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Preface

Language learning is considered by many to be one of the central
problems of linguistics and, more generally, cognitive science. Yet, the
very same interdisciplinary nature that makes this ®eld of study
so interesting, makes it somehow di�cult for researchers to reach a
thorough understanding of the issues at play. This follows from the
fact that research in the ®eld by necessity has to draw on techniques
and results that come from traditionally disparate ®elds such as linguis-
tics, psychology and computer science.

This book has been conceived as a companion to learnability for the
bene®t of those linguists that base their work on Chomsky's Principles
and Parameters Hypothesis. General concepts from formal learning
theory and complexity theory and important facts from developmental
psycholinguistics, historical linguistics and language processing have
been introduced in a tutorial and completely self-contained fashion, so
as to introduce linguists of the parametric persuasion to important
techniques that can be used (and indeed have been used in the recent
research literature) to obtain interesting and empirically testable
predictions from parametric theories of language variation.

The tutorial nature of the book is demonstrated by the large number
of exercises that can be used by readers to test their understanding of
the material. In the editing of the book a conscious eÿort has been
made in order to integrate the ®ve chapters as tightly as possible by
means of extensive cross-referencing.

S. Bertolo
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1 A brief overview of learnability

Stefano Bertolo

Applications of formal learning theory to the problem of human lan-
guage learning can be described as an exercise in which three parties ±
linguists, psychologists and learnability researchers ± cooperatively con-
struct a theory of human language learning and, in so doing, constrain
their space of hypotheses by ruling out all the theories that violate one
or more of the constraints that each party brings to bear on the pro-
blem.

The interaction among these three parties is similar to the interaction
that would take place if a rich patron were to ask an architect and a
structural engineer to work together to design a museum: the architect
would start by designing very bold and innovative plans for the
museum; the engineer would remind him or her, calculator in hand,
that some of those designs would be physically impossible to build and
the patron would visit every so often to make sure that the plans the
engineer and the architect have agreed upon would result in a
museum that could be built within budget and according to a speci-
®ed construction schedule. In our case, linguists would correspond to
the architect: based on their study of human languages or on more
speculative reasons, they specify what they take the possible range of
variation among human languages to be. Psychologists would corre-
spond to the patron: they collect experimental data to show that it
is not just that humans learn the language(s) of the linguistic com-
munity in which they are brought up, but that they do so according
to a typical time schedule and relying on linguistic data of a certain,
restricted, kind. Finally, learnability researchers correspond to the
engineer: some theories of language variation they would be able to
rule out directly, by showing that no conceivable mechanism could
single out a correct hypothesis from such a large and dense range of
choice; some other theories they would pronounce tenable, but only
under certain assumptions on the resources available for learning,
assumptions that need to be empirically validated by work in de-
velopmental psycholinguistics.
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The goal of this introductory chapter is to provide linguists subscrib-
ing to Chomsky's Principles and Parameters Hypothesis (PPH) with a
general understanding of the learnability concepts that need to be
digested in order to study with pro®t research work at the intersection
of linguistics, psychology and learnability and so, in particular, to pro-
vide the background that is required to understand the remaining
essays in this collection.

1.1 The ®ve components of a learning problem

Just like a structural engineer could not even begin to perform an ana-
lysis until a plan of the building has been provided together with the
properties of the materials to be used in building it, a learnability
researcher cannot even begin to work alongside linguists and psycholo-
gists until certain general properties of the learning problem to be
solved are known:1

(i) What is being learned, exactly?
(ii) What kind of hypotheses is the learner capable of entertaining?
(iii) How are the data from the target language presented to the

learner?
(iv) What are the restrictions that govern how the learner updates her

conjectures in response to the data?
(v) Under what conditions, exactly, do we say that a learner has been

successful in the language learning task?

We will brie¯y look at each of them in turn.

1.1.1 The end state of language learning

Since we are dealing with human language learning, the end state of
this process is, by de®nition, a human language. In this section we will
see, however, two things: that this fact itself has a number of interest-
ing consequences and that there is disagreement of a rather interesting
kind on what counts as knowledge of a human language.

First of all, since humans understand and produce utterances pro-
ductively ± i.e. they are able to understand and produce sentences they
were never exposed to ± having learned a human language cannot be
equated with having memorized the list of all the sentences that one
has ever encountered, but it must amount instead to having inter-
nalized a system of rules (a grammar). Under this view, the ®nal state
of the learning process encodes grammatical knowledge that can be
used to classify every possible sentence as grammatical or ungrammati-
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cal in the target language. This observation might give the impression
that learnability may only address the problem of learning the surface
syntax of a language. This is in fact not the case. One could easily
annotate an utterance with all the relevant syntactic and semantic
information. As long as this annotation results in a ®nite object that
can be the input/output of a computation (see Wexler and Culicover
(1980) for an example of how such an annotation can be carried out),
the learning problem of ®nding a grammar for the given data remains
essentially the same. It is for this reason that often in formal work
learning problems are cast as problems of learning sets of natural num-
bers, the assumption being that appropriate coding could turn any
learning problem into such a problem.

It is important to note that there is a fecund research tradition dat-
ing back to Horning (1969) that takes a diÿerent view of what the end
state of the learning process is. Researchers in the ®eld of stochastic
grammars would claim that a grammar that explains the data and can
be used productively is only part of what humans learn when they
learn a natural language. In addition human learners also learn a
probability distribution describing the applicability of the rules in the
grammar. To exemplify, a learner would not only learn that two rules
A and B are part of her grammar but also that, say, A is twice as likely
to be used than B is. It is easy to see that the probability of every sur-
face sentence in a language can thus be obtained by ®rst determining
how many possible structural interpretations the sentence can have and
then adding all the values obtained by multiplying together the prob-
abilities of each of the rules recruited in each interpretation. In this
view, therefore, learners do not simply try to identify the grammar of
their linguistic community but, rather, they try to approximate the
ambient probability distribution on possible linguistic events.

All the contributions in this book proceed under the assumptions
corresponding to the ®rst view, but the reader must be aware of the
fact that alternative views exist that are possibly better placed to
explain certain facts about human language learning.

1.1.2 Available hypotheses

One of the idealizations on which much work on learnability relies is
that learners must entertain hypotheses about the language they are
trying to learn at every step of the way, so that, in eÿect, their
learning history can be viewed as a data driven trajectory in a space of
hypotheses, with the last state hopefully being (one of) the correct
hypothesis(es).
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For a learner to be successful, this space must contain at least a cor-
rect conjecture for each of the possible targets (if, while trying to learn
Hungarian, you were not allowed to hypothesize a grammar equivalent
to the grammar for Hungarian, you would naturally fail), but can
otherwise be limited in many other ways. For example, it has been con-
jectured that, because humans converge on productive hypotheses about
their target languages, it is perhaps a feature of their learning psychol-
ogy that they cannot hypothesize any grammar that allows only ®nitely
many sentences. The PPH has a very strong impact on this component
of the learning problem. Its central idea is that human languages diÿer
from each other only in ®nitely many respects (the parameters) and, in
these respects, only in ®nitely many ways (the values of the para-
meters). But if this is so, all the hypothesis space needs to include are
all the possible combinations of parameter values.

1.1.3 Learning environments

Generally speaking, given a possible sentence s, there are three kinds of
clues the learner can receive about it from the environment: he or she
can either be told, correctly or incorrectly, that s is part of her target
language; or he or she can be told, correctly or incorrectly, that s is
not part of her target language; or, ®nally he or she may not be told
anything at all about s. In other words the environment, even when
accurate, may provide less than complete information about the
language to be learned. Martin Atkinson will show in his chapter that
children learn language using evidence that comes from a rather
constrained subset of the target language.

Finally, a common assumption in learnability is that learners are not
aware of the rule ± if any ± according to which the environment is
presenting the data. Why knowing such a rule would help for learning
in the form of indirect negative evidence will be explained by the
example on page 24 in the next chapter.

1.1.4 Learners

A ®nite sequence of sentences from the target language can be seen as
an evidential state a learner could be in. Accordingly, learners can be
broadly characterized by how they behave as a function of their present
conjecture and evidential state.

For example, some learners base their next move in hypothesis space
on the whole content of their evidential state (they have perfect memory
of past data) while others only remember parts of it. Some learners
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change their conjecture only when it is incompatible with their eviden-
tial state, others are not so constrained. Some try to modify their con-
jectures as little as possible in order to ®t their evidential state, others
take ``wild guesses''. . . For at least one of the criteria of success we are
going to examine, identi®cation in the limit, there exists an impressive
body of work detailing how the class of learnable languages changes
when one or more of these restrictions are imposed on learners. The
interested reader can consult Jain et al. (1999). Here we just mention
the fact that, as we will see below when discussing identi®cation by enu-
meration, while it is often easy to point out which parts of a learning
procedure are at odds with one's best guess about the resources avail-
able to human language learners, it is often quite di�cult to give a gen-
eral characterization of the learning procedures one is comfortable with
as far as developmental psycholinguistics is concerned.

1.1.5 Criteria of success

When can we say that a language learning strategy is successful? We will
consider here three alternative criteria of success that are all compatible
with the implicit premise of all the essays in this collection, the premise,
that is, that what is learned is a grammar with no attached information
about the probability distribution of the sentences that can be generated
by it. As we introduce them we will show that it is very easy to prove
that any class of languages that can be generated by a class of grammars
consistent with the PPH is learnable under each of the three criteria.

The point of this exercise, which will be carried out using each time the
same learning function, identi®cation by enumeration, is to show that all
PPH-consistent classes of languages are trivially learnable under all of
the best understood criteria of success unless some rather substantial
restrictions are imposed on what kind of learners humans are. The whole
history of the last ®fteen years of interaction between parametric
linguistics and learnability (the essays in this volume included) can then
be understood as an attempt to ¯esh out, using whatever evidence is
available from empirical work in linguistics or psychology, what would
follow from the assumption that human learners do not learn by
enumeration but by some other, possibly independently motivated,
mechanism. As mentioned above, no general consensus of what those
mechanisms ought to be has emerged in the last ®fteen years. As a result,
rather than establishing general results, most recent studies have con®ned
themselves to the analysis of individual learning algorithms, that as a
consequence appear to the (ever shrinking) interested public as distant
and isolated points in a vast and otherwise uncharted design space.
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With all this in mind, let us start with our ®rst criterion of success,
identi®cation in the limit (Gold, 1967).

1.1.5.1 Identi®cation in the limit
Gold de®nes a text for a language L as an in®nite sequence of
sentences such that every sentence of L appears at least once in it and
no sentence not in L ever appears in it. Let's consider now a procedure
that takes as input ®nite initial segments of a text for a language and
returns a conjecture (a grammar) about the language it is observing.
Such a procedure is said to identify a text for L if and only if, after
presentation of ®nitely many initial segments of the text it stabilizes on
a single conjecture and that conjecture generates exactly L. The pro-
cedure is said to identify an entire language L if it is able to identify
every possible text for it and, ®nally, it is said to identify a class of
languages L if it identi®es every L in it.

Given these de®nitions, in order to ®nd out whether a class of
languages L is learnable under the criterion of identi®cation in the limit
we either need to show the existence of a learning procedure that
would identify every text for every language in L, or show that no such
learning procedure can exist.

We will immediately show that if a class of languages L has been
generated by a set of grammars consistent with the PPH, then such a
learning procedure does indeed exist. The procedure in question is
called identi®cation by enumeration (IBE) and was ®rst described in
Gold's (1967) seminal paper. We will describe it in detail because the
very same learning procedure will be later employed to prove that
PPH-consistent classes of languages are also learnable under the other
two criteria of success we are going to discuss.

This is how IBE works for a ®nite class of languages such as those that
result from any theory consistent with the PPH: the learner starts by
writing down an enumeration G1;G2 . . .Gn of all her possible conjectures.
The enumeration must have the property that, if k > j, then either
L�Gk� � L�Gj� (the language generated by grammar/hypothesis Gk is the
same language as that generated by grammar/hypothesis Gj) or there is
at least a sentence in L�Gk� that is not in L�Gj�. She then initializes her
hypothesis H to G1 and the set of data observed D to the empty set. After
presentation of each sentence si the learner ®rst determines whether si is
part of L�H�, the language resulting from her current hypothesis H. If
so, she adds si to D and waits for a new sentence. Otherwise she adds si
to D and changes her current conjecture H to the ®rst Gi in the enumera-
tion such that D is a subset of L�Gi�.
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Now, let's see why IBE works for every ®nite class of languages.
Suppose the target is L�Gt�, with 1 � t � n and � is a text for the target.
All we need to show is that: (a) IBE will never abandon the conjecture
Gt ± or any conjecture equivalent to it ± if it ever happens to entertain
it, and (b) there is a ®nite initial segment of � in response to which
IBE will hypothesize Gt or something equivalent. (a) follows immedi-
ately from the de®nition of IBE. As for (b) we can prove it by estab-
lishing that: (c) IBE will never hypothesize a Gk with k > t; (d) it will
abandon every incorrect conjecture Gj after ®nitely many strings from
�, and (e) it will only entertain ®nitely many incorrect conjectures prior
to hypothesizing Gt or one of its equivalents. Now, (e) directly follows
from the fact that the enumeration G1 . . .Gn is ®nite and (c) from the
de®nition of IBE. As for (d), we can reason by contradiction: suppose
that, in response to the ®rst m sentences s1 . . . sm of �, the learner
conjectured a Gj such that j < t and L�Gj� 6� L�Gt� and never changed
her conjecture thereafter. By de®nition of IBE, all of s1 . . . sm must be
members of L�Gj�. Also, from the de®nition of the enumeration
G1 . . .Gn and the assumption that j < t it follows that there is a
sentence st in L�Gt� that is not in L�Gj�. Now, since by assumption � is
a text for L�Gt�, st must appear somewhere in �. And since st cannot
be one of the s1 . . . sm sentences that caused the learner to hypothesize
Gj , it must appear after the learner has hypothesized Gj. So, when the
learner encounters st she is forced to abandon her conjecture, by the
de®nition of IBE and the assumption that st is not a member of L�Gj�.
But this contradicts the initial hypothesis that the learner could
stick to the hypothesis Gj forever and so the proof by contradiction is
completed.

So we now know that IBE is all that is needed to learn (identify in
the limit) any parametric class of languages. With this established, we
must hasten to add that identi®cation in the limit is far too idealized a
criterion of success to be used to model human language learning.

First of all it assumes complete and perfectly reliable information
about the target language. In the following chapter, Martin Atkinson
will show in detail what one would have readily suspected: the environ-
ment in which children learn their target language is noisy and fairly
restrictive in the kind of information it makes available.

Second, it places no bounds of any kind on the amount of data lear-
ners are allowed to use to converge on their target: all that matters is
that they do so in the limit. What we really would like is a criterion
that would require the target to be reached after exposure to a number
of sentences of the same order of magnitude as the number of sen-
tences children are normally exposed to.

7A brief overview of learnability



Finally, identi®cation in the limit requires identi®cation to be exact.
But, as the whole chapter by Ian Roberts will explain, it is natural to
argue that languages change over time precisely because there are situa-
tions in which learners get very close to the language of the previous
generation, without, however, quite identifying it.

1.1.5.2 Wexler and Culicover's criterion
We'll take the cue from this last observation to introduce a second
criterion of success on which a fair amount of research in linguistics
and learnability depends. We will call it the Wexler and Culicover
criterion, as it was most extensively used in Wexler and Culicover's
(1980) seminal study on the learnability of transformational grammars.
In more recent times it has been used as the criterion of choice in
Gibson and Wexler's (1994) study and in all the research papers that
extended their original idea, including the chapter by Sakas and Fodor
in the present book.

While in identi®cation in the limit it was possible for a sentence to
appear exactly once in a text for a language, here we will require that
at every time step in the learning process, every sentence in the target
language have a nonzero probability of being presented to the learner.
At the same time, instead of requiring exact identi®cation of the target
language we will just require that, for every 0 < � < 1, for every
language L in the class to be learned and every presentation sequence
satisfying the condition above, there must be a ®nite number n such
that, after presentation of n strings, the learner is guaranteed to output
a conjecture that has probability less than � to be incorrect.

Now, it is very easy to show that IBE can also learn every ®nite
class of languages (and so every class of languages generated by a PPH
theory) under the Wexler and Culicover criterion. The proof goes like
this: since every text satisfying the Wexler and Culicover criterion is
also a text in Gold's sense, it follows that after ®nitely many strings
IBE can identify exactly, that is with error � � 0, every text in the sense
of Wexler and Culicover. But if it can do so for � � 0, it can do so for
every 0 < � < 1.

1.1.5.3 PAC learning
Still, even in the Wexler and Culicover criterion, there is no require-
ment that the number of sentences that are used to attain convergence
with less-than-� error be a small number for every language in the class
to be learned. This concern is, on the contrary, at the heart of the last
criterion we will consider here, Probably Approximately Correct (PAC)
learning, a criterion ®rst proposed by Valiant (1984).
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According to the PAC criterion, a learner is successful if and only if
she has a very high probability of producing a conjecture that is very
close to the target language when using only reasonably few sentences
from the target language.

The general idea underlying PAC learning is that data are presented
to the learner according to a probability distribution unknown to her
and diÿerent for each target language. In other words, every language
has, associated with it, a function that, for each sentence in it,
determines how likely the given sentence is to be presented to the
learner at any one time.2

PAC captures the idea that learners are successful if and only if they
rapidly produce conjectures that would misclassify only a set of
sentences from the target language that has a negligible chance of
appearing in the learner's environment. How rapidly they are required
to produce such a conjecture is a function of how negligible the chance
of error is required to be: the smaller the chance of error required, the
larger the size of the sample that can be used. Larger samples,
naturally, take longer to be collected.

Moreover, unlike the Wexler and Culicover criterion, PAC does not
require that a less-than-�-error conjecture be always arrived at, but
only that the probability of it not being arrived at be smaller than a
certain con®dence parameter � (0 � � < 1=2).

However, as mentioned before, PAC is rather strict on the size of the
sample that can be consumed to produce a conjecture that has less
than � probability of being in error by more than �: it requires that, for
every choice of � and �, the size of the sample consumed be a poly-
nomial function of 1=� and1=�. In other words, the size of the sample
should not grow very fast as 1=� and 1=� grow.

Once again, IBE can be used to show that every ®nite class of lan-
guages is PAC learnable. This follows directly from a theorem proved
by Blumer et al. (1987) which states that a class of languages is PAC
learnable if an Occam learning algorithm can be found for it.

Blumer de®nes an Occam learning algorithm for a class of languages
L as an algorithm that, in response to data from any L in L always
outputs a conjecture that has two properties, it is consistent with the
sample received and has a complexity not exceeding a certain value
that is a function of the least complex hypothesis available for the
language to be learned and the size of the sample itself. The interested
reader can ®nd the precise statement of this second requirement in
Blumer's original article. For the purpose of the present discussion, it
is su�cient to note that the requirement in question is designed to
disqualify hypotheses that, even if consistent with the data, consist
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simply of an enumeration of the sample itself. It will soon be clear, how-
ever, that the details of this requirement are not important for our proof.

So, we want to show that IBE is an Occam learning algorithm for
every ®nite class of languages (when the space of hypotheses is equally
®nite). That its conjectures are always consistent with the sample
presented follows immediately from the de®nition of IBE. As for the
second requirement, it is su�cient to observe that since the learner can
entertain only ®nitely many hypotheses, there exists an upper bound on
the complexity of the possible conjectures. The reader may consult Robin
Clark's chapter in this book for a tutorial on how the complexity of
hypotheses may be de®ned. Here we just note that this upper bound is a
constant and that this is su�cient to meet the second part of Blumer's
requirement for Occam learning algorithms. The reader can refer to
Blumer's original paper to be convinced that this is indeed the case. This
completes the proof that every ®nite class of languages, and so any class
that is consistent with the PPH, is PAC learnable.

1.2 Moving away from identi®cation by enumeration

Our insistence on using IBE in the proof that PPH-informed classes of
languages are learnable under each of the success criteria we examined
is due to the importance of driving home the following point: proving
the learnability of PPH-informed classes of languages is generally
speaking a trivial enterprise, whichever criterion of success one decides
to adopt. The task becomes challenging only once one decides to reject
as part of a model of human language learning the two very features
that make IBE as successful as it is: complete memory of all past data
and access to an initial enumeration that allows for hypotheses to be
searched in the correct order.

Even in the absence of much substantive work in developmental
psycholinguistics showing how much memory for past data children
can be expected to have in the process of language learning, it is quite
reasonable to reject the hypothesis that they have recall of their entire
learning sample. It is interesting to note that most recent models of
parametric language acquisition such as Dresher and Kaye's cue based
learner, Gibson and Wexler's TLA, Clark's Genetic Algorithm and
Fodor's STL (see Martin Atkinson's and Fodor and Sakas' chapters
for detailed discussion of each of them) make the exact opposite
assumption and attempt to show how learnability may be proved even
using learners that have no explicit memory whatsoever of their learn-
ing sample although some of them cleverly encode some of it in the
conjectures they entertain at any given time.
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But it is when we start exploring what it would mean to abandon
the other important feature of IBE, the prescient enumeration of all
possible hypotheses, that we ®nally get to the heart of what makes the
interaction between parametric linguistics, psychology and learnability
interesting. IBE was repeatedly proved to work under the assumption
that only ®nitely many hypotheses are available to the learner. But the
PPH is a much stronger hypothesis than that: it not only implies that
the class of possible (hypotheses about) human languages is ®nite but,
most importantly, that variation among human languages can be
expected to be systematic and take place along several, largely orthogo-
nal dimensions. What this suggests, in eÿect, is that, although it is
unrealistic to expect that human learners rely on a space of hypotheses
that is nicely linearized as seen in IBE, it is perhaps not unreasonable
to suppose that it is organized according to other principles that may
make it possible to search it reliably and e�ciently. The last ®fteen
years of work on the subject could be fairly reconstructed as a
sustained investigation of what those principles might be. The entire
line of research on the so called Subset Principle initiated by Wexler
and Manzini (1987) and summarized by Martin Atkinson in the next
chapter can be seen as an investigation of the structure of the space of
hypotheses that would result if all parameter values except one were
kept constant.

More recent work has concentrated on the possible patterns of over-
lapping among target languages that result from alternative settings of
the parameters and allow algorithms as diverse as Gibson and Wexler's
TLA and Fodor's STL to search the resulting space of hypotheses
reliably and e�ciently.

Because such patterns, which will form the subject of the discussion
in much of the rest of this book, are often quite intricate, this introduc-
tory chapter will end by introducing a formal de®nition of parameter
spaces that will, in eÿect, serve as a specialized vocabulary designed to
make it possible to describe those patterns precisely and concisely. All
the contributors to this book will then be able to use this vocabulary
as a lingua franca that will facilitate the understanding of several, inter-
related arguments by translating them from their original formulation
into a common standard.

1.3 A formal model of parameter spaces

In this ®nal section we will proceed as follows: we will ®rst give a
de®nition of parameter spaces that is general enough to cover any con-
ceivable theory of language variation consistent with the PPH. We will
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then introduce the notation that is necessary to isolate regions of inter-
est in any parameter space of interest.

De®nition 1.1 A parameter space P is a triple hpar;L;�i, where � is a
®nite alphabet of symbols and par is a ®nite set of parameters fp1 . . . png.
The parameters themselves can be seen as sets. In particular, given
a parameter pi, its members, which we enumerate as v1i . . . v

jpi j
i , are

just the ``possible values'' of pi. Given the cartesian product
P � p1 � p2 � � � � � pn, a parameter vector P is a member of P, namely a
possible way of choosing one value for every parameter. Let �� be the set
of all ®nite strings over the alphabet � and 2�

�
its power set (the set of

all subsets of ��). The function L : P 7!2�
�
assigns a possibly empty sub-

set of �� to each vector P 2 P, that is it associates every possible para-
meter setting (vector) with a language (set of strings).

As it turns out, in order to analyze a parametric learning algorithm
it is important to have a way of referring to portions of a parameter
space that share a certain value assignment to certain selected para-
meters. This can be achieved in two steps by ®rst de®ning the notion of
a partial parameter assignment and then showing how a parameter
space can be sliced according to a particular parameter assignment.

De®nition 1.2 Let P be a parameter space. A partial assignment in P is
any subset B of

[

pi2par
fpig � pi

such that for every pi in par there is at most one hpi; vmi i in B. Given two
partial assignments A and B in P, B is said to be A-consistent iÿ A [ B
is also a partial assignment in P.

For example, suppose we have a parameter space with two binary
valued parameters p1 and p2. If p1 � f0; 1g, then the cartesian product
fp1g � p1 is the set of all ordered pairs such that the ®rst element is the
parameter p1 and the second element is one of its values, 0 or 1. The
cartesian product fp1g � p1 therefore turns out to be fhp1; 0i; hp1; 1ig.
Each of the elements of the cartesian product can be seen as a particu-
lar assignment of value to p1. If p2 is also equal to the set f0; 1g, then
we have that

[

pi2par
fpig � pi � fhp1; 0i; hp1; 1i; hp2; 0i; hp2; 1ig:

12 Stefano Bertolo



By de®nition 1.2 the subsets fhp1; 0i; hp2; 0ig, fhp1; 0ig and fhp2; 0ig
are all partial assignments in P. In particular, fhp2; 0ig is fhp1; 0ig-
consistent.

Finally, the following de®nition formalizes the notion of concentrat-
ing only on a part of a parameter space, a part that is picked up by
choosing a partial assignment. The function �i is a ``projection'' func-
tion: it takes a vector (parameter assignment) and returns the i-th ele-
ment of the vector.

De®nition 1.3 Let P be a parameter space and A a partial assignment in
it. If A � 1, then P�A� � P. If P�A� is a parameter space hparA;L;�i
�with parA � fpA1 . . . pAn g� and B is an A-consistent partial assignment in
P, then the subspace P�A [ B� is the parameter space hparA[B;L;�i such
that, given

H �
[

x2B
�1�x�;

if pj 62 H then pA[Bj � pAj and if pj 2 H then pA[Bj � fvmj g where vmj is the
only v 2 pj such that hpj; vmj i 2 B. Finally, P�A [ B� is the parameter
space hparA[B;L;�i where, for every pi in H, pA[Bi � pAi ÿ pA[Bi and, for
every pi not in H, pA[Bi � pAi .

This de®nition looks more formidable than it really is. All it says is
that, given a parameter space P, and a partial assignment A, it is possi-
ble to de®ne the ``P�A� corner'' of P to consist of all and only those
languages in P that have their parameters set exactly as dictated by A.
So, if A � fhpi; 0i; hpj; 1ig, the ``P�A� corner'' of P contains all and
only those languages that have pi set to value 0 and pj set to value 1.
Similarly, P�A� can be seen as the ``mirror image'' of the ``P�A� corner''
since it is the set of all languages that have all the parameters listed in
A set diÿerently than is dictated by A.

It is worth noting that the larger the partial assignment A, the smal-
ler the ``P�A� corner'' of P one is looking at. This means that, when we
take a partial assignment A and we expand it to a larger partial assign-
ment A [ B, the ``P�A [ B� corner'' of P is smaller than the original
``P�A� corner''.3

This is all the descriptive apparatus that we will need for the discus-
sion that follows. So, for example, using the notation

s 2
[

P2PA

L�P� ÿ
\

P2PA[B

L�P�

we can avoid the cumbersome expression ``s belongs to at least one of
the languages whose parameters have been set as dictated by A but it is
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not the case that it belongs to every language that has its parameters
set as dictated by A and at variance with all the parameter assignments
listed in B''. Hopefully, the reader will soon appreciate the advantages
of the notation.

Note s

1 Sadly, much work on language learning is published in which entire theories
are established and conclusions are drawn with disregard for these very basic
requirements.

2 PAC is really able to represent a more general scenario, where what is
assigned a probability is the event that a given sentence is presented to the
learner as a positive or negative example of the target language.

3 This obviously assumes that B is not empty and that B is not properly
included in A.
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2 Learnability and the acquisition of syntax

Martin Atkinson

2.1 Introduction

. . . there is no a priori reason to expect that the languages permitted by UG be
learnable ± that is, attainable under normal circumstances. All that we can
expect is that some of them may be; the others will not be found in human
societies. If proposals within the P[rinciples] & P[arameters] approach are close
to the mark, then it will follow that languages are in fact learnable, but that is
an empirical discovery, and a rather surprising one. (Chomsky and Lasnik,
1995: 18)

The above passage appears in a discussion in which Chomsky and
Lasnik argue against the proposition that an adequate grammar of a
language must provide an e�cient basis for parsing the language's
sentences. Well-known examples of well-formed sentences which are
not e�ciently parsable provide the crucial cases for the argument,
which, of course, is ultimately based on the importance of the compe-
tence±performance distinction. Consistency then requires that
skepticism be extended to another aspect of linguistic performance,
that of acquiring a natural language. Just as there is no reason to
believe that a grammar is well-designed to parse over an in®nite range,
so it is not necessary for universal grammar (UG) to be designed so as
to make available only learnable languages. The optimism which
appears in Chomsky and Lasnik's ®nal sentence is closely linked to the
theme of this book, since it is based on an accumulation of evidence
indicating that linguistic variation, at least that obtaining within core
grammar, can be accommodated by a ®nite number of ®nitely valued
parameters.

The previous chapter has introduced a wide range of formal
considerations and has illustrated some of the consequences which ¯ow
from the ®niteness guaranteed by the human language faculty. In these
circumstances, learnability is assured by some learning function or
other, e.g. enumeration of hypotheses. However, as was noted, it does
not follow that human learners embody such a learning function, so we
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should not infer from this perspective that considerations of learnabil-
ity have no work to do.

In this chapter, we shall be focusing on learnability issues which
arise in the context of the acquisition of syntax, seeking to establish the
relevance of some of the ideas from the previous chapter to the study
of natural languages and of children acquiring these languages. There
currently exists a large gap in vocabulary between formal learning
theory and linguistics. Chapter 1 has begun to bridge this gap, starting
from formal learning theory; here, our bridge-building operation will
start from the opposite side of the chasm, with the topics we consider
all arising within the framework of Principles and Parameters Theory
(PPT). A consequence of this starting point is that I shall lean towards
the informal and intuitive whenever the opportunity presents itself,
although a certain amount of formalism will at times be necessary. As
will become apparent, while a small part of our discussion will be
directly based on empirical work with children acquiring languages,
most of it will be at a more abstract level, where we consider
learnability problems and their solution in the context of speci®c
grammatical proposals. Some of the methodological and interpretive
di�culties which arise when we try to move from this level of
abstraction to studies of real-time acquisition will be raised as we
proceed.

The chapter has three major sections, which can incidentally be seen
as providing a historical tour through the recent development of learn-
ability theory. One component of a learning paradigm, as introduced in
section 1.1.3, is an environment, and in section 2.2, I shall brie¯y review
what is known about children's linguistic environments. The notion of
a text has played a fundamental role in much formal learnability work,
and in the previous chapter it was acknowledged that text presentation
does not approximate to the situation confronted by a child learner.
Because it will provide a backdrop for some of the subsequent discus-
sion, it is appropriate to sketch the empirical ®ndings here.

Historically, concern with this question predates any developments
in formal learnability theory. It seems that some psychologists, suspi-
cious of the innateness claims which have provided the intellectual
backdrop to so much of the progress in modern linguistics, have
found it di�cult to give up on the belief that linguistic environments
really do have properties (if only we could identify them) which
would enable us to see them as providing a su�cient basis for
grammar induction. We can be fairly con®dent in our conclusions
under this heading, but we owe it to the skeptics to provide some
justi®cation for this con®dence.
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Turning to parameterization and the speci®c learnability problems it
poses, the most accessible of these conceptually is the Subset Problem.
It is therefore almost certainly no accident that the ®rst, and probably
still best-known, work on learnability within PPT is Wexler and
Manzini's detailed discussion of Binding Theory parameters and their
claim that these parameters do raise Subset Problems for the learner.
Here we meet a very straightforward illustration that, even with only a
®nitely bounded space of possibilities, it is necessary to equip the
human learning function with special properties if it is to succeed.
Section 2.3 will introduce the most important aspects of Wexler and
Manzini's work and will attempt to assess its current relevance in the
light of ongoing work in linguistics and child language acquisition.

Where Subset Problems do not arise, an immediate response might
be that the learning task for a PPT learner should be straightforward.
In such cases, there ought to be diagnostic sentences in each language
which will immediately direct the learner to the target parameter set-
ting. However, this optimism is not well-founded. It turns out that an
intriguing set of problems emerges as soon as we begin to look care-
fully at the ways in which parameters can interact, while at the same
time remaining alert to the fact that a human learner is computation-
ally limited and working within a rather short time frame. The work
which has established itself as a benchmark in this area is Gibson and
Wexler (1994), and section 2.4 is largely devoted to examining some of
the linguistic consequences of their Triggering Learning Algorithm
(TLA), including some of the work which has been directly stimulated
by this development. A rather diÿerent approach to the problems
raised by interacting parameters has been developed by Clark (1992),
and this section will also include an introduction to the major aspects
of his ``selective'' model of parameter setting, embodied in his Genetic
Algorithm (GA). Since this model has been employed as the basis for
an account of a speci®c set of historical changes in French (Clark and
Roberts, 1993), section 2.4 will conclude by brie¯y examining the rela-
tionship between language acquisition and language change, comparing
Clark and Roberts' approach to change with that advocated by
Lightfoot (1997).

2.2 The child's linguistic environment

There are at least three aspects of the child's linguistic environment
which have been subjected to some scrutiny and which are of import-
ance in discussions of learnability. These are: the availability of
negative evidence, the ``complexity'' of the language directed at small
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children and the question of whether the structural characteristics of
this language change in any systematically ordered way as development
proceeds.

2.2.1 Negative evidence

It must be noted that the availability of negative evidence can radically
alter the nature of a learnability problem. Therefore we really need to
have a clear view on the empirical availability of negative information
to take into our discussion of how syntactic parameters might be ®xed.

Before turning to empirical studies, it is important to be clear that
learnability proofs relying on the existence of negative evidence
typically require such evidence to be systematically available, just like
positive evidence is. Indeed, along with the notion of a text, introduced
in 1.1.5.1, it is also possible to consider an informant sequence (Gold,
1967), where the latter is a sequence such that all sentences from the
target language and all non-sentences on the appropriate vocabulary
are guaranteed to be eventually presented, along with the information
(which could be supplied by an informant, hence the name) as to
whether they are sentences or not. If children were systematically
supplied with negative information in this way, the nature of the
acquisition task would be radically changed. Indeed, Gold was able to
prove that the class of languages identi®able in the limit from
informant presentation properly included the class of context sensitive
languages.1 For text, on the other hand, not even the class of regular
languages is identi®able in the limit, so the shift in learnability capacity
which is contingent on this changed environment is very signi®cant.

Obviously, the occasional correction of grammatical errors which
occurs as children acquire their native language does not turn a child's
linguistic environment into an informant sequence; indeed, we can rely
on the ®niteness of children's linguistic environments to categorically
assert that these environments do not constitute informant sequences
(as we have seen, for the same reason, they do not constitute texts).
Given such certainty, why spend time considering the availability of
negative data? There are at least two reasons for this.

First, a substantial literature has appeared in which the view that
negative data of one sort or another do exist has been supported. The
®ndings reported in this literature must be critically examined and their
consequences for learnability questions assessed. Second, while the
formal implications of systematic exposure to negative data are clear,
this is not the case for what we might term ``occasional'' exposure to
such data. If we were to be entirely open-minded, we might suppose
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that the learning problem, rather than being cast in the context of a
whole language or a complete set of parameters, could be ``modular-
ized'' into subproblems, with any negative data which do occur having
a valuable function within one of the ``modules.'' While an entirely
speculative suggestion, this is perhaps su�cient to motivate an interest
in the extent (if there is one) to which negative data are available to
the child.

Having advocated open-mindedness in the previous paragraph, let
me now immediately close oÿ one area of enquiry by proposing that
explicit correction is a phenomenon which occurs too infrequently and
unsystematically and does not have any causal role in guiding acquisi-
tion. I don't know whether this is true, but there is well-known
anecdotal evidence which raises severe doubts about causal role. These
are the interchanges cited by McNeill (1966) and Braine (1971), where
they sought to explicitly correct grammatical errors in the speech of
their own children with no success at all.

What other source of negative data might we consider? Imagine that
there are two signals S1 and S2 such that whenever children produce a
grammatical utterance, S1 occurs, and whenever they produce an
ungrammatical utterance, they are presented with S2 ± where S2 might
be no more than lack of S1. Such a contingency could provide children
with feedback, enabling them to mark their own utterances as gram-
matical or not, and might be an important component of the learning
task. Do such signals exist? The classic study in this area (Brown and
Hanlon, 1970) examined the notions of ``contingent approval'' and
``contingent appropriateness'' in mothers' responses to their children's
well- and ill-formed utterances. For the former, the authors were
interested in whether approval (S1) followed grammatical child
utterances and disapproval (S2) ungrammatical utterances; for the
latter, they asked whether it was the case that comprehension and
appropriate behavior (S1) followed grammatical utterances, whereas
bewilderment and nonsequiturs (S2) followed ungrammatical forms. In
neither case did they ®nd any signi®cant correlation. In short, mothers
were no more likely to respond to an ill-formed utterance than to a
well-formed utterance with some variant of ``no, that's not right'' or to
produce behavior, linguistic or otherwise, inconsistent with the
perceived purpose of the ongoing dialogue. Conversely, the frequency
of occurrence of approval and appropriate behavior was not skewed in
the direction of well-formed utterances. What did appear to govern
these contingencies was truth-value, with mothers being anxious to
applaud their children's insights and to oÿer negative evaluations and
semantic corrections for their false utterances.
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Since 1970, the search for contingencies which might be linked to
grammaticality has gone on. For example, the suggestion that repetition
of ill-formed strings (with corrections) is more likely than repetition of
well-formed strings was investigated by Hirsh-Pasek, Treiman and
Schneiderman (1984), with what were presented as positive results.
Particularly, it was found that for two-year-olds, 20 percent of ill-
formed utterances were repeated by mothers, whereas only 12 percent
of well-formed utterances evoked this behavior. A number of other
discourse-based types of signal have been investigated from a similar
perspective (Demetras, Post and Snow 1986; Penner, 1987; Bohannon
and Stanowicz 1988). Overall, while some of the investigated cor-
relations have reached statistical signi®cance, there have been severe
di�culties in comparing categories of discourse signals across studies as
well as diÿering reporting techniques, whereby some investigators
present their results as averages over mother±child pairs and others
report individual dyad data. A trenchant critique of the methodology
of these studies is Marcus (1993), where most of the issues mentioned
below are also discussed in some detail.

Setting aside methodological reservations, what are we to make of
®gures such as those presented by Hirsh-Pasek et al.? At least two
observations should be made. First, the asymmetric use of repetition by
the parents in this study was restricted to mothers of two-year-olds;
mothers of older children did not produce signi®cantly diÿerent
numbers of repetitions following their children's grammatical and
ungrammatical utterances. As a consequence, even if we suppose that
parental repetition is a source of negative data for two-year-old
children, it appears that this source is not available for older children.
Of course, children entering their third year are still producing
ungrammatical utterances and it would be absurd to suggest that
acquisition is complete at this point. Second, it is important to note
that contingent repetition of this type does not amount to the adult
reliably signalling the grammatical status of children's utterances, as
was envisaged in the introduction of S1 and S2 above. To use Marcus'
(1993) term, it is conceivable that repetition provided the children with
noisy feedback, an appropriate characterization for all the various
discourse variables which have been put forward as potential suppliers
of negative information, but it certainly did not provide them with
complete feedback, i.e. a signal which would enable them to
immediately conclude that their preceding utterance was or was not
grammatical.2 As noisy feedback is not completely reliable, it becomes
important to ask how much noisy feedback children would need in
order to be con®dent in their assessment of the grammatical status of
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their repeated utterances. Making reasonable assumptions about con®-
dence levels, Marcus concludes that for a child to categorize a string as
ungrammatical on the basis of the Hirsh-Pasek et al. ®gures, tokens of
the string would need to be uttered by the child 446 times! To be fair,
this is not the least absurd ®gure Marcus derives from the discourse
studies he considers; this honor goes to a ®gure of 85 based on
Bohannon and Stanowicz (1988), but this is unlikely to provide much
consolation to those who would believe that discourse contingencies
can, even in principle, provide eÿective sources of negative evidence.

It seems, then, that we can conclude that it has not been established
that negative evidence exists in any plausible form ± overt correction is
infrequent and unsystematic, discourse signals appear to lack the
reliability necessary for children to be able to con®dently categorize
their utterances as grammatical or ungrammatical. But suppose we still
want to leave options open ± perhaps the overt corrections really are
systematic in ways we haven't realized; perhaps there are reliable
discourse signals that we simply haven't spotted yet. As is argued by
Pinker (1989) and Grimshaw and Pinker (1989), the existence of
negative evidence of the types contemplated here is only the ®rst of
three properties which must be considered. With existence established,
it would still be necessary to show that overt correction or the
discourse signal is eÿective in acquisition, and this has never been
done. In this connection, we can again cite McNeill (1966) and Braine
(1971) on the ineÿectiveness of correction, while Morgan and Travis
(1989) is a revealing study of the failings of the discourse-based work
to even address this question.

Finally, even if negative evidence existed and its eÿectiveness had been
demonstrated, it would remain to show that it is necessary in acquisition.
Note that this would not be achieved if the demonstration of eÿectiveness
involved no more than facilitation of acquisition, say by speeding up
some aspect of structural development relative to a group which did not
bene®t from the negative evidence. For necessity to be established, it
would have to be shown that the group denied the negative evidence did
not develop the relevant structures at all, or perhaps developed them in
some fashion which could be diagnosed as ``abnormal.'' Not surprisingly,
there are no experimental results which would justify this conclusion.
Furthermore, the existence of cultures in which not even noisy feedback
exists to any signi®cant extent suggests that any plausible argument for
the necessity of negative information is an extremely remote possibility
(Marcus, 1993: 71). In conclusion, then, it seems that we are entirely
justi®ed in proceeding with the No Negative Data Assumption, which has
been a feature of most work in learnability.3
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2.2.2 Complexity

In the 1970s, a great deal of work was done on the characteristics of
Motherese, the register which mothers and others use in addressing
small children (see Snow and Ferguson, 1977, for a representative
collection of articles). One suggestion emerging from this (Brown,
1977) was that the ``simplicity'' exhibited by this register made ®rst
language acquisition easier and obviated the need for an innate UG. In
some sense, which was never made precise, Motherese was to provide a
database which would enable the child to formulate a grammar
inductively. Challenges to this concept of ``simplicity'' were not long in
coming (Newport, Gleitman and Gleitman, 1977), along with the
observation that a reduction of the information provided by the child's
linguistic environment, rather than shedding instant light on the
process of language development, ought to make the problem of
acquiring grammar more mysterious ± to the extent that information
about the grammar of a language was exhibited only in ``complex''
constructions, denying children access to these constructions would
only make their task more di�cult. This observation has proved to be
of considerable importance, since one aspect of ``simplicity'' did survive
critical scrutiny.

In a statistical study of mothers' speech to children, Morgan (1989)
reports that more than 90 percent of the utterances in the available
corpora were degree-0 utterances, with fewer than 1 percent being
degree-2 or more (in this report, the degree of an utterance was
computed in terms of sentential embeddings). Now, of course, we have
no idea whether the small number of degree-2 utterances played any
signi®cant role in the acquisition process, but it is at least a priori
plausible that had they not been present, there would have been no
consequences for the children's acquisition. If this is so, it follows that
acquisition must be possible on the basis of data which exhibit at most
a single degree of embedding, and the implications of this sort of think-
ing have been pursued in two diÿerent ways.

First, it can be maintained that observations on the complexity of
the data available to the child will have an impact on PPT itself. If, in
fact, children acquire grammars (that is, establish the values of a set of
parameters) on the basis of data which are subject to an identi®able
complexity restriction, then the parameters must be settable on this
basis. In short, if we have a parameter pi with values v1i and v2i , then it
must be the case that the ``eÿects'' of setting pi at v

1
i or v2i are ``visible''

on data which respect the complexity restriction. Responding to this
challenge, Lightfoot (1989, 1991) has proposed that parameters
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should be constrained so as to be settable on the basis of degree-0
data.

To illustrate, the claim that UG should include a Bounding Nodes
Parameter in the theory of movement was originally based on consid-
eration of diÿerences in the behavior of WH-questions in English,
French and Italian (Sportiche, 1981; Rizzi, 1982). A French example
cited in Sportiche's discussion is (1):

(1) VoilaÁ quelqu'un aÁ qui je crois que je sais lequel j'oÿrirais
``Here's someone to whom I think that I know which I would
give''

The English translation of (1) is not well-formed and this is put down
to the fact that it violates the Subjacency Principle, which requires that
no token of movement should cross more than one bounding node.
With the set of bounding nodes speci®ed as fNP, IPg, the violation
induced by the movement of to whom follows. However, the movement
of aÁ qui in the French sentence has exactly the same trajectory.

In the face of this type of observation, rather than abandon the
Subjacency Principle, Sportiche and Rizzi proposed that the set of
bounding nodes should be parameterized, with grammars having
(possibly constrained) choices from the set fNP, IP, CPg. Then, French
and Italian can be seen as making the selection fNP, CPg, from which
it follows that only one bounding node is crossed by the movement of
aÁ qui in (1).4

Crucially, for Lightfoot's thesis, examples such as those in (1) are
degree-2, and in the light of his hypothesis, the logic is stark: he can
reject the Bounding Nodes Parameter as a legitimate parameter in
PPT, or he can show how the eÿects of the Bounding Nodes Parameter
are exhibited on degree-0 data. Taking the latter option, he cites the
degree-0 sentence in (2):

(2) Combieni as-tu vu [NP ti de personnes]?
``How many people did you see?''

If, as seems reasonable, combien originates in the NP-speci®er position
in (2), in order to move to the CP-speci®er position, it will have to
cross NP and IP. But, assuming Subjacency, this will be su�cient to
show a child that fNP, IPg is not the appropriate setting for the
Bounding Nodes Parameter in French. Supposing, for the sake of
argument, that fNP, CPg is the only option, the child will be able to
set this parameter on the basis of exposure to degree-0 data.5

The second consequence of taking seriously the ``simplicity'' of the
child's linguistic environment has focused on how this might shape an
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appropriate conception of a text for learnability purposes. We have
already met the unconstrained notion of text which informs much of the
classic learnability work and noted its empirical weakness. It is of inter-
est, therefore, that Robin Clark has been able to develop a concept of a
fair text on the basis of certain assumptions about the process of para-
meter setting and the way in which parameter values must be expressed
in sentences which are appropriately ``simple'' (see section 2.4 for some
background discussion and chapter 4 for extensive development).

We thus see that an emphasis emerges from these considerations
which is quite contrary to that initially adopted by Brown. The
``simplicity'' of Motherese utterances, at least in so far as this is
assessed by computations of degree, provides a valuable constraint on
the nature of parameters, rather than an inductive basis for traditional
learning. That parameters, once set, will exhibit their eÿects over
arbitrarily complex data, simply serves to underwrite the misguidedness
of Brown's initial position.

2.2.3 Ordered data

Linked to complexity is the view that the data presented to children
come in a particular order and that children are capable of exploiting
this order in their acquisition of the target language ± Levelt (1975)
contemplates the possibility of Motherese providing ``graded language
lessons'' for small children. The intuitive idea seems to be that children
may be led to focus on diÿerent aspects of language in an ordered and
systematic way, but again no ®rm proposals to back up this intuition
have ever been presented.

We should note immediately that if a learner is equipped with what-
ever principles determine the order in which data are presented, this
can be a powerful aid to acquisition, converting an insoluble
learnability problem into a tractable one. We can see this by consider-
ing again the following, in®nite, class of languages L:

L0 � fa; aa; aaa; aaaa; . . .g
L1 � fag
L2 � fa; aag
L3 � fa; aa; aaag
. . .
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As it happens, L is not identi®able in the limit on text. To see why,
consider that any learner able to identify L0 would do so after inspect-
ing ®nitely many sentences from it with ai being the longest (ai � a
repeated i times). But any learner that identi®ed L0 would then fail to
identify the ®nite language Li, one of whose texts does indeed begin
exactly as the text in response to which the learner conjectured L0.

But now suppose that we constrain the mode of data presentation so
that sentences are presented according to the following rule, and sup-
pose further that the learner knows this rule:

(3) Data are presented in order of increasing length; for the ®nite
languages Li (i 6� 0), once the longest sentence has been pre-
sented, the sequence begins again with the shortest sentence.

It is easy to see that a learner equipped with (3) can now identify L in
the limit. We oÿer an informal description of a procedure which such a
learner can follow. A learner starting with the hypothesis L0 will retain
it so long as data go on increasing in length. This will ensure that L0 is
identi®ed if it is the target. If one of the ®nite languages is the target,
there will be a point in the data sequence (corresponding to the (i� 1)-th
datum for Li) at which the length of data reverts to 1 and at this point,
the learner switches hypotheses to Li and stays there. Of course, what
the reduction in length indicates is that certain strings are not in the
target language, so this kind of order information is an indirect source
of negative evidence.

What might the issues be empirically? Obviously, the above
illustration does not link to empirical considerations in any direct way.
We shall meet some issues concerning order of parameter setting in
section 2.4, but it is not clear that the sorts of ordering questions
which have been considered in the acquisition literature can be linked
to any explicit learnability framework. For instance, Newport,
Gleitman and Gleitman (1977) investigated the proposal that the
speech addressed to young children is grammatically homogeneous,
when compared to adult±adult talk, the idea being that such homo-
geneity might enable a child to focus on one or a small number of
grammatical aspects of the target language at a time, thereby making
acquisition more readily explicable. We need not agonize over whether
enhanced learning would be the outcome of such homogeneity, as
Newport et al.'s results were uniformly negative across a number of
measures. It appears, then, that with the exception of the degree-n
variable, where speech addressed to children might exhibit a
developmental pattern, there is no intelligible sense of order which a
learnability model might exploit.6
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With our views on the child's linguistic environment in place, we can
now turn to studies of parameter setting in PPT.

2.3 Subset parameters

As we shall see in the next section, serious di�culties emerge for
learners constrained in ways which are not psychologically implausible
as soon as we begin to take account of the possibility of parameters
interacting in unhelpful ways. In this section, however, we shall focus
on parameters which succeed in being badly behaved and creating
learning problems without any assistance from other parameters.

Wexler and Manzini (1987) and Manzini and Wexler (1987) are the
classic studies of subset parameters in a learnability context. To come
to terms with the issues they raise, we begin by considering the set-
theoretic relations which can obtain between languages which result
from setting parameters in various ways.

So, suppose that we have a parameter pi with values v1i and v2i and
two parameter settings Pv1i and Pv2i that diÿer only in the value
assigned to pi (v

1
i and v2i , respectively). We will assume for the moment

that pi can be studied while all the other parameters are kept ®xed as
dictated by P. This assumption will be discussed below, in section 2.3.2.
Consider the languages L�Pv1i � and L�Pv2i � which are generated by
these alternative parameter settings. There are four possible set-
theoretic relations between L�Pv1i � and L�Pv2i �. These are set out in (4):

(4) a. L�Pv1i � \ L�Pv2i � � 1

b. L�Pv1i � \ L�Pv2i � 6� 1 and

neither L�Pv1i � � L�Pv2i � nor L�Pv2i � � L�Pv1i �
c. L�Pv1i � � L�Pv2i �
d. L�Pv2i � � L�Pv1i �

In the cases of (4a) and (4b), where L�Pv1i � and L�Pv2i � are disjoint or
have a nonempty intersection without either being properly contained
in the other, we shall assume for now that there is no immediate learn-
ability problem. Prima facie evidence for this is easy to come by.
Suppose that learners set parameters at random and that in the situa-
tion depicted by (4a), the target value for pi is v

1
i . If the learner's choice

is v1i and we suppose that shifts in hypotheses occur only when a
sentence is presented which cannot be analyzed by the grammar, and if
we further suppose that all evidence is positive, the learner will stay
with this correct hypothesis. If, on the other hand, we suppose that the
initial choice is (incorrectly) v2i , then, assuming that the only parameter
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that can be reset is pi, the very ®rst datum to be presented from L�Pv1i �
will force a change to what we are assuming is the correct alternative.

For (4b), the situation is identical if the learner's initial choice is v1i .
If, however, the learner incorrectly chooses v2i , it will not necessarily be
the case that the ®rst presented datum will exhibit this incorrectness ±
this datum could be from L�Pv1i � \ L�Pv2i �. Nevertheless, supposing
some analogue of text presentation, eventually a datum from
L�Pv2i � ÿ L�Pv1i � will be presented and this will be su�cient to cause a
hypothesis switch for the learner. Again, the learner having switched,
all subsequent data will be consistent with the revised hypothesis and
the language will be successfully identi®ed.

But now consider (4c) and (4d). They are symmetrical in the relevant
respects, so we will take just (4c). Suppose that the target value for pi
is v2i . Again, if the learner's initial guess is correct, this value will never
be changed and L�Pv2i � will be identi®ed. If an incorrect guess of v1i is
made, the situation is analogous to that in (4b) and is resolved in an
identical fashion. Suppose, on the contrary, that the target is v1i , which
gives rise to the subset language L�Pv1i �. Once more, a correct initial
guess will be maintained, but the crucial case allows the learner to
guess v2i . This puts the learner in the superset language L�Pv2i � and
now the absence of negative data becomes crucial. All data presented
to the learner are, of course, from L�Pv1i �. However, because of the
subset±superset relation in (4c), they are also from L�Pv2i �.
Accordingly, if we suppose that learners only switch their hypotheses
on the presentation of unanalyzable data, our learner will never
abandon the choice of v2i and will be stuck with the wrong hypothesis
for ever. L�Pv1i � is not identi®able on this scenario and the small class
of languages characterized by the parameter P is also not identi®able,
as one of its members fails to have this property.

This informal description raises a number of questions. Most
obviously, we should ask what we can do to overcome the di�culty
created by the Subset Problem. Also, however, there is the simplifying
assumption we have made about all other parameters being set in the
same way, which deserves careful scrutiny. Third, and most urgently
for the linguist, one needs to determine whether the predicament raised
by the Subset Problem ever arises. We consider these issues in the next
three subsections.

2.3.1 The Subset Principle

Responding to the di�culty created by the Subset Problem is straight-
forward. This di�culty only arises if we allow the learner the option of
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setting parameters randomly. If we remove this option, then the pro-
blem will be resolved. To this end, Wexler and Manzini (1987: 61) for-
mulate the Subset Principle as follows.7

(5) The learning function maps the input data to that value of a
parameter which generates a language:
a. compatible with the input data; and
b. smallest among the languages compatible with the input

data.

To see how this works in the simple case we started with, consider
again the situation depicted by (4c). If the target value of pi is v2i , it
will again always be possible to converge on this value from a text,
although (5b) will now require the learner to assume the incorrect
value v1i so long as the text contains only data from L�Pv1i �. This, of
course, is the key to the situation when the target is v1i . Then, only
data from L�Pv1i � are ever presented, and (5b) requires that in
these circumstances v1i is the learner's choice. We thus see that if
we constrain the learning function in this simple way, the learner
will never end up in a superset language from which retreat is im-
possible.

Before going further, it is important to observe that Wexler and
Manzini see the Subset Principle as providing an explanatory basis
for a theory of linguistic markedness. Obviously, what (5) does is
order the values of subset parameters based on the inclusion relations
of the sets they generate. Wexler and Manzini suggest that this order-
ing should in turn be linked to statements of relative markedness,
governed by (6):

(6) If pi is a parameter with values v1i ; v
2
i . . . v

n
i such that, for some

parameter assignment P, L�Pv1i � � L�Pv2i � � . . . � L�Pvni �,
then vmi is unmarked relative to vm�1

i for every 1 � m � nÿ 1.

As we shall see, this and related notions of markedness have provoked
considerable discussion.

2.3.2 The Independence Principle

Moving next to our simplifying assumption, we can arrive at an under-
standing of the problem by restricting attention to the two-parameter
case. Suppose we have two parameters pi and pj with values v1i ; v

2
i and

v1j ; v
2
j respectively. Again supposing that all other parameters are ®xed

in value as dictated by P, we can refer to the languages generated by
the possible combinations of these parameter values as L�Pvmi vnj � where
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m and n take on the values 1, 2. Now, suppose that we compute subset
relations between these languages and derive the results in (7):

(7) a. L�Pv1i v1j � � L�Pv2i v1j �
b. L�Pv2i v2j � � L�Pv1i v2j �

Such a situation creates a dilemma for the Subset Principle; if we
suppose that pj is set at the value v1j , then, according to the Subset
Principle, pi should be set at v1i unless the data require the setting v2i ±
this is because of (7a). Alternatively, via (7b), if pj is set at the value
v2j , then pi should be set at v2i unless the data demand the setting v1i .
Thus, it appears that the Subset Principle cannot apply in these
circumstances. If this is the case, however, it is easy to see that there is
nothing to prevent the learner from becoming trapped in a superset.
For suppose that the target is L�Pv2i v2j � and that the learner initially
relies on (7a) in conservatively approaching the value of pi.
Subsequently, pj is set to its correct value of v2j , which leaves the
learner in the superset language L�Pv1i v2j � with respect to the target.
Alternatively, suppose that the target is L�Pv1i v1j � and the learner relies
on (7b) to get started. Correct ®xing of the value of pj as v

1
j moves the

learner into the language L�Pv2i v1j �, which is again a superset with
respect to the target.8 To rule out the possibility of this situation aris-
ing, Wexler and Manzini (1987: 65) formulate the Independence
Principle:

(8) The subset relations between languages generated under
diÿerent values of a parameter remain constant whatever the
values of the other parameters are taken to be.

Thus, a slight modi®cation of the simplifying assumption with which
we started turns out to be necessary if the Subset Principle is to do its
work as part of the learning function: while we do not need to assume
that all other parameters are set at the same value, we must assume
that any diÿerences in their settings are immaterial as far as the
relevant set inclusion relations are concerned. It is noteworthy that
whereas the Subset Principle is properly construed as part of the
learning function, the Independence Principle is actually a constraint
on UG, providing an example of how considerations of learnability
can have implications for linguistic theory.9

2.3.3 The empirical status of the Subset Problem:Binding Theory

It is all very well to appreciate the force of the Subset Problem in the
abstract, but without illustration from reasonably plausible parameter

29Learnability and the acquisition of syntax



spaces, it remains a tool without a purpose. Perhaps all parameters in
PPT give rise to the situations depicted in (4a) and (4b), with the
Subset Problem never arising in practice.

Wexler and Manzini locate an application for the Subset Principle in
the Binding Theory. It would not be appropriate here to go into the
full complexities which they explore, but it is easy enough to illustrate
the general direction of their argument. Consider the English examples
in (9):

(9) a. Johni says that [Mariaj loves herselfj/*himselfi]
b. Johni ordered Haraldj [PROj to shave himself�i=j]

Simplifying slightly, here we see illustrations of the fact that the
English re¯exive anaphors himself/herself must be bound from inside
the clause within which they occur. This clause constitutes a local
domain known as a governing category (GC) and Principle A of the
Binding Theory (Chomsky, 1981a) is formulated as (10):

(10) An anaphor must be bound within its GC.

To yield a fully explicit account of the data in (9), (10) must be supple-
mented with a de®nition of GC, and this appears in (11):

(11) The GC for � is the smallest category containing � and a
subject.

Running these de®nitions on the examples in (9) quickly establishes
that the bracketed strings are the GCs for the anaphors in each case;
then, the ill-formed examples result from abortive attempted bindings
from outside the anaphors' GCs.

It turns out that the Icelandic anaphor sig (``self'') behaves rather
diÿerently to himself/herself. To see this, consider the examples in
(12):10

(12) a. JoÂ ni segir ad [Mariaj elskar sig�i=j]
``Jon says that Maria loves self''

b. JoÂ ni skipadi Haraldi ad [PRO raka sigi]
``Jon ordered Harald to shave self''

The ®rst of these examples is identical to English in the relevant
respects and indicates that in a ®nite clause (elskar is a ®nite verbal
form) sig cannot be bound outside the domain de®ned by its closest
subject. In (12b), however, where the subordinate clause is in®nitival,
such long-distance binding is possible. This, along with other data,
leads to the suggestion that the de®nition of GC should be parameter-
ized to include the value in (13) alongside that in (11):
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(13) The GC for � is the smallest category containing � and an
indicative tense.

Applying this de®nition to (12a) yields the local binding requirement;
in (12b), however, there is no indicative tense in the subordinate clause
and binding of the anaphor from outside that clause is permitted.
Now, it is not too di�cult to see that if we identify our parameter pi
from section 2.3.1 with the GC Parameter we have begun to construct
in (11) and (13), regarding the English value in (11) as v1i and the
Icelandic value in (13) as v2i , then, ceteris paribus (that is for every
parameter assignment P) L�Pv1i � � L�Pv2i �, i.e. with respect to the set
of structures in question) English is a subset of Icelandic.

In fact, the proposals that Wexler and Manzini develop are consider-
ably more elaborate than the above in a variety of ways. Speci®cally,
they claim to identify ®ve distinct values of the GC Parameter as
shown in (14) (cf. Wexler and Manzini, 1987: 53):11

(14) The GC for � is the smallest category containing � and
a. a subject, or
b. an INFL, or
c. a TNS, or
d. an indicative TNS, or
e. a root TNS.

Above, we have seen that English re¯exive anaphors instantiate (14a),
whereas Icelandic sig illustrates (14d).12 To take just one further
example, consider the binding possibilities for Japanese zibun ``self,'' as
illustrated in (15) (Manzini and Wexler, 1987: 419):

(15) John-waj [Bill-gai zibun-oi=j nikunde iru] to omotte iru
John Bill self hates that thinks
``John thinks that Bill hates self''

Obviously, it is no surprise that zibun can be bound here by Bill; how-
ever, it is also possible for it to be bound by John, and a moment's
re¯ection shows that this requires the GC for zibun to be de®ned as in
(14e).

Generalizing the observations we made above about English
re¯exives and Icelandic sig, it is fairly easy to see that, when all other
parameters are kept ®xed (so, for any choice of P) the ®ve values of
the GC Parameter yield successively larger languages for anaphors, as
indicated in (16):

(16) L�PGCa� � L�PGCb� � L�PGCc� � L�PGCd � � L�PGCe�
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Taking just L�PGCa� and L�PGCb�, an anaphor which must be bound in
the domain of a subject cannot be bound outside an NP which has a
subject. Thus, in English, (17) is ill-formed:

(17) *Johni resented [NP Mary's criticism of himselfi]

If, however, an anaphor is required to be bound in the domain of an
INFL and NPs lack INFL, then binding from outside NP over an NP-
subject will be possible, i.e. the analogue of (17) will be well-formed.
Since Mary can bind an anaphor in the position of himself in (17) (the
anaphor would normally be herself for unrelated reasons) irrespective
of whether GCs are de®ned in terms of occurrences of subject or
INFL, it follows that L�PGCa� properly contains L�PGCb�.

Exercise

2.1 Construct informal arguments similar to those preceding this
exercise to show that the other proper inclusions in (16) do
indeed follow from the parameter values on which they are
based.

So far, we have said nothing about pronouns, which are the subject
of Principle B of the Binding Theory:

(18) A pronoun must be free (� not bound) in its governing
category.

The natural proposal for Wexler and Manzini to make is that GCs for
pronouns are subject to the same parametric variation as they are for
anaphors. Initial evidence for the correctness of this view can be
gleaned from the distribution of the Icelandic pronoun hann, which
Wexler and Manzini (1987: 54) present as in (19):13

(19) a. JoÂ ni segir ad [Maria elskar hanni]
``Jon says that Maria loves (ind) him''

b. JoÂ ni segir ad [Maria elski hanni]
``John says that Maria loves (subj) him''

c. *JoÂ ni skipadi meÂ r ad [raka hanni]
``Jon ordered me to shave him]''

Here, (19c) indicates that the GC for hann must be de®ned by TNS. By
assumption the in®nitive clause lacks TNS, so the matrix clause is the
pronoun's GC in (19c) and attempting to bind hann within this cate-
gory leads to ill-formedness. Thus, Wexler and Manzini suggest that
the GC for hann is determined by (14c).14
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Again, it is easy to see that the ®ve values of GC Parameter from
(14) yield nested languages when applied to pronouns. In this case,
however, the order of the inclusions is reversed, yielding (20):

(20) L�PGCe� � L�PGCd � � L�PGCc� � L�PGCb� � L�PGCa�
To illustrate, consider the extreme ends of this ordering. A pronoun for
which the GC is speci®ed by (14e) must be free everywhere. By
contrast, a pronoun such as English him must only be free in the
domain of a subject, as indicated in (21):

(21) Billi said that [Johnj chased himi=�j]

If the GC of English him were determined by (14e), (21) with Bill bind-
ing him would be ill-formed, and informally, we can see that it follows
that L�PGCa� properly contains L�PGCe�.

The diÿerence between (16) and (20) has an important consequence
from the perspective of markedness (cf. (6) above). If the relative
markedness of GC values were part of UG, we would expect this to be
re¯ected in the same way for both anaphors and pronouns. That the
markedness orderings are diÿerent for the two cases is seen by Wexler
and Manzini as a powerful argument for locating the source of these
orderings in the learning function itself. Furthermore, construed in this
way, they are explained by the nature of the learning function rather
than constituting stipulations in UG.

Exercises

2.2 Repeat Exercise 2.1 for the adjacent pairs in (20).
2.3 For each of the following, informally described parameters,

ascertain whether its values give rise to a Subset Problem:
(a) The Null Subject Parameter, which allows the subjects of

®nite clauses to be empty in some languages, e.g. Italian
(lui) parla ``(He) speaks'' vs. English He speaks/*speaks.

(b) The Head±Complement Parameter, which speci®es the
order V±NP, P±NP, etc. (English) vs. NP±V, NP±P, etc.
(Japanese).

(c) The Bounding Node Parameter, which speci®es fNP, IPg
as bounding nodes for English, fNP, CPg as bounding
nodes for Italian and fNP, IP, CPg as bounding nodes for
Russian. Some resulting contrasts between the three
languages are illustrated in the examples below with the
presumed movements of WH-expressions indicated using
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trace (the role of NP as a bounding node is not relevant to
these examples):
(i) English: *Your brother, [to whom]i [IP I wonder [CP

[which stories]j [IP they have told tj ti ]]]
(ii) Italian: Tuo fratello, [a cui]i [IP mi domando [CP [che

storie]j [IP abbiano raccontato tj ti ]]]
(iii) English: [Who]i does [IP Ivan say [CP ti that [IP Mary

loves ti]]]
(iv) Russian: *Kavo govorit Ivan cto Marija ljubit

who-acc says Ivan that Mary loves
(d) The Preposition Stranding Parameter which permits prepo-

sitional heads of WH-expressions to be stranded in English
but not in French:
(i) a. [To whom]i did you give the book ti?

b. [Who]i did you give the book to ti?
(ii) a. [AÁ qui]i as-tu donneÂ le livre ti?

b. *[Qui]i as-tu donneÂ le livre aÁ ti?
2.4 Manzini and Wexler (1987: 416) oÿer the following paradigm

for the distribution of the Italian anaphor seÁ (``self'')
(i) Alicei sapeva che [Marioj aveva guardato seÁ �i=j nello

specchio]
``Alice knew that Mario had looked at (her)self in the
mirror''

(ii) Alicei disse a Marioj [PROj di guardare seÁ �i=j nello
specchio]
``Alice told Mario to look at (her)self in the mirror''

(iii) Alicei guardoÂ [i ritratti di seÁ i=j di Mario]
``Alice looked at Mario's portraits of (her)self''

With respect to (i) and (ii), Italian seÁ patterns like English
herself, but the equivalent of (iii) with Alice binding seÁ is con-
sidered by many to be ill-formed in English. Assuming the cor-
rectness of this judgment, what is the value of the GC
Parameter for Italian seÁ?

2.5 The following examples, from ThraÂ insson (1991: 56-7) illustrate
further aspects of the distribution of Icelandic sig:
(i) *JoÂ n yrdi gladur [ef kuÂ hjaÂ lpadir seÂ r]

``Jon would be glad if you helped (subj) self''
(ii) *JoÂ n lykur kessu ekki [nema kuÂ hjaÂ lpir seÂ r]

``Jon ®nishes this not unless you help (subj) self''
(iii) JoÂ ni sagdi [ad hanni yrdi gladur [ef kuÂ hjaÂ lpadir seÂ ri]]

``Jon said that he would be glad if you helped (subj)
self''
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(iv) JoÂ ni segir [ad hanni ljuÂ ki kessu ekki [nema kuÂ hjaÂ lpir seÂ ri]]
``Jon says the he ®nishes this not unless you help self''

What di�culties do these examples raise for the claim that
the GC for sig is de®ned as in (14d)?

The ®nal issue we need to note in this exposition of the major
features of Parameterized Binding Theory is the existence of a second
parameter. This is the Proper Antecedent (PA) Parameter and its
impact can be readily understood via examples.

We have already met the claim that Japanese zibun ``self'' is an
anaphor with GC as de®ned by (14e), i.e. it must be bound in a root
clause. However, it turns out that zibun cannot be bound by any
element in this domain; this anaphor displays subject-orientation,
whereby it can be bound only by a subject. This is illustrated in (22)
(Manzini and Wexler, 1987: 431):

(22) John-wai Mary-nij zibun-noii=�j syasin-o mise-ta
John Mary self pictures showed
``John showed Mary pictures of self''

In (22), the GC for zibun is the matrix clause, but the anaphor cannot
be bound by the object Mary which occurs in this domain. It is there-
fore proposed that only subjects constitute proper antecedents for zibun.
Now, it is easy to see that an anaphor which is not restricted in this
way has a wider distribution than one which is. Thus, if we postulate
the PA Parameter in (23), we can also assert (24), showing that the
Subset Principle will be applicable in this case too:

(23) A proper antecedent for � is:
a. a subject, or
b. any item

(24) For anaphors, the PA Parameter yields:L�PPAa� � L�PPAb�
Conversely, there is some evidence that pronouns can vary in terms of
items from which they must be free. Wexler and Manzini (1987: 431)
cite the examples involving Icelandic hann in (25):

(25) a. *JoÂ ni skipadi meÂ r ad raka hanni
``Jon ordered me to shave him''

b. EÂ g lofadi JoÂ ni ad raka hanni
``I promised Jon to shave him''

Recall that the GC for hann is de®ned by TNS, so in these examples it
is the matrix clause. While (25a) shows that hann must indeed be free
of a subject in this domain, (25b) indicates that this restriction does
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not extend to objects. This phenomenon of subject obviation indicates
that the PA Parameter in (23) should be extended to pronouns.
Clearly, for pronouns, the appropriate set inclusion is (26):

(26) L�PPAb� � L�PPAa�

Exercise

2.6 Show that the GC Parameter and the PA Parameter satisfy the
Independence Principle in (8).

To this point, there has been something inexorable about our
progress. With the nature of Subset Problems understood and the
existence of subset parameters plausibly established, the need for the
Subset Principle is almost self-evident for a learner who is error-driven
and does not bene®t from negative evidence. The remainder of this
section will be more studied. Speci®cally, as Wexler and Manzini
themselves acknowledge, cross-linguistic variation in the behavior of
anaphors and pronouns presents certain di�culties for a Binding
Theory containing the GC and PA Parameters. It is necessary to
evaluate their response to these di�culties. Second, it appears that
parameterized Binding Theory ought to make some fairly explicit
predictions about children's acquisition orders. The nature of these
predictions and the empirical ®ndings should be examined. Finally, the
nature and scope of the Subset Principle have attracted discussion. As
for its nature, its emphasis on the computation of subset relations
between sets of sentences is not immediately consistent with the
emphasis in PPT on I-language (Chomsky, 1986); regarding its scope,
it will be helpful to assess the extent to which subset parameters infect
linguistic systems.

2.3.4 Extending the account

Some intriguing issues arise when we consider the generalization,
formulated by Sa®r (1987) among others, that anaphors, like Japanese
zibun or Chinese ziji, which can be bound over long distances, typically
are subject-oriented (Huang and Tang, 1991; Katada, 1991);
conversely, anaphors which must be bound within the domain of a
subject, such as English re¯exives, are indiÿerent as to the grammatical
function of their antecedent. To the extent that this generalization is
true, it indicates that we should consider a ``super-parameter'' which
simultaneously speci®es domain and antecedent properties. Setting
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aside intermediate domains, we could formulate such a parameter
along the lines of (27):

(27) If � is an anaphor, it is bound
a. in the domain of a subject by an antecedent bearing any

grammatical function;
b. in a long distance domain but only by a subject.

Wexler and Manzini reject any parameter such as (27) for two reasons.
First, they observe that it does not satisfy the Subset Condition.15

Second, they maintain that the generalization on which it is based is
false. Here we focus on the falseness claim.

The falseness of (27) is illustrated again by the distribution of the
Icelandic re¯exive sig. Consider the data in (28) and (29) (Manzini and
Wexler, 1987: 437):

(28) a. JoÂ ni elskar sigi
``Jon loves self''

b. EÂ g sendi JoÂ ni foÈ t a sigi
``I sent Jon clothes for self''

(29) a. JoÂ ni segir ad Maria elski sigi
``Jon says that Maria loves (subj) self''

b. *EÂ g sagdi JoÂ ni ad Maria hefdi bodid seÂ ri
``I told Jon that Maria had (subj) invited self''

Recall that it has been claimed that sig must be bound in the domain
of an indicative TNS. In (27), this counts as a long-distance domain,
so if the generalization expressed in (27) is sound, sig should be subject-
oriented. Now, (29) shows that this is correct, with binding by the
object JoÂn in (29b) being ruled out. However, (28b) shows that object
binding of sig is possible, and it follows that the distribution of sig
does not fall under either clause of (27).

In order to deal with data such as those in (28) and (29), while at
the same time capturing what they believe to be a correct generaliza-
tion about the relationship between the values of the two parameters,
Wexler and Manzini formulate (30):16

(30) A token of an anaphor must be bound either in its unmarked
governing category or by its unmarked proper antecedent.

It is important to be clear that (30) refers explicitly to token occur-
rences of anaphors. With this in mind, we can readily see how the
examples in (28) and (29) are accommodated. In (28), tokens of sig are
bound in the unmarked governing category for anaphors. Thus, they
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do not need to be bound by the unmarked proper antecedent and bind-
ing from the object in (28b) is possible. By contrast, in (29) the ana-
phors occur with antecedents which are not in the unmarked governing
category for anaphors (although they are in the governing category for
sig). In these circumstances, (30) permits binding only from the
unmarked proper antecedent, that is, the subject, and (29b) is ill-
formed.

At least two concerns have been expressed about (30). First, in
Atkinson (1992: 150), I raised the question of its status with respect to
the principles of PPT. Clearly, referring as it does to token occurrences,
it is quite distinct from familiar grammatical principles; equally, unlike
for the Subset Principle itself, there seems to be no motivation for
locating it in a learning module.

Second, MacLaughlin (1995: 167) appears to believe that (30) could
be causally involved in parameter setting with potentially dire
consequences. Speci®cally, she raises the specter of a learner receiving
positive evidence for long distance binding in connection with a
particular anaphor and using this along with (30) to reset the PA
Parameter value for the anaphor from its superset (marked) to subset
(unmarked) value. Obviously, if this sort of process were available, the
initial motivation for the Subset Principle would be seriously
undermined, as the learner is now being provided with a means of
retreat from supersets. But MacLaughlin's point is based on a
misunderstanding, as (30) is not concerned at all with mechanisms for
setting parameters. In the situation she envisages, all that (30) tells a
learner who knows it is that in this long-distance context, the anaphor
must be bound by the subject. If the learner has the superset setting for
the PA Parameter, there is nothing in this conclusion to challenge this
setting.

A rather obvious di�culty arises for the Wexler and Manzini
account of parameterized binding if we juxtapose traditional views on
markedness with what appear to be rather robust generalizations about
the domain properties of pronouns. Quite simply, the vast majority of
pronouns do not take the root clause as their binding domain, a
condition which would forbid intrasentential binding for such
pronouns. Indeed, most pronouns which have been systematically
studied are like English personal pronouns with their domains de®ned
by the closest subject, and in terms of (14) this domain is the most
marked pronominal domain.

Now, we should note ®rst that the generalization we have just noted
does not, in itself, render the Wexler and Manzini account of
pronominal binding domains incoherent. Nowhere do they suggest that
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their learnability-induced sense of markedness is intended to
reconstruct traditional frequency-based notions. What it does do is
signal a gap in the account; ideally, Wexler and Manzini should have
some way of accounting for pronouns' a�nity for the most marked
value of the GC Parameter. They are aware of the problem and they
propose an ingenious solution to it. To approach this, consider the
schemas in (31) (Atkinson, 1992: 150):

(31) a. . . . þ . . . [GC�A��GC�P� . . . ÿ . . . � . . .] . . .
b. . . . � . . . [GC�A� . . . þ . . . [GC�P� . . . ÿ . . . � . . .] . . .] . . .
c. . . . � . . . [GC�P� . . . þ . . . [GC�A� . . . ÿ . . . � . . .] . . .] . . .

In (31), � may be either an anaphor or a pronoun, and þ, ÿ and � are
potential antecedents for �. The binding domains for � are indicated
by GC(A) for the case where � is an anaphor and GC(P) where � is a
pronoun. Thus, in (31a), if � is an anaphor, it can be bound by ÿ and
if it is a pronoun, it can be bound by þ (and by elements which are
``more distant'' than þ); in short, the position occupied by � can enter
into binding relationships with any c-commanding position. The same
conclusion obtains for (31b), where the GC for �, a pronoun, is smaller
than the GC for �, an anaphor; the anaphor can be bound from þ or
ÿ and the pronoun from þ, � or any domain beyond �. However, (31c)
is diÿerent; in this con®guration, where GC(P) is bigger than GC(A),
binding of � from þ is not possible, irrespective of whether � is a pro-
noun or an anaphor. Wexler and Manzini describe this situation by
saying that whereas in (31a±b), the relevant domains are spanned by
the binding possibilities, this is not so in (31c), and they formulate their
Spanning Hypothesis to rule out (31c) (Manzini and Wexler,
1987: 440):17

(32) If þ c-commands �, þ can bind �, where � is either an ana-
phor, or a pronominal, or both.

It is now easy to see how the Spanning Hypothesis can account for the
tendency for pronouns to be associated with the most marked value of
the GC Parameter. Suppose a language has an anaphor associated with
the unmarked GC value for anaphors, a common situation. By the
Spanning Hypothesis, a pronoun cannot have a binding domain bigger
than this anaphor, as this would give rise to the situation schematized
in (31c). Thus, the pronoun must be associated with the same binding
domain as the anaphor, even though this is the most marked domain
for the pronoun.18

What are we to make of this account of the unexpected properties of
pronouns? Again, an important question concerns the status of the
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Spanning Hypothesis, and, while aware of this, Manzini and Wexler
have nothing reassuring to say (Atkinson, 1992: 151). Second, as
MacLaughlin (1995: 169) notes, even with the Spanning Hypothesis, the
account is incomplete. This is because in order for the Spanning
Hypothesis to yield the correct generalizations, the binding domains of
anaphors must be established before the corresponding domains for
pronouns. If the converse obtained with pronouns being initially linked
to their unmarked binding domains, the Spanning Hypothesis requires
anaphors to have equally large (in this case, maximally marked)
domains; but while long-distance anaphors are widely attested, they do
not exhibit the overwhelming frequency noted for marked pronouns, so
it appears that the required asymmetry will have to be an additional
component of an account relying on the Spanning Hypothesis.19

In the light of observations such as the above, some might think that
it would be more comfortable to get along without the Spanning
Hypothesis. Interestingly, in Wexler's (1993) response to Kapur et al.
(1993), a perspective is raised which, if it could be sustained, might
render the Spanning Hypothesis super¯uous. Kapur et al. oÿer a
number of examples from various languages where the binding domain
for pronouns is determined by the closest subject, i.e. they provide
examples to support the generalization which led to the Spanning
Hypothesis. Wexler does not seek to defend the Spanning Hypothesis
in his reply ± Kapur et al. raise a number of objections to this hypoth-
esis which there is not space to go into here. Instead, he suggests that
many of the cited examples do not illustrate pronominal binding but
accidental co-reference. To illustrate, consider the simple examples in
(33):

(33) a. That is him
b. Everyone likes him

As regards (33a), it is interpreted with him and that co-referential.
However, we would not wish to suggest that (33a) provides evidence
that the GC for English pronominals is not determined by the closest
subject. In short, Binding Theory, as a theory of co-indexing, associates
(33a) with (34):

(34) Thati is himj

It immediately follows that contra-indexing cannot always entail
disjoint reference, so there must be another aspect of the interpretive
capacity (at this point, it is customary to mention pragmatics!) which
governs the conditions under which contra-indexing can yield co-
referential interpretations. Now note that (33b) does not allow an inter-
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pretation that everyone likes themselves. Why should this be so?
Suppose that Principle B applies to the representation in (35) after
everyone has been raised by Quanti®er Raising to an operator position
(May, 1985):

(35) everyonei [ti likes him]

By Principle B, we obtain (36):

(36) everyonei [ti likes himj]

But now note that ti here is a bound variable with no independent
referential content; contra-indexing of the pronoun indicates that it
cannot function as a token of the same bound variable, and a
pragmatic theory of co-reference will be silent in a domain where items
are not themselves referential. In conclusion, then, him cannot have a
bound variable interpretation in (33b), a direct consequence of the
Binding Theory alone. The lesson from all of this, Wexler maintains, is
that to be sure of accurately assessing the binding domain of a
pronoun, it is necessary to consider its behavior when its potential
antecedent is a bound variable, contexts where the pronoun itself, if
co-indexed with this antecedent, will have a bound variable
interpretation. The pronouns Kapur et al. cite as exhibiting the most
marked pronominal GC include Japanese kare. However, Wexler
argues that kare can never function as a bound variable, and for this
reason, its GC is actually given by (14e).20 Whether this sort of
argumentation could be extended to include signi®cant numbers of
pronouns which have been regarded as having marked GCs remains to
be seen. As things stand, the binding behavior of pronominals and
attendant complications such as those which surround the Spanning
Hypothesis remains a worrying problem for Wexler and Manzini's
account.

2.3.5 Children's acquisition of anaphors and pronouns

As the Subset Principle is a component of a theory aimed at account-
ing for how it is possible for human learners to acquire the intricacies
encoded in parameterized Binding Theory, it is natural to expect that
we can formulate predictions for the child's real-time acquisition of
anaphors and pronouns. It is salutary that investigation of these issues
has proved to be extremely di�cult and uncomfortably inconclusive.

The obvious candidate for a developmental prediction based on
parameterized Binding Theory appears in (37):21
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(37) If developmental sequences can be observed for Binding
Theory parameters, they will indicate children moving from
unmarked to marked values.

Thus, we might expect children confronted with long distance anaphors
to pass through stages in which such items must be locally bound;
similarly, we might anticipate children's pronouns to be initially free
everywhere, and for the development of their binding domain to that
determined by a subject to be discernible.22 Note, however, that (37) is
cautiously phrased as a conditional, as there is no reason to be
optimistic that evidence for such developmental sequences will be
readily available. Speci®cally, the Subset Principle requires a learner to
immediately adopt marked values of parameters as soon as the
appropriate evidence appears; thus, on theoretical grounds, there is no
reason why children's adoption of marked binding domains should not
occur before they provide any evidence that they are operating with
unmarked domains. A nonconditional prediction can, of course, be
formulated, as in (38):

(38) Children will not adopt marked parametric values before
unmarked values.

How have empirical studies engaged these predictions?23 Consider ®rst
work on English. A consistent ®nding across a variety of age ranges
and methodological designs has been that children appear to have
di�culties in displaying adult-like behavior with pronouns. A robust
®nding is that up to the age of about six years, children will allow a
local antecedent in simple examples such as (39) (Jakubowicz, 1984;
Grimshaw and Rosen, 1990; Chien and Wexler, 1990):

(39) The bear is touching her

This result could be interpreted as showing either that children in this
age-range have a GC for pronouns which is even smaller than that
de®ned by a subject, or that they simply do not know Principle B of
the Binding Theory. If the latter is correct, then the observation is
irrelevant to the question of the markedness of the value of their GC
parameter, so it is important to have a view on this question ®rst.

Wexler and Chien (1990), Grimshaw and Rosen (1990) and
Grodzinsky and Reinhart (1993) argue from diÿerent perspectives that
the children in question do know Principle B. As we have already seen
(page 40), Principle B provides an account of contra-indexing, not
disjoint reference; accordingly, tests of knowledge of Principle B should
be based on examples where pronouns can or cannot be interpreted as
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bound variables. When this was done by Chien and Wexler, using
examples such as (40), it was discovered that ®ve-year-olds, the
youngest children who were competent with quanti®ed noun phrases,
produced behavior which was unambiguously consistent with their
knowing Principle B:

(40) Every bear touched her

As far as children's behavior in examples like (39) goes, this is then
accounted for in terms of their not having developed the pragmatics of
disjoint reference, suÿering from a response bias which prevents them
from selecting external referents, or some combination of these.24

So, we suppose that a marked Governing Category does exist for the
pronouns of English ®ve-year-olds. How does this bear on the
predictions in (37) and (38)? Obviously, there is nothing here to
embarrass (38), as there is no suggestion that children subsequently
move to an unmarked value of this parameter. However, as the
children are already ®ve years old, we can unfortunately say nothing
about any developmental sequence leading up to this point, so work
such as this does not provide the sort of positive evidence which (37)
seeks.

Consider next Chinese and the acquisition of the long-distance
anaphor ziji. Here there is the potential for a developmental sequence
and Chien and Wexler (1987) report an experiment in which Chinese
children (aged 2;6 to 7;0) exhibited a preference for local antecedents in
an act-out task using sentences like (41):

(41) xiao-shizi yao xiaohua gei ziji yi-ge xiangjiao
little-lion want Xiaohua (child's name) give self one-CL
banana
``Little lion wants Xiaohua to give self a banana''

However, as is correctly noted by MacLaughlin (1995: 174), such a pre-
ference for a local antecedent can hardly be cited as evidence that the
children are (or have been) operating with an unmarked GC for ziji:
long-distance interpretations do occur, and they require a marked GC,
unless they are to be explained in some other way. Again, note that
such a result is not counter to (38), but once more it does not provide
any evidence for (37). The Chinese third person pronoun ta was
examined in the same study, but bound variable interpretations were
not investigated. It is therefore impossible to conclude anything about
pronominal domains on this basis.

Unfortunately, the indeterminacy which has been brie¯y described
above appears to be an endemic feature of the relevant experimental
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work with children. The most sensible attitude we can adopt to
developmental work of this type at the moment is that it is
disappointingly uninformative.

2.3.6 The status and scope of the Subset Principle

An aspect of the Subset Principle which has provoked some disquiet is
that, as stated in (5), it is an extensional principle, explicitly referring to
sets of sentences and requiring computations over these sets. Some,
such as Sa®r (1987), have seen this computational requirement as
implausible. Others, such as Kapur et al. (1993), relying to a large
extent on the properties of pronouns discussed above, have sought to
defend the classic view of binding domains from Chomsky (1981a),
suggesting that this makes available an intensional de®nition of mark-
edness. Whether what Kapur et al. have to say about markedness can
be defended is itself debatable (Wexler, 1993), but in introducing the
contrast between intensional and extensional, they raise what may be an
important issue for a linguistic theory which regards sets of sentences
as E-language constructs and not proper objects of scienti®c inquiry.
Indeed, Chomsky himself has found it easy to see the Subset Principle
as an E-language principle, and he says (1987: 29): ``Conceivably, there
might be some signi®cance to some notion of E-language in the theory
of learnability, if [the] `subset principle' plays a role in this theory as
has been plausibly argued.''

Taking Sa®r's concerns ®rst, it is surely obvious that the computa-
tions required by the Subset Principle do not involve sentences of, say,
English and Icelandic. Transparently, there is no sense in which a set
of English sentences is a subset of a set of Icelandic sentences; rather,
what must be intended is that the computations take place over struc-
tural types. To illustrate, the structural type in (42a) below is well-
formed with both an English anaphor and the Icelandic anaphor sig in
the anaphor position, but the structural type in (42b) is only well-
formed in the case of the latter:25

(42) a. [. . . [SUBJi . . . anaphori]]
b. [SUBJi . . . [SUBJ . . . [-®nite]T . . . anaphori]]

Now, as soon as we move to (42), we also engage, at least partially,
Kapur et al.'s concern; the representations in (42) are not sentences,
but I-language constructs, so it seems that we are justi®ed in setting the
bogeyman of extensionality aside.

From a diÿerent perspective, Wexler himself has maintained that the
reference to sets of sentences in the original presentations of the Subset
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Principle was no more than a convenient expository device. He suggests
that it is straightforward to replace the well-known formulations with
an alternative which is patently intensional and in Wexler (1993: 219),
he oÿers a diÿerently worded Subset Principle, along the lines of (43):26

(43) Suppose parameter pi has two values, vmi and vni , such that for
all derivations D, if D is grammatical under setting vmi then D
is grammatical under setting vni . Then value vmi is unmarked
with respect to value vni and if the input is consistent with
value vmi the learner selects this value.

Clearly, a derivation is an I-language concept, and it is easy to see that
(43) has the same consequences as the earlier (5) and (6). Wexler goes
on to note that (43) violates the spirit of Chomsky's rejection of E-
language since it relies on there being a privileged set of grammatical
derivations. These, in turn, can be identi®ed with a set of grammatical
sentences, which amounts to the very notion of E-language which
Chomsky has rejected. Accordingly, he goes on to oÿer a further
version of the Subset Principle, similar to (44):27

(44) Suppose that principle X allows for two values, vmi and vni , of a
parameter pi. Suppose that for all derivations D, if D(vni )
violates X, then D(vmi ) violates X. Then value vmi of parameter
pi is unmarked with respect to value vni and if the input is
consistent with value vmi the learner selects this value.

Here, there is no implicit reference to any set of grammatical sentences,
and it appears that Wexler is right to maintain that it is possible to
formulate a version of the Subset Principle which (a) is intensional, and
(b) captures the spirit of Chomsky's rejection of sets of sentences as
proper objects of scienti®c study.

There is perhaps more cause for concern when we turn to the scope
of the Subset Principle. Above, we have outlined how it might be a
necessary component of a learning theory for two parameters in the
Binding Theory. Of course, there is nothing incoherent about these two
parameters exhausting the principle's domain of application, but such a
situation would be somewhat odd and is unlikely to increase our
con®dence in the need for the principle. The question we pose then
is: are there other parameters in PPT which give rise to Subset
Problems?

Above, in exercise 2.3, readers were asked to informally consider
four parameters from this perspective. Of these, it seems clear that
the Head±Complement Parameter does not call for the Subset
Principle, since the sets of structures characterized by the diÿerent
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values of that parameter are disjoint. The three other examples,
however, constitute prima facie cases for being subset parameters.
Here, we shall focus on the Null Subject Parameter (for discussion
suggesting that the Bounding Nodes Parameter does not form an
obvious domain of application for the Subset Principle, see
MacLaughlin, 1995: 155ÿ.).

The prima facie case that the Null Subject Parameter yields a Subset
Problem is that languages which require overt pronominal subjects
(such as English) are, in the relevant respect, a subset of those (such as
Italian) which provide the option of expressing such a subject or not.28

From this perspective, the English value of the parameter constitutes
the unmarked option. However, this view neglects to take account of
the consequences of setting the Null Subject Parameter one way or the
other, consequences which, even in early formulations such as that
appearing in Hyams (1986), were thought to extend beyond the
licensing of null subjects. For instance, overt expletive subjects (tokens
of there and it) are licensed in English, but there is nothing overt cor-
responding to such subjects in Italian. So, indicating the nonovert pro-
nominal subject by pro, we can maintain that in Italian we ®nd both
structural types (45), whereas in English we ®nd only (45a):

(45) a. SUBJ±V . . .
b. pro±V . . .

However, we must also observe that in English, we ®nd the structural
type in (46a), where in Italian, we see (46b):

(46) a. Exp±V . . .
b. proExp±V . . .

This means that in the relevant respects, the two languages are inter-
secting. In principle, there are sentences to move the learner from a
wrong parameter setting in both cases ± sentences with null pronominal
subjects if the target is Italian, and sentences with overt expletives if
the target is English.29

Overall, it appears that, as soon as we move away from the Binding
Theory, there is no compelling case of a classic PPT parameter which
requires the Subset Principle. One of the di�culties in investigating this
issue is that the formulation and consequences of speci®c parameters
have been subject to fairly frequent revision. However, recent work in
the Minimalist Program (Chomsky, 1995) has adopted a rather stable
view on some major parameters, and, particularly in the light of
Wexler's reformulation of the Subset Principle in (44), it is of interest
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to consider whether this principle has any role to play in the core deri-
vations of this system.

The central source of parameterization in derivations in the
Minimalist Program is the notion of strength associated with features,
the idea being that a strong feature must be ``checked'' before the
derivation branches to the interface levels of Phonetic Form (PF) and
Logical Form (LF), since such features are assumed to be ``visible'' at
PF, causing a derivation which still contains such a feature to crash at
that interface. A corresponding weak feature can (and must, for
economy reasons) be ``checked'' after the derivation branches in the
mapping to LF.30 Plausibly, weak features are unmarked, in one sense
of this notion, relative to strong features, since the latter necessitate
costly overt movement of constituents in order to be ``checked.''

If we consider an extensional formulation of the Subset Principle as
in (5), it is apparent that it will not ®nd a role in such derivations.
Strong features require overt movement of constituents, whereas weak
features do not. Thus, we ®nd well-known contrasts like that in (47)
between French and English, indicating that V-raising (to ``check'' a
feature in TNS or AGR) is overt in French, but not in English:31

(47) a. Jean embrasse souvent Marie
b. *Jean souvent embrasse Marie
c. John often kisses Mary
d. *John kisses often Mary

Alternatively, we can consider contrasts between English and Chinese,
such as that illustrated in (48), showing that English has obligatory
WH-raising (to ``check'' a strong Q feature in C), whereas Chinese
requires a question word to remain in situ:32

(48) a. What will John eat?
b. *John will eat what
c. Zhang hui chi shenme?

Zhang will eat what
``What will Zhang eat?''

d. *Shenme hui Zhang chi / *Shenme Zhang hui chi

In both these cases, and in many others, it is clear that the sets of
sentences resulting from diÿerent values of feature strength are disjoint.
What if we turn to the intensional formulation of the Subset Principle
in (44)?

Interpretation in this case is not straightforward, since the para-
meters we are considering from the Minimalist Program do not occur
in parameterized principles. There are nonetheless two principles which
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we can involve in assessing the properties of derivations. Most obvious
among these are Procrastinate, which requires that overt movement
should be avoided if possible, and Full Interpretation (FI), which
stipulates that interface representations should contain only elements
which are interpretable at that interface. With these two principles in
mind, consider derivations containing tokens of a feature F which
might be strong or weak.

The relevant part of (44) is reproduced here as (49), where we are
supposing that i is unmarked relative to j:

(49) For all derivations D if D(vmi ) violates X, then D(vni ) violates
X. Supposing that X can vary over FI and Procrastinate to
take account of the fact that we lack parameterized principles,
we can consider three relevantly distinct derivations, depending
on whether F is not checked at all (D0), is checked nonovertly
(D1) or is checked overtly (D2).

For each of these derivations, for F strong or weak, it is possible to
determine whether Procrastinate or FI are violated in that derivation.
Conducting this exercise yields (50):

(50) a. In D0, both strong F and weak F yield violations of FI.
b. In D1, strong F yields a violation of FI at PF; weak F

yields no violations.
c. In D2, both strong F and weak F yield violations of

Procrastinate; in the case of the former, this is forced for
convergence.

What does this reveal? Probably not a great deal, but it is worth noting
that (50b) is su�cient on the adopted construal to show that strong F
is not marked relative to weak F, a counter-intuitive outcome. In so far
as we can make headway on this issue, it seems that no version of the
Subset Principle has an application to the core derivations of the
Minimalist Program.

Finally in this section, we should return brie¯y to the Binding
Theory itself. Not surprisingly, there have been substantial advances
in this ®eld since Wexler and Manzini's seminal contributions
appeared, and the general tenor of some of these has been that
when the Binding Theory is properly articulated, it too does not give
rise to Subset Problems. This view, if adopted, would move us
towards seeing the Subset Principle's value as being a sharpening of
our understanding of one of the properties human grammars do not
have. We might even be attracted by the suggestion that here we have
a respect in which human languages are well-designed ± logically,
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children could have been presented with Subset Problems, but in
point of fact, they are not.

There is not the space to pursue a comprehensive review of Binding
Theory developments here, but one or two observations on the very
in¯uential proposals developed by Reinhart and Reuland (1991, 1993)
should give some indication of the direction this research has taken.33

First, there has been retrenchment as far as pronouns go. While
Reinhart and Reuland, because they regard the thematic grids of pre-
dicates as crucially involved in binding, present their binding principles
in a way which is very diÿerent to the familiar one, the upshot is that
pronouns must be free in a local domain. More importantly, they
distinguish only two major classes of anaphors in terms of three cor-
related properties: (a) their morphology; (b) the structural domain in
which they must be bound; and (c) their subject-orientation.
Simplifying considerably, there are SELF-anaphors, such as the
English re¯exives, which are morphologically complex, must be locally
bound and are indiÿerent to the grammatical function of their antece-
dent; and there are SE-anaphors (based on the Italian anaphor seÁ)
which are morphologically simple, can be bound within the domain of
an INFL and are subject-oriented. The most crucial part of Reinhart
and Reuland's approach from the current perspective is that both the
domain properties and the proper antecedent properties follow from
the morphosyntactic characteristics of the two classes of anaphors;
extending and considerably modifying the movement account of Pica
(1987), it is maintained that SELF-anaphors move to adjoin to the
predicate of the clause in which they occur for theta-theoretic reasons,
whereas SE-anaphors, lacking # features, must move to adjoin to AGR
in INFL so that they can inherit such features and be interpreted as
arguments. It is important in this account that, in principle, the learner
is provided with a clear indication in the morphological make-up of an
anaphor as to its domain and proper antecedent properties, and
questions of the learner having available a set of hypotheses for each
anaphor simply do not arise.

Finally, cases of binding which have motivated binding domains
beyond INFL are treated as logophoric, involving discourse mechan-
isms which fall outside the structural Binding Theory. To directly
illustrate the need for some way of accounting for anaphor distribu-
tions which is independent of the Binding Theory, we can consider an
English example such as (51), from Reinhart and Reuland (1991: 289):

(51) Bismarki's impulsiveness had, as so often, rebounded against
himselfi
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In (51), the antecedent does not even c-command the anaphor, so such
examples cannot be accommodated in any version of the Binding
Theory. To the extent that an approach such as that of Reinhart and
Reuland is adequate, it does not sit comfortably with Wexler's
(1993: 233) view that as diÿerent versions of the Binding Theory have
to deal with the same range of variation, ``[this] variation will have to
be stated some place in the grammar, and there is reason to believe
that the Subset Principle might turn out to be relevant in those cases.''

We can tentatively conclude, then, with Frank and Kapur (1996: 629),
that ``there may be no true subset parameters.'' Such a conclusion does
not suggest an exciting future for the Subset Principle; it should not,
however, detract from the importance of its recent past.

2.4 Non-subset parameters

In the previous section, we took it for granted that the set-theoretic
scenarios sketched in (4a) and (4b) are not immediately problematic. It
is, however, readily conceivable that the situation represented there is
damagingly simpli®ed, and that as soon as we begin to consider
realistic numbers of parameters generating large numbers of languages
and interacting in complex and unpredictable ways, complications will
arise. That this is indeed the case will be the theme of the rest of the
discussion in this chapter.

The general tenor of the possibilities we shall be concerned with
can be informally illustrated in a straightforward way. Suppose that
a learner is trying to ®gure out the order of heads and complements
in the ambient language and is presented with an SVO string. If the
environment happens to be English, it would be appropriate to take
this as indicative of heads preceding complements; however, if our
learner is surrounded by German, this would be an unhelpful move,
since German is a V2 language requiring that tensed verbs move to
second position in matrix clauses from their underlying ®nal posi-
tion. In other words, the SVO string is a reliable indicator of head±
complement order only if assumptions are made about other para-
metric options. Now, of course, there is no indication in this simple
example of an insoluble problem; if the V2 property can be estab-
lished independently via encounters with additional data, then our
SVO string will have clear consequences for the learner, but now
consider a slightly more complex case, elegantly described in Clark
(1992).

As is well-known, the grammar of English is unusual in licensing
Exceptional Case Marking (ECM) constructions such as (52):
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(52) John considers [us to be dangerous]

The di�culty created for theories of Case marking by such examples is
that an in®nitival INFL does not assign Case (or, as suggested in
Chomsky and Lasnik (1995), it assigns NULL Case to PRO), but here
we have a pronominal marked with objective Case occurring as subject
of the in®nitival clause. The ``solution'' to this dilemma in PPT was to
allow verbs like consider to exceptionally govern and Case-mark the
subject position of in®nitivals, thereby providing a source of Case for
the in®nitival subject which is external to the clause in which the
subject appears. A consequence of this is that the GC for the in®nitival
subject extends to the matrix clause, and this accounts for the examples
in (53):

(53) a. Johni considers [himselfi to be dangerous]
b. *Johni considers [himi to be dangerous]

Now, as Clark points out, it is also possible for overt subjects to appear
in in®nitival clauses in Irish. For Irish, however, there is no ``extension''
of the government domain, suggesting that Irish has a mechanism for
Case marking such subjects from within the in®nitival clause. Clark refers
to such a mechanism as Structural Case Marking (SCM), and a conse-
quence of this diÿerence between Irish and English is that a sentence of
Irish corresponding to (53a) is ill-formed; the subject position is not gov-
erned from outside the in®nitival clause, so the governing category for
this subject position does not extend beyond this clause.

With these assumptions, suppose a learner is presented with (52).
One option is to conclude (correctly) that the language has ECM.
However, if SCM is a possibility made available by UG, the learner
might (incorrectly) suppose that adoption of this is the appropriate
move. Next, the learner is presented with (53a). If ECM has already
been chosen, there is no problem. However, if the learner has selected
SCM, this will not allow for an analysis of (53a), and we might
conclude, therefore, that the sequence of data in (52) and (53a) will
inevitably lead the learner to the conclusion that English has an ECM
grammar. But this would be premature, because, as we have seen in
section 2.3, anaphors have the option of being long-distance bound.
Therefore, with the hypothesis that English has an SCM grammar and
confronted with (53a), the learner could retain the SCM assumption
and conclude that himself is a long-distance anaphor. Here, then, we
see three putative parameters interacting to ensure that an apparently
helpful sequence of data cannot be regarded as infallibly diagnostic for
the learner.
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A formalization of situations such as the above and the consequences
of that formalization are the subject matter of Gibson and Wexler
(1994), and this section begins by considering how the Triggering
Learning Algorithm (TLA) has been applied to learning situations
which have some linguistic interest.

2.4.1 Applications of the TLA

Before we consider how the TLA performs in a simple parameter
space, it is important to have access to two de®nitions which will play
an important role in the subsequent discussion. Sentences which are
diagnostic of a target are known as triggers and Gibson and Wexler
(1994: 409) distinguish between global and local triggers. Their
de®nitions of these notions are reproduced in (54) and (55):34

(54) A global trigger for value vni of parameter pi, pi�vni �, is a
sentence S from the target grammar L such that S is
grammatical if and only if the value for pi is vni , no matter
what the values of parameters other than pi are.

35

A global trigger, according to this de®nition, does its work in guiding
the learner to the correct hypothesis, irrespective of whatever other
values parameters may have.

(55) Given values for all parameters but one, parameter pi, a local
trigger for value vni of parameter pi, pi�vni �, is a sentence S from
the target grammar L such that S is grammatical if and only if
the value for pi is v

n
i .
36

Unlike a global trigger, a local trigger is only guaranteed to work in
a situation where other parameter values are ®xed in a speci®c way. In
the light of the previous section, we should note in passing that there
can never be triggers, global or local, for subset languages, since any
sentence belonging to such a language will also belong to one or more
superset languages. Thus, something like the Subset Principle remains a
necessary component of the learning function, so long as subset
parameters exist.37

In their Triggering Learning Algorithm (TLA) the learner chooses
randomly a possible parameter setting as its starting hypothesis and
waits for data from the environment to take actions that improve on it.
Speci®cally, upon detection of an error (that is upon encountering a
sentence that cannot be parsed with the current parameter setting) the
learner's conjecture is modi®ed by

52 Martin Atkinson



(i) selecting randomly a single parameter pi (the Single Value Con-
straint),

(ii) selecting randomly an alternative value for pi, and
(iii) adopting the resulting new conjecture only if it parses successfully

the sentence on which the previous conjecture was in error (the
Greediness Constraint).

A class of languages can then be proved to be unlearnable if there is at
least a possible starting hypothesis Ps from which the target hypothesis
Pt cannot be reached by means of the mechanism described above.
This happens when, for every neighbor Pn of Ps (that is for every
hypothesis that diÿers from Ps in the value of exactly one parameter)

L�Pn� \ L�Pt� ÿ L�Ps� 6� 1

In Gibson and Wexler's terminology, such a Ps would be called a local
maximum with respect to the target Pt.

There are two ways for a Ps to be a local maximum with respect to
a Pt: either Ps is a superset of Pt (in which case, assuming only positive
evidence is available, no error will ever be detected) or Ps is such that
on every sentence from L�Pt� it is just as successful as any of the
neighboring conjectures.

Conversely, it is possible to show that if there are no local maxima
in the parameter space then the probability of the learner identifying
the correct target becomes 1 in the limit, regardless of the starting
conjecture.

Since we know that the space does not have local maxima, it follows
that triggers (linguistic data that could prompt the learner to adopt
correct values of at least some parameters) exist for every target and
every incorrect conjecture. This in turn means that there is a lower
bound b > 0 on the probability of such triggers appearing in the
learner's environment (b could be thought of as the probability of the
occurrence of the least frequently occurring triggering sentence with
respect to any possible target and any intermediate conjecture).

Now, according to the TLA, the learner has no knowledge of which
parameter value to reset in circumstances where the existing grammar
does not produce an analysis. However, assuming a ¯at probability
distribution over the set of k parameters, each will be selected with prob-
ability 1=k. Suppose also, for simplicity, that all parameters are binary,
a consequence of this being that the resetting of an incorrectly set para-
meter necessarily leads to it being correctly set. Then, the probability that
a trigger S (which we are assuming to exist) will lead to a parameter
being reset to its target value is bounded below by b=k � q.
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Suppose next that Ps and Pt diÿer by two parameter mis-settings. If
the learner hypothesizes Ps at time t, then the probability of the learner
hypothesizing (correctly) Pt at time t� 2 (i.e. 2 ``sentences'' later) is
bounded below by q2. Generalizing, since we are supposing k parameters
in total, the worst case we need to consider is one where the ``distance''
between Ps and Pt is k mis-set parameters. If Ps is the hypothesis at t, the
probability of Pt being the hypothesis at t� k (k ``sentences'' later) is
bounded below by qk � r�> 0�. Thus, we can conclude at this point that
for any grammar, Ps, the probability of moving from it to the target via
encounters with k sentences is greater than or equal to r.

Assume, then, that we allow the process above to run its course.
After k sentences, the probability that the learner has achieved Pt is
greater than or equal to r. If the learner has not achieved Pt by this
point, it will be achieved in the next k sentences with probability
greater than r. In other words, the probability of achieving Pt after 2k
sentences is greater than or equal to r� �1ÿ r�r, the second factor here
being reduced by the multiplier �1ÿ r� in acknowledgment that there is
a ®nite probability that convergence has occurred on the ®rst k
sentences. Iterating this process, we can see that after 3k sentences this
probability is greater than or equal to r� �1ÿ r�r� �1ÿ r�2r. After i
sets of k sentences, this probability can be expressed as the sum

r
Xiÿ1

j�0

�1ÿ r� j

In order to show that, as the number of sentences presented to the
learner goes to in®nity, the probability of achieving the correct target
tends to 1 all we have to do is to show that, as i goes to 1,Piÿ1

j�0�1ÿ r� j tends to 1=1ÿ �1ÿ r�. In fact, if this is true, then
r
P

iÿ1
j�0�1ÿ r� j tends to

r
1

1ÿ �1ÿ r� �
r

1ÿ �1ÿ r� �
r

1ÿ 1� r
� r

r
� 1

To show that, as j goes to 1,
Piÿ1

j�0�1ÿ r� j tends to 1=1ÿ �1ÿ r� we
®rst observe that 0 < �1ÿ r� < 1 (this follows from the fact that
0 < r < 1) and then we show that, in general, for every m such that
0 < m < 1 the sum below tends to 1=1ÿm as n goes to 1.

Xn

j�0

mj

This can be expanded as

1�m�m2 � � � � �mn
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Multiplying every term by �1ÿm�=�1ÿm� � 1 we get

1ÿm

1ÿm
�m�1ÿm�

1ÿm
� � � �m

n�1ÿm�
1ÿm

which yields

1ÿm�mÿm2 �m2 � � � � ÿmn �mn ÿmn�1

1ÿm

and so, simplifying:

1ÿmn�1

1ÿm

Now, since, by hypothesis, 0 < m < 1, as n goes to 1, mn�1 tends to 0.
Therefore,

Pn
j�0 m

j tends to

1ÿ 0

1ÿm
� 1

1ÿm

This completes the proof.38

The linguistically substantive part of Gibson and Wexler's discussion
is devoted to demonstrating examples of parameter spaces where
triggers do, or, more revealingly, do not exist. For the former, they
consider the simpli®ed scenario of the well-known X-bar parameters.
Restricting ourselves simply to base word order, and assuming the four
values generated by assigning order to the unordered parameters in
(56), yields (57) (adapted from Gibson and Wexler, 1994: 416):

(56) XP � Spec, X 0

(57) X 0 � Comp, X

A number of additional assumptions are made in connection with this
simple example. Speci®cally, it is supposed that the learner gets no
exposure to noncanonical word orders, as might, for example, occur in
interrogatives, that objects do not appear without overt subjects, i.e.
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Spec-®nal Comp-®nal VOS, VS
Spec-®nal Comp-®rst OVS, VS
Spec-®rst Comp-®nal SVO, SV
Spec-®rst Comp-®rst SOV, SV



there are no null subject sentences, and that representations of word-
order and grammatical functions can be derived by preanalysis, i.e.
data encounter the child's system already in the form indicated in the
right-hand column of (57).39

It is then easy to see that the sentence type SV is a global trigger for
the parameter value Spec-®rst and VS has similar properties for the
value Spec-®nal ± these structures each identify the appropriate para-
meter value irrespective of how the Comp±Head parameter is set.
However, there are no global triggers for the relative ordering of head
and complement, since the data yielded by diÿerent values of this para-
meter depend upon the value of the Spec±Head parameter. Taking
values of the latter into account, however, there are obviously local
triggers for Comp±Head.

Exercise

2.7 For each possible pair of source state and target state in (57),
describe triggering routes consistent with the TLA which will
move the learner from source to target, indicating the status of
triggers as global or local.

A more complex case is provided by adding to the above set of
parameters an additional one to distinguish between V2 languages,
such as Dutch and German, and non-V2 languages such as English
and French. It is not possible to consider the complete argument
from Gibson and Wexler here, but it is straightforward enough to
illustrate the major aspect of their conclusion. First, we need to do
some simple sums. Adding a V2 parameter to the X-bar parameters
of (56) yields eight possible language types. At any point at which
learning is necessary, the learner can be in a state corresponding to
one of these languages, with any of the other seven language types
as the target. There are thus 56 (� 8� 7) possible routes, each one
de®ned by a possible (source, target) pair, which the learner must be
guaranteed to be able to traverse if this set of languages is to be
identi®ed by the TLA. It turns out that, of these routes, there are
six for which no triggers exist (see section 2.4.3 for a more careful
assessment of this claim). We shall informally illustrate this for one
case.

Suppose that the target is the grammar (Spec-®rst, Comp-®nal,
ÿV2), i.e. a language with basic SVO order and no V2. Further,
suppose that the learner currently has the grammar (Spec-®nal, Comp-
®nal, �V2), i.e. a VOS grammar with V2. For the purposes of this
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parameter space, the data available to the learner are extended to
include sentences which include auxiliaries, second objects and initial
adverbs, as �V2 grammars all yield exactly the same set of well-formed
structures if we restrict ourselves to S, V and O. The sentence types
de®ned by the target grammar can then be listed as in (58) ± remember
that this is just a familiar SVO grammar:

(58) a. SV, SVO, SVO1O2, SAuxV, SAuxVO, SAuxVO1O2
b. AdvSVO, AdvSVO1O2, AdvSAuxV, AdvSAuxVO,

AdvSAuxVO1O2

Of these example structures, all of those in (58a) belong to the current
grammar. The sentence types of the current grammar appear in (59).

(59) a. SV, SVO, SVO1O2, SAuxV, SAuxVO, SAuxVO1O2
b. OVS, O1VO2S, O2VO1S, OAuxVS, O1AuxVO2S,

O2AuxVO1S, AdvVS, AdvVOS, AdvVO1O2S AdvAuxVS,
AdvAuxVOS, AdvAuxVO1O2S

So, although none of the patterns in (58a) is de®ned by the X-bar
settings of the current grammar, �V2 ensures that we end up with
each member of this list. Therefore, occurrence of any of these types
will not occasion a change in the learner's grammar, as learning is
error-driven. This is not the case for the structures in (58b) ± none
of these patterns displays V2 ± so on encountering one of these, the
learner will attempt to reset a parameter. The di�culty here is that
in each case, such resetting of a single parameter (the Single Value
Constraint) will result in a grammar in which the troublesome sen-
tence-type (from (58b)) remains ungrammatical. Thus, because of the
Greediness Constraint, no change will occur. Change of a single
parameter value for our current state (Spec-®nal, Comp-®nal, �V2),
yields the three candidates in (60):

(60) a. (Spec-®nal, Comp-®nal, ÿV2)
b. (Spec-®nal, Comp-®rst, �V2)
c. (Spec-®rst, Comp-®nal, �V2)

Now consider the sentence type AdvSVO from the target. This cannot
be analyzed in (60b,c), both of which are �V2; nor can it be analyzed
in (60a), the comparable sentence type in this grammar being AdvVOS.
The TLA, then, will leave the learner stuck in (Spec-®nal, Comp-®nal,
�V2). Gibson and Wexler refer to a grammar from which there is no
triggering route to a target grammar as a local maximum (page 53),
and we will say that (Spec-®nal, Comp-®nal, �V2) constitutes a local
maximum for (Spec-®rst, Comp-®nal, ÿV2).
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Exercises

2.8 For each of the remaining sentence types in (58b), show that
change of one parameter value in the current grammar cannot
yield a grammar which analyzes the structure.

2.9 Show informally that for the TLA each of the left-hand gram-
mars below is a local maximum for each of the right-hand
grammars:

(Spec-®nal, Comp-®rst, �V2)(Spec-®rst, Comp-®nal, ÿV2)

(Spec-®nal, Comp-®nal, �V2)(Spec-®rst, Comp-®rst, ÿV2)

(Spec-init, Comp-®rst, �V2)(Spec-®nal, Comp-®rst, ÿV2)

Now, it might be felt that the existence of local maxima is su�cient
to confound the triggering account leading to the TLA. However, such
a conclusion would be premature for a number of reasons. Not least
among these are the assumptions of the Single Value Constraint and
the Greediness Constraint, assumptions which Gibson and Wexler
characterize as subscribing to conservatism, and we shall brie¯y
consider these in section 2.4.3. In the next section, however, I wish to
focus on a response to the dilemma created by the existence of local
maxima which the authors themselves favor.

2.4.2 Dealing with local maxima

In the preceding section, it was assumed that all three parameters in
the space were available for resetting throughout the learning period.
Alternatively, we might suppose that the three parameters under
discussion are ordered; speci®cally, let us consider the consequences of
the V2 parameter being set at the default ÿV2 until after a certain time
has elapsed. No such restriction applies to the Spec±Head and Comp±
Head parameters.

In fact, all the six grammars which are local maxima, including the one
used above to illustrate the problem, are �V2. Furthermore, they are all
local maxima for ÿV2 grammars. With the V2 parameter ``oÿ-line,'' sup-
pose ®rst that the target grammar is any which is ÿV2. In this case, the
default setting for this parameter is correct, and the learner's exposure to
data from the target grammar will eventually allow the Spec±Head and
Comp±Head parameters to be correctly set; during this period, the possi-
bility of resetting ÿV2 to �V2 is not available for the learner. At some
point, of course, the �V2 option becomes available, but since by assump-
tion the target is ÿV2 and the other two parameters are correctly set by
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this point, again the option will not be considered. Thus, supposing we
can ensure that �V2 is not available for the time it takes the learner to
set the X-bar parameters, whenever the target is ÿV2, the learner will
converge on the correct grammar.

Now, suppose that the target is �V2. Throughout the period during
which this value is not available, the learner will have an incorrect gram-
mar which the TLA will seek to move towards the target. Of course, it
cannot succeed, so now consider the point at which �V2 becomes avail-
able. Since for any �V2 grammar, there are no local maxima, the TLA
will now be able to guarantee convergence during this second period of
learning. Thus, for all possibilities, convergence is assured.

Exercise

2.10 Consider another parameter ordering where the V2 parameter
is initially set at the default ÿV2, and the Spec±Head para-
meter has its value ®xed before Comp±Head and V2, which
become subject to resetting together at some later point.
Investigate whether this ordering can deal with the local
maxima introduced above.

As it stands, there is something which looks entirely stipulative
about the ordering manoeuvre. What is needed is a story for
underwriting the late emergence of �V2, and it is of interest that such
stories, while remaining controversial in many details, do exist. For
example, it has been maintained that at early stages of language
acquisition, functional category projections, including the head C,
which is standardly regarded as the target of V-movement in V2
languages, are simply not available by virtue of maturational
constraints (Radford, 1990). If this is so, there is no legitimate target
for the V2 eÿect, and the verb must remain in situ. This ``dis-
continuous'' view of grammatical development, with the possibility of
functional categories maturing and thereby making available new
grammatical options is currently not very fashionable (see, for example,
Poeppel and Wexler, 1993; Harris and Wexler, 1996; Hyams, 1996, for
vigorous defense of the Continuity Hypothesis as far as emerging gram-
matical structures are concerned). However, given the very uneven
standard of data we have from the earliest stages of acquisition, it
would be unreasonable to discount some version of a maturational
account at this point (see Atkinson, 1996, for arguments in favor of
keeping options open). It is perhaps worth noting that insistence on the
early (or, indeed, late) appearance of functional categories is not
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readily intelligible in systems where categories are just feature sets.
Here, the interesting questions focus on the development and projec-
tion of features, and one idea worth pursuing is that there is a matura-
tional process whereby those features which are ± Interpretable as this
notion is understood by Chomsky (1995) are relatively late to emerge.
Now, it is not implausible to suppose that whatever features are
responsible for V2 are ± Interpretable, and on these grounds, we might
contemplate embedding the late setting of the V2 parameter within a
broader developmental picture.

More generally, we might simply seek to exploit the view that move-
ment represents a marked option in grammar, and is only adopted as a
last resort. This sort of proposal might be regarded as consistent with
Chomsky's Minimalist Program (1995), although it should be observed
that deviations from canonical order of the verb and its arguments
(accommodated in Gibson and Wexler's account by variation in the
value of X-bar parameters) would also not be expected from this
perspective (see Platzack, 1996, for relevant discussion). In short, it
appears that there may well be value in taking seriously the ordered
parameters option, and it is of interest that Gibson and Wexler see it
as the most attractive way of dealing with the problem their formula-
tion of the TLA has revealed.40

Missing in this discussion up to now has been any indication of
whether children acquiring a V2 language pass through a stage at
which they do not have V2. Accepting the orthodox view that the base
word order of German is SOV, this suggests that German-acquiring
children might pass through a stage of producing V-®nal matrix
clauses. Now, it is well-known that German-acquiring children do
indeed produce some utterances of this type, but unfortunately the
verbs occurring in this context are fairly reliably identi®ed as in®nitive
in form. By contrast, verb forms which are morphologically ®nite seem
to appear in second position from a very early stage, suggesting that
German children's acquisition of �V2 is not delayed. For now, we can
only agree with Gibson and Wexler's conclusion (1994: 434±5) that
``there does not seem to be much evidence for . . . a [preÿV2] stage.''41

2.4.3 Further developments

The ideas we have just considered represent an important ®rst step in
our understanding of how the notion of trigger might be formalized
and also present us with interesting and somewhat surprising problems.
In fact, there is an inadequacy in the Gibson and Wexler formalization,
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and in formulating it, Berwick and Niyogi (1996) have raised some new
perspectives on the triggering problem.

As far as the inadequacy goes, it is best approached via an example.
We have already noted the claim that there are precisely six (source,
target) pairs for which triggers do not exist and which will lead the
TLA into a local maximum. We also noted that all sources in this set
of pairs were �V2, with all targets being ÿV2, an important
observation in the context of the ``maturational solution'' to the local
maxima problem. Now consider the situation where the source is
(Spec-®nal, Comp-®rst, ÿV2), i.e. OVS, and the target is (Spec-®rst,
Comp-®nal, ÿV2), i.e. SVO.

It is easy to outline a triggering path between this source and target,
although since source and target diÿer by two parameter values, this
will have to be a two-step process in the context of the Single Value
Constraint. So, suppose that the learner receives the target datum SV;
with a nonzero probability, this will lead the learner to shift to (Spec-
®rst, Comp-®rst, ÿV2), i.e. SOV. Then suppose that the learner
receives target datum SVO. Again, with nonzero probability, this will
produce a shift to (Spec-®rst, Comp-®nal, ÿV2), the target. However,
we must note that at the ®rst step in this process, the same datum SV
could have led the learner to shift, with nonzero probability, to (Spec-
®nal, Comp-®rst, �V2), i.e. OVS �V2 ± note that this shift satis®es the
Single Value Constraint. Then, SVO could have led to a second shift to
(Spec-®nal, Comp-®nal, �V2), i.e. VOS �V2. But now recall that VOS
�V2 is a local maximum for simple SVO ± this was the pair we used
as illustration of the local maximum problem above. Accordingly, once
the TLA has taken the learner into this state, there is no triggering
route from there to the target.

Berwick and Niyogi show that as well as the six local maxima, there
are a further six states in the Gibson and Wexler parameter space
which are connected to local maxima in the manner we have outlined
above for one such case. While there is a route that the TLA learner
can follow from these states to any target, there are also routes from
these states to local maxima, so the Gibson and Wexler claim that,
setting local maxima aside, TLA learners converge on targets with
probability 1 is not justi®ed.

Exercise

2.11 Show that for each of the following (source, target) pairs,
it is possible for the TLA to take the learner into a local maxi-
mum:
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Source Target

�Spec-first; Comp-final; ÿV2� �Spec-final; Comp-first; ÿV2�
�Spec-first; Comp-first; ÿV2� �Spec-final; Comp-first; ÿV2�
�Spec-final; Comp-first; ÿV2� �Spec-first; Comp-first; ÿV2�

Now, it is important to be clear that the ordering account which
Gibson and Wexler oÿer for dealing with the local maxima problem is
not rendered incoherent by these conclusions. To maintain that �V2 is
inaccessible in the early stages of acquisition also removes the
problematic status of the states which are connected to local maxima;
thus, the proposal that the X-bar parameters can be set ®rst can be
retained in the context of Berwick and Niyogi's observations. We
might, however, wonder whether there are alternative ways of ®nessing
the local maxima problem. Berwick and Niyogi themselves suggest that
the Greediness Constraint is not well-founded.

Taking just one aspect of their concern about this principle, they
challenge Gibson and Wexler's claim that Greediness contributes to
conservatism, where conservatism itself is regarded as desirable. Recall
that what Greediness requires of a newly favored hypothesis is an
analysis of the current datum where the existing hypothesis fails. But,
in itself, this is no recipe for conservatism, as Greediness will tolerate
massive shifts in parameter settings, so long as an analysis results. It is
the Single Value Constraint which guarantees conservatism, and
Greediness plays no contribution in accounting for the gradualness of
real-time acquisition which is what makes conservatism attractive.
Dropping the Greediness Constraint has the immediate consequence of
dealing with the local maxima problem, as a learner can now pass
from states which do not analyze the current datum to other states
with the same failing.

Exercise

2.12 Show how a non-greedy TLA learner can move between the
following (source, target) pairs:

Source Target

�Spec-first; Comp-final; �V2� �Spec-final; Comp-first; ÿV2�
�Spec-final; Comp-final; �V2� �Spec-first; Comp-final; ÿV2�
�Spec-final; Comp-first; �V2� �Spec-first; Comp-first; ÿV2�

Finally, a development introduced by Berwick and Niyogi, is to com-
pute and utilize the probabilities associated with a TLA learner moving
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from one state to another.42 This enables them to quantify the amount
of data a TLA learner must receive in order to converge on a
particular target. Bertolo (1995b) has shown how this analysis can be
used to produce estimates of ``time'' (measured in data presentations)
that the �V2 parameter must be inaccessible if the maturational
solution to the local maxima problem is to be solved in this way.

We noted earlier that the proof of convergence for the TLA only
establishes that the presence of triggers (global or local) is a su�cient
condition for learnability, and an issue raised by Gibson and Wexler's
formalization of the TLA is the extensional relationship between the
classes of parameter spaces which, on the one hand, can be shown to
contain triggers, somehow de®ned, and on the other, can be learned by
the TLA.

Frank and Kapur (1996) have begun investigation of these issues by
formalizing a number of distinct de®nitions of diÿerent types of trigger,
seeking to establish necessary and su�cient conditions for convergence.
There is not space to go into all their conclusions here, but what is
worth pointing out is that (a) the existence of global triggers does not
provide a necessary condition for convergence under the TLA; and (b)
the existence of local triggers also does not have this property. For (a),
we may simply refer back to the simple X-bar parameter space from
Gibson and Wexler. This does not have global triggers for all para-
meter values, but is nonetheless learnable by the TLA. For (b), readers
are invited to try exercise 2.13. A necessary condition for TLA-con-
vergence can be formulated, but it relies on the existence of a class of
what Frank and Kapur refer to as weak local triggers, the existence of
which merely guarantees that in any non-target state, there is a datum
from the target which is inconsistent with this state and which will
enable the TLA to change a parameter value, although not necessarily
in the direction of the target. By constructing examples, Frank and
Kapur are able to demonstrate that parameter spaces which are weakly
locally triggered are a proper superset of the TLA-convergent spaces
and they thus succeed in formulating a trigger-based necessary condi-
tion for TLA-convergence. It is not, however, a su�cient condition.

Exercise

2.13 Consider the abstract parameter space de®ned by two para-
meters which can each take the values � and ÿ, such that the
``languages'' corresponding to the four possible parameter set-
tings are as follows:
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L��;�� � a; d

L��;ÿ� � a; b

L�ÿ;�� � c; e

L�ÿ;ÿ� � b; c

Show (a) that there is no local trigger for the � value of the
second parameter; (b) that the TLA can take a learner from
any source to any target.

Of more immediate linguistic interest is the possibility of re-
parameterizing a parametric space and investigating the consequences
of this operation for learnability. That such re-parameterization can be
signi®cant is readily illustrated (Frank and Kapur, 1996: 643f.). So,
consider again the simple X-bar space of Gibson and Wexler from (56),
and recall that all parameter values in this space are either globally or
locally triggered. Suppose, now, that the space is re-parameterized in
the following way. The Comp±Head parameter is as before, but we
introduce a new parameter with the values ``same'' and ``diÿerent.''
The value ``same'' is appropriate when Spec±Head order matches
Comp±Head order, and the value ``diÿerent'' appears when these two
orders diverge. In comparison with (56), this parameterization
yields (61):

It is easy to see that under this re-parameterization, the word-order space
has a local maximum. Suppose that the source grammar is (diÿerent,
Comp-®rst) and the target is (same, Comp-®nal). Inspection of (61)
shows that the only datum from the target not analyzed by the source is
VOS. But, since VOS is not analyzable by either (same, Comp-®rst) or
(diÿerent, Comp-®nal), the Single Value Constraint will require the TLA
to remain with the source for evermore. Despite the triviality of the
example, this is an extremely important observation, as it shows that in
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same Comp-®nal VS, VOS
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same Comp-®rst SV, SOV
diÿerent Comp-®rst VS, OVS



principle learnability considerations could be brought to bear in choosing
between alternative parameterizations of a single set of data.

Exercise

2.14 Consider a parameterization for the Gibson and Wexler set of
eight languages which has the following form. The second
parameter is simply Comp-®rst or Comp-®nal as in the original
parameterization. The ®rst parameter is ``same'' or ``diÿerent''
as introduced above for the simple X-bar space. The third
parameter (replacing V2) has the following two values (a)
(``same'' �V2) or (``diÿerent'' ÿV2); (b) (``diÿerent'' �V2) or
(``same'' ÿV2). For instance, the Gibson and Wexler language
VOS �V2 has value (a) for this parameter, as does SVO; SVO
�V2 has value (b), as does VOS.
(a) show that SVO is a local maximum for SOV under this

parameterization;
(b) take the (source, target) pairs from exercise 2.9 and show

that under this parameterization none of these sources is a
local maximum for its paired target.

What message should we take away from this brief discussion of re-
parameterization? We have already noted (with some reservation)
Wexler's view that changes in Binding Theory will still need to account
for variation and his belief that such variation will probably encounter
Subset Problems in that domain. At the very least, we now have a
demonstration that diÿerent ``theories'' of the Gibson and Wexler
word-order space, while still accounting for the variation which exists
in that space, lead to substantially diÿerent outcomes in terms of the
problems they raise for a TLA-learner.43 In these circumstances, it is
important to be aware of the fact that theories of word-order radically
diÿerent to those associated with the familiar X-bar principles have
been proposed (Kayne, 1994; Chomsky, 1995; Phillips, 1996), and it
would be premature to speculate on how the approaches to variation
outlined in these theories might confront learnability questions.

2.4.4 Genetic algorithms and accounting for historical change

Above, we have considered a speci®c algorithm in some detail, drawing
attention to its error-driven character and its reliance on the Single
Value Constraint and the Greediness Constraint. We have also seen
suspicions aired about the Greediness Constraint (Niyogi and Berwick,
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1996), and noted that local maxima problems disappear if this
constraint is not observed by the learner. In this section, we shall
brie¯y consider a radically diÿerent kind of algorithm which is not
error-driven and does not operate according to either of these
constraints. This is the Genetic Algorithm of Clark (1992), and having
sketched the main features of this approach, we will go on to get an
idea of how it has been applied in understanding the nature of
historical change, a problem which is generally accepted as being linked
to language acquisition by children. Historical change has recently been
approached from the perspective of cue-based learning and we shall
conclude by examining the diÿerence between this approach and that
based on a Genetic Algorithm (see chapter 3 for more detailed
discussion of historical change).

Clark's (1992) point of departure is the observation that learning
algorithms that set parameters deductively, that is by exploring the
eÿects of each possible combination of parameter values, in response to
parametrically ambiguous data would have to examine a number of
interactions as great as the total number of hypotheses made available
by the parameter space.

Clark's response to this and other problems is to propose an account
of a learner who simultaneously entertains a set of hypotheses, each of
which confronts the data to which the learner is exposed. The initial
set of hypotheses is chosen at random, but modi®cations in the pool of
current hypotheses are determined by how well a hypothesis performs
in analyzing the data and a number of operations on hypotheses which
constitute the equivalent of hypotheses ``mating'' or ``mutating.'' I shall
®rst describe the system in a little more detail before coming back to
emphasize how diÿerent it is to the TLA. For Clark, it is notationally
appropriate for hypotheses to be represented as strings of binary digits.
Thus, given an eight-parameter system, a typical hypothesis considered
by a learner will be (1 0 0 1 1 0 1 0). Here, the 1 in ®rst position might
indicate that the grammar has long-distance anaphora, the 0 in second
position, that it does not have ECM, the 0 in third position that it
does not have head-initial constituents, etc.44

The initial set of hypotheses is presented with a datum and the lear-
ner attempts to analyze the datum in terms of each hypothesis. This
procedure returns an indication of the extent to which each hypothesis
succeeds in terms of the number of violations of UG principles which
the analysis incurs. Obviously, if the datum can be interpreted, there
are no such violations. Additionally, each hypothesis is evaluated with
respect to whether it yields supersets of other hypotheses and in terms
of relative ``elegance,'' where this is assessed in terms of total number
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of nodes, length of movement chains, etc. As a result of these pro-
cedures, each hypothesis in the candidate set is assessed for its ®tness
relative to other hypotheses. Quite simply, a hypothesis which can
analyze a datum without violating UG principles, does not yield a
superset language with respect to other hypotheses and is more
``elegant'' than other hypotheses will receive a high ®tness score. The
converse situation will produce a low ®tness score. The three factors
entering the computation of ®tness are weighted to ensure that success
in analyzing the data is the most important element. It might be hoped
that the weights themselves would ultimately emerge from empirical
study; for the purposes of his discussion, Clark simply assumes speci®c
values.

What are the bene®ts of being ®t? You get to breed, of course, and
Clark's model includes a ``crossing over'' operator which can take a
subset of parameter values from one hypothesis (e.g., the ®rst four
values in the example above) and combine them with an appropriate
subset of values from another hypothesis (e.g., the last four values
from some hypothesis). The hypotheses which are given access to this
operation are those which are ®t, so successful parameter settings in
terms of the target get propagated to new hypotheses. Additionally, ®t
hypotheses are permitted to mutate, where mutation involves changing
just one value. By contrast, un®t hypotheses are removed from the set
of hypotheses at random intervals. Convergence, for Clark's model, is
understood in terms of the space of hypotheses eventually being
populated by one hypothesis; for successful learning, this hypothesis
will be correct for the target.

Even at this level of description, we can discern characteristics of this
approach which make it quite unlike the TLA. First, as the learner is
operating with a set of hypotheses, there is no simple sense in which
learning can be construed as error-driven. Of the current hypotheses,
some will succeed in analyzing an input sentence with favorable con-
sequences for their future; others will fail to a greater or lesser extent,
with this extent being taken account of in the next step of the learning
procedure. Second, there is no straightforward interpretation of the
Greediness Constraint in this system. This is true in two senses: ®rst, as
we have just seen, learning is not error-driven, so the presence of a
successful hypothesis in the current parameter space does not entail
that nothing changes; second, there is no guarantee that any new
hypothesis entering the procedure will be able to analyze the current
datum, although, ceteris paribus, new hypotheses should be relatively
successful. Third, the Single Value Constraint has no role to play in
this system. The mutation operator brie¯y mentioned above changes
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only single values, but this can apply to a hypothesis which has
successfully analyzed the previous datum as well as to one which has
failed in some way or another. For the ``crossing over'' operator, of
course, there is no a�nity of any kind with the Single Value
Constraint. Finally, it is worth noting that by building a subset factor
into his measure of ®tness, Clark is able to dispense with the Subset
Principle as an explicit condition on the learning module. To see this,
suppose that the learner's hypothesis space contains a subset and a
superset hypothesis, with the target corresponding to the subset. In
terms of analysis of data, the two hypotheses will be equally ®t, but, as
noted above, the superset hypothesis will be judged less ®t than the
subset hypothesis by virtue of the subset factor in the computation of
®tness. As a consequence, over a period, the subset hypothesis will
have additional opportunities to breed and mutate and eventually the
superset grammar will be removed from the hypothesis set. Of course,
this is not quite the same process as retreat from a superset to a subset,
as both hypotheses are present in the hypothesis space.

In order to get a sense of how Clark and Roberts (1993) apply
Clark's Genetic Algorithm to a speci®c historical change in French, it
is necessary to introduce one piece of notation. Clark (1992) is
concerned with the extent to which a single datum expresses one or
more parameter values. For instance, consider a simple tensed clause in
English such as (62):

(62) John chases sheep

In order for this sentence to be successfully analyzed, the grammar
must contain parameters set to speci®c values. In particular, harking
back to Gibson and Wexler's word-order space, we might propose that
the grammar should have the Spec±Head parameter set to Spec-®rst
(0), the Head±Comp parameter set to Comp-®nal (1) and V2 set to
ÿV2 (0). But other parameters, e.g. the Bounding Nodes Parameter,
are irrelevant to a simple example like this. So, supposing that the
word-order parameters occupy the ®rst three positions in a vector of
parameter values, with the next three concerning the status of NP, IP
and CP as bounding nodes, we can maintain that (62) expresses the
object in (63):45

(63) (0 1 0 * * *)

Here, the asterisks indicate that this particular datum is silent on the
value of the parameter in this position.

As should be clear from our discussion of the TLA, (62) can also be
analyzed by a quite diÿerent grammar. Speci®cally, (62) can also
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express any of the objects in (64), with the verb having been raised to
C and the subject appearing in (Spec, CP):

(64) a. (0 1 1 * * *)
b. (0 0 1 * * *)
c. (1 0 1 * * *)
d. (1 1 1 * * *)

In these circumstances, (62) expresses all of (63) and (64) ambiguously.
We now turn to the history of French and particularly the disappear-

ance from French in the 16th century of (a) ``simple inversion'' in inter-
rogatives; (b) null subjects; and (c) V2. To keep the discussion brief, I
shall here focus just on the loss of V2, since this adequately illustrates
the explanatory value Clark and Roberts see in the Genetic Algorithm.
They also argue that the other two changes can be seen as directly
contingent on the loss of V2.

Although we shall only be concerned with three of them, the ®ve
parameters involved in the overall analysis appear in (65):

(65) a. Nominative Case is assigned (by I) under agreement
b. Nominative Case is assigned (by I) under government46

c. The language has clitic nominative pronouns
d. Null subjects are licensed canonically
e. The language has V2

Old French is reported as including the example in (66) (Clark and
Roberts, 1993: 327):

(66) (Et) lors demande Galaad ses armes
(and) then asks Galahad (for) his arms

This is a V2 structure ± the conjunction is standardly regarded as
irrelevant for V2 ± so, with the ®nite verb in C, the relevant part of the
structure is (67):

(67) [CP lors [C 0 [C demande - I][ Galaad . . .

In (67), the only option for Case marking of the subject is via govern-
ment ± ®nite I and the subject are not in a Spec±Head agreement con-
®guration ± so (67) unambiguously expresses the positive value of
(65a). Additionally, of course, it provides an unambiguous indication
of the operation of V2, so, with reference to the ®ve parameters of
(65), it expresses (68):

(68) (* 1 * * 1)

Old French also contained SVX strings with X a complement of V,
and the example cited by Clark and Roberts (1993) is (69):
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(69) Aucassin ala par le foret
``Aucassin went through the forest''

In (69), we might propose a standard analysis with the subject in [Spec,
IP] and Nominative Case assigned by ®nite I under Spec±Head
agreement. Alternatively, we could suggest a V2 structure with the verb
and its in¯ection raised to C and the subject in [Spec, CP] to ful®ll V2
requirements. Under these analyses, (69) ambiguously expresses (70a,b):

(70) a. (1 * * * 0)
b. (* 1 * * 1)

How does Clark's Genetic Algorithm respond to this situation? Three
observations are relevant. First, in (66) we have an unambiguous
expression of V2; second, for the hypothesis space to continue to
contain hypotheses based on both (70a) and (70b) would, as far as the
®rst two parameters are concerned, raise the specter of supersets ± a
grammar with 1 in each of the ®rst two positions will, ceteris paribus,
generate a language which is a superset of both grammars which have
a 1 and a 0 (in either order) in these positions. There will, therefore, be
pressure from the superset factor in the computation of ®tness to
resolve the ambiguity of expression in one way or another. Third,
structures of the type illustrated in (66) were frequent in Old French;
Clark and Roberts cite 58 percent of matrix declaratives in representa-
tive texts having the form (X)VS whereas only 34 percent exhibit
SV(X). Together, then, these factors conspire to favor (70b) over (70a)
and lead to a characterization of Old French as a V2 language.47

Now, consider Middle French. As far as the data go, there are three
key observations. First, examples which are unambiguously V2
continue to occur. Second, the relative frequencies of V2 structures and
SV(X) structures changes quite dramatically, with texts containing only
10 percent V2 but 60 percent SV(X) (Clark and Roberts, 1993: 334).
Third, a novel structure of XSV appears, which, unlike SV(X), cannot
be viewed as expressing Case-assignment under government and V2,
i.e. this structure unambiguously expresses (70a). What might the impact
of these changes be for the Genetic Algorithm?

Focusing on V2, the unambiguous expression of the positive value of
this parameter is now relatively infrequent. Furthermore, there is also
now unambiguous expression of the negative value of the parameter in
XSV structures. There is still pressure from the superset factor to
resolve the ambiguity in the two analyses in (70), but now we can see
how that pressure might lead to a diÿerent resolution to that we saw
for Old French. Note also that the minor role we have identi®ed for
the elegance factor in the calculation of ®tness now works in the
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direction of the preferred outcome. The upshot of all of this is that the
Genetic Algorithm is viewed as providing a plausible account of the
loss of V2 in 16th century French.48

What is presented as a very diÿerent approach to explaining
historical change appears in Lightfoot (1997), although, as we shall see,
this diÿerence is somewhat nuanced. As we have seen throughout our
discussion of the TLA, success is de®ned in terms of converging on a
grammar for a target set of sentences and this emphasis on the role of
E-language could be seen as at odds with the I-language approach
supported by Chomsky and his associates throughout the recent
development of generative grammar. From the orthodox Chomskyan
point of view, then, a more ``internalist'' approach to acquisition is to
be expected, and Lightfoot's proposals could be seen as a response to
this pressure.

In the context of our discussion of Clark and Roberts' account of
the loss of V2 in French, it is of interest that one of the cases Lightfoot
uses to develop his ideas is the loss of V2 in English. Of course, this
can alternatively be construed as the acquisition of V2 by a child
acquiring a V2 language, in which case we are concerned with the
nature of the change which led to V2 no longer being acquired.

In a V2 language, a consequence of the ®nite verb always appearing
in second position is that something else must appear in ®rst position.
Of course, this may be a subject, as in the German example in (71a),
but it does not have to be, as (71b,c) show.

(71) a. Hans hat das Buch gekauft
Hans has the book bought
``Hans has bought the book''

b. Das Buch hat Hans gekauft
c. Gestern hat Hans das Buch gekauft

yesterday has Hans the book bought
``Hans bought the book yesterday''

In (71b), the direct object precedes the verb in second position and
in (71c) an adverbial adjunct performs this function.

The standard analysis of V2 thus has the ®nite verb moving to C
and an XP moving to the [Spec, CP] position. From this, it follows
that ®nding an XP which is arbitrary with respect to its grammatical
function appearing in the speci®er of C can count as a cue for the �V2
value of the relevant parameter. Lightfoot schematizes this as
(1997: 177):

(72) SpecCP [XP]
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Why does Lightfoot wish to insist that the XP must be arbitrary in
grammatical function? Because subjects appearing in initial position
may simply be in [Spec, IP], and it would be inappropriate to allow
such subjects to activate the cue in (72); obviously, subjects occurring
in [Spec, CP] could activate the cue, but a child who is trying to ®gure
out how to set the V2-parameter doesn't yet know how such subjects
should be analyzed.49 Additionally, we should note that children being
exposed to Modern English will meet nonsubject XPs in initial position
in topicalized structures. Lightfoot observes that in these structures, the
nonsubjects will not be followed by ®nite verb forms, which suggests
that (72) should perhaps be extended to (73):

(73) SpecCP [XP]C [V®nite]

Whatever the details, the idea is that (72) or (73) is an I-language
representation which is supplied with the relevant parameter; it can
then be viewed as a signal to the child as to what to look out for in
the linguistic environment as far as the setting of this parameter is con-
cerned.

Turning, then, to the loss of V2 in the history of English, Lightfoot
maintains that there is a traditional view that Old English/Middle
English appeared to have optional V2. If this were true, it would be
di�cult to accommodate to his account, which seeks to explain the
obligatoriness of V2 in German, Dutch and other V2 languages.
However, he maintains that it is not true, and that in fact there were
two dialects in Middle English. The Middle English of the north had a
V2 grammar, but the southern variety did not have the option of rais-
ing V to C. Now, suppose that what happened in the crucial period
was that children from northern England were increasingly exposed to
southern English. A consequence of this would be that the cue in
(73) would be activated less frequently. Suppose, further, that there
is some threshold (Lightfoot speculates on the ®gure of 30 percent
of degree-0 indicative clauses, based on statistical analyses of con-
temporary Dutch, German, etc.) for (73) to be activated su�ciently
to set the linked parameter. The northern English children, whose
linguistic environment we are considering, now ®nd themselves in cir-
cumstances where the threshold is not reached. The consequence is
that the V2 parameter is not set at �V2, and the V2 phenomenon
vanishes in a generation.

Now, it is important to be clear about the sense in which this
account diÿers from one which is externally driven and where the
learner is seen as striving to match a grammar to a target. Our
northern English children, if they were trying to develop a grammar
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which accurately mirrored their linguistic environment, would receive
numerous instances of sentences displaying V2. Yet, if Lightfoot is
correct, they eÿectively ignored these and developed grammars which
excluded these structures. Lightfoot's subsequent discussion seeks to
account for the loss of V-raising in English in similar terms and he also
speculates about the emergence of creoles. However, the example I
have brie¯y described here will serve the comparative purposes I now
wish to pursue.

First, we should acknowledge that there are substantial similarities
between Clark and Roberts' account of the loss of V2 in French and
what Lightfoot has to say about the history of English. Recall that
Clark and Roberts inferred a statistical shift in the probable make-up
of a corpus of primary linguistic data between Old French and Middle
French. The former contained large numbers of examples which un-
ambiguously expressed �V2, relatively small numbers of examples
which were ambiguous in this respect and no examples which un-
ambiguously expressed ÿV2. For Middle French, there were relatively
few unambiguous expressions of �V2, relatively many ambiguous cases
and a new class of sentences unambiguously expressing ÿV2. For
Lightfoot, a period in which at least 30 percent of the simple indicative
clauses in a corpus were unambiguously V2 was followed by a period
during which this ®gure fell below 30 percent. Lightfoot appears to
perceive a fundamental distinction here with the Clark and Roberts
learner ``tracking input data'' and being ``forced to a new grammar
which ®ts the new data better'' (Lightfoot, 1997: 184). However, apart
from the fact that in Lightfoot's account, the cue somehow comes with
the parameter, I ®nd it di�cult to perceive any material diÿerence
between these positions. Lightfoot continues by noting that the Clark
and Roberts account depends on non-V2 forms being introduced into
Middle French, and to the extent that this is correct, it does appear to
see the grammar as being shaped by an external set of sentences. As we
have noted, the emergence of XSV forms in Middle French, as un-
ambiguous expressions of ÿV2, was one factor which Clark and
Roberts took account of. However, it is conceivable that the changes
in the statistical distribution of (X)VS and SV(X) structures to which
they refer would be su�cient to lead to the loss of V2 and if this is so,
I believe that the accounts are near identical in this respect. Both oÿer
an explanation of a historical change, and both do it on a very similar
basis.50

A second point of some importance in the context of this book is
that Lightfoot's claim to be relying on cue-based learning, while
intuitively clear enough, raises the question as to whether his
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speculations can be properly linked to the framework of Dresher and
Kaye (1990). His belief that thresholds will be associated with his cues
is clearly vital to his account, and this does not amount to (72) or (73)
immediately cueing the learner with the �V2 value of the relevant
parameter.

The suggestion that there are striking similarities between these two
attempts to link acquisition and historical change should not disguise
the fact that there are potentially important diÿerences between them.
There is nothing explicitly corresponding to a cue linked to a speci®c
parameter value in Clark and Roberts' framework; nor does
Lightfoot's account include anything like a GA. Indeed, Lightfoot does
not seek to present any kind of algorithm, but there is no reason in
principle why formalizations of cue-based learners which have recently
been developed by Bertolo et al. (1997a,b) should not be extended to
incorporate something akin to his notion of a cue threshold. Then, a
theory of cues would enable the development of a complete model.
However, as Lightfoot himself acknowledges, he does not have a
theory of cues. More worryingly, perhaps, he also suggests (1997: 190)
that ``we also have no very substantive theory of parameters.'' Even if
this skepticism is justi®ed, it need not impinge on the value of the work
we have considered in this chapter. Much of this has depended only on
parameter spaces having rather abstract properties. If Lightfoot's call
for an adequate theory of parameters is answered, it will or will not
instantiate these abstract properties. To the extent that it does, the
learnability work of the past decade will engage it; to the extent that it
doesn't, new conceptualizations will be necessary.

Note s

1 In fact, this class of languages is identical with the set of primitive recursive
languages, itself a proper subset of the set of recursively enumerable lan-
guages.

2 Marcus also brie¯y considers the concept of partial feedback where a signal
could be regarded as providing a su�cient but not a necessary condition for
grammaticality or its converse. Like complete feedback, there is no reason
to believe that this exists.

3 Of course, in proceeding with this assumption, we are not bound to assert
that children's grammars never change on the basis of exposure to negative
data; but we are supposing that normal acquisition can occur without such
incidents and that therefore such incidents do not impinge on our con-
ceptualization of the learning problem.

4 This is because, on the assumption that aÁ qui moves to the speci®er of the
subordinate CP in (1), it will not cross the intermediate CP boundary. It
will, however, cross the intermediate IP boundary, as indicated in (i):
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(i) . . . �CP aÁ qui [IP je crois . . .

5 For further examples of this type of argument and responses to it, see
Lightfoot (1989, 1991) and the commentaries on the 1989 article. In fact,
Lightfoot has to modify his degree-0 claim so as to deal with Exceptional
Case Marking constructions like (i):

(i) They believe him to have left

In (i), him is Case-marked by believe ``exceptionally'' across a clause
boundary, a phenomenon which occurs in English, but not many other
languages. If Exceptional Case Marking is the result of setting a parameter,
the child needs evidence to set this parameter, and Lightfoot is unable to
identify any sentence type simpler than (i) which will supply this evidence.
Accordingly, he concludes that parameters must be settable on the basis of
degree-0-plus-a-bit, where the extension is intended to include no more than
the ``front'' of an embedded clause. For alternative suggestions on how the
domain for ®xing parameters might be constrained, see Rizzi (1989).

6 Note further that the mere existence of order will not change the character
of the learning problem unless the learner is in a position to exploit this
order. As the simple formal example described in the text shows, this
depends on the learner having access to the rule which determines the order.
There is currently no justi®cation for taking such a possibility seriously.

7 A formal version appears in Manzini and Wexler (1987: 425). It is here
rephrased to keep our notation consistent:
Let pi be a parameter with values v1i . . . v

n
i , � a learning function, and D a

set of data. Then for every vmi , 1 � m � n, ��D� � Pvmi if and only if

(i) D � L�Pvmi � and
(ii) for every v j

i , 1 � j � n, if D � L�Pvj
i �, then L�Pvmi � � L�Pvj

i �.

8 If we can stipulate that parameters must be ®xed in a speci®c order, then it is
easy to see how to avoid the superset problem in this case. So long as the lear-
ner sets pj ®rst, it will be possible to rely on either (7a) or (7b) depending on
the value assigned to pj . However, independent evidence would be needed to
justify such a manoeuvre, with its attendant complications. Furthermore, in
these circumstances, it would not be possible to link set-theoretic statements
to markedness considerations. In the example in the text, v1i would be marked
or unmarked relative to v2i depending on the value of pj .

9 If dependent parameters are a likely source of trouble in learnability models, it
is useful to have some sense of how common they might be. A surprising
result, established by Bertolo (1995a), is that in parametric models where all
parameters are binary, there can be a maximum of only three dependent para-
meters. Whether it is likely that empirically justi®ed parametric systems will
satisfy this constraint is, of course, questionable. In the next subsection, for
example, we shall be meeting a nonbinary parameter.

10 For detailed discussion of the binding properties of Icelandic sig, including
observations which vary in detail from Wexler and Manzini's account, see
ThraÂ insson (1991) and SigurjoÂ nsdoÂ ttir and Hyams (1992).
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11 Manzini and Wexler (1987: 421) have a slightly more complex statement of
this parameter to take account of the role of accessible subjects in distin-
guishing pronominal and anaphoric GCs. Since these complexities will not
play a role in our subsequent discussion, we shall operate with the simpler
version.

12 In fact, the data in (12a,b) do not distinguish between (14c) and (14d).
However, sig can be bound from outside a subjunctive clause in which it
appears, as in (i) from ThraÂ insson (1991: 55):

(i) JoÂ ni sagdi [ad eÂ g hefdi svikid sigi]
``Jon said that I had (subj) betrayed self''

This indicates that it is an indicative TNS, or ``referential'' TNS to use
Manzini and Wexler's term, which de®nes the binding domain for this ana-
phor.

13 For an alternative view on how to account for the distribution of Icelandic
hann, see SigurjoÂ nsdoÂ ttir and Hyams (1992).

14 We have already noted that Manzini and Wexler maintain that the
Icelandic anaphor sig takes (14d) as its GC. However, as (19a) and (19b)
show, the distribution of hann is indiÿerent to mood. If these conclusions
are correct, it means that GC parameters are not set for grammars but for
individual anaphors and pronouns. Wexler and Manzini explicitly accept
this conclusion and formulate it as the Lexical Parameterization Hypothesis
(Wexler and Manzini, 1987: 55).

15 The Subset Condition is simply a condition which requires parameters to
determine nested sets of languages. As Wexler and Manzini are aware of
the fact that there are parameters which do not satisfy this condition, the
role of the Subset Condition has always been a mystery to me (Atkinson,
1992: 146f.). Accordingly, I do not see the fact that (27) fails to satisfy the
Subset Condition as a reason for rejecting it. Parity of reasoning would sug-
gest rejection of the parameter determining the relative order of heads and
complements, and it is clear that Wexler and Manzini would not advocate
such a move.

16 Alongside (30), Manzini and Wexler oÿer a corresponding clause for pro-
nouns. MacLaughlin (1995: 166) considers this unintelligible, and I think
that she's right about this. However, as I am not at all certain that her pro-
posed reformulation achieves intelligibility, I shall not discuss the pronom-
inal case at all (see also Kapur et al. (1993: 213) for what seem to me to be
legitimate concerns about the pronoun analogue to (30)).

17 Here, I use the gloss that Manzini and Wexler put on their formulation of
the Spanning Hypothesis rather than that formulation itself. In my view,
the gloss captures the nature of the hypothesis more clearly.

18 If we recall the Lexical Parameterization Hypothesis we can see that an impor-
tant question is begged by this account. Are we to suppose that a binding
domain associated with one anaphor will aÿect the binding domain of all pro-
nouns, pushing them to the maximally marked value of (14a)? Or should we
be considering pronouns and anaphors in matched sets, with an anaphor only
aÿecting its mate? For discussion of this matter, see Newson (1990).
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19 MacLaughlin (1995: 169) contains an important error, where she suggests
that reliance on the Spanning Hypothesis could obviate the need for the
Subset Principle. She maintains that ``evidence that a pronoun selects a
marked GCPa could be used to change an anaphor from a marked
Governing Category Parameter to an unmarked GCPa, in order to span the
space.'' Again her concern is that such a process would reduce the motiva-
tion for the Subset Principle. However, as (31b) shows, the Spanning
Hypothesis is entirely consistent with an anaphor retaining a marked value
even when the pronominal domain is minimal.

20 I guess everyone is allowed a change of mind. In Manzini and Wexler
(1987: 439), we ®nd: ``English he, Italian lui and Japanese kare are all asso-
ciated with value (a).'' MacLaughlin (1995: 182) has additional observations
on kare.

21 MacLaughlin (1995: 171) formulates three developmental predictions; how-
ever, it seems to me that they are not independent and all follow from (37).

22 Naturally, similar predictions can be made for values of the Proper
Antecedent Parameter, but here I will focus exclusively on Governing
Categories.

23 For more comprehensive summaries and evaluations, see Atkinson (1992:
chapter 6), Kapur et al. (1993: 199ÿ.) and MacLaughlin (1995: 172ÿ.). Wexler
(1993: 226ÿ.) is a response to some of the issues raised by Kapur et al.

24 In a recent study, Matsuoka (1997) has shown that some children in the age
range 3;10 to 6;0 will interpret an English pronoun as a bound variable
when it occurs in a conjoined structure such as (i):

(i) Every mermaid scratched the frog and her

Matsuoka interprets these results as supporting the approach to Binding
Theory developed by Reinhart and Reuland (1993), which we shall consider
brie¯y below.

25 Here is an appropriate point to note that in order to operate with represen-
tations like (42), it will be necessary for the learner to perform some rather
sophisticated preanalysis. All learnability models in linguistics incur a con-
siderable debt in the amount of preanalysis that they assume, a feature
which is also true of, and made perfectly explicit in, the classic study of
Wexler and Culicover (1980).

26 Here, I run together two separate statements from Wexler (1993), the ®rst
of which de®nes markedness, with the second giving the content of the
Subset Principle. As usual, the notation has been altered for consistency.

27 Wexler gives only a de®nition of markedness in these terms and the last
conjunct (44) formulates the Subset Principle. The notation has been altered
for consistency.

28 As far as the optionality of pronominal subjects in Italian, Spanish, etc. is
concerned, they are usually omitted unless required for discourse-related
reasons.

29 Note that the view that the non-null subject setting of the parameter is
unmarked must immediately confront the observation that children, includ-
ing those acquiring nonnull subject languages such as English, go through
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an early stage of acquisition at which subjects are not obligatory, i.e. they
appear to adopt the parameter setting which gives them a superset language.
This, along with observations about overt expletives and inverted auxili-
aries, leads Hyams (1986) to reject the application of the Subset Principle to
this parameter. For an alternative view, relying on the unavailability of
functional categories and their projections in the earliest stages of acquisi-
tion, see Cinque (1989). MacLaughlin (1995) provides a discussion of the
Null Subject Parameter, taking account of more recent views of Hyams
(1994a), and suggesting that ``there may not be [such a] parameter at all.''
This is not quite correct in that grammars are still assumed to vary in the
licensing mechanisms they have available for null subjects: it is, however,
correct in that null pronomials introducing clauses are no longer seen as a
reliable diagnostic for a single parameter set in a speci®c way ± they may be
null topics, licensed via a discourse mechanism. Whatever the details,
MacLaughlin's conclusion that the Null Subject Parameter should not be
cited as a parameter clearly requiring the Subset Principle appears to be jus-
ti®ed.

30 Economy is invoked here on the grounds that nonovert movement to check
a feature is less costly than overt movement, this principle being known as
Procrastinate. Diÿerent accounts of why nonovert movement is preferred
appear in chapters 3 and 4 of Chomsky (1995), but these diÿerences are of
no concern in the present context. I assume here the account of feature
strength which appears in chapter 3, since it is more likely to be familiar to
readers. I do not believe that the version developed in chapter 4 of the same
work materially changes the argument in the text. I use scare quotes with
``checked'' in acknowledgment of the detailed analysis of the notion
contained in chapter 4. Again, I do not believe that this analysis aÿects the
points I make.

31 I am, of course, here ignoring details of precisely which features get
``checked'' and what their locations are. The important point for our
present purposes is simply that the French verb is required to raise.

32 Of course, (48b) is well-formed as an echo question. The asterisk here
indicates that it cannot, however, be a well-formed WH-question.

33 Sa®r (1996) is an articulate representative of the ``universalist approach'' to
the cross-linguistic study of pronouns and anaphors. The slogan of this
approach could be: there is nothing special about pronouns and anaphors
beyond the fact that they are pronouns and anaphors. This emphasis rules
out the possibility of such items being associated with a lexically speci®c
GC.

34 As usual, the notation has been altered for consistency.
35 In other words, if L� �P� is the target and the i-th value of �P is vni , a global

trigger for vni is a sentence in

L� �P� ÿ
[

P02Pfhpi vni ig
L�P0�

36 To paraphrase, let A be a partial assignment such that, for every pj 6� pi,
hpj ; vmj i for some vmj . Then, if L� �P� (with �P 2 PA� is the target and the i-th
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value of �P is vni , a local trigger for vni is a sentence in

L� �P� ÿ
[

P02PA[fhpi vni ig
L�P0�

37 For this reason, Gibson and Wexler set subset parameters aside when dis-
cussing the TLA. As the previous section has indicated, this may not
involve any serious loss of generality.

38 Strictly speaking, it is necessary to distinguish here between global and local
triggers and between diÿerent ways in which parameter values are selected
for modi®cation (Frank and Kapur, 1996). Note also that in this proof we
only established su�ciency, i.e. this proof leaves open the possibility that
parameter spaces might be learned by the TLA even when there are no
triggering data. We shall brie¯y consider this matter in section 2.4.3.

39 It is perhaps worth being explicit on the numerical consequences of this.
Quite simply, it entails that the cardinality of each of the data sets to which
the learner might be exposed is exactly 2! These data sets are indicated
exhaustively in the right-hand column of (57).

40 For a formalization of parameter sequences consistent with the suggestion
that parameters are subject to maturational constraints, see Bertolo
(1995a,b).

41 It is of some interest that Wexler, as well as being responsible for the TLA,
is probably the most outspoken supporter of the Continuity Hypothesis and
the view that parameters are set very early. It is perhaps not surprising,
then, that he prefers to remain noncommittal in a context where he is look-
ing for a parameter to be set (relatively) late.

42 In fact, Berwick and Niyogi present Gibson and Wexler's learning problems
as Markov chains with the probabilities in question just being the transition
probabilities in a Markov network and local maxima having the character-
istics of absorbing states.

43 It is noteworthy that modi®cations suggested by Frank and Kapur, which
go beyond what we have considered here, produce systems which contain
no local maxima. Speci®cally, they discuss the empirical generalization that
V2 appears not to co-occur with VOS and OVS word orders, and one
proposal for dealing with this is to allow VOS� V2 and OVS� V2
membership of the space, while supposing that V2 has no eÿect in these
cases, i.e. VOS� V2 and VOSÿ V2 are extensionally identical, as are
OVS� V2 and VOSÿ V2. With the Gibson and Wexler parameterization
of the resultant space, there are no local maxima.

44 Obviously, it is necessary that any nonbinary parameters are recast as
binary for this procedure. While this is formally possible, replacement of
an n-value parameter by n binary parameters might have unfortunate
consequences. For instance, the ®ve-value GC Parameter of section 2.3.3
ensures that binding domains are ``continuous,'' i.e. in (i), where GC(I),
GC(II) and GC(III) are successively larger binding domains, it is not
possible for an anaphor � to be bound from þ and from �, but not
from ÿ:

(i) . . . [GC(III) . . . þ . . . [GC(II) . . . ÿ . . . [GC(I) . . . � . . .� . . . ]]] . . .
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If the ®ve values of the GC Parameter are replaced by ®ve binary para-
meters (e.g. 0 and 1 corresponding to the statements: the domain of a ®nite
TNS is/is not a GC), it would be necessary to stipulate that certain combi-
nations of binary digits were not allowed. As current orthodoxy has it that
parameters are binary and, as we have seen, there are versions of Binding
Theory which entirely avoid parameterization, I shall not pursue this matter
further.

45 Of course, (62) also expresses a variety of other parameter settings on com-
mon assumptions, e.g. those concerning the assignment of Case and �-roles.
Equally, it fails to express a range of additional parameters, e.g. those
related to the Binding Theory. In a complete account, the vector in (63)
would have positions corresponding to every parameter.

46 These two mechanisms for Nominative Case assignment have been pro-
posed by Koopman and Sportiche (1991), the most direct motivation of
(65b) being the necessity to Case-mark subjects in VSO languages, where
the subject remains in situ in [Spec, VP]. It is of some interest that in their
discussion of early stages in the acquisition of English, DeÂ prez and Pierce
(1993) suggest that children operate with both Case-marking mechanisms;
they do not consider how the child deals with the obvious Subset Problem
this raises.

47 Of course, if we suppose that the ``elegance'' factor in the calculation of ®t-
ness takes account of chain length, this will disfavor V2 analyses when com-
pared to nonmovement analyses. For the argument in the text to go
through, then, we need to assume that this factor is weighted in such a way
in the calculation of ®tness that its contribution is insigni®cant when com-
pared to that coming from successful analyses of unambiguous cases and
aversion to supersets.

48 An interesting consequence of this account is that if learners of Middle
French did go through a process like that described by Clark and Roberts,
it was necessary for them to eÿectively ``ignore'' tokens of V2 in their lin-
guistic environments. We shall return to this. An obvious issue raised by
my abbreviated account of Clark and Roberts' ideas is that a complete
account would require an explanation for the emergence of XSV and the
sharp drop in frequency of (X)VS. Obviously the former could well contri-
bute to the latter, and Clark and Roberts speculate that the former could
itself be due to morphological changes in subject pronouns.

49 Note that the reasoning here is entirely analogous to that which led Clark
and Roberts to conclude that SV(X) sentences in French are ambiguous as
far as their expression of parameter values goes.

50 There is, of course, the diÿerence that Clark and Roberts are operating
with a speci®c algorithm, whereas Lightfoot is speculating about the role of
threshold frequencies. I do not see this as aÿecting the point made in the
text.
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3 Language change and learnability

Ian Roberts

3.1 Introduction and general hypotheses

For the study of language change to be relevant to learnability theory,
a number of assumptions must be made both about language change
and about the synchronic form of grammars. The principal assumption
is the standard one from principles-and-parameters theory, namely that
the grammar of a language L consists of UG principles with the values
of the parameters which modulate those ®xed principles. This point of
view is succinctly stated by Chomsky as follows: ``A particular
language L is an instantiation of the initial state of the cognitive system
of the language faculty with options speci®ed'' (Chomsky, 1995: 219).
A simple example of this concerns the relative order of a verb and its
direct object. In some languages (English, Romance, Bantu, etc.), verbs
precede their objects. In other languages (Japanese, Korean, Turkish,
Indic, etc.), verbs follow their objects. In terms of principles-and-para-
meters theory, we say that the existence and characterization of the
verb, the direct object and the verb±object relation are to be stated as
(or, at the relevant level of theoretical abstraction, derived from) UG
principles, while the ordering of the verb and the object are attributable
to a parametric choice (this parameter has been referred to as the Head
Parameter; see for example, Travis, 1984; Koopman, 1984).

The options in question vary along both the synchronic and the
diachronic dimensions. The conception of parametric options was
developed to account for synchronic variation, but a moment's
re¯ection shows that it must also apply in the diachronic dimension. In
other words, parameter values can change as a function of time. We
can in fact observe this very easily by comparing the Modern Romance
languages with Latin in regard to word order. Latin word order was
rather free, but object±verb order clearly predominated; on the other
hand, as just mentioned, the Modern Romance languages are all verb±
object. The contrast is illustrated in (74), with Italian representing
Modern Romance:
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(74) a. Ego apros tres et quidem pulcherrimos cepi. (Pliny the
Younger)
I boars three and indeed very-beautiful have-taken
(Object) (Verb)

b. Io ho preso dei cinghiali, tre e anche bellissimi.
I have-taken boars, three and indeed very-beautiful
(Verb) (Object)

Thus, if there is a parameter determining the relative order of verb and
direct object, its value has changed in the development of Latin into
Romance. The central issue for diachronic syntax in the context of
principles-and-parameters theory is accounting for how and why this
can happen. How do parameter values change over time? This is
arguably the fundamental question for comparative syntax, since it is
quite reasonable to view the existence of a variety of diÿerent gram-
matical systems (i.e. languages, at the relevant level of idealization)
as a result of language change; we know from the history of very
well-known language families such as Romance that a parent lan-
guage can give rise to many distinct daughter languages over time.
Moreover, the existence of very large language families whose parent
language is unattested but amenable to some form of ``reconstruc-
tion'' is an accepted result of comparative and historical linguistics.
Given this, the study of language change may lead us to an under-
standing of why grammatical systems vary at all, and may also lead
to an account of the patterns of variation among grammatical
systems, i.e. language typology. In other words, it is possible that
the theory of language change will exhaust the theory of language
variation. I return to this point below.

Following a view that has been developed in terms of recent linguis-
tic theory primarily by Lightfoot (1979, 1991), I assume that parameter
change is an aspect of the process of parameter setting. A change is
initiated when (a population of) learners converge on a grammatical
system which diÿers in at least one parameter value from the system
internalized by the speakers whose linguistic behavior provides the
input to the learners. As the younger generation replaces the older one,
the change is carried through the speech community. Of course, many
social, historical and cultural factors in¯uence speech communities, and
hence the transmission of changes (see Labov, 1972, 1994). From the
perspective of linguistic theory, though, we must abstract away from
these factors and attempt ± as far as the historical record permits ± to
focus on change purely as a relation between grammatical systems. It is
very di�cult to see any other way of accounting for language change
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which will allow for the kinds of diachronic changes we can observe
(e.g. that shown in (74)).

The assumption that parameter change is an aspect of the process of
parameter ®xation raises an important issue for language acquisition.
The issue is summed up in the following quotation from Niyogi and
Berwick (1995): ``it is generally assumed that children acquire their
target . . . grammars without error. However, if this were always true
. . . grammatical changes within a population would seemingly never
occur, since generation after generation of children would have success-
fully acquired the grammar of their parents'' (Niyogi and Berwick,
1995: 1). Thus the standard paradigm for language acquisition is not
immediately compatible with the observation that grammatical systems
change over time. Clark and Roberts (1993, 1997) refer to this
issue as the logical problem of language change, and sum it up as
follows: ``if the trigger experience of one generation, say G1, permits
members of G1 to set parameter pi to value vik, why is the trigger
experience produced by G1 insu�cient to cause the next generation to
set pi to vik?'' (Clark and Roberts, in progress: 12).1 The simple answer
to this question (which again goes back to Lightfoot, 1979) is that vik is
unlearnable. This is where learnability considerations connect to
diachronic linguistics (and, indeed, to comparative linguistics if the
above comments are right). Fleshing this idea out requires us to
develop an account of the relation between the learner and the trigger;
it also requires us to be very precise ± much more precise than has
often been the case in work in principles-and-parameters theory ±
about the nature and format of parameters. Our theory of the learner,
the trigger and the nature of parameters is tested against the evidence
from language change (gathering and interpreting this evidence is in
itself a nontrivial task; however, I will gloss over this matter here). The
result of this enterprise is an integrated theory of comparative and
historical linguistics, which situates this discipline in its rightful place
within modern cognitive science. In what follows, I will try to sketch
how we can embark on this enterprise.

The general approach that I adopt attributes the possibility of
language change to the interaction of the parameter-setting algorithm,
the trigger and the nature of parameters. The relation between the
trigger and parameter values is indirect, being ``®ltered'' by the para-
meter-setting algorithm. In this way, we can solve the logical problem
of language change. This relation between the trigger and parameter
values is chaotic in that (a) we cannot predict a change, even if all the
conditions for a change to take place are satis®ed (here we are in the
same situation as evolutionary biologists); (b) a very small change in
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some aspect of the trigger can lead to dramatic changes in the para-
metric system.

This approach has a very interesting general consequence. As
mentioned above, the existence of language families shows us that a
great deal of synchronic variation is the result of language change: we
integrate this with what was said above by simply adding that the
transmission of certain changes through a speech community is
interrupted by some historical contingency (e.g. the break-up of the
Western Roman Empire in the case of the Romance languages). It may
be that all synchronic variation can be accounted for in this way; this
amounts to the claim that there was once a Proto-World, a single lan-
guage from which all languages historically derive. Establishing Proto-
World is probably not feasible using the traditional techniques of com-
parative reconstruction, but the conceptual point is enough for our
purposes (it is in any case likely given the single-origin theory of the
origin of modern humans, currently the best-supported theory of the
origin of this species). It implies that the parameter-setting algorithm is
logically and chronologically prior to the parameters themselves; recent
work by Clark (1994, 1996) has shown that plausible assumptions
about the learner impose heavy constraints on the format for para-
meters, and in fact are compatible with the abandonment of this notion
in favor of induction over tree fragments. We can thus think that the
existence of parameters themselves is attributable to properties of the
learning algorithm interacting with UG; parametric variation might
then be an emergent property of this interaction. UG itself would then
contain no ``statement'' of parameters at all. I will not explore this
view in detail here, but it is compatible with everything that I have to
say; it is also in the spirit of a minimalist linguistic theory.

Here I will sketch some assumptions about the nature of parameters
and an associated markedness theory (section 3.2), and apply these to
three cases of language change that I take to be typical (section
3.3): the loss of a movement dependency, grammaticalization, and
change in verb±object order.

3.2 The nature of parameters

3.2.1 General considerations

Following Chomsky (1995), I assume that parameters reduce to the
activation (or not) of a property P of functional heads. Here are some
examples:
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(75) a. Does AgrS attract the (main, ®nite) verb?
English: no; French: yes

b. Does AgrS attract DP to its Spec?
English, French: yes; Celtic: no

c. Does (root) C attract V?
German: yes; English, French: no

d. Does AgrS license pro?
Italian: yes; English, French: no

e. Does WH move overtly?
English: yes; Chinese: no

These parameters are all well-established in the literature on
comparative syntax, and I will not discuss their motivation here.

Now, since parameters can be seen as binary properties, it is possible
to code parameter values with the set f1,0g. Thus, if we impose an
arbitrary order on the sequence of parameter values, we can give the
index (or parameter assignment) of each grammatical system. Here are
some plausible partial indices for well-known languages taking the
parameters in (75) in the order given there:

(76) English 01001
French 11001
Italian 11011
Chinese 01010
German 11101
Welsh 10011

Exercise

3.1 Try to deduce what each parameter assignment tells us about
the properties of each language. What are the predicted word
orders of these languages? Try to verify these predictions with
native speakers.

We can now see acquisition as the search for i, the index of the
grammatical system presented to the learner, and change as the situa-
tion where generation G1 has i, but G2 has j 6� i.

Our approach makes it possible to see how many parameters there
might be, at least in principle. Let us suppose that P is the property of
attracting another category (or feature, in terms of Chomsky, 1995,
chapter 4; there are technical points here that I'll gloss over ± cf. the
discussion of Roberts and Roussou, 1997, in the next section). Suppose
further that each functional head can attract at most one head X and
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one maximal projection XP (this restriction follows from the theory of
phrase structure proposed by Kayne, 1994). Then, for n � jF j, the
cardinality of the set of functional heads, the cardinality of the set of
parameters |P| is 2n and the cardinality of the set of grammatical sys-
tems, |G| is 22n. So, once we ®gure out how many functional heads
there are, we can calculate how many grammatical systems there are.
Doing this can tell us what constraints must be imposed on the learn-
ing device, as Clark (1992) has shown.

Functional heads abound in the recent literature on comparative
syntax. In the most detailed discussion of clause structure across
languages that I am aware of in recent research, Cinque (1997) gives
the following structure of ``IP'' (I give only the labels of the categories;
from left to right, each takes the maximal projection of the next as its
immediate structural complement):

(77) MoodSpeech Act MoodEvaluative MoodEvidential
ModEpistemic T(Past) T(Future)
MoodIrrealis ModNecessity ModPossibility
ModVolitional ModObligation ModAbility=permission

AspHabitual AspRepetitive�I� AspFrequentative�I�
AspCelerative�I� T(Anterior) AspTerminative

AspContinuative AspPerfect�?� AspRetrospective

AspProximative AspDurative AspGeneric=progressive

AspProspective AspSgCompletive�I� AspPlCompletive

Voice AspCelerative�II� AspSgCompletive�II�
AspRepetitive�II� AspFrequentative�II� . . .

The total number of heads in this structure, as Cinque stresses, is a
conservative estimate of the number of functional heads in ``IP.'' No
account is taken here of NegPs or AgrPs, for example. Moreover,
``DP'' and ``CP'' both have a complex structure (Rizzi, 1997, argues for
splitting ``CP'' into Force, Topic, Focus and Finiteness, again with the
possibility of interspersed AgrPs). Cinque postulates the clause struc-
ture in (77) on the basis of careful cross-linguistic argumentation,
showing that adverbs, auxiliaries/particles and a�xes are consistently
ordered in the same way across languages. We can see this from the
relative orders of English adverbs, for example:

(78) frankly (Speech Act) � fortunately (Evaluative) � allegedly
(Evidential) � probably (Epistemic) � once (Past) � then
(Future) � perhaps (Irrealis) � necessarily (Necessity) � possi-
bly (Possibility) � willingly (Volition) � inevitably (Obligation)
� cleverly (Ability/permission) � usually (Habitual) � again
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(Repetitive(I)) � often (Frequentative(I)) � quickly
(Celerative(I)) � already (Anterior) � no longer (Terminative)
� still (Continuative) � always (Perfect(?)) � just
(Retrospective) � soon (Proximative) � brie¯y (Durative) �
characteristically (Generic/Progressive) � almost (Prospective)
� completely (SgCompletive(I)) � tutto (PlCompletive)2 � well
(Voice) � fast/early (Celerative(II)) � completely
(SgCompletive(II)) � again (Repetitive(II)) � often
(Frequentative(II)) . . .

Exercise

3.2 If you are a native speaker of English, construct sentences
illustrating these orders of adverbs, and ungrammatical exam-
ples which violate the orders. You may ®nd that you do not
fully concur with the judgments reported by Cinque. If you are
not a native speaker of English, translate the adverbs and try
to see what the ordering is in your native language.

Cinque argues that the adverbs of each class occupy the speci®er of the
relevant functional head. In this way, the order of adverbs is dictated by
the order of functional categories. This idea is strongly supported by the
fact that preverbal particles and auxiliaries follow the same ordering, as a
detailed discussion of a range of creoles, West African, Celtic and
Tibeto-Burman languages shows. This ordering is partially instantiated
by the English auxiliary system (with the proviso that modals and tense
are morphologically combined), as examples like (79) show:

(79) Dinner must have been being cooked (when we got there).

Moreover, su�xes show exactly the mirror-image order. Thus, in a
system where F1 . . .Fn are free, we ®nd F1F2F3F4 etc., while where
F1 . . .Fn are bound, we ®nd F4F3F2F1. This is a consequence of the
universal order of functional heads combined with successive left-
adjunction of heads. Thus, in Korean, we ®nd verb forms like that
in (80), where the order of the verbal su�xes is Voice±Aspect±Tense±
Mood, exactly the opposite of the ordering found with the English
auxiliaries in (79) (still retaining the proviso regarding the syncretism
of tense with modal auxiliaries in English):

(80) cap-hi - si - ess - ess - keyss - sup - ti - kka
Vÿ Passive Agr Ant Past Epistemic Agr Evid Q
``Did you feel that (unspeci®ed argument) had been caught?''
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(80) can be derived by successive head movement of the verb as
illustrated in ®gure 3.1. Assuming that the verb left-adjoins to each
head, we derive the mirror-image ordering of su�xes from the same
clause structure as that of English. We do not have to assume that the
su�xes are syntactic a�xes; it is possible to form the complex verb in
the lexicon and then check features successively ± on the ordering of
checking and the order of a�xes, cf. Chomsky (1995: 195±6).

Cinque surveys all of the Romance and Germanic languages,
Hebrew, Bosnian/Serbo-Croatian, Chinese, Albanian, Hindi, Bantu,
Hixkaryana, Lezgian, Mongolian, Malay, Zuni, Kammu, Nahuatl,
Pawnee, Malayalam, Fula, Greek, Finnish, Mofu-Gudur, Evenki,
Abkhaz, Ubykh, Arabic, Hungarian, Dagaare, Kom, Yoruba,
Burmese, Garo, Kachin, Patani, Aleut, Tshangla, Central Alaskan
Yup'ik, Thai, Kwaio, Ponapean, Kiribatese, Anejom, Samoan,
Tokelau, Big Nambas, Walmadjari, Sanio-Hiowe, Fore, Menya,
Tauya, Yreaba, Wahgi, Navajo, Canela-CrahoÃ , DieguenÄ o, Hidatsa,
Ika, Macushi, Ute, Yavapai, Waorani and Basque, in addition to the
languages mentioned above. Such striking cross-linguistic correlations
strongly support the conclusion that a clause structure of the kind
shown in (77) is made available by UG. It is of course always possible
to encode the properties attributed to functional heads in terms of
something else (feature structures, lexical items, semantics, etc.), but
the complexity, the cross-linguistic similarities and the variation must
be captured somehow.
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Now let us calculate, on the assumption that (77) is the correct UG
clause structure, how many parameters of clause structure there are. In
(77), n � 32. Then jPj � 64 and jGj � 264. This is a very large space
indeed, and bear in mind that this is the number of possible variants of
``IP'' alone. Once we take into account the full functional structures of
``CP'' and ``DP,'' the space will grow still bigger. In a discussion of a
30-parameter system, giving 1,073,741,824 grammars, Clark (1990)
points out that a learner which checks one grammar per second from
birth would in the worst case take 34 years to converge if this is the
number of possible grammars. Hence there must be a learning device
which facilitates the search in this space.

We can, I think, make a similar argument on the basis of diachronic
considerations. Two assumptions are generally made in all comparative
and historical linguistics (in fact, they really make historical linguistics
possible, and have done since the beginnings of the discipline). These
are articulated by Croft (1994) as follows:3

(81) a. Uniformitarianism: ``the languages of the past are not
diÿerent in nature from those of the present'' (Croft,
1994: 204)

b. Connectivity: ``within a set of attested language states
de®ned by a given typological classi®cation, a language can
. . . shift from any state to any other state'' (Croft,
1994: 205)

We can reformulate these assumptions in terms of principles-and-para-
meters theory as follows:

(82) a. Uniformitarianism: the languages of the past conform to the
same UG as those of the present

b. Connectivity: a grammatical system can change into any
other grammatical system given enough time (i.e. all para-
meters are equally variable)

Put this way, both assumptions seem entirely reasonable. To deny uni-
formitarianism would be to assert that speakers of languages of the
past were cognitively diÿerent from speakers of currently existing
languages. Presumably, though, at least as far back as the origin of
modern homo sapiens, we do not want to say this. Eÿectively, (82a) is
the null hypothesis regarding the relation of UG to language change.
Denying (82b) would imply ``privileging'' certain parameters, a
conceptually highly dubious move for which there seems to be no
empirical motivation: (82b) is the null hypothesis regarding the role of
parameters in language change. So we want to maintain the
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assumptions in (82). As I mentioned above, these are facilitating
assumptions, in that they make it possible to start out towards an
answer to the question of how parameters can change over time.

Now, at present approximately 5,000 languages are spoken (Ruhlen,
1987). Suppose that this ®gure is constant throughout human history
(back to the emergence of homo sapiens), and that every language
changes with every generation, so if we have a new generation every 25
years, we have 20,000 languages per century. If the total number of
grammatical systems is 230 (following Clark's (1990) discussion), it
would take 18,000 centuries for each type to be realized once. At
present, the usual reckoning is that humans have been around for
about 2000 centuries (i.e. 200,000 years ± see for example Bickerton,
1991). Of course, the ®gures given here are rather arbitrary, but the
point should be clear: given the kind of parameter space we seem to
have, on the basis of the empirical examination of existing languages,
there simply has not been enough time since the emergence of the
species (and therefore, I am assuming, of UG) for anything like the
total range of possibilities oÿered by UG to be realized. This
conclusion eÿectively empties uniformitarianism and connectivity of
content. In theory, we simply couldn't know whether a language of the
past corresponded to the UG of the present or not, since the over-
whelming likelihood is that such a language is typologically diÿerent
from any language that existed before or since.

One might conclude that 30 parameters de®ne too big a parametric
space, but, as we have seen, comparative data leads us to postulate at
least this big a space. Here we are faced ± in a diÿerent context ± with
the familiar tension between the exigencies of empirical description,
which lead us to postulate ever more entities, and the need for
explanation, which requires us to eliminate as many entities as possible.
Chomsky (1995: 4±5) notes that the principles-and-parameters model
resolved this tension for synchronic comparative syntax, but we see
that the problem re-emerges at a higher level.

It seems then that the parameter space is too big for the assumptions
of uniformity and connectivity to have any empirical consequences.
Since uniformity represents the null hypothesis about the relation of
UG to change, and connectivity the null hypothesis about parametric
change, this conclusion appears to cast doubt on the entire enterprise
of looking at syntactic change from the point of view of principles-and-
parameters theory. This is the conceptual problem caused by the size of
the parameter space.

The size of the parameter space also raises an empirical issue: the
fact that on the basis of a small subset of currently existing languages
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we can clearly observe language types, and note diachronic drift from
one type to another, is simply astonishing. The view presented above
implies that, as far as the history of humanity up to now is concerned,
languages should appear to vary unpredictably and without assignable
limits, even if we have a UG containing just 30 or so parameters.
Obviously, we need to ®nd ways to reduce the range of parametric pos-
sibilities while retaining (at least) 30 parameters. In the next para-
graphs, I will consider two ways to do this.

First, we can suppose that something is causing grammatical systems
to ``clump'' in the parametric space, rather like galaxies in the physical
universe. What is the parameter-space equivalent of the forces that
cause stars to bunch together into galaxies, etc.? To answer this
question, I want to brie¯y introduce some of the concepts and termi-
nology used in Kauÿman (1995), some of which is based on dynamical-
systems theory. Following Kauÿman, my presentation will be informal
throughout. We can think of a parametric system as a network of
switches (cf. Chomsky, 1986), which can assume a number of possible
states corresponding to the states of each switch (i.e. each parameter).
Each possible state is a grammatical system, i.e. a language. Suppose that
the switches are binary and are connected to other switches in Boolean
relations (forming what Kauÿman calls a Boolean network), as is often
proposed regarding implicational and other relations among parameter
values. Suppose, then, we have a network consisting of just three para-
meters, each of which receives ``inputs'' from the other two. I now quote
Kauÿman at length (in this quotation, read ``parameter'' for ``bulb''):

Since each bulb can have only two values, on or oÿ, which we can represent as
1 and 0, then it is easy to see that there are four possible input patterns it can
receive from its two neighbors. Both inputs can be oÿ (00), one or the other
input can be on (01 or 10), or both inputs can be on (11) . . . For example,
bulb 1 might be active only if both of its inputs were active the moment before
. . . bulb 1 is an AND gate . . . Say I assign the AND function to bulb 1 and
the OR function to bulbs 2 and 3. At each tick of the clock, each bulb
examines the activities of its two inputs and adopts state 1 or 0 speci®ed by its
Boolean function . . .
As we can see, the system can be in a ®nite number of states, here eight. If

started in one state, over time the system will ¯ow through some sequence of
states. This sequence is called a trajectory . . . Since there is a ®nite number of
states, the system must eventually hit a state it has previously encountered. Then
the trajectory will repeat. Since the system is deterministic, it will cycle forever
around a recurrent loop of states called a state cycle. (Kauÿman, 1995: 76±7)

Note that Kauÿman views the state cycle in the temporal dimension ±
variables change their values with the ticking of a clock ± but it is
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entirely possible to view the state cycle in a spatial dimension, as with
synchronic parametric variation. A state cycle can consist of a single
state (as with Kauÿman's example network with one AND-bulb and
two OR-bulbs if started at 111). It is also possible for a state cycle to
include all possible states of the system. Most relevant to the present
discussion is the case where the state cycle only includes a subpart of
the overall state space. When this happens, we say that a given state
cycle is an attractor (or forms a ``basin of attraction''). It is in this
sense that attractors can cause parametric systems to ``clump together''
in parametric space, i.e. to occupy only a small part of the space.4

I would like to suggest that the traditional linguistic concept of
markedness creates basins of attraction in parameter space. In other
words, unmarked values of parameters can eÿectively reduce the possi-
ble space that grammatical systems occupy, and so reduce the hyperas-
tronomical range of possibilities (230, 264, etc.) to a su�ciently small
state cycle for language types and diachronic drift to be discernible. Of
course, this begs the question of the nature of markedness; I will return
to this point in Section 3.2.3. Given the general considerations about
the relation between language types, language acquisition and language
change raised in the previous section, the attractors ± markedness ±
must be introduced by the learning algorithm. Here again we see the
consequences of assumptions regarding the nature of the learner for
historical and comparative linguistics.

A second way to manage the size of the parameter space emerges
from Kauÿman's (1995) study of Boolean networks. Boolean networks,
like any network of binary variables, have 2n possible states for n
variables. Applying this to principles-and-parameters theory, each such
state is a grammatical system, as we saw above. Kauÿman then de®nes
the state cycle, which is some natural repetition of states. As I
mentioned above, the state cycle can be very short, or it can cor-
respond to the total number of possible states. Kauÿman shows that
there are various ways of restricting the state cycle, and thus of
eÿectively making a system occupy just a part of its overall state space
(in principles-and-parameters theory, the state space corresponds to
what we have been calling the parameter space). One way to do this is
by limiting the number of Boolean connections. To do this, Kauÿman
de®nes the quantity K , which designates the number of inputs
determining the value of each variable in the system (i.e, the density of
the connections in a Boolean network). If K � 1, i.e. each variable has
just one input, the system is static. If K > 2, the system is chaotic, and
¯uctuates wildly. Most interestingly, if K � 2 the system is prone to
occasional state-changes, but is neither frozen nor chaotic. Kauÿman
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claims that biological systems are typically of this type ± the evidence
from the existence of diÿerent linguistic systems falling into more or
less discernible types is that the parametric system is of this type, too.
Another very interesting aspect of Kauÿman's system is that he shows
that, where K � 2, the size of the state cycle is roughly the square root
of n, the number of binary variables. In the 64-parameter system for
``IP'' that was outlined above, the state cycle would be of length 8, i.e.
there would be 8 possible states. In turn, this would mean that gram-
matical systems cycle through eight diÿerent possible clause structures
of the 264 made available by UG. This may in fact seem rather few,
but then recall that 64 may be a small number of parameters. In gen-
eral, then, Kauÿman's work on Boolean networks suggests a way of
solving the problem caused by extremely large parameter spaces, and
allows us to understand why language types and diachronic drift can
be observed even on the basis of a tiny sample of languages.

In order to restrict the parameter space along Kauÿman's lines, then,
we need to ensure that each parameter has only two inputs. This can
be achieved by giving all parameters the following form:5

(83) a. Is there X? Yes/No
b. If there is X, is there Y? Yes/No

(83) gives rise to a structure like (84) for parameters:

Each of these three values, 1, 2, 3, is a Boolean function of the other
two, since the logical form of the parameter is 1 _ �2 _ 3�, i.e. any
system which chooses 1, 2 or 3 as the value of the parameter cannot
choose either of the other two. Thus, each parameter value has exactly
two inputs. In the next section, I will sketch an approach to parameters
which has this property. Note that the deductive structure of para-
meters cannot be any ``deeper'' than that in (83), or the parametric
system will become completely chaotic, if we apply Kauÿman's
conclusions to parameter spaces. This means that there are no complex
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networks of interactions among parameter values.6 The variant
properties of each functional feature F are ®xed individually, rather
than certain ones being ``deduced'' from others. The natural way to
think of this is that parameter setting according to the schema in (84)
is fairly directly connected to lexical acquisition (cf. Borer, 1984;
Chomsky, 1995), with individual morphemes triggering the parameter
values of each functional feature according to (84). This is very close to
what is proposed in Chomsky (1995, chapter 4). In the next section I
will present a re®nement of Chomsky's system which corresponds
exactly to (84).

We see then that the space of variation aÿorded by even a highly
constrained system of parameters is very big, so big that in order to
account for language acquisition and for simple historical and
comparative observations (in fact, the actual existence of such observa-
tions in the ®rst place, quite apart from their content), we must
constrain the parameter space somehow. This can be done in two
ways: either by positing attractors, i.e. a theory of markedness, or by
constraining the inputs to parameter values. In the next section, I will
outline a format for parameters which has both of these properties.

3.2.2 The form of parameters7

In the theory put forward in Chomsky (1995, chapter 4) movement is a
consequence of the mechanism of feature checking which plays three
principal roles. First, the requirement that features of a given type
(``strong'' features) be checked before Spell Out triggers overt move-
ment, as such features are held to be uninterpretable at the PF inter-
face. If they are not eliminated before the derivation reaches that
interface, then, the basic principle of representational economy (Full
Interpretation) is violated. For example, in English, subjects must raise
from their merged VP-internal position to SpecAgrS because AgrS has
a strong D-feature which must be checked against the subject.8 In this
way, the following con®guration is obtained:

(85) [AgrSP DP[D] [AgrS0 AgrS[D] . . . [VP tDP . . . ]]]

Here, since DP is in the checking domain of AgrS (the checking
domain of a head H can be characterized approximately as the speci®er
of H or a head position adjoined to H ± cf. Chomsky, 1995: 178±9, for
a precise de®nition), its D-feature can be checked against that of AgrS.
Both features are thus eliminated from the representation, and Full
Interpretation is satis®ed at PF. Since movement is held to be a last-
resort operation, only applying when it has to, checking requirements
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of this sort are claimed to be the only motivation for movement.
Indeed, Chomsky (1995: 269±70) builds this idea into the de®nition of
movement in the following way:

(86) a. F is an unchecked feature.
b. F enters into a checking relation as a result of movement.

Here movement is seen as feature movement (Move-F), with movement
of a category bearing the feature taking place only as a consequence of
further requirements; I will gloss over this re®nement here. Checking
theory is thus the motor of movement.

Exercises

3.3 Construct checking-theoretic analyses for each of the cases of
movement/attraction given in (75) in addition to DP-movement
to SpecAgrSP, V-to-AgrS movement, V-to-C movement and
WH-movement. What problems do you encounter?

3.4 Give a checking-theoretic analysis of the following paradigm
for English interrogatives (you can decide for yourself about
the grammaticality of (a)):
a. ?John left?
b. Has John left?
c. *John saw who?
d. Who did John see?
What problems do you encounter?

The second function of checking theory in the system put forward in
Chomsky (1995, chapter 4) is to account for cross-linguistic variation.
The features associated with syntactic categories, such as the D-feature
of AgrS mentioned in connection with (85), are free to vary from one
grammatical system to another along the ``strong±weak'' dimension.
Strong features trigger overt movement, as we saw above. Weak
features, on the other hand, do not trigger overt movement. In fact,
the Procrastinate principle has the eÿect that where a head has a weak
feature, movement will be delayed until the post-Spell Out, covert part
of the derivation. A strong feature overrides Procrastinate. In general,
then, the strong±weak distinction, by diÿerentially triggering overt
movement, leads to overt word-order diÿerences. This distinction is
held to be the principal, if not the only, dimension of syntactic varia-
tion among grammatical systems.
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Exercise

3.5 The following characteristics are found in null-subject lan-
guages:
A. Ability to ``drop'' pronominal subjects:

a. E®ghe (Greek)
left-3sg

b. EÁ partito (Italian)
Is-3sg left
``He left''

B. In null-subject languages DP-subjects are free to appear in
positions other than SpecAgrSP (subject to discourse
conditions involving focus, topicalization, etc):
a. I Maria (xthes) sinandise ton Yanni (Greek)

the-nom Maria yesterday met-3s the-acc John
``Mary met John (yesterday)''

b. Sinandise i Maria ton Yanni
met-3s the-nom Mary the-acc John

C. In null-subject languages, extraction of the subject of a
®nite clause over an overt complementizer is allowed:
a. Chi hai detto che ha telefonato? (Italian)

Who have-you said that has telephoned?
b. *Who did you say that left?
Is there a way to unite these properties under a single
checking-theoretic parameter?

Finally, checking theory can account for certain morphological
relations among syntactic constituents, particularly relations of case
and agreement. We can see this in the example of subject-raising to
AgrS, illustrated in (85). Here the subject agrees with and checks for
Nominative Case with AgrS. These operations ± both of which can be
seen as further instances of checking ± correlate with the morphological
form of the subject (a pronominal subject must be formally nominative
in this position of a ®nite clause, and number is typically manifested in
the form of the subject DP) and the verb (in the present tense only,
where regular verbs bear an -s ending just where the subject is
singular). In Chomsky (1995), these further instances of feature-check-
ing are seen as ``free riders'' associated with the feature which gives rise
to movement (the D-feature), and are checked as a kind of by-product
of the fundamental D-feature-checking operation shown in (85).
Furthermore, certain features are held to be interpretable, while others
are not. For example, the categorial and person/number (�-) features
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of DPs are interpretable, while those of AgrS are not. On the other
hand, abstract case features are [ÿinterpretable]. Interpretable features
are not deleted by checking, but are merely ``erased''; as such they
remain available for interpretation at LF. The full picture of the check-
ing relations involving the subject and AgrS in (85) is thus as in (87)
(deleted features are underlined, erased ones are not):

(87) [AgrSP DP[Nom, D, �] [AgrS0AgrS[D;Nom; �] . . . [VP tDP . . .]]]

Thus checking theory, in part by means of the distinction between dele-
tion and erasure, captures aspects of the morphological form of the
categories involved in the checking relations. It is easy to see that in
languages with richer in¯ectional morphology than English, checking
theory would play a greater role in determining the morphological
form of syntactic categories.9

Exercise

3.6 Give an account of the checking relations in the following
Latin sentence:

Puer bonus puellam pulchram amat

boy good girl beautiful loves

masc; sg masc; sg fem; sg fem; sg present

nom nom acc acc indicative

active; 3sg

``The good boy loves the beautiful girl''

The notion of feature-interpretability, combined with the distinction
between deletion and erasure, captures the fact that the subject DP is
interpreted as a DP (which may imply referentiality ± Longobardi,
1994) with a given person/number speci®cation, while AgrS has no
interpretation but merely formally licenses the subject.

Although it clearly plays a central role in Chomsky's theory, the
checking approach introduces a number of redundancies and con-
ceptual problems. First, it requires the introduction into the derivation
of features whose sole purpose is to be deleted: examples of this are the
features of AgrS in (87).10 Such features only exist internally to the
syntactic component, CHL in Chomsky's terminology. In minimalist
theory, the properties of the syntax are held to be determined by the
interfaces; purely syntax-internal properties, with the possible exception
of economy constraints, play a minor or negligible role. In the context
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of such a theory the kind of proliferation of features with no syntax-
external existence that checking theory leads to is undesirable, and
should be avoided if possible. A theory which can achieve the same
empirical results without postulating such a proliferation would, other
things being equal, be preferable to checking theory. More importantly,
the features which actually trigger movement, such as AgrS's D-feature
in our example, are always uninterpretable features of functional heads
which are consequently deleted before the interfaces. Indeed, the check-
ing operation itself is what guarantees the deletion of these features,
which are really only diacritics for movement (overt if strong, covert if
weak). In eÿect, the notion of movement cannot be distinguished from
the notion of such features (this is particularly clear in the de®nition of
movement given in (86) above). This approach in fact leads to circular-
ity: the idea is that noninterpretable features on the attractor are intro-
duced so that F-checking will eliminate them, triggering Movement,
but at the same time F-checking itself is introduced to eliminate these
features. Thus F-checking and Movement are allowed to co-exist as
primitives, while they are never seen independently: they are always
seen in connection to each other. In a minimalist framework then, it
would be desirable to eliminate at least one of them. Roberts and
Roussou's proposal is that it is preferable to eliminate feature-checking.
The question that remains open of course is how the empirical generali-
zations of the F-checking mechanism are captured. Roberts and
Roussou (1997) suggest that this can be achieved on the basis of two
primitives:Merge (of which Movement is really a subcase ± see
Chomsky, 1995) and interface interpretability.

Going back to feature-checking, the second problem that arises is the
following: it is not clear how strong features, although they delete/erase
because PF cannot tolerate them, may have a PF re¯ex. This can be seen
with the nominative feature of the subject DP in (87). If this DP is a pro-
noun, the nominative feature has a re¯ex in PF in that the pronoun will
be nominative (I rather than me, etc.). But the nominative feature is
deleted prior to Spell Out and hence is not, and by Full Interpretation
cannot be, visible to PF. This will be generally true of Case features,
despite the fact that such features are abundantly realized in the morpho-
phonology of many languages. Indeed Chomsky (1995: 385, n. 50) sug-
gests that one possibility ``would be to interpret overt erasure of F as
meaning conversion of F to phonological properties, hence stripped
away at Spell-Out''. Thus in any case the morphophonological re¯exes
need to be considered, although it is not quite clear how this can be
achieved in Chomsky's system with respect to strong features (but see
Chomsky, 1996, for a rather diÿerent possibility).
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Third, feature-checking requires the presence of the same feature
twice, once on the attractor and once on the attractee. Again, this is
clearly seen in (87), where D and Nom occur twice each. However,
interpretable features only appear once at the LF interface. The
mechanisms of deletion and erasure must be stipulated simply in order
to guarantee this. An a priori simpler theory would contain only the
interpretable occurrences of features, but such a theory would not be
checking theory.

Fourth, as mentioned above, checking theory in fact imposes a rank-
ing of principles in that a strong feature induces a tolerable violation
of Procrastinate. This kind of principle-ranking is not found elsewhere
in minimalist approaches (as opposed, for example, to optimality-theo-
retic approaches) and appears to be a conceptual anomaly induced by
the use of checking theory to account for parametric variation. In
eÿect, then, checking theory accounts for parametric variation at the
price of introducing an unprecedented soft constraint: Procrastinate.

Fifth, Case features are unique in being uninterpretable for both the
attractor and the attractee, a condition which casts doubt on their exis-
tence.11 All other features are interpretable for the moved category (the
attractee; cf. D and �-features in (87)), but not for the attractor. At
least one facet of the theory presented which should be rethought is the
treatment of abstract Case. As it stands, checking theory provides no
explanation of this anomaly, nor of the related point that only the
features of attractees are interpretable. As such, then, the status of
Case is uncertain in this theory: it is not fully uni®ed with other types
of feature-checking.

Finally, the distinction between deletion and erasure is stipulated, as
is the inventory of interpretable features and the fact that such features
are invariably associated with attractees. It is far from obvious that
the notion of interpretability can in any natural way be reduced to
semantics.

We see that checking theory accounts for movement by introducing
essentially diacritic features on functional heads which trigger move-
ment ± features stipulated to be uninterpretable and hence required to
delete. It accounts for parametric variation by introducing an un-
precedented and undesirable (in this theory) soft constraint. And it can-
not naturally account for morphophonological properties of agreement
and particularly case, given other assumptions regarding interpretability
and deletion. Hence it turns out that all three functions of checking
theory are problematic.

Roberts and Roussou (1997) explore an alternative to checking
theory in deriving the properties of Attract/Move, which avoids the
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above problems and has certain empirical advantages. In the present
context, one major advantage of their alternative approach is that it
permits the formulation of a theory of cross-linguistic variation which
lends itself naturally to the diachronic domain, and which has the
requisite properties for restricting the parameter space.

Roberts and Roussou's goal in reformulating checking theory is to
give expression to the idea that movement, cross-linguistic variation
and at least some morphophonological properties are re¯exes of a
single property of CHL, and moreover that property of CHL is driven
by the interfaces. They take this property to be interface
interpretability. Taking the standard view of the interfaces as PF and
LF (i.e. the interfaces with the Articulatory±Perceptual and the
Conceptual±Intentional systems respectively), they take interpretability
to be the property of mapping a syntactic feature to a PF or LF
expression. More precisely, they assume that all features have an LF-
interpretation, i.e. there is a universal pool of substantive features, and
that languages vary in which features are required to have a PF-inter-
pretation (be overtly realized). A functional feature F which requires a
PF-realization is notated F*. In a sense, then, Roberts and Roussou
assume that all LF-features are interpretable in Chomsky's sense, and
all PF-features are strong in his sense (in these terms, ``strength''
reduces to PF-realization and is cross-linguistically unpredictable
because PF is cross-linguistically unpredictable).

Roberts and Roussou designate a functional feature F which requires
a PF-realization as F*. The diacritic * is distributed randomly across
the inventory of features in each language (here they assume that there
is no selection by languages among the universal set of features; this
seems to be the null hypothesis and is in principle open to falsi®cation
± Cinque's results (see previous section) suggest that the null hypothesis
is correct. The overall conception of the lexicon, then, is that it
contains the following elements:

(88) a. lexical categories
b. substantive universals encoded as features of functional

heads
c. * assigned in a language-particular fashion to (b)

F* must have a PF-realization, and this realization can be achieved in
three ways: by Move, by Merge (lexical insertion) or by both together.
Again, which option is taken depends on the lexicon, but the most
economical is always preferred. For this reason, Merge is always
preferred over Move. If the lexicon provides a phonological matrix for
F*, then this matrix will be F*'s realization, and Move is unavailable.
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Conversely, if the lexicon has no phonological matrix for F*, material
from elsewhere must be moved to F (subject to the usual constraints
on movement). Alternatively, we can view * as the phonological matrix
for F; in this way, its cross-linguistic arbitrariness becomes completely
natural. Categories triggering movement can be thought of as PF-para-
sites.

We thus see a further dimension of parametric variation along the
Move vs. Merge axis. Since these are the only ways of associating
lexical material with syntactic positions in minimalist theory, they
represent natural options. Finally, F* may be associated with a phono-
logical matrix which is a syntactic a�x, and which hence triggers both
Move and Merge, following the Stray A�x Filter (or whatever
constraint this follows from). From an economy perspective, this
option is equivalent to Move (on the assumption that Merge is costless
± cf. Chomsky, 1995, and below).

So we have the following system of parametric variation:

(89) a. F*? [Yes/No]
b. If F*, is * satis®ed by Move or Merge?

(89) clearly has the overall form of (83). We can also give (89) in a
form comparable to (84), as follows:

In other words, each value has just two inputs, as desired from the
perspective of Kauÿman's work on state spaces. Following his
results, then, this format for parameters will lead to a dramatic
restriction on the overall parameter space. Note that it is
immediately obvious that the PF-realization of each feature of a
functional head is quite independent of the PF-realization of any
other functional head: that is, the connections among the variables
are restricted to those illustrated in (84). In fact, the relation
between F and F* and that between F*Move and F*Merge is AND-
NOT. In the next section, I will discuss the markedness relations
among these options.

Two points which further distinguish this approach from the ``ortho-
dox minimalism'' of Chomsky (1995) should be noted. First, no feature
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can fail to have an interface realization. In Chomsky's system, abstract
Case is uninterpretable and potentially weak; this suggests that this
theoretical construct has no role to play in the approach developed
here. I will not go into the consequences of abandoning abstract Case
here, but this represents a natural move in the context of minimalism,
and leads to an empirically useful reconsideration of grammatical-
function changing operations, for-in®nitives and other constructions.

Second, although Roberts and Roussou use the terminology of
movement, and I will also do so here, nothing really depends on
this. A theoretically more parsimonious and empirically equivalent
position is to claim that movement dependencies are chains, or, more
generally, dependencies between positions in a syntactic representation
in the sense of Manzini (1995). We can de®ne a dependency as
follows:

(91) a. (�, þ) is a simple dependency iÿ:
(i) (�, þ) has a well-formed interpretation;
(ii) � asymmetrically c-commands þ, and there is no ÿ such

that ÿ asymmetrically c-commands þ but not �.
b. If (�, þ) and (þ, ÿ) are dependencies, then (�, þ, ÿ) is a

composed dependency.

In fact, there is evidence from language change that Manzini's notion
of dependency lends itself more naturally than the usual notion of
chain to the computation of the simplicity of representations by the
language learner.

Before returning to the diachronic discussion, let us brie¯y look at
the implications of Roberts and Roussou's approach for synchronic
cross-linguistic variation (the following analysis is developed in much
more detail in Roberts and Roussou, 1997). Consider ®rst the case of
the feature which we take to be responsible for giving a clause the
interpretation of a yes/no question:Q. Let us assume that, since being
a yes/no question is a property of a clause, Q is associated with
the head-position of the clause, namely C. We observe the following
variation:

(92) a. Did John see Mary? (English: Q*Move)
b. A welodd John Mary? (Welsh:Q*Merge)
c. Il a vu Marie? (Colloquial French:Q is silent).

The PF-realization of Q varies as a function of what the lexicon makes
available: English has no Q-particle and so movement (of T) is chosen.
Welsh has a Q-particle, and so movement is blocked by the more eco-
nomical Merge. In Colloquial French (92c), Q has no PF-realization.
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In this case, interrogative force is not grammaticalized and is marked
purely by intonation.

Consider next A0-dependencies. How is WH-movement to SpecCP
triggered in familiar languages? WH-C is * in such languages, giving
rise to T-to-C movement, but this movement alone does not su�ce for
a coherent interpretation where a WH-XP is present, as (93) shows:

(93) a. Who did John see ± ? (WH*Move�
b. *Did John see who?

In order to obtain a coherent interpretation, a WH-XP is attracted to
the WH-C, creating a speci®er. This takes place, Roberts and Roussou
propose, owing to the following recoverability condition (a condition
which connects the interpretative properties of the two interfaces):

(94) PF-recoverability of chains: the highest F* in a chain must
identify the LF-feature of that chain.

Identi®cation is de®ned as follows:12

(95) � identi®es þ for F where:
a. � is (a projection of) F*Merge

b. þ is not F*Merge

c. (�, þ) is a simple dependency in the sense of (91a)

In the Spec±head con®guration in CP, the WH-XP is able to identify
the WH-C by forming a dependency with it. Note that identi®cation
really does mean that the two elements become a single entity, i.e. a
single dependency.

Roberts and Roussou show that this approach correctly predicts
that languages with dedicated WH-particles lack WH-XPs and WH-
movement (Cheng, 1991: 30). This is because the WH-particles do
not require, and therefore cannot have, identi®cation of WH-C by
the WH-XP. Where WH-C requires no PF realization, WH-
movement takes place to license the operator, e.g. in Colloquial
French.

With this admittedly sketchy overview of Roberts and Roussou's
system in mind, we can return to the diachronic issues.

3.2.3 Markedness

Clark and Roberts (1993, 1997) propose that markedness (and hence
the clustering of grammatical systems in parametric space that makes
language acquisition and historical±comparative linguistics possible)
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is a consequence of the computationally conservative nature of the
parameter-setting device, the learner. This device has a built-in prefer-
ence for relatively simple representations. Now, if all movement opera-
tions are adjunctions (as proposed by Kayne, 1994), then
movement always creates relatively complex representations, in the
obvious sense that (96b) is a more complex structure than (96a):

(96) a. H

Thus movement will always be a marked option. Hence we see that
F*Move is a marked option relative to F. Also, if no phonological
matrix is simpler than the presence of a phonological matrix, F*Merge

is relatively marked as compared to F*Move, as the following table
illustrates:

In terms of the format in (90), the ®rst three values are associated with
0 as the value for F, while the last one has 1. The total range of values
for a functional feature are: 010, 001, 100.

Clark and Roberts (1993: 317±18) introduce the notion of parameter
expression (P-expression), which they de®ne as follows:

(98) Parameter expression: a sentence S expresses a parameter P if a
grammar must ®x P to a de®nite value in order to assign a
well-formed representation to S.

As Clark and Roberts say (1993: 317±18): ``When a given datum
expresses some parameter value, the learner will be under pressure to
set that parameter to the value expressed by the datum . . .'' The trigger
can then be de®ned as in (99):

(99) Trigger: a sentence S is a trigger for parameter P if S expresses
P.
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Given markedness, only marked values of parameters need to be
expressed. P-expression then reduces to:

(100) a. expression of movement relations (via syntactic ``displace-
ment'')13

b. expression of free functional morphemes (via PF-realiza-
tion)

More generally, acquirers are looking for overt realizations of
functional heads. If they analyze a functional head as [F F ], we have
the F*Merge (001, in terms of (90)) option. If it is analyzed as [F L F ],
(where L stands for any lexical head), we have the F*Move (010) option.
The crucial point, however, is that the conservative nature of the
learner, since maximally simple representations are preferred, always
favors the default option F (100). So, if the elements and relations
which lead to one of the complex realizations of F are not robustly
expressed in the trigger, the default option is chosen.

The above paragraphs describe the approach to markedness that I
will assume (with one important modi®cation to the notion of phono-
logical markedness to be given below). However, before turning to the
diachronic data, I would like to brie¯y compare my notion of marked-
ness with recent proposals of Cinque's (1997). As part of his study of
clause structure across languages, Cinque observes that functional
heads seem to have both marked and unmarked values. A selection of
these is given in (101):

The observations of marked and unmarked values are based on
familiar criteria: marked features are ``more restricted [in] application,
less frequent, conceptually more complex, expressed by overt
morphology'' (Cinque, 1997: 214), while unmarked features are the
opposite. Note in particular that marked features can thus be morpho-
logically realized while unmarked features are not.

How does this kind of markedness (which I will refer to as
``Jakobsonian'') relate to the proposals I have just made? The two

105Language change and learnability

�101�
Unmarked Marked

MoodSpeech Act declarative ±declarative
MoodEvaluative ±[ ±fortunate] ±fortunate
MoodEvidential direct evidence ±direct evidence
MoodEpistemic commitment ±commitment



notions are quite distinct, in several important respects. First,
Jakobsonian markedness refers to values of functional heads, while the
one just sketched refers to realizations of those heads. Second,
Jakobsonian markedness is not parameterized: the features are available
in every language, and (presumably) stand in the same markedness
relations in every language ± Jakobsonian markedness is thus given by
UG, while the one just sketched derives from a formal property of the
learning algorithm. They are thus quite diÿerent kinds of thing. Third,
Jakobsonian markedness is a substantive notion (note the reference to
conceptual complexity in the above quotation from Cinque), while that
just sketched is a formal notion.

So there are very good reasons to keep the two kinds of markedness
distinct, as formal (the one sketched here) and substantive
(Jakobsonian) notions with quite diÿerent cognitive status (the former
deriving from the learning device, the latter from UG). However, two
things lead us to say a little more than this. First, common to both
notions is the idea that overt morphophonological realization is
marked, while zero realization is unmarked. Second, there are very
signi®cant cross-linguistic generalizations in Cinque's version of
substantive markedness that we would like to ®nd an expression for,
since we are trying to develop an overall system for accounting for
cross-linguistic variation in functional heads (note that Cinque simply
observes the correlations; he does not explain them).

Tentatively, I think that the two notions of markedness can be
connected by taking a lead from Cinque (who takes it from Jakobson
(see Cinque, 1997: 214)) in regarding unmarked values as, in a sense,
underspeci®ed. What is needed is a feature hierarchy. Functional
heads, as features F, G, H . . . , can come with various further feature
speci®cations f, g, h . . . (I will write the subfeatures with lower case
and potentially autonomous functional features with upper case). We
can then treat unmarked values of functional heads as simply the auto-
nomous functional feature F, while the marked value will have a
further subfeature, giving F+f. So MoodSpeech Act means ``declarative'',
while MoodSpeech Act[ÿdeclarative] means nondeclarative. Of course, on
this view, [ÿdeclarative] doesn't exist (and neither does [�declarative],
this being the unmarked value of the category). What exist are other
speech-act features: Q, Exclamative, Imperative, etc. These are all sub-
features of MoodSpeech Act. In other words, instead of saying that we
have MoodSpeech Act with the two values [�declarative], we can stipulate
that MoodSpeech Act � Declarative by default and consider
MoodSpeech Act � Imperative, Interrogative, etc. as marked subfeatures.
Now, if the parameterization operator of (88c) applies to all types of
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features, F� f will have two chances of PF-realization, while F will
only have one. Thus, marked feature values are more likely to be overtly
realized than unmarked ones and we derive implicational statements of
the form ``If a language has a declarative particle, then it has an interro-
gative particle,'' etc., from the fact that where F* must be realized, so
must all subfeatures of F*. Note that this idea carries over to the F*Move

case, which seems right. In many languages, for example, marked illocu-
tionary forces are associated with movement to MoodSpeech Act, while
declaratives are not (this is approximately the situation in ``residual V2''
languages like Modern English). So we also derive the (correct) implica-
tional universal ``If a language has movement to MoodSpeech Act in
declaratives, then it has such movement in interrogatives, etc.''14

Exercise

3.7 Construct a markedness system for agreement. The system
doesn't have to be empirically adequate, but just able to
illustrate the logic of markedness (see Corbett, 1983, for a
typologically based account of the cross-linguistic facts).

Leaving aside these rather more speculative remarks, we can move
on to the diachronic data.

3.3 Changes

Here we look ®rst at a change involving the loss of a movement
dependency and the associated loss of the phonological realization of a
functional head (section 3.3.1). In section 3.3.2, we look at how new
in¯ectional material may be created. We will see that this involves the
loss of a movement dependency followed by the creation of a movement
dependency as a side eÿect of a diÿerent parameter change. In 3.3.3, I
will sketch an approach to word-order change. To the extent that the loss
of movement dependencies plays a role in all the changes considered
here, the assumption about the learning device which was entertained in
the previous section is supported. It goes without saying that much of
what is presented glosses over details both of interpretation and analysis
of data. This is done in the interest of clarity of exposition.

3.3.1 The loss of verb movement in English

It is well-known that English has historically lost verb movement to
In¯ (cf., Pollock, 1989; Roberts, 1992; among others). More precisely,
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in ®nite clauses in Modern English only auxiliary verbs are able to
appear in AgrS and C. The historical evidence from English prior to
roughly 1600 shows that at this earlier period English verbs were able
to move to T, AgrS and C (in this respect, earlier English patterned
like Modern French ± see Pollock, 1989). This can be shown by
examples like the following:

(102) a. Negation:
Wepyng and teres counforteth not dissolute laghers
``Weeping and tears do not comfort dissolute laughers''
(1400±50; N. Love The Myrour of the Blessyd Lyf of Jesu
Christ; Gray, 1985: 97)

b. Adverbial positioning:
The Turks made anone redy a grete ordonnaunce
``The Turks soon prepared a large number of weapons''
(c. 1482; Kaye The Delectable Newsse of the Glorious
Victorye of the Rhodyans agaynest the Turkes; Gray,
1985: 23)

c. Floated Quanti®ers:
In doleful wise they ended both their days
``Dolefully, they both ended their days'' (1589; Marlowe
The Jew of Malta, III, iii, 21)

d. Inversion:
What menythe this pryste?
``What does this priest mean?'' (1466±7; Anon., from J.
Gairdner (ed.), 1876, The Historical Collections of a London
Citizen; Gray, 1985: 11)

(102a±c) show that V has left VP, since material which it is assumed occu-
pies a position left-peripheral to VP intervenes between the verb and the
object. Note that these orders are ungrammatical in today's English.
(102d) shows main-verb inversion over the subject. Standard assump-
tions imply that the verb must move ®rst to AgrS to get to C (this is the
Head Movement Constraint of Travis, 1984; Baker, 1988), the position it
occupies in this example. So we conclude that AgrS attracted V at this
period. In Roberts and Roussou's terms, English at this time had
AgrS*Move. According to most accounts (Kroch, 1989; Lightfoot, 1991;
Roberts, 1992), verb movement of this type began to decline in the latter
part of the 16th century and was lost from the colloquial language in the
17th century, although it remained in the literary language throughout
the 17th century and perhaps slightly longer (see Jespersen, 1959, vol. VI,
p. 502). Kroch (1989), reanalyzing the quantitative data in EllegaÊ rd
(1953), shows that the crucial turning point in the change was 1575.
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By eliminating a movement dependency from a large class of
cases, the loss of main-verb movement in English clearly allowed a
relatively more elegant grammatical system. The innovative grammar
without verb movement contains simpler representations for large
classes of simple examples than the older grammar which involves
verb movement. This can be illustrated with a simple sentence like
John walks. The structure of this sentence before and after the
change is given in (103) (glossing over the functional structure
between AgrS and VP):

(103) a. Before

b. After
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Inspection of the two structures shows the second to be simpler. In this
sense, then, the change represents a reduction in complexity and there-
fore in markedness. This is directly captured by Roberts and Roussou's
notation:AgrS*Move � AgrS.15 In order to see the role of the learning
algorithm, we need to look more closely at the causes of this change.

Beginning with Roberts (1985), it has been argued that the loss of
parts of the verbal conjugation in English is related to this change.
There is little doubt that, as part of the general loss of in¯ectional
morphology that took place during the Middle English period, a large
number of verbal endings had disappeared by the end of the 15th
century. In particular, Gray (1985: 495f.) gives the following paradigms
for London-area English c. 1400 and c. 1500:

(104) a. 1400: cast(e), cast-est, cast-eth, caste(n), caste(n), caste(n).
b. 1500: cast, cast-est, cast-eth, cast(e), cast(e), cast(e)

Presumably these are caused by phonological erosion of ®nal nasals
and of unstressed vowels (cf. the suggestion above that the phonologi-
cal realization of functional material ± including therefore agreement
marking ± may be a marked property). In particular, in the 16th
century there are only a very few attested survivals of any plural ending
(Jespersen, 1909±49; Barber, 1976). It is therefore plausible to suppose
that the presence of agreement morphology, particularly plural endings,
was connected to the loss of AgrS's attractive property. There is good
cross-linguistic evidence, recently summarized and analyzed by Vikner
(1995), that the presence of an agreement paradigm distinct from tense
marking correlates with the existence of a French- or ME-style verb
movement operation. Vikner (1995) argues that the presence of person
agreement in all simple tenses correlates with this kind of verb move-
ment. French, Middle English and Icelandic have such agreement,
while Modern English and the Mainland Scandinavian languages lack
it (see Vikner, 1995, for detailed discussion and illustration). So there is
a considerable amount of cross-linguistic evidence for a correlation
between verbal agreement morphology and verb movement to AgrS.16

We can formulate this as follows, adopting Vikner's generalization:

(105) If V is marked with person agreement in all simple tenses, then
AgrS is *(Move).

(105) states a natural correlation between the phonological realization
of AgrS's �-features, and in particular person, and the agreement
marking on V. It is stated as a one-way implication in order to allow
for other realizations of AgrS not involving verbal paradigms. Leaving
these other realizations of AgrS aside, (105) states that V must be realized
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in AgrS where it manifests su�cient �-features. The su�ciency is stated
in terms of person marking, one of the main categories of �-features.
Essentially, then, we claim that the existence of person marking across
tenses will give AgrS*; in other words, the presence of person marking
activates AgrS, which is spelled-out by means of verb movement.

Exercise

3.8 Consider the following paradigms:
(A) French: parle, parles, parle, parlons, parlez, parlent.
(B) Middle Scots: castis, castis, castis, castis, castis, castis.
(C) Faroese: kasti, kastar, kastar, kasta, kasta, kasta.

What predictions do the text proposals make about verb
movement in these languages? Are they con®rmed or not by
the following data?
(a) French:

1. Jean ne fume pas.
Jean neg smokes neg
``John doesn't smoke.''

2. *Jean ne pas fume.
Jean neg neg smokes

(b) Middle Scots:
1. Quhy sing ye nocht, for schame! (c. 1480s; Anon. The

Unicornis Tale, 227)
2. For then they observit not Flowing nor eschewit not

Ryming in termes (1584: James VI. The Essays of a
Prentice, Preface to the Reader)

(c) Faroese:
1. Eg ikki kendi.

I not know
``I don't know''

2. *Eg kendi ikki.
``I know not.''

Two ambiguous word orders, one of them extremely common in the
16th century, combined with the elegance condition in the learning
algorithm and the loss of verbal agreement morphology, led to the
parameter change. These were: (a) the introduction of large numbers of
periphrastic constructions with auxiliaries, particularly do, and (b)
stylistic fronting. A notable characteristic of 16th century English is the
possibility of positive declarative do. The following quotation from a
contemporary grammar illustrates the point:
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(106) I do is a verbe muche comenly used in our tonge to be before
other verbes, as, it is all one to say I do speake and such like
and I speake (1530; Palsgrave, Eclaircissement de la langue
francË oyse 84, 380, 523; cited in Visser, 1960±63: 1419)

While it is unclear what caused the development of positive declarative
do-insertion and what caused the restriction in the distribution of do to
its modern contexts in the 17th century, there is no doubt that this con-
struction existed in the 16th century (see EllegaÊ rd, 1953; Visser, 1960±
63; Denison, 1985; Roberts, 1992 for proposals). Another early 16th
century development was the introduction of a syntactic class of modal
auxiliaries (Lightfoot, 1979; Roberts, 1985, 1992). The importance of
the new constructions involving modals and do is that they were
indeterminate with respect to the parameter governing the movement
of lexical verbs. Since AgrS was ®lled by an auxiliary (and by this time,
modals and do were auxiliaries ± i.e. realizations of functional heads
(probably T) ± cf. Roberts, 1992), V could not, in any case, move
there. Also, AgrS's PF-realization requirement was satis®ed by the
auxiliary. From early in the 16th century the number of such
constructions increased signi®cantly, leading to a diminution of the
evidence for movement of lexical verbs.

Stylistic fronting is a process which is found in various
Scandinavian languages, notably Icelandic. It involves the fronting of
some light element, usually an adverb or participle, where there is a
subject gap:

(107) parna er konan kosin var forset�i.
``There is the woman that elected was president'' (Platzack,
1987: example (27), pp. 394±5)

Platzack (1994) gives evidence of the following kind, showing that
Middle English had stylistic fronting:

(108) that ladyes . . . might se Who that beste were of dede
``that ladies . . . might see who best were of deed''

In sentences like the above, we have the order adverb/participle±verb.
As long as there is su�cient verbal agreement morphology, this con-
struction must involve both verb fronting and stylistic fronting.
However, once verbal agreement marking is lost, such sentences are
compatible with the absence of verb movement and the absence of
stylistic fronting. This is a simpler structure, and so preferred by the
learner. The relevant parts of the two structures are illustrated in
(109):
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(109) a. Before:

b. After:

Three factors led to the parameter change. First, as we saw, was the
loss of verbal agreement morphology. The second factor leading to the
parametric change was that certain constructions in the input were
compatible with grammars lacking verb movement. Again, this in itself
does not guarantee the loss of verb movement. This kind of syntactic
ambiguity is, however, a precondition for the loss of movement.
Variation (in the form of ambiguity) is a precursor to selection. But, as
in the case of natural selection, variation alone does not ensure selec-
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tion. The crucial third factor is the sensitivity in the selection procedure
to complexity.

The causal factor, then, is the sensitivity of the learning device to the
complexity of representations. The older system generates representa-
tions which are systematically more complex than the competing
innovative system, as illustrated above.

Of course, the drive to minimize complexity is balanced by the
requirement to represent the input; thus, robust evidence for verb
movement is unproblematic for learners since they will accept a slight
increase in complexity in order to represent the input data. The
situation for learners of English in the 16th century was one where the
morphological and syntactic evidence for verb movement was no longer
categorical. Hence, given the general drive to minimize complexity, the
system which did not feature the option of verb movement was
preferred. This meant that the parametric value of AgrS changed and
verb movement to AgrS was lost.

3.3.2 The development of the Romance future and conditional tenses

Although functional features have an interpretation, this interpretation
is special in various ways (von Fintel, 1995, observes that functional
categories tend to be permutation-invariant and of high type).17

Moreover, even when they are phonologically realized, the phono-
logical realization is always ``light,'' often lacking in stress, or failing to
meet the criteria for minimal wordhood (see McCarthy and Prince,
1986), as is the case for monomoraic the and a in English. It may be,
then, that functional elements are required to fall below certain thresh-
old values for phonological and semantic content.18 In general, func-
tional categories lack �-roles and metrical strength. In other words,
members of functional categories are athematic and aprosodic.

The above observations give us a key to understanding the wide-
spread process of grammaticalization. If a lexical item, l, of category L
has the following three properties, it may be subject to reanalysis as a
functional head:

(110) a. l is in a category L which is always moved to a functional
head F

b. l is atonic
c. l has a potentially athematic interpretation

Reanalysis of a lexical item as a functional item is caused by the
elegance condition in the learning algorithm, since it will prefer a
representation which lacks movement to one which contains movement.
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Unlike the case discussed in the previous section, the elimination of
movement in this case leaves the unmoved element in the former target
position of movement.

At ®rst sight, it might appear that this means that syntactic com-
plexity outranks phonological complexity in terms of markedness, since
the loss of movement and reanalysis of habere as a tense marker
reduces syntactic markedness (by elimination of movement) but
increases PF-markedness (by giving a realization to a feature-value of
T (or some other functional head)). However, we can re®ne our notion
of phonological markedness so that it relates to prosodic factors, so
that functional elements (tend to) fall below the prosodic threshold for
wordhood. This means that F*Merge is not intrinsically PF-marked,
while F*Move might be, depending on the nature of the moved element.
In the case at hand, then, reanalysing habere as a reduced particle rather
than a moved full verb arguably led to a reduction of both syntactic and
PF-markedness.

The case of reanalysis of a lexical item as a functional item that we
will be concerned with involves the development of the future and
conditional tenses of most of the modern Romance languages (not all
of them, since southern Italian dialects and Sardinian don't have future
tenses). Traditional manuals of Romance philology describe these
forms as originating in a periphrastic construction in Latin formed by
an in®nitive followed by habere ``to have.'' For example, the future
tense of nearly all Modern French verbs quite transparently shows this
development. Compare the endings attached to the in®nite of chanter
below, forming the future, with the present tense of avoir ``to have'':

(111) chanter (future tense): chanter-ai, chanter-as, chanter-a, chan-
ter-ons, chanter-ez, chanter-ont
avoir (present tense): ai, as, a, avons, avez, ont

The full lexical Latin verb habere was reanalyzed as the future/condi-
tional ending in the modern Romance languages in two stages. First,
habere was reanalyzed as a future auxiliary comparable to will in
Modern English. This was a change from no realization of the
future/conditional by T to realization by an overt free morpheme,
i.e. Move � Merge. Second, the auxiliary habere, an autonomous
word, was reanalyzed as a verbal a�x associated with movement to
T (i.e. habere ``leaves behind'' Fut* in T). This is a change from
Merge to Move. The ®rst change appears to have taken place once in
late or post-imperial Latin and, hence, eÿected all the modern
Romance standards. The second change arguably took place at
diÿerent times in diÿerent languages.
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The two changes can be schematized as follows:

(112) [TP [VP [XP amare ] thabeo [T habeo]]] � [TP [XP amare]
[T habeo ]]

(113) [TP [XP amare] [T habeo]] � [TP [XP tV ] [T amar + FUT ]]

In Classical Latin, habere was a full verb with the core meaning ``to
own'' or ``to possess''. The following is an example of habere with a
complement containing an in®nitive where it is clear that habere is
functioning as a verb of possession:

(114) De re publica nihil habeo ad te scribere.
of thing public nothing I-have to you to-write
``I have nothing to write to you about the republic.'' (Cicero;
cited in Tekavcic, 1980)

In this kind of example, there is no reason to treat habere any diÿer-
ently from a standard transitive verb: it is a V with a DP complement
(in the above example, with a fairly complex internal structure) to
which it assigns a �-role.

The reanalysis of future/conditional habere gave rise to a lexical
split, in that re¯exes of habere in other contexts (essentially, where
habere was not adjacent to an in®nitive ± see below) retain the posses-
sive and related senses that are found in Classical Latin (this is true in
Modern French and Italian, but possessive habere has been lost in con-
temporary Spanish and Portuguese). The re¯exes of habere have also
arguably been grammaticalized in other ways in other contexts: in
existential constructions and in perfect tenses, although here again the
Iberian languages have largely lost habere.

Benveniste (1968) clari®es a number of aspects of the developments
in Late Latin. He points out that the periphrastic construction
originates with ``Christian writers and theologians starting with
Tertullian'', i.e. early in the 3rd century AD. The ``overwhelming
majority of examples'', according to Benveniste, indicate that the
periphrasis involved a passive in®nitive, as in the following:

(115) in nationibus a quibus magis suscipi habebat
among nations-ABL by which-ABL most to-be-accepted had
``Among nations by which the most was to be accepted''

The periphrasis ``acts as the equivalent of the future passive participle''
and ``served to indicate the predestination of an object to follow a
certain course of events.'' It seems clear that habere here has a modal
interpretation that essentially involves the notion of futurity. The
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``thematic'' interpretation of possession seems to be absent. In marking
purely temporal content, habere is close to an auxiliary like Modern
English will. In these constructions at least, then, habere was athematic
from quite an early time.

Benveniste shows that between the third century and the sixth
century the periphrasis spread to a wider range of verbs and contexts:
active intransitives and deponents. By the end of the Imperial period
the periphrasis clearly had a straightforward future meaning (cf.
Benveniste, 1968; Bourciez, 1930; Tekavcic, 1980). The following
example, from Tekavcic (1980: 237)), is a seventh-century case of clearly
temporal habere:

(116) et quod sum, essere abetis
and that I-am, to-be habere-2pl
``and what I am, you will be''
(seventh-century inscription)

The spelling has been Latinized in this example, and it is likely that it
is somewhat distant from the contemporary pronunciation. The follow-
ing is generally said to be the ®rst example of the Romance synthetic
future, and gives a clearer idea of the pronunciation:

(117) Iustinianus dicebat: ``Daras.''
Iustinianus said ``give + habere + 2sg''
``Iustinianus said: You will give.''
(Fredegario, seventh century)

Here we see that the second singular of habere is reduced to -as.
Tekavcic (1980: 236) gives the forms of habere in this context as:

(118) a(i)o, as, a(t), (av)emo, (av)ete(s), an(t)

These forms, particularly the elimination of the stem av- in the 1pl and
2pl, indicate that future habere was aprosodic at this time.

A third factor is relevant in the reanalysis of habere. In Late Latin,
the system of clausal complementation underwent major changes. In
Classical Latin ®nite indicative complements were rare; the standard
forms of clausal complementation involved subjunctive complements,
in®nitivals or participials. After verbs of saying and believing, for
example, the standard kind of complementation involved the accusative
and in®nitive construction. Complements which were the precursors of
the standard Modern Romance ®nite clause involving the neuter
singular relative pronoun quod existed but were somewhat marginal,
being restricted to a fairly small class of verbs. However, in the Late
Latin period this form of complementation became much more
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frequent; see Bourciez (1930: 122±3), Vincent (1991). I tentatively
suggest on the basis of the morphological form of quod and the
distribution of quod clauses in classical Latin that these were DPs
containing clauses. The change in the complementation system entailed
a categorial reanalysis of many complex DP complements as CPs (see
also Kiparsky, 1994, for a similar proposal regarding proto-Germanic).
Suppose further that in®nitival complements were also
categorially reanalyzed at the same time, becoming reduced IPs
(possibly TPs) where previously they had had more structure. If this is
correct, this created a structure where habere, a verb whose primary
content was temporal/modal, appeared systematically in a functional
head position with a TP complement (cf. (113), where XP � TP).

The three factors outlined above created su�cient ambiguity in
strings containing in®nitive + habere to make possible the reanalysis
of habere as a functional element. The reanalysis was possible because
habere had a nonthematic temporal/modal meaning and a prosodically
reduced form and it always appeared with an adjacent bare in®nitival
complement. These factors in themselves did not cause the reanalysis,
however. Rather, considerations of complexity led the learner to select
grammars that reduced the complexity of the representations that
covered in®nitive + habere. The older representation involved a V
position in which habere was generated and a head-movement relation
between habere and some verbal functional projection (probably T), as
shown in (112) above. The innovative representation involved direct
generation of habere in the functional position. A structure created by
adjoining one head to another is eliminated as well as an additional
category.

The reanalysis of habere as an a�x created a movement dependency.
F*Move arguably only develops in ``head-®nal'' systems, where the func-
tional head F is to the right of the lexical head L and no complement
of L can intervene between L and F:

(119) [FP [LP L ] F ] � [FP [LP tL] L� F ]

If adjunction is always to the left of the host (Kayne, 1994), the general
preference for su�xal morphology in the world's languages is
accounted for. In fact, in terms of the universal base hypothesis in
Kayne (1994), (119) should be given as follows:

(120) [FP [LP L ] F tLP] � [FP L + F [LP tL ]]

This change involves simpli®cation, if we assume that pied-piping a
maximal projection is more costly than simple head movement (which
follows from the general elegance property if ``movement'' is copying).
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In our case, we can see the development of the Move option for
future/conditional habere as a side eÿect of a diÿerent change which
was going on in Latin/Romance around the same time: the change
from OV to VO word order. The OV-to-VO shift was accompanied by
a shift from super®cial main verb ± aux order to aux ± main verb order.
In main verb ± aux order, the in®nitive preceded habere. When main
verb ± aux orders were lost as a part of the general word-order change,
the sequence in®nitive + habere was reanalyzed as a case of syntactic
a�xation and so the auxiliary became an a�x. So the creation of
movement of the in®nitive to habere was a side eÿect of the word-order
change (at least in Gallo- and most of Italo-Romance; in Ibero-
Romance the situation is more complex, as there is evidence that the
Medieval re¯exes of habere were clitics ± I will not go into this here,
however).

The above sketch of how new in¯ectional material may be
introduced can potentially handle many cases of ``grammaticalization,''
a pervasive kind of change much discussed in the typological literature
on diachronic syntax (cf. Lehmann, 1985; Heine, Claudi and
HuÈ nnemeyer, 1991; Traugott and Heine, 1991).

Exercise

3.9 Here are the facts of Old Spanish, alluded to but not discussed
in the text. Old Spanish futures occur in three diÿerent forms,
distinguished by the relative order of the in®nitive (INFIN),
the re¯ex of habere (AUX) and pronominal clitics (CL), as fol-
lows:
a. INFIN±CL±AUX

dezir lo hedes al rey?
tell it you.will to.the king
``Will you tell it to the king?'' (Zif 124; Lema and Rivero,
1991)

b. CL±INFIN±AUX
a quien nos dar edes por cabdiello?
to who us give you.will as leader
``Who will you give us as leader?'' (Zif 163; ibid.)

c. INFIN±AUX±CL
escalentar an se uno a otro
warm will SE one to other
``They will warm each other'' (Ecl 4:11; ibid.)
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How might these alternations be analyzed? What do they
tell us about the grammaticalization of habere in Old
Spanish?

I turn next to a brief consideration of word-order change.

3.3.3 Word-order change

Here I am mainly concerned with the loss of OV orders, as seen in the
history of Romance and English. I will sketch an account which could
apply to both languages. The loss of VSO (as in various dialects of
Modern Arabic, and Modern Hebrew) is presumably analogous to the
loss of verb movement in English, in a system where the subject is
throughout in a position diÿerent from that of English (on VSO order,
see McCloskey, 1996; Shlonsky, 1997, and various papers in Borsley
and Roberts, 1996). The development of VSO order is an intriguing
and di�cult matter (see Watkins, 1963, 1964) which I leave aside. For
reasons that will emerge below, I take the development of OV to be
linked to the development of morphological case.

I will follow Kayne's (1994) idea that all languages are underlyingly
head-initial. In a system like Kayne's, super®cial OV patterns, or, more
generally, head-®nal typologies, must be derived by leftward-movement
processes. Chomsky (1995) adopts a similar position. Zwart (1994) has
shown that this approach yields positive results in the analysis of
Dutch. The purpose of this section is to explore the consequences of
what we will call the Zwart/Kayne view for word-order changes. Given
these assumptions, Clark and Roberts' assumptions about the learning
device can be used to derive an explanatory account of the cause of
these word-order changes.

What changes in a shift from OV to VO is leftward-movement possi-
bilities of complements, as follows:

(121) a. O [VP V t ] (OV order)
b. [VP V O ] (VO order)

So word-order change can be seen as a type of change that is already
very familiar: the loss of a movement dependency. It thus falls into the
same general category of changes as those discussed above. Word-
order change can thus be understood in terms of the theory of marked-
ness sketched in 3.2.2.
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At the same time as the change from OV to VO in early Middle
English, two other important syntactic changes took place: the loss of
complement clitics and the loss of scrambling. Van Kemenade (1987)
argues at length that the cliticization of objects was dramatically
reduced in the 12th century and completely extinct by 1400. On the
other hand, subject cliticization was productive until c. 1400, especially
in southern texts. The loss of the subject clitics was connected to the
loss of V2. However, our main interest here is in complement clitics.
Scrambling, too, was lost at this time. This underlies the often-made
observation that English word order was ``rigidi®ed'' in ME, which is
consistent with the typological generalization that scrambling is cor-
related with OV order.

Another change that takes place in early ME is the loss of the
morphological case declensions. OE had a rich system of case
morphology, with four cases distinguished in two numbers, and up to
seven declension classes. Owing at least in part to phonological changes
(the reduction of unstressed vowels to schwa and the loss of ®nal nasals)
and in part to standard processes of morphological ``levelling'' this
system was reduced by early Middle English to one where nominative±
accusative distinctions were essentially no longer made, and only the
dative (-e) and genitive singular (-(e)s) survived. Of these, the former did
not last long, and so we arrive at essentially the modern system.

The basic property which gives rise to OV order is complement
fronting to SpecAgrO. So we have AgrO*Move. Like AgrS (in nonnull-
subject languages), AgrO* triggers DP-movement in order to ``specify''
its nonovert �-features (see Roberts and Roussou, 1997, on AgrS and
subject-movement). AgrO thus has the marked property of creating a
movement dependency. This property is connected to morphological
case marking on complements ± this idea captures the typological
generalization that morphological case marking is a property of OV
languages (cf. Greenberg, 1996). As I mentioned above, OE had a rich
morphological case system, which broke down in the early Middle
English period. Once this happened, there was no morphological
trigger for movement to SpecAgrO. However, this does not on its own
change the value of the parameter. What was crucial was the existence
of ``extraposed'' postverbal DPs, and a number of other postverbal
constituents; some of these are illustrated in (122). (122a) and (122b)
are instances of ``Verb-Projection raising,'' where the complement verb
and other VP-material belonging to it appear following the ®nite subor-
dinate verb; (122c) is a straightforward case where a complement DP
follows the ®nite verb:
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(122) a. hw�r �negu peod at operre mehte [ friD begietan]
where any people from other might peace obtain
``where any people might obtain peace from another''
(Or 31.14±15; Pintzuk, 1991: 113)

b. . . . p�t nan man ne mihte [ Da meniu geniman]
that no man neg could the multitude count
``. . . that no man could count the multitude'' (�LS 25.418;
Pintzuk, 1991: 33)

c. . . .p�t �nig mon atellan m�ge [DP ealne pone demm]
that any man relate can all the misery
``. . . that any man can relate all the misery''
(Or 52.6-7; Pintzuk, 1991: 36)

Once the morphological trigger for DP-movement to SpecAgrOP was
lost, VO and other verb±complement orders could be analyzed as not
involving DP-movement. Nothing in UG or OE favors this kind of
reanalysis, but we take a preference for maximally simple
representations of the input to be a property of the learner. Hence the
simplest system compatible with the input is chosen. In Early Modern
English, this meant assuming that objects did not move to SpecAgrOP.
Thus the AgrO parameter changed and the word order changed. In
this way, the word-order change in English becomes an instance of a
typical kind of change: the loss of an overt movement rule caused by
the loss of the morphological trigger for a strong feature of a func-
tional head.

It is very plausible that the same happened in the development from
Latin to Romance. Latin was OV with scrambling and rich
morphological case; Modern Romance languages are all VO, lack
scrambling and have no morphological case (outside the pronominal
system). Although essentially no records remain from the likely period
of word-order change (the sixth century to the ninth century), it seems
likely that an account of the sort sketched above would carry over.19

Exercise

3.10 Assume (i) that all languages have an underlying structure
where subject and object both appear in VP, subject precedes
verb and verb precedes object (i.e. [VP S V O ]), (ii) that there
are functional positions to the left of and structurally higher
than VP which can license subject and object, and (iii) that all
the logically possible mutations of S, V and O order exist in
the world's languages (this is factually correct). Now construct
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derivations for each order. According to the proposals made in
the text, what case and agreement properties are allowed/
required with each order?

3.4 Conclusion

In the foregoing, I have tried to argue that an understanding of the
precise properties of the parameter-setting algorithm plays a central
role in comparative and historical linguistics, once this discipline takes
its rightful place within cognitive science. The case studies of language
change (which are of necessity simpli®ed and abbreviated to the point
of sketchiness) support the existence of a conservative elegance
property in the learner. From this we can derive a theory of
markedness, and from the theory of markedness, accounts of language
change and language typology.

The approach described here makes predictions about language
acquisition. It implies that children learning a system where certain
functional features have Move and/or Merge properties should go
through a stage of trying to do without them. In Roberts (1998), I
argued that one can understand the well-known root-in®nitive
phenomenon of language acquisition in these terms (see also Rizzi,
1994; Wexler, 1994).

Note s

1 The notation has been altered for consistency.
2 The reader will note that tutto is not an English adverb. It is the Italian
¯oating quanti®er ``all.'' Apparently, English has no adverb which is able to
occupy this position.

3 The concept of uniformitarianism was ®rst put forward by the 18th-century
geologist James Hutton. Hutton's idea was that the features of the earth
had evolved over long periods of time through processes of erosion, etc.,
rather than having been divinely created. The term became used thanks to
Lyell (1830±33). See Ruhlen (1987: 25ÿ.).

4 Unfortunately, the term ``attractor'' will be used in a diÿerent sense in the
next section, to refer to a category which triggers movement in syntax. To
change either term would involve departing from standard usage, and so I
hope the homonymy will not lead to confusion.

5 It may seem that we have two binary parameters here. I am assuming that
there is just one because both of (83a±b) relate to a single functional feature
F. If we take (83) to de®ne two intrinsically connected binary parameters,
the result is just the same.

6 This conclusion departs from what has often been claimed about para-
meters. See chapters 2 and 4 for further discussion of this.

123Language change and learnability



7 This section is a summary of parts of Roberts and Roussou (1997). A num-
ber of theoretical points left open or glossed over here are dealt with more
fully there. I am indebted to Anna Roussou's collaboration in developing
these ideas. She should not be held responsible for the presentation given
here, though, nor for the conclusions regarding markedness and learnability
that I draw.

8 In Chomsky (1995: 4.10) AgrSP is abandoned and subjects in a language
like English are taken to occupy SpecTP. This does not materially aÿect the
role of strong features in triggering subject raising out of VP, however. On
why the object cannot usually raise to this position, see Chomsky
(1995: 182-6). On the possibility of an expletive subject in this position, see
Chomsky (1995: 4.9).

9 Although, of course, we don't mean to imply that checking theory deter-
mines all aspects of morphological form ± see Halle and Marantz (1993,
Appendix) on this.

10 Dropping Agr from the theory ± as proposed in Chomsky (1995: 4.10) (see
note 8) ± does not aÿect this point. In such an approach, the relevant fea-
tures are syncretically encoded on other heads, e.g. T. The fact that the fea-
tures enter the derivation only to be eliminated is unchanged.

11 Heloisa Salles (personal communication) points out that case morphology
in languages like Latin is syncretic with interpretable �-features, at least
with number. The -us ending in a form like dominus (``master'') encodes the
following features: Singular, Masculine, Nominative, 2nd Declension. Of
these, only the ®rst is clearly interpretable, since Masculine relates to gram-
matical, not natural, gender. Overt case morphology may thus be associated
with interpretable features, although it is by no means obvious that it
always is. Abstract case in a language such as English is not associated with
interpretable features, however.

12 (95b) is, strictly speaking, redundant, as it follows from the idea that move-
ment is a last-resort operation.

13 ``Displacement'' refers to a perturbation of the expected order, which I take
to be given by UG, along the lines of Kayne (1994).

14 One could extend this line of reasoning, following recent proposals by Giorgi
and Pianesi (1998), and say that F can be entirely absent from the representa-
tion, but will be ``read in'' at LF by convention. On the other hand, F� f is
parameterized, and so might be PF-realized. Cinque (1997: 220) criticizes the
Giorgi and Pianesi approach on the grounds that it leads to two ways of
giving a default value for F: F is either present with the default value or absent
and interpreted with a default value. In terms of the proposal being made
here, though, we could think that F can only be present with a default value if
PF-realized, and this is a case of formal markedness, as de®ned here, and so is
distinct from the maximal default. The maximally unmarked case is then
where F has no PF-realization and the default LF-interpretation. It is natural
to think of this as the absence of F from the numeration. In fact, the
assumption of computational conservativeness of the learner almost requires
this: learners will not assign a structural representation to something that does
not require one. What this idea does require, of course, is a theory of LF
which can tell us how the defaults are ®lled in.
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15 The subject moves to SpecAgrSP for diÿerent reasons, arguably connected
to the Extended Projection Principle (whose nature I will not speculate on
here).

16 Jonas (personal communication) argues that Faroese is a counterexample to
Vikner's generalization. Jonas studies two dialects of Faroese, one which
has V-to-AgrS movement (Faroese 1) and one which lacks it (Faroese 2).
Neither dialect has person marking in all tenses. Vikner (personal communi-
cation) suggests that the survival of verb movement in Faroese 1 may be an
archaism. Since we formulate the trigger for verb movement as a one-way
implication (see below), we can accommodate this variety, along with those
of Kronoby (a Swedish dialect spoken in Finland) and the Norwegian of
Tromsù. We are, however, led to follow Vikner (1995: 20±1) in regarding
the 2sg past-tense ending in early Modern English (e.g. thou spakest) as
dying out in the 16th century in Standard English. Interestingly, the 2sg -st
ending is sometimes written in the past tenses in Faroese, but usually not
pronounced (Lockwood, 1977, cited by both Vikner and Jonas.) If we
speculate that this was the case in late 16th- and early 17th-century English,
then we have an exactly parallel situation in the two languages: sporadic
person agreement and apparently optional verb movement. Although rather
speculative, this conclusion supports Vikner's generalization and the
formulation of it given below.

17 Permutation invariance refers to the fact that the meanings of functional
categories do not vary under permutations of the universe of discourse. To
quote von Fintel:

The intuition is that logicality means being insensitive to speci®c facts about
the world. For example, the quanti®er all expresses a purely mathematical
relationship between two sets of individuals (the subset relation). Its
semantics would not be aÿected if we switched a couple of individuals while
keeping the cardinality of the two sets constant. There couldn't be a logical
item all blonde because it would be sensitive to more than numerical
relations. (von Fintel, 1995: 179)

18 Note that, if this is true, the learner's task is simpli®ed, in that the elements
which are crucial for ®xing parameter values are prosodically ¯agged. It
may also contribute to an account of why grammatical systems vary and
change, since the crucial PF information is presented in a ``weak'' form.

19 The obvious anomaly concerns clitics: why has Romance retained clitics
while English has lost its clitics? I will leave this question open here,
although it is worth pointing out that the Modern Romance clitic systems
arguably postdate the word-order change.
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4 Information theory, complexity and linguistic
descriptions

Robin Clark

4.1 Introduction and motivation

What is a syntactic parameter? An initial response is that it is a unit of
syntactic variation, but surely this is an unsatisfying answer. Syntactic
variation is exactly what the theory of parameters seeks to explain.
Furthermore, it is far from obvious that parameters are units in any
primitive sense. An explanatory theory of language variation and
language learnability should try to provide an account of the content
of the notion of parameter. This chapter is an invitation to a branch of
mathematics ± information theory and, more speci®cally, Kolmogorov
complexity ± that may provide the foundations for a full-blown
linguistic theory of parameters. The very nature of the topic requires
that we cover a broad range of mathematics. We will start with a brief
overview of probability theory and then turn to a discussion of some
of the fundamental elements of information theory, along with
applications to linguistics. We will then consider a computational
approach to (linguistic) descriptions and introduce some computational
mathematics needed for a complexity-theoretic approach to descrip-
tions. Using some results from data compression, we will then combine
probability and information theory, on the one hand, with
computational mathematics on the other hand to give a theory of
optimal descriptions. Finally, we will show how optimal descriptions
are related to likely descriptions, a relationship of deep signi®cance to
studies of linguistic variation and typology.

Theoretical linguistics has not been much informed by developments
in information theory since the early 1950s. Thus, most theoretical
linguists and developmental psycholinguists will ®nd the formal work
presented in this chapter alien. Nevertheless, recent work has shown
that there is much to be learned from the study of the statistical
properties of natural language and I have tried to keep such work near
at hand in writing this chapter. I have tried to keep the exposition as
approachable as possible by including linguistic examples, exercises and
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simple applications of the mathematics under discussion. I have not
bothered to give proofs of the main theorems, but have included
citations to works where the proofs can be found. I hope that linguists
will ®nd useful and interesting material in this chapter and that they
will be able to apply some of the mathematics to their own research.
The recent increase in interest in statistical approaches to natural
language underscores the fact that theoretical linguists must inform
themselves of the theory and techniques of these approaches if they are
to participate in the growing discussion on statistical learning in the
cognitive science community. I particularly hope that the results
reported in this chapter provide support for the view that statistical
models must use linguistic theory as a guide, just as linguistic theory
should inform itself from the results of the statistical models. The two
approaches should be fused into a coherent theoretical world view.

A linguist trained in the generative tradition might ®nd it strange to
appeal to information theory to provide the formal foundations for
linguistic variation. Information theory is grounded in the mathematics
of probability and statistics while generative grammar has as its
antecedents logic and the theory of formal languages and automata.
Indeed, generative linguists long ago eschewed information theory and
statistics as useless for the scienti®c study of language. It is important
to recall that early approaches to the study of syntax that were
grounded in information theory and statistics were woefully
inadequate, as Chomsky (1956) brilliantly showed. In particular, such
theories assumed that co-occurrence restrictions between words were
local in the string and that these restrictions could be captured using
digrams (transition probabilities between pairs of words in the string)
or trigrams (word triples). If this approach were correct, then syntactic
structures could be adequately captured using regular grammars (and
their associated class of automata, the ®nite state machines). Chomsky
(1956) showed that this could not be the case using the following sim-
ple construction; consider the relationship between both and and or
either and or:

(123) both S1 and S2
either S1 or S2

If the ®rst member of the pair appears in a sentence, then the second
member must appear. The relationship between these pairs, however, is
unbounded; in fact, the constructions are isomorphic to the language
anbn (any number of as followed by the same number of bs) which is
known to be context free. The structure in (123) is a successful applica-
tion of the pumping lemma for context-free languages.1
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Chomsky concludes his discussion of early information-theoretic
approaches to natural language syntax with a general dismissal of sta-
tistical approaches in general:

Whatever the other interest of statistical approximation in this sense may be, it
is clear that it can shed no light on the problems of grammar . . . As n increases,
an nth order approximation to English will exclude (as more and more
improbable) an ever-increasing number of grammatical sentences while it still
contains vast numbers of completely ungrammatical strings. We are forced to
conclude that there is apparently no signi®cant approach to the problems of
grammar in this direction. (1956: 116)

Indeed, as his discussion makes clear, the example in (124) was
intended to demonstrate that any approach based on word digrams
was doomed to failure:

(124) Colorless green ideas sleep furiously.

Each adjacent pair of words in (124) would have a vanishingly small
probability of occurrence in natural texts. Nevertheless, the string in
(124) is read with sentence intonation by native speakers of English
and easily recognized as a ``syntactical,'' albeit nonsensical, string of
English.

This early split between the information theorists and the generative
grammarians has had a profound impact on the development of the
®eld. While much of the work done on learning over the past ®ve
decades has concerned itself with mathematical, particularly statistical,
models of learning,2 linguistically sophisticated studies of language
development have tended to ignore the possible role of statistical learn-
ing in the acquisition of grammar. Language acquisition has been
taken as involving a separate mental component that is completely
segregated from other learning algorithms; thus, linguists interested in
child language development have generally not attempted to relate
their observations to general learning algorithms. The idea that
language is learned by a special mental device is quite consonant with
nativism, although the two are not equivalent.

Empirically, however, languages are learned in the real world and in
real time. Texts, the raw material of learning, will inevitably have
statistical properties. It may be that real-world learners are oblivious to
these statistical properties but it would be surprising if such a learner
ignores a potentially useful source of information given the demanding
constraints that the natural environment places on the learning
problem. Furthermore, properties like noise resistance and indirect
negative evidence have a clear statistical interpretation (Kapur, 1991).
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The very fact that the learner will have to face some degree of
uncertainty in distinguishing diÿerent candidate hypotheses suggests
that statistical methods will be of great utility to learners (Clark, 1992).
Finally, recent work in developmental psycholinguistics has indicated
that children are sensitive to statistical properties of the environment.
The time has come for linguists and developmental psycholinguists to
reconsider the relationship between statistical learning and core
grammar. This chapter is intended both as an introduction to
information theory and as a discussion of the potential relevance of
statistics and information theory to current linguistic theory.

4.2 The simplicity of the input to the learner

In this section, we will turn to an intuitive account of the relationship
between texts and parameter setting. As discussed in section 1.1.5.1
above, the notion of text as conceived in the paradigm of identi®cation
in the limit is both too general and too restrictive. We might, as a
result, consider constraining our texts to those that satisfy some
complexity metric; intuitively, we would want texts containing examples
that would plausibly be addressed to real learners. In this sense the
de®nition of text is too general since it admits too broad a class of
texts.

The de®nition is too narrow in the sense that it excludes sentence
fragments, phrases, single words, intrusions from diÿerent dialects and
languages, and so on, from the set of texts. A cursory glance at
transcripts of parental speech to children quickly reveals that much of
it consists of phrases and sentence fragments (see (126) below). These
fragments may be of some bene®t to the learner to the degree that they
might aid in the isolation and identi®cation of single lexical items, as
well as exemplifying well-formed phrases. It is remarkable, too, that
children are able to cope successfully with language variation. Virtually
all children live in an environment where they are exposed to a variety
of diÿerent dialects and many, if not most, of the world's children are
exposed to texts drawn from distinct languages. Children, nevertheless,
are able to sort out the diÿerent grammars that underlie the text they
have been exposed to and successfully learn the distinct dialects and
languages they were (consistently) exposed to. Furthermore, if the
grammars contain ``variable rules'' ± that is, rules that apply probabil-
istically ± children are quite capable of matching the probabilities. The
proper treatment of such variation is problematic and will not be
treated here. Nevertheless, the existence of such language variation is
of tremendous signi®cance to theories of learning and a mature theory
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must be able to treat such variation. A rich theory of learning should
account for the following kinds of facts:

(125) a. Learners are capable of sorting through language variation
to converge to the grammars that they have been
consistently exposed to.

b. Learners are capable of frequency matching variable
phenomena in their linguistic environment.

Both phenomena in (125) suggest that children are capable of acquiring
sophisticated linguistic knowledge in the face of real-world variation.
While a full treatment of the problems raised by (125) is well beyond
the scope of the present work, it behooves the linguist to consider the
kinds of algorithms that can identify grammars in environments that
contain variation. Certainly, algorithms that can exploit statistical
regularities in the linguistic environment will be useful; the present
chapter is intended as an introduction to these techniques.

Turning to actual adult input to children, an immediately striking
property of such input is its simplicity. One of the most compelling
arguments for nativism ¯ows from the very simplicity of the input; in
particular, the argument from the poverty of the stimulus is related to
the ``impoverished'' nature of the adult input to children. In its simplest
form, the thesis of the poverty of the stimulus simply notes that the
evidence available to the learner massively underdetermines the
knowledge state that the learner ultimately achieves. In general, the
learner receives simple grammatical input from the environment. For
example, the following utterances were addressed to Adam by various
adults in his environment:3

(126) it's a movie camera.
no, it takes movies, then you show them later on.
we had a Halloween party.
you want to put that on the ¯oor?
what does he have?
®shing rod?
would you ask Cromer if he would like some coÿee?
the man on the radio.

For the most part, these utterances to children consist of simple
sentences without much embedding, although there are a few noun
phrases, echo questions, repetitions and expansions. Indeed, as Gleitman
and Wanner (1982) observe, speech to young learners is ``propositionally
simple, limited in vocabulary, slowly and carefully enunciated, repetitive,
deictic, and usually referring to the here and now'' (p. 15).4
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The input to the learner is so simple that one might well ask how
something so complex as an adult grammar could be accurately
acquired from it. One problem is that the learner's ®nal state is very
rich, capable in principle of detecting and characterizing ambiguities,
paraphrases, synonymy, antonymy and so on. If the input is so simple,
how can the learner learn something so complex?5 Supposing that, in
general, speech addressed to children is simpler than speech between
adults, how do children learn to speak like adults? An appropriate
response to this question consists of two intimately related parts:

(127) a. In its relevant respects, adult speech to children contains
just enough information to allow them to accomplish the
task of learning the adult grammar.

b. Children are able to carry out their task on such input
because they are structured to do so; they know what to
look for.

Most, if not all, observable language variation must have been acquired
by children. Although some variation may be the result of learning
after the critical period, all of it is learnable by children. But if children
are capable of learning these variable properties, then they must have
learned it from a text. All that is variable in language must be such
that it can be learned by children from (adult) speech to children.
Thus, if anything, the relative simplicity of adult speech to children
increases the need for some sort of innate learning device. In particular,
those properties of the target grammar which must be learned from
experience must be of su�cient simplicity to be ``witnessed'' in the
input text. If a grammatical theory is to have the learnability property,
then, it must be able to guarantee a connection between those parts of
the grammar which are to be learned and the evidence available to the
learner, whether the learning is done by pure induction or by some
method of parameter setting. This requirement puts very strong
constraints on the grammatical theory:

(128) Any linguistic theory must be such that the properties it posits
as varying cross-linguistically must have a ``witness'' (a
structure that exempli®es it) in an appropriately simple input
text.

Another way to state the problem is that all relevant linguistic
variation must be ``projectable'' from input texts of the type normally
encountered by children. However much languages may vary one from
the other, it must be the case that children can learn these variant
properties from texts consisting almost entirely of simple, grammatical
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utterances. Thus, even the most complex variant properties must have
their roots in simple expressions. I will assume here a fairly standard
principles and parameters (P&P) model.6 According to this framework,
grammars consist of a core set of principles whose behavior may be
modulated by a ®nite set of parameters each of which may be ®xed by
only a ®nite set of (discrete) values. The learner's task is to discover
the values of these parameters. The assumption that the learner
discovers grammars on the basis of experience implies that, in order to
®x the value of a parameter, the learner must be exposed to the eÿects
of that particular parameter setting on the input text. In general, any
theory of grammar must admit points of variation which the learner
determines in the course of mastering a mother tongue. The P&P
model conceives of these points of variation as ``switches'' which can
be set in only a ®nite number of distinct ways. Other theories might
conceive of them as elementary structures that must be induced from
linguistic experience.7 However we conceive of them, it must be the
case that they can be acquired on the basis of the kind of linguistic
experience that children generally have. Given this conception of the
learning problem, grammarians should be concerned with some notion
of the complexity of parameters. That is, there must be some general
constraint on parameters such that the information they encode can be
set on the basis of relatively simple texts. On the most general interpre-
tation of the notion of parameter, however, the values that parameters
may take on are not informationally encapsulated. Parameter settings
would be informationally encapsulated if there were contexts where the
setting did not interact with any other element of the grammar. These
contexts would be ``dead giveaways'' in that they would tip the learner
oÿ as to the correct value for a given parameter. But this claim would
be tantamount to saying that parameters are construction speci®c; such
an approach would negate the theoretical value of adopting the P&P
framework. Instead, parameter settings interact with grammatical
principles, other parameter settings, lexical information and so on to
generate a text.

Put tersely, linguistically variant properties that cannot be expressed
on simple structures cannot be learned, given the computational
bounds on the learner. Standard P&P theory, however, has had little
to say about the relationship between variation and texts. We can
easily imagine a parameter that could only ``receive expression on''
(alternatively, be witnessed by) structure of relatively great depth; for
example, a structure involving multiple embeddings of a raising verb, a
verb of propositional attitude, a verb of perceptual report and
an indirect question might be accorded some special treatment in a
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grammar and, thus, count as a variant property. Presumably, this
never happens since the kind of structure which witnesses this property
virtually never occurs and, so, would be unlikely to in¯uence learners.
In other words, the theory of parameters must be supported by a
theory that explicitly relates the complexity of structures over which a
learner could detect the in¯uence of particular parameter settings to the
likelihood of such structures occurring in a real text and, thus, being
detected by real learners. The remainder of this chapter will be devoted
to developing this intuition and providing an explicit mathematical
theory which can be used to generate testable predictions about the
relationship between parameterized theories, texts and learning.

In order to ®rm up these intuitions, let us begin with a concrete
example. Suppose that the learner has encountered a sentence which
can, but need not, be analyzed as having the order SVO; the sentences
in (129) show such examples drawn from two diÿerent languages,
English and German:

(129) a. John saw Bill.
b. Peter kauft BroÈ tchen

``Peter buys bread''

The sentence in (129a) is drawn from a language that is genuinely
SVO; the parameter settings that specify the grammar of English result
in verb phrases that are genuinely head-initial. The sentence in (129b)
is drawn from a language that is not SVO but is, rather, underlyingly
SOV; the parameter settings that specify the grammar of German result
in root V2 structures, creating the illusion, in this one example, that
the language is SVO (until you know the rest of the grammar, of
course). A learner encountering an apparent SVO structure for the ®rst
time has no prior information about the correct parameter settings.
Thus, as far as the learner knows, (129b) might be drawn from a
genuine SVO language like English and (129a) might be drawn from a
language that is not underlyingly SVO, but has V2 phenomena.

Taken in isolation, the sentences in (129) are ambiguous as to the
mechanisms which generated them. The problem here, of course, is
that the learner must interpret the example encountered in the text
relative to parameter settings; in particular, the learner must be able to
assess the relative likelihood of a given parameter setting relative to a
text. Thus, (129b) is prima facie support for VO order when taken in
isolation; when it occurs in the context of the appropriate type of
German text, however, it is consistent with the V2 analysis that
ultimately wins out. Our ®rst task is, then, to say what it means for an
input text to be appropriate. In addition, the learner must be capable of

133Information theory, complexity and linguistic descriptions



weighing the evidence given its context in an input sequence; within the
context of a German text, a root SVO sentence lends more support to
a V2 analysis than a root SVO sentence within the context of an English
text. The learner must be capable of computing these diÿerences.

We must say what it means for a particular parameter setting to be
supported in a text. The following (adapted from Clark, 1994) attempts
to formalize what it means for a particular parameter value to be
expressed by a sentence in a text:

(130) Parameter Expression
A string ! with representation � expresses the value vi of a
parameter p in a grammar G just in case p must be set to vi in
order for G to represent ! with � .

The de®nition in (130) relativizes the expression of a parameter value
to a single grammar, G. We will assume that the learner comes
equipped with at least one hypothesis about the target grammar.8

When an input datum is encountered, in the form of a string, !, the
learner attempts to assign it a grammatical representation. If the
learner succeeds in doing so using G, then it must be because some
variable property (a parameter) in G was ®xed to the correct value, vi.
In other words, had vi been some other value, the learner's grammar
would have failed to associate a well-formed representation with !.
This is what it means to express a parameter. The string ! might
express several parameter values relative to G. Furthermore, ! might
express diÿerent values relative to diÿerent grammars, G0 and G00. This
latter is the case with the examples in (129), above. The SVO strings
expressed diÿerent values relative to diÿerent grammars.

In general, a set of parameter settings in a system of parameters P is
learnable from a text just in case each setting in the system is expressed
in that text; in other words:

(131) Parameter Expressibility
For all parameters pi in a system of parameters P and for each
possible value vj of pi, there must exist a datum dk in the input
text such that a syntactic analysis � of dk express vj.

Nothing in the de®nition in (130) requires parameter expression to be
unambiguous relative to a single input datum. The examples in (129)
are completely ambiguous as to their parameter expression. The text
presented to a learner consists of a sequence of strings. Thus, each
datum in the text can be ambiguous as to its parameter expression.
The learner will only be able to set parameters gradually by considering
a number of examples. The child exposed to German is driven to the
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hypothesis that the target is SOV on the basis of a number of diÿerent
factors, including the presence of strings with OV order. A grammar
with parameter settings that work for an underlyingly SVO word order
will fail on such examples, while a grammar allowing for V2 structures
with underlyingly SOV order will succeed. The learner will eventually
be driven to the correct parameter settings even though any one input
datum is ambiguous with respect to parameter expression.

This scenario suggests, in turn, that there is a statistical compo-
nent to parameter setting. In order to specify the value of a para-
meter, the learner must consider classes of data which express
parameter values ambiguously, preferring to set parameters to values
that are expressed most frequently. On this view, the learner
processes each new datum, keeping track of the (ambiguous) para-
meter expression it ®nds as a result of its processing; those values
which are most often expressed are most likely to be selected by the
learner.9 Crucially, the learner cannot set a parameter on the basis
of a single exposure to a datum. We can simulate this eÿect by set-
ting thresholds on parameter setting as in (132). Given a particular
parameter pm which is to be set to a particular value vn, there is
some basic threshold frequency ��m;n� that must be met in order to
set pmto vn. Letting f�m;n��si� be the actual frequency perceived in the
input text, we can formalize this intuition as:10

(132) Frequency of Parameter Expression
Given an input text �i, a target parameter sequence pa and a
learning system L, limT!1 �0�L;T� � 1 if, for all parameter
values v in positions m in the target pa, f�v;m���i� � ��v;m��pa�.

Here, I intend the threshold represented by ��v;m�(pa) to be the number
of times the learner must encounter a construction which expresses the
value v of parameter m in the input text in order to correctly set the
parameter.

Parameters that are expressed in ``simple'' structures are likely to be
expressed with fairly high frequency. As an empirical hypothesis we
might suppose that a parameter which can be expressed on a simple
structure can, likewise, be formulated relative to such a simple
structure. In other words:

(133) Complexity of linguistic expression is directly proportional to
complexity of formulation.

A system of parameters will be learnable just in case each possible
parameter value in the system can be expressed on a structure that is
simple enough that the learner is likely to encounter that structure with
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a frequency that is greater than ��m;n��pa�, the threshold frequency for
setting parameter m to value n given the target sequence pa.

The Boundedness of Parameter Expression (Clark, 1992) captures
this intuition:

(134) Boundedness of Parameter Expression (BPE)
For all parameter values vi in a system of parameters P, there
exists a syntactic structure �j that express vi where the com-
plexity C(�j) is less than or equal to some constant U.

The BPE is conceptually related to the BDE of Wexler and Culicover
(1980). Both the BPE and the BDE attempt to place an upper bound
on the complexity of the data that the learner must see in order to con-
verge on the target. If the constant U in (134) is su�ciently small, then
each parameter value vi in P is expressed on a structure that is simple
enough that the learner is likely to encounter the relevant data with fre-
quency greater than ��m;vi��pa� for the target pa.

As we place tighter time bounds on the learner, the length of the
texts on which the learner is required to converge become shorter; we
would expect that the constant U in (134) would likewise decrease.
This re¯ects the idea that the simpler a structure on which a parameter
value is expressed, the likelier the learner is to encounter that structure
when parsing the input sequence. This, in turn, implies that the hypo-
thesis that the learner is computationally bounded will interact with the
theory of linguistic variation and typology. If parameter values must be
expressed on extremely compact structures, then the set of parameters
we can incorporate in our theory of UG will be tightly constrained,
thus placing a limit on the kind of linguistic variation we can observe
in principle. If this is correct, then complexity limits on learning will
translate to substantive constraints on linguistic theories. The bulk of
this chapter is devoted to an exposition of the mathematics necessary
to explore this intuition empirically.

Summarizing, a system has the learnability property just in case
there is some learner that learns the languages determined by that
system from any arbitrarily selected ``fair'' text, one where each para-
meter value is expressed above the learnability threshold. The complex-
ity bound U established for the constraint in (134) should serve to limit
the complexity of the input text; in particular, given U we can establish
an upper bound on both the sample size and the time required by the
learner. As we will show, as the complexity bound U grows, the
sentences which express structures near the bound become less likely. It
will take increasingly large samples to learn more complex parameter
values. Assuming, as seems reasonable, that the time to converge is a
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function of the size of the text ' learns on, then the time-complexity of
learning is also a function of U. But U is a bound on parameter
expression: no parameter can contain more information than can be
expressed by a phrase marker of complexity at most U. In other
words, the information content of a parameter value is directly related
to probabilities. Finally, since cross-linguistic variation is determined
by the diÿerent parameter values, U also limits the amount of variation
that is possible across languages. We turn now to the formalization of
these intuitions.

4.3 Statistical and computational foundations

In this section, we will turn to a brief review of the statistical, informa-
tion-theoretic and computational background required by a full-blown
theory of parametric variation.

4.3.1 Probability and information theory

We will begin with the concept of a sample space for a random experi-
ment. The sample space is the set of all possible outcomes for an
experiment. For example, if the experiment is to select a letter of the
English alphabet at random then the sample space consists of the 26
letters of the alphabet. Similarly, if the experiment is the roll of a die,
then the sample space is the set of integers f1; 2; 3; 4; 5; 6g correspond-
ing to the number of dots of the uppermost face of the die. An event is
a subset of the sample space that satis®es some predicate. For example,
an event might be selecting a vowel from the sample space of the
alphabet or rolling an even number from the sample space of rolling a
die.

Events over a sample space can be quite complex and interesting
things, although the examples in the preceding paragraph were quite
trivial. A linguist might be interested in the event consisting of a pre-
vocalic consonant cluster where the sample space is the set of words in
a particular text. Similarly, one might be interested in the event of a
noun immediately following the de®nite article the where the event
space is a large sample of English texts. Notice that the role played by
descriptions is crucial here. The notions of sample space and event will
underlie our notion of probability which, in turn, is basic to informa-
tion theory. A sample space, however, must be de®ned and, clearly, the
events that are de®ned over a sample can only be individuated relative
to predicates which may, themselves, be theoretical terms like noun or
in¯ection. There is nothing ill-de®ned in talking about events like the
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occurrence of a VP in a sample space of texts, for example, so long as
we have some independent means of identifying VPs.

Exercise

4.1 Reconsider Chomsky's discussion of statistical approaches to
language on page 128. Are there events de®ned over the sample
space of English texts that will undercut some of his argu-
ments?

We turn now to the notion of the probability of an event. For pre-
sent purposes, we can remain agnostic about the interpretation of prob-
ability; we need not commit ourselves to whether probabilities
correspond to frequencies or expectations,11 although we can always
base our estimates of probabilities on empirically observed frequencies
in texts. Thus, we can associate with each event A its probability P�A�
by calculating nA

n where nA is the number of sample points that fall
under event A and n is the total number of sample points. For exam-
ple, consider a deck of 52 cards consisting of 4 suits of 13 cards each.
The probability of drawing any one card is 1

52; the probability of draw-
ing an ace is 4

52 � 1
13 since there are four aces in the deck. We must

assume that a family of events F de®ned over a sample space ÿ satisfy
the following axioms:

(135) A1. 1 and ÿ are elements of F .
A2. Let A denote the complement of event A. If A 2 F then

A 2 F .
A3. If A1;A2;A3 . . . are elements of F then so is their union;

that is
S1

n�1 An 2 F .

Axiom A1 guarantees that both 1 (no event) and ÿ (all events) are
included in the family of events F while axiom A2 guarantees that if
an event is included in F then so is its complement. Finally, A3
guarantees that F is closed under the operation of union. Taken
together, the three axioms guarantee that F is closed under Boolean
operations, a fact which greatly simpli®es our computations over the
event space.

A probability measure P is a function on F that satis®es the follow-
ing axioms:

(136) P1. 0 � P�A� for every event A.
P2. P�ÿ� � 1.
P3. P�A [ B� � P�A� � P�B� if the events A and B are mutually

exclusive.
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P4. If the events A1;A2;A3 . . . are mutually exclusive
(Ai \ Aj � 1 if i 6� j) then:

P�
[1

n�1

An� �
X1

n�a

P�An�

Axiom P1 guarantees that every event A has a measurable positive
probability. Axiom P2 says that some event has to happen; the prob-
abilities in F sum to 1. Axioms P3 and P4 say that the probabilities of
mutually exclusive events (for example, the event A of a single die
coming up 2 after being rolled and the event B of the die coming up 5)
are additive.

The axioms in (135) and (136) guarantee that the following state-
ments hold (see Allen, 1990, for the proofs):

(137) Let P be a probability measure de®ned on the family F of
events on sample space ÿ. Then all of the following hold:
a. P�1� � 0;
b. P�A� � 1ÿ P�A� for every event A;
c. P�A [ B� � �P�A� � P�B�� ÿ P�A \ B� for any events A and B;
d. A � B implies P�A� � P�B� for any events A and B.

The properties in (137) provide useful computational principles for
manipulating probabilities. Note that (137c) generalizes the principle
that independent events are additive. The probability of either A or B
is the probability of A added with the probability of B, while the prob-
ability of both A and B happening is subtracted out; since A happens
and B happens if both A and B happen, we must subtract out the lat-
ter, lest we overestimate the probability of A [ B.

Exercises

4.2 Consider rolling a pair of dice. Each die has six faces
numbered one through six, so a pair of dice can come up as an
integer from two to twelve. What are the probabilities
associated with each outcome?

4.3 Use the probability measure from the preceding exercise to
compute the probability that the dice come up either showing
®ve or seven. What is the probability that the dice come up
showing anything but ®ve or seven? What is the probability
that the dice come up showing a number between four and
eight?
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4.4 Select a page from this book and compute the probability of
selecting a noun at random from that page. Likewise, compute
the probability of selecting a verb and the probability of select-
ing a preposition. How would you compute the probability of
selecting anything but a noun, verb or preposition from that
page?

We now turn to one of the foundations of the theory of complex-
ity, entropy, a measurement of the uncertainty in a system.
Intuitively, we would like a way of measuring the average uncer-
tainty of a system. Let us take uncertainty to mean, in this context,
the number of yes/no questions it would take to specify the value of
a random variable. In this case, average uncertainty would mean the
average number of such questions. Clearly, the arithmetic average of
the probabilities of the events associated with the random variable
will not be very informative; for any given random variable, this
measure will always return the same result since the probabilities
will always sum to 1.

A more informative metric is given in (138). The calculation here
corresponds to the geometric mean of the probabilities:

(138) The entropy H of a random variable X is given by:

H�X� � ÿ
X

x2X
p�x� log p�x�

As an illustration of entropy, consider a fair coin which turns up heads
50 percent of the time, tails 50 percent of the time and never lands on
its edge. The random variable, in this case, is whether the coin landed
heads or tails. In order to specify the outcome of an experiment, we
would always need one bit of information. Notice that the entropy of
this random variable is 1, corresponding to the one bit required to
specify the outcome.

Compare the above example with the case of an unfair coin that
lands heads 80 percent of the time and tails 20 percent of the time;
thus, P�x � H� � 0:8 and P�x � T � � 0:2. The uncertainty in this case
is much lower since heads turns up most of the time. The entropy of
the random variable in this case is about 0.72. Finally, consider the
case of a massively unfair coin that always lands heads. In this case,
P�x � H� � 1 so that there is no uncertainty in the system and the
entropy of the random variable is zero.

In itself, entropy might not appear to be of great interest to linguists.
One can imagine, for example, de®ning a random variable to be the
grammatical category of words in a text, calculating the probability

140 Robin Clark



that a noun or a verb would be selected at random from a text and
then calculating the entropy of this random variable. It is far from
evident what use the resulting number would be. Linguistics, however,
is very interested in relations between linguistic elements. One can
think of relations like agreement, subcategorization and case assign-
ment as relations where one element determines properties of another
element; in the current context, many linguistic relations reduce
uncertainty. Thus, knowing properties of some linguistic elements can
reduce uncertainty about properties of other linguistic elements. The
following relation, conditional entropy, should be of great interest to
linguists:

(139) The conditional entropy of a random variable Y given another
random variable X is de®ned as:

H�Y jX� �
X

x2X
p�x�H�Y jX � x�

� ÿ
X

x2X
p�x�

X

y2Y
p�yjx� log p�yjx�

� ÿ
X

x2X

X

y2Y
p�x; y� log p�yjx�

The conditional entropy of a random variable given another random
variable shows how the second eÿects the uncertainty of the ®rst.

Conditional entropy can have great linguistic interest. Consider, for
example, how heads can in¯uence the distribution of elements around
them. In particular, knowledge of the properties of a head can yield
knowledge about its environment. Consider, for example, the in¯uence
of verbal subcategorization and thematic relations as exempli®ed by
the verb hit:

(140) a. John hit the ball.
b. John hit near the ball.
c. #John hit the refusal.
d. #John hit for the ball.
e. *?John hit.

The contrast between (140a) and (140b), on the one hand, and (140e),
on the other, shows that hit is likely to introduce an object (although
the object may be a location, as shown in (140b)). Knowledge of the
meaning of hit implies some knowledge of what can be an object of the
verb. Thus, (140c) is peculiar since the refusal is not a concrete object
and (140d) is similarly strange since for the ball does not denote a
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location. Thus, knowledge of the syntactic and semantic properties of
heads can reduce the uncertainty of the kinds of items that can sur-
round the head.

The above reasoning suggests that knowledge of heads can reduce
the entropy of the area around the head. As a concrete illustration,
consider the diÿerence between clitic pronouns and free-standing
pronouns. Clitic pronouns occur in very restricted syntactic environ-
ments; in French, for example, clitic pronouns can only occur in the
verbal auxiliary system and are subject to a number of ordering
constraints. Free-standing pronouns can occur in a wider variety of
syntactic environments, including left and right dislocations. Thus,
knowledge that a particular element is a clitic pronoun will reduce the
entropy of positions around that pronoun while free-standing pronouns
are less informative. Kapur and Clark (1996), using adult input found
in the CHILDES database, report that this is indeed the case. Thus,
computing the conditional entropy of pronouns should allow the lear-
ner to distinguish clitics from free-standing pronouns.

A highly suggestive result is reported in Brill and Kapur (1993). We
reasoned above that heads should lower the uncertainty of their immedi-
ate environment since they select for semantic, syntactic and morpho-
logical properties of the elements that they govern. Knowledge that a
particular element is a verb should, then, be highly informative, since
verbs are good predictors of linguistic features of their environment. For
example, if the learner knows that its language is VO and it has just seen
a verb whose semantico-syntactic properties are known, then its un-
certainty about what will follow should be signi®cantly reduced.
Consider, however, languages in which the verb does not occur in its
base position in surface form. In this case, knowledge of the verb's
properties may not be as informative a predictor since the verb may not
be directly placing constraints on its immediate surface environment.

Verb-second languages like modern German are an interesting case
in this respect. As mentioned above, modern German is underlyingly
SOV although the root clause involves verb-second. Roughly, a
constituent is moved to the initial position (presumably the Spec-CP)
and the tensed verb is then attracted to the second position
(presumably C0). Some orders are given in (141):

(141) a. Der Lehrer gibt den Kindern dieses Buch.
the teacher (NOM) gives the children (DAT) this book
(ACC)

b. Dieses Buch gibt der Lehrer den Kindern.
this book (ACC) gives the teacher (NOM) the children
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(DAT)
``The teacher gives the children this book.''

c. Gestern hat der Lehrer den Kindern dieses Buch gegeben.
yesterday has the teacher (NOM) the children (DAT) this
book (ACC) given.
``Yesterday, the teacher gave the children this book.''

Notice that verb need not place any direct constraint on the element
immediately to its left, although the language is head-®nal. Thus, in
root clauses, the tensed verb is not as good a predictor of the proper-
ties of its immediate environment as it is in embedded clauses.

Brill and Kapur (1993) studied the properties of adult utterances of a
number of the languages in the CHILDES database in an attempt to
see what kind of statistical information could be gleaned from adult
speech to children. In particular, they calculated the conditional
entropy of three positions preceding and three positions following the
verb in adult utterances in Danish, Dutch, English, French, German,
Italian, Polish, Tamil and Turkish. Position here refers to words and
not to larger syntactic constituents. They noted that in Danish, Dutch
and German ± all verb-second languages ± the conditional entropy of
the position preceding the verb was relatively high compared to the
other languages. Indeed, entropy conditioned on position near the verb
could be used to accurately distinguish verb-second languages from
other languages. This suggests that learners can use a straightforward
calculation of entropy to detect fundamental word-order properties of
the target language.

Exercise

4.5 Saÿran, Aslin and Newport (1996) report on evidence that
very young children track the conditional probabilities of
linguistic elements. They constructed an arti®cial language
consisting of four ``words'' of three syllables each. A spoken
text was constructed by randomly concatenating the arti®cial
words. The text itself did not contain breaks between words or
intonational information that could be used to distinguish
word breaks. Eight-month-old children were exposed to eight
minutes of this text and then given a preferential listening task.
In this task, children were presented with words from the
arti®cial language and nonword sequences consisting of, for
example, the last two syllables of one word and the ®rst
syllable of another word. Thus, the children were exposed to
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these nonword sequences during the experiment. Saÿran, Aslin
and Newport report that children were able to distinguish true
words from the arti®cial language from nonword sequences.
That is, if bidaku and padoti were ``words'' children diÿeren-
tiated them from nonword, but possible, sequences like dakupa
and dotibi. In this exercise, we will construct an entropy-based
model of this behavior.

We will use the following four ``words'' from their study:
tupiro, golabu, bidaku and padoti. Divide the words into
syllables and construct a table with each syllable labeling a
row of the table and each syllable labeling a column of the
table. For each entry in the table, compute the probability that
the syllable labeling the row is followed by the syllable labeling
the column in a text as described in the preceding paragraph.

Using the table you have constructed, compute the con-
ditional entropy of one position preceding and one position
following each syllable. How do the conditional entropy results
distinguish between initial, middle and ®nal syllables?

Do these results generalize? That is, how accurate do you
think the technique would be for ®nding word boundaries in a
large sample of English text? What would happen as the sam-
ple size (words of text) grows?

We turn now to a ®nal information-theoretic measure, relative entropy.
Relative entropy compares the diÿerence between two probability mass
functions:

(142) The relative entropy between two probability mass functions
p�x� and q�x� is de®ned as:

D�pjjq� �
X

x2X
p�x� log p�x�

q�x�

As always, one can take the output of relative entropy to be the
number of bits needed to describe the diÿerence between the two
probability mass functions. Let us consider a linguistic application of
relative entropy. As noted above, verbs tend to place a variety of
morphological and semantic constraints on elements that they govern.
As a result, for example, the positions around the verb tend to be
associated with fairly low conditional entropy. Thus, verbs in a
particular language have particular eÿects on the distribution of
elements. Brill and Kapur (1993), again using adult utterances from the
CHILDES database, created a ``distributional ®ngerprint'' for ®ve
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representative verbs from a set of languages. The distributional ®nger-
print was a probability vector over words, indicating the probability of
a word w occurring before or after any of the ®ve verbs. Having done
this, they computed the distributional ®ngerprints of all words in the
corpus and compared them to the ®ve representative verbs using rela-
tive entropy. The 20 words that yielded the smallest relative entropy
were then taken to be verbs; the chart reproduced in ®gure 4.1 illus-
trates how accurate this procedure was. Thus, having discovered a
small set of verbs, new words that have a similar distributional ®nger-
print to the elements in this core set are also likely to be verbs. The
technique of computing distributional ®ngerprints is a useful heuristic
for ®nding possible word classes.

A further application is suggested by the work of Resnik (1993), who
uses relative entropy to distinguish word senses. For example, the word
grade has one sense that is related to words like school and another
that is related to words like slope. One sense or the other can be
primed by the local context. Let us denote one context by c1 and the
other context by c2. The probability that a given word sense occurs in
c1 is denoted by p�xjc1� and the probability that it occurs in c2 is
denoted by p�xjc2�. The distance between the two senses would then be
given by:

(143) The distance between probability distributions pc1 and pc2 is:

D�pc1 jjpc2� �
X

x

p�xjc1� log
p�xjc1�
p�xjc2�

The metric in (143) is, of course, relative entropy ± as comparison with
(142) immediately reveals. Thus, relative entropy can be used in
distinguishing word senses, given knowledge of the likelihood of a
word sense given a particular context.

In this section, we have reviewed some tools from probability theory
and information theory that have immediate linguistic applications.
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Figure 4.1 Verb Classes from Relative Entropy

Language Size (K-words) Number Correct (20 total)

Dutch 41 19 (95%)

English 314 20 (100%)

French 46 16 (80%)

German 14 17 (85%)

Italian 24 18 (90%)



The crucial property of all the linguistic analyses reviewed in this
subsection is that they have assumed a linguistic model that underlies
the generation of texts. Once these assumptions have been made, infor-
mation-theoretic metrics can be used as analytic tools. Thus,
information theory and statistical models are best viewed as a partner
to symbolic analyses rather than as a genuine replacement. In the next
section, we will turn to information-theoretic tools that will provide the
theoretic basis for an explanatory theory of linguistic parameters.

4.3.2 The structure of descriptions

Our goal in this section is to formalize our intuitions about the rela-
tionship between the expression of a particular parameter value, the
inherent complexity of the structures that express that particular para-
meter value and the likelihood of such structures actually occurring in
the learner's input text. A fruitful approach has been to investigate the
inherent descriptive complexity of an object. We will attempt to forma-
lize this theory in the remainder of the chapter. We can begin by asking
whether there is some general method for calculating the amount of
information associated with an object. In general, the object can be a
phrase marker, a linguistic derivation, a strand of DNA or a lump of
coal. The theory we will discuss is general enough to cover such diverse
cases.

Let us begin, at an informal level, by trying to develop an intuition
about the relationship between probability and symbolic structure. To
take a rather arti®cial example, let us suppose that we wish to transmit
a description of an object to some receiver; the complexity of the object
should correspond (roughly) to the eÿort we must go through in order
to encode and transmit the description. The best measure of eÿort
available is just the length of the description since it is likely to take
less eÿort to transmit a short description than a long description. In
general, we might wish to transmit some short sequence of instructions
that would allow the receiver to reconstruct the description of the
object. Notice that this is very similar to an axiomatic theory of the
description: from some small set of axioms, we want to derive the
description as a theorem after a ®nite number of steps. Consider, in the
above light, the following three strings:

(144) a. 011011011011011011011011011011011011011011011
b. 0110101000001001111001100110011111110011101111001100

100100001000
c. 100000101100111011100110010111110000010010100
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The string in (144a) appears to have a good deal of structure. Indeed,
our description might be the program ``Print the sequence 011 ®fteen
times,'' which would allow the receiver to completely reconstruct the
string. Assuming that the print instruction can be encoded in two bits
and the repeat instruction in two bits, the length of the description
would be 2� 2� 4� 3 � 11 bits (that is, the bit length of the two
instructions plus 4 for encoding 15 plus the length of ``011'') which is
less than 45 bits (the length of the string). Thus, the program exploits
the structure that we have discovered in the string to create a descrip-
tion that is shorter than the string itself.

Compare the string in (144a) with the one in (144b). The string in
(144b) appears to have much less structure than the string in (144a);
indeed, the string passes many of the tests for randomness (Cover and
Thomas, 1991). In fact, the string in (144b) is the binary expansion of���
2

p ÿ 1. Thus, the transmitter could encode and transmit a set of
instructions specifying the receiver to compute

���
2

p ÿ 1 and again,
transmit a message that is less complex than the original string. Thus,
although the sequence appears complex at ®rst glance, there is structure
present that the transmitter can exploit.12

Consider, ®nally, the string in (144c). This string has little to no
structure, having been generated by a series of coin tosses. There
would seem to be no description of (144c) that is shorter than (144c)
itself. Thus, the transmitter has little choice but to transmit all 45 bits
of (144c). Notice the connection, made informally here, between the
complexity of the description of an object, computation and random-
ness. This is an important intuition underlying descriptive complexity
and we will rely heavily on this intuition throughout. These intuitions
are summarized in (145):

(145) a. Descriptions of objects can be shortened by using instruc-
tions to compute predictable structure.

b. Random or unstructured objects have descriptions that can-
not be shortened or compressed by computing such struc-
ture.

Objects with structure should have short descriptions because the
description can rely on the structure of the object to tell the receiver
how to compute the description. A random object has no discernible
structure for the transmitter to exploit so the transmitter has no choice
but to transmit the entire description. Thus, if an object is genuinely
random, its description should be incompressible. A sequence of coin
tosses or rolls of a die cannot be compressed because no element in the
sequence can be predicted from the items that precede it; there is no
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causal relationship between the result of one coin toss and the one that
follows it. The connection with information theory and statistics should
now become, at least dimly, apparent. Recall that information theory is
a metric of uncertainty that, intuitively, allows us to predict the average
number of yes/no questions needed to encode the value of a random
variable. The notion of predictability plays a role, then, in the metrics
that make up information theory and the core theory of descriptive (or
Kolmogorov) complexity. Languages, of course, have a great deal of
structure, so we would expect them to have a relatively low descriptive
complexity. Indeed, generative grammar rests on the foundation that
languages can be described using axiomatic methods. These axiomatic
systems can be thought of as compressed descriptions of the languages
concerned.

Generally, given a description language D, the complexity of an
object should correspond to the length of the shortest description of
that object in D. Of course, since the descriptions can be thought of as
a way of deriving a full description of the object from some set of
instructions, our description language should be powerful enough to
describe computations. In other words, D should be thought of as a
programming language. For present purposes, we will use the Turing
machine as our model of a computational framework and we will take
as given a universal Turing machine U and that D is a programming
language for U. We turn now to a brief discussion of Turing machines.

4.3.3 Machines, programs and descriptions

We turn, now, to some central notions of computation theory that will
allow us to connect statistical properties like randomness and compres-
sibility to symbolic descriptions. Basic to the work to be discussed
below is the notion of a Turing machine. We can visualize a Turing
machine as consisting of a read/write head (the cursor), positioned on
an in®nite paper tape, marked oÿ into squares. Each square may be
blank or may contain a symbol. A Turing machine has a single data
structure, a string of symbols, and a very restricted set of operations. It
may move a cursor left or right on the string, it can read the symbol of
the string at the current cursor position and it may write a symbol at
its current cursor position. The string acts both as a data structure and
as a memory device for the Turing machine. Although the architecture
is quite simple, Turing machines are powerful computational devices,
capable of performing any algorithm and simulating any programming
language; indeed, Turing machines can compute the recursively enumer-
able (r.e.) sets.13 Since the r.e. sets properly contain both the context-
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sensitive and context-free languages, the computational model discussed
here provides us with more than adequate power for computing linguis-
tic structures.

Formally, a Turing machine consists of a quadruple M � hK ;�; �; si
speci®ed as follows:

� K is a ®nite set of states.
� s 2 K is a special state, called the initial state.
� � is a ®nite set of symbols, disjoint from K , called the alphabet

of M. � must contain the following reserved special symbols:
(i) t, corresponding to a blank on the tape.
(ii) ., the ®rst symbol.

� � is a transition function that maps pairs from K � � to
�K [ fh;``yes'', ``no''g� � �� fþ;!;ÿg.

� h is the halting state.
� ``yes'' is the accepting state.
� ``no'' is the rejecting state.
� fþ;!;ÿg 62 K [ � are cursor directions:

(i) þ for ``left''
(ii) ! for ``right''
(iii) ÿ for ``stay''

The function � is the program of the Turing machine; it speci®es the
current state that the machine is in (qi 2 K), the current symbol being
read by the cursor � 2 � and a triple ��qi; �� � hqj; �;Di. The triple
hqj; �;Di speci®es the state, qj , that the Turing machine will enter upon
reading �, the new symbol � that the Turing machine will write over
the old symbol �, and D is a member of the set fþ;!;ÿg of cursor
moves. For example, the following:

q1; 1; hq2; 0;!i

states that if the machine is in state q1 and the cursor is reading 1 on
the tape then the state of the machine changes to q2, it writes a 0 over
the 1 on the tape, and it moves one square to the right.

The machine starts at the symbol . on the tape in the state s. From
this initial con®guration, the behavior of the Turing machine is fully
speci®ed by the function �. It continues to move through its computa-
tions until one of the three halting states (h, ``yes,'' ``no'') has been
reached. If the machine halts in the ``yes'' state on string x then it
accepts x, if it halts in the ``no'' state on x then it rejects x. Finally, if
it halts in the state h leaving the string y on the tape, then we will say
that y is the output of the machine on x.14
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A ®nal possibility is that the machine doesn't halt at all on x, but
continues forever. In that case, we will write M�x� � % for the Turing
machine M does not halt on x. Let us note that there is no general
method that will allow us to predict whether or not an arbitrary
Turing machine will halt on a string. This is the famous halting
problem. We refer the reader to Rogers (1967) for a proof and
theoretical discussion. For our purposes, it is su�cient to note the
existence of the halting problem. The proof, however, crucially relies
on the ability of a Universal Turing machine to simulate other Turing
machines. Since our discussion of complexity will rely on Universal
Turing machines, let us brie¯y consider them. Intuitively, a Universal
Turing machine may be thought of as being programmable in the same
way that a personal computer is programmable. We can imagine that
each � function can be enumerated by an in®nite list. The index of a
Turing machine M will be the number associated with M's � function
on the list. A Universal Turing machine can be given a pair �i; x�
where i is the index of a Turing machine and x is a string. It ®nds the
� function in the ith position on the list and simulates the Turing
machine, Mi on the string x. We can de®ne a Universal Turing
machine, MU , as follows:

(146) If MU is a Universal Turing machine then:

MU�i; x� � Mi�x�
where Mi is the ith Turing machine in the enumeration.

Exercises

4.6 Write a Turing machine program for adding two numbers.
4.7 Write a Turing machine program which accepts any string con-

sisting of only 1s but rejects any string containing one or more
0s.

4.8 Write a Turing machine program which accepts any string
which contains an odd number of 1s and which rejects any
string containing an even number of 1s.

4.9 Write a Turing machine program which accepts any string
which contains more 1s than 0s.

We should note that the architecture for the Turing machine
described above, with a single in®nite tape and a read/write head, is
not the only possible architecture for a Turing machine. Consider, for
example, a k-string Turing machine, where k � 1 is an integer. As
above, a k-string Turing machine M � hK ;�; �; si consists of a set K of
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states, an alphabet �, an initial state s and a set �. Like the one-string
machine above � determines the next state, but unlike the one-string
machine it also determines the symbol overwritten and the cursor
movement by looking at the current state and symbol for each of the k
strings. Thus, � is a transition function that maps pairs from K � �k to
�K [ fh, ``yes'', ``no''g� � ��� fþ;!;ÿg�k. For example,
��qi; �1 . . .�k� � �qj; �1;D1 . . . �k;Dk� means that the machine M is in
state qi when it reads �1 in the ®rst string, �2 in the second string and
so on. It then enters state qj , writes �1 in the ®rst string, moving the
®rst cursor in direction D1, writes �2 in the second string, moving
the second cursor in direction D2 and so on. All the strings begin with
the reserved symbol .. The output of the machine can be read from the
kth string if the machine halts. Notice that the one-string Turing machine
described above is just a special case of a k-string machine, so that this
new characterization is a generalization of the old one.

As an example, consider the � function for a two-string machine
which decides palindromes. Intuitively, the machine starts by copying
its input onto the second tape, positioning its ®rst cursor at the start of
the ®rst string and its second cursor at the end of the second string. It
then steps through the ®rst string from left to right and the second
string from right to left, comparing symbols as it does so. As long as
the two symbols match, it continues.

(147) ��s; 0;t� � �s; 0;!; 0;!�
��s; 1;t� � �s; 1;!; 1;!�
��s; .; .� � �s; .;!; .;!�
��s;t;t� � �q;t;þ;t;ÿ�
��q; 0;t� � �q; 0;þ;t;ÿ�
��q; 1;t� � �q; 1;þ;t;ÿ�
��q; .;t� � �p; .;þ;t;!�
��p; 0; 0� � �p; 0;þ;t;!�
��p; 1; 1� � �p; 1;þ;t;!�
��p; 0; 1� � �``no; '' 0;ÿ; 1;ÿ�
��p; 1; 0� � �``no; '' 1;ÿ; 0;ÿ�
��p;t; .� � �``yes; '' t;ÿ; .;ÿ�

The structure of the program in (147) should be fairly easy to see.
While the machine is in the s state, it copies the string on the ®rst tape
to the second tape. When it hits a blank on the ®rst tape, it enters state
q and repositions its ®rst cursor to the beginning of the ®rst string,
leaving its second cursor at the end of the second string. When it reads
. in the ®rst string, it has hit the beginning of that string and can now
compare the two strings. It enters the p state and begins the
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comparison. If the two strings disagree at any point, it enters the ``no''
state and stops. If it reads t in the ®rst string and . in the second
string, then it has gone through the entire string. It enters the ``yes''
state and halts. Otherwise, it simply continues the comparison.

It is interesting to note that adding strings does not change the set of
functions computed by the Turing machine. A one-string machine
accepts the same languages that a two-string machine accepts.
Programming a two-string machine can be simpler than programming
a one-string one, however. This fact will be relevant to our discussion
of complexity below. In the palindrome example, a two-string machine
is relatively easy to program since it can copy the input string and then
compare the two strings point by point. A one-string machine is fairly
laborious to program since it must move back and forth from the
beginning to the end of the string, comparing symbols one by one.
This requires a larger number of states as well as more instructions. It
is important to note, however, that an n-string Universal Turing
machine can simulate the output behavior of an m-string machine,
where m 6� n, so that an external observer would be unable to guess
whether the machine had m or n strings.

Although the structure of a Turing machine is quite simple, it is a
powerful computational device. The palindrome language is context-
free, for example. In fact, Turing machines can compute the r.e. sets.
Although the exact character of the set of natural languages is as yet
unknown, recent research indicates that it is likely to be mildly context-
sensitive and the set of mildly context-sensitive languages lies well
within the set of r.e. languages. Thus, a Turing machine has more
than enough power to compute the representations for natural
language sentences.

In this section, we have developed the notion of a ``computational
description'' by invoking the formal architecture of a Turing machine.
We will use this computational architecture to develop programs for
computing linguistic descriptions. One way to think of linguistic theory
is as a description of a Universal Turing machine, call it TMUG, which
has been optimized to compute linguistic descriptions. Particular
grammars would be represented as the index of a Turing machine
which would be given to TMUG as a program. The learner's task is to
®nd the index, i, such that for every sentence s in the target language
L, TMUG�i; s� halts in the accepting state. The learner must do so on
the basis of a random sample (an input text) � drawn from L.
Linguists should be particularly interested in compact descriptions
relative to TMUG. In the sections that follow, we will turn to the
mathematics necessary to support this notion of compactness. In the
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following section, we turn to the general problem of data compression
and show how it relates to entropy. This relation to entropy will allow
us to formalize the notion of descriptive complexity, relate it to
probability and use entropy to estimate complexity.

4.3.4 Data compression

Data compression involves assigning a short description to a source
object. The description should be such that the object can be retrieved in
a ®nite number of steps; in other words, the description cannot lose infor-
mation about the object. On the other hand, the best description of an
object will be one that exploits all the predictable structure available and,
so, is signi®cantly smaller than the object it is trying to describe.15

We can view data compression as a coding problem. That is, given
that a random variable X can take its value in a set X , we can write an
encoding function C from X ! D�, where D� is the set of strings of
®nite length on an alphabet D. For example, X could be the suits of a
deck of cards, so x 2 fClubs; Diamonds; Hearts; Spadesg, D could be
a binary alphabet and:

(148) C�Clubs� � 00 C�Hearts� � 10
C�Diamonds� � 01 C�Spades� � 11

The suit of a card drawn at random could be encoded, then, as a
sequence of binary numbers of length 2. Notice, however, that the
chance of drawing a card of any one suit is the same as any other, one
in four assuming a fair deck.

In general, code words of varying length are desirable if not all
values of X are equiprobable. As a general principle of organization,
we might want to reserve short code words for frequent items and
allow infrequent items to be associated with longer code words.
Intuitively, we would minimize our eÿort in coding a random variable
if we reserved short code words for frequent outcomes which we would
have to write down often and allowed less likely outcomes to be
associated with longer code words.

In this light, the following quantity is of a good deal of interest:

(149) The expected length L�C� of a source code C for a random
variable X and a probability distribution p�x� is given by:

L�C� �
X

x2X
l�x�p�x�

where l�x� is the length of the code word for x.
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The quantity L�C� de®ned in (149) gives the average length of a code
word. Clearly, the most e�cient code would be one where the expected
length is lowest. Anticipating somewhat, we will be interested in taking
the source code to be descriptions of the object x (a syntactic represen-
tation, for example). The best descriptions (the equivalent to codes in
the above sense) will be those that have the lowest expected length.

There are a number of diÿerent types of codes. We will brie¯y review
some of the diÿerent kinds here, as they will play a role in understand-
ing later results. We turn ®rst to nonsingular codes:

(150) A code is nonsingular if every element of the range of the
random variable X maps to a diÿerent string in D�:

xi 6� xj ) C�xi� 6� C�xj�:
The coding relation in (150) is a true function since each value that X
takes on is uniquely related to a distinct code word. It seems like good
common sense to have a nonsingular code since the fact that the
coding relation is a function ensures decodability. Notice, however,
that it might require adding punctuation between code words if we
wish to concatenate code words reporting a sequence of outcomes of
X , as in the case where X takes on letters of the alphabet as its value
and we wish to transmit an encoded English text. If we are encoding
sequences of values of X , we will need to de®ne the extension of a code
as follows:

(151) An extension, C�, of a code C is a mapping from ®nite length
strings over X to ®nite length strings over D, de®ned by:

C�x1x2 . . . xn� � C�x1�C�x2� . . .C�xn�
where C�x1�C�x2� . . .C�xn� is the concatenation of the code
words for x1x2 . . . xn.

Thus, the extension of a code is the concatenation of code words.
Recall, for example, the code in (148) for encoding the suits of cards
drawn randomly from a fair deck. Suppose we wish to encode the
drawing of a club followed by a heart. Then C�Clubs Hearts� �
C�Clubs�C�Hearts� � 0010. We can now de®ne a uniquely decodable
code:

(152) A code is uniquely decodable if its extension is nonsingular.

If a code is uniquely decodable, then any code string has only one
possible source string associated with it; strings of code words are
unambiguous.
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Notice, however, that ®nding the source string associated with a
code string may require looking at the entire code string. If this is so,
then it may be quite slow to decode an entire encoded sequence.
Consider the relationship between ``pill'' and ``pillow'' in English; the
former is a pre®x of the latter and, so, to distinguish them, we would
require some amount of look ahead to see whether the pre®x ``pill'' is
followed by a space or an ``o''. A pre®x code or instantaneous code
allows for instant decoding without reference to future elements of the
encoded string. Such a code can be de®ned as follows:

(153) A code is a pre®x or instantaneous code if no code word is a
pre®x of any other code word.

A pre®x code can easily be decoded without reference to possible conti-
nuations of the code word precisely because the end of the code word
can be immediately detected; it is a ``self-punctuating'' code.

Let us construct an example of a pre®x code to illustrate the princi-
ple. To take an arti®cial example, suppose that we have discovered a
¯aw in the management of the local race-track; there is a split second
between the end of the race and the close of betting, so that if we
could place a bet in that brief moment of time, we could always beat
the track. In this case, optimal coding is crucial since the time window
within which we can place a bet is so brief that every millisecond
counts. Imagine that there are ®ve horses ± Red, Orange, Black,
Indigo, and Green. We can easily generate ®ve code words to create a
pre®x code for the ®ve horses, as shown in ®gure 4.2. Notice how the
code tree is constructed. Only the leaf nodes are labeled; each leaf is
labeled by a code word. Left branches are associated with a ``0'' while
right branches are associated with a ``1.'' Taking a left branch outputs
a code word whose end is signaled by ``0.'' Only one code word,
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``1111,'' lacks this property. Its end is signaled by its length. Thus, the
code is self-punctuating. Let us associate the horse with code words via
the encoding function E : HORSES ! CODE WORDS:

(154) E�Red� � 0

E�Orange� � 10

E�Black� � 110

E�Indigo� � 1110

E�Green� � 1111

Suppose that the sequence ``11111100101110'' is transmitted over the
channel. This sequence can be unambiguously decomposed into the
code words ``1111'' followed by ``110'' followed by ``0'' followed by
``10'' followed by ``1110''. Adopting the convention that order in the
sequence corresponds to order across the ®nish line, then we can
interpret the string as indicating that Green was ®rst, followed by
Black in second place, Red in third, Orange in fourth and Indigo in
last place. A little experimentation should show that any sequence of
the code words in (154) can be unambiguously segmented.

Notice that the code in (154) is not necessarily optimal. Recall, how-
ever, that we needed to report only the winner of the race and that we
had only a very brief time to transmit the report and place the bet. In
order to optimize our resources, we would want to assign the shortest
code word to the most likely winner, and so on. Notice the association
between shortness and probability and recall the discussion above
concerning randomness and description length; the association between
description length and probability apparent here. Suppose that we have
the following probabilities of winning:

(155) Pr�X � Red� � 1
2

Pr�X � Orange� � 1
4

Pr�X � Black� � 1
8

Pr�X � Indigo� � 1
16

Pr�X � Green� � 1
16

Now the code given in (154) is optimal. The most likely winner, Red, is
associated with the shortest code word since E�Red� � 0 which is of
length 1. Analogously, the least likely winners, Indigo and Green, are
both associated with code words of length 4. In other words, and this
is the punch line, the optimality of the code is directly related to prob-
abilities. The rest of this section will explore this point.
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An optimal pre®x code like the one in (154) can be constructed
via an algorithm; it requires no special, transcendental computational
properties to devise a pre®x code for the values of a random
variable. A good example of an algorithm for constructing pre®x
codes is the one discovered by Huÿman. Here, the values of the
random variable are ranked from most likely to least likely, as in
(155). The two least likely values are processed and assigned a code
word that diÿers only in the last bit. The process of combining the
least likely values is repeated until values sum to 1. See Cover and
Thomas (1991) for fully worked examples as well as proofs that the
algorithm is optimal.

Before continuing, let us pause, try to collect our thoughts and
consider why we are taking this detour into coding theory. We initially
wanted a theory of the complexity of linguistic descriptions that we
could relate to a formal theory of linguistic variation. Intuitively, the
more complex a variant linguistic structure, the less likely it would be
to occur in a text and the longer it would take a learner to master.16 In
order to develop this theory, we needed some computational archi-
tecture within which to compute linguistic representations. We have
chosen the Turing machine architecture since it has ample computa-
tional power and a well-de®ned structure. We saw, in the preceding
section, that Turing machines could be described using a restricted
code. Thus, we can imagine a Turing machine designed to compute the
representations of English sentences, for example. Intuitively, we would
like a code that represented the minimum amount of information
necessary; a Universal Turing machine could ``unpack'' this informa-
tion and simulate the particular machine we are interested in. Universal
Grammar could be treated as a special Turing machine which takes a
speci®cation of the contingent properties of an individual grammar, G,
and constructs a language-particular machine that computes the
representations of sentences in L�G�.

In this section, we started to consider the question of optimum
codes. Clearly, we want our theory of grammar to be as succinct as
possible in its speci®cation of linguistically variable properties.
What we have discovered is that optimum codes are related to prob-
abilities in a nontrivial way: the shortest code words should be
reserved for the likeliest outcomes. Since code words are related to
descriptions, we would expect that the likeliest things should have
the shortest descriptions. We are now in a position to consider the
mathematics that backs up this claim. Let us ®rst note the existence
of the so-called Kraft inequality (see Cover and Thomas, 1991, for
proof):
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(156) Kraft Inequality
For any pre®x code over an alphabet of size D, the code word
lengths l1; l2 . . . lm must satisfy the inequality:

X

i

Dÿli � 1

Conversely, given a set of code word lengths that satisfy this
inequality, there exists an instantaneous code with these word
lengths.

Applying the Kraft inequality to our toy code in (154) we see that each
code word length associated with a horse is crucially related to the
probability that the horse will win according to the distribution in
(155). Notice that D, the size of our code alphabet in (154), has two
elements. Thus, we want to consider the sum of 2 raised to ÿli, the
length of each code word in our code. In this case, we are interested in
the following sum:

21 � 2ÿ2 � 2ÿ3 � 2ÿ4 � 2ÿ4

since our code has one word of length 1, one word of length 2, one
word of length 3 and two words of length 4. That is:

1

2
� 1

4
� 1

8
� 1

16
� 1

16

which sums to 1, exactly as one would expect of a probability measure
as de®ned in (136) in section 4.3.1. Notice that these correspond exactly
to the probability mass function given in (155). Thus, there is an inter-
esting relationship between probabilities and code word lengths in an
optimal pre®x code. This relationship can be best understood by con-
sidering the entropy of the random variable ranging over the things we
wish to encode; and this brings us back to entropy as we de®ned it in
(138) above. Note that in our horse-race example in (155), the entropy
is: ÿ�12 log 1

2 � 1
4 log

1
4 � 1

8 log
1
8 � 1

16 log
1
16 � 1

16 log
1
16� � 1:875 bits.

Naturally, there is a tight relationship between entropy and optimum
codes. Intuitively, the best code is one which is just long enough to
transmit a message and no longer. If a code is too short (below the
number of bits required by entropy), then information is lost. If it is
too long, then there are redundancies (and, hence, wasted eÿort) in the
system. In fact, the following is a theorem (see Cover and Thomas,
1991, chapter 5, for a proof and discussion):17
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(157) Let l1; l2 . . . lm be the optimal code word lengths for a source
distribution p and a D-ary alphabet and let L be the associated
expected length of the optimal code (L � P

pili). Then:

HD�X� � L < HD�X� � 1:

The theorem in (157) just says that entropy of the source provides a
bound on the length of the optimum code words for encoding that
source. Indeed, many data compression schemes rely on the relation-
ship between entropy, probability and pre®x codes to approach
optimum compression. Returning to the code in (154) and the prob-
ability distribution in (155) we see that L � P

pili �
��12 � 1� � �14 � 2�� �18 � 3� � � 116 � 4� � � 1

16 � 4�� � 1:875, which is the
same as the entropy of the distribution; thus, the code given in
(154) is optimal relative to the probability distribution in (155). The
theorem in (157) implies that we can use empirical estimates of
entropy of a random variable X to bound the length of optimum
code to encode the values X takes. Since codes are related to our
computational notion of description, this implies that we can use
entropy to compute bounds on the length of optimal descriptions, as
we shall see.

4.3.5 Putting it together

We have seen, so far, that there is an interesting mathematical relation-
ship between probability mass functions and optimal schemes for
encoding the possible values of a random variable. In fact, this
relationship is exploited in compression algorithms, like Lempel-Ziv
coding, familiar to dedicated computer users. Let us now reconsider
the Turing machine. Despite the computational power of
Turing machines, the vocabulary for building (``programming'') them is
quite restricted. It consists of a ®nite set of states, a ®nite vocabulary
and a ®nite set of cursor moves. If we so choose, we can apply
the methods discussed in section 4.3.4 to the symbols in
K [ � [ fh; ``yes; '' ``no; '' þ;!;ÿg to encode Turing machines.

More speci®cally, we can create a code, C : X ! D� where the ran-
dom variable X ranges over the symbols used in the � (transition) func-
tion for Turing machines and D� is the set of strings of ®nite length on
a vocabulary D. Indeed, let us assume that D is the set f0; 1g. The
function C would take � functions into strings of binary digits. In (158)
I've given a pre®x code for specifying � functions over the vocabulary
f0; 1g; note that qi refers to states in K :
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(158) E�t� � 0
E�0� � 10
E�1� � 110
E�.� � 1110
E�``yes''� � 11110
E�``no''� � 111110
E�h� � 1111110
E�!� � 11111110
E�þ� � 111111110
E�ÿ� � 1111111110
E�s� � 11111111110
E�q0� � 111111111110
E�q1� � 1111111111110
E�qn� � 1n111111111110

Like the code in (154), the code in (158) is self-punctuating; thus, we
can concatenate code words into longer strings without introducing
ambiguity into the string. In fact, ``0'' acts as a form of punctuation,
much like the space in plain English text. A receiver could easily trans-
late a long bit string encoded according to (158) back into a program
for a Universal Turing machine. Notice, however, that the code in
(158) makes no reference to the relative likelihood of a symbol's
occurrence in the space of Turing machine programs. Thus, it is
unlikely that the code in (158) is optimal, but it will do in the absence
of a precise distribution of symbols.

Let us return to the program for recognizing the palindrome
language de®ned in (147). Recall that the program is for a two-string
Turing machine. This means that all of the rules are of constant length,
since each rule maps a triple (the state of the machine and the current
symbols in each string) to a quintuple (the new state, the symbols
written in each string and the cursor direction for each cursor). The
receiver can exploit this fact and the fact that each symbol in the
program is encoded unambiguously by the pre®x code. Consider the
®rst rule:

(159) ��s; 0;t� � �s; 0;!; 0;!�
Stripping away the �, the parentheses, the commas and so forth, we
need only encode the following sequence of symbols:

(160) s0 t s0 ! 0 !
We can now step through the sequence in (160) and associate each
symbol with its code word. This results in the sequence:
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(161) 11111111110 10 0 11111111110 10 11111110 10 11111110

The sequence in (161) can be concatenated to yield a single binary
number:

111111111101001111111111010111111101011111110

This process can be repeated for each rule in (147) to encode it.
Finally, all of the binary numbers in the program can be concatenated
to yield a single binary number. Notice that this number could be
taken as the index in the enumeration of Turing machines used by a
Universal Turing machine.

The encoding procedures de®ned above dovetail nicely with the theory
of computation described above. As we noted above, however, nothing
guarantees that the code given in (158) is optimal. This property would
hinge on the actual statistical distribution of the symbols in Turing
machine programs. We could imagine that a random variable, X , was
ranging over the symbols for encoding programs for a particular
Universal Turing machine. We could then investigate the statistical
distribution of these symbols in the programs and develop an optimal
pre®x code. The result could be used to transmit compressed versions
of these programs or, indeed, act as the index for each encoded pro-
gram.

We could imagine, for example, generating potential Turing machine
programs by ¯ipping a coin. One could theorize about the likelihood
that a sequence of coin tosses results in a well-formed program. Notice,
signi®cantly, that the longer the sequence is, the less likely it is to result
in a well-formed program; complex objects become increasingly
unlikely. This fact has signi®cance for issues of language learnability;
the more complex a linguistic structure is, the harder it should be to
learn, the less often the learner should encounter it and, thus, the
longer it should take the learner to master it. The view we have been
developing in this section combines the symbolic aspects of computa-
tion theory (Turing machines) with statistical properties (optimal pre®x
codes).

4.3.6 The complexity of descriptions

Suppose that x is a program written in the language D. We will let
U�x� stand for the process of running the Universal Turing machine U
on x. For present purposes, we will con¯ate the description of an
object with the object itself; thus, if x is a description of the object y in
D then we will write y � U�x�, even though the output of U�x� is a
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description of y and not necessarily y itself. Given this formalism, we
give the following de®nition for Kolmogorov complexity:

(162) The Kolmogorov complexity KU�x� of a string x with respect to
a universal computer U is de®ned as:

KU�x� � min
p : U�p� � x

l�p�

where l�p� denotes the length of the program p.

In other words, the Kolmogorov complexity of an object x is the
length of the shortest program, p, for U that allows U to compute a
description of x. It should be emphasized that x itself can be anything
we can describe. For example, we might estimate the complexity of
Marcel Duchamp's ``Nude Descending a Staircase'' by scanning the
picture and performing our calculations on the resulting binary ®le.
Similarly, we might say that the complexity of a linguistic representa-
tion is the length of the shortest program which outputs an acceptable
encoding of that representation.

Let us pause for a moment to consider what the de®nition in (162)
means for us. It says that the complexity of an object is the length of
the shortest program for computing (a description of) that object.
Thanks to our work in section 4.3.3 on the computational properties of
Turing machines and section 4.3.4 on data compression, we have some
idea of what this entails. In particular, we know from our discussion of
data compression that we can optimize our computational description
of an object by exploiting statistical regularities in its structure. In
other words:

(163) An object is random if its description cannot be compressed.

That is, there are no predictable regularities in the object's description.
Thus, we have now formalized the intuitions discussed in section 4.3.2.

Exercise

4.10 Consider, once again, the description of a sequence of coin
tosses discussed in section 4.3.2. Explain why such a descrip-
tion is random in terms of optimal codes and the de®nition
in (162).

More generally, return to the ideas listed in (145) and
explain how each one is accounted for in terms of optimal
codes and Kolmogorov complexity.
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Natural language structures will not, of course, be random. Given
any particular sentence, much of its structure will be predictable from
properties of Universal Grammar plus language-particular information.
Thus, not only can we coherently talk about the Kolmogorov
complexity of a linguistic structure x, but we can in general assume
that its complexity K�x� is lower than l�x�. In other words, suppose we
take l�x� to be the size of a conventional structural description of a
sentence, a phrase marker for example. Since many aspects of the
structural description are predictable, we can assume that l�x� is an
over-estimate of its true complexity so that K�x� � l�x�. Furthermore,
we have argued that language-particular settings of parameters must be
expressed (i.e., have an in¯uence) on structural descriptions for
particular sentences. We can now associate the complexity of a
particular parameter value with the Kolmogorov complexity of the
simplest structures that express that parameter value:

(164) For all parameter values vi in a system of parameters P, there
exists a syntactic structure �j that express vi where the
Kolmogorov complexity K(�j). Furthermore, for all �k that
express vi if K��k� is greater than or equal to K��j� then K��j�
is the complexity of vi. We will denote this quantity as K�vi�.

The Boundedness of Parameter Expression discussed in (134) can be
restated as follows:

(165) Boundedness of Parameter Expression II
For all parameter values vi in a system of parameters P, K�vi�
is bounded from above by a ®xed constant c.

It might seem as though the above de®nition of complexity is of only
limited interest, since it is de®ned relative to a particular Universal
Turing machine, U. In fact, Kolmogorov complexity is machine-
independent as shown by the following theorem (see Cover and
Thomas, 1991, for a complete proof) which says that the complexity of
an object x given two diÿerent Universal Turing machines U and A is
bounded by a constant that depends only on the machine A:

(166) Universality of Kolmogorov complexity
If U is a universal computer, then for any other computer A,

KU�x� � KA�x� � cA

for all strings x 2 f0; 1g�, where the constant cA does not
depend on x.
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It is surprisingly easy (and pleasing) to see why this is so. Brie¯y,
suppose that A is a Turing machine and that KA�x� is the complexity
of x relative to A. Since U is a Universal Turing machine, it can
simulate any other Turing machine. In particular, it can simulate A.
Let cA be the Kolmogorov complexity of the program, y, that U uses
to simulate A. We can compute a description of x on machine U using
the program we used to compute x on machine A plus y, the simula-
tion program. Thus, the Kolmogorov complexity of x relative to U is
bounded from above by the Kolmogorov complexity of x relative to
machine A plus the Kolmogorov complexity of y. The absolute
Kolmogorov complexity of x relative to U may well be less than this
amount, but it can never exceed KA�x� � cA.

The theorem in (166) implies that our complexity calculations are
independent of the architecture of the universal computer U we have
chosen; any other choice would lead to a variation in the complexity
bounded by a constant term and, thus, be well within the same order
of magnitude as our estimate of complexity. Of course, the size of the
constant might be quite large, particularly if we are bad programmers.
Nevertheless, it is a ®xed constant and we can always hire a better
programmer to optimize our machine. Thus, given the result in (166),
we can drop reference to the particular machine we use to run the
programs on.

The Kolmogorov complexity of a particular linguistic structure is a
quantity of some interest to linguists. If we could discover the
Kolmogorov complexity of a structure, we would have some handle on
its inherent complexity, since the Kolmogorov complexity of a
structure is a provable invariant up to a constant across computing
machines, as stated in (166). But how easy is it to discover this
quantity? It might be that we could never make any useful estimates of
this quantity. In the remainder of this section we will consider some
general results that bound the complexity of descriptions. Let us ®rst
de®ne conditional Kolmogorov complexity as in (167):

(167) Conditional Kolmogorov complexity
If U is a universal computer then the conditional Kolmogorov
complexity of a string of known length x is:

KU�xjl�x�� � min
p : U�p;l�x�� � x

l�p�

The de®nition in (167) is the shortest description length if U has the
length of x made available to it. For example, suppose we are
interested in the complexity of a labeled bracketing for a particular
sentence. We could encode the labeled bracketing, x, as a string with
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length l�x�. Given that we know the quantity l�x�, the conditional
Kolmogorov complexity of x is the length of the shortest program out
putting that structure.

From the de®nition in (167), it is a fairly routine matter to prove the
following:

(168) Bound on conditional Kolmogorov complexity

K�xjl�x�� � l�x� � c

In this case, the length of the string x is known beforehand. A
trivial program for describing x would, therefore, be merely ``Print
the following l�x� bits: x1x2 . . . xl�x�.'' That is, we simply transmit the
description along with a print instruction. The length of the above
program is therefore l�x� plus the print instruction, c. Hence,
K�xjl�x�� is bounded from above by l�x� � c. This means that the
conditional complexity of x is less than the length of the sequence
x. Notice that the conditional complexity of x could be far less than
l�x�; we have guaranteed that the complexity of an object will never
exceed its own length.

The result in (168) may seem fairly useless. What happens if we
don't know the length of x? In this case, the end of the description of
x will have to be signaled or computed somehow. This will add to
the complexity of the description, but by a bounded amount. Thus, the
following is a theorem (see Cover and Thomas, 1991, for a formal
proof):

(169) Upper bound on Kolmogorov complexity

K�x� � K�xjl�x�� � 2 log l�x� � c

The addition term, 2 log l�x�, comes from the punctuation scheme that
signals the end of x.

We have seen so far that we can estimate the inherent descriptional
complexity of an object by the expedient of using programs which com-
pute a description of the object and, furthermore, that this metric is
universal. Once a program that computes a description of the object
has been discovered, we can use it as an upper bound on the actual
Kolmogorov complexity of that object. Can we ever discover the actual
Kolmogorov complexity of the object? It is perhaps surprising to
realize that in general we cannot do so. Recall that we are measuring
complexity relative to programs for a Universal Turing machine, U.
Suppose that we were to enumerate the possible programs in lexico-
graphic order (starting from the shortest program and proceeding in
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alphabetical order). We could then run each program on U. Suppose
that:

U�pi� � y

That is, U halts on pi, yielding a description of y; we can enter l�pi�,
the length of program pi as an estimate of K�y�. But there may be
programs shorter than pi such that U has yet to halt on these
programs. In particular, suppose that there is a program pj such that
l�pj� < l�pi� and U�pj� has not yet halted. It could be that U�pj� will
eventually halt with U�pj� � y. If so, then l�pj� is a better estimate of
K�y� than l�pi�. If we could know that U�pj� � y then we could ®nd
the actual Kolmogorov complexity of y. But this entails that we know
that U�pj� halts, which entails in turn that we have a solution to the
halting problem. Since the halting problem is unsolvable, we cannot
guarantee that we have arrived at the true Kolmogorov complexity of
an object once we have a program which computes its description.18 In
other words:

(170) An upper bound on the Kolmogorov complexity of an object
can be found, but a lower bound cannot.

The result in (170) is not as bleak as it ®rst may appear. We can still
arrive at useful approximations of the descriptive complexity of an
object, just as we can arrive at near optimal codes for compressing
information. In fact, given that Kolmogorov complexity is concerned
with optimum description length, it should come as no surprise that
there is an intimate relationship between the theory of optimum codes
(that is, data compression) and Kolmogorov complexity. Presumably,
the shortest description of an object is already in its most compressed
form. Otherwise, it wouldn't be the shortest description since there
would have to be a better compression algorithm that we could use to
shorten the description further. Let us assume that we encoded the
programs for our Universal Turing machine, U, using a pre®x code.
The following theorem can be seen as the complexity analog of the
Kraft inequality in (156), which, it will be recalled, related encoding to
probability measures:

(171) For any computer U:
X

p : U�p� halts
2ÿl�p� � 1:

In fact, from (171) we see that the halting programs for our machine U
must form a pre®x code. In the theorem in (171) the halting programs
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for U have the same numeric property that words in a pre®x code
have. Indeed, if we recall that the likeliest outcomes of a random
variable are encoded with the shortest code words in an optimal code,
then we would expect that the shortest programs are the likeliest to
halt on U; as the programs lengthen, it becomes increasingly likely that
the machine will not halt. If we take a sample of randomly generated
programs of great length, for example, the overwhelming majority of
them will fail to halt while only a few will correspond to intelligible
programs. One might think of it as follows: the things that work well
(halt) tend to be simple (short).19

Exercises

4.11 Relatively simple organisms, microbes, far outnumber more
complex insects which vastly outnumber humans. Once again,
simplicity seems correlated with probability. Give a
Kolmogorov complexity account of why we should expect this.

4.12 Let us apply the above reasoning to linguistic constructions.
We would expect constructions with more complex representa-
tions to be less frequent. Make a guess about the relative
frequency of simple transitives, pronouns and nonpronominal
NPs with and without relative clauses, yes/no questions, WH-
questions, raising constructions and tough movement
constructions based on your (informal) estimate of the relative
complexity of their descriptions. Check your guess by
calculating their frequencies in some real text.

4.13 Is syntactic complexity su�cient to estimate the relative
frequencies of constructions? Will we, rather, have to include
semantic and pragmatic information in our descriptions?
Ponder and discuss.

Recall that we have established that there is a nonarbitrary
relationship between optimal code word lengths and entropy in (157).
From (171), the fact that the halting programs form a pre®x code, we
know that the halting programs are related in an interesting way to
entropy. We would therefore expect that entropy of a random variable
X ranging over an alphabet X should provide a useful bound on the
Kolmogorov complexity of objects described by X . This is indeed the
case, as the following rather imposing-looking theorem states:

(172) The relationship between Kolmogorov complexity and entropy
Let the stochastic process fXig be drawn in an independent
identically distributed fashion according to the probability
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mass function f �x�, x 2 X , where X is a ®nite alphabet. Let
f �xn� � Qn

i�1 f �xi�. Then there exists a constant c such that

H�X� � 1

n

X

xn
f �xn�K�xnjn� � H�X� � jXj log n

n
� c

n

for all n. Thus

E
1

n
K�Xnjn� ! H�X�:

That is, the average expected Kolmogorov complexity of length n
descriptions should approach entropy as sample size grows. This means
that we should be able to use texts to estimate the entropy of various
linguistic variables and, therefore, place a bound on the complexity of
their descriptions. In other words, linguists interested in the relation-
ship between linguistic typology and learnability should be very
interested in the results of corpus-based linguistics since studies of real
corpora will provide hard limits on the amount of information that can
be packed into a parameter.

We have so far noted a relationship between Kolmogorov
complexity, pre®x codes and entropy. The relationship is both surpris-
ing and deeply suggestive. Recall that Kolmogorov complexity is
de®ned relative to symbolic objects, namely Turing machine programs;
we can, in fact, think of these programs as programs for a physical
computer if we like. Entropy is a statistical notion, a measure of the
amount of uncertainty in a system. Nevertheless, as (172) shows,
there is a systematic relationship between entropy and Kolmogorov
complexity.

Let us return to a thought experiment brie¯y suggested above.
Suppose we started feeding a computer randomly generated programs.
Sticking to the binary programming language we have been using for
Turing machines, we might generate these programs by tossing a coin
and using ``1'' for heads and ``0'' for tails. In general, these programs
will crash (halt with no output), but every once in a while one of them
will halt with a sensible output. Thus, the following quantity is well-
de®ned:

(173) The universal probability of a string x is

PU�x� �
X

p : U�p��x

2ÿl�p� � Pr�U�p� � x�;

which is the probability that a program randomly drawn as a
sequence of fair coin tosses p1; p2; . . . will print out the string x.
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The de®nition in (173) is quite similar to the Kraft inequality in (156).
Since the Kraft inequality guarantees that optimal pre®x codes are
related to probability measures and since Kolmogorov complexity is
also related to probability measures by 18, it is to be expected that
there would be a tight relationship between universal probability and
Kolmogorov complexity. Indeed, the following is a theorem (see Cover
and Thomas, 1991):

(174) PU�x� � 2ÿK�x�

That is, we can approximate the universal probability of x by using its
Kolmogorov complexity. Intuitively, this is because the high
probability things are encoded by short strings, as we have seen. Thus,
simple objects are much more likely than complex ones.

The relationship between Kolmogorov complexity and probability
has a rather pleasing result for us. We de®ned the Kolmogorov
complexity of a parameter value as the complexity of the smallest
structure which expresses it (see (164)). We used this to formalize the
constraint that all parameters must be expressed on a structure whose
Kolmogorov complexity is bounded by a constant c in (165). The result
in (174) means that the descriptive complexity of a parameter value ±
the size of the minimal structure that expresses it ± is also a bound on
its frequency in real texts.

We had initially required that in order for a parameter value to be
discovered by a learner, the frequency with which it is expressed in the
input text must exceed some threshold level. This was the content of
the requirement in (132). If we let � represent this ``learnability thresh-
old'' then we can restate the requirement as follows:

(175) For all parameter values vi is a system of parameters P,
2ÿK�vi� � �.

We speculate that the constraint in (175) is related to the Boundedness
of Parameter Expression (II) in (165), repeated here as (176) through
the constant c which bounds the complexity of the structures which
express parameter values.

(176) Boundedness of Parameter Expression II
For all parameter values vi in a system of parameters P, K�vi�
is bounded from above by a ®xed constant c.

In particular:

(177) � � 2ÿc
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That is, the complexity bound on parameter values doubles as the
minimal learnability threshold. If the Kolmogorov complexity of a
parameter value is greater than c then its probability of occurring in a
text will fall below the learnability threshold.

The constant c can, in principle, be estimated from actual texts.
Grammatical constructions eÿectively partition sentences into types,
which occur with particular frequencies in texts. The complexity of a
particular parameter value can be estimated from the frequency of
constructions that express that parameter value. The probabilities here
should be additive, so that careful investigation of a wide variety of
constructions over very large texts will be required. The predictions are
as follows. Extremely simple parameter values ± those that are
associated with a low Kolmogorov complexity ± should have a high
universal probability, as we saw above in (174); that is, constructions
expressing this parameter value should occur relatively frequently in
texts. If frequency of exposure is related to mastery of the target value,
we would expect parameters with low Kolmogorov complexity to be
set relatively early by learners. This follows from the interaction
between the Frequency of Parameter Expression (see (175)) and
Boundedness of Parameter Expression II (see (176)). Complex para-
meter values ± those associated with a high Kolmogorov complexity ±
should have a low universal probability according to (174). This means
that constructions expressing this parameter value should occur with a
relatively low frequency in texts, the learner will be exposed to this
value relatively infrequently and, therefore, discovering this parameter
value should occur relatively late in the acquisition process.

We have now formalized the relationship between simplicity of
description, frequency in the input text and ease of learnability. The
theory of Kolmogorov complexity, with its association with universal
probability, is a powerful tool that relates the information content of
parameter values to real world texts. When fully developed, the theory
of the complexity of parameters will relate theoretical linguistics, cor-
pus-based linguistics and developmental psycholinguistics.

Note s

1 On pumping lemmas, see Hopcroft and Ullman (1979); see also Partee, ter
Meulen and Wall (1990) which gives a brief introduction to formal
languages and automata theory directed toward linguists.

2 See Gallistel (1990) for a review of such approaches in animal learning.
3 I have drawn these from two ®les on the Child Language Data Exchange,

one early ®le (adam15) and one late ®le (adam40).
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4 See the reference cited in Gleitman and Wanner (1982) for extensive discus-
sion.

5 See Wexler and Culicover (1980), particularly their chapter 2, for an
excellent discussion of the ``motherese'' hypothesis.

6 Chomsky (1981a) gives a good exposition of the fundamental ideas underly-
ing the P&P approach. See also the references cited in this volume.

7 See Clark (1996) where the basic units are minimal trees which the learner
combines in ®xed ways in order to account for the input text. The idea was
based on Tree Adjoining Grammars (TAGs); see Rambow (1994), Frank
(1992), Joshi (1987) and the references cited in these works for a discussion
of TAGs.

8 See Clark (1992) and Clark and Roberts (1993) for a model which assumes
a population of hypotheses.

9 See Clark (1992) and Clark and Roberts (1993) for discussion of a learning
model with these properties.

10 The limit, limT!1 ��0�L;T� � 1, expresses convergence to the target
sequence of parameter settings as time, T, goes to in®nity, given a learning
system L and a test for correctness ��0�L; t� to be the number of parameters
correctly set by L at time t.

11 See Hamming (1991) for some articulately defended views on the nature of
probability.

12 The example raises the interesting problem of how to decide when a given
string is random; in particular, eÿective tests for randomness (proportion of
sequences like ``00,'' ``10,'' ``01'' and ``11'' in the string, and so forth) are
not guaranteed to give the correct answer. Thus, the randomness of a string
may not be decided (see Li and Vitanyi, 1993, for some discussion) which
brings up the interesting relationship between Kolmogorov complexity and
GoÈ del's incompleteness theorem.

13 Space prevents a more complete discussion of Turing machines and compu-
tation theory here. For a more detailed exposition, see Papadimitriou
(1994). I will rely on Papadimitriou's formalism for the discussion here.

14 A simpler speci®cation of Turing machines is given in Hopcroft and Ullman
(1979). A simpler formalism would make the binary encoding in the pro-
grams easier, but I have used the richer formalism for ease of pedagogy.

15 In this section, we will rely on the presentation of data compression to be
found in Cover and Thomas (1991). See, in particular, their chapter 5.

16 Invariant properties could, of course, be hard-wired and, so, be arbitrarily
complex since the learner would not learn them from linguistic experience.

17 Note that HD�X� is the entropy of X calculated with a base D log.
18 A fundamental work in this area is Chaitin (1987), which relates

Kolmogorov complexity to many interesting results in number theory and
recursive function theory.

19 An amazing principle that has many applications. The workstation in my
o�ce crashes more frequently than my desktop computer at home. The for-
mer relies on its connection to a complex local area network while the latter
does not. The home computer has proven itself more problematic than my
ballpoint pen. The complexity relationship between the latter two needs no
further elaboration.
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5 The Structural Triggers Learner

William G. Sakas and Janet Dean Fodor

5.1 Introduction1

How much work does it take to acquire a human language? For most
adults, the acquisition of a new language is a slow and eÿortful
process. But what if one has the right learning equipment, as children
evidently do? For ®rst language learners most of the work is done in
®ve or six years. Our research goal is to ®nd out what goes on in those
few years. To what extent does it involve the use of special-purpose
computational systems that adults lack? What do the learning routines
do that is so di�cult for the human brain to simulate later in life?

We will argue here that very little need be done to acquire a
language, over and above the normal processes of comprehension that
are involved in all language use. At least, we will argue this for the
acquisition of syntax, on the assumptions that the syntactic component
of a natural language grammar is largely innate and that learning
consists exclusively of the setting of parameters. Similar conclusions
could apply to any other parameterized domain, such as phonology
(see Dresher and Kaye, 1990; Dresher, 1999). Acquisition of the lexicon
is likely to be a diÿerent and more labor-intensive project. And
semantic principles possibly demand no learning at all.

Thus, we assume here the principles-and-parameters framework for
language description (Chomsky, 1981a, 1988, and elsewhere) and con-
sider the process by which syntactic parameters are set. This process is
commonly described as triggering, and it is contrasted with more tradi-
tional modes of learning such as hypothesis formation and testing. The
latter seemed to be the only way in which a grammar could be acquired,
back when linguistic theory de®ned grammars as rule systems diÿering
considerably from one language to another (Chomsky, 1965). Hypothesis
formation clearly carries a very heavy workload, and appears in addition
to be too unreliable a mode of learning to model the remarkably uniform
achievements of human learners. By contrast, parameter setting is
thought to be much less onerous and more uniform across individuals.
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The work involved in parameter setting can be broken down into
three phases:

I trigger recognition;
II parameter value adoption;
III any necessary error correction or other relearning (possibly repeat-

ing I and II).

The amount of work that each subprocess requires can be measured in
terms of the number of computational steps it takes, and/or the
number of input sentences consumed before learning is complete. Note
that there are both swings and roundabouts here: an obsessively
cautious learner would be slow on I and II but would recoup time with
respect to III, while a learner that takes chances may coast through I
and II but have to put in a lot more work at stage III. Triggering, as
originally conceived, was hailed as winning in every direction: it is
thought to be fast, accurate, and virtually computation-free.

We will report here a sad conclusion that is a commonplace in
computational learning theory but is not widely known in linguistics
and psychology: that the classical notion of triggering cannot be
eÿectively implemented for natural languages. This is because trigger
recognition is much more di�cult than has been recognized. In the
following sections we examine stochastic models of a kind recently
proposed by Gibson and Wexler (1994) to take the place of classical
triggering, and show that they fall far short in terms of e�ciency,
faring badly with respect to both I and III. We then outline a very
diÿerent approach to parameter setting, which amounts to just a slight
twist on normal sentence parsing and which copes with the di�culty of
I without paying heavily on III.

5.2 Triggering

De®nitions of a trigger or to trigger are hard to ®nd in the literature.2

The general understanding appears to be roughly as follows. A trigger
is a sentence (a word string) of the target language, perceived by the
learner, which ``automatically'' ¯ips a parameter switch to the correct
value. That triggering is ``automatic'' or ``mechanical'' is regarded as
important but is rarely explicated. We suppose what is intended is that
some easily accessible property of the input word sequence is detected
by the learning mechanism and causes a change in the value of a para-
meter without there being any intervening computation of the linguistic
consequences or any evaluation of alternative moves. The property in
question need not even have any contentful relation to the parameter it
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sets (cf. Atkinson, 1987). Imagine, for instance, an arti®cial language
domain in which all and only verbs begin with /w/, and all and only
sentences with null subjects are verb-initial. In that domain, a sensor
that detects /w/ could reliably trigger the positive value of the null sub-
ject parameter.

Unfortunately, this supremely simple triggering mechanism for para-
meter setting is a workable possibility for arti®cial languages only.
Natural languages are not built for it. The sentence properties cor-
related with syntactic parameter values in natural languages are often
abstract structural properties, not immediately detectable in the word
string.3 Two factors in particular impede super®cial triggering. We
will call these (i) the depth-of-derivation problem, and (ii) the string-to-
structure problem. We consider them in turn.

(i) The depth-of-derivation problem: The criterial property for
establishing a parameter value may be obscured by later derivational
operations. This does not arise for all parameters. For example, the
fact that there is no overt subject in a sentence is normally apparent in
the surface form.4 (But see exercise 5.5 at the end of this chapter.)
However, some parameters, such as the word-order parameters, control
underlying properties of sentences. For instance, the head-position
parameter for VP determines whether the verb precedes or follows the
object in the underlying structure, and this cannot be read oÿ the
surface word sequence because movement transformations may have
rearranged the constituents.5 (Underlying order information is
preserved in the positions of traces, but these are phonologically empty
categories which are not perceptible; see below.) Thus, the information
needed to set the parameter is present in the derivation but di�cult or
impossible for a learner to access.

(ii) The string-to-structure problem: Even surface structure is not
overtly registered in the terminal string in all its detail. As a result,
even some surface facts about a derivation may be undetectable to a
learner. Traces and other empty categories are inaudible, and so are
structural nodes unless they have characteristic lexical markers. For
instance, in a super®cially subject±verb±object (SVO) sentence the verb
might be in situ within VP, as in English, or moved up to an
in¯ectional head, as in French, or moved up to the C position in a
verb-second language such as German (the subject also being moved in
the latter case). (See Gibson and Wexler, 1994; Holmberg and
Platzack, 1991; and Haegeman, 1994, or other textbook for details of
these derivations.) From the SVO word string it is impossible for the
learner to tell which of these structures is present. Other sentences in
the language provide more speci®c cues to structure. For instance, it
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might be possible for a learner to locate the verb (as linguists do) by
reference to ®xed-locus constituents such as tense or negation or lexical
complementizers (see Bertolo et al., 1997a). But the reasoning involved
in these deductions is far from trivial.

These observations make it clear that trigger properties for setting
natural language parameters are not always apparent in the linguistic
stimuli that learners are exposed to. Hence, for natural languages there
can be no simple routing of input sentences towards the right para-
meter switches by a bank of peripheral sensors or by any kind of
simple computation-free sorting procedure. We may still speak of
trigger sentences, and even very loosely of triggering; but it must be
with the understanding that these are not as in the carefree classical
model in which word strings trip parameter switches without any
signi®cant linguistic analysis having occurred. We may take a trigger
Tvmi

for value vmi of parameter pi to be a sentence which occurs in at
least one language and is grammatical in any language only if the
grammar for that language has pi set to vmi . Better still, we may take
Tvm

i
to be the speci®c structural property within sentences that the

value vmi is responsible for licensing. Either way, an encounter with Tvm
i

in the target language would constitute reliable evidence for vmi in the
target grammar (ignoring here the possibility of ungrammatical input).
Whether the learning device can recognize this evidence, whether it
adopts vmi , and if so by what mechanism, are matters deliberately left
open by this process-neutral de®nition. They are what remain to be
determined.

All that can be retained from the classical instant triggering model is
the triviality of stage II above, i.e., grammar changes consequent on
trigger recognition are computation-free. We can assume that once a
trigger has been recognized, the relevant parameter value is established
and it alters the set of sentences licensed by the learner's grammar
without any monitoring of this change by the learning device. For
stage II, then, the learning system need not be knowledgeable about
the very intricate correlations that hold between languages and the
grammars that license them.6 By retaining the labor-free stage II from
the switch-setting metaphor we thus bene®t by its considerable
simpli®cation over more traditional hypothesis testing procedures,
which require a detailed knowledge of the generative consequences of
diÿerent grammars. However, no general conclusion about this can be
secure until we have established how the learner can recognize triggers,
for it remains an open question whether the trigger recognition opera-
tions of stage I will demand a comparable amount of metalinguistic
sophistication.
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To summarize the conclusions of this section: many natural language
parameters control nonperceptible, often deep, structural properties of
sentences. What makes a sentence a trigger for some parameter value is
that it has the property in question. Trigger recognition is therefore far
from trivial, and the metaphor of triggering as instant switch-¯ipping
must be relinquished. The literature on learnability still commonly
refers to triggering. This is a convenience which does no harm as long
as it is clear that an input sentence could reliably ¯ip a correct para-
meter switch only after it has undergone a signi®cant amount of
linguistic analysis.7

5.3 Using the parser to identify triggers

Gibson and Wexler (1994) had the idea of using the sentence-parsing
mechanism to recognize trigger sentences. This makes excellent sense,
since the sentence-processing device routinely computes relations
between terminal strings and structural representations at all levels of
derivation. During normal sentence comprehension, it takes as input a
surface word string, and its job is to establish su�cient structure to
permit semantic interpretation of the sentence. Plausibly, this involves
establishing empty categories and underlying grammatical relations of
just the kind needed for natural language parameter setting. Note that
the output of the syntactic parse might be a representation of the
whole derivation, a structural description in the sense of Chomsky
(1995); or it might be some more compact representation of signi®cant
derivational properties, such as an S-structure as de®ned by
Government and Binding (GB) theory, which contains movement
chains. For present purposes the diÿerence is not important. For
concreteness, and greater parity between transformational and non-
transformational models, we will assume here that the processor
constructs a single-level parse tree with movement chains, as is
common in many current parsing models.

It is not unreasonable to suppose that the human parsing mechanism
is innate (see Fodor, 1998b). An infant's parsing routines may perhaps
be limited in processing capacity at ®rst, but we assume that the
mechanism is ready to operate as soon as it is supplied with a grammar
to work with. It would seem, then, that the ideal learning strategy
would be for the learner, on encounter with a novel input string, to
parse it so that any deep trigger properties it contains will become
visible, and then use these properties to set the relevant parameters.
However, this proposal for trigger recognition also faces some practical
problems.
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One is what we call the parsing paradox, ®rst drawn to attention by
Valian (1990). The sentence processing mechanism can parse (assign a
complete structure to) only those sentences that are licensed by the
grammar from which it is drawing its information about the language.
Those sentences, however, do not demand that any learning take place.
The sentences that should initiate learning are those which the learner's
current grammar does not yet license. But these sentences the learner's
parsing routines cannot parse. In short: the learner cannot parse the
very sentences it should learn from.

A second problem, emphasized by Gibson and Wexler (1994), is the
existence of parametric ambiguity. This would confound trigger recog-
nition even if the parsing paradox were solved. A sentence is para-
metrically ambiguous if it is licensed by two or more distinct
combinations of parameter values (speci®cally: values of relevant para-
meters).8 For example, we have noted that an SVO string is structurally
ambiguous; and it is also parametrically ambiguous. Each of the
possible structures is licensed by a diÿerent set of parameter values. As
Gibson and Wexler point out, SVO order can be licensed by the para-
meter value for verb-second (V2) structure, with any values for the
parameters that control the underlying order of subject, verb and
object (in German the underlying order is SOV), or else by the para-
meter values for underlying subject-before-verb and verb-before-object
order without the �V2 value, as in English. By contrast, a VOS sen-
tence is not parametrically ambiguous, at least with respect to these
three parameters. It can be licensed only by the ÿV2 value, and the
underlying verb-before-subject and verb-before-object values.

Let us consider a little further the fact that sentences that are para-
metrically ambiguous are commonly structurally ambiguous (perhaps
necessarily so; see Fodor, 1998a), i.e., that the diÿerent grammars that
license the same word string assign it diÿerent structural descriptions.
As we have seen, the structure of an SVO string in German is very
diÿerent from that of an SVO string in English (at least on standard
analyses); in German, but not in English, the subject and verb are
raised into the C projection. Because of this, the learner's parsing
mechanism cannot determine what structure to assign to a para-
metrically ambiguous input string until it knows which grammar to
apply to that string. However, for a novel sentence type the learner
does not know which grammar is appropriate ± that is precisely what it
is trying to ®nd out by parsing the sentence. Caught in this vicious
circle, a bold learner might try to guess which structure (which
grammar) is correct, while a cautious learner would rather avoid setting
any parameters at all when there is danger that the input is ambiguous.
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Current models of human language learning divide on just this point.
Some ignore ambiguity and adopt any parameter settings that succeed,
without concern for the fact that the success might turn out to be
spurious and the settings incorrect. This is how Gibson and Wexler's
model operates, as we explain in sections 5.4±5.7. By contrast, the
model we advocate in sections 5.8±5.10 attempts always to be aware of
ambiguity and to refrain from adopting parameter values unless it has
unequivocal evidence for them.

In summary, the sentence parsing mechanism must exist indepen-
dently of learning, and it is expert at assigning abstract structure to
word strings. Putting it to work to identify the triggers for parameter
setting is thus an excellent plan. But it can succeed only if two
problems can be solved: the problem of how to parse sentences that
fall beyond the licensing capacity of the learner's current grammar;
and the problem of how to determine the right grammar when an
input string can be licensed by two diÿerent (combinations of) para-
meter settings.

5.4 The Triggering Learning Algorithm

Gibson and Wexler's learning procedure is the Triggering Learning
Algorithm (TLA). It neatly sidesteps the parsing paradox by turning to
its own advantage the fact that it cannot parse the sentences from
which it needs to learn. It uses this as a stimulus for experimenting
with alternative grammars. On receiving an input string s it ®rst tries
to parse s with its current grammar G. If this succeeds, no learning is
called for; though G may not be fully correct, the learner at least has
no speci®c reason to believe that it is wrong. If the parsing attempt
with G fails, the learner tries again with a modi®ed grammar G0 that it
arrives at by resetting one parameter, chosen at random. (That only
one parameter may be reset is the Single Value Constraint; see section
5.6.) If the parsing attempt with G0 also fails, G0 is no improvement
over G, so the TLA retains G (this follows from the Greediness
Constraint, which permits adoption of a grammar only if it licenses the
current input; see section 5.5.1 for discussion). If G0 does permit a
successful parse of s, the TLA shifts from G to G0. Once again, the
grammar that aÿords a parse is not necessarily correct for the target
language, but it has at least the merit of being compatible with the
current sentence. This is a necessary condition, though far from a
su�cient one, for being the target grammar.

Gibson and Wexler make no speci®c assumptions about the nature of
the parsing mechanism; they require only that it be capable of deliver-
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ing a report of success or failure to the learning algorithm. It is not
assumed that the parser presents the learning device with a structural
description of the sentence in which it could recognize the deep
structural properties that can reveal correct parameter values. But
importantly, although deep structural properties are not explicitly
consulted, they are what drive the outcome of the parsing test.
Ambiguity aside, the reason why an attempted parse succeeds is that
the sentence does have the properties associated with the parameter
values that are being tested. Thus the TLA is able to employ the parser
to detect, implicitly, any relevant trigger properties at all, regardless of
whether or not they are super®cially evident.

The TLA would be maximally eÿective if there were a perfect cor-
relation between the correctness of a grammar for the target language
and its success or failure in parsing input. In fact the relationship is
only partial. If a grammar fails the parse test on some input it must be
wrong, since there is at least one sentence of the target language that it
cannot license. But if a grammar passes the parse test on some
sentence, it is not necessarily correct for the language.9 The input string
might be parametrically ambiguous, and the TLA might by chance
have picked for the parse-test a grammar which assigns the input a
structure but not the structure it has in the target language. For
instance, if the input were an SVO sentence from a ÿV2 target
language, and a �V2 grammar were picked for testing, the parser
would report success ± even though the verb is analyzed as in C instead
of in the VP, and the �V2 parameter value will overgenerate many
nontarget sentences. The TLA is oblivious to such dangers. It behaves
as if there were no such thing as parametric ambiguity. It selects a new
parameter value to try out, and adopts it if it succeeds in converting
parsing failure to parsing success. Because it picks only one candidate,
it never knows whether that is the only one that would succeed, or
whether it is merely one among many. And because it selects the
candidate at random (respecting the Single Value Constraint), it is a
matter of chance whether the one it picks constitutes the correct resolu-
tion of an ambiguity. If it chooses wrongly there is a penalty: it may
unwittingly switch a parameter that was already set correctly, to an
incorrect value.

The TLA's blissful ignorance about the danger of ambiguity is not
necessarily a drawback, however, even in the face of the considerable
parametric ambiguity that exists in natural languages. The TLA is
designed as a nondeterministic system which routinely mis-sets para-
meters and then later sets them again (and perhaps again) until
eventually all are correct. In the end, this might be more eÿective than
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fussing about which input sentences can be trusted and which cannot.
However, a trial-and-error strategy works well only if the setting and
resetting process is not too cumbersome or slow. In fact, as we will show
below, this kind of learner may take a great many computational steps
on average to change even one parameter value. Hence the cost of having
to keep repeating the process is considerable. In short: the TLA's trigger
recognition stage I is imprecise, its parameter adoption stage II is
unaware of the imprecision and so inherits it, therefore there must be
extensive error correction at stage III, but this is a laborious process.

Thus, the TLA solves one of the two problems we identi®ed above,
but in such a way that it is forced to give up on the other one. It solves
the parsing paradox by testing out alternatives to the current grammar.
But testing a grammar is work, and the learning system can only rea-
sonably test one grammar at a time, and so it cannot in principle
recognize parametric ambiguity. It could do so only if it were to run
the parse test repeatedly on the same input sentence with diÿerent
grammars until it either found a second successful grammar or
exhausted all the possible grammars without having found one. This is
presumably not a realistic possibility. But without an exhaustive test, a
learner cannot recognize parametric ambiguity, so it cannot defend
itself against it. So inevitably it makes mistakes. We see, then, that
there is a clear connection between doing the work of trigger recogni-
tion by means of the parse test, and the fact that parameter setting is
nondeterministic. This relationship is interesting and somewhat unex-
pected. In the classical instant-triggering model it was assumed that all
property detectors were on the job at all times and could function in
parallel, so the limitation of having to test grammars one by one did
not arise.10 But there was a lot of wishful thinking about trigger recog-
nition in that model, as we have observed. It is only by taking the pro-
cess seriously, as the TLA does, that we can see how arduous it
actually is, and how much of it must be sacri®ced to keep the workload
within plausible limits.

In summary, the TLA is a signi®cant advance on the classical model
because its parse test can detect eÿects of parameter settings which are
not accessible to any super®cial property detector. But it purchases this
sensitivity at a high price. Though it can achieve trigger recognition, it
is then forced to close its eyes to trigger ambiguity. The TLA's parse
test imposes only a necessary condition on correctness of a parameter
value, not a su�cient condition. For the TLA to do more would tax its
capacity beyond feasibility. But because it cannot do more, it makes
errors on ambiguous triggers and so must engage in more work later
on to correct those errors.
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We turn now to the other signi®cant aspect of the TLA's workload,
which arises at stage I but which interacts with the ambiguity problem
as we will show. It is very arduous for the TLA to ®nd a parameter
that is worth resetting. The consequence is that the TLA must expend
a great deal of eÿort, and consume a great deal of input, to set even
one parameter. To set 20 or 30 is harder still. And every error that is
made at stage II due to ambiguity exacerbates this problem because it
requires more parameter setting in order to correct the error. In the
next section we establish some formal machinery to document these
claims.

5.5 Performance of a TLA-like algorithm

Gibson and Wexler demonstrated that the TLA converges on the target
grammar under some conditions, though not under all. We will
suppose here, since it is not our main concern, that convergence is
guaranteed. Even so, it is unclear that the TLA is a plausible model of
the human language learning mechanism. This is because, as we now
argue, it is very ine�cient at extracting information from the input
sentences it encounters. Correspondingly, it has to parse a great many
input sentences, on average, before it ®nds the target grammar.
Though its workload per input sentence is not excessive, the
accumulated load across the enormous input sample is high.

Our strategy in this section will be to demonstrate the computational
ine�ciency of the TLA in two steps. For simplicity, we ®rst calculate
performance characteristics for an error-driven learning system which
we will call TLAÿ (``TLA minus''). It obeys the Greediness Constraint
and is like the TLA in all respects except that it does not obey the
Single Value Constraint (SVC). We then estimate the eÿect on
performance of converting this TLAÿ into the TLA proper, by
imposing the SVC. This second stage of evaluation is necessarily less
precise, since the eÿect of the SVC is heavily dependent on the
character of the particular language domain, as noted by Berwick and
Niyogi (1996). In Berwick and Niyogi's application of the TLA to the
simple eight-language domain de®ned by Gibson and Wexler, the SVC
increased the number of trials to convergence; but this doesn't rule out
the possibility that there are circumstances under which it improves
performance.11 However, we do not believe that the SVC substantially
aÿects the results presented here concerning the exponential complexity
of trigger recognition in the TLAÿ.

Niyogi and Berwick (1996) formalized the behavior of the TLA as a
Markov process. This is elegant and of some interest (though it can be
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di�cult to manage for very large language domains); see section 5.11,
and Niyogi and Berwick (1996) for details. For our goals, however, it
is not ideal. We wish to establish a foundation for comparing the TLA
with other models. We therefore develop a framework that articulates
degrees of parametric ambiguity and parametric irrelevance, and that
can distinguish among diÿerent sources of learning di�culty: grammar
sampling problems, memory problems, parsing capacity problems,
error rates, and so forth. However, our aims are too ambitious for us
to achieve all this in this chapter. As will become clear, we must settle
for formalizing simpli®ed versions of the learning models we are
interested in. We believe that even this oÿers some insight into the very
diÿerent strategies that learning systems may adopt. But conclusions
drawn here on the basis of the simpli®ed models will not necessarily
extend, of course, to the richer versions that have been proposed as
models of human language learning.12

5.5.1 TLAÿ � TLA without SVC

We focus ®rst on stage I, and later consider its impact on stages II and
III. Although stage I serves the function of discovering the triggering
information in input sentences, in the TLAÿ no particular role is
played by the association of any sentence or sentence property with a
particular parameter value. The TLAÿ in eÿect ignores the parameteri-
zation of the language domain, except insofar as it oÿers a ®nite
and orderly array of possible grammars to hypothesize. The TLAÿ
recognizes a sentence s as a trigger in the same way as the TLA does,
by trying out grammars against it in hope of ®nding one that licenses it
(see note 10). If it succeeds, it adopts that grammar. Thus it treats
an input sentence, in eÿect, as a trigger for adopting all the new values
which diÿerentiate the successful grammar from the previous one that
failed. The work expended per novel input (i.e., an input not licensed
by the learner's current grammar) consists in trying to parse the
sentence a second time with a new grammar, subsequent to the failed
parse with the current grammar. If this second parse succeeds, some
information is gained, and at relatively little cost. But every sentence
from which the learner gains no information constitutes a waste of the
eÿort that went into the second parse, as well as a waste of learning
time.13 If few input sentences were wasted, the TLAÿ would be
quite an economical means of language acquisition. In fact it is very
expensive.

We illustrate here with some particular numerical estimates, followed
by general formulae in each case. We make the following background
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assumptions throughout these calculations. Their general trend is to
impose homogeneity on the learning process, in order to simplify both
the mathematics and the exposition. We do not assert that these points
are true of natural languages; indeed, we very much doubt that some
of them are. But they will allow us to take some initial steps towards
what must ultimately be a more sophisticated formalization.

(i) The sample of the target language that a learner is exposed to
entails the value of every parameter relevant to the target language
(i.e., every parameter that needs to be set);

(ii) The learner's input sample does not necessarily exhaust the target
language (e.g., it may be limited to sentences of two clauses or
less), but the sample is uniformly distributed (i.e., no particular
sentence type within it is systematically withheld or delayed);

(iii) Every language in the domain shares an equal number of sentence
types with the target language;

(iv) If a target sentence is licensed by two grammars, then it is also
licensed by every grammar which shares the parameter values they
have in common;

(v) All sentences within the target language are ambiguous with
respect to the same number of parameters. (We assume this to
start with, but later we introduce some ¯exibility in this regard);

(vi) Grammars tested by the TLAÿ are selected with equal probability
from the set of candidates (� all possible grammars other than the
failed current grammar).

Suppose there are 30 binary syntactic parameters. (See chapter 3,
page 89 on how many parameters it is reasonable to assume for
natural language syntax.) Assuming that there are no constraints
limiting which parameter values can cooccur, their combinations
amount to 230 (� 1,073,741,824) possible grammars. Suppose that only
25 out of the 30 parameters are relevant to the target language
(irrelevant parameters control properties of phenomena not present in
the target language, such as clitic order in a language without clitics).
Then 5 parameters are irrelevant, and the consequence is that 25 (� 32)
of the billion grammars count as equally correct for the target
language. In general, for r relevant parameters out of a total of n para-
meters in the domain, the number of correct (target) grammars is 2nÿr.
A useful way of considering irrelevance is that the total class of 2n

grammars is thereby clumped into 2r equivalence classes, each
containing 2nÿr grammars; the grammars within any one equivalence
class have identical consequences for target language sentences. In
the present case, there are 33,554,432 (� 225) equivalence classes each
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consisting of 32 (� 25) grammars; one of these equivalence classes
constitutes the target.

Now let us consider parametric ambiguity. Suppose that all sentences
of the target language are parametrically ambiguous. Speci®cally, let us
suppose here that each is ambiguous with respect to eight parameters
that are relevant to the target (not the same eight in every case).
(Recall that between them the input sentences must provide unambigu-
ous information about each relevant parameter; see assumption (i)
above.) Then each input sentence is licensed by
28 * 25 � 28�5 � 213 � 8; 192 grammars; this follows from assumption
(iv).14 Of these, 25 (� 32) grammars are correct and 8,192ÿ 32 � 8,160
are incorrect. In general, a target sentence that is ambiguous with
respect to a parameters is assumed to be licensed by 2a * 2nÿr � 2a�nÿr

grammars, of which 2nÿr are correct and 2a�nÿr ÿ 2nÿr � 2nÿr * �2a ÿ 1�
are incorrect.15

Let us now cut to the point at which the TLAÿ adopts a grammar,
and ask what the probability is that the grammar it adopts is one of
the 2nÿr correct grammars. Suppose for the moment (though we will
return to this below) that the learning algorithm has established already
that its currently hypothesized grammar G does not parse the current
input sentence s, and that the candidate new grammar G0 does parse s.
Given that 2nÿr grammars out of the 2a�nÿr grammars that could parse
s are correct, the probability that G0 is correct is 2nÿr=2a�nÿr � 1=2a.
For our current estimates it is 1=28 � 1=256, or a 0:39 percent chance
of guessing correctly. It follows that on average the number of
grammar changes that would be necessary to identify the target
grammar is 256, or in general 1=�1=2a� � 2a (see section 5.11). Note
that this value increases exponentially with the degree of ambiguity
(i.e., with a, the number of parameters with respect to which an input
is ambiguous).

Now let us unpack the two temporary assumptions we made above.
We will take them in sequence. First, there is some probability that G
will parse the input s so that no grammar change will be attempted.
This must be factored into our calculations. Consider the probability
that an arbitrary grammar G will be able to parse a given sentence s
from the target language. Recall from above that an input sentence is
licensed by 2a�nÿr grammars out of the total of 2n grammars.
Therefore, the probability that a grammar G can parse an input s is
2a�nÿr=2n � 2aÿr, or 2a=2r. This is the probability that the current
grammar G can parse the input and will not be given up. The prob-
ability that G fails to parse the input, so that the learner recognizes the
need to switch to a new grammar, is thus 1ÿ �2a=2r�. In the present
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case, this is 0.99999237.16 In other words, with this degree of ambiguity
the learner would be motivated to change grammars on almost every
trial. Note that as ambiguity increases, the probability of a needed
grammar change decreases, other things being equal; hence the number
of inputs between attempted grammar changes increases. This is
because at higher ambiguity levels, G will parse more sentences for
which it is not in fact correct. Nevertheless, despite this increase, the
number of inputs between attempted changes remains relatively low
except at extremely high levels of ambiguity. For instance, the number
of inputs per attempted change is increased only by a factor of
approximately 2 (relative to total unambiguity of all inputs) if all sen-
tences are ambiguous for all parameters except one. It is increased by a
factor of 20 if 90 percent of sentences are fully ambiguous and 10
percent are ambiguous for all parameters except one (with an average
ambiguity of 24.9 when r � 25, i.e., 99.6 percent ambiguity). Clearly,
the range of this multiplier re¯ecting the eÿect of parametric ambiguity
on the success rate of G is quite limited. As shown below, this factor
does not have a major impact on how quickly on average a learner will
identify the target grammar.

The other matter that needs to be brought into the equation is the
probability that G0, the grammar that is put through the parse test
when G fails, does parse s. The calculation is similar to the general
formula given above for the parsing success of G, except that only
2n ÿ 1 grammars are under consideration because the current grammar
G has disquali®ed itself by failing its parse test. For n = 30 (or for any
other plausible size n) this number is very close to 2n, so to simplify the
calculations that follow we will substitute 2n (or equivalently: we can
simplify by assuming that G is included in the pool of grammars from
which the learner selects after G has failed). Thus, the general formula
shows that for any G0 that the learner tries out when G fails, the
probability that G0 will parse the input s is 2aÿr. This is a very low
probability except at high levels of ambiguity. Thus, very often when
the learner needs to change to a new grammar, its candidate new
grammar will fail the parse test. Because Greediness does not allow the
TLAÿ to change to a grammar that fails the parse test, the rate of
actual grammar change will be low. Grammar change occurs in the
TLAÿ only when G fails and G0 succeeds, and the probability of this is
�1ÿ 2aÿr� * 2aÿr. Given our current estimates, it is approximately
0.000007629 or on average 1 actual grammar change every 131,073
input sentences.17 Between these events, no learning occurs. As
calculated above, 256 such changes would have to occur on average
before convergence on the target grammar. This is not a great number,
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but the rarity with which Greediness is satis®ed magni®es it consider-
ably. The total number of inputs consumed before convergence is on
average 256 * 131; 073 � 33,554,688.18 In general, the average total
number of inputs consumed before convergence is

2a
1

�1ÿ 2aÿr��2aÿr� �
1

�1ÿ 2aÿr��2ÿr� �
2r

1ÿ 2aÿr

Table 5.1 presents some ®gures for other values of a and r.
Note that the number of inputs required on average rises exponen-

tially in r, the number of relevant parameters (� the number of para-
meters that need to be set for the target language), and is over a billion
for 30 relevant parameters. As an informal rule of thumb, one can
estimate the number of sentences to convergence as approximately 2r

(because the denominator in the formula above diÿers very little from
1 unless a is high relative to r). For 15 parameters the average cost in
input is a little over 2,000 sentences per parameter; for 30 parameters it
is over 35 million per parameter. Because e�ciency is so much better at
the lower end of the scale, it is important for this model that the
number of parameters for natural language be low. Linguistic research
has this as its goal and may ultimately show that it is so, but at present
there would probably be broad agreement among linguists that 15
syntactic parameters underestimates the extent of natural language
variation. Note that by the rule of thumb, each extra ten parameters
multiplies the total number of inputs needed on average by about
1,000. So for 40 parameters, it would be in the order of a trillion, or
about 25 billion per parameter.

The learning process is sketched in ®gure 5.1, as a probability tree
with all three stages shown: the possible success or failure of the
current grammar G to start with, then the success or failure in ®nding
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Table 5.1. Average number of inputs consumed by the TLAÿ before convergence ( formula:

2r=�1ÿ 2aÿr��

a r � 15 r � 20 r � 25 r � 30

0 32,769 1,048,577 33,554,433 1,073,741,825

5 32,800 1,048,608 33,554,464 1,073,741,856

10 33,835 1,049,601 33,555,456 1,073,742,848

15 can't learn 1,082,401 33,587,232 1,073,774,593

20 can't learn 34,636,833 1,074,791,425

25 can't learn 1,108,378,657

30 can't learn



a new grammar G0 that satis®es Greediness, and then the question of
whether the grammar adopted is correct (in which case no more
changes will ever be required) or incorrect (so that the process must be
repeated on another input). Note that convergence on the current trial
corresponds to the path on which G fails the parse test, G0 passes the
parse test, and G0 is indeed correct. (We round the formulae for the
probabilities of G0 success or failure here, as noted above.)

With the structure of the situation thus outlined, we can elaborate it
in various ways to make it capable of approximating real learning
situations more closely. Suppose, for example, that sentences are not
uniformly ambiguous. Perhaps 10 percent of the target language sample
are parametrically unambiguous, while 90 percent are each ambiguous
with respect to 8 parameters. We'll retain for now the assumption that
only 25 of the 30 parameters are relevant to the language. This is
sketched in ®gure 5.2 (see exercise 5.3 below for further examples).
Note that this probability tree contains more branches, to represent the
richer range of outcomes, but the calculations along each path are of
the same kind as we worked through above. For the ambiguous sen-
tences, the situation is exactly as in ®gure 5.1.

5.5.2 Summary of TLAÿ performance

The amount of work expended by the TLAÿ in attaining the target
grammar is a function of the number of sentences it consumes before
convergence. We have seen that, given the general assumptions made
above, this increases exponentially with the number of parameters that
need to be set (� r, the number of relevant parameters). To a lesser
degree, it increases also with the degree of parametric ambiguity. It
becomes implausibly high at levels of parameterization and ambiguity
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that seem to be not unreasonable (or perhaps overly modest) estimates
for the human language domain. We will review the roles of these two
factors, r and a, in turn. Note in general that in terms of the three-
stage analysis of grammar acquisition in section 5.1, the TLAÿ's
grammar selection process at stage I and grammar adoption process at
stage II have two distinct undesirable eÿects. They inhibit grammar
change in many cases where change is necessary, and they permit
change to a wrong grammar in response to ambiguous input. The latter
necessitates further parameter setting to correct the errors, which
in¯ates the workload at stage III. The costs of this stage III repair pro-
cess are included in the estimates above of the amount of input
consumed en route to the target grammar.

The exponential dependence of workload on the number of para-
meters to be set is due to the TLAÿ's blind (i.e., merely error-driven)
search through the ®eld of all possible grammars for one that is com-
patible with the input. Where the classical instant-triggering model
tested a sentence to see what its implications were for each parameter,
the TLAÿ tests a grammar to see what its implications are for a given
sentence. Without advance knowledge of what would be a good
grammar to test, the latter is a slow business. If the learner had an
oracle that would tell it which parameters most likely need to be reset
to accommodate a given input, it could avoid the TLAÿ's high rate of
failure in the parse test, and the extreme waste of input sentences
which that causes. How to improve on the TLAÿ in this respect is the
topic of sections 5.8 and 5.9.

The dependence of the TLAÿ's workload on the degree of parametric
ambiguity is less extreme and more complex in nature. Greater ambiguity
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Figure 5.2 Probabilities of diÿerent outcomes of an encounter
between the TLAÿ and an input sentence. 10 percent unambiguous
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decreases the probability that the current grammar will fail, even if it is
wrong and does need to be changed. This is not a fact about the TLAÿ
alone, but is true of all error-driven learning systems: the spurious success
of wrong hypotheses encourages complacency, and will slow down dis-
covery of the correct hypothesis. We know of no data on this for human
language learning, but at least at present there is no reason to doubt that
it is true. As noted above, this consequence of the fact that learning is
error-driven is predicted to be a relatively modest eÿect except at ex-
tremely high degrees of parametric ambiguity (approaching 100 percent);
when ambiguity is moderate, it is just not very likely that a wrong gram-
mar will survive many tests against target language sentences.

Once an error has been detected and G is known to be wrong,
ambiguity has no further eÿect on the overall success rate of the
TLAÿ. In our calculations above we examined stage I and stage II
separately, and found that ambiguity has an eÿect on each; but that
these eÿects cancel each other out. The rate of potential trigger
recognition (i.e., of ®nding a new grammar G0 that satis®es Greediness)
in stage I increases exponentially with a, the degree of ambiguity. In
other words, for higher ambiguity, grammar change will occur more
often when grammar change is needed. However, there is no guarantee
that the change that occurs will be the one that is needed. In fact, the
probability of correct (target) grammar adoption from the candidates
delivered to stage II decreases exponentially with the degree of
ambiguity. These two eÿects are equal and opposite and so cancel out.
(The respective formulae are: 2a=2r and 1=2a; see above.) The only net
eÿect of parametric ambiguity within the TLAÿ is thus in the initial
testing of the current grammar G.

This considerable indiÿerence of the TLAÿ to ambiguity levels could
be seen as encouraging, but what it amounts to is really that the TLAÿ
succeeds equally rarely whether the language domain is ambiguous or
not. This is because it does not actually make use of the fact that a given
input is ambiguous or unambiguous; it simply ignores the matter. The
TLAÿ, in eÿect, just picks randomly out of the 2n total grammars, in the
hope of hitting on one of the 2nÿr correct grammars for the target. This is
a needle-in-a-haystack problem that gets exponentially worse as more
parameters need to be set. It is clearly worth considering whether a solu-
tion might be found for the ``sampling problem'' of stage I (e.g., by
means of some kind of pre-test to identify promising parameters worth
checking; see discussion of a proposal by Valian, in Fodor, 1998a). Note,
however, that the exponential cost of ambiguity would then emerge at
stage II. All in all, then, the complexity characteristics of the TLAÿ do
not commend it as a model of human language learning.
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5.6 Adding in the SVC

Our remarks in this section are speculations only. The SVC is not our
main focus of inquiry and so we can treat it only brie¯y. Moreover, it
is particularly di�cult to calculate any general eÿects of the SVC, since
it interacts in an intricate way with Greediness and with the pattern of
ambiguity distribution within a particular language domain. (If of
interest, however, it would be possible to apply Berwick and Niyogi's
Markov model to an algorithm with SVC in a language domain
meeting the assumptions we have made here.) In the Structural
Triggers model that we propose in section 5.8 the SVC does not apply
(because it is not needed). We therefore leave it to other investigators
to develop a more satisfactory theory of SVC eÿects than we are able
to here. See Nyberg, 1992; Clark, 1992; Niyogi and Berwick, 1996,
Sakas, 2000; see also exercise 5.2 at the end of this chapter.

Gibson and Wexler's TLA diÿers from the TLAÿ only in that the
SVC forces the TLA to limit its choice of a new grammar to be tested;
it must pick from among those that diÿer by only one parameter
setting from the current (failed) grammar G. The SVC thus causes an
uneven sampling of the class of possible grammars at stage I. It has the
consequence that the learner will tend to perseverate, cycling through
the same cluster of neighboring grammars to a greater extent than it
would without the SVC. To the extent that this increases the rate at
which the same grammar is tested repeatedly, or the chance of testing a
grammar that diÿers from a failed one only by an irrelevant parameter,
this could postpone convergence on the target. But such eÿects are
probably minor compared with the more fundamental question of
whether grammars that are similar tend to license languages that are
similar, and the related but more pertinent question of whether success-
ful grammars tend to be similar to other successful grammars.

To extrapolate to the TLA the performance measures computed
above for the TLAÿ, we would need to answer two questions concern-
ing the SVC. (1) Does the SVC alter the probability that a grammar
selected for testing at stage I licenses the input sentence s? That is, are
the n grammars that diÿer from G with respect to just one parameter
(which we will call ``1-adjacent'' grammars; Nyberg, 1992) more likely
to license s than any of the other grammars that diÿer from G? (2)
Does the SVC alter the probability that G0, a grammar selected at stage
II, is the target grammar? That is, among the grammars that do parse
s, is a grammar that is 1-adjacent to G more likely to be the correct
grammar for s than a less similar grammar is? The answers to these
questions are not simple, but we can indicate their general outlines. We
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emphasize again that this is a preliminary exploration only. And we
will keep it as manageable as possible by taking advantage here of the
point demonstrated in section 5.5.1, that the conceptual distinction
between grammar sampling (stage I) and grammar adoption (stage II)
has no substantial consequence in the TLAÿ and does not aÿect the
overall likelihood of adoption of the target grammar. Thus we can
conveniently combine the two questions and ask simply: (3) At a point
in the learning process at which the learner's current grammar G has
just failed the parse test, are grammars that are 1-adjacent to G more
likely to be (or lead to) the target grammar than grammars less
similar to G? If this is generally so, then adherence to the SVC
facilitates convergence.

It is important to bear in mind that the notion of ``n-adjacent'' is
de®ned over the parameter value combinations that constitute
grammars, not over the sets of sentences that constitute languages.
Whether and how the two are correlated is what is under considera-
tion. Berwick and Niyogi (1996) refer to ``smoothness'' of the relation
between grammars and the languages they license, when grammar
similarity and language similarity are highly correlated.19 We do not
presuppose smoothness here, but regard it as an empirical issue to be
evaluated. The considerations raised below suggest that in fact smooth-
ness cannot be relied on by natural language learners.

To answer question (3) we must start with the properties of the failed
current grammar G. What is certain is that G licenses at least one
sentence of the target language but not all (a default or randomly
chosen grammar at the very outset of learning may license none). In
some cases the current grammar will have parsed several target
sentences in a row. This is not a fact that a TLA learner has access to
(since there is no memory for prior learning events), but it nevertheless
has an indirect eÿect. The more target sentences a grammar licenses,
the more likely it is in a greedy system to become the current grammar
and to stay that way. Thus on average, over the long run, the learner's
current grammar at any point is likely to license more target sentences
than an arbitrary other grammar does. This did not ®gure in our
calculations in section 5.5.1 because there we made the homogeneity
assumption (iii) such that all grammars except the target grammar
license exactly the same number of target sentences. The advantage of
the current grammar may be very slight. It depends on the degree and
distribution of ambiguity in the target language. For instance, if all
grammars in the domain license most of the sentences in the target
sample, then an arbitrary incorrect grammar could be the learner's
current grammar for many trials; hence, being the current grammar
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would not be a strong predictor of ultimate success. It is clear, then,
that being able to license many target sentences is not the same as
being the target grammar, and nor does it entail having many
parameter values in common with the target grammar.

For natural languages Chomsky has emphasized that small changes
in parameter settings can have considerable eÿects on the languages
generated, due to the rich interactions of principles, parameters and
lexical properties in sentence derivations. For example, he writes
(Chomsky, 1988: 63): ``there is no simple relation between the value
selected for a parameter and the consequence of this choice as it works
its way through the intricate system of universal grammar. It may turn
out that the change of a few parameters, or even of one, yields a
language that seems to be quite diÿerent in character from the
original.'' If this is so, the degree of overlap of the parameter settings
in two grammars would not correlate highly with the degree of overlap
of the languages they generate; the grammar/language relationship
would not be a smooth one. But regardless of whether Chomsky's
point establishes nonsmoothness in general, it is certainly the case that
parametric ambiguity can introduce some signi®cant bumps into the
grammar/language correlation. In an ambiguous domain there may be
several grammars dotted distantly around the grammar space all of
which can license many sentences of the target language. Only one of
them is Gt, the target grammar. It is very clear that a grammar that is
successful for one target sentence, or even for many, need not in this
case resemble Gt closely at all. For example, in Gibson and Wexler's
small domain of three word order parameters, the sentence pattern
SVO is licensed by grammars that diÿer from each other maximally:
every one of their parameters is set diÿerently. SVO order is licensed
by the grammar SV, VO and ÿV2, and by the grammar VS, OV and
�V2 (among others). In such a case, the SVC could do the learner
more harm than good. For instance, if the starting state were VS, OV,
ÿV2 and the target were SV, VO, ÿV2, then it would obviously not be
most pro®table for the learner to favor grammars 1-adjacent to G; in
response to an SVO input, that would force a step in the wrong
direction, to �V2.

In sum: adherence to the SVC gives the TLA a tendency to hover in
one area of the total space of grammars, typically (because of
Greediness) a promising area where some parsing success has occurred.
If this area includes the target grammar, convergence is likely to be
more rapid with the SVC than without it. But in a language space with
parametric ambiguity, the SVC may unhelpfully focus the search on an
area around a competing grammar, which functions as an attractor
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because it can parse many of the target sentences but which is never-
theless an incorrect (nontarget) grammar. In this case the SVC would
retard convergence on the target: the learner needs to make a
substantial shift to a very diÿerent grammar but is hindered from
doing so by the SVC (and Greediness). In the most extreme case, a
TLA learner that has gone astray can get permanently stuck, if it ®nds
itself at a local maximum, i.e., a wrong grammar from which there is
no possible route to the target grammar via a sequence of successful
one-parameter changes as required by Greediness and the SVC. (See
Gibson and Wexler (1994), for discussion, and Winston (1992) on local
maxima in other types of learning systems.) Interestingly, this becomes
more likely if the degree of parametric ambiguity is low, though in
general a reduction in ambiguity would be expected to facilitate
learning. In a fully unambiguous domain, the TLA is unable to change
grammars at all, unless the target is exactly one parameter away from
the starting grammar.

Translated into implications for human learning, a major
consequence of the SVC would appear to be a considerable variability
in acquisition outcomes. This would especially be so if individual
learners can diÿer with respect to their starting state (e.g., if there are
no innate defaults), and if the order of information received can vary
substantially across children (i.e., if the frequency distribution of
construction types in input to children is not very dependable). Some
children could by good fortune arrive at the target grammar very
rapidly, while other children would toil through many blind alleys
before attaining the target, and some might never get there at all
(unless the local maximum problem can be solved in some way that
Gibson and Wexler suggest). Though we cannot quantify the
discrepancy, this seems to us to be out of keeping with the remarkably
uniform success of human language learners. Thus, even if the
distribution of ambiguity in natural language should turn out to be
such that the net eÿect of the SVC is a considerable improvement in
average acquisition rates relative to the TLAÿ, it is arguable that the
SVC does not improve the psychological ®delity of the learning
algorithm.

In section 5.7 we will turn to issues concerning the isolation of
individual parameters so that their contributions can be evaluated
independently of the grammars in which they are embedded. In this
connection it may appear that the SVC would be an unquali®ed
blessing. For the TLAÿ, which lacks the SVC, a trigger sentence is a
trigger for a collection of parameter values, even a whole grammar, as
noted above. If a new grammar succeeds in parsing an input sentence,
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there is no way for the TLAÿ to tell which of its parameter settings
was/were responsible for the success, and which were simply irrelevant
(to this sentence, or to the whole language). So the TLAÿ must accept
or reject the collection of parameter settings as a whole, without having
any idea as to which of them are now correct. But in the TLA, the
SVC makes it possible to attribute a parsing success to the one para-
meter whose value diÿers from the prior (failed) grammar. As we will
see in section 5.7, however, the TLA is unable to take advantage of
this ability to focus on speci®c parameters, because of a lack of
certainty caused by ambiguity. The new parameter setting is the one
that made the parse successful but still it might or might not be correct,
because that parse might or might not be the correct parse. The TLA
adopts the successful parameter setting, but it cannot do so with
con®dence; and as we will show, con®dence has an important eÿect on
e�ciency. Thus in this respect, also, the SVC is not as helpful as might
have been expected.

5.6.1 Evaluation of the TLA

Our assessment of the TLA in comparison with the TLAÿ has been
that the TLA may well prove to be more e�cient overall, but it seems
likely to prove less plausible psychologically than the TLAÿ because of
the greater variability of its routes to convergence in an unevenly
ambiguous domain. In this respect the TLA may be more sensitive to
parametric ambiguity than the TLAÿ. For the TLAÿ there is no sense
of the learner making gradual progress toward the correct grammar;
each hypothesis is randomly pulled from the total pool. By contrast,
for the TLA, the SVC in combination with Greediness causes
consistent shifting in the direction of locally more successful grammars.
To the extent that smoothness reigns, this is bene®cial. But the
gradualness entailed by the SVC can be damaging if the learner is
steadily converging on a wrong grammar because the domain is skewed
due to ambiguity, and the SVC does not allow it an easy escape. In
respects other than the SVC, the TLA is like the TLAÿ and thus it can
be expected to exhibit the properties documented in sections 5.5.1 and
5.5.2. That is, on a high proportion of trials on which it knows it must
switch to a new grammar it may fail to ®nd a promising grammar to
switch to. When it does switch, its blindness to parametric ambiguity
can result in errors. Together, these problems appear to create an
implausibly heavy workload for any reasonable number of natural
language parameters. We would stress, however, that it would be

194 William G. Sakas and Janet Dean Fodor



valuable to check general remarks such as these by means of Markov
modeling or simulations of particular cases (see exercise 5.2 below).

Note that for convenience in the following discussion we will not
always distinguish now between the TLA and the TLAÿ, despite their
partially diÿerent characteristics noted here. Our focus shifts now to
the comparison between this class of nondeterministic grammar-testing
systems and a class of systems which can detect parametric ambiguity
and avoid errors.

5.7 The Parametric Principle

The fact that the workload of a learning device is exponential in the
number of parameters betrays the fact that it is not really a parameter
setting device. The TLA does assign values to parameters, but it does
not incorporate the central insight of parameter theory.
Parameterization has several advantages for learnability. The set of
hypotheses for learners to consider is ®nite and orderly (while still
allowing for a great variety of languages); there isn't an open-ended set
of hypotheses that learners must devise from scratch. The testing of
hypotheses does not require the learner to engage in a hunt for general-
izations or a laborious comparison of minimal pairs of examples.
Though we have seen that the learning machinery cannot be just ``auto-
matic'' triggering, it is still true that once the relevant triggers have
been identi®ed in the input, the work is done. The TLA takes full
advantage of both of these bene®ts of parametric theory. However, it
does not abide by what we will call the Parametric Principle: The value
of each parameter is established independently of the values of all others.
This is what distinguishes a true parameter setting device from learning
systems of other kinds, and it is the source of the enormous
simpli®cation of the learning task for which the principles-and-para-
meters model is renowned.

The essential point is familiar: if there are n binary parameters and
the learning procedure is able to establish the value of each one
independently of the others, then only n bits of information need to be
extracted from the input sample for convergence on any one of 2n

grammars. In other words, given the Parametric Principle, the extent of
the learning task depends only linearly on the number of parameters. It
may take a little or a lot of work to set each one, but at least the work-
load per parameter is roughly constant. By contrast, any learning
device that evaluates grammars rather than individual parameter values
faces a task that expands linearly with the number of grammars, hence
exponentially with the number of parameters. The workload per
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grammar would have to be vanishingly slight in order for the total
labor not to spiral out of hand rapidly for any reasonable number of
parameters. Gibson and Wexler tested the TLA on an arti®cially small
domain of eight languages de®ned by three binary parameters, where
the extreme diÿerence in workload between setting parameters and
selecting grammars did not become apparent. But if the estimate of 30
syntactic parameters for natural language is more realistic, then the
disparity is between setting 30 parameters and checking more than a
billion grammars.

A useful way to look at the diÿerence between testing grammars and
testing parameters is to see convergence as the elimination of all
grammars other than the target, and to consider how eÿectively
diÿerent procedures manage to eliminate grammars. A grammar-by-
grammar test can eliminate them one at a time at best, so even if the
learner kept track of the fate of every one, in the worst case it could
take up to 2n ÿ 1 eliminative steps to rule out all but the target. In
fact, the TLA never eliminates any possible grammars at all, because it
does not take the trouble to record negative outcomes of its parse tests.
We assume that this is because the slight reduction in the search space
that results from eliminating individual grammars does not compensate
for the cost of record-keeping on such a vast scale.20 Therefore all
grammars remain in the pool from which the TLA selects a grammar
to test, with the consequence that some incorrect grammars may be
tried out many times. More importantly, the pool does not get any
smaller as learning proceeds, so the stage I probability of ®nding a
grammar that can parse the input does not improve (except for what-
ever contribution the SVC makes). This, as we saw, is a major source
of the TLA's ine�ciency.21 Because it does not obey the Parametric
Principle, the TLA gropes just as randomly later on in the learning
process as it does at the beginning.

By contrast, true parameter setting permits a very rapid reduction of
the pool of possible grammars. Each time a parameter is set, one para-
meter value is eliminated. And since half of all grammars have that
parameter value, that eliminates from consideration half of the
candidate grammars remaining.22 In a domain of 30 parameters, setting
one parameter rules out roughly 500 million grammars; setting the next
one excludes another 250 million; setting 5 reduces the pool to roughly
3 percent of its original size. This is how the Parametric Principle
makes such a great diÿerence to the scale of the learning problem.
Chomsky's insight was that if grammar acquisition is a selective rather
than a creative process, its complexity need be no more than linear in
the number of ways in which grammars can diÿer from each other.23

196 William G. Sakas and Janet Dean Fodor



Nevertheless, very few existing learning models abide by the
Parametric Principle. Statistical weighting systems such as those
proposed by Valian (1994) and Kapur (1994) postpone setting a para-
meter for some time while evaluating the evidence, but do eventually
settle on a value for each and set it permanently. The Structural
Triggers Learner that we describe here in sections 5.8±5.10 also is
designed to obey the Parametric Principle. It seems astonishing that a
parameter-based learning model would not take advantage of the
powerful reduction of the acquisition problem that the Parametric
Principle makes possible. Why would this be so? There are no
compensating advantages to be gained by searching through the vast
space of grammars. At best, clever search strategies may make it less
punishing. Such strategies are being sought in current research in
frameworks such as genetic algorithms and neural networks. It remains
to be seen, of course, but at present it seems unlikely that any improve-
ment would rival that due to the Parametric Principle. The sole reason
for violating the Parametric Principle, it appears, is that obeying it is
too di�cult. The literature on language learnability does not make this
clear. The point is rarely addressed explicitly. As far as we know, only
Clark (1994a) considers it, and he judges that the computational costs
of respecting what we are calling the Parametric Principle ``are too
great to be acceptable.'' If true, this is a very consequential fact. Being
forced to give up the idea of ``instant'' triggering does some damage to
Chomsky's original elegant conception of parameter setting, but to give
up the Parametric Principle would be to abandon its whole essence. If
it cannot be avoided, then it must be accepted and we must reconcile it
as best we can with the e�ciency with which children learn language.
But the stakes are high enough that it is worth some further thought
before we give in. In the remainder of this chapter we will argue for an
approach that permits true parameter setting in accord with the
Parametric Principle.

In order to obey the Parametric Principle, a learner must be able to
establish a parameter value with su�cient con®dence to be prepared to
rule out forever all grammars in which that parameter takes the
opposite value.24 To simplify here, we continue to set aside the
possibility of errors due to faulty input or performance slips. We also
make the standard assumption that the two values of a parameter are
mutually exclusive in a grammar. Then there is no reason not to set a
parameter permanently, and permanently discard its contrary value, as
soon as clear evidence of its value is received. However, a stochastic
learning device such as the TLA cannot do this because it does not
know when it has received clear evidence for a parameter setting, i.e.,
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evidence that some sentence of the target language cannot be licensed
(parsed) without that value. The SVC helps it come close to this
knowledge, but parametric ambiguity undermines it. The SVC isolates
the contribution of an individual parameter value in the parse test, so
the TLA (unlike the TLAÿ) knows exactly which value potentially
earns support from the success of the parse. But the support is only
potential, not reliable con®rmation, because the sentence might have
been ambiguous and the parse assigned to it might have been the
wrong one. In that case the positive outcome of the parse test provides
no evidence at all for that parameter value; for all the learning system
can know, the sentence is equally compatible with the opposite value.

Is there any way out of this crippling uncertainty? The uncertainty
would not arise if there were no parametric ambiguity in the domain and
if the learner knew that were so; but that is not realistic for natural lan-
guage. Alternatively, the uncertainty could be resolved if the parser could
run an exhaustive check of all possible parses of a sentence. If the para-
meter value in question were present in every grammar that could parse
the sentence, then it could be adopted with full con®dence. However, as
we noted in section 5.4, an exhaustive search through a billion grammars
is hopelessly impractical if the parser can try out only one of them at a
time; and attempting a billion parses simultaneously is presumably no
more feasible than seriatim.25 Finally, the uncertainty due to ambiguity
could be avoided by the learner if it could establish which inputs were
parametrically ambiguous and refrain from setting parameters in
response to them. Learning would be based solely on unambiguous trig-
gers. However, this too demands parsing with multiple grammars.
Parametric ambiguity can be established by parsing with enough gram-
mars to ®nd two that parse the input; nonambiguity can be established
only by parsing with all possible grammars and ®nding no more than one
that parses the input. The consensus in sentence processing research is
that even adults are capable of only limited parallel parsing if any (see
Gibson, 1991), even when the alternative analyses all involve the same
grammar. It does not seem plausible to suppose that a two-year-old can
apply a billion grammars to each passing sentence.

In summary of section 5.7: we have considered why the e�ciency of
learning procedures such as the TLA is so low, and have found that it
is not a trait that can easily be altered. It stems from the idea of
putting the parser to work to identify triggers, which seemed like an
essential breakthrough but now appears to cramp optimum
performance. The inability of the human parser to cope with ambiguity
on a large scale has a serious negative consequence for acquisition. It
creates uncertainty, which entails indeterminacy of parameter
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evaluation, which precludes de®nitive setting of any parameters at all,
which leaves the whole pool of grammars to be considered at every
point. In other words, the search problem remains exponential because
the Parametric Principle cannot be implemented.

To put it diÿerently, we must ®nd some way of imposing the
Parametric Principle or else parameter setting is of little interest.

5.8 Structural triggers

Fodor (1998a) argues that parallel grammar testing would be feasible,
however large the pool of grammars, if triggers and parameter values
were the kinds of things that could be ingredients of grammars and
ingredients of trees. If they were suitable ingredients of grammars, they
could all be combined into one large grammar (termed a ``supergram-
mar'') which the parser could apply to the input in exactly the same
way as any other grammar. No unusual parsing activity would be
needed, yet all parameter values would be evaluated at once. If para-
meter values were suitable ingredients of trees, they could be detected
in the parse trees output by the parser, so that the learning device
would be able to see which of them had contributed to parsing an
input sentence and would know which to adopt. What would ®t the
bill for both purposes is a subtree consisting of just a few nodes and/or
feature speci®cations. A trigger and the parameter value it triggers
could then be identical, so that only one innate speci®cation would be
needed, rather than linked speci®cations of parameter values and their
triggers (as in cue-based learners; see Lightfoot, 1991). UG would pro-
vide a pool of these schematic treelets, one for each parameter value,
and each natural language could choose to employ some subset of
them. As trigger, a treelet would be detected in the structure of input
sentences (i.e., ``trigger sentences''). As parameter value, it would then
be adopted into the learner's current grammar, and would be available
for licensing new sentences.

Consider some examples. For the Complement-®nal value of the
word order parameter for VP, the structural trigger/parameter value
might be (178), i.e., a VP subtree with the verb preceding the object.
For the Complement-initial value, the treelet would be the mirror
image of (178).
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In order to cope with the depth-of-derivation problem (section 5.2),
the treelet has to re¯ect underlying order in any language with that value.
Assuming for convenience here that the parser's output is an S-structure
tree with movement chains (see note in section 5.3), (178) will re¯ect
underlying order as long as its terminals are not constrained in any way;
when the underlying structure has been transformed, either NP or V or
both could be traces. Thus (178) would contribute to parsing not only I
despise decaf but also Decaf, I despise with the O moved out of VP, and
not only I have some change but also Have you any change? with the V
moved out. More appropriate than (178) as a parameter value is its
ultimate source, i.e., whatever is responsible for the presence of (178) in
derivations, according to the linguistic theory that is assumed to be cor-
rect. In a TAG framework it might be (178) itself; but in HPSG it might
be a schematic version of (178) underspeci®ed in terms of syntactic fea-
tures; in a GB framework it might be a government direction feature of
the verb; in the Minimalist Program (though the details are diÿerent, on
the assumption that the deepest order is universal; see note 5) it might be
a weak AgrO feature that does not attract the object forward for check-
ing. For the purposes of learning, all that is required is that the trigger/
parameter value be a piece of a tree; in other respects it is up to linguistic
research to determine its properties. We assume that the structural trig-
gers employed by the learner are exactly those elements, whatever they
are, that UG speci®es as the sources of possible cross-language variation.
Some further examples are given for illustrative purposes in (179)
and (180). Again, depending on the linguistic theory adopted, the
mother-and-daughters con®guration might be the real trigger, or it might
be an intermediate representation, the true trigger being some ultimately
responsible property such as a strong or weak feature value.

(179) The �V2 trigger/parameter value

or just: C��FIN] or C[�STRONG] or . . .

(180) The null subject trigger/parameter value
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These structural triggers make it possible to attain the goal of e�cient
error-free learning. We now consider more carefully how this is so. We
have observed that to set parameters accurately the learner must be
able to conduct an exhaustive parse test of every grammar, against
each input sentence. To run an exhaustive test the parser must try out
all grammars simultaneously and yet be able to attribute success to
individual parameters. This could seem to be patently unachievable,
but in fact it is straightforward for the Structural Triggers Learner
(STL). Suppose that the STL attempts (like the TLA) to parse each
input with the current grammar G ®rst. If that fails, it tries again with
the supergrammar consisting of G with all UG-provided triggers/para-
meter values folded into it (or more precisely: all those not yet
de®nitively discon®rmed by the input). Unlike the TLA model, the
STL makes crucial use of the structural analyses assigned to strings by
the parsing routines. To say that a parse with G fails is not to say that
there is no structural output at all. The parser will build as much of
the tree as G licenses before it is forced to a halt at the point at which
it needs a new parameter value in order to proceed. It will then draw
on the pool of treelets provided by UG to ®nd one (or more) to patch
the hole in the parse tree. Thus the learning device does not attempt to
spot the trigger treelets in input sentences. Rather, it contributes the
triggers to the input, when parsing cannot proceed without them. It
knows that a treelet must be in the target grammar if it ®nds that that
treelet and no other can enable an otherwise blocked parse.

But what if an input sentence is parametrically ambiguous? If it is,
the supergrammar will de®ne more than one parse tree for it. At some
point in the parsing process, therefore, the parser will be faced with a
choice between two (or more) analyses. So to detect parametric
ambiguity, the parser needs to note when a choice point arises in
parsing with the supergrammar, a point at which two (or more)
analyses present themselves. If there is no such choice point, the input
has just one supergrammar parse. It is parametrically unambiguous,
and every parameter value present in the parse tree is correct; the
learner should adopt all of them that are not already in G. The same
applies to any parameter values involved in the analysis of the sentence
prior to a choice point in the parse, since the sentence is unambiguous
up to that point.26 If and when a choice between alternative analyses
does arise, there are two strategies the learner might adopt; we will call
them the strong and weak strategies. If the parser is capable of
pursuing all the possible analyses that present themselves, that can
provide useful information. Speci®cally, if all the parses involve the
same parameter values, then the sentence is structurally but not para-
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Table 5.2. Examples of STL responses to outcomes of supergrammar parse

Action

Target grammar Input Supergrammar parses Strong STL Weak STL

a. ÿV2, SV, OV Mary me saw One, with ÿV2, SV, OV. Adopt ÿV2, SV, OV Adopt ÿV2, SV, OV

b. �V2, SV, OV Mary has me seen Two: both with �V2, OV. Adopt �V2 Discard input

(But SV or VS)

c. �V2, SV, OV Mary saw me Five: One with ÿV2, SV, VO; Discard input Discard input

Four with �V2.

(But SV or VS; OV or VO)

SV � Subject-initial; VS � Subject-®nal; OV=Complement-initial; VO � Complement-®nal; �V2 � Verb-second; ÿV2 � Not verb-second.



metrically ambiguous, and those parameter values can safely be
adopted. Or the sentence may be parametrically ambiguous but one
parameter value contributes to all of the possible parses; if so, that
value is correct (it is essential to the licensing of that sentence) and can
safely be adopted. Thus the strong strategy looks for the common
denominator across all possible parses: treelets that are present in them
all. In this way it extracts the maximum secure information out of the
mix of reliable and unreliable parametric cues that natural language
sentences typically present.

However, the assumption that the human parsing mechanism is
capable of full parallel parsing, for sentences that could be multiply
ambiguous, does not square with the empirical evidence on adult
sentence processing. As noted above, it seems that even the adult
parsing mechanism has little or no capacity for parallel parsing; and
children, we presume, have no greater capacity in this respect than
adults. So this strong learning strategy is not feasible. The weak
strategy employs what is essentially a serial parser and is more realistic.
When the parser notes a choice point in a sentence, it selects one
analysis to pursue for purposes of comprehension and it ignores all
other analyses. But it reports the presence of ambiguity to the learning
mechanism, and the learner thereafter adopts no new parameter values
on the basis of that sentence. Since it cannot know what parameter
values might have been involved in the other parses, had it pursued
them, it cannot be certain which values, if any, would be common to
all analyses of the string, and so it cannot safely acquire any of them.

Note that in this weak version of the STL, alternative grammars are
still tested in parallel, in order to detect and avoid ambiguity, even
though the system does not conduct a parallel parse of the sentence.
There is some parallelism but it is only momentary, as the parser
registers the existence of more than one way of attaching the next
input word into the tree structure it is building for the sentence. This
kind of incipient parallelism is presupposed by any parsing system that
selects between alternative analyses on the basis of preference strategies
(such as Minimal Attachment). Most importantly, since the alternatives
are not pursued in full, there is no consumption of exponential space
or time resources even in the worst case; processing load for an
ambiguous sentence is little or no greater than that for an
unambiguous one. Of course, this parser delivers, in consequence, less
information than a fully parallel one does, but we will show that in
many circumstances it delivers su�cient for the needs of learning.

In table 5.2 some examples are given of the actions of the STL,
strong and weak versions, in response to various outcomes of the
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supergrammar parse. Only the three parameters studied by Gibson and
Wexler are considered in this illustration, so this is an arti®cially simple
domain.

The weak STL does not ®nd out as much about each sentence as the
strong STL does, so there are sentences the strong STL can learn from
that the weak STL can only discard. But what is important is that the
weak STL is able to detect parametric ambiguity reliably, and can
therefore avoid being misled by ambiguous inputs. So the weak STL is
just as safe as the strong one.27 What they have in common, and what
gives them their ability to cope with parametric ambiguity, is that they
approach an input sentence with all UG-permitted grammars at once,
each one ready to parse the sentence if called on. This is feasible
because these millions of grammars have been compacted into a single
grammar, and the parser can call on the individual parameter values
separately as and when they are needed to make the parse successful.

The parser the weak STL employs is very modest; it is hard to
imagine that the human sentence parsing mechanism could do much
less. Nevertheless, the weak STL (henceforth WSTL) can do two things
that the TLAÿ can't do. It can always ®nd a new grammar to parse an
input for which the current grammar has failed. So it does not waste
numerous inputs on a hunt for a successful grammar, as the TLAÿ
does. In section 5.5.1 we wished for an oracle that would whisper to
the parser which grammar is worth trying out in the parse test. The
supergrammar parse of the STL acts like that oracle. The sentence
parsing device is specialized in ®nding an analysis for a given sentence
on the basis of structural resources available to it in the form of a
grammar; this is the parser's normal job. Given the supergrammar,
which makes all possible resources available, the parser exercises its
usual skill, and establishes a parse for every sentence that has one (i.e.,
every sentence compatible with UG), except only for sentences which
outstrip the parser's ability, such as multiple center-embeddings.28

Second, because the STL knows which inputs are ambiguous it can
avoid guessing, and so avoid errors, and so avoid having to keep
resetting parameters until they are all correct at the same time, as the
TLAÿ must do.

Most importantly, the WSTL obeys the Parametric Principle and
reaps all the bene®ts thereof outlined above. Because the WSTL does
not take chances it can set parameters with con®dence, so it can be
con®dent enough to discard incorrect values, and cut the size of the
subsequent learning problem in half. Note that the WSTL is a true
parameter setting device which obtains separate evidence (in the output
parse tree) for each parameter involved in the derivation of a sentence.
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It does not test grammars as wholes. The successive halving of the
learning problem manifests itself in this system as a reduction in the
number of alternative parses subsequent sentences will have. This will
be high to start with, because all the UG parameter values are
available to parse with and oÿer many alternative sentence structures,
but the number will shrink as more and more parameters are set. Thus
there is progressive disambiguation of the input as learning proceeds.
For the strong STL this means fewer analyses to compute per sentence.
Eventually, at the point of convergence on the adult (target) grammar,
all sentences will be parametrically unambiguous; the only ambiguity
that remains will be any structural ambiguity inherent in the target
grammar itself. For the WSTL, the advantage of eliminating wrong
parameter values is that the proportion of sentences that are fully
unambiguous parametrically will increase as learning proceeds. A
sentence that was unusable for acquisition due to ambiguity early on in
the learning process could become usable some days or weeks or
months later.29

We argued in section 5.7 that the Parametric Principle is the only
way to defeat the potential exponential complexity of the learning task.
Now that we have a true parameter setting device which respects the
Parametric Principle, we can put this to the test. In the next section we
check to see whether the WSTL does indeed reduce the learning
problem to one whose workload is linear in the number of parameters,
as Chomsky envisaged.

First, we make one more distinction among models of the STL
variety. The WSTL that we have described is very weak. It throws
away entirely any sentence that it suspects even might have an
ambiguity in it. But the ambiguity might be only temporary. And in
any case it does not impugn any part of the sentence preceding the
ambiguity point. Even after the ambiguity point, the parser might be
able to pick up the thread again and establish that there is only one
parse of the ®nal portion regardless of how an ambiguity in the middle
of the sentence should have been resolved. What all this means is that
there is more information in sentences that a parser (even a serial
parser) could dig out if it were less rigidly programmed than we have
described for the WSTL. It is this more ¯exible and opportunistic ±
though still conservative ± system that we believe really models the
human learner. We assume the parser ®nds unambiguous information
about trigger treelets in the sentence's structure wherever and however
it can, and when it does it informs the learning system. The learner
adopts a treelet just in case the parser has solid information that it is
necessary for parsing the language. However, this ¯exible system is
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more di�cult to model mathematically and we will not attempt to do
so here. The basic sorts of computations relevant to assessing the per-
formance of the STL will be illustrated here with the weakest model as
described above.

5.9 Performance of an STL-like learner

5.9.1 Number of inputs to convergence for STL

We are interested in calculating performance measures for the STL.
For comparability to the TLAÿ, we employ the same framework of
factors for representing ambiguity and relevance as we did in section
5.5.1, and we make some of the same simplifying background
assumptions (section 5.1). We continue to assume (i), (ii) and (iv); (iii)
and (vi) are unneeded; and (v) will be revised below. We consider here
primarily the performance of a simple in¯exible weak STL, as described
above. We will comment brie¯y on the strong STL, which is of
theoretical interest but which we do not regard as a plausible model
for human learning. Of much more practical interest is the ¯exible
weak variant of the STL which looks for unambiguous trigger
properties even in a sentence which is partially ambiguous. This can be
expected to learn faster than the simple weak model examined below,
which does not even exploit available parametric information prior to
an ambiguity in a sentence. Thus, like the relation between the TLA
and the TLAÿ above, our formalization does not do full justice to the
system actually proposed as a model of human learning. A more
serious simpli®cation in what follows is that we do not attempt to
model dynamic aspects of the STL (all variants of). First, since the
STL sets parameters with certainty, the input becomes progressively
less parametrically ambiguous as learning proceeds. This is just the
Parametric Principle at work. Without it, the STL is but a poor
shadow of itself. The computations for the dynamically disambiguating
system, though along the same lines as those below, would be more
complex because of the need to capture the in¯uence of each learning
event on the size of the task that remains. A second point to note is
that the complexity of a learner's input is likely to increase as learning
proceeds (as the child develops). This will aÿect the rate of expression
of parameters (see below), giving typically lower expression rates at the
outset of learning where this would be most advantageous. This
variable expression rate adds considerable complication to the
calculations; it may prove more practical to study this aspect of the
STL's performance by means of computer simulation techniques than
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by mathematical modeling. In the meantime, we establish performance
estimates here only for the nondynamic variant, thus underestimating
the dynamic STL's chance of encountering an unambiguous trigger,
and hence the overall e�ciency of STL learning. We will use the term
STLÿ (``STL minus'') in what follows to refer to the in¯exible, weak
version of the model without progressive disambiguation or variable
expression in the input.

We now set out some basic calculations relevant to establishing how
many sentences the STLÿ consumes on average before identifying the
target grammar. A sentence that is ambiguous with respect to any
parameter is discarded by the STLÿ for learning purposes. We need,
therefore, to distinguish now between parametric ambiguity and para-
metric irrelevance. This was not important in section 5.5 because results
for the TLAÿ are unaÿected by it. But it makes a big diÿerence to the
STLÿ. This is because ambiguity with respect to a parameter increases
the number of analyses a sentence has, thereby complicating the par-
ser's task and disqualifying the sentence for learning, while irrelevance
of a parameter to a sentence adds nothing to parsing complexity and
does not impinge on what can be learned from the sentence about
other parameter settings.

Consider, to start with, how learning will proceed if every parameter
is relevant to every sentence (equivalently: every sentence expresses
every parameter). In this case, all parameter values for the language
will be established by a single sentence, the ®rst unambiguous one
encountered by the STLÿ. If every input sentence in the language is
ambiguous with respect to at least a parameters, for a > 0, then
learning is impossible. If, on the other hand, even one sentence in the
input sample is parametrically unambiguous, it will set all of the
parameters and learning will be complete; no further inputs will be
needed. The probability of encountering an unambiguous trigger in the
input sample is thus the only factor of interest. For this we must de®ne
what we will call a degree of unambiguity, u, which is the proportion
of sentences in the language that are fully unambiguous parametrically.

For comparability to the calculations for the TLAÿ, we will set u to
the same value as in our second example at the end of section 5.5.1.
We supposed there that 10 percent of inputs are parametrically
unambiguous, i.e., that u � 1=10. Note that the degree of parametric
ambiguity of the other 90 percent of sentences is not pertinent to the
outcome for the STLÿ under the assumptions in place here (i.e., no
learning takes place in response to ambiguous inputs; all parameters
are expressed by every sentence). The only in¯uence the ambiguity level
could have, under present assumptions, is on the failure rate of the
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current grammar G, as noted in section 5.5.1 above; but this is masked
here by the fact that grammar change is limited to a single shift to the
correct grammar. Below, we show that the degree of ambiguity does
enter in more interesting ways into the e�ciency pro®le of the STLÿ
under other more natural conditions.30

Given u � 1=10, and a representative sample of the language (as
assumed throughout), the probability of encountering an unambiguous
trigger is 1=10, and the average number of sentences to convergence is
therefore 1=u � 1=�1=10� � 10=1 � 10 (regardless of how many para-
meters need to be set). For smaller u this rises proportionately; for
example, if there are only 15 unambiguous triggers on average in every
10,000 input sentences, then u � 15=10; 000, and so 10; 000=15 � 667
inputs are needed on average for convergence. Of course, this is not a
psychologically realistic situation: as we have described it, nothing
happens until suddenly the whole language is learned in one event. It is
also not a linguistically realistic situation, since it is not usual for natural
language sentences to express every parameter relevant to the
language. For example, whatever parameter governs the acceptability or
nonacceptability of multiple (overt) A0-movement (e.g., WH-fronting) in
a clause will be irrelevant to any sentence without overt A0-movement,
even if the target language as a whole exhibits overt A0-movement.31 Up
to now our calculations have not distinguished the number of parameters
relevant to a sentence from the number of parameters relevant to the lan-
guage. For example, in section 5.5.1 we assumed that r � 25 parameters
were relevant to the target language, out of the n � 30 total parameters;
and the value of a included not only parameters expressed ambiguously
by a sentence, but also parameters not expressed by the sentence though
relevant to the language as a whole (see note 8). Hence, an independent
measure of parameters relevant to individual sentences was not needed.
Now, however, we identify what we will call the expression rate for the
target language, e, which is the number of parameters expressed by an
input sentence. For simplicity, we will assume here (not realistically) that
e is the same for all target sentences. The expression rate e contrasts with
r, de®ned above, which is the number of parameters that are relevant to
the whole target language.

To illustrate the eÿect of e, let us temporarily set a � 0 (i.e., no
ambiguously expressed parameters), and let us set e � 6, with n � 30
and r � 25 as before. Now, a sentence expresses only 6 of the 25
parameters that need to be set, and it expresses them all
unambiguously. The learner has to encounter enough batches of six
parameter values, possibly (in fact, probably) overlapping with each
other, to make up the full set of 25 parameter values that have to be
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established. So convergence is gradual, not a one-step process as
above. Let P�wjt; r; e� be the probability that an input sentence
provides unambiguous evidence concerning w new (i.e., as yet unset)
parameters, given that the learner has already set t parameters
(correctly), for some r and e as de®ned above. In what follows, we will
take r and e as given, and refer to this simply as P�wjt�. Note that
P�wjt� is in eÿect the probability that the STLÿ will add w new para-
meter values (treelets) to its current grammar on a given input, given
that it had previously adopted t parameters. We present the
formula for P�wjt� in section 5.11; the details are not important
here. Note that w will vary between 0 and e, and t will increase
over time from 0 to r. P�0jt� corresponds to success of the current
grammar G on the current input, so this does not need to be separately
calculated here (see section 5.11). The STLÿ is a memoryless system,
like the TLAÿ, and so it can be modeled by means of a Markov chain
(see section 5.5), which in turn can be cast as a probability transition
matrix consisting of the values of P�wjt� as learning progresses. In sec-
tion 5.11 we outline the required matrix operations, which yield aver-
age numbers of inputs to convergence. Here, we present outcomes
only.

Given a fully unambiguous target language with the values above,
the necessary size of the input sample is 15. Table 5.3 gives expected
sample sizes for other values of r, for diÿerent values of e, with no
ambiguity. As expected, the fewer parameters expressed per sentence
(the lower the value of e), the more input is needed to set them all.
However, even for low expression rates the sample sizes are all quite
small, and they are not exponential in r. If we consider the mean cost
per parameter (in terms of number of inputs needed) we see that it
increases very slightly for higher numbers of parameters; thus, it is
almost (though not quite!) linear in the number of parameters needing
to be set (see section 5.8). Note that even in the worst case here, four
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Table 5.3. Average number of inputs consumed by STLÿ before convergence. All input

sentences unambiguous.

e r � 15 20 25 30

1 50 72 95 120

5 9 13 18 23

10 4 6 8 11

15 1 3 5 6

20 ± 1 3 4



inputs are needed per parameter. (This contrasts with the exponential
rise in table 5.1, where for unambiguous input the cost per parameter
increases many thousandfold from 15 parameters to 30 parameters.)
This performance re¯ects the fact that the STLÿ, with its ``super-
grammar'' parsing ability, has no trouble identifying a grammar that
licenses an input. Thus, unlike the TLAÿ, it does not have to discard
potentially useful inputs just for inability to ®nd a grammar that
satis®es Greediness.

On the other hand, the STLÿ (unlike the TLAÿ) does discard
sentences that fail its nonambiguity criterion. So now we must factor in
the cost of ambiguity. Recall that for the TLAÿ we observed a
potentially exponential cost of parametric ambiguity at stage II which
was oÿset by improvement at stage I with respect to satisfaction of
Greediness. For the STLÿ also we will see that there is a signi®cant
cost of ambiguity ± not because ambiguity breeds errors in this case,
but because the avoidance of ambiguity eÿectively limits a conservative
learner like the STLÿ to just a portion of the input.

It is unimportant for the STLÿ how ambiguous an ambiguous
sentence is. All that matters is how many unambiguous sentences there
are in the learner's sample, and how much information each one
provides. Let us retain e � 6, and let us suppose, as we did earlier, that
90 percent of sentences contain some ambiguity, by which we now
mean that for each sentence in that 90 percent, at least one of the
e � 6 parameters it expresses is expressed ambiguously. Then u � 1=10,
and only the unambiguous 10 percent of the input sentences are usable
for learning. So: on average, an unambiguous input occurs once every
10 inputs and brings information about 6 parameters. Calculating on
these assumptions (see P0�wjt� in section 5.11) we obtain an expected
sample size of 150 (� ten times larger than with u � 1, all sentences
unambiguous). If only 1 percent of sentences were unambiguous, the
learner would need 1,500 inputs for convergence. Thus it's clear that as
u declines, the number of sentences needed mounts in proportion. Let
us consider this further. We know that if u � 0, learning is impossible
for the STLÿ. Now we want to consider some other levels of
unambiguity that could reasonably be expected for natural language,
and compute the input sample sizes they call for.

In fact it is possible, given an average degree of parametric
ambiguity and an expression rate, to calculate the probable distribution
of unambiguous sentences in the target sample, rather than just
stipulating a value for u as we have so far. What we establish is the
chance that all the parameters expressed by some sentence happen to
be expressed unambiguously, given the incidence of ambiguity in
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general. Recall that this is what really matters to STLÿ performance.
Once the pattern of unambiguity has been established for the language
in this way, we can determine from it (via an adaptation of P�wjt�; see
section 5.11) what the total sample size must be in order for all para-
meters to be correctly set. For brevity we will not present these
calculations here. Table 5.4 relates expected sample size directly to the
ambiguity and expression rates. Note that in table 5.4, a denotes the
average number of ambiguously expressed parameters in a sentence as
a percentage of the number of parameters expressed by that sentence
(in section 5.5, a represented a constant number of ambiguous
parameters in a sentence).

As before, the number of parameters to be set has relatively little
eÿect. For this learner, the factors that dominate learning speed are the
degree of ambiguity and the expression rate. When both ambiguity and
expression rate are high, unambiguous inputs are very scarce. This is to
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Table 5.4. Average number of inputs consumed by STLÿ before convergence. Ambiguous

input.

e a (%) r � 15 20 25 30

1 20 62 90 119 150

40 83 120 159 200

60 124 180 238 300

80 249 360 477 599

5 20 27 40 55 69

40 115 171 230 292

60 871 1,296 1,747 2,218

80 27,885 41,472 55,895 70,983

10 20 34 54 76 98

40 604 964 1,342 1,738

60 34,848 55,578 77,397 100,193

80 35,683,968 56,912,149 79,254,943 102,597,823

15 20 28 91 135 181

40 2,127 6,794 10,136 13,545

60 931,323 2,975,115 4,438,464 5,931,148

80 over 30 billion . . . . . . almost 200 billion

20 20 87 256 366

40 27,351 80,601 115,415

60 90,949,470 268,017,383 383,783,455

80 . . . in the trillions . . .



be expected. Clearly, there is little chance of encountering a fully un-
ambiguous sentence if every sentence expresses 24 parameters and the
probability that each parameter is ambiguous is 99 percent (the
probability would be �1=100�24). As a result, for high e and a there are
very few sentences that the learner can make use of, so the expected
sample size is enormous, as can be seen in table 5.4. The eÿect of e is
interesting. For ambiguous input it diÿers from the case of zero (or
very low) ambiguity as in table 5.3. As e increases (holding the degree
of ambiguity constant), it is rarer for the learner to encounter fully
unambiguous triggers. Also, as e increases, the average payoÿ per
unambiguous sentence improves: more parameter settings are acquired.
The results here make clear, however, that the improved yield
per sentence does not compensate for the longer wait between usable
sentences.

The impact of ambiguity is also very sharp. Increasing ambiguity raises
the sample size needed into several hundreds of thousands of sentences,
and then into billions at the top end of the numerical scales considered
here. This certainly does not look promising as an improvement on TLA-
type models. Evidently, it can be even less e�cient to wait for an un-
ambiguous trigger than to cope with the errors that result from guessing
on ambiguous ones. However, that is not true across the board.
Fortunately, the generally severe eÿect of ambiguity is absent at lower
expression rates. We see that humble sentences which reveal only a few
parameter values are the most useful for a learner seeking reliable in-
formation. This is important because expression rate is the one factor
that might plausibly be low in real life learning. That a high degree of
parametric ambiguity is characteristic of natural languages seems undeni-
able. And, though linguistic research might prove otherwise, it seems
vain to hope that the number of syntactic parameters will be reduced to
less than a dozen. So there is not much prospect of a breakthrough in
learning e�ciency due to a reduction of either a or r. But it does seem
within the realms of possibility that the expression rate for natural
languages is as low as half a dozen parameters per sentence, particularly
at the early stages of learning where the threat of parametric ambiguity is
probably at its greatest.32 It is encouraging, therefore, to ®nd that in the
Structural Triggers framework, a reduction in the expression rate has a
bene®cial eÿect on learning speed.

5.9.2 General assessment of the STL

Our calculations have illustrated some important facts about conserva-
tive learning that relies on unambiguous structural triggers, at least for
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the rather undernourished version of the model that we have been able
to formalize here. We see that the problem of ®nding a grammar that
satis®es Greediness has dissolved. We see that performance is fairly
constant up through large language domains with many parameters to
be set. Of course, we have not demonstrated here that the needed sam-
ple size would not explode for domains with more than 30 parameters,
but there is nothing in the mathematics to suggest that it will.
(Concerned readers may check for themselves.) On the other hand, the
problem of extracting trustworthy information from partially
ambiguous input looms even larger than it did in section 5.5. We have
found that to rely exclusively on unambiguous triggers is simply not
feasible except at low expression rates. But at least it does appear to be
feasible there. Though the worst case for the STLÿ is very bad indeed,
there is also a more favorable region in which performance is e�cient
even for a sizeable number of parameters to be set. As long as there
are sentences for which only a few parameters are relevant, the learner
will have a good chance of encountering unambiguous triggers and
converging rapidly on the target.

Whether this is so in real-life learning must be determined by
empirical research. But as we have noted, the prospects seem tolerably
good. It seems reasonable to suppose that learners, especially early
learners, do not mostly encounter sentences that exhibit every syntactic
phenomenon in the language, packed into three or four words or so.
There are early child-directed sentences that contain negation, or overt
WH-movement, or a subordinate clause, but probably few that involve
them all, and those few the learner might ignore. We note for the
record that the assumption that early input expresses fewer parameters
per sentence than input to older children or adults constitutes a weak-
ening of assumption (ii) above, which posits homogeneous input over
time; that assumption has been convenient but is surely oversimplistic.
In any case, even if the sentences directed to the child (or audible by
the child) were independent of the child's stage of development, what
the child is able to grasp and make use of almost certainly does
increase with age.

These interesting possibilities are not captured by the computational
results presented here, which have ignored completely the dynamic
aspects of the STL. The latter will assist in pulling the learner down
into the favorable zone in which the expression rate is low and the
supply of unambiguous trigger sentences improves. Because the STL
actually sets parameters, in accord with the Parametric Principle, every
successful learning event decreases the number of parameters still to be
set. To set up the mathematics for this we would need to change r to a
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variable whose value re¯ects the reduction, over time, in the number of
parameters remaining to be set. Likewise, for a dynamic treatment we
would need to replace e with a variable re¯ecting how many of the
parameters that remain to be set are expressed by a sentence; only these
parameters need to be expressed unambiguously in order for the input
to qualify as unambiguous and usable as a trigger. It follows that, if
the input were uniform, the probability of encountering an unambigu-
ous trigger would rise as learning proceeds. The major concern for the
STL is therefore to establish that there are su�cient unambiguous trig-
gers to get parameter setting started, so that the Parametric Principle
can then begin to shift the learner down into more comfortable regions
of parametric expression where unambiguous triggers are more plenti-
ful. Note that an ideal environment for the STLÿ would be one in
which the number of novel (� previously unset) parameters expressed
per sentence is roughly constant (and quite low) across the learning
period. This means that the expression rate e, as it has been de®ned
here (including parameters already set and not yet set), would ideally
start low, but can increase without detriment to learning if it keeps
pace with the proportion of parameters the learner has already mas-
tered. An interesting speculation that might be empirically investigated
is that one of the reasons why second language learning is apparently
more arduous for adults than for children is that adults may be
exposed early on to complex sentences that express too many novel
parameter values.

The working out of this and many other aspects of STL performance
must await further research. The STL oÿers two potential advantages
for a learner, both due to its use of parameter value treelets to parse
with. One is a virtually waste-free means of decoding sentences into the
parameter values that license them, at stage I. The other is a test for
parametric ambiguity. The value of the ®rst seems unassailable. The
value of the second is less evident, because recognizing ambiguity at
stage I is only useful for purposes of discarding ambiguous stimuli
before they engender errors at stage II, yet it appears that discarding
them might be hardly more e�cient than guessing at random. It is
imaginable, then, that the optimal model would parse inputs as the
STL does but respond to ambiguity as the TLA does (see Fodor,
1998c). On the other hand, the power of the treelet parsing procedure
gives considerable scope for shaping up the STL system, in ways we
have suggested and perhaps others too. Our best conjecture at present
is that a more substantial analysis of it than we have been able to
present here will show that it has considerable resilience to ambiguity.
As we have noted, the main points yet to be undertaken are the
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formalization of the progressive disambiguation of triggers as para-
meters are set, an estimate of expression rates at the onset of learning,
and an assessment of the parser's ability to extract as much reliable
parametric information as possible from partially ambiguous inputs.
Also, for the STL as for the TLA, it is important to keep an eye on
the uniformity of learning success, by considering worst-case outcomes
rather than just the average outcomes studied here.

5.10 Implications for linguistic research

How much work does it take to acquire a human language? Less than
if grammars must be composed from scratch by hypothesis formation.
But more, it seems, than was anticipated in early conceptions of para-
meter setting. The recent research that has developed explicit models of
the parameter setting process has exposed some serious threats to the
central idea, which was that acquiring one of 2n grammars can be
reduced to acquiring the values of n parameters. When the process of
setting the n parameters is implemented, the workload shows a strong
tendency toward an exponential expansion back to a cost proportional
to the 2n grammars. Eÿorts to beat this re-expansion can be seen as
the impetus behind a number of interesting proposals for learning
algorithms, such as the Genetic Algorithm of Clark (1992) and the cue-
based models of Lightfoot (1991) and Dresher (1999). The Structural
Triggers model aims to achieve this while respecting plausible capacity
limits on the psychological mechanisms involved: no complex linguistic
reasoning is required (in contrast to some versions of cue-based
learning), no multiple parsing of each stimulus (in contrast to genetic
algorithms), storage of outcomes is only by parameter not by grammar
(also unlike genetic algorithms). Like many, but not all, other models it
is also intended to be compatible with the absence of systematic
negative evidence (direct or indirect), at most degree-1 input, and the
severe restriction to learning from individual sentences without cross-
sentence comparisons. Time will tell whether this can actually be pulled
oÿ. If so, language acquisition will be nearly eÿortless, as Chomsky
proposed, though no longer a matter of just ¯ipping switches.33

For linguistics there are tasks and conclusions, the most welcome
conclusion being that ± if our optimism is justi®ed ± a principles-and-
parameters theory of UG does indeed ®t nicely within a psychologically
plausible performance model. The tasks for linguistics are of a kind
that have been being given increasing attention in recent work:
constant rethinking of the actual set of parameters and the way it
organizes the space of language phenomena (see, for example, Frank
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and Kapur, 1996); and identi®cation of unambiguous triggers for set-
ting them. The STL puts especially heavy demands on the latter, since
a trigger for parameter pi must be unambiguous not only with respect
to pi but with respect to all other as-yet-unset parameters that are
expressed by it. On the other hand, the STL does not demand that
there be one simple, super®cially identi®able cue property associated
with each parameter value. The observable consequences of a para-
meter value may be extremely varied, as it interacts with other para-
meter values in derivations. As long as there is, somewhere in the
derivation, a distinctive contribution from that parameter value, the
STL will ®nd it.

The one essential condition is that each parameter value be de®nable
as (or inherently associated with) an ingredient of tree structures. Only
this permits the e�cient use of the parsing mechanism to decode
sentences into their contributing parameter values. This is the most
eccentric aspect of the STL among learning models, but it is very much
in keeping with current linguistic theories, both transformational and
monostratal.34 In theories emphasizing phrase structure mechanisms,
such as HPSG and TAG theory, there is little explicit talk of para-
meters, but it has always been natural to think of what diÿerentiates
one language from another as being a type of subtree, made available
by UG, which is used in generating sentences in one language but not
in another. How large a chunk of tree is involved, and whether it is
underspeci®ed or de®ned in full detail, diÿers between theories. The
elementary trees of a TAG grammar are quite large and richly
endowed (Joshi, 1987); the rule schemata that de®ne treelets in HPSG
specify just a small handful of syntactic feature values (Pollard and
Sag, 1994).

GB theory was the original locus of parameters as switches, but has
undergone an interesting transition from what we will call freestanding
parameters to parameters as syntactic features, the limiting case of tree-
lets. The earlier view is described by Clark and Roberts (1993). They
write ``A parameter can be thought of as a descriptive statement that
may be either true or false of a given grammatical system'' and give as
example the statement ``IP is a bounding node for Subjacency.'' This
example also quali®es under a similar but more restricted characteriza-
tion of parameters as points of variation in UG principles, or in the
de®nitions that feed the principles. Another example is the proposal by
Wexler and Manzini (1987) of ®ve possible values for a variable in the
de®nition of governing category, which feeds Binding Principles A and
B. Another descriptive parametric statement is ``Wh-movement occurs
at Logical Form (and at S-structure)'' in which the parentheses mark a
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parametric option (see Huang, 1981; Lasnik and Saito, 1984). This also
counts as a prime example of a phase in which parameters oÿered
choices as to the linguistic level at which certain constraints must be
met, which led into the current concept of strong and weak syntactic
features in the Minimalism framework (see below).

Constraints, de®nitions and levels of derivation are not building
blocks of trees, so these early characterizations of parameters do not
permit STL learning. Or at least, in order for them to do so there
would need to be, in addition to an innate formulation of a parameter
value, an innate speci®cation of a treelet guaranteed to be present in
sentence structures when and only when the parameter value in ques-
tion is instantiated. But at about the same time, a conception of para-
meterization as directly concerned with the properties of elements in
tree structures was emerging in the GB framework in work such as
that by Rizzi (1982) and Hyams (1986, 1989) on the null subject para-
meter. It was proposed that a null subject is licensed by a pronominal
feature of INFL. This clearly does lend itself to STL parameter setting.
The positive value of the null subject parameter could be the treelet
I0[�pron], and the negative value would be I0[ÿpron]. Hyams (1989)
shows (in an older notation) the treelets in (181); (181a) is for English
and (181b) is for Italian. In (181b) the agreement features (AG) of
INFL constitute the ungoverned empty category PRO.

These treelets for the null subject parameter make no mention of sub-
jects, but that is appropriate since the claim is that the acceptability of
null subjects is just one of a number of observable consequences of the
treelet in (181b) as it interacts with UG principles in derivations.35 This
trend towards parameter values as structural elements (in the simplest
case, a single feature speci®cation) that are present in sentence
derivations is embraced in the Minimalist Program of Chomsky (1995)
where strong features of functional heads drive all overt movement
operations.

Thus it seems that there is some signi®cant convergence between the
needs of e�cient language learning and the conclusions of linguistic
research. Linguistic theory need not be bent into unnatural forms to
suit the learning device. We propose the following general characteriza-
tion of parameters and triggers as most compatible with both linguistic
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theory and learnability concerns: a natural language parameter is the
option of adopting a structural trigger into a grammar. A structural
trigger is a partial tree that is made available by UG and is adopted
into a learner's grammar if and only if it proves essential in parsing
input sentences.

Exercises

Note that exercises designed for students with some mathematical
expertise are marked (M); those which presuppose some knowledge of
linguistics are marked (L). Some of the later questions are open-ended
and could be the basis for research projects.

5.1 A nondeterministic learning device such as the TLAÿ may
mis-set a parameter and have to reset it later.
(a) Using the background assumptions and numerical esti-

mates of section 5.5.1, compute R � how many times the
TLAÿ resets the same parameter on average before con-
vergence. Note: you will need to estimate how many para-
meters on average the TLAÿ resets each time it changes
grammars.

(b) Give the general formula for R for any number r of rele-
vant parameters and any degree a of average parametric
ambiguity.

(c) Graph the value of R relative to a and relative to r.

5.2 The probability tree in ®gure 5.1 gives the probability of
attaining the target grammar in one step (one input sentence).
Assume a learning domain of four languages (two binary para-
meters).
(a) Construct a Markov state diagram (as in section 5.11)

depicting the transitions from one nontarget state to
another (including itself), as well as from a nontarget state
to the target.

(b) (M) Use the state diagram to construct a transition matrix,
and calculate from it the fundamental matrix Q (as in sec-
tion 5.11) and the average number of inputs needed for
convergence by the TLAÿ.

For a readable presentation of Absorbing Markov Systems, see
Waner and Costenoble (1996).

5.3 Assume as in section 5.5.1 that 25 parameters are relevant to
the target language, and that all parameters are expressed
(though perhaps ambiguously) by all sentences.
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(a) Calculate the average number of sentences required for
convergence by the TLAÿ for some more varied distribu-
tions of parametric ambiguity. For example: 10 percent of
sentences unambiguous, 60 percent of sentences ambiguous
with respect to 8 parameters each, 30 percent of sentences
ambiguous with respect to 20 parameters each.

(b) Discuss informally (or calculate if you can, using Markov
modeling; see exercise 5.2 and section 5.11), how these
ambiguity distributions would aÿect the performance of
the STL (weak or strong). For manageability, assume a
low degree of parametric relevance and a low expression
rate, e.g., r � 5, e � 2.

5.4 Suppose the prosodic contours of sentences provide learners
with information about the surface bracketing (phrase
structure) of every sentence (though not bracket labels).
Assume also, as throughout this chapter, that the learner can
recognize subject, verb and object, and other basic grammatical
relations.
(a) (L) How much assistance would this be in setting the

word-order parameters?
(b) (L) Are there other syntactic parameters it would be help-

ful for?
(c) How much more e�cient would word-order learning be if

learners had access to bracket labels also?
(d) To what extent would word-order learning be facilitated if

learners could rely on implicational universals (such as ``If
the pronominal object follows the verb, so does the
nominal object'' or ``Languages with dominant VSO order
are prepositional, not postpositional'') as proposed by
Greenberg (1966), Hawkins (1983)?

For linguistic background on this question, read Nespor,
Guasti and Christophe (1996); for mathematical background,
read Levy and Joshi (1978).

5.5 For the null subject parameter the depth-of-derivation problem
does not arise: the fact that there is no overt subject in a
sentence is a fact about its surface structure (as well as its
underlying structure). But the string-to-structure problem can
be seen in examples such as (i) and (ii).
(i) Maria mangiava le olive e beveva il vino.

``Maria ate the olives and drank the wine.''
(ii) Maria ate the olives and drank the wine.
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The Italian and English sentences mean essentially the same,
but there is a structural ambiguity in the Italian (not in the
English). The ambiguity in (i) is between a conjunction of verb
phrases (technically, I-bars) with only one subject position in
the sentence, as shown in (iii), and a conjunction of clauses
with a null subject in the second one, as shown in (iv). In the
latter case, assume the subjects of the two conjuncts are co-
indexed.

(a) (L) Try to establish which analysis is normally imposed on
the word string (i) by native speakers of Italian. What
linguistic tests (syntactic, semantic or prosodic) distinguish
the two structures?

(b) (L) Would a learner be able to recognize which structure
the word string (i) or (ii) has in the target language?

(c) Suppose structure (iii) is what the human parser prefers to
compute when it has the choice. If learners imposed this
structure on (i) or (ii), what consequences would this have
for the learning of Italian? of English?

(d) Suppose instead that structure (iv) is preferred by the
parser. What would the consequences be for the learning
of Italian? of English?
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(e) (L) Consider comparable questions for the word strings (v)
and (vi), or any other examples you can construct of word
strings that are ambiguous with respect to the null subject
parameter (besides imperatives, and sentences in informal
or diary register such as Went home early. Forgot to buy
chicken.: see Haegeman, 1990).
(v) The policeman warned the woman that didn't have a

valid driver's license.
(vi) Is John my friend (punctuation suppressed here)

For references on the null subject parameter, see note 4.

5.6 Consider a language L which has a variety of surface word orders,
in a domain of languages such that each word order in L is the
only permitted word order in some other language in the domain.
(a) Under what assumptions about the learning device would

L and other languages in the domain be learnable?
(b) Are these assumptions plausible for human language

learners?
(c) (L) Is there any reason to believe that the domain of

natural languages has this character?

5.7 Natural language sentences are often structurally ambiguous
even when generated by a ®xed target grammar. For example,
He fed her dog biscuits is ambiguous within English. For a
constant degree of parametric ambiguity, estimate the eÿect of
the degree of structural ambiguity within the target language
on the performance of:
(a) the TLA or TLAÿ;
(b) a structural triggers learner with full parallel parsing capa-

city (a ``strong STL'');
(c) the weak STL (with a ¯agged serial parser).
(d) With no structural ambiguity, every target string is

associated with exactly one target structure. It is presup-
posed for (a), (b) and (c), that structural ambiguity within
the target is increased by increasing the number of
associations between target strings and target structures,
not by extending the set of target structures. Hence,
parametric ambiguity is not thereby increased. Reconsider
the answers to (a), (b) and (c) without this assumption.

5.8 (M) A strict hill-climbing learner adopts a hypothesis only if it
oÿers improvement over the previous one (e.g., in terms of
syntactic parameters: only if the resulting grammar has more
parameter values in common with the target grammar than the
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previous grammar did). It has been shown (Berwick and
Niyogi, 1996) that the TLA is not in fact a strict hill climber
for arbitrary language domains.
(a) Are there domains in which the TLA does perform hill

climbing? If so, what are their characteristics? For example:
Can they contain parametric ambiguity? Is smoothness
essential?

(b) Is the SVC essential? Is the TLAÿ a hill climber?
(c) Assume an error-driven learner which is a strict hill climber

(regardless, for now, of how this is implemented), operating
in an ambiguous domain. How does the number of input
sentences between grammar-changes vary as a function of
how close the learner is to success (i.e., how few parameters
remain to be set)?

5.9 Start with the TLA. Add a recording device that keeps a run-
ning tally, for each parameter value, of how often a grammar
containing it succeeds in parsing an input sentence.
(a) How accurate is this as a guide to whether a given para-

meter value is in the target grammar?
(b) How does its reliability vary with the degree of parametric

ambiguity in the language domain?
(c) Would it be more useful or less useful to keep count,

instead, of how often a parameter value being tested (in the
sense of its being the one novel value in the grammar that
the parser tries out after failure of the current grammar on
some input sentence) is adopted?

(d) Given some such ranking of the frequency of success of
each parameter value, how could the learner most pro®t-
ably employ it in deciding which parameter to reset next?
By a strategy of always switching to the highest-ranked
parameter value not in the current grammar? By switching
to a parameter value that is ranked much higher than the
current value of that same parameter? By switching to
higher ranked values with probabilities proportional to
their relative advantage over others?

(e) Would any such strategy be useful for a parameter that is
expressed only rarely in the target language? For example,
the parameter that determines subject-auxiliary inversion in
English imperatives when both subject and auxiliary are
overt, which is quite rare; e.g., Don't you touch that!

Relevant reading: Clark (1992), Kapur (1994), Nyberg (1992).
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5.10 (M) For the TLAÿ, with the numerical estimates of section
5.5.1, compute the number of inputs necessary for the learner
to identify the target with con®dence greater than 50 percent,
75 percent, 90 percent, and 99 percent. For the relevant mathe-
matics, see Chung (1979).

5.11 Discuss whether average rates of convergence, or convergence
at high degrees of con®dence, is the more appropriate criterion
for evaluating models of natural language learning.

5.11 Appendix

5.11.1 Time to ®rst success

The ``time to ®rst success'' of a series of independent success/failure
events is distributed geometrically where the expected value of the
number of trials (until the ®rst success occurs) is simply the reciprocal
of the probability of success.

For example we could ask: on average, how many rolls does it take
to get a ``6'' on a six-sided die? The expected value, E, of the number
of die rolls required is:

E�#rolls� �
X1

i�1

iP�: 6�iÿ1P�6�

Expanding this out we get:

E�#rolls� � 1P�6� � 2P�: 6�P�6� � 3P�: 6�P�: 6�P�6� . . .
where P�6� is the probability of rolling a 6 and P�: 6� is the probabil-
ity of rolling something other than a 6. Note that P�: 6�P�: 6�P�6� is
the probability that a 6 was rolled on the third roll (preceded by two
failed rolls). Solving this series (see Chung, 1979, for a good
description), we achieve the compact formula 1=P�6�. Assuming a
``fair'' die (all outcomes equally probable) and plugging in, we get:

E�#rolls� � 1=�1=6� � 6

In general,
E�time to success� � 1=P�success�

5.11.2 Calculations for the STLÿ: expected sample size to convergence

We present here one method for arriving at the expected size of the
input sample consumed by the STLÿ. This approach is related to dis-
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cussions in the literature by Niyogi and Berwick (1996) and else-
where.36

Assuming all input sentences are unambiguous, P�wjt� can be
thought of in terms of the following ``urn problem'':

There are 25 balls in an urn, of which t are black and 25ÿ t are
white. We draw 6 balls. What's the probability that we'll have drawn
exactly w white balls? It is equal to the number of ways we can draw w
balls from the 25ÿ t white balls in the urn, times the number of ways
we can draw 6ÿ w black balls from the t black ones in the urn, divided
by the total number of ways we can draw 6 balls from 25. That is:

P�wjt� �

�
25ÿ t

w

��
t

6ÿ w

�

�
25

6

�

where

x

y

� �

denotes the number of ways of choosing y items from a collection of x
items. In general:

P�wjt� �

�
rÿ t

w

��
t

eÿ w

�

�
r

e

�

where e is the number chosen at each drawing and r is the number of
balls in the urn.

Now we can ask the question that is really of interest. Start out with
all r balls in the urn being white (corresponding to ``unset'' para-
meters). After drawing e balls, we paint them black (``set them'') and
return them to the urn. How many times do we need to draw before
all the balls are black (``set'')? We can use the states of a Markov
system modeling the STLÿ (or the urn scheme above) to depict the
number of parameters that have already been set. The system starts in
state S0 and on the ®rst input (with no ambiguity) moves to state Se. It
may stay in state Se or move on the next step to state
Se�1;Se�2;Se�3 . . .S2e. This is illustrated in ®gure 5.3.

The probabilities of making the state transitions are calculated by
plugging appropriate values into P�wjt; e; r�. The results can also be
presented in matrix form, as in table 5.5.
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If we assume that the STLÿ in ®gure 5.3 has already set three para-
meters, then after receiving an input:

(i) it may not be able to set any additional parameters, or
(ii) it may be able to set one additional parameter, or
(iii) it sets two new parameters.

Thus, the probability of the STLÿ changing from having set three
parameters to four is P�1j3; 2; 5� � 0:6.

Since the STLÿ is error-driven, once it has set all relevant para-
meters (i.e. once it achieves state Sr) it stays in state Sr. Markov chains
that have absorbing or ``sink'' states such as this are referred to as
absorbing systems.

A well-known result from Markov chain theory is that the funda-
mental submatrix of a transition matrix yields the waiting time of an
absorbing system. The fundamental matrix Q is de®ned by means of an
inverse function applied to the identity matrix, I (� 1 on the diagonal,
0 elsewhere), minus the (sub)matrix, N, that gives the transition prob-
abilities of the nonsink state(s). That is:

Q � inverse�I ÿN�
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Table 5.5. A sample transition matrix for an STLÿ learner, where r � 5, e � 2

and no ambiguity.

TO: number of parameters set after an input �t� w�
2 3 4 5

FROM: 0 1.0 0 0 0

number of 2 0.1 0.6 0.3 0

parameters 3 0 0.3 0.6 0.1

currently 4 0 0 0.6 0.4

set 5 0 0 0 1.0

Figure 5.3 A Markov state diagram for an STLÿ learner, where
r � 5; e � 2 and no ambiguity.



Deriving N from the matrix in table 5.5 above gives Q as in table 5.6.
The sum of the ®rst row of Q yields the average number of inputs
required for the STLÿ starting in state S0 (no parameters have been
set), to enter the absorbing state S5 (all parameters have been set).
That sum here equals 5.3254.

In order to deal with ambiguity, we will change the de®nition of
P�wjt; e; r�. We refer here to the new formula as P0�wjt; e; e0; r�. Also,
we use u0 to refer to the probability that all e parameters expressed by
a sentence are expressed unambiguously, given that on average e0 para-
meters are expressed unambiguously per sentence. The probability that
any one parameter is unambiguously expressed is e0=e. The probability
that e parameters are unambiguously expressed is therefore �e0=e�e.
This is u0. We are now in a position to give the de®nition of
P0�wjt; e; e0; r�.

P0�wjt; e; e0; r� � �1ÿ u0� � P�wjt; e; r�u0 if w � 0

P�wjt; e; r�u0 otherwise

�

For values of w other than 0, the probability of setting w new para-
meters is simply the probability that the sentence is usable for learning
(i.e., all e parameters are unambiguously expressed (� u0)) times the
probability that w of those e parameters were previously unset
(� P�wjt; e; r�). The probability of setting 0 parameters (i.e., w � 0) is
the probability that not all e parameters are unambiguously expressed
(� 1ÿ u0) plus the probability that even if the e parameters are un-
ambiguously expressed (� u0) all of them had already been set
(� P�w � 0jt; e; r�).

In calculating the transition matrix (as in ®gure 5.3) for the STLÿ
operating in an ambiguous domain we substitute P0 for P.

Note s

1 We would like to thank Stefano Bertolo, Partha Niyogi and Cullen Schaÿer
for interesting discussion and technical advice on this work.
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Table 5.6. The fundamental matrix Q for an STLÿ
learner, where r � 5, e � 2 and there is no

ambiguity.

1 1.1111 0.9524 2.2619

1.1111 0.9524 2.2619

1.4286 2.1429

2.5000



2 Chomsky (1981a) introduces the notation of parameters informally.
Chomsky (1986) attributes to James Higginbotham the image of setting
parametric switches. Atkinson (1987) oÿers conceptual clari®cation on the
relation between triggering and other modes of learning. Clark (1994a: 478)
observes: ``Our folk-theoretic intuition, then, is that each parameter is asso-
ciated with a trigger that automatically causes the learner to set a parameter
to some value immediately upon exposure to it'' (our emphases). Gibson
and Wexler (1994) give a formal de®nition of trigger and of a learning pro-
cedure (see below) which they refer to as triggering but which does not
re¯ect the familiar switch-setting metaphor.

3 Prosodic phrasing may be more directly perceptible, and could help learners
establish phrase structure. See Mazuka (1996), Nespor, Guasti and
Christophe (1996), and papers in Morgan and Demuth (1996).

4 The null subject parameter has attracted attention because it presents the
opposite problem concerning reliability of evidence: some sentences that
clearly lack overt subjects should not trigger the null subject setting. See
Hyams (1986, 1994b), Valian (1990), and references given there. Also see
exercise 5.5 at the end of this chapter.

5 In theories such as that of Kayne (1994) there is no variation in underlying
word order, but the cross-language diÿerences nevertheless show up at the
surface level and must be determined by parameters controlling other
aspects of derivations such as movement operations and/or what functional
projections are present.

6 The relation between grammars and languages is apparently involved in
application of the Subset Principle, which it is generally assumed that
learners respect. If the language licensed by one grammar is a superset of
the language licensed by another one, the former grammar should not be
adopted; this is because of the impossibility of retreat from overgeneration
without negative evidence. We will make the simplifying assumption here
that learners can compute subset relationships solely by inspection of
grammars, without needing to consult the languages they generate.

7 In cue-based models (Dresher and Kaye, 1990; Lightfoot, 1997), it is
assumed that there is another property which is correlated with the true
underlying trigger property, and is perceptible (cf. the arti®cial example of
the /w/ cue for null subjects). We do not examine such models here. We
doubt that simple super®cial cues for syntactic parameters exist in all cases.
We believe that cues are inherently related to the parameter values they trig-
ger, and hence are abstract, and that the only feasible way to recognize
them is by a mechanism such as the Structural Triggers Learner discussed
in sections 5.8±5.10 below. We also set aside here the argument that natural
language learning is not very accurate, as evidenced by the fact that
languages change (see chapter 3 and references there). So we do not take
inaccuracy as a goal of our model of how humans learn.

8 A parameter pi is relevant to a sentence s (alternatively, the sentence
expresses the parameter; see Clark (1992), and chapter 4: 13) if and only if
there is a combination of values of the other parameters which licenses s if
pi takes one of its values but not if it takes the other. For example, by this
de®nition the parameter controlling underlying word order in verb phrases
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is relevant to an SVO sentence (since with ÿV2, SVO is licensed by underly-
ing VO but not OV) but it is not relevant to an SV sentence (since for every
VO grammar that licenses it there is an otherwise identical OV grammar
that does). If a sentence is licensed by two grammars due to irrelevance of a
parameter, the two grammars assign it the same derivation and both are
equally correct (or incorrect) for that sentence. If a parameter is irrelevant to
all sentences in the target language, then there are two equally correct gram-
mars for the language. (If n parameters are irrelevant, there are 2n correct
grammars.) By contrast, if a sentence is licensed by two grammars due to
parametric ambiguity, the two grammars will normally assign it diÿerent
derivations, and one of the two grammars will be wrong for the target lan-
guage. The TLA does not detect either parametric ambiguity or parametric
irrelevance in input sentences, but the distinction nevertheless has an eÿect
on its performance, as will emerge below. Note that we set aside, throughout
this chapter, the existence of structural ambiguity of a sentence with respect
to a single grammar.

9 There are two ways in which a grammar could aÿord a parse of an input
sentence and nevertheless be wrong for the language. The input might be
parametrically ambiguous; or the grammar being tested might contain false
values of parameters that are not relevant to this input but are relevant to
other sentences in the target language; see note 8. In either case, a learner
that took parse test success as su�cient cause for adopting a parameter
value could thereby mis-set a parameter that was previously set correctly;
later it would have to relearn the correct value. Typically, when the TLA
mis-sets parameters it does so because of ambiguity, not irrelevance,
because the SVC provides it with a relevance ®lter (see Fodor, 1999). The
TLA adopts a parameter value only if it is positively helpful in parsing at
least one input string. However, ambiguity and irrelevance interact in
ways that cannot be controlled even by the SVC and Greediness: a
parameter that seems relevant may be so only on the wrong reading of an
ambiguity.

10 There is a conceptual shift that we should point out in case it may cause
confusion. The shift is from checking the parametric properties of input sen-
tences (by running them through a bank of property detectors, in the origi-
nal instant-triggering model), to testing grammars (by seeing whether they
succeed or fail on the current input, as in the TLA). The two approaches
are presumably intertranslatable, but their diÿerent emphases re¯ect diÿer-
ent views of what is a feasible implementation.

11 The Greediness constraint, on the other hand, demonstrably inhibits conver-
gence in the TLAÿ. See Sakas and Fodor (1997) for discussion.

12 There is a joke in the Ma®a genre whose target is not the Ma®a but applied
mathematics. A Ma®a boss kidnaps a mathematician, locks him into a
dank cellar, says ``I'll be back in six months and you must then give me a
formula to predict whether my horse will win at the races. If you don't, I'll
shoot you.'' He leaves. He returns in six months, asks the mathematician
for the formula, the mathematician doesn't have it, the Ma®a man pulls out
his gun. But the mathematician says ``No, don't shoot me. I don't have the
formula yet but I have made signi®cant progress. I have it worked out for
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the case of the perfectly spherical horse.'' We are still at the stage of model-
ing the perfectly spherical language learner.

13 It may appear to be the Greediness constraint that requires the second
parse: a learner without Greediness does not attempt to evaluate the appro-
priateness of grammars before adopting them, so does not need to expend
any eÿort on test-parsing candidate grammars. Berwick and Niyogi (1996)
comment:

Further, not only does the greedy algorithm take more time, there is also a
sense in which it requires more computation at any single step than a non-
greedy one. Suppose the learner has received a sentence and is not able to
analyze it in its current state. Greediness requires determining whether the
new grammar can allow the learner to analyze the input or not'' (p. 614).

However, it is reasonable to suppose that a learner, having picked a new
grammar, would in any case then try to use it to parse the input, for
the sake of understanding what was said. If so, then a nongreedy learner
would also parse each novel sentence twice, once with the current gram-
mar and once with a new one. The workload at each step is thus com-
parable (though the success rate may diÿer; see note 11). The way to
save the labor of these double parses is to converge on the target gram-
mar as soon as possible, so that over the course of learning, fewer sen-
tences are encountered that are beyond the scope of the learner's
current grammar. Input consumed and labor expended are thus related
measures.

14 We are simplifying the discussion, throughout this section, by not distin-
guishing between the parametric ambiguity of a sentence and the irrelevance
of a parameter to a sentence though it is relevant to the language as a
whole. This sentence-level irrelevance (see note 8) is essentially folded into
parametric ambiguity here. It is an interesting phenomenon, which we
address in section 5.9, but it does not have a major impact on the outcomes
of the TLAÿ.

15 In principle, a sentence that is indeterminate with respect to 8 parameters
might be licensed by 256 grammars or by any lesser number between 256
and 2. In the minimum case, the two grammars would have opposite values
for each of the indeterminate parameters. But assumption (iv) above entails
the maximum, i.e., that every combination of values for those eight para-
meters is compatible with the sentence. This imposes a form of ``smoothness''
on the relation between languages and grammars (see discussion in section
5.6 below). It excludes, for example, the possibility that two very divergent
grammars, and only they, could license the same sentence. To capture other
assumptions formally, it would be necessary to distinguish two measures of
ambiguity: ag, the number of grammars that can license a given input; and
ap, the number of parameters whose values are not determined by a given
input, where ag � 1 if ap � 0, and otherwise 2 � ag � 2ap . Assumption (iv)
sets ag � 2ap . For the TLAÿ, as analyzed above, ag is the more useful mea-
sure; for the Structural Triggers model we consider below, ap is more signi®-
cant. A third measure of ambiguity that is sometimes appropriate is related
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to assumption (iii). That is: al , the number of sentences or sentence types in
common between diÿerent languages.

16 The probability that G is wrong and ought to be changed is
1ÿ �2nÿr=2n� � 1ÿ �1=2r�, which is of course higher than the recognized
need to change, which is 1ÿ 2aÿr. The diÿerence is �2a ÿ 1�=2r, and is a
measure of the extent to which the learner is lulled into a false sense of
achievement due to ambiguity of the input.

17 For simplicity, we have assumed that the outcome of parsing s with G0 is
independent of the outcome of parsing it with G, which allows the corre-
sponding probabilities to be multiplied together. In fact, the probability of
a successful parse by G0 is aÿected by the failure of the prior parse by G.
For details, see Sakas (2000).

18 For a domain of three parameters, of which two per sentence are ambigu-
ous on average, the average number of inputs to convergence by this calcu-
lation is 16. For Gibson and Wexler's three word-order parameters, Niyogi
and Berwick (1996) showed that their implementation of the TLA needed
approximately 100 sentences of child-directed adult speech from the
CHILDES database (both English and German) for asymptotic (not aver-
age) convergence. However, these modest numbers should not distract
attention from the high number of inputs needed for a more likely number
of parameters for natural language. Success for small language domains is
not a good prognosticator for whether performance will scale up appropri-
ately.

19 Note that smoothness in this sense goes beyond the weaker phenomenon
implied by assumption (iv) in section 5.5.1 above (see note 15), which con-
cerns a single sentence. Smoothness has to do with the whole language
licensed by a grammar and the extent to which it overlaps the languages
licensed by neighboring grammars.

20 Nyberg (1992) proposes a model in which the learner's route through the
grammar space is recorded, so that it doesn't (normally) retest a failed
grammar. The learner tests all grammars one parameter distant from its
most recent failed grammar, and performs an evaluation to select one of
them to shift to. The learner's path through the grammar space could be
reconstructed from a record of which parameter is reset at each step.
Nyberg's model achieves very rapid learning rates (linear in the number of
parameters), but it does so at the cost of an unrealistically heavy parsing
load. For 30 parameters, each novel input is parsed by 30 grammars, and
the outcomes recorded. This is repeated on successive inputs until a clear
winner has been identi®ed to shift to, or a dead heat is declared and a ran-
dom choice made. Incidentally, we note that Nyberg precodes the input
into the set of parameter values each sentence is compatible with. This is
more than an expository convenience. It imports assumption (iv) of section
5.5.1 above. Suppose a sentence is licensed by two grammars, e.g. (for three
parameters) by grammars 011 and 101. Then the sentence is coded as * * 1.
This entails that the sentence is also licensed by grammars 001 and 111, i.e.
by all combinations of parameter values compatible with this coding, of
which there will be 2i for i � the number of asterisks (i.e., i � ap in the
terms of note 15). This rules out the possibility that the target parameter
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settings are quite unlike those of other grammars that succeed on some
inputs, and it thereby facilitates this learner's systematic search through the
grammar domain.

21 Fodor (1998a) notes that irrelevant parameters also in¯ate the size of the
grammar pool; if they could be recognized as irrelevant and discarded,
learning would be more e�cient. However, Fodor wrongly implies that for
the TLA the workload to convergence depends on the total number of para-
meters, whereas we have seen here in section 5.5.1 that it depends only on
the number of parameters relevant to the target language (because
irrelevance of some parameters aÿects the number of correct grammars in
proportion to the total number of grammars). Thus, irrelevance of some
parameters is helpful to the TLA, as it is for the STL model we present
below.

22 For simplicity we make the common assumption here that exactly half of the
remaining grammars are eliminated by each parameter that is set, but this
would not be so if there were co-occurrence restrictions on parameter values
or constraints on parameter accessibility such that a parameter does not freely
admit of either value in combination with all other parameter values.

23 It is fair to raise the question of whether checking through millions of
grammars could conceivably be faster or less eÿortful than setting one para-
meter. There can be no formal proof here, because it depends in principle
on the cost of unit operations of noncomparable types. But it seems very
unlikely that the answer could be positive (for any plausible number of
parameters) ± unless the parameter setting operation somehow smuggled in
some individual grammar checking.

24 This does not rule out careful evaluation of the evidence before the
irrevocable decision is made. It might even be combined with some sort of
emergency retrieval of a previously discarded value if all else has failed,
though we will not explore this possibility. Nondeterministic models like the
TLA are of course able to freely return to past parameter values when
necessary.

25 The learner cannot even usefully accumulate the results of parse tests over a
succession of inputs. In principle it could count how often a given para-
meter value makes a contribution to licensing an input. But this interacts
with how the other parameters are set in the grammars tested. So for
decisive evidence in favor of that parameter value the learner would need to
store the outcomes of half a billion parse tests, one for each possible
combination of values of the other parameters. A learner with statistical
capabilities might try to estimate reliability based on partial test data (see
exercise 5.9 below), but even there the values of other parameters could
skew the counts so it might take a very long time to distinguish between a
parameter value that is correct and one that only seems to be so because of
the company it keeps.

26 Future research should consider the possibility that the parser can pick up
the analysis of a sentence again following an ambiguous substring. If it can
perform accurately on the post-ambiguity fragment, despite not knowing
what preceded it, it could provide additional reliable information for setting
parameters.
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27 Though both the strong and the weak STL are safe in that they do not
commit errors, there are some circumstances in which an STL will fail to
identify the correct grammar (see Bertolo et al., 1997a, b). For discussion,
see Fodor (forthcoming).

28 See Fodor (1998c) on the consequences for acquisition of parser failure due
to lack of needed lexical entries, garden paths and other processing pro-
blems.

29 Of course, the input itself (or that portion of it that the child is able to
work with) may also be changing during that time. We conjecture that long
sentences are typically less parametrically ambiguous than short sentences.
So if it is assumed that the length and complexity of the sentences a learner
is capable of processing increase with age then this will cause a decrease
over time in the degree of input ambiguity. Stefano Bertolo has kindly
checked this hypothesis in the domain of eight parameters for word order
and movement which he and his colleagues have established at MIT (see
Bertolo et al., 1997a). He reports the following distribution of the number
of distinct languages that an input sentence type belongs to, for all the dis-
tinct sentence types in the domain under four words, and a sample of the
sentence types of ®ve words.

Note that in this domain there are no fully unambiguous sentences shorter
than ®ve words long which the WSTL could use for setting parameters.
In the smaller domain studied by Gibson and Wexler (1994) every
language has at least one unambiguous trigger, ranging from three to ®ve
words.

30 The value u (degree of unambiguity) and the value a (degree of ambiguity)
are to some extent independent, though they place outer bounds on each
other. E.g., if u > 0, then a < n. Below, we give up the simpli®cation of sec-
tion 5.5.1 (assumption (v)) that all sentences are equally ambiguous, and
consider a distribution of parametric ambiguity such that a represents the
mean (average) number of ambiguous parameters per sentence.

31 This is only true, of course, if multiple A0-movement does not correlate reli-
ably with some other phenomenon that can show up in nonmovement con-
structions. In general, a parameter that controls phenomenon p can be
expressed by a sentence not exhibiting p if the sentence exhibits another
phenomenon controlled by the same parameter.
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Sentence length Number of distinct Number of distinct languages

in words types in length min max mean

2 2 10 38 24

3 29 2 24 10.3

4 95 2 16 7.2

5 72 studied 1 9 3.9



32 The work of Bertolo et al. (1997a) suggests that there might be a linguistic
limit on how far e can be reduced. This would be so if some substantial
number of parameters are essential to every well-formed sentence. Bertolo
et al. note that if these necessarily relevant parameters are ambiguously
expressed, a conservative learner could be hung up inde®nitely. This is a
major reason for the high degree of ambiguity noted in note 29; see discus-
sion in Bertolo et al. (1997a). We have been taking it for granted here (a)
that all parameters have an equal chance of being irrelevant to an input sen-
tence, and (b) that all expressed parameters have an equal chance of being
expressed unambiguously. But if relevance and ambiguity are in fact
unevenly distributed, then a few troublesome parameters might indeed be
expressed ambiguously in many sentences, and depress the incidence of
unambiguous triggers. A possible solution to this, if linguistic research sup-
ports it, is to revise the presumed parametrization of the language facts, so
as to translate ambiguous parameters in some contexts into irrelevant para-
meters. See Fodor (1998c) for discussion.

33 See Fodor (1998c) for a proposal under which learners merely parse sen-
tence (once each) for comprehension, as adults do but with the supergram-
mar, and the target grammar emerges as residue, with no additional
procedures.

34 Only Optimality Theory seems incompatible with parameter values as tree-
lets since it rejects parameter values altogether. Cross-language variation is
captured in terms of diÿerent priority orderings of a UG-provided set of
constraints on structure. Constraints are negative, quite unlike the positive
ingredients of sentence derivations needed by the STL. See Tesar and
Smolensky (1998) on acquisition in an OT framework.

35 If null subjects were characterized directly, in a diÿerent linguistic theory,
that could be equally compatible with STL learning. For instance, the posi-
tive value of the null subject parameter might be a treelet consisting of the
feature speci®cation [�NULL] on an XP (NP or DP, depending on the
theory) in characteristic subject position (again, at the choice of the theory),
or perhaps an XP marked [CASE NOM], etc. Or, in a framework in which
subjects are generated outside VP, the parametric treelets might oÿer a
choice of VP or S as root categories or selected complements, etc. The
learning theory does not dictate these details.

36 There is at least one other approach which can be used for establishing
these results. It utilizes dynamic programming to compute the following
recurrence relation: that the expected sample size required, on average, to
set n parameters can be determined from the size required to set nÿ i,
0 < i < e parameters together with the possibility of setting i additional
parameters given that nÿ i have been set.
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