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Preface

can explain. ..

I This material began as a panoply of notes for a series of talks I gave in
late 2007 and in 2008, after the publication of The Handbook of Portfo-
lio Mathematics.

In those talks, I spoke of how there exists a plethora of market analy-
sis, selection and timing techniques including charts and fundamental anal-
ysis, trading systems, Elliot waves, and on and on—all sorts of models and
methods, technical and otherwise, to assist in timing and selection.

You wouldn’t initiate a trade without using the analysis you special-
ize in, but there is another world, a world of quantity, a world “out there
someplace,” which has either been dark and unknown or, at best, fraught
with heuristics. You will begin to understand this as I show you how those
heuristics have evolved and are, very often, just plain wrong. Numerous
Nobel Prizes have been awarded based on some of those widely accepted
principles. I am referring specifically to the contemporary techniques of
combining assets into a portfolio and determining their relative quantities.
These widely accepted approaches, however, are wrong and will get you
into trouble. I will show you how and why that is. They illuminate nothing,
aside from providing the illusion of safety through diversification. In the
netherworld of quantity, those flawed techniques still leave us in the dark.

There are still fund managers out there who use those atavistic tech-
niques. They stumble blindly along the dim, twisted pathways of that
netherworld. This is akin to trading without your charts, systems, or other
analytical tools. Yet most of the world does just that. (See Figure P.1.)

And whether you acknowledge it or not, it s at work on you, just as
gravity is at work on you.

Pursuing my passion for this material, I found there is an entire domain
that I have sought to catalogue, regarding quantity, which is just as impor-
tant as the discipline of timing and selection. This other area is shrouded
in darkness and mystery, absent a framework or even a coordinate system.
Once I could apply a viable framework, I found this dark netherworld alive
with fascinating phenomena and bubbling with geometrical relationships.
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FIGURE P.1 Market Analysis and Position Sizing (Both Equally Necessary)

Most importantly, the effects of our actions regarding quantity decisions
were illuminated.

I have encountered numerous frustrations while trying to make this
point since the publication of Portfolio Management Formulas in 1990:
People are lazy. They want a card they can put into a bank machine and get
money. Very few want to put forth the mental effort to think, or to endure
the necessary psychological pain to think outside of their comfortable, self-
imposed boxes. They remain trapped within their suffocating, limited men-
tal notions of how things should operate. Incidentally, I do not claim im-
munity from this.

When I alluded to quantity as the “other, necessary half” of trading, I
was being overly generous, even apologetic about it. After all, some of the
members of my audiences were revered market technicians and notable
panjandrums. Indeed, I believe that quantity is nearly 100 percent of the
matter, not merely half, and I submit that you are perhaps better off to
disregard your old means of analysis, timing, and selection altogether.

Yes, I said 100 percent.

On Saturday, 26 January 2008, I was having lunch in the shadow of
Tokyo Tower with Hiroyuki Narita, Takaaki Sera, and Masaki Nagasawa.
Hiro stirred the conversation with something I had only marginally had
bubbling in my head for the past few years.

He said something, almost in passing, about what he really needed as
a trader. It knocked me over. I knew, suddenly, instantly, that what he was
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(seemingly rhetorically) asking for is what all traders need, that it is some-
thing that no one has really addressed, and that the answer has likely been
floating in the ether all around us. I knew at that moment that if I thought
about this, got my arms around it, it would fulminate into something that
would change how I viewed everything in this discipline which I had been
obsessed with for decades.

In the following days, I could not stop thinking about this. Those guys
in Tokyo didn’t have to do a hard sell on me that day. I knew they were
right, and that everything I had worked on and had compulsively stored in
a corner of my mind for decades was (even more so) just a mere framework
upon which to construct what was really needed.

I might have been content to stay holed up in my little fort along the
Chagrin River, but an entirely new thread was beginning to reveal itself.

On the flight home, in the darkness of the plane, unable to sleep, in the
margins of the book I was reading, I began working on exactly this.

That’s where this book is going.

RALPH VINCE
Selby Library, Sarasota
August 2008






Introduction

roughly three centuries, and how they have, and continue, to change.

Itis the story of how resources should be combined, when confronted
with one or more prospects of uncertain outcome, where the amount of
such resources you will have for the next prospect of uncertain outcome
is dependent on what occurs with this outcome. In other words, your
resources are not replenished from outside.

It is a story that ultimately must answer the question, “What are you
looking to accomplish at the end of this process, and how do you plan to
implement it?” The answer to this question is vitally important because
it dictates what kinds of actions we should take. Given the complex and
seemingly pathological character of human desires, we are presented with
a fascinating puzzle within a story that has some interesting twists and
turns, one of which is about to take place.

There are some who might protest, “Some of this was published ear-
lier!” They would certainly be correct. A lot of the material herein presents
concepts that I have previously discussed. However, they are necessary
parts of the thread of this story and are provided not only for that rea-
son but also in consideration of those readers who are not familiar with
these concepts. Those who are familiar with the past concepts, peppered
throughout Parts I and II of this story, can gloss over them as we build with
them in Part III.

As mentioned in the Preface, this material began as a panoply of notes
for a series of talks I gave in late 2007 and in 2008 after the publication
of The Handbook of Portfolio Mathematics (which, in turn, built upon
previous things I had written of, along with notes of things pertaining to
drawdowns, which I had begun working on in my spare time while at the
Abu Dhabi Investment Authority, a first-rate institution consisting of first-
rate and generous individuals whom I had the extreme good fortune to be
employed by some years ago). I designed those talks to illustrate the con-
cepts in the book, in a manner that made them simpler, more intuitive,
essentially devoid of mathematics and, therefore, more easily digestible. I

T his is a storybook, not a textbook. It is the story of ideas that go back
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have drawn from those talks and fleshed them out further for this book,
with their mathematical derivations and explanations of how to perform
them. This comprises a good portion of the early sections of this text.
This background, at least conceptually, is necessary to understand the new
material.

One idea, discussed at length in the past, needs to be discussed before
we begin the story. It is the concept of Mathematical Expectation. This is
called “Expected Value,” by some, and it represents what we would expect
to make, on average, per play, when faced with a given “prospect”—an
outcome we cannot yet know, which may be favorable or not. The concept
isintroduced in 1657 in a treatise by the Dutch Mathematician and Physicist
Christian Huygens, at the prompting of Blaise Pascal.

This value, the Mathematical Expectation (ME), is simply the sum of
the products of the probabilities and payoffs of all the ways something
might turn out:

n
ME =) (PixA)
i=1

where: P; = the probability associated with the i™ outcome
A; =the result of the 7™ outcome
n = the total number of possible outcomes

For example, assume we toss a coin and if it's heads we win two units
and if it’s tails we lose one unit. There are two possible outcomes, +2 and
—1, each with a probability of 0.5.

An MFE of 0 is said to be a “fair” gamble. If MF is positive, it is said to be
a favorable gamble, and if negative, a losing gamble. Note that in a game
with a negative ME (that is, most gambling games), the probability of
going broke approaches certainty as you continue to play.

The equation for Mathematical Expectation, or “expected value,” is
quite foundational to studying this discipline.

Mathematical Expectation is a cornerstone to our story here. Not only
is it a cornerstone to gambling theory, it is also a cornerstone to princi-
ples in Game Theory, wherein payoff matrices are often assessed based on
Mathematical Expectation, as well as the discipline known as Economic
Theory. Repeatedly in Economic Theory we see the notion of Mathemat-
ical Expectation transformed by the theory posited. We shall see this in
Chapter 6.

However prevalent and persistent the notion of Mathematical Expec-
tation, it must be looked at and used with the lens of a given horizon, a
given lifespan. Frequently, viable methods are disregarded by otherwise-
intelligent men because they show a negative Mathematical Expectation
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(and vice versa). This indicates a misunderstanding of the basic concept of
Mathematical Expectation.

By way of example, let us assume a given lottery that is played once a
week. We will further assume you are going to bet $1 on this lottery. Let us
further assume you are a young man, and you plan to play this for 50 years.
Thus, you expect 52 = 50 = 2,600 plays you will be able to make.

Now let’s say that this particular lottery has a one-in-two-million
chance of winning a $1 million jackpot (this is for mere illustrative pur-
poses, most lotteries having much lower probabilities of winning. For ex-
ample, “Powerball,” as presently played in the United States, has less than
a 1-in-195,000,000 chance of winning its jackpot). Thus we see a negative
expectation in our example lottery of:

1/2,000,000 % 1,000,000 + 1,999,999/2,000,000 x — 1 = —0.4999995

Thus, we expect to lose —$0.4999995 per week, on average, playing this
lottery (and based on this, we would expect to lose over the course of the
50 years we were to play this, 2,600 = —0.4999995 = —$1,300).

Mathematical Expectation, however, is simply the “average,” outcome
(i.e., it is the mean of this distribution of the ways the future plays might
turn out). In the instant case, we are discussing the outcome of 2,600 plays
taken from a pool of two million possible plays, allowing for sample and
replacement. Thus, the probability of seeing the single winning play in any
randomly chosen 2,600 is:

1/2,000,000 % 2,600 = .0000005 * 2,600 = .0013

From this, we can say that (1 — .0013 = .9987) 99.87 percent of the
people who play this lottery every week for the next 50 years will lose
$2,600. About 1/8 of 1 percent (.0013) will win $1 million (thus netting
1,000,000 — 2,600 = $997,400). Clearly the mode of the distribution of out-
comes for these 2,600 plays is to lose $2,600, even though the mean, as
given by the Mathematical Expectation, is to lose $1,300.

Now, let’s reverse things. Suppose now we have one chance in a million
of winning $2 million. Now our Mathematical Expectation is:

1/1,000,000 2,000,000 + 999,999/1,000,000 * — 1 = 1.000001

A positive expectation. If our sole criteria was to find a positive ex-
pectation, you would think we should accept this gamble. However, now
the probability of seeing the single winning play in any randomly chosen
2,600 is:

1/1,000,000 % 2,600 = .000001 * 2,600 = .0026
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In this positive expectation game, we can expect 99.74 percent of the
people who play this over the next 50 years to lose $2,600. So is this positive
expectation game a “good bet?” Is it a bet you would play expecting to
make $1.000001 every week?

To drive home this important point we shall reverse the parameters of
this game one more time. Assume a lottery wherein you are given $1 every
week, with a one-in-one-million chance of losing $2 million. The Mathemat-
ical Expectation then is:

999,999/1,000,000 % 1 4+ 1/1,000,000 %« — 2,000,000 = —1.000001

Thus, we expect to lose —1.000001 per week, on average, playing this
lottery (and based on this, we would expect to lose over the course of the
50 years we were to play this, 2,600 = —1.000001 = —$2,600).

Do we thus play this game, accept this proposition, given its negative
Mathematical Expectation? Consider the probability that the 2,600 weeks
we play this for will see the two million loss:

1/1,000,000 % 2,600 = 0.000001 % 2,600 = .0026

Thus, we would expect that 99.74 percent (1 — .0026) of the people
who play this game will never see the $2 million loss. Instead, they will be
given a dollar every week for 2,600 weeks. Thus, about 399 out of every
400 people who play this game will not see the one-in-a-million chance of
losing $2 million over the course of 2,600 plays.

I trace out a path through 3D space not only of the places I go, but on
a planet that revolves roughly once every 24 hours, about a heliocentric
orbit of a period of roughly 365 1/4 days, in a solar system that is migrating
through a galaxy, in a galaxy that is migrating through a universe, which
itself is expanding.

Within this universe is an arbitrary-sized chunk of matter, making its
own tangled path through 3D space. There is a point in time where my head
and this object will attempt to occupy the same location in 3D space. The
longer I live, the more certain I will see that moment.

Will I live long enough to see that moment? Likely not. That bet is a
sure thing; however, its expectation approaches 1.0 as the length of my life
approaches infinity. Do you want to accept that bet?

Clearly, Mathematical Expectation, a cornerstone of gambling theory,
of money management as well as Economic Theory, must be utilized with
the lens of a given horizon, a given lifespan. Hence the often-overlooked
caveat in the definition provided earlier for Mathematical Expectation, “as
you continue to play.”

Often you will see the variable N throughout. This refers to the
number of components in a portfolio, or the number of games played
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simultaneously. This is not to be confused with the lowercase n, which
typically herein will refer to the total number of ways something might
turn out.

Readers of the previous books will recognize the term “market sys-
tem,” which I have used with ubiquity. This is simply a given approach
applied to a given market. Thus, I can be trading the same market with two
different approaches, and therefore have two separate market systems. On
the other hand, I can be trading a basket of markets with the same system
and then have a basket of market systems. Typically, a market system is
one component in a portfolio (and the distribution of outcomes of a market
system is the same as the distribution of prices of the market comprising
it, only transformed by the rules of the system comprising it).

Some of the ideas discussed herein are not employed, nor is there a
reason to employ them. Among these ideas is the construction of the mean-
variance portfolio model. Readers are referred to other works on these
topics, and in the instant case, to Vince (1992).

I want to keep a solitary thread of reasoning running throughout the
text, rather than a thread with multiple tentacles, which, ultimately, is re-
dundant to things I have written of previously. Any redundancy in this text
is intentional and used for the purpose of creating a clean, solitary thread
of reasoning. After all, this is a storybook.

Therefore, some things are not covered herein even though they are
necessary in the study of money management. For example, dependency is
an integral element in the study of these concepts, and I recommend some
of the earlier books I have written on this subject (Vince 1990, 2007) to
learn about dependency.

Some other concepts are not covered but could be, even though they
are not necessary to the study of money management. One such concept
is that of normal probability distribution. As mentioned above, I've tried
to keep this book free of earlier material that wasn’t in the direct line
of reasoning that this book follows. With other material, such as apply-
ing the optimal f notion to other probability distributions (because the
ideas herein are applicable to non—market-related concepts of geomet-
ric growth functions in general), I've tried to maintain a market-specific
theme.

Furthermore, some concepts are often viewed as too abstract, and so
I am trying to make their applicability empirically related, for instance, by
using discrete, empirically derived distributions in lieu of parametric ones
pertaining to price (since, as mentioned earlier, the distributions of trading
outcomes are merely the distributions of prices themselves, altered by the
trading rules). The world we must exist in, down here on the shop floor
of planet earth, is so often not characterized by normal distributions or
systems of linear equations.
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One major notion I have tried to weave throughout the text is that of
walk-through examples, particularly in Chapters 4, 5, and 7, covering the
more involved algorithms. In these portions of the text, I have tried to pro-
vide tables replete with variate values at different steps in the calculations,
so that the reader can see exactly what needs to be performed and how to
do it. I am a programmer by profession, and I have constructed these exam-
ples with an eye toward using them to debug attempted implementations
of the material.

Where math is presented within the text, I have tried to keep it sim-
ple, straightforward, almost conciliatory in tone. I am not trying to razzle-
dazzle here; I am not interested in trying to create Un Cirque du Soleil
Mathématique. Rather, I am seeking as broad an audience for my concepts
as possible (hence the presentation via books, as opposed to arcane jour-
nals, and where the reader must do more than merely scour a free web
page) in as accessible a manner as possible. My audience, I hope, is the
person on the commuter train en route home from the financial district in
any major city on the planet. I hope that this reader will see and sense,
innately, what I will articulate here. If you, Dear Reader, happen to be a
member of the world of academia, please keep this in mind and judge me
gently.

Often throughout this text the reader may notice that certain mathe-
matical expressions have been left in unsimplified form, particularly cer-
tain rational expressions in later chapters. This is by intent so as to facili-
tate the ability of the reader to “see” innately what is being discussed, and
how the equations in question arise. Hence, clarity trumps mathematical
elegance here.

Finally, though the math is presented within the text, the reader may
elect not to get involved with the mathematics. I have presented the text in
amanner of two congruent, simultaneous channels, with math and without.
This is, after all, a story about mathematical concepts. The math is included
to buttress the concepts discussed but is not necessary to enjoy the story.
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CHAPTER 1

The General
History of
Geometric Mean
Maximization

maximizing the size of a stake when the amount you have to wager

is a function of the outcome of the wagers up to that point. You are
trying to maximize the value of a stake over a series of plays wherein you
do not add or remove amounts from the stake.

The lineage of reasoning of geometric mean maximization is crucial,
for it is important to know how we got here. I will illustrate, in broad
strokes, the history of geometric mean maximization because this story
is about to take a very sharp turn in Part III, in the reasoning of how we
utilize geometric mean maximization. To this point in time, the notion of
geometric mean maximization has been a criterion (just as being at the
growth-optimal point, maximizing growth, has been the criterion before
we examine the nature of the curve itself).

We will see later in this text that it is, instead, a framework (something
much greater than the antiquated notion of “portfolio models”). This is an
unavoidable perspective that gives context to our actions, but our crite-
rion is rarely growth optimality. Yet growth optimality is the criterion that
is solved mathematically. Mathematics, devoid of human propensities, pro-
clivities, and predilections, can readily arrive at a clean, “optimal” point. As
such, it provides a framework for us to satisfy our seemingly labyrinthine
appetites.

On the ninth of September 1713, Swiss mathematician Nicolaus
Bernoulli, whose fascination with difference equations had him corres-
ponding with French mathematician Pierre Raymond de Montmort, whose

( ; eometric mean maximization, or “growth-optimality,” is the idea of
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fascination was finite differences, wrote to Montmort about a paradox that
involved the intersection of their interests.

Bernoulli described a game of heads and tails, a coin toss in which
you essentially pay a cover charge to play. A coin is tossed. If the coin
comes up heads, it is tossed again repeatedly until it comes up tails. The
pot starts at one unit and doubles every time the coin comes up heads. You
win whatever is in the pot when the game ends. So, if you win on the first
toss, you get your one unit back. If tails doesn’t appear until the second
toss, you get two units back. On the third toss, a tails will get you four units
back, ad infinitum.

Thus, you win 2¢°! units if tails appears on the gth toss.

The question is “What should you pay to enter this game, in order for it
to be a ‘fair’ game based on Mathematical Expectation?”

Suppose you win one unit with probability .5, two units with proba-
bility .25, four units with probability .125, ad infinitum. The Mathematical
Expectation is therefore:

1 1 1
0 1 2
ME =2 *21+2 *22+2 *23~~~ (1.01)

ME=5+5+5...

o0
ME=Y"5=o00
q=1

The expected result for a player in such a game is to win an infinite
amount. So just what is a fair cover charge, then, to enter such a game?!
This is quite the paradox indeed, and one that shall rendezvous with us in
the sequel in Part III.

The cognates of geometric mean maximization begin with Nicolaus
Bernoulli’s cousin, Daniel Bernoulli.>3 In 1738, 18 years before the birth

1A cover charge would be consistent with the human experience here. After all, it
takes money to make money (though, it doesn’t take money to lose money).
2Daniel was one of eight members of this family of at least eight famous mathemati-
cians of the late seventeenth through the late eighteenth century. Daniel was cousin
to Nicolaus, referred to here, whose father and grandfather bore the same name.
The grandson, Daniel’s cousin, is often referred to Nicolaus I, and as the nephew
of Jakob and Johann Bernoulli, the latter being Daniel’s father. As an aside, one of
Daniel’s two brothers was also named Nicolaus, and he is known as Nicolaus II,
who would thus be cousin as well to Nicolaus I, whose father was named Nicolaus
as well as his grandfather (the grandfather thus to not only Nicolaus I, but to Daniel
and his brothers, including Nicolaus II).

3Though in our context we look upon Daniel Bernoulli in the context of his pioneer-
ing work in probability, he is primarily famous for his applications of mathematics
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of Mozart, Daniel made the first known reference to what is known as “ge-
ometric mean maximization.” Arguably, his paper drew upon the thoughts
and intellectual backdrop of his era, the Enlightenment, the Age of Rea-
son. Although we may credit Daniel Bernoulli here as the first cognate of
geometric mean maximization (as he is similarly credited as the father of
utility theory by the very same work), he, too, was a product of his time.
The incubator for his ideas began in the 1600s in the belching mathematical
cauldron of the era.

Prior to that time, there is no known mention in any language of even
generalized optimal reinvestment strategies. Merchants and traders, in any
of the developing parts of the earth, evidently never formally codified the
concept. If it was contemplated by anyone, it was not recorded.

As for what we know of Bernoulli’s 1738 paper (originally published
in Latin), according to Bernstein (1996), we find a German translation ap-
pearing in 1896, and we find a reference to it in John Maynard Keynes’ 1921
Treatise on Probability.

In 1936, we find an article in The Quarterly Journal of Economics
called “Speculation and the carryover” by John Burr Williams that per-
tained to trading in cotton. Williams posited that one should bet on a repre-
sentative price and that if profits and losses are reinvested, the method of
calculating this price is to select the geometric mean of all of the possible
prices.

Interesting stuff.

By 1954, we find Daniel Bernoulli’'s 1738 paper finally translated into
English in Econometrica.

When so-called game theory came along in the 1950s, concepts were
being widely examined by numerous economists, mathematicians, and aca-
demicians, and this fecund backdrop is where we find, in 1956, John L.
Kelly Jr.’s paper, “A new interpretation of information rate.” Kelly demon-
strated therein that to achieve maximum wealth, a gambler should maxi-
mize the expected value of the logarithm of his capital. This is so because
the logarithm is additive in repeated bets and to which the law of large
numbers applies. (Maximizing the sum of the logs is akin to maximizing the
product of holding period returns, that is, the “Terminal Wealth Relative.”)

In his 1956 paper in the Bell System Technical Journal, Kelly showed
how Shannon’s “Information Theory” (Shannon 1948) could be applied to
the problem of a gambler who has inside information in determining his
growth-optimal bet size.

When one seeks to maximize the expected value of the stake after n
trials, one is said to be employing “The Kelly criterion.”

to mechanics and in particular to fluid mechanics, particularly for his most famous
work, Hydrodynamique (1738), which was published the very year of the paper of
his we are referring to here!
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The Kelly criterion states that we should bet that fixed fraction of our
stake (f) that maximizes the growth function G(f):

G(f)=Px+In(l+Bx f)+ (1 - P)*In(1 — f) (1.02)

where: f =the optimal fixed fraction
P =the probability of a winning bet/trade
B =the ratio of amount won on a winning bet to amount lost on
a losing bet
In() =the natural logarithm function

Betting on a fixed fractional basis such as that which satisfies the Kelly
criterion is a type of wagering known as a Markov betting system. These
are types of betting systems wherein the quantity wagered is not a function
of the previous history, but rather, depends only upon the parameters of
the wager at hand.

If we satisfy the Kelly criterion, we will be growth optimal in the long-
run sense. That is, we will have found an optimal value for f (as the optimal
f is the value for f that satisfies the Kelly criterion).

In the following decades, there was an efflorescence of papers that
pertained to this concept, and the idea began to embed itself into the
world of capital markets, at least in terms of academic discourse, and
these ideas were put forth by numerous researchers, notably Bellman and
Kalaba (1957), Breiman (1961), Latane (1959), Latane and Tuttle (1967),
and many others.

Edward O. Thorp, a colleague of Claude Shannon, and whose work de-
serves particular mention in this discussion, is perhaps best known for his
1962 book, Beat the Dealer (proving blackjack could be beaten). In 1966,
Thorp developed a winning strategy for side bets in baccarat that employed
the Kelly criterion. Thorp has presented formulas to determine the value
for f that satisfies the Kelly criterion.

Specifically:

If the amount won is equal to the amount lost:

f=2«xP—-1 (1.03)
which can also be expressed as:

f=P-Q (1.03a)

where: f =the optimal fixed fraction
P =the probability of a winning bet/trade
@ = The probability of a loss, or the complement of P, equal to 1
-P
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Both forms of the equation are equivalent

This will yield the correct answer for the optimal f value provided
the quantities are the same regardless of whether a win or a loss. As an
example, consider the following stream of bets:

-1, +1, +1, -1, -1, +1, +1, +1, +1, —1
There are 10 bets, 6 winners, hence:
f=2x6-1
=12-1
=.2

If all of the winners and losers were not for the same size, then this
formula would not yield the correct answer. Reconsider our 2:1 coin toss
example wherein we toss a coin and if heads comes up, we win two units
and if tails we lose one unit. For such situations the Kelly formula is:

f=(@B+DL*P—-1)/B (1.04)

where: f =the optimal fixed fraction
P =the probability of a winning bet/trade
B =the ratio of amount won on a winning bet to amount lost on a
losing bet

In our 2:1 coin toss example:

fF=@+1D5-1)2

=@Bx.5-1)/2
= (15— 1)/2
= 5/2

=25

This formula yields the correct answer for optimal f provided all wins
are always for the same amount and all losses are always for the same
amount (that is, most gambling situations). If this is not so, then this for-
mula does not yield the correct answer.

Notice that the numerator in this formula equals the Mathematical Ex-
pectation for an event with two possible outcomes. Therefore, we can say
that as long as all wins are for the same amount, and all losses are for the
same amount (regardless of whether the amount that can be won equals
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the amount that can be lost), the f that is optimal is:
f = Mathematical Expectation/B (1.05)

The concept of geometric mean maximization did not go unchal-
lenged in subsequent decades. Notables such as Samuelson (1971, 1979),
Goldman (1974), Merton and Samuelson (1972), and others posited various
and compelling arguments to not accept geometric mean maximization as
the criterion for investors.

By the late 1950s and in subsequent decades there was a different, al-
beit similar, discussion that is separate and apart from geometric mean
maximization. This is the discussion of portfolio optimization. This paral-
lel line of reasoning, that of maximizing returns vis-a-vis “risk,” absent the
effects of reinvestment, would gain widespread acceptance in the financial
community and relegate geometric mean maximization to the back seat in
the coming decades, in terms of a tool for relative allocations.

Markowitz’s 1952 Portfolio Selection laid the foundations for what
would become known as “Modern Portfolio Theory.” A host of others, such
as William Sharpe, added to the collective knowledge of this burgeoning
discipline.

Apart from geometric mean maximization, there were points of over-
lap. In 1969 Thorp presented the notion that the Kelly criterion should re-
place the Markowitz criterion in portfolio selection. By 1971 Thorp had
applied the Kelly criterion to portfolio selection. In 1976, Markowitz too
would join in the debate of geometric growth optimization. I illustrated
how the notions of Modern Portfolio Theory and Geometric Mean Op-
timization could overlap in 1992 via the Pythagorean relationship of the
arithmetic returns and the standard deviation in those returns.

The reason that this similar, overlapping discussion of Modern Port-
folio Theory is presented is because it has seen such widespread ac-
ceptance. Yet, according to Thorp, as well as this author (Vince 1995,
2007), it is trumped by geometric mean maximization in terms of portfolio
selection.

It was Thorp who presented the “Kelly Formulas,” which satisfy the
Kelly criterion (which “seeks to maximize the expected value of the stake
after n trials”). This was first presented in the context of two possible gam-
bling outcomes, a winning outcome and a losing outcome. Understand that
the Kelly formulas presented by Thorp caught hold, and people were trying
to implement them in the trading community.

In 1983, Fred Gehm referred to the notion of using Thorp’s Kelly For-
mulas, and pointed out they are only applicable when the probability of
a win, the amount won and the amount lost, “completely describe the
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distribution of potential profits and losses.” Gehm concedes that “this is not
the case” (in trading). Gehm’s book, Commodity Market Money Manage-
ment, was written in 1983, and thus he concluded (regarding determining
the optimal fraction to bet in trading) “there is no alternative except to use
complicated and expensive Monte Carlo techniques.” (Gehm 1983, p. 108)

In 1987, the Pension Research Institute at San Francisco State Uni-
versity put forth some mathematical algorithms to amend the concepts of
Modern Portfolio Theory to account for the differing sentiments investors
had pertaining to upside variance versus downside variance. This approach
was coined “Postmodern Portfolio Theory.”

The list of names in this story of mathematical twists and turns is
nowhere near complete. There were many others in the past three cen-
turies, particularly in recent decades, who added much to this discussion,
whose names are not even mentioned here.

I am not seeking to interject myself among these august names. Rather,
I am trying to show the lineage of reasoning that leads to the ideas pre-
sented in this book, which necessarily requires the addition of ideas I have
previously written about. As I said, a very sharp turn is about to occur for
two notions—the notion of geometric mean maximization as a criterion,
and the notion of the value of “portfolio models.” Those seemingly parallel
lines of thought are about to change.

In September 2007, I gave a talk in Stockholm on the Leverage Space
Model, the maximization for multiple, simultaneous positions, and juxta-
posed it to a quantification of the probability of a given drawdown. Near
the end of the talk, one supercilious character snidely asked, “So what’s
new? I don’t see anything new in what you've presented.” Without accus-
ing me outright, he seemed to imply that I was presenting, in effect, Kelly’s
1956 paper with a certain elision toward it.

This has been furtively volleyed up to me on more than one occasion:
the intimation that I somehow repackaged the Kelly paper and, further, that
what I have presented was already presented in Kelly. Those who believe
this are conflating Kelly’s paper with what I have written, and they are of-
ten ignorant of just what the Kelly paper does contain, and where it first
appears.

In fact, I have tried to use the same mathematical nomenclature as
Thorp, Kelly, and others, including the use of “f” and “G™* solely to provide
continuity for those who want the full story, how it connects, and out of

4In this text, however, we will refer to the geometric mean HPR as GHPR, as op-
posed to G, which is how I, as well as the others, have previously referred to it. I
am using this nomenclature to be consistent with the variable we will be referring
to later, AHPR, as the arithmetic mean HPR.
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respect for these pioneering, soaring minds. I have not claimed to be the
eponym for anything I have uncovered or added to this discussion.

Whether known by Kelly or not, the cognates to his paper are from
Daniel Bernoulli. It is very likely that Bernoulli was not the originator of
the idea, either. In fairness to Kelly, the paper was presented as a solution
to a technological problem that did not exist in Daniel Bernoulli’s day.

As for the Kelly paper, it merely tells us, for at least the second time,
that there is an optimal fraction in terms of quantity when what we have to
work with on subsequent periods is a function of what happens during this
period.

Yes, the idea is monumental. Its application, I found, left me with a
great deal of work to be done. Fortunately, the predecessors in this nearly
three-centuries-old story to these lines of thought memorialized what they
had seen, what they found to be true about it.

I was introduced to the notion of geometric mean maximization by
Larry Williams, who showed me Thorp’s “Kelly Formulas,” which he sought
to apply to the markets (because he has the nerve for it).

Seeing that this was no mere nostrum and that there was some inherent
problem with it (in applying those formulas to the markets, as they math-
ematically solve for a “2 possible outcome” gambling situation), I sought
a means of applying the concept to a stream of trades. Nothing up to
that point provided me with the tools to do so. Yes, it is geometric mean
maximization, or “maximizing the sum of the logs,” but it’s not in a gam-
bling situation. If I followed that path without amendment, I would end
up with a “number” between 0 and X. It tells me neither what my “risk” is
(as a percentage of account equity) nor how many contracts or shares to
put on.

Because I wanted to apply the concept of geometric mean maximiza-
tion to trading, I had to discern my own formulas, because this was not a
gambling situation (nor was it bound between 0 and 1), to represent the
fraction of our stake at risk, just as the gambling situation innately bounds
f between 0 and 1.

In 1990, I provided my equations to do just that. To find the optimal
f (for “fraction,” thus implying a number 0 <= f <= 1), given a stream of
trades (or, of periodic profits and losses; for example, the daily, or monthly,
or quarterly, or annual profit/loss), we must first convert them into a “Hold-
ing Period Return,” remaining within the nomenclature of those before me,
for a given f value, or “HPR(f).” This is simply 1 + the rate of return, and
is given as:

—trad
HPR(f) =1+ f % — 1 2%¢ (1.06)
BiggestLoss
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where: f =the value we are using for f
—trade = the profit or loss on a trade with the sign reversed
so that losses are positive numbers and profits are
negative
BiggestLoss =the P&L over the entire stream that resulted in
the biggest loss. (This should always be a negative
number.)

Thus, a gain of 5 percent would see an HPR(f) of 1.05. A loss of
5 percent would see an HPR( f") of .95.

By multiplying together all of the HPR( f)s, we obtain the “Terminal
Wealth Relative,” or “TWR( f).” This is simply the geometric product of the
HPR( f)s, and it represents the multiple made on our starting stake at the
end of the stream of profits and losses:

TWR(S) = [ [ HPR(S): 1.07)
i=1
or:
TR ) — “ ) —trade; 107
(f)—l_[( +f*m> (1.07a)

i=1

and geometric mean (GHPR(f)) is simply the »™ root of the TWR(f).
GHPR(f) represents the multiple you made on your stake, on average, per
HPR(f):

GHPR(f) =

n

1
n n /’ﬂ
[ [HPR(: = (]‘[HPR(f)i) (1.08)

i=1 i=1

or:

GHPR(f) = , l_[<l+f*

i=1

- 1 trade; n 108
H( S BzggestLoss) (1.082)

i=1

—trade;
BiggestLoss
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where: f =the value we are using for f
—trade; =the profit or loss on the i™ trade with the sign
reversed so that losses are positive numbers and
profits are negative
BiggestLoss =the P&L that resulted in the biggest loss. (This
should always be a negative number.)
n = the total number of trades
GHPR(f) =the geometric mean of the HPR(f)s

The value for f(0 <= f <= 1) that maximizes GHPR( f) (or TWR( ),
as both are maximized at the same value for f) is the optimal f. It is an op-
timization problem: Simply optimize f for greatest GHPR( ) or TWR(f).
The value for the optimal f is irrespective of the order the HPR( f)s occur
in; all permutations of a stream of HPR( f)s result in the same optimal f
value.

These equations would give you the same answer for the 2:1 coin toss
as the Kelly formula answer of f = .25. So, these formulas can be used in
lieu of the Kelly formulas. What’s more, these formulas work when there
are more than two possible outcomes.

Furthermore, the f derived from the 1990 procedure detailed here can
then be converted into a number of “units” to put on (number of shares
or contracts). Since the inputs in terms of trade; and biggest loss must be
determined from a particular trading size, be it 100 shares or one contract,
it can be any arbitrary, though consistent, amount you choose (which we
will call a “unit”). Thus, once an optimal f is determined, based on the
results of trading in one unit, we can determine how many units we should
have on for a given trade or period (depending upon whether the stream of
HPR( f)s was derived by using trades or periods) as:

f$ = —BiggestLoss/f (1.09)

f$ represents how much to capitalize each unit for a given trade or period
by. To then determine how many units to have on:

Number of Units to Assume = Account Equity/f$ (1.10)

For example, if we have a stake of 100 units, a biggest loss of —1 units
(using our 2:1 coin toss game here) and an f of .25, we would thus have:

f$ = —BiggestLoss/f
f$=—(—1)/.25
f$=1/25

Sf$=4
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(So, if one unit is one wager in this game, we make one wager for every
4 units in our stake):

Number of Units to Assume = 100/4 = 25

Thus, we make 25 wagers, which in this case correspond to a 25 per-
cent fraction of our stake risked.

If we were trading and we had an optimal f$ of .25, and our biggest loss
per unit was 10,000 units, we would have an f$ of 40,000 units and would
thus trade one unit per every 40,000 units in our account equity. Such a
position sizing would represent having 25 percent of our account at risk.

Do not be dissuaded by margin requirements. They have nothing to
do with what is the mathematically optimal amount to finance a trade by
(often, margin requirements will be more than f$).

Do not be dissuaded by having the variable BiggestLoss in the equa-
tions. This will be addressed in the following chapter.

So these equations can be used in lieu of the Kelly formulas for trad-
ing situations, but they are applicable to trading only one game, only one
component, at a given time.

However, I was interested in multiple, simultaneous games that were
not simply gambling games. I was interested in portfolios of tradable com-
ponents and thus had to determine my own equations for dealing with
multiple, simultaneous positions, because again, this is a trading situation.
Kelly and others intimated that such an approach could be worked out for
trading, and in my search for answers to these problems I had encountered
Mike Pascual, a brilliant fellow, who had worked it out for gambling situa-
tions (taking the Kelly Formulas to the next level—multiple, simultaneous
wagers). Yet even so I was left in a dead end in terms of applying this ap-
proach to market outcomes for the very same reasons that I could not apply
the Kelly Formulas to market outcomes of a single component; the distri-
bution of market outcomes is more complex than for gambling outcomes.
(I will not attempt to cover all that Pascual has covered; interested readers
are referred to Pascual [1987]).

I had to work out the formulas for geometric mean maximization for
market-related situations (and bounding the result, f, between 0 and 1) as
opposed to simpler, gambling illustrations, and I had to work it out for mul-
tiple, simultaneous “plays,” that is, “portfolios.” The equations for such will
be provided later in this story, when we get to the discussion of Leverage
Space Part II.

Most important, where the predecessors (including Kelly) of this “geo-
metric mean maximization” notion came up short for me, in terms of mar-
ket application, was that they only alluded to the fact that there was an
optimal point.
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Having an optimal point implies a curved function, and it is the dynam-
ics of the curve itself (as bound between 0 and 1, to put in context and
give meaning to being on the curve!) that we use to discern the informa-
tion about our actions in the marketplace. There are a great deal of infor-
mation, payoffs, and consequences to being at different points along this
curve (which, because we are oblivious to them, we are likely migrating
along with each trade, and hence, assuming different potential payoffs and
consequences from trade to trade!).

Furthermore, as I pursued my passion in this vein, I discovered what
really was an entire domain to this netherworld that had been heretofore
undiscovered: the very nature of the curve. Prior to my illumination of the
character of these curves (and the fact that they are at work on us whether
we acknowledge them or not), people, very smart guys in fact, would talk
about things like betting “half Kelly,” or other arbitrary, ad hoc things like
this. I could see that no one had explored the dynamics of the curve. That
is where the real story is here. (Because “half kelly” is an arbitrary point
in terms of the dynamics of the curve and shows a common perspective
that is oblivious to the dynamics of the curve, and hence, the tradeoffs of
the curve and the mathematically significant points moving and migrating
along it.)

It is the character of the curve whereupon the optimal point resides
that 7s what is the netherworld, it is leverage space. The nature of the curve
itself—that is where we find information about our actions, and therefore
what we shall discuss in forthcoming chapters.

I had unwittingly stumbled into what was an entire domain, found
myself in a place alive with geometric relationships, this place I call this
netherworld of “leverage space.” Things, the good predecessors in this line
of reasoning evidently never saw, which I have had the pleasure of being
utterly fascinated by.

Had others in this nearly three-centuries-old story seen this, they would
have memorialized in writing what they had seen regarding these things, as
I have tried to do over the decades.

I contend you are somewhere on the curve, ineluctably, and that there
are characteristics to being at different points on that curve that have not
been identified. Further, unless you are risking a certain, fixed, percentage
of your “stake” on each “play,” you are ineluctably migrating about that
curve, and the characteristics of those heretofore-unidentified points on
that curve apply to you, but unbeknownst to you.



CHAPTER 2

The Ineluctable
Coordinates

world of quantity with respect to a single, tradable instrument (which

for the single component case consists of a single curve in a two-

dimensional plane) by the variable f, as that is how it has been referred to
previously in the literature.

Everyone, on every trade, on every opportunity involving risk, has an

f value whether they acknowledge it or not. And we can determine your

assigned f value for any tradable instrument at any point in time as follows:

T o start with, we can pinpoint your location in this unknown nether-

f = |BiggestLoss|/f$ (2.01)
where:
f$ = Account Equity/Units (2.02)
(Recall that f$ represents how much capitalization is behind each
position.)
We can also state, as we have in the previous chapter, that:

f$% = |BiggestLoss|/f (1.09)

And again, a unit is a standard size, whatever you want it to be—for
instance, 100 shares, one futures or options contract, ten million USD in
forex, and so on.

21
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Example:

One unit will be 100 shares. Assume we have 2 units, 200 shares.
$50,000 account
Biggest Losing Outcome for One Unit is —$10,000

So:
f$ =50,000/2 = 25,000
Thus:
S =1-10,000]/25,000 = .4

From this, then, we can state that your f value, your location in lever-
age space, is .4.

Ah, there it is: Biggest Loss. I hear your protests already.

But you do know your biggest loss. It is that amount that answers the
question “What’s the absolute worst thing that can happen here?” without
regard to what the probability of that might be, short of the world suddenly
ending. Now, if you cannot answer that, it is still not a problem, and there
are solutions, as we will see momentarily.

So we can state that everyone, on every trade, has an “f value” that
can be assigned to them, a number (a “location,” a “coordinate”) between
0 and 1, ineluctably, whether they acknowledge this or not.

And the reason is that all of the inputs to determine that f value are
gtvens: quantity put on, biggest perceived losing outcome, and account
equity.

Lastly, don’t confuse the f value you ineluctably have with what is
the optimal f value. You may be at the optimal f value. Regardless, you
are at some f value, though it most likely is not the optimal value for f
(in terms of maximizing geometric growth).

Let’s take a tradable instrument, such as a bond priced at 60 today, and
consider what the future might hold. We can say that there is a cone that
goes into the future of possible outcomes. Actually, the cone is bell-shaped
on all three axes, comporting with the notion of volatility changing with
the square of time (on the X-axis), as well as the pareto-like nature of price
changes (where the cone flares, into a bell-like shape, on the Y- and Z-axes.)
See Figure 2.1.

Along the bell-shaped cone in three axes, we can look at the discrete
snapshots in time (which run along the X-axis) and derive pareto-like dis-
tributions at those X values, those discrete points in time. See Figure 2.2.

Remember, along the trajectory, not only the trajectory (which rep-
resents the mode of the probabilities functions along it) but also the
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Maturity

Time ——»

FIGURE 2.1 Trajectory Cone (Bell-Shaped on All 3 Axes)

probability functions themselves are affected by possible call or put pro-
visions, coupon dates, and so on. In real life, it is not as smooth as depicted
in Figure 2.2.

Essentially, we take continuous distributions of what can happen and
convert these to binned distributions. We’ll call each bin a “scenario,”
where each scenario has an outcome (A) and an associated probability (P).
See Figure 2.3.

.
A
%

Today -
Maturity

=

FIGURE 2.2 At Snapshots in Time, There Is a Distribution About the Trajectory
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FIGURE 2.3 The Distribution Can Be Made into Bins (a Scenario Is a Bin with a
Probability and an Outcome)

The biggest losing outcome is that of the leftmost scenario. Yes, the
tails on the left continue on into negative infinity in many cases (not the
lognormal, by the way), but one of the fundamental questions regarding
decisions of any type is always “What’s the worst thing that I think can
happen?”

Sometimes this is not so difficult. “Hey, I'm long 100 shares at 100 a
share. My biggest losing outcome is 10,000.”

Similarly if I am buying time premium in options, my biggest loss is
truncated, and other such left-tail-truncation vehicles exist.
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In other cases, absent such left-tail-truncation vehicles (or outright
long positions where the lognormal distribution truncates our biggest loss),
we select a worst case to budget for.

Finally, if you still cannot answer the question of “what’s the worst
thing that can happen?” it still does not mean you are not in the nether-
world of leverage space. It simply means that we're having a hard time
locating you down there, that’s all. Even that does not negate your having
ineluctable coordinates—only the coordinate system’s range.

The most important thing about defining a worst case scenario is to not
get hung up on it. It is required solely to bind the f value between 0 and 1.

In Chapter 1 we discussed our 2:1 coin toss example, and showed how
the optimal f for such a game is .25. Since the largest loss is —1, dividing
the absolute value of this by .25 yields an f$ of 4$ (|]—1|/.25 = 4), or make
one bet for every $4 in our stake. Now, if we arbitrarily say that our Biggest-
Loss parameter is $2 (leaving both scenarios the same, a loss of $1 and a
gain of $2, but using a new BiggestLoss parameter of $2 to (1.06) or (1.07a)
or (1.08a)) we find that our optimal f value is now .5. And we subsequently
divide the absolute value of our largest loss by the optimal f value, and
obtain an f$ of |—2|/.5 = 4. Again, we trade one unit, make one bet, for
every $4 in our stake. Table 2.1 demonstrates this for varying values of our
biggest loss, wherein the optimal f, for each row, is determined using that
row’s BiggestLoss in equations (1.06) or (1.07a) or (1.08a) in determining
the optimal f at that row.

Unlike the gambling situations, which the predecessors of geometric
mean maximization were primarily concerned with, I wanted to tie in the
similar notion here that you are risking % of your account equity. In other
words, if the biggest losing outcome manifests itself, we will lose f% of
the account at that time. That’s all. People look for reasons to categorically
dismiss this, but don’t do it based on the fact that I incorporate the worst
perceived loss a priori.

You see, we could use an arbitrary value in lieu of biggest loss, pump
it through the formulas, and guess what? For a given level of account

TABLE 2.1 f$ and GHPR Invariant to Biggest Loss

BiggestLoss f f$ GHPR
-0.6 15 4 1.125
-1 .25 4 1.125
-2 .5 4 1.125
-5 1.25 4 1.125
-29 7.25 4 1.125
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equity, you would optimally still trade the same number of units! Biggest
loss does not affect the final answers here. I incorporate it simply to bound
S between 0 and 1, so that it represents a percentage of your entire account
that is at risk, and so that it puts things on an apples-to-apples basis with the
predecessors who discussed geometric mean maximization in gambling
situations.

You can forget about margin, because that has nothing to do with the
optimal fraction of the stake to bet or the optimal fraction of an account
at risk. It has nothing to do with your leverage. From this point on, think
of “leverage” in terms of an f value. The conventional notion of leverage is
one that only warns, “Be careful, you're taking on a lot of risk.”

From now on, you will think of leverage as a number between 0 and 1,
a number that, if the worst case scenario does manifest, is the percentage
of account equity you lose. You see, f is your measure of leverage, whether
you've borrowed money to carry the position or not.

Here’s what you're doing in your technical analysis in effect: determin-
ing a positive mode—the single most likely outcome or “scenario”—to this
distribution. You may also be determining “confidence intervals,” on the
left and right, that is, targets, projections, stop losses, and so on.

However, even at that, are you using the probabilities of that infor-
mation in a manner that gives you an indication of how much quantity to
have on for an account? That is what we are going to do. We are going to
use these binned distributions (at a given point in time, that is, at a par-
ticular point along the trajectory cone), their bins, their “scenarios” as I
call them, which are a probability of something happening (the vertical
height of the bin, “P”) and the associated payoff or loss to it happening
(the horizontal location of the bin, “A”) to determine the optimal fraction
to bet.

Let’s look at a simplified distribution. Often, we can use gambling situ-
ations as a proxy for market situations because gambling illustrations tend
to be considerably simpler (fewer scenarios and therefore simpler distribu-
tions). The mathematics is the same except that market probabilities seem
to be “chronomorphic,” that is, they change with time.

Let’s again consider our 2:1 coin toss example. Essentially, to figure
the Mathematical Expectation of a binned distribution, we take the sum of
each bin’s outcome times its probability (Figure 2.4).

Here is our binned distribution—our scenario spectrum—and here are
its scenarios. Note that each scenario has a probability, P, associated with
it (.6 each) and an associated outcome, A (—1 and +2).

Which brings us back to the notion of Mathematical Expectation, or
“Expected Value.” In this case, the same formula given in the introduct-
ion for Mathematical Expectation is used to determine the expected
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FIGURE 2.4 2:1 Coin Toss Probability Outcome

value of the entire binned distribution, of the scenario spectrum:

n
ME = Z (P, * A)
=1

where: P; = the probability associated with the i scenario
A; =the result of the i*" scenario
n=the total number of scenarios under consideration

Essentially, to figure the Mathematical Expectation of a binned distri-
bution, we take the sum of each bin’s outcome times its probability.

Mathematical expectation is what we expect to make, on average, on
a given play.

In our 2:1 coin toss the ME is .5 units per play (—1 .64+ 2%.5=—.5
+ 1 =.5). But what if we are wagering only a fraction of our entire stake?

As mentioned earlier, for any scenario spectrum, any binned distribu-
tion, we have an f value. In this case, the 2:1 coin toss:

¢ Assume a 10 unit stake.

e Worst-Case Outcome —1 unit.

e We are wagering five units.

e Thus, f$ = 10/5 = 2 (one bet for every two units in our stake).

e Thus f=|—-1]/2=.5.

¢ Thus, when the biggest loss manifests, we lose f percent of our stake—
50 percent in this case.

You might be saying, “Okay, I have an f value, a value between 0 and 1,
but so what?”






CHAPTER 3

The Nature of
the Curve

think they make, based on various levels of leverage.

The vertical axis in Figure 3.1 represents the multiple on their stake
with respect to the horizontal axis, which represents the fraction of their
stake risked.

The function, the line in Figure 3.1, is simply 1 + ME/|BL| % f (where
f isthe fraction of your stake you are putting at risk. Thus, at 1.0 you would
expect a 1.5 multiple on your stake, given a .5 Mathematical Expectation).

People think this is a straight-line function, and in a “one-shot-sense,”
it is.

But the “one-shot-sense” is merely fiction. Here’s why.

People trade/bet in ways that are relative to the size of their stake or
account. (You wouldn’t trade a $5,000,000 account the same as a $50,000
one, would you? If an account went from, say, $100,000 to $500,000, would
you trade in the same quantity? What if it went the other way around?) It
happens to be a fortunate fact that an account grows fastest when traded
in size relative to the size of the account.

Most traders gloss over this decision about quantity. They feel that it is
somewhat arbitrary in that it doesn’t much matter what quantity they have
on. What matters is that they be right about the direction of the trade, that
is, that the mode of the distribution, the single most likely bin, be > 0.

Notice that if we have only one play, we maximize growth by max-
imizing the arithmetic average holding period return AHPR(f), (that is,
f = 1). If we have an infinite number of plays, we maximize growth by
maximizing the geometric average holding period return GHPR(f), (that

I n a game such as our 2:1 coin toss, Figure 3.1 shows what people would

29
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FIGURE 3.1 The Mistaken Impression

is, f = optimal /). However, the f that is truly optimal is a function of
the length of time—the number of holding period returns—which we are
going to play.!

For one holding period return, the optimal f will always be 1.0 for a
positive arithmetic Mathematical Expectation game. If we bet at any value
for f other than 1.0, and quit after only one holding period, we will not have
maximized our expected average geometric growth. What we regard as the
optimal f will be optimal only if you were to play for an infinite number
of holding periods. The f that is truly optimal starts at one for a positive
arithmetic Mathematical Expectation game, and converges toward what
we call the optimal f as the number of holding periods approaches infinity.

To see this, consider again our 2:1 coin toss game where we have de-
termined the optimal f to be .25. So, if the coin tosses are independent
of previous tosses, by betting 25 percent of our stake on each and every
play we will maximize our geometric growth with certainty as the length of
this game, the number of tosses (that is, the number of holding periods, 1)
approaches infinity. Our expected average geometric growth, then—what
we would expect to end up with, as an expected value, given every possible
combination of outcomes—would be greatest if we bet 25 percent per play.

Consider the first toss. There is a 50 percent probability of winning
two units, and a 50 percent probability of losing one unit. At the second
toss, there is a 25 percent chance of winning two units on the first toss
and winning two units on the second, a 25 percent chance of winning two
units on the first and losing one unit on the second, a 25 percent chance
of losing one unit on the first and winning two units on the second, and

INote that at n = 1, that is, if there is only 1 holding period, AHPR( /) = GHPR(f).
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a 25 percent chance of losing one unit on the first and losing one unit on
the second (we assume the outcomes of these coin tosses are independent
of the outcomes of previous tosses). The combinations bloom out in time
in a tree-like fashion as depicted below. Since we had only two scenarios
(heads and tails) in this scenario spectrum, there are only two branches
off each node in the tree. If we had more scenarios in this spectrum, there
would be that many more branches off of each node in this tree:

Toss #1 Toss #2 Toss #3

Heads
Heads
Tails
Heads
Heads
Tails
Tails
Heads
Heads
Tails
Tails
Heads
Tails
Tails

If we bet 25 percent of our stake on the first toss and quit, we will not
have maximized our expected average compound growth (EACG).

What if we quit after the second toss? What then optimally should we
bet knowing that we maximize our expected average compound gain by
betting at f = 1 when we are going to quit after one play, and betting at the
optimal f if we are going to play for an infinite length of time?

If we go back and optimize f, allowing a different f value to be used
for the first play as well as the second play, with the intent of maximizing
our average geometric mean HPR at the end of the second play, we would
find the following. First, the optimal f for quitting after two plays in this
game approaches the asymptotic optimal, going from 1.0 if we quit after
one play, to .5 for both the first play and the second. Put another way, if we
were to quit after the second play, we should optimally bet .5 on both the
first and second plays to maximize growth. (Remember that we allowed
for the first play to be an f value different from the second, yet they both
came out the same, .5 in this case. It is a fact that if you are looking to
maximize growth, the f that is optimal, for finite as well as infinite streams,
is uniform.)
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We can see this if we take the first two possible combinations of tosses:

Toss #1 Toss #2

Heads
Heads

Tails

Heads
Tails

Tails

This can be represented by the following outcomes:

Toss #1 Toss #2

2

2
-1
2

-1
-1

These outcomes can be expressed as holding period returns, for vari-
ous f values. In the following it is shown for an f of .5 for the first toss, as
well as an f of .5 for the second:

Toss #1 Toss #2

2
2

)

2
85}

5

Now we can express all tosses subsequent to the first toss as TWR( f)s
by multiplying by the subsequent tosses on the tree. The numbers following
the last toss on the tree, the numbers in parentheses, are the last TWR( f)s
taken to the root of 1/n, where n equals the number of holding periods,
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or tosses, in this case 2, and represent the geometric mean HPR for that
terminal node on the tree:

Toss #1 Toss #2 GHPR(.5)

4 2.0
2
1 1.0
1 1.0
-1
.25 0.5

Now if we total up the geometric mean HPRs, and take their arithmetic
average, we obtain the expected average compound growth, in this case:

2.0
1.0
1.0
0.5

45/4=1.125

Thus, if we were to quit after two plays, and yet do this same thing
over an infinite number of times (that is, quit after two plays), we would
optimally bet .5 of our stake on each and every play, thus maximizing our
expected average compound growth (EACG).

Notice that we did not bet with an f of 1.0 on the first play even
though that is what would have maximized our expected average com-
pound growth if we quit at one play. Instead, if we are planning on quitting
after two plays, we maximize our EACG growth by betting at .5 on both the
first play and all subsequent plays.

Notice that the f that is optimal in order to maximize growth is uni-
form for all plays, yet is a function of how long you will play. If you are
to quit after only one play, the f that is optimal is the f that maximizes
the arithmetic mean HPR (which is always an f of 1.0 for a positive ex-
pectation game, 0.0 for a negative expectation game). If you are playing a
positive expectation game, the f that is optimal continues to decrease as
the length of time at which you quit grows, and, asymptotically, if you play
for an infinitely long time, the f that is optimal is that which maximizes the
geometric mean HPR. In a negative expectation game, the f that is optimal
simply stays at 0.



34 THE SINGLE COMPONENT CASE

The f that you use to maximize growth is always uniform. However,
that uniform amount is a function of where you intend to quit the game. If
you are playing the 2:1 coin toss game, and you intend to quit after one play,
you have an f value that provides for optimal growth of 1.0. If you intend
to quit after two plays, you have an f that is optimal for maximizing growth
of .5 on the first toss, and .5 on the second. Notice, you do not bet 1.0 on
the first toss here if you are planning on maximizing the EACG, quitting at
the end of the second play. Likewise if you were planning on playing for an
infinitely long period of time, you would optimally bet .25 on the first toss
and .25 on each subsequent toss.

Note the key word there is infinitely, not indefinitely. All streams are
finite. Each of us will die eventually. As the man in Kentucky says, “It’s a
mile and a quarter, and that’s all they go, the first Saturday in May.”

Therefore, when we speak of the optimal f as the f that maximizes ex-
pected average compound return, we are speaking of that value that max-
imizes growth as if we were to play for an infinitely long period of time.
Actually, it is slightly suboptimal because none of us will be able to play
for an infinitely long time. Actually, the f that will maximize EACG will
be slightly above, have us take slightly heavier positions, than what we are
calling the optimal f.

What if we were to quit after three tosses? Shouldn’t the f then that
maximizes expected average compound growth be lower still than the .5 it
is at quitting after two plays, yet still be greater than the .25 optimal for an
infinitely long game?

Let’s examine the tree of combinations here:

Toss #1 Toss #2 Toss #3

Heads
Heads
Tails
Heads
Heads
Tails
Tails
Heads
Heads
Tails
Tails
Heads
Tails

Tails
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Converting these to outcomes yields:

Toss #1 Toss #2

35

Toss #3

2
2
-1
2
-1
-1

-1

If I go back with a computer and iterate to that value for f that max-
imizes expected average compound growth quitting after three tosses, we
find it to be .37868. Therefore, if we convert the outcomes to HPRs based

upon a .37868 value for f at each toss yields:

Toss #1 Toss #2

Toss #3

1.757369

1.757369
.621316
1.757369

.621316
.621316

1.757369

.621316

1.757369

.621316

1.757369

.621316

1.757369

.621316

Now we can express all tosses subsequent to the first toss as TWR( f)s
by multiplying by the subsequent tosses on the tree. The numbers following
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the last toss on the tree, the numbers in parentheses, are the last TWR( f)s
taken to the root of 1/n, where n equals the number of holding periods,
or tosses, in this case 3, and represent the geometric mean HPR for that
terminal node on the tree:

Toss #1 Toss #2 Toss #3 GHPR(.37868)

5.427324 1.757365

3.088329
1.918831 1.242641
1.757369
1.918848 1.242644
1.09188
0.678409 0.87868
1.918824 1.242639
1.091875
0.678401 0.878676
0.621316
0.678406 0.878678
0.386036

0.239851 0.621318

8.742641/8 =

1.09283 is the expected average compound growth, the EACG. From this,
we can summarize the following conclusions:

1.

To maximize the expected average compound growth, EACG, we al-
ways end up with a uniform f. The value for f, then, is uniform from
one play to the next.

. The f that is optimal in terms of maximizing the expected average

compound growth is a function of the length of the game. For positive
expectation games, it starts at 1.0, the value that maximizes the arith-
metic mean HPR, diminishes slightly each play, and asymptotically ap-
proaches the value that maximizes the geometric mean HPR (which
we have been calling, and will continue to call throughout the sequel,
the optimal f).

Since all streams are finite in length, regardless of how long, we will
always be ever so slightly suboptimal by trading at what we call the op-
timal f, regardless of how long we trade, yet the difference diminishes
with each holding period. Ultimately, we are to the left of the peak
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TABLE 3.1 Coin Toss Game

Quitting

After HPR# f (which maximizes EACG)
1 1.0

2 .5

3 .37868

4 .33626

5 .3148

6 .3019

7 .2932

8 .2871

infinity .25 (this is the value we refer to

as the “optimal f”)

of what was truly optimal. This isn’t to say that everything we will be
discussing about the N+1-dimensional landscape—the penalties and
payoffs of where you are with respect to the optimal f for each market
system—isn’t true. It is true. However, the landscape is a function of
the number of holding periods at which you quit. The landscapes we
project with the techniques in this book are the asymptotic altitudes,
what the landscape approaches in the very long run.

To see this, let’s continue with our 2:1 coin toss. In Table 3.1, we can
see what the value for f is that optimally maximizes our expected average
compound growth, for quitting at one play through eight plays. Notice how
it approaches the optimal f of .25, the value that maximizes growth asymp-
totically as the number of holding periods approaches infinity, as shown in
Figure 3.2.

In reality then, if we trade with what we are calling in this text the
optimal f, we will always be slightly suboptimal, the degree of which di-
minishes as more and more holding periods elapse. If we knew exactly
how many holding periods we were going to trade for, we could then use
that value for f that maximizes EACG (which would be slightly greater
than the optimal f) and be truly optimal.2 Unfortunately, we almost never

2Thus, the optimal f point is never really optimal; the Kelly criterion is never the
point that maximizes the growth of capital, except in the abstract case of an infinite
number of plays. In a game with a positive Mathematical Expectation, the optimal
f point is that point that begins at 1.0 (wager the entire stake) if one were looking
to play only 1 play. This point, the point that maximizes the growth of capital, mi-
grates from 1.0 in a leftward direction toward the optimal f point as the number
of plays one is looking to participate in gets ever-greater. It never reaches down
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Estimated Average Compound Growth—2:1 Coin Toss
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Number of Holding Periods

FIGURE 3.2 Optimal f Is an Asymptote

know exactly how many holding periods we are going to play for, and there
is consolation in the fact that what we are calling the optimal f approaches
what would be optimal to maximize EACG as more holding periods elapse.

People tend, mistakenly, to think that the straight line of the “one-
shot-expectation,” which we saw previously in Figure 3.1, simply remains
a straight line, rising upward as the number of plays increases. However,
the reality is that the line actually bends as the number of plays increases,
as shown in Figure 3.3.

When we make subsequent plays, our world is no longer flat, but
curved.

The reason for this is, simply, that what we have to bet or trade with
today is a function of what happened to our stake yesterday.

The graph in Figure 3.3 shows the multiple we made on our stake, on
average, after each play.

You can see the peak of this curve at the optimal value of f = .25 for
this 2:1 coin toss game. Note that this is the peak for playing this game
an infinite number of times; the real peak, the value for f that maximizes
EACG, a function of the number of holding periods, migrates toward the

to the optimal f point, however, as that is an asymptote. Thus, to trade at the opti-
mal f point, in other words, to satisfy the Kelly criterion (to act so as to maximize
the expected value of the logarithm of our capital at each play), does not maximize
the growth of capital, and will always be suboptimal. To truly be optimal in terms
of maximizing the growth of capital requires that we know, in advance, how many
plays or holding periods we will participate in. The resultant f value will always
be more aggressive than that which satisfies the Kelly criterion.
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FIGURE 3.3 The Real Line (f)

optimal f peak from the right of the optimal f peak, as the number of
plays, the number of holding periods, increases and approaches infinity.

Figure 3.4 shows the graph after 40 plays of our 2:1 coin toss game.

Every trader resides somewhere on this line about the f spectrum,
because as we saw earlier, we can determine an f value based on how
many units you have on, for a given level of equity, and a given perceived
worst case loss. And these inputs are all givens. Thus, at any point in time,
we can take any trader, trading any market system, and assign an f value
to him, to where he resides on a similar curve.
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FIGURE 3.4 f After 40 Plays
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FIGURE 3.5 f After 40 Plays (versus 1 Play)

There is always a curve to this function, and it has just one peak. There-
fore, where the trader’s f is with respect to the peak will dictate what kind
of gain the trader is looking at, what kind of drawdown he is looking at, and
so on. Different locations on this curve have rather dramatic consequences
and benefits.

We also know that every point along the curve (every value of f) can
be converted to an amount by which a market system can be capitalized.
Thus, at the peak at f = .25 we risk $1 (worst-case outcome) for every $4 in
our stake. Similarly, a given level of account equity, with a certain number
of positions in a certain market system and a certain worst-case outcome,
can be converted to an f value and located somewhere on the f spectrum.

Again, if the worst-case outcome is incorrect, you are still somewhere
on the f spectrum, and the curve is still identical to the case of the known
worst-case outcome’s loss, except that it ( f) is no longer bounded between
0 and 1; rather, it is now bounded between 0 and some other number. The
shape of the curve thus stretches or shrinks accordingly; if the curve be
bounded between 0 and 2 say, the peak in this instance would thus be at .5.
Everything else remains the same. The optimal f$ (the optimal amount to
finance each trade by), that is, the optimal number of contracts to have on
for a given level of equity, is unchanged.)

The difference in terms of gain, of being at the optimal and any other
point, is magnified as time passes, as holding periods increase, as depicted
in Figure 3.5.

By bounding f between 0 and 1, we can therefore state that when the
worst-case outcome manifests, our drawdown is at least f%.

Thus, the farther left on the spectrum you go (f closer to 0), the lower
the minimum drawdown.
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FIGURE 3.6 f After 40 Plays: At f=.1 and .4, Makes the Same, But Drawdown
Changes!

Therefore, when you dilute f, that is, trade at lesser levels of aggres-
stveness than the optimal f, you decrease your drawdowns arithmeti-
cally, but you also decrease your returns geometrically. This difference
grows as time goes by. The peak continues to grow and therefore, the price
for missing the peak continues to grow.

Paradoxically, the better the system or approach to a given market,
the more to the right in the f spectrum (that is, the more toward 1) the
peak will be, and hence, the greater will be the minimum drawdown at the
optimal f level!

Thus, being to the right makes no more than to the left, but has greater
drawdown.

Let us now look at being at an f value of .1 or .4 in our 2:1 coin toss
game. This represents taking a 1-unit bet for every 10 units in our stake,
and for every 2.5 units in our stake respectively. This is shown in Figure
3.6.

In such a case, our TWR(.1 or .4), the multiple we can expect to make
on our stake after 40 plays, is 4.66. This is not even half of what it is at
f = .25 (where we are making one bet of one unit for every 4 units in our
stake), where the TWR(.25) = 10.55, yet we are only 15 percent away from
the optimal and only 40 bets have elapsed!

Notice that if we make one bet for every $4 in our stake we will make
more than twice as much after 40 bets as you would if you were making one
bet for every $2.50 in our stake (f = .4)! Clearly it does not pay to overbet.
At one bet per every $2.50 in our stake we make the same amount as if we
had bet 1/4 that amount, one bet for every $10 in our stake (f = .1)!

Also of interest are “points of inflection,” [dTWR( f)/d f] which are the
points at which the curve goes from concave up to concave down (left of
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FIGURE 3.7 f After 40 Plays. Points of inflection: concave up to concave down.
Up has gain growing faster than drawdown (but these too migrate to the optimal
point as the number of holding periods grows!).

the peak) and concave down to concave up (right of the peak). Only those
left of the peak might be of any use to the investor, however.

When the curve is concave up (left of the peak) we have a growth rate
that is increasing ever faster as we increase f (thus, the marginal gain in
growth increases with f). As we pass the point of inflection, and go to con-
cave down, this flips and our rate of change in growth, with respect to f,
decreases as f increases. See Figure 3.7.

Thus, the point of inflection (left of peak) may be useful to investors as
it represents the highest rate of change in growth with respect to changes
in f.

Note that the rate of change in the f curve between .15 and .16, for
example, is considerably more than between .24 and .25, the difference
in terms of raw altitude; the difference in terms of TWR(f) continues to
increase as the number of holding periods increases. What may not appear
as much of a difference between the exact peak, .25, and a point nearby, .24,
actually gets ever greater in terms of difference as the number of holding
periods increases.

The problem with the points of inflection (both left and right of the
peak) is that they migrate toward the peak as the number of holding peri-
ods increases.

As demonstrated in Vince (1995) the problem with what appear to pos-
sibly be favorable points in terms of criteria, along the curve, always seem
to have the habit of wanting to migrate toward the optimal f peak as the
number of holding periods increases [among these, EACG as demonstrated
earlier, and the ratio of gain to risk, TWR(f)/f].
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FIGURE 3.8 f After 40 Plays. Beyond .5, even in this very favorable game, TWR
(Multiple) <1, meaning you are losing money and will eventually go broke if you
continue.

Here is another mystery lurking in the dark netherworld, to which
investors are oblivious. There is a point, beyond the peak, where the
curve—the TWR(f) or GHPR( f)—drops below 1, as shown in Figure 3.8.

In our 2:1 coin toss scenario spectrum example, that point is f = .5.
Beyond .5 you lose money. This is making one bet for every $2 in account
equity.

Notice! You are not borrowing any money to do this, to assume 1 bet
of 1 unit for every 2 units in account equity. It is, in effect, a cash account,
no margin is even being used,; it is a wildly favorable game, and yet, you go
broke with a probability that approaches certainty as you continue to play.

If GHPR(f) < 1 (that is, beyond .5 in this 2:1 coin toss game), at each
holding period, each play, the account equity would be expected to be mul-
tiplied by a value that is <1. Doing so results in a product that continues
toward 0 as the number of holding periods, the number of plays, increases.
This is why, even in a game where you win in all but one time out of a
million, if you keep doubling your bet (that is, f = 1.0) you will go broke
with certainty as time increases.

To repeat, nothing is borrowed to do this. It is in a cash account. And
every market system has such a point on its f spectrum where ruin is cer-
tain as the number of holding periods increases. The only difference be-
tween a spectrum of market outcomes and this 2:1 coin toss example, is
where the peak is (between 0 and 1) and where this point of certain ruin
is (between the peak and 1). The shape of the curve is the same, and the
characteristics are the same.
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The instant case
of how much | am
levered up
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FIGURE 3.9 Leverage Has Two Axes/Two Facets

“Leverage,” as I am using the term, is not merely how much one bor-
rows (or, in effect, lends by not only not borrowing, but maintaining a cash
position in excess of the value of the asset along with the asset). It is also
the schedule upon which that asset position is increased or decreased over
time as the account equity fluctuates. “Leverage” refers both to the static
snapshot of cash vs. the position itself, and to the schedule of adding to
or lightening up on that position. Leverage thus has two facets. As men-
tioned in the previous chapter, you should think of leverage as the number
between 0 and 1 that represents both of these facets, and is articulated by
where you are on the f spectrum. See Figure 3.9.

Notice how, just as you are ineluctably at some value for f on the f
spectrum, so too, you ineluctably use “leverage,” even in a cash account.
It is vital that you understand that and not be deluded into the false sense
of security of trading on a cash basis.

In the past, particularly in the gambling community, the focus has been
on the peak itself and not necessarily the nature of the curve. This has led
to some bad information and some very poorly derived heuristics regarding
the dilution of the optimal point.

One such ad hoc heuristic is the notion of “half Kelly,” of which nu-
merous mathematically significant points that migrate might pass through.
This is an arbitrary (though stationary, with respect to time, that is, hold-
ing periods elapsing) point in terms of significance along the curve and is
fraught with not understanding the framework. Again, these notions have
been perpetuated in much the way that notions about the markets were
perpetuated when there were no charts or technical analysis. (For exam-
ple, “half Kelly” is credited with being able to “give three-quarters of the
investment return with much less volatility” than the full optimal f amount.
This is patently false, and as the number of plays increases the difference
becomes evermore apparent.)



The Nature of the Curve 45

Another example of the ignorance surrounding the nature of the curve
is the commonly mentioned notion in the community that “overbetting
beyond that suggested by Kelly is counterproductive as the long-run
growth rate will fall, dropping to zero when the Kelly bet is approximately
doubled.”

This is also patently false, and is yet another notion promulgated by
ignorance of this curve; this is impossible for a very good system wherein
the optimal f value is >.5, and yet every system, however good, has a point
where the curve drops below 1.0.

We have discussed the migration from the right to the EACG toward
optimal f peak as the number of holding periods increases. We have dis-
cussed how, bounding f between 0 and 1, we can expect at least f% draw-
down. We have discussed how the difference between being at the optimal
point and any other point on the f spectrum grows as the number of hold-
ing periods increases. We have looked at how moving to the left on the f
curve (between 0 and the optimal f) reduces your drawdowns arithmeti-
cally while reducing your gains geometrically. We have seen how, for every
profitable point to the left of the peak, there is a point corresponding to the
same level of profit on the right of the peak, but with considerably more
drawdown. We have seen that there is a point of certain ruin for every mar-
ket system, even if traded in a cash account (because we have a new, better
definition of leverage—that of its having two facets—and we quantify this
as the f value, between 0 and 1).

We have taken a peek at how the nature of this curve has been
shrouded in ignorance, and we have seen how other mathematically favor-
able points on this curve, aside from the geometric growth optimal point,
tend to migrate toward that geometric growth optimal point (that is, the op-
timal f) as the number of holding periods (the number of plays) increases.

Whether you like it or not, you are somewhere on this line, this curve
on the spectrum of f, when you trade. You have an f value between 0
and 1.

“But I do things in a cash account,” you proclaim, “I don’t use leverage.”

Sure you do. This “leverage” is, in effect, a percentage of the worst-case
scenario, and it has nothing to do with margin. If your worst-case scenario
is, say, losing $10,000 per “unit” and you have on one unit in a $100,000
account, your f is .1. You are always somewhere on this curve, and the
rules detailed here are working upon you whether you acknowledge them
or not. I am not trying to sell you on this any more than I am trying to sell
you on the notion of gravity!

People spend a lot of time trying to squeeze oil from the rocks of their
analysis and systems in an attempt to make them more profitable, when,
in fact, profitability is governed exactly as illustrated in Figure 3.4. Every
market system, as well as every opportunity under favorable uncertainty,
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FIGURE 3.10 Very Favorable Blackjack Condition: Optimal f = .06 or Risk $1 for
Every $16.67 in Stake

RiINiwINIOIoOIN D] ©

has a curve of similar shape where the rules apply, as explained, based on
the distribution of outcomes (which can be modeled as scenarios).

Let us consider a card counter in blackjack. There are various flavors
of this game, based on rule changes from one type of blackjack to another,
and although these rule changes are slight, they can dramatically affect the
probabilities involved in the game. There are also differences in the number
of decks in the shoe, when the shoe is reshuffled, and there are a plethora
of various card-counting strategies available.

Let us assume our card counter, with his technique, is at a particular
table, and falls into a very favorable situation where the optimal f was .06.
Optimal f changes in a card game just as it does elsewhere. In blackjack, for
example, the composition of the remaining cards in the shoe varies from
hand to hand. Therefore, the optimal f also changes from hand to hand. In
such a situation, the gambler naturally wants to optimize his growth rate.
To do so, he must proceed on the immediate play as though that play would
be repeated infinitely into the future.

Most blackjack experts will concur this is a very favorable situation,
and is depicted in Figure 3.10.

Such a circumstance would have our card-counting gambler ideally bet
1 unit for every 16.67 in his stake. Note that beyond .12, or betting more
than one unit for every 8.33 in his stake, the curve drops below 1, and our
gambler is doomed to ruin as he continues to play.

Clearly, then, the successful card counter must have a good under-
standing of how much to bet and when. Absent this, the so-called success-
ful card counter mistakenly attributes his success to his skill, not to simple
good luck.
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So far, we have discussed the f value assigned to you, unwittingly,
when you assume a trade for a given set of possible outcomes on that trade.
We can see that we are, therefore, somewhere on some point on the curve,
but the payoffs and consequences of being at that point are unknown to us.

(Readers not interested in the mathematical basis can skip directly to
Part IT here.)

Yet, since we can determine that curve given the scenarios, we are able
to determine where the optimal point is on that curve. We seek to find that
optimal point (between 0 and 1), that f value that maximizes the Geomet-
ric Mean HPR, GHPR( f). To do so, we must amend our technique for de-
termining GHPR( f"), to discern what the optimal f is for a given scenario
spectrum.

GHPR(f) = [ | HPR(f): (3.01)

=1

In determining this, we amend our Holding Period Return, HPR( f):

P;
HPR(f); = <1 v ) (3.02)
S
So GHPR( f) can also be expressed as:
n P
GHPR(f) =[] (1 + fl—W> (3.01a)
i=1 7

and finally, TWR(f), the multiple on our stake after N periods have
elapsed is:

n P
A.
TWR(f) = GHPR(f)" = 1_[ (1 + _;) (3.03)
i=1 7
or, if after q scenarios have elapsed:
n P a
A;
TWR(f) = GHPR(f)' = [ [ | (1 + W) (3.03a)
i=1 Na
where: n=the number of different scenarios

TWR( f) =the Terminal Wealth Relative

HPR( f); = the Holding Period Return of the i™ scenario
A; = the outcome of the i scenario
P, =the probability of the i scenario
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W =the worst outcome of all N scenarios
J =the value for f which we are testing
q =however many times we want to “expand” this number
of periods out

Finding the f that maximizes the geometric mean HPR (or TWR) from
this procedure will give us the f that is optimal for all conditions of a sin-
gle favorable prospect. In other words, it will give you the same answer
as the Kelly formulas with the caveats of two possible outcomes (as when
two scenarios comprise the entire spectrum of possible outcomes), as well
as superseding the earlier 1990 formulas reiterated in Chapter 1. (In effect,
those formulas assumed that each trade had an equal probability of oc-
currence; thus, each trade’s outcome is a scenario with a probability of 1
divided by the total number of trades.)

Yet, these formulas, as complete as they are in terms of discerning an
optimal f, can determine it for only a single favorable prospect, a single
tradable instrument, and a single scenario spectrum. We must now turn
our attention to the multiple component case.

Thus, there is one more step, one more set of equations, to discern op-
timal f, and that will be covered in Part II. Remember the storyline? We
needed a means to determine optimal f, bounded between 0 and 1 (which,
like the scenario-planning solution formulas provided here, allows for var-
ious possibilities to the various outcomes), which applies to multiple, si-
multaneously played games (that is, portfolios). Such an equation will, as
these scenario-planning solutions to optimal f provided here do, super-
sede the Kelly formulas (applicable in cases where wins are for the same
amount and losses are for the same amount) as a subset of a more general
solution. The multiple, simultaneous formulations for optimal f, presented
next, solve for all of these, including the single case when the number of
components therein equals 1. Thus, even the scenario-planning formulas
to derive optimal f as provided here are but a subset of what is really
needed.

The ultimate answer, provided next, supersedes all others.

MATHEMATICAL ADDENDUM TO PART I:
THE SINGLE COMPONENT CASE

Readers interested in the mathematics behind the optimal f formulations
presented may be interested in some of the geometrical relationships and
by-products of the formulations. This material has been presented in earlier
books I have written on this topic. I find their study both fascinating as well
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as revealing about certain important aspects of human behavior regarding
allocations in conditions of uncertainty.

This Addendum is not necessary to understand the story that is unfold-
ing. Yet, in terms of understanding how the dark netherworld of quantity of
leverage space is illuminated, they are important elements. I provide these
here as a recap, reference, and brief introduction for those who have not
seen it before.

Geomelric Average Trade

One interesting aspect to look at in this exercise is what I call the “Geomet-
ric Average Trade,” or “GAT(f).” This is the amount you would have made
on average, per unit, trading at a given value for f:

GAT(f) = f$ * (GHPR(f) — 1) (3.04)

Of note here is that GAT(f) is always less than or equal to what most
traders call their “average trade,” which is the same thing as the Mathe-
matical Expectation (given in the Introduction), which is the Arithmetic
Average Trade, or what I call “AAT(f).” Thus we can rephrase a trader’s
“average trade” as follows, so as to put it into the context we are discussing,
and derive the same value for his average trade as he does by:

S (HPR(/))
Average Trade = ME = AAT(f) = f$ = " -1 (3.05)
and
GAT(f) <= AAT(Y) (3.06)
always.

Arithmetic Average HPR, AHPR( f) is incorporated in the above equa-
tion as:

n
> (HPR(f):)
AHPR(f) = le (3.07)
Arithmetic Average HPR( f) is simply the sum of the HPR( f)s divided
by n, the number of HPR( f)s.
As you can see, these formulas that are given for discerning GHPR( 1)
lead to some interesting geometric relationships. Those relationships hold
for all calculations of GHPR(f) including the Kelly formulas, as well as
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the more advanced formulas to follow later in this story. In fact, when we
get into multiple, simultaneous plays, that is, portfolios of components, the
geometrical relationships are so plentiful as to constitute their own domain
of study.

One of the more enlightening relationships here is that of the relation-
ship of GHPR(f) and AHPR(f). These two values happen to be related
by the Pythagorean Theorem! This very fact reveals to us some important
information about the risks we assume. To clearly see this, we must first
understand how to estimate the GHPR( f)s given the individual HPR( f)s.

The Estimated Geometric Mean HPR
(or How the Dispersion of Qutcomes
Affects Geomelric Growth)

This discussion will use a gambling illustration for the sake of simplicity.
Let’s consider two approaches. Approach A wins 10 percent of the time
and pays 28 to 1. Approach B wins 70 percent of the time and pays 1
to 1. Our Mathematical Expectation per unit bet for A is 1.9 and for B is
4. Therefore, we can say that for every unit bet Approach A will return, on
average, 4.75 times as much as Approach B. However, let’s examine this
under fixed fractional trading. We can find our optimal fs here by dividing
the Mathematical Expectations by the win/loss ratios (per the Kelly formu-
las). This gives us an optimal f of .0678 for A and .4 for B. The geometric
means HPR for each approach at their optimal f levels are then:

A =1.044176755

B = 1.0857629
Approach % Wins Win:Loss ME f GHPR(f)
A 1 28:1 1.9 .0678 1.0441768
B 7 1:1 4 4 1.0857629

You can see that Approach B, although less than !/, the Mathematical
Expectation of A, makes almost twice as much per bet (returning 8.57629
percent of your entire stake per bet on average when reinvesting at the
optimal f levels) as does A (returning 4.4176755 percent of your entire
stake per bet on average when reinvesting at the optimal f levels).

Now, assuming a 50 percent drawdown on equity will require a 100
percent gain to recoup, then: 1.044177 to the power of X is equal to 2.0
at approximately X equals 16.5, or more than 16 trades to recoup from a
50 percent drawdown for Approach A. Contrast this to Approach B, where
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1.0857629 to the power of X is equal to 2.0 at approximately X equals 9, or
nine trades for Approach B to recoup from a 50 percent drawdown.

What'’s going on here? Is this because Approach B has a higher percent-
age of winning trades? The reason B is outperforming A has to do with the
dispersion of outcomes, and its effect on the growth function. Most people
have the mistaken impression that the growth function, the TWR, is:

TWR(S) = (1 + 7)1 (3.08)

where: 7 =the interest rate per period, for instance, 7 percent = .07
q = the number of periods

Since 1 + 7 is the same thing as an HPR, we can say that most people
have the mistaken impression that the growth function,® the TWR, is:

TWR(f) = HPR(f)* (3.09)

This function is only true when the return, that is, the HPR( f), is con-
stant, which is not the case in trading.

The real growth function in trading (or in any event where the HPR( f)
is not constant) is the multiplicative product of the HPR( f)s. Assume we
are trading coffee, and our optimal f$ is one contract for every 21,000
units in equity, and we have two trades, a loss of 210 units and a gain of
210 units, for HPR( f)s of .99 and 1.01 respectively. In this example, our
TWR(f) would be:

TWR(S) = 1.01 % .99
— .9999

An insight can be gained by using the estimated geometric mean
(EGM( f)), which very closely approximates the geometric mean:

EGM(f) = vJAHPR(f)? — SDHPR(f)? (3.10)

3Many people mistakenly use the arithmetic average HPR in the equation for HPRT.
As is demonstrated here, this will not give the true TWR after T plays. What you
must use is the geometric average HPR, rather than the arithmetic in HPR”. This
will give you the true TWR. If the standard deviation in HPRs is 0, then the arith-
metic average HPR and the geometric average HPR are equivalent, and it matters
not which you use, arithmetic or geometric average HPR, in such a case.
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or:

EGM(f) = vJAHPR(f)? — VHPR(f) (3.102)

where: EGM( f) =the geometric mean HPR( f)
AHPR( f) = the arithmetic mean HPR( )
SDHPR( f) = the standard deviation in HPR( f)s
VHPR( f) = the variance in HPR( f)s

Now we take EGM( f) to the power of ¢ (where ¢ = n, the total number
of periods), to estimate the TWR( f). This will very closely approximate the
“multiplicative” growth function, the actual TWR( f):

TWR(f) = <\/AHPR( )% — SDHPR( f)2>q 3.11)

where: q = the number of periods
AHPR( f) = the arithmetic mean HPR( )
SDHPR( f) = the standard deviation in HPR( f)s

The insight gained is that we can see here, mathematically, the tradeoff
between an increase in the arithmetic average trade versus the dispersion
in the trades (their standard deviation or their variance): hence the rea-
son that the 70 percent 1:1 approach did better than the 10 percent 28:1
approach.

Our goal should be to maximize the coefficient of this function, to
maximize:

EGM(f) = vJAHPR(f)? — VHPR(f) (3.102)

Expressed literally, “To maximize the square root of the quantity aver-
age HPR squared minus the variance in HPRs.”

The exponent of the estimated TWR( f), q, will take care of itself. That
is to say that increasing q is not a problem, as we can increase the number
of markets we are following, trading more short-term types of systems, and
SO on.

We can rewrite this equation as:

AHPR(f)?> = EGM(f)? + SDHPR(f)* (3.10b)

This brings us to the point now where we can envision exactly what
the relationships are. Notice that this equation is the familiar Pythagorean
Theorem—the hypotenuse of a right-angle triangle squared equals the sum
of the squares of its sides! But here, the hypotenuse is AHPR( f), and we
want to maximize one of the legs, EGM( f).
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We mistakenly seek
to maximize this leg
EGM

We should seek to_.---~"""
maximize this leg

SDHPR

FIGURE 3.11 Triangle Shows We Should Seek to Maximize EGM, Not AHPR

In maximizing EGM( f), any increase in SDHPR( /") will require an in-
crease in AHPR( f) to offset. When SDHPR( f) equals zero, then AHPR( f)
equals EGM(f), thus conforming to the misconstrued growth function
TWR = (1 +7r)4.

So, in terms of their relative effect on EGM( f), we can state that an in-
crease in AHPR( f) is equal to a decrease of the same amount in SDHPR( ),
and vice versa. Thus, any amount by which you can reduce the dispersion
in trades (in terms of reducing the standard deviation) is equivalent to an
increase in the arithmetic average HPR. This is true regardless of whether
you are trading at optimal f! Figure 3.11 reveals this.

Additionally, if we are considering a stream of outcomes of only 1 play,
the standard deviation is thus 0, and it follows then that the geometric mean
equals the arithmetic mean.

If a trader is trading in quantity relative to the size of his stake
(and, as we have shown earlier, virtually everyone does), then he wants
to maximize EGM( f), not necessarily AHPR( f). In maximizing EGM(f),
the trader should realize that the standard deviation, SDHPR(f), af-
fects EGM(f) in directly the same proportion as does AHPR(f), per
the Pythagorean Theorem! Thus, when the trader reduces the standard
deviation (SDHPR( f)) of his trades, it is equivalent to an equal increase
in the arithmetic average HPR (AHPR( f)), and vice versa!

The Fundamental Equation of Trading

We can glean a lot more here than just how trimming the size of our losses,
or reducing our dispersion in trades, improves our bottom line. We will
return now to the equation for estimating the TWR( f):

TWR(f) = (\/AHPR( )2 — SDHPR( f)2>q (3.11a)
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Since (XY)% = X% we can further simplify the exponents in the equa-
tion, thus simplifying this to:

q/2

TWR(f) = (AHPR(f)* — SDHPR([)?) (3.11b)

This last equation is the simplification for the estimated TWR, which
we will call the fundamental equation for trading because it describes
how the different factors, AHPR( f), SDHPR( f), and q, affect our bottom
line in trading.

There are a few things that are readily apparent, and the first of these
is that if AHPR(f) is less than or equal to 1, then regardless of the other
two variables, SDHPR(f) and ¢, our result can be no greater than 1. If
AHPR(f) isless than 1, then as q approaches infinity, AHPR( /") approaches
zero. This means that if AHPR( f) is less than or equal to 1 (Mathematical
Expectation less than or equal to zero since Mathematical Expectation =
AHPR(f) — 1), we do not stand a chance at making profits. In fact, if
AHPR(f) is less than 1 it is simply a matter of time until we go broke.

Provided that AHPR( f) is greater than 1, we can see that increasing q
increases our total profits. For each increase of one period, the coefficient
is further multiplied by its square root.

Each time we can increase q by 1, we increase our TWR( f) by a fac-
tor equivalent to the square root of the coefficient (which is the geometric
mean). Thus, each time a holding period elapses, each time q is increased
by 1, the coefficient is multiplied by the geometric mean.

An important point to note about the fundamental trading equation is
that it shows that if you reduce your standard deviation in HPR( f)s to a
greater extent than you reduce your arithmetic average HPR( f), you are
better off. It stands to reason, therefore, that cutting your losses short, if
possible, benefits you. However, the equation demonstrates that at some
point you no longer benefit by cutting your losses short. That point is the
point where you would be getting stopped out of too many trades with
a small loss that later would have turned profitable, thus reducing your
AHPR( f) to a greater extent than your SDHPR( ).

Along these same lines, reducing big winning trades can help your pro-
gram if it reduces your SDHPR(f) more than it reduces your AHPR(f).
This can be accomplished, in many cases, by incorporating options into
your trading program. Having an option position that goes against your
position in the underlying instrument (either by buying long an option or
writing an option) can possibly help.

As you can see, the fundamental trading equation can be utilized to
dictate many changes in our trading. These changes may be in the way
of tightening (or loosening) our stops, setting targets, and so on. These
changes are the results of inefficiencies in the way we are carrying out our
trading, as well as inefficiencies in our trading program or methodology.



The Nature of the Curve 55

Why Is £ Optimal?

To see that f is optimal in the sense of maximizing wealth:

i=1

Y, 3" In (HPR(S),)
) —exp|EL— | 317

a
since GHPR(f) = (]_[ HPR(f); .
i=1

If you then act to maximize the geometric mean at every holding
period—if the trial is sufficiently long—by applying either the weaker law
of large numbers or the central limit theorem to the sum of independent
variables (that is, the numerator on the right side of this equation), it is
almost certain that higher terminal wealth will result than would have by
using any other decision rule.

Furthermore, we can also apply Rolle’s Theorem to the problem of the
proof of fs optimality. Recall that we are defining “optimal” here as mean-
ing that which will result in the greatest geometric growth as the number of
trials increases. The terminal wealth relative is the measure of average ge-
ometric growth, so we want to prove that there is a value for f that results
in the greatest TWR( f).

Rolle’s Theorem states that if a continuous function crosses a line par-
allel to the X-axis at two points, a and b, and the function is continuous
throughout the interval a,b, then there exists at least one point in the inter-
val where the first derivative equals 0 (that is, at least one relative extreme).

Given that all functions with a positive arithmetic Mathematical Ex-
pectation cross the X-axis twice* (the X being the f-axis) at f = 0 and at
that point to the right where f results in computed HPR( f)s where the
variance in those HPR( f)s exceeds the difference of the arithmetic mean
of those HPR( f)s minus 1, we have our a,b interval on X respectively. Fur-
thermore, the first derivative of the fundamental equation of trading, that
is, the estimated TWR( (), is continuous for all f within the interval, since
f results in AHPR( f)s and variances in those HPR( f)s, within the interval,
which are differentiable in the function in that interval; thus the function,
the estimated TWR(f), is continuous within the interval. Per Rolle’s The-
orem, it must therefore have at least one relative extreme in the interval,
and since the interval is positive, that is, above the X-axis, the interval must
contain at least one maximum.

4Actually, at f = 0 the TWR = 0, and thus we cannot say that it crosses 0 to the
upside here. Instead, we can say that at an f value that is an infinitesimally small
amount beyond 0, the TWR crosses a line an infinitesimally small amount above 0.
Likewise to the right but in reverse, the line, the f curve, the TWR, crosses this line
which is an infinitesimally small amount above the X-axis as it comes back down to
the X-axis.
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In fact, there can be only one maximum in the interval given that the
change in the geometric mean HPR( f) (a transformation of the TWR( f),
given that the geometric mean HPR( f) is the ¢™ root of the TWR(f)) is a
direct function of the change in the AHPR(f) and the variance( f), both
of which vary in opposite directions to each other as f varies, per the
Pythagorean Theorem. This guarantees that there can be only one peak.
Thus, there must be a peak in the interval, and there can be only one peak.
There is an f that is optimal at only one value for f, where the first deriva-
tive of the TWR( f) with respect to f equals 0.

In Chapter 1 we saw the 1990 derivation of the TWR( f) as:

n

TWR(f):]—[<1+f>x<

i=1

—trade; )

_— (1.07a)
BiggestLoss

Now we again consider our 2:1 coin toss. There are two trades, two
possible scenarios here. If we take the first derivative of this equation with
respect to f, we obtain:

dTWR
T(f) = ((1 + f * (—trade; /biggestloss)) x (—tradesz/biggestloss))
+ ((—trade; /biggestloss) x (1 + f x (—tradez/biggestloss)))

(3.12)

If there were more than two trades, the same basic form could be used,
but it would quickly grow monstrously large, so we’ll only use two trades
for the sake of simplicity. Thus, for the sequence +2, —1 at f = .25:

%ﬁm = (14 .25 % (=2/=1)) x (=1/-1))

+ ((=2/-D* A+ .25 % (=1/-1))
%ﬁfw = (1 +.25%2) x—1) + @ (1 + 255 —1))
%ﬁfm =((1+5)*-D+@2*1~.25)
% = (L5% —1) + (2 .75)
dTWR(S)

= —15+15=0
af *
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We now see that the function peaks at .25, where the slope of the tan-
gent is 0, exactly at the optimal f, and no other local extreme can exist
because of the restriction caused by the Pythagorean theorem.

Q.E.D. for optimal f existence and as a solitary point in a positive
Mathematical Expectation.

Lastly, we will see that optimal f is indifferent to q. We can take the
first derivative of the estimated TWR( 1) equation with respect to q as:

dTWR(f) _

dg = (AHPR(/)? — SDHPR( )

+ In(AHPR(f)? — SDHPR(f)?)

(3.13)

Since In(1) = 0, then if AHPR(f)? — SDHPR(f)? =1, that is,
AHPR(f)? — 1 = SDHPR(f)? (or variance), the function peaks out and
the single optimal maximum TWR(f) is found with respect to f. No-
tice, though, that both AHPR(f), the arithmetic average HPR(f) and
SDHPR( f)—the standard deviation in those HPR( f)s—are not functions
of q. Instead they are indifferent to q; thus this equation is indifferent to
q at the optimal f. The f that is optimal in the sense of maximizing the
estimated TWR( f) will always be the same value regardless of q.

Time Required to Reach a Goal

One other metric should be considered here for interested readers, and
that is the time required to reach a particular goal, a particular TWR( ().
Simply put, if we have a goal, which is a multiple on our stake that we
wish to achieve, then what we have is a target TWR( f). From this, we can
determine g, how many holding periods we can expect to elapse to achieve
a goal of TWR(f) as:

q = In(TWR(f))/ In(GHPR( ) (3.14)

We can alternatively find this as the “Log base GHPR” of the goal by:

q = Loggupr /) TWR(S) (3.14a)

These equations are useful in the study of this netherworld of quantity,
and we will revisit some of these equations in the sequel. They help illu-
minate the nature of the curve, as well as the payoffs and consequences
of our actions. Clearly, there is far more to geometric mean maximization
than merely identifying the peak point in the curve.
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CHAPTER 4

Multiple,
Simultaneous
—‘Leverage

Space’”

market, system, portfolio component at a time. Now, we will look

at multiple, simultaneous plays, or trading a basket of components,
and when we speak of trading multiple components, we are now speaking
about portfolio models.

We will now see how this notion of optimal f is not merely a method
of determining a risk profile, and an optimum point (all of which pertains
to us whether we acknowledge it or not), but that this also gives us the
building blocks for a portfolio model that is far superior to those that have
been employed in one form or another since the middle of the last century.

Since its introduction in 1995, I have referred to this new model as “The
Leverage Space Model.”

Before we examine the Leverage Space Model, let’s first look at the
older type of model, which has been in use quite ubiquitously. In doing so,
you will see why the Leverage Space Model is superior. The older model is
depicted in Figure 4.1.

This graphic demonstrates the traditional approach, the so-called Mod-
ern Portfolio Theory approach, also commonly referred to as a “Mean Vari-
ance Style Portfolio Model.” In this discussion we will simply refer to it as
“MPT.”

Note in the graphic portfolio that A is preferable to C, as A has less risk
for a given level of return. B is preferable to C for a greater return to a given
level of risk.

Thus, a “rational” investor, using MPT, wants to be at the upper-
leftmost edge of these potential portfolio combinations. This crescent is

T hus far, we have spoken of one game at a time, and of trading a single

61
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FIGURE 4.1 Modern Portfolio Theory, Reward and Risk

often referred to in the literature as “The Efficient Frontier.” A portfolio
that lies on the efficient frontier is said to be “efficient” because it maxi-
mizes return for a given level of risk, and vice versa.

Return, in MPT (“Reward” on the graphic’s vertical axis) is typically
characterized by the average return per holding period—essentially what
we are referring to herein as AHPR — 1.

Risk, in MPT, the horizontal axis, is defined as variance (standard de-
viation squared) in holding period returns.

There are four reasons the Leverage Space Model is superior to the
MPT-style models:

1. Risk is defined as drawdown, not variance in returns.
2. The model is valid for any distributional form; fat tails are addressed.

3. The Leverage Space Model is about leverage, which is not addressed in
the traditional models.

4. The fallacy and danger of correlation is eliminated.

We have just mentioned risk as being variance (standard deviation
squared) in MPT. In the Leverage Space Model, risk is defined as draw-
down. How would you rather define risk? Risk is losing your customers,
is it not? Ask yourself what it is about your performance that might cause
customers to leave. Is the variance in your returns what you really consider
your “risk” to be? Is it, perhaps, your drawdowns?
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MPT, because it depends on the variance in the returns of its com-
ponents as a major parameter, assumes the distribution of returns is
“Normal.” The Leverage Space Model works for any distributional form,
and it is assumed that various components can have various distributional
forms. MPT cannot take fat-tailed distributions into account, whereas the
Leverage Space Model does. The Leverage Space Model works with sce-
nario spectrums as proxies for the distribution of outcomes (that is, prox-
ies for the continuous distributions of which the binned distributions—the
scenario spectrum—approximates).

Before we look at the Leverage Space Model, realize that, just as with
optimal f in the single component case, as with gravity itself, it is and has
been at work upon you, whether or not you are aware of it. Look at what
you're going to see with that in mind, and remember that it is at work on
you. We will now articulate it.

The Leverage Space Model, rather than using AHPRs, arithmetic aver-
age returns (which are termed “expected” returns in MPT), uses the geo-
metric returns, and not only addresses leverage directly (something MPT
completely disregards) but, more importantly, allows us to account for the
nature of the curves of each component’s f values (along the axis of that
component in leverage space), which contain critical information for us as
investors. MPT is entirely oblivious to that. The Leverage Space Model is
about leverage (in both of its manifestations).

Aside from the “expected” (arithmetic mean) returns and the variance
in those returns, MPT requires as an input the correlation coefficients of all
of its pairwise components.

The problem with this is that counting on correlation fails you when
you need it the most (that is, out on the fat tails of the distribution of
outcomes). History shows that most holding periods, most days or most
months, are quite incidental. However, there are those few holding periods
where big moves do occur that can make or break you. It is not at all un-
like the game of bridge. You sit, hour after hour, most hands being utterly
incidental, until a few unusually distributed hands dictate the ultimate out-
come.

MPT is dependent on the correlation of the returns of the various com-
ponents. The Leverage Space Model is not.

If we look at playing two of our 2:1 coin toss games simultane-
ously—that is, two scenario spectrums running simultaneously, that is, a
portfolio of two components—we would see a correlation coefficient of
0 between the two coin toss games. MPT says you bet (allocate) 50 per-
cent of your stake on each game, but not what the leverage is (thus giving
you, in effect, a diagonal line from 0,0 to 1,1 whereupon your location is
predicated by how much you opt to lever up). The Leverage Space Model,
on the other hand, dictates that you optimally lever to .23,.23. values of f
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FIGURE 4.2 f for the 2:1 Coin Toss After 40 Plays

for each component (for a total exposure of .46, or 46 percent, of your
bankroll).

Now, if the correlation was +1 between the two coin toss games, they
would either both win together or both lose together, and it would be the
same as playing a single 2:1 coin toss game. If we bet .46 in one game, we
are far to the right of the peak. Look at Figure 4.2 to see where .46 puts you
on the curve!

If we were playing both games simultaneously, and we thought we had
a slightly negative correlation between the two games, when it was posi-
tive, we would be way to the right of .46 point!

In Vince (2007) I demonstrate a study I performed using data from a
recent 20-year period, looking at the correlations of various and diverse
markets. I had equity indexes and various equities, as well as various com-
modities (oil, gold, and corn).

The purpose of that study was to see what the correlation coefficients
became between markets on days where some markets had exceptionally
large moves (beyond three standard deviations in price of the previous
200 days).

The results strongly reinforced the fact that correlation fails us on the
big move days, which is when we need it most. Without going into the
results of the entire study, there are a few samples from the study that
demonstrate this characteristic.

For example, if we look at the correlation coefficient, r, of crude oil
and gold on all days, we see that » = .18. However, on days where crude
oil moved three standard deviations or more, r shot up to .61, and on more
incidental days, where crude oil moved less than one standard deviation,
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r dropped to .09. Clearly, if you were allocating where crude oil and
gold were components in a portfolio, and the correlation coefficient of all
days was used, .18, you would be terribly overallocated on the big move
days when crude oil moves beyond three standard deviations.

If we look at stocks and stock indexes, we see the same principle at
work. For example, the correlation coefficient for Ford and Pfizer was .15
for all days. When the S&P 500 index moved in excess of three standard
deviations, the correlation coefficient between Ford and Pfizer became .75.
If the S&P 500 index moved less than one standard deviation on a given day,
the correlation coefficient between Ford and Pfizer dropped to .025.

These correlations, however, were not simply so market related, or
between two components, or two components and the index they are a
part of. There was a cross-dimensional aspect to this phenomenon.

An example will illustrate this. I looked at corn and Microsoft, for ex-
ample, on all days that the correlation coefficient over the 20-year period
was .02. However, if gold moved by three standard deviations or more, the
correlation coefficient between corn and Microsoft shot up to .24, but if
gold moved less than one standard deviation, the correlation coefficient
between corn and Microsoft dropped to .01.

Using correlation is dangerous as it fails us during those critical peri-
ods when we are counting on it the most. Using correlation as an important
input to an allocation model will cause us to be badly misled.

In the Leverage Space Model, rather than using correlations as inputs,
we simply look at the joint probabilities for each combination of spec-
trums. In fact, that’s the only input we really need!

Coinl Coin2 Probability

H H .25
H T .25
T T .25
T H .25

If T sum up all the probabilities of the first coin being heads, HT and
HH, I have .5 as the probability associated with my first coin-as-heads sce-
nario. So, you see, you need only to know scenario outcomes, which are
whatever you deem them to be, and then assess the probabilities of the
scenario combinations manifesting. All else flows automatically with this
model.

What, then, comprises the Leverage Space Model, and how do we
construct it?
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Let’s go back to our 2:1 coin toss game, where N = 1 and we are
looking at a curve in the N+1-dimensional landscape. The curve is in a
2-dimensional landscape (a plane) for a single game. Figure 4.2 is useful
again.

Similarly, if I play two games simultaneously, such as these very same
coin toss games simultaneously, N = 2 and I am, therefore, looking at a
curve in three-dimensional space as shown in Figure 4.3.

This is the basic 2:1 coin toss after one play, but we are playing two
games simultaneously. It is the GHPR( f1, f2). Note that we have two sce-
nario spectrums (N = 2) and four possible outcomes of scenario spec-
trums (n = 4), whereby the probability of each of those four outcomes is
.25 in this case.

When we play two games simultaneously, N = 2, rather than having
a curve such as we have been seeing for the f spectrum, we now have
two f spectrums, each with its own axis, making up a surface in 3D
space. All of the rules and characteristics we have discussed about the
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single-component curve in a 2D plane apply in N+1-dimensional space,
along each of the N-axes.

Thus, in the Leverage Space Model, we have a surface, a “terrain” in
N+1-dimensional space. (I am showing this with only two components so
that we can see it in 3D space.) In Figure 4.4, we see the terrain after five
multiple simultaneous plays of our 2:1 coin toss.

Figure 4.5 shows our landscape after 20 multiple, simultaneous plays.

Recall again MPT results in a 50/60 mix of these two components, the
leverage left essentially to the discretion of the investor. Yet, as you can
plainly see here, the more plays that elapse, the greater the effect on the
account by acknowledging and utilizing this portfolio model versus the tra-
ditional and misguided MPT ones. If we look at a portfolio of 100 compo-
nents, we would see a terrain in a 101-dimensional space.

Everything about the single component case pertains here as
well—regarding drawdowns, being right of the peak, reducing drawdowns
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arithmetically while reducing returns geometrically, and so on—but along
two separate axes.

There are some other things that are illuminated by this model that you
would not be aware of while using the MPT-style models. For one, notice
the area where the surface is <1.0. Note that I can be optimal on one axis,
yet so far off on another axis that I can lose money with a probability that
approaches certainty if I continue to trade!

Here’s something else the older models won'’t illuminate for you: If I
were looking at 101 dimensions, I could be optimal on 99 of the 100 com-
ponents, yet so far off on one component so as to be <1.0 in altitude, in
TWR or GHPR, and hence losing money!

Again, it doesn’t matter whether you subscribe to this approach or
not—it is at work on you anyway.
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You should not be dissuaded by the fallacious notion that the in-
eluctability of being on this N+41-dimensional surface is invalidated by the
integer number of units requirement. It does not affect what is going on
here by one jot.

For example, in the multiple simultaneous 2:1 coin toss case, where
our geometric optimal coordinates are .23,.23, we have f of one unit
divided by .23, or 1/.23 = 4.347826087. In other words, we must trade one
unit (make one 1-unit bet) per every 4.347826087 units in our stake (on
each game, simultaneously).

Now let us further suppose we have a stake of 95 units. We should then
place:

95/4.347826087 = 21.85

Thus, we should bet 21.85 bets of one unit each to be geometrically
optimal. However, in the real world, we can bet only in integer units, and
since we do not want to be right of the geometrically optimal peak, we
should round down to the integer 21. That is, we round down to placing 21
bets of one unit each.

The peak still occurs at .23,.23 or one bet for every 4.347826087 units
in our stake. However, we are essentially making 21 bets in our stake, or
one bet for every 95/21 = 4.523809524 units in our stake.

From Equation (2.01) we can see:

JS = |BiggestLoss|/f$ (2.01)

Thus, in the instant case, betting one unit for every 4.523809524 units
in our stake means the corresponding f coordinate is:

S =1-1|/4.523809524 = .221052632

Therefore, the optimal point in the N+1-dimensional landscape of two
multiple, simultaneous 2:1 coin tosses is at .23,.23, while we are—due to
the integer unit bet constraint—at .221052632, .221052632. The surface is
unchanged, and we are merely shaved “to the left,” on all axis. This does
not invalidate the fact that you are somewhere on this surface, nor does it
change the shape of this surface, or the implications of your location.

Notice that we are looking at the geometric return here. We have al-
ready determined that you will trade in quantity relative to the size of your
stake, and so it is the geometric return, not the arithmetic, that we must
employ in determining the “reward” aspect of our model, as expressed in
the graphs as the height of the surface, the TWR( fi, f2) for various values
of f1, f5. This is opposed to the graph of the MPT-style portfolios in which
we used, effectively, AHPR-1 as the reward axis.
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The Leverage Space Model addresses geometric returns, which are
what matter to us, not the fallacious arithmetic returns that the tradi-
tional models misguidedly employ, and that erroneously direct our reward
focus to the hypotenuse of a right triangle,! whereas it is the height of the
vertical leg (the geometric return) that is of interest to us.

MPT does not take leverage into account. In sharp contrast, the Lever-
age Space Model is all about leverage. It is based on the notion of optimal
f; based on the notion of geometric mean maximization, which is entirely
about leverage.

In a world of derivative vehicles and notional funding, a portfolio
model must address leverage head-on. The traditional models ignore the
effects of leverage and are ill equipped to model the world in which
we work.

In Chapter 3, I noted that “leverage,” as I use the term, is not merely
how much one borrows (or, in effect, lends by not borrowing and by main-
taining a cash position in excess of the value of the asset along with the
asset), but is also the schedule upon which that asset position is increased
or decreased over time as the account equity fluctuates. The term “lever-
age” refers to both the static snapshot of cash versus the position itself,
and the schedule of adding to or lightening up on that position. Leverage
thus has two facets to it. As I said previously, you should think of leverage
as the number between 0 and 1 that represents both of these facets, and
is articulated by where you are on the f spectrum. Again, the traditional
models do not address these real-world demands.

(Readers not interested in the mathematical basis can skip directly to
Chapter 5 here.)

How, then, do we determine the terrain, the curve, of the N+1-
dimensional landscape of leverage space? The solution is our ultimate and
complete solution not only for determining the curve, the altitude at a co-
ordinate in leverage space, but also for giving us the answer we have long
been seeking for discerning the optimal point in that surface—optimal f
for multiple, simultaneous solutions, bound between 0 and 1 (for each com-
ponent, or “scenario spectrum”) where the probabilities of each potential
outcome (scenario) can be different.

The solution gives us the optimal f in all cases, even in the simple,
single-game case where we always win the same amount and always lose
the same amount.

ISee Chapter 3, p. 48, “Mathematical Addendum to Part I: The Single Component
Case,” regarding “Estimated Geometric Mean HPR (or How the Dispersion of Out-
comes Affects Geometric Growth).”
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Here, we again determine an HPR for the N(0 < N < c0) component
case:

N

HPR(fi - f\)k = (1 + (Z (fL* _§ZH>>> (4.01)

i=1

which again is incorporated into finding the Geometric mean HPR,
GHPR(f; ... fn), our objective function, the maximum of which consti-
tutes the optimal f set (f1... fv):

GHPR(f1--- fv) = [ [HPR(fi ... i)™ (4.02)
1

k=

Which is therefore expressed as:

n N —PL.. proby
GHPR(f1--- fn) = H (1 + (Z <ﬁ * BLTC,l))) (4.02a)

k=1 i=1

Finally, we can determine our TWR( f . .. f») after X periods as:

TWR(f; -~ fv) = GHPR(fi - -- fn)¥ (4.03)

where: X =however many periods we want to “expand” this out
N =the number of components in the portfolio, the number of
scenario spectrums
n=the number of combinations of each scenario, with one sce-
nario from each spectrum,; this is the product of the number
of scenarios in each spectrum, that is:

N
n= 1_[ #scenarios; (4.04)

i=1

For example, if we toss two coins, N = 2, and since each scenario has
two possible outcomes, heads or tails, n = 4. If we were throwing two dice,
N = 2. Since there are six possible outcomes, n = 6 * 6 = 36. Two coins
and one die would thus have N = 3 and n = 2 % 2 x 6 = 24 possible combi-
nations of outcomes.

1. f; = The value we are using for f of the i!" of the 1... N components.

2. prob; = The probability of the k™ combination (of which there are a
total of n) of scenarios of the spectrums occurring.
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3. —PLy; = The profit or loss outcome to the scenario of the ™ compo-
nent (scenario spectrum) (from 1 to N) associated with the k™ combi-
nation of scenarios (from 1 to n).

4. BL; = The worst outcome scenario of the i component (scenario
spectrum).

Think in terms of a spreadsheet of rows and columns. The following
example will make the procedure quite clear in terms of how to implement
it. The process of determining the scenarios, their probabilities and pay-
offs, and even the implementation of the formulas given here to determine
their relative optimal f values is far simpler than you may think, as this
example will bear out.

Let’s suppose I have three separate market systems (thus, “N” in our
aforementioned equations is 3), I am trading stocks, and a unit is 100
shares. I am using one year of monthly data here, but you can use peri-
ods of any length, whether you want daily, weekly, monthly, yearly, or any
other. Typically, longer-term systems will use longer-term data. The alloca-
tions I derive, then, will be for monthly allocations to each market system.

First, we need to get into constructing the scenario spectrums for the
market systems. We start by taking the net changes in profits and losses of
each market system at the end of each period:

MKktSysA MKktSysB MKktSysC

Feb-07 $47.00 $448.00 $381.00
Mar-07 $9.00 $300.00 $799.00
Apr-07 $78.00 —$200.00 $547.00
May-07 $136.00 $321.00 $283.00
Jun-07 —$38.00 —$735.00 $57.00
Jul-07 —$68.00 —$73.00 $317.00
Aug-07 $70.00 $26.00 $140.00
Sep-07 $91.00 $48.00 —$325.00
Oct-07 —$108.00 $122.00 $429.00
Nov-07 —$30.00 —$75.00 $121.00
Dec-07 —$15.00 —$207.00 —$393.00
Jan-08 $2.00 $30.00 $623.00
Feb-08 $22.00 $269.00 $242.00

Notice that all results need to be converted into a common currency. If
T use USD as my common currency, I would convert the monthly changes
in equity from the currency they are in to USD. Further, I am not basing
these conversions on the current basis of that currency to USD, but on the
basis of that currency to USD at the end of each particular period.
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Next, I determine the range of outcomes for each market system over
the entire time window we are considering:

MktSysA  MktSysB MktSysC

Min —$108.00 —$735.00 —$393.00
Max $136.00 $448.00 $799.00
Range $244.00 $1,183.00 $1,192.00

I then determine how many bins I want. Suppose I want five bins. I will
put the highest and the lowest in their own bins, and I will thus have three
bins to cover the inner part of the range. So, I divide the range by 3 in this
case:

MKktSysA MktSysB MktSysC

Bin Width $81.33 $394.33 $397.33

From this, I can create the size of the individual bins for each market
system that I have, five bins for each, equispaced over the time window
that we are considering. (Note that I don’t have to have the same number
of bins for each market system; I can use a variable number, but in this
example, we are using five bins for each market system. Furthermore, they
do not necessarily have to be equispaced; I am merely doing that for com-
putational convenience here.)

MKktSysA < —$108.00
—$108.00 —$26.67
—$26.67 $54.67
$54.67 $136.00
$136.00 >
MktSysB < —$735.00
—$735.00 —$340.67
—$340.67 $53.67
$53.67 $448.00
$448.00 >
MktSysC < —$393.00
—$393.00 $4.33

$4.33 $401.67
$401.67 $799.00
$799.00 >

We now arrange our data “odometrically” so as to capture every pos-
sible combination of occurrence between the scenarios, with one sce-
nario from each spectrum. See Table 4.1. Note that the total number of
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TABLE 4.1 Data Arranged Odometrically

THE MULTIPLE COMPONENT CASE

MKktSysA MktSysB MktSysC
High Low High Low High Low
Range Range Range Range Range Range Occurs: Probability

< -108 < =735 < =393

< -108 < =735 393 4

< =108 < =735 4 402

< -—108 < =735 402 799

< -108 < =735 799 >

< =108 —-735 —-341 < =393

< =108 -735 341 -393 4

< -108 —-735 —-341 4 402

< -108 -735 =341 402 799

< =108 —735 341 799 >

< -108 —341 54 < -393

< -108 —341 54 393 4

< -108 —341 54 4 402

< -108 —341 54 402 799

< -108 —341 54 799 >

< -108 54 448 < =393

< —-108 54 448 —-393 4

< -—108 54 448 4 402

< =108 54 448 402 799 Oct-07 0.076923077

< —-108 54 448 799 >

< -—108 448 > < =393

< -108 448 > —393 4

< =108 448 > 4 402

< -—108 448 > 402 799

< -108 448 > 799 >
-108 =27 < =735 < =393
-108 -27 < =735 393 4
-108 -27 < =735 4 402 Jun07 0.076923077
-108 -27 < =735 402 799
-108 27 < =735 799 >
-108 -27 —735 341 < -393
-108 -27 —-735 =341 —393 4
-108 -27 —-735 341 4 402
-108 -27 —735 341 402 799
-108 27 —-735 =341 799 >
-108 27 —341 54 < =393
-108 -27 —341 54 393 4
-108 =27 —341 54 4 402 Jul-07 7-Nov 0.153846154
-108 -27 —341 54 402 799
-108 -27 —341 54 799 >
-108 =27 54 448 < =393
-108 27 54 448 -393 4
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TABLE 4.1 (Continued)

s

MktSysA MktSysB MktSysC

High Low High Low High Low

Range Range Range Range Range Range Occurs: Probability
—-108 -27 54 448 4 402

—-108 -27 54 448 402 799

-108 -27 54 448 799 >

—-108 -27 448 > < —393

-108 -27 448 > -393 4

-108 -27 448 > 4 402

—-108 -27 448 > 402 799

-108 -27 448 > 799 >

—27 55 < —735 < -393

-27 55 < -735 -393 4

-27 55 < -735 4 402

-27 55 < -735 402 799

-27 55 < -735 799 >

-27 55 -735 -341 < —393

-27 55 -735 —341 -393 4

-27 55 -735 —341 4 402

-27 55 -735 —341 402 799

-27 55 -735 —341 799 >

-27 55 —341 54 < —393 Dec-07 0.076923077
-27 55 -341 54 -393 4

-27 55 —341 54 4 402

-27 55 -341 54 402 799 Jan-08 0.076923077
-27 55 —341 54 799 >

-27 55 54 448 < -393

-27 55 54 448 -393 4

-27 55 54 448 4 402 Feb-08 0.076923077
-27 55 54 448 402 799

-27 55 54 448 799 > Mar-07 0.076923077
-27 55 448 > < —-393

-27 55 448 > —393 4

-27 55 448 > 4 402 Feb-07 0.076923077
-27 55 448 > 402 799

-27 55 448 > 799 >

55 136 < -735 < -393

55 136 < -735 -393 4

55 136 < -735 4 402

55 136 < —735 402 799

55 136 < -735 799 >

55 136 -735 —341 < -393

55 136 -735 -341 -393 4

55 136 —735 —341 4 402

55 136 —735 —341 402 799

(continues)
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TABLE 4.1 (Continued)

THE MULTIPLE COMPONENT CASE

MktSysA MktSysB MktSysC

High Low High Low High Low

Range Range Range Range Range Range Occurs: Probability
55 136 -735 —341 799 >

55 136 -341 54 < -393

55 136 —341 54 —393 4 Sep-07 0.076923077
55 136 —341 54 4 402 Aug-07 0.076923077
55 136 —341 54 402 799 Apr-07 0.076923077
55 136 —341 54 799 >

55 136 54 448 < -393

55 136 54 448 —393 4

55 136 54 448 4 402

55 136 54 448 402 799

55 136 54 448 799 >

55 136 448 > < —393

55 136 448 > -393 4

55 136 448 > 4 402

55 136 448 > 402 799

55 136 448 > 799 >

136 > < —735 < -393

136 > < -735 —393 4

136 > < -735 4 402

136 > < —735 402 799

136 > < -735 799 >

136 > -735 —341 < -393

136 > —735 —341 —393 4

136 > -735 —341 4 402

136 > —735 —-341 402 799

136 > —735 —341 799 >

136 > —341 54 < —393

136 > —341 54 -393 4

136 > —341 54 4 402

136 > —341 54 402 799

136 > -341 54 799 >

136 > 54 448 < -393

136 > 54 448 —393 4

136 > 54 448 4 402 May-07 0.076923077
136 > 54 448 402 799

136 > 54 448 799 >

136 > 448 > < -393

136 > 448 > -393 4

136 > 448 > 4 402

136 > 448 > 402 799

136 > 448 > 799 >
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combinations, the total rows we derive from this exercise, is » in our
aforementioned equations. Since we have five scenarios in each spectrum,
n=5x%xb5xb=125.

For the Occurs column, I simply take the data from the initial table we
created of monthly, common-currency, 1-unit equity changes, taking each
row and finding where it corresponds on this sheet. For example, if I take
my Feb-08 row of:

MktSys A MKktSys B MktSys C

Feb-08 $47.00 $448.00 $381.00

I can see that those three particular outcomes fell into a particular row:

MktSysA MktSysB MktSysC Occurs:
High Low High Low High Low

Range Range Range Range Range Range

< —108 < —735 < —393

=27 55 b4 448 4 402  Feb-08

Therefore, I recorded it on that row. There is a one-one correspon-
dence between the rows on our first table and this joint-scenarios table.
One row on the first will correspond to only one row on this joint-scenarios
table.

For the Probability column, I have 13 data points from the original table
of monthly, common-currency, 1-unit equity changes. So I take however
many data points fall on a row here, divide by 13, and that gives me the
joint probability of those scenarios having occurred simultaneously.

Next, we want to specify a single value for each bin, the “A” value for
each scenario. There are many ways to do this. One way is to take the
mean data point that falls into the bin. In this example, I simply take the
average value of the data that falls into a given bin from the original table
of monthly, common-currency, 1-unit equity changes.
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Additionally, we seek to know the probabilities of occurrence at each
bin. Since there are 13 data points, we simply see how many data points
fall into each bin, and divide by 13. This gives us the “P” value (probability)
of each scenario.

Note that it is okay to have joint probability bins with 0 probability
(since no empirical data fell into that bin) but it is not okay to have sce-
narios with no outcome value (see the “4DIV/0!” MktSysB for the row —735
to —340.6666667). In such cases, I typically divide the high end plus the
low end of the bin by 2 and use that value as the “A” value for that bin
(in this case, then, this bin’s A value would be —735 + —340.6666667 =
—1075.6666667 / 2 = —537.83333334).

Thus, this table can be distilled to the following, which gives us our
three scenario spectrums, their outcomes, and associated probabilities:

Outcome A  Probability P

MktSysA —$108.00 0.076923077

—$45.33 0.230769231

$13.00 0.384615385

$79.67 0.230769231

$136.00 0.076923077

MktSysB —$735.00 0.076923077
—$537.83 0

—$64.43 0.538461538

$253.00 0.307692308

$448.00 0.076923077

MktSysC —$393.00 0.076923077

—$325.00 0.076923077

$220.14 0.538461538

$533.00 0.230769231

$799.00 0.076923077

Alert readers at this point will have calculated the Mathematical Ex-
pectation (ME) of MktSysA, MktSysB, and MktSysC as 15.08, 21.08, and
247.77 respectively.

Note: In this example, I have used equispaced bins. This is not a re-
quirement; you can use bins of various sizes to try to obtain, say, better
resolution around the mode of the bin. Further, as stated, there is no re-
quirement that each scenario spectrum contain the same number of bins or
scenarios, even though we are using five scenarios, five bins, for all three
spectrums in this example.
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It is not uncommon at this point to adjust the outcomes. Often, say,
you may wish to make the worst case outcomes for each spectrum a little
worse.? Thus, you may use something like the following (this is not neces-
sary and doing so will not give you what was the mathematically optimal f;
rather, I am showing it to demonstrate where in the process you may wish
to put certain prognostications about the future for use in your work):

Outcome A  Probability P

MktSysA —$150.00 0.076923077

—$45.33 0.230769231

$13.00 0.384615385

$79.67 0.230769231

$136.00 0.076923077

MktSysB —$1000.00 0.076923077
—$537.83 0

—$64.43 0.538461538

$253.00 0.307692308

$448.00 0.076923077

MktSysC —$500.00 0.076923077

—$325.00 0.076923077

$220.14 0.538461538

$533.00 0.230769231

$799.00 0.076923077

Alert readers will again notice that now the Mathematical Expectations
(MFEs) of MktSysA, MktSysB, and MktSysC have become 11.85, 0.69, and
239.54 respectively.

The final step in this exercise is to amend our joint-scenarios table
created earlier to reflect our Outcome (“A”) values, rather than the “High
Range-Low Range” values we had to use to place our empirical data (the
data from the original monthly, common-currency, 1-unit equity changes
table) into the appropriate rows.

2You can amend the joint probabilities table as well, to reflect varying probabilities.
For example, I may wish to assume there were 14 data points, rather than 13, and
wish to add a single data point to the first row of —150, —1000, —500. Thus, since
the total of all the probabilities must equal 1.0, I would amend the other rows that
have data in them to reflect this fact (dividing the total number of occurrences at
each row by 14). The point is, though using the empirical data, with amendment,
will give you the optimal f set, it is but a starting point to the necessary amendments
your analysis might call for.
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MKktSysA MktSysB MktSysC Probability
—$150.00 —$1,000.00 —$500.00
—$150.00 —$1,000.00 —$325.00
—$150.00 —$1,000.00 $220.14
—$150.00 —$1,000.00 $533.00
—$150.00 —$1,000.00 $799.00
—$150.00 —$537.83 —$500.00
—$150.00 —$537.83 —$325.00
—$150.00 —$537.83 $220.14
—$150.00 —$537.83 $533.00
—$150.00 —$537.83 $799.00
—$150.00 —$64.43 —$500.00
—$150.00 —$64.43 —$325.00
—$150.00 —$64.43 $220.14
—$150.00 —$64.43 $533.00
—$150.00 —$64.43 $799.00
—$150.00 $253.00 —$500.00
—$150.00 $253.00 —$325.00
—$150.00 $253.00 $220.14
—$150.00 $253.00 $533.00 0.076923077
—$150.00 $253.00 $799.00
—$150.00 $448.00 —$500.00
—$150.00 $448.00 —$325.00
—$150.00 $448.00 $220.14
—$150.00 $448.00 $533.00
—$150.00 $448.00 $799.00
—$45.33 —$1,000.00 —$500.00
—$45.33 —$1,000.00 —$325.00
—$45.33 —$1,000.00 $220.14 0.076923077
—$45.33 —$1,000.00 $533.00
—$45.33 —$1,000.00 $799.00
—$45.33 —$537.83 —$500.00
—$45.33 —$537.83 —$325.00
—$45.33 —$537.83 $220.14
—$45.33 —$537.83 $533.00
—$45.33 —$537.83 $799.00
—$45.33 —$64.43 —$500.00
—$45.33 —$64.43 —$325.00
—$45.33 —$64.43 $220.14 0.153846154
—$45.33 —$64.43 $533.00

(continues)
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MKktSysA MktSysB MktSysC Probability
—$45.33 —$64.43 $799.00
—$45.33 $253.00 —$500.00
—$45.33 $253.00 —$325.00
—$45.33 $253.00 $220.14
—$45.33 $253.00 $533.00
—$45.33 $253.00 $799.00
—$45.33 $448.00 —$500.00
—$45.33 $448.00 —$325.00
—$45.33 $448.00 $220.14
—$45.33 $448.00 $533.00
—$45.33 $448.00 $799.00
$13.00 —$1,000.00 —$500.00
$13.00 —$1,000.00 —$325.00
$13.00 —$1,000.00 $220.14
$13.00 —$1,000.00 $533.00
$13.00 —$1,000.00 $799.00
$13.00 —$537.83 —$500.00
$13.00 —$537.83 —$325.00
$13.00 —$537.83 $220.14
$13.00 —$537.83 $533.00
$13.00 —$537.83 $799.00
$13.00 —$64.43 —$500.00 0.076923077
$13.00 —$64.43 —$325.00
$13.00 —$64.43 $220.14
$13.00 —$64.43 $533.00 0.076923077
$13.00 —$64.43 $799.00
$13.00 $253.00 —$500.00
$13.00 $253.00 —$325.00
$13.00 $253.00 $220.14 0.076923077
$13.00 $253.00 $533.00
$13.00 $253.00 $799.00 0.076923077
$13.00 $448.00 —$500.00
$13.00 $448.00 —$325.00
$13.00 $448.00 $220.14 0.076923077
$13.00 $448.00 $533.00
$13.00 $448.00 $799.00
$79.67 —$1,000.00 —$500.00
$79.67 —$1,000.00 —$325.00
$79.67 —$1,000.00 $220.14
$79.67 —$1,000.00 $533.00

$79.67 —$1,000.00 $799.00
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MktSysA MktSysB MktSysC Probability
$79.67 —$537.83 —$500.00
$79.67 —$537.83 —$325.00
$79.67 —$537.83 $220.14
$79.67 —$537.83 $533.00
$79.67 —$537.83 $799.00
$79.67 —$64.43 —$500.00
$79.67 —$64.43 —$325.00 0.076923077
$79.67 —$64.43 $220.14 0.076923077
$79.67 —$64.43 $533.00 0.076923077
$79.67 —$64.43 $799.00
$79.67 $253.00 —$500.00
$79.67 $253.00 —$325.00
$79.67 $253.00 $220.14
$79.67 $253.00 $533.00
$79.67 $253.00 $799.00
$79.67 $448.00 —$500.00
$79.67 $448.00 —$325.00
$79.67 $448.00 $220.14
$79.67 $448.00 $533.00
$79.67 $448.00 $799.00
$136.00 —$1,000.00 —$500.00
$136.00 —$1,000.00 —$325.00
$136.00 —$1,000.00 $220.14
$136.00 —$1,000.00 $533.00
$136.00 —$1,000.00 $799.00
$136.00 —$537.83 —$500.00
$136.00 —$537.83 —$325.00
$136.00 —$537.83 $220.14
$136.00 —$537.83 $533.00
$136.00 —$537.83 $799.00
$136.00 —$64.43 —$500.00
$136.00 —$64.43 —$325.00
$136.00 —$64.43 $220.14
$136.00 —$64.43 $533.00
$136.00 —$64.43 $799.00
$136.00 $253.00 —$500.00
$136.00 $253.00 —$325.00
$136.00 $253.00 $220.14 0.076923077
$136.00 $253.00 $533.00
$136.00 $253.00 $799.00

(continues)
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MktSysA MktSysB MktSysC Probability
$136.00 $448.00 —$500.00
$136.00 $448.00 —$325.00
$136.00 $448.00 $220.14
$136.00 $448.00 $533.00
$136.00 $448.00 $799.00

Furthermore, in our joint-scenarios table, we can disregard any rows
where no data occurred. That is, from our joint-scenarios table, we are
concerned only with the rows that had at least one empirical data point
fall into the Occurs or Probability column. Thus, by paring down this joint-
scenarios table, we have the following distillation:

MKktSysA MktSysB MktSysC Probability
—$150.00 $253.00 $533.00 0.076923077
—$45.33 —$1,000.00 $220.14 0.076923077
—$45.33 —$64.43 $220.14 0.153846154
$13.00 —$64.43 —$500.00 0.076923077
$13.00 —$64.43 $533.00 0.076923077
$13.00 $253.00 $220.14 0.076923077
$13.00 $253.00 $799.00 0.076923077
$13.00 $448.00 $220.14 0.076923077
$79.67 —$64.43 —$325.00 0.076923077
$79.67 —$64.43 $220.14 0.076923077
$79.67 —$64.43 $533.00 0.076923077
$136.00 $253.00 $220.14 0.076923077

Note that our pared-down joint-scenarios table now has only 12 rows
versus the 125 that we started with. We would then, therefore, set n = 12
for calculation purposes. At this point, we have gathered together all of the
information we need to perform the leverage space calculations.

So we have N = 3, and n = 12. We want to determine our geometric
mean HPR for a given set of f values—of which there are N, or 3—so we
seek the maximum GHPR( f1, fo, f3).

We could solve, say, for all values of fi, f2, fs and plot out
the N-+1-dimensional surface of leverage space (in this case, a four-
dimensional surface), or we could apply an optimization algorithm, such
as the genetic algorithm, to seek the maximum “altitude,” the maximum
GHPR(f1, f2, f3)- We won't go into the genetic algorithm in this exam-
ple. Interested readers are referred to Vince (1995 and 2007). Additionally,
there are perhaps other optimization algorithms that can be applied here.
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Our discussion herein is focused on performing the material that isn’t cov-
ered in more generalized texts on mathematical optimization.
Notice that to determine the GHPR(fi, f2, f3), we must discern

nHPR(/1. /2, f3)s.

GHPR(f1--- fv) = [ [HPR(fi ... )™ (4.02)
k=1

In other words, we go down through each row in the joint probabilities
table, calling each row “k,” and determine an HPR(k, fi, f2, f3) for each
row as follows:

N

—PLy ;
HPR(f1--- fnk = (1 + (Z (ﬁ * BLj ))) (4.01)

=1

Notice that inside the HPR(f1 - -- fn)r formula there is the iteration
through each column, each of the N market systems, of which we discern
the sum:

N —PLy;
Z<ﬁ * BL, )

=1

Assume we are solving for the f values of .1, .4, and .25 respectively
for MktSysA, MktSysB, and MktSysC. We would figure our HPR(.1,.4,.25)
at each row in our joint probabilities table, each k, as follows:

i=1 i=2 i=3 MktSysA MktSysB MktSysC
SfCDx S f(.25)x
Scenario# —PL —PL —PL

MktSysA MktSysB  MktSysC Probability (or “k”)  (k,%)/BL; (k,7)/BL; (k,?)/BL;
(=10 (=4 (=25

—$150.00 $253.00  $533.00 0.076923077 1 —0.10 0.10 0.27
—$45.33 —$1,000.00  $220.14 0.076923077 2 —0.03 —0.40 0.11
—$45.33 —$64.43  $220.14 0.153846154 3 —0.03 —0.03 0.11

$13.00 —$64.43 —$500.00 0.076923077 4 0.01 —0.03 —0.25
$13.00 —$64.43  $533.00 0.076923077 5 0.01 —0.03 0.27
$13.00 $253.00  $220.14 0.076923077 6 0.01 0.10 0.11
$13.00 $253.00  $799.00 0.076923077 7 0.01 0.10 0.40
$13.00 $448.00  $220.14 0.076923077 8 0.01 0.18 0.11
$79.67 —$64.43 —$325.00 0.076923077 9 0.05 —0.03 —0.16
$79.67 —$64.43  $220.14 0.076923077 10 0.05 —0.03 0.11
$79.67 —$64.43  $533.00 0.076923077 11 0.05 —0.03 0.27
$136.00 $253.00  $220.14 0.076923077 12 0.09 0.10 0.11

By adding 1 to each of the three rightmost columns, we obtain their
HPRs. We can sum these for each row, and obtain a net HPR at that row as
14 the sum — N(3) as follows:
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And multiplying together the HPRP column, we obtain our
GHPR(.1,.4,.25) = 1.00491443.

If we apply a search algorithm (such as the genetic algorithm) to
discern the f set that results in the highest GHPR(f1, f2, f3) (or TWR
(f1, fo, f3)), we would eventually find the peak at GHPR(.307,0.0,.693) =
1.249. The relative allocations of such an outcome are in the vicinity of:

S S$

MktSysA  0.307  $489.17
MktSysB 0 -
MktSysC  0.693  $721.16

For straight scenarios (in which we are using the raw data, not amend-
ing the largest loss to be greater losses), the optimal f set is .304, 0.0, .696,
which results in a GHPR(.304, 0.0, .696) = 1.339. The relative allocations of
such an outcome are in the vicinity of:

S S$

MktSysA 0.304 $355.60
MktSysB 0 -
MktSysC 0.696 $564.45

The answer derived from this procedure gives you the optimal f in all
cases. It can be used in lieu of the scenario planning formulas presented
earlier, in lieu of the 1990 formulas presented earlier as well, and in lieu
of the Kelly formulas. It is exact to the extent that the data comprising
the scenarios is exact. Bear in mind that the fewer scenarios one uses, the
quicker the calculation time, but also the greater amount of information
loss that will be suffered.

The procedure is certainly no more difficult than solving for mean vari-
ance. Furthermore, there are no parameters whose relevance to the real
world is questionable, such as correlation coefficients between pairwise
components.






CHAPTER 5

Risk Metrics in
Leverage Space
and Drawdown

sideration for risk. We have developed a means for determining the

optimal f spectrum for multiple, simultaneous components, where
each component can have innumerable scenarios, each scenario can have
a different probability associated with it, and our answer along each axis
(each component’s f value) is bounded between 0 and 1. Our story of geo-
metric mean maximization could end right there.

We have thus developed a means for determining the return aspect of
a potential portfolio model.

However, a portfolio model should have a risk aspect juxtaposed to
the return aspect. In the same way that MPT models use the less useful
return metric of (arithmetic) average expected return versus the Leverage
Space Model using geometric average HPRs for returns, similarly, variance
in returns as the risk metric in MPT is supplanted with drawdown as the
primary risk metric in the Leverage Space Model.

If we say that along the N+1-dimensional surface of leverage space,
the given f coordinates there resulted in an expected drawdown that
violated a permissible amount, the surface at those coordinates should be
replaced with nothing. The surface vanishes at that point—that is, drops
to an altitude, a GHPR( f ... fn) of 0—leaving a location where we cannot
reside, thus creating a terrain in the N+1-dimensional landscape. A money
manager who violates his drawdown constraint faces eventual ruin, and
the GHPR, the “altitude” in leverage space, shall reflect that.

Drawdown as a constraint tears the surface, ripping out those unin-
habitable locations. If we take, say, a plane that is horizontal to the floor

S o far, we have discussed only the return aspect without any real con-

89
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FIGURE 3.1 Coin Toss in 3D, Showing a Drawdown Wherein We Cannot Reside

itself and intersect it with our 2:1 coin toss surface, we get a terrain sim-
ilar to what is shown in Figure 5.1—a volcano-shaped object, as it were.
We cannot reside in the crater because locations there see the terrain drop
immediately to 0!

In this example, there are various points on the rim, all with the same
TWR(f1, f2), since the plane that cuts the surface is parallel to the floor in
this example. Thus, a secondary criterion could be employed when there
are multiple optimal places in the terrain to select from. For instance, we
could invoke a secondary rule that would have us select those coordinates
with the lowest sum of all f values; that would put us closer to the 0,0
coordinate, of all the highest points, thus incurring less minimum expected
drawdown.

This brings up the point that secondary criteria can also be used along
with, or even in lieu of, the drawdown constraint. Let us assume that
we create a terrain by removing points on the surface wherein a par-
ticular drawdown constraint would be violated. We can further remove
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terrain if, for example, a particular constraint of a maximum variance is
violated, and so on. Similarly, if drawdown is not a concern to us, we
might opt to remove surface only from those locations that violated what-
ever our risk constraint was (for instance, an upper limit on variance,
and so on).

In the real world, we rarely see such a simplified shape as shown in
Figure 5.1. Planes that are not parallel to any axis, which can themselves
be curved and corrugated, usually rip the terrain. In the real world, we tend
to see shapes more like those shown in Figure 5.2.

If we take the same shape now, and view it from above, we get a bird’s-
eye view of the terrain in Figure 5.3.

Look now at how little space you have to work with here! Even before
the drawdown constraint (if the center of the dark area was filled in) you
have very little space to work with. When the drawdown constraint is in-
voked, the space you have to work with becomes lesser still. Anything not

f Coin 2

.50 60 j\"er; . 7f4[
f Coin 1 1080 g0

10 20" 3" 1

FIGURE 3.2 Real-World, Two-Component Example
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FIGURE 3.3 Real-World, Two-Component Example Seen from Above

in the dark area is a location that results in a drawdown that exceeds your
drawdown constraint.

Additionally, you can see “from above” that you can be too far off on
only one axis, and be in a location that is not acceptable. Also notice that
the area with the richest portion of dark area, that is, the areas most likely
not to violate a given drawdown constraint, are the areas closer to 0,0.
This is why such heuristics in futures trading as to “never risk more than
2 percent on any one trade” (or 1 percent, and so on) developed absent
the framework articulated here. They evolved through trial and error, and
the framework herein gives explanation as to why such heuristics have
evolved. (One might erroneously conclude then that to be tucked deeply to-
ward the 0 . .. 0 point on all axes is simply a good criterion, and accept such
heuristics. Recall, however, when we discussed the nature of the curve in
Chapter 3, we demonstrated that when we move in a leftward direction
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of the peak of the optimal f, we decrease our drawdowns arithmetically,
but we also decrease our returns geometrically, and this difference grows
as time goes by. Furthermore, by tucking in deeply toward 0 ... 0, we are
most likely “to the left of” the points of inflection on the different axes, and
thus, if we were to migrate rightward, more toward the peak on the differ-
ent axes, we would likely see a faster marginal increase in reward than we
would risk. Ignorance of the nature of this curve might lead one to believe
that returns and drawdowns merely double, say, by going from a 1 percent
allocation to a 2 percent allocation. Additionally, this ignorance does not al-
low one to be as aggressive as he can be in terms of percentage allocation
to the respective components while still remaining within his drawdown
constraint. These heuristics are a kludgy substitute for what the trader or
fund manager has heretofore been ignorant of in the netherworld of lever-
age space.)

Furthermore, the tighter the drawdown constraint, the less space there
is to work with. Obviously, when viewed in this light, ad hoc heuristics
such as “half Kelly” and others are hardly germane to what is really going
on, whether we acknowledge it or not.

Now let’s go back and see what MPT would have us do when viewed
in this manner in Figure 5.4.

MPT would put us on that diagonal line between 0,0 and 1,1, repre-
senting a 50/50 allocation, leveraged up to the degree of our tastes. Clearly,
Nobel prizes notwithstanding, this is not a solution in the real world of
drawdowns and leverage. In fact, it will likely lead you into oblivion. It does
not illuminate things to the degree we need. The Leverage Space Model,
however, provides us with precisely that.

Remember: Ineluctably(!) you use “leverage” even in a cash account,
as we demonstrated earlier. Even if you are not borrowing money to carry
a position, you are still invoking leverage, you still have an ineluctable co-
ordinate, and those coordinates appear on a map not dissimilar to the one
depicted here. The only differences are your drawdown constraints, the
number of components you are working with (/V), and where the optimal
point of those N components is.

The Kelly criterion is simply to bet such as to “maximize the expected
value of the logarithm of his capital” (Kelly 1956, p. 925). In other words: to
be at the peak of the f curve, regardless of its bounds. (That is your Kelly
criterion—however, remember not to use the so-called Kelly formulas for
the solution in finding the curve’s peak, as those will work only when there
are two scenarios in a single spectrum.) Similarly, Modern Portfolio Theory
simply gives a set of points in N dimensions to be at, when in fact, we are
in an N+1-dimensional manifold (for a single component, it gives a solitary
point at 1.0 in the 2-dimensional f-value curve; for two dimensions, a line
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MPT says to just be somewhere
on this line. The specific point is
a function of your leverage

preference!

f Coin 2

.90

FIGURE 5.4 Real-World, Two-Component Example

in a 3D landscape as depicted in Figure 5.4; in an N component case, a set
of points in N dimensions resident in an N+1-dimensional landscape). The
solutions posited by Modern Portfolio Theory are thus wholly inadequate
in the real-world solution space.

(Readers not interested in the mathematical basis can skip directly to
Chapter 6 here.)

Let us discuss how to calculate the metric of drawdown.

First, consider the “Classical Gambler’s Ruin Problem,” according to
Feller (Feller 1950, pp. 313-314). Assume a gambler who wins or loses one
unit with probability p and (1 — p), respectively. His initial capital is 2 and
he is playing against an opponent whose initial capital is « — 2, so that the
combined capital of the two is u.

The game continues until our gambler, whose initial capital is z, sees
it grow to u, or diminish to 0, in which case we say he is ruined. It is the
probability of this ruin that we are interested in, and this is given by Feller
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TABLE 5.1 Results of Risk of Ruin According to Feller, Where RR Is the Risk of
Ruin: Therefore, 1 — RR Is the Probability of Success'

Row p 1-p z u RR P (Success)

1 0.5 0.5 9 10 0.1 0.9

2 0.5 0.5 90 100 0.1 0.9

3 0.5 0.5 900 1000 0.1 0.9

4 0.5 0.5 950 1000 0.05 0.95

5 0.5 0.5 8000 10000 0.2 0.8

6 0.45 0.55 9 10 0.210 0.790

7 0.45 0.55 90 100 0.866 0.134

8 0.45 0.55 99 100 0.182 0.818

9 0.4 0.6 90 100 0.983 0.017
10 0.4 0.6 99 100 0.333 0.667
11 0.55 0.45 9 10 0.035 0.965
12 0.55 0.45 90 100 0.000 1.000
13 0.55 0.45 99 100 0.000 1.000
14 0.6 0.4 90 100 0.000 1.000
15 0.6 0.4 99 100 0.000 1.000
as follows:

(A=2,)" — (A=2),)
(A=2y,)" 1

This equation holds if (1 — p) # p (which would cause a division by 0). In
those cases where 1 — p and p are equal:

RR = (5.01)

RR=1-"2 (5.01a)
u

Table 5.1 provides results of this formula according to Feller, where
RR is the risk of ruin. Therefore, 1 — RR is the probability of success.

Note in Table 5.1 the difference between row 2, in an even-money
game, and the corresponding row 7, where the probabilities turn slightly
against the gambler. Note how the risk of ruin, RR, shoots upward.

Likewise, consider what happens in row 6, compared to row 7. The
probabilities p and (1 — p) have not changed, but the size of the stake and
the target have changed (2 and u—in effect, going from row 7 to row 6 is

IFor the sake of consistency I have altered the variable names in some of Feller’'s
formulas here to be consistent with the variable names I shall be using throughout
this chapter.
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the same as if we were betting 10 units instead of one unit on each play!).
Note also that now the risk of ruin has been cut to less than a quarter of
what it was on row 7. Clearly, in a seemingly negative expectation game,
one wants to trade in higher amounts and quit sooner. According to Feller,

In a game with constant stakes, the gambler therefore minimizes
the probability of ruin by selecting the stake as large as consistent
with his goal of gaining an amount fixed in advance. The empirical
validity of this conclusion has been challenged, usually by people
who contend that every “unfair” bet is unreasonable. If this were to
be taken seriously, it would mean the end of all insurance business,
Sor the careful driver who insures against liability obviously plays
a game that is technically unfair. Actually there exists no theorem
wn probability to discourage such a driver from taking insurance
(Feller 1950, p. 316).

For our purposes, however, we are dealing with situations consider-
ably more complicated than the simple dual-scenario case of a gambling
illustration, and as such we will begin to derive formulas for the more
complicated situation. As we leave the classical ruin problem according
to Feller, keep in mind that these same principles are at work in investing
as well, although the formulations do get considerably more involved.

Let’s consider now what we are confronted with mathematically when
there are various outcomes involved, and those outcomes are a function of
a stake that is multiplicative across outcomes as the sequence of outcomes
is progressed through.

Consider again our 2:1 coin toss with f = .25:

+2, —1 (Stream)
1.5, .75 (HPR(.25)s)

There are four possible chronological permutations of these two scenarios
as follows, and the terminal wealth relatives (TWRs) that result:

1.5 x1.56=225

156 x .75 =1.125
5 x15=1.125
.75 x .75 = .5625

Note that the expansion of all possible scenarios into the future is like
that put forth when describing Estimated Average Compound Growth in
Chapter 3, where we describe optimal f as an asymptote.
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Now let’s assume we are going to consider that we are ruined if we
have only 60 percent (b = .6) of our initial stake. Looking at the four
outcomes, only one of them ever has your TWR dip to or below the ab-
sorbing barrier of .6, that being the fourth sequence of .75 x .75. So, we can
state that, in this instance, the risk of ruin of .6 equity left at any time is !j:

RR(6) =1y = .25

Thus, there is a 25 percent chance of drawing down to 60 percent or less
on our initial equity in this simple case.

Any time the interim product < = RR(b), we consider that ruin has
occurred. So in the above example:

RR(.8) = % = 50 percent

In other words, at an f value of .25 in our 2:1 coin toss scenario spec-
trum, half of the possible arrangements of HPR( f)s leave you with 80 per-
cent or less on your initial stake (that is, the last two sequences shown see
80 percent or less at one point or another in the sequential run of scenario
outcomes).

Expressed mathematically, we can say that at any 7 in (5.02) if the in-
terim value for (5.02) <= 0, then ruin has occurred:

q i—1
> ((]_[ HPR(f, ... fN)t> « HPR(fi ... fx)i — b) (5.02)

i=1 t=0

where: HPR(f;...fx)o=1.0
q =the number of scenarios in multiplicative se-
quence (in this case 2, the same as n)?
b =that multiple on our stake, as a lower barrier,
where we determine ruin to occur (0 <=b <=

D

Again, if at any arbitrary i, we have a value <=0, we can conclude that
ruin has occurred.

2For the moment, consider g the same as n. Later in this chapter, they become two
distinct variables.
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One way of expressing this mathematically would be:

2

q
=1

i—1
((1‘[ HPR(f; ... fN)t> s HPR(fi ... fv)i — b)

t=0

int | ———= =8 (5.03)
2 ((]_[ HPR(fl N fN)L) * HPR(f1 PN fN)z — b) ‘

t=0

=1

where: HPRy=1.0
q = the number of scenarios in multiplicative sequence

q

2

i=1

£0

i—1
((]_[HPR( fi.. fN)t> « HPR(fi ... fx)i — b)

t=0

In (5.03) note that S can take only one of two values, either 1 (ruin has
not occurred) or 0 (ruin has occurred).

There is the possibility that the denominator in (5.03) equals 0, in which
case f8 should be set to 0.

We digress for purpose of clarity now. Suppose we have a stream of
HPR( f)s. Let us suppose we have the five separate HPR( f)s of:

9
1.05
7
.85
14
Further, let us suppose we determine b, that multiple on our stake, as

a lower barrier, where we determine ruin to occur, as .6. Table 5.2 then
demonstrates (5.03) and we can thus see that ruin has occurred at ¢ = 4.

TABLE 3.2 Demonstrates Equation (5.03)

Q 1 2 3 4 5
HPR(f) 0.9 1.05 0.7 0.85 1.4
TWR(f) 1 09 0.945 0.6615 0.562275 0.787185
TWR(f) — .6 0.3 0.345 0.0615 —-0.03773 0.187185

TWR(f) — .6 / [TWR(f) — .6 1 1 1 -1 1
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Therefore, we conclude that this stream of HPR( f)s resulted in ruin. (Even
though ruin did not occur at the final point, the fact that it occurs at all, at
any arbitrary point, is enough to determine that the sequence ruins.)

Using the mathematical sleight-of-hand, taking the integer of the quan-
tity a sum divided by its absolute value (5.03), we derive a value of § =
int(3/5) = int(.6) = 0. If the value in column 4 in the last row is 1, then
B=1

Note that in (5.03) the HPR( f)s appear to be taken in order; that is,
they appear in a single, ordered sequence. Yet, we have four sequences in
our example, so we are calculating 8 for each sequence. Recall that in de-
termining optimal f, sequence does not matter, so we can use any arbitrary
sequence of HPR( f)s.

However, in risk of ruin calculations, order does matter(!) and we
must therefore consider all permutations in the sequence of HPR( f)s.
Some permutations at a given set (b, HPR(f); ... HPR(f),) will see 8 =
0 while others will see 8 = 1. Further, note that for n HPR( f)s, that is, for
HPR(f);...HPR(f),, there are n* permutations.

Therefore, 8 must be calculated for all permutations of # things taken
n at a time. The symbology for this is expressed as:

vnPn (5.04)

More frequently, this is referred to as “for all permutations of »n things
taken q at a time,” and appears as:

YnPq (5.04a)

This is the case even though, for the moment in our discussion, n = q.

Notice that for n things taken ¢ at a time, the total number of permuta-
tions is therefore 9.

We can take the sum of these § values for all permutations (of n things
taken g at a time, and again here, n = q for the moment), and divide by
the number of permutations to obtain a real probability of ruin, with ruin
defined as dropping to b of our starting stake, as RR(b):

qu
VrPq " B

RR(b,q)=1- % (5.05)
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This is what we are doing in discerning the probability of ruin to a
given b, when tossing a single coin two consecutive times. There are two
HPR( f)s. Hence there are 2 x 2 = 4 permutations, from which we are going
to determine a g value for each (using RR(.6)). Summing these g values
and dividing by the number of permutations, 4, gives us our probability
of ruin.

Note the input parameters. We have a value for b in RR(b)—that is, the
percentage of our starting stake left. Various values for b, of course, will
yield various results. Additionally, we are using HPR( f)s, implying that we
have an f value here. Different f values will give different HPR( f)s that
will give different values for g. Thus, what we are ultimately concerned
with here—and the reader is advised at this point to not lose sight of—is
that we are essentially looking to hold b constant in our analysis and are
concerned with those f values that yield an acceptable RR(b). In other
words, we want to find those f values that give us an acceptable probability
for a given risk of ruin.

We digress at this point for purposes of clarification. For the mo-
ment, let’s suspend the notion of each play being a multiple on our
stake; we’ll suspend thinking of these streams in terms of HPR(f)s and
TWR(f)s. Rather, we will simply contemplate the case of being presented
with the prospect of three consecutive coin tosses. We can, therefore,
say that there are eight separate streams, eight permutations, that the se-
quence H and T may comprise when being tossed three consecutive times

(V2 Ps):

HHH
HHT
HTH
H T T (ruin)*
THH
THT
T T H (ruin)
T T T (ruin)

Now let us say that if tails occurs in two consecutive tosses, we are ru-
ined. We are trying to determine how many of those eight streams see two
consecutive tails. That number, divided by 8 (the number of permutations)
is therefore our “Probability of Ruin.”

The situation becomes more complex (see HT T (ruin)*) when we add
in the concept of multiples. In the previous example, it may be that if the
first toss is heads, then two subsequent tosses of tails would not result in
ruin, because the first play resulted in enough gain to avert ruin in the two
subsequent tosses of tails.
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We return now to assigning HPR( f)s to our coin tosses at an optimal
f value of .25 and b of .6.

Note what happens as we increase the number of plays. In this case,
from two plays (that is, ¢ = 2) to three plays (¢ = 3):

Vng =

15x 1.5 x 1.5 =3.375

1.5 x 1.5 x .75 = 1.6875

1.5 x .75 x 1.5 = 1.6875

1.5 x .75 x .75 = .84375

75 x 1.5 x 1.5 = 1.6875

75 % 1.5 x .75 = .84375

75 % .75 x 1.5 = .84375 (ruin)
75 x .75 x .75 = .421875 (ruin)

Only the last two sequences saw our stake drop to .6 or less at any
time. RR(.6) = 2/8 = .25.
Now for four plays:

VoPy =

1.5 x 1.5 x 1.5 x 1.5 = 5.0625

1.5 x 1.5 x 1.5 x .75 = 2.563125

1.5 x 1.5 x .75 x 1.5 = 2.53125

1.5 x 1.5 x .75 x .75 = 1.265625

1.5 x .75 x 1.5 x 1.5 = 2.563125

1.5 x .75 x 1.6 x .75 = 2.563125

1.5 x .75 x .75 x 1.5 = 1.265625

1.6 x .75 x .75 x .75 = .6328125

75 x 1.5 x 1.5 x 1.5 = 2.53125

75 x 1.5 x 1.5 x .75 = 1.265625

75 x 1.5 x .75 x 1.5 = 1.265625

75 x 1.6 x .75 x .75 = .6328125

.75 x .75 x 1.5 x 1.5 = 1.265625 (ruin)
.75 x .75 x 1.5 x .75 = .6328125 (ruin)
.75 x .75 x .75 x 1.5 = .6328125 (ruin)
75 x .75 x .75 x .75 = .31640625 (ruin)

Here, only the last four sequences saw our stake drop to .6 or lower of
initial equity at any time. RR(.6) = 4/16 = .25.
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And now for five plays:

Vo P5 =

15x15x15x 15 x 1.5="7.59375
1.5x15x15x 1.5 x0.75 = 3.796875
1.5x15x1.5x0.75 x 1.5 = 3.796875

1.5x 1.5 x 1.5 x0.75 x 0.75 = 1.8984375

1.5x 1.5x0.75 x 1.5 x 1.5 = 3.796875

1.5x 1.5 x0.75 x 1.5 x 0.75 = 1.8984375
1.5x1.5x0.75 x 0.75 x 1.5 = 1.8984375

1.5 x 1.5 x0.75 x 0.75 x 0.75 = 0.94921875

1.5 x0.75 x 1.5 x 1.5 x 1.5 = 3.796875

1.5 x0.75 x 1.5 x 1.5 x 0.75 = 1.8984375

1.5 x0.75 x 1.5 x 0.75 x 1.5 = 1.8984375

1.5 x0.75 x 1.5 x 0.75 x 0.75 = 0.94921875
1.5x0.75 x 0.75 x 1.5 x 1.5 = 1.8984375

1.5x0.75 x 0.75 x 1.5 x 0.75 = 0.94921875

1.5 x0.75 x 0.75 x 0.75 x 1.5 = 0.94921875

1.5 x 0.75 x 0.75 x 0.75 x 0.75 = 0.474609375 (ruin)
0.75 x 1.5 x 1.5 x 1.5 x 1.5 = 3.796875

0.75 x 1.5 x 1.5 x 1.5 x 0.75 = 1.8984375

0.75 x 1.5 x 1.5 x 0.75 x 1.5 = 1.8984375

0.75 x 1.6 x 1.5 x 0.75 x 0.75 = 0.94921875

0.75 x 1.6 x 0.75 x 1.5 x 1.5 = 1.8984375

0.75 x 1.5 x 0.75 x 1.5 x 0.75 = 0.94921875

0.75 x 1.5 x 0.75 x 0.75 x 1.5 = 0.94921875

0.75 x 1.5 x 0.75 x 0.75 x 0.75 = 0.474609375 (ruin)
0.75 x 0.75 x 1.5 x 1.5 x 1.5 = 1.8984375 (ruin)
0.75 x 0.75 x 1.5 x 1.5 x 0.75 = 0.94921875 (ruin)
0.75 x 0.75 x 1.5 x 0.75 x 1.5 = 0.94921875 (ruin)
0.75 x 0.75 x 1.5 x 0.75 x 0.75 = 0.474609375 (ruin)
0.75 x 0.75 x 0.75 x 1.5 x 1.5 = 0.94921875 (ruin)
0.75 x 0.75 x 0.75 x 1.5 x 0.75 = 0.474609375e (ruin)
0.75 x 0.75 x 0.75 x 0.75 x 1.5 = 0.474609375 (ruin)
0.75 x 0.75 x 0.75 x 0.75 x 0.75 = 0.237304688 (ruin)

Now the probability of ruin has risen to 10/32, or .3125. This is very dis-
concerting, in that the probability of ruin increases the longer you continue
to play.

Fortunately, this probability has an asymptote. See what happens with
this 2:1 coin toss game, at the optimal f value of .25 per play, in Table 5.3.

From this data, in methods to be detailed later, we can determine that
the asymptote, that is, the risk of ruin (defined as 60 percent of our initial
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TABLE 5.3 Coin Toss Game, at the Optimal
f Value of .25 per Play

Play # RR(.6)

2 0.25

3 0.25

4 0.25

5 0.3125

6 0.3125

7 0.367188

8 0.367188

9 0.367188
10 0.389648
11 0.389648
12 0.413818
13 0.413818
14 0.436829
15 0.436829
16 0.436829
17 0.447441
18 0.447441
19 0.459791
20 0.459791
21 0.459791
22 0.466089
23 0.466089
24 0.47383
25 0.47383
26 0.482092

equity left in this instance) is .48406 in the long run sense—that is, if we
continue to play indefinitely.

As shown in Figure 5.5, as q approaches infinity, RR(b) approaches
a horizontal asymptote: that is, RR(b) can be determined in the long-run
sense.

Additionally, it is perfectly acceptable to begin the analysis at ¢ = 1,
rather than ¢ = n. Doing so aids in resolving the line and thus its asymptote.

Remember a very important caveat in this analysis. As demonstrated
thus far, it is assumed that there is no statistical dependency in the se-
quence of scenario outcomes across time. That is, we are looking at
the stream of scenario outcomes across time in a pure sample with re-
placement manner; the past scenario outcome(s) do not influence the
current one.
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FIGURE 5.3 RR(.6) for 2:1 Coin Toss at f=.25

What happens when you have more than a single scenario spectrum?
This is easily handled by considering that the HPR( f)s of the different sce-
nario spectrums cover the same time period. That is, we may have our
scenarios derived so that they are the scenarios of outcomes for the next
month, the next day, and so on.

We therefore consider each combination of scenarios for each sce-
nario spectrum. Thus, if we were looking at two scenario spectrums (N =
2) of our 2:1 coin toss, we would then have the following four outcomes
(that is, n = 4):

Gamel +2 +2 —1 —1
Game2 +2 -1 +2 -1

The reason we have four outcomes is that we have two scenario spec-
trums with two scenarios in each. Thus, in this case n = 4.
When you have more than one scenario spectrum (that is, N > 1):

N
n= l_[ #scenarios; (5.06)

i=1

where: N =the number of scenario spectrums (components) you are
including
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In other words, n is the product of all the scenario spectrums we are
considering, and in our example here—since there are two scenario spec-
trums (N = 2) each with two scenarios—we have n = 4.

The HPR(f)s for these four outcomes, then, are 1 + the sum of
HPR( f)s at that period — N.

So, if we assume we are going to trade at f values of .25, .25 in our
example, we then have the following:

Gamel +2 +2 —1 —1
Game2 +2 -1 +2 -1

Converted to HPR(.25, .25)s:

Game 1 15 15 .75 .75
Game 2 1.5 .75 15 .75
Sum 3 225225 15

NetHPR (1 +Sum —N) 2 125 1.25 5

Consequently, we have n = 4, and the four values are (2, 1.25, 1.25, 5),
which we would then use in our analysis.

We digress now. To this point, we have been discussing the probabil-
ity of ruin, for an aggregate of one or more market systems or scenario
spectrums. Risk of ruin RR(b) represents the probability of hitting or pen-
etrating the lower absorbing barrier of b x initial stake. Thus, this lower
absorbing barrier does not migrate upward, as equity may increase. If an
account therefore increases twofold, this barrier does not move. For exam-
ple, if b = .6 on a million-dollar account, then the lower absorbing barrier
is at $600,000. If the account doubles now, to $2 million, then the lower
absorbing barrier is still at $600,000.

This might be what many want to use in determining our risk metric.

However, far more frequently we want to know the probabilities of
touching a lower absorbing barrier from our highest equity point. In other
words, we are concerned with risk of drawdown, far more so in most cases
than risk of ruin. If our account doubles to $2 million now, rather than being
concerned with it going back and touching or penetrating $600,000, we are
concerned with it coming down or penetrating double that, or of it coming
down to $1.2 million.

This is so much the case that in most instances, for most traders, fund
managers, or anyone responsible in a field exposed to risk, it is the de facto
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and organically derived® definition of risk itself: “The probability of draw-
down,” or, more precisely, the probability of a 1 — b percentage regression
from equity highs, referred to herein now as RD(b).

Again, fortunately, risk of drawdown [RD(b)] is very closely linked to
risk of ruin [RR(b)], so much so that we can slide the two in and out of our
discussion merely by changing equation (5.03) to reflect risk of drawdown
instead of risk of ruin:

1—1
f <min <1.0, (1‘[ HPR(f; ... fN)t>> « HPR(fi ... fx)i — b)
int| = —5
(min (1.0, (1‘[ HPR(f; ... fN)t>> x HPR(fi ... fx)i — b)‘
=1 t=0
(5.03a)
where
HPR(f)y = 1.0
1—1
> (min (1.0, (HHPR(fI ... fN)t>> « HPR(fi ... fx)i — b) #0
=1 t=0

Calculating B8 in subsequent equations by (5.03a) will give you risk of
drawdown, as opposed to mere risk of ruin.

The main difference in the mechanics of (5.03a) over (5.03) is that
at any time in the running product of HPR( f)s, if the running product is
greater than 1.0, then the value 1.0 is replaced for the running product at
that point.

Here is some very bare-bones Java code for calculating equation (5.05)
for one or more scenario spectrums, for determining either risk of ruin
[RR(b)] or risk of drawdown [RD(b)]:

inmport java.awt.*;
import java.io.*;
inmport java.util.*;
public class MaxTWRAVAR{
String lines [];
String msnanes [];
double f [];
doubl e b;

3All too often, the definition of risk in literature pertaining to it has ignored the fact
that this is exactly what practitioners in the field define risk to be! Rather than the
tail wagging the dog here, we opt to accept this real-world definition for risk.
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bool ean usedr awdowni nst eadof r ui n;
doubl e plays[][];
double hprs []1[1];
doubl e hpr [];//the conposite (arithmetic average per tine
//period) of the hprs
int N //the nunmber of plays.Capital used to correspond to
/lvariables in the book
long NL;// N as a long to avoid many casts
public MaxTWRAVAR(String[] args){
try{
b=Doubl e. par seDoubl e(args[1]);
} cat ch( Nunber For mat Exception e){
System out. println("Conmand Line format: MaxTWRAVAR inputfile
ri skof drawdown(0.0..1.0) cal cul ateRD(true/false)");
return;
}
if(args.|ength>2){
usedr awdowni nst eadof r ui n=Bool ean. val ueCXf (args[ 2] ) . bool eanVal ue();
}
getinputdata(args[0]);
creat eHPRs();
control ();

}

public static void nain(String[] args){
MaxTVWRAVAR max TVWRAVAR = new Max TWRAVAR(ar gs) ;
}

protected void getinputdata(String fil eNane){
String filetext = readl nputFile(fileName);
lines = getArgs(filetext,"\r\n");
N=l i nes. | engt h- 2;
NL=(1 ong) N,
pl ays=new doubl e[ N [];
for(int i=0;i<lines.length;i++){

Systemout.printin("line "+i+" : "+lines[i]);
if(i==0){
nmsnanes = getArgs(lines[i],",");

Yelse if(i==1){
f = convertStringArrayToDoubl e(get Args(lines[i],","));

}el se{
plays[i-2]= convertStringArrayToDoubl e(getArgs(lines[i],","));
}
}
Systemout.printin("b : "+b);

i f (usedr awdowni nst eadof r ui n) {
Systemout. printin("pr of : drawdown");
}el se{
Systemout. println("pr of : ruin");
}
}

protected void createHPRs(){
//first find the biggest |oss
doubl e bi ggestLoss[] = new double [N];
hprs = new doubl e [plays[0].length][N];
Arrays. fill (biggestLoss, Doubl e. MAX_VALUE) ;
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for(int j=0;j <msnames. | ength;j++){
for(int i=0;i<Ni++){
if(plays[i][j] <biggestLoss[j]){
bi ggest Loss[j]=plays[i][j];
}
}
}

/1fing the hpr for each msnames for each associated f
for(int j=0;j <msnanes. | ength;j++){
for(int i=0;i<Ni++){
hprs[j1[i]= 1.0 + f[j] X (-plays[i][j] / biggestLoss[j]);
}
}

//take the arithnetic average of the hprs
hpr = new doubl e[ N ;
for(int i=0;i<Ni++){//go through each play
for(int j=0;j <msnanes.length;j++){ //go through each nsnanes
hprii] += hprs[j1[i];
}
hpr[i] = 1.0+hpr[i]-nsnanes.|ength

protected String readlnputFile(String fil eNane){

}

FilelnputStreamfis = null;
String str = null;
try {
fis = new Fil el nput Strean(fil eNane);
int size = fis.available();
byte[] bytes = new byte [size];
fis.read(bytes);
str = new String(bytes);
} catch (1 OException e) {
} finally {
try {
fis.close();
} catch (I CException e2) {
}
}

return str;

protected String[] getArgs(String paraneter, String delimter){

}

String args[];
int nextltem=0;
StringTokeni zer stoke=new StringTokeni zer (paraneter,delinmter);
args=new String[ stoke. count Tokens()];
whi | e( st oke. hasMor eTokens() ) {
ar gs[ next | t en] =st oke. next Token();
next | tenm=(next|temtl) %rgs. | ength;
}

return args;

protected double [] convertStringArrayToDoubl e(String [] s){

double [] d = new doubl e[s.length];
for(int i = 0; i<s.length; i++){
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try{
d[ i ] =Doubl e. par seDoubl e(s[i]);
}cat ch( Nunber For mat Exception e){
d[i]=0.0;
}
}

return d;

}

protected int B(double [] hprset, bool ean drawdown) {

doubl e i nteri mHPR=1. 0;
doubl e previnteri MHPR=1. 0;
doubl e nuner at or =0. 0;
doubl e denomi nat or =0. 0;
for(int i=0;i <hprset.length;i++){

doubl e useinval ue = previnteri nHPR;

i f (drawdown && previnteri mHPR>1. 0)

usei nvalue = 1.0;

interi tHPR = usei nvalue * hprset[i];
doubl e value = interi mHPR - b;
nuner at or += val ue;

denomi nat or += Mat h. abs(val ue);
previnteri mtHPR = interi nHPR;

}
i f (denomi nat or ==0. 0) {
return O;
}el se{
doubl e x = (nunerator/denom nator);
i f(x>=0){
return (int)x;
}el se{
return O;
}
}

}

/In things taken g at a tinme where g>=n
//we really cannot use this as we get OutOf MenoryError early on
/I because we try to save the whole array. Instead, use nPq.i()
protected double[][] nPq(int nopernutations, int q){
doubl e hprpernutation[][]=new doubl e[ nopernutations][q];
/1 go through colum x colum
for(int col um=0; col um<q; col um++) { /1 go through
//permutation x pernutation
for(int pn=0; pn<noper nut ati ons; pn++) {
i f (col um==0) {
hprpernmutation[pn][colum] = hpr[pn %N;
}el se{
hprpernutation[pn][colum] =
hpr[ (pn/ (int) (Math. pow (double)N, (double)colum))) % N;
}
}
}

return hprpernutation;
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//n things taken g at a tinme where g>=n to return the i'th item
protected double[] nPq.i(int g, long pn){

doubl e hprpernutation[]=new doubl e[q];

int x =0;

/1 go through colum x col um

for(int col um=0; col um<q; col um++) {

i f(col um==0) {
X = (int)(pn %NL);

}el se{
x = (int)((pn/(long)(Math. pow (doubl e)N, (doubl e)col um)))
% NL) ;
}
hprpernut ation[g-1-colum] = hpr[x];

}

return hprpernutation;

}

protected void control (){
int counter=1;
whi | e(1==1){
| ong passed=0;
I ong nopernutations =
(1 ong) Math. pow( (doubl e) hpr. | ength, (doubl e) counter);
for (1 ong pn=0; pn<noper nut ati ons; pn++) {
doubl e hprpermutation[]=nPq.i (counter, pn);
passed+=(| ong) B( hpr per mut at i on, usedr awdowni nst eadof r ui n) ;

}

doubl e result=1. 0- (doubl e) passed/ (doubl e) noper nut ati ons;
System out. println(counter+" = "+result);

count er ++;

The code is presented “as is,” with no warranties whatsoever. Use it as
you see fit. It is merely a bare-bones implementation of equation (5.05). I
wrote it in as generic a flavor of Java as possible, and intentionally avoided
using an object-oriented approach, and intentionally kept it in the lowest-
common-denominator syntax across languages, so that you can transport
it to other languages more easily. The code can be made far more efficient
than what is presented here. This is presented merely to give programmers
of this concept a starting reference point.

Note that the input file code must be formatted as follows: a straight
ASCII text file, wherein the first line is the scenario spectrum name, the
second line is the f value to be used on that scenario spectrum, and all
subsequent lines are the simple stream of individual scenario outcomes.
For example:

Coin Toss 1
.25

-1

2
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This shows the scenario spectrum “Coin Toss 1” at an f of .25 with two
outcomes, one of —1 and the other of +2.

To repeat: For situations of multiple scenario spectrums, the first line
contains the scenario spectrum names (comma delimited), the second line
has the respective f values (comma delimited), and each line after that
represents a simultaneous outcome for both scenario spectrums, wherein
each combination of scenarios from both scenario spectrums occurs.

Coin Toss 1, Coin Toss 2
.25,.25

2,2

2,—1

-1,2

-1,-1

So, in this file, the first outcome sees both scenario spectrums gain-
ing two units. The next outcome sees Coin Toss 1 gaining two units while
Coin Toss 2 loses one unit (—1). Then Coin Toss 1 loses one unit (—1) and
Coin Toss 2 gains two units. For the last outcome, they both lose one unit
(—1). (Thus, n = 4 in this file. In all data files, therefore, since the first two
lines are scenario spectrum name(s) and respective f value(s), n equals
the number of lines in the file minus 2.)

To this point, we have not alluded to the probabilities of the scenario
outcomes. Rather, as if the scenario outcomes were like a stream of trades,
or a stream of coin toss results, we have quietly assumed for simplicity’s
sake that there has been an equal probability of occurrence with each sce-
nario outcome. In other words, we have been inexplicitly saying to this
point that the probability of each scenario (or individual combinations of
scenarios from multiple spectrums occurring simultaneously), the proba-
bility of the k™" outcome among the n? outcomes, is:

e =Y (5.07)

Usually, however, we do not have the luxury or the convenience of all
scenarios having the same probability of occurrence.*

“Note, however, that if we were talking about scenarios made up of individual coin
tosses, or of results of trading a given market system over a given day, or if we used
purely empirical data in discerning our scenario spectrums and probabilities, we
could use equation (5.07) for the said probabilities. If, for example, we used the last
24 trading months and examined the prices of stock ABC, we could conceivably
create a scenario spectrum of 24 bins, each with an outcome of those months, each
with a probability given in (5.07).
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To address this, we return now to equation (5.05). We will discuss first
the case of a single scenario spectrum. In this case, we not only have out-
comes for each scenario (which comprise the HPR( f)s used in equation
(56.03) or (5.03a) for B), but we also have a probability of its occurrence, p.

nl

YnPq Y (B * i)
k=1
nd

YnPq Y pi
k=1

RX(b,q)=1—

(5.052)

where: B =the value given in (5.03) or (5.03a)
i = the probability of the k™ occurrence

For each k, this is the product of the probabilities for that k. That is,
you can think of it as the horizontal product of the probabilities from 1 to ¢
for that k. For each k, you calculate a 8. Each i, as you can see in (5.03) or
(56.03a), cycles through from 7 = 1 to ¢ HPR( f)s. Each HPR( f"); has a prob-
ability associated with it (Proby ;). Multiplying these probabilities along as
you cycle through from 7 = 1 to q in (5.03) or (5.03a) as you discern g will
give you py in the single scenario case. For example, in a coin toss, where
the probabilities are always .5 for each scenario, then whatever the permu-
tation of scenarios in (5.03) or (56.03a), p; will be .5 x .5 = .25 when q =
2 in discerning By, for each k, it will equal .25 x .25 x .25 = .015625 when
q = 3, ad infinitum for the single scenario set case.

q
pi [ [ Probe. (5.07a)

=1

To help dispel confusion, let’s return to our simple single coin toss and
examine the nomenclature of our variables:

¢ There is one scenario spectrum: N = 1.

¢ This scenario spectrum has two scenarios: n = 2 (per (5.06)).

e We are expanding out in this example to three sequential outcomes,
q = 3. We traverse this, “horizontally,” as i =1 to ¢ (as in (5.03 or
5.03a)).

o Therefore we have n? = 23 = 8 sequential outcome possibilities. We
traverse this, “vertically,” as k = 1 to n? (as in (5.05, 5.05a or 5.05b)).

As we get into multiple scenarios, calculating the individual Proby ;’s
gets a little trickier.
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There is, then, a probability at a particular ¢ of the manifestations
of each individual scenario occurring in N spectrums together (this is a
Proby ;). Thus, on a particular 7 in a (horizontal) multiplicative run from 1
to q, in a particular (vertical) run of k from 1 to n?, we have a probability
Proby ;. Now multiplying these Proby ;’s together in the horizontal run for
1 from 1 to g will give the p; for this k.

Proby1 % Probys - x Proby ¢ = py
Prob}, Probj, , « - - - Probj, = p

n.b., when dependency is present in the stream of outcomes, the p; values
are necessarily affected.

For example, in the simplistic binomial outcome case of a coin toss
(N = 1), where I have two possible outcomes (n = 2), heads and tails, with
outcomes +2 and —1, respectively, and I look at flipping the coin two times
(q@ = 2), I have the following four (n?) possible outcomes:

Dk
Outcome 1 k=1 H H .25
Outcome 2 (k=2) H T .25
Outcome 3 k=3 T H .25
Outcome 4 k=4 T T .25

Now assume there is perfect negative correlation involved—that is,
winners always beget losers, and vice versa. In this idealized case, we then
have the following:

Dk
Outcome 1 k=1 H H 0
Outcome 2 (k=2) H T )
Outcome 3 (k=3 T H )
Outcome 4 k=4 T T 0

Unfortunately, when serial dependency seems to exist, it is never at
such an idealized value as 1.0, shown here. Fortunately, however, serial
dependency rarely exists, and its appearance of existence in small amounts
is usually and typically incidental, and can thus be worked with as being 0.
However, if the p; values are deemed to be more than merely “incidentally
serially dependent,” then they can be, and in fact, must be accounted for as
they are used in the equations given in this chapter. The math for doing so
is presented as the Addendum to this chapter.

Additionally, the incorporation of rules to address dependency when it
seems present, of the type, “Don’t trade after two consecutive losers, and
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so on,” could in this analysis be turned into the familiar tails, or T in the
following stream:

HHTHTTHH
The dependency rules would transform the stream to
HHTHTTH

Such a stream could therefore be incorporated into these equations,
amended as such, with the same probabilities.

Note the nomenclature in (5.05a), RX(b, q), referring to the fact that
this equation can be used for either risk of ruin, RR(b, q), or risk of draw-
down, RD(b, q).

Additionally, note that the denominator in this case is simply the sum
of the probabilities. Typically, this should equal 1, excepting for floating-
point roundoff error. However, this is often not the case when we get into
some of the shortcut methods listed later, so (5.05a) will not be rewritten
here with a denominator of 1.

The full equation, then, for determining risk of a drawdown (1 — b) at
a given q is given as:

RD(®b,q) =1~
nt i (min (1‘0. (ilz[lHPR(j'l.”fl\v)l))*HPR(flu.fN)i—b) q
VnPq ) |int | - = * [ [ Proby;
k=1 (min (1.0,( [1 HPR(f; ... Jj\v),)>*HPR(‘/'1... fN)fb) i=1
i=1 t=0 k
nl q
VnPq Y (]_[ Prob;m)
k=1 \i=1
(5.05b)
where:

HPR(fi ... f)o = 1.0

1—1
Z (min (1.0, (HHPR( fi... fN)t>> x HPR(f1 ... fx)i — b)

i=1 t=0

#0

Solving (5.05b) will give you the probability of drawdown. Though it
looks daunting, the only inputs required to calculate it are a given level
of drawdown (expressed as 1 — b; thus, if I am considering a 20 percent
drawdown, I will use 1 — .2 = .8 as my b value), the f values of the sce-
nario spectrums (from which the HPR( f; ... fn)s are then derived), and
the joint probabilities of the scenarios across the spectrums. In effect,
this is all of the information you acquired to construct the altitude of the
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Leverage Space Model in the previous chapter (which we determined was
no more difficult to gather or construct than an MPT-style model) plus a
given drawdown constraint parameter, b. You see, you have already gath-
ered the requisite inputs.

Why is (5.05b) so important? Because you will keep everything in
(5.05b) constant, and the only things that will change are the f values of
the components in the portfolio, the scenario spectrums from which the
HPR( f)s are derived.

Therefore, given (5.05b) one can determine the portfolio that is growth
optimal within a given acceptable RD(b)! In other words, starting from the
standpoint of “I want to have no more than an x percent probability of a
drawdown greater than 1 — b,” you can discern the portfolio that is growth
optimal.

Essentially then, this new model is:

Maximize TWR(f] ... fn) where RD(b) <= an acceptable probability
of hitting b.

This new model, the Leverage Space Model of juxtaposing drawdown
to geometric return, is also articulated as:

Find those values for fj ... fy which maximize:

- al L\
GHPR(f1-~~fN)=l—[ <1+(Z<L* BL-I“>>>

k=1 i=1
where:
i—1
e i <min (1.0.( I HPR(fl...fN),))*HPR(fI... fN)i—b> q
vnPq Y- |int| = — * [ Proby;
k=1 > <min (1.0,( Il HPR(fl...fN),))*HPR(fI... fN)i—b> i=1
i=1 t=0
1— k

nt q
vnPq Y <]_[ Probk,,,;)

k=1 \i=1

is less than or equal to an acceptable probability of hitting b,

where: X =however many periods we want to “expand” this out
N =the number of components in the portfolio, the number of
scenario spectrums
n=the number of combinations of each scenario, with one sce-
nario from each spectrum,; this is the product of the number
of scenarios in each spectrum, that is:

N
n= 1_[ #scenarios;

i=1
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For example, if we are tossing two coins then N = 2, and since each
scenario has two possible outcomes (heads or tails), n = 4. If we were
throwing two dice, N = 2 and since there are 6 possible outcomes, n =
6 % 6 = 36. Two coins and one die would thus have N =3 and n = 2 % 2 x
6 = 24 possible combinations of outcomes.

q = the horizon in terms of a number of holding periods
f; = the value we are using for f of the i of the 1... N components

prob;, = the probability of the k™ combination (of which there are a
total of n) of scenarios of the spectrums occurring

—PL;,; = the profit or loss outcome to the scenario of the i™" compo-
nent (scenario spectrum) associated with the ¥ combination of
scenarios

BL; = the worst-outcome scenario of the ‘™" component (scenario
spectrum)

HPR(fi ... fv)o =10

q i—1
Z (min (1.0, (HHPR( fi... fN)t>> x HPR(fi ... fN)i — b)
t=0

i=1

£0

That is, whenever an allocation is measured in, say, the genetic algo-
rithm for discerning whether it is a new, optimal allocation mix, then it can
be measured against (5.05b) given the f values of the candidate mix, the
drawdown being considered as 1 — b, to see whether RD(b), as given by
(5.05b), is acceptable (that is, if RD(b) <= x).

Additionally, the equation can be looked at in terms of a fund as a sce-
nario spectrum. We can use (5.05), (5.05a), and (5.05b) to determine an
allocation to that specific fund in terms of maximum drawdown and max-
imum risk of ruin probabilities, rather than looking to discern the relative
weightings within a portfolio; that is, in the former we are seeking an in-
dividual f value that will give us probabilities of drawdowns and ruin that
are palatable to us and/or will determine the notional funding amount that
accomplishes these tolerable values. In the latter, we are looking for a set
of f values to allocate among N components within the portfolio to ac-
complish the same.

How many ¢ is enough ¢? How elusive is that asymptote, that risk of
drawdown?

In seeking the asymptote to (5.05), (5.05a), (5.05b), we seek that point
where each increase in g is met with RX(b) increasing by so slight a margin
as to be of no consequence to our analysis. So it would appear that when
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RX(b) for a given value of q, RX(b, q) is less than some small amount, a,
where we say we are done discerning where the asymptote lies—we can
assume that it lies “just above” RX(b, q).

Let’s again refer to Figure 5.5. Note that the real-life gradations of
RX(b) are not necessarily smooth, but do go upward with spurious stair
steps, as it were. So it is not enough to simply say that the asymptote lies
“just above” RX(b, q) unless we have gone for a number of iterations, z,
before ¢ where RX(b,q) — RX(b,q — 1) <=a.

In other words, we can say that we have arrived at the asymptote, and
that the asymptote lies “just above” RX(b, q¢) when, for a given a and z:

RX(b,q) — RX(b,q—1) <=a, and...and RX(b,q) — RX(b,q—2)<=a
(5.08)
where:

q >z

The problem with equation (5.05a) or (5.05b) now is that they increase
as q increases, increasing to an asymptote. Note that (5.05a) or (5.05b) will
give you the same answer as (5.05) when the probabilities of each k™ oc-
currence are identical.

It is relatively easy to create a chart of the sort shown in Figure 5.5,
which is derived from Table 5.3, to attempt to discern an asymptote when
q = 2 as in our simple 2:1 cointoss situation. However, when we have
26 plays (that is, when we arrive at a value of ¢ = 26), then n? = 226 =
67,108,864 permutations.

That’s over 67 million 8 values to compute, and that’s just calculating
the RR(b) for a single coin-toss scenario spectrum!

When we start getting into multiple scenario spectrums with more than
two scenarios each, where n equals the results of (5.06), then clearly, com-
puter power—speed and raw memory requirements—are vital resources in
this pursuit.

Suppose I am trying to consider one scenario spectrum (N = 1) with
10 scenarios in it (1 = 10). To make the pass-through merely when ¢ = n, 1
have 10'° = 10,000,000,000 (ten billion) permutations! As we get into mul-
tiple scenario spectrums now, the problem explodes on us exponentially.

Most won't have access to the computing resources that this exercise
requires for some time. However, we can implement two mathematical
shortcuts here to arrive at very accurate conclusions in a mere fraction
of the time, in a mere fraction of the computational requirements.

Now, can’t I take a random sample of these 10 billion permutations
and use that as a proxy for the full 10 billion? The answer is yes, and can
be found by statistical measures used for sample size determination for
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binomially distributed outcomes (note that g is actually a binomial value
for whether we have hit a lower absorbing barrier; it is either true or false).

To determine our sample size from binomially distributed data, we will
use equation (5.09):

(2)2 «p* (1= p) (5.09)

where: s=the number of sigma (standard deviations) confidence level
for an error of x
x =the error level
p =the probability of the null hypotheses

That last parameter, p, is circularly annoying. If I know p, the
probability of the null hypotheses, then why am I sampling to discern, in
essence, p?

Note, however, that in (5.09) any deviation in p away from p = .5 will
give a smaller answer for (5.09). Thus, a smaller sample size would be re-
quired for a given s and x, so if we simply set p to .5, we are being conser-
vative, and requiring that (5.09) err on the side of conservatism (that is, as
a larger sample size).

To put it more simply, we need only to answer for s and x. So if I want
to find the sample size that would give me an error of .001, with a confi-
dence to s standard deviations, solving for (5.09) yields the following:

: 2 \?
2 sigma = <m> *.5bx (1 —.5)=1,000,000

. 3\
3 sigma = (M) % .5 x (1 — .5) = 2,250,000

: 5 \?
b sigma = <m> *.bx (1 —.5)=6,250,000

Now the reader is likely to inquire, “Are these sample sizes indepen-
dent of the actual population size?” The sample sizes for the given param-
eters to (5.09) will be the same regardless of whether we are trying to esti-
mate a population of 1,000 or 10,000,000.

“So I need only do this once; I don’t need to keep increasing q?”

Not so. Rather, you use equation (5.09) to discern the minimum sam-
ple size required at each q. You still need to subsequently increase ¢, and
the answer (as provided by equations (5.05), (5.05a) or (5.05b)) will keep
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increasing to the asymptote. The reason you must keep increasing q is that
at each q, the binomial distribution is different, as demonstrated earlier in
this chapter.

One of the key caveats in implementing equation (5.09) is that it is
provided for a “random” sample size. However, these minimum, random
sample sizes provided for in (5.09) tend to be rather large. Thus, it's
important to make sure, since we are generating random numbers by com-
puter, that we are not cycling in our random numbers so soon that it will
cause distortion in randomness, and that the random numbers generated
be isotropically distributed.

I strongly suggest to the ambitious readers who attempt to program
these concepts that they incorporate the most powerful random number
generators they can. Over the years this has been something of a moving
target, and likely (it is hoped) will continue to be. Currently, I am partial
to the Mersenne Twister algorithm (Matsumoto and Nishimura 1998). You
can use other random number generators, but your results will be accurate
only to the extent of the randomness provided by them.

There are additional real-world implementation issues in terms of
adding a floating point number millions of times, considering the floating
point roundoff errors, and so on. Ultimately, we are trying to get a “reason-
able and real-world workable” resolution of the curves for RR and RD so
that we can determine their asymptotes.

This particular shortcut is invoked only if the number of permutations
at a given q exceeds 7. If not, just run all the permutations. For example,
where ¢ = 1, where we start, there are 10! =10 permutations. Thus, we
just run all 10. At ¢ = 2, we have 10> = 100 permutations, and again run
all permutations. However, at 10° = 10,000,000, which is greater than the
6,250,000 sample size required, we would begin using the sample size when
q = 7 in this case.

Let’s look at a real-world implementation of what has been discussed
thus far. Consider a single scenario spectrum with the following scenarios
taken from a real-life trading system, as in Table 5.4.

This is a case of a single scenario spectrum of 10 scenarios. Therefore,
on our n = q pass through the data (that is, ¢ = 10), we are going to have
n?, or 101 = 10,000,000,000 (ten billion) permutations, as alluded to earlier.

Now we will attempt to calculate the risk of ruin, with ruin defined as
having 60 percent of our initial stake left.

Running these 10 billion calculations outright gives:

RR(.6, 10) = .1906955154

at an f value of .45.
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TABLE 5.4 Single Scenario Spectrum of 10

Scenarios
Outcome Probability
—-1889 0.015625
—1430.42 0.046875
—-1295 0.015625
-750 0.0625
—450 0.125
0 0.203125
390 0.078125
800 0.328125
1150 0.0625
1830 0.046875

Using (5.09) with s = 5, x = .001, p = .5, we iterate through ¢ obtain-
ing quite nicely, and in a tiny fraction of the time it took to calculate the
actual value at RR(.6, 10) just presented (that is, 10 billion iterations for
q = 10 actually versus 6,250,000! This is .000625 of the time!):

a RR(.6)
1 0.015873
2 0.047367
3 0.07433
4 0.097756
5  0.118505
6  0.136475
7 0.150909
8  0.16485
9 0.178581

10 0.191146

11 0.202753

12 0.209487

13 0.21666

14 0220812

15 0.244053

16 0241152

17 0.257894

18 0.269569

19  0.276066

20 1
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Note that at ¢ = 20 we have RR(.6) = 1. This is merely an indication
that we have overflowed the value for a long data type in Java.® This is still
far from the asymptote.

Also note the floating point roundoff error even at ¢ = 1. This value
should have been 0.015625, not 0.015873.

These calculations were performed by extending the class of the pre-
vious Java program earlier in this chapter, and is included herein:

inport java.awt.*;

inport java.io.*;

inport java.util.*;

public class MaxTWRAVARW t hPr obs extends MaxTWRAVAR{
doubl e probs[][];
doubl e probsarray[];
doubl e probThi sB;

publ i c MaxTWRAVARW t hProbs(String[] args){
super (args);

}

public static void main(String[] args){
Max TWRAVARW t hPr obs maxTWRAVARW t hPr obs =
new MaxTWR4AVARW t hPr obs(args) ;
}

protected void getinputdata(String fil eNane){
String filetext = readl nputFile(fileName);
lines = getArgs(filetext,"\r\n");
N=l i nes. | engt h- 2;
NL=(1 ong) N,
pl ays=new doubl e[N] [];
probs=new doubl e[ N] [ i nes. | engt h-2];
for(int i=0;i<lines.length;i++){

Systemout.printin("line "+i+" : "+lines[i]);
if(i==0){
nsnanes = getArgs(lines[i],",");

Yelse if(i==1){
f = convertStringArrayToDoubl e(
getArgs(lines[i],","));
}el se{
plays[i-2]= convertStringArrayToDoubl e(
getArgs(lines[i],","),i-2);
}
}
Systemout.printin("b T "+b);
i f (usedr awdowni nst eadof r ui n) {
Systemout. printin("pr of : drawdown");
}el se{

5Again, all of the code presented here can, even under present-day Java, be made
far more efficient and robust than what is shown here. This is merely presented as
a starting point for those wishing to pursue these concepts in code.
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Systemout.println("pr of : ruin");

}

protected double [] convertStringArrayToDoubl e(
String [] s,int lineno){
double [] d = new doubl e[s.|ength];
probs[1ineno] = new doubl e[s. | ength];

for(int i = 0; i<s.length; i++){
String ss[] = getArgs(s[i],";");
try{

d[ i ] =Doubl e. par seDoubl e(ss[0]);
probs[lineno] [i]=Doubl e. parseDoubl e(ss[1]);
}cat ch( Nunber For mat Exception e){
d[i]=0.0;
probs[lineno][i]=0.0;
}
}

return d;

}

protected int B(double [] hprset, bool ean drawdown) {

doubl e interi nHPR=1. O;

doubl e previnteri MHPR=1. 0;

doubl e nunerat or =0. 0;

doubl e denomi nat or =0. 0;

probThi sB=1. 0;

for(int i=0;i<hprset.length;i++){
doubl e usei nval ue = previnteri nHPR;
i f (drawdown && previnteri mHPR>1. 0)

usei nval ue = 1.0;

interi nHPR = useinval ue * hprset[i];
doubl e value = interinHPR - b;
nuner at or += val ue;
denomi nator += Mat h. abs(val ue);
previnteri nHPR = interi nHPR;
probThi sB *= probsarray[i];

i f (denom nat or ==0. 0) {
return O;
}el se{
doubl e x = (numerator/denom nator);
i f(x>=0){
return (int)x;
}el se{
return O;

}
}

/In things taken g at a tinme where g>=n to return the i'th item
protected double[] nPg.i(int g, |ong pn){

doubl e hprpernutation[]=new doubl e[ q];

probsarray=new doubl e[ q] ;

int x =0;

/1 go through colum x col um

for(int colum=0; col um<gq; col utm++) { i f (col um==0){
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x = (int)(pn %NL);
}el se{
x = (int)((pn/(long)(Math. pow
(doubl e) N, (doubl e)colum))) % NL);
}
int a = g-1-colum;
hprpernutation[a] = hpr[x];

/lit's zero here because we are only figuring one M5

probsarray[a] = probs[x][0]; }
return hprpernutation;

}

protected void control (){
doubl e sigmas = 5.0;

doubl e error
doubl e sanpl

size = .001;

esi ze = Mat h. pow(si gnas/errorsize, 2.0) X .25;

I ong sanpl esi zeL = (| ong) (sanpl esi ze+.5);
int counter=1;
Ral phVi nce. Mat h. Mer senneTwi st er Fast generator = new

Ral phVi nce. Mat h. Mer senneTwi st er Fast (System currentTineM I 1is());

java.util.Random random = new j ava. util.Randon();

whi | e(1==1){
I ong per

mut at i oncount = OL;

doubl e passed=0. 0;
doubl e sunOX Probs=0. 0;
| ong nopernmutations = (long) Math. pow

i f (noper
for(

}el se{
do{

} whi
}

doubl e r

(doubl e) hpr. I ength, (doubl e) counter);

mut ati ons<(| ong) sanpl esi ze) {
| ong pn=0; pn<noper nut ati ons; pn++) {
doubl e hprpernutation[]=nPq.i (counter, pn);
doubl e theB = (doubl e) B( hpr pernut ati on,
usedr awdowni nst eadof r ui n) ;

if(theB>0.0){

theB *= probThi sB;

passed += theB;

sunmf Probs += probThi sB;
per mut at i oncount ++;

gener at or . set Seed(random next Long());
I ong pn=(1 ong) (gener at or . next Doubl e() *
(doubl e) noper nut ati ons) ;
doubl e hprpernutation[]=nPg.i (counter,pn);
doubl e theB = (doubl e) B( hpr pernut ati on,
usedr awdowni nst eadof r ui n) ;
if(theB>0.0){
theB *= probThi sB;
passed += theB;
}
sumcf Probs += probThi sB;
per mut at i oncount ++;

| e( per mut at i oncount <sanpl esi zel);

esul t =1. 0- passed/ sunX Pr obs;

123



124 THE MULTIPLE COMPONENT CASE

Systemout.println(counter+" = "+result);
count er ++

Unlike the previous code provided, this code class works only with one
market system (N=1), and the format for the input file differs from the first
in that in this class, each line from the third line on is a semicolon-delimited
value pair of outcome; probability.

Thus, the input file in this real-world example appears as:

ten scenario exanple system
.45
-1889; 0. 015625
-1430. 42; 0. 046875
-1295; 0. 015625

- 750; 0. 0625

-450; 0. 125

0; 0. 203125
390; 0. 078125
800; 0. 328125
1150; 0. 0625
1830; 0. 046875

The technique of using a random sample gets our first few values for
the line of RX to q up and running with very good estimates in short order.

With the second technique, to be presented now, we can extrapolate
out that line and hence seek its horizontal asymptote. Fortunately, lines de-
rived from the equations (5.05), (5.05a), and (5.05b) do possess an asymp-
tote and are of this form:

RX'(b, q) = asymptote-variable A x EXP(—variableB  q) (5.10)

RX'(b, q) will be the surrogate point, the value along the y-axis for a
given q along the x-axis in the Cartesian plane.

We can use equation (5.10) as a surrogate for the actual calculations in
(56.05),(5.05a), or (5.05b) when ¢ gets too computationally expensive.

To do this, we need only know three values: the asymptote, variableA,
and vartableB.

We can find these values by any method of mathematical minimization
whereby we minimize the squares of the differences between the observed
values and the values given by (5.10). Those values with the minimum sum
of the differences squared are those values that best fit this line, this proxy
of actual RX (b, q) values when q is too computationally expensive.

The process is relatively simple. We take those values we were
able to calculate for RX(b, q). For each of these values, we compare
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corresponding points derived from (5.10), and square the differences be-
tween the two. We then sum the squares.

Thus, we have a sum of the squared differences of our points to (5.10)
for a given (asymptote, variableA, variableB), proceeding with a mathe-
matical minimization routine (Powell’s, Downhill Simplex, even the genetic
algorithm, though this will be far from the most efficient means). For a
list and detailed explanation of these methods, see Press et al. (1986). We
arrive at the set of variable values that minimizes the sum of the differ-
ences squared between the observed points and their corresponding points
as given by (5.10).

Returning, for example, to our 2:1 coin toss, we calculated by equa-
tion (5.05) those RR(.6) values, and these were given in Table 5.3. Using
Microsoft Excel’s Solver function, we can calculate the parameters in
(5.10) that yield the best fit:

asymptote 0.48406
variableA 0.37418
variableB 0.137892

The values given by (5.10) are shown in Table 5.5.

This fitted line, equation (5.10), is now shown superimposed as the
solid line over Figure 5.5 in Figure 5.6.

Now that we have our three parameters, I can determine for, say, a q
of 300, by plugging these values into (5.09), that my risk of ruin (RR(.6)) is
.484059843.

At a q of 4,000, I arrive at nearly the same number. Obviously, the hor-
izontal asymptote is very much in this vicinity.

The asymptote of such a line is determined, as pointed out earlier in
(5.08), since the line given by (5.10) is a smooth one.

Let’s go back to our real-world example now, the single scenario
set of 10 scenarios. Fitting to our earlier case of a single scenario set
with 10 scenarios, whereby we were able to calculate the RR(.6) values
for ¢ = 1...19, by taking 6,250,000 samples for each q (beyond q = 6),
and using these 10 data points (¢ = 1...19) as input to find those val-
ues of the parameters in (5.10) that minimize the sum of the squares
of the differences between the answers given by those parameters in
(5.10) and the actual values we got (by estimating the actual values
using (5.09)), gives us the corresponding best-fit parameters for (5.10)
as follows:

asymptote= 0.397758
exponent= 0.057114
coefficient 0.371217
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TABLE 5.5 Values Given by (5.10)

Play# Observed (5.05) Calculated (5.10)

2 0.25 0.200066
3 0.25 0.236646
4 0.25 0.268515
5 0.3125 0.296278
6 0.3125 0.320466
7 0.367188 0.341538
8 0.367188 0.359896
9 0.367188 0.375889
10 0.389648 0.389822
11 0.389648 0.40196
12 0.413818 0.412535
13 0.413818 0.421748
14 0.436829 0.429774
15 0.436829 0.436767
16 0.436829 0.442858
17 0.447441 0.448165
18 0.447441 0.452789
19 0.459791 0.456817
20 0.459791 0.460326
21 0.459791 0.463383
22 0.466089 0.466046
23 0.466089 0.468367
24 0.47383 0.470388
25 0.47383 0.472149
26 0.482092 0.473683

The data points and corresponding function (5.10) then appear graphi-
cally as shown in Figure 5.7.

Additionally, if we extend this out to see the asymptote in the function,
we can compress the graphic as shown in Figure 5.8.

Using these two shortcuts allows us to accurately estimate what the
function for RX() is, and discern where the asymptote is, as well as how
many q out it is (since g can be thought of as time).

Now, if you are trying to fit equation (5.10) to a risk of ruin, RR(d), you
will fit to find the three parameters that give the best line, as we have done
here.

However, if you are trying to fit to risk of drawdown, RD(b), you will
only fit for variableA and variableB. You will not fit for the asymptote.
Instead, you will assign a value of 1.0 to the asymptote, and fit the other
two parameters from there. (You can try to fit for the asymptote as well,
but you will merely find it approaches 1.0 with each attempt.)
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FIGURE 3.8 Data Points and Corresponding Function (5.10) Extended to Show
Asymptote in the Function

To confirm the reader’s burgeoning uneasiness at this point, consider
the following:

In the long-run, the probability of hitting a drawdown (of any given
magnitude, any b) approaches 1, approaches certainty as you continue to
trade (that is, as q increases).

lim RD(b,q) = 1.0 (5.11)
q—00

This is not as damning a statement as it appears on first reading. Con-
sider the real-world example just alluded to, wherein RR(.6) = 0.397758.

Since the probability of hitting a drawdown of any given magnitude
(let’s say a 99 percent drawdown for argument’s sake) approaches 1 as ¢
approaches infinity, yet there is only a roughly 40 percent chance of drop-
ping back to roughly 60 percent of starting equity, we can conclude only
that so many ¢ have transpired as to cause the account to have grown by
such an amount that a 99 percent drawdown still leaves 60 percent of initial
capital.

What we can know, and use, is that (5.06b) can give us a probability
of drawdown for a given ¢q. We can use it to learn, for instance, what the
probability of drawdown is over, say, the next quarter.

Further, since, we have a GHPR( f] . . . fn) for each value of (5.05b), we
can determine what ¢ we are looking at to reach a specified growth.

q = logguprfi...sv) TWR(S1 - - - SN) (3.14a)
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where: ¢ =the time expected to reach TWR(f] ... fy), which is the target
as multiple on our stake

Thus, for example, if my target is a 50 percent return (that is, target
TWR = 1.5) and my GHPR from the allocation set I will use in (5.05b) is
1.1, then I will expect it to take q periods, on average, to reach my target
TWR:

q =log; ;1.5 = 4.254164

So I would want to consider the RD(b, 4.254164) in this case to be
below my threshold probability of such a drawdown.

Notice that we are now considering a risk of drawdown (or ruin) ver-
sus that of hitting an upper barrier (that is, target TWR, or u from (5.01)).
Deriving q from (3.14a) to use as input to (5.05) is akin to using Feller’s
classical ruin given in (5.01) only for the more complex case of:

1. Alower barrier, which is not simply just zero.

2. For multiple scenarios, not just the simple binomial gambling sense (of
two scenarios).

3. These multiple scenarios are from multiple scenario spectrums, with
outcomes occurring simultaneously, with potentially complicated joint
probabilities.

4. More important, we are dealing here with geometric growth, not the
simple case in Feller where a gambler wins or loses a constant unit
with either outcome.

Such analysis—either determining g as the horizon over the next im-
portant period (be it a quarter, a year, and so on), or backing into it as the
expected number of plays to reach a given target—is how we can deter-
mine the portfolio allocation that is growth optimal while remaining within
the constraints of an acceptable level of a given drawdown over such a
period.

The process detailed in this chapter allows you to maximize geometric
returns for a given probability of seeing a given level of drawdown over a
given period—which s risk. This is something that has either been prac-
ticed by intuition by others, with varying degrees of success, or practiced
with a metric for risk that is different from drawdown or risk of ruin—often
alluded to as value at risk.

Essentially, by seeking that highest point (altitude determined as
a portfolio’s geometric mean HPR or TWR) in the N + 1-dimensional
landscape of N components, one can mark off those areas within the
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landscape that cannot be considered for optimal candidates as areas
where the probability of risk of ruin or drawdown to a certain point is
exceeded.

Returning now to our real-world example of the previous chapter we
take our allocations for MktSysA, MktSysB, and MktSysC, and we amend
for the greater losses of —150, —1,000, and —500 respectively, and we
wish to find the maximum GHPR( f1, f2, f3), whereby we do not exceed a
10 percent chance of a 20 percent drawdown (b = .8) within the next 12
holding periods (which are in months, so we want the geometric growth
optimal allocations to not exceed a 10 percent chance of a 20 percent draw-
down in the next year).

Recall we apply a search algorithm (such as the genetic algorithm)
to discern that f set that results in the highest GHPR(fi, f3, f3)—or
TWR(f1, fo, f3)—yet, at each new, high GHPR(( f1, f2, f3) in our search,
we look to see if the drawdown constraint has been violated (that is, if
the probability of our prescribed drawdown is exceeded within the pre-
scribed time horizon), and if it has, we then assign a value of 0.0 for the
GHPR(f1, f2, f3) at the coordinates fi, f2, f5.

In the previous chapter, we found the peak in the 4-D leverage space
(N + 1) to be at .307, 0.0, .693 for MktSysA, MktSysB, and MktSysC respec-
tively, resulting in a GHPR(.307, 0.0, .693) = 1.249.

Let us assume this is one point in our search, which, as it would be,
is a new high GHPR( f1, f2, f3) in our search. Thus, it qualifies as an f set
to test versus our prescribed drawdown constraint of “whereby we do not
exceed a 10 percent chance of a 20 percent drawdown (b = .8) within the
next 12 holding periods (months).”

If we exceed a 10 percent probability, then we will set our GHPR(.307,
0.0, .693) = 0 instead of 1.249.

We will now perform (5.05b) in terms of the algorithmic procedure to
see if this f set violates our prescribed drawdown constraint. Recall our
variables are N = 3, n = 12. Since our horizon is 12 periods, ¢ = 12.

Recall, too, that we want to see if our lower barrier is hit anywhere
between period 1 and period ¢g. Thus, think in terms of a tree, starting
out at period 1, and expanding to the right as you get to period 12 (that
is, q). Thus, we will go to the right, setting a variable 7 from 1 to ¢q to
count off each elapsed time period as we move to the right and the tree
expands.

Recall now our joint probabilities table constructed in the previous
chapter. This represents the outcomes of each month, binned into a distri-
bution of three components. We know the probability at each bin, and from
the N outcomes at each bin (N = 3) we can determine the HPR( f1, f2, f3)
at each bin. Thus, for the coordinate set .307, 0.0, .693 we have HPR(.307,
0.0, .693)s of:
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So from this table, we have the data we need to determine (5.04b):

Scenario# HPR Probability
1 1.431738 0.076923077
2 1.212339 0.076923077
3 1.212339 0.153846154
4 0.333607 0.076923077
5 1.765345 0.076923077
6 1.331721 0.076923077
7 2.134021 0.076923077
8 1.331721 0.076923077
9 0.712608 0.076923077

10 1.468172 0.076923077

11 1.901796 0.076923077

12 1.5683461 0.076923077

Now, from each ¢ (from 1 to q, as we go from right to left as the tree
expands out in possibilities toward our horizon, ¢ = 12), we have #’ per-
mutations of these 12 scenarios taken ¢ at a time.

So, where 7 = 1, the leftmost and starting point going from left to right,
we have 12 branches (' = 12! = 12). At this stage, each branch is one of
the 12 scenarios listed in the previous table.

At the next branch, ¢ = 2, each subsequent branch now has each of the
n scenarios from the subsequent table appended to it, so we have (n! =
122 = 144) branches at i = 2, and it appears as follows:

© 03O0 Uk W
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The table shows only the scenario numbers, but recall that for
each number, there is a probability assigned to that number, and an
HPR(.307,0.0,.693) assigned to it as well.

That branching would continue until ¢ = ¢, or ¢ = 12, where we would
have 7¢ = 12!2 = nearly 9 trillion branches.

Of note here, if the number of branches exceeds 6,250,000 we will sim-
ply take 6,250,000 branches at random in determining our calculations at
that ¢g. This is the implementation of the first mathematical shortcut tech-
nique. Thus, of the nearly 9 trillion branches, we will select 6,250,000 of
them at random.
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For each of these 6,250,000 branches at ¢ = q, ¢ = 12, we will calculate
its B value, and multiply it times the probability of that branch (which is
simply the product of the scenario probabilities at each 7 on that branch
from? = 1to q).

Thus, assume we randomly had, as one of our 6,250,000 branches, the
branch comprised of the following scenario numbers:

1,6,11,7,9,1,6,9,2,3,1,5

We could arrange this to appear as follows:

i= 1 2 3 4 5

scenario# 1 6 11 7 9 1
Corresponding

HPR 1.431738 1.331721 1.901796 2.134021 0.712608 1.431738
Probability 0.07692 0.07692 0.07692 0.07692 0.07692 0.07692
7= 7 8 9 10 11 12
scenario# 6 9 2 3 1 5
Corresponding

HPR 1.33172 0.712608 1.21234 1.212339 1.431738 1.765345
Probability 0.07692 0.07692 0.07692 0.15385 0.07692 0.07692

This represents one value for k (in k¥ = the minimum of n? or 6,250,000),
Remember, we are looking for a 8 value for this k£, which is:

<min (1.0, (i]:[IHPR(fl - fN)t)) « HPR(fi ... fv)i — b)
t=0

int

q
2
i=1
q
2
i=1

i-1
<min (1.0, (]_[ HPR(f:... fN)t)> «*HPR(f1... fn)i — b)‘
=0

in (5.05b). Further recall we will multiply this 8 value for this k times the
sum of its probabilities for this k:

q
HPTObk,i
i=1

in (5.05b). If we multiply the cells in the probability row together from the
above table, we get the product 8.5844E-14, a very small number indeed,
and thus you can begin to see how floating point precision can wreak a
degree of havoc in our calculations!

We continue now calculating this horizontal run, along this branch of
q data points. Note that we have a row entitled “HPR Products.” This is
simply the minimum of the previous running product of HPRs up to that
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q — 1 HPR Product, or 1, consistent with our formula since we are looking
at drawdown here, not at risk of ruin.

1=

scenario#
Corresponding
HPR
Probability

HPR Products
HPR Products-b (b=.8)
Abs(HPR Products-b)

1=

scenario#
Corresponding
HPR
Probability

HPR Products
HPR Products-b (b=.8)
Abs(HPR Products-b)

1.43174
0.07692

1.00000
0.20000
0.20000

1.331721
0.076923

1
0.2
0.2

1.33172
0.07692

1.00000
0.20000
0.20000

0.712608
0.076923

0.712608
—0.087392
0.087392

11

1.90180
0.07692

1.00000
0.20000
0.20000

1.212339
0.076923

0.863922
0.063922
0.063922

2.13402
0.07692

1.00000
0.20000
0.20000

10

1.212339
0.153846

1
0.2
0.2

0.71261
0.07692

0.71261
—0.08739
0.08739

1.431738
0.076923

1
0.2
0.2

1.43174
0.07692

1.00000
0.20000
0.20000

1.765345
0.076923

1
0.2
0.2

Product
8.6E-14

Sums
1.68914
2.03871

Just below each HPR Products cell, there is the value of that HPR Prod-
uct minus b, or minus .8. This is so we may see if we have touched the lower
absorbing barrier (and if we have, the value in this row would be negative).

Beneath that, we have the absolute value of the HPR Product minus b
row, which gives us only positive values.

Next, we sum up both of these rows, the HPR Products minus b row,
and the absolute value of that row.

We then divide, with the absolute value in the denominator:

1.68914/2.03871 = 0.82853427

Finally, take the integer of this value to give us our 8 value for this ¥,

this row:

thus, for this &, this row:

int(0.82853427) = 0
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Suppose instead of a 20 percent drawdown (that is, b = .8), we were
looking at a 30 percent drawdown (b = .7); we would have had the follow-
ing instead:

i= 1 2 3 4 5 6
scenario# 1 6 11 7 9 1
Corresponding

HPR 1.43174 1.33172 1.90180 2.13402 0.71261 1.43174
Probability 0.07692 0.07692 0.07692 0.07692 0.07692 0.07692
HPR Products 1.00000 1.00000 1.00000 1.00000 0.71261 1.00000

HPR Products-b (b=.7)  0.30000 0.30000 0.30000 0.30000 0.01261 0.30000
Abs(HPR Products-b) 0.30000 0.30000 0.30000 0.30000 0.01261 0.30000

i= 7 8 9 10 11 12

scenario# 6 9 2

Corresponding

HPR 1.331721  0.712608  1.212339  1.212339  1.431738 1.765345 Product
Probability 0.076923  0.076923  0.076923  0.153846  0.076923  0.076923  8.6E-14
HPR Products 1 0.712608  0.863922 1 1 1 Sums
HPR Products-b (b=.7) 0.3 0.012608  0.163922 0.3 0.3 0.3 2.88914
Abs(HPR Products-b) 0.3 0.012608  0.163922 0.3 0.3 0.3 2.88914

Summing up both of these rows, the HPR Products minus b row, and
the absolute value of that row, then dividing, with the absolute value in the
denominator:

2.88914/2.88914 = 1

And finally, take the integer of this value to give us our 8 value for this
k, this row:

int(1) = 1

In other words, if ruin was defined as a 30 percent drawdown, this k
row would 7ot have seen ruin.

Next, for all of our 6,250,000 rows here, we must multiply each g value
by the probability of that k node. Recall earlier the probability of this was
determined to be 8.56844E-14. So if we were looking at a 30 percent draw-
down, we would multiply our 8 value of 1 for this k by 8.56844E-14 to obtain
aresult of 8.56844E-14. If we were looking at a 20 percent drawdown, our j
value is 0, and multiplying this by 8.5844E-14 still results in 0.

We now add together all of these results (we will either have n? of
them, or 6,250,000, whichever is the lesser) for all of these rows, and the re-
sult will then be divided by the sum of all probabilities used in all the rows
we have calculated over (n? or 6,250,000, whichever is the lesser). Note a
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k™ probability is added to the sum of the probabilities in the denominator
whether the 8 value was 0 or not.

Finally, this resultant product of division of all the probability-
weighted g values of each k, divided by the sum of the probabilities for
each k, is subtracted from 1 to give us our probability of drawdown.

In doing so, if we perform all 6,250,000 rows, we find indeed that our
drawdown constraint was violated at the f coordinates of .307,0.0,.693 and
we therefore set GHPR(.307, 0.0, .693) = 0 instead of 1.249, and continue
on with our search.

Eventually, we find the peak at the coordinates .191, .007, .165 that
results in the highest GHPR(f1, f2, f3) without violating our prescribed
drawdown constraint of no more than a 10 percent chance of a 20 percent
drawdown over the next 12 periods (months) and results in the following
allocations:

MktSysA  0.191  $786.31
MktSysB  0.007  $152,431.31
MktSysC ~ 0.165  $3,035.23

and a GHPR(.191, .007, .165) of 1.087 and an RD(0.8) of 9.8 percent out to
12 periods. This indicates a 9.8 percent chance of a 20 percent drawdown
over the next 12 months.

Note that since we are using monthly data, the drawdown is calculated
using monthly data; quite possibly, the drawdown, on a day-to-day basis,
can exceed what we are considering here. The drawdown we are operating
against in this example is the probability therefore of a drawdown based
on monthly data.

There you have it in 137 pages—where we are and how we got here in
terms of geometric mean maximization.

MATHEMATICAL ADDENDUM TO PART II:
THE MULTIPLE COMPONENT CASE

Conditional Probabilities

We have discussed the concept of a “horizontal run,” a simultaneous set
of given outcomes of the various scenario sets, followed by subsequent
outcomes of given scenario sets, expressed as:

Proby 1 * Probys * - - - x Probyq = px
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In the chapter, we simply assumed independence of the Proby ., and
mentioned that in the absence of independence, other formulas should be
used. These shall be provided now.

Consider the notion of “conditional probability,” the probability
that an event occurs given that a given event’s occurrence preceded
it—specifically as referred here, say, the probability of Prob; > occurring
given that Proby 1 has occurred. This is expressed as:

P(Proby, 2| Proby. 1)
And we can state that:

P(Proby 2| Proby 1) = P(Proby 1, Probys)/P(Proby.1)

where: P(Proby 1, Probiz)=the joint or compound probability that
Probi 1 and Proby s occur

From this, we obtain what is referred to as the General Law of Com-
pound Probability (sometimes referred to as the Multiplication Theorem)
and is used to discern our p; values:

D = P(Proby1, Probyys, - - - Proby 4) = P(Proby 1) * P(Probyz| Prob;, 1)*
P(Proby 3| Proby 1, Probys) * - - - % P(Proby 4| Proby 1, Probys, --- Proby,_1)

The case of the outcomes being independent, as is (often justifiably,
given the empirical market data) used in this chapter, is considered a spe-
cial case where the Law of Compound Probability reduces to:

P = P(Proby,1, Probyys, ... Proby,) = Proby 1 Probys ... Proby,
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CHAPTER 6

A Framework to
Satisty Both
Economic Theory
and Portfolio
Managers

expounded upon it so that we are now able to use a single equation

to determine it for any number of scenarios (outcomes) for innumer-
able games played simultaneously (portfolio components traded) or for the
single-game case.

We have also studied the nature of the curve in the single-component
case, which extrapolates out to whatever axis a component resides on in
the multiple-component case.

We have seen that this is important, because it applies to us
unavoidably and because we are at some point on that curve, that
N+1-dimensional surface. We are likely to be moving along it, unwittingly,
with the passage of holding periods, oblivious to what is happening to us
and how we might harness it.

In addition, we have introduced the notion of drawdown as a risk met-
ric, and constructed an algorithmic means to determine both it and the
probability of ruin or drawdown. We have seen how these progress asymp-
totically as the number of plays (holding periods) increases.

Taken together, we have managed to construct a portfolio model that
is superior to those that have been widely practiced for half a century. As
we have seen, this model is superior for the following four reasons:

T hus far, we have seen how to determine an optimal f value. We've

1. Risk is defined as drawdown, not variance in returns.

2. The model is valid for any distributional form; fat tails are addressed.

141
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3. The Leverage Space Model is about leverage, which is not addressed in
the traditional models.

4. The fallacy and danger of correlation is eliminated.

Finally, we have seen, step by step, how to perform the algorithms to
accomplish these ends.

The planet is small. The jets are fast. Back in Tokyo I am having lunch,
and Hiro stirs the pot with something I had only marginally had bubbling
in my head for the past few years.

“You know,” Hiro started, “What is really needed is to be able to max-
imize not profit, but rather the probability of being profitable by a cer-
tain point in time. That’s what fund managers and traders are really up
against—not making tons of money, but making money.”

It knocked me over because I knew, suddenly, instantly, he was abso-
lutely, undeniably right. I knew when Hiro spoke those words, this path of
reasoning, that of “profit maximization” as a criterion, a thread of thought
nearly three centuries in distillation, had just received an exogenous shock
that would forever alter how I looked at it. I knew this because I could
see exactly what he was asking in a context, and that the solution was not
enigmatic or elusive. I knew that this “context” was geometric mean max-
imization, because there are optimal, mathematical answers therein.

Hit the brakes. Cut the wheel. I shall now extricate myself from the
very box I have built around myself like a prison regarding geometric mean
maximization.

At the beginning of Chapter 1, I stated, “To this point in time, the
notion of geometric mean maximization has been a criterion. ...” How-
ever, “Our criterion is rarely growth-optimality. Yet growth optimality is
the criterion that is solved mathematically. Mathematics, devoid of human
propensities, proclivities, and predilections, can readily arrive at a clean,
‘optimal’ point. As such, it provides a framework for us to satisfy our seem-
ingly labyrinthine appetites.”

Thus far, we have been discussing matters in terms of raw gains and
losses, whether we are speaking of them in a multiplicative manner (as in
GHPRs or TWRs) or in a pure arithmetic manner (as with Mathematical
Expectation). Our discussion has thus far been absent the effect of these
gains or losses on the investor. We have looked at things in the sense of as-
suming the investor prefers gains and his criterion has simply been to max-
imize his gains. Mathematically, this is a straightforward problem to solve.
Arguably, it should be the only criterion for investors (but in the real world
the investor is the customer, and his complex desires become a constraint
upon the portfolio manager to satisfy; it does not, whatever the basis of the
customer’s desires, mathematically legitimize them). Further, regardless of
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the desires of man as a singular, aggregated entity, or a solo individual, the
mathematics and the landscape of growth optimality (ripped in portions
by “risk”) remain unaffected, the ineluctable coordinates of each investor
still having him on that surface and affected by his immediate location
thereon.

We now seek to satisfy what the human psyche prefers, as opposed
to merely raw gains. In other words, the discipline of portfolio manage-
ment, the discipline of money management, of “position sizing,” has been
one of heretofore seeking to maximize gains within a given (however neb-
ulous) “risk” constraint. Rather than seeking to maximize gains, we shall
seek to maximize what the human psyche prefers (what the customers of
fund managers prefer) with respect to risk (drawdown, plus or replaced by
any other risk-metric constraints).

People do not make decisions based on maximizing expected
values—what we call the Mathematical Expectation. Instead, there is a
seemingly pathological element to their decision making, which so-called
Economic Theory has tried to explain.

The reason we want to satisfy this “seemingly pathological element,”
this “labyrinthine appetite,” is because the portfolio manager’s customers
are not interested in maximizing gains as their criterion. Those cus-
tomers’ seemingly pathological criteria are often labyrinthine, with numer-
ous criteria interwoven among themselves and, at times, competing with
themselves.

Return now back to the paradox posited by Nicolaus Bernoulli,
Daniel’s cousin, in Chapter 1 (equation (1.01)). The paradox there was pre-
sented as a question: “What would you pay to enter a game with an infinite
mathematical expectation as a payoff to you?”

Our story thus far has seen two separate lines of reasoning. We've seen
the thread of geometric mean maximization woven throughout the story.
We've also seen how, starting in the 1950s, the concept of Modern Portfolio
Theory has surfaced and gained widespread acceptance.

This third line of reasoning, introduced by the famous letter of
Nicolaus I Bernoulli to Pierre Raymond de Montmort in 1713 (wherein this
paradox arises), rejoins our story. This third thread of reasoning is par-
ticularly fascinating, for it attempts to explain this seemingly pathological
nature of human beings.

In 1728, in private correspondence with Nicolaus Bernoulli, Gabriel
Cramer, another Swiss mathematician, proposed a solution to the para-
dox Nicolaus Bernoulli raised in his 1713 letter to Pierre Raymond de
Montmort. Cramer argues that every subsequent gain at each subsequent
toss matters less and less to the beneficiary.

Cramer is very close to the notion Daniel Bernoulli will propose. In
1738, in Daniel Bournoulli’s Specimen theoriae novae de mensura sortis
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or Exposition of a New Theory on the Measurement of Risk, he called this
the St. Petersburg Paradox (this is the first time we see this paradox re-
ferred to by that name). Bernoulli’s 1738 publication, if you will recall from
Chapter 1, also happens to be the first known recording of the notion of ge-
ometric mean maximization. In it, Bernoulli proposed that a mathematical
function should be used to correct the expected value, and he is credited
with the first formalization of the notion of “marginal utility,” as well as the
notion of expected utility theory itself.

In effect, the formula for Expected Utility is the same as that of Mathe-
matical Expectation, but the outcomes are expressed in terms of the utility
afforded by the outcomes. Mathematically, Expected Utility (EU):

EU =) (PixU(A)) (6.01)

i=1

where: P; = the probability associated with the i™ outcome
A; =the result of the i outcome
U () =the utility function
n=the total number of possible outcomes

Essentially, Expected Utility (EU) is the mathematical expectation
(ME) of utility, and utility is a function of the value of an outcome. Often,
people’s “utility functions” are considered “lognormal,” that is, the marginal
increase in utility is ever less, is lognormal. A win of 100 units, to a man with
a stake of 100 units, is worth more, in terms of utility gained, than a win of
100 units to a man with 1,000,000 units. That’s one way to view the idea of
why people will trade in quantity relative to the size of their stake.

In brief, the Expected Utility Theorem states that people will size up
wagers based upon mathematical relations (the U(A;) functions in equa-
tion (6.01)), which takes into account not only the size of a payout and the
probabilities of occurrence (that is, the basic Mathematical Expectation,
ME) but also their own, personal risk aversion as a function of how much
wealth they already have. It is, therefore, a considerably more refined the-
ory than simply predicting that choices will be made based on the highest
Mathematical Expectation.

The comparison of simply maximizing expected value to maximizing
expected utility gave rise to a new discipline, known as “Economic The-
ory.” There are many names along the evolution of Economic Theory; we're
merely creating a thumbnail sketch for where Economic Theory and our
story of geometric mean maximization meet in terms of application to rel-
ative trading quantities.
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In 1944, John von Neumann and Oskar Morgenstern reinterpreted the
Expected Utility Theorem and presented an axiomatization of it. The out-
growth of their 1944 work is often looked upon as the cornerstone of
“Game Theory.”! In addition to their Axiomatic Utility Theory presented
therein (which led to the widespread adoption of utility theory in the field
of economics), this 1944 work discusses two-person, zero-sum games and
describes the idea of a cooperative game, with transferable utility, its coali-
tional form and its von Neumann-Morgenstern stable sets.

These notions spawned an explosion in the following decades of a
litany of great minds with applications in biology, sociology, computer sci-
ence, warfare, politics, and a cornucopia of other sciences, the list of peo-
ple and concepts requiring volumes to adequately catalogue.

However, we're following a storyline here, and our storyline is not
about Game Theory. Our storyline is about Economic Theory meeting up
with geometric mean maximization. But Economic Theory, and its elab-
orate history, cannot even be scratched without mention of the seminal
genius of Game Theory, John von Neumann and (with Oskar Morgenstern)
his 1944 work on Game Theory that incorporated Expected Utility theory
into an axiomatized articulation.

In 1966, Robert MacArthur, an ecologist, and biologist Eric Pianka,
addressed the concept of foraging behavior, a long-running concern in
ecology, with “On the optimal use of a patchy environment” (MacArthur
and Pianka 1966), which presents what is known as “Optimal Foraging
Theory.”

Optimal Foraging Theory states that organisms forage in a manner so
as to maximize their energy intake per unit of time. Organisms (including
primates, such as human beings) behave in such a way as to find, obtain,
and consume food containing the most calories while expending the least
amount of time (calories) possible in doing so.

Though not presented as an economic theory, its relationship to eco-
nomic theory of the coming decades would be so close that this Optimal
Foraging Theory deserves special mention in this brief, whirlwind tour of
Economic Theory.

In truth, the term “Game Theory” was quite possibly coined in the 1944 work. How-
ever, the notions of Game Theory date at least as far back as sometime in the first
five centuries A.D., where in the Talmud we find seemingly contradictory recom-
mendations for what a deceased man should leave his three wives, proposing three
different divisions based on different values of his estate! Talmudic scholars have
scratched their heads at this one for a good 15 centuries. In 1985, it was recog-
nized that the Talmud anticipates the modern theory of cooperative games. Each
solution it is shown, corresponds to the nucleolus of an apposite defined game
(Aumann and Maschler 1985).
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In 1979, Daniel Kahneman and Amos Tversky proposed what is
called “Prospect Theory,” also known as “Loss-Aversion Theory.” Start-
ing with how people respond to empirical evidence pertaining to choices,
and the fact that this data often flies in the face of Expected Utility
Theory, Kahneman and Tversky’s work presents a psychologically re-
alistic alternative to Expected Utility Theory consistent with observed
behavior.

To see an example of Prospect Theory in action, suppose a man
wants to take his wife to a play. He might balk at paying 200 units for a
single ticket, but he would happily pay 100 units for each ticket, and so he
buys two tickets for a total of 200 units.

Now suppose he loses his two tickets. Empirical evidence shows that
the man will buy two more tickets at 100 units apiece. He now has two
tickets that he paid 400 units total for.

Similarly, when he made his first visit to the ticket booth, had those
same tickets been on sale for only 50 units, he would not have purchased
four of them for a total of 200 units. Rather, he would have purchased
only two.

Prospect Theory differs from Expected Utility Theory in a number
ways. For one thing, Prospect Theory treats preferences as a function of
“weights,” and it assumes that these weights do not always correspond to
probabilities. Furthermore, Prospect Theory proposes that these weights
tend to overweight small probabilities and underweight moderate and high
probabilities.

Prospect Theory also replaces the notion of “utility” with “value.”
Whereas utility is usually defined only in terms of net wealth, value is
defined in terms of gains and losses—deviations from a reference point.
The value function has a different shape for gains and losses. For losses,
we find it tends to be convex and relatively steep, while for gains it tends
to be concave and not quite so steep.

Mathematically, Prospect Theory Expected Value (PTEV):

PTEV =Y (W(P) % V(A)) (6.02)

=1

where: P, =the probability associated with the i outcome
A; =the result of the ¢! outcome
V() =the value function (in lieu of Expected Utility Theory’s Util-
ity function)
W () =the weighting function
n = the total number of possible outcomes
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FIGURE 6.1 Prospect Theory Expected Value (PTEV)

Graphically, PTEV tends to the shape shown in Figure 6.1.

Prospect Theory explains certain mathematically inexplicable behav-
iors in human beings, such as the “Reflection Effect,” wherein most
people would choose a certain gain of 25 units over a one-third chance of
gaining 75 units. At the same time, they would choose a one-third chance
of losing 75 units (and two-thirds chance of losing nothing) over a certain
loss of 25 units.

There is also a certain behavioral characteristic in humans referred to
in Prospect Theory as the “Framing Effect.” This is a change of preferences
between options as a function of the variation of “frames,” a variation of the
formulation of the problem. Is the glass half full or half empty?

For example, a problem can be presented as a gain (°/; of the crop can
be saved) or as a loss (!4 of the crop will be ruined). In the former, human
beings tend to adopt a gain frame, which generally leads to risk-aversion.
In the latter human beings tend to adopt a loss frame, generally leading to
behavior that is risk seeking.

Prospect Theory predicts both the Reflection and the Framing effects
in the “S” shape of the PTEV function. It is concave for gains indicating risk
aversion, and it is convex for losses indicating risk seeking.

Our whirlwind tour of the thread of Economic Theory finally takes us
to 2008, when Rose McDermott, James Fowler, and Oleg Smirnov make the
connection between Optimal Foraging Theory and Prospect Theory, point-
ing out that survival thresholds might be responsible for human attitudes
toward risk.

Hiro’s words resonate with this. People want to be profitable, they
want to show “a profit,” the magnitude of which is a distant secondary con-
cern versus not showing a profit.
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FIGURE 6.2 Market Analysis and Position Sizing (Both Equally Necessary)

Human beings want to have beans to eat, versus having no beans at
all. Having mountains of beans in the future is not nearly as important as
having some beans today.

The portfolio manager wants to show his clients a profit as opposed to
a loss, far more so than he wants to show them a large profit.

And the clients want that, too.

The human psyche prefers to be happy, to be satisfied, but not neces-
sarily satiated. “Satiation,” it appears, does not rise to the level of a “drive”
in human impulse. We see this with Prospect Theory and Optimal Forag-
ing Theory. People act seemingly irrationally, in a mathematical sense, but
it is not at all irrational considering the evolutionary, hard-wired reasons
that people behave that way. It also explains the near-universal, visceral
reaction I have received for a couple of decades regarding geometric mean
maximization as a criterion.

You can lead a horse to water, but you can’t teach him the backstroke.

Regardless of the desires of man as a singular, aggregated entity, or a
solo individual, the mathematics and the landscape of growth optimality
(ripped in portions by “risk”) remains unaffected, the ineluctable coordi-
nates of each investor still having him on that surface and affected by his
immediate location thereon, as depicted in Figure 6.2.

We have seen in this text that even winning systems can lose, as we
witness in the 2:1 coin toss situation, wherein f>.5 loses with certainty as
we continue to play, even in a cash account.
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If we simply examine three separate points in that landscape, we can
clearly see why quantity trumps timing and selection. If I happen to be at
the peak (call this Point 1) of the terrain in the N+1-dimensional land-
scape, for a goodly number of periods, I am likely to make more than I
could imagine. At Point 2, I am near the 0,0...0 point in the landscape. 1
make very little, compared to Point 1, but more likely than not, my draw-
downs are quite tolerable. At Point 3, I am beyond the point where the
landscape dips to where it guarantees I lose in the long run on any of the
N axes. In other words, if I am wrong on only one axis, the entire thing will
lose with certainty, contrary to the mean-variance delusion, and we're still
talking about being in a cash account. I thus have N winning propositions,
the aggregate is a total loss, and only because I had my quantity wrong on
1 of the N components.

We have seen how Modern Portfolio Theory fails us entirely in at least
four ways. We have also seen how the degree of profitability, as well as
drawdowns, are profoundly dictated by our location on the landscape ver-
sus other locations.

Clearly, position sizing is equally as important as your market analy-
sis, timing, and selection. I hope I have demonstrated that the Leverage
Space Portfolio Model is superior, as a portfolio model, to those provided
by Modern Portfolio Theory.

Just as you wouldn’t want to trade without your charts, analysis, and
other timing tools, you don’t want to suffer the consequences of being ig-
norant of the fact that this dark netherworld of quantity unwittingly works
against you.

This is especially true when, as I hope I have demonstrated, the quan-
tity you have on is at least half of what affects you (though, I contend it
is 100 percent). Additionally, quantity is the only thing you have complete
control over.

This dark netherworld of leverage space that we are automatically in,
and the palate of human beings, illuminated through economic theory, is
easily reconciled.

And this reconciliation changes things.

Suppose you are engaged in two multiple, simultaneous 2:1 coin toss
games. Further, assume you are oblivious to the fact that you are some-
where on the N+1-dimensional surface of leverage space, and of the ef-
fects upon you therefrom.

Let’s say that you decide, based on your gut, to initially allocate one bet
for every 5 units to each game in your stake of 100 units. Thus, you initially
make 20 1-unit bets on the one coin toss, and make 20 1-unit bets on the
other 1-coin toss occurring simultaneously. We can determine where you
are in the 3D (N + 1)-dimensional landscape here as .2,.2, putting you “just
to the left” of the optimal .23,.23 point (although you are oblivious to this).
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However, that was your initial allocation. Suppose your game plan
calls for you to maintain 20 1-unit bets toward each game, regardless of the
outcomes to that point.

With each play we can determine, from what is in your stake, what
your coordinates are in the N+1-dimensional landscape. We expect you to
make money, on average, given the positive expectation. Thus, as the stake
grows, we would likely see your coordinates migrate from .2,.2 toward 0,0.
In so doing, we could further expect the effects of being more and more
to the left of the peak, in terms of the nature of the curve, to affect you
(although you witness its effect, you are unaware that it is a result of your
position on the surface).

Notice that you are not using the concept of leverage space, but you are
in it, and it is working upon you. What you are experiencing is a migration
Sunction through leverage space.

Everything we have discussed about leverage space and geometric
mean maximization holds true, and you are experiencing it along your mi-
gratory path through it. Even so, although you are trading in a constant
amount as you are in this game, you are not seeking to maximize geometric
growth. Of course, with each play you are still on the landscape, migrating
around on it, with the consequences and payoffs of your current location
thereon affecting you.

This was a case of being oblivious to leverage space, and an inadvertent
migration function.

Now, however, if we look at leverage space not as a portfolio model
and not with geometric mean maximization as our criterion, but rather,
with a different criterion, we can harness the effect of leverage space to
map out a migration function through it to satisfy our “seemingly patho-
logical human psyches.”

Since you are ineluctably at some f coordinate set, then, unless you are
trading, consciously, on a fixed fractional basis, you are thus ineluctably
moving about, migrating, through the landscape.

In other words, the peak in leverage space, juxtaposed to risk (draw-
down) is not our criterion. Instead, we seek to create a function to
migrate through leverage space in a manner that satisfies our criterion.
Leverage space is the context, the “map,” that we use to create this
criterion-satisfying function within. With this paradigm, we no longer need
to operate blindly in the dark netherworld that is so riddled with heuristics,
misinformation, and what is essentially mere alchemy (such as “never risk
more than 1 percent/2 percent” rules, half Kelly, Modern Portfolio Theory,
Capital Asset Pricing Model, and so on). Why would anybody want to oper-
ate blindly through it? Would you want to trade without the inputs that you
presently use for your trading decisions, making such trading decisions in
the dark?
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The evolution of those heuristics, where they seem to have value, be-
comes evident when viewed through the lens of this framework.

In the beginning of Chapter 1, it was pointed out that mathe-
matics, which allows us to “readily arrive at a clean, ‘optimal’ point
... provides a framework for us to satisfy our seemingly labyrinthine
appetites.”

In other words, we can construct our framework, our context, math-
ematically. Our appetites, however, are not for the “mathematically” opti-
mal (that is, the geometric growth optimal). Rather, the context, the frame-
work, allows us a view, a means to achieve what we want and what our
appetites call for. It gives us a context to operate within. Every money
management strategy, every so-called position sizing, methodology, every
gambling progression, is a migration function, and every portfolio alloca-
tion (by whatever portfolio model) can be located within this framework.
Its path of migration can be discerned, the benefits and consequences elu-
cidated in this context.

In recent years, others have offered up differing means of determining
optimal trading quantities. Every one of them is, in effect, an ineluctable
migration function, moving about ineluctable coordinates in leverage
space (and deriving the benefits and paying the consequences of being
at those coordinates)—however oblivious the techniques are to this phe-
nomenon. Geometric mean maximization to this point is a prelude; it is a
foundation, providing a mere framework, a description of the landscape of
the netherworld you reside in, and that affects you as much as your skills
of analysis, timing, and selection do. Yes, you could use it as a criterion
(growth optimality, seeking that highest point within the landscape, your
migration function having you remain at that point interminably). Absent
knowing that you are on a curve, without knowing the peak of that
curve—that is, the optimal point—or the bounds of 0 and 1 to the curve,
there is no “context” and you cannot know where you are, or what you are
doing, without having the landmark of the peak to navigate from, and the
scope of the landscape.

The framework is important because, as I have said, it allows us to ex-
amine the tradeoffs in our behavior in terms of quantity, which is the dark,
undefined netherworld side of trading where little is known (which is why
I pursued finding out about it so vigorously). As charts give us a framework
for technical analysis, we have (finally) a framework for working with this
necessary netherworld of quantity.

This is the dénouement of the Leverage Space Model itself (of all port-
folio models, for that matter)—using it as a framework, as a tool wherein
all strategies pertaining to quantity can be examined, and examined in a
context that makes sense to us. Precisely because it is a framework (al-
though it started out as a superior portfolio model, it is much more than
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FIGURE 6.3 Real-World, Two-Component Example Seen from Above

that), we can now look into some truly interesting and gratifying applica-
tions of it.

With this framework, we now can go about satisfying that which the
human psyche prefers (such as what a fund manager’s customers prefer),
however seemingly pathological, and we can do this in a way that is con-
sistent with the precepts of Economic Theory, which explain this seem-
ing pathological element, dispelling it. We accomplish this via functions
that have us navigate viable portions of the landscape to accomplish what
we determine is our criterion. Figure 6.3 shows a two-component example
landscape.

Thus, in seeking methods to reconcile portfolio management strategies
and economic theory, we seek migration functions, within the framework,
as opposed to the atavistic notion of “portfolio models,” which are static,
inaccurate at modeling the world you operate in, and do not address the
desires of the investor elucidated in economic theories. See Figure 6.4.
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FIGURE 6.4 Real-World, Two-Component Example with a Migration Path within
the Framework

The notion of portfolio models is a twentieth-century one. I have
no interest in them. Rather, as I am attempting to demonstrate, “Frame-
works” give us the instrument we need to accomplish the specific ends
we seek. Frameworks provide us with a means of viewing something, a
mathematically formulated lens of what is occurring in front of us, rather
than a portfolio model, per se.

The desiccated old models are not only irrelevant, they have never
shed any light on the dark netherworld regarding quantity. They burden
and disable the mind. The Leverage Space Model—when viewed as a
framework—allows us far more fluid and mercurial solutions for achiev-
ing our specific goals.

It has been said that successful investing is perhaps 99 percent about
controlling risks and 1 percent about maximizing the profit potential of an
investment opportunity.

However, the predicate of “maximizing the profit potential of an in-
vestment opportunity” is simply not true. People tend to place the degree
of profitability at a distant second to profitability itself, treating the degree
of profitability as an afterthought.
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By way of example, we could ask just where it is in the managed
money industry that performance fees are actually staggered by degrees of
performance.

Let us look at managed futures, whereby I might have a schedule for
performance fees along the lines of:

Percentage
Return Performance Fee
<2% 0%
2%-5% 1%
5%—-10% 5%
10%-20% 20%
20%> 25%

Have you ever seen such a progression of management fees based on
performance? If people really were concerned with profitability, such a
scheme would be ubiquitous. Rather, we see something like “20 percent
of new high equity,” regardless of the degree of new high equity.

In other words—people want that new high equity and they don’t care
so much about the degree of it. They want to be profitable.

What people desire (on the upside) has been murky, amorphous, and
undefined. They don’t know what they want on the upside; they will tell
you several things, and that will also vary from individual to individual.
Yet, no one has articulated what people really want. It is not, except in the
rarest of cases, to maximize profits even with respect to risk. I have not
encountered this apocryphal character.

Worse yet, what they fear, too, has been murky, amorphous, and unde-
fined. Variance? (Excepting those who are benchmarked to that, and com-
pensated about it.) Drawdown? How do you quantify that?

We have looked at the risk side of the risk-reward juxtaposition that is
innate to portfolio models, and we have managed to quantify risk in terms
of drawdown, rather than merely variance in returns.

In the next chapter, we will redefine the reward aspect as well. In addi-
tion, we will show how to use our results in real-world, day-to-day applica-
tions via migration functions, rather than having our ideas simply sizzling
away on dry ice, frozen in the darkened corners of a figurative laboratory
with attainable real-world application out of reach.

I would, therefore, amend the predicate “and 1 percent about maximiz-
ing the profit potential of an investment opportunity” to be “and 1 percent
about just being profitable—to any degree—an investment opportunity.”
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Let us return now to the notion of what my friend Hiro said about the
necessity of a means of maximizing the probability of being profitable. It
is perfectly congruent with Prospect Theory and perfectly congruent with
Optimal Foraging Theory. Of course, this is what has been needed, which
Hiro so clearly illuminated for me.

Modern Portfolio Theory doesn’t give us this. As we've seen, it is likely
to just get us unwittingly into trouble. We leave portfolio models in the
past now, and instead adopt the concept of a framework and the requi-
site migration functions to achieve the specific ends we seek through the
framework.






CHAPTER 7

Maximizing the
Probability
of Profit

progressions, which trade in quantity with respect to account size,

increasing trading quantity as equity increases. They are profit max-
imizers, and hence have an equity curve that is mostly flat at best for very
long stretches of time; they tend to see enormous and rapid growth, such
that one can see that exponential growth has occurred by the right-hand
side of the equity curve.

On the other hand, in maximizing the probability of profit (PP), one
is not concerned with geometric growth, nor even with smoothness in an
equity curve, but rather that at some future point (some “horizon” defined
as a designated number of holding periods from the present one) the eq-
uity curve will be above where it is today, plus some prescribed amount,
with the highest probability. This requires a Martingale or small Martingale
progression.

Typically, a Martingale doubles the bet size with each losing bet. As
soon as the losing streak is broken, a one-unit gain is realized. The down-
side is that as the losing streak continues, the bet sizes double with each
losing play, and eventually the required bet size is unachievable.!

G eometric mean maximization requires small anti-Martingale type

1Recall the axiom posited in the Introduction to this text: In a game with a neg-
ative ME (for instance, most gambling games) the probability of going broke
approaches certainty as you continue to play. Note that even in a Martingale pro-
gression (with a guarantee of making one unit, eventually), if such a game, with no
minimum bet size or table limits, could be discovered, and if we pick an arbitrary
time, an arbitrary g, to look at our player’s stake, we would expect our player to be

157
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Typically then, Martingale and small Martingale-type systems suffer
from larger drawdown than their opposing counterparts, which trade in
quantity relative to account size, such as geometric mean maximization
strategies.

In Chapter 5 we saw a means of quantifying drawdown, allowing us
to now use the constraint of drawdown as our risk metric,? such that we
may now employ a Martingale-style approach within the leverage space
terrain—without the corresponding risk of larger drawdown that is usually
inherent in such an approach.?

We will now demonstrate a procedure for a small Martingale progres-
sion for capitalizing portfolio components, which seeks to maximize the

down, on average, by the mathematical expectation times how much he has bet to
this point, q. However, if we allow the gambler to bet a la Martingale and to quit
as soon as he shows a profit, he is guaranteed this profit as the length of the game
approaches infinity (which assumes our player has either an infinitely large initial
stake, and/or wagers in infinitely small size for a unit). However, at any arbitrary
0 < g < x where x is the point of being profitable, we expect him to be losing by an
amount equal to the mathematical expectation times how much he has bet to this
point, q. After such a point, x <= q < oo, our player, now up one unit, stands and
watches the game, no longer wagering. Arguably, this is an example of a negative
expectation game that is made into a winner via its migration path as the length
of the game approaches infinity—hence the caveat regarding the probability of go-
ing broke in a negative expectation game approaching certainty “as you continue
to play,” in the definition of Mathematical Expectation. Another paradox emerges:
How much of a cover charge, if any, is a fair price for entering such a game, given
the potential heat you may endure, the certain profit you will see, and the time it
may take for that profit to manifest?

2Though the Leverage Space Model is presented as specifying risk as drawdown
rather than variance in returns or some other ersatz measure of risk, it is feasible
to incorporate these other risk measures, either in tandem with drawdown, or in
solitary fashion, using the Leverage Space Model. For example, if a manager is in-
dexed to a variance-based benchmark, such as the Sharpe Ratio, he could employ
the Leverage Space Model, paring away those points on the terrain where either the
drawdown constraint or his variance constraint was violated, thus making points
that violate either constraint be unacceptable portfolio combinations.

3Recall in the Leverage Space Model that if one is trading in a constant-unit size (as
opposed to trading in size relative to equity), one is migrating toward the f; ... f,, =
0;...0, point in leverage space as the equity increases and, similarly, toward
the fi... f, = 1;...1, point in leverage space as the equity decreases. Since we
are always within the terrain of leverage space, whether we acknowledge it or not,
the approach presented, for instance, a Martingale-style approach, can be said to be
an approach that seeks a path through the terrain of leverage space itself. Hence,
we see firsthand here how the Leverage Space Model is not merely a static model
of allocation, but a paradigm for more dynamic-types of allocations as well.
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probability of being at or above a given return by a specific future point,
within the constraint of not exceeding a given probability of touching
or exceeding a lower absorbing barrier through the duration toward that
future point. This lower barrier may be fixed (for instance, “ruin”) or al-
lowed to float upwards as a percentage of equity increase (for instance,
“drawdown”).

Serendipitously, a small Martingale-type approach is consistent with
the preferred investor behavior regarding risk aversion posited in
“Prospect Theory,” and as such, ought to be psychologically easier for an
investor or fund manager to implement.

In brief, Prospect Theory asserts that humans have a greater tendency
to gamble more under accrued losses (for instance, a small Martingale) in
an attempt to maximize the probability of profit at a future point in time,
whereas those confronted with profits seem to be more risk-averse,* save
the rare, freelance madman who truly is a profit maximizer.

Given the propensity of humans to maximize the probability of profit
at a given horizon in time, it is the fund manager’s responsibility and pref-
erence to pursue that within a given drawdown constraint. In one of those
rare conjugal visits of mathematics and human behavior, we seek here to
identify that function for probability of profit maximization versus risk, as
both a tool for the portfolio manager as well as the mathematical operating
function of human behavior under conditions of risk.

ALGORITHM AND FORMULAS

If we have a variable (a “Martingale exponent”) denoted as z greater than
—1 and less than or equal to zero, then:

—-1<z<=0 (7.01)
We can then say that
1/(14+2) -1 (7.02)

gives a result from 0 to infinity, as Table 7.1 demonstrates.

Note that since we are going to be trading a small Martingale, we are
not trading a fraction of our stake, so there is seemingly no f value for the
components and hence no f$ value.

“The pervasiveness of this tendency in humans and other primates (Chen et al.
2006) is suggestive of an evolutionary cause, a hard wiring of a given function.
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Trading a Small Martingale; There Is

TABLE 7.1 Seemingly No f Value for the

Components and Hence No f$ Value

-z 1/(01+2)-1
Approach —1 Approach Infinity
from the right from the left
—0.9999 10000
-0.999 1000
—-0.9901 100
—0.98039 50
—-0.97087 33.33333
-0.96154 25
—0.95238 20
—0.9434 16.66667
-0.8 4
—-0.66667 2
-0.5 1
—-0.37879 0.609756
-0.04762 0.05
—-0.0099 0.01

0 0

However, we do need a context, an initial capitalization of a compo-
nent, a scenario spectrum, and we will retain a consistent nomenclature
and call this initial capitalization the component’s f$ (that is, the amount
we divide the current total capital of an account by to know how many

“units” to put on for the current position).

Because we have an f$ for each component, and a scenario compris-
ing the largest losing outcome for each component, we can discern an
“initial f” value for each component (as that value wherein the absolute
value of the outcome result of the biggest losing scenario divided by equals

the f$).

|Biggest Losing Outcome|/f = f$ (1.09)

Thus:

|Biggest Losing Outcome|/f$ = f (2.01)

Suppose we currently have $120,000 in equity. Further suppose we
have on 300 shares of a given stock, and we determine that one unit is
100 shares. We thus have three units on currently—so we can say that our
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current f$ is $40,000, representing the amount we are capitalizing a unit
by. Lastly, suppose we know our largest losing scenario assigned to a unit
of this stock is $10,000 (per unit, that is, per 100 shares). Now we can de-
termine our de facto f value as (always 0 >= f <= 1):

| — 10,000| /40,000 = .25

In a Leverage Space Model-style portfolio, regardless of the individual
components, when the portfolio is up, more quantity is traded and vice
versa. Similarly now, but in reverse, we will trade more quantity on the
downside for all components, while retaining their ratios to each other.
This is the notion of diversifying risk, whereby stronger elements at the
time support the weaker ones.

The process now proceeds as follows. At each holding period (7, of ¢q
holding periods), for each component (k, of N components), we adjust the
f'$ for the component that period as follows:

BLy/ —
Iei = e = Ju 1 (7.03)
acctEQ (W’l)
acctEQ;_1
where: f$).; =the amount to allocate to the k™ component on the
i™ holding period

BL;, =the largest losing scenario outcome for the k™ com-
ponent, a negative number
fi =the initial f value (0 <= f <= 1) for the k™ compo-
nent, based on its initial capitalization
acctE'Qy=the account equity before the first holding period
(that is, the initial equity)
acctEQ;_; =the account equity immediately before the current
period
z=the “Martingale exponent,” value from (7.01)

Note that the f$; returned can be converted into a current f;;, which
then is the point where our path for acctEQo/acctEQ;_;. This function
therefore gives our path through leverage space to maximize the prob-
ability of profit. This then is our migration function. It is one means,
one type of migration function, that can be implemented to maximize for
highest probability of profit at some horizon.

We will employ two separate z values, so that our function is consistent
with that of Prospect Theory, which demonstrated empirically people’s
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different risk preferences when they were “up” from a given reference
point as opposed to “down” from the given reference point.

Thus, we have one z value for when our stake is down from its starting
value (that is, a multiple on the starting stake <1) and a different z value
when the multiple on the starting stake >1. We will call these values z_ and
2, respectively.

Note that in (7.03) at 2 = 0 the investor’s capitalization per unit remains
constant (hence the investor is still trading less as his equity is diminish-
ing). We can show these relationships graphically, and we will assume our
initial f$ (when multiple = 1) is $1. This is shown in Figure 7.1.

Thus, Figure 7.1 demonstrates that regardless of equity, at 2 = 0 the
number of units put on will always be the current equity divided by
the same initial f$ amount. As the account equity diminishes, so, too, will
the units put on, and vice versa.

At z = —.5 the capitalization is such that the number of units the in-
vestor trades in is constant. Thus, at z = —.5, the number of units he trades
will always be the same regardless of account equity. This is demonstrated
in Figure 7.2.

When z < —.5, the investor begins to capitalize units with ever-less
amounts, thus incurring a Martingale-type effect. Again, since preferences
among human beings seem to be a function of whether one is up or down
from a given reference point (that is, where multiple = 1), we allow two
separate z values to accommodate this very human propensity, though, as
the previous two figures demonstrated, these two values could be set equal
to each other.

Figure 7.3 shows (7.03) in a typical, real-life example of two separate 2
values.
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Figure 7.3 begins to accomplish the small Martingale effect, innate in
Prospect Theory, which seeks to maximize profits at a given future point.
Table 7.2 shows Figure 7.3 in tabular form.

It is my contention that (7.03) is the evolutionary hard-wired function
in humans pertaining to risk seeking and risk aversion, and is consistent in
graphical form with what has been posited by Prospect Theory.

Since (7.03) is the evolutionary-wired preference in humans, a fund
manager’s “success” becomes a function of the degree to which he satisfies
this preference in his clients.

Note that in a straight Martingale progression (betting 1, 2, 4, 8, 16, ad
wnfinittum after a loss until a win is seen), it is only after a winning play
that the account value is up. In all other situations, the account is actually
down most of the time, often quite substantially if during a run of losing
plays. Thus, a straight Martingale can be said to put an account up at some
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FIGURE 7.3 z = -7,z -3
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TABLE 7.2 Figure 7.3 Shown In Tabular

Form
Multiple E f%
0.1 0.004641589
0.2 0.023392142
0.3 0.060248966
0.4 0.117889008
0.5 0.198425131
0.6 0.30363576
0.7 0.435072961
0.8 0.594123371
0.9 0.782046402
1 1
1.1 1.041692943
1.2 1.081271659
1.3 1.11900716
1.4 1.155117866
1.5 1.189782789
1.6 1.223150769
1.7 1.255347099
1.8 1.28647841
1.9 1.316636313
2 1.345900193

arbitrary point in the future, but not necessarily at some given point in the
future.

That’s why the function (7.03) “breaks” at a multiple = 1, by virtue of
having two separate Martingale exponents (2_ and z,). Note that when an
account is up, the bet size diminishes as a function of both the multiple
on the starting stake, and the Martingale exponent z, . This part of the for-
mula, consistent with the empirically observed behavior of Prospect The-
ory, permits a small Martingale progression the opportunity to retain prof-
its efficiently until the horizon, the given future point (as opposed to the
arbitrary one), is seen.

In (7.03), since f$;; = the amount to allocate to the k™ component on
the ¢™ holding period, we can determine the number of units to trade for
the k™ component on the i holding period as:

_ acctEQ;_,

U, = 7.04
- S8 (7.08)
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or, since f$j; is given by equation (7.03):

acctEQ;_
Ui = Bla/ )i (7.04a)

( acctEQq )((l}rz)l)

acctEQ;_

Dividing current equity by the f$ given in (7.03) for each component
tells us how many units to have on for each component (1...N) at each
holding period (1...q).

We will now attempt to find the Martingale exponents (2_ and z,)
for the portfolio, and the set of initial f; y for its components that max-
imize the probability of profit (PP), at some given horizon. We can also
discern this with respect to a given probability of a given drawdown or risk
of ruin, at that horizon point, per the technique given in Chapter 5, with
slight amendments provided at the end of this chapter.

Note that you trade more units when the account is down, and less
when it is up. The Martingale exponents (2 and z,) are the levers that
govern this. We will then seek those values for the Martingale exponents
(2_ and z;) for the portfolio, and the set of initial f; _y for its components
so as to maximize the probability of profit, P P(r), at some given horizon,
where 7 typically is 0. If, for example, we considered “profit,” as a 2 percent
return at the horizon, we would say that we seek to maximize PP(.02).

Note we can still calculate our TWR(f] ... fn) (Terminal Wealth Rela-
tive) as:

acctEQ,

acctE Qg (7.05)

TWR(f1 ... fn) =

since TWR(f} ... fn) is simply the multiple we have made on our stake,
after ¢ holding periods.

Note a different scenario occurs at each holding period. We wish to
maximize the probability of profit, P P(r), for a given r (our minimum re-
turn, which, if exceeded, we consider being “profitable”), over a given num-
ber of holding periods, q.

For the sake of simplicity, assume a coin toss, wherein one of two pos-
sible scenarios, heads or tails (H or T), can occur. If we decide to look
at ¢ = 2 holding periods, there are four possible branches that can be tra-
versed, as follows:

==
e an il Ran
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Note that in this case of two possible scenarios (¢ = 2 holding periods)
there are four possible branches of traversal. This is the process detailed
in Chapter 5 for branch traversal in determining drawdown probabilities.

Similarly, if we assume a portfolio of two coins, each with the same
possible two scenarios of heads and tails, we see:

HH HH
HH HT
HH TH
HH TT

HT HH
HT HT
HT TH
HT TT

TH HH
TH HT
TH TH
TH TT

TT HH
TT HT
TT TH
TT TT

Each branch sees its own TWR( f7 . . . fy) calculation from (7.05). Thus,
for each branch, we can determine whether

TWR(fi... fy)—1>7 (7.06)

for that branch, and if so, we conclude that the branch is “profitable.” Thus,
since we want to optimize for highest probability of profit, we therefore
want to maximize the ratio of the number of branches satisfying (7.06) di-
vided by the total number of branches—this represents the Probability of
Profit function, P P(r), which is what we seek to maximize by altering the
Martingale exponents (z_ and z,) for the portfolio, and the set of initial
f1..n for its components.

The process for doing this, that is, finishing at or above an upper ab-
sorbing barrier (at time q), is very similar to the process of determining
drawdown—that is, touching or exceeding a lower absorbing barrier (at
any time 0. ..q).

We use the branching process described in Chapter 5 to determine this,
yet in determining the probability of profit we are concerned only if the ter-
minal leaves on the branching process are at or above 7, unlike drawdown,
where we are concerned whether, at any point along the branch, b (Chap-
ter 5 as RX(b)) has been touched on the downside. Thus, at each terminal
node in the branch, we assess (7.06).
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The calculation to determine the acctEQ, at any point (y =1...q) is
given as:

y N
acctEQ, = Z Z (Uy.; * outcomey, ;) (7.07)
i=1 k=1
or
tEQ,;_
acctEQ, = Z Z ((accf$ @i 1) * outcomek,i) (7.07a)
ki

=1 k=1

where: outcomey ; =the k™ component’s scenario outcome at point i in
the branching process
f$y.; = given by equation (7.03)

Now we can look at the values at the terminal leaf of each branch, and
assess (7.06). Each branch has a probability associated with it. By taking
the sum of these probabilities as our denominator, and the sum of the prob-
abilities for those branches that satisfy (7.06) as our numerator, we derive
a PP(r) for a given set of Martingale exponents (z_ and z,) and set of ini-
tial fi. n values that we are optimizing over to determine greatest P P(r)
within an (optional) drawdown/risk of ruin constraint.

Since the process of maximizing probability of profit is an additive one
(as opposed to maximizing for profit, which is a multiplicative one), we
must amend our calculation for g in Chapter 5 (5.03). If we are determining
risk of ruin, we then have RR(b),

i acctEQ;/acctEQy — b
int [ = =B (5.03)
> (acctEQ;/acct EQy — b)|

i=1

supplanting (5.03).
Given the propinquity of drawdown and ruin, we must adjust for the
case of Risk of Drawdown, RD(b), and supplanting (5.03a) we have:

i (acctEQ;/ max(acctEQq - --acctEQ;) — b)

int iq:l =B (5.03a)
> (acct EQ;/ max(acctEQy - - - acct EQ;) — b)|
i=1

Supplanting (5.03a).
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Note that we can perform the calculation for both PP(r) and RX(b)
simultaneously in the branching process per the algorithm provided in
Chapter 5. However, it must be pointed out that if the lower absorbing
barrier, b, is seen while traversing a branch, the branch must still be fully
traversed to determine (7.06). That is, simply hitting a drawdown on the
branch does not permit one to abort the branch altogether—the branch
must still be fully traversed so as not to sabotage the probability of profit
calculation.

The altitude is the altitude in the sense mentioned throughout, but the
real altitude for a migration function is where the investor finishes after ¢
trials, and may be above or below the surface of the leverage space.

Let’s return to the St. Petersburg Paradox. Where is our altitude after,
say, five trials?

1 1 1 1 1
0 1 2 3 4
ME =2 *21+2 *22+2 *23+2 *24+2 * 55 (1.01)

1 1 1 1 1
ME=1% - 424  tautigst 4165 =
xy T2y tdeg8xgg+16ag

ME =1%.5+42x%.25+4x%.125 4 8 % .0625 + 16 % .03125
ME =54+54+5+5+5
ME =25

By determining our Mathematical Expectation, at g plays, divided by
our starting stake, we can determine our TWR per equation (7.05).

The question posed by the St. Petersburg Paradox, which asks what a
“fair” cover charge would be, is, in fact, the paradox. If the game ends after
five plays, rather than continuing on indefinitely, a fair cover charge would
then be the Mathematical Expectation at ¢ = 5, which, as we see, is 2.5.

However, for argument’s sake, let’s assume the cover charge was two
units. Then, per (7.05):

TWR = 2.5/2 = 1.25

This, then, is our altitude in the N+1-dimensional landscape after g
trials, as given by (7.05).

In short, we determine what we would expect to make at q, divided by
the starting stake. This gives us our TWR (or, the ¢'" root, giving the GHPR)
that is the altitude in the N+1-dimensional landscape.

With regard to maximizing the probability of being profitable, how can
we determine, for this migration function, what we would expect to make
at q?
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For the answer, let’s go back to our real-world example, as determined
from Chapter 4:

MKktSysA MktSysB MktSysC Probability Scenario#

—$150.00 $253.00 $533.00 0.076923077 1
—$45.33 —$1,000.00 $220.14 0.076923077 2
—$45.33 —$64.43 $220.14 0.153846154 3

$13.00 —$64.43 —$500.00 0.076923077 4
$13.00 —$64.43 $533.00 0.076923077 5
$13.00 $253.00 $220.14 0.076923077 6
$13.00 $253.00 $799.00 0.076923077 7
$13.00 $448.00 $220.14 0.076923077 8
$79.67 —$64.43 —$325.00 0.076923077 9
$79.67 —$64.43 $220.14 0.076923077 10
$79.67 —$64.43 $533.00 0.076923077 11
$136.00 $253.00 $220.14 0.076923077 12

We want to determine the expected value at horizontal node ¢q. Thus,
at the first horizontal node (y = 1, en route to 12), we have 12 scenario
outcomes, and these branch each time y is incremented, as we have done
repeatedly throughout the text.

Ultimately, we end up at horizontal point (time) ¢, and thus have 129
nodes. Each node has a probability to it, which is the product of the sce-
nario probabilities at each .

For example, if we have ¢ = 3, we have 12°=1,728 terminal nodes.
Each node has a probability associated with it, which is the product of
the probabilities to that node at each y. We will then have scenarios
1-1-1 as a terminal node,1-1-2. . .12-12-12. One of those 1,728 terminal nodes
will be 8-3-11, which would then see a probability for that terminal node of
0.076923077 + 0.153846154 * 0.076923077 = 0.000910332.

Also, each terminal node has an outcome, as determined by equation
(7.07). To determine the outcome (7.07) at point g for a given branch, it
must be determined for all subsequent branches to g, starting at 1.

When I have all 1,728 branches’ outcomes and their associated
probabilities at q, I can multiply the outcomes by the probabilities
and take the sum of these 1,728 products (this is simply Mathematical
Expectation). Dividing this by my starting equity (equity at q = 0)
gives me my TWR(f1, f2, f3) (with given z_, z,). This is my altitude in
the N+1-dimensional landscape of leverage space (four-dimensional in
this case), and is above the surface. Of course, to the ¢™ root of this
TWR(f1, fo, f3) is my GHPR( f1, fo, f3) (with given z_, z,).
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For a single 2:1 coin toss, maximizing for highest probability of profit
at five periods out, within a drawdown constraint of not more than a
10 percent chance of a 20 percent drawdown, we can discern numerous
parameter values that result in the same probability of profit of .96875. One
of these has the following parameters:

f = 0.041 and thus f$ = 24.41
2 =—0.848

2, = —0.996

RD(0.8, 0.1, 5) = 0.0625

Yes, the probability of a drawdown of 20 percent within the first five
plays at these parameter values is .0625, a 6.25 percent probability, well
under our 10 percent constraint.

Returning to how much we would expect to make (our mathematical
expectation) after five plays, we need to begin the branching process. Let
us assume we start with f$ in our stake of 24.41 and that units are infinitely
divisible (we could start with a much larger number in our initial stake, say,
1,000,000,000 units and say that units are not divisible to achieve the same
ends).

Thus, at ¢ = 0 our stake = 24.41. At ¢ = 1, we have two branches, one
with heads, one with tails, and they continue to branch to ¢ = 5.
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q=0 1 2

With an f$ value of 24.14 and z_

171

(@)

—0.848 and =z, = —0.996, we can

traverse the branches of this tree, solving for equation (7.07) at each node,

obtaining:
26.4
26.4
26.4
start
25.8
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26.4
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25.8

25.8
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25.8 25.8
234 25.3
25.3 25.3
25.3 25.3
25.3 25.3
22.2 25
25 24.9
20.7 25.6
185 15
q=0 1 2 3 4 5

Note that of the 32 terminal leaves, 31 of them were profitable at ¢ = 5
(13/32 = .96875). Further, note that 2 of the branches saw a 20 percent or
greater drawdown between q = 1 and q = 5 inclusively (2/32 = .0625).

I chose a single coin toss with ¢ = 5, n = 2 in this example, because
the numbers are manageable and provide an example presentable here to
convey the algorithmic exercise in determining the expected altitude in the
N+2-dimensional landscape (2D in this case) at ¢ = b.

It should be noted that you would be migrating about at different
values for f from q = 2 through ¢ =5, but at ¢ =5 your expected al-
titude is the TWR(.041), or the sum of the terminal leaves, divided by
the number of terminal leaves (25.65138409) divided by the starting eg-
uity (24.41). Thus 25.65138409 / 24.41 = 1.050855555. This is my altitude
in the N+1-dimensional (2D in this case) landscape at ¢ = 5. Thus, I
can figure my GHPR(.041) by taking this to the 5™ root (1.050855555> =
1.001551347).

Again, the computational aspect is considerable as g and n get larger!
Shortcut methods such as those presented in the previous chapters should
be employed where possible to obtain good approximations.

But where are you, really, on this surface at ¢ = 5? Ultimately, that’s
a function of the particular terminal leaf you are at. In our example, f
for the first 31 leaves at ¢ = 5 is nearly 0, and for the last leaf it is .631156
(because we take the terminal leaf value of 14.15924 and via equation
(7.05a) we determine our number of units to wager on the next play as
1.58439423, whereas, if the absolute value of our biggest loss (| —1] = 1)
is divided by this value (1 /1.568439423 = .631156) per equation (2.01), we
determine this is an f coordinate of .631156 for the 32"! branch of this
tree, going into q = 6.

The real-time implementation of a migration path is a straightforward
affair, once the f values 2, and z_ are determined within the given horizon
(@) and drawdown parameters.
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Implementation is straightforward and not complicated. Some may
argue that the mathematics behind the Leverage Space framework are
complicated, but the implementation is nevertheless easy. With a grasp of
the conceptual underpinnings of leverage space, sans math, you can per-
ceive what you are working within. With a viable migration function, cre-
ated to achieve your goals, implementation becomes merely a matter of
implementing the migration function on a real-time basis.

Returning again to our three-market example from the previous chap-
ters, if we seek the highest probability of profit, with ¢ = 12 (that is, over
the course of the next 12 months) within a 10 percent probability of no
more than a 20 percent drawdown, we find our probability of profit is al-
most 100 percent, and the probability of such a drawdown is .012, utilizing
the following parameters:

S f$
MKktSysA 0.085 $1,762.19
MktSysB 0.015 $67,956.90
MktSysC 0.129 $3,879.44
z_ = —0.76
2, = —0.992

We can set up a spreadsheet to implement a migration path quite easily.
Once we have determined our initial f and z values, which maximize the
probability of profit at a given horizon (q), we have all the input we need
to perform the real-time implementation. To begin with, we need to input
our starting and current equity, as well as the two z values. This appears in
the first four rows.

We also need, for each market system, the initial f, biggest loss and
worst-case outcome. This is seen beginning at row 8, and columns A
through D.

A B C D E

1 Starting Equity $1,000,000.00

2 Current Equity $1,000,000.00

3 2 —0.992

4 2z —0.76

5

6

7 Initial f Worst Case ~ Current f$  Units

8 MktSysA 0.085 —$150.00 $1,764.71 566

9 MktSysB 0.015 —$1,000.00 $66,666.67 15
10 MktSysC 0.129 —$500.00 $3,875.97 258
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The current f$ requires formulation. Essentially, for cell D8, in Mi-
crosoft Excel, we input the formula:

= IF($C$2 > $C$1, (C8/ — BY)/(($C$1/$C$2)"((1/(1 + $C$3)) — 1)),
IF($C$2 < $C$1, (C8/ — B8)/(($C$1/$C$2)"((1/(1 + $C$4)) — 1)),
08/ — BS))

We then copy down this cell to the remainder rows in column D.
Lastly, column E is calculated, starting with cell E8 as:

= INT($C$2/D8)

We then copy down this cell to the remainder rows in column E.

At the end of each holding period (one month in our example case), we
need only change the current equity, cell C2. We will then have, in column
E, the corresponding correct number of units that we should have on for
each market system, so as to be consistent with what our research showed,
with the scenarios and their joint probabilities working out to provide for
the maximum probability of profit.

Thus, we would adjust our current positions to reflect the new “units”
column, column E, at the end of each holding period.

Debate continues as to how frequently one can best “readjust” to what
is shown as the quantity an investor should have on. There is no clean, sim-
ple answer that [ am aware of. It is a function of transaction costs, liquidity,
the length of the holding period, the types of market systems (not all are
in the market all of the time), futures and options contract rollovers, and
SO on.

Consider an individual day trader who makes multiple trades daily, all
in one market system (N = 1). His holding period may ideally be one trade
(rather than a period of time, which is what one should use when N >
1). He can thus reallocate with each trade optimally, if the data that he
puts into the spreadsheet is discerned from a scenario spectrum that was
constructed using individual trades.

Let’s continue with our three-market system example. We’ll assume,
since we are using months as holding periods, that the first month has
elapsed, and we witness something along the lines of scenario #4 of these
three-market systems. That is, the one-unit outcomes for each market sys-
tem are $13.00, —$64.43, —$500 respectively. This would be a net loss for
the first month, at the prescribed quantities of $122,608.45, leaving the ac-
count value at $877,391.55.

The only thing we need to do is to put this value into cell C2 to obtain
what our new quantities should be, and adjust them in the marketplace
accordingly:
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A B C D E

1  Starting Equity $1,000,000.00

2 Current Equity $877,391.55

3 2 —0.992

4 2 —0.76

5

6

7 Initial f Worst Case  Current f$  Units
8 MktSysA 0.085 —$150.00 $1,166.23 752
9 MktSysB 0.015 —$1,000.00 $44,057.65 19
10 MktSysC 0.129 —$500.00 $2,561.49 342

Now suppose that for the next month we see the manifestation of sce-
nario #7 as gains of $13, $253, and $799 respectively for MktSysA, MktSysB,
and MktSysC. This results in a net gain for the month of $287,841.00, putting
the current equity at the end of the month at $1,165,232.55. Again, we up-
date our current equity:

A B C D E

1  Starting Equity $1,000,000.00

2 Current Equity $1,165,232.55

3 2 ~0.992

4 2 —0.76

5

6

7 Initial f Worst Case Current f$  Units

8 MktSysA 0.085 —$150.00  $300 billion+ 0

9 MktSysB 0.015 —$1,000.00 $11 trillion+ 0
10 MktSysC 0.129 —$500.00  $666 billion+ 0

Notice what happens to our number of units. We have effectively
stopped trading with a profit. This is due to our z; value of —.992.

In the real world, you can set constraints at the lowest you will allow a
z_ or 2z, value to go. For example, you may opt to not allow z_ to get below
—.75, and not allow z, to get below —.8. Such a procedure would keep
you from shutting down entirely on the upside, or taking on potentially
enormous quantities after protracted drawdowns.

Once the horizon is reached (that is, once ¢ = 12), 12 months will have
elapsed in our example, we set the starting equity to the current equity, and
we begin the process anew.
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PROBABILITY OF PROFIT AS A
CONSTRAINT IN MAXIMIZING PROFIT

Often our concern is not only a matter of maximizing for the greatest prob-
ability of profit within a given drawdown constraint. There is also the sec-
ondary concern of maximizing profit. Therefore, rather than maximizing
for the greatest probability of profit, one can maximize for the greatest
profit, within a given minimal probability of profit (profit >= r) and within
a given drawdown constraint.

As aresult, the probability of profit becomes a constraint, just as prob-
ability of drawdown is a constraint. The criterion now, it would seem, is to
once again maximize gains.

You would think, then, that those points on the leverage space terrain,
where the probability of profit to a certain horizon was not within pre-
scribed parameters, would result in holes in that landscape in the same
way that exceeding prescribed drawdown parameters affects coordinates
on the landscape.

That, however, is not the case.

Again, because we are employing equation (7.03) to find the optimal z_
and z,, we are migrating about the landscape of leverage space. Further-
more, the terrain of leverage space, ripped by the coordinates where draw-
down exceeds the prescribed parameters, is altered by formulaic changes
required in seeking the highest P P(r) from equations (5.03") and (5.03a’).

So, if we want to maximize profit, within a given drawdown constraint,
and within a given probability of profit, our changes are simply algorithmic
ones. Again, we are looking for that path through leverage space—the ef-
fect of the drawdown constraint, altered by (5.03") or (5.03a’)—given by the
values z_ and z,, that sees the greatest altitude at the horizon, q, provided
the PP(r) constraint is not violated at q.

Once again, what we expect to make, on average, at ¢, as a multiple
on our stake, is a function of the migration function and must be deter-
mined for a given migration function, as has been demonstrated in this
chapter. It is not the altitude of a coordinate set on the surface in lever-
age space—rather, it is calculated by taking the value of the stake, at each
terminal leaves, times the probability of that leaf, and summing this prod-
uct of the leafs together, divided by the number of terminal leaves. This
quotient is then the numerator, with the starting stake as the denominator,
thus obtaining the TWR. The determination of the value at each terminal
leaf is a function of the migration function itself.

This results in a different path through leverage space (that is, differ-
ent values for z_ and z, ) than merely maximizing for highest P P(r). Typi-
cally, this will provide a slightly greater z, value (that is, closer to 0, from
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below, than you would get for simply maximizing for greatest probability
of profit, the latter having you typically stop trading nearly altogether, if
not altogether, once a profit is achieved at < q elapsed periods).

However, the real-time implementation is exactly as was demonstrated
for the case of optimizing simply for greatest probability of profit. Your =,
and z_ can be plugged into a spreadsheet, along with your starting equity,
current equity, and initial f values to determine how many contracts to
presently have on for each market system.

The result is one that satisfies many of the demands on money man-
agers. However, the demands on you may be different. These examples
(though they do satisfy many) provide you with the tools and show you the
implementation to achieve precisely the criteria that you want.

FORMULA PLANS

Beginning in the 1940s, one can find a cornucopia of mostly now long-lost
ideas that were referred to at the time as “formula plans.” These were for-
mulaic methods that were advocated for entering, adding to, and lightening
up on exiting positions. Something like dollar cost averaging can be con-
sidered a simple and age-old example of what would constitute a formula
plan. Similarly, with more modern notions such as “Portfolio Insurance” or
the notion of “Continuous Dominance,” presented in (Vince 1995, 2007).

Formula Plans were a huge fad in the 1940s and 1950s. However, the
then-nascent concept of Modern Portfolio Theory pushed these ideas into
seeming extinction, and by the 1970s, most of these ideas seemed to have
become dinosaurs.

Though not referred to as formula plans, many market practitioners
today are employing what could be called a formula plan. For example, the
notion of adjusting one’s quantity for a forthcoming trade as a function of
a market’s current volatility is, in essence, a formula plan.

Unfortunately for the proponents of formula plans in the middle twen-
tieth century, they didn’t have the Leverage Space Model—they didn’t have
the mathematical framework to really see what they were doing. However,
they knew that by employing these plans, they could produce returns, re-
strict losses, and deal with market conditions to points they could live with.

Yet a formula plan is, in effect, a migration path! There is perhaps fe-
cund territory to resurrect some of these ideas in the context of Leverage
Space, of re-distillation into formulaic migration paths. In the past, such

5T am indebted to John Bollinger for having pointed out to me the formula plan
concepts and their relation to the notion of migration functions.
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plans sought to achieve certain criteria. Now, these ideas have a context
they can be placed in, one that is congruent with the notion of migrat-
ing about a space of available portfolio allocations such as we have been
discussing.

APPLICATION TO NEGATIVE
EXPECTATIONS

The approaches presented in this chapter—the migration functions for
maximizing the probability of profit, or maximizing profit within a given
probability of profit constraint—are applicable to and beneficial in helping
weather negative expectation games as well as periods where things don’t
quite go as planned, that is, when the distributions of returns experienced
diverge from the scenario spectrums used as input. Arguably, one of the un-
expected benefits of managing a portfolio, of adjusting quantity based on
migration functions that are consistent with Prospect Theory, is that they
do very efficiently absorb the effects of negative expectations as well as the
negative expectation that often manifests of things not going according to
plan.

First, you'll recall from the Introduction to this text the lottery men-
tioned with a negative expectation (a lottery wherein you are given $1 ev-
ery week, with a one-in-one-million chance of losing $2 million dollars, the
Mathematical Expectation being therefore —1.000001 per week).

It was pointed out that this was not necessarily a bad bet. In the over-
whelming majority of 50-year spans (roughly 399 out of 400), you would
expect to collect $2,600. Life is finite; the amount of plays you will get is fi-
nite; the number of holding periods you will encounter is necessarily finite.
Thus, negative expectation is not necessarily the kiss of death.

Provided one can budget for the worst-case scenario, Mathematical
Expectation is not necessarily a good criterion for assessing a risk un-
less the horizon you intend to participate in gives that expectation the
opportunity to manifest. Clearly, if we were to play for one million weeks,
we could assume we would, on average, lose $2 million against a gain
of $999,999 from the remaining weeks where we won $1. The parameters
of this game are different, than, say, a game with a .4999995 probability of
winning $1,000,001 and a .5000005 probability of losing $1,000,001 (giving
us the same Mathematical Expectation of —1.000001 per week).

Mathematical Expectation is a crude tool. It has an element of infor-
mation loss to it that is crucial in assessing risks, the element of time for its
manifestation to materialize on average. Just as was pointed out in Chap-
ter 4, correlation/covariance/beta are crude tools for assessing intermarket
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relationships, so too is Mathematical Expectation a crude tool for assess-
ing risk prospects.

The second and more important point to consider about negative exp-
ectation games (including the temporary case of negative expectation—
those cases where things don’t go as planned) pertains to the (small)
Martingale progression allowing us to overcome the negative expectation
by virtue of the point just mentioned and a small initial unit size.

Reconsider Table 5.1, and specifically row 8, where we now see a dra-
matic increase in our probabilities of success. As pointed out by (Epstein
1967, p. 60), “With large initial capital, there is a high probability of win-
ning a small amount even in games that are slightly unfavorable.”

Any type of Martingale progression (large or small) will necessarily
have you starting out risking smaller quantities, in order to execute the
(small) Martingale progression, if necessary.

Thus, an initial outlay consistent with being able to execute the pro-
gression to the extent you have budgeted for is paramount in order to ex-
ecute a small Martingale. The probabilities of being able to weather and
turn profitable a nearly unrealistic string of losses can be budgeted for by
making the initial wager size be extremely small relative to the total stake.

For instance, assume a standard Martingale where we double the stake
on every play, in a game with a .5 probability of winning 1 unit, and a
.5 probability of losing 1 unit (for simplicity). Now, we assume 20 losers
in a row, the probabilities of which are 1/ 22 = 1/1,048,576 = .000000954.
Note: We need 1,048,576 for the twenty-first (22°) wager. Thus, if we play
this game, whereby our stake is large enough and our initial wager is
small enough such that our initial wager in this full-Martingale game is
1/2,097,151™ of our stake, we will have budgeted for the extreme prob-
ability of seeing 20 consecutive losing plays, budgeted for something that
has a .000000954 probability of occurrence, and thus insured a very high
probability of winning a small amount in this even-money game (the situ-
ation is similar if we make the game negative—the parameters presented
are done so for simplicity of illustration).

On the upside, note how we wager less and less, depending upon the
2, exponent (we may even be required to stop wagering altogether in this
negative expectation run, wherein we are now at a net gain).

To be clear, having the option of quitting after each play does not
affect Mathematical Expectation. (John Venn, the British philosopher and
logician known for his contributions to Set Theory, successfully showed
that an advantage does accrue to a player who has the option of quitting af-
ter each play, provided he has infinite wealth. However, it has been subse-
quently demonstrated that finite wealth does, in fact, alter this conclusion.)

Yet, we aren’t stopping play, or utilizing our z; Martingale exponent to
affect Mathematical Expectation. Rather, we are using it as an opportunity
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to sit out the balance of a negative expectation to our horizon, should we
encounter the good fortune of being profitable at some point.

Our Prospect Theory based implementation of a small Martingale is
not a misguided attempt to turn a negative expectation game into a posi-
tive one, to weather a period where things don’t go as planned. Rather, it
provides us far greater opportunities to come through to our horizons with
a profit than most other approaches. In short, an approach such as the one
presented, versus other types of approaches, helps us come out of periods
that are biased against us with some beans as opposed to no beans.

Is it any wonder that approaches such as the Prospect Theory based
approach presented in this chapter are seemingly innate in primates?

CONCLUSION

The paradigm for examining money management that is provided by the
Leverage Space Model has afforded us an end that is much more than mere
maximization of geometric returns.

It should be pointed out that, even though we seem to approach our
allocations and leverage—referring to both manifestations of “leverage”
pointed out earlier in the text;, the immediate snapshot of ratio of quan-
tity to cash, as well as how we progress that ratio through time as equity
changes, intimating that leverage, in this second sense, is germane even
to a cash account(!)—from an entirely different standpoint than the multi-
plicative one innate in geometric mean maximization strategies (and thus
innate in the Leverage Space Model), we are still somewhere on the terrain
of leverage space, only moving along that terrain as our equity changes; the
veracity and relevance of that model is unchanged. Rather, the techniques
described herein help us to find a path through that terrain, a path that
maximizes the probability of profit within a given drawdown constraint,
or maximizes profit within both a given drawdown constraint as well as
the constraint of a minimum probability of profit. (In fact, without the
paradigm provided by the Leverage Space Model and its risk measure of
probability of a given drawdown, such approaches would not have been
feasible.)

People, including fund managers and individual investors, are not
wealth maximizers. They are maximizers of probability of profit at some
given horizon in time, or maximizers of profit within a given minimum prob-
ability of profit, as demonstrated empirically in Prospect Theory, and also
further evidenced by the near-universal, visceral reaction exhibited toward
the notion of mathematically optimal wealth maximization afforded by ge-
ometric mean maximization.
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Yet neither the palette nor evolution itself dictate mathematics. Re-
gardless of preferences and attitudes toward risk, everyone exists some-
where on the terrain of leverage space at all times. As a paradigm, the
Leverage Space Model allows us to trace a path; it gives us a context upon
which to map such paths, and see the results of our actions, to satisfy
the (often seemingly pathological) palate of the individual, as exhibited
by Prospect Theory, which seeks not to maximize wealth, not to find the
highest point in the leverage space landscape, but to trace a path through
that landscape so as to maximize the probability of profit at a given future
point in time, or operate within a minimum probability of profit.

Further, the Leverage Space Model, since it utilizes the real-world risk
metric of drawdown, now permits a small Martingale (demonstrated herein
to model the risk preferences of Prospect Theory) to be implemented. We
can determine from this what our allocations and progressions of those al-
locations should be (that is, our “path,” through leverage space) so as to
accommodate Prospect Theory’s implied criterion of “maximum probabil-
ity of profit at a given horizon in time,” or, “a requisite minimum tolerable
probability of profit in maximizing profit,” by determining the functions of
such paths through leverage space and those functions’ parameters that
dictate our path.

We now have a method that allows fund managers to select a hori-
zon in the future whereby they can maximize their probability of profit or
of a minimum return, within a given drawdown constraint, in the context
of the Leverage Space Model itself. This is but one of an infinite number of
possible migration functions, one way of solving for one criterion.

Further, this migration function is not the only way to solve for the
optimal probability of profit within a given drawdown constraint by a given
time horizon. There are, no doubt, many others. This is not presented as the
end-all and be-all, for this criterion. Further, there are innumerable criteria
to solve for, and numerous ways of solving for them, some better than oth-
ers for a given criterion. Hopefully, this serves both as usable migration
functions for investors, as well as examples of how to create and imple-
ment other migration functions to satisfy other criteria.

You, the analyst or the investor, have your own individual means of
utilizing your analysis. You have your own tools of timing and selection in
the marketplace, based on given frameworks, be they fundamental, techni-
cal, or any other type, and you approach all of this with your own voice,
as it were, your own unique method of implementation. It is my hope,
then, that within this framework you will find exactly that: the tools with
which to think freely, a framework wherein you can visualize how the ef-
JSects of causes make sense, create productive solutions to satisfy the ends
you seek—and find your own voice therein.
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