold of class C∞. In this and the following
exercises, we shall denote simply by H(X) the graded R-space H(Ω(X)).
a) Show that Ω(X) is an associative and anti-commutative graded differential
algebra (Algèbre, Chap. X, p. 183, Exerc. 18). Deduce that H(X) has a natural
associative and anti-commutative graded algebra structure.
b) If X is connected and of dimension p, then Hi(X) = 0 for i > p and
dimR H0(X) = 1. Moreover, if X is compact, the space Hp(X) is of dimension
one (use Differentiable and Analytic Manifolds, Results, 11.2.4).
c) Let Y be another manifold of class C∞, and f : X → Y a map of class
C∞. The map f∗ : Ω(Y) → Ω(X) is a morphism of complexes (Differentiable
and Analytic Manifolds, Results, 8.3.5); show that H(f∗) : H(Y) → H(X) is
a morphism of algebras.
d) Assume that we are given a law of operation of G on X of class C∞. Show
that the subcomplex Ω(X)G of invariant forms is a subalgebra of Ω(X). De-
duce that the map H(i) : H(Ω(X)G) → H(X) defined in Th. 2 is an isomor-
phism of graded algebras.
e) Show that (Alt(g))G is a subalgebra of Alt(g), and that the graded algebra
H(G) is isomorphic to it.

5) Denote by H(G) the graded R-algebra H(Ω(G)) (cf. Exerc. 4).
a) The space Hp(G) is zero for p > n and of dimension one for p = n
and p = 0. The space H1(G) can be identified canonically with c∗, where
c = L(C(G)).
b) Assume from now on that G is semi-simple. Show that H1(G) = H2(G) = 0
(cf. Chap. I, §6, Exerc. 1).
c) Denote by B(g) the space of G-invariant symmetric bilinear forms on g; for
b ∈ B(g) and x, y, z in g, put b̃(x, y, z) = b([x, y], z). Show that the map b 	→ b̃
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defines an isomorphism from B(g) to H3(G) (let ω ∈ H3(G); prove that, for
all x ∈ g, there exists a unique linear form f(x) on g such that df(x) = i(x)ω,
and consider the form (x, y) 	→ −〈y, f(x)〉).
d) Show that the dimension of the R-vector space H3(G) is equal to the
number of simple ideals of g.

6) Put bi(G) = dimR Hi(G) for i ≥ 0 and, if X denotes an indeterminate,
PG(X) =

∑
i≥0
bi(G)Xi.

a) Prove that bi(G) =
∫
G Tr ∧∧i(Ad g) dg and PG(X) =

∫
G det(1 + X.Ad g) dg

(cf. Appendix II, Lemma 1).
b) Deduce the equalities

∑
i
bi(G) = 2r, and

∑
i

(−1)ibi(G) = 0 if dimG > 0

(use H. Weyl’s formula, or Exerc. 8 of §2).
c) Take G = U(n,C). Show that PG(X) is the coefficient of (X1 . . .Xn)2n−2

in the polynomial 1
n! (1 + X)n

∏
1≤i,j≤n

i	=j

(XXi + Xj)(Xi − Xj) (with coefficients in
Z[X]).

7) Let K be a connected compact Lie group.
a) Let f : K → G be a surjective homomorphism with finite kernel. Show
that the homomorphism H(f∗) : H(G) → H(K) is an isomorphism.
b) Show that the algebra H(G × K) can be identified canonically with the
skew tensor product H(G) g⊗ H(K).
c) Deduce from a) and b) that H(G) is isomorphic to H(C(G)0) g⊗ H(D(G))
as an algebra. Show that the algebra H(C(G)0) is isomorphic to ∧∧ (c∗), with
c = L(C(G)).

¶ 8) Let k be a field of characteristic zero and E a graded left bigebra over k
(Algebra, Chap. III, §11, no. 4, Def. 3). Assume that E is anti-commutative
and anti-cocommutative, and that Em = 0 for m sufficiently large. Denote
by P the set of primitive elements of E (cf. Chap. II, §1).
a) Show that every homogeneous element of P is of odd degree (expand c(xm)
for m large). Deduce that there is a canonical morphism ϕ : ∧∧(P) → E of
graded left bigebras (the graded left bigebra structure of ∧∧(P) being that
defined in Algebra, Chap. III, §11, Exerc. 6).
b) Show that ϕ is an isomorphism (adapt the proof of Th. 1 of Chap. II, §1,
no. 6).

9) Denote by m : G × G → G the map such that m(g, h) = gh for g, h in
G. Identify H(G × G) with H(G) g⊗ H(G) (Exerc. 7 b)), so that m∗ defines a
homomorphism of algebras c : H(G) → H(G) g⊗ H(G).
a) Show that (H(G), c) is an anti-commutative and anti-cocommutative
graded left bigebra (observe that the map g 	→ g−1 induces on Hp(G) the
multiplication by (−1)p).
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b) Let P(G) be the graded subspace of H(G) consisting of the primitive ele-
ments; deduce from Exerc. 8 that there is an isomorphism of graded bigebras
∧∧(P(G)) → H(G).
c) Show that dimR P(G) = r (use Exerc. 6 b)).

d) Deduce that the polynomial
∑
i≥0
bi(G)Xi is of the form

(1 + X)c
l∏

i=1

(1 + X2ki+1),

where c is the dimension of C(G), l the rank of D(G), and the ki are integers
≥ 1; we have k1 + · · · + kl = 1

2Card R(G,T)12.

10) Let H be a closed subgroup of G; denote by dh the Haar measure on H
of total mass 1. Put χ(G/H) =

∑
i≥0

(−1)i dimR Hi(G/H).

a) Prove the equality χ(G/H) =
∫
H det(1−Adg/hh) dh (use Algèbre, Chap. X,

p. 41, Prop. 11 and Lemma 1 of Appendix II, no. 2).
b) Let π0(H) be the number of connected components of H. Show that

χ(G/H) = 0 if H0 is not of maximum rank
χ(G/H) = w(G)/w(H0)π0(H) if H0 is of maximum rank.

11) Let u be an automorphism of G of order two; denote by K the iden-
tity component of the set of fixed points of u, k its Lie algebra, and X the
symmetric space G/K (§1, Exerc. 8).
a) Show that every G-invariant differential form ω on X satisfies dω = 0
(observe that u induces on Altp(g/k) the multiplication by (−1)p).
b) Deduce that there is an isomorphism from the graded algebra H(G/K) to
the graded subalgebra of Alt(g/k) consisting of the K-invariant elements.
c) Put bi(G/K) = dimR Hi(G/K) for i ≥ 0; for k ∈ K, denote by Ad−k
the restriction of Ad k to the eigenspace of L(u) with eigenvalue −1. Let dk
be the Haar measure on K of total mass 1. Prove the formulas bi(G/K) =∫
K Tr ∧∧i(Ad−k) dk and

∑
i≥0
bi(G/K)Xi =

∫
K det(1 + X Ad−k) dk.

d) Prove that if, in addition, K is of maximum rank, the algebra H(G/K) is
zero in odd degrees (observe that u = Int k, with k ∈ K).
e) Calculate the graded algebra H(Sn). Deduce that Sn admits a Lie group
structure (compatible with its manifold structure) if and only if n is equal to
1 or 3.

12) Let H be a connected closed subgroup of G and h its Lie algebra.

12The integers ki are in fact the exponents of R(G, T). Cf. J. LERAY, Sur
l’homologie des groupes de Lie, des espaces homogènes et des espaces fibrés prin-
cipaux, Colloque de Topologie de Bruxelles (1950), pp. 101-115.
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a) Let α be an element of h∗ invariant under H; show that there exists an
element ᾱ of g∗ invariant under H whose restriction to h is equal to α. Show
that the element dᾱ ∈ Alt2(g) is annihilated by i(η) and θ(η) for all η ∈ h,
and that its class in H2(G/H) does not depend on the choice of ᾱ. This defines
a homomorphism ϕ : H1(H) → H2(G/H).
b) Assume from now on that G is semi-simple. Prove that ϕ is an isomorphism.
c) Prove that H is semi-simple if and only if H2(G/H) = 0.
d) Without assuming that H is connected, define an isomorphism (h∗)H →
H2(G/H) (apply b) to H0).

13) Let H be a closed subgroup of G; put X = G/H and n = dimX. Show
that the following conditions are equivalent:
(i) There exists a 2-form ω on X such that dω = 0 and such that the alter-
nating form ωx on Tx(X) is separating for all x ∈ X;
(ii) n is even, and there exists an element ω of H2(G/H) such that ωn/2 �= 0;
(iii) H is the centralizer of a torus in G;
(iv) H is of maximum rank, and there exists a G-invariant complex structure
on X;
(v) there exists a complex structure j and a 2-form ω on X such that dω = 0,
ωx(ju, jv) = ωx(u, v) and ωx(u, ju) > 0 for all x in X and all non-zero u, v
in Tx(X) (∗ in other words, a Kähler structure on X ∗);
(vi) there exists a complex structure j and a 2-form ω on X satisfying the
conditions in (v) and invariant under G (∗ that is, a G-invariant Kähler
structure on X ∗).
(To prove that (ii) =⇒ (iii), put S = C(H)0 and Z = ZG(S); by using Exerc. 12
d), show that the canonical map H2(G/Z) → H2(G/H) is surjective, and
deduce that Z = H. The equivalence of (iii) and (iv) follows from Exerc. 8 of
§4. To prove that (iii) =⇒ (vi), construct an H-invariant separating positive
hermitian form on g/L(H) and consider its imaginary part; use Exerc. 11 a).)

§7
1) Take G to be the group U(n,C), and T to be the subgroup consisting
of the diagonal matrices; for t = diag(t1, . . . , tn) in T and 1 ≤ i ≤ n, put
εi(t) = ti. Denote by σ the identity representation of G on Cn.
a) The group X(T) has basis ε1, . . . , εn; show that every element of Z[X(T)]W

is of the form ek(ε1+···+εn)P(eε1 , . . . , eεn), where k is a relative integer and P
a symmetric polynomial in n variables with integer coefficients.
b) Show that the representations ∧∧r σ (1 ≤ r ≤ n) are irreducible.
c) Show that the homomorphism u : Z[X1,X2, . . . ,Xn][X−1

n ] → R(G) such
that u(Xi) = [∧∧i σ] is an isomorphism.

2) Let G = SO(2l + 1,R), with l ≥ 1; we use the notations of Exerc. 2 of
§4. Denote by σ the representation of G on C2l+1 obtained from the identity
representation by extension of scalars.
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a) The Z-module X(T) has basis �1, . . . , �l−1, 2�l, as well as ε1, . . . , εl.
b) Denote by ηi the element eεi +e−εi of Z[X(T)]. Show that every element of
Z[X(T)]W can be written as P(η1, . . . , ηl) where P is a symmetric polynomial
in l variables with integer coefficients.
c) Show that the representations ∧∧r σ (r ≤ 2l+ 1) are irreducible. For r ≤ l,
prove the equality

Ch(∧∧r σ) = sr(η1, . . . , ηl) + (l − r + 2)sr−2(η1, . . . , ηl) + · · ·+

+
(
l − r + 2k

k

)
sr−2k(η1, . . . , ηl) + · · · ,

where the sk are the elementary symmetric polynomials in l variables.
d) Show that the homomorphism u : Z[X1, . . . ,Xl] → R(G) such that u(Xi) =
[∧∧i σ] is an isomorphism.

3) Let G = SO(2l,R), with l ≥ 2; we use the notations of Exerc. 2 of
§4. Denote by σ the representation of G on C2l obtained from the identity
representation by extension of scalars.
a) The Z-module X(T) has basis ε1, . . . , εl.
b) Denote by ηi the element eεi + e−εi of Z[X(T)] and by δ the element

l∏
i=1

(eεi − e−εi). Show that every element of Z[X(T)]W can be written as

P(η1, . . . , ηl) + Q(η1, . . . , ηl)δ, where P and Q are symmetric polynomials in
l variables with coefficients in 1

2Z.
c) Show that the representations ∧∧r σ are irreducible for r �= l; the represen-
tation ∧∧l σ is the direct sum of two subrepresentations τ+ and τ−, of highest
weights 2�l and 2�l−1, respectively (see Chap. VIII, §13, Exerc. 10).
d) Show that, for r ≤ l, the element Ch(∧∧r σ) is given by the formula in
Exerc. 2 c) and that

Ch(τ+) =
1
2
(δ + Ch(∧∧l σ)) Ch(τ−) =

1
2
(−δ + Ch(∧∧l σ)).

e) Show that the homomorphism u : Z[X1, . . . ,Xl; Y] → R(G) such that
u(Xi) = [∧∧i σ] and u(Y) = [τ+] is surjective, and that its kernel is generated
by Y2 − YXl + A, with A ∈ Z[X1, . . . ,Xl].

4) Let E be a complex vector space, and let Tp
q(E) be the space of tensors of

type (p, q) on E (Algebra, Chap. III, §5, no. 6). Denote by Hp
q(E) the subspace

of Tp
q(E) consisting of the symmetric tensors (that is, those belonging to the

image of TSp(E) ⊗TSq(E∗) in Tp
q(E) and annihilated by the contractions cij

for i ∈ 1, p and j ∈ p+ 1, p+ q (loc. cit.).
a) Show that Hp

q(C
n) is stable under GL(n,C), and consequently under

SU(n,C); denote this representation of SU(n,C) by τp
q .
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b) Show that τp
q is an irreducible representation whose highest weight (with

the notations of Exerc. 1 of §4) is p�1 + q�n−1.
c) Every irreducible representation of SU(3,C) is isomorphic to one of the
representations τp

q .
d) Let (xi)1≤i≤n be the canonical basis of Cn, (yj)1≤j≤n the dual ba-
sis. Show that Hp

q(C
n) can be identified with the space of polynomials

P ∈ C[x1, . . . , xn, y1, . . . , yn], homogeneous of degree p in the xi and of degree

q in the yi, and such that
n∑

i=1

∂2P
∂xi∂yi

= 0.

5) Let k be a commutative field of characteristic zero, V a vector space over k,
and Ψ a separating quadratic form on V. Let Γ ∈ S2(V∗) (resp. Γ ∗ ∈ S2(V))
be the element ssociated to Ψ (resp. the inverse form of Ψ). Denote by Q
the endomorphism of S(V) given by taking the product with Γ ∗, by ∆ the
endomorphism of S(V) given by taking the inner product with Γ , and by h
the endomorphism of S(V) that reduces on Sr(V) to multiplication by −n

2 −r.
a) If (xi)1≤i≤n is an orthonormal basis of V, then Q(P) = 1

2

(∑
x2

i

)
.P and

∆(P) = 1
2

∑
∂2P
∂x2

i

for P ∈ S(V).

b) Prove the formulas [∆,Q] = −h, [h,∆] = 2∆, [h,Q] = −2Q.
c) Let Hr be the subspace of Sr(V) annihilated by ∆ (“harmonic homoge-
neous polynomials of degree r”). Deduce from b) that there is a direct sum
decomposition, stable under O(Ψ), given by

Sr(V) = Hr ⊕ QHr−2 ⊕ Q2Hr−4 ⊕ · · · .
d) Show that the representation Hr is irreducible (cf. Chap. VIII, §13, no. 3,
(IV)).
e) Take k = C, and V = Cn equipped with the usual quadratic form (n ≥ 3).
We thus obtain irreducible representations τr of SO(n,R); with the notations
of Exerc. 2 of §4, show that the highest weight of τr is r�1.
f) Let Γ be the Casimir element of G obtained from the Killing form. Prove
the formula ΓS(V) = 1

2n−4

(−4Q∆+
(
H + n

2 I
) (

H +
(
2 − n

2

)
I
))

. Calculate
Γ̃ (τr) and deduce the value of the form QΓ (Prop. 4).

6) Assume that G is almost simple. Show that G admits a faithful irreducible
representation if and only if it is not isomorphic to Spin(4k,R) for k ≥ 2.

7) Let τ : G → SO(n,R) be a real unitary representation of G; denote by
ϕ : Spin(n,R) → SO(n,R) the canonical double covering. Then τ is said
to be spinorial if there exists a morphism τ̃ : G → Spin(n,R) such that
ϕ ◦ τ̃ = τ .
a) Let Σ be a subset of P(T, τ) such that Σ ∪ (−Σ) = P(T, τ) and
Σ ∩ (−Σ) = ∅; denote by ωΣ the sum of the elements of Σ. The class �
of ωΣ in X(T)/2X(T) is independent of the choice of Σ. Prove that τ is
spinorial if and only if � = 0.
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b) Prove that ρ ∈ X(T) if and only if the adjoint representation is spinorial.

8) Let G be a Lie group whose Lie algebra is compact, and which has a
finite number of connected components. Show that G has a faithful linear
representation on a finite dimensional vector space (write G as the semi-
direct product of a compact group K by a vector group N; choose a faithful
representation of K on a finite dimensional vector space W and represent G
as a subgroup of the affine group of W ⊕ N).

§8

1) Let G = SU(2,C), and let σ be the identity representation of G on C2.
a) The irreducible representations of G are the representations τn = Snσ for
n ≥ 0.
b) Let e1, e2 be the canonical basis of C2; show that the coefficients of τn in the

basis (ei1e
n−i
2 )0≤i≤n are the functions τn

ij such that, for g =
(
α β

−β̄ ᾱ

)
∈ G,

we have τn
ij(g) = (−1)i

j! αi+j−nβj−iPn
ij(|α|2), with Pn

ij(t) = dj

dtj [tn−i(1 − t)i]

(“Jacobi polynomials”).

c) Deduce from b) that the functions (n + 1)1/2
(

j!(n−j)!
i!(n−i)!

)1/2
τn
ij , for i, j, n

integers with 0 ≤ i ≤ n, 0 ≤ j ≤ n, form an orthonormal basis of L2(G).

d) For g =
(
α β

−β̄ ᾱ

)
∈ G, put α = t1/2ei(ϕ−ψ)/2, β = (1 − t)1/2ei(ϕ+ψ)/2,

with 0 ≤ t ≤ 1, 0 ≤ ϕ < 2π, −2π ≤ ψ < 2π. Show that the normalized Haar
measure dg on G is equal to (8π2)−1dtdϕdψ.
e) Let a, b in 1

2Z be such that a−b ∈ Z. Deduce from d) that the polynomials
Pn

n/2−a,n/2−b(t), for n an integer of the same parity as 2a, n ≥ max(2a, 2b),
form an orthogonal basis of L2([0, 1]) for the measure t−a−b(1 − t)a−b dt.

2) Let f be a complex-valued function on G of class C∞. Prove that there
exist two complex-valued functions g and ϕ on G, of class C∞, such that ϕ
is central and f = g ∗ ϕ.

3) Let u be an irreducible representation of G, and let λ be its highest weight.
For x ∈ g, denote by x̄ the unique element of C that is conjugate to x under
Ad(G). Prove the equality ‖u(x)‖∞ = |δ(λ)(x̄)|.
4) Choose a separating positive quadratic form Q on g invariant under Ad(G).
For x ∈ t, put ϑ0(x) =

∑
u∈Γ (T)

e−Q(x+u).

a) Show that ϑ0 is a function of class C∞ on t, and that there exists a function
ϑ1 of class C∞ on T such that ϑ1 ◦ expT = ϑ0.
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b) Show that there exists a unique central function ϑ on G, of class C∞,
whose restriction to T is equal to ϑ1. For every maximal torus S of G and all
x ∈ L(S), we have

ϑ(expx) =
∑

u∈Γ (S)

e−Q(x+u).

c) Let A be an alcove of t, dx a Haar measure on t, and h a locally integrable
function on t invariant under the affine Weyl group W′

a (§5, no. 2). Prove the
equality∫

A
h(x) dx =

1
w(G)

∫
t

h(x)e−Q(x)(ϑ0(x))−1dx.

d) For x ∈ g, put ξ(x) = λg(x)e−Q(x)(ϑ(expx))−1, with λg(x) = det ead x−1
ad x

(§6, no. 3). Show that ξ is a function of class C∞ on g and that if µ is a Haar
measure on g, the image under expG of the measure ξµ is a Haar measure on
G (use c) as well as Cor. 2 of Th. 1 and Prop. 4 (§6, no. 2 and 3)).

e) Prove the formula ϑ0(x) = m
∑

λ∈X(T)
exp(δ(λ)(x) − 1

4Q′(δ(λ))) for x ∈ t,

where Q′ is the quadratic form on t∗C inverse to the quadratic form on tC
induced by Q and where m is a constant that should be calculated (use Pois-
son’s formula, cf. Spectral Theory, Chap. II, §1, no. 8). Deduce the equality
ϑ(t) = m

∑
λ∈X(T)

e−Q′(δ(λ))/4tλ for t ∈ T.

5) a) Let V be a real vector space, f a non-zero linear form on V, H the
kernel of f . Then, a function ϕ on V of class C∞ vanishes on H if and only
if it can be written as fϕ′, where ϕ′ is a function of class C∞ on V.
b) Let V be a real vector space, (fi)i∈I a finite family of non-zero linear forms
such that the Hi = Ker fi are pairwise distinct. Then, a function ϕ on V of
class C∞ vanishes on the union of the Hi if and only if it can be written as
ψ
∏
i∈I
fi, where ψ is a function on V of class C∞.

c) Let T be a torus, (αi)i∈I a finite family of characters of T distinct from
1, such that the Ki = Kerαi are pairwise distinct. Then, a function ϕ on T
of class C∞ vanishes on the union of the Ki if and only if it can be written
as ψ.

∏
i∈I

(αi − 1), where ψ is a function of class C∞ on T (argue locally on T

and use b)).
d) With the notations of no. 4, prove that the map b∞: C ∞(T)W →C ∞(T)−W

is bijective.

6) Assume that G is not commutative. Show that the continuous function
J(ρ)1/3 on T is anti-invariant under W, but does not belong to the image of
the map bc : C(T)W → C(T)−W.
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§9

1) Let A be the compact subset of R consisting of 0 and the real numbers
1/n, with n an integer ≥ 1. Show that when C r(R;R) is given the topology
of uniform Cr-convergence on A, the set of morphisms that are embeddings
in the neighbourhood of A is not open in C r(R;R) (consider a sequence of
functions (fn)n≥1 such that fn(x) = x for x ≤ 1

n+1 , fn(x) = x− 1
n for x ≥ 1

n ).

2) Let X be a separated manifold of class Cr (1 ≤ r ≤ ∞), countable at
infinity, and pure of dimension n.
a) Assume that there exists an embedding ϕ of X into a finite dimensional
vector space V. Show that there exists an embedding of X in R2n+1 (if
dimV > 2n + 1, prove that there exists a point p of V such that, for all
x ∈ X, the straight line joining p to ϕ(x) meets ϕ(V) only in the point ϕ(x),
and meets it transversally at this point; deduce that there is an embedding
of X in a space of dimension equal to dim V − 1).
b) Show that there exists an embedding of X in R2n+1. (Let O be the set
of open subsets of X, U the subset of O consisting of the open sets U such
that there exists a morphism ϕ : X → R2n+1 whose restriction to U is an
embedding; by using a), show that U is a quasi-full subset (General Topology,
Chap. IX, §4, Exerc. 27) of O, and hence is equal to O.)
c) Show that there exists a proper embedding of X in R2n+1. (Construct a
proper embedding of X in R2n+2 by means of a proper function on X.)

¶ 3) Let G be a Lie group, H a compact subgroup of G. Assume that G
admits a faithful (finite dimensional) linear representation.
a) Let ΘH(G) be the subalgebra of C(H;R) consisting of the restrictions to H
of the (continuous) representative functions on G. Show that ΘH(G) is dense
in C(H;R) for the topology of uniform convergence.
b) Let f ∈ ΘH(G). Show that there exists a representation σ of G on a finite
dimensional real vector space such that a coefficient of the representation σ|H
is not orthogonal to f (Spectral Theory, in preparation).
c) Let ρ : H → GL(V) be a representation of H on a finite dimensional
real vector space. Show that there exists a finite dimensional real vector
space W, a representation σ : G → GL(W) and an injective homomorphism
u : V → W, such that u(ρ(h)v) = σ(h)u(v) for h ∈ H, v ∈ V.
(Reduce to the case in which ρ is irreducible, and use b).)

4) Let G be a Lie group, H a compact subgroup of G, ρ a unitary represen-
tation of H on a real Hilbert space V. Prove that there exists a real Hilbert
space W, a unitary representation σ of G on W and an isometric injection
u : V → W with closed image, such that u(ρ(h)v) = σ(h)u(v) for h ∈ H,
v ∈ V (same method as for Exerc. 3).
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5) Let G be a Lie group, H a compact subgroup of G. Assume that there exists
a faithful linear representation ρ : G → GL(V) of G on a finite dimensional
real vector space.
a) Show that there exists a representation σ of GL(V) on a finite dimensional
real vector space W, a separating positive quadratic form q on V and a vector
w in W such that ρ(H) = O(q) ∩ Fw, where Fw is the fixer of w in GL(V)
(choose a quadratic form q invariant under H and a representation of O(q)
such that ρ(H) is the fixer of a point (Cor. 2 of no. 2), then apply Exerc. 3
c)).
b) Deduce from a) that there exists a finite dimensional real vector space E,
a representation of G on E and a vector e ∈ E with fixer H (take E = W⊕Q,
where Q is the space of quadratic forms on V, and e = (w, q)).

6) Let G be a Lie group, H a compact subgroup of G. Show that there exists
a unitary representation of G on a real Hilbert space E and a vector e ∈ E
with fixer H (take E = L2(G)).

7) Let G be a Lie group, H a compact subgroup of G, and ρ a unitary
representation of H on a real Hilbert space W. Denote by X the manifold
G × H W (no. 3).
a) Show that there exists a Hilbert space V, a unitary representation σ of G
on V and an (analytic) embedding ϕ : X → V such that ϕ(gx) = σ(g)ϕ(x)
for g ∈ G, x ∈ X (use Exerc. 4 and Exerc. 6).
b) Prove that, if W is finite dimensional and if G admits a faithful finite di-
mensional linear representation, then V can be chosen to be finite dimensional
(use Exerc. 3 and Exerc. 5).

¶ 8) Let X be a paracompact manifold of class Cr (1 ≤ r ≤ ∞), and G a Lie
group operating properly on X such that the law of operation (g, x) 	→ gx is
of class Cr.
a) Show that there exists a unitary representation ρ of G on a Hilbert space V
and an embedding ϕ (of class Cr) of X in V, such that ϕ(gx) = σ(g)ϕ(x) for
g ∈ G, x ∈ X. (Use Prop. 6, Exerc. 7, and argue as in the proof of Prop. 4.)
b) Make the following additional assumptions:
(i) G admits a finite dimensional linear representation;
(ii) X is countable at infinity, and of bounded dimension;
(iii) X has only a finite number of orbit types for the operation of G.
Prove that there exists a finite covering of X by open sets (Ui)i∈I that are
stable under G, compact subgroups (Hi)i∈I of G, and for all i ∈ I a closed
submanifold Si of Ui, stable under Hi, such that the map (g, s) 	→ gs induces
by passage to the quotient an isomorphism from G×Hi Si to Ui (show that the
open subsets of X/G whose inverse image in X admits such a covering form
a quasi-full subset of the set of open subsets of X/G, cf. General Topology,
Chap. IX, §4, Exerc. 27).
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c) With the assumptions in b), prove that there exists a representation of G
on a finite dimensional real vector space V and an embedding of X in V of
class Cr compatible with the operations of G (argue by induction on the set
of subgroups of G, using b), Exerc. 2 and Exerc. 7).

9) Let G be a Lie group operating properly on a manifold X. Make one of
the following two assumptions:
(i) X/G is compact, and X is countable at infinity and of bounded dimension;
(ii) X is a finite dimensional vector space on which G operates linearly.
Prove that the set of orbit types of elements of X is finite (treat the two cases
simultaneously by induction on dim X, and use Prop. 6).

10) Let G be the Lie subgroup of GL(3,R) consisting of the matrices⎛⎝ 1 a b
0 1 0
0 0 1

⎞⎠, a, b ∈ R. Show that, for the identity representation of G on

R3, the number of orbit types is infinite.

¶ 11) For any integer n ≥ 1, define a map ϕn from (0, 1
2 (×T2 to R3 by putting

ϕn(r;α, β) = ((n+ r cos 2πβ) cos 2πα, (n+ r cos 2πβ) sin 2πα, r sin 2πβ). Put

Tn = ϕn

(
0,

1
2

× T2
)
, Sn = ϕn({0} × T2).

a) Show that the restriction of ϕn to 0, 1
2 × T2 is an isomorphism (of class

Cω) from 0, 1
2 × T2 to Tn -- Sn.

b) Let fn : Tn → Tn be the map that coincides with the identity on Sn and
is such that

fn(ϕn(r;α, β)) = ϕn(r;α− (n− 1)β,−α+ nβ)

for r > 0. Show that fn induces an automorphism of Tn -- Sn.
c) Show that there exists a real-analytic manifold structure on R3 such that
the maps fn : Tn → R3 and the canonical injection R3 --

⋃
n

Sn → R3 are
analytic. Denote by X the real-analytic manifold defined in this way.
d) For ϑ ∈ T, denote by Rϑ the rotation

(x, y, z) 	→ (x cos 2πϑ− y sin 2πϑ, x sin 2πϑ+ y cos 2πϑ, z)

of R3. Prove that putting, for θ ∈ T and u ∈ X,

ϑ.u = Rϑ(u) if u ∈ X --
⋃
n

Sn;

ϑ.u = Rnϑ(u) if u ∈ Sn for some integer n ≥ 1

defines an analytic law of operation of T on X.
e) Show that the set of orbit types of X (for the operation of T defined in
d)) is infinite.
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f) Show that there is no embedding, compatible with the operation of T,
of X in a finite dimensional vector space on which T operates linearly (use
Exerc. 9).

12) Let G be a compact Lie group.
a) Prove that the set of conjugacy classes of normalizers of integral subgroups
of G is finite (consider the operation of G on the grassmannian of subspaces
of L(G), and apply Exerc. 9).
b) The set of conjugacy classes of (compact) semi-simple subgroups of G is
finite (observe that a Lie algebra can contain only finitely-many semi-simple
ideals (Chap. I, §6, Exerc. 7) and use a)).

13) Let G be a Lie group, H and K two compact subgroups of G. Assume that
G admits a faithful finite dimensional linear representation. Show that there
exists a finite set F of subgroups of H such that for all g ∈ G the subgroup
H ∩ gKg−1 is conjugate in H to a subgroup in F (use Exerc. 5 and 9).

14) Assume that the manifold X is paracompact and locally finite dimen-
sional. Let G be a Lie group operating properly on X, H a compact subgroup
of G, and t the conjugacy class of H.
a) Show that the set XH of points of X whose fixer is equal to H is a locally
closed submanifold of X.
b) Show that the map (g, x) 	→ gx from G×XH to X induces an isomorphism
(of class Cr) from G × N(H) XH to X(t).

¶ 15) Let G be a locally compact topological group operating properly on
a topological space E; let ρ be a representation of G on a finite dimensional
real vector space V. Denote by dg a right Haar measure on G.
a) Let P be the set of subsets A of E having the following property: there
exists an open covering (Uα)α∈I of E such that, for all α ∈ I, the set of g ∈ G
such that gA ∩ Uα �= ∅ is relatively compact in G.
Prove that, for every continuous function f : E → V whose support belongs
to P, the map x 	→ ∫

G ρ(g)
−1f(gx) dg is a continuous map from E to V,

compatible with the operations of G.
b) Make one of the following assumptions:
(i) the space E/G is regular;
(ii) there exists an open subset U of E and a compact subset K of G such
that E = GU and gU ∩ U = ∅ for g /∈ K.
Show that every point x in E has a neighbourhood belonging to P (in case
(i), take A = V ∩ W, where V is a neighbourhood of x such that gV ∩ V = ∅

for g outside a compact subset of G, and W to be a closed neighbourhood of
Gx stable under G and contained in GV).
Every point in E has an open neighbourhood stable under G and satisfying
(ii).
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c) Assume in addition that E is completely regular. Let x ∈ E, v ∈ V be such
that the fixer of x is contained in that of v. Prove that there exists a continu-
ous map F : E → V, compatible with the operations of G, such that F(x) = v.
(Let F be the space of continuous numerical functions on E whose support
belongs to P, and let u : F → V be the map α 	→ ∫

G α(gx)ρ(g−1).v dg. Let
C be a convex neighbourhood of v in V; construct a neighbourhood A of x
belonging to P such that gx ∈ A implies that ρ(g−1).v ∈ C, and a function
α on E, with support in A, such that α(x) �= 0 and

∫
G α(gx) dg = 1. Show

that u(α) belongs to C and deduce that v ∈ Imu.)

16) Let G be a topological group operating properly on a separated topo-
logical space E. Let x be a point in E, H its fixer in G, and S a subset of
E containing x and stable under H. The group H operates on the right on
G × S by the formula (g, s).h = (gh, h−1s) for g ∈ G, h ∈ H, s ∈ S; the map
(g, s) 	→ gs induces by passage to the quotient a map from (G × S)/H to X.
Then S is said to be a transversal at x if this map is a homeomorphism onto
an open subset of X.
a) Show that, if G is discrete, there exists a transversal at x.
b) Let F be a separated topological space on which G operates properly, and
let f : E → F be a continuous map, compatible with the operations of G,
such that the fixer of f(x) in G is equal to H. Show that, if S is a transversal
at f(x), then f−1(S) is a transversal at x.
c) Let N be a closed normal subgroup of G, π : E → E/N the canonical
projection, T a transversal at π(x) for the operation of G/N on E/N, and
S ⊂ π−1(T) a transversal at x for the operation of HN on π−1(T). Show that
S is a transversal at x in E (for the operation of G).

17) Let G be a Lie group. We are going to show that G has the following
property:
(T) For every completely regular topological space E on which G operates
properly, and every point x in E, there exists a transversal at x (Exerc. 16).
a) Show that every Lie group having a faithful finite dimensional linear rep-
resentation satisfies (T) (use Exerc. 15 and 16 b), as well as Prop. 6).
b) Prove that, if G has a closed normal subgroup N such that G/N satisfies
(T) and such that KN satisfies (T) for every compact subgroup K of G, then
G satisfies (T) (apply Exerc. 16 c)).
c) If G0 is compact, then G satisfies (T).
d) Show that, if G has a discrete normal subgroup N such that G/N satisfies
(T), then G satisfies (T).
e) Show that G satisfies (T) (let N be the kernel of the adjoint representation;
prove that G/N0 satisfies (T), then apply a), b) and Exerc. 9 of §1).

18) Let G be a Lie group operating properly on a completely regular topo-
logical space E.
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a) Let x ∈ E, and let t be its orbit type; show that there exists an open
neighbourhood U of x, stable under G, such that for all u ∈ U the type of u
is ≥ t.
b) Assume that G operates freely on E; let π : E → E/G be the canonical
projection. Show that, for every point z of E/G, there exists an open neigh-
bourhood U of z and a continuous map s : U → E such that π ◦ s(u) = u for
all u ∈ U.

19) Let G be a Lie group, H a compact subgroup of G. Prove that there
exists a neighbourhood V of H such that every subgroup of G contained in V
is conjugate to a subgroup of H (apply Exerc. 18 a) to the space of compact
subsets of G, cf. Integration, Chap. VIII, §5, no. 6).

¶ 20) Let G be a compact Lie group, m a positive integer.
a) Show that the set of conjugacy classes of subgroups of G of order ≤ m is
finite (supposing this to be false, construct a finite group F and a sequence
of homomorphisms ϕn : F → G such that ϕi(F) is not conjugate to ϕj(F) for
i �= j, and such that ϕn(f) tends to a limit ϕ(f) for all f ∈ F; show that ϕ
is a homomorphism, and that this leads to a contradiction with Exerc. 19).
b) Show that the set of conjugacy classes of subgroups F of G all of whose
elements are of order ≤ m is finite (let µ be a Haar measure on G, and let U
be a symmetric neighbourhood of the identity element such that U2 contains
no non-trivial element of order ≤ m; prove that Card(F) ≤ µ(G)/µ(U)).

¶ 21) Let G be a compact Lie group, T a maximal torus of G.
a) Let S be a set of closed subgroups of G, stable under conjugation, such that
the family of subgroups (S ∩ T)S∈S is finite. Show that the set of conjugacy
classes of the subgroups S0, for S ∈ S, is finite (by using Exerc. 12 a)), reduce
to the case in which the subgroups S0 are normal; consider the groups C(S0)0
and D(S0), and apply Exerc. 12 b)).
b) Show that S is the union of a finite number of conjugacy classes of sub-
groups of G (by using a), reduce to the case in which the subgroups S ∈ S
all have the same identity component Σ, which is normal in G; then bound
the orders of the elements of the groups S/Σ, and apply Exerc. 20 b)).
c) Let E be a separated topological space on which G operates continuously.
Show that if the elements of E have only a finite number of orbit types for
the operation of T, the same is true for the operation of G.

APPENDIX I

1) Let G be a connected compact group. Denote by d(G) the upper bound
of the dimensions of the quotients of G that are Lie groups. Assume that
d(G) < ∞.
a) Let K be a closed normal subgroup of G; show that d(G/K) ≤ d(G), and
that d(G/K) = d(G) if K is totally discontinuous.
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b) Show that D(G) is a Lie group, and that the kernel of the homomorphism
(x, y) 	→ xy from C(G)0 × D(G) to G is finite.
c) Let p = d(C(G)0). Then p < ∞; prove that there exists a totally discontin-
uous compact group D and a homomorphism i : Zp → D with dense image,
such that C(G)0 is isomorphic to (Rp × D)/Γ , where Γ is the image of Zp

under the homomorphism x 	→ (x, i(x)) (write C(G)0 as a projective limit of
tori of dimension p).
d) Assume that G is locally connected; show that G is then a Lie group.
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adjoint (representation of SL(2, k)): VIII.1.4
admissible (lattice): VIII.12.8
alcove: IX.5.2
anti-hermitian (endomorphism): IX.1.1
anti-invariant: IX.7.4
biorder (of a Lie algebra): VIII.12.1
Borel (subalgebra): VIII.3.3, VIII.3.5
canonical (Cartan subalgebra, root system, basis): VIII.5.3
canonical (involution of sl(2, k)): VIII.1.1
Cartan (subalgebra): VII.2.1
Casimir element: IX.7.6
central (character of a g-module): VIII.6.1
central (function): IX.8.3
chamber: IX.5.2
character (of a g-module): VIII.7.7
Chevalley (order): VIII.12.7
Chevalley (system): VIII.2.4
classical (splittable Lie algebra): VIII.3.2
clean (subgroup): IX.4, Exerc. 15
Clebsch-Gordan (formula): VIII.9.4
compact (Lie algebra): IX.1.3
compact (real form of a complex Lie algebra): IX.3.1
compatible (representations): VII.3.1, VIII.1.4
condition (AC): VII.1.1
conjugation: IX.3.1
contravariant diagram: IX.4.9
covariant diagram: IX.4.9
Coxeter element: IX.4, Exerc. 14
dominant: IX.7.1
eigenvalue: VII.1.1
eigenvector: VII.1.1
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embedding (of a manifold in the neighbourhood of a subset): IX.9.1
exceptional (splittable simple Lie algebra): VIII.3.2
exponential: VIII.8.1
facet (associated to a parabolic subset): VIII.3.4
Fitting (decomposition of a module): VII.1.1
flag: VIII.13.1
Fourier cotransform: IX.8.1
Fourier transform: IX.8.1
framing: IX.4.10
framing (of a split semi-simple Lie algebra): VIII.4.1
framed (semi-simple Lie algebra): VIII.4.1
fundamental (dominant weight): IX.7.1
fundamental (representations, simple g-modules): VIII.7.2
generating family (defined by a framing): VIII.4.1
Harish-Chandra (homomorphism): VIII.6.4
Hermann Weyl (formula of –): VIII.9.1
homogeneous symmetric space: IX.1, Exerc. 8
invariant (polynomial function): VIII.8.3
involutive (Lie algebra): IX.1, Exerc. 7
irreducible (involutive Lie algebra): IX.1, Exerc. 7
irreducible (homogeneous symmetric space): IX.1, Exerc. 8
isotropic (flag): VIII.13.2, VIII.13.3
isotypical (component of highest weight λ): VIII.7.2
Jacobson-Morozov (theorem): VIII.11.2
lattice (in a Q-vector space): VIII.12.1
linear tube: IX.9.3
maximal torus: IX.2.2
minuscule (weight): VIII.7.3
moderately increasing: IX.8.2
nilpotent (component of an element): VII.1.3
nilspace: VII.1.1
nodal group (of a torus): IX.4.2
nodal vector: IX.4.5
order (of a Q-algebra): VIII.12.1
orthogonal (Lie algebra): VIII.13.2
orthogonal (irreducible representation): VIII.7.5
parabolic (subalgebra): VIII.3.4, VIII.3.5
partition (into positive roots): VIII.9.1
permissible (lattice): VIII.12.6
positive root: IX.7.1
primary (subspace): VII.1.1
primitive (element of a module): VIII.1.2, VIII,6.1
principal (nilpotent element, simple element, sl2-triplet): VIII.11.4
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principal (orbit): IX.9.4
principal (subgroup): IX.4, Exerc. 18
proper (subspace): VII.1.1
quasi-maximal (isotropic flag): VIII.13.4
R-extremal (element): VIII.7.2
R-saturated (subset): VIII.7.2
radical (subgroup): IX.4.7
rank (of a Lie algebra): VII.2.2
rank (of a Lie group): IX.2.4
rapidly decreasing: IX.8.2
real form (of a complex Lie algebra): IX.3.1
reduced (root diagram): IX.4.8
regular (element for a linear representation): VII.4.1
regular (element of a Lie algebra): VII.2.2
regular (element of a Lie group): VII.4.2
representation ring (of a Lie algebra): VIII.7.6
root: IX.4.4
root (of (g, h)): VIII.2.2
root diagram: IX.4.8
semi-simple (component of an element): VII.1.3
semi-spinorial (representation): VIII.13.4
simple (element): VIII.11.3
simple (root): IX.7.1
singular hyperplane: IX.5.2
sl2-triplet: VIII.11.1
spinorial (representation): VIII.13.2, VIII.13.4
split (reductive Lie algebra): VIII.2.1
splittable (Lie subalgebra): VII.5.1, VIII.10
splittable (Cartan subalgebra, reductive Lie algebra): VIII.2.1
splittable envelope (of a subalgebra of gl(V)): VII.5.2
subgroup (Cartan –): IX.2.2
subgroup (of maximum rank): IX.2.4
subgroup (principal –): IX.4, Exerc. 18
symplectic (Lie algebra): VIII.13.3
symplectic (irreducible representation): VIII.7.5
tangent (linear map of a polynomial map): VII.App.I.2
topology of compact Cr-convergence: IX.6.4
torsion prime number: IX.5, Exerc. 9 to 11
torus: IX.1.2
transversal: IX.9.3 and IX.9, Exerc. 16
type (An,Bn, . . .): IX.3.3
type (of a representation): IX.App.II.1, IX.App.II.2
vector (group): IX.1.2
very regular (element): IX.5.1
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weights (of a g-module): VII.1.1, VIII.1.2, VIII.6.1
weights (of a representation): IX.4.3
weights (group of – of a split Lie algebra): VIII.2.2
Weyl (group): IX.2.5
Weyl (group of a split algebra): VIII.2.2
Witt (basis): VIII.13.2, VIII.13.3, VIII.13.4
Zariski (topology): VII.App.I.1
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