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Some of these notes are based on parts of (Elton & Gruber 1995) and (Harrington 1987).
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Chapter 1

Markowitz portfolio theory

Definition 1 The simple return on a financial instrument P· is Pt−Pt−1

Pt−1
.

This definition has a number of caveats:

• The time from t− 1 to t is one business day. Thus it is the daily return. We could also

be interested in monthly returns, annual returns, etc.

• Pt is a price. Sometimes a conversion needs to be made to the raw data in order to

achieve this. For example, if we start with bond yields yt, it doesn’t make much sense

to focus on the return as formulated above. Why?

• We need to worry about other income sources, such as dividends, coupons, etc.

• The continuous return is ln Pt

Pt−1
. This has better mathematical and modelling properties

than the simple return above. For example, it is what occurs in all financial modelling

and (hence) is what we used for calibrating a historical volatility calculator. However,

it is bad for portfolios - see Tutorial. See (J.P.Morgan & Reuters December 18, 1996,

TD4ePt2.pdf, §4.1) for additional information and clues.

1.1 Axioms of the theory

The Markowitz framework (Markowitz 1952) is often generically known as the mean-variance

framework. The assumptions (axioms) of this model are

1. Investors base their decisions on expected return and risk, as measured by the mean and

variance of the returns on various assets.
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Figure 1.1: An individual will prefer B, C and D to A - but which one is most preferable?

2. All investors have the same time horizon. In other words, they are concerned only with

the utility of their terminal wealth, and not with the state of their portfolio beforehand,

and this terminal time is the same for all investors.

3. All investors are in agreement as to the parameters necessary, and their values1, in the

investment decision making process, namely, the means, variances and correlations of

returns on various investments.

4. Financial assets are arbitrarily fungible.

The basic tenant of the Markowitz theory is that knowing the mean and standard deviation

of the returns on the portfolio is sufficient, and that our desire is to maximise the expected

return and to minimise the standard deviation of the return. The standard deviation is the

measure of riskiness of the portfolio.

One thing that is obvious (because individuals are utility maximisers), is that they will

always switch from one investment to another which has the same expected return but less

risk, or one which has the same risk but greater expected return, or one which has both greater

expected return and less risk.

1This means that information is freely and simultaneously available to all market participants.
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1.2 The expected return and risk of a portfolio of assets

Suppose we have a portfolio with n assets, the ith of which delivers a return Rt,i at time t.

This return has a mean µt,i and a variance σ2
t,i. Suppose the proportion of the value of the

portfolio that asset i makes up is wi (so
∑n

i=1 wi = 1).

What is the mean and standard deviation of the return R of the portfolio? All known

values are assumed to be known at time t, and the t will be implicit in what follows. We can

suppress the subscript t as long as we understand that all of the parameters are dynamic and

we need to refresh the estimates on a daily basis.

µ := E [R] = E

[
n∑

i=1

wiRi

]
=

n∑
i=1

wiE [Ri] =
n∑

i=1

wiµi (1.1)

and

σ2(R) = E
[
(R− µ)2

]

= E

[
(

n∑
i=1

wi(Ri − µi))
2

]

= E

[
n∑

i=1

n∑
j=1

wiwj(Ri − µi)(Rj − µj)

]

=
n∑

i=1

n∑
j=1

E [wiwj(Ri − µi)(Rj − µj)]

=
n∑

i=1

n∑
j=1

wiwjcovar (Ri, Rj)

=
n∑

i=1

n∑
j=1

wiwjσi,j

= w′Σw

where w =




w1

w2
...

wn


 and Σ = [σi,j] =




σ11 · · · · · · · · · σ1n
...

. . .
...

...
. . .

...
...

. . .
...

σn1 · · · · · · · · · σnn




. This is called the covari-

ance matrix. So, the return on the portfolio has

E [R] = w′µ

σ(R) =
√

w′Σw.
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Note that

• σij is the covariance between Ri the return on asset i and Rj the return on asset j.

• σ2
i = σii is the variance of Ri.

• ρij =
σij

σiσj
is the correlation of Ri and Rj.

We will denote

• the covariance matrix by Σ;

• the correlation matrix [ρij] =




ρ11 · · · · · · · · · ρ1n
...

. . .
...

...
. . .

...
...

. . .
...

ρn1 · · · · · · · · · ρnn




by P;

• the diagonal matrix of standard deviations




σ1 0 · · · · · · 0

0 σ2
...

...
. . .

...
...

. . . 0

0 · · · · · · 0 σn




by S.

Then

Σ = SPS (1.2)

and so

σ(R) =
√

w′SPSw (1.3)

1.3 The benefits of diversification

Let us consider some special cases. Suppose the assets are all independent, in particular,

they are uncorrelated, so ρij = δij. (δij is the indicator function.) Then σ2(R) =
∑n

i=1 w2
i σ

2
i .

Suppose further that the portfolio is equally weighted, so wi = 1
n

for every i. Then

σ2(R) =
n∑

i=1

1

n2
σ2

i =
1

n

n∑
i=1

σ2
i

n
−→ 0

as n −→ ∞. If we accept that variance is a measure of risk, then the risk goes to 0 as we

obtain more and more assets.
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Suppose now that the portfolio is equally weighted, but that the assets are not necessarily

uncorrelated. Then

σ2(R) =
n∑

i=1

n∑
j=1

1

n2
σij

=
1

n

n∑
i=1

σ2
i

n
+

n− 1

n

n∑
i=1

n∑

j=1,j 6=i

σij

n(n− 1)

=
1

n
σ2

i +
n− 1

n
σij,i6=j

−→ σij,i6=j as n −→∞
The limit is the average covariance, which is a measure of the undiversifiable market risk.

1.4 Delineating efficient portfolios

Remember that in the theory we are dealing with now, the mean and standard deviation of the

return on an asset or portfolio is all that is required for analysis. We plot competing portfolios

with the standard deviation on the horizontal axis and expected return on the vertical axis

(risk/return space).

1.4.1 Only long positions allowed

Consider the case where we have a portfolio of two risky assets, both held long. Then

w1, w2 ≥ 0

w1 + w2 = 1

E [R] = w1µ1 + w2µ2

σ2(R) =
[

w1 w2

] [
σ1 0

0 σ2

] [
1 ρ

ρ 1

] [
σ1 0

0 σ2

] [
w1

w2

]

= w2
1σ

2
1 + 2w1w2ρσ1σ2 + w2

2σ
2
2

We can consider some special cases:

• If ρ = 1, then σ2(R) = (w1σ1 +w2σ2)
2, so σ(R) = w1σ1 +w2σ2. Then we have a straight

line in risk/return space.

• If ρ = 0, then σ2(R) = w2
1σ

2
1 + w2

2σ
2
2. We have part of a hyperbola in risk/return space.

• If ρ = −1, then σ2(R) = (w1σ1 − w2σ2)
2, so σ(R) = |w1σ1 − w2σ2|. Then we have a

“hooked line” in risk/return space.
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Figure 1.2: Two risky assets held long; differing correlations.

These possibilities are always paths connecting (σ1, µ1) to (σ2, µ2). The portfolio which

has the least risk is called the minimum risk/variance portfolio. Since w2 = 1− w1, σ2(R) is

always an upwards facing quadratic in w1, so the value of w1 where this minimum occurs can

be found by writing down the axis of symmetry of the parabola.2 One gets

w1 =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

. (1.4)

Since σ2(R) is greatest when ρ = 1 (all other factors fixed) the path always lies to the left of

a straight line between two points on the path. This means that the curve is convex.

Now we suppose there are possibly more than two assets.

The set of attainable points in risk/return space is no longer a line segment or curve but

a “cloud” of points. Given any two points in the set, a convex path within the set connects

them.

The minimum risk portfolio exists, being the leftmost point on this set.

The maximum return portfolio exists, being the portfolio which consists only of the asset

with the highest expected return.

Since any rational investor will

• Prefer a greater expected return to a smaller, risk being fixed,

2This might lead to a value of w1 outside [0, 1], in which case the minimum occurs at one of the endpoints.
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Figure 1.3: Three risky assets held long.

• Prefer a smaller risk to a greater, expected return being fixed,

the set of points that we need consider (and the corresponding portfolios) form the so called

efficient frontier.

Definition 2 The efficient frontier is the set of portfolios on the upper left boundary of the

attainable set, between the minimum variance portfolio and the maximum return portfolio.

Which one of these portfolios will any investor choose? He will choose the one that max-

imises their utility. Thus, they will choose the portfolio marked in the diagram.

Everybody’s utility curves are different (and unquantifiable, but that is another matter).

Thus everybody will choose different portfolios.

How to find the efficient frontier here is problematic. Optimisers are required. In the next

section there will be no constraints on short selling, and the problem becomes one of pure

linear algebra, and so can be solved in an understandable way.

1.4.2 Long and short positions allowed

If short sales are allowed, the condition that wi ≥ 0 disappears, while the condition that∑n
i=1 wi = 1 remains. Most parts of the above analysis remain or generalise easily.
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Figure 1.4: The portfolio chosen to maximise the utility of the individual investor

Figure 1.5: Three risky assets held long or short
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There is now no upper bound to the efficient frontier: it does not end with the “maximum

return” portfolio as defined above. This is because we can short sell the asset with low

expected returns (or generally, some combination of assets with low expected returns) and use

the funds to go long assets with higher returns. Since this can be done to an arbitrary level,

the efficient frontier continues without bound.

Definition 3 The efficient frontier with shorts allowed is the set of portfolios on the upper left

boundary of the attainable set, from the minimum variance portfolio and increasing without

bound.

1.4.3 Risk free lending and borrowing allowed

This is simply another asset with σ = 0, and known return r say. Lending is long and

borrowing is short.

Let w be the proportion of the portfolio invested in risky assets, with risk statistics µp, σp,

and 1− w in the risk free account. Then

E [R] = (1− w)r + wµp

= r + w(µp − r)

σ(R) = wσp

⇒ E [R] = r +
µp − r

σp

σ(R)

which is a straight line. When w = 0, we get the vertical intercept at (0, r). The slope is
µp−r

σp
. The rational investor, preferring higher returns to fewer returns at a fixed level of risk,

will want this line to have as steep a gradient as possible.

Thus, we start with a very steep downward sloping line going through (0, r) and rotate it

anti-clockwise while we have an attainable portfolio. The ’last’ portfolio is called the Optimum

Portfolio of Risky Assets (OPRA). We will quantify it by observing that of all such lines going

through the attainable region it is the one with maximal gradient. The investor can now place

themselves anywhere on this line through an appropriate amount of lending or borrowing and

using the remainder (which could be greater than one, if borrowing occurs - this is known as

gearing) to buy the OPRA.

The efficient frontier is no longer the best we can do for portfolio selection, because we can

always do better: we can place ourselves on the ray diagrammed, which is called the capital

market line. Finding the capital market line becomes merely a function of knowing the risk

free return and finding the OPRA.
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Figure 1.6: Finding the OPRA

1.5 Finding the Efficient frontier and in particular the

OPRA

We only consider the case where short sales are allowed.

In §1.4 we saw that even with 3 assets it is not obvious computationally how to find the

efficient frontier. In fact we can find the efficient frontier by manipulating the concept of

OPRA.

What we do is hypothetically vary the risk free rate. For each risk free rate r we get an

OPRAr. All of these OPRAr’s form the curved efficient frontier.

The problem thus reduces to finding the OPRA for any risk free rate r. We have

∂

∂w i
w′Σw = 2

n∑
j=1

wjσij (1.5)
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Figure 1.7: Finding the Efficient Frontier

Let θ = µp−r

σp
. We need to maximise θ. The constraint is

∑n
j=1 wj = 1.

θ =

∑n
j=1 wj(µj − r)√

w′Σw

⇒ ∂θ

∂wi

=

√
w′Σw(µi − r)−∑n

j=1 wj(µj − r)
2
Pn

j=1 wjσij

2
√

w′Σw

w′Σw

⇒ 0 = µi − r −
∑n

j=1 wj(µj − r)

w′Σw

n∑
j=1

wjσij

⇒ 0 =




µ1

µ2
...

µn


− r




1

1
...

1


− λΣ




w1

w2
...

wn




where it happens that

λ =

∑n
j=1 wj(µj − r)

w′Σw
. (1.6)
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λ is known as the market price of risk; more on this later (in this course and elsewhere!). Thus

λ




w1

w2
...

wn


 = Σ−1




µ1 − r

µ2 − r
...

µn − r


 (1.7)

and we can solve for w1, w2, . . . , wn, using the fact that
∑n

j=1 wj = 1. Having done so, the

point (σ, µ) calculated in the usual way with these weights is on the efficient frontier.

To summarise

• By varying r, we can find the efficient frontier,

• By fixing r (to be what it really is) we can find the OPRA,

• The OPRA and r together give us the capital market line.

1.6 Callibrating the model

Nobody uses the Markowitz model anymore. However, if we were to use a toy model with real

data, the parameters that are required might be found using the EWMA method. Likewise

for CAP-M, which features in the next chapter. For convenience, these methods are repeated

below:

The data available is x0, x1, . . . , xt:

pi = ln
xi

xi−1

(1 ≤ i ≤ t) (1.8)

σ(0) =

√√√√10
25∑
i=1

p2
i (1.9)

σ(i) =
√

λσ2(i− 1) + (1− λ)p2
i 250 (1 ≤ i ≤ t) (1.10)

The rolling calculator for covolatility (i.e. annualised covariance) - see (Hull 2002, §17.7) - is

covol0 (x, y) =

(
25∑
i=1

pi(x)pi(y)

)
10 (1.11)

covoli (x, y) = λcovoli−1 (x, y) + (1− λ)pi(x)pi(y)250 (1 ≤ i ≤ t) (1.12)

Following on from this, the derived calculators are

ρi(x, y) =
covoli (x, y)

σi(x)σi(y)
(1.13)

βi(x, y) =
covoli (x, y)

σi(x)2
(1.14)
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the latter since the CAP-M β is the linear coefficient in the regression equation in which y is

the dependent variable and x is the independent variable. The CAP-M intercept coefficient α

has to be found via rolling calculators. Thus

p1(x) = 10
25∑
i=1

pi(x) (1.15)

pi(x) = λpi−1(x) + (1− λ)pi(x)250 (1 ≤ i ≤ t) (1.16)

and likewise for p(y). Then

αi(x, y) = pi(y)− βi(x, y)pi(x) (1.17)

However, the historical approach would not be used for finding the expected return: the

above measure is historical, and while one can claim that history will provide a good estimate

for the other parameters, it is unlikely to provide a good measure for expected returns. Here,

we might be more reliant on subjective or econometric criteria. No information in this regard

is provided by (Elton & Gruber 1995) or (Harrington 1987). All that is provided in (Elton &

Gruber 1995) are some toy examples with annual (historical) returns being used as predictors

of drift. This is indeed a serious shortcoming of the model.

We will see a partial answer to this question in Chapter 4.
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Chapter 2

Capital Asset Pricing Model

2.1 The single index model

The fundamental objection to the Markowitz theory is the need for 2n+
(

n
2

)
parameters. While

typically in this course we use values derived from historical data analysis, for an institution to

add value they will need to forecast parameters, which is impractical if the number of required

parameters is large.

The model of Sharpe (Sharpe 1964) is the first simplified model - the simplification is in

the data requirements - and led to Markowitz and Sharpe winning the Nobel Prize in 1990.

All that is required is parameter estimation of how the security will behave relative to the

market. Estimation of pairwise behaviour is not required.

The model starts with a regression equation

Ri(t) = αi + βiR(t) + ei(t) (2.1)

where

R(t) the return at time t for the market

i the index for a single security

Ri(t) the return on the single security i at time t

αi the α-parameter of security i

βi the β-parameter of security i

ei(t) a random variable, with expectation 0, and independent from R(t).

This is all purely regression analysis: Ri(t) (dependent variable) is regressed in t against

R(t) (independent variable), with linear term βi and constant coefficient αi. In sample, re-

gression analysis ensures that the ei(t) have sample mean 0 and that the R(t) are uncorrelated

to ei(t).

Our regression analysis will be performed using Exponential Weighted Moving Averages.
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The fundamental assumption of a single index model is that the ei are independent in i - in

other words, ei and ej are independent for i 6= j. Hence equities move together systematically

only because of market movement. There is nothing in the regression analysis that ensures

that this will be true in sample. It doesn’t even make sense practically. After all, resource

stocks might move together in some statistically significant sense, finance stocks likewise,

etc. Thus, the major generalisations of the CAP-M model were multifactor models. There

is even a concept of multi-linear regression in the EWMA scheme, which can be used here

for calibration. We won’t consider these multifactor models in this course. See (Elton &

Gruber 1995, Chapter 8), for example.

Note that

E [Ri(t)] = αi + βiE [R(t)] (2.2)

It follows that

E
[
(Ri −Ri)

2
]

= E
[
(βi(R−R) + ei)

2
]

= β2
i σ

2(R) + σ2(ei)

and so

σ2
i = β2

i σ
2(R) + σ2(ei). (2.3)

Similarly we have

E
[
(Ri −Ri)(Rj −Rj)

]
= E

[
(βi(R−R) + ei)(βj(R−R) + ej)

]
= βiβjσ

2(R)

and so

σij = βiβjσ
2(R). (2.4)

Hence, the covariance matrix of n of these assets is given by

Σ =




β2
1σ

2(R) + σ2(e1) β1β2σ
2(R) · · · β1βnσ

2(R)

β2β1σ
2(R) β2

2σ
2(R) + σ2(e2)

...
...

. . .
...

βnβ1σ
2(R) . . . . . . β2

nσ2(R) + σ2(en)




= β β′σ2(R) +




σ2(e1) 0 · · · · · · 0

0 σ2(e2)
...

...
. . .

...
...

. . . 0

0 · · · · · · 0 σ2(en)




:= β β′σ2(R) + Σe (2.5)

We are now in a situation to consider portfolios. Suppose we have a portfolio with weights

17



w1, w2, . . . , wn, and model parameters α1, α2, . . . , αn and β1, β2, . . . , βn. Let

αP =
n∑

i=1

wiαi (2.6)

βP =
n∑

i=1

wiβi (2.7)

This definition is motivated by the fact that

E [RP (t)] = αP + βPE [R(t)] . (2.8)

As a crucial special case of this we can suppose P is the market portfolio M ie. the portfolio

that makes up the market M that is being used in this analysis. Then αP = 0 and βP = 1.

Thus an equity with β > 1 is to be thought of as being more risky than the market and one

with β < 1 is to be thought of as being less risky than the market.

The efficient frontier can now be found using the same techniques as that for the Markowitz

model. However the number of parameters now required for estimation is 3n+2: the α’s, β’s,

σ(e)’s, the volatility of the return on the market and the expected return on the market.

2.2 CAP-M and diversification

For any portfolio P

σ2(P ) = w′Σw

= w′(β β′σ2(R) + Σe)w

=

(
n∑

i=1

wiβi

)2

σ2(R) +
n∑

i=1

w2
i σ

2(ei)

Now let wi = 1
n
. Then

σ2(P ) = β
2
σ2(R) +

1

n
σ2(e·)

and so

σ(P ) −→ β σ(R).

This reaffirms that βi is a measure of the contribution of the ith security to the risk of the

portfolio. βi σ(R) is called the market, or undiversifiable, risk of security i. σ(ei) is called

the non-market risk, unsystematic risk, unique risk or residual risk of equity i. This risk is

diversifiable.
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2.3 The Sharpe-Lintner-Mossin CAP-M

The CAP-M is what is known as an equilibrium model. The market participants as a whole

act to put the market into equilibrium.

A number of additional simplifying assumptions (over and above those of Markowitz) are

made in the CAP-M which are thought to be not too far removed from reality, yet are useful

in order to simplify (or even make possible) the derivation of the model. Of course, a set of

such assumptions is necessary in any economic model. In this model, they are:

1. Short sales are allowed.

2. There is a risk free rate for lending and borrowing money. The rate is the same for

lending and borrowing, and investors have any amount of credit.

3. There are no transaction costs in the buying and selling of capital assets.

4. Similarly, there are no income or capital gains taxes.

5. The market consists of all assets. (No assets are exclusively private property.)

2.4 The intuition of CAPM

By homogeneity, everybody has the same r and the same OPRA. This is then the market.

Now accept that β is the appropriate measure of risk of a security. This is intuitive because

all investors are holding some amount of the market, and the non-systematic risk has been

diversified away. By classic no-arbitrage considerations, all securities lie on a straight line

when plotted in β−µ space.1 Two such portfolios are the riskless asset alone and the market

alone. Thus (0, r) and (1, µM) are points on this line in β − µ space, so the line has equation

µi − r = βi(µM − r) (2.9)

which is known as the equation of the security market line, and ‘is’ CAP-M.

2.5 A formal proof of CAPM

Recall from §1.5 that when finding the optimal portfolio,

λΣw = µ− r1 (2.10)

1When plotting these, if we have a security say above the line, we buy it and go short a security on or
below the line. We can arrange to have a portfolio with no risk (zero β), no investment required, and positive
return.
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and so

λw′Σw = w′(µ− r1). (2.11)

Since we have homogeneity, all investors select the same optimum portfolio. Thus in equilib-

rium this portfolio is the market i.e. all securities are represented and their weights are the

weights they have in the market. Thus, w′Σw = σ2(M) and so

λσ2(M) = µM − r (2.12)

and we have once again solved for λ. But also,

n∑
j=1

wjσij =
n∑

j=1

wjE [(Ri − µi)(Rj − µj)]

= E

[
n∑

j=1

wj(Ri − µi)(Rj − µj)

]

= E [(Ri − µi)(RM − µM)]

= σiM .

We now substitute into the ith line of (2.10):

µM − r

σ2(M)
σiM = µi − r

or

µi = r +
µM − r

σ2(M)
σiM = r + βi(µM − r) (2.13)

which is the same as (2.9).

2.6 CAPM and prices

Here we manipulate the Capital Asset Pricing Model into an equivalent equation of prices,

rather than returns. Suppose we are at time t, and the horizon is at t + 1. Let us denote

prices by P . Thus R = Pt+1−Pt

Pt
.

It follows from this that σiM =
covar(Pt+1,i,Pt+1,M )

Pt,iPt,M
and σM =

σ(Pt+1,M )

Pt,M
. Substituting into

(2.13) we get

Pt+1,i − Pt,i

Pt,i

= r +

(
Pt+1,M − Pt,M

Pt,M

− r

)
covar(Pt+1,i, Pt+1,M)

σ2(Pt+1,M)

Pt,M

Pt,i

.

Multiplying through by Pt,i, we have

Pt+1,i − Pi(t) = Pi(t)r +
(
Pt+1,M − Pt,M − rPt,M

) covar(Pt+1,i, Pt+1,M)

σ2(Pt+1,M)
.
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Rearranging, we get

Pt+1,i − (Pt+1,M − Pt,M − rPt,M)
covar(Pt+1,i, Pt+1,M)

σ2(Pt+1,M)
= Pt,i + Pt,ir,

or

Pt,i =
1

1 + r

[
Pt+1,i − (Pt+1,M − (1 + r)Pt,M)

covar(Pt+1,i, Pt+1,M)

σ2(Pt+1,M)

]
(2.14)

which is the price equilibrium equation.

Such equations are common in Mathematics of Finance. 1
1+r

represents the risk-free dis-

counting function, Pt+1,i is the expected value of the asset, and the remaining negative term

indicates a compensating factor for the investor’s willingness to take on risk. The term in

square brackets is known as the certainty equivalent.

Pt+1,M − (1 + r)Pt,M

σ(Pt+1,M)
(2.15)

is the market price of risk, while

covar(Pt+1,i, Pt+1,M)

σ(Pt+1,M)
(2.16)

is the price of risk associated with the individual security.
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Chapter 3

Arbitrage Pricing Theory

The first generalisations of CAP-M were multi-index models. Later Steven Ross (Ross 1976)

developed a different approach to explain the pricing of assets: pricing can be influenced by

any ‘abstract’ factors.

3.1 The Theory

The axioms of the Arbitrage Pricing Theory are

1. Investors seek return tempered by risk; they are risk-averse and seek to maximise their

terminal wealth.

2. There is a risk free rate for lending and borrowing money.

3. There are no market frictions.

4. Investors agree on the number and identity of the factors that are systematically impor-

tant in pricing assets.

5. There are no riskless arbitrage pricing opportunities.

The model starts with a linear equation

Ri(t) = ai +
J∑

j=1

bijIj(t) + ei(t) (3.1)

where
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Ij(t) the value at time t of index j, J ≤ n− 2.

i the index for a single security

Ri(t) the return on the single security i at time t

ai the a-parameter of security i

bij the sensitivity of the return on security i to the level of index j

ei(t) a random variable, with expectation 0, and ....

the ei are assumed independent of each other, and independent of Ij.

This appears to be a multi-factor version of the CAP-M model where the returns are

sensitive to the levels of indices, rather than to the returns of the single index (the market).

However, we now take a quite different turn, because typical APT indices include (Roll &

Ross Fall 1983):

• unanticipated changes in inflation

• unanticipated changed in industrial production

• unanticipated changes in risk premia, as measured in corporate bond spreads

• unanticipated changes in the slope and level of the term structure of interest rates

The APT theory involves a derivation of an equilibrium model, via an assumption of

homogeneous expectations.

Suppose we have a portfolio P with weights w1, w2, . . . , wn. Using the model, we have

RP =
n∑

i=1

wiRi

=
n∑

i=1

wi

(
ai +

J∑
j=1

bijIj + ei

)

=
n∑

i=1

wiai +
n∑

i=1

J∑
j=1

wibijIj +
n∑

i=1

wiei
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As a consequence, we define/have

aP =
n∑

i=1

wiai

bPj =
n∑

i=1

wibij

eP =
n∑

i=1

wiei

RP = aP +
J∑

j=1

bPjIj + eP

RP = aP +
J∑

j=1

bPjIj.

Since ei can be diversified away in the portfolio, the investor must not expect reward for ei.

Thus the investor is only concerned about the risk parameters bPj and the values of Ij. The

bPj are the appropriate measure of risk for a portfolio, and if two portfolio’s have the same

b’s then they have the same risk.

Consider b1 =




b11

b21
...

bn1


, b2 =




b12

b22
...

bn2


, . . . , bJ =




b1J

b2J
...

bnJ


. This forms a set of J vectors

in Rn. Append 1 =




1

1
...

1


 ∈ Rn to this set, and call it S. Let E [R] =




R1

R2
...

Rn


 ∈ Rn be the

vector of expected returns of the n securities in the market.

Suppose w ∈ S⊥, and consider the portfolio P induced by (w1, w2, . . . , wn). Since w ⊥ 1,

we have
∑n

i=1 wi = 0, so there is no cost to entering into P . Since w ⊥ bj, we have
∑n

i=1 wibij =

0 for 1 ≤ j ≤ J , so P bears no index risk. Also, by some diversification arguments, we can

assume the residual risk is 0. Thus, P has no expected return, so
∑n

i=1 wiRi = 0, and

w ⊥ E [R].

Thus, S⊥ ⊂ E [R]⊥, and so E [R] ∈ S⊥⊥ = span S and so

E [R] = λ1 +
J∑

j=1

λjbj.
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for some λ1, λ2, . . . , λJ ∈ R. Thus

Ri = λ +
J∑

j=1

λjbij (3.2)

for 1 ≤ i ≤ n and some λ, λ1, λ2, . . . , λJ ∈ R. Note that this holds for every i, with λ and

λ1, λ2, . . . , λJ the same each time. It remains to find out what they are. Note that for any

portfolio P ,

RP = λ +
J∑

j=1

λjbPj.

Considering a riskless portfolio, with bPj = 0 for each j, we have λ = r. Hence

RP = r +
J∑

j=1

λjbPj.

Choosing a portfolio with bPj = 1 once only, and bPj = 0 otherwise - this is the portfolio

exposed only to index j, so we must think of it as being a position in index j itself - we have

RIj
= r + λj

and so λj = RIj
− r. Thus

Ri = r +
J∑

j=1

(RIj
− r)bij. (3.3)

3.2 Consistency of APT and CAPM

CAP-M says that

RIj
= r + βIj

(RM − r).

Hence

Ri = r +
J∑

j=1

(RIj
− r)bij

= r +
J∑

j=1

βIj
(RM − r)bij

:= r + βi(RM − r)

where

βi =
J∑

j=1

βIj
bij
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Chapter 4

The Black-Litterman model

This model was introduced in (Black & Litterman 1992).

4.1 Another look at Markowitz and CAPM

Let us start by determining what are the expected returns of each stock under the Markowitz

model and under CAP-M.

Let Wi be the value of the wealth in asset i. Thus, the relationship between wi and Wi

is: Wi = wiV where V is our wealth. This V might be total wealth, trading wealth, or risky

wealth; and which one it is needs to be made clear in the context. In Markowitz, for example,

V is total wealth: not only the value of our shares and risk free assets, but also the value of

our car, house, etc. Trading wealth might refer to risky assets and the risk free asset (cash on

deposit). Risky wealth refers to risky assets only.

Under the Markowitz model and in equilibrium, the ratio

µi

∂
∂Wi

√
W ′ΣW

:=
µi

∆i

(4.1)

is a constant. See (Litterman 2003, Chapter 2). More precisely, it should be a constant, for if

µ1

∆1

<
µ2

∆2

then by decreasing the holding of asset 1 and increasing the holding of asset 2, we can obtain

an increase in the expected return of the portfolio without an increase in risk. To be precise,

sell ε worth of asset 1 and buy ε∆1

∆2
worth of asset 2.

The change in expected cash return is −εµ1 + ε∆1

∆2
µ2 > 0. However, the change in risk is

given (using Taylor series) by −ε∆1 + ε∆1

∆2
∆2 = 0 to first order. Thus, we have an improved

position, with the same risk but greater return.
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Now,

∂

∂Wi

√
W ′ΣW =

1

2
√

W ′ΣW
2

n∑
j=1

Wjσij

=
1√

W ′ΣW

n∑
j=1

Wjσij

=⇒ µ = KΣw (4.2)

for some constant K, sometimes called the risk aversion parameter. This approach actually

enables us to reduce the estimation of expected returns to the choice of risk-aversion parameter.

On the other hand, under CAPM, using equation (2.9) we have

µ = r1n + β(µM − r) (4.3)

and so the expected return on each asset reduces to estimating the expected return on the

market. See also (Litterman 2003, Chapter 5).

Having calculated the expected returns of each instrument, what portfolio do we hold?

We hold a portfolio which is consistent with (1.7). Thus

w = KΣ−1(µ− r1n) (4.4)

We can have
∑n

i=1 wi be any value: if this sum is greater than 1, the portfolio is geared by

borrowing, if it is less than 1 then lending of cash is occurring.

We can eliminate K by simply scaling so that
∑n

i=1 wi = 1. Thus the model is telling us

what weights to have in our portfolio of risky assets, and V is now the portfolio of risky assets.

4.2 Expected returns under Black-Litterman

The Black-Litterman model essentially allows us to have some views on some of the stocks in

the portfolio. Thus, the investor is not asked to specify a vector of expected excess returns,

one for each asset. Rather, the investor focuses on one or more views.

If, for example, we have one view, namely that one of the stocks is going to perform

better than the return found in the previous section, the portfolio with views will be broadly

similar to the market portfolio, but will be overweight in that share. This overweightedness

is known as a tilt. It will in fact also have tilts towards shares that are strongly correlated to

it. Moreover, the degree of tilt will be a function of the confidence that we have in that view.

Let Π be the equilibrium return vector found using one of the equilibrium models i.e Π = µ

in (4.2) or (4.3). The vector of expected returns including views is given by

µ
v

=
[
(τΣ)−1 + P ′D−1P

]−1 [
(τΣ)−1Π + P ′D−1V

]
(4.5)
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where

• µ
v

is the new (posterior) expected return vector,

• τ is a scalar,

• Σ is the covariance matrix of returns,

• P is a k × n matrix identifying the stocks in the k different views,

• D is a k × k diagonal matrix of error terms in expressed views representing the level of

confidence in each view (these confidences are assumed independent),

• V is the k × 1 view vector.

We will focus on three different types of views (Idzorek 2002):

1. A will have an absolute return of 10% (Confidence of View = 50%);

2. A will outperform B by 3% (Confidence of View = 65%);

3. A market weighted portfolio of A and B will outperform a market weighted portfolio of

C, D and E by 1.5% (Confidence of View = 30%).

and we can comment on these views as follows:

1. If A has an equilibrium return of less than 10%, the BL portfolio will tilt towards A, if

more than 10%, the BL portfolio will tilt away;

2. If A has an equilibrium return of less than 3% more than B, the BL portfolio will tilt

towards A and away from B, if more than 3% more than B, the BL portfolio will tilt

away from A and towards B;

3. As above, but we compare the weighted equilibrium return of A and B with the weighted

equilibrium return of C, D and E.

Now, in the above example, V =




0.10

0.03

0.15


, D =




0.50−1c 0 0

0 0.65−1c 0

0 0 0.30−1c


 where c is a

calibration factor to be discussed shortly, and

P =




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·

wA

wA+wB

wB

wA+wB
− wC

wC+wD+wE
− wD

wC+wD+wE
− wE

wC+wD+wE
· · ·


 where the w· are mar-

ket capitalisation weights.
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The scalar τ is more or less inversely proportional to the relative weight given to the

implied equilibrium returns.

The only issues outstanding are the parameter τ and the calibration factor c. These

problems are in fact related, and the literature is not clear about resolving this problem.

According to (He & Litterman 1999), (Idzorek 2002) we have

c = 1
2
1′kPΣP ′1k (4.6)

τ =
trace (D)

2kc
(4.7)

Having determined the expected returns, we choose the portfolio with weights given by

w = KΣ−1(µ
v
− r1n) (4.8)

where again K is the risk aversion parameter (and again K can be eliminated if desired).

If all views are relative views then only the stocks which are part of those views will

have their weights affected. If there are absolute views then all the stocks will have change

in returns and weights, since each individual return is linked to the other returns via the

covariance matrix of returns.

As usual as soon as there are constraints on short selling the model is much more difficult

to use. One possibility is to use the vector of returns with views in a Markowitz model which

has those short selling constraints included, as in §1.4.1.
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Figure 4.1: Equilibrium returns for a small index
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Figure 4.2: Black-Litterman portfolio with views

31



32



Bibliography

Black, F. & Litterman, R. (1992), ‘Global portfolio optimization’, Financial Analysts Journal

48(5), 28–43.

Elton, E. J. & Gruber, M. J. (1995), Modern Portfolio Theory and Investment Analysis, Wiley.

Harrington, D. R. (1987), Modern Portfolio Theory, The Capital Asset Pricing Model and

Arbitrage Pricing Theory: A User’s Guide, second edn, Prentice Hall.

He, G. & Litterman, R. (1999), ‘The intuition behind Black-Litterman model portfolios.’,

Investment Management Research. Goldman, Sachs and Company .

Hull, J. (2002), Options, Futures, and Other Derivatives, fifth edn, Prentice Hall.

Idzorek, T. (2002), ‘A step-by-step guide to the Black-Litterman model’.

J.P.Morgan & Reuters (December 18, 1996), RiskMetrics - Technical Document, fourth edn,

J.P.Morgan and Reuters, New York.

*http://www.riskmetrics.com

Litterman, B., ed. (2003), Modern Investment Management: an equilibrium approach, Wiley.

Quantitative Resources Group Goldman Sachs Asset Management.

Markowitz, H. (1952), ‘Portfolio selection’, Journal of Finance 7(1), 77–91.

Roll, R. & Ross, S. A. (Fall 1983), ‘The merits of the arbitrage pricing theory for portfolio

management’, Institute for Quantitative Research in Finance pp. 14–15.

Ross, S. A. (1976), ‘The arbitrage theory of capital asset pricing’, Journal of Economic Theory

13, 341–360.

Sharpe, W. F. (1964), ‘Capital asset prices - a theory of market equilibrium under conditions

of risk’, Journal of Finance pp. 425–442.

33


