
http://www.cambridge.org/9780521808903

This page intentionally left blank

Memory-Based Language Processing

Memory-based language processing – a machine learning and problem solv-
ing method for language technology – is based on the idea that the direct
re-use of examples using analogical reasoning is more suited for solving lan-
guage processing problems than the application of rules extracted from those
examples. This book discusses the theory and practice of memory-based lan-
guage processing, showing its comparative strengths over alternative methods
of language modeling. Language is complex, with few generalizations, many
sub-regularities and exceptions, and the advantage of memory-based language
processing is that it does not abstract away from this valuable low-frequency
information. By applying the model to a range of benchmark problems, the
authors show that for linguistic areas ranging from phonology to semantics,
it produces excellent results. They also describe TiMBL, a software package
for memory-based language processing. The first comprehensive overview of
the approach, this book will be invaluable for computational linguists, psy-
cholinguists and language engineers.

The web site to accompany this book, containing instructions for down-
loading TiMBL and links to other useful information, can be found at
http://ilk.uvt.nl/mblp/

walter daelemans is Professor of Computational Linguistics and AI
in the Department of Linguistics, University of Antwerp, Belgium, and co-
director of the CNTS research center. His research for the past decade has
focused on theoretical, methodological, cognitive, and practical aspects of
the applications of machine learning techniques to linguistics, and he has
written on these areas for a variety of journals, including Natural Language
Engineering and Computational Linguistics.

antal van den bosch is Assistant Professor in the Department of Com-
putational Linguistics and AI, Tilburg University, The Netherlands. In 1999
he was granted a Royal Dutch Academy of Arts and Sciences fellowship,
followed by an Innovational Research fund of the Netherlands Organization
for Scientific Research in 2001. He has written widely on computational lin-
guistics, publishing in journals such as Natural Language Engineering and
the Machine Learning Journal.

Studies in Natural Language Processing

Series Editor: Steven Bird, University of Melbourne

This series offers widely accessible accounts of the state-of-the-art in natural language
processing (NLP). Established on the foundations of formal language theory and statis-
tical learning, NLP is burgeoning with the widespread use of large annotated corpora,
rich models of linguistic structure, and rigorous evaluation methods. New multilingual
and multimodal language technologies have been stimulated by the growth of the web
and pervasive computing devices. The series strikes a balance between statistical ver-
sus symbolic methods; deep versus shallow processing; rationalism versus empiricism;
and fundamental science versus engineering. Each volume sheds light on these pervasive
themes, delving into theoretical foundations and current applications. The series is aimed
at a broad audience who are directly or indirectly involved in natural language process-
ing, from fields including corpus linguistics, psycholinguistics, information retrieval,
machine learning, spoken language, human-computer interaction, robotics, language
learning, ontologies, and databases.

Also in the series

Douglas E. Appelt, Planning English Sentences
Madeleine Bates and Ralph M. Weischedel (eds.), Challenges in Natural Language

Processing
Steven Bird, Computational Phonology
Peter Bosch and Rob van der Sandt, Focus
Pierette Bouillon and Federica Busa (eds.), Inheritance, Defaults and the Lexicon
Ronald Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Varile, Annie Zaenen,

Antonio Zampolli, and Victor Zue (eds.), Survey of the State of the Art in Human
Language Technology

David R. Dowty, Lauri Karttunen, and Arnold M. Zwicky (eds.), Natural Language
Parsing

Ralph Grishman, Computational Linguistics
Graeme Hirst, Semantic Interpretation and the Resolution of Ambiguity
András Kornai, Extended Finite State Models of Language
Kathleen R. McKeown, Text Generation
Martha Stone Palmer, Semantic Processing for Finite Domains
Terry Patten, Systemic Text Generation as Problem Solving
Ehud Reiter and Robert Dale, Building Natural Language Generation Systems
Manny Rayner, David Carter, Pierette Bouillon, Vassilis Digalakis, and Matis Wiren

(eds.), The Spoken Language Translator
Michael Rosner and Roderick Johnson (eds.), Computational Lexical Semantics
Richard Sproat, A Computational Theory of Writing Systems
George Anton Kiraz, Computational Nonlinear Morphology
Nicholas Asher and Alex Lascarides, Logics of Conversation
Margaret Masterman (edited by Yorick Wilks) Language, Cohesion and Form
Walter Daelemans and Antal van den Bosch Memory-based Language Processing

Memory-Based
Language Processing

Walter Daelemans
Center for Dutch Language and Speech
University of Antwerp, Belgium

Antal van den Bosch
Department of Computational Linguistics and AI
Tilburg University, The Netherlands

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-80890-3

isbn-13 978-0-511-16071-4

© Walter Daelemans and Antal van den Bosch 2005

2005

Information on this title: www.cambridge.org/9780521808903

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-16071-2

isbn-10 0-521-80890-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521808903

Contents

Preface 1

1 Memory-Based Learning in Natural Language Processing 3

1.1 Natural language processing as classification 6
1.2 A linguistic example . 9
1.3 Roadmap and software . 12
1.4 Further reading . 14

2 Inspirations from linguistics and artificial intelligence 15
2.1 Inspirations from linguistics 15
2.2 Inspirations from artificial intelligence 21
2.3 22
2.4 Conclusion . 24

3 Memory and Similarity 26

3.1 German plural formation . 27
3.2 Similarity metric . 28

3.2.1 Information-theoretic feature weighting 29
3.2.2 Alternative feature weighting methods 31
3.2.3 Getting started with TIMBL 32
3.2.4 Feature weighting in TIMBL 36
3.2.5 Modified value difference metric 38
3.2.6 Value clustering in TIMBL 39
3.2.7 Distance-weighted class voting 42
3.2.8 Distance-weighted class voting in TIMBL 44

3.3 Analyzing the output of MBLP 45
3.3.1 Displaying nearest neighbors in TIMBL 45

3.4 Implementation issues . 46
3.4.1 TIMBL trees . 47

v

Memory-based language processing literature

vi CONTENTS

3.5 Methodology . 47
3.5.1 Experimental methodology in TIMBL 48
3.5.2 Additional performance measures in TIMBL 52

3.6 Conclusion . 55

4 Application to morpho-phonology 57

4.1 Phonemization . 59
4.1.1 Memory-based word phonemization 59
4.1.2 TREETALK . 60
4.1.3 IGTREE in TIMBL . 67
4.1.4 Experiments: applying IGTREE to word phonemization 69
4.1.5 TRIBL: trading memory for speed 71
4.1.6 TRIBL in TIMBL . 73

4.2 Morphological analysis . 73
4.2.1 Dutch morphology . 74
4.2.2 Feature and class encoding 74
4.2.3 Experiments: MBMA on Dutch wordforms 76

4.3 Conclusion . 80
4.4 Further reading . 83

5 Application to shallow parsing 85

5.1 Part-of-speech tagging . 86
5.1.1 Memory-based tagger architecture 87
5.1.2 Results . 88
5.1.3 Memory-based tagging with MBT and MBTG 90

5.2 Constituent chunking . 96
5.2.1 Results . 96
5.2.2 Using MBT and MBTG for chunking 97

5.3 Relation finding . 99
5.3.1 Relation finder architecture 99
5.3.2 Results . 100

5.4 Conclusion . 101
5.5 Further reading . 102

6 Abstraction and generalization 104

6.1 Lazy versus eager learning . 106
6.1.1 Benchmark language learning tasks 107
6.1.2 Forgetting by rule induction is harmful in language

learning . 111
6.2 Editing examples . 115

CONTENTS vii

6.3 Why forgetting examples can be harmful 123
6.4 Generalizing examples . 128

6.4.1 Careful abstraction in memory-based learning 128
6.4.2 Getting started with FAMBL 135
6.4.3 Experiments with FAMBL 137

6.5 Conclusion . 143
6.6 Further reading . 145

7 Extensions 148

7.1 Wrapped progressive sampling 149
7.1.1 The wrapped progressive sampling algorithm 150
7.1.2 Getting started with wrapped progressive sampling . 152
7.1.3 Wrapped progressive sampling results 154

7.2 Optimizing output sequences 156
7.2.1 Stacking . 157
7.2.2 Predicting class n-grams 160
7.2.3 Combining stacking and class n-grams 162
7.2.4 Summary . 164

7.3 Conclusion . 164
7.4 Further reading . 165

Bibliography 168

Index 186

Preface

This book is a reflection of about twelve years of work on memory-based
language processing. It reflects on the central topic from three perspectives.
First, it describes the influences from linguistics, artificial intelligence, and
psycholinguistics on the foundations of memory-based models of language
processing. Second, it highlights applications of memory-based learning
to processing tasks in phonology and morphology, and in shallow parsing.
Third, it ventures into answering the question why memory-based learning
fills a unique role in the larger field of machine learning of natural language
– because it is the only algorithm that does not abstract away from its
training examples. In addition, we provide tutorial information on the
use of TIMBL, a software package for memory-based learning, and an
associated suite of software tools for memory-based language processing.

For us, the direct inspiration for starting to experiment with exten-
sions of the k-nearest neighbor classifier to language processing problems
was the successful application of the approach by Stanfill and Waltz to
grapheme-to-phoneme conversion in the eighties. During the past decade
we have been fortunate to have expanded our work with a great team
of fellow researchers and students on memory-based language processing
in two locations: the ILK (Induction of Linguistic Knowledge) research
group at Tilburg University, and CNTS (Center for Dutch Language and
Speech) at the University of Antwerp. Our own first implementations
of memory-based learning were soon superseded by well-coded software
systems by Peter Berck, Jakub Zavrel, Bertjan Busser, and Ko van der Sloot.
Ko invested the main effort in the development of the TIMBL software
package since 1998. Ton Weijters cooperated with us in these early stages.

With other first-hour cooperators Gert Durieux and Steven Gillis we
ventured into linking memory-based language processing to theoretical
linguistics and to psycholinguistics, a line of research which was later
continued with Masja Kempen, Evelyn Martens, and Emmanuel Keuleers
in Antwerp. At the same time, Ph.D. students Jakub Zavrel, Jorn Veenstra,

1

2 PREFACE

Bertjan Busser, and Sabine Buchholz formed the initial team of the ILK
research group in Tilburg with us.

Meanwhile we were fortunate to meet and be joined by colleagues
elsewhere who worked on memory-based or related methods, and who
were kind enough to reflect and relate our ideas to theirs on memory-
based, instance-based, analogical, or lazy learning: notably David Powers,
Jean-François Delannoy, David Aha, Dave Waltz, Claire Cardie, Hans
van Halteren, Diane Litman, Koenraad De Smedt, Harald Baayen, Do-
miniek Sandra, Dietrich Wettschereck, Sandra Kübler, Yuval Krymolowski,
Joakim Nivre, Hwee-Tou Ng, Daan Wissing, Christer Johansson, Anders
Nøklestad, Joan Bresnan, David Eddington, and Royal Skousen, Deryle
Lonsdale, and their colleagues.

In Tilburg and Antwerp we were subsequently joined by other coopera-
tors, students, and postdoc researchers who helped shape and sharpen the
algorithmic and methodological underpinnings of memory-based learning,
as well as applied the method to many areas in natural language process-
ing. We are very grateful to Véronique Hoste, Erik Tjong Kim Sang, Khalil
Sima’an, Frank Scheelen, Guy De Pauw, Marc Swerts, Anne Kool, Stephan
Raaijmakers, Piroska Lendvai, Emiel Krahmer, Martin Reynaert, Erwin
Marsi, Laura Maruster, Olga van Herwijnen, Marie-Laure Reinberger, Fien
de Meulder, Bart Decadt, Iris Hendrickx, Jacqueline Dake, Menno van
Zaanen, Sander Canisius, Anja Höthker, An De Sitter, Jo Meyhi, Frederik
Durant, and Kim Luyckx for their valuable contributions, and also to the
other members of both research groups for being great colleagues even
without doing memory-based learning.

This book has benefited greatly from the suggestions given by Maarten
de Rijke, Valentin Jijkoun, Steven Bird, Helen Barton, Iris Hendrickx,
Sander Canisius, Piroska Lendvai, and Anne-Marie van den Bosch.

Our research has been made, and continues to be made possible by
our home universities, the University of Antwerp and Tilburg University,
with major funding support from NWO, the Netherlands Organization for
Scientific Research; FWO, the Flemish Organization for Scientific Research;
IWT, the Institute for the Promotion of Innovation by Science and Tech-
nology in Flanders; the EU with its framework programmes; NTU, the
Dutch Language Union, and the Netherlands Royal Academy of Arts and
Sciences. We are grateful for their sustained trust and support.

Most trust and support came from our families. It is to this close circle
of people that we dedicate this book.

Chapter 1

Memory-Based Learning in
Natural Language Processing

This book presents a simple and efficient approach to solving natural
language processing problems. The approach is based on the combination
of two powerful techniques: the efficient storage of solved examples of
the problem, and similarity-based reasoning on the basis of these stored
examples to solve new ones.

Natural language processing (NLP) is concerned with the knowledge
representation and problem solving algorithms involved in learning, pro-
ducing, and understanding language. Language technology, or language
engineering, uses the formalisms and theories developed within NLP in
applications ranging from spelling error correction to machine translation
and automatic extraction of knowledge from text.

Although the origins of NLP are both logical and statistical, as in
other disciplines of artificial intelligence, historically the knowledge-based
approach has dominated the field. This has resulted in an emphasis
on logical semantics for meaning representation, on the development
of grammar formalisms (especially lexicalist unification grammars), and
on the design of associated parsing methods and lexical representation
and organization methods. Well-known textbooks such as Gazdar and
Mellish (1989) and Allen (1995) provide an overview of this ‘rationalist’
or ‘deductive’ approach.

The approach in this book is firmly rooted in the alternative empirical
(inductive) approach. From the early 1990s onwards, empirical methods
based on statistics derived from corpora have been adopted widely in the
field. There were several reasons for this. Firstly, computer processing

3

4 MEMORY-BASED LEARNING IN NLP

and storage capabilities had advanced to such an extent that statistical
pattern recognition methods had become feasible on the large amounts
of text and speech data gradually becoming available in electronic form.
Secondly, there had been an increase of interest within NLP (prompted
by application-oriented and competitive funding) for the development
of methods that scale well and can be used in real applications without
requiring a complete syntactic and semantic analysis of text. Finally,
simple probabilistic methods had been enormously successful in speech
technology and information retrieval, and were therefore being transferred
to NLP as well. See Brill and Mooney (1998b) and Church and Mercer
(1993) for overviews of this empirical revolution in NLP. The maturity
of the approach is borne out by the publication of dedicated textbooks
(Charniak, 1993; Manning & Schütze, 1999) and by its prominence in recent
speech and language processing textbooks (Jurafsky & Martin, 2000) and
handbooks (Mitkov, 2003; Dale et al., 2000).

Comparing these empirical methods to the knowledge-based approach,
it is clear that they have a number of advantages. In general, probabilistic
approaches have a greater coverage of syntactic constructions and vocabu-
lary, they are more robust (they exhibit graceful degradation in deteriorat-
ing circumstances), they are reusable for different languages and domains,
and development times for making applications and systems are shorter.
On the other hand, knowledge-based methods make the incorporation of
linguistic knowledge and sophistication possible, allowing them to be more
precise sometimes. Probabilistic empirical methods are not without their
own problems:

• The sparse data problem: often, not enough data is available to estimate
the probability of events accurately. Some form of smoothing of the
probability distributions is necessary.

• The relevance problem: it is often difficult to decide reliably on the
importance or relevance of particular information sources for the
solution of the NLP problem.

• The interpretation problem: most statistical techniques do not easily
provide insight into how a trained statistical system solves a task.
This is important for reasons of reusability, to integrate the acquired
knowledge in existing systems, and to satisfy the end user’s scientific
curiosity about the linguistic tasks being performed by the trained
system.

MEMORY-BASED LEARNING IN NLP 5

Symbolic machine learning methods in NLP offer interesting alter-
native solutions to these problems, borrowing some of the advantages
of both probabilistic and knowledge-based methods. Some of these
symbolic methods were created from within NLP (e.g., transformation-
based error-driven learning, Brill, 1995), other techniques were imported
from machine learning (Langley, 1996; Mitchell, 1997) into NLP; e.g.,
induction of decision trees and rules (Quinlan, 1993; Cohen, 1995), and
inductive logic programming (Lavrac & Džeroski, 1994).

As a solution to the interpretation problem, rule induction methods,
for example, present the learned knowledge in the form of condition-
action rules of the type found in expert systems. This makes it easy
for the domain expert to understand, evaluate, and modify them and
to integrate them with hand-crafted rules. Inductive logic programming
allows for the introduction of domain knowledge in the form of predicate
logic expressions as background theories to the learning system, as a way
to constrain the search for a model that covers the training examples.
Rule induction and decision tree induction methods deal with sparse
data and the information source relevance problem by relying on the
minimal description length principle (Rissanen, 1983), a modern version of
Ockham’s razor, which states that smaller-sized models are to be preferred
over larger models with the same generalization power. Rule learners
and decision tree induction methods adopt this principle as a guideline
in pruning decision trees, or finding small rule sets of simple rules that test
only on those information sources that, according to reliability tests from
statistics or information theory, are sufficient.

This book provides an in-depth study of memory-based language pro-
cessing (MBLP), an approach to NLP based on a symbolic machine learning
method called memory-based learning (MBL). Memory-based learning is
based on the assumption that in learning a cognitive task from experience
people do not extract rules or other abstract representations from their
experience, but reuse their memory of that experience directly. Memory-
based learning and problem solving incorporates two principles: learning
is the simple storage of a representation of experiences in memory, and
solving a new problem is achieved by reusing solutions from similar
previously solved problems. This simple idea has appeared in many
variations in work in artificial intelligence, psychology, statistical pattern
recognition, and linguistics.

Over the last decade, we have applied this approach to many problems
in NLP, and have come to the conclusion that the approach fits the
properties of NLP tasks very well. The main reason is that for describing

6 MEMORY-BASED LEARNING IN NLP

NLP tasks mostly only a few clear generalizations can be found, with many
conflicting sub-regularities and exceptions. Most learning methods are
eager: they try to abstract theories from the data, and filter out exceptional,
atypical, infrequent cases. We claim that in NLP, these cases constitute an
important part of the required knowledge and should not be dismissed
as noise. MBL is a lazy learning method which keeps all data available
for processing and therefore also those cases from which more eager
learning methods abstract. The eager versus lazy learning distinction will
be described in more detail in chapter 6.

In the remainder of this chapter, we define NLP in a machine learning
context as a set of classification tasks, introduce the terminology for MBLP

we will use and expand throughout the book, and illustrate the approach
by means of a well-known problem in NLP, prepositional phrase attachment.
At the end of this chapter, we provide a roadmap for readers and explain
why a relatively large part of the book is devoted to introducing software
available with this book.

1.1 Natural language processing as classification

To enable the automatic acquisition of NLP knowledge from data we need
machine-learning methods such as MBL, but in order to achieve any results,
we must show first that NLP tasks can indeed be formulated in a machine-
learning framework.

Tasks in NLP are complex mappings between representations, e.g.,
from text to speech, from spelling to parse tree, from parse tree to logical
form, from source language to target language, etc., in which context plays
an important, often crucial role. These mappings tend to be many-to-many
and complex because they can typically only be described by means of
conflicting regularities, sub-regularities, and exceptions. E.g., in a word
processor’s hyphenation module for a language such as Dutch (a simple
and prosaic NLP problem), possible positions for hyphens have to be found
in a spelling representation; the task is to find a mapping from a spelling
representation to a syllable representation. Even this simple task is not
trivial because the phonological regularities governing syllable structure
are sometimes overruled by more specific constraints from morphology
(the morphological structure of the word and the nature of its affixes). On
top of that, there are constraints which are conventional, typographical,
or which derive from the etymology of words. We find this interaction
of constraints from multiple sources of information everywhere in NLP

1.1. NATURAL LANGUAGE PROCESSING AS CLASSIFICATION 7

and language technology; from phonological processing to pragmatic
processing, and from spelling checking to machine translation. Linguistic
engineering (hand-crafting) of a rule set and exception lists for this type
of problem is time-consuming, costly, and does not necessarily lead to
accurate and robust systems.

Machine learning (inductive learning from examples), by contrast, is
fundamentally a classification paradigm. Given a description of an input
in terms of feature-value pairs (a feature vector), a class label is produced.
This class should normally be taken from a finite inventory of possibilities,
known beforehand1. By providing a sufficient number of training examples
(feature vectors with their correct class label), a machine learning algorithm
can induce a classifier, which performs this mapping from feature vectors
to class labels.

Suppose we want to learn how to predict the past tense of an English
verb. This can be seen as a mapping from an input (infinitives of verbs)
to an output (past tense forms of those verbs), e.g., work – worked, sing –

sang. To redefine this mapping as a classification task, we have to transform
the input into a fixed feature vector, for example by assigning a nominal
feature to each part of the syllable structure (onset, nucleus, coda) of the
infinitive. Each feature then represents a fixed part of the infinitive. The
feature vectors associated with our two example words will become w,o,rk

and s,i,ng, where commas indicate the boundary between features. We also
need a finite set of possible output classes. For the past tense problem we
might choose a class system consisting of -ed and for the irregular cases
the particular vowel change involved (i-a, i-u, etc.). In order to train a
system to learn this mapping, we need examples. Examples associate an
instance, represented as a feature vector, with an output, represented by a
class label. Feature values can be nominal (symbols), numeric, binary, or
for some learning methods even complex and recursive. A few examples
associated with our past tense task will now be represented like this:

1This distinguishes supervised classification-based learning from regression-based
learning, where the class label is a real number.

8 MEMORY-BASED LEARNING IN NLP

Instance
description Class label

w o rk -ed
s i ng i → a
k i ll -ed
sh oo t oo → o

Different machine learning methods will use the information in the
examples in different ways to construct a classifier from them. A memory-
based classifier is trained by simply storing a number of instances with
the correct class label in memory. A new instance of which the class is
not yet known is classified by looking for examples in memory with a
similar feature vector, and extrapolating a decision from their class. These
examples are the nearest neighbors of the query instance. Chapter 3 provides
a formal introduction to the algorithms and metrics that constitute our
definition of MBLP, and that we will use in this book.

During the late 1990s the idea that all useful linguistic mappings —
including complex (e.g., partially recursive) problems such as parsing—
can be redefined as classification mappings and can thus be formulated in
a ML context, has gained considerable support (Daelemans, 1995; Cardie,
1996; Ratnaparkhi, 1998; Roth, 1998). All linguistic problems can be
described as classification mappings of two kinds: disambiguation and
segmentation (Daelemans, 1995).

Disambiguation. Given a set of possible class labels and a representation
of the relevant context in terms of feature values, determine the
correct class label for this context. A prototypical instance of this
situation is part of speech tagging (morphosyntactic disambiguation),
a mapping in which a word that can have different morphosyntactic
categories is assigned the contextually correct category. Other in-
stances of this type of disambiguation include grapheme-to-phoneme
conversion, lexical selection in generation, morphological synthesis, word
sense disambiguation, term translation, word stress and sentence accent
assignment, accenting unaccented text, prepositional phrase attachment,
and grammatical relation assignment.

Segmentation. Given a target position in a representation and the sur-
rounding context, determine whether a boundary is associated with

1.2. A LINGUISTIC EXAMPLE 9

this target, and if so, which one. A prototypical example here is
hyphenation (or syllabification): given a position in a series of letters
(or phonemes), a decision is made whether at that position a syllable
boundary is present. Other examples include morphological analysis,
prosodic phrase boundary prediction, and constituent boundary detection.

In such a perspective, complex NLP tasks such as parsing can be defined
as a cascade of simpler classification tasks: segmentation tasks (finding
constituent boundaries) and disambiguation tasks (deciding on the mor-
phosyntactic category of words, the label of constituents, and resolving
attachment ambiguities). We will return to a cascaded classification-
based approach to shallow parsing in chapter 5. The classification-based
approach reaches its limits, of course, at some point. Complex knowledge-
based inference processes and semantic processes such as reasoning about
tense and aspect would be formulated better in another way, although in
principle a classification-based approach would be feasible.

An approach often necessary to arrive at the classification representa-
tion needed in this ML set-up for sequential tasks is the windowing method
(as used in Sejnowski & Rosenberg, 1986 for text to speech). In this
approach, a virtual window is shifted one item (e.g., word or phoneme)
at a time over an input string (e.g., a sentence or a word). One item in the
window, usually the middle item or the last item to enter the window, acts
as the item in focus on which a disambiguation or segmentation decision is
to be made, and the rest of the window acts as the context available for the
decision. In this book we will discuss many examples of how to represent
concrete NLP tasks within this classification-based learning approach.

1.2 A linguistic example

As a first, largely intuitive, illustration of how MBLP works, we develop
its application to the well-known prepositional phrase disambiguation
problem (PP-attachment)2, where it has to be decided by a language
understander which verb or noun is modified by a particular prepositional
phrase. PP-attachment is a simple yet illustrative example of the pervasive
problem of structural ambiguity, the resolution of which is essentially
coupled to the proper understanding of the meaning of a sentence.

Arguably, memory traces of usage of earlier similar cases may help
in the disambiguation. For example, in eat a pizza with pineapple, the

2This example is based on Zavrel et al. (1997).

10 MEMORY-BASED LEARNING IN NLP

(Merijn) eats (a pizza) {with (Liam)} (Merijn) eats (a pizza) {with (Liam)}

eats pizza with Liam verb

eat crisps with Eleni
eat pizza with anchovies
eat pizza with pineapple

...

verb
noun
noun

...

Memory

Similarity-based reasoning

f o r m u l a t i o n a s c l a s s i f i c a t i o n t a s k

Figure 1.1: The general MBLP approach applied to PP-attachment. An
NLP task is represented as a mapping between feature vectors and classes,
learned through storage of examples in memory, and solved through
similarity-based reasoning.

prepositional phrase with pineapple modifies pizza rather than eat because
we have memory traces of similar expressions (e.g., eat a pizza with

anchovies, eat a sandwich with cheese, . . .) with the same interpretation. In
eat a pizza with Eleni, other memory traces of similar sentence fragments
such as eat crisps with Nicolas, and eat chocolate with Liam would favor a
verb-modification interpretation. The feasibility of such a similarity-based
approach depends crucially on a good operationalization of similarity, as
well as sufficient relevant features to make a decision, and the availability
of a sufficient number of examples.

Figure 1.2 sketches how the general MBLP approach introduced in the
previous subsection would be applied to this problem. Given some NLP
task (PP-attachment), the mapping is defined in terms of input features
(heads of constituents, verbs, and prepositions) and output class (noun or
verb attachment).

Several sources of information have been proposed to resolve prepo-
sitional phrase attachment ambiguity. Psycholinguistic theories have
proposed disambiguation strategies which use syntactic information only,

1.2. A LINGUISTIC EXAMPLE 11

i.e., properties of the parse tree are used to choose between different
attachment sites. Two principles based on syntactic information are
minimal attachment (MA, construct the parse tree with the fewest nodes)
and late closure (LC, attach as low as possible in the parse tree) (Frazier,
1979; Frazier & Clifton, 1998). Obviously, syntactic constraints only would
never allow the correct resolution of all ambiguous examples discussed
above. In those cases where syntactic constraints do not predict the
attachment correctly, the meaning of the heads of the different phrases
determines the correct attachment, and lexical information is essential
in solving the task, as has been acknowledged in psycholinguistics as
well (Boland & Boehm-Jernigan, 1998). Feasibility problems of hand-
coding lexical semantic knowledge for a sufficiently large corpus have
prompted the application of various corpus-based statistical and machine
learning approaches to the PP-attachment problem (Hindle & Rooth, 1993;
Brill & Resnik, 1994; Ratnaparkhi et al., 1994; Collins & Brooks, 1995;
Franz, 1996; Zavrel et al., 1997; Stetina & Nagao, 1997; Abney et al., 1999).
However, with the recent availability of lexical semantic resources such as
FrameNet (Baker et al., 1998; Fillmore et al., 2003) and the Penn PropBank
(Kingsbury et al., 2002), more sophisticated approaches are becoming
available for encoding lexical semantic knowledge as features.

One straightforward way to apply the MBLP framework to this problem
is to extract examples from sentences with a PP-attachment ambiguity
such as the feature-vector and class representation shown in Table 1.1.

Liam ate his pizza with anchovies.

Nicolas eats crisps with Eleni.

verb noun 1 preposition noun 2 class

eat pizza with anchovies noun

eat crisps with Eleni verb

Table 1.1: Classification-based representation for the PP-attachment
problem.

There is a benchmark data set3 of PP-attachment examples, used first in
Ratnaparkhi et al. (1994) which contains about 28,000 cases represented as
feature vectors of the format displayed in Table 1.1. For each example, the
verb, the head of the object NP, the preposition of the prepositional phrase,

3The data set has been made available by Adwait Ratnaparkhi from
ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData

12 MEMORY-BASED LEARNING IN NLP

and the head noun of the NP of the prepositional phrase are recorded as
feature values, and the class is either verb (attaching to the verb, or high
attachment) or noun (attaching to the object noun, or low attachment).
Applying an MBLP approach to this problem we learn from the data that
the preposition is the most relevant of the four features, and that the
other features are about equally relevant. On this particular data set, the
correct attachment can be assigned for more than 80% of previously unseen
examples by extrapolating from similar cases in memory. In chapter 3 we
provide the details of our operationalization of this type of similarity-based
reasoning. Here we briefly show by means of some of the test instances and
their nearest-neighbor examples in memory how it can succeed, and how
it can go astray.

The instance join board as director has a high attachment (as director

attaches to the verb) which is correctly predicted by the classifier on the
basis of examples such as name executive as director; elected him as senior

director, etc. The instance changed face of computing is correctly classified as
low attachment due to examples such as is producer of sauces; is co-author of

books; is professor of economics and hundreds of equally similar examples in
memory, effectively implementing a majority assignment for of as marking
low attachment. We also see that sometimes analogy does not solve the
problem, as with restrict advertising to places, which is incorrectly classified
as a noun attachment case because of the single close noun attachment
match regulate access to places.

For now, we hope to have exemplified how NLP problems can be
formulated as classification tasks and how MBLP, working only on the
basis of storing examples (for learning) and similarity-based reasoning (for
processing) can achieve practical and interesting results.

1.3 Roadmap and software

This book tries to appeal to both computational linguists and machine
learning practitioners, and especially to the growing group of colleagues
and students who combine these two subfields of artificial intelligence
in their research. For machine learning research, language processing
provides a broad range of challenging problems and data sets. Features
with thousands of values, tasks with thousands of classes and with millions
of different examples, complex symbolic representations, complex cascades
of classifiers; NLP has it all. For empirical computational linguistics
research, (symbolic) machine learning approaches such as memory-based

1.3. ROADMAP AND SOFTWARE 13

learning offer additional tools and approaches on top of the statistical
techniques now familiar to most computational linguists. We have tried
to make the book accessible also to computational linguists with little
previous exposure to symbolic machine learning, and to machine learning
researchers new to NLP. We trust readers will find out quickly what to skip
and what to dwell on given their previous knowledge.

After explaining the origins of memory-based language processing
in linguistics, artificial intelligence, and psycholinguistics in chapter 2,
chapter 3 dives into the details of our own specific approach to MBLP,
discussing the algorithms and metrics used. For illustration and concrete-
ness we provide a realistic problem, plural formation of German nouns,
and a hands-on introduction to TIMBL, a software package available with
this book. Distributed parts of the remainder of the book are devoted
to explaining the use of TIMBL and a suite of associated programs and
tools. For many of the NLP tasks described in later chapters, we also
make available the data sets on which the results were achieved, or at
least we provide clear pointers to how they can be acquired. The power
and limitations of the memory-based approach can best be made clear
by applying it to real problems. With TIMBL and the suite of associated
software, we believe you will have an efficient and useful toolkit that you
will be able to apply to real problems.

Chapters 4 and 5 discuss the application of MBLP to problems ranging
from phonology to syntactic analysis, explaining the tasks, the results
obtained with MBLP, and explaining the use of available software where
relevant (e.g., IGTREE for phonology and MBT for part of speech tagging
and chunking). The main goal of these two chapters is to provide worked-
out examples on how to formulate typical NLP problems in an MBLP

framework. Chapter 6 cuts to the core of why we think MBLP has the
right bias for solving NLP tasks. We investigate the lazy–eager learning
dimension and show empirically on a set of benchmark NLP data sets
that language learning benefits from remembering all examples. Again,
software is introduced that makes use of these insights by providing a
careful, bottom-up approach to abstraction. Chapter 7, finally, introduces
a number of current issues in MBLP (parameter optimization, alternative
class representations, stacking of classifiers) that have a wider impact than
just MBLP.

14 MEMORY-BASED LEARNING IN NLP

1.4 Further reading

Collections of papers on machine learning applied to NLP include Wermter
et al. (1996); Daelemans et al. (1997b); Brill and Mooney (1998a);
Cardie and Mooney (1999). Statistical and machine learning approaches
are prominent in mainstream computational linguistics. Dedicated yearly
conferences include EMNLP (Empirical Methods in Natural Language
Processing, the yearly meeting of the SIGDAT special interest group
of ACL) and CoNLL (Conference on Computational Natural Language
Learning), the yearly meeting of the SIGNLL special interest group of ACL.
Proceedings of these events are available on-line via the ACL Anthology4.
SIGNLL also provides a growing number of data sets representing NLP
tasks used in shared tasks, organized in alignment with CoNLL, which are
intended to increase insight into which information sources and which
machine learning methods work best for particular tasks.

4http://www.aclweb.org/anthology

Chapter 2

Inspirations from linguistics
and artificial intelligence

Memory-Based Language Processing, MBLP, is based on the idea that
learning and processing are two sides of the same coin. Learning is
the storage of examples in memory, and processing is similarity-based
reasoning with these stored examples. Although we have developed a
specific operationalization of these ideas, they have been around for a long
time. In this chapter we provide an overview of similar ideas in linguistics,
psychology, and computer science, and end with a discussion of the
crucial lesson learned from this literature, namely, that generalization from
experience to new decisions is possible without the creation of abstract
representations such as rules.

2.1 Inspirations from linguistics

While the rise of Chomskyan linguistics in the 1960s is considered a turning
point in the development of linguistic theory, it is mostly before this time
that we find explicit and sometimes adamant arguments for the use of
memory and analogy that explain both the acquisition and the processing
of linguistic knowledge in humans. We compress this into a brief review
of thoughts and arguments voiced by the likes of Ferdinand de Saussure,
Leonard Bloomfield, John Rupert Firth, Michael Halliday, Zellig Harris,
and Royal Skousen, and we point to related ideas in psychology and
cognitive linguistics.

15

16 INSPIRATIONS

De Saussure and Bloomfield. In his book Cours de linguistique générale,
Ferdinand de Saussure (1916) put forward the theory that linguistics
(the study of language) naturally divides into a linguistics of la langue,
viz. language as a social medium, independent of the individual, and a
linguistics of la parole, the individual’s language. De Saussure argues that
while la parole governs the way that individuals (learn to) generate and
interpret speech, la langue represents the common, general knowledge of
all individuals about the signs of the language, i.e., the common symbols of
speech and writing used within a language community, and the relations
existing between these signs (De Saussure, 1916).

Two relations exist between signs: (i) syntagmatic relations between
signs at the same level; e.g., between letters in a word; (ii) paradigmatic
(also referred to as associative) relations between signs at different levels,
e.g., between letters and phonemes (De Saussure, 1916). Chomsky later
pointed out that this dichotomy naturally corresponds to the processes
of segmentation for determining the neighborhood relations of (sequences
of) linguistic symbols at the same level, and classification for determining
the correspondences between (sequences of) linguistic symbols at different
levels (Piatelli–Palmarini, 1980). This, in turn, relates directly to the
notions of segmentation (identification of boundaries) and disambiguation
(identification) as discussed in the previous chapter.

In addition to the static aspects of language, De Saussure had elaborate
ideas on the dynamics of language generation and analysis, centering for
a major part around the concept of analogy, which he claimed has two
opposing effects: it preserves and it alters. The effect of its preserving
power is seen in the generation of new words and sentences, where
these new strings contain sequences of symbols that display highly similar
distributions of strings to other data of the same language seen previously
and elsewhere. The mirror side of its preserving power is its power to
alter, witnessed in the creation-by-analogy of completely new sequences of
linguistic symbols that enter a language as neologisms. In De Saussure’s
words, “To analogy are due all normal non-phonetic modifications of the
external side of words” (De Saussure, 1916, p.161). De Saussure goes on to
refer rather explicitly to a capacity of a language user to access some sort of
memory to generate utterances:

Any creation must be preceded by an unconscious comparison
of the material deposited in the storehouse of language, where
productive forms are arranged according to their relations. (De
Saussure, 1916, p. 165).

2.1. INSPIRATIONS FROM LINGUISTICS 17

While De Saussure stressed the role of analogy, Leonard Bloomfield ad-
vocated the role of the related dynamic concept of induction –roughly, the
distilling of general rules or principles from examples– as the driving force
behind discovering principles and regularities in language. Bloomfield
at one point stated that “The only useful generalizations about language
are inductive generalizations.” (Bloomfield, 1933, p. 20). Throughout
his work, Bloomfield proclaimed (in hindsight, behaviorist) ideas on the
nature of the language faculty as emerging from learned responses to
stimuli. He expresses the hypothesis that in generation, speakers use
“analogy” and “habits of substitution” (Bloomfield, 1933, pp. 275ff) to
generate sentences they themselves have never heard before. He makes
an important distinction between “regular” non-exact, creative analogical
generation from examples, and “irregular” memory retrieval of examples:
“Any form which a speaker can utter only after he has heard it from other
speakers, is irregular.” (Bloomfield, 1933, p. 276).

Firth and Halliday. While De Saussure and Bloomfield stress the impor-
tance of the analogical process, John Rupert Firth stressed in his work
that having real-world data is central to the development of any model of
language; “A theory derives its usefulness and validity from the aggregate
of experience to which it must continually refer” (Firth, 1952, p. 168, in
Palmer, 1969). Firth is often quoted as a source of inspiration for the current
interest in statistical models for natural language processing (Manning &
Schütze, 1999), due to his work on purely data-driven language models,
e.g., collocation models. How words occur in their context (e.g., in
sentences, texts) can be explained most purely by “the company they
usually keep” (Firth, 1952, p. 106ff, in Palmer, 1969). This approach can
be interpreted from a memory-based viewpoint as easily as it can be taken
as inspiration for probabilistic models; the role of a word in a sentence can
be extrapolated from the collection of contexts in which it is remembered
to occur.

With Firth as mentor and with the concept of groundedness in real-
life data as a basis, Michael Halliday developed the theory of systemic
functional grammar (Halliday, 1961), which views language essentially by its
function in the real world, and its interaction with social context. Halliday
acknowledges the breadth of this scope, but argues that it is essential, being
the only way that language use can ever be understood or predicted fully.
The main inspiration from Halliday’s work that carries over to ours is
the argument that it might be necessary to encode context using features

18 INSPIRATIONS

far beyond the surface level of language: pragmatic features, rhetorical
features, and any other feature in the social context that might be of
importance in a particular time frame and text genre or type of discourse.

Harris and Skousen. American linguist Zellig Harris’ distributional
methodology can be seen as one proposal for a computational
operationalization of memory-based language processing. Its
methodology is grounded in data and statistics. As Harris put it, “With an
apparatus of linguistic definitions, the work of linguistics is reducible (. . .)
to establishing correlations. (. . .) And correlations between the occurrence
of one form and that of other forms yield the whole of linguistic structure.”
(Harris, 1940, p. 704). His concept of substitution grammars (Harris,
1951; Harris, 1957) is an example of how this methodology can lead to
a processing model of language: by analogy, sequences of forms receive
the same syntactic label as other sequences that share the same or similar
contexts.

An important step further in the operationalization is proposed by
Royal Skousen who details a symbolic computational model of analog-
ical processing (programmable, and indeed implemented by several re-
searchers), and demonstrates its application to language (Skousen, 1989).
Skousen’s argument starts with the observation that all dominant linguistic
theories have assumed rules to be the only means to describe aspects of
language. Instead, Skousen argues for an inherently analogical approach
to language and language learning, and introduces a concrete definition
of analogy not based on rules. Like MBLP, Skousen’s approach does not
differentiate, as mainstream linguistics does, between regular language
(i.e., language obeying rules), and irregular language (i.e., exceptions to the
rules); rather, it treats language in an essentially unbiased way. This lack
of bias fits language better, as Skousen argues: in language, the differences
between regular data and exceptions can be quite graded.

Thus, to predict language behavior, and to model language learning, all
that is needed is a large database of examples taken directly from language
use, and a generically applicable method for analogical modeling that
is inherently inductive but avoids the induction of rules (Skousen, 1989;
Derwing & Skousen, 1989).

More recently, Skousen and colleagues published an overview of the
analogical modeling approach, as well as links to other exemplar-based
approaches to language (Skousen et al., 2002). In its introduction,
Skousen explains what distinguishes his analogical modeling approach

2.1. INSPIRATIONS FROM LINGUISTICS 19

� � � � � � � � � � � � 	
 � �
 � �

	 � � � � � �
 � � � � � � � � � � � � 	 � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � ! � " # � � $

% & � # � � � � ' #
" � � � � ! � ' � � � � �

� � � � � � � � �
 () * � �

� + � � � � � � * � � � 	

� � � � (
 � � � � 	 �
 � (

Figure 2.1: A categorical hierarchy of types of language prediction methods
after Skousen et al. (2002).

from our nearest-neighbor approach. The differences are relatively small:
they deal with the way the nearest neighbors are gathered from memory
during classification, and how they are used together to produce classi-
fications. Skousen gathers both approaches under the term “exemplar-
based” when drawing the categorical hierarchy of “language prediction
methods” displayed in Figure 2.1 (adapted from Skousen, 2002, p. 3).
The hierarchy makes an opposition between exemplar-based methods and
neural networks. To the latter group probabilistic methods can be added
(e.g. Naı̈ve Bayes classification, and maximum-entropy modeling), as
well as other hyperplane discriminators (e.g., Winnow networks, kernel
methods). The essential difference between these two groups of machine
learning algorithms is the role of the exemplar (the instance) in analogical
modeling and nearest-neighbor approaches; all other methods abstract
away from the total set of examples.

Psychology and cognitive linguistics. Exemplar-based models have
been proposed in psychology as well, more specifically in studies of
human categorization, and often seem to produce a good fit of human
behavior and errors (Smith & Medin, 1981; Nosofsky, 1986; Estes,
1994). These models assume that people represent categories by storing
individual exemplars in memory rather than rules, prototypes, or
probabilities. Categorization decisions are then based on the similarity of
stimuli to these stored exemplars. More recent work seems to favor hybrid
theories of categorization, i.e., the combination of rule-based or prototype-

20 INSPIRATIONS

based and exemplar-based categorization (Johnstone & Shanks, 2001),
or representational shifts from rule-based to exemplar-based processing
as skills develop (Johansen & Palmeri, 2002). Overall, evidence for the
psychological relevance of exemplar-based reasoning remains impressive.
Recently, even the very assumption of fixed, permanent categories
(however represented) has come under fire by theories favoring a dynamic
construal approach in which concept formation is claimed to be based
on past and recent experiences represented in memory, combined with
current input (Smith & Samuelson, 1997). This type of context-dependent,
memory-based category formation, akin to the ideas of Halliday referred
to earlier, fits MBLP very well.

One recent approach to linguistics, usage-based models of language,
represented by cognitive linguists such as Ronald Langacker, Joan Bybee,
Arie Verhagen, William Croft and many others (see Barlow & Kemmer,
2000 for a collection of papers, and Croft & Cruse, 2003 for a textbook),
bases itself at least in part on the psychological categorization literature and
on some of the pre-Chomskyan linguistic approaches discussed earlier. It
would lead too far to discuss the heterogeneous set of theories referred
to by the label usage-based. Yet, some of the properties shared by them
are reminiscent of the MBLP approach. Most importantly, the usage-based
approach presupposes a bottom-up, maximalist, redundant approach in
which patterns (schemas, generalizations) and instantiations are supposed
to coexist, and the former are acquired from the latter. MBLP could be
considered as a radical incarnation of this idea, in which only instantiations
stored in memory are necessary. Other aspects of cognitive linguistics,
such as the importance of frequency, experience-based language acquisi-
tion (Tomasello, 2003), and the interconnectedness of language processing
with other cognitive processes fit MBLP as well.

In sum, the early twentieth-century linguistic literature on induction
and analogy, culminating in Skousen’s operational algorithm for analogical
reasoning on the basis of exemplars, has been an important inspiration for
the MBLP approach pursued in this book. As far as concrete operational-
ized algorithms are concerned, general (non-language-oriented) nearest-
neighbor methods and their many descendents developed in artificial
intelligence have played another driving inspirational role. It is to these
methods that we turn next.

2.2. INSPIRATIONS FROM ARTIFICIAL INTELLIGENCE 21

2.2 Inspirations from artificial intelligence

Nearest-neighbor classifier methods (most commonly named k-NN

classifiers) were developed in statistical pattern recognition from the 1950s
onwards (Fix & Hodges, 1951; Cover & Hart, 1967), and they are still
actively being investigated in the research community. In these methods,
examples (labeled with their class) are represented as points in an example
space with as dimensions the numeric features used to describe the
examples. A new example obtains its class by finding its position as a
point in this space, and extrapolating its class from the k nearest examples
in its neighborhood. Nearness is defined as the reverse of Euclidean
distance. An early citation that nicely captures the intuitive attraction of
the nearest-neighbor approach is the following:

This ”rule of nearest neighbor” has considerable elementary
intuitive appeal and probably corresponds to practice in many
situations. For example, it is possible that much medical
diagnosis is influenced by the doctor’s recollection of the
subsequent history of an earlier patient whose symptoms
resemble in some way those of the current patient. (Fix and
Hodges, 1952, p. 43)

The k-NN literature has also generated many studies on methods for
removing examples from memory either for efficiency (faster processing
by removing unnecessary examples) or for accuracy (better predictions
for unseen cases by removing badly predicting examples). See Dasarathy
(1991) for a collection of fundamental papers on nearest-neighbor research.

However, the impact of k-NN methods on the development of systems
for solving practical problems remained limited for a few decades after
their development because of a number of problems. First of all, they were
computationally expensive in storage and processing: learning reduces
to storing all examples, and processing involves a costly comparison of
an instance to all examples in memory. Interesting indexing and search
pruning approaches were designed, such as k-d trees (Bentley & Friedman,
1979), but these only sped up the process for numeric features. A second
problem with the approach was that the Euclidean distance metaphor
for similarity breaks down with non-numeric and missing feature values.
Further problems involved the sensitivity of the approach to feature noise
and irrelevant features, and to the similarity metric used.

From the late 1980s onwards, the intuitive appeal of the nearest-

22 INSPIRATIONS

neighbor approach promoted its adoption in artificial intelligence in many
variations, using labels such as memory-based reasoning, case-based rea-
soning, exemplar-based learning, locally-weighted learning, and instance-
based learning (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Riesbeck &
Schank, 1989; Kolodner, 1993; Atkeson et al., 1997; Aamodt & Plaza, 1994;
Aha et al., 1991). These methods modify or extend the k-NN algorithm
in different ways, and aim to resolve the issues with the nearest-neighbor
classifier listed before. As an example, the similarity metric for numeric
features is extended in memory-based reasoning (Stanfill & Waltz, 1986) to
nominal features, and in case-based reasoning (Riesbeck & Schank, 1989)
even to complex recursive features such as graphs or trees.

The term lazy learning (as opposed to eager learning) has been proposed
for this family of methods (Aha, 1997) because all these methods (i) delay
processing of input until needed, (ii) process input by referring to stored
data, and (iii) discard processed input afterwards. In contrast, eager
learning methods abstract models (such as probability distributions or
decision trees) from the examples, discard the examples, and process input
by reference to the abstracted knowledge. Lazy learning methods have
been applied successfully in robotics, control, vision, problem solving,
reasoning, decision making, diagnosis, information retrieval, and data
mining (see e.g. Kasif et al., 1998). The term lazy learning does not seem
to have stuck. We have opted for memory-based language processing as
a label to emphasize the role of the storage of all available data which we
think is the main competitive advantage of this approach for NLP.

2.3 Memory-based language processing literature

Given the long tradition of analogical approaches in linguistics, even if not
in the mainstream, their potential psychological relevance, and the success
of memory-based methods in pattern recognition and AI applications, it
is not surprising that the approach has also surfaced in natural language
processing. Apart from the advantages inherent in all learning approaches,
as discussed earlier (fast development, robustness, high coverage, etc.),
advantages commonly associated with a memory-based approach to NLP
include ease of learning (simply storing examples), ease of integrating
multiple sources of information, and the use of similarity-based reasoning
as a smoothing method for estimating low-frequency events. The latter
property is especially important. In language processing tasks, unlike other
typical AI tasks, low-frequency events that are not due to noise are perva-

2.3. MEMORY-BASED LANGUAGE PROCESSING LITERATURE 23

sive. Due to borrowing, historical change, and the complexity of language,
most data sets representing NLP tasks contain many sub-regularities and
exceptions. It is impossible for inductive algorithms to reliably distinguish
noise from exceptions, so non-abstracting lazy memory-based learning
algorithms should be at an advantage compared to eager learning methods
such as decision tree learning or rule induction: ‘forgetting exceptions is
harmful’. We will return to this important characteristic of MBLP in later
chapters.

Since the early 1990s, we find several studies using nearest-neighbor
techniques for solving NLP disambiguation problems, framed as classifi-
cation problems. A lot of this work will be referred to in the context of
our own MBLP approach in later chapters. In the remainder of this one, we
would like to point out similarities with two other popular approaches in
NLP which are not further addressed in this book: example-based machine
translation and data-oriented parsing.

Example-based machine translation (EBMT)

In seminal work, motivated from pedagogical principles in second lan-
guage acquisition, Nagao (1984) proposed an approach to machine trans-
lation which is essentially memory-based. By storing a large set of
(analyzed) sentences or sentence fragments in the source language with
their associated translation in the target language as examples, a new
source language sentence can be translated by finding examples in memory
that are similar to it in terms of syntactic structure and word meaning,
and extrapolating from the translations associated with these examples.
Carl and Way (2003) and Jones (1996) provide overviews of different
approaches within EBMT since its conception. In practice, because of the
huge space of possible sentences to be translated, and the cost of collecting
and searching large amounts of examples, EBMT systems are mostly
hybrid, and contain rule-based as well as memory-based components. It
is interesting to note that translation memories, arguably the most successful
commercial approach to machine-aided translation today, are also based on
the memory-based framework: large amounts of documents aligned with
their translations are stored, and a possible translation for a new sentence
is searched using approximate string matching techniques on sentences or
sentence fragments.

24 INSPIRATIONS

Data-oriented parsing

Data-oriented parsing (DOP) is a statistical approach to syntactic parsing
(Scha, 1992; Bod, 1998) that uses a corpus of parsed, i.e., syntactically
or semantically analyzed utterances (a treebank), as a representation of
a person’s language experience, and analyzes new sentences searching
for a recombination of subtrees that can be extracted from this treebank.
The frequencies of these subtrees in the corpus are used to compute the
probability of analyses. Such a method uses an annotated corpus as
grammar, an approach formalized as stochastic tree substitution grammar
(STSG). The advantage of STSG is that lexical information and idiomatic
expressions (multi-word lexical items) can in principle play a role in finding
and ranking analyses. Scha et al. (1999) provide an in-depth overview of
the memory-based nature of the approach, tracing its motivation (as we do
with MBLP) to pre-Chomskyan linguistics.

2.4 Conclusion

Models, both hand-crafted or learned, for an NLP task should be general:
they should explain how to perform the task beyond a set of training
examples or observations, and how to handle new, previously unseen cases
successfully. In all areas of cognitive science, mechanisms of abstraction,
especially hand-crafted rules, have become identified with this property of
generalization by most researchers, and rote learning of examples, i.e. table
lookup, is dismissed off-hand by many as missing this creative mechanism.
In this chapter we have shown that this view has competing opinions. It
makes sense to separate the dimensions of representation and learning.
First of all, a rule-based approach does not have to be hand-crafted; rules
can be learned. A probabilistic approach does not have to be based on
training; probabilities can be assigned by hand.

But the main lesson learned in the literature described in this chapter is
that generalization (going beyond the data) can also be achieved without
formulating abstract representations such as rules: add an analogical rea-
soning mechanism to table lookup, and generalization becomes a property
of the model. See Figure 2.2 for a visualization of the position of current
cognitive science approaches in terms of generalization and abstraction.
Abstract representations such as rules forget about the data itself, and only
keep the abstraction. Such approaches are contrasted with table lookup, a
method that obviously cannot generalize. However, by adding similarity-

2.4. CONCLUSION 25

+ abstraction

- abstraction

+ generalization - generalization

TABLE
LOOKUP

RULES
PROBABILITIES

NEURAL NETWORKS

MEMORY-BASED
LEARNING

Figure 2.2: Generalization versus abstraction. Abstraction and generaliza-
tion have been identified in most approaches with abtracting approaches
pitted against table lookup. Extended with analogical reasoning, table
lookup also generalizes.

based reasoning to table lookup, memory-based learning is capable of
going beyond the data as well, and on top of that keeps all the data
available. We will show that this is useful for NLP tasks: in such tasks, low-
frequency or atypical examples are often not noise to be abstracted from in
models, but on the contrary an essential part of the model.

In this chapter, we have shown that the idea of reducing learning to stor-
age and processing to similarity-based extrapolation from stored memories
is intuitively appealing for reasons of (psycho-)linguistic relevance as well
as for reasons of computational accuracy and efficiency. The next chapter
provides a detailed introduction to our own specific operationalization of
these ideas in MBLP. As a linguistic example domain we have chosen the
formation of the plural in German.

Chapter 3

Memory and Similarity

An MBLP system as introduced in the previous chapters has two com-
ponents: a learning component which is memory-based, and a performance
component which is similarity-based. The learning component is memory-
based as it involves storing examples in memory (also called the instance
base or case base) without abstraction, selection, or restructuring. In the
performance component of an MBLP system the stored examples are used
as a basis for mapping input to output; input instances are classified
by assigning them an output label. During classification, a previously
unseen test instance is presented to the system. The class of this instance
is determined on the basis of an extrapolation from the most similar
example(s) in memory. There are different ways in which this approach
can be operationalized. The goal of this chapter is twofold: to provide a
clear definition of the operationalizations we have found to work well for
NLP tasks, and to provide an introduction to TIMBL, a software package
implementing all algorithms and metrics discussed in this book1. The
emphasis on hands-on use of software in a book such as this deserves some
justification. Although our aims are mainly theoretical in showing that
MBLP has the right bias for solving NLP tasks on the basis of argumentation
and experiment, we believe that the strengths and limitations of any
algorithm can only be understood in sufficient depth by experimenting
with this specific algorithm.

To make our introduction more concrete, we will use plural formation
of German nouns as a case study, based on Daelemans (2002). After an

1The TiMBL software and instructions on how to install it can be downloaded from the
book’s web site http://ilk.uvt.nl/mblpWe assume a working version of TIMBL
5.0 or a later version has been installed on your system.

26

3.1. GERMAN PLURAL FORMATION 27

introduction to this problem, we provide a systematic introduction to the
MBLP algorithms and their motivation, interleaved with tutorial material
showing how to operate TIMBL on the plural formation data, and how
to interpret its output. From this chapter onwards, TIMBL input and
output is shown in outlined boxes, while practical discussions explaining
the content of the boxes are printed around the boxes and are marked by a
gray bar in the left margin. In this way, the theoretical and practical parts
of the book are distinguished.

3.1 German plural formation

The diachrony of plural formation of German nouns has led to a notori-
ously difficult system, which is nevertheless acquired routinely by speakers
of German. The complex interaction, from a synchronic point of view, of
regularities, sub-regularities, and exceptions makes it a tough phenomenon
to solve by means of handcrafted linguistic rules for use in morphological
analysis and generation. Also from the point of view of cognitive modeling,
the German plural is an interesting problem. Marcus et al. (Clahsen, 1999;
Marcus et al., 1995) have argued that this task provides evidence for the
dual route model for cognitive architectures. A dual route architecture
supposes the existence of a cognitively real productive mental default rule,
and an associative memory for irregular cases which blocks the application
of the default rule. They argue that -s is the regular plural in German, as this
is the suffix used in many conditions associated with regular inflection (e.g.,
neologisms, surnames, acronyms, etc.). This default rule is supposedly
applied whenever memory lookup fails.

In this view, the case of German plurals provides an interesting new
perspective to what is regular: the default rule (regular route) is less
frequent than many of the ‘irregular’ associative memory cases. In a plural
noun suffix type frequency ranking -s comes only in last place (after -(e)n,
-e, - i.e., conversion; no suffix added, and -er, in that order). As most
plural formation suffixes can be accompanied with a vowel change in the
last stressed syllable (Umlaut), the variation we encounter in the data is
considerable: Frau–Frauen (women), Tag–Tage (days), Sohn–Söhne (sons),
Zimmer–Zimmer (rooms), Vater–Väter (fathers), Mann–Männer (men), Kind–

Kinder (children), Auto–Autos (cars). “Now let the candidate for the asylum
try to memorize those variations, and see how soon he will be elected.”
(Twain, 1880).

To prepare a data set for experimenting with MBLP on this problem,

28 MEMORY AND SIMILARITY

Feature Number of values Kind Auto Vorlesung

Onset penultimate 78 - - l

Nucleus penultimate 27 - � � e

Coda penultimate 85 - - -

Onset last 84 k t z

Nucleus last 27 � o �

Coda last 79 nt - �

Gender 10 N N F

Class 8 -er -s -en

Table 3.1: Some examples (instance as defined by the feature vector and
associated class) for the German plural formation task.

we collected 25,753 German nouns from the German part of the CELEX-2
lexical database2. We removed from this data set cases without plurality
marking, cases with Latin plural in -a, and a miscellaneous class of foreign
plurals. From the remaining 25,168 cases, we extracted or computed for
each word the plural suffix, the gender feature, and the syllable structure
of the last two syllables of the word in terms of onsets, nuclei, and codas
expressed using a phonetic segmental alphabet. Both the phonology and
the gender of nouns are cited in grammars of German as important cues for
the plural suffix. Table 3.1 gives an overview of the features, values, and
output classes of the data. The gender feature has, apart from masculine
(M), neuter (N), and feminine (F) also all possible combinations of two
genders. The table also demonstrates three examples of the classification
task to be learned. We will investigate whether this complex mapping can
be learned with MBLP, and what we can learn about the problem.

3.2 Similarity metric

The similarity between a new instance X and all examples Y in memory
is computed using a similarity metric (that actually measures distance)
∆(X, Y). Classification works by assigning the most frequent class within
the k most similar example(s) as the class of a new test instance.

The most basic metric that works for instances with symbolic features

2Available from the Linguistic Data Consortium (http://www.ldc.upenn.edu/).

3.2. SIMILARITY METRIC 29

such as in the German plural data is the overlap metric3 given in Equa-
tions 3.1 and 3.2; where ∆(X, Y) is the distance between instances X and
Y, represented by n features, and δ is the distance per feature. The distance
between two patterns is simply the sum of the differences between the
features. In the case of symbolic feature values, the distance is 0 with an
exact match, and 1 with a mismatch. The k-NN algorithm with this metric
is called IB1 (Aha et al., 1991). Usually k is set to 1.

∆(X, Y) =
n

∑
i=1

δ(xi, yi) (3.1)

where:

δ(xi, yi) =

xi−yi

maxi−mini
if numeric, otherwise

0 if xi = yi

1 if xi �= yi

(3.2)

Our definition of this basic algorithm is slightly different from the IB1
algorithm originally proposed by Aha et al. (1991). The main difference is
that in our version the value of k refers to k-nearest distances rather than k-
nearest examples. Several examples in memory can be equally similar to a
new instance. Instead of choosing one at random, all examples at the same
distance are added to the nearest-neighbor set.

3.2.1 Information-theoretic feature weighting

The distance metric in Equation 3.2 simply counts the number of
(mis)matching feature-values in two instances being compared. In the
absence of information about feature relevance, this is a reasonable
choice. Otherwise, we can add domain knowledge bias to weight or select
different features (see e.g., Cardie, 1996 for an application of linguistic
bias in a language processing task), or look for evidence in the training
examples. We can compute statistics about the relevance of features
by looking at which features are good predictors of the class labels.
Information theory gives us a useful tool for measuring feature relevance
in a way similar to how it is used as a tree splitting criterion for decision
tree learning (Quinlan, 1986; Quinlan, 1993).

Information gain (IG) weighting looks at each feature in isolation, and
estimates how much information it contributes to our knowledge of the

3This metric is also referred to as Hamming distance, Manhattan distance, city-block
distance, or L1 metric.

30 MEMORY AND SIMILARITY

correct class label. The information gain estimate of feature i is measured
by computing the difference in uncertainty (i.e., entropy) between the
situations without and with knowledge of the value of that feature (the
formula is given in Equation 3.3), where C is the set of class labels, Vi is the
set of values for feature i, and H(C) = −∑c∈C P(c) log2 P(c) is the entropy
of the class labels.

wi = H(C)− ∑
v∈Vi

P(v) × H(C|v) (3.3)

The probabilities are estimated from relative frequencies in the training
set. For numeric features, an intermediate step needs to be taken to apply
the symbol-based computation of IG. All real values of a numeric feature
are temporarily discretized into a number of intervals. Instances are ranked
on their real value, and then spread evenly over the intervals; each interval
contains the same number of instances (this is necessary to avoid empty
intervals in the case of skewed distributions of values). Instances in each of
these intervals are then used in the IG computation as all having the same
unordered, symbolic value per group. Note that this discretization is only
temporary; it is not used in the computation of the distance metric.

The IG weight of a feature is a probability-weighted average of the
informativeness of the different values of the feature. This makes the values
with low frequency but high informativity invisible. Such values disappear
in the average. At the same time, this also makes the IG weight robust to
estimation problems in sparse data. Each parameter (weight) is estimated
on the whole data set.

A well-known problem with IG is that it tends to overestimate the
relevance of features with large numbers of values. Imagine that we would
have the singular noun itself (e.g., Mann) as a feature in our German plural
data set. Each value of this feature would be unique, and the feature will
have a very high information gain, but it does not allow any generalization
to new instances. To normalize information gain over features with high
numbers of values, Quinlan (1993) has introduced a variant called gain ratio
(GR) (Equation 3.4), which is information gain divided by si(i) (split info),
the entropy of the feature values (Equation 3.5).

wi =
H(C)− ∑v∈Vi

P(v) × H(C|v)

si(i)
(3.4)

si(i) = H(V) = − ∑
v∈Vi

P(v) log2 P(v) (3.5)

3.2. SIMILARITY METRIC 31

The resulting gain ratio values can then be used as weights w f in the
weighted distance metric (Equation 3.6).

∆(X, Y) =
n

∑
i=1

wi δ(xi, yi) (3.6)

The possibility of automatically determining the relevance of features
implies that many different and possibly irrelevant features can be added
to the feature set. This is a convenient methodology if domain knowledge
does not constrain the choice enough beforehand, or if we wish to measure
the importance of various information sources experimentally. However,
because IG values are computed for each feature independently, this
is not necessarily the best strategy. Sometimes more accuracy can be
obtained by leaving features out than by keeping them with a low weight.
Highly redundant features can also be challenging for IB1, because IG will
overestimate their joint relevance. Imagine an informative feature which
is duplicated. IB1 assigns the same weight to both copies, resulting in an
overestimation of IG weight by a factor of two. This could lead to accuracy
loss, because the doubled feature will dominate in the computation of the
distance with Equation 3.6.

3.2.2 Alternative feature weighting methods

Unfortunately, as White and Liu (1994) have shown, the gain ratio measure
still has an unwanted bias towards features with more values. The reason
for this is that the gain ratio statistic is not corrected for the number of
degrees of freedom of the contingency table of classes and values. White
and Liu (1994) proposed a feature selection measure based on the χ2

(chi-squared) statistic, as values of this statistic can be compared across
conditions with different numbers of degrees of freedom.

The χ2 statistic is computed from the same contingency table as the
information gain measure by the following formula (Equation 3.7):

χ2 = ∑
i

∑
j

(Eij −Oij)
2

Eij
(3.7)

where Oij is the observed number of cases with value vi in class cj,
i.e., Oij = nij, and Eij is the expected number of cases which should be in
cell (vi, cj) in the contingency table, if the null hypothesis (of no predictive
association between feature and class) is true (Equation 3.8). Let n.j denote
the marginal for class j (i.e., the sum over column j of the table), ni. the

32 MEMORY AND SIMILARITY

marginal for value i, and n.. the total number of cases (i.e. the sum of all the
cells of the contingency table).

Eij =
n.jni.

n..
(3.8)

The χ2 statistic is approximated well by the chi-squared distribution
with ν = (m − 1)(n − 1) degrees of freedom, where m is the number of
values and n is the number of classes. We can then either use the χ2values
as feature weights in Equation 3.6, or we can explicitly correct for the
degrees of freedom by using the shared variance measure (Equation 3.9):

SVi =
χ2

i

N × (min(|C|, |Vi|) − 1)
(3.9)

where |C| and |Vi| are the number of classes and the number of values
of feature i, respectively, and N is the number of instances4.

We turn now to the application of TIMBL to our German plural
learning problem.

3.2.3 Getting started with TIMBL

TIMBL accepts data files in multiple formats. In this book we
will presuppose a format where feature values and class are
separated with spaces. E.g., the seven most frequent nouns
according to the CELEX-2 lexical database, Jahr, Mensch, Zeit,
Welt, Frage, Tag, and Land are stored as follows (in the DISC
computer encoding of the International Phonetic Alphabet):

- - - j a r N e

- - - m E nS M en

- - - = W t F en

- - - v E lt F en

fr a - g @ - F en

- - - t a k M e

- - - l & nt N Uer

4Note that with two classes, the shared variance weights of all features are simply
divided by N, and will not differ relatively (except for the global division by N) from
χ2weights.

3.2. SIMILARITY METRIC 33

Each noun is represented in terms of the syllable structure of
the last two syllables, the gender, and the output class (the
suffix, optionally preceded by the letter U if Umlaut occurs in
the last stressed syllable).
The simplest TIMBL experiment is to divide the available
data in two files (here gplural.train and gplural.test);
train an MBLP system on the training set, and test how well it
generalizes on unseen data in the test set. Machine learning
methodology will be described in detail in section 3.5. For
the experiment here, we randomly divided all examples into
equal-sized training and test sets. On the command line (all
example lines starting with ’%’ are commands issued on the
command line; % represents the shell’s prompt) the following
command is issued:

% Timbl -f gplural.train -t gplural.test

This creates a file named gplural.test.IB1.O.gr.k1.out,
which is identical to the input test file, except that an extra
column is added with the class predicted by TIMBL. The
name of the file provides information about the MBLP

algorithms and metrics used in the experiment (the default
values in this case). We will describe these and their meaning
shortly.
Apart from the result file, information about the operation of
the algorithm is also sent to the standard output. It is therefore
useful to redirect the output to a file in order to make a log of
this information.

% Timbl -f gplural.train -t gplural.test > gplural-exp1

We will now see what goes on in the output generated by
TIMBL.

34 MEMORY AND SIMILARITY

TiMBL 5.1.0 (release) (c) ILK 1998 - 2004.

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group

Tilburg University / University of Antwerp

Tue Dec 28 21:39:54 2004

Examine datafile ’gplural.train’ gave the following results:

Number of Features: 7

InputFormat : Columns

TIMBL has detected 7 features and the columns input format
(space-separated features, class at the end).

Phase 1: Reading Datafile: gplural.train

Start: 0 @ Tue Dec 28 21:39:54 2004

Finished: 12584 @ Tue Dec 28 21:39:54 2004

Calculating Entropy Tue Dec 28 21:39:54 2004

Lines of data : 12584

DB Entropy : 2.1229780

Number of Classes : 8

Feats Vals InfoGain GainRatio

1 67 0.14513201 0.031117798

2 25 0.18009057 0.045907283

3 77 0.15134434 0.060602898

4 76 0.30203256 0.064526921

5 23 0.68637243 0.20958072

6 68 0.76659811 0.19727693

7 9 0.69748351 0.45058817

Feature Permutation based on GainRatio/Values :

< 7, 5, 6, 2, 4, 3, 1 >

Phase 1 is the training data analysis phase. Time stamps for
start and end of analysis are provided (wall clock time). Some
preliminary analysis of the training data is done: number of
training items, number of classes, entropy of the training data
class distribution. For each feature, the number of values,
and two measures of feature relevance are given (InfoGain,
for information gain, and GainRatio). Shared variance or
χ2are only displayed when selected. Finally, an ordering
(permutation) of the features is given. This ordering is used
for building an internal tree index to the instance base.

Phase 2: Learning from Datafile: gplural.train

Start: 0 @ Tue Dec 28 21:39:54 2004

Finished: 12584 @ Tue Dec 28 21:39:55 2004

Size of InstanceBase = 29509 Nodes, (590180 bytes),

52.50 % compression

3.2. SIMILARITY METRIC 35

Phase 2 is the learning phase; all training items are stored
in an efficient way in memory for use during testing. Again
timing information is provided, as well as information about
the size of the data structure representing the stored examples
and the amount of compression achieved.

Examine datafile ’gplural.test’ gave the following results:

Number of Features: 7

InputFormat : Columns

Starting to test, Testfile: gplural.test

Writing output in: gplural.test.IB1.O.gr.k1.out

Algorithm : IB1

Global metric : Overlap

Deviant Feature Metrics:(none)

Weighting : GainRatio

Feature 1 : 0.031117797754802

Feature 2 : 0.045907283257249

Feature 3 : 0.060602897678108

Feature 4 : 0.064526921164138

Feature 5 : 0.209580717876589

Feature 6 : 0.197276930994641

Feature 7 : 0.450588168767715

Tested: 1 @ Tue Dec 28 21:39:55 2004

Tested: 2 @ Tue Dec 28 21:39:55 2004

Tested: 3 @ Tue Dec 28 21:39:55 2004

Tested: 4 @ Tue Dec 28 21:39:55 2004

Tested: 5 @ Tue Dec 28 21:39:55 2004

Tested: 6 @ Tue Dec 28 21:39:55 2004

Tested: 7 @ Tue Dec 28 21:39:55 2004

Tested: 8 @ Tue Dec 28 21:39:55 2004

Tested: 9 @ Tue Dec 28 21:39:55 2004

Tested: 10 @ Tue Dec 28 21:39:55 2004

Tested: 100 @ Tue Dec 28 21:39:55 2004

Tested: 1000 @ Tue Dec 28 21:39:55 2004

Tested: 10000 @ Tue Dec 28 21:39:57 2004

Ready: 12584 @ Tue Dec 28 21:39:58 2004

Seconds taken: 3 (4194.67 p/s)

overall accuracy: 0.943659 (11875/12584), of which 6542 exact matches

There were 151 ties of which 85 (56.29%) were correctly resolved

In Phase 3, the trained classifier is applied to the test set.
Because we have not specified which algorithm to use, the
default settings are used (IB1 with the overlap similarity
metric, information gain ratio feature weighting, and k =
1). Time stamps indicate the progress of the testing phase.
Accuracy on the test set is logged, as well as the number of
exact matches. Although there is no overlap in the words of
the training and test set, the instances can nevertheless overlap
(causing an exact match) when the last two syllables and the
gender of different words are identical.

36 MEMORY AND SIMILARITY

Finally, the number of correctly solved ties (two or more
classes are equally frequent in the nearest-neighbor set) is
given. In this experiment, the plural form of 94.4% of the new
words was correctly predicted. Training and test set overlap
in 6,542 instances (about half of the training data), and the
algorithm had to break 151 ties, about half of which led to a
correct classification.
The meaning of the output file names can be explained now:
gplural.test.IB1.O.gr.k1.out means output file
(.out) for gplural.test with algorithm IB1, similarity
computed as weighted overlap (.O), relevance weights
computed with gain ratio (.gr), and number of most similar
memory items on which the output class was based equal to 1
(.k1).

3.2.4 Feature weighting in TIMBL

With option -w, we can investigate the effect of the different
weighting methods described earlier on accuracy. The default
is gain ratio (-w1). With -w0, -w2, -w3, and -w4 we can
use no weighting, information gain, χ2, and shared variance,
respectively. Without weighting, accuracy drops to 91.8%;
information gain does slightly better (on this data partition)
than gain ratio with 94.6%, while χ2, and shared variance
perform again slightly better (94.8% both). From the point
of view of understanding the effect of different information
sources on solving the task, these feature relevance measures
are very useful.
Figure 3.1 shows the distribution of three feature relevance
weightings (scaled to [0, 1]) over the different features (syllable
structure and gender). Clearly, the rhyme (i.e., nucleus and
coda) of the last syllable is the most important information
source for predicting the plural form. We see that gain
ratio attaches more weight to the gender feature compared to
information gain because the gender feature has fewer values
than the syllable structure features. All metrics seem to agree
that the information in the last but one syllable is not very
relevant. TIMBL allows the experimenter to ignore features
to test this hypothesis.

3.2. SIMILARITY METRIC 37

Figure 3.1: Three feature relevance weights (normalized to 1.0) for each of
the seven features of the German plural data set.

% Timbl -f gplural.train -t gplural.test -mO:I1-3

Seconds taken: 1 (12584.00 p/s)

overall accuracy: 0.938334 (11808/12584), of which 11718 exact matches

There were 138 ties of which 77 (55.80%) were correctly resolved

-mO instructs TIMBL explicitly to use the (default) overlap
metric. Separated by a colon, exceptions can be added,
e.g., in this case to ignore (I) features one to three. With
these settings, however, generalization accuracy diminishes
considerably, and there are a lot more duplicate instances
now. It is also possible to provide relevance weights (e.g.,
on the basis of linguistic intuition) directly to TIMBL via a
weights file. Suppose a file gplural.weights is present with
the following contents:

Fea. Weight

1 1

2 1

3 1

4 4

5 8

6 16

7 10

38 MEMORY AND SIMILARITY

This represents the (linguistic) intuition that the final syllable
is much more important than the last but one syllable, and
that within the last syllable the nucleus and especially the
coda (which together constitute the rhyme) are relevant,
with gender being slightly more important than nucleus
and clearly more important than coda. Using these hand-set
weights yields the best result yet (on this data partition) of
95.0%.

% Timbl -f gplural.train -t gplural.test -w gplural.weights

Seconds taken: 3 (4194.67 p/s)

overall accuracy: 0.950095 (11956/12584), of which 6542 exact matches

There were 133 ties of which 69 (51.88%) were correctly resolved

3.2.5 Modified value difference metric

The choice of representation for instances in MBLP is the key factor de-
termining the accuracy of the approach. The feature values and classes
in NLP tasks are often represented by symbolic labels. The metrics that
have been described so far, i.e., (weighted) overlap, are limited to either a
match or a mismatch between feature values. This means that all values
of a feature are seen as equally dissimilar to each other. However, in light
of our German plural application we might want to use the information
that the value neuter is more similar to masculine than to feminine in the
gender feature, or that short vowels are more similar to each other than
to long vowels. As with feature weights, domain knowledge can be used
to create a feature system expressing these similarities, e.g., by splitting or
collapsing features. But again, an automatic technique might be better in
modeling these statistical relations.

For such a purpose a metric was defined by Stanfill and Waltz (1986)
and further refined by Cost and Salzberg (1993). It is called the (modified)
value difference metric (MVDM; equation 3.10), a method to determine the
similarity of the values of a feature by looking at co-occurrence of values
with target classes. For the distance between two values v1, v2 of a feature,
we compute the difference of the conditional distribution of the classes
C1...n for these values.

δ(v1, v2) =
n

∑
i=1

|P(Ci|v1) − P(Ci|v2)| (3.10)

3.2. SIMILARITY METRIC 39

MVDM differs considerably from overlap-based metrics in its compo-
sition of the nearest-neighbor sets. Overlap causes an abundance of ties
in nearest-neighbor position. For example, if the nearest neighbor is at a
distance of one mismatch from the test instance, then the nearest-neighbor
set will contain the entire partition of the training set that contains any value
for the mismatching feature. With the MVDM metric, however, the nearest-
neighbor set will either contain patterns which have the value with the
lowest δ(v1, v2) in the mismatching position, or MVDM will select a totally
different nearest neighbor which has less exactly matching features, but a
smaller distance in the mismatching features (Zavrel & Daelemans, 1997).

In sum, this means that the nearest-neighbor set is usually much
smaller for MVDM at the same value of k. In some NLP tasks we have
found it useful to experiment with values of k larger than one for MVDM,
because this re-introduces some of the beneficial smoothing effects
associated with large nearest-neighbor sets.

3.2.6 Value clustering in TIMBL

Applied to our data set, we see that MVDM does not help a lot,
even with higher values of k.

% Timbl -f gplural.train -t gplural.test -mM -w0

overall accuracy: 0.922282 (11606/12584), of which 6542 exact matches

% Timbl -f gplural.train -t gplural.test -mM -w0 -k5

overall accuracy: 0.910521 (11458/12584), of which 6542 exact matches

Although the MVDM metric does not explicitly compute
feature relevance, an implicit feature weighting effect is
present. If features are very informative, their conditional
class probabilities will on average be skewed towards a
particular class. This implies that on average the δ(v1, v2)
will be large. For uninformative features, on the other hand,
the conditional class probabilities will approximate the class
prior probabilities, so that on average the δ(v1, v2) will be
very small. Nonetheless, adding a feature weighting metric
to MVDM often improves generalization accuracy. In the
following, MVDM is combined with χ2 feature weighting.

40 MEMORY AND SIMILARITY

% Timbl -f gplural.train -t gplural.test -mM -w3

overall accuracy: 0.941354 (11846/12584), of which 6542 exact matches

One cautionary note about MVDM is connected to data
sparseness. In many practical applications we are confronted
with a limited set of examples, with values occurring only a
few times or once in the whole data set. If two such values
occur with the same class, MVDM will regard them as identical,
and if they occur with two different classes their distance will
be maximal. In cases of such extreme behavior on the basis
of low-frequency evidence, it may be safer to back off to the
overlap metric, where only an exact value match yields zero
distance. TIMBL offers this back-off from MVDM to overlap
through a frequency threshold, set with the -L option that
switches from MVDM to the overlap metric when one or both
of a pair of matched values occur less often in the learning
material than this threshold.
Although MVDM does not seem to improve accuracy on
our task, we can show the effect of implicit value clustering
in Figure 3.2, which displays the result of a hierarchical
clustering of the conditional class probabilities associated
with each value for the gender and nucleus of last syllable
features. These probabilities can be written to a file in Timbl
with -U filename.

% Timbl -f gplural.train -t gplural.test -mM -U gplural.matrices

% cat gplural.matrices

Targets : en, -, e, Ue, Uer, s, er, U.

feature # 1 Matrix:

- 0.098 0.327 0.274 0.063 0.015 0.183 0.033 0.008

g 0.110 0.362 0.360 0.032 0.023 0.073 0.031 0.010

b 0.179 0.238 0.352 0.073 0.011 0.101 0.030 0.015

d 0.115 0.143 0.522 0.069 0.009 0.104 0.037 0.000

r 0.166 0.120 0.619 0.038 0.007 0.038 0.013 0.000

St 0.184 0.045 0.760 0.006 0.000 0.006 0.000 0.000

br 0.276 0.126 0.457 0.047 0.024 0.031 0.008 0.031

...

3.2. SIMILARITY METRIC 41

� � � � � � � � � � � 	
 � �

� � �
 �
 � � �
 � �

�
 � �

ɑ̃ː ɐ̃ː æ̃ː ɔɪ

æ ɛː ʊ ai oː ə

�
 � �

�
 � �

yː øː iː ɛ aː eː ʏ ɔy œ

au a ɔ uː

�
 � �

�
 � �

� � � � � �

� � � � � � � � � � � � � � � ! � �

Figure 3.2: Hierarchical clustering of value-class conditional probabilities
for gender feature and nucleus of last syllable feature. This clustering
is implicitly used by MVDM to define similarity. The numbers indicate
minimal distance between clusters scaled to [0, 1].

The clustering for the gender (after mapping double gender
assignments such as “Masculine or Feminine” to the most
frequent gender) and nucleus of the last syllable shows that
MVDM uses sensible phonological and lexical constructed
knowledge implicitly. The lumping together of masculine
and neuter gender and phonological categories such as front
and back vowels do make sense and are sometimes used
in morphological theories of German. The main advantage
of MVDM is that these categories are automatically grouped
in a task-dependent way, tuned to the task at hand, and
arguably with more subtlety and more fine-grained than a
representation in terms of phonological features and lexical
classes.

42 MEMORY AND SIMILARITY

3.2.7 Distance-weighted class voting

Until now, we have introduced two techniques that modify the effect
of basic overlap similarity computation: the relevance of features, and
the similarity between values of the same feature. A third parameter
determining the outcome of MBLP systems is the number of nearest
neighbors taken into account for extrapolation, which may depend on the
density of the instance space. In dense spaces, even k = 1 can retrieve a
considerable number of examples, in more sparse spaces, a higher value of
k determines the robustness or smoothness of the extrapolation. Once a set
of nearest neighbors is determined, there are different ways in which the
output class can be decided.

The most straightforward method for letting the k-nearest neighbors
vote on the class of a new case is the majority voting method, in which
the vote of each neighbor receives equal weight, and the class with the
highest number of votes is chosen (or in case of a tie, some tie resolution is
performed).

We can see the voting process of the k-NN classifier as an attempt to
make an optimal class decision, given an estimate of the conditional class
probabilities in a local region of the data space. The radius of this region is
determined by the distance of the k-furthest neighbor (Zavrel & Daelemans,
1997).

Sometimes when k is small and the data is sparse, or the class labels are
noisy, the “local” estimate is unreliable. As it turns out in experimental
work, using a larger value of k can often lead to higher accuracy. The
reason for this is that in densely populated regions, the local estimates
become more reliable with a larger k, because they are smoother. However,
when the majority voting method is used, smoothing can easily become
over-smoothing in sparser regions of the same data set. The radius of
the k-NN region can get extended far beyond the local neighborhood of
the query point, but the far neighbors will have the same influence in
voting as the close neighbors. This can result in classification errors that
could have easily been avoided if the measure of influence had somehow
been correlated with the measure of similarity. To remedy this, distance-
weighted voting can be used.

A voting rule in which the votes of different members of the nearest-
neighbor set are weighted by a function of their distance to the query
was first proposed by Dudani (1976). In this scheme, henceforth referred
to as inverse-linear (IL) , a neighbor with smaller distance is weighted
more heavily than one with a greater distance: the nearest neighbor gets

3.2. SIMILARITY METRIC 43

a weight of 1, the furthest neighbor a weight of 0 and the other weights
are scaled linearly to the interval in between (Dudani, 1976), as defined in
Equation 3.11:

wj =

{
dk−dj

dk−d1
if dk �= d1

1 if dk = d1

(3.11)

where dj is the distance to the query of the j’th nearest neighbor, d1 the
distance of the nearest neighbor, and dk of the furthest (k’th) neighbor.

Dudani, 1976, in his Equation 2.3, further proposed the inverse distance
weight (henceforth ID). In equation 3.12 a small constant ε is added to the
denominator to avoid division by zero (Wettschereck, 1994).

wj =
1

dj + ε
(3.12)

Another weighting function considered here is based on the work of
Shepard (1987), who argues for a universal perceptual law which states
that the relevance of a previous stimulus for the generalization to a
new stimulus is an exponentially decreasing function of its distance in
a psychological space (henceforth ED). This gives the weighted voting
function of equation 3.13, where α and β are constants determining the
slope and the power of the exponential decay function (henceforth we keep
β = 1).

wj = e
−αd

β
j (3.13)

Note that in equations 3.12 and 3.13 the weight of the nearest and
furthest neighbors and the slope between them depend on their absolute
distance to the query. This assumes that the relationship between absolute
distance and the relevance gradient is fixed over different data sets. This
assumption is generally false; even within the same data set, different
feature weighting metrics can cause very different absolute distances.

Figure 3.3 visualizes a part of the curves of ID and ED, the latter with
α set to 1.0 (default), 2.0, and 4.0. ID assigns very high votes (distance
weights) to nearest neighbors at distances close to 0.0, while the ED variants
have a normalized maximum vote of 1.0, and a less acute slope at distance
0.0. ID and ED with high α both give large prominence to exact matches;
in the case of ID, the prominence is excessive. On the other hand, when
the nearest neighbor in a particular classification with k > 1 is not an exact
match, the differences in votes between nearest neighbors become smaller
with larger distances, both with ID and with ED.

44 MEMORY AND SIMILARITY

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 0 0.5 1 1.5 2 2.5 3

v
o

te

distance

1.02.04.0

ID
ED 1.0
ED 2.0
ED 4.0

Figure 3.3: Visualization of the inverse distance weighting function (ID)
and three variants of the exponential decay distance weighting function
(ED) with α = 1.0, 2.0, and 4.0.

Following Dudani’s proposal, the benefits of weighted voting for k-NN

have been discussed widely, e.g., in Bailey and Jain (1978); Morin and
Raeside (1981); MacLeod et al. (1987), but mostly from an analytical
perspective. With the popularity of memory-based learning applications,
these issues have gained a more practical importance. In his thesis on k-NN

classifiers, Wettschereck (1994) cites the inverse-linear equation of Dudani
(1976), but proceeds to work with Equation 3.12. He tested this function
on a large amount of data sets and found weak evidence for performance
increase over majority voting. An empirical comparison of the discussed
weighted voting methods in Zavrel (1997) has shown that weighted voting
indeed often outperforms unweighted voting, and that Dudani’s original
method (Equation 3.11) mostly outperforms the other two methods.

3.2.8 Distance-weighted class voting in TIMBL

We have implemented in TIMBL the three types of distance-
weighted voting functions described here. The default behavior
is majority voting. Inverse distance, inverse linear, and
exponential decay can be invoked with -d ID, -d IL, and -d

EDa, respectively, in which the a in -d EDa is the parameter α.

3.3. ANALYZING THE OUTPUT OF MBLP 45

3.3 Analyzing the output of MBLP

The different metrics discussed in section 3.2 provide a great deal of
information about the problem being studied: feature weighting about
the relevance of different information sources, and MVDM about the
implicit clustering of feature values in a task-dependent way. In addition,
individual classifications can reveal interesting details such as the actual
nearest neighbors used; also, a fully classified test set offers the possibility
to compute detailed statistics more informative than accuracy, the overall
percentage of correctly classified test instances.

3.3.1 Displaying nearest neighbors in TIMBL

The TIMBL software includes a number of command-line
switches that produce more detailed analyses of the results
of classification. The +/-v (verbosity) option allows control
of the output of different types of information. The most
useful ones are the output of class distributions, distances,
and nearest neighbors: +v db, +v di, and +v n, respectively,
or combined: +v db+di+n.

% Timbl -f gplural.train -t gplural.test +v db+di+n

This generates, in the output file, for each test item a
distribution of output classes, the distance to the nearest
neighbor, and the examples on which the output was based
(the nearest-neighbor set).
The following fragment of the output file illustrates this.
The word Punch (tomfool) with plural Punchs is erroneously
classified as having plural Punche. This is because there are
four neighbors at distance 0.20, three of which (Part, Pack,
and Patsch) have plural -e, while only one (Park) has the
correct plural. Nearest-neighbor sets are useful in explaining
the behavior of the classifier; the distance of the nearest
neighbor can be used as a certainty factor. The distribution
of output classes also allows back-off to a second solution and
incorporation of the classifier in other modules which require
statistical distributions instead of discrete solutions.

46 MEMORY AND SIMILARITY

The distribution of classes in the nearest-neighbor set is not a
statistical distribution, however, in the normal sense; rather,
it is a local density distribution that cannot be compared
directly to other local density distributions.

- - - p & nJ M s e { E 3.00000, s 1.00000 } 0.20440385

k=1, 4 Neighbor(s) at distance: 0.204404

-,-,-,p,&,rt,M,{ e 1 }

-,-,-,p,&,k,M,{ e 1 }

-,-,-,p,&,rk,M,{ s 1 }

-,-,-,p,&,J,M,{ e 1 }

3.4 Implementation issues

Whereas the k-NN algorithm in its most naı̈ve implementation is very fast in
training (O(N), where N is the number of training instances), as it consists
only of storage and the computation of a few metrics, it is rather expensive
in testing (namely O(N ∗ M), where M is the number of test instances):
each test item has to be compared to all instances in memory to select the
nearest neighbor(s). Storage requirements are in the order of O(N ∗ F),
where F is the number of features. A fast approximation of MBLP with
a much more attractive asymptotic complexity is described in the next
chapter.

3.5. METHODOLOGY 47

3.4.1 TIMBL trees

In the implementation of TIMBL, a tree-based memory
structure is used in which examples are stored in a tree as
paths from a root node to a leaf node, with arcs representing
consecutive feature values (ordered according to a heuristic
criterion), and with the leaf nodes representing a count of
how many times which class occurs with the pattern of values
corresponding with the path to that leaf node.
Because of the sharing of paths by instances, memory
requirements are often considerably reduced, and processing
time improved. E.g., for the German plural training instances,
more than 50% compression of the training data is achieved.
Information about additional methods to define similarity
such as exemplar weighting, about the implementation of
TIMBL, and a complete description of all parameters and their
meaning can be found in the reference guide for TIMBL 5.1.0
(Daelemans et al., 2004b).

3.5 Methodology

For our German plural illustration, we have separated the available data
into two equally sized data sets, one used for training and the other for
testing. A more reliable methodology is to use ten-fold cross-validation, in
which the available data are split into ten equal parts, and ten experiments
are run each time taking out one part as test data and a concatenation of
the remaining nine as training data. This way, all examples are used at
least once as a test item, while keeping training and test data carefully
separated, and the classifier is trained each time on 90% of the available
training data rather than 50% as we have done until now in our examples.
The average of the ten experiments provides a more reliable estimation of
the true generalization accuracy on previously unseen data of our classifier
(Weiss & Kulikowski, 1991). An additional advantage is that we learn
about the variance in the generalization accuracy of the classifier by looking
at the standard deviation in the results for the ten experiments. Taking
this reasoning to the limit, an experimental methodology called leave-one-
out can be employed which uses all available data except one example
as training material, trains a classifier, and tests the classifier on the one
held-out example, repeating this for all examples. In the leave-one-out

48 MEMORY AND SIMILARITY

experimental regime we use almost all available training data and will
achieve, according to statistical theory, the most reliable generalization
accuracy predictions.

3.5.1 Experimental methodology in TIMBL

In TIMBL, leave-one-out has been implemented efficiently
by reusing data structures. Since leave-one-out does not
assume a separate test set, in TIMBL’s output file name
the name of the absent test file is replaced with the string
leave one out. We see that the overall accuracy is 95.1% with
default settings, and that the time taken for doing the 25,168
experiments (gplural is the conjunction of gplural.train
and gplural.test) is quite reasonable.

% Timbl -f gplural -t leave_one_out

Seconds taken: 60 (419.47 p/s)

overall accuracy: 0.950890 (23932/25168), of which 14759 exact matches

There were 335 ties of which 209 (62.39%) were correctly resolved

Another issue related to methodology is how to report generalization
accuracy. Accuracy as we have used it until now is the number of times the
trained system has predicted the same class (on the basis of the instance
only) as the one present in the test set. This may be a bad measure of success
in generalization for some data sets. Suppose, for example, that in German
the -en plural would occur in 95% of the types, and the other suffixes in only
5% (showing skewed or ill-balanced class distributions, of which there are
many examples in NLP), then an accuracy of 95% need not be impressive,
as a simple rule always predicting -en would also achieve this accuracy
without ever predicting a single non--en suffix correctly. This problem can
be alleviated by reporting not only accuracy, but the complete confusion
matrix, a table with the different classes both vertically and horizontally,
associating the class predicted by the classifier with the real class of the
test items given. From such a matrix not only accuracy can be derived, but
also a number of additional metrics that have become popular in machine
learning, information retrieval, and subsequently also in computational
linguistics: recall, precision, and their harmonic mean F-score; true positive

3.5. METHODOLOGY 49

� � � � � � � � �

� � � 	
 � � � 	

� � � � �

� �

 � � � � � � � � � � �

� �

 � � � � � � � � � � �

� �

� � � � � � � � � � � � �

� �

� � � � � � � � � � � � �

� � � ! " # $ # % & ! " #

' � ((# ' !

 $ ' � ((# ' !

� �

Figure 3.4: Class-specific confusion matrix containing the basic counts used
in the advanced performance metrics.

rate, false positive rate, and their joint measure area under the curve (AUC) in
receiver operator characteristics (ROC) space.

We describe these metrics in more detail. Figure 3.4 displays the general
confusion matrix for one class C, splitting all classifications on a test set
into four cells. The true positives (TP) cell contains a count of examples
that have class C and are correctly predicted to have this class. The
false positives (FP) cell contains a count of examples of a different class
that the classifier incorrectly classified as C. The false negatives (FN) cell
contains examples of class C for which the classifier predicted a different
class. Finally, the true negatives (TN) cell contains examples with different
classes that the classifier assigned a different class label than C. On the
basis of these four numbers and the total number of positive examples
P = TP + FN and negative examples N = FP + TN, we can compute
the following performance measures:

Precision = TP
TP+FP , or the proportional number of times the classifier has

correctly made the decision that some instance has class C.

Recall or True Positive Rate (TPR) = TP
P , or the proportional number of

times an example with class C in the test data has indeed been
classified as class C by the classifier.

False Positive Rate (FPR) = FP
N , or the proportional number of times an

example with a different class than C in the test data has been
classified as class C by the classifier.

50 MEMORY AND SIMILARITY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

recall

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

� � � � � � � � � � � 	 �
 � � �

� �
�
��
�� �� �
��
�� �

� � � � � � � � �
� � �

� � �

� � �

Figure 3.5: Precision–recall space with F-score isolines (left), and ROC
space with an experimental outcome marked by the dot, and the outcome’s
AUC, the shaded surface between the dot and coordinates (0, 0), (1, 0), and
(1, 1) (right).

F-score = 2×precision×recall
precision+recall , or the harmonic mean of precision and recall

(Van Rijsbergen, 1979), is a commonly used metric to summarize
precision and recall in one measure. The left part of Figure 3.5 shows
F-score isolines in the two-dimensional space of recall (x-axis) and
precision (y-axis). The curvature of the isolines is caused by the
harmonic aspect of the formula (by contrast, the normal mean has
straight isolines orthogonal to the x = y diagonal), which penalizes
large differences between precision and recall. The isolines could be
likened to height isolines in a map, where the peak of the hill is at the
upper right corner of the space.

AUC or area under the curve in the so-called ROC or receiver operator
characteristics space (Egan, 1975; Swets et al., 2000), is the surface
of the grey area in the right graph of Figure 3.5. The ROC space is
defined by the two dimensions FPR (false positive rate, x-axis) and
TPR (true positive rate, or recall, y-axis). The difference between F-
score and AUC is that AUC does not make use of the statistically
unreliable precision metric; rather, it takes into account all cells of
the matrix in Figure 3.4 including the TN (true negative) cell (for a
more detailed description and arguments for using ROC analysis, cf.
Fawcett, 2004). Its “peak” is in the upper left corner, at a FPR of zero

3.5. METHODOLOGY 51

and a TPR of 1. Rather than using the harmonic mean, it is common to
report on the AUC area under the classifier’s TPR-FPR curve, where
in the case of a discrete-output classifier such as TIMBL this can be
taken to mean the two lines connecting the experiment’s TPR and
FPR to the (0, 0) coordinate and the (1, 1) coordinate, respectively;
the AUC is then the grey area between these points and coordinate
(1, 0).

Inspecting the full confusion matrix across classes may reveal addi-
tional dependencies and confusion (“leakage”) among pairs or groups of
classes. In general, looking at confusion matrices and at derived measures
such as per-class precision, recall or TPR, FPR, F-score, and AUC, allows the
experimenter to discover subtle effects of changing algorithmic parameters
(since these affect some classes in different ways than others; some may
improve recall, others may improve precision) that would not be visible
when generalization performance was only expressed in terms of accuracy.

Another way of avoiding misinterpretations of accuracy scores is to
compare the accuracy of the system to a baseline accuracy. One often
used baseline is the frequency of the most frequent class in the data set
(simulating a system which always predicts the majority class; 47% for
our data), or a weighted product of the frequencies of the classes in the
data (simulating a random class generator biased by the probability of
the different classes; 33% for our data), or the result of applying a simple
heuristic, e.g., a linguistically informed one.

52 MEMORY AND SIMILARITY

3.5.2 Additional performance measures in TIMBL

TIMBL is able to produce class-specific counts on true
positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN), as well as on the derived measures
precision, recall or true positive rate (TPR), false positive rate
(FPR), F-score, and AUC, the area under the curve in ROC
space. To produce these class-specific performance measures,
the command-line verbosity option +v cs (for class statistics)
can be selected. TIMBL can also provide a weighted average
of F-score and AUC over all classes with the verbosity option
+v as, and it is able to produce a full confusion matrix with
the verbosity option +v cm. They can be invoked together in
the following command line:

% Timbl -f gplural -t leave_one_out +v cs+as+cm

Scores per Value Class:

class TP FP TN FN precision recall(TPR) FPR F-score AUC

- 4261 137 20629 141 0.968849 0.967969 0.006597 0.968409 0.9807

e 4278 442 20080 368 0.906356 0.920792 0.021538 0.913517 0.9496

en 11713 207 13041 207 0.982634 0.982634 0.015625 0.982634 0.9835

s 658 165 24036 309 0.799514 0.680455 0.006818 0.735196 0.8368

er 266 32 24849 21 0.892617 0.926829 0.001286 0.909402 0.9628

Ue 1879 190 22968 131 0.908168 0.934826 0.008205 0.921304 0.9633

Uer 637 54 24427 50 0.921852 0.927220 0.002206 0.924528 0.9625

U 240 9 24910 9 0.963855 0.963855 0.000361 0.963855 0.9817

F-Score beta=1, microav: 0.950375

F-Score beta=1, macroav: 0.914856

AUC, microav: 0.968682

AUC, macroav: 0.952622

overall accuracy: 0.950890 (23932/25168), of which 14759 exact matches

Confusion Matrix:

- e en s er Ue Uer U

--

- | 4261 45 26 46 5 8 4 7

e | 32 4278 81 79 24 118 34 0

en | 28 105 11713 27 0 42 3 2

s | 61 148 72 658 3 16 9 0

er | 1 17 1 0 266 0 2 0

Ue | 4 90 24 11 0 1879 2 0

Uer | 2 37 3 2 0 6 637 0

U | 9 0 0 0 0 0 0 240

-*- | 0 0 0 0 0 0 0 0

There were 335 ties of which 209 (62.39%) were correctly resolved

3.5. METHODOLOGY 53

Under “Scores per Value Class”, TIMBL lists all per-class
statistics in tabular format. From this table we see that suffix
-en is very accurately predicted, while the infamous -s suffix
is predicted with the lowest F-score (73.5%) and AUC (83.7%).
A closer look at the row of suffix -s reveals that its precision
(80.0%) is higher than its recall (68.0%). This indicates that
TIMBL has predicted the -s suffix too conservatively; it was
not predicted often enough at points where it should have
been, but when it predicted it, it was fairly correct (80%).
Subsequently, TIMBL presents micro and macro averages
of the F-score and AUC of all classes. The micro-average
weighs all individual F-scores and AUCs proportionally to
each class’s frequency; the macro average is the unweighted
average (and is usually the lower one, since low-frequency
classes, which are typically predicted at lower generalization
performance rates, receive equal weight in the macro average).
The confusion matrix displays the predicted classes horizon-
tally in the rows, and the real classes (the classes in the test
set) vertically in the columns. In the experiment of which the
confusion matrix is shown, TIMBL mistook the hard suffix -s

most often for -e (79 times). There is a relatively high degree
of leakage (mutual misclassification errors) between -s and -e:
the most common misclassification of target class -e is -s (148
times), accounting for almost half the total precision error on
suffix -s.

So far we have assumed that we choose either a fixed train-test split,
or a cross-validation approach, with leave-one-out as cross-validation in
the limit. A yet unspecified dimension is the size of the training set to
begin with. With a small training set of, say, 200 words, the German plural
formation task is likely to be harder to learn and apply to new unseen
data, than with a training set consisting of the whole of CELEX-2. In
many real-world situations the amount of annotated material is small or
is slowly growing through time because it is being annotated by hand
(or with the aid of machine learning tools that aid human annotation,
cf. Thompson et al., 1999); in such situations it is valuable to not only
have snapshot experimental scores, but also learning curves, i.e., series of
experimental outcomes on systematically increased amounts of training

54 MEMORY AND SIMILARITY

 0

 20

 40

 60

 80

 100

12,584
6400

3200
1600

800
400200100502510521

g
e
n
e
ra

liz
a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

number of training words

Figure 3.6: Learning curve of generalization accuracies on the German
plural formation test set with increasing numbers of training words. The x
axis has a logarithmic scale.

material up to the currently available total. To measure learning curves, it
is common to take aside a fixed test set against which the increased model
is systematically tested.

Figure 3.6 displays the learning curve on the German plural test set,
with increasing amounts of instances in the training set (subsets were
simply created by taking the n first instances off the full training set). The x
axis has a logarithmic scale. The curve shows that at the maximal amount
of training material currently available (12,584 words in the 50% split
training set) the curve has not flattened; with larger amounts of training
material better generalization accuracies on unseen data can be expected.
On several occasions, almost log-linear curves have been reported on other
NLP tasks (Banko & Brill, 2001; Van den Bosch & Buchholz, 2002), and
the current curve is not far off from being log-linear either: it shows a
fairly constant increase in generalization accuracy whenever the amount
of training material is doubled, except for some understandable deviating
behavior at the smallest numbers of training words. The curve suggests
that if the training set is doubled in size about three or four times more, a
100% score on the test set appears to be in reach (save for some unsolvable
ambiguities that would need more features, e.g., representing whether the

3.6. CONCLUSION 55

word is a proper name). A triple doubling would mean an increase of the
training set to over 100,000 words. An interesting question here would be
if in the end most classifications would be based on exact matches; a point
for future research.

A final note on methodology concerns significance tests. An experiment
usually does not stand on its own; the experimenter is likely interested
in comparing parameter settings, feature selections, or different learning
algorithms on the same data. When some form of n-fold cross validation
(CV) is performed, such as the common 10-fold CV, a pairwise comparative
experiment yields two series of ten outcomes, each with an average and a
standard deviation (see Dietterich, 1998, for an argumentation why a 2 ×
5-fold CV setup is to be preferred over a simple 10-fold CV setup). Having
paired sequences of cross-validation outcomes allows for the application of
significance tests, to get a well-founded estimate of whether one variant is
significantly better than the other.

Several significance tests may be applied to CV outcomes. Dietterich
argues that paired t tests, on a meta-level, have a high recall in detecting
statistical differences, but a somewhat low precision; paired t tests tend
to make more Type-I errors (detecting a difference when it does not exist)
than more conservative tests such as McNemar’s test that do not need CV
outcomes, or Dietterich’s test for the 2 × 5-fold CV setup (Dietterich, 1998).
Nevertheless, we briefly highlight the paired t-test, as arguably the simplest
and most applicable test. The paired t-test (also the paired Student’s t-
test) assumes that the two sequences of outcomes are paired, i.e., that the
two sequences are obtained on the exact same CV partitionings. It tests
the null hypothesis that the population mean of the paired differences of
the two sequences is zero. It produces a test outcome, the t value, which
can be related to a threshold, the p value, that indicates the chances of the
outcome of the test being false. Usually, p < 0.05 is regarded as a reliable
sign that there is a significant difference between the two CV experiments,
hence between the two variations (parameters, features, algorithms) tested.
While it is common to apply t-tests in machine learning, it is much less
common to go beyond pairwise statistical tests, e.g., to perform an analysis
of variance (ANOVA) (but see for example Salzberg, 1997).

3.6 Conclusion

We mentioned in chapter 1 that the main attraction of symbolic machine
learning methods in an empirical approach to NLP is that these may be

56 MEMORY AND SIMILARITY

able to alleviate some of the problems of statistical methods while keeping
the advantages of robustness, coverage, reusability and accuracy compared
to knowledge-based hand-crafting approaches. We have seen in this
chapter that MBLP has advantages in all these areas: the similarity-based
reasoning metrics described provide an implicit smoothing technique
in sparse data. The feature-weighting methods provide an automatic
approach to weighting the relevance of information sources. The study of
nearest neighbors motivating a decision and the structure of the instance
space (its density and homogeneity) provides tools for explanation and
interpretation.

The elegant combination of the twin principles “learning is storage”
and “reasoning is analogy” which define MBLP, has been shown to have a
long history and strong defenders in linguistics, psychology, and artificial
intelligence. We have combined and operationalized many of these ideas in
a set of metrics and algorithms that includes automatic feature weighting,
value clustering, and distance-weighted extrapolation, and provides a
software tool, TIMBL, to experiment with these. We have found this
combination of algorithms and metrics to work well in practice when trying
to make efficient and accurate systems for solving NLP tasks, and we
believe that the approach is necessarily the right one to choose in a machine
learning approach to NLP, given the properties of problems in NLP. The
first finding is further developed in chapters 4 and 5 where we show how
MBLP can be applied to problems in phonology, morphology and syntax.
The second hypothesis is explored further in chapter 6.

Chapter 4

Application to
morpho-phonology

As argued in chapter 1, if a natural language processing task is formulated
as either a disambiguation task or a segmentation task, it can be presented
as a classification task to a memory-based learner, as well as to any other
machine learning algorithm capable of learning from labeled examples. In
this chapter as well as in the next we provide examples of how we formu-
late tasks in an MBLP framework. We start with one disambiguation and
one segmentation task operating at the phonological and morphological
levels, respectively.

A non-trivial portion of the complexity of natural languages is deter-
mined at the phonological and morphological levels, where phonemes
and morphemes come together to form words. A language’s phoneme
inventory is based on many individual observations in which changing
one particular speech sound of a spoken word into another changes the
meaning of the word. A morpheme is usually identified as a string of
phonemes carrying meaning on its own; a special class of morphemes,
affixes, does not carry meaning on its own, but instead affixes have the
ability to add or change some aspect of meaning when attached to a
morpheme or string of morphemes.

One major problem of natural language processing in the phonological
and morphological domains is that many existing sequences of phonemes
and morphemes have highly ambiguous surface written forms, and espe-
cially in alphabetic writing systems where there is ambiguity in the relation
between letters and phonemes. In English, for example, many letters,
especially the vowels, can be pronounced in different ways; consider, for

57

58 APPLICATION TO MORPHO-PHONOLOGY

example, the pronunciation of ea in heart, bear, clear, and heard. Likewise,
the word king can be seen in the words booking and looking, but neither word
has a meaning that has anything to do with kings (normally speaking).

One seemingly simple solution to this is not to attempt to implement
disambiguation systems, but to create big morphological and phonological
lexicons (such as CELEX-2, Baayen et al., 1993) that cover a decent
amount of a language’s words, as well as predictable inflections of these
words. This non-generalizing form of memory-based morphology and
phonology, more aptly called rote-learned morphology and phonology,
or lexical lookup, will guarantee a flawless lookup of the phonology and
morphology of a language’s most common words. Unfortunately, it is
also guaranteed to fail in the case of unseen words and words for which
syntactic knowledge (including contextual syntactic knowledge of the sur-
rounding words) is needed to determine their appropriate pronunciation
or morphological analysis. We defer the problem of syntactic processing to
the next chapter; for now, the remaining issue is how to deal with unseen
words.

Unseen words, which are likely to occur in unseen texts, often resemble
seen words. As said, there is no guarantee that the unseen word will have
the same pronunciation or the same morphological analysis as its nearest-
neighbor known words. Yet, this is exactly what memory-based language
processing assumes, and even if this may seem a strong assumption
(especially when compared to hand-crafted rule-based methods that do
not rely on lookup or similarity at all), the memory-based approach
has offered state-of-the-art solutions in phonological and morphological
processing. As examples of such solutions, in this chapter we demonstrate
how memory-based language processing can handle English word phone-
mization and Dutch morphological analysis.

As we argue in this chapter, the key strength of the approach is to use
representations of parts of words to perform memory-based reasoning on.
The memory-based processing system will not find a reliable match with
an unseen word but it is quite likely to find good matches between the
unseen word’s initial part and initial parts of known words; likewise for
any other part. Phonological or morphological processing then becomes a
memory-based generalized lookup process on word parts, and assembling
the parts’ outcomes to produce the full phonologically or morphologically
processed output. Lexical lookup comes for free with this approach; if the
system knows a word, it will look up the pronunciations or morphological
analyses of its parts, and concatenate the parts’ outcomes to reassemble the
full pronunciation or morphological analysis.

4.1. PHONEMIZATION 59

4.1 Phonemization

We take phonemization to be the mapping of the orthography of unseen
words to their pronunciation in some phonetic alphabet. Since new text
will typically contain unknown words, it is vital in an application such
as speech synthesis to be able to phonemize them at a reasonable level of
accuracy (e.g., it is claimed that less than 5% error at the phoneme level is
perceptually acceptable, Yvon, 1996).

In the traditional knowledge-engineering approach, several linguistic
processes and knowledge sources are presupposed to be essential in
achieving phonemization of unseen words. The classic MITALK text-to-
speech system (Allen et al., 1987) exemplifies this multi-modular ap-
proach. The architecture of their phonemization module for unseen words
includes explicitly implemented, linguistically motivated abstractions such
as morphological analysis, rules for spelling changes at morphological
boundaries, and phonetic rules. All these modules and their interaction
are hand-crafted, and have to be redone for each new language. Also, lists
of exceptions not covered by the developed rules have to be collected and
listed manually.

The problems with such an approach include high knowledge engineer-
ing costs for the development of a single phonemization module, limited
robustness and adaptability of modules once they are developed, and
lack of reusability for other languages. As a consequence, data-driven
learning methods using statistical or machine learning techniques have
gained in popularity over the past two decades. Most of the earliest
examples of machine learning applications to natural language processing
are in fact phonemization (Stanfill & Waltz, 1986; Sejnowski & Rosenberg,
1987). Advantages of these systems include fast development times, high
accuracy, robustness, and applicability to all languages for which data in
the form of machine readable pronunciation dictionaries are available. We
provide one example.

4.1.1 Memory-based word phonemization

The memory-based perspective to word phonemization is that the phone-
mization of a word, given its spelling, can be constructed by analogy
from the phonemizations of words with similar spellings, of which the
phonemization is known. Generally, words with similar spellings have
similar phonemizations. The new word veat is pronounced � � � � � because
it resembles, among others, the known words heat, feat, beat, eat, veal,

60 APPLICATION TO MORPHO-PHONOLOGY

and seat in all of which the substrings ea are pronounced � � � . This type
of memory-based reasoning has been acknowledged by many researchers
as a useful approach in building phonemization modules (Damper, 1995;
Yvon, 1996). It pays, however, to keep in memory the phonemizations of
all known words, in order to prevent a word like great being pronounced
as � � � � � � instead of � � � � � � � . MBLP seems a viable approach here because
(i) it keeps a lexicon of words with their associated phonemizations in
memory, and (ii) it performs similarity-based reasoning to compute the
phonemizations of words not in the lexicon.

4.1.2 TREETALK

The application of MBLP to letter-phoneme conversion was implemented
in the TREETALK word phonemization system (Daelemans & Van den
Bosch, 1996; Daelemans & Van den Bosch, 2001). Figure 4.1 lays out
the architecture of TREETALK visually. Based on a lexicon of word-
pronunciation pairs of a language L, a classifier is constructed that maps
letters in their wordform context to phonemes. To construct the classifier,
letters and phonemes of the word-pronunciation pairs in the lexicon are
aligned, and subsequently these letter-phoneme conversion examples – as
many examples per word as the number of letters – are compressed into
a decision-tree structure (hence the name TREETALK) that approximates a
normal k-NN classifier, but is much faster and less memory-intensive. We
describe the alignment procedure (which is a necessary preprocessing step,
involving expectation maximization, an unsupervised learning method),
and then move on to pay special attention to the decision-tree compression
module, IGTREE, which is a component of TIMBL.

Automatic alignment. The spelling and the phonetic transcription of
a word often differ in length (e.g., rookie - � � � 	 � �). Our phonemization
approach demands, however, that the two representations be of equal
length, so that each individual grapheme (one or more letters that are
jointly mapped to one phoneme) can be mapped to a single phonetic
symbol: r maps to � � � , oo maps to � � � , k maps to � 	 � , and ie maps to � � � � .
Our algorithm aligns the two representations by adding null phonemes in
such a way that letters or strings of letters are consistently associated with
the same phonetic symbols (e.g., rookie - � � �
 	 �
 � , where the hyphen depicts
a phonemic null). Expectation maximization, EM (Dempster et al., 1977)
is employed to create an optimized letter-phoneme probability matrix.
The EM procedure is bootstrapped by first creating a probability matrix
between letters and phonemes based on co-occurrence counts of letters

4.1. PHONEMIZATION 61

� � � � � � � � � � � � 	
 � � �
� � �
 � � � 	 � � � �

 	 � � � 	 � � �

 �

 � � � � � � � � � � 	 � � � � � �

� � � �
 � � �
 � � � � � � � � � � � � � � �
� � � � � � � �
 � � �

� � � � � � � � � � � � � �
� � � � � � � � ! � �

� " � # $ " # � %
� � � � � � � � � �

� � � � � � � & � �
� � � � �

� � � � � � � � � ' 	 � � � � � � � � 	
 � � �

Figure 4.1: General architecture of the TREETALK word phonemization
system.

and phonemes of word-phonemization pairs of equal length, i.e., where
no alignment is needed. EM proceeds as follows:

1. Generate an aligned corpus: For each word-phonemization pair
in the unaligned corpus,

(a) when the phonemization contains fewer phonemes than the
word contains letters, insert phonemic nulls at all possible
combinations of positions in the phonemization to match
the word’s length;

(b) when the phonemization contains more phonemes than
the word contains letters, insert letter nulls at all possible
combinations of positions in the word to match the phone-
mization’s length;

(c) when the number of letters equals the number of phonemes,
generate the already aligned pair itself, but also all possible

62 APPLICATION TO MORPHO-PHONOLOGY

insertions of one letter null and one phonemic null at
different positions;

(d) for all generated alignments, produce the most likely one
according to the probabilities in the letter-phoneme proba-
bility matrix;

2. Recompute the letter-phoneme probability matrix from the
freshly aligned corpus;

Repeat until the total summed probability of the letter-phoneme
probability matrix is lower than the probability at the previous step.

•• Return the aligned corpus at the previous step.

The resulting aligned corpus contains alignments such as booking – � � �
� � � � � , and tax=i – � � � � 	 �
 . In the latter case, a graphemic null (the “=” sign)
signifies that the letter x maps to the two phonemes � � 	
 . The EM align-
ments are very consistent (i.e., two-letter graphemes are always aligned
to a phoneme and a phonemic null in the same way). In earlier work
(Van den Bosch & Daelemans, 1993) we had handcrafted an alignment
module, and we found no significant difference in generalization accuracy
when using our automatic alignment as opposed to the handcrafted one
(Daelemans & Van den Bosch, 1996). Alternative approaches to alignment
are possible. For example, Luk and Damper (1996) combine stochastic
grammar induction with Viterbi decoding (Viterbi, 1967) using a maximum
likelihood criterion.
Windowed example generation. We deconstruct the word phonemization
task into letter classification tasks: for each letter in a wordform, given its
wordform context, we determine the phoneme label that this letter maps
to. We define the phonemic mapping of a letter in context as its associated
phoneme. Table 4.1 displays example instances and their phoneme label
classifications generated on the basis of the sample word booking. For
example, the first instance in Table 4.1, book, maps to class label � �
 .

In generating examples from words of which the wordform is shorter
than the phonemization, such as the aforementioned taxi – � � � � 	 �
 which is
aligned using a letter null as tax=i, the example with x in focus is mapped to
the double phoneme class label “ks”. These double phonemes take over the
role of the letter null, which of course is not available in new words. In all
other cases, such as the other letters of taxi and the examples generated
from booking, the examples are labeled with the aligned phoneme or
phonemic null. When a word’s phoneme labels are predicted letter by

4.1. PHONEMIZATION 63

Instance Left Focus Right Classification
number context letter context

1 b o o k
�

2 b o o k i –
3 b o o k i n �
4 b o o k i n g �
5 o o k i n g �
6 o k i n g –
7 k i n g �

Table 4.1: Examples generated for the word phonemization task, from the
word-phonemization pair booking – � � � � � � � , aligned as � � � � � � � � � .

letter, all non-null phonemes are concatenated to produce the complete
word phonemization.
Construction of compressed decision tree. A normal memory-based
system would store all letter–phoneme correspondences in memory. In
each example the middle letter is surrounded by a fixed context of neigh-
boring letters, that is wide enough to capture virtually all information
for any letter-phoneme mapping to be unambiguous in the lexicon, given
this context. However, the context that is sufficient for particular letter–
phoneme mappings varies strongly. For example, in English, if a v is
followed by an o it is most certainly phonemized as a � � � . For many
other letters, particularly vowels, many more specific contexts are needed,
often so specific that they only disambiguate between a few or just two
wordforms; consider, for example, the phonemization of the i in reside

versus resident, and of ea in hear, heard, bear, and beard.
It might be highly efficient to store examples in memory with just

enough context to safely disambiguate the phonemization of the focus
letter. Since no more context would be needed in the classification, it could
also lead to a potentially large speedup when the classifier was told to
return the assumedly correct phoneme, rather than spend time finding the
exact k-nearest neighbors that match best over all features, including those
outside the minimally sufficient context.

Such a classifier can be realized in a decision tree, for which machine
learning offers standard induction algorithms (Breiman et al., 1984; Quin-
lan, 1986; Quinlan, 1993). A decision tree compresses a set of examples in
such a way that only the most decisive information sources in examples

64 APPLICATION TO MORPHO-PHONOLOGY

(i.e., those features leading to a classification in the smallest number of
steps) are retained in the tree. A typical decision tree, such as the trees
produced by the C4.5 top-down induction of decision trees algorithm
(Quinlan, 1993), consists of nodes and arcs; nodes represent subsets of
the training set of examples, and store the most frequent classification in
that subset. From the root node, arcs fan out representing the values of
one feature on which the decision tree tests. Typically one arc tests the
presence of one value at the tested feature. Each arc leads to one node,
which represents the subset of examples that share the feature value tested
on the arc that lead to the node. Nodes can either fan out further, or can
lead to a leaf; typically, a leaf signals that the examples in the subset at that
node all have the same class, i.e., are homogeneous with respect to their
class labeling.

A typical top-down decision-tree induction algorithm attempts to con-
struct trees in which the number of nodes is kept to a minimum. The
most commonly used heuristic that is the key to this minimization is to test
on the most informative, or class-discriminative features first. The classic
ID3 algorithm (Quinlan, 1986) and its successor C4.5 (Quinlan, 1993) use
information gain or gain ratio (see also subsection 3.2.1) to estimate the
most informative features. Thus, the key difference with the IG or GR-
weighted k-NN classifier is that these decision trees do not use IG and GR
as weights (in a similarity function), but as rank numbers that determine
the order in which features are tested in the tree. A decision tree variant
that we introduce here, and which is included in the TIMBL package, is
IGTREE (Daelemans et al., 1997b), a decision-tree approximation of IB1
that induces a decision tree using IG, GR or any other feature weight as
feature ranking metric. IGTREE operates as follows.

As with standard IB1, we start by computing feature weights on the
basis of a training set of labeled examples, as exemplified in chapter 3.
Figure 4.2 displays example IG, GR and χ2 feature weights, normalized
to 1.0, of letters in their wordform context, represented by a window of
three neighbor letters to the left and three neighbor letters to the right. The
data in Figure 4.2 are computed on English letter-phoneme examples; we
describe this task in more detail in the remainder of this section. Clearly,
the focus letter is by far the most relevant feature according to all three
functions. The explanation is straightforward; to phonemize a letter, it is
more important to know which letter is to be phonemized, than to know the
identity of its left or right neighboring letters. The focus letter reduces the
subset of classes between which the classifier needs to decide, if it needs to
decide at all; most letters map to just one or two possible phonemes, others

4.1. PHONEMIZATION 65

Figure 4.2: Information Gain, Gain Ratio and χ2 feature weights
(normalized to 1.0) for letter-phoneme classification information sources:
the focus letter to be phonemized, surrounded by three left and right
neighbor letters. The numbers are based on English letter-phoneme data.

to a handful. Context is of secondary importance, needed to disambiguate
among alternatives.

The IG and GR feature weight of the focus letter is almost as big as
the sum of all other IG or GR feature weights; with χ2, the weight of
the focus letter is more than twice as big as the sum of the rest. In other
words, when a memory example mismatches on the focus letter, it is very
unlikely that this example would be the nearest neighbor of a test instance,
given that there will always be better-matching examples that do match
at least on the focus letter. This justifies the use of an efficiency speedup
in which the nearest neighbors (with k = 1) are sought only among the
memory examples that have the same focus letter. Having to search among
this smaller subset of possible nearest-neighbor candidates reduces the
search for the nearest neighbor considerably. The efficient zooming-in on
partitions of the training set can be repeated in the order of relevance of
features. This, in essence, constitutes the IGTREE decision-tree induction
algorithm.

Obviously, the weights of the subsequent context features in the exam-
ple displayed in Figure 4.2 are not larger than the sum of the remaining
features – this is where the IGTREE algorithm starts to diverge from the

66 APPLICATION TO MORPHO-PHONOLOGY

standard k-NN classifier. After matching the focus letter, it tests on the
right and left neighbor letters, at increasing distances, until either (i) it
finds an end node (leaf) that returns the phoneme that is at that point the
only possible phoneme given the letters seen so far, or (ii) the currently
checked letter is not listed in the decision tree as a known letter in that
position, upon which IGTREE returns the most likely phoneme given the
letters seen so far (the most frequent phoneme in the training set partition
at that particular zoom-in point in the construction of the tree).

In contrast with C4.5, IGTREE does not recompute feature weights
with each new node it constructs – rather, it sticks to the ordering of
features according to their weights on the full training set throughout the
construction of the tree. This implies that at each level of an IGTREE

decision tree, one and the same feature is tested.
IGTREE deviates from IB1 in that it bases its classifications on as

few feature-value matches as possible, while IB1 always matches on all
feature values. This makes IGTREE an approximation of IB1; IGTREE will
usually classify instances in less time than IB1 would, and may produce
different classifications. Note that IGTREE and IB1 do share a common
internal structure; as mentioned in section 3.4, IB1 compresses its training
examples in the same decision tree structure, but uses this to search, with
backtracking, for the k-nearest neighbors.

As an example, Figure 4.3 shows part of an IGTREE built for English
phonemization. The path in bold represents the phonemization of a in
the word behave. Ultimately, the tree checks whether the second letter
to the left is an e, to disambiguate the context ehave from the different
pronunciation of the a in the similar wordform have.

The result of this compression using IGTREE is that all transcriptions in
the lexicon can be retrieved from this data structure very quickly, and that
the lexicon is compressed into a tree (actually, a trie, Knuth, 1973) that takes
up a fraction of the size of the original lexicon. Leaves near the top of the
tree represent letter-phoneme mappings with limited context (reminiscent
of the example rewrite rules given by Chomsky & Halle, 1968 in their
classic work on English word pronunciation), while leaves further down
the tree represent more specific, and eventually example-specific contexts
for phonemization disambiguation. The compression rate depends on the
size and coverage of the lexicon used for training, but certainly also on
the language. Alphabetic writing systems with more or less one-to-one
letter-phoneme mappings (shallow orthographies) tend to produce higher
levels of compression than writing systems with complex mappings (deep
orthographies), such as English (Van den Bosch et al., 1995).

4.1. PHONEMIZATION 67

� � � � � �

�� � 	

� � �

�� �

�

�

�

�

� � �

�
ɪ

� � �

� � �

� � �

� � �

Figure 4.3: Retrieval of the pronunciation of a, of the word behave, in
a partial depiction of the IGTREE for English phonemization. The path
represents the minimally disambiguating context ehave when following the
context letters in information-gain order.

4.1.3 IGTREE in TIMBL

The IGTREE decision tree induction algorithm is a component
of the TIMBL package. IGTREE’s feature ranking is set by
the selected feature weighting parameter. This is the only
parameter that influences IGTREE. It is known to compress
data sets considerably, and speed up classification, usually
at the cost of some generalization accuracy. Notable loss
of accuracy as compared to standard IB1 is often reported
in cases in which a task representation contains several
important features with similar weights.
On the German plural data set used earlier in chapter 3,
IGTREE runs as follows:

% Timbl -f gplural.train -t gplural.test -a1

68 APPLICATION TO MORPHO-PHONOLOGY

The -a1 command line option triggers IGTREE. Feature
ranking in the tree is based on the default GR feature
weighting function, but the other weighting functions can
also apply (-w). After all data has been read in memory and
a full tree-based memory structure is built (see section 3.4),
TIMBL starts pruning the tree down to the necessary paths
as described above. Having done that, it reports on the
compression obtained, in terms of the numbers of nodes and
the percentage of reduction in the usage of bytes of memory:

Size of InstanceBase = 1311 Nodes, (26220 bytes), 97.87 % compression

Compared to the 28,515 nodes used for the tree-indexed
memory of IB1, it is obvious that IGTREE reduces the memory
load considerably, needing only 1,311 nodes. The accuracy on
test instances shows that IGTREE is doing a little better than
IB1 with GR feature weighting (11,849 out of 12,584 classified
correctly, 94.16%):

Seconds taken: 2 (6292.00 p/s)

11872/12584 (0.943420)

This shows that IGTREE does not always decrease accuracy.

Classifier. The IGTREE decision tree constructed on the training lexicon
is subsequently employed as the core of the letter-phoneme converter of
the TREETALK system. To retrieve the phonemization of a word, whether
it is in the training lexicon or unseen, all letters of the word are taken as
starting points of tree search one by one. With each letter in focus, the
search traverses the tree to the point where a leaf node is met, or where the
search fails as the specific context of the new word was not encountered in
the learning material; in either case a phoneme is returned, stored at the
node that was last visited. The complete phonemization of the new word
is assembled by concatenating IGTREE’s phonetic classifications of each of
the word’s letters, deleting the null phonemes.

4.1. PHONEMIZATION 69

4.1.4 Experiments: applying IGTREE to word phonemization

We base our experiments on a corpus of English word phonemizations,
which we extracted from the CELEX-2 lexical databases (Baayen et al.,
1993) already mentioned in the previous chapter. The corpus contains
65,467 words for which word phonemization is stored along with word
stress information, syllable boundaries, and a morphological analysis.

On the basis of the CELEX-2 corpus of words with their corresponding
phonemic transcription we create a database of 573,170 examples, in which
each example is a windowed letter-in-context associated with the phoneme
that the middle letter maps to (cf. Table 4.1). Fifty-eight unique phonemes
occur in the data.

We performed comparative experiments with IB1 and IGTREE, both
using gain ratio; IB1 for feature weighting, and IGTREE for feature or-
dering. IB1 uses the Overlap similarity metric and k = 1 (in TIMBL
this is the default parameter setting). The database was partitioned ten
times into 90% training set and 10% test set parts (each test set is disjoint
from every other test set, and the partitions are made on the word level
on a randomly shuffled lexicon, so that all words are in a test set once
and no alphabetic ordering occurs in training or test data) and a 10-fold
cross-validation experiment was run (Weiss & Kulikowski, 1991). Table 4.2
displays the test word accuracy averaged over the ten experiments; a
test word is counted as correctly phonemized when its phonemes are all
perfectly predicted. The table also displays the “reproductive” accuracy,
i.e., the percentage of correctly phonemized training words. This score is
below 100%. If a memory-based learner does not classify its own training
examples with 100% accuracy, this means there are examples with identical
feature values and different class labels. This is due to our choice of context
width encoded in the window, that leaves ambiguities open because it is
too narrow. For instance, the example generated around the o of collar,
c o l l, matches with a set of morphologically complex words starting with
coll (collateral, collective, etc.) in which the o is pronounced as � � � . Most
of the observed reproduction errors are incorrect vowel pronunciations
due to unsolved ambiguities in which different nearest neighbors have
different pronunciations, and correlated to this, different word stress or
morphological structures, despite their superficial similarity.

As Table 4.2 shows, there is no accuracy difference between IB1 and
IGTREE on training data; not surprisingly, they make the same errors
due to the unsolvable ambiguity in the data. On test words, however,
IB1 performs better than IGTREE. When phonemizing test words IB1

70 APPLICATION TO MORPHO-PHONOLOGY

Correctly phonemized words (%)
Algorithm Training set Test set

IB1 92.1 ± 0.1 80.9 ± 0.4
IGTREE 92.1 ± 0.1 78.5 ± 0.4

Table 4.2: Average generalization performance in terms of correctly
phonemized training words (left) and test words (right).

Instances per second
Algorithm Storage (nodes) Training set Test set

IB1 628,975 22,737 9,976
IGTREE 31,694 26,204 27,665

Table 4.3: Average memory storage (in numbers of nodes) and the number
of classified instances per second, classifying both training instances and
test instances, by IB1 and IGTREE, averaged over a 10-fold CV experiment
on the phonemization data set.

has an intrinsic advantage because it matches on all features, also the
relatively less important features beyond a more important mismatching
feature, rather than stopping as soon as a feature mismatches or when the
disambiguating subset of features as stored in the IGTREE is already tested.

Yet, there is an interesting trade-off between accuracy on the one hand,
and speed and memory on the other hand between IB1 and IGTREE.
Table 4.3 displays the average memory storage (in terms of nodes in both
algorithm’s trees – recall that the instance base of IB1 is also stored as a
decision tree) and processing costs (in terms of the number of instances
classified per second, on average1) of both algorithms. The advantage in
generalization accuracy of IB1 over IGTREE is at the cost of considerably
more memory storage; IGTREE occupies 95.0% less memory than IB12.
While IB1 stores about as many nodes in its tree as there are training
examples, IGTREE uses one node per 20 training examples on average.
Moreover, IGTREE is about 2.8 times faster than IB1 on test data.

1Processing times were measured on a PC equipped with a 2.7 Ghz Intel processor
running GNU/Linux.

2Actual memory usage depends on the platform – on a standard current desktop
computer, one node uses 20 bytes.

4.1. PHONEMIZATION 71

The scores on phonemizing test words (80.9% at best, with IB1) are not
impressive, but it may serve as a consolation that at the phoneme level,
IB1 predicts 97.0% correct phonemes. Also, this is a phonemization score
on unseen words, since they are produced by a 10-fold cross-validation
experiment on a type lexicon in which words only occur once. In a realistic
setting, e.g. as part of a speech synthesis system phonemizing words
in running text, typically about 5% of the words in the text would be
unseen. The system would thus be predicting 95% of the words at 92.1%
accuracy, and 5% at 80.9%, which amounts to the very reasonable estimated
performance levels of 91.5% correctly phonemized words, composed of
98.8% correctly predicted phonemes – well within the aforementioned
perceptually significant 5% error threshold on phonemes.

4.1.5 TRIBL: trading memory for speed

The results discussed in the previous section show that, for the phone-
mization task, there is a notable performance loss when using IGTREE

compared to pure memory-based learning as used in IB1 on the word
phonemization task. IGTREE and IB1 represent extremes on a continuum
which would be interesting to explore in a more scaled way. To this
purpose we developed TRIBL, a hybrid between IB1 and IGTREE. TRIBL

uses a new parameter that determines the relative contribution of IGTREE

as opposed to IB1, to learning as well as to classification. The parameter
value denotes the last level at which IGTREE compresses homogeneous
subsets of instances into leaves or non-terminal nodes; below this level,
all remaining uninspected feature values of instances in non-homogeneous
subsets, normally represented by a single node in the decision tree, are
stored uncompressed in instance-base nodes. During search, the normal
IGTREE search algorithm is used for the levels that have been constructed
by IGTREE; when IGTREE search has not ended at the level marked as
the switch point between IGTREE and IB1, one of the instance-base nodes
is accessed, and IBL is employed on the sub-instance-base stored in this
instance-base node.

We learned the word phonemization task with TRIBL instead of
IGTREE3. The empirical results are shown in Table 4.4. Again, the results
were achieved by means of 10-fold CV experiments. The table repeats
the results obtained with IB1 and IGTREE, and lists in between the

3See Daelemans et al. (1997c) for a discussion of the results of TRIBL on several non-
linguistic benchmark data sets.

72 APPLICATION TO MORPHO-PHONOLOGY

Correctly phonemized Instances
Algorithm test words (%) per second

IB1 80.9 ± 0.4 9,976

TRIBL-1 80.8 ± 0.3 11,257
TRIBL-2 80.7 ± 0.3 14,308
TRIBL-3 80.7 ± 0.3 15,261
TRIBL-4 79.6 ± 0.3 17,643
TRIBL-5 79.0 ± 0.4 21,172
TRIBL-6 78.5 ± 0.4 25,647

IGTREE 78.5 ± 0.4 27,665

Table 4.4: Average percentage of correctly phonemized test words, with
standard deviation, of IB1, TRIBL with all possible switch points, and
IGTREE, with the average number of test examples classified per second,
on the word phonemization data set.

results obtained with different values for the various TRIBL switch points
from IGTREE to IB1. We show both accuracy and efficiency in terms of
processing time. The results listed in Table 4.4 show that TRIBL offers an
interesting non-linear trade-off between processing time on the one hand,
and generalization accuracy on the other hand. At TRIBL with splitting at
tree level 3, processing speed has almost doubled, while at that point word
phonemization accuracy is hardly affected.

On the one hand, TRIBL can be seen as a means to find the “best
of both worlds” of IB1 and IGTREE. On the other hand, TRIBL may
provide relevant linguistic insights with respect to the relative importance
of features, such as local context in sequential NLP tasks. A sequence of
results such as displayed in Table 4.4 shows that generalization accuracy
remains unchanged when the classifier uses an absolute preference order
in matching on the most important features (here, the focus letter and its
two immediately neighboring letters). It may be interesting to compare this
finding with rule-based approaches to the same task, which may impose
the same or different restrictions on the context-sensitivity of their rules.

4.2. MORPHOLOGICAL ANALYSIS 73

4.1.6 TRIBL in TIMBL

TRIBL is included in TIMBL. As a hybrid of IB1 and IGTREE,
it is governed by the same parameters; the feature weighting
parameter determines the feature weighting in the similarity
function of IB1 as well as the ranking of the features in the
construction of the IGTREE.
The -q parameter determines the number of features (tree
levels) after which IGTREE switches to IB1. On the German
plural data set used earlier in chapter 3, TRIBL runs as
follows, e.g., with q set to 1 (splitting on the feature with the
highest GR, gender), and performing IB1 on the remaining six
features:

% Timbl -f gplural.train -t gplural.test -a2 -q1

Setting q to 1 leads to 94.14% correctly classified test instances.
Sweeping q from 1 to 6 yields a maximal score of 94.52%
with q at 4. This means that the gender feature and the three
segmental features of the last syllable (onset, nucleus, coda)
are used to build an IGTREE and the other features (the pre-
final syllable features) are handled using IB1.

4.2 Morphological analysis

The task of performing a full morphological analysis of a wordform is
usually taken as a segmentation of the word into morphemes, combined
with an analysis of the interaction of those morphemes that determine the
syntactic class of the wordform as a whole. The complexity of wordform
morphology varies widely among the world’s languages, but is regarded
as non-trivial even in the relatively simple cases, such as English. Classes
of linguistic knowledge that are usually assumed to play a role in this
disambiguation process are knowledge of (i) the morphemes of a language,
(ii) the morphotactics, i.e., constraints on how morphemes are allowed to
be combined, and (iii) spelling changes in the resulting word form that can
occur due to morpheme attachment.

The memory-based approach to morphological analysis (including
compounding) of complex wordforms we illustrate here will be referred
to from now as MBMA, for Memory-Based Morphological Analysis. We

74 APPLICATION TO MORPHO-PHONOLOGY

exemplify the approach by turning to the morphological analysis of Dutch
words as a case study.

4.2.1 Dutch morphology

Dutch, a descendant of the North-Sea Germanic branch of the Germanic
languages, has a non-trivial wordform morphology that shares some of its
traits with the wordform morphology of German. The processes of Dutch
morphology include inflection, derivation, and compounding. Inflection
of verbs, adjectives, and nouns is mostly achieved by suffixation, but a
circumfix also occurs in the Dutch past participle (e.g., ge+werk+t as the
past participle of verb werken, to work). Irregular inflectional morphology
is due to relics of ablaut (vowel change) and to suppletion (mixing of
different roots in inflectional paradigms). Processes of derivation in Dutch
morphology occur by means of prefixation and suffixation. Derivation
can change the syntactic class of wordforms. Compounding in Dutch
is concatenative (as in German and in Scandinavian languages): words
can be strung together almost unlimitedly, with only a few morphotactic
constraints, e.g., rechtsinformaticatoepassingen (applications of computer
science in law).

A complex Dutch wordform typically inherits its syntactic properties
from its right-most part (the head). Several spelling changes can occur:
apart from the closed set of spelling changes due to irregular morphology,
a number of spelling changes is predictably due to morphological context.
The spelling of long vowels varies between double and single (e.g., ik loop,
I run, versus wij lop+en, we run), both of which feature the pronunciation

� � � . The spelling of root-final consonants can be doubled (e.g., ik stop, I
stop, versus wij stopp+en, we stop). There is variation between s and z and
f and v (e.g., huis, house, versus huizen, houses). Finally, between the parts
of a compound, a linking morpheme may appear (e.g., staat+s+loterij, state
lottery). For a detailed discussion of morphological phenomena in Dutch,
see Booij (2001).

4.2.2 Feature and class encoding

We drew our data from the CELEX-2 lexical database collection (Baayen
et al., 1993). CELEX-2 offers a morphological analysis for 336,698 of
them. We took each wordform and its associated analysis, and created task
instances using the windowing method exemplified in the previous section
on word phonemization. Windowing transforms each wordform into as

4.2. MORPHOLOGICAL ANALYSIS 75

Instance Left Focus Right
number context letter context Class

1 a b n o r m A
2 a b n o r m a 0
3 a b n o r m a l 0
4 a b n o r m a l i 0
5 a b n o r m a l i t 0
6 a b n o r m a l i t e 0
7 b n o r m a l i t e i 0
8 n o r m a l i t e i t 0+Da
9 o r m a l i t e i t e A →N

10 r m a l i t e i t e n 0
11 m a l i t e i t e n 0
12 a l i t e i t e n 0
13 l i t e i t e n 0
14 i t e i t e n plural
15 t e i t e n 0

Table 4.5: Instances with morphological analysis classifications derived
from the example word abnormaliteiten.

many instances as it has letters. Each example focuses on one letter, and
includes a fixed number of left and right neighbor letters, chosen here to be
five. Consequently, each instance spans eleven letters, which also happens
to be the average word length in the CELEX-2 database.

To illustrate the construction of instances, Table 4.5 displays the 15
instances derived from the Dutch example word abnormaliteiten (abnormal-
ities) and their associated classes. The class of the first instance is A, which
signifies that the morpheme starting in a is an adjective (A). The class of
the eighth instance, 0+Da, indicates that at that position no segment starts
(0), but that an a was deleted at that position (+Da, “delete a” here). Next
to deletions, insertions (+I) and replacements (+R, with a deletion and
an insertion argument) can also occur. Together these two classification
labels code that the first morpheme is the adjective abnormaal. The second
morpheme, the suffix iteit, has class A →N. This complex tag, which is in
fact a rewrite rule, indicates that when iteit attaches right to an adjective
(encoded by A), the new combination becomes a noun (→N). Rewrite
rule class labels occur exclusively with suffixes, that do not have a part-of-

76 APPLICATION TO MORPHO-PHONOLOGY

speech tag of their own, but rather seek an attachment to form a complex
morpheme with the part-of-speech tag. Finally, the third morpheme is en,
which is a plural inflection that by definition attaches to a noun.

When a wordform is listed in CELEX-2 as having more than one
possible morphological labeling (e.g., a morpheme may be N or V, the
inflection -en may be plural for nouns or infinitive for verbs), these labels
are joined into ambiguous classes (N/V) and the first generated example is
labeled with this ambiguous class. Ambiguity in syntactic and inflectional
tags occurs in 3.6% of all morphemes in our CELEX-2 data.

Encoding the data this way, we generated a sizable data set of 3,179,383
examples; 2,738 different class labels occur. The most frequently occurring
class label is 0, occurring in 68.8% of all instances. The three most frequent
non-null labels are N (start of noun stem, 6.9%), V (start of verb stem, 3.6%),
and plural (start of plural inflection, 1.6%). Many class labels combine a
syntactic or inflectional tag with a spelling change, and generally have a
low frequency.

Figure 4.4 illustrates how a morphological analysis is regenerated
from the letter-by-letter class labels, using the same example word. This
regeneration process enacts the operations encoded in the classes. The first
class label marks the start of the morphemic segment abnormal and tags it as
A (adjective); the second marks the deletion of the second a before the final
l of abnormal. The third marks the start of the suffix iteit and tags it with the
rewrite rule A →N. The fourth identifies the plural inflection en. Together,
this leads to the flat bracketed analysis [abnormaal]A[iteit]A →N[en]plural in the
middle of Figure 4.4. Finally, the rewrite rule is rewritten and the plural is
attached to the resulting noun, to create the nested analysis [[[abnormaal]A

iteit]N en]plural, the intended output of MBMA.

4.2.3 Experiments: MBMA on Dutch wordforms

We performed 10-fold cross validation experiments using the 3.2 million
examples data set, using the aforementioned window width of five left and
right context letters. Again we apply both IB1 and IGTREE to the task.
Both use gain ratio; IB1 uses the Overlap metric and k = 1. Table 4.6 lists
the average percentage of test words that are morphologically analyzed
fully correctly. Both IB1’s and IGTREE’s reproductive accuracy on training
words is notably below 100%. For a large part this is due to several inherent
ambiguities in Dutch verbal inflections. Words ending in -de may be past
tense singular forms, or adjectival past participles ending in -d with an
adjectival -e inflection. The final instances of such words would not only

4.2. MORPHOLOGICAL ANALYSIS 77

� �

� �� � � � � � � � 	 � � 	 �

 � � � � � � � � �� �

� � � � � � � � �

� 	 � � 	

�

� � � � � �

� � � � � � � � �
�

� 	 � � 	
� � � � �

�

� �

� �

� �

� �
� � � � � �

Figure 4.4: Reconstruction of the morphological analysis of the example
word abnormaliteiten. Four non-null classes are predicted in the
classification step (1); the letters of the three identified morphemic
segments are concatenated, the a is inserted, and the syntactic tags are
attached to the segments (2); the syntactic rewrite tag of the middle
segment is rewritten, and the morphemes are nested (3).

Correctly analyzed words (%)
Algorithm Training set Test set

IB1 80.5 ± 0.0 61.2 ± 0.2
IGTREE 80.5 ± 0.0 59.1 ± 0.3

Table 4.6: Average generalization performance in terms of correctly
morphologically analyzed training words (left) and test words (right).

have themselves as the nearest neighbors in the k-nearest distances, but also
several identical examples with conflicting classes. The core problem is that
some words with a de ending can only be past tense singulars, such as aaide

(caressed), while all adjectival past participles can in principle also be past
tense singular forms, such as voltooide (completed) as in het voltooide werk

(the completed work) versus hij voltooide het werk (he completed the work).
Having an ambiguous class for the two competing forms, and letting a part-
of-speech tagger make the decision, would likely be a good solution to this
problem, but for now we regard it as an unsolvable ambiguity.

The generalization accuracy of IB1 on completely correctly analyzed
test words represents almost a doubling of the error on training material,

78 APPLICATION TO MORPHO-PHONOLOGY

Instances per second
Algorithm Storage (nodes) Training set Test set

IB1 6,853,002 18,697 1,164
IGTREE 237,571 26,399 24,661

Table 4.7: Average memory storage (in numbers of nodes) and the number
of classified test instances per second, classifying both training instances
and test instances, by IB1 and IGTREE, averaged over a 10-fold CV
experiment on the MBMA data set.

bringing it down to 61.2%. IGTREE’s error is slightly higher than IB1’s,
but its 2.1% loss in accuracy is compensated, as shown in Table 4.7, by
a spectacular 96.5% reduction in memory usage, and a speed increase
of about factor 21. Remarkably, the speed reported here is close to
the classification speed reported for the word phonemization task (cf.
Table 4.3), even though the average tree built for this task is an order of
magnitude larger – classification in the trees of both tasks occurs at a similar
average depth.

We can measure more performance scores than word accuracy, speed,
and memory usage. Beneath the word level, analysis performance can
be measured at finer granularities. One obvious candidate performance
metric would be the average accuracy at the level of classifications. For
IB1, for example, this is 94.4% on test data, and 97.6% on training data (so,
the 19.5% word error rate is due to a 2.4% classification error rate). These
classification accuracy numbers are not informative, however, since the
target task, morphological analysis, deviates slightly but essentially from
the classification task we redefined it as. The major deviation is that we
introduced a “do nothing” class with the label “0”. When a simple classifier
would always predict “0”, being the majority class label with a 68.8%
occurrence rate, this classifier would score 68.8% correct classifications, but
it would effectively predict 0% of the morphological analyses. Any metric
that estimates the generalization performance on morphological analysis
should measure the 0%, and not the 68.8%.

To this purpose, as introduced in section 3.5, we can use precision,
recall, and their harmonic mean, F-score. Here, precision is the percentage
of morphemes identified by MBMA that are indeed morphemes in the target
analysis; recall is the percentage of morphemes in the target analysis that
are also predicted by MBMA. A high precision signifies that MBMA is

4.2. MORPHOLOGICAL ANALYSIS 79

able to identify morphemes accurately, but it does not specify how many
morphemes it does not identify. Analogously, a high recall signifies that
MBMA is able to identify a lot of the morphemes it is supposed to identify,
but it does not specify how many more incorrect morphemes it identifies.
As mentioned earlier in section 3.5, precision and recall can be merged in a
single F-score, which is their harmonic mean. A more generic definition of

F-score is Fβ =
(β2+1)·precision·recall

β2·precision+recall
; where β is a means to assign a higher

weight either to precision or recall; we set β=1 to give equal weight to both.
Subsequently, we can analyze the output of MBMA at several levels

of granularity. The full task is to identify the boundaries of morphemes
along with their part-of-speech tags and possible spelling changes, but
simpler subtasks can be discerned within this full task. We provide post-
hoc analyses with precision, recall, and F-score at the following levels:

1. Full morphological analysis, in terms of the precision and recall of
correctly identified morphemes. A morpheme is correctly identified
if its boundaries are correctly identified, the basic part-of-speech tags
(including rewrite rules) are correctly placed, and the correct spelling
change is predicted.

2. Segmentation: The precision and recall of correctly identified seg-
ments. We discern between the following two metrics:

(a) Typed segmentation. A segment is correctly identified if its
boundaries are correctly identified and it is tagged as an inflec-
tional morpheme or a non-inflectional morpheme (i.e., a stem or
an affix).

(b) Plain segmentation. A segment is correctly identified if its
boundaries are correctly identified.

Table 4.8 displays these performance metrics for IB1 on test material.
The F-score on the full task is 80.9%. If part-of-speech tags and spelling
changes are discarded from the classification output, the F-score of both
segmentation tasks improves with an error reduction of about 50%. Ap-
parently it is about as hard to segment without types, as it is to segment
and identify each segment as an inflection or a non-inflection – the latter
subtask appears to be very predictable.

A similar consolation as with the word phonemization task applies here
as regards the fact that these performance metrics are based on held-out
lexicon types, i.e., typical rare, unseen words, and that the reproduction

80 APPLICATION TO MORPHO-PHONOLOGY

Correctly identified morphemes (%)
Subtask Precision Recall F-score

Full morphological analysis 81.1 ± 0.1 80.7 ± 0.2 80.9 ± 0.1
Typed segmentation 90.3 ± 0.1 89.9 ± 0.1 90.1 ± 0.1
Untyped segmentation 90.4 ± 0.1 90.0 ± 0.1 90.2 ± 0.1

Table 4.8: Average precision, recall, and F-score of correctly identified
morphemes at different granularity levels, analyzed post-hoc from the
output on test material of IB1 on the MBMA task.

performance on known words is higher. Counting with the same 95%
known words – 5% unseen words free-text estimate, the word accuracy
of IB1 would be 79.5%. Likewise, the F-score on fully correctly identified
morphemes (including part-of-speech tag and spelling change) would be
90.6%; typed and untyped segmentation would have respectable F-scores
around 96.0%.

Morphological analysis is tightly coupled with part-of-speech tagging,
which is covered in the next chapter. Obviously, MBMA is already per-
forming part-of-speech tagging, but without information on the words
surrounding the analyzed word. It is already doing a good job as a part-
of-speech tagger; it correctly predicts the main tag (out of the 13 main tags
discerned by CELEX-2; noun, verb, adjective, etc.) of 87.1% of the unseen
wordforms, and 94.0% of the known words – a free-text estimate of 93.7%
correct tags. An external part-of-speech tagger could benefit from MBMA’s
suggestion by incorporating the (possibly still ambiguous) tag predicted
by MBMA in its own tagging decision which is typically based on context
rather than on an analysis of the focus word itself.

4.3 Conclusion

In this chapter we showed that English word phonemization and Dutch
morphological analysis can be formulated as classification tasks. Word
phonemization is formulated as a disambiguation task, in which one letter
in context is to be mapped to its corresponding phonemic transliteration.
Morphological analysis is formulated as a complex segmentation task; at
segmentational boundaries, the class label marking the segmentation also
carries information about spelling changes and part-of-speech information.

4.3. CONCLUSION 81

We presented memory-based models of the two tasks, showing how
columns in a lexical database such as CELEX-2 can be converted into
a word phonemization system or a morphological analyzer, which at
the same time are able to reproduce the information in the lexicon, and
are able to generalize to unseen words. We reported on generalization
performances of both models on unseen test words, and compared those
of IB1 with IGTREE, a fast decision-tree approximation of the normal k-NN

classifier that typically loses a bit of accuracy, but does so with markable
speed gains and memory usage reductions.

The results indicate that IGTREE is a useful variant of memory-based
learning. With IGTREE we are able to produce an English word phone-
mization system of which the decision tree fits in about 634 kilobytes
of memory (counting with 31,694 nodes and a storage cost of 20 bytes
per node), which is able to phonemize about five thousand words per
second (counting with an average word length of five in normal English
texts, and a processing speed of about 27,000 instances per second), at a
performance level that is well within bounds of the minimal requirements
for being useful in a speech synthesis system. As said, Yvon (1996) claims
that at least 95% of all phonemes must be predicted correctly to produce
perceptually acceptable synthesized speech; we estimated that on running
text our system would predict 98.8% of all phonemes correctly, which is
certainly accurate enough. This combination of accuracy, high speed, and
moderate memory requirements makes the TREETALK system very suited
for integration in speech synthesizers.4

The Dutch morphological analysis system, trained on about three mil-
lion windowed examples, is able to analyze about five thousand words per
second as well, using about 4.6 megabytes of memory. The performance
measured at the level of full analysis (segmentation, spelling changes, and
part-of-speech information) is somewhat low (59.1% correctly analyzed
words, at an F-score of 80.9% of correctly analyzed morphemes), but
when measured at the level of correct segmentation, a high F-score of
90.2% on unseen words is obtained. For a morphologically productive
language such as Dutch it is important to have high-quality morphological
analysis for use in higher-level tasks such as information retrieval, to use
the compounding morphemes as individual index terms. This has been
shown to boost both precision and recall, also if the compounds are simply
segmented, and CELEX-2 is only used for lookup (Pohlmann & Kraaij,

4See, for example, the NeXTeNS speech synthesis system for Dutch,
http://nextens.uvt.nl.

82 APPLICATION TO MORPHO-PHONOLOGY

1997).
The speeds mentioned for the two systems are obtained with IGTREE;

at much slower speeds, IB1 is able to attain somewhat higher generalization
accuracies. This shows that IGTREE can be a very effective approximation
of IB1, but it also shows that the absolute feature ordering of IGTREE does
not capture the tasks as well as the feature weighting in IB1 does. In
addition, we demonstrated that with the TRIBL algorithm the continuum
between IB1 and IGTREE can be explored; it appears possible to attain
considerable speed gains with hardly any performance loss when tuning
TRIBL correctly.

An important problem with the two example systems lies in the use
of the windowing method to generate examples with single class labels.
A classifier that is processing a word, letter by letter, is presented with
instances that do not reflect any previous or future decisions by the
classifier. The classifier could never be aware of dependencies in the
output sequence that span over larger distances than the window width.
Still, in both tasks such long-distance dependencies exist. To make a
difference between the phonemizations of abnormal and abnormality, the
word phonemization module should be aware of the ity suffix when
determining the pronunciation of the first a and o. Likewise, a typical verb
inflection at the end of a long, unseen word should be a clue that the whole
word is a verb. Still, neither of the systems described in this chapter can
recognize these clues.

There are at least two solutions. First, the word phonemization system
could be equipped with the output of a morphological analyzer in its
input. Van den Bosch (1997) explores this modularity solution as part of the
development of an English unknown-words word phonemization system.
In this study it was observed that a perfect morphological analyzer could
help the letter-phoneme conversion, but a trained morphological analyzer
produced too many errors to be of help to the letter-phoneme module.

A second solution is presented in chapter 7, in which we show that we
can make the classifier aware of its own classifications, and in which we
force the classifier to predict n-grams of class labels rather than just a single
label. When applied in combination, an error reduction of 34% of the F-
score on the full morphological identification task can be obtained.

4.4. FURTHER READING 83

4.4 Further reading

The earliest applications of machine learning to natural language occurred
largely in computational phonology. Among these, MBRTalk (Stanfill &
Waltz, 1986; Stanfill, 1987) was the first application of the k-NN classifier
approach to the word phonemization task. MBRTalk was trained and
tested on the “Nettalk” data set of English word phonemization, developed
for a classic experiment with multi-layer perceptrons trained with the
error back-propagation learning rule (Sejnowski & Rosenberg, 1986) that
for a while was the key example of the applicability of artificial neural
networks to NLP tasks. As the “Nettalk” multi-layered perceptron did,
MBRTalk used windowing to generate examples; each instance contained
one letter to be transcribed, its four left and right neighbor letters, and
the transcription of the middle letter: a phoneme with a stress marker
indicating whether the phoneme received word stress. MBRTalk employed
the Overlap metric without feature weighting. Weijters (1991) introduced
a hand-set feature weighting metric in a k-NN classifier with the Over-
lap metric, trained yet again on the Nettalk data. Van den Bosch and
Daelemans (1993) introduced information-gain feature weighting in the
Overlap metric (cf. subsection 3.2.1). Decision trees for phonemization
have been introduced by Lucassen and Mercer (1984), who also used an
information-theoretic metric as a guiding principle in constructing the tree.
Their context features are preceding and following letters and preceding
phonemes, coded as binary features, which necessitates a recursive search
for the most informative binary features using mutual information. The
application of Machine Learning algorithms such as C4.5 (Quinlan, 1993)
to phonemization is analogous to this approach (see e.g., Dietterich et al.,
1995; Ling & Wang, 1996).

The IGTREE approach, although developed independently with a
completely different motivation, is functionally quite close to Kohonen’s
(1986) Dynamically Expanding Context approach (DEC), applied to phone-
mization in Torkkola (1993). DEC extracts rules from the data according to a
handcrafted specificity hierarchy (in this case, specificity of context and the
intuition that context further away from the focus position is decreasingly
relevant). This is effectively equivalent to IGTREE, but IGTREE computes
the specificity hierarchy (the feature ordering) automatically.

While our approach focuses on classification of single letters in context
to their phonemic mapping, other approaches have been proposed that
map variable-width chunks of letters to chunks of phonemes by analogy
(Sullivan & Damper, 1992; Sullivan & Damper, 1993; Pirelli & Federici,

84 APPLICATION TO MORPHO-PHONOLOGY

1994; Yvon, 1996; Damper, 1995; Damper & Eastmond, 1997). Many of
these systems claim to be motivated by and build further on Glushko’s
(1979) psycholinguistically oriented single-route model of reading aloud,
and Dedina and Nusbaum’s (1991) PRONOUNCE model for chunk-based
text-to-speech conversion.

Computational morphology (Sproat, 1992) has seen relatively few
applications of machine learning methods to the automatic analysis of
words. We argued that our work on the morphological analysis of Dutch
(Van den Bosch & Daelemans, 1999, section 4.2) and English (Van den Bosch
et al., 1996; Van den Bosch, 1997) constituted a single-level morphological
analysis engine, to be seen in contrast with the predominant two-level
morphology machines using finite-state transducers (Koskenniemi, 1983;
Koskenniemi, 1984). Where our approach is shown to work only for
analysis, two-level finite state morphological analyzers are bi-directional:
they can both analyze and generate. Our approach can only analyze
by classification – another classification module is needed to perform
generation. The division of labor in two-level finite state transducers is
usually between concatenation processing and wordform spelling alter-
nation processing – which in our approach is integrated in one step. See
De Pauw et al. (2004) for a comparison of memory-based and finite-state
approaches for Dutch. More recently, Clark (2002) pointed out that single-
step memory-based morphological analysis still needs a second processing
step which implements the complex class labels to generate the analysis,
even though this second step is simple. Clark proposes a more direct
memory-based model that uses stochastic transducers operating directly
on the input string. Heemskerk and Van Heuven (1993) describe a two-
level approach to Dutch morphology using context-free word grammars
interleaved with exploration of possible spelling changes; Heemskerk
(1993) describes a probabilistic variant. This knowledge-based work
draws from descriptive linguistic work on Dutch morphology (De Haas
& Trommelen, 1993; Booij, 2001).

Published examples of applications of memory-based approaches to
other word-level tasks in the morpho-phonological domain are hyphen-
ation and syllabification (Daelemans & Van den Bosch, 1992); assignment
of word stress in Dutch (Daelemans et al., 1994); word phonemization
in Dutch and French (Van den Bosch & Daelemans, 1993; Busser, 1998);
predicting linking morphemes in Dutch compounds (Krott et al., 2001);
diminutive formation of Dutch nouns (Daelemans et al., 1998); plural for-
mation of German nouns (Daelemans, 2002); and Spanish stress assignment
and English past tense learning (Eddington, 2003).

Chapter 5

Application to shallow parsing

The goal of this chapter is to show that even complex recursive NLP
tasks such as parsing (assigning syntactic structure to sentences using a
grammar, a lexicon and a search algorithm) can be redefined as a set
of cascaded classification problems with separate classifiers for tagging,
chunk boundary detection, chunk labeling, relation finding, etc. In such an
approach, input vectors represent a focus item and its surrounding context,
and output classes represent either a label of the focus (e.g., part of speech
tag, constituent label, type of grammatical relation) or a segmentation label
(e.g., start or end of a constituent). In this chapter, we show how a shallow
parser can be constructed as a cascade of MBLP-classifiers and introduce
software that can be used for the development of memory-based taggers
and chunkers.

Although in principle full parsing could be achieved in this mod-
ular, classification-based way (see section 5.5), this approach is more
suited for shallow parsing. Partial or shallow parsing, as opposed to full
parsing, recovers only a limited amount of syntactic information from
natural language sentences. Especially in applications such as information
retrieval, question answering, and information extraction, where large
volumes of, often ungrammatical, text have to be analyzed in an efficient
and robust way, shallow parsing is useful. For these applications a
complete syntactic analysis may provide too much or too little information.
For example, in text mining applications such as information extraction,
summarization, ontology extraction from text and question answering we
are more interested in finding concepts (e.g., simple NPs and VPs) and
grammatical relations between their heads (e.g., who did what to whom,
when, where, why and how) than in elaborate configurational syntactic

85

86 APPLICATION TO SHALLOW PARSING

analyses. Shallow parsing is also useful for reducing the search space of
full parsers.

Abney (1991) was the first to argue for the relevance of shallow parsing,
both from the point of view of psycholinguistic evidence and from the point
of view of practical applications. His own approach used hand-crafted
cascaded finite-state transducers to construct a shallow parse. Typical
modules within a shallow parser architecture include the following:

1. Part-of-speech (POS) tagging. Given a word and its context, decide
what the correct morpho-syntactic class of that word is (noun, verb,
etc.). POS tagging is a well-understood problem in NLP (Van
Halteren, 1999).

2. Chunking. Given the words and their morpho-syntactic class, decide
which words can be grouped as chunks (noun phrases, verb phrases,
prepositional phrases, complete clauses, etc.) and determine their
heads.

3. Relation finding. Given the NP chunks in a sentence, decide which re-
lations their heads have with the main verb (subject, object, location,
etc.).

The concept of shallow parsing has no clearly defined meaning how-
ever, and is used sometimes in a very limited sense, referring only to
tagging and chunking, and sometimes in a broader sense, referring also to
tasks such as prepositional phrase assignment (see section 1.2) and named-
entity recognition. It can best be interpreted as a family of related tasks
attempting to recover some syntactic-semantic information in a robust
and deterministic way at the expense of ignoring detailed configurational
syntactic information. In this chapter, we restrict its meaning to the three
tasks above and demonstrate an MBLP approach to them. The approach
is evaluated on the WSJ treebank corpus (Marcus et al., 1993). We also
introduce new software, MBTG and MBT, two wrappers around TIMBL
that are useful for tagging and chunking.

5.1 Part-of-speech tagging

Part-of-speech (POS) tagging is a process in which a morpho-syntactic
class is assigned to each word in a text on the basis of the word’s formal
and lexical properties and of the context in which it occurs. It is a first

5.1. PART-OF-SPEECH TAGGING 87

level of abstraction in text analysis, often used as a preprocessing module
in many language technology applications such as parsing, information
retrieval, spelling error correction, speech synthesis, and text mining. Just
as it is a reliable heuristic in morpho-phonology (see chapter 4) to assume
that a spelling symbol will have the same pronunciation or morphological
structure decision in similar contexts, the main idea in a memory-based
approach to POS tagging is that an ambiguous word will have the same
POS tag in similar contexts (Daelemans et al., 1996).

5.1.1 Memory-based tagger architecture

The construction of a POS tagger for a specific corpus is achieved in
the following way. Given an annotated corpus, three data structures are
automatically extracted: a lexicon, an instance base for known words (words
occurring in the lexicon), and an instance base for unknown words. The
lexicon associates words with their ambiguous tag, henceforth referred
to as ambitag: a symbol representing all the POS tags a word can have
according to the corpus. E.g., for a word like executive which occurs in the
WSJ corpus both as an adjective (JJ) and as a noun (NN), the corresponding
lexical ambitag is NN-JJ (the word occurs more frequently as NN than as
JJ, hence the order). A word like current also occurs as both JJ and NN, but
less as NN, and will therefore get the ambitag JJ-NN.

During tagging, each word in the text to be tagged is looked up in the
lexicon. If it is found, its lexical representation is retrieved and its context
in the sentence is determined, and the resulting pattern is disambiguated
using extrapolation from nearest neighbors in the known words instance
base. When a word is not found in the lexicon, its lexical representation
is computed on the basis of its form, its context is determined, and
the resulting pattern is disambiguated using extrapolation from nearest
neighbors in the unknown words instance base. In each case, the output
is a best guess of the POS tag for the word in its current context.

The instances are represented by a variety of features of the focus
word to be tagged and word forms in its immediate context. The reason
for separating known and unknown words is the following: for known
words the ambitag of the focus word turns out to be the most important
feature. However, for unknown words we do not know the ambitag, and
therefore we are restricted to context and word form features to construct
the unknown word’s instance representation. Below we will use the
following notation for the features. Since we go from left to right, we
can assume that the words to the left of the word to be tagged have been

88 APPLICATION TO SHALLOW PARSING

disambiguated already. These tags are denoted by D, the position of the
(ambitag) of the focus word is given by F, and the not yet disambiguated
words to the right are denoted by their ambitag A. In both known and
unknown word tagging an important source of information is the inclusion
of previous tagger decisions as features for current tagger decisions with the
D features in both known and unknown word tagging. These features
allow the approach to escape from the local windowing limitations. Other
solutions to sequence learning problems are introduced in chapter 7.

Features referring to particular word forms are denoted as W or W
for the word corresponding to the focus position. As the presence of
features with thousands of words as feature values would make the tagging
considerably slower and low frequency word values would not be likely to
match anyway, only the most frequent words (e.g., the 100 most frequent
words) are kept as values, and the others are substituted by the symbol
‘HAPAX’ annotated with some additional information. E.g., HAPAX-N
means that the word contains numeric symbols, HAPAX-C means the
word is capitalized, HAPAX-H that it is hyphenated, and HAPAX-0 means
no special attributes are associated with the word. A word such as B-

52 would then get the value HAPAX-CHN. This process is known as
attenuation (Eisner, 1996).

Returning to the level of features rather than values, especially for the
unknown word instances there are a number of features referring to the
parts of the word form: its suffix letters ’S’, prefix letters ’P’, a capitalization
feature ’C’, the presence of a hyphen ’H’, and the presence of numerals ’N’.
These features provide a kind of “poor man’s morphology” that may be
useful to guess the POS tag of an unknown word.

Tables 5.1 and 5.2 display example instances from the known words
and the unknown words instance bases (on WSJ material) respectively. For
the selection of instances for the unknown words case base, only words are
selected that occur with relatively low frequency, as these words will have
characteristics more similar to unknown words than frequent words.

5.1.2 Results

In previous work on an MBLP approach to tagging (Daelemans & Van den
Bosch, 1996; Zavrel & Daelemans, 1997; Van Halteren et al., 2001) for
different corpora and different languages, the approach consistently out-
performs the well-known transformation-based learning approach (Brill,
1994) and some trigram-based approaches, but often achieves slightly
worse results than maximum-entropy approaches (Ratnaparkhi, 1996) and

5.1. PART-OF-SPEECH TAGGING 89

Instance representation
Word D W D W F W A W Class

Consumers == == == == NNS HAPAX-C MD HAPAX-0 NNS

may == == NNS HAPAX-C MD HAPAX-0 VBP-VB HAPAX-0 MD

want NNS HAPAX-C MD HAPAX-0 VBP-VB HAPAX-0 TO to VB

to MD HAPAX-0 VB HAPAX-0 TO to NN-VB-

VBP

HAPAX-0 TO

move VB HAPAX-0 TO to NN-VB-

VBP

HAPAX-0 PRP$ their VB

their TO to VB HAPAX-0 PRP$ their NNS HAPAX-0 PRP$

telephones VB HAPAX-0 PRP$ their NNS HAPAX-0 DT a NNS

a PRP$ their NNS HAPAX-0 DT a JJ-RB HAPAX-0 DT

little NNS HAPAX-0 DT a JJ-RB HAPAX-0 RBR HAPAX-0 RB

closer DT a RB HAPAX-0 RBR HAPAX-0 TO to RBR

to RB HAPAX-0 RBR HAPAX-0 TO to DT the TO

the RBR HAPAX-0 TO to DT the NN-NNP HAPAX-C DT

TV TO to DT the NN-NNP HAPAX-C VBN-VB-

NN-VBD

HAPAX-0 NN

set DT the NN HAPAX-C VBN-VB-

NN-VBD

HAPAX-0 . . NN

. NN HAPAX-C NN HAPAX-0 . . == == .

Table 5.1: Example of instances of the POS tagging task (known words
instances). Instances represent fixed-sized snapshots of a focus (an
ambitag), surrounded by a left and right context (of disambiguated tags
on the left, and ambiguous tags on the right, and highly-frequent words or
else attenuated symbols (HAPAX) to the left and to the right).

an HMM-approach with powerful smoothing such as TnT (Brants, 2000).
The memory-based approach yields 96.4% accuracy on the WSJ corpus
and 97% on the LOB corpus (Zavrel & Daelemans, 1999). Comparison is
difficult because of the different data sets, features, and representations
used in different learning approaches. Given the minimal language
engineering involved in MBLP (making a tagger on the basis of a new
annotated corpus is a matter of hours) and the computational efficiency
of the method both in training and testing (in the order of thousands of
words per second), this state-of-the-art performance is remarkable. In
contrast to explicitly probabilistic methods, there is no need in an MBLP

90 APPLICATION TO SHALLOW PARSING

Instance representation
Word P D W A W S S S Class

Consumers C == == MD HAPAX-0 e r s NNS
television t PRP$ their DT a n e s NNS
closer c RB HAPAX-0 TO to s e r RBR

Table 5.2: Example of instances of the POS tagging task (unknown words
instance base). Instances represent ‘morphological’ information about the
focus word (first letter and the three last letters), surrounded by a left and
right context (of one disambiguated tag to the left, one ambiguous tag to
the right, and the corresponding attenuated words).

approach for an additional smoothing component for sparse data, as this
is already embodied in the similarity-based extrapolation itself (Zavrel &
Daelemans, 1997). The use of the weighted similarity metric allows for
an easy integration of different information sources (e.g., context tags,
words, morphology, spelling, etc.) with no clear a-priori back-off ordering.
Moreover, the fact that only one parameter is needed per feature (i.e., its
information-theoretic weight) makes MBLP more robust to overfitting than
approaches that use very large numbers of parameters. The downside of
this robustness is that the feature-weighting capabilities are quite rough:
each feature is weighted in isolation, so that no specific weights are
assigned to interesting feature combinations, and the weight estimate of
conjunctions of redundant features tends to be too large, and there is also
no separate weight for specific values of a feature.

5.1.3 Memory-based tagging with MBT and MBTG

MBTG and MBT are two programs built around TIMBL that
allow you to construct a tagger on the basis of a tagged
corpus (MBTG) and use this tagger to tag new text (MBT).
Although in principle it would be possible to use TIMBL
directly, the software provides an easy solution to building
the different instance bases with relevant word and context
features, including preceding tagger decisions. As an example
dataset we derived POS information from the CoNLL shared
task data (Tjong Kim Sang & Buchholz, 2000), which is a part
of the WSJ corpus. See also chapter 6 for a description of these
data.

5.1. PART-OF-SPEECH TAGGING 91

The input file containing the material for generating a tagger
must consist of two whitespace-separated columns. The first
column contains a word or punctuation mark, as well as its
POS tag in the corresponding position of the second column.
A line may also contain only the symbol <utt> to mark the
end of a sentence. The following is example input.

He PRP

reckons VBZ

the DT

current JJ

account NN

deficit NN

will MD

narrow VB

to TO

only RB

#

1.8 CD

billion CD

in IN

September NNP

. .

<utt>

In generating the tagger, information has to be provided
to the tagger generator about the context and the form of
the words to be tagged. This is done by the parameters -p

(feature pattern for known words), and -P (feature pattern for
unknown words). Patterns are built up as combinations of the
symbols introduced earlier:

For -p and -P

d Predicted left context (tag)
a Right context (ambitag)
w Left or right context (word)
c The focus contains capitalized characters
h The focus word contains a hyphen
n The focus word contains numerical characters
p Character at the start of the word
s Character at the end of the word

For -p only (known words)

f Focus (ambitag for known words)
W Focus (word)

92 APPLICATION TO SHALLOW PARSING

For -P only (unknown words)

F Focus (position of the unknown word)
The symbols d, a, w, p, and s can occur more than once to
indicate the scope of the context. Symbols to the left of the
focus symbols indicate left context, and symbols to the right
of the focus symbols indicate right context.
For example, for known words, the following are a few
possible patterns:

dfa focus ambitag with one disambiguated tag on

the left and one ambitag to the right

ddfa focus ambitag with two disambiguated tags

to the left and one ambitag to the right

ddfWa as previous, plus the focus word (note that W

can be declared only immediately after f)

dwdwfWaw as previous, plus for each context tag the

corresponding word (two left, one right)

For unknown words:

dFa one disambiguated tag to the left and one

ambitag to the right

psdFa as previous, plus the first and last letter of the

unknown word to be tagged

psssdFa as previous, plus the three last letters of the

word to be tagged

psssdwFaw as previous, plus the left and right neighbor-

ing words

In addition to constructors for these commonly used features,
the MBTG software also allows you to add your own
additional features to the instances created using the option
-E in combination with adding extra columns to the input
file, where each column corresponds to an additional feature
associated with the word at that position when used as a focus.
An example command line using a file T.train with the POS
tagging training data of the CoNLL shared data for tagger
generation and corresponding output is the following (“%” is
the command line prompt):

5.1. PART-OF-SPEECH TAGGING 93

% Mbtg -p dwdwfWaw -P dwFawpssschn -T T.train

Memory Based Tagger Generator Version 2.0

(c) ILK and CNTS 1998 - 2004.

Induction of Linguistic Knowledge Research Group, Tilburg University

Centre for Dutch Language and Speech, University of Antwerp

Based on Timbl version 5.1.0 (Release)

Constructing a tagger from: T.train

Creating lexicon: T.train.lex of 19122 entries.

Creating ambitag lexicon: T.train.lex.ambi.05

Creating ambitag translation table: T.train.ambi.05

Creating list of most frequent words: T.train.top100

Create known words case base

Timbl options: ’ -a IGTREE +vS -H’

Algorithm = IGTREE

Processing data from the file

T.train...

ready: 211727 words processed.

Creating case base: T.train.known.dwdwfWaw

Deleted intermediate file: T.train.known.inst.dwdwfWaw

Create unknown words case base

Timbl options: ’ -a IB1 +vS -H’

Algorithm = IB1

Processing data from the file

T.train...

ready: 211727 words processed.

Creating case base: T.train.unknown.pssschndwFaw

Deleted intermediate file: T.train.unknown.inst.pssschndwFaw

Created settings file ’T.train.settings’

Ready:

Time used: 50

Words/sec: 4234

The output shows which version of TIMBL was used and
reports on the generation of a number of data files that will
be used by the tagger MBT. These data include the following:

• A frequency-sorted lexicon T.train.lex containing for
each word the different tags it was assigned, along with
their frequency in the training corpus.

• A lexicon associating with each word an ambitag,
derived from the previous lexicon file, and a translation
table for associating the generated ambitag letter codes
with a more understandable representation. Limited
frequency-based smoothing is implemented in this
approach: whenever a word–tag combination occurs
less than a given percentage (5% by default) of the
word’s total frequency, it is not included in the ambitag.
The parameter -% <percentage> modifies this threshold.

94 APPLICATION TO SHALLOW PARSING

• A list with the (by default) 100 most frequent words
in the corpus. Only words in this list will be used
when the symbols w, W are used in the -p, -P patterns.
The number of most frequent words can be modified
with the parameter -M < number >. All words not in
the most-frequent-words list are transformed into the
special HAPAX-symbols discussed earlier.

• An instance base for known words. The process consists
of two steps. First, instances are created using the
specified information sources for known words (as
indicated in -p), then the case base is generated from
that (which may imply a significant storage reduction,
depending on the TIMBL options used, in this case
IGTREE). Finally, the intermediate file with instances is
deleted — this can be overruled with the option -X.

• An instance base for unknown words. It is parallel to
the procedure for known words, but it uses information
sources specified in the -P pattern, and uses as default
TIMBL settings the IB1-IG algorithm (which uses the
overlap metric with gain ratio feature weighting).

• The tagger generation process ends with some informa-
tion about the real time needed to construct the tagger
(total time used and number of words per second), and
with the construction of a settings file, which will be
used by the MBT executable to use the tagger on new
data.

The settings for our training data are the following:

e <utt>

l T.train.lex.ambi.05

k T.train.known.ddfa

u T.train.unknown.dFapsss

r T.train.ambi.05

p ddfa

P dFapsss

O K: -a IGTREE +vS U: -a IB1 +vS

L T.train.top100

Given that Mbtg was used to generate data files and a settings
file defining a memory-based tagger, Mbt can be used to tag
text. For example, continuing our example:

5.1. PART-OF-SPEECH TAGGING 95

% Mbt -T T.test -s T.train.settings

Memory Based Tagger Version 2.0

(c) ILK and CNTS 1998 - 2004.

Induction of Linguistic Knowledge Research Group, Tilburg University

Centre for Dutch Language and Speech, University of Antwerp

Based on Timbl version 5.1.0 (Release)

Reading the ambitags from: T.train.ambi.05...ready, (246 tags).

Reading the lexicon from: T.train.lex.ambi.05...ready, (19122 words).

Reading frequent words list from: T.train.top100...ready, (100 words).

Reading case-base for known words from:

T.train.known.dwdwfWaw... ready.

Reading case-base for unknown words from:

T.train.unknown.pssschndwFaw... ready.

Sentence delimiter set to ’<utt>’

Beam size = 1

Known Tree, Algorithm = IGTREE

Unknown Tree, Algorithm = IB1

Processing data from the file T.test:

Rockwell // NNP NNP

International / NNP NNP

Corp. / NNP NNP

’s / POS POS

Tulsa / NNP NNP

unit / NN NN

said / VBD VBD

it / PRP PRP

signed / VBD VBD

...

Done:

47377 words processed.

Known words: 42131 correct from 44075 (95.5893 %)

Unknown words: 2678 correct from 3302 (81.1024 %)

Total : 44809 correct from 47377 (94.5797 %)

Time used: 41

Words/sec: 1155

Calling MBT with the settings file of the trained tagger starts
the memory-based tagger by reading the data files and a test
input file (in this case in the same format as the training data),
and sends the tagged input to standard output computing
accuracy statistics by comparing the predicted tags to the gold
standard ones provided in the test file. The tagger can also
read untagged text from input or from a text file. The text
should then be tokenized (i.e., punctuation marks should be
separated from the words). In the output, word and predicted
tag are separated by a single slash (known word) or a double
slash (unknown word).
More parameters are available to modify the behavior of
the MBTG and MBT executables and to use the software in
client-server mode, for those we refer to the reference guide
accompanying the software (Daelemans et al., 2003).

96 APPLICATION TO SHALLOW PARSING

5.2 Constituent chunking

As soon as sentences have been disambiguated at the word level concern-
ing their morpho-syntactic category, a next step in shallow parsing will
group words into phrases and assign a label to these phrases. If we restrict
chunking to finding non-overlapping and non-recursive base chunks, the
task can be defined as a classification task by generalizing the approach
of Ramshaw and Marcus (1995), who proposed to convert NP-chunking to
tagging each word with I for a word inside an NP, O for outside an NP,
and B for the start of an NP that is preceded by another NP. The decision
on these so-called IOB tags for a word can be made by looking at the POS
tag and the identity of the focus word and its local context. For the more
general task of chunking other non-recursive phrases, we simply extended
the tag set with IOB tags for each type of phrase. To illustrate this encoding
with the extended IOB tag set, we can represent the following tagged and
chunked sentence:

But/CC [NP the/DT dollar/NN NP] [ADVP later/RB ADVP] [VP rebounded/VBD VP]

,/, [VP finishing/VBG VP] [ADJP slightly/RB higher/R ADJP] [Prep against/IN Prep]

[NP the/DT yen/NNS NP] [ADJP although/IN ADJP] [ADJP slightly/RB

lower/JJR ADJP] [Prep against/IN Prep] [NP the/DT mark/NN NP] ./.

as:
But/CCO the/DTI−NP dollar/NNI−NP later/RBI−ADVP rebounded/VBDI−VP ,/,O

finishing/VBGI−VP slightly/RBI−ADVP higher/RBRI−ADVP against/INI−Prep

the/DTI−NP yen/NNSI−NP although/INI−ADJP slightly/RBB−ADJP

lower/JJRI−ADJP against/INI−Prep the/DTI−NP mark/NNI−NP ./.O

This representation can then be used to generate instances using a
moving window approach exactly the same way as is done in POS tagging.

5.2.1 Results

Table 5.3 (from Buchholz et al., 1999) shows the accuracy of this memory-
based chunking approach when training and testing on Wall Street Journal
material. We report on precision, recall, and F-scores (with β = 1). In this
case, the features for the MBLP-classifier are the word form and the POS
tag as provided by the tagger of the two words to the left, the focus word,
and one word to the right (Veenstra, 1998; Tjong Kim Sang & Veenstra,
1999). Adverbial functions are included here as chunking results as well:
this classifier assigns adverbial functions such as locative or temporal to the
chunks.

5.2. CONSTITUENT CHUNKING 97

Type Precision Recall F-score

NPchunks 92.5 92.2 92.3
VPchunks 91.9 91.7 91.8
ADJPchunks 68.4 65.0 66.7
ADVPchunks 78.0 77.9 77.9
PPchunks 91.9 92.2 92.0

ADVFUNCs 78.0 69.5 73.5

Table 5.3: Results of chunking (in %): segmentation and labeling
experiments. Reproduced from (Buchholz et al., 1999).

5.2.2 Using MBT and MBTG for chunking

Although we could easily use TIMBL for chunking by
combining words and output of the POS tagger to construct
the features of the instances, as was done in the work reported
earlier in this chapter, an alternative approach is to use the
convenience of MBTG and MBT to construct a combined
tagger-chunker. This can be achieved by concatenating the
POS-tag and the IOB-tag associated with each word in the
sentence, and using MBTG to construct a tagger for these
combined tags. The following is an example of the type of
input file needed for this.

He PRP/B-NP

reckons VBZ/B-VP

the DT/B-NP

current JJ/I-NP

account NN/I-NP

deficit NN/I-NP

will MD/B-VP

narrow VB/I-VP

to TO/B-PP

only RB/B-NP

#/I-NP

1.8 CD/I-NP

billion CD/I-NP

in IN/B-PP

September NNP/B-NP

. ./O

<utt>

98 APPLICATION TO SHALLOW PARSING

As POS tagging and chunking are very much related, it
makes sense to combine these two learning tasks into one.
Interestingly, although the learning task becomes more
complex (more classes have to be learned that describe a
more complex output space) and data sparseness therefore
increases, the results on tagging and chunking separately
do not degrade. The following shows the output and the
results of the tagger generation and tagging phases using this
combined approach (without any specific optimization for
this task).

% Mbtg -T TC.train -p dwdwfWaw -P pssschndwFaw

...

Created settings file ’TC.train.settings’

Ready:

Time used: 55

Words/sec: 3849

% Mbt -s TC.train.settings -T TC.test

Memory Based Tagger Version 2.0

(c) ILK and CNTS 1998 - 2004.

Induction of Linguistic Knowledge Research Group, Tilburg University

Centre for Dutch Language and Speech, University of Antwerp

Based on Timbl version 5.1.0 (release)

Reading the ambitags from: TC.train.ambi.05...ready, (1468 tags).

Reading the lexicon from: TC.train.lex.ambi.05...ready, (19122 words).

Reading frequent words list from: TC.train.top100...ready, (100 words).

Reading case-base for known words from:

TC.train.known.dwdwfWaw... ready.

Reading case-base for unknown words from:

TC.train.unknown.pssschndwFaw... ready.

Sentence delimiter set to ’<utt>’

Beam size = 1

Known Tree, Algorithm = IGTREE

Unknown Tree, Algorithm = IB1

Processing data from the file TC.test:

Rockwell // NNP/B-NP NNP/B-NP

International / NNP/I-NP NNP/I-NP

Corp. / NNP/I-NP NNP/I-NP

’s / POS/B-NP POS/B-NP

Tulsa / NNP/I-NP NNP/I-NP

unit / NN/I-NP NN/I-NP

said / VBD/B-VP VBD/B-VP

it / PRP/B-NP PRP/B-NP

signed / VBD/B-VP VBD/B-VP

...

Done:

47377 words processed.

Known words: 39226 correct from 44075 (88.9983 %)

Unknown words: 2443 correct from 3302 (73.9855 %)

Total : 41669 correct from 47377 (87.952 %)

Time used: 49

Words/sec: 966

5.3. RELATION FINDING 99

Tagging accuracy drops only slightly to 94.5% (from 94.6%)
compared to the tagger trained uniquely on POS tagging
information. The precision, recall and F-score for chunking
over all constituent types are 83.5%, 87.2%, and 85.3%,
respectively. In the following chapters we will return to
this sequence learning task with approaches providing better
results.

5.3 Relation finding

After POS tagging, phrase chunking and labeling, the last step of shallow
parsing consists of resolving the attachment between labeled phrases.
Work on an MBLP approach to relation finding evolved from work on
complement-adjunct distinction (Buchholz, 1998) to subject and object
detection (Daelemans et al., 1999), and, finally, relation finding for all
relations annotated in the WSJ corpus (Buchholz et al., 1999; Buchholz,
2002).

In this approach, relation finding is done by using a classifier to assign
a grammatical relation (GR) between pairs of words in a sentence. One
of these words is always a verb, since this yields the most important GRs.
The other word (the focus) is the head of a phrase that can be assigned
a grammatical relation (e.g., a noun as head of an NP). The class to be
predicted is the grammatical relation holding between this phrase and the
verb.

5.3.1 Relation finder architecture

An instance for such a pair of words is constructed by extracting a set of
feature values from the sentence. The instance contains information about
the verb and the focus: a feature for the word form and a feature for the
POS of both. It also has similar features for the local context of the focus.
Experiments on the training data suggest an optimal context width of
two words to the left and one to the right, as was the case for chunking.
In addition to the lexical and the local context information, superficial
information about clause structure was included as well: the distance from
the verb to the focus, counted in numbers of words. A negative distance
means that the focus is to the left of the verb. Other features contain the
number of other verbs between the verb and the focus, and the number
of intervening commas. These features were chosen by manual “feature

100 APPLICATION TO SHALLOW PARSING

Struct. Verb Context -2 Context -1 Focus Context +1 Class

word pos cat word pos cat pr word pos cat adv word pos cat

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-5 0 2 org. VBD - - - - - - - surp. RB ADVP - , , - -
-3 0 1 org. VBD surp. RB ADVP , , - - Miller NNP NP - , , - -
-1 0 0 org. VBD Miller NNP NP , , - - who WP NP - org. VBD VP NP-SBJ

1 0 0 org. VBD who WP NP org. VBD VP - conf. NN NP - York NNP PP NP

2 0 0 org. VBD org. VBD VP conf. NN NP IN York NNP PP LOC , , - -

Table 5.4: The first five instances for the example sentence. Features 1–3
are the features for distance and intervening VPs and commas. Features 4
and 5 show the verb and its POS. Features 6–8, 9–11 and 17–19 describe the
context words/chunks, features 12–16 the focus chunk. Empty contexts are
indicated by the “-” for all features. Some words are abbreviated.

engineering” (Buchholz, 2002). Table 5.4 shows some of the instances
corresponding to the following sentence (POS tags after the slash, chunks
denoted with square and curly brackets, and adverbial functions after the
dash). All this information is provided by tagging and chunking:

[ADVP Not /RB surprisingly /RB ADVP] ,/, [NP Peter /NNP Miller /NNP NP] ,/,

[NP who/WP NP] [VP organized /VBD VP] [NP the/DT conference/NN NP] {PP-

LOC [Prep in/IN Prep] [NP New /NNP York /NNP NP] PP-LOC} ,/, [VP does/VBZ

not /RB want /VB to/TO come/VB VP] {PP-DIR [Prep to/IN Prep] [NP Paris/NNP

NP] PP-DIR} [Prep without /IN Prep] [VP bringing/VBG VP] [NP his/PRP$

wife/NN NP].

5.3.2 Results

Table 5.5 shows the results of the experiments. In the first row, only POS
tag features are used. Other rows show the results when adding several
types of chunk information as extra features. The more structure is added,
the better the results: precision increases from 60.7% to 74.8%, recall from
41.3% to 67.9% — in spite of the fact that the added information is not
always correct, because it was predicted by other modules of the shallow
parser. With “perfect” information from these modules, a precision of
86.3% and recall of 80.8% would be attainable.

In Buchholz (2002), the MBLP approach to GR finding described here
was further investigated and optimized both for accuracy and for efficiency

5.4. CONCLUSION 101

All Subj. Obj. Loc. Temp.
Structure in input Feat. ∆ Prec. Rec. F F F F F

words and POS only 13 6.1 60.7 41.3 49.1 52.8 49.4 34.0 38.4
+VP chunks 17 6.6 63.8 47.9 54.7 62.9 51.5 39.0 42.8
+NP chunks 17 4.2 65.9 55.7 60.4 64.1 75.6 37.9 42.1
+VP chunks 17 4.5 72.1 62.9 67.2 78.6 75.6 40.8 46.8
+ADVP/ADJP chunks 17 4.4 72.1 63.0 67.3 78.8 75.8 40.4 46.5
+Prep chunks 17 4.4 72.5 64.3 68.2 81.2 75.7 40.4 47.1
+PP chunks 18 3.6 73.6 65.6 69.3 81.6 80.3 40.6 48.3
+ADVFUNCs 19 3.6 74.8 67.9 71.2 81.8 81.0 46.9 63.3

Table 5.5: Results (in %) of grammatical relation assignment with increasing
levels of structure in the test data added by earlier modules in the cascade.
Columns show the number of features in the instances, the average
distance between the verb and the focus element, precision, recall and
F-score (with β = 1) over all relations, and F-score over four selected
relations. Reproduced from (Buchholz et al., 1999).

by careful feature engineering, system design adaptation, and algorithm
parameter optimization, increasing precision and recall to 80% and 86.5%,
respectively. Finally, in a surprising learning curve result, Van den Bosch
and Buchholz (2002) show that when sufficient training data is available,
words only can be used successfully as features to predict constituent
structure and grammatical relations, obviating the need for POS tags.

5.4 Conclusion

From the point of view of text mining applications, robust shallow parsing
seems at present to yield more useful results than deep parsing, by pro-
viding for each sentence what the main constituents and the grammatical
relations between them are. In this chapter, we showed that an MBLP

approach to shallow parsing is feasible by dividing the problem into a
number of subproblems (tagging, chunking, and relation finding), each of
which can be handled by a memory-based classifier.

This combination of memory-based classifiers, especially when
provided in a server-client set-up, can be extended with domain-specific
tokenizers and named-entity recognizers to provide a flexible shallow
understanding architecture for use in text mining applications. In the
current version of our memory-based shallow parser, the first paragraph

102 APPLICATION TO SHALLOW PARSING

of this book receives the following analysis:

[NP-SBJ-1 This/DT book/NN NP-SBJ-1] [VP-1 presents/VBZ VP-1] [NP-OBJ-1
a/DT simple/JJ and/CC efficient/JJ approach/NN NP-OBJ-1] [PP to/TO PP] [VP-2
solving/VBG VP-2] [NP-OBJ-2 Natural/NNP Language/NNP Processing/NNP
problems/NNS NP-OBJ-2] ./.

[NP-SBJ-1 The/DT approach/NN NP-SBJ-1] [VP-1 is/VBZ based/VBN VP-1]

{PNP [PP on/IN PP] [NP the/DT combination/NN NP] PNP} {PNP [PP of/IN PP]

[NP two/CD powerful/JJ techniques/NNS NP] PNP} :/: [NP the/DT efficient/JJ

storage/NN NP] {PNP [PP of/IN PP] [NP solved/VBN examples/NNS NP]

PNP} {PNP [PP of/IN PP] [NP the/DT problem/NN NP] PNP} ,/, and/CC [NP

similarity-based/JJ reasoning/NN NP] {PNP [PP on/IN PP] [NP the/DT basis/NN

NP] PNP} {PNP [PP of/IN PP] [NP these/DT stored/VBN examples/NNS NP]

PNP} [VP-2 to/TO solve/VB VP-2] [NP-OBJ-2 new/JJ ones/NNS NP-OBJ-2] ./.

This chapter finishes our selection of illustrations of the MBLP approach
to NLP tasks, started in the previous chapter. Our main goal was to
provide a few salient examples showing how to make NLP problems fit
the memory-based approach. In the next chapter, we return to a machine
learning perspective and discuss the eager-lazy learning dimension. We
show empirically that highest accuracy can be achieved in a lazy learning
approach like MBLP.

5.5 Further reading

A lot of work since Ramshaw and Marcus (1995) has focused on machine
learning approaches to shallow parsing. A good place to start is the papers
and references in the special issue of the Journal of Machine Learning Research
on this topic (Hammerton et al., 2002). In the context of the CoNLL shared
tasks, training and test data for chunking and clause boundary detection is
available, and many machine learning results on these data can be accessed
through the SIGNLL web site1.

The memory-based shallow parsing approach described in this chapter
has been used successfully in question answering (Buchholz & Daelemans,
2001), and is currently being adapted and applied in projects on informa-
tion extraction from biomedical text, automatic subtitling by summariza-
tion (Daelemans et al., 2004a), ontology extraction from text (Reinberger

1SIGNLL is the Association for Computational Linguistics’ special interest group on
machine learning of language, http://www.aclweb.org/signll/

5.5. FURTHER READING 103

et al., 2004), spoken language parsing (Canisius & Van den Bosch, 2004),
and other applications. An area of current research is to integrate an MBLP
module for PP-attachment as an additional component in the shallow
parser. Earlier work has shown that this task in isolation is indeed feasible
in a memory-based approach (Zavrel & Daelemans, 1997; Van Herwijnen
et al., 2004; Kokkinakis, 2000) and could be integrated into the current
architecture in a way similar to the integration of grammatical relation
finding.

An alternative approach to memory-based chunking and relation find-
ing has been proposed in Argamon et al. (1999) under the name of
memory-based sequence learning . The method is based on a search among
possible bracketings of sentences, keeping all training data available. The
approach can be seen as a linear algorithmic simplification of the DOP
memory-based approach to full parsing discussed in chapter 2.

Moving from shallow parsing to full parsing by extending the memory-
based chunking approach iteratively to approximate full parsing has not
been entirely successful yet (see for example Tjong Kim Sang, 2002 for
an empirical investigation). In contrast, the OCTOPUS parser for Chi-
nese (Streiter, 2001b; Streiter, 2001a) uses complete parse trees as mem-
ory instances, and retrieves nearest neighbors by matching sequences of
keywords, where processes of alignment, nearest neighbor adaptation,
and chunking cooperate in providing a parse tree for the input sentences.
Another approach to memory-based learning with complete parse trees
as “classes” is TüSBL (Kübler, 2004). In this system conventional tagging
and chunking are used to provide features for a new similarity metric on a
dynamically computed set of features working on complete parse trees as
examples.

An alternative way to full parsing defined as a classification-based
approach is the framework of shift-reduce parsing, where the next parser
decision is predicted given the current state of the parse and the local
context as instances. The different steps of the derivations of a parse
are used as training instances. A memory-based approach was explored
in Veenstra and Daelemans (2000) and recently developed in the context
of Swedish and English dependency parsing with the MALT parser (Nivre
et al., 2004; Nivre & Scholz, 2004). In combination with alternative parsing
methods, memory-based learning has also been found useful for tasks such
as the enrichment of parser output (Jijkoun & de Rijke, 2004).

Chapter 6

Abstraction and generalization

The concepts of abstraction and generalization are tightly coupled to
Ockham’s razor, a medieval scientific principle, which is still regarded in
many branches of modern science as fundamentally true. Sources quote the
principle as ”non preterio necessitate delendam”, or freely translated in the
imperative form, delete all elements in a theory that are not necessary. The goal
of its application is to maximize economy and generality: it favors small
theories over large ones, when they have the same expressive power. The
latter can be read as ’having the same generalization accuracy’, which, as
we have exemplified in the previous chapters, can be estimated through
validation tests with held-out material.

A twentieth-century incarnation of Ockham’s razor is the minimal
description length (MDL) principle (Rissanen, 1983), coined in the context
of computational learning theory. It has been used as the leading principle
in the design of decision tree induction algorithms such as C4.5 (Quinlan,
1993) and rule induction algorithms such as RIPPER (Cohen, 1995). The goal
of these algorithms is to find a compact representation of the classification
information in the given learning material that at the same time generalizes
well to unseen material. C4.5 uses decision trees; RIPPER uses ordered lists
of rules to meet that end.

In contrast, memory-based learning is not minimal – its description
length is equal to the amount of memory it takes to store the learning
examples. Keeping all learning examples in memory is all but econom-
ical. Classification in memory-based learning, on the other hand, does
constitute a certain type of abstraction from the full data; more specifically,
abstraction in memory-based classification is of a local, impermanent
nature. With each classification of a new instance, the total memory

104

ABSTRACTION AND GENERALIZATION 105

available is reduced to a small subset of k-nearest neighbors, thereby
forgetting (for a moment) the rest of the material. The impermanence of
this type of selective forgetting is usually not considered abstraction, which
has a more permanent connotation. However, permanency is arguably not
a defining criterion of abstraction.

The first section of this chapter, section 6.1, is devoted to an ex-
emplifying comparison of the impermanent, non-economical abstraction
in standard memory-based learning versus the permanent, Economical
abstraction in rule induction. In the section we compare standard memory-
based learning against IGTREE, the IB1 approximation introduced in
chapter 4, in which parts of the memory are compressed in a lossy
decision tree structure (lossy in the sense that the example base cannot
be reconstructed from it), and against RIPPER (Cohen, 1995), an efficient
rule learner. In both comparative experiments we compare generalization
accuracies (or other derived performance measures, where appropriate)
on a range of language learning tasks, and run additional analyses that
show that memory-based learning performs equally well or better than its
permanently-abstracting counterparts.

In section 6.2 we then introduce editing, a k-NN-internal method to
reduce the amount of memory needed by removing particular examples
from memory. We describe a method to estimate the likelihood that certain
examples will be good or bad neighbors in classification, on the basis of
which the bad examples could be removed. Through experiments on the
six benchmark tasks we show that editing examples eventually leads to
performance loss, but that some editing is possible without harm. Also,
we show that the most important examples to keep in memory are the
ones that have many nearest neighbors of their own class, but also several
nearest neighbors of different classes – these are the same type of examples
that are stored as support vectors in support vector machines (Cristiani &
Shawe-Taylor, 2000).

To conclude the chapter, in section 6.4 we explore a method to create
generalized examples, a less destructive permanent abstraction method in
memory-based learning than editing. Generalized examples are generated
from sets of nearest-neighbor same-class examples, and replace the indi-
vidual examples they are made of. Only the co-occurrence information of
feature values in individual examples is forgotten, while at the same time
storage costs are considerably reduced. This algorithmic variant is shown
to be generally harmless, yielding impressive compression rates. Also, we
find that the approach is in effect a pre-compiler for k; it is possible to leave
k at 1, and perform the k-NN classification rule on the generalized examples,

106 ABSTRACTION AND GENERALIZATION

which each represent a locally appropriate compilation of variable amounts
of same-class nearest neighbors.

6.1 Lazy versus eager learning

Rule induction is the umbrella term for a class of supervised machine
learning algorithms that adhere quite faithfully to the MDL principle.
Together with algorithms for the top-down induction of decision trees,
rule induction algorithms are often referred to as “eager” learners, which
invest considerable effort in building minimally-sized models, which at the
same time are estimated to generalize well to unseen data. The resulting
classifier, a decision tree or a set of ordered rules, can be quite readable from
a human perspective. This attractive feature is in stark contrast with the
lack of generalizable information in the internal models of IB1, or for that
matter in the models learned by support vector machines, linear threshold
classifiers, or maximum-entropy models, which all harbor internal models
composed of matrices or networks of real numbers of which the meaning
is quite hermetic.

The transparency and readability of models produced by decision
tree induction or rule induction is mirrored in the simplicity of both of
their classification procedures. Classification in rule-induction classifiers
is typically based on the firing of a rule on a test instance, triggered by
matching feature values at the left-hand side of the rule. From a human
perspective this is typically easy to understand; to read and interpret a
rule is arguably easier than to inspect which k-nearest neighbors have
determined IB1’s classification of an individual test instance. It is also
easier than understanding the outcome of a linear threshold function, or
multiplications of estimated probabilities, leading to the classifications of
individual test instances.

The ease of classification in rule induction is counterweighted by a
complex learning algorithm. This is entirely in contrast with MBL, which
has a very simple learning algorithm (store examples in memory) but a
costly classification algorithm. In rule induction, the learning problem
is to search for an optimal set of rules. Rules can be of various normal
forms, but even the simpler forms, such as conjunctive normal form (CNF),
open up a vast space of possible rules exponential in the number of feature
values. Rules are also typically ordered (in classification, the first rule in
the ordering that matches the test instance determines the classification).
The appropriate content and ordering of rules is typically very hard to

6.1. LAZY VERSUS EAGER LEARNING 107

find. Therefore, at the heart of most rule induction systems, strong heuristic
search algorithms are employed to attempt to minimize search through the
space of possible rule sets and orderings.

As an example rule induction algorithm, we run comparative ex-
periments with RIPPER (Cohen, 1995). RIPPER belongs to the family of
sequential covering rule inducers. It induces subsets of rules per class,
in a predetermined class ordering. By default, the ordering is from low-
frequency classes to high-frequency classes, leaving the most frequent class
as the default rule (which is generally beneficial for the total description
length of the rule set). Within a class, RIPPER searches for the shortest
rules with the best coverage and accuracy. Central to RIPPER’s heuristic
algorithm is splitting the training set in two. On the basis of one part it
induces a list of candidate rules. When a candidate rule classifies instances
in the other part of the split training set below a threshold, and/or it is
too long to be estimated to be useful, it is discarded. The search for rules in
RIPPER is guided heuristically by information gain measurements of certain
features.

6.1.1 Benchmark language learning tasks

To produce a sensible and broad pool of comparative data, we apply both
IB1 and RIPPER to six NLP tasks ranging from morpho-phonological tasks
to semanto-syntactic tasks, varying in scope (word level and sentence level)
and basic type of example encoding (non-windowing and windowing).
We briefly describe the six tasks here and provide some basic data set
specifications in Table 6.1. Note that some of these data sets have been
used for illustrative purposes and for experiments described in earlier
chapters; in the subsequent chapter 7 they are used again in several series
of experiments.

1. GPLURAL, the formation of the plural form of German nouns, was
introduced in section 3.1. The task is to classify a noun (represented
in a single example, of which the seven features encode the contents
of its two final syllables and its gender) as mapping to one out of eight
classes, representing the noun’s plural formation. We use the same
50%–50% split in 12,584 training examples and 12,584 test instances
as used in section 3.1. Generalization performance is measured in
accuracy, viz. the percentage of correctly classified test instances.

2. DIMIN, Dutch diminutive formation, uses a similar scheme to the one
used in the GPLURAL task to represent a word as a single example.

108 ABSTRACTION AND GENERALIZATION

The task and data were introduced in (Daelemans et al., 1997a). A
noun, or more specifically its phonemic transcription, is represented
by its last three syllables, which are each represented by four features:
(1) whether the syllable is stressed (binary), (2) the onset, (3) the
nucleus, and (4) the coda. The class label represents the identity of
the diminutive inflection, which is one out of five (-je, -tje, -etje, -pje,
or -kje). For example, the diminutive form of the Dutch noun beker

(cup) is bekertje (little cup). Its phonemic representation is � � � � � � � � .
The resulting example is + b e − k � r tje. The data are extracted
from the CELEX-2 lexical database (Baayen et al., 1993). The training
set contains 2,999 labeled examples of nouns; the test set contains
950 instances. Again, generalization performance is measured in
accuracy, viz. the percentage of correctly classified test instances.

3. MORPH was introduced earlier in section 4.2. It represents the
morphological analysis of Dutch words; i.e., to analyze abnormaliteiten

as

[abnormaal]A [iteit]A →N [en]plural

The task combines segmentation, part-of-speech tagging of mor-
phemes, and undoing spelling changes to recover the stem mor-
phemes. Generalization performance is measured in the F-score
on correctly identified (segmented, labeled, orthographically recon-
structed) morphemes in unseen test words.

4. PP, prepositional-phrase attachment, was introduced in section 1.2
and is the classical benchmark data set introduced in (Ratnaparkhi
et al., 1994). The data set is derived from the Wall Street Journal Penn
Treebank (Marcus et al., 1993). All sentences containing the pattern
“VP NP PP” with a single NP in the PP were converted to four-feature
examples, where each feature contains the head word of one of the
four constituents, yielding a “V N1 P N2” pattern such as “each pizza
with Eleni”, or “eat pizza with pineapple”. Each example is labeled by
a class denoting whether the PP is attached to the verb or to the N1
noun in the treebank parse. We use the original training set of 20,800
examples, and the test set of 3,097 instances. Noun attachment occurs
slightly more frequently than verb attachment; 52% of the training
examples and 59% of the test examples are noun attachment cases.
Generalization performance is measured in terms of accuracy (the
percentage of correctly classified test instances).

6.1. LAZY VERSUS EAGER LEARNING 109

5. CHUNK, introduced earlier in section 5.2, , is the task of splitting
sentences into non-overlapping syntactic phrases or constituents,
e.g., to analyze the sentence “He reckons the current account deficit will

narrow to only $ 1.8 billion in September.” as

[He]NP [reckons]VP [the current account deficit]NP [will narrow]VP

[to]PP [only $ 1.8 billion]NP [in]PP [September]NP .

The data set, extracted from the WSJ Penn Treebank through a
flattened, intermediary representation of the trees (Tjong Kim Sang &
Buchholz, 2000), contains 211,727 training examples and 47,377 test
instances. The examples represent seven-word windows of words
and their respective part-of-speech tags computed by the Brill tagger
(Brill, 1992) (which is trained on a disjoint part of the WSJ Penn
Treebank), and each example is labeled with a class using the IOB
type of segmentation coding as introduced in (Ramshaw & Marcus,
1995) and introduced earlier in section 5.2. Generalization perfor-
mance is measured by the F-score on correctly identified and labeled
constituents in test data, using the evaluation method originally used
in the “shared task” sub-event of the CoNLL-2000 conference (Tjong
Kim Sang & Buchholz, 2000) in which this particular training and test
set were used.

6. NER, named-entity recognition, is to recognize and type named
entities in text. With NER, the sentence “U.N. official Ekeus heads for

Baghdad.” is analyzed as

[U.N.]organization official [Ekeus]person heads for [Baghdad]location.

We employ the English NER shared task data set used in the CoNLL-
2003 conference, again using the same evaluation method as origi-
nally used in the shared task (Tjong Kim Sang & De Meulder, 2003).
This data set discriminates four name types: persons, organizations,
locations and “miscellany names”, capturing all other named entities
under this one label. The data set is a collection of newswire articles
from the Reuters Corpus, RCV11. The given training set contains
203,621 examples; as test set we use the “testb” evaluation set which
contains 46,435 examples. Examples represent seven-word windows
of words with their respective predicted part-of-speech tags (no other

1Reuters Corpus, Volume 1, English language, 1996-08-20 to 1997-08-19.

110 ABSTRACTION AND GENERALIZATION

Number of Range of number Number of
Task Examples Features of values classes

GPLURAL 12,584 7 8 – 81 8
DIMIN 2,999 12 2 – 69 5
MORPH 2,888,255 7 49 – 55 3,831
PP 20,801 4 66 – 5,451 2
CHUNK 211,727 14 44 – 19,122 22
NER 203,621 14 45 – 23,623 8

Table 6.1: Properties of the training sets representing the six learning tasks:
numbers of examples, features, minimum and maximum number of values
over all features, and classes.

task-specific features such as capitalization identifiers or seed list
features were used). Class labels use the IOB segmentation coding
coupled with the four possible name type labels. Again analogous to
the CHUNK task, generalization performance is measured by the F-
score on correctly identified and labeled named entities in test data.

Table 6.1 illustrates that apart from covering different levels of NLP,
the six tasks offer a wide variety of data properties with differences of
three to five orders of magnitude in numbers of instances, values, and
classes. The smallest data set, DIMIN, is about a thousand times smaller
than the biggest, MORPH. The numbers of values of features range from
two (the presence marker of word stress on the final syllable in the DIMIN

task) to several thousands (all features representing words in PP, CHUNK,
and NER). The number of classes also ranges from two (PP: noun or
verb attachment) to almost four thousand (the many complex classes of
the MORPH task). Only the number of features lies between four and 14,
reflecting the common hypothesis across the tasks that they are sufficiently
learnable by a fairly small set of features. All tasks are represented by
small contexts of surface features (letters and words), possibly augmented
by somewhat less shallow features (the POS tags with CHUNK and NER).
This is a concededly simple hypothesis that we maintain essentially for
simplicity; we also do not include any special non-surface features (e.g.,
seed list features in NER). However, it should be kept in mind that nominal
features with thousands of values in MBLP like for the PP, CHUNK, and NER

data sets, would correspond to thousands of different features in binary
learners like maximum entropy learning and support vector machines.

6.1. LAZY VERSUS EAGER LEARNING 111

6.1.2 Forgetting by rule induction is harmful in language
learning

One way to study the influence of ignoring exceptional instances on
generalization accuracy is to compare IB1 to an inductive algorithm that
abstracts from certain instances while building its model. We already
introduced RIPPER

as our example rule induction algorithm which we are going to use in
this comparison. In addition, we also compare with IGTREE, introduced
in section 4.1.2 – an approximation of k-NN classification in IB1, which
abstracts from certain individual instances in building its tree. We compare
the generalization performance of the three algorithms using the six data
sets described in the previous subsection. In this subsection we discuss the
results of this comparison, and the influence of a parameter of RIPPER that
directly affects the minimal number of examples an induced rule is allowed
to cover, on generalization accuracy.

We compare the performances of IB1, IGTREE, and RIPPER on the six
benchmark data sets first by running single tests in which the algorithmic
parameters of the three algorithms are automatically optimized in a model
selection procedure described later in the book, in section 7.1. Note that
all experiments are performed on single train–test splits, and that for three
data sets (GPLURAL, DIMIN, PP) the reported performance metric is gen-
eralization accuracy (the percentage of correctly classified test instances),
while for the other three data sets (MORPH, CHUNK, NER) the generalization
performance is measured by an F-score averaging the precision and recall
of the relevant structure of the task at hand (e.g., labeled, segmented stem
morphemes with MORPH; chunked and labeled base phrases in CHUNK;
chunked and labeled named entities with NER).

Table 6.2 displays the generalization accuracies, measured in percent-
ages of correctly classified test instances, for IB1, IGTREE, and RIPPER on
the six tasks. We make the following observations:

1. IB1 outperforms IGTREE on all tasks except GPLURAL; their scores on
MORPH are fairly close.

2. IB1 outperforms RIPPER on all tasks.

3. IGTREE outperforms RIPPER on GPLURAL, MORPH, and NER. Their
performances are close on DIMIN and PP, and RIPPER outperforms
IGTREE on the CHUNK task.

Clearly, the two abstracting algorithms IGTREE and RIPPER do not
outperform the non-abstracting algorithm IB1 on any task. It is less clear,

112 ABSTRACTION AND GENERALIZATION

Performance Generalization performance (%)
Task metric IB1 IGTREE RIPPER

GPLURAL accuracy 94.0 94.3 91.0
DIMIN accuracy 97.6 96.6 96.7
MORPH F-score 70.1 69.9 38.4
PP accuracy 80.7 76.7 76.1
CHUNK F-score 91.9 87.6 89.5
NER F-score 77.2 66.6 55.5

Table 6.2: Generalization performances (accuracies or F-scores) on the six
benchmark tasks, by IB1 (with gain-ratio feature weighting, MVDM, and
k = 1), IGTREE (with gain-ratio feature ordering), and RIPPER (with default
settings).

except in the case of the MORPH task, whether RIPPER’s abstraction by
rules is more harmful than IGTREE’s decision tree abstraction. The two
algorithms differ quite significantly in the amount of abstraction they
attain, as the memory usage of the three algorithms underlines. Table 6.3
displays four memory statistics that are reasonably comparable. First, the
table displays for all six benchmark tasks the multiplication of the number
of examples times the number of features (plus one, for the class label),
representing the “worst-case” upper bound costs of storing all examples in
a flat structure in memory. Second, the table displays the actual number of
nodes in the internal IB1 tree used for searching for the nearest neighbors.
The memory compression factors of this internal storage range between
24% (NER) to 92% (MORPH), providing rough indications of the internal
redundancy of the training sets. The third statistic in Table 6.3 lists
the numbers of nodes in the IGTREE trees – pruned versions of the IB1
trees. IGTREE compression factors are large, compared to the upper-bound
storage; between 95% (PP) and 99.7% (NER). Fourthly, RIPPER attains even
larger compression rates, under the hundredth percent as compared to the
upper bound, but also between 66% and 99.6% as compared to IGTREE.
The RIPPER counts in Table 6.3 are counts of the number of conditions,
rather than numbers of rules, because a condition (in RIPPER’s default
grammar, a test on a feature value) can be likened to a node in a tree.

In view of these results it is easy to be amazed at the results of IGTREE

and RIPPER, and especially of the latter — consider, for example, its
reasonable performance on the CHUNK task. With just 721 conditions in

6.1. LAZY VERSUS EAGER LEARNING 113

Number of Number of tree nodes Number of
Task examples × feat. IB1 IGTREE RIPPER cond.

GPLURAL 100,672 27,759 1,311 322
DIMIN 38,987 22,705 191 64
MORPH 23,106,040 1,771,841 107,694 11,491
PP 104,005 68,648 5,061 18
CHUNK 3,175,905 2,316,308 20,090 721
NER 3,054,315 2,325,286 9,178 443

Table 6.3: Memory usage statistics of IB1, IGTREE, and RIPPER applied
to the six benchmark tasks: the number of examples times features (raw
storage in IB1), the number of nodes in the IB1 tree and the pruned IGTREE

tree, and the number of RIPPER conditions.

416 rules, it attains a higher F-score than IGTREE, which uses over five
thousand nodes in its tree. Moreover, it is just 2 points of F-score short
of IB1’s, which needs an internal tree with over two million nodes. Yet,
neither of the two outperforms IB1; RIPPER’s amazing compression rates
have a price.

Increased abstraction in IB1 and RIPPER

The general comparative results of the previous subsection do not offer a
complete picture. For one, RIPPER offers a parameter that enforces more or
less abstraction, namely by forcing rules to cover at least a certain threshold
number of examples. By default, as also used in the experiments above, this
parameter is set to 1, i.e., RIPPER is allowed to induce rules that cover only
one example. However, RIPPER will typically avoid inducing example-
specific rules, since these extremely low-coverage rules are very inefficient
in terms of storage costs; after all, RIPPER’s guiding principle is minimal
description length.

Still, RIPPER can abstract even more than it does by default. We
performed additional experiments with IB1 and RIPPER in which we
enforce in both algorithms that classifications are based on more than a
single instance. RIPPER has a parameter that sets the minimal number
of examples that a rule is allowed to cover (henceforth named F, after
RIPPER’s command-line parameter switch). Changing this threshold from
its default of 1 to, for example, 2, causes RIPPER to abandon certain rules

114 ABSTRACTION AND GENERALIZATION

that covered single examples. Abandoning these example-specific rules
effectively means forgetting about the existence of the now uncovered
single examples. In IB1, classifications can be enforced to be based on
more than a single instances by setting k > 1. No examples are actually
abstracted from with k > 1: examples only play relatively smaller roles in
determining the classification.

We increased both IB1’s k parameter and RIPPER’s F parameter in the
following numerical series: 1, 2, . . ., 9, 10, 15, . . ., 45, 50, 60, . . ., 90, 100,
150, . . ., 450, 500. As in the previous subsection, RIPPER was run with
default parameter settings, and IB1 was run with the MVDM similarity
metric and gain-ratio feature weighting. Figure 6.1 displays the bundle of
experimental outcomes of RIPPER and IB1 on the six benchmark data sets.

Our previous observation that RIPPER never outperforms IB1 is mir-
rored by the results with increasing thresholds on the minimal number
of instances a rule must cover in RIPPER. With most tasks the difference
between IB1 and RIPPER is aggravated when this threshold is increased.
Interestingly, the effect of a higher k on IB1’s performance is mixed; on the
two (morphological) tasks GPLURAL and MORPH, increasing k has a clear
detrimental effect on performance. On the other hand, IB1’s score is hardly
affected by the particular setting of k for the other tasks, and even minor
improvements can be seen with all four of them; performances appear to
peak roughly at around k = 10.

In sum, these results suggest that abstraction by rules is more harmful
than memorizing all examples; moreover, the detrimental effect of abstrac-
tion tends to increase along with RIPPER’s adaptable bias to force rules
to cover more examples, i.e., to be more general. At the same time, in
some cases increasing k does occasionally lead to losses in generalization
performance. For the tasks in which this is the case, GPLURAL and MORPH,
it is apparently harmful to base classifications on more than just one nearest
neighbor. In the data representing these two tasks certain useful single
examples exist that apparently have a deviating class from their direct
neighborhood; they can only exert their positive influence as a nearest
neighbor when k = 1, i.e., when their different-class neighbors cannot
outweigh them in voting for the class. In these cases, k > 1 has a negative
effect similar to RIPPER forcing rules to cover more than a single example.

6.2. EDITING EXAMPLES 115

 0

 20

 40

 60

 80

 100

 1 10 100

A
c
c
u
ra

c
y

German plural

Ripper
IB1

 0

 20

 40

 60

 80

 100

 1 10 100

A
c
c
u
ra

c
y

Dutch diminutives

Ripper
IB1

 0

 20

 40

 60

 80

 100

 1 10 100

F
-s

c
o
re

Dutch morphological analysis

Ripper
IB1

 0

 20

 40

 60

 80

 100

 1 10 100

A
c
c
u
ra

c
y

English PP attachment

Ripper
IB1

 0

 20

 40

 60

 80

 100

 1 10 100

F
-s

c
o
re

Coverage (k or F)

English base phrase chunking

Ripper
IB1

 0

 20

 40

 60

 80

 100

 1 10 100

F
-s

c
o
re

Coverage (k or F)

English named-entity recognition

Ripper
IB1

Figure 6.1: Generalization accuracies (in terms of % of correctly classified
test instances) and F-scores, where appropriate, of RIPPER with increasing F
parameter and IB1 with increasing k parameter, on the six benchmark data
sets. The x-axis, representing the F and k parameters, uses a logarithmic
scale.

6.2 Editing examples

Although the previous experiments suggest that keeping full memory
is a good idea, they do not rule out that certain examples can in fact

116 ABSTRACTION AND GENERALIZATION

be safely removed from memory without affecting the generalization
performance of IB1. The idea of removing, or editing, examples from
memory without harming performance or even for noise reduction has
been around for decades. In earlier work the editing of examples from
memory in memory-based learning or the k-NN classifier (Hart, 1968;
Wilson, 1972; Devijver & Kittler, 1980) is argued to serve two objectives:
to minimize the number of examples in memory for reasons of speed or
storage, and to minimize generalization error by removing noisy examples,
prone to being responsible for generalization errors. Two basic types of
editing can be found in the literature:

• Editing superfluous regular examples: delete examples of which the
deletion does not harm the classification accuracy of their own class
in the training set (Hart, 1968).

• Editing unproductive exceptions: delete examples incorrectly clas-
sified by their neighborhood in the training set (Wilson, 1972), or
roughly vice-versa, delete examples that are bad class predictors for
their neighborhood in the training set (Aha et al., 1991).

We present experiments in which both types of editing are employed
within the IB1 algorithm. The two types of editing are performed on the
basis of a single criterion that estimates the exceptionality of examples:
class prediction strength (Salzberg, 1990) (henceforth referred to as CPS).
Estimated exceptional examples are edited by taking the examples with
the lowest CPS, and superfluous regular examples are edited by taking the
examples with the highest CPS.

CPS: An editing criterion

CPS is an estimate of the (degree of) exceptionality of examples. It is closely
tied to the k-NN classification rule; it makes used of it. CPS offers an
estimate of how well an example predicts the class of all other examples
within the training set. In earlier work, CPS has been used as a criterion
for removing examples in memory-based learning algorithms, e.g., in IB3
(Aha et al., 1991); or for weighting examples in the memory-based EACH

algorithm (Salzberg, 1990). We adopt the class-prediction strength estimate
as proposed by Salzberg (1990), who defines it as the ratio of the number of
times the example is a nearest neighbor of another example with the same
class and the number of times that the example is the nearest neighbor

6.2. EDITING EXAMPLES 117

of another example regardless of the class. An example type with class-
prediction strength 1.0 is a perfect predictor of its own class; a class-
prediction strength of 0.0 indicates that the example type is a bad predictor
of classes of other examples, presumably indicating that the example type
is exceptional. We perform a simple Laplace correction to account for
the intuitive fact that a 1.0 CPS value originating from a “100 out of 100”
performance score should count higher than a “1 out of 1” performance
score; we compute CPS as in Equation 6.1:

cps(X) =
correct NN(X) + 0.5

NN(X) + 1.0
(6.1)

where correct NN(X) is the number of times example X was the nearest
neighbor of another example in the training set having the same class, and
NN is the number of times example X was the nearest neighbor of another
example in the training set regardless of the class. These numbers were
counted in a leave-one-out experiment (cf. section 3.5) on the training set.

One might argue that bad class predictors can be edited safely from
the example base. Likewise, one could also argue that examples with
a maximal CPS could be edited to some degree too without harming
generalization: strong class predictors may be abundant and some may
be safely forgotten since other example types near to the edited one
may continue and replace the class predictions of the edited instance
type. Figure 6.2 offers a visualization of the effects of both types of
editing. Removing all examples that have a different-class nearest neighbor
(displayed in the lower left of Figure 6.2) results in the area between the
two classes being wiped clean, leaving a smoother effective k-NN class
border in the middle. In contrast, removing all examples of which all
nearest neighbors bordering its own locally spanned area (its Voronoi cell,
or Dirichlet tile, Okabe et al., 2000) are of the same class, results in the
inner areas of the black and white class spaces being wiped clean, while
the original class border remains identical (as displayed in the lower right
of Figure 6.2).

To test the utility of CPS as a criterion for justifying the forgetting of
specific training examples, we performed a series of experiments in which
IB1 is applied to three of our six data sets: GPLURAL, DIMIN, and PP.
With each data set we set IB1’s parameters at different settings which were
estimated in a validation experiment to be optimal – we refer again to
section 7.1 for a detailed description of this validation method. With all
three tasks, the MVDM similarity function was used. Inverse-linear distance
weighting was used with GPLURAL and DIMIN; inverse distance weighting

118 ABSTRACTION AND GENERALIZATION

Figure 6.2: Visualization of two types of editing starting from a given
memory with black and white class labeled examples (top). Left: after
editing all examples with a different-class nearest neighbor. Right: after
editing all examples with a same-class neighbor.

was used with PP. For GPLURAL, k was set to 5; with DIMIN, k = 11, and
with PP, k = 7. The CPS statistics on good neighborship are based on these
settings of k.

In the editing experiments, each of the three tasks’ training sets is
systematically and incrementally edited using the ranked CPS metrics
obtained for all training examples from the two sides of the ranking: in one
experiment, examples are deleted from the ones with the lowest to the ones
with the highest CPS, while in the other experiment examples are deleted
starting with the ones with the highest, and ending with the ones with the
lowest CPS. We edit at all occurring thresholds of CPS, starting from the
set of examples that has an above-zero CPS value. A certain percentage
of examples in each of the three data sets does not actually receive a CPS

value since they are never used as a nearest neighbor in the leave-one-out
experiment on the training data; these examples (up to about 40% of all
examples in the case of the GPLURAL task) are edited at once. With each
subsequent edit, one experiment is performed in which IB1 is trained on the
edited training set, and tested on the normal, constant test set. As a control,

6.2. EDITING EXAMPLES 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

German plural

From high to low CPS
From low to high CPS

Random editing
No editing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Dutch diminutive formation

From high to low CPS
From low to high CPS

Random
No editing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

% Edited training instances

English PP attachment

From high to low CPS
From low to high CPS

Random
No editing

Figure 6.3: Generalization accuracies by IB1 on GPLURAL, DIMIN, and PP

with incremental percentages of edited example tokens, according to the
CPS editing criterion, from high to low CPS and vice versa, and using
random incremental editing.

we also generate an incremental editing sequence in which examples are
randomly deleted one by one. The results of these series of experiments
are displayed in Figure 6.3.

The general trends we observe in the results are that editing on the basis
of CPS from either side of the rank never boosts generalization accuracy,
and that editing is ultimately harmful to generalization accuracy at levels
of about 40% and upwards. Generalization accuracies tend to decrease
more at higher editing rates. Another rather surprising observation in all
three cases is that editing examples randomly is generally less harmful than
editing from either side of the CPS rank at the highest editing rates. Editing
up to 80% of PP examples randomly, or even 90% of the DIMIN examples,
does not result in a lower score than obtained with training on all examples.
At the same editing levels, editing examples from either side of the CPS

rank does lead to lower accuracies on test data.

120 ABSTRACTION AND GENERALIZATION

On the other hand, editing CPS-ranked instances can be done unpun-
ished up to rather high editing rates, and this effect extends beyond the
group of examples that was edited right away because they had no CPS

value (they were not a nearest neighbor to any other training example).
Markedly low performances, such as displayed in the graph representing
the experiments with the PP task (the lower graph of Figure 6.3), occur
when editing more than 40% of all examples ranked from high to low CPS.
At 40% of this rank, the CPS is already quite low. The examples at this
point in the rank are examples which are, roughly, both a nearest neighbor
to examples of their own class and to examples of different classes.
Rather than being isolated examples surrounded by different-class nearest
neighbors, they lie at the border of a class area occupied by several same-
class nearest neighbors, while directly facing several different-class nearest
neighbors at the other side of the border. These “class-area guarding”
examples might be important examples to actually keep in memory.

Some examples may be useful as illustrations. The PP data representing
English prepositional phrase attachment, has examples containing head-
word patterns such as eat pizza with Eleni. An example with a high CPS is is

producer of sugar. It receives a CPS value of 0.986, on the basis of the fact that
it is a nearest neighbor of 177 fellow training examples, predicting a correct
class (noun attachment) in 176 cases. The one nearest neighbor with a
different class is accuses Motorola of turnabout, one of the few examples with
the preposition of in which the prepositional phrase is actually attached to
the verb.

A PP example with a very low CPS value is conducted inquiry into activities,
an example of noun attachment. It is the nearest neighbor to 32 fellow
training examples which all represent cases of verb attachment. Examples
of verb-attachment nearest neighbors include bring charges into line, implant

tissue into brain, and extend battles into towns. The conducted inquiry into

activities example is a minority example of a noun-attached collocation
(inquiry into) in a majority neighborhood of verb attachments with into.

To conclude our illustration, the examples displayed in Table 6.4 have a
CPS value of about 0.5. Supposedly these are examples of the relatively
interesting group of border training examples. All shown examples
represent a specific attachment ambiguity. For instance, the first example,
improve controls on branches, a case of noun attachment according to
the original labeling, contains the collocationally strong improve on verb
attachment pattern, but also the controls on noun attachment pattern. As
the nearest-neighbor statistics in Table 6.4 show, they predict an incorrect
class in about as many cases as they predict a correct class for fellow

6.2. EDITING EXAMPLES 121

Number of nearest neighbors
Example Attachment same class other class

improve controls on branches noun 44 46
affect security for years verb 5 5
is time for Japan noun 48 51
owned store in Cleveland noun 11 11
insures benefits for workers verb 9 8

Table 6.4: Five examples with a CPS value of about 0.5, having about as
many nearest neighbors with the same class as with a different class.

training examples. This does not mean, however, that the classifications
these examples are involved in are of low quality or chance. In the ten
times the second example affect security for years is a nearest neighbor of
other training examples, in eight cases the total nearest neighbor set (with
k = 7 for PP) votes for the correct class, despite the fact that this particular
example votes for the incorrect class five times.

The editing experiments presented so far edit examples in an incremen-
tal way, according to a ranking criterion. Another view on the effects of
editing can be obtained by not editing incrementally, but by holding out
subgroups of examples in the same CPS rank. We performed two additional
series of editing experiments holding out portions of the data. In the first
experiment, we held out each consecutive 10% of the examples, ranked
according to their CPS, and trained each time on the remaining 90% training
data while testing on the regular test sets. In the second series, as a mirror
of the first, we take only the consecutive 10% held-out sets as the training
material, and tested on the regular test sets. We perform these experiments
on GPLURAL, DIMIN, PP, and CHUNK; the results are displayed in Figure 6.4.

The held-out experiments show, as our earlier results, that removing
most of the 10% portions does not seriously harm generalization accuracy.
The mirror experiments, however, in which we use only the 10% held-
out partitions as training material, do show interesting differences. For
three of the four tasks the best performance is obtained with the set of
examples in the third partition, between the 20% and 30% mark in the CPS

rank. With the GPLURAL task, this partition contains examples with a CPS

between 0.70 and 0.79. With the DIMIN task the examples range between
0.88 and 0.92; with CHUNK the range is 0.83–0.88. In these three cases, the
“best” examples that as a group provide the best classifications of test data,

122 ABSTRACTION AND GENERALIZATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

German plural

10% held-out
only 10%
no editing

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Dutch diminutives

10% held-out
only 10%
no editing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

% of CPS-ranked examples

English PP attachment

10% held-out
only 10%
no editing

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
c
c
u
ra

c
y

% of CPS-ranked examples

English base phrase chunking

10% held-out
only 10%
no editing

Figure 6.4: Generalization accuracies on GPLURAL, DIMIN, and PP, and F-
scores on CHUNK, obtained in editing experiments in which equally-sized
10% partitions of CPS-ranked instances are edited from the full training
sets (solid lines), or when these 10% partitions are used in isolation for
classification (dashed lines). The thin dotted lines represent the scores of
IB1 on the four tasks without editing.

represent again the important group of borderline cases with a majority
of same-class friendly neighbors, but with a significant amount (between
about 20% and 30%) of unfriendly nearest neighbors at the other side of
the class border.

The results in Figure 6.4 also show that the examples at the far end of
the CPS range are not useful as examples to solely base classifications on.
This is not surprising for examples with a low CPS on the training data.
Examples at the high end of the CPS scale, however, also appear to miss
some generalization power. Presumably, this is because these instances are
positioned at quite a large distance from the actual class borders; leaving
the areas around these borders unguarded might have the effect that the
actual class decisions do not follow the actual borders, leading to relatively

6.3. WHY FORGETTING EXAMPLES CAN BE HARMFUL 123

more errors.
In sum, we observe a special importance of examples that are at the

borders of their class area. The importance of these examples bears
an interesting resemblance to a well-known principle of support vector
machines (Cortes & Vapnik, 1995; Schölkopf et al., 1995), namely that
with a proper kernel and a two-way classification task, the original set
of training examples can be reduced (edited) down to a small subset of
so-called support vectors, i.e., those examples that are closest (yet with a
maximized margin) to the hyperplane separating the two class areas. The
support vectors can be said to label and guard their class area much in the
same way as the middle-CPS cases do.

6.3 Why forgetting examples can be harmful

We provide a number of analyses all contributing to an understanding
of why and in what circumstances forgetting examples can be harmful
to generalization accuracy. We attempt to find explanations through
analyzing generic statistical properties of NLP task data, and by per-
forming additional analyses on the outcomes of the experiments with IB1
on these data, testing whether exceptionality or typicality of examples
involved in classification (estimated by CPS) relates to the quality of those
classifications.

NLP tasks are hard to model and also hard to learn in terms of broad-
coverage rules, because apart from obvious regularities, they also tend
to contain many sub-regularities and (pockets of) exceptions. In other
words, apart from a core of generalizable regularities, there is a relatively
large periphery of irregularities (Daelemans, 1996). In rule-based NLP,
this problem has to be solved using mechanisms such as rule ordering,
subsumption, inheritance, or default reasoning (in linguistics this type of
“priority to the most specific” mechanism is called the elsewhere condition).
In the memory-based perspective this property is reflected in the high
degree of disjunctivity of the example space: classes exhibit a high degree
of polymorphism, or phrased alternatively, they are scattered over so many
small areas in the class space that each needs at least one representative
example to guard the class borders.

124 ABSTRACTION AND GENERALIZATION

Degree of polymorphism

One way of estimating the degree of polymorphism, or the degree of
scatteredness of classes in small class areas, is to make counts of the
numbers of “friendly” (same-class) neighbors per example in a leave-
one-out experiment. For each example in the six data sets a distance
ranking of all other training examples is produced. Within this ranked
list we note the ranking number of the first nearest neighbor with a
different class. This rank number is then taken as the number of friendly
neighbors surrounding the held-out example, and all friendly examples
in the area are subsequently removed from the list of examples to be
held out (since their counts are mutual). If, for example, a held-out
example is surrounded by three examples of the same class at distance
0.0 (i.e., no mismatching feature values), followed by a fourth nearest-
neighbor example of a different class at distance 0.3, the held-out example
is counted as having three friendly neighbors. The counts from the six
leave-one-out experiments are displayed graphically in Figure 6.5. The
x-axis of Figure 6.5 denotes the numbers of friendly neighbors found
surrounding examples with up to 50 friendly neighbors; the y-axis denotes
the cumulative percentage of occurrences of friendly-neighbor clusters of
particular sizes.

The cumulative percentage graphs in Figure 6.5 show that in all six
tasks relatively many examples have but a few friendly neighbors. In the
MORPH task data, over 50% of all examples have less than ten friendly
nearest neighbors. In all task data sets there are more isolated examples
without friendly neighbors than examples with just one friendly neighbor.
The average percentage of isolated examples (i.e., the starting points of the
cumulative curves) is roughly 15%. By definition these isolated examples
will have a low CPS when measured on training material, if they are ever
the nearest neighbor of any other example. However, this does not mean
that they are by definition useless in predicting the class of new, unseen
examples. Also, they are certainly useful when the same example would
recur in test data – and in language data exceptions do recur.

Usefulness of exceptional examples

For our editing experiments we measured each training example’s CPS.
To evaluate whether CPS is actually a good estimate of the regularity or
exceptionality of an example, we can measure how a training example
actually performs as a nearest neighbor to test instances, rather than to

6.3. WHY FORGETTING EXAMPLES CAN BE HARMFUL 125

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

Number of friendly neighbors

GPLURAL
DIMIN

MORPH
PP

CHUNK
NER

Figure 6.5: Cumulative percentages of friendly-neighbor clusters of sizes 0
to 50, as found in the GPLURAL, DIMIN, PP, and CHUNK data sets.

training examples. In Figure 6.6 we visualize the outcome of one analysis
we performed on the GPLURAL, DIMIN, PP, and CHUNK tasks. The scatter
plots in Figure 6.6 relate each example’s CPS as measured in a leave-one-
out experiment on training material (x-axis) to its actual CPS as measured
on the test data (y-axis). Each point represents one or more examples. As
all four scatter plots show, there is an apparent rough correlation between
the two, but also a considerable amount of deviation from the x = y
diagonal. This means that, interestingly, test data only partly follow the
class borders present in the training set. Or alternatively put, the test data
contain a lot of counter-evidence to the class areas assumed by the training
examples, for all four tasks displayed. Sometimes low-CPS examples (bad
neighbors) in the training data become excellent predictors of their class
in test data; alternatively, high-CPS examples can be bad predictors of new
test instances’ classes.

In other words, bad neighbors or exceptional examples in the training
data do not necessarily lead to classification errors in test data. A second
insightful quantitative analysis of the relation between CPS and actual
classification behavior on test data is visualized for the GPLURAL, DIMIN,

126 ABSTRACTION AND GENERALIZATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
P

S
 i
n
 t
e
s
t
s
e
t

German plural

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Dutch diminutives

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
P

S
 i
n
 t
e
s
t
s
e
t

CPS in training set

English PP attachment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

CPS in training set

English base phrase chunking

Figure 6.6: Scatter plots of CPS values of training examples when measured
on a leave-one-out experiment on training data (horizontal) and when
classifying test data (vertical) on four NLP tasks.

PP, and CHUNK tasks in Figure 6.7. For each of the four tasks two surfaces
are plotted in a three-dimensional space, where one surface represents
all 1-nearest neighbors of test instances that predict the correct class
(labeled “friendly”), and the other surface represents all remaining 1-
nearest neighbors that predict the incorrect class (labeled “unfriendly”).
For all nearest neighbors, their CPS in the training set is related to their
actual distance to the test instance on the x and y axes. The actual numbers
of friendly and unfriendly nearest neighbors were aggregated in a 10 × 10
matrix, each dimension represented by ten equal-width bins of normalized
distance and CPS, respectively. In Figure 6.7 the z axis represents these bare
counts in a logarithmic scale.

If low-CPS examples would always cause misclassifications, then the
“unfriendly” surfaces would be positioned above the “friendly” surfaces
in the front areas of the four surface plots, at the lower values of CPS.
In the experiments on the four tasks, however, the “unfriendly” surfaces

6.3. WHY FORGETTING EXAMPLES CAN BE HARMFUL 127

German plural

friendly
unfriendly

 0 1 2 3 4 5 6 7 8 9Distance 0
 1 2 3 4

 5 6 7 8
 9

CPS

 1

 10

 100

 1000

 10000

No. of nearest neighbors

Dutch diminutive

friendly
unfriendly

 0 1 2 3 4 5 6 7 8 9Distance 0
 1 2 3 4

 5 6 7 8
 9

CPS

 1

 10

 100

 1000

No. of nearest neighbors

English PP attachment

friendly
unfriendly

 0 1 2 3 4 5 6 7 8 9Distance 0
 1 2 3 4

 5 6 7 8
 9

CPS

 1

 10

 100

 1000

No. of nearest neighbors

English base phrase chunking

friendly
unfriendly

 0 1 2 3 4 5 6 7 8 9Distance 0
 1 2 3 4

 5 6 7 8
 9

CPS

 1

 10

 100

 1000

 10000

No. of nearest neighbors

Figure 6.7: Surface plots of the number of nearest neighbors (z-axis; log-
scale) as a function of CPS (counted in 10% CPS intervals) and normalized
distance of the nearest neighbor. Each plot contains a separate surface for
friendly neighbors (predicting a correct class) and unfriendly neighbors
(predicting an incorrect class).

are positioned under the friendly surfaces except slightly in the far corner
representing the cases with the lowest CPS. In these areas there are also still
substantial amounts of low-CPS examples that predict the correct class.

In other words, misclassifications hardly ever outnumber correct clas-
sifications at any interval, except at the lowest values of CPS. In fact,
most examples at the lower half of the CPS spectrum (below 0.5) cause
correct classifications. This is a significant finding – although relatively
more classification errors are due to low-CPS or “exceptional” examples,
it is not the case that the use of low-CPS examples as nearest neighbors
exclusively leads to errors - on the contrary. This explains why removing
low-CPS examples does not improve (or hardly improves) generalization
accuracy, and tends to lead to lower accuracies when more examples are
edited.

128 ABSTRACTION AND GENERALIZATION

6.4 Generalizing examples

While keeping full memory may be a safe guideline to avoid any eventual
harmful effect of editing, it is still interesting and tempting to explore
other means to reduce the need for memory, provided that performance
is not harmed. As we have illustrated in the previous section, quite
large amounts of examples can be forgotten while retaining a similar
performance as the memory-based learner with full memory. The point
at which performance starts degrading, however, is unpredictable from the
results presented so far. In this section we explore methods that attempt to
abstract over memorized examples in a different and more careful manner,
namely by merging examples into generalized examples, using various
types of merging operations.

We start, in subsection 6.4.1, with an overview of existing methods
for generalizing examples in memory-based learning. Subsequently we
present FAMBL, a memory-based learning algorithm variant that merges
same-class nearest-neighbor examples into “families”. In subsection 6.4.3
we compare FAMBL to pure IB1 on the same range of NLP tasks as
introduced in the previous section.

6.4.1 Careful abstraction in memory-based learning

Early work on the k-NN classifier pointed at advantageous properties of the
classifier in terms of generalization accuracies, under certain assumptions,
because of its reliance on full memory (Fix & Hodges, 1951; Cover & Hart,
1967). However, the trade-off downside of full memory is computational
inefficiency of the classification process, as compared to classifiers that do
abstract from the learning material. Therefore, a part of the early work
in k-NN classification focused on editing methods, as touched upon in the
previous section.

The renewed interest in the k-NN classifier from the late 1980s onwards
in the AI subfield of machine learning (Stanfill & Waltz, 1986; Stanfill, 1987;
Aha et al., 1991; Salzberg, 1991) caused several new implementations of
ideas on criteria for editing, but also other approaches to abstraction in
memory-based learning emerged. In this subsection we present FAMBL,
a carefully-abstracting memory-based learning algorithm. FAMBL merges
groups of very similar examples (families) into family expressions.

6.4. GENERALIZING EXAMPLES 129

Carefully merged examples

Paths in decision trees can be seen as generalized examples. In IGTREE

and C4.5 (Quinlan, 1993) this generalization is performed up to the point
where no actual example is left in memory; all is converted to nodes and
arcs. Counter to this decision-tree compression, approaches exist that start
with storing individual examples in memory, and carefully merge some
of these examples to become a single, more general example, only when
there is some evidence that this operation is not harmful to generalization
performance. Although overall memory is compressed, the memory still
contains individual items on which the same k-NN-based classification can
be performed. The abstraction occurring in this approach is that after a
merge, the merged examples incorporated in the new generalized example
are deleted individually, and cannot be reconstructed. Example approaches
to merging examples are NGE (Salzberg, 1991) and its batch variant BNGE

(Wettschereck & Dietterich, 1995), and RISE (Domingos, 1996). We provide
brief discussions of two of these algorithms: NGE and RISE.

NGE (Salzberg, 1991), an acronym for Nested Generalized Exemplars,
is an incremental learning theory for merging examples (or exemplars,
as Salzberg prefers to refer to examples stored in memory) into hyper-
rectangles, a geometrically motivated term for merged exemplars. NGE2

adds examples to memory in an incremental fashion (at the onset of
learning, the memory is seeded with a small number of randomly picked
examples). Every time a new example is presented, it is matched with
all exemplars in memory, which can be individual or merged exemplars
(hyperrectangles). When it is classified correctly by its nearest neighbor
(an individual exemplar or the smallest matching hyperrectangle), the new
example is merged with it, yielding a new, more general hyperrectangle.

Figure 6.8 illustrates two mergings of examples of the German plural
task with exemplars. On the top of figure 6.8, the example -urSrIftF (from the
female-gender word Urschrift), labeled with class en (representing the plural
form Urschriften), is merged with the example t@rSrIftF (from the female-
gender word Unterschrift), also of class en, to form the generalized exemplar
displayed on the right-hand side. On the first two features, a disjunction is
formed of, respectively, the values - and t, and u and @. This means that
the generalized example matches on any other example that has value - or
value t on the first feature, and any other example that has value u or value
@ on the second feature.

2Salzberg (1991) makes an explicit distinction between NGE as a theory, and the learning
algorithm EACH as the implementation; we will use NGE here to denote both.

130 ABSTRACTION AND GENERALIZATION

� �� � � � �� � � 	

� �
 � � � �� � � 	

� �� � � � �� � � 	

�
�

 � � � �� � � 	�
�

�
�

 � � � �� � � 	�
�

�
�

�

� � � �� � � 	
�

�
�

Figure 6.8: Two examples of the generation of a new hyperrectangle in NGE:
from a new example and an individual exemplar (top) and from a new
example and the hyperrectangle from the top example (bottom).

The lower part of Figure 6.8 displays a subsequent merge of the
newly generalized example with another same-class example, forSrIftF (the
female-gender word Forschrift), which leads to a further generalization of
the first two features.

In nested generalized examples, abstraction occurs because it is not
possible to retrieve the individual examples nested in the generalized
example; new generalization occurs because the generalized example
not only matches fully with its nested examples, but would also match
perfectly with potential examples with feature-value combinations that
were not present in the nested examples; the generalized example in
Figure 6.8 would also match torSrIft, f@rSrIft, furSrIft, -orSrIft. These examples
do not necessarily match existing German words, but they might – and
arguably they would be labeled with the correct plural inflection class.

RISE (Rule Induction from a Set of Exemplars) (Domingos, 1995; Domingos,
1996) is a multi-strategy learning method that combines memory-based
learning with rule-induction (Michalski, 1983; Clark & Niblett, 1989; Clark
& Boswell, 1991). As in NGE, the basic method is that of a memory-based
learner and classifier, only operating on a more general type of example.
RISE learns a memory filled with rules which are all derived from individual
examples. Some rules are example-specific, and other rules are generalized
over sets of examples.

RISE inherits parts of the rule induction method of CN2 (Clark &
Niblett, 1989; Clark & Boswell, 1991). CN2 is an incremental rule-induction
algorithm that attempts to find the “best” rule governing a certain amount
of examples in the example base that are not yet covered by a rule.
“Goodness” of a rule is estimated by computing its apparent accuracy

6.4. GENERALIZING EXAMPLES 131

� �� � � � �� � � 	

� �
 � � � �� � � 	

� �� � � � �� � � 	

� �
 � � � �� � � 	

 �� � � � �� � � 	

�� � � � �� � � 	�

Figure 6.9: An example of an induced rule in RISE, displayed on the right,
with the set of examples that it covers (and from which it was generated)
on the left.

(which is class prediction strength, Cost & Salzberg, 1993) with Laplace
correction (Niblett, 1987; Clark & Boswell, 1991).

RISE induces rules in a careful manner, operating in cycles. At the onset
of learning, all examples are converted to example-specific rules. During
a cycle, for each rule a search is made for the nearest example not already
covered by it that has the same class. If such an example is found, rule and
example are merged into a more general rule. Instead of disjunctions of
values, RISE generalizes by inserting wild card symbols (that match with
any other value) on positions with differing values. At each cycle, the
goodness of the rule set on the original training material (the individual
examples) is monitored. RISE halts when this accuracy measure does not
improve (which may already be the case in the first cycle, yielding a plain
memory-based learning algorithm).

Figure 6.9 illustrates the merging of individual examples into a rule.
The rule contains seven normally valued conditions, and two wild cards,
‘*’. The rule now matches on every female-gender example ending in SrIft

(Schrift).
RISE classifies new examples by searching for the best-matching rule,

always selecting the rule with the highest Laplace accuracy (Clark &
Boswell, 1991). As a heuristic add-on for dealing with symbolic values,
RISE incorporates a value-difference metric (Stanfill & Waltz, 1986; Cost &
Salzberg, 1993) by default, called the simplified value-difference metric (SVDM)
due to its simplified treatment of feature-value occurrences in the VDM

function (Domingos, 1996).

132 ABSTRACTION AND GENERALIZATION

�

�

�

�

�

�

� �

�

� � � � � � � � �

	
 � � �

� �
 � � � � � � � � �
 � � �

Figure 6.10: An example of a family in a two-dimensional example space
(left). The family, at the inside of the circle, spans the focus example
(marked with number 1) and the three nearest neighbors labeled with the
same class (indicated by their color). When ranked in the order of distance
(right), the family boundary is put immediately before the first example of
a different class, the gray example with number 5.

FAMBL: merging example families

FAMBL, for FAMily-Based Learning, is a variant of IB1 that constitutes an
alternative approach to careful abstraction over examples. The core idea
of FAMBL, in the spirit of NGE and RISE, is to transform an example base
into a set of example family expressions. An example family expression is a
hyperrectangle, but the procedure for merging examples differs from that
in NGE or in RISE. First, we outline the ideas and assumptions underlying
FAMBL. We then give a procedural description of the learning algorithm.

Classification of an example in memory-based learning involves a
search for the nearest neighbors of that example. The value of k in k-NN

determines how many of these neighbors are used for extrapolating their
(majority) classification to the new example. A fixed k ignores (smoothes)
the fact that an example is often surrounded in example space by a number
of examples of the same class that is actually larger or smaller than k.
We refer to such a variable-sized set of same-class nearest neighbors as
an example’s family. The extreme cases are on the one hand examples
that have a nearest neighbor of a different class, i.e., they have no family
members and are a family on their own (and have a CPS of 0.0, cf.
section 6.1), and on the other hand examples that have as nearest neighbors
all other examples of the same class.

6.4. GENERALIZING EXAMPLES 133

� �� � � � �� � � 	

� �
 � � � �� � � 	

� �� � � � �� � � 	

� �
 � � � �� � � 	

 �� � � � �� � � 	

�
�

�

�
� � � �� � � 	

�
�
�

�

Figure 6.11: An example of family creation in FAMBL. Five German plural
examples (left) are merged into a family expression (right).

Thus, families represent same-class clusters in example space, and the
number and sizes of families in a data set reflect the disjunctivity of the data
set: the degree of scatteredness of classes into clusters. In real-world data
sets, the situation is generally somewhere between the extremes of total
disjunctivity (one example per cluster) and no disjunctivity (one cluster per
class). Many types of language data appear to be quite disjunct (Daelemans
et al., 1999), and we have provided an analysis of the disjunctivity of the
six benchmark tasks used in this chapter in section 6.3 (in particular, cf.
Figure 6.5) that illustrates this fact. In highly disjunct data, classes are
scattered among many small clusters, which means that examples have few
nearest neighbors of the same class on average.

Figure 6.10 illustrates how FAMBL determines the family of an example
in a simple two-dimensional example space. All nearest neighbors of a
randomly picked starting example (marked by the black dot) are searched
and ranked in the order of their distance to the starting example. Although
there are five examples of the same class in the example space, the family of
the starting example contains only three examples, since its fourth-nearest
example is of a different class.

Families are converted in FAMBL to family expressions, which are hyper-
rectangles, by merging all examples belonging to that family simultane-
ously. Figure 6.11 illustrates the creation of a family expression from an
example family. In contrast with NGE,

• family expressions are created in one non-incremental operation on
the entire example base, rather than by step-wise nesting of each
individual family member;

134 ABSTRACTION AND GENERALIZATION

• a family is abstracted only once and is not merged later on with other
examples or family expressions;

• families cannot contain “holes”, i.e., examples with different classes,
since the definition of family is such that family abstraction halts as
soon as the nearest neighbor with a different class is met in the local
neighborhood.

The general modus of operation of FAMBL is that it randomly picks
examples from an example base one by one from the set of examples
that are not already part of a family. For each newly picked example,
FAMBL determines its family, generates a family expression from this set
of examples, and then marks all involved examples as belonging to a
family (so that they will not be picked as a starting point or member of
another family). FAMBL continues determining families until all examples
are marked as belonging to a family.

Families reflect the locally optimal k surrounding the example around
which the family is created. The locally optimal k is a notion that is
also used in locally weighted learning methods (Vapnik & Bottou, 1993;
Wettschereck & Dietterich, 1994; Wettschereck, 1994; Atkeson et al., 1997);
however, these methods do not abstract from the learning material. In this
sense, FAMBL can be seen as a local abstractor.

The FAMBL algorithm converts any training set of labeled examples to
a set of family expressions, following the procedure given in Figure 6.12.
In essence, FAMBL continuously selects a random example, and extends
it to a family expression, until all examples are captured in a family.
After learning, the original example base is discarded, and further clas-
sification is based only on the set of family expressions yielded by the
family-extraction phase. Classification in FAMBL works analogously to
classification in pure memory-based learning (with the same similarity and
weighting metrics as we used so far with MBL): a match is made between
a new test example and all stored family expressions. When a family
expression contains a disjunction of values for a certain feature, a match
is counted when one of the disjunctive values matches the value at that
feature in the new example. How the match is counted exactly depends
on the similarity metric. With the overlap metric, the feature weight of
the matching feature is counted, while with the MVDM metric the smallest
MVDM distance among the disjuncted feature values is also incorporated in
the count.

6.4. GENERALIZING EXAMPLES 135

Procedure FAMBL FAMILY-EXTRACTION:

Input: A training set TS of examples I1...n, each example being labeled with a family-
membership flag set to FALSE

Output: A family set FS of family expressions F1...m, m ≤ n

i = f = 0

1. Randomize the ordering of examples in TS

2. While not all family-membership flags are TRUE, Do

• While the family-membership flag of Ii is TRUE Do increase i

• Compute NS, a ranked set of nearest neighbors to Ii with the same
class as Ii, among all examples with family-membership flag FALSE.
Nearest-neighbor examples of a different class with family-membership
flag TRUE are still used for marking the boundaries of the family.

• Set the membership flags of Ii and all remaining examples in NS to TRUE

• Merge Ii and all examples in NS into the family expression Ff and store
this expression along with a count of the number of example merged in
it

• f = f + 1

Figure 6.12: Pseudo-code of the family extraction procedure in FAMBL.

6.4.2 Getting started with FAMBL

FAMBL has been implemented as a separate software package.
It offers the Fambl executable which offers the same similarity
and weighing functions as TIMBL. Its output in the terminal
where FAMBL is run, however, provides some additional
statistical information on the families extracted.
On the German plural data set introduced in chapter 3, the
basic FAMBL command to be issued would be the following:

% Fambl -f gplural.train -t gplural.test

136 ABSTRACTION AND GENERALIZATION

Fambl (Family-based learning), version 2.2.1, 1 November 2004

(c) 1997-2004 ILK Research Group, Tilburg University

http://ilk.uvt.nl / antalb@uvt.nl

current time: Thu Nov 11 20:36:05 2004

metric scheme set to GR feature wgts, no distance wgts, MVDM

sorting and reading data base gplural.train

data base has 12584 instances

7701 instance types

7 features

8 classes

computing feature gain ratio values

feature 0 (73 values): 0.026694

feature 1 (27 values): 0.048522

feature 2 (77 values): 0.062067

feature 3 (81 values): 0.065165

feature 4 (24 values): 0.218643

feature 5 (74 values): 0.204404

feature 6 (8 values): 0.463801

average gain ratio: 0.155614

presorting and rereading instance base gplural.train

computing MVDM matrices

took 0 seconds

<*> family extraction stage started

families : 3435

average # members : 3.6635

average k distances : 1.8908

average description length (bytes): 77.8748

compression (raw memory) : 33.5714 %

compression (vs instance types) : 3.5118 %

#type vs. #fam reduction : 55.3954 %

clusteredness : 817.72

took 6 seconds

After reading the training examples, FAMBL commences its
family extraction phase, reporting on the progress, and upon
completion, reporting on the statistics of the extracted family
expressions. This particular FAMBL run compresses the
German plural training set of 12,584 examples into 3,163
family expressions, with an average membership of about 4
examples, spread over about 2 distances on average. The
average family in the current implementation takes about 80
bytes to store, which leads to a memory compression rate of
about 37%, and 59% compression in the number of family
expressions as compared with the original number of example
types.
Subsequently, FAMBL classifies the test set, reporting on
progress and, upon completion, reports on the percentage of
correctly classified test instances. An output file is created of
which the name follows a syntax similar to that of the output
files of TIMBL.

6.4. GENERALIZING EXAMPLES 137

The current example introduces one new symbol, K, which
is the number of distances that can maximally be taken into
account in family creation. The default value of K is 3.

<*> starting test with k=1

writing output to gplural.test.Fambl.M.gr.k1.K3.out

1000 instances processed, 93.5000 % correct

2000 instances processed, 93.6000 % correct

....

12000 instances processed, 93.8500 % correct

11803 instances out of 12584 classified correctly

Fambl score: 93.7937 % correct instances

took 18 seconds

(699.11 instances per second)

<*> current time: Thu Nov 11 20:36:29 2004

Fambl spent a total of 24 seconds running;

6 on learning, 18 on testing.

Fambl ready.

After it has classified the test data, FAMBL closes with
reporting on the percentage of correctly classified test
instances, and the number of seconds (elapsed wall clock time)
that were involved in classification.

6.4.3 Experiments with FAMBL

We performed experiments with FAMBL on the same six language pro-
cessing tasks used earlier in this chapter with the editing experiments.
As a first experiment, we varied both the normal k parameter (which
sets the number of distances in the nearest neighbor set used in k-NN

classification), and the FAMBL-specific parameter that sets the maximum
k distances in the family extraction stage, which we will refer to as K (the
-K parameter in the command-line version of FAMBL). The two parameters
are obviously related - the K can be seen as a preprocessing step that “pre-
compiles” the k for the k-NN classifier. The k-NN classifier that operates
on the set of family expressions can be set to 1, hypothetically, since the
complete example space is pre-partitioned in many small regions of various
sizes (with maximally K different distances) that each represent a locally
appropriate k.

If the empirical results would indeed show that k can be set to 1 safely
when K is set at an appropriately large value, then FAMBL could be seen as
a means to factor the important k parameter away from IB1. We performed
comparative experiments with IB1 and FAMBL on the six benchmark tasks,
in which we varied both the k parameter in IB1, and the K parameter in
FAMBL while keeping k = 1. Both k and K were varied in the pseudo-

138 ABSTRACTION AND GENERALIZATION

 80

 85

 90

 95

 100

 1 10 100

A
c
c
u
ra

c
y

German plural

IB1
Fambl

 92

 93

 94

 95

 96

 97

 98

 99

 100

 1 10 100

Dutch diminutives

IB1
Fambl

 72

 74

 76

 78

 80

 82

 84

 1 10 100

A
c
c
u
ra

c
y

Coverage (k or F)

English PP attachment

IB1
Fambl

 86

 88

 90

 92

 94

 1 10 100

Coverage (k or F)

English base phrase chunking

IB1
Fambl

Figure 6.13: Generalization accuracies (in terms of % of correctly classified
test instances) and F-scores, where appropriate, of IB1 with increasing k
parameter, and FAMBL with k = 1 and increasing K parameter.

exponential series [0, 1, . . . , 9, 10, 15, . . . , 45, 50, 60, . . . , 90, 100]. The results
of the experiments are visualized in Figure 6.13.

A very large value of K means that FAMBL incorporates virtually any
same-class nearest neighbor at any furthest distance in creating a family,
as long as there are no different-class nearest neighbors in between. It
would be preferable to be able to fix K at a very high value without
generalization performance loss, since this would effectively factor out not
only the k parameter, but also the K parameter. This situation is represented
quite perfectly in the graph displaying the results of GPLURAL (top left
corner of Figure 6.13). While a larger k in IB1 leads to a steady decline
in generalization accuracy on test data of the GPLURAL task, FAMBL’s
accuracy remains very much at the same level regardless of the value
of K. The results with the other three tasks also show a remarkably
steady generalization accuracy (or F-score, with CHUNK) of FAMBL, with
increasing K, but in all three cases FAMBL’s score is not higher than IB1’s.

6.4. GENERALIZING EXAMPLES 139

Especially with the DIMIN and PP tasks, matching on families rather than
on examples leads to less accurate classifications at wide ranges of K.

The k parameter can, of course, be set at k > 1 in FAMBL as well.
Classification with k > 1 in FAMBL means that the k-nearest families
are sought to base classification on. A larger k might help in smoothing
problematic cases in which a single small nearest neighbor family is
surrounded by different-class families, and a new test instance appears at
the border of the two class areas. For three tasks, GPLURAL, DIMIN, and PP,
we exhaustively ran experiments with increasing K and increasing k, where
we varied k in the range [1 . . . 10]. Figure 6.14 displays the generalization
accuracies of FAMBL as the third axis in a three-dimensional surface plot.
The bottom of the graph displays in grayscale the relative height of each of
the points on the surface grid above it.

Figure 6.14 essentially shows three fairly flat surfaces. If they would
have been entirely flat, then we would have seen strong empirical support
for the claim that both the K and k parameter are effectively factored out
by FAMBL, because the same (high) performance can be obtained with any
combination of values. Also, recall that the generalization accuracies were
close to (or better than, with GPLURAL) IB1’s. What we see, however, is that
with GPLURAL, the surface has two peaking ridges of best scores along the
x and y axes, i.e., at K = 1 and at k = 1; any combination of K > 1 and
k > 1 lead to (slightly) lower generalization accuracies. With DIMIN, the
best accuracies occur with k > 1 and K < 10. With PP, slightly better
accuracies are obtained with higher values of k and K. These surfaces
appear to follow the trends of the IB1 curves in Figure 6.13, which show
minor improvements with k = 10 over k = 1.

While it retains a similar performance to IB1, FAMBL also attains a
certain level of compression. This can be measured in at least two ways.
First, in Figure 6.15 the amount of compression (in terms of percentages)
is displayed of the number of families versus the original number of
examples, with increasing values of K, for four of our tasks. As Figure 6.15
shows, the compression rates converge for all four tasks at similar and
very high levels; between 77% for GPLURAL to 92% for DIMIN. Apparently,
setting K at a large enough value ensures that at that point even the largest
families are identified; typically there will be 100 or less different distances
in any found family.

Some more detailed statistics on family extraction are listed in Table 6.5,
measured for four tasks at the K = 100 mark. The actual number of
families varies widely among the tasks, but this correlates with the number
of training examples (cf. Table 6.1). The average number of members

140 ABSTRACTION AND GENERALIZATION

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

German plural

 1

 10

 100
Family k 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

k in k-NN

 80

 85

 90

 95

 100

Accuracy

 95

 95.5

 96

 96.5

 97

 97.5

 98

Dutch diminutives

 1

 10

 100
Family k 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

k in k-NN

 92

 93

 94

 95

 96

 97

 98

 99

 100

Accuracy

 77

 77.5

 78

 78.5

 79

 79.5

 80

 80.5

 81

 81.5

English PP attachment

 1

 10

 100
Family k 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

k in k-NN

 65

 70

 75

 80

 85

F-score

Figure 6.14: Generalization accuracies (F-score %) by FAMBL on the
GPLURAL, DIMIN, and PP tasks, plotted as a function of the K parameter
(maximal number of distances in one family) and the k parameter (of the
k-NN classifier).

lies at about the same order of magnitude for the four tasks – between
six and thirteen. The table also shows the raw memory compression
when compared with a straightforward storage of the flat example base.
In the straightforward implementation of FAMBL, storing a family with

6.4. GENERALIZING EXAMPLES 141

 0

 20

 40

 60

 80

 100

 1 10 100

%
 F

a
m

ili
e

s
 v

s
.

e
x
a

m
p

le
s
 c

o
m

p
re

s
s
io

n

Maximum family size

GPLURAL
DIMIN

PP
CHUNK

Figure 6.15: Compression rates (percentages) of families as opposed to the
original number of examples, produced by FAMBL at different maximal
family sizes (represented by the x-axis, displayed at a log scale).

Number of Av. number of Memory
Task families members compression (%)

GPLURAL 1,749 7.2 62.0
DIMIN 233 12.9 73.4
PP 3,613 5.8 23.4
CHUNK 17,984 11.8 51.9

Table 6.5: Number of extracted families at a maximum family size of 100,
the average number of family members, and the raw memory compression,
for four tasks.

one example uses more memory than storing one example because of
the bookkeeping information associated with storing possible disjunctions
at each feature. The net gains of the high compression rates displayed
in Figure 6.15 are still positive: from 23% to 73% compression. This is,
however, dependent on the particular implementation.

142 ABSTRACTION AND GENERALIZATION

Task Example family Class

PP attributed gains to demand Verb attachment
attributed improvement to demand

attributed performance to increases

attributed decline to demand

bring focus to opportunities

NP because computers do most of the work B-NP
demand rights to most of the 50

he still makes most of his furs

screens , said most of the top

Table 6.6: Two example families (represented by their members) extracted
from the PP and CHUNK data sets, respectively. The part-of-speech tags in
the CHUNK example family are left out for legibility. The bold words in the
CHUNK example are the focus words in the windows.

Two example families, one for the PP and the other for the CHUNK

task, are displayed in Table 6.6. The first example family, labeled with the
Verb attachment class, represents the attributed . . . to . . . pattern, but also
includes the example bring focus to opportunities, which is apparently the
closest neighbor to the other four examples having the same class. The
second family represents cases of the beginning of a noun phrase starting
with most of. The context left of most of deviates totally between the four
examples making up the family, while the right context represents a noun
phrase beginning with the or his. This family would also perfectly match
sentence fragments inside the family hyperrectangle, such as because

computers do most of the top, or he still makes most of the 50, and many
more recombinations. Analogously, the PP family example displayed in
Table 6.6 would also perfectly match attributed decline to increases, bring focus

to demand, etcetera.
Overall, the comparison between FAMBL and IB1 shows that FAMBL

does not profit from the relatively large generalizing capacity of family
expressions, that in principle would allow some unseen examples attain
a higher score in the similarity function. Apart from the question whether
this relative re-ranking of examples would have any effect on classification,
it is obvious that many examples covered by family expressions are
unlikely to occur — consider, for example, because computers do most of

his furs.

6.5. CONCLUSION 143

We conclude that FAMBL has two main merits. First, FAMBL can
compress an example base down to a smaller set of family expressions
(or, a generalizing hyperrectangle), attaining various compression rates in
the same ballpark as attained by editing methods, but with a very steady
generalization accuracy that is very close to IB1’s. Second, FAMBL almost
factors the k parameter out. Fairly constant performance was observed
while keeping k = 1 and varying K, the maximal number of family
members, across a wide range of values. To sum up, FAMBL is a successful
local k pre-compiler.

The relation between FAMBL and editing based on CPS is that FAMBL

actively preserves class borders, since these borders by definition mark
the outer edges of the hyperrectangles that FAMBL builds. Arguably,
by being more careful about class borders, FAMBL is more successful
as an abstraction method than CPS-based editing. Success, however, is
constrained in both cases to compression; abstraction does not lead to
performance gains.

6.5 Conclusion

Memory-based learning is the opposite of what the minimal description
length (MDL) principle recommends a learning algorithm to be. It does
not search for a minimally-sized model of the classification task for which
examples are available. Rather, it stores all examples in memory — it
settles for a state of maximal description length. This extreme bias makes
memory-based learning an interesting comparative case against so-called
eager learners, such as decision tree induction algorithms and rule learners,
that do adhere to the MDL. If the MDL is right, then the hypothesis is
that memory-based learning produces less optimal models, in terms of
generalization performance, than eager learners do.

This hypothesis is too strong; eager learners are not entirely faithful to
the MDL. The definition of MDL discerns between the size of the abstracted
model on the one hand, and the size of the exception list on the other hand
that is needed to capture a recurring set of examples that do not fit the
abstracted model (Rissanen, 1983). Eager learners typically only focus on
inducing an abstracted model and do not produce an exception list to go
with the model. In inducing the abstracted model, eager learners filter out
noise, usually by searching for low-frequency events and events that seem
to contradict their local neighborhood in the feature space according to tests
(e.g., statistical tests using the binomial distribution). The classical C4.5

144 ABSTRACTION AND GENERALIZATION

algorithm offers two pruning parameters that filter noise in these two ways
(Quinlan, 1993). Indeed, if noise is defined as a random source that can
freely change feature values and class labels into incorrect values, then by
that definition it is not only safe, but also a good idea to ignore noise. It is
wise not to waste any space in the abstracted model on them, and it is also
unnecessary to store them in an exception list, since random noise will not
reoccur.

Indeed, data sets of many real-world tasks contain noise, and decision-
tree pruning techniques such as C4.5 (Quinlan, 1993) and rule pruning
techniques such as RIPPER (Cohen, 1995) are known to be succesful noise
filters. But also in memory-based learning noise filtering is an issue. In
their seminal paper on instance-based learning, Aha et al. (1991) describe
the two instance-based learners IB2 and IB3, that both actively filter out
noise by editing examples. Due to its reliance on local neighborhood, the k-
NN classifier is extremely sensitive to noise, especially with k = 1 (Wilson,
1972; Tomek, 1976).

Yet, our results contradict the assumption that eager learners are better
than lazy learners. The results show that IB1 outperforms RIPPER on
six NLP tasks, often by wide margins. Earlier we compared IB1 to
C4.5 (Daelemans et al., 1999), attaining an equal performance on one
task (English part-of-speech tagging), but yielding significantly better
performance of IB1 over C4.5 on English grapheme-phoneme conversion
and PP-attachment.

This contradiction has a two-fold explanation. First, the NLP data on
which we base our studies hardly contain noise. The data sets we use, the
Penn Treebank and CELEX-2, were very carefully annotated and checked
for errors. Second, all six language data sets contain many individual
examples that have deviating class labels from their nearest neighbors,
as for example Figure 6.5 showed, so they can be said to contain a large
amount of exceptions that can recur eventually in new data. On the basis of
this we conclude that any algorithm that decides to discard low-frequency
examples dissimilar to their local neighborhood is at a disadvantage to
language data as compared to memory-based learning.

Our editing experiments furthermore brought to light that editing never
clearly improved generalization results; it largely harmed them when
larger amounts of examples were edited, no matter by what criterion.
Most damage appeared to be inflicted by removing examples that could be
likened to support vectors from support vector machines , i.e., examples
close to a hyperplane border between classes; the least damage was
inflicted by randomly removing examples, making the memory gradually

6.6. FURTHER READING 145

but uniformly more sparse. Closer analyses showed that many examples
with a low CPS actually turned out very good predictors when they were
used as nearest neighbors, while many other examples with a high CPS

turned out bad predictors for new data. If anything, this indicates that
it does not make sense to uphold a division of examples into exceptional
and regular ones, since both may recur in new data and both may be good
neighbors. Indeed, memory-based learning does not make this division
and treats all examples equally, as if they form one big exception list and
no model. Arguably, the MDL principle may not be violated at all here
— for NLP data it might mean that there is simply not much that can be
abstracted or minimized without weakening the model.

Our experiments with FAMBL show that some compression of the
examples in memory can in fact be attained, not by editing examples,
but rather by forming generalized examples (families) that uphold the
original class borders in the data. Some example-specific information
is lost in this process, but judging from the results it appears to be
important that the class borders within the data are maintained — FAMBL

displays very stable generalization performance scores close to IB1’s. An
additional advantage of FAMBL is that it appears to render the k parameter
redundant; with k = 1, families can be formed with a wide range of
limits on numbers of family members without considerable deviations
from generalization performance. Still, all the effort put in abstraction
from examples to families in FAMBL does not lead to performance gains,
just as editing failed to achieve. We have quite some evidence now that
abstracting from data is not helpful in learning NLP tasks in terms of
optimal generalization performance; only when interested in speed gains
and memory-lean models, at the cost of (sometimes mild) performance
losses, do abstracting methods such as FAMBL, IGTREE, and TRIBL , and
eager learners such as RIPPER and C4.5 offer opportunities.

6.6 Further reading

This chapter is a reconstruction and extension with more analysis and
slightly different results of research presented earlier in Daelemans et al.
(1999) on the harmfulness of forgetting exceptions. Initial work with FAMBL

is described in Van den Bosch (1999). The issue of the harmfulness of
forgetting has also been in focus in the context of probabilistic models of
natural language processing. The ruling hypothesis in the development
of probabilistic models has for a long time been that what is exceptional

146 ABSTRACTION AND GENERALIZATION

(improbable) is unimportant. For about a decade, however, empirical
evidence has been gathering in research on probabilistic models that
supports the “forgetting is harmful” hypothesis. For instance, in Bod
(1995), a data-oriented approach to parsing is described in which a treebank
is used as a memory and in which the parse of a new sentence is
computed by reconstruction from subtrees present in the treebank. It is
shown that removing all hapaxes (unique subtrees) from memory degrades
generalization performance from 96% to 92%. Bod notes that “this seems to
contradict the fact that probabilities based on sparse data are not reliable”
(Bod, 1995, p.68). In the same vein, Collins and Brooks (1995) show that
when applying the back-off estimation technique (Katz, 1987) to learning
prepositional-phrase attachment, removing all events with a frequency of
less than 5 degrades generalization performance from 84.1% to 81.6%. In
Dagan et al. (1997), a similarity-based estimation method is compared
to back-off and maximum-likelihood estimation on a pseudo-word sense
disambiguation task. Again, a positive effect of events with frequency 1 in
the training set on generalization accuracy is noted.

A direct comparison between lazy and eager learning applied to natural
language processing tasks, as well as a commentary on (Daelemans et al.,
1999) can be found in (Rotaru & Litman, 2003), who perform editing
experiments with IB1, and compare IB1 versus RIPPER on four understand-
ing tasks in spoken dialog systems. Next to class prediction strength,
Rotaru and Litman also use typicality (Zhang, 1992), a global measure of
exceptionality, and local typicality, a local version of the typicality metric,
which expresses the average similarity of a training example to nearest
neighbors with the same class divided by the average similarity of the
example to nearest neighbors with a different class. Editing experiments
on one task show moderate improvements with some editing methods at
10-50% editing rates, especially when editing examples with a high local
typicality. Rotaru and Litman also use the three editing criteria to compare
the generalization performances of IB1 and RIPPER, and observe a trend
that IB1 is slightly better than RIPPER in classifying examples with a below-
0.5 CPS or local typicality.

The early work on editing (Hart, 1968; Wilson, 1972) has triggered
many additional investigations in pattern recognition research (Swonger,
1972; Tomek, 1976; Devijver & Kittler, 1980; Wilson & Martinez, 1997). We
particularly mention Brighton and Mellish (2002) who describe the Iterative
Case Filtering (ICF) filtering algorithm that actively preserves border or
“support vector” instances. Brighton and Mellish (2002) note that the CPS

criterion used here and in (Daelemans et al., 1999) does not ensure the

6.6. FURTHER READING 147

proper retention of these border cases. Our results suggest this is indeed the
case; FAMBL can be seen as a more successful method to attain compression
while retaining all class borders.

Chapter 7

Extensions

This chapter describes two complementary extensions to memory-based
learning: a search method for optimizing parameter settings, and methods
for reducing the near-sightedness of the standard memory-based learner to
its own contextual decisions in sequence processing tasks. Both comple-
ment the core algorithm as we have been discussing so far. Both methods
have a wider applicability than just memory-based learning, and can be
combined with any classification-based supervised learning algorithm.

First, in section 7.1 we introduce a search method for finding optimal
algorithmic parameter settings. No universal rules of thumb exist for
setting parameters such as the k in the k-NN classification rule, or the
feature weighting metric, or the distance weighting metric. They also
interact in unpredictable ways. Yet, parameter settings do matter; they
can seriously change generalization performance on unseen data. We
show that applying heuristic search methods in an experimental wrapping
environment (in which a training set is further divided into training and
validation sets) can produce good parameter settings automatically.

Second, in section 7.2 we describe two technical solutions to the prob-
lem of “sequence near-sightedness” from which many machine-learning
classifiers and stochastic models suffer that predict class symbols without
coordinating one prediction with another in some way. When such a
classifier is performing natural language sequence tasks, producing class
symbol by class symbol, it is unable to stop itself from generating output
sequences that are impossible and invalid, because information on the
output sequence being generated is not available to the learner. Memory-
based learning is no exception, but there are remedies which we describe
in section 7.2. As one remedy extension we already presented MBT,

148

7.1. WRAPPED PROGRESSIVE SAMPLING 149

which creates a feedback loop between the classifier’s output and its
input, so that it can base its next classification partly on its previous ones.
Another remedy, presented in section 7.2.1, is to stack classifiers – i.e.,
to have a second classifier learn from examples that are enriched by the
classifications of a first near-sighted classifier. A third solution, described
in section 7.2.2 is to predict sequences of class symbols rather than to
predict single class symbols. We test the two methods on sequence tasks
that have been investigated in the previous chapters: Dutch morphological
analysis (MORPH), English base phrase chunking (CHUNK), and named-
entity recognition (NER). We test stacking and sequence prediction on
these three tasks, and also show the combination of both on these tasks.
The results are striking; both classifier stacking and predicting sequences
of class symbols lead to higher F-scores on all three tasks, and the best
improvements are obtained by combining the two methods.

7.1 Wrapped progressive sampling

It is common knowledge that large changes can be observed in the
generalization accuracy of a machine learning algorithm on some task
when instead of its default algorithmic parameter settings, one or more
parameters are given a non-default value. This is definitely the case with
IB1, which for example, as we exemplified on several occasions earlier in
this book, is highly sensitive to changing the value of the k parameter.
The k parameter in turn influences the effects that distance weighting
and the use of the MVDM kernel can have. Another range of examples
is given in (Daelemans & Hoste, 2002). Differences in accuracy on some
task due to different parameter settings of the same algorithm can easily
overwhelm accuracy differences between two different algorithms using
default settings for algorithm parameters. The fundamental problems in
algorithmic parameter selection (or model selection) are that it is hard to
estimate which parameter setting would lead to optimal generalization
performance, and that this estimation has to be redone for each task.
One can estimate it on the labeled data available for training purposes,
but optimizing parameters on training material easily leads to overfitting.
A remedy for overfitting is to use classifier wrapping (Kohavi & John,
1997), which partitions the available labeled training material into internal
training and test data, and which performs cross-validation experiments to
estimate a training-set-internal generalization accuracy. Using this method,
competitions can be held among parameter settings, to determine the

150 EXTENSIONS

average best-performing setting to be used later in the experiment on the
real test data.

For many tasks it is not feasible to test all possible combinations
of parameter settings exhaustively. To allow the vast search space of
possible parameter setting combinations to be sufficiently accessible, search
methods can come to our aid. Here we describe such a method. It is
based on wrapped progressive sampling, which borrows its basic heuristic
from progressive sampling (Provost et al., 1999). The goal of progressive
sampling is to perform iterative experiments using a growing data set,
and halt the growing at the point at which generalization performance
on held-out validation material does not improve as compared to the
previous steps. In our parameter optimization process we do not adopt
this convergence goal, but we do adopt the progressive sampling method
in which we test decreasing amounts of combinations of settings with
increasing amounts of training data – inheriting the favorable speedups of
progressive sampling (Provost et al., 1999).

7.1.1 The wrapped progressive sampling algorithm

The wrapped progressive sampling (henceforth WPS) algorithm, takes
as input a data set of labeled examples D, and produces as output
a combination of parameter settings that is estimated to lead to high
generalization accuracy on unseen material.

The first action of the WPS method is to divide the data set D into a 80%
training subset and a remaining 20% test subset. Let n be the number of
labeled examples in the training subset. A parabolic sequence of d data set
sizes is created from this training subset by using a factor f = d

√
n. We set

the default number of steps d = 20. Starting with a seed data set of one
example, a parabolically increasing sequence of i = {1 . . . d} data set sizes
sizei is created by letting size1 = 1 and for every i > 1, sizei = sizei−1 ∗ f .
We then limit the generated list of 20 sizes down to a list containing only the
data sets with more than 500 examples. We also include the 500-example
data set itself as the first set. This leaves a clipped pseudo-parabolic series.
For each of the training sets, an accompanying test set is created by taking,
from the tail of the 20% test subset, a set that has 20% of the size of its
corresponding training set.

The WPS procedure is an iterative procedure over the clipped list of
data set sizes. The procedure operates on a pool of settings, S, where
one setting is a unique combination of algorithmic parameter values of
IB1. At the outset, S contains all possible combinations of values of IB1’s

7.1. WRAPPED PROGRESSIVE SAMPLING 151

parameters. We refer to them as s1 . . . sc, c being the total number of
possible combinations.

The first step of WPS is to perform experiments with all settings in
s1 . . . sc. Each of these experiments involves training IB1 on the first training
set (500 examples) and testing the learned model on the first test set
(100 examples), and measuring IB1’s test accuracy, viz. the percentage
of correctly classified test examples. This produces a list of accuracies,
acc(s1) . . . acc(sc). As the second step, badly-performing settings from the
current set are removed on grounds of their low score. This selection is
performed with some care, since it is unknown whether a setting that is
currently performing badly, would perform better than other settings when
trained on more examples. WPS, therefore, does not simply sort the list
of accuracies and cut away the lower-performing part of some predefined
fraction. Rather, it attempts to estimate at each step the subset of accuracies
that stands out as the best performing group, whichever portion of the total
set of accuracies that is. To this end, a simple linear histogram is computed
on all accuracies, dividing them in ten equally-wide bins, b1 . . . b10 (the
notation for the size of a bin, the number of accuracies in the bin, is |bi|).

Without assuming any distribution over the bins, WPS enacts the
following procedure to determine which settings are to be selected for
the next step. First, the bin with the highest accuracies is taken as the
first selected bin. Subsequently, every preceding bin is also selected that
represents an equal number of settings or more than its subsequent bin,
|bi| ≥ |bi+1|. This is determined in a loop that halts as soon as |bi| <

|bi+1|. The motivation behind this histogram-based selection is that it
avoids the assumption that the accuracies are normally distributed – which
is often not the case. A normal distribution assumes one peak, while
the distribution of outcomes often contains multiple peaks. The current
method adapts itself to the actual distribution by taking half of the best-
performing peak (including the top of the peak), whether this is a perfect
50% right-hand side of a normal distribution or not.

Next, all non-selected settings are deleted from S, and the next step is
initiated. This involves discarding the current training set and test set, and
replacing them by their next-step progressively sampled versions. On this
bigger-sized training and test set combo, all settings in S are tested through
experiments, a histogram is computed on the outcomes, etcetera.

The process is iterated until either one of these stop conditions is met:
(1) After the most recent setting selection, only one setting is left. Even if
more training set sizes are available, these are not used, and the search
halts, returning the one selected setting. Or, (2) after the last setting

152 EXTENSIONS

selection on the basis of experiments with the largest training and test set
sizes, several settings are still selected. First, it is checked whether IB1’s
default setting is among them. If it is, this default setting is returned. If not,
a random selection is made among the selected settings, and the randomly
chosen setting is returned.

We customized WPS to IB1 by specifying five of the latter’s parameters,
and identifying a number of values for each of these parameters. The
following list enumerates all tested settings. Due to the constraints
mentioned in items 4 and 5, the total number of combinations of settings
tested in the first round of the WPS procedure totals to 5 + (5 × 2 × 2) +
(9 × 5 × 4) + (9 × 5 × 4 × 2 × 2) = 925 settings. See chapter 3 for more
details on the parameters.

1. -k determines how many groups of equidistant nearest neighbors
are used to classify a new example. We vary among values
1, 3, 5, 7, 9, 11, 13, 15, 19, 25, 35. Default is 1.

2. -w determines the employed feature weight in the similarity metric.
The five options are no weighting, information gain, gain ratio, χ2, or
shared variance. Default is gain ratio.

3. -m determines the basic type of similarity metric. The choice is
between overlap (default), MVDM, or Jeffrey divergence.

4. Only with -k set to a value larger than one, is distance weighting
possible (-d). Options are to do no weighting (default), or perform
inverse-linear weighting, inverse weighting, or weighting through
exponential decay with α = 1.

5. Only with -m with MVDM or Jeffrey divergence is it possible to back-
off to the overlap metric through the -L parameter. We vary between
1, 2. Default is 1.

7.1.2 Getting started with wrapped progressive
sampling

Wrapped progressive sampling is built into the command-line
tool paramsearch. For data sets larger than 1,000 examples
it performs the search procedure exactly as described above;
for smaller data sets, it reverts to simple wrapping through
internal n-fold cross-validation on the training material.
Assuming, for now, a labeled training set with over 1,000
examples, paramsearch works as follows.

7.1. WRAPPED PROGRESSIVE SAMPLING 153

Using the full gplural.data data set representing our
German plural task (cf. section 3.1), the first command is:

% paramsearch ib1 gplural.train

After establishing some training set statistics, paramsearch
starts the first pseudo-exhaustive WPS step with a fixed
training subset of 500 examples, and a test subset of 100
examples:

paramsearch v 1.0

gplural.data has

25168 instances

7 features (lowest value frequency 1)

8 classes

optimizing algorithmic parameters of ib1

running wrapped progressive sampling parameter search

multiplication factor for steps: 1.641332

starting wrapped progressive sampling with first

pseudo-exhaustive round, stepsize 500

925 settings in current selection

computing density in 10% intervals between

lowest 44.00 and highest 86.00

density block 0 (44.00 - 48.20): 25

density block 1 (48.20 - 52.40): 3

density block 2 (52.40 - 56.60): 8

density block 3 (56.60 - 60.80): 7

density block 4 (60.80 - 65.00): 12

density block 5 (65.00 - 69.20): 18

density block 6 (69.20 - 73.40): 22

density block 7 (73.40 - 77.60): 79

density block 8 (77.60 - 81.80): 444

density block 9 (81.80 - 86.00): 307

decreasing density point before block 8

keeping the top 751 settings with accuracy 77.60 and up

After the 925 experiments have been completed, the distri-
bution of accuracies of the 925 tested settings is visualized
in ten lines. Each line represents one equal-width bar of the
histogram, and mentions at its end the number of settings in
the bar. For example, in the tenth bar, containing accuracies
between 81.80% and 86.00%, 307 settings can be found.
To determine the settings to be tested in the next round,
paramsearch selects all settings in the ninth and tenth bar (the
ninth bar contains more settings than the tenth, but the eighth
bar marks a decrease in the number of settings). This joint
subset of 751 settings then proceeds to the second step.

154 EXTENSIONS

With the German plural data it takes eight steps to eventually
arrive at a single best setting, which is written to a file that
has the same name as the training set, with the extension
.ib1.bestsetting. Paramsearch also displays the setting
on screen, in the format which is used in TIMBL output files,
along with the accuracy on test data that this setting attained
in the last step of the WPS procedure.

best setting found:

92.825104 gplural.data.test.IB1.J.L1.sv.k11.ID.%

wrapped progressive sampling process finished in 441 seconds

7.1.3 Wrapped progressive sampling results

To exemplify the effect of WPS we apply it to the six tasks which have
been under investigation in the previous chapter as well: three non-
sequential tasks, GPLURAL, DIMIN, and PP, and three sequential tasks,
MORPH, CHUNK, and NER. The non-sequential tasks are evaluated on
accuracy (% of correctly classified test instances), while the sequential
tasks are evaluated on accuracy, precision, recall, and F-score of predicted
analyses and structures:

1. GPLURAL, German plural formation

2. DIMIN, Dutch diminutive formation

3. PP, English prepositional phrase attachment

4. MORPH, Dutch morphological analysis

5. CHUNK, English base phrase chunking

6. NER, English named entity recognition

Tables 7.1 and 7.2 list the generalization performances in terms of
accuracy for GPLURAL, DIMIN, and PP (Table 7.1), and overall precision,
recall, and F-score, as measured by the publicly available evaluation scripts
for CHUNK (Tjong Kim Sang & Buchholz, 2000) and NER (Tjong Kim Sang &
De Meulder, 2003) and with analogous evaluations performed for MORPH

(cf. section 4.2). The right-hand column of the tables lists the percentage of
error reduction (or error increase, denoted by a negative number) produced
by WPS. For PP and MORPH we observe slight increases of error by 3% (0.6
points of accuracy) and 1% (0.3 points of F-score), respectively. For the
other tasks, modest to considerable reductions are observed, between 4%

7.1. WRAPPED PROGRESSIVE SAMPLING 155

Generalization performance (accuracy) Error
Task Without WPS With WPS reduction (%)

GPLURAL 94.6 94.8 4
DIMIN 96.7 97.5 24
PP 81.3 80.7 -3

Table 7.1: Comparison of generalization performances in terms of
accuracy (Acc) on benchmark NLP test sets, without and with parameter
optimization by wrapped progressive sampling. The right-hand column
displays the percentage of error reduction.

Generalization performance
Without WPS With WPS Error

Task Pre. Rec. F Pre. Rec. F reduction (%)

MORPH 71.9 68.9 70.4 71.8 68.4 70.1 -1
CHUNK 89.4 91.3 90.3 91.1 92.6 91.9 16
NER 64.8 69.0 66.8 76.6 77.8 77.2 31

Table 7.2: Comparison of generalization performances in terms of precision
(Pre.), recall (Rec.), and F-score (F) on benchmark NLP test sets, without
and with parameter optimization by wrapped progressive sampling. The
right-hand column displays the percentage of error reduction in F-score.

(0.2 points of F-score) for GPLURAL, to a considerable 31% (10.4 points of
F-score) for NER.

The settings that are estimated to be optimal by WPS are listed in
Table 7.3. What most distinguishes these settings from IB1’s default setting
is that k is never set to 1. Also, the Overlap metric is only selected for
GPLURAL. Distance weighting is used with all tasks except NER.

The results presented here suggest a generally harmless and mostly
positive effect of performing WPS. It could very well act as a useful
addition to experiments with memory-based learning. In the remainder of
this chapter we continue to experiment on the four sequence-based tasks.
In these experiments, we apply WPS to every training set, and use the
produced setting for the final test.

156 EXTENSIONS

Parameter
Task -k -w -m -d -L

GPLURAL 3 IG O IL –
DIMIN 11 X2 J IL 1
PP 7 GR J ID 2
MORPH 11 SV M ID 2
CHUNK 25 GR M IL 2
NER 3 GR M Z 1

Table 7.3: Estimated-optimal parameter settings found through wrapped
progressive sampling corresponding with the results in Tables 7.1 and 7.2.

7.2 Optimizing output sequences

Many tasks in natural language processing are sequence tasks, due to the
obvious sequential nature of words as sequences of phonemes or letters,
and sentences and spoken utterances as sequences of words. However,
many machine learning methods, including memory-based learning, do
not typically learn these tasks by learning to map input sequences to output
sequences. Rather, the standard approach (as also exemplified in earlier
chapters) is to encode a sequence processing task by windowing, in which
input sequences are mapped to one output symbol, which is typically
a symbol associated with one of the input symbols, for example the
middle one in the window. There are but a few current machine-learning
algorithms that map sequences to sequences though a monolithic model;
two current examples are maximum-entropy markov models (McCallum
et al., 2000) and conditional random fields (Lafferty et al., 2001). Other
approaches exist that enhance a simple (e.g., windowing-based) model
with internal feedback loops, so that the model can learn from its own
previous decisions (for example, the MBT system described in chapter 5,
and in recurrent neural networks Elman, 1990; Sun & Giles, 2001).

Figure 7.1 displays this simplest version of the windowing process;
fixed-width subsequences of input symbols are coupled to one output
symbol. To ignore that the output forms a sequence is a problematic
restriction, since it allows the classifier to produce invalid or impossible
output sequences. The problem is a double one, triggering two different
solutions:

7.2. OPTIMIZING OUTPUT SEQUENCES 157

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��

�

� �
� ��

�

�
�

� � � � � � � � � � � � � �

Figure 7.1: Standard windowing process. Sequences of input symbols and
output symbols are converted into windows of fixed-width input symbols
each associated with one output symbol.

1. Classifications, producing an output symbol, are based on sequences
(windows) of input symbols only. Due to this, a classifier can make
two neighboring classifications in a sequence that are not compatible
with each other, since it has no information about the other decision.

2. The very fact that classifications produce single output symbols is a
restriction that is not intrinsic – the task may well be rephrased so
that each input window is mapped to a sequence of output symbols.
This directly prevents the classifier from ever predicting an invalid
output sequence, since it will always produce sequences it has
learned from training material.

In 7.2.1 we present a solution to the first problem that does not involve
a classifier-internal feedback loop nor is tied to directional processing.
Instead the solution is based on the idea of classifier stacking, in which
a second classifier corrects the output of a near-sighted first classifier.
The second solution, to predict sequences of output symbols directly, is
described in subsection 7.2.2. The two approaches are tied together in
subsection 7.2.3, in which we show that the two solutions are partly
complementary; they prevent different errors.

7.2.1 Stacking

Stacking, a term popularized by Wolpert (1992) in an artificial neural
network context, refers to a class of meta-learning systems that learn to

158 EXTENSIONS

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

��

�

� �
��

�

�
�

� � � � � � � � � � � � � �

� � 	
 � � �

� �
� 	

�
� 	

� �

� �

Figure 7.2: The windowing process after a first-stage classifier has
produced a predicted output sequence. Sequences of input symbols,
predicted output symbols, and real output symbols are converted into
windows of fixed-width input symbols and predicted output symbols each
associated with one output symbol.

correct errors made by lower-level classifiers. Stacking applied to memory-
based learning was introduced in (Veenstra, 1998), and later used in
(Hendrickx & Van den Bosch, 2003; Van den Bosch et al., 2004). We
implement stacking by adding a windowed sequence of previous and
subsequent output class labels to the original input features, and providing
these enriched examples as training material to a second-stage classifier.
Figure 7.2 illustrates the procedure. Given the (possibly erroneous) output
of a first classifier on an input sequence, a certain window of class symbols
from that predicted sequence is copied to the input, to act as predictive
features for the real class label.

To generate the output of a first-stage classifier, two options are open.
We name these options perfect and adaptive, to use the terms introduced in
(Van den Bosch, 1997). They differ in the way they create training material
for the second-stage classifier:

Perfect – the training material is created straight from the training
material of the first-stage classifier, by windowing over the real class
sequences. In so doing, the class label of each window is excluded from
the input window, since it is always the same as the class to be predicted.

7.2. OPTIMIZING OUTPUT SEQUENCES 159

Generalization performance (%)
No stacking Perfect stacking Adaptive stacking

Pre. Rec. F Pre. Rec. F Red. Pre. Rec. F Red.

MORPH 71.8 68.4 70.1 67.4 69.0 68.1 -7 74.2 72.2 73.2 10
CHUNK 91.1 92.6 91.9 91.3 92.7 92.0 1 92.1 93.1 92.6 11
NER 76.6 77.8 77.2 78.0 78.5 78.3 1 78.8 78.9 78.9 7

Table 7.4: Comparison of generalization performances in terms of precision
(Pre.), recall (Rec.), and F-score (F) on three benchmark test sets, without
stacking, and with perfect and adaptive stacking. The relative error
reduction of the F-score of the two latter variants as compared to the “No
stacking” F-score is given in de “Red.” columns.

In training, this focus feature would receive an unrealistically high weight,
especially considering that in testing this feature would contain errors. To
assign a very high weight to a feature that may contain an erroneous value
does not seem a good idea.

Adaptive – the training material is created indirectly by running an
internal 10-fold cross-validation experiment on the first-stage training
set, concatenating the predicted output class labels on all of the ten test
partitions, and converting this output to class windows. In contrast to the
perfect variant, we do include the focus class feature in the copied class
label window. The adaptive approach can in principle learn from recurring
classification errors in the input, and predict the correct class in case an
error recurs.

Table 7.4 lists the comparative results on the MORPH, CHUNK, and NER

tasks introduced earlier. They show that stacking generally works for these
three tasks, but that the adaptive stacking variant produces higher relative
gains than the perfect variant. There is a loss of about 2 points of F-score (an
error increase of 7%) in the perfect variant of stacking applied to MORPH,
on which the adaptive variant attains an error reduction in F-score of 10%.
On CHUNK and NER the adaptive variant produces higher gains than the
perfect variant as well; in terms of error reduction in F-score as compared
to the situation without stacking, the gains are 11% for CHUNK and 7% for
NER. There appears to be more useful information in training data derived
from cross-validated output with errors, than in training data with error-
free material.

Overall, the error reductions produced by stacking – up to 11% – are
quite positive. From the results presented here it appears there is almost

160 EXTENSIONS

always something to be learned from taking into account a context of class
labels of a first-stage classifier, even if the classifier is partly erroneous;
particularly the adaptive variant of stacking attains the best gains overall.

7.2.2 Predicting class n-grams

A single memory-based classifier produces one class label at a time, but
there is no intrinsic bound to what is packed into this class label. We
exemplified in section 4.2 how operations can be packed into class labels
and in section 5.2.2 that tagging and chunking decisions can be combined
into one class system. Here, we show how class labels can span over n-
grams of neighboring class labels. Although simple and appealing, the
lurking disadvantage of this idea is that the amount of class labels increases
explosively when moving from single class labels to wider n-grams. The
CHUNK data, for example, have 22 classes (“IOB” codes associated with
chunk types); in the same training set, 846 different trigrams of these 22
classes occur. Although this is far less than the theoretical maximum of
223 = 10, 648, it is still a sizeable number of classes, with fewer examples
per trigram class in the training set than the original 22. MORPH, in
turn, has 3,831 unigram classes, and a staggering 14,795 trigram classes.
With NER, the situation is better; the eight original classes combine to 138
occurring trigrams.

Memory-based classification is insensitive to the actual number of
different classes in the data, but the question is whether using n-grams of
classes pushes the data sparseness to such levels that components of the
similarity function are negatively affected.

Figure 7.3 illustrates the procedure by which windows are created with,
as an example, class trigrams. Each windowed instance maps to a class
label that incorporates three atomic class labels, namely the focus class
label that was the original unigram label, plus its immediate left and right
neighboring class labels.

While creating instances this way is trivial, it is not entirely trivial how
the output of overlapping class trigrams recombines into a normal string
of class sequences. When the example illustrated in Figure 7.3 is followed,
each single class label in the output sequence is effectively predicted three
times; first, as the right label of a trigram, next as the middle label, and
finally as the left label of a trigram. Although it could be possible to avoid
overlaps and classify only every n words (where n is the n-gram width),
there is an interesting property of overlapping class label n-grams: namely,
it is possible to apply voting to them.

7.2. OPTIMIZING OUTPUT SEQUENCES 161

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � �

� ��
� �

� ��
�

�

� � � � � � � � � � � � � �

�
�

� � 	�

Figure 7.3: Windowing process with n-grams of class symbols. Sequences
of input symbols and output symbols are converted into windows of fixed-
width input symbols each associated with, in this example, trigrams of
output symbols.

To pursue our example of trigram classes, the following voting pro-
cedure can be followed to decide about the resulting unigram class label
sequence – referring to Figure 7.4 for visualization:

1. When all three votes are unanimous, their common class label is
returned (Figure 7.4, top);

2. When two out of three vote for a common class label, this class label
is returned (Figure 7.4, middle);

3. When all three votes disagree, the class label is returned of which the
nearest neighbor is closest (Figure 7.4, bottom).

Clearly this scheme is one out of many possible schemes, using variants
of voting as well as variants of n (and having multiple classifiers with
different n, so that some back-off procedure could be followed). For now
we use this procedure with trigrams as an example. To measure its effect
we apply it again to the sequence tasks MORPH, CHUNK, and NER. The
results of this experiment, where in each case WPS was used to find optimal
algorithmic parameters, are listed in Table 7.5. For CHUNK and NER, the
two data sets with relatively few class trigrams, the effect is rather positive;
an error reduction of 12% with CHUNK, and 13% with NER. The task with
the largest number of class trigrams, MORPH, is still learned with 6% error
reduction.

162 EXTENSIONS

�

�
�

�

� ��

�� �

� � � � � 	
 � � �
 �

�
�

�

� ��

�� �

	 � �
 � � � �
 �

�
�

�

� ��

�� �

� � � � � � � � � � � � � �
 �

�

� � � �

� � � �

� � � �

�

Figure 7.4: Three possible outcomes in voting over class trigrams:
unanimous voting, majority voting, or distance-based voting.

Generalization performance
No class n-grams Class n-grams Error
Pre. Rec. F Pre. Rec. F reduction (%)

MORPH 71.8 68.4 70.1 73.2 70.5 71.8 6
CHUNK 91.1 92.6 91.9 92.8 92.9 92.8 12
NER 76.6 77.8 77.2 80.8 79.6 80.2 13

Table 7.5: Comparison of generalization performances in terms of precision
(Pre.), recall (Rec.), and F-score (F) on three benchmark test sets without
and with class n-grams. The right-hand column displays the error
reduction in F-score by the class n-grams method over the other method.

7.2.3 Combining stacking and class n-grams

Stacking and class n-grams can be combined. One possible straightforward
combination is that of a first-stage classifier that predicts n-grams, and
a second-stage stacked classifier that also predicts n-grams (we use the
adaptive variant, since it produced the best results), while including a
window of first-stage n-gram class labels in the input, as illustrated in
Figure 7.5.

7.2. OPTIMIZING OUTPUT SEQUENCES 163

� �� � �� �

� � 	
 � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� ��

�

� �
� ��

�

�
�

� � � � � � � � � � � � � �

�
� �

�
�

	�

� � 	

� 	
	
 �

 � �

� �

�
�

� �

Figure 7.5: Windowing process with n-grams of class symbols after a
first stage classifier has produced a sequence of n-grams of class symbols.
Sequences of input symbols and output n-grams (trigrams) are converted
into windows of fixed-width input symbols and output trigrams, each
associated with one trigram of output symbols.

Generalization performance (%)
Adaptive stacking n-gram classes Combination
Pre. Rec. F Pre. Rec. F Pre. Rec. F

MORPH 74.2 72.2 73.2 73.2 70.5 71.8 80.8 79.9 80.3
CHUNK 92.1 93.1 92.6 92.8 92.9 92.8 93.2 93.0 93.1
NER 78.8 78.9 78.9 80.8 79.6 80.2 81.6 79.6 80.6

Table 7.6: Comparison of generalization performances in terms of precision
(Pre.), recall (Rec.), and F-score (F) on three benchmark test sets, with
adaptive stacking, n-gram classes, and the combination of the two.

Table 7.6 compares the results of adaptive stacking and n-gram classes
with those of the combination. As can be seen, the combination produces
even better results than both stacking and n-gram classes for the MORPH,
CHUNK, and NER tasks; compared to the original setting without stacking
or n-gram classes, the error reduction is no less than 34% for MORPH, 16%
for CHUNK, and 15% for NER.

164 EXTENSIONS

Error reduction (%)
Adaptive n-gram
stacking classes Both

MORPH 10 6 34
CHUNK 11 12 16
NER 7 13 15

Table 7.7: Error reductions in F-score as compared to the experiment in
which no stacking or n-gram classes are performed, by adaptive stacking,
n-gram classes, and the combination of the two, on three benchmark tasks.

7.2.4 Summary

Stacking and n-gram classes are means to overcome part of the mistakes
that a simple near-sighted classifier makes – in the sense that it is blind to
its own decisions elsewhere in the output symbol sequence – in processing
sequential NLP tasks. We showed that with IB1 both methods tend to
lead to better performances on a range of tasks. Stacking appears to work
best in its adaptive variant, in which a second-stage classifier is trained on
examples that contain the partly erroneous output of a first-stage classifier;
we observed error reductions in F-score of up to 11%. n-gram classification
proved to be at least as useful; we noted error reductions of up to 13%. On
top of that, the combination of the two is able to reduce errors down by 15%
to 34% as compared to the situation without stacking or n-gram classes; the
two methods solve partly different near-sightedness problems.

The error reductions in F-score of the four tasks are reproduced in
Table 7.7. A surprisingly positive result is the error reduction on the MORPH

task. The combination reduces more error, 34% (10.2 points of F-score) than
the sum of the effects of the two methods in isolation (10% plus 6%). This
suggests that the two optimizations strengthen each other – an exciting
result.

7.3 Conclusion

Handling sequences in NLP is commonly seen as the area for generative
models such as Hidden Markov Models (HMMs) and stochastic grammars
(Manning & Schütze, 1999). Improvements such as Conditional Random
Fields (Lafferty et al., 2001) are motivated by limitations of the former

7.4. FURTHER READING 165

generative models, which have trouble with interacting features or long-
distance dependencies. It appears that symbolic classifiers that do not
optimize some likelihood over output sequences have no place in sequence
tasks. It is, indeed, easy to give examples of strange errors made by such
classifiers that display their weakness: each prediction is made in total
oblivion of other predictions made in the sequence.

However, in this chapter we provided two complementary examples of
simple manipulations of the feature space and the class space that allow
the very same near-sighted classifiers to repair some of their stupid errors,
without the incorporation of higher-level likelihood optimization or solu-
tion reranking. The first variation involves stacking, an architecture which
connects a second-stage classifier to a near-sighted first-stage classifier. The
second classifier is trained both on the original features and on a sequenced
output of the first-stage classifier’s predictions. On three tasks we attain
reasonable error reductions of 7 to 10%.

The second variant uses a single classifier, but changes the class space
by letting the classifier predict n-grams of classes. This way the classifier is
forced to predict syntactically valid n-grams. We only tested class trigrams
and introduced a voting scheme that uses all overlapping trigrams for one
sequence, converting the trigrams to a voted series of single predictions,
and attained reasonable error reductions of 6 to 13%. Interestingly, when
the two variants are combined the error reductions increase (to between
15 to 34%). The two variants appear to strengthen rather than mute each
other; they seem to repair different errors. Further research into the exact
types of errors repaired by the two methods is needed.

The actual comparison between these variants of memory-based learn-
ing and generative models still needs to be made. Also, the variants are
not specific to memory-based learning; they work with any classifier that
suffers from the same near-sightedness problem. This calls for large-scale
comparative studies, which in our opinion the general field of data-driven
NLP needs to deepen its understanding of the learnability of sequential
NLP tasks such as parsing.

7.4 Further reading

The overview of memory-based language processing work as presented
in this book is not complete – as much as we have attempted to identify
central topics, application areas, open issues, and extensions, as well as
given pointers to further reading, there is much work that we have not

166 EXTENSIONS

addressed so far. To redress the balance somewhat, we take the opportunity
in this section to provide pointers to memory-based language processing
research in a number of NLP applications and in cognitive linguistics.

Word sense disambiguation is a task that involves selecting the contextu-
ally correct sense of a word given features representing properties of the
word to be disambiguated and its context. Work in our own groups has
focused on the role of algorithm parameter optimization (see section 7.1)
in a word expert approach to the task, with very good results in the
SENSEVAL workshops1 (Veenstra et al., 2000; Hoste et al., 2002; Decadt
et al., 2004). Other groups have used TIMBL for this task as well, for
example for the integration of multiple sources of information (Stevenson
& Wilks, 1999). An alternative instance-based approach to word sense
disambiguation is described in Mihalcea (2002). A special case is the
ambiguous English word it which has been the focus of a disambiguation
study using TIMBL by Evans (2001). Related lexical disambiguation tasks
in which TIMBL is used are noun countability, explored in a study by
Baldwin and Bond (2003), and noun animacy (Orăsan & Evans, 2001).

Anaphora resolution has been attempted with memory-based methods
as well: Preiss (2002) used TIMBL to weigh the relevance of features,
whereas Hoste (2005) provides a full memory-based solution to the task,
and compares it with eager learning methods. Mitkov et al. (2002)
use classification with TIMBL to disambiguate co-reference relations of
it (extending the aforementioned study on the disambiguation of it) in a
knowledge-poor pronoun resolution system.

In the context of (spoken) dialog systems, MBLP has been successfully
applied to tasks ranging from the interpretation of spoken input (word
graphs) to miscommunication detection and dialog act classification (Van
den Bosch et al., 2001; Lendvai et al., 2002; Lendvai et al., 2003a).
The detection of disfluencies in spoken language has been investigated in
Lendvai et al. (2003b). TIMBL is employed to assign dialog acts to elliptic
sluice phenomena (Fernández et al., 2004).

In speech generation, TIMBL has been applied to the problem of prosody
generation for Dutch, by reducing the task of prosody generation to the
dual classification task of predicting the appropriate location of phrase
boundaries and sentence accents in a windowing approach (Marsi et al.,
2003).

At the level of text generation, the order of prenominal adjectives has

1SENSEVAL provides data and evaluates output of word sense disambiguation systems
on these data. See http://www.senseval.org/

7.4. FURTHER READING 167

been predicted using TIMBL (Malouf, 2000), as well as the generation of
determiners (Minnen et al., 2000). Sentence generation using memory-
based learning has been investigated by Varges and Mellish (2001).

At the level of text mining and information system applications (infor-
mation extraction, document classification, etc.), TIMBL has been used in
information extraction (Zavrel et al., 2000; Zavrel & Daelemans, 2003),
spam filtering (Androutsopoulos et al., 2000), and generic text classifica-
tion (Spitters, 2000). As a special case of information extraction, memory-
based models of named-entity recognition (identifying and labeling proper
names of persons, locations, organizations, and other entities) have been
proposed in Buchholz and Van den Bosch (2000); Hendrickx and Van den
Bosch (2003); De Meulder and Daelemans (2003).

Although we have sometimes used linguistically relevant data sets
(such as the German plural data set introduced in chapter 3), the focus
of this book has been on algorithms and applications in computational
linguistics. Nevertheless, memory-based language processing has also
been suggested as a psychologically and linguistically relevant account
of human language behavior. For several tasks, human behavior in
acquisition and processing has been successfully matched to the output
of MBLP algorithms. A good illustration of this approach is work on
the assignment of stress to words in Dutch and other languages, which
is traditionally described in a principles and parameters or optimality
theory nativist framework: variation in stress systems is described by
means of a number of principles (innate rules or constraints) that are
“tuned” in acquisition by parameter setting or constraint ordering to a
specific language. Research using memory-based language processing
shows that data-oriented methods presupposing only minimal innate
structure are able to learn both the core and the periphery of language-
specific stress systems, and that the output and errors generated by these
analogical systems also match the available psycholinguistic processing
and acquisition data (Daelemans et al., 1994; Durieux & Gillis, 2000;
Gillis et al., 2000). More recent work by psycholinguists and linguists
using TIMBL similarly shows the descriptive adequacy of models based
on memory and analogical reasoning for problems in morphology (Krott
et al., 2001; Eddington, 2003).

Bibliography

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Communications, 7, 39–59.

Abney, S. (1991). Parsing by chunks. In Principle-based parsing, 257–278. Dordrecht:
Kluwer Academic Publishers.

Abney, S., Schapire, R., & Singer, Y. (1999). Boosting Applied to Tagging and PP
Attachment. Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora, 38–45.

Aha, D. W. (Ed.). (1997). Lazy learning. Dordrecht: Kluwer Academic Publishers.

Aha, D. W., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 6, 37–66.

Allen, J. (1995). Natural language understanding. Redwood City, CA: The
Benjamin/Cummings Publishing Company. Second edition.

Allen, J., Hunnicutt, M. S., & Klatt, D. (1987). From text to speech: The MITalk system.
Cambridge, England: Cambridge University Press.

Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C. D.,
& Stamatopoulos, P. (2000). Learning to filter spam e-mail: A comparison of
a Naive Bayesian and a memory-based approach. Proceedings of the ”Machine
Learning and Textual Information Access” Workshop of the 4th European Conference
on Principles and Practice of Knowledge Discovery in Databases.

Argamon, S., Dagan, I., & Krymolowski, Y. (1999). A memory-based approach
to learning shallow natural language patterns. Journal of Experimental and
Theoretical Artificial Intelligence, special issue on memory-based learning, 10, 1–22.

Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learning. Artificial
Intelligence Review, 11, 11–73.

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical data base
on CD-ROM. Philadelphia, PA: Linguistic Data Consortium.

Bailey, T., & Jain, A. K. (1978). A note on distance-weighted k-nearest neighbor
rules. IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, 311–313.

168

BIBLIOGRAPHY 169

Baker, C., Fillmore, C., & Lowe, J. (1998). The Berkeley FrameNet project.
Proceedings of the COLING-ACL, 86–90. Montreal, Canada.

Baldwin, T., & Bond, F. (2003). A plethora of methods for learning English
countability. Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, 73–80. New Brunswick, NJ: ACL.

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural
language disambiguation. Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, 26–33. Association for Computational Linguistics.

Barlow, M., & Kemmer, S. (2000). Usage-based models of language. Stanford: CSLI
Publications.

Bentley, J. L., & Friedman, J. H. (1979). Data structures for range searching. ACM
Computing Surveys, 11, 397–409.

Bloomfield, L. (1933). Language. New York, NY: Holt, Rinehard and Winston.

Bod, R. (1995). Enriching linguistics with statistics: Performance models of natural
language. Doctoral dissertation, ILLC, Universiteit van Amsterdam, Amsterdam,
The Netherlands.

Bod, R. (1998). Beyond grammar: An experience-based theory of language. CSLI
Publications. Cambridge University Press.

Boland, J. E., & Boehm-Jernigan, H. (1998). Lexical constraints and prepositional
phrase attachment. Journal of Memory and Language, 39, 684–719.

Booij, G. (2001). The morphology of Dutch. Oxford, UK: Oxford University Press.

Brants, T. (2000). TnT – a statistical part-of-speech tagger. Proceedings of the 6th
Applied NLP Conference, ANLP-2000, April 29 – May 3, 2000, Seattle, WA.

Breiman, L., Friedman, J., Ohlsen, R., & Stone, C. (1984). Classification and regression
trees. Belmont, CA: Wadsworth International Group.

Brighton, H., & Mellish, C. (2002). Advances in instance selection for instance-
based learning algorithms. Data Mining and Knowledge Engineering, 6, 153–172.

Brill, E. (1992). A simple rule-based part of speech tagger. Proceedings of the DARPA
Workshop on Speech and Natural Language.

Brill, E. (1994). Some advances in transformation-based part-of-speech tagging.
Proceedings AAAI ’94.

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: A case study in part of speech tagging. Computational Linguistics, 21,
543–565.

Brill, E., & Mooney, R. (Eds.). (1998a). The AI magazine: Special issue on empirical
natural language processing, vol. 18. AAAI.

170 BIBLIOGRAPHY

Brill, E., & Mooney, R. J. (1998b). An overview of empirical natural language
processing. The AI Magazine, 18, 13–24.

Brill, E., & Resnik, P. (1994). A rule-based approach to prepositional
phrase attachment disambiguation. Proceedings of 15th annual conference on
Computational Linguistics.

Buchholz, S. (1998). Distinguishing complements from adjuncts using memory-
based learning. Proceedings of the ESSLLI-98 Workshop on Automated Acquisition
of Syntax and Parsing, Saarbrücken, Germany.

Buchholz, S. (2002). Memory-based grammatical relation finding. PhD thesis,
University of Tilburg.

Buchholz, S., & Daelemans, W. (2001). Complex Answers: A Case Study using a
WWW Question Answering System. Journal for Natural Language Engineering.

Buchholz, S., & Van den Bosch, A. (2000). Integrating seed names and n-grams for
a named entity list and classifier. Proceedings of the Second International Conference
on Language Resources and Evaluation, 1215–1221. Athens, Greece.

Buchholz, S., Veenstra, J., & Daelemans, W. (1999). Cascaded grammatical relation
assignment. EMNLP-VLC’99, the Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora.

Busser, G. (1998). Treetalk-d: a machine learning approach to Dutch word
pronunciation. Proceedings of the Text, Speech, and Dialogue Conference, 3–8.

Canisius, S., & Van den Bosch, A. (2004). A memory-based shallow parser for
spoken Dutch. In B. Decadt, G. De Pauw and V. Hoste (Eds.), Selected papers from
the thirteenth computational linguistics in the Netherlands meeting, 31–45. University
of Antwerp.

Cardie, C. (1996). Automatic feature set selection for case-based learning of
linguistic knowledge. Proceedings of the Conference on Empirical Methods in NLP.

Cardie, C., & Mooney, R. (Eds.). (1999). Machine learning: Special issue on machine
learning and natural language, vol. 34. Kluwer Academic Publishers.

Carl, M., & Way, A. (2003). Recent advances in example-based machine translation,
vol. 21 of Text, Speech and Language Technology. Dordrecht: Kluwer Academic
Publishers.

Charniak, E. (1993). Statistical Language Learning. Cambridge, MA: The MIT Press.

Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York, NY:
Harper & Row.

Church, K., & Mercer, R. L. (1993). Introduction to the Special Issue on
Computational Linguistics Using Large Corpora. Computational Linguistics, 19,
1–24.

BIBLIOGRAPHY 171

Clahsen, H. (1999). Lexical entries and rules of language: A multidisciplinary
study of German inflection. Behavioral and Brain Sciences, 22, 991–1060.

Clark, A. (2002). Memory-based learning of morphology with stochastic
transducers. Proceedings of the 40th Meeting of the Association for Computational
Linguistics, 513–520. New Brunswick, NJ: ACL.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent
improvements. Proceedings of the Sixth European Working Session on Learning,
151–163. Berlin: Springer Verlag.

Clark, P., & Niblett, T. (1989). The CN2 rule induction algorithm. Machine Learning,
3, 261–284.

Cohen, W. (1995). Fast effective rule induction. Proceedings of the 12th International
Conference on Machine Learning, 115–123. Morgan Kaufmann.

Collins, M., & Brooks, J. (1995). Prepositional phrase attachment through a backed-
off model. Proceedings of the Third Workshop on Very Large Corpora. Cambridge.

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20,
273–297.

Cost, S., & Salzberg, S. (1993). A weighted nearest neighbour algorithm for
learning with symbolic features. Machine Learning, 10, 57–78.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. Institute
of Electrical and Electronics Engineers Transactions on Information Theory, 13, 21–27.

Cristiani, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.
Cambridge, UK: Cambridge University Press.

Croft, W., & Cruse, A. (2003). Cognitive linguistics. Cambridge Textbooks in
Linguistics. Cambridge: Cambridge University Press.

Daelemans, W. (1995). Memory-based lexical acquisition and processing. In
P. Steffens (Ed.), Machine translation and the lexicon, Lecture Notes in Artificial
Intelligence, 85–98. Berlin: Springer-Verlag.

Daelemans, W. (1996). Experience-driven language acquisition and processing. In
M. Van der Avoird and C. Corsius (Eds.), Proceedings of the CLS opening academic
year 1996-1997, 83–95. Tilburg: CLS.

Daelemans, W. (2002). A comparison of analogical modeling to memory-based
language processing. In R. Skousen, D. Lonsdale and D. Parkinson (Eds.),
Analogical modeling. Amsterdam, The Netherlands: John Benjamins.

Daelemans, W., Berck, P., & Gillis, S. (1997a). Data mining as a method for
linguistic analysis: Dutch diminutives. Folia Linguistica, XXXI, 57–75.

Daelemans, W., Gillis, S., & Durieux, G. (1994). The acquisition of stress: a data-
oriented approach. Computational Linguistics, 20, 421–451.

172 BIBLIOGRAPHY

Daelemans, W., & Hoste, V. (2002). Evaluation of machine learning methods
for natural language processing tasks. Proceedings of the Third International
Conference on Language Resources and Evaluation, 755–760. Las Palmas, Gran
Canaria.

Daelemans, W., Höthker, A., & Tjong Kim Sang, E. (2004a). Automatic sentence
simplification for subtitling in Dutch and English. Proceedings of the 4th
International Conference on Language Resources and Evaluation (LREC-04), 1045–
1048.

Daelemans, W., & Van den Bosch, A. (1992). Generalisation performance of
backpropagation learning on a syllabification task. Proceedings of TWLT3:
Connectionism and Natural Language Processing, 27–37. Enschede.

Daelemans, W., & Van den Bosch, A. (1996). Language-independent data-oriented
grapheme-to-phoneme conversion. In J. P. H. Van Santen, R. W. Sproat, J. P. Olive
and J. Hirschberg (Eds.), Progress in speech processing, 77–89. Berlin: Springer-
Verlag.

Daelemans, W., & Van den Bosch, A. (2001). Treetalk: Memory-based word
phonemisation. In R. Damper (Ed.), Data-driven techniques in speech synthesis,
149–172. Dordrecht: Kluwer Academic Publishers.

Daelemans, W., Van den Bosch, A., & Weijters, A. (1997b). IGTree: using trees for
compression and classification in lazy learning algorithms. Artificial Intelligence
Review, 11, 407–423.

Daelemans, W., Van den Bosch, A., & Zavrel, J. (1999). Forgetting exceptions is
harmful in language learning. Machine Learning, Special issue on Natural Language
Learning, 34, 11–41.

Daelemans, W., Weijters, A., & Van den Bosch, A. (Eds.). (1997c). Workshop notes
of the ecml/mlnet familiarisation workshop on empirical learning of natural language
processing tasks. Prague, Czech Republic: University of Economics.

Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. (1996). MBT: A memory-based
part of speech tagger generator. Proceedings of the Fourth Workshop on Very Large
Corpora, 14–27.

Daelemans, W., Zavrel, J., Van den Bosch, A., & Van der Sloot, K. (2003). Mbt:
Memory based tagger, version 2.0, reference guide (Technical Report ILK 03-13). ILK
Research Group, Tilburg University.

Daelemans, W., Zavrel, J., Van der Sloot, K., & Van den Bosch, A. (1998). TiMBL:
Tilburg Memory Based Learner, version 1.0, reference manual (Technical Report ILK
98-03). ILK Research Group, Tilburg University.

Daelemans, W., Zavrel, J., Van der Sloot, K., & Van den Bosch, A. (2004b). TiMBL:
Tilburg Memory Based Learner, version 5.1.0, reference guide (Technical Report ILK
04-02). ILK Research Group, Tilburg University.

BIBLIOGRAPHY 173

Dagan, I., Lee, L., & Pereira, F. (1997). Similarity-based methods for word sense
disambiguation. Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics and the 8th Annual Meeting of the European Chapter of
the Association for Computational Linguistics, 56–63.

Dale, R., Moisl, H., & Somers, H. (Eds.). (2000). Handbook of natural language
processing. New York: Marcel Dekker Inc.

Damper, R. (1995). Self-learning and connectionist approaches to text-phoneme
conversion. In J. Levy, D. Bairaktaris, J. Bullinaria and P. Cairns (Eds.),
Connectionist models of memory and language, 117–144. London, UK: UCL Press.

Damper, R., & Eastmond, J. (1997). Pronunciation by analogy: impact of
implementational choices on performance. Language and Speech, 40, 1–23.

Dasarathy, B. V. (1991). Nearest neighbor (NN) norms: NN pattern classification
techniques. Los Alamitos, CA: IEEE Computer Society Press.

De Haas, W., & Trommelen, M. (1993). Morfologisch handboek van het nederlands: Een
overzicht van de woordvorming. ’s Gravenhage, The Netherlands: SDU.

De Meulder, F., & Daelemans, W. (2003). Memory-based named entity recognition
using unannotated data. Proceedings of CoNLL-2003, 208–211. Edmonton,
Canada.

De Pauw, G., Laureys, T., Daelemans, W., & Van hamme, H. (2004). A comparison
of two different approaches to morphological analysis of Dutch. Proceedings
of the ACL 2004 Workshop on Current Themes in Computational Phonology and
Morphology, 62–69.

De Saussure, F. (1916). Cours de linguistique générale. Paris: Payot. Edited
posthumously by C. Bally, A. Sechehaye, and A. Riedlinger. Citation page
numbers and quotes are from the English translation by Wade Baskin, New
York: McGraw-Hill Book Company, 1966.

Devijver, P. A., & Kittler, J. (1980). On the edited nearest neighbor rule. Proceedings
of the Fifth International Conference on Pattern Recognition. The Institute of
Electrical and Electronics Engineers.

Decadt, B., Hoste, V., Daelemans, W., & Van den Bosch, A. (2004). GAMBL,
genetic algorithm optimization of memory-based WSD. Proceedings of the Third
International Workshop on the Evaluation of Systems for the Semantic Analysis of Text
(Senseval-3), 108–112. New Brunswick, NJ: ACL.

Dedina, M. J., & Nusbaum, H. C. (1991). PRONOUNCE: a program for
pronunciation by analogy. Computer Speech and Language, 5, 55–64.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B
(Methodological), 39, 1–38.

174 BIBLIOGRAPHY

Derwing, B. L., & Skousen, R. (1989). Real time morphology: Symbolic rules or
analogical networks? Berkeley Linguistic Society, 15, 48–62.

Dietterich, T. (1998). Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms. Neural Computation, 10, 1895–1924.

Dietterich, T. G., Hild, H., & Bakiri, G. (1995). A comparison of ID3 and
backpropagation for English text-to-speech mapping. Machine Learning, 19, 5–
28.

Domingos, P. (1995). The RISE 2.0 system: A case study in multistrategy learning
(Technical Report 95-2). University of California at Irvine, Department of
Information and Computer Science, Irvine, CA.

Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine
Learning, 24, 141–168.

Dudani, S. (1976). The distance-weighted k-nearest neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics, 325–327.

Durieux, G., & Gillis, S. (2000). Predicting grammatical classes from phonological
cues: An empirical test. In B. Höhle and J. Weissenborn (Eds.), Approaches to
bootstrapping: Phonological, syntactic and neurophysiological aspects of early language
acquisition, 189–232. Amsterdam: Benjamins.

Eddington, D. (2003). Issues in modeling language processing analogically. Lingua,
114, 849–871.

Egan, J. P. (1975). Signal detection theory and ROC analysis. Series in Cognition and
Perception. New York, NY: Academic Press.

Eisner, J. (1996). An empirical comparison of probability models for dependency
grammar. Technical Report IRCS-96-11, Institute for Research in Cognitive
Science, University of Pennsylvania.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Estes, W. K. (1994). Classification and cognition, vol. 22 of Oxford Psychology Series.
New York: Oxford University Press.

Evans, R. (2001). Applying machine learning toward an automatic classification of
it. Journal of Literary and Linguistic Computing, 16, 45–57.

Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers
(Technical Report HPL-2003-4). Hewlett Packard Labs.

Fernández, R., Ginzburg, J., & Lappin, S. (2004). Classifying ellipsis in dialogue:
A machine learning approach. Proceedings of the 20th International Conference on
Computational Linguistics, COLING 2004, 240–246. Geneva, Switzerland.

Fillmore, C., Johnson, C., & Petruck, M. (2003). Background to framenet.
International Journal of Lexicography, 16, 235–250.

BIBLIOGRAPHY 175

Fix, E., & Hodges, J. L. (1951). Disciminatory analysis—nonparametric discrimination;
consistency properties (Technical Report Project 21-49-004, Report No. 4). USAF
School of Aviation Medicine.

Fix, E., & Hodges, J. L. (1952). Discriminatory analysis: Small sample performance
(Technical Report Project 21-49-004, Report No. unknown). USAF School of
Aviation Medicine.

Franz, A. (1996). Learning PP attachment from corpus statistics. In S. Wermter,
E. Riloff and G. Scheler (Eds.), Connectionist, statistical, and symbolic approaches
to learning for natural language processing, vol. 1040 of Lecture Notes in Artificial
Intelligence, 188–202. New York: Springer-Verlag.

Frazier, L. (1979). On comprehending sentences: Syntactic parsing strategies. Doctoral
dissertation, University of Connecticut.

Frazier, L., & Clifton, C. (1998). Construal. Cambridge, MA: MIT Press.

Gazdar, G., & Mellish, C. (1989). Natural language processing in LISP. Reading, MA:
Addison-Wesley.

Gillis, S., Durieux, G., & Daelemans, W. (2000). Lazy learning: A comparison of
natural and machine learning of stress. Cognitive Models of Language Acquisition,
76–99. Cambridge University Press.

Glushko, R. J. (1979). The organisation and activation of orthographic knowledge
in reading aloud. Journal of Experimental Psychology: Human Perception and
Performance, 5, 647–691.

Halliday, M. A. K. (1961). Categories of the theory of grammar. Word, 17, 241–292.

Hammerton, J., Osborne, M., Armstrong, S., & Daelemans, W. (2002). Special issue
of journal of machine learning research on shallow parsing. The MIT Press.

Harris, Z. S. (1940). Review of Louis H. Gray, Foundations of Language (New
York: Macmillan, 1939). Language, 16, 216–231. Page numbers cited from repr.
in Harris 1970:695–705 under the title ”Gray’s Foundations of Language”.

Harris, Z. S. (1951). Methods in structural linguistics. University of Chicago Press.

Harris, Z. S. (1957). Co-occurrence and transformation in linguistic structure.
Language, 33, 283–340.

Harris, Z. S. (1970). Papers in structural and transformational linguistics. No. 1 in
Formal Linguistic Series. D. Reidel.

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on
Information Theory, 14, 515–516.

Heemskerk, J. (1993). A probabilistic context-free grammar for disambiguation in
morphological parsing. Proceedings of the 6th Conference of the EACL, 183–192.

176 BIBLIOGRAPHY

Heemskerk, J., & Van Heuven, V. J. (1993). Morpa, a lexicon-based morphological
parser. In V. J. Van Heuven and L. C. W. Pols (Eds.), Analysis and synthesis
of speech; strategic research towards high-quality text-to-speech generation. Berlin,
Mouton de Gruyter.

Hendrickx, I., & Van den Bosch, A. (2003). Memory-based one-step named-entity
recognition: Effects of seed list features, classifier stacking, and unannotated
data. Proceedings of CoNLL-2003, 176–179.

Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations.
Computational Linguistics, 19, 103–120.

Hoste, V. (2005). Optimization in machine learning of coreference resolution. Doctoral
dissertation, University of Antwerp.

Hoste, V., Hendrickx, I., Daelemans, W., & Van den Bosch, A. (2002). Parameter
optimization for machine learning of word sense disambiguation. Natural
Language Engineering, 8, 311–325.

Jijkoun, V., & de Rijke, M. (2004). Enriching the output of a parser using memory-
based learning. Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, 311–318. Barcelona, Spain.

Johansen, M., & Palmeri, T. (2002). Are there representational shifts during
category learning? Cognitive Psychology, 45, 482–553.

Johnstone, T., & Shanks, D. R. (2001). Abstractionist and processing accounts of
implicit learning. Cognitive Psychology, 42, 61–112.

Jones, D. (1996). Analogical natural language processing. London, UK: UCL Press.

Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.
Englewood Cliffs, New Jersey: Prentice Hall.

Kasif, S., Salzberg, S., Waltz, D., Rachlin, J., & Aha, D. K. (1998). A probabilistic
framework for memory-based reasoning. Artificial Intelligence, 104, 287–311.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics, Speech
and Signal Processing, ASSP-35, 400–401.

Kingsbury, P., Palmer, M., & Marcus, M. (2002). Adding semantic annotation to
the Penn Treebank. Proceedings of the Human Language Technology Conference.
San Diego, CA.

Knuth, D. E. (1973). The art of computer programming, vol. 3: Sorting and searching.
Reading, MA: Addison-Wesley.

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial
Intelligence Journal, 97, 273–324.

BIBLIOGRAPHY 177

Kohonen, T. (1986). Dynamically expanding context, with application to the
correction of symbol strings in the recognition of continuous speech. Proceedings
of the Eighth International Conference on Pattern Recognition, 27–31. Paris, France.

Kokkinakis, D. (2000). PP-attachment disambiguation for swedish: Combining
unsupervised and supervised training data. Nordic Journal of Linguistics, 23, 191–
213.

Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.

Koskenniemi, K. (1983). Two-level model for morphological analysis. Proceedings
of the 8th International Joint Conference on Artificial Intelligence. Los Alamos, CA:
Morgan Kaufmann.

Koskenniemi, K. (1984). A general computational model for wordform recognition
and production. Proceedings of the Tenth International Conference on Computational
Linguistics / 22nd Annual Conference of the Association for Computational Linguistics,
178–181.

Krott, A., Baayen, R. H., & Schreuder, R. (2001). Analogy in morphology: modeling
the choice of linking morphemes in Dutch. Linguistics, 39, 51–93.

Kübler, S. (2004). Memory-based parsing. Amsterdam, The Netherlands: John
Benjamins.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. Proceedings
of the 18th International Conference on Machine Learning. Williamstown, MA.

Langley, P. (1996). Elements of machine learning. San Mateo, CA: Morgan Kaufmann.

Lavrac, N., & Džeroski, S. (1994). Inductive logic programming. Chichester, UK: Ellis
Horwood.

Lendvai, P., Van den Bosch, A., & Krahmer, E. (2003a). Machine learning
for shallow interpretation of user utterances in spoken dialogue systems.
Proceedings of the EACL Workshop on Dialogue Systems: Interaction, adaptation and
styles of management, 69–78.

Lendvai, P., Van den Bosch, A., & Krahmer, E. (2003b). Memory-based disfluency
chunking. Proceedings of Disfluency in Spontaneous Speech Workshop (DISS’03),
63–66.

Lendvai, P., Van den Bosch, A., Krahmer, E., & Swerts, M. (2002). Improving
machine-learned detection of miscommunications in human-machine dialogues
through informed data splitting. Proceedings of the ESSLLI Workshop on Machine
Learning Approaches in Computational Linguistics.

Ling, C. X., & Wang, H. (1996). A decision-tree model for reading aloud with
automatic alignment and grapheme generation. Submitted.

178 BIBLIOGRAPHY

Lucassen, J. M., & Mercer, R. L. (1984). An information theoretic approach to the
automatic determination of phonemic baseforms. Proceedings of ICASSP ’84, San
Diego, 42.5.1–42.5.4.

Luk, R., & Damper, R. (1996). Stochastic phonographic transduction for English.
Computer Speech and Language, 10, 133–153.

MacLeod, J. E. S., Luk, A., & Titterington, D. M. (1987). A re-examination of the
distance-weighted k-nearest neighbor classification rule. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-17, 689–696.

Malouf, R. (2000). The order of prenominal adjectives in natural language
generation. Proceedings of the 38th Annual Meeting of the Association for
Computational Linguistics, 85–92. New Brunswick, NJ: ACL.

Manning, C., & Schütze, H. (1999). Foundations of statistical natural language
processing. Cambridge, Massachusetts: The MIT Press.

Marcus, G., Brinkmann, U., Clahsen, H., Wiese, R., & Pinker, S. (1995). German
inflection: The exception that proves the rule. Cognitive Psychology, 29, 189–256.

Marcus, M., Santorini, S., & Marcinkiewicz, M. (1993). Building a Large Annotated
Corpus of English: the Penn Treebank. Computational Linguistics, 19, 313–330.

Marsi, E., Reynaert, M., Van den Bosch, A., Daelemans, W., & Hoste, V. (2003).
Learning to predict pitch accents and prosodic boundaries in Dutch. Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics, 489–496.
New Brunswick, NJ: ACL.

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models
for information extraction and segmentation. Proceedings of the 17th International
Conference on Machine Learning. Stanford, CA.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Artificial
Intelligence, 11, 111–161.

Mihalcea, R. (2002). Instance-based learning with automatic feature selection
applied to word sense disambiguation. Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002). Taipei, Taiwan.

Minnen, G., Bond, F., & Copestake, A. (2000). Memory-based learning for article
generation. Proceedings of the 4th Conference on Computational Natural Language
Learning and the Second Learning Language in Logic Workshop, 43–48. New
Brunswick, NJ: ACL.

Mitchell, T. (1997). Machine learning. New York, NY: McGraw-Hill.

Mitkov, R. (Ed.). (2003). The Oxford Handbook of Computational Linguistics. Oxford:
Oxford University Press.

BIBLIOGRAPHY 179

Mitkov, R., Evans, R., & Orasan, C. (2002). A new, fully automatic version of
Mitkov’s knowledge-poor pronoun resolution method. Proceedings of the Third
International Conference on Computational Linguistics and Intelligent Text Processing,
168–186. Springer-Verlag.

Morin, R. L., & Raeside, B. E. (1981). A reappraisal of distance-weighted k-
nearest neighbor classification for pattern recognition with missing data. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-11, 241–243.

Nagao, M. (1984). A framework of a mechanical translation between Japanese and
English by analogy principle. In A. Elithorn and R. Banerji (Eds.), Artificial and
human intelligence, 173–180. Amsterdam: North-Holland.

Niblett, T. (1987). Constructing decision trees in noisy domains. Proceedings of the
Second European Working Session on Learning, 67–78. Bled, Yugoslavia: Sigma.

Nivre, J., Hall, J., & Nilsson, J. (2004). Memory-based dependency parsing.
Proceedings of the Eighth Conference on Computational Natural Language Learning
(CoNLL 2004), 49–57. Boston, Massachusetts.

Nivre, J., & Scholz, M. (2004). Deterministic dependency parsing of English text.
Proceedings of COLING 2004, 23–27. Geneva, Switzerland.

Nosofsky, R. (1986). Attention, similarity, and the identification-categorization
relationship. Journal of Experimental Psychology: General, 15, 39–57.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tesselations: Concepts
and applications of Voronoi diagrams. John Wiley. Second edition.

Orăsan, C., & Evans, R. (2001). Learning to identify animate references. Proceedings
of the Fifth Workshop on Computational Language Learning, CoNLL-2001, 129–136.
Toulouse, France.

Palmer, F. R. (Ed.). (1969). Selected papers of J. R. Firth 1952–1959. London:
Longmans.

Piatelli–Palmarini, M. (Ed.). (1980). Language learning: The debate between Jean Piaget
and Noam Chomsky. Cambridge, MA: Harvard University Press.

Pirelli, V., & Federici, S. (1994). On the pronunciation of unknown words by
analogy in text-to-speech systems. Proceedings of the Second Onomastica Research
Colloquium. London.

Pohlmann, R., & Kraaij, W. (1997). Improving the precision of a text retrieval
system with compound analysis. CLIN VII – Papers from the Seventh CLIN
meeting, 115–128.

Preiss, J. (2002). Anaphora resolution with memory-based learning. Proceedings of
the Fifth Annual CLUK Research Colloquium, 1–9.

Provost, F., Jensen, D., & Oates, T. (1999). Efficient progressive sampling.
Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, 23–32.

180 BIBLIOGRAPHY

Quinlan, J. (1986). Induction of Decision Trees. Machine Learning, 1, 81–206.

Quinlan, J. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan
Kaufmann.

Ramshaw, L., & Marcus, M. (1995). Text chunking using transformation-based
learning. Proceedings of the 3rd ACL/SIGDAT Workshop on Very Large Corpora,
Cambridge, Massachusetts, USA, 82–94.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. Proceedings
of the Conference on Empirical Methods in Natural Language Processing, May 17-18,
1996, University of Pennsylvania.

Ratnaparkhi, A. (1998). Maximum entropy models for natural language ambiguity
resolution. Doctoral dissertation, University of Pennsylvania.

Ratnaparkhi, A., Reynar, J., & Roukos, S. (1994). A maximum entropy model
for prepositional phrase attachment. Workshop on Human Language Technology.
Plainsboro, NJ.

Reinberger, M.-L., Spyns, P., Pretorius, A. J., & Daelemans, W. (2004). Automatic
initiation of an ontology. On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE, OTM Confederated International Conferences, 600–617.

Riesbeck, C., & Schank, R. (1989). Inside case-based reasoning. Northvale, NJ:
Erlbaum.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum
description length. Annals of Statistics, 11, 416–431.

Rotaru, M., & Litman, D. (2003). Exceptionality and natural language learning.
Proceedings of the Seventh Conference on Computational Natural Language Learning.
Edmonton, Canada.

Roth, D. (1998). Learning to resolve natural language ambiguities: A unified
approach. Proceedings of the National Conference on Artificial Intelligence, 806–813.
Menlo Park, CA: AAAI Press.

Salzberg, S. (1990). Learning with nested generalised exemplars. Norwell, MA: Kluwer
Academic Publishers.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning,
6, 277–309.

Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery, 1.

Scha, R. (1992). Virtual Grammars and Creative Algorithms. Gramma/TTT
Tijdschrift voor Taalkunde, 1, 57–77.

Scha, R., Bod, R., & Sima’an, K. (1999). A memory-based model of syntactic
analysis: data-oriented parsing. Journal of Experimental and Theoretical Artificial
Intelligence, 11, 409–440.

BIBLIOGRAPHY 181

Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given
task. Proceedings of the First International Conference on Knowledge Discovery and
Data Mining. Menlo Park: AAAI Press.

Sejnowski, T., & Rosenberg, C. (1987). Parallel networks that learn to pronounce
English text. Complex Systems, 1, 145–168.

Sejnowski, T. J., & Rosenberg, C. (1986). NETtalk:A parallel network that learns to
read aloud (Technical Report JHU EECS 86-01). Johns Hopkins University.

Shepard, R. (1987). Toward a universal law of generalization for psychological
science. Science, 237, 1317–1323.

Skousen, R. (1989). Analogical modeling of language. Dordrecht: Kluwer Academic
Publishers.

Skousen, R. (2002). An overview of analogical modeling. In R. Skousen,
D. Lonsdale and D. B. Parkinson (Eds.), Analogical modeling: An exemplar-based
approach to language, 11–26. Amsterdam, The Netherlands: John Benjamins.

Skousen, R., Lonsdale, D., & Parkinson, D. B. (Eds.). (2002). Analogical modeling:
An exemplar-based approach to language. Amsterdam, The Netherlands: John
Benjamins.

Smith, E., & Medin, D. (1981). Categories and concepts. Cambridge, MA: Harvard
University Press.

Smith, L., & Samuelson, L. (1997). Perceiving and remembering: Category
stability, variability, and development. In K. Lamberts and D. Shanks (Eds.),
Knowledge, concepts, and categories, 161–195. Cambridge: Cambridge University
Press.

Spitters, M. (2000). Comparing feature sets for learning text categorization.
Proceedings of the Sixth Conference on Content-Based Multimedia Access (RIAO
2002), 1124–1135. Paris, France.

Sproat, R. (1992). Morphology and computation. ACL-MIT Press Series in Natural
Language Processing. Cambridge, MA: The MIT Press.

Stanfill, C. (1987). Memory-based reasoning applied to English pronunciation.
Proceedings of the Sixth National Conference on Artificial Intelligence, 577–581. Los
Altos, CA: Morgan Kaufmann.

Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Communications
of the ACM, 29, 1213–1228.

Stetina, J., & Nagao, M. (1997). Corpus-based PP attachment ambiguity resolution
with a semantic dictionary. Proceedings of the Fifth Workshop on Very Large Corpora,
66–80. Beijing, China.

Stevenson, M., & Wilks, Y. (1999). Combining weak knowledge sources for
sense disambiguation. Proceedings of the International Joint Conference on Artificial
Intelligence.

182 BIBLIOGRAPHY

Streiter, O. (2001a). Memory-based parsing: Enhancing recursive top-down fuzzy
match with bottom-up chunking. Proceedings of the Nineteenth International
Conference on Computer Processing of Oriental Languages (ICCPOS 2001).

Streiter, O. (2001b). Recursive top-down fuzzy match: New perspectives on
memory-based parsing. Proceedings of the Fifteenth Pacific Asia conference on
Language, Information and Computation (PACLIC 2001).

Sullivan, K., & Damper, R. (1992). Novel-word pronunciation with a text-to-speech
system. In G. Bailly and C. Benoı̂t (Eds.), Talking machines: theories, models, and
applications, 183–195. Amsterdam: Elsevier.

Sullivan, K., & Damper, R. (1993). Novel-word pronunciation: a cross-language
study. Speech Communication, 13, 441–452.

Sun, R., & Giles, L. (2001). Sequence learning: Paradigms, algorithms, and applications.
Heidelberg: Springer Verlag.

Swets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science.
Scientific American, 283, 82–87.

Swonger, C. W. (1972). Sample set condensation for a condensed nearest neighbor
decision rule for pattern recognition. In S. Watanabe (Ed.), Frontiers of pattern
recognition, 511–519. Orlando, Fla: Academic Press.

Thompson, C. A., Califf, M. E., & Mooney, R. J. (1999). Active learning for
natural language parsing and information extraction. Proceedings of the Sixteenth
International Conference on Machine Learning, 406–414. Morgan Kaufmann, San
Francisco, CA.

Tjong Kim Sang, E. (2002). Memory-based shallow parsing. Journal of Machine
Learning Research, 2, 559–594.

Tjong Kim Sang, E., & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared
task: Chunking. Proceedings of CoNLL-2000 and LLL-2000, 127–132.

Tjong Kim Sang, E., & De Meulder, F. (2003). Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. Proceedings of
CoNLL-2003, 142–147. Edmonton, Canada.

Tjong Kim Sang, E., & Veenstra, J. (1999). Representing text chunks. Proceedings of
EACL’99, 173–179. Bergen, Norway.

Tomasello, M. (2003). Constructing a language: A usage-based theory of language
acquisition. Harvard University Press.

Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-6, 448–452.

Torkkola, K. (1993). An efficient way to learn English grapheme-to-phoneme rules
automatically. Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 199–202. Minneapolis.

BIBLIOGRAPHY 183

Twain, M. (1880). A tramp abroad. Hartford: American Publishing Co.

Van den Bosch, A. (1997). Learning to pronounce written words: A study in inductive
language learning. Doctoral dissertation, Universiteit Maastricht.

Van den Bosch, A. (1999). Instance-family abstraction in memory-based language
learning. Machine Learning: Proceedings of the Sixteenth International Conference,
39–48. Bled, Slovenia.

Van den Bosch, A., & Buchholz, S. (2002). Shallow parsing on the basis of
words only: A case study. Proceedings of the 40th Meeting of the Association for
Computational Linguistics, 433–440.

Van den Bosch, A., Canisius, S., Daelemans, W., Hendrickx, I., & Tjong Kim
Sang, E. (2004). Memory-based semantic role labeling: Optimizing features,
algorithm, and output. Proceedings of the Eighth Conference on Computational
Natural Language Learning. Boston, MA, USA.

Van den Bosch, A., Content, A., Daelemans, W., & De Gelder, B. (1995). Measuring
the complexity of writing systems. Journal of Quantitative Linguistics, 1.

Van den Bosch, A., & Daelemans, W. (1993). Data-oriented methods for grapheme-
to-phoneme conversion. Proceedings of the 6th Conference of the EACL, 45–53.

Van den Bosch, A., & Daelemans, W. (1999). Memory-based morphological
analysis. Proceedings of the 37th Annual Meeting of the ACL, 285–292. San
Francisco, CA: Morgan Kaufmann.

Van den Bosch, A., Daelemans, W., & Weijters, A. (1996). Morphological analysis
as classification: an inductive-learning approach. Proceedings of the Second
International Conference on New Methods in Natural Language Processing, NeMLaP-
2, Ankara, Turkey, 79–89.

Van den Bosch, A., Krahmer, E., & Swerts, M. (2001). Detecting problematic turns
in human-machine interactions: Rule-induction versus memory-based learning
approaches. Proceedings of the 39th Meeting of the Association for Computational
Linguistics, 499–506. New Brunswick, NJ: ACL.

Van Halteren, H. (1999). Syntactic wordclass tagging. Dordrecht, The Netherlands:
Kluwer Academic Publishers.

Van Halteren, H., Zavrel, J., & Daelemans, W. (2001). Improving accuracy in word
class tagging through combination of machine learning systems. Computational
Linguistics, 27, 199–230.

Van Herwijnen, O., Van den Bosch, A., Terken, J., & Marsi, E. (2004). Learning
PP attachment for filtering prosodic phrasing. Tenth Conference of the European
Chapter of the Association for Computational Linguistics (EACL-03), 139–146.

Van Rijsbergen, C. (1979). Information retrieval. London: Buttersworth.

Vapnik, V., & Bottou, L. (1993). Local algorithms for pattern recognition and
dependencies estimation. Neural Computation, 5, 893–909.

184 BIBLIOGRAPHY

Varges, S., & Mellish, C. (2001). Instance-based natural language generation.
Proceedings of the 2nd Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL-01), 1–8. New Brunswick, NJ: ACL.

Veenstra, J. (1998). Fast NP chunking using memory-based learning techniques.
Proceedings of BENELEARN’98, 71–78. Wageningen, The Netherlands.

Veenstra, J., & Daelemans, W. (2000). A memory-based alternative for connectionist
shift-reduce parsing (Technical Report ILK 00-12). ILK Research Group,
University of Tilburg.

Veenstra, J., Van den Bosch, A., Buchholz, S., Daelemans, W., & Zavrel, J. (2000).
Memory-based word sense disambiguation. Computers and the Humanities, 34,
171–177.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory, 13, 260–
269.

Weijters, A. (1991). A simple look-up procedure superior to NETtalk? Proceedings
of the International Conference on Artificial Neural Networks - ICANN-91, Espoo,
Finland.

Weiss, S., & Kulikowski, C. (1991). Computer systems that learn. San Mateo, CA:
Morgan Kaufmann.

Wermter, S., Riloff, E., & Scheler, G. (1996). Learning aprroaches for natural
language processing. In S. Wermter, E. Riloff and G. Scheler (Eds.), Connectionist,
statistical and symbolic approaches to learning for natural language processing, vol.
1040 of Lecture Notes in Artificial Intelligence, 1–16. Berlin: Springer.

Wettschereck, D. (1994). A study of distance-based machine learning algorithms.
Doctoral dissertation, Oregon State University.

Wettschereck, D., & Dietterich, T. G. (1994). Locally adaptive nearest neighbor
algorithms. Advances in Neural Information Processing Systems, 184–191. Palo
Alto, CA: Morgan Kaufmann.

Wettschereck, D., & Dietterich, T. G. (1995). An experimental comparison of the
nearest-neighbor and nearest-hyperrectangle algorithms. Machine Learning, 19,
1–25.

White, A., & Liu, W. (1994). Bias in information-based measures in decision tree
induction. Machine Learning, 15(3), 321–329.

Wilson, D. (1972). Asymptotic properties of nearest neighbor rules using edited
data. Institute of Electrical and Electronic Engineers Transactions on Systems, Man
and Cybernetics, 2, 408–421.

Wilson, D., & Martinez, A. (1997). Instance pruning techniques. Machine Learning:
Proceedings of the Fourteenth International Conference. San Francisco, CA.

BIBLIOGRAPHY 185

Wolpert, D. H. (1992). Stacked Generalization. Neural Networks, 5, 241–259.

Yvon, F. (1996). Prononcer par analogie: motivation, formalisation et évaluation.
Doctoral dissertation, Ecole Nationale Supérieure des Télécommunications,
Paris.

Zavrel, J. (1997). An empirical re-examination of weighted voting for k-NN.
Proceedings of the 7th Belgian-Dutch Conference on Machine Learning, 139–148.
Tilburg.

Zavrel, J., Berck, P., & Lavrijssen, W. (2000). Information extraction by text
classification: Corpus mining for features. Proceedings of the workshop Information
Extraction meets Corpus Linguistics. Athens, Greece.

Zavrel, J., & Daelemans, W. (1997). Memory-based learning: Using similarity
for smoothing. Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics, 436–443.

Zavrel, J., & Daelemans, W. (1999). Recent advances in memory-based part-of-
speech tagging. VI Simposio Internacional de Comunicacion Social, Santiago de Cuba,
590–597.

Zavrel, J., & Daelemans, W. (2003). Feature-rich memory-based classification for
shallow NLP and information extraction. Text Mining, Theoretical Aspects and
Applications, 33–54. Heidelberg, Germany: Springer Physica-Verlag.

Zavrel, J., Daelemans, W., & Veenstra, J. (1997). Resolving PP attachment
ambiguities with memory-based learning. Proceedings of the Workshop on
Computational Language Learning (CoNLL’97). ACL, Madrid.

Zhang, J. (1992). Selecting typical instances in instance-based learning. Proceedings
of the International Machine Learning Conference 1992, 470–479.

Index

abstraction, 24, 104–147
ACL, 14
affix, 57
ambitag, 87
analogical modeling, 18
analogy, 15, 16
anaphora resolution, 166
artificial intelligence, 5
attenuation, 88
AUC, area under the curve, 50
automatic subtitling, 102

back-off estimation, 146
Bloomfield, L., 15
BNGE, 129
Brill tagger, 109

C4.5, 64, 83, 104, 129, 144, 145
case-based reasoning, 22
CELEX, 28, 58, 69, 74, 81, 108, 144
χ2 statistic, 31
CHUNK, see English constituent

chunking
chunking, 96
city-block distance, 29
class n-grams, 160–161
class prediction strength, 116–123
classification, 16
clause boundary detection, 102
CN2, 130
cognitive linguistics, 19, 20
compounding, 74

computational learning theory, 104
computational morphology, 84
conditional random fields, 156
confusion matrix, 48, 49
CoNLL, 14, 109
constituent chunking, 96, 109
core, 123

data-oriented parsing, 24, 146
De Saussure, F., 15
decision tree induction, 5, 63
derivation, 74
dialog

act classification, 166
systems, 146, 166

DIMIN, see Dutch diminutive
formation

diminutive formation, 107
Dirichlet tile, 117
disambiguation, 8
disfluencies, 166
disjunctivity, 123
distance weighting, 42–44

exponential decay, 43
inverse, 43
inverse-linear, 42

DOP, data-oriented parsing, 24, 103
dual route model, 27
Dutch

compound linking, 84
diminutive formation, 107
morphological analysis, 74, 108

186

INDEX 187

morphology, 74, 84
prosody generation, 166
word phonemization, 84
word stress, 167

EACH, 116
eager learning, 22
ED, exponential-decay distance

weighting, 43
editing, 115–127, 146
elsewhere condition, 123
EMNLP, 14
English

constituent chunking, 96, 109
named entity recognition, 109
past tense, 84
prepositional-phrase

attachment, 9, 108
entropy, 30
example-based machine translation,

23
exemplar-based learning, 22
expectation-maximization, 60

F-score, 50, 78
FAMBL, 132–143, 145
feature weighting, 29–32

χ2, 31
gain ratio, 30
information gain, 29
shared variance, 32

finite-state transducers, 84
Firth, J. R., 17
FPR, false positive rate, 49
French

word phonemization, 84

gain ratio, 30
generalization, 24, 104–147
German

plural formation, 27, 107

GPLURAL, see German plural
formation

GR, gain ratio, 30
grammatical relations, 99

Halliday, M. A. K., 17
Hamming distance, 29
harmonic mean, 50
Harris, Z., 18
Hidden Markov models, 164
hyperplane, 123
hyperrectangle, 129

IB1, 29
IB2, 144
IB3, 116, 144
ICF, 146
ID, inverse distance weighting, 43
ID3, 64
IG, information gain, 29
IGTREE, 64–71, 111, 129, 145
IL, inverse-linear distance

weighting, 42
induction, 17
inductive logic programming, 5
inflection, 74
information extraction, 85, 167
information gain, 29
information retrieval, 81, 85, 87
information theory, 29
instance base, 26
instance-based learning, 22
IOB tags, 96, 109, 110

k–d trees, 21
k–nearest neighbor classifier, 21, 29

L1 metric, 29
language

acquisition, 167
experience-based, 20

188 INDEX

engineering, 3
signs, 16
technology, 3

langue, 16
Laplace correction, 117, 131
late closure principle, 11
lazy learning, 22
learning curve, 53
leave-one-out validation, 47
lexical lookup, 58
lexicon, 58
locally-weighted learning, 22

machine learning, 5
machine translation

example-based, 23
MALT parser, 103
Manhattan distance, 29
maximum-entropy markov models,

156
maximum-likelihood estimation,

146
MBRTalk, 83
MBT, 90
MBTG, 90
memory-based reasoning, 22
memory-based sequence learning,

103
minimal attachment principle, 11
minimal description length

principle, 5, 104, 143
MITALK, 59
modified value difference metric,

38–41
MORPH, see Dutch morphological

analysis
morpheme, 57
morphological analysis, 73–80
morphology, 57

named-entity recognition, 109, 167
natural language processing, 3
nearest-neighbor classifier, 21
NER, see English named entity

recognition
Nettalk, 83
NeXTeNS, 81
NGE, 129
noun

animacy, 166
countability, 166
plural formation, 27

Ockham’s razor, 5, 104
OCTOPUS parser, 103
ontology extraction, 85, 102
optimality theory, 167
orthography, 59, 66
overfitting, 149
overlap metric, 29

paired t-test, 55
paradigmatic relation, 16
paramsearch, 152
parole, 16
parsing, 85, 87
part-of-speech tagging, 86
partial parsing, 85
Penn Treebank, 108, 109, 144
periphery, 123
phoneme, 57
phonemization, 59–73
phonology, 57
plural formation, 107
polymorphism, 124
POS, 86
PP, see English prepositional-phrase

attachment
precision, 49
principles and parameters, 167

INDEX 189

progressive sampling, 150
prosody, 166
psychology, 19

question answering, 85, 102

recall, 49
receiver operator characteristics, 50
recurrent neural networks, 156
relation finding, 86, 99
Reuters Corpus RCV1, 109
RIPPER, 104–111, 144–146
RISE, 129, 130
ROC space, 50
rule induction, 5, 106

segmentation, 8, 16
SENSEVAL, 166
sentence generation, 167
shallow parsing, 85–103
shared variance, 32
shift-reduce parsing, 103
SIGDAT, 14
SIGNLL, 14, 102
similarity metric, 28–44
Skousen, R., 18
spam filtering, 167
Spanish

word stress assignment, 84
speech synthesis, 59, 87
spelling error correction, 87
spoken language parsing, 103
stacking, 157–160, 165

adaptive, 159
perfect, 158

statistical natural language
processing, 17

statistical pattern recognition, 5, 21
stochastic grammars, 164
stochastic transducers, 84
substitution grammars, 18

summarization, 85, 102
support vector machines, 123, 144
syntagmatic relations, 16
systemic functional grammar, 17

ten-fold cross-validation, 47
text classification, 167
text generation, 166
text mining, 87, 167
TIMBL, 26, 32–41, 44, 45, 47, 48, 52,

67, 73
TPR, true positive rate, 49
transformation-based error-driven

learning, 5
TreeTalk, 60
TRIBL, 71–73, 145
TüSBL, 103
two-level morphology, 84
typicality, 146

unknown words, 87
usage-based models of language, 20

Voronoi cell, 117

windowing, 9, 62, 156
word sense disambiguation, 166
word stress assignment, 167
wrapped progressive sampling,

149–155
wrapping, 149

	Cover
	Half-title
	Series-title
	Title
	Copyright
	Contents
	Preface
	Chapter 1 Memory-Based Learning in Natural Language Processing
	1.1 Natural language processing as classification
	1.2 A linguistic example
	1.3 Roadmap and software
	1.4 Further reading

	Chapter 2 Inspirations from linguistics and artificial intelligence
	2.1 Inspirations from linguistics
	2.2 Inspirations from artificial intelligence
	2.3 Memory-based language processing literature
	Example-based machine translation (EBMT)
	Data-oriented parsing

	2.4 Conclusion

	Chapter 3 Memory and Similarity
	3.1 German plural formation
	3.2 Similarity metric
	3.2.1 Information-theoretic feature weighting
	3.2.2 Alternative feature weighting methods
	3.2.3 Getting started with TIMBL
	3.2.4 Feature weighting in TIMBL
	3.2.5 Modified value difference metric
	3.2.6 Value clustering in TIMBL
	3.2.7 Distance-weighted class voting
	3.2.8 Distance-weighted class voting in TIMBL

	3.3 Analyzing the output of MBLP
	3.3.1 Displaying nearest neighbors in TIMBL

	3.4 Implementation issues
	3.4.1 TIMBL trees

	3.5 Methodology
	3.5.1 Experimental methodology in TIMBL
	3.5.2 Additional performance measures in TIMBL

	3.6 Conclusion

	Chapter 4 Application to morpho-phonology
	4.1 Phonemization
	4.1.1 Memory-based word phonemization
	4.1.2 TREETALK
	4.1.3 IGTREE in TIMBL
	4.1.4 Experiments: applying IGTREE to word phonemization
	4.1.5 TRIBL: trading memory for speed
	4.1.6 in TIMBL

	4.2 Morphological analysis
	4.2.1 Dutch morphology
	4.2.2 Feature and class encoding
	4.2.3 Experiments: on Dutch wordforms

	4.3 Conclusion
	4.4 Further reading

	Chapter 5 Application to shallow parsing
	5.1 Part-of-speech tagging
	5.1.1 Memory-based tagger architecture
	5.1.2 Results
	5.1.3 Memory-based tagging with MBT and MBTG

	5.2 Constituent chunking
	5.2.1 Results
	5.2.2 Using MBT and MBTG for chunking

	5.3 Relation finding
	5.3.1 Relation finder architecture
	5.3.2 Results

	5.4 Conclusion
	5.5 Further reading

	Chapter 6 Abstraction and generalization
	6.1 Lazy versus eager learning
	6.1.1 Benchmark language learning tasks
	6.1.2 Forgetting by rule induction is harmful in language learning
	Increased abstraction in IB1 and RIPPER

	6.2 Editing examples
	CPS: An editing criterion

	6.3 Why forgetting examples can be harmful
	Degree of polymorphism
	Usefulness of exceptional examples

	6.4 Generalizing examples
	6.4.1 Careful abstraction in memory-based learning
	Carefully merged examples
	FAMBL: merging example families

	6.4.2 Getting started with FAMBL
	6.4.3 Experiments with FAMBL

	6.5 Conclusion
	6.6 Further reading

	Chapter 7 Extensions
	7.1 Wrapped progressive sampling
	7.1.1 The wrapped progressive sampling algorithm
	7.1.2 Getting started with wrapped progressive sampling
	7.1.3 Wrapped progressive sampling results

	7.2 Optimizing output sequences
	7.2.1 Stacking
	7.2.2 Predicting class n-grams
	7.2.3 Combining stacking and class n-grams
	7.2.4 Summary

	7.3 Conclusion
	7.4 Further reading

	Bibliography
	Index

