Jerzy Trzeciak

Writing Mathematical Revised Papers in English

a practical guide

Author:
Jerzy Trzeciak
Publications Department
Institute of Mathematics
Polish Academy of Sciences
00-956 Warszawa
Poland

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available at http://dnb.ddb.de.

ISBN 3-03719-014-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained.

Licensed Edition published by the European Mathematical Society
Contact address:
European Mathematical Society Publishing House
Seminar for Applied Mathematics
ETH-Zentrum FLI C4
$\mathrm{CH}-8092$ Zürich
Switzerland
Phone: +41 (0)1 6323436
Email: info@ems-ph.org
Homepage: www.ems-ph.org
First published by Gdańskie Wydawnictwo Oświatowe, ul. Grunwaldzka 413, 80-307 Gdańsk, Poland; www.gwo.pl.
© Copyright by Gdańskie Wydawnictwo Oświatowe, 1995
Printed in Germany

PREFACE

The booklet is intended to provide practical help for authors of mathematical papers. It is written mainly for non-English speaking writers but should prove useful even to native speakers of English who are beginning their mathematical writing and may not yet have developed a command of the structure of mathematical discourse.

The booklet is oriented mainly to research mathematics but applies to almost all mathematics writing, except more elementary texts where good teaching praxis typically favours substantial repetition and redundancy.
There is no intention whatsoever to impose any uniformity of mathematical style. Quite the contrary, the aim is to encourage prospective authors to write structurally correct manuscripts as expressively and flexibly as possible, but without compromising certain basic and universal rules.
The first part provides a collection of ready-made sentences and expressions that most commonly occur in mathematical papers. The examples are divided into sections according to their use (in introductions, definitions, theorems, proofs, comments, references to the literature, acknowledgements, editorial correspondence and referees' reports). Typical errors are also pointed out.

The second part concerns selected problems of English grammar and usage, most often encountered by mathematical writers. Just as in the first part, an abundance of examples are presented, all of them taken from actual mathematical texts.

The author is grateful to Edwin F. Beschler, Daniel Davies, Zofia Denkowska, Zbigniew Lipecki and Zdzisław Skupień for their helpful criticism. Thanks are also due to Adam Mysior and Marcin Adamski for suggesting several improvements, and to Henryka Walas for her painstaking job of typesetting the continuously varying manuscript.

CONTENTS

Part A: Phrases Used in Mathematical Texts
Abstract and introduction 4
Definition 6
Notation 7
Property 8
Assumption, condition, convention 10
Theorem: general remarks 12
Theorem: introductory phrase 13
Theorem: formulation 13
Proof: beginning 14
Proof: arguments 15
Proof: consecutive steps 16
Proof: "it is sufficient to 17
Proof: "it is easily seen that 18
Proof: conclusion and remarks 18
References to the literature 19
Acknowledgments 20
How to shorten the paper 20
Editorial correspondence 21
Referee's report 21
Part B: Selected Problems of English Grammar
Indefinite article (a, an, 一) 23
Definite article (the) 24
Article omission 25
Infinitive 27
Ing-form 29
Passive voice 31
Quantifiers 32
Number, quantity, size 34
How to avoid repetition 38
Word order 40
Where to insert a comma 44
Hyphenation 46
Some typical errors 46
Index 49

Part A：Phrases Used in Mathematical Texts

ABSTRACT AND INTRODUCTION

We prove that in some families of compacta there are no universal elements． It is also shown that ．．．．．
Some relevant counterexamples are indicated．

It is of interest to know whether \qquad
We are interested in finding ．．．．．
It is natural to try to relate \qquad to o ．．．．．

This work was intended as an attempt to motivate 〈at motivating〉 ．．．．． The aim of this paper is to bring together two areas in which ．．．．．

In Section 3 the third section
［Note：paragraph
\neq section］
review some of the standard facts on have compiled some basic facts summarize without proofs the relevant material on give a brief exposition of ．．．．． briefly sketch set up notation and terminology． discuss 〈study／treat／examine〉 the case introduce the notion of ．．．．． develop the theory of ．．．．． will look more closely at ．．．．． will be concerned with ．．．．． proceed with the study of ．．．．． indicate how these techniques may be used to extend the results of ．．．．．to ．．．．． derive an interesting formula for ．．．．． it is shown that ．．．．． some of the recent results are reviewed in a more general setting． some applications are indicated． our main results are stated and proved．
｜contains a brief summary 〈a discussion〉 of ．．．．． deals with 〈discusses〉 the case ．．．．． is intended to motivate our investigation of ．．．．．
Section 4 is devoted to the study of ．．．．． provides a detailed exposition of ．．．．． establishes the relation between ．．．．． presents some preliminaries．
We will $\left\lvert\, \begin{aligned} & \text { touch only a few aspects of the theory．}\end{aligned}\right.$ restrict our attention 〈the discussion／ourselves〉 to ．．．．．

It is not our purpose to study
No attempt has been made here to develop \qquad
It is possible that but we will not develop this point here.
A more complete theory may be obtained by
However, this topic exceeds the scope of this paper. we will not use this fact in any essential way.
The basic \langle main $\rangle \begin{aligned} & \text { idea is to apply } \\ & \text { geometric ingredient is }\end{aligned}$
The crucial fact is that the norm satisfies
Our proof involves looking at
. based on the concept of
The proof is similar in spirit to
adapted from
This idea goes back at least as far as [7].
We emphasize that
It is worth pointing out that
The important point to note here is the form of
The advantage of using lies in the fact that
The estimate we obtain in the course of proof seems to be of independent interest.
Our theorem provides a natural and intrinsic characterization of
Our proof makes no appeal to
Our viewpoint sheds some new light on
Our example demonstrates rather strikingly that
The choice of seems to be the best adapted to our theory.
The problem is that
The main difficulty in carrying out this construction is that
In this case the method of breaks down.
This class is not well adapted to
Pointwise convergence presents a more delicate problem.
The results of this paper were announced without proofs in [8].
The detailed proofs will appear in [8] 〈elsewhere/in a forthcoming publication \rangle.
For the proofs we refer the reader to [6].
It is to be expected that
One may conjecture that \qquad
One may ask whether this is still true if
One question still unanswered is whether
The affirmative solution would allow one to
It would be desirable to but we have not been able to do this.
These results are far from being conclusive.
This question is at present far from being solved.

Our method has the disadvantage of not being intrinsic．
The solution falls short of providing an explicit formula．
What is still lacking is an explicit description of ．．．．．
As for prerequisites，the reader is expected to be familiar with ．．．．．
The first two chapters of ．．．．．constitute sufficient preparation．
No preliminary knowledge of ．．．．．is required．
To facilitate access to the individual topics，the chapters are rendered as self－contained as possible．
For the convenience of the reader we repeat the relevant material from［7］ without proofs，thus making our exposition self－contained．

DEFINITION

A set S is dense if ．．．．．
A set S is called 〈said to be〉 dense if ．．．．．
We call a set dense 〈We say that a set is dense〉 if ．．．．．
We call m the product measure．［Note the word order after＂we call＂．］
The function f is given \langle defined \rangle by $f=\ldots$.
Let f be given \langle defined \rangle by $f=\ldots .$.
We define T to be $A B+C D$ ．

This map is defined by requiring f to be constant on ．．．． the requirement that f be constant on ．．．．．
［Note the infinitive．］ imposing the following condition：．．．．．
The length of a sequence is，by definition，the number of ．．．．．
The length of T ，denoted by $l(T)$ ，is defined to be ．．．．．
By the length of T we mean ．．．．．
Define 〈Let／Set〉E＝Lf $\left\lvert\, \begin{aligned} & , \text { where } \left\lvert\, \begin{array}{l}f \text { is } \ldots . . \\ \text { we have set } f=\ldots . .\end{array}\right. \\ & , f \text { being the solution of ．．．．} \\ & \text { with } f \text { satisfying ．．．．．}\end{aligned}\right.$
We will consider \mid the behaviour of the family g defined as follows． the height of g（to be defined later）and ．．．．．
To measure the growth of g we make the following definition．
In this way we obtain what $\left|\begin{array}{l}\text { we shall call } \\ \text { will be referred to as } \\ \text { is known as }\end{array}\right|$ the P－system．
Since
．．．．．， the norm of f is well defined． the definition of the norm is unambiguous 〈makes sense〉．

It is immaterial which M we choose to define F as long as M contains x ． This product is independent of which member of g we choose to define it． It is Proposition 8 that makes this definition allowable．

Our definition agrees $\begin{aligned} & \text { with the one given in［7］if } u \text { is ．．．．．} \\ & \text { with the classical one for ．．．．．}\end{aligned}$ Note that $\left\lvert\, \begin{aligned} & \text { this coincides with our previously introduced } \\ & \text { terminology if } K \text { is convex．} \\ & \text { this is in agreement with }[7] \text { for ．．．．．}\end{aligned}\right.$

NOTATION

We will denote by Z Let us denote by Z Let Z denote
the set ．．．．．Write \langle Let／Set $\rangle f=\ldots .$. ［Not：＂Denote $f=$ ．．．．＂］

The closure of A will be denoted by $\operatorname{cl} A$ ．
We will use the symbol 〈letter〉 k to denote ．．．．． We write H for the value of ．．．．．
We will write the negation of p as $\neg p$ ．
The notation $a R b$ means that ．．．．．
Such cycles are called homologous（written $c \sim c^{\prime}$ ）．
Here
Here and subsequently， Throughout the proof， In what follows， From now on，

We follow the notation of［8］〈used in［8］〉．
Our notation differs 〈is slightly different〉 from that of［8］．
Let us introduce the temporary notation $F f$ for $g f g$ ．
With the notation $f=$ \qquad With this notation， we have ．．．．． In the notation of $[8, \mathrm{Ch} .7]$
If f is real，it is customary to write \qquad rather than ．．．．．
For simplicity of notation， To 〈simplify／shorten〉 notation， By abuse of notation，
For abbreviation，

\mid we $|$| write f instead of ．．．．． |
| :--- |
| use the same letter f for ．．．．． |
| continue to write f for ．．．． |
| let f stand for ．．．．． |

We abbreviate Faub to b^{\prime} ．
We denote it briefly by F ．［Not：＂shortly＂］
We write it F for short 〈for brevity〉．［Not：＂in short＂］
The Radon－Nikodym property（RNP for short）implies that ．．．．．
We will write it simply x when no confusion can arise．

It will cause no confusion if we use the same letter to designate a member of A and its restriction to K ．
We shall write the above expression as
The above expression may be written as We can write（4）in the form
The Greek indices label components of sections of E ．

Print terminology：

The expression in italics 〈in italic type〉，in large type，in bold print； in parentheses（ ）（＝round brackets）， in brackets［ ］（＝square brackets）， in braces $\}$（＝curly brackets），in angular brackets \rangle ； within the norm signs
Capital letters $=$ upper case letters；small letters $=$ lower case letters； Gothic \langle German〉 letters；script 〈calligraphic〉 letters（e．g． \mathcal{F}, \mathcal{G} ）； special Roman 〈blackboard bold〉 letters（e．g． \mathbb{R}, \mathbb{N} ）
Dot \cdot ，prime ${ }^{\prime}$ ，asterisk $=$ star * ，tilde ${ }^{\sim}$ ，bar ${ }^{-}$［over a symbol］，hat ${ }^{\wedge}$ ， vertical stroke 〈vertical bar〉｜，slash 〈diagonal stroke／slant〉／， dash－，sharp \＃
Dotted line ．．．．．．．dashed line＿．．．．，wavy line \qquad

PROPERTY

such that 〈with the property that〉 ．．．．．
［Not：＂such an element that＂］ with the following properties：．．．．．
satisfying $L f=$ ．．．．．
with $N f=1$ 〈with coordinates $x, y, z\rangle$
of norm 1 〈of the form ．．．．．〉
whose norm is ．．．．．
all of whose subsets are \qquad
by means of which g can be computed for which this is true
The $\langle\mathrm{An}\rangle$ element
at which g has a local maximum
described by the equations ．．．．．
given by $L f=\ldots$.
depending only on ．．．．．〈independent of ．．．．．〉
not in A
so small that 〈small enough that〉 ．．．．．
as above \langle as in the previous theorem〉
so obtained
occurring in the cone condition
［Note the double＂r＂．］
guaranteed by the assumption ．．．．．

The $\langle\mathrm{An}\rangle$ element
we have just defined we wish to study 〈we used in Chapter 7 〉 to be defined later［＝which will be defined］ in question under study 〈consideration〉
．．．．．，the constant C being independent of ．．．．．［＝where C is ．．．．．］
．．．．．，the supremum being taken over all cubes ．．．．．
．．．．．，the limit being taken in L ．
is so chosen that ．．．．．
is to be chosen later． is a suitable constant．
．．．．．，where C
is a conveniently chosen element of ．．．．． involves the derivatives of ．．．．． ranges over all subsets of ．．．．． may be made arbitrarily small by ．．．．．
have 〈share〉 many of the properties of ．．．．． have still better smoothness properties． lack 〈fail to have〉 the smoothness properties of ．．．．． still have norm 1.
not merely symmetric but actually self－adjoint． not necessarily monotone． both symmetric and positive－definite．
The operators A_{i} not continuous，nor do they satisfy（2）．
［Note the inverse word order after＂nor＂．］
are neither symmetric nor positive－definite． only nonnegative rather than strictly
positive，as one may have expected． any self－adjoint operators，possibly even unbounded． still 〈no longer〉 self－adjoint． not too far from being self－adjoint．
preceding theorem indicated set
The
above－mentioned group
resulting region required 〈desired〉 element
［But adjectival clauses with
prepositions come after a noun， e．g．＂the group defined in Section 1＂．］

Both X and Y are finite．
Neither X nor Y is finite．
Both X and Y are countable，but neither is finite．
Neither of them is finite．［Note：＂Neither＂refers to two alternatives．］
None of the functions F_{i} is finite．
The set X is not finite；nor \langle neither〉 is Y ．

Note that X is not finite，nor is Y countable．［Note the inversion．］
We conclude that X is empty $\left\lvert\, \begin{aligned} & \text { ；so also is } Y \text { ．} \\ & \text { ，but } Y \text { is not．}\end{aligned}\right.$ Hence X belongs to $Y \mid$ ，and so does Z ．

ASSUMPTION，CONDITION，CONVENTION

We will make \langle need \rangle the following assumptions：．．．．．
From now on we make the assumption：．．．．．
The following assumption will be needed throughout the paper．
Our basic assumption is the following．
Unless otherwise stated 〈Until further notice〉 we assume that ．．．．．
In the remainder of this section we assume \langle require $\rangle g$ to be ．．．．．
In order to get asymptotic results，it is necessary to put some restrictions on f ．
We shall make two standing assumptions on the maps under consideration．
It is required 〈assumed〉 that ．．．．．
The requirement on g is that ．．．．．

There is no loss of generality in assuming ．．．．．
Without loss 〈restriction〉 of generality we can assume

This involves no loss of generality．
We can certainly assume that $\ldots . . \begin{aligned} & \text { ，since otherwise ．．．．．} \\ & \text { ，for ．．．．．}[=\text { because }] \\ & \text { ，for if not，we replace ．．．．．} \\ & \text { ．Indeed，．．．．．}\end{aligned}$
Neither the hypothesis nor the conclusion is affected if we replace ．．．．．
By choosing $b=a$ we may actually assume that ．．．．．
If $f=1$ ，which we may assume，then ．．．．．
For simplicity 〈convenience〉 we ignore the dependence of F on g ．
［E．g．in notation］
It is convenient to choose ．．．．．
We can assume，by decreasing k if necessary，that ．．．．．
Thus F meets S transversally，say at $F(0)$ ．
There exists a minimal element，say n ，of F ．
Hence G acts on H as a multiple（say n ）of V ．
For definiteness \langle To be specific〉，consider ．．．．．

This condition
is not particularly restrictive． is surprisingly mild．
admits 〈rules out／excludes〉 elements of ．．．．． is essential to the proof． cannot be weakened（relaxed／improved／omitted／ dropped \rangle ．

The theorem is true if＂open＂is deleted from the hypotheses．
The assumption ．．．．．is superfluous 〈redundant／unnecessarily restrictive〉．
We will now show how to dispense with the assumption on ．．．．．
Our lemma does not involve any assumptions about curvature．
We have been working under the assumption that ．．．．．
Now suppose that this is no longer so．
To study the general case，take ．．．．．
For the general case，set ．．．．．
The map f will be viewed 〈regarded／thought of〉 as $\left\lvert\, \begin{aligned} & \text { a functor ．．．．．} \\ & \text { realizing ．．．．．}\end{aligned}\right.$
From now on we $\begin{aligned} & \text { think of } L \text { as being constant．} \\ & \text { regard } f \text { as a map from ．．．．．} \\ & \text { tacitly assume that ．．．．．}\end{aligned}$
It is understood that $r \neq 1$ ．
We adopt \langle adhere to \rangle the convention that $0 / 0=0$ ．

THEOREM：GENERAL REMARKS

This theorem
an extension 〈a fairly straightforward generalization／a sharpened version／ a refinement $)$ of ．．．．．
an analogue of ．．．．．
is a reformulation 〈restatement〉 of ．．．．． in terms of ．．．．．
analogous to ．．．．．
a partial converse of ．．．．．
an answer to a question raised by ．．．．．
deals with ．．．．．
ensures the existence of ．．．．．
expresses the equivalence of ．．．．．
provides a criterion for ．．．．．
yields information about
makes it legitimate to apply ．．．．．
The theorem states 〈asserts／shows〉 that ．．．．．
Roughly \langle Loosely \rangle speaking，the formula says that ．．．．．
When f is open，（3．7）just amounts $\left\lvert\, \begin{aligned} & \text { to saying that ．．．．．} \\ & \text { to the fact that ．．．．}\end{aligned}\right.$
Here is another way of stating（c）：．．．．．
Another way of stating（c）is to say：．．．．．
An equivalent formulation of（c）is：．．．．．
Theorems 2 and 3 may be summarized by saying that ．．．．．
Assertion（ii）is nothing but the statement that
Geometrically speaking，the hypothesis is that ．．．．．；part of the conclusion is that ．．．．．
The interest
The principal significance The point of the lemma is $\begin{aligned} & \text { in the assertion ．．．．．} \\ & \text { that it allows one to ．．．．．}\end{aligned}$

The theorem gains in interest if we realize that ．．．．．
The theorem $\left|\begin{array}{l}\text { is still true } \\ \text { still holds }\end{array}\right|$ if $\left\lvert\, \begin{aligned} & \text { we drop the assumption ．．．．．} \\ & \text { it is just assumed that ．．．．}\end{aligned}\right.$
$\left.\begin{aligned} & \text { If we take } f=\ldots . . \\ & \text { Replacing } f \text { by }-f,\end{aligned} \right\rvert\,$ we recover $\left\lvert\, \begin{aligned} & \text { the standard lemma ．．．．．} \\ & {[7, \text { Theorem 5］．}}\end{aligned}\right.$
This specializes to the result of［7］if $f=g$ ．
This result will $\left|\begin{array}{l}\text { be needed in } \\ \text { prove extremely useful in } \\ \text { not be needed until }\end{array}\right|$ Section 8.

THEOREM: INTRODUCTORY PHRASE

We have thus proved
Summarizing, we have

We can now
rephrase Theorem 8 as follows. state the analogue of formulate our main results.

We are thus led to the following strengthening of Theorem 6: The remainder of this section will be devoted to the proof of
\qquad
\qquad
The continuity of A is established by our next theorem.
The following result may be proved in much the same way as Theorem 6. Here are some elementary properties of these concepts.
Let us mention two important consequences of the theorem.
We begin with a general result on such operators.
[Note: Sentences of the type "We now have the following lemma", carrying no information, can in general be cancelled.]

THEOREM: FORMULATION

If and if, then
Let M be $\left|\begin{array}{l}\text { Suppose that } \\ \text { Assume that } \\ \text { Write }\end{array}\right|$ Then, $\left\lvert\, \begin{aligned} & \text { provided } m \neq 1 . \\ & \text { unless } m=1 . \\ & \text { with } g \text { a constant } \\ & \text { satisfying }\end{aligned}\right.$
Furthermore \langle Moreover〉,
In fact, [= To be more precise]
Accordingly, [= Thus]
Given any $f \neq 1$ suppose that Then
Let P satisfy $\left|\begin{array}{l}\text { the hypotheses of } \\ \text { the above assumptions. } \\ N(P)=1 .\end{array}\right|$ Then
Let assumptions $1-5$ hold. Then
Under the above assumptions,
Under the same hypotheses,
Under the conditions stated above,
Under the assumptions of Theorem 2 with "convergent" replaced by "weakly convergent",
Under the hypotheses of Theorem 5, if moreover
Equality holds in (8) if and only if
The following conditions are equivalent:
[Note: Expressions like "the following inequality holds" can in general be dropped.]

PROOF：BEGINNING

prove 〈show／recall／observe〉 that ．．．．．
We prove a reduced form of the theorem．
Let us first outline \langle give the main ideas of \rangle the proof． examine $B f$ ．
．To see \langle prove \rangle this，let $f=\ldots .$.
But $A=B$ ．We prove this as follows．
This is proved by writing $g=\ldots .$.
We first compute If． $\begin{aligned} & \text { To this end，consider ．．．．．} \quad \begin{array}{l}\text {＝For this purpose；not：＂To this aim＂］} \\ \text { To do this，take ．．．．．} \\ \text { For this purpose，we set ．．．．．}\end{array}\end{aligned}$
To deduce（3）from（2），take ．．．．．
We claim that ．．．．．Indeed，．．．．．
We begin by proving ．．．．．〈by recalling the notion of ．．．．．〉
Our proof starts with the observation that ．．．．．
The procedure is to find ．．．．．
The proof consists in the construction of ．．．．．

The proof is
straightforward 〈quite involved〉．
by induction on n ．
left to the reader．
based on the following observation．
The main 〈basic〉 idea of the proof is to take ．．．．．
The proof $\left\lvert\, \begin{aligned} & \text { falls naturally into three parts．} \\ & \text { will be divided into three steps．}\end{aligned}\right.$
We have divided the proof into a sequence of lemmas．

Suppose	$\begin{array}{l}\text { the assertion of the lemma is false．} \\ \text { ，contrary to our claim，that ．．．．．}\end{array}$ ．

Conversely \langle To obtain a contradiction〉，$|$ suppose that ．．．．．
On the contrary，
Suppose the lemma were false．Then we could find ．．．．．

If $\left\lvert\,$	there existed an $x \ldots . .$,
x were not in B,	
it were true that ．．．．．，	\(\quad \begin{aligned} \& we would have ．．．．．

\& there would be ．．．．\end{aligned}\right.\)
Assume the formula holds for degree k ；we will prove it for $k+1$ ．
Assuming（5）to hold for k ，we will prove it for $k+1$ ．
We give the proof only for the case $n=3$ ；the other cases are left to the reader．
We give only the main ideas of the proof．

PROOF：ARGUMENTS

But $L f=0$ since f is compact．
We have $L f=0$ ，because ．．．．．［ + a longer explanation］
We must have $L f=0$ ，for otherwise we can replace ．．．．．
As f is compact we have $L f=0$ ．
Therefore $L f=0$ by Theorem 6 ．
That $L f=0$ follows from Theorem 6 ．
From $\left|\begin{array}{l}\text { this } \\ \text {（5）} \\ \text { what has already } \\ \text { been proved，}\end{array}\right|$
｜we conclude 〈deduce／see〉 that ．．．．． we have 〈obtain〉 $M=N$ ．
［Note：without＂that＂］
it follows that ．．．．． it may be concluded that ．．．．．
According to $\langle\mathrm{On}$ account of \rangle the above remark，we have $M=N$ ．
It follows that
Hence 〈Thus／Consequently，／Therefore〉 $\mid M=N$ ．
［hence $=$ from this；thus $=$ in this way；therefore $=$ for this reason；
it follows that $=$ from the above it follows that］

This gives $M=N$ ．
We thus get $M=N$ ．
The result is $M=N$ ．
Now（3）becomes $M=N$ ．
This clearly forces $M=N$ ．
and so $M=N$ ．
and consequently $M=N$ ．
and，in consequence，$M=N$ ．
and hence bounded．
which gives 〈implies／ yields $>M=N$ ． ［Not：＂what gives＂］

Now $F=G=H, \mid$ the last equality being a consequence of Theorem 7 ． which is due to the fact that ．．．．．
Since ．．．．．，（2）shows that ．．．．．，by（4）．
We conclude from（5）that ．．．．．，hence that ．．．．．，and finally that ．．．．．

The equality $f=g$ ，which is part of the conclusion of Theorem 7，implies that ．．．．．

As in the proof of Theorem 8，equation（4）gives ．．．．．
Analysis similar to that in the proof of Theorem 5 shows that ．．．．．［Not：＂similar as in＂］
A passage to the limit similar to the above implies that ．．．．．
Similarly 〈Likewise〉，．．．．．

Similar arguments apply	to the case ．．．．．
The same reasoning applies	

The same conclusion can be drawn for
This follows by the same method as in ．．．．．
The term $T f$ can be handled in much the same way，the only difference being in the analysis of ．．．．．
In the same manner we can see that ．．．．．
The rest of the proof runs as before．
We now apply this argument again，with I replaced by J ，to obtain ．．．．

PROOF：CONSECUTIVE STEPS

Consider ．．．．．	Define
Choose ．．．．	Let
Lix ．．．．．	Set

evaluate ．．．．． compute ．．．．．
apply the formula to ．．．．． suppose for the moment regard s as fixed and ．．．．．
［Note：The imperative mood is used when you order the reader to do something，so you should not write e．g．＂Give an example of ．．．．．＂if you mean＂We give an example of ．．．．．＂］
Adding g to the left－hand side Subtracting（3）from（5）
Writing 〈Taking〉 $h=H f$
Substituting（4）into（6）
Combining（3）with（6）
Combining these
［E．g．these inequalities］
Replacing（2）by（3）
Letting $n \rightarrow \infty$
Applying（5）
Interchanging f and g
yields \langle gives $\rangle h=$ we obtain 〈get／have〉 $f=g$
［Note：without＂that＂］
we conclude 〈deduce／see〉 that ．．．．． we can assert that
we can rewrite（5）as ．．．．．
［Note：The ing－form is either the subject of a sentence（＂Adding ．．．．． gives＂），or requires the subject＂we＂（＂Adding ．．．．．we obtain＂）；so do not write e．g．＂Adding ．．．．．the proof is complete．＂］
We continue in this fashion obtaining 〈to obtain〉 $f=\ldots .$.
We may now integrate k times to conclude that ．．．．．

Repeated application of Lemma 6 enables us to write ．．．．．
We now proceed by induction．
We can now proceed analogously to the proof of ．．．．．
We next $\left\lvert\, \begin{aligned} & \text { claim }\langle\text { show／prove that〉 ．．．．．} \\ & \text { sharpen these results and prove that ．．．．}\end{aligned}\right.$

Our next goal is to determine the number of ．．．．．
objective is to evaluate the integral I ． concern will be the behaviour of ．．．．．
We now turn to the case $f \neq 1$ ．
We are now in a position to show ．．．．．［＝We are able to］
We proceed to show that ．．．．．
The task is now to find ．．．．．
Having disposed of this preliminary step，we can now return to ．．．．．
We wish to arrange that f be as smooth as possible．
［Note the infinitive．］
We are thus looking for the family ．．．．．
We have to construct ．．．．．
In order to get this inequality，it \mid will be necessary to ．．．．． is convenient to ．．．．．

To deal with $I f$ ，
To estimate the other term，
For the general case，

PROOF：＂IT IS SUFFICIENT TO ．．．．．＂

It $\left|\begin{array}{l}\text { suffices } \\ \text { is sufficient }\end{array}\right|$ to $\left\lvert\, \begin{aligned} & \text { show 〈prove〉 that ．．．．．} \\ & \text { make the following observation．} \\ & \text { use（4）together with the observation that ．．．．．}\end{aligned}\right.$
We need only consider three cases：
We only need to show that ．．．．．
It remains to prove that ．．．．．〈to exclude the case when ．．．．．〉
What is left is to show that ．．．．．
We are reduced to proving（4）for ．．．．．
We are left with the task of determining ．．．．．
The only point remaining concerns the behaviour of ．．．．．
The proof is completed by showing that ．．．．．
We shall have established the lemma if we prove the following：
If we prove that ．．．．．，the assertion follows．
The statement $O(g)=1$ will be proved once we prove the lemma below．

PROOF：＂IT IS EASILY SEEN THAT ．．．．．＂

It is
clear \langle evident／immediate／obvious〉 that ．．．．． easily seen that ．．．．． easy to check that ．．．．． a simple matter to \qquad
We see \langle check \rangle at once that ．．．．．
．．．．．，which is clear from（3）．
They are easily seen to be smooth．
．．．．．．，as is easy to check．
It follows easily 〈immediately〉 that
Of course 〈Clearly／Obviously〉，．．．．．
The proof is straightforward 〈standard／immediate〉．
An easy computation 〈A trivial verification〉 shows that ．．．．．
（2）makes it obvious that ．．．．．［＝By（2）it is obvious that］
The factor $G f$ poses no problem because G is ．．．．．

PROOF：CONCLUSION AND REMARKS

．．．．．，which
［Not：＂what＂］
This
proves the theorem．
completes the proof．
establishes the formula．
is the desired conclusion．
is our claim 〈assertion〉．［Not：＂thesis＂］
gives（4）when substituted in（5）〈combined with（5）\rangle ． the proof is complete． this is precisely the assertion of the lemma． the lemma follows．
（3）is proved．
$f=g$ as claimed 〈required〉．
This contradicts our assumption 〈the fact that ．．．．．〉．
．．．．．，contrary to（3）．
．．．．．，which is impossible．［Not：＂what is＂］
．．．．．，which contradicts the maximality of
．．．．．，a contradiction．
The proof for G is similar．
The map G may be handled in much the same way．
Similar considerations apply to G ．
The same proof $\left\lvert\, \begin{aligned} & \text { works }\langle\text { remains valid }\rangle \text { for }\end{aligned}\right.$ obtains 〈fails〉 when we drop the assumption ．．．．．
The method of proof carries over to domains
The proof above gives more，namely f is \qquad
A slight change in the proof actually shows that

Note that we have actually proved that
[= We have proved more, namely that]
We have used \mid only the fact that
the existence of only the right-hand derivative.
For $f=1 \left\lvert\, \begin{aligned} & \text { it is no longer true that } \\ & \text { the argument breaks down. }\end{aligned}\right.$
The proof strongly depended on the assumption that
Note that we did not really have to use; we could have applied
For more details we refer the reader to [7].
The details are left to the reader.
We leave it to the reader to verify that [Note: the "it" is necessary]
This finishes the proof, the detailed verification of (4) being left to the reader.

REFERENCES TO THE LITERATURE

(see for instance [7, Th. 1]) (see [7] and the references given there)

$$
\begin{array}{l|l}
\text { (see }[\mathrm{Ka} 2] \text { for } & \begin{array}{l}
\text { more details) } \\
\text { the definition of) } \\
\text { the complete bibliography) }
\end{array}
\end{array}
$$

The best general reference here
The standard work on

The classical work here This | was proved by Lax [8]. |
| :---: |
| can be found in |
| Lax [7, Ch. 2]. | is due to Strang [8]. follows [7]. is adapted from [7] 〈appears in [7] \rangle. has previously been used by Lax [7].

This construction

We introduce the notion of, following Kato [7].
We follow [Ka] in assuming that

The main results of this paper were announced in［7］．
Similar results have been obtained independently by Lax and are to be published in［7］．

ACKNOWLEDGMENTS

The author $\begin{aligned} & \text { wishes to express his thanks }\langle\text { gratitude〉 to ．．．．．} \\ & \text { is greatly indebted to ．．．．．}\end{aligned}$
his active interest in the publication of this paper． suggesting the problem and for many stimulating conversations．
for several helpful comments concerning ．．．．．
drawing the author＇s attention to ．．．．．
pointing out a mistake in ．．．．．
his collaboration in proving Lemma 4.
The author gratefully acknowledges the many helpful suggestions of ．．．．． during the preparation of the paper．
This is part of the author＇s Ph．D．thesis，written under the supervision of ．．．．．at the University of ．．．．．
The author wishes to thank the University of ．．．．．，where the paper was written，for financial support 〈for the invitation and hospitality〉．

HOW TO SHORTEN THE PAPER

General rules：
1．Remember：you are writing for an expert．Cross out all that is trivial or routine．
2．Avoid repetition：do not repeat the assumptions of a theorem at the beginning of its proof，or a complicated conclusion at the end of the proof．Do not repeat the assumptions of a previous theorem in the statement of a next one（instead， write e．g．＂Under the hypotheses of Theorem 1 with f replaced by $g, \ldots .$. ＂）．Do not repeat the same formula－use a label instead．
3．Check all formulas：is each of them necessary？

Phrases you can cross out：

We denote by \mathbb{R} the set of all real numbers．
We have the following lemma．
The following lemma will be useful．
．．．．．the following inequality is satisfied：
Phrases you can shorten（see also p．38）：
Let ε be an arbitrary but fixed positive number $\rightsquigarrow \operatorname{Fix} \varepsilon>0$
Let us fix arbitrarily $x \in X \leadsto$ Fix $x \in X$
Let us first observe that \rightsquigarrow First observe that
We will first compute \rightsquigarrow We first compute
Hence we have $x=1 \rightsquigarrow$ Hence $x=1$
Hence it follows that $x=1 \rightsquigarrow$ Hence $x=1$

Taking into account (4) \rightsquigarrow By (4)
By virtue of (4) $\rightsquigarrow \mathrm{By}$ (4)
By relation (4) $\rightsquigarrow \mathrm{By}$ (4)
In the interval $[0,1] \rightsquigarrow \operatorname{In}[0,1]$
There exists a function $f \in C(X) \rightsquigarrow$ There exists $f \in C(X)$
For every point $p \in M \rightsquigarrow$ For every $p \in M$
It is defined by the formula $F(x)=\ldots . . \rightsquigarrow$ It is defined by $F(x)=\ldots .$.
Theorem 2 and Theorem $5 \rightsquigarrow$ Theorems 2 and 5
This follows from (4), (5), (6) and (7) \rightsquigarrow This follows from (4)-(7)
For details see [3], [4] and [5] \rightsquigarrow For details see [3]-[5]
The derivative with respect to $t \rightsquigarrow$ The t-derivative
A function of class $C^{2} \rightsquigarrow \mathrm{~A} C^{2}$ function
For arbitrary $x \rightsquigarrow$ For all $x\langle$ For every $x\rangle$
In the case $n=5 \rightsquigarrow$ For $n=5$
This leads to a contradiction with the maximality of f
$\rightsquigarrow \ldots$, contrary to the maximality of f
Applying Lemma 1 we conclude that \rightsquigarrow Lemma 1 shows that, which completes the proof $\rightsquigarrow \ldots$.

EDITORIAL CORRESPONDENCE

I would like to submit the enclosed manuscript "....."
I am submitting
for publication in Studia Mathematica.
I have also included a reprint of my article for the convenience of the referee.

I wish to withdraw my paper as I intend to make a major revision of it.
I regret any inconvenience this may have caused you.
I am very pleased that the paper will appear in Fundamenta.
Thank you very much for accepting my paper for publication in
Please find enclosed two copies of the revised version.
As the referee suggested, I inserted a reference to the theorem of
We have followed the referee's suggestions.
I have complied with almost all suggestions of the referee.

REFEREE'S REPORT

The author proves the interesting result that
The proof is short and simple, and the article well written.
The results presented are original.

The paper is a good piece of work on a subject that attracts considerable attention.

I am pleased to	$\begin{array}{c}\text { recommend it for publication in } \\ \text { It is a pleasure to } \\ \text { I strongly }\end{array}$
Studia Mathematica.	

The only remark I wish to make is that condition B should be formulated more carefully.
A few minor typographical errors are listed below.
I have indicated various corrections on the manuscript.
The results obtained are not particularly surprising and will be of limited interest.
The results are $\left\lvert\, \begin{aligned} & \text { correct but only moderately interesting. } \\ & \text { rather easy modifications of known facts. }\end{aligned}\right.$
The example is worthwhile but not of sufficient interest for a research article.
The English of the paper needs a thorough revision.
The paper does not meet the standards of your journal.
Theorem 2 is false $\left\lvert\, \begin{aligned} & \text { as stated. } \\ & \text { in this generality. }\end{aligned}\right.$
Lemma 2 is known (see
Accordingly, I recommend that the paper be rejected.

Part B: Selected Problems of English Grammar

INDEFINITE ARTICLE (a, an, 一)

Note: Use "a" or "an" depending on pronunciation and not spelling, e.g. a unit, an x.

1. Instead of the number "one":

The four centres lie in a plane.
A chapter will be devoted to the study of expanding maps.
For this, we introduce an auxiliary variable z.
2. Meaning "member of a class of objects", "some", "one of":

Then D becomes a locally convex space with dual space D^{\prime}.
The right-hand side of (4) is then a bounded function.
This is easily seen to be an equivalence relation.
Theorem 7 has been extended to a class of boundary value problems.
This property is a consequence of the fact that
Let us now state a corollary of Lebesgue's theorem for
After a change of variable in the integral we get
We thus obtain the estimate with a constant C.
in the plural:
The existence of partitions of unity may be proved by
The definition of distributions implies that
....., with suitable constants.
....., where G and F are differential operators.
3. In definitions of classes of objects
(i.e. when there are many objects with the given property):

A fundamental solution is a function satisfying
We call C a module of ellipticity.
A classical example of a constant C such that
We wish to find a solution of (6) which is of the form
in the plural:
The elements of D are often called test functions.
the set of $\left\lvert\, \begin{aligned} & \text { points with distance } 1 \text { from } K \\ & \text { all functions with compact support }\end{aligned}\right.$
The integral may be approximated by sums of the form
Taking in (4) functions v which vanish in U we obtain Let f and g be functions such that
4. In the plural-when you are referring to each element of a class:

Direct sums exist in the category of abelian groups.
In particular, closed sets are Borel sets.
Borel measurable functions are often called Borel mappings.
This makes it possible to apply H_{2}-results to functions in any H_{p}.
If you are referring to all elements of a class, use "the":
The real measures form a subclass of the complex ones.
5. In front of an adjective which is intended to mean "having this particular quality":

This map extends to all of M in an obvious fashion.
A remarkable feature of the solution should be stressed.
Section $1 \left\lvert\, \begin{aligned} & \text { gives a condensed exposition of }\end{aligned}\right.$
describes in a unified manner the recent results
A simple computation gives
Combining (2) and (3) we obtain, with a new constant C, \ldots.
A more general theory must be sought to account for these irregularities.
The equation (3) has a unique solution g for every f.
But: (3) has the unique solution $g=A B f$.

DEFINITE ARTICLE (the)

1. Meaning "mentioned earlier", "that":

Let $A \subset X$. If $a B=0$ for every B intersecting the set A, then $\ldots .$. Define $\exp x=\Sigma x^{i} / i$.. The series can easily be shown to converge.
2. In front of a noun (possibly preceded by an adjective) referring to a single, uniquely determined object (e.g. in definitions):

Let f be the linear form $\left\lvert\, \begin{aligned} & g \mapsto(g, F) . \\ & \text { defined by (2). [If there is only one.] }\end{aligned}\right.$ So $u=1$ in the compact set K of all points at distance 1 from L. We denote by $B(X)$ the Banach space of all linear operators in X., under the usual boundary conditions.
....., with the natural definitions of addition and multiplication.
Using the standard inner product we may identify
3. In the construction: the + property (or another characteristic) + of + object:

The continuity of f follows from
The existence of test functions is not evident.
There is a fixed compact set containing the supports of all the f^{j}.
Then x is the centre of an open ball U.
The intersection of a decreasing family of such sets is convex.

But: Every nonempty open set in \mathbb{R}^{k} is a union of disjoint boxes. [If you wish to stress that it is some union of not too well specified objects.]
4. In front of a cardinal number if it embraces all objects considered:

The two groups have been shown to have the same number of generators. [Two groups only were mentioned.]
Each of the three products on the right of (4) satisfies
[There are exactly three products there.]
5. In front of an ordinal number:

The first Poisson integral in (4) converges to g.
The second statement follows immediately from the first.
6. In front of surnames used attributively:
the Dirichlet problem
the Taylor expansion
the Gauss theorem

7. In front of a noun in the plural if you are referring to a class of objects as a whole, and not to particular members of the class:

The real measures form a subclass of the complex ones.
This class includes the Helson sets.

ARTICLE OMISSION

1. In front of nouns referring to activities:

Application of Definition 5.9 gives (45).
Repeated application 〈use〉 of (4.8) shows that
The last formula can be derived by direct consideration of
Thus A is the smallest possible extension in which differentiation is always possible.
Using integration by parts we obtain .
If we apply induction to (4), we get
Addition of (3) and (4) gives
This reduces the solution to division by $P x$.
Comparison of (5) and (6) shows that
2. In front of nouns referring to properties if you mention no particular object:

In questions of uniqueness one usually has to consider
By continuity, (2) also holds when $f=1$.
By duality we easily obtain the following theorem.
Here we do not require translation invariance.
3. After certain expressions with "of":
a type of convergence a problem of uniqueness the condition of ellipticity
the hypothesis of positivity
the method of proof
the point of increase
4. In front of numbered objects:

It follows from Theorem 7 that
Section 4 gives a concise presentation of
Property (iii) is called the triangle inequality.
This has been proved in part (a) of the proof.
But: the set of solutions of the form (4.7)
To prove the estimate (5.3) we first extend
We thus obtain the inequality (3). [Or: inequality (3)]
The asymptotic formula (3.6) follows from
Since the region (2.9) is in U, we have
5. To avoid repetition:
the order and symbol of a distribution
the associativity and commutativity of A
the direct sum and direct product
the inner and outer factors of f [Note the plural.]
But: a deficit or an excess
6. In front of surnames in the possessive:

Minkowski's inequality, but: the Minkowski inequality
Fefferman and Stein's famous theorem, more usual: the famous Fefferman-Stein theorem
7. In some expressions describing a noun, especially after "with" and "of":
an algebra with unit e; an operator with domain H^{2}; a solution with vanishing Cauchy data; a cube with sides parallel to the axes; a domain with smooth boundary; an equation with constant coefficients; a function with compact support; random variables with zero expectation
the equation of motion; the velocity of propagation;
an element of finite order; a solution of polynomial growth;
a ball of radius 1 ; a function of norm p
But: elements of the form $f=\ldots$
a Banach space with a weak symplectic form w two random variables with a common distribution
8. After forms of "have":

It has $\left\lvert\, \begin{aligned} & \text { finite norm. } \\ & \text { compact support. }\end{aligned}\right.$ But: It has $\left\lvert\, \begin{aligned} & \text { a finite norm not exceeding 1. } \\ & \text { a compact support contained in } I .\end{aligned}\right.$

It has $\left\lvert\, \begin{aligned} & \text { rank 2. } \\ & \text { cardinality } c . \\ & \text { absolute value } 1 . \\ & \text { determinant zero. }\end{aligned}\right.$

But: It has $|$| a zero of order at least 2 |
| :---: |
| at the origin. |
| a density g. |
| [Unless g has appeared |
| earlier; then: It has density $g]$. |

9. In front of the name of a mathematical discipline:

This idea comes from game theory 〈homological algebra〉.
But: in the theory of distributions
10. Other examples:

We can assume that G is in diagonal form.
Then A is deformed into B by pushing it at constant speed along the integral curves of X.
G is now viewed as a set, without group structure.

INFINITIVE

1. Indicating aim or intention:

To prove the theorem, we first let
We now apply (5) $\begin{aligned} & \text { to study the group of } \\ & \text { to derive the following theorem. } \\ & \text { to obtain an } x \text { with norm not exceeding } 1 .\end{aligned}$
Here are some examples to show how
2. In constructions with "too" and "enough":

This method is too complicated to be used here.
This case is important enough to be stated separately.
3. Indicating that one action leads to another:

We now apply Theorem 7 to get $N f=0 . \quad[=\ldots .$. and we get $N f=0]$ Insert (2) into (3) to find that
4. In constructions like "we may assume M to be":

We may assume M to be compact.
We define K to be the section of H over S.
If we take the contour G to lie in U, then
We extend f to be homogeneous of degree 1 .
The class A is defined by requiring all the functions f to satisfy Partially order P by declaring $X<Y$ to mean that

5．In constructions like＂M is assumed to be ．．．．．＂：
is assumed＜expected／found／considered／taken／ claimed \rangle to be open．
The map M will be chosen to satisfy（2）．
can be taken to be constant．
can easily be shown to have ．．．．．
is also found to be of class S ．
This investigation is likely to produce good results．
［＝It is very probable it will］
The close agreement of the six elements is unlikely to be
a coincidence．［＝is probably not］
6．In the structure＂for this to happen＂：
For this to happen，F must be compact．
［＝In order that this happens］
For the last estimate to hold，it is enough to assume ．．．．．
Then for such a map to exist，we must have ．．．．．
7．As the subject of a sentence：
To see that this is not a symbol is fairly easy．
［Or：It is fairly easy to see that ．．．．．］
To choose a point at random in the interval $[0,1]$ is a conceptual experiment with an obvious intuitive meaning．
To say that u is maximal means simply that ．．．．．
After expressions with＂it＂：
It is necessary 〈useful／very important〉 to consider ．．．．．
It makes sense to speak of ．．．．．
It is therefore of interest to look at ．．．．．
8．After forms of＂be＂：
Our goal $\langle m e t h o d / a p p r o a c h / p r o c e d u r e / o b j e c t i v e / a i m\rangle$ is to find ．．．．．
The problem 〈difficulty〉 here is to construct ．．．．．
9．With nouns and with superlatives，in the place of a relative clause：
The theorem to be proved is the following．［＝which will be proved］
This will be proved by the method to be described in Section 6.
For other reasons，to be discussed in Chapter 4，we have to ．．．．．
He was the first to propose a complete theory of ．．．．．
They appear to be the first to have suggested the now accepted interpretation of ．．．．．
10．After certain verbs：
These properties led him to suggest that ．．．．．
Lax claims to have obtained a formula for
This map turns out to satisfy
At first glance M appears to differ from N in two major ways：

A more sophisticated argument enables one to prove that
[Note: "enable" requires "one", "us" etc.]
He proposed to study that problem. [Or: He proposed studying]
We make G act trivially on V.
Let f satisfy (2). [Not: "Let f satisfies"]
We need to consider the following three cases.
We need not consider this case separately.
["need to" in affirmative clauses, without "to" in negative clauses; also note: "we only need to consider", but: "we need only consider"]

ING-FORM

1. As the subject of a sentence (note the absence of "the"):

Repeating the previous argument and using (3) leads to
Since taking symbols commutes with lifting, A is
Combining Proposition 5 and Theorem 7 gives
2. After prepositions:

After making a linear transformation, we may assume that
In passing from (2) to (3) we have ignored the factor n.
In deriving (4) we have made use of
On substituting (2) into (3) we obtain
Before making some other estimates, we prove
The trajectory Z enters X without meeting $x=0$.
Instead of using the Fourier method we can multiply
In addition to illustrating how our formulas work, it provides
Besides being very involved, this proof gives no information on
This set is obtained by letting $n \rightarrow \infty$.
It is important to pay attention to domains of definition when trying to
The following theorem is the key to constructing
The reason for preferring (1) to (2) is simply that
3. In certain expressions with "of":

The idea of combining (2) and (3) came from
The problem considered there was that of determining $\mathrm{WF}(u)$ for
We use the technique of extending
This method has the disadvantage of $\left\lvert\, \begin{aligned} & \text { being very involved. } \\ & \text { requiring that } f \text { be positive. } \\ & \text { [Note the infinitive.] }\end{aligned}\right.$
Actually, S has the much stronger property of being convex.
4. After certain verbs, especially with prepositions:

We begin by analyzing (3).
We succeeded 〈were successful〉 in proving (4).
[Not: "succeeded to prove"]
We next turn to estimating
They persisted in investigating the case
We are interested in finding a solution of
We were surprised at finding out that
[Or: surprised to find out]
Their study resulted in proving the conjecture for
The success of our method will depend on proving that
To compute the norm of amounts to finding
We should avoid using (2) here, since
[Not: "avoid to use"]
We put off discussing this problem to Section 5.
It is worth noting that [Not: "worth to note"]
It is worth while discussing here this phenomenon.
[Or: worth while to discuss; "worth while" with ing-forms is best avoided as it often leads to errors.]
It is an idea worth carrying out.
[Not: "worth while carrying out", nor: "worth to carry out"]
After having finished proving (2), we will turn to
[Not: "finished to prove"]
However, (2) needs handling with greater care.
One more case merits mentioning here.
In [7] he mentions having proved this for f not in S.
5. Present Participle in a separate clause (note that the subjects of the main clause and the subordinate clause must be the same):

We show that f satisfies (2), thus completing the analogy with
Restricting this to R, we can define
[Not: "Restricting, the lemma follows". The lemma does not restrict!]
The set A, being the union of two intersecting continua, is connected.
6. Present Participle describing a noun:

We need only consider paths starting at 0 .
We interpret f as a function with image having support in
We regard f as being defined on
7. In expressions which can be rephrased using "where" or "since":

Now J is defined to equal $A f$, the function f being as in (3).
[$=$ where f is]
This is a special case of (4), the space X here being $B(K)$.
We construct three maps of the form (5), each of them satisfying (8).
Then $\lim _{t} a(x, t)<1$, the limit being assumed to exist for every x.

The ideal is defined by $m=\ldots$, it being understood that Now, F being convex, we can assume that $[=$ since F is Hence $F=\emptyset$ (it being impossible to make A and B intersect). [= since it is impossible]
[Do not write "a function being an element of X " if you mean "a function which is an element of X ".]
8. In expressions which can be rephrased as "the fact that X is":

Note that M being cyclic implies F is cyclic.
The probability of X being rational equals $1 / 2$.
In addition to f being convex, we require that

PASSIVE VOICE

1. Usual passive voice:

This theorem was proved by Milnor in 1976.
In items 2-6, passive voice structures replace sentences with subject "we" or impersonal constructions of other languages.
2. Replacing the structure "we do something":

This identity is established by observing that
This difficulty is avoided above.
When this is substituted in (3), an analogous description of K is obtained.
Nothing is assumed concerning the expectation of X.
3. Replacing the structure "we prove that X is":

The function M is easily shown to have may be said to be regular if

This equation is known to hold for
4. Replacing the construction "we give an object X a structure Y ":

Note that E can be given a complex structure by
The letter A is here given a bar to indicate that
5. Replacing the structure "we act on something":

This order behaves well when g is acted upon by an operator.
Hence F can be thought of as
So all the terms of (5) are accounted for.
The preceding observation, when looked at from a more general point of view, leads to
In the physical context already referred to, K is
6. Meaning "which will be (proved etc.)":

Before stating the result to be proved, we give
This is a special case of convolutions to be introduced in Chapter 8.
We conclude with two simple lemmas to be used mainly in

QUANTIFIERS

This implies that A contains \mid all open subsets of U. all y with $G y=1$.
Let B be the collection of $\left\lvert\, \begin{aligned} & \text { all transforms } F \text { of the form } \ldots \text { and } \\ & \text { all } A \text { such that }\end{aligned}\right.$
In this way F is defined at all points of X.
This holds for all $n \neq 0\langle$ for all m which have/for all other $m /$ for all but a finite number of indices $i\rangle$

The domain X contains all the boundary except the origin.
The integral is taken over all of X.
Hence E, F and $G \left\lvert\, \begin{aligned} & \text { all extend to a neighbourhood of } U . \\ & \text { all have their supports in } U . \\ & \text { are all zero at } x . \\ & \text { are all equal. }\end{aligned}\right.$
There exist functions R, all of whose poles are in U, with Each of the following nine conditions implies all the others.
Such an x exists iff all the intervals A_{x} have
For every g in $X\langle$ not in $X\rangle$ there exists an $N \ldots$. [But: for all f and g, for any two maps f and g;
"every" is followed by a singular noun.]
To every f there corresponds a unique g such that
Every invariant subspace of X is of the form
[Do not write: "Every subspace is not of the form"
if you mean: "No subspace is of the form";
"every" must be followed by an affirmative statement.]
Thus $f \neq 0$ at almost every point of X.
Since $A_{n}=0$ for each $n, \ldots . . \quad$ [Each $=$ every, considered separately]
Each term in this series is either 0 or 1.
Consequently, F is bounded on each bounded set.
Each of these four integrals is finite.
These curves arise from, and each consists of
There remain four intervals of length $1 / 16$ each.
Thus X assumes values $0,1, \ldots, 9$, each with probability $1 / 10$.
The functions F_{1}, \ldots, F_{n} are each defined in the interval $[0,1]$.
Those n disjoint boxes are translates of each other.

If K is now any compact subset of H ，there exists ．．．．．
［Any $=$ whatever you like；write＂for all x＂，＂for every x＂if you just mean a quantifier．］
Every measure can be completed，so whenever it is convenient，we may assume that any given measure is complete．

There is a subsequence such that ．．．．．
There exists an x with ．．．．．
［Or：there exists x ，but：there is an x ］
There are sets satisfying（2）but not（3）．
There is only one such f ．
There is a unique function f such that ．．．．．
Each f lies in $z A$ for some A 〈at least one $A /$
exactly one $A /$ at most one $A\rangle$ ．
Note that some of the X_{n} may be repeated．
Thus F has no pole in U（hence none in K ）．［ $O r$ ：no poles］
Call a set dense if its complement contains no nonempty open subset．
If no two members of A have an element in common，then ．．．．．
No two of the spaces X, Y ，and Z are isomorphic．
It can be seen that no x has more than one inverse．
In other words，for no real x does $\lim F_{n}(x)$ exist．
［Note the inversion after the negative clause．］
If there is no bounded functional such that ．．．．．
．．．．．provided none of the sums is of the form ．．．．．
Let A_{n} be a sequence of positive integers none of which is 1 less than a power of two．
If there is an f such that ．．．．．，set ．．．．．If there are 〈is〉 none，define ．．．．．
None of these are 〈is〉 possible．
Both f and g are obtained by ．．．．．
［Or：f and g are both obtained］
For both C^{∞} and analytical categories，．．．．．
It behaves covariantly with respect to maps of both X and G ．
We now apply（3）to both sides of（4）．
Both \langle these／the conditions are restrictions only on ．．．．．
［Note：＂the＂and＂these＂after＂both＂］
It lies on no segment both of whose endpoints are in K ．
Two consecutive elements do not belong both to A or both to B ．
Both its sides are convex．［Or：Its sides are both convex．］
Let B and C be nonnegative numbers，not both 0 ．
Choose points x in M and y in N ，both close to z ，and ．．．．．
We show how this method works in two cases．
In both $\langle\mathrm{In}$ each \rangle, C is ．．．．．

In either case, it is clear that [= In both cases]
Each f can be expressed in either of the forms (1) and (2).
[$=$ in any of the two forms]
The density of $X+Y$ is given by either of the two integrals.
The two classes coincide if X is compact. In that case we write $C(X)$ for either of them.
Either f or g must be bounded.
Let u and v be two distributions neither of which is
[Use "neither" when there are two alternatives.]
This is true for neither of the two functions.
Neither statement is true.
In neither case can f be smooth.
[Note the inversion after the negative clause.]
He proposes two conditions, but neither is satisfactory.

NUMBER, QUANTITY, SIZE

1. Cardinal numbers:

Hence A and B are also F-functions, any two of A, B, and C being independent.
the multi-index with all entries zero except the k th which is one the last k entries zero
This shows that there are no two points a and b such that
There are three that the reader must remember. [$=$ three of them]
We have defined A, B, and C, and the three sets satisfy
For the two maps defined in Section 3,
["The" if only two maps are defined there.]
Clearly, R is concentrated at the n points x_{1}, \ldots, x_{n} defined above.
for at least \langle at most \rangle one k; with norm at least equal to 2
There are at most 2 such r in $(0,1)$.
There is a unique map satisfying (4).
Equation (4) has a unique solution g for each f.
$B u t$: it has the unique solution $g=A B f$.
Problem (4) has one and only one solution.
Precisely r of the intervals are closed.
In Example 3 only one of the x_{j} is positive.
If $p=0$ then there are an additional m arcs.
2. Ordinal numbers:

The first two are simpler than the third.
Let S_{i} be the first of the remaining S_{j}.
The nth trial is the last.
It follows that X_{1} appears at the $(k+1)$ th place.

The gain up to and including the nth trial is ．．．．．
The elements of the third and fourth rows are in I ．
［Note the plural．］
Therefore F has a zero of at least third order at x ．
3．Fractions：
Two－thirds of its diameter is covered by ．．．．．
But：Two－thirds of the gamblers are ruined．
Obviously，G is half the sum of the positive roots．
［Note：Only＂half＂can be used with or without＂of＂．］
On the average，about half the list will be tested．
But J contains an interval of half its length in which ．．．．．
Note that F is greater by a half \langle a third \rangle ．
The other player is half 〈one third〉 as fast．
We divide J in half．
All sides were increased by the same proportion．
About 40 percent of the energy is dissipated．
A positive percentage of summands occurs in all k partitions．
4．Smaller \langle greater \rangle than：

Observe that n is
greater 〈less〉 than k ．
much 〈substantially〉 greater than k ． no greater 〈smaller〉 than k ．
greater $\langle\mathrm{less}\rangle$ than or equal to k ．
［Not：＂greater or equal to＂］ strictly less than k ．
All points at a distance less than K from A satisfy（2）．
We thus obtain a graph of no more than k edges．
This set has $\begin{aligned} & \text { fewer elements than } K \text { has．} \\ & \text { no fewer than twenty elements．}\end{aligned}$
Therefore F can have no jumps exceeding $1 / 4$ ．
The degree of P exceeds that of Q ．
Find the density of the smaller of X and Y ．
The smaller of the two satisfies ．．．．．
It is dominated \langle bounded／estimated／majorized〉 by ．．．．．
5．How much smaller 〈greater〉：
25 is $\mathbf{3}$ greater than 22； 22 is $\mathbf{3}$ less than 25.
Let a_{n} be a sequence of positive integers none of which is 1 less than a power of two．
The degree of P exceeds that of Q by at least 2 ．
Consequently，f is greater by a half \langle a third \rangle ．
It follows that C is less than a third of the distance between ．．．．．

Within I ，the function f varies 〈oscillates〉 by less than l ．
The upper and lower limits of f differ by at most 1 ． We thus have in A one element too many． On applying this argument k more times，we obtain ．．．．． This method is recently less and less used．
A succession of more and more refined discrete models．
6．How many times as great：
twice \langle ten times／one third〉 as long as；half as big as
The longest edge is at most 10 times as long as the shortest one．
Now A has twice as many elements as B has．
Clearly，J contains a subinterval of half its length in which ．．．．．
Observe that A has four times the radius of B ．
The diameter of L is $1 / k$ times 〈twice〉 that of M ．
7．Multiples：
The k－fold integration by parts shows that ．．．．．
We have shown that F covers M twofold．
It is bounded by a multiple of $t\langle$ a constant times $t\rangle$ ．
This distance is less than a constant multiple of d ．
Note that G acts on H as a multiple，say n ，of V ．
8．Most，least，greatest，smallest：
Evidently，F has the most 〈the fewest〉 points when ．．．．．
In most cases it turns out that ．．．．．
Most of the theorems presented here are original．
The proofs are，for the most part，only sketched．
Most probably，his method will prove useful in ．．．．．
What most interests us is whether ．．．．．
The least such constant is called the norm of f ．
This is the least useful of the four theorems．
The method described above seems to be the least complex．
That is the least one can expect．
The elements of A are comparatively big，but least in number．
None of those proofs is easy，and John＇s least of all．
The best estimator is a linear combination U such that $\operatorname{var} U$ is \langle the \rangle smallest possible．
The expected waiting time is smallest if ．
Let L be the smallest number such that ．．．．．
Now，F has the smallest norm among all f such that ．．．．． It is the largest of the functions which occur in（3）．
There exists a smallest algebra with this property．
Find the second largest element in the list L ．
9. Many, few, a number of:

There are	a large number of illustrations. only a finite number of f with$L f=1$.
[Note the	
plural.]	a small number of exceptions. an infinite number of sets a negligible number of points with

Ind c is the number of times that c winds around 0 .
We give a number of results concerning [= some]
This may happen in a number of cases.
They correspond to the values of a countable number of invariants.
..... for all n except a finite number \langle for all but finitely many $n\rangle$.
Thus Q contains all but a countable number of the f^{i}.
There are only countably many elements q of Q with $\operatorname{dom} q=S$.
The theorem is fairly general. There are, however, numerous exceptions.
A variety of other characteristic functions can be constructed in this way.

There are few exceptions to this rule. [= not many]
Few of various existing proofs are constructive.
He accounts for all the major achievements in topology over the last few years.
The generally accepted point of view in this domain of science seems to be changing every few years.
There are a few exceptions to this rule. [= some]
Many interesting examples are known. We now describe a few of these.
Only a few of those results have been published before.
Quite a few of them are now widely used. [$=$ A considerable number]
10. Equality, difference:
A equals B or A is equal to $B \quad[$ Not: " A is equal B "]
The Laplacian of g is $4 r>0$. Then r is about $k n$.
The inverse of $F G$ is $G F$. The norms of f and g coincide.
Therefore F has the same number of zeros and poles in U.
They differ by a linear term \langle by a scale factor \rangle.
The differential of f is different from 0 .
Each member of G other than g is
Lemma 2 shows that F is not identically 0 .
Let a, b and c be distinct complex numbers.
Each w is $P z$ for precisely m distinct values of z.

Functions which are equal a.e. are indistinguishable as far as integration is concerned.

11. Numbering:

Exercises 2 to 5 furnish other applications of this technique. [Amer.: Exercises 2 through 5]
in the third and fourth rows
from row k onwards
in lines $16-19$
the next-to-last column
the last paragraph but one of the previous proof
The matrix with $\left\lvert\, \begin{aligned} & 1 \text { in the }(i, j) \text { entry and zero elsewhere } \\ & \text { all entries zero except for } N-j \text { at }(N, j)\end{aligned}\right.$
This is $\begin{aligned} & \text { hinted at in Sections } 1 \text { and } 2 . \\ & \text { quoted on page 36 of [4]. }\end{aligned}$

HOW TO AVOID REPETITION

1. Repetition of nouns:

Note that the continuity of f implies that of g.
The passage from Riemann's theory to that of Lebesgue is
The diameter of F is about twice that of G.
His method is similar to that used in our previous paper.
The nature of this singularity is the same as that which f has at $x=0$.
Our results do not follow from those obtained by Lax.
One can check that the metric on T is the one we have just described.
It follows that S is the union of two disks. Let D be the one that contains
The cases $p=1$ and $p=2$ will be the ones of interest to us.
We prove a uniqueness result, similar to those of the preceding section.
Each of the functions on the right of (2) is one to which
Now, F has many points of continuity. Suppose x is one. In addition to a contribution to W_{1}, there may be one to W_{2}.
We now prove that the constant $p q$ cannot be replaced by a smaller one.
Consider the differences between these integrals and
the corresponding ones with f in place of g.
The geodesics (4) are the only ones that realize the distance between their endpoints.
On account of the estimate (2) and similar ones which can be

We may replace A and B by whichever is the larger of the two. [Not: "the two ones"]
This inequality applies to conditional expectations as well as to ordinary ones.
One has to examine the equations (4). If these have no solutions, then
Thus D yields operators D^{+}and D^{-}. These are formal adjoints of each other.
This gives rise to the maps F_{i}. All the other maps are suspensions of these.
So F is the sum of A, B, C and D. The last two of these are zero.
Both f and g are connected, but the latter is in addition compact.
[The latter $=$ the second of two objects]
Both $A F$ and $B F$ were first considered by Banach, but only the former is referred to as the Banach map, the latter being called the Hausdorff map.
We have thus proved Theorems 1 and 2, the latter without using
Since the vectors G_{i} are orthogonal to this last space, $\ldots .$.
As a consequence of this last result,
Let us consider sets of the type (1), (2), (3) and (4).
These last two are called
We shall now describe a general situation in which the last-mentioned functionals occur naturally.
2. Repetition of adjectives, adverbs or phrases like " x is":

If f and g are measurable functions, then so are $f+g$ and $f \cdot g$.
The union of measurable sets is a measurable set; so is the complement of every measurable set.
The group G is compact and so is its image under f.
It is of the same fundamental importance in analysis as is the construction of
Note that F is bounded but is not necessarily so after division by G.
Show that there are many such Y.
There is only one such series for each y.
Such an h is obtained by
3. Repetition of verbs:

A geodesic which meets $b M$ does so either transversally or
This will hold for $x>0$ if it does for $x=0$.
Note that we have not required that, and we shall not do so except when explicitly stated.
The integral might not converge, but it does so after

We will show below that the wave equation can be put in this form， as can many other systems of equations．
The elements of L are not in S ，as they are in the proof of ．．．．．
4．Repetition of whole sentences：
The same is true for f in place of g ．
The same being true for f ，we can ．．．．．［＝Since the same ．．．．．］
The same holds for 〈applies to〉 the adjoint map．
We shall assume that this is the case．
Such was the case in（2）．
The L^{2} theory has more symmetry than is the case in L^{1} ．
Then either ．．．．．or ．．．．．In the latter 〈former〉 case，．．．．．
For k this is no longer true．
This is not true of（2）．
This is not so in other queuing processes．
If this is so，we may add ．．．．．
If $f_{i} \in L$ and if $F=f_{1}+\cdots+f_{n}$ then $F \in H$ ，and every F is so obtained．
We would like to ．．．．．If U is open，this can be done．
On S ，this gives the ordinary topology of the plane．
Note that this is not equivalent to ．．．．．
［Note the difference between＂this＂and＂it＂：you say＂it is not equivalent to＂if you are referring to some object explicitly mentioned in the preceding sentence．］
Consequently，F has the stated \langle desired／claimed \rangle properties．

WORD ORDER

General remarks：The normal order is：subject＋verb＋direct object＋adverbs in the order manner－place－time．
Adverbial clauses can also be placed at the beginning of a sentence，and some adverbs always come between subject and verb．Subject almost always precedes verb， except in questions and some negative clauses．

1．ADVERBS

1a．Between subject and verb，but after forms of＂be＂；in compound tenses after first auxiliary
－Frequency adverbs：
This has already been proved in Section 8.
This result will now be derived computationally．
Every measurable subset of X is again a measure space．
We first prove a reduced form of the theorem．

There has since been little systematic work on
It has recently been pointed out by Fix that
It is sometimes difficult to
This usually implies further conclusions about f.
It often does not matter whether

- Adverbs like "also", "therefore", "thus":

Our presentation is therefore organized in such a way that
The sum in (2), though formally infinite, is therefore actually finite.
One must therefore also introduce the class of
But C is connected and is therefore not the union of
These properties, with the exception of (1), also hold for t.
We will also leave to the reader the verification that
It will thus be sufficient to prove that
So (2) implies (3), since one would otherwise obtain
The order of several topics has accordingly been changed.

- Emphatic adverbs (clearly, obviously, etc.):

It would clearly have been sufficient to assume that
But F is clearly not an I-set.
Its restriction to N is obviously just f.
This case must of course be excluded.
The theorem evidently also holds if $x=0$.
The crucial assumption is that the past history in no way influences
We did not really have to use the existence of T.
The problem is to decide whether (2) really follows from (1).
The proof is now easily completed.
The maximum is actually attained at some point of M.
We then actually have [= We have even more]
At present we will merely show that
A stronger result is in fact true.
Throughout integration theory, one inevitably encounters ∞.
But H itself can equally well be a member of S.
1b. After verb-most adverbs of manner:
We conclude similarly that
One sees immediately that
Much relevant information can be obtained directly from (3).
This difficulty disappears entirely if
This method was used implicitly in random walks.

1c. After an object if it is short:
We will prove the theorem directly without using the lemma.
But: We will prove directly a theorem stating that
This is true for every sequence that shrinks to x nicely.
Define $F g$ analogously as the limit of
Formula (2) defines g unambiguously for every g^{\prime}.
1d. At the beginning-adverbs referring to the whole sentence:
Incidentally, we have now constructed
Actually, Theorem 3 gives more, namely
Finally, (2) shows that $f=g$. [Not: "At last"]
Nevertheless, it turns out that
Next, let V be the vector space of
More precisely, Q consists of
Explicitly 〈Intuitively〉, this means that
Needless to say, the boundedness of f was assumed only for simplicity.
Accordingly, either f is asymptotically dense or
1e. In front of adjectives-adverbs describing them:
a slowly varying function
probabilistically significant problems
a method better suited for dealing with
The maps F and G are similarly obtained from H.
The function F has a rectangularly shaped graph.
Three-quarters of this area is covered by subsequently chosen cubes. [Note the singular.]
1f. "only"
We need the openness only to prove the following.
It reduces to the statement that only for the distribution F do the maps F_{i} satisfy (2). [Note the inversion.]
In this chapter we will be concerned only with
In (3) the X_{j} assume the values 0 and 1 only.
If (iii) is required for finite unions only, then
We need only require (5) to hold for bounded sets.
The proof of (2) is similar, and will only be indicated briefly.
To prove (3), it only remains to verify

2. ADVERBIAL CLAUSES

2a. At the beginning:

In testing the character of it is sometimes difficult to
For $n=1,2, \ldots$, consider a family of

2b. At the end (normal position):
The averages of F_{n} become small in small neighbourhoods of x.
2c. Between subject and verb, but after first auxiliary-only short clauses:
The observed values of X will on average cluster around
This could in principle imply an advantage.
For simplicity, we will for the time being accept as F only C^{2} maps.
Accordingly we are in effect dealing with
The knowledge of f is at best equivalent to
The stronger result is in fact true.
It is in all respects similar to matrix multiplication.
2d. Between verb and object if the latter is long:
It suffices for our purposes to assume
To a given density on the line there corresponds on the circle the density given by

3. INVERSION AND OTHER PECULIARITIES

3a. Adjective or past participle after a noun:
Let Y be the complex X with the origin removed.
Theorems 1 and 2 combined give a theorem
We now show that G is in the symbol class indicated.
We conclude by the part of the theorem already proved that
The bilinear form so defined extends to \qquad
Then for A sufficiently small we have
By queue length we mean the number of customers present including the customer being served.
The description is the same with the roles of A and B reversed.
3b. Direct object or adjectival clause placed farther than usual-when they are long:
We must add to the right-hand side of (3) the probability that
This is equivalent to defining in the z-plane a density with
Let F be the restriction to D of the unique linear map
The probability at birth of a lifetime exceeding t is at most
3c. Inversion in some negative clauses:
We do not assume that, nor do we assume a priori that
Neither is the problem simplified by assuming $f=g$.
The "if" part now follows from (3), since at no point can S exceed the larger of X and Y.
The fact that for no x does $F x$ contain y implies that
In no case does the absence of a reference imply any claim to originality on my part.

3d. Inversion-other examples:
But F is compact and so is G.
If f, g are measurable, then so are $f+g$ and $f \cdot g$.

$$
\text { Only for } f=1 \left\lvert\, \begin{aligned}
& \text { can one expect to obtain } \ldots . . \\
& \text { does that limit exist. }
\end{aligned}\right.
$$

3e. Adjective in front of forms of "be"-for emphasis:
By far the most important is the case where
Much more subtle are the following results of John.
Essential to the proof are certain topological properties of M.
3f. Subject coming sooner than in some other languages:
Equality occurs in (1) iff f is constant.
The natural question arises whether it is possible to
In the following applications use will be made of
Recently proofs have been constructed which use
3 g . Incomplete clause at the beginning or end of a sentence:
Put differently, the moments of arrival of the lucky customers constitute a renewal process.
Rather than discuss this in full generality, let us look at
It is important that the tails of F and G are of comparable magnitude, a statement made more precise by the following inequalities.

WHERE TO INSERT A COMMA

General rules: Do not over-use commas-English usage requires them less often than in many other languages. Do not use commas around a clause that defines (limits, makes more precise) some part of a sentence. Put commas before and after non-defining clauses (i.e. ones which can be left out without damage to the sense). Put a comma where its lack may lead to ambiguity, e.g. between two symbols.

1. Comma not required:

We shall now prove that f is proper.
The fact that f has radial limits was proved in [4].
It is reasonable to ask whether this holds for $g=1$.
Let M denote the set of all paths that satisfy (2).
There is a polynomial P such that $P f=g$.
The element given by (3) is of the form (5).
Let M be the manifold to whose boundary f maps K.
Take an element all of whose powers are in S.
We call F proper if G is dense.
There exists a D such that $D \sim H$ whenever $H \sim G$.
Therefore $F(x)=G(x)$ for all $x \in X$.
Let F be a nontrivial continuous linear operator in V.

2．Comma required：

The proof of（3）depends on the notion of M－space，which has already been used in［4］．
We will use the map H ，which has all the properties required．
There is only one such f ，and（4）defines a map from ．．．．．
In fact，we can do even better．
In this section，however，we will not use it explicitly． Moreover，F is countably additive．
Finally，（d）and（e）are consequences of（4）．
Nevertheless，he succeeded in proving that ．．．．．
Conversely，suppose that ．．．．．
Consequently，（2）takes the form ．．．．．
In particular，f also satisfies（1）．
Guidance is also given，whenever necessary or helpful，on further reading．
This observation，when looked at from a more general point of view， leads to ．．．．．
It follows that f ，being convex，cannot satisfy（3）．
If $e=1$ ，which we may assume，then
We can assume，by decreasing k if necessary，that ．．．．．
Then（5）shows，by Fubini＇s theorem，that ．．．．．
Put this way，the question is not precise enough．
Being open，V is a union of disjoint boxes．
This is a special case of（4），the space X here being $B(K)$ ．
In［2］，X is assumed to be compact．
For all $x, G(x)$ is convex．
［Comma between two symbols．］
In the context already referred to，K is the complex field．
［Comma to avoid ambiguity．］

3．Comma optional：

By Theorem 2，there exists an h such that ．．．．．
For z near 0 ，we have ．．．．．
If h is smooth，then M is compact．
Since h is smooth，M is compact．
It is possible to use（4）here，but it seems preferable to ．．．．．
This gives（3），because 〈since〉 we may assume ．．．．．
Integrating by parts，we obtain ．．．．．
The maps X, Y ，and Z are all compact．
We have $X=F G$ ，where F is defined by ．．．．．
Thus 〈Hence／Therefore〉，we have ．．．．．

HYPHENATION

1. Non(-):

Write consistently either nontrivial, nonempty, nondecreasing, nonnegative, or non-trivial, non-empty, non-decreasing, non-negative.
[But: non-locally convex, non-Euclidean]
2. Hyphen required:
one-parameter group
two-stage computation
n-fold integration
out-degree
global-in-time solution [But: solution global in time]
3. Hyphen optional:
right hand side or right-hand side
second order equation or second-order equation
selfadjoint or self-adjoint
halfplane or half-plane
seminorm or semi-norm
a blow-up, a blow up, or a blowup [But: to blow up]
the nth element or the n-th element

SOME TYPICAL ERRORS

1. Spelling errors:

Spelling should be either British or American throughout:
Br.: colour, neighbourhood, centre, fibre, labelled, modelling Amer.: color, neighborhood, center, fiber, labeled, modeling
"an unified approach" \leadsto a unified approach
"a M such that" \rightsquigarrow an M such that
[Use a or an according to pronunciation.]
"preceeding" \rightsquigarrow preceding
"occuring" \rightsquigarrow occurring
"developped" \leadsto developed
"loosing" \rightsquigarrow losing
"it's norm" \rightsquigarrow its norm
2. Grammatical errors:
"Let f denotes" \rightsquigarrow Let f denote
"Most of them is" \rightsquigarrow Most of them are
"There is a finite number of" \rightsquigarrow There are a finite number of
＂In 1964 Lax has shown＂\rightsquigarrow In 1964 Lax showed
［Use the past tense if a date is given．］
＂the Taylor＇s formula＂\rightsquigarrow Taylor＇s formula［Or：the Taylor formula］ ＂the section 1＂Section 1
＂Such map exists＂\rightsquigarrow Such a map exists［But：for every such map］
＂in case of smooth norms＂\rightsquigarrow in the case of smooth norms
＂We are in the position to prove＂\rightsquigarrow We are in a position to prove
＂We now give few examples＂［＝not many］
\rightsquigarrow We now give a few examples $[=$ some $]$
＂F is equal G＂$\rightsquigarrow F$ is equal to $G \quad[O r: F$ equals $G]$
＂F is greater or equal to G＂$\rightsquigarrow F$ is greater than or equal to G
＂This is precised by＂\rightsquigarrow This is made more precise by ＂This allows to prove＂\rightsquigarrow This allows us to prove ＂This makes clear that＂\rightsquigarrow This makes it clear that ＂The first two ones are＂\rightsquigarrow The first two are ＂a not dense set＂\rightsquigarrow a non－dense set
［But：This set is not dense］
＂Since $f=0$ ，then M is closed＂
\rightsquigarrow Since $f=0$ ，it follows that M is closed
$" . . .$. ，as it is shown in Sec． 2 ＂$\leadsto \ldots$. ，as is shown in Sec． 2
＂Every function being an element of X is convex＂
\rightsquigarrow Every function which is an element of X is convex
＂Every f is not convex＂\rightsquigarrow No f is convex
＂Setting $n=p$ ，the equation can be solved by ．．．．．
\leadsto Setting $n=p$ ，we can solve the equation by ［Because we set．］
＂We have 〈get／obtain〉 that B is empty＂
\rightsquigarrow We see ＜know／conclude／deduce／find／infer〉 that B is empty

3．Wrong word used：

$" S u m m i n g ~(2)$ and（3）by sides＂\rightsquigarrow Summing（2）and（3）
＂In the first paragraph＂\rightsquigarrow In the first section
＂which proves our thesis＂
\rightsquigarrow which proves our assertion 〈conclusion／statement〉 ［thesis $=$ dissertation］
＂to this aim＂\rightsquigarrow to this end
＂At first，note that＂\rightsquigarrow First，note that
＂At last，C is dense because＂\rightsquigarrow Finally，C is dense because
＂for every two elements＂\rightsquigarrow for any two elements
＂．．．．．，what completes the proof＂$\rightsquigarrow \ldots .$. ，which completes the proof
＂．．．．．，what is impossible＂$\rightsquigarrow . . .$. ．，which is impossible
＂We denote it shortly by c＂We denote it briefly by c ＂This map verifies（2）＂\rightsquigarrow This map satisfies（2）

$$
\begin{aligned}
& \text { "continuous in the point } x " \rightsquigarrow \text { continuous at } x \\
& \text { "disjoint with } B \text { " } \rightsquigarrow \text { disjoint from } B \\
& \text { "equivalent with } B \text { " } \rightsquigarrow \text { equivalent to } B \\
& \text { "independent on } B \text { " } \rightsquigarrow \text { independent of } B \\
& \text { [But: depending on } B \text {, } \\
& \text { independence from } B \text {] } \\
& \text { "similar as } B " \leadsto \text { similar to } B \\
& \text { similarly to Sec. } 2 \\
& \text { as 〈just as〉 in Sec. } 2 \\
& \text { similarly as in Sec. } 2 \rightsquigarrow \text { as is the case in Sec. } 2 \\
& \text { in much the same way as } \\
& \text { in Sec. } 2
\end{aligned}
$$

＂on Fig．3＂\rightsquigarrow in Fig． 3
＂in the end of Sec．2＂\leadsto at the end of Sec． 2

4．Wrong word order：

＂a bounded by 1 function＂\rightsquigarrow a function bounded by 1
＂the described above condition＂\rightsquigarrow the condition described above
＂the obtained solution＂\rightsquigarrow the solution obtained
＂the mentioned map＂\rightsquigarrow the map mentioned
［But：the above－mentioned map］
＂the both conditions＂\rightsquigarrow both conditions，both the conditions
＂its both sides＂\leadsto both its sides
＂the three first rows＂\rightsquigarrow the first three rows
＂the two following sets＂\rightsquigarrow the following two sets
＂This map we denote by f＂\rightsquigarrow We denote this map by f
＂Only for $x=1$ the limit exists＂\rightsquigarrow Only for $x=1$ does the limit exist
＂For no x the limit exists＂\rightsquigarrow For no x does the limit exist

INDEX

a, an, 23, 46
accordingly, 13
actually, 19, 41
adjectival clauses, 9
adverbial clauses, 42
adverbs, 40
a few, 37,47
all, 32
also, 41
a number of, 37, 46
any, 33
as, $15,18,40$
as is, 39,47
at first, 47
at last, 42, 47
avoid, 30
because, 15
being, 9, 30, 47
both, 33,48
brackets, 8
briefly, 7, 48
cardinal numbers, 34
case, 40, 47
contradiction, 14,18
denote, 7
depending on, 8
differ, 36, 37
disjoint from, 48
distinct, 37
each, 32
either, 34
enable, 29
enough, 8, 27
equal, 37,47
every, 32,47
few, 37,47
fewer, 35
finally, 42, 47
finish, 30
k-fold, 36
following, $13,19,20,47$
for, 11, 28
former, 39,40
for short, 7
fractions, 35
generality, 10
greater, 35
half, 35
have, 26
"have that", $15,16,47$
hence, 15,45
if necessary, 11
imperative, 16
in a position, 17,47
independent of, 8,48
induction, 14
in fact, 13
infinitive, $10,17,27,29$
introduction, 4
inversion, $9,10,33,42,43,48$
it, $18,19,28,40$
it follows that, 15,47
largest, 36
last but one, 38
latter, 39, 40
least, 34,36
less, 35
let, 46
likely, 28
matrices, 38
more, 36
most, $34,36,46$
multiple, 36
need, 17,29
neither, $9,34,43$
next-to-last, 38
no, 33,48
no greater, 35
non(-), 46, 47
none, 33
nor, $9,10,43$
numbering, 26, 38
"obtain that", $15,16,47$
of, $25,26,29$
one, 23,38
only, $29,42,48$
ordinal numbers, $25,34,38$
paragraph, 4, 47
participles, 30, 48
percent, 35
print, 8
same, 36, 40
satisfy, 48
say, 11
second largest, 36
section, 4,47
shortly, 7,48
similar, 16, 48
similarly, 48
since, 15,47
smaller, 35
smallest possible, 36
so is, 10,39
some, 33
succeed, 30
such, 39,47
such that, 8
that, 38
the, 24
the one, 38
therefore, $15,41,45$
there is, 33
these, 39
thesis, $18,20,47$
the two, 34,39
this, 40
this last, 39
those, 38
thus, $15,41,45$
to be defined, 9,28
too, 27
to this end, 14,47
twice as long as, 36
two-thirds, 35
typefaces, 8
unique, 24,34
union, 25
unlikely, 28
up to, 35,38
what, $15,18,47$
which, $15,18,47$
with, 26
worth, 30
worth while, 30

