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Foreword

This book of articles on multi-moment portfolio choice and asset pricing is long overdue.
The theoretical ideas behind these articles have long been available, dating back 30 years,
to the 1970s. Yet, only recently have academics paid attention to them.

There are many reasons for believing investors care about higher-order moments such
as skewness and kurtosis. Harry Markowitz (1959) himself, in his book on mean–variance
portfolio theory, acknowledges that a superior approach, were it not for its intractability,
would be a mean–semi-variance trade-off, which places greater weight on avoiding down-
side losses. Following Markowitz’s earlier insights (1952), Prospect Theory, developed by
Kahneman and Tversky (1979), departs from normal decision theory by tying the utility
of future wealth to current wealth level and by imposing an asymmetric preference for
deviations from current wealth. Basic results in utility theory from simple experiments gov-
erning choices between riskless and risky lotteries are explained by individual preferences
for positive skewness. For instance, if investors have decreasing absolute risk aversion, then
they must have a preference for positive skewness. Ample empirical evidence, much of it
casual, also points in the direction of a concern for skewness and kurtosis. Several papers
examining betting at horserace tracks show that “long shots” (horses with positively skewing
betting outcomes) are over-bet and “short shots” (horses with negatively skewed betting
outcomes) are under-bet. The so-called “skew” in the pricing of index options (although the
name derives from the shape of the “smile” not the implied risk-neutral probability density
function) also makes more sense under loss aversion: purchased out-of-the-money puts have
significant pricing premiums relative to at-the-money options than the Black and Scholes
model (1973) would suggest. Of course, it is precisely these securities which provide con-
centrated protection against downside risk. The same asymmetry may partially explain the
high promised interest rate default spreads on low grade corporate bonds, which seem to be
otherwise excessive compensation for the probability of default.

The set of utility functions exhibiting constant proportional risk aversion, so popular in
theoretical work on asset pricing, exhibits a positive preference toward all odd moments
(including skewness) and an aversion toward all even moments (including kurtosis). Pursuit
of positive skewness and avoidance of kurtosis seem to go together. It would be interesting
to directly examine this connection (although I am not aware that such an analysis has been
conducted). In other words, I would like to know what are the necessary and sufficient
conditions (that is, the class of the utility functions) for rational investors to like positive
skewness and dislike kurtosis. Casual empiricism suggests that investors, if they understand
the potential for loss as well as profit, will shy away from investments that have high
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kurtosis. Kurtosis can be created in two ways: (1) by a continuous stochastic price process
with stochastic volatility, and (2) by jumps. Investors are particularly averse to situations
in which kurtosis is created in the second way since they cannot then avoid the effects of
kurtosis by liquidating before small losses expand into large losses.

So, given the obvious significance of higher-order moments in portfolio choice (and,
therefore, probably in equilibrium asset pricing models), why have financial economists
taken so long to give this subject its due? I think the first reason was the original fascination
with the comparative tractability of mean–variance choice and the elegance of the mean–
variance capital asset pricing model (CAPM). Scientists notoriously worship at the altar of
theoretical elegance and simplicity at the sacrifice of empirical realism. But as the poor fit of
the CAPM to observations became progressively apparent, a number of other modifications
to the CAPM were attempted, but the suggestion that it just might be important for investors
to think about higher-order moments was little pursued. Even survey papers of the CAPM
which would recount potentially interesting modifications to the original model were silent
about incorporating higher-order moments even after the theory for this had been worked out.

I remember having a conversation, in about 1977, with Barr Rosenberg, then a professor at
Berkeley, who had built his own, very successful company (BARRA) around the idea of the
mean–variance trade-off. I pointed out that modifying the CAPM to account for preference
for higher-order moments could easily be accomplished with little sacrifice to elegance. The
usual CAPM equation can be written:

�i = rf + ��M − rf��i with �i = Cov�ri� rM�/�M
2

where �i and �M represent, respectively, the expected return on a risky security i and on the
market portfolio, rf stands for the risk-free return and �i is the beta of asset i with respect
to the market portfolio. It can be easily shown that incorporating preference for all odd
higher-order moments and aversion for all even higher-order moments can be accomplished
by simply redefining �i as:1

�i = Cov�ri�−rM
−b�/Cov�rM�−rM

−b�

where b>0 is the measure of constant proportional risk aversion. Although this adds another
parameter �b� that needs to be evaluated, many might value that added flexibility; if not,
one could simplify the model even further by imposing logarithmic representative utility
function, in which case the risk aversion parameter b is set to 1, so that:

�i = Cov�ri�−rM
−1�/Cov�rM�−rM

−1�

and one has an equation that is only very slightly different than the original CAPM but has the
right sign-preference toward higher-order moments. Barr Rosenberg agreed that in principle
this model would be better. But in practice he thought not. First, it gave him just another
complication to explain (when mean–variance theory was difficult enough), and it did not
buy him much since his clients, primarily pension funds and money managers, were not into
high positive or negative skewness investments. Most were much like “closet indexers”. The
CAPM, as justified by the joint normality hypothesis, assumes preference for skewness by

1 A result recently supported by further analysis by Hayne Leland (1998).
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making it impossible to obtain. All portfolios – which must be constructed from securities
which all have jointly normal returns – must have returns that are normally distributed. As
Henry Ford once remarked, his customers could buy cars of all colors from him provided the
cars were black. While by the 1970s, it would have been a poor assumption to suppose that
only black cars were for sale, it was perhaps not such a misleading presumption to assume
that only portfolios with zero skewness (in their logarithmic returns) were available.

But today I think this situation has changed. First, institutional investors now find the
mean–variance model second nature and its jargon (alpha, beta, Sharpe ratio, efficient set,
and so on) is more or less widely understood even by many non-professionals – so in contrast
to the 1970s they are better prepared for greater sophistication. Second, the development
of very active exchange-traded option markets has made the purchase of skewness-oriented
securities a simple matter. Third, the creation of skewed outcomes (even at the portfolio
level) by using systematic dynamic trading strategies (an observation perhaps first made
by Markowitz in his 1952 paper cited above) is now a standard practice. Fourth, in the
last few years, hedge fund strategies have become popular which intentionally (and often
unintentionally) pursue skewed or highly kurtotic outcomes. Under these circumstances,
if investor preference toward higher-order moments is not considered, then using mean–
variance analysis, funds with high mean returns and low variance will appear to have good
performance when all they have done is to achieve this end at the sacrifice of negative
skewness and high kurtosis.

Mark Rubinstein
May 20, 2006
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Preface

Concern for higher-order moments than the variance in finance can be traced back to Kendall
and Hill (1953), Mandelbrot (1963a and 1963b), Cootner (1964) and Fama (1965), who
discovered the presence of significant skewness and excess kurtosis in empirical asset return
distributions, and to Arditti (1967 and 1971), who documented the individual investor’s
preference for positive skewness.

These empirical findings led, in the seventies, to the development of a new area of research
dedicated to the introduction of higher moments in portfolio theory and asset pricing models,
whose fathers are, respectively, Samuelson (1970) and Rubinstein (1973).

In the field of portfolio theory, Samuelson (1970), following the general work by Marschak
(1938) on a three-moment decision criterion and Levy (1969) in the case of a cubic utility,
was the first to consider in an expected utility framework the importance of higher moments
for the individual portfolio analysis. Then, Jean (1971, 1972 and 1973), Ingersoll (1975)
and Schweser (1978) studied the mean–variance–skewness efficient portfolio frontier with a
risk-free asset. Arditti and Levy (1975) also considered the extension of the three-moment
portfolio analysis to a multiperiodic setting.

In the field of asset pricing, Rubinstein (1973) was the first to propose a multi-moment
asset pricing model. He extended the traditional Sharpe–Lintner–Mossin CAPM (see Sharpe,
1964, Lintner, 1965 and Mossin, 1966) a vérifer to take into account the effect of the
systematic coskewness on the asset valuation. Note that the ideas of an asset pricing relation
without a risk-free asset, the related zero-beta portfolio,1 and the possible extension of the
traditional analysis with higher moments than skewness were already present in his seminal
paper. A confirmation of this original idea is to be found, later on, in the paper published by
Kraus and Litzenberger (1976), reformulating the original idea and adding the first empirical
study of the 3-CAPM on the American stock market. A few years later, Ang and Chua
(1979) developed a three-moment absolute risk-adjusted performance measure.

The eighties and nineties also saw a great deal of active academic research dedicated
to multi-moment asset allocation and pricing models. For instance, Barone-Adesi (1985)
established the link between the three-moment CAPM and the Arbitrage Pricing Theory of
Ross (1976), while Graddy and Homaifar (1988) and Fang and Lai (1997) extended the
mean–variance–skewness asset allocation and pricing framework to take into account the
kurtosis of the asset return distributions. Diacogiannis (1994) and Athayde and Flôres (1997)

1 Which appeared independently at about the same time as Black’s (1972) zero-beta mean–variance paper.
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proposed in their turn compact and tractable expressions for investors’ portfolio moments
and associated gradients that greatly simplified the numerical solutions of the multi-moment
portfolio optimisation programme. Another approach to asset allocation with higher moments
was given by Lai (1991) and Chunhachinda et al. (1997), who applied the Polynomial Goal
Programming approach (PGP) to portfolio selection with skewness.

In parallel with these theoretical extensions, various empirical tests have been conducted
during the past two decades on the three and four-moment CAPM using different asset
classes, time periods and timescales (see, for instance, Friend and Westerfield, 1980; Sears
and Wei, 1988; Lim, 1989; Hwang and Satchell, 1999). While these studies have led to
rather mixed results, most recent empirical studies have proven the ability of systematic
higher co-moments to increase the explicative power of the traditional CAPM model and to
explain some well-known financial anomalies such as the book-to-market, size and industry
effects (see Harvey and Siddique, 2000a and 2000b; Christie-David and Chaudhry, 2001 and
Dittmar, 2002).

Despite this amount of research, only recently have multi-moment asset allocation and
pricing models become popular amongst academics and practitioners. The recent explosion
of interest in this area of research can be explained by the fast-growing concerns of investors
for extreme risks, the recent success of non-normally distributed assets such as hedge funds
or guaranteed products, and advances in decision theory, econometric and statistical models
that look promising for multi-moment asset allocation and pricing models.

The aim of this monograph is to present the state of the art in multi-moment asset allocation
and pricing models and to provide, in a single volume, new developments, collecting in a
unified framework theoretical results and applications previously scattered throughout the
financial literature.

This book is organised as follows. In Chapter 1, Jurczenko and Maillet present the theoret-
ical foundations of multi-moment asset allocation and pricing models in an expected utility
framework. Then, in Chapter 2, Athayde and Flôres derive analytically the unconstrained
minimum variance portfolio frontier in the mean–variance/kurtosis–skewness spaces when a
risk-free rate exists, using compact tensor notation for the portfolio moments. In Chapter 3,
Jurczenko, Maillet and Merlin propose a nonparametric methodology to determine the set of
Pareto-optimal portfolios in the four-moment space, with an application to hedge fund asset
allocation. In Chapter 4, Tibiletti introduces a family of coherent risk measures based on one-
sided higher moments that overcome some of the drawbacks of centred higher moments. In
Chapter 5, Desmoulins-Lebeault describes alternative portfolio selection criteria with skew-
ness and kurtosis, using a Gram–Charlier Type A statistical series expansion to approximate
the investor’s portfolio return distribution. In Chapter 6, Jurczenko and Maillet generalise the
traditional CAPM relation in the four-moment framework, with or without a riskless asset.
In Chapter 7, Malevergne and Sornette present alternative multi-moment/cumulant capital
asset pricing models with homogeneous and heterogeneous agents when a risk-free asset
exists. Jondeau and Rockinger introduce, in Chapter 8, a flexible copula-based multivariate
distributional specification that allows for wide possibilities of dynamics for conditional
systematic (co)higher-moments. Finally, in Chapter 9, Barone-Adesi, Gagliardini and Urga
introduce a quadratic market specification to model the coskewness of an individual asset
with the market portfolio and explain the size effect on the US stock market.

All the contributions included in this book are amended and extended versions of papers
that were originally presented at the Multi-moment Capital Asset Pricing Models and Related
Topics Workshop organised by the association Finance sur Seine in Paris on the 29th April
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2002 at the ESCP-EAP European Business School. We would like to thank all the authors
for providing chapters in a timely fashion and for their patience. Each chapter has been
reviewed by referees, and we specifically would like to thank Nicolas Gaussel, Thierry
Michel, Sébastien Laurent, Patrice Poncet and Philippe Spieser for their help with this
important task. We would also like to thank Michael Rockinger for his constant support.
Furthermore, we would like to thank Emily Pears and the staff of John Wiley & Sons for
their encouragement, patience and support during the preparation of the book. Our last vote
of thanks is warmly addressed to (Pr.) Thierry Chauveau, without whom none of this would
have been possible.

With this book we hope to have expanded the fast-growing multi-moment asset allocator
and pricer community a little more. The usual disclaimers apply here.

Emmanuel Jurczenko and Bertrand Maillet
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1
Theoretical Foundations of Asset

Allocation and Pricing Models with
Higher-order Moments

Emmanuel Jurczenko and Bertrand Maillet

ABSTRACT

The purpose of this chapter is to present the theoretical foundations of multi-moment asset
allocation and pricing models in an expected utility framework. Using an infinite-order
Taylor series expansion, we first recall the link between the expected utility and higher
moments of the investment return distribution (Tsiang, 1972; Loistl, 1976 and Lhabitant,
1997). Following the approach of Benishay (1987, 1989 and 1992) and Rossi and Tibiletti
(1996), we next develop a quartic utility specification to obtain an exact mean–variance–
skewness–kurtosis decision criterion. We also present the behavioural and distributional
conditions under which the preference of a rational agent can be approximated by a fourth-
order Taylor series expansion. The Taylor approach and the polynomial utility specification
are then compared when justifying a moment-based decision criterion.

1.1 INTRODUCTION

The definition of a decision’s criterion under uncertainty is a prerequisite for the deriva-
tion of an equilibrium asset pricing relation. Multi-moment asset allocation and pricing
models assume that investors determine their investment by taking into account only the
first N moments of the portfolio return distribution. Agents are supposed to maximise their
expected utility1, which can be represented by an indirect function that is strictly concave
and decreasing with even moments and strictly concave and increasing with odd moments.

Despite the tractability and economic appeal of such models, their theoretical justifications
are far from simple. First, it is not always possible to translate individual preferences into a
function that depends on the entire sequence of the moments of the portfolio return distri-
bution (Loistl, 1976; Lhabitant, 1997 and Jurczenko and Maillet, 2001). Most importantly,
agents who maximise their expected utility do not, in general, have preferences that can
be translated into a simple comparison of the first N moments of their investment return

1 The expected utility criterion remains the traditional one for rational individual decisions in a risky environment.

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd



2 Multi-moment Asset Allocation and Pricing Models

distribution. Brockett and Kahane (1992) show2 that it is always possible to find two random
variables such that the probability distribution of the first random variable dominates statisti-
cally3 the second one with respect to the first N moments, but is stochastically dominated to
the N th order4 for some rational investors. Since N th degree stochastic dominance implies
a lexicographic order over the first N moments (Fishburn, 1980; O’Brien, 1984 and Jean
and Helms, 1988), the preference ordering will coincide with a moment-based ranking only
when all the moments up to order �N − 1� are equal.5

Although there is no bijective relation between the expected utility theory and a moment-
based decision criterion, it is, however, possible, by suitably restricting the family of distri-
butions and von Neumann–Morgenstern utility functions, to translate individual preferences
into a partial moment ordering. Conditional on the assumption that higher moments exist,
the expected utility can then be expressed – approximately or exactly – as an increasing
function of the mean and the skewness, and a decreasing function of the variance and the
kurtosis of the portfolio return distribution.6

The purpose of this first chapter is to present the theoretical foundations of a mean–variance–
skewness–kurtosis decision criterion. To achieve this, we consider investors endowed with
utility functions relevant for the fourth-order stochastic dominance (Levy, 1992 and Vinod,
2004). We first recall the link that exists between the expected value function and the moments
of the probability distribution. This leads us to specify the interval of convergence of the Taylor
series expansion for most of the utility functions used in the finance field and to characterise the
maximum skewness–kurtosis domain for which density functions exist (Hamburger, 1920 and
Widder, 1946). We then introduce a quartic parametric utility function to obtain an exact mean–
variance–skewness–kurtosis decision criterion (Benishay, 1987, 1989 and 1992). Following
the approach of Rossi and Tibiletti (1996) and Jurczenko and Maillet (2001), we show how
such polynomial specification can satisfy – over a realistic range of returns – the five desirable
properties of utility functions stated by Pratt (1964), Arrow (1970) and Kimball (1990) – non-
satiation, strict risk aversion, strict decreasing absolute risk aversion (DARA), strict decreasing
absolute prudence (DAP) and constant or increasing relative risk aversion (CRRA or IRRA).
We then present the conditions under which rational preferences can be approximated by a
fourth-order Taylor series expansion.

Even though Taylor series approximations or polynomial utility specifications have already
been considered to deal with the non-normalities in the asset return distributions (see, for
instance, Levy, 1969; Hanoch and Levy, 1970; Rubinstein, 1973 and Kraus and Litzenberger,
1976), this contribution constitutes – to the best of our knowledge – the first one that considers
in detail the theoretical justifications of multi-moment asset allocation and pricing models.

The chapter is organised as follows. In Section 1.2 we review the link between the expected
utility function and the centred moments of the terminal return distribution. In Section 1.3
we study the preference and distributional restrictions that enable us to express the expected

2 See also Brockett and Garven (1998), Gamba and Rossi (1997, 1998a and 1998b) and Lhabitant (1997).
3 In the sense that it is characterised – for instance – by a higher expected value, a lower variance, a higher skewness and a lower kurtosis.
4 For a survey on stochastic dominance literature, see Levy (1992).
5 The mean–variance portfolio selection suffers the same flaw, since a mean–variance ordering does not constitute a necessary
condition for second-order stochastic dominance (Hanoch and Levy, 1969).
6 Throughout this chapter, we restrict our attention only to the first four moments since there is no clear economic justification
concerning the link between the expected utility function and the fifth and higher-order centred moments of the investment return
distribution. Moreover, even though most empirical works show that moments up to fourth order exist in (un)conditional asset return
distributions (see, for instance, Lux, 2000 and 2001 and Jondeau and Rockinger, 2003a), there remains an issue concerning the
existence of moments beyond the fourth. Another problem is the poor sampling properties of higher moments’ empirical estimators
due to high powers in the expectation operator (Vinod, 2001 and 2004).
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utility criterion as an exact function of the mean, variance, skewness and kurtosis of the
portfolio return density. Section 1.4 presents the theoretical justifications of a four-moment
expected utility approximation. Section 1.5 concludes. Proofs of all the theorems presented
in the chapter are given in the appendices.

1.2 EXPECTED UTILITY AND HIGHER-ORDER MOMENTS

We consider a one-period single exchange economy with one consumption good serving as
numeraire. Each agent has an initial endowment, W0, arbitrarily fixed to one without any
loss of generality, and a von Neumann–Morgenstern utility function U ��� defined over its
final wealth and denoted WF , from I ⊂ IR to IR. The preference function is assumed to
belong to the class of utility functions, called D4, relevant for the fourth-order stochastic
dominance (abbreviated to 4SD)7, satisfying:

D4 = {U ∣∣U�1� ��� > 0�U �2� ��� < 0�U �3� ��� > 0�U �4� ��� < 0
}

(1.1)

where U�i� ��� with i = �1� � � � � 4� are the derivatives of order i of U ���.
At the beginning of the period, each agent maximises the expected utility of its end-of-

period investment gross rate of return, denoted R, such that:

E �U �R�� =
∫ +�

−�
U �R� dF �R� (1.2)

where F ��� is the continuous probability distribution of R = WF /W0.
If the utility function is arbitrarily continuously differentiable in I , one can express the

utility of the investor U ��� as an N th order Taylor expansion, evaluated at the expected
gross rate of return on the investment, that is, ∀R ∈ I:

U �R� =
N∑

n=0

�n!�−1 U�n� �E �R�� �R − E �R��n + 	N+1 �R� (1.3)

where E �R� is the expected simple gross rate of return, U�n� ��� is the nth derivative of the
utility function and 	N+1 ��� is the Lagrange remainder defined as:

	N+1 �R� = U�N+1� �
�

�N + 1�! �R − E �R���N+1�

where 
 ∈ �R�E �R�� if R < E �R�, or 
 ∈ �E �R� �R� if R > E �R�, and N ∈ IN ∗�

7 Let X and Y be two continuous random variables defined by their probability distributions FX��� and FY ���. The variable X is said
to dominate stochastically the variable Y to the fourth-order – that is, X is preferred over Y for the class D4 of utility functions – if
and only if, whatever p: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ p

−�
�FX �z� − FY �z�� dz ≤ 0

∫ p

−�

∫ q

−�
�FX �z� − FY �z�� dz dq ≤ 0

∫ p

−�

∫ q

−�

∫ r

−�
�FX �z� − FY �z�� dz dq dr ≤ 0

with �p × q × r� = �IR�3 and at least one strict inequality over the three for some p.
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If we assume, moreover, that the N th Taylor approximation of U ��� around E �R� con-
verges absolutely towards U ���, that the integral and summand operators are interchangeable,
and that the moments of all orders exist and determine uniquely the return distribution, taking
the limit of N towards infinity and the expected value on both sides in (1.3) leads8 to:

E �U �R�� =
∫ +�

−�

{
lim

N−→�

[
N∑

n=0

�n!�−1 U�n� �E �R�� �R − E �R��n + 	N+1 �R�

]}
dF �R�

=U �E �R�� + 1
2

U�2� �E �R���2 �R� + 1
3!U

�3� �E �R�� s3 �R�

+ 1
4!U

�4� �E �R���4 �R� +
�∑

n=5

1
n!U

�n� �E �R��mn �R�

(1.4)

where �2 �R�=E
{
�R − E �R��2

}
, s3 �R�=E

{
�R − E �R��3

}
, �4 �R�=E

{
�R − E �R��4

}
and

mn �R�=E 
�R − E �R��n� are, respectively, the variance, the skewness, the kurtosis9 and the
nth centred higher moment of the investor’s portfolio return distribution, and:

lim
N−→�

	N+1 �R� = 0

There are three conditions under which it is possible to express a continuously differen-
tiable expected utility function as a function depending on all the moments of the return
distribution.

The first condition implies that the utility function U ��� is an analytic function10 at E �R�
and that the realised returns must remain within the absolute convergence interval of the
infinite-order Taylor series expansion of the utility function considered (Tsiang, 1972; Loistl,
1976; Hasset et al., 1985 and Lhabitant, 1997).

Theorem 1 A sufficient condition for a Taylor series expansion of an infinitely often
differentiable utility function U��� around the expected gross rate of return E �R� to converge
absolutely is that the set of realisations of the random variable R belongs to the open interval
J defined by:

	R − E �R�	 < � (1.5)

8 Under the same set of conditions, it is also possible to express the generic expected utility as a function of the non-centred
moments of the return distribution through a MacLaurin series expansion (see, for instance, Levy and Markowitz, 1979; Rossi and
Tibiletti, 1996 and Lhabitant, 1997).
9 These definitions of skewness and kurtosis, as third- and fourth-order centred moments, differ from the statistical ones as
standardised centred higher moments, that is:

�n = E

{[
R − E �R�

� �R�

]n}
with n = �3� 4�.
10 A real function f�x� is analytic at x = a if there exists a positive number � such that f��� can be represented by a Taylor series
expansion in the interval �−�� ��, centred around a; that is, if ∀x ∈ �−�� ��, we have:

f �x� =
N∑

n=0

�n!�−1 f �n� �a� × �x − a�n

where � is called the radius of convergence of the Taylor series of f��� around a, and f �n� ��� is the nth derivative of the function
f���.
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with:

� = lim
N→�

∣∣∣∣ �N + 1�!U�N� �E �R��

N !U�N+1� �E �R��

∣∣∣∣
where � is a positive constant corresponding to the radius of convergence of the Taylor
series expansion of U��� around E �R� and N ∈ IN .

Proof see Appendix A

The region of absolute convergence of a Taylor series expansion depends on the utility
function considered. For instance, condition (1.5) does not require any specific restriction
on the return range for exponential and polynomial utility functions since their convergence
intervals are defined on the real line, whilst it entails the following restriction for logarithm-
power type utility functions (see Table 1.1):

0 < R < 2E �R�

Even though this condition is not binding for traditional asset classes when short-sale
is forbidden, it may be too restrictive for some applications on alternative asset classes
due to their option-like features and the presence of leverage effects (Weisman, 2002 and
Agarwal and Naik, 2004). In this case, ex post returns might lie outside of the convergence
interval (1.5).

The second condition entails shrinking the interval of absolute convergence (1.5) slightly
so that the infinite-order Taylor series expansion of U��� around E �R� converges uniformly
towards U��� and the integral and summand operators are interchangeable in the investor’s
objective function11 (Loistl, 1976; Lhabitant, 1997 and Christensen and Christensen,
2004).

Table 1.1 Taylor series expansion absolute convergence interval

Utility function U �R� Radius of absolute
convergence �

Convergence interval

HARA
��b+ a

� R�
�1−��

�1−��
	−�	

(
b
a
+ E�R�

�

)
⎧⎪⎪⎨
⎪⎪⎩

]
− �b

a
� �b+2aE�R�

a

[
or]

�b+2aE�R�

a
�− �b

a

[
CARA − exp �−aR� +� IR

CRRA R�1−��

�1−��
E �R� �0� 2E �R��

CRRA ln �R� E �R� �0� 2E �R��

Polynomial of order N(
1−N

N

) (
b + aR

1−N

)N +� IR

11 Uniform convergence is a sufficient condition for a term-by-term integration of an infinite series of a continuous function.
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Theorem 2 A sufficient condition for a Taylor series expansion of an infinitely often
differentiable utility function U��� around the expected gross rate of return E �R� with a
positive radius of convergence � to converge uniformly is that the set of realisations of the
random variable R remains in the closed interval J ∗ defined by (using previous notation):

	R − E �R�	 ≤ �∗ (1.6)

∀�∗ ∈ �0� ��, where � is defined in (1.5).

Proof see Appendix B.

The third condition is related to the Hamburger moment problem (1920), that is, to the
question of the existence and uniqueness, for a sequence of non-centred moment constraints(
�k
)
, of an absolutely continuous positive distribution probability function F ��� such that12

∀k ∈ IN ∗:

�k =
∫ q

p
Rk dF �R� (1.7)

where p �= −�, q �= +� and �0 = 1.
If F ��� is unique, the Hamburger moment problem is said to be “determinate”, since the

probability distribution function is uniquely determined by the sequence of its moments.

Theorem 3 (Hamburger, 1920; Widder, 1946 and Spanos, 1999). The sufficient condi-
tions13 for a sequence of non-centred moments

(
�k
)
, with 0 ≤ k ≤ 2N , to lead to a unique

continuous positive probability distribution14 are that:⎧⎪⎪⎨
⎪⎪⎩

E
[
	R − E �R�	k

]
< � �existence of the moments of order k�

det ��n� ≥ 0 ∀n ∈ �0� � � � �N � �existence of the density function�

− �1 + R�−2 ∫ +�
−� ln f �R� dR = � �Krein′s uniqueness condition�

(1.8)

where �n is the ��n + 1� × �n + 1�� Hankel matrix of the non-centred moments defined as:

�n =

⎛
⎜⎜⎜⎝

�0 �1 · · · �n

�1 �2 · · · �n+1

���
���

� � �
���

�n �n+1 · · · �2n

⎞
⎟⎟⎟⎠

with elements
(
�i+j

)
with coordinates �i� j�, where �i� j�= �0� � � � � n�2, �0 = 1; N ∈ IN ∗ and

f ��� is the continuous density function of the gross rate of return R.

Proof see Widder, 1946, p. 134 and Spanos, 1999, pp. 113–114.

12 The moment problem (1.7) in the case where p �= 0 and q �=+� is called the Stieltjes moment problem (Stieltjes, 1894), while
in the case where p �= 0 and q �= 1� we talk about the little Hausdorff moment problem (Hausdorff, 1921a and 1921b).
13 For necessary and sufficient conditions for uniqueness in the Hamburger moment problem, see Lin (1997) and Stoyanov (1997
and 2000).
14 This approach is based on functional analysis. Another approach to the moment problem involves Padé approximants (see, for
instance, Baker and Graves-Morris, 1996).
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Conditional on the existence of the moments, the existence of a density function means,
for k = 4, that the sequence of determinants of the associated Hankel matrices

(
�i+j

)
, with

�i × j� = �1� 2�2, must satisfy:

det
(

�0 �1

�1 �2

)
≥ 0 and det

⎛
⎝ �0 �1 �2

�1 �2 �3

�2 �3 �4

⎞
⎠≥ 0 (1.9)

with �0 = 1.
Using the following results (Kendall, 1977, p. 58):⎧⎪⎪⎨

⎪⎪⎩
�2 =�2 �R� + �E �R��2

�3 = s3 �R� + 3E �R��2 �R� + �E �R��3

�4 =�4 �R� + 4E �R� s3 �R� + 6 �E �R��2 �2 �R� + �E �R��4

(1.10)

the positive definiteness of (1.9) implies the following restriction for the four-moment
problem:

��1�
2 ≤ �2 + 2 (1.11)

where �1 and �2 are the Fisher parameters for the skewness and the kurtosis:

�1 = s3 �R�

�3 �R�
and �2 = �4 �R�

�4 �R�
− 3

This relation confirms that, for a given level of standardised kurtosis, only a finite range
of standardised skewness may be spanned. That is, for �2 ≥ �−2�, the possible standardised
skewness belongs to �−�∗

1 � �∗
1 �, where:

�∗
1 =√�2 + 2 (1.12)

Figure 1.1 represents the skewness–kurtosis domain ensuring the existence of a density
function15 compared to some empirical couples of Fisher coefficient estimates. The curve
corresponds to the theoretical maximum domain of the Fisher parameters �1 and �2, for
which density functions exist when the first four moments are given.

While the domain of existence of a density (1.12) is large, the solution of the Hamburger
moment problem, if it exists, may not be unique. The Krein’s integral test (third line in
equation (1.8)) is not fulfilled by all probability distributions. For instance, the lognormal
distribution has finite centred moments of all orders and verifies the inequality (1.11) but
is not uniquely determined by its moments. It is indeed straightforward to show that the
probability distribution whose density function is given by:

f �R� = �2��−1/2 R−1 exp
[
−1

2
�ln R�2

]
× �1 + a sin �2� ln R�� (1.13)

15 In the case of a standardised random variable with a zero mean and a unit variance, condition (1.11) leads to (see Jondeau and
Rockinger, 2003a): (

�3)2 ≤ �4 − 1

where �0 = 1 and �1 = 0.
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Figure 1.1 Realistic Fisher coefficients domain for return density functions. This figure illustrates
the boundaries of �̂1 and �̂2 Fisher coefficients ensuring the existence of a density function when the
first four moments are given (see Equation 1.12). The black (white) region in the figure represents
(60 000) simulated couples of Fisher ��̂1� �̂2� parameters that violate (or respect) the condition of
existence of a density function in the four-moment case. The grey lozenges correspond to the (2432)
simple weekly rolling (overlapping) estimates of the two first Fisher coefficients on the daily returns of
random constrained (positive and unitary sum) portfolios composed with close-to-close CAC40 stocks
on the period 01/95 to 08/04. See Jondeau and Rockinger (2003a, Figure 5, p. 1707) for a comparison
with normalised variables and generalised t-student skewness and kurtosis boundaries.

for 	a	< 1, has exactly the same sequence of moments as the lognormal distribution obtained
by substituting a = 0 in (1.13) – see Heyde (1963).

Under these regular conditions, any investor with a utility function belonging to the D4

class displays a preference for the expected return and the (positive) skewness, and an
aversion to the variance and the kurtosis, since differentiating equation (1.4) with respect to
E �R�, �2 �R�, m3 �R� and �4 �R�, leads to, ∀R ∈ �E �R� − �∗�E �R� + �∗�:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�E �U �R��

�E �R�
= �n!�−1

�∑
n=0

U�n+1� �E �R��mn �R� = E
[
U�1� �R�

]
�> 0�

�E �U �R��

��2 �R�
= �2!�−1 U�2� �E �R�� �< 0�

�E �U �R��

�s3 �R�
= �3!�−1 U�3� �E �R�� �> 0�

�E �U �R��

��4 �R�
= �4!�−1 U�4� �E �R�� �< 0�

(1.14)

where �∗ is defined as in (1.6).
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Standard risk aversion (see Kimball, 1993) and strict consistency in the direction of
preference for higher moments (see Horvath and Scott, 1980) constitute two sufficient,
but non-necessary, conditions to establish a mean–variance–skewness–kurtosis preference
ordering for a non-satiable and risk-averse investor.

Indeed, Kimball (1993) shows that decreasing absolute risk aversion (DARA) and decreas-
ing absolute prudence (DAP) are sufficient conditions for any monotonically increas-
ing and strictly concave utility function to belong to the standard risk-aversion utility
class. This implies the mean–variance–skewness–kurtosis preference relation (1.14), since,
∀R ∈ J ∗:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
(−U�2��R�/U�1� �R�

)
dR

=
{
−U�3� �R�U�1� �R� + [U�2� �R�

]2}
�U �1� �R��

2 < 0 =⇒ U�3� �R� > 0

d
(−U�3� �R� /U�2� �R�

)
dR

=
{
−U�4� �R�U�2� �R� + [U�3� �R�

]2}
�U �2� �R��

2 < 0 =⇒ U�4� �R� < 0

(1.15)
with U�1� ��� > 0 and U�2� ��� < 0.

Horvath and Scott (1980) reach a similar result under the hypotheses of non-satiation, risk
aversion and strict consistency in preference direction for higher moments. Strict consistency
of an investor’s preference with respect to higher moments requires that all the nth derivatives
of U��� are either always negative, always positive or everywhere zero for any n ≥ 3 and
every possible return. That is, ∀n ≥ 3 and ∀R ∈ J ∗:

⎧⎪⎪⎨
⎪⎪⎩

U�n� �R� < 0

U�n� �R� = 0 or

U�n� �R� > 0

(1.16)

where J ∗ is the interval of uniform convergence of the Taylor series expansion of U���
around E �R� defined in (1.6). Under non-satiation and risk aversion, the next preference
restrictions then follow from the mean-value theorem (see Horvath and Scott, 1980, p. 916):

�−1�n U �n� �R� < 0 (1.17)

∀n≥3 and ∀R∈J ∗. In particular, if U�3� �R�<0 ∀R∈J ∗, the assumption of positive marginal
utility is violated for all feasible gross rates of return; so we must have U�3� �R�> 0 ∀R∈ J ∗.
Likewise, U�4� �R� > 0 ∀R ∈ J ∗, would violate the assumption of strict risk aversion.

More generally, non-satiation, risk aversion and strict consistency of agent preferences
towards higher moments imply a preference for expected return and (positive) skewness and
an aversion for variance and kurtosis, and more generally a preference for odd higher-order
centred moments and an aversion to even higher-order centred moments.

Provided that the utility functions of agents belong to the class of the analytic util-
ity functions relevant for the fourth-order stochastic dominance, that the realisations of
the investment returns remain in the interval of the uniform convergence of the Taylor
series expansions of the utility functions, and that the Hamburger moment problem is
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“determinate”, it is then possible to express the expected utility criterion as a function
that depends positively on the mean, skewness and odd higher-order moments and
negatively on the variance, kurtosis and even higher-order moments of investment rates of
return.

1.3 EXPECTED UTILITY AS AN EXACT FUNCTION OF THE
FIRST FOUR MOMENTS

While, under some behavioural and distributional restrictions, individual preferences are
linked with the first four moments of the investment return distribution, the expected utility
of such investors also depends upon all the other moments of their portfolio returns, so
that the mean–variance–skewness–kurtosis approach is necessarily restrictive.16 As in the
mean–variance case, there are two ways one can theoretically justify an exact four-moment
decision criterion in an expected utility framework: the first theoretical justification consists
in restricting asset return distributions to a specific four-parameter distribution class, while
the second one consists in restricting investors’ utility functions to a quartic polynomial
specification.

The first theoretical justification of a mean–variance–skewness–kurtosis decision criterion
is to assume that the asset return distributions belong to a four-parameter family of probability
distributions that allows for finite mean, variance, skewness and kurtosis. Without pretence
of exhaustivity, we can underline the choice of skew-student distributions (Azzalini and
Capitanio, 2003; Branco et al., 2003; Adcock, 2003 and Harvey et al., 2004), normal
inverse Gaussian (Barndorff-Nielsen, 1978 and 1997 and Eriksson et al., 2004), confluent
U hypergeometric distributions (Gordy, 1998), generalised beta distributions of the second
kind (Bookstaber and McDonald, 1987; McDonald and Xu, 1995 and Dutta and Babbel,
2005), Pearson type IV distributions (Bera and Premaratne, 2001), four-moment maximum
entropy distributions (Jondeau and Rockinger, 2002; Bera and Park, 2003 and Wu, 2003),
Gram–Charlier and Edgeworth statistical series expansions (Jarrow and Rudd, 1982; Corrado
and Su, 1996a and 1996b; Capelle-Blanchard et al., 2001 and Jurczenko et al., 2002a, 2002b
and 2004), copula-based multivariate non-elliptical distributions (Patton, 2001 and 2004;
Xu, 2004) and multivariate separable skewed fat-tailed distributions (Ortobelli, 2001 and
Ortobelli et al., 2000 and 2002).

But, if the normal density is perfectly and uniquely defined by its first two moments,
this is not the case when some other density functions are considered. This last point
leads, in fact, to real difficulties. For instance, as shown by Brockett and Kahane (1992),
Simaan (1993) and Brockett and Garven (1998), it is unlikely to determine, on a priori
grounds, the sign of sensitivities of the objective function with respect to the moments
of the portfolio return distribution. Indeed, when higher-order moments are not orthogo-
nal one to another, the effect on the utility function of increasing one of them becomes
ambiguous. Moreover, even if the considered density function can be in accordance with
some of the stylised facts highlighted in the literature17, additional utility assessments

16 The mean–variance criterion suffers the same flaw (see Markowitz, 1952).
17 Such as leptokurticity, asymmetry, time-aggregation properties of the process, the leverage effect and clustering in the volatility
(Cont, 2001).
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are required to obtain an ordering consistent with the fourth-order stochastic dominance
criterion.

A second theoretical justification of the mean–variance–skewness–kurtosis analysis is
to consider a fourth-order polynomial utility specification. In this case, conditional on
the assumption that kurtosis exists and provided that the range of returns is well-
restricted, the expected utility ordering can be translated exactly into a four-moment
ordering.

A quartic parametric utility function can be defined as follows18 (see Benishay, 1987,
1989 and 1992):

U �R� = a0 + a1R + a2R
2 + a3R

3 + a4R
4 (1.18)

with ai ∈ IR∗, i = �1� � � � � 4�.
Since all partial derivatives above the fourth order are equal to zero, taking the expected

value of (1.18) yields:

E �U �R�� = a0 + a1E �R� + a2E
(
R2
)+ a3E

(
R3
)+ a4E

(
R4
)

(1.19)

Using the results about uncentred moment definitions recalled from (1.10), we obtain:

E �U �R�� =a0 + a1E �R� + a2E �R�2 + a3E �R�3 + a4E �R�4 (1.20)

+
[
a2 + 3a3E �R� + 6a4E �R�2

]
�2 �R�

+ �a3 + 4a4E �R�� s3 �R� + a4�
4 �R�

When the first four moments exist and determine uniquely the return distributions (see
above), the investors’ preferences can then be expressed as an exact function of the mean,
variance, skewness and kurtosis of their portfolio returns. Taking the first four deriva-
tives of the quartic utility function and using the behavioural requirements associated with
the fourth-order stochastic dominance criterion defined in (1.1) leads to the following
theorem.

Theorem 4 The necessary and sufficient conditions for a quartic utility function U ��� to
belong to the class D4 of utility functions relevant for the fourth-order stochastic dominance
are given by the following system:

18 Since a von Neumann–Morgenstern utility function is uniquely defined up to an increasing affine transformation, it is always
possible to give a simpler and equivalent expression for the quartic utility function. Substracting a0 to equation (1.18) and dividing
it by a1, we have:

U �R� = R + bR2 + cR3 + dR4

where b = a2/a1, c = a3/a1, d = a4/a1 and a1 > 0.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1 > 0(
− a2

3

16a2
4

+ a2

6a4

)3

+
(

a3
3

16a3
4

+ a1

8a4

− a2a3

16a2
4

)2

> 0

R < − a3

4a4

+ K + (9a2
3 − 24a4a2

)
K−1

12a4

�non-satiable individuals�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 > a2 ≥
(

3a2
3

8a4

)

R < − a3

4a4

+
√

9a2
3 − 24a4a2

12a4

and R > − a3

4a4

−
√

9a2
3 − 24a4a2

12a4

or a2 <

(
3a2

3

8a4

)
�risk-averse agents�

⎧⎪⎨
⎪⎩

a3 > 0

R < −
(

a3

4a4

)
�prudent investors�

a4 < 0 �temperant people�
(1.21)

with:

K =
⎛
⎜⎝A +

√
−108

(
3a2

3 − 8a4a2

)3 + A2

2

⎞
⎟⎠

1/3

and:

A = (−54a3
3 − 432a2

4a1 + 216a4a3a2

)
where ai ∈ IR∗� i = �1� � � � � 4�.

Proof see Appendix C.

Any investor with a D4 class quartic utility function has a preference for the mean, an
aversion to the variance, a preference for the (positive) skewness and an aversion to the
kurtosis, that is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�E �U �R��

�E �R�
= a1 + 2a2E �R� + 3a3E

(
R2
)+ 4a4E

(
R3
)
> 0

�E �U �R��

��2 �R�
= a2 + 3a3E �R� + 6a4

[
E
(
R2
)+ �2 �R�

]
< 0

�E �U �R��

�m3 �R�
= a3 + a4E �R� > 0

�E �U �R��

��4 �R�
= a4 < 0

(1.22)
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The regularity conditions in (1.22) lead, nevertheless, to some restrictions on the asset
return realisations. Indeed, when we restrict investors’ preferences to a quartic specification,
we have to make sure that the asset return realisations belong to the interval where the utility
function exhibits non-satiety, strict risk aversion, strict prudence and strict temperance. In
other words, the ex post investor’s portfolio gross rate of return must respect the following
system of inequalities:

R < − a3

4a4

+ min

[
��

K + (9a2
3 − 24a4a2

)
K−1

12a4

]
(1.23)

with:

� = min

(√
9a2

3 − 24a4a2

12a4

� 0

)

and:

⎧⎪⎨
⎪⎩
(

− a2
3

16a2
4

+ a2

6a4

)3

+
(

a3
3

16a3
4

− a2a3

16a2
4

+ a1

8a4

)2

> 0

�−1�i ai < 0

where ai ∈ IR∗� i = �1� � � � � 4�.
Figure 1.2 represents three particular quartic utility functions and the evolution of their

first derivatives with respect to the gross rate of return on a realistic range of returns.
These restrictions constitute necessary, but not sufficient, conditions for the quartic utility

function (1.18) to satisfy simultaneously the properties of decreasing absolute risk aver-
sion (DARA), decreasing absolute prudence (DAP) and constant or increasing relative risk
aversion (CRRA or IRRA) with respect to the gross rate of return, R. The necessary and
sufficient conditions are that the expressions �∗, �∗∗ and �∗∗∗ respect the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�∗ =
[
−�U �R�

�R

�3U �R�

�R3
+
(

�2U �R�

�R2

)2
]

< 0 �DARA�

�∗∗ =
[
−�2U �R�

�R2

�4U �R�

�R4
+
(

�3U �R�

�R3

)2
]

< 0 �DAP�

�∗∗∗ =
[

R�
 − �2U �R�

�R2

(
�U �R�

�R

)−1
]

≥ 0 �CRRA or IRRA�

(1.24)

This system of inequalities leads to the following theorem.

Theorem 5 The necessary and sufficient conditions for a quartic utility function U ��� to
exhibit a decreasing absolute risk aversion (DARA), a decreasing absolute prudence (DAP)
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Figure 1.2 Quartic utility function illustrations. (a) displays examples of realistic quartic utility
functions: Uk�R� = a0k + a1kR + a2kR

2 + a3kR
3 + a4kR

4 for the cases of: 1. k = 1 non-satiable, risk
seeker, prudent and intemperant investor; 2. k= 2 non-satiable, risk averse, imprudent and intemperant
investor; 3. k = 3 non-satiable, risk averse, prudent and temperant investor; with:

⎧⎪⎪⎨
⎪⎪⎩

U1�R� � a01 = 0�3774� a11 = 0�0250� a21 = 0�0605� a31 = 0�0450� a41 = 0�0002

U2�R� � a02 = 0�1954� a12 = 0�5230� a22 = −0�0013� a32 = −0�0695� a42 = 0�0019

U3�R� � a03 = 0�0714� a13 = 1�0165� a23 = −0�5400� a33 = 0�1400� a43 = −0�0200

where coefficient ajk values, j = �0� � � � � 4�, result from a grid search on the possible domain, before
being rescaled in order to get, for the three utility functions, the same minimum (0.4) and maximum
(0.758) score values when the gross return stands respectively at 40 % and 160 % (corresponding to
the maximum drawdown and maximum run-up observed on the CAC40 index for six-month series
on the period 01/95 to 06/04). See, for comparison, real-market GMM estimates of a2k and a3k (with
a0k = 0� a1k = 1 and a4k unconstrained) in the case of a cubic utility function, in Levy et al. (2003),
Table 2 and Figure 1, pp. 11 and 13. The four graphs in (b), (c), (d) and (e) show the evolution of the
first derivatives of the three considered quartic utility functions with respect to the gross rate of return
on a realistic range of gross returns.
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Figure 1.2 Continued

and a constant or increasing relative risk aversion (CRRA or IRRA) with respect to the gross
rate of return R are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8a2
4R

4 + 8a4a3R
3 + 3a2

3R
2 + 2 �a3a2 − 2a4a1�R + 2

3 a2
2 − a3a1 < 0 �DARA�⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
− a3

4a4

+
√(−9a2

3 + 24a4a2

)
12a4

< R < − a3

4a4

−
√(−9a2

3 + 24a4a2

)
12a4

a2 <

(
3a2

3

8a4

) �DAP�

120 �a4�
2 R4 + 120a3a4R

3 + 3
[
9 �a3�

2 + 16a2a4

]
R2

+6 �3a2a3 + 2a4a1�R + 3a3a1 + 2 �a2�
2 ≥(

12a4R
2 + 6a3R + 2a2

) (
4a4R

4 + 3a3R
3 + 2a2R

2 + a1R
)−1

�CRRA or IRRA�

(1.25)
where ai ∈ IR∗� i = �1� � � � � 4�.

Proof see Appendix D.

These requirements constitute the traditional limits of using a polynomial utility function19

to represent individual preferences (Levy, 1969 and Tsiang, 1972). We can note, however,
that, contrary to the quadratic one, the quartic specification is compatible – for some values
of parameters – with the five desirable properties of utility functions: non-satiation, risk
aversion, decreasing absolute risk aversion, decreasing absolute prudence and constant or
increasing relative risk aversion (Pratt, 1964; Arrow, 1970 and Kimball, 1990 and 1993).

19 For a study of the properties of the cubic utility function see Levy (1969), Hanoch and Levy (1970), Rossi and Tibiletti (1996),
Gamba and Rossi (1997, 1998a and 1998b), Jurczenko and Maillet (2001) and Bellalah and Selmi (2002).
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The theoretical conditions of an exact mean–variance–skewness–kurtosis decision criterion
presented, in the next section we consider the conditions under which the mean–variance–
skewness–kurtosis analysis can provide a satisfactory approximation rather than an exact
solution of the expected utility optimisation problem.

1.4 EXPECTED UTILITY AS AN APPROXIMATING
FUNCTION OF THE FIRST FOUR MOMENTS

While it is possible, by assuming specific parametric return distributions or utility functions
to transform the expected utility principle into a mean–variance–skewness–kurtosis analysis,
academics generally prefer to explore the conditions under which a fourth-order Taylor series
expansion of the utility function can provide an accurate approximation of the investor’s
objective function. However, since the conventional utility theory does not generally translate
into a simple comparison of the first N moments, this alternative approach is in fact as
restrictive as the previous one. Indeed, additional preference and distributional restrictions
are needed to ensure that a quartic approximation of the expected utility provides an accurate
and consistent local approximation of the individual objective function.

To address this issue, we consider the set of utility functions that display hyperbolic
absolute risk aversion (HARA)20 and belong to the D4 class. These utility functions are
defined as:

U �R� = �

�1 − ��

(
b + a

�
R

)�1−��

(1.26)

with: ⎧⎪⎪⎨
⎪⎪⎩

b + a

�
R > 0

1
�

> −1
2

where, if � is a negative integer then � ≤−3 and � �= 0 otherwise, a> 0 and b ≥ 0. It is easy
to check that (1.26) satisfies the fourth-order stochastic dominance requirements, since:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U�1� �R� = a

(
b + a

�
R

)−�

�> 0�

U �2� �R� = −a2

(
b + a

�
R

)−��+1�

�< 0�

U �3� �R� = a3

(
� + 1

�

)(
b + a

�
R

)−��+2�

�> 0�

U �4� �R� = −a4 �� + 1� �� + 2�

�2

(
b + a

�
R

)−��+3�

�< 0�

(1.27)

20 For a study of the general HARA utility class, see Feigenbaum (2003) and Gollier (2004).
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The HARA class relevant for the fourth-order stochastic dominance subsumes most of
the popular functional forms of utility used in finance, including the constant absolute risk
aversion (CARA) class, the constant relative risk aversion (CRRA) class and some functions
belonging to the subclass of quartic utility and higher-degree polynomial utility functions.

The CRRA power and logarithmic utility functions can be obtained from (1.26) by selecting
� > 0 and b �= 0, that is:

U �R� =
{

1
�1−��

R�1−�� if � �= 1

ln �R� if � = 1
(1.28)

where � is the constant investor’s relative risk-aversion coefficient. As for any HARA utility
function, with � > 0, the CRRA utility functions are also characterised by a decreasing
absolute risk aversion with respect to the gross rate of return R.

If � �=+� and b �=1� we obtain the (CARA) negative exponential utility function, that is:

U �R� = − exp �−aR� (1.29)

where a measures the constant investor’s absolute risk aversion.
For � �=−�N − 1� and b > 0, (1.26) reduces to a polynomial utility function of degree N ,

that is:

U �R� = �1 − N�

N

( a

1 − N
R + b

)N

(1.30)

where N ∈ IN ∗ − 
1� 2� 3� with � ≤ −3. This last specification covers only a subset of
the quartic and higher-order polynomial utility functions (those with increasing absolute
risk aversion) since HARA utility functions only have three free parameters, whereas a
polynomial of degree N , with N ≥ 4, has �N + 1� parameters.

The quartic utility functions obtained from (1.26) by selecting � �= −3 and b > 0, have
the following general form:

U �R� = R − 3
2

cR2 + c2R3 −
(c

2

)3
R4 (1.31)

with:

c = 3
(

b

a

)

where c > 0�
If the gross rate of return belongs to the interval of absolute of convergence of the Taylor

series expansion of the HARA21 utility function (1.26) around the expected gross rate of
return, the investor’s utility can be expressed as:

U �R� =
N∑

n=0

1
n! �1 − ��−1 �−�n−1�

[∏n−1
i=0 �1 − � − i�

�1 − ����n−1�

]
�a�n (1.32)

×
[
b + a

�
E �R�

]−��+n−1�

�R − E �R��n

21 HARA utility functions are analytic functions.
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with:

	R − E �R�	 < �

where � is the positive radius of absolute convergence of the Taylor series expansion of
U ��� around E �R� defined in (1.5), which is equal here to:

� = 	−�	
(

b

a
+ E �R�

�

)

and N ∈ IN .
Provided the existence of the kurtosis and supposing that the investment probability

distribution is uniquely determined by its moments, taking the limit of N towards infinity
and the expected value on both sides in (1.32) leads to:

E �U �R�� =
�∑

n=0

1
n

�1 − ��−1 �−�n−1�

[∏n−1
i=0 �1 − � − i�

�1 − ����n−1�

]
�a�n (1.33)

×
[
b + a

�
E �R�

]−��+n−1�

E 
�R − E �R��n�

with:

	R − E �R�	 ≤ �∗

where �∗ ∈ �0� �� and � is defined as in (1.5).
Focusing on terms up to the fourth, the expected utility can then be approximated by the

following four-moment function22:

E �U �R�� � �

�1 − ��

[
b + a

�
E �R�

]�1−��

− a2

2

[
b + a

�
E �R�

]−��+1�

�2 �R�

+ a3

3!
�� + 1�

�

[
b + a

�
E �R�

]−��+2�

s3 �R�

− a4

4!
�� + 1� �� + 2�

�2

[
b + a

�
E �R�

]−��+3�

�4 �R�

(1.34)

with (using previous notation):

	R − E �R�	 ≤ �∗

where � ∈ IR∗, a > 0 and b ≥ 0; �2 �R�, m3 �R�, �4 �R� are respectively the second, the third
and the fourth centred moment of the returns R, �∗ ∈ �0� �� with � defined as in (1.5).

This expression is consistent with our earlier comments regarding investors’ preference
direction for higher moments, since the expected utility (1.34) depends positively on the
expected return and skewness, and negatively on the variance and kurtosis, so that a positive
skew in the returns distribution and less kurtosis lead to higher expected utility.

22 For quartic HARA utility functions, i.e. � �= −3 and b > 0, the Taylor series expansion of (1.26) leads to an equality in (1.34).
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For the CARA and CRRA23 class preference specifications, the fourth-order Taylor approx-
imation of the expected utility leads to the following analytical expressions (see Tsiang,
1972; Hwang and Satchell, 1999; Guidolin and Timmermann, 2005a and 2005b and Jondeau
and Rockinger, 2003b, 2005 and 2006):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
[
�1 − ��−1 R�1−��

]
� �1 − ��−1 E �R��1−�� − �

2
E �R�−��+1� �2 �R�

+ � �� + 1�

3! E �R�−��+2� s3 �R� − � �� + 1� �� + 2�

4!
× E �R�−��+3� �4 �R�

E �ln �R�� � ln �E �R�� − 1
2

E �R�−2 �2 �R� + 2
3!E �R�−3 s3 �R�

− 6
4!E �R�−4 �4 �R�

E �− exp �−aR�� � − exp �−aE �R�� ×
[

1 + a2

2
�2 �R� − a3

3! s3 �R� + a4

4! �4 �R�

]
(1.35)

with (using previous notation):

	R − E �R�	 ≤ �∗ < �

where �∗ ∈ �0� �� and � is defined as in (1.5).
Through a fourth-order Taylor approximation, the investor’s decision problem under uncer-

tainty can be simplified, but additional restrictions on the individual preferences and asset
return distributions are required for guaranteeing the theoretical validity and practical interest
of such an approach. Indeed, besides the necessary restrictions for the uniform convergence
of the Taylor series expansion of U ��� around E �R�, extra distributional conditions are
required to guarantee the smoothness of the convergence of the Taylor polynomial towards
the investor’s utility so that the quartic objective function (1.34) will perform uniformly
better than the quadratic one. From the risk aversion property of the HARA utility functions,
we get the following theorem.

Theorem 6 A necessary condition24 for a fourth-order Taylor expansion of a HARA utility
function of the class D4, around E �R�, to lead to a better expected utility approximation
than a second-order one is that, ∀n ∈ IN ∗:

��2n + 1�!�−1 × U�2n+1� �E �R�� × E
{
�R − E �R��2n+1

}
< − ��2n + 2�!�−1 × U�2n+2� �E �R�� × E

{
�R − E �R��2n+2

}
(1.36)

23 Despite its prominence in the finance field, the usefulness of the CRRA class of utility functions for asset allocation with higher
moments is limited due to the small responsiveness of CRRA investors to skewness and tail events (see Chen, 2003; Jondeau and
Rockinger, 2003b and Cremers et al., 2005).
24 This condition is more general than the one proposed by Berényi (2001) since it is valid for any analytic utility function relevant
for the fourth-order stochastic dominance and any probability distribution with finite variance and uniquely determined by the
sequence of its moments.
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with (using previous notation):

U�n� �E �R�� = �1 − ��−1 �−�n−1�

[∏n−1
i=0 �1 − � − i�

�1 − ����n−1�

]
× �a�n

[
a

�
E �R� + b

]−��+n−1�

and:

	R − E �R�	 ≤ �∗

where �∗ ∈ �0� �� and � , a, b and � are defined respectively in (1.5) and (1.26).

Proof see Appendix E.

Another approach is to consider that the relative risk borne by investors, defined as the
ratio of standard deviation by mean return, is so large that we cannot neglect it. In this case,
Tsiang (1972) shows that, for most of the utility functions that belong to the HARA class,
a suitable interval on which the relative risk is defined can be found, such that a quartic
objective function provides a better approximation of the expected utility than a quadratic
function. This approach is, however, less satisfactory than the last one, since it does not
provide a priori any clue regarding the limits of validity of the mean–variance–skewness–
kurtosis decision criterion.

Following Samuelson (1970), it can also be shown that the speed of convergence of the
Taylor series expansion towards the expected utility increases with the compactness of the
portfolio return distribution and the length of the trading interval. That is, the smaller the
trading interval and the absolute risk borne by individuals are, the less terms are needed in
(1.34) to achieve an acceptable result.

Furthermore, since the conventional utility theory does not generally translate into a simple
comparison of the first N moments, supplementary preference and distributional restrictions
are needed to ensure that the quartic approximation (1.34) preserves individual preference
ranking.

Theorem 7 A necessary condition for the mean–variance–skewness–kurtosis function
(1.34) to lead exactly to the same preference ordering as the expected utility criterion for
an investor with a HARA utility of the D4 class is that the absolute risk aversion is decreas-
ing �� > 0�, asset return distributions are negatively skewed and odd (even) higher-order
moments are positive nonlinear functions of skewness (kurtosis), that is25, ∀ �i� n� ∈ �IN ∗�2:

⎧⎨
⎩

m2n+1 �Ri� = �p2n+1�
2n+1

3
[
s3 �Ri�

] 2n+1
3

m2n+2 �Ri� = �q2n+2�
n+1

2
[
�4 �Ri�

] n+1
2

(1.37)

25 Similar statistical restrictions have been considered to simplify the mathematics of the mean–variance–skewness and mean–
variance–kurtosis efficient frontiers (see Athayde and Flôres, 2002, 2003 and 2004).
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with: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p3 = q4 = 1

p2n+1 > 0

q2n+2 > 0

s3 �Ri� < 0

and:

	Ri − E �Ri�	 ≤ �∗
i

where �∗
i ∈ �0� �i� with �i the radius of absolute convergence of the Taylor series expansion

of U ��� around E �Ri�, i = �1� � � � �N � and �p2n+1 × q2n+2� = (IR∗
+
)2

.

Proof see Appendix F.

Nevertheless, whatever the truncation order chosen in (1.33), the accuracy of the approx-
imation of the expected utility must be determined empirically (see Hlawitschka, 1994).

It has been shown on using different data, utility and parameter sets that a second-order
Taylor expansion is an accurate approximation of the expected utility or the value func-
tion. For instance, using, respectively, annual returns on 149 US mutual funds and monthly
returns on 97 randomly selected individual stocks from the CRSP database, Levy and
Markowitz (1979) and Markowitz (1991) show that mean–variance portfolio rankings are
highly correlated with those of the expected utility for most of the HARA utility functions
and absolute risk-aversion levels. Moreover, using annual returns on 20 randomly selected
stocks from the CRSP database, Kroll et al. (1984) find that mean–variance optimal port-
folios are close to the ones obtained from the maximisation of the expected utility function
when short-sales are forbidden, whatever leverage levels are considered. Similar results
are obtained by Pulley (1981 and 1983), Reid and Tew (1987), Rafsnider et al. (1992),
Ederington (1995)26 and Fung and Hsieh (1999) on different settings. Simaan (1997) also
suggests that the opportunity cost of the mean–variance investment strategy is empirically
irrelevant when the opportunity set includes a riskless asset, and very small in the absence
of a riskless asset. Amilon (2001) and Cremers et al. (2004) extend the previous studies
when short-sales are allowed. Working with monthly data on 120 Swedish stocks and five
different families of utility functions, Amilon (2001) shows the opportunity cost of the
mean–variance strategy remains relatively small for most of the investors in the presence of
limited short-selling and option holding. Using monthly data on five different asset classes,
Cremers et al. (2004) reach the same conclusions when the utility functions of the investors
are logarithmic and the estimation risk is taken into account in the portfolio optimisation
process.

Other recent empirical studies also show, however, that a fourth-order Taylor series expan-
sion can improve significantly the quality of the investor’s expected utility approximation.

26 Nonetheless, working with bootstrapped quarterly returns on 138 US mutual funds, Ederington (1995) finds that for strongly
risk-averse investors, a Taylor series expansion based on the first four moments approximates the expected utility better than a
Taylor series based on the first two moments.
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For instance, working with monthly data on 54 hedge funds from the TASS database, Berényi
(2002 and 2004) reports an increase of the correlation level between performance-based
portfolio orderings and expected utility portfolio rankings when the considered performance
measure takes into account the effect of the higher-order moments for various leverage levels
and utility specifications. Jondeau and Rockinger (2003b and 2006) show that the mean–
variance–skewness–kurtosis portfolio selection criterion leads to more realistic risky asset
allocations than the mean–variance approach for some US stocks at a weekly frequency and
emerging markets at a monthly frequency when investors have CARA or CRRA preferences
and are short-sale constrained.27 Considering the tactical asset allocation of a US CRRA
investor with holding periods ranging from one month to one year, Brandt et al. (2005)
also find that approximated asset allocations obtained through the optimisation of a quartic
objective function are closer to the true asset allocations than the ones obtained through the
maximisation of a quadratic function and lead to lower certainty equivalent return losses than
the second-order approximation, irrespective of the risk-aversion level and the investment
horizon considered. The importance of higher moments for tactical asset allocation increases
with the holding period and decreases with the level of the relative risk-aversion coeffi-
cient.28. Moreover, using ten years of monthly data on 62 hedge funds from the CIDSM
database, Cremers et al. (2005) show that the mean–variance approach results in significant
utility losses and unrealistic asset allocations for investors with bilinear or S-shaped value
functions.

1.5 CONCLUSION

In this chapter we derive the theoretical foundations of multi-moment asset allocation and
pricing models in an expected utility framework. We recall first the main hypotheses that
are necessary to link the preference function with the centred moments of the unconditional
portfolio return distribution. We then develop a quartic utility specification to obtain an
exact mean–variance–skewness–kurtosis decision criterion. We also present the behavioural
and distributional conditions under which the expected utility can be approximated by a
fourth-order Taylor series expansion.

Our main conclusion is that, despite its widespread use in multi-moment asset allo-
cation (see, for instance, Guidolin and Timmermann, 2005a and 2005b; Brandt et al.,
2005 and Jondeau and Rockinger, 2003b, 2005 and 2006b) and capital and consump-
tion asset pricing models (see, for instance, Kraus and Litzenberger, 1980; Fang and Lai,
1997; Hwang and Satchell, 1999; Dittmar, 2002 and Semenov, 2004), the Taylor series
approach displays no general theoretical superiority over a polynomial utility specifica-
tion to justify a moment-based decision criterion. Indeed, extra restrictions on the risky
asset return distributions are required to ensure that a fourth-order Taylor series expan-
sion preserves the preference ranking, while in the quartic case the opportunity set and
utility parameters must be severely restricted to satisfy the five desirable properties of
utility functions (see Pratt, 1964; Arrow, 1970 and Kimball, 1990). Moreover, additional
requirements are necessary to guarantee the convergence of the (in)finite-order Taylor series
expansions.

27 Patton (2001 and 2004) finds similar results in a conditional setting for small and large capitalisation US stock indices with
monthly data and with or without short-sales.
28 Jondeau and Rockinger (2003b) investigate a similar risk-aversion effect when a risk-free asset exists.
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Thus, the introduction of the third- and fourth-order centred moment in a portfolio selection
criterion is theoretically justifiable when the utility function is quartic, and when the support
of the portfolio distribution is well restricted or when individuals exhibit decreasing HARA
utility functions, the time interval between actions and consequences is small but finite, and
all the odd and even centred moments of investment returns can be expressed respectively
as positive nonlinear functions of the (negative) skewness and the kurtosis. Under these
conditions, it is then theoretically possible to derive a multi-moment asset pricing relation
(see, for instance, Chapter 6).

APPENDIX A

Theorem 1 A sufficient condition for a Taylor series expansion of an infinitely often
differentiable utility function U��� around the expected gross rate of return E �R� to converge
absolutely is that the set of realisations of the random variable R belongs to the open interval
J defined by:

	R − E �R�	 < �

with:

� = lim
N→�

∣∣∣∣ �N + 1�!U�N� �E �R��

N !U�N+1� �E �R��

∣∣∣∣
where � is a positive constant corresponding to the radius of convergence of the Taylor
series expansion of U��� around E �R� and N ∈ IN .

Proof Let PN �E �R�� be the Taylor approximation of order N around E �R� of an arbitrarily
often differentiable utility function U ��� on a subset I of IR, that is:

PN �E �R�� =
N∑

n=0

1
n!U

�n� �E �R�� �R − E �R��n (1.38)

According to the quotient test, the Taylor polynomial (1.38) converges if:

q = lim
N→�

∣∣∣∣ N !U�N+1� �E �R��

�N + 1�!U�N� �E �R��
× �R − E �R��N+1

�R − E �R��N

∣∣∣∣ (1.39)

= lim
N→�

∣∣∣∣ N !U�N+1� �E �R��

�N + 1�!U�N� �E �R��

∣∣∣∣ 	R − E �R�	 < 1

That is, the Taylor series expansion of U ��� around the expected gross rate of return E �R�
is absolutely convergent when:

	R − E �R�	 < lim
N→�

∣∣∣∣ �N + 1�!U�N� �E �R��

N !U�N+1� �E �R��

∣∣∣∣ (1.40)

�
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APPENDIX B

Theorem 2 A sufficient condition for a Taylor series expansion of an infinitely often
differentiable utility function U��� around the expected gross rate of return E �R� with a
positive radius of convergence � , to converge uniformly is that the set of realisations of the
random variable R remains in the closed interval J ∗ defined as:

	R − E �R�	 ≤ �∗

∀�∗ ∈ �0� ��.

Proof Consider the Taylor approximation of order N of an infinitely often differentiable
utility function U ��� defined on an open interval J such that:

PN �E �R�� =
N∑

n=0

1
n!U

�n� �E �R�� �R − E �R��n (1.41)

where N ∈ IN ∗ and J = �E �R� − ��E �R� + �� with � the radius of convergence of the Taylor
series expansion of U ��� around E �R�, e.g.:

� = lim
N→�

∣∣∣∣ �N + 1�!U�N� �E �R��

N !U�N+1� �E �R��

∣∣∣∣
For any R ∈ �E �R� − �∗�E �R� + �∗�, we must have:

	P �E �R�� − PN �E �R��	 =
∣∣∣∣∑�

n=N+1

1
n!U

�n� �E �R�� �R − E �R��n

∣∣∣∣
≤∑�

n=N+1

∣∣∣∣ 1
n!U

�n� �E �R�� �R − E �R��n

∣∣∣∣
≤∑�

n=N+1

∣∣∣∣ 1
n!U

�n� �E �R�� ��∗ − E �R��n

∣∣∣∣
(1.42)

with:

P �E �R�� =
�∑

n=0

1
n!U

�n� �E �R�� �R − E �R��n

where �∗ ∈ �0� ��.
That is:

Sup
R∈�E�R�−�∗�E�R�+�∗�


	P �E �R�� − PN �E �R��	� ≤
�∑

n=N+1

∣∣∣∣ 1
n!U

�n� �E �R�� ��∗ − E �R��n

∣∣∣∣ (1.43)

Since the infinite-order Taylor series expansion of U ��� around E �R� is absolutely conver-
gent on J , we get:

lim
N−→�

�∑
n=N+1

∣∣∣∣ 1
n!U

�n� �E �R�� ��∗ − E �R��n

∣∣∣∣= 0 (1.44)
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We can thus make 	P ��� − PN ���	 as small as possible, ∀R ∈ �E �R� − �∗�E �R� + �∗�, by
choosing N sufficiently large and independent of R. So that the Taylor series expansion of
U ��� around E �R� converges uniformly29 on the interval �E �R� − �∗�E �R� + �∗�. �

APPENDIX C

Theorem 3 The necessary and sufficient conditions for a quartic utility function U ��� to
belong to the class D4 of utility functions relevant for the fourth-order stochastic dominance
are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U�1� ��� > 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1 > 0(
− a2

3

16a2
4

+ a2

6a4

)3

+
(

a3
3

16a3
4

− a2a3

16a2
4

+ a1

8a4

)2

> 0

R < − a3

4a4

+ K + (9a2
3 − 24a4a2

)
K−1

12a4

U�2� ��� < 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 > a2 ≥
(

3a2
3

8a4

)

R < − a3

4a4

+
√

9a2
3 − 24a4a2

12a4

and R > − a3

4a4

−
√

9a2
3 − 24a4a2

12a4

or a2 <

(
3a2

3

8a4

)

U�3� ��� > 0 ⇔

⎧⎪⎨
⎪⎩

a3 > 0

R < −
(

a3

4a4

)

U�4� ��� < 0 ⇔ a4 < 0

with:

K =
⎛
⎜⎝A +

√
−108

(
3a2

3 − 8a4a2

)3 + A2

2

⎞
⎟⎠

1/3

and:

A = (−54a3
3 − 432a2

4a1 + 216a4a3a2

)
29 An infinite series 


∑�
n=0 anxn� is said to converge uniformly on an interval J∗ if, for each � > 0, we can find a positive integer

N0 such that, ∀N ≥ N0 and ∀x ∈ J∗: ∣∣∣∣∣
�∑

n=0

anxn −
N∑

n=0

anxn

∣∣∣∣∣≤ �

This is equivalent to saying that 

∑�

n=0 anxn� converges uniformly on an interval J∗ if, for each � > 0� we can find a positive
integer N0 such that, ∀N ≥ N0:

Sup
x∈J∗

∣∣∣∣∣
�∑

n=0

anxn −
N∑

n=0

anxn

∣∣∣∣∣≤ �
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where U�1� ���, U�2� ���, U�3� ��� and U�4� ��� are the first four partial derivatives of U ��� and
ai ∈ IR∗ with i = �1� � � � � 4�.

Proof Consider the following general quartic utility function:

U �R� = a0 + a1R + a2R
2 + a3R

3 + a4R
4 (1.45)

with ai ∈ IR∗, i = �1� � � � � 4�.
The first, second, third and fourth derivatives of (1.45) are given, respectively, by:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U�1� �R� = a1 + 2a2R + 3a3R
2 + 4a4R

3

U�2� �R� = 2a2 + 6a3R + 12a4R
2

U�3� �R� = 6a3 + 24a4R

U�4� �R� = 24a4

(1.46)

Imposing U�4� ��� < 0 and U�3� ��� > 0 yields the following set of requirements:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

a3 > 0

R < −
(

a3

4a4

)

a4 < 0

(1.47)

Depending on the sign of the discriminant of the quadratic expression of U�2� ��� in (1.46),
the risk-aversion property U�2� ��� < 0 leads to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 > a2 ≥
(

3a2
3

8a4

)

R < − a3

4a4

+
√

9a2
3 − 24a4a2

12a4

and R > − a3

4a4

−
√

9a2
3 − 24a4a2

12a4

or a2 <

(
3a2

3

8a4

)
(1.48)

From the non-satiation property, U�1� ���< 0, we obtain the final system of parameter restric-
tions, that is: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1 > 0(
− a2

3

16a2
4

+ a2

6a4

)3

+
(

a3
3

16a3
4

− a2a3

16a2
4

+ a1

8a4

)2

> 0

R < − a3

4a4

+ K + (9a2
3 − 24a4a2

)
K−1

12a4

(1.49)

with:

K =
⎛
⎜⎝A +

√
−108

(
3a2

3 − 8a4a2

)3 + A2

2

⎞
⎟⎠

1/3
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and:

A = (−54a3
3 − 432a2

4a1 + 216a4a3a2

)
�

Combining (1.47), (1.48) and (1.49) leads to the desired result. �

APPENDIX D

Theorem 4 The necessary and sufficient conditions for a quartic utility function U ��� to
exhibit a decreasing absolute risk aversion (DARA), a decreasing absolute prudence (DAP)
and a constant or increasing relative risk aversion (CRRA or IRRA) with respect to the gross
rate of return R are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8a2
4R

4 + 8a4a3R
3 + 3a2

3R
2 + 2 �a3a2 − 2a4a1�R + 2

3
a2

2 − a3a1 < 0 �DARA�⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− a3

4a4

+
√(−9a2

3 + 24a4a2

)
12a4

< R < − a3

4a4

−
√(−9a2

3 + 24a4a2

)
12a4

a2 <

(
3a2

3

8a4

) �DAP�

120 �a4�
2 R4 + 120a3a4R

3 + 3
[
9 �a3�

2 + 16a2a4

]
R2

+ 6 �3a2a3 + 2a4a1�R + 3a3a1 + 2 �a2�
2 ≥(

12a4R
2 + 6a3R + 2a2

) (
4a4R

4 + 3a3R
3 + 2a2R

2 + a1R
)−1

�CRRA or IRRA�

where ai ∈ IR∗, with i = �1� � � � � 4�.

Proof Imposing the decrease of absolute risk-aversion coefficient with respect to the gross
rate of return, that is: [

−�U �R�

�R

�3U �R�

�R3
+
(

�2U �R�

�R2

)2
]

< 0 (1.50)

we obtain, from the derivative expressions (1.46) of the quartic utility function, that the
DARA property is verified when:

8a2
4R

4 + 8a4a3R
3 + 3a2

3R
2 + 2 �a3a2 − 2a4a1�R + 2

3
a2

2 − a3a1 < 0 (1.51)

Imposing the decrease of absolute prudence coefficient with respect to the gross rate of
return gives:

[
−�2U �R�

�R2

�4U �R�

�R4
+
(

�3U �R�

�R3

)2
]

< 0 (1.52)
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In the quartic case, this inequality translates into (see 1.46):

24a2
4R

2 + 12a4a3R + 3a2
3 + 4a4a2 < 0 (1.53)

Depending on the sign of the discriminant in (1.53), we find that the DAP is achieved for
quartic utility functions when:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− a3

4a4

+
√(−9a2

3 + 24a4a2

)
12a4

< R < − a3

4a4

−
√(−9a2

3 + 24a4a2

)
12a4

a2 <

(
3a2

3

8a4

)

or a2 >

(
3a2

3

8a4

)
(1.54)

Finally, the increase or constancy of relative risk-aversion coefficient with respect to the
gross rate of return leads to the following restriction:{

R ×
[
−�2U �R�

�R2

�4U �R�

�R4
+
(

�3U �R�

�R3

)2
]

− �2U �R�

�R2

(
�U �R�

�R

)−1
}

≥ 0 (1.55)

Using the derivative expressions (1.46), this property requires, for the fourth-order polyno-
mial utility function, that:

8a2
4R

5 + 8a4a3R
4 + 3a2

3R
3 − 2

[
a4a1 − 2a3a2 − 6

(
a1 + 2a2R + 3a3R

2 + 4a4R
3
)−1

a4

]
R2

−
[
a3a1 − 2

3
a2

2 + 6
(
a1 + 2a2R + 3a3R

2 + 4a4R
3
)−1

a3

]
R

− 2a2

(
4a4R

3 + 3a3R
2 + 2a2R + a1

)−1 ≤ 0 (1.56)

�

APPENDIX E

Theorem 5 A necessary condition for a fourth-order Taylor expansion of a HARA utility
function of D4 utility class around E �R� to lead to a better expected utility approximation
than a second-order one is that, ∀n ∈ IN ∗:

��2n + 1�!�−1 U�2n+1� �E �R�� × E
{
�R − E �R��2n+1

}
< − ��2n + 2�!�−1 U�2n+2� �E �R�� × E

{
�R − E �R��2n+2

}
with (using previous notation):

U�n� �E �R�� = �1 − ��−1 �−�n−1�

[∏n−1
i=0 �1 − � − i�

�1 − ����n−1�

]
× �a�n

[
a

�
E �R� + b

]−��+n−1�
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and: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b + a

�
R > 0

1
�

> −1
2

	R − E �R�	 ≤ �∗

where � ≤ −3 if � is a negative integer and � �= 0 otherwise, a > 0, b ≥ 0, and �∗ ∈ �0� ��
with � the radius of convergence of the Taylor series expansion of U ��� around E �R�.

Proof If all the centred moments exist and uniquely determine the return distribution, it is
possible to express the expected utility of any investor with HARA preference as30:

E �U �R�� = U �E �R�� + � �E �R�� (1.57)

with:

� �E �R�� =
�∑

n=2

1
n!U

�n� �E �R��mn �R�

and:

	R − E �R�	 ≤ �∗

where �∗ ∈ �0� �� � � is the positive radius of absolute convergence of the Taylor series
expansion of U ��� around E �R�, � ��� is negative by the risk-aversion property of HARA
utility functions31, and mn �R� = E 
�R − E �R��n�, corresponds to the nth centred moment
of R.

If, moreover, the centred higher-order moments of the gross rate of return distribution,
denoted mn �R�, verify ∀n ∈ IN ∗:

��2n + 1�!�−1 × U 2n+1 �E �R�� × m2n+1 �R� < − ��2n + 2�!�−1 × U 2n+2 �E �R�� × m2n+2 �R�
(1.58)

then, the nth order Taylor approximation of the expected utility of an agent with HARA-
type preference must converge smoothly towards its objective function, since, ∀N ∈ IN ∗ and
R ∈ �E �R� − �∗�E �R� + �∗�:

1
2

U�2� �E �R���2 �R� +
2N+2∑
n=3

1
n!U

�n� �E �R��mn �R� < 0 (1.59)

and:

E �U �R�� < U �E �R�� �

30 HARA utility functions are analytic real functions.
31 The risk aversion property entails, for any risky investment, that: E �U �R�� < U �E �R��.
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It follows that the fourth-order Taylor series expansion of a HARA utility function
which belongs to the D4 class will lead to a better approximation of the expected util-
ity criterion than the one obtained through a second-order Taylor series expansion, ∀R ∈
�E �R� − �∗�E �R� + �∗�. �

APPENDIX F

Theorem 6 A necessary condition for the mean–variance–skewness–kurtosis function
(1.34) to lead exactly to the same preference ordering as the expected utility criterion
for an investor with a HARA utility U ��� of the D4 utility class is that the absolute risk
aversion is decreasing (� > 0), asset return distributions are negatively skewed and odd
(even) higher-order moments are positive nonlinear functions of skewness (kurtosis), that is,
∀ �i� n� ∈ �IN ∗�2:

⎧⎨
⎩

m2n+1 �Ri� = �p2n+1�
2n+1

3
[
s3 �Ri�

] 2n+1
3

m2n+2 �Ri� = �q2n+2�
n+1

2
[
�4 �Ri�

] n+1
2

with:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p3 = q4 = 1

p2n+1 > 0

q2n+2 > 0

s3 �Ri� < 0

and:

	Ri − E �Ri�	 ≤ �∗
i

where �∗
i ∈ �0� �i� with �i the positive radius of absolute convergence of the Taylor series

expansion of U ��� around E �Ri�, i = �1� � � � �N �, and �p2n+1 × q2n+2� = (IR∗
+
)2

.

Proof Consider a HARA utility function U ��� of the D4 class and two neg-
atively skewed distributed random returns R1 ∈ ��∗

1 − E �R1� � �∗
1 + E �R1�� and R2 ∈

��∗
2 − E �R2� � �∗

2 + E �R2��, with finite moments such that:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E �R1� ≥ E �R2�

�2 �R1� ≤ �2 �R2�

s3 �R1� ≥ s3 �R2�

�4 �R1� ≤ �4 �R2�

(1.60)
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with at least one strict inequality32, and ∀i ∈ �1� 2� and ∀n ∈ IN ∗:

⎧⎨
⎩

m2n+1 �Ri� = �p2n+1�
2n+1

3
[
s3 �Ri�

] 2n+1
3

m2n+2 �Ri� = �q2n+2�
n+1

2
[
�4 �Ri�

] n+1
2

(1.61)

with: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p3 = q4 = 1

p2n+1 > 0

q2n+2 > 0

s3 �Ri� < 0

where �∗
i ∈ �0� �i� � �i is the positive radius of absolute convergence of the Taylor series expan-

sion of U ��� around E �Ri�, mn �Ri� = E 
�Ri − E �Ri��
n�, i = �1� 2�, and �p2n+1 × q2n+2� =(

IR∗
+
)2

.
For any decreasing HARA utility function U ���, there is a strict equivalence between

the mean–variance–skewness–kurtosis preference ranking and the expected utility preference
ordering, since:

E �U �R1�� − E �U �R2�� =
�∑

n=0

1
n!
{
U�n� �E �R1�� × mn �R1� − U�n� �E �R2�� × mn �R2�

}
> 0

(1.62)
with: {

�−1�n U �n� �Ri� < 0

�−1�n mn �R1� ≤ �−1�n mn �R2�

and:

	Ri − E �Ri�	 ≤ �∗
i

where i = �1� 2� and n ∈ IN ∗ − 
1�.

�
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On Certain Geometric Aspects of Portfolio

Optimisation with Higher Moments

Gustavo M. de Athayde and Renato G. Flôres Jr

ABSTRACT

In this chapter we discuss geometric properties related to the minimisation of a portfolio
kurtosis given its first two odd moments, considering a riskless asset and allowing for short-
sales. The findings are generalised for the minimisation of any given even portfolio moment
with fixed excess return and skewness, and then for the case in which only excess return
is constrained. An example with two risky assets provides a better insight on the problems
related to the solutions. The importance of the geometric properties and their use in the
higher moments portfolio choice context is highlighted.

2.1 INTRODUCTION

Portfolio optimisation taking into account more than the first two moments has been receiving
renewed interest in recent years. Be it on the theoretical side – including its links with the
CAPM extensions – or on what relates to econometric tests or updates based on higher
conditional moments, works like Adcock and Shutes (1999), Athayde and Flôres (1997,
2003, 2004), Jurczenko and Maillet (2001), Pedersen and Satchell (1998), or Athayde and
Flôres (2000), Barone-Adesi (1985), Harvey and Siddique (1999, 2000), Hwang and Satchell
(1999) and Pedersen and Satchell (2000), far from exhausting the full list of contributions,
pay good witness to the growing awareness of the importance of higher moments in both
lines of research.

Since Athayde and Flôres (1997), we have developed a systematic way to treat the key
optimisation problems posed to anyone dealing with higher moments in portfolio theory.
The approach uses a new notation to represent any moment’s tensor related to a multivariate
random vector of asset returns, and can be used either in a utility maximising context or, if
optimal portfolios are defined, by preference relations. The new notation seemed necessary in
order to treat the problem in an absolutely general setting, which means both in the maximum

This chapter was specially prepared as a paper for the Multi-moment Capital Asset Pricing Models and Related Topics Workshop
held in Paris on April 29, 2002; only some of the references from the November 2002 final version have now been updated.
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order, p, of portfolio moments of interest and in the possible patterns of the skewness or
higher-order tensors. The latter is crucial as many works generalising the subject consider
only the marginal higher moments of the returns vector, plainly disregarding any co-moment
of the same order. Though the full set of co-moments can quickly become prohibitive –
which, besides other issues, may pose serious econometric estimation problems for the
applications – and simplifying hypotheses on its pattern will usually be imposed in practice,
it is important to have a way to study the general solution to the problem, irrespective of
further assumptions that might be imposed.

The utility function approach, given its more rigid theoretical constraints and the debates
involving any non-normality-implying (utility) function proposed, seems more suitable for
theoretical developments related, for instance, to the CAPM. Preference ordering of portfo-
lios, made rigorous by Scott and Horvath (1980), can lead to more interesting results in the
strict portfolio optimisation context.

In this chapter, we discuss an interesting geometric structure that arises when optimising
an even moment subject to odd moment constraints. As usual, agents “like” odd moments
and “dislike” even ones.

The structure studied – not the only relevant one in the higher moments context – bears
important consequences and sheds light on the geometry of efficient portfolio sets in moment
space. We believe that its implications have not been fully exploited yet. Moreover, final
testing of the gains brought about by using higher moments relies on extensive practical
applications of the new results. These, in turn, require proper software tools for solving the
nonlinear systems and optimisation problems involved. Better knowledge of the surfaces (or
manifolds) related to them may greatly improve the software design.

This chapter is organised as follows. The next section discusses the optimisation of
variance, and then kurtosis, given the first and third desired portfolio moments; while
Section 2.3 discusses how these results could still be generalised. Section 2.4 outlines,
through an example, a few more properties and analyses the sensitivity of certain solutions.
The final section concludes by explaining how the results can be useful in a duality context
and sets a few lines of further research. The appendix provides a brief explanation of the
notation used.

2.2 MINIMAL VARIANCES AND KURTOSES SUBJECT
TO THE FIRST TWO ODD MOMENTS

Even moments, being always non-negative, are duly associated with spread, and both vari-
ance and kurtosis are used as simple numerical summaries of the dispersion of a set of
observations. For fixed portfolio return and skewness, the latter should perhaps be used more
in practice as an alternative objective function, given the frequency with which the fat-tailed
effect in stock returns has been detected. If we minimise the fourth moment, we will be
directly attacking the heavy extremes of the density, the ultimate culprits of the high volatil-
ity and uncertainty of returns. Most measures of risk focused on the worst scenarios, like
the VaR, would probably be more sensitive to variations in the fourth moment rather than
in variance. This sort of behaviour will be further examined in the example in Section 2.4.
The material in this section draws on parts of Athayde and Flôres (2004) – where a com-
plete solution to the three-moment portfolio problem is found – and Athayde and Flôres
(2003), for the developments related to the kurtosis; proofs omitted here can be found in
these papers.
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2.2.1 Homothetic properties of the minimum variance set

Minimising the variance, for a given mean return and skewness, amounts to finding the
solution to the problem:

Min�L = �′M2� + �1�E�rp� − ��′M1 + �1 − �′ �1��rf �� + �2��p3 − �′M3�� ⊗ ��� (2.1)

where M1, M2 and M3 are, respectively, the matrices related to the first, second and third
moments’ tensors1, � is the vector of n portfolio weights – where short-sales are allowed, rf

is the riskless rate of return, �1� stands for an n × 1 vector of 1s, the lambdas are Lagrange
multipliers and the two remaining symbols are the �-portfolio (given) mean return and
skewness.

Calling

x = M1 − �1�rf the vector of mean excess returns, and

R = E�rp� − rf the set (excess) portfolio return	

the solution to (2.1) is found by solving the n- equation nonlinear system,

M2� = A4R − A2�p3

A0A4 − �A2�
2
x + A0�p3 − A2R

A0A4 − �A2�
2
M3�� ⊗ �� (2.2)

where the scalars:

A0 = x′M2
−1x

A2 = x′M2
−1M3�� ⊗ �� (2.3)

A4 = �� ⊗ ��′M3M2
−1M3�� ⊗ ��

have subscripts corresponding to their degree of homogeneity as (real) functions of the vector
�. A0 and A4, in particular, are positive because the inverse of the covariance matrix is
positive definite.

Premultiplying (2.2) by the solutions �′, gives the optimal variance(s):

�p2 = A4R
2 − 2A2�p3R + A0��p3�2

A0A4 − �A2�
2

(2.4)

an expression where both the numerator and denominator are positive.
The following proposition is fundamental:

Proposition 1 For a given k, let �̄ define the minimum variance portfolio when R = 1
and y3 = 3

√
�p3 = k, and �̄p2 be the corresponding minimum variance, THEN for all opti-

mal portfolios related to return and skewness pairs �R	�p3� such that �p3 = k3R3, or
y3 = kR, the solution to (2.1) will be � = �̄R, with corresponding minimum variance
�p2 = �̄p2R2.

1 See the appendix for a further explanation of the notation used.
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The above result implies that along the direction defined in the returns × skewness plane by
y3 = kR, the optimal variance as a function of the excess return will be a parabola. Taking
now the three-dimensional (3D) space where the standard deviation √

�p2 = y2 axis is added,
in the half-plane formed by a specific direction k in R × y3 space2 and the positive part of
the standard deviation axis, the optimal portfolio surface will be reduced to the straight line
yp2 = ȳp2

u√
k2+1

	 u≥ 0.3 As ȳp2 differs with k, the angle that this line makes with the standard
deviation axis also varies with k.

The proposition then has a far-reaching consequence: the optimal surface in the posi-
tive standard deviation (sd) half of 3D space bears a homothetic property from whatever
standpoint one assumes. Slicing the surface by a sequence of planes parallel to the two odd-
moment axes will generate a sequence of curves starting at the origin and whose expansion
ratio will be equal to that of the respective (constant) variance values. Of course, slicing
it by planes parallel to the sd and (standardised) skewness axes will produce a sequence
of homothetic curves whose expansion ratio will be that of the (excess) returns associated
with each plane. Finally, inspection of equation (2.4) easily convinces one that for the last
combination, i.e. planes parallel to the sd and mean return axes, the same will apply, as
Proposition 1 is also true if the roles of returns and skewness are reversed.

The proposition below is a direct consequence of this important fact.

Proposition 2 For a given level of y2 (or R, or y3), cut the optimal surface with a plane
orthogonal to the sd (or returns, or standardised skewness) axis and project the intersection
curve in the ‘returns × skewness (or sd × skewness, or returns × sd) plane’, THEN if they
exist, the directions in the R × y3 (or y2 × y3, or R × y2) half plane related to the highest
and lowest value, in each axis, of the curve are invariant with y2 (or R, or y3).

The qualification if they exist is important as, especially in the case of cuts parallel to the
sd axis, at least part of the curve may go to infinity. For constant variance cuts, it may be
shown that closed curves will be produced.4 Indeed, for this case, the highest and lowest
directions are particularly noteworthy, as demonstrated by our next proposition.

Proposition 3 The direction in the R × y3 half plane that gives the highest R for all the
minimum variance portfolios with the same standard deviation y2 is unique and related to
the celebrated (Markowitz’s) capital market line (CML). Moreover, in this direction, the
skewness constraint to programme (2.1) is not binding. As regards skewness, although there
may be more than one “highest” (and “lowest”) direction, the constraint property also
applies.

This means that the unique solution to the minimum variance portfolio, for a given mean
return:

� = R

A0

M−1
2 x (2.5)

2 We shall, from now on, use the angular coefficient k to name the corresponding line/direction in the first quadrant of the R × y3
plane.
3 The variable u stands for the coordinates along the axis defined by the “direction k”.
4 The proof is rather technical to be included in this text.
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that defines the famous capital market line in mean × variance space, relating the optimal
variance to the given R,

�R2 = R2

A0

(2.6)

also defines the (unique) direction that will pass through all the points, in each curve, yielding
the maximum mean return. In other words, in the R × y3 half plane, this direction is the
geometric locus of all the tangency points between each (projected) curve and a straight
line, parallel to the skewness axis, which cuts the mean return axis in the maximum mean
return portfolio value related to the set variance (that defines the cut). This last statement is
ensured by the well-known duality result in Markowitz world.

Skewnesses – and a k – can also be associated with these optimal portfolios, it being
evident that they are independent of the given y2. It can be proved that the k – the angular
coefficient of the line related to the extreme means – will be equal to:

kR = yR3

R
=

3
√

w′M3�w ⊗ w�

A0

	 where w = M−1
2 x (2.7)

Hence, kR is indeed an invariant and all maximum mean returns for given variances lie in
the same direction in mean × skewness space.

Contrary to the previous, mean returns, case, the optimal weights for the skewness extremes
are defined implicitly by a nonlinear system like (2.2). When �p3 = 1, we have a solution
portfolio �s such that:

�s = 1

Ā4

M−1
2 M3��S ⊗ �S� (2.8)

The homothecy implies that �s = �s
3
√

�s3 = �sys3 is a solution to (2.2), ensuring an optimal
variance �s2 = �̄s2�ys3�2. A corresponding (excess) return and a direction, both independent
of the variance level, can be found as:

Rs = R̄syp3 ks = 1/R̄s (2.9)

implying that all these optimal portfolios lie in the same direction.
Combining both results gives a rectangular envelope that circumscribes, in the first

quadrant of the mean × skewness plane, the corresponding part of the constant variance
curve.

2.2.2 The minimum kurtosis case

The initial step now is minimising kurtosis for a given skewness and expected return:

Min��′M4�� ⊗ � ⊗ �� + ��E�rp� − ��′M1 + �1 − �′ �1��rf �� + 
��p3 − �′M3�� ⊗ ���
(2.10)

The first-order conditions are:

4M4�� ⊗ � ⊗ �� =�x + 3
M3�� ⊗ ��

R =E�rp� − rf = �′�M1 − rf �1�� = �′x

�p3 =�′M3�� ⊗ ��

(2.11)
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Defining

B�−2� =x′ �M4�� ⊗ � ⊗ I��−1 x

B0 =x′ �M4�� ⊗ � ⊗ I��−1 M3�� ⊗ ��

B2 = �� ⊗ ��′M′
3 �M4�� ⊗ � ⊗ I��−1 M3�� ⊗ ��

with the subscripts chosen according to the degree of homogeneity of the term with respect
to the vector �, one can find the values of � and 
 and arrive at the nonlinear system that
characterises the solution to (2.10):

M4�� ⊗ � ⊗ �� = B2R − B0�p3

B�−2�B2 − �B0�
2
x + B�−2��p3 − B0R

B�−2�B2 − �B0�
2
M3�� ⊗ �� (2.12)

The optimal kurtosis will be given by:

�p4 = B2R
2 − 2B0R�p3 + B�−2���p3�2

B�−2�B2 − �B0�
2

(2.13)

Noticing that B�−2� and B2 are positive, because the matrix in their middle is the inverse of
a positive definite matrix, it can be proved that both the numerator and the denominator of
the expression above are positive.

It is important to highlight the similarities between the pairs of formulas (2.2)–(2.12) and
(2.4)–(2.13), as they are at the heart of the similar developments that follow. The first is a
key proposition, close to Proposition 1:

Proposition 1∗ For a given k, all the minimum kurtosis portfolios related to expected
returns, skewness pairs �R	�p3� such that �p3 = k3R3, or y3 = kR, are given by � = �R,
where �̄ defines �̄p4 , the (minimum) kurtosis of the optimal portfolio when R= 1 and y3 =k.
Moreover, the minimum kurtosis for any pair of constraints in the k-line will be �p4 = �̄p4R4,
or yp4 = ȳp4 �R�.

The consequence of the above proposition is that exactly the same homothecy applies
in 3D space defined by the standardised kurtosis axis and the two odd-moment axes. The
results in Proposition 2 are then easily translated to the present context and the following is
valid as well:

Proposition 3∗ The direction in the R × y3 half plane that gives the highest R for all the
minimum kurtosis portfolios with the same standardised kurtosis y4 is unique. Moreover,
in this direction, the skewness constraint to programme (2.10) is not binding. As regards
skewness, there is at least one direction giving the maximum skewness, where the constraint
property applies.

The solution to the problem of minimising kurtosis for a given excess return is:

M4��R ⊗ �R ⊗ �R� = R

B�−2�

x (2.14)
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which, when R = 1, becomes:

M4��R ⊗ �R ⊗ �R� = 1

B�−2�

x (2.15)

The systems of weights defined by �R =�RR are solutions to (2.12); thus, one only needs to
find one portfolio �R to generate the whole set of minimum kurtosis portfolios for a given
R. The skewness corresponding to �R is given by:

�R3 = B0R

B�−2�

= B0

B�−2�

R3 (2.16)

so that the angular coefficient

kR =
(

B0

B�−2�

)1/3

(2.17)

defines a direction in the expected returns × skewness plane which is the “maximum mean
returns line” for a given (minimum) kurtosis.

The “maximum mean returns line” divides the minimum iso-kurtosis curves into two parts;
since agents want the highest possible skewness, they will probably work with the upper half
of the curve. In contrast to the classical case of minimising variance for a given return, there
is no closed form for the portfolio weights �R, as can be seen from (2.15). However, it is
possible to show that this function is strictly convex in its entire domain, therefore implying
that the solution is unique.

The highest/lowest skewness directions, as in the case of variance, will be the ones
associated with the solution of the problem of finding the lowest kurtosis subject to a given
skewness. Calling these portfolios �s, they are implicitly defined by the system

M4��s ⊗ �s ⊗ �s� = �s3

B2

M3 ��s ⊗ �s� (2.18)

the portfolio that solves the problem when �p3 = 1 is naturally defined by:

M4��s ⊗ �s ⊗ �s� = 1

B2

M3 ��s ⊗ �s� (2.19)

It can also easily be verified that the mean return related to the solution of (2.18) is

R = �s3

B2

B0 (2.20)

so that the directions are defined by

ks =
(

B0

B2

)−1/3

(2.21)

Unfortunately, in this case, there can be more than one solution, and consequently more than
one direction with a local maximum skewness for a given level of kurtosis. Notwithstanding
this, the projection of each iso-kurtosis curve will also be enveloped, in the first quadrant,
by the two axes and two tangent lines parallel to them.
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2.3 GENERALISING FOR HIGHER EVEN MOMENTS

We now consider the general case of minimising an even moment given the two first odd
moments. The Lagrangian of the problem will be:

�′Mp�
⊗�p−1� + ��R − �′x� + 
��p3 − �′M3�

⊗2� (2.22)

giving the first-order conditions:

pMp�
⊗�p−1� = �x + 3
M3�

⊗2

R = �′x

�p3 = �′M3�
⊗2

(2.23)

Noticing that Mp�
⊗�p−1� =Mp��

⊗�p−2� ⊗ In��, and that matrix Mp��
⊗�p−2� ⊗ In� is symmet-

ric and positive definite, the following system can be formed from (2.23) to give the values
of the multipliers:

pR = �x′�Mp�
⊗�p−2� ⊗ In�

−1x + 3
x′�Mp�
⊗�p−2� ⊗ In�M3�

⊗2

p�p3 = ��M3�
⊗2�′�Mp�

⊗�p−2� ⊗ In�
−1x + 3
�M3�

⊗2�′�Mp�
⊗�p−2� ⊗ In�M3�

⊗2 (2.24)

Defining

B2−p = x′ [Mp��
⊗�p−2� ⊗ In�

]−1
x

B4−p = x′ [Mp��
⊗�p−2� ⊗ In�

]−1
M3�

⊗2

B6−p = ��⊗2�′M′
3

[
Mp��

⊗�p−2� ⊗ In�
]−1

M3�
⊗2

with the subscripts corresponding to the generalised degree of homogeneity with respect to
the vector of weights, the final solution comes from the system:

�B2−pB6−p − B 2
4−p�Mp�

⊗�p−1� = �B6−pR − B4−p�p3�x + �B4−pR − B2−p�p3�M3�
⊗2 (2.25)

the optimal portfolio pth moment being:

�pp = B6−pR
2 − 2B4−pR�p3 + B2−p��p3�2

B2−pB6−p − B4−p2

(2.26)

Again, the similarities between (2.2)–(2.12)–(2.25) and (2.4)–(2.13)–(2.26) should be
stressed.

The following result summarises all the properties of the solutions set.

Theorem 1 For a given p = 2	 4	 � � � , consider in �R	 y3	 yp� space of standardised
moments an iso-pth moment curve � of solutions to (2.22). THEN:

i) the optimal portfolios set is contained in the cone 
O� ∗ � , where O = �0	 0	 0� is the
origin of �R	 y3	 yp� space;
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ii) the projection of � in the R × y3 plane is a curve: a) symmetric to the origin and
b) inscribed in a rectangle whose sides are parallel to the axes; the vertical and horizontal
sides correspond, respectively, to the highest (and lowest) R and y3 values that produce
a solution in � .

Proof (we outline the steps of the proof) For proving i) one first follows steps similar to
those in Propositions 1 and 1∗, showing that on each line passing through the origin and a
general point �R	 y3�, the solutions to (2.22) increase linearly either with R – if the solution
to �1	 y3/R� is taken as the fundamental one – or with y3 – if the solution to �R/y3	 1� is the
one fixed. As the origin O = �0	 0	 0� solves (2.22), this is sufficient to demonstrate that any
solution will be in the cone. In the case of ii), the symmetry is seen by the fact that reverting
to the pair �−R	−y3� does not change either (2.25) or (2.26). As regards the tangents, a
reasoning similar to the ones in the previous section determines the points relative to the
highest R and y3, by symmetry the points of the lowest R and y3 are obtained and the
rectangle can be traced. �

This basic result is important in finding the efficient portfolios set for the three moments
at stake. It is easy to convince oneself that not all points in the cone will characterise an
efficient portfolio, though, of course, the efficient set will be contained in the cone (see
Athayde and Flôres, 2004). Moreover, one could be tempted to derive the following:

(false) Corollary If problem (2.22) has a solution THEN the optimal value is unique.

Indeed, by Theorem 1, if (2.22) has a solution then the optimal pth moments must lie in
the cone. They will be found in the intersection of a vertical line through the point defined
by the given odd moments in the R × y3 plane and the cone. Simple properties of a cone in
finite-dimensional Euclidean spaces ensure that this intersection is unique.

This nice property would mean that the knowledge of the geometric structure of the
optimal portfolios set allows a simple and elegant proof of uniqueness. However, such an
argument is circular, as the curve � used to characterise the cone is supposedly the curve
already formed by the minimum pth moments, related to the optimal solutions of (2.25). It is
worth reminding ourselves that system (2.25), together with its related cases (2.2) and (2.12),
implicitly defines the optimal weights, and may as well have more than one solution. These
other points either will be local, not global, optima or it might even happen that different
optimal vectors � could yield the same optimal pth moment in (2.26). Propositions 1 to
3 (and 1∗ and 3∗) are valid for any of these solutions – thus meaning that even different
“solution cones” may exist; but Theorem 1 considers, by hypothesis, the “optimal cone”,
and so the corollary is senseless. Unfortunately, at the present stage, we do not have a
general, deeper knowledge of the structure of the solutions set. Moreover, the hypothesis
also requires the existence of a solution; rigorous conditions for guaranteeing this, as regards
system (2.25), are still an open question.

An interesting special case of (2.22) is when only a mean return restriction is imposed, the
skewness constraint being disregarded. Without much difficulty one sees that the first-order
conditions become:

pMp�
⊗�p−1� = �x

R = �′x (2.27)
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So that the optimal weights must solve the system

�B2−p�Mp�
⊗�p−1� = Rx (2.28)

and the corresponding pth moment bears the following relationship with the given return:

�pp

R2
= �B2−p�

−1 (2.29)

In this case, the homothecy property implies that only one system needs to be solved, namely,
the one obtained by setting R = 1 in (2.28).

2.4 FURTHER PROPERTIES AND EXTENSIONS

In order to give a further insight, both on the geometric aspects discussed as well as on
the difficulties involved in the solution of system (2.28), we consider the special problem
of minimising kurtosis given expected return in the case of two assets and setting to zero
all cokurtoses where an asset appears only once. This leaves us with three distinct non-zero
elements in the kurtosis tensor, and the M4 matrix – shown, in the general case, in the
appendix – becomes: [

�1 0 0 �12 0 �12 �12 0
0 �12 �12 0 �12 0 0 �2

]

The simplified notation used for the subscripts, suppressing repetition of identical indices,
stresses the identical values and should cause no confusion. Notice that, unless the asset
distributions are singular, all entries are strictly positive.

Calling � = ��1	�2�’ the vector of weights, and noticing that:

i) M4�
⊗3 =

[
�3

1�1 + 3�1�
2
2�12

3�2
1�2�12 + �3

2�2

]
ii) matrix

[
M4��

⊗2 ⊗ I2�
]−1

will be equal to:

�−1

[
�2

1�12 + �2
2�2 −2�1�2�12

−2�1�2�12 �2
1�1 + �2

2�12

]

where � = �4
1�1�12 + �2

1�
2
2��1�2 − 3�2

12� + �4
2�12�2 is the determinant of the direct matrix,

one is ready to build up system (2.28). Of course, as stated in the previous section, only
one solution matters, namely that which considers R = 1. We shall, however, impose the
additional assumptions that the marginal kurtoses are equal (i.e., �1 =�2 =�) and that excess
returns for both assets are also equal (to a common value x). With this, we can finally write
system (2.30):

��5
1���12 + 2�2� − 4�4

1�2��12 + �3
1�

2
2�3�2

12 + 7��12� − 12�2
1�

3
2�

2
12 + 3�1�

4
2�

2
12�x

= �4
1��12 + �2

1�
2
2��

2 − 3�2
12� + �4

2��12

�3�4
1�2�2��12 + �2

12� − 12�3
1�

2
2�

2
12 + �2

1�
3
2�3�2

12 + ��12 + 2�2� − 4�1�
4
2��12 + �5

2��12�x

= �4
1��12 + �2

1�
2
2��

2 − 3�2
12� + �4

2��12 (2.30)



Geometric Aspects of Portfolio Optimisation with Higher Moments 47

Given the symmetry of the parameter values, the optimal weights will be identical, it being
easy to see that their common value is:

� = 1
2x

(2.31)

These weights, however, can be related to either maxima or minima. For the latter,
the bordered Hessian sufficient condition5 amounts, in this case, to checking whether
matrix ⎡

⎣12�2�� + �12� 24�2�12 −x
24�2�12 12�2�� + �12� −x

−x −x 0

⎤
⎦ (2.32)

has a negative determinant. Replacing � by its value in (2.31), the condition becomes:

6��12 − �� < 0 or �12 < � (2.33)

The symmetric weights solution produces a minimum only if the non-null cokurtosis is
smaller than the common marginal kurtosis.

This rather simple example may serve as an illustration of how far intuition can help
when considering higher moments, as well as of the impact of simplifications in the higher-
moment tensors. The final solution is independent of the marginal kurtoses and of the even
cokurtosis. Indeed, as the risk measures have a completely symmetric structure as regards
the two (risky) assets, the identical weights can be found by direct solution of the excess
return constraint. The higher the identical return, obviously the less will be purchased of
each risky asset – as the portfolio excess return is fixed at 1 – and more will be put in the
riskless asset.6

Given the similar roles played by kurtosis and variance, we could then expect that the
same would apply for the identical weights that result when equal marginal variances are
used instead of kurtosis. In fact, (2.31) is exactly the solution to (2.5) in this case, the
(common) variances and covariances playing no role at all. Moreover, use of the bordered
Hessian condition shows that a minimum exists only if

�12 < � (2.34)

Though “identical” to (2.33), (2.34) will always be valid if the assets’ covariance is negative,
which cannot happen in the case of the even cokurtosis. Indeed, in our simplified kurtosis
context, there is no room for diversification.

Absent from (2.31) – in its two versions/solutions – the risk measures do, however, play
a role. Beyond determining whether a minimum has been achieved, they explicitly appear
in the shadow price of the restrictions, given by the value of the Lagrange multipliers.
These are equal to � = �+�12

2x2 in the variance case, and to � = �+�12
2x2 in that of kurtosis.7

The formal identity of the two values hides different behaviours. Again, in the case of the
second moment, a negative covariance may substantially decrease “the cost” of the unit

5 See, for instance, Theorem 9.9, page 202, in Panik (1976).
6 Asymptotically, all the weight will go to the riskless asset.
7 The reader should keep in mind that both � and �12 have different meanings in the two formulas.
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return restriction. On the other hand, both (non-negative) kurtoses add up, penalising more
heavily an increase in the fixed return.

Summing up, the example shows that the choice to minimise either kurtosis or variance
(in this very simple, symmetric case) has, in spite of producing exactly the same solution
weights, fairly different implications. Moreover, radical simplifications in the moments
tensor may produce rather particular solutions. A small change in the example, like allowing
for different marginal kurtoses, would completely alter the above discussion. Informally
speaking, introducing higher moments in portfolio choice makes it a “more nonlinear”
problem and, consequently, much more sensitive to small changes in the initial conditions.

2.5 CONCLUDING REMARKS

The availability of a general method to treat portfolio choice in a higher-moments context
seems an unquestionable advantage. We outlined in the previous sections one such method
that allows for a compact, analytical treatment of all formulas involved in the optimisation
problem. Thanks to this, powerful geometric insights could be gained.

Nevertheless, the task before anyone interested in the subject is still formidable. A basic
existence result and more insights on the solutions set would be welcome. Final characteri-
sation of the efficient portfolios set requires more than the techniques discussed here, duality
methods being needed to completely identify the efficient points. We solved this up to the
fourth moment, Athayde and Flôres (2003, 2004), but a general method seems possible.
Moving from static to dynamic optimisation frameworks generates additional, rather difficult
theoretical and computational problems.8

Last, but not least, as glimpsed in Section 2.4, the number of different situations in
the higher-moments case is extremely large; a great probability existing of senseless or
unattractive special formulations. These can only be sorted out through a combination of more
theoretical findings with several examples and applied experiments. The notation developed,
and its corresponding algebra, may help in designing many of these experiments.

APPENDIX: THE MATRIX NOTATION FOR THE
HIGHER-MOMENTS ARRAYS

Dealing with higher moments can easily become algebraically cumbersome. Given an
n-dimensional random vector, the set of its pth order moments is, as a mathematical object,
a tensor. The second-moment’s tensor is the popular n × n covariance matrix, while that
of the third moment can be visualised as an n × n × n cube in three-dimensional space.
However, the tensor notation, which is so useful in physics, geometry and some areas of
statistics (see, for instance, McCullagh, 1987), did not seen appropriate for dealing with the
portfolio choice problem. We thus developed a special notation, which allows one to perform
all the necessary operations within the realm of matrix calculus. The advantages of this are
manifold. Beyond having a synthetic way to treat complicated expressions, the mathematical
tools required are standard linear algebra results and, with the help of Euler’s theorem –
as most real functions involved are homogeneous in the vector of portfolio weights – a
differential calculus easily ensues. Moreover, the different formulas and systems arrived at

8 Work in this direction has been initiated with Berç Rustem (Imperial College, London).
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are written in a compact and straightforward way, easily translated into formal programming
languages.

Before presenting the notation, we remind the reader that, throughout the chapter we
deal with all the possible p-moments of a given n-dimensional random vector of asset
returns. Undoubtedly, the difficulty in manipulating all these values simultaneously has been
a deterrent to tackling the problem in its full generality. Thinking of skewness and kurtosis,
for instance, the respective three- and four-dimensional “cubes”, where several identical
values are found, have n3 and n4 elements. Of course, in practice, gathering all these values
may quickly become a formidable task. Indeed, as an example, the number of different

kurtoses is, in principle,
(

n + 3
4

)
, which, in the case of five assets, gives 70 values to be

computed. It is, then, very likely that, in each practical problem, either a significant number
of co-moments will be set a priori to zero or another simplifying assumption will be used,
and very seldom will one work with the full set of cross moments. However, as stated in
the introduction, the great variety of possible assumptions is an extra argument for a general
treatment of the problem.

Our notation transforms the full pth moment’s tensor, with np elements, into a matrix of
order n × np−1 obtained by slicing all bidimensional n × np−2 layers defined by fixing one
asset and then taking all the moments in which it figures at least once and pasting them, in
the same order, sideways. Row i’ of the matrix layer, which corresponds to having fixed the
ith asset, gives – in a pre-established order – all the moments in which assets i and i′ appear
at least once. Of course, assets must be ordered once and for all and this order respected in
the sequencing of the layers and in the numbering of the rows of each layer. Accordingly,
a conformal ordering must be chosen, and thoroughly used, for the combinations (with
repetitions) of n elements into groups of p-2 that define the columns of each matrix layer.

In the case of kurtosis, for instance, two indices/variables/coordinates must be held con-
stant. Calling �ijkl a general (co-) kurtosis, when n = 2, the resulting 2 × 8 matrix will be:

[
�1111 �1112 �1121 �1122 �1211 �1212 �1221 �1222

�2111 �2112 �2121 �2122 �2211 �2212 �2221 �2222

]

where, as expected, many entries are identical.
Now suppose that a vector of weights � ∈ Rn is given, and M1	 M2, M3	 � � � and Mp stand

for the matrices containing the expected (excess) returns, (co)variances, skewnesses … and
p-moments of a random vector of n assets. The mean return, variance, skewness … and
pth moment of the portfolio with these weights will be, respectively: �′M1, �′M2�, �′M3

��⊗�� … and �′Mp��⊗�⊗� � � � ⊗��≡�′Mp�
⊗p−1 where ‘⊗’ stands for the Kronecker

product.
The above expressions provide a clue to the mentioned advantages of the notation. The

fact that the tensors were transformed into matrices allows the use of matrix algebra – and
differential calculus – in all expressions and derivations, giving way to compact and elegant
formulas. It can be seen immediately that, as real functions of �, the four expressions above
are homogenous functions of the same degree as the order of the corresponding moment.
This means that Euler’s theorem can easily be used in the needed derivations.

As an example, the derivative of the portfolio kurtosis with respect to the weights will be:

�

��
��′M4�� ⊗ � ⊗ ��� = 4M4�� ⊗ � ⊗ �� = 4M4�

⊗3
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3
Hedge Fund Portfolio Selection with

Higher-order Moments: A Nonparametric
Mean–Variance–Skewness–Kurtosis

Efficient Frontier

Emmanuel Jurczenko, Bertrand Maillet and Paul Merlin

ABSTRACT

This chapter proposes a nonparametric optimisation criterion for the static portfolio selection
problem in the mean–variance–skewness–kurtosis space. Following the work of Briec et al.
(2004 and 2006), a shortage function is defined, in the four-moment space, that looks simul-
taneously for improvements in the expected portfolio return, variance, skewness and kurtosis
directions. This new approach allows us to optimise multiple competing and often conflict-
ing asset allocation objectives within a mean–variance–skewness–kurtosis framework. The
global optimality is here guaranteed for the resulting optimal portfolios. We also establish
a link to a proper indirect four-moment utility function. An empirical application on funds
of hedge funds serves to show a three-dimensional representation of the primal nonconvex
mean–variance–skewness–kurtosis efficient portfolio set and to illustrate the computational
tractabilty of the approach.

3.1 INTRODUCTION

The mean–variance decision criterion proposed by Markowitz (1952) is inadequate for allo-
cating wealth when dealing with hedge funds. Not only are hedge fund return distribu-
tions asymmetric and leptokurtic, but they also display significant coskewness and cokurtosis
with the returns of other asset classes, due to the option-like features of alternative invest-
ments (see Weisman, 2002; Goetzmann et al., 2004; Agarwal and Naik, 2004 and Davies
et al., 2004).

Different approaches have been developed in the financial literature to incorporate the
individual preferences for higher-order moments into optimal asset allocation problems,
though no single conclusive approach seems to have emerged yet. These approaches can
be divided between primal and dual program for determining the mean–variance–skewness–
kurtosis efficient frontier.

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd
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Davies et al. (2005) and Berényi (2001 and 2002) use polynomial goal programming
(PGP) to determine the set of the mean–variance–skewness–kurtosis efficient funds of hedge
funds.1 A shortcoming of this primal approach is that the allocation problem solved in the
PGP cannot be related precisely to the expected utility function. In particular, the choice of
the parameters used to weight the moment deviations is not related to the parameters of the
utility function. Another drawback of the estimation of the four-moment efficient frontier via
multi-objective programming is that it is not compliant with the Pareto-optimal definition
of an efficient portfolio frontier. Indeed, minimising deviations from the first four moments
simultaneously only guarantees a solution close to the mean–variance–skewness–kurtosis
efficient frontier. Consequently, no portfolio performance measure can be inferred from
the exercise. Some primal contributions solve analytically the mean–variance–skewness–
kurtosis portfolio optimisation problem. For example, Athayde and Flôres (2002), Adcock
(2003) and Jurczenko and Maillet in Chapter 6 look for the analytical solution characterising
the minimum variance frontier in the mean–variance–skewness–kurtosis space, assuming
shorting, with the objective of minimising the variance for a given mean, skewness and
kurtosis. These approaches are, however, partial since they focus mainly on one objective
of the mean–variance–skewness–kurtosis optimisation program at the cost of the others.2

Dual approaches start instead from a particular specification of the indirect mean–variance–
skewness–kurtosis utility by using a Taylor series expansion of the investors’ objective
functions to determine the optimal portfolios (see, for instance, Guidolin and Timmermann,
2005; Jondeau and Rockinger, 2003 and 2006 and Jurczenko and Maillet in Chapter 1 of
this book.3 While such approaches have been used extensively in empirical applications to
test multi-moment CAPM, they suffer from severe limitations in the context of hedge fund
asset allocations. The Taylor series expansion may converge to the expected utility under
restrictive conditions only. For some utility functions (such as the exponential one), the
expansion converges for all possible levels of return, while for others (e.g. logarithm-power
type utility functions), convergence is ensured only over a restricted range that may be
problematic for some alternative investments due to the presence of leverage effects. In
addition, the truncation of the Taylor series raises several difficulties. In particular, there
is generally no rule for selecting the order of truncation. The inclusion of an additional
moment does not necessarily improve the quality of the approximation (see Chapter 1).
Dual approaches are also hampered by the lack of knowledge of the individual preferences
for the first four moments of the portfolio return distribution and suffer from their lack of
integration with the primal approaches briefly outlined above. Moreover, since the mean–
variance–skewness–kurtosis efficient frontier is a nonconvex surface, previous parametric
primal and dual approaches can only guarantee local optimal solutions to the portfolio
optimisation problems in the four-moment space, not a global one. They inevitably require
one to convexify some part of the nonconvex four-moment efficient frontier by using
ad hoc moment restrictions, separating return distributions or separating utility functions
(see Rubinstein, 1973; Ingersoll, 1987 and Athayde and Flôres, 2004). Dual approaches
carry, in particular, the risk that certain target portfolios based upon particular specifications
of the utility function are infeasible in practice. As the dimensionality of the portfolio

1 For studies of the use of this approach in the mean–variance–skewness portfolio selection case, see Lai (1991), Chunhachinda
et al. (1997), Wang and Xia (2002), Chang et al. (2003) and Sun and Yan (2003).
2 See also Simaan (1993), Gamba and Rossi (1997, 1998a and 1998b), Pressacco and Stucchi (2000) and Jurczenko and Maillet
(2001), for similar optimisation programmes in the mean–variance–skewness space.
3 See Harvey et al. (2004) for the mean–variance–skewness portfolio selection case.
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selection problem increases, it then becomes difficult to develop a geometric interpretation
of the portfolio efficient frontier and to select the preferred portfolio among the boundary
points.

To circumvent these problems, we use a particular distance function – the shortage func-
tion – to incorporate investors’ preferences for higher moments into the optimal construction
of a fund of hedge funds. The shortage function enables us to solve for the multiple con-
flicting and competing allocation objectives without assuming a detailed knowledge of the
preference parameters of the indirect utility function. It integrates the primal and the dual
approaches.

The shortage function, first introduced by Luenberger (1995) in production theory, is a
distance function that looks simultaneously for reduction in inputs and expansion in outputs,
and that is dual to the profit function. It offers a perfect representation of multidimensional
choice sets and can position any point relative to the boundary frontier of the choice set.
It has been used subsequently by Morey and Morey (1999) and Briec et al. (2004) for
gauging the performance of funds in the mean–variance framework, and more recently by
Briec et al. (2006) for solving portfolio selection problems involving significant degrees of
skewness. In this chapter, we extend the shortage function from the mean–variance–skewness
space to the mean–variance–skewness–kurtosis one to take into account the aversion to
kurtosis in addition to individual preferences for expected return, variance and skewness. The
shortage function projects any (in)efficient portfolio exactly onto the four-dimensional mean–
variance–skewness–kurtosis portfolio frontier. It rates portfolio performance by measuring
a distance between a portfolio and its optimal projection onto the primal mean–variance–
skewness–kurtosis efficient frontier. Following the same line of reasoning as Briec et al.
(2004 and 2006), we prove that our shortage function achieves a global optimum on the
boundary of the nonconvex mean–variance–skewness–kurtosis portfolio frontier and establish
a duality result between the shortage function and the indirect mean–variance–skewness–
kurtosis utility function.

Thanks to the global optimality and duality results, the shortage function approach stands
out compared to the existing four-moment primal and dual approaches, which only guarantee
a local optimal solution to the investor’s portfolio optimisation programme. Moreover, our
multi-moment portfolio selection approach is more general than the previous ones since we
are not assuming the existence of a riskless asset and forbidding short-sales.

The remainder of the chapter is organised as follows. In Section 3.2 we describe the optimal
hedge fund portfolio selection program within a four-moment framework. In Section 3.3 we
introduce the shortage function, study its axiomatic properties and establish the link between
the shortage function and the indirect mean–variance–skewness–kurtosis utility function.
Section 3.4 describes the data and hedge fund classification and provides illustrative empirical
results. Section 3.5 concludes. Proofs are presented separately in the appendix.

3.2 PORTFOLIO SELECTION WITH HIGHER-ORDER
MOMENTS

We consider the problem of an investor selecting a portfolio from N risky assets (with
N ≥ 4) in the mean–variance–skewness–kurtosis framework (see Chapter 1). We assume
that the investor does not have access to a riskless asset, implying that the portfolio weights
must sum to one. In addition, we impose a no short-sale portfolio constraint: asset positions
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must be non-negative. Let wp and E denote respectively the �N × 1� vector of weights and
of expected returns for the N risky assets in the portfolio p; � the nonsingular �N × N�
variance–covariance matrix of the risky assets; and � and � represent respectively the(
N × N 2

)
skewness–coskewness matrix and the

(
N × N 3

)
kurtosis–cokurtosis matrix of the

N risky asset returns, defined as (Athayde and Flôres, 2004 and Chapter 2 of this book):

⎧⎪⎪⎨
⎪⎪⎩

∑
�N×N 2�

= ��1�2 · · ·�N �

�
�N×N 3�

= ��11�12 · · ·�1N ��21�22 · · ·�2N �� � � ��N1�12 · · ·�NN �
(3.1)

where �k and �kl are the �N × N� associated submatrices of � and � , with elements
(
sijk

)
and

(
�ijkl

)
, with �i	 j	 k	 l� ∈ �IN ∗�4, and the sign ⊗ stands for the Kronecker product.4

It should be noted that, because of the symmetries, not all the elements of these matri-
ces need to be computed. Only N �N + 1� /2 elements of the �N × N� variance–covariance
matrix must be computed. Similarly the skewness–coskewness and kurtosis–cokurtosis
matrices have dimensions

(
N × N 2

)
and

(
N × N 3

)
, but only N �N + 1� �N + 2� /6 and

N �N + 1� �N + 2� �N + 3� /24 elements are independent.5

The set of the feasible portfolios �p can be expressed as follows:

�p = {wp ∈ IRN 
 w′
p1 = 1 and wp ≥ 0

}
(3.2)

where w′
p is the �1 × N� transposed vector of the investor’s holdings of risky assets and 1 is

the �N × 1� unitary vector.
The mean, variance, skewness and kurtosis of the return of a given portfolio p belonging

to �p are respectively given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
Rp

)= E
[∑N

i=1

(
wpi Ri

)]= w′
p E

�2
(
Rp

)= E
{[

Rp − E
(
Rp

)]2
}

=∑N

i=1

∑N

j=1
wpiwpj �ij = w′

p�wp

s3
(
Rp

)= E
{[

Rp − E
(
Rp

)]3
}

=∑N

i=1

∑N

j=1

∑N

k=1
wpiwpjwpksijk = w′

p �
(
wp ⊗ wp

)
�4
(
Rp

)= E
{[

Rp − E
(
Rp

)]4
}

=∑N

i=1

∑N

j=1

∑N

k=1

∑N

l=1
wpiwpjwpkwpl�ijkl

= w′
p �
(
wp ⊗ wp ⊗ wp

)
(3.3)

4 Let A be an �n × p� matrix and B an �m × q� matrix. The �mn × pq� matrix A ⊗ B is called the Kronecker product of A and B:

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B · · · a1N B
a21B a22B · · · a2N B
�
�
�

�
�
�

� � �
�
�
�

aN1B aN2B · · · aNN B

⎞
⎟⎟⎟⎠

where the sign ⊗ stands for the Kronecker product.
5 For N =4, where these matrices have respectively 16, 64 and 256 terms, ten different elements for the variance–covariance matrix,
20 elements for the skewness–coskewness matrix and 35 elements for the kurtosis–cokurtosis matrix are to be computed.
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with, ∀�i	 j	 k	 l� ∈ 
1	 � � � 	N �4:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rp =∑N

i=1
wpi Ri

�ij = E
{

Ri − E �Ri��

[
Rj − E

(
Rj

)]}
sijk = E

{

Ri − E �Ri��

[
Rj − E

(
Rj

)]

Rk − E �Rk��

}
�ijkl = E

{

Ri − E �Ri��

[
Rj − E

(
Rj

)]

Rk − E �Rk�� 
Rl − E �Rl��

}
where

(
wpi

)
, �Ri�,

(
�ij

)
,
(
sijk

)
and

(
�ijkl

)
represent, respectively, the weight of the asset i in

the portfolio p, the return on the asset i, the covariance between the returns of asset i and j,
the coskewness between the returns of asset i, j and k and the cokurtosis between the returns
of asset i, j, k and l, with �i × j × k × l� = �IN ∗�4.

Following Markowitz (1952) leads to the following disposal representation, denoted �p,
of the set of the feasible portfolios in the mean–variance–skewness–kurtosis space (see Briec
et al., 2004 and 2006):

�p = {mp 
 wp ∈�p

}+ [IR+ × �−IR+� × IR+ × �−IR+�
]

(3.4)

with:

mp = [�4
(
Rp

)
s3
(
Rp

)
�2
(
Rp

)
E
(
Rp

)]′
where mp is the �4 × 1� vector of the first four moments of the portfolio return p. This
disposal representation is necessary to ensure the convexity of the feasible portfolio set in
the mean–variance–skewness–kurtosis space.

The four-moment (weakly) efficient portfolio frontier is then defined as follows:

�p = {mp 
 mq > mp ⇒ mq 
�p

}
The weakly efficient frontier is the set of all the mean, variance, skewness, kurtosis

quadruplets that are not strictly dominated in the four-dimensional space.
The set of the weakly efficient portfolios in the four-moment case is then given in the

simplex as:

�p = {wp ∈�p 
 mp ∈�p

}
(3.5)

By analogy with production theory (Luenberger, 1995), the next section introduces
the shortage function as an indicator of the mean–variance–skewness–kurtosis portfolio
(in)efficiency.

3.3 THE SHORTAGE FUNCTION AND THE
MEAN–VARIANCE–SKEWNESS–KURTOSIS EFFICIENT

FRONTIER

In production theory, the shortage function measures the distance between some point
of the production possibility set and the efficient production frontier (Luenberger, 1995).
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The properties of the set of portfolio return moments on which the shortage function is
defined have already been discussed in the mean–variance plane by Briec et al. (2004) and
in the mean–variance–skewness space by Briec et al. (2006). It is now possible to extend
their definitions to get a portfolio efficiency indicator in the four-moment case.

The shortage function associated with a feasible portfolio p with reference to the direction
vector g in the mean–variance–skewness–kurtosis space is the real-valued function Sg ���
defined as:

Sg

(
wp

)= sup
{
� 
 mp + �g ∈�p	 g ∈ IR+ × IR− × IR+ × IR−

}
(3.6)

with:

{
mp = (�4

(
Rp

)
s3
(
Rp

)
�2
(
Rp

)
E
(
Rp

))′
g = �−g� + gs − g� + gE�′

where g is the directional vector in the four-moment space.
The use of the shortage function in the mean–variance–skewness–kurtosis space can

only guarantee weak efficiency for a portfolio, since it does not exclude projections
on the vertical and horizontal parts of the frontier allowing for additional improve-
ments. Furthermore, portfolios that are weakly dominated in terms of their expected
return, variance, skewness and kurtosis are only weakly mean–variance–skewness–kurtosis
efficient.

The disposal representation of the feasible portfolio set can be used to derive the lower
bound of the true unknown four-moment efficient frontier through the computation of the
associated portfolio shortage function. Let us consider a specific portfolio wk from a sample
of P portfolios – or assets –

(
wp

)
, with p = 
1	 � � � 	P�, whose performances need to be

evaluated in the four-moment dimensions. The shortage function for this portfolio is then
computed by solving the following quartic optimisation program:

w∗
p = Arg

wp

�Max ��

s�t�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E �Rk� + �gE ≤ E
(
Rp

)
�2 �Rk� − �g� ≥ �2

(
Rp

)
s3 �Rk� + �gs ≤ s3

(
Rp

)
�4 �Rk� − �g′

� ≥ �4
(
Rp

)
w′

p 1 = 1

wp ≥ 0

(3.7)

where wp∗ is the �N × 1� efficient portfolio weight vector that maximises the performance,
risk, skewness and kurtosis relative improvement over the evaluated portfolio in the
direction vector g. Using the vectorial notation of the portfolio return higher moments
(3.1) and using the first four moments of the evaluated portfolio k in the expression of the
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direction vector g, the nonparametric portfolio optimisation program (3.7) can then be
restated as:

w∗
p = Arg

wp

�Max ��

s�t�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E �Rk� + �E �Rk� ≤ w′
pE

�2 �Rk� − ��2 �Rk� ≥ w′
p� wp

s3 �Rk� + �s3 �Rk� ≤ w′
p �

(
wp ⊗ wp

)
�4 �Rk� − ��4 �Rk� ≥ w′

p�
(
wp ⊗ wp ⊗ wp

)
w′

p 1 = 1

wp ≥ 0

(3.8)

with:

g = [−�4 �Rk� s3 �Rk� − �2 �Rk�E �Rk�
]′

The optimisation programs (3.7) and (3.8) are special cases of the following standard
nonlinear quartic program:

z∗ =Arg
z

�Min c′z�

s�t�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lj �z� ≤ �j

Qk �z� ≤ �k

Cl �z� ≤ �l

Q∗
q �z� ≤ �q

(3.9)

where z ∈ IRp, Lj ��� is a linear map for j = 
1	 � � � 	 J�, Qk ��� is a positive semi-definite
quadratic form for k, k = 
1	 � � � 	K�, Cl ��� is a cubic form for l, l = 
1	 � � � 	L�, and
Q∗

q ��� is a quartic form for q, q = 
1	 � � � 	Q�. In the case of the portfolio optimisation
programme (3.8), p = n	 J = K = L = Q = 1. The programme is not a standard convex
nonlinear optimisation problem.

Due to the non-convex nature of the optimisation program, we need to state the necessary
and sufficient conditions showing that a local optimal solution of (3.8) is also a global
optimum (see the appendix).

Despite the nonconvex nature of the mean–variance–skewness–kurtosis portfolio selec-
tion program, the shortage function maximisation achieves a global optimum for the cubic
program. This makes the shortage approach superior to the other primal and dual approaches
of the mean–variance–skewness–kurtosis efficient set listed in the introduction, since those
guarantee only a local optimum solution. To our knowledge, it encompasses also all the
existing primal portfolio selection methods with higher-order moments considered in the
financial literature. In the next section, we illustrate the shortage function approach in the
case of hedge fund selection.
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3.4 DATA AND EMPIRICAL RESULTS

Figures 3.1 to 3.8 provide different geometrical representations of a four-moment efficient
frontier obtained after the optimisation of hedge funds in 1296 �64� directions using our
directional distance function approach.

The original data – provided by HFR – consist of monthly net asset values of hedge
funds (expressed in EUR) since January 1995. The maximum number of funds in the
database is reached in September 2004 (4279 funds were observed). We then delete funds
with missing values and normalise fund values to index 100 at the beginning of the final
sample. At the end, 20 funds remain – which can be considered a fair number of funds
for a fund of hedge funds – and the number of observations considered is 120 (from
January 1995 to January 2005) – which can be considered long enough for this kind of
application.

Figure 3.1 (3.2) represents the four-moment optimal portfolios in the mean–variance–
third moment space (the mean–variance–fourth moment space). The maximisation of the
expected return leads, at the optimum, to an increase of the variance – as in the Markowitz
case – and the maximisation (minimisation) of the expected return (variance) implies, for
hedge funds, also an increase (decrease) in the skewness (fourth moment). That is, while the
individual preferences for higher-order moments cause high kurtosis and standard deviation

Figure 3.1 Mean–variance–skewness–kurtosis constrained efficient frontier in the mean–variance–
third moment space. Source: HFR, monthly net asset values (1995–2005), computations by the authors.
The constrained efficient frontier is obtained after optimisation of 20 hedge funds in 1296 directions.
Grey shading represents the level of the fourth noncentral moment.
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Figure 3.2 Mean–variance–skewness–kurtosis constrained efficient frontier in the mean–variance–
fourth moment space. Source: HFR, monthly net asset values (1995–2005), computations by the
authors. The constrained efficient frontier is obtained after optimisation of 20 hedge funds in 1296
directions. Grey shading represents the level of the third noncentral moment.

to be traded for higher expected return and skewness, hedge fund returns do not seem
to exhibit the same type of trade-offs between even or odd moments that are typically
observed in the underlying securities markets. These results are confirmed by Figures 3.3 to
3.8, which present the coordinates of the mean–variance–skewness–kurtosis efficient port-
folios in several moment planes. Indeed, Figure 3.3 shows that mean–variance efficient
portfolios are efficient in terms of kurtosis, but not necessarily in terms of skewness. For
instance, given the mean, it is possible to increase the skewness at the cost of the vari-
ance. It is, however, not possible to decrease the fourth-order moment when controlling
for variance. Likewise, for intermediate or extreme levels of variance, it is possible to
increase the skewness of an optimal portfolio at the cost of its expected return. These obser-
vations contradict the point raised by Davies et al. (2004 and 2005) and Andersen and
Sornette (2001), namely that mean–variance optimisers may be nothing more than skew-
ness minimisers and kurtosis maximisers. Figures 3.4 and 3.5 document the existence in
the four-moment efficient set of a V-shaped relationship between the third moment and the
mean and the variance, and Figures 3.6 and 3.7 illustrate the existence of a concave and
positive relation between the optimal fourth moment and the expected portfolio return and
variance.6

6 Since the properties of the efficient set depend heavily on the technological characteristics of the underlying assets, further
investigations on hedge fund strategies and asset classes are required to assess the generality of our empirical findings.
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(a)

(b)

Figure 3.3 Mean–variance–skewness–kurtosis constrained efficient frontier in the mean–variance
plane. Source: HFR, monthly net asset values (1995–2005), computations by the authors. The con-
strained efficient frontier is obtained after optimisation of 20 hedge funds in 1296 directions. (a) grey
shading represents the level of the third noncentral moment; (b) grey shading represents the level of
the fourth noncentral moment.
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Figure 3.4 Mean–variance–skewness–kurtosis constrained efficient portfolios in the mean–variance
plane. Source: HFR, monthly net asset values (1995–2005), computations by the authors. Optimal
points are obtained after optimisation of 20 hedge funds in 1296 directions.

Figure 3.5 Mean–variance–skewness–kurtosis efficient portfolios in the mean–fourth moment plane.
Source: HFR, monthly net asset values (1995–2005), computations by the authors. Optimal points are
obtained after optimisation of 20 hedge funds in 1296 directions.
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Figure 3.6 Mean–variance–skewness–kurtosis efficient portfolios in the variance–fourth moment
plane. Source: HFR, monthly net asset values (1995–2005), computations by the authors. Optimal
points are obtained after optimisation of 20 hedge funds in 1296 directions.

Figure 3.7 Mean–variance–skewness–kurtosis constrained efficient portfolios in the mean–third
moment plane. Source: HFR, monthly net asset values (1995–2005), computations by the authors.
Optimal points are obtained after optimisation of 20 hedge funds in 1296 directions.
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Figure 3.8 Mean–variance–skewness–kurtosis constrained efficient portfolios in the variance–third
moment plane. Source: HFR, monthly net asset values (1995–2005), computations by the authors.
Optimal points are obtained after optimisation of 20 hedge funds in 1296 directions.

3.5 CONCLUSION

In this chapter we have introduced a general method for deriving the set of efficient
portfolios in the nonconvex mean–variance–skewness–kurtosis space, using a shortage opti-
misation function (see Luenberger, 1995 and Briec et al., 2004 and 2006). The portfo-
lio efficiency is evaluated by looking simultaneously for variance and kurtosis contrac-
tions and mean and (positive) skewness expansions. This shortage function is linked to
an indirect mean–variance–skewness–kurtosis utility function. An empirical application on
funds of hedge funds provides a three-dimensional representation of the primal nonconvex
four-moment efficient portfolio frontier and illustrates the computational tractabilty of the
approach.

We approximate the true but unknown mean–variance–skewness–kurtosis efficient fron-
tier by a nonparametric portfolio frontier, using an efficiency measure that guarantees global
optimality in the four-moment space. In addition, our shortage function can adapt itself
to any particular multi-moment asset allocation focusing on return maximisation, skewness
maximisation, variance minimisation and kurtosis minimisation. Furthermore, dual interpre-
tations are available without imposing any simplifying hypotheses (see Briec et al., 2006).
Unfortunately, no global optimal solution can be guaranteed for the indirect mean–variance–
skewness–kurtosis utility function. These findings indicate that future developments in asset
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allocation models should probably focus on developing portfolio optimisation methods using
moment-based primal, rather than utility-based dual, optimisation approaches.

A natural extension of our framework is the development of a shortage function excluding
any projections on the vertical or horizontal parts of the nonconvex feasible portfolio set and
optimising the direction vector in the four moment dimensions.

Another extension of our work is the development of a more robust nonparametric multi-
moment efficient frontier. This can be done either by working with robust estimators (see
Parkinson, 1980; Brys et al., 2004; Kim and White, 2004 and Ledoit and Wolf, 2003, 2004a
and 2004b) of the conventional higher-order moments, by using proper statistical inference
tools for the nonparametric efficient frontier (see Simar and Wilson, 2000) or by substituting
conventional moment definitions by alternative ones such as L-moments (see Hosking, 1990
and Serfling and Xiao, 2005). Finally, it would be of great interest to use our approach to
gauge the performance of hedge funds.

APPENDIX

Let the local solution of the following quartic optimisation programme:

w∗
p =Arg

wp

�Max ��

s�t�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E �Rk� + �gE ≤ E
(
Rp

)
�2 �Rk� − �g� ≥ �2

(
Rp

)
s3 �Rk� + �gs ≤ s3

(
Rp

)
�4 �Rk� − �g′

� ≥ �4
(
Rp

)
w′

p1 = 1

wp ≥ 0

where wp∗ represents the �N × 1� efficient portfolio weight vector that maximises the per-
formance, risk, skewness and kurtosis improvement with respect to the ones of the evaluated
portfolio in the direction vector g be

(
�∗	w∗

p

)
. Then

(
�∗	 w∗

p

)
is also a global solution of

(3.7).

Proof Let us denote:

D ={(�	 wp

)∈ �IR+ × IRN � 
 E �Rk� + �gE ≤ E
(
Rp

)
� (3.10)

�2 �Rk� − �g� ≥ �2
(
Rp

)
� s3 �Rk� + �gs ≤ s3

(
Rp

)
��4 �Rk� − �g′

� ≥ �4
(
Rp

)
with

(
w′

p1
)= 1 and wp ≥ 0

}
We have:

Sg

(
wp

)= Max
{
� 

(
�	 wp

)∈ D
}

(3.11)

Assume that the couple
(
�1	 wp1

)
constitutes a local maximum, but is not a global one. In

that case, there exists a couple
(
�2	 wp2

)∈ D such that:

�2 > �1 (3.12)
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But since �p satisfies the free disposal property, this implies that for all � ∈ 
�1	 �2�,
there exists wp ∈ �p such that

(
�	 wp

) ∈ D. Therefore, there does not exist a neighbour-
hood V

[(
�1	 wp1

)
	 �
]

where � > 0, such that �1 ≥ � for all
(
�	 wp

) ∈ V
[(

�1	 wp1

)
	 �
]
.

Consequently, if
(
�∗	w∗

p

)
is a local maximum, then it is also a global maximum. �
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Higher-order Moments and Beyond

Luisa Tibiletti

ABSTRACT

As we skip beyond the realms of the normal world, many desirable properties fall short.
Specifically, the central moments of linear combinations of random variables do not preserve
the features of the addenda. For example, not even null-correlated returns preserve the
signs of odd central moments as the returns are combined into a portfolio. A mathematical
explanation of this counter-intuitive phenomenon is provided. However, using one-sided
higher-order moments instead of higher-order moments may be a way to overcome these
drawbacks. Thanks to the fact that they are coherent risk measures, a number of desirable
marginal ordering properties are preserved.

4.1 INTRODUCTION

In recent years, there has been a growing interest in multi-moment capital asset pricing models
(see Adcock, 2004; Athayde and Flôres, 2004a; Jondeau and Rockinger, 2003 among others).
The widespread use of derivatives in financial business has led to a relaxing of the assumption
of normality and, more generally, ellipticality in return distributions. Nevertheless, as we
leave behind the “artificial” elliptical world, the second-order moment, i.e. the variance,
becomes a questionable tool for measuring large risks. So, the attention of both theorists and
practitioners has been focused on higher-order moments as appropriate tools for modelling
extremal events (see the seminal papers of Rubinstein, 1973 and Kraus and Litzenberger,
1976 and, more recently, Jurczenko and Maillet, 2001, 2004a, 2004b; Berényi, 2004 and
Dittmar, 2002). Unfortunately, outside the elliptical world, many desirable properties fall
short. Specifically, the moments of linear combinations of random variables do not preserve
the features of the addenda. For example, let’s consider a risk-averse agent preferring
positively skewed portfolios. One might think that adding a positively skewed asset to a
positively skewed portfolio makes no change to the final skewness. Unfortunately, this
conjecture may turn out to be false. By means of some counter-examples we show that,
notwithstanding the addenda being equally skewed, a switching in skewness direction may
even occur. The mathematical explanation of this counter-intuitive phenomenon can be given
by a thorough insight into the formulas of higher-order moments.

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd
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The aim of this chapter is just to deepen this puzzling problem. Pitfalls in using central
moments for making asset selection are outlined. Besides the case of stochastic independence
amongst the assets, even the estimation of the sign of the portfolio moments seems to be a
challenging task. Moreover, no bounds for them seem to be available.

But a way to overcome these drawbacks may exist. Instead of basing the measures of risk
on the familiar pth order moments of the distributions, we suggest using the pth one-sided
order moments, with any integer p≥2 (if p=2 the second left-sided moment is the standard
semi-deviation). This choice can be supported by the following justifications: 1) insofar as
we are looking to control the risk of losses, focusing on the left tail of the return distribution
is just a consistent approach, 2) no additional computational efforts are required with respect
to those needed for calculating the familiar moments, 3) left-sided moments are compatible
with the expected utility theory (Fishburn, 1977), 4) measures of risk based on one-sided
moments are coherent measures of risk according to the definition by Artzner et al. (1999).
Specifically, one-sided moments enjoy a subadditivity property. Thanks to this feature a set
of desirable properties can be guaranteed. First of all, we can control not only the sign (which
is always nonnegative) but also the magnitude of the one-sided moments of the portfolio (by
means of upper bounds). Moreover, if we focus on the standardised one-sided moment of
order p, a sharp upper bound of a sum is achievable as the sum of the standardised one-sided
pth order moments of the addenda. Nevertheless, the use of one-sided higher-order moments
is not drawback-free. One concern is the absence of a closed form for portfolio return risk
measures apart from the case of independence (see Section 4.4.1.).

A further point should be stressed. Let X = �X1� � � � Xn� and Y = �Y1� � � � � Yn� be two
random vectors collecting the returns with the same mean. As X and Y have the same
dependence structure, i.e. a common copula, if E �Xi�

p ≤ E �Yi�
p for all i = 1� � � � � n, does

it imply that E �
∑n

i=1 ciXi�
p ≤ E �

∑n
i=1 ciYi�

p for all ci ∈ �+?
One might expect that for two portfolios with the same dependence structure, the higher

the pth order moments of the marginals, the higher the pth order moment of the portfolio.
Unfortunately, due to the instability of the moments of linear combination, this conjecture
may turn out to be false for all p ≥ 2. On the other hand, sufficient conditions for marginal
order preservation can be stated as long as marginal order is given in terms of one-sided
higher moments instead of higher moments.

This chapter is organised as follows. In Section 4.2, misinterpretations in using higher-
order moments are outlined. Noncoherence in risk measures is explored in Section 4.3. In
Section 4.4, one-sided moments are proved to be a way to overcome previous drawbacks. A
further problem of marginal ordering preservation under portfolio is examined in Section 4.5.
Section 4.6 concludes the chapter.

4.2 HIGHER-ORDER MOMENTS AND SIMPLE ALGEBRA

Let X = �X1� � � � �Xn� be a random vector. Suppose Xi� i = 1� � � � � n is the return of the ith
financial position. For the sake of notational simplicity, we will deal with zero-mean random
variables, i.e. E �Xi� = 0� i = 1� � � � � n where E ��� is the expectation operator.1 Moreover,
let moments exist up to the order needed. Let:

S = c1X1 + � � � + cnXn

1 Note that any X can be transformed into the null-mean variable X − E �X�.
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for any ci ∈ �. The pth order (central) moment, with p ≥ 2, can easily be worked out by
means of the polynomial formula

E �c1X1 + · · · + cnXn�
p =∑ p!

p1!p2!� � � pn!
c

p1
1 c

p2
2 � � � cpn

n E
(
X

p1
1 �X

p2
2 � � � Xpn

n

)
(4.1)

s�t�

{
p1 + p2 + · · · + pn = p

pi �= p� i = 1� � � � � n

for all non-negative integers p1� p2� � � � � pn. Straightforward calculations highlight the influ-
ence of the pth moment of the marginals over the pth moment of the portfolio:

E �c1X1 + · · · + cnXn�
p =

n∑
i=1

c
p
i E
(
X

p
i

)+∑ p!
p1!p2!� � � pn!

c
p1
1 c

p2
2 � � � cpn

n E
(
X

p1
1 �X

p2
2 � � � Xpn

n

)
It is worthwhile noting that the latter addenda are non-null in most cases, and they upgrade
in number and in weight as n increases. So that, for large portfolios, co-moments may have
the most relevant impact over the pth moment of the portfolio. In conclusion, the portfolio’s
pth moment may be very far removed from the sum of the asset moments.

Just to prove our point, let’s consider the number of addenda in (4.1); it is C0
n�p =(

n + p − 1
p

)
= �n+p−1�!

p!�n−1�! . Let p = 3. If n= 10, the number of addenda is C0
10�3 = 220, but only

10 (about 4.5 % of all addenda) depend on the marginal third moments, and the remaining
210 on the co-moments. As n increases, the relative weight of the co-moments increases
as well. For example, if n = 100, the number of addenda becomes C0

100�3 = �102�!
3!�99�! = 171 700,

where only 100 (about 0.06 % of all addenda) depend on the marginal third moments and
the remaining 171 600 on the co-moments.

In Peccati and Tibiletti (1993), an empirical test on the stability in sign of the skewness
of a portfolio composed of more than twenty skewed assets was carried out. Analysis of the
daily distribution of twenty assets along a stretch of five years showed a persistent positive
skewness of portfolio, even though the marginal skewness of the asset was negligible and
very unstable. Insight has confirmed our conjecture: the very “gear” in the determination of
the skewness of the portfolio was just given by the sum of the co-moments, whereas the
relative weight of the marginal skewness of the single assets was negligible.

Next, we give examples to show that the above remarks are well-grounded: the sign of
the third moment of the addenda is not preserved under positive linear combination.

Example 1 Positive linear combinations of variables of equally signed skewness may turn
out to be switched in skewness.

1. First, let us consider two identically distributed binary options:

X1 =
{− 1

3 � p = 3
4

1� p = 1
4

and X2 =
{− 1

3 � p = 3
4

1� p = 1
4

where �x1
= �x2

= 0, E
(
X3

1

) = E
(
X3

2

) = +0�22222 > 0, therefore they are positively
skewed. Let the probability matrix be:

x1 = − 1
3 x1 = 1

x2 = − 1
3 p = 1

2 p = 1
4

x2 = 1 p = 1
4 p = 0
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Therefore, the portfolio is:

S = c1X1 + c2X2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3 �c1 + c2� � p = 1

2

c1 − 1
3 c2� p = 1

4

− 1
3 c1 + c2� p = 1

4
c1 + c2� p = 0

It is easy to prove that:

if c1 = 3
4

and c2 = 1
4

then S =

⎧⎪⎨
⎪⎩

− 2
9 � p = 1

4

0� p = 1
4

+ 1
3 � p = 1

2

so E
(
S3
)= +0�05555 > 0

if c1 = 1
2

and c2 = 1
2

then S =
{

− 1
3 � p = 1

2

+ 1
3 � p = 1

2

so E
(
S3
)= 0

In conclusion, just by changing the relative weights of two identically distributed assets
in the portfolio, the sign of the third moment of the portfolio is not preserved.

2. Secondly, let us consider two binary positively skewed options:

X1 =
{

− 1
3 � p = 3

4

1� p = 1
4

and X2 =
{

− 3
4 � p = 4

7

1� p = 3
7

where �x1
= �x2

= 0, E
(
X3

1

)=+0�22222 > 0 and E
(
X3

2

)=+0�66964 > 0. Let the prob-
ability matrix be:

x1 = − 1
3 x1 = 1

x2 = − 3
4 p = 9

28 p = 1
4

x2 = 1 p = 3
7 p = 0

So, the portfolio S = X1 + X2 =

⎧⎪⎨
⎪⎩

− 13
12 � p = 9

28
1
4 � p = 1

4
2
3 � p = 3

7

is negatively skewed since E
(
S3
)=

−0�277777652 < 0

Therefore, adding to X1 a more positively skewed asset X2, the final portfolio skewness
turns from positive into negative.

3. Thirdly, note that:

E �c1X1 + c2X2�
3 = c3

1E
(
X3

1

)+ c3
2E
(
X3

2

)+ 3c2
1c2E

(
X2

1X2

)+ 3c1c
2
2E
(
X1X

2
2

)
so even if E

(
X3

i

)
> 0, for i = 1� 2 and E �X1X2� = 0, i.e. X1 and X2 are null-correlated,

the overwhelming role played by the coskewness may switch the sign of the portfolio
skewness from positive to negative.

Eventually, a spontaneous question may arise: does a way to control at least the sign of
the co-moments exist? Unfortunately, the question seems to be answered in the negative.
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Clearly, in some very special cases the sign of the co-moments can be drawn from the sign
of the lower-order moments of the addenda. That is the case of stochastic independence.

Theorem 1 Let X = �X1� � � � Xn� be a vector of stochastically independent variables, then:

E �c1X1 + · · · + cnXn�
p =

n∑
i=1

c
p
i E
(
X

p
i

)

+∑ p!
p1!p2!� � � �pn!

c
p1
1 c

p2
2 � � � �cpn

n E
(
X

p1
1

)
E
(
X

p2
2

) · · ·E �Xp1
n �

s�t�
{

p1 + p2 + · · · · +pn = p
pi �= p i = 1� � � � � n

Proof Let n=2. A necessary and sufficient condition for stochastic independence is the fol-
lowing: X1 and X2 are stochastically independent if E �g �X1�h �X2��=E �g �X1��E �h �X2��
for all Borel-measurable functions g and h, provided that the expectations involved exist.
Clearly, power functions are very special Borel-measurable functions. So, for all co-moments
it turns out that E

(
X

p−k
1 Xk

2

)
= E

(
X

p−k
1

)
E
(
Xk

2

)
for all k = 1� � � � � p − 1. By induction the

desired result follows.

Note that if E �Xi� = 0, the addenda containing at least one E
(
X

pi
i

)
with pi = 1 vanish

and the above expression becomes simpler. In conclusion, under stochastic independence the
portfolio’s pth order moment is given by a combination of kth order moments of the addenda,
with k= 1� � � � � p. As the independence assumption is relaxed, stability holds neither in sign
nor in magnitude.

4.3 HIGHER MOMENTS: NONCOHERENT RISK MEASURES

At the end of 1998, Artzner et al. (1999), for the first time, faced the problem of defining
the desirable properties that a risk measure should satisfy. The answer was given through a
complete characterisation of such properties via an axiomatic formulation of the concept of
coherent measure of risk. The question posed is the following: are risk measures based on
higher moments coherent risk measures? Unfortunately, the answer is no.

In order to make the chapter self-contained, we now recall these axioms. Fix a probability
space ���F� P� and denote by L0 ���F� P� the set of almost surely finite random variables
on that space. Financial risks are represented by a convex cone M ⊆ L0 ���F� P� of random
variables. Recall that M is a convex cone if X1 ∈ M and X2 ∈ M implies that X1 + X2 ∈
MX1 ∈ M and 	X1 ∈ M for every 	 > 0.

Definition 1 Risk measure. Given some convex cone M of random variables, any mapping

 � M → � is called a risk measure.

Following Artzner et al. (1999) we list a set of desirable axioms that a risk measure should
satisfy.
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Axiom 1 (Monotonicity). For all X1 ∈ M and X2 ∈ M , such that X1 ≤ X2 as a monotonic
risk satisfies 
�X1� ≤ 
�X2�.

Axiom 2 (Subadditivity). For all X1 ∈M and X2 ∈M , a subadditive risk measure satisfies

�X + Y � ≤ 
�X� + 
�Y �.

Axiom 3 (Positive homogeneity). For all X ∈ M and 	 ≥ 0, a positive homogeneous risk
measure satisfies 
�	X� = 	
�X�.

Axiom 4 (Translation invariance). For all X ∈ M and a ∈ �, a translation-invariant risk
measure satisfies 
�a + X� = 
�X� − a

Axiom 1 says that if a position X1 is always worth more than X2, then X1 cannot be
riskier than X2. Following Artzner et al. (1999, p. 209), the rationale behind Axiom 2 can
be summarised by the statement “a merger does not create extra risk.” Subadditivity reflects
the idea that risk can be reduced by diversification, a well-grounded principle in finance and
economics. The lack of subadditivity might be an incentive to split up a large portfolio into
two smaller ones. That goes against the above-mentioned statement. Axiom 3 is a limit case
of subadditivity, representing what happens when there is no diversification effect. With
reference to Axiom 3, positive homogeneity asserts that the risk of a position increases in a
linear way with the size of the position.

Definition 2 Coherent risk measure Given a risk measure 
 whose domain includes the
convex cone M, 
 is called coherent if it satisfies Axioms 1, 2, 3 and 4.

Surprisingly enough, the second-order central moment (i.e. the variance) – the most
common risk measure – falls short in monotonicity, positive homogeneity and translation.
Therefore, it is not a coherent risk measure. Standard deviation behaves slightly better since
it is positive homogeneous, but it lacks monotonicity and translation. So it is not a coherent
risk measure either. In general, higher central moments are not coherent risk measures.
Specifically: (1) if p is an even integer, with p ≥ 2, the pth central moment does not fulfil
the monotonicity, positive homogeneity or translation axioms; (2) if p is an odd integer,
with p ≥ 3, the pth central moment is not subadditive. That is the very drawback in using
moments as risk measures. In spite of what intuition would suggest, diversification does
not guarantee the moment shrinking. In conclusion, odd-order moments do not fulfil the
subadditivity, positive homogeneity or translation axioms.

4.4 ONE-SIDED HIGHER MOMENTS

Let us denote x− = min �x� 0
 and x+ = max �0� x
.

Definition 3 Let � be a real-valued random variable. Then:

mp
−��� = E ��	�� − E����−	
p� and m

p
+��� = E

[
�
∣∣�� − E����+∣∣
p

]
are called the left-sided and the right-sided moments of the pth order of �, respectively, for
1 ≤ p < 
.

The left-sided moments are loss risk measures. Therefore, they are to be minimised in a
problem of portfolio risk allocating. The opposite strategy applies to the right-sided moments.
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From here on, we will deal solely with the left-sided moments, since analogous statements
can be drawn for the right-sided ones.

Clearly, the one-sided moments are not positive homogeneous measures. This failure can
be overcome easily by the following standardised measure:


p
−��� = p

√
E ��	�� − E����−	
p�

which is a coherent risk measure (see Fischer, 2003). Moreover, a mean-risk criterion, where
the risk is measured by 
p

− for p ∈ �1�+
� is coherent with the criterion of the expected
utility maximisation (see Fishburn, 1977).

4.4.1 Portfolio left-sided moment bounds

Let us turn back to the higher-moment portfolio problem. The left-sided pth order moment,
with p ≥ 2, of the portfolio can no longer be expressed in a closed form, such as (4.1). That
is a drawback. In fact, when using one-sided moments it is no longer possible to obtain
analytical expressions of the gradients and the Hessian matrix associated with the investor’s
portfolio selection problem to derive the expressions and study the general properties of the
minimum variance and efficient frontier and to obtain an equilibrium asset pricing relation,
as in the traditional higher-order moment case (see Athayde and Flôres, 2003, 2004b).
Otherwise, some upper bounds for the standardised left-sided moments can be worked out.

Proposition 1

0 ≤E �	�c1X1 + · · · + cnXn�
−	
p ≤ (4.2)

∑ p!
p1!p2!� � � �pn!

	c1	p1 	c2	p2 � � � 	cn	pn E ��	�X1�
−	
p1 � �	�X2�

−	
p2 � � � �	�Xn�
−	
pn�

s�t� p1 + p2 + · · · + pn = p

Proof Since 	�c1X1 + · · · + cnXn�
−	 ≤ 	�c1X1�

−	 + · · · + 	�cnXn�
−	 = 	c1	 	�X1�

−	 + · · · +
	cn	 	�Xn�

−	 then:

E �	�c1X1 + · · · + cnXn�
−	
p ≤ E �	c1	 	�X1�

−	 + · · · + 	cn	 	�Xn�
−	
p

applying the polynomial formula to the right-hand side of (4.2), the desired result comes
out.

Proposition 2

0 ≤ p

√
E �	�c1X1 + · · · + cnXn�

−	
p ≤ 	c1	 p

√
E �	�X1�

−	
p + · · · + 	cn	 p

√
E �	�Xn�

−	
p

Proof Thanks to the Minkowski inequality, the stated result follows.
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4.4.2 Properties of the upper bound Up�S−�

On the other hand, if we deal with nonstandardised measures, handling co-moments
becomes compulsory. In order to separate the influence of the marginals from the left-sided
co-moments, let us re-write the upper bound in the right-hand side of (4.2):

Up�S−� =
n∑

i=1

	ci	p E �	�Xi�
−	
p (4.3)

+∑ p!
p1!p2!� � �pn!

	c1	p1 	c2	p2 � � � 	cn	pn E ��	�X1�
−	
p1 ·�	�X2�

−	
p2 · · · �	�Xn�
−	
pn�

s.t.
{

p1 + p2 + · · · + pn = p
pi �= p i = 1� � � � � n

Due to the non-negativeness of the latter addendum, we get a lower bound for Up�S−�

∑n

i=1
c

p
i E �	�Xi�

−	
p ≤ Up�S−�

Note that this lower bound is nothing but the weighted sum of the left-sided moments of
the marginals. More information is attainable as assumptions on the dependence structure
are introduced.

1. Stochastic independence among the assets. Since ��x� = �	�x�−	
pi � i = 1� � � � � n are
Borel-measurable functions, under independence we get

E ��	�X1�
−	
p1 · �	�X2�

−	
p2 � � � �	�Xn�
−	
pn�=E �	�X1�

−	
p1 · E �	�X2�
−	
p2 � � � E �	�Xn�

−	
pn

Therefore, (4.3) can be re-written as:

Up�S−� =
n∑

i=1

	ci	p E �	�Xi�
−	
p (4.4)

+∑ p!
p1!p2! � � � pn!

	c1	p1 	c2	p2 � � � 	cn	pn

× E �	�X1�
−	
p1 �E �	�X2�

−	
p2 � � � E �	�Xn�
−	
pn

Therefore, under independence, the upper bound Up�S−� is given by a sum of products of
the marginal moments. As soon as the marginals are known, Up�S−� can be calculated.

2. Maximal positive dependence among the assets. The maximum value of the upper bound
Up�S−� is reached in the case of maximal positive dependence. Let us denote by F1� � � �� Fn

the marginal distributions of X1� � � ��Xn and let H�x� = Min �F1�x1�� � � �� Fn �xn�� be
the upper Fréchet distribution. For any X = �X1� � � ��Xn� with marginals F1� � � �� Fn the
following inequality holds:

Up�S−� ≤∑ p!
p1!p2! � � � pn!

	c1	p1 	c2	p2 � � � 	cn	pn (4.5)

∫
� � �

∫
x1+···+xn≤0

�	x1	−
p1 � �	x2	−
p2 � � � �	xn	−
pn dMin �F1�x1�� � � �� Fn�xn��
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3. Multivariate totally positive dependence �MTP2� among the assets. MTP2 is a positive
dependence property that has been studied thoroughly in the last twenty years. Many
families of distributions have been proven to be MTP2. That is the case for the absolute-
value multinormal variables, the multivariate logistic distributions, the negative multi-
variate distributions among others. Moreover, methods for generating MTP2 distributions
are achievable (see Karlin and Rinott, 1980). For MTP2 distributions, E �g �X�h �X�� ≥
E �g �X��E �h �X�� holds for all Borel-measurable functions g and h, which are simulta-
neously monotonically increasing or decreasing. Since ��x�=	x−	pi � i=1� � � � � n are just
increasing Borel-measurable functions, Up�S−� can be bounded from below and above.
Specifically, from below by the right-hand side of (4.4) and (4.5), respectively.

4.5 PRESERVATION OF MARGINAL ORDERING UNDER
PORTFOLIOS

A further advantage of using one-sided moments concerns the chance to preserve the marginal
one-sided moment ordering under portfolios. First, the drawbacks of higher orders are
highlighted, then the advantages of using the one-sided moments are shown.

4.5.1 Drawbacks in using higher moments

Let X = �X1� � � � ��Xn� and Y = �Y1� � � � � Yn� be two random vectors collecting the returns,
such that E �Xi� = E �Yi� for all i = 1� � � � � n. As X and Y have the same dependence
structure, i.e. a common copula, if E �Xi�

p ≤ E �Yi�
p for all i = 1� � � � � n, does it imply

that E �
∑n

i=1 ciXi�
p ≤ E �

∑n
i=1 ciYi�

p, for all ci ∈ �+? (for the definition of copula, see the
appendix).

One might expect that for two portfolios with the same dependence structure, the higher
the pth order moment of the marginals, the higher the pth order moment of the portfolio.
Unfortunately, this conjecture turns out to be false for all p≥2. To the best of our knowledge,
the first counter-example was given by Scarsini (1998), where the statement was proved to be
false for p=2 and with normal variables. For any other even p, analogous counter-examples
can be carried out. If p is odd, then counter-examples are very easy to construct. Consider
the following.

Example 2 Let us consider the case of p=3. Let X = �X1�X2� be defined as in Example 1,
case 2), so E

(
X3

1

)=+0�22222 > 0 and E
(
X3

2

)=+0�66964 > 0. The portfolio SX =X1 +X2

is such that E
(
S3

X

)= −0�277777652 < 0.
Let Y= �Y1� Y2�= �3X1� 3X2�, so E

(
Yi

3
)=33E

(
Xi

3
)
>0 and E

(
Xi

3
)≤E

(
Yi

3
)

for i = 1� 2.
Construct the portfolio SY =Y1 + Y2 = 3X1 + 3X2. Clearly, SX and SY have the same depen-
dence structure. Since E

(
S3

Y

)= 33E
(
S3

X

)
< 0, then E

(
S3

X

)≥E
(
S3

Y

)
. In conclusion, although

E
(
Xi

3
)≤ E

(
Yi

3
)

for i = 1� 2 it turns out that E
(
S3

X

)≥ E
(
S3

Y

)
. Therefore, a switching in

moment ordering results.

4.5.2 Advantages in using left-sided higher moments

Let’s replace the pth order moments by the pth order left-sided moments. The question
posed is as follows: as X and Y have the same dependence structure, i.e. a common
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copula, if E �	�Xi�
−	
p ≤E �	�Yi�

−	
p for all i= 1� � � �� n, is it true that E �	�∑n
i=1 ciXi�

−	
p ≤
E �	�∑n

i=1 ciYi�
−	
p, for all ci ∈ �+?

Unfortunately, the answer is still negative. Tibiletti (2002) proved that the statement does
not hold even for normal variables and p = 2 (the semi-variance). But, there is a ray of
hope. Left-sided moments are the expected values of convex functions, and some results
stemming from multivariate convex ordering are attainable. In any case, further conditions
on the dependence structure are compulsory. A list of sufficient conditions for ordering
preservation under portfolios is given in Tibiletti (2002). Under independence, the desired
left-sided moment ordering is guaranteed.

Theorem 2 Let X = �X1� � � � �Xn� and Y = �Y1� � � �� Yn� be vectors with independent
components. Then, the marginal risk ordering in left-sided moments is preserved under
portfolios.

If however, we replace, the assumption of stochastic independence with the assumption of
fixed copula, then Theorem 2 is not true any more. Moreover, it is clear that we cannot expect
the risk order of the marginals to lead to the one-sided moment order of the portfolios when
the components are negatively dependent. The effect of risk hedging may produce a switching
in portfolio ordering. A condition of positive dependence is needed. A notion which fits well
in this context is that of conditional increasingness (CI) proposed by Müller and Scarsini
(2001). CI is a weaker condition than multivariate totally positivity of order 2 �MTP2�
investigated by Karlin and Rinott (1980) and stronger than conditional increasingness in
sequence (CIS). The CI property coupled with convexity in risk measures achieves the
desired ordering preservation.

Theorem 3 Let X= �X1� � � � �Xn� and Y= �Y1� � � �� Yn� be vectors with a common CI cop-
ula C. Then, the marginal risk ordering in left-sided moments is preserved under portfolios.

From the mathematical point of view, the CI property is quite a strong condition of positive
dependence. But no weaker condition seems to exist. Although copulas are the most elegant
tool for studying stochastic events, on the other hand, financial modelling needs to implement
algorithms for constructing, step by step, the best-fitting data copula. These algorithms are
available for the most popular families of copulas (see Embrechts et al., 2002 and Bouyé
et al., 2000). Tibiletti (2002) has checked the CI condition. The required restrictions turn out
to be not so restrictive. For example, for elliptical copulas, CI requires the non-negativeness
of correlations. For strict Archimedean copulas, which satisfy Lehmann’s positive quad-
rant dependence, CI imposes only a mild additional condition. Marshall–Olkin copulas are
always CI.

In conclusion, one-sided moments give a clue to preserving marginal ordering under
portfolios.

4.6 CONCLUSION

Higher-order moments fall short in preserving marginal asset properties under portfolios.
We have proved that even a positive linear combination of positively skewed null-mean
assets may turn out to be negatively skewed. Moreover, as the number of assets in the
portfolio grows higher, the control over the magnitude and the sign of the portfolio moments
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becomes looser. In fact, the portfolio moments are principally driven by the co-moments of
the addenda. Higher moments are not coherent measures of risk: that is the real culprit of the
above-mentioned drawbacks. One-sided higher-order moments provide a way to overcome
the problem. Advantages of these latter measures are: 1) they are a consistent tool for
controlling the risk on the left tail of the return distributions. Moreover, if the one-sided
moments are replaced by the standardised ones, clear-cut upper bounds are attainable, 2) they
do not require additional computational efforts with respect to those needed for the familiar
moments, 3) they are compatible with the expected utility theory (Fishburn, 1977), 4) one-
sided moments are coherent measures of risk according to Artzner et al.’s (1999) definition.
On the other hand, a limit on their use exists. No closed form for portfolio return risk
measures seems to be available. So, it is no longer possible to obtain analytical expressions
of the gradients and the Hessian matrix associated with the investor’s portfolio selection
problem to derive the expressions of the minimum variance and efficient frontier and to
obtain an equilibrium asset pricing relation, as in the traditional higher-order moment case.

APPENDIX

An elegant way to understand how a multivariate distribution is influenced by the dependence
structure and the marginals is to use the concept of the copula. This notion was introduced
by Sklar (1959) (see Schweizer, 1991 for a historical survey). In recent years its use has
spread to different fields of insurance and financial modelling. The copula is one of the most
useful tools for handling multivariate distributions in the Fréchet class � �F1� � � �� Fn� of joint
n-dimensional distribution functions having F1� � � � � Fn as univariate marginals. Formally,
given a distribution function in � �F1� � � �� Fn�, there exists a function C � �0� 1�n → �0� 1�,
such that, for all x ∈ �n,

F �x� = C �F1 �x1� � � � �� Fn �xn��

The function C is unique on �n
i=1Ran �Fi�, the product of the ranges of Fi� i = 1� � � � � n.

Therefore if F is continuous, then C is unique and can be constructed as follows:

C �u� = F
(
F−1

1 �u1� � � � �� F−1
n �un�

)
� u ∈ �0� 1�n

Otherwise, C can be extended to �0� 1�n in such a way that it is a distribution function with
uniform marginals. Any such extension is called the copula of F . Most of the multivariate
dependence structure properties of F are in the copula, which does not depend on the
marginals, and it is often easier to handle than the original F .
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5
Gram–Charlier Expansions and Portfolio

Selection in Non-Gaussian Universes

François Desmoulins-Lebeault

ABSTRACT

Almost all attempts to develop an alternate model to the mean–variance portfolio selection
paradigm have failed, due to both technical and theoretical difficulties. In this chapter we try
to present all those problems, which are inherent to portfolio selection when asset returns are
non-normally distributed. Furthermore, we present in details the Gram–Charlier expansions
and their use in a financial context. We show how these expansions are tools that could help
explore more easily the complex matter of portfolio selection in a non-Gaussian universe.
We show, too, how certain portfolio selection problems can be approximately solved using
these expansions when returns are not Gaussian.

5.1 INTRODUCTION

The classical Capital Asset Pricing Model (CAPM) presented by Sharpe (1964) and Lintner
(1965), is one of the cornerstones of modern finance and has been thoroughly used and
tested. However, during the last few years, it has been somewhat contested. Empirical
tests show that, indeed, the betas do not explain entirely the variation of returns over the
risky assets’ range. A large number of empirical studies show that variables such as the
capitalisation, book-to-market ratio, PER, etc. help explain a larger part of return variations
(see, for example, works by Fama and French, 1992, 1995, 1996; Chan et al., 1991 and
some others).

Different reasons possibly explain the relative empirical failing of the CAPM. A few of
them are econometric problems. Indeed, Roll (1977, 1978) and Ross (1977) show that the
traditional CAPM is rejected when the portfolio used as the proxy for the market portfolio
(which is unobservable) is not mean–variance efficient (i.e. when one can define a portfolio
offering the same expected return and smaller variance). Deviation, even of small magnitude,
from mean–variance efficiency can make the relationship between betas and returns non-
significant.

Moreover, many authors show that incorrectly specified tests and variables make empirical
testing of the CAPM difficult. They show that the results are seldom significant (see Amihud
et al., 1992 among others).

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd
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However, it seems that the variables employed in multifactorial extensions of the CAPM
are only alternate ways to evaluate risk. Firm specific factors are added to variance
and covariance in order to explain returns. This shows that the variance–covariance
paradigm is not empirically justified. We can note that most of these models stem
from the Arbitrage Pricing Theory (Ross, 1976), yet they use the additional variables as
measures of risk and not as risk sources. In fact, the central relation of finance could be
written as follows: expected return = risk-free rate + market price of risk × amount
of risk.

The fact that we need to add variables to the traditional CAPM beta indicates that it only
measures risk imperfectly. One of the main weaknesses of the CAPM is that its hypotheses
are extremely strong. Indeed, we need strong restrictions on either the distribution of returns
or the agent’s utility functions for the variance–covariance paradigm to be justified. More
precisely, the agent’s preferences must be established only on the first two moments of
the returns’ distribution. This can only be the case if returns are distributed according
to a law entirely described by its first two moments (such as the normal and lognormal
laws) or if the utility function derivatives of order greater than two are all uniformly
zero.

We should notice that it is feasible to extend the mean–variance approach to elliptical
distributions, yet that is still quite restrictive. The empirical distributions of asset returns
are shown to depart significantly from normality. Since the marginal distributions are non-
normal, the joint distribution cannot be multivariate Gaussian. Furthermore, even if stock
and bond returns were normally distributed, the use of derivative securities and dynamic
portfolio strategies implies that the returns on all portfolios cannot be Gaussian. Moreover,
there is no economic model allowing us to actually determine the law of risky asset returns,
while, despite being difficult, it is nonetheless possible to estimate the moments of their
distribution.

It would thus be interesting to extend a CAPM-type analysis to moments of order higher
than two. A few attempts in that direction can be found in the literature.

5.2 ATTEMPTS TO EXTEND THE CAPM

In this section we will quickly examine how portfolio theory has been adapted, in the
literature, to assets with non-Gaussian returns. Here, it is necessary to mention that, for a
very long time, an important number of authors have tried to relax the normality hypothesis
from the various financial models where it was present.

In the particular case of the CAPM and portfolio theory, we have mentioned that the
normality hypothesis can be expressed either directly, over the distribution of returns or
prices, or indirectly through the specification of the agents’ utility functions. Hence the
existence of two possible ways to extend the CAPM: working on the return distributions,
specifically through the use of the moments, or working with agents’ preferences. The latter
way, which may seem simpler, is the one followed by older articles.

5.2.1 Extensions based on preferences

The more straightforward approach is to make a Taylor expansion on the expected utility
up to order three. This, in fact, was the basis of the first attempt to extend the CAPM to
higher moments. Moreover, it does not really imply distributional hypotheses for returns and
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prices. Kraus and Litzenberger (1976) used this approach to establish their model, which
takes into account the first three moments of the distribution of returns (expectation, variance
and skewness).

These two authors remark that to express preferences on the first three moments of a
portfolio’s returns, one needs a utility function of the cubic class. Yet, a third-degree poly-
nomial does not have the characteristics expected from a risk-averse agent, such as defined
by Arrow (1963, 1971). However, there are utility functions exhibiting these characteristics:
power utility functions, logarithmic functions and negative exponential utilities. These utility
functions can be expanded easily in Taylor series. If we set the utility function of an investor
to U���, the expected end of period wealth becomes:

E
[
U
(
W̃
)]= U

(
W
)+ U ′′ (W )

2! �2
W + U ′′′ (W )

3! �3
W + · · ·

In this equation, �3
W is not really the skewness but the third-order central moment: E�W̃ −W�3.

This Taylor expansion only converges, in the case of logarithmic and power utility functions,
if we have:

� W̃ − W �≤ W P�a�s�

The authors then find the equilibrium conditions for individual portfolios. To get from this
to a market equilibrium, following a Cass and Stiglitz (1970) type analysis, the condition
is for all the agents to have a linear risk tolerance of the type: −U ′

k/U ′′
k = ak + bWk with a

“prudence” coefficient, b, identical for every agent.
Under these conditions, and if the market portfolio returns are not symmetric, Kraus

and Litzenberger (1976) obtain a market equilibrium condition, quite similar to the CAPM
condition. Notice, however, that this condition depends on the form of the utility function
assigned to the agents.

For rather a long period, this model has been the only one to deal with portfolio theory
in a non-Gaussian universe. Yet, other authors have empirically tested it – primarily Friend
and Westerfield (1980), who found that the results did not drastically improve those of the
classical CAPM.

The empirical failings of this model probably stem from the fact that to obtain a testable
version, one needs to specify a utility function type that is selected from a rather restrictive
set. Moreover, the article ignores moments of order higher than three, which may be explained
by the fact that at that time, the precise significance of kurtosis was still to be discovered.

Following Kraus and Litzenberger’s analysis, Harvey and Siddique (2000) presented
a CAPM-type model taking skewness into account. However, while the original model
considered the expected return, variances, covariances, skewness and coskewness, and their
relationships, to be stable over time, the authors insisted on the fact that skewness is
conditional to the available information. Therefore, it is a dated model, the skewness and
variance being those of a forthcoming period, thus corresponding to the implicit hypothesis
that these parameters are not necessarily intertemporal constants. There is another slight
difference, since this model is not based on the expected utility of the end of period wealth
but on the intertemporal marginal rate of substitution.

Indeed, in a representative agent economy, the equilibrium condition for an agent to hold
a portfolio i of risky assets is that:

E ��1 + Ri	t+1�mt+1�
t� = 1 (5.1)



82 Multi-moment Asset Allocation and Pricing Models

where mt+1 is the intertemporal marginal rate of substitution, Ri	t+1 is the return on portfolio
i for the period �t	 t + 1� and 
t represents the information available on the market at time t.

Using quadratic or logarithmic utility functions in the classical CAPM, or equivalently
Gaussian or elliptical distributions, corresponds to the implicit hypothesis that the intertem-
poral marginal rate of substitution is a linear function of the market rate of return. Therefore,
it can be expressed as: mt+1 = at + btRM	t+1. By developing the equilibrium condition men-
tioned above and through aggregation, the classical CAPM equation is then obtained.

Nonetheless, Harvey and Siddique (2000) think that considering the marginal rate of
substitution as linear with respect to its observable proxy (the market portfolio rate of return)
is not very convincing. Hence their choice to work on nonlinear forms. They proposed to
use the simplest of them: a quadratic function. It presents the advantage of being consistent
with non-growing absolute risk aversion, one of the fundamental properties defined by
Arrow. Supposing that the marginal rate of substitution can be written as follows: mt+1 =
at + btRM	t+1 + ctR

2
M	t+1, the authors explain that, if there exists a conditionally risk-free

asset, they obtain the following relationship:

Et�Ri	t+1� = �1	tcovt�Ri	t+1	RM	t+1� + �2	tcovt�Ri	t+1	R2
M	t+1� (5.2)

with

�1	t =
vart�R

2
M	t+1�Et�RM	t+1� − skewt�RM	t+1�Et�R

2
M	t+1�

vart�R
2
M	t+1�vart�RM	t+1� − �skewt�RM	t+1��

2

and

�2	t =
vart�RM	t+1�Et�R

2
M	t+1� − skewt�RM	t+1�Et�RM	t+1�

vart�R
2
M	t+1�vart�RM	t+1� − �skewt�RM	t+1��

2

Eventually, the result is quite similar to the equations in Kraus and Litzenberger (1976),
the precise hypothesis made on the agents’ utility being replaced by the marginal rate of
substitution assumption. Both articles present empirical results and, again, they are relatively
similar. The results, therefore, are just a little better than those obtained with the classical
CAPM. This confirms the fact that with returns being non-normally distributed, a more
precise description of their distribution is required to improve our understanding of portfolio
theory.

Understanding the way in which distributional properties of risky assets impact portfolio
selection appears to be necessary. Therefore, we need to understand the way in which agents
react to moments of order higher than two in order to advance further.

Thanks to the works of Arrow (1963, 1971), Pratt (1964), etc. we understand the way in
which agents react1 in the presence of risky assets when risk is measured through the variance.
However, Scott and Horvath (1980) bring the beginning of an understanding of agents’
preferences in the presence of non-normally distributed assets. Their main result is that if the
agents conform to Arrow’s definitions, they will exhibit positive preference for even-order
moments and aversion to odd-order moments. This is valid for all defined moments of any
distribution and stems from the basic characteristics of utilities defined by Arrow.

1 Or, more precisely, the way they should react if they were rational, risk-averse, etc.
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We have now gained insights on the attitude of risk-averse agents toward all the moments
of the distribution of returns. This is a very significant improvement in our knowledge, yet
it does not suffice. Indeed, the representative agent will try to maximise the odd moments
of his or her portfolio’s returns, while limiting the even moments.

The corresponding economic intuition is that the even standardised central moments (which
are always positive) of a distribution, measure various forms of dispersion and therefore
correspond to uncertainty – avoided by Arrow’s agents. On the other hand, odd central
moments correspond to various forms of localisation with respect to the mean. Therefore,
the agents will try to maximise these odd moments since they prefer more to less.

Nonetheless, this is not enough to build a real portfolio theory when agents express
opinions on all moments and when returns do not follow a Gaussian distribution. The problem
arising is that we have no idea of the amount of odd moment �i required by an agent to
maintain his (her) utility when the even moment �j is increased by one.

The rate of substitution between mean and variance is obvious in the CAPM as they are the
only dimensions of the portfolio problem. However, when the returns are non-Gaussian, there
are numerous rates of substitution between moments, and they are unknown and nontrivial
to determine for generic utility functions.

However difficult the problem of multi-moment CAPMs appears from the utility point
of view, it still attracts lots of attention. Indeed, Harvey and Siddique (1999) review and
extend seven versions of asset pricing models with higher moments, including kurtosis.
Moreover, using Hansen’s (1982) Generalised Method of Moments, they test these models,
with two different types of utility function, for various emerging markets. Their research goes
even further, as they also study the possible data-generating processes coherent with their
results.

Jurczenko and Maillet in Chapter 6 present a complete study of the four moment CAPM
and propose a unifying framework for such pricing models. Their work clarifies and extends
our knowledge of the subject and poses various signposts for future research, showing the
vitality of the utility-based extensions of the CAPM.

5.2.2 Extensions based on return distributions

Another approach can be exploited in order to adapt the CAPM to a world with non-Gaussian
risky assets. Indeed, some authors recently tried to extend the classical CAPM relationship
by replacing the betas or the variance–covariance matrix by alternate objects taking the
non-normality into account. This approach is no longer an extension of preferences but
rather an attempt to incorporate more flexible distributional hypotheses into the CAPM. Yet,
since both hypotheses are equivalent, these methods are closely related to the ones presented
before.

Somewhere between this approach and the preferences-based approach, Leland (1998),
basing his model on an article by Rubinstein (1976), finds a relationship relatively similar
to the classical CAPM. The main hypothesis is distributional, stating that the returns on
the market portfolio are independently and identically distributed. Even if this is a strong
hypothesis rejected by many empirical tests, it is clearly better than the general normality
hypothesis of the classical CAPM, since the marginal return distributions of all individual
securities are not specified.

According to Rubinstein (1976), Brennan (1979) and He and Leland (1993), this distri-
butional hypothesis entails a constraint on the form of the representative agent (and this
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agent will always exist, as shown by Constantinides, 1982): he will exhibit a power utility
function with exponent b. Precise equilibrium conditions, on prices and expected returns,
will also follow. By aggregating and transforming the equilibrium conditions, Leland obtains
his modified CAPM, which takes the following form:

E�rP� = rf + BP

(
E�rM� − rf

)
(5.3)

where

BP = cov
(
rP	−�1 + rM�−b

)
cov �rM	−�1 + rM�−b�

and

b = ln �E�1 + rM�� − ln�1 + rf �

var �ln�1 + rM��

This model can therefore be considered an extension of the classical theory based on both
distributions and preferences. However, we must remark that it does use exactly the same
parameters as the classical CAPM. To really incorporate more distributional properties, a
different exponent b is needed, which is not coherent with the rest of the model.

In this same direction, but focusing exclusively on the distributions, Sornette et al. (1999),
propose a highly mathematical approach to the problem. Starting with a hypothesis for-
mulated for the joint distribution of risky asset returns, yet only in the case of symmetric
distributions (all odd moments are equal to zero), the authors show how to modify the
variance–covariance matrix so as to take into account the fat-tailedness of the returns’
distribution.

The key idea is to operate a nonlinear change of variables to transform the returns �x on
an asset over period t into a variable y��x� such that y is normally distributed. For unimodal
marginal distributions that transformation is always feasible. The change of variable contracts
the distribution on its extreme values. To model returns, the authors propose to use a modified
Weibull distribution, which fits quite closely empirical data:

p��x�d�x = d�x
1

2
√




c

�c/2
��x�c/2−1 exp

(
�sign��x���x�c/2 − m�2

�c

)
(5.4)

If we suppose that the marginal distributions are modified Weibull, the change of variables
is as follows: y = sign��x�

√�2���x�/��c�. If the marginal distributions are different, another,
more complex, change of variables is still possible. Then the variance–covariance matrix of
the (now Gaussian) y is built. The first really simplifying hypothesis is made at this point.
Indeed, the fact that the marginal distributions are normal does not necessarily imply that
the joint distribution is a multivariate Gaussian, yet this hypothesis is the one involving the
least information.

Therefore, the authors suppose the joint distribution of y to have this form:

P̂�y� = �2
�−N/2 det �V�−1/2 exp
(

−1
2

y′V−1y
)

(5.5)

where N is the number of risky assets and V is the variance–covariance matrix built for
the y.
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Starting with this joint distribution, the authors get the real returns’ distribution by using
the Jacobian of the transform of x into y. This distribution has the following form:

P̂�x� = det�V�−1/2 exp
(

−1
2

y′�V−1 − I�y
) N∏

i=1

Pi��xi� (5.6)

where V is, again, the variance–covariance matrix of y, and I the identity matrix.
Sornette et al. (1999) then obtain, using extremely heavy mathematical methods, the

expressions of the cumulants of the distribution of a portfolio value variations. Indeed, if the
cumulants exist, a distribution can be totally characterised through them:

P̂s�k� = exp

(+�∑
m=1

cm

m! �ik�m

)
(5.7)

cm being the mth order cumulant and i2 = −1.
Using their results, the authors show that, in most cases, minimising variance increases

kurtosis and that, to use their expression, minimising the smaller risks generally increases the
bigger risks: when we reduce the occurrence probability of small losses, it tends to increase
the occurrence probability of massive losses.

Another insight provided by this article is that, in the case of risky assets with leptokurtic
returns, a precise understanding of the tails’ fatness2 is more important than correlation
in determining the distributional properties of portfolios. Thus, it seems that measuring
covariances correctly is important, yet the key to a precise understanding of portfolio theory
lies in the form of marginal return distributions.

5.3 AN EXAMPLE OF PORTFOLIO OPTIMISATION

We know that before such a description of the portfolio returns’ distribution, it is impossible
to implement the desired optimisation programme: “Minimise variance, maximise skewness,
minimise kurtosis, with the constraint of an expected return of r and with the weights
summing to one (all available wealth invested)”.

Furthermore, we intuitively know that, for a given expected return, the portfolio minimising
the variance is not the portfolio maximising the skewness nor the portfolio minimising the
kurtosis, which is confirmed by Sornette et al. (1999). Moreover, another question concerns
the quantity that should be optimised.

Indeed, minimising the fourth central moment is not equivalent to minimising the
kurtosis. In the kurtosis there are interactions with the variance that do not appear in the
fourth central moment. It may seem more interesting to work on the kurtosis, since it is
“normalised” and thus can be compared between any distribution, yet the fact that the
square of variance appears in its denominator implies that, to minimise the kurtosis, one
should maximise the variance (the variance and the fourth central moment are always
positive).

2 Measured by excess kurtosis, i.e. the difference between the actual kurtosis and 3, the kurtosis of a Gaussian.
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Table 5.1 Moments of studied stocks

Barrick Gold Bouygues Canal Plus Michelin

Mean −0�00012481 0�00213426 0�00114945 −0�0012201
Variance 0�00101047 0�00075709 0�00059704 0�00072338
�3 1�6277E−05 2�3224E−06 6�6674E−06 7�602E − 07
Skewness 0�50674006 0�11148514 0�4570431 0�03907282
�4 3�8889E−06 2�2451E−06 2�1695E−06 1�5881E−06
Kurtosis 3�80871934 3�91692329 6�08636384 3�03492233

5.3.1 Portfolio description

In order to understand better the interactions existing between the first four moments of
the portfolio returns’ distribution and their optimisation, we will examine an example. The
portfolio we have selected is quite simple and composed of randomly picked stocks. This
portfolio is composed of four stocks from the Paris Bourse: Barrick Gold, Bouygues, Canal
Plus and Michelin. We will base our study on the opening prices during 1998, from January
2nd to December 30th. The moments of the empirical distributions are shown in Table 5.1.

These results call for a first comment: there are notable asymmetries in the returns’
distribution of all stocks, as measured by skewness. Moreover, the distributions are all more
or less leptokurtic. In all cases, it seems difficult to adopt a classical mean–variance approach
when the moments of the distributions are departing so much from what they would be if
the return distributions were Gaussian.

Therefore, we may logically conclude that we should not use the classical CAPM for the
portfolio selection problem when the distributions of returns exhibit moments of order higher
than two. Hence, we simulated different portfolios and used numerical methods to realise
different optimisations. The results we obtained confirm the remarks of Sornette et al. (1999)
on the non-existence of a weighting system optimal with regard to all selection parameters.

5.3.2 The various “optimal” portfolios

Before presenting the results, we need to make a remark about the minimisation method we
chose. We used a recursive algorithm for three different reasons: first because it is difficult
to solve formally for a constrained optimal with standardised central moments of order
three and four (the optimisation programmes cannot be expressed in standard matrix form).
The second reason is that the number of operations needed for formal resolution is more
important than that needed for algorithmic solving, thus implying more rounding errors. We
have verified this empirically with the variance minimisation: the algorithmic method leads
to a variance slightly inferior to the variance obtained when using the solution weights of the
formal programme. The third reason is that, in operational reality, fund managers often find
singular “variance–covariance” matrices3 and thus need to use (complex) pseudo-inversion
algorithms.

Let us now look, in Table 5.2, at the structure and characteristics of the equally weighted
portfolio, which will be used as a reference, especially for the daily expected returns used
in other simulations.

3 This phenomenon can be caused by nonsynchronous estimation of the various parameters. However, most of the time, the matrix
obtained is still invertible yet “quasi-singular”, as some software terms it, and therefore requires the use of pseudo-inversion, even
if theoretically invertible.
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Table 5.2 Characteristics of the equally weighted portfolio

Barrick G. Bouygues Canal Plus Michelin Portfolio

Mean −0�0001248 0�00213426 0�00114945 −0�0012201 0�00048469
Variance 0�00101047 0�00075709 0�00059704 0�00072338 0�00027614
�3 1�6277E−05 2�3224E−06 6�6674E−06 7�602E−07 2�798E − 07
Skewness 0�50674006 0�11148514 0�4570431 0�03907282 0�06097394
�4 3�8889E−06 2�2451E−06 2�1695E−06 1�5881E−06 2�6436E−07
Kurtosis 3�80871934 3�91692329 6�08636384 3�03492233 3�46672267

Weights 0�25 0�25 0�25 0�25 1

Table 5.3 Minimum variance portfolio

Barrick G. Bouygues Canal plus Michelin Portfolio

Mean −0�0001248 0�00213426 0�00114945 −0�0012201 0�00048469
Variance 0�00101047 0�00075709 0�00059704 0�00072338 0�00027421
�3 1�6277E−05 2�3224E−06 6�6674E−06 7�602E−07 2�8144E−07
Skewness 0�50674006 0�11148514 0�4570431 0�03907282 0�0619805
�4 3�8889E−06 2�2451E−06 2�1695E−06 1�5881E−06 2�6855E−07
Kurtosis 3�80871934 3�91692329 6�08636384 3�03492233 3�57149574

Weights 0�23883425 0�21880374 0�2993229 0�24303911 1

In these results, we can see already the effects of diversification, which is caused by
the co-moments. Note, however, that if the effects of diversification are really positive in
the case of variance, which diminishes considerably, and positive in the case of kurtosis,
which slightly diminishes (the returns’ distribution remains, nonetheless, leptokurtic), they
are negative for skewness. Indeed, skewness also diminishes, whereas a risk-averse investor
has positive preference for this moment.

5.3.2.1 Variance-optimal portfolio

The portfolio offering the minimum variance, under the constraints of weights summing to 1
and expected return of 0.00048469, is not very different from the equally weighted portfolio.
The characteristics of the minimum portfolio are presented in Table 5.3.

Indeed, the variance of this portfolio’s returns is slightly inferior to the variance of the
equally weighted portfolio. However, the skewness and the kurtosis have increased, as well
as the corresponding central moments. We can therefore notice the incompatibility exist-
ing between the optimisation of the portfolio returns’ variance and higher-order moments,
especially kurtosis. It is clear enough that if we diminish the variance, and hence its square,
we increase the kurtosis if the fourth central moment does not change; yet diminishing the
variance also has an impact on the fourth central moment.

5.3.2.2 Third-moment optimal portfolios

Optimising the skewness and the third central moment is more complex. Indeed, even if there
exists a skewness-optimal portfolio (which corresponds to the asset repartition that leads to
a maximum skewness, constrained by a mean equal to 0.00048469), it is not possible to
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Table 5.4 Maximum skewness portfolio and high �3 portfolio

P1 P2

Mean 0.00048469 0.00048469
Variance 0.00356597 6.1908E+12
�3 0.00012571 6.3979E+18
Skewness 0.59032752 0.41535074
�4 4.7794E−05 1.3928E+26
Kurtosis 3.75851383 3.63412896
Weight Barrick G. 1.79370519 53687091.4
Weight Bouygues −0.14126442 −42740657.6
Weight Canal plus 0.09031001 35687426.8
Weight Michelin −0.74275078 −46633859.5

find a portfolio maximising the third central moment. It is indeed possible to let it augment
towards infinity, at the cost of a similarly growing variance. We can see, in Table 5.4, the
characteristics of the maximum skewness portfolio (portfolio 1) and of a portfolio exhibiting
a very high third central moment.

We can immediately remark that optimising the skewness, which is increased by almost
a factor of ten, from 0.06 to 0.59, was realised at the expense of all the other unconstrained
moments of the distribution. Indeed, the variance also increased by a factor of ten, while the
fourth central moment doubled, leading to a kurtosis increasing only slightly. However, we
see clearly, thanks to this example and the example given by the extreme values of portfolio
P2 (high central third moment), that optimising the skewness, even if it takes small values,
is costly in terms of the other moments studied here.

In addition, we can notice that the weights of the different assets obtained in optimising
the skewness are quite extreme and do not respect Lintner’s constraint on short-sales, since
we have:

N∑
i=1

�wi� > 1

However, we can obtain a different portfolio of optimal skewness if we include Lintner’s
constraint to the optimisation programme. The results are less extreme than what we first
obtained, yet they still go in the same direction. The maximum skewness is then 0.4719611
with a variance of 0.0006133 and a kurtosis of 3.78059.

5.3.2.3 Fourth-moment optimal portfolios

The fourth-order moments also present some difficulties. Indeed, there is an optimal vector of
asset weights in both cases, yet the problem comes from the fact that we have to determine on
which of these fourth-order moments investors will express preferences, or, more precisely,
aversion. The optimal portfolios with respect to these two moments are not necessarily the
same, as we can see from our simulation portfolio in Table 5.5.

We can notice from these results that the portfolio exhibiting the smallest fourth central
moment, under complete investment and 0.00048469 mean constraints, is quite similar to
the portfolio which, under the same constraints, offers the least variance. It does present
slightly less kurtosis and a little more variance, yet the characteristics of both portfolios are
similar – a result which is true even with different expected returns.
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Table 5.5 Portfolios with minimum kurtosis and minimum �4

P1 P2

Mean 0.00048469 0.00048469
Variance 0.00033629 0.0002765
�3 6.4614E − 08 2.3888E − 07
Skewness 0.01047765 0.05195433
�4 3.6255E − 07 2.6312E − 07
Kurtosis 3.20587965 3.44154742
Weights Barrick G. 0.1297922 0.22890619
Weights Bouygues 0.39529359 0.25557122
Weights Canal plus 0.09988679 0.25186382
Weights Michelin 0.37502741 0.26365877

The portfolio exhibiting the minimum kurtosis, on the other hand, is quite different and
further away from the optimal portfolio concerning variance and skewness. We need to be
clear that for all moments, the diversification due to the co-moments4 is really quite an
important factor in the determination of the optimal portfolios. Indeed, considering only the
kurtosis of the marginal distributions of the asset returns, it could seem logical to place an
important weight on the Michelin stock, whose kurtosis is the smallest. In fact, this stock
represents a good proportion of the kurtosis-optimal portfolio, yet the Bouygues stock, whose
kurtosis is one of the highest, can be found in quite a similar proportion. This stresses the
importance of the question about the relative significance of the central moments and the
standardised central moments.

We can therefore see how taking into account the moments of order higher than two implies
a much more complex portfolio selection problem. Moreover, two portfolios, optimal with
respect to different moments, can present, for an investor, the same level of expected utility.

Indeed, in terms of utility, we cannot be certain that a portfolio, optimal with regard to a
certain moment of the returns’ distribution, will be considered optimal by a given investor. We
therefore need to design another approach in order to extend the classical portfolio theory to
the case where returns are not distributed normally and investors express their utilities up to the
mth moment (m times differentiable functions) or to infinity (infinitely differentiable functions).

5.4 EXTENSION TO ANY FORM OF DISTRIBUTION

As we saw in the literature on CAPM generalised to moments of order higher than two, many
problems arise that make it difficult to define a convincing portfolio theory when returns
are not normally distributed. Working on preferences might seem interesting, yet too many
parameters are undefined and it leads to restrictive models (only fitting one type of utility).
More recent studies based on distributions appear promising, but the approaches used up to
now present serious flaws.

5.4.1 Obstacles to distribution-based works

All the research based on the distributional properties of returns that we have mentioned is
quite promising, yet it presents some disadvantages. Mostly, it is restrictive on the forms of

4 The co-moments and some additional statistics are presented in Appendix A.
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the marginal distributions of returns. Indeed, Leland’s (1998) hypothesis of identically and
independently distributed returns on the market portfolio, entailing a normally distributed
market portfolio, is very strong, even if it apparently does not concern marginal distributions
of individual stocks.

Similarly, Sornette et al. (1999) restrict their work to symmetrical distributions, which
may be more than a detail for the most common type of risky assets – stocks. Moreover, the
fact that distributions are, thanks to the approximation on transformed returns, elliptical and
therefore obey the coherence constraint obtained by Kano (1994), implies that the marginal
distributions will be of the same form, even if they can have different parameters. Using
heterogenous parameters would add so much mathematical complexity that the authors
avoided this case.

However, a very promising work based on the distributional properties of the returns
can be found in Athayde and Flôres (2004). Using duality results and a tensor notation,
they establish the geometrical properties of the efficient set for investors who have the
common preference directions for moments. Their results, even if still limited to the first
three moments, provide interesting guidelines for optimising portfolios when higher moments
count. Moreover, the notation and methodology employed may well open up new paths of
research, even if they cannot be extended yet to any number of moments.

Therefore, we face a real problem in extending the portfolio theory to the case of non-
Gaussian returns. It seems clear that working on preferences is useful, but only replaces
a strong hypothesis by others.5 As regards the distribution-based extensions, mathematical
complexity eventually entails other strong, unrealistic, hypotheses.

Only empirical data make it possible to work on the marginal distributions of returns.
Apparently, there is no economic law forcing them to have a determined form. Moreover,
finding out the actual distributions is made difficult by the fact that at least some of the
parameters change over time,6 implying measurement errors and approximations. Therefore,
our work should be based on approximate distributions stemming from empirical measures,
which are the only premises allowing effective applications of the theory.

5.4.2 Generalised Gram–Charlier expansions

Among the statistical techniques used to approximate densities, the Gram–Charlier expansion
is one of the most interesting. This method, which can be generalised to any kind of densities,
is based on a given approaching density, and modifies it so that its cumulants correspond
to those of the density approximated. We have already seen how, under weak regularity
conditions, a distribution can be entirely defined by its cumulants.

Johnson et al. (1994) show that Gram–Charlier expansions are among the most efficient
approximation methods for an unspecified density. Apparently this cannot be proven, but
it can be verified using numerical methods. However, other statistical expansions, like
Edgeworth expansions or Hermite polynomials, have been used in a financial context,
with a principal focus on the option-pricing theory. These option-pricing methods, and the
expansions they are based on, are presented and commented upon by Jurczenko et al. (2003),
and could permit the proposal of variants to the present research.

5 All agents exhibit the same specific type of utility function, which is not really better than the original CAPM.
6 It is also possible, and more difficult to model, that the very form of distribution may vary over time, for example in stochastic
switching regimes.
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In the case of the portfolio selection problem, Gram–Charlier expansions present a very
clear advantage over other density approximation methods. These other methods, like using
the Pearson family of distributions, the skewed-student t distribution or the entropy density,
entail a structurally defined shape for the distribution. For an application, extended to the
multivariate case, of one of the most popular of these, the skewed-t, we can refer to Bauwens
and Laurent (2002). Using this method, one will find the density closest to the empirical data
among a given space of predetermined shapes. This density can indeed, in most cases, be
very close to the empirical density. Nevertheless, it is not certain that any of these methods
generate a set of densities that is dense in the space of all possible continuous and smooth
densities. However, using Weierstrass’s approximation theorem, it is clear that, given their
polynomial nature, the Gram–Charlier densities of finite order form a countable dense subset
of such densities. The main problem with Gram–Charlier approximated densities resides in
the fact that the approximation, for a given order and a given approximating density, is really
a density only in the neighbourhood of the approximating pdf. This should, however, not
be considered profoundly hindering, since we can always select an adapted approximating
density, maybe a Pearson density, entropy density or skewed student-t density, thus retaining
their advantages and yet increasing their precision.

Moreover, a clear advantage of the use of Gram–Charlier approximation comes from the
fact that once the approximating density and the moments of the sample to approximate are
known, there is no need to do any extra computation, while other tools require numerical
procedures to determine the optimal approximating parameters. In this context, if one, for
example, studies a return series which is not too far from normality, for any subperiod,
the same expansion can be used, requiring only the adjustment of the sample moments.
On the other hand, using other approximation methods requires one to rerun a numerical
optimisation for every slightly different subsample.

5.4.2.1 The building of Gram–Charlier expansion series

We will now look at how to obtain this Gram–Charlier expansion, generalised to any
kind of approximating distribution. Let F�s� be any probability distribution, called the true
distribution, and let A�s� be another distribution, called the approximating distribution. In the
beginning, Gram–Charlier series could only use the standardised normal as approximating
distribution (see, for example, Cramer, 1946; Kendall and Stuart, 1977). Jarrow and Rudd
(1982) give a generalised version of these expansion series. Capitals will denote cumulative
distribution functions, while lower case letters will denote probability density functions.
Using the following notation:

�j�F� =
∫ �

−�
sjf�s� ds

�j�F� =
∫ �

−�
�s − �1�F��j f�s� ds


�F	 t� =
∫ �

−�
eitsf�s� ds

where i2 = −1, �j�F� is the jth moment of distribution F , �j�F� is the jth central moment
of F and 
�F	 t� is the characteristic function of F .
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Let us suppose that �j�F� exists for all j ≤ n. As �n�F� exists, then the first n − 1
cumulants, cj�F�, exist for j = 1	 � � � 	 n − 1 and are defined as:

log 
�F	 t� =
n−1∑
j=1

cj�F�
�it�j

j! + o�tn−1� (5.8)

The relationship between the moments and the cumulants of a distribution is obtained
by developing 
�F	 t� in terms of moments, replacing it in Equation (5.8) and equating the
polynomial coefficients. The first four coefficients are therefore:

c1�F� = �1�F�

c2�F� = �2�F�

c3�F� = �3�F�

c4�F� = �4�F� − 3�2�F�2

Then, the first cumulant is the mean, the second is the variance, the third is a measure of
the skewness and the fourth a measure of the excess kurtosis (over the kurtosis of a Gaussian
distribution).

Supposing that �j�A� and �jA�s�/�sj exist for j ≤ m, m being possibly different from n,
and setting N = min�n	m�, then the basic Gram–Charlier expansion is:

log 
�F	 t� =
N−1∑
j=1

(
cj�F� − cj�A�

) �it�j

j! +
N−1∑
j=1

cj�A�
�it�j

j! + o�tN−1� (5.9)

Moreover, we know that:

N−1∑
j=1

cj�A�
�it�j

j! = log 
�A	 t� + o�tN−1�

If we substitute the corresponding terms, we find:

log 
�F	 t� =
N−1∑
j=1

(
cj�F� − cj�A�

) �it�j

j! + log 
�A	 t� + o�tN−1� (5.10)

Taking the exponential (a bijective function) of this equation, and remembering that
exp�o�tN−1�� = 1 + o�tN−1�, we get:


�F	 t� = exp

(
N−1∑
j=1

(
cj�F� − cj�A�

) �it�j

j!

)

�A	 t� + o�tN−1� (5.11)

Since the exponential is an analytical function, it can be developed into an infinite-order
polynomial. Therefore, there exist some Ej for j = 0	 � � � 	N − 1 such that we have:

exp

(
N−1∑
j=1

(
cj�F� − cj�A�

) �it�j

j!

)
=

N−1∑
j=0

Ej

�it�j

j! + o�tN−1� (5.12)
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substituting this into Equation (5.11), we obtain:


�F	 t� =
N−1∑
j=0

Ej

�it�j

j! 
�A	 t� + o�tN−1� (5.13)

Then we take the inverse Fourier transform of (5.13) and use the fact that:

f�s� = 1
2


∫ �

−�
e−its
�F	 t� ds

a�s� = 1
2


∫ �

−�
e−its
�A	 t� ds

�−1�j �ja�s�

�sj
= 1

2


∫ �

−�
e−its�it�j
�A	 t� ds

thus obtaining:

f�s� = a�s� +
N−1∑
j=0

Ej

�−1�j

j!
�ja�s�

�sj
+ ��s	N� (5.14)

where

��s	N� =
∫ �

−�
1

2

e−itso�tN−1� ds�

The error term exists but there are no bounds to it in the form of functions of N . All
known results on this error term for different a�s� and f�s� come from numerical analysis.

The first four polynomial coefficients being defined as:

E0 =1

E1 =�c1�F� − c1�A��

E2 =�c2�F� − c2�A�� + E2
1

E3 =�c3�F� − c3�A�� + 3E1�c2�F� − c2�A�� + E3
1

E4 =�c4�F� − c4�A�� + 4E1�c3�F� − c3�A�� + 3�c2�F� − c2�A��2

+ 6E2
1�c2�F� − c2�A�� + E4

1

we obtain, after having rearranged the terms of (5.14), and with n and m ≥ 5:

f�s� =a�s� + �c2�F� − c2�A��

2!
�2a�s�

�s2
− �c3�F� − c3�A��

3!
�3a�s�

�s3
(5.15)

+ �c4�F� − c4�A�� + 3�c2�F� − c2�A��2

4!
�4a�s�

�s4
+ ��s�

and c1�F� ≡ c1�A� by construction.
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5.4.2.2 Gram–Charlier expansions and the distribution of a portfolio’s returns

Previous works about Gram–Charlier expansions arrive at this general form and do not
further it. However, we need a more specific result in order to use it in a portfolio selection
context. In the special case of portfolio management, the time horizon is generally quite
long. A large number of empirical studies show that, over a period longer than three months,
return distributions tend towards normality. Hence, we justify the use of an approximating
distribution, a�s�, that is normal. We may therefore write:

a�s� = 1
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(5.16)

�2a�s�

�s2
= 1

�
√

2

e− 1

2 �
s−m

� �
2
(( s − m

�2

)2 − 1
�2

)

�3a�s�

�s3
= 1

�
√

2

e− 1

2 �
s−m

� �
2
(

−
( s − m

�2

)3 + 3
�s − m�

�4

)

�4a�s�

�s4
= 1

�
√

2

e− 1

2 �
s−m

� �
2
(( s − m

�2

)4 − 6
�s − m�2

�6
+ 3

�4

)

Moreover, the first four moments of a normal distribution are well known, and remarking
that c3 = skewness × �3 and c4 = �4�Kurtosis − 3�, we obtain the following cumulants:

c1�A� = �1�A� = m

c2�A� = �2�A� = �2

c3�A� = �3�A� = 0

c4�A� = �4�A� − 3�2�A�2 = 0

Using these cumulants, we get a Gram–Charlier expansion series with coefficients being
the central moments and the mean of the true distribution. A fourth order expansion will
thus have this form:

f�s� = 1
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The above expression allows us to express the probability density function of risky asset
returns as a function of the empirical central moments of their distribution. Notice that, by
construction, we have c1�A� ≡ c1�F� and c2�A� ≡ c2�F�.

A consequence of our choice of a Gaussian as approximating distribution is that, when
empirical skewness and kurtosis are respectively zero and three, the probability density
function f�s� will be normal. This is a weak normality hypothesis since a distribution with
such skewness and kurtosis is not necessarily a Gaussian. However, the form of return
distributions over a medium range justifies the use of this hypothesis.

Moreover, if this assumption seems too inaccurate, the expansion can be constructed on
other distributions fitting more precisely the properties empirically detected in the data.
The choice of the Gaussian Gram–Charlier expansion in this chapter is but a representative
example.
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5.4.3 Convergence of the fourth-order Gram–Charlier expansion

The type A Gram–Charlier density is an approximation and thus presents a certain number
of mathematical problems. Indeed, we cannot be sure that f�s� − ��s� remains a strictly
positive function over R, and the integral of this function from −� to +� may only be
approximately equal to 1.

Indeed, for certain values of the parameters, the Gram–Charlier expansion, without error
term, can become an object quite different from a probability density function. However, in
financial applications, we cannot use the unbounded error term. Hence the need to accurately
define the set of parameters (mean, variance, skewness and kurtosis of the true distribution)
that make f�s�−��s� a probability density function, that is, strictly positive over R and with
total probability of 1.

First, let us examine the validity of the approximation as regards the integration between
−� and +� of the approximated density f�s� without the error term. Remembering that
a�s� is the probability density function of a Gaussian distribution, with mean m and standard
deviation � , we get:∫ �

−�
�f�s� − ��s�� ds =

∫ �

−�
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if these integrals converge. Moreover, we have:∫ �
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using the zero skewness property of a Gaussian distribution. Moreover, we have:∫ �
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Therefore, in the case of a Gaussian approximating density a�s�, the Gram–Charlier
expansion without its error term has at least one of the required properties of a probability
density function. Indeed, for all possible values of the mean, variance, skewness and kurtosis
of the true distribution, we have: ∫ �

−�
�f�s� − ��s�� ds = 1 (5.19)



96 Multi-moment Asset Allocation and Pricing Models

This property is necessary for our Gram–Charlier expansion to be a probability density
function (pdf), yet this property alone is not sufficient. As we mentioned earlier, f�s�−��s�
needs also to be strictly positive over R. Clearly, this property cannot be obtained by
construction without an error term. As an example, consider a Gram–Charlier expansion of
order 4, based on a Gaussian approximating distribution. Taking as parameters of the true
distribution a mean of 0.25, a standard deviation of 1, a skewness of −1 and a kurtosis of
7, the expansion is not a pdf. Integrating this function from −� to +� gives 1, yet the
function is negative on certain intervals: from −1�482050808 to −1�052775638 and from
1.982050808 to 2.552775638.

Therefore, a Gaussian-distribution-based Gram–Charlier-expansion cannot be used without
the error term for all possible forms of approximated distributions. A more precise analysis
may allow us to find the conditions (on the moments of the true distribution) under which
this type of Gram–Charlier expansion can be used as pdf without its error term.

When we wrote the functional form of a Gram–Charlier expansion based on a Gaussian
approximating distribution, we had a Gaussian probability function times another factor. The
former is strictly positive on the real range, by construction,7 therefore we only have to
ensure the positivity of the latter. We obtain the following positivity condition theorem:8

Theorem 1 Let F be any empirical distribution, with mean �=�1�F�, standard deviation
� = �2�F�, skewness � = �3�F�/�3 and kurtosis � = �4�F�/�4. Let G�s� be its Gaussian-
based Gram–Charlier expansion of order four. Then, G�s� is a probability density function
if and only if the polynomial:

P�X� = �� − 3�X4 + f1��	 �	�	��X3 + f2��	 �	�	��X2 (5.20)

+ f3��	 �	�	��X + f4��	 �	�	��

where

f1��	 �	�	�� =4�3� − �� + ���

f2��	 �	�	�� =6��2� − 2��� + 3�2 − �2� − 3�2�

f3��	 �	�	�� =4�3�3 − �3� + 3�2�� + 3��2� − 12��2 − 3�3��

f4��	 �	�	�� = − 3�4 + �4� − 4�3�� + 18�2�2 − 6�2�2� + 12��3�

+ 15�4 + 3�4�

has no real roots.

Using numerical methods, it can be found that a relatively large set of skewness–kurtosis
couples can be used that allow the Gram–Charlier expansion (without its error term) to
be a pdf. Figure 5.1 shows, approximately, the locus of couples that leads to a pdf for
a standard deviation of 0.5, representative of the results obtained for stocks over a year.
Notice, however, that the result is almost identical for different standard deviations and
means.

7 As a probability density, this function is strictly positive for all possible values of the moments of the true distribution.
8 A proof is provided in Appendix B.
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Figure 5.1 Locus of feasible skewness–kurtosis pairs.

This chart of results corresponds to the set of acceptable skewness–kurtosis couples.
It is bigger than the one obtained by Rubinstein (1998) for a binomial-distribution-based
Edgeworth expansion. The results cover most of the empirical skewness and kurtosis obtained
for risky assets’ monthly returns. Furthermore, if we accept, for approximation purposes,
the use of functions that are slightly negative on short intervals, the locus of acceptable
skewness and kurtosis widens quickly. Certain pdfs corresponding to acceptable values (the
grey values on the chart giving a true pdf) with a high kurtosis are trimodal – a characteristic
often found in stock returns.

However, there are cases when the empirical skewness and kurtosis of the returns distri-
bution are too important for a Gaussian-based Gram–Charlier expansion. These cases are
obviously more frequent when the returns are considered on a shorter period of time, and
especially for intra-day returns. When the Gaussian-based expansion gives a locally negative
function, the solution is the use of another type of approximating distribution, with intrinsic
characteristic fitting better to the approximated distribution. In the case of a highly leptokur-
tic distribution, using a leptokurtic approximating distribution keeps the expansion positive,
yet usually makes the functional form of the Gram–Charlier expansion more complicated. In
portfolio selection problems, however, this problem arises scarcely, since the horizons are
usually close to one year.

The results obtained in this section are quite similar to those of Jondeau and Rockinger
(2001), who obtained the locus of skewness and kurtosis which would ensure the positivity
of the Gram–Charlier expansion through a different method. However, their method may be
more difficult to extend to expansions of an order higher than four. Nevertheless, it allows
them also to propose an algorithm controlling the possible negative values of the expansion,
thus ensuring that it is a true probability density function.
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5.5 THE DISTRIBUTION OF PORTFOLIO RETURNS

We now have a reliable tool that enables us to obtain a good approximate probability density
function in an analytical form. We can therefore use a density, built on the basic empirical
moments of the returns’ distribution, for any risky asset.

However useful that expansion may be, it is not enough to work on the extension of
portfolio theory, since we only have a result for univariate distributions. Thus, we need to
determine the probability density function of a portfolio composed of many assets, taking
diversification on all moments into account.

5.5.1 Feasible approaches

There are two different possibilities for obtaining the density of a portfolio. The first one
is to work on a multivariate Gram–Charlier expansion.9 This approach may initially seem
attractive, yet it is far from perfect. Indeed, determining its cumulants is tedious and far from
obvious, while, for portfolio management, we only need the distribution of the weighted sum
of marginal returns. Trying to determine precisely the approximate joint distribution would
therefore be useless and multiply the error sources.

Indeed, the approximation of an unknown joint distribution by a multivariate Gaussian
entails more errors than the approximation of an unknown univariate distribution by a normal.
This multiplies the possible discrepancies between the true and the estimated distributions,
as shown by the information theory theorems presented by Rao (1973). This is because there
is a first approximation on the marginal distributions and then a second one on the joint
distribution.

The second possible approach to obtaining the approximate portfolio returns’ distribution
is to base our study on the weighted sum of the risky asset returns. In fact, since we work
only on the first four moments, we can suppose that returns are any form of absolutely
continuous random variable. In such a case, it is feasible to obtain the expression of the
moments of the portfolio distribution as functions of the moments and co-moments of the
individual assets’ distributions. The Gram–Charlier expansion used in this chapter being of
order four, and defined over central moments and the mean, we only need to calculate the
mean, the variance, the third central moment and the fourth central moment.

5.5.2 The moments of the portfolio returns’ distribution

Let us suppose that the market is composed of N risky assets, their returns being abso-
lutely continuous random variables. Let us suppose that these random variables are initially
unknown. It is quite easy to obtain the first four moments of the marginal distribution of
each asset return.

Let Xi be the absolutely continuous random variable representing the returns on asset i.
Let wi be the normalised weight of asset i in the total portfolio. Then we have, in all cases:

N∑
i=1

wi = 1	 with wi ∈ R	∀i

9 Multivariate Gram–Charlier expansions are theoretically feasible and provide the same good fit as the univariate version. However,
the expression for the density is so cumbersome that this expansion is generally avoided.
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The expectation being a linear operator, it is well known that the sum of the means will
be the mean of the sum. Therefore, the following formula gives us the mean of the portfolio
returns’ distribution:

E

(
N∑

i=1

wiXi

)
=

N∑
i=1

wiE�Xi�

The variance of a sum of random variables is also very well known and, if the variances
and covariances converge (which is not a problem in our empirical setting), we will have:

var

(
N∑

i=1

wiXi

)
=

N∑
i=1

wivar�Xi� + 2
∑

1≤i<j≤N

wiwj cov�Xi	Xj�

In our model we also need the third central moment. This moment, along with the standard
deviation, allows us to compute the skewness of the sum distribution. We see that:
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To calculate the skewness, this third central moment has to be divided by the variance to
the power two-thirds. In a similar way, we get the fourth central moment of the distribution10

of the sum of individual returns as a function of the moments and co-moments of the
individual assets’ return distributions. Therefore:
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10 The kurtosis is equal to the fourth central moment divided by the squared variance.
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This allows us to obtain, when there is dependence between the returns of the assets
composing the portfolio, a description of the first four moments that is more complex than
the classical mean–variance paradigm. Moreover, there are far more inputs and they are
more difficult to handle since it is not possible to use the matrix representation.

We have now built an approximate probability density function of the portfolio returns. The
parameters of this function are the first four moments of the assets’ marginal distributions of
returns and the corresponding co-moments and the weights. Therefore, we have the necessary
elements of the optimal portfolio selection problem. This problem consists in finding the
optimal wealth repartition between all risky and risk-free assets in the portfolio, in the sense
that it maximises the expected utility.

5.5.3 Possible portfolio selection methods

The risky assets’ return distributions can be characterised by their moments, and the investors
may express their preferences on these moments. Nevertheless, there are interactions between
the moments defining a portfolio distribution. The weight attached to each asset can therefore
no longer define a unique optimal vector for a given expected return. The set of efficient
portfolios is no longer the same for all investors, even if they have utility functions of the
same class.

Indeed, in the case of an n moments portfolio selection problem, the portfolios are points
in an n-dimensional space. If we consider the subspace of all feasible portfolios, its convex
hull surface (in a wider sense than the usual if short-sales are allowed) is the locus of all
“efficient” portfolios (the Markowitz frontier in an n-dimensional space). This is because of
the complete investment constraint.

This locus of efficient portfolios is a subspace with n−1 dimensions. Introducing a riskless
asset and looking for convex portfolios reduces, in the classical bidimensional setting, the
risky possible portfolio to a subspace of dimension zero, that is, a point, the market portfolio.
Hence, multiplicity of the solutions is not a problem. In our n-dimensional setting, however,
the market portfolio is no longer unique. It is of dimension n−2, as the subset of all tangency
points for lines between the riskless asset and the efficient portfolios subspace. Therefore,
an infinite number of portfolios are now possible market portfolios. To restrain this to a
unique market portfolio, the representative agent’s marginal substitution rates between all
the moments are to be known.

The problem would be solved if we could restrain ourselves to only one type or class of
utility function. Indeed, if we consider that every agent has a CRRA utility function (or any
other sort of restricted behaviour) we may solve the optimal portfolio, if not always in closed
form. This approach would then take, at least partially, the non-normality of the returns
into account. It is quite remarkable, however, that this approach, suggested by Aït-Sahalia
and Brandt (2001) and Ang and Bekaert (2002), is a prolongation of the testable version of
the Kraus and Litzenberger (1976) theory implemented by Friend and Westerfield (1980),
and as such probably only takes into account particular forms of non-normality at particular
periods.

We need to know exactly the marginal rates of substitution between all the moments
taken into account, or to be able to have a relationship defined between them. This will be
necessary to discover an equilibrium portfolio theory in the context of non-Gaussian returns
with the least hypotheses. However, even with the marginal rates of substitution between
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moments, we will need to define methodologies11 that could effectively be extended to any
form of risky asset returns distribution and to any form of preferences. Indeed, some forms
of preferences may not be expressible exactly in terms of moments or even partial moments.

5.5.3.1 An extension of the “classical” CAPM

When we examine the formal setting of the CAPM we notice that the optimisation programme
is not defined directly for the distribution of returns, but only on its first two moments.
Therefore, it may seem logical to extend this type of methodology to assets with non-Gaussian
returns.

This would imply that, under the constraint of a given value of the expected returns, we
should minimise a function of the moments of order higher than or equal to two on which
the agents express their preferences. More specifically, we can suppose that the general form
of this function would be of the type:

m∑
i=3

�i

�i�P�

�i�P�
+ �2�

2�P� = objective (5.23)

where P denotes the portfolio returns distribution, �i�P� denotes the central moment of
order i, and the �i are weights originating from the marginal rates of substitution between
moments.12

This methodology can appear similar in some ways to the Gram–Charlier expansions,
since it is based on the use of the moments of the returns’ distribution. However, its main
weakness comes from its similarity to the “classical” CAPM. Indeed, it is not possible to
use all the moments to infinity,13 and the moments not declared in the objective function are
totally excluded from the portfolio selection problem.

That may be an important limit since there is no strong economic reason for the agents
not to have preferences on all the existing moments, as we mentioned before. If the agents
do not understand precisely the statistical meaning of higher-order moments, they probably
will only express a direction of preference (i.e. we know if they have positive preference or
aversion towards this moment), yet this has to be taken into account.

Another method of portfolio selection in the presence of higher order moments is presented
by Chunhachinda et al. (1997), and was later complemented by Prakash et al. (2003),
both with application to international markets. This method is called Polynomial Goal
Programming and was originally developed by Tayi and Leonard (1988). It consists, in a
first step, of finding separately the optimum portfolio for each of the moments taken into
account. In a second step, a “polynomial” function of the discrepancies between these optima
and the local realisation, weighted in power forms, is minimised. Both mentioned articles
used mean–variance–skewness portfolios. This allowed them to normalise the variances to
one and therefore only have to find optima of one type (maxima in this case). However,
using this method with other moments of even order may be quite difficult, as there will be
simultaneous minimisations and maximisations.

11 The commonality between all the approaches is that, to be able to actually optimise portfolios, we need a scalar risk measure.
This risk measure will probably be a functional of the marginal rates of substitution previously evoked.
12 To derive a market equilibrium relation, these marginal rates of substitution have to be those of the representative agent.
13 Moreover, the need to use co-moments, whose complexity increases quickly with the order, implies that it is difficult to work
with numerous moments.
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More to the point, the main limit of such an approach, which quite resembles the one we
will advocate, is that the marginal rates of substitution (that determines the power-weights
applied to discrepancies) are limited in their number. Indeed, in both articles, substitution is
allowed between mean and skewness but not formally between mean and variance or between
variance and skewness. However, this method is quite interesting as it is not computationally
too intensive and may offer a tool to empirically investigate some of the marginal rates of
substitution between moments present in the markets.

5.5.3.2 Possible methodologies based on the distribution shapes

The effects of the diversification between the assets are taken into account in the definition of
the probability density function of the portfolio. Since this density is generally not thoroughly
known, the method presented before and based on the Gram–Charlier expansion is probably
one of the best in this context. We have presented this method at order four since we do
not know exactly the significance of the moments of higher order, implying that the agents
cannot express more than preference directions on these moments (Scott and Horvath, 1980).

As we mentioned earlier, to work in a really general manner on a distribution, without
ignoring some of its characteristics, we need to use its probability density function. However,
in the case of risky assets, this density function is unknown and we can only use approxi-
mating methods.14 Indeed, the central point in our methodology is to obtain an expression of
the portfolio’s returns density conditional on the weights of the assets constituting it. As we
believe that the Gram–Charlier expansion is one of the most flexible approaches to obtaining
such a density, we propose its use. However, this expansion may present certain difficulties
and can be replaced by other methods. For example, its use is limited by the possible neg-
ativity. Nevertheless, we consider that the possibility it offers to easily include moments of
order greater than four and to use any approximating density15 with added precision more
than balances its limits.

Indeed it is interesting to examine the seminal works in financial economics (Arrow,
1971; Von Neumann and Morgenstern, 1953), which consider that the agents express their
preferences over consumption plans. These consumption plans are absolutely continuous
random variables. Since the investment portfolios contribute to consumption, examining
them through less than their density function could lead to a misunderstanding of their
equilibrium prices.

The preferences of the agents being primarily expressed on distributions and not on
moments, it is on the risky assets’ return distributions, represented by their density functions,
that we should work in order to select optimal portfolios. Indeed, most forms of portfolio
selection studied to this day are based on the expected utility theory. Expected utility gives us
the general possibility to express the choice of the agents, through Taylor expansions of their
utility, in terms of moments. This method is well covered in Jurczenko and Maillet (2001).
However, some research proves that expected utility theory does not represent faithfully the
way investors really express their preferences under uncertainty (see, for example, Allais,
1953; Tversky and Kahneman, 1974; Kahneman and Tversky, 1979). In order to propose a

14 Other than the Gram–Charlier expansions, some methods, generally less accurate, could provide us with such an approximation
of the density, like the Edgeworth expansion and the Hermite polynomials. We could also use known distributions, yet we have
already seen the many flaws in this method.
15 The construction of the expansion may sometimes be more complex than with a Gaussian.
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portfolio selection method quite robust to the type of preferences agents exhibit, we need to
stick to the complete distributions of asset returns as much as we can.

There exist different approaches that could allow us to achieve such a goal. The most
promising approach, yet a very complex one, is to minimise the distance between the
portfolio returns’ density function and an objective density function, corresponding to an
ideal portfolio. For a risk-averse agent, this portfolio is obviously the portfolio offering
the same expected return � and no risk. Therefore, we will need to minimise the distance
between the portfolio returns’ density function and the density function of a random variable
degenerated on its mean, a Dirac delta of mean �.

Moreover, we can easily accommodate the fact that agents express a positive preference
on odd-order moments, that is, agents wish a distance to exist between the densities after
the mean. To obtain such a result, we can minimise the distance between the real and the
ideal densities between minus infinity and the required mean; if the result is more than one
portfolio, we select the one exhibiting the most positive asymmetry.

The key problem with this possible method is the definition of the distance minimised. It
may initially seem appealing to use a distance based on the classical norm on �2:

d�F	A� =
√∫

R

�f�s� − a�s��2 ds (5.24)

We should note, however, that this distance can, by no means be used for risk-averse
agents. Indeed these agents are averse to variance and, ceteris paribus, this distance decreases
when variance increases, skewness increases and kurtosis decreases.

Therefore, to establish a convincing portfolio theory, it is required that our knowledge
of the agents’ marginal rates of substitution between moments be paralleled by research on
distances coherent with them. When the distribution of returns is a simple Gaussian, we
should obviously obtain the classical CAPM as a result of this approach.

A certain number of known distances could probably bring some results, after small
modifications, in the context of non-Gaussian portfolio theory. One of them is the Kullback–
Leibler distance, also known as relative entropy between the probability measures associated
with the actual portfolio distribution and the ideal portfolio distribution. This distance is
defined as:

��Q	P� =
∫

�
ln
(

dQ

dP

)
dQ (5.25)

where dQ/dP is the Radon–Nikodym derivative of Q with respect to P, and � is the space
on which these probability measures are both defined. The properties of the Kullback–Leibler
distance are well known:

��Q	P� ≥ 0

��Q	P� = 0 ⇐⇒ P = Q

��Q	P� = � if Q is not absolutely continuous with respect to P

The first two properties are perfectly adapted to our requirements, yet the third one implies
that we define an alternative objective distribution. The probability measure associated with
this distribution should be absolutely continuous with respect to the measure associated
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with the density defined by the Gram–Charlier expansion used to approximate the portfo-
lio returns’ density. The same problem can arise for other measures and distances, since
continuity is often required.

It is therefore necessary to define a probability distribution nearly ideal for a risk-averse
agent. To this purpose, we propose the use of a Gaussian with a standard deviation in the
neighbourhood of zero. Indeed, we can show that it can always be a good approximation of
the Dirac delta at the desired level of precision.

Theorem 2 Let U � R �→ R
+ be a monotonically increasing utility function, �� be a Dirac

delta with mean � and �
������∈�0	+�� be the family of Gaussian distributions with fixed
mean �, then:

∀� > 0 ∃� ∈ �0	+�� � E�U����� − E�U�
������ < �

That is, there’s always a � such that the expected utility of the corresponding Gaussian
distribution is as close as desired to the expected utility of the Dirac delta.16

5.5.3.3 An approximate and simplified methodology

Another methodology we could use is also based on the probability density function. There-
fore, it is more general, even if the density is a Gram–Charlier expansion of order four,17

than the simple moments-based approaches. Since it will not necessarily be trivial to define
the distances coherent with agents’ preferences, a less-refined approach may be useful.

All the characteristics of a distribution cannot be recovered from the description of this
distribution around its mean. Yet, if the density function is taken into account in a large
enough area, it exhibits many of the distribution’s moments and their interactions. To obtain
a scalar measure of the risk of a given distribution, while remembering that investors like
positive skewness, we could use the following integral:

risk ≈
∫ �

�
a�s�� ds (5.26)

In this equation, the parameters � ∈ R
∗ and � ∈ �−�	�� allow us to give a more or less

important relative influence to the tails of the distribution compared to its central part,
thus reflecting the agents’ preferences and marginal rates of substitution between moments.
Since a�s� is always positive (it is a probability density function even if produced by a
Gram–Charlier expansion), complex values are avoided.

Obviously, the critical point is to obtain values for � and � corresponding to the agents’
preferences. Moreover, even in the case of a portfolio with normal returns, the classical
CAPM is not automatically obtained. Yet, this approach is a first way of reaching approxi-
mately optimal portfolios under the constraint of a given expected return. Formally solving
the optimisation programme is probably not always possible, and this simpler programme
can allow us to use numerical methods.

16 The proof of this theorem is in Appendix B.
17 In a Gram–Charlier expansion of order m, the moments of order higher than m exist and have values differing from what they
would be for the approximating Gaussian distribution a�s�.
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5.6 CONCLUSION

We have examined how different authors have attempted to enlarge the application field of
the CAPM to moments of order higher than two. The methods used can be separated into two
groups: extensions of the CAPM based on the preferences of the agents and works based on
more distributional approaches. The extensions based on utilities are more frequent, yet they
present the inconvenience of hiding the fact that the real problem stems from the properties
of the returns’ distributions. Moreover, distributional hypotheses present the advantage of
being fully testable, whereas the hypotheses formulated on the agents’ utilities are usually
more theoretical and difficult to test.

On the other hand, works based on the study of the returns’ distributions are usually
too formalised and mathematically complex to really enlighten us on the actual problem of
portfolio selection. Furthermore, the work on the portfolio theory based on distributional
analysis is generally not overly concerned with agents’ preferences, which are nonetheless,
central.

However, we have seen how extending portfolio theory to the case of non-normally dis-
tributed asset returns implies studying the density function of the returns.18 Yet, studying the
distributions of returns is useless if not accompanied by an accurate description and under-
standing of how the agents express their preferences on these distributions. This description
of the preferences in a context of non-normally distributed returns is complex, since we only
know if agents express preference or aversion towards the different moments and have yet
to discover how they rank these preferences.

One of the economic preambles to a real extension of the CAPM to a non-Gaussian
universe is, therefore, to study the marginal rates of substitution between the different
moments of the returns’ distributions. Maybe it is feasible to infer these marginal rates of
substitution from the variation of returns across the risky asset range, yet this will only unveil
the market aggregate values at the specific time of the study.

From another point of view, we have seen that the complexity of the portfolio selection
problem in a non-Gaussian universe leads to the questioning of the methodology used until
now in portfolio theory. Although we have attempted to submit a few possible ways to
explore this problem, important work is still to be undertaken, especially in defining the
concept of extended risk.

APPENDIX A: ADDITIONAL STATISTICS FOR THE EXAMPLE
PORTFOLIO

A.1 Moments and co-moments

We present the moments and co-moments of the daily return distributions for the assets
forming our portfolio. The observations used in establishing these results are from January
2nd, 1998 to December 30th, 1998. First consider the variance–covariance matrix shown in
Table 5.6.

Moments and co-moments are more complex when of an order greater than or equal to
three. They cannot be represented as easily as they are for order two. Here, we present a

18 To keep our analysis general and realistic enough, we need not restrain the agents’ utility functions to any specific class, since
such hypotheses cannot be easily verified.
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Table 5.6 Variance–covariance matrix

Barrick Gold Bouygues Canal Plus Michelin

Barrick Gold 0�00101047 4�9024E −05 6�0448E−05 4�0928E −05
Bouygues 4�9024E−05 0�00075709 0�00010821 0�00019634
Canal Plus 6�0448E−05 0�00010821 0�00059704 0�00020752
Michelin 4�0928E−05 0�00019634 0�00020752 0�00072338

Table 5.7 “Skewness–co-skewness” matrix

Barrick Gold Bouygues Canal Plus Michelin

Barrick Gold 1�6277E−05 7�1291E−07 −9�8902E−07 −4�6659E−06
Bouygues 2�9949E−06 2�3224E−06 −1�6393E−06 −1�7912E−06
Canal Plus −1�4158E−06 9�3623E−08 6�6674E−06 2�6197E−06
Michelin −1�5269E−06 −8�166E−07 1�1862E−07 7�602E − 07

Table 5.8 Third-moment 3 × 3 dependencies

Barrick Gold Bouygues Canal Plus −3�0782E − 07
Barrick Gold Bouygues Michelin 3�488E − 06
Barrick Gold Canal Plus Michelin −7�832E − 07
Bouygues Canal Plus Michelin −5�978E − 07

matrix of “skewness–co-skewness”. In fact, the data presented here are the central moments
and co-moments of order three. In Table 5.7, lines correspond to assets i in the expression:
E��Xi − E �Xi��

2 (Xj − E
(
Xj

))
�.

To finish with the statistical description of the third moments of the assets included in our
portfolio, we present, in Table 5.8, the three by three dependency, as given by the expression:
E
[
�Xi − E �Xi��

(
Xj − E

(
Xj

))
�Xk − E �Xk��

]
.

The complete description of the central moment of order four and its related co-moments
is even more tedious. We first present, in Table 5.9, the symmetrical co-dependency
corresponding to the fourth central moment. On the diagonal are the fourth central
moments of the corresponding assets, while the rest are terms given by the expression:
E��Xi − E �Xi��

2 (Xj − E
(
Xj

))2
�.

Table 5.10 presents the “matrix” giving the other two by two co-moments of order
four. The lines contain the stocks i, and the columns the stocks j, of the expression:
E��Xi − E �Xi��

3 (Xj − E
(
Xj

))
�.

Table 5.9 Central fourth moments and corresponding symmetrical co-moments

Barrick Gold Bouygues Canal Plus Michelin

Barrick Gold 3�8889E − 06 1�0509E − 06 5�5628E − 07 7�571E − 07
Bouygues 1�0509E − 06 2�2451E − 06 4�9715E − 07 6�4775E − 07
Canal Plus 5�5628E − 07 4�9715E − 07 2�1695E − 06 6�4028E − 07
Michelin 7�571E − 07 6�4775E − 07 6�4028E − 07 1�5881E − 06
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Table 5.10 Other 2 × 2 fourth-order co-moments

Barrick Gold Bouygues Canal Plus Michelin

Barrick Gold x 1�3809E − 07 1�8265E − 07 1�1183E − 07
Bouygues 2�9462E − 08 x 3�462E − 07 5�6403E − 07
Canal Plus 1�6451E − 07 2�0112E − 07 x 8�4691E − 07
Michelin 6�3073E − 08 4�2504E − 07 4�6999E − 07 x

Table 5.11 Fourth-order 3 × 3 co-moments

Barrick Gold Bouygues Canal Plus 2�454E − 07
Bouygues Barrick Gold Canal Plus 1�2928E − 07
Canal Plus Barrick Gold Bouygues 8�7651E − 08
Barrick Gold Bouygues Michelin 2�984E − 07
Bouygues Barrick Gold Michelin 2�2708E − 08
Michelin Barrick Gold Bouygues −8�8329E − 08
Barrick Gold Canal Plus Michelin 2�4999E − 07
Canal Plus Barrick Gold Michelin 7�0504E − 08
Michelin Barrick Gold Canal Plus 1�5833E − 08
Bouygues Canal Plus Michelin 2�2411E − 07
Canal Plus Bouygues Michelin 1�4867E − 07
Michelin Bouygues Canal Plus 1�4907E − 07

Table 5.11 presents the three by three fourth-order co-moments, as given by the expression:
E��Xi − E �Xi��

2 (Xj − E
(
Xj

))
�Xk − E �Xk���. The stocks named first correspond to asset i

in the expression.
Since our portfolio is composed of only four assets, there is only one value for the 4 × 4

fourth-order co-moment, as given by the expression:

E�Xi − E �Xi��
(
Xj − E

(
Xj

))
�Xk − E �Xk�� �Xl − E �Xl���

In our case, its value is: 3�172767326E − 09

A.2 Statistical tests of normality

There are two main statistical tests for normality. We first present the results of the classical
Kolmogorov–Smirnov test, as well as the Lilliefors version, comparing the empirical distri-
bution of our stocks against the Gaussian distributions having the same mean and variance.
The results are presented in Table 5.12 (where � denotes the Lilliefors version, more adapted
to Gaussian distributions, but based on the same statistics). Since this test is not specifically
aimed at testing the normality of a distribution, we performed it at a quite restrictive 15 %
significance level.

To confirm the results obtained with the Kolmogorov–Smirnov and Lilliefors tests, we
have used a Jarque–Bera test in Table 5.13. Since this test is specifically designed for
testing the normality hypothesis, we can use a low 5 % significance level. Using the test
with a more restrictive 10 % significance level does not change the results, since the critical
value becomes 4.605170. The only stock for which the test cannot reject the hypothesis of
normality is Michelin.
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Table 5.12 Results of Kolmogorov–Smirnov tests

Barrick Gold Bouygues Canal Plus Michelin

K–S statistic 0.06519 0.07611 0.05496 0.04148
p-value 0.236431 0.109125 0.434302 0.780927
Result not rejected rejected not rejected not rejected

Test at a 15 % significance level, the critical value is 0.071733

� p-value 0.024467 undefined 0.063699 undefined
� Result rejected rejected rejected not rejected

Test at a 15 % significance level, the critical value is 0.048867

Table 5.13 Results of Jarque–Bera tests

Barrick Gold Bouygues Canal Plus Michelin

J–B statistic 17.3020 9.1644 106.6340 0.0754
p-value 0.000175 0.010233 0 0.963002
Result rejected rejected rejected not rejected

Test at a 5 % significance level, the critical value is 5.991465

APPENDIX B: PROOFS

B.1 Positivity conditions theorem (Theorem 1)

Let us consider a Gaussian Gram–Charlier expansion of order 4 with our usual notation:

f�s� = 1

�
√

2

e− 1

2 �
s−m

� �
2
{

1 −
(

3
�s − m�

�4
−
( s − m

�2

)3
)

�3�F�

3! (5.27)

+
(( s − m

�2

)4 − 6
�s − m�2

�6
+ 3

�4

)
�4�F� − 3�4

4!
}

+ ��s�

We know that:

1

�
√

2

e− 1

2 �
s−m

� �
2

> 0 ∀�m	�	 s� ∈ R × R
+ × R

since it is a probability density function.
To have f�s� − ��s� > 0 ∀s ∈ R we need to verify that:

P�s� =1 −
(

3
�s − m�

�4
−
( s − m

�2

)3
)

�3�F�

3! (5.28)

+
(( s − m

�2

)4 − 6
�s − m�2

�6
+ 3

�4

)
�4�F� − 3�4

4! > 0
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Which is equivalent to:

P�s� =1 −
(

3
�s − ��

�4
−
( s − �

�2

)3
)

��3

3! (5.29)

+
(( s − �

�2

)4 − 6
�s − ��2

�6
+ 3

�4

)
�� − 3��4

4! > 0

where � denotes the mean, � the skewness and � the kurtosis. Equation (5.29) can be
rewritten as a polynomial equation in s:

P�s� =
(

− 1
8�4

+ �

24�4

)
s4 +

(
�

6�3
− ��

6�4
+ �

2�4

)
s3 (5.30)

+
(

�2�

4�4
+ 3

4�2
− 3�2

4�4
− �

4�2
− ��

2�3

)
s2

Since 24�4 > 0	∀� ∈ R, we know that:

sign�P�s�� = sign�24�4P�s��	∀s ∈ R

For f�s� − ��s� > 0, it is necessary and sufficient that 24�4P�s� > 0	∀s ∈ R. We easily see
that 24�4P��� = 15�4 + 3�4�, which is positive for all � and � defined as the standard
deviation and kurtosis of a probability distribution, respectively.

To have f�s� − ��s� > 0	 ∀s ∈ R, it is therefore necessary and sufficient for polynomial
(5.20) in Theorem 1 not to have real roots. �

B.2 Approximation of the optimal portfolio density (Theorem 2)

Let us consider a Gaussian density of mean � and standard deviation � . For s ∈ �−�	�� ∪
��	+��, we have

lim
�→0

1

�
√

2

e− 1

2 �
s−�
� �

2 = 0 (5.31)

and for s = �,

lim
�→0

1

�
√

2

e− 1

2 �
�−�

� �
2 = lim

�→0

1

�
√

2

= +� (5.32)

Moreover, we know that, 
���� being a probability density function, we have:

∫ +�

−�
1

�
√

2

e− 1

2 �
�−�

� �
2

ds = 1

and therefore,

lim
�→0

∫ +�

−�
1

�
√

2

e− 1

2 �
�−�

� �
2

ds = 1 (5.33)
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Since we have (5.31), (5.32) and (5.33), we have shown that:


����
law−→

�→0
��

As U�·� is monotonically increasing, we have:

U�
�����
law−→

�→0
U����

And, from the basic properties of Riemann integrals:

lim
�→0

E�U�
������ = E�U�����

That is:

∀� > 0 ∃� ∈ �0	+�� � �E�U����� − E�U�
������� < �

�
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6
The Four-moment Capital Asset Pricing Model:

Between Asset Pricing and Asset Allocation

Emmanuel Jurczenko and Bertrand Maillet

ABSTRACT

The purpose of this chapter is to present the four-moment Capital Asset Pricing Model in
a unified framework. The traditional CAPM suffers from several restrictive hypotheses. In
particular, Gaussianity and a “small” risk are supposed to be valid. Following the seminal
article of Rubinstein (1973) and those, more recently, of Fang and Lai (1997), Hwang and
Satchell (1999), Adcock (2004 and 2005), Athayde and Flôres (1997 and 2000), Berényi
(2001, 2002 and 2004), Christie-David and Chaudhry (2001) and Dittmar (2002), we extend
the Sharpe–Lintner–Mossin framework to take into account the asymmetric and leptokurtic
characteristics of asset return distributions. Using a two-fund monetary separation theorem,
we develop an exact four-moment capital asset pricing relation. We present a similar relation
in the more general case of a market without riskless assets. Finally, we put into perspective
the link between some multifactor models such as the Sharpe–Lintner–Mossin CAPM,
Black’s CAPM (1972), the cubic market model, the APT of Ross (1976) and this revisited
four-moment CAPM.

6.1 INTRODUCTION

The validity of the Sharpe–Lintner–Mossin Capital Asset Pricing Model (CAPM)1 has been
questioned by several empirical tests. This model remains, nevertheless, one of the most
important contributions to modern finance theory, as emphasised by Black (1993) and
Jagannathan and Wang (1996) for instance.

This model of the financial market equilibrium is based on several restrictive hypotheses;
two of them concern the normality2 of the asset return distributions and the characteristics of
the agent preferences. The latter is necessary to legitimise this formalisation of the investors’
optimisation problem in a risky situation, while, in the former, the expected utility function

1 See Sharpe (1964), Lintner (1965) and Mossin (1966).
2 The CAPM is also suitable for the broader class of elliptical distributions (see Chamberlain, 1983; Owen and Rabinovitch, 1983;
Hamada and Valdez, 2004).

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd
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can be expressed as an exact function of the mean and the variance of the investment return
distribution.

These hypotheses are subject to two traditional criticisms: the first one is tied to the
theoretical foundations of the approach; the second is based on their inadequacy with the
stylised facts highlighted in empirical studies. The return normality hypothesis implies,
indeed, that the investor can lose more than his initial wealth, and the quadratic utility
function does not correspond to the rational agent behavioural characteristics. In particular,
it is difficult to accept that a financial asset can be seen generally as an inferior good (Pratt,
1964; Arrow, 1970) and to explain that risk-averse agents would participate in a risky lottery
(see Friedman and Savage, 1948; Kahneman and Tversky, 1979; Golec and Tamarkin, 1998).
Moreover, the quadratic approximation is usually justified economically by the existence of
a “small” absolute risk in the sense of Samuelson (1970), or by a “small” relative risk in
the sense of Tsiang (1972). These hypotheses do not correspond to all asset characteristics.
The hypothesis of normality of return densities3 is clearly rejected according to the results
of many empirical studies (see, for instance, Fama, 1965 and Mandelbrot, 1997). Most of
the empirical asset return distributions are asymmetric and leptokurtic. Limited liability,
speculative financial bubbles and incitative schemes induce skewness in financial asset
return distributions (Black and Scholes, 1973; Blanchard and Watson, 1982; Goetzman et al.,
2004). The skewness is reinforced by the existence of leverage and volatility feedback effects
(Black, 1976; Christie and Andrew, 1982; Pindyck, 1984), while the existence of derivatives,
active and passive portfolio strategies and the use of short-sale and leverage leads to convex
pay-off functions (Bookstaber and Clarke, 1981; Henriksson and Merton, 1981; Davies
et al., 2004). Conditional heteroskedasticity, long-term compound return and heterogeneous
expectations are also responsible for the skewed and leptokurtic characteristics of asset and
portfolio return distributions (Bollerslev, 1986; Fama, 1996; Hong and Stein, 1999 and 2003;
Chen et al., 2001).

The relative failures of the traditional CAPM have led several authors to adopt alternative
approaches in order to improve the theoretical consistency and empirical performance of
the model. Among the main possibilities investigated, the following extensions can be
distinguished (without pretence to exhaustibility). Different density probabilities have been
substituted for the Gaussian distribution to estimate the CAPM parameters (Harvey and
Zhou, 1993). A time-varying version of the CAPM has also been proposed to deal with the
autoregressive character of the conditional variance (Bollerslev et al., 1988; Jagannathan
and Wang, 1996) or, more generally, with advocated parameter variability. Financial risk
measures other than variance4 have allowed others to develop asset pricing models such
as Gini-CAPM (Shalit and Yitzhaki, 1984; Okunev, 1990), Lower-moment CAPM (Nantell
et al., 1982; Hwang and Pedersen, 2002), CAPM with asymmetric betas (Ang et al., 2004)
and VaR-CAPM (Alexander and Baptista, 2002 and 2003). Multifactor models, based on
an arbitrage argument or heuristic considerations, permit authors to improve the explanatory
power compared to that of the original model (Fama and French, 1992 and 1995; Carhart,
1997). Finally, the last stream of the literature to be highlighted concerns the use of higher-
order moments than the variance in a pricing relation (see, for instance, Rubinstein, 1973;

3 Which can be encompassed by the lognormality hypothesis. Nevertheless, this one has some other drawbacks (see, for instance,
Feller, 1971).
4 For an extended survey of financial risk measures, see Pedersen and Satchell (1998).
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Ingersoll, 1975; Kraus and Litzenberger, 1976).5 The main feature of these models is to
obtain, for any risky asset, a linear equilibrium relation between the expected rate of return
and higher-order moment systematic risk measures.

Initially developed by Rubinstein (1973), Ingersoll (1975) and Kraus and Litzenberger
(1976) to take into account the effects of the unconditional asymmetries on the asset pricing
relation, this approach has been extended to the unconditional kurtosis by Graddy and
Homaifar (1988), Athayde and Flôres (1997 and 2000), Adcock (2003) and Hwang and
Satchell (1999)6 and to the conditional higher-order moments by Harvey and Siddique (2000a
and 2000b), Dittmar (2002) and Galagedera et al. (2004a and 2004b). The introduction of
higher moments in the investors’ objective functions can explain some financial anomalies
such as individual and institutional portfolio underdiversification (Simkowitz and Beedles,
1978; Conine and Tamarkin, 1981 and 1982; Kane, 1982; Davies et al., 2004 and Mitton and
Vorkink, 2004); industry, book-to-market, size or momentum effects (Harvey and Siddique,
2000a and 2001; Dittmar, 2002; Barone-Adesi et al., 2004 and Chapter 9 of this book, and
Chung et al., 2006), and the risk-free rate and the equity premium puzzles (Brav et al., 2002;
Lim et al., 2004; Semenov, 2004). Departures from normality are also powerful factors in
option pricing to explain the volatility smile effect (Jarrow and Rudd, 1982; Corrado and
Su, 1996a and 1996b; Jurczenko et al., 2002a, 2002b and 2004).

Even though multi-moment pricing models can handle agent preferences and asset return
distributions in a more realistic way than the traditional CAPM, their derivations are not
without problems. The four-moment asset pricing models that have been proposed use
fourth-order Taylor series expansions of specific HARA utility functions to justify a four-
moment-based decision criterion. This means that the asset pricing relations obtained are only
valid approximately. Moreover, the aggregation of the individual equilibrium conditions rests
on a two-fund monetary separation theorem which restricts the domain of validity of these
models to the existence of a risk-free asset and to specific separable quartic or decreasing
HARA utility functions (see Chapter 1). In addition, the risk premia of multi-moment models
are not generally identified independently of the shape of the utility function considered.

The objective of this chapter is to overcome some of the limits of the multi-moment asset
pricing models by combining, in a unified framework, some of the results of Expected Utility
Theory, Portfolio Choice Theory and Asset Pricing Theory. Indeed, a unified framework is
required in order to obtain a generalisation of the CAPM in a skewed and leptokurtic world,
with or without the existence of a riskless asset, where risk-premia can be identified on a
priori grounds.

When focusing on the theoretical foundations of rational choices, it is possible to justify an
exact mean–variance–skewness–kurtosis decision criterion and to explain a risky behaviour
by a risk-averse agent. But, to our knowledge, no conclusion has yet been applied to
portfolio choices and asset pricing relations. When focusing on portfolio choices, one can
define a mean–variance–skewness–kurtosis efficient frontier with or without a riskless asset,
and obtain a linear relation between the expected return on any efficient portfolio and the

5 See also Friend and Westerfield (1980), Sears and Wei (1985 and 1988), Graddy and Homaifar (1988), Lim (1989), Simaan
(1993), Nummelin (1997), Fang and Lai (1997), Sánchez-Torres and Sentana (1998), Racine (1998), Faff et al. (1998), Adcock
and Shutes (2000 and 2001), Athayde and Flôres (1997 and 2000), Berényi (2001, 2002 and 2004), Christie-David and Chaudhry
(2001), Hübner and Honhon (2002), Jurczenko and Maillet (2001), Hwang and Satchell (1999), Stutzer (2003), Adcock (2003 and
2004), Polimenis (2002), Harvey and Siddique (2000a and 2000b), Dittmar (2002), Rolph (2003), Galagedera et al. (2004a and
2004b), Hung et al. (2004), and Chung et al. (2006).
6 See also Fang and Lai (1997), Adcock and Shutes (2000), Christie-David and Chaudhry (2001) and Berényi (2001, 2002 and
2004).
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expected return on two specific portfolios (Adcock and Shutes, 2000; Adcock, 2003; Athayde
and Flôres, 1997 and 2000). Nevertheless, an explicit characterisation of return densities –
or a link between moments – is necessary in order to identify the moment preferences
of investors and, consequently, to determine the sign of the risk premia. When focusing
on pricing asset relations, these problems can be encompassed, but a two-fund monetary
separation theorem is required, entailing restrictive HARA-type preferences and the existence
of a riskless asset (Rubinstein, 1973; Kraus and Litzenberger, 1976).

This work benefits from the advantages of all these approaches with very slight distri-
butional hypotheses.7 Assuming quartic objective functions and adopting a simple vectorial
representation of the portfolio skewness and kurtosis, we generalise the security market line
into a market hyperplane and identify three systematic risk premia independently of the
investors’ utility specifications. The risk premium on any financial asset is, at equilibrium, a
linear function of the expected rate of return on four distinct portfolios: the market portfolio,
the riskless asset and two orthogonal portfolios.8 We also study the general properties of
the mean–variance–skewness–kurtosis efficient frontier with N risky assets. These lead us
to extend the four-moment CAPM relation in the absence of a riskless asset, and to make
the link between the four-moment CAPM, Black’s CAPM (1972), the cubic market model
and the APT model of Ross (1976).

This chapter is organised as follows. In Section 6.2 we describe the equilibrium relation
in a uniperiodic framework. Using a two-fund monetary separation theorem, we develop an
exact four-moment capital asset pricing relation. In Section 6.3 we study the properties of the
mean–variance–skewness–kurtosis efficient set and generalise the fundamental four-moment
CAPM relation when there is no riskless asset traded in the market. Section 6.4 presents
the links between the four-moment CAPM and other multifactor models – such as Black’s
model (1972), the three-moment CAPM of Kraus and Litzenberger (1976), the APT model9

of Ross (1976) or the cubic market model. Section 6.5 concludes. Proofs of the theorems
appear in the appendices.

6.2 THE FOUR-MOMENT CAPITAL ASSET PRICING
MODEL

After recalling the main hypotheses of the model, we present the equilibrium relation, using
a two-fund monetary separation theorem, following the approach of Rubinstein (1973),
Ingersoll (1975) and Graddy and Homaifar (1988). This equilibrium relation is the four-
moment CAPM fundamental relation.

6.2.1 Notations and hypotheses

The following hypotheses are assumed. There are N risky assets (with N ≥ 4) and
one riskless asset. The capital market is supposed to be perfect and competitive with
no tax. All investors have a von Neumann–Morgenstern utility function, Uk ���, with

7 Our approach required at least the existence of the first four moments and to restrict the range of the portfolio return realisations
to the domain of uniform convergence of the investors’ utility functions (see Chapter 1 and infra).
8 The first one is characterised by a zero covariance, relative unitary coskewness and zero cokurtosis with the market portfolio
return; the second one by a zero covariance, zero coskewness and relative unitary cokurtosis with the market portfolio return.
9 Arbitrage Pricing Theory model.
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k= �1� � � � �K�, which belongs to the class of utility functions, called D4, relevant for the
fourth-order stochastic dominance,10 strictly increasing and concave with the gross rate
of return of their investments. The K agents hold homogeneous probability beliefs about
returns. Each investor is assumed to maximise her expected utility, which can be rep-
resented by an indirect utility function, denoted Vk���, respectively concave and increas-
ing with expected portfolio return, concave and decreasing with variance, concave and
increasing with skewness and concave and decreasing with kurtosis (see Chapter 1).11

Asset returns are assumed, moreover, to be linearly independent and to possess finite
kurtosis.

The expected utility function can then be written as:

E
[
Uk
(
Rp
)]=Vk [E (Rp) �	2

(
Rp
)
� s3

(
Rp
)
� 
4

(
Rp
)]

(6.1)

with:

V
�1�
k = �Vk ���

�E
(
Rp
) > 0�V �2�k = �Vk ���

�	2
(
Rp
) < 0�V �3�k = �Vk ���

�s3
(
Rp
) > 0 and V �4�k = �Vk ���

�
4
(
Rp
) < 0

where Rp = WF/W0 is the gross rate of return of the portfolio held by investor k,
with k ∈ �1� � � � �K�, and W0 and WF are the initial and the final wealth of the
agent.

Consider an agent investing wpi of his wealth in the ith risky asset, i= �1� � � � �N �, and
wp0

in the riskless asset. The mean, variance, skewness and kurtosis of the portfolio return
are respectively given by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
Rp
)=wp0

Rf +E
[∑N

i=1
wpiRi

]
	2
(
Rp
)=E {[Rp −E (Rp)]2

}
s3
(
Rp
)=E {[Rp −E (Rp)]3

}

4
(
Rp
)=E {[Rp −E (Rp)]4

}
(6.2)

with: ⎧⎨
⎩
Rp =wp0

Rf +∑N

i=1
wpiRi∑N

i=1
wpi =

(
1 −wp0

)
where Ri represents the gross rate of return on the risky asset i and Rf is the riskless asset,
with i= �1� � � � �N �.

10 Utility functions of class D4 satisfy the following property (Vinod, 2004):

�−1�i U �i�k �R�< 0

where U�i�k ��� is the derivative of order i of Uk ���, with �i× k�= �1� � � � �4�× �1� � � � K�.
11 Whilst, in general, skewness and kurtosis correspond to the standardised third and fourth centred moments, they are used here as
the third and fourth centred moments.
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Developing terms in (6.2) and using the linear property of the expectation operator, we
have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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ijkl (6.3)

with, ∀�i� j� k� l�∈ �1� � � � �N �4:⎧⎪⎪⎨
⎪⎪⎩
	ij =E
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(
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)]}

sijk=E
{
�Ri −E �Ri��

[
Rj −E

(
Rj
)]
�Rk−E �Rk��

}

ijkl =E

{
�Ri −E �Ri��

[
Rj −E

(
Rj
)]
�Rk−E �Rk�� �Rl −E �Rl��

}
where

(
	ij
)
i�j

,
(
sijk
)
i�j�k

and
(

ijkl

)
i�j�k�l

represent, respectively, the covariance between the
returns of assets i and j, the coskewness between the returns of assets i, j and k and the
cokurtosis between the returns of assets i, j, k and l, with �i× j× k× l�= �IN ∗�4.

Following Diacogiannis (1994), this system can be written in vectorial notation, by using
the bilinearity of the covariance operator, as:12

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
(
Rp
)=wp0

Rf + w′
pE

	2
(
Rp
)= w′

p� wp

s3
(
Rp
)= w′

p�p


4
(
Rp
)= w′
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(6.4)

with:

w′
p1 = (

1 −wp0

)
where w′

p is the �1 ×N� transposed vector of the investor’s holdings of risky assets; wp is
the �N × 1� vector of the N risky assets in the portfolio p; E is the �N × 1� vector of the
expected returns of risky assets; � is the nonsingular �N ×N� variance–covariance matrix
of the N risky asset returns; �p is the �N × 1� vector of coskewness between the asset

12 See Diacogiannis (1994) for the vectorial notation of the skewness of the portfolio return, and Appendix A for a demonstration
of the vectorial expression of the skewness and the kurtosis.
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returns and the portfolio return; �p is the �N × 1� vector of cokurtosis between the security
returns and the portfolio return and 1 is the �N × 1� unitary vector.

That is, the skewness and the kurtosis of the portfolio return can be written, respectively,
as a weighted average of the coskewness and the cokurtosis between the N risky asset returns
and the portfolio return. Each component of the coskewness and the cokurtosis vectors
between the security returns and the portfolio return, defined as:⎧⎪⎨

⎪⎩
Cos

(
Ri�Rp

)=E {�Ri −E �Ri�� [Rp −E (Rp)]2
}

Cok
(
Ri�Rp

)=E {�Ri −E �Ri�� [Rp −E (Rp)]3
} (6.5)

with i= �1� � � � �N �, can be interpreted as a measure of the covariance between the return of
the asset i and the volatility and the skewness of the portfolio p, respectively. This means that
an asset that exhibits a positive (negative) coskewness, and a negative (positive) cokurtosis
with a portfolio, is an asset that tends to perform the best (worst) when the portfolio becomes
more volatile and experiences significant losses. It will act as a skewness enhancer (reducer)
and a kurtosis reducer (enhancer).

Alternatively, the first four moments of the portfolio return may be expressed by using
tensor products as follows (Athayde and Flôres, 1997):13
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where � represents the
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with �k× l�= �IN ∗�2, and the sign ⊗ stands for the Kronecker
product.14

13 See also Athayde and Flôres, 2002, 2003, 2004 and Chapter 2 of this book.
14 Let A be an �n×p� matrix and B an �m× q� matrix. The �mn×pq� matrix A ⊗ B is called the Kronecker product of A and B:
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These alternative notations are equivalent to the previous ones, with:{
�p = �

(
wp ⊗ wp

)
�p = �

(
wp ⊗ wp ⊗ wp

) (6.7)

While the tensor-based approach (6.6) offers the advantage, for asset allocation, of
expressing higher-order moments of the portfolio returns as explicit functions of the weight
vector (Athayde and Flôres, 1997, 2002, 2003 and 2004; Jondeau and Rockinger, 2003b and
2006; Harvey et al., 2004), the vectorial notation in (6.4) will be preferable for the derivation
of multi-moment asset pricing relations, since they require smaller-dimension vectors and
are linked directly to the systematic risk measures of skewness and kurtosis (see below).

Introducing into the definition of the coskewness and the cokurtosis operators – denoted
by Cos�Ri�Rp� and Cok�Ri�Rp� – the expressions of the variance and the skewness of the
portfolio rate of return, we find:⎧⎪⎨

⎪⎩
�p =E
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Rp −E (Rp)]2 −	2

(
Rp
)}

1
]

�p =E
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(
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)}

1
] (6.8)

The coskewness and the cokurtosis between the rate of return on an asset i and the rate
of return on a portfolio p give an indication of the asset’s ability to protect an investor
respectively against unexpected shocks on its portfolio variance and skewness (Racine,
1998).

6.2.2 Aggregation of the individual asset demands and a two-fund monetary
separation theorem

In such a framework, the kth agent’s portfolio problem can be stated as:

Max
wp

{
E
[
Uk
(
Rp
)]}= Max

wp

{
Vk
[
E
(
Rp
)
�	2

(
Rp
)
� s3

(
Rp
)
� 
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(
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)]}

(6.9)

s.t. �w′
p1 = (

1 −wp0

)
where 1 is the �N × 1� unit vector.

The first-order conditions for a maximum are:15

�Vk ���

�wp
=V �1�k

(
E −Rf1

)+ 2V �2�k �wp + 3V �3�k �p + 4V �4�k �p = 0 (6.10)

where V �1�k is the first derivative of the kth agent’s indirect utility function with respect to
the portfolio expected rate of return, V �i�k is the first derivative of the kth investor’s objective

15 The first partial derivatives of the portfolio’s skewness and kurtosis with respect to wp are, respectively, equal to (see Appendix B):⎧⎪⎪⎪⎪⎨
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function with respect to the ith centred moment of the portfolio return distribution, with
i= �2�3�4� and k∈ �1� � � � �K�; � wp, �p and �p represent, respectively, the �N × 1� vectors
of covariance, coskewness and cokurtosis between the N risky asset returns and the portfolio
return.

The first derivatives of the expected utility function (6.10) constitute necessary and suf-
ficient conditions for a maximum, since the Hessian matrix of the objective function of the
investor is negative definite (see Appendix C).

In order to move from the individual equilibrium conditions to the market equilibrium,
it is necessary to introduce a portfolio separation theorem. If agents’ probability beliefs
are identical, a necessary and sufficient condition to obtain a two-fund monetary separation
is that all agents have a hyperbolic absolute risk-aversion utility (HARA) with the same
“cautiousness” parameter (Cass and Stiglitz, 1970, pp. 145–147). In this case, the optimum
risky portfolio’s weights are the same as those of the market portfolio m. This condition
implies, in the mean–variance–skewness–kurtosis case, that all agents must have quartic
separable utility functions or hyperbolic decreasing absolute risk-aversion utility functions
(see Chapter 1).

Summing demands across all individuals and invoking a two-fund monetary separation
theorem, we obtain the following equilibrium relation:

E −Rf1 =
[
−2V �2�

V �1�

]
�wm+

[
−3V �3�

V �1�

]
�m+

[
−4V �4�

V �1�

]
�m (6.11)

with:

1′wm= 1

where V �1� is the first derivative of the representative agent’s indirect utility function with
respect to the portfolio expected rate of return; V �i� is the first derivative of the representative
investor’s objective function with respect to the ith centred moment of the market portfolio
return distribution, with i= �2�3�4� 
1′ is the �1 ×N� transposed unitary vector; wm is the
�N × 1� vector of the market portfolio N risky asset weights; �wm��m and �m represent,
respectively, the �N × 1� vectors of covariance, coskewness and cokurtosis between the risky
asset returns and the market portfolio return.

When the market portfolio return distribution is asymmetric, rearranging terms in (6.11)
yields the following theorem.

Theorem 1 The four-moment CAPM relation can be written as:

E −Rf 1 = b1� + b2� + b3� (6.12)

with (using previous notation): ⎧⎪⎪⎪⎨
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� = [
	2 �Rm�

]−1
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]−1
�m
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]−1
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and: ⎧⎪⎪⎨
⎪⎪⎩
b1 = �2	

2 �Rm�

b2 = �3 s
3 �Rm�

b3 = �4 

4 �Rm�

where �2 = −2V �2�/V �1�� �3 = −3V �3�/V �1� and �4 = −4V �4�/V �1� are, respectively, a
measure of the representative agent’s aversion to variance, a measure of his preference
for (positive) skewness and a measure of the representative investor’s aversion to kurtosis;
	2 �Rm� �= 0� s3 �Rm� �= 0� 
4 �Rm� �= 0 and wm are, respectively, the variance, skewness,
kurtosis and the �N × 1� vector of the weights of the market portfolio; ����� are,
respectively, the �N × 1� relative covariance vector, the �N × 1� relative coskewness vector
and the �N × 1� relative cokurtosis vector of specific returns with the market portfolio return.

Proof See previous discussion.

Thus, for all securities i� i= �1� � � � �N �:
E �Ri�−Rf = b1�i + b2�i + b3�i (6.13)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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	2 �Rm�

�i =
Cos �Ri�Rm�

s3 �Rm�

�i =
Cok �Ri�Rm�


4 �Rm�

are, respectively, the ith entries, with i= �1� � � � �N �, of the �N × 1� vectors ��� and �.
The equation (6.12) is equivalent to the one obtained by Graddy and Homaifar (1988).

This relation is also similar to the four-moment pricing relation developed by Athayde and
Flôres (1997 and 2000), Hwang and Satchell (1999), Christie-David and Chaudhry (2001)
and Berényi (2001, 2002 and 2004).16 The only differences relate to the definition and the
theoretical justification of coefficients b1� b2 and b3 (see below), since these authors have
considered an indirect utility function that does not depend on the first four centred moments,
but upon the mean, the standard deviation, the cube root of the skewness and the quartic
root of the kurtosis.

At equilibrium, the expected excess return on any security i, with i= �1� � � � �N �, is then
a linear function17 of the parameters �i��i and �i. These parameters yield, respectively,

16 This relation is similar to the one developed by Ingersoll (1975) in the context of an nth order Taylor series expansion. However,
Ingersoll (1975) did not determine the sign of the moment preference ordering and the conditions of the aggregation of the individual
demands.
17 If the market portfolio return distribution is not asymmetric, the four-moment CAPM relation (6.12) becomes:

E −Rf 1 = �2�wm + �3 �m + �4 �m

where �2� �3 and �4 are defined as previously; �wm��m and �m are the �N × 1� covariance vector, the �N × 1� coskewness vector
and the �N × 1� cokurtosis vector of specific returns with the market portfolio return.
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measures of marginal contribution of an asset i to the variance of the market portfolio return,
the skewness of the market portfolio return and the kurtosis of the market portfolio return.
The coefficients b1� b2 and b3 can be interpreted as systematic risk market premia. Since
investors are assumed to have preferences relevant for the fourth-order stochastic dominance,
this implies that b1 is strictly positive (since �2 is positive), b2 has the opposite sign of
s3 �Rm� (since �3 is negative) and b3 is strictly positive (since �4 is positive). Investors are
thus compensated at equilibrium in terms of expected excess return for bearing the systematic
risks linked to the coefficients ��� and �.

When the utility function of the agent is independent of the kurtosis (i.e. b3 = 0), Equa-
tion (6.12) is reduced to the three-moment CAPM relation developed initially by Kraus and
Litzenberger (1976); that is (see Jurczenko and Maillet, 2001):

E −Rf 1 = b1� + b2� (6.14)

If the investor is also indifferent to the skewness (i.e. b2 = 0 and b3 = 0), Equation (6.12)
collapses to the traditional CAPM relation:

E −Rf 1 = b1 � (6.15)

Following Hwang and Satchell (1999), one can give a theoretical implication for the
four-moment CAPM, leading to an alternative interpretation of the coefficients b1� b2 and
b3. Since the four-moment CAPM relation is valid for all security returns, it is naturally
verified by the market portfolio return; that is:

[
E �Rm�−Rf

]= �b1 + b2 + b3� (6.16)

with �im = 1� �im = 1 and �im = 1, where E �Rm� is the expected gross rate of return on the
market portfolio.

Dividing Equation (6.16) by Equation (6.12) yields the following corollary.

Corollary 1 The four-moment CAPM relation can also be written as:18

E −Rf 1 = ��1 � +�2 � +�3��
[
E �Rm�−Rf

]
(6.17)

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
�wm

� = [
s3 �Rm�

]−1
�m

� = [

4 �Rm�

]−1
�m

18 This equation is similar to Equation (6.13) in Hwang and Satchell (1999). The only difference is in the definition and the theoretical
justification of the parameters �1��2 and �3 (see above). See also Sears and Wei (1985 and 1988) for a similar formulation in the
three-moment case.
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and: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 = 2
2 + 3�1 + 4�2

�2 = 3�1

2 + 3�1 + 4�2

�3 = 4�2

2 + 3�1 + 4�2

�1 = 2
3

× b2

b1

�2 = 1
2

× b3

b1

where b1� b2 and b3 are defined as in (6.12); 	2 �Rm� �= 0� s3 �Rm� �= 0 and 
4 �Rm� �= 0; and
�wm��m and �m correspond, respectively, to the �N × 1� vectors of covariance, coskewness
and cokurtosis between the risky asset returns and the market portfolio return.

Proof See previous discussion.

Thus, for all securities i� i= �1� � � � �N �:

E �Ri�−Rf = ��1�i +�2�i +�3�i�
[
E �Rm�−Rf

]
(6.18)

This equation is equivalent to the previous equilibrium relation (6.12) if we recall that,
for j= �1�2�3�:

bj =�j
[
E �Rm�−Rf

]
(6.19)

Rearranging terms, the four-moment CAPM relation depends only on two parameters �1

and �2. Formally, we have:

E −Rf1 =
(

1
2 + 3�1 + 4�2

)
�2� + 3�1� + 4�2��

[
E �Rm�−Rf

]
(6.20)

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�1 = �E �Rm�

�s3 �Rm�
×
[
�E �Rm�

�	2 �Rm�

]−1

× s3 �Rm�

	2 �Rm�

�2 = �E �Rm�
�
4 �Rm�

×
[
�E �Rm�

�	2 �Rm�

]−1

× 
4 �Rm�

	2 �Rm�

where ��� and � represent, respectively the �N × 1� relative covariance vector, the �N × 1�
relative coskewness vector and the �N × 1� relative cokurtosis vector of specific returns with
the market portfolio return, with 	2 �Rm� �= 0� s3 �Rm� �= 0 and 
4 �Rm� �= 0.
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The coefficients b1� b2 and b3 depend on three elements: the market risk premium[
E �Rm�−Rf

]
and two parameters �1 and �2. The last two correspond to elasticities of

substitution between the skewness, the kurtosis and the variance of the market portfolio
return. Since rational investors prefer positive skewness and dislike variance and kurtosis,
the sign of the parameter �1, measuring the ratio of b2 to b1, must be the opposite of the
sign of the market portfolio return skewness. The sign of the parameter �2, measuring the
ratio of b3 to b1, must be positive. The coefficients b2 and b3, and the parameters �1 and �2,
constitute two complementary measures of the agent’s preference for skewness and kurtosis.
The coefficients b2 and b3 depend on the sign and the size of the market risk premium.
Up to a constant, they represent, respectively, the marginal rates of substitution between
the skewness and the expected return of the market portfolio (since b2 depends on �3) and
between the kurtosis and the expected return of the market portfolio (since b3 depends on
�4). On the contrary, the parameters �1 and �2 are independent of market fluctuations. They
highlight the relation between, respectively, the third and second, and the fourth and second
centred moments of the market’s portfolio return.

In the traditional CAPM framework, the coefficient b1 corresponds to the market portfolio
risk premium, whatever the elementary utility function chosen.19 In the four-moment CAPM
case,20 using a third and a fourth portfolio in addition to the riskless asset and the market
portfolio becomes necessary for identifying the coefficients b1� b2 and b3 independently
of the shape of the utility function considered. The following subsection is devoted to
the definition of these two additional portfolios. With these portfolios, it is possible to
establish the canonical four-moment CAPM relation. Its representation generalises the capital
market and the security market lines in the spaces defined respectively by the quadruplets[
E
(
Rp
)
� 	

(
Rp
)
� s
(
Rp
)
� 

(
Rp
)]

and �E �Ri� � �i� �i� �i�.
21

6.2.3 The four-moment CAPM fundamental relation and the security
market hyperplane

To obtain the four-moment CAPM fundamental relation, we need to introduce, besides the
riskless asset and the market portfolio, two additional specific portfolios, denoted respectively
Zm1 and Zm2, whose returns have a zero covariance with the market portfolio return.22

Following Athayde and Flôres (1997 and 2000) and Berényi (2001, 2002 and 2004), we can
identify – as in the traditional CAPM framework – the coefficients b2 and b3 independently
of the agent preferences by premultiplying Equation (6.12) by the �N × 1� vectors w′

Zm1
and

19 As defined by von Neumann and Morgenstern (2004). Amongst these functions, we consider only the utility functions of the
hyperbolic absolute risk-aversion class.
20 Unless using a logarithmic utility function; see, for example, Hwang and Satchell (1999).
21 Where: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

	
(
Rp
)=√

	2
(
Rp
)

s
(
Rp
)= 3

√
s3
(
Rp
)



(
Rp
)= 4

√

4
(
Rp
)

22 We suppose that there exist at least two portfolios with the following statistical characteristics (see below).
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w′
Zm2

that characterise the transpose weight vectors of the uncorrelated portfolios Zm1 and
Zm2. We get:23

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b2 =
[
E
(
RZm1

)−Rf
�Zm1

]

b3 =
[
E
(
RZm2

)−Rf
�Zm2

] (6.21)

where E
(
RZm1

)
is the expected return of a portfolio Zm1, whose return is uncorrelated with

that of the market portfolio and which possesses a zero cokurtosis with the market return, i.e.:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Zm1
= Cov

(
RZm1

�Rm
)

	2 �Rm�
= 0

�Zm1
= Cos

(
RZm1

�Rm
)

s3 �Rm�

�Zm1
= Cok

(
RZm1

�Rm
)


4 �Rm�
= 0

and E
(
RZm2

)
is the expected return of a portfolio Zm2, whose return is uncorrelated with the

market portfolio and which possesses a zero coskewness with the market return, i.e.:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Zm2
= Cov

(
RZm2

�Rm
)

	2 �Rm�
= 0

�Zm2
= Cos

(
RZm2

�Rm
)

s3 �Rm�
= 0

�Zm2
= Cok

(
RZm2

�Rm
)


4 �Rm�

with 	2 �Rm� �= 0, s3 �Rm� �= 0 and 
4 �Rm� �= 0.
Combining this result with Equation (6.16), we get the following expression for b1:

b1 = [
E �Rm�−Rf

]− b2 − b3 (6.22)

The equilibrium equation (6.12) then becomes:

E −Rf1 =
{[
E �Rm�−Rf

]−
[
E
(
RZm1

)−Rf
�Zm1

]
−
[
E
(
RZm2

)−Rf
�Zm2

]}
�

+
[
E
(
RZm1

)−Rf
�Zm1

]
� +

[
E
(
RZm2

)−Rf
�Zm2

]
� (6.23)

23 For a similar approach in the mean–variance–skewness framework, see Litzenberger et al. (1980), Ingersoll (1987), Simaan
(1993), Gamba and Rossi (1997, 1998a and 1998b) and Jurczenko and Maillet (2001).
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with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
�wm

� = [
s3 �Rm�

]−1
�m

� = [

4 �Rm�

]−1
�m

where �Zm1
= Cos

(
RZm1

�Rm
)
/s3 �Rm� and �Zm2

= Cok
(
RZm2

�Rm
)
/
4 �Rm�; �, �, � are,

respectively, the �N × 1� relative covariance vector, the �N × 1� relative coskewness vec-
tor and the �N × 1� relative cokurtosis vector of specific returns with the market portfolio
return; � wm, �m and �m correspond to the vectors of covariance, coskewness and cokurtosis
between the risky asset returns and the market portfolio return; 	2 �Rm� �= 0, s3 �Rm� �= 0 and

4 �Rm� �= 0.

If, following Athayde and Flôres (1997 and 2000) and Berényi (2001, 2002 and 2004),
we moreover suppose that it is possible to find – in a large set of feasible portfolios –
two portfolios Zm1 and Zm2 whose relative coskewness and cokurtosis with the market
portfolio are unitary, i.e. �Zm1

= 1 and �Zm2
= 1, the relation (6.23) can be simplified as

follows:

E −Rf1 ={[
E �Rm�−E

(
RZm1

)]− [
E
(
RZm2

)−Rf ]} � + [
E
(
RZm1

)−Rf ] � (6.24)

+ [
E
(
RZm2

)−Rf ] �

These relations lead to the following theorem.

Theorem 2 When a riskless asset exists, the risk premium of an asset is given by the
equation:

E −Rf1 = [
E �Rm�−Rf

]
� + [

E
(
RZm1

)−Rf ] �� − �� (6.25)

+ [
E
(
RZm2

)−Rf ] �� − ��

with (using previous notation): ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
� wm

� = [
s3 �Rm�

]−1
�m

� = [

4 �Rm�

]−1
�m

where E
(
RZm1

)
is the expected rate of return on the portfolio Zm1 with zero covariance

with the market portfolio, unitary relative coskewness and zero relative cokurtosis (i.e.
�Zm1

=�Zm1
� �Zm1

= 0 and �Zm1
= 1); E

(
RZm2

)
is the expected return of the portfolio Zm2 with

a zero covariance with the market portfolio, a zero relative coskewness and a unitary relative
cokurtosis (i.e. �Zm2

= �Zm2
, �Zm2

= 0 and �Zm2
= 1); ����� are, respectively, the �N × 1�

relative covariance vector, the �N × 1� relative coskewness vector and the �N × 1� relative
cokurtosis vector of specific returns with the market portfolio return; 	2 �Rm� �=0� s3 �Rm� �=0
and 
4 �Rm� �= 0.
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Proof See previous discussion.

The relation is thus, for any security i, i= �1� � � � �N �:

E �Ri�−Rf = [
E �Rm�−Rf

]
�i +

[
E
(
RZm1

)−Rf ] ��i −�i� (6.26)

+ [
E
(
RZm2

)−Rf ] ��i −�i�
where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =
Cov �Ri�Rm�

	2 �Rm�

�i =
Cos �Ri�Rm�

s3 �Rm�

�i =
Cok �Ri�Rm�


4 �Rm�

are, respectively, the ith entries, with i= �1� � � � �N �, of the �N × 1� vectors ��� and �.
This relation differs from those of Athayde and Flôres (1997 and 2000) and Berényi (2001,

2002 and 2004) since we use an objective function that depends explicitly on the first four
moments of portfolio returns and not on the nth roots of their moments.

Nevertheless, the validity of (6.25) depends crucially on the existence and uniqueness of
two uncorrelated portfolios Zm1 and Zm2. When this condition is fulfilled (see Appendix D),
we note that, without imposing any supplementary assumptions about return distributions, it
is possible to sign – on a priori grounds – the risk market premia associated with the market
variance, the skewness and the kurtosis; that is:⎧⎪⎪⎨

⎪⎪⎩

[
E �Rm�−E

(
RZm1

)]− [
E
(
RZm2

)−Rf ]> 0

sign
[
E
(
RZm1

)−Rf ]= −sign
[
s3 �Rm�

]
[
E
(
RZm2

)−Rf ]> 0

(6.27)

Such a result might not be obtainable under more general assumptions concerning
investors’ preferences, due to the absence of orthogonality between higher moments (see,
for instance, Adcock, 2003).

Under this form, the four-moment CAPM is a direct generalisation of the Sharpe–Lintner–
Mossin model.24 It differs from the mean–variance model by the term:

[
E
(
RZm1

)−Rf ] ��i −�i�+ [
E
(
RZm2

)−Rf ] ��i −�i� (6.28)

If this term is positive, the traditional CAPM relation underestimates the risk premium,
which confirms Kraus and Litzenberger’s intuition25 that taking into account higher-order
centred moments than the first two might explain some of the CAPM anomalies.

24 In order to take into account the leptokurtic characteristic of asset return distributions, Rachev and Mittnik (2000) propose a
generalisation of the Sharpe–Lintner CAPM under the hypothesis of a symmetric joint stable return distribution.
25 See Kraus and Litzenberger (1976), pp. 1085–1086.
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If, for some equities i, �i = 0 and �i = 0 (i.e. the coskewness and the cokurtosis of
asset i’s return with that of the market portfolio m are null), with i= �1� � � � �N �, Equa-
tion (6.25) differs from the two-moment CAPM, since the risk premia

[
E
(
RZm1

)−Rf ] and[
E
(
RZm2

)−Rf ] are, by definition, non-null. This happens because skewness and kurtosis
are valued by economic agents.

The four-moment CAPM collapses to the Sharpe–Lintner–Mossin model under skewed and
leptokurtic return distributions if and only if: 1)

[
E
(
RZm1

)−Rf ]=0 and
[
E
(
RZm2

)−Rf ]=0
or 2) if �i = �i and �i = �i, with i= �1� � � � �N �. The first condition is met when all the
agents are indifferent to non-null (positive) return skewness and kurtosis. The second one
is satisfied for securities i whose sensitivities to the variance, skewness and kurtosis of the
market portfolio return are equal. Thus, the prices of a subset of assets – those for which
�i =�i and �i =�i – may be evaluated correctly by the CAPM, even if this relation does
not hold for all assets.

From (6.26), we can represent the four-moment CAPM relation in the space
�E �Ri� ��i� �i� �i�. When the four-moment CAPM relation is satisfied, all the
expected asset returns must theoretically lie on a hyperplane of dimension three.
This plane corresponds to a “security market hyperplane” and is defined in IR4

by the following vectors: �E �Rm��1�1�1��
(
E
(
RZm1

)
�0�1�0

)
�
(
E
(
RZm2

)
�0�0�1

)
and(

Rf �0�0�0
)
.

The optimal portfolios set can be equally represented in the space
[
E
(
Rp
)
�

	
(
Rp
)
� s
(
Rp
)
� 

(
Rp
)]

by a generalised “capital market line”, defined by the characteristics
of the riskless asset, a zero-beta unitary-gamma zero-delta portfolio, a zero-beta zero-gamma
unitary-delta portfolio and those of the market portfolio. Using the definitions of the covari-
ance, coskewness and cokurtosis operators, Cov����Cos��� and Cok���, the four-moment
CAPM relation can be written, for any portfolio p, as:

E
(
Rp
)−Rf ={[

E �Rm�−E
(
RZm1

)]− [
E
(
RZm2

)−Rf ]} 	
(
Rp
)

	 �Rm�
�p�m (6.29)

+ [
E
(
RZm1

)−Rf ] s
(
Rp
)

s �Rm�
�p�m+ [

E
(
RZm2

)−Rf ] 

(
Rp
)


�Rm�
�p�m

where 	
(
Rp
)
� s
(
Rp
)

and 

(
Rp
)

are, respectively, the standard deviation, the cube root of the
skewness and the quartic root of the kurtosis of portfolio p’s return; �p�m� �p�m and �p�m are
respectively, the coefficients of correlation, coskewness and cokurtosis between the portfolio
p’s return and the market portfolio return, that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�p�m= Cov
(
Rp�Rm

)
	
(
Rp
)
	 �Rm�

�p�m= Cos
(
Rp�Rm

)
s
(
Rp
)
s2 �Rm�

�p�m= Cok
(
Rp�Rm

)


(
Rp
)

3 �Rm�
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Using a two-fund monetary separation theorem (see Section 6.2.2), we deduce that the
expected return of any optimal portfolio p must, at equilibrium, satisfy the following relation:

E
(
Rp
)−Rf ={[

E �Rm�−E
(
RZm1

)]− [
E
(
RZm2

)−Rf ]} 	
(
Rp
)

	 �Rm�
(6.30)

+ [
E
(
RZm1

)−Rf ] s
(
Rp
)

s �Rm�
+ [
E
(
RZm2

)−Rf ] 

(
Rp
)


�Rm�

with: ⎧⎪⎪⎨
⎪⎪⎩
	
(
Rp
)=wpm	 �Rm�

s
(
Rp
)=wpms �Rm�



(
Rp
)=wpm
�Rm�

where wpm� with 0 ≤ wpm ≤ 1, is the proportion of the agent’s wealth invested in
the market portfolio. The optimal portfolio set can thus be represented in the space[
E
(
Rp
)
�	

(
Rp
)
� s
(
Rp
)
� 

(
Rp
)]

by a line that we call the generalised “capital market line”.
A linear relation between the expected rate of return on any risky asset i and the expected

excess return on the market portfolio and the expected excess return on a zero-beta portfolio
is highlighted in Black’s model (1972). But here, we consider a financial market with a
riskless asset and two uncorrelated risky portfolios with the market portfolio, Zm1 and Zm2,
whose returns are multiplied, respectively, by the specific asset constants ��i −�i� and
��i −�i�. Equation (6.25) is equally compatible with a multifactor arbitrage pricing model.26

The four-moment CAPM allows pre-identification of the risk factors as the market portfolio
and two specific portfolios Zm1 and Zm2. All the asset pricing relations established previously
assume the existence of a riskless asset. The study of the general properties of the efficient
frontier in the space �E

(
Rp
)
�	2

(
Rp
)
� s3

(
Rp
)
� 
4

(
Rp
)
� generalises the approach in the N

risky assets case.

6.3 AN N RISKY ASSET FOUR-MOMENT CAPM
EXTENSION

The aggregation of the individual equilibrium conditions, given by the maximisation of
a mean–variance–skewness–kurtosis preference function leads to the fundamental four-
moment CAPM relation. The use of a two-fund monetary separation theorem is, however,
necessary to obtain such a result, restricting the domain of validity of the four-moment
CAPM to the existence of a riskless asset and to separable quartic or HARA utility functions.

In the following subsection, we adopt the approach of the portfolio choice theory with
N risky assets, developed by Markowitz (1952) and generalised by Athayde and Flôres
(1997, 2002, 2003 and 2004) in the mean–variance–skewness and/or kurtosis case with
a riskless asset.27 In this framework, each investor selects the portfolio minimising the
variance of her portfolio return for a given mean, skewness and kurtosis. Then, we can
obtain a characterisation of the mean–variance–skewness–kurtosis efficient frontier with N

26 In Section 6.4, we study the links between the four-moment CAPM and the APT of Ross (1976).
27 See also Adcock and Shutes (2000 and 2001) and Adcock (2003 and 2004).
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risky assets (see Section 6.3.1). The hypothesis of a Pareto-optimal equilibrium allocation
leads to the generalisation of the four-moment CAPM relation in the absence of a riskless
asset (see Section 6.3.2).

6.3.1 General properties of the mean–variance–skewness–kurtosis
efficient set

The general hypotheses assumed are the same as before; specifically, there are N risky assets
(with N ≥ 4) and K agents. The investors’ preferences are represented by an indirect utility
function, denoted Vk���, with k= �1� � � � �K�, concave and increasing with odd portfolio
return moments and concave and decreasing with even portfolio return moments. The K
agents hold homogeneous probability beliefs and asset returns are linearly independent.

In this case, the portfolio choice problem with N risky assets of an investor k reads:

Max
wp

{
Vk
[
E
(
Rp
)
�	2

(
Rp
)
� s3

(
Rp
)
� 
4

(
Rp
)]}

(6.31)

s�t� �w′
p1 = 1

with: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
(
Rp
)= w′

pE

	2
(
Rp
)= w′

p�wp

s3
(
Rp
)= w′

p�p


4
(
Rp
)= w′

p�p

and:

�−1�i V �i�k < 0

with i= �1� � � � �4� and k= �1� � � � �K�.
As agents have a preference for the expected return and (positive) skewness, and an

aversion to the variance and the kurtosis, the optimisation program (6.31) can be reformulated
as follows:28

Min
wp

{
1
2

w′
p�wp

}
(6.32)

s�t�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w′
pE =�p

w′
p1 = 1

w′
p�p = s3

p

w′
p�p =
4

p

28 See also Simaan (1993), Gamba and Rossi (1997, 1998a and 1998b), Pressacco and Stucchi (2000), Jurczenko and Maillet (2001)
and Harvey et al. (2004) for similar optimisation program in the mean–variance–skewness space.
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where �p, s
3
p and 
4

p represent, respectively, the level of expected return, skewness and
kurtosis wished by investor k.

The set of optimal portfolios p, corresponding to the different triplets of coordinates[
�p� s

3
p�


4
p

]
, characterises the mean–variance–skewness–kurtosis efficient set. By definition,

it corresponds to the set of the portfolios minimising, respectively, the variance (or kurtosis) –
for some level of mean, skewness and kurtosis (or variance) – and maximising, at the same
time, respectively, the mean (or skewness) – for some given level of variance, skewness (or
mean) and kurtosis.

This optimisation program is, nevertheless, not unique. For instance, Berényi (2001 and
2002), Davies et al. (2005) and Jurczenko et al. in Chapter 3 of this book propose to introduce
simultaneously the higher-order moments into the portfolio choice decision, using, respec-
tively, a polynomial goal programming (PGP) approach29 and a multi-objective optimisation
programme based on a microeconomic directional distance function.30

Assuming that the values reached by the constraints in (6.32) are already known, the
resolution of the investor’s portfolio choice problem leads to the following general theorem.

Theorem 3 The vector of asset weights of any mean–variance–skewness–kurtosis efficient
portfolio p can be written as a linear combination of those of four distinct funds defined by:

wa1
= �−1E

1′�−1E

 wa2

= �−11

1′�−11

 wa3

= �−1�p

1′ �−1�p
and wa4

= �−1�p

1′�−1�p
(6.33)

Proof See Appendix E.

Corollary 2 If there exists a riskless asset, every efficient portfolio weight vector can be
expressed as a linear combination of those of the riskless asset and of the three distinct
funds defined by:

wa5
= �−1 (E −Rf 1

)
1′�−1 (E −Rf 1

) � wa6
= �−1�p

1′ �−1�p
and wa7

= �−1�p

1′�−1�p
(6.34)

Proof See Appendix F.

Compared to the mean–variance analysis, the introduction of the third and fourth cen-
tred moments has the effect of changing the structure of the efficient set: it is no longer
determined by two, but rather by four, portfolios.31 The first two are common to all
investors and correspond to the two mutual funds generating the traditional mean–variance

29 For studies of the use of this approach in the mean–variance–skewness portfolio selection case, see Lai (1991), Chunhachinda
et al. (1997), Chang et al. (2003) and Sun and Yan (2003).
30 For studies of the use of this approach in the mean–variance–skewness portfolio selection case, see Joro and Na (2001) and Briec
et al. (2006).
31 We can notice here, that wa3

(or wa6
) differs from the third portfolio used by Simaan (1993) in the mean–variance–skewness

case since wa3
(or wa6

) depends on the agent preferences.
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efficient frontier. We remark that wa2
is the global minimum variance portfolio in the

mean–variance plane.32 The third portfolio wa3
(or wa6

if there is a riskless asset) and
the fourth portfolio wa4

(or wa7
if there is a riskless asset) are specific to each investor.

They represent, respectively, the portfolio that, for a given variance, maximises (minimises)
the skewness and minimises the kurtosis. Consequently, the mean–variance–skewness–
kurtosis efficient set includes the mean–variance efficient set, since it is generated by
wa1

and by wa2
(or by the riskless asset and wa5

if there is a riskless asset). Since
investors have demands depending upon their preferences, it is clear that the standard port-
folio separation result is generally not verified when return densities are asymmetric and
leptokurtic.

Another characterisation of the mean–variance–skewness–kurtosis efficient frontier can
be obtained as follows.

Theorem 4 A necessary condition for a portfolio p to belong to the mean–variance–
skewness–kurtosis efficient set is – except for portfolios that belong to the minimum variance
set in the variance–skewness–kurtosis space33 – that there exist three portfolios uncorrelated
with p, denoted Zp0, Zp1 and Zp2, such that:

E −E
(
RZp0

)
1 =

{[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]}
� wp

[
	2
(
Rp
)]−1

+
[
E
(
RZp1

)
−E

(
RZp0

)]
�p

[
s3
(
Rp
)]−1

(6.35)

+
[
E
(
RZp2

)
−E

(
RZp0

)]
�p

[

4
(
Rp
)]−1

where E
(
RZp0

)
represents the expected return on a portfolio whose return is zero-correlated

and has a zero coskewness and a zero cokurtosis with the return of the portfolio p; E
(
RZp1

)
represents the expected return on a portfolio whose return is zero-correlated with the
portfolio p and has a coskewness equal to the skewness of that portfolio return and a zero
cokurtosis with it; E

(
RZp2

)
represents the expected return on a portfolio whose return is

zero-correlated with the portfolio p and has a zero coskewness with it and a cokurtosis
equal to the kurtosis of that portfolio return; � wp, �p, �p are the �N × 1� vectors of
covariance, coskewness and cokurtosis between the risky asset returns and the portfolio p
return; 	2

(
Rp
) �= 0, s3

(
Rp
) �= 0 and 
4

(
Rp
) �= 0.

Proof See Appendix G.

32 We verify that the mean and variance of the portfolio defined by the weights vector wa2
are:

⎧⎪⎨
⎪⎩
E
(
Ra2

)
= a/c

	2
(
Ra2

)
= 1/c

where a= E′�−11 and c= 1′�−11.
33 That is, portfolios that are solutions to the program of an investor minimising the variance of its investment for some given level
of skewness and kurtosis.
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For any security i, i= �1� � � � �N �, we can write:

E �Ri�−E
(
RZp0

)
=
{[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]} Cov
(
Ri�Rp

)
	2
(
Rp
)

+
[
E
(
RZp1

)
−E

(
RZp0

)] Cos
(
Ri�Rp

)
m3

(
Rp
) (6.36)

+
[
E
(
RZp2

)
−E

(
RZp0

)] Cok
(
Ri�Rp

)

4
(
Rp
)

where Cov
(
Ri�Rp

)
, Cos

(
Ri�Rp

)
and Cok

(
Ri�Rp

)
are, respectively, the ith entries, for

i= �1� � � � �N �, of the �N × 1� vectors � wp, �p and �p.
This relation states that a portfolio p is mean–variance–skewness–kurtosis efficient if its

return is such that every single expected asset return on asset i, for i= �1� � � � �N �, can be
expressed as a linear combination of the covariance, the coskewness and the cokurtosis of
its rate of return with the efficient portfolio p return. The terms �1, �2 and �3 defined as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1 =
{[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]}
�2 =

[
E
(
RZp1

)
−E (RZp0

)]
�3 =

[
E
(
RZp2

)
−E (RZp0

)]
(6.37)

can be interpreted as subjective risk premia of variance, skewness and kurtosis.
The fact that investors dislike variance and kurtosis and have a preference for (positive)

skewness implies that:

⎧⎪⎪⎨
⎪⎪⎩
�1> 0

sign ��2�= −sign
[
s3
(
Rp
)]

�3> 0

(6.38)

Once these properties are stated, one can develop a four-moment CAPM relation when
there is no riskless asset. To achieve this goal, it is sufficient to identify a specific mean–
variance–skewness–kurtosis efficient portfolio: the market portfolio.

6.3.2 A zero-beta zero-gamma zero-delta four-moment CAPM

If agents have homogenous probability beliefs and the market portfolio return distribution
is skewed, a necessary and sufficient condition to obtain, from (6.35), an N risky asset
four-moment CAPM relation, is that there exists a Pareto-optimal equilibrium allocation.34

Under this last hypothesis, the mean–variance–skewness–kurtosis efficient set is convex

34 This last hypothesis has also been considered by Simaan (1993) in order to develop a 3-CAPM asset pricing relation with N
risky assets.
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(see Ingersoll, 1987, pp. 194–195). Since rational investors must choose efficient portfolios,
this implies that the market portfolio – which is a convex combination of individual portfo-
lios – must, at equilibrium, be a mean–variance–skewness–kurtosis efficient portfolio. The
main result is then that the expected return on any risky security i, with i= �1� � � � �N �,
can be expressed as a linear function of its covariance, coskewness and cokurtosis with the
market portfolio return.

Theorem 5 In the absence of a riskless asset, the asset risk premia of a Pareto-optimal
equilibrium are given by:

E −E (RZm0

)
1 ={[

E �Rm�−E
(
RZm1

)]− [
E
(
RZm2

)−E (RZm0

)]}
�

+ [
E
(
RZm1

)−E (RZm0

)]
� + [

E
(
RZm2

)−E (RZm0

)]
� (6.39)

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
�wm

� = [
s3 �Rm�

]−1
�m

� = [

4 �Rm�

]−1
�m

where E
(
RZm0

)
represents the expected return on a portfolio whose return is zero-correlated

and has a zero coskewness, zero cokurtosis with the return of the market portfolio m;
E
(
RZm1

)
represents the expected return on a portfolio whose return is zero-correlated with

the market portfolio m and has a coskewness equal to the skewness of the market portfolio
and a zero cokurtosis with it; E

(
RZm2

)
represents the expected return on a portfolio whose

return is zero-correlated with the market portfolio m and has a zero coskewness with it and
a cokurtosis equal to the kurtosis of the market portfolio; �wm, �m, �m are the �N × 1�
vectors of covariance, coskewness and cokurtosis between the risky asset returns and the
market portfolio return; 	2 �Rm� �= 0, s3 �Rm� �= 0 and 
4 �Rm� �= 0.

Proof See Appendix H.

Thus, for any security i, i= �1� � � � �N �:

E �Ri�−E
(
RZm0

)={[
E �Rm�−E

(
RZm1

)]− [
E
(
RZm2

)−E (RZm0

)]}
�i (6.40)

+ [
E
(
RZm1

)−E (RZm0

)]
�i +

[
E
(
RZm2

)−E (RZm0

)]
�i

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =
Cov �Ri�Rm�

	2 �Rm�

�i =
Cos �Ri�Rm�

s3 �Rm�

�i =
Cok �Ri�Rm�


4 �Rm�
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are, respectively, the ith entries, for i= �1� � � � �N �, of the �N × 1� vectors �, � and �.
We remark that: ⎧⎪⎪⎨

⎪⎪⎩

[
E �Rm�−E

(
RZm1

)]− [
E
(
RZm2

)−E (RZm0

)]
> 0

sign
[
E
(
RZm1

)−E (RZm0

)]= −sign
[
s3 �Rm�

]
[
E
(
RZm2

)−E (RZm0

)]
> 0

(6.41)

This equation is the four-moment CAPM relation with N risky assets. As for the funda-
mental four-moment CAPM relation (6.25), the risk premium on any financial asset i must
be equal at equilibrium to the sum of three risk premia: one market premium proportional to
the beta of the asset corresponding to the premium placed by the market on the systematic
risk of variance; a premium on a zero-beta unitary-gamma zero-delta portfolio, proportional
to the gamma of the asset representing the risk premium placed by the market on the sys-
tematic risk of skewness and a premium on a zero-beta zero-gamma unitary-delta portfolio,
proportional to the delta of the asset representing the risk premium placed by the market on
the systematic risk of kurtosis.

Introducing the risk premium on the market portfolio into Equation (6.39), we can rewrite
it as:

E −E (RZm0

)
1 = [

E �Rm�−E
(
RZm0

)]
�

+ [
E
(
RZm1

)−E (RZm0

)]
�� − �� (6.42)

+ [
E
(
RZm2

)−E (RZm0

)]
�� − ��

Thus, for any security i, i= �1� � � � �N �:

E �Ri�−E
(
RZm0

)= [
E �Rm�−E

(
RZm0

)]
�i

+ [
E
(
RZm1

)−E (RZm0

)]
��i −�i� (6.43)

+ [
E
(
RZm2

)−E (RZm0

)]
��i −�i�

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =
Cov �Ri�Rm�

	2 �Rm�

�i =
Cos �Ri�Rm�

s3 �Rm�

�i =
Cok �Ri�Rm�


4 �Rm�

are, respectively, the ith entries, for i= �1� � � � �N �, of the �N × 1� vectors �, � and �.
Under this presentation, the N risky assets four-moment CAPM version is a direct exten-

sion of Black’s zero-beta CAPM (1972) when the expected rate of return of the zero-
beta zero-gamma zero-delta portfolio corresponds to that of the zero-beta portfolio in the
mean–variance case. Indeed, unless the portfolio Zm0 belongs to the minimum variance
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frontier in the mean–variance plane, the pricing relation that we obtain in (6.39), when[
E
(
RZm1

)−E (RZm0

)]= 0 and
[
E
(
RZm2

)−E (RZm0

)]= 0 or when �i =�i and �i =�i with
i= �1� � � � �N �, does not have any reason to be equal to Black’s model (1972).

If a riskless asset exists, its return replaces E
(
RZm0

)
in the equilibrium relation and we

are back to the fundamental relation with a riskless asset derived in Section 6.2.

6.4 THE FOUR-MOMENT CAPM, THE CUBIC MARKET
MODEL AND THE ARBITRAGE ASSET PRICING MODEL

When asset return distributions are asymmetric and leptokurtic, the data-generating process
is governed by three risk factors determining investor portfolio holdings. Such risk factors
lead, for any risky asset, to three specific risk premia, which are associated, respectively,
with the variance, the skewness and the kurtosis of the market portfolio return probability
distribution.

Following the approaches of Kraus and Litzenberger (1976) and Barone-Adesi (1985) in
the mean–variance–skewness case, and generalised in the four-moment framework by Fang
and Lai (1997), Hwang and Satchell (1999) and Galagedera et al. (2004a), it is possible to
link the main multifactor models with the four-moment CAPM when there exists a riskless
asset. In the next subsections, we focus on the cubic market model (see Section 6.4.1.) and
on the APT model (see Section 6.4.2.).

6.4.1 The cubic market model and the four-moment CAPM

Fang and Lai (1997), Hwang and Satchell (1999) and Galagedera et al. (2004a) use the cubic
market model as a consistent data-generating process (DGP) for the four-moment CAPM.
The cubic market model assumes that the excess return on any security is generated by the
following nonlinear factor model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R −Rf1 = �0 + (
Rm−Rf

)
�1 + �Rm−E �Rm��2 �2

+ �Rm−E �Rm��3 �3 + 	

E�	�= 0

E�		Rm�R2
m�R

3
m�= 0

(6.44)

where R is the �N × 1� vector of the returns of risky assets; �0 is the �N × 1� vec-
tor of asset return intercepts of the data-generating process (6.44); �1, �2 and �3 are,
respectively, the �N × 1� vector of asset return sensitivities with the return, the squared
and the cubed market portfolio return and 	 is the �N × 1� vector of asset return
disturbances.

Provided the sixth centred moment of the market portfolio exists, it is possible to link
the coefficients �1, �2 and �3 of the cubic market model with the parameters �, � and
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� of the four-moment CAPM. Subtracting Equation (6.44) from its expected value, and
using the definition of the relative risk measures �, � and �, yields the following result
(see Appendix I):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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}
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{
�5 �Rm�−	2 �Rm� s

3 �Rm�

s3 �Rm�

}
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� = �1 +
{
�5 �Rm�−	2 �Rm� s

3 �Rm�


4 �Rm�

}
�2 +

{
�6 �Rm�−

[
s3 �Rm�

]2


4 �Rm�

}
�3

(6.45)

where 	2 �Rm� �= 0, s3 �Rm� �= 0 and 
4 �Rm� �= 0 are defined as before and �5 �Rm� and
�6 �Rm� represent, respectively, the fifth and sixth centred moments of the market portfolio
return probability distribution.

Thus, for any security i, i= �1� � � � �N �:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i =�1i +�2i
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	2 �Rm�

]
+�3i
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	2 �Rm�
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�i =�1i +�2i
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	2 �Rm�

]2

s3 �Rm�

}
+�3i

{
�5 �Rm�−	2 �Rm� s

3 �Rm�

s3 �Rm�

}

�i =�1i +�2i

{
�5 �Rm�−	2 �Rm� s

3 �Rm�


4 �Rm�

}
+�3i

{
�6 �Rm�−

[
s3 �Rm�

]2


4 �Rm�

}
(6.46)

where �i = Cov �Ri�Rm� /	
2 �Rm�, �i = Cos �Ri�Rm� /s

3 �Rm� and �i = Cok �Ri�Rm� /

4 �Rm�; �1i, �2i and �3i are, respectively, the ith entries, with i = �1� � � � �N �, of
the �N × 1� vectors �, �, �, �1, �2 and �3; and 	2 �Rm� �= 0, s3 �Rm� �= 0 and

4 �Rm� �= 0.

These equations provide, moreover, some insights on the nature of the relations that exist
between the cubic market model and the four-moment CAPM. For example, if we find for
an asset i, with i= �1� � � � �N �, that the weights on the coefficients �2i and �3i are equal,
then we have �i =�i and �i = �i. Following the same line of reasoning, if two out of three
coefficients of the cubic market model �1i, �2i and �3i are identical for all risky assets, then
�i, �i and �i are perfectly collinear.
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Note that when the market model is quadratic (i.e. �3 =0), we have the following relation
between the coefficients of the data-generating process and the systematic risk measures of
the four-moment CAPM:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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	2 �Rm�
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�

(6.47)

In such a case, the 3-CAPM, rather than the 4-CAPM, must be used, otherwise the systematic
risk measures of kurtosis will be collinear with the systematic risk measures of variance and
skewness for all the assets.35

When the data-generating process is a linear function of the market return (i.e. �2 = 0 and
�3 = 0), we then have:

⎧⎪⎪⎨
⎪⎪⎩

� =�

� =�

� =�1

(6.48)

In this case, the two-moment CAPM, rather than the three or four-moment CAPM, must
be used, otherwise the systematic risk measures in the four-moment CAPM are perfectly
collinear with each other.

Under certain parameter restrictions, the cubic market model (6.44) is then consistent with
the four-moment CAPM.36

6.4.2 The arbitrage pricing model and the four-moment CAPM

In the same way, it is also possible to link the four-moment CAPM with the Arbitrage
Pricing Theory model of Ross (1976).

35 For a complete discussion of the use of the quadratic market model within the three-moment framework see Kraus and Litzenberger
(1976), Barone-Adesi (1985), Brooks and Faff (1998), Jurczenko and Maillet (2001) and Barone-Adesi et al. (2004).
36 Since pay-offs on derivatives can be expressed as a polynomial function of the market portfolio return, the cubic market model
is also consistent with a piecewise linear market model involving selected options on the market portfolio as additional risk factors
(see Glosten and Jagannathan, 1994; Mitchell and Pulvino, 2001; Agarwal and Naik, 2004).
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Consider first the following cubic market model:37

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = �∗
0 +Rm�∗

1 + �2
m�∗

2 + �3
m�∗

3 + 	∗

Cov�Rm��
2
m�= 0

Cov�Rm��
3
m�= 0

Cov��2
m��

3
m�= 0

E�	�= 0

E�		Rm��2
m��

3
m�= 0

E���′�= D	

(6.49)

where R is the �N × 1� vector of asset returns; �∗
0 is the �N × 1� vector of asset return

intercepts of the factor model (6.49); �∗
1, �∗

2 and �∗
3 are, respectively, the �N × 1� vectors of

asset return sensitivities with the market portfolio return, with the squared market portfolio
return component that is independent of the market portfolio return, denoted �2

m, and with the
cubed market portfolio return component that is independent of the market portfolio return
and of the squared market portfolio return, denoted �3

m; 	∗ is the �N × 1� vector of asset
return disturbances and D	∗ is the �N ×N� diagonal variance–covariance matrix of asset
return disturbances associated with the cubic market model (6.49).

If Equation (6.49) represents the true DGP of the asset returns, then, under the standard
assumptions of the Arbitrage Pricing Theory, the expected rate of returns on all the securities
must satisfy asymptotically the following equality:38

E −Rf1 = �∗
1

[
E �R1�−Rf

]+ �∗
2

[
E �R2�−Rf

]+ �∗
3

[
E �R3�−Rf

]
(6.50)

where E �R1�, E �R2� and E �R3� are, respectively, the expected rates of return on three
well-diversified portfolios perfectly correlated with the risk factors Rm, �2

m and �3
m.

Using the statistical properties of the market portfolio, it is possible to identify the expected
rate of return on the first portfolio, E �R1�, as:

[
E �R1�−Rf

]= [
E �Rm�−Rf

]
(6.51)

with �∗
1m= 1, �∗

2m= 0 and �∗
3m= 0.

It is hardly possible to give a similar definition for the two other systematic risk premia
of the three-factor arbitrage pricing model (6.50). Following the approaches developed
by Barone-Adesi (1985) and Barone-Adesi et al. (2004) in the mean–variance–skewness

37 This formulation is equivalent to (6.44) with:

�∗
0 =�0 +Rf �1 − �∗

1�+
{
�Rm −E �Rm��2 − �2

m

}
�∗

2

+
{
�Rm −E �Rm��3 − �3

m

}
�∗

2

38 To write (6.50) as an exact pricing relation in an infinite economy, we suppose that the conditions of Theorem 5 in Ingersoll
(1987), p. 184, are met. That is, the systematic risk factors are pervasive and the market portfolio is a well-diversified portfolio, i.e.
it contains a large number of assets with relative weights of order �1/N�.
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framework, it can be shown, however, that the arbitrage pricing model (6.50) implies an upper
bound for the expected rate of return on the second portfolio, E �R2�, that is (see Appendix J):

E �R2�<E
(
�2
m

)
(6.52)

Substituting (6.51) into (6.50) leads to the following asymptotic arbitrage asset pricing
relation:

E −Rf1 = �∗
1

[
E �Rm�−Rf

]+ �∗
2

[
E �R2�−Rf

]+ �∗
3

[
E �R3�−Rf

]
(6.53)

This relation indicates that the expected excess return on a security is, at equilibrium, a
linear function of three different risk premia: the first corresponds to the market portfolio
risk premium,

[
E �Rm�−Rf

]
; the second relies on the excess return of a portfolio whose

return is perfectly correlated with the squared market portfolio return and is independent
of the market portfolio return,

[
E �R2�−Rf

]
; and the third relies on the excess return of a

portfolio whose return is perfectly correlated with the cubed market portfolio return and is
independent of the market return and of the squared market portfolio return,

[
E �R3�−Rf

]
.

Taking the expected value of Equation (6.49) and setting the resulting equation equal to
Equation (6.53), yields:

�∗
0 +E �Rm��∗

1 +E (�2
m

)
�∗

2 +E (�3
m

)
�∗

3 =
Rf1 + [

E �Rm�−Rf
]
�∗

1 + [
E �R2�−Rf

]
�∗

2 + [
E �R3�−Rf

]
�∗

3

(6.54)

Rearranging terms gives:

�∗
0 =Rf �1 − �∗

1�+��∗
2 +��∗

3 (6.55)

with: {
�= [

E �R2�−Rf
]−E (�2

m

)
�= [

E �R3�−Rf
]−E (�3

m

)
The three-factor APT model (6.53) leads one to restrict the asset return intercepts of

the cubic market model (6.49) to a nonlinear combination of the asset return sensitivity
coefficients with the market portfolio return and its orthogonalised components �2

m and �3
m.

It is then possible to test, as in the traditional CAPM case, the four-moment CAPM
with this restriction, or, more precisely, the three-factor APT version consistent with the
four-moment CAPM. Indeed, rewriting the four-moment asset pricing relation (6.25) for the
portfolio whose return is �2

m, leads to:

E
(
�2
m

)−Rf = [
E �Rm�−E

(
RZm1

)−E (RZm2

)+Rf ]��2
m

+ [
E
(
RZm1

)−Rf ]��2
m
+ [
E
(
RZm2

)−Rf ]��2
m

(6.56)

with: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

��2
m
= Cov

(
�2
m�Rm

)
	2 �Rm�

��2
m
= Cos

(
�2
m�Rm

)
s3 �Rm�

��2
m
= Cok

(
�2
m�Rm

)

4 �Rm�
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Since R2 is perfectly correlated with �2
m and E �R2�<E

(
�2
m

)
, we can write the four-moment

CAPM relation (6.25) and the quadratic market model restriction (6.52) as:[
E �R2�−Rf

]
<
[
E �Rm�−E

(
RZm1

)−E (RZm2

)+Rf ]��2
m

+ [
E
(
RZm1

)−Rf ]��2
m
+ [
E
(
RZm2

)−Rf ]��2
m

(6.57)

Moreover, since, by definition, the portfolio whose returns are given by �2
m has a market

beta equal to zero, we obtain:

�1 = [
E
(
RZm1

)−Rf ]��2
m
− [
E
(
RZm2

)−Rf ]��2
m

(6.58)

The market value of �1 (which is negative) gives an upper bound for the risk premium of
the second common risk factor of the cubic market model (6.49), i.e.

[
E �R2�−Rf

]
.

The restrictions (6.52), (6.55) and (6.58) differ from the ones obtained by Barone-Adesi
(1985) and Barone-Adesi et al. (2004) in the mean–variance–skewness case since they
assumed that the market portfolio return is linearly independent from its square.39 Moreover,
these restrictions are not applicable to the third risky portfolio, whose return is perfectly cor-
related with the cubed market portfolio return component �3

m. So, we have no supplementary
indications concerning the risk premium associated with the third common risk factor of the
cubic market model (6.49).

6.5 CONCLUSION

In this chapter we develop the theoretical foundations and restrictions for multi-moment
capital asset pricing models. We first recall the main necessary hypotheses for an equilib-
rium asset-valuation relation when asset return distributions are asymmetric and leptokurtic.
Investors are here supposed to be rational and aiming to maximise an objective function
depending on the first four moments of their portfolio return distribution. We then use a
two-fund monetary separation theorem to obtain an exact asset pricing relation independent
of the functional of the investors’ preference, called the four-moment CAPM fundamental
relation. This approach leads simultaneously to the generalisation of a security market line
into a security market hyperplane and to the identification – on a priori grounds – of the
market risk premia and their signs. In this model, specific asset returns are a function of the
market portfolio return but the relation is no longer linear as in the CAPM framework; it is,
rather, a cubic one.

We also use the portfolio choice theory to investigate the general properties of the mean–
variance–skewness–kurtosis efficient set. While no general mutual fund separation theorem
seems to exist when centred moments higher than the second one are considered in the
investor’s optimisation program, we found that, under certain conditions, it is possible
to generalise the fundamental four-moment CAPM relation when no riskless asset exists.
Finally, we make the link between different multifactor models of asset returns – such as
Black’s model (1972), the three-moment CAPM, the cubic market model or the APT model
of Ross (1976) – and the four-moment CAPM. All these relations appear to be different
because of specific constraints on the implicit parameters.

39 Which reduces to assuming that the market portfolio return has a zero mean and is normally distributed (Favre and Galeano,
2002).
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The multi-moment CAPM relations having been presented, an obvious extension of our
framework consists in the simplification of the mathematics of the mean–variance–skewness–
kurtosis efficient frontier in order to prove the existence and the unicity of the three (two)
uncorrelated portfolios considered in the pricing relation when no (one) riskless asset exists.
This can be done either by imposing some heuristic restrictions on the higher-order moments
of the portfolio returns (see Athayde and Flôres, 2002, 2003, 2004 and Chapter 2 of this
Book) or by restricting the joint asset return distribution to a skew-elliptical multivariate
separating distribution (see Ross, 1978; Ingersoll 1987; Ortobelli et al., 2000).

Another extension of our work is the development of conditional versions of the Capital
Asset Pricing Model in a non-elliptical uniperiodic or multiperiodic setting. A time-varying
modelisation of a four-moment CAPM model can be achieved by using a regime-switching
process (see Ang and Beckaert, 2002; Guidolin and Timmermann, 2005a and 2005b), a
GARCH-model specification with a multivariate skewed student-t distribution for asset
returns (see Bauwens and Laurent, 2002; Branco et al., 2003 and Adcock, 2003), a conditional
portfolio return specification with a Hansen’s skewed-t univariate distribution (see Jondeau
and Rockinger, 2003a), a Gram–Charlier Type A statistical series expansion (see Bera
and Premaratne, 2001) or a conditional asymmetric copula with (non) elliptical marginal
distributions (see Patton, 2001 and 2004, and Chapter 8 of this book).

Finally, it would be of great interest to test the information content of the different asset-
pricing restrictions obtained in the mean–variance–skewness–kurtosis framework by using
robust estimators40 of realised higher-moment systematic risk measures (see Andersen et al.,
2001; Bollerslev and Zhang, 2003; Beine et al., 2004) on individual stocks or by using
hedge fund databases (see Favre and Ranaldo, 2004; Berényi, 2002 and 2004). It would
also be interesting to investigate the relative performance of the 4-CAPM with respect to
alternative asset pricing models that can take into account the skewness and the fat-tailedness
of the asset return distributions (see Ang et al., 2004, and Chapters 4 and 7 of this book).
Another potential extension would consist in the derivation and test of higher-order moment
performance measures (see Stephens and Proffitt, 1991; Chunhachinda et al., 1994; Berényi,
2001, 2002 and 2004). All these extensions are left to future works.

APPENDIX A

Following Diacogiannis (1994), the skewness and the kurtosis of the portfolio return can be
written, respectively, as a weighted average of the coskewness and the cokurtosis between
the N risky asset returns and the portfolio return; that is, in the vectorial case:{

s3
(
Rp
)= w′

p�p


4
(
Rp
)= w′

p �p

where w′
p is the �1 ×N� transposed vector of the investor’s holdings of risky assets; wp

is the �N × 1� vector of the N risky assets in the portfolio p; E is the �N × 1� vector of
the expected returns of risky assets; �p is the �N × 1� vector of coskewness between the
asset returns and the portfolio return and �p is the �N × 1� vector of cokurtosis between the
security returns and the portfolio return.

40 Such as extreme value – range based – (see Parkinson, 1980; Garman and Klass, 1980; Kunitomo, 1992; Yang and Zhang, 2000),
non-parametric (see Kim and White, 2004) or shrinkage estimators (see Ledoit and Wolf, 2003, 2004a and 2004b).
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Proof The coskewness and the cokurtosis between the returns on a security i and a portfolio
p return are given by:

⎧⎪⎨
⎪⎩

Cos
(
Ri�Rp

)=E {�Ri −E �Ri�� [Rp −E (Rp)]2
}

Cok
(
Ri�Rp

)=E {�Ri −E �Ri�� [Rp −E (Rp)]3
} (6.59)

∀i, i= �1� � � � �N �.
Developing the square and the cube in (6.59) and rearranging terms, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cos
(
Ri�Rp

)=E (Ri R2
p

)−E �Ri� E (R2
p

)
− 2E

(
Rp
) [
E
(
RiRp

)−E �Ri�E (Rp)]
Cok

(
Ri�Rp

)=E (Ri R3
p

)−E �Ri�E (R3
p

)
− 3E

(
Rp
) [
E
(
Ri R

2
p

)−E �Ri� E (R2
p

)]
+ 3

[
E
(
Rp
)]2 [

E
(
Ri Rp

)−E �Ri� E (Rp)]
(6.60)

This is equivalent to:

{
Cos

(
Ri�Rp

)= Cov
(
Ri�R

2
p

)− 2E
(
Rp
)

Cov
(
Ri�Rp

)
Cok

(
Ri�Rp

)= Cov
(
Ri�R

3
p

)− 3E
(
Rp
)

Cov
(
Ri�R

2
p

)+ 3E
[(
Rp
)]2

Cov
(
Ri�Rp

) (6.61)

The skewness and the kurtosis of the rate of return on a portfolio p are given by:

⎧⎨
⎩
s3
(
Rp
)=E (R3

p

)− 3E
(
R2
p

)
E
(
Rp
)+ 2

[
E
(
Rp
)]3


4
(
Rp
)=E (R4

p

)− 4E
(
R3
p

)
E
(
Rp
)+ 6E

(
R2
p

) [
E
(
Rp
)]2 − 3

[
E
(
Rp
)]4

(6.62)

Using the definition of variance and the bilinear property of the covariance operator, the
system of equations (6.62) can be simplified to:

{
s3
(
Rp
)= Cov

(
Rp�R

2
p

)− 2E
(
Rp
)
	2
(
Rp
)


4
(
Rp
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(
Rp�R

3
p

)− 3E
(
Rp
)

Cov
(
Rp�R

2
p

)+ 3E
[(
Rp
)]2
	2
(
Rp
) (6.63)

Rearranging terms in (6.63) leads to:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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(
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i=1
wpi
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2
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Ri�Rp
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wpi
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Ri�R

3
p

)− 3E
(
Rp
)
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(
Ri�R

2
p

)
+3E

[(
Rp
)]2

Cov
(
Ri�Rp

)} (6.64)
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with:

⎧⎨
⎩
Rp =wp0

Rf +∑N

l=1
wpi Ri∑N

i=1
wpi = 1

where wpi is the weight of the ith risky asset in the portfolio, with i= �1� � � � �N �.
From (6.61) we find:

⎧⎨
⎩
s3
(
Rp
)=∑N

i=1
wpiCos

(
Ri�Rp

)

4
(
Rp
)=∑N

i=1
wpiCok

(
Ri�Rp

) (6.65)

That is, in the vectorial case:

{
s3
(
Rp
)= w′

p�p


4
(
Rp
)= w′

p �p
(6.66)

where w′
p is the �1 ×N� vector of portfolio weights on a portfolio p; �p is the �N × 1�

vector of coskewness between the returns of N risky assets and the portfolio return; and �p
is the �N × 1� vector of cokurtosis between the returns of N risky assets and the portfolio
return. �

APPENDIX B

The first derivatives of the skewness and of the kurtosis of the return portfolio with respect
to wp, are, respectively, equal to three times the coskewness vector and four times the
cokurtosis vector, that is:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�s3
(
Rp
)

�wp
= 3�p

�
4
(
Rp
)

�wp
= 4�p

(6.67)

where  wp, �p and �p represent, respectively, the �N × 1� vectors of covariance, coskew-
ness and cokurtosis between the risky asset returns and the portfolio p return.

Proof The nth centred moment of the return of a portfolio p is given by:

mn
(
Rp
)=E {[Rp −E (Rp)]n}
=E

{[
N∑
i=1

wpi �Ri −E �Ri��
]n}

(6.68)
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Taking the first partial derivative of the nth centred moment of the portfolio return
distribution with respect to wpi, the ith entry of the �N × 1� vector wp, yields:

�mn
(
Rp
)

�wpi
= nE

{
�Ri −E �Ri��

[
Rp −E (Rp)]�n−1�

}
= nCn

(
Ri�Rp

)
(6.69)

where Cn
(
Ri�Rp

)
is the co-moment of nth order between the rate of return on the asset i

and the rate of return on the portfolio p, with i= �1� � � � �N �.
This last equation leads, in the vectorial case, to:

�mn
(
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)

�wp
=

⎛
⎜⎜⎜⎜⎜⎜⎝
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)
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���
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⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎝
nCn

(
R1�Rp
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���
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)
⎞
⎟⎠= nCnp (6.70)

For n= 3 we obtain:
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For n= 4, we have:
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⎞
⎟⎠= 4�p (6.72)

APPENDIX C

The first-order conditions of the agent’s portfolio problem are sufficient for a maximum,
since the Hessian matrix of the expected utility function is negative definite.

Proof The second partial derivative of the expected utility of an investor k with respect to
wpi and wpj , yields:

�2E
[
Uk
(
Rp
)]

�wpi�wpj
=E

[
U
�2�
k

(
Rp
)
Ri Rj

]
(6.73)

with �i� j�= �1� � � � �N �2 and k∈ �1� � � � �K�.
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The �N ×N� Hessian matrix Hk of the expected utility function is then given by:

Hk
�N×N�

=E

⎡
⎢⎢⎢⎣U�2�k

(
Rp
)
⎛
⎜⎜⎜⎝
R2

1 R1R2 · · · R1RN
R1R2 R2

2 · · · R2RN
���

���
� � �

���
R1RN R2RN · · · R2

N

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ (6.74)

Premultiplying (6.74) by w′
p and postmultiplying it by wp leads to the following quadratic

form:

Qk= w′
pHkwp

=
N∑
i=1

N∑
j=1

wpiwpj E
[
U
�2�
k

(
Rp
)
Ri Rj

]
(6.75)

=E
⎡
⎣U�2�k (

Rp
)( N∑

i=1

wpiRi

)2
⎤
⎦

which is negative ∀wp �=0, with wp ∈ IRN , since, by definition, investors are risk averse, i.e.:
U
�2�
k

(
Rp
)
< 0�∀k∈ �1� � � � �K�.

The Hessian matrix is then negative definite and the concavity condition is met. �

APPENDIX D

On the existence and unicity of the portfolios Zp0, Zp1 and Zp2, we have to consider that
they may not exist or be unique, since their definitions lead to systems that are generally
underdetermined. We illustrate this point with the portfolio Zp0 – with weights wZp0

–
which is zero-correlated, zero-coskewed and has a zero cokurtosis with the mean–variance–
skewness–kurtosis efficient portfolio p; that is:

⎧⎪⎪⎨
⎪⎪⎩

wZp0
�wp = 0

wZp0
�w2

p = 0

wZp0
�w3

p = 0

(6.76)
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where w2
p= wp� wp and w3

p= wp� wp� wp (with � being the Hanada element-by-element
product). Matrices �, � and � are the covariance, the coskewness and cokurtosis matrices:

⎧⎪⎪⎨
⎪⎪⎩

� = R′R

� = R′R � R

� = R′R � R � R

(6.77)

where R′ is the matrix of centred time-series of returns ri�t on the N assets i of the economy.
These matrices are then composed with the following elements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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)
(6.78)

Weights wZp0i
of the portfolio Zp0 are linked with the weights wpj of the efficient portfolio

p in the following way:
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[(
wZp0i

ri�t

)(
wpjrj�t

)2
]
= 0

1
T

T∑
t=1

N∑
i=1

N∑
j=1

[(
wZp0i

ri�t

)(
wpjrj�t

)3
]
= 0

(6.79)

If we first assume the simplest case in a 4-CAPM framework with N = 3 for the sake of
simplicity, we get the following system:

S3

(
wZp0

�wp
)
�

⎧⎪⎪⎨
⎪⎪⎩
wZp01

(
a11w′

p

)+wZp02

(
a12w′

p

)+wZp03

(
a13w′

p

)= 0

wZp01

(
a21w20

p

)+wZp02

(
a22w20

p

)+wZp03

(
a23w20

p

)= 0

wZp01

(
a31w30

p

)+wZp02

(
a32w30

p

)+wZp03

(
a33w30

p

)= 0

(6.80)
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where akj are line vectors of cross-products of returns, whose l-elements are: akj �l� =
T∑
t=1

[
rl�t rj�t

]
. In this case, the link between Zp0 and p can be denoted by wZ

p0S3�wp�wZp0�
. and

reads – after a straightforward calculus:

wZ
p0S3�wp�wZp0�

� (6.81)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wZp01
= −

(
a12w

′
p

)
(
a11w

′
p

)
[(
a23w

20
p

)+ [(
a13w

′
p

)
/
(
a11w

′
p

)]]
[(
a22w

20
p

)− [(
a12w

′
p

)
/
(
a11w

′
p

)]]
×
[(
a12w

′
p

) (
a33w

30
p

)
(
a11w

′
p

)
[(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]

×
[[(
a33w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]− (
a32w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]−1

−
[(
a13w

′
p

) (
a12w

′
p

) (
a33w

30
p

)
(
a11w

′
p

)2

[(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]

×
[[(
a33w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]− (
a32w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]−1

wZp02
= −

[(
a23w

20
p

)+ [(
a13w

′
p

)
/
(
a11w

′
p

)]]
[(
a22w

20
p

)− [(
a12w

′
p

)
/
(
a11w

′
p

)]]
×
[(
a12w

′
p

) (
a33w

30
p

)
(
a11w

′
p

)
[(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]

×
[[(
a33w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]− (
a32w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]−1

wZp03
=
[(
a12w

′
p

) (
a33w

30
p

)
(
a11w

′
p

)
[(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]

×
[[(
a33w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]− (
a32w

30
p

) [(
a23w

20
p

) (
a12w

′
p

)+ (
a13w

′
p

)]]
[(
a23w

20
p

) (
a12w

′
p

)− (
a12w

′
p

)]
]−1

The system is then just identified in this simplified case and that guarantees the emergence
of an analytical solution.

In the general case with N ≥ 4 and when considering portfolios p, Zp0, Zp1 and Zp2

altogether, we need at least 4N conditions (4 specific portfolios times N asset weights)
implying cross-terms of degree 3 or less. A natural idea would be to impose some further
restrictions on the interrelations between portfolios p, Zp0, Zp1 and Zp2. In particular, since
we are here in the skewed and leptokurtic world, we may require these different portfolio
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returns to be truly independent (in the sense of the covariance, the coskewness and the
cokurtosis orthogonality). We thus have:

(
wp�wZp0

�wZp1
�wZp2

)
=
{

wp
SN �wp�wZp0�

�∩ wp
SN �wp�wZp1�

�∩ wp
SN �wp�wZp2�

�∩ � � �∩ wZ
p2SN �wZp2

�wZp1�
�

}

(6.82)

where SN ��� is the generalisation – to N assets and to portfolios p, Zp0� Zp1 and Zp2 –

of the previous S3

(
wp�wZp0

)
system for three assets and two portfolios. That implies 36

conditions �2 × 3 × 3!�; adding a possible 16 arbitrary conditions (on the given moments of
these portfolios), we can easily access a total of 52 conditions. That is clearly insufficient for
a realistic developed financial market, but might be sufficient for asset allocation purposes.

Nevertheless, unicity – and more importantly the existence – of these desired portfolios
Zp0, Zp1 and Zp2, is also an empirical question and is under the scope of this chapter. Indeed,
first, we cannot guarantee – with given real financial asset characteristics – the existence
of such portfolios on the market. One may guess, however, that the variety of tradable
asset features has to be large enough for such portfolios to exist. Second, the dimension of
the global system to be solved when N ≥ 4 is too high for attaining a feasible analytical
solution (one might think about the polynomial goal program approach or genetic algorithms
to approach a satisfying solution). According to the results by Athayde and Flôres (1997 and
2000) and Berényi (2001 and 2002), who find reasonable market premia, we suppose in the
following the existence of these portfolios and try to assess further asset pricing relations
that are compatible with our simple set of hypotheses.

APPENDIX E

When return densities are asymmetric and leptokurtic, the vector of relative asset weights of
any efficient portfolio p can be expressed as a linear combination of those of the following
four distinct funds:

wa1
= �−1E

10�−1E
� wa2

= �−11

10�−11
� wa3

= �−1�p

10�−1�p
and wa4

= �−1�p

10�−1�p

where E is the �N × 1� vector of the expected returns of risky assets; 1 is the �N × 1�
unit vector; � is the nonsingular �N ×N� variance–covariance matrix of the N risky asset
returns; �p is the �N × 1� vector of coskewness between the asset returns and the portfolio p
return; and �p is the �N × 1� vector of cokurtosis between securities and portfolio p returns.

Proof The solution of the investor’s portfolio selection program is given by solving the
following Lagrangian:

�= 1
2

w′
p� wp +!1

[
�p − w′

pE
]+!2

[
1 − w′

p1
]

(6.83)

+ !3

3

[
s3
p − w′

p�p
]+ !4

4

[

4
p − w′

p�p
]
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where !1, !2, !3 and !4 are the Lagrange coefficients and �p, s
3
p�


4
p represent the levels of

expected return, skewness and kurtosis fixed by the investor considered.
The first-order conditions are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��

�wp
= �wp −!1E −!21 −!3�p −!4�p = 0

��

�!1

=�p − w′
pE = 0

��

�!2

= 1 − w′
p1 = 0

��

�!3

= s3
p − w′

p�p = 0

��

�!4

=
4
p − w′

p�p = 0

(6.84)

Premultiplying the first equation of the system (6.84) by the inverse matrix �−1 and rear-
ranging yields:

wp =!1�
−1E +!2�

−11 +!3�
−1�p +!4�

−1�p (6.85)

that is:

wp = �1

�−1E

10 �−1E
+ �2

�−11

10 �−11
+ �3

�−1�p

10�−1�p
+ �4

�−1�p

10 �−1�p
(6.86)

with: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�1 =!1 10�−1E

�2 =!2 10�−11

�3 =!3 10�−1�p

�4 =!4 10 �−1�p

and:

�1 + �2 + �3 + �4 = 1

�

APPENDIX F

When a riskless asset exists, the vector of asset weights of any mean–variance–skewness–
kurtosis efficient portfolio can be represented by a linear combination of those of the riskless
asset and of the three following distinct risky funds:

wa5
= �−1 (E −Rf 1

)
10�−1 (E −Rf 1

) � wa6
= �−1�p

10 �−1�p
and wa7

= �−1�p

10 �−1�p
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where Rf is the risk-free rate; E is the �N × 1� vector of the expected return of risky assets;
1 is the �N × 1� unit vector; and  wp, �p, �p are, respectively, the �N × 1� vectors of
covariance, coskewness and cokurtosis between the risky asset returns and the portfolio p
return.

Proof If we introduce a riskless asset, the investor’s programme becomes:

Min
wp

{
1
2

w′
p� wp

}
(6.87)

s�t�

⎧⎪⎪⎨
⎪⎪⎩

w′
pE + (

1 − w′
p1
)
Rf =�p

w′
p�p = s3

p

w′
p�p =
4

p

where �p, s
3
p, 


4
p are the levels of expected return, skewness and kurtosis fixed by the investor

considered.
Using the same approach as previously, we obtain:

wp =!′
1�

−1 (E −Rf 1
)+!′

2 �−1�p +!′
3 �−1�p (6.88)

where !′
1, !′

2 and !′
3 are the Lagrange coefficients.

That is:

wp = �5

�−1 (E −Rf 1
)

10 �−1 (E −Rf 1
) + �6

�−1�p

10 �−1�p
+ �7

�−1�p

10 �−1�p
(6.89)

with: ⎧⎪⎪⎨
⎪⎪⎩
�5 =!′

1 10 �−1 (E −Rf 1
)

�6 =!′
2 10 �−1�p

�7 =!′
3 10 �−1�p

and:

wa8
= 1 − w′

p1 = 1 − �5 − �6 − �7

APPENDIX G

In the absence of a riskless asset, the four-moment CAPM relation is written as:

E −E
(
RZp0

)
1 =

{[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]}
� wp

[
	2
(
Rp
)]−1

+
[
E
(
RZp1

)
−E

(
RZp0

)]
�p

[
s3
(
Rp
)]−1

+
[
E
(
RZp2

)
−E

(
RZp0

)]
�p
[

4
(
Rp
)]−1
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where E�RZp0
� represents the expected return on a portfolio whose return is zero-correlated

and has a zero coskewness and a zero cokurtosis with the return of the portfolio p; E�RZp1
�

represents the expected return on a portfolio whose return is zero-correlated with the portfolio
p and has a coskewness equal to the skewness of that portfolio return and a zero cokurtosis
with it; E�RZp2

� represents the expected return on a portfolio whose return is zero-correlated
with the portfolio p and has a zero coskewness with it and a cokurtosis equal to the kurtosis
of that portfolio return;  wp, �p, �p are the �N × 1� vectors of covariance, coskewness
and cokurtosis between the risky asset returns and the portfolio p return; and 	2

(
Rp
) �= 0,

s3
(
Rp
) �= 0 and 
4

(
Rp
) �= 0.

Proof The �N × 1� vector of the covariances between the return of a portfolio p and the
returns of the N risky assets is  wp. Consequently, using the first equation of the system
(6.84) we obtain:

 wp =!1 E +!2 1 +!3 �p +!3 �p (6.90)

which can be rewritten, if we assume that !1 �= 0 (i.e. the expected return constraint is
binding), as:

E = �p1
� wp + �p2

1 + �p3
�p + �p4

�p (6.91)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�p1
= �!1�

−1

�p2
= −

(
!2

!1

)

�p3
= −

(
!3

!1

)

�p4
= −

(
!4

!1

)

To determine the values of the parameters �p1
� �p2

� �p3
and �p4

, we premultiply (6.91) by
the transpose vectors w′

p, w′
Zp0

, w′
Zp1

and w′
Zp2

, denoting respectively the �1 ×N� vector of
portfolio weights for the efficient portfolio p, the �1 ×N� vector of portfolio weights for
a portfolio Zp0 whose return is uncorrelated with the return of the portfolio p and which
possesses a zero coskewness and zero cokurtosis with it, the �1 ×N� vector of portfolio
weights for a portfolio Zp1 whose return is uncorrelated with the return of that portfolio
p and which possesses a unitary relative coskewness and a zero cokurtosis with it and the
�1 ×N� vector of portfolio weights for a portfolio Zp2 whose return is uncorrelated with
the return of that portfolio p and which possesses a zero coskewness and a unitary relative
cokurtosis with it.41

41 That is: ⎧⎪⎨
⎪⎩

Cos
(
Rp�RZp1

)
= s3 (Rp)

Cok
(
Rp�RZp2

)
=
4 (Rp)
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We thus obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
Rp
)= �p1

	2
(
Rp
)+ �p2

+ �p3
s3
(
Rp
)+ �p4


4
(
Rp
)

E
(
RZp0

)
= �p2

E
(
RZp1

)
= �p2

+ �p3
s3
(
Rp
)

E
(
RZp2

)
= �p2

+ �p4

4
(
Rp
)

(6.92)

The resolution of this system for �p1
, �p2

, �p3
and �p4

gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�p1
=
⎧⎨
⎩
[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]
	2
(
Rp
)

⎫⎬
⎭

�p2
=E (RZ0

)

�p3
=
[
E
(
RZp1

)
−E

(
RZp0

)]
s3
(
Rp
)

�p4
=
[
E
(
RZp2

)
−E

(
RZp0

)]

4
(
Rp
)

(6.93)

with 	2
(
Rp
) �= 0, s3

(
Rp
) �= 0 and 
4

(
Rp
) �= 0.

Substituting these values into Equation (6.91) leads to the desired result.

APPENDIX H

In the absence of a riskless asset, the asset risk premia of a Pareto-optimal equilibrium are
given by the equation:

E −E (RZm0

)
1 ={[

E �Rm�−E
(
RZm1

)]− [
E
(
RZm2

)−E (RZm0

)]}
�

+ [
E
(
RZm1

)−E (RZm0

)]
� + [

E
(
RZm2

)−E (RZm0

)]
�

with: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
�wm

� = [
s3 �Rm�

]−1
�m

� = [

4 �Rm�

]−1
�m

where E
(
RZm0

)
represents the expected return on a portfolio whose return is zero-correlated

and has a zero coskewness zero cokurtosis with the return of the market portfolio; E
(
RZm1

)
represents the expected return on a portfolio whose return is zero-correlated with the market
portfolio and has a coskewness equal to the skewness of the market portfolio and a zero
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cokurtosis with it; E
(
RZm2

)
represents the expected return on a portfolio whose return

is zero-correlated with the market portfolio m and has a zero coskewness with it and a
cokurtosis equal to the kurtosis of the market portfolio; �wm, �m, �m are the �N × 1�
vectors of covariance, coskewness and cokurtosis between the risky asset returns and the
market portfolio return; and 	2 �Rm� �= 0, s3 �Rm� �= 0 and 
4 �Rm� �= 0.

Proof The study of the properties of the mean–variance–skewness–kurtosis frontier showed
that any efficient portfolio p – that does not belong to the variance–skewness–kurtosis
efficient set – must satisfy the following equality:

E −E
(
RZp0

)
1 =

{[
E
(
Rp
)−E (RZp1

)]
−
[
E
(
RZp2

)
−E

(
RZp0

)]}
� wp

[
	2
(
Rp
)]−1

+
[
E
(
RZp1

)
−E

(
RZp0

)]
�p

[
s3
(
Rp
)]−1

+
[
E
(
RZp2

)
−E

(
RZp0

)]
�p
[

4
(
Rp
)]−1

(6.94)

where E
(
Rp
)

is the expected return on the efficient portfolio p and E�RZp0
�, E�RZp1

�
and E�RZp2

� are the expected return on uncorrelated portfolios with portfolio p, charac-
terised respectively by a zero coskewness and a zero cokurtosis with it, a unitary relative
coskewness and a zero cokurtosis with the portfolio p and a zero coskewness and a unitary
relative cokurtosis with the efficient portfolio considered; and 	2

(
Rp
) �= 0, s3

(
Rp
) �= 0 and


4
(
Rp
) �= 0.

Previously, we have established that when there exists a Pareto-optimal equilibrium allo-
cation, the market portfolio must be a mean–variance–skewness–kurtosis efficient portfolio.
Consequently, to obtain the relation (6.94), it is sufficient to show that the market port-
folio does not belong to the minimum variance frontier in the variance–skewness–kurtosis
space. This condition is always satisfied, unless we assume that all traded assets possess the
same expected return, which is in contradiction to our hypothesis of nonredundancy of the
securities. �

APPENDIX I

If the asset returns conform to the cubic market model, the systematic risk measures of the
fourth-moment CAPM are a linear combination of the coefficients of the cubic DGP.

Proof Consider the cubic market model:⎧⎪⎪⎨
⎪⎪⎩

R −Rf1 = �0 + (
Rm−Rf

)
�1 + �Rm−E �Rm��2 �2 + �Rm−E �Rm��3 �3 + 	

E�	�= 0

E�		Rm�R2
m�R

3
m�= 0

(6.95)

where R is the �N × 1� vector of the returns of risky assets; �0 is the �N × 1� vector of
asset return intercepts; �1, �2 and �3 are, respectively, the �N × 1� vectors of asset return
sensitivities with the market portfolio return, the squared and the cubed market portfolio
return and 	 is the �N × 1� vector of asset return disturbances.
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Subtracting from (6.95) its expected value gives:

R − E = �Rm−E �Rm���1

+
{
�Rm−E �Rm��2 −	2 �Rm�

}
�2

+
{
�Rm−E �Rm��3 − s3 �Rm�

}
�3 + 	

(6.96)

Provided that the sixth centred moment of the market portfolio return exists, we obtain, using
the definition of the relative risk measures �, � and �, the desired results; that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� = �1 +
[
s3 �Rm�

	2 �Rm�

]
�2 +

[

4 �Rm�

	2 �Rm�

]
�3

� = �1 +
{

4 �Rm�−

[
	2 �Rm�

]2

s3 �Rm�

}
�2 +

{
�5 �Rm�−	2 �Rm� s

3 �Rm�

s3 �Rm�

}
�3

� = �1 +
{
�5 �Rm�−	2 �Rm� s

3 �Rm�


4 �Rm�

}
�2 +

{
�6 �Rm�−

[
s3 �Rm�

]2


4 �Rm�

}
�3

(6.97)

with: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� = [
	2 �Rm�

]−1
E "�Rm−E �Rm�� �R − E�#

� = [
s3 �Rm�

]−1
E
{
�Rm−E �Rm��2 �R − E�

}
� = [


4 �Rm�
]−1
E
{
�Rm−E �Rm��3 �R − E�

}

where �5 �Rm� and �6 �Rm� represent, respectively, the fifth and sixth centred moments of
the market portfolio returns.

APPENDIX J

When asset returns conform to the cubic market model (6.49), and standard APT hypotheses
are met, the expected return on a large diversified portfolio perfectly correlated with the
squared market portfolio return component �2

m which is independent of the market portfolio
return, denoted E �R2�, must verify the following inequality:

E �R2�<E
(
�2
m

)
Proof Consider an arbitrage (with zero net investment) well-diversified portfolio a with:

⎧⎪⎪⎨
⎪⎪⎩
�∗

1a= 0

�∗
2a= 1

�∗
3a= 0

(6.98)



The Four-moment CAPM: Between Asset Pricing and Allocation 157

From the Arbitrage Pricing Theory, we have:

E �Ra�=E �R2� (6.99)

Due to the perfect correlation of the well-diversified portfolio a with the second risk factor
�2
m of the cubic market model (6.95), it is possible to express the return of this portfolio as:

Ra
�∗
0a+ �2

m (6.100)

Taking the conditional expected value of expression (6.100) yields:

E
(
Ra
∣∣�2
m

)=�∗
0a+ �2

m (6.101)

Taking the expected value of expression (6.101), we obtain:

E
[
E
(
Ra
∣∣�2
m

)]=E �Ra�=�∗
0a+E (�2

m

)
(6.102)

That is, using (6.99):

�∗
0a=E �R2�−E

(
�2
m

)
(6.103)

Substituting this expression into Equation (6.100), we obtain:

Ra
 [
E �R2�−E

(
�2
m

)]+ �2
m (6.104)

When the condition E �R2� < E
(
�2
m

)
does not hold, asset returns are always non-negative

and no market equilibrium is possible. �
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Multi-moment Method for Portfolio

Management: Generalised Capital Asset Pricing
Model in

Homogeneous and Heterogeneous Markets

Yannick Malevergne and Didier Sornette

ABSTRACT

We introduce a new set of consistent measures of risk, in terms of the semi-invariants of
probability density functions (pdf). The main interest of this new class of risk measures is to
provide a flexible tool allowing the final user to put more emphasis on the particular size of
risk to which he is more sensitive. Some typical and well-known examples of such risk mea-
sures are the centred moments and the cumulants of the portfolio distribution of returns. We
then derive generalised efficient frontiers based on these novel measures of risk and present
the generalised CAPM, both in the cases of homogeneous and heterogeneous markets.

7.1 INTRODUCTION

The Capital Asset Pricing Model (CAPM) is still the most widely used approach to relative
asset valuation, although its empirical roots have been found weaker and weaker in recent
years. This asset-valuation model describing the relationship between expected risk and
expected return for marketable assets is strongly entangled with the Mean–Variance Portfolio
Model. Indeed both of them rely, to a large extent, on the description of the probability
density function (pdf) of asset returns in terms of Gaussian functions. The mean–variance
description is thus at the basis of Markowitz’s portfolio theory (Markowitz, 1959) and of
the CAPM (Sharpe, 1964).

In general, the determination of the risks and returns associated with a given portfolio
comprising N assets is completely embedded in the knowledge of their multivariate distri-
bution of returns. Indeed, the dependence between random variables is completely described
by their joint distribution. This remark entails the two major problems of portfolio theory: 1)
determining the multivariate distribution function of asset returns; 2) deriving from it useful
measures of portfolio risks and using them to analyse and optimise portfolios. In the present
chapter, we will focus mainly on the second problem.
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The variance (or volatility) of portfolio returns provides the simplest way to quantify its
fluctuations and is at the basis of Markowitz’s portfolio selection theory. Nonetheless, the
variance of a portfolio offers only a limited quantification of incurred risks (in terms of
fluctuations), as the empirical distributions of returns have “fat tails” (Lux, 1996; Gopikr-
ishnan et al., 1998; Malevergne et al., 2005 among many others) and the dependences
between assets are only imperfectly accounted for by the covariance matrix (Litterman and
Winkelmann, 1998). It is thus essential to extend portfolio theory and the CAPM to tackle
these empirical facts.

The value-at-risk (Jorion, 1997) and many other measures of risk (Artzner et al., 1997,
1999; Sornette, 1998; Bouchaud et al., 1998; Sornette et al., 2000b) have been developed
to account for the larger moves allowed by non-Gaussian distributions and nonlinear cor-
relations, but they mainly allow for the assessment of down-side risks. Here, we consider
both-sides risk and define general measures of fluctuation. This is the first goal of this chapter.
Indeed, we characterise the minimum set of properties a fluctuation measure must fulfil. In
particular, we show that any absolute central moments and some cumulants satisfy these
requirements, as does any combination of these quantities. Moreover, the weights involved
in these combinations can be interpreted in terms of the portfolio manager’s aversion to large
fluctuations.

Once the definition of the fluctuation measures has been given, it is possible to classify
the assets and portfolios using, for instance, a risk-adjustment method (Sharpe, 1994; Dowd,
2000) and to develop a portfolio selection and optimisation approach. This is the second
goal of this chapter.

Then, a new model of market equilibrium can be derived, which generalises the usual
Capital Asset Pricing Model (CAPM). This is the third goal of our chapter. This improvement
is necessary since, although the use of the CAPM is still widespread, its empirical justification
has been found less and less convincing in recent years (Lim, 1989; Harvey and Siddique,
2000; Fama and French, 2004).

The chapter is organised as follows. Section 7.2 presents a new set of consistent measures
of risk, in terms of the semi-invariants of pdfs, such as the centred moments and the cumulants
of the portfolio distribution of returns, for example. Section 7.3 derives the generalised
efficient frontiers based on these novel measures of risk. Cases with and without risk-free
assets are analysed. Section 7.4 offers a generalisation of the Sharpe ratio and thus provides
new tools to classify assets with respect to their risk-adjusted performance. In particular, we
show that this classification may depend on the chosen risk measure. Section 7.5 presents the
generalised CAPM based on these new measures of risk, both in the cases of homogeneous
and heterogeneous agents. Section 7.6 concludes.

Before proceeding with the presentation of our results, we set the notation to derive the
basic problem addressed in this chapter, namely the study of the distribution of the sum of
weighted random variables with arbitrary marginal distributions and dependence. Consider
a portfolio with ni shares of asset i of price pi�0� at time t = 0 whose initial wealth is

W�0� =
N∑

i=1

nipi�0� (7.1)

A time � later, the wealth has become W��� =∑N
i=1 nipi��� and the wealth variation is

��W ≡ W��� − W�0� =
N∑

i=1

nipi�0�
pi��� − pi�0�

pi�0�
= W�0�

N∑
i=1

wiri�t� �� (7.2)
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where

wi =
nipi�0�∑N

j=1 njpj�0�
(7.3)

is the fraction in capital invested in the ith asset at time 0 and the return ri�t� �� between
time t − � and t of asset i is defined as:

ri�t� �� = pi�t� − pi�t − ��

pi�t − ��
(7.4)

The definition (7.4) justifies us in writing the return S� of the portfolio over a time interval
� as the weighted sum of the returns ri��� of the assets i= 1� � � � �N over the time interval �

S� = ��W

W�0�
=

N∑
i=1

wiri��� (7.5)

We shall thus consider asset returns as the fundamental variables (denoted xi or Xi). We
shall consider a single timescale, �, which can be chosen arbitrarily, say equal to one day.
We shall thus drop the dependence on �, understanding implicitly that all our results hold
for returns estimated over the time step �.

7.2 MEASURING LARGE RISKS OF A PORTFOLIO

The question of how to assess risk is recurrent in finance (and in many other fields) and has
not yet received a general solution. Since the middle of the twentieth century, several paths
have been explored. The pioneering work by von Neumann and Morgenstern (1947) has
given birth to the mathematical definition of the expected utility function, which provides
interesting insights on the behaviour of a rational economic agent and formalises the concept
of risk aversion. Based upon the properties of the utility function, Rothschild and Stiglitz
(1970, 1971) have attempted to define the notion of increasing risk. But, as revealed by
Allais (1953, 1990), empirical investigation has proven that the postulates chosen by von
Neumann and Morgenstern (1947) are actually often violated. Many generalisations have
been proposed for curing the so-called Allais’s Paradox, but up to now, no generally accepted
procedure has been found in this way.

Recently, a theory by Artzner et al. (1997, 1999), and its generalisation by Föllmer and
Schied (2002, 2003), have appeared. Based on a series of postulates that are quite natural,
this theory allows one to build coherent (convex) measures of risk. In fact, this theory seems
well-adapted to the assessment of the needed economic capital, that is, of the fraction of
capital a company must keep as risk-free assets in order to face its commitments and thus
avoid ruin. However, for the purpose of quantifying the fluctuations of the asset returns and
of developing a theory of portfolios, this approach does not seem to be the most operational.
Here, we shall rather revisit Markowitz’s (1959) approach to investigate how its extension
to higher-order moments or cumulants, and any combination of these quantities, can be used
operationally to account for large risks.
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7.2.1 Why do higher moments allow us to assess larger risks?

In principle, the complete description of the fluctuations of an asset at a given timescale
is given by the knowledge of the probability density function (pdf) of its returns. The pdf
encompasses all the risk dimensions associated with this asset. Unfortunately, it is impossible
to classify or order the risks described by the entire pdf, except in special cases where
the concept of stochastic dominance applies. Therefore, the whole pdf cannot provide an
adequate measure of risk, embodied by a single variable. In order to perform a selection
among a basket of assets and construct optimal portfolios, one needs measures given as
real numbers, not functions, which can be ordered according to the natural ordering of real
numbers on a line.

In this vein, Markowitz (1959) has proposed to summarise the risk of an asset by the
variance of its pdf of returns (or, equivalently, by the corresponding standard deviation). It
is clear that this description of risk is fully satisfying only for assets with Gaussian pdfs.
In any other case, the variance generally provides a very poor estimate of the real risk.
Indeed, it is a well-established empirical fact that the pdfs of asset returns have fat tails (Lux,
1996; Pagan, 1996; Gopikrishnan et al., 1998; Malevergne et al., 2005), so that the Gaussian
approximation underestimates significantly the large price movements frequently observed
on stock markets. Consequently, the variance cannot be taken as a suitable measure of risk,
since it only accounts for the smallest contributions to the fluctuations of the asset returns.

The variance of the return X of an asset involves its second moment E�X2	 and, more pre-
cisely, is equal to its second centred moment (or moment about the mean) E

[
�X − E�X	�2

]
.

Thus, the weight of a given fluctuation X in the definition of the variance of the returns is
proportional to its square. Due to the decay of the pdf of X for large X bounded from above
by ∼ 1/�X�1+
 with 
 > 2, the largest fluctuations do not contribute significantly to this
expectation. To increase their contributions, and in this way to account for the largest fluctu-
ations, it is natural to invoke higher-order moments of order n>2. The larger n becomes, the
larger is the contribution of the rare and large returns in the tail of the pdf. This phenomenon
is demonstrated in Figure 7.1, where we can observe the evolution of the quantity xn · P�x�
for n = 1� 2 and 4, where P�x�, in this example, is the standard exponential distribution e−x.
The expectation E�Xn	 is then simply represented geometrically as being equal to the area
below the curve xn · P�x�. These curves provide an intuitive illustration of the fact that the
main contributions to the moment E�Xn	 of order n come from values of X in the vicinity
of the maximum of xn · P�x�, which increases quickly with the order n of the moment we
consider, and makes the tail of the pdf of the returns X even fatter. For the exponential
distribution chosen to construct Figure 7.1, the value of x corresponding to the maximum
of xn · P�x� is exactly equal to n. Thus, increasing the order of the moment allows one to
sample larger fluctuations of the asset prices.

7.2.2 Quantifying the fluctuations of an asset

Let us now examine what should be the properties that consistent measures of risk adapted
to the portfolio problem must satisfy in order to best quantify the asset price fluctuations.
Let us consider an asset denoted X, and let � be the set of all the risky assets available on
the market. Its profit and loss distribution is the distribution of �X =X��� − X�0�, while the
return distribution is given by the distribution of X���−X�0�

X�0�
. The risk measures will be defined

for the profit and loss distribution and then shown to be equivalent to another definition
applied to the return distribution.
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Figure 7.1 The function xn ·e−x for n=1� 2 and 4. The figure shows the typical size of the fluctuations
involved in the moment of order n.

Our first requirement is that the risk measure ��·�, which is a functional on �, should
always remain positive.

Axiom 1

∀X ∈�� ���X� ≥ 0

where the equality holds if and only if X is certain.1 Let us now add to this asset a given
amount a invested in the risk-free asset whose return is �0 (with, therefore, no randomness in
its price trajectory) and define the new asset Y =X +a. Since a is nonrandom, the fluctuations
of X and Y are the same. Thus, it is desirable that � enjoys the property of translational
invariance, whatever the asset X and the nonrandom coefficient a may be, as in Axiom 2.

Axiom 2

∀X ∈��∀a ∈ R� ���X + � · a� = ���X�

We also require that our risk measure increases with the quantity of assets held in the
portfolio. A priori, one should expect that the risk of a position is proportional to its size.
Indeed, the fluctuations associated with the variable 2 · X, say, are naturally twice as large

1 We say that X is certain if X�
� = a, for some a ∈ R, for all 
 ∈ � such that P�
� �= 0, where P denotes a probability measure
on ���� � and � is an �-algebra so that ���� �P� is a usual probability space.
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as the fluctuations of X. This is true as long as we can consider that a large position can be
cleared as easily as a smaller one. This is obviously not true, due to the limited liquidity of
real markets. Thus, a large position in a given asset is more risky than the sum of the risks
associated with the many smaller positions that add up to the large position. To account
for this point, we assume that � depends on the size of the position in the same manner
for all assets. This assumption is slightly restrictive but not unrealistic for companies with
comparable properties in terms of market capitalisation or sector of activity (Farmer and
Lillo, 2004). This requirement leads to Axiom 3.

Axiom 3

∀X ∈��∀� ∈ R+� ��� · �X� = f��� · ���X�

where the function f � R+ −→ R+ is increasing and convex to account for liquidity risk.
In fact, it is straightforward to show2 that the only functions satisfying this axiom are the
functions f
��� = �
 with 
 ≥ 1, so that Axiom 3 can be reformulated in terms of positive
homogeneity of degree 
 to give Axiom 4.

Axiom 4

∀X ∈��∀� ∈ R+� ��� · �X� = �
 · ���X� (7.6)

Note that the case of liquid markets is recovered by 
 = 1, for which the risk is directly
proportional to the size of the position.

These axioms, which define our risk measures for profit and loss, can easily be extended
to the returns of the assets. Indeed, the return is nothing but the profit and loss divided by
the initial value X�0� of the asset. One can thus easily check that the risk defined on the
profit and loss distribution is �X�0�	
 times the risk defined on the return distribution. From
here on, we will only consider this later definition and, to simplify the notation, since we
will only consider the returns and not the profit and loss, the notation X will be used to
denote the asset price and its return as well.

We can remark that the risk measures � enjoying the two properties defined by Axioms 2
and 4 are known as the semi-invariants of the distribution of the profit and loss/returns of X
(see Stuart and Ord, 1994, pp. 86–87). Among the large family of semi-invariants, we can
cite the well-known centred moments and cumulants of X.

7.2.3 Examples

The set of risk measures obeying Axioms 1–4 is huge, since it includes all the homogeneous
functionals of �X −E�X	�, for instance. The centred moments (or moments about the mean) and
the cumulants are two well-known classes of semi-invariants. Then, a given value of 
 can be
seen as nothing but a specific choice of the order n of the centred moments or of the cumulants. In
this case, our risk measures defined via these semi-invariants fulfil the two following conditions:

��X + �� = ��X� (7.7)

��� · X� = �n · ��X� (7.8)

2 Using the trick ���1�2 · �X� = f��1� · ���2 · �X� = f��1� · f��2� · ���X� = f��1 · �2� · ���X� leading to f��1 · �2� = f��1� · f��2�.
The unique increasing convex solution of this functional equation is f
��� = �
 with 
 ≥ 1.
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In order to satisfy the positivity condition (Axiom 1), one needs to restrict the set of values
taken by n. By construction, the centred moments of even order are always positive while the
odd-order centred moments can be negative. In addition, a vanishing value of an odd-order
moment does not mean that the random variable – or risk – X ∈ � is certain in the sense
of footnote 1, since, for instance, any symmetric random variable has vanishing odd-order
moments. Thus, only the even-order centred moments seem acceptable risk measures. How-
ever, this restrictive constraint can be relaxed by first recalling that, given any homogeneous
function f�·� of order p, the function f�·�q is also homogeneous of order p · q. This allows
one to decouple the order of the moments considered, which quantifies the impact of the large
fluctuations, from the influence of the size of the positions held, measured by the degree of
homogeneity of the measure �. Thus, considering any even-order centred moments, we
can build a risk measure ��X� = E

[
�X − E�X	�2n

]
/2n
, which accounts for the fluctuations

measured by the centred moment of order 2n but with a degree of homogeneity equal to 
.
A further generalisation is possible for odd-order moments. Indeed, the absolute centred

moments satisfy Axioms 1–4 for any odd or even order. So, we can even go one step
further and use non-integer order absolute centred moments, and define the more general
risk measure

��X� = E ��X − E�X	��	

/� (7.9)

where � denotes any positive real number.
These sets of risk measures are very interesting since, due to the Minkowski inequality,

they are convex for any 
 and � larger than 1:

��u · X + �1 − u� · Y� ≤ u · ��X� + �1 − u� · ��Y� + ∀u ��0� 1	 (7.10)

which ensures that aggregating two risky assets leads to diversifying their risk. In fact, in
the special case � = 1, these measures enjoy the stronger subadditivity property.

Finally, we should stress that any discrete or continuous (positive) sum of these risk
measures, with the same degree of homogeneity, is again a risk measure. This allows us to
define “spectral measures of fluctuations” in the spirit of Acerbi (2002):

��X� =
∫

d� ����E ��X − E�X	��	

/� (7.11)

where � is a positive real-valued function defined on any subinterval of �1��� such that the
integral in (7.11) remains finite. It is interesting to restrict oneself to the functions � whose
integral sums up to one:

∫
d� ���� = 1, which is always possible, up to a renormalisation.

Indeed, in such a case, ���� represents the relative weight attributed to the fluctuations
measured by a given moment order. Thus, the function � can be considered as a measure
of the risk aversion of the risk manager with respect to large fluctuations.

The situation is not so clear for the cumulants, since the even-order cumulants, as well as
the odd-order ones, can be negative (even if, for a large class of distributions, even-order
cumulants remain positive, especially for fat-tailed distributions – even though there are
simple but somewhat artificial counter-examples). In addition, cumulants suffer from another
problem with respect to the positivity axiom. As for odd-order centred moments, they can
vanish even when the random variable is not certain. Just think of the cumulants of the
Gaussian law. All but the first two (which represent the mean and the variance) are equal to
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zero. Thus, the strict formulation of the positivity axiom cannot be fulfilled by the cumulants.
Should we thus reject them as useful measures of risk? It is important to emphasise that the
cumulants enjoy a property that can be considered as a natural requirement for a risk measure.
It can be desirable that the risk associated with a portfolio made of independent assets is
exactly the sum of the risk associated with each individual asset. Thus, given N independent
assets �X1� � � � �XN �, and the portfolio SN = X1 + · · · + XN , we would like to have

��SN � = ��X1� + · · · + ��XN � (7.12)

This property is verified for all cumulants, while it is not true for centred moments. In
addition, as seen from their definition in terms of the characteristic function

E
[
eik·X]= exp

(+�∑
n=1

�ik�n

n! Cn

)
(7.13)

cumulants Cn of order larger than 2 quantify deviations from the Gaussian law, and thus
measure large risks beyond the variance (equal to the second-order cumulant). Finally,
cumulants – seen as risk measures – have an interesting interpretation in terms of investors’
behaviour, which will be discussed in Section 7.4.1.

To summarise, centred moments of even order possess all the minimal properties required
for a suitable portfolio risk measure. Cumulants only partially fulfil these requirements, but
have an additional advantage compared with centred moments; that is, they fulfil condition
(7.12). For these reasons, we think it is interesting to consider both the centred moments
and the cumulants in risk analysis and decision making. As a final remark, let us stress
that the variance, originally used in Markowitz’s portfolio theory (Markowitz, 1959), is
nothing but the second centred moment, also equal to the second-order cumulant (the three
first cumulants and centred moments are equal). Therefore, a portfolio theory based on the
centred moments or on the cumulants automatically contains Markowitz’s theory as a special
case, and thus offers a natural generalisation encompassing large risks of this masterpiece
of financial science. It also embodies several other generalisations where homogeneous
measures of risk are considered, as, for instance, in Hwang and Satchell (1999).

7.3 THE GENERALISED EFFICIENT FRONTIER AND SOME
OF ITS PROPERTIES

We now address the problem of the portfolio selection and optimisation, based on the risk
measures introduced in the previous section. As we have already seen, there is a large
choice of relevant risk measures from which the portfolio manager is free to choose as a
function of his own aversion to small versus large risks. A strong risk aversion to large risks
will lead him to choose a risk measure that puts the emphasis on large fluctuations. The
simplest examples of such risk measures are provided by the high-order centred moments
or cumulants. Obviously, the utility function of the fund manager plays a central role in his
choice of risk measure. The relation between the central moments and the utility function
has already been underlined by several authors, such as Rubinstein (1973) and Jurczenko
and Maillet (2006), who have shown that an economic agent with a quartic utility function
is naturally sensitive to the first four moments of his expected wealth distribution. But, as
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stressed before, we do not wish to consider the expected utility formalism, since our goal in
this chapter is not to study the underlying behaviour leading to the choice of any specific risk
measure.

The choice of risk a measure also depends upon the time horizon of investment. Indeed,
as the timescale increases, the distribution of asset returns progressively converges to the
Gaussian pdf (Campbell et al., 1997), so that only the variance remains relevant for very long-
term investment horizons. However, for shorter time horizons, say for portfolios rebalanced
on weekly, daily or intra-day timescales, choosing a risk measure putting the emphasis on
large fluctuations, such as the centred moments �6 or �8 or the cumulants C6 or C8 (or of
larger orders), may be necessary to account for the “wild” price fluctuations usually observed
for such short timescales.

Our present approach uses a single timescale over which the returns are estimated, and
is thus restricted to portfolio selection with a fixed investment horizon. Extensions to a
portfolio analysis and optimisation in terms of high-order moments and cumulants performed
simultaneously over different timescales can be found in Muzy et al. (2001).

7.3.1 Efficient frontier without a risk-free asset

Let us consider N risky assets, denoted by X1� · · · �XN . Our goal is to find the best possible
allocation, given a set of constraints. The portfolio optimisation generalising the approach
of Sornette et al. (2000a) and Andersen and Sornette (2001) corresponds to accounting for
large fluctuations of the assets through the risk measures introduced above in the presence
of a constraint on the return as well as the “no short-sells” constraint:⎧⎪⎪⎨

⎪⎪⎩
infwi∈�0�1	 �
��wi��∑

i≥1 wi = 1∑
i≥1 wi��i� = �

wi ≥ 0� ∀i > 0

(7.14)

where wi is the weight of Xi and ��i� its expected return. In all the subsequent text, the
subscript 
 in �
 will refer to the degree of homogeneity of the risk measure.

This problem cannot be solved analytically (except in the Markowitz case where the risk
measure is given by the variance). We need to perform numerical calculations to obtain the
shape of the efficient frontier. Nonetheless, when the �
s denote the centred moments or any
convex risk measure, we can assert that this optimisation problem is a convex optimisation
problem and that it admits one and only one solution, which can be determined easily by
standard numerical relaxation or gradient methods.

As an example, we have represented, in Figure 7.2, the mean-�
 efficient frontier for
a portfolio made of seventeen assets (see Appendix A for details) in the plane (���1/



 ),
where �
 represents the centred moments �n=
 of order n = 2� 4� 6 and 8. The efficient
frontier is concave, as expected from the nature of the optimisation problem (7.14). For
a given value of the expected return �, we observe that the amount of risk measured by
�1/n

n increases with n, so that there is an additional price to pay for earning more: not only
does the �2-risk increase, as expected according to Markowitz’s theory, but the large risks
increase faster – the more so the larger n is. This means that, in this example, the large
risks increase more rapidly than the small risks, as the required return increases. This is
an important empirical result that has obvious implications for portfolio selection and risk
assessment. For instance, let us consider an efficient portfolio whose expected (daily) return
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Figure 7.2 The generalised efficient frontier for a portfolio made of seventeen risky assets. The
optimisation problem is solved numerically, using a genetic algorithm, with risk measures given
respectively by the centred moments �2, �4, �6 and �8. The straight lines are the efficient frontiers
when we add to these assets a risk-free asset whose interest rate is set to 5 % a year.

Table 7.1 The risk measured by �1/n
n for n = 2� 4� 6� 8, for a given value of

the expected (daily) return �

� �2
1/2 �4

1/4 �6
1/6 �8

1/8

0.10% 0.92% 1.36% 1.79% 2.15%
0.12% 0.96% 1.43% 1.89% 2.28%
0.14% 1.05% 1.56% 2.06% 2.47%
0.16% 1.22% 1.83% 2.42% 2.91%
0.18% 1.47% 2.21% 2.92% 3.55%
0.20% 1.77% 2.65% 3.51% 4.22%

equals 0.12 %, which gives an annualised return equal to 30 %. We can see in Table 7.1 that
the typical fluctuations around the expected return are about twice as large when measured
by �6 compared with �2, and that they are 1.5 times larger when measured with �8 compared
with �4.
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7.3.2 Efficient frontier with a risk-free asset

Let us now assume the existence of a risk-free asset X0. The optimisation problem with the
same set of constraints as previously – except for the no short-sells constraints – can be
written as: ⎧⎨

⎩
infwi∈�0�1	 �
��wi��∑

i≥0 wi = 1∑
i≥0 wi��i� = �

(7.15)

This optimisation problem can be solved exactly. Indeed, due to the existence of a risk-free
asset, the normalisation condition

∑
wi =1 is not constraining, since one can always adjust, by

lending or borrowing money, the fraction w0 to a value satisfying the normalisation condition.
Thus, as shown in Appendix B, the efficient frontier is a straight line in the plane ����


1/
�,
with positive slope and whose intercept is given by the value of the risk-free interest rate:

� = �0 + � · �

1/
 (7.16)

where � is a coefficient given explicitly below. This result is very natural when �
 denotes
the variance, since it is then nothing but Markowitz’s (1959) result. But in addition, it shows
that the mean–variance result can be generalised to every mean-�
 optimal portfolio.

In Figure 7.3 we present the results given by numerical simulations. The set of assets is
the same as before and the risk-free interest rate has been set to 5 % a year. The optimisation
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Figure 7.3 The generalised efficient frontier for a portfolio made of seventeen risky assets and a
risk-free asset whose interest rate is set to 5 % a year. The optimisation problem is solved numerically,
using a genetic algorithm, with risk measures given by the centred moments �2��4, �6 and �8.
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procedure has been performed using a genetic algorithm on the risk measure given by the
centred moments �2��4��6 and �8. As expected, we observe four increasing straight lines,
whose slopes monotonically decay with the order of the centred moment under consideration.
Below, we will discuss this property in greater detail.

7.3.3 Two-fund separation theorem

The two-fund separation theorem is a well-known result associated with mean–variance effi-
cient portfolios. It results from the concavity of the Markowitz efficient frontier for portfolios
made of risky assets only. It states that, if the investors can choose between a set of risky
assets and a risk-free asset, they invest a fraction w0 of their wealth in the risk-free asset and
the fraction 1 − w0 in a portfolio composed only of risky assets. This risky portfolio is the
same for all the investors and the fraction w0 of wealth invested in the risk-free asset only
depends on the risk aversion of the investor or on the amount of economic capital an institu-
tion must keep aside due to the legal requirements ensuring its solvency at a given confidence
level. We shall see that this result can be generalised to any mean-�
 efficient portfolio.

Indeed, it can be shown (see Appendix B) that the weights of the optimal portfolios that
are solutions of (7.15) are given by:

w∗
0 = w0 (7.17)

w∗
i = �1 − w0� · w̃i� i ≥ 1 (7.18)

where the w̃is are constants such that
∑

i
w̃i = 1 and whose expressions are given in

Appendix B. Thus, denoting by � the portfolio made only of risky assets whose weights are
the w̃is, the optimal portfolios are the linear combination of the risk-free asset, with weight
w0, and of the portfolio �, with weight 1 − w0. This result generalises the mean–variance
two-fund theorem to any mean-�
 efficient portfolio.

To check this prediction numerically, Figure 7.4 represents the five largest weights of
assets in the portfolios previously investigated as a function of the weight of the risk-free
asset, for the four risk measures given by the centred moments �2��4��6 and �8. One can
observe decaying straight lines that intercept the horizontal axis at w0 = 1, as predicted by
Equations (7.17–7.18).

In Figure 7.2, the straight lines representing the efficient portfolios with a risk-free asset
are also depicted. They are tangential to the efficient frontiers without risk-free assets. This
is natural since the efficient portfolios with the risk-free asset are the weighted sum of the
risk-free asset and the optimal portfolio � only made of risky assets. Since � also belongs
to the efficient frontier without risk-free assets, the optimum is reached when the straight
line describing the efficient frontier with a risk-free asset and the (concave) curve of the
efficient frontier without risk-free assets are tangential.

7.3.4 Influence of the risk-free interest rate

Figure 7.3 has shown that the slope of the efficient frontier (with a risk-free asset) decreases
when the order n of the centred moment used to measure risk increases. This is an important
qualitative property of the risk measures offered by the centred moments, as this means that
higher and higher large risks are sampled under increasing imposed return.
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Figure 7.4 Dependence of the five largest weights of risky assets in the efficient portfolios found
in Figure 7.3 as a function of the weight w0 invested in the risk-free asset, for the four risk measures
given by the centred moments �2��4, �6 and �8. The same symbols always represent the same asset.

Is it possible that the largest risks captured by the high-order centred moments could
increase at a slower rate than the small risks embodied in the low-order centred moments?
For instance, is it possible for the slope of the mean-�6 efficient frontier to be larger than the
slope of the mean-�4 frontier? This is an important question as it conditions the relative costs
in terms of the panel of risks under increasing specified returns. To address this question,
consider Figure 7.2. Changing the value of the risk-free interest rate amounts to moving the
intercept of the straight lines along the ordinate axis so as to keep them tangential to the
efficient frontiers without risk-free assets. Therefore, it is easy to see that, in the situation
depicted in Figure 7.2, the slope of the four straight lines will always decay with the order
of the centred moment.

In order to observe an inversion in the order of the slopes, it is necessary and sufficient
that the efficient frontiers without risk-free assets cross each other. This assertion is proved
by visual inspection of Figure 7.5. Can we observe such crossing of efficient frontiers? In the
most general case of risk measure, nothing forbids this occurrence. Nonetheless, we think
that this kind of behaviour is not realistic in a financial context since, as mentioned above, it
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Cn
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µ

Figure 7.5 The black and grey thick curves represent two efficient frontiers for a portfolio without a
risk-free interest rate obtained with two measures of risk. The dark and grey thin straight lines represent
the efficient frontiers in the presence of a risk-free asset, whose value is given by the intercept of the
straight lines with the ordinate axis. This illustrates the existence of an inversion of the dependence of
the slope of the efficient frontier with a risk-free asset as a function of the order n of the measures of
risk, which can occur only when the efficient frontiers without a risk-free asset cross each other.

would mean that the large risks could increase at a slower rate than the small risks, implying
an irrational behaviour of the economic agents.

7.4 CLASSIFICATION OF THE ASSETS AND OF
PORTFOLIOS

Let us consider two assets or portfolios X1 and X2 with different expected returns ��1����2�
and different levels of risk measured by �
�X1� and �
�X2�. An important question is then
to be able to compare these two assets or portfolios. The most general way to perform
such a comparison is to refer to decision theory and to calculate the utility of each of
them. But, as already stated, the utility function of an agent is generally not known, so that
other approaches have to be developed. The simplest solution is to consider that the couple
(expected return, risk measure) fully characterises the behaviour of the economic agent and
thus provides a sufficiently good approximation for her utility function.

In Markowitz’s (1959) world, for instance, the preferences of the agents are summarised
by the two first moments of the distribution of asset returns. Thus, as shown by Sharpe
(1966, 1994), a simple way to synthesise these two parameters, in order to get a measure
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of the performance of the assets or portfolios, is to build the ratio of the expected return �
(minus the risk-free interest rate) over the standard deviation �:

S = � − �0

�
(7.19)

which is the so-called Sharpe ratio and simply represents the amount of expected return per
unit of risk, measured by the standard deviation. It is an increasing function of the expected
return and a decreasing function of the level of risk, which is natural for risk-averse or
prudential agents.

7.4.1 The risk-adjustment approach

This approach can be generalised to any type of risk measure (see, for instance, Dowd, 2000)
and thus allows for the comparison of assets whose risks are not well accounted for by the
variance (or the standard deviation). Indeed, instead of considering the variance, which only
accounts for small risks, one can build the ratio of the expected return over any risk measure.
In fact, looking at Equation (7.58) in Appendix B, the expression

� − �0

�
�X�1/

(7.20)

naturally arises and is constant for every efficient portfolio. In this expression, 
 denotes
the coefficient of homogeneity of the risk measure. It is nothing but a simple generalisation
of the usual Sharpe ratio. Indeed, when �
 is given by the variance �2, the expression
above recovers the Sharpe ratio. Thus, once the portfolio manager has chosen her measure
of fluctuation �
, she can build a consistent risk-adjusted performance measure, as shown
by (7.20).

As just stated, these generalised Sharpe ratios are constant for every efficient portfolio.
In fact, they are not only constant but also maximum for every efficient portfolio, so that
looking for the portfolio with maximum generalised Sharpe ratio yields the same optimal
portfolios as those found with the whole optimisation programme solved in the previous
section.

As an illustration, Table 7.2 gives the risk-adjusted performance of the set of seventeen
assets already studied, for several risk measures. We have considered the three first even-
order centred moments (columns 2 to 4) and the three first even-order cumulants (columns
2, 5 and 6) as fluctuation measures. Obviously the second-order centred moment and the
second-order cumulant are the same, and again give the usual Sharpe ratio (7.19). The assets
have been sorted with respect to their Sharpe ratios.

The first point to note is that the rank of an asset in terms of risk-adjusted performance
strongly depends on the risk measure under consideration. The case of MCI Worldcom is
very striking in this respect. Indeed, according to the usual Sharpe ratio, it appears in 12th
position with a value larger than 0.04, while according to the other measures, it is the last
asset of our selection with a value lower than 0.02.

The second interesting point is that, for a given asset, the generalised Sharpe ratio is
always a decreasing function of the order of the considered centred moment. This is not
particular to our set of assets since we can prove that, ∀p > q,

�E ��X�p	�1/p ≥ �E ��X�q	�1/q (7.21)
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Table 7.2 The values of the generalised Sharpe ratios for the set of seventeen assets listed in the
first column. The assets are ranked with respect to their Sharpe ratios, given in the second column.
The third and fourth columns give the generalised Sharpe ratio calculated with respect to the fourth
and sixth centred moments �4 and �6, while the fifth and sixth columns give the generalised Sharpe
ratio calculated with respect to the fourth and sixth cumulants C4 and C6

�

�
1/2
2

�

�
1/4
4

�

�
1/6
6

�

C
1/4
4

�

C
1/6
6

Wal-Mart 0�0821 0�0555 0�0424 0�0710 0�0557
EMC 0�0801 0�0552 0�0430 0�0730 0�0612
Intel 0�0737 0�0512 0�0397 0�0694 0�0532
Hewlett Packard 0�0724 0�0472 0�0354 0�0575 0�0439
IBM 0�0705 0�0465 0�0346 0�0574 0�0421
Merck 0�0628 0�0415 0�0292 0�0513 0�0331
Procter & Gamble 0�0590 0�0399 0�0314 0�0510 0�0521
General Motors 0�0586 0�0362 0�0247 0�0418 0�0269
SBC Communication 0�0584 0�0386 0�0270 0�0477 0�0302
General Electric 0�0569 0�0334 0�0233 0�0373 0�0258
Applied Material 0�0525 0�0357 0�0269 0�0462 0�0338
MCI WorldCom 0�0441 0�0173 0�0096 0�0176 0�0098
Medtronic 0�0432 0�0278 0�0202 0�0333 0�0237
Coca-Cola 0�0430 0�0278 0�0207 0�0335 0�0252
Exxon-Mobil 0�0410 0�0256 0�0178 0�0299 0�0197
Texas Instruments 0�0324 0�0224 0�0171 0�0301 0�0218
Pfizer 0�0298 0�0184 0�0131 0�0213 0�0148

so that

∀p > q�
� − �0

�E ��X�p	�1/p
≤ � − �0

�E ��X�q	�1/q
(7.22)

On the contrary, when the cumulants are used as risk measures, the generalised Sharpe ratios
are not monotonically decreasing, as shown by Procter & Gamble for instance. This can be
surprising in view of our previous remark that the larger the order of the moments involved
in a risk measure, the larger the fluctuations it is accounting for. Extrapolating this property
to cumulants, it would mean that Procter & Gamble presents less large risks according to
C6 than according to C4, while according to the centred moments, the reverse evolution is
observed.

Thus, the question of the coherence of the cumulants as measures of fluctuation may
arise. And if we accept that such measures are coherent, what are the implications on the
preferences of the agents employing such measures? To answer this question, it is informative
to express the cumulants as a function of the moments. For instance, let us consider the
fourth-order cumulant

C4 =�4 − 3 · �2
2 (7.23)

=�4 − 3 · C2
2 (7.24)

An agent assessing the fluctuations of an asset with respect to C4 presents aversion for the
fluctuations quantified by the fourth central moment �4 – since C4 increases with �4 – but
is attracted by the fluctuations measured by the variance – since C4 decreases with �2. This
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behaviour is not irrational since it remains globally risk-averse. Indeed, it depicts an agent
who tries to avoid the larger risks but is ready to accept the smallest ones.

This kind of behaviour is characteristic of any agent using the cumulants as risk measures.
It thus allows us to understand why Procter & Gamble is more attractive for an agent
sensitive to C6 than for an agent sensitive to C4. From the expression of C6, we remark that
the agent sensitive to this cumulant is risk-averse with respect to the fluctuations measured
by �6 and �2, but is a risk-seeker with respect to the fluctuations measured by �4 and �3.
Then, in this particular case, the later ones compensate the former ones.

It also allows us to understand from a behavioural stand-point why it is possible to “have
your cake and eat it too” in the sense of Andersen and Sornette (2001); that is, why, when
the cumulants are chosen as risk measures, it may be possible to increase the expected return
of a portfolio while lowering its large risks, or in other words, why its generalised Sharpe
ratio may increase when one considers larger cumulants to measure its risks.

7.4.2 Marginal risk of an asset within a portfolio

Another important question that arises is the contribution of a given asset to the risk of
the whole portfolio. Indeed, it is crucial to know whether the risk is homogeneously shared
by all the assets of the portfolio or if it is only held by a few of them. The quality of the
diversification is then at stake. Moreover, this also allows for the sensitivity analysis of the
risk of the portfolio with respect to small changes in its composition,3 which is of practical
interest since it can prevent us from recalculating the whole risk of the portfolio after a small
readjustment of its composition.

Due to the homogeneity property of the fluctuation measures and to Euler’s theorem for
homogeneous functions, we can write

���w1� � � � �wN �� = 1



N∑
i=1

wi ·
��

�wi

(7.25)

provided the risk measure � is differentiable, which will be assumed henceforth. In
this expression, the coefficient 
 again denotes the degree of homogeneity of the risk
measure �.

This relation simply shows that the amount of risk brought by one unit of the asset i in
the portfolio is given by the first derivative of the risk of the portfolio with respect to the
weight wi of this asset. Thus, 
−1 · ��

�wi
represents the marginal amount of risk of asset i in

the portfolio. It is then easy to check that, in a portfolio with minimum risk, irrespective of
the expected return, the weight of each asset is such that the marginal risks of the assets in
the portfolio are equal.

7.5 A NEW EQUILIBRIUM MODEL FOR ASSET PRICES

Using the portfolio selection method explained in the two previous sections, we now present
an equilibrium model generalising the original Capital Asset Pricing Model developed by
Sharpe (1964), Lintner (1965) and Mossin (1966). Many generalisations have already been

3 See Gouriéroux et al. (2000) and Scaillet (2004) for a sensitivity analysis of the value-at-risk and the expected shortfall.
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proposed to account for the fat-tailedness of the asset return distributions, which led to the
multi-moment CAPM. For instance, Rubinstein (1973), Kraus and Litzenberger (1976), Lim
(1989) and Harvey and Siddique (2000) have underlined and tested the role of the asymmetry
in the risk premium by accounting for the skewness of the distribution of returns. More
recently, Fang and Lai (1997) and Hwang and Satchell (1999) have introduced a four-moment
CAPM to take into account the leptokurtic behaviour of the asset return distributions. Many
other extensions have been presented, such as the VaR-CAPM (see Alexander and Baptista,
2002) or the distributional-CAPM by Polimenis (2002). All these generalisations become
more and more complicated and not do not necessarily provide more accurate prediction of
the expected returns.

Here, we will assume that the relevant risk measure is given by any measure of fluctuation
previously presented that obeys Axioms 1–4 of Section 7.2. We will also relax the usual
assumption of a homogeneous market to give to the economic agents the choice of their
own risk measure: some of them may choose a risk measure that puts the emphasis on small
fluctuations, while others may prefer those that account for the large ones. We will show
that, in such a heterogeneous market, an equilibrium can still be reached and that the excess
returns of individual stocks remain proportional to the market excess return.

For this, we need the following assumptions about the market:

• H1: We consider a one-period market, such that all the positions held at the beginning of
a period are cleared at the end of the same period.

• H2: The market is perfect, i.e., there are no transaction costs or taxes, the market is
efficient and the investors can lend and borrow at the same risk-free rate �0.

We will now add another assumption that specifies the behaviour of the agents acting on the
market, which will lead us to make the distinction between homogeneous and heterogeneous
markets.

7.5.1 Equilibrium in a homogeneous market

The market is said to be homogeneous if all the agents acting on this market aim to fulfil
the same objective. This means that:

• H3-1: all the agents want to maximise the expected return of their portfolio at the end of
the period under a given constraint of measured risk, using the same measure of risks �


for all of them.

In the special case where �
 denotes the variance, all the agents follow a Markowitz
optimisation procedure, which leads to the CAPM equilibrium, as proved by Sharpe (1964).
When �
 represents the centred moments, we will be led to the market equilibrium described
by Rubinstein (1973). Thus, this approach allows for a generalisation of the most popular
asset pricing in equilibrium market models.

When all the agents have the same risk function �
, whatever 
 may be, we can assert
that they all have a fraction of their capital invested in the same portfolio �, the composition
of which is given in Appendix B, and the remainder in the risk-free asset. The amount of
capital invested in the risky fund only depends on their risk aversion or on the legal margin
requirement they have to fulfil.

Let us now assume that the market is at equilibrium, i.e., supply equals demand. In such
a case, since the optimal portfolios can be any linear combinations of the risk-free asset
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and of the risky portfolio �, it is straightforward to show (see Appendix C) that the market
portfolio, made of all traded assets in proportion to their market capitalisation, is nothing but
the risky portfolio �. Thus, as shown in Appendix D, we can state that, whatever the risk
measure �
 chosen by the agents to perform their optimisation, the excess return of any asset
over the risk-free interest rate is proportional to the excess return of the market portfolio �
over the risk-free interest rate:

��i� − �0 = �i

 · ��� − �0� (7.26)

where

�i

 =

� ln
(
�


1



)
�wi

∣∣∣∣∣∣
w∗

1 � � � � �w∗
N

(7.27)

where w∗
1� � � � �w∗

N are defined in Appendix D. When �
 denotes the variance, we recover
the usual �i given by the mean–variance approach:

�i = Cov�Xi���

Var���
(7.28)

Thus, the relations (7.26) and (7.27) generalise the usual CAPM formula, showing that the
specific choice of the risk measure is not very important, as long as it follows Axioms 1–4
characterising the fluctuations of the distribution of asset returns.

7.5.2 Equilibrium in a heterogeneous market

Does this result hold in the more realistic situation of a heterogeneous market? A market
will be said to be heterogeneous if the agents seek to fulfil different objectives. We thus
consider the following assumption:

• H3-2: There exist N agents. Each agent n is characterised by her choice of a risk measure
�
�n� so that she invests only in the mean-�
�n� efficient portfolio.

According to this hypothesis, an agent n invests a fraction of her wealth in the risk-free
asset and the remainder in �n, the mean-�
�n� efficient portfolio only made of risky assets.
The fraction of wealth invested in the risky fund depends on the risk aversion of each agent,
which may vary from one agent to another.

The composition of the market portfolio for such a heterogeneous market is derived in
Appendix C. We find that the market portfolio � is nothing but the weighted sum of the
mean-�
�n� optimal portfolios �n:

� =
N∑

n=1

�n�n (7.29)

where �n is the fraction of the total wealth invested in the fund �n by the nth agent.
Appendix D demonstrates that, for every asset i and for any mean-�
�n� efficient portfolio

�n, for all n, the following equation holds:

��i� − �0 = �i
n · ���n

− �0� (7.30)
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Multiplying these equations by �n/�i
n, we get

�n

�i
n

· ���i� − �0� = �n · ���n
− �0� (7.31)

for all n, and summing over the different agents, we obtain(∑
n

�n

�i
n

)
· ���i� − �0� =

(∑
n

�n · ��n

)
− �0 (7.32)

so that

��i� − �0 = �i · ��� − �0� (7.33)

with

�i =
(∑

n

�n

�i
n

)−1

(7.34)

This allows us to conclude that, even in a heterogeneous market, the expected excess return
of each individual stock is directly proportional to the expected excess return of the market
portfolio, showing that the homogeneity of the market is not a key property necessary for
observing a linear relationship between individual excess asset returns and the market excess
return.

7.6 CONCLUSION

We have introduced three axioms that define a consistent set of risk measures, in the spirit
of Artzner et al. (1997, 1999). Contrary to the risk measures of Artzner et al., our consistent
risk measures may account for both-side risks and not only for down-side risks. Thus, they
supplement the notion of coherent measures of risk and are well adapted to the problem of
portfolio risk assessment and optimisation. We have shown that these risk measures, which
contain centred moments (and cumulants with some restriction) as particular examples,
generalise them significantly. We have presented a generalisation of previous generalisations
of the efficient frontiers and of the CAPM based on these risk measures in the cases of
homogeneous and heterogeneous agents.

APPENDIX A: DESCRIPTION OF THE DATASET

We have considered a set of seventeen assets traded on the New York Stock Exchange:
Applied Material, Coca-Cola, EMC, Exxon-Mobil, General Electric, General Motors, Hewlett
Packard, IBM, Intel, MCI WorldCom, Medtronic, Merck, Pfizer, Procter & Gamble, SBC
Communication, Texas Instruments, Wal-Mart. These assets have been chosen since they
are among the largest capitalisations of the NYSE at the time of writing.

The dataset comes from the Center for Research in Security Prices (CRSP) database
and covers the time interval from the end of January 1995 to the end of December 2000,
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Table 7.3 The main statistical features of the daily returns of the set of seventeen assets studied here
over the time interval from the end of January 1995 to the end of December 2000

Mean (10−3) Variance (10−3) Skewness Kurtosis min max

Applied Material 2�11 1�62 0.41 4�68 −14% 21%
Coca-Cola 0�81 0�36 0.13 5�71 −11% 10%
EMC 2�76 1�13 0.23 4�79 −18% 15%
Exxon-Mobil 0�92 0�25 0.30 5�26 −7% 11%
General Electric 1�38 0�30 0.08 4�46 −7% 8%
General Motors 0�64 0�39 0.12 4�35 −11% 8%
Hewlett Packard 1�17 0�81 0.16 6�58 −14% 21%
IBM 1�32 0�54 0.08 8�43 −16% 13%
Intel 1�71 0�85 −0�31 6�88 −22% 14%
MCI WorldCom 0�87 0�85 −0�18 6�88 −20% 13%
Medtronic 1�70 0�55 0.23 5�52 −12% 12%
Merck 1�32 0�35 0.18 5�29 −9% 10%
Pfizer 1�57 0�46 0.01 4�28 −10% 10%
Procter & Gamble 0�90 0�41 −2�57 42�75 −31% 10%
SBC Communication 0�86 0�39 0.06 5�86 −13% 9%
Texas Instruments 2�20 1�23 0.50 5�26 −12% 24%
Wal-Mart 1�35 0�52 0.16 4�79 −10% 9%

which represents exactly 1500 trading days. The main statistical features of the companies
composing the dataset are presented in Table 7.3. Note the high kurtosis of each distribution
of returns, as well as the large values of the observed minimum and maximum returns
compared with the standard deviations, that clearly underlines the non-Gaussian behaviour
of these assets.

APPENDIX B: GENERALISED EFFICIENT FRONTIER AND
TWO-FUND SEPARATION THEOREM

Let us consider a set of N risky assets X1� � � � �XN and a risk-free asset X0. The problem is
to find the optimal allocation of these assets in the following sense:⎧⎨

⎩
infwi∈�0�1	 �
��wi��∑

i≥0 wi = 1∑
i≥0 wi��i� = �

(7.35)

In other words, we search for the portfolio � with minimum risk as measured by any risk
measure �
 obeying Axioms 1–4 of Section 7.2 for a given amount of expected return � and
normalised weights wi. Short-sells are forbidden except for the risk-free asset, which can be
lent and borrowed at the same interest rate �0. Thus, the weights wi are assumed positive
for all i ≥ 1.

B.1 Case of independent assets when the risk is measured by the cumulants

To start with a simple example, let us assume that the risky assets are independent and that
we choose to measure the risk with the cumulants of their distributions of returns. The case
when the assets are dependent and/or when the risk is measured by any �
 will be considered
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later. Since the assets are assumed independent, the cumulant of order n of the pdf of returns
of the portfolio is simply given by

Cn =
N∑

i=1

wi
nCn�i� (7.36)

where Cn�i� denotes the marginal nth order cumulant of the pdf of returns of the asset i. In
order to solve this problem, let us introduce the Lagrangian

�= Cn − �1

(
N∑

i=0

wi��i� − �

)
− �2

(
N∑

i=0

wi − 1

)
(7.37)

where �1 and �2 are two Lagrange multipliers. Differentiating with respect to w0 yields

�2 = �0�1 (7.38)

which, by substitution in Equation (7.37), gives

�= Cn − �1

(
N∑

i=1

wi���i� − �0� − �� − �0�

)
(7.39)

Let us now differentiate � with respect to wi, i ≥ 1. We obtain

nw∗
i

n−1Cn�i� − �1���i� − �0� = 0 (7.40)

so that

w∗
i = �1

1
n−1

(
��i� − �0

nCn�i�

) 1
n−1

(7.41)

Applying the normalisation constraint yields

w0 + �1

1
n−1

N∑
i=1

(
��i� − �0

nCn�i�

) 1
n−1

= 1 (7.42)

thus

�1

1
n−1 = 1 − w0∑N

i=1

(
��i�−�0
nCn�i�

) 1
n−1

(7.43)

and finally

w∗
i = �1 − w0�

(
��i�−�0

Cn�i�

) 1
n−1

∑N
i=1

(
��i�−�0

Cn�i�

) 1
n−1

(7.44)
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Let us now define the portfolio � exclusively made of risky assets with weights

w̃i =
(

��i�−�0
Cn�i�

) 1
n−1

∑N
i=1

(
��i�−�0

Cn�i�

) 1
n−1

� i ≥ 1 (7.45)

The optimal portfolio � can be split into two funds: the risk-free asset whose weight is w0

and a risky fund � with weight �1 − w0�. The expected return of the portfolio � is thus

� = w0�0 + �1 − w0��� (7.46)

where �� denotes the expected return of portfolio �:

�� =
∑N

i=1 ��i�
(

��i�−�0
Cn�i�

) 1
n−1

∑N
i=1

(
��i�−�0

Cn�i�

) 1
n−1

(7.47)

The risk associated with � and measured by the cumulant Cn of order n is

Cn = �1 − w0�
n

∑N
i=1 Cn�i�

(
��i�−�0

Cn�i�

) n
n−1

[∑N
i=1

(
��i�−�0

Cn�i�

) 1
n−1

]n (7.48)

Putting together the last three equations allows us to obtain the equation of the efficient
frontier:

� = �0 +
[∑ ���i� − �0�

n
n−1

Cn�i�
1

n−1

] n−1
n

· Cn

1
n (7.49)

which is a straight line in the plane �Cn
1/n���.

B.2 General case

Let us now consider the more realistic case when the risky assets are dependent and/or when
the risk is measured by any risk measure �
 obeying Axioms 1–4 presented in Section 7.2,
where 
 denotes the degree of homogeneity of �
. Equation (7.39) always holds (with Cn

replaced by �
), and the differentiation with respect to wi, i ≥ 1, yields the set of equations:

��


�wi

�w∗
1� � � � �w∗

N � = �1���i� − �0�� i ∈ �1� � � � �N� (7.50)

Since �
�w1� � � � �wN � is a homogeneous function of order 
, its first-order derivative with
respect to wi is also a homogeneous function of order 
−1. Using this homogeneity property
allows us to write

�1
−1 ��


�wi

�w∗
1� � � � �w∗

N � = ���i� − �0�� i ∈ �1� � � � �N� (7.51)

��


�wi

(
�1

− 1

−1 w∗

1� � � � � �1
− 1


−1 w∗
N

)
= ���i� − �0�� i ∈ �1� � � � �N� (7.52)
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Denoting by �ŵ1� � � � � ŵN � the solution of

��


�wi

�ŵ1� � � � � ŵN � = ���i� − �0�� i ∈ �1� · · · �N� (7.53)

this shows that the optimal weights are

w∗
i = �1

1

−1 ŵi (7.54)

Now, performing the same calculation as in the case of independent risky assets, the efficient
portfolio � can be realised by investing a weight w0 of the initial wealth in the risk-free
asset and the weight �1 − w0� in the risky fund �, whose weights are given by

w̃i =
ŵi∑N
i=1 ŵi

(7.55)

Therefore, the expected return of every efficient portfolio is

� = w0 · �0 + �1 − w0� · �� (7.56)

where �� denotes the expected return of the market portfolio �, while the risk, measured
by �
, is

�
 = �1 − w0�

�
��� (7.57)

so that

� = �0 + �� − �0

�
���1/

�


1/
 (7.58)

This expression is the natural generalisation of the relation obtained by Markowitz (1959)
for mean–variance efficient portfolios.

APPENDIX C: COMPOSITION OF THE MARKET PORTFOLIO

In this appendix we derive the relationship between the composition of the market portfolio
and the composition of the optimal portfolio � obtained by the minimisation of the risks
measured by �
�n�.

C.1 Homogeneous case

We first consider a homogeneous market, peopled with agents choosing their optimal portfo-
lio with respect to the same risk measure �
. A given agent p invests a fraction w0�p� of his
wealth W�p� in the risk-free asset and a fraction 1−w0�p� in the optimal portfolio �. There-
fore, the total demand Di of asset i is the sum of the demand Di�p� over all agents p in asset i:

Di =
∑
p

Di�p� (7.59)

=∑
p

W�p� · �1 − w0�p�� · w̃i (7.60)

= w̃i ·
∑
p

W�p� · �1 − w0�p�� (7.61)
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where the w̃is are given by (7.55). The aggregated demand D over all assets is

D =∑
i

Di (7.62)

=∑
i

w̃i ·
∑
p

W�p� · �1 − w0�p�� (7.63)

=∑
p

W�p� · �1 − w0�p�� (7.64)

By definition, the weight of asset i, denoted by wm
i , in the market portfolio equals the ratio

of its capitalisation (the supply Si of asset i) over the total capitalisation of the market
S =∑

i

Si. At equilibrium, demand equals supply, so that

wm
i = Si

S
= Di

D
= w̃i (7.65)

Thus, at equilibrium, the optimal portfolio � is the market portfolio.

C.2 Heterogeneous case

We now consider a heterogeneous market, defined such that the agents choose their optimal
portfolio with respect to different risk measures. Some of them choose the usual mean–
variance optimal portfolios, others prefer any mean-�
 efficient portfolio, and so on. Let
us denote by �n the mean-�
�n� optimal portfolio made only of risky assets. Let �n be
the fraction of agents who choose the mean-�
�n� efficient portfolios. By normalisation,∑

n �n = 1. The demand Di�n� of asset i from the agents optimising with respect to �
�n� is

Di�n� = ∑
p∈�n

W�p� · �1 − w0�p�� · w̃i�n� (7.66)

= w̃i�n�
∑
p∈�n

W�p� · �1 − w0�p�� (7.67)

where �n denotes the set of agents, among all the agents, who follow the optimisation
strategy with respect to �
�n�. Thus, the total demand of asset i is

Di =
∑
n

��n · Di�n� (7.68)

=�
∑
n

�n · w̃i�n�
∑
p∈�n

W�p� · �1 − w0�p�� (7.69)

where � is the total number of agents. This finally yields the total demand D for all assets
and for all agents

D =∑
i

Di (7.70)

=�
∑

i

∑
n

�n · w̃i�n�
∑
p∈�n

W�p� · �1 − w0�p�� (7.71)

=�
∑
n

�n

∑
p∈�n

W�p� · �1 − w0�p�� (7.72)
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since
∑

i w̃i�n� = 1, for every n. Thus, setting

�n = �n

∑
p∈�n

W�p� · �1 − w0�p��∑
n �n

∑
p∈�n

W�p� · �1 − w0�p��
(7.73)

the market portfolio is the weighted sum of the mean-�
�n� optimal portfolios �n:

wm
i = Si

S
= Di

D
=∑

n

�n · w̃i�n� (7.74)

APPENDIX D: GENERALISED CAPITAL ASSET PRICING MODEL

Our proof of the generalised Capital Asset Pricing Model is similar to the usual demonstration
of the CAPM. Let us consider an efficient portfolio � . It necessarily satisfies Equation (7.50)
in Appendix B:

��


�wi

�w∗
1� � � � �w∗

N � = �1���i� − �0�� i ∈ �1� � � � �N� (7.75)

Let us now choose any portfolio � made only of risky assets and let us denote by wi��� its
weights. We can thus write

N∑
i=1

wi��� · ��


�wi

�w∗
1� � � � �w∗

N � = �1

N∑
i=1

wi��� · ���i� − �0� (7.76)

= �1��� − �0� (7.77)

We can apply this last relation to the market portfolio �, because it is only composed of
risky assets (as proved in Appendix B). This leads to wi��� = w∗

i and �� = ��, so that

N∑
i=1

w∗
i · ��


�wi

�w∗
1� � � � �w∗

N � = �1��� − �0� (7.78)

which, by the homogeneity of the risk measures �
, yields


 · �
�w∗
1� � � � �w∗

N � = �1��� − �0� (7.79)

Substituting Equation (7.75) into (7.79) allows us to obtain

�j − �0 = �j

 · ��� − �0� (7.80)

where

�j

 =

�
(

ln �


1



)
�wj

(7.81)

calculated at the point �w∗
1� � � � �w∗

N �. Expression (7.79) with (7.81) provides our CAPM,
generalised with respect to the risk measures �
.
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In the case where �
 denotes the variance, the second-order centred moment is equal to
the second-order cumulant and reads

C2 = w∗
1 · Var�X1	 + 2w∗

1w
∗
2 · Cov�X1�X2� + w∗

2 · Var�X2	 (7.82)

= Var��	 (7.83)

Since

1
2

· �C2

�w1

= w∗
1 · Var�X1	 + w∗

2 · Cov�X1�X2� (7.84)

= Cov�X1��� (7.85)

we find

� = Cov�X1�X��

Var�X�	
(7.86)

which is the standard result of the CAPM derived from the mean–variance theory.

ACKNOWLEDGEMENTS

We acknowledge helpful discussions and exchanges with J.V. Andersen, J.P. Laurent and
V. Pisarenko. We are grateful to participants of the workshop on Multi-moment Capital
Asset Pricing Models and Related Topics, ESCP-EAP European School of Management,
Paris, April, 19, 2002, and in particular to Philippe Spieser, for their comments. This
work was partially supported by the James S. McDonnell Foundation 21st century scientist
award/studying complex system.

REFERENCES

Acerbi, C. (2002) Spectral measures of risk: A coherent representation of subjective risk aversion,
Journal of Banking and Finance 26, 1505–1518.

Alexander, G.J. and A.M. Baptista (2002) Economic implications of using a mean-VaR model for
portfolio selection: A comparison with mean–variance analysis, Journal of Economic Dynamics and
Control 26, 1159–1193.

Allais, M. (1953) Le comportement de l’homme rationel devant le risque, critique des postulat de
l’école américaine, Econometrica 21, 503–546.

Allais, M. (1990) Allais Paradox. In: The new Palgrave: Utility and probability, J. Eatwell, M. Milgate
and P. Newman (Eds), Macmillan, pp. 3–9.

Andersen, J.V. and D. Sornette (2001) Have your cake and eat it too: increasing returns while lowering
large risks! Journal of Risk Finance 2, 70–82.

Artzner, P., F. Delbaen, J.M. Eber and D. Heath (1997) Thinking coherently, Risk 10, 68–71.
Artzner, P., F. Delbaen, J.M. Eber and D. Heath (1999) Coherent measures of risk, Mathematical

Finance 9, 203–228.
Bouchaud, J.-P., D. Sornette, C. Walter and J.-P. Aguilar (1998) Taming large events: Optimal portfolio

theory for strongly fluctuating assets, International Journal of Theoretical and Applied Finance 1,
25–41.

Campbell, J.Y., A.W. Lo and A.C. MacKinlay (1997) The econometrics of financial markets, Princeton
University Press, Princeton.



192 Multi-moment Asset Allocation and Pricing Models

Dowd, K. (2000) Adjusting for risk: An improved Sharpe ratio, International Review of Economics
and Finance 9, 209–222.

Fama, E.F. and K.R. French (2004) The CAPM: Theory and evidence, Journal of Economic Perspec-
tives 18, 25–46.

Fang, H. and T. Lai (1997) Co-kurtosis and capital asset pricing, Financial Review 32, 293–307.
Farmer, J.D. and Lillo, F. (2004) On the origin of power-law tails in price fluctuations, Quantitative

Finance 4, 11–15.
Föllmer, H. and A. Schied (2002) Convex measures of risk and trading constraints, Finance and

Stochastics 6, 429–447.
Föllmer, H. and A. Schied (2003) Robust preferences and convex measures of risk. In: Advances

in Finance and Stochastics, Essays in Honour of Dieter Sondermann, K. Sandmann and
P.J. Schonbucher (Eds), Springer Verlag.

Gopikrishnan, P., M. Meyer, L.A. Nunes Amaral and H.E. Stanley (1998) Inverse cubic law for the
distribution of stock price variations, European Physical Journal B 3, 139–140.

Gouriéroux, C., J.P. Laurent and O. Scaillet (2000) Sensitivity Analysis of Values at Risk, Journal of
Empirical Finance 7, 225–245.

Harvey, C.R. and A. Siddique (2000) Conditional skewness in asset pricing tests, Journal of Finance
55, 1263–1295.

Hwang, S. and S. Satchell (1999) Modelling emerging market risk premia using higher moments,
International Journal of Finance and Economics 4, 271–296.

Jorion, P. (1997) Value-at-Risk: The New Benchmark for Controlling Derivatives Risk, Irwin
Publishing, Chicago.

Jurczenko, E. and B. Maillet (2006) The 4-moment CAPM: In between Asset Pricing and Asset
Allocation. In: Multi-moment Asset Allocation and Pricing Models, E. Jurczenko and B. Maillet
(Eds), Wiley, Chapter 6.

Kraus, A. and R. Litzenberger (1976) Skewness preference and the valuation of risk assets, Journal of
Finance 31, 1085–1099.

Lim, K.G. (1989) A new test for the three-moment capital asset pricing model, Journal of Financial
and Quantitative Analysis 24, 205–216.

Lintner, J. (1965) The valuation of risk assets and the selection of risky investments in stock portfolios
and capital budgets, Review of Economics and Statistics 47, 13–37.

Litterman, R. and K. Winkelmann (1998) Estimating covariance matrices, Risk Management Series,
Goldman Sachs.

Lux, T. (1996) The stable Paretian hypothesis and the frequency of large returns: an examination of
major German stocks, Applied Financial Economics 6, 463–475.

Malevergne, Y., V.F. Pisarenko and D. Sornette (2005) Empirical distributions of stock returns:
Exponential or power-like? Quantitative Finance 5, 379–401.

Markowitz, H. (1959) Portfolio selection: Efficient diversification of investments, John Wiley & Sons,
Inc., New York.

Mossin, J. (1966) Equilibrium in a capital market, Econometrica 34, 768–783.
Muzy, J.-F., D. Sornette, J. Delour and A. Arneodo (2001) Multifractal Returns and Hierarchical

Portfolio Theory, Quantitative Finance 1, 131–148.
Pagan, A. (1996) The Econometrics of Financial Markets, Journal of Empirical Finance 3, 15–102.
Polimenis, V. (2002) The distributional CAPM: Connecting risk premia to return distributions. Working

Paper.
Rothschild, M. and J.E. Stiglitz (1970) Increasing risk I: A definition, Journal of Economic Theory 2,

225–243.
Rothschild, M. and J.E. Stiglitz (1971) Increasing risk II: Its economic consequences, Journal of

Economic Theory 3, 66–84.
Rubinstein, M. (1973) The fundamental theorem of parameter-preference security valuation, Journal

of Financial and Quantitative Analysis 8, 61–69.
Scaillet, O. (2004) Nonparametric estimation and sensitivity analysis of expected shortfall, Mathemat-

ical Finance 14, 115–129.
Sharpe, N.F. (1964) Capital asset prices: A theory of market equilibrium under conditions of risk,

Journal of Finance 19, 425–442.
Sharpe, W.F. (1966) Mutual fund performance, Journal of Business 39, 119–138.
Sharpe, W.F. (1994) The Sharpe ratio, Journal of Portfolio Management 21(1), 49–58.



Generalised CAPM in Homogeneous and Heterogeneous Markets 193

Sornette, D. (1998) Large deviations and portfolio optimization, Physica A 256, 251–283.
Sornette, D., J. V. Andersen and P. Simonetti (2000a) Portfolio Theory for “Fat Tails”, International

Journal of Theoretical and Applied Finance 3(3), 523–535.
Sornette, D., P. Simonetti and J.V. Andersen (2000b) �q-field theory for portfolio optimization:

“fat-tails” and non-linear correlations, Physics Reports 335(2), 19–92.
Stuart, A. and J.K. Ord (1994) Kendall’s advanced theory of statistics, 6th edition, Edward Arnold,

London and Halsted Press, New York.
von Neumann, J. and O. Morgenstern (1947) Theory of Games and Economic Behavior, Princeton

University Press, Princeton.





8
Modelling the Dynamics of Conditional
Dependency Between Financial Series

Eric Jondeau and Michael Rockinger

ABSTRACT

In this chapter we develop a new methodology to measure conditional dependency between
daily stock-market returns, which are known to be driven by complicated marginal distri-
butions. For this purpose we use copula functions, which are a convenient tool for joining
marginal distributions. The marginal model is a GARCH-type model with time-varying
skewness and kurtosis. Then, we model the dynamics of the dependency parameter of the
copula as a function of predetermined variables. We provide evidence that our model fits
the data quite well. We establish that the dependency parameter is both large and persistent
between European markets. Our methodology has many potential applications, such as VaR
measurement and portfolio allocation in non-Gaussian environments.

8.1 INTRODUCTION

This chapter presents a new methodology, based on the so-called “copula” functions, to
measure conditional dependency. These functions provide an interesting tool for joining
complicated marginal distributions. The insight of this research is that the dependency param-
eter can easily be rendered conditional and time-varying. Here, we use this methodology to
investigate the dynamics of the dependency parameter between daily returns for major stock
markets.

Many univariate models exist to express returns; however, given the focus of this work, we
draw on recent advances in the modelling of conditional returns that allow second, third and
fourth moments to vary over time. We therefore consider a univariate model for each stock
index, join these models via a copula into a multivariate framework and then estimate the
dynamics of the dependency parameter. Let’s relate these three building blocks to the existing
literature. First, our univariate model builds on the so-called skewed student-t distribution,
first presented in Hansen’s (1994) seminal paper. This distribution is able to capture both
asymmetry and fat-tailedness through parameters that can easily be rendered conditional.

Multi-moment Asset Allocation and Pricing Models Edited by E. Jurczenko and B. Maillet
© 2006 John Wiley & Sons, Ltd
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This yields time-varying higher moments.1 This model, therefore, extends Engle’s (1982)
ARCH and Bollerslev’s (1986) GARCH model. In an extension to Hansen (1994), Jondeau
and Rockinger (2003a, 2003b) determine the expression of skewness and kurtosis of the
skewed student-t distribution, compute the domain of definition for these parameters, which
ensures definiteness of the distribution, and show how the cumulative distribution function
(cdf) and its inverse can be computed. They also discuss how the parameters of the skewed
student-t distribution should be parametrised. A number of studies consider alternative
skewed student-t distributions; recent work is by Adcock (2002) and Lambert and Laurent
(2002). Other recent contributions also render higher moments time-varying. For instance,
Harvey and Siddique (1999) model the conditional skewness with a noncentral student-t
distribution, while Brooks, Burke and Persand (2005) model the conditional kurtosis with
a standard student-t distribution. Premaratne and Bera (2000) and Rockinger and Jondeau
(2002) achieve time variation in skewness and kurtosis by using the Pearsonian densities
and the entropy density, respectively.

Second, copulas are introduced to capture the dependency structure between two com-
plicated marginal distributions. Such an approach is particularly fruitful in situations where
multivariate normality does not hold. Copulas are mathematical objects used previously in
statistics (see Riboulet, Roncalli and Bouyé, 2000). In recent financial applications, copu-
las have been used to model default, e.g. Tibiletti (1995), Li (2000), Lindskog (2000) and
Embrechts, Lindskog and McNeil (2003). Other empirical applications are by Malevergne
and Sornette (2003) and Denuit and Scaillet (2004).2 Some recent papers focus on multi-
variate skewed distributions, and in particular on the skewed student-t distribution (Azzalini
and Capitanio, 2003; Bauwens and Laurent, 2005 and Sahu, Dey and Branco, 2003). Yet, it
should be noted that, since their estimation is, in general, very easy to implement, copulas
allow one to deal with more general marginal dynamic models. In addition, most copula
functions introduce explicitly a dependency parameter that can be conditioned easily.

Third, we apply our framework to investigate the dynamics of the dependency parameter.
In a multivariate GARCH framework, Hamao, Masulis and Ng (1990), Susmel and Engle
(1994) and Bekaert and Harvey (1995) have measured the interdependence of returns and
volatilities across stock markets. More specifically, Longin and Solnik (1995) have tested the
hypothesis of a constant conditional correlation between a large number of stock markets.
They found that correlation generally increases in periods of high volatility of the US market.
In addition, in such a context, tests of a constant correlation have been proposed by Bera and
Kim (2002) and Tse (2000). In this chapter we follow recent advances in the modelling of
correlation, as proposed by Kroner and Ng (1998), Engle and Sheppard (2001) and Tse and
Tsui (2002). These authors propose multivariate GARCH models with dynamic conditional
covariances or correlations. We propose a similar approach for the dependency parameter of
the copula function.

The remainder of the chapter is organised as follows. In Section 8.2 we present our
univariate model, which allows volatility, skewness and kurtosis to vary over time. In
Section 8.3 we introduce copula functions and describe the copulas investigated in this
chapter. Section 8.4 is devoted to the modelling of the dependency parameter. In Section 8.5
we describe the data and discuss our results. Our study investigates daily returns of five

1 Higher moments refer to the third and fourth moments.
2 Hwang and Salmon (2002) use copulas in performance measurement to focus on extreme events. Copulas have also been used to
model extreme values (Embrechts, McNeil and Straumann, 1999) or to price contingent claims (Rosenberg, 2003). Gagliardini and
Gouriéroux (2002) develop a new theory, involving copulas, to model dependency between trading durations.
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major stock markets from January 1980 to December 1999. We also provide evidence that,
for European market pairs, dependency is very strongly persistent. Section 8.6 contains a
conclusion and guidelines for further research. Our model is very general and the idea of
capturing conditional dependency within the proposed framework may be applied to many
situations.

8.2 A MODEL FOR THE MARGINAL DISTRIBUTIONS

It is well known that the residuals obtained for a GARCH model are generally non-normal.
This observation has led to the introduction of fat-tailed distributions for innovations. Nelson
(1991) considers the generalised error distribution, while Bollerslev and Wooldridge (1992)
focus on student-t innovations. Engle and Gonzalez-Rivera (1991) model residuals non-
parametrically. Even though these contributions recognise the fact that errors have fat tails,
they generally do not render higher moments time-varying, i.e. the parameters of the error
distribution are assumed to be constant over time.

8.2.1 Hansen’s skewed student-t distribution

Hansen (1994) was the first to propose a GARCH model, in which the first four moments
are conditional and time-varying. For this purpose, he introduces a generalisation of the
student-t distribution that allows the distribution to be asymmetric while maintaining the
assumption of a zero mean and unit variance. The conditioning is obtained by expressing
parameters as functions of past realisations. Some extensions to this seminal contribution
may be found in Theodossiou (1998) and Jondeau and Rockinger (2003a).

Harvey and Siddique (1999) have proposed an alternative specification, based on a non-
central student-t distribution. This distribution is designed so that skewness depends on
the noncentrality parameter and the degree-of-freedom parameter. However, the difference
between the two models is noteworthy. On one hand, Hansen’s distribution has a zero
mean and unit variance, and the two parameters controlling asymmetry and fat-tailedness are
allowed to vary over time. On the other hand, in Harvey and Siddique, innovations are non-
standardised, skewness is directly rendered conditional and is therefore time-varying, while
kurtosis is not modelled. Note also that the specification of the skewed student-t distribution
adopted by Lambert and Laurent (2002) corresponds to the distribution proposed by Hansen,
but with a different parametrisation of the asymmetry parameter.

Hansen’s skewed student-t distribution is defined by

d�z�����=

⎧⎪⎨
⎪⎩
bc
(

1 + 1
�−2

(
bz+a
1−�

)2
)− �+1

2
if z<−a/b

bc
(

1 + 1
�−2

(
bz+a
1+�

)2
)− �+1

2
if z≥ −a/b

(8.1)

where

a≡ 4�c
�− 2
�− 1

� b2 ≡ 1 + 3�2 − a2� c≡ �
(
�+1

2

)
√
	��− 2��

(
�

2

)
and � and � denote the degree-of-freedom parameter and the asymmetry parameter respec-
tively. If a random variable Z has the density d�z�����, we will write Z ∼ ST�z�����
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Inspection of the various formulas reveals that this density is defined for 2<�<� and
−1<�< 1. Furthermore, it encompasses a large set of conventional densities. For instance,
if �= 0� Hansen’s distribution is reduced to the traditional student-t distribution, which is
not skewed. If, in addition, �→�� the student-t distribution reduces to the normal density.

It is well known that a traditional student-t distribution with � degrees of freedom allows
for the existence of all moments up to the �th. Therefore, given the restriction � > 2,
Hansen’s skewed student-t distribution is well defined and its second moment exists.

Proposition 1 If Z∼ ST�z�����, then Z has zero mean and unit variance.

Proof See Hansen (1994). �

Proposition 2 Introduce m2 = 1 + 3�2�m3 = 16c��1 + �2��� − 2�2/��� − 1��� − 3���
defined if �> 3, and m4 = 3��− 2��1 + 10�2 + 5�4�/��− 4�, defined if �> 4. The higher
moments of Z are given by:

E�Z3�= �m3 − 3am2 + 2a3�/b3 (8.2)

E�Z4�= �m4 − 4am3 + 6a2m2 − 3a4�/b4 (8.3)

Proof See Jondeau and Rockinger (2003a). �

Since Z has zero mean and unit variance, we obtain that skewness (Sk) and kurtosis (Ku)
are directly related to the third and fourth moments: Sk�Z�=E�Z3� and Ku�Z�=E�Z4�


We emphasise that the density and the various moments do not exist for all parameters.
Given the way asymmetry is introduced, we must have −1<�< 1. As already mentioned,
the distribution is meaningful only if � > 2. Furthermore, careful scrutiny of the algebra
yielding Equations (8.2) and (8.3) shows that skewness and kurtosis exist if �> 3 and �> 4
respectively. The domain over which skewness and kurtosis are well defined is characterised
in Jondeau and Rockinger (2003a).3 The relation between skewness and kurtosis and �, and
�, is a complex one. If one starts with a symmetric distribution, an increase only of � will
yield a skewed and leptokurtic distribution. For a given distribution, if � increases, then
both tails of the distribution will increase. Now, if both ��� and � increase simultaneously,
the tail on the side with the same sign as � will unambiguously increase, while the effect
on the other tail is ambiguous. In contrast, if ��� decreases while � increases, then the tail
on the side with the opposite sign to � will increase, whereas the impact on the other tail is
ambiguous. Given a time series of parameters, a graphical inspection of the densities may
yield precious indications as to how the densities evolve.

In the continuous-time finance literature, asset prices are often assumed to follow a
Brownian motion combined with jumps. This translates into returns data with occasionally
very large realisations. Our model captures such instances since, if � is small, e.g. close to
2, not even skewness exists.

3 In empirical applications, we will only impose that �> 2 and let the data decide if, for a given time period, a specific moment
exists or not.
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8.2.2 The cdf of the skewed student-t distribution

The copula involves marginal cumulative distributions rather than densities. For this reason,
we now derive the cdf of Hansen’s skewed student-t distribution. To do so, we recall that
the conventional student-t distribution is defined by

t�x���= �
(
�+1

2

)
�
(
�

2

) 1√
	 �

(
1 + x2

�

)− �+1
2

where � is the degree-of-freedom parameter. Numerical evaluation of the cdf of the conven-
tional student-t is well known, and procedures are provided in most software packages. We
write the cdf of a student-t distribution with � degrees of freedom as

A�y���=
∫ y

−�
t�x���dx

The following proposition presents the cdf of the skewed student-t distribution.

Proposition 3 Let D�z�����= Pr�Z< z�, where Z has the skewed student-t distribution
given by (8.1). Then D�z����� is defined as

D�z�����=
⎧⎨
⎩
�1 −��A

(
bz+a
1−�

√
�

�−2 ��
)

if z<−a/b
�1 +��A

(
bz+a
1+�

√
�

�−2 ��
)

−� if z≥ −a/b

Proof Let w/
√
�= �bz+a�/��1 −��√�− 2�
 The result then follows from the change of

variable in Equation (8.1) of z into w. �

8.2.3 A GARCH model with time-varying skewness and kurtosis

Let 
rt� � t = 1� · · · � T , be the returns of a given asset. A marginal model with a skewed
student-t distribution with time-varying volatility, skewness and kurtosis may be defined as

rt =�t + �t (8.4)

�t =�tzt (8.5)

�2
t = a0 + b+

0 ��
+
t−1�

2 + b−
0 ��

−
t−1�

2 + c0�
2
t−1 (8.6)

zt ∼ ST�zt��t��t� (8.7)

Equation (8.4) decomposes the return of time t into a conditional mean, �t, and an innova-
tion, �t. The conditional mean is captured with ten lags of rt and day-of-the-week dummies.
Equation (8.5) then defines the innovation as the product between conditional volatility,
�t, and a residual, zt, with zero mean and unit variance. The next equation, (8.6), deter-
mines the dynamics of volatility. Such a specification, which is designed to capture the
so-called leverage effect, has been suggested by Glosten, Jagannathan and Runkle (1993). In
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a similar spirit, one may mention Campbell and Hentschel (1992), Gouriéroux and Monfort
(1992), Engle and Ng (1993) and Zakoïan (1994). We use the notation �+

t = max��t�0�
and �−

t = max�−�t�0�. For positivity and stationarity of the volatility process to be guar-
anteed, parameters are assumed to satisfy the following constraints: a0 > 0, b+

0 , b−
0 , c0 ≥ 0,

and c0 + (
b+

0 + b−
0

)
/2< 1. Equation (8.7) specifies that residuals have a skewed student-t

distribution with time-varying parameters �t and �t.
Many specifications could be used for �t and �t. To ensure that �t and �t remain within

their authorised range, we consider an unrestricted dynamic where the parameters are denoted
by �̃t and �̃t that we constrain via a logistic map, i.e. �t = g�L��U�� ��̃t� and �t = g�L��U����̃t�.4
The general unrestricted model that we estimate is given by

�̃t = a1 + b+
1 �

+
t−1 + b−

1 �
−
t−1 + c1�̃t−1 (8.8)

�̃t = a2 + b+
2 �

+
t−1 + b−

2 �
−
t−1 + c2�̃t−1 (8.9)

The type of functional specification that should be retained in general is discussed in Jondeau
and Rockinger (2003a). In that paper, it is first shown that an autoregressive model expressed
as such, i.e. without the logistic map on which one would impose possibly thousands of
constraints to guarantee that the parameters are always defined, yields a degenerate solution,
i.e. no dynamics are possible: all coefficients of the variables must be zero. Next, that
paper presents a procedure on how to avoid identification problems. For instance, if, in
the estimation of Equation (8.8), the parameters b+

1 and b−
1 are found to be statistically

insignificant, then the parameter c1 is not identified. In a numerical estimation, this may
yield spuriously a highly significant c1. Finally, a small simulation experiment in Jondeau
and Rockinger (2003a) shows that the model estimates well the true DGP.

The model (8.4)–(8.9) can be estimated easily via the usual maximum-likelihood estimation
procedure. To increase the speed of the estimation and enhance the numerical precision,
analytical gradients may be implemented. The expression of these gradients is presented in
Jondeau and Rockinger (2003a).

8.3 COPULA DISTRIBUTION FUNCTIONS

8.3.1 Generalities

To illustrate the usefulness of copulas, we consider two random variables X1 and X2 with
continuous marginal cdfs F1�x1� = Pr �X1 ≤ x1� and F2�x2� = Pr �X2 ≤ x2�. The random
variables may also have a joint distribution function, H�x1� x2�=Pr �X1 <x1�X2 <x2�. All
the cdfs, Fi�·� andH�·� ·� range in the interval �0�1�. In some cases, a multivariate distribution
exists, so that the function H�·� ·� has an explicit expression. One such case is the multivariate
normal distribution. In many cases, however, a description of the margins Fi�·� is relatively
easy to obtain, whereas an explicit expression of the joint distribution H�·� ·� may be difficult
to obtain. In such a context, copulas provide a useful way to link margins into a multivariate
distribution function.

We now turn to a more formal definition of copulas. We would like to emphasise from the
outset that many results developed in this chapter extend to a higher dimensional framework.
Some of the results, however, hold in the bivariate framework only.5

4 The logistic map, g�L�U��x�=L+ �U −L��1 + e−x�−1 maps � into the interval �L�U�. In practice, we use the bounds L� = 2
001,
U� = 30 for � and L� = −0
9998, U� = 0
9998 for �.
5 The following definition and proposition may be found in Nelsen (1999, p. 8).
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Definition 1 A two-dimensional copula is a function C � �0�1�2 → �0�1� with the three
following properties:

1. C�u1� u2� is increasing in u1 and u2.
2. C�0� u2�=C�u1�0�= 0, C�1� u2�= u2, C�u1�1�= u1.
3. ∀u1� u

′
1� u2� u

′
2 in �0�1� such that u1<u

′
1 and u2<u

′
2, we have C�u′

1� u
′
2�−C�u′

1� u2�−
C�u1� u

′
2�+C�u1� u2�≥ 0


Point 1 states that, when one marginal distribution is constant, the joint probability will
increase provided that the other marginal distribution increases. Point 2 states that if one
margin has zero probability of occuring then it must be the same for the joint occurrence.
Also, if, on the contrary, one margin is certain to occur, then the probability of a joint
occurrence is determined by the remaining margin probability. Property 3 indicates that, if
u1 and u2 both increase, then the joint probability also increases. This property is, therefore,
a multivariate extension of the condition that a cdf is increasing.

Furthermore, if we set ui =Fi�xi�, then C�F1�x1��F2�x2�� yields a description of the joint
distribution of X1 and X2. Having obtained this intuitive definition, we can now propose the
two following properties.

Proposition 4 If u1 and u2 are independent, then C�u1� u2�= u1u2.

Proof The proof of this property follows immediately from the definition of independent
random variables. �

Theorem 1 (Sklar’s Theorem for continuous distributions). Let H be a joint distribution
function with margins F1 and F2. Then, there exists a copula C such that, for all real numbers
x1 and x2, one has the equality

H�x1� x2�=C�F1�x1��F2�x2�� (8.10)

Furthermore, if F1 and F2 are continuous, then C is unique. Conversely, if F1 and F2 are
distributions, then the function H defined by Equation (8.10) is a joint distribution function
with margins F1 and F2.

Proof The proof of this theorem first appeared in Sklar (1959). A relatively simple proof
may be found in Schweizer and Sklar (1974). �

This theorem highlights the importance of copulas for empirical research. In this work,
we use the “conversely” part of the theorem and construct a multivariate density from
marginal ones.

8.3.2 Construction of the estimated copula functions

An abundant taxonomy of copula functions has emerged in the literature in order to fit most
situations that can be encountered in practice, e.g. Joe (1997). In this chapter we illustrate the
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usefulness of copulas in the modelling of the dependency structure, using three well-known
copula functions – Plackett’s, the Gaussian and the student-t copulas, which are characterised
by a single dependency parameter. The three copula functions are symmetric. Therefore,
when the dependency parameter is assumed to be constant, large joint positive realisations
have the same probability of occurrence as large joint negative realisations. In Section 8.4.1,
we relax this assumption by allowing the dependency parameter to be conditional on past
realisations. Another important issue concerns the dependency of the copula in the tails of
the distribution. Since we focus on how the dependency of international markets varies after
some joint realisations, we do not want to put particular emphasis on extreme events. Such
an issue has been addressed already, using an alternative methodology, by Longin and Solnik
(2001). Therefore, we consider copula functions that have different characteristics in terms
of tail dependence. The Plackett and Gaussian copulas do not have tail dependence, while
the student-t copula has such a tail dependence (see, for instance, Embrechts, Lindskog and
McNeil, 2003).

We begin with a brief description of how Plackett’s copula is constructed.6 In Figure 8.1,
we assume that we have two random variables X1 and X2. Both variables may take two
discrete states, say high and low. As indicated in the figure, we associate probabilities a,
b, c and d to the various simultaneous realisations. Intuitively, if the probabilities are high
along the 45� diagonal, then we would have a positive dependence between the two random
variables. Indeed, if one state is high, the other state will be high as well. In contrast, if
there are as many observations along the �a� b� diagonal as along the �c�d� diagonal, then
the random variables may be considered independent.

These observations suggest defining �= ab/cd as a natural measure of dependency. If
� = 1, there will be independence; if � < 1, dependence will be negative; and if � > 1,

c

a

b

d

Low High

Low

High

x1

x2

X2

X1

Figure 8.1 A (2,2) contingency table.

6 We follow the derivation of Nelsen (1999, p. 79–89). See Plackett (1965) for the seminal work.
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dependence will be positive. The states labelled ‘Low’ are associated with the marginal
cdfs F1�x1� and F2�x2� in �0�1�. Assuming that � does not depend on x1 and x2 yields the
following expression for the joint cdf of X1 and X2

C �u1� u2� ��=
{

1+��−1��u1+u2�−
√
�1+��−1��u1+u2��

2−4u1u2���−1�
2��−1� if � 
= 1

u1u2 if �= 1

defined for �> 0. It may be verified that C satisfies the three conditions that define a copula
function. As a consequence, the function C�F1�x1��F2�x2�� �� is the joint cdf of X1 and X2.
It is easy to establish the density of Plackett’s copula as

c �u1� u2� ��≡
�2C �u1� u2� ��

�u1�u2

= ��1 + �u1 − 2u1u2 + u2���− 1��(
�1 + ��− 1��u1 + u2��

2 − 4u1u2���− 1�
) 3

2

It is worth noticing that � is only defined for positive values. In numerical applications,
this restriction is easily implemented by using a logarithmic transform of �. In this case,
independency corresponds to a value of ln���= 0. When ln ��� is positive (negative), we
have positive (negative) dependency.

The Gaussian copula is defined by the cdf

C �u1� u2���=��

(
�−1 �u1� ��

−1 �u2�
)

and the density

c �u1� u2���=
1√

1 −�2
exp

(
−1

2
�′ (�−1 − I2

)
�

)

where �= (�−1 �u1� ��
−1 �u2�

)′
and � is the (2, 2) correlation matrix with � as correlation

between u1 and u2. �� is the bivariate standardised Gaussian cdf with correlation �, while
� is the univariate standardised Gaussian cdf.

Similarly, the student-t copula is defined by the cdf

C �u1� u2���n�=T��n
(
t−1
n �u1� � t

−1
n �u2�

)
and the density

c �u1� u2���n�=
1√

1 −�2

�
(
n+2

2

)
�
(
n
2

)
(
�
(
n+1

2

))2

(
1 + 1

n
�′�−1�

)− n+2
2

∏2
i=1

(
1 + 1

n
�2
i

)− n+1
2

where � = (
t−1
n �u1� � t

−1
n �u2�

)′
. T��n is the bivariate student-t cdf with n degrees of free-

dom and correlation �, while tn is the univariate student-t cdf with degree-of-freedom
parameter n.

In Figure 8.2, we display examples of contour plots associated with the density of
the Plackett, Gaussian and student-t copula functions for the case of positive dependency
(�= 0
5). The contour plots of negative dependency are symmetric with respect to the axis
x1 = 0 or x2 = 0. The degree-of-freedom parameter n is set equal to 5. This figure clearly
illustrates that the student-t copula is able to capture tail dependence, while the Plackett and
Gaussian copulas do not provide such a possibility.



204 Multi-moment Asset Allocation and Pricing Models
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Figure 8.2 Contour plots of Plackett’s, Gaussian and student-t copula functions for the case of
positive dependency ��=0
5�. For the student-t copula, the degree-of-freedom parameter n is set equal
to 5. The marginal distributions are assumed to be N �0�1�.
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8.4 MODELLING DEPENDENCY AND ESTIMATION
OF THE MODEL

8.4.1 Conditional dependency

Consider a sample 
z1t� z2t�, t= 1� · · · � T , where zit is assumed to be generated by a skewed
student-t distribution with time-varying moments (Equations (8.4)–(8.9)). The cdf and the
pdf of residuals zit are thus denoted Fi �zit� �i�=D�zit� �i� and fi �zit� �i�=d �zit� �i�, i=1�2,
respectively, where �i denotes the vector of unknown parameters pertaining to the margin
i. We set uit ≡ Fi �zit� �i� for notational convenience. The key observation of this research
is that the dependency parameter can be conditioned easily in the case of all the copulas
investigated.7 We define �t as the value taken by the dependency parameter at time t.

Several approaches have been proposed in the literature for modelling the correlation
coefficient in a multivariate context. Kroner and Ng (1998), Engle and Sheppard (2001),
Engle (2002) and Tse and Tsui (2002) have suggested modelling of covariances or correla-
tions in the context of GARCH models, in which conditional correlation depends on recent
cross-products of residuals. We adopt, in the following, a specification close to the dynamic
conditional correlation (DCC) model proposed by Engle and Sheppard (2001) and Cappiello,
Engle and Sheppard (2003) in their modelling of Pearson’s correlation in a GARCH context.
In this model, the conditional correlation matrix, denoted Rt, is defined by:

Rt = Q∗−1
t QtQ

∗−1
t (8.11)

Qt = �1 −�−�� Q̄ +��zt−1z
′
t−1�+�Qt−1

where Q̄ =E �ztz′t� is the unconditional covariance matrix of residuals zt = �z1t� z2t�
′ and

Q∗
t =

(√
q11t 0
0

√
q22t

)

is the diagonal matrix composed of the square root of the diagonal elements of Qt. In the
bivariate case, the off-diagonal element of Rt is simply given by �t = q12t/

√
q11tq22t. The

normalisation by Q∗
t in Equation (8.11) is intended to express the conditional correlation

matrix directly from the conditional covariance matrix.8 Parameters � and � are assumed
to satisfy 0 ≤���≤ 1 and �+�≤ 1. Once these restrictions are imposed, the conditional
correlation matrix is guaranteed to be positive definite during the optimisation.

Following Cappiello, Engle and Sheppard (2003), we also investigated an asymmetric
dynamic conditional correlation (ADCC) model, which can be written as follows

Rt = Q∗−1
t QtQ

∗−1
t (8.12)

Qt =
[
�1 −�−�� Q̄ −�−Q̄−]+��zt−1z

′
t−1�+�− �z−t−1z

−′
t−1�+�Qt−1

where Q̄− = E �z−t z
−′
t � and z−t = �max�−z1t�0��max�−z2t�0��′. This model incorporates

the stylized fact that large joint negative shocks are more likely to affect subsequent

7 As shown below, the student-t copula is preferred to the Gaussian and Plackett’s copulas. Consequently, we will investigate the
modelling of the dependency structure for the student-t copula only.
8 In our context, Q∗

t is close to unit matrix, since residuals zt have been preliminarily standardised.
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correlation than large joint positive shocks. Consequently, the parameter �− is expected to be
positive.

8.4.2 Estimation in a copula framework

We now briefly describe how the parameter vector of the dependency structure can be
estimated. The copula function is assumed to depend on a set of unknown parameters through
the function G�z1t−1� z2t−1� �c�. Therefore, �c = �������n�′ for the DCC specification, and
�c = ������−���n�′ for the ADCC specification. We set �= ��′

1� �
′
2� �

′
c�

′. The joint density
of an observation �z1t� z2t� is thus

l ���= c �F1 �z1t� �1� �F2 �z2t� �2� �G�z1t−1� z2t−1��c��× f1 �z1t� �1�× f2 �z2t� �2�

As a consequence, the log-likelihood of a sample becomes

L���=
T∑
t=1

ln �c �F1 �z1t� �1� �F2 �z2t� �2� �G�z1t−1� z2t−1��c���

+
T∑
t=1

2∑
i=1

ln fi �zit��i� (8.13)

Maximum likelihood involves maximising the log-likelihood function (8.13) simultaneously

over all parameters, yielding parameter estimates denoted �̂ML =
(
�̂′

1� �̂
′
2� �̂

′
c

)′
, such that

�̂ML = arg maxL���

In some applications, however, this estimation method may be difficult to implement, because
of a large number of unknown parameters or of the complexity of the model.9 In such a
case, it may be necessary to adopt a two-step ML procedure, also called inference functions
for margins. This approach, which has been introduced by Shih and Louis (1995), Joe and
Xu (1996) and Riboulet, Roncalli and Bouyé (2000), can be viewed as the ML estimation
of the dependence structure given the estimated margins. Patton (2006) shows that the two-

step estimator �̃TS =
(
�̃′

1� �̃
′
2� �̃

′
c

)′
is asymptotically efficient and normal. First, parameters

pertaining to the marginal distributions are estimated separately:

�̃i ∈ arg max
T∑
t=1

ln fi �zit� �i� i= 1�2 (8.14)

Then, parameters pertaining to the copula function are estimated by solving:

�̃c ∈ arg max
T∑
t=1

ln c
(
F1

(
z1t� �̃1

)
�F2

(
z2t� �̃2

)
�G

(
z1t−1� z2t−1� �̃c

))

9 The dependency parameter of the copula function may be a convoluted expression of the parameters. In such a case, an analytical
expression of the gradient of the likelihood might not exist. Therefore, only numerical gradients may be computable, implying a
dramatic slowing down of the numerical procedure.
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8.5 EMPIRICAL RESULTS

8.5.1 The data

We investigate the interactions between five major stock indices. The labels are SP for
the S&P 500, NIK for the Nikkei stock index, FTSE for the Financial Times stock
index, DAX for the Deutsche Aktien Index and CAC for the French Cotation Automa-
tique Continue index. Our sample covers the period from January 1st, 1980 to December
31st, 1999.

All the data are from Datastream, sampled at a daily frequency. To eliminate spurious cor-
relation generated by holidays, we eliminated from the database those observations when a
holiday occurred at least for one country. This reduced the sample from 5479 observations to
4578. Note that such an observation would not affect the dependency between stock markets
during extreme events. Yet it would affect the estimation of the return marginal distribution
and, subsequently, the estimation of the distribution of the copula. In particular, the estimation
of the copula would be distorted to account for the excessive occurrence of zero returns in
the distribution. To take into account the fact that international markets have different trading
hours, we use once-lagged US returns. This does not affect the correlation with European mar-
kets significantly (because trading times are partially overlapping), but increases the correla-
tion between the S&P and the Nikkei from 0.1 to 0.26. Preliminary estimations also revealed
that the crash of October 1987 was of such importance that the dynamics of our model would
be very much influenced by this event. For the S&P, on that date the index dropped by 22 %.
The second largest drop was only 9 %. For this reason, we eliminated the data between
October 17th and 24th. This reduces the sample by six observations to a total of 4572
observations.

Table 8.1 provides summary statistics on market-index returns. Returns are defined as
100 × ln �Pt/Pt−1�, where Pt is the value of the index at time t. Therefore, the number of

Table 8.1 Summary statistics on daily stock-market returns. Mean, Std, Sk and XKu denote the
mean, the standard deviation, the skewness and the excess kurtosis of returns, respectively. Standard
errors are computed using a GMM-based procedure. Wald Stat. is the Wald statistic, which tests
the null hypothesis that skewness and excess kurtosis are jointly equal to zero. It is distributed,
under the null, as a �2 �2�. Min and Max represent the minimum and maximum of centred and
reduced returns, while q1� q5� q95 and q99 represent the 1, 5, 95 and 99 percentiles. The 1 %, 5 %,
95 % and 99 % percentiles for a normal distribution are −2
3263�−1
6449�1
6449 and 2
3263. The
LM�K� statistic for heteroskedasticity is obtained by regressing squared returns on K lags. QW�K�
is the Box–Ljung statistic for serial correlation, corrected for heteroskedasticity, computed with K
lags. Since international markets have different trading hours, the correlation matrix is computed
using once-lagged US returns. Significance is denoted by superscripts at the 1 % �a�, 5 % �b� and
10 % �c� levels

SP NIK FTSE DAX CAC

Mean 0
049a −0
002 0
044a 0
044b 0
041b

s.e. (0.014) (0.018) (0.014) (0.018) (0.019)
Std 0
963a 1
244a 0
923a 1
211a 1
190a

s.e. (0.026) (0.039) (0.020) (0.042) (0.042)
Sk −0
399b 0.167 −0
164 −0
720b −0
683b

s.e. (0.186) (0.226) (0.103) (0.299) (0.362)
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Table 8.1 Continued

SP NIK FTSE DAX CAC

XKu 5
147a 6
006a 2
082a 8
604a 8
369b

s.e. (1.389) (1.785) (0.525) (3.132) (3.550)
Wald Stat. 17
454a 28
072a 15
837a 7
581b 6
022b

p-val. (0.000) (0.000) (0.000) (0.023) (0.049)

Min −8
642 −7
234 −6
389 −13
710 −13
910
q1 −2
487 −3
534 −2
341 −3
310 −3
280
q5 −1
496 −2
049 −1
438 −1
840 −1
826
q95 1.559 1.848 1.417 1.778 1.846
q99 2.506 3.427 2.277 2.998 2.870
Max 4.989 12.430 5.440 7.288 8.225

LM(1) 82
745a 151
046a 103
585a 222
750a 113
279a

p-val. (0.000) (0.000) (0.000) (0.000) (0.000)
LM(5) 188
927a 351
829a 315
646a 318
219a 345
317a

p-val. (0.000) (0.000) (0.000) (0.000) (0.000)

QW(5) 13
187b 4.901 17
264a 10
161c 10
404c

p-val. (0.022) (0.428) (0.004) (0.071) (0.065)
QW(10) 22
526b 10.238 25
574a 18
515b 21
470b

p-val. (0.013) (0.420) (0.004) (0.047) (0.018)

Correlation matrix
SP 1 0.258 0.272 0.317 0.269
NIK 0.258 1 0.248 0.276 0.245
FTSE 0.272 0.248 1 0.475 0.524
DAX 0.317 0.276 0.475 1 0.554
CAC 0.269 0.245 0.524 0.554 1

observations is the same for all markets, and the series do not contain days when the market
was closed. We begin with the serial dependency of returns. The LM �K� statistic tests
whether the squared return is serially correlated up to lag K. This statistic clearly indicates
that ARCH effects are likely to be found in all market returns. Also, when considering the
Ljung– Box statistic, QW �K�, after correction for heteroskedasticity, we obtain that, in most
cases, returns are serially correlated. We obtain clear indication of such autocorrelation for
the SP, the FTSE and the CAC.

Now we consider the unconditional moments of the various series. All the standard errors
have been computed with a GMM-based procedure. We notice that for all series, except
the Nikkei, skewness is negative. Moreover, considering excess kurtosis, XKu, we observe
a significant positive parameter for all the series. This indicates that all the series display
fatter tails than the Gaussian distribution. The Wald statistics of the joint test of significance
of skewness and excess kurtosis corroborate this finding.10

Finally, Table 8.1 displays the unconditional Pearson correlations. This matrix indicates
that rather high dependency is likely to be found between market returns. The correlation is
smallest between the Nikkei and the CAC, and largest between the DAX and the CAC.

10 When the 1987 crash is not removed, the SP distribution is characterised by a very strong asymmetry (with a skewness equal
to −2
55) and fat tails (with an excess kurtosis as high as 57). Yet, in that case, due to uncertainty around higher-moment point
estimates, the Wald test would no longer reject normality.



Modelling the Dynamics of Conditional Dependency Between Series 209

8.5.2 Estimation of the marginal model

Table 8.2 presents the results of the general model in which volatility, skewness and kurtosis
are allowed to vary over time. First, the different magnitude of b+

1 and b−
1 shows that a

negative return has a stronger effect on subsequent volatility than a positive return of the same
magnitude. This is the well-known leverage effect, documented by Campbell and Hentschel
(1992), Glosten, Jagannathan and Runkle (1993) and Zakoïan (1994). These findings cannot
be compared directly with Harvey and Siddique (1999). Their model strongly differs from
ours in the choice of error distribution and of model specification. They also use data that
differ from ours. In our estimations, the introduction of time-varying skewness does not alter

Table 8.2 Parameter estimates and residual summary statistics for the model with a skewed
student-t distribution and time-varying higher moments. Parameters are defined in Equations (8.6),
(8.8) and (8.9). The table also shows goodness-of-fit statistics, following Diebold, Gunther and
Tay (1998). The first part contains the LM test statistics for the null of no serial correlation of
moments of the uit. It is defined as �T − 20�R2, where R2 is the coefficient of determination of the
regression of �uit − ūi�k on 20 own lags, for k= 1� � � � �4. Under the null, the statistic is distributed
as a �2 �20�. The table also shows the test statistic, DGT, for the null hypothesis that the cdf of
residuals is Uniform(0, 1). Under the null, the statistic is distributed as a �2 �20�. Finally, the table
presents the log-likelihood (lnL) and the AIC and SIC information criteria. LRT(6) is the LR test
statistic for the null hypothesis that skewness and kurtosis are constant over time. Under the null,
the statistic is distributed as a �2 �6�

SP NIK FTSE DAX CAC

Volatility equation
a0 0
006a 0
016a 0
021a 0
022a 0
022a

(0.002) (0.003) (0.005) (0.006) (0.006)
b+

0 0
043a 0
044a 0
045a 0
081a 0
067a

(0.010) (0.011) (0.010) (0.016) (0.013)
b−

0 0
071a 0
154a 0
085a 0
125a 0
107a

(0.012) (0.020) (0.012) (0.018) (0.014)
c0 0
941a 0
897a 0
910a 0
887a 0
900a

(0.009) (0.012) (0.013) (0.014) (0.012)

Degree-of-freedom equation
a1 −0
510a −0
972a 0.390 −0
496b −0
429

(0.198) (0.373) (0.466) (0.242) (0.230)
b+

1 −0
616a −0
181c −0
994a −0
664a −0
436a

(0.149) (0.098) (0.291) (0.136) (0.126)
b−

1 0.060 0.318 −0
414 0.001 0.326
(0.174) (0.282) (0.358) (0.098) (0.369)

c1 0
628a 0
496a 0.049 0
422a 0
626a

(0.130) (0.167) (0.453) (0.154) (0.142)

Asymmetry parameter equation
a2 −0
084c −0
228a −0
117a −0
046 −0
057c

(0.049) (0.083) (0.033) (0.051) (0.034)
b+

2 0
239a 0
109b 0
271a −0
033 0
083c

(0.071) (0.050) (0.056) (0.091) (0.047)
b−

2 −0
088c −0
106c −0
058 −0
100b −0
033
(0.051) (0.057) (0.042) (0.050) (0.031)

c2 0.253 −0
475c 0
745a 0
508c 0
669a

(0.178) (0.254) (0.075) (0.304) (0.159)



210 Multi-moment Asset Allocation and Pricing Models

Table 8.2 Continued

SP NIK FTSE DAX CAC

Summary statistics
LM test for no serial correlation of …

first moments 30
934c 26.119 19.201 32
978b 24.599
second moments 22.487 16.221 15.327 14.356 19.027
third moments 24.877 26.879 20.815 28
561c 17.422
fourth moments 20.840 18.078 10.752 7.188 13.688

DGT(20) 18.886 19.719 24.208 30
004c 12.152
p-val. (0.464) (0.412) (0.188) (0.052) (0.879)

InL −5770
644 −6489
164 −5776
923 −6601
303 −6634
668
LRT(6) 39.518 18.813 38.495 21.700 14.539
p-val. (0.000) (0.004) (0.000) (0.001) (0.024)
AIC 2.535 2.850 2.538 2.899 2.914
SIC 2.552 2.867 2.555 2.916 2.931

the asymmetry of news on volatility. In Harvey and Siddique (1999), the result depends on
the series used.

Second, the impact of large returns (of either sign) on the subsequent distribution is
measured via �t and �t. A discussion of the actual impact on skewness and kurtosis of
past returns is not straightforward, because the asymmetry parameter, �t, and the tail-fatness
parameter, �t, are closely entangled. The unrestricted dynamics of �̃t and �̃t get mapped
into �t and �t with the logistic map. For most markets, except the FTSE, we obtain an
estimate of the persistence parameter c1 ranging between 0.4 and 0.65. The negative sign of
b+

1 suggests that, subsequent to large positive realisations, tails thin down. In contrast, we
do not obtain significant estimates of b−

1 , although the point estimate is generally positive.
The asymmetric impact of large returns on the distribution is measured by the dynamics

of �t. We find that, in general, past positive returns enlarge the right tail while past negative
returns enlarge the left tail. The effect of positive returns is slightly larger than the effect of
negative returns, although not always significantly. Furthermore, for European stock markets,
we find persistence in the asymmetry parameter. If we combine the effects of �t and �t in the
light of the discussion of Section 8.2, we conclude that past negative shocks tend to increase
the left tail, whereas past positive shocks have an ambiguous impact on the right tail.

As a diagnostic check, the table also reports the goodness-of-fit test for the general
distribution. We follow Diebold, Gunther and Tay (1998), henceforth denoted DGT, who
suggested that, if the marginal distributions are correctly specified, the margins u1t and u2t

should be iid Uniform �0�1�. The test is performed in two steps. First, we evaluate whether
u1t and u2t are serially correlated. For this purpose, we examine the serial correlations of
�uit − ūi�k, for k= 1� � � � �4.11 We thus regress �uit − ūi�k on 20 lags of the variable. The
LM test statistic is defined as �T − 20�R2, where R2 is the coefficient of determination of
the regression and is distributed, under the null, as a �2 �20�. We find that the LM tests for
serial correlation of margins do not reject the null hypothesis of no serial correlation.

Second, we test the null hypothesis that uit is distributed as a Uniform �0�1�. Hence, we
cut the empirical and theoretical distributions into N bins and test whether the two distri-
butions significantly differ on each bin. Table 8.2 reports the DGT test statistic for various

11 Zero correlation is equivalent to independence only under Gaussianity. The correlogram is, therefore, only hinting at possible
independence.
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distributions with p-values computed with N − 1 degrees of freedom.12 When we consider
the case N = 20 bins, we do not reject the null hypothesis that the theoretical distribution
provides a good fit of the empirical distribution for any return series, at the 5 % level.

Figure 8.3 displays the evolution of the �t and �t parameters for the SP and the CAC,
respectively. As far as the asymmetry parameter, �t, is concerned, we recall that �t is
constrained to the range −1 to 1. We observe that the distribution of the SP return is
characterised by large movements in asymmetry.

8.5.3 Estimation of the multivariate model

8.5.3.1 The model with constant dependency parameter

For each stock-index pair, we estimate the multivariate model. In Figure 8.4 we present
scatterplots of the marginal cumulative distribution functions u1t and u2t for the SP–NIK and
for the FTSE–CAC, respectively. We notice that, except for the region where one margin is
large and the other small, the unit square is rather uniformly filled with realisations. In both
figures, there is a higher concentration in the corners along the diagonal. This clustering
corresponds to the observation that correlation is higher in the tails. Certain studies have
focused on the strength of correlation in the tails (see Longin and Solnik, 2001; Ang and
Chen, 2002). This is, however, not the scope of this research. We will investigate whether,
subsequent to some joint realisation, a similar joint realisation can be expected.

It should be emphasised that these scatterplots do not reveal anything about temporal
dependency. To establish if a temporal dependency exists, it is necessary to estimate a
dynamic model such as (8.11). We now turn to the discussion of the parameter estimates.

In Table 8.3, Panel A, we report several statistics on the estimation of the copula with
constant dependency parameter. We report parameter estimates of the copula functions:
ln ��� and the associated implied Spearman’s rho for Plackett’s copula,13 the dependency
parameter � for the Gaussian copula and the dependency parameter � as well as the degree-
of-freedom parameter n for the student-t copula. For all market pairs, the estimate of the
dependency parameter is found to be positive and significant. For Plackett’s copula, this
result is confirmed by the value of the implied Spearman’s rho. It can be compared with
the empirical value of the correlation between margins reported in the last row of the table.
The two estimates are very close to one another, suggesting that the chosen copulas provide
a rather good description of the dependency between the markets under study. We also
performed a goodness-of-fit test to investigate whether a given copula function is able to
fit the dependence structure observed in the data, along the lines of DGT.14 For all market
pairs, we obtain that the student-t copula fits the data very well, since the null hypothesis is
never rejected. In contrast, the Gaussian copula is unable to adjust the dependence structure
between European markets, while Plackett’s copula is unable to fit the dependency structure
for any market pair.

12 As shown by Vlaar and Palm (1993), under the null, the correct distribution of the DGT test statistic is bounded between a
�2 �N − 1� and a �2 �N −K− 1�, where K is the number of estimated parameters.
13 Spearman’s rho is defined as Pearson’s correlation between margins. It is related to � through the relation

�S = �+ 1
�− 1

− 2�

��− 1�2 ln ���

The standard error of the implied �S is computed with the delta method.
14 The reported DGT test statistics are computed by splitting the joint distribution as a (5,5) square and by evaluating for each bin
whether the empirical and theoretical distributions differ significantly.
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SP: Degree–of–freedom parameter (η t)

SP: Asymmetry parameter (λ t) CAC: Asymmetry parameter (λ t)

CAC: Degree–of–freedom parameter (η t)
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Figure 8.3 The evolution of the degree-of-freedom parameter �t and the asymmetry parameter �t
for the SP and the CAC indices.

To provide further insight on the ability of the chosen copulas to fit the data, we report the
log-likelihood, the AIC and SIC information criteria. We also present the LRT statistic for
the null hypothesis that the degree-of-freedom parameter of the student-t copula is infinite,
so that the student-t copula reduces to the Gaussian copula. For all market pairs, we obtain
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Figure 8.4 Scatterplots of the marginal cdfs u1t and u2t, for the SP–NIK and the FTSE–CAC pairs,
respectively.

that the log-likelihood of the Gaussian copula is larger than that of Plackett’s copula. Since
the two functions have the same number of parameters to be estimated, the Gaussian copula
would be selected on the basis of information criteria. As regards the student-t copula,
comparison with the Gaussian one can be based both on the information criteria and on the
LR test. With both tests, we select the student-t copula. As will be shown later on, this result
is consistent with the finding that the dependency is stronger in the tails of the distribution
than in the middle of the distribution.
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Since the student-t copula dominates the Plackett and Gaussian ones, we focus from now
on only on the student-t copula. Notice that we performed the same estimations as the ones
reported with the other copulas under investigation.

8.5.3.2 The model with dynamic dependency parameter

The last issue we address in this chapter is the persistence in the dependency parameter. Thus,
we estimate the DCC and ADCC models, given by Equations (8.11) and (8.12) respectively,
for the student-t copula. Results are reported in Table 8.4. When considering first the DCC
model (Panel A), we notice that the persistence parameter, �, ranges between 0.88 and
0.99. The effect of the past residuals, measured by �, is, in general, significantly positive.
Inspection of the persistence measure (�+ �) suggests that persistence in dependency is
high between European stock markets, but also for pairs involving the SP.

Estimates of the asymmetric DCC model (Panel B) reveal the following features. On one
hand, for European market pairs or pairs involving the SP, no asymmetry in conditional
correlation emerges, with parameters � as well as �− being insignificantly different from
zero. On the other hand, the LR test statistics for the null hypothesis of no asymmetry in
conditional correlation is rejected for pairs including the NIK. In this case, only negative
shocks have a significant impact on subsequent correlation.

In Figure 8.5, we display the evolution of the parameter �t obtained with the ADCC
model, for the SP–NIK, the NIK–DAX, the FTSE–DAX and the FTSE–CAC pairs. For
markets involving the SP or NIK, we do not observe a significant trend in dependency.
In contrast, the dynamics of dependency between European market pairs has increased
dramatically during the period under study. The dependency �t increased from about 0.2 in
1980 to about 0.7 in 2000 for the FTSE–DAX, as well as the FTSE–CAC, pairs. Another
interesting result is the asymmetry in the dependency structure found for most market
pairs involving the NIK. As the pattern of dependency between the NIK and the DAX
clearly indicates, negative shocks are followed by a subsequent increase in the dependency
structure.

8.6 FURTHER RESEARCH TOPICS

We have developed in this chapter a framework, based on copula functions, to model
dependency between time series, when univariate distributions are complicated and can-
not easily be extended to a multivariate setup. We use this methodology to investigate the
dependency between daily stock-market returns. We first provide empirical evidence that
the distribution of daily returns may be well described by the skewed student-t distribu-
tion, with volatility, skewness and kurtosis varying over time. In such a context, mod-
elling several returns simultaneously using the multivariate extension of this distribution
would be extremely cumbersome. So, we use copula functions to join these complicated
univariate distributions. This approach leads to a multivariate distribution that fits the
data quite well, without involving time-consuming estimations. Finally, we describe how
the dependency parameter can be rendered conditional and we propose a DCC model to
describe the dynamics of the dependency parameter. We obtain evidence that the dependency
between large stock markets is time-varying and persistent, in particular between European
markets.
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Figure 8.5 The evolution of the parameter �t obtained with the asymmetric DCC model (8.12), for
the SP–NIK, the NIK–DAX, the FTSE–DAX and the FTSE–CAC pairs.

Now, let’s discuss other fields where our model can be useful. First, this framework may
be used to investigate the spillover of large realisations in emerging markets. The volatility
spillovers among such markets have been investigated, for instance, in Bekaert and Harvey
(1995) and in Rockinger and Urga (2001). The focus on extreme realisations may provide
further insights.
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Another application of our model is the conditional asset allocation in a non-Gaussian
framework. Such a model has been developed by Rubinstein (1973). Kraus and Litzenberger
(1976) provide a first empirical test of this model. Barone-Adesi (1985) shows how a model
involving higher moments can be obtained with the assumption of a quadratic market model.
Ingersoll (1990) treats the topic at textbook level. Harvey and Siddique (2000) provide tests
of these models. Further theoretical elements are brought forward by Jurczenko and Maillet
(2001 and 2006). To implement asset allocation in a non-Gaussian world, it is necessary
to compute expressions involving higher moments. Such expressions will typically involve
computations such as

mijt =
∫
z1t∈�

∫
z2t∈�

zi1tz
j
2t c�F1 �z1t� �1� �F2 �z2t� �2� �G�z1t−1� z2t−1� �c��

× f1 �z1t� �1�× f2 �z2t� �2�dz1t dz2t

Such integrals may be evaluated efficiently using a change in variables uit =Fi �zit� �i�. With
this change, we get

mijt =
∫
u1t∈�0�1�

∫
u2t∈�0�1�

�F−1
1 �u1t��

i�F−1
2 �u2t��

j × c�u1t� u2t� �t�du1t du2t

Once the model is estimated, these moments can be computed.
Still another application may be found in value-at-risk applications. There, it is necessary

to compute the probability that a portfolio exceeds a given threshold. Again, once the
marginal models are known, the exceedance probability may be computed numerically as
a simple integration, using the fact that, if the pair �Z1t�Z2t� has some joint distribution
function C�F1 �z1t� �1� �F2 �z2t� �2��, then

Pr��Z1t + �1 − ��Z2t > �=
∫
�z1t+�1−��z2t> 

dC �F1 �z1t� �1� �F2 �z2t� �2� ��t�

Again, this expression is easy to implement numerically. Similarly, one could compute
expected shortfall.

Furthermore, a straightforward extension of our framework could yield a model for the
joint distribution of returns, volume and duration between transactions. For instance, Marsh
and Wagner (2000) investigate the return-volume dependence when extreme events occur.
For this purpose, one could use a trivariate copula or proceed in successive steps. First, one
could model the dependency between volume and duration using a first copula. Then, in a
second step, one could link this copula to the return series through another copula. Hence,
our model may be adapted to settings where the data of each margin are not of the same
nature.
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A Test of the Homogeneity of Asset pricing

Models

Giovanni Barone-Adesi, Patrick Gagliardini
and Giovanni Urga

ABSTRACT

Tests of multi-moment asset pricing models impose linear constraints in the risk-return
space. In this chapter we derive the relevant statistics and test the restriction in a multivariate
setting.

9.1 INTRODUCTION

Expected returns on financial assets are usually modelled as linear functions of covariances
of returns with some systematic risk factors. Sharpe (1964), Lintner (1965), Black (1972),
Merton (1973), Kraus and Litzenberger (1976), Ross (1976), Breeden (1979), Barone-Adesi
(1985), Jagannathan and Wang (1996) and Harvey and Siddique (2000) have proposed
several formulations of this general paradigm. See Campbell (2000) for a recent survey on
the field of asset pricing. Most of the empirical tests to date have produced negative or
ambiguous results. These findings have spurred renewed interest in evaluating the statistical
properties of methodologies currently available. Among recent studies, Shanken (1992) and
Kan and Zhang (1999a, 1999b) highlight relevant sources of ambiguity embodied in these
commonly employed methodologies.

It appears that only preliminary knowledge of the return-generating process may lead to
the design of reliable tests. Because this condition is never met in practice, researchers are
forced to choose between powerful tests that are misleading in the presence of possible
model misspecifications or more tolerant tests, such as the ones based on the stochastic
discount factor methodology, that have limited power. The first choice may lead not only to
the rejection of correct models, but also to the acceptance of irrelevant factors as sources of
systematic risk, as noted by Kan and Zhang (1999a, 1999b). On the other hand, the choice
of the stochastic discount factor methodology fails to discriminate among competing models
and often leads to very large confidence intervals for estimated risk premia (Cochrane, 1996;
Kan and Zhang, 1999a, 1999b).
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In addition to these methodological difficulties, a number of anomalous empirical regular-
ities have been detected. Banz (1981) relates expected returns to firm size, Fama and French
(1995) link expected returns to the ratio of book-to-market value. Some of these anomalies
fade over time, others seem to be more persistent, raising the possibility that they are due
to omitted systematic risk factors. These pricing anomalies may be related to the possibility
that useless factors appear to be priced. Of course it is also possible that pricing anomalies
proxy for omitted factors. While statistical tests do not allow us to choose among these
two possible explanations of pricing anomalies, Kan and Zhang (1999a, 1999b) suggest that
perhaps large increases in R2 and persistence of sign and size of coefficients over time are
most likely to be associated with truly priced factors.

To investigate the effects of possible misspecifications of the return-generating process
on tests of asset pricing models, in this chapter we study the portfolios used by Jagannathan
and Wang (1996). One hundred portfolios sorted by beta and size to maximise the spread of
observed betas are available. To test for the extent of misspecification of the return-generating
process, we nest the usual market model into the extended version used by Barone-Adesi
(1985) and Barone-Adesi, Gagliardini and Urga (2004).

The rest of the chapter is organised as follows. In Section 9.2 we recall the framework of the
quadratic market model introduced in Barone-Adesi (1985) and Barone-Adesi, Gagliardini
and Urga (2004). Section 9.3 reports the empirical results based on the dataset of Jagannathan
and Wang (1996). Section 9.4 concludes.

9.2 THE QUADRATIC MARKET MODEL

The evolution of financial asset returns shows significant co-movements. Factor models try
to explain these co-movements by a rather small number of underlying variables, called
factors, which have a common effect on the return dynamics. The quadratic market model
is an extension of the traditional market model, where market returns and the square of the
market returns are the two factors. The model specification is:

Rt =a + B RM�t + �R2
M�t + �t

E��t�RM�t� = 0
(9.1)

where Rt is an N × 1 vector of asset returns in period t, RM�t is the return of the market in
period t, a is an N × 1 vector of intercepts and B and � are N × 1 vectors of sensitivities.

The motivation for including the square of the market returns is to account for risk
originating from coskewness with the market portfolio. Specifically, the traditional market
model postulates that asset returns move proportionally to the market. However, in real
financial data we observe violations of this simple specification. Indeed, compared to the
linear dependence implied by the market model, some classes of assets show a tendency
to have higher (lower) returns when the market experiences large absolute returns. Such
assets feature positive (negative) coskewness and therefore diminish (increase) the risk
of the portfolio with respect to extreme events (see also Kraus and Litzenberger, 1976;
Barone-Adesi, 1985; Harvey and Siddique, 2000). The quadratic market model captures
possible nonlinearities in the dependence between asset returns and market returns, as well
as asymmetries in response to upward and downward market movements.

As we will see in detail in the empirical section, the misspecification arising from neglect-
ing these nonlinearities and asymmetries can produce a significant heterogeneity across
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portfolios. When the heterogeneity is correlated to variables representing portfolio charac-
teristics such as size, these variables will appear to have explanatory power for the cross-
section of expected returns. By taking into account the quadratic term, we are able to control
for these heterogeneities. This point also addresses the fact that, if there are similarities in
the processes generating the data across and within the portfolio groups, combining the data
improves the efficiency of the estimation of the parameters. There exists a huge body of
literature in panel data econometrics pointing out the various consequences for inference of
neglecting heterogeneity (Robertson and Symons, 1992; Pesaran and Smith, 1995; Baltagi
and Griffin, 1997; Hsiao, Pesaran and Tahmiscioglu, 1999; Haque, Pesaran and Sharma,
1999; Pesaran, Shin and Smith, 1999; Baltagi, Griffin and Xiong, 2000 amongst others).

Usual arbitrage pricing considerations (Ross, 1976; Chamberlain and Rothschild, 1983)
imply that expected returns of assets following factor model (9.1) approximately satisfy the
restriction (Barone-Adesi, 1985):

E�Rt� = �0 + B�1 + ��2 (9.2)

where �0 is the expected return on a portfolio for which the components � and � of the
vectors B and � are � = � = 0, while �1 and �2 are expected excess returns on portfolios
perfectly correlated with RM�t and R2

M�t. In particular, since the risk-free asset and the first
factor, that is the market, satisfy (9.2), it must be that �0 = RF , the risk-free rate, and
�1 = E�RM�t� − RF . It is important to notice that a similar restriction doesn’t hold for the
second factor since it is not a traded asset, but it is possible to show (see Barone-Adesi,
1985) that �2 < E�R2

M�t�.
Equation (9.2) implies the restriction

a = SN RF − BRF + ���2 − E�R2
M�t��

where SN is an N × 1 vector of ones, and imposing it on factor model (9.1) we get

Rt − SN RF = B�RM�t − RF � + �
(
R2

M�t + 	2

)+ �t (9.3)

where 	2 = �2 − E�R2
M�t� < 0. Written for each portfolio separately we have:

Rit − RF = �i�RM�t − RF � + �iR
2
M�t + �i	2 + �it i = 1� 
 
 
 �N

which is a nonlinear panel data model.
It is worth noticing that the factors representing time-varying regressors are common

to all assets, whereas the equilibrium condition induces a restriction for the cross-section
of expected returns through the term �i	2. This explains why factor models of this kind
are traditionally estimated by combinations of time series and cross-section regressions.
Interested readers may refer to Barone-Adesi, Gagliardini and Urga (2004), where estimation
and inference methodologies for models (9.1) and (9.3) are presented.

9.3 EMPIRICAL RESULTS

9.3.1 Data description

In this subsection we briefly describe the dataset in Jagannathan and Wang (1996), which we
use as a basis for the various empirical exercises concerning the estimation of the quadratic
market model.
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The dataset consists of percentage monthly returns of 100 portfolios of NYSE and AMEX
stocks for the period July 1963–December 1990. The portfolios have been constructed in
the following way. For each calendar year, firms are sorted into size deciles based on their
market value at the end of June. Firms within each size decile are then sorted into beta
deciles, based on a beta estimated using 24 to 60 months of past return data and the CRSP
value-weighted index as the market index proxy. For each of these 100 portfolios the return
is computed for the following 12 months by equally weighting the returns on stocks in the
portfolio.

For our exercise, however, we decided to reaggregate the 100 portfolios in each size
decile, in order to obtain ten size-portfolios, ranked in order of increasing size. The basic
reason for this is to avoid estimating covariance matrices of large dimension.

Finally, as market return we used the capital-weighted CRSP index over the same period.

9.3.2 Results

In this subsection we report the results of our empirical investigations. Table 9.1 contains
the estimated �i from the quadratic market model in (9.1) (t-statistics in parentheses: OLS
and Newey–West heteroskedasticity and autocorrelation consistent estimator with five lags,
respectively). Corresponding adjusted R2

i�Q for each portfolio are reported in Table 9.2 (R2
i

are adjusted R2 for a regression of portfolio returns on a constant and market returns). In
Table 9.3 we report estimates for the coefficients �i, 	2, �2 for the restricted model in
Equation (9.3) (R2

∗ denotes the McElroy, 1977 goodness-of-fit measure). Finally, in Table 9.4
we report the estimates of model (9.3) where we introduce an intercept � in portfolio expected
excess returns, which is constant across portfolios.

From the �̂i coefficients estimated in the unrestricted model (9.1), the quadratic market
model seems to be a valuable extension of the basic market model, since the sensitivities
to quadratic market returns appear significantly different from zero. In particular, these
sensitivities are negative for small firms and positive for large firms. The findings of a
positive dependence of coskewness sensitivities to size in the period 1963–1990 are consistent
with the results in Harvey and Siddique (2000). Finally, we notice that the �̂i coefficients
estimated in the restricted models (Tables 9.3 and 9.4) are similar.

Let us now consider the risk premium for coskewness. The coefficient �2 is negative, as
expected. In fact, portfolios that tend to have higher positive returns when the market has
high absolute returns (positive coskewness) help the investor to reduce the risk for extreme

Table 9.1 Estimated �i from the quadratic market model in (9.1)

�̂1 = −0�014 �̂2 = −0�013 �̂3 = −0�010 �̂4 = −0�009
�−2�12� �−2�70� �−2�28� �−2�44�
�−1�66� �−1�99� �−1�90� �−2�00�

�̂5 = −0�006 �̂6 = −0�005 �̂7 = −0�001 �̂8 = −0�000
�−1�97� �−1�65� �−0�26� �−0�10�
�−1�33� �−1�33� �−0�21� �−0�08�

�̂9 = 0�000 �̂10 = 0�004
(0.31) (3.70)
(0.30) (3.38)
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Table 9.2 Adjusted R2
i�Q for each portfolio

R2
1�Q = 0�529 R2

2�Q = 0�701 R2
3�Q = 0�754 R2

4�Q = 0�791
R2

1 = 0�524 R2
1 = 0�695 R2

1 = 0�750 R2
1 = 0�787

R2
5�Q = 0�827 R2

6�Q = 0�856 R2
7�Q = 0�907 R2

8�Q = 0�919
R2

1 = 0�826 R2
1 = 0�855 R2

1 = 0�907 R2
1 = 0�920

R2
9�Q = 0�946 R2

10�Q = 0�972
R2

1 = 0�946 R2
1 = 0�971

Table 9.3 Estimates for the coefficients �i�	2 and �2 for the restricted model
in (9.3)

�̂1 = −0�016 �̂2 = −0�014 �̂3 = −0�010 �̂4 = −0�010 �̂5 = −0�007
�−2�31� �−2�81� �−2�43� �−2�64� �−2�15�

�̂6 = −0�005 �̂7 = −0�001 �̂8 = −0�001 �̂9 = 0�000 �̂10 = 0�004
�−1�80� �−0�36� �−0�40� (0.26) (3.77)

	̂2 = −25�184 �̂2 = −4�560 R2
∗ = 0�8824

�−3�16� �−0�55�

Table 9.4 Estimates of model (9.3) with an intercept � in portfolio expected excess
returns

�̂1 = −0�016 �̂2 = −0�012 �̂3 = −0�010 �̂4 = −0�010 �̂5 = −0�007
�−2�51� �−2�72� �−2�43� �−2�69� �−2�21�

�̂6 = −0�005 �̂7 = −0�001 �̂8 = −0�001 �̂9 = 0�001 �̂10 = 0�004
�−1�82� �−0�37� �−0�68� (0.42) (3.95)

	̂2 = −38�927 �̂2 = −18�302 �̂ = 0�046 R2
∗ = 0�8824

�−3�51� �−1�62� (1.18)

events, and therefore command lower expected returns. Since the coefficients �̂i are of order
10−2−10−3, the part of expected excess returns due to coskewness is of the order 0�1−1%.

From Table 9.4, the estimated constant � is not significant statistically. However, its order
of magnitude is the same as that of the risk premium for coskewness. Therefore, it doesn’t
seem appropriate, from an economic point of view, to omit it. Moreover, its omission can
cause biases in the estimates of the other parameters. Finally, we remark that the McElroy
(1977) R2

∗ is practically identical in the two restricted models.
In order to assess the economic relevance of the quadratic term, we investigate its improve-

ment over the traditional market model, which is characterised by the factor model (9.1)
with 
 = 0. The Capital Asset Pricing Model (CAPM) (Sharpe, 1964 and Lintner, 1965)
corresponds to the restrictions

� = 0� a − �SN − B�RF = 0
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As noted above, the estimated coefficients � reported in Table 9.1 are different from
zero for some portfolios, rejecting the market model. Moreover, at an explorative level, it is
instructive to analyse the vector â − �SN − B̂�RF , where â and B̂ are estimates obtained under
model (9.1). The components of this vector, corresponding to the ten portfolios, are reported
in annualised percentage in Table 9.5. This estimated vector is considerably different from
zero, pointing again to a failure of the CAPM to capture all relevant factors.

We note that the components of vector â − �SN − B̂�RF corresponding to small size
portfolios are considerably larger than those of big portfolios. The missing factors appear,
therefore, in the form of a heterogeneity across portfolios, which is negatively correlated
to size. We formally test for this heterogeneity by computing the asymptotic least-squares
statistic �M

T for the hypothesis:

∃ � ∈ R � a − �SN − B�RF = �SN

The result is:

�M
T = 21�53

which is larger than the critical value at 0.05, �2
0�95�9� = 16�90, rejecting the homogeneity

of the unexplained component. The estimates âi − �1 − B̂i�RF − �̂ for each portfolio are
reported in Table 9.5 and feature a considerable heterogeneity across portfolios, consistent
with the result of the test.

Let us now consider the same homogeneity tests within the quadratic market model. A
formal test for the homogeneity of the unexplained expected returns across portfolios gives

�M
T = 11�42

Table 9.5 The components of the vector corresponding to the ten portfolios in annualised percentages

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

âi − �1 − B̂i�RF 9�62 6.31 5.32 5.70 4.14

âi − �1 − B̂i�RF − �̂ 10�01 6.70 5.71 6.09 4.53

âi − �1 − B̂i�RF − 	̂2
̂i − �̂ 5�07 2.13 2.20 2.70 2.02

âi − �1 − B̂i�RF − 	̂2
̂i 5�73 2.76 2.71 3.20 2.43

Portfolio 6 Portfolio 7 Portfolio 8 Portfolio 9 Portfolio 10 �2

âi − �1 − B̂i�RF 2.99 1.10 2.03 0.24 −1.32

âi − �1 − B̂i�RF − �̂ 3.38 1.49 2.42 0.63 −0.93 21.53

âi − �1 − B̂i�RF − 	̂2
̂i − �̂ 1.39 0.71 1.76 0.17 −0.39 11.42

âi − �1 − B̂i�RF − 	̂2
̂i 1.75 0.94 1.98 0.36 −0.30 14.59
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whereas the test for no unexplained expected returns gives

�M
T = 14�59

both smaller than the critical values �2
0�95 �8� = 15�51, and �2

0�95�9� = 16�90 respectively. The

estimates âi − �1 − B̂i�RF − 	̂2
̂i − �̂ and âi − �1 − B̂i�RF − 	̂2
̂i are also reported in Table 9.5.
The components of these vectors are considerably smaller and more homogeneous than those
found within the market model. We conclude, therefore, that once the quadratic term is taken into
account, the evidence for unexplained components in expected returns is considerably smaller.

From a methodological point of view, the use of the asymptotic least squares test statistics
appears to be a better way than R2 to compare the quadratic market model with the market
model or the CAPM. Indeed, the model that better fits the data is not necessarily the correct
model. On the contrary, financial theories are expressed in the form of statistical hypotheses,
which can be tested by asymptotic least squares.

9.4 CONCLUSION

In this chapter we consider a two-factor model to study the presence of significant co-
movements in the dynamics of asset returns. In addition to the traditional market returns
term, the model includes the square of the market returns to account for risk originating
from coskewness with the market portfolio, as recent literature (see, for instance, Harvey
and Siddique, 2000) also stresses. Using the dataset in Jagannathan and Wang (1996) we
show that the quadratic term is able to account for heterogeneities across portfolios otherwise
improperly controlled via a simple constant. Moreover, we show that the quadratic term is
significant and that the homogeneity hypothesis is accepted only in the presence of this term.
These results are consistent with, and reinforce, the empirical findings in Barone-Adesi,
Gagliardini and Urga (2004), obtained using a different dataset.

Although there is evidence that the quadratic market model is not a complete description of
asset returns, acceptance of homogeneity is supportive of the significance of its contribution.
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