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Preface

The aim of the series of workshops on Coping with Uncertainty (CwU) organized
since over a decade at the International Institute for Applied Systems Analysis
(IIASA), Laxenburg, Austria, has been to provide researchers and practitioners
from different areas with an interdisciplinary forum for discussing various ways of
effective dealing with uncertainties and risks in diverse areas, including environmen-
tal and social sciences, economics, policy making, management, and engineering.
The workshops proved to be successful, especially in cross-disciplinary sharing
methods, ideas, and open problems.

Science-based support for effective coping with uncertainties and risks in
complex policy-making and engineering problems needs practical solutions for
fundamentally new scientific problems that in turn require new concepts and tools.
A key issue concerns a vast variety of practically irreducible uncertainties, including
potential extreme events of high multidimensional consequences, which challenge
traditional models, and thus require new concepts and analytical tools. Robust
decisions for problems exposed to extreme events are essentially different from
over-simplified decisions that ignore such events. Specifically, a proper treatment of
extreme/rare events requires new paradigms of rational decisions, new performance
indicators, and new spatio-temporal dimensions of heterogeneous interdependen-
cies, including network externalities and risks.

Traditional scientific approaches usually rely on real observations and experi-
ments. Yet no sufficient observations exist for new problems; “pure” experiments
and “learning by doing” are dangerous, very expensive, and thus practically
impossible. Moreover, the available historical observations are often contaminated
by “experimentator,” i.e., past actions or policies. The complexity of new problems
does not allow to achieve enough certainty, e.g., by increasing the resolution of
models or by bringing in more links. Such problems require explicit treatment
of uncertainties using “synthetic” information derived by integration of “hard”
elements, including available data, results of possible experiments, and formal
representations of scientific facts, as well as “soft” elements based on diverse
representations of scenarios, and opinions of public, stakeholders, and experts.
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vi Preface

However, even a best possible integration of all these factors results in assess-
ments having poor estimates. Therefore, the science-based support for addressing
the new class of problems summarized above needs to replace the traditional “deter-
ministic predictions” analysis by new methods and tools for designing strategies
that are robust against the involved uncertainties and risks, and is also suitable
for effectively coping with new challenges, such as spatiotemporal heterogeneities,
interdependencies, externalities, and endogenous (i.e., caused by possible future
actions) risks.

Contributions to this volume are based on selected presentations at the CwU 2009
workshop. The workshop aimed at contributing to a better understanding between
practitioners dealing with safety of complex heterogeneous systems under uncer-
tainty, and scientists working on either corresponding modeling approaches, or on
methods that can be adapted for improving the understanding and management of
uncertainty. The focus of the CwU 2009 was on novel approaches to supporting
robust decision making and design, especially when uncertainty is irreducible, con-
sequences might be enormous, and the decision process involves stakeholders with
diverse interests. Presentations dealt with open problems in this field, limitations of
known approaches, novel methods and techniques, or lessons from applications of
various approaches.

The workshop was organized at IIASA in December 2009, jointly by:

• International Institute for Applied Systems Analysis, Laxenburg, Austria, and
• Federal Armed Forces University Munich, Germany.

The scientific Program Committee included:

• Yuri Ermoliev, IIASA, Laxenburg (A),
• Marek Makowski, IIASA, Laxenburg (A),
• Kurt Marti, Federal Armed Forces University Munich (D), and
• Gerhard I. Schuëller, University of Innsbruck (A).

This volume is composed of chapters based on selected contributions to the
CwU 2009 workshop. The first chapter summarizes key issues related to supporting
decision-making under uncertainties and risks, in particular for managing safety of
heterogeneous systems. The other 17 chapters are organized into the following five
parts:

1. Decisions under systemic risks and uncertainties discusses support of robust
decisions involving threats generated by intelligent agents, and under lack of
imprecise probabilities, as well as decision analysis through combining second-
order belief distributions with qualitative statements, and an econometric model
based on the max–min expected utility concept.

2. Modeling uncertainties of heterogeneous systems presents effective approaches
to cope with diverse types heterogeneous systems, such as technological change
under increasing returns and uncertainty, an agency problems, as well as sustain-
able agriculture, food security, socioeconomic risks, and water management.
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3. Uncertainty and optimization deals with novel optimization methods for analysis
of uncertainties; in particular in global optimization, fuzzy linear programming,
and clustering of uncertain data.

4. Analysis and optimization of technical systems and structures under stochastic
uncertainty discusses optimal open-loop feedback control of dynamic structural
systems, and deals with problems in civil engineering and large spatial trusses.

5. Analysis and optimization of economic systems under uncertainty presents
approaches to estimation and reduction of environmental impacts for sustainable
agriculture, portfolio analysis of financial and insurance instruments, and pricing
catastrophe bonds.

The organizers gratefully acknowledge the generous support IIASA provided for
the workshop logistics, which enabled the participation of many researchers who
otherwise could not have attended this meeting.

The editors express gratitude to all referees who have helped the authors to
improve their contributions by providing constructive comments, in several cases on
a short notice. We thank the authors for delivering their contributions that conformed
to the substantive comments by the reviewers, and the technical guidelines that
were necessary to prepare this volume with limited resources for technical edition.
Furthermore, we thank Ms Suchitra Subramanian of the Integrated Modeling
Environment (IME) Project at IIASA for her support in the preparation of this
volume.

Finally, we thank the Springer-Verlag for including the Proceedings into the
Springer Lecture Notes Series in Economics and Mathematical Systems (LNEMS).

Laxenburg Yuri Ermoliev
Laxenburg Marek Makowski
Munich Kurt Marti
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Robust Management of Heterogeneous
Systems under Uncertainties

Yuri Ermoliev, Marek Makowski, and Kurt Marti

Abstract The chapter summarizes the key issues related to robust management
of heterogeneous systems under uncertainties. It focuses on challenges types of
decision problems under uncertainties for which standard approaches are inade-
quate, and builds on the related background and key concepts discussed during all
workshops on Coping with Uncertainties. The selected key issues are summarized
in a condensed manner, and illustrated by simple examples.

1 Context

Global change processes, in particular climate change, involve inherently unpre-
dictable complex interactions between natural and human-created systems therefore
proper modeling of these processes must rely on adequate treatment of uncertainties,
socio-economic and environmental heterogeneities, and their interdependencies
with human’s decisions. Traditional natural science models are based on relations
whose validity is estimated from repetitive experiments and observations. If exper-
iments do not affect the underlying relations, and the processes are stationary,
then repetitive observations allow to develop the corresponding models by using
the statistical decision theory. In reality, however, human-created processes do
not follow fixed relations. Such processes have typically structure, relations, and
parameters that not only change over time but also depend on the decisions
that affect the processes; for example, introduction of new technologies may
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increase or reduce uncertainties, modify threats, interdependencies, create systemic
risks, critical thresholds, and potential discontinuities. Such new type of decision
problems under inherent uncertainty requires qualitatively new approaches than
methods supported by the traditional statistical decision theory.

Traditional models based on statistical decision theory deal with situations in
which a model of uncertainty, and the corresponding optimal solutions are defined
by a sampling model characterized by a probability measure P with an unknown
vector x of “true parameters” x�. Vector x D x� defines a desirable optimal
solution, the performance of which can be observed from the sampling model
providing a sequence f!1; !2; : : : g of random observations of x�. Therefore, the
problem is to recover x� from these data. Potential estimates of x� define feasible
solutions x of the corresponding statistical decision problem. It is essential that x
does not affect the sampling model P so that the performances of solutions x can
be evaluated by a distance from x� by using observable performance f!1, !2, : : : g.

Support for the new type of decision-making under uncertainty requires funda-
mentally new approaches. The model of uncertainty, feasible solutions, and perfor-
mance of the optimal solution are not given; all of these elements have to be modeled
based on analysis of the decision making situation, i.e., considering heterogeneous
dimensions, such as socioeconomic, technological, environmental, and safety.
Moreover, there is no information on the actual optimal performance; therefore
the performance of desirable solutions cannot be characterized by a distance from
an observable, actual optimal performance. Thus, the general decision problems
typically have rather diversified facets (dimensions) of robust performance.

Actually, good evaluations of global change processes are unrealistic because
such processes are non-stationary, have delayed responses, and experiments are dan-
gerous or even impossible. Moreover, some human or natural actions qualitatively
change the underlying processes, e.g., causing discontinuities or irreversibilities.
Under inherent uncertainty of such heterogeneous processes, the role of integrated
modeling rests on its ability to guide comparative analysis of rational decisions.
Although exact evaluations are impossible, the preference structure among decisions
can provide a stable basis for a relative ranking of alternatives, and thus enable
designing robust policies, which are, in a sense, optimal against all relevant uncer-
tainties. To illustrate this approach let us recall a commonly known observation:
finding out (without exact measurements) which of two given parcels is heavier is
much easier than evaluating weight of each of them.

The term robust was first introduced into statistics in 1953 by Box (1953);
it was widely recognized after publication of a path-breaking paper by Huber
(1981), who admitted that researchers had long been concerned with the sensitivity
of standard estimation procedures for “bad” observations (outliers). Appeal for
robustness (Hampel et al. 1986) probably dates back to prehistory of statistics.
A distant outlier in observations ruins the least square analysis, therefore rejection
of outliers is considered a robust statistical procedure. The mean is not robust
to outliers, whereas the median is robust; therefore, switching from the mean to
the median for long-tailed data increases robustness. According to Huber, . . .
any statistical procedure. . . should be robust in the sense that small deviations
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from the model assumptions should impair the performance only slightly. This
concept of robustness corresponds to standard mathematical ideas of continuity
and stability: when disturbances become small, the performance of the perturbed
model also deviates slightly. In other words, a robust procedure is in a certain
sense optimal with respect to all uncertainties from a neighborhood of the model.
Huber introduced rigorous notions of robustness based on probabilistic minimax
approach and Choquet capacity (imprecise probabilities), which led to specific
non-smooth stochastic optimization models. By using appropriate neighborhoods
of probability measures (e.g., with respect to "-contaminated probabilities, Levy
distance, or Kolmogorov distance), Huber derived robust estimators optimizing
the worst that can happen over the neighborhood of the model with respect to a
certain performance indicator. Neighborhoods of probability measures can also be
characterized by Choquet capacities, i.e., functions which define sets of probability
measures by taking all probabilities which lie bellow (or above) a capacity (point-
wise). These basic ideas of robust statistics, as well as the infinitesimal robustness
introduced by Hampel et al. (1986) can also be used for more general decision
problems under uncertainty.

2 Decisions Under Uncertainties

In general, decision problems under uncertainty, any related decision x results
in multiple outcomes such as costs, benefits, damages, and risks, as well as
indicators of fairness, equity, and environmental impacts. The outcomes gi .x; !/,
i D 1; : : : ; K depend not only on decisions x but also on uncertainty characterized
by ! 2 ˝ , where ˝ denotes a set of admissible scenarios.

Under uncertainties, a given decision x often has qualitatively different outcomes
for different scenarios !; therefore it difficult to assess which decision is reason-
ably good for all considered scenarios. In 1738 mathematician Bernoulli (1977)
introduced the concept of expected utility maximization as a rule for choosing
decisions under multiple outcomes. This approach assumes that all outcomes are
represented by a single measure of preferability, e.g., a monetary payoff denoted by:
q.x; !/ D Q.g1; : : : ; gK/. The standard expected utility model suggests to choose
a decision x that maximizes an expected utility function

U.x/ D Eu.q.x; !// D
Z

u.q.x; !//P.d!/;

i.e., in a sense, for all ! 2 ˝ , where u.�/ is a utility associated with an
aggregate outcome q.x; !/. The shape of u defines attitudes to risks. The use of a
probability measure as a degree of belief was formalized by Ramsey (1931). Savage
published (Savage 1972) a thorough treatment of expected utility maximization
based on subjective probability as a degree of belief. As a result of this work the
use of probability measure became a standard approach for modeling uncertainty
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in a consistent way within a single model, by using “hard” observations, and soft
public and expert opinions. Although an optimal decision maximizes, in a sense, the
expected utility for all scenarios, it often still cannot be considered to be a robust
solution, especially with respect to inherent heterogeneities of systems.

The shortcomings of the expected utility model are well known. Generally, it is
practically impossible to find a utility function that enables satisfactory aggregation
in one preferability measure of various attributes, including attitudes to different
risks, distributional aspects of gains and losses, rights of future generations, and
responsibilities for environmental protection. For complex heterogeneous systems,
it is natural that different performance indicators should be used to evaluate its
robustness in the same way as we use indicators of health, e.g., temperature and
blood pressure for humans. The expected utility model is a specific case of STO1

models that use various performance indicators fi .x; !/, i D 1; : : : ; m, one of
which can be the expected utility (disutility). These indicators depend on outcomes
gk.x; !/, k D 1; : : : ; K , on x and !, i.e.,

fi .x; !/ WD qi .g1; : : : ; gK; x; !/:

A rather general STO problem is formulated as optimization (maximization or
minimization) of the expectation function

F0.x/ D Ef0.x; !/ D
Z
f0.x; !/P.d�/

subject to

Fi .x/ D Efi.x; !/ D
Z
fi .x; !/P.d�/ � 0; i D 1; : : : ; m:

The choice of proper indicators fi .x; !/ and outcomes gk.x; !/, k D 1; : : : ; K ,
is essential for the robustness of x. Globally or regionally aggregated outcomes are
less uncertain, but they may not reveal potentially dramatic heterogeneities induced
by global changes on individuals, governments, and the environment. For instance,
an aggregate income or growth indicators may not reveal an alarming gap between
poor and rich regions, which may cause future instabilities.

By choosing appropriate outcomes gk.x; !/ and functions fi .x; !/, STO models
enable a natural and flexible way to represent various risks, abrupt changes,
spatio-temporal heterogeneities, equity constraints and the sequential resolution
of uncertainty in time. Often, under proper robustness requirements, fi .x; !/ are
analytically intractable, non-smooth, and even discontinuous functions; probability
measure P is chosen from a feasible set, thus is imprecise; moreover, P often
depends on x, which is essential for modeling robustness.

It is also often practically impossible to uniquely identify degree of beliefs in
terms of subjective probability. Most people cannot clearly distinguish between

1STO is the commonly used acronym for Stochastic Optimization.
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probabilities ranging roughly from 0.3 to 0.7. Decision analysis often has to rely
on imprecise statements, for example, that event e1 is more probable than event
e2, or that the probabilities p1, p2 of event e1 or of event e2 are greater than 50%
and smaller than 90%. Therefore, feasible sets of probabilities are often implicitly
defined by inequalities such as p1 � p2, 0:5 � p1 C p2 � 0:9.

As in robust statistics, the robust solutions of general decision models can be
derived by using worst-case (for a given decision) probability distribution from the
feasible sets of distributions satisfying constraints of a STO model.

The standard expected utility maximization model suggests two types of deci-
sions in the response to uncertainty: either risk averse (including risk neutral) or
risk prone decisions. These two options also dominate, for example, the climate
change policy debates, emphasizing either ex-ante anticipative emission reduction
programs, or ex-post adaptation to climate changes when full information becomes
available. Clearly, a robust policy should include both options, i.e., a robust strategy
should be flexible enough to allow for later adjustments of earlier decisions. Two-
stage and multi-stage recourse models of stochastic optimization incorporate both
fundamental ideas of anticipation and adaptation within a single model, and support
analysis of trade-offs between long-term anticipatory strategies with respect to some
slices of risks and short-term adaptive adjustments with respect to other slices.
Therefore, the adaptive capacity can be properly designed ex-ante, say, through
emergency plans and insurance arrangements. Explicit incorporation of ex-ante and
ex-post decisions induces risk aversion measures that cannot, in general, be imposed
exogenously by a standard utility function.

Co-existence of ex-ante and ex-post decisions induces quantile-type risk mea-
sures. However, convexity (concavity) of models can be preserved by substituting
mean values by median, or/and other quantiles.

STO methods can also be applied to some problems unsolvable by standard
deterministic methods. For example, STO methods deal directly with the variability
of fi .x; !/ affected by variability of ! and decisions x, i.e., they deal simulta-
neously with uncertainty and decision analysis. Some decisions x can considerably
reduce the variability of indicators fi .x; !/, despite significant variability of !, e.g.,
decisions x1 D 0, x2 D 0 for function !1x1 C !2x2. Therefore, STO models can
significantly reduce requirements on data quality in contrast to standard approaches
to data uncertainty analysis separated from decision analysis.

3 Illustrative Examples

The main challenge confronted by STO theory is that it is practically impossible
to evaluate exact values of Fi .x/, i D 0; 1; : : : ; m, as the following Example 1
illustrates.

Example 1 (Safety constraints in pollution control). A common feature of most
models used in designing pollution-control policies is the use of transfer coefficients



6 Y. Ermoliev et al.

aij that link the amount of pollution xj emitted by source j to the pollution
concentrations gi .x; !/ at the receptor location i as

gi .x; !/ D
nX

jD1
aij xj ; i D 0; 1; : : : ; m:

The coefficients a are often computed with Gaussian-type diffusion equations.
These equations are solved over all possible meteorological conditions, and the
outputs are then weighted by the frequencies of meteorological conditions over a
given time interval, yielding average transfer coefficients aij .

Deterministic models ascertain cost-effective emission strategies xj ; j D
1; : : : ; n subject to achieving exogenously specified environmental goals, such
as ambient average standard bi at receptors i D 1; : : : ; m. Such models can be
improved by the inclusion of safety constraints that account for the random nature
of coefficients aij and ambient standards bi to reduce impacts of extreme events:

Fi .x/ D P robŒ

nX
jD1

aij xj � bi � � pi ; i D 1; : : : ; mI

namely, the probability that the deposition level in each receptor (region, grid, or
country) i will not exceed uncertain critical load (threshold) bi at a given probability
(acceptable safety level) pi .

These constraints can be written in the form of the standard STO model with
discontinuous functions

fj .x; !/ D

8̂
<
:̂
pi � 1; if

nX
jD1

aij xj � bi � 0;

pi ; otherwise:

If there is a finite number of possible scenarios

! D .aij ; bi /; i D 1; 2; : : : ; m; j D 1; : : : ; n

reflecting, say, prevailing weather conditions, then Fi.x/ are piecewise constant
functions, i.e., gradients of Fi .x/ are equal to 0 almost everywhere. Hence, the
straightforward conventional optimization methods cannot be used.

Ignorance of risks defined by safety constraints may cause irreversible, catas-
trophic events.2 Therefore, safety constraints are important for regulation of stability

2Consider, for example, concentration of a toxicant in a lake that on average is far below a
damaging level. A short-time substantial increase of the concentration may not increase long-term
average in a noticeable way, but may still be lethal.
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in the insurance industry, known as the insolvency constraints. The safety regula-
tions of nuclear reactors require pi D 1 � 10�7, i.e., a major failure occurring on
average only once in 107 years. Yet, such constraints (assuming pi < 1) do not
exclude the risk that a disaster may occur even next hour.

Deterministic decision problems are usually formulated in two steps. First,
statistical procedures are used to estimate average values ! of input data !. Second,
a deterministic problem with goal functions fi .x; !/; i D 1; : : : ; m is solved. For
multi-mode distributions, the use of ! may even orient analysis on decision that are
actually infeasible. Moreover, for nonlinear fi .x; !/, typically

fi .x; !/ ¤ fi .x; !/:

For example, for ! uniformly distributed on Œ�1; 1� .!x/2 > .!x/2 (because
! D 0).

If one can evaluate explicitly multidimensional integrals

Fi .x/ D Efi .x; !/ D
Z
˝

fi .x; !/P.d!/;

then the STO problem reduces to a standard deterministic optimization model,
which, however may be difficult to solve even for simple functions. To illustrate this
let us consider two random variables !1, !2 with known probability distributions;
evaluation of probability distribution of their sum .!1 C !2/ is (in general) an
analytically intractable task requiring the evaluation of an integral. Moreover, the
distribution of fi .x; !/, depends on x; e.g., consider fi .�/ D !1x1C!2x2, and com-
pare two pairs of very simple functions: fx1 D 0; x2 D 1g and fx1 D 1; x2 D 0g.

Using average or expected values of typical indicators (such as income, growth,
daily pollutant concentration, losses, utility, returns, growth, incomes) is often mis-
leading, especially for heterogeneous systems. Note that the projected global mean
temperature change falls within the difference between the average temperature
of cities and their surrounding rural areas. Therefore, heterogeneities of global
climate change impacts can be properly evaluated only in terms of local temperature
variability and related extreme events, in particular, heat waves, floods, droughts,
wind-storms, diseases, and sea level rise.

A proper treatment of indicators characterized by non-normal, especially multi-
modal distributions requires special attention. The mean value of a multi-modal
distribution can be even outside the support of the distribution (the set of admissible
values). This value can be reasonably interpreted in the case of frequent repetitive
observations. Subjective multi-modal probability distributions and rare extreme
events call for the use of quantiles, e.g., the median. Unfortunately, this destroys
the additive structure and concavity (convexity) of standard models, as (in contrast
to the average value)

median.
X
l

vl / ¤
X
l

median.vl /
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where vl are random variables. Therefore applicability of well-known decomposi-
tion schemes and optimization methods is limited to special cases.

Example 2 (Dynamic problems). Discrete-time optimal control can be viewed as
a specific case of STO models, where x is composed of state variables z.t/, and
control variables u.t/, i.e.,

x D fz.t/; u.t/g ; t D 0; 1; : : : ; T

where T is a given time horizon.

Note that even if fi .x; !/ are additive, i.e.,

fi .x; !/ D
TX
tD1

gi .z.t/; u.t/; !t ; t/;

where!t is a stochastic disturbance at time t , the use ofmedian.fi .x; !// destroys
the additive structure of optimal control problems that is needed for applying the
Pontriagin’s Maximin Principle and Bellman’s recursive equations.

Modeling heterogeneous global changes with possible dramatic interactions
among humans, nature and technology call for nonsmooth stochastic models. Non-
smooth and discontinuous processes are typical for systems undergoing structural
changes and potential melt-downs, collapses, bankruptcies. There are a number of
methodological challenges involved in the policy analysis of nonsmooth processes.
Traditional local or marginal analysis cannot be used because continuous derivatives
do not exist, i.e., a nonsmooth, even deterministic, system cannot be predicted
(in contrast to classical smooth systems) outside an arbitrary small neighborhood
of local points. The use of average values often smoothes the problem, but leads
to wrong conclusions. The following simple Example 3 of abrupt changes shows
that the use of average characteristics and representing the problem by a linear
deterministic model leads to misleading results from the model analysis that is not
capable to detect abrupt changes that can result in environmental collapse.

Example 3 (Abrupt changes). Consider concentration of a pollutant characterized
by equation

rt D r0 � xt C
N.t/X
kD1

ek;

where fekg is a sequence of emissions from episodes in interval Œ0; t �; N.t/, t � 0,
is a counting process for the number of episodes in Œ0; t �; x is a rate of emission
reduction, and r0 is given initial concentration.

Assume that ek are independent, identically distributed random variables with
mean value e, N.t/ is a Poisson process with intensity ˛, EN.t/ D ˛t , and fekg,
N.t/ are independent. Then, the expected concentration
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rt D r0 C .˛e � x/t;

i.e., the complex random jumping process rt , is replaced by simple, linear function
that decreases in time for x > ˛e. Thus, the deterministic model given by rt
suggests, that if x slightly exceeds the average emission rate ˛e, then rt decreases in
time. This, however, is a wrong conclusion because the actual trajectory may exceed
a critical concentration level at some t . Sensitivity scenario analysis of the linear
deterministic model rt under different scenarios of ˛ and e produces also wrong
conclusions that a robust emission reduction x needs to only slightly exceed ˛e.

The significance of “extreme events” arguments e.g., large deviations of rt in
global climate changes has been summarized by B. Clark as follows: “Impacts
accrue : : : not so much from slow fluctuations in the mean, but from the tails of the
distributions, from extreme events”. In other words, catastrophes do not occur on
average with average patterns; they occur as “spikes” in space and time. Therefore,
the distributional aspects, i.e., temporal and spatial heterogeneous distributions of
values and threats are the key issues for capturing the main sources of vulnerability
for designing robust policies.

Extreme events are usually characterized by their expected arrival time, for
example, as a 1000-year flood, that is, an event that occurs on average once in every
1000 years. Accordingly, these events are often ignored as they are evaluated as
improbable during a human lifetime. In fact, a 1000-year flood may occur next year.
For example, floods across Europe in 2002 were classified as 1000-, 500-, 250-, and
100-year events.

Another misleading methodology is to evaluate potential extreme impacts by
using so-called annualization, i.e., by spreading losses from a potential catastrophe
equally over the period equal to its expected arrival time.

Example 4 (Annualization). Consider annualization approach to a potential 30-year
crash of an airplane to be evaluated as a sequence of independent annual “partial”
crashes: one wheel lost in the first year, another wheel in the second year, and so on,
until crash of the navigation system in the 30th year. The main conclusion from this
type of deterministic approach based on averaging is that catastrophes actually do
not exist.

A proper approach to analysis of temporal variability of extreme events and the
corresponding robust solutions can be based on the methodology of stopping-time
and the related new approaches to discounting.

Another methodological pitfall comes from ignoring actual spatial interdepen-
dencies of catastrophic impacts. A typical approach is to use so-called hazard maps,
i.e., maps showing catastrophe patterns that will never be observed as a result of a
real episode, as a map is the average image of all possible patterns that may follow
catastrophic events. Accordingly, social losses in affected regions are evaluated
as the sum of individual losses computed on a location-by-location rather than
pattern-by-pattern basis w.r.t. joint probability distributions. Such approach highly
underestimates the real impacts of catastrophes, as illustrated by the following
simple Example 5.
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Example 5 (Social and individual losses). Assume that each of 100 locations has
an asset of the same type. An extreme event destroys all of them at once with
probability 0.01. Consider also a situation without the extreme event, but with each
asset still being destroyed independently with the same probability equal to 0.01.

From an individual point of view, these two situations are identical: an asset
is destroyed with probability 0.01, i.e., individual losses are the same. Collec-
tive (social) losses are dramatically different. In the first case 100 assets are
destroyed with probability 0.01, whereas in the second case 100 assets are destroyed
only with probability 100�100, which is practically equal to 0. This example
also illustrates the potential exponential growth of vulnerability from increasing
network-interdependencies. Example 5 also shows that, in a sense,

100 �
100‚ …„ ƒ

1C 1C � � � C 1 :

Designing a catastrophe model is a multidisciplinary task requiring the joint
efforts of environmentalists, physicists, economists, engineers and mathematicians.
To characterize “unknown” catastrophic risks, that is, risks with the lack of historical
data and large spatial and social impacts, one should at least characterize the random
patterns of possible disasters, their geographical locations, and their timing. One
should also design a map of values and characterize the vulnerabilities of buildings,
constructions, infrastructure, and activities. Catastrophe models allow to derive
histograms of mutually dependent losses for a single location, a particular hazard-
prone zone, a country, or worldwide from fast Monte Carlo simulations rather than
real observations.

The development of catastrophe models can be considered as a key risk
management policy providing information for robust decision analysis in the
absence of historical observations, in particular, on potential extreme events that
have never occurred in the past. This raises new estimation problems. Traditional
statistical methods are based on the ability to obtain observations from unknown true
probability distributions, whereas new problems require information to be recovered
from only partially observable or even unobservable variables. Rich data may exist
on occurrences of natural disasters, incomes, or production values on global and
national levels. The so-called downscaling and catastrophe modeling are becoming
increasingly important for estimating spatio-temporal vulnerability and catastrophic
impacts. Downscaling and upscaling methods in such cases support – by using all
available objective and subjective information – making plausible evaluations of
local processes consistent with available global data, as well as, conversely, with
global implications emerging from local data and tendencies.

The above discussion illustrates that although STO models allow to represent
interdependencies among decisions, uncertainties and risks, yet inappropriate treat-
ment of the variability of indicators fi .x; !/ can be rather misleading for achieving
desirable robustness. The following stylized Example 6 motivated by food security
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studies illustrates further the importance of decisions which are robust in a sense
against all potential scenarios of uncertainty !.

Example 6 (Food security). Assume there are only two scenarios of weather con-
ditions for the next agricultural season: the spring is wet (!1) or the spring is dry
(!2). A farmer needs to select one3 crop to plant: either crop A (having high profit
pA for !1, but total loss for !2) or crop B (having high pB profit for !2, but total
loss for !1) or crop C (having moderate profits pC .!/ for both weather scenarios).

Any of these crop alternatives may become a robust decision, depending on the
farmer’s preferential structure and underlying conditions, such as his/her financial
reserves, available hedging instruments, probability distributions of !, the planning
horizon (one- or multi-year), relations between pA; pB; pC . We leave exploration of
this simple but yet interesting problem to the readers.

4 Robust Decisions for Heterogeneous Systems

Let us now consider designing robust portfolios of financial assets. Assume that !j
is the expected value of random returns !j from divisible asset j , j D 1; : : : ; n,
and xj is a fraction of this asset in the portfolio

nX
jD1

xj D 1; xj � 0:

Maximization of expected return

r.x/ D
nX

jD1
!j xj

from this portfolio yields a trivial (but not robust) solution: to invest all capital in the
asset with the maximal expected return. Such a decision is obviously very risky, and
its value is limited to be a standard example in teaching why it should be avoided.

A design of a robust portfolio requires analysis of trade-offs between expected
returns and their variability. Nobel prize laureate Markowitz proposed the mean-
variance approach for designing robust portfolios of financial assets, i.e., to
characterize the variability by the variance of returns Var�.x; !/. Therefore the
portfolio composition results from maximization of

r.x/ � �Var�.x; !/; �.x; !/ D
nX

jD1
!j xj ;

3E.g., due to technological or market constraints.
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where � is a risk parameter. This approach is based on using variance, it there-
fore can be properly used for analysis of assets having distributions of random
returns �.x; !/ close to the normal distribution. However, in reality, �.�/ has
typically other distributions; therefore this approach should not be used.

The following non-smooth version of the portfolio selection STO problems
enables dealing with non-normal distributions. Consider maximization of the utility
function U.x/ D Eu.q.x; !//. If the distribution of random outcome u.q.x; !// is
not normal (for example, when the policy analysis involves the polarized beliefs
of different communities), then, instead of U.x/ one can use a quantile Up.x/
of u.q.x; !// defined as maximal v such that P robŒu.q.x; !// � v� � p, for
0 < p < 1 (which can be interpreted as a safety constraint).

The robust utility maximization problem can be formulated as maximization of
a risk adjusted utility function

Up.x/C �E minf0; u.q.x; !//� Up.x/g:

This function is not concave. However, the optimization problem can be solved by
converting it to the equivalent concave STO problem: maximize w.r.t. .x; z/ function
'.x; z/ defined as:

'.x; z/ D z C �E minf0; ˇ � zg; ˇ D u.q.x; !//; � D 1=p:

Let us also notice that for � D 1=p we have

Up.x/C �E minf0; u.q.x; u//� Up.x/g D .1=p/

Z
u.q.x;!//�Up.x/

U.q.x; !/dP;

i.e., the risk adjusted utility function is related to the so-called expected shortfall.
Similarly, a general STO model for analyzing robust solutions of heterogeneous

systems can be written in the similar form: maximize w.r.t. .x; z/ function:

z0 C �0Eminf0; f0.x; !/ � z0g

subject to:
zi C �iE minf0; fi .x; !/ � zi g � 0; i D 1; : : : ; m;

where �i are weights. Components z�
i , i D 0; 1; : : : ; m, of optimal solution .x�; z�/

are quantiles of fi .x�; !/.
Depending on the case, the robust model can also be formulated by using safety

constraints (see Example 1) or constraints:

Efi .x; !/C �iEminf0; fi.x; !/g � 0; i D 1; : : : ; m:

Standard STO models assume that P.d!/ is known exactly. However, only some
of its characteristics may be known. The elicited class P for admissible P is often
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given by constraints

Z
'k.!/P.d!/ � 0; k D 1; : : : ; K;

Z
P.d!/ D 1I

e.g., constraints on joint moments

cs1;:::;sl �
Z
!
s1
1 : : : !

sl
l P.d!/ � Cs1;:::;sl ;

where cs1;:::;sl , Cs1;:::;sl are given constants. The robust STO problem can be
formulated as a probabilistic maximin problem: maximize

F0.x/ D minp2P

Z
f0.x; !/P.d!/

subject to general constraints of STO models. This probabilistic maximin approach
was first initiated in STO. For specific sets P , the solution of the inner minimization
problem has simple analytical forms. For example, it is concentrated only in a finite
number of admissible scenarios from˝ .

5 Heterogeneity and Vulnerability

The vulnerability analysis of complex coupled human-environmental systems
essentially relies on discounting future losses and gains to their present values.
These evaluations are used to justify catastrophic risks management decisions which
may turn into benefits over long and uncertain time horizons. The misperception of
proper discounting rates critically affects evaluations and may be rather misleading.
The lack of proper evaluations may dramatically contribute to increasing the
vulnerability of our society to human-made and natural disasters. Underestimation
of low probability – high consequences potentially catastrophic scenarios often
leads to the growth of buildings, industrial land, and sizable value accumulation in
flood prone areas without paying proper attention to flood mitigations. A challenge
is that an extreme event, say a once-in-300-year flood which occurs on average only
once in 300 years, may have never occurred before in a given region. Therefore,
purely adaptive policies relying on historical observations provide no awareness
of the risk although a 300-year flood may occur next year. For example, floods in
Austria, Germany and the Czech Republic in 2002 were classified as 1000-, 500-,
250-, and 100-year events. Yet common practice is to ignore these types of events
as improbable events during a human lifetime.
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5.1 Discounting

Several contributions to Marti et al. (2010) analyze the implications of potentially
catastrophic events on the choice of discounting for long-term vulnerability model-
ing and extreme events management.

Traditional approaches to using discounting for cost-benefit analysis of risk man-
agement for extreme/rare events have fundamental limitations that are commonly
known, but yet often forgotten. Properly chosen discounting can be useful for
integrated analysis of implications of potentially catastrophic events, especially for
modeling long-term vulnerability and risk management. Recent scientific achieve-
ments support such model-based analyses. In particular, new methods enable linking
arbitrary discount factors to “stopping time” (“killing”) events, which define the
discount-related random horizon � (“end of the world”) of evaluations. In other
words, any discounting compares potential gains and losses that occur at different
points in time only within a finite random discount-related time horizon � . The
expected duration of � for standard discount rates obtained from capital markets
does not exceed a few decades and, as such, these rates cannot properly match
evaluations of 1000-, 500-, 250-, 100-year catastrophes. On the other hand, any
“stopping time” event induces discounting. Formally it means that there are the
following relations between discounted expected values Vt D Evt with discount
factors dt and undiscounted stopping time evaluations

1X
tD0

dtVt D E

�X
tD0

�t ; dt D P Œ� � t �:

Therefore, the correct discounting can be induced by explicit modeling of
scenarios of potential extreme events. These induced discount rates are conditional
on the degree of social commitment to mitigate risk. In general, extreme events
affect discount rates, which alter the optimal mitigation efforts that, in turn, change
events. Such endogenous discounting calls for the use of equivalent undiscounted
random stopping time criteria and stochastic optimization methods. Combined with
explicit spatio-temporal modeling of heterogeneous systems, these criteria induce
the discounting which allows to properly match random horizons of potential
catastrophic scenarios with necessary risk management policies. In contrast to
standard time-discounting, the resulting discounting can also be viewed as induced
“spatio-temporal” discounting. This allows to examine risk profiles generated by
the stopping time, in particular, connections with the safety constraints and spatio-
temporal versions of CVaR (Conditional Value at Risk) risk measures.

5.2 Stochastic Optimization Versus Scenario Optimization

Scenario analysis is often suggested as a straightforward approach for finding robust
solutions. Monte Carlo simulations for a STO model easy generate samples of
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random values f0.x; !/, f1.x; !/, . . . , fm.x; !/, that depend on the simulation run
! and a given vector of decisions x. Therefore, for a given x, outcomes vary at
random from one simulation to another. If functions fi .x; !/, i D 0; 1; : : : ; m, have
well defined analytical structure with respect to x for each simulated !, then the
scenario analysis has the following steps. The Monte Carlo simulations generate
scenarios !1; !2, . . . , !N for each of which the corresponding optimal solutions
x.!1/; x.!2/, . . . , x.!N / of the deterministic optimization model with objective
function f0.x; !/ and constraint functions fi .x; !/; i D 1; : : : ; m are calculated.
Any of these solutions calculated for one scenario may not be feasible for other
scenarios. The number of possible combinations of potential scenarios ! and deci-
sions increases exponentially. Thus, e.g., with only 10 feasible decisions of emission
reductions in a given region, 10 regions, and 10 possible independent scenarios for
all of them, the number of “what-if” combinations is 1011. The straightforward
evaluation of these alternatives would require more than 100 years if a single
evaluation takes only a second. Moreover, the probability of each scenario !l ,
l D 1; : : : ; K , is in general, equal to 0. The choice of final robust decisions is
unclear and is not explicitly addressed. Therefore, the aim of STO methods is to
design a directed search of an optimal solution avoiding straightforward testing of
all possible combinations. The STO methods avoid also the exact estimation of the
mean values Fi.x/ D Efi .x; !/.

6 Summary

This chapter summarizes diverse facets of managing safety of heterogeneous
systems, and supporting robust decision-making under uncertainties and risks.
Different decision situations and the corresponding characteristics of the system
require, of course, different approaches. However, methodologies and experience
can and should be shared across application areas. Very different processes often
have the same (or very similar) mathematical representation, therefore it is rational
to re-use (or adapt) methods and tools, instead of reinventing them, or – even worse –
to try to apply methods which are known (in other areas or research communities)
as inadequate.

Each, except this, chapter of this book focuses on a specific either domain
problem or methodology, and provides numerous references on, and other examples
of, one of the issues belonging to the wide and diversified area of managing
safety of heterogeneous systems, and the corresponding methods and tools for
supporting robust decision-making under uncertainties and risks. This chapter
provides overview of the selected key problems and methods applicable to different
types of substantive problems, especially in economics, industry, environmental and
social policy-making.

A comprehensive overview of the state-of-the-art would be beyond the scope
of this type of chapter. Therefore we had to select a small number of issues, and
focused on two types of them. First, modern methods applicable to a wide range of
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different problems, and still not commonly used. Second, on methods that are widely
used although they are clearly inappropriate, and there exist appropriate (often not
commonly known yet) methods for the corresponding class of problems.

Finally, we have refrained from providing comprehensive bibliography in this
chapter: this would require a rather large set of publications. We have included
only several fundamental/classical references. Numerous bibliography is included
in almost all chapters of this volume, as well as in Marti et al. (2010, 2006), i.e., the
publications resulting from the previous CwU workshops.
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Systemic Risk and Security Management

Yuri Ermoliev and Detlof von Winterfeldt

Abstract The aim of this paper is to develop a decision-theoretic approach to
security management of uncertain multi-agent systems. Security is defined as the
ability to deal with intentional and unintentional threats generated by agents.
The main concern of the paper is the protection of public goods from these
threats allowing explicit treatment of inherent uncertainties and robust security
management solutions. The paper shows that robust solutions can be properly
designed by new stochastic optimization tools applicable for multicriteria problems
with uncertain probability distributions and multivariate extreme events.

1 Introduction

Standard risk management deals with threats generated by exogenous events.
Typically, such situations allow to separate risk assessment from risk management.
Repetitive observations are used to characterize risk by a probability distribution that
can be used in risk management. Statistical decision theory, expected utility theory
and more general stochastic optimization (STO) theory provide common approaches
for this purpose.

Security management includes threats generated (intentionally or unintention-
ally) by intelligent agents. Obvious examples are threats to public goods and
homeland security from terrorists (Ezell and von Winterfeldt 2009). Less evident
examples are floods which are often triggered by rains, hurricanes, and earthquakes
in combination with inappropriate land use planning, maintenance of flood protec-
tion systems and behavior of various agents. The construction of levees, dikes, and
dams which may break on average, say, once in 100 years, create an illusion of safety
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and in the absence of proper regulations developments close to these constructions
may create catastrophic floods of high consequences.

Other examples include social, financial, economic, energy, food and water secu-
rity issues. Water and food security deals with the robust functioning of complex
multi-agent water and food supply networks. Threats associated with such systems
depend on decisions of different agents. For example, an increase of bio-fuel
production may change market prices, induce threats of environmental degradation,
destabilize supplies of food and water, and disturb economic developments.

These examples illustrate threats that cannot be characterized by a single
probability distribution. Inherent uncertainties of related decision problems with
the lack and even absence of repetitive observations restrict exact evaluations
and predictions. The main issue in this case is the design of robust solutions.
Although exact evaluations are impossible, the preference structure among feasible
alternatives provides a stable basis for relative ranking of them in order to find
solutions robust with respect to all potential scenarios of uncertainties. As we know,
the heavier parcel can be easily found without exact measuring of the weight.

The goal of this paper is to develop a decision-theoretic approach to security
management. It shows that robustness of solutions in security management can
be achieved by developing new stochastic optimization tools for models with
uncertain multi-dimensional probability distributions which may implicitly depend
on decisions. The common approach, using the concept of two-stage Stackelberg
game is built on strong assumptions of perfect information about preference
structures of agents which lead to unstable solutions and discontinuous models
even with respect to slight variations of initial data in linear criteria functions. Our
proposed decision-theoretic approach explicitly deals with uncertainties. It does not
destroy convexities but still preserves the two-stage structure of the Stackelberg
“leader-follower” decisions.

In order to develop robust approaches, Sects. 2, 3, and 4 analyze similarities and
fundamental differences between frequent standard risks, multivariate multi-agent
catastrophic risks generated by natural disasters with the lack and even absence of
repetitive observations, and risks generated by intelligent agents.

In the case of standard risks, the term “robust” was introduced in statistics (Huber
1981) in connections with irrelevant “bad” observations (outliers) which ruin the
standard mean values, least square analysis, regression and variance/covariance
analysis. Section 2 shows, that switching from quadratic (least square) smooth
optimization principles in statistics to non-smooth stochastic minimax optimization
principles leads to robust statistical decisions. This idea is generalized in the
following sections.

In general decision problems (Sect. 3) under inherent uncertainty the robustness
of decisions is achieved by a proper representation of uncertainty, adequate sets of
feasible decisions and performance indicators allowing to characterize main socio-
economic, technological, environmental concerns and security requirements. This
leads to specific STO problems. In particular, a key issue is the singularity of robust
solutions with respect to low-probability extreme events.
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Section 3 introduces new robust STO models applicable for managing systemic
risks involving multivariate extreme events. Section 4 analyses security man-
agement problems with several agents where a principal agent (PA) uses PA’s
perception of uncertainties to regulate behavior of other agents to secure the overall
performance of a system. This section and Sect. 5 demonstrate that although these
problems have features of a two-stage Stackelberg game, the applicability of this
game is problematic because of the assumption about exactly known decisions
of agents. Implicitly, similar assumptions are also used in bi-level mathematical
programs (Dempe 2002; Kocvara and Outrata 2004; Luo et al. 1996). Section 4.1
discusses serious limitations of Bayesian games. In particular, the use of Nash games
destroys essential two-stage structure of the PA problems.

Sections 4 and 5 introduce concepts of robust PA’s solutions. Section 5 analyses
systemic security management problems, in particular, preventive solutions in
randomized strategies, defensive allocation of resources, and modeling of systemic
failures. Section 6 discusses security of electricity networks. Section 7 analyses
computational methods. Applications of these methods to socio-economic and
homeland security management can be found in (Borodina et al. 2011; Wang 2010).
Section 8 provides conclusions.

Since the focus of CwU workshop is on broad audience, this paper avoids
mathematical technicalities. In particular, it pays specific attention to motivations
and clarifications.

2 Standard Risks

Standard risk analysis relies on observations from an assumed true model specified
by a probability distribution P. Repetitive observations allow deriving the probabil-
ity distribution P and its characteristics required for related decision support models.
A key issue in this case is concerned with “bad” observations or “outliers”, which
may easily ruin standard mean values, variance, least-square analysis, regressions
and covariances (Ermoliev and Hordijk 2006; Huber 1981; Koenker and Bassett
1978). Therefore, traditional deterministic models using mean values may produce
wrong results. The main approach in such cases is to use robust models which are
not sensitive to irrelevant bad observations and at the same time, which are able to
cope with relevant rare extreme events of high consequences.

The term “robust” was introduced into statistics in 1953 by Box and received
recognition after the path-breaking publication by Huber (1981), although the dis-
cussion about rejection of bad observations is at least as old as the 1777 publication
of Daniel Bernoulli. The straightforward rejection of outliers is practically impossi-
ble in the case of massive data sets, because it may also delete important and relevant
observations. Huber introduced rigorous notions of robustness based on probabilis-
tic minimax approach. Its main idea can be developed for general decision problems
emerging in security management (Sect. 4). By using appropriate neighborhoods
of probability distributions (e.g. "– contaminated probabilities, neighborhoods of
imprecise probabilities) Huber derived robust estimates optimizing the worst that
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can happen in a specific probabilistic sense over the neighborhood of the model. In
other words, robust statistical analysis is equivalent to switching from smooth least
square optimization principles to non-smooth minimax STO principles. The mean
is not robust to outliers, whereas the median is robust. The mean value of a random
variable � minimizes the quadratic function

M.x/ D E.x � �/2 D
Z
.x � �/2P.d�/; (1)

whereas the median and more generally a quantile minimizes function

Q.x/ D Emaxf˛.x � �/; ˇ.� � x/g D
Z

maxf˛.x � �/; ˇ.� � x/gP.d�/; (2)

i.e., it solves a stochastic minimax problem with non-smooth random function
maxf˛.x � �/; ˇ.� � x/g, where P is a probability distribution function, and
˛; ˇ > 0. This follows from convexity of functions M.x/, Q.x/. For example
assume that P has a continuous density, i.e., M(x), Q(x) are continuously differ-
entiable functions. Then intuitively we have

Q
0

.x/ D ˛ Prob Œ� < x� � ˇ Prob Œ� � x� D 0

i.e., a solution x of stochastic minimax problem (2) satisfies the equation (Ermoliev
and Leonardi 1982; Ermoliev and Yastremskii 1979; Koenker and Bassett 1978;
Rockafellar and Uryasev 2000):

Prob Œ� � x� D q; q D ˛

˛ C ˇ
: (3)

Remark 1 (Uniqueness of quantile). If Q.x/ is not a continuously differentiable
function, then optimality conditions satisfy analogue of (3) equations using sub-
gradients (Ermoliev and Leonardi 1982) of function (2). In this case, (3) has a set
of solutions. Quantile xq is defined as minimal x satisfying equation Prob Œ� �
x� � q. A slight contamination of � in (2), say by normal random variable,
.1 � "/� C "N.0; 1/, makes Q.x/ strongly convex and continuously differentiable
function (Ermoliev and Norkin 2003). The convergence of resulting quantile x"q to
xq follows from the monotonicity of x"q , that is x"2q < x"1q for "2 < "1. Therefore,
in the following we avoid using subgradients by assuming that (3) has a unique
solution. For ˛ D ˇ (3) defines the median.

Remark 2 (Equivalent calculations of quantiles). It is easy to see that Q.x/ D
˛x C .˛ C ˇ/E maxf0; � � xg � ˛E� . Therefore, xq minimizes also function

x C .1=q/Emaxf0; � � xg; q D ˛

˛ C ˇ
: (4)

This simple rearrangement is used in Sect. 3 to formulate robust STO decision
support models applicable for security management. Formula (3) connects quantiles
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with a simple convex STO model (2). This became a key approach (Rockafellar
and Uryasev 2000) in risk management. Note, that a direct use of quantiles
destroys continuity of even linear performance indicators (Ermoliev and Wets 1988).
Minimal value of function (4) defines the important risk measure called Conditional
Value at Risk (CVaR).

Problems (1), (2) are simplest examples of STO models. Model (2) is an example
of important stochastic minimax problems arising in the security analysis (Sect. 4).
Equation (3) shows that even the simplest case of such problems generates robust
solutions characterized by quantiles. In general decision models under uncertainty,
any relevant decision x results in multiple outcomes dependent on x and uncertainty
characterized by a scenario (event, random vector) ! 2 ˝ , where ˝ denotes a set
of admissible states !. For complex systems it is natural that different performance
indicators should be used (see, e.g., Ermolieva and Ermoliev (2005); Ermoliev and
Hordijk (2006); Huber (1981)) to evaluate robustness of x similar to the use of
different indicators of health (e.g., temperature and blood pressure) for humans. This
leads to STO models formulated as optimization (maximization or minimization) of
an expectation function.

F0.x/ D Ef0.x; !/ D
Z
˝

f0.x; !/P.d!/ (5)

subject to constraints

Fi .x/ D Efi .x; !/ D
Z
˝

fi .x; !/P.d!/ � 0; i D 1; : : : ; m; (6)

where vector x 2 X � Rn and ! in general represent decisions and uncertainties
in time t D 0; 1; : : : , i.e., x D .x.0/; x.1/; : : : /, ! D .!.0/; !.1/; : : : /. Models
with ex-ante and ex-post time dependent decisions can be always formulated,
see (Ermoliev and Wets 1988), in terms of the first stage solutions x as in (5), (6).
Therefore, model of type (5), (6) allows to assess multi-stage dynamic trade-offs
between anticipative ex-ante and adaptive ex-post decisions arising in security
management (Sect. 6). Random performance indicators fi .x; !/, i D0;m, are often
non-smooth functions as in (2). In the case of discontinuous functions fi .x; !/,
expected values Fi .x/ of constraints (6) characterize often risks of different parts
1;m of the system (see Birge and Louveaux (1997); Ermoliev and Norkin (2003);
Ermoliev and Wets (1988); Marti (2005); Shapiro et al. (2009)) in the form of the
chance constraints: Prob Œfi .x; !/ � 0� � pi , i D 1;m, where pi is a desirable
level of safety. Say, an insolvency of insurers is regulated with 1 � pi � 8 � 10�2,
meaning that balances (risk reserves) may be violated only once in 800 years.
In models presented in (Ermolieva and Ermoliev 2005) these type constraints
characterize a dynamic systemic risk of systems composed of individuals, insurers,
governments, and investors.

Remark 3 (Scenario analysis). It is often used as a straightforward attempt to find a
decision x that is robust with respect to all scenarios ! by maximizing f0.x; !/, s.t.
fi .x; !/ � 0, i D 1; : : : ; m, for each possible scenarios !. Unfortunately, a given
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decision x for different scenarios ! may have rather contradictory outcomes, which
do not really tell us which decision is reasonably good (robust) for all of them.
For example, models (1), (2) show that for any scenario ! the optimal solution
is x.!/ D !, i.e., the scenario-by-scenario analysis will not suggest solutions in
the form of quantile (3). This straightforward scenario analysis faces computational
limits even for very small number of examined decisions and scenarios, e.g.,
analysis of all combinations of 10 scenarios and 10 different decisions may easy
require 1010 sec. > 100 years.

Models (1), (2) illustrate the main specifics of STO problems of the follow-
ing sections. Objective functions (1), (2) are analytically intractable because in
statistics the probability distribution P is unknown. Instead only observations of
! are available. Analytical intractability of functions Fi.x/ is a common feature
of STO models. For example, even a sum of two random variables commonly
has analytically intractable probability distribution although distributions of both
variables are given analytically. Therefore, the main issue of this paper is the
development of effective “distribution-free” methods applicable for different type
of distributions (see Birge and Louveaux (1997); Ermoliev and Wets (1988); Marti
(2005); Mulvey et al. (1995); Shapiro et al. (2009)) and large numbers of decision
variables and uncertainties (Sect. 7).

Remark 4 (Uncertain probabilities, Bayesian and non-Bayesian models). The stan-
dard stochastic optimization model (5), (6) is characterized by a single probability
distribution P, therefore can be defined as Bayesian STO model. When observations
are extremely sparse or not available distribution P is elicited from experts (Keeney
and von Winterfeldt 1991, 1994; Otway and von Winterfeldt 1992). Yet, often it is
difficult to identify uniquely probability P. Most people cannot clearly distinguish
between probability ranging roughly from 0.3 to 0.5. Decision analysis then has
to rely on imprecise statements, for example, that event e1 is more probable than
event e2 or that the probability of event e1 or of event e2 is greater than 50%
and less than 90%. Therefore only feasible sets of probabilities are identified by
inequalities such as p1 > p2, 0:5 � p1 C p2 � 0:9. It is typical for models
arising in security management (Sects. 4 and 5). In such cases we may speak of
non-Bayesian STO models., i.e. STO models which are not defined by a single
probability distribution, but by a family of distributions with uncertain parameters
or, more generally, by an uncertain distribution. Probability distributions depending
on decisions are discussed in Sect. 4.

3 Catastrophic and Systemic Risks

Standard “known” risks are characterized by a single probability distribution that
can be derived from repetitive observations of !. The essential new feature of
catastrophic risks is the lack and even absence of real repetitive observations.
Experiments may be expensive, dangerous, or impossible. The same catastrophe
never strikes twice the same place. In addition, catastrophes affect different location
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and agents generating multivariate risks and needs for developing new STO models
integrating risk reductions, risk transfers and risk sharing (Ermolieva and Ermoliev
2005).

As a substitute of real observations, so-called catastrophe modeling (catastrophe
generators) is becoming increasingly important for estimating spatio-temporal
hazard exposures and potential catastrophic impacts. The designing of a catastrophe
model is a multidisciplinary task. To characterize “unknown” catastrophic risks, that
is, risks with the lack of repetitive real observations we should at least characterize
the random patterns of possible disasters, their geographical locations, and their
timing. We should also design a map of values and characterize the vulnerabilities
of buildings, constructions, infrastructure, and activities. The resulting catastrophe
model allows deriving histograms of mutually dependent losses for a single location,
a particular zone, a country, or worldwide from fast Monte-Carlo simulations rather
than real observations (Ermolieva and Ermoliev 2005; Walker 1997).

3.1 Applicability of Mean Values, Systemic Risk

The use of different sources of information, including often rather contradictory
expert opinions usually leads to multimodal distributions of ! and random indi-
cators fi .x; !/. The mean value of such indicator can be even outside the set
of admissible values requiring the use of quantile, e.g., the median of fi .x; !/.
Unfortunately, the straightforward use of quantiles destroys the additive structure
and concavity (convexity) of model (5), (6), even for linear functions fi .�; !/
because, in contrast to the mean value

quantile
X
i

fi ¤
X
i

quantilefi :

This lack of additivity makes it practically impossible to use many computational
methods relying on additive structure of models, e.g., dynamic programming
equations and Pontryagin’s maximum principle.

Equations (3), (4) enable the following promising quantile-related decision-
theoretic approach. Let us denote a quantile of fi .x; !/ by Qi.x/, i D 0; 1; : : : ; m.
Then we can formulate the following robust version of STO model (5)–(6):
maximize

Q0.x/C �0Eminf0; f0.x; !/ �Q0.x/g
subject to

Qi.x/C �iE minf0; fi .x; !/ �Qi.x/g � 0; i D 1; : : : ; m;

where �i > 1 are risk parameters regulating potential variability of fi .x; !/ below
Qi.x/, i D 0; 1; : : : ; m. Unfortunately the direct use ofQi.x/ destroys concavity of
functionsFi.x/. This can be avoided by the following reformulation of the problem.
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According to model (2), (3) and Remark 2, the formulated above robust version of
STO model (5), (6) can be equivalently rewritten in a similar to (4) form: maximize
w.r.t. .z; x/ function

z0 C �0E minf0; f0.x; !/ � z0g; (7)

subject to
zi C �iEminf0; fi .x; !/ � zi g � 0; i D 1; : : : ; m: (8)

For concave functions fi .�; !/ this is a concave STO model. The following
Proposition 1 shows, that components z�

i .x/, i D 0; 1; : : : ; m, solving (7), (8) w.r.t. z
= (z0,z1,. . . , zm) are quantilesQi.x/. Therefore, (7), (8) is a robust version of model
(5), (6) where mean values Efi are substituted by quantiles of indicators fi with a
safety levels �i controlling their variability. In a sense, the model (7), (8) can also
be viewed as a concave version of STO models with probabilistic safety constraints
(see (Birge and Louveaux 1997; Ermoliev and Hordijk 2006; Ermoliev and Wets
1988; Marti 2005)) outlined in Sect. 2. Equation (9) shows that model (7), (8) is
defined by multicriteria versions of VaR and CVaR risk measures (Rockafellar and
Uryasev 2000) controlling safety/security of overall system, i.e., a systemic risk.
An alternative formulation of quantile optimization problems (subject to quantile
constraints) and a corresponding mixed-integer programming solution technique is
considered in (O’Neill et al. 2006).

Let us also note that the variability of outcomes fi .x; !/ can be controlled
by using a vector of quantiles zi D .zi0; zi1; : : : ; zi l / generated as in (7)–(8) by
performance indicators

P
l .zi l C �il minf0; fi.x; !/ � zi lg/, i D 0;m, where

1 < �i1 < �i2 < � � � < �il .
Proposition 1. (Quantiles of fi .x; !/): Assume fi .x; �/, i D 0; 1; : : : ; m, have
continuous densities (Remark 1); �i > 1 , .z�; x�/ is a solution of model (7), (8)
and �� D .��

1 ; : : : ; �
�
m/ � 0 is a dual solution. Then for i = 0 and active constraints

i D1;m,
Prob Œfi .x�; !/ � z�

i � D 1=�i ; i D 0; 1; : : : ; m: (9)

Proof. Let 'i.zi ; x; !/ WD zi C �i minf0; fi.x; !/ � zi g. From the duality theory
follows that z�

i maximizes

E'0.z0; x
�; !/C

mX
iD1

��
i E'i.zi ; x

�; !/:

Thus, if ��
i > 0, i D 1; : : : ; m then z�

i maximizes E'i.zi ; x�; !/. Therefore, from
Remark 2 follows (9) for i D 1; : : : ; m. Equation (9) for i D 0 follows from the
complementary condition

Pm
iD1 ��

i E'i .z
�
i ; x; !/ D 0 and formula (3). ut

3.2 Extreme Events and Unknown Risks

The following simple examples illustrate critical importance of quantiles to repre-
sent distributional characteristics of performance indicators.
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Example 1 (Annualization, temporal heterogeneity). Extreme events are usually
characterized by their expected arrival time say as a 200-year flood, that is, an event
that occurs on average once in 200 years. Methodologically, this view is supported
by so-called annualization, i.e., by spreading losses from a potential, say, 30-year
crash of airplane, equally over 30 years. In this case, roughly speaking, the crash risk
is evaluated as a sequence of independent annual crashes: one wheel in the first year,
another wheel in the second year, and so on, until the final crash of the navigation
system in the 30th year. The main conclusion from this type of deterministic mean
value analysis is that catastrophes are not a matter although they occur as random
“explosions” in time and space that may destabilize a system for a long time.

Example 2 (Collective losses). A key issue is the use of proper indicators for

collective losses. In a sense, we often have to show that 100 >>

100‚ …„ ƒ
1C 1C : : :C 1.

Assume that each of 100 locations has an asset of the same type. An extreme event
destroys all of them at once with probability 1/100. Consider also a situation without
the extreme event, but with each asset still being destroyed independently with the
same probability 1/100. From an individual point of view, these two situations are
identical: an asset is destroyed with probability 1/100, i.e., individual losses are
the same. Collective (social) losses are dramatically different. In the first case 100
assets are destroyed with probability 1/100, whereas in the second case 100 assets
are destroyed with probability 100�100, which is practically 0. This example also
bears on individual versus systemic (collective) risk, risk sharing and the possibility
to establish a mutuality.

Model (7), (8) allows to analyze properly risk sharing portfolios involving both
type of situations. In Example 2 the standard worst case scenario is identical for both
situations, that is losses of 100 assets. Stochastic worst case scenario as in stochastic
maximin problems (16) of Sect. 4.2 is determined only by extreme events, i.e., losses
of 100 assets with probability 1/100.

A fundamental methodological challenge in dealing with systemic risks is their
endogenous character. Catastrophic losses occur often due to inappropriate land use
planning and maintenance of engineering standards. In these cases functions Fi.x/
in (5)- (6) have the following structure:

Fi .x/ D
Z
fi .x; !/P.x; d�/; i D 0; 1; : : : ; m:

In other words, there is no single probability distribution defining the structure
of functions Fi .x/ for all x. Instead, there are probability distributions P.x; d�/,
which are different for different decisions x. Therefore, this is a non-Bayesian STO
model (Remark 4). Usually probability distribution P.x; d�/ is given implicitly by
a Monte Carlo type simulations, which allow to observe in general only values of
random functionsfi .x; !/ for a given x (Sect. 7.1). The decision dependent measure
P.x; d!/ may easily overthrow convexity. Fortunately, this is not the case with
decision dependent measure defined as in (15) of Sect. 4.2.
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4 Security Management, Principal Agent Problem

Security management typically involves multi-agent. The main source of uncer-
tainty and risks is associated with behavioral patterns of agents motivated often and
shaped by other uncertainties. In contrast to “unknown” risks of Sect. 3 which can
be characterized by catastrophe models, security management deals in a sense with
“unknowable” risks dependent on decisions of agents. This section analyzes two
ways to represent behavioral uncertainties: game theoretic and decision theoretic
approaches.

4.1 Game Theoretic Approach

The search for proper regulations protecting public goods is often formulated as
the principal-agent problem (Audestad et al. 2006; Gaivoronski and Werner 2007;
Mirrlees 1999) or Stackelberg game (Paruchuri et al. 2009, 2008). Important issues
concerns non-market institutions (Arnott and Stiglitz 1991). In rather general terms
the problem is summarized as the following. The principal agent (PA) introduces a
regulatory policy characterized by a vector of decision variables x D .x1; : : : ; xn/.
Other agents, which are often called adversaries, know x and they commit to a
unique response characterized by a vector function y.x/. The PA knows y.x/ and
he knows that agents commit to y.x/. Therefore his main problem is formulated as
to find a decision x� maximizing an objective function

R.x; y.x// (10)

subject to some constraints given by a vector-function r.x; y/,

r.x; y.x// � 0: (11)

The game theoretic approach assumes that components of the vector-function
y.x/ maximize individual objective functions of agents

A.x; y/ (12)

subject to their individual feasibility constraints

a.x; y/ � 0; (13)

where A, a are in general vector-functions, i.e., in general, there may be many
principals and agents. For the sake of notational simplicity, we will view them as
single-valued functions. Since PA knows functions A, a, he can derive responses
y.x/ by solving agents individual optimization problems. Since y.x/ is assumed to
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be a unique solution, then agents have strong incentive to choose y.x�/ afterwards,
i.e., x� is the Stackelberg equilibrium.

This approach relies on the strong assumptions of perfect information that the
PA has about the preference structure of agents and their commitments to a unique
response y.x/. Section 5 shows that R.x; y.x//, r.x; y.x// are non-convex and
discontinuous functions even for linear functionsR.x; y/, r.x; y/,A.x; y/, a.x; y/.
This leads to degenerated solutions and sensitivity of solutions to small variations
of data.

Remark 5 (bi-level mathematical programming). A solution procedure for PA can
be defined by solving bi-level mathematical programs (Dempe 2002): maximize

R.x; y/; (14)

subject to constraints r.x; y/ � 0 and optimality conditions (for a given x) for all
individual models (12), (13).

Example 3 (Bayesian games: Cournot duopoly). These games deal with situations
in which some agents have private information. Therefore, agents make decisions
relying on their beliefs about each other under certain consistency assumptions.
The following example illustrates these assumptions restricting the applicability of
Bayesian games for PA models.

The profit function of two firms are given as

�i D .xi C xj � !i/xi ; i ¤ j; i; j D 1; 2:

Firm 1 has !1 D 1, but firm 2 has private information about !2. Firm 1 believes that
!2 D ˛ with probability p and !2 D ˇ with probability 1 � p. Decision problem
of firm 2 is to

max
x2
.x2 C x1 � !2/x2;

which has solution x�
2 .x1; !2/ D 1

2
.!2 � x1/. Assume that firm 1 knows response

function x�
2 .x1; !2/, then its decision problem is to

max
x1
Œp.x1 C x�

2 .x1; ˛/ � 1/x1 C .1 � p/.x1 C x�
2 .x1; ˇ/ � 1/x2�;

which has solution x�
1 .˛; ˇ; p/ dependent on ˛; ˇ; p. Assume that the private

information of firm 2 is consistent with the believe of firm 1: firm 2 is type !2 D ˛

(observes !2 D ˛ before making decisions) with probability p and !2 D ˇ with
probability 1�p. Only then firm 2 (agent) has incentives to use decisions x�

2 .x
�
1 ; ˛/,

x�
2 .x

�
1 ; ˇ/. Therefore, the Bayesian games are applicable in the cases when firm

1 (PA) exactly knows the unique response function x�
2 .x1; !2/ of firm 2 (agent)

and the exact distribution of agent’s uncertainties !2. For general model (10)–(13)
Bayesian games require exact information about dependencies of functionsA, a on
uncertainties ! (say, functions A.x; y; !/, a.x; y; !/) and probability distribution
of !, assuming also a unique response function y.x; !/ solving problem (12), (13).
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4.2 Decision-Theoretic Approach

The game theoretic approach introduces behavioral scenarios of agents by uniquely
defined known response functions y.x/. This raises a key issue regarding actual
outcomes of derived solutions in the presence of uncertainty. The decision-theoretic
approach explicitly addresses uncertainty based on PA’s perceptions of agents
behavioral scenarios. These scenarios can be represented (see examples in Sects. 5
and 6) either by a set ˘ of mixed strategies � 2 ˘ defined on a set of pure
strategies Y , or by a set Y of pure strategies y 2 Y . This leads then to two classes
of STO models.

Probabilistic maximin models associate robust solutions with distributions char-
acterizing desirable indicators (say, social welfare function) over the worst that may
happen from � 2 ˘ , i.e., of the form:

F.x/ D min
�2˘ E

Z
f .x; y; !/�.dy/; (15)

for some random function f .x; y; !/, where ! is an exogenous uncertainty.
Stochastic maximin models of the type (2) associate the robustness with respect

to the worst-case random events generated by y 2 Y :

F.x/ D E min
y2Y f .x; y; !/: (16)

where Y may depend on x; !.

Remark 6 (Extreme events and robust statistics). Extreme values (events)
theory analyses distributions of minimum (maximum) Mn D min.�1; : : : ; �n/,
where �1; : : : ; �n is a sequence of identically distributed independent random
variables (Embrechts et al. 2000). The model (16) has connections with this
theory: it focuses on random events generated by extreme values min

y2Y f .x; y; !/
with respect to scenarios y 2 Y . In other words, (16) can be viewed as a
decision oriented analogue of the extreme events models with mutually dependent
multivariate endogenous (dependent on decision variables x) extreme events. The
use of expected values in (16) may not be appropriate, i.e., (16) has to be modified
as (7)–(8). Probabilistic maximin model (15) corresponds to minimax approaches
introduced by Huber in robust statistics. The integral (15) with respect to an extreme
measure ˘.x; dy/ indicates links to Choquet integrals used also by Huber for
simple sets ˘ of imprecise probabilities. The key issue is a proper representation
of ˘ that is discussed in Sect. 7.

Decision theoretic approaches aim to address uncertainties of agents responses
y.x/. Namely, assumptions of game theoretic approach:

1. Agents commit to a unique y.x/,
2. PA knows y.x/ and the commitments of agents and, hence, chooses x maximiz-

ing function (10)
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are substituted by assumptions about the PA perception of agents scenarios. For
example, the PA may use his perceptions A.x; y; !/, a.x; y; !/ of real functions
A.x; y/, a.x; y/ “contaminated” by uncertain parameters !. In this case random
sets of agents scenarios Y.x; !/ can be defined as

Y.x; !/ D fy W a.x; y; !/ � 0g:
In other cases (Wang 2010) these sets can be characterized by experts opinions

combined with probabilistic inversions. The overall decision problem is formulated
as multicriteria (multi-objective) STO problem with random functions R.x; y; !/,
A.x; y; !/, r.x; y; !/, a.x; y; !/. For example, it can be formulated as the maxi-
mization of function

F.x/ D E min
y2Y.x;!/ R.x; y; !/=A.x; y; !/

or
F.x/ D E min

y2Y.x;!/ŒR.x; y; !/ �A.x; y; !/�

under constraints defined by functions r.x; y; !/. This leads to stochastic maximin
models (16). In general, function F.x/ may have the form

F.x/ D E min
y2Y.x;!/ '.A;R; x; y; !/

for some function ', e.g., a welfare function ' D ıAC .1 � ı/R, 0 < ı < 1 with
economic perspectives of welfare analysis regarding possible transferable utilities,
side payments, contracts, contingent claims. Definitely, in these cases insurance and
finance supplement the safety measures and may mitigate many related problems
besides prevention.

5 Systemic Security

Under increasing interdependencies of globalization processes the protection of
public goods is becoming a critical topic, especially against uncertain threats
generated by agents. In rather general terms such problems can be formulated
by using “defender-attacker” terminology. The agents can be intentional attackers
such as terrorists, or agents generating extreme events such as electricity outage,
oil spills, or floods by the lack of proper regulations, e.g., land use planning. The
main issues in these cases concern coping with extreme events generated by agents
directly and indirectly through cascading systemic failures. As a result, the security
of the whole system can be achieved only by coordinated security management of all
its interconnected subsystems, i.e., the systemic security management. In general,
arising complex interdependent problems require developing new specific models
and methods. This section and Sect. 6 discuss some related issues.



32 Y. Ermoliev and D. von Winterfeldt

5.1 Preventive Randomized Solutions

This section analyzes situations requiring solutions in randomized strategies as in
probabilistic maximin model (15). The simplicity of selected model allows easy to
illustrate specifics of both game theoretic and decision theoretic approaches.

The following model is a simplified version of the model analyzed in (Paruchuri
et al. 2009). Consider a PA (defender) providing civil security say to houses
i D 1; n to prevent an attack (robbery). A pure strategy i is to visit a house
i , whereas xi is portion of times the pure strategy i is used in overall security
control policy x D .x1; : : : ; xn/,

P
i xi D 1, xi � 0. It is assumed that the

agent (attacker) knows randomized strategy x and commits to a randomized strategy
y.x/ D .y1.x/; : : : ; yn.x// maximizing his expected rewards:

A.x; y/ D
X
i;j

rij xiyj ;
X
j

yj D 1; yj � 0; j D 1; n; (17)

assuming that the response y.x/ is a unique vector-function. Since PA knows the
agent’s commitment to y.x/, the PA maximizes his expected rewards

R.x; y.x// D
X
i;j

Rij xiyj .x/;
X
i

xi D 1; xi � 0; i D 1; n: (18)

The randomized strategy x definitely increases the security of the PA. At the
same time, the randomized strategy y increases uncertainty about the agent.

A discontinuity of R.x/ can be easily seen for n D 2, i D 1; 2. The response
function y.x/ D .y1.x/; y2.x// maximizes .r11x1 C r21x2/y1 C .r12x1 C r22x2/y2,
y1 C y2 D 1, y1; y2 � 0, and it has the following simple structure. Let ˛ D .r22 �
r21/=.r11 � r12/, then

y1.x/ D 1; y2.x/ D 0; for x1 < ˛x2
y1.x/ D 0; y2.x/ D 1; otherwise:

�
; (19)

i.e., R.x; y.x// is a discontinuous function on the line x1 D ˛x2:

R.x; y.x// D
�
R11x1 CR21x2; for x1 > ˛x2;
R12x1 CR22x2; for x1 < ˛x2:

The deterministic game theoretic model (17), (18) relies strongly on perfect infor-
mation about randomized strategies x, y. As a result y.x/ attains degenerated 0-1
values. It is natural to expect that formulations which take into account uncertainties
will lead to more reasonable solutions. Consider first a straightforward generaliza-
tion of model (17), (18). Instead of deterministic rij , let us assume that the PA per-
ceives agent’s rewards as random variables rij .!/ defined on a set ˝ of admissible
probabilistic scenarios !. In general,

˚
rij .!/

�
is a random matrix of interdependent

variables. The PA uses now his perception of the agent model and can derive agent’s
random response function y.x; !/ by maximizing with respect to y.
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A.x; y; !/ D
X
i;j

rij .!/xiyj ;
X
j

yj D 1; yj � 0; j D 1; n: (20)

Assuming that the PA still follows exactly the logic of model (10), (11), i.e., PA
maximizes now the expected value

R.x/ D E
X
i;j

Rij xiyj .x; !/; (21)

where for the simplicity of illustration we assume that
˚
Rij

�
is a deterministic

matrix. It is easy to see that this formal introduction of uncertainty into the game-
theoretic model already smoothes function R.x; y.x//. Consider random variable
˛.!/ D .r22.!/ � r21.!//=.r11.!/� r12.!//. Then similar to (19):

y1.x; !/ D 1; y2.x; !/ D 0 with Prob Œ˛.!/ > x1=x2� ;

y1.x; !/ D 0; y2.x; !/ D 1 with Prob Œ˛.!/ � x1=x2� :

Therefore,

R.x/ D .R11x1 CR21x2/Prob Œ˛.!/ > x1=x2�

C .R12x1 CR22x2/Prob Œ˛.!/ � x1=x2� :

Remark 7 (Non-concave and discontinuous models). If the distribution of ˛.!/
has a continuous density, then R.x/ is a continuous but, in general, non-concave
function. Otherwise, R.x/ is again a discontinuous function purely due to the
structure of the Stackelberg models, i.e., in fact, meaningful only under perfect
information about commitments of agents to y.x; !/.

Thus, the game theoretic approach orients PA decisions on unique best-case
scenarios y.x/ or y.x; !/ from agents’ perspectives, whereas the decision theoretic
approach orients decisions on extreme random scenarios of agents from PA
perspectives. In particular, the PA can take position to oppose the agent’s interests,
i.e., to view perceived rewards A.x; y; !/ as his losses. Therefore, the PA decision
model can be formulated as the following stochastic maximin model: maximize

F.x/ D E min
y2Y f .x; y; !/; x 2 X;

where
f .x; y; !/ D R.x; y; !/ �A.x; y; !/;

X D fx � 0 W
X
i

xi D 1g; Y D fy � 0 W
X
i

yi D 1g:

In general cases X and Y may reflect various additional feasibility constraints
of agents. For example, Y may represent prior information in the form of such
comparative statements as the following: the agent plans to visit i more probably
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then j , yi � yj ; or the probability to visit objects i , k, l is higher then objects k,
m, n, s, t , i.e., yi C yk C yl � ym C yn C ys C yt , etc. Sets X , Y may include also
budget constraints. In particular, if ci is the cost per visit of location i , then the total
costs should not exceed a given budget C ,

P
i ci xi � C .

Example 4 (uncertain distributions). It is essential that decision theoretic models
can be formulated in a different case-dependent manner. Consider an important
situation. Practically, the PA observes results of random trials i , j from randomized
strategies x, y and he can see whether i D j , or not. If the information
about rewards is not available, then the PA problem can be formulated as finding
randomized strategy x D .x1; : : : ; xn/ that “matches” feasible randomized strategy
y D .y1; : : : ; yn/ of the agent as much as it is possible. In this case, a rather natural
way to derive optimal randomized strategy x is by minimizing the function

max
y2Y

X
i

xi ln
xi

yi
; x 2 X;

where
P

i xi ln xi
yi

defines the Kullback-Leibler distance between distributions
x and y. This distance is a concave in x and a convex in y function. A simple effec-
tive solution procedures similar in spirit to sequential downscaling methods (Fischer
et al. 2006) can be developed in the case of sets X , Y defined by linear constraints.

5.2 Defensive Resource Allocation

A problem of resource allocation for protecting public goods against attackers is
demonstrated in (Wang 2010) as an application of the stochastic minimax model
(16). A typical setting is that the PA (defender) wants to minimize the perceived
payoffs to the agents (attackers). In the following we shortly summarize this study
advanced during 2010 IIASA1 Young Scientists Summer Program.

Suppose the defender is faced with potential attacks on a collection of targets
(e.g., cities, critical infrastructures, public transportation systems, financial systems,
energy or food supply systems, and etc). The defender’s objective is to minimize
the consequences from attacker choices. A Stackelberg game is usually used to
model this situation when there is no uncertainty about the attacker preferences.
In reality, the attacker’s preferences are not fully known to the defender. In the face
of such uncertainty, the defender cannot predict the attacker’s best response for sure;
therefore, a STO model is needed to minimize the perceived total consequences.

For simplicity, suppose the defender is faced with one attacker, whose decision is
to choose a target i among n targets with the highest payoff to attack. The defender
objective is to minimize

E max
i
gi .x; !/

1International Institute for Applied System Analysis.
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where x 2 X is the defensive resource allocation decision among targets under a
budget constraint

X D fx 2 Rn W
nX
iD1

xi � B; xi � 0; i D 1; : : : ; ng

for someB > 0; gi .x; !/ is the perception of attacker utility function on each target.
Therefore, this model focuses on extreme attacks (events) maximizing perceived
utility of attackers (see also Remark 6). In general, this model also considers the
interdependencies between multiple targets and agents if the agent’s utility functions
depend on all components of x, !. In particular, gi .x; !/ D p.xi /ui .!/ is a product
of target vulnerability (success probability)

p.xi / D e��i xi

and the attack consequence

ui .!/ D
m�1X
jD1

wj Aij C wm"i :

Note that in this model ! D .w1; : : : ;wm; "1; : : : ; "n/ is a random vector rep-
resenting all uncertain parameters in the attacker’s utility function, �i is the
cost effectiveness of defensive investment on targeti . For example, at the cost
effectiveness level of 0.02, if the investment is measured in millions of dollars, then
every million dollars of defensive investment will reduce the success probability of
an attack by about 2%.

It is assumed that consequences are valued by the attacker according to a
multi-attribute utility function with m attributes (of which m � 1 are assumed
to be observable by the defender). Aij is attacker utility of target i on the j -th
attribute, where Aij takes values in [0,1], with 1 representing the best possible value
and 0 the worst, "i is utility of the unknown (by the defender) mth attribute of
target i , .w1; : : : ;wm/ are weights on the m attributes, where

Pm
jD1 wj D 1 and

wj � 0; j D 1; : : : ; m.
The inherent and deep uncertainty about agent behaviors is critical to models of

protecting public goods. Solutions obtained in a deterministic model are usually
unstable to even a subtle change in the agent parameters. The STO models are
developed for robust solutions against such uncertainties. Therefore, quantifying
uncertainty becomes an important task to provide input for the STO models. When
direct judgments on the uncertain parameters ! are available, the uncertainties can
be quantified directly through probability distributions or simulated scenarios.

However, in some cases direct judgments are not available. For example, in the
case study of defensive resource allocations against intentional attacks (Wang 2010)
available are only expert opinions about attacker’s ranking of cities (targets i ).
Therefore, so-called probabilistic inversion is used to simulate scenarios about
attribute weights and unobserved attributes ! D .w1; : : : ;wm; "1; : : : ; "n/. In other
words, if there are expert opinions on attacker rankings of potential targets, it is
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possible to probabilistically invert subjective distributions (as simulated scenarios)
on the relative importance of targets attributes (e.g., expected loss or profits from
attacks, population, national icon, difficulty of launching an attack, and etc), and
even the characteristics of unknown attributes.

5.3 Systemic Failures and Damages

The model of this section can be used as a module of systemic security management
model. The main issues concerns an “attack” involving different agents such as a
catastrophic flood, financial melt-down, oil spill, or terrorists strikes which may have
direct and indirect long-term consequences with cascading failures and damages.
Example 2 illustrates a vital importance of systemic damages distributions of which
may significantly exceed the sum of isolated damages of related subsystems.

The development of an appropriate model reflecting dependencies among fail-
ures, damages, and decisions of different subsystems requires special attention. An
attack may produce a chain of indirect damages. For example, a rain affects simul-
taneously different locations of a region and may cause landslides and formation of
damps, lakes; overfilling and breakdowns of dams may further cause floods, fires,
and destruction of buildings, communication networks, and transportation systems.
Fires may affect computer networks and destroy important information, etc. A
failure in a peripheral power grid and financial organization may trigger cascading
failures with catastrophic systemic outages and global financial crisis. The indirect
losses can even significantly exceed direct impacts. Therefore it is important to
develop a model capable of analyzing the propagation of failures through the system
and their total direct and indirect impacts. In the following a simple model is
described, which is related to notions such as random fields and Bayesian nets.
Versions of this model have been used in studies of catastrophic risks at IIASA. The
model distinguishes N subsystems or elements (buildings, infrastructures, locations,
agents, etc.) l D 1; : : : ; N of a system (region). Possible damage at each l is
characterized by random variable &l assuming M levels: for sake of simplicity
1; 2; : : : ;M . Hence damages of the system are described by the random vector
& D .&1; : : : ; &N /. A fixed value of this vector is denoted by z and the set of all
possible damages by Z. Let us denote by pltk the probability that the damage at l
is equal k at time t ,

PM
kD1 pltk D 1, pltk � 0. Dependencies between subsystems

are represented as a graph, where elements i D 1; : : : ; N are nodes of the graph
and links between them are represented by arrows between nodes. The dependency
graph G D .V; U / is characterized then by the set of nodes V D f1; 2; : : : ; N g and
the set of arrows (directed arcs) U . If nodes l; s belong to V , l; s 2 V , and there
is an arrow from l to s, then l is an adjacent to s node. Define as Vs the set of all
adjacent to s nodes and zVl is sub-vector of the vector of damages indexed by Vl .
For example, zVl D .z2; z5/ for Vl D .2; 5/.

Damages zl are described by a conditional probability Hl.zl jzVl ; x/, i.e., dam-
ages at l depend on current values of damages at l and adjacent nodes as a function
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of available mitigation measures x. Let this function be known for each l . This
is a common assumption of catastrophe modeling (Sect. 3). Say, the probability
of a dam break is conditional on probabilities of potential discharge curves; the
probability of inundation is conditional on a dike break; damages of buildings and
other constructions are conditional on inundation patterns, and so on. In the same
manner we can model, say, financial crisis spreading through regions. FunctionsHl

define the propagation of indirect events and related damages through the system
according to the following relation

p
l;tC1
k D

X
zVl2Z

H l.&tl D k
ˇ̌
&t�1Vl

D zVl ; x /P.&
t�1
Vl

D zVl /;

where pl;tk D P.&tl D k/. To define completely the propagation of failures and
damages it is necessary to fix an initial distribution of &tl for t D 0, i.e., at the
moment when the attack occurred. This equation together with initial distribution
allow the exact calculation (under certain assumptions on the structure of graph G)
of pl;tk for any t � 0. Of course, for complex graphs it is practically impossible
to derive analytical formulas for pl;tk as functions of decision variables x. Hence
the damages may have rather complex dynamic implicit dependencies on decision
vector x requiring developments of specific decision support tools. The most
important approaches have to rely on STO in combination with fast Monte Carlo
simulation as in Sect. 7.1. The paper by (Wang 2010) reports on computational
effectiveness of these methods for realistic problems of security management with
very large number of simulated scenarios and two-stage decision variables required
for coping with extreme events. The values pl;tk reflect the dynamic of propagation
of initial (direct) damages through the system after the occurrence of an attack.
Scenarios of damages can be simulated at any t � 0. For example, t D 0

corresponds to the distribution of direct damages.

6 Security of Electricity Networks

This section presents a decision theoretic model for regulating electricity markets
(networks). The State California energy crises in 2001 and the collapse of ENRON
raised serious concerns about proper regulation of the market power, that is,
the ability of electricity suppliers to raise prices above competitive levels for a
significant period of time. This is considered as a major obstacle to successful
reforms of centralized electricity sectors to competitive markets (Cardell et al. 1996;
Yao 2006). Leader-follower type models are being used to support policy decisions
on design of electricity markets and various regulatory tasks. Unfortunately, these
models are usually inherently non-convex and sensitive to assumptions on their
parameters. It is recognized (Cardell et al. 1996) that no modeling approach can
predict prices in oligopolistic markets, therefore the value of models is considered
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in their ability to provide robust results on relative differences of feasible market
structure and regulations. Let us consider a model (Yao 2006) where the independent
system operator (ISO) controls the transmission system and generator outputs so as
to maximize social welfare of consumers while meeting all the network and security
constraints.

An electricity market can be represented by a set N of nodes and a set of
transmission lines. The strategic decision variables of the ISO are import/export
quantities ri , i 2 N , which must be balanced

X
i

ri D 0; (22)

and such that the resulting power flows don’t exceed secure thermal limits of the
transmission lines in both directions

�Kl �
X
i

Dil ri � Kl; l 2 L; (23)

where Dil are distribution factors (parameters) which specify the flow on a line l
from a unite of flow increase at a node i .

Given the ISO’s (leader) decisions ri , each producer (follower) i maximizes the
profit function

Pi .qi C ri /qi � Ci .qi /; 0 � qi � qi ; i 2 N; (24)

where Pi.�/, Ci.�/ are the inverse demand function (wiliness-to-pay) and generation
cost function; qi are upper capacity bounds.

The leader-follower models rely on the following perfect information assump-
tions: the ISO knows the response functions qi .ri / and chooses ri , i 2 N ,
maximizing the welfare function of consumers

X
i

"Z riCqi .ri /

0

Pi .v/dv � Ci.qi .ri //

#
: (25)

The resulting model is one-leader multi-follower Stackelberg game. This type of
model may have none or multiple degenerated solutions. There might exist also
no-equilibrium in pure strategies due to non-convexity and even discontinuities
in the welfare function (25). Slight deviations in qi .ri /, say due to volatility of
price/demand functions Pi.�/ may have significant consequences (Cardell et al.
1996) on the market power mitigation and equilibrium.

Another approach is to assume that the ISO is a Nash player that acts simul-
taneously with producers. This unilateral approach for regulation of network
interdependencies ignores dependence of agents’ decisions qi on regulations ri ,
that removes the non-convexity from ISO’s optimization problem (22), (23), (25).
Yet again, this approach requires perfect information about all producers, demand
and system contingencies. It ignores uncertainties of fluctuations that stem from
unforeseen events, such as demand uncertainty and transmission and generation
outranges. The critical shortcoming of the Nash equilibrium is that it ignores the
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two-stage character of the ISO and producers decisions. In particular, it excludes
proper modeling of forward markets allowing participants to secure more stable
prices reducing opportunities to manipulate the market.

We shall now describe a two-stage STO model (see also Sect. 7.1) in which the
ISO determines its forward decisions under uncertainties at stage 1 (comprising
possibly many random time interval), and producers act at stage 2 after a scenario
of uncertainty is revealed. Let us consider a network affected by a set of random
events (shocks) ! 2 ˝ which are assumed to be elements of a probability space.
These events lead to variability of functionsPi .�; !/, boundsKi.!/, qi .!/, and cost
functionsCi.�; !/. In general, these random functions and parameters can be viewed
as ISO’s perception of producer’s model.

In the presence of uncertainties the best ISO strategy would be a collective risk
sharing maximizing the social welfare function of consumers and producers:

F.r/ D
X
i

Efi .ri ; !/; (26)

fi .ri ; !/ D max
qi

Z qiCri

0

Pi .�; !/d�CPi .qi Cri ; !/qi �Ci.qi ; !/; 0 � qi � qi .!/;

under constraints (22), (23). This is a two-stage STO problem as in Sect. 7.1.
Function F.r/ orients regulatory decisions on achieving best possible outcomes
with respect to all potential behavioral scenarios of agents (see also Remark 6).

7 Computational Methods

A discussion of computational methods and applications of Stackelberg games can
be found in (Gaivoronski and Werner 2007; Kocvara and Outrata 2004; Luo et al.
1996; Paruchuri et al. 2009, 2008). The concept of Nash equilibrium smoothes the
problem but it ignores the essential two-stage structure of leader-follower decisions
(Sect. 6). Explicit treatment of uncertainty in PA models with bi-level structure is
considered in (Audestad et al. 2006; Gaivoronski and Werner 2007). The paper
by (Wang 2010) advances the decision-theoretic approach to homeland security
models.

The development of effective decision-theoretic computational methods essen-
tially depends on specifics of arising STO models. The main issue is analytical
intractability of performance indicatorsFi.x/ D Efi .x; !/ D R

fi .x; !/P.x; d!/,
where P.x:d!/ may implicitly depend on x as in problem (15) and Remark 4.
If functions Fi.x/ are analytically tractable, then the problem can be solved by
using standard deterministic methods. Unfortunately, this is rarely the case. In fact,
standard deterministic models are formulated usually by switching from Fi .x/ D
Efi .x; !/ to deterministic functions fi .x;E!/. Simple examples show that this
substitution may result in wrong conclusions as in Sect. 3.2. More specifically,
outcomes exp.!x/ for ! D ˙100 with probability 1=2 have considerable
variability, whereas exp.E!x/ D 1.
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Instead straightforward evaluations of integrals Fi.x/, STO methods (Birge
and Louveaux 1997; Borodina et al. 2011; Ermoliev and Wets 1988; Marti 2005;
Shapiro et al. 2009) use only random values fi .x; !/ available from Monte Carlo
simulations. The following section outlines the main idea of these powerful methods
which avoid the “curse of dimensionality” (Remark 3) and allow to solve problems
which cannot be solved by other existing methods (Ermoliev 2009; Ermolieva and
Ermoliev 2005; Gaivoronski 2004). An important application of these methods for
security management can be found in (Wang 2010).

7.1 Adaptive Monte Carlo Optimization for Two-Stage
STO Models

For simplicity of illustration, let us consider the minimization of function F.x/ DR
f .x; !/P.x; d!/ without constraints.
Computations evolve from an initial solution x0. Instead of computing values of

integral F.x/, what is practically impossible, the procedure uses only observable
(simulated) random values f .x; !/.

For a solution xk calculated after k-th step, simulate two independent observa-
tions !k;1, !k;2 of ! correspondingly from P.xk C 	k


k; d!k;1/, P.xk; pd!k;2/,
and calculate values f .xk C 	k


k; !k;1/, f .xk; !k;2/, where 	k is a positive
number, 
k D .
k1 ; : : : ; 


k
n/ is a random vector with, say, independent identically

uniformly distributed in interval Œ�1; 1� components. New approximate solution
xkC1 is computed by moving from xk in direction of so-called stochastic quasi-
gradient (Ermoliev 2009; Gaivoronski 2004):

�k D f .xk C 	k

k; !k;1/� f .xk; !k;2/

	k

k

with a step size �k > 0. The convergence of xk to the set of optimal solutions with
probability 1 follows from the fact that random vector �k is a stochastic quasigra-
dient (SQG) of F.x/, i.e., EŒ�k jxk� � Fx.x

k/. In other words, �k is an estimate
of the gradient Fx.xk/ or its analogs for nondifferentiable and discontinuous func-
tions (Ermoliev 2009; Ermoliev and Norkin 2003; Gaivoronski 2004). Step-sizes �k ,
	k have to satisfy some simple requirements, e.g., �k D const=k,

P
k �k	k < 1.

This method simulates realistic adaptive processes. Only two random
observations of function F.x/ are used at each step to identify the direction
of transition from xk to xkC1 and its size, whereas values of F.x/ and its
derivatives remain unknown. In fact, changes of F.xk/ can be relatively tracked,
in a sense, by F k D 1

k

Pk
sD1 f .xs; !s/ due to the convergence of F.xk/, k ! 1.

This allows designing adaptive regulations of �k to speed up the convergence.
Applications of fast Monte Carlo simulations usually require nontrivial analytical
analysis (Ermoliev and Norkin 2003) of involved stochastic processes. The next
section outlines a version of the method that utilizes the analytical structure of
f .x; !/ to achieve faster simulations.
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The robustness is achieved by the two-stage structure of decisions combining
both for coping with uncertainty mechanisms of anticipation and adaptation.
Forward-looking anticipative decisions are made before new information about
uncertainty become available, whereas other options are created and remain open
for adaptive adjustments to potential new information when it becomes available.
The two-stage STO problem (Birge and Louveaux 1997; Ermoliev and Wets 1988;
Marti 2005; Shapiro et al. 2009) seems to be the most suitable for framing principle-
agent decision models under uncertainty. An example of two-stage model is given
in Sect. 6, (26). Problem (2) has also two-stage formulation important for modeling
the climate change dilemma. A rather general two-stage STO model is formulated
as follows. A long-term decision x must be made at stage 1 before the observation
of uncertainty ! is available. At stage 2, for given x 2 X and observed !, the
adaptive short-term decision y.x; !/ is chosen so as to solve the problem: find
y 2 Y , such that

gi .x; y; !/ � 0; i D 1; l; (27)

and
g0.x; y; !/; (28)

is maximized (minimized) for some functions gi , i D 1; l . Then the main problem
is to find decision x, such that

F.x/ D Ef .x; !/; f .x; !/ D g0.x; y.x; !/; !/; x 2 X (29)

is maximized.
We can see that (27), (28) correspond to (12), (13) of the agents’ models, and

(29) to the goal (10) of the principle-agent model. Computational methods for this
general model are discussed in (Ermoliev 2009). If y.x; !/ maximizes (28), this
problem corresponds to the (two-stage) recourse STO model; otherwise – stochastic
maximin problem (16). In general, (29) may be (Sect. 2) a dynamic two-stage STO
model. Multistage STO models with more then two stages arise in cases when !
remains unknown after new information become available.

In general, two-stage STO models (29) are solved by using adaptive Monte
Carlo optimization (Ermoliev 2009) based on stochastic quasigradient (SQG)
methods. The main idea can be easy illustrated by using the simplest stochastic
minimax model (2). As in Sect. 7.1, instead of integral F.x/ D Ef .x; !/,
f .x; !/ D maxf˛.x � !/; ˇ.! � x/g, the method sequentially updates an initial
solution x0 by using only available on-line independent observations or simulations
!0, !1, . . . of random variable !. Let xk is an approximate solution computed at
step k D 0; 1; : : : : Observe (simulate) !k and change xk by the rule

xkC1 D xk � �k�
k; k D 0; 1; : : : ; �k D

�
˛; if xk � !k;

ˇ; otherwise:

Again, �k is a SQG of non-smooth function F.x/ at x D xk . The step-size
multiplier �k satisfies the same type conditions as in Sect. 7.1.
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7.2 Uncertain Distributions

In this and next sections we assume that ! is characterized by a vector v D
.v1; : : : ; vm/ of random parameters v 2 V 	 Rm. To avoid technicalities, STO
models which can be formulated as maximization of the function

F.x/ D Ef .x; v/ D
Z
V

f .x; v/dH.v/; x 2 X 	 Rn; (30)

where v 2 V 	 Rm is a vector of random parameters, H.y/ is a cumulative
distribution function, i.e., P.dv/ D dH.v/, and f .x; �/ is a random function
possessing all the properties necessary for expression (30) to be meaningful.

As previous sections show, we often do not have full information on H.v/. For
new decision problems, in particular, arising in security analysis, we often have
large a number of unknown interdependent variables v, x and only very restricted
samples of real observations which don’t allow to derive the distribution P .

Experiments to generate new real observations may be extremely expensive,
dangerous or simply impossible. Instead, the natural approach for dealing with new
problems can be based on using all additional information on P to derive a set of
feasible distributions.

Let us denote by K the set of distributions consistent with available information
on P . The robust solution can be defined as x 2 X maximizing

F.x/ D min
P2K

Z
f .x; v/P.dv/ D

Z
f .x; v/P.x; dv/; (31)

where P.x; dv/ denotes the extreme distribution as in Sect. 4. Thus, we have a
general case of STO models with probability measure affected by decision x as in
Sect. 3.2.

Assume that in accordance with available sample and our beliefs we can split
the set V into disjoint subsetsfCs; s D 1; : : : ; Sg. Some of them may correspond
to clusters of available observations whereas others may reflect expert opinions
on the degree of uncertainty and its heterogeneity across the admissible set V .
For instance, we can distinguish some critical zones (“catalogues of earthquakes”)
which may cause significant reductions of performance indicators. Accordingly, the
additional beliefs can be given in terms of a “quantile” class

K D
�
P W

Z
Cs

P.dv/ D ˛s; s D 1; : : : ; S

�
; (32)

where
PS

sD1 ˛s D 1; more generally – in terms of ranges of probabilities

K D
�
P W ˛s �

Z
Cs

P.dv/ � ˇs; s D 1; : : : ; S

�
; (33)
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where ˛s , ˇs are given numbers such that
PS

sD1 ˛s � 1 � PS
sD1 ˇs . This class is

considered as the most natural elicitation mechanism.
Let us denote 	s D R

Cs
P.dv/, 	 D .	1; : : : ; 	S /. In general, additional beliefs

can be represented in a form of various inequalities among components of vector 	
(see Remark 4), of the type

K D fP W A	 � b; 	 � 0g (34)

for some matrix A and vector b.

Proposition 2. For any function f .x; v/ assumed to be integrable w.r.t. all P in K
defined by (34)

min
P2K

Z
f .x; v/P.dv/ D min

	

(
SX
sD1

	s min
v2Cs

f .x; v/ W A	 � b

)
:

In the case of K defined by (32), (33)

min
P2K

Z
f .x; v/P.dv/ D

SX
sD1

˛s min
v2Cs

f .x; v/;

min
P2K

Z
f .x; v/P.dv/ D min

f	sg

(
SX
sD1

	s min
v2Cs

f .x; v/ W ˛s � 	s � ˇs;

SX
sD1

	s D 1

)
:

Proof. We can choose a distribution P concentrated at any collection of points
vs 2 Cs , s D 1; S , therefore

min
P2K

Z
f .x; v/P.dv/ � min

	

(
SX
sD1

	s min
v2Cs

f .x; v/ W A	 � b

)
:

On the other hand,

Z
f .x; v/P.dv/ D

X
s

Z
Cs

f .x; v/P.dv/ � min
	

(
SX
sD1

	s min
v2Cs

f .x; v/ W A	 � b

)
:

Remark 8 (general STO models) Proposition 2 is also true for general STO
problems (5)–(6) with uncertain probability distributions P 2 K . An interesting
specific case occurs for imprecise probabilities characterized by constraints (33).
It is important that Proposition 2 reduces the maximization problem (31) to a
deterministic maximin problems which can be solved by linear or nonlinear
programming methods. There are important connections between dual relations
(Sect. 7.4) of these problems and CVaR measures discussed in Sects. 2 and 3. ut
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7.3 Generalized Moment Problem

Often we know bounds for the mean value or other moments of H in (30). Such
information can often be written in terms of constraints

Qk.H/ D Eqk.v/ D
Z
V

qk.v/dH.v/ � 0; k D 1; l;

Z
V

dH.v/ D 1;

where the qk.v/, k D 1; l , are known functions. Let K is the set of functions H
satisfying these constraints.

Consider again the problem (31). Methods of maximizing F.x/ in (31) depend
on solution procedures for the following “inner” minimization problem: find a
distribution functionH that minimizes

Q0.H/ D Eq0.v/ D
Z
V

q0.v/dH.v/

subject to H 2 K for some function q0. This is a generalization of the known
moments problem (see, e.g., (Ermoliev et al. 1985)). It can also be regarded as a
generalization of the nonlinear programming problem

min
n
q0.�/ W qk.�/ � 0; � 2 V; k D 1; l

o

to an optimization problem involving randomized strategies as in Sect. 5.
There are two main approaches (Ermoliev et al. 1985) for minimizingQ0.H/ in

K: generalized linear programming (GLP) methods and dual maximin approach.
Minimization of Q0.H/ in K is equivalent to the following GLP prob-

lem (Ermoliev et al. 1985): find points �j 2 V , k D 1; l , t � l C 1 and real
numbers pj , k D 1; l , j D 1; t , minimizing

tX
jD1

q0.�j /pj (35)

subject to

tX
jD1

qk.�j /pj � 0; k D 1; l; (36)

tX
jD1

pj D 1; pj � 0; j D 1; t : (37)

Consider arbitrary points vj , j D 1; l C 1 (setting t D l C 1), and for the
fixed set

˚
v1; v2; : : : ; vlC1

�
find a solution p D .p1; p2; : : : ; plC1/ of problem
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(35)–(37) with respect to p. Assume that p exists and that .u1; u2; : : : ; ulC1/ are
the corresponding dual variables. We know that if there exists a point v� such
that q0.v�/ � Pl

kD1 ukqk.v�/ � ulC1 < 0, then the solution p could be improved
by dropping one of the columns .q0.vj /; q1.vj /; : : : ; ql .vj /; 1/, j D 1; l C 1

from the basis and replacing it by the column .q0.v�/; q1.v�/; : : : ; ql .v�/; 1/,
following the revised simplex method. Point v� could be defined by minimizing
q0.v/�Pl

kD1 ukqk.v/, v 2 V .
This conceptual framework leads to various methods (Gaivoronski 1986;

Golodnikov and Stoikova 1978) for solving not only (35)–(37) but also some more
general classes of nonlinear (in probability) problems. The interesting important
issue is the combination of the described procedure with simultaneous gradient type
adjustments of x ensuring optimal solution of compound problem (31).

7.4 Duality Relations and Stochastic Optimization

The duality relations for minimization of Q0.H/ in K provide a more general
approach. It can be shown that if V is compact, qk.v/, k D 0; l , are continuous and
0 2 intco˚z W z D .q0.v/; q1.v/; : : : ; ql .v/

�
, v 2 V , then

min
H2K

Z
f .x; v/dH.v/ D max

u2UC

min
v2V

"
f .x; v/ �

mX
kD1

ukq
k.v/

#
(38)

for each x 2 X , where f .x; �/ is a continuous function. Hence, original infinite
dimensional STO problem can then be reduced to finite-dimensional a maximin
type problem as follows: maximize the function

	.x; u/ D min
v2V

"
f .x; v/ �

mX
kD1

ukq
k.v/

#
(39)

with respect to x 2 X , u � 0. This allows developing a number of algorithms using
GLP approach and algorithms based on solving directly maximin problem (39). A
general scheme of such an algorithms is the following.

According to (38), (39) the STO model with uncertain distribution is reduced to
a finite-dimensional maximin problem with a possibly non-convex inner problem of
minimization and a concave final problem of maximization. A vast amount of work
has been done on maximin problems but virtually all of the existing methods fail if
the inner problem is non-convex. The following approach allows to overcome this
difficulty.

Consider a general maximin problem

max
x2X min

v2V g.x; v/;
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where g.x; v/ is a continuous function of .x; v/ and a concave function of x for each
v 2 V , X 	 Rn, V 	 Rm. Although G.x/ D min

v2V g.x; v/ is a concave function,

to compute its value requires a solution v.x/ of non-convex problem. In order to
avoid the difficulties involved in computing v.x/ one could try to approximate V by
an "-set.

But, in general, this would require a set containing a very large number of
elements. An alternative is to use the following ideas (Ermoliev et al. 1985).
Consider a sequence of sets Vs , s D 0; 1; : : : and the sequence of functionsGs.x/ D
min
v2Vs

g.x; v/. It can be proven that, under natural assumptions concerning the

behavior of sequenceGs , the sequence of points generated by the rule

xsC1 D xs � �sG
s
x.x

s/; Gs
x.x

s/ D gx.x
s; vs/; s D 0; 1; : : : ;

where the step size �s satisfies assumptions such as �s � 0, �s ! 0,
P1

sD0 �s D 1,
tends to follow the time-path of optimal solutions: for s ! 1

lim ŒGs.xs/ � maxGs.x/� D 0:

It was shown (see discussion in (Ermoliev et al. 1985)) how Vs (which depends
onxs) can be chosen so that we obtain the convergence

minGs.x/ ! minG.x/;

where Vs contains only a finite number Ns � 2 of random elements. The main idea
is the following.

We start by choosing initial points x0, v0, a probability distribution � on set
V and an integer N0 � 1. Suppose that after the s-th iteration we have arrived
at points xs; vs . The next approximations xsC1, vsC1 are then constructed in the
following way. Choose Ns � 1 pointsvs;1, vs;2, . . . , vs;Ns , which are sampled from
the distribution �, and determine the set

Vs D ˚
vs;1; vs;2; : : : ; vs;Ns

�[
vs;0;

where vs;0 D vs . Take vsC1 D Argmax
�2Vs

g.xs ; �/ and compute

xsC1 D �X
�
xs � �sgx.x

s ; vsC1/
�
; s D 0; 1; : : : ;

where �s is the step size and �X is the result of the projection operation on X . The
convergence analysis of this method can be found in (Ermoliev et al. 1985).

8 Concluding Remarks

In the case of perfect information the best response of the follower to a decision
x of the leader is the decision y.x/ maximizing his rewardA.x; y/. Therefore, the
best decision of the leader is x D x� maximizing his rewardsR.x; y.x//. Since
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y.x/ is assumed to be a unique solution, then the follower has strong incentive to
choose y.x�/ afterwards, i.e., x� is the Stackelberg equilibrium.

In the case of uncertainty the situation is different. The leader may again use the
best response y.x; !/ of the follower according to his perception of uncertainty !
and rewards A.x; y; !/ of the follower. However, the decision y.x; !/ is no longer
rational for the follower to choose afterwards. In addition, as Remark 7 indicates,
it may produce degenerated solutions y.x; !/ resulting in discontinuities and
instabilities. Therefore, in the case of uncertainty the proposed decision-theoretic
approach relies on random extreme scenarios for the leader rather than random best
case scenarios for the follower. This preserves convexities of models and it allows
the introduction of concepts of robust solutions based on new type of (in general)
non-Bayesian multicriteria STO models with uncertain probability distributions
and multivariate extreme events. As Sect. 7 shows, specific classes of such models
can be solved by linear and nonlinear programming methods in the case of price-
wise linear random functions. An important food security case study in (Borodina
et al. 2011) was analyzed by linear programming methods in an extended space
of proposed two-stage multi-agent STO model. In general, adaptive fast Monte
Carlo and SQG optimization methods can be used (Gaivoronski and Werner 2007;
Wang 2010) to solve arising STO models. Developments of tools for solving STO
problems involving implicit dynamic dependencies of probabilities on decisions
in Sect. 5.3 demand special attention. Truly multiagent security management is
required for coping with systemic failures and extreme events generating disruptions
of financial and economic systems, communication and information systems, food-
water-energy supply networks.
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Robust Decisions under Risk for Imprecise
Probabilities

Włodzimierz Ogryczak

Abstract In this paper we analyze robust approaches to decision making under
uncertainty where the expected outcome is maximized but the probabilities are
known imprecisely. A conservative robust approach takes into account any prob-
ability distribution thus leading to the notion of robustness focusing on the worst
case scenario and resulting in the max-min optimization. We consider softer robust
models allowing the probabilities to vary only within given intervals. We show that
the robust solution for only upper bounded probabilities becomes the tail mean,
known also as the conditional value-at-risk (CVaR), with an appropriate tolerance
level. For proportional upper and lower probability limits the corresponding robust
solution may be expressed by the optimization of appropriately combined the mean
and the tail mean criteria. Finally, a general robust solution for any arbitrary intervals
of probabilities can be expressed with the optimization problem very similar to the
tail mean and thereby easily implementable with auxiliary linear inequalities.

1 Introduction

Several approaches have been developed to deal with uncertain or imprecise data
in optimization problems. In the standard stochastic programming models, we
assume that the probability distribution of the data is known (or can be estimated)
(Ruszczyński and Shapiro 2003). The approaches focused on the quality of the
solution for some data domains (bounded regions) are considered robust (Ben-
Tal et al. 2009; Bertsimas and Thiele 2006). Notion of robust solutions was
first introduced for statistical decisions in 1964 by Huber (1964). Stochastic
programming models with uncertain probability distributions first had been
introduced in (Dupacova 1987; Ermoliev et al. 1985). Practical importance of
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the performance sensitivity against data uncertainty and errors has later attracted
considerable attention to the search for robust solutions (see (Hampel et al. 1986)).
In general decision theory under uncertainty the notion of robustness may have
rather broad set of definitions (Ermoliev and Hordijk 2006). The precise concept of
robustness depends on the way uncertain data domains and the quality or stability
characteristics are introduced.

A conservative notion of robustness focusing on worst case scenario results
is widely accepted and the max-min optimization is commonly used to seek
robust solutions. Although shortcomings of the worst case approaches are
known (Ermoliev and Wets 1988). Recently, a more advanced concept of ordered
weighted averaging was introduced into robust optimization (Perny et al. 2006),
thus allowing to optimize combined performances under the worst case scenario
together with the performances under the second worst scenario, the third worst and
so on. Such an approach exploits better the entire distribution of objective vectors
in search for robust solutions and, more importantly, it introduces some tools for
modeling robust preferences.

In this paper we focus on robust approaches where the probabilities are unknown
or imprecise. Having assumed that the probabilities may vary within given intervals,
we optimize the worst case expected outcome with respect to the probabilities
perturbation set. For the case of unlimited perturbations the worst case expectation
becomes the worst outcome (max-min solution). In general case, the worst case
expectation is a generalization of the tail mean. Nevertheless, it can be effectively
reformulated as a Linear Programming (LP) expansion of the original problem.

The paper is organized as follows. In the next section we recall the tail mean
(Conditional Value at Risk, CVaR) solution concept providing a new proof of the LP
computational model which remains applicable for more general problems related
to the robust solution concepts. Section 3 contains the main results. We show that
the robust solution for only upper bounded probabilities is the tail ˇ-mean solution
for an appropriate ˇ value. For proportional upper and lower limits on probability
perturbation the robust solution may be expressed as optimization of appropriately
combined the mean and the tail mean criteria. Finally, a general robust solution
for any arbitrary intervals of probabilities or probabilities perturbations can be
expressed with optimization problem very similar to the tail ˇ-mean and thereby
easily implementable with auxiliary linear inequalities. In Sect. 4 we show how
for the specific case of LP problems, alternative dual models of robust solutions
may be built to overcome high dimensionality caused by the number of scenarios.
The computational advantages of the dual models are demonstrated on the portfolio
optimization problem in Sect. 5.

2 Robust Solution Concept

Consider a decision problem under uncertainty where the decision is based on the
maximization of a scalar (real valued) outcome. The simplest representation of
uncertainty depends on a finite set ˝ (j˝j D m) of predefined scenarios. The final
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outcome is uncertain and only its realizations under various scenarios ! 2 ˝ are
known. Exactly, for each scenario ! the corresponding outcome realization is given
as a function of the decision variables y! D f!.x/ where x denotes a vector of
decision variables to be selected from the feasible set Q � Rn of constraints under
consideration. Let us define the set of attainable outcomes A D fy D .y/!2˝ W
y! D f!.x/ 8 ! 2 ˝; x 2 Qg. We are interested in larger outcomes under each
scenario. Hence, the decision under uncertainty can be considered a multiple criteria
optimization problem (Haimes 1993; Ogryczak 2002)

max f .y!/!2˝ W y 2 A g : (1)

From the perspective of decision making under uncertainty, the model (1) only
specifies that we are interested in maximization of outcomes under all scenarios
! 2 ˝ . In order to make the multiple objective model operational for the decision
support process, one needs to assume some solution concept well adjusted to the
decision maker’s preferences.

Within the decision problems under risk it is assumed that the exact values of the
underlying scenario probabilities p! .! 2 ˝) are given or can be estimated. This
is a basis for the stochastic programming approaches where the solution concept
depends on the maximization of the expected value (the mean outcome)

�.y/ D
X
!2˝

y!p! (2)

or some risk function. In particular, the risk functions �ık .y/ D �.y/� ık.y/ based
on the downside semideviations

ık.y/ D
"X
!2˝

maxf�.y/ � y!p!; 0gk
#1=k

(3)

are consistent with the second degree stochastic dominance (Ogryczak and
Ruszczyński 2001) and thereby coherent (Artzner et al. 1999). Among them, the
Mean Absolute Deviation (ı1) related risk function can be expressed as the mean of
downside distribution �ı1 .y/ D P

!2˝ minf�.y/; y!gp! .
Recently, the second order quantile risk measures have been introduced in

different ways by many authors (Artzner et al. 1999; Embrechts et al. 1997;
Ermoliev and Leonardi 1982; Ogryczak 1999; Rockafellar and Uryasev 2000).
They generally represent the (worst) tail mean defined as the mean within the
specified tolerance level (quantile) of the worst outcomes. Within the decision under
risk literature, and especially related to finance application, the tail mean quantity
is usually called Tail VaR, Average VaR or Conditional VaR (where VaR reads
after Value-at-Risk) (Pflug 2000). Actually, the name CVaR after (Rockafellar and
Uryasev 2000) is now the most commonly used. Although, since we will consider
the measure with respect to distributions without a formally defined probabilistic
space we will refer to it as the tail mean. The tail mean maximization is consistent
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with the second degree stochastic dominance (Ogryczak and Ruszczyński 2002) and
it meets the requirements of coherent risk measurement (Pflug 2000).

For any probabilities p! and tolerance level ˇ the corresponding tail mean can be
mathematically formalized as follows (Ogryczak 2002; Ogryczak and Ruszczyński
2002). Having defined the right-continuous cumulative distribution function (cdf):
Fy.�/ D ProbŒyw � ��, we introduce the quantile function F .�1/

y as the left-
continuous inverse of the cumulative distribution function Fy:

F .�1/
y .ˇ/ D inf

˚
� W Fy.�/ � ˇ

�
for 0 < ˇ � 1:

By integrating F .�1/
y one gets the (worst) tail mean

�ˇ.y/ D 1

ˇ

Z ˇ

0

F .�1/
y .˛/d˛ for 0 < ˇ � 1: (4)

the point value of the absolute Lorenz curve (Ogryczak 2000). The latter makes the
tail means directly related to the dual theory of choice under risk (Quiggin 1982;
Roell 1987; Yaari 1987).

Maximization of the tail ˇ-mean

max
y2A �ˇ.y/ (5)

defines the tail ˇ-mean solution concept. When parameter ˇ approaches 0, the tail
ˇ-mean tends to the smallest outcome

M.y/ D min fy! W ! 2 ˝g D lim
ˇ!0C

�ˇ.y/:

On the other hand, for ˇ D 1 the corresponding tail mean becomes the standard
mean (�1.y/ D �.y/).

Note that, due to the finite number of scenarios, the tail ˇ-mean is well defined
by the following optimization

�ˇ.y/ D min
u!

(
1

ˇ

X
!2˝

y!u! W
X
!2˝

u! D ˇ; 0 � u! � p! 8 ! 2 ˝
)
: (6)

Problem (6) is a Linear Program for a given outcome vector y while it becomes
nonlinear for y being a vector of variables as in the tail ˇ-mean problem (5). It
turns out that this difficulty can be overcome by an equivalent LP formulation of the
ˇ-mean that allows one to implement the ˇ-mean problem (5) with auxiliary linear
inequalities. Namely, the following theorem recalls Rockafellar and Uryasev (2000)
LP model for continuous distributions which remains valid for a general distribution
(Ogryczak and Ruszczyński 2002). Although we introduce a new proof which can
be further generalized for a family of robust solution concepts we consider.
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Theorem 1. For any outcome vector y with the corresponding probabilities p! ,
and for any real value 0 < ˇ � 1, the tail ˇ-mean outcome is given by the following
linear program:

�ˇ.y/ D max
t;d!

(
t � 1

ˇ

X
!2˝

p!d! W y! � t � d!; d! � 0 8 ! 2 ˝
)
: (7)

Proof. The theorem can be proven by taking advantage of the LP dual to (6).
Introducing dual variable t corresponding to the equation

P
!2˝ u! D ˇ and

variables d! corresponding to upper bounds on u! one gets the LP dual (7). Due
to the duality theory, for any given vector y the tail ˇ-mean �ˇ.y/ can be found as
the optimal value of the LP problem (7). ut

Frequently, scenario probabilities are unknown or imprecise. Uncertainty is then
represented by limits (intervals) on possible values of probabilities varying inde-
pendently (Thiele 2008). We focus on such representation to define robust solution
concept. Generally, we consider the case of unknown probabilities belonging to the
hypercube:

u 2 U D
(
.u1; u2; : : : ; um/ W

X
!2˝

u! D 1; �l
! � u! � �u

! 8 ! 2 ˝
)

(8)

where obviously X
!2˝

�l
! � 1 �

X
!2˝

�u
!:

Focusing on the mean outcome as the primary system efficiency measure to be
optimized we get the robust mean solution concept

max
y

min
u

(X
!2˝

u!y! W u 2 U; y 2 A
)
: (9)

Further, taking into account that all the constraints of attainable set A remain
unchanged while the probabilities are perturbed, the robust mean solution can be
rewritten as

max
y2A min

u2U
X
!2˝

u!y! D max
y2A

(
min
u2U

X
!2˝

u!y!

)
D max

y2A �
U .y/ (10)

where

�U .y/ D min
u2U

X
!2˝

u!y!

D min
u!

(X
!2˝

y!u! W
X
!2˝

u! D 1; �l! � u! � �u
! 8 ! 2 ˝

) (11)
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represent the worst case mean outcomes for given outcome vector y 2 A with
respect to the probabilities set U .

Similar robust solution concepts can be built for various risk functions used
instead of the mean. For the tail mean (CVaR) optimization, the corresponding
robust tail ˇ-mean solution can be expressed as

max
y2A �

U
ˇ .y/ (12)

where

�Uˇ .y/ D min
u2U min

u0

!

(
1

ˇ

X
!2˝

y!u0
! W

X
!2˝

u0
! D ˇ; 0 � u0

! � u! 8 ! 2 ˝
)
: (13)

represents the worst case tail ˇ-mean outcome for given outcome vector y 2 A with
respect to the probabilities set U .

3 Tail Mean and Related Robust Solution Concepts

Let us consider first the robust mean solution (10) in the case of unlimited
probability perturbations (�l

! D 0 and �u
! D 1). One may easily notice that the

worst case mean outcome (11) becomes the worst outcome

�U .y/ D min
u!

(X
!2˝

y!u! W
X
!2˝

u! D 1; 0 � u! � 1 8 ! 2 ˝
)

D min
!2˝ y!

thus leading to the conservative robust solution concept represented by the max-min
approach.

For the case of probabilities lying in a given box with relaxed lower limits (�l
! D

0 8 ! 2 ˝) the worst case mean outcome (11) becomes the classical tail mean
outcome. Hence, the robust solution (10) may be represented as the tail ˇ-mean
with respect to appropriately rescaled probabilities.

Theorem 2. The robust solution the worst case mean outcome (9)–(11) with
relaxed lower bounds may be represented as the tail ˇ-mean with respect to
probabilities

p! D �u
!

�X
!2˝

�u
! and ˇ D 1

�X
!2˝

�u
!;

and it can be found by simple expansion of the optimization problem with auxiliary
linear constraints and variables to the following:

max
y;d;t

(
t �

X
!2˝

�u
!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝

)
: (14)
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Proof. Note that by simple rescaling of variables with su D P
!2˝ �u

! one gets

�U .y/ D min
u!

(X
!2˝

y!u! W
X
!2˝

u! D 1; 0 � u! � �u
! 8 ! 2 ˝

)

D min
u0

!

(
su
X
!2˝

y!u0
! W

X
!2˝

u0
! D 1

su
; 0 � u0

! � �u
!

su
8 ! 2 ˝

)
:

Hence, the robust solution may be represented as the tail .1=su/-mean with respect
to probabilities p! D �u

!=s
u. Following Theorem 1, it can searched by solving

(14). ut
Note that with �u

! D 1 for ! 2 ˝ we represent the robust solution (11) as the
tail ˇ-mean with p! D 1=m and ˇ D 1=m thus representing the max-min model. In
the case of�u

! D k=m for ! 2 ˝ we get p! D 1=m and ˇ D 1=k. For the specific
case of given probabilities Np with possible perturbations bounded proportionally it
is possible to express the corresponding robust solution (11) as the tail mean based
on the original probabilities. Indeed, in the case of �u

! D .1 C ıC/ Np! we get in
Theorem 2

p! D �u
!

�X
!2˝

�u
! D Np!:

In the general case of possible lower limits, the robust mean solution concept
(9)–(11) cannot be directly expressed as an appropriate tail ˇ-mean. It turns out,
however, that it can be expressed by the optimization with combined criteria of the
tail ˇ-mean and the mean.

Theorem 3. The robust mean solution concept (9)–(11) is equivalent to the convex
combination of the mean and the tail ˇ-mean criteria maximization

max
y2A �

U .y/ D max
y2A

�
��.y/C .1 � �/�ˇ.y/

�
(15)

with

ˇ D
 
1 �

X
!2˝

�l
!

!�X
!2˝

�
�u
! ��l

!

�
and � D

X
!2˝

�l
!;

where the tail mean �ˇ.y/ is defined according to probabilities p0
! while the mean

�.y/ is considered with respect to probabilities p00
!:

p0
! D �

�u
! ��l!

��X
!2˝

�
�u
! ��l

!

�
and p00

! D �l
!

�X
!2˝

�l
! for ! 2 ˝:

Proof. When introducing scaling factors su D P
!2˝ �u

! and sl D P
!2˝ �l

! , the
worst case mean outcome (11) can be expressed as follows
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�U .y/ D min
u!

(X
!2˝

y!u! W
X
!2˝

u! D 1; �l
! � u! � �u

! 8 ! 2 ˝
)

D min
u0

!

(X
!2˝

y!u0
! W

X
!2˝

u0
! D 1 � sl ; 0 � u0

! � �u
! ��l

! 8 ! 2 ˝
)

C
X
!2˝

y!�
u
!

D .1 � sl /min
u00

!

(
su � sl

1 � sl
X
!2˝

y!u00
! W

X
!2˝

u00
! D 1 � sl

su � sl ;

0 � u00
! � �u

! ��l
!

su � sl 8 ! 2 ˝
�

C sl
P

!2˝ y!
�l!
sl

D .1 � �/�ˇ.y/C ��.y/

which completes the proof. ut
Corollary 1. The robust mean solution concept (10)–(11) for the specific case of
given probabilities Np with possible perturbations bounded proportionally �l

! D
.1 � ı�/ Np! and �u

! D .1 C ıC/ Np! for all ! 2 ˝ is equivalent to the convex
combination of the mean and tail ˇ-mean criteria maximization

max
y2A �

U .y/ D max
y2A

�
��.y/C .1 � �/�ˇ.y/

�
(16)

with ˇ D ı�=.ıC C ı�/ and � D 1 � ı� where both the mean �.y/ and the tail
mean �ˇ.y/ are calculated with respect to the original probabilities Np! .

Proof. For proportionally bounded perturbations

�l
! D .1 � ı�/ Np! and �u

! D .1C ıC/ Np!

formula 15 of Theorem 3 is fulfilled with

ˇ D 1 �P
!2˝ �l

!P
!2˝

�
�u
! ��l

!

� D ı�

ıC C ı�

and
� D

X
!2˝

�l
! D 1 � ı�:

Further, where the tail mean is defined according to probabilities

p0
! D �u

! ��l
!P

!2˝
�
�u
! ��l

!

� D
�
ıC C ı�� Np!

ıCP
!2˝ Np! C ı� P

!2˝ Np! D Np!

as well as the mean is also considered with respect to probabilities
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p00
! D �l!P

!2˝ �l
!

D
�
1 � ıl!

� Np!�
1� ıl!

�P
!2˝ Np! D Np!

which completes the proof. ut
Alternatively, one can take advantages of the fact that the structure of optimiza-

tion problem (11) remains very similar to that of the tail ˇ-mean (6). Note that
problem (11) is an LP for a given outcome vector y while it becomes nonlinear for
y being a vector of variables. This difficulty can be overcome similar to Theorem 1
for the tail ˇ-mean.

Theorem 4. For any arbitrary intervals Œ�l!;�
u
!� (for all ! 2 ˝) of probabilities,

the corresponding robust mean solution (10)–(11) can be given by the following
optimization problem

max
y;t;d u

! ;d
l
!

(
t �

X
!2˝

�u
!d

u
! C

X
!2˝

�l
!d

l
! W

y 2 AI t � d u
! C d l! � y!; d

u
!; d

l
! � 0 8 ! 2 ˝�:

(17)

Proof. The theorem can be proven by taking advantages of the LP dual to (11).
Introducing dual variable t corresponding to the equation

P
!2˝ u! D 1 and

variables d u
! and d l! corresponding to upper and lower bounds on u! , respectively,

one gets the following LP dual to problem (11)

�U .y/ D max
t;d u

! ;d
l
!

(
t �

X
!2˝

�u
!d

u
! C

X
!2˝

�l
!d

l
! W

t � d u
! C d l! � y!; d

u
!; d

l
! � 0 8 ! 2 ˝�

which completes the proof. ut
While considering the tail mean as the basic optimization criterion (CVaR

optimization) we have to deal with the robust tail mean solution concepts (12)–(13)
to allow for imprecise probabilities. It turns out that this robust solution concept for
any arbitrary perturbation set U (8) may be expressed as the standard tail mean with
appropriately defined tolerance level and rescaled probabilities.

Theorem 5. The robust tail ˇ-mean solution (12)–(13) with arbitrary set U (8)
may be represented as the tail ˇ0-mean with respect to probabilities

p0
! D �u

!

�X
!2˝

�u
! and ˇ0 D ˇ

�X
!2˝

�u
!;

and it can be found by simple expansion of the optimization problem with auxiliary
linear constraints and variables to the following:

max
y;d;t

(
t � 1

ˇ

X
!2˝

�u
!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝

)
: (18)
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Proof. Note that

�Uˇ .y/ D min
u2U min

u0

!

(
1

ˇ

X
!2˝

y!u0
! W

X
!2˝

u0
! D ˇ; 0 � u0

! � u! 8 ! 2 ˝
)

D min
u0

!

(
1

ˇ

X
!2˝

y!u0
! W

X
!2˝

u0
! D ˇ; 0 � u0

! � �u
! 8 ! 2 ˝

)

Thus by simple rescaling of variables with su D P
!2˝ �u

! one gets

�Uˇ .y/ D min
u00

!

(
su

ˇ

X
!2˝

y!u00
! W

X
!2˝

u00
! D ˇ

su
; 0 � u00

! � �u
!

su
8 ! 2 ˝

)
:

Hence, the robust solution may be represented as the tail .ˇ=su/-mean with
respect to probabilities p! D �u

!=s
u. Following Theorem 1, it can searched by

solving (18). ut
Corollary 2. The robust tail ˇ-mean solution concept (12)–(13) for the specific
case of given probabilities Np with possible perturbations upper bounded proportion-
ally�u

! D .1C ıC/ Np! and arbitrary lower bounded (any�l
! � Np! ) for all ! 2 ˝

is equivalent to the tail ˇ0-mean with respect to probabilities Np andˇ0 D ˇ=.1CıC/,
and it can be found by simple expansion of the optimization problem with auxiliary
linear constraints and variables to the following:

max
y;d;t

(
t � 1C ıC

ˇ

X
!2˝

Np!d! W y 2 AI y! � t � d!; d! � 0 8 ! 2 ˝
)
:

(19)

4 Dual LP Models

Following (10), the robust mean solution concept is given as

max
y2A �

U .y/ D max
y2A

(
min
u2U

X
!2˝

y!u!

)
D max

y2A min
u2U

X
!2˝

u!y!

where the inner optimization problem (11) represents the worst case mean outcome
for given outcome vector y 2 A with respect to the probabilities set U . It is an LP
for a given vector y but it turns into nonlinear within the entire robust optimization
problem (5), due to the quadratic objective function

P
!2˝ y!u! . This difficulty is

overcome by an equivalent dual LP formulation of problem (6). Indeed, introducing
dual variable t corresponding to the equation

P
!2˝ u! D 1 and variables d u

! and d l!
corresponding to upper and lower bounds on u! , respectively, we get the following
LP dual to problem (11)
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�U .y/ D max
t;d u

! ;d
l
!

(
t �

X
!2˝

�u
!d

u
! C

X
!2˝

�l
!d

l
! W

t � d u
! C d l! � y!; d

u
!; d

l
! � 0 8 ! 2 ˝�

(20)

This leads us to the standard LP model (17) of Theorem 4 for the robust opti-
mization. The model dimensionality is strongly affected by the number of scenarios
under consideration. The latter may be huge in the case of more advanced simulation
models employed for scenario generation (Pflug 2001).

An alternative robust optimization models can be built for LP problems by taking
advantages of the minimax theorem. Note that both sets A and U are convex
polyhedra. Hence, formula (5) can be rewritten into a dual form

max
y2A min

u2U
X
!2˝

u!y! D min
u2U max

y2A
X
!2˝

u!y! D min
u2U D.u/ (21)

with the inner optimization problem

D.u/ D max
y

(X
!2˝

u!y! W y 2 A
)
: (22)

The inner optimization problem although being an LP for a given vector u has the
quadratic objective function

P
!2˝ u!y! within the entire robust optimization prob-

lem (21) where u is also a vector of variables. Again, this difficulty can be resolved
by taking advantages of the LP dual D�.u/ to the inner problemD�.u/. Indeed:

min
u2U D.u/ D min

u2U D
�.u/ (23)

but solving the latter problem allows us to use the LP methodology. Moreover,
set U has only one equation (structural constraint) which makes the problem
minu2U D�.u/ much simpler than those of (20). In the next section we illustrate
potential advantages of the alternative (dual) model with the portfolio optimization
problem.

5 Portfolio Optimization

The portfolio optimization problem we consider follows the original Markowitz’
formulation and is based on a single period model of investment. At the beginning
of a period, an investor allocates the capital among various securities, thus assigning
a nonnegative weight (share of the capital) to each security. Let J D f1; 2; : : : ; ng
denote a set of securities considered for an investment. For each security j 2 J ,
its rate of return is represented by a random variable Rj with a given mean
�j D EfRj g. Further, let x D .xj /jD1;:::;n denote a vector of decision variables
xj expressing the weights defining a portfolio. The weights must satisfy a set of
constraints to represent a portfolio. The simplest way of defining a feasible set Q is
by a requirement that the weights must sum to one and they are nonnegative (short
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sales are not allowed), i.e.

Q D
8<
:x W

X
j2J

xj D 1; xj � 0 8 j 2 J
9=
; : (24)

Hereafter, we perform detailed analysis for the set Q given with constraints (24).
Nevertheless, the presented results can easily be adapted to a general LP feasible set
given as a system of linear equations and inequalities, thus allowing one to include
short sales, upper bounds on single shares or portfolio structure restrictions which
may be faced by a real-life investor.

Each portfolio x defines a corresponding random variable Rx D P
j2J Rj xj

that represents the portfolio rate of return while the expected value can be computed
as �.x/ D P

j2J �j xj . We consider m scenarios ! 2 ˝ with probabilities p! .
We assume that for each random variable Rj its realization r!j under the scenario
! is known. Typically, the realizations are derived from historical data treating m
historical periods as equally probable scenarios (p! D 1=m). Although the models
we analyze do not take advantages of this simplification. The realizations of the
portfolio return Rx are given as

y! D
X
j2J

r!j xj : (25)

Following Theorem 4 and taking into account (25), for any arbitrary intervals
Œ�l

!;�
u
!� (for all ! 2 ˝) of probabilities, the corresponding robust portfolio

optimization problem (10) can be given by the following LP problem:

max
x;y;t;d u

! ;d
l
!

t �
X
!2˝

�u
!d

u
! C

X
!2˝

�l
!d

l
! W

s.t.
X
j2J

xj D 1; xj � 0 for j 2 J

d u
! � d l! � t C

nX
j2J

r!j xj � 0; d u
!; d

l
! � 0 for ! 2 ˝

(26)

where t is an unbounded variable.
As a particular case of relaxed lower bounds on scenario probabilities (�l! D 0

8! 2 ˝), following Corollary 2 one gets the classical CVaR portfolio optimization
model (Mansini et al. 2003):

max
x;y;t;d!

t � 1

ˇ

X
!2˝

p!d!

s.t.
X
j2J

xj D 1; xj � 0 for j 2 J

d! � t C
X
j2J

r!j xj � 0; d! � 0 for ! 2 ˝

(27)

with probabilities p! D �u
!=
P

!2˝ �u
! and the tolerance level ˇ D 1=

P
!2˝ �u

! .
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Except from the corresponding portfolio constraints (24), model (27) contains
m nonnegative variables d! plus single variable t and m corresponding linear
inequalities. Hence, its dimensionality is proportional to the number of scenariosm.
Exactly, the LP model containsmC nC 1 variables and mC 1 constraints. It does
not cause any computational difficulties for a few hundreds scenarios as in several
computational analysis based on historical data (Mansini et al. 2007), However, in
the case of more advanced simulation models employed for scenario generation
one may get several thousands scenarios (Pflug 2001). This may lead to the LP
model (27) with huge number of variables and constraints thus decreasing the
computational efficiency of the model.

The dual model (23) allows us to formulate the corresponding robust portfolio
optimization problem (10), for any arbitrary intervals of probabilities (8), as the
following LP problem:

min
u;q

q

s.t. q �
X
!2˝

r!j u! � 0 for j 2 J
X
!2˝

u! D 1

�l
! � u! � �u

! for ! 2 ˝:

(28)

For the specific case of the CVaR model (27) representing the case of relaxed
lower bounds, the dual model takes the following form:

min
u;q

q

s.t. q �
X
!2˝

r!j u! � 0 for j D 1; : : : ; n

X
!2˝

u! D 1

0 � u! � p!

ˇ
for ! 2 ˝:

(29)

The dual LP model containsm variables u! , but only nC1 constraints (n inequalities
and one equation) excluding the simple bounds on u! not affecting the problem
complexity. Actually, the number of constraints in (29) is proportional to the
portfolio size n, thus it is independent from the number of scenarios. Exactly, there
are m C 1 variables and n C 1 constraints. This guarantees a high computational
efficiency of the dual model even for very large number of scenarios. Note that
possible additional portfolio structure requirements are usually modeled with rather
small number of linear constraints thus generating small number of additional
variables in the dual model. Certainly, the optimal portfolio shares xj are not
directly represented within the solution vector of problem (29) but they are easily
available as the dual variables (shadow prices) for inequalities q �P

!2˝ r!j u! � 0.
Moreover, the dual model (29) may be considered a special case within the
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general theory of dual representations of coherent measures of risk, following from
conjugate duality (Sect. 5 in (Miller and Ruszczyński 2008)).

We have run computational tests (Ogryczak and Śliwiński 2010) on the large
scale CVaR portfolio optimization instances developed by Lim et al. (2010). The
instances were originally generated from a multivariate normal distribution for 50,
100 or 200 securities with the number of scenarios 50,000. All computations were
performed on a PC with the Intel Core i7 2.66GHz processor and 6GB RAM
employing the simplex code of the CPLEX 12.1 package. An attempt to solve
the primal model (27) with ˇ D 0:05 resulted in 580, 1443 and 5006 seconds of
computation on average, for problems with 50, 100 and 200 securities, respectively.
Solving the dual models (29) directly by the primal method (standard CPLEX
settings) results in computation times 5:3, 13:6 and 38:9 CPU seconds, respectively.
Moreover, the computation times remain very low for various confidence levels
(Ogryczak and Śliwiński 2010).

6 Conclusions

We have analyzed the robust mean solution concept where uncertainty is represented
by limits (intervals) on possible values of scenario probabilities varying indepen-
dently. Such an approach, in general, leads to complex optimization models with
variable coefficients (probabilities). We have shown, however, that the robust mean
solution concepts can be expressed with auxiliary linear inequalities, similar to the
tail ˇ-mean solution concept based on maximization of the mean in ˇ portion of the
worst outcomes. Actually, the robust mean solution for upper limits on probabilities
turns out to be the tail ˇ-mean for an appropriateˇ value. For upper and lower limits
the robust mean solution may be sought by optimization of appropriately combined
the mean and the tail mean criteria. Thus, a general robust mean solution for any
arbitrary intervals of probabilities can be expressed with optimization problem very
similar to the tail ˇ-mean and thereby easily implementable with auxiliary linear
inequalities. While considering the tail mean as the basic optimization criterion
(CVaR optimization) the corresponding robust solution concept for any arbitrary
perturbation set may be expressed as the standard tail mean with appropriately
defined tolerance level and rescaled probabilities.

Our analysis has shown that the robust mean solution concept is closely related
with the tail mean which is the basic equitable solution concept (Kostreva et al.
2004). It corresponds to recent approaches to the robust optimization based on
the equitable optimization (Miettinen et al. 2008; Perny et al. 2006; Takeda and
Kanamori 2009). Further study on equitable solution concepts and their relations
to robust solutions seems to be a promising research direction. In particular, more
complex robust preferences can be modeled by combining with various weights the
tail means for larger and smaller perturbations thus leading to the combinations of
multiple CVaR measures (Mansini et al. 2007).
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Combining Second-Order Belief
Distributions with Qualitative Statements
in Decision Analysis

Ola Caster and Love Ekenberg

Abstract There is often a need to allow for imprecise statements in real-world
decision analysis. Joint modeling of intervals and qualitative statements as con-
straint sets is one important approach to solving this problem, with the advantage
that both probabilities and utilities can be handled. However, a major limitation
with interval-based approaches is that aggregated quantities such as expected
utilities also become intervals, which often hinders efficient discrimination. The
discriminative power can be increased by utilizing second-order information in the
form of belief distributions, and this paper demonstrates how qualitative relations
between variables can be incorporated into such a framework. The general case
with arbitrary distributions is described first, and then a computationally efficient
simulation algorithm is presented for a relevant sub-class of analyses. By allowing
qualitative relations, our approach preserves the ability of interval-based methods
to be deliberately imprecise. At the same time, the use of belief distributions allows
more efficient discrimination, and it provides a semantically clear interpretation of
the resulting beliefs within a probabilistic framework.

1 Introduction

It is questionable whether people are capable of providing the inputs that utility the-
ory requires, when most people cannot clearly distinguish between widely separated
probabilities Shapira (1995). This indicates that precise numerical information does
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not make much sense in real-life decision making. Furthermore, even if a decision
maker is able to discriminate between different probabilities, very often complete,
adequate, and precise information is missing. Hence, decision problems frequently
contain far less information than classical utility theory requires. In particular, quite
often we might, at best, have access to some vague probability beliefs and qualitative
preferences among the consequences, and very little more than that. This is the class
of decision problems we aim at in this article.

It has since long been recognized that decision theory needs to accommodate
imprecise probabilities (and utilities) and a vast amount of models with
representations allowing imprecise probability statements have been suggested,
including possibility theory, capacity theory, evidence theory and belief functions
in the Dempster-Shafer sense, various kinds of logic, upper and lower probabilities,
hierarchical models and sets of probability measures. A multitude of articles have
been presented on various methods. For some early examples of these, see e.g.
(Choquet 1954; Dempster 1967; Dubois and Prade 1988; Ellsberg 1961; Good
1962; Shafer 1976; Smith 1961). It is interesting to note that, during recent years, the
activities within the area of imprecise probabilities have increased substantially and
special conferences are now dedicated to contributions on this theme. An example
of this is Jaffray (1999) from the first International Symposium on Imprecise
Probabilities and Their Applications (ISIPTA).

Some general approaches to evaluating imprecise decision situations include
both imprecise probabilities and utilities. We have earlier discussed various aspects
on these issues in a sequence of articles and argued that there are strong arguments
for modeling quantitative impreciseness as intervals (and similar constraints),
enabling representation and modeling of qualitative information as constraint sets
of relations. Cf. Danielson and Ekenberg (1998); Danielson et al. (2009); Ding et al.
(2010); Ekenberg and Thorbiörnson (2001).

An obvious advantage of approaches using upper and lower probabilities is that
they do not require taking particular probability distributions into consideration.
On the other hand, the expected utility range resulting from an evaluation is then
also an interval. To our experience, in real-life decision situations, it is hard to
discriminate between the alternatives in a pure interval approach, even if various
relations are added. In effect, an interval-based decision procedure preserves all
alternatives with overlapping expected utility intervals, even if the overlap is quite
small. Consequently, there is a need to extend the representation of the decision
situation using more information, but keeping the requirement that the decision
maker does not have to be more precise than what is possible. In pursuit of
more discriminative power, we have also developed methods for handling belief
distributions over sub-parts of the probabilities as well as the utilities involved, see
e.g. Danielson et al. (2007); Ekenberg (2000). Furthermore, we have developed a
calculus for aggregating these in various ways, predominantly using a generalization
of the expected utility function Ekenberg et al. (2005).

Thus, we have developed computationally meaningful methods – that have also
been implemented as software – for solving multi-linear expressions with respect to
constraints sets. We have also developed – and implemented – methods for handling
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distributions over independent variables. Various aspects of these latter methods
are provided in Ekenberg et al. (2007, 2006); Sundgren et al. (2009). However,
a great and embarrassing dilemma has been to find the combination of these two
approaches, i.e. to use qualitative statements and distributions at the same time.
Dependencies of the kind that qualitative statements give rise to are not particularly
straightforward to handle in the context of belief distributions. Nevertheless, such
statements arise naturally in many decision situations. For instance, usually a
decision maker has access only to local information and qualitative statements of
relations between different parameters, in terms of constraints, and, consequently,
has no explicit idea about the overall distribution.

This article presents a computationally meaningful method for solving this
dilemma. We present how to solve expected utilities of quite complex structure,
considering general decision trees and belief distributions over all the probabilities
and utilities involved. Furthermore, and most importantly herein, we demonstrate a
method for including qualitative statements, while still preserving the possibility
to use these distributions efficiently. Starting from decision trees, we first solve
the general case, followed by a computationally feasible method for handling this
practically in a relevant sub-class of analyses. Compared to other approaches,
this merging of second-order belief distributions and qualitative statements not
only improves discrimination but also provides an easier interpretation within a
probabilistic framework.

2 Decision Trees

A decision tree represents a decision problem, collecting all information necessary
for the model into one structure.

Definition 1. A graph is a structure hV;Ei where V is a set of nodes and E is a set
of node pairs (edges).

Definition 2. A tree is a connected graph without cycles. A rooted tree is a tree
containing a finite set of nodes and that has a dedicated node at level 0. The adjacent
nodes to a node at level i , except the nodes at level i � 1, are at level i C 1.
A node at level i C 1 that is adjacent to a node at level i is a child of the latter.
A node at level 1 is an alternative. A node at level i is a leaf or consequence
if it has no adjacent nodes at level i C 1. A node that is at level 2 or more and
has children is an event (an intermediary node). The depth of a rooted tree is
max.njthere exists a node at level n/.

For convenience we can, for instance, use the notation that the n children of a
node ci are denoted ci1; ci2; : : : ; cin and the m children of the node cij are denoted
cij1; cij 2; : : : ; cijm, etc.

Definition 3. Given a rooted tree, a decision tree T is formed by assigning a
p symbol to each edge not starting in the root node, and a u symbol to each
consequence node.
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Generally, the p and u symbols can be given any meaning, but here they will
represent probabilities and utilities, respectively. As such they are all constrained to
Œ0; 1�, and further the probabilities on edges from a common parent node (not
the root) must sum to 1. Such a set of probabilities will henceforth be called a
probability group.

Primary evaluation rules of a decision tree model are based on the expected
utility.

Definition 4. Given a decision tree T and an alternative Ai , the expression

E.Ai/ D
ni0X
i1D1

pi i1

ni1X
i2D1

pi i1i2 � � �
nim�2X
im�1D1

pi i1i2:::im�2im�1

�
nim�1X
imD1

pi i1i2:::im�2im�1imui i1i2:::im�2im�1im

where m is the depth of the tree corresponding to Ai , nik is the number of possible
outcomes following the event with probability pik , p:::ij :::, j 2 Œ1; : : : ; m�, denote
probability variables and u:::ij ::: denote utility variables as above, is the expected
utility of alternative Ai in T .

This is a general representation and one option is thus to define probability
distributions and utility functions in the classical way. Another option that also
covers impreciseness is to define sets of possible probability distributions and utility
functions. The possible functions are then conveniently expressed as vectors in
polytopes that are solution sets to the constraints involved.

A number of evaluation procedures, earlier suggested by us, then yield first-
order interval estimates of the evaluations, i.e. upper and lower bounds for the
expected utilities of the alternatives Danielson and Ekenberg (2007). However,
the expected utility range resulting from an evaluation now also becomes an
interval. In real-life decision situations, it is then often hard to discriminate between
the alternatives, i.e. an interval-based decision procedure will not separate out
alternatives with overlapping expected utility intervals, even if the overlap is quite
small. Furthermore, a decision maker does not necessarily believe with equal faith
in all the epistemologically possible probability distributions, represented by a set
of interval statements. Therefore, it is interesting to extend the representation of
the decision situation using more information, such as distributions over classes of
probability and utility measures, in pursuit of more discriminative power.

3 Belief Distributions

The idea is now that distributions can be used for expressing various beliefs over
multi-dimensional spaces where each dimension corresponds to, for instance, pos-
sible probabilities or utilities of consequences. The distributions can consequently
be used to express strengths of beliefs in different vectors in the solution sets.
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Approaches for extending the interval representation using distributions over
classes of probability and value measures in this way have been developed into
various hierarchical models, such as second-order probability theory, cf. Ekenberg
et al. (2006).

In such an approach, it is possible to make use of distributions rather than
intervals for expressing beliefs regarding the probabilities and utilities involved.
However, since general distributions over the entire solution sets are very hard to
imagine, already when handling just a few dimensions, the marginal distributions,
and the relations between these, are of high importance. A more comprehensible
distribution in the latter sense can straightforwardly be defined.

Definition 5. For a utility or probability variable x in a decision tree T , the
continuous random variable QX is the belief distribution over x. QX is defined on
Œa; b� with a; b 2 Œ0; 1� and a < b.

We will frequently use the density function f QX.x/ of QX to represent and visualize
the belief distribution. In some cases we will be interested in the joint density
function for the belief regarding a set of utilities or probabilities. Exemplifying with
the joint belief distribution over the utilities u1; : : : ; un, this density function will be
denoted f QU1;:::; QUn.u1; : : : ; un/, or more compactly as f QU.u/.

1

3.1 Constrained Belief Distributions

Our main objective here is to extend the earlier approach to allow for comparative
constraints. The type of constraints considered are linear relations between two
variables, i.e. of the type ui � uj , which here translate to constraints for the
corresponding belief distributions. These constraints, together with the specified
belief distributions, make up the decision maker’s perception; they are his or her
statements about the decision situation.

We will allow comparative constraints between any two utilities and between any
two probabilities in the same probability group2.

Definition 6. Given a decision tree T , the total set of constraints for QU1; : : : ; QUn
is denoted by AU. Furthermore BU is the corresponding subspace of Œ0; 1�n

implied by AU. Analogously, the total set of constraints for the belief distributions
QPk1; : : : ; QPkl over probabilities from group k is denoted APk , and the corresponding
l-dimensional subspace is denoted BPk .

Note that APk includes the implicit constraint
P

i
QPki D 1.

The constrained belief distributions are obtained by conditioning the original
belief distributions on the total set of constraints:

1Unless explicitly stated otherwise, bold face symbols denote vectors throughout this paper.
2 It is implicit that these constraints are coherent so that, for example, if QU1 < QU2 and QU2 < QU3,
then it cannot hold that QU3 � QU1.
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Definition 7. The constrained belief distributions are given by

.U1; : : : ; Un/
0 D . QU1; : : : ; QUn/0jAU

for the utilities, and by

.Pk1; : : : ; Pkl /
0 D . QPk1; : : : ; QPkl /0jAPk

for probabilities of group k.

Our real interest lies in the constrained variables, since these take into account
both the originally defined belief distributions and the total set of constraints for
those distributions. Because the constraints introduce dependencies, one needs to
operate on the joint belief distributions. If the decision maker has some explicit
beliefs concerning interdependencies, not captured by the constraint sets AU and
APk , joint belief distributions should be specified already from the outset. Otherwise,
which should be the more common scenario, the constraint sets contain all available
information on dependencies, and the marginal unconstrained belief distributions
are independent of each other. This independence then allows for easy calculation
of the required joint density function for the unconstrained belief distributions.
Exemplifying with the utilities, one gets

f QU1;:::; QUn.u1; : : : ; un/ D f QU1.u1/ � � �f QUn.un/ : (1)

The joint density function for the constrained belief distributions is obtained
by reducing the support of the original belief distributions to BU (in the case of
utilities), and scaling up the density function for all points in BU so that the function
integrates to one in its support. This is a multivariate equivalent to truncating a
univariate random variable. The joint density function for U D .U1; : : : ; Un/

0 is
therefore

fU.u/ D f QU.u/
Pr. QU 2 BU/

D f QU.u/R � � � R
BU
f QU.u/ du

for u 2 BU : (2)

The corresponding density for a probability group Pk D .Pk1; : : : ; Pkl /
0 is

fPk.pk/ D f QPk
.pk/

Pr. QPk 2 BPk /
D f QPk

.pk/R � � � R
BPk

f QPk
.pk/ dpk

for pk 2 BPk : (3)

If the original belief distributions were defined in terms of marginal distributions
rather than as a joint one, it is possible to express (2) and (3) even more explicitly.
For the utilities one obtains by combining (1) and (2)

fU.u/ D f QU1 .u1/ � � �f QUn.un/R � � � R
BU
f QU1.u1/ � � �f QUn.un/ du

for u 2 BU : (4)
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3.2 Marginal Constrained Belief Distributions

To see how the constraints altered the belief distribution over some variable, for
example the j :th utility, it is necessary to compute the marginal constrained belief
distribution Uj and compare this to the original marginal belief distribution QUj .

Any marginal distribution can be obtained by integrating the joint distribution
over all variables except the one of interest. If u�

j D .u1; : : : ; uj�1; ujC1; : : : ; un/0,
then the marginal distribution of Uj is given by

fUj .uj / D
Z

� � �
“

� � �
Z
B

�j
U

"
f QU.u/R � � � R
BU
f QU.u/ du

#
du�

j for uj 2 Bj
U ; (5)

whereB�j
U is the n�1-dimensional subspace of BU that arises by removing its j :th

dimension.

Example 1. Consider a decision tree where the belief distributions over two utilities
ua and ub are both the standard uniform distribution U.0; 1/:

f QUj .uj / D 1 for 0 � uj � 1 and j 2 fa; bg ;

and where there is only one constraint QUa � QUb. Combining (1) and (5), the
marginal belief distribution over ub under the constraint can be computed:

fUb .ub/ D
Z ub

0

"
1 � 1R 1

0

R ub
0 1 � 1 duadub

#
dua D

Z ub

0

dua
1=2

D 2ub for ub � ua :

We recognize that Ub � Beta.2; 1/, which is a special case of a more general
result (see Theorem 3). The shift in marginal belief distribution over ub, imposed
by the constraint, is depicted in Fig. 1. This marked alteration of the marginal belief
imposed by the constraint is a demonstration that constraints carry a substantial
amount of information about the decision situation at hand. ut

3.3 Belief Distribution Over Expected Utility

The quantity of main interest here is the expected utility for a given decision
alternative, or the difference in expected utility between two alternatives. Within
our proposed framework, the specified belief distributions over utilities and proba-
bilities, in combination with the sets of comparative constraints, will all affect the
resulting belief distribution over the expected utility.

The resulting distributions tend to become more and more warped around the
mean as the depth and breadth of the tree increases. This phenomenon is due in part
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Fig. 1 Results from Example 1, where the considered decision tree contains two utilities whose
unconstrained belief distributions were both standard uniform. Following the constraint QUa � QUb ,
the resulting (constrained) belief Ub over the second utility is now Beta.2; 1/

to the multiplication of distributions that takes place from root to leaf, and in part to
the effects of convolution of the resulting leaf distributions Sundgren et al. (2009).

In view of Definition 4, if we impose belief distributions over the variables, the
expected utility is really a transformation of random vectors. Therefore, to be able
to analytically derive the resulting belief distribution over the expected utility of a
given alternative, we need the following central result from probability theory:

Theorem 1 (The transformation theorem). Let X D .X1; : : : ; Xn/
0 be a con-

tinuous random vector with density function fX.x/ and domain V � Rn. Let
g D .g1; : : : ; gn/ be a bijection from V to a set W � Rn, and define Y D g.X/.
Assume that g and its inverse h are both continuously differentiable. Then, the
density function of Y is

fY.y/ D fX.h1.y/; : : : ; hn.y// � jdet.J/j for y 2 W ;

where

J D

0
BBBBB@

@x1

@y1
: : :

@x1

@yn
:::
: : :

:::
@xn

@y1
: : :

@xn

@yn

1
CCCCCA

is the Jacobian of the transformation. ut
Theorem 1 can be applied to the expected utility of some alternative Ai :

Theorem 2. Given a decision tree T , for the branch corresponding to Ai , label
the (constrained) belief distributions over all utilities by U D .U1; : : : ; Us/

0, and
label the belief distributions over all probabilities by P D .P1; : : : ; Pr /

0. Further,
let U� D .U1; : : : ; Us�1/0. Finally, denote the index set for probabilities leading up
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to uj by Cj , and let �j D Q
i2Cj Pi

3. Then the belief distribution over E.Ai / is
given by

fE.Ai /.z/ D
Z

� � �
Z
fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s
dp du� :

Proof. Let Z D E.Ai / and consider the following transformation:

8<
:
.Y1; : : : ; Yr/

0 D P
.YrC1; : : : ; YrCs�1/0 D U�

YrCs D Z D �sUs CPs�1
iD1 �iUi

which has the following inverse:

(
P D .Y1; : : : ; Yr /

0

U D
�
YrC1; : : : ; YrCs�1; YrCs�Ps�1

iD1 �i YrCi

�s

�0 :

The Jacobian of this transformation has the following determinant:

det.J/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@p1

@y1
: : :

@p1

@yrCs
:::
: : :

:::

@pr

@y1
: : :

@pr

@yrCs
@u1
@y1

: : :
@u1
@yrCs

:::
: : :

:::

@us
@y1

: : :
@us
@yrCs

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

e1 e2 : : : 1= s

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1= s

where e1; : : : ; erCs�1 are partial derivatives that do not contribute to the determinant
and therefore do not need to be calculated. According to Theorem 1, the joint density
of Y D .Y1; : : : ; YrCs/0 is

fY.y/ D fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s

3 That is, �j is the aggregated belief distribution over the probability at the leaf of the j :th utility.
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for some domain W . The marginal belief distribution of E.Ai / D Z is derived by
integrating out all other variables:

fE.Ai /.z/ D
Z

� � �
Z
fP;U

 
p;u�;

z �Ps�1
iD1  iui
 s

!
1

 s
dp du�

where integration is over some subspace of Œ0; 1�rCs�1 and the domain of fE.Ai / can
be called W 0. ut

A few remarks are called upon. Firstly, E.Ai / could have been expressed in terms
of any Uj , however the choice of Us is notationally convenient. Secondly, it should
be noted that each j is not a constant, but rather a product ofpis. Finally, since fP;U

is the joint (constrained) density for the beliefs over all utilities and probabilities, it
can be factorized into groups of independent variables. Specifically, all utilities will
be independent of all probabilities, and probabilities from different groups will also
be independent.

The following example shows how the transformation works in practice for an
apparently simple situation.

Example 2. Consider the decision tree for some alternative Ai given in Fig. 2. The
belief distribution over the expected utility is given by

E.Ai / D P11P111U111 C P11P112U112 C P12U12

D P11P111U111 C P11.1 � P111/U112 C .1 � P11/U12 :

For simplicity, since it reduces the dimensionality of the problem, we assume
that the reformulation of P112 and P12 is coherent with the constraints used. The
transformation becomes

�
.Y1; Y2; Y3; Y4/

0 D .P11; P111; U111; U112/
0

Y5 D P11P111U111 C P11.1 � P111/U112 C .1 � P11/U12

with inverse

8<
:
.P11; P111; U111; U112/

0 D .Y1; Y2; Y3; Y4/
0

U12 D Y5 � Y1Y2Y3 � Y1.1 � Y2/Y4

1 � Y1
:

Fig. 2 Decision tree
considered in Example 2
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The determinant of the Jacobian is given by

det.J/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
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@y1

@p11

@y2

@p11

@y3

@p11

@y4

@p11

@y5
@p111

@y1

@p111

@y2

@p111

@y3

@p111

@y4

@p111

@y5
@u111
@y1

@u111
@y2

@u111
@y3

@u111
@y4

@u111
@y5

@u112
@y1

@u112
@y2

@u112
@y3

@u112
@y4

@u112
@y5

@u12
@y1

@u12
@y2

@u12
@y3

@u12
@y4

@u12
@y5

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

e1 e2 e3 e4
1

.1 � y1/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

This evaluates to 1
1�y1 D 1

1�p11 , which coincides with the general description above,
for  s D p12 D 1 � p11. The joint density of Y is given, for some domain W , by

fY.y/ D fP11;P111;U111;U112;U12

�
p11; p111; u111; u112;

z � v

1 � p11
�

1

1 � p11
;

with v D p11p111u111Cp11.1�p111/u112. This density can be factorized with respect
to independent variables. Assuming that the utilities are not independent under the
given constraints, one obtains

fY.y/ D fP11 .p11/fP111 .p111/fU111;U112;U12

�
u111; u112;

z � v

1 � p11
�

1

1 � p11
:

Finally, the resulting belief distribution over E.Ai / can be calculated from

fE.Ai /.z/ D
ZZZZ

fY.y/ dp11 dp111 du111 du112 : ut

However, the complexity of this operation is very high since both the integrand
itself as well as the integration limits might be very difficult to derive. And even if
these steps have been carried out, the sheer dimensionality of the integration might
be prohibitive in practice. So in real cases more efficient methods of calculating
this must be utilized. As we shall see, in certain cases this can be done at relative
computational ease, even for moderately large trees.

4 Simulation from Expected Utilities

As shown in Theorem 2, the resulting distribution over the expected utility of an
alternative can be expressed in terms of a multidimensional integral. However, in
general such integrals should rarely be possible to compute analytically, and so to be
able to benefit from the theoretical results presented thus far, approximate methods
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are called upon. One possibility would be to make use of numerical integration
techniques. We have, however, opted for another solution, namely to use simulation.

To be able to simulate from the resulting belief distributions over the expected
utilities of the alternatives, or from some function thereof, we need to sample
from the respective constrained belief distributions over probabilities and utilities.
Any utility is independent of any probability, and any two probabilities from
separate groups are independent, because of the restricted set of constraints allowed.
Therefore we can sample from the joint belief distribution over the utilities and from
the belief distributions over the various probability groups separately.

The most straightforward approach would be to utilize (2) and (3) through a
simple form of rejection sampling von Neumann (1963). Specifically, exemplifying
with utilities, we could simply apply the following scheme:

Algorithm 1 (Rejection sampling).

Repeat until m samples are retained in total:
Sample Qu D .Qu1; : : : ; Qun/0 from . QU1; : : : ; QUn/0 and retain the sample if Qu 2 BU.

ut

Even if QU1; : : : ; QUn are independent, so that sampling is straightforward, this
approach has one major drawback: As n grows, the probability that a sample is
accepted approaches 0, which in effect means that the real number of samples
m0 required to collect a nominal number of m samples approaches infinity. If the
intended application is not interactive, however, this straightforward simulation
scheme might suffice.

Another generic approach to sampling from a multivariate distribution is to fac-
torize the joint density function into a series of univariate, conditional distributions.
For our joint distribution of beliefs over the utilities this would correspond to the
following:

fU1;:::;Un.u1; : : : ; un/ D fUn.un/fUn�1jUnDun .un�1/ � � �fU1jU2Du2;:::;UnDun .u1/ : (6)

For each of the univariate distributions, sampling can be performed according to the
inverse transformation method Devroye (1986). This method requires draws from
a standard uniform distribution to be inserted into the inverse of the distribution
function. Therefore, in practice, this approach can only be really effective if the dis-
tribution functions that correspond to the density functions in (6) can be analytically
inverted. The complete sampling scheme is summarized in the following:

Algorithm 2 (Multivariate inverse transform sampling).

1. Split up fU1;:::;Un according to (6).
2. Derive the distribution functions FUn ; FUn�1jUnDun ; : : : ; FU1jU2Du2;:::;UnDun .
3. Derive the inverse distribution functions F�1

Un
;F�1
Un�1jUnDun

;: : : ; F�1
U1jU2Du2;:::;UnDun

.

4. Draw n vectors xi D .x1i ; : : : ; x
m
i /

0 of samples from X � U.0; 1/.
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5a. Sample from Un:

.u1n; : : : ; u
m
n /

0 D .F�1
Un
.x1n/; : : : ; F

�1
Un
.xmn //

0

5b. Sample from Un�1:

.u1n�1; : : : ; u
m
n�1/

0 D .F�1
Un�1jUnDu1n

.x1n�1/; : : : ; F
�1
Un�1jUnDumn

.xmn�1//
0

:::

5n. Sample from U1 W

.u11; : : : ; u
m
1 /

0 D .F�1

U1jU2Du12;:::;UnDu1n
.x11/; : : : ; F

�1
U1jU2Dum2 ;:::;UnDumn

.xm1 //
0 ut

The following example is supposed to delineate the fundamental principles of
Algorithm 2:

Example 3. Consider again the situation in Example 1. According to (4), the joint
constrained belief distribution is given by

fUa;Ub .ua; ub/ D f QUa .ua/f QUb .ub/R 1
0

R ub
0
f QUa .ua/f QUb .ub/ duadub

D 1 � 1R 1
0

R ub
0
1 � 1 duadub

D 1

1=2
D 2

for ub � ua. As will be demonstrated in Sect. 4.1, fUa;Ub can be split up as follows:

fUa;Ub .ua; ub/ D fUb.ub/fUa jUbDub .ua/ D 2ub � .1=ub/ :

The corresponding distribution functions and their inverses are given by

(
FUb .ub/ D u2b for 0 � ub � 1

FUa jUbDub .ua/ D ua
ub

for 0 � ua � ub
and

(
F�1
Ub
.x/ D p

x for 0 � x � 1

F�1
Ua jUbDub

.x/ D xub for 0 � x � 1
:

Assume we want m D 5 draws, and that we sample xb D .0:94; 0:13; 0:83; 0:47;

0:55/0 and xa D .0:18; 0:70; 0:57; 0:17; 0:94/0 from X � U.0; 1/. This then yields

2
66666664

u1b
u2b
u3b
u4b
u5b

3
77777775

D

2
66666664

p
0:94p
0:13p
0:83p
0:47p
0:55

3
77777775

D

2
66666664

0:97

0:36

0:91

0:69

0:74

3
77777775

and

2
66666664

u1a
u2a
u3a
u4a
u5a

3
77777775

D

2
66666664

0:18 � u1b
0:70 � u2b
0:57 � u3b
0:17 � u4b
0:94 � u5b

3
77777775

D

2
66666664

0:17

0:25

0:52

0:12

0:70

3
77777775
:
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Clearly, to obtain samples that accurately represent the .Ua; Ub/0 distribution, one
would need to set m considerably higher than in this illustrative example. ut

An implicit assumption in Algorithm 2 is that each distribution function be
strictly increasing, since otherwise its inverse would not exist. However, this
criterion is fulfilled for the vast majority of distributions and should not present
any issues in practice. There are other complicating matters of greater practical
concern, such that for an arbitrary joint distribution, even step 1 in the scheme
might be difficult to accomplish. Should step 1 be successful, step 3 might still prove
difficult or impossible. Should this be the case, one could use numerical techniques
for inverting the distribution functions, though this would slow down the procedure
quite dramatically. We shall therefore make use of one particular distribution, the
uniform distribution, where it is possible to carry out the complete scheme. The
uniform distribution is appealing since it can be thought of as a direct probabilistic
equivalent to using intervals. In other words, if the decision maker would choose an
interval Œa; b�, a natural choice in the context of the current approach would be the
U.a; b/ distribution.

4.1 Special Case of Uniform Distributions

One important sub-case is when the distributions are uniform. We describe here an
efficient way of sampling from the resulting belief distribution over the expected
utility if one (a) uses arbitrary independent uniform belief distributions over all
utilities; (b) uses an ordering constraint within each of an arbitrary number of
disjoint subsets of the utilities4; and (c) uses no other constraints. Because there
are no relations between utilities from different subsets, independence allows
sampling from each subset separately. We can therefore, without loss of generality,
describe the special case where there is just one subset fu1; : : : ; ung containing all
utilities.

For the probabilities, the implicit sum constraint is a complicating factor. We
will here use the Dirichlet distribution to sample from a probability group, and not
impose any relational constraints. The Dirichlet distribution has been previously
used in this context Ekenberg et al. (2007) and it does relate to the above: If we use
standard uniform distributions over pk1; : : : ; pkl and impose no further constraints
than the implicit sum constraint, then .Pk1; : : : ; Pkl /0 will be distributed according
to the Dirichlet.˛1 D 1; : : : ; ˛l D 1/ distribution. Sampling from a Dirichlet
distribution is straightforward using standard statistical software.

Assume, for brevity, that we have named the utilities after their ordering. Thus,
the constraint under consideration is AU W QU1 � : : : � QUn. The following result,
given with a standard proof, is useful:

4 The union of these subsets need not equate the set of all utilities.
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Theorem 3. Let X1; : : : ; Xn be a sample from a distribution with density function
f and distribution function F . Then the density function for the largest observation
X.n/ is fBeta.n;1/.F.x//f .x/.

Proof. The distribution function for X.n/ is given by

FX.n/.x/ D Pr.X1 � x; : : : ; Xn � x/ D
nY

kD1
Pr.Xk � x/ D .F.x//n :

Differentiation then yields the density function:

fX.n/.x/ D n.F.x//n�1f .x/ D fBeta.n;1/.F.x//f .x/ : ut

If all unconstrained belief distributions QUj are U.a; b/, then the resulting belief
distribution Un is equivalent to X.n/ in Theorem 3. It follows that

fUn.un/ D n
�un � a

b � a
�n�1 1

b � a D n.un � a/n�1

.b � a/n
:

Conditional on Un D un, all remaining belief distributions are U.a; b/ truncated to
the interval Œa; un�, which means that QUj jUn D un � U.a; un/ for j < n. Since
QUn�1 is now the largest of the remaining variables, Theorem 3 gives

fUn�1jUnDun.un�1/ D .n � 1/.un�1 � a/n�2

.un � a/n�1 :

By repeating the same argument for all belief distributions down to QU1, the joint
density for the constrained belief distribution can be factorized, as required:

fU1;:::;Un.u1; : : : ; un/ D nŠ

.b � a/n

D n.un � a/n�1

.b � a/n
.n� 1/.un�1 � a/n�2

.un � a/n�1 � � � 2.u2 � a/

.u3 � a/2
1

u2 � a

D fUn.un/fUn�1jUnDun .un�1/ � � �fU2jU3Du3.u2/fU1 jU2Du2.u1/ :

All corresponding distribution functions can be derived, and it turns out that they
are all analytically invertible:

(
F�1
Un
.x/ D x1=n.b � a/C a for k D n

F �1
Uk jUkC1DukC1

.x/ D x1=k.ukC1 � a/C a for k D n � 1; n� 2; : : : ; 1
: (7)

Thus, all prerequisites for applying Algorithm 2 are fulfilled.
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It would be a severe limitation to require that QU1; : : : ; QUn follow the same uniform
distribution. We can overcome this by once again making use of the fact that a
truncated uniform variable still is uniform. Let each variable have its own uniform
distribution, QUj � U.aj ; bj /, and consider the following scheme:

Algorithm 3.

1. Order the set f0; a1; : : : ; an; b1; : : : ; bn; 1g, and define all intervals Ij D Œcj ; dj �

from adjacent points in this ordered set. (Note that some points might be
identical, in which case no interval results.) Denote the total number of intervals
by NI .

2. Construct all configurations Ci , i.e. all ways to distribute QU1; : : : ; QUn between
these intervals. Denote by NC the total number of configurations where AU can
hold, and by NU

ij the number of variables QUk in interval Ij under configura-
tion Ci .

3. FOR i D 1 TO i D NC

FOR j D 1 TO j D NI

FOR k D 1 TO k D NU
ij

Calculate Npijk D Pr. QUk 2 Ij / D F QUk .dj /� F QUk .cj /
END FOR

Calculate Npij D Pr. QU1; : : : ; QUNU
ij

2 Ij / D QNU
ij

kD1 Npijk
Calculatebpij D Pr.AU holds in Ij jCi/ D 1=NU

ij Š

END FOR
Calculate Npi D Pr.Ci / D QNI

jD1 Npij
Calculatebpi D Pr.AUjCi/ D QNI

jD1bpij
Calculate pi D bpi Npi

END FOR
Calculate p D PNC

iD1 pi
4. FOR r D 1 TO r D m

Sample xr D .xr1 ; : : : ; x
r
NC /

0 from .X1; : : : ; XNC /0 � Multinom.1I p1=p;
: : : ; pNC =p/

FOR the single i corresponding to xri D 1

FOR j D 1 TO j D NI

Draw a sample of the variables in Ij under configuration Ci , by
setting a D cj and b D dj in (7), and using Algorithm 2

END FOR
END FOR

END FOR ut

In other words, Algorithm 3 simulates from fU.u/ by treating it as a mixture
density over the configurations, with suggested mixture parameters pi=p. The
validity of this approach is asserted by the following theorem:
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Theorem 4. Consider a decision tree T with a set of utility variables whose
corresponding belief distributions QU1; : : : ; QUn are independent and distributed as
QUj � U.aj ; bj /. Under the constraint AU W QU1 � : : : � QUn, Algorithm 3 can be

used to sample from the resulting belief distribution U D .U1; : : : ; Un/
0.

Proof. By the law of total probability and Bayes’ theorem, and following the
notation of Algorithm 3:

fU.u/ D
NCX
iD1

h
f QUjAU;Ci

.u/ � Pr.Ci jAU/
i

D
NCX
iD1

�
f QUjAU ;Ci

.u/ � Pr.AUjCi/Pr.Ci/

Pr.AU/

�

D
NCX
iD1

"
f QUjAU ;Ci

.u/ � Pr.AUjCi/Pr.Ci /PNC

iD1 Pr.AUjCi/Pr.Ci /

#

D
NCX
iD1

�
f QUjAU ;Ci

.u/ � pi

p

�
;

which shows that pi=p is the correct mixture parameter for configuration Ci .
Finally the claim follows by considering the distributions f QUjAU ;Ci

.u/. Under Ci ,
but not yet considering AU, all variables in Ij are distributed as U.cj ; dj /. Thus,
since they are equidistributed, AU can be introduced through Algorithm 2 and (7).
Further, because the relative order of any two variables from different intervals is
fixed given Ci , they are independent, and the complete distribution .U1; : : : ; Un/0
can be obtained by repeated interval-wise sampling from configurations drawn
according to a Multinom.1I p1=p; : : : ; pNC =p/ distribution. ut

Note that the algorithm only includes configurations where AU can hold. This is
for practical reasons, and the validity follows immediately since Pr.AUjCi / D 0 for
any configuration not fulfilling this criterion.

If there are n variables and NI resulting intervals, the total number of config-

urations where AU can hold is
	
nCNI�1
NI�1



. Therefore, in practice, Algorithm 3 is

only efficient if NI is kept relatively low, which means that the variables need to
share a few common endpoints. In our experience, it is very feasible to allow a
resolution of 0.2, meaning that endpoints are chosen from f0; 0:2; 0:4; 0:6; 0:8; 1g,
even for n relatively large (about 30). Obviously the computational complexity will
also depend on how many samples that are desired in the simulation. Note that the
tree as a whole can be much larger than n; it is really the size of the largest set of
ordered utility variables that matters.

Example 4. Consider the decision tree with two alternatives given in Fig. 3. Assume
that the decision maker has specified the following:
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Fig. 3 Decision tree
considered in Example 4

8<
:

u11; u12; u21 2 Œ0; 1� and u22 2 Œ0; 0:5�
p11; p12; p21; p22 2 Œ0; 1�
u11 � u21 and u12 � u22

:

The intuitive interpretation of this situation is that alternative 1 is superior to
alternative 2. However, an interval analysis would yield E.A1/ � E.A2/ 2 Œ�1; 1�,
indicating no discrimination whatsoever.

Now consider the approach described here, and assume that the decision maker
instead specifies

8<
:

QU11; QU12; QU21 � U.0; 1/ and QU22 � U.0; 0:5/
. QP11; QP12/0 � Dirichlet.1; 1/ and . QP21; QP22/0 � Dirichlet.1; 1/
QU11 � QU21 and QU12 � QU22

:

The resulting belief distribution over .E.A1/;E.A2//0 was simulated using Algo-
rithm 3 separately for . QU11; QU21/0 and . QU12; QU22/05. . QP11; QP12/0 and . QP21; QP22/0
were also simulated separately. 1 million samples were drawn, and the results are
displayed in Fig. 4. It is apparent from these figures that the belief in alternative
1 exceeds that of alternative 2 quite clearly, even though there is some overlap.
Further, the simulation provides us with a straightforward quantification of the
degree of discrimination. For example, we can extract a 90% probability interval for
E.A1/ � E.A2/ from the 5:th and 95:th percentiles of the simulated values, which
happens to be Œ0:03; 0:71�. The interpretation of this interval is direct: Under the
beliefs and constraints specified by the decision maker, there is a 90% probability
that the difference in expected utility between alternatives 1 and 2 lies between
0.03 and 0.71. Based on this analysis we can confidently discriminate between the
alternatives, and the result is coherent with intuition. ut

A desirable extension of the proposed method would be to allow for other classes
of distributions than the uniform. There are two inherent obstacles in the framework
that precludes this. First, as can be realized from Theorem 3, the class of density
functions for the distribution in question must obey rather strict form conventions, in

5 For . QU11; QU21/0, there is only one interval to consider, and so it really suffices with Algorithm 2.
Note that QU11 and QU21 are precisely QUb and QUa, respectively, from Examples 1 and 3.
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Fig. 4 Results from the simulation of Example 4. (a) Histogram over the simulated belief for the
difference E.A1/ � E.A2/. (b) Two-dimensional histogram over the simulated beliefs for E.A1/
and E.A2/. Darker color indicates a higher density of points

order to yield analytically invertible distribution functions for the ordered variables.
Second, (7), as well as the fundamental idea behind Algorithm 3, rest on a subtle,
yet very powerful property of the uniform distribution: A truncated uniform variable
is still uniform, with parameters equal to the endpoints of the truncated interval. As
far as we are aware, no other continuous distribution shares this property. Therefore,
to be able to derive similar methods for other classes of distributions, fundamentally
different approaches would be needed.

5 Summary and Conclusions

There is often a need in real-life decision analyses to allow for imprecise statements
regarding probabilities and utilities. Various interval-based approaches have been
suggested, but the resulting aggregations range within intervals as well, causing an,
often unnecessary, information loss. There is therefore a need to extend the
representation of the decision situation using more information, but keeping the
requirement that the decision maker does not have to be more precise than what is
possible.

To this end, we have proposed a solution where qualitative statements, i.e. rela-
tions between variables, are combined with second-order information in the form
of belief distributions over probability and utility variables. Within the framework
of belief distributions, we have demonstrated how qualitative statements translate
to constraints, and how these constraints affect both marginal belief distributions as
well as the resulting belief distributions over the expected utilities of the alternatives.
Further, and of clear practical benefit, we have presented a computationally
meaningful method where arbitrary uniform distributions can be used for the
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utility variables, in combination with ordering relations among these variables. This
method rests on a series of fairly subtle, yet fundamental, theoretical arguments.

The results presented here have two distinct advantages. First, while preserving
the ability to be deliberately imprecise and including qualitative relations, our
approach allows a high degree of discrimination between alternatives compared to
what interval-based approaches can accomplish. At the same time, we can make
a semantically clear interpretation of the resulting beliefs within a probabilistic
framework.

Acknowledgements The authors wish to thank Alina Kuznetsova for valuable suggestions that
helped improve the contents of this paper.
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An Econometric Model Based on the Maxmin
Expected Utility Model: An Application
to Earthquake Insurance

Toshio Fujimi and Hirokazu Tatano

Abstract This study empirically investigates the influence of ambiguity on con-
sumers’ decision to buy a hypothetical earthquake insurance policy. Using survey
data, it identifies effects of specific consumer characteristics on their decision based
on the Maxmin Expected Utility (MEU) model. We develop an econometric model
consistent with the MEU model derived from axioms. Our study provides three
main results: First, respondents’ preferences for the insurance when faced with 1%,
5%, and 10% appraisal risk are generally inconsistent with expected utility theory.
Second, respondents demanded more than a 10% reduction in insurance premium as
compensation for accepting each tier of appraisal risk. Third, the required discount
is greatest among men who had previously purchased earthquake insurance and had
experienced earthquake damage to their houses, and the required discount increases
with age and education.

1 Introduction

Decisions are often made under uncertain circumstances. Broadly speaking, there
are two types of uncertainties. The first is essentially random and is called “risk.”
The second, called “ambiguity,” arises from imprecise, unreliable, or incomplete
information or other factors that prohibit precise quantification of risk. This type of
uncertainty leads to the nondeterministic nature of subjective risks. In this regard,
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Camerer and Weber (1992) thought experiment illustrates how ambiguity influences
decisions. Suppose that in a game of betting on coins, participants need to choose
one of the two coins. A participant wins if the coin lands head up. It is known to
the participants that coin A was tossed 1,000 times and landed head up 500 times,
while coin B was tossed twice and landed head up once. Even though participants
believe both are honest coins, many of them choose coin A because they are more
confident of its fairness, since they have greater evidence proving that coin A is an
honest coin. Ambiguity about probability creates a kind of risk in betting on coin
B: the risk of having the wrong belief. The tendency to avoid ambiguity is called
“ambiguity aversion.”

Ellsberg (1961) originally identified ambiguity aversion, and abundant empirical
analyses have confirmed its robustness. However, most empirical studies have exam-
ined it only in experimental settings and have not studied the effect of ambiguity on
people’s evaluation of a real-world public policy under uncertainty. Only recently
have econometric models using field data been developed to investigate whether
and how individuals’ support for a public policy involving risk is influenced by their
perception regarding the ambiguity of its risk and their attitudes toward ambiguity
in general.

Cameron (2005) has proposed an econometric model based on expected utility
theory allowing for ambiguity about future global temperatures. He shows that
perceived ambiguity affects willingness to pay (WTP) for programs that mitigate
climate change. Riddel and Shaw (2006) have developed a model that incorporates
preferences for mortality risk from nuclear waste transport when respondents face
ambiguity about the risk and applied it to estimate the welfare cost. They found
that negative externalities from the perceived risks and ambiguity of nuclear waste
transport may be substantial.

This study presents a theoretically-consistent econometric model addressing the
relationships among risk, ambiguity, and preference based on the maxmin expected
utility (MEU) model developed by Gilboa and Schmeidler (1989). The MEU model
assumes that people make decisions by considering the worst among the set of
subjective probabilities that they consider plausible. The MEU model represents risk
aversion by concavity of the utility function, and it represents perceived ambiguity
and ambiguity aversion by the set of subjective probabilities. By corresponding to
the MEU model in all these respects, our model allows clear interpretations of its
estimation results.

The remainder of this paper is structured as follows: Sect. 2 briefly describes
previous studies on ambiguity and MEU models that can deal with ambiguity.
Section 3 explains the household survey data concerning hypothetical earthquake
insurance involving appraisal risk. Section 4 explains the data, and Sect. 5 develops
the econometric model consistent with the MEU model. Section 6 presents the esti-
mated results. Section 7 presents implications from the results. Section 8 concludes.
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2 Ambiguity and the Maxmin Expected Utility Model

Ellsberg (1961) originally identified ambiguity as a counterexample to subjective
expected utility (SEU) developed by Savage (1954). SEU has a wide application.
If one’s preference satisfies several plausible axioms, one can construct a unique
subjective probability distribution under Knightian uncertainty and follow expected
utility theory by using it. Thus, Savage (1954) argued that the distinction between
risk and uncertainty is not essential. However, SEU cannot explain observed deci-
sions under some types of uncertainty, as Ellsberg (1961) hypothetical experiment
showed: Suppose that you have to draw from an urn containing 30 red balls and 60
balls in an unspecified combination of black and yellow. There are four lotteries: X,
Y, X’, and Y’. In lottery X, you win $100 if a red ball is drawn; in lottery Y, $100
if a black ball is drawn; in lottery X’, $100 if a red or yellow ball is drawn; and
in lottery Y’, $100 if a black or yellow ball is drawn. Otherwise, you win nothing.
You must choose between X and Y and also between X’ and Y’. You may choose X
and Y’. Simple calculation shows that SEU cannot describe your decision through
any subjective probability distributions. This tendency in these decisions is called
“ambiguity aversion” because objective probability distributions are known in X
and Y’ and are unknown in X’ and Y. Numerous empirical studies have examined
its existence and extent and have recognized its robustness (Becker and Brownson
(1961); Slovic and Tversky (1974); MacCrimmon and Larsson (1979); Einhorn and
Hogarth (1985, 1986); Kahn and Sarin (1988); Curley and Yates (1986)).

Many researchers have defined ambiguity in different ways. Ellsberg (1961)
defined it as “the quality depending on the amount, type, reliability, and unanimity
of information.” Einhorn and Hogarth (1985, 1986) and Hogarth and Kunreuther
(1995) defined ambiguity as the intermediate state between complete lack of
knowledge and risk in which a probability distribution is specified. Fellner (1961);
Frisch and Baron (1988), and Camerer and Weber (1992) defined ambiguity as
uncertainty about probability created by lack of relevant information that could be
known. However, in all the definitions, ambiguity is considered as the situation in
which a subjective probability distribution cannot be determined because of a lack
of information.

A popular approach to formulate ambiguity is to define it as a distribution of mul-
tiple subjective probabilities perceived by a decision maker. This approach relaxes
the “independence axiom,” while SEU requires a unique subjective probability
distribution. Gilboa and Schmeidler (1989) developed MEU in this framework.

MEU is constructed in the framework of Anscombe and Aumann (1963). Let S

be a set of states, ˙ be an algebra of S and X be a set of outcomes. Denote an act
byf W S ! X , and denote by F the set of acts. MEU model is expressed as follows:

[MEU] f � g , min
P 2C

Z
S

u.f .s//dP.s/ � min
P 2C

Z
S

u.f .s//dP.s/ (1)

where P W ˙ ! Œ0; 1� is a subjective probability distribution and C is the closed
convex set of probability distributions.
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3 Application: Earthquake Insurance in Japan

In this study, we focus on the ambiguity of appraisal risk in earthquake insurance
to examine whether and how personal characteristics affect the perception of
ambiguity. The purchase rate of earthquake insurance is low in Japan. Only
18% of Japanese households purchased earthquake insurance in 2005, primarily
because they regard it as expensive. Insurers set premiums that customers find
expensive because earthquakes are a low-frequency and potentially high-impact
risk. Vulnerability to catastrophic claims means insurers must pay reinsurance fees
or interest on catastrophe bonds to offset bearing enormous losses themselves,
which in turn increases the insurance premiums. Also, lack of information due to
the infrequent occurrence of earthquakes causes ambiguity in earthquake risk and
provides less information with which insurers can quantify risk and the probability
of damage. Kunreuther et al. (1995) surveyed actuaries, insurers, and reinsurers to
show that insurance premiums are higher for ambiguous than for unambiguous risks.

It is generally assumed that households believe earthquake insurance is expensive
because they underestimate the risk of earthquakes; however, many surveys have
shown otherwise. Mazda et al. (2005) showed that only 18% of respondents
purchase earthquake insurance even though 64% believed an earthquake will more
than partially collapse their home within 25 years. Non-Life Insurance Rating Orga-
nization of Japan (2004) showed that 61% of respondents not intending to purchase
earthquake insurance believe an earthquake will severely damage their house or
town within 20 years. In our survey, 75% of respondents believe that an earthquake
of seven-point intensity (equivalent to the Great Hanshin Earthquake) will occur
with more than 10% probability within 25 years. Insurance premiums in the
surveyed area were actuarially fair when probabilities of a more-than-partial home
collapse exceeded 12% in 25 years. However, our survey showed that only 30% of
households purchase earthquake insurance. In short, many households do not buy
earthquake insurance even though they perceive earthquake risk to be sufficiently
high enough that the insurance premium is actuarially inexpensive. These results
imply that reasons other than cost and perceived risk explain reluctance to buy
earthquake insurance. We hypothesize that the explanation is consumers’ perception
of ambiguity in how insurers assess earthquake damage and pay damage claims.

The amount of insurance payments is determined after earthquake damage
occurs. However, the prospective purchaser of insurance may not understand the
criteria for assessing damage as specified in the contract and must trust the insurer’s
appraisal of damage. Thus, the household faces the risk of receiving a lesser
payment than it expected because the damage appraisal is unexpectedly strict. In
this paper, we term this as “appraisal risk.”

Kahneman and Tversky (1979) introduced the notion of “probabilistic insur-
ance”, namely an insurance policy which, in the event that the hazard occurs, pays
off with some probability strictly less than one. Wakker et al. (1997) pointed out that
most insurance policies are probabilistic because there is always a possibility that
the insurer will not pay for reasons such as insolvency or fraud. Appraisal risk also
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makes an insurance policy probabilistic for a buyer because there is a possibility
that he cannot get as much insurance payment as expected at the time of contraction
because of unexpectedly strict appraisal of damage.

Ambiguity in appraisal risk may be more important for earthquake insurance
than for other insurance types, such as car or accident insurance. Earthquake claims
are less frequent than claims for other insurances such as car, fire, or accident, and
with those incidents, the amount that insurers will pay is known beforehand to the
purchaser. However, earthquake insurance payouts are too infrequent to provide
information to estimate their amount even roughly. As a result of this ambiguity,
we believe households overestimate appraisal risk and hesitate to buy earthquake
insurance.

4 Survey Data

To explore our hypotheses, we mailed questionnaires to 3,000 households in Joyo
City, Kyoto, in mid-January 2006. Recipients were selected randomly from the
Nippon Telegraph & Telephone phone book, and 681 responses were collected
(23.4% response). Table 1 compares arithmetic means of the sample and the
population.

The questionnaires are structured as follows: First, the hypothetical situation is
presented in the questionnaire. Then, the questionnaire asks about WTP for full-
coverage insurance and for probabilistic insurance.
“Imagine you own a house worth 10 million yen and your other assets (e.g., cash,
stocks, land) are worth 20 million yen. Suppose there is a 5% probability that an
earthquake with a seismic intensity of 7 on the Japanese scale will occur in 25
years (0.205% probability per year). If such an earthquake occurs, there is a 50%
probability that your house will be half-destroyed (5 million yen loss) and a 50%
probability that it will be completely destroyed (10 million yen loss).”

(A) What is the most you would be willing to pay for an insurance policy that will
cover all damages from an earthquake?

(B) Imagine you have been offered coverage identical to the previous policy, except
there is about ˛% appraisal risk. That is, there is a possibility of about ˛% that
your claim will not be paid if your house is half-destroyed and that only half of
your claim will be paid if it is completely destroyed. This risk arises from the

Table 1 Comparison between sample and population means

Sample mean Population mean

Age of the head of the household 62 55
Income (thousand yen) 6,040 6,629
Number of household members 2.99 2.81
Penetration rate of earthquake insurance 0.17 0.15
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adjustor’s overly strict appraisal of earthquake damage. What is the most you
would be willing to pay for probabilistic earthquake insurance?

We call the policy described in question (A) “full-coverage insurance” and
the policy described in question (B) “probabilistic insurance”. With reference to
probabilistic insurance, ˛% was presented to the respondents as a mean probability
of the ambiguous appraisal risk, which we called “referenced probability of
appraisal risk.” Survey recipients were randomly divided into three groups. The
stated value of ˛% was set to 1% for the first group, 5% for the second, and 10%
for the third. The word about appeared in a large, bold font to emphasize the
ambiguity of appraisal risk.1 The extent of the range of appraisal risk perceived by
the respondents was left to them.

Respondents were asked about their WTP for full-coverage insurance described
in (A) and probabilistic insurance described in (B) by using payment cards. They
were presented 16 bids representing monthly insurance premiums from 0 to 100
thousand yen and were asked to select one as their WTP. 2

5 Model

To examine the influence of ambiguity of appraisal risk on WTP, we analyze the
data by using both the EU and MEU models. Although EU is widely used to model
decision making under uncertainty, it cannot represent observed individual choices
under ambiguity. MEU is the generalized expected utility model for dealing with
ambiguity developed by Gilboa and Schmeidler (1989). First, we explain EU, then,
we describe MEU. 3

1Einhorn and Hogarth (1985, 1986) originally conveyed ambiguity in this manner. Mauro and
Maffioletti (1996, 2004) examined whether responses differ with different ways of expressing
ambiguity: the way mentioned above, the range (e.g., a%–b%) and the several probabilities (a%,
b%, c%). They found no statistical differences among them.
2Clearly, this survey is hypothetical. It is impossible to pay real incentives to the respondents.
One could devise similar experiments involving real money. In the earthquake insurance setting,
however, the probability of the event and its losses need to be considerably lower and larger,
respectively, than the lottery choice in the experiment. Therefore, the stakes would have to
be affordably low, which makes the experiment different from the earthquake insurance we
wished to consider. Hence, in this domain, hypothetical experiments for large sums are more
instructive than real experiments for pennies. Further, research indicates no significant difference in
analytical results between respondents participating in an experiment with real money or playing a
hypothetical game. Evidence is provided by Beattie and Loomes (1997); Grether and Plott (1979),
and Binswanger (1981) and has been surveyed by Camerer (1995) and Camerer and Hogarth
(1999).
3In this study, a decision is assumed to be made for one-year span. This assumption may be
criticized because it ignores issues of underpayment and overpayment over potentially extended
random time horizons. However, earthquake insurance is a one-year contract, so our approach is
realistic.



An Econometric Model Based on the Maxmin Expected Utility Model 95

5.1 Expected Utility Model

According to the hypothetical situation described in Sect. 4 that is presented to
respondents, a decision maker with no insurance has the following prospect:

˘ D .1 � �1 � �2; W C Y I �1; W C Y=2I �2; W / (2)

where Y is the value of the house (10 million yen) and W is the value of other
assets (20 million yen). �1 is the probability of half destruction (0:205% � 50% D
0:1025% per year) and �2 is the probability of complete destruction (0:205% �
50% D 0:1025% per year). The house’s value becomes Y=2 in the former instance
and zero in the latter.

Under EU, WTP for the full-coverage insurance wf is determined by the
equation

VEU .wf / � u.W C Y � wf /

VEU .wf / D Qu (3)

where u is a utility function and Qu is the expected utility without insurance, and is
given as follows:

Qu D .1 � �1 � �2/u.W C Y / C �1u.W C Y=2/ C �2u.W / (4)

Further, we consider probabilistic insurance. If a household perceives no ambi-
guity in appraisal risk, it faces the prospect involving “referenced probability of
appraisal risk” described in Sect. 4B. This is written as

Q D .q0; W C Y I q1; W C Y=2; q2; W / (5)

where q0 D 1 � ˛.�1 C �2/, q1 D ˛.�1 C �2/, q2 D 0 and ˛ is the referenced
probability of appraisal risk. Under EU, the WTP for probabilistic insurance wp is
determined by

VEU .wp/ � q0u.W C Y � wp/ C q1u.W C Y=2 � wp/ C q2u.W � wp/

VEU .wp/ D Qu (6)

5.2 Maxmin Expected Utility Model

Ambiguity of appraisal risk is considered using the MEU model. Ambiguity
perceived by the decision maker is expressed as C : the set of subjective probability
distributions he faces. Let us denote a subjective probability distribution by

P D .p0; W C Y I p1; W C Y=2; p2; W /; (7)
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where p0, p1, and p2 are parameters endogenously determined to be the worst
scenario for the decision maker under the constraint P 2 C . In this setting, the
MEU function in (1) can be specified as

VMEU .wp/

� min
P 2C

"
p0u.W C Y � wp/ C p1u.W C Y=2 � wp/ C p2u.W � wp/

#
(8)

WTP for the probabilistic insurance wp is determined by the following equation

VMEU .wp/ D Qu (9)

As for the full-coverage insurance, MEU is reduced to EU; since it has no appraisal
risk, no ambiguity exists.

5.3 Specification of Subjective Probability Distributions

To estimate the model, the forms of the set of subjective probability distributions C ,
and utility function u need to be specified. As for C , we apply the robust control
theory of Hansen and Sargent (2001). The right side of (8) can be seen as “a
constraint robust control problem” if C is specified as

C D fP W R.P; Q/ � �g (10)

where R.P; Q/ is the relative entropy between P and Q. Parameter � represents
the size of ambiguity.

R.P; Q/ D
2X

kD0

pk ln
pk

qk

: (11)

Hansen and Sargent (2001) show that the constraint robust control problem has
a same solution as “a multiplier robust control problem” as below

VMEU .wp/

� min
P 2C

"
p0u.W C Y � wp/ C p1u.W C Y=2 � wp/ C p2u.W � wp/

C�R.P; Q/

#
: (12)

The parameter � in the previous problem can be interpreted as an implied
Lagrange multiplier on the constraint. � can be interpreted as ambiguity parameter
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because it has one-on-one correspondence to � that represents the size of ambiguity.
The size of ambiguity becomes larger as the value of � decreases. Since R.P; Q/ is
convex in p0, p1 and p2, the first-order condition gives the following solution:

P � D .p�
0 ; W C Y I p�

1 ; W C Y=2; p�
2 ; W /; (13)

where

p�
0 D q0

q0 C q1e.u.W CY �wp/�u.W CY=2�wp//=�

p�
1 D q1e.u.W CY �wp/�u.W CY=2�wp//=�

q0 C q1e.u.W CY �wp/�u.W CY=2�wp//=�

p�
2 D 0: (14)

Thus, the probabilistic insurance purchase decision can be modeled by MEU, where
wp is determined by

VMEU .wp/ � p�
0 u.W C Y � wp/ C p�

1 u.W C Y=2 � wp/

VMEU .wp/ D Qu: (15)

5.4 Specification of Utility Function

We used the constant relative risk attitude (CRRA) utility function. It is derived from
assumptions that relative risk aversion remains constant for all levels of wealth. The
CRRA utility function is widely used in econometric studies of risk; therefore, we
can compare our estimation result with results in previous studies. Curvature of the
utility function represents attitude toward risk. Therefore, using the CRRA utility
function does not seriously bias conclusions because its curvature is sufficiently
flexible to fit the plausible range of respondents’ risk attitudes. The CRRA utility
function is written as

u.x/ D x1��

1 � �
; (16)

where � is the Pratt-Arrow coefficient of relative risk aversion. The effect of risk
aversion on the decision to purchase the earthquake insurance is represented by this
parameter.

Relative risk aversion may vary among demographic groups. Thus, we link it
with respondents’ social characteristics linearly

� D �0 C x0�; (17)

where �0 is an intercept, x is a column vector of respondents’ characteristics
variables, and � is a parameter vector. Size of the ambiguity may vary across
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demographic groups. Hence, we link ambiguity parameter � in (14) with respon-
dents’ characteristics linearly,

� D �0 C x0�; (18)

where �0:01, �0:05 and �0:10 are dummy variables (equal to one if the referenced
probability of appraisal risk is 1%, 5%, and 10%, respectively), x is a vector of
respondents’ characteristics variables, and � is a parameter vector.

5.5 Estimation Method

These models are estimated using Cameron (1987) grouped-data regression. This
model is based on a random utility framework in which expected utility is assumed
to consist of deterministic term V and error term � representing observation errors.
Here, V is VEU in (3) or (6) if a respondent follows EU. And V is VMEU in (15)
if he follows MEU. Suppose that respondent i is willing to pay wi for earthquake
insurance. In our survey, he/she is shown bidding B1 < � � � < BJ as the insurance
premium. Note that Vi.B1/ > � � � > Vi .BJ /. Respondent i choose Bj.i/ if

Vi .Bj.i/C1/ C �j C1 < Vi .wi / C �i and Vi.wi / C �i � Vi .Bj.i// C �j ; (19)

where Vi is the deterministic term expected utility of respondent i , and �i , �j and
�j C1 are error terms. Assume that � D �i � �j and that � D �i � �j C1 independently
follows normal distribution with mean 0 and variance �2. The likelihood that
respondent i choose Bj.i/ can be written using Vi.wi / D Qu:

Li D Pr
h
Vi.Bj.i/C1/ � Vi.wi / < � � V.Bj.i// � Vi.wi /

i

D Pr
h
Vi.Bj.i/C1/ � Qu < � � V.Bj.i// � Qu

i

D ˚

 
Vi.Bj.i// � Qu

�

!
� ˚

 
Vi .Bj.i/C1/ � Qu

�

!
(20)

where ˚ is the standard normal distribution function. Thus, the log likelihood of all
samples can be written as

ln L D
NX

iD1

ln

"
˚

 
Vi.Bj.i// � Qu

�

!
� ˚

 
Vi.Bj.i/C1/ � Qu

�

!#
: (21)

This log likelihood is maximized to estimate parameters.
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Table 2 Estimation results of simple models

Variables EU MEU
Full-coverage insurance Probabilistic insurance Probabilistic insurance
Coeff P-value Coeff P-value Coeff P-value

�0 2.027 0.00 �2.483 0.00 1.437 0.00
� 2.089EC7 0.20 8.756E-3 0.32 1.357EC8 0.00
�0:01 1.247EC8 0.01
�0:05 3.719EC8 0.07
�0:10 3.041EC8 0.00

n 557 351 351
ln L �1687 �1110 �1093
AIC 6.050 6.313 6.199

ln L is the maximized log-likelihood.
AICD � 2

n
.ln L � k/, where n is sample size and k is the number of parameters.

6 Results

6.1 Estimation Results of Simple Models

Parameters in VEU and VMEU are estimated by maximizing the log likelihood
in (21)4. First, we examine the estimation results of the models that only have
constant terms (� , �0, �0:01, �0:05, and �0:10). This model is called the “simple model”
and it ignores the effects of personal characteristics. The results are presented in
Table 2. Estimated CRRA coefficients are 2.027 for full-coverage insurance and
�2:483 for probabilistic insurance with 1% statistical significance. Ljungqvist and
Sargent (2000) and Gollier (2001) established by a hypothetical experiment that
the coefficient of relative risk aversion lies in the range of 1–4. The empirical
literature supports this. Friend and Blume (1975) studied the demand for risky
assets and conducted that � generally exceeds unity and is probably greater than 2.
Using expenditure data, Weber (1975) estimated � to lie within a range of 1.3–
1.8, and Szpiro (1986) obtained a similar range by using aggregate time-series data
for property insurance. In a careful study of consumption, Hansen and Singleton
(1982) found relative risk aversion parameters ranging from 0.68 to 0.97. Mankiw’s
study (1985) of consumption spending obtained relative risk aversion estimates from
2.44 to 5.26 for nondurable goods and from 1.79 to 3.21 for durable goods.

The estimate for the full-coverage insurance is a reasonable value. However, the
estimate for probabilistic insurance is unreasonable because it implies risk-loving
behavior. This suggests that the purchase decision for full-coverage insurance can
be explained by EU, while decisions concerning probabilistic insurance cannot be
explained by EU. The ambiguity presented by appraisal risk must be considered

4Estimation is carried out with GAUSS Maxlik.
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as an element in purchasing probabilistic insurance. By applying the MEU in
consideration of the ambiguity of appraisal risk, the estimated CRRA coefficient
becomes a reasonable value: 1.486 for the probabilistic insurance. The CRRA
coefficient � , the standard deviation of error term � , and ambiguity parameters�0:01,
�0:10 are statistically significant at the 5% level, and �0:05 is statistically significant
at the 10% level. These imply that risk and ambiguity parameters are both necessary
to express purchase decisions for the probabilistic insurance.

Then, we examine whether the EU model or the MEU model more consistently
interprets the data concerning purchase of probabilistic insurance. The smaller value
of the Akaike information criteria (AIC) indicates that the model is more consistent
with the data. The AIC values of EU and MEU are 6.313 and 6.199, respectively,
which shows that MEU is better for modeling probabilistic insurance. The log-
likelihood ratio test can be applied because MEU nests EU. MEU is superior to
EU at 1% statistical significance.

6.2 Estimated Effects of Personal Characteristics

Now we consider the effects of consumers’ personal characteristics. Table 3 lists the
independent variables x for (17) and (18), and Table 4 shows the estimation results.
Under EU estimates of � for full-coverage insurance and probabilistic insurance
are 1.801 and �0:636, respectively. Negative value of � for probabilistic insurance
implies that EU is not suitable for explaining the data. Previous studies of risk

Table 3 Variables of personal characteristics

Variables Description Mean

Age Age(in years) 62:0

Female Dummy; 1 if a respondent is female, 0 otherwise. 0:088

Marriage Dummy; 1 if a respondent is married, 0 otherwise. 0:945

Child Dummy; 1 if a respondent has a child under 10 years old, 0
otherwise.

0:077

Education Dummy; 1 if a respondent graduated from a university, 0
otherwise.

0:379

Unemployment Dummy; 1 if a respondent is unemployed or retired, 0
otherwise.

0:279

Self-employment Dummy; 1 if a respondent is self-employed, 0 otherwise. 0:103

Civil servant Dummy; 1 if a respondent is civil servant, 0 otherwise. 0:073

Experience Dummy; 1 if a respondent has experienced a economic loss
from earthquake, 0 otherwise.

0:074

Purchase Dummy; 1 if a respondent has purchased an earthquake
insurance, 0 otherwise.

0:171

Never-Paid Dummy; 1 if a respondent has never received any insurance
payment, 0 otherwise.

0:337

Trust Dummy; 1 if a respondent trusts insurance companies, 0
otherwise.

0:311
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attitude as related to personal characteristics revealed that female, older, married
servant respondents are more risk-averse, while better-educated, self-employed,
and unemployed respondents are less risk-averse than their co-respondents (Barsky
et al. (1997); Binswanger (1980, 1981); Cramer et al. (2002); Donkers et al.
(2001); Eisenhauer and Venturaz (2003); Halek and Eisenhauer (2001); Hartog et al.
(2002); van Praag (1996); Riley and Chow (1992); Shubert et al. (1999); Siegal and
Hoban (1982); Sunden and Surette (1998)). For full-coverage insurance, our results
are mostly consistent with and supported by previous findings. For probabilistic
insurance, inclusion of personal characteristics weakens the risk-loving attitude,
which could be attributed to capturing the effects of ambiguity aversion. That is
why signs of our coefficients differ from previous studies.

Table 4 Estimation results of EU and MEU including variables of personal characteristics

EU MEU
Full-coverage insurance Probabilistic insurance Probabilistic insurance

Variables Coeff P-value Coeff P-value Coeff P-value

Estimation of �

�0 1.444 0.00 �1.229 0.00 1.844 0.00
Age 0.004 0.00 0.010 0.00
Female 0.123 0.00 0.095 0.03 0.159 0.00
Education �0.079 0.00 �0.120 0.00 �0.178 0.00
Experience 0.006 0.63 �0.098 0.06 �0.072 0.07
Marriage 0.021 0.16 �0.080 0.21 0.023 0.11
Unemployment �0.114 0.00 �0.112 0.00 �0.032 0.17
Self-employment 0.018 0.38 0.013 0.59 0.015 0.54
Civil servant 0.078 0.04 �0.111 0.04
Child 0.061 0.12 0.071 0.19 0.036 0.29
Estimation of �

�0:01 0.840EC5 0.41
�0:05 2.083EC5 0.00
�0:10 4.719EC5 0.11
Age 0.024EC5 0.08
Female �1.006EC5 0.00
Education 1.107EC5 0.10
Experience 0.576EC5 0.00
Purchase 1.926EC5 0.06
Never-Paid 0.051EC5 0.16
Trust 0.693EC5 0.19
� 4.138EC7 0.19 0.1332 0.45 2.538EC7 0.11

O� 1.801 �0.636 1.934
n 557 308 306
ln L �1479 �908 �886
AIC 5.350 5.966 5.915

ln L is the maximized log-likelihood.
AICD � 2

n
.ln L � k/, where n is sample size and k is the number of parameter.
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Under MEU, estimation results for probabilistic insurance are presented in the
rightmost column in Table 4. The estimate of � is 1.934, close to that for full-
coverage insurance, and signs of coefficients except for Experience are congruent
with it. Further, AIC indicates that MEU is better than EU in explaining their
decisions regarding probabilistic insurance.

Next, we examine the relationship between the ambiguity parameter and personal
characteristics. A positive sign for the coefficient shows that the correspondent
variable reduces perceived ambiguity because a larger � means lesser perceived
ambiguity. At 5% statistical significance, the signs of Female and Experience are
negative and positive, respectively, indicating that women perceive greater ambi-
guity and that respondents who previously suffered earthquake damage perceive
less ambiguity. The signs for attributes Age, Education, and Purchase are positive
at 10% significance, which shows that perceived ambiguity increases with age,
education, and previous experience of purchasing earthquake insurance. This is
because a higher-educated respondent can understand information about insurance
and earthquakes. The characteristics Never Paid and Trust are not statistically
significant at the 10% level.

7 Policy Implications

Estimation results above show that MEU surpasses EU in explaining respondents’
choices of WTP for earthquake insurance under conditions of ambiguous appraisal
risk. This implies that households tend to overestimate appraisal risk under ambi-
guity. To clarify the negative effects of ambiguity of appraisal risk on decisions to
purchase earthquake insurance, we calculate the risk and ambiguity premium shown
by Table 5. Risk and ambiguity premium are additional payments to buy earthquake
insurance because of risk and ambiguity, respectively. Customers’ WTP consists
of their expected loss, risk premium, and ambiguity premium. The risk premium
is calculated by WTP without ambiguity .� D C1/ minus expected loss. The
ambiguity premium is calculated by WTP with ambiguity .� D O�/ minus WTP
without ambiguity .� D C1/. The ambiguity premium of appraisal risk with ref-
erenced probabilities 1%, 5%, and 10% are �2,198, �2,098, and �2,988 yen/year,
respectively, and each reduces about 10% of the earthquake insurance value.

Estimation results above show that MEU is better than EU to explain respon-
dents’ choices of WTP for earthquake insurance with ambiguous appraisal risk. This

Table 5 Risk premium and ambiguity premium

Mean of appraisal risk ˛ D 1% ˛ D 5% ˛ D 10%

Expected loss 15,273 14,863 14,350
Risk premium 5,861 5,782 5,683
Ambiguity premium �2,198 �2,098 �2,988
Willingness to pay 18,936 18,546 17,045
(yen/year)
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implies that a household tend to overvalue the appraisal risk in earthquake insurance
under ambiguity. In order to clarify negative effect of ambiguity of appraisal risk
on purchase decision of earthquake insurance, we calculate the risk and ambiguity
premium shown by Table 5. Risk and ambiguity premium are additional payments
to buy earthquake insurance because of risk and ambiguity, respectively. Here, a
willingness to pay consists of expected loss, risk premium, and ambiguity premium.
The risk premium is calculated by WTP without ambiguity .� D C1/ minus
expected loss. The ambiguity premium is calculated by WTP with ambiguity
.� D O�/ minus WTP without ambiguity .� D C1/. The ambiguity premium of
appraisal risk with reference probability 1%, 5%, and 10% are �2,198, �2,098,
and �2,988 yen=year, respectively, and each reduces about 10% of the earthquake
insurance value.

To increase sales of earthquake insurance, reducing the perceived ambiguity of
appraisal risk is more effective than reducing appraisal risk itself because ambiguity
premiums are not significantly different even though the referenced probability of
appraisal risk (that represents appraisal risk itself) varies by 1%, 5%, and 10%.
Estimation results shown in Table 4 are useful for reducing perceived ambiguity of
appraisal risk. The characteristic Purchase takes the largest positive value among
dummy variables, indicating that the purchase of earthquake insurance reduces
the perceived ambiguity of appraisal risk. This is natural because the respondent
who purchases it receives more knowledge about earthquake insurance than his co-
respondents. Experience is positive, suggesting that respondents who have suffered
earthquake damage better understand how insurance adjusters appraise earthquake
loss. These findings suggest that information about earthquake insurance or about
how earthquakes damage houses can reduce the ambiguity of appraisal risk. For
example, photographs or videos of houses damaged by earthquakes may be useful
in reducing customers’ ambiguity of appraisal risk.

8 Conclusions

This study presents a new econometric model addressing the relationships among
risk, ambiguity, and preference based on the MEU model developed by Gilboa and
Schmeidler (1989). We applied this model to investigate the effect of ambiguity
or appraisal risk on the decision to purchase earthquake insurance. Our model
was estimated using data from a survey with a set of questions on a hypothetical
earthquake insurance. The major results of this study may be summarized as
follows: First, reluctance to buy earthquake insurance with ambiguous appraisal risk
is better predicted by the MEU model than the EU model. Second, people dislike
earthquake insurance with ambiguous appraisal risk: most respondents demanded
more than a 10% reduction in premium to offset a 1% appraisal risk. Ambiguity
premiums are not significantly different, even though the referenced probability
of appraisal risk varies. Hence, reducing the ambiguity of appraisal risk is more
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effective than reducing appraisal risk itself for increasing sales of earthquake
insurance. Third, the perceived ambiguity is less among men who previously had
purchased earthquake insurance and had experienced earthquake damage to their
houses. In addition, ambiguity decreases with age and education.
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Modeling Technological Change Under
Increasing Returns and Uncertainty

Andrei Gritsevskyi and Yuri Ermoliev

Abstract The aim of this paper is to analyze methodological challenges involved
in modeling of endogenous technological changes with increasing returns and
uncertainties by using stylized versions of models. Realistic versions of these
models are analytically intractable making it difficult to comprehend the interplay
of different assumptions on their outcomes. We demonstrate path-dependences of
myopic evolutionary approaches, the infeasibility of straightforward “trial-and-
error” processes, and the need for adequate long-term policy assistance. We also
show why increasing returns and uncertainties radically offset the rationale for
postponed investments in new technologies and how stochastic models cope with
systemic risks implicitly induced by interdependencies among uncertainties, tech-
nologies, the structure of models, and decisions. The paper demonstrates possible
misleading character of alternative models of uncertainties. It shows the need
for proper modeling of long-term random horizons, corresponding discounting,
security constraints and requirements of robustness by using systemic valuations
and “distribution free” stochastic programming/optimization.

1 Introduction

The proper modeling of Technological Changes (TC) is decisive for the evaluation
of the true socio-economic and environmental impacts of development policies.
Traditional models assume that technological innovations are key factors of long-
term economic growth and the prosperity of nations (Abramovitz 1993; Barnett
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and Morse 1967; Freeman 1994). However, on-going global changes, in particular,
the pollution with potential catastrophic global climate changes, the increasing gap
between the rich and poor, insecurity of food, water, energy, and countries, inspire
great concerns about sustainable developments, equity and the welfare. Searching
only for economic efficiency and growth produce adverse impacts of innovations
which are impossible to evaluate by using traditional models.

The aim of this paper is to analyze methodological challenges involved in
adequate modeling of TC by using simple versions of IIASA1 path-breaking mod-
els (Arthur 1989; Arthur et al. 1987; Gritsevskyi and Ermoliev 1999; Gritsevskyi
and Nakićenović 2002; Grübler and Gritsevskyi 2002). Realistic versions of these
models are analytically intractable making it difficult to comprehend the interplay
of different assumptions and their outcomes. The paper analyses the following basic
issues.

In traditional economic models (see detailed analysis in (Cowan 1991;
Gritsevskyi and Nakićenović 2002; Grübler and Gritsevskyi 2002; Nakićenović
1996; Ruttan 1997)) TC is represented by exogenous variables which improve
performance of technologies through time independently of policies. As a
consequence, such models strongly advocate to postpone investments in new
technologies until they became cheap enough, i.e., “weight-and-see” policies.
In reality, technological changes are (see discussion in (Grübler and Gritsevskyi
2002)) endogenous. They can be affected by deliberate policies related to urgent
socio-economic, environmental and safety/security issues.

In other words, models with exogenous technological changes ignore the neces-
sity to invest in new technology in order to make this technology cheaper and
better with respect to desirable performance indicators. As technology becomes
more widely adopted, the cheaper and better it becomes. This is so-called increasing
returns phenomenon. Explicit modeling of increasing returns and uncertainties, as it
was demonstrated in (Gritsevskyi and Ermoliev 1999; Gritsevskyi and Nakićenović
2002; Grübler and Gritsevskyi 2002), radically offsets the rational for postponed
investments with crucial policy implications regarding timing of investments.

The modeling approaches with diminishing returns do not allow representation
of these essential characteristics of technological developments. Despite this defi-
ciency (see discussion e.g., in (Metcalfe 1987; Nakićenović 1996)), the diminishing
returns dominate the standard models because such models are convex with simple
concepts of global solutions and equilibriums. Contrary, increasing returns are
associated with non-convexities, local solutions, disequilibriums, path dependencies
and the concept of “lock-in” states of developments. This case requires significant
remodeling of traditional approaches (Arrow 1962; Griliches 1996; Gritsevskyi
and Ermoliev 1999; Grossman and Helpman 1991; Ruttan 1997). In particu-
lar, a new technology requires a vast variety of other technologies (Gritsevskyi
and Nakićenović 2002; Grübler and Gritsevskyi 2002), including infrastructures.
Nonetheless, these essential interdependencies (externalities) are represented in

1International Institute for Applied System Analysis.
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the traditional models in an extremely simplified exogenous manner. The use
of aggregate production and utility functions precludes representation of vital
economic, social, environmental and technological heterogeneities.

Market-oriented, top-down models of TC attempt to analyze the economy-
wide impacts of innovations assuming that the main driver is the price signal.
Unfortunately, the price signals address only narrow market-related values of
investments whereas the main purpose of them is often dictated by non-market
pressures (Grübler and Gritsevskyi 2002; Nakićenović 1996). Besides, concepts
of increasing returns (non-convexities), externalities (interdependencies), inherent
uncertainties, including uncertain horizons of “break-even” points, destroy the
basic assumptions about the existence of the general equilibrium prices allowing
decentralization of interdependent economic processes into independent individual
activities.

In this paper, we demonstrate that the current progress in modeling allows devel-
opments of so-called “bottom-up” social planner models, for integrated assessment
and management of the most important interdependencies affecting TC.

Section 2 describes the representation of increasing returns by experience
(learning) curves (Argote and Epple 1990) showing the need for adequate mod-
eling of uncertainties and time horizons. Section 3 analyses path dependencies
and lock-in phenomenon of purely myopic evolutionary TC processes based on
behavioral and market principles. It uses new types of potential urn’s schemes
easily illustrating why uncertainties of markets without appropriate regulations
preclude the emergence of robust technological structures. Section 3 also shows why
increasing returns offset the rational for postponing investments in new technologies
therefore technologies that appear initially unattractive may diffuse into the market
under proper policy assistance. Section 4 analyzes shortcomings of widely used
net present value and real option theory valuations ignoring a vast variety of
interdependencies among technologies apart from price signals. In particular, stan-
dard discounting implicitly induces horizons of valuations which may dramatically
mismatch random break-even horizons of technological changes. This section
introduces new approaches to discounting focusing on random break-even horizons
rather then horizons of capital markets. Section 5 outlines an integrated stochastic
optimization dynamic model with increasing returns developed in (Gritsevskyi and
Ermoliev 1999; Gritsevskyi and Nakićenović 2002; Grübler and Gritsevskyi 2002)
for long-term valuations of investments in technological developments. Section 6
demonstrates impacts of critical systemic interdependencies between technologies,
decisions, uncertainties and robust solutions. Uncertainty and induced systemic
risks invoke changes within a set of interdependent technologies, some of which
may be less economically efficient but have advantages regarding other indicators,
such as security of supply. This section shows why STO models allow to deal with
this type of endogenous technological developments. Section 7 analyzes alternative
models of uncertainties. Section 8 demonstrates advantages of distribution free
stochastic versus probabilistic models. Section 9 concludes.
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unit installed capacity, in USD (1990) per kW, are shown against the cumulative installed capacity,
in MWe, on logarithmic scale. Source: Nakićenović (1996)

2 Increasing Returns and Uncertainty

The increasing returns to scale effects have been discussed in the economic literature
for long time. They were illustrated empirically by Wright (Argote and Epple 1990)
in 1936 showing the decline of airframe production costs with experience measured
by cumulative output. He showed that when plotted in log-log diagrams, unit
costs for different inputs (“labor”, “materials”) appeared to be a linear function of
cumulative production of airframes. Figure 1 illustrates these functions for different
electricity generation technologies.

Figure 1 suggests that the unit cost c.x/ of the technology depends on the
cumulative capacity x of this technology as exponentially declining function

c.x/ D c0x
�˛; (1)

where c0 is the cost of unit cumulative capacity x D 1 and ˛ is a parameter
that in general depends on x. The main conclusion is that unit costs are expected
progressively to fall as producers and users gain experience with new technologies
expressed by x, i.e., they exhibit the increasing returns. This relates to the path
dependence (Arrow 1962; Arthur 1989; Arthur et al. 1987) of technological devel-
opments. The following sections demonstrate that as a consequence, uncoordinated
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Fig. 2 Cumulative costs

purely evolutionary processes of technological developments may lead to different
lock-in states with respect to cumulative (total) costs defined as the following.

The cost for incremental increase x C � of cumulative capacity x is calculated
as c.x/� for small � > 0. Therefore, the total cost function C.x/ for developing a
capacity x > 0 is the integral

C.x/ D
Z x

0

c.z/d z: (2)

In the following we often use a piece-wise linear approximation of C.x/, e.g.,
shown in Fig. 2. Jumps at x D 0 usually reflect “set-up” costs incurred in research
and developments (R&D) of technologies before their first deployments. Risk
exposure to such extreme events as Chernobyl’s disaster or BP’s oil spills also lead
to similar jumps. Breaks of linearity in C.x/ may correspond to significant break-
through in technological developments.

It is widely recognized that increasing returns and uncertainties jointly play a
decisive role in shaping future energy systems (Gritsevskyi and Ermoliev 1999;
Gritsevskyi and Nakićenović 2002; Grübler and Gritsevskyi 2002; Grübler and
Messner 1996; Messner et al. 1996; Romer 1986). Fundamental technological
changes may be rather slow. Time horizons of a century or more are frequently
adopted in energy systems studies. Modeling technological developments over such
long-term horizons raises key issues regarding proper representation of inherent
uncertainties (see Sect. 7). In particular, the transition to a new technology may take
a rather uncertain amount of time as Fig. 3 illustrates.

Figure 3 shows the coexistence of cheap and expensive wind technologies. The
wind technology slowly takes-off penetrating the market despite of higher overall
costs. The cost-effective solutions of standard deterministic model would select the
cheapest technology. The coexistence of both technologies can be justified only by
explicit treatment of uncertainties and increasing returns (Sects. 6 and 7) within an
appropriate time horizon: even if we know in 1980 the cost reduction trends for
the wind technology for coming 20 years precisely, the additional 30 years may
not be enough to justify its benefits. Uncertainties of trends dramatically affect
conclusions. By extrapolating these trends we can find the amount of cumulative
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capacity needed for the two technologies to break-even with the conventional fossil
fuel technology. If there is an uncertainty in the trends, than the break-even point
may raise significantly the time when the new technology becomes commercial.
In other words, the cost-effectiveness of the new technology can be justified only
within an appropriate time horizon.

Uncertainties of trends depend on costs of technologies. IIASA’s inven-
tory (Strubegger and Reitgruber 1995) shows that probability distributions of
costs are not symmetric with both rather “optimistic” and “pessimistic” views
on future costs per unit capacity requiring adequate representations (Sect. 7).
Interdependencies among technologies and their uncertainties are essential for
achieving robust solutions. The market uncertainty and changes in costs of
deployed technologies may produce savings in the cases when the cost of
conventional technology unexpectedly rise, e.g., due to external shocks. Therefore,
the installation of new expensive technology may have a considerable insurance
value besides its potential long-term cost-efficiency (Sect. 6). Another uncertainty
is associated with magnitudes and costs of energy reserves, resources and their
extraction and production costs (Rogner 1997). All these issues restrict robustness
of purely evolutionary technological developments.

3 Myopic Evolutionary Processes

The evolutionary approach for modeling the dynamics of technological changes was
inspired by Schumpeter (1934) insights (see discussion in (Grübler and Gritsevskyi
2002; Silverberg et al. 1988)) that technological changes occur due to local search
of firms for improvements and imitations of practices of other firms. As models
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in (Arthur 1989; Arthur et al. 1983, 1985a, 1987) demonstrated very natural
myopic rules of purely evolutionary (without policy support) technological change
processes with increasing returns may lead to a vast variety of lock-in states of
technological developments. This implies that products with increasing returns to
scale are subjects to positive feedbacks and path-dependencies, i.e., once a particular
technological path is led down, it is difficult to move to an alternative path without
strong policy support. Let us consider this with some details.

3.1 Behavioral Models, Urn’s Scheme

Every form of evolutionary economic behavior is shaped by trial and error. Adoption
of new technologies (Arthur 1989; Arthur et al. 1983, 1985a, 1987) in this case
can be viewed in terms of additions of units (technologies) channeled according
to certain behavioral rules into a pool of existing units. Urn’s schemes provide
a family of such processes to model adaptive evolutionary dynamics of rather
different at first glance discrete processes. We can think of an “urn” (a pool or
portfolio of technologies) containing various types of products (technologies) used
by consumers. A consumer makes his choice of product to be adopted by asking
other consumers using the products. His decision can be based on a simple rule:
ask (sample) a number of consumers and adopt the product which is used by the
majority of them. Of course, behind such a rule we can see an attempt to make a
good decision: if a technology is used by the majority, then it should be good.

Formally, a rather general cumulative process can be modeled as the following
urn’s scheme. Let x1 D .xt1; x

t
2; : : : ; x

t
N / be proportions of balls of different colors

(different technologies). At each time interval t D 1; 2; : : : , a new ball is added
at random with probability dependent on t and xt . This probability is usually not
given explicitly, but rather it is defined implicitly, e.g., by a sampling rule channeling
additions of balls. Let it be the ball added to the urn at time t . Then changes of balls
in the urn follow the dynamics

xtC1 D xt C 1

b C t
Œˇt � xt �; ˇt D .0; : : : ; 0; it ; 0; : : : ; 0/; t D 1; 2; : : : (3)

where b is the initial total number of balls.
It is striking (see discussion in (Arthur et al. 1987)) that even simplest cases

of these processes demonstrate path-dependencies. In 1923 Polya and Eggenberger
introduced the following urn scheme. Starting with one red and one white ball in
the urn, add a ball each time according to the rule: Choose a ball in the urn at
random and replace it; if it is red, add red; if it is white, add white. Polya proved that
proportions of balls tend to a limit with probability 1. But the limiting proportions
of red (or white) balls are random variables uniformly distributed between 0 and 1.
In other words, if this Polya process were run once, the proportion of red balls may
settle down say to 22.3927. . . percent, and never change; if run again, it might settle
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to 81.4039. . . percent. A third time it might settle to 42.0641. . . percent. And so on.
This dynamics of urn processes demonstrates a very important feature. There exist
significant fluctuations in the proportion of balls at initial steps caused by random
sampling rule. But in time total number of balls growth and proportions of balls
fluctuate less and less, and, since it does not drift, it settles down (limiting state
or structure emerge). Where it settles, of course, depends completely on its early
even insignificant random movements. Unfortunately for general urn’s schemes the
emergence of the technological structure (limiting states) can be analyzed only for
systems with two or three variables. As we show further, directions of movements
according to (3) can be associated with a stochastic gradient of a function (potential)
to be optimized (minimized or maximized). This provides a powerful approach for
analyzing long-term implications of such evolutionary processes.

3.2 Market Processes

In the case of urn processes, the increasing return phenomenon occurs due to
uncertainty involved in myopic decision rule relying on random sampling. The
same type evolutionary dynamics is typical for market driven myopic rules. Various
observations from cognitive science indicate that economic agents drive allocation
of resources towards increasing their utilities. Accordingly, important myopic rule
of evolutionary technological changes can be the cost effectiveness of purchased
products: adopt the product which has cheapest unit cost. This again induces of type
(3) evolutionary dynamics.

Let us assume that there are technologies (balls), i D 1; 2; : : : ; n with the unit
cost c1.x1/, c2.x2/; : : : ; cn.xn/ dependent on the composition of technologies at
time t defined by a vector xt D .xt1; x

t
2; : : : ; x

t
n/. A new technology (ball) it at

time t is added to the pool of existing technologies according to the rule

it D Argmin
i
ci .x

t
i /; (4)

i.e., the technology for which the unit cost is currently minimal. It is clear that
changes in proportions of technologies again follow (3). The long-term outcomes of
such processes depend now on the cost structure ci .xi /; i D 1; n. Figure 4 illustrates
the fundamental difference between diminishing and the increasing returns to scale.
In Fig. 4 (left) both technologies exhibit diminishing returns.

Comparative advantage of technology 1 at the initial state, c1.0/ < c2.0/, leads
to incremental adoptions according to the market rule (4) up to the level b1. Beyond
this level, the cost effectiveness of technology 1 diminishes, technology 2 becomes
dominant with respect to its cost effectiveness up to the level b2; after this the market
again switches to technology 1, and so on. Thus the myopic search for improvements
by using “natural” market rule (4) (choice of cheapest technologies) in the case
of diminishing returns leads to coexistence of rather different technologies in the
overall cumulative portfolio. The composition of them depends on the demand that
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Fig. 4 Diminishing (left) and increasing (right) returns

is also connected with the time horizons. If the time horizon is such that demand
does not exceed b1, only technology 1 would dominate the market.

The situation significantly changes in the case of increasing returns. The right
part of Fig. 4 shows cost of two technologies: mature technology 1 having constant
marginal cost and new, therefore more expensive technology 2 at the first stages of
developments.

Mature technology 1 is dominant at the initial stage, c1.0/ < c2.0/. It is always
advantages to choose according to market rule (4) this technology. Competing tech-
nology 2 becomes advantageous only after the support (despite market forces) of its
development till the level b1. Yet, this depends on the planning time horizon and the
demand. Only with proper time horizon depending on potential demand exceeding
level b1, the development of technology 2 is advantageous. Yet, this depends also
on various uncertainties. In other words, robust solutions require proper treatment
of uncertainties and time horizons which may dramatically affect the convergence
of evolutionary processes defined by (3), (4), as the next section demonstrates.

3.3 Potential Urn’s Schemes, “Trial-and-Error” Experiments

Process defined by (3), (4) is a new type of urn’s schemes which can be viewed as
potential urn’s scheme. In contrast to general schemes in (Arthur 1989; Arthur et al.
1983, 1985a, 1987), the potential urn’s schemes are connected with optimization
(minimization or maximization) of a function (a potential) providing a powerful
approach for studying long-term outcomes of TC and emerging technological
structures.

Let us show, that in deterministic case without uncertainties the process (3)–(4)
converges to local solutions minimizing total social cost f .x/ D P

i Ci .xi /. In
particular, in the case of diminishing returns this process converges to cost-effective
global (equilibrium) solutions. Uncertainties break down this convergence even for
convex functionsCi.xi / unless proper additional market regulations are introduced.

Assume that xi is the proportion of total cumulative capacity used by technol-
ogy i . Variables x D .x1; : : : ; xn/; x 2 X , where X is defined as
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˙ixi D 1; xi � 0; i D 1; n:

We can always assume that the total capacity of technological pool is bounded
by 1 in an appropriate scale. Then vector ˇt D .0; : : : ; 0; it ; 0; : : : ; 0/ defined by (4)
minimizes linear cost-function

X
i

fxi .x
t
i /xi D

X
i

ci .x
t
i /xi (5)

for x 2 X , where fx D .fx1 ; fx2 ; : : : ; fxn/ is the gradient of f .x/. In other words,
the evolutionary process defined by (3), (4) is a gradient type process

xtC1 D xt C �t .ˇ
t � xt /; t D 1; 2; : : : (6)

with the step size �t D r=t for a constant 0< r <1. Its convergence follows from
general results on the convergence of stochastic linearization methods (Proposi-
tion 1) illustrating shortcomings of market-based evolutionary approaches.

Uncertainties characterized by a random vector !t affect unite costs ci .xti ; !t /,
therefore the myopic market rule (4) has the form

it D Arg min
i
ci .x

t
i ; !

t / (7)

that selects technology it minimizing random linear cost function

X
i

ci .x
t
i ; !

t /xi : (8)

Unfortunately, straightforward stochastic version (6), (7), (8) of the processes
(3), (4) does not converge in general. Its convergence can be achieved by essential
modification of rule (4). Let us define more stable smooth tendency of random costs
by the following averaging operation

˛tC1i D ıtci .x
t
i ; !

t /C .1 � ıt /˛
t
i ; t D 1; 2; : : : : (9)

where 0 � ıt � 1. Accordingly, the vector ˇt is defined by the rule

it D Arg min
i
˛ti ; (10)

i.e., ˇt minimizes
P

i ˛
t
i xi ; x 2 X .

Proposition 1. Consider the sequence fxtg defined by (3), (9)–(11). Assume that
expected costs Ci.x/ D ECi.x; !/ are continuous functions of x; F.x/ DP

i Ci .x/;

0 � ıt � 1; tıt ! 1;

1X
tD1

ı2t < 1: (11)
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Then the sequence fF.xt /g converges with probability 1 and the sequence fxt g
converges with probability 1 to the set of local solutions minimizing the total
social cost-function F.x/. If ci .xi ; !/ is not affected by uncertainties, then the
convergence takes place with ıt D 1; t D 1; 2; : : : .

The proof of this proposition follows from general results discussed in (Barnett
and Morse 1967; Ermoliev and Wets 1988). Condition (11) can be fulfilled by
choosing ıt D 1=k in some time intervals Œ�k; �kC1�, kD 1; 2; : : : , where �kC1 �
�k ! 1, kD 1; 2; : : : .

This Proposition shows that even in the case of diminishing returns the promise
of uncertainty require rather deliberate price stabilization mechanisms defined by
variables ˛ti . A fundamental issue restricting the cost-effectiveness of myopic
evolutionary processes is also the irreversibility of decisions. All these call for
coordinated assistance of TC by using decision support tools based on proper long-
term valuations and integrated STO models (Sect. 5).

Purely evolutionary passive approaches are often modified by more active
“trial-and-error” experiments. Figure 3 illustrates that the assistance of new tech-
nologies to break-even points may take long time, i.e. results of the trial-and-error
experiments are not observable immediately. In addition, results of experiments
at different locations and within different time intervals have significant spatio-
temporal heterogeneities. Besides, the feasibility of these experiments is critically
restricted by their dimensions. To “hit” purely at random even the set of non-
negative solutions in N-dimensional space of decision variables is NN . Therefore,
even forN D 10 independent variables, the straightforward trial-and-error approach
is able to discover that a non-negative solution provides the desirable outcome would
have an extremely large number of failures: on average only once in 1010 trials
outcomes belong to the set.

4 Valuation of Technological Changes

New technologies are usually more expensive than traditional mature technology.
Yet in the future new technologies may become more advanced than traditional
technologies with respect not only to purely economic efficiency but also various
other indicators reflecting broad social, economic and environmental impacts of new
technologies. How can we valuate investments in the development of technologies
which may become beneficial within a long time horizon. Short-term horizons
of purely market-based valuations may lead to lock-in states of technological
developments and misleading policy implications as Sect. 3 shows. This and the
next section provide a short comparative analysis of commonly used valuation
frameworks. Market-based approaches include Net Present Value (NPV) analysis
and the Real Option Theory. The so-called top-down macro models attempt to
valuate economy-wide impacts of innovations in a highly aggregate manner. The
bottom-up micro or social planner models place emphasis on detailed description of
TC processes.
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4.1 Net Present Value Analysis, Discounting

This is the most commonly used investment valuation framework. In order to
determine the Net Present Value (NPV) of new technologies, we need to esti-
mate technology-generated future expected cash flows Vt , t D 0; 1; 2; : : : on the
basis of an appropriate market model and assumptions about the rate of new
technologies deployment. Assume that r is a constant prevailing market interest
rate, then alternative investments are compared by V DV0 C d1V1 C : : : , where
dt D d t ; d D .1 C r/�1, t D 0; 1; : : : , is the discount factor, r is the discount rate,
and V denotes NPV. Disadvantages of this criterion are well known. In particular,
the NPV critically depends on the prevailing interest rate which may not be easily
defined in practice. In addition, the NPV does not reveal the temporal variability of
cash flow streams. Two alternative streams may have the same NPV despite the fact
that in one of them all the cash is clustered within a few periods, but in another it is
spread out evenly over time. Positive cash flows will arise when new technologies
have lower market prices or costs comparing with traditional technologies. As Fig. 3
illustrates, there are uncertainties in assessing the deployment time, or break-even
time when the new technology becomes economic. This creates a vital difficulty in
assessing a traditional constant discount rate.

It was shown (see e.g., (Ermoliev et al. 2010)) that a discounted valuationP1
tD0 d tVt with discount factor d < 1 is equivalent to the undiscounted valuation

E
P�

tD0 Vt with a random � dependent on d . Namely, let q D d , p D 1 � q, and �
be a random variable with the geometric probability distribution P Œ� D t � D pqt .
Then dt D P Œ� � t �, and for Evt D Vt we have

1X
tD0

dtVt D E

�X
tD0

vt :

The same is true for general discount factor dt . We can think of � as a random
“stopping time” moment. The expected duration of � for standard discount rates d
obtained from capital markets does not exceed a few decades and, as such, these
rates may easily mismatch uncertain break-even points. The expected duration of
� , E� D 1=p D 1 C 1=r � 1=r . Therefore, for r related to the market interest
rate of 3.3%, r D 0:033, the expected duration of the stopping time horizon is
E� � 30 years, i.e., this rate orients the policy analysis on an expected 30-year
time horizon. Certainly, this rate has no relation with break-even point in Fig. 3.

Since NPV valuations use only mean values Vt therefore this approach is also
unable to quantify potential insurance value of new technologies which arise when
prices of conventional technologies jump up due to some shocks. The use of
stopping time criterion (Ermoliev et al. 2010) E

P�
tD0 vt , with random vt , and in

characterizing the break-even time moments in combination with stochastic decision
support models (Sect. 5) allows to overcome these shortcomings.
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4.2 Real Option, Top-Down and Bottom-Up Models

In contrast to simple “now-or-never” NPV decision framework, the Real Option
approach allows to introduce the timing of decisions. The decision maker may
be advised to postpone the development of new technology until the investments
become economic. This framework also allows to add insurance value of new
technologies in the event of severe conventional technology price increase. The
central limitation of this framework, as well as NPV approach, is that new
technologies are evaluated from a narrowly defined market-based perspectives. Only
combinations of increases and decreases of conventional technologies prices create
a chance for new technologies to be adopted and become winners. Definitely other
potential socio-economic and environmental benefits of new technologies which
are not presented in price signals may be significantly greater than the market-based
benefits. This approach deals only with a given option, that is not evaluated together
with a set of other interdependent technologies as in social planner models of Sect. 5.

Computable general economic equilibrium (Manne and Richels 1994; Metcalfe
1987; Nordhaus 1973; Rosenberg 1982) macro models have become the standard
tool for the analysis of the economy-wide impact of technological changes. It is
assumed that the equilibrium prices provide the unique sources of information
on which decisions of all economic units are coordinated in a fully decentralized
consistent manner. All non-price driven improvements in technology are represented
by an exogenous autonomous efficiency improvement parameter or by exogenous
assumption about future so-called “backstop” technologies. Therefore, the techno-
logical change in these models is described as gradual replacement of existing tech-
nologies as relative prices of alternative technologies are changed. Unfortunately,
only under very strong assumptions it is possible to show that such equilibrium
prices exist. In general, there is no unique equilibrium. It is not possible (without
breaking the equilibrium) to include properly in the model increasing returns (non-
convexities), inherent uncertainties and risks especially if they are endogenous.

Top-down macro models are usually based on rather aggregate notions such
as capital, labor, materials, energy, knowledge (see e.g. discussion in (Arrow
1962; Cowan 1991; Freeman 1994; Metcalfe 1987)) which simplifies the
analysis by ignoring critical spatio-temporal, social, economic, environmental
and technological heterogeneities. Ideally, these models must be combined with
the bottom-up models. The advantages of computers and mathematical modeling
tools allow developing new models in which the aggregation is achieved by taking
into account directly detailed observable technological, human, economic and
environmental aspects. These bottom-up models place emphasis on a detailed
description of TC processes, increasing returns, interdependencies among different
technologies and feasibility constraints, e.g., pollution reduction targets. They
allow to present inherent uncertainties and different agents having geographically
heterogeneous risk exposures. In other words, new models are able to provide truly
integrated decision support for valuation of policies guiding technological changes
towards desirable targets.
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5 Systemic Valuations

In the following we outline main features of the bottom-up modeling framework
developed at IIASA on the basis of the energy systems-engineering model MES-
SAGE (see (Gritsevskyi and Ermoliev 1999; Gritsevskyi and Nakićenović 2002;
Grübler and Gritsevskyi 2002; Messner et al. 1996)). In general, it is a multi-
region, multi-agent model involving uncertain increasing returns on technological
developments and other uncertainties in which technology choice takes place (e.g.
demand, resource availability, environmental targets). The starting global (Messner
et al. 1996) version of the MESSAGE model includes more than 100 different
energy extraction, conversion, transport, distribution and end-use technologies. The
future costs of all technologies were assumed to be uncertain with cost distributions
based on the IIASA energy technology inventory (Strubegger and Reitgruber 1995).

Overall approach is based on the idea of representing energy systems devel-
opments as a dynamic network where flows from one energy form to another
correspond to energy technologies such as electricity generation from coal or gas
power plants. Figure 5 illustrates this network. Five different stages of energy flows
are shown – energy extractions from energy resources, primary energy conversion
into secondary energy forms, transport and distribution of energy to the point of end
use that results in the delivery of final energy, and finally the conversion at the point
of end use into useful energy forms that fulfill the specific demands. All possible
connections between the individual energy technologies are also specified in Fig. 5.
Various demands for useful energy are shown for different sectors of the economy.

Fig. 5 Schematic diagram illustrating network structure of the energy model. Source: Gritsevskyi
and Nakićenović (2002)
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Each technology in the system is characterized by unite costs, efficiency, lifetime,
emissions, etc. In addition to various balance constraints, there are limitations
imposed by the resource availability as a function of (uncertain) costs. Multi-agent
modeling environment allows to analyze spillover effects. The overall objective is
to fulfill various demands by the utilization of technologies and resources with the
minimal total discounted system costs.

The modeling approach relies on two-stage dynamic stochastic optimization
model. It is important that this model incorporates both anticipative long-term deci-
sions and their adaptive short-term adjustments once new information is revealed.
Sections 6 and 7 show that these two main mechanisms (anticipation and adaptation)
for coping with uncertainties ensure robust flexible policies characterized by
endogenously defined risk measures. These implicitly induced risk measures depend
on the structure of the model including decision variables and distributions of
uncertainties. Conventional approaches of the control theory are not applicable in
general for this type of models.

Formally the basic model is formulated as the minimization of cost function

F.x/ D
TX
tD0

d t
�
E
˝
ct .xjt0; !/; xt

˛C ˝
at .xjt0; !/; yt .!/

˛�
(12)

subject to constraints

tX
kD0

Ak.!/x
k CBt .!/y

t .!/ D bt.!/; t D 0; 1; : : : ; T; (13)

xt 2 Xt � Rn; yt 2 Yt � Rm; (14)

where xt is a vector of decision variables at time t D 0; 1; : : : ; T , xjt0 D
.x0; x1; : : : ; xt /, x D xjT0 ; ! defines random (uncertain) variables and d t is
a discount factor at time t that can be substituted also by random stopping
time (horizon) � (Sect. 4.1) associated with break-even points; C t .xjt0; !/ are
stochastic unit costs a given technology path x D xjT0 ; matrices At.!/, Bt.!/
and vectors bt.!/ reflect uncertain relations for resources, links between tech-
nology activities, energy demands, and environmental constraints. This model is
a specific case of the dynamic two-stage STO models (see (Ermoliev and Wets
1988)) with the first stage decision vector x, and the second stage decision vector
y.!/ D .y0.!/; y1.!/; : : : ; y� .!//. To model the increasing returns, marginal
cost ct .�; !/ is represented by experience curves (Sect. 2), therefore expected value
E
�˝
ct .xjt0; !/; xt

˛�
is in general a non-convex non-smooth function. Because prob-

ability distributions of costs have multimodal character (Strubegger and Reitgruber
1995), the use of expected costs may be misleading. Instead, it is natural to use such
robust characteristics as median and other percentiles. The next sections illustrate
this by using simple stylized models.
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6 Interdependencies and Endogenous Risks

This section shows that proper representation of interdependencies among uncer-
tainties, and ex-ante and ex-post decisions of the model (12)–(14) induces endoge-
nous risk aversion and collective robust risk sharing solutions.

6.1 Multiagent Framework Under Uncertainty

The classical assertion about gains from production by most efficient technology,
specialization and intensification is true only if uncertainties are not taken into
account. In reality, production technologies may be exposed to different contin-
gencies. In this case, of particular importance is a properly organized network of
producers (technologies) allowing to diversify risks and provide mutual insurance.
In this case as this section shows, the less efficient technology (producer) may
provide the supply of production and enhance stability of the system. Let us
illustrate this with stylized versions of social planner model outlined in Sect. 5.

For the sake of clarity suppose that there are only two technologies i D 1; 2,
producing the same good. Let xi denote the production level of the technology i , ci
is production unit cost. The production can also be adjusted by a back-stop
technology with cost b for unit produce y. Assume c1 < c2 < b, i.e., the cheapest
is the first technology. The energy security constraint is to satisfy the exogenous
inelastic demand d .

In the absence of uncertainty we assume there is no distortion of energy
production and no additional regulations on the size of the production capacities
x1; x2. The model is formulated as the minimization of the total cost function:

c1x1 C c2x2 C by (15)

subject to feasibility constraints

x1 C x2 C y D d; x1 � 0; x2 � 0; y � 0; (16)

i.e., the model assumes interdependence and possible cooperation between produc-
ers using different technologies. The optimal solution to the problem is x�

1 D d ,
x�
2 D 0, y� D 0, i.e., the production is undertaken by the most efficient technology

that accords with classical views.
Consider more realistic problem of planning energy production under uncertainty

of outputs which may reduce the production x1, x2. In this case, (16) is transformed
to constraint

a1x1 C a2x2 C y D d; (17)

where a1; a2 are contingencies or shocks to x1; x2 due to hazardous events. In
this section, we assume that a1; a2 are random variables 0 � ai � 1; i D 1; 2,
i.e., ! D .a1; a2/. Other representations of uncertainty are analyzed in Sect. 7.
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Uncertainty ! is revealed between periods 1 and 2. The ex-ante decisions x1; x2
are made in period 1, whereas the ex-post back-stop decision y is made in period 2
using available !, i.e., y is a function of !, y.!/. The social planner model (12)–
(14) is formulated now as the minimization of total expected cost

c1x1 C c2x2 C bEy.!/ (18)

subject to energy security constraint

a1x1 C a2x2 C y.!/ D d

for all !. If endogenous supply a1x1 C a2x2 falls short of demand d , the residual
amount d � a1x1 � a2x2 must come from back-stop technology at unit cost b.
Clearly, the optimal period 2 decisions is y.x; !/ D maxf0; d � a1x1 � a2x2g,
that is, it depends non-smoothly on period 1 decisions (path-dependencies) and
!, providing strong cross-period random interactions among decisions. Therefore,
minimization of cost-function (18) of the social planner model is equivalent to the
following stochastic minimax problem: minimize

F.x/ D c1x1 C c2x2 C bEmaxf0; d � a1x1 � a2x2g;

where bEmaxf0; d � a1x1 � a2x2g is the expected back-up cost when the demand
d exceeds random supply a1x1 C a2x2.

6.2 Induced Systemic Risks

The following shows why the less-efficient producer (technology) is able to stabilize
the overall production of the system. Conversely, inadequate behavior of this
producer generates insecurity of the energy supply system. Assume that only the
efficient technology is at risk, i.e., a2 D 1. Let function F.x/ have continuous
derivatives, e.g., the cumulative distribution function of a1 has a continuous density
function. It is easy to see that the optimal positive decision x�

1 > 0, x�
2 > 0 exists

in the case when Fx1.0; 0/ < 0, Fx2.0; 0/ < 0. We have Fx1.0; 0/ D c1 � bEa1,
Fx2.0; 0/ D c2 � b. Therefore, somewhat surprisingly, the less efficient technology
must be active unconditionally (since c2 � b < 0). The cost efficient technology is
inactive in the case c1 � bEa1 � 0, leaving production entirely to the higher-costs
technology 2 (c2 > c1). Only in the case c1�bEa1 < 0 both technologies are active.
The “less cost-efficient” technology 2 is able to stabilize the aggregate production
in the presence of uncertainties affecting the “more cost-efficient” technology 1.
It is important to derive the production share of the technology 2. The derivative
Fx2.x1; x2/ D c2�bP Œd > a1x1Cx2� can be found by using formulas for optimality
conditions of stochastic minimax problems (see, e.g., (Ermoliev and Wets 1988),
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and references therein). This means that the optimal production level x�
2 > 0 of

technology 2 is a quantile defined by the equation

P Œd > a1x
�
1 C x�

2 � D c2=b; (19)

assuming x�
1 > 0 (otherwise x�

2 D d ). This is an endogenously induced risk
aversion due to interdependencies among ex-ante and ex-post decisions subject
to the security constraints. Thus, the market share of the risk-free higher-cost
technology 2 is determined by the quantile of the distribution function describing
uncertainties a1 of the risk-exposed technology 1 and by the ratio of c2=b, i.e., of
production cost c2 and back-up cost b. It also depends on x�

1 . Although not at risk
(a2 D 1), the optimal production level of technology 2 is defined by (19) through
interdependencies among technologies participating in the same energy supply
system. We can call it as a systemic risk. Interdependencies induce endogenous
systemic risks and quantile type energy security constraints (19). Therefore, apart
from exogenous risks, the production and the market are subject to endogenous
risks dependent on the level of x1; x2. In financial applications (Rockafellar and
Uryasev 2000) these constraints characterize Value-at-Risk (VaR). Optimal value of
stochastic minimax model F.x�/ characterize conditional Value-at-Risk (CVaR).

In the case when both technologies (producers) are exposed to risks, the existence
of optimal positive production follows from similar equations

Fx1.0; 0/ D c1 � bEa1 < 0;

Fx2 .0; 0/ D c2 � bEa2 < 0:
The structure of optimal solution conceptually is similar as in case Sect. 6. In

particular, there may be a situation with c2�bEa2 � 0, when producer 2 is inactive,
but the cost effective producer 1 is active now with the insurance provided by the
back-stop technology.

These examples emphasize that market shares of technologies are to a larger
extent determined by the contingencies and interdependencies of technologies, in
which case the less efficient but with lower risk technology will likely have a higher
share than a more efficient, but with higher risk exposure technology.

6.3 Uncertainty and Increasing Returns

Negative impacts of standard technologies may incur high implicit costs induced
by regulations. Although this creates favorable conditions for new technologies,
uncertainties of the demand may affect them. Let us consider the right chart of Fig. 4.
If energy demand d does not exceed the break-even point b, then technology 1 is
the cost-efficient solution. In this case, new expensive technology 2 may become
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cost-efficient only under additional feasibility constraints, say, on permitted secure
pollution level l of the type

l1x1 C l2x2 � l

where li is the pollution from unit production by technology i , l1a > �1; l1 > l2.
If the planning time horizon is such that the demand exceeds b in Fig. 4, then the
optimal solution is to develop new technology 2 with increasing returns starting
from t D 0.

Uncertainties and risks may significantly affect this conclusion. The break-even
point b characterizes only an expected value, say, b D pb1C.1�p/b2, where b1; b2
are break-even points associated with two probable slopes of cost function C2.x/
characterized by probabilities p and 1 � p. Therefore, the value b is represented
by an optimistic scenario b1 < b and a pessimistic scenario b2 > b. Assume p
is large enough, i.e., b1 < b has a large probability and the risk 1 � p of extreme
event b2 can be ignored. Then mature technology 1 provides a cost-efficient solution
with the safety level p and the value at risk b2 with probability 1 � p. Conversely,
if 1 � p > p, and we can ignore extreme event b1, then the cost-efficient solution
requires immediate development of new technology 2 that will have the safety level
1 � p and the value at risk b1 with probability p. The value at risk is understood in
the sense of potential higher costs associated with the use of new technology. The
safety constraints in this example are similar to risk indicator, see Sect. 8.1.

7 Decisions Under Uncertainty

This section analyzes alternative representations of uncertainty in the simplest case
of two-period bottom up model (12)–(14) with uncertain demand.

7.1 Scenario Analysis, Pareto Optimality

Assume again that there is only two time intervals: the current and the future, t D
1; 2. Let us denote by x a total energy production level which is feasible to achieve
in period t D 1 in order to meet uncertain demand d.!/ in period 2. Let us denote
d.!/ for the simplicity by a random variable � .

The main question then is the following: in which sense x satisfied uncertain
demand � , i.e.,

“x D � 00: (20)

The standard deterministic models assume that � is known, therefore, in this case
equation (20) raises no questions about its solution, x� D � .

As long as there is uncertainty about the demand � , then for any fixed x, there will
be risks associated with the underestimation of the demand, when x < � and with its
overestimation, when x � � . The situation x � � is associated with sunk costs, in
other cases, with holding costs. Let us assume that these costs can be characterized
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Fig. 6 Uncertain costs (left) and worst-case solution (right)

by a linear function ˛.x � �/, where ˛ is the unit surplus-cost. The situation x < �
is characterized by a linear function ˇ.� � x/, where ˇ is the unit shortage cost.

The cost function C.x; �/ associated with a decision x can be written as
C.x; �/ D �x C ˛.x � �/, when x � � and C.x; �/ D �x C ˇ.� � x/ when
x < � , or in short

C.x; �/ D �x C maxf˛.x � �/; ˇ.� � x/g; (21)

where � is the unite production costs. Figure 6 (left) shows this function for � D 0.
It is possible now to reformulate the symbolic (20) as the minimization of C.x; �/
for all uncertain � . This is the simplest decision problem under uncertainty that can
be used as a test problem for evaluating perspectives of different approaches for
designing robust solutions. Let us consider some of them. For the sake of simplicity
we often assume that � D 0.

According to the traditional scenario analysis, the model, in our case the
minimization of cost function C.x; �/ “for all !” is solved for every scenario
�1; �2; : : : . Figure 6 (left) shows that for any given � the optional solution is
x.�/ D � . Therefore, scenarios �1; �2; : : : ; �N produce trivial solutions

x.�1/ D �1; x.�2/ D �2; : : : ; x.�N / D �N ;

which do not tell us how to choose some decision x that will be a reasonably good
(robust) whatever be the uncertain demand � .

We can also view the minimization of C.x; �/ for all � as a multi-objective
optimization problem with the set of criteria C.x; �/; � 2 �. Figure 6 (left) shows
that any solution x.�/ D � is a Pareto optimal solution, i.e., any point � from the
set of uncertain demand � is a Pareto-optimal solution. Again the main question is
about a Pareto-optimal solution that will be in a sense robust against all potential
scenarios of demand from �. Let us also realize that any scenario � may have the
likelihood 0.
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7.2 Interval Uncertainty, Attainable Sets, Worst-Case Analysis

One clear and easy way to characterize uncertainty is by an interval or even sets of
possible values – set-valued estimates. In other words, we can think of uncertainty
� as a variable assuming values from a set �. For example, we may assume that
uncertain demand � is between a lowest pessimistic value � and highest optimistic
value � . The interval Œ�; �� characterizes also the set of attainable solutions, i.e., any
point in Œ� ; �� cannot be excluded as a candidate for robust solution. Further research
proceeds often by assigning a certain reference point 	 for real demand � , usually
the middle point or the centroid of �; the optimal robust solution is calculated
by min

x
C.x; 	/. In our case, the optimal solution x.	/ minimizing C.x; 	/

is x.	/ D 	 with optimal value C.x.	/; 	/ D 0. The sensitivity analyses is
usually used to examine values C.x.	/; �/ for � ¤ 	. For our problem, the worst
case situation occurs when � D � if ˛ > ˇ or � D � if ˛ < ˇ, i.e., x.	/ leads to
large variations of C.x.	/; �/, � ¤ 	.

Our simplest decision problem under uncertainty shows that the straightforward
calculation of optimal solutions for every scenario provides no clue about a robust
solution although each of them can be a Pareto optimal solution. Set-valued esti-
mates of uncertainty by intervals show that an arbitrary solution such as the middle
point 	 may have large variations for � 2 �. The worst-case approach chooses a
solution x minimizing impacts of the worst-case scenario, i.e., the function

F.x/ D max
�
C.x; �/:

Figure 6 (right) shows that if the uncertainty of � is characterized by an
interval Œ�; � �, the worst-case solution is �� D .ˇ� C ˛�/=.˛ C ˇ/, which can
be viewed as the mean value of two extreme situations defined by the lowest � and
the highest � demands with weights ˛=.˛ C ˇ/, ˇ=.˛ C ˇ/. Thus, the worst case
analysis is in a sense equivalent to assigning positive probability weights ˛=.˛Cˇ/,
ˇ=.˛ C ˇ/ only to the extreme situations � , � and calculating then the mean value
of � and � with respect to these weights. This approach may be considered as a
step back from standard deterministic models when the,, solution of (20) is chosen
as the mean value E� of � calculated on the basis of historical observations or/and
questionnaires about all possible � .

Unfortunately the characterization of uncertainty only by sets does not provide
any additional information about more or less reasonable values of uncertain
variables. In this situation the guaranteed solutions x D � is often recommended
which satisfies any demand � from the interval Œ� ; � � although � practically has
probability 0.

7.3 Weights

The simple and easy characterization of uncertainties by sets of scenarios
with straightforward scenario analysis and worst-case calculations arose serious
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skepticism about robust solutions. The following example illustrates more deep
concerns regarding these approaches.

Consider a two type of situations with uncertainty facing by a group of 10
producers. In the first situation the disruption of supply may occur at once from
all producers due to some systemic failure in one out of ten years. In the second
situation the disruption of supply may occur independently from each of the ten
producers also in one out of ten years. The set-values estimates of the uncertainty
for the first type of shock is the set 0,10, whereas the set-values estimate for the
second type of shock is the set 0; 1; : : : ; 10. The scenario analysis and the worst
case calculations would not emphasize the first type of disruption. But actually this
is the most destructive situation, although the set of scenarios 0, 10 is a subset of
much richer set 0; 1; : : : ; 10. In fact, we have more information then just a set of
scenarios. The chance of disruption from all 10 producers is 10�1 in the first type of
shock and only 10�10 in the second type of shock. Definitely, from this information
the main attention in the policy recommendation must be given to the security of the
supply under the first type of shock.

A more general idea to characterize the uncertainty is not only by identification
a set � of admissible scenarios � 2 �, but also by ranking them according to
the frequency of � or a degree of our belief. For example, if there is only a finite
number of scenarios �s; s D 1; : : : ; N , then the main idea is to derive a number ps ,
between 0 and 1, to indicate the degree of support ps; ps > 0;

PN
sD1 ps D 1,

from existing evidences (historical observations, questionnaires, experts opinions)
for a scenario �s to be the true scenario of the uncertainty. In particular, if there is
no evidences strongly supporting some of scenarios then they may receive equal
weights ps D 1=N .

Weights can be also derived not only for a particular scenario, but also for sets
of scenarios. For example, if two experts characterize uncertainty by two different
partially overlapping interval Œ�11 ; �

1
2 �, Œ�

2
1 ; �

2
2 �, �

1
1 < �

2
1 < �

1
2 < �

2
2 , then we can dis-

tinguish three sets: Œ�11 ; �
2
1 �, Œ�

2
1 ; �

1
2 �, and Œ�12 ; �

2
2 �. Intervals Œ�11 ; �

2
1 �, Œ�

1
2 ; �

2
2 � received

support by both experts. Therefore, we can support these intervals with weights
(1/4,2/4,1/4), where 4 is the total number of “votes” given by experts. These weights
can be interpreted as probabilistic degrees of believes providing a powerful approach
for coping with uncertainties as Sects. 6 through 8 demonstrate. Weights may also
be characterized inequalities, e.g., p1 C p3 � p2 C p5 C p8; p8 � p9, and so on.

7.4 Probabilistic Degree of Belief, Fuzzy Sets

For several centuries the idea of numerical degree of belief has been identified with
the idea of probability. The use of probability or probabilistic calculus (the rule for
chances) in the theory of beliefs usually called the Bayesian theory was formalized
by the English clergyman T. Bayes (1702-1761). The notion of probability as the
numerical degree of support of evidences is viewed either as indeed objective
determined by given evidences, or subjective (personalized) view, which can be
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discovered by observing individuals opinions. The subjective view has become
predominant in the Bayesian theory after F. Ramsey, B. deFinetti, and especially
since L.J. Savage published his foundations of statistics in 1954 (see discussion
in (Shafer 1976)).

The ranking of alternative scenarios of uncertainty by probability weights has
essential advantages for modeling of complex systems. First of all, this allows us in
a consistent manner to represent within the same model both statistical uncertainty
from “hard” statistical evidences (observations) and from “soft” public and expert
opinions. Secondly it allows the use of powerful stochastic Monte Carlo simulation
methods to model the propagation of uncertainties through complex systems and
the valuations of robust solutions by using distribution free stochastic optimization
methods.

Thirdly, the probabilistic approach allows us to formulate the concept of learning
processes with sequential resolution of uncertainties and their interdependencies in
time and space. This has decisive consequences for designing flexible robust policies
incorporating within the same model ex-ante (anticipative) decisions x jointly with
their ex-post (adaptive) adjustments y activated when new information is arrived.

The model of Sect. 5 and its simple versions in Sect. 6 incorporates such
decisions. From Sect. 6 follows that the coexistence of such decisions within the
same two-stage model induces robust solutions characterized by quantiles defined
by the structure of the model. This co-existence creates a key feature of robust
policies – their flexibility of adapting to new information. Unfortunately, other
approaches e.g. the fuzzy-set theory have no such possibilities. Besides, there is
no well established empirical method to quantify fuzziness (or vagueness) similar
to frequency analysis of real observations, experiments, results of questionnaires or
expert judgments as it exists in the probabilistic approaches.

8 Probabilistic and Stochastic Models

The power of probabilistic approaches stems also from the ability to represent
uncertainty by either probabilistic or stochastic models. In other words, scenarios
of uncertainties can be characterized by probability distributions or/and by random
variables often in the form of scenario generators. For example, by using Monte
Carlo simulations, a random set of scenarios can be easy sampled (generated) for
any decisions x from analytically intractable multivariate dependent on x probabil-
ity distributions. Stochastic optimization methods allow then to find robust solutions
of complex analytically intractable models by using only these observations. In
contrast to stochastic, probabilistic models attempt to characterize the uncertainty
completely and explicitly in terms of analytically tractable characteristics of
probability distribution functions. For example, expected values that lead often to
solving rather complex partial and integro-differential equations analytically and
even numerically tractable only for small number of variables and specific simple
structures of models.
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Even for two random variables �1 and �2 with known probability distributions,
the evaluation of probability distribution for the sum �1 C �2 is already an
analytically intractable (in general) task. In the decision analysis this sum depends
on some decision variables e.g., we have x1�1 C x2�2, where x1 � 0, x2 � 0

are decision variables. The distribution of x1�1 C x2�2 is significantly affected by
decision variables requiring the evaluation of a family of distribution functions:
compare the situations x1 D 0; x2 D 1, and x1 D 1, x2 D 0. Stochastic optimization
models deal directly with observations of random variables of type x1�1 C x2�2 for
different x1; x2 without exact evaluation of their distributions (Ermoliev and Wets
1988; Marti 2005).

8.1 Risk Measures

It is important to see how the analyses of robust solutions changes with the intro-
duction of probabilistic demand � . Consider again functionC.x; �/ defined by (20).
For the simplicity of calculations let us assume that uncertainty � is characterized
by a continuous probability density function, therefore the expected cost function

F.x/ D �x C Emaxf˛.x � �/; ˇ.� � x/g (22)

has continuous derivatives. The minimization of F.x/ defines a solution that is
optimal in a sense with respect to all � . The function F.x/ defined by (22) is the
simplest case of so-called stochastic minimax models (see (Ermoliev and Leonardi
1982; Ermoliev and Wets 1988)); If ˛; ˇ; � are deterministic unit cost, and ˇ > � ,
then the unique optimal solution x� minimizing F.x/ exists and it satisfies the
following optimality condition (see (Ermoliev and Leonardi 1982; Ermoliev and
Yastremskii 1979; Rockafellar and Uryasev 2000)).

P f� � xg D ˛ C �

˛ C ˇ
: (23)

In other words, the robust solution x� is a quantile of the probability distribution
of � which guarantees that only with probability .˛C �/=.˛C ˇ/ actual demand �
exceeds the production level x�. In financial applications solution x� satisfying (23)
is characterized by important Value-at-Risk (VaR) risk measure (see discussion
in (Rockafellar and Uryasev 2000)). In other words, simplest stochastic optimization
version (22) of minimization function (21) induces risk aversion in the form of
quantile characterized by (23). It is important that x� characterized by (23) utilizes
the whole distribution of � , and not only two worst case scenarios � , � as in the
worst-case approach of Sect. 7.2. Thus probabilistic model of uncertainty induces
risk aversion dependent on the whole structure of the decision model including the
distribution of uncertainty, and the structure of costs.

It is interesting to compare concepts of solution defined by (23) for uniform
distribution of � in Œ� ; �� and the worst-case approach defined in Sect. 7.2. From (23)
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for � D 0 it follows that the optimal solution x� of (23) for the uniform distribution
in Œ� ; �� satisfies the equation

� � x�

� C �
D ˛

˛ C ˇ

or

x� D �
ˇ

˛ C ˇ
C �

˛

˛ C ˇ
;

i.e., it is identical with the worst-case solution.

8.2 Two-Stage Model

It is important now to see connections between induced risk aversion of type (23)
and adaptive ex-post decisions y.�/ of STO model defined by (12)–(14). The
minimization of function (22) can be reformulated in the form of model (12)–
(14) with ex-ante anticipative decision x and ex-post adaptive decision y.�/ D
.y1.�/; y2.�// defined by minimizing

�x C ˛Ey1.�/C ˇEy2.�/

subject to security of supply constraints

x2 C y1.�/ � y2.�/ D �:

This is a simplest version of stochastic model defined by (12)–(14), where y1.�/,
y2.�/ are ex-post decisions acting after observation of real demand � . Since ˛ > 0,
ˇ > 0 then the optimal y�

1 .�/ D maxf0; � � xg and y�
2 .�/ D maxf0; x � �g, what

leads to the choice of ex-ante optimal x� minimizing function (22).
In other words, the co-existence of ex-ante x and ex-post decisions y.�/ in model

(12)–(14) induces systemic risk aversion endogenously defined by the structure
and decisions of the whole related energy system that in the simplest case reduces
to (23).

9 Concluding Remarks

Analyzed simple models of the TC under uncertainty and increasing returns easily
demonstrate that new technologies require dedicated efforts. Such technologies are
initially unattractive, but they offer uncertain potential for future improvements. In
this sense, technological change arises out of the rationality (from social, economic,
environmental, energy security perspectives) pursuing investments in anticipation
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of future returns within an appropriate inter-temporal optimization framework.
Simplicity of the model easily shows the need for proper treatment of uncertainty
and robust solutions calling for systemic rather than standard NPV or real option
theory valuations. New approaches to endogenous discounting allow to focus on
uncertain long-term horizons of break-even points dependent on policies which
affect break-even points, feedback discounting, and so on. Analyzed simplified
models provide insights for designing realistic large scale and long-term models.

For example, they demonstrate why simple scenario-by-scenario and/or decision-
by-decision evaluations may be misleading, and why stochastic models allow to
address jointly anticipative and adaptive stages of robust decision processes.
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Stochastic Programming Perspective
on the Agency Problems Under Uncertainty

Alexei A. Gaivoronski and Adrian Werner

Abstract We study the application of the stochastic programming framework to the
analysis of complex agency problems under exogenous and endogenous uncertainty,
presenting several models that deal with different types of such uncertainty. We
demonstrate that the utilization of this framework extends the possibilities for the
definition of parameters of incentive schedules. In this paper, we often refer to a
model in a telecommunication environment consisting of a regulator (principal) and
a service provider (agent) and study different aspects of regulation and licensing.
However, the results can easily be generalized to other principal agent relationships.

1 Introduction

Agency or principal-agent problems refer to the multitude of economic and organi-
zational situations where one or more agents perform actions involving management
financial and other resources on behalf of other agent called principal. The principal
has to employ incentive mechanisms in order to align the objectives of managing
agents and make the results conforming to his objectives. The classical example of
such situation is the relationship between shareholders of a firm and its management.
Similar and important example is the relationship between the regulatory bodies
striving to maximize the public good and industrial actors belonging to some
industrial branch like telecommunications. Important topic of the current debate on
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financial regulation is how to modify the current incentives in investment banking
which favored the excessive short term risk taking without paying due regard to
the long term performance and which are regarded by many analysts as important
contributing factors to the recent recession.

The purpose of this paper is to provide a stochastic programming perspective
on principal-agent problems. Beginning from the 70ties, such problems have
emerged in the economic theory as some of the most important tools to analyze
rational economic behavior of economic actors in the presence of asymmetric
information. For the exposition of these problems and their role in the modern
economic theory one can consult Laffont and Marimort (2002), see also Baron
and Myerson (1982); Carlier (2001); Grossman and Hart (1983); Holmstrom and
Milgrom (1987); Laffont (1994); Rochet and Choné (1998); Shavell (1979); for
more recent developments see Arifovic and Karaivanov (2010); Bond and Gomes
(2009); Karni (2008); Strausz (2006) and many others.

Two types of principal-agent models with asymmetric information have been
studied: moral hazard and adverse selection.

In the case of moral hazard the principal does not observe the actions of the
agent, but can observe their consequences. The agent and the principal possess
the common knowledge of the probability distribution H.xI a/ of the outcomes x
of the agent’s action a 2 A: The principal has to offer the incentive contract �.x/
to the agent and he finds such contract by maximizing his expected utility:

max
�.x/2˚ EH.xIa.�//uP .�.x/; x/ (1)

where the expectation is taken with respect to the distribution of outcomes
H.xI a.�// that depends on the agent’s response a.�.x// to the incentive �.x/
that she obtains (and the principal predicts) by maximization of the agent’s utility:

max
a2A EH.xIa/uA.�.x//C vA.a/ (2)

where uA.w/ is the agent’s utility of money and vA.a/ is the agent’s utility of action.
In addition, the principal solves (1) with the following participation constraint:

max
a2A EH.xIa/uA.�.x//C vA.a/ � Nu (3)

where Nu is the expected utility that the agent can obtain elsewhere in the economy.
It is important that in this formulation the principal possess a substantial amount of
information about the agent: the description of her set of actions, the agent’s beliefs
about the outcomes of her actions, the agent’s utility function with respect to actions
and money and, finally the agent’s substitution utility level.

The adverse selection deals with the principal’s uncertain knowledge about
important characteristics of the agent. It is assumed that the agent(s) is characterized
by the vector of parameters � known to the agent, but unknown to the principal (like
internal costs). The principal’s knowledge about these parameters is described by
some apriori distribution H.�/: The principal wants to induce the agent to obtain
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desirable outcome (perform desirable action) that depends on � and for this purpose
he designs a contract � D .x.�/; t.�// that specifies the monetary transfer t.�/ to
the agent with parameters � provided she obtains the outcome x.�/: He finds this
contract by maximizing his expected utility

max
x.�/;t .�/

E�uP .P.x .�// � t .�// (4)

where P.x/ is the monetary effect for the principal of the agent’s outcome x. The
principal knows the utility function of the agent and selects the contract in such a
way that the agent will select the action and the reward that corresponds to its actual
parameters �; i.e.,

h.�; x .�//C t .�/ D max
a
.h.�; x .a//C t .a// (5)

where h.�; x/ is the monetary effect for agent with parameters � of the outcome x:
In addition, the principal solves (4)–(5) taking into account the following participa-
tion constraint:

h.�; x .�//C t .�/ � 0; 8� (6)

The economic research cited above placed the emphasis on the study of the
properties of the solutions of problems (1)–(3), (4)–(6), their specifications,
extensions and combinations. Considerable attention was dedicated to the study
of the characteristics of the optimal contracts with the emphasis on analytical
results and their economic interpretation with consequences for specific application
fields. Indeed, the principal-agent problems with asymmetric information are the
natural paradigm for modeling of many economic phenomena. Insurance theory
assumes that the insurant’s level of caution can not be observed by the insurer
Arnott and Stiglitz (1991); Spence and Zeckhauser (1971). In innovation or
employment processes firm owners may not be able to observe the effort researchers
or employees exert, see Aghion and Tirole (1994); Holmström (1999). Investors may
have limited or no investment information and hire therefore an adviser in order to
optimize their investments. Then this adviser’s effort on the investment return must
be distinguished from general market effects as noted in Baron and Holmström
(1980). Another large area of application examples can be found in liberalized
industrial sectors such as telecommunications Armstrong (1998); Audestad et al.
(2006) or power management Pettersen (2004). Regulation represents a particularly
important agency problem in such industrial sectors, see Laffont (1994); Verikoukis
et al. (2004).

However, the emphasis on the study of the analytical properties of the principal-
agent problems in economic literature has imposed certain limits and simplifications
on the nature of the problems under study, and in particular:

1. Limited possibilities for the treatment of uncertainty. Both moral hazard and
adverse selection principal-agent models aim at the modeling of uncertain
knowledge of the principal about agent’s actions and characteristics. However, in
order to preserve the analytical tractability they introduce additional assumptions
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about the information in the possession of the principal. For example, in the
moral hazard models it is assumed that the principal knows the agent’s beliefs
about the consequences of her actions. In adverse selection models the emphasis
is on the creation of the incentives for the agent to reveal her private information,
suggesting implicitly that the agent is in possession of precise knowledge about
her economic environment. Often these and other informational assumptions
of such models are not satisfied in practice due to uncertain nature of many
economic phenomena like users demand, price development, technological
progress, external factors like weather, catastrophic shocks and disruptions, etc.

2. Limits on the structure and complexity of decision models. Again, the emphasis
on the analytical results and their economic interpretation creates an incentive to
study simpler optimization models with specific types of the objective functions
and constraints. In particular, quite often the problem formulations (1)–(3), (4)–
(6) are too general and simpler problems are studied in order to preserve the ana-
lytical tractability. For example, in Carlier and Dana (2005) it is taken vA.a/D �
a in (2), in Carlier (2001) it is chosen uP .P.x .�// � t .�// DP>x.�/ � t.�/

in (4), in Rochet and Choné (1998) it is taken h.�; x/D �>x in (5). The decision
spaces of the principal and agent is also very simple: for the principal it is the
monetary incentive to the agent, and for the agent it is her action, often without
further structure. Consequently, the constraints in the principal-agent problems
are of two types: incentive compatibility constraints (2),(5) and participation
constraints (3),(6). However, the relationship between principals and agents very
often have more structured and complex decision space. For example, the agents
may select portfolios of industrial projects, plan production of goods and provi-
sion of services in order to achieve the aims set by the principal, the principals
may decide about the resources available to agents. This requires inclusion
of other types of constraints like resource constraints, production and other
constraints that may depend on decision variables of both principal and agent.

Some economists recognize these limitations of the traditional principal-agent
theory, observing that the adequate modeling of uncertainty can result in more
realistic contracts. Suggesting the directions for future research in incomplete
contracts, Tirole (1999) writes that the robustness of the theoretical contracts relative
to often much simpler observable contracts is an important issue. He adds: “By
robustness, I mean that these simple contracting forms are likely not to be very
suboptimal when the parties make mistakes in their view of the world (this of course
requires a theory of bounded rationality) or in the execution of the contract”.

In this paper we aim at the relaxation of the limits described above by taking the
approach of stochastic programming, which is the optimization methodology devel-
oped specifically for modeling of optimal decisions under uncertainty, see Birge
and Louveaux (1997); Ermoliev and Wets (1988); Kall and Wallace (1994). The
stochastic programming is less concerned with the study of the structure of the
optimal solutions and obtaining of analytical results, but places the emphasis on
the development of the models and numerical methods for their solution that are
adequate for specific problem classes, incorporating if necessary the rich structure
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of decision space, uncertainty and constraints. This is the complementary approach
to the principal-agent problems compared to one studied in the economic literature,
but it utilizes some of the concepts developed there.

The contribution of this paper consists in the development of a series of stochastic
programming models of different instances of principal-agent problems, that take as
the starting point some of the themes found in the economic literature and supple-
ment them with the treatment of uncertainty customary to stochastic programming.
Besides, we show how additional constraints can be incorporated in the principal-
agent models. After this we consider briefly one solution approach for such models.
In order to do this, it was necessary to enhance the stochastic programming
framework with the concepts of bilevel programming. There exists a substantial
literature on bilevel programming, see Colson et al. (2005); Dempe (2002) and
references there. This literature is concerned mainly with the deterministic case,
Wolf and Smeers (1997) and Patriksson and Wynter (1999) being among the few
exceptions. In order to be more specific, we often refer to the telecommunication
environment, where an important example of the principal-agent problem is the
relationship between the regulation authority and industrial actors. We do not aim
here to provide a detailed exposure of the regulation in telecommunications, an
interested reader is referred to the recent papers by Cambini and Jiang (2009)
and Noam (2010). Exposition of the traditional economic-theoretical view on the
principal-agent problems in regulation in general one can find in Baron and Myerson
(1982) and Laffont (1994).

The rest of the paper is organized as follows. We start by formulating the general
deterministic principal-agent model in Sect. 2 where we illustrate the importance
of adequate treatment of uncertainty using a popular example from economic
literature. Section 3 discusses the utilization of concepts of stochastic programming
with bilevel structure for modeling and analyzing of different features of the agency
relationship. In Sect. 4 one solution approach is outlined and Sect. 5 rounds up with
conclusions.

2 Deterministic Case and Importance of Uncertainty

A general formulation of the principal-agent relationship can be given as follows.
Assume that the principal determines an incentive schedule � 2 ˚ � Rn inducing
a response a 2 A � Rm of the agent. The agent maximizes her utility UA.a; �/
whereas the principal maximizes his utility UP .a; �/, both depending on the
decisions a and �. Furthermore, assume that the principal’s and the agent’s decisions
are subject to constraints gA.a; �/ and gP .a; �/, respectively. Consequently, the
principal solves the following problem

max
�2˚ UP .a; �/ (7)

gP .a; �/ � 0
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where the agent’s decision a is found as the optimal solution of her problem

max
a2A UA.a; �/ (8)

gA.a; �/ � 0

In economic terms, this formulation covers both the moral hazard problem (1)–(3)
and the adverse selection problem (4)–(6).

The regulation represents a particularly important application field for the agency
problem (7)–(8), see Laffont (1994); Verikoukis et al. (2004). The interference of a
governmental authority with the behavior of industrial agents can have a catalytic
but also constraining effects on the economic development. Therefore, regulatory
policies should be designed carefully. Likewise the effects on the considered
industry sector and possible interrelations with other fields of public economics
have to be analyzed. Generally, the policy of a regulator consists of an incentive
schedule and of obligations inducing the regulated firm(s) to follow certain policy
guidelines. In a liberalized sector, such guidelines may comprise issues of customer
protection, control of the entry of new competitors and of the market participants’
behavior toward each other or ensuring efficiency and fast implementation of new
technology. Different aspects of regulation are a subject of considerable research
activity. Important issue that remained outside of the scope of this activity is
inherent uncertainty of industrial environment, like the customer’s acceptance of
new services and the pace of the technological progress.

The interaction between both decision makers can be described in terms of a
bilevel programming problem (BLP) or Stackelberg game or, more generally, as
a mathematical program with equilibrium constraints (MPEC). For the analysis of
realistic problems it is frequently necessary to control the feasibility of the actors’
decisions by more complex constraints than only their domains. So far, the theoreti-
cal analysis was often simplified considerably by ignoring most of the constraints, in
particular those on the agent’s decisions. Also the principal’s decisions are usually
studied subject only to a participation constraint. Such a constraint reflects that the
agent would not take part if a given decision of the principal would leave her with
a too low utility. Recent economic approaches often utilize first-order optimality
conditions on the agent’s response. This is essentially a reformulation to a one-level
nonlinear programming problem. If the agent’s decision problem has no constraints
such a one-level problem can be analyzed easily. But in practice an incentive
schedule may influence not only the optimality of the agent’s decisions via her utility
function but also their feasibility by means of constraints. In our exposition we will
therefore explicitly assume the existence of constraints on both actors’ decisions.

Both objective functions and constraints in the problems (7)–(8) may depend on
random parameters. One conceivable approach present in the economic literature
is to substitute the random parameters by their expectations and solve resulting
deterministic optimization problem. The following example sheds some light on
the inadequacy of such approach.



Stochastic Programming Perspective on the Agency Problems Under Uncertainty 143

Example 1. Moral hazard model of output sharing. This model is present promi-
nently in the economic literature, see Arifovic and Karaivanov (2010); Dutta and
Zhang (2002); Holmstrom and Milgrom (1991); Stiglitz (1974) and references
there for this problem, its extensions and applications. It has many applications to
sharecropping in agriculture, franchising, licensing, publishing contracts, leasing
of equipment, etc. In order to be specific, let us assume that the principal here
is a telecommunication network provider who is in possession of the network
infrastructure. The agent is a service provider that needs to lease this infrastructure
for provision of her services. She employs the effort z that results in profit y D zC"

where " is distributed normally with zero mean and variance �2: The agent’s effort
is unobservable to the principal, but the profit is observable. The principal is risk
neutral, and we shall assume the risk neutrality for the agent too. The case of risk
averse agent considered in Arifovic and Karaivanov (2010) and others exhibit the
same phenomena as the risk neutral case, so we consider the risk neutrality for
transparency purposes.

The principal has to design a contract for leasing of the infrastructure to the agent.
This contract consists of two components: fixed upfront payment f and share 1� s
of the agent’s profits, s 2 Œ0; 1�. The principal wants to select the contract that
maximizes his expected profit, i.e. he solves the problem

max
s;f

E .1 � s/ y C f D max
s;f

.1 � s/ z C f (9)

The effort z D z.s; f / is the decision variable of the agent. The agent selects it in
order to maximize her profit net of payments to the principal, this is done by solving
the problem

max
z

E

�
sy � f � 1

2
cz2
�

D max
z

�
sz � f � 1

2
cz2
�

(10)

That is, the agent experiences the cost of effort that is proportional to the square of
effort, as it is assumed often in the economic literature cited above. Following this
literature we shall take c D 1: In addition, both the agent and the principal know
the possible profit u that the agent can get by refusing the contract and engaging in
some other activity, for example leasing the infrastructure from some other source or
building her own infrastructure. Therefore the principal solves the problem (9)–(10)
with additional participation constraint:

max
z

�
sz � f � 1

2
cz2
�

� u (11)

Observe that the problem (9)–(11) is a specific case of the general problem (7)–
(8). The solution .s0; f 0/ of this problem is well known in the economic literature
and consists of franchising: the principal demands the fixed upfront payment and
renounces to obtain any share of profit resulting from the agent’s activity:
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s0 D 1; f 0 D 1

2
� u

where we have used our convention c D 1: So far we have followed Arifovic
and Karaivanov (2010) in the setup of this example. Let us now introduce some
additional uncertainty in this example and investigate its effects. Suppose that
neither principal nor agent know exactly the alternative level of the profit u
from (11). Instead, the knowledge of the principal about u is described by some
probability distribution. In order to be specific, let us assume that u is distributed
uniformly on Œ0; 2Nu�; Nu � 0:5:

The contracting process in this case unfolds as follows. At the first stage the
principal draws the contract .s; f / and offers it to the agent. Having this contract,
the agent performs additional study of her opportunities and gets to know the exact
value of her alternative profit u: On the basis of this knowledge the agent decides
whether to accept the contract or not: if she can get superior profit from the principal
(constraint (11) is satisfied) then the agent accepts the contract and the expected
profit of the principal is defined by (9). Otherwise the agent declines the contract
and the expected profit of the principal becomes zero. Let us derive the optimal
contract for this contracting process, taking c D 1:

First of all, the optimal effort z.s; f / of the agent can be obtained from (10)
explicitly:

z.s; f / D s; max
z

�
sz � f � 1

2
z2
�

D 1

2
s2 � f

Therefore the participation constraint (11) takes the form:

1

2
s2 � f � u

that yields the following expression for the expected profit of the principal � .s; f / ;
with expectation being taken with respect to both " and u:

� .s; f / D

8̂
<
:̂

.1 � s/s C f if
1

2
s2 � f � 2Nu

1

2Nu ..1� s/s C f /

�
1

2
s2 � f

�
if 0 � 1

2
s2 � f � 2Nu

: (12)

It remains to maximize this function with respect to f and s 2 Œ0; 1�: After some
elementary but tedious algebraic transformations we obtain the following expression
for the optimal contract .s�; f �/; that is again a franchising scheme:

s� D 1; f � D

8̂
<̂
ˆ̂:

1

2
� 2Nu if Nu � 1

8

1

4
if Nu � 1

8

; �
�
s�; f �� D

8̂
<̂
ˆ̂:

1

2
� 2Nu if Nu � 1

8

1= .32Nu/ if Nu � 1

8

(13)



Stochastic Programming Perspective on the Agency Problems Under Uncertainty 145

Let us compare this optimal contract with the contract that the principal would
offer by substituting the expected value Nu of alternative profit u into the participation
constraint (11) and solving the problem(9)–(11) with this constraint. Substituting
this solution into expression (12) we obtain the expected value of the principal’s
profit .s0; f 0/ for the contract, designed with the averaged participation constraint:

s0 D 1; f 0 D 1

2
� Nu; � �s0; f 0� D 1

4
.1 � 2Nu/ (14)

We see that the difference between the optimal stochastic contract .s�; f �/ and the
optimal average contract .s0; f 0/ is considerable. Both contracts renounce the profits
from the agent’s activity (this will be different in the case of the risk averse agent),
but they adopt very different policies with respect to the fixed upfront payment. The
difference between the two contracts is shown in Figs. 1 and 2.

We see that the optimal contract exhibits two distinct modes of behavior. If the
possible range of the alternative profits for the agent is relatively small (� 1=4/

then the optimal contract tries to win the agent in all cases by satisfying all possible
participation constraints and demanding considerably less upfront payment than
the contract for the average value of the alternative profit. Even though the upfront
payment is smaller, the average value of the principal’s profit is considerably larger
because the agent will always accept the contract. If the range of the possible
alternative profits exceeds the threshold of 1/4 then the optimal strategy becomes
different: the principal demands a constant upfront payment irrespective of the
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Fig. 1 Dependence of the fixed upfront payment f on the average alternative profit of the agent
for the optimal contract .s�; f �/ and the optimal contract .s0; f 0/ with averaged participation
constraint
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Fig. 2 Dependence of the principal’s profit � .s; f / on the average alternative profit of the agent
for the optimal contract .s�; f �/ and the optimal contract .s0; f 0/ with averaged participation
constraint

upper bound on the possible alternative profits, discarding the agent in the case
of her too high expectations. By contrast, the contract for the average value of
uncertain alternative profit can not capture the structure of uncertainty and yields
considerably lower profit for the principal. ut

Example 1 highlights the importance of the adequate modeling of uncertainty
in the principal-agent models. By interpreting the agency problems as stochastic
programming problems equipped with bilevel structure, the incomplete information
about several aspects of the principal agent relationship can be taken into account
more adequately. The next sections are dedicated to the development of this
viewpoint having as a reference the telecommunications environment.

3 Stochastic Programming Formulations of Agency Problems

This section demonstrates the utilization of stochastic programming techniques for
the modeling and the analysis of agency problems. We give a closer characterization
of different types of uncertainty and discuss specific aspects of the relationship in
more detail.

Consider the deterministic agency model (7)–(8). This formulation indicates that
the incentive schedule � may assume a number of different shapes while modeling
concrete and less concrete goals. Concrete requirements are, for example, the
bounds on market share or minimum coverage rates. They influence the feasibility



Stochastic Programming Perspective on the Agency Problems Under Uncertainty 147

of the agent’s decisions and can therefore be modeled as constraints on the agent’s
decision problem. Other goals, such as the best possible performance, affect the
optimality of the agent’s decisions. They can be modeled by penalties or rewards,
and in this way they become a part of the agent’s objective function. Also tax breaks
or subsidies, possibly with selective application in order to encourage investments
into unpopular regions, represent such kind of rewards. In our discussion we shall
focus on these so-called explicit incentive schedules. In multi-period formulations
of agency models additional implicit incentives, such as reputation or ratchet effects
discouraging the agent’s effort, may become important, see Meyer and Vickers
(1997).

When the principal is perfectly informed about the agent’s decision behavior and
about all model parameters he can predict her response a on a given schedule �
and find an optimal incentive schedule. Often such a perfect knowledge can not
be assumed and the agency problem contains uncertain parameters. This issue will
be addressed in the following subsection. We specify the general agency problem
(7)–(8) in more detail, taking into account uncertain parameters and constraints on
both actors’ decisions and discuss methods to treat both aspects. In Sect. 3.2 we
outline an alternative approach to incorporate the uncertainty about environment
parameters into a two-stage agency model. Section 3.3 is concerned with the
principal’s uncertainty about the agent’s decision behavior. This type of imperfect
information can be treated similarly, but the analysis is more elaborate. We consider
the ways to perform the estimation of the agent’s decision model and the ways to
incorporate benchmarks and monitoring processes. Finally, Sect. 3.4 indicates an
approach for modeling some aspects of licensing. Here, we focus on the possibility
of a license withdrawal if regulatory obligations are not met.

3.1 Formulation of Agency Problems with Uncertain Parameters

In the agency problems found in a modern telecommunications environment,
sources of uncertainty about the model parameters may be, for example, techno-
logical innovation, uncertain demand or Quality of Service issues such as failures or
network congestion. Also the behavior of other actors which are not considered in
the agency relationship may represent a source of uncertainty. Due to its situation,
the regulated firm is typically better informed than the regulator, such that both
actors may have different perceptions of the uncertain parameters. In what follows
we shall often refer to the principal as regulator, bit the presented concepts are valid
also for other types of principal.

The uncertainty about the environment parameters can be expressed by the help
of random variables, say ! 2 ˝ � Rp , with known or estimated probability
distribution defined on appropriate probability space. Then the regulator’s decision
problem (7) can be formulated as

max
�2˚.a/

E!UP .a; �; !/ (15)
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where the agent’s decision a is obtained as the optimal solution of the regulator’s
perception of the agent’s problem

max
a2A.�/E!UA.a; �; !/ (16)

The sets ˚.a/ and A.�/ of feasible decisions of the principal and the agent,
respectively, are described in more detail below. The agent’s decision problem (16)
may contain constraints which are part of the incentive schedule and thus depend
on both the agent’s decision a and the incentive �. Additionally, the problem
often comprises constraints which are independent of the incentive, for example
concerning the agent’s technology or environment conditions. Also the regulator
faces constraints on components of the incentive schedule. One such constraint is the
participation constraint, which was considered in Example 1. Generally, the actors’
sets of feasible decisions can be described by

˚.a/ D f� j gP .a; �/ � 0g (17)

A.�/ D fa j gA.a; �/ � 0g (18)

The constraints gP and gA may comprise deterministic constraints gPD.a; �/
and gAD.a; �/ as well as stochastic constraints gPS .a; �; !/ and gAS.a; �; !/.
The satisfaction of the stochastic constraints involving random parameters ! is
contingent on the exact realization of these parameters. Dependent on their meaning
several deterministic equivalent formulations are conceivable. Such constraints
may be satisfied on average, such as coverage rates or certain quality of service
requirements. This results in a deterministic equivalent formulation

E!gPS .a; �; !/ � 0

Often the reliability or coverage requirements require a satisfaction with given
minimal probability ˛. This yields a probabilistic constraint of the form:

Pf!jgPS .a; �; !/ � 0g � ˛

The satisfaction of still other constraints may be required for any realization of
the random variables. Examples of such constraints are the nonnegative customer
numbers or capacity constraints. Another example of such constraints is given by
the participation constraint. The general form of the participation constraint depends
on the timing of the agent’s decision. If the agent takes decision before uncertainty
is revealed then the appropriate participation constraint is

max
a2A.�/

E!UA.a; �; !/ � E!
NUA.!/;
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where NUA.!/ is the utility that the agent can obtain by engaging in alternative activ-
ities. If the agent takes decision after uncertainty is revealed then the participation
constraint becomes

max
a2A.�/ UA.a; �; !/ � NUA.!/ almost sure,

example of the latest case is the participation constraint (11) from Example 1.
Observe that in addition to the explicit constraints (17) the principal’s problem

may have implicit constraints that require nonemptyness of the agent’s feasible
set (18). These implicit constraints should be taken into account during design of
numerical methods.

One can notice a certain similarity between the bilevel problem (15)–(16) and
stochastic problems with recourse as in Kall and Wallace (1994) or Birge and
Louveaux (1997). Unfortunately, this similarity extends only to a certain point
because there is also a fundamental difference: stochastic problems with recourse
put the averaged optimal value of the recourse function in the integrated objective,
while the problem (15)–(16) depend on the optimal values of the agent’s variables.
This makes the problem (15)–(16) considerably more difficult numerically.

Another possibility to treat uncertainty in (15)–(16) is to consider minimax
approach of robust optimization as in Ben-Tal et al. (2009). This leads to quite
different problem formulations, which development is beyond the scope of this
paper.

3.2 Two-Stage Stochastic Programming Problem with Bilevel
Structure

There are many situations when the principal-agent interaction is distributed over
several time periods and uncertainty gradually reveals itself during this decision time
horizon. In the case of two periods such principal-agent decision process proceeds
as follows.

1. At the beginning of the first period the principal optimizes his utility on the
basis of information about the distribution of exogenous random parameters and
apriori knowledge about the agent’s preferences and utility function, that allow
the principal to predict the agent’s response. The agent optimizes her utility
having her own apriori information about the distribution of exogenous random
parameters. The decisions are implemented by both actors.

2. Additional information about exogenous uncertainty arrives to the actors that
may differ between the actors. Besides knowing more about the exogenous
uncertainty, the principal may learn more about the agent both from her actions
and from external sources.

3. In the light of this new information the initial decisions � and a may no
longer be optimal for both actors, and they may even violate some constraints.
Therefore both actors take corrective (or recourse) decisions that take into
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account newly arrived information. The agent optimizes her second period
utility utilizing updated distribution of remaining random parameters, while the
principal optimizes his second period utility utilizing in addition the updated
knowledge about the agent and predicting her recourse action.

The initial decisions in this framework should be taken by optimization of
respective global utilities that integrate the immediate utility of the initial decision
with the utility of recourse action.

Example 2. Spectrum licensing and development of mobile network. The regulator
(principal) awards the license for a new portion of spectrum to the network operator
(agent) that will establish a high speed data network of new generation. The license
involves a substantial fee to be paid by the network operator. The decision about
the fee amount is taken well before the demand for new services is known and even
well before the whole menu of the data services is clear to both actors. After that
the development of the network and services starts and the uncertainty in demand
gradually reveals itself. One possible scenario is that the revenues and profits from
the new network are smaller than expected and the firm has problems with servicing
its debts incurred due to the necessity to pay the license fees. This may result
in the recourse actions of both regulator and firm that may involve tax breaks,
renegotiation of license conditions or even abandonment of the license. ut
Example 3. Relationship between Virtual Network Operator (VNO) and Network
Operator (NO), see Audestad et al. (2002) and Curwen and Whalley (2007) for
definitions and discussion. The VNO (agent) will provide mobile telephony to a
population of customers, but she does not possess the mobile network. Therefore she
leases the network infrastructure from the NO (principal) for a fee that is determined
by a leasing contract defined by the NO. The future evolution of the demand patterns
is unclear at the time of the contract establishment. The VNO accepts the contract
and starts the service provision. Gradually the demand and other uncertain factors
become clear that may result both in overestimation and underestimation of the
revenue potential. In the case of underestimation the VNO will face a lack of
capacity and she may want to lease the additional capacity (recourse decision)
from the NO on new terms. In the case of overestimation the recourse decision
may consist in the renegotiation of the license fee or even the abandonment of the
operation altogether. ut

These situations can be described by the general stochastic principal-agent
problem with recourse that is a stochastic program with recourse equipped by bilevel
structure. This is an extension of the traditional stochastic problems with recourse
as in Kall and Wallace (1994) or Birge and Louveaux (1997). The initial decision of
the principal is obtained by solving the problem

max
�

E!fUP .�; a;QP .�; a; !/g (19)

gP .�; a/ � 0
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with a D a.�/ is the optimal solution of

max
a

E! fUA .�; a;QA .�; a; !//g (20)

gA.�; a/ � 0

where QP .�; a; !/ is the optimal value of the principal’s recourse problem (21)–
(22) with the solution �R D�R .�; a; !/ andQA.�; a; !/DQA.�; �R .�; a; !/ ; a;

!/ is the optimal value of the agent’s recourse problem (23)–(24).

QP.�; a; !/ D min
�R
FP .�; �R; a; aR; !/ (21)

fP .�; �R; a; aR; !/ � 0 (22)

with aR D aR .�; �R; a; !/ being the solution of the agent’s recourse problem

QA.�; �R; a; !/ D min
aR
FA.�; �R; a; aR; !/ (23)

fA.�; �R; a; aR; !/ � 0 (24)

The first-stage decisions can be interpreted as long-term anticipative decisions
while the second-stage recourse decisions represent short-term adaptive decisions
adjusting the strategy to the observed environment state.

Recourse problems may also represent a penalty for a violation of the stochastic
constraints where the penalty vector p may be chosen according to the importance
of satisfaction of the single constraints. Especially important in the agency theoretic
context is the interpretation of recourse problems as a penalty incurred by the
principal for unwelcome behavior of the agent, see for example the models in
Sects. 3.3.1 and 3.4. Additionally, the parameters of the agent’s recourse function
may be a part of the principal’s first-stage decision variables. For example, the
principal’s incentive schedule may comprise also the magnitude of the penalty for
violating certain regulatory obligations.

Problem (19)–(22) represents a two-stage stochastic programming problem with
recourse and bilevel structure. Several other formulations of such decision problems
are analyzed in Gaivoronski and Werner (2007). A specific feature of two-stage
agency problems is that the agent’s recourse problem is part of the principal’s
problem not only indirectly, through the agent’s objective function, but also directly
due to the participation constraint. Consequently, the principal’s decision is also
affected by the agent’s uncertainty about the model parameters. Let us illustrate this
dependence by further extending Example 1 with the moral hazard model of output
sharing.

Example 4. Two stage contract negotiation of output sharing with moral hazard.
Let us consider on a somewhat more general level the principal-agent problem
of Example 1, extending it to two periods with the special emphasis on the
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participation constraint. Namely, the principal takes the initial decision knowing
only the distribution of the agent’s alternative utility and modifies his offer after
uncertainty about this utility reveals itself. In this case it will consist of the following
steps:

• At the beginning the principal offers to the agent the initial contract .s1; f1/
knowing the distribution of her alternative utility u:

• After receiving the initial offer .s1; f1/ the agent observes her alternative utility
u and communicates it to the principal (or, the principal learns this value by his
own means).

• The principal extends to the agent the final offer .s; f / that he defines by
computing the solution to the problem

max
s;f;s1;f1

��U 0
P .s � s1; f � f1/C EuEy

˚
UP .y; s; f / IA.s;f;e/

��
(25)

where the output y is distributed according to the distribution H.yI e/ that
depends on the effort e of the agent. Here UP .y; s; f / is the principal’s utility
of the output y and the contract .s; f / ; the function U 0

P .s � s1; f � f1/ is the
principal’s disutility of the modification of the contract from .s1; f1/ to .s; f / ;
IA.s;f;e/ is the indicator function of the set

A .s; f; e/ D
�

u j max
e2E EyUA .s; f; y; e/ � u

�

that represents the random participation constraint and e D e .s; f / is obtained
from the solution of the agent’s problem

max
e2E EyUA .s; f; y; e/ (26)

where UA .s; f; y; e/ is the agent’s utility of the contract .s; f /, output y and the
effort e. This is the specific case of the two stage principal-agent problem (19)–
(24) where the agent does not has any recourse decisions and the principal has
the initial decision .s1; f1/ and the recourse decision .s; f /.

ut

3.3 Imperfect Knowledge of the Principal About the Agent

We turn now to consideration of imperfect information of the principal about
the agent’s decision behavior. The incentive schedule shall control the decisions
which the agent actually implements. However, it must be designed based on the
predictions of the agent’s decisions, which the principal obtains by solving his
perception of the agent’s decision problem. In the case of perfect information this
prediction coincides with the actual decision of the agent, but often an information
asymmetry between principal and agent exists that may result in incorrect incentive
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schedule. Typically, the principal has limited insight into the agent’s decision
process and can observe only part of the implemented decisions or results of the
agent’s decision problem, for example her achieved welfare. The agent is often
better informed about the environment and faces a disutility in terms of effort,
money or competitive disadvantage for the provision of additional information to the
regulator. Therefore the principal can not properly evaluate the agent’s response on a
given incentive schedule. In addition, the principal may face exogenous uncertainty,
which will further complicate the identification of the agent’s decision behavior. All
this will complicate the determination of an efficient and precise incentive schedule.
Consider for example an incentive schedule inducing the agent to efforts toward
low network congestion. The principal can not determine clearly if an observed
low congestion is due to actual efforts of the agent, such as capacity extension or
implementation of more efficient transfer technology, or if it is due to decreased
user demand. Such problems of moral hazard have been the subject of economic
research, see Holmström (1999); Mirrlees (1999).

Some aspects of the principal’s asymmetric information about agent’s parameters
are considered in the economic literature on adverse selection, for example in Baron
and Myerson (1982); Carlier (2001); Rochet and Choné (1998). The approach taken
in this literature is to derive a contract that will induce the agent to reveal its
private information to the principal. Such contracts require, however, additional
knowledge about the agent’s decision process and assume that the agent has the
perfect knowledge about her parameters, like costs.

One possible stochastic programming model that takes into account the uncer-
tainty about the agent’s decision is considered below. For the sake of transparency
we assumed here the perfect information about all other model parameters. Suppose
that the principal has a conjecture about the agent’s decision problem and obtains a
guess of her response on a given incentive schedule � by solving

max
a
UA.�; a/ (27)

gA.�; a/ � 0

However, he assumes that this solution is an imperfect estimation of the response
actually implemented by the agent. Therefore, the principal corrects his guess a by
a random variable � 2 E � Rm representing the noise or estimation error. Utilizing
the corrected response a C � in his decision problem he determines an optimal
schedule as a solution of

max
�

E�UP .�; a C �/ (28)

E�gP .�; aC �/ � 0

Additional information about the agent’s decision process may be obtained by
utilizing benchmarks or by a monitoring process. In the following we will study
these issues closer.
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3.3.1 Benchmarks

Benchmarks, such as performance of comparable firms or characteristics deduced
by observations or by theoretical analysis may help to evaluate decisions imple-
mented by the agent. An example is a licensing process where the license taker’s
actual performance is measured after some time. In order to assess the agent’s
behavior at this second stage, the regulator compares the agent’s performance
X.a; !/ against suitable benchmarks XP .!/ taking into account the realized state
! of the environment. Then, a penalty for deviations from the target XP .!/ is
imposed, which affects the utility functions of both decision makers. A possible
model formulation is the following.

The principal finds an incentive schedule �1 and a penalty parameter �2 such
that his expected utility is maximized taking into account the penalty utility
QP.a; �2; !/ incurred to the agent

max
�1;�2

E! fWP .a; �1; !/CQP.a; �2; !/g (29)

gP .�1; �2; a/ � 0

with a being the optimal solution of the agent’s decision problem

max
a

E!fWA.a; �1; !/ �QA.a; �2; !/g (30)

gA.�1; �2; a/ � 0

HereQA.a; �2; !/ is the agent’s disutility resulting from the penalty incurred by the
principal. It is determined at the second stage when the random variable ! and the
agent’s characteristics X.a; !/ become known

QA.a; �2; !/ D min
y

fF2.�2; y/ j y D XP .!/ � X.a; !/g (31)

where F2.�2; y/ is some measure of distance between y and zero. With this for-
mulation the agent’s decision problem (30) is a two-stage stochastic programming
problem with the recourse problem (31). However, this recourse problem affects
also the principal’s decision problem (29), and the principal’s decisions �1 and �2
represent parameters of the agent’s first- and second-stage problems, respectively.

The second-stage problem may take on various shapes. If only down-side
deviations from the target are penalized, the recourse problem is

QA.a; �2; !/ D min
y
F2.�2; y/ (32)

y D maxf0;XP .!/ �X.a; !/g (33)
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Constraint (33) represents a nonsmooth constraint which may complicate an analy-
sis of the agency problem (29)–(30). Under certain assumptions it can, however, be
substituted by the pair of smooth inequality constraints

y � XP .!/ �X.a; !/
y � 0

Often, the functionF2 is quadratic or linear in the deviation y, but other structures
are conceivable as well. It should be chosen carefully in order to avoid dominance
of the penalty QA over the principal’s decision problem. In such a case the maxi-
mization of the welfareWP would play a minor role, and the principal would induce
under-performance of the agent. However, often one of the principal’s goals is the
maximization of social welfare. Bad performance of the agent decreases therefore
the principal’s utility while increasing the penalty QA. An optimal regulatory
strategy should therefore represent a trade-off between both features. Furthermore,
by setting the performance target �2 artificially high, the agent is forced to under-
perform for any decision a. This issue must be taken into account when modeling
the principal’s decision problem, for example by specific constraints. The target �2
should comply with the agent’s actual possibilities and with the general regulatory
requirements of the considered sector.

Example 5. Two stage moral hazard with performance target. Assume that the
agent’s effort a yields a Quality of Service (QoS) level that can be described by
a process f .a/. The principal does not know the exact description of this process,
and it contains therefore a random parameter �. However, at the end of the first stage
the actual value f .a; �/ of the quality achieved by the agent’s decision a under the
environment state � can be observed. The principal raises a penalty if a specified
minimum quality �2 is not achieved. Assuming that this penalty is proportional to
the deviation from the target and the second-stage decision is not subject to further
constraints, the following stochastic programming problem with bilevel structure
can be formulated.

max
�1;�2

E� fUP .�1; f .a; �//C pmaxf0; �2 � f .a; �/gg (34)

WA.�1; a/ � pE� maxf0; �2 � f .a; �/g � u (35)

gP .�1; �2; a/ � 0

�2 � 0

where UP .�1; f / is the principal’s utility of contract �1 and the QoS f I u is the
agent’s alternative utility. The agent’s decision a is the optimal solution of the
problem

max
a
WA.�1; a/ � E�pmaxf0; �2 � f .a; �/g (36)

gA.�1; �2; a/ � 0
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whereWA.�1; a/ denotes the agent’s utility, and p > 0 is a fixed penalty parameter.
In this model we assumed perfect information of the principal about the agent’s
decision process. If this is not the case, the formulation (36) should reflect this
uncertainty since the penalty is based on the actually implemented decision and not
on the prediction obtained as solution of (36). This may be modeled as suggested in
problem (28).

If the function f .a; �/ is concave in a for all � 2 E then the penalty function

Q.�2; a; �/ D pmaxf0; �2 � f .a; �/g

is convex in a and therefore the agent’s objective function (36) is concave.
Furthermore, Q.�2; a; �/ is continuously differentiable almost everywhere and,
if the random variable � is absolutely continuously distributed, the expectation
E�Q.�2; a; �/ is continuously differentiable. ut

3.3.2 Monitoring

A monitoring process can provide the principal with additional and/or more accurate
information. It helps therefore to reduce the information asymmetry between the
principal and the agent. By designing the monitoring as a part of the incentive
schedule the agent may be induced to reveal more information about her decision
process or about the characteristics of the considered sector. Utilizing the additional
information, a more precise incentive schedule can be determined. This yields a
reduction of agency costs and the agent may be induced to a better performance.
However, typically the costs of such a process are increasing with its intensity and
hence with the quality of the additionally obtained information. The principal must
therefore find an optimal monitoring intensity in relation to the optimal incentive
schedule, for example by minimizing the sum of the costs of monitoring and of
the necessary incentives. Guangzhou Hu (2003) studies a one-period model for
determining the optimal monitoring intensity in an employment process. Monitoring
can be interpreted as a learning process and becomes therefore especially important
in a dynamic setting of Holmström (1999). The following example indicates a
stochastic programming formulation of an agency model with monitoring.

Example 6. Monitoring that reduces uncertainty about the agent’s decision. Sup-
pose that the regulator is aware of his imperfect information about the agent’s
decision process and takes this uncertainty into account as outlined in (27),(28).
For the purpose of transparency assume further that there is a perfect information
about the model parameter ! and that the agent’s welfare is defined as follows

WA.�; a/ D fA.�1; a; !/ D �.!a/2 � .�1 C !/a C �2 (37)

where � D .�1; �2/ is the contract offered by the principal. That is, following the
economic literature cited above the agent’s cost is proportional to the square of effort
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and it has also the linear part, to which the component �1 of the contract contributes
(for example, environmental or QoS requirements of the principal that increase the
agent’s costs). The component �2 of the contract describes the monetary transfer
(or tax) to the agent. Then the optimal schedule is a solution of the principal’s
problem

max
�

E�UP .�; a C �/ (38)

E�WA.�; aC �/ D �!2.ı2 C .�C a/2/� .�1 C !/.�C a/C �2 � u (39)

E�gP .�; a C �/ � 0

where u is the alternative utility of the agent, and the agent’s response a solves the
problem

max
a
WA.�; a/ (40)

gA.�; a/ � 0

and
ı
2 D D2

� D E�f.�� E�/
T .�� E�/g; � D E�:

Thus, ı
2

is the inherent or original variance and mean of the noise �, respectively.
Let us assume, further that the principal’s utility UP .�; aC �/ is such that

E�UP .�; aC �/ D U
	
�; a; �; ı




A monitoring process with the intensity � 2 Œ0; 1� reduces the variance

ı2 D .1 � �/ı
2

while there is no influence on the mean � of the noise. The intensity is defined such
that � D 0 when no monitoring takes place and increasing values of � indicate
higher intensity. Intensity � D 1 corresponds to the case of perfect information
about the agent’s decision process. Typically, the monitoring process causes costs
c.�/ that increase with the intensity and diminish the principal’s utility.

Taking into account this monitoring process the principal finds the optimal
incentive schedule � and the optimal monitoring intensity � by solving the problem

max
�;�

E�fUP .�; aC �/ � c.�/g

� !2..1 � �/ı2 C .�C a/2/� .�1 C !/.�C a/C �2 � u

E�gP .�; aC �/ � 0

� 2 Œ0; 1�

with the response a D a.�/ being a solution of problem (40). ut
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3.4 Licensing

Licensing represents an important tool for the regulation of liberalized environments
such as the modern telecom sector and it is the subject of widespread studies,
see Gruber (2002); Louta et al. (2003). The licensing can be an important reg-
ulatory tool. The provision of a right to use telecom infrastructure can help to
impose regulatory goals such as the schedule of network roll out or coverage and
development obligations in order to satisfy political, social or economic objectives.
The allocation of licenses may therefore follow several guidelines, for example
pricing constraints, efficient infrastructure utilization, access to bottleneck facilities
or contributions toward universal service, but also the generation of additional
wealth for the regulator by cream skimming. The fee paid for a license may have a
quite serious and restrictive impact on the agents’ decision behavior. For example, in
order to recover this fee they will be motivated rather by short-term considerations.
Therefore the regulation should direct the license takers’ attention also to long term
goals such as growth of the respective industry sector.

The allocation of the license and the size of the license fee add further dimensions
to the principal’s decision problem. The fee is an entry fee paid by the agent usually
once and prior to her decisions. Licensing can then be included into the agency
relationship by means of obligations the agent has to meet when holding a license.
The satisfaction of these obligations may be controlled by an incentive schedule
comprising constraints, penalties, rewards or even the withdrawal of the license.
The following example provide a stochastic programming model that takes a part of
these considerations into account.

Example 7. Licensing with penalties. Assume that, in order to provide service, the
agent acquires a license for a license fee L0. After a certain period of time her
performance is evaluated by measuring the provided Quality of Service (QoS). Bad
performance is penalized if a certain level �2 set by the principal is not reached. If
the QoS level is only slightly lower than the target, a penalty is raised as described
in Example 5, and the agent can proceed with service provision in the subsequent
period. If, however, the quality is too poor and even an absolute minimum level �3
is not reached, the license is withdrawn and no further service provision can take
place. Additionally, a fine P � 0 is raised. For the sake of simplicity we assume no
reevaluation at the end of the second stage. The agent can alter her decision a2 in
the second stage but, in order to simplify the exposition, we assume that her strategy
a D .a1; a2/ of first- and second-stage decisions is found at the beginning of the
first stage. The principal finds an optimal decision � D .�1; �2; �3/ consisting of
the values for his first- and second-stage decisions �1 D .�11; �12/ and QoS levels
�2 and �3 by solving the problem

max
�;P;L0

�
L0 C U 1

P .�11; a1/C ˛E�flQ.�2; a1; �/C U 2
P .�12; la1/C .1 � l/P g�

(41)

�L0CWA.�11; a1/C˛E�fl.�Q.�2; a1; �/CWA.�12; a2//� .1� l/P g � u (42)
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P � p.�2 � �3/ � 0 (43)

�2 � �3 � 0

gP .�; a/ � 0

with ˛ 2 Œ0; 1� being a discounting factor and U i
P .�1i ; ai / ; i D 1; 2 being the

principal’s utility resulting from the agent’s effort ai and the monetary transfer or
tax to agent �1i during period i D 1; 2 (the component of welfare resulting from
service provision).

Q.�2; a1; �/ D pmaxf0; �2 � f .a1; �/g

l D
(
1; if f .a1; �/ � �3

0; otherwise

The agent’s effort strategy a D .a1; a2/ is found as solution of the problem

max
a1;a2

��L0 CWA.�11; a1/C ˛E�fl.�Q.�2; a1; �/CWA.�12; a2// � .1 � l/P g�
(44)

gA.�; a/ � 0

Constraint (42) represents the participation constraint whereas (43) indicates that
the penalty for low QoS level should be more severe when the license is withdrawn
than when further service provision is granted.

The penalty to be paid by the agent can be determined first at the end of the
first stage when both the environment state � and the agent’s actual decision a1 are
revealed. Therefore the principal’s decision problem (41)–(43) has the structure of a
two-stage stochastic programming problem with recourse. Due to the discrete nature
of the fine P the agent’s objective function is generally not continuous in a1. It may
become continuous by letting the size of P depend on the deviation of the actual
QoS level from the threshold �3. ut

4 Solution Approaches

While the previous section focused on the utilization of the stochastic programming
framework for modeling various aspects of agency problems in the presence of
uncertainty, in this section we shall indicate its capabilities for the solution of models
with the discussed features.

The research on the methods for solving decision making problems with several
actors comprises different approaches such as stochastic games as in Filar and
Vrieze (1997), or stochastic bilevel programming problems (SBLP), see Wynter
(2001), and their generalizations, stochastic mathematical programs with equilib-
rium constraints (SMPEC) as in Evgrafov and Patriksson (2004); Shapiro (2006).
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However, typically these approaches interpret the considered problem type as an
extension of deterministic problems by uncertain parameters. In this paper we focus
directly on the modeling and processing of uncertainty. Therefore we aim at the
nontrivial adaptation of known stochastic programming methods, see Birge and
Louveaux (1997); Ermoliev and Wets (1988); Shapiro and Ruszczynski (2003) and
by developing new such methods tailored to the problem domain considered here.

The problems considered here possess some features that are challenging for the
numerical methods. Since the agent’s response on a given incentive schedule has to
be taken into account, the principal’s objective function is generally not convex and
neither differentiable. The participation constraint represents a so-called connecting
upper level constraint. It is located in the principal’s subproblem but its feasibility
depends also on the agent’s response. As a consequence the set of the principal’s
feasible decisions may not be connected or convex. Also a possible existence
of non-unique responses of the agent to some principal’s decisions complicates
the evaluation of the principal’s problem. Therefore the stability of obtained
optimal decisions should be investigated, for example by sensitivity analysis, as
in Patriksson and Wynter (1997).

The numerical approach that we take here consists in the further development of
the methods from the stochastic quasi-gradient (SQG) class, see Ermoliev (1988);
Gaivoronski (1988, 2004). These methods have been developed for the solution
of optimization problems with complex objective functions and constraints. This
makes them especially applicable to stochastic programming problems with bilevel
structure and nonlinear constraints as represented by agency relationships. The
following example illustrates the main ideas and the potential of this framework.

Example 8. Solving principal-agent problem with stochastic quasi-gradient (SQG)
method. We present here a test example of the agency model of the type (15)–(16).
Let us take

UP .a; �; !/ D �1.1C y/

where similar to Example 1 y D a C 	 with 	 being some random variable with
known distribution and zero mean. Additionally, there exist the lower and upper
bounds on the decisions of both actors. We assume that the principal controls the
lower bound �2 on the agent’s decision a and that, in addition to the participation
constraint, his decisions � D .�1; �2/ are subject to further constraint!21�1��2 � 0

where !1 is a normally distributed random parameter, !1 � N.0:5; 1/. Thus, the
principal’s policy � D .�1; �2/ is obtained from the solution of the problem

max
�1;�2

�1.1C a/ (45)

!21�1 � �2 � 0 (46)

WA.�1; a/ � u (47)

�1 2 Œ�1L; �1U � ; �2 2 Œ�2L; �2U �

where the agent’s response a is the optimal solution of the decision problem
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max
a
WA.�1; a/ (48)

a 2 Œ�2; aU �

The agent’s welfareWA.�1; a/ is determined similar to (37),

fA.�1; a; !2/ D �.!2a/2 � .�1 C !2/a C 20�1

We assume that the principal has imperfect information also about the parameter
!2 2 ˝2 � R and assumes that it has the normal distribution, !2 � N.0; 1/.
The numerical values of the model parameters are the following: �1L D �2L D 0;

�1U D �2U D aU D 20; u D 5:

Let us now compare solutions obtained by two approaches. The first approach
replaces the random variables by their means and solves the resulting bilevel deter-
ministic optimization problem. The second approach applies SQG method to the
original stochastic problem, details of this method are described in the Appendix A.

The first approach results in the following deterministic equivalent of the
stochastic programming problem (45)–(47)

max
�1;�2

�1.1C a/ (49)

0:25�1 � �2 � 0 (50)

�1.20� a/ � 5 (51)

�1 2 Œ0; 20�; �2 2 Œ0; 20�

with the response a being the optimal solution of

max
a
�1.20� a/

a 2 Œ�2; 20�

This problem yields the agent’s response a.�/ D �2 for �1 > 0 whereas the
participation constraint (51) is violated for any response if �1 D 0. This approach
results in the optimal principal policy ��

T D .��
1T ; �

�
2T / D .20; 5/ with the agent’s

response a�
T .�

�
T / D 5. With this strategy, the principal’s and agent’s welfares are

WP .�
�
T ; a

�
T / D 120 and WA.�

�
T ; a

�
T / D 100, respectively.

This approach utilizes only the information about the means of the uncertain
parameters !1 and !2. Employing the approach of stochastic programming allows
to utilize more of the available information about these parameters and a better (for
the principal) policy can be found.

Suppose that the constraint (46) is required to hold in average and, likewise,
the average of the agent’s welfare is considered as her utility. This results in the
stochastic programming problem with bilevel structure
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max
�1;�2

�1.1C a/ (52)

E!1

˚
!21�1 � �2

� � 0 (53)

E!2

˚�!22a2 C .�1 C !2/a C 20�1
� � 5 (54)

�1 2 Œ0; 20�; �2 2 Œ0; 20�
and the response a being the optimal solution of

max
a

E!2

˚�!22a2 C .�1 C !2/aC 20�1
�

(55)

a 2 Œ�2; 20�

This problem was solved by the SQG method described in Appendix A, see
more detailed description of this method in Gaivoronski and Werner (2007). For
the considered problem (52)–(54) we have found the optimal principal’s strategy
��
S D .��

1S ; �
�
2S / D .20; 12:249/ with the agent’s response a�

S .�
�
S / D 12:249.

Hence, the principal’s welfare isWP .�
�
S ; a

�
S/ D 264:97whereas the agent’s welfare

is WA.�
�
S ; a

�
S/ D 5.

A comparison of both solution methods reveals that actually two different
problems are solved. The substitution of the average values leads to a linear
deterministic equivalent formulation and much of the information about the agent’s
decision behavior and the random parameters !1 and !2 is lost. In contrast,
the utilization of the stochastic programming methodology with bilevel features
preserves the nonlinear structure of the original problems (45)–(48) and more of the
available information is employed. For the considered model it leads to the policy
that yields much higher optimal value of the principal’s welfare. ut

Somewhat more detailed analysis of the numerical properties of this approach
was considered in Gaivoronski and Werner (2007).

5 Conclusions

In this paper we have discussed models and methods for the treatment of several
types of uncertainty present in the agency problems. For this purpose we have
considered the principal agency relationship between a regulator and a service
provider in a liberalized telecom environment and demonstrated the utilization of
stochastic programming concepts enhanced by the methods of bilevel programming.
We have derived models for determination of incentive schedules under different
aspects of imperfect information and outlined solution approaches, illustrated by an
application example. The studies were restricted to the case of one agent. However,
the models were quite general and provide the base for an extension to a multilateral
formulation with several agents.
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More research is needed into agency problems considered as stochastic program-
ming problems with bilevel structure. Such studies will allow the computation of the
optimal contracts, relaxing the traditional assumptions about information available
to actors present in the current economic literature.

Acknowledgements The authors are grateful to two anonymous referees whose comments have
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Appendix: Algorithm for Solution of Example 8

In the following we describe the main details of the SQG algorithm for Example 8.
A more comprehensive analysis of the method is given in Gaivoronski and Werner
(2007).

We characterize the optimal response a D a.�/ of the agent by Karush-Kuhn-
Tucker optimality conditions of the agent’s problem (48). Then a nonlinear one-
level stochastic programming problem can be formulated which is equivalent to the
original problem (52)–(55). The decision variables of this problem consist of the
principal’s and the agent’s decision variables � D .�1; �2/ and a, respectively, and
of the Lagrange multipliers 
 D .
1; 
2/ associated to the optimal response a.

max
�;a;


�1.1C a/ (56)

E!2

˚�2!22a � .�1 C !2/� 
1 C 
2
� D 0


1.a � �2/ D 0 (57)


2.20 � a/ D 0 (58)

E!1

˚
!21�1 � �2

� � 0

E!2

˚�!22a2 � .�1 C !2/a C 20�1 � 5
� � 0

�2 � a � 20; 0 � �1 � 20; 0 � �2 � 20


1; 
2 � 0

This problem is ill-posed since it contains the complementarity constraints (57)
and (58). For example, there exists no feasible solution, which strictly satisfies
all inequality constraints. Therefore the usual constraint qualifications of nonlinear
programming are violated at every feasible point. In order to deal with this difficulty
we propose a decomposition of the complementarity constraints, resulting in a
partition of problem (56)–(58) into a family of subproblems. Each subproblem is a
convex stochastic programming problem with the random parameters ! D .!1; !2/

and, given an initial point x0 D .�0; a0; 
0/, it is formulated as follows.



164 A. Gaivoronski and A. Werner

max
�;a;


�1.1C a/ (59)

E!f1.�; a; 
; !/ � 0 (60)

E!f2.�; a; 
; !/ D 0 (61)

where

gA.�; a/ D
�
a � �2

20� a

�

f1.�; a; 
; !/ D

0
BBBBBBBBBBB@

gA;i .�; a/; i 2 IC

i ; i 2 IL
!21�1 � �2
�!22a2 � .�1 C !2/a C 20�1 � 5

20 � �1
20 � �2
�1

�2

1
CCCCCCCCCCCA

f2.a; �; 
; !/ D
0
@gA;i .a; �/; i 2 f1; 2g n IC

i ; i 2 f1; 2g n IL
�2!22a � .�1 C !2/ � 
1 C 
2

1
A

and

IC D fi 2 f1; 2g W gA;i
�
�0; a0

�
> 0g

IL D ˚
i 2 f1; 2g W 
0 > 0�

The stochastic programming problem (59)–(61) can be solved iteratively by a SQG
method. At each iteration step k a sample !k D .!11;k ; :::; !

Nk
1;k

I!12;k ; :::; !Nk2;k / of

the random parameters ! is determined. Then new values for the iterates xk D
.�k1 ; �

k
2 ; a

k; 
k1 ; 

k
2/, uk and vk are found where xk denotes the decision variables,

uk the Lagrange multipliers of the inequality constraints (60) and vk the Lagrange
multipliers of the equality constraints (61). These variables are updated according
to the rules

xkC1 D xk � ˛kx�
k
x

ukC1 D max
˚
0; uk C ˛ku �

k
u

�

vkC1 D vk C ˛kv �
k
v

with the step sizes ˛kx ; ˛
k
u and ˛kv satisfying the SQG conditions, see Gaivoron-

ski (1988). Utilizing the Lagrangian function of problem (59)–(61) for a given
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observation !jk ; j D 1; :::; Nk of the random parameter and for the current iterates
xk D .�k; ak; 
k/; uk; vk

L
	
�k; ak; 
k; uk; vk; !jk



D �k1

�
1C ak

�C �
uk
�T
f1

	
�k; ak; 
k; !

j

k



C

�
vk
�T
f2

	
�k; ak; 
k; !

j

k




the current search directions �kx ; �
k
u and �kv can be determined by means of statistical

estimates of the gradients of this Lagrangian, for example by

�kx D 1

Nk

NkX
jD1

rxL
	
�k; ak; 
k; uk; vk; !j

k




�ku D 1

Nk

NkX
jD1

f1

	
ak; �k; 
k; !

j

k




�kv D 1

Nk

NkX
jD1

f2

	
ak; �k; 
k; !

j

k




The iteration arrives in the vicinity of the optimal point when a stopping
criterion such as (possibly relaxed) optimality conditions is satisfied. The number
of the subproblems is finite. However, it grows exponentially with the numbers
of constraints and decision variables of the agent’s problem. More details about
applications of the SQG algorithms in the Lagrangian context can me found in
Ermoliev (1983); Kushner and Yin (2010).
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Sustainable Agriculture, Food Security,
and Socio-Economic Risks in Ukraine

Oleksandra Borodina, Elena Borodina, Tatiana Ermolieva, Yuri Ermoliev,
Günther Fischer, Marek Makowski, and Harrij van Velthuizen

Abstract In Ukraine, the growth of intensive agricultural enterprises that focus on
fast profits contribute considerably to food insecurity and increasing socio-economic
and environmental risks. Ukraine has important natural and labor resources for
effective rural development; more than 50% of food production is still contributed
by small and medium farms, despite the difficulties associated with economic
instabilities and the lack of proper policy support. Currently, the main issue for the
agro-policy is to use these resources in a sustainable way, enforcing robust long term
development of rural communities and agriculture. In this chapter, we introduce
a stochastic, geographically explicit model for designing forward-looking policies
regarding robust resources allocation and composition of agricultural production, in
order to enhance food security and rural development. In particular, we investigate
the role of investments into rural facilities to stabilize and enhance the performance
of the agrofood sector in view of uncertainties and incomplete information. The
security goals are introduced in the form of multidimensional risk indicators.

1 Introduction

In Ukraine, production intensification with a focus on fast profits is one of the main
drivers that restructure food markets and distribute resource management rights in
an imbalanced way. Intensification is advantageous for large producers, while small
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and medium agricultural businesses abandon the market due to an inability to com-
pete for scarce and costly resources without a proper policy support. As a result, a
lack of producers diversification increases risks associated with food and water secu-
rity, environmental pollution, loss of food diversity, deterioration of socio-economic
conditions in rural areas, rural-urban migration, and loss of cultural heritage.

Investigating the dilemma between the economic growth and the degradation of
rural areas in Ukraine requires the development of integrated approaches specifying
interdependent socio-economic, demographic and environmental criteria of long-
term sustainable rural community development. A set of such criteria has already
been identified and implemented in the USA, as well as in the EU, see e.g.,
the LEADER I, LEADER II, LEADERC programs (Agriholdings in Ukraine
2008; Leader European Observatory 2010). In Ukraine, similarly to the LEADER
programs, rural development planning includes goals of stimulating investments
into improving quality of life and social conditions; protection and friendly use of
environmental and cultural values; introduction, utilization, and expansion of new
technologies and markets of local producers and services.

The aim of this chapter is, first, to analyze implications of recent agricultural
reforms and trade liberalization on agriculture and rural areas development in
Ukraine. Secondly, according to this analysis, develop a decision theoretic frame-
work for designing forward looking national and subnational agricultural policies.
The focus is to support policy choice regarding optimal agricultural production
structure with a specific concern to revive and consolidate small and medium scale
producers and services in rural areas.

There exist different approaches to the analyses of optimal production structure
and resources allocation in agriculture. Studies involving trade liberalization often
rely on the concept of general equilibrium (GE). While GE models may provide
useful information on several economic aspects of policy reforms, it may be
inappropriate, and in some cases misleading, to rely extensively only on their use
for planning sustainable development strategies (Scrieciu 2006). There exists vast
literature summarizing the limitations of the GE analysis (Cramon-Taubadel von
et al. 2010; Scrieciu 2006). Two main concerns dominate the discussion. The first
is that GEs are too aggregate to include appropriate sustainability indicators with
safety/security constraints and horizons of planning. The second raises the issue
about “demand-price-supply” relations which are often largely driven by inherent
uncertainties and current policies (Ermolieva et al. 2010), e.g., weather conditions
or export-import quotas, and thus can differ from ideal “demand-price-supply”
dependencies. The main risk of using the advice from ideal and aggregate GE
models without accounting for possible alternative paths is that this may cause
various unexpected economic and production shocks such as bankruptcy, non-
payments, prices increase, noncompliance to market agreements, etc.

The main task of planning sustainable agriculture in Ukraine is to design neces-
sary resources allocation and regulations for rehabilitation of rural areas (Borodina
2009, 2007; Christev et al. 2005; Libanova 2006; Pantyley 2009; Prokopa and
Popova 2008). Therefore, in this chapter, we introduce an optimization model
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following general ideas of economic modeling outlined in Nobel Memorial Lecture
by Koopmans (1975). He admits (pp. 240-243) that according to a frequently cited
definition, economics is the study of “: : : best use of scarce resources : : : ”. Because
of the existence of “: : : alternative ways of achieving the same end result that a
genuine optimization problem arises” that may have different efficiency allocation
criteria and constraints regarding available resources, capital, equipment, etc. Yet,
“. . . with an optimal solution of the given problem, whether of cost minimization or
output maximization, one can associate . . . shadow prices, one for each resource,
intermediate commodity or end-product”. Koopmans further acknowledges that
these shadow prices or dual variables can be used as a price system for the decen-
tralization of decision, either through the operation of competitive markets, or as an
instrument of national planning (Dantzig 1963; Kantorovich 1939; Kantorovich and
Gavurin 1940; Kantorovich 1959; Koopmans 1947, 1975). In other words, although
the optimization model may be the same, the institutional framework supported by
the model can be fundamentally different.

In this chapter, we consider only a pre-institutional optimization framework,
i.e., primal stochastic optimization resource allocation model. The analysis of
dual problem, emerging pricing system, and decentralized solutions would require
considerable extension of the chapter. In particular, important issues concern
relations among emerging spot prices and safety/security constraints. In this chapter
we also don’t consider issues connected with data analysis, which are vital for
proper treatment of inherent uncertainties. We simply assume that the data can
always be characterized by scenarios. Therefore, the main issue is the design of
policies (decisions) robust with respect to all potential scenarios. This framework
assumes the existence of a policy analyst who may perform efficient allocation of
resources. In general, the analyst may consider alternative objective functions that
incorporate or emphasize various aspects of sustainability and security concepts.

In presence of uncertainties and resource (financial, land, water) constraints,
irreversibility of deterministic solutions may incur high sank costs (Arrow and
Fisher 1974). Therefore, there is a need for a two-stage decision making framework
with anticipative and adaptive decisions (Arrow and Fisher 1974; Ermoliev and Wets
1988). The strategic (ex-ante) first-stage decisions taken before the uncertainties
become known cannot be altered. In order to ensure the flexibility of the system
under such decisions, they are supplemented by a set of corrective (ex-post)
decisions implemented after the uncertainties are resolved. Thus, in the presence of
uncertainty, e.g., climatic variability, markets shocks, demand and price fluctuations,
etc., the strategic decisions are only partially implemented in the first stage, and
can then be corrected in the second stage by learning from experience and further
observations. Within the same modeling framework, the optimal combination of
adaptive and anticipative decisions can be derived only by methods of two-stage
stochastic optimization (STO). The two-stage STO model proposed in this chapter is
geographically explicit. The application of the model is illustrated with an example
of optimal investments into expansion of agricultural activities and rural services
to employ potential workers migrating between Ukrainian regions as a result of job
losses or financial/production instabilities.
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The structure of the chapter is as follows. Section 2 summarizes main structural
changes and current agricultural development trends in Ukraine and identifies key
factors contributing to the worsening situation in rural communities. Section 3
outlines main criteria of rural community development as formulated in LEADER
programs (Agriholdings in Ukraine 2008; Leader European Observatory 2010).
It formulates a model that employs these criteria in the context of Ukraine.
Section 4 discusses model application with selected numerical calculations and
Sect. 5 concludes.

2 Structural Changes in Ukrainian Agricultural Sector

Agricultural enterprises in Ukraine are being actively restructured and integrated
forming large agro-holdings. During 2005 and 2006, the number of the enterprises,
which operate more than 10 thousand hectares of land, has increased by 27%;
the average size of the total area in these enterprises has increased by 7% to
more than 20 thousand hectares. Large agricultural farms may rather freely choose
among the commodities to produce and in what amounts. This freedom induces
specialization in more profitable products. As a result, agro-holdings concentrate
primarily on intensive profitable production such as raw-materials for biofuels,
which increases socio-economic and environmental risks in rural areas. Decreasing
production diversity and diversion of land and water resources from direct food
production undermines food security. It also worsens environmental quality through
high fertilization rates and absence of necessary crop rotations. Without adequate
regulations, these trends may lead to further land degradation, loss of fertile soils,
water, air, soil pollution (Agriholdings in Ukraine 2008; Shnyrkov et al. 2006).

Apart from mono cropping which disturbs the supply of grains for direct
consumption, food security problem has been exacerbated by inadequate import-
export quotas and weather uncertainties. Imbalanced and unstable grains production
affects, in particular, livestock sector, foremost, large animals and cows (see
discussion in Sect. 3). Reasons for the decreasing number of animals in Ukraine are
different for different locations and years. At the beginning of agricultural reforms,
the loss of state subsidies following the collapse of the Soviet Union increased feed
and production costs and reduced profitability of livestock enterprises. Further, in
2003, 2004 and 2005, the majority of large animals were slaughtered because of
insufficient feeds due to low yields and intensive international trade (Tarassevych
2004). Decreased number of animals and declined meat production resulted in a
substantial increase of meat prices. From March 2004 to March 2005, the price
for meat increased by 56.8%. Due to the high share of meat in goods’ basket
(about 13%), meat deficit contributed about a 15% increase to the yearly inflation
rate (Giucci and Bilan 2005). This shows how inadequate policies in the agricultural
sector may produce dramatic effects within the sector with a spillover into the whole
national economy. Large systems of bovine meat production turned to be most
prone to frequent reforms and governmental regulations. Currently, large animals
(among them cows) and bovine meat production in Ukraine concentrate primarily
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in household systems. Because of high production costs and risks, these producers
will not invest into larger scale production. Livestock production is one of the
most labor intensive agricultural activities, which may provide employment and
social protection for many out of work in rural areas. However, without targeted
investments this is unlikely to happen given high risks and strict quality norms
imposed by the WTO accession (Heyets 2008; Shnyrkov et al. 2006).

Production intensification and land concentration led to many adverse problems,
but most harmful are impacts on demographic and socioeconomic situation in
rural areas. Intensive large scale enterprises and agro holdings require much fewer
workers than soviet-type agro businesses. They make use of qualified labor force
from cities, better educated with special skills and experience. This has released
a rather substantial part of rural workers and inspired rural – urban migration in
strive for short-term jobs (primarily in construction sector), what led to rural area
depopulation and degradation (Libanova 2006; Pantyley 2009; Prokopa and Popova
2008). Depopulation and deterioration of living conditions and infrastructure in rural
areas are also due to the fact that unlike the Soviet times when almost all expenses on
the development, social security, health and fiscal provision of rural areas were taken
by the state and local collective agrarian enterprises, during and after the reform
“market” rules were introduced, i.e. agrarian enterprises make profits while local
communities have to develop rural areas. It should be noted that a majority of large
scale producers are registered in cities and rarely pay taxes into local budgets.

Most likely the agro-holdings will dominate the agricultural sector of Ukraine in
the future. Considering their rash emergence and the increasing risks they cause to
food security and rural development, new approaches for organization and planning
need to be properly designed in order to enable agriculture and rural development
with a multitude of farming activities. The government may impose regulations that
provide equal and transparent financial support for doing business by all forms
of enterprises in agricultural production and service sectors. This measure may
reduce unequally distributed opportunities for subsidies and replace them by direct
governmental/public investments, such as investment in practical education of rural
community members, creation of market information systems, support of farm
advisory services, and – most important – investments in rural infrastructure (roads,
energy and water supply, health care, schools). Furthermore, it is necessary to put
more emphasis on the impact of fiscal support measures to agriculture. Currently,
the bias is strongly in favor of agro-holdings and urban areas.

3 Analysis of Pathways Towards Sustainable Rural Area
Development

The trends highlighted in previous sections are alarming, and therefore call for
adequate approaches for organization and forward-looking agricultural policies.
There exists encouraging experience in planning rural development within
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“LEADER”1 programs. The programs implement incentives to encourage
integrated, high-quality and original strategies for sustainable development, have a
strong focus on partnership and networks for exchange of experience. In Ukraine,
similar programs focus on revival of old and introduction of new rural activities to
create rural jobs and enhance food security.

In this section we propose a two-stage stochastic optimization model to support
policy-making on sustainable agricultural development under inherent risks, incom-
plete information, and resource constraints. Optimal adjustments of production and
services by geographical locations are derived as a tradeoff between costs mini-
mization, food security goals, targeted level of rural jobs, and the suitability criteria.
The security goals are introduced in the form of multidimensional risk measures
having direct connections (see remark in Sect. 5) with Value-at-Risk (VaR) and Con-
ditional Value-at-Risk (CVaR) or expected shortfalls type indicators (Rockafellar
and Uryasev 2000). For planning livestock production expansion, the suitability
criteria include feeds and pastures requirements per unit livestock. The model is
temporally explicit. In the current two-stage setting, it involves two stages (periods),
contemporary and future. Each of these stages may include many time intervals. In
other words, it may be easily expanded to a multi-period dynamic framework. The
model is also geographically detailed. For now, it is implemented at the level of
25 Ukrainian regions, but may be disaggregated to finer resolutions. The model
comprises three main modules with respective parameters, technical coefficients,
criteria, and risks – socio-economic, environmental, and agricultural. The socio-
economic module defines a balance between costs minimization and social goals
including additional production to ensure jobs and food security; the environmental
module controls pressure stemming from agricultural production in locations; the
agricultural module imposes technical coefficients of agronomically sound prac-
tices. The model distinguishes producers of different agricultural commodities i in
regions l and by production systems j . Production systems are characterized by
different intensification levels, say, traditional (household), medium or intensive
large scale producers. In general, there are considerable data requirements which
cannot be fulfilled by traditional estimation procedures. The lack of repetitive
observations of the same phenomenon raises important issue about using different
sources and generators of data, explicit treatment of uncertainties and designing
decisions robust with respect to inherent uncertainties.

Food security and rural development goals require allocating targeted production
and respective rural workers by regions. Food targets include direct demand for
food and feeds and indirect demand, e.g., international export obligations and
inter-regional trades. Let xijl � 0 denote potential production of commodity i in
region l and management system j . Increased production creates additional rural
agricultural and nonagricultural (service) jobs. Define ˇijl as a number of workers
to produce a unit of commodity xijl , and Ll – a targeted level of rural employment

1 The acronym comes from Liaison Entre les Actions de Development Rural, i.e., Links between
Actions of Rural Development.
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in location l . Ignoring so far uncertainties, the goal to ensure required employment
in location l is defined by the following constraints:

X
ij

ˇijlxijl � Ll : (1)

In general, Ll may not be known with certainty as it is difficult to predict,
for example, how many people are likely to return from short-term urban jobs to
rural areas. Therefore, constraint (1) as well as the following constraints (2) can be
defined in terms of probabilistic constraints (7)–(8) or, within general two-stage
stochastic optimization framework defined by functions (11)–(18). Migration of
labor force between rural-urban areas and within regions depends on various factors,
including availability of infrastructure, such as schools, trade centers, health and
social provisions, transportation networks, entertaining and cultural centers, etc. The
model may account for the behavioral components similarly to the model developed
for the analysis of agricultural development in China (Ermolieva et al. 2005; Fischer
et al. 2008, 2007) where behavioral criteria are combined with strictly planned
governmental policies. In general, variable Ll may be characterized by alternative
scenarios.

Data (Borodina 2009) on employment rates in rural services per unit of produce
xijl permit to estimate the demand for jobs Sl by region l . Values Sl may be
treated as random, i.e., defined either by probability distribution functions or by
a set of potential scenarios. The willingness to work in infrastructure, for example
in schools, depends on gender, age, educational level, i.e., values Sl can also be
characterized by behavioral criteria. Thus, in addition to (1), xijl need to satisfy the
condition on necessary expansion and employment in rural infrastructure:

X
ij

�ijlˇijlxijl � Sl : (2)

Expansion of production and services requires investments. Their limitations are
included in our model either as an overall budget constraint or as minimization of
total costs and investments:

X
i l

Vil

0
@X

j

xijl

1
AC

X
ij l

cijlxijl C
X
l

Cl .yl /C
X
kl

cklykl ; (3)

where cijl are expenditures associated with production costs and wages of employ-
ees involved in production xijl . Investments Vil depend on the current level of
regional development, i.e., depressive regions require higher investments. Cost
functions Cl.�/ and unit costs ckl may be associated with trades agreements and
transportation of feeds between regions, as explained below. Uncertainties of
criterion (3) are associated, first of all, with market prices.
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Food security and environmental constraints are introduced by equations (4), (5),
(6), respectively: X

jl

xijl � di ; (4)

X
ij

ıixijl � al C yl C
X
k

ykl �
X
k

ylk; (5)

X
ij

�ixijl � bl : (6)

Constraint (4) ensures that production levels xijl satisfy targeted national
demand di of i -th commodity, which reflects food security goals; (5) ensures that
allocations xijl satisfy availability of feeds in locations l , where ıi is a technical
coefficient defining feed requirements per unit of livestock. Variables yi � 0 reflect
possibility to expand feeding capacity al at cost Cl.yl /; variables ykl represent
feed trading between different regions at cost ckl . The same type of additional
decision variables can be introduced in equations (4) for trading production
commodities. Equation (6) allows production expansion only in locations with
sufficient resources, such as pastures or cultivated land, thus ensuring efficient
recycling of wastes and manure associated with new xijl units of production, �i is an
ambient coefficient reflecting diverse recycling capacities (e.g., manure storage and
processing facilities). Constraints (5) and (6) comprise the environmental module
that safeguards environmental targets, land use, and agronomic norms.

Uncertainties, in particular, stochastic variables Sl , Ll require further model
specification. We admit that information on Sl , Ll may be uncertain, and therefore
variables xijl need to satisfy constraints (1)–(2) with some guaranteed certainty level
for all possible scenarios of Sl.!/, Ll.!/ of Sl , Ll , where ! indicates uncertain
events (scenarios) which may affect Sl , Ll , e.g., ! 2 f1; 2; : : : ; N g. Say, chances
that constraints (1)–(2) are satisfied (under derived xijl ) must be higher than the
imposed levels 0 � pl � 1, 0 � ql � 1. This requirement is expressed in terms of
probabilistic constraints:

P

2
4X

ij

ˇijlxijl � Ll.!/

3
5 � pl; (7)

P

2
4X

ij

�ijlˇijlxijl � Sl.!/

3
5 � ql ; (8)

0 � pl � 1, 0 � ql � 1, which are similar to the well-known in engineering
safety or reliability constraints. In the insurance business, they reflect the solvency
constraints of insurance companies or banks, and are often defined by pl , ql in the
range of [0.001, 0.03], which corresponds to regulating the frequency of insolvency
as an event that may occur once in 300-1000 years.
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Constraints (7)–(8) describe a stochastic supply-demand relations of the employ-
ment: the demand ˇijlxijl may be not completely satisfied by the random sup-
ply Ll.!/; similar relates to �ijlˇijlxijl and Sl.!/. If the analytical distributions
of Ll.!/; Sl.!/ are known, then equations (7), (8) are reduced to linear equations
defined by quantiles of the corresponding Ll.!/; Sl .!/. Generally, accounting
for potential uncertainties of ˇijl ; �ijl requires specific methods; in particular,
(7), (8) may represent discontinuous constraints. To account for possibly highly
discontinuous equations (7)–(8), we convert them into expected imbalances defined
by convex functions:
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9=
; ; (9)

Emax
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:0; Sl.!/ �

X
ij

�ijlˇijlxijl

9=
; : (10)

Minimization of functions (9)–(10) implies costs �l ;  l of decreasing the gaps
or expected deficits of the employment in agriculture and services. Therefore,
functions (9), (10) are modified to the following cost functions:
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�ijlˇijlxijl

9=
; : (12)

In order to analyze the goals (3) and (11)–(12), the problem is formulated as
follows: find production xijl minimizing the cost function
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subject to constraints (4)–(6).
Function (13) can be considered as a stochastic version of scalarization functions

used in multicriteria analysis. Formally, function (13) corresponds to a multicriteria
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stochastic minimization model with cost function (3) and risk functions (11)–(12).
As analyzed in (Ermoliev and Wets 1988; Fischer et al. 2008), an appropriate choice
of values �l and  l enables controlling the safety/security constraints (7), (8).
We may also formulate a robust stochastic optimization model with an alternative
scalarization function:
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C E max
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:0; Sl .!/ �

X
ij

�ijlˇijlxijl

9=
;

i.e., instead of the aggregate “expected” deficit defined by (13) as the sum of
functions (11), (12), function (14) focuses on extreme random deficits (events)
of the most suffering regions. The advantage of such an optimization problem
is its focus on country-wide extreme events (scenarios) regarding demand-supply
relations defined by Ll.!/; Sl.!/, and

P
ˇijlxijl ,

P
�ijlˇijl . Minimization of

functions (13), (14) corresponds to an important two-stage decision making formu-
lation. To illustrate this, let us consider the case when parameters of the model do
not depend on xijl . In this case, minimization of functions (13), (14) may be reduced
to a linear programming (LP) problem using ex-ante decisions of the model defined
by equations (4)–(6), (13) or (14), and additional second-stage ex-post decisions
emerging after observations of random variables.

Let us consider the LP problem corresponding to minimization of (13) subject
to constraints (4), (5), and (6). In general, ex-ante decisions xijl ; yijl may lead to
deficits defined by (9), (10). Let us consider a finite number of scenarios

Lsl ; s D 1 W Nl; Stl ; t D 1 W Ml

of random variables Ll.!/ and Sl.!/. Two-stage model assumes that after the
observation Lsl and Stl of real random variables Ll and Sl , the arising deficit can
be corrected by the second stage (ex-post) decisions Zs

l and U t
l . In our model,

the second stage decisions Zs
l in constraint (1) and U t

l in constraint (2) may be
associated with the use of better technologies or more qualified employees with
higher wages. Decision variablesZs

l and U t
l ensure satisfaction of constraints

X
ij

ˇijlxijl CZs
l � Lsl ; (15)
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X
ij

�ijlˇijlxijl C U t
l � Stl (16)

for all possible random scenariosLsl , S
t
l ; s D 1 W Nl , and t D 1 W Ml . Therefore, the

second-stage feasible variables Zs
l and U t

l are, in general, random variables Zl.!/
and Ul.!/ depending on random observationsLsl , and Stl . The two-stage stochastic
programming problem is formulated as minimization of the following function:
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subject to constraints (4), (5), (6), (15), (16). If costs Vil and cl , ckl are linear (or
piecewise linear convex function), then (17) may be solved by linear programming
methods. Assume that scenarios Lsl , s D 1 W Nl , and Stl , t D 1 W Ml , have prob-
abilities #1

l ; : : : ; #
Nl
l and �1l ; : : : ; �

Ml

l , respectively. This is a natural assumption
since results of questionnaires are usually quantified by likelihoods, e.g., with equal
probabilities. Let us denote by Zs

l and U t
l the ex-post decision under scenarios Lsl

and Stl . Then, the proposed model can be formulated as the following linear
programming problem in the space of ex-ante and ex-post decisions: minimize
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subject to constraints (4), (5), (6), (15), and the constraints (15)–(16). It is easy to
see that optimal decisions Zs

l and U t
l are calculated as

Zs
l D max

8<
:0;Lsl �

X
ij

ˇijlxijl

9=
; ; U s

l D max

8<
:0; Ssl �

X
ij

�ijlˇijlxijl

9=
; ;

for all scenarios s D 1 W Nl and t D 1 W Ml . Therefore, the model defined
by equations (4), (5), (6), (18) is indeed equivalent to the model defined by
equations (4), (5), (6), (13), (15), (16) under random scenarios Lsl and Stl .
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Fig. 1 Robust and deterministic allocations of new rural activities (in number of jobs) in each
region

4 Numerical Application

In this section we summarize selected results (Borodina 2009) of collaboration
between the IEF2 and IIASA.3 The application of the presented model at regional
levels is illustrated with a case of livestock sector expansion and rural services
development. Scenarios of migrantsLsl and Stl in (15)–(16) are derived in (Borodina
2009) from experts opinions and national surveys. About 100 alternative scenarios
are identified by ranges, and presented in Fig. 1. Other model parameters are also
summarized in (Borodina 2009). Costs per animal operations, the ranking regions by
depreciation level, transportation and production costs are available from Statistical
Year Books of Ukraine.

The model operates in two modes: deterministic and stochastic. The solution of
the deterministic model is optimal with respect to one scenario of migrants, e.g.,
expected values of Ls

l and Stl . In the stochastic mode, the number of migrants is not
known in advance, and therefore the model derives a solution robust with respect to
all scenarios.

2Institute of Economics and Forecasting of National Academy of Sciences, Ukraine.
3International Institute for Applied Systems Analysis.
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To illustrate why two-stage STO produces robust risk-focusing solutions, we
summarize the main differences between the deterministic (solution of the deter-
ministic model) and the two-stage solutions. Deterministic model assumes complete
information about agents, and therefore creates activities for the known number
of migrants, which formally restrains the analysis to a trivial case in which sD 1

and t D 1 in (15)–(18). In the reality, however, often jobs are created for an expected
or targeted number of migrants, while the real number of them is either lower or
higher. Both cases, i.e., deficit and surplus, lead to direct and indirect costs. If
activities are expanded (this also applies to the infrastructure, such as roads, schools,
medical and cultural facilities), but the number of workers is overestimated, the
investments will be lost. The situation may be improved by offering higher incomes
and privileges in order to attract workers. Conversely, if jobs and facilities are in
deficit, this will either cause regret situations among population or require up-front
investments to immediately accommodate newcomers.

In contrast to the deterministic model, the two-stage solution is calculated
assuming that the number of migrants is not known in advance. The costs and
risks associated with situations of deficit and surplus described above are controlled
by the second stage decision. Thus, the main idea of robust two-stage solution is
to choose first-stage decisions xijl before knowing the true number of migrants
such that the total expenses incurred by implementations of xijl and the costs of
their possible corrections determined by second-stage decisions Zs

l and U t
l are

minimized. In the event of “more-than-expected” migrants, the costs of second-
stage decisions Zs

l and U t
l may reflect foreseen at stage 1 feasible adjustments of

infrastructure, houses, farms, roads, etc. In the “less-than-expected” case, they may
correspond to foreseen at stage 1 feasible increases of incomes or social benefits to
attract more workers. In fact, for the simplicity of model formulation, functions (13),
(14) ignore costs associated with the underestimation of migrants. Adjustments of
the model for general case are trivial, and the discussion of the dual model is easy
(see next section) for functions (13), (14).

According to expert estimates, it is anticipated that the number of migrants
will exceed expected values (Fig. 1) of the deterministic model. Total costs (13) of
optimal solution of the deterministic model and the robust solutions are illustrated
in Fig. 2. For the solution of the deterministic model, the costs include costs of
optimal single scenario solution and additional costs associated with the corrections
of these solutions with respect to other potential scenarios. Costs of robust two-
stage solutions are optimal with respect to both stages. Total costs of deterministic
and robust solutions are about 7 and 5.5 millions of monetary units, respectively.

Figure 1 shows solutions in terms of rural work-places. Robust solution suggests
creating activities accounting for percentiles of outcome with respect to all scenar-
ios, while the deterministic model solution accounts only for expected scenario.
These results so far provide only an aggregate region-level perspectives regarding
agricultural expansion, which may be down-scaled to finer levels (i.e., villages,
communities) applying technique developed in (Fischer et al. 2007).

In Fig. 1, alternative scenarios of migrants are depicted with grey color. Regard-
ing financial support for additional livestock production allocation, the model
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Robust Deterministic

Fig. 2 Total costs associated with robust solution and optimal solution of the deterministic model

estimates that the support may come either in the form of voluntarily contributions
or taxation of the intensive enterprises and part of the investments may be covered
by governmental support or through other investments. The analysis of these
alternatives requires formulation of the dual model and optimality/equilibrium
conditions.

5 Concluding Remarks

This chapter summarizes agricultural developments in Ukraine in the period from
1990 to 2010. It identifies diverse risks induced by production intensification
and concentration, in particular, risks associated with food security, environment
pollution, worsening socio-economic and demographic conditions in rural areas of
Ukraine. The problem of sustainable rural development and necessary agriculture
expansion is formulated as a two-stage STO, which permits to account for inherent
complex interactions and to derive forward-looking policies.

Numerical results review recent joint studies between IEF and IIASA on
planning new activities and jobs in agricultural sector and rural services at the
level of Ukrainian regions. In Ukraine it is expected that large number of short-term
urban workers will migrate between regions and from urban to rural areas. Robust
solution suggested by the two-stage STO model identifies levels of rural activities
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optimal with respect to a majority of possible migrants’ scenarios. We illustrate the
advantages (e.g. cost effectiveness) of robust solution in contrast to optimal solution
of the deterministic model. Costs and risks associated with the deterministic model
solution are much higher than costs and risks associated with robust solution derived
by two-stage STO.

According to the general discussion in Sect. 1, the main purpose of this chapter
is to develop only an integrated optimization model allowing a policy analyst to
identify robust paths of future agriculture development in Ukraine improving socio-
economic and environmental aspects of rural life, enhancing food security of the
country.

Important remaining issue is the analysis of the dual problem, emerging optimal-
ity conditions, pricing system and decentralized solutions. The following example
illustrates the type of important conclusions which can be derived from such
analysis of a STO model. Risk functions (9), (10) embedded in cost function (13)
define systemic risks of the whole food supply system; similar interpretation has
the scalarizing function (14). It is unclear a priory, that minimization of cost-
function (13) imposes implicit regional risk measures. This becomes clear only from
analysis of the dual model and optimality conditions. Consider a slight modification
of risk functions (9), (10) that reflects the discussion in the previous section. Let
us introduce for each location l new decision variables hl and gl as risk reserves
which have to be prepared ex-ante for making ex-post adjustments in the case of
“less-than-expected” migrants flow. Then function (13) takes the form
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where �l ; "l are unit costs in l-th region associated with creation at stage 1 a unit of
the risk reserve. The optimality conditions with respect to hl and gl lead to VaR and
CVaR type risk measures with respect to decision variables hl and gl :

P rob
h
Ll.!/ �

X
ˇijlxijl � gl � 0

i
D �l=�l ;

P rob
h
Sl.!/ �

X
�ijlˇijlxijl � hl � 0

i
D "l= l ;

jointly with other optimality conditions, possibly defined by diverse probability
functions and dual variables. This becomes clear by taking the partial derivative
with respect to xljl of function (19), assuming this derivative exists. In general,



184 O. Borodina et al.

this requires the use of non-differentiable optimization techniques as in (Ermoliev
and Leonardi 1981), or by formulating the dual problem for discrete approximation
model similar as in (Koenker and Bassett 1978) defined by (4)–(6), (15), (16) and
function (17).
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Multiple-Criteria Decision Support System
for Siemianówka Reservoir under Uncertainties

Adam Kiczko and Tatiana Ermolieva

Abstract This paper presents a Multiple Criteria Decision Support System for the
optimal management of the Siemianówka reservoir. The reservoir is localized on the
Narew River upstream the NNP. The river system under considerations consists of
a storage reservoir and a 100 km long River Narew reach, at which end the NNP
is located. The goal of the work is to provide decision makers with a tool that
would allow the safety of the NNP environmental requirements within the reservoir
management policy to be included. An important issue is the competition between
many water-dependent systems and agents, e.g., agriculture, energy, wetlands, for
limited water resources. The proposed system allows a trade-off between different
reservoir users to be found, including protected wetland ecosystems of the Narew
Nation Park. Unobserved inflows play an essential role in the river water balance
and are dealt with use of k-NN technique. In addition, as the optimization problem
requires numerous realizations of the river model, a numerically efficient Stochastic
Linear Transfer Function was applied to flow routing.

1 Introduction

Mitigation of negative changes in natural ecosystems is one of the challenges of
the water management. In case of riverine environments, the most noticeable matter
is protection of wetlands, which are considered as the ecosystems of a very high
biodiversity level. Therefore their existence is crucial for sustainable development

A. Kiczko (�)
Institute of Geophysics, Polish Academy of Science, Warsaw, Poland
e-mail: akiczko@igf.edu.pl

T. Ermolieva
International Institute for Applied Systems Analysis, Laxenburg, Austria
e-mail: ermol@iiasa.ac.at

Y. Ermoliev et al. (eds.), Managing Safety of Heterogeneous Systems, Lecture Notes
in Economics and Mathematical Systems 658, DOI 10.1007/978-3-642-22884-1 9,
© Springer-Verlag Berlin Heidelberg 2012

187



188 A. Kiczko and T. Ermolieva

of society. In this case such negative changes are especially seen in disruptions of
river hydrological regime: long periods of droughts, shorter and smaller freshets.
In result wetland areas often suffer from serious water shortages. The causes might
be directly related to the human impact, but as well to some other inferences, like
climate changes.

In this paper we would like to focus on adaptation of a management strategy
of single reservoir system to include requirements of protected areas as one of
the reservoir’s main goal. This leads to the problem of a control of a multi-
purpose reservoir which always takes a form of a supply/demand problem for a
set of different, usually colliding users. The main difficulty comes when costs
or benefits of certain users cannot be easily compared especially when economic
terms are considered. For example, the benefits from energy production can be
directly assessed, while introducing any economical measures for ecological or
social requirements is rather a problematic issue.

There are many different approaches to this problem in water management.
The most successful ones were based on such techniques like Goal Programming
I.a. (Can and Houck 1984; Gandolfi and Salewicz 1991; Goulter and Castensson
1988; Yang et al. 1992, 1993), where optimization was constrained to a desirable
value for each criterion. This allowed to obtain required trade-off between different
criteria. An extension of this concept was proposed in form of interactive decision
support systems, allowing the user to choose any appropriative solution form pareto-
optimal surface. Such applications were presented by (Agrell et al. 1995; Berkemer
et al. 1993; Makowski et al. 1995).

However, taking into account the stochastic character of reservoir management
problem within multi-criteria analysis it is still a difficult task (Labadie 2004). In
this paper we consider demands in stochastic way, in form of required safety levels
of supply for each user. It was achieved by introducing special criteria functions,
being similar to well known Value-at-Risk measures.

We consider here an application of Decision Support System for the multi-
purpose Siemianówka reservoir. The reservoir is localized on the Narew River
in North–East Poland. Downstream to it rich wetland ecosystem, enclosed within
Narew National Park (NNP), is situated. The goal of the proposed system is to
provide decision makers with a tool that would allow to control safety of the NNP
environmental requirements within the reservoir management policy to be included.
Important issues concern competition among many water-dependent systems and
agents, e.g., agriculture, energy, wetlands, for limited water resources. Accounting
for inherent uncertainties is a challenging key task. The control was performed in
accordance with the Receding Horizon Optimal Control (RHOC) concept, where
release amount is computed each time for a present inflow forecast.

The problem of reservoir management and water supply-demand under uncer-
tainties and risks is formulated as a stochastic multi-criteria problem for preserving
water mass balances.
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2 The Upper Narew Mathematical Model

The Narew National Park is situated in north-east Poland and encloses valuable
water-peat ecosystems of the anastomosing Upper Narew River, making this region
unique in Europe. The NNP’s flora consists of more than 600 species of vascular
plants, including many protected varieties. Park wetland areas provide habitats
for about 200 bird species, being one of the most important stop-over points for
migrating birds. Due to its unique features, the NNP is an important site in the
European Network of Natura 2000 (Dembek and Danielewska 1996).

The river reach under consideration (Fig. 1) is a primary, semi-natural form of
a lowland river system, with relatively small water slope values equal to 0.02%.
The annual river discharge at Suraż is 15.50m3=s. At the beginning of this reach a
relatively big lowland storage reservoir Siemianówka is situated, with total capacity
of about 80 mln m3.

Freshets which in most of the other regions might cause significant threat, in NNP
are part of a natural hydrological cycle. It can be seen that the localization of towns
and villages follows the inundation zone border. In recent years, alarming changes
have been observed in the Upper Narew River hydrological regime, manifested in
a reduction of mean flows and shorter flooding periods. This results in a serious
threat to rich wetland ecosystems. Local climate changes are one of causes of those
changes. Mild winters combined with a reduction in annual rain levels have resulted
in a reduction of the valley’s ground-water resources. However, recent human activ-
ities also have had a significant influence on the deterioration of wetlands water con-
ditions. River regulation work performed in the lower river reach has lowered water
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Fig. 1 Schematic map of the study area
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levels. Additionally, a water storage reservoir constructed upstream of the NNP has
had an important impact on water conditions, causing a reduction in flood peaks.

The idea for adaptation of reservoir management to improve water conditions at
protect area comes from mid 1990’s, when first symptoms of wetlands degradation
become noticeable. For example (Okruszko et al. 1996) have even suggested that
NNP should become the main reservoir recipient. Nevertheless requirements of
other reservoir users cannot be neglected and in addition to fulfilling wetlands
demands the following management goals have to be also included:

• Irrigation of grasslands for agriculture,
• Flood protection of adjacent to the reservoir areas, up to Narewka tributary,
• Fishery at reservoir,
• Energy production from water turbines.

To analyze the influence of reservoir on the river system and dependent subsys-
tems, like wetlands, it was necessary to develop integrated model for Narew River.
Because of complex structure of this multi-channel river system it was a challenging
problem, broadly investigated by Kiczko et al. (2008). The Upper Narew river
system can be represented by a diagram showed in the Fig. 2. It consist of two
main subsystems: reservoir and river valley. Dynamics of Siemianówka reservoir
was described with a simple balance equation:

dS .t/

dt
D S .t/ � U .t/CR .t/ � P .t/ ; (1)

where: S .t/ – reservoir storage [m3=s] at the time t , U .t/ – release amount
[m3=s] to the river (control variable),R .t/ – inflow to the reservoir [m3=s], P .t/ –
evaporation from the reservoir surface [m3=s]. In addition reservoir storage S .t/
should not exceed minimal storage value Smin and maximal Smax for all t periods.
Similar constraints are imposed on U .t/, which has to be higher than Umin and
smaller than Umax:

Smin �S .t/ � Smax

Umin �U .t/ � Umax (2)

Fig. 2 The model of Upper
Narew river system
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Such simplification was possible because of its relatively small size, compare to
used time scale, within the reservoir dynamics could be assumed to be linear.

River discharge through the NNP, Q is an effect of a flow transformation of
reservoir’s releases and lateral inflow to the river system L. Unfortunately this river
reach is not well controlled and between the reservoir and NNP flow records only
for one tributary were available. As a result of it more than the 30% of total inflow
to the NNP comes from uncontrolled sub-basins. This increases a complexity of
the reservoir control problem, as modeling of such external sources involves high
uncertainty.

To identify flow conditions, a one dimensional flow routing model UNET (One-
Dimensional Unsteady Flow Through a Full Network of Open Channels model,
Barkau et al. (1989)) was applied. Despite this one-dimensional formulation, the
UNET allows to include different conveyance conditions of river channel and flood-
plains, which was necessary because of complex structure of the Narew river. The
river reach was represented by 53 cross-sections at 2 km interval, obtained from
the terrain survey. The model was calibrated by adjusting the Manning coefficients
separately for the main channel and left, and right flood-plains. The water surface
slope was used as a downstream boundary condition. As it was mentioned before,
the model mass balance was a problematic issue because of the lack of data on lateral
inflows. Therefore to take it into the account, it was assumed that unmeasured lateral
inflows are linearly correlated with two known tributaries and can be described with
the use of a linear regression model. Validation of the model was presented in the
Fig. 3.

Distributed flow routing model was used to determine required flow conditions at
protected areas. According to (Junk et al. 1989; Tockner et al. 2000) wetland ecosys-
tems depend largely on river flow conditions, and particularly, on flooding. Because
of complexity of ecological systems it is almost impossible to identify such demands
directly. Nevertheless, (Banaszuk et al. 2002; Okruszko and Kiczko 2008) proposed
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Fig. 3 Verification of UNET model for he Upper Narew river; water levels at Suraż river gauge
during a spring freshet in 1983
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a methodology for this region, based on analysis of past river flow patterns. In this
case study UNET model was used to reconstruct flow conditions during a favorable
from ecological point of view period. Such hydrological information was merged
with data concerning localization of main plant communities. This allowed to esti-
mate required magnitude of spring flooding and minimum admissible water flows
during vegetation season. In a control problem this assumptions were introduced in
a form of trajectory describing required inundation extent at the NNP – Aw .t/.

In similar way flood risk for areas localized in reservoir’s closest neighborhood,
between Bondary river gauge and Narewka tributary (see Fig. 1), was estimated.
Results obtained from flow routing methods were merged with Digital Terrain
Model, giving flood extend for a certain discharges. As for this region only arable
land could be affected, it was assumed that all flood loses are proportional to an
inundation area. In addition to this, flow at the protected reach is directly affected
by the reservoir and it was possible to describe attached costs with a simple relation
to the releaseU . The criterion concerning flood loses was conditioned on admissible
flooding area – Af .

Irrigation, as flood protection, applies to areas localized upstream to the Narewka
tributary. Water mass is transferred through the river channel, so it is directly
depended on the reservoir release U . Agriculture requires certain irrigation patterns
of watering and draining during vegetation season. Fulfilling of these demands
was considered previously as the main reservoir purpose and required values of
release – Ua .t/ were determined by the current reservoir’s management instruction
(BIPROMEL 1999).

Demands for fisheries and energy production could be easily described on the
basis of reservoir’s balance equation (1). Fisheries requires that certain reservoir
storage S .t/ is maintained and release U s .t/ does not exceed certain amounts
during fishing times. While performance of hydro-power plant is in this case directly
depended on release U and in the control problem it was assumed that losses occur
when U is bellow the capacity of water turbines – U e .

The control system requires multiple realizations of the flow routing model. An
implementation of the relatively complex UNET model would significantly reduce
computational effectiveness. Moreover, so detailed representation of river flow
behavior was indeed unnecessary. Because demands of NNP were conditioned by
the inflow to NNP, only function linking the reservoir releases U and lateral inflows
with discharge through NNP Q was needed. Such relation was evaluated in form of
a Multiple Input Single Output (MISO) Transfer Function (TF) (Romanowicz et al.
2007):

Qk D B
�
z�1�

A .z�1/
Uk�ıU C C

�
z�1�

A .z�1/
Lnk�ıL (3)

and an observation equation:

yk D ŒSk;Qk�
T C ek (4)
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Qk – water flow [m3=s] at protected and/or agricultural sites, Lnk – lateral inflow
to the river system from Narewka tributary [m3], yk – observation vector, ek –
observation noise vector with normal distribution: � N

�
0; �2

�
, z�1 stands for the

back-shift operator, A
�
z�1�, BI �z�1�, C �z�1� are polynomials of na, nb and nc

order, respectively:

A
�
z�1� D 1C a1z

�1 C : : :C ana z�na

B
�
z�1� D b0 C b1z

�1 C : : :C bnb z
�nb

C
�
z�1� D c0 C c1z

�1 C : : :C cnc z
�nc (5)

This is a lumped, black-box model. It is important to note that in the presented

formulation
C.z�1/
A.z�1/

explains not only flow transformation ofLn but also unmeasured

components of L, linearly correlated with Ln. Uncertainty of the model was
described with the noise ek . River flow routing model, described by (3) was
identified using the Captain Toolbox (Young et al. 2004).

3 Inflow Forecasts

In application of control system for receding optimization horizon all reservoir
management decisions have to be based on the assumption concerning future values
of inflows Rk and Lnk . Therefore the estimation of the predictions uncertainties
was essential in the formulation of a management problem. In typical applications,
forecasts are based on Global Circulation Model realizations and flow predictions
are evaluated with the use of downscaling methods combined with run-off modeling
(Bates et al. 1998; Jones et al. 1995; Murphy 1999). For the Upper Narew basin this
approach would provide reasonable predictions for approximately 10 days ahead.
In the case of the Narew lowland river system, where freshet peak duration usually
exceeds 1 month, a 10 day time horizon is insufficient. Therefore, for the purpose
of control, inflow predictions were calculated from historical records, namely by
means of the so-called nearest neighbor technique (k-NN). This is a non-parametric
method, introduced to the hydrology by Karlsson and Yakowitz (1987). It has been
widely used to forecast inflows from uncontrolled basins (Napiórkowski et al. 1999;
Piotrowski et al. 2004).

In the proposed approach, one searches for the K points in Euclidean phase
space, representingK trajectories of historical sequences of flows with an “embed-
ding dimension” that equals p, that are the most similar (in the sense of the smallest
Euclidean distance) to the point representing the current situation. Then the selected
trajectories are applied to flow forecasting for the assumed time horizon.

Usually the future run-off is calculated as a mean of the trajectoriesK . However
in this application a modification to this method was introduced. It was assumed that
the selected trajectories were random sample from a distribution of possible future
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Fig. 4 An example forecast obtained with k-NN method for Bondary; solid lines stands for
forecasted trajectories, dashed lines for an expected ones and lines with circles for observations

inflows, bringing this approach closer to the concept of GCM Ensemble Forecasts
(Buizza et al. 1999). The number of points (trajectories) K and the embedding
dimension were evaluated by trial and error.

Numerical experiments of the control model showed that this methodology
improves the overall objective function value by 30% approximately, compared to
the use of daily mean values of discharge as inflow predictions. In Fig. 4 an example
forecast for flows at the Bondary river gauge is presented.

4 Optimization Problem

The reservoir control problem was formulated in accordance with the Receding
Horizon Optimal Control, broadly described by Castelletti et al. (2008). The
amount of release (in this case U ) is computed at each decision step, taking into
account present system state and inflow forecasts. The decision step length is
determined by technical characteristics of the reservoir and availability of forecasts.
For Siemianówka reservoir 1 day decision step, recommended in the reservoir
management instruction (BIPROMEL 1999), was applied. Within the RHOC the
optimization problem is solved for a chosen, finite time horizon, reflecting the
information concerning future, possible inflows to the system (R and L). Usually
it exceeds the duration of a single release disposal, which means that a solution
of optimization problem provides also values of possible future releases. However,
according to this concept only the first one is applied as the whole procedure, is
repeated at next time step.

Application of a RHOC requires that an additional criterion for a system end-
state is introduced. In this case it took a form of a penalty function for a deviation
from desirable storage trajectory: Send .t/.
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In general case, the reservoir control problem always takes a form of a stochastic
control. It is because releases disposals are performed against highly uncertain
system models and highly inaccurate inflow forecasts. For the Upper Narew Basin
especially significant is the last element, which overwhelms uncertainty of flow
routing. Therefore in an control system only uncertainty of the inflow forecast
model was included. The result of it is that the control at each computation step
was performed against stochastic realization of inflow R and L.

However, before the control problem formulation it was necessary to adopt
particular form of management criteria. The main difficulty was in matching
different factors, especially economical ones with demands of natural ecosystems.
In the presented solution, certain demands were considered as required safety levels
of supply. In other words, the control goal was to ensure the needs of a user within
assumed probability. Such probabilistic constraints, for a single criterion, might
be introduced through an optimization of specific piece-wise objective function.
In this paper control criteria were formulated in manner, which allowed for such
probabilistic interpretation of introduced measures. They took a form of cost
functions, being minimized with respect to the control variable U and the given
finite time horizon:

• Wetland demands

y1 D max

�
˛1
�
AW;k �AW;k � �1

�
if AW;k � AW;k C �1

.1 � ˛1/
�
AW;k � AW;k � �1

�
else

(6)

• Irrigation:

y2 D max

�
˛2
�
UA;k � UA;k � �2

�
if UA;k � UA;k C �2

.1 � ˛2/
�
UA;k � UA;k � �2

�
else

(7)

• Flood protection:

y3 D max

�
0 if AF;k � AF;k C �3�

AF;k � AF;k � �3
�

else
(8)

• Reservoir storage:

y4 D max

�
˛4
�
Sk � Sk � �4

�
if Sk � Sk C �4

.1 � ˛4/
�
Sk � Sk � �4

�
else

(9)

• Energy production:

y5 D max

� �
UE;k � UE;k � �5

�
if UE;k � UE;k C �5

0 else
(10)
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• Reservoir storage at the end of time horizon:

y6 D max

�
˛6
�
Send � STh � �6

�
if Send � STh C �6

.1 � ˛6/
�
STh � Send � �6

�
else

(11)

where y1, y2, y3, y4, y5, y6 stands for criteria values, �1, �2, �3, �4, �5 , �6 – allowed
deviations from goal trajectory (within which criterion value is equal to 0), ˛1, ˛2,
˛4, ˛6 – coefficients describing costs of not reaching goal value and respectively
1�˛1, 1�˛2, 1�˛4, 1�˛6 costs of exceedance. It is important to note that 8 and 10
are specific form of criterion function, where ˛ coefficients are equal, respectively,
to 0 and 1.

Criteria were aggregated with regard to a cost effectiveness concept i.e. with the
weighted sum method. The crucial issue at this stage was: how to include stochastic
(uncertain) character of the forecast to the optimization problem. There are two
general solutions to this problem. First one, the most conservative, leads to the
formulation of a stochastic optimization problem, within the control is aimed to find
such U that ensures a maximum safety level against all possible inflow scenarios.
In this case aggregation function might take the following form:

J D 1

N

NX
jD1

6X
ID1

�
nI yI

�
U ;Rj ;Lj

��
(12)

where Rj and Lj stands for the j th inflow scenario (being a realization of the
stochastic process) obtained from the nearest neighbor method (k-NN),N – number
of such scenarios and nI – I th weighting coefficient for criteria scaling. Such
approach allows to take into account of a transformation of an uncertainty through
the union function, as the control was performed in the respect to the total expected
cost of all subsystems.

The second way is to neglect the effect of the uncertainty transformation on the
control process, then the optimization problem takes a deterministic form. Such
solution is computationally cheaper, however it is expected that it would produce
satisfactory results only for linear systems and in this paper it was considered only
for comparison. The union function differs form the (12) in that the averaging was
directly applied to the forecast ensemble:

JD D
6X
I

nI yI

�
U ; OR; OL

�

ORk D 1

N

NX
jD1

R
j

k

OLk D 1

N

NX
jD1

L
j

k (13)
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In the result the optimization was aimed to find optimal solution to the expected
inflow forecast.

In case of the stochastic formulation, there is a strong connection with min-
imization of such convex functions and safety constraints, and so-called CVaR
risk measures. As mentioned before, these fundamentally important connections
allow to regulate safety constraints by adjusting the shape of presented piece-wise
functions. In the following, this specific model was formulated without proofs,
which can be derived in a similar manner from general results in (Ermoliev and
Wets 1988; Ermoliev et al. 2000; Rockafellar and Uryasev 2000).

This concept was presented for wetlands demands, however it can be easily
applied to the requirements of other subsystems. In case of single criterion problem
the stochastic optimization problem takes the following form:

E
˚
max

�
˛W

�
AW;k � AW;k � �W

�
; .1 � ˛W /

�
AW;k � AW;k � �W

��	
(14)

where �W � 0 and 0 < ˛ � 1. Such formulation (under rather general
assumptions) allows to obtain the solution which is aimed to satisfy the demand for
the inflow scenario of a given probability level. Particularly, in case when �W D 0,
this probability is equal to 1�˛W . Thus, the minimization of aggregated criteria, for
the stochastic case, composed of y1 and other similar functions y2, y3, y4, y5 and
y6 with respect to decision variables SK , UK would yield a solution specifying the
control variableUK that satisfying required safety levels. If such a solution does not
exist, a multi-criteria analyzing model would allow to find a compromise solution
within desirable aspiration and reservation levels (Kiczko 2008). Of course such
interpretation does not apply to the deterministic formulation, where ˛I coefficients
combined with nI can be only considered in economical sense.

5 Results

Measuring performance of two different control formulations ((12) and (13)) was
a problematic issue. Because of the multi-criteria character of the optimization
it could not be done directly, on the basis of obtained criteria values. Therefore
optimized trajectories of the model variables (U , S and A) were tested against
the trajectories computed for the “perfect” forecast. Because such forecast was
composed of real discharge data, the resulting trajectories were not affected by the
uncertainty. Thus, the performance measures for two different control formulation
was conditioned on similarity to this “perfect” trajectory.

Numerical experiments were performed for the spring and summer period of
1987. Values of ˛I and nI coefficients were presented in Table 1.

Computed trajectories were presented in the Fig. 5. It could be seen that the
stochastic solution seems to be more conservative than deterministic one. It is
especially obvious in case of the reservoir’s storage. The stochastic model allowed
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Table 1 Values of ˛I and nI coefficients used in computations

Criterion ˛I nI

Wetland demands (1) 0.9 4.5
Irrigation (2) 0.6 1
Flood Protection (3) 0 1
Fisheries (4) 0.5 1 � 10�6

Energy Production (5) 1 1
Final Storage (6) 0.5 1 � 10�6
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Fig. 5 Computed trajectories of reservoir storage S (upper plot) and inundation extend at wetland
areas (lower plot); CS – trajectory for stochastic formulation, CD – trajectory for deterministic
formulation; CP – trajectory for the “perfect” forecast

to maintain significantly higher water reserve. Of course, in the result better values
for wetland criterion were achieved within the deterministic approach.

However the overall performance might be measured only in respect to the
solution not affected by the uncertainty. Appropriative fit measures were showed
in a Table 2. It can be seen that stochastic solution is much closer to the “perfect”
one.
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Table 2 Fit measures for the U , S and A trajectories obtained for the deterministic and stochastic
control in respect to the “perfect” control; dUmean , dSmean, dAmean – respectively mean deviation
and dUmax , dSmax , dAmax – maximal deviation

Control type dUmean dUmax dSmean dSmax dAmean dAmax
[m3=s] [106m3] [105 m2]

Deterministic 1.12 8.49 3.36 7.84 3.0 16.7
Stochastic 0.89 6.64 2.04 5.39 2.6 16.7

6 Conclusions

In this paper we address a general task of regional reservoir control and water
management. We formulate it as a stochastic and dynamic multi-criteria problem
for preserving water mass balances under inherent risks and uncertainties in a
region influenced by the reservoir policies. The management problem consists
of optimizing several criteria: wetland water requirements, agricultural, energy
production, flood protection, fishery and reservoir storage.

The proposed Decision Support System is a tool for decision makers to plan
safe control of the environmental in the Narew National Park. The problem of
water management was addressed in an integrated way. Proper expert knowledge,
mathematical and modeling techniques were combined to provide relevant policy
recommendations as to the best regulation of water supply to diverse systems
characterized by different demand-supply priorities and costs associated with water
shortages. The following issues were pointed out:

1. Formulation of the control problem according to the receding horizon optimal
control,

2. The evaluation of the numerically efficient flow routing model was an essential
point in this task. This was achieved with the use of the transfer function concept,

3. Representation of requirements of the reservoir users in a form of convex
piece-wise cost functions. Such form allows to draw a link between stochastic
optimization and probabilistic properties of the solution,

4. The inflow predictions were performed in accordance with the k-NN method.
This approach is much less sophisticated than predictions based on GCM real-
izations, however, under significantly lower costs, it allows to obtain satisfactory
results,

5. Comparison between stochastic and deterministic approaches. It has been shown
that stochastic approach differs form the deterministic one. Stochastic formula-
tion seems to be advantageous, as leads to the solution, which is significantly
closer to the solution obtained for the “perfect” forecast.

The presented study requires future investigation. Efficiency of the control
system could be improved with the use of the ensemble forecasts obtained form
the GCM. In addition, the developed model does not take into account variability
of natural system and therefore introduction of real time updating system could be
considered.
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A Deterministic Algorithm for Global
Optimization

Yury Evtushenko and Mikhail Posypkin

Abstract An algorithm for solving global optimization problems is developed.
The objective and constraints are required to have gradients satisfying Lipschitz
condition. The problem may contain both continuous and integer variables and the
objective may be non-convex and multimodal. Improved lower bounds and new
techniques to reduce the number of algorithm steps by employing the gradient
information are proposed for unconstrained optimization. Computational testing
on different test problems demonstrate the efficiency of the proposed method in
comparison with the state of the art approaches.

1 Introduction

Today there is a great variety of methods for solving global optimization problems
(Pardalos et al. 2000; Pardalos and Resende 2002). These methods can be roughly
divided into two big groups: deterministic and non-deterministic methods. The
deterministic methods reach an approximate global minimum to the given accuracy.
Non-deterministic methods use local search techniques, heuristics or their combi-
nation to locate good approximations for the global minimum but have no means to
estimate the accuracy of the obtained results.

The main disadvantage of non-deterministic methods is the lack of certainty in
the optimality of obtained solutions. Though for many problems the solution found
by heuristic algorithms is satisfactory there are plenty of areas where the knowledge
of accuracy of the obtained minima is mandatory. In such fields heuristics can’t
replace deterministic methods.
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Presently there is a great variety of deterministic methods. Many efficient
methods were developed for convex optimization (Nesterov 2003). Such problems
are relatively simple because of the following property: if the objective and
constraints are convex functions and a local minimum exists then it is a global
minimum. However in practice objective and constraints are often non-convex. For
instance explicit introduction of uncertainties in linear and nonlinear mathematical
programming models often leads to nonconvex/concave optimization model
(Ermoliev and Norkin 2004).

The most successful deterministic methods for global optimization are based on
interval analysis (Hansen 1992; Kearfott 1996), convexification (Tawarmalani and
Sahinidis 2002), and Lipschitzian approaches (Pinter 1996; Strongin and Sergeyev
2000).

In this paper we propose a deterministic method for solving optimization
problems with guaranteed accuracy. The algorithm requires the objective and
constraints to have gradients satisfying Lipschitz conditions. The paper discusses
the techniques to reduce the number of steps by employing the gradient information
and handling discrete parameters in mixed-integer problems. The efficiency of the
proposed approach is demonstrated on various test problems.

In the sequel the following notations are used:

• Z — the set of all integers,
• 1; n D Œ1; n� \ Z — a set of all integers from 1 to n,
• Let a; b 2 Rn. Then a D .�;�; <;>/b if ai D .�;�; <;>/bi for all i 2 1; n,
• Œa; b� D fx 2 Rnja � x � bg — a box with bounds a; b 2 Rn,
• RnC D fx 2 Rnjxi � 0; i D 1; ng,
• ZC — a set of all non-negative integers.

The paper is organized as follows. Section 2 describes the theoretical back-
ground. Section 3 considers different underestimations for objective function and
constraints. The basic algorithm scheme is outlined in Sect. 4. Implementation
details and experimental results are considered in Sect. 5.

2 Preliminaries

A global optimization problem can be formally stated as follows:

Find f� D min
x2X f .x/: (1)

WhereX is a set of feasible points or simply a feasible set. Without loss of generality
assume that there is a box Œa; b� sufficiently large to contain at least one minimizer
point. For problems with functional constraints the feasible set X is defined as
follows

X D fx 2 Œa; b� W g.x/ � 0g ; (2)
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where function g.x/ W Rn ! Rm defines inequality constraints. Equality constraint
h.x/ D 0 can be replaced by a pair of inequality constraints h.x/ � 0;�h.x/ � 0.
Mixed-integer problems imply additional restrictions on some variables:

X D ˚
x 2 Œa; b� W g.x/ � 0; xj 2 Z; j 2 J � f1; : : : ; ng� : (3)

Variables xj ; j 2 J are discrete, other variables are continuous. Definition (2) is a
particular case of definition (3) with empty set of discrete variables. The rest of the
section is devoted to the most general case (3).

The set X� of optimal solutions of the problem (1) is defined as follows:

X� D fx 2 X W f .x/ D f�g: (4)

Exact optimal solutions for continuous problems seldom can be found numeri-
cally. In practice algorithms usually search approximate solutions. For " 2 RC
and ı 2 RnC we introduce the set of approximate �; ı-optimal solutions defined as
follows:

X�;ı� D ˚
x 2 Xı W f .x/ � f� C "

�
; (5)

where
Xı D ˚

x 2 Œa; b� W g.x/ � ı; xj 2 Z; j 2 J � f1; : : : ; ng� (6)

is a ı-feasible set.
The numerical method for solving problem (1) considered in this paper is

based on the non-uniform covering approach proposed in (Evtushenko 1971).
This approach assumes processing sets X.i/; : : : ; X.k/, X.i/ � Rn and points
x.1/; : : : ; x.k/, x.i/ 2 X.i/. For simplicity assume that processing is done in a
sequential order and at i -th step the set X.i/ and point x.i/ are considered. The
current record u.i/ and the best current solution Qx.i/ are defined as follows

u.i/ D f . Qx.i// D min
x2Ni

f .x/; Qx.i/ 2 Ni; (7)

where Ni D fx.1/; : : : ; x.i/g \ Xı is a sequence of ı-feasible points considered
during first i steps of the algorithm.

Let m.i/.x/ be an underestimation for a function f .x/ over set X.i/ \ X�, i.e.
f .x/ � m.i/.x/ for all x 2 X.i/ \ X�. Let " > 0 and let S.i/ be any such set that

S.i/ � ˚
x 2 X.i/ W m.i/.x/ � u.i/ � "

�
: (8)

Then the covering condition is defined as follows:

X� \ [k
iD1S.i/ ¤ ;: (9)

The following theorem provides sufficient conditions for global optimality of the
best current solution.
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Theorem 1. Let X.1/; : : : ; X.k/ be a sequence of sets and Nk be a sequence of ı-
feasible points satisfying condition (9). Then Qx.k/ defined as in (7) is an �; ı-optimal
solution of problem (1) i.e.

f� � u.k/ � �: (10)

Proof. Consider the global minimizer x� of problem (1). From (9) it follows that
there is i 2 1; k such that x� 2 S.i/. Then f� D f .x�/ � m.i/.x�/. According to
(8)m.i/.x�/ � u.i/�� � u.k/�� by definitions of S.i/ and u.k/. Therefore inequality
(10) holds. Since Qx.k/ 2 Xı and f� � u.k/ � � we conclude (according to (6)) that
Qx.k/ is an �; ı-optimal solution of problem (1). ut

Theorem 1 is valid for arbitrary sequences of sets fX.i/g and pointsNi satisfying
property (9). The way of constructing sets fX.i/g and points from Ni is defined by
an algorithmic implementation. In Sect. 4 we demonstrate how these sequences are
constructed by bisection procedure.

3 Lower Bounds

Underestimations and lower bounds are essential for the proposed algorithm. In
the rest of the paper we restrict our discussion to the case where sets X.i/ D
Œa.i/; b.i/� are n-dimensional boxes. Consider a function f .x/ W Rn ! R and its
underestimation m.i/.x/ W Rn ! R over X.i/ \ X�. The lower bound v.i/ for
a function f .x/ over X.i/ is computed as a solution of the following relaxed
optimization problem:

v.i/ D min
x2X.i/

m.i/.x/: (11)

Underestimations are constructed in a way to simplify the resolution of the
problem (11). Various underestimations for Lipschitzian functions are considered
in (Evtushenko et al. 2009). In this paper we focus on functions with Lipschician
gradients. Section 3.1 describes the standard way of constructing Lipschitzian lower
bounds for a general case. In Sect. 3.2 we demonstrate that these standard bounds
can be improved for unconstrained optimization.

3.1 Lipschitzian Lower Bounds in a General Case

Let f .x/ W Rn ! R be a differentiable scalar function with gradient satisfying
Lipschitz condition over a box X.i/ D Œa.i/; b.i/�:

krf .x/ � rf .y/k � L.i/ kx � yk ;
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for all x; y 2X.i/ where L.i/ 2 R is Lipschitz constant. The following underestima-
tion is proposed in (Nesterov 2003):

m.i/.x/ D f
�
c.i/
�C ˝rf �c.i/� ; x � c.i/˛ � 1

2
L.i/

��x � c.i/��2 ; (12)

The minimum v.i/ of m.i/.x/ over box X.i/ can be found analytically:

v.i/ D f
�
c.i/
�C ˝ˇ̌rf �c.i/�ˇ̌ ; a.i/ � c.i/

˛ � 1

2
L.i/

��c.i/ � a.i/
��2 ; (13)

where c.i/ D .a.i/ C b.i//=2 is the center of box X.i/.
Notice that if the function f .x/ is convex the quadratic part of the introduced

bounds (12), (13) can be omitted. Thus for convex f .x/ the underestimation and
the lower bound look as follows:

m.i/.x/ D f
�
c.i/
�C ˝rf �c.i/� ; x � c.i/

˛
;

v.i/ D f
�
c.i/
�C ˝ˇ̌rf �c.i/�ˇ̌ ; a.i/ � c.i/˛ : (14)

3.2 Lipschitzian Lower Bounds for Unconstrained Optimization

Inequality (12) holds for the whole X.i/. However it is sufficient to underestimate
the objective only over a set X� \ X.i/. For unconstrained problems all elements
of X� are stationary points of the objective f .x/, i.e. rf .x/ D 0. Consider such a
stationary point xs , xs 2 X.i/. First notice (Nesterov 2003) that function

M.i/.x/ D f .xs/C hrf .xs/; x � xsi C 1

2
L.i/kx � xsk2;

overestimates f .x/ over X.i/. Since xs is a stationary point rf .xs/ D 0 and
M.i/.x/ D f .xs/ C 1

2
L.i/kx � xsk2. Thus the following inequality holds for any

stationary point xs 2 X.i/:

f .xs/ � f .c.i//� 1

2
L.i/kc.i/ � xsk2:

The latter means that function

Om.i/.xs/ D f .c.i//� 1

2
L.i/kc.i/ � xsk2 (15)

is an underestimation for objective f .x/ over a set of all stationary points in X.i/

and hence over set X.i/ \ X�. The respective lower bound is given by the formula:

Ov.i/ D f .c.i//� 1

2
L.i/kc.i/ � a.i/k2: (16)

Clearly this bound is more accurate than (13).
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3.3 Computing Lipschitz Constants

There are different ways to calculate the value of Lipschitz constant. Various
approximations are considered in (Strongin and Sergeyev 2000). The minimal
value of valid Lipschitz constant L.i/� can be obtained by solving the following
optimization problem:

L
.i/
� D max

x2X.i/
kH.x/k; (17)

whereH.x/ is the Hessian of f .x/. Obtaining Lipschitz constants by directly solv-
ing problem (17) is senseless because this problem is at least as complex as the initial
one (1). Fortunately inequalities (12), (15) remains valid for constants greater than
the exact value L.i/� . Therefore it is sufficient to find any L.i/ � maxx2X.i/ kH.x/k.
This overestimation can be found from the well-known inequality

kH.x/k � max
i21;n

nX
jD1

jhij .x/j (18)

by applying interval arithmetics (Hansen 1992).

4 Algorithm Details

4.1 Algorithm Overview

The algorithm for ensuring the covering condition (9) follows the general branch and
bound scheme. The initial box Œa; b� is iteratively divided into smaller ones until all
resulting boxes are discarded by feasibility or optimality tests. The feasibility test
eliminates boxes not intersecting with X�. The optimality test checks that searching
inside the box can’t improve the record for more than �. Such boxes are added to
the covering sequence fXig and excluded from the further search. During the search
the objective function is evaluated in a number of ı-feasible points. At i -th step the
best solution Qx.i/ with the lowest objective function value u.i/ D f . Qx.i// are saved.

The algorithm performs the following steps:

1. Setup a list of boxes X D fŒa; b�g and the record u0 D 1.
2. If X D ; then output the best current solution and exit otherwise take a box X.i/

from the list X.
3. Perform the feasibility test for X.i/. If X.i/ is eliminated then go to the step 2.
4. Update the record.
5. Perform the optimality test for X.i/. If X.i/ is eliminated then go to the step 2,

otherwise divide X.i/ along the longest edge, obtain two equal boxes and add
them to the list X;

6. go to the step 2.
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The outlined algorithm partitions the initial box into a number of smaller boxes.
The produced boxes are either eliminated by the feasibility test or added to the
covering sequence by the optimality test. Since boxes eliminated according to
feasibility tests don’t intersect with X� the condition (9) holds for the resulting
covering sequence fS.i/g. Thus according to the Theorem 1 the best current solution
Qx.k/ is �; ı-optimal. In practice the covering sequence is usually not constructed
explicitly: the boxes failed feasibility or optimality tests are simply excluded from
the further search.

4.2 Optimality Testing

We use the standard optimality test adopted in the majority of branch-and-bound
algorithms:

1. evaluate the lower bound v.i/ D minx2X.i/ m.i/.x/ for the objective f .x/;
2. compare v.i/ and u.i/, if v.i/ � u.i/ � � then add X.i/ to the covering sequence

and exclude it from the further search.

The lower bound is computed by formula (13) in a general mixed-integer non-
linear programming case and by (16) for unconstrained optimization.

4.3 Feasibility Testing

Let g.x/ D .g1.x/; : : : ; gm.x// be inequality constraint functions as defined in (2).
Let m.i/

j .x/ be an underestimation and v.i/j D minx2X.i/ m
.i/
j .x/ be a lower bound

for function gj .x/, j D 1;m calculated according to (13). If for at least one j from

1;m holds v.i/j > 0 then the X.i/ is infeasible and thus can be excluded from the
further processing.

For problem (3) with integer variables the selected box X.i/ D Œa.i/; b.i/� can be
reduced to the box OX.i/ D Œ Oa.i/; Ob.i/� where

Oa.i/j D
(
a
.i/
j ; j 2 N n J;

da.i/j e; j 2 J;
Ob.i/j D

(
b
.i/
j ; j 2 N n J;

bb.i/j c; j 2 J for all j 2 1; n;

If Ob.i/j < Oa.i/j for at least one j , 1 � j � n then X.i/ doesn’t contain feasible
points and thus can be safely excluded from the further search. Otherwise it is
replaced by the box OX.i/.

For unconstrained optimization we can introduce an additional feasibility test
based on first-order optimality conditions. Let a box X.i/ D Œa.i/; b.i/� contains an
optimal solution point x�. From the first-order optimality condition rf .x�/ D 0.
From the Lipschitz condition

krf .ci /k D krf .ci / � rf .x�/k � L.i/kx� � cik � L.i/kbi � cik:
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Thus if krf .ci /k > L.i/kbi � cik then X.i/ \ X� D ; and X.i/ can be excluded
from the further search. In what follows we call this assertion gradient test.

4.4 Updating the Record

At each iteration the objective function value is calculated in the new trial point
x.i/. For unconstrained optimization this point is the center c.i/ of the box X.i/. If
f .x.i// < u.i�1/ then x.i/ and f .x.i// become the new best current solution and
record respectively:

u.i/ D f .x.i//; Qx.i/ D x.i/:

For a problem with functional constraints x.i/ is also taken equal to c.i/ but the
record is updated only if the point is ı-feasible, i.e. g.c.i// � ı.

To update the record for mixed-integer problems the new trial point x.i/ is defined
as follows:

x
.i/
j D

8<
:
c
.i/
j ; j 2 1; n n J;

bc.i/j c; j 2 J:
If g.x.i// � ı and f .x.i// < u.i�1/ then the best current solution and the record

are updated.

5 Implementation and Experimental Results

It is worth to note that the proposed algorithm can exploit parallel processing
because it generates new boxes per iteration. It has been implemented in the
BNB-Solver framework (Evtushenko et al. 2009). This object-oriented framework
for discrete and continuous parallel global optimization supports exact branch-
bound algorithms, heuristic methods and hybrid approaches. BNB-Solver provides
a support for distributed and shared memory architectures. The implementation
for distributed memory machines is based on MPI (Snir et al. 1996) and thus can
run on almost any computational cluster. In order to take advantages of multicore
processors we provide a separate multi-threaded implementation for shared memory
platforms. Details of parallel implementation, efficiency and speedup characteristics
can be found in (Evtushenko et al. 2009). In the sequel we focus on serial
implementation.

The goal of experiments was two-fold: to evaluate the efficiency of proposed
new techniques (namely gradient test and lower bound (16)) and to compare our
method to state-of-the-art solvers. Experiments were performed for unconstrained
global optimization problems with polynomial objectives of the following form:
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f .x/ D
mX
iD1

axni C
X
d2D

adx
d1
i1
: : : x

dm
im
; (19)

where m is an even number of polynomial variables, n is a polynomial degree,
a > 0 is a fixed real number, D D f.d1; : : : ; dm/ W di 2 ZC;

Pm
iD1 di � n � 1g is

a set of degree tuples of polynomial items and ad are uniformly distributed random
numbers, ad 2 Œ0; a�; d 2 D.

The search domain was a box P D fx 2 Rn W �B � xi � Bg, where B D
jDj and jDj is a number of tuples in D. It is easy to show that f .x/ > f .0/ for
every x … P and therefore x� 2 P . Upper bounds for Lipschitz constants used in
computations were calculated according to (18).

Experiments were performed for five series of 10 problems each. Problems were
randomly generated according to (19) with the following set of parameters:

• Series 1: a D 10, m D 3, n D 4;
• Series 2: a D 10, m D 3, n D 6;
• Series 3: a D 10, m D 3, n D 8;
• Series 4: a D 10, m D 4, n D 4;
• Series 5: a D 10, m D 4, n D 6.

In Table 1 we compare the average (AVR) , maximal (MAX) and minimal (MIN)
running times for four different ways of optimality and feasibility testing:

• O1 — using lower bound (13);
• O2 — using lower bound (16);
• O1G — O1 coupled with the gradient test;
• O2G — O2 coupled with the gradient test.

We also used generated problems to test solvers from the GAMS1 package.
Only two solvers (BARON and LINDOGLOBAL) from this package claim to
deterministically find a global solution. BARON (Tawarmalani and Sahinidis 2005)
exploits constraint propagation, interval analysis, and duality bounds combined with
a powerful branch-and-bound procedure. LINDOGLOBAL2 also employs branch-
and-bound approach and uses convexification of the objective and constraints
to obtain lower bounds. In both solvers records are precalculated using local
optimization and heuristic methods. Table 1 gives running time in seconds for these
solvers in columns BR and LG respectively. For problems from Series 3,5 BARON
terminates abnormally due to reaching memory limit (indicated by ’A’ in the table).
LINDOGLOBAL failed to find a correct solution for Series 2,3,5: it terminates after
a few iterations and erroneously reports x D 0m as an answer (indicated by ’E’ in
the table). All experiments were run on the same PC Intel Core 2 Quad 2.83 GHz
4 Gb RAM and with the same absolute tolerance � D 10�4. The O1 version of the

1http://www.gams.com/.
2http://www.lindo.com/.
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Table 1 Running time in seconds for random polynomial unconstrained optimization problems

Series O1 O2 O1G O2G BR LG

1 AVR 1:28 0:15 0:38 0:14 1.07 5.42
MAX 2:81 0:12 0:45 0:12 1.36 6.02
MIN 0:58 0:2 0:31 0:21 0.65 3.43

2 AVR 32:73 1:81 4:67 1:79 4.86 E
MAX 152:49 2:02 5:77 1:99 6.56 E
MIN 9:89 1:63 4:27 1:66 3.68 E

3 AVR T 11:02 28:06 11:24 A E
MAX T 11:97 32:42 12:35 A E
MIN T 10:16 25:55 10:46 A E

4 AVR 97:724 2:41 9:13 2:32 3.51 23.63
MAX 207:39 3:09 11:87 2:96 3.89 27.71
MIN 35:93 2:00 7:82 1:94 3.02 20.54

5 AVR T 72:63 243:39 69:05 A E
MAX T 83:21 294:78 77:39 A E
MIN T 65:36 228:57 61:89 A E

coverage algorithm was not able to solve generated instances from Series 3,5 within
5 minutes time limit and was interrupted (indicated by ’T’ in the table).

Results presented in Table 1 show that gradient test can remarkably improve the
performance of the basic version O1 of the algorithm and gives a little improvement
for O2. Best results are obtained using lower bound (16) combined with gradient
test. Comparison with state-of-the-art solvers BARON and LINDOGLOBAL shows
that for a considered class of unconstrained polynomial problems our method with
lower bound (16) performs significantly better.

To test the proposed algorithm for the case of mixed-integer constrained opti-
mization we selected a well-known pressure vessel design problem introduced in
(Sandgren 1988). The objective is to minimize the total cost including the cost of
the material, forming and welding. This problem has four design variables: thickness
of the shell x1, thickness of the head x2, inner radius x3 and length of the cylindrical
section of the vessel x4. Variables x1 and x2 are integer multiples of 0.0625 inch,
which are the available thicknesses of rolled steel plates. Other two variables are
continuous. The problem can be stated as follows:

Minimize:
f .x/ D 0:6224x1x3x4 C 1:7781x2x

2
3 C 3:1661x21x4 C 19:84x21x3;

Subject to:
g1.x/ D �x1 C 0:0193x3 � 0;

g2.x/ D �x2 C 0:00954x3 � 0;

g3.x/ D ��x23x4 � 4
3
�x33 C 1296000 � 0;

g4.x/ D x4 � 240 � 0;

x1 D 0:0625z1; z1 2 Z;
x2 D 0:0625z2; z2 2 Z:

(20)
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Table 2 The comparison with other works

Source Method Minimum

Sandgren (1988) branch & bound 8129.1036
Kannan and Kramer (1994) augmented lagrange multipliers 7128.0428
Kalyanmoy (1997) genetic algorithm 6410.3811
Coello Coello and Montes (2002) genetic algorithm 6059.9463
Takahama and Sakai (2006) particle swarm 6059.7143
Tahera et al. (2008) genetic algorithm 6062.652
This paper coverage approach 5850.3831

From the common sense it follows that all variables are positive. The constraint
g4 implies x4 � 240. In (Coello Coello and Montes 2002) upper bounds for
variables x1; x2; x3 were set to 99 . We enlarged them to 200: P D fx 2 R4 W 0 �
x1 � 200; 0 � x2 � 200; 0 � x3 � 200; 0 � x4 � 240g. Finally variables x1 and
x2 were replaced by integer variables z1; z2 and objective function and constraints
were adjusted respectively.

We used underestimations (13) for constraints and the objective function. For the
objective function f .x/ and the constraint g3.x/ we calculated upper bounds for
Lipschitz constants according to (18) for every new box X.i/. For linear constraints
g1.x/; g2.x/ we used bound (14).

For the objective function f .x/ and constraints g1; g2; g3 the precision was set
to 10�7. The algorithm processed 566227 boxes in 11:55 seconds on Intel Core 2
Quad 2.83 GHz. The obtained solution was

x1 D 0:75; x2 D 0:375; x3 D 38:8601036266; x4 D 221:365471361;

f .x/ D 5850:3830518:

This solution provides the following values for constraints:

g1.x/ D �0:000000000007;
g2.x/ D �0:0042746114;
g3.x/ D �0:0000011429:

Table 2 compares the results obtained by our algorithm (the last line) and
results obtained by other researchers. Our algorithm found the value 5850:3831
significantly better w.r.t. the best value 6059:7143 found before.

6 Related Works

First attempts to use Lipschitz property in optimization date back to early 70th.
The seminal work (Evtushenko 1971) introduced Lipschitzian underestimations and
described a deterministic algorithm for searching global optimum of a multivariate
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objective function. The algorithm is based on the non-uniform coverage of the
feasible set by boxes. This paper also contained the Algol 60 recursive procedure
implementing the proposed algorithm. Another approach for solving univariate
global optimization problems was later independently proposed in works (Piyavskii
1972; Shubert 1972). In this approach the objective is supposed to satisfy Lipschitz
condition with a known constant K . The “saw-tooth” like underestimation is
iteratively constructed from the function values calculated at the ends of the
processed intervals. The main limitation of this approach is that it can’t be directly
extended to the N -dimensional case.

These works gave rise to numerous research results in Lipschitzian optimization
and software implementations see (Pinter 1996; Strongin and Sergeyev 2000)
for survey. One of the most successful approaches was originally introduced in
(Jones et al. 1993) for unconstrained black-box optimization. Later (Jones 1999)
it was extended to handle functional and integer constrains. This algorithm called
DIRECT (DIvide RECTangle) is based on biasing the search to most “promising”
rectangles i.e. rectangles those are likely to contain global minima. The rectangles
are selected on the basis of Lipschitzian lower bound where the Lipschitz constant
is approximated at each step.

Most of these approaches are tailored to solving black-box problems and thus
rely on estimations of Lipschitz constants rather than exact values. Though these
search strategies converge to the minimum value at the limit they don’t have means
to measure the accuracy of the obtained solution. This leads to problems with
selecting adequate stopping criteria. In contrast our approach uses strict upper
bounds for Lipschitz constant given by formula (18) thereby guaranteeing the
�-optimality of the found point.

The absolute majority of works in Lipschitzian optimization assume that the
objective function is Lipschitz-continuous. Few works dealing with Lipschitzian
gradients (Evtushenko et al. 2009; Gergel 1997; Sergeyev 1998) use this property
only to evaluate lower bounds and ignore the first-order optimality condition
rf D 0. We showed that this condition can be efficiently used in a simple gradient
test and for calculating a lower bound (16) that doesn’t require gradient evaluation.
Experiments presented in Sect. 5 show that this bound tremendously improve the
performance of the algorithm. Though the gradient test (some times also called
monotonicity test) is widely used in interval approaches (Hansen 1992; Kearfott
1996) we pretend to be the first who applied this test to Lipschitzian optimization.

7 Conclusions

We have presented an algorithm for solving global optimization problems with
guaranteed accuracy. The approach requires the objective and constraints to have
gradients satisfying Lipschitz condition. In the paper the general algorithm scheme
and its specialization for handling unconstrained and constrained mixed-integer
problems were considered. Improved lower bounds and new techniques to reduce
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the number of algorithm steps by employing the gradient information were proposed
for unconstrained optimization.

In order to test the approach we performed several experiments for unconstrained
problems. Different optimality testing techniques for unconstrained optimization
were compared. Experiments showed that the proposed novel lower bound could
significantly (in several times) decrease the running time. We also compared
our approach with production solvers on large set of random polynomials. This
comparison showed that our approach is significantly faster for the considered set
of problems. For the well known mixed-integer programming benchmark (pressure
vessel design) the proposed algorithm was able to improve the best solution for this
problem found so far.
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Robust Optimization by
Fuzzy Linear Programming

Masahiro Inuiguchi

Abstract In this paper, possibilistic linear programming approaches, i.e., linear
programming approaches with fuzzy coefficients, are reviewed from the perspec-
tive of robust optimization. The ideas of optimizing approaches and satisficing
approaches are described rather than their technical and methodological aspects.
In the first part of the paper, optimizing approaches are introduced. Possibly and
necessarily optimal solutions are described as solution concepts for fuzzy linear
programming problems. It is shown that a necessarily optimal solution is a solution
preserving optimality from the fluctuations of coefficients within a certain range.
However, because in many cases a necessarily optimal solution does not exist,
a weakened solution concept, i.e., necessarily soft-optimal solutions is added.
In the second part, satisficing approaches are briefly introduced. The necessity
measure optimization model, the necessity fractile optimization model and the
symmetric models are described. The solutions of these models preserve feasibility
or satisfaction from the fluctuations of coefficients in a certain range. Finally, some
concluding remarks are made.

1 Introduction

In real-world problems, we may face cases where the parameters of linear pro-
gramming problems are not known exactly. In such cases, parameters can be
treated as random variables or fuzzy variables, which are also called possibilistic
variables (Dubois and Prade 1988; Hisdal 1978; Yager 2001; Zadeh 1978). The
probability distribution that random variables obey is usually not easy to obtain, as
it is assumed to be obtained by strict measurement on a ratio scale. On the other
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hand, the possibility distribution restricting possibilistic variables can be obtained
rather easily, because it is assumed to be obtained from experts’ perception by
measurement on an ordinal scale. The properties of probability, such as additivity,
require the cardinality of probability, while the properties of possibility, such
as maxivity (Dubois and Prade 1998), require only the ordinality of possibility.
Here we do not discuss quantitative possibility, which has some connections with
subjective probability, but only qualitative possibility (Dubois and Prade 1998). For
these reasons, possibilistic programming approaches treating possibility distribu-
tions would be more convenient for modeling real-world optimization problems that
include uncertainty.

In this paper, we review possibilistic linear programming approaches (see,
for example, Dubois 1987; Inuiguchi and Ramı́k 2000) to robust optimization.
Robustness in decision aiding and robust optimization have been surveyed in the
literature (Ben-Tal and Nemirovski 2002; Aissi and Roy 2010). The robustness to
which we refer in this paper implies the preservation of feasibility, satisfaction or
optimality from the fluctuations of parameters within a certain range. Possibilistic
linear programming approaches can be classified into three cases: the optimizing
approach, the satisficing approach and the two-stage approach. Because the third
approach has not yet been substantially developed, we focus on the other two
approaches. First we review the optimization approach. We describe necessarily
optimal solutions as solutions preserving optimality from the fluctuations of param-
eters within a certain range. Because a necessarily optimal solution does not always
exist, necessarily soft-optimal solutions have been proposed. In necessarily soft-
optimal solutions, the optimality conditions are relaxed to approximate optimality
conditions. The relation to the minimax regret solution is shown, and a solution
procedure for obtaining a best necessarily soft-optimal solution is briefly described.

Next we describe about the satisficing approach. This approach was developed
earlier and has been described often in the literature. (Dubois 1987; Slowinski
1986; Slowinski and Teghem 1990; Tanaka and Asai 1984; Tanaka et al. 1984).
We introduce the approach briefly and concisely, focusing on the idea of robust
treatments. Then, the necessity measure optimization model, the necessity fractile
optimization model and the symmetric model are presented. The solutions of these
models preserve feasibility or satisfaction from the fluctuations of parameters within
a certain range. It is emphasized that the reduced problems of those models have
linearity to some extent.

Finally, we end the paper with some concluding remarks.

2 Optimizing Approach

2.1 Statement of the Problem

To explain the concept of robustly optimal solutions, let us consider the following
linear programming problems with uncertain objective function coefficients:
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maximize �Tx;

s.t. Ax � b;
(1)

where A is a constant m � n matrix, b D .b1; b2; : : : ; bm/
T is a constant vector,

x D .x1; x2; : : : ; xn/
T is a decision variable vector and � D .�1; �2; : : : ; �n/

T

is an uncertain variable vector corresponding to the objective function coefficient
vector. In real-world problems, we may face cases where components ofA and b are
ambiguous and/or the inequality � is generalized to a fuzzy inequality (Inuiguchi
et al. 1993). However, we treat the simpler case where A and b are constant and no
fuzzy inequality is included.

When � is regarded as a random variable vector, Problem (1) becomes a
stochastic linear programming problem (Stancu-Minasian 1984). In this case,
estimating the probability distribution that the random variable vector obeys would
not be very easy because the probability should be measured on a cardinal scale.
Sensitivity analysis (Derhy 2010) has been developed to evaluate the influence of
the fluctuations of coefficients. However, it is only a local analysis and analysis with
multiple parameters is not very easy. In this paper, we focus on a case where �
is seen as a possibilistic variable vector restricted by a possibility distribution. A
possibility distribution is defined by a membership function �� W Rn ! Œ0; 1� of a
fuzzy set � showing the possible range of � . The membership values �� .c/ for a
vector c 2 Rn of the fuzzy set � do not need to be cardinal, but only ordinal. By
this weak assumption, estimating of fuzzy set � would be easier than estimating
the probability distribution. Thus, fuzzy set � can be estimated approximately by
human experts.

For example, we may estimate a largest possible range for � as an approximation
of the support of fuzzy set � , a smallest possible range for � as the core of fuzzy
set � and an appropriate possible range for � as the 0:5-level set of fuzzy set � .
Between those ranges, membership values can be determined by some interpolation.
Here, we define the support of � by Supp.� / D fc W �� .c/ > 0g, the core of � by
Core.� / D fc W �� .c/ D 1g and the ˛-level set of � by Œ� �˛ D fc W �� .c/ � ˛g
for ˛ 2 .0; 1�. Supp.� / can be approximated by the �-level set Œ� �� with very small
positive number � > 0. This estimate is illustrated in Fig. 1 when n D 2.

Remark 1. In the above explanation, we assume that the appropriate possible range
corresponds to Œ� �0:5 but the value 0.5 is not essential. It can be replaced with any
value between � and 1. The correspondence between membership values of multiple
fuzzy sets is essential in the possibilistic programming described in this paper.

Fuzzy programming problems are mathematical programming problems with
fuzzy parameters and/or fuzzy relations (Inuiguchi et al. 1993). Possibilistic pro-
gramming problems are fuzzy programming problems when membership functions
of fuzzy sets with respect to uncertain parameters are regarded as possibility
distributions. Moreover, interval and inexact programming problems (Bitran 1981,
Soyster 1979) can be seen as special cases of fuzzy/possibilistic programming
problems, where all fuzzy sets involved in the problems degenerate to crisp sets.
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Fig. 1 Estimation of fuzzy
set �

We interpret the membership function �� of fuzzy set � as a multivariate
possibility distribution because � shows the possible range of � . Then, Problem
(1) can be seen as a possibilistic linear programming problem. We explain some
optimizing approaches to such a problem related to robust optimization.

2.2 Possibility and Necessity

Now let us introduce possibility and necessity measures defined under possibility
distributions in possibility theory. There are two different kinds of possibility theory
(Dubois and Prade 1998): quantitative and qualitative. The quantitative possibility
theory has some connections with subjective probability, while the qualitative
possibility theory can be described either via a purely comparative approach, such
as a partial ordering on events, or using set-functions ranging on an absolute, totally
ordered scale (Dubois and Prade 1998). The possibility theory employed in this
paper is the qualitative one.

To introduce the concepts of possibility and necessity, we consider a crisp case.
Let A be a set of possible realizations and B a set of objectives satisfying a certain
property P . In other words, A shows a possible range, while B shows an event.
Then we may say that the satisfaction of P is possible if and only if A \ B ¤ ;,
i.e., there exists an object z such that z 2 A and z 2 B (see Fig. 2). Moreover, we
may say that the satisfaction of P is necessary (certain) if and only if A � B ,
i.e., for all objects z 2 A, we have z 2 B (see Fig. 2). Then the possibility measure
˘A.B/ and necessity measure NA.b/ are defined by

˘A.B/ D
�
1; if A\ B ¤ ;;
0; otherwise,

NA.B/ D
�
1; if A � B;

0; otherwise.
(2)
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Fig. 2 Possibility and
necessity

(a) possibility (b) necessity

When A and B are generalized to fuzzy sets, the possibility and necessity
measures are defined by

˘A.B/ D sup
z

min.�A.z/; �B.z//; (3)

NA.B/ D inf
z

max.1 � �A.z/; �B.z//; (4)

where�A and �B are the membership functions of fuzzy setsA andB , respectively.
Possibility measure ˘A.B/ and necessity measure NA.B/ are depicted in Fig. 3.
Note that ˘A.B/ in (3) and NA.B/ in (4) degenerate to ˘A.B/ and NA.B/ in (2)
when A and B are crisp sets.

The Properties of possibility and necessity measures have been investigated in
the literature (Dubois and Prade 1998), but we describe the following properties:

˘A.B/ > ˛ , .A/˛ \ .B/˛ ¤ ;; NA.B/ � ˛ , .A/1�˛ � ŒB�˛; (5)

where .A/˛ is a strong ˛-level set defined by .A/˛ D fz W �A.z/ > ˛g for ˛ 2 Œ0; 1/.
In those properties, we can observe the relation between the possibility measure and
non-empty intersection, as well as the relation between the necessity measure and
inclusion.

Remark 2. Using a conjunction function T W Œ0; 1� � Œ0; 1�! Œ0; 1� and an implica-
tion function I W Œ0; 1� � Œ0; 1�! Œ0; 1� such that T .0; 0/DT .0; 1/ D T .1; 0/D0,
T .1; 1/D 1, I.0; 0/DI.0; 1/ D I.1; 1/D1 and I.1; 0/D0, the possibility and
necessity measures can be generalized to

˘A.B/ D sup
z
T .�A.z/; �B.z//; (6)

NA.B/ D inf
z
I.�A.z/; �B.z//: (7)

Such generalized measures may work to express the variety of decision-maker’s
desires regarding possibility and necessity (Inuiguchi 2009).
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Fig. 3 Possibility and
necessity measures

2.3 Possible and Necessary Optimalities

Two kinds of optimal solutions have been proposed to Problem (1) (Inuiguchi and
Sakawa 1994). One is a possibly optimal solution, and the other is a necessarily
optimal solution. LetX be the set of feasible solutions of Problem (1), i.e.,X D fx W
Ax � bg. Moreover, we define S.c/ as a set of optimal solutions to a linear
programming problem maxy2X cTy with a constant objective function coefficient
vector c, i.e.,

S.c/ D
�
x 2 X W cTx D max

y2X c
Ty

�
: (8)

Note that S.c/ is not always a singleton because a linear programming problem can
have multiple optimal solutions. Then the possibly optimal solution set˘S and the
necessarily optimal solution set NS are defined by

˘S D
[
c2�

S.c/; NS D
\
c2�

S.c/: (9)

˘S is a set of feasible solutions that is optimal for at least one objective coefficient
vector c 2 � . On the other hand, NS is a set of feasible solutions that is optimal
for all objective coefficient vectors c 2 � .

Let V.x/ be the set of objective function vectors c such that x is an optimal
solution to maxy2X cTy, i.e., x 2 S.c/. Then the relations of˘S andNS regarding
possibility and necessity measures can be seen as

x 2 ˘S , ˘� .V.x// D 1; x 2 X , � \ V.x/ ¤ ;; x 2 X
, there exists c 2 � such that x 2 S.c/; (10)

x 2 NS , N� .V.x// D 1; x 2 X , � � V.x/; x 2 X
, for all c 2 � , we have x 2 S.c/: (11)

Namely, a possibly optimal solution is a feasible solution optimal for at least one
possible realization c 2 � , whereas a necessarily optimal solution is a feasible
solution optimal for all possible realizations c 2 � . From this fact, we may see that
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a necessarily optimal solution is a robustly optimal solution because the solution
remains optimal regardless of the fluctuation of c whithin the given range � .

The same solution set as ˘S was originally considered by Steuer (1981) but
for a different purpose. Moreover, a solution set similar to NS was originally
defined by Bitran (1981) in multiple objective cases. Those solution concepts were
introduced to possibilistic programming by Luhandjula (1987) in multiple objective
cases.

A few examples of possibly and necessarily optimal solutions are given in the
following example.

Example 1. Let us consider Problem (1) with

A D

0
BBBBB@

3 4

3 1

0 1

�1 0

0 �1

1
CCCCCA
; b D

0
BBBBB@

42

24

9

0

0

1
CCCCCA
; (12)

and
� D˚.c1; c2/T W 3:5 � 2c1 C c2 � 5:5; 3:4 � c1 C 2c2 � 6;

1 � c1 � c2 � 1:3; 1 � c1 � 2; 0:8 � c2 � 2:2g : (13)

Consider a feasible solution .x1; x2/T D .6; 6/T. The feasible region X is depicted
in Fig. 4. Set the c1-c2 coordinate system so that its origin is located at .x1; x2/T D
.6; 6/T. The set V..6; 6/T/ of objective function coefficient vectors to which .6; 6/T

is optimal is a closed convex cone whose border lines are 4c1 D 3c2 and c1 D 3c2,
as shown in Fig. 4 on the c1-c2 coordinate system. � is also shown in Fig. 4 on the
c1-c2 coordinate system. We observe that � \ V..6; 6/T/ ¤ ; and � 6� V..6; 6/T/.
Therefore, .x1; x2/T D .6; 6/T is a possibly optimal solution, but not a necessarily
optimal solution.

However, let us have � defined by

� D˚.c1; c2/T W c1 C c2 � 3; c1 � c2; c1 � 2c2; c1 � 2:5; c2 � 2
�
: (14)

instead of that defined by (13). The situation is changed as shown in Fig. 5. In this
case, we have � � V..6; 6/T/, which implies � \ V..6; 6/T/ ¤ ;. Therefore,
.x1; x2/

T D .6; 6/T is both a possibly optimal solution and a necessarily optimal
solution.

These solution concepts are extended to the case when � is a fuzzy set (Inuiguchi
and Sakawa 1994). Let �S.c/.x/ and �V.x/.c/ be characteristic functions of S.c/ and
V.x/, respectively, i.e.,

�S.c/.x/ D
�
1; if x 2 S.c/;
0; otherwise;

�V.x/.c/ D
�
1; if c 2 V.x/;
0; otherwise:

(15)
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Fig. 4 An example of
possibly optimal solution

Fig. 5 An example of
necessarily optimal solution

Then the possibly optimal solution set ˘S and the necessarily optimal solution set
NS are defined by

�˘S.x/ D sup
c2�

min.�� .c/; �S.c/.x//

D sup
c2�

min.�� .c/; �V.x/.c// D ˘� .V.x//; (16)

�NS.x/ D inf
c2� max.1 � �� .c/; �S.c/.x//

D inf
c2� max.1 � �� .c/; �V.x/.c// D N� .V.x//: (17)
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We may evaluate the degrees of possibility and necessity optimalities to feasible
solutions using the membership function of a fuzzy set � .

From properties shown in (5), we have

�˘S.x/ > ˛ , .� /˛ \ V.x/ ¤ ;; (18)

�NS.x/ � ˛ , .� /1�˛ � V.x/: (19)

Equation (18) implies that x such that �˘S.x/ > ˛ is a feasible solution optimal for
at least one c 2 .� /˛. On the other hand, (19) implies that x such that �NS.x/ � ˛

is a feasible solution optimal for all c 2 .� /1�˛ .
Because we are interested in robust optimization, we give an example of a

necessarily optimal solution when � is a fuzzy set.

Example 2. Let us consider Problem (12) with fuzzy set � defined by the following
membership function:

�� .c1; c2/ D min .��1.c1/; ��2.c2// ; (20)

where ��1 and ��2 are membership functions of symmetric triangular fuzzy num-
bers �1 DST .1:5; 1/ and �2 DST .1:5; 2/. A symmetric triangular fuzzy number
M DST .mC; mW/ .mW > 0/ is defined by the following membership function:

�M .r/ D max

�
0; 1� jr �mCj

mW

�
: (21)

Consider a feasible solution .x1; x2/T D .6; 6/T. In the same way as Example 1,
Fig. 6 shows the situation of the solution. In this example, the membership function
of fuzzy set � draws a pyramid. In Fig. 6, the overhead view of fuzzy set � is

Fig. 6 An example of
necessarily optimal solution
with degree 0.176471
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depicted as a rectangle with saltire lines, and the 0.823529-level set Œ� �0:823529 is
shown as a small box on the c1-c2 coordinate. As is shown in Fig. 6, we have
.� /0:823529 � V..6; 6/T/ so that .6; 6/T is optimal for all c 2 Œ� �0:823529. Then
.6; 6/T is a necessarily optimal solution to degree 0:176471 D 1 � 0:823529.

In crisp cases, we may easily encounter a case where no necessarily optimal
solution exists (see Example 1). By introducing fuzziness to � , i.e., several levels
of possible range estimations, it becomes more probable that a necessarily optimal
solution exists because we may set the smallest possible range as narrow as possible.

Inuiguchi and Sakawa (1994) investigated the possible and necessary optimality
tests of a feasible solution when � is a vector of non-interactive fuzzy numbers
(Inuiguchi et al. 2000). The possible optimality test problem of a given feasible
solution is reduced to linear programming problems, while the necessary optimality
test problem of a given feasible solution is reduced to a sequence of linear
programming problems. Inuiguchi (2004) proposed an enumeration method of all
possibly optimal extreme points with their possible optimality degrees. When the
membership function of � is strictly quasi-concave, the necessarily optimal extreme
points can be obtained by enumerating all possibly optimal extreme points. It is not
necessarily to have enumerated all possibly optimal extreme points but to have the
neighbors of those with possible optimality degree 1. For the case where � is a crisp
box set, relations between solutions in multiple objective programming problems
and possibly and necessarily optimal solutions have been investigated by Inuiguchi
and Kume (1994). It has been shown that possibly optimal solutions are equivalent
weakly efficient solutions of a multiple objective programming problems derived
from Problem (1) and that necessarily optimal solutions are equivalent to completely
optimal solutions.

2.4 Robust Soft-Optimal Solutions

Necessarily optimal solutions are the most rational solutions, but do not exist in
many cases, while possibly optimal solutions are minimally rational solutions and
often exist in large numbers. Therefore, intermediate solutions or relaxed necessarily
optimal solutions have been investigated (Inuiguchi and Kume 1994; Inuiguchi and
Sakawa 1995a, 1997, 1998). The proposed solution concept is called a necessarily
soft-optimal solution or a robust soft-optimal solution.

To introduce the solution concept, we define the soft-optimal solution set QS.c/
with respect to objective function coefficient vector c. Two definitions have been
proposed, the difference-based definition QSD.c/ and the ratio-based definition
QSR.c/:
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� QSD.c/.x/ D
8<
:
�Dif

�
max
y2X c

Ty � cTx

�
; if x 2 X;

0; otherwise,
(22)

� QSR.c/.x/ D

8̂
<̂
ˆ̂:
�Rat

0
@ cTx

max
y2X c

Ty

1
A; if x 2 X;

0; otherwise;

(23)

where �Dif WR ! Œ0; 1� and �Rat WR ! Œ0; 1� are non-increasing and non-decreasing
upper semi-continuous functions, respectively, such that �Dif .0/D�Rat .1/D 0

(see Fig. 7). The ratio-based definition is applicable only when 8c 2 � I maxx2X cT

x > 0. Members of QSD.c/ are solutions such that the difference between the
objective function value and the optimal value is not very large. Namely, the
optimality is relaxed based on the difference. On the other hand, members of QSR.c/
are solutions such that the ratio of the objective function value to the optimal value
is close to 1. Namely, the optimality is relaxed based on the ratio. Members of both
QSD.c/ and QSR.c/ are suboptimal solutions but the measures of their closeness to

optimality are different.
Aissi and Roy (2010) mentioned similar measures. The difference-based defini-

tion corresponds to the absolute deviation, i.e., the value of the absolute regret in
the worst case, while the ratio-based definition corresponds to the relative deviation,
i.e., the value of the relative regret in the worst case.

Replacing S.c/ in (17) with QS.c/, the necessarily soft-optimal solution set eNS
can be defined by the following membership function:

�eNS .x/ D inf
c

max
�
1 � �� .c/; � QS.c/.x/

�
: (24)

When soft-optimal solution set QS.c/ is defined based on the difference, QS.c/ is
substituted for QSD.c/. On the other hand, when soft-optimal solution set QS.c/ is
defined based on the ratio, QS.c/ is substituted for QSR.c/.

Corresponding to V.x/, i.e., a set of objective function coefficient vectors c to
which x is optimal, we may define a set QV .x/ of objective function coefficient
vectors c to which x is suboptimal by

(a) µDif

Dif

(b) µRat

Ratµ

µ

Fig. 7 Functions �Dif and �Rat. (a) �Dif (b) �Rat
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� QV .x/.c/ D � QS.c/.x/: (25)

Then the necessarily soft-optimality solution set eNS can also be characterized by

�eNS .x/ D inf
c

max
�
1 � �� .c/; � QV .x/.c/

�
: (26)

From the property of the necessity measure in (5), we have

�eNS .x/ � ˛ , .� /1�˛ � Œ QS.c/�˛: (27)

The right-hand side implies that solution x is sub-optimal at least to degree ˛ for all
possible objective function coefficient vectors c with degree more than 1 � ˛.

The following example shows to what extent the degree of robustness is increased
by relaxing S.c/ to QS.c/.
Example 3. Let us consider the same problem and the same solution as in
Example 2. Namely, we discuss the necessary soft-optimality of .6; 6/T. We use
the difference-based soft-optimal solution set with �Dif defined by

�Dif .r/ D

8̂
<
:̂

1; if r � 0;

1 � r

5
; if 0 < r � 5;

0; if r > 5:

(28)

The situation is shown in Fig. 8. As shown in Fig. 8, QV ..6; 6/T/ is a fuzzy set such
that the borders of ˛-level sets are depicted on the c1-c2 coordinate system. From
(27), �eNS ..6; 6/T/ is obtained by the supremum of f˛ W .� /1�˛ � Œ QV ..6; 6/T/�˛g.
From Fig. 8, we find that the supremum is 0.481481.

Comparing this with the result in Example 2, the degree is increased from
0.176471 to 0.481481 but the optimality is relaxed. Namely, we know that the
difference of the objective function value of solution .x1; x2/T D .6; 6/T from the
optimal value is guaranteed to be at most 2:59260 � 5 � .1 � 0:481481/ as far as
the fluctuation of the objective function coefficient vector c is in .� /0:518519.

Necessarily soft-optimal solutions x can be ranked by their membership degrees
�eNS.x/. We may optimize the degree to obtain the best necessarily soft-optimal
solution. From this point of view, we can formulate Problem (1) as the following
optimization problem:

maximize
x2X �eNS.x/: (29)

Before describing the solution method for Problem (29), we give an example of
the best necessarily soft-optimal solution as follows.

Example 4. Consider the same problem as in Example 3. The best necessarily
optimal solution is obtained as .x1; x2/T D .4:69786; 6:97661/T. The situa-
tion of this solution is depicted in Fig. 9. As shown in Fig. 9, we observe that



Robust Optimization by Fuzzy Linear Programming 231

Fig. 8 An example of
necessarily soft-optimal
solution with degree
0.481481

Fig. 9 An example of the
best necessarily soft-optimal
solution

.� /0:439888 � Œ QV ..4:69786; 6:97661/T/�0:560112 holds. Then the degree is 0.560112,
which is higher than the degree of the solution .6; 6/T shown in the previous
example. Thus, we know that the objective function value of solution .x1; x2/T D
.4:69786; 6:97661/T from the optimal value is guaranteed to be at most 2:19944 �
5 � .1 � 0:560112/ as far as the fluctuation of the objective function coefficient
vector c is in .� /0:439888.
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Under soft-optimality, the robustness of the solution is improved from the
previous solution in Example 3. The improvement is not only in the largest
difference from the optimal value but also in the range of fluctuation of c. The
previous solution .6; 6/T was a unique necessarily optimal solution to the problem.
The above fact implies that by relaxing the optimality (by permitting a small
difference from the optimal value), we may obtain a better solution in the sense of
both robustness and the worst regret (the largest difference from the optimal value).

Now let us describe the properties of Problem (29) when � is a crisp set. When
� is a crisp set, Problem (29) with QSD.c/ is reduced to the following problem:

minimize
x2X max

c2�; y2X c
Ty � cTx; (30)

where we introduce a natural assumption that the smaller the difference from
the optimal value, the higher �Dif is. The difference from the optimal value,
maxy2X cTy � cTx, can be seen as a regret of selecting x when the unknown
objective function coefficient vector is c. Because we have

R.x/ D max
c2�; y2X c

Ty � cTx

D max
c2�

�
max
y2X c

Ty � cTx

�
; (31)

R.x/ can be understood as the maximum regret. Therefore, Problem (30) is a
minimax regret problem, as investigated in (Inuiguchi and Sakawa 1995a; Inuiguchi
and Tanino 2001a; Mausser and Laguna 1998, 1999).

On the other hand, when � is a crisp set, Problem (29) with QSR.c/ is reduced to
the following problem:

maximize
x2X min

c2�
cTx

max
y2X c

Ty
; (32)

where we introduce a natural assumption that the larger the ratio to the optimal
value, the higher �Rat is. Moreover, we assume 8c 2 � I maxx2X cTx > 0. The
ratio cTx=maxy2X cTy can be understood as the achievement ratio of solution x to
the optimal value when the unknown objective function coefficient vector is c. Then

WA.x/ D min
c2�

cTx

max
y2X c

Ty
(33)

can be seen as the worst achievement ratio. Thus, Problem (32) is a maximin
achievement ratio problem, as investigated in (Inuiguchi and Sakawa 1997).

As are shown in (Inuiguchi and Kume 1994; Inuiguchi and Sakawa 1995a; 1997)
those solutions have the following properties:

(a) R.x/ D 0 (resp.WA.x/ D 1) if and only if x is a necessarily optimal solution.
(b) R.x/ � 0, 8x 2 X (resp.WA.x/ � 1, 8x 2 X ).
(c) Any optimal solution of Problem (30) (resp. (32)) is a possibly optimal solution.
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Therefore, we may understand that optimal solutions to Problems (30) and
(32) are possibly optimal solutions that minimize deviations from the necessary
optimality.

The solution algorithms for Problem (30) were proposed by Inuiguchi and
Sakawa (1995a), Mausser and Laguna (1998, 1999), and Inuiguchi and Tanino
(2001a). Inuiguchi and Sakawa (1995a) proposed a two-phased approach. In the
first phase, all possibly optimal extreme points are enumerated. Then, in the second
phase, Problem (30) is solved by a relaxation procedure using the enumerated
possibly optimal extreme points. This approach is proposed for problems in which
� is a box set, but it is applicable for problems when � is a polytope (Inuiguchi
and Tanino 2001a). Mausser and Laguna (1998) reformulated the problem as a
mixed integer programming problem and applied a branch and bound method.
This approach is also proposed for problems when � is a box set, but it is not
applicable for problems with a polytope � . Moreover, Mausser and Laguna (1999)
proposed a heuristic search approach to Problem (30). Inuiguchi and Tanino (2001a)
use the same relaxation schema as Inuiguchi and Sakawa (1994), but they do not
use the enumeration of all possibly optimal extreme points. They formulated the
subproblem as a convex maximization problem and applied an outer approximation
procedure together with a cutting hyperplane. This approach is proposed for cases
when � is a polytope. It seems that in the case where � is a box set, Mausser and
Laguna’s approach (Mausser and Laguna 1998) is computationally efficient, and in
the case where � is a polytope, Inuiguchi and Tanino’s approach (Inuiguchi and
Tanino 2001a) is computationally efficient.

Problem (32) is treated by Inuiguchi and Sakawa (1997). They modified Inuiguchi
and Sakawa’s two-phase approach to solve Problem (32) with a box set � . This
approach can be extended to the case where � is a polytope. The other approaches
to Problem (30) could also be modified for Problem (32).

When � is a fuzzy set, we need to introduce a bisection method on the mem-
bership degree. Inuiguchi and Sakawa (1998) extended the two-phase approach to
the best necessarily soft-optimal solution problem (29) with QSD.c/ and a fuzzy set
� . In this approach, they contrive the algorithm so as to converge the bisection
method and the relaxation method simultaneously. Inuiguchi et al. (2001) proposed
this solution approach to Problem (29) with QSR.c/ and a fuzzy set � .

3 Satisficing Approach

To explain satisficing approaches we consider the following possibilistic linear pro-
gramming problem:

maximize �Tx;

subject to ıT
i x

<� i bi ; i D 1; : : : ; m;
(34)
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where � is an uncertain objective function coefficient vector whose possible range
is known as a fuzzy set � . Similarly, ıi is the i -th uncertain constraint function
coefficient vector whose possible range is known as a fuzzy set �i . <� i is a fuzzy
inequality relation depending on the i -th constraint. Combining <� i with bi , ‘<� i

bi ’ defines a fuzzy goal Bi with the linguistic expression “approximately smaller
than bi”.

The satisficing approach employs the same idea regarding the treatment of the
uncertainty as the conventional robust optimization approach (Ben-Tal and
Nemirovski 2002). The history of the satisficing approach dates back more than
three decades. The original treatment is known as robust programming (Negoita
et al. 1976). Robust programming was proposed for Problem (34) with a singleton
� , i.e., the objective function is a usual crisp function cTx. In robust programming,
Problem (34) with a crisp objective function cTx is formulated as

maximize cTx;

subject to �T
i x � Bi ; i D 1; : : : ; m:

(35)

By this formulation, each possible range of the left-hand side values, �T
i x, is man-

aged so as to be included in a satisfactory range Bi . The fluctuations of the left-
hand side values are bounded by Bi . In this sense, a solution of Problem (35) has
robustness in the satisfaction of constraints.

After that, treatment by using fuzzy max (Tanaka et al. 1984) and treatment by
using an inequality relations of fuzzy numbers (Orlovsky 1980; Tanaka and Asai
1984) were proposed. Since the proposal of possibility theory (Zadeh 1978), possi-
bility and necessity measures have been used to treat constraints with fuzzy coeffi-
cient vectors and to treat objective functions with fuzzy coefficient vectors (Dubois
1987). Because we concentrate on robust treatments in possibilistic programming
approaches, we describe only models using necessity measures.

Using necessity measures, Problem (34) can be addressed by

maximize  .t; ˛0; ˛1; : : : ; ˛m/;
subject to N� Tx.Œt;1// � ˛0;

N�T
i x
.Bi / � ˛i ; i D 1; : : : ; m;

(36)

where t is a target value the of objective function, and  WR � Œ0; 1�mC1 ! R is a
function non-decreasing with all arguments.

Because necessity measure N�T
i x
.Bi / is strongly related to the inclusion relation

between �T
i x and Bi , it can be seen as a degree of the inclusion. The treatment by

N�T
i x
.Bi / � ˛i corresponds to the treatment by �T

i x � Bi in robust programming.
Then the treatment of constraints is in the same spirit as robust programming. How-
ever, the treatment by N�T

i x
.Bi / � ˛i can control degree ˛i . The larger ˛i is, the

more robust in the satisfaction of the i -th constraint is the solution.
To treat the objective function with uncertain coefficients, a target value t is

introduced, and the objective function value is required to be not less than the
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target value with an appropriate certainty level. This requirement is expressed by
N� Tx.Œt;C1// � ˛0. The larger t is, the better the solution. The larger ˛0 is, the
more robust is the satisfaction of the requirement to be not less than t .

Then we have multiple objectives, maximizing ˛i , t and ˛0. The objective of
Problem (36) is an aggregation of those objectives. In the literature (Inuiguchi et al.
1993; Inuiguchi and Ramı́k 2000), the following models are proposed:

Necessity measure optimization model: In this model, ˛i , i D 1; 2; : : : ; m and
target value t are predetermined by the decision-maker as N̨ i , i D 1; 2; : : : ; m and
Nt . Then  is defined by

 .t; ˛0; ˛1; : : : ; ˛m/ D
�
˛0; if t � Nt and ˛i � N̨ i ; i D 1; 2; : : : ; m;

0; otherwise.
(37)

Then the problem is reduced to

maximize N� Tx.ŒNt ;1//;

subject to N�T
i x
.Bi / � N̨ i ; i D 1; : : : ; m:

(38)

Necessity fractile optimization model: In this model, ˛i , i D 0; 1; : : : ; m are
predetermined by the decision-maker as N̨ i , i D 0; 1; : : : ; m. Then  is defined
by

 .t; ˛0; ˛1; : : : ; ˛m/ D
�
t; if ˛i � N̨ i ; i D 0; 1; : : : ; m;

0; otherwise.
(39)

Then the problem is reduced to

maximize t;
subject to N� Tx.Œt;1// � N̨0;

N�T
i x
.Bi / � N̨ i ; i D 1; : : : ; m;

(40)

Symmetric model: In this model, t is predetermined by the decision-maker as Nt .
Then  is defined by

 .t; ˛0; ˛1; : : : ; ˛m/ D
(

min
iD0;1;:::;m ˛i ; if t � Nt ; i D 0; 1; : : : ; m;

0; otherwise.
(41)

Then the problem is reduced to

maximize ˛;
subject to N� Tx.ŒNt ;1// � ˛;

N�T
i x
.Bi / � ˛; i D 1; : : : ; m;

(42)

The necessity measure optimization and necessity fractile optimization models
are conceptually illustrated in Fig. 10. In Fig. 10, level curves of the fuzzy region
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Fig. 10 Illustration of
necessity measure
optimization and necessity
fractile optimization models

of objective function values � Tx are depicted by pentagons, while the satisfactory
region Œt;C1/ is depicted by an ellipsoid (which is not the real shape, but will suf-
fice for illustration). In the necessity measure optimization model, � Tx is improved
so that the fixed ŒNt ;C1/ includes the lower ˛-level set of � Tx. In this way, the
robustness is enhanced. On the other hand, in the necessity fractile optimization
model, � Tx and satisfaction level t are improved, keeping the condition that the
fixed N̨ -level set of � Tx is included in the satisfactory region Œt;C1/. The two
models can be combined as in (Inuiguchi and Sakawa 1995b).

Considering the correspondence between probability measures and possibility/
necessity measures, constraintsN�T

i x
.Bi / � N̨ i ; i D 1; : : : ; m can be seen as coun-

terparts of chance constraints in stochastic programming (Stancu-Minasian 1984).
From this point of view, Problem (36) is called a modality constrained programming
problem (Inuiguchi et al. 1993).

When � is a vector of non-interactive fuzzy numbers, many papers (for example,
Inuiguchi et al. 1993; Inuiguchi and Ramı́k 2000) show that Problems (38) and (40)
are reduced to linear programming problems and that Problem (42) can be solved
by a bisection method together with the linear programming technique. Inuiguchi
and his collaborators (see Inuiguchi 2010) investigated more general � without a
great loss of linearity in the reduced problems.

Remark 3. In Problem (36), we only use necessity measures, but we can also intro-
duce possibility measures. By introducing possibility measures, we can treat the
decision-maker’s wishes, for which we may seek only possibility rather than neces-
sity. Moreover, by introducing generalized possibility and necessity measures, we
may treat a variety of both the decision-maker’s requirements on the constraints
and objective function values while considering the uncertainty. For example, the
necessity measure defined by (4) cannot treat the inclusion of fuzzy sets, A � B

defined by �A.z/ � �B.z/; 8z. However, using a suitable implication function, we
can treat the inclusion by means of necessity measures (Inuiguchi and Tanino 2000).

Remark 4. To treat more general linear programming problems with fuzzy coeffi-
cients, we should consider constraints whose right-hand sides are also linear func-
tions with fuzzy coefficients (Dubois 1987; Inuiguchi et al. 1993) because the
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transposition of fuzzy numbers from the right-hand side to the left-hand side is not
always permitted. By such transposition, the meaning of the equation or the inequal-
ity constraint can be changed in some treatments of constraints. This phenomenon
is related to the fact that equations with fuzzy numbers cannot always be solved
(Dubois and Prade 1983).

4 Concluding Remarks

In this paper, we reviewed possibilistic linear programming approaches in view of
robust optimization under fuzzy information. The optimizing approach has been
investigated to obtain a feasible solution preserving optimality or sub-optimality
from fluctuations of parameters within a certain range. On the other hand, the sat-
isficing approach has been developed to obtain a feasible solution preserving feasi-
bility or satisfaction from fluctuations of parameters within a certain range. The
optimization approach does not require target values to objective functions, but
does require expensive computational effort to solve the reduced problems. The
satisficing approach often reduces problems to tractable ones but may require target
values to objective functions.

The solution algorithms in the optimizing approach are not yet well developed.
However, it is expected that global optimization techniques can solve the prob-
lems as proposed in discrete optimization cases (Kasperski 2008). In the satisficing
approach, the solution algorithms are developing well. In the linear programming
case of the satisficing approach, it would be a challenge to investigate to what
extent we can generalize the fuzzy set and the necessity measure without loss of
tractability. Other than those approaches, the two-stage approach (Inuiguchi and
Tanino 2001b) is conceivable but not yet substantially developed.
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Various Types of Objective Functions
of Clustering for Uncertain Data

Yasunori Endo and Sadaaki Miyamoto

Abstract Whenever we classify a dataset into some clusters, we need to consider
how to handle the uncertainty included into data. In those days, the ability of
computers were very poor, and we could not help handling data with uncertainty as
one point. However, the ability is now enough to handle the uncertainty of data, and
we hence believe that we should handle the uncertain data as is. In this paper, we will
show some clustering methods for uncertain data by two concepts of “tolerance”
and “penalty-vector regularization”. The both concepts are more useful to model
and handle the uncertainty of data and more flexible than the conventional methods.
By the way, we construct a clustering algorithm by putting one objective function.
Hence, we can say that the whole clustering algorithm depends on its objective
function. In this paper, we will thereby introduce various types of objective functions
for uncertain data with the concepts of tolerance and penalty-vector regularization,
and construct the clustering algorithms for uncertain data.

1 Introduction

Clustering methods are known as very useful tools in many fields for data mining
and we can find the construction of datasets through the clustering methods.

Now, the more ability of computers increase, the more works for uncertainty have
been studied. In the past, each datum handled by the computers was approximately
represented as one point or value because of poor ability of the computers. However,
the ability is now enough to handle the data with uncertainty called uncertain
data and many researchers have tried to handle original data from the viewpoint
that the datum should been represented as not one point approximately but certain
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distribution exactly in a data space. The goal of this paper is to show some clustering
methods for uncertain data.

Whenever we construct the clustering methods for the uncertain data, we have
one problem, that is, how should we represent the uncertainty of data?

The easiest way to represent the uncertain data is to use the concept of interval,
i.e., Œx; x�: This methodology is deterministic in the meaning that each interval
datum is handled as one point by introducing a measure or a dissimilarity between
intervals, e.g., minimum distance, maximum distance and Hausdorff distance.
However, the way has the following problems.

1. The dissimilarity between data, which plays very important role to construct
clustering algorithms, is defined on distance. There are many distances between
intervals but we don’t have any guide to select the suitable distance. Moreover,
some distances between intervals don’t satisfy the axiom of metric.

2. We often construct clustering methods through the methodology of optimization.
If we represent each datum as an interval, it becomes difficult to formulate the
problem in the framework of the optimization.

To solve the above problems, another way has been presented in which the
uncertainty is represented by certain probabilistic density function (PDF). In this
way, the clustering is regarded as a method to determine some parameters of the
PDF and hence the way can be called parametric. However, the methodology has
other problems as follows.

1. The type of PDF determines not only the shape of uncertainty of data but also
the detail of the clustering algorithm. However, we don’t have clear indication to
select which type of PDFs to use.

2. Even if we select one type of PDF, we have no belief that the selected PDF is
suitable to represent the uncertainty of data.

To solve the above problems, we have proposed “tolerance” of an convenient
tool to handle uncertain data and applied some of clustering algorithms (Endo
et al. 2005, 2008; Hasegawa et al. 2008; Kanzawa et al. 2007, 2008; Murata et al.
2006). In our proposed tolerance, tolerance vectors (Endo et al. 2005) and penalty
ones (Hasegawa et al. 2008) play main role. Each uncertain datum is allowed to
allocate any position by those vectors as far as the constraints for those vectors
are satisfied and the position is derived as an optimal solution of a given objective
function. Hence, we can say that this concept is in the framework of methodology of
soft computing. Penalty vectors are similar to tolerance ones and the methods using
penalty-vector regularization become more flexible than tolerance vectors because
no constraint for the vectors is needed. Moreover, the concept has been developed
by using kernel trick in (Kanzawa et al. 2008). The method can classify datasets
which consist of clusters of uncertain data with nonlinear boundary.

In this paper, we will show some clustering methods for uncertain data with two
concepts of tolerance and penalty-vector regularization. The procedures to construct
these methods are based on fuzzy c-means (FCM), i.e,
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Step 1 An objective function is defined.
Step 2 Some solutions which minimize the objective function are derived.
Step 3 An clustering algorithm is constructed using the solutions.

It means that the whole algorithm depends on the objective function, and we will
thereby introduce various types of objective functions for uncertain data to construct
the clustering algorithms. We notice that the discussion is mathematical and there
are no numerical examples.

2 FCM-Based Clustering with Tolerance

Fuzzy c-means (FCM) clustering is one of the most typical and effective methods.
In this section, we try to introduce the concept of tolerance into FCM and show
some objective functions of FCM-based clustering with tolerance which handles
uncertain data. First, we introduce basic concept of tolerance. Second, we explain
the conventional FCM. Third, we show some objective functions of FCM-based
clustering with tolerance.

2.1 Basic Concept of Tolerance

In general, a datum x 2 <p with uncertainty is presented by some interval, i.e.,

Œx; x� D Œ.x1; : : : ; xp/
T ; .x1; : : : ; xp/

T � � <p:

In our proposed tolerance, such a datum is represented by

x C " D.x1; : : : ; xp/T C ."1; : : : ; "p/
T 2 <p

D.x1 C "1; : : : ; xp C "p/
T

and a constraint for "j like that

j"j j � �j :

A vector " D ."1; : : : ; "p/
T 2 <p is called tolerance vector. If we assume that

8̂
<̂
ˆ̂:
xj D xj C xj

2
;

�j D jxj � xj j
2

;

the formulation is equivalent to the above interval.
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This concept of tolerance is very useful in the reason that we can handle uncertain
data in the framework of optimization to use the concept without introducing some
particular measure between intervals. For example, let’s consider calculation of
distance d.X; Y / between X D Œx; x� and Y D Œy; y�. We have to introduce some
measure between intervals to calculate it, e.g.,

8̂
<̂
ˆ̂:

dmin.X; Y / D minfky � xk; ky � xkg; (minimum distance)

dmax.X; Y / D maxfky � xk; ky � xkg; (maximum distance)

dHausdorff.X; Y / D maxfky � xk; ky � xkg: (Hausdorff distance)

However, if we use tolerance, we don’t need any particular distance, that is, a dis-
tance d.X; Y / betweenX D xC"x .k"xk � �x/ and Y D yC"y .k"yk � �y/ can be
calculated as k.x�y/C ."x �"y/k. From the above, we know that this tool is useful
when we handle the data, especially data with missing values of their attributes, in
the framework of optimization like as fuzzy c-means clustering (Endo et al. 2008).

Here, we can consider two types of constraints of tolerance, that is,

k"k2 � �2 (1)

and

j"j j � �j : (2)

We call the above “hyper-sphere type” and the below “hyper-rectangle type”. We
show two examples of tolerance, an example of hyper-sphere type tolerance on two
dimensional Euclidean space: k"kk2 � �2k in Fig. 1 and one of hyper-rectangle type
tolerance on two dimensional Euclidean space: j"kj j � �kj in Fig. 2. If the data

Fig. 1 An example
hyper-sphere type tolerance
on the two dimensional
Euclidean space: k"kk2 � �2k

xk + ek

xk

kk

O

ek
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xk2 + kk2

xk2 + ek2

xk2 – kk2

xk1 – kk1O xk1 + ek1 xk1 + kk1

xk + ek

ek
xk

Fig. 2 An example of hyper-rectangle tolerance on the two dimensional Euclidean space:
j"kj j � �kj

space is a color space, for example, one axis may be the color of red and the other
be the color of blue.

Now, we define some symbols for the following discussion. n and c are numbers
of data and clusters. xk , "k and �k mean the k-th datum in <p , the tolerance vector
of xk and the tolerance range of "k , respectively. vi and uki mean the cluster center
of the i -th cluster in <p and belongingness of xk for vi in Œ0; 1�. Moreover, k � k2
and k � k1 represent L2- and L1-norms.

2.2 Fuzzy c-Means

As mentioned above, clustering algorithms based on FCM are constructed according
to the procedure in Sect. 1. Here, we show the procedure to construct the algorithm
of FCM.

Step 1 An objective function is defined as follows:

JFCM D
nX
kD1

cX
iD1
.uki /

mdki .dki D .kxk � vik2/2/ (3)

m .m > 1/ is a fuzzification parameter. The constraint is as follows:

cX
iD1

uki D 1; 8k: (4)

Step 2 The solutions which minimize the objective function are derived as
follows:
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8̂
ˆ̂̂<
ˆ̂̂̂
:

uki D .1=dki /
1

m�1Pc
lD1.1=dkl/

1
m�1

vi D
Pn

kD1.uki /mxkPn
kD1.uki /m

Step 3 An clustering algorithm is constructed using the solutions as Algorithm 1.

Algorithm 1 (FCM)

FCM1 Give the initial cluster centers V D fvig.
FCM2 Update U D fukig by the optimal solution of uki on fixing V .
FCM3 Update V by the optimal solution of vi on fixing U .
FCM4 Stop if a convergence criterion satisfies. Otherwise go back to FCM2.

We can consider some convergence criteria, for example,

• an iteration time L � L0,

• maxk;i ju.LC1/
ki

� u.L/
ki

j � �,

• maxk;i

 
ju.LC1/
ki

� u.L/
ki

j
ju.L/ki j

!
� �,

•
Pc

iD1
Pn

kD1 ju.LC1/
ki

� u.L/
ki

j � �,

•
Pc

iD1
Pn

kD1

 
ju.LC1/
ki � u.L/ki j

ju.L/ki j

!
� �,

• maxi kv.LC1/
i � v.L/i k � �.

From the above, we can see that the objective function plays essential role. We note
that the calculation results depend on the initial values and this problem is essential
and very difficult to solve.

2.3 Fuzzy c-Means with Tolerance

2.3.1 Standard Model on L2-Norm

In this section, we show FCM clustering in which the concept of tolerance is
introduced to handle the uncertain data. The clustering is called FCM with tolerance
(FCMT). The objective function is as follows:

JFCMT D
nX
kD1

cX
iD1
.uki /

mdki : .dki D .kxk C "k � vik2/2/ (5)
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This function is presented by replacing xk of one of FCM by xkC"k . The constraints
are (4), and (1) or (2).

The optimal solutions which minimize the above function are derived by
Lagrange multiplier. We show how to derive the solutions with the constraint (2).
We note that the solutions with the constraint (1) can be derived in the same way.

We introduce the following Lagrange function to solve the optimization problem:

LFCMT D JFCMT C
nX
kD1

�k

 
cX
iD1

uki � 1

!
C

nX
kD1

pX
jD1

 kj

�
"2kj � �2kj

�
:

From the Kuhn-Tucker condition, the necessary conditions are as follows:

8̂
<̂
ˆ̂:

@LFCMT

@vij
D 0;

@LFCMT

@uki
D 0;

@LFCMT

@"kj
D 0;

@LFCMT

@�k
D 0;

@LFCMT

@ kj
� 0;  kj

@LFCMT

@ kj
D 0;  kj � 0:

(6)

From the convexity of JFCMT, it is sufficient to consider the case of (6).
First, we derive the optimal solution of uki .

@LFCMT

@uki
D m.uki/

m�1kxk C "k � vik2 C �k D 0: (7)

Thus, we have

uki D
� ��k
mkxk C "k � vik2

� 1
m�1

:

In addition, from the constraints (4), we have

cX
lD1

� ��k
mkxk C "k � vlk2

� 1
m�1

D 1: (8)

From (7) and (8), we have the following optimal solution of uki :

uki D .1=dki /
1

m�1Pc
lD1.1=dkl/

1
m�1

: (9)

Second, we derive the optimal solution of vij .

@LFCMT

@vij
D �

nX
kD1

2.uki /
m.xkj C "kj � vij / D 0:
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Thus, we have the following optimal solution of vij :

vij D
Pn

kD1.uki /m.xkj C "kj /Pn
kD1.uki /m

: (10)

Third, we derive the optimal solution of "kj .

@LFCMT

@"kj
D

cX
iD1

2.uki/
m.xkj C "kj � vij /C 2 kj "kj D 0:

Thus, we have

"kj D �Pc
iD1.uki /m.xkj � vij /Pc
iD1.uki /m C  kj

: (11)

On the other hand,

 kj
@LFCMT

@ kj
D  kj ."

2
kj � �2kj / D 0:

Therefore, we have to consider two cases,  kj D 0 and "2kj D �2kj . First, we consider
the case of  kj D 0.

@LFCMT

@"kj
D

cX
iD1

2.uki /
m.xkj C "kj � vij / D 0:

Thus, we have

"kj D �Pc
iD1.uki /m.xkj � vij /Pc

iD1.uki /m
: (12)

Next, we consider the case of "2kj D �2kj . From (11) and "2kj D �2kj , we have

"2kj D
� �Pc

iD1.uki /m.xkj � vij /Pc
iD1.uki /m C  kj

� 2
D �2kj :

Thus, we have

cX
iD1
.uki /

m C  kj D ˙
ˇ̌Pc

iD1.uki /m.xkj � vij /
ˇ̌

�kj
:

From  kj � 0, the right side is positive. Therefore, from (11) we get

"kj D ��kj
Pc

iD1.uki /m.xkj � vij /

jPc
iD1.uki /m.xkj � vij /j : (13)
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Finally, we have the optimal solution of "kj which satisfies (12) and (13) as follows:

8̂
<
:̂
"kj D �˛kj Pc

iD1.uki /m.xkj � vij /;

˛kj D min

�
�kj

jPc
iD1.uki /m.xkj � vij /j ;

1Pc
iD1.uki /m

�
:

(14)

We can construct the algorithm of FCMT using the above optimal solutions as
follows:

Algorithm 2 (FCMT)

FCMT1 Give the initial cluster centers V D fvig and initial tolerance vectors
E D f"kg.

FCMT2 Update U D fukig by the optimal solution of uki on fixing V and E.
FCMT3 Update V by the optimal solution of vi on fixing E and U .
FCMT4 Update E by the optimal solution of "k on fixing U and V .
FCMT5 Stop if a convergence criterion satisfies. Otherwise go back to FCMT2.

2.3.2 Entropy-Based Model on L2-Norm

Instead of (5), we can consider the following objective function:

JeFCMT D
nX

kD1

cX
iD1

ukidki C ��1
nX

kD1

cX
iD1

uki log uki :
�
dki D kxk C "k � vik22

	

This function is based on the objective function of entropy-based FCM (Miyamoto
and Mukaidono 1997) and we call the clustering entropy-based FCMT (eFCMT).
The constraints are (4), and (1) or (2). We have the following optimal solutions under
the constraint (2) by the similar procedure as FCMT and we can use Algorithm 2.

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

uki D e��kxkC"k�vi k22Pc
lD1 e��kxkC"k�vlk22

; (15)

vij D
Pn

kD1 uki .xkj C "kj /Pn
kD1 uki

; (16)

8̂
<
:̂
"kj D �˛kj .xkj �Pc

iD1 ukivij /;

˛kj D min

�
�kj

jxkj �Pc
iD1 ukivij j ; 1

�
:

(17)
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2.3.3 Standard Model on L1-Norm

Here, we consider FCM with tolerance on L1-norm (FCMT-L1). The objective
function is given by replacing L2-norm by L1-norm in the objective function of
FCMT (5) as follows:

JFCMT-L1 D
nX

kD1

cX
iD1
.uki /

mdki : .dki D kxk C "k � vik1/ (18)

The constraints are (4) and (2).
This function cannot be differentiated by "k and vi so that we have to another

way to find the optimal solutions.
First, we can derive the optimal solution of uki by using Lagrange function as

follows:

uki D .1=dki/
1

m�1Pc
lD1.1=dkl/

1
m�1

: .dki D kxk C "k � vik1/ (19)

Second, we describe the method (based on (Jajuga 1991)) to obtain the optimal
solution of vij . From (18), we can consider the following semi-objective function:

Jij .vij / D
nX

kD1
.uki /

mjxkj C "kj � vij j: (20)

If the semi-objective function (20) is minimized, the whole objective function (18)
is also minimized. According to the following procedures, the optimal solution of
vij is calculated.

Algorithm 3 (Calculation of vij )

Step 1 All data are sorted in ascending order in each dimension.

x1j C "1j ; : : : ; xnj C "nj

# Sorting

xq.1/j C "q.1/j � : : : � xq.n/j C "q.n/j

where q.k/ is substitution of .1; : : : ; n/.
Step 2 We calculates as follows.

S D �1
2

nX
kD1
.uki /

m:

Step 3 It starts from r D 0 and the following calculations are repeated between
S < 0.
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r WD r C 1;

S WD S C .uq.r/i /
m:

Step 4 From the above calculation, we obtain

vij D xq.r/j C "q.r/j : (21)

Third, we consider the way to obtain the optimal solution of "kj . The procedure
is as same as vij .

Algorithm 4 (Calculation of "kj )

Step 1 Data are sorted in ascending order in each dimension.

v1j � xkj ; : : : ; vcj � xkj

# Sorting

vq.1/j � xkj � : : : � vq.c/j � xkj

where q.i/ is substitution of .1; : : : ; c/.
Step 2 We calculates as follows.

S D �1
2

cX
iD1
.uki /

m:

Step 3 It starts from r D 0 and the following calculations are repeated between
S < 0.

r WD r C 1;

S WD S C .ukq.r//
m:

Step 4 From the above calculation, we obtain

"kj D sign.vq.r/j � xkj / � minfjvq.r/j � xkj j; �kj g: (22)

We can construct the algorithm of FCMT-L1 using the above way to calculate the
optimal solutions. The algorithm is as same as Algorithm 2. However, we notice that
the updating processes V andE need the above algorithms 3 and 4, respectively. We
show the algorithm as follows:
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Algorithm 5 (FCMT-L1)

FCMT-L11 Give the initial cluster centers V D fvig and initial tolerance vectors
E D f"kg.

FCMT-L12 Update U D fukig by the optimal solution of uki on fixing V and E.
FCMT-L13 Update V by the calculation algorithm of vi on fixing E and U .
FCMT-L14 Update E by the calculation algorithm of "k on fixing U and V .
FCMT-L15 Stop if a convergence criterion satisfies. Otherwise go back to

FCMT-L12.

2.3.4 Entropy-Based Model on L1-Norm

Instead of (18), we can consider the following objective function:

JeFCMT-L1 D
nX

kD1

cX
iD1

ukidki C ��1
nX

kD1

cX
iD1

uki log uki : .dki D kxk C "k � vik1/

We call the clustering based on the above objective function entropy-based FCMT-
L1 (eFCMT-L1). The constraints are (4) and (2).

The optimal solution can be obtained in the same way as FCMT-L1, that is,

uki D e��kxkC"k�vi k1Pc
lD1 e��kxkC"k�vlk1 : (23)

Also, we use Algorithm 3 and Algorithm 4 with m D 1 to calculate the optimal
solutions of vij and "kj , respectively. The algorithm of eFCMT-L1 is as same as
Algorithm 5.

3 FCM-Based Clustering Using Penalty-Vector Regularization

In the above section, we introduced the concept of tolerance to handle the
uncertainty of data and some objective functions to construct clustering algorithms.
However, there are many cases in which the uncertainty can not be estimated. When
we use the tolerance, we have to determine the value of �k so that it is difficult
to introduce the concept in these cases. Thus, we have to consider another way
of soft computing to handle the uncertainty. First, we introduce basic concept of
penalty-vector regularization to do that. Second, we show some objective functions
of FCM-based clustering using penalty-vector regularization.
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3.1 Basic Concept of Penalty-Vector Regularization

Here, we introduce a new concept of penalty-vector regularization. The concept is
similar to the concept of tolerance and penalty vectors play important role. However,
the difference from the concept of tolerance is that there is no constraint of penalty
vectors.

We define some symbols at the beginning. In addition to the symbols in the above
section, we define penalty vector ık D .ık1; : : : ; ıkp/

T 2 <p, and a set of penalty
vectors� D fı1; : : : ; ıng. The uncertain datum is represented as xkCık . In addition,
we define weighting coefficient wklj .wklj � 0/ and weighting matrix as follows:

Wk D

0
B@

wk11 � � � wk1p
:::

: : :
:::

wkp1 � � � wkpp

1
CA : (24)

One of the simplest form of the matrix is as follows:

Wk D

0
B@

wk1 0
: : :

0 wkp

1
CA : (25)

Now, we introduce the following penalty term:

nX
kD1

ık
TWkık D

pX
jD1

pX
lD1

wklj ıkl ıkj : (26)

We assume that Wk is a symmetric matrix, i.e., wkj D wjk . In case that Wk is a
diagonal matrix, the penalty term is represented as follows:

nX
kD1

ık
TWkık D

nX
kD1

pX
jD1

wkjj
�
ıkj
	2
:

3.2 Fuzzy c-Means Using Penalty-Vector Regularization

3.2.1 Standard Model on L2-Norm

We add the penalty term (26) to the objective function of FCM (3) and obtain the
following objective function.

JFCMP D
nX

kD1

cX
iD1
.uki /

mdki C
nX
kD1

ık
TWkık: .dki D kxk C ık � vik22/ (27)
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The more it approaches .xk C ık/ by vi , the more the first term of (27) becomes
small. On the other hand, the penalty term of (27) grows in proportion to squared ıkj .
Therefore, the bigger wkj is, the smaller the optimal solution ıkj which minimizes
(27) becomes. Oppositely, the smaller wkj is, the bigger the optimal solution ıkj
which minimizes (27) becomes. Hence, we know that Wk means the uncertainty of
each datum xk .

Our goal of this section is to derive optimal solutions U , V and � which are
minimize the objective function (27) under the constraint (4).

First, we consider to derive optimal solutions of U . We introduce the following
Lagrange function to do that.

LFCMP D JFCMP C
nX

kD1
�k

 
cX
iD1

uki � 1
!
:

@LFCMP

@uki
D m.uki/

m�1dki C �k D 0: (28)

Thus, we have

uki D
� ��k
mdki

� 1
m�1

:

In addition, from the constraint (4), we have

cX
lD1

� ��k
mdki

� 1
m�1

D 1: (29)

From (28) and (29), we have

uki D .1=dki /
1

m�1Pc
lD1.1=dkl/

1
m�1

:

Second, we consider to derive optimal solutions of V .

@LFCMP

@vij
D �

nX
kD1

2.uki/
m.xkj C ıkj � vij / D 0:

Thus, we have

vij D
Pn

kD1.uki /m.xkj C ıkj /Pn
kD1.uki /m

:

Last, we consider to derive�.
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@LFCMP

@ıkj
D @

@ıkj

0
@ nX
kD1

nX
iD1

pX
jD1

.uki /
m.xkj C ıkj � vij /

2 C
pX
lD1

pX
jD1

wklj ıklıkj

1
A

D2
cX
iD1
.uki /

m.xkj C ıkj � vij /C 2

pX
lD1

wklj ıkl

D0:
Thus, we get the following equation:

 
cX
iD1
.uki /

m

!
ıkj C

pX
lD1

wklj ıkl C
cX
iD1
.uki /

m.xkj � vij / D 0:

The above equation holds for any j .1 � j � p/. Hence,

 
cX
iD1
.uki /

m

!0
B@
ık1
:::

ıkp

1
CAC

0
B@

wk11 � � � wkp1
:::

: : :
:::

wk1p � � � wkpp

1
CA
0
B@
ık1
:::

ıkp

1
CA

C

0
B@
Pc

iD1.uki /m.xk1 � vi1/
:::Pc

iD1.uki /m.xkp � vip/

1
CA D 0: (30)

We put some symbols as follows.

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Ak D
 

cX
iD1
.uki /

m

!
I CW T

k ;

Bk D

0
B@
Pc

iD1.uki /m.xk1 � vi1/
:::Pc

iD1.uki /m.xkp � vip/

1
CA :

Here, I is a unit matrix.
Using the symbol Ak and Bk , (30) can be rewritten as follows.

Akık C Bk D 0:

Finally, we can get the following solution.

ık D �.Ak/�1Bk:

We need regularization of Ak for existence of optimal solutions �.
We can use Algorithm 2 as FCMP with the above optimal solutions.
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3.2.2 Entropy-Based Model on L2-Norm

Instead of (27), we can consider the following objective function:

JeFCMP D
nX

kD1

cX
iD1

ukidki C ��1
nX

kD1

cX
iD1

uki log uki C
nX

kD1
ık
T Wkık: (31)

.dki D kxk C ık � vik22/

This function is based on the objective function of entropy-based FCM (Miyamoto
and Mukaidono 1997) and we call the clustering entropy-based FCMP (eFCMP).
The constraints are (4). We have the following optimal solutions by the similar
procedure as FCMP and we can use Algorithm 2.

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

uki D e��kxkCık�vik22Pc
lD1 e��kxkCık�vlk22

; (32)

vij D
Pn

kD1 uki .xkj C ıkj /Pn
kD1 uki

; (33)

ık D �.Ak jmD1/�1 Bk jmD1 : (34)

3.2.3 Standard Model on L1-Norm

Here, we consider FCM using penalty-vector regularization on L1-norm (FCMP-
L1). The objective function is given by replacing L2-norm by L1-norm in the
objective function of FCMP (27) as follows:

JFCMT-L1 D
nX

kD1

cX
iD1
.uki /

mdki C
nX

kD1
ık
TWkık: .dki D kxk C ık � vik1/ (35)

The constraints are (4) andWk is (25).
First, we can derive the optimal solution of uki by using the Lagrange function

as follows:

uki D .1=dki /
1

m�1Pc
lD1.1=dkl/

1
m�1

: (36)

Second, we derive the optimal solution of vij . Same as the above, we consider
the following semi-objective function:

Jij .vij / D
nX

kD1
.uki /

mjxkj C ıkj � vij j:
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This semi-objective function becomes equal to (20) by replacing "k by ık .
Therefore, we can obtain the optimal solution of vi using Algorithm 3.

Third, we describe the method to obtain the optimal solution of ıkj . The semi-
objective function of ıkj is

Jkj .ıkj / D
cX
iD1
.uki /

mjxkj C ıkj � vij j C wkj ıkj
2:

We show Algorithm 6 to calculate the optimal solution of ıkj .

Algorithm 6 (Calculation of ıkj )

Step 1 Data are sorted in ascending order in each dimension.

v1j � xkj ; : : : ; vcj � xkj

# Sorting

vq.1/j � xkj � : : : � vq.c/j � xkj

where q.i/ is substitution of .1; : : : ; c/.
Step 2 Calculates as follows.

S WD �
cX
iD1
.ukq.i//

m C 2wkj .vq.1/j � xkj /;

r WD 0:

Step 3 If S > 0, ıkj is obtained as follows and finish this algorithm

ıkj D
Pc

iD1 ukq.i/m

2wkj

Step 4 Update as follows.

r WD r C 1;

S WD S C 2ukq.r/
m:

Step 5 If S > 0, ıkj is obtained as follows and finish this algorithm

ıkj D vq.r/j � xkj

Step 6 If r D c, ıkj is obtained as follows and finish this algorithm

ıkj D �
Pc

iD1 ukq.i/m

2wkj
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Step 7 Update as follows.

S WD S C 2wkj .vq.rC1/j � vq.r/j /:

Step 8 If S > 0, ıkj is obtained as follows and finish this algorithm

ıkj D
Pc

iDrC1.ukq.i//m �Pr
iD1.ukq.i//m

2wkj

Otherwise, go back to Step 4.

The algorithm of FCMP-L1 is as same as Algorithm 5.

3.2.4 Entropy-Based Model on L1-Norm

Instead of (35), we can consider the following objective function:

JeFCMP-L1 D
nX
kD1

cX
iD1

ukidki C ��1
nX

kD1

cX
iD1

uki log uki C
nX

kD1
ık
TWkık: (37)

.dki D kxk C ık � vik1/

We call the clustering based on the above objective function entropy-based FCMP-
L1 (eFCMP-L1). The constraints are (4) and (2).

The optimal solution can be obtained in the same way as FCMT-L1, that is,

uki D e��kxkC"k�vi k1Pc
lD1 e��kxkC"k�vlk1 : (38)

Also, we use Algorithm 3 and Algorithm 6 with m D 1 to calculate the optimal
solutions of vij and ıkj , respectively. The algorithm of eFCMP-L1 is as same as
Algorithm 5.

4 Conclusion

In this paper, we showed some clustering methods for uncertain data with the
concepts of tolerance and penalty-vector regularization. The whole clustering
algorithm depends on the objective function, and we proposed various types of
objective functions to construct some clustering algorithms for uncertain data. The
purpose of this paper is to propose the objective functions with the concepts of
tolerance and penalty-vector regularization and we didn’t show numerical examples.
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In case to use the algorithms from the proposed objective functions, dependence on
the initial values is a very difficult problem. This problem essentially lies in many
clustering algorithms which is constructed using iterative optimization as well as
our proposed algorithms.

We now focus two techniques. One is kernel trick and the other is pairwise
constraints. Kernel trick is a useful tool to classify a dataset into some clusters with
nonlinear boundaries. Pairwise constraints are informations whether a pair of data
should be included into one cluster or not. The pairwise constraint that a pair of
data should be in one cluster is called “must-link” and the constraint that a pair
of data should not be in one cluster is called “cannot-link.” We believe that the
proposed concept of tolerance and penalty-vector regularization can be applied to
the techniques and we will discuss the problems in the forthcoming paper with
numerical examples.

In this paper, we didn’t compare and evaluate the proposed algorithms. That’s
why the main purpose of the paper is to formulate the uncertain data in the
framework of optimization and construct some fuzzy c-means clustering algorithms
under the formulation. I hope the users of our proposed algorithms consider their
properties to choose the adequate one from those.
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Stochastic Optimal Open-Loop Feedback
Control of Dynamic Structural Systems under
Stochastic Uncertainty

Kurt Marti and Ina Stein

Abstract In order to stabilize mechanical structures under dynamic applied loads,
active control strategies are taken into account. The structures usually are stationary,
safe and stable without external dynamic disturbances, such as strong earthquakes,
wind turbulences, water waves, etc. Thus, in case of dynamic disturbances, addi-
tional control elements can be installed enabling active control actions. Active
control strategies for mechanical structures are applied in order to counteract heavy
applied dynamic loads, such as earthquakes, wind, water waves, etc. which would
lead to large vibrations causing possible damages of the structure. Modeling the
structural dynamics by means of a system of first order random differential equa-
tions for the state vector (displacement vector q and its time derivative Pq), robust
optimal controls are determined in order to cope with the stochastic uncertainty
involved in the dynamic parameters, the initial values and the applied loadings.

1 Dynamic Structural Systems Under Stochastic Uncertainty

1.1 Stochastic Optimal Structural Control: Active Control

In order to omit structural damages and therefore high compensation (recourse)
costs, active control techniques are used in structural engineering. The structures
usually are stationary, safe and stable without considerable external dynamic
disturbances. Thus, in case of heavy dynamic external loads, such as earthquakes,
wind turbulences, water waves, etc., which cause large vibrations with possible
damages, additional control elements can be installed in order to counteract applied
dynamic loads, see (Block 2008; Soong 1988, 1990).
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The structural dynamics is modeled mathematically by means of a linear system
of second order differential equations for the m�vector q D q.t/ of displacements.
The system of differential equations involves random dynamic parameters, random
initial values, the random dynamic load vector and a control force vector depending
on an input control function u D u.t/. Robust, i.e. parameter-insensitive optimal
feedback controls u� are determined in order to cope with the stochastic uncertainty
involved in the dynamic parameters, the initial values and the applied loadings. In
practice, the design of controls is directed often to reduce the mean square response
(displacements and their time derivatives) of the system to a desired level within a
reasonable span of time.

The performance of the resulting structural control problem under stochastic
uncertainty is evaluated therefore by means of a convex quadratic cost function
L D L.t; z; u/ of the state vector z D z.t/ and the control input vector u D u.t/.
While the actual time path of the random external load is not known at the planning
stage, we may assume that the probability distribution or at least the moments
under consideration of the applied load and other random parameters are known.
The problem is then to determine a robust, i.e. parameter-insensitive (open-loop)
feedback control law by minimization of the expected total costs, hence, a stochastic
optimal control law.

As mentioned above, in active control of dynamic structures, cf. (Block 2008;
Nagarajaiah and Narasimhan 2007; Soong 1988, 1990; Soong and Costantinou
1994; Spencer and Nagarajaiah 2003; Yang and Soong 1988), the behavior of the
m-vector q D q.t/ of displacements with respect to time t is described by a system
of second order linear differential equations for q.t/ having a right hand side being
the sum of the stochastic applied load process and the control force depending on a
control n-vector function u.t/:

M Rq C D Pq C Kq.t/ D f .t; !; u.t// ; t0 � t � tf : (1a)

Hence, the force vector f D f .t; !; u.t// on the right hand side of the dynamic
equation (1a) is given by the sum

f .t; !; u/ D f0.t; !/ C fa.t; !; u/ (1b)

of the applied load f0 D f0.t; !/ being a vector-valued stochastic process
describing e.g. external loads or excitation of the structure caused by earthquakes,
wind turbulences, water waves, etc., and the actuator or control force vector fa D
fa.t; !; u/ depending on an input or control n-vector function u D u.t/; t0 �
t � tf . Here, ! denotes the random element, lying in a certain probability
space .˝; A; P /, used to represent random variations. Furthermore, M; D; K , resp.,
denotes the m � m mass, damping and stiffness matrix. In many cases the actuator
or control force fa is linear, i.e.

fa D �uu (1c)

with a certain m � n matrix �u.



Stochastic Optimal Open-Loop Feedback 265

By introducing appropriate matrices, the linear system of second order differ-
ential equations (1a,b) can be represented by a system of first order differential
equations as follows:

Pz D g.t; !; z.t!/; u/ WD Az.t; !/ C Bu C b.t; !/ (2a)

with

A WD
�

0 I

�M �1K �M �1D

�
; B WD

�
0

M �1�u

�
; (2b)

b.t; !/ WD
�

0

M �1f0.t; !/:

�
(2c)

Moreover, z D z.t/ is the 2m-state vector defined by

z D
�

q

Pq
�

(2d)

fulfilling a certain initial condition

z.t0/ D
�

q.t0/

Pq.t0/

�
WD
�

q0

Pq0

�
(2e)

with given or stochastic initial values q0 D q0.!/; Pq0 D Pq0.!/.

1.2 Robust (Optimal) Open-Loop Feedback Control

Assuming here that at each time point t the state zt WD z.t/ is available, the control
force fa D � u is generated by means of a PD-controller. Hence, for the input
n-vector function u D u.t/, we have

u.t/ WD '
�
t; q.t/; Pq.t/

�
D '

�
t; z.t/

�
(3a)

with a feedback control law ' D '.t; q; Pq/. Efficient approximate feedback control
laws are constructed here by using the concept of open-loop feedback control. Open-
loop feedback control is the main tool in model predictive control, cf. (Allgöwer
2000; Marti 2008; Richalet et al. 1978), which is very often used to solve optimal
control problems in practice. The idea of open-loop feedback control is to construct
a feedback control law quasi argument-wise, see cf. (Aoki 1967; Ku and Athans
1973).

A major issue in optimal control is the robustness, cf. (Dullerud and Paganini
2000), i.e. the insensitivity of the optimal control with respect to parameter
variations. In case of random parameter variations, robust optimal controls can
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be obtained by means of stochastic optimization methods, cf. (Marti 2008). Thus,
we introduce the following concept of an stochastic optimal (open-loop) feedback
control.

Definition 1. In case of stochastic parameter variations, robust, hence, parameter-
insensitive optimal (open-loop) feedback controls obtained by stochastic optimiza-
tion methods are also called stochastic optimal (open-loop) feedback controls.

1.3 Stochastic Optimal Open-Loop Feedback Control

Finding a stochastic optimal open-loop feedback control, hence, an optimal (open-
loop) feedback control law being insensitive as far as possible with respect to
random parameter variations, means that besides optimality of the control law also
its insensitivity with respect to stochastic parameter variations should be guaranteed.
Hence, in the following sections we develop now a stochastic version of the
(optimal) open-loop feedback control method, cf. (Marti 2008, 2010/11,/). An short
overview on this novel stochastic optimal open-loop feedback control concept is
given below:

At each intermediate time point tb 2 Œt0; tf �, based on the observed state zb D
z.tb/ at tb , a stochastic optimal open-loop control u� D u�.t/ D u�.t j.tb; zb//; tb �
t � tf , is determined first on the remaining time interval Œtb; tf �, see Fig. 1, by
stochastic optimization methods, cf. (Marti 2008).

Having a stochastic optimal open-loop control u� D u�.t j.tb; zb//; tb � t � tf ,
on each remaining time interval Œtb ; tf � with an arbitrary starting time tb , t0 � tb �
tf , a stochastic optimal open-loop feedback control law is then defined as follows:

Definition 2.

'� D '.tb; z.tb// WD u�.tb/ D u�.tbj.tb; zb//; t0 � tb � tf : (3b)

Hence, at time t D tb just the “first” control value u�.tb/ D u�.tb j.tb; zb// of
u�.�j.tb; zb// is used only. For each other argument .t; zt / WD .t; z.t// the same
construction is applied.

For finding stochastic optimal open-loop controls, on the remaining time inter-
vals tb � t � tf with t0 � tb � tf , the stochastic Hamilton function of the
control problem is introduced. Then, the class of H� minimal controls, cf. (Kalman
et al. 1969), can be determined in case of stochastic uncertainty by solving a
finite-dimensional stochastic optimization problem for minimizing the conditional
expectation of the stochastic Hamiltonian subject to the remaining deterministic
control constraints at each time point t . Having a H� minimal control, the related

Fig. 1 Remaining time
interval
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two-point boundary value problem with random parameters can be formulated for
the computation of a stochastic optimal state- and costate-trajectory. Due to the
linear-quadratic structure of the underlying control problem, the state and costate
trajectory can be determined analytically to a large extent. Inserting then these
trajectories into the H-minimal control, stochastic optimal open-loop controls are
found on an arbitrary remaining time interval. According to Definition 2, these
controls yield then immediately a stochastic optimal open-loop feedback control
law. Moreover, the obtained controls can be realized in real-time, which is already
shown for applications in optimal control of industrial robots, cf. (Schacher 2010).

Summarizing, we get optimal (open-loop) feedback controls under stochastic
uncertainty minimizing the effects of external influences on system behavior,
subject to the constraints of not having a complete representation of the system, cf.
(Dullerud and Paganini 2000). Hence, robust or stochastic optimal active controls
are obtained by new techniques from Stochastic Optimization, see (Marti 2008). Of
course, the construction can be extended also to PID� controllers.

2 Expected Total Cost Function

The performance function F for active structural control systems is defined, cf.
(Marti 2001, 2004, 2008), by the conditional expectation of the total costs being
the sum of costs L along the trajectory, arising from the displacements z D z.t; !/

and the control input u D u.t; !/, and possible terminal costs G arising at the final
state zf . Hence, on the remaining time interval tb � t � tf we have the following
conditional expectation of the total cost function with respect to the information Atb

available up to time tb :

F WD E

0
@

tfZ

tb

L
�
t; !; z.t; !/; u.t; !/

�
dt C G.tf ; !; z.tf ; !//

ˇ̌
Atb

1
A: (4a)

Supposing quadratic costs along the trajectory, the function L is given by

L.t; !; z; u/ WD 1

2
zT Q.t; !/z C 1

2
uT R.t; !/u (4b)

with positive (semi) definite 2m � 2m; n � n, resp., matrix functions Q D Q.t; !/;

R D R.t; !/. In the simplest case the weight matrices Q; R are fixed. A special
selection for Q reads

Q D
�

Qq 0

0 Q Pq

�
(4c)

with positive (semi) definite weight matrices Qq; Q Pq , resp., for q; Pq. Furthermore,
G D G.tf ; !; z.tf ; !// describes possible terminal costs. In case of endpoint
control G is defined by
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G.tf ; !; z.tf ; !// WD 1

2
.z.tf ; !/ � zf .!//T S.z.tf ; !/ � zf .!//; (4d)

where S is a positive definite (semi) weight matrix, and zf D zf .!/ denotes the
(possible probabilistic) final state.

Remark 1. Instead of
1

2
uT Ru, in the following we also use a more general convex

control cost function C D C.u/.

3 Open-Loop Control Problem on the Remaining Time
Interval Œtb; tf �

Having the differential equation with random coefficients describing the behavior
of the open-loop control u� D u�.t/; tb � t � tf ; is a solution of the following
optimal control problem under stochastic uncertainty:

min E

0
@

tfZ

tb

1

2

�
z.t; !/T Qz.t; !/ C C.u/

�
dt C G.tf ; !; z.tf ; !//

ˇ̌
ˇAtb

1
A (5a)

s.t. Pz.t; !/ D Az.t; !/ C Bu.t/ C b.t; !/; a.s.; tb � t � tf (5b)

z.tb ; !/ D zb (given) (5c)

u.t/ 2 Dt; tb � t � tf : (5d)

An important property of (5a-d) is stated next:

Lemma 1. If the terminal cost function G D G.tf ; !; z/ is convex in z, and the
feasible domain Dt is convex for each time point t , t0 � t � tf ; then the stochastic
optimal control problem (5a-d) is a convex optimization problem.

4 Stochastic Hamiltonian of (5a–d)

According to (Marti 2008), the stochastic Hamiltonian H related to the stochastic
optimal control problem (5a-d) reads:

H.t; !; z; y; u/ WD L.t; !; z; u/ C yT g.t; !; z; u/

D 1

2
zT Qz C C.u/ C yT .Az C Bu C b.t; !// : (6a)
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4.1 Expected Hamiltonian (with Respect to the Time Interval
Œtb; tf � and Information Atb

)

For the definition of a H�minimal control the conditional expectation of the
stochastic Hamiltonian is needed:

H
.b/ WD E

�
H.t; !; z; y; u/

ˇ̌
Atb

�

D E

�
1

2
zT Qz C yT .Az C b.t; !//

ˇ̌
Atb

�
C C.u/ C E

�
yT Bu

ˇ̌
Atb

�

D C.u/ C E
�
BT y.t; !/

ˇ̌
Atb

�T
u C : : :

D C.u/ C h.t/T u C : : : (6b)

with

h.t/ WDE
�
BT .y.t; !/

ˇ̌
Atb

� D h.t; tb/; t � tb : (6c)

4.2 H -Minimal Control on Œtb; tf �

In order to formulate the two-point boundary value problem for a stochastic optimal
open-loop control u� D u�.t/; tb � t � tf , we need first a H -minimal control

eu� D eu�
�
t; z.t; �/; y.t; �/

�
; tb � t � tf ;

defined, cf. (Marti 2008), for tb � t � tf as a solution of the following convex
stochastic optimization problem , cf. (Marti 2008):

min E
�
H.t; !; z.t; !/; y.t; !/; u/

ˇ̌
Atb

�
(7a)

s.t.
u 2 Dt ; (7b)

where z D z.t; !/; y D y.t; !/ are certain trajectories.
According to (7a,b) the H-minimal control

eu� D eu�
�
t; z.t; �/; y.t; �/

�
D eu�.t; h/ (8a)

is defined by

eu�.t; h/ WD argmin
u2Dt

C.u/ C h.t/T u for t � tb : (8b)
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For strictly convex, differentiable cost functions C D C.u/, as e.g. C.u/ D 1
2
uT Ru

with positive definite matrix R, the necessary and sufficient condition for eu� reads
in case Dt D Rn

rC.u/ C h.t/ D 0 : (9a)

If u 7! rC.u/ is a 1-1-operator, then the solution of (9a) reads

u D v.h/ WD rC �1.�h/ : (9b)

With (6c) and (8b) we then have

eu�.t; h/ D v.h.t// D rC �1
��BT E

�
y.t; !/

ˇ̌
Atb

�� D eu�.h.t// : (9c)

5 Canonical Hamiltonian System

In the following we suppose that a H -minimal control eu� D eu��t; z.t; �/; y.t; �/
�

,

tb � t � tf , i.e., a solution eu� D eu�.t; h/ D v.h.t/// of the stochastic optimization
problem (7a,b) is available. Moreover, the conditional expectation E

�
�
ˇ̌
Atb

�
of a

random variable � is also denoted by �
.b/

, cf. (6b). According to (Marti 2008), a
stochastic optimal open-loop control u� D u�.t/; tb � t � tf ,

u�.t/ D eu��t; z�.t; �/; y�.t; �/
�
; tb � t � tf ; (10)

of the stochastic optimal control problem (5a-d),can be obtained by solving the
following stochastic two-point boundary value problem related to (5a-d):

Theorem 1. If z� D z�.t; !/; y� D y�.t; !/; t0 � t � tf , is a solution of

Pz.t; !/ D Az.t; !/ C BrC �1
�
�BT y.t; !/

.b/
�

C b.t; !/; tb � t � tf (11a)

z.tb ; !/ D zb (11b)

Py.t; !/ D �AT y.t; !/ � Qz.t; !/ (11c)

y.tf ; !/ D rG.tf ; !; z.tf ; !//; (11d)

then the function u� D u�.t/; tb � t � tf ; defined by (10) is a stochastic optimal
open-loop control for the remaining time interval tb � t � tf .
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6 Minimum Energy Control

In this case we have Q D 0, i.e., there are no costs for the displacements z D
�

q

Pq
�

.

In this case the solution of (11c,d) reads

y.t; !/ D eAT .tf �t /rG.tf ; !; z.tf ; !//; tb � t � tf : (12a)

Since the matrix B is deterministic, this yields

eu�.t; h.t// D v.h.t// D rC �1
�
�BT eAT .tf �t /rG.tf ; !; z.tf ; !//

.b/
�

; (12b)

tb � t � tf :

Having (12a,b), for the state trajectory z D z.t; !/ we get, see (11a,b), the following
system of ordinary differential equations

Pz.t; !/ D Az.t; !/ C BrC �1
� � BT eAT .tf �t /rG.tf ; !; z.tf ; !//

.b/�
C b.t; !/; tb � t � tf ; (13a)

z.tb; !/ D zb: (13b)

The solution of system (13a,b) reads

z.t; !/ D eA.t�tb/zb C
tZ

tb

eA.t�s/

 
b.s; !/

C BrC �1
�
�BT eAT .tf �s/rG.tf ; !; z.tf ; !//

.b/
�!

ds;

tb � t � tf : (14)

For the final state z D z.tf ; !/ we get the relation:

z.tf ; !/ D eA.tf �tb /zb C
tfZ

tb

eA.tf �s/

 
b.s; !/

C BrC �1
�
�BT eAT .tf �s/rG.tf ; !; z.tf ; !//

.b/
�!

ds : (15)
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6.1 Endpoint Control

In the case of endpoint control, the terminal cost function is given by the following
definition (16a), where zf D zf .!/ denotes the desired – possible random – final
state:

G.tf ; !; z.tf ; !// WD 1

2
kz.tf ; !/ � zf .!/k2 : (16a)

Hence,

rG.tf ; !; z.tf ; !// D z.tf ; !/ � zf .!/ (16b)

and therefore

rG.tf ; !; z.tf ; !//
.b/ D z.tf ; !/

.b/ � zf
.b/ (16c)

D E
�
z.tf ; !/

ˇ̌
Atb

�� E
�
zf

ˇ̌
Atb

�
:

Thus

z.tf ; !/ D eA.tf �tb/zb C
tfZ

tb

eA.tf �s/

 
b.s; !/

C BrC �1
�
�BT eAT .tf �s/

�
z.tf ; !/

.b/ � zf
.b/
��!

ds : (17a)

Taking expectations E.: : : jAtb/ in (17a), we get the following condition for

z.tf ; !/
.b/

:

z.tf ; !/
.b/ D eA.tf �tb/zb C

tfZ

tb

eA.tf �s/b.s; !/
.b/

ds

C
tfZ

tb

eA.tf �s/BrC �1
�
�BT eAT .tf �s/

�
z.tf ; !/

.b/ � zf
.b/
��

ds :

(17b)
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6.1.1 Quadratic Control Costs

Here, the control cost function C D C.u/ reads

C.u/ D 1

2
uT Ru ; (18a)

hence,
(18b)

rC D Ru (18c)

and therefore

rC �1.w/ D R�1w : (18d)

Consequently, (17b) reads

z.tf ; !/
.b/ D eA.tf �tb/zb C

tfZ

tb

eA.tf �s/b.s; !/
.b/

ds

�
tfZ

tb

eA.tf �s/BR�1BT eAT .tf �s/ dsz.tf ; !/
.b/

C
tfZ

tb

eA.tf �s/BR�1BT eAT .tf �s/ dszf
.b/ : (19)

Define now

U WD
tfZ

tb

eA.tf �s/BR�1BT eAT .tf �s/ ds : (20)

Lemma 2. I C U is regular.

Proof. Due to the previous considerations, U is a positive semidefinite 2m � 2m

matrix. Hence, U has only nonnegative eigenvalues.
Assuming that the matrix I CU is singular, there is a 2m-vector w ¤ 0 such that

.I C U / w D 0:

However, this yields

U w D �I w D �w D .�1/w;
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which means that � D �1 is an eigenvalue of U . Since this contradicts to the above
mentioned property of U , the matrix I C U must be regular. ut

From (19) we get

.I C U / z.tf ; !/
.b/ D eA.tf �tb /zb C

tbZ

tb

eA.tf �s/b.s; !/
.b/

ds C U zf
.b/;

(21a)

hence,

z.tf ; !/
.b/ D .I C U /�1 eA.tf �tb /zb C .I C U /�1

tbZ

tb

eA.tf �s/b.s; !/
.b/

ds

C .I C U /�1 U zf
.b/ : (21b)

Now, (21b) and (16b) yield

rzG.tf ; !; z.tf ; !// D z.tf ; !/ � zf

.b/ D z.tf ; !/
.b/ � zf

.b/

D .I C U /�1 eA.tf �tb/zb

C .I C U /�1

tfZ

tb

eA.tf �s/b.s; !/
.b/

ds

C
�
.I C U /�1 U � I

�
zf

.b/ : (22)

Thus, a stochastic optimal open-loop control u�.t/, tb � t � tf , on Œtb ; tf � is given
by, cf. (9b),

u�.t/ D �R�1BT eAT .tf �t /

 
.I C U /�1 eA.tf �tb/zb

C .I C U /�1

tfZ

tb

eA.tf �s/b.s; !/
.b/

ds

C
�
.I C U /�1 U � I

�
zf

.b/

!
; tb � t � tf : (23)

Finally, the stochastic optimal open-loop feedback control law ' D '.t; z.t// is then
given by
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'.tb; z.tb// WDu�.tb/

D � R�1BT eAT .tf �tb/ .I C U /�1 eA.tf �tb /zb

� R�1BT eAT .tf �tb/ .I C U /�1

tfZ

tb

eA.tf �s/b.s; !/
.b/

ds

� R�1BT eAT .tf �tb/
�
.I C U /�1U � I

�
zf

.b/ (24)

with zb WD z.tb/ .
Replacing tb ! t , we find this result:

Theorem 2. The stochastic optimal open-loop feedback control law ' D '.t; z.t//
is given by

'.t; z.t// D �R�1BT eAT .tf �t / .I C U /�1 eA.tf �t /„ ƒ‚ …
�0.t/

z.t/

�R�1BT eAT .tf �t / .I C U /�1

tfZ

t

eA.tf �s/b.s; !/
.t/

ds

„ ƒ‚ …
�1.t;b.�;!/

.t/
/

�R�1BT eAT .tf �t /
�
.I C U /�1U � I

�
„ ƒ‚ …

�2.t/

zf
.t/ ; (25a)

hence,

'.t; z/ D�0.t/z C �1.t; b.�; !/
.t/

/ C �2.t/zf
.t/ : (25b)

Remark 2. Note that the stochastic optimal open-loop feedback law z 7! '.t; z/ is
not linear in general, but affine-linear.

6.2 Endpoint Control with Different Cost Functions

In this section we consider more general terminal cost functions G. Hence, suppose

G.tf ; !; z.tf ; !// WD �.z.tf ; !/ � zf .!// ; (26a)

rG.tf ; !; z.tf ; !// D r�.z.tf ; !/ � zf .!// : (26b)
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Consequently,

eu�.t; h.t// D v�.h.t// D rC �1
�
BT eAT .tf �t /r�.z.tf ; !/ � zf .!//

.b/
�

(27a)

and therefore, see (15)

z.tf ; !/ D eA.tf �tb/zb C
tfZ

tb

eA.tf �s/b.s; !/ ds

C
tfZ

tb

eA.tf �s/BrC �1
�
�BT eAT .tf �s/r�.z.tf ; !/ � zf .!//

.b/
�

ds ;

tb � t � tf : (27b)

Special case:
Now a special terminal cost function is considered in more detail:

�.z � zf / WD
2mX
iD1

.zi � zf i
/4 (28a)

r�.z � zf / D 4
�
.z1 � zf 1

/3; : : : ; .z2m � zf 2m
/3
�T

: (28b)

Here,

r�.z � zf /
.b/ D 4

�
E
�
.z1 � zf 1

/3jAtb

�
; : : : ; E

�
.z2m � zf 2m

/3jAtb

��T

D 4
�
m

.b/
3 .z1.tf ; �/I zf 1

.�//; : : : ; m
.b/
3 .z2m.tf ; �/I zf 2m

.�//
�T

DW 4m
.b/
3 .z.tf ; �/I zf .�// : (29)

Thus,

z.tf ; !/ D eA.tf �tb/zb C
tfZ

tb

eA.tf �s/b.s; !/ ds

C
tfZ

tb

eA.tf �s/BrC �1
�
�BT eAT .tf �s/4m

.b/
3 .z.tf ; �/I zf .�//

�
ds

„ ƒ‚ …
J
�
m

.b/
3 .z.tf ;�/Izf .�//

�

: (30)
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Equation (30) yields then

�
z.tf ; !/ � zf .!/

�3
ˇ̌
ˇ̌
ˇ

c:�by�c:

D
0
@eA.tf �tb /zb � zf C

tfZ

tb

eA.tf �s/b.s; !/ ds C J
�
m

.b/
3 .z.tf ; �/I zf .�//

�1A
3 ˇ̌
ˇ̌
ˇ

c:�by�c:

;

(31a)

where “c.-by-c.” means “component-by-component”. Taking expectations in (31a),
we get the following relation for the moment vector m

.b/
3 :

m
.b/
3 .z.tf ; �/I zf .�// D �

�
m

.b/
3 .z.tf ; �/I zf .�//

�
: (31b)

Remark 3.

E
��

z.tf ; !/ � zf .!/
�3 ˇ̌

Atb

� ˇ̌ˇ̌
ˇ

c:�by�c:

D E.b/
�
z.tf ; !/ � z.b/.tf / C z.b/.tf / � zf .!/

�3

D E.b/

 �
z.tf ; !/ � z.b/.tf /

�3 C 3
�
z.tf ; !/ � z.b/.tf /

�2 �
z.b/.tf / � zf .!/

�

C 3
�
z.tf ; !/ � z.b/.tf /

� �
z.b/.tf / � zf .!/

�2 C �
z.b/.tf / � zf .!/

�3 !
:

(31c)

Assuming that z.tf ; !/ and zf .!/ are stochastic independent, then

E
�
.z.tf ; !/ � zf .!//3

ˇ̌
Atb

�

D m
.b/
3 .z.tf ; �// C 3�2.b/.z.tf ; �//.z.b/.tf / � zf

.b// C �
z.b/.tf / � zf .!/

�3.b/

;

(31d)

where �2.b/.z.tf ; �/ denotes the conditional variance of the state reached at the final
time point tf , given the information at time tb .
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6.3 Weighted Quadratic Terminal Costs

With a certain (possibly random) weight matrix � D � .!/, we consider the
following terminal cost function:

G.tf ; !; z.tf ; !// WD1

2

��� .!/
�
z.tf ; !/ � zf .!/

���2
: (32a)

This yields

rG.tf ; !; z.tf ; !// D� .!/T � .!/.z.tf ; !/ � zf .!// ; (32b)

and from (12a) we get

y.t; !/ D eAT .tf �t /rzG.tf ; !; z.tf ; !//

D eAT .tf �t /� .!/T � .!/.z.tf ; !/ � zf .!// ; (33a)

hence,

y.t/
.b/ D eAT .tf �t /� .!/T

�
� .!/.z.tf ; !/ � � .!/zf .!//

�.b/

D eAT .tf �t /
�
� T � z.tf ; !/

.b/ � � T � zf

.b/
�

: (33b)

Thus, for the H� minimal control we find

eu�.t; h/ D v.h.t//

D rC �1
�
�BT y.t/

.b/
�

D rC �1

 
� BT eAT .tf �t /

�
� T � z.tf ; !/

.b/ � � T � zf

.b/
�!

: (34)

We obtain therefore, see (14),

z.t; !/ D eA.t�tb/zb C
tZ

tb

eA.t�s/

 
b.s; !/

C BrC �1

 
� BT eAT .tf �s/

�
� T � z.tf ; !/

.b/ � � T � zf

.b/
�!!

ds:

(35a)
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6.3.1 Quadratic Control Costs

Assume that the control costs and its gradient are given by

C.u/ D 1

2
uT Ru; rC.u/ D Ru : (35b)

Here, (35a) yields

z.tf ; !/ D eA.tf �tb/zb C
tfZ

tb

eA.tf �s/

 
b.s; !/

�BR�1BT eAT .tf �s/
�
� T � z.tf ; !/

.b/ � � T � zf

.b/
�!

ds : (35c)

Multiplying with � .!/T � .!/ and taking expectations, from (35c) we get

� T � z.tf ; !/
.b/ D � T �

.b/
eA.tf �tb/zb C

tfZ

tb

� T � eA.tf �s/b.s; !/
.b/

ds

� � T �
.b/

tfZ

tb

eA.tf �s/BR�1BT eAT .tf �s/ ds

�
�

� T � z.tf ; !/
.b/ � � T � zf

.b/
�

: (36a)

According to a former lemma, we define the matrix

U D
tfZ

tb

eA.tf �s/BR�1BT eAT .tf �s/ ds :

From (36a) we get then

�
I C � T �

.b/
U
�

� T � z.tf ; !/
.b/

D � T �
.b/

eA.tf �tb/zb C
tfZ

tb

� T � eA.tf �s/b.s; !/
.b/

ds

C � T �
.b/

U � T � zf

.b/
: (36b)



280 K. Marti and I. Stein

Lemma 3. I C � T �
.b/

U is regular.

Proof. First notice that not only U , but also � T �
.b/

is positive semidefinite:

vT � T �
.b/

v D vT � T � v D .� v/T � v
.b/ D k� vk2

2

.b/ � 0 :

Then their product � T �
.b/

U is positive semidefinite as well. This follows immedi-
ately from (Ostrowski 1959) as � .!/T � .!/ is symmetric. ut
Since the matrix I C � T �

.b/
U is regular, we get cf. (21a,b),

� T � z.tf ; !/
.b/ D

�
I C � T �

.b/
U
��1

� T �
.b/

eA.tf �tb/zb

C
�
I C � T �

.b/
U
��1

tfZ

tb

� T � eA.tf �s/b.s; !/
.b/

ds

C
�
I C � T �

.b/
U
��1

� T �
.b/

U � zf
.b/

: (36c)

Putting (36c) into (34), corresponding to (23) we get the stochastic optimal open-
loop control

u�.t/ D � R�1BT eAT .tf �t /
�
� T � z.tf ; !/

.b/ � � T � zf

.b/
�

D : : : ; tb � t � tf ; (37)

which yields then the related stochastic optimal open-loop feedback control ' D
'.t; z.t// law corresponding to Theorem 2.

7 Nonzero Costs for Displacements

Suppose here that Q ¤ 0. According to (11a-d), for the adjoint trajectory y D
y.t; !/ we have the system of differential equations

Py.t; !/ D � AT y.t; !/ � Qz.t; !/

y.tf ; !/ DrG.tf ; !; z.tf ; !// ;

which has the following solution for given z.t; !/ and rG.tf ; !; z.tf ; !//:

y.t; !/ D
tfZ

t

eAT .s�t /Qz.s; !/ ds C eAT .tf �t /rG.tf ; !; z.tf ; !//: (38)
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Indeed, we get

y.tf ; !/ D 0 C IrzG.tf ; !; z.tf ; !// D rzG.tf ; !; z.tf ; !//

Py.t; !/ D �eAT �0Qz.t; !/

�
tfZ

t

AT eAT .s�t /Qz.s; !/ ds � AT eAT .tf �t /rG.tf ; !; z.tf ; !//

D �eAT �0Qz.t; !/

� AT

0
@

tfZ

t

eAT .s�t /Qz.s; !/ ds C eAT .tf �t /rG.tf ; !; z.tf ; !//

1
A

D �AT y.t; !/ � Qz.t; !/ :

From (38) we then get

y.t/
.b/ D E.b/.y.t; !// D E

�
y.t; !/jAtb

�

D
tfZ

t

eAT .s�t /Qz.s/
.b/

ds C eAT .tf �t /rG.tf ; !; z.tf ; !//
.b/

: (39)

The unknown function z.t/
.b/

, and the vector z.tf ; !/ in this equation are both

given, based on y.t/
.b/

, by the initial value problem, see (11a,b),

Pz.t; !/ D Az.t; !/ C BrC �1
�
�BT y.b/.t/

�
C b.t; !/ (40a)

z.tb; !/ D zb : (40b)

Taking expectations, considering the state vector at the final time point tf , resp.,
yields the expressions:

z.t/
.b/ D eA.t�tb/zb C

tZ

tb

eA.t�s/
�
b.s/

.b/ C BrC �1
�
�BT y.s/

.b/
��

ds; (41a)

z.tf ; !/ D eA.tf �tb/zb C
tfZ

tb

eA.tf �s/
�
b.s; !/ C BrC �1

�
�BT y.s/

.b/
��

ds:

(41b)
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7.1 Quadratic Control and Terminal Costs

Corresponding to (16a,b) and (18a,b), suppose

rG.tf ; !; z.tf ; !// D z.tf ; !/ � zf .!/ ;

rC �1.w/ D R�1w :

According to (10) and (9c), in the present case the stochastic optimal open-loop
control is given by

u�.t/ D eu�.t; q.t// D R�1
��E

�
BT y.t; !/

ˇ̌
Atb

�� D �R�1BT y.t/
.b/

: (42a)

Hence, we need the function y.b/ D y.t/
.b/

. From (39) and (16a,b) we have

y.t/
.b/ DeAT .tf �t /

�
z.tf /

.b/ � zf
.b/
�

C
tfZ

t

eAT .s�t /Qz.s/
.b/

ds : (42b)

Inserting (41a,b) into (42b), we have

y.t/
.b/ D eAT .tf �t /

 
eA.tf �tb/zb � zf

.b/

C
tfZ

tb

eA.tf �s/
�
b.s/

.b/ � BR�1BT y.s/
.b/
�

ds

!

C
tfZ

t

eAT .s�t /Q

 
eA.s�tb/zb

C
sZ

tb

eA.s�	/
�
b.	/

.b/ � BR�1BT y.	/
.b/
�

d	

!
ds : (42c)

In the following we develop a condition that guarantees the existence and

uniqueness of a solution yb D y.t/
.b/

of (42c):

Theorem 3. In the space of continuous functions, the above (42c) has a unique
solution if

cB <
1

cA

r
cR�1 .tf � t0/

�
1 C .tf �t0/cQ

2

� : (43)
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Here,

cA WD sup
tb�t�s�tf

keA.t�s/kF cB WD kBkF cR�1 WD kR�1kF cQ WD kQkF ;

and the index F denotes the Frobenius-Norm.

Proof. The proof of the existence and uniqueness of such an solution is based on
the Banach fix-point theorem. For applying this theorem, we consider the Banach
space

X D ˚
f W Œtb I tf � ! R2m W f continuous

	
(44a)

equipped with the supremum norm

kf kL WD sup
tb�t�tf

kf .t/k2 ; (44b)

where k � k2 denotes the Euclidean norm on R2m.
Now we study the operator T W X ! X defined by

.T f /.t/ D eAT .tf �t /

 
eA.tf �tb /zb � zf

.b/

C
tfZ

tb

eA.tf �s/
�
b.s/

.b/ � BR�1BT f .s/
�

ds

!

C
tfZ

t

eAT .s�t /Q

 
eA.s�tb/zb

C
sZ

tb

eA.s�	/
�
b.	/

.b/ � BR�1BT f .	/
�

d	

!
ds : (45)

The norm of the difference T f � T g of the images of two different elements
f; g 2 X with respect to T may be estimated as follows:

kT f � T gk

D sup
tb�t�tf

( ������eAT .tf �t /

tfZ

tb

eA.tf �s/BR�1BT .g.s/ � f .s// ds

C
tfZ

t

eAT .s�t /Q

sZ

tb

eA.s�	/BR�1BT .g.	/ � f .	// d	 ds

������
2

9=
; : (46a)
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Note that the Frobenius norm is sub-multiplicative and compatible with the Euclid-
ian norm. Using these properties, we get

kT f � T gk

� sup
tb�t�tf

(
cA

tfZ

tb

cAcBcR�1 cBkf .s/ � g.s/k2 ds

C cAcQ

tfZ

t

sZ

tb

cAcBcR�1 cBkf .	/ � g.	/k2 d	 ds

)

� sup
tb�t�tf

(
cA

tfZ

tb

cAcBcR�1 cB sup
tb�t�tf

kf .s/ � g.s/k2 ds

C cAcQ

tfZ

t

sZ

tb

cAcBcR�1 cB sup
tb�t�tf

kf .	/ � g.	/k2 d	 ds

)

Dkf � gkc2
Ac2

BcR�1sup
tb�t�tf

n
.tf � tb/ C cQ

2

�
.tf � tb/2 � .t � tb/2

�o

�kf � gkc2
Ac2

BcR�1 .tf � tb/.1 C cQ

2
.tf � tb// : (46b)

Thus, T is a contraction if

c2
B <

1

c2
AcR�1 .tf � tb/

�
1 C cQ

2
.tf � tb/

� (46c)

and therefore

cB <
1

cA

q
cR�1 .tf � tb/

�
1 C cQ

2
.tf � tb/

� : (46d)

In order to get a condition that is independent of tb , we take the worst case tb D t0,
hence,

cB <
1

cA

r
cR�1 .tf � t0/

�
1 C .tf �t0/cQ

2

� : (46e)
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Remark 4. Condition (46e) holds if the matrix �u in (1c) has a sufficiently small
Frobenius norm. Indeed, according to (2b) we have

B D
�

0

M �1�u

�

and therefore

cB D kBkF D kM �1�ukF � kM �1kF � k�ukF :

ut
Having y.t/

.b/
, according to (42a) a stochastic optimal open-loop control u�.t/,

tb � t � tf , reads:

u�.t/ D �R�1BT y.t/
.b/

: (47a)

Moreover,

'.tb; zb/ WD u�.tb/; t0 � tb � tf ; (47b)

is then a stochastic optimal open-loop feedback control law.

Remark 5. Putting Q D 0 in (38), we again obtain the stochastic optimal open-loop
feedback control law (24) in Sect. 6.1.1.

8 Example

We consider the structure according to Fig. 2, see (Block 2008), where we want to
control the supplementary active system while minimizing the expected total costs
for the control and the terminal costs.

The behavior of the vector of displacements q.t; !/ can be described by a system
of differential equations of second order:

M

� Rq0.t; !/

Rqz.t; !/

�
C D

� Pq0.t; !/

Pqz.t; !/

�
C K

�
q0.t; !/

qz.t; !/

�
D f0.t; !/ C fa.t/ (48)

with

M D
�

m0 0

0 mz

�
mass matrix (49a)

D D
�

d0 C dz �dz

�dz dz

�
damping matrix (49b)

K D
�

k0 C kz �kz

�kz kz

�
stiffness matrix (49c)
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Fig. 2 Principle of active
structural control

fa.t/ D
��1

C1

�
u.t/ actuator force (49d)

f0.t; !/ D
�

f01.t; !/

0

�
applied load: (49e)

Here we have n D 1, i.e. u.�/ 2 C .T; R/, and the weight matrix R becomes a
positive real number.

To represent the equation of motion (48) as a first order differential equation
we set

z.t; !/ WD .q.t; !/; Pq.t; !//T D

0
BB@

q0.t; !/

qz.t; !/

Pq0.t; !/

Pqz.t; !/

1
CCA :

This yields the dynamical equation

Pz.t; !/ D
�

0 I2

�M �1K �M �1D

�
z.t; !/ C

�
0

M �1fa.s/

�
C
�

0
M �1f0.s; !/

�

D

0
BBBBBBB@

0 0 1 0

0 0 0 1

�k0 C kz

m0

kz

m0

�d0 C dz

m0

dz

m0

kz

mz
� kz

mz

dz

mz
� dz

mz

1
CCCCCCCA

„ ƒ‚ …
DWA

z.t; !/ C

0
BBBBBB@

0

0

� 1

m0

1

mz

1
CCCCCCA

„ ƒ‚ …
DWB

u.s/ C

0
BBBB@

0

0
f0.s; !/

m0

0

1
CCCCA

„ ƒ‚ …
DWb.t;!/

;

(50)
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where Ip denotes the p � p identity matrix. Furthermore, we have the optimal
control problem under stochastic uncertainty:

min F.u.�// WD E
1

2

0
@

tfZ

tb

R .u.s//2 ds C z.tf ; !/T Gz.tf ; !/
ˇ̌
Atb

1
A (51a)

s:t: z.t; !/ D zb C
tZ

tb

�
Az.s; !/ C Bu.s/ C b.s; !/

�
ds (51b)

u.�/ 2 C .T; R/: (51c)

Note that this problem is of the “Minimum-Energy Control”-type, if we apply no
extra costs for the displacements, i.e. Q � 0.
The two-point-boundary problem to be solved reads then, cf. (11a-d),

Pz.t; !/ D Az.t; !/ � 1

R
BBT y.t/

.b/ C b.!; t/ (52a)

Py.t; !/ D �AT y.t; !/ (52b)

z.tb; !/ D zb (52c)

y.tf ; !/ D Gz.tf ; !/: (52d)

Hence, the solution of (52a)–(52d), i.e. the optimal trajectories, reads, cf. (12a),
(35a),

y.t; !/ D eAT .tf �t /Gz.tf ; !/ (53a)

z.t; !/ D eA.t�tb/zb C
tZ

tb

eA.t�s/

 
b.s; !/

� 1

R
BBT eAT .tf �s/Gz.tf ; !/

.b/

!
ds: (53b)

Finally, we get the optimal control, see (36c) and (37):

u�.t/ D � 1

R
BT eAT .tf �t / .I4 C GU /�1 GeAtf

0
@e�Atb zb C

tfZ

tb

e�Asb.s; !/
.b/

ds

1
A

(54)

with

U D 1

R

tfZ

tb

eA.tf �s/BBT eAT .tf �s/ ds: (55)
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9 Conclusion

Active regulator strategies are considered for stabilizing dynamic mechanical
structures under stochastic applied loadings. The problem has been modeled in the
framework of stochastic optimal control for minimizing the expected total costs
arising from the displacements of the structure and the regulation costs. Based
on the concept of open-loop feedback control, in recent years the so-called Model
Predictive Control became very popular in solving optimal control problems in prac-
tice. Hence, due to the great advantages of open-loop feedback controls, stochastic
optimal open-loop feedback controls have been constructed by taking into account
the random parameter variations in the structural control problem under stochastic
uncertainty. For finding stochastic optimal open-loop controls, on the remaining
time intervals tb � t � tf with t0 � tb � tf , the stochastic Hamilton function of
the control problem has been introduced. Then, the class of H� minimal controls
can be determined by solving a finite-dimensional stochastic optimization problem
for minimizing the conditional expectation of the stochastic Hamiltonian subject
to the remaining deterministic control constraints at each time point t . Having a
H�minimal control, the related two-point boundary value problem with random
parameters can be formulated for the computation of stochastic optimal state- and
costate-trajectories. Due to the linear-quadratic structure of the underlying control
problem, the state and costate trajectory can be determined analytically to a large
extent. Inserting then these trajectories into the H-minimal control, stochastic opti-
mal open-loop controls are found on an arbitrary remaining time interval. These con-
trols yield then immediately a stochastic optimal open-loop feedback control law.
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Aoki, M. (1967). Optimization of Stochastic Systems: Topics in Discrete-Time Systems. New York,

London: Academic Press.
Block, C. (2008). Aktive Minderung Personeninduzierter Schwingungen An Weit Gespannten

Strukturen im Bauwesen. No. 336 in Fortschrittberichte VDI, Reihe 11, Schwingungstechnik.
Düsseldorf: VDI-Verlag GmbH.

Dullerud, G., & Paganini, F. (2000). A Course in Robust Control Theory - A Convex Approach.
New York [etc.]: Springer.

Kalman, R., Falb, P., & Arbib, M. (1969). Topics in Mathematical System Theory. New York [etc.]:
McGraw-Hill Book Company.

Ku, R., & Athans, M. (1973). On the adaptive control of linear systems using the open-loop-
feedback-optimal approach. IEEE Transactions on Automatic Control, AC-18, 489–493.

Marti, K. (2001). Stochastic optimization methods in robuts adaptive control of robots. In
M. Groetschel, et al. (Eds.), Online Optimization of Large Scale Systems, pp. 545–577. Berlin-
Heidelberg-New York: Springer.

Marti, K. (2004). Adaptive optimal stochastic trajectory planning and control (AOSTPC) for
robots. In K. Marti, et al. (Eds.), Dynamic Stochastic Optimization, pp. 155–206. Berlin-
Heidelberg: Springer.



Stochastic Optimal Open-Loop Feedback 289

Marti, K. (2008). Approximate solutions of stochastic control problems by means of convex
approximations. In B. H. V. Topping, et al. (Eds.), Proceedings of the 9th Int. Conference on
Computational Structures Technology (CST08), Paper No. 52. Stirlingshire, UK: Civil-Comp
Press.

Marti, K. (2008). Stochastic nonlinear model predictive control (SNMPC). In 79th Annual Meeting
of the International Association of Applied Mathematics and Mechanics (GAMM), Bremen
2008, PAMM, vol. 8, Issue 1, pp. 10,775–10,776. Wiley.

Marti, K. (2008). Stochastic Optimization Problems, 2nd edn. Berlin-Heidelberg: Springer.
Marti, K. (2010/11). Continuous-time control under stochastic uncertainty. Accepted for publica-

tion in the Wiley Encyclopedia of Operations Research abd Management Science (EORMS)
(2010/11).

Marti, K. (2010/11). Optimal control of dynamical systems and structures under stochastic
uncertainty: Stochastic optimal feedback control. accepted for publication in Advances
in Engineering Software (AES) (2010/11). DOI information (online publication):
10.1016/j.advengsoft.2010.09.008.

Nagarajaiah, S., & Narasimhan, S. (2007). Optimal control of structures. In J.S. Arora, (Ed.),
Optimization of Structural and Mechanical Systems, pp. 221–244. New Jersey [etc.]: World
Scientific.
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Modeling and Processing of Uncertainty in Civil
Engineering by Means of Fuzzy Randomness

Uwe Reuter, Jan-Uwe Sickert, Wolfgang Graf, and Michael Kaliske

Abstract The paper focuses on the adequate quantification of uncertainty which
usually influences all numerical simulations of structures in the field of civil
engineering. Fuzzy randomness provides adequate modeling of specific uncertainty
phenomena, not only in the field of civil engineering. In this paper, approaches
for modeling of data and model uncertainty by means of convex fuzzy random
variables, including fuzzy variables and random variables as special cases, are
presented. Numerical processing of those uncertain variables succeeds with the help
of fuzzy stochastic structural analysis. By means of fuzzy stochastic analysis, it is
possible to map fuzzy random input variables onto fuzzy random result variables.
Thus, safety assessment of structures under precise distinction of the different kinds
of uncertainty is feasible. The principal approaches are illustrated by means of two
model problems in the field of civil engineering in order to show the significance
and the applicability of the methods.

1 Introduction

Numerical simulation of structures in the field of civil engineering is usually char-
acterized by data and model uncertainty. Data uncertainty is uncertainty in the input
variables of the numerical simulation, whereas model uncertainty is uncertainty in
the underlying model of the simulation induced by uncertain parameters.
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Realistic numerical simulation of civil engineering structures requires a precise
distinction and an adequate modeling of those uncertain phenomena with respect
to their sources. Regarding the source, uncertainty may be classified into epistemic
uncertainty and aleatory uncertainty.

Aleatory uncertainty results from variability of materials and structural processes
which leads to variability in parameters. The lack of knowledge about processes and
material behavior as well as about their variability is linked to epistemic uncertainty.

If sufficient statistically supported information exists for a parameter and the
reproduction conditions are constant, the parameter may be described as random
variable. Aleatory uncertainty is then described adequately. However, the choice of
type of probability distribution function affects the result considerably.

Further advancement of the traditional probabilistic uncertainty model enables
the additional consideration of epistemic uncertainty. Thereby, epistemic uncer-
tainty is associated with human cognition, which is not limited to a binary measure.
Advanced concepts allow a gradual assessment of intervals. This extension can be
realized with the uncertainty characteristic fuzziness, quantified by means of fuzzy
set theory.

In order to quantify both aleatory and epistemic uncertainty, imprecise proba-
bility concepts have been developed. In view of mathematical modeling, the term
imprecise probability is used in a variety of models such as upper and lower
probabilities, upper and lower previsions/expectations, possibilities and necessities,
belief and plausibility functions, Choquet capacities, sets of probability measures,
interval probabilities and further measures (see e.g., (Klir 2006; Möller and Beer
2008; Walley 1991)). Advantageously, the epistemic uncertainty is described by the
uncertainty characteristic fuzziness. The uncertainty consisting of both randomness
and fuzziness is summarized in the characteristic fuzzy randomness. Fuzzy random
data are assessed with the aid of the uncertain measure fuzzy probability. The model
fuzzy randomness describes imprecise probabilities as fuzzy sets of probability mea-
sures. It includes both randomness and fuzziness as special cases. If data only show a
random characteristic, fuzziness is quantified by zero, i.e. a real-valued random vari-
able is used. Fuzzy data without random properties are quantified by fuzzy variables.

2 Modeling Fuzzy Data

Fuzzy data result from the impossibility of an accurate characterization of single
observations or information (see also (Viertl 2008)). They are modeled as fuzzy
variables. A fuzzy variable Qx is defined as an uncertain subset of the fundamental
set X

Qx D fx; �Qx.x/ j x 2 Xg : (1)

The uncertainty is assessed by the membership function �Qx.x/. A normalized
membership function �Qx.x/ is defined as
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0 � �Qx.x/ � 1 8 x 2 R (2)

9 xl ; xr with �Qx.x/ D 1 8 x 2 ŒxlIxr � : (3)

A fuzzy variable Qx is referred to as convex if its membership function �Qx.x/
monotonically decreases on each side of the maximum value, i.e. if

�Qx.x2/ � min Œ�Qx.x1/I �Qx.x3/� 8 x1; x2; x3 2 R with x1 � x2 � x3 (4)

applies. Convex fuzzy variables are presupposed in this paper.
For example, the measurement of the position of an interface between two

complementary states 1 and 2 yields only a grey-tone image. Such a measurement
result may be characterized by a continuous, monotonic increasing function B.x/.
The function B.x/ maps the measured values onto the interval Œ0I 1�. All measured
values assignable to state 1 are rated with B.x/ D 0 and all measured values
assignable to state 2 are rated with B.x/ D 1. The shape of the function in
between depends on the gradient of the grey-tones. By differentiating function
B.x/, the position of the interface may be modeled as fuzzy variable Qx. Subsequent
standardization of the differentiated function yields the membership function �Qx.x/
of Qx (see Fig. 1).

Differing measurements for a single observation may also serve as an example.
Table 1 shows an excerpt of joint width measurements. In this example three differ-
ent measured values were obtained in each case for each measurement date and each
measurement location, i. e., the joint width at the respective measurement locations
could not be measured unequivocally as real values, but only in uncertain terms.

Such measurements must not to be mistaken for random data, because they
result from the impossibility of an accurate characterization of a single observation.
Random data result from the variation within a sample of single observations.
They are modeled as random variables. For example, test results for evaluation of
concrete strengths. Each concrete test cube represents an element of the random
sample. Statistical evaluation of the sample supports quantification of the probability
distribution function which belongs to the underlying random variable.

Fig. 1 Modeling of a smooth
transition between two
complementary states 1 and 2
as fuzzy variable Qx
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Table 1 Excerpt of joint width measurements (courtesy of Staedtisches Vermessungsamt Dres-
den)

Location Date 1st measurement 2nd measurement 3rd measurement
[mm] [mm] [mm]

:
:
:

5 10/05/2002 301.45 301.60 301.40
6 10/05/2002 297.00 296.90 296.95
7 10/05/2002 299.00 299.10 298.95
:
:
:

Fig. 2 Convex fuzzy realizations QX.!/ of a fuzzy random variable QX, e.g. as a result of uncertain
measurements

Fuzzy random data occur if a sample of fuzzy data is observed (see also (Viertl
2011)). Modeling of fuzzy random data presented in this paper is based on the
definition of fuzzy random variables according to (Möller and Beer 2004). The space
of the random elementary events ˝ is introduced. Each elementary event ! 2 ˝

generates a fuzzy realization QX.!/ D Qx, in which Qx is an element of the set F.R/ of
all fuzzy variables on R. Each fuzzy variable is defined as a normalized fuzzy set,
whose membership function �Qx.x/ is at least segmentally continuous. Accordingly,
a fuzzy random variable QX is the fuzzy result of the mapping given by

QX W ˝ ! F.R/: (5)

Figure 2 shows four fuzzy realizations QX.!/ of a fuzzy random variable QX.
Under the assumption of convex fuzzy realizations Qx, a fuzzy random variable QX

is characterized by a family of random ˛-level sets X˛

QX D .X˛ D ŒX˛l I X˛r � j ˛ 2 Œ0; 1�/ : (6)
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The interval boundaries

X˛l .!/ D minŒx 2 Rj� QX.!/.x/ � ˛�; (7)

X˛r .!/ D maxŒx 2 Rj� QX.!/.x/ � ˛� (8)

are real-valued random variables and form closed intervals.
An alternative, discrete representation of a fuzzy random variable QX� is given by

the l˛r˛-discretization (Möller and Reuter 2007)

QX D �
X˛i D ŒX˛iC1l ��X˛i l I X˛iC1r C�X˛i r � j ˛i 2 Œ0; 1/I (9)

X˛n D ŒX˛nl I X˛nl C�X˛nr � j˛n D 1/

for i D 1; 2; : : : ; n � 1:

In this definition, the terms �X˛i l and �X˛i r are correlated random variables and
called random l˛r˛-increments. It holds:

�X˛i l � 0 for i D 1; 2; : : : ; n � 1 (10)

�X˛i r � 0 for i D 1; 2; : : : ; n: (11)

Numerical processing of fuzzy, random, and fuzzy random variables requires
enhanced methods for structural analysis. Fuzzy stochastic analysis presented in the
next section is an appropriate computational approach, which allows the mapping
of fuzzy random input variables onto fuzzy random result variables. Two different
approaches for mapping of fuzzy random variables are possible. The first variant is
based on the bunch parameter representation of a fuzzy random variable by (Möller
and Beer 2004) and is equivalent to a real-valued random variable characterized
by fuzzy parameters. The second variant utilizes the l˛r˛-representation of fuzzy
random variables and is equivalent to a fuzzy-valued random variable. Both variants
are presented in the following.

3 Processing Fuzzy Random Variables

Numerical processing of fuzzy, random, and fuzzy random variables succeeds with
the help of fuzzy stochastic structural analysis. By means of fuzzy stochastic
analysis, it is possible to map fuzzy random input variables QX1; QX2; : : : ; QXl onto
fuzzy random result variables QZ1; : : : ; QZm

MFSA W QX 7! QZ (12)

QZ D . QZ1; QZ2; : : : ; QZm/ D MFSA. QX1; QX2; : : : ; QXl /: (13)

The mapping task may be achieved by means of a hierarchical three-loop computa-
tional model. The computational model can be organized in two different variants.
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3.1 Variant I

An unified approach for fuzzy random variables is presented in (Krätschmer 2001).
This approach is based amongst others on the similar definitions given in (Kwak-
ernaak 1978) and (Puri and Ralescu 1986). On this basis, the bunch parameter
representation has been introduced in (Möller and Beer 2004) in order to enable an
efficient numerical processing. Thereby, fuzzy probability density functions Qf .x/
are applied, representing a fuzzy set of real-valued probability density functions
f .x/. Therefore, Qf .x/ is also referred to as assessed bunch of functions f .x/. The
bunch is described by means of fuzzy bunch parameters Qs. If the bunch depends on
more than one Qs, all bunch parameters are joined in the vector Qs, which represents
a vector of fuzzy variables. The fuzzy probability density function Qf .x/ results
therewith in a function f .Qs; x/. This leads to the bunch parameter representation

QfX.x/ D f.fX.s; x/; �.fX.s; x/// j s 2 Qs; �.fX.s; x// D �.s/g (14)

of fuzzy probability density functions.
Typical fuzzy bunch parameters in engineering applications are moments of

the fuzzy random variable or parameters of the function Qf .x/. For instance, a
GUMBEL distributed fuzzy random variable, that means each f .x/ 2 Qf .x/ is
GUMBEL distributed, may depend on the fuzzy bunch parameters Qs1 D Qa and
Qs2 D Qb. Then the fuzzy probability density function is

f .Qs; x/ D Qs1 exp .�Qs1.x � Qs2/� exp .�Qs1.x � Qs2/// : (15)

This approach is different to the approaches introduced e.g. in (Feng 2001; Körner
1997) where only the expected value can be fuzzified. However, regarding the
engineering application, the generalization to arbitrary bunch parameters introduced
in (Möller and Beer 2004) is more appropriate. Further, the approach conforms to
the definitions given in (Krätschmer 2001) as shown in (Möller and Beer 2004).

Data uncertainty (e.g. for geometry and material parameters, loading or boundary
conditions) may also be characterized by fuzzy random fluctuations, which depend
on external conditions. External conditions include, for example, time � , the spatial
coordinates � D f�1; �2; �3g, air pressure or temperature, which are lumped together
in the parameter vector t D f�; �; 'g. The varying uncertainty of parameters
(depending on arbitrary arguments t) is quantified using fuzzy random functions.
Based on the theories of fuzzy random variables (Möller and Beer 2004), fuzzy sets
(Zimmermann 1992), and random processes (Thoft-Christensen and Baker 1982),
fuzzy random functions are defined as a set of discrete fuzzy random variables

QX.t/ D ˚ QXt D QX.t/ 8 t j t 2 T
�
: (16)

For a fuzzy random function, a joint fuzzy probability distribution function QF .x/ D
F.Qs; x/ and a joint fuzzy probability density function Qf .x/ D f .Qs; x/ may be
determined also in dependency of fuzzy bunch parameters (see (Sickert 2005)).
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On the basis of the fuzzy bunch parameter representation, the numerical solution
of the mapping may be formulated according to (13). Thereby, the fuzzy bunch
parameters of all fuzzy random variables are lumped together in the vector Qs with
elements Qsk jk D 1; : : : ; n1. The bunch parameters of selected fuzzy random result
variables QZ are summarized in the vector Q� with elements Q�j jj D 1; : : : ; m1.
Typical fuzzy bunch parameters Q� are the fuzzy moments or fuzzy quantiles of
QZi .The mapping of (13) is therewith transformed into the mapping

m W Qs 7! Q� : (17)

Q� D � Q�1; : : : ; Q�j ; : : : ; Q�m1
� D m.Qs1; : : : ; Qsk; : : : ; Qsn1/ : (18)

By means of fuzzy analysis, it is possible to map fuzzy input variables onto fuzzy
result variables. The fuzzy result variables of a fuzzy analysis may be found by
applying the extension principle. Under the condition that the fuzzy variables are
convex, however, ˛-level optimization is numerically more efficient. Applying ˛-
discretization to the fuzzy bunch parameter, an optimization problem is solved in
order to determine the ˛-level sets of the fuzzy bunch parameters . Q�1; Q�2; : : : ; Q�m1/.
This algorithm is referred to as fuzzy analysis and described, e.g., in (Möller and
Beer 2004). Each element of the input ˛-level sets yields a stochastic analysis.
Within the stochastic analysis, a deterministic fundamental solution is processed
repeatedly. Therewith, a three-loop computational algorithm is constituted (see
Fig. 3). Fuzzy analysis in the form of ˛-level optimization establishes the outer loop,
stochastic analysis the middle loop, and the deterministic fundamental solution the
inner loop.

By means of stochastic analysis, random input variables are mapped onto
random result variables by applying e.g. Monte Carlo techniques. The deterministic
fundamental solution represents an arbitrary computational model, e.g. a finite
element model. No special properties of the applied computational model, such as
linearity, monotony or convexity, are presupposed.

The mapping algorithm variant I has been extended to the mapping

MFSA W QX.t/ 7! QZ.t/ (19)

with fuzzy random functions QX.t/ and QZ.t/ in the input space as well as in the
result space (see (Sickert 2005)). This extension permits the development of the
fuzzy stochastic finite element method (FSFEM). Known and extended approaches
of the stochastic finite element method are applied within the stochastic analysis.

Fig. 3 Fuzzy stochastic
structural analysis – Variant I
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Fig. 4 Fuzzy stochastic
structural analysis – Variant II

3.2 Variant II

The second variant utilizes the l˛r˛-representation of fuzzy random variables. In
comparison with the first variant, the sequence of stochastic analysis and fuzzy
analysis is changed (see Fig. 4).

A precondition for this variant is that the individual fuzzy random variables of
(13) are represented in each case by a multivariate probability distribution function
for l˛r˛-increments.

This probability distribution function F QX. Qx/ of a fuzzy random variable QX
discretized by 2n random l˛r˛-increments �X˛1l ; �X˛2l ; : : : ; �X˛1r is defined as
the 2n-dimensional probability distribution function

lrF QX. Qx/ D P .f! j�X˛1l .!/ � �x˛1l ; : : : ; �X˛1r.!/ � �x˛1rg/ (20)

D P .f�X˛1l � �x˛1l ; : : : ; �X˛1r � �x˛1rg/ ;

whereby �x˛1l ; �x˛2l ; : : : ; �x˛1r are the l˛r˛-increments of the fuzzy realiza-
tion Qx.

If the probability distribution functions are known for the fuzzy random variables
QX1; QX2; : : : ; QXl , the stochastic analysis begins with the simulation of s sequences of
the fuzzy realizations Qx1; Qx2; : : : ; Qxl . This marks a distinction between the second
variant and the first one. By means of the latter, it is only possible to simulate
real-valued realizations of the individual trajectories. Because fuzzy realizations are
immediately available, these may be used as input variables for a fuzzy analysis.
By means of fuzzy analysis, the sequence of fuzzy result variables Qz1; Qz2; : : : ; Qzm
corresponding to each sequence Qx1; Qx2; : : : ; Qxl may be computed with the aid of
˛-level optimization. The algorithm given in (Möller and Beer 2004) for solving the
˛-level optimization may also be applied in this case. This results in s sequences of
fuzzy result variables Qz1; Qz2; : : : ; Qzm, i.e. a sample comprised of s fuzzy realizations
is obtained for each fuzzy random variable QZj . A statistical evaluation of the
samples yields an empirical 2n-dimensional probability distribution function for
the l˛r˛-increments of each fuzzy random variable QZj , which serve as unbiased
estimators for the distributions of QZj . Theoretical probability distribution functions
may also be derived from the latter as required.

The preference for a variant of fuzzy stochastic structural analysis depends on
the available uncertain data and the engineering problem. Both bunch parameter
representation and l˛r˛-representation of a fuzzy random variable may be obtained
by statistical evaluation of a concrete sample comprised of fuzzy elements. Bunch
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parameter representation, however, does not permit the precise reproduction of the
underlying sample elements (e.g. by Monte Carlo Simulation). l˛r˛-representation
permits the precise reproduction of samples comprised of fuzzy elements. The
interrelation between the two variants is reflected in the associated fuzzy probability
distribution functions. The marginal distributions of the multidimensional probabil-
ity distribution function according to (20) correspond to the left and right boundary
functions of the fuzzy probability distribution function according to the bunch
parameter representation. The uncoupled treatment of the marginal distributions
does not take account of the dependencies between the different ˛-level sets. The
interaction between the ˛-level sets of the fuzzy realizations of a fuzzy random
variable is only taken into account using the l˛r˛-representation. For this reason, it
is possible to reproduce the underlying fuzzy sample elements. However, in the field
of engineering, both variants of fuzzy stochastic structural analysis can be applied
for static and dynamic structural analysis and for the assessment of structural safety
and durability as well as robustness. Applications from the field of civil engineering,
particularly in structural engineering are presented in the following.

4 Examples

4.1 Analysis of a Strengthened Hypar Shell Roof Structure1

The capabilities of the mapping according to variant I is demonstrated by means of
an example. The example focuses on the assessment of the structural behavior of a
strengthened hypar shell roof structure. The shell was built of reinforced concrete in
the sixties and recently strengthened by means of a thin textile reinforced concrete
layer (Ortlepp et al. 2008). Textile reinforced concrete is a new composite material
made of fine-grained concrete and multiaxial warp knitted fabrics (textiles). The
textiles consist of filament yarns (rovings) which are connected with the aid of
stitching yarn. Each roving is composed by a large number of single filaments. The
filaments can consist of different material, e.g. alkali-resistant glass (AR glass) or
carbon. Here, a study is presented in which some uncertain parameters are modeled
as fuzzy and fuzzy random variables. The study serves to show the applicability of
the proposed methods in principle.

An extended layer model with specific kinematics, a so-called multi-reference-
plane model (MRM) is used to describe the load-bearing behavior of RC construc-
tions with textile strengthening. The MRM consists of concrete layers and steel
reinforcement layers of the old construction, the strengthening layers consist of
the inhomogeneous material textile concrete, and the interface layers. The MRM is
repeatedly applied as deterministic fundamental solution within the fuzzy stochastic

1In collaboration with Dipl.-Ing. Stephan Pannier.
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Fig. 5 FE model of the hypar shell roof

analysis. Figure 5 shows the FE model. The structure is discretized by means
of 2025 MRM elements. The elements are modeled with 19 layers. The steel
reinforcement and textiles are specified as an uniaxial smeared layer in each case.

In order to describe the composite structure comprised of reinforced concrete and
textile strengthening, different nonlinear material laws are applied to the individual
sub-layers of concrete, steel and textile. Endochronic material laws for concrete
and steel are applied for general loading, unloading and cyclic loading processes,
and taking into account the accumulated material damage during the load history
(Möller et al. 1997). In the case of cyclic loading, the textile-reinforced concrete
layers are split into sub-layers of fine-grained concrete and of textile reinforcement.
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Table 2 Uncertain input variables

Name Type Parameter 1 / 3 Parameter 2

old concrete
fc (compressive strength) log-normal � D 43 N=mm2 Q� D h4; 5; 6iN=mm2

x0 D 18 N=mm2

c (factor for tensile strength) fuzzy Qc D h�1:0; 0:0; 1:0i
efak (tension stiffening) fuzzy Qefak D h10; 15; 20i
fine-grained concrete
fc log-normal � D 85 N=mm2 Q� D h6; 7; 8iN=mm2

x0 D 24 N=mm2

c fuzzy Qc D h�2:5;�2:0;�1:5i
efak fuzzy Qefak D h10; 15; 20i
carbon textiles
E (Young’s modulus) fuzzy QE D h2:0; 2:2; 2:4i105

N=mm2

fcr (tensile strength) log-normal � D 1:1 � 103 N=mm2 Q� D h1:5; 1:75; 2:0i102
x0 D 5 � 102 N=mm2 N=mm2

loads
distributed snow load s Ex-max- � D 0:87 kN=m2 Q� D h0:25; 0:28; 0:31i

type I kN=m2

distributed wind load w Ex-max- � D 0:29 kN=m2 Q� D h0:07; 0:09; 0:11i
type I kN=m2

The endochronic material law for concrete is adapted to the fine-grained concrete.
A nonlinear elastic-brittle material law is used for the textile reinforcement. Under
cyclic loading, damage occurs in the strengthening layer in the fine-grained concrete
matrix and the textile structure as well as disruption of the bond between the old
concrete and the strengthening layer. These forms of damage and the additional
plastic deformations may be described theoretically by means of plasticity and
continuum damage theory (Möller et al. 2005). The material laws are dependent
on uncertain material parameters which are summarized in Table 2. The listed fuzzy
parameters are triangular fuzzy numbers using the common abridged notation.

The shell roof is loaded by uncertain distributed snow and wind loads. The
summarized load

Qq D �.Qs C Qw/ (21)

is increased incrementally up to system failure. System failure is defined as the
situation, when the applied modified Newton-Raphson iteration cannot find an
equilibrium for load factors � < 1.

The fuzzy failure probability of system failure is computed by means of mapping
variant I. Due to the high computational effort of one deterministic fundamental
solution, only 370 FE runs were possible. In order to perform the Monte Carlo sim-
ulation within the stochastic analysis, a surrogate meta-model is created which fits
very well to the results of the FE analysis. The meta-model is based on an artificial
neural network (see e.g. (Pannier et al. 2009; Papadrakakis et al. 1996)). Figure 6
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Fig. 6 R-S-plot and fuzzy failure probability QPf

displays the computed fuzzy failure probability QPf . The figure contains further a
R-S-plot comparing the empirical fuzzy density functions of the load sum S and the
structural resistance against a unique increase of q according to (21). The overlap
of density functions is an evidence for realizations which lead to structural failure.

4.2 Safety Assessment of a Shoring Wall

Variant II of fuzzy stochastic structural analysis is demonstrated in the follow-
ing by considering the safety assessment of an earth pressure loaded shoring
wall. In this example, information on the earth pressure is provided by pressure
cell measurements. The measurements started in 1999 and continue. A detailed
presentation of the pressure cell measurements can be found in (Franke et al.
2003). Two pressure cells close to each other are installed twice in comparable
depth. Nevertheless, different measured values are obtained in each case for each
measurement date and each pressure cell location, that is, earth pressure at the
respective measurement depth could not be measured precisely as real values, but
only in uncertain terms. The different measured values at the same measurement
date yield fuzzy data, whereas the variation in the values of a single pressure cell
over time signals randomness. These uncertainties follow from uncertain influencing
factors like consistency, density, stiffness, angle of internal friction of the soil as
well as the characteristics of the interface and the gradient and loads of the surface.
Table 3 shows a short excerpt of the measured earth pressure data, computed as the
difference of total pressure and water pressure.

The normal conventional approach does not take into account this uncertainty,
the uncertain information is reduced to an arithmetic mean. In order to realistically
analyze the measured data, however, this uncertainty must be taken into account.
The measured values at each measurement data lie in an interval which may
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Table 3 Excerpt of the measured earth pressure data (Franke et al. 2003) (GL D ground line)

Date Cell A1 4.94 m Cell B1 4.94 m Cell C2 4.80 m Cell D3 4.83 m
under GL [kPa] under GL [kPa] under GL [kPa] under GL [kPa]

11.11.1999 19.3 17.3 33.5 40.0
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

10.05.2000 26.2 23.7 40.9 50.5
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

04.11.2002 28.5 27.5 42.7 48.0
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

10.03.2004 20.9 19.4 31.1 35.0
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

14.07.2006 31.2 36.7 44.4 53.5
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

15.02.2007 22.1 24.1 29.9 36.5
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Fig. 7 Fuzzy earth pressures Qdk (k D 1; 2; : : : ; 8) at eight measurement dates

be considered as a support of a fuzzy variable. It is thus appropriate to model
the measured values as fuzzy variables. All values lying between the smallest
and largest values measured on each measurement data are possible measurement
results. These form the support of the corresponding fuzzy variable. All values
lying between the mean values of the two pressure cells installed close to each
other are chosen as the ‘best possible crisped’ measurement results and valuated
by membership value one. Figure 7 shows exemplarily the membership functions of
the fuzzy earth pressures at eight measurement dates.

Statistical evaluation of all modeled fuzzy values yields a fuzzy random variable
for the earth pressure. In order to model the earth pressure as fuzzy random variable,
280 measurement dates are evaluated. For each measurement date, a fuzzy value for
the earth pressure is available. Thus, the fuzzy values are regarded as elements of a
sample and discretized by n D 3 ˛-levels ˛1 D 0, ˛2 D 0:5 and ˛3 D 1. Statistical
evaluation of the sample yields the empirical multivariate probability distribution
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function for the l˛r˛-increments. The obtained empirical probability distribution
function is an unbiased estimator for the distribution of the fuzzy random earth
pressure QD.

In the following, the obtained fuzzy random earth pressure QD is used exemplarily
as a loading of a bottom-fixed shoring wall. The structural analysis is applied for a
1 m wide section of the shoring wall. The earth pressure loading is – following the
conventional approach – assumed to be triangular.

Fuzzy stochastic structural analysis variant II begins with the Monte Carlo
simulation of s fuzzy realizations Qd1; Qd2; : : : ; Qds of the fuzzy random earth pres-
sure QD. Because of the evaluated measurement results, 280 fuzzy realizations
Qd1; Qd2; : : : ; Qd280 are already available. Monte Carlo simulation thus means that a
single fuzzy realization is drawn from the 280 fuzzy realizations in each case.

The fuzzy realizations are discretized by n D 3 ˛-levels ˛1 D 0, ˛2 D 0:5

and ˛3 D 1. The ˛-level set Du
˛i

of each fuzzy value Qdu (u D 1; 2; : : : ; 280)
represents the crisp subspace X u

˛i
in each case. The safety assessment requires the

check if a subspace Xu
˛i

lies completely or at least partially in the failure domain
Xf . The interval bounds Pf; ˛i l and Pf; ˛i r of the ˛-level sets Pf; ˛i of the fuzzy

failure probability QPf can thus be estimated according to

OPf; ˛i l D
#
n
u jXu

˛i
� Xf

o

s
; (22)

OPf; ˛i r D
#
n
u jXu

˛i
\Xf ¤

o

s
: (23)

The symbol #f�g denotes the number of subspaces Xu
˛i

for which the requirements
X u
˛i

� Xf and Xu
˛i

\Xf ¤ are fulfilled respectively.
Structural analysis of the shoring wall requires the analysis of material failure

as well as base failure, gliding and tilting. Exemplarily, the load bearing capacity
regarding a critical base point moment of Mcrit D 196 kNm

m (material failure) is
analyzed. The problem is characterized by monotony. The check if a subspace Xu

˛i

lies completely or at least partially in the failure domain Xf is thus reduced to a
boundary value problem. The deterministic fundamental solution

M D 1

2
ld
l

3
D l2d

6
with l D 4; 9m (24)

is given by the equilibrium condition of the 4.9 m high shoring wall. The obtained
fuzzy failure probability QPf is given in Fig. 8.

The result shows that no subspace Xu
˛i

, i.e., no ˛-level set Du
˛i

lies completely
in the failure domain Xf . 50 subspaces lie at least partially in the failure domain
for ˛-level ˛1 D 0 and 3 subspaces for ˛-level ˛3 D 1, respectively. There is the
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Fig. 8 Fuzzy failure
probability QPf

possibility – evaluated with the membership value� QPf .
3
280
/ D 1 and� QPf .

50
280
/ D 0,

respectively – of a failure probability of 3
280

and 50
280

, respectively.
The interval bounds of the fuzzy failure probability for ˛-level ˛3 D 1 represent

the safety level obtained by a pure stochastic safety assessment. That is, a pure
stochastic evaluation of the safety level with a reduction of the measurement results
to the arithmetic mean value and modeling of the earth pressure as a random variable
would lead to an underestimation of the safety level.

5 Conclusion

In this paper, two variants of fuzzy stochastic structural analysis for modeling
and processing of uncertain data in civil engineering are presented. Uncertain
data are classified into fuzzy, random, and fuzzy random data. Fuzzy data result
from the impossibility of an accurate characterization of single observations or
information. Random data result from the variation within a sample of single
observations. Fuzzy random data occur if a sample of fuzzy data is observed.
Fuzzy stochastic structural analysis is performed by the mapping of fuzzy random
input variables onto fuzzy random result variables with the aid of a hierarchical
three-loop computational model consisting of fuzzy analysis, stochastic analysis,
and deterministic fundamental solution, which may be organized in two different
variants. The presented methods presuppose convex fuzzy variables. The application
of non-convex fuzzy variables is currently under investigation (Reuter 2008).
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Möller, B., Graf, W., Hoffmann, A., & Steinigen, F. (2005). Numerical simulation of RC structures
with textile reinforcement. Computers & Structures, 83, 1659–1688.
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Optimal Design and Sensitivity of Large
Spatial Trusses Under Uncertainty

Simone Zier

Abstract One trend in civil works moves towards higher and higher buildings.
But with its height, not only the monumentality and impressiveness rise, but also
the sensitivity with respect to applied loads increases, and external influences
become more crucial. Because of that, this paper deals with the study of the change
of the design and the robustness in dependence of the height of the structures.
The basis for our consideration is provided by a spatial n-storey truss which
will be increased successively, and which is affected by applied random forces.
The recourse problem will be formulated in general and in the standard form
of stochastic linear programming (SLP). After the formulation of the stochastic
optimization problem, the Recourse Problem based on Discretization (RPD) and
the Expected Value Problem (EVP) are introduced as representatives of substitute
problems. The resulting (large) linear programs (LP) can be solved efficiently by
means of usual LP-solvers. Several numerical results are presented.

1 General Formulation of the Problem

A truss is a structure consisting of a certain number B of rods which are pin-
connected among each other and with the foundation at a certain number of
nodes (Spillers 1972).

In optimal design the aim is to minimize a certain cost function, here the weight
of the structure

G0.A/ D
BX
iD1

�iLiAi ; (1)
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whereLi is the length of rod i ,Ai is its cross-sectional area and �i is a weight factor.
Of course, only non-negative cross-sectional areas, i.e., Ai � 0; i D 1; : : : ; B , are
reasonable, and for practical reasons, we restrict the cross-sectional areas by an
upper bound Amax.

Using the first collapse theorem, the necessary and sufficient survival conditions
of an elasto-plastic structure consist of the yield condition and the equilibrium
condition. For the equilibrium condition the constraint

CF D P (2)

has to hold where C represents the equilibrium matrix, F the interior normal forces
and P denotes the external load vector. We suppose that the applied load is not
deterministic, but depends on certain stochastic parameters, describing random load
variations due to e.g. wave, wind, snow loads, traffic, etc.. If we denote the stochastic
elements as ! we get the external loadsP.!/ as functions of !, and the equilibrium
condition (2) is therefore given by

CF D P.!/ almost surely .a:s:/: (3)

While the actual realization of the random element ! is not known, we suppose that
its distribution is known.

Since we suppose that the truss is built of elasto-plastic material, the behavior
under load is at first elastic and can be described linearly by Hooke’s Law and
then after exceeding a limit – called yield stress – the material starts yielding. This
behavior is described by the yield condition which can be written as

F L � F � F U (4)

for trusses. These bounds are given by the tension and compression, resp., plastic
capacities

FU D NU
ipl D �Uyi � Ai (5a)

and
F L D NL

ipl D j�Lyi j � Ai D ��Lyi � Ai ; (5b)

where �Uyi and �Lyi is the upper and lower, resp., yield stress.
For stability reasons, the lower bound of the yield stress �Ly is reduced by a factor

�; 0 < � < 1, which defines the buckling stress �bL D ��L.
Altogether the stochastic problem to obtain the optimal design of trusses can be

formulated as

minG0.A/ D
BX
iD1

�iLiAi (6a)
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s.t.

CF D P.!/ a:s: (6b)

F L � F � F U (6c)

� � �bL D ��Ly (6d)

0 � A � Amax: (6e)

1.1 Recourse Problem as LP

A basic principle to cope with uncertainty is based on compensation, corrections,
hence, recourse (Kall and Wallace 1994). Recourse is the ability to take corrective
action – such as repair, strengthening, etc. – after a random event has taken place.
We add so called recourse costsQ1.y/ to the initial costs G0.A/ in the case that the
yield condition is violated (Marti 2008). Here, y are auxiliary variables introduced
to describe whether the yield condition is violated or not. Such an approach,
considering the sum of the appearing costs, is a standard one in the reliability-based
structural optimization. More precisely, the objective function represents the life
cycle costs consisting of the initial construction costs and the expected cost conse-
quences related to partial or total system failure (Gasser and Schuëller 1998, 2002).

By introducing the technology matrix T and the recourse matrixW and by using
some further notations of (Zier 2008) the problem can be formulated in the standard
form of a stochastic linear programming with recourse (Kall and Wallace 1994)

min cT x C qT y.!/ (7a)

s.t.

T x CWy.!/ D h.!/ a:s: (7b)

x; y.!/ � 0; (7c)

with the initial costs G0.x/ D cT x and the recourse costsQ1.y/ D qT y.!/ in case
of violation of the yield condition.

1.2 Substitute Problems

In SLP (7a-c) we have the problem that the vector h.!/ is random because it
includes the stochastic external load vector P.!/. Thus, the building of appropriate
substitute problems is necessary.
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1.2.1 Expected Value Problem

A first possibility is to consider the Expected Value Problem (EVP). It is charac-
terized by replacing all stochastic variables by their expectations (Stöckl 2003). In
the present case, the random vector h.!/ is replaced by its expectation h. The rest
remains unchanged. Problem (7a-c) turns then to

min cT x C qT y (8a)

s.t.

T x CWy D h (8b)

x; y � 0 (8c)

with

h D
�
0T ;EP.!/T

�T
: (8d)

That is a simple linear program with the same size as the original one which can
be solved by an ordinary LP-solver. The disadvantage is that the resulting optimal
design fulfills the survival condition only for one single load case, the expected load.
Therefore it is not very robust, because a marginal change of the load may lead to a
failure of the structure.

1.2.2 Recourse Problem with Discretization

Alternatively, it is possible to build the Recourse Problem with Discretization (RPD)
of the applied load distribution P.!/ (Stöckl 2003). Each realization Pr of P.!/ is
assumed to be taken with probability pr; r D 1; : : : R, where R is the number of
realizations.

The mathematical formulation of the Recourse Problem with Discretization is

minE.cT x C qT y/ D cT x C
RX
rD1

prq
T yr (9a)

s.t.

T x C Wy1 D h1

:::
: : :

:::

T x C WyR D hR

(9b)

x; yr � 0; r D 1; : : : ; R (9c)
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with

hr D
�
0T ; P T

r

�T
; r D 1; : : : ; R: (9d)

The occurrence ofR constraints of the form T xCWy D h, one for each realization,
is a certain disadvantage of this method since the problem size increases with the
number of realizations.

2 Numerical Example

The basis for our consideration is provided by a spatial n-storey truss. Four
deterministic forces are assumed to act on the top and 4n stochastic ones from the
left and the back, respectively. The 1-storey and general n-storey truss can be seen
in Figs. 1 and 2, respectively. The truss consists of 4nC 4 nodes and 16n rods.

The material properties and acting forces can be seen in Table 1. The structure
is assumed to have a length of 1m and each single storey has a height of 0:5 m.
Altogether the height of the n-storey is n � 0:5 m. The rods are made of steel
with an elasticity modulus of 208 000N=mm2 and yield stresses �U D ��L D
2 400N=mm2. In the following, circular cross-sectional areas are considered. Let
the stochastic force be normally distributed with an expectation of 100 000 N .
For the Recourse Problem with Discretization and for the calculations of the
probabilities of failure, we discretize the normal distribution by using 17 realizations
as shown in Fig. 3.
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Fig. 1 1-storey spatial truss
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P4n+1,y P4n+2,y

P4n+3,y P4n+4,y

P5,x (!)

P7,x (!)
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L /2

L /2

L /2

L /2

L

Fig. 2 n-storey spatial truss

For practical reasons, we restrict the diameter di ; i D 1; : : : ; B; of each rod to
10% of its length. Therefore, we get upper limits of the cross-sectional areas of

Ai;max D r2i;max � � D
�
1

2
di;max

�2
� � D

�
1

2
� 0:1 � Li

�2
� �

D 2:5 � 10�3 � L2i �; i D 1; : : : ; B: (10)
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Table 1 Input parameters

PARAMETER VALUE

length of the structure 1000mm

height of the structure n � L=2 D n � 500mm
material: steel (100Cr6)
elastic modulus E 20:8 � 104N=mm2

yield stress concerning tension �U 2:4 � 103N=mm2

yield stress concerning compression �L �2:4 � 103N=mm2

acting deterministic forces P4nC1;y D P4nC2;y D P4nC3;y D P4nC4;y D �104N
acting stochastic forces P2kC1;x D P2kC3;x D P2kC3;z D P2kC4;z

� N.�; �2/DN.105N; �2/; kD 1; : : : ; n
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Fig. 3 Discretization of the normal distribution N � .105; 108/ with 17 realizations

2.1 Variation of the Number of Storeys

At first, we will study the influence of the height of the structure on the optimal
design. Therefore, we will increase the number of storeys successively. The standard
deviation of the normally distributed loads is assumed to be 10% of the expectation.

2.1.1 Expected Value Problem

We will first consider the Expected Value Problem (EVP). Since most of the applied
load weigh on the lower rods, we will focus our consideration on the rods of the first
floor. In the following, a selection of these rods will be studied. Due to clearness,
the n-storey will be redisplayed with the labels of the studied rods.

Since the load has to be drained off to the foundation on the bottom, most of the
load acts on the vertical rods. The more storeys we have, the more forces act, and
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Fig. 4 Optimal cross-sectional areas A1 and A8 in dependence on the number of storeys using the
EVP

therefore, the cross-sectional areas A1 and A8 increase with the number of storeys,
as can be seen in Fig. 4. They rise till they reach a certain limit, namely the upper
bound given in (10). Then they remain constant.

As soon as the limit is adopted, the vertical rods can carry no additional loads
and therefore, it is tried to distribute them to the diagonal rods. Up to now, the
diagonal rods on the side surface have hardly been necessary yet. But now, the cross-
sectional areas of the diagonal rods of the front and right-hand side in Fig. 5 rise
steeper with increasing number of storeys. Taking a look at the cross-sectional areas
of the rods 4, 5, 12 and 13, we notice an interesting phenomenon. The 15-storey
seems to be kind of an outliers, since it destroys the monotone behavior. Numerical
instabilities cannot be excluded, since different solvers lead to slightly different
values, however none of it finds a suitable result for the 15-storey. But the data
is insofar consistent since the comparison of the rods among each other is identical.
While for example the cross-sectional area A4 is at the beginning smaller than A5,
see Fig. 6b, these relationship turns around when the vertical rods adopt their limit.
There is no exception of this behavior, also not at the outlier, the 15-storey.
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Fig. 5 Optimal cross-sectional areas A4; A5; A12 and A13 in dependence on the number of storeys
using the EVP
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Fig. 6 Comparison of different cross-sectional areas in dependence on the number of storeys using
the EVP

While the vertical rods A1 and A8 seem to be identical at the first glance, see
Fig. 4, the closer look in Fig. 6a shows a difference. The cross-sectional area A8
rises faster and adopts the upper limit earlier. The reason for that is the right angle
between the stochastic forces and these rods. Since trusses can’t carry shear forces,
there is no possibility to drain off the stochastic forces directly. Only in connection
with the diagonal rods, they can take some of the horizontal load. Since the rods
which connect the left- with the right-hand side – which are necessary for the usage
of rod 8 – are twice as long and therefore anchored in a flatter angle than the rods
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which connect the back with the front side – necessary for rod 1 – it is easier for
them to carry more load. Because of that, the load acting on rod 8 is bigger and so
its cross-sectional area has to be bigger, too. The difference gets more considerable
with the number of storeys since the applied forces increase. As soon as the upper
limit is achieved by rod 8 – that is at the 9-storey – it is tried to divert the force and
therefore the horizontal edged rods 7 and 11 to rod 8 get a positive cross-sectional
area which can be seen in Fig. 7. Short after that, rod 1 adopts its upper limit and its
horizontal neighbor rods 2 and 14 are added to the structure, too. With exception of
the 15-storey again, the cross-sectional areas increase with raising storeys till they
adopt their upper limit.

Due to raising cross-sectional areas, the volume and therefore also the weight
which is presented by the initial costs in Fig. 8a is increasing. Since the number of
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Fig. 7 Optimal cross-sectional areas A2; A7; A11 and A14 in dependence on the number of storeys
using the EVP
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Fig. 8 Expected initial, recourse and total costs using the EVP
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Fig. 9 Probability of failure and expected initial (*), recourse (x) and total (C) costs using the
EVP

rods is raising with the number of storeys, the weight of the structure is not limited
in contrast to the cross-sectional areas.

Taking into account only the expectation of the load but not the variations, the
obtained design using the EVP is not very robust but a small change of the applied
load may lead to a failure of the structure which is confirmed taking a look at the
probability of failure in Fig. 9a. Since it is always greater than 45%, this structure
should not be used. The resulting expected recourse costs increase with the raising
number of storeys, as seen in Fig. 8b, and with them also the expected total costs,
presented in Fig. 8c.

The relationship between the three cost functions, i.e., the total costs, the initial
and the recourse costs, is presented in Fig. 9b where all of them are drawn in one
diagram. Here, it is very interesting to see, that there is a point when the slope of the
recourse costs gets steeper. This behavior around takes place when most of the cross-
sectional areas reach their upper limits and the probability of failure raises sharply.
Short after that, the probability of failure increases to 100%, which means that the
structure fails in each realization. It can be mentioned that the highest structure until
the probability of failure jumps the first time to a higher level is the 15-storey – our
outlier.

2.1.2 Recourse Problem with Discretization

If we consider now the Recourse Problem with Discretization based on the 17
realizations, there is no difference at first glance in regarding the progress of the
optimal cross-sectional areas as shown in Fig. 10. Using this substitute problem,
the rods behave the same way they have done using the EVP. However, comparing
the optimal design of the RPD and the EVP in more detail by opposing a selection of
cross-sectional areas directly, see Fig. 11, we recognize that in the Recourse Problem
with Discretization the cross-sectional areas of most of the rods are the same or a
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Fig. 10 Optimal cross-sectional areas in dependence on the number of storeys using the RPD

little bit larger. This reinforcement is in fact not very large, but it is sufficient to
protect the structure against a failure if the number of storeys is not too large as can
be seen in Fig. 12.

As soon as the cross-sectional areas adopt their upper limits, the structure can’t
again resist all loads and failure appears. But when using the RPD, the probability
of failure does not jump so fast to 100%. Instead of that, the structure fails at single
realizations. The number of realizations where failure occurs is indeed increasing.
And with it, the probability of failure is raising. But it is slow in growth. Corre-
sponding to the zero failure probability at the lower storeys, there are no recourse
costs. But with the failure, they also appear. Because of the higher cross-sectional
areas in the RPD in contrast to the EVP, the expected initial costs are higher, too, of
course. But in some sense the increase of the initial costs is compensated by the low
recourse costs, the expected total costs of the RPD are smaller.

Altogether we found out, that using the Recourse Problem with Discretization
of the normally distributed load leads to a more robust structure with lower costs.
Therefore, the RPD is obviously preferred to the EVP.
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Fig. 11 Comparison of the optimal cross-sectional areas in dependence on the number of storeys
using the EVP (�, 4, ı) and the RPD (�, N, �)
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2.2 Variation of the Standard Deviation

Next, we will study the sensitivity of spatial trusses with respect to increasing
stochastic uncertainty. Therefore, we vary the standard deviation in case of the 3-,
5-, 7- and 10-storey.

Increasing the variability in the 3-storey truss, the cross-sectional areas of the
vertical rods 1 and 8 and all the diagonal ones (rods 4, 5, 9, 10, 12, 13, 15 and
16) raise linearly which is shown exemplary for rod 8 in Fig. 13a, whereas the
vertical rods 3 and 6 are constant and the horizontal rods (rods 2, 7, 11 and 14)
are not necessary at all. The resulting structure is shown in Fig. 14. For clearness
reasons, the rods which are not visible – i.e. the rods on the left-hand and back
side – are drawn dashed. With the cross-sectional areas also the expected initial
costs raise. Since the truss can resist each load realization, the probability of failure
and therefore also the expected recourse costs are zero, and the total costs comply
with the initial costs which is presented in Fig. 13b.

Considering now the 5-storey, the increase of the standard deviation leads at first
to a linear ascent of the cross-sectional areas again. But due to the high variability,
the rods once adopt the upper limit, which can be seen for rod 8 in Fig. 15a. That
is the moment, when failure appears for the first time in one realization which
tells us the probability of failure of 4.27%, see Fig. 15b. Increasing the standard
deviation, more and more realizations can’t be resisted, and the probability of failure
grows continuously till 10.35%.

Considering the expected costs in Fig. 15c we find again the linear dependence of
the initial costs when the standard deviation is low. The slope gets smaller as soon
as the cross-sectional areas reach the upper limit. Due to the probability of failure of
zero, at the beginning, no recourse costs appear. The occurring failure while growing
standard deviation is reflected by increasing recourse costs.
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Fig. 13 Optimal cross-sectional area A8 and expected costs in dependence on the standard
deviation considering the 3-storey
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Fig. 14 Optimal 3-storey spatial truss
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Fig. 15 Optimal cross-sectional area A8, probability of failure and expected initial (*), recourse
(x) and total (C) costs in dependence on the standard deviation considering the 5-storey

This behavior is continued, if we add several storeys. We can notice in Fig. 16a,
that the more storeys our structure has, the faster the upper limit is adopted by rod
8. The 10-storey needs the full cross-sectional area even at a standard deviation of
zero, i.e. when there is no stochastic influence at all.

The observation of the appearance of failure when the first rod adopts its upper
limit can be confirmed by taking a look at the probability of failure in Fig. 16b. The
higher the structure is, the earlier failure appears and the higher is the probability of
failure.

This example shows very well, that higher structures are much more sensitive
with respect to variations in the applied loads and therefore, it is much more likely
to fail.
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Fig. 16 Optimal cross-sectional area A8 and probability of failure in dependence on the standard
deviation considering the 3- (x), 5- (�), 7- (4) and 10- (�) storey

2.3 Further Numerical Aspects

The numerical calculations have been made on an ordinary Intel(R) Pentium(R) 4
personal computer with 2.66 GHz CPU and 2.096 Mb RAM. The problems have
been formulated in GAMS (General Algebraic Modeling System, see http://www.
gams.com). From the different solvers embedded in this software, XPress (see http://
www.dashoptimization.com), CPLEX (see http://www.ilog.com) and Minos (see
http://www.sbsi-sol-optimize.com) have been used to solve the occurring linear
programs.

The size of the resulting LPs of the structures is dependent on the number of
storeys n and the number of realizationsR and will be calculated in the following.

Since we have 4nC 4 nodes which are pin-connected among each other and the
whole structure, we have 3 � .4n C 4/ degrees of freedom, i.e., for each node the
displacement in x�; y� and z�direction. Due to the anchoring of the four nodes
on the ground, 4 � 3 degrees of freedom are deleted which results in 12n degrees of
freedom. With a number of B D 16n rods, the equilibrium matrix C is therefore a
12n � 16n matrix (Spillers 1972).

Besides the 16n design variables A1; : : : ; AB , for each realization we need four
auxiliary variables yLC

i ; yL�
i ; yUC

i ; yU�
i for each rod i; i D 1; : : : ; B; which tell

us, whether the lower or upper bound of the yield condition is fulfilled or not.
This results in 64n additional variables for each realization (Zier 2008). Since the
technology matrix T and the recourse matrixW have the dimension 28n� 16n and
28n� 64n, resp., we get 28n constraints for each realization.

Due to the structure of the Expected Value Problem – which can be interpreted as
problem with one realization only – and the Recourse Problem with Discretization,
given in (8a-c) and (9a-c), resp., the resulting problems consist of one objective
function and R � 28n constraints with 16nCR � 64n non-negative variables.
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Fig. 17 Number of variables and constraints in dependence of the number of storeys using 17
realizations

Figure 17a shows the number of variables in dependence of the storeys and
Fig. 17b visualizes the number of constraints. In both cases, we took R D 17 for the
number of realizations.

For the optimal design of the 15-storey truss with the RPD with 17 realizations,
we get therefore 7140 constraints with 16 560 variables for example.

3 Conclusion

We will conclude with emphasizing that the numerical results confirm the advantage
of the incorporation of the stochastic aspects. Due to lack of robustness and therefore
high probability of failure, we come to the conclusion that the EVP should not be
used. In contrast, the RPD achieves very good results.

Another important result of the numerical example is the confirmation, that the
sensitivity with respect to random forces is increasing with the number of storeys of
the building. That means, the higher the structure the less robust it is.
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Abstract In this chapter we present an integrated model for long term and
geographically explicit planning of agricultural activities to meet demands under
resource constraints and ambient targets. Environmental, resource and production
feasibility indicators permit estimating impacts of agricultural practices on environ-
ment to guide agricultural policies regarding production allocation, intensification,
and fertilizer application while accounting for local constraints. Physical production
potentials of land are incorporated in the model, together with demographic and
socio-economic variables and behavioral drivers to reflect spatial distribution of
demands and production intensification levels. The application of the model is
demonstrated with a case study of nitrogen accounting at the level of China counties.
We discuss current intensification trends and estimate the ranges of agricultural
impacts on China’s environment under plausible pollution mitigation scenarios with
a particular focus on nitrogen sources and losses.
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1 Introduction

Economic growth, increasing demand for food, feed, fiber and biofuels speed
up industrialization of agricultural activities characterized by new technologies,
specialization and concentration, higher mechanization, increased chemical and
fertilization. Production intensification is primarily guided by profit maximization
principles and has a number of comparative advantages. However, there are risks
and costs which are often not factored in the production planning process, e.g., loss
of food and producers diversity, GHG emissions, environmental and water pollution,
problems related to human health and livestock diseases, degradation and decrease
of socio-economic conditions in rural areas, poverty, rural-urban migration, loss of
cultural heritage, etc.

Adverse implications of production intensification, in particular, environmental
impacts and health risks establish the need to identify pathways towards sustainable
agriculture planning. Estimation of impacts and mitigation measures to reduce
agricultural pollution over large territories is a challenging task. It requires a careful
choice of models which is often driven by availability and quality of data on
the one hand and on the other, by the reliability and robustness of conclusions.
Pollution mitigation measures have to realistically account for location-specific
demographic and economic indicators, demand and production, pollution and health
risks. They should fulfill various goals and constraints, e.g., environmental norms,
ambient targets, required levels of food supply, limits regarding population exposed
to environmental risks, etc.

Models for planning agriculture development and assessing impacts are tradi-
tionally classified along two main lines. One line involves process-based modeling,
which combines resource and production potentials of land with data-intensive
biophysical processes and models of agricultural (point and disperse) pollution. The
models estimate crop growth, soil carbon dynamics, soil temperature and moisture
regimes, nitrogen leaching, and emissions of gases on very fine spatio-temporal
resolutions under alternative local agricultural practices (Leonard et al. 1987; Li
et al. 1992). Availability of spatio-temporal data, its harmonization and further cali-
bration of the underlying biophysical processes even at local scales is a complex task
and the results are essentially subject to underlying uncertainties, data quality and
model structure. Cross-comparison of process-based models often shows substantial
variability and discrepancies both among the modeled outputs and in comparison to
field measurements (Frolking et al. 1998). As pointed out by (Bellocchi et al. 2010),
the calibration and validation may require using interdependent multiple criteria,
interpolation and statistics for tailoring the validation requirements to the specific
objectives of the application.

The second line of models focuses on the socio-economic and behavioral aspects
of agricultural producers and consumers, aggregate demand and supply. Models
such as IMPACT (Rosegrant et al. 1999) perform on the level of major world
regions. Resources like land, water or climatic conditions are described by scenarios
in rather aggregate terms. With the focus at global or regional problems, the
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location-specific trends and heterogeneities can often be overlooked. Within the
limits of the natural resources, sustainable land exploitation is largely determined
by location-specific anthropogenic factors, i.e. demand concentrations, availability
of infrastructure, market access and the complex interaction of behavioral, socio-
economic, cultural and technological factors.

In this paper we discuss an integrated agriculture planning model that explicitly
combines the two lines. The model employs up- and down-scaling probabilistic
robust procedures (Fischer et al. 2006) that permit to match the spatio-temporal
resolutions of the biophysical (process-based) models with the resolutions of the
socio-economic, behavioral and optimization models, scenarios, and data to produce
decisions at scales suitable for policy analysis and implementation. The model
simulates different scenarios of demand increases inducing respective location-
specific production adjustments. In some locations, the indicators characterizing
status of environment, socio-economic conditions, and humans’ exposure to adverse
impacts may already exceed admissible thresholds, signaling that further production
growth in these locations should not take place. The question then becomes how to
plan expansion of production facilities to meet demand without exacerbating the
problems. For this, the model uses indicators defined by various interdependent
factors including the spatial distribution of people and incomes, the current levels
of crop and livestock production and intensification, and the conditions and current
use of land resources. These indicators are used to discount production locations
by the degree of their diverse risks and production suitability. The risk-based
preference structure is then used in production allocation algorithms to derive
recommendations regarding sustainable and robust production expansion, allocation
and intensification. Appendix 1 summarizes production allocation algorithm when
inherent risks and contingencies are characterized by ambient constraints. In more
general cases of risks and contingencies, Appendix 2 describes an algorithm for
production allocation in multi-producer environment under environmental safety
and food security constraints in the form of multidimensional risk measures having
direct connections with Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR
or expected shortfalls) type indicators. Similar algorithm has been elaborated in the
case study of rural developments in Ukraine (Borodina 2011).

The proposed integrated agriculture production planning model is applied to the
analysis of plausible agricultural pollution projections in China to 2030 (Ermolieva
et al. 2005) under alternative scenarios of population, economic growth, and
technological innovations. The objective of the study is to address the following
questions:

1. What will be the demand for agricultural products, particularly for meat, under
plausible economic, demographic and urbanization development paths to 2030?

2. How will increased demand for feed and food translate into the livestock numbers
and crop production?

3. How much nitrogen will become available from livestock manure as a conse-
quence of livestock production intensification? How much mineral fertilizers will
be needed in addition to local manure supply?
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4. What environmental loads, GHG emissions, and water pollution are expected as
a result of agricultural production intensification?

5. What improvements can be achieved by production planning based on risk
indicators that jointly reduce environmental pollution through water and air con-
tamination in different stages of agricultural production chain, i.e., from nutrients
losses in livestock houses to emissions and nutrients losses on crop fields?

Because of its major role in food production and environmental sustainabil-
ity, we identify nitrogen as the key nutrient in this study. On the basis of
FAO projections (‘World Agriculture: Towards 2015/203), it has been concluded
(Eickhout et al. 2006) that “. . . despite improvements in the nitrogen use efficiency,
total reactive nitrogen loss will grow strongly in the world’s increasingly intensive
agricultural systems. In the 1995–2030 period emissions of reactive nitrogen from
intensive agricultural systems will continue to rise, particularly in developing coun-
tries. Therefore, the increase of nitrogen use efficiency and further improvement of
agronomic management must remain high on the priority list of policy makers”.

The study benefits from a socio-economic and agricultural data base (ADB)
at county level consisting of about 3000 administrative units in China for the
years 1997 to 2005. The work has been conducted within EU FP6&7 projects
on “Policy Decision Support for Sustainable Adaptation of China’s Agriculture to
Globalization” (CHINAGRO), “Chinese Agricultural Transition: Trade, Social and
Environmental Impacts” (CATSEI), “Atmospheric Composition Change, the Euro-
pean Network of Excellence” (ACCENT), and “Integrated Nitrogen Management
in China” (INMIC, an activity of IIASA’s Greenhouse Gas Initiative). The ADB is
prepared and used in CHINAGRO (Fischer et al. 2007, 2006; Keyzer and van Veen
2005), CATSEI (Fischer et al. 2006, 2008), and INMIC (Ermolieva et al. 2009;
Fischer et al. 2010). In our work we only partially borrow data from international
assessments, while the majority of the data come from the ADB. The ADB makes it
possible to distinguish the heterogeneities of agricultural practices, for example, by
crop and livestock types, management systems, level of production intensification,
location-specific livestock housing and manure facilities, location-specific emission
levels, climatic conditions, time of fertilizer application, etc.

The paper is organized as follows. Section 2 briefly outlines the main characteris-
tics of the integrated model with further references to related publications. Nitrogen
fluxes from agriculture to environment are described in more detail. Section 3
presents the summary of the recent results for China case study in which scenarios
of uncertain agricultural nutrients/nitrogen impacts are analyzed and mitigation
scenarios are formulated. The model permits generating infinitely many scenarios.
In this paper we restrict attention to some basic cases which allow to identify
potential ranges of uncertain outcomes. General discussions and conclusions are
presented in Sect. 4. Appendices 1 and 2 include the structure of basic production
allocation algorithms.
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2 The Model

Below we provide a brief overview of the model, which is described in more
detail in (Ermolieva et al. 2009) and (Fischer et al. 2009, 2006). The model is
temporally and geographically explicit. It operates at different spatial scales, e.g.,
national, subnational, county-level, depending on the objectives of the research.
This spatial flexibility allows for fine-tuning the associated policy advice to
appropriately capture location-specific heterogeneities. Harmonized integration of
socio-economic and demographic modeling components with proper scales of
biophysical modeling (Fischer et al. 2002) simplifies production planning with
limited resources and provides possibilities to improve production potentials in
the presence of inherent uncertainties and risks, e.g., weather, contamination of
environment, livestock diseases (Ermolieva et al. 2005).

To estimate levels of demand and agricultural production in China case study,
agricultural activities are represented at 31 provinces and about 3000 counties.
Relying on economic and demographic scenarios till 2030, developed in (Huang
et al. 2003) and (Toth et al. 2003), demand increases and consumption of agricultural
products are projected for cereals, four types of meat, milk, and eggs. The
projections distinguishing between geographical regions, urban and rural areas, and
vary with income.

Modeling of livestock sector dynamics is addressed with special attention. The
role of livestock in global agriculture should not be underestimated. It has been rec-
ognized as an important part of a multi-faceted, integrated approach to agriculture
production planning, rural community development, and environmental sustainabil-
ity (Borodina 2011; Steinfeld et al. 2006). In many countries, livestock is among the
main sources of income. Livestock is growing faster than any other agriculture sec-
tor. In contrast to developed countries where livestock consumption has stabilized,
in the developing countries, annual per capita consumption of meat has doubled
since 1980, from 14 to 28 kg in 2002. Development of the livestock sector has been
most dynamic in East Asia and China. Currently, China accounts for 57% of the
increase in total meat production in developing countries (Steinfeld et al. 2006).
Further developments of the sector are of high priority for Chinese government.

To reflect the importance of livestock sector in Chinese agriculture development,
the numbers of animals are projected from the base year consistently with economic
and demographic scenarios and demand increase at the county level in such a
way that production is assumed to meet the demand. Accounting for essential
spatial, cultural, and climatic heterogeneities of China, the main livestock categories
include poultry, pigs, dairy, cattle, buffaloes, yaks, sheep and goats, and other
large animals (combing horses, donkeys, camels). Essential for nitrogen pollution,
the model differentiates three main animals’ management systems: traditional,
specialized/industrial, and grazing. Information on the systems’ shares in total
livestock production is available at county level for the base year. The following
assumptions estimate the mix of management system beyond the base year:
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1. Projections of the livestock distribution for confined traditional systems are
linked to the projected decrease in rural population.

2. Industrial livestock systems are modeled to meet the provinces’ projected
demands for livestock products. These systems compensate for the decreases in
traditional systems and evolve consistently with the demand growth at provincial
level.

3. The geographical distribution of pastoral livestock is projected in accordance
with the availability and productivity of grasslands.

The rapid growth of industrial livestock farming is a major contributor to the
worsening environmental quality in China. As the steadily growing population
and rising incomes in China speed up demand for livestock products, growth in
the animal sector will keep pace. Increasing demands can be met only by further
intensification of production operations. Intensification has comparative advantages,
but it also creates a number of problems which require proper regulations.

Damages are created through a number of socio-economic, environmental, and
health pathways which are taken into account in the model. Intensification shifts
production from rural to urban and peri-urban areas with higher demand closer
to feed sources, separates the source of nutrient intake from the cycle of direct
nutrient replenishment, and produces high volumes of concentrated animal waste
that over-burdens urban water and waste management. Large amounts of water are
being consumed in industrial animal husbandry, leading to overuse of a possibly
scarce resource. Most water pollution from agriculture results from the storage and
disposal of animal manure and waste. Manure, often stored in tanks or in pools
known as “lagoons”, may contain pathogenic bacteria and/or antibiotic residues.
Leaking lagoons, but also manure application on fields, may lead to the spread of
harmful compounds.

The model estimates the pollution level from livestock operations and crop
fertilization with the help of a few agricultural, environmental, and biophysical
indicators characterizing production intensity, water, soil, and air quality. Human
health risks are measured in terms of population exposure to different levels
of environmental pollution. The feasible domains of the indicator variables are
subdivided into sub-domains of different degrees of impact, severity or suitability.
The variables may be combined in risk functions to reflect the levels of different
risks in areas associated with agricultural production (Ermolieva et al. 2009; Fischer
et al. 2006, 2010). Production is increased primarily through the establishment of
new facilities and/or the expansion of existing facilities. In some areas, especially
in the vicinity of urban areas, the indicators may signal that a further allocation of
production is impossible. For not exacerbating environmental and health problems,
production facilities are then adjusted according to a production allocation algorithm
summarizes in Appendix 1 (for details see (Fischer et al. 2006, 2008)).

In this paper, we discuss how the model is applied to account for agricultural
nitrogen only. Plants require nitrogen for growth as well as for providing protein in
food or feed, which leads to the application of nitrogen fertilizer in agricultural
practice (Smil 2001). In China, nitrogen fertilizers are being widely used to
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increase yields on scarce land resources. A large part of the fertilizer applied is
not taken up by plants, but released into the environment cascading through diverse
environmental pools (Erisman et al. 2007; Galloway et al. 2004). In the model,
the environmental effects of soil nitrogen are measured in terms of atmospheric
emissions of NH3, N2O and NO, and its leaching to ground-water or surface water
(Velthof et al. 2009). The model estimates nutrient losses associated with agricul-
tural nitrogen (manure as well as mineral fertilizers) at the level of counties for:

1. point-source losses in the form of emissions to the atmosphere and leaching to
ground and surface water from specific release points such as livestock housing
or manure storage facilities.

2. non-point losses resulting from the application of fertilizer and manure to
cultivated land or from grazing livestock in pasture areas. Non-point nutrient
losses have two components. The first part comprises non-effective nutrients, i.e.,
nutrients not reaching the crop (including losses due to emissions, runoff and
leaching), which depend on the environmental setting and nutrient application
practices. These losses occur independently of crop uptake capacity. The second
part consists of potentially effective nutrients that reach the crop root zone.
Released quantities depend on the crop’s uptake capacity.

Based on the spatially explicit distribution of animals and crop production
projected by the model, we apply existing schemes of nitrogen releases to assess
the loss of agriculturally derived nitrogen compounds along different pathways.
The scheme of this model is presented in Fig. 1. As a consequence of agricultural
activities, emissions of N2O and NH3 into the atmosphere, and of nitrate leached to
ground-water are assessed.

For estimating nitrogen leaching to ground-water, we adopt the MITERRA model
(Velthof et al. 2009), which applies a combined water and nitrogen balance to derive
indicators of leaching for a broad range of soil types aggregated into seven classes
(sandy, clay, gleyic, stagno-gleyic, peat, loam, and paddy soils) with different leach-
ing characteristics (FAO/IIASA/ISRIC/ISSCAS/JRC 2009; Shi et al. 2004). Soils
are also distinguished by the type of crop water management, i.e., separately for
irrigated and rain-fed land. For each soil class, climate condition (e.g., precipitation,
temperature), and land use, the approach estimates the fraction of nitrogen surplus
that moves to the ground water, i.e., the leaching fraction. Soils used for rice paddies
are considered impermeable to water and assumed to have no leaching.

In a simplified way, the accounting of nitrogen applied to the field may be
described as follows:

N Surpl D Nmnr C Nfert C Nfix � Nupt;

where N Surpl denotes surplus of nitrogen applied to the field, Nmnr is nitrogen
in manure available for field fertilization (net of losses during housing); Nfert is
nitrogen in chemical fertilizers; Nfix is atmospheric nitrogen fixed by N-fixing crops;
Nupt is nitrogen uptake by all crops (net of nitrogen left in recycled crop residues).
The nitrogen surplus, together with the leaching fraction derived according to soil
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Fig. 1 Nitrogen cascading: Schematic structure of the model

and climate parameters, allows for the estimation of nitrogen leaching, in kilograms
N per hectare cultivated land.

For estimating the N2O emissions to the atmosphere we employ the methodology
developed for IIASA’s Greenhouse gas–Air pollution INteractions and Synergies
(GAINS) model (Winiwarter 2005). GAINS applies IPCC default emission factors
(IPCC 2000) recommended for national inventory submissions to the UNFCCC.
Thus the derived results can be consistently compared among countries. The N2O
emissions are computed as the product of an emission factor times the respective
activity data for manure management, grazing and soils. Indirect emissions (both
from leaching and redeposition of gaseous releases) are implicitly covered in the
emission factor applied, and therefore the model results generally are very close to
those assessed with the IPCC method.

Ammonia emissions (NH3) from livestock production are estimated at four major
stages: in animal houses; during storage of manure; when applying manure; and
from livestock grazing. These stages are explicitly distinguished in the livestock
model (Fischer et al. 2006, 2009, 2007) and in the GAINS methodology (Klimont
2001; Klimont and Brink 2004). The ammonia accounting is based on experience
and parameters developed primarily for Europe. Here we are considering the impact
of local manure management practices and reflect in the estimates different levels
of livestock productivity (e.g., (Ermolieva et al. 2005; Menzi 2001; NuFlux 2001)).

Emissions of ammonia from mineral fertilizer application depend on multi-
ple factors including type of fertilizer applied, soil properties, meteorological
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conditions, time of application in relation to a crop canopy, and method of
application. The nitrogen losses from fertilizer application are region specific. It
must be stressed that the uncertainty range of emission factors is large. Typically,
nitrogen losses from synthetic fertilizers vary between 1% and 4%, with the
exception of ammonium sulfate (8%), urea (15%–25%) and ammonium bicarbonate
(ABC) (20%–30%). Application practice is very different between countries, and
may range from mostly non-volatizing fertilizers (typical for most of Europe)
to predominantly urea and ABC (China). Figures 3, 4, 6, 7, 9, 10 demonstrate
uncertainty ranges only for some basic scenarios. The outcomes of such a scenario-
based uncertainty analysis can be further used for designing robust development
paths and corresponding nitrogen outputs, which is beyond the scopes of this paper.

3 Numerical Application: A Case Study of China

In the studies, several scenarios of pollution mitigation options in China were
analyzed and compared with regard to excess nitrogen:

1. a “business-as-usual” scenario, in which the increase of production is allocated
proportionally to the demand increase, which is concentrated in the vicinity of
densely populated urban areas;

2. a reallocation scenario that combines the demand driven preference structure
of the business-as-usual scenario with information on population densities and
urban agglomerations to reduce risks caused by livestock production;

3. an “optimizing fertilizer use” scenario (first apply manure; only then supply
nutrients to crops with mineral fertilizer); and

4. a scenario consisting of optimized fertilizer use combined with technological
options focused on ammonia abatement (“minimized ammonia” scenario).

The business-as-usual scenario (1) implicitly minimizes the transportation costs
as production concentrates in the vicinity of urban areas with high demand. In the
alternative scenario (2), the production is shifted to more distant locations charac-
terized by availability of cultivated land, lower livestock and population density, but
at the expense of additional transportation. In addition to (2), scenario (3) focuses
on reducing fertilizer application, while scenario (4) represents a scenario of drastic
ammonia emission reductions. Formally, the scenarios correspond to different priors
in the allocation procedure summarized in Appendix 1.

The effects of the four scenarios are compared in terms of nitrogen leaching
fraction, (Fig. 2), the quantities of leached nitrogen (Figs. 3, 4, 5), and nitrogen
emitted to the atmosphere as N2O (Fig. 6, 7, 8) or NH3 (Figs. 9 and 10). These
indicators have been computed for each spatial administrative unit, i.e., county.
Figures 2 through 10 illustrate spatial heterogeneity of the indicators for the base
line scenario only.

It is remarkable how heterogeneous are the leaching fractions among different
locations following patters similar to patters of precipitation, i.e. decreasing from
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Fig. 5 Leaching in severity classes by number of affected counties, in kg / ha cultivated land, in
2000 (a) and 2030 (b)

the southeast to the northwest. Higher fractions in the south can be explained by
a combination of other factors such as soil type, temperature, land use type. For
example, lighter arable soils retain only a small fraction of water in comparison
to clay soils. Also, losses of nutrients may be stimulated by agricultural practices
such as timing of fertilizers application. Nitrogen leached from fields or livestock
facilities is then estimated as a function of nitrogen fraction and the activity. The
higher is the intensity of the activity, the more nitrogen is expected to leach. In
Figs. 4 intensive color indicating higher leaching in the vicinity of Beijing can be
explained by high density of livestock production.
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The rate of nitrogen leaching is depicted in Figs. 5. As figure shows, the number
of counties in higher nitrogen leaching (severity) classes increases over time.
Figures 6 and 7 identify geographical patters of N2O emission rates. and Fig. 8
displays how the distribution of counties in nitrogen emissions classes changes in
the period from 2000 to 2030.



Sustainable Agriculture in China: Estimation and Reduction of Nitrogen Impacts 339

1800
1600
1400
1200
1000
800
600
400
200

0
<1 <10 <20 <30 More

0%

20%

40%

60%

80%

100% 1800
1600
1400
1200
1000
800
600
400
200

0

<1 <10 <20 <30 More

0%

20%

40%

60%

80%

100%
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Fig. 9 Ammonia emissions from agriculture (kg ammonia/ha cultivated land) in 2000

Figures 9 and 10 identify geographical patters of ammonia emissions. The rate of
ammonia emissions depends primarily on the intensity and the type of agricultural
activities, farming and crop production. Central role in determining the level of
emissions plays the type of fertilizers. For example, application of urea may cause
15% to 25% and ammonium bicarbonate (ABC) – 20% to 30% emissions, which
are predominant fertilizers in China.

At the level of China, in BAU scenario indicators of leaching, N2O-N and NH3-
N change from around 701, 855, 7469 (kt N) in the base year to about 1101, 1282,
and 10878 (kt N) in 2030, respectively. In sustainable reallocation scenarios, the
values towards 2030 become 1077, 1278, 10848 (kt N) for leaching, N2O-N and
NH3-N, respectively. Optimization scenario results in 321, 956, 7487 (kt N) and
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Fig. 10 Ammonia emissions from agriculture, in kg ammonia/ha cultivated land, in 2030
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Fig. 11 Ammonia emissions by size classes and number of affected counties, in kg per ha of
cultivated land, for 2000 (a) and 2030 (b)

minimized ammonia in 328, 963, and 6884 (kt N) leaching, N2O-N and NH3-N in
2030, respectively (Fig. 11).

In all scenarios and for all years considered, the greatest part of nitrogen loss
is via the ammonia pathway. NH3 nitrogen emissions are between 40% and 50%
of total nitrogen application. Loss in the form of N2O follows next, and it may
seem somewhat surprising that nitrate leaching is even less important. This can be
explained by the huge losses in the gas phase, while the leaching fractions (relatively
small) apply only to the quantity of soil nitrogen not lost or used elsewhere, and also
do not include nitrate runoff to surface water.

The scenarios vary, but it is clear in all cases that nitrogen pollution is likely to
increase over time. Even in the scenarios that provide considerable improvements,
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aggregate environmental pressures associated with livestock manure and use of
mineral fertilizer increase between 2000 and 2030 by roughly a third to almost half.

Environmental risk indicators (here, risk indicators are introduced in terms of
ambient targets similar to norms on water or air pollution. Fischer et al. (2009)
provide further discussion on VaR and CVaR risk indicators.) are determined for
each administrative region. However, it is not so much the area that is affected
by an adverse environmental situation, but the health of the population which is
at stake. In order to estimate this risk, we need to assess the exposure of people.
Figure 12 presents population exposure in terms of different classes of ammonia
emissions in 2000, and Fig. 13 compares the same indicator for the four alternative
scenarios by China regions and aggregated for the whole country. Ammonia is
selected not because it is dangerous to humans, although ammonia exposure may
be harmful. As mentioned, ammonia is a major nitrogen flux, and may therefore
serve as a robust indicator of the overall nitrogen load both on the environment
and on humans. While we are not able to provide information on an absolute risk
measured in monetary terms, we may compare between the different scenarios. The
scenarios (2), (3) and (4) reallocate agricultural production to minimize overall risk
(see the procedure in the Appendix 1 and (Ermolieva et al. 2009; Fischer et al.
2010). This function, considering population density implicitly on the demand side,
effectively performs reallocation away from population. The altered distribution
pattern of production alone will then reduce the exposure of the population. With
mitigation measures in place, the gradual improvement of the situation across
scenarios (Fig. 13), alleviating the exposure of people to environmental and health
risk, becomes visible when comparing the incremental additional measures leading
from the business-as-usual to the minimized ammonia scenario.
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4 Concluding Remarks

In this paper we discussed model-based estimation of nitrogen fluxes from agri-
culture in China. Proposed integrated agriculture planning model combines the
advantages of the two main types of traditional modeling: process-based and
aggregate socio-economic demand-supply modeling. The model derives indicators
quantifying environment pollution and health exposure from agricultural activities
spatially. This permits to assign a risk preference structure to specific locations and
to guide recommendations regarding robust production allocation and intensifica-
tion. The model has been applied to the analysis of agricultural developments in
China to 2030 focusing on pollution abatement options. In this paper, agricultural
pollution is measured in terms of nitrogen excess. Nitrogen deserves special atten-
tion for a number of reasons. While being the main component in the atmosphere
(78%), molecular nitrogen as such is not accessible to plants. And first needs to
be “fixed” to form reactive nitrogen, i.e. nitrogen in form of a range of different
chemical compounds. Reactive nitrogen is indispensable in agriculture to stimulate
plant growth, however recent nitrogen pollution studies show the incredible growth
of nitrogen in the environment. While in 1860, humanity produced 15 million metric
tons of reactive nitrogen,by 1995, that number was at 156 million tons, and increased
to 187 million tons by 2005 (Galloway et al. 2004). In comparison to global CO2

emissions of 27 billion tons annually, these numbers may seem small, but nitrogen
impacts are magnified by the so called nitrogen cascade, i.e., propagation of nitrogen
fluxes through the atmosphere, into the soil, into the water, into the coastal systems
and back into the atmosphere, which considerably magnifies the impacts.

Some of the reactive nitrogen comes from industry, but the majority comes from
agricultural activities – livestock production and crops fertilization. The most impor-
tant pathways of nitrogen loss to the environmental are atmospheric emissions of
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NH3, N2O and NO, and leaching to ground-water or surface water. Nitrogen losses
are expected to further increase in the future, as demand for agricultural products
will continue to rise. Much of the accelerated N cycle is expected in China where
remarkable increase in the production of agricultural products was observed over the
last years. Four alternative agricultural scenarios of nitrogen pollution reduction in
China are developed and discussed. We differentiate between abatement strategies
that provide a spatial production reallocation – very effective in terms of costs and
reduction of population exposure, and scenarios that provide actual reductions in
nutrient (nitrogen) application and release. Environmental sustainability aspects of
these scenarios are compared with respect to area and human exposure to different
severity classes of risks. The derived geographically explicit results of the four
scenarios indicate essential location-specific heterogeneities regarding the level of
environmental risks, health exposure, and economic capacity to cope with the risks.
However, it is clear that in all locations, the level of pollution is likely to increase.
Even in scenarios (3) and (4), which carry considerable improvements, China’s
environmental deterioration increases by roughly one third to nearly half. Nitrogen
losses in the form of ammonia pose the biggest problem by far in all four scenarios.
Losses in the form of N2O follow, while nitrate leaching is of less importance. While
we do not intend to provide a full nitrogen balance for China, the results may be
useful to look at the respective fluxes in perspective to gain an overall understanding
of the system.

A comparison of results obtained here with literature values indicates general
agreement on the magnitude of nitrogen fluxes. Because of uncertainties and
variability, instead of using absolute estimates for planning pollution mitigation
options we propose to employ approaches based on robust indicators. These proved
to have a success in evaluating the preference structure of feasible decisions. The
results relying on the indicators may then be considered valuable for policy advice.
In this application our indicators guide production allocation and intensification in
such a way that both the demands targets (food security) and security constraints on
the environment and health exposure are met.

Acknowledgements The authors are greatfull to the participants of the IIASA/GAMM workshop
on Coping with Uncertainty held at IIASA in 2009, and to the anonymous referees for critical
suggestions that led to improvements of this paper.

Appendix 1: Production Allocation Algorithm

Let us briefly summarize the production allocation algorithm (for more details,
see (Fischer et al. 2006)). The objective is to allocate new supply facilities in
the best possible way to meet the projected increase in national demand di for
agricultural products i among the production activities/locations k, k D 1; K while
considering various risk indicators. In the following model, the risks are treated as
constraints on production expansion (similar to ambient targets in pollution control
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models). Therefore, the problem is to determine suitable activity levels yik given
the constraints: X

k

aikyik � di ; (1)

yik � 0; (2)X
i

yik � bk; i D 1; m; k D 1; K; (3)

where bk denotes thresholds for environmental and health risks and imposes
limitations to an increase in production of system or location k, k D 1; K. Apart
from bk , there may be additional limits on yik , yik � rik, which may be associated
with legislation, for example, to restrict production i to a production “belt” or
to exclude production i from urban or protected areas, etc. Thresholds bk and
rik may indicate strictly prohibited levels. The procedure may also allow for the
thresholds to be exceeded while imposing taxes or requiring a premium to be paid
for the mitigation of certain risks. Coefficients aik � 0 describe heterogeneities
among products in different locations. Equations (1)–(3) are well established in the
literature and belong to the type of generalized transportation problems. They may
describe also dynamic problems of allocations by using i to enumerate demands
for different products at different time intervals, e.g., indices i D 1; : : : ; m may
indicate demand for products at time t D 1; i D m C 1; : : : ; 2m indicate demand
for products at time t D 2, and so on. In general problems, (3) has the structureP

i ˇikyik � bk , i D 1; m, k D 1; K, where ˇik may reflect different pollution
outputs from i in location k. With deterministic ˇik this type of equations can be
reduced to (3) by introducing new decision variables xik D ˇikyik .

Apart from (1)–(3) there always exist additional information regarding uncertain
activity levels yik , i.e., behavioral uncertainties. These information is used to derive
a prior probability qik reflecting the assumption that a unit of demand di for
product i should be supplied by activity/location k. For instance, it is reasonable to
allocate more livestock to areas with a higher demand increase, higher productivity
or better access to animal feeds, transportation services. This preference structure
is expressed in prior qik ,

P
k qik D 1 for all i . The use of priors is consistent

with spatial economic theory (see, e.g., in Fujita 1999; Karlqvist et al. 1978).
The likelihood qik can be modeled as inversely proportional to production costs,
distances, risks and ambient targets bk and rik . In the case a1k , i.e. standard
transportation model, an initial estimate of production i allocated to k can be derived
as qikdi . This could, however, result in a violation of applicable restrictions (3).
Sequential rebalancing (Fischer et al. 2006) proceeds as follows. For the simplicity
of illustration, we assume that aik D 1. The expected initial allocation of di to
k is y0

ik D qikdi , i D 1; m. As this allocation may not comply with constraintP
i y0

ik � bk , j D 1; n, the relative imbalances ˇ0
k D bk=

P
i y0

ik are derived and
updated z0

ik D y0
ikˇ0

k , i D 1; m. Now constraint
P

i yik � bk is met, k D 1; 2; : : : ,
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but the estimate z0
ik may cause an imbalance for relation (1), i.e.,

P
k z0

ik ¤ di .
Continue calculating ˛0

i D di=
P

k z0
ik , i D 1; m and updating the imbalances

y1
ik D z0

ik˛0
i , etc. The estimate ys

ik can be represented as

ys
ik D qk

ikdi ; qs
ik D �

qikˇs�1
k

�
=

0
@X

j

qikˇs�1
k

1
A ; i D 1; m; k D 1; 2; : : : :

Assume ys D ˚
ys

ik

�
has been calculated. Find

ˇs
k D bk=

X
i

ys
ik

and

qsC1
ik D

 
qikˇs

j =
X

i

qikˇs
j

!
; i D 1; m; k D 1; 2; : : : ;

and so on.
In this form the procedure can be considered as a redistribution of required supply

di among producers k D 1; 2; : : : by applying the sequential adjustment qsC1
ik , i.e.,

by using a Bayesian type of rule to update the prior distribution:

qsC1
ik D qikˇs

k=
X

i

qikˇs
k; q0

ik D qik:

The iterative update of qik is based on an ‘observation’ of imbalances of the
basic constraints rather than calculated for observations of random variables. A
simple rebalancing procedure, similar to the one mentioned above for standard
transportation constraints (1)–(3) was proposed by G.V. Sheleikovskii (for more
details and references, see (Bregman 1967)) for the estimation of passenger flows
between old and projected new regions. Similar procedure for general problem (1)–
(3) may be used for analyzing of interregional migration, agricultural export-import
flows, etc. Verification of its convergence to the optimal solution maximizing the
cross-entropy function X

i;k

yik ln
yik

qik

(4)

is provided in (Fischer et al. 2006) for general forms of constraints. The alternative
scenarios introduced in Sect. 4 correspond to different production allocation priors
qik , i D 1; m,k D 1; K. The behavioral uncertainty can also be treated in a
stochastic manner as a random allocation of demand di among points k D 1 W K

with respect to the prior probability qik , which is a topic of a separate paper.
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Appendix 2: Stochastic Model for Production Allocation

The approach presented in Appendix 1 guides production expansion relying on indi-
vidual behavioral principles set by priors. The risks are characterized by imposing
certain standards as additional ambient or “safety” constraints. In general, these
constraints may depend on some scenarios of potential future shocks to the system.
Let us consider now a more general multi-producer (location) model in a stochastic
environment. We may assume that there is a coordinating agency (a principle agent).
The agency acts as a social planner and is responsible for maximizing the overall
performance of the production chain to stabilize the aggregate production under
minimal costs. Suppose that the agency has to determine levels yik of product i in
locations k in order to meet stochastic demand di .!/, where ! D .!1; !2; : : : /

is a vector of all contingencies affecting demand and production. It is naturally
to assume that the decision on production expansion has to be made before the
information on contingencies arrives. In this case, the total ex-ante production may
not exactly correspond to the real demand, i.e., we may face both over-supplies
and shortfalls. In other words, the amount of production yik , k D 1; : : : ; K ,
which is planned ex-ante to satisfy the demand di .!/, yi .!/ D P

aik.!/yik may
underestimate (yi .!/ < di .!/) or overestimate (yi .!/ > di .!/) the real demand
di.!/ under revealed contingencies ! and the safety constraints imposed by strict
thresholds bk in (3). The constraint (3) necessitates, in general, additional supply
of ex-ante production zi � 0 from external sources (say, through international
trade). It may also require the ex-post redistribution of the production from internal
producers, k D 1; K, to eliminate arising shortfalls and over-supplies in locations.
For now, let us ignore these ex-post redistributional aspects assuming that the most
significant impacts are associated with ex-ante decisions yik and zi . In fact, the
presented further model can be easily extended to represent the ex-post adjustments
of decisions yik , zi , as well as more detailed temporal aspects of production
planning.

Let cik be the unit production cost. In more general model formulation, cik also
include the unit transportation cost for satisfying location-specific demand. Then
the model of production planning among the facilities under ambient and other
constraints can be formulated as the minimization of the total cost function:

f .y; z/ D
X
i;k

cikyik C
mX

iD1

ei zi ;

subject to constraints (2), (3), and the following additional safety constraints

P

"
KX

kD1

aik.!/yik C zi � di .!/

#
� pi ; zi � 0; i D 1; m; (5)
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where ei > 0, i D 1; m, denotes the unit import cost. A safety level pi , 0 < pi < 1,
defines the food security constraint (regulates the supply-demand relations) for
all possible scenarios (contingencies) !. The introduction of constraints (5) is a
standard approach for characterizing stability in case of insurance business, security
of nuclear power plants and other risky activities. Safety constraints of type (5)
are usually used in cases where impacts of random interruptions can not be easily
evaluated. In this case, the value pi is selected such that an expected shortfall occurs
only, say, once in 100 month, i.e., 1 � pi D 1=100.

The main methodological challenge is concerned with the lack of convexity of
constraints (5). Yet, the remarkable fact is that the model defined by (2)–(3), (5) can
be effectively solved by linear programming methods due to the following convex
reformulation of this model. Let us consider the minimization of the expectation
function

F.y; z/ D f .y; z/ C
mX

iD1

˛i E max

(
0; di .!/ �

KX
kD1

aik.!/yik � zi

)
; (6)

subject to constraints (2), (3), and zi � 0, i D 1; :m. The minimization of
function F.y; z/ is a rather specific case of stochastic minimax models analyzed
(both optimality conditions and solution procedures) in Ermoliev and Wets, 1988.
In particular, if F.y; z/ has continuous derivatives with respect to zi , e.g., the
probability distribution function of ! has continuous density function, then

@F

@zi

D ei � ˛i EI.di.!/ �
KX

kD1

aik.!/yik � zi � 0/;

where I.� � 0/ is the indicator function: I.� � 0/ D 1, if � � 0, and I.� � 0/ D 0

otherwise. Therefore, we can rewrite @F
@zi

as

@F

@zi

D ei � ˛iP

"
di .!/ �

KX
kD1

aik.!/yik � zi � 0

#
; (7)

which allows to establish connections between the original model defined by (2),
(3), (5) and the minimization of convex function F.y; z/ defined by (6).

Assume .y�; z�/ minimizes F.y; z/ subject to constraints (2), (3), and zi � 0,
i D 1; :m. Assume also that ei < ˛i , i D 1; :m. Then from (7) it follows that for all
i with positive components z�

i > 0, i.e., when @F
@zi

D 0, the optimal solution .y�; z�/

satisfies the following safety constraints

P

"
di .!/ �

KX
kD1

aik.!/yik � zi � 0

#
D ei =˛i : (8)
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Moreover, for all i with z�
i D 0, i.e., when

@F.y�; z�/

@zi

� 0, the optimal .y�; z�/

satisfies the following safety constraint

P

"
di .!/ �

KX
kD1

aik.!/yik � 0

#
� ei=˛i : (9)

If we choose ˛i as ei=˛i D 1 � pi , i.e., ˛i D ei =.1 � pi/, then (8)–(9) become
equivalent to the safety constraint (5) of the original model (2), (3), (5). In other
words, the minimization of convex function F.y; z/ defined by (6) subject to (2),
(3), and zi � 0, i D 1; m, yields the desirable solution of the original model
(2), (3), (5). Efficient computational procedures for solving stochastic minimax
problems with objective functions defined as in (6) can be found in (Ermoliev
and Wets 1988; Rockafellar and Uryasev 2000). In particular, (Rockafellar and
Uryasev 2000) discuss the applicability of linear programming methods in cases
where the original model defined by a general probability distributions of ! can
be sufficiently approximated by models with discrete probability distributions. This
paper establishes also important connections between the minimization of (6)-type
functions and Conditional-Value-at-Risk risk measure.

The minimization of function (6) can also be solved by a stochastic quasi-
gradient method (Ermoliev and Wets 1988). In applying this method to minimization
of (6), the differentiability of F.y/ and any assumption on probability distribution
of ! is not required. Also, the probability distribution of ! may only be given
implicitly. For instance, only observations of random di .!/ and aik.!/ may be
available or only a Monte Carlo procedure (“pseudo-sampling” simulation model
as described in Sect. 2) is used to simulate supply and demand. In Sects. 2 and 3
we illustrate application of the rebalancing algorithm described in Appendix 1
while the outlined stochastic allocation algorithm has been elaborated, e.g., in
(Borodina 2011; Fischer et al. 2009). Impressive application of stochastic quasi-
gradient methods in a form of adaptive Monte Carlo optimization can be found
in (Wang 2010).
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Evaluation of Portfolio of Financial
and Insurance Instruments: Simulation
of Uncertainty

Piotr Nowak, Maciej Romaniuk, and Tatiana Ermolieva

Abstract The increasing number of natural catastrophes leads to severe losses for
production, in infrastructure and individual property. Classical insurance mecha-
nisms may not be sufficient in dealing with such losses because of dependencies
among sources of losses, huge values of damages, problems with adverse selection
and moral hazard. To cope with dramatic consequences of such extreme events
integrated policy is required. In this paper we discuss the model of portfolio which
consists of a few layers of insurance and financial instruments, like catastrophe
fund, catastrophe bonds, governmental help, etc. We use approach based on neutral
martingale method and simulations. We price the catastrophe bond applying Vasicek
model used for zero-coupon bond under assumption of independence between
catastrophe occurrence and behavior of financial market. We discuss the effects of
uncertainties which arise from estimation of rare events with serious, catastrophic
consequences like natural catastrophes.

1 Introduction

The insurance industry faces overwhelming risks caused by natural catastrophes,
e.g. losses from Hurricane Andrew hit 30 billion $ in 1992, the losses from
Hurricane Katrina in 2005 are estimated on 40 – 60 billion $ (see (Muermann
2008)). To cope with dramatic consequences of such extreme events integrated
policy that combines mitigation measures with diversified ex-ante and ex-post
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financial instruments is required. Without proper policies the natural catastrophes
will increase long-term consequences for societies and economy of many countries,
especially poor ones (see e.g. (MacKellar et al. 1999)).

The classical insurance mechanisms are not prepared for such extreme losses
caused by natural catastrophes. Even one, single catastrophe could cause problems
with reserves for many insurers or even bankruptcy of these enterprises. For
example, after Hurricane Andrew more than 60 insurance companies became
insolvent (see (Muermann 2008)). The traditional insurance models (see (Borch
1974)) deal with independent, rather small risks like car accidents. In such case
the law of large numbers and the central limit theorem justify the ruin probability
calculus and simple strategy of selecting an insurance contract portfolio: the greater
the number of risks, the better (see (Borch 1974; Ermoliev et al. 2001)). Catastrophic
risks require new approaches to the formation of a portfolio of an insurance
company. The sources of losses from natural catastrophes are strongly dependent in
terms of time and localization, e.g. single hurricane could start fire in many houses.
The law of large numbers cannot be applied for such risks, and the traditional
strategy of portfolio construction can only increase the probability of bankruptcy
of insurer (see (Ermoliev et al. 2001)).

Additionally, classical insurance mechanisms are often criticized because of seri-
ous problems with adverse selection and moral hazard – e.g., hope for governmental
help or possession of insurance policy may change people’s attitude and draw
them to growing crops in high risk regions, building houses in threatened area, not
preventing additional losses, etc. Moreover, the primary insurers rely on classical
reinsurance markets which are affected by price cycles connected with occurrence
of natural catastrophes, terrorist attacks, etc.

The single event, e.g. earthquake or hurricane, could result in damages of
$50–$100 billion. Keeping in mind that daily fluctuations on worldwide financial
markets reach tens of billion $, securitization of losses (e.g. in the form of so called
catastrophe bonds – see e.g. (Ermolieva et al. 2007; Nowak and Romaniuk 2009;
Romaniuk and Ermolieva 2005)) may be helpful for dealing with results of extreme
natural catastrophes (see e.g. (Cummins et al. 2002; Freeman and Kunreuther 1997;
Froot 2001; Harrington and Niehaus 2003)).

For example, in agricultural regions natural disasters may lead to severe losses
of agricultural production and, thus, to decrease of farmers’ income (see e.g.
(MacKellar et al. 1999)). The effects of such catastrophes are commonly known and
various production planning practices were developed. However, these traditional
risk management mechanisms are not always sufficient for dealing with extreme
events (see e.g. (Nowak et al. 2008; Skees et al. 2002)). Additionally, due to lower
level of income for rural areas, management of risks is especially price-sensitive.
The demand for financial instruments depends on willingness of farmers to sacrifice
a portion of their often uncertain income. The supply of financial instruments
depends on feasibility of financial or insurance instruments and the ability of the
insurance industry to manage losses at these prices. Therefore we should take
into account the ”fairness” requirement for both insurers and insureds (see e.g.
(Ermolieva et al. 2007)).
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In this paper we discuss the model of portfolio which consists of a few layers
of insurance and financial instruments, like catastrophe fund, catastrophe bonds,
governmental help, etc. We use approach based on neutral martingale method and
simulations. We price the catastrophe bond applying Vasicek model used for zero-
coupon bond under assumption of independence between catastrophe occurrence
and behavior of financial market. Obtained pricing formula is then applied in simu-
lations. The mentioned portfolio should be optimal in some way, i.e. it should fulfill
needs of both insureds and insurers. In order to achieve ”fairness” for both insurer
and insureds, we limit the probability of insurer bankruptcy and the probability
of overpayment for insureds. We discuss the effects of uncertainties which arise
from estimation of rare events with serious, catastrophic consequences like natural
catastrophes. Therefore there is a need to take into account possible errors in
estimation, e.g. applying approach based on confidence intervals. These intervals
may also incorporate expertise knowledge to overcome lack of precise data.

This paper is organized as follows. In Sect. 2 we describe properties and
examples of catastrophe bonds. In Sect. 3 we present the model of portfolio which
consists of a few layers of financial and insurance instruments. In Sect. 4 the pricing
formula for some examples of cat bonds is discussed. Then in Sect. 5 simulation
results for some portfolios are described. In Sect. 6 we discuss possible sources of
uncertainties which should be taken into account during portfolio modeling. Then
in Sect. 7 the final remarks and some conclusions are provided.

2 Catastrophe Bonds

As it was mentioned before, the single catastrophe event could result in damages
of $50 – $100 billion. This could cause the bankruptcy of the insurer or serious
problems with coverage of losses (see (Cummins et al. 2002; Froot 2001; Harrington
and Niehaus 2003)). Additionally, the classical insurance mechanisms are not
adequate in face of catastrophic event because of dependencies among sources of
risks, potentially unlimited losses, problems with adverse selection, moral hazard
and reinsurance pricing cycles.

Therefore applying alternative financial or insurance instruments may be prof-
itable. The problem is to ”package” natural disasters risk / losses into classical forms
of tradeable financial assets, like bonds or options. The most popular catastrophe-
linked security is the catastrophe bond (in abbreviation cat bond or Act-of-God
bond, see (Cox et al. 2000; D’Arcy and France 1992; Ermolieva et al. 2007; George
1999; Nowak and Romaniuk 2009; O’Brien 1997; Romaniuk and Ermolieva 2005)).

In 1993 catastrophe derivatives were introduced at the Chicago Board of Trade
(CBoT). These financial derivatives were based on underlying indexes reflecting
insured property losses due to natural catastrophes that were reported by insurance
and reinsurance companies. The first type of contracts traded at the CBoT were
insurance futures and options on insurance futures. Later they were replaced
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by catastrophe spread options based on underlying loss indexes provided by an
independent statistical agency.

New instruments include over-the-counter (OTC) products, primarily engineered
by investment bankers. In 1997 new weather derivatives were introduced in the
USA, later also in Europe. In 2000 European bank and an insurance company
launched ”Meteo transformer” to issue weather derivatives and insurance contracts.
The stock exchange Euronext introduced electricity derivatives in 2001.

Cat bonds become wider known in April 1997, when USAA, an insurer from
Texas, initiated two new classes of cat bonds: A-1 and A-2. Next successful
catastrophe bond was issued in 1997 by Swiss Re to cover earthquake losses. The
first cat-bond prepared by a non-financial firm was issued in 1999 in order to cover
earthquake losses in the Tokyo region for Oriental Land Company, Ltd., the owner
of Tokyo Disneyland (see (Vaugirard 2003)). The cat bond market in year 2003 hit
a total issuance of $1.73 billion, a 42% increase from 2002s record of $1.22 billion
(see (McGhee 2004)). The report also shows that since 1997, 54 cat bond issues have
been completed with total risk limits of almost 8 billion (see (Vaugirard 2003)). To
the end of 2004 there were about 65 emissions of cat bonds. Insurance and reinsur-
ance companies have issued almost all of the cat bonds, and except for a few from
commercial companies, reinsurers have accounted for over 50% of the issuances
(see (Vaugirard 2003)). The market of cat bonds is expected to emerge in future.

There is one important difference between cat bonds and other financial instru-
ments. The premiums from cat bond are always connected with additional random
variable, i.e. occurrence of some natural catastrophe in specified region and fixed
time interval. Such event is called triggering point (see (George 1999)). For
example, the A-1 USAA bond was connected with hurricane on the east coast of the
USA between July 15, 1997 and December 31, 1997. If there had been a hurricane in
mentioned above region with more than $1 billion loses against USAA, the coupon
of the bond would have been lost. As usually, the structure of payments for cat bonds
depends also on some primary underlying asset. In case of A-1 USAA bond, the
payment equaled LIBOR plus 282 basis points. As we can see from this example,
the triggering point changes the structure of payments for the cat bond. The other
types of cat bonds may be related to various kinds of triggering points — e.g. to
magnitude of earthquake, the losses from flood, etc. (see e.g. (Niedzielski 1997;
Walker 1997)).

Another example is the cat bond known as Atlas Re II, issued for SCOR Group,
intended to cover claims linked to natural catastrophe events from January 1, 2002
during the period of three years. These events were earthquakes in California and
Japan, and wind-storms in Northern Europe. The mentioned cat bond complements
the USD 100 million per event cover of Atlas Re, the previous cat bond issued for
SCOR, which was connected with occurrence of a first event. Atlas Re II provides
coverage for a second or third event during a given year, with a USD 100 million per
event limit and a USD 150 million limit over three years. The triggers were based
on reported earthquake magnitude or an index calculated from wind-speeds in case
of wind-storms.
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The main aim of cat bonds is to transfer risk from insurance markets or
governmental budgets to financial markets. Apart from transferring capital, a liquid
catastrophe derivatives market allow insurance and reinsurance companies to adjust
their exposure to natural catastrophic risk dynamically through hedging with those
contracts at lower transaction costs. If the triggering point is connected with industry
loss indices or parametric triggers, the moral hazard exposure of bond investors
is greatly reduced or eliminated. Cat bonds are often rated by an agency such as
Standard & Poor’s, Moody’s, or Fitch Ratings.

The cash flows for catastrophe bond are managed by special tailor-made fund,
called a special-purpose vehicle (SPV) (see (Vaugirard 2003)). The hedger (e.g.
insurer) pays an insurance premium in exchange for coverage in case if catastrophic
event occurs. The investors purchase an insurance-linked security for cash. The
mentioned premium and cash flows are directed to SPV, which issues the catastrophe
bonds. Usually, SPV purchases safe securities in order to satisfy future possible
demands. Investors hold the issued assets whose coupons and/or principal depend
on occurrence of the triggering point. If the pre-specified event occurs during the
fixed period, the SPV compensates the insurer and the cash flows for investors are
changed, i.e. there is full or partial forgiveness of the repayment of principal and/or
interest. If the triggering point does not occur, the investors usually receive the full
payment. Triggering point may be connected with the issuer’s actual losses, losses
modeled by special software based on real parameters of catastrophe, insurance
industry index, real parameters of catastrophe or hybrid index related to modeled
losses.

3 Portfolio Construction

The portfolio could consist of a whole set of various financial and insurance
instruments. Model of such portfolio may be used by insurer or other organization
(like government) in order to evaluate parameters and possible scenarios, e.g. to
calculate the probability of ruin, the value of maximum losses for given probability
level, the necessity of using the considered instrument in the portfolio, etc.

Let .˝; F ; P / be a probability space. We consider trading horizon Œ0; T 0�,
T 0 > 0. We fix some T 2 Œ0; T 0�. The structure of catastrophe model is based on
subdividing the considered region into m nodes (or cells). Based on this structure,
the scenario of catastrophe and losses arising from this scenario should be simulated.

For example, floods involve both meteorological and hydrological processes.
Additionally these phenomena are influenced by human facilities and activities (like
dams, land use, etc.). To find an estimate of the largest size flood for the given
period of time and region, simulations based on historical records or probabilistic
distributions are used. The most commonly used distributions are normal family
(normal distribution, log-normal, log-normal type 3), the general extreme-value
family (GEV, Gumbel, log-Gumbel, Weibull), the Pearson type 3 family (Pearson
type 3, log-Pearson type 3) and the generalized Pareto distribution (see (Malamud
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and Turcotte 2006; Rao and Hamed 2000)). For example, the power-law distribution
for flood frequency has the form Q D C t˛ , where ˛ and C are regression coeffi-
cients, and Q is the maximum discharge associated with a recurrence interval of t

years. Apart from modeling the catastrophe itself, the losses caused by such event
should be also estimated. Appropriate calculations are based on vulnerability curves
or matrices for the flood level, earthquake magnitude, wind speed for hurricane, etc.
versus the types of buildings, types of crops, etc. (see e.g. (Ermolieva et al. 2005,
2007)). Using special software (see e.g. (Ermolieva et al. 2007; Pinelli et al. 2008))
the whole set of scenarios, estimators or histograms of losses may be found.

Because of mutual dependencies between cells caused by catastrophe itself (e.g.
flood) and by insurance or financial instruments, which may spread the losses, the
considerable amount of nodes may be affected by the same, single event. Therefore
for each node � we have set V� of all the neighboring nodes which may be affected if
there is destruction in node �. These sets should be taken into account in simulations
of losses (see (Ermoliev et al. 2001)).

By C.j; t/ we denote claims caused by losses for cell j on the time interval
Œ0; t � and by C.t/ the aggregated demands for all cells on the time interval Œ0; t �,
i.e. C.t/ D Pm

iD1 C.j; t/. These claims depend on losses L.j; t/. For example,
for proportional insurance contract we have C.j; t/ D qj L.j; t/, where qj is the
proportion parameter and for proportional contract with lower bound we have

C.j; t/ D qj L.j; t/I .L.j; t/ > k0/ ; (1)

where I.:/ is the characteristic function and k0 is the lower bound. By L.t/ we
denote the aggregated losses, i.e. L.t/ D Pm

iD1 L.j; t/, by ˘.j; t/ – the insurance
premiums for the cell j on the time interval Œ0; t �, and by ˘.t/ – the aggregated
premiums for all cells, i.e. ˘.t/ D Pm

iD1 ˘.j; t/. Then the classical insurance
model (see (Borch 1974)) describing the evolution of the profit process for the
insurer has the form

R.t/ D R.0/ C ˘.t/ � C.t/; (2)

where R.0/ is the initial capital, if we assume that the risk-free yield is equal to
zero.

The main goal for insurer is the maximization of the profit given by random
variable

� D R.0/ C ˘.T / � C.T /: (3)

In order to achieve ”fairness” for both insurer and insureds, we limit the probability
of insurer bankruptcy by value p1, i.e.

P .R.T / � 0/ � p1 (4)

and the probability of overpayment for insureds by p2 (see (Nowak and Romaniuk
2009; Stone 1973)), i.e.

P .C.j; T / � ˘.j; T // � p2: (5)
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Therefore the insurer should maximize the function (3) under the constraints (4)
and (5).

As it was mentioned before, because of dependency between the losses and
the nature of risk itself (small probability of huge catastrophe) standard insurance
mechanism could not be adequate. Therefore we add some extra layers in order
to create the whole portfolio of various insurance and financial instruments. The
second layer in such portfolio is the catastrophe bond issued by government, insurer
or other enterprise. If insurer issues such bond, then at the maturity time of the bond
T the process (3) has the form

� D R.0/ C PV .˘.T // � PV .C.T // C ˘cb � PV
�
f cb .L.T //

�
; (6)

where PV denotes the present value of cash flow, ˘cb – the aggregated premiums
from cat bond issuing (or with minus sign – premiums directed to SPV), f cb.:/ –
the payment function for the considered kind of cat bond. The triggering point for
such cat bond may be connected e.g. with surpassing the limit k1 by aggregated
losses L.T /.

On the next level other layers may be also added to portfolio. For example if
the aggregated losses will be above some level k2, i.e. L.T / > k2, then there
is possibility that special governmental fund may be used. We assume that the
probability space .˝ 0; F 0; P 0/ describes the external help. Then the probability of
using governmental fund may be modeled as independent random event A2. We may
assume that the value of such fund is denoted by independent random variable X2

or this value is proportional to the aggregated losses, i.e. '2L.T /, where '2 is the
proportion parameter.

In the same way we may add the next layer, e.g. foreign help. Such help may
be used if the aggregated losses will be above level k3, i.e. L.T / > k3 and the
probability of using this fund may be modeled as independent random event A3.
The value of such fund may be denoted by independent random variable X3 or it
may be proportional to the aggregated losses, i.e. '3L.T /.

Taking into account all the layers of the portfolio, the process (3) has now the
form

� D R.0/ C PV .˘.T // � PV .C.T // C ˘cb � PV
�
f cb .L.T //

�
C PV .X2/ I.A2/I .L.T / > k2/ C PV .X3/ I.A3/I .L.T / > k3/ (7)

or

� D R.0/ C PV .˘.T // � PV .C.T // C ˘cb � PV
�
f cb .L.T //

�
C PV .'2L.T // I.A2/I .L.T / > k2/ C PV .'3L.T // I.A3/I .L.T / > k3/

(8)

depending on the way we model values of the funds, under mentioned previously
constraints (4) and (5).
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For the formula (7) or (8) we need some additional parameters, which may be
also calculated, like price of the considered type of catastrophe bond (see Sect. 4).
Because problems similar to the above equations are extremely sensitive for the
constraints, special maximization procedure may be used (see e.g. (Ermoliev et al.
2001)). Apart from insurer, the other important entity is the government. It is
possible to optimize the function similar to (7) or (8) which takes into account also
the government needs (see e.g. (Nowak et al. 2008)).

4 Cat-Bond Pricing

In this section we assume that the number of cells is equal to one .m D 1/. Let
.Wt/t2Œ0;T 0� be a Brownian motion.
Let .Ui/

1
iD1 be independent, identically distributed random variables with bounded

second moment. In further considerations we treat Ui as value of losses during i -th
catastrophic event.
We define compound Poisson process by formula

QNt D
NtX

iD1

Ui , t 2 �0; T 0� ;

where Nt is Poisson process with intensity �.
We will assume that Lt D QNt , t 2 Œ0; T 0� :

Let
k0 < k1

1 < ::: < kn
1 ; n > 1

be a sequence of constants.
Let �i W ˝ ! Œ0; T 0� ; 1 � i � n be a sequence of stopping times defined as follows

�i .!/ D inf
t2Œ0;T 0�

˚ QN .t/ .!/ > ki
1

� ^ T 0; 1 � i � n:

The filtration .Ft /t2Œ0;T 0� is given by formula

Ft D �
�
F 0

t [ F 1
t

�
, F 0

t D � .Ws; s � t/ ;

F 1
t D �

� QNs; s � t
�

; t 2 �0; T 0� :

We assume that
F0 D fA 2 F W P .A/ D 0g

and that .Wt/t2Œ0;T 0�, .Nt /t2Œ0;T 0� and .Ui /
1
iD1 are independent. Then the filtered

probability space
�
˝; F; .Ft /t2Œ0;T 0� ; P

�
satisfies the standard assumptions,
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i.e. �-algebra F is P -complete, the filtration .Ft /t2Œ0;T 0� is right continuous, what
means that for each t 2 Œ0; T 0/

FtC D
\
s>t

Fs D Ft

and F0 contains all the sets in F of P -probability zero.
We denote by .Bt /t2Œ0;T 0� banking account satisfying the following equation:

dBt D r.t/Bt dt; B0 D 1;

where r is a risk-free spot interest rate. The solution of the above equation has the
form:

Bt D exp

�Z t

0

r.u/du

�
; t 2 �0; T 0� :

We denote by B .t; T / the price at the time t zero-coupon bond with maturity date
T � T 0 and the face value equal to 1. Let

w1 < w2 < ::: < wn

be a sequence of nonnegative constants, for which
Pn

iD1 wi � 1.

Definition 1. We denote by IB .T; F v/ a catastrophe bond satisfying the following
assumptions:

a) If the catastrophe does not occur in the period Œ0; T �, i.e. �1 > T , the bond-holder
is paid the face value F vI

b) If �n � T , the bond-holder receives the face value minus the sum of write-down
coefficients in percentage

Pn
iD1 wi .

c) If �k�1 � T < �k; 1 < k � n, the bond-holder receives the face value minus the
sum of write-down coefficients in percentage

Pk�1
iD1 wi .

d) A cash payments are done at date of maturity T:

Definition 2. B .t; T /, t � T � T 0 is called the arbitrage-free family of zero-
coupon bond prices with respect to r , if the following conditions are satisfied:

a) B .T; T / D 1 for each T 2 Œ0; T 0� :

b) There exists a probability Q, equivalent to P , such that for each T 2 Œ0; T 0� the
process of discounted zero-coupon bond price

B .t; T / =Bt ; t 2 Œ0; T � ;

is a martingale with respect to Q. Then we have the following pricing formula

B .t; T / D EQ
	
e� R T

t r.u/dujF Q
t



; t 2 Œ0; T � :
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Let �u D �� denote the risk premium for risk-free bonds. The following Radon-
Nikodym derivative defines a probability measure Q, equivalent to P :

dQ

dP
D exp

�Z T

0

�udWu � 1

2

Z T

0

�2
udu

�
P -a.s.,

such that B .t; T / =Bt ; t 2 Œ0; T �, is a martingale with respect to Q.
We assume the Vasicek model of the risk-free spot interest rate r . The interest

rate satisfies the following equation

dr .t/ D a .b � r .t// dt C �dWt

for positive constants a, b and � .
We also assume that financial market is independent from the catastrophe risk

and investors are neutral toward nature jump risk.
We will apply the methodology from (Vaugirard 2003) to price the catastrophe

bond.

Theorem 1. Let IB .0/ be the price of a IB .T; F v/ at time 0. Let

˚ D
nX

iD1

wi ˚i ;

where ˚i are cumulative distribution function of �i . Then

IB .0/ D F ve�TR.T;r.0// f1 � ˚ .T /g ; (9)

where

R .	; r/ D R1 � 1

a	

�
.R1 � r/

�
1 � e�a	

� � �2

4a2

�
1 � e�a	

�2�

and

R1 D b � ��

a
� �2

2a2
:

Proof. We show basic steps of the proof of Theorem 1. From (Vaugirard 2003) it
follows that

EQ

�
exp

�
�
Z T

0

r .u/ du

��
D F ve�TR.T;r.0//:

Since exp
	
� R T

0
r .u/ du



and 1 �Pn

iD1 wi I�i �T are independent under Q,

IB .0/ D EQ

�
exp

�
�
Z T

0

r .u/ du

��(
1 �

nX
iD1

wi E
Q .I�i �T /

)
;
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Since � and W are independent,

1 �
nX

iD1

wi E
Q .I�i �T / D 1 �

nX
iD1

wi E
P

�
I�i �T

dQ

dP

�

D 1 �
nX

iD1

wi E
P .I�i �T / EP

�
dQ

dP

�

D 1 �
nX

iD1

wi E
P .I�i �T /

D 1 � ˚ .T / :

Finally, the pricing formula at time t D 0 has the form (9). ut
The following proposition gives the form of the cumulative distribution functions of
�i . Its proof follows exactly from the definition of the stopping times.

Proposition 1. The value of the cumulative distribution function ˚i , 1 � i � n, at
the moment T has the form

˚i .T / D 1 �
1X

j D0

.�T /j

j Š
e��T ˚ QUj

�
ki

1

�
,

where ˚ QUj
is the cumulative distribution function of the sum QUj D Pj

pD0 Up.
In the above formula we assume that U0 � 0.

5 Numerical Experiments

In order to analyze the features of the portfolio proposed in Sect. 3, the appropriate
simulations were conducted. We assume that quantity of losses is modeled by
Poisson process with expected value 
 D 0:05 and the value of each loss is given by
random variable from Gamma distribution with scale parameter ˛ D 10 and shape
parameter ˇ D 10. Therefore the generated losses have catastrophic nature, i.e. they
are rare, but with high value. Other types of distributions for modeling the value of
losses are also possible, e.g. Weibull distribution.

The trading horizon is set on 5 years and constant continuous risk-free yield r is
equal to 0:05. For each portfolio we generate n D 100000 simulations.

Only insurance contract is taken into account in the Portfolio I. It is assumed that
insurance premium is equal to 0.02, it is paid by 100 insureds and the insurance
contract is proportional with lower bound. For simplicity the lower bond is set for
the whole portfolio of insurance contacts to k0 D 5 and proportion parameter is set
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to q D 0:95. For initial capital R.0/ D 45 the probability of insurer bankruptcy is
equal to 2.318%.

Then the price of cat bond is calculated. According to Sect. 4, the Vasicek model
with parameters a D 0:025; b D 0:05; � D 0:01; r.0/ D 0:05 is assumed. The face
value of the bond is set to 1 and triggering point is connected with surpassing the
limit k1 D 40 by aggregated losses. If the triggering point occurs, then the bond
holder receives only 50% of face value, i.e. w D 0:5. In such case, the price of the
cat bond calculated according to formula (9) via simulations is equal to 0.769732.

All the instruments discussed in Sect. 3 are taken into account in Portfolio II.
It is assumed that R.0/ D 45, the features of cat bond are the same as mentioned
above, the cat bond is sold with small discount for price 0.76 and the external help is
proportional to the losses with parameters k2 D 40; k3 D 60; '2 D 0:01; '3 D 0:01.
The occurrence of governmental help is independent event with probability 0.05
and the occurrence of foreign help is independent event with probability 0.02. Then
we may calculate measures for our portfolio based on simulations (see Table 1).
The probability of ruin is substantially lower with relatively low average value of
external help. Because of selling the cat bond with small discount, the average value
of flows for cat bond is slightly negative. Both average and median of value of
portfolio are similar to initial capital. Also the quantiles for VaR (Value-at-Risk) are
calculated. From these quantiles it is seen that value of portfolio is rather stable.

For the Portfolio III, the cat bond has the greater impact. The cat bond is sold
with greater discount for price 0.75 and k3 D 100. Therefore, the foreign help is
more limited. The appropriate measures for such portfolio are given in Table 2.
It is seen that average value of flows for cat bond is more negative because of the
greater discount for the cat bond price. Also average value and median for the whole
portfolio is slightly less than initial capital.

In case of Portfolio IV the price for the cat bond is the same as calculated
according to formula (9), i.e. 0.769732. The rest of parameters are the same as in
Portfolio III. The appropriate measures for such portfolio are given in Table 3. In
this case the average value of flows for cat bonds are slightly positive. Selling the cat

Table 1 Numerical features
of Portfolio II

Value

Average value of portfolio 44:1992

Median of value of portfolio 45:1199

Standard deviation of value of portfolio 6:90794

5% quantile of value of portfolio 45:1199

9% quantile of value of portfolio 45:1199

1% quantile of value of portfolio 4:4582

99% quantile of value of portfolio 45:1199

Maximal loss for portfolio with probability 5% �0:119922

Maximal loss for portfolio with probability 1% 40:5472

Probability of ruin 0:82%
Average value of flows for cat bond �0:902683

Average value of flows for external help 0:00142813
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Table 2 Numerical features
of Portfolio III

Value

Average value of portfolio 43:2407

Median of value of portfolio 44:1199

Standard deviation of value of portfolio 6:76293

5% quantile of value of portfolio 44:1199

9% quantile of value of portfolio 44:1199

1% quantile of value of portfolio 6:00394

99% quantile of value of portfolio 44:1199

Maximal loss for portfolio with probability 5% 0:880078

Maximal loss for portfolio with probability 1% 38:9961

Probability of ruin 0:78%
Average value of flows for cat bond �1:96109

Average value of flows for external help 0:00163002

Table 3 Numerical features
of Portfolio IV

Value

Average value of portfolio 45:2098

Median of value of portfolio 46:0931

Standard deviation of value of portfolio 6:67132

5% quantile of value of portfolio 46:0931

9% quantile of value of portfolio 46:0931

1% quantile of value of portfolio 7:69566

99% quantile of value of portfolio 46:0931

Maximal loss for portfolio with probability 5% �1:09312

Maximal loss for portfolio with probability 1% 37:3043

Probability of ruin 0:73%
Average value of flows for cat bond 0:0744107

Average value of flows for external help 0:00100092

bond for undiscounted price improves the value of portfolio measured with average
value and median.

In case of Portfolio V we assume that special premiums from the insurer are
directed to SPV which directly sells the cat bonds. This premium is equal to 0.01 for
one cat bond and SPV issues 100 cat bonds. The other parameters are the same as in
Portfolio IV. Then the appropriate measures for such portfolio are given in Table 4.
As we could see, because premiums are directed to SPV even if there is no triggering
point, the average value of flows for cat bonds for insurer is slightly negative.

6 Uncertainties Problem

There are many sources of uncertainties which affected the described model.
First of them is the model of catastrophe event itself. Natural catastrophes are

rare, therefore there may be problems with sparse historical data or with fitting
parameters for probability models, e.g. estimation of expected value for Poisson
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Table 4 Numerical features
of Portfolio V

Value

Average value of portfolio 45:1062

Median of value of portfolio 46

Standard deviation of value of portfolio 6:59314

5% quantile of value of portfolio 46

9% quantile of value of portfolio 46

1% quantile of value of portfolio 5:97093

99% quantile of value of portfolio 46

Maximal loss for portfolio with probability 5% �1

Maximal loss for portfolio with probability 1% 39:0291

Probability of ruin 0:71%
Average value of flows for cat bond �0:022605

Average value of flows for external help 0:000719589

process. Therefore the interval estimation may be seen as a way to solve such
problems – instead of using only one crisp value for each parameter, the appropriate
intervals may be used. However, in such case also the simulated results will be
achieved as confidence intervals with some degree of uncertainty. But taking into
account central limit theorem and the nature of Monte Carlo simulations, these
intervals are strongly supported by probability theory.

Other way to solve the mentioned problems is to apply the fuzzy set theory.
Then the appropriate parameters may be modeled as fuzzy numbers to incorporate
expert knowledge or some historical data. Obtaining results via simulations is more
complicated in this setting unless we restrict ourselves to ˛-level intervals for fuzzy
numbers (see e.g. (Nowak and Romaniuk 2009)). There are also some approaches
emphasizing similarities between statistical confidence intervals and fuzzy ˛-level
intervals (see e.g. (Buckley 2004)).

Apart from problems with fitting parameters, historical data may not be adequate
to properly determine the type of probability distribution. In our simulations we
use Gamma distribution for modeling the value of each loss. There are other types
of distributions also known in literature as appropriate modeling tool, e.g. Weibull
distribution or extreme value distribution. Applying irrelevant distribution may
change the simulations output in a serious way.

Because of low probability of the catastrophic event, simulations should be done
in specific way. Otherwise, the error of order

p
n for Monte Carlo method may be

too high to properly determine estimators of output values e.g. the expected value
of cash flows.

Other source of uncertainty is arising from modeling of financial market, i.e.
problems of fitting parameters for stochastic process of interest risk rate. Also in
this case instead of crisp, point estimation, other approaches like interval estimation
or fuzzy estimation may be useful (see e.g. (Nowak and Romaniuk 2010)).

Also the decision takers may use other set of financial and insurance instruments
to fulfill their needs. We restrict our model presented in Sect. 3 to standard insurance
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policy, catastrophe bond, governmental help and foreign help. Other instruments are
also possible, e.g. governmental bonds or contingency credit.

7 Conclusions

The insurance industry face overwhelming risks caused by natural catastrophes. But
the classical insurance mechanisms are not prepared for such extreme losses. Even
one, single catastrophe could cause problems with reserves for many insurers or
even bankruptcy of these enterprises. Catastrophic risks require new approaches to
the formation of a portfolio of an insurance company. Keeping in mind that daily
fluctuations on worldwide financial markets reach tens of billion $, securization of
losses may be helpful for dealing with results of extreme natural catastrophes.

In this paper we discuss the model of portfolio which consists of a few layers
of insurance and financial instruments, like catastrophe fund, catastrophe bonds,
governmental help, etc. We use approach based on neutral martingale method and
simulations. We price the catastrophe bond applying Vasicek model used for zero-
coupon bond under assumption of independence between catastrophe occurrence
and behavior of financial market. Obtained pricing formula is then applied in
simulations. We discuss the effects of uncertainties which arise from estimation of
rare events with serious, catastrophic consequences like natural catastrophes.
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Pricing Catastrophe Bonds under Safety
Constraints

Shuo Liu and Liyan Han

Abstract This chapter proposes an approach for catastrophe bonds (cat-bonds)
pricing using stochastic balances of cash flows. Monte Carlo simulation model
permits to overcome cat-bonds trading data shortage and sheds the light on the
relations between cat-bond coupon rates, their issue volumes, and supply curves.
This model controls the moral hazard risk and other stochastic imbalances of the
cash flows through probabilistic safety constraints. The model is applied to the
analysis of typhoon risk in China.

1 Introduction

The number of natural catastrophes has raised dramatically in the late 20th
century. Increased catastrophe losses affect insurance and reinsurance industries
significantly, leading a number of insurance companies to bankruptcy. The shortage
of capital due to high claims on catastrophe losses became a serious problem for
insurers and reinsurers. Insurers began to seek ways to transfer natural catastrophe
risks to capital markets with large capital reserves. This has been accomplished
using both traditional reinsurance and recent capital market mechanisms. In the
1990s, a series of such mechanisms appeared, which are called insurance-linked
securities or catastrophe securities (Sheehan 2003; Swiss 2007).

According to Meyers and Kollar (1999), a catastrophe bond is a “corporate bond
with special language that requires investors to forgive some or all principal or inter-
est in the event that catastrophe losses surpass the trigger specified in the bond”. We
call the catastrophe bond as cat-bond for short. The “trigger specified in the bond”
is linked either to the magnitude of a catastrophe (e.g., earthquake of magnitude 7
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according to Richter scale) or to catastrophe losses if they exceed a specified
threshold (e.g. catastrophe losses over 25 million US dollars). When trigger event
does not occur before the cat-bond’s paid coupon to bond holders, get investment
income from trust fund and get payment from insurer for the difference of coupon
rate and investment income. Once the trigger event occurs, the bond holder will
lose part or all of their coupon income or principals, this money will be paid from
SPV to insurer to cover their catastrophe loss claims (Jaffee and Russell 1997). The
structure of bond cash flows induced by trigger event is displayed in Fig. 1.

Thus, the main purpose of cat-bond is to transfer risk from insurance markets and
governmental budgets to financial markets (Cox and Pedersen 2000). Compared to
reinsurance with traditionally high reinsurance premiums, cat-bonds have relatively
low risk transfer costs (Geman and Yor 1993; Lane 2008), therefore they have
become very popular in recent years (Fig. 2). Now, cat-bond is the most widely
used catastrophe security in the world. The issuance of cat-bonds kept stable even
in the economic recession in 2008 and rebounded much higher in 2009.

Apart from the increased attention to cat-bonds in developed countries, more and
more scholars and practitioners focus on the application of cat-bonds in developing

Fig. 1 Cash flow of catastrophe bonds

Fig. 2 Total (for the world) number of catastrophe bond issued in 1997-2007. Source: (Guy
Carpenter 2008)
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countries, especially in countries without systemic casual insurance programs. In
the absence of catastrophe insurance, catastrophe securities, including cat-bond,
are becoming a powerful tool for catastrophe risk transfer in developing countries
(e.g., Han and Liu (2007)).

Existing cat-bonds offer a higher coupon rate compared to corporate bonds of
the same credit level (Christensen 1999). Respectively, the criteria for pricing cat-
bonds are different from those of corporate bonds. Existing approaches to pricing
catastrophe derivatives may, in general, be classified into three major categories.
Lane (1998, 2000, 2008) and Lane and Mahul (2008) apply actuarial regression
pricing methodology. Embrechts (1996) and Embrechts and Meister (1995) use
a generic utility maximization approaches. Wang (2004) and Christensen (1999,
2000) valuate cat-bond by the underlying catastrophe loss measurement. Many
scholars, e.g., (Cummins 1993; Cummins and Geman 1995), for pricing of cat-
bonds and other derivatives propose arbitrage-based frameworks.

An integrated model for pricing catastrophe risks, in particular, cat-bonds related
to flood, earthquake, environmental risk, has been developed at International
Institute for Applies Systems Analysis (IIASA) by Ermolieva et al. (2000, 2003);
Romaniuk and Ermolieva (2005). The model combines fast Monte Carlo generators
of catastrophes and stochastic optimization procedures to address pricing of multi-
variate catastrophe risks and spatially distributed endogenous catastrophe losses.

Following general ideas of later research, Liu et al. (2009) proposes a pricing
method based on so-called behavioral principles and applies it to bond pricing of
typhoon risks in China. This is a Monte Carlo simulation model tracking stochastic
cash flows and different performance indicators of cat-bonds, i.e., their behavior
under different parameters and scenarios of uncertainties capturing in a proper way
the relation between the issue volume and the coupon rate. This Monte Carlo-based
behavioral model permits to overcome the trading data shortage typical for actuarial
regression based pricing. The developed model is applicable in developing countries
that do not have mature insurance system and capital markets. Yet, the moral hazard
has not been treated in (Liu et al. 2009). The main goal of this paper is to modify
the model in (Liu et al. 2009) for dealing with moral hazard risk to insurers.

The paper is organized as follows. Section 2 outlines the model from (Liu
et al. 2009). It also discusses the moral hazard problem. Section 3 analyses the
improvements of the model and summarizes numerical application to typhoon risk
in China. Conclusions are presented in Sect. 4.

2 Catastrophe Bond Pricing Model and Moral Hazard

2.1 Assumptions and Model Structure

The basic assumptions of the model in (Liu et al. 2009) are the following:

• All individuals are rational and committed to survival and maximization of their
profit.
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• Catastrophe insurance is mandatory.
• SPV(Special Purpose Vehicle) is a non-profit unit with restricted investment

activities.
• No friction costs are involved (including the trading cost, management fees and

taxes).

This model is a sequential decision selection model from a given finite set of
alternatives. Initial inputs are combinations of coupon rate and issue volume of the
cat-bond. Coupon rate may vary from 0 to 30% and issue volume – from 0 to 10
billion RMB.1

The two constraints of the model are:

• Insurers’ survival constraint: Insurers want to control the probability of
bankruptcy due to a catastrophe under a certain level ˛.

• Insured survival constraint: Government wants to control the probability that
insured losses exceed the accepted level by less than ˇ.

Formally, the safety constraints are formulated as:

P.R.�/ � 0j� 2 Œ0; T �/ � ˛

P.IL.�/ � L0j� 2 Œ0; T �/ � ˇ (1)

where R.�/ is the risk reserve of an insurer at time � when catastrophe occurs,
IL.�/ defines losses to insured, L0 sets the accepted level of losses. The constraints
rely on expert judgments about acceptable safety levels ˛ and ˇ.

The aim of the model is to find acceptable combinations of cat-bond’s coupon
rate and its issue volume satisfying the safety constraints. The results of the model
are useful for regulation commission or government to make decisions regarding
cat-bond issuance. The structure of the model is shown in Fig. 3.

Insurer’s bankruptcy occurs when the risk reserve R.�/ turns negative. In a
general situation, the risk reserve is defined by the capital reserve, premiums
income, losses claims, cat-bond coupon rate payment, and cat-bond gain as follows:

R.�/ D C � v�� C � �
�X

iD1

v�i � n � rc � B0 �
�X

iD1

v1�i C B.�/ � L.�/ � ' (2)

where � defines the first time when trigger event occurs, v is the discount factor
(v D .1 C rf /�1) and rf is risk free rate, C is the initial capital or so-called risk
reserve of an insurer, � is the catastrophe insurance premium, n is the issue volume
of cat-bond, rc is the coupon rate of cat-bond, B0 is cat-bond face value, B.�/ is the
payment the insurer receives from the cat-bond once catastrophe occur at time � ,
L.�/ denotes losses catastrophe causes at time � , ' is the insurance coverage rate.

1Chinese currency; in 2010 1 US Dollar � 6.7 RMB.
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Fig. 3 The sequential decision selection model structure

The second constraint in (1) defines the main purpose of cat-bond: risk transfer.
The issuer of cat-bond (in our case – insurer) should guarantee that the probability
of insured losses exceeding acceptable level is not greater than ˇ. There may be
two situations. If insurer survives after a catastrophe (or catastrophe losses) that
surpasses the trigger specified in the bond, the insured receive loss coverage. If the
insurer becomes a bankrupt as a result of a catastrophe, the insured losses contain
two parts: the uncovered losses and the reserve shortage for the insurance claims.
The individual losses of insured may be defined as:

IL.t/ D L.t/ � .1 � '/ � min.0; R.t//: (3)

where L.t/ are losses caused by a catastrophe at time t , IL.t/ denotes individual
loss at time t , ' is insurance coverage rate, and R.t// is the insurer’s risk reserve at
time t .

2.2 Application to Typhoon Risk in China

The use of the performance indicators (1)–(2) in a combination with (fast) Monte
Carlo simulations can be easily illustrated by a simple example. Assume there
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is an insurer who is willing to issue a three�year cat-bond with 50% principal
protected and 50% coupon rate protected to transfer its catastrophe risk. The risk
free rate in the market is 2%, and the government is willing to offer 15 million
dollars if catastrophe occurs with fee rate 2:1%. Losses are random, follow Weibull
distribution, and cat-bond trigger is a catastrophe with losses exceeding 25 million
US dollars. For each feasible solution (combination of coupon rate and issue
volume), we perform 10,000 Monte Carlo simulations. For each simulation the
losses of insured and the risk reserve of the insurer are calculated. On this basis, for
each combination of coupon rate and issue volume we estimate two probabilities
defined by constraints (1)–(2).

For choosing optimal parameters of cat-bond, we select all those combinations
for which the constraints are fulfilled. These combinations are the dots depicted in
Fig. 4. The horizontal axis shows the issue volume while the vertical axis displays
the coupon rate. Each point in the Fig. 4 denotes acceptable combination of issue
volume and coupon rate of this cat-bond. For the designed bond, although the
original input scale of coupon rate is from 2.22% to 30% and of issue volume is
from 10 million to 10 billion, we see that the model suggests the highest coupon
rate the issuer can offer is 2:85%, and it cannot issue more than 46 million US dollar
cat-bond. We illustrate the application of the model to typhoon risk in China where
we get similar results. The frequency and severity of each typhoon are assumed
to be independent. Probability distributions of typhoon frequency and severity
are estimated independently based on data from 1949 through 2005 (National
Bureau of Statistics of China 2006). Estimation is done in MATLAB (2010)

Fig. 4 Accepted coupon rate and issue volume combination of a simulated catastrophe bond
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by distribution fitting toolbox, parameters are estimated by maximum likelihood
method. Poisson, Binomial, Weibull, and Extreme value distributions are used to
estimate the typhoon frequency. Kolmogorov–Smirnov (K–S) test identifies the
distribution which explains the distribution of the typhoon occurrence time (per
year) in China. As a results, typhoon frequency is best explained by Weibull
distribution.

Exponential, Pareto, Gamma, Weibull and Log-normal distributions are tested to
fit the typhoon severity distribution. Loss data were adjusted by GDP (base year is
2005). Pareto distribution turns to have much better goodness of fit (a p-value) than
any other distribution, therefore, it is selected to explain the typhoon loss distribution
(see more details in Liu et al. (2009)).

In this case study we assume that losses from typhoon are insured by a mandatory
insurance; the insurer issues a half principal protection and half coupon protection
catastrophe bond to transfer the typhoon risk; and there is no possibility for the
insurer to get a contingent credit from the government. In this setting, the model
derives combinations of issue volume (which may vary within the ranges from
100 billion to 10 trillion RMB) and coupon rates (in the ranges from 2% to 30%).
The model analyzes possible combinations of the issue volume and the coupon
rate starting from lowest values with step sizes 100 billion RMB and 0:5% for the
volume and the rate, respectively, and selects about 26000 acceptable combinations
that satisfy the safety constraints (1).

The results are displayed in Fig. 5. There are more than 20000 accepted
combinations produced in this experiment. Each combination is represented as a

Fig. 5 Accepted coupon rate and issue volume combination of Chinese typhoon catastrophe bond
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point in Fig. 5. The lines in Fig. 5 are not real lines but are composed of high-density
discrete points. The horizontal axis shows the issue volume while the vertical axis -
the coupon rate. Each point of the bars in Fig. 5 is an acceptable combination of
issue volume and coupon rate for the cat-bond. There are clear negative relations
between issue volume and coupon rate.

2.3 Moral Hazard

Let us consider 26000 acceptable combinations of issue volume and coupon rate
derived from the model to analyze the dynamics of insurers risk reserve (Fig. 6).
Each dark line in Fig. 6 matches a point in Fig. 5. These dark lines display the
state of insurers risk reserve if he has a bond with corresponding coupon rate and
issue volume from Fig. 5. According to typhoon losses data in China from 1990 to
2005 (National Bureau of Statistics of China 2006), typhoon catastrophes occurred
in 1992, 1994, 1996, 1997, 2001 and 2003 where the losses in 1994 and 1996 had
been extremely large exceeding 20 billion RMB. If an insurer issues a cat-bond with
any of the 26000 combinations suggested by the model, it survives all the typhoon
catastrophes within 16 years. Figure 6 shows that the insurer’s risk reserve presents
positive jumps increasing during the catastrophe years. The reason of these jumps
is, for these years, the capital outflows stemming from the catastrophe insurance

Fig. 6 Risk reserve dynamics with catastrophe bond (initial model)
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claim are much lower than the inflows due to compensation from cat-bond. This
means that the insurer receives extra profits from the catastrophe event. These gains
are due to a large issuance volume of cat-bond. Large profitability of catastrophes
may decrease insurer’s incentives to insure catastrophe losses and directly lead to
insurer’s moral hazard. To account for this effect, we include considerations of moral
hazard in the initial model (1)–(2), which we discuss in the next section.

3 Model with Moral Hazard Safety Constraints

3.1 Moral Hazard Constraint

We revise the model (1)–(2) by including the considerations of moral hazard as
an additional safety constraint. When the insurer applies for cat-bond issuance
permission, the moral hazard issues are considered by government or regulation
commission.

Formally, the moral hazard is defined as B.�/ > L.�/ �', which means that once
the trigger event occurs, the payment insurer gets from cat-bond is greater than the
insurance claims.

The cat-bond payment B.�/ is estimated as the following:

B.t/ D n � B0 � Œa � .1 C rf /t�T C b � rc �
T �tX
iD0

.1 C rf /�i � (4)

where a is the portion of principal the bond holder will lose once a catastrophe
occurs, b is the portion of coupon rate the bond holder will lose once a catastrophe
occurs. A safety constraint related to moral hazard in addition to constraints (1) is
formulated as follows:

P.B.�/ > L.�/ � 'j� 2 Œ0; T �/ � � (5)

meaning that the government or regulation commission will not provide the issuance
permission unless the probability of moral hazard to insurer is less than a certain
level � . The constraint excludes bonds with large values B.�/ consistently with
safety constraint (5).

3.2 Comparative Analysis of Results

To test the risk transfer efficiency and the moral hazard potential, we simulate the
risk reserve behavior in the typhoon risk case in China (from 1980 to 2005) using
the accepted combinations from the new model with parameter ˛ D ˇ D � D 0:01.
The risk reserve trajectories are shown in Fig. 7.



376 S. Liu and L. Han

Fig. 7 Risk reserve movement of insurer with catastrophe bond (revised model)

The dash line in Fig. 7 shows the dynamics of insurer’s risk reserve without cat-
bond. In this situation, the insurer will become bankrupt in 1994. All the dark lines
which have been concentrated to three bundles in Fig. 7 show the trajectories of risk
reserves with cat-bond having one of the coupon rate and issue volume suggested by
the revised model with moral hazard safety constraint. The risk reserve is positive
through all years and does not increase much by the cat-bond issuance in catastrophe
years. This means the moral hazard does not affect trajectories. These results
illustrate that the revised model reduces or even eliminates the moral hazard risks of
the original model. It is also clear that compared to the results of the original model,
the moral hazard safety constraint narrows down the issue volume of cat-bond and
reduces the number of acceptable “issue volume-coupon rate” combinations, what
simplifies the decision making process for government, regulation commissions, and
insurers.

4 Conclusions

The proposed model includes the issue volume as an output in cat bond pricing. The
model overcomes the shortage of cat-bond trading data, and therefore it is applicable
to countries with short cat-bond issuance history. Monte Carlo simulations allows
to derive negative relationship between bond’s issue volume and coupon rate. This
relation can also be considered as the supply curve of cat-bond, which is useful for
the issuer to make decisions on cat-bond issue scale.
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The application of the model to typhoon risks in China indicates that the issue
volume of the cat-bond’s supply curve will be limited due to moral hazard risk
safety constraint. Simulated risk reserve trajectories demonstrates that the model
with moral hazard constraint better explains the relationship between bond’s issue
volume and coupon rate. However, there are still some challenges for future work.
As catastrophe is a small probability event, Monte Carlo simulation requires fast
versions. Otherwise, large sample sizes are time consuming. Besides, our future
work needs to treat better inherent uncertainties of data: the required historical data
may be missing. It is important also to develop a specific stochastic optimization
method that would substantially reduce the time for selecting feasible robust cat-
bond parameters.
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