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Ĥ Information matrix of the Kalman filter
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1

Introduction

In the last few years, a refined pricing of corporate securities has come
into focus of academics and practitioners. As empirical research showed,
traditional asset pricing models could not price corporate securities suf-
ficiently well. Time series properties of quoted securities were difficult
to replicate.

In the search for more advanced models that capture the empirical
findings, researchers followed two approaches. The first stream of re-
search fitted the time series properties of corporate securities directly.
We refer to this class of models as being of reduced form. Security prices
are assumed to follow more advanced stochastic models, in particular
models with e.g. non-constant volatility.1 All studies of this type do not
consider the economics of the issuing companies but simply assume a
stochastic behavior of the security or its state variables. In contrast,
a second, economic literature developed by studying the firm. We call
these kinds of models structural because the limited liability of equity
holders is modeled explicitly as a function of firm value.

One problem of the reduced form approach is its difficulty of inter-
pretation in an economic sense. Being technically advanced, reduced
form models often lack an intuitive economic model and especially dis-
guise the economic assumptions. If security pricing is the only purpose
of the exercise, we might not need an economic model. However, if we
want to understand price movements, a serious link with the underlying
economics appears important.

The credit risk literature even adopted this particular terminology to
categorize its models.2 Whereas reduced form models take each corpo-
1 See e.g. Stein and Stein (1991) for a stochastic volatility model and Heston and

Nandi (2000) on GARCH option pricing.
2 See e.g. Ammann (2002).



2 1 Introduction

rate security separately and model a firm’s default by a Poisson event3,
structural credit risk models concentrate on a model of the firm value.
Bankruptcy occurs when either the firm value falls for the first time to
a sufficiently low level so that equity holders are not willing to support
the firm for a longer period of time, or when some contractual condition
forces the firm into bankruptcy. The setup of structural models allows
extensions into refined decision making and the use of game theoretic
arguments.

Structural credit risk models were pioneered by the seminal papers
of Black and Scholes (1973) and Merton (1974). They assume that the
firm value follows a geometric Brownian motion. The firm has one finite
maturity zero coupon bond outstanding that the firm will repay if the
terminal firm value exceeds the debt notional at maturity. Otherwise
the firm defaults on its debt. Black and Cox (1976) extend this setup by
allowing bankruptcy before debt maturity when the firm value touches
a bankruptcy barrier for the first time.

Further extension of the basic setup introduced optimal future capi-
tal structure changes. These dynamic capital structure models were an-
alyzed e.g. in Fischer, Heinkel and Zechner (1989a) and Fischer, Heinkel
and Zechner (1989b). In both papers the capital structure of the firm
is modeled endogenously in a continuous-time setting assuming equity
holders to optimize the value of their claim. They do not concentrate
on credit risk and bankruptcy but use an argument from corporate fi-
nance in order to explain empirically observed leverage ratios and call
premia of callable corporate bond issues. The idea of equity holders
maximizing the value of their claim when levering the firm or issu-
ing callable debt is developed further by Leland (1994) and Leland
and Toft (1996). They focus on the valuation of corporate debt and
the sensitivity of debt value to certain model parameters, extending
the Fischer et al. (1989a) framework, and derive a firm value level at
which equity owners endogenously trigger bankruptcy, thus linking the
dynamic capital structure with credit risk models.

However, dynamic capital structure models of the first generation
caused confusion. The model dynamics is driven by a stochastic process
of the unlevered firm value which can be interpreted as the value of
a fully equity financed firm. All other values of interest such as the
levered firm value, debt values, leverage ratios, etc. are derived in an
optimal budgeting decision with respect to the process of this unlevered
firm value. In such a setup, however, both the levered and unlevered
3 See e.g. Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull (1997), Duffie

and Singleton (1999), Collin-Dufresne, Goldstein and Hugonnier (2004).
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value of the firm exist at the same time. The pricing of these securities
is only arbitrage-free under certain conditions which are usually not
clearly stated because they are not obvious if one models the firm value
directly.4

One reason for this confusion about levered or unlevered firm values
in dynamic capital structure models is due to the lack of a precise
definition of firm value. One could think of the market value of assets as
a natural candidate. However, the market value of the assets is different
to the value generated by these assets. The introduction of corporate
and personal taxes, bankruptcy cost, and debt blurs the models further
and misleads interpretation. The other reason is that the firm value is
modeled directly whereas payments to holders of corporate securities
are defined in terms of cash flows. Being unclear about which claimant
receives which cash flow, it can happen that the total amount of cash
flows paid out to claimants does not sum to the firm’s available funds.
Taking the investment policy as given and unchanged, the mismatch
leads to inconsistencies in the models.5

More recent approaches of dynamic capital structure models, e.g.
Goldstein et al. (2001), Christensen et al. (2000), and Dangl and Zech-
ner (2004), assume a stochastic process for an income measure that
is unaffected by the capital structure decision. Earnings before inter-
est and taxes (EBIT) or free cash flow (FCF) are natural candidates.
Both income measures describe the earnings or cash flows of a firm
from which the interests of all financial claimants, such as stockhold-
ers, bondholders, and the government, must be honored. The total firm
value – i.e. the value of all claims – can be determined by discounting
the income measure by an appropriate discount rate. One of the most
important advantages of EBIT-based capital structure models is there-
fore the thinking in discounted cash flows that generate value. It forces
a split of the EBIT into different claims, thus easing the interpretation
4 Some authors like Goldstein, Ju and Leland (2001, p. 485) try hard to convince

the reader that it is reasonable to model unlevered firm values by the argument
that unlevered firms exist. They quote Microsoft as an example. However, this
argument is void since nobody can prevent firms from issuing debt. So even the
price histories of the stocks of these firms already account for the potential of a
capital budgeting decision optimizing leverage in the future. On the other hand,
if Microsoft does not issue debt although there is some tax advantage to do so,
there must be a reason if they opt out. Again, none of the models can explain
this kind of behavior. See Christensen, Flor, Lando and Miltersen (2000, p. 4f.)
for a review of this argument.

5 A prominent example of inconsistency is the numerical example in Goldstein
et al. (2001), where EBIT does not match the sum of coupon, dividend and tax
payments. Such a case is not covered in their model.
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of derived security values. Consistency is permanently checked. Note
that in this framework the bond and equity prices can be derived with-
out confusion although levered and unlevered firm values in the sense
of Leland (1994) exist. The necessary connection between the two ar-
tificial values becomes obvious.

However, structural credit risk models have mostly been illustrated
by simulation studies. The simulation results have then been compared
to observed leverage ratios, call premia or other firm specific, financial
indicators. Promisingly, most simulations indicate that dynamic capital
structure models are able to explain observed phenomena and price
behaviors reasonably well.

Ericsson and Reneby (2004) have performed the only direct empir-
ical tests for structural credit risk models to date.6 One reason for the
lack of empirical research stems from the fact that the proposed mod-
els offer economic settings which appear too restrictive for the available
data. Goldstein et al. (2001) and Leland (1994), for example, analyze
only infinite-maturity corporate debt. Perpetual debt is not common
in practice. Furthermore, these models cannot incorporate a rich cap-
ital structure with multiple debt issues. As a result, time series data
of finite maturity corporate bond prices cannot be used to test these
models. This is true for the Leland and Toft (1996) model as well. Al-
though Leland and Toft (1996) present a finite-maturity debt formula,
their model suffers from the specific refinancing assumption that at
each instant the firm issues a portion of a fixed maturity bond. Thus,
the firm holds a continuum of bonds maturing at any instant until the
fixed maturity. Exactly this assumption makes the model hard to test.

This study deals with some of the deficiencies of the existing lit-
erature on structural credit risk models. We develop an economically
consistent structural framework to price corporate securities that is
open for empirical implementation using several time series of corpo-
rate security prices. In particular:

• Structural credit risk models are embedded into an economic model.
It is shown how the mathematical model evolves naturally without
strong assumptions on the economy. We relate our modeling frame-

6 We like to stress that this test showed that structural credit risk models are
able to price corporate securities quite well although the estimation procedure
was probably not the most favorable one. However, they can only handle firms
with simple capital structures. Chapter 2 of this study proposes an extension of
the model to a general capital structure. Chapter 5 develops a more appropriate
estimation procedure.
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work to the traditional structural models and resolve the confusion
caused by misleading interpretation of the traditional literature.

• We model different debt issues simultaneously to allow for complex
capital structures. Multiple debt issues call for a very careful mod-
eling of the bankruptcy event because the bankruptcy value has to
be split among claimants. We propose a simple analytical solution.

• Our Corporate Securities Framework does not rely on a specific
process assumption for EBIT. Thus, we extend the EBIT-based
credit risk models to alternative stochastic processes. For analytical
tractability only very few equations need to be solved. We exemplify
the claim by deriving solutions under the assumption that EBIT
follows an arithmetic or geometric Brownian motion.7 This opens
the discussion of whether geometric Brownian motion is the best
assumption for an EBIT-process or whether arithmetic Brownian
motion might be more suitable. We favor the arithmetic Brownian
motion assumption because it covers more economic situations of
firms than geometric Brownian motion.

• We illustrate that our approach is practicable for the pricing of all
kinds of corporate securities such as options on equity and that
common numerical methods can be used to extend the basic ana-
lytical solution to optimal bankruptcy and more complicated tax
structures.

• Since the Corporate Securities Framework allows for a complex cap-
ital structure, time series of all kinds of corporate securities can be
used for estimation. In a simulation study, we show that our model
can be implemented directly by using simulated time series of stock
and bond prices. The parameters can be identified by our proposed
Kalman filter.

• We make a strong case for the structural approach of asset pricing.
We show that we can actually replicate empirical findings, such as
properties of equity option prices. It is not necessary to assume com-
plicated stochastic processes to get observable structures of implied
Black and Scholes (1973) volatilities and to explain implied equity
return distributions. Our economic setting is sufficient.

We develop our arguments in this study by a very general exposi-
tion of the EBIT-based Corporate Securities Framework in Chapter 2.
Starting from the viewpoint of a firm where we take its EBIT as given,
we define all claims of financial security holders as cash flows which
have to be paid from EBIT. So, a natural definition of firm value is
7 Other process assumptions are candidates for explicit solutions as well. However,

we restrict ourselves to the two examples here.
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the discounted value of all future EBITs. Since the splitting of EBIT
into payments to different claimants divides the firm value, our model
can be extended quite easily to additional claimants. The introduction
of bankruptcy and of a tax regime is conceptually easy and makes the
model more realistic. As well, each claim can be treated as one ele-
ment of the whole model. We can show that refining one argument, say
the decision of bankruptcy, does not change the structure of the other
claims.

Chapter 2 focusses on the economic argument. The economic intu-
ition becomes much clearer if we proceed by topic and discuss differ-
ent modeling approaches of one economic element in the same section
even if they were suggested in the literature at different times. This
makes Chapter 2 special with respect to the existing literature: We ar-
gue economically and refer to the seminal articles as we proceed. The
transparency of assumptions enables us to dissolve interpretational dif-
ficulties8 of which some have been discussed above.

Since we do not strive to make the model analytically solvable in
Chapter 2, the restrictive assumptions which are necessary to do so be-
come obvious in Chapter 3. In this chapter, we assume specifically that
EBIT follows arithmetic (Section 3.2) or geometric Brownian motion
(Section 3.3), which restricts the sample paths of EBIT considerably.
We discuss the economic implications of such assumptions and argue
that geometric Brownian motion might not be the best assumption for
the EBIT-process because many types of firms are excluded from the
analysis due to its properties. However, we demonstrate in Section 3.2
that many of the results that are available for geometric Brownian mo-
tion still hold although security values are no longer homogeneous with
respect to EBIT. This homogeneity of degree one has frequently been
exploited when considering dynamic capital structure decisions to find
closed form solutions.9 Therefore, it is useful to think about numeri-
cal methods to find bankruptcy probabilities and prices of bankruptcy
claims. The same numerical methods can be used to price derivatives
on the financial claims within our framework.

One of the main issues of Chapter 3 is to extend the existing litera-
ture to complex capital structures with more than one finite maturity
debt issue so that time series of stock and bond prices can be used
to implement structural models directly. We are able to derive such
8 In fact, some authors themselves are well aware of these difficulties and even point

them out in their articles (see e.g. Leland (1994)). However, they avoid a detailed
argument and return to their mathematical specifications.

9 See Goldstein et al. (2001) and Flor and Lester (2004).
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formulas which are then used in Chapter 5 to propose a Kalman filter
for parameter estimation that does not need too much computational
power.

Chapter 4 is devoted to numerical examples to get a better grip on
the behavior of security prices. In particular, we contrast the arithmetic
with the geometric Brownian motion assumption since there are crucial
differences concerning price behavior. Therefore, we provide extensive
comparative statics. For an even better understanding of the models, it
is useful to think about equity densities at some future point in time.
This type of analysis is usually conducted in option markets, where one
common tool of analysis is to estimate equity return densities given a
range of option prices with different strikes.10 Our model has the advan-
tage that we can calculate equity densities at future points in time and
analyze their properties directly. In a second step, we then calculate
option prices and Black and Scholes (1973)–implied volatility curves.
The examples demonstrate that considerably high implied volatilities
for low exercise options are not unusual and that implied volatilities
are monotonically decreasing if the strike increases. This effect can then
directly be linked to the equity densities, i.e. the current parameter val-
ues of the firm. A comparison with recent empirical research of implied
densities of individual stock options shows that we are able to pro-
vide additional insight into the discussion of equity option pricing. It
becomes again clear that an economic approach sometimes leads to a
much simpler explanation of price behavior than ad-hoc stochastic and
econometric analysis.

Chapter 5 closes the gap within the empirical literature. Since direct
implementations of structural credit risk models are rare, we propose
a Kalman filter for the model developed in Chapters 2 and 3. This has
the advantage that both time series of stock and bond prices can be
used simultaneously to estimate parameters.11

To get a better understanding of the stability of the estimation
procedure, we simulate stock and bond prices which are disturbed by
a considerably large observation error. We demonstrate that the pro-
posed Kalman filter is able to detect the underlying process parameters,
i.e. both EBIT-risk-neutral drift and volatility. Previously proposed es-
timation procedures could only identify volatility. Convergence is quick
10 See e.g. Jackwerth (1999) for a literature review and Jackwerth and Rubinstein

(1996).
11 Past empirical studies such as Ericsson and Reneby (2004) usually use only time

series of stock prices to estimate model parameters and then use these estimates
to price debt issues. So, they need additional assumptions about the mean of the
EBIT/firm value process.
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if we minimize mean absolute pricing errors in a first step and use
the estimated parameters as starting values for a maximum-likelihood
function. We can therefore conclude that our approach is promising.

Chapter 6 summarizes the main findings and proposes interesting
areas where research should continue. Additionally, we discuss further
applications for the developed theory.



2

The Corporate Securities Framework

There exist numerous ways to price corporate securities. Structural firm
value models enjoy an intuitive economic interpretation because these
models focus on the economics of the issuing firm and deduce the prices
of specific securities from the firm’s current economic condition.

This chapter establishes the economic framework for the valuation
of corporate securities. We show that different approaches from the
dynamic capital structure theory can be combined to a more general
model. The framework is modular. Different elements can be extended
in future research without affecting the other results. In particular, we
focus on a class of EBIT-processes and postpone the assumption of a
particular EBIT-process and the derivation of closed-form solutions to
Chapter 3.

2.1 The Economic Setting

The analysis of business decisions can focus on different aspects. We
might on the one hand focus on operational/investment decisions as
is done in Dixit and Pindyck (1994). Here we concentrate on financial
decisions with a given investment policy. However, to interpret some
results it might be useful to remember the economic environment.

2.1.1 EBIT-Generator

Figure 2.1 illustrates the general framework for the pricing of corpo-
rate securities. The firm’s operational decisions are taken as given.
The production technology generates earnings before interest and taxes
(EBIT), denoted by η.
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Fig. 2.1. Division of claim value within the corporate security framework
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The EBIT of the firm has a current value of ηt0 and follows a sto-
chastic process1

dη = µ(η, t)dt + ση(η, t)dzQ, (2.1)
1 This study concentrates on the economics of structural firm value models.

Therefore, mathematical technicalities are only mentioned if it seems necessary.
Throughout the exposition, it is safe to assume that all stochastic integrals exist
and are well adapted to the probability space (Ω, Q,Ft(ηt)) because we are not
dealing with information asymmetry and revelation. We refer to Oeksendal (1998)
or Duffie (1996) for existence and representation theorems.
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where µ(η, t) denotes the instantaneous drift and ση(η, t) is the volatil-
ity of the EBIT-process. zQ is a Brownian motion under the risk-neutral
martingale measure Q.

Focusing on a flow measure such as EBIT – instead of the firm value
directly as suggested in most structural models – introduces a notion
of cash flows into the firm value setting, because the use of EBIT lies
at the discretion of the firm owners. In particular, the firm owners may
decide to issue debt (Subsection 2.1.4) so that not all EBIT can be
paid out as a dividend but some must be devoted to honor interest
payments to debt holders. An additional claimant to the firm’s EBIT
is the government, which levies income taxes (Subsection 2.1.5). This
special structure of defining all financial claims in terms of payments
made from EBIT is advantageous because cash flows are more readily
interpreted than values of claims. To ensure that all calculations have
been done correctly, the sum of all cash flows paid out has to equal
EBIT. As a result, the sum of all values of different payouts must equal
the value of all future EBIT-payments, which is indicated by the equal
height of all columns in Figure 2.1.

Note that EBIT in equation (2.1) evolves under an equivalent mar-
tingale measure Q. This assumption is not restrictive. If a financial
claim issued by the firm is traded in an arbitrage-free financial market,
a martingale measure Q exists.2 Then, the Q-measure of the EBIT-
process is implied by this martingale measure of the traded security
because the traded security can be interpreted as a derivative of EBIT.3

To illustrate this argument in more detail, assume that the EBIT-
process under the physical measure P is4

dη = µη(η, t)dt + ση(η, t)dzP, (2.2)

where µη(η, t) denotes the respective physical drift. Consider a secu-
rity F (η, T ) which depends on EBIT and receives a regular payment of
f(ηt)dt depending on the prevailing EBIT. To value securities depend-
ing on EBIT, it is advantageous to transform the physical measure P

into a risk-neutral measure Q. If the security F is traded, the Q-measure
exists and there exists a risk premium θ that adjusts the EBIT-drift µη

2 See Harrison and Kreps (1979) and Harrison and Pliska (1981) for the respective
proofs of the connection between arbitrage-free markets and the existence of a
martingale measure. For the refined arguments and technicalities in continuous
market see e.g. Duffie (1996), chapter 6.

3 See Ericsson and Reneby (2002b).
4 See Goldstein et al. (2001), who start their analysis with the physical EBIT-

process.
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such that the expected Q-return of F is equal to the risk-free interest
rate r, i.e.

EQ
t (dF (ηt, T )) + f(ηt)dt = rF (ηt, T )dt. (2.3)

If the market is arbitrage-free, the θ-process and an equivalent mar-
tingale measure Q exists. Then, Q is not only the pricing measure for
F but also for all other securities issued by the firm and the EBIT-
process of equation (2.1). If none of the firm’s securities are traded, the
assumption is needed that the θ-process is well defined, which yields
the same EBIT-process as of equation (2.1).5

Therefore, we can start the analysis with the η-process under the
martingale measure Q defined by equation (2.1) instead of taking the
detour via equation (2.2).

The existence of a martingale measure Q is very useful because it al-
lows the discounting of all Q-expected payments of the firm to investors
with the risk-free interest rate.6

However, the η-process under the martingale measure Q does not
automatically exhibit a drift equal to the risk-free interest rate rηdt – as
the securities depending on EBIT-payments do – because EBIT itself is
not the value of a traded security but a state variable. Consequently, the
risk premium θ will be different to the familiar risk premium (µη−r)/ση,
which is enforced by the arbitrage condition of traded securities.

2.1.2 The Firm’s Value and Operations

Continuing the argument of the last subsection, firm value V is defined
rather naturally as the discounted value of all future EBIT-payments.7

V = EQ
t0

∫ ∞

t0

ηse
−r(s−t0)ds, (2.4)

where r denotes a constant risk-free interest rate.8

5 In this case the θ-process needs to be determined by an equilibrium argument.
See e.g. Shimko (1992), Chapter 4.

6 See Musiela and Rutkowski (1997), Chapter 3.
7 Such a definition of firm value can also be found in Goldstein et al. (2001).
8 Here and in the rest of the text, the convention will be used that arguments

of the value functions are not explicitly stated if the reference is the standard
definition. Sometimes it is useful to write out arguments explicitly to emphasize
a certain parameter setting. So firm value V denotes the standard t0 value of the
firm depending on the current state of EBIT ηt0 , the drift function µ, interest
rate r and standard deviation ση. V (µ̂) denotes the same value function as V but
with a different drift.
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Table 2.1. Calculation of cash flows to equity from EBIT

EBIT
– Coupon Payments
– Corporate Taxes
= Corporate Earnings

+ Depreciation
– Gross Investments

– Net Investments
+ Notional of New Debt Issues
– Repayment of Maturing Debt

+ Net Debt Financing
= Cash Flow To Equity

Such a definition of firm value implies a dividend and investment
policy of the firm. To illustrate these policies, assume that the company
has a level of invested capital It0 . Depreciation of invested capital is
already deducted in EBIT, but reinvested in the company if EBIT is
treated as a cash flow to all claimants (including the government) so
that net investments equal zero as illustrated in Table 2.1. Therefore,
a firm has a constant level of invested capital I. All cash that could
remain in the company to increase the invested capital is distributed
to equity holders. If bonds have to be repaid, equity holders inject
money into the firm to prevent the company from selling assets unless
the existing debt issues are replaced by new corporate bonds. As a
result, the cash dividend to equity investors (before equity investor’s
own taxation) is defined as the firm’s earnings after taxes adjusted for
debt repayments and capital inflows from issuing bonds in the future.

Note that ηt can assume arbitrary values. A negative cash flow to
equity holders implies that equity holders need to inject money into
the firm.

Although we restrict our analysis to the definition of firm value in
equation (2.4), a consideration of potential extensions is illustrative
even for the more restrictive setting. Consider that net investments,
∆Iti , are not unequivocally zero. If the firm disinvests at some points
in time ti with i = 1, . . . , nI , ∆Iti becomes negative and affects the
available cash flow to financial claimants. Then, equation (2.4) is no
longer a correct representation of firm value, which becomes instead

V = EQ
t0

∫ ∞

t0

(ηs − ∆Is1{s=ti})e
−r(s−t0)ds. (2.5)
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Usually, a changed investment level It changes the firm’s future growth
and risk perspectives by altering µ(·) and ση(·), respectively. If such a
relationship is neglected, equity owners are allowed to sell all physical
assets to generate an extra cash flow of It0 immediately but still receive
all future EBIT-payments ηt, t > t0.

As an alternative to changing µ(·) and ση(·) endogenously, an im-
mediate asset sale can be prevented by defining a maximum return on
investments ROImax. Any EBIT that exceeds ηmax,t = ROImax · It

would be forgone if the firm does not invest to enlarge operations. In
contrast, if EBIT falls and the level of assets becomes unreasonably
high compared to the value of expected future cash flows, equity own-
ers have an incentive to disinvest because reaching the upper EBIT-
barrier is unlikely. Such a setting allows the analysis of a firm’s in-
vestment/dividend/financing behavior but is beyond the scope of the
research question here.

2.1.3 Bankruptcy

The cash flow to equity can eventually become negative. As discussed
in the last subsection, the firm’s dividend policy implies that equity
owners have to infuse money into the firm to support the current oblig-
ations. However, equity investors may refuse to pay and the firm goes
bankrupt because it cannot pay its contractual commitments. Con-
sider a deterministic function ηB(t) at which equity owners declare
bankruptcy and define the bankruptcy time τ as

τ = inf{s ≥ t0 : ηs = ηB(s)}. (2.6)

At t = τ all bankruptcy claims are settled. By liquidating the firm, a
residual value denoted by VB(τ) is generated. VB(τ) is connected to
the corresponding EBIT-value ηB(τ) by equation 2.4

VB(τ) = EQ
τ

∫ ∞

τ
ηse

−r(s−τ)ds, (2.7)

Otherwise bankruptcy can be exploited strategically by equity owners.
Bankruptcy usually occurs not only at predefined dates but at any

point in time in the future. To value securities, one might think of each
claim as receiving payments in mutually exclusive events: (i) the cash
flow received at maturity if the firm is still alive, (ii) the cash flow
of contracted regular payments before maturity as long as the firm is
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solvent, and (iii) a residual cash flow in the case of bankruptcy.9 Since
the three events are disjoint, the three values of the individual claims
add to the total claim value. Although one must come up with three
different valuation formulas, they are easier to solve in many cases than
their partial differential equation counterpart with several boundary
conditions.

To see why and to ease the exposition, we introduce the probability
Φ(·) that the firm goes bankrupt before a time T > t0 and the Arrow-
Debreu price of the bankruptcy event pB(·). Define,

φ(t0, T, ηt0 , ηT , ηB(t)) = P (ηT ∈ dη|τ > T )P (τ > T ), (2.8)

as the density of ηT at some future point in time T conditional that the
firm survives until T . The current EBIT is ηt0 . Then, the probability
of the firm going bankrupt before T is

Φ(t0, T, ηt0 , ηB(t)) = 1 −
∫ ∞

ηB(T )
φ(t0, T, ηt0 , ηs, ηB(t))dηs. (2.9)

The density of first passage time can be found by taking the derivative
with respect to T . Define this density by

ψ(t0, s, ηt0 , ηB(t)) =
∂Φ(t0, T, ηt0 , ηB(t))

∂T
. (2.10)

Integrating the discounted probability of first passage time over time
yields the Arrow-Debreu price of the bankruptcy event

pB(t0, T, ηt0 , ηB(t)) =
∫ T

t0

e−r(s−t0)ψ(t0, s, ηt0 , ηB(t))ds. (2.11)

For derivations to follow, it is convenient to consider default prob-
abilities and Arrow-Debreu bankruptcy prices for future time intervals
]T ′, T ], with t0 ≤ T ′ < T . Due to the Markov property, the ]T ′, T ]-
default probability is

Φ(T ′, T, ηt0 , ηB(t)) = Φ(t0, T, ηt0 , ηB(t)) − Φ(t0, T ′, ηt0 , ηB(t)). (2.12)

The owner of a claim that pays one currency unit at bankruptcy only if
the firm goes bankrupt between T ′ and T holds a portfolio of two claims
of the type pB(t0, ·, ηt0 , ηB(t)). The value of the ]T ′, T ]-bankruptcy
claim is
9 Black and Cox (1976) were the first to apply this approach when they extended

the Merton (1974) model to bankruptcy before debt maturity. The approach is
known as the probabilistic approach. See also Shimko (1992).
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pB(T ′, T, ηt0 , ηB(t)) = pB(t0, T, ηt0 , ηB(t)) − pB(t0, T ′, ηt0 , ηB(t)). (2.13)

Assume for the moment that ηB(s) = ηB is constant. Then, the t0-
firm value can be split into two periods by the bankruptcy time τ(ω).

V = EQ
t0

∫ τ(ω)

t0

ηse
−r(s−t0)ds + EQ

t0

[
e−r(τ(ω)−t0)

∫ ∞

τ(ω)
ηse

−r(s−τ(ω))ds

]

= V + + EQ
t0

[
e−r(τ(ω)−t0)EQ

τ(ω)

[∫ ∞

τ(ω)
ηse

−r(s−τ(ω))ds

]]

= V + +
∫ ∞

t0

e−r(u−t0)EQ
u

[∫ ∞

u
ηse

−r(s−u)ds

]
P (τ(ω) ∈ du)

= V + + VB

∫ ∞

t0

e−r(u−t0)ψ(t0, u, ηt0 , ηB(u))du

= V + + pB(t0,∞, ηt0 , ηB)VB

= V + + V −, (2.14)

where we used the law of iterated expectations in line 2 and the de-
finition of the function ψ(t0, s, ηt0 , ηB(s)) as well as the definition of
the bankruptcy value of equation (2.7) in line 4. By noting that V −
is readily calculable if the bankruptcy price is known, so is V +. The
splitting of total firm value V into a solvent part, V +, and an insolvent
part, V − is very useful when considering a capital structure.

The assumption of a constant bankruptcy barrier is not restrictive
because we can always find a transformation g(ηt, ηB(t)) of the state
variable ηt relative to the bankruptcy barrier ηB(t), so that the bank-
ruptcy barrier is constant with respect to the stochastic process of
g(ηt, ηB(t)). So we proceed with a constant bankruptcy barrier VB and
ηB to ease the exposition.

Bankruptcy usually incurs additional cost upon the firm’s claimants.
The bankruptcy cost BC comprises external claims to bankruptcy pro-
ceedings, reorganization costs, lawyer fees, or simply value losses due
to the decrease in reputation. Often in the literature, bankruptcy costs
are modeled as being proportional to the firm value in bankruptcy VB.
However, alternative specifications appear reasonable if the bankruptcy
barrier changes over time. As an example, consider an affine function
in VB

α(VB(t)) = α1 + α2(VB(t) − α1), (2.15)

where α1 denotes a fixed cost and α2 a variable cost factor applied to
the remaining firm value after direct costs have been deducted from the
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bankruptcy value. α1 = 0 implies the traditionally used proportional
bankruptcy cost structure. The bankruptcy cost can then be valued as

BC =
∫ ∞

t0

α(VB)e−r(s−t0)ψt(t0, s, ηt0 , ηB)ds. (2.16)

If VB is constant equation (2.16) simplifies to

BC = α(VB)
∫ ∞

t0

e−r(s−t0)ψt(t0, s, ηt0 , ηB)ds

= α(VB)pB(t0,∞, ηt0 , ηB). (2.17)

The remaining value V −−BC represents the present value of the claim
distributed among bankruptcy claimants as a recovery value.

2.1.4 Capital Structure

If firms have already stayed in business for some time, they exhibit
a capital structure which reflects past financing decisions. So at the
current date, a firm has equity and several finite maturity debt issues
outstanding. The value of equity before taxes will be denoted by VE.
The jth of the J debt issues, j = 1, . . . , J , which pays a continuous
coupon Cj and, matures at Tj has a value of VCj ,Tj . By the same rea-
soning as above, it is again useful to split each claim into a solvent and
an insolvent part, which is represented in the third column of blocks in
Figure 2.1.

Pick the insolvent values V −
E and V −

Cj ,Tj
, first. If there is more than

one debt issue outstanding, the residual firm value has to be split among
debt holders according to a reasonable scheme. The residual firm value
will not cover all claims of debt holders who usually enjoy preferential
treatment in bankruptcy under the debt contracts. In case it does,
equity holders receive the excess portion and debt holders recover all
of their claims. As many authors noted10, the absolute priority rule
can be violated so that equity owners recover some money although
debt holders do not receive their total claim. The framework is flexible
enough to cover these cases. Figure 2.1 does not consider equity claims
in bankruptcy.

A consistent model of security recovery values needs to be carefully
developed. Assume that each of the j = 1, . . . , J debt securities receives
10 See e.g. Franks and Tourus (1989), Franks and Tourus (1994), and the references

in Longhofer and Carlstrom (1995).
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a fraction wj(s) with
∑

j wj(s) ≤ 1 ∀s > t0 of the remaining VB(s) −
α(VB).11 Therefore the value of debt holders bankruptcy claim becomes

V −
Cj ,Tj

=
∫ Tj

t0

wj(s)α(VB)e−r(s−t0)ψ(t0, s, ηt0 , ηB)ds. (2.18)

If wj(s) is a step function in the subperiod ]Ti−1, Ti], i = 1, . . . , j, then
equation (2.18) simplifies to

V −
Cj ,Tj

=
j∑

i=1

α(VB)
∫ Ti

Ti−1

wj(Ti)e−r(s−t0)ψ(t0, s, ηt0 , ηB)ds

=
j∑

i=1

α(VB)wj(Ti)pB(Ti−1, Ti, ηt0 , ηB). (2.19)

In case that at some time s > t0,
∑

j wj(s) < 1, there is a residual
value for equity owners wE(s) = 1 −∑j wj(s) if bankruptcy occurs at
that point in time.12 The value of these payments is then

V −
E =

∫ ∞

t0

max[wE(s), 0](1 − α(s))VBe−r(s−t)ψ(t0, s, ηt0 , ηB)ds

= V − − BC −
J∑

j=1

V −
Cj ,Tj

. (2.20)

As long as the firm is solvent, debt holders receive coupon payments
and the notional at maturity. The debt value of the solvent firm is then
11 Note that since the capital structure may change in the future, the fraction wj

can also be time dependent. As well, deviations from priority rules might be
dependent on ηs.

12 wj and wE can also be thought of being determined by a bankruptcy game in
which equity and debt holders split the residual firm value among one another.
The framework is capable of incorporating such decision processes. See also Sub-
sections 2.1.3 and 2.2.2.
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V +
Cj ,Tj

=
∫ Tj

t0

Cje
−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

+Pje
−r(Tj−t0) [1 − Φ(t0, Tj , ηt0 , ηB)]

=
∫ Tj

t0

Cje
−r(s−t0)ds −

∫ Tj

t0

Cje
−r(s−t0)Φ(t0, s, ηt0 , ηB)ds

+Pje
−r(T−t0) [1 − Φ(t0, Tj , ηt0 , ηB)]

=
[
−Cj

r
e−r(s−t0)

]Tj

t0

−
[[

−Cj

r
e−r(s−t0)Φ(t0, s, ηt0 , ηB)

]Tj

t0

−
∫ Tj

t0

−Cj

r
e−r(s−t0)ψ(t0, s, ηt0 , ηB)ds

]

+Pje
−r(T−t) [1 − Φ(t0, Tj , ηt0 , ηB)]

=
Cj

r
+ e−r(s−t0)

[
Pj − Cj

r

]
[1 − Φ(t0, s, ηt0 , ηB)]

−Cj

r
pB(t0, Tj , ηt0 , ηB), (2.21)

where Pj denotes the principal amount repaid at Tj. Total value of
debt consists of two sources, the first one from a regular fulfillment of
contracted payments, e.g. coupons and principle repayment, and the
second one of the recovery value in the case of bankruptcy.

VCj ,Tj = V +
Cj ,Tj

+ V −
Cj ,Tj

(2.22)

Equity investors are bound to the residual EBIT of the solvent firm.

V +
E = EQ

t0

∫ ∞

t

⎡
⎣ηs −

J∑
j=1

Cj1{s≤Tj} − Pj1{s=Tj}

⎤
⎦

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

= EQ
t0

∫ ∞

t
ηse

−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

−
J∑

j=1

[∫ ∞

t
Cj1{s≤Tj}e

−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

+ Pje
−r(Tj−t0) [1 − Φ(t0, Tj , ηt0 , ηB)]

]

= V + −
J∑

j=1

V +
Cj ,Tj

(2.23)
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In equation (2.23), the indicator functions within the square brackets
ensure that no coupons are paid to debt holders of issue j after debt
maturity and that the principal is paid at debt maturity if s = Tj.
Again, the solvent and insolvent equity value sum to total equity value

VE = V +
E + V −

E . (2.24)

2.1.5 Tax System

To complete the model of the economic environment of the firm, a tax
regime is considered that is imposed upon payments out of EBIT. In-
troduce three different kinds of taxes. Debt holders’ coupon payments
are taxed at a tax rate τd. A corporate tax rate τ c is applied to cor-
porate earnings, i.e. EBIT less coupon payments. Corporate earnings
after tax are paid out as a dividend, which is then taxed at the personal
tax rate of equity owners τ e.

In the last subsection, valuation equations have been stated for all
claims of a firm in a solvent state as well as in bankruptcy before
taxation. Each of these values can be split further into a value that
belongs to the investors, E+, E−, as well as D+

Cj ,Tj
, D−

Cj ,Tj
, and the

governments claim G, respectively.
Starting with the bankruptcy case, the standard assumption about

bankruptcy proceedings is that the old equity owners hand over the
firm to the bankruptcy claimants. The new owners should therefore be
treated as equity investors for tax purposes. The recovery value, i.e. the
insolvent firm value less bankruptcy cost, can be thought of as a final
dividend that is taxed at the corporate and the receiver’s level. Denote
by τ eff = (1− τ c)(1− τ e)− 1 the effective tax rate of equity owners in
a full double taxation regime. Then

D−
Cj ,Tj

= (1 − τ eff )V −
Cj ,Tj

(2.25)

E− = (1 − τ eff )V −
E (2.26)

G− = τ eff (V − − BC), (2.27)

because the before tax security values are all proportional to the bank-
ruptcy tax base V − − BC.

Some authors13 allow debt holders to relever the firm as a going
concern. We do not consider such a possibility here because it is not
needed in the current setting where equity owners are not allowed to re-
structure the firm before debt maturity. Assume debt holders are able
13 See e.g. Leland (1994) or Fischer et al. (1989a).
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to successfully relever the firm and continue operations. They would
only bother to do so if there is a benefit to them. Otherwise they will
simply sell the production technology and keep the recovery value. If
they could make a profit on this strategy, the original equity owners
would have considered the sale in the first place and postponed bank-
ruptcy or demand a share of the recovery value, i.e. wE > 0. In fact, the
original equity holders would not have allowed the firm to go bankrupt
but have changed the capital structure to avoid bankruptcy cost. So
if all agents act in their best interest, the debt holders going concern
strategy should not add any new insights to the firm’s current security
values because the insolvent firm value less bankruptcy losses includes
already optimization strategies of the new equity owners.14

To determine tax payments in the solvent state, tax rules must be
defined in more detail. As long as earnings and dividends are positive,
the tax rates are applied to the positive tax bases and the government
receives tax payments. In most countries the tax treatment of nega-
tive earnings is more complicated. Usually, the tax system allows for
immediate tax refunds for some portion of negative earnings and an
additional loss carry-forward for the rest of the negative earnings.

The taxation of investors is usually split into two parts. First, secu-
rity income is taxed whenever a payment is received. Second, realized
capital gains are taxed accordingly, whereas realized capital losses un-
dergo a more restrictive treatment.

To ease the derivation of closed form solutions and abstract from
complications in specific tax codes, some simplifications are made with
respect to the tax regimes considered. To investigate the impact of
the tax system on security values, we restrict the analysis to three
benchmark cases that can be implemented more easily analytically or
numerically.

Tax Regime 1: In the base case model, we implement a setting where neg-
ative corporate earnings are immediately eligible for a tax refund,
so that the company has cash inflows amounting to the negative tax
liabilities. By the same token, equity owners who have to balance
negative earnings immediately do this with a tax subsidy. Explic-
itly, we exempt capital repayments of debt at maturity from this
taxation on the corporate and equity investor level. This yields the
following valuation equations for the debt, equity holders, and the

14 The bankruptcy strategies here are simple because the only option is liquidation
of the firm. In Section 2.2 other models of the bankruptcy event are discussed.
However, this literature fits smoothly into our framework if the single liquidation
option is replaced by a more complex game between equity and debt holders.
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government for the solvent firm after tax.15

D+
Cj ,Tj

=
∫ Tj

t0

(1 − τd)Cje
−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

+Pje
−r(Tj−t0) [1 − Φ(t0, Tj , ηt0 , ηB)] (2.28)

E+ = EQ
t0

∫ ∞

t0

⎡
⎣(1 − τ eff )

⎛
⎝ηs −

J∑
j=1

Cj1{s≤Tj}

⎞
⎠

−
J∑

j=1

Pj1{s=Tj}

⎤
⎦

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds (2.29)

G+ = EQ
t0

∫ ∞

t0

⎛
⎝τ effηs + (τd − τ eff )

J∑
j=1

Cj1{s≤Tj}

⎞
⎠

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds (2.30)

Note that the value of debt to the firm is different to the one in
equation (2.28). Denoting this value by

DE+
Cj ,Tj

=
∫ Tj

t0

(1 − τ eff )Cje
−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds

+Pje
−r(Tj−t0) [1 − Φ(t0, Tj , ηt0 , ηB)] , (2.31)

equation (2.29) can be written more conveniently as

E+ = (1 − τ eff )V + −
J∑

j=1

DE+
Cj ,Tj

.

Tax Regime 2: This tax regime is similar to Tax Regime 1 but it is allowed
to deduct debt repayments at the equity investor level. This changes
the advantage of debt issues to equity investors. Equations (2.29)
and (2.30) change to

15 All integrals can be solved along the same lines as equation (2.22)
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E+ = EQ
t0

∫ ∞

t0

(1 − τ e)

⎡
⎣(1 − τ c)

⎛
⎝ηs −

J∑
j=1

Cj1{s≤Tj}

⎞
⎠

−
J∑

j=1

Pj1{s=Tj}

⎤
⎦

e−r(s−t0) [1 − Φ(t0, Tj , ηt0 , ηB)] ds, (2.32)

G+ = EQ
t0

∫ ∞

t0

⎛
⎝τ effηs + (τd − τ eff )

J∑
j=1

Cj1{s≤Tj}

−τ e
J∑

j=1

Pj1{s=Tj}

⎞
⎠

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds. (2.33)

Economically, the tax refund of debt repayments is accounted for
in the equity investors’ tax base. The amount of refunded taxes
is approximately the one which the investor would not have paid
on dividends if the firm chose to keep the money in its excess cash
account. The difference is due to discounting effects of equity owners’
tax payments.
Tax Regime 2 can therefore be interpreted as one in which the firm
saves money for future debt repayments in a separate account. The
money belongs to equity owners but payment of the personal income
tax is avoided.
Note that this interpretation of Tax Regime 2 slightly alters the
notion of the bankruptcy value of VB if the repayment of debt is
interpreted as coming from a cash account within the firm which
is not available to bankruptcy proceedings but locked in by equity
investors.

Tax Regime 3: Consider again Tax Regime 1, but assume that the gov-
ernment restricts tax credits. A portion ε ∈ [0, 1] of the immediate
tax credits as of Tax Regimes 1 or 2 is lost for the firm.16 Then,
equations (2.29) and (2.30) change to

16 Leland (1994) and Goldstein et al. (2001) consider such a tax system. With a
simple capital structure and assuming that EBIT follows a geometric Brownian
motion, it is possible to derive closed form solutions.
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E+ = EQ
t0

∫ ∞

t0

⎡
⎣(1 − τ eff + ε(τ eff − τ e)1{ηs≤

�J
j=1 Cj}

)
⎛
⎝ηs −

J∑
j=1

Cj1{s≤Tj}

⎞
⎠−

J∑
j=1

Pj1s=Tj

⎤
⎦

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds (2.34)

G+ = EQ
t0

∫ ∞

t0

⎡
⎣(τ eff − ε(τ eff − τ e)1{ηs≤

�J
j=1 Cj}

)
⎛
⎝ηs −

J∑
j=1

Cj1{s≤Tj}

⎞
⎠+ τd

J∑
j=1

Cj1s≤Tj

⎤
⎦

e−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds (2.35)

For ε = 0, Tax Regime 1 is obtained and for ε = 1, the tax system
does not allow for any tax loss carry-forwards.
Real tax systems are positioned somewhere between these extreme
values for ε. By implementing the two extreme cases as a benchmark,
the impact of tax systems on security values can be analyzed.17

We might consider a realistic tax system as a fourth tax regime
where we keep track of a tax loss carry forward that accumulates if cor-
porate earnings are negative and decreases again if corporate earnings
turn positive again. An implementation of such a regime in a lattice
seems possible but introduces path-dependence because the tax loss
carry forwards accumulates differently across each path.

Note that the solution to the values of debt, equity and the gov-
ernment’s claim in Tax Regime 1 and 2 reduces to solving for the firm
value of equation (2.4), the bankruptcy probability of equation (2.9),
and the bankruptcy price of equation (2.11).

2.1.6 Tax Advantage to Debt, and Traditional Firm Value
Models

The blocks of Column 4 in Figure 2.1 show the respective value of debt
DCj ,Tj and equity E after taxes. These are equal to those prices that
17 In fact, we demonstrate in Subsection 4.1.2.2 that security values in the two

benchmark cases differ substantially. Taxes constitute a substantial portion of
firm value overall.
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market participants are willing to pay if arbitrage is excluded and the
properties of the EBIT-process and its current value are known.

In traditional firm value models, the analysis does not start with
the assumption of a stochastic process for EBIT but for an artificially
unlevered firm value, i.e. the firm value of a fully equity financed firm.
To be able to relate this stream of literature to our setup here, denote
the artificially unlevered firm value by VU which is assumed to follow
an Itô process under the risk-neutral martingale measure Q

dVU = µU (VU , t)dt + σU (VU , t)dzQ, (2.36)

where µU (VU , t) denotes the drift and σU (VU , t) the volatility of the
process. In an arbitrage-free market and if the artificially unlevered firm
value were a traded asset, its gain process, i.e. the payout to investors
and the change in firm value, must equal the risk-free return on the
investment. Denote by δU (VU , t) the payout function to all claimants
implying µU (VU , t) = rVU − δU (VU , t).

The issuance of debt is motivated by a tax advantage to debt TAD,
defined as the corporate tax savings on coupon payments compared to
the all equity firm. In Tax Regime 1, TAD is e.g.

TAD =
∫ ∞

t0

τ eff
J∑

j=1

Cj1{s≤Tj}e
−r(s−t0) [1 − Φ(t0, s, ηt0 , ηB)] ds. (2.37)

Additionally, bankruptcy losses18 BL must be considered so that the
levered firm value equals

VL = VU + TAD − BL. (2.38)

Taking differentials of equation (2.38) yields dynamics for the levered
firm value to be

dVL = dVU + dTAD − dBL. (2.39)

All dynamics in a risk-neutral setting must have instantaneous gains
equal to the risk-free interest rate. The instantaneous drift of the dif-
ferent components of dVL are then µU as defined above, µTAD =
rTAD − τ eff

∑J
j=1 CJ1{s≤Tj}, and µBL = rBL, respectively. VL it-

self has a drift of µL = rVL − δL(VL, t). Equation 2.39 becomes
18 Note that the bankruptcy losses BL here do not coincide with the bankruptcy

cost BC defined in Subsection 2.1.3 because the reference artificially unlevered
firm value VU does not equal the firm value V as defined above.
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rVL − δL(VL, t) = [rVU − δU (VU , t)]

+

⎡
⎣rTAD − τ eff

J∑
j=1

CJ1{s≤Tj}

⎤
⎦− rBL

δL(VL, t) − δU (VU , t) = τ eff
J∑

j=1

CJ1{s≤Tj}. (2.40)

The difference in the drift rates of the levered and artificially unlevered
firm value must be equal to the instantaneous corporate tax savings.
Leland (1994), Leland and Toft (1996), Goldstein et al. (2001), and
all other previously published traditional firm value models are not
explicit on the implications of treating the artificially unlevered firm
value as a traded security. Only Leland (1994) mentions in footnote 11
this delicate issue. As discussed above, a more rigorous treatment leads
to a link between the payout functions of levered and unlevered firm
value in equation (2.40). The traditional firm value setup obscures this
interdependence. Fischer et al. (1989b) discuss a no-arbitrage condition
on the drift of the value of unlevered assets A, which acts as their state
variable and is comparable to VU here. Their difference between the
drifts is the advantage to leverage as is here. However, they do not
interpret it as a cash flow.19

Traditional firm value models differ from EBIT-based models. Com-
paring the notion of firm value in our setting with the unlevered firm
value VU following the stochastic process of equation (2.36), the unlev-
ered firm value VU would include

∑J
j=1 DCj ,Tj and the investors’ value

of equity part 1, in Figure 2.1. The role of the bankruptcy cost BC in
the tradition firm value setting is not quite clear. The tax savings of
coupon payments are added to get the levered firm value. Assuming a
stochastic process for this firm value does not necessarily lead to the
same firm value process as implied by assuming a stochastic process
for EBIT.20

19 Note, that due to our discussion here, the numerical examples in Leland (1994)
and Goldstein et al. (2001) need to be taken with care. If not all EBIT is paid out
to security holders and the government, and the firm is able to save on EBIT, the
whole model structure changes because one of the crucial assumptions is violated.
Again, this point only becomes evident in an EBIT-based framework.

20 If EBIT follows a geometric Brownian motion all security values become homoge-
nous of degree 1 with respect to EBIT. The dynamics of η, V , VU , VL would
therefore be identical. All other EBIT-process assumptions entail more compli-
cated relationships.
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As has been seen during the discussion of traditional firm value
models, the interpretation of security values is much more difficult than
in an EBIT-based framework where each security is defined as receiving
a portion of the firm’s EBIT.

2.1.7 Capital Restructuring and Optimal Bankruptcy

Until so far, the firm has an initial capital structure which reflects past
issuing decisions. Due to the dilution of their respective claims, debt
holders will not accept an increase of the current debt burden and
equity holders will not deliberately buy back debt issues by selling new
equity for small changes of the state variable. As a result, the current
capital structure will maintain as long as the benefits of changing it are
not high enough.

If equity holders issue finite maturity debt, they face refinancing de-
cision whenever a debt issue matures. In traditional firm value models,
this issue is often circumvented by assuming that the capital structure
is sufficiently simple. Merton (1974) assumes that the firm is financed
by a finite maturity zero bond and that the firm is liquidated at the
bond’s maturity. Most other authors21 assume that callable perpetual
debt is the second source of financing additional to equity. This sim-
plifies the analysis considerably because all valuation formulas become
independent of future dates. Unfortunately, only few firms constantly
carry one single debt type. Leland and Toft (1996) derive closed form
solutions for finite maturity debt issues. However, their refinancing as-
sumption constitutes that a firm instantaneously retires maturing debt
by reissuing the original finite maturity debt contract. This prevents
equity holders to optimize the capital structure after the initial debt
issue.22

Flor and Lester (2004) allow for a more flexible treatment of cap-
ital restructuring. They let equity holders optimally determine their
restructuring dates by allowing the firm to issue finite maturity, even-
tually callable, debt. At each of the refinancing dates, i.e. when the debt
21 See, e.g. Leland (1994), Goldstein et al. (2001), Mella-Barral (1999), only to

mention a few authors.
22 Dangl and Zechner (2004) use the same framework to consider voluntary debt

reduction. As Leland (1994) already pointed out, without further incentives for
equity holders, there is no immediate reason for equity holders to do so. In Dangl
and Zechner (2004), equity holders can successfully trade off bankruptcy cost and
debt calling cost by issuing short term debt. However, their results concerning the
optimality of short-term debt are not convincing in the light of Flor and Lester
(2004).
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issue is called or matures, equity holders optimize the capital structure
by choosing a debt maturity T , a coupon rate C, and a debt notional
P , so that their claim is maximized.23

Before discussing the equity owners optimization problem, recall
from Table 2.1 that if debt is not refinanced by reissuing new debt,
equity owners as the residual claimants have to infuse money in case
the existing EBIT does not suffice to cover the notional amount. This
assumption implies that the firm cannot save for debt repayment and
is not allowed to sell assets because the investment volume I is fixed
by assumption. This is less stringent as it might appear at first sight.
Assuming that residual EBIT of the solvent firm is available to equity
owners irrespective of whether it is paid out as a dividend, the money
for debt repayments need not come from an equity issue but can stem
from internal financing.24

The assumption of debt being replaced by equity is one valid refi-
nancing policy. However, a thorough modeling should include (1) an
offering procedure for new debt issues to prospective debt holders by
equity holders based on agency theory which fixes coupon and matu-
rity and (2) an investment policy that fixes the necessary funds, i.e.
the notional. The decisions are taken simultaneously and subject to
equity owners discretion of maximizing the value of their claims.25 If
the second requirement is dropped, several conditions can be stated
which need to be fulfilled if new debt is issued.26

Consider a series of increasing times of capital restructuring dates
{ti}∞i=1, ti ≤ ti+1. Pick the first date t = t1 = T1 as the date when the
next debt issue matures whereby we denote t− the instance just before
the new debt issue and t+ the instance thereafter. Equity holders pick a
refinancing strategy {C,P, T}T1 which replaces the existing debt. Note
that, if P < P1, equity holders need to infuse the amount P1 − P into
the firm which depicts the case of voluntary debt reduction as described
by Dangl and Zechner (2004).

Usually, the firm has other debt outstanding. In this case the total
value of the still outstanding debt sums to

Dt(·, VB(s > t)) =
J∑

j=2

DCj ,Tj(·, ηB(s > t)).

23 The parameter λ which denotes the call premium is dropped here to not deliber-
ately complicate the exposition.

24 Recall the discussion of Tax Regime 2.
25 These considerations again introduce path dependence.
26 See e.g. Flor and Lester (2004).
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Dt(·, ηB(s > t)) explicitly depends on the future bankruptcy strategy
ηB(s > t) because after the new debt issue the situation of equity
changes. However, both equity holders and new debt investors incor-
porate the issuance decision and the ex-post behavior of equity holders
beforehand.

Assume that a new debt issue does not lead to an immediate cash
flow to equities but is reduced by K(D(C, T )). K(D(C, T )) includes
issuing cost for the new debt as well as funds that need to stay within
the firm. The debt notional cash flows then sum to P−P1−K(D(C, T )).
Equity holders try to maximize their equity value

max
(C,P,T )

Et+

with

Et+ = Et− + P − P1 − K(D(C, T )) (2.41)

conditional that, firstly, the incremental debt issue takes place at par

D(C, T ) = P. (2.42)

Secondly, equity holders optimize their own claim given the new debt
package with respect to the bankruptcy level.

If equity holders choose bankruptcy optimally, when would they
abandon further operation of the company? Recall that the firm’s divi-
dend policy forces equity investors to infuse capital to keep the level of
invested capital constant. From the viewpoint of equity investors, they
would only honor this call for money if e.g. the expected future value
of their claim is worth more than their investment. If the expected net
present value of equity is not positive, equity investors will refuse to
pay and force the firm into bankruptcy. The firm initiates bankruptcy
procedures. As the above argument shows, equity owners will choose a
function ηB as to

η∗B = sup
ηB

E(ηt0 , ·) (2.43)

It can be shown that the optimal control η∗B has to satisfy the value
matching and smooth pasting conditions27

E(η∗B , ·) = E− (2.44)
∂E(ηt, ·)

∂η

∣∣∣∣
η=η∗

B

= 0, (2.45)

27 See e.g. Dixit (1993).
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meaning that equity owners will choose the optimal bankruptcy barrier
so that continuing to fund the firm is no longer worthwhile.28

So, on the issuance date, the new bankruptcy rule becomes

∂ET1+

∂η

∣∣∣∣
η=η∗

B

= 0. (2.46)

Thirdly, anticipating the optimal refinancing strategy at t− yields
value matching and smooth pasting conditions on each security. These
conditions ensure that financial investors cannot exploit capital struc-
ture changes by arbitrage operations. Equity value matching is already
achieved by identity (2.41). Debt value matching yields

DCj ,Tj (t−) = DCj ,Tj(t+), (2.47)

for j = 2, . . . , J and smooth pasting by

∂Et−
∂η

∣∣∣∣
η=ηt

=
∂Et+

∂η

∣∣∣∣
η=ηt

, (2.48)

∂DCj ,Tj (t−)
∂η

∣∣∣∣
η=ηt

=
∂DCj ,Tj (t+)

∂η

∣∣∣∣
η=ηt

. (2.49)

Analytic solutions to this system of equations can only be obtained in
restrictive settings.

In the literature, the above arguments are summarized under the
topic of dynamic capital structure theory. Goldstein et al. (2001), Chris-
tensen et al. (2000), and Flor and Lester (2004) develop models where
equity owners issue one single finite maturity or perpetual debt con-
tract with a call feature. The call feature is the crucial difference to our
setting here. If the firm is successful and EBIT increases, it might be
profitable for equity owners to call the existing debt before its maturity
and relever the firm to better exploit the tax advantage to debt. This
kind of behavior can be modeled by introducing an upper EBIT-barrier
at which the bond is replaced.29

To incorporate optimal calling features some adjustments to the cur-
rent framework are necessary. In particular, probabilities of hitting the
28 Note that we can express the same conditions using the bankruptcy firm value

VB, because the firm value in equation (2.4) is an invertible function of ηt. In
some cases, this might be useful when discussing debt covenants which ensure
that some value of the firm is left to secure debt holders.

29 If more than one debt issue is outstanding, the bond is replaced whose tax ad-
vantage increases most given the cost of calling and issuing.
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upper barrier and hitting prices for the upper barrier under the condi-
tion that the bankruptcy barrier is not hit before need to be introduced
similar to those of the bankruptcy barrier in Subsection 2.1.3.30 The
bankruptcy barrier probabilities and prices need to be conditioned on
the event of not hitting the upper barrier before bankruptcy. Optimal-
ity conditions for the barrier include the cost of calling the existing
and issuing the new bond as well as smooth-pasting conditions on all
continuing securities.

2.2 Remarks on Extension of the Framework

Structural credit risk models have been very popular in the past 10
years and the basic models of Black and Scholes (1973) and Merton
(1974) have been extended into several directions. Section 2.1 has com-
bined several of the most important developments into one consistent
framework. However, some comments on the treatment of refinancing
strategies which were made with reference to the structural firm value
literature and the model of the bankruptcy event seem warranted.

2.2.1 Flexible Refinancing Policies

In recent years some authors31 have suggested indirect approaches to
refinancing strategies. Instead of modeling debt issues explicitly, a dis-
tance to default process is defined which is mean reverting and in-
fluenced by the current market condition or interest rate level. De-
fault probabilities are then determined with respect to this process, i.e.
bankruptcy occurs if the distance to default is zero. Despite the math-
ematically interesting setup and its tractability under the assumption
of the firm value following a geometric Brownian motion, the concept
is difficult to interpret economically. Cash flows to different claimants
are disguised.32 Especially the mean reverting version of cash flows
assumes that debt is issued whenever the firm does well, but bought
back if the firm’s condition deteriorates. In our framework the extra
cash flows to equity owners become obvious. The authors would need
30 See e.g. Lando (2004), Section 3.3, where these models are described.
31 See, e.g. Collin-Dufresne and Goldstein (2001), and Demchuk and Gibson (2004).
32 Cash flows are of course not the primary focus of this kind of literature. However,

the authors claim that their models are structural and thus economically founded.
So, we do not criticize the modeling approach per se which might be well suited
for pricing purposes but we draw attention to be careful about the direct economic
interpretability of the models.
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to make either adjustments to their valuation formulas for equity or
they need the assumption that all this is done by changing the firm’s
assets. However, if the firm can adjust its assets easily, why does this
only influence credit spreads and not the payout ratio to equity?

To be more precise with the argument. The firm value is assumed
to follow a geometric Brownian motion. This implies that EBIT follows
the same stochastic process. However, there is a payout ratio defined. In
order to be compliant with the setting developed here, we must require
that this payout ratio is equal to ηtdt. Luckily, EBIT is proportional to
the firm value in a geometric Brownian motion setting. Therefore, we
can think of δV = η, which implies that δ = r − µ where δ is assumed
to be constant. If interest rates are stochastic,33 this relation does not
hold any longer and the interpretation is blurred.

Our suggestions in Subsection 2.1.4 seem more appropriate to han-
dle such cases.

2.2.2 Refinement of the Bankruptcy Model

A very rich literature has been developed to refine the model of bank-
ruptcy. Mella-Barral (1999), Anderson and Sundaresan (1996), and Fan
and Sundaresan (2000) describe models of strategic debt renegotiations.
Their models follow the observation that in the case of bankruptcy, eq-
uity owners have an incentive to reduce debt service payments by an
amount that debt holders will accept without triggering bankruptcy.
Bankruptcy only occurs if the firm value deteriorates further and eq-
uity holders reduce coupon payments such that the incurring bank-
ruptcy costs cannot threaten debt holders further. The behavior is the
outcome of a game between debt and equity holders whose Nash equi-
librium depends on the bargaining power of the two players. The bar-
gaining power determines by how much equity holders can decrease
coupon payments without triggering bankruptcy, i.e. how much equity
holders can squeeze out of bankruptcy proceedings.

Francois and Morellec (2004) take this reasoning one step further. If
a firm files for bankruptcy, it usually urges for creditor protection before
actually initiating liquidation. Under this legislation, the firm contin-
ues to operate under court supervision over a certain period where the
firm has a chance to reorganize and recover from a temporal financial
distress. If successful and creditors consent, the firm stays in business.
If the value of the firm deteriorates further until the end of the pro-
tection period, liquidation is triggered. In contrast to the previously
33 Collin-Dufresne and Goldstein (2001) e.g. allow interest rates to follow the Vasicek

(1977) dynamics.
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mentioned literature on strategic debt service, Francois and Morellec
(2004) model the protection period explicitly, finding that the existence
of the protection period and the chance of debt renegotiations increases
the protection triggering firm value and credit spreads.

Refined bankruptcy proceedings fit smoothly into our framework.
We only need to reinterpret ηB to be the barrier at which the firm files
for creditor protection. VB is then the result of the bankruptcy game
described above. The agents in the game will receive a fraction of the
value according to the rules and equilibrium outcome of the game.

2.2.3 Investment Decisions

The connection between operational and purely financial decision are
analyzed in Morellec (2001) and Morellec (2004). Morellec (2001) endo-
genizes the management’s decision to sell assets by modeling the firm’s
profit function as stemming from a Cobb-Douglas production technol-
ogy. Morellec (2004) allows the firm’s manager to earn perquisites from
investments. Thus the work scrutinizes on the agency conflict between
stock and bondholders first described in Jensen and Meckling (1976).

Introducing such an investment decision in the Corporate Securities
Framework implies that the drift and volatility functions of the EBIT-
process µ(·) and ση(·) are changing according to the current amount
of the invested capital.34 The financing decision can then be analyzed
with the tools outlined in this chapter.

2.2.4 Unknown Initial EBIT - Incomplete Knowledge

Firm value models have often been criticized because the probability of
bankruptcy in the near future is virtually zero if the firm starts above
the bankruptcy barrier. This feature leads to almost credit risk-free
short term corporate debt which is empirically not observed.35 Duffie
and Lando (2001) propose an economic setting where investors observe
the current value of the state variable with an error. They proof that
a default intensity and thus a non-zero credit spread for short term
bonds exists. The model here can well be adjusted accordingly. One
only needs to assume that ηt0 obeys a certain distribution with an
expected value of E(ηt0) and an estimation error εη . Note that in such
34 See the discussion in Subsection 2.1.2.
35 Note that other factors such as liquidity, differential tax treatments between gov-

ernment and corporate bonds, and interest rate dynamics might explain such dif-
ferences in short-term credit spreads. See e.g. Longstaff, Mithal and Neis (2004)
for some evidence in a reduced form framework.
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a setting investors’ knowledge has to be kept track of in a separate
filtration of the probability space because η itself is not part of the
investors’ information set. Therefore, care has to be taken with respect
to the measurability of security prices.

2.3 Summary

In this chapter, the economic foundation of structural credit risk mod-
els is reviewed. In contrast to the existing literature, the focus is purely
economic. The mathematical model is carefully reasoned and assump-
tions are clearly stated.

The analysis starts with the firm’s earnings before interest and taxes
(EBIT) which introduces a notion of cash flow into the valuation of
corporate securities. In Subsection 2.1.2 the separation of operating and
financial decisions is discussed which leads to a natural definition of firm
value as the discounted future EBIT. After introducing a bankruptcy
barrier, a complex capital structure with several finite maturity debt
issues, and a rich tax regime, market values of each debt issue, the firm’s
equity, and the government’s claim have been derived in Subsection
2.1.5. Subsection 2.1.7 raises the issue of optimal decisions within the
framework. However, we note that explicit solutions to the system of
equations are difficult to find.

The framework extends the current literature into several directions.
Firstly, we consider a complex capital structure with several finite ma-
turity debt issues. In the literature, authors refrain from working with
more than one bond issue because it complicates the exposition. Ad-
ditionally, several authors claim that the extension to several bond
issues is an easy exercise. In contrast, we show that a careful model of
bankruptcy is needed to keep track of the capital structure in future
subperiods. Secondly, the framework is defined quite generally without
specifying the functions of the EBIT-drift and volatility explicitly. We
are able to demonstrate that an analytical solution of this framework
reduces to solving the firm value equation (2.4), the probabilities of
bankruptcy of equation (2.9), and the Arrow-Debreu bankruptcy price
in equation (2.11). An explicit solution of optimal bankruptcy and cap-
ital structure discussed in Subsection 2.1.7 depends crucially on the
EBIT-process assumption and the complexity of the capital structure.
Thirdly, all claims are easily interpreted because they are all defined
as receiving payments from EBIT. Finally, due to its generality exten-
sions can focus on equations (2.4), (2.9), and (2.11). All other valuation
formulae remain intact.
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ABM- and GBM-EBIT-Models

If the economic framework of the last chapter is used for pricing cor-
porate securities, a specific assumption about the EBIT-process has to
be made. Commonly, authors assumed that EBIT follows a geometric
Brownian motion (GBM) because of its tractability. All claims become
homogeneous of degree 1 in the initial EBIT ηt0 . Economically, the
choice of GBM is debateable because EBIT is severely restricted by
this assumption.

We propose to assume the EBIT-process to follow an arithmetic
Brownian motion (ABM) instead. Although the mathematical proper-
ties of the valuation formulae are not as nice as in the GBM-case and
need numerical methods at some points, we get remarkably far.

Therefore, this chapter is structured as follows: Before deriving the
explicit and numerical solutions for the ABM-case in Section 3.2 and
for the GBM-case in Section 3.3 for comparison, we devote some effort
in detailing the arguments for the process assumption in the following
Section 3.1. Section 3.4 discusses numerical extensions to the analytical
settings to be able to value derivative securities on corporate securities
and introduce refined decision making.

3.1 Arithmetic vs. Geometric Brownian Motion

One of the major advantages of starting the analysis of structural credit
risk models in a very general way as done in Chapter 2 is that the
economic content is easily accessible and therefore economic inconsis-
tencies become apparent. Due to its independence of a specific process
assumption for EBIT, we can predicate the choice of EBIT-process on
economic arguments.
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Assuming that EBIT follows a geometric Brownian motion has the
distinct disadvantage, that EBIT cannot become negative. In order to
start solvent the initial EBIT must lie above zero and consequently all
consecutive EBITs remain positive. This does not imply that equity
owners are not asked to infuse money into the firm, since coupons,
taxes, and debt repayments reduce the instantaneous dividend to equity
owners and can turn it negative. However, two distinct situations are
excluded from the analysis: First, newly founded firms which usually
start with negative EBIT are inaccessible for the theory. Second, the
firm itself will never get into a state where it incurs operational losses.

Whereas the first case only excludes a class of firms over the period
until they exit the founding phase, the second case affects all firms.
It would not be problematic if it can be observed that firms go bank-
rupt before they incur operational losses. However, prominent examples
of distressed companies around the world violate this assumption. In
contrast, debt and equity holders allow a firm to accumulate a quite
substantial amount of operating losses even without severe restructur-
ing until they send a firm into bankruptcy. The rationale is that there is
a chance of a turnaround and future profits compensate for the current
additional funding.

In general, variables following a geometric Brownian motion are ex-
pected to grow at an exponential rate equal to the drift function. It
might be reasonable to assume that this is the case for quick growing
firms – probably newly established firms after they have broken even.
However, what about well established firms that generate already a
substantial EBIT in highly competitive markets? It appears not appro-
priate to assume such a growth rate for EBIT.

As a result, from an economical point of view growth firms can be
reasonably modeled with geometric Brownian motion EBITs.

The reverse is true for arithmetic Brownian motion. In this case,
we do not suffer the non-negativity constraint of GBM. However, the
growth perspective is limited to being only additive which seems to be
plausible for all firms except quickly expanding growth firms. However,
as we will see in the next section, a high firm value can be attributed
either to a high EBIT growth or to a high current EBIT. Such a distinc-
tion is impossible in firm value models of geometric Brownian motion.1

1 This distinction effectively explains why young firms in the technology sector
attained such high values despite the huge losses they incurred. Their growth po-
tential was judged high. However, this opinion was revised before the technology
bubble burst.
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As a final judgement, arithmetic Brownian motion EBITs appear
a more natural assumption as geometric Brownian motion. For this
reason, we solve the ABM-case first and state the respective GBM-
results for comparison in Section 3.3.

3.2 The Basic ABM-EBIT-Model

This section develops the analytical solution of the economic framework
with the assumption that EBIT follows an arithmetic Brownian motion.

3.2.1 EBIT-Process and Firm Value

Define an economy as in Chapter 2 in which the firm generates an
EBIT-flow of the form

dη = µdt + σηdzQ, (3.1)

with the risk-neutral drift µ and the standard deviation ση as constants.
dzQ denotes a standard Brownian motion under the risk-neutral mar-
tingale measure Q. The current EBIT is ηt0 .

A claim V that receives ηtdt, t > t0 forever, must have a law of
motion by Itô’s lemma of

dV =
∂V

∂η
dη +

1
2

∂2V

∂η2
〈dη2〉. (3.2)

By arbitrage arguments, the expected capital gain on the claim V must
equal a risk free return so that

ηdt + dV = rV dt. (3.3)

Guess that the solution of this differential equation is linear in the
variable η, i.e. V = A + Bη. Inserting equation (3.1), its square root,
and the derivatives of the proposed solution into (3.2), the parameters
A and B can be solved for together with equation (3.3) to find a firm
value of

V =
µ

r2
+

ηt0

r
. (3.4)

By Itô’s lemma, the process of the firm value is given by

dV =
1
r

[
µdt + σηdzQ

]
, (3.5)



38 3 ABM- and GBM-EBIT-Models

and thus follows the same dynamics as EBIT up to the factor 1/r.
If the detour via the physical measure P is taken, the P-process of

EBIT is assumed to follow

dη = µηdt + σηdzP, (3.6)

where µη is the constant physical drift and dzP is a standard Brownian
motion under the measure P. The existence of a martingale measure Q

implies a risk premium θ where µ = µη − θση. Together with equation
(3.4), this implies a risk premium of

θ =
µη − r

ση
+

r + r · ηt0 − r2 · V
ση

. (3.7)

Equation (3.7) has an additional term compared to the usual risk pre-
mium of a traded asset. However, substituting equation (3.7) into equa-
tion (3.5) yields

dV + ηdt = rV dt +
ση

r
dzQ. (3.8)

Therefore the drift of the risk-neutral firm value process is equivalent
to the risk-free return if adjusted for intermediate cash flows. The risk
premium in equation (3.7) is constant and does not depend upon the
stochastic factor η. The first derivative of the risk premium with respect
to η is zero.

3.2.2 The Case of a Single Perpetual Debt Issue

Consider as a start a capital structure discussed in Goldstein et al.
(2001) or Leland (1994) where the firm only issues a single perpetual
debt.

3.2.2.1 The Value of Debt, Equity, and the Government’s
Claim

From standard textbooks on differential equations2, any claim F with
a regular payment flow f(ηt) to investors depending on EBIT η must
satisfy the partial differential equation (PDE)

µ · Fη +
(ση)

2

2
· Fηη + Ft + f(ηt) = r · F. (3.9)

2 See e.g. Shimko (1992).



3.2 The Basic ABM-EBIT-Model 39

For perpetual claims, such as preferred dividends and perpetual debt,
equation (3.9) simplifies to a time-independent version. The PDE be-
comes an ordinary differential equation (ODE)

µ · Fη +
(ση)

2

2
· Fηη + f(ηt) = r · F. (3.10)

The general solution3 of the homogenous ordinary differential equation
disregarding the regular cash flows f(ηt)

µ · Fη +
(ση)

2

2
· Fηη − r · F = 0 (3.11)

is given by

F = A1 · e−k1·ηt + A2 · e−k2·ηt (3.12)

with

k1/2 =
µ ∓

√
µ2 + 2r (ση)

2

(ση)
2 . (3.13)

k1 is negative, k2 positive. If ηt becomes large, the exponential involving
k1 in equation (3.12) goes to infinity whereas the second exponential
involving k2 converges to zero.

As noted above, the general solution does not account for interme-
diate cash flows. To find a solution for a specific security, the present
value of the specific security’s payments to investors must be accounted
for. This particular solution F ∗ is added to the general solution given by
equation (3.12). The parameters A1 and A2 are determined by bound-
ary conditions of the security under consideration.

Consider first the Arrow-Debreu bankruptcy claim pB(t0,∞, ηt0 , ηB)
from Subsection 2.1.3. The constant firm value at bankruptcy is VB as
defined in equation (3.4) with ηt0 = ηB.4 This claim has no maturity
date in the current setting nor intermediate cash flows. Therefore the
general solution (3.12) can be used directly.

For the Arrow-Debreu bankruptcy price, there exist two boundary
conditions. If EBIT ηt increases, the security’s value has to converge to
zero, since it becomes less likely that the firm goes bankrupt. If EBIT
approaches ηB , the security price must reach one. Both conditions imply
that A1 = 0, A2 = exp (k2 · ηB), and that
3 See e.g. Shimko (1992, p. 34 ff.).
4 It is safe to assume that ηB is constant in an infinite maturity setting. Optimality

arguments proof later that η∗
B is in effect a constant control.
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pB(t0,∞, ηt0 , ηB) = e−k2·(ηt0−ηB). (3.14)

Therefore, the insolvent part of the firm as defined in equation (2.14)
is valued by

V − = VB · pB(t0,∞, ηt0 , ηB) (3.15)

and the solvent part as

V + = V − VB · pB(t0,∞, ηt0 , ηB). (3.16)

The solvent value of a perpetual debt issue before taxes V +
C,∞ can be

determined similarly. The particular solution F ∗
C,∞ = C/r is the value

of the coupon payments to the debt holders until infinity. The solution
of the non-homogenous differential equation is F + F ∗ or

V +
C,∞ =

C

r
+ A1 · e−k1·ηt0 + A2 · e−k2·ηt0 . (3.17)

Limit conditions limηt→∞ V +
C,∞ = C/r and limη→ηB

V +
C,∞ = 0 lead

to A1 = 0 and A2 = −C
r · exp(k2 · ηB) and

V +
C,∞ =

C

r
− C

r
· ek2·ηB · e−k2·ηt0

=
C

r
·
[
1 − e−k2(ηt0−ηB)

]
=

C

r
· [1 − pB(t0,∞, ηt0 , ηB)] . (3.18)

The equity value before taxes then becomes

V +
E = V + − V +

C,∞.

Extending the analysis to Tax System 1 as defined in Subsection
2.1.5, we find that the investor values the solvent part of the corporate
perpetual D+

C,∞ as

D+
C,∞ = (1 − τd) · V +

C,∞ (3.19)

because V +
C,∞ is proportional to the coupon level C and thus to taxation

itself. A principal repayment, which is usually treated differently for tax
purposes, does not appear in the debt value. The solvent part of equity
E+ becomes5

5 Note that V E+
C,∞ = (1 − τ c)V +

C,∞.
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E+ = (1 − τ eff ) · (V + − V +
C,∞). (3.20)

The government’s share of the solvent firm’s value amounts to

G+ = τ eff · (V + − V +
C,∞) + τd · V +

C,∞. (3.21)

The first term can be interpreted as the tax payment due to corpo-
rate earnings and dividends, the second term as the tax payments on
coupons. The sum of all three claims in equations (3.19) to (3.21) is
equal to the firm’s solvent value as defined in equation (3.16). Thus

V + = D+
C,∞ + G+ + E+.

If the bankruptcy level is set to ηB, the firm value in the case of
bankruptcy is given by equation (3.15) which adds up to total firm
value given by equation (3.4) when summed with the solvent firm value
given by equation (3.16):

V = V + + V −.

Usually, it is assumed that there are costs associated with bankruptcy.
Set in equation (2.15), α1 = 0 and α2 = α, so that a portion α of VB is
lost when the firm abandons operations. Bankruptcy costs are valued
at

BC = α · V −. (3.22)

By assumption, debt holders become the new owners of the firm.
Pick a VB sufficiently low such that not all of the claims senior to
equity can be honored and equity holders receive nothing (E− = 0).
Because the new owners are subject to the corporate tax rate, they
value their claim as

D−
C,∞ = (1 − α) · (1 − τ eff ) · V −. (3.23)

The government again receives the tax payments, namely

G− = (1 − α) · τ eff · V −. (3.24)

The three claims described in equations (3.22), (3.23), and (3.24)
again sum to the value of the insolvent firm, as specified in equa-
tion (3.15)

V − = D−
C,∞ + G− + BC.
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3.2.2.2 The Optimal Bankruptcy Level and Coupon

Under the current restrictive capital structure we can continue the ex-
position by considering the optimal choice of the bankruptcy level ηB

and coupon C. As suggested in Subsection 2.1.7, take the debt charac-
teristics as given and maximize equity value with respect to the bank-
ruptcy barrier ηB . The first derivative of equity with respect to EBIT
evaluated at the bankruptcy barrier as in equation (2.45) is given by

∂E

∂η

∣∣∣∣
η=ηB

= 0

= (1 − τ eff )
[
1
r

+ k2

(
VB − C

r

)
e−k2(ηt0−ηB)

]∣∣∣∣
η=ηB

=
1
r

+ k2

(
VB − C

r

)
. (3.25)

By noting that VB is defined as

VB =
ηB

r
+

µ

r2
,

the optimal bankruptcy barrier results as

η∗B = C − µ

r
− 1

k2
. (3.26)

Consider next the capital structure decision of equity owners. The
capital structure is simple so that only one perpetual debt issue is ad-
missible. Before issuing debt, the firm is fully equity financed. Equity
owners optimize their equity value at the issuing date. They will receive
E as a promise of future residual payments and a cash inflow from the
debt issue P = DC,∞ because debt is issued at par. Furthermore, no
maturity decision is needed in the perpetual debt case. So the optimiza-
tion problem is equivalent to optimizing (1− k)DC,∞ + E with respect
to the coupon C, where k denotes the portion of the issuing amount
which is not available to equity investors. Using equation (3.26), the
debt and equity derivative with respect to the coupon level become

∂DC,∞
∂C

=
1 − τd

r
+ e−k2(ηt0−η∗

B)

[
k2

C

r

[
(1 − α)(1 − τ eff ) − (1 − τd)

]

− 1 − τd

r

]
. (3.27)

and
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∂E

∂C
=

1 − τ eff

r

(
−1 + e−k2(ηt0−η∗

B)
)

. (3.28)

The optimal coupon C∗ solves the equation (1−k)∂DC,∞/∂C+∂E/∂C.
C∗ cannot be stated explicitly but is the unique solution to the Lambert
W function

(1 − τ eff ) − (1 − k)(1 − τd) = e−k2(ηt0−η∗
B)
[
(1 − τ eff )

+(1 − k)
(
C∗[(1 − α)(1 − τ eff )

−(1 − τd)] − (1 − τd)
)]

. (3.29)

Equation (3.29) can be solved for ηt0 .
6 Then ηt0 is strictly monotonically

increasing with the coupon level C∗. Therefore, C∗ can easily be found
numerically.

3.2.2.3 Minimum Optimal Coupon and Asset Substitution

Two special cases are interesting. Consider first, that the debt issue is
needed for investments so that µ and ση can be realized in the future.
Then k = 1, and the optimal coupon becomes

C∗ = k2ηt0 +
µ

r
+

1
k2

. (3.30)

The C∗ of equation (3.30) is the lowest coupon equity owners pay given
the current EBIT. Whenever proceeds from the debt issue can be paid
out as a dividend immediately, equity owners are willing to accept a
higher coupon.

Second, consider the asset substitution problem raised by Jensen
and Meckling (1976) and discussed in Leland (1994) and Leland (1998).
Equity owners might reallocate investments after debt is issued into
projects that are more risky. Jensen and Meckling (1976) claim that
this strategy increases the equity value and harms debt holders due
the abandonment option inherent in the equity contract. Leland (1994)
shows in a geometric Brownian motion setting that the agency problem
only exists if equity holders may choose the bankruptcy level optimally.
If a value covenant is enforced, there is no incentive for equity holders
to shift risk.
6 Note that by equation(3.26), C∗ appears in the exponent, as well.
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Disregarding effects on the risk-neutral drift µ if the risk of the firm
ση is changed,7 the effects of an increase in firm risk depend crucially
on the parameter k2. Changing the firm’s risk, decreases k2.

∂k2

∂ση
= −2

µ
√

µ2 + 2rσ2
η + µ2 + rσ2

η

σ3
η

√
µ2 + 2rσ2

η

has a positive nominator if µ > 0 and if µ < 0 and |µ| >
√

r/2ση. The
second condition is relatively loose. If k2 has a negative derivative, the
optimal bankruptcy barrier decreases, as well because

∂V ∗
B

∂ση
=

1
rk2

2

∂k2

∂ση
.

Therefore, the effect on the bankruptcy price becomes ambiguous

∂pB(t0,∞, ηt0 , η
∗
B)

∂ση
= −∂k2

∂ση

(
η − η∗B − 1

k2

)
pB(t0,∞, ηt0 , η

∗
B),

because it depends on the sign of (η − η∗B − 1/k2). For

V � C

r
⇒ ∂pB(t0,∞, ηt0 , η

∗
B)

∂ση
� 0.

Equity owners only have an incentive to increase risk if the equity
derivative with respect to ση is positive.

∂E

∂ση
= −(1 − τ eff )

∂k2

∂ση
pB(t0,∞, ηt0 , η

∗
B)
[

1
rk2

2

−
(

ηt0 − η∗B − 1
k2

)]

The positivity condition reduces to

1
k2

2

> r2

(
V − C

r

)

which is naturally fulfilled if the firm value is low V ∗
B < V < C/r.

For V > C/r, risk can be optimized because the equity derivative
with respect to the EBIT-volatility can become zero, i.e. equity owners
choose an optimal risk level which solves

k2 = (r(rV − C))−
1
2 .

7 The following results depend on µ being independent of ση. It is assumed that
the risk premium θ changes accordingly to ensure that independence.
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For V > C/r-firms, risk optimization becomes possible because the firm
can trade off 2 effects. By increasing risk, the bankruptcy probability
rises thus lowering debt value. However, future tax savings become less
valuable and the solvent firm value decreases. The lower the firm value,
the less important is the second effect.

If a debt covenant is negotiated, equity owners contract on a bank-
ruptcy value level V C

B and implicitly on ηC
B . The equity derivative then

becomes

∂E

∂ση
= −(1 − τ eff )

∂k2

∂ση
pB(t0,∞, ηt0 , η

C
B)
(

V C
B − C

r

)

which is negative if the covenant level is V C
B < C/r. So equity holders

always have the incentive to reduce the firm’s risk because risk harms
their claim by bringing the firm closer to bankruptcy.8

3.2.3 Finite Maturity Debt and Multiple Financing Sources

The model discussed in Section 3.2.2 cannot describe a term structure
of corporate credit spreads because only perpetual debt was considered.
To describe the value of debt with maturities less than infinity, we use
the setup of Subsection 2.1.4.

3.2.3.1 Bankruptcy Probabilities and Claims with Finite
Maturities

For the derivation of time-inhomogeneous security prices in the current
setting, the infinite maturity bankruptcy claim of the last subsection
is not sufficient. As discussed in Subsection 2.1.3, bankruptcy proba-
bilities and claim’s prices for all future points in time are needed when
the capital structure changes.

Without loss of generality, the exposition is restricted to the case
where an underlying variable X follows an arithmetic Brownian motion
with drift ν and standard deviation σ. The current value Xt0 = 0 and
the barrier level is denoted by a sequence of barriers ytj which are
constant in the time interval ]tj−1, tj ] for j = 1 . . . n, and tn = T being
the final maturity.9

8 In effect, this result is independent of the process assumption. Leland (1994)
shows the same effect for geometric Brownian motion.

9 Above it is argued that we set X = η and take ν = −µ to find hitting probabilities
with a lower barrier.
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Figure 3.1 illustrates such a setting with three subperiods. The bar-
riers might be changing arbitrarily at tj but remain constant within
each subperiod. Hitting probabilities are derived by calculating the
complementary probability of not hitting the barrier before or at tj.
For the first subperiod ]t0, t1], the probability of not hitting the barrier
until t1 is equivalent to the process staying below yt1 and ending at t1
below yt2 . To derive this probability, zt1 ≤ min(yt1 , yt2) is first chosen
arbitrarily so that the next subperiod can be entered without going
bankrupt. Letting, zt1 → min(yt1 , yt2) yields the desired result. One
can repeat the same kind of analysis by including the next subperiod
until we reach the maturity T .

Fig. 3.1. Time structure of barrier levels
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To ease the derivation of the probabilities of not hitting the barrier,
define the process of the running maximum by Mti with

Mti = sup
ti−1<s<ti

Xs. (3.31)

The joint probability of surviving the first period ]t0, t1] and ending at
t1 below a certain level zt1 can be written by the law of total probability
as

Pν(Xt1 ≤ zt1 ,Mt1 < yt1) = Pν(Xt1 ≤ zt1)
−Pν(Xt1 ≤ zt1 ,Mt1 ≥ yt1), (3.32)

where the subscript indicates that the probability is taken with respect
to the probability measure that has drift ν. The first term is the value
of cumulative normal distribution with Xt1 N(µ(t1 − t0), σ2(t1 − t0)).
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Harrison (1985) derives the second term by using the reflection principle
for a drift-less Brownian motion under the probability measure P0, then
differentiating the probability with respect to zt1 , and lastly applying
Girsanov’s theorem to change the measure from P0 to Pν .

The probability that the process X hits the barrier yt1 and ends up
below zt1 at the end of the first period, denoted by Φ(t0, t1, yt1 , zt1 , ν),
can then be found as

Φ(t0, t1, yt1 , ν) = 1 − Pν(Xt1 ≤ zt1 ,Mt1 < yt1)

= N(h1) + e
2ν
σ2 ·yt1N(h2) (3.33)

with

h1 =
−zt1 − ν · (t1 − t0)

σ
√

t1 − t0
,

h2 =
zt1 − 2yt1 + ν · (t1 − t0)

σ
√

t1 − t0
,

where N(·) denotes the cumulative univariate standard normal distri-
bution function. For zt1 → min(yt1 , yt2), we get the desired hitting
probability in the subperiod ]t0, t1].

The above mentioned procedure can be extended to more than one
subperiod by iteratively using the law of total probability until we are
able to apply the reflection principle. Before stating the general result,
it is helpful to illustrate the derivation for n = 3.10 Hereby, we use
the convention that the index j denotes events such that P (Bj) =
P (
⋃n

i=1 Bi).11 Starting again with the joint probability of not hitting
the barrier in the three subperiods and ending up at each subperiod
below zti , one gets
10 See Carr (1995), Appendix A2, for an illustration of the bivariate case where the

barrier is constant over the subperiods.
11 As an example, consider the event Bi = {Xti ≤ zti} of the stochastic variable Xti

being below zti at ti. Then, Bj denotes the joint event of all Bi for all i = 1, . . . , j.
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P0(Xtj ≤ ztj ,Mtj < ytj)
=P0(Xtj ≤ ztj ,Mti < yti , i = {1, 2})

−P0(Xtj ≤ ztj ,Mti < yti , i = {1, 2},Mt3 ≥ yt3)
=P0(Xtj ≤ ztj ,Mt1 < yt1) − P0(Xtj ≤ ztj ,Mt1 < yt1,Mt2 ≥ yt2)

− [P0(Xtj ≤ ztj ,Mt1 < yt1 ,Mt3 ≥ yt3)

− P0(Xtj ≤ ztj ,Mt1 < yt1 ,Mti ≥ yti , i = {2, 3})]
=P0(Xtj ≤ ztj ) − P0(Xtj ≤ ztj ,Mt1 ≥ yt1)

− [P0(Xtj ≤ ztj ,Mt2 ≥ yt2) − P0(Xtj ≤ ztj ,Mti ≥ yti , i = {1, 2})]
−{P0(Xtj ≤ ztj ,Mt3 ≥ yt3) − P0(Xtj ≤ ztj ,Mti ≥ yti , i = {1, 3})

− [P0(Xtj ≤ ztj ,Mti ≥ yti , i = {2, 3})
−P0(Xtj ≤ ztj ,Mti ≥ yti , i = {1, 2, 3})]} . (3.34)

By reflecting the process at the first and all consecutive barriers, equa-
tion (3.34) can be reexpressed by a tri-variate cumulative normal dis-
tribution.

P0(Xtj ≤ ztj ,Mtj < ytj) = P0(Xtj ≤ ztj ) − P0(−Xtj ≤ ztj − 2yt1)

−
⎡
⎣P0

⎛
⎝ Xt1 ≤ zt1

−Xt2 ≤ zt2 − 2yt2

−Xt3 ≤ zt3 − 2yt2

⎞
⎠− P0

⎛
⎝ −Xt1 ≤ zt1 − 2yt1

Xt2 ≤ zt2 + 2(yt1 − yt2)
Xt3 ≤ zt3 + 2(yt1 − yt2)

⎞
⎠
⎤
⎦

−
⎧⎨
⎩P0

(
Xti ≤ zti , i = {1, 2}
−Xt3 ≤ zt3 − 2yt3

)

−P0

(−Xti ≤ zti − 2yt1 , i = {1, 2}
Xt3 ≤ zt3 + 2(yt1 − yt3)

)

−
⎡
⎣P0

⎛
⎝ −Xt1 ≤ zt1

−Xt2 ≤ zt2 − 2yt2

Xt3 ≤ zt3 + 2(yt2 − yt3)

⎞
⎠

−P0

⎛
⎝ −Xt1 ≤ zt1 − 2yt1

Xt2 ≤ zt2 + 2(yt1 − yt2)
−Xt3 ≤ zt3 − 2(yt1 − yt2 + yt3)

⎞
⎠
⎤
⎦
⎫⎬
⎭ . (3.35)

The consecutive reflection of the process X at the barriers can best be
illustrated by the triple reflection of the last probability which is de-
picted in Figure 3.2. Note that the first reflection at yt1 turns the initial
upper barrier yt2 into a lower barrier 2yt1 −yt2 which is also reflected at
yt1 . The second probability limit 2yt1 −2yt2 + zt2 can be derived by the
same argument as the first, i.e. reflection of the already once reflected
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process at the lower barrier 2yt1 − yt2 . The second reflection turns the
third barrier yt3 into an upper barrier located at 2yt1 −2yt2 +yt3 with a
reflected probability limit of 2yt1 − 2yt2 + 2yt3 − zt3 . Taking the correct
inequalities into account leads to the above tri-variate probability.

The general structure of equations (3.34) and (3.35) can be summa-
rized by

P0(Xtj ≤ ztj ,Mtj < ytj) =
∑
i∈E

∑
Ai

P0(Xtj ≤ ztj ,Mti ≥ yti , i ∈ Ai)

−
∑
i∈U

∑
Ai

P0(Xtj ≤ ztj ,Mti ≥ yti , i ∈ Ai), (3.36)

where the set Ai is defined as

Ai = {All sets of N with i elements}, (3.37)

and

N = {0, 1, 2, . . . , n}. (3.38)

The index sets E and U are defined respectively by

E =
{

i|i = 2k ≤ n, k = 0, . . . ,
n

2

}
U =

{
i|i = 2k − 1 ≤ n, k = 1, . . . ,

n + 1
2

}
.

Define a counter pj for the number of reflections up to time period
tj for an arbitrary index set B by

pj(B) =
j∑

i=1

1{i∈B}. (3.39)

After consecutively reflecting the probabilities of equation (3.36), one
yields

P0(Xtj ≤ ztj ,Mtj < ytj )

=
∑
i∈E

∑
Ai

P0

(
(−1)pj(Ai)Xtj ≤ ztj + z∗j

)

−
∑
i∈U

∑
Ai

P0

(
(−1)pj(Ai)Xtj ≤ ztj + z∗j

)
. (3.40)

with
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Fig. 3.2. Illustration of a triple reflection: The thick black line is the original path of the stochastic process Xt, which
faces three absorbing barriers yt1 , yt2 , and yt3 . In order to calculate the probabilities of hitting all three barriers and ending
below zt1 , zt2 , and zt3 , the stochastic process is reflected first at the first barrier (thick grey line), second at the reflected
second barrier (thin black line), and third at the twice reflected barrier (thin grey line). The limits of the tri-variate normal
distribution are indicated within the figure.
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z∗j = (−1)pj(Ai) 2
j∑

k=1

(−1)pk(Ai)−1ytk1{i∈Ai}.

The variables Xtj , j = 1, . . . , n, in equation (3.40) are n-variate
normally distributed with

P0

(
(−1)pj(Ai)Xtj ≤ ztj + z∗j

)
=Nn

(
ztj + z∗j√

tj
, Ω(Ai)

)
, (3.41)

where Ω denotes the n x n correlation matrix with entries

Ωi,k(B) = (−1)pi(B)+pk(B)

√
min(ti, tk)
max(ti, tk)

, i, k = 1, . . . , n.

To change the probability measure from P0 to Pν with the Radon-
Nikodym derivative

dPν

dP0
= eνzn− 1

2
ν2tn ,

it is necessary to differentiate the multivariate cumulative normal dis-
tribution of equation (3.41) with respect to all initial upper limits zj,
j = 1, . . . , n. After the measure transformation12 and integrating, one
gets

Pν

(
(−1)pj(Ai)Xtj ≤ ztj + z∗j

)

=ez∗n ν
σ2 Nn

(
ztj + z∗j − (−1)pj(B)+pn(B)tjν

σ
√

tj
, Ω(An)

)
. (3.42)

As in the one-dimensional case the hitting probability for the inter-
val ]t0, tj ] is again

Φ(t0, tj , ytj , ν) = 1 − Pν(Xtj ≤ ztj ,Mtj < ytj ), (3.43)

where zti = min(yti−1 , yti).
In our case, the barrier ηB is below the starting value ηt0 of the

EBIT-process η, all equations are still valid due to the symmetry of
12 See e.g. Carr (1995), Appendix A4. Carr (1995)’s vectors w and µ become w =

[0 · · · 0, ν]′ and µ = [z∗
j ] in out setting.
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Brownian motion. The only adjustment is that the drift ν = −µ must
be used13 and yti = ηti − ηB(ti).14

For the bankruptcy prices, the exposition is again restricted to the
case of approaching a barrier from below. The changes in variable as
discussed above apply here as well.

As shown in Carr (1995), Appendix A1, changing the numéraire
from the bank account to the bankruptcy claim itself yields the value
of the bankruptcy claim. Define a new drift

ν̃ =
√

ν2 + 2σ2r.

The price of a finite maturity hitting claim for the first subperiod ]t0, t1]
is given by

pB(t0, t1, yt1) = e−
ν−ν̃
σ2 yt1Φ(t0, t1, yt1 , ν̃). (3.44)

All consecutive claims can be defined recursively by

pB(t0, tj , ytj ) = pB(t0, tj−1, ytj−1)

+e−
ν−ν̃
σ2 ytj (Φ(t0, tj , ytj , ν̃) − Φ(t0, tj−1, ytj−1, ν̃)). (3.45)

For the first subperiod, the hitting claim’s value can be written
explicitly as15

pB(t0, t1, yt1) = e−k1·yt1N(q1) + e−k2·yt1N(q2) (3.46)

with

q1 =
−yt1 −

√
ν2 + 2rσ2 · (t1 − t0)
σ
√

t1 − t0

q2 =
zt1 − 2yt1 +

√
ν2 + 2rσ2 · (t1 − t0)

σ
√

t1 − t0

and k1/2 as defined in equation (3.13), as well as zt1 as defined above.
Equations (3.45) and (3.43) can be interpreted economically. In Sub-

section 3.2.2 it was argued that pB(t0,∞, ηt0 , ηB(∞)) is the Arrow-
Debreu price of a perpetual security that pays one currency unit if
bankruptcy occurs. Equivalently, in terms of the option pricing litera-
ture, it is the price of a perpetual down-and-in barrier option written
13 See e.g. the appendix of Duffie and Lando (2001) or Ericsson and Reneby (1998).
14 Note that yti = g(ηti , ηB(ti)) mentioned in Subsection 2.1.3 that normalizes the

process η with respect to the barrier ηB(ti) so that standard results are applicable.
15 See e.g. Rubinstein and Reiner (1991). Note that, in contrast to Rubinstein and

Reiner (1991), we have here a setting based on arithmetic Brownian motion.
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on the EBIT with a single barrier ηB(∞) that pays a unit lump sum
upon passing the barrier for the first time. Similarly, equation (3.43) is
the price of a finite maturity down-and-in barrier option that pays one
currency unit upon passing the barrier ηB(t0 < t ≤ T ) if bankruptcy
occurs before or at maturity T .

Φ(t0, T, ηt0 , ηB(T )) represents the probability of hitting the barrier
ηB(T ) before or at maturity T . A down-and-out barrier option would
have the price exp(−r(T − t0)) · (1 − Φ(t0, T, ηt0 , ηB(T ))) and pay one
currency unit at maturity T if the option is still alive.

The barrier option framework has merit because we can interpret
corporate securities as portfolios of barrier options. Therefore, different
bankruptcy models can be addressed by changing the structure of the
barrier options which are used to construct the respective corporate
security.16

In real world applications, the multivariate cumulative normal dis-
tribution of equation (3.43) must be evaluated which is computation-
ally demanding. However, the special correlation structure might be
exploited here. Tse, Li and Ng (2001) show that the inverse of Ω(B)
is tri-diagonal which reduces the exponential terms of the multivariate
normal density considerably. As a result, a direct numerical integra-
tion of the simpler density is computationally faster and can therefore
be conducted with higher precision. Moreover, Tse et al. (2001) give
error bounds for their approximation so that the precision can be con-
trolled with which the multivariate cumulative normal distribution is
approximated.

Alternatively, the multivariate normal algorithm proposed in Genz
(1992) can be used. It is computationally fast and can be approximated
to a desired error level, as well. In this study, Genz (1992)’s method is
used.

3.2.3.2 Value of the First Maturing Bond

Using results of the last subsection, closed-form solutions for finite ma-
turity debt issues can be found by directly applying equation (2.31).
Recall from Subsection 2.1.4 that the firm not only uses one source of
debt financing but issues j = 1, . . . , J bonds where each bond value
to investors after taxes, DCj ,Tj , is characterized by a continuously paid

16 See e.g. Ericsson and Reneby (1998), who use different barriers for coupon and
notional payments. Brockman and Turtle (2003) favorably test a model with
default barrier and compare the results with a model of one time bankruptcy like
Merton (1974).
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coupon rate, Cj, a maturity date, Tj , and the principal, Pj . Without
loss of generality, set j = 1 for the bond issue that matures next, and
order the subsequently maturing bonds in increasing order. Consider
the issue j = 1 first. The value of the bond j = 1 can be expressed as

DC1,T1 =
∫ T1

t0

(1 − τd)e−r·sC1[1 − Φ(t0, T1, ηt0 , ηB(T1))]ds

+e−r·(T1−t)P1[1 − Φ(t0, T1, ηt0 , ηB(T1))] + D−
C1,T1

. (3.47)

The first line and the first term in the second line of equation (3.47)
represent the value of the cash flows, interest payments and principal
repayment. Each of these payments takes into account the probability
of the firm going bankrupt and corresponds to D+

C,∞ of equation (3.19)
if we considered a perpetual claim. The term D−

C1,T1
in the second line

denotes the value in the case of bankruptcy. This claim is interpreted
similarly to equation (3.23) but accounts for the fact that more than
one debt issue is outstanding.

With respect to tax payments, we assume Tax Regime 1. Bond
investor must pay a tax of τd on coupons received and are fully liable
to corporate taxation and equity taxation in the case of bankruptcy. In
many countries capital gains for long-term investments are tax exempt,
so that no tax rate is applied to the redemption of the principal.

Similar to Subsection 2.1.4, VB(T1) is split among debt holders,
the government, the loss portion, and — if some value can still be
distributed — the equity holders. If the firm goes bankrupt before or
at T1, we assume that the value of the firm is split proportionally among
the debt claimants. This implies

V −
C1,T1

= min

⎡
⎣(1 − α)VB(T1);

J∑
j=1

Pj

⎤
⎦ P1

J∑
j=1

Pj

pB(t0, T1, ηt0 , ηB(T1)). (3.48)

The minimum function ensures that not more funds are distributed
among debt holders than were originally lent to the firm.

The weighting factor w1 = P1/
∑J

j=1 Pj does not account for the se-
niority of debt and treats all bond issues similarly. Altering this weight-
ing factor allows for the integration of junior bonds in the analysis.

The other bonds j = k receive a recovery value similar to (3.48) but
with a weighting factor Pk/

∑J
j=1 Pj . Denote the recovery value before

taxes by V −
Ck,T1

.
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If all debt claims have been paid, the remaining funds are distributed
among stock holders. Therefore,

V −
E,j=1 = max

⎡
⎣(1 − α) · VB(T1) −

J∑
j=1

Pj ; 0

⎤
⎦

· pB(t0, T1, ηt0 , ηB(T1)). (3.49)

V −
E,j=1 and

∑J
j=1 V −

Cj ,T1
add up to (1−α)VB(T1)pB(t0, T1, ηt0 , ηB(T1)).

Thus, the value of the loss portion in the period ]t0, T1] is

BCj=1 = α · VB(T1) · pB(t0, T1, ηt0 , ηB(T1)). (3.50)

Introducing taxes as in Subsection 3.2.2, we find the after-tax bank-
ruptcy values of the first period by

E−
j=1 = (1 − τ eff )V −

E,j=1 (3.51)

D−
Cj ,T1

= (1 − τ eff )V −
Cj ,T1

j = 1 . . . J (3.52)

and the value of taxes paid to the government by

G−
j=1 = τ eff

⎛
⎝V −

E,j=1 +
J∑

j=1

V −
Cj ,Tj

⎞
⎠

= τ eff (1 − α)VB(T1)pB(t0, T1, ηt0 , ηB(T1)). (3.53)

Note that equations (3.51) through (3.53) only account for the time
from t0 to T1, i.e., the time when the first debt issue is still outstanding.
Since the capital structure changes when the first debt is repaid, more
funds may be available for distribution among the remaining debt and
equity holders in the case of bankruptcy after this event. Still, we do
not make any attempts to find an optimal ηB , which, in principle, can
be assumed to be so low such that equity holders never receive anything
in the case of bankruptcy.

An explicit solution for the value of the nearest maturing debt can
be found. Integrating (3.47) by parts leads to

DC1,T1 = (1 − τd)
C1

r

+e−r(T1−t)

[
P1 − (1 − τd)

C1

r

]
[1 − Φ(t0, T1, ηt0 , ηB(T1))]

−(1 − τd)
C1

r
· pB(t0, T1, ηt0 , ηB(T1)) + D−

C1,T1
(3.54)
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Fig. 3.3. Portfolio composition and interpretation of the first debt issue
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Equation (3.54) can be interpreted as a portfolio of barrier options
where portfolio amounts are determined by risk-free perpetual bonds
and lump sum payments. As illustrated in Figure 3.3, the first term
((1 − τd)C1)/r is the value of an infinite after-tax coupon stream to
bond investors. Noting that exp(−r(T1 − t))[1 − Φ(t0, T1, ηt0 , ηB(T1))]
is the value of a down-and-out barrier option, the second term repre-
sents the value of the bond’s principal repayment at and the offsetting
coupon stream after maturity T1 if the barrier is not hit. Both terms
represent the value of payments to a finite maturity corporate bond
holder if the firm does not go bankrupt before or at maturity. The
principal is repaid but the infinite after-tax coupon stream is lost. The
second line in equation (3.54) is the value of the bond in the case of
bankruptcy with pB(t0, T1, ηt0 , ηB(T1)) as the value of the down-and-
in barrier option. In the case of bankruptcy the bond holder foregoes
the future value of the perpetual bond starting at bankruptcy time
and paying a coupon of (1 − τd)C1 but he receives the residual value
(1−τ eff )min

[
(1 − α)VB ;

∑J
j=1 Pj

]
P1/(

∑J
j=1 Pj). Note that the value

of the down-and-in barrier option and the payments are incorporated
in the definition of D−

C1,T1
of equation (3.52).
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If we let T1 → ∞ in equation (3.54), we see that the second term
involving the principal vanishes because

lim
T1→∞

e−r(T1−t) = 0.

Recall that

lim
T1→∞

pB(t0, T1, ηt0 , ηB(T1)) → pB(t0,∞, ηt0 , ηB(T1))

and (3.54) reduces to the value of perpetual corporate debt, i.e. the
value of the perpetual as long as the firm remains solvent, as given by
(3.19), and the value of the perpetual when the firm declares bank-
ruptcy, as found in equation (3.23)

DC1,T1 = D+
C1,T1

+ D−
C1,T1

.

3.2.3.3 Value of the Second Maturing and Consecutive
Bonds

For finding an explicit solution for debt issue j = 2, with the index j
defined as in Subsection 3.2.3.2, the changed capital structure after re-
payment of the first debt issue must be considered. Denote the recovery
value for the second issue between T1 and T2 by

V −
C2,T2

= min

⎡
⎣(1 − α)VB(T2);

J∑
j=2

Pj

⎤
⎦ P2

J∑
j=2

Pj

· pB(T2, T1, ηt0 , ηB(T2)). (3.55)

Adding this to the present value of the recovery value for the period
from t0 to T1 yields the total value of recovery in the case of bankruptcy
during the life of the bond j = 2, i.e.,

D−
C2,T2

= (1 − τ eff )(V −
C2,T1

+ V −
C2,T2

), (3.56)

where V −
C2,T1

is similar to (3.48) with P1 replaced by P2. Equation (3.54)
still states the after-tax value of the debt issue. Using this procedure
recursively, we can explicitly value all finite-maturity debt issues out-
standing as of time t0.

If we consider tax payments in the case of bankruptcy and bank-
ruptcy losses, we find that the equity recovery value is
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Fig. 3.4. Bankruptcy values for debt if the firm has issued more than one
bond
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V −
E,1 +

�
j V −

Cj ,T1
= (1 − α)VB(T1)

pB(t0, T1, ηt0 , ηB(T1))

� �� �........
........
................
............

V −
E,2 +

�
j V −

Cj,T2
= (1 − α)VB(T2)

pB(T1, T2, ηt0 , ηB(T2))

���
��

(1 − α)
�

j VB(Tj)

pB(Tj−1, Tj , ηt0 , ηB(Tj))

V −
E,j=2 = max

⎡
⎣(1 − α)VB(T2) −

J∑
j=2

Pj ; 0

⎤
⎦

· pB(T1, T2, ηt0 , ηB(T2)). (3.57)

Adding V −
E,j=2 and

∑J
j=2 V −

Cj ,T2
we obtain again

(1 − α)VB(T2)pB(T1, T2, ηt0 , ηB(T2)).

Thus, the values of bankruptcy losses for both periods, ]t, T1] and
]T1, T2], as of t0 are

2∑
j=1

BCj = α · VB(T1) · pB(t0, T1, ηt0 , ηB(T1))

+α · VB(T2) · pB(T1, T2, ηt0 , ηB(T2)) (3.58)

and the recovery value for equity is accordingly
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2∑
j=1

E−
j = (1 − τ eff )

2∑
j=1

V −
E,j. (3.59)

The value of tax payments in the case of bankruptcy as of time t0
amounts to

2∑
j=1

G−
j = τ eff

⎛
⎝V −

E,j=1 +
2∑

j=1

V −
Cj ,T1

+ V −
E,j=2 +

2∑
j=2

V −
Cj ,T2

⎞
⎠ . (3.60)

Figure 3.4 illustrates the splitting of the bankruptcy values into sub-
periods and claims. Vertically, the claims in the case of bankruptcy
are listed in the order of maturity. The different maturities are shown
at the bottom. As can be seen, in the first period, ]t0, T1], all security
holders have claims to the firm. In the second period, ]T1, T2], the first
claim has expired. The before-tax values V − indicate the claims in each
subperiod. By adding over subperiods and applying the tax regime, we
find after-tax values of the different claims. By adding within the sub-
period we find the total value of the bankruptcy claims, which add up
to the present value of (1 − α)VB(Tj). Summing up, we find a finite
maturity debt value of the issue j = k, where k denotes the kth bond
maturing from today with

DCk,Tk
= e−r(Tk−t0)

[
Pk − (1 − τd)

Ck

r

]
[1 − Φ(t0, Tk, ηt0 , ηB(Tk))]

+(1 − τd)
Ck

r
[1 − pB(t0, Tk, ηt0 , ηB(Tk))] + D−

Ck ,Tk
(3.61)

where

D−
Ck,Tk

= (1 − τ eff )
k∑

j=1

V −
Ck ,Tj

(3.62)

and

V −
Ck,Tl

= min

⎡
⎣(1 − α)VB ;

J∑
j=l

Pj

⎤
⎦ Pk

J∑
j=l

Pj

pB(t0, Tl, ηt0 , ηB(Tl)) (3.63)

where l = 1, . . . , k and T0 = t0.
If the price of a risk-free bond with equivalent features than the

corporate bond is denoted by



60 3 ABM- and GBM-EBIT-Models

BCj ,Tj = (1 − τd)
Cj

r

(
1 − e−r(Tj−t0)

)
+ Pje

−r(Tj−t0), (3.64)

equation (3.61) can be rewritten as

DCk ,Tk
= BCk,Tk

− B0,Tk

[
Pk − (1 − τd)BCk ,∞

]
Φ(t0, Tk, ηt0 , ηB(Tk))

−BCk,∞ pB(t0, Tk, ηt0 , ηB(Tk)) + D−
Ck ,Tk

, (3.65)

where B0,T represents the risk-free discount factor, and BCk ,∞ the value
of a risk-free perpetual bond with continuous coupon payments Cj.
The difference between a government bond and a credit risky corporate
bond negatively depends on the probability of bankruptcy at and before
maturity, the bankruptcy time, and positively on the recovery value.

Continuing the arguments concerning the recovery values for equity
as stated in equation (3.57) for j = 3, . . . , J , we find

E− =
J∑

j=1

E−
j + E−

∞ · 1{Tj<∞}

= (1 − τ eff )

⎡
⎣ J∑

j=1

V −
E,j + V −

E,∞ · 1{Tj<∞}

⎤
⎦ . (3.66)

where

V −
E,k = max

⎡
⎣(1 − α)VB(Tk) −

J∑
j=k

Pj ; 0

⎤
⎦ pB(t0, Tk, ηt0 , ηB(Tk)). (3.67)

In equation (3.66), V −
E,∞ denotes the claim of equity owners in the case

of bankruptcy for the period after the last debt issue has been repaid
if no perpetual debt has been issued.

Similarly, we can develop the present value of bankruptcy losses and
taxes in the case of bankruptcy.

BC =
J∑

j=1

α · VB(Tj) · pB(Tj−1, Tj , ηt0 , ηB(∞)) (3.68)

G− = τ eff (1 − α)
J∑

j=1

VB(Tj)pB(Tj−1, Tj , ηt0 , ηB(Tj)) (3.69)

The value of equity is again given as the difference between the
value of the solvent firm V + and the sum of all debt values of the firm,
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j DE

Cj ,Tj
. DE

Cj ,Tj
differs from DCj ,Tj with respect to the treatment of

taxes and the recovery value of debt investors. Usually, tax authorities
allow the deduction of interest payments on debt as a cost factor from
taxable income, thus reducing the tax burden of the firm. Principal
repayment does not enjoy this favorable treatment. As a result debt
value is no longer proportional to after-tax value of the firm as in
the case of perpetual debt.17 If we take equation (3.61) and replace
(1−τd), the personal tax rate of an investor, with the corporate tax rate
(1− τ c), and ignore the recovery value D−

Cj ,Tj
we find the value DE+

Cj ,Tj
.

Additionally we have to ensure that equity holders do not receive a tax
subsidy on bond redemptions.18 Therefore, the value of equity is

E = (1 − τ e) ·
⎡
⎣(1 − τ c) · V + −

J∑
j=1

DE+
Cj ,Tj

⎤
⎦+ E−

−τ e
J∑

j=1

Pj · e−r(Tj−t0)[1 − Φ(t0, Tk, ηt0 , ηB(Tk))], (3.70)

where the last line describes the tax adjustment mentioned above.
To complete the analysis we would like to state the value of all

tax payments which must account for the tax deductability of coupon
payments at the corporate level in (3.70). We add the reduced tax
burden of the firm to obtain19

17 All terms including the coupon payments Cj in (3.61) are affected by taxation.
The term involving the principal repayment in case of the firm staying solvent
until maturity does not involve a tax rate.

18 See Subsection 2.1 for a discussion of this issue.
19 To implement Tax Regime 2, we delete in equation (3.70) the last line and deduct

it instead from the governments claim in equation (3.71). Thus we shift value form
the government to the equity claim.
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G = τ effV+ +
J∑

j=1

τd Cj

r
[Φ(t0, Tj , ηt0 , ηB(Tj)) − pB(t0, Tj , ηt0 , ηB(Tj))]

−τ e
J∑

j=1

(1 − τ c)
Cj

r
[Φ(t0, Tj , ηt0 , ηB(Tj)) − pB(t0, Tj , ηt0 , ηB(Tj))]

+G−

= τ effV + + G−

+
[
τd − τ e(1 − τ c)

] J∑
j=1

Cj

r

· [Φ(t0, Tj , ηt0 , ηB(Tj)) − pB(t0, Tj , ηt0 , ηB(Tj))] . (3.71)

Note, that we can again decompose the values of equity in equa-
tion (3.70), tax payments in equation (3.71), and bankruptcy cost in
equation (3.68) into portfolios of barrier options.

3.2.4 Term Structure of Credit Spreads

One of the key sources of information about firms is the term structure
of credit spreads that can be derived as the difference between the
term structure of the firm’s debt and the term structure of government
bonds. Recall, that the price of risk-free debt was defined in equation
(3.64) by

BCj ,Tj = (1 − τd)
Cj

r

(
1 − e−r(Tj−t)

)
+ Pje

−r(Tj−t).

If prices for several government bond issues are outstanding for the
valuation date t0, a term structure of risk-free zero coupon bond yields
can be estimated.20 By the same argument, the term structure of credit
risky bond yields might be estimated by estimating the corporate spot
rate yt in

DCj ,Tj ≡
∫ Tj

t0

Cje
−ys(s−t0)ds + Pje

−yTj
(Tj−t0)

, (3.72)

The credit spread can be obtained by

Y Ss = ys − rs. (3.73)
20 Svensson (1994)’s algorithm can be used to estimate zero rates from government

coupon bonds.
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Another way of comparing risky to risk-free debt is by analyzing
par yields. Par yields reflect those coupons that the government or a
firm announce to pay in order to issue a new bond at par.

Denote the government’s par coupon by PR. Then replacing Cj in
equation (3.64) with PR and solving for the par coupon, we find

PR =
r · 100
1 − τd

. (3.74)

The value for finite-maturity debt as given in equation (3.54) can be
solved in the same way. Denoting the corporate par yield by PYj, we
have

PYj =
r · 100 · [1 − DO(Tj , η, ηB)] − D−

0,Tj

(1 − τd) · [1 − DO(Tj, η, ηB) − pB(t0, Tj , ηt0 , ηB(Tj))]
(3.75)

with

DO(Tj, η, ηB) = e−r·(Tj−t0)[1 − Φ(t0, Tj , ηt0 , ηB(Tj))].

Subtracting equation (3.74) from equation (3.75), we calculate the par
yield spread PY Sj by

PY Sj =
r · 100 · pB(t0, Tj , ηt0 , ηB(Tj)) − r · D−

0,Tj

(1 − τd) · [1 − DO(Tj, η, ηB) − pB(t0, Tj , V, VB)]
. (3.76)

3.3 The Case of Geometric Brownian Motion

Many traditional firm value models such as the ones of Goldstein et al.
(2001), Leland (1994), Leland and Toft (1996), Duffie and Lando (2001)
among others do not assume arithmetic Brownian motion for EBIT
or firm value as we do here but assume geometric Brownian motion
instead. Although this assumption is debateable since it implies that
EBIT cannot become negative21 we want to extend the analysis to the
case of geometric Brownian motion to be able to compare results for
both model assumptions.
21 Goldstein et al. (2001) show that if the EBIT is assumed to follow a geometric

Brownian motion with constant parameters, the firm value follows the same rule.
Although the converse conclusion might not be true in general, we cannot neglect
the fact that if the firm value follows a geometric Brownian motion, one solution
for the driving EBIT-process would be that EBIT follows geometric Brownian
motion as well. This directly leads to our criticism in Section 3.1.
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Luckily, only a few adjustments to our general framework are nec-
essary, because the general structure of equation (3.70) for the value of
equity, of equation (3.61) for the value of the k-th finite maturity debt
issue as well as the equations for the value of tax payments (3.71) and
of bankruptcy losses (3.68), respectively, can be maintained. We only
need to change the derivation of firm value, as compared to equation
(3.4), its process and the equations in Subsection 3.2.3.1.

3.3.1 The General Case

Assume that the EBIT of the firm follows a geometric Brownian mo-
tion22

dη̄

η̄
= µ̄ηdt + σ̄ηdzP, (3.77)

where µ̄η and σ̄η denote the constant instantaneous drift and volatility
of the process, under the physical measure P. Again we need a risk
premium θ̄ to change the measure to the equivalent martingale measure
Q, which leads to the risk-neutral process of EBIT

dη̄

η̄
=
(
µ̄η − θ̄ · σ̄η

)
dt + σ̄ηdzQ.

To simplify notation, denote the risk-neutral drift by µ̄ = µ̄η − θ̄ · σ̄η.
Then, total firm value amounts to23

V̄t =
η̄t

r − µ̄
. (3.78)

Applying Itô’s lemma we find the firm value process to be

dV̄

V̄
= µ̄dt + σ̄ηdzQ. (3.79)

Note that the logarithm of the EBIT η̄ and the firm value V̄ follow the
process

d ln(η̄) = d ln(V̄ ) =

(
µ̄ − σ̄2

η

2

)
dt + σ̄ηdzQ. (3.80)

22 Trying to keep the notation comparable to the case of arithmetic Brownian mo-
tion, we will use a bar to indicate respective GBM-parameters.

23 See e.g. Shimko (1992) for guidance how to solve for the firm value.
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This changes the solution of a homogenous ordinary differential equa-
tion

µ̄

r
η̄Fη̄ +

σ̄2
η

2r2
η̄2Fη̄η̄ − rF = 0

to

F = Ā1 · (η̄)−k̄1 + Ā2 · (η̄)−k̄2 (3.81)

with

k̄1/2 =

(
µ̄ − σ̄2

η

2

)
∓
√(

µ̄ − σ̄2
η

2

)2
+ 2rσ̄2

η

σ̄2
η

(3.82)

Additionally, we may use equations (3.43) for the probability of hit-
ting the bankruptcy level η̄B before time T , Φ(t0, T, ln(η̄t0/η̄B(T )),−(µ̄−
σ̄2

η/2)), and (3.45) for the finite maturity Arrow-Debreu bankruptcy
price

p̄B

(
t0, T, ln

(
η̄B(T )

η̄t0

)
,−
(

µ̄ − σ̄η

2

))
by adjusting the drift with µ̄− σ̄η/2 and using ln(η̄t) and ln(η̄B) instead
of ηt and ηB . The resulting formulas for the first subperiod are

Φ̄(t0, T, η̄t0 , η̄B(T1)) = N(h̄1) +
(

η̄t0

η̄B

)− 2µ̄

σ̄2
η

+1

N(h̄2) (3.83)

with

h̄1/2 =
− ln

(
η̄t0
η̄B

)
±
(
µ̄ − σ̄2

η

2

)
· (T1 − t0)

σ̄η

√
T1 − t0

, (3.84)

and

p̄B(t0, T1, η̄t0 , η̄B(T1)) =
(

η̄t0

η̄B

)−k̄1

N(q̄1) +
(

η̄t0

η̄B

)−k̄2

N(q̄2) (3.85)

with

q̄1/2 =
− ln

(
η̄t0
η̄B

)
∓
√(

µ̄ − σ̄2
η

2

)2
+ 2rσ̄2

η · (T1 − t0)

σ̄η

√
T1 − t0

. (3.86)

The Arrow-Debreu bankruptcy price for a subinterval can be found
by the same argument as in Subsection 3.2.3.1:

p̄B(T ′, T, η̄t0 , η̄B(T )) = p̄B(t0, T, η̄t0 , η̄B(T ))
− p̄B(t0, T ′, η̄t0 , η̄B(T ′)). (3.87)
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3.3.2 The Perpetual Debt Case

In the perpetual debt case all formulas of Subsection 3.2.2 stay intact.
Only, the infinite maturity Arrow-Debreu price is the limit of equation
(3.85) as T → ∞

p̄B(t0,∞, η̄t0 , η̄B(∞)) =
(

η̄t0

η̄B

)−k̄2

. (3.88)

Equations (3.83), (3.85), (3.87), and (3.88) fully define the credit
risk framework of Subsection 3.2.3.3 in terms of geometric Brownian
motion.

To complete the comparison to the case of arithmetic Brownian
motion, consider the optimality arguments for the perpetual continuous
coupon and the bankruptcy barrier. Given the capital structure, the
optimal bankruptcy EBIT in the GBM-model is

η̄B =
k̄2(r − µ̄)C̄
r(1 + k̄2)

. (3.89)

As in the case of arithmetic Brownian motion, the capital structure is
fully determined by the choice of a coupon C̄∗ when maximizing the
sum of debt and equity. In contrast to the case of arithmetic Brownian
motion, C̄∗ can be calculated explicitly as

C̄∗ =
(

ξ̄
r(1 + k̄2)
k̄2(r − µ̄)

)
ηt0 (3.90)

with

ξ̄ =
[

(1−τeff )−(1−k)(1−τd)

(1−τeff )−(1−k)[(1−τd)(1−k̄2)+k̄2(1−α)(1−τeff )]

] 1
k̄2

. (3.91)

Note that the optimal coupon of equation (3.90) is proportional to
the initial EBIT η̄t0 . As a result the optimal bankruptcy barrier of
equation (3.89) and the infinite maturity bankruptcy claim in equation
(3.88) becomes (ξ̄)(k̄2) which is constant. Therefore, the debt DC̄∗,∞ and
equity prices E share the same homogeneity property of degree 1 with
respect to the initial EBIT. This proportionality of security prices is
convenient when discussing dynamic capital structure decisions because
knowing the barrier value when to restructure in terms of the then
prevailing EBIT is sufficient.24

24 See, e.g. Goldstein et al. (2001), Christensen et al. (2000) who exploit the property
elegantly. See Flor and Lester (2004) for a more formal proof.



3.4 A Numerical Extension of the Basic Setting 67

In the special case k = 1, the coupon C̄∗ increases to

C̄∗ = V̄
r(1 + k̄2)

k̄2
. (3.92)

The asset substitution effect in the GBM-setting is discussed in
Leland (1994) who reports that asset substitution incentives for equity
owners unequivocally exist if the bankruptcy barrier is endogenously
chosen. The debt covenant case is similar to the ABM-case.

3.4 A Numerical Extension of the Basic Setting

The valuation framework for corporate securities would not be complete
if derivative securities are ignored. In most cases derivatives on a firm’s
equity or debt securities are complicated so that closed form solutions
are not available. However, numerical methods have been developed
which can also be exploited in the setting of this chapter.

Two methods are proposed in the following two subsections. In Sub-
section 3.4.1 a standard trinomial tree is used to approximate the EBIT-
process. The implementation of the economic model of Chapter 2 is
discussed and the extension of valuing derivative securities.

Subsection 3.4.2 proposes a method of direct numerical integration.
The analytical solution of the finite maturity debt model as of Subsec-
tion 3.2.3 relies on finite maturity bankruptcy probabilities. A byprod-
uct of the derivation of these bankruptcy probabilities can be used as
the state density to find security prices quicker than in a trinomial tree.

Without loss of generality, both numerical methods are described
for arithmetic Brownian motion only. They can be readily applied to
geometric Brownian motion because the logarithm of the state variable
follows the arithmetic Brownian motion of equation (3.80) and replac-
ing the firm value formula of the ABM-firm of equation (3.4) with that
of the GBM-firm of equation (3.78).

3.4.1 A Lattice Approach for the Corporate Securities
Framework

3.4.1.1 The Approximation of the EBIT-Process

The stochastic factor in the Corporate Security Framework is the firm’s
EBIT η. In subsection 3.2 it is assumed that EBIT follows an arithmetic
Brownian motion under the equivalent risk-neutral martingale measure
Q
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dη = µdt + σηdzQ,

where µ and ση are the risk-neutral drift and volatility of the EBIT-
process. The EBIT-process is driven by a standard Wiener process
zQ under the risk-neutral probability measure Q. All parameters are
assumed to be constant.

A risk-neutral valuation tree can be constructed in which the dis-
count rate is the risk-free interest rate r. The stochastic process is
approximated numerically by a trinomial tree with time steps ∆t and
EBIT-step size

∆η = λ
√

ση∆t. (3.93)

λ denotes a EBIT-spacing parameter.
The probabilities at each node to reach the following up-, middle-,

and down-state nodes are

πu =
σ2

η∆t + µ2∆t2

2∆η2
− µ∆t

2∆η
, (3.94a)

πm = 1 − σ2
η∆t + µ2∆t2

∆η2
, (3.94b)

πd =
σ2

η∆t + µ2∆t2

2∆η2
+

µ∆t

2∆η
. (3.94c)

In equations (3.94) the two parameters λ and ∆t can be chosen freely.
To have a good approximation of the EBIT-process 900 to 1,100

steps are needed that determine ∆t subject to the maturity of the tree.
Kamrad and Ritchken (1991, p. 1643) suggest a value of λ = 1.2247
which they show to have the best convergence properties on average in
their application in multi-state variables option pricing.

Recall that in the Corporate Securities Framework of Chapter 2,
the firm declares bankruptcy whenever total firm value V hits a barrier
VB . The total firm value can be calculated explicitly by discounting all
future EBIT-payments with the constant risk-free interest rate r which
yields in the ABM-case (see equation (3.4))

V =
µ

r2
+

ηt

r
.

EBIT is distributed to all claimants of the firm. So, total firm value
of an EBIT-model does not only include the market value of debt and
equity, but also bankruptcy losses, and taxes to the government. This
alters the notion of the bankruptcy barrier, as well as losses in the
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case of bankruptcy compared to traditional firm value models. The
bankruptcy barrier can equivalently be defined in terms of an EBIT-
value by equation (3.4).

The literature on barrier options valuation in lattice models, ob-
serves pricing problems because the barrier usually lies between two
nodes. If ∆t is decreased, the value of the barrier option might not
converge because the barrier usually changes its distance to adjacent
nodes. Boyle and Lau (1994) demonstrate the oscillating pattern of
convergence. To overcome the deficiency Boyle and Lau (1994) suggest
to adjust the steps ∆η such that the barrier is positioned just above one
layer of nodes.25 To mimic the algorithm, a λ closest to 1.225 is chosen
to ensures that the ]t0, T1]-bankruptcy barrier lies just above one node
level. With this parameter constellation, the security values of the debt
and equity issues converge sufficiently well to their analytical solutions.

3.4.1.2 Payments to Claimants and Terminal Security Values

In each node, EBIT is distributed among the claimants of the firm (see
Figure 3.5). Payments to claimants are different in the case of bank-
ruptcy. Therefore, Figure 3.5 exhibits two separate EBIT-distribution
algorithms for the firm being (i) solvent and (ii) insolvent. The bank-
ruptcy decision is modeled by testing if the expected future firm value
in the current node is lower or equal to the bankruptcy level VB.26

If the firm is solvent, the claims to EBIT are divided between debt
and equity investors. Debt holders receive the contracted coupon pay-
ments and at maturity the notional amount. The rest of the EBIT
remains with the firm.

The government imposes a tax regime which reduces the payments
to the different security holders further. Debt investors pay a personal
income tax rate τd on their coupon income. The firm pays a corporate
income tax rate τ c on corporate earnings – EBIT less coupon payments.
What remains after adjusting for cash flows from financing transactions
– the issue of new debt or the repayment of old debt – is paid out
to equity investors as a dividend. The dividend is taxed at a personal
25 See e.g. Kat and Verdonk (1995) or Rogers and Stapleton (1998) for other methods

to overcome the convergence problem.
26 This decision criterion can be generalized to equity holder’s optimal decisions

whether to honor current and future obligations of other claimants of the firm.
The general splitting procedure of EBIT among claimants is not affected.
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Fig. 3.5. Splitting the EBIT in a typical node among claimants
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dividend tax rate of τ e. Equity holders face the classical double taxation
of corporate income.27

If the dividend is negative, equity investors have to infuse capital
into the firm. We apply the tax system directly to these capital infu-
sions as well so that negative EBIT and negative dividends result in
an immediate tax refund. However, we exclude capital infusions due to
debt repayments from the equity investor’s tax base.

In a bankruptcy node, the current firm value is split among bank-
ruptcy claimants: debt holders, government and a bankruptcy loss. The
remaining value is then first distributed to debt holders proportionally
to their outstanding notional. The distribution to debt holders is lim-
ited to the total notional amount. It might be possible that equity
holders receive the excess portion of the residual value in bankruptcy
if the bankruptcy barrier VB allows. All bankruptcy claims except the
27 Full double taxation can be exclude by altering the equity holders tax base from

dividend income.
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loss portion which is excluded from tax considerations are treated like
equity for tax purposes, so that the final corporate earnings and final
dividend are taxed accordingly.

To improve our numerical values we implement lattices not until the
end of the longest lasting debt issue but use the analytical formulas
derived in Sections 3.2 and 3.3 at each terminal node of the trinomial
tree.

Note that the analysis can be extended to Tax Regime 2 and 3 easily
by changing the cash flows from equity investors and the firm to the
government according to the assumptions outlined in Subsection 2.1.5.

3.4.1.3 Security Valuation

All security prices are derived from the EBIT-process. Having deter-
mined all cash flows to the claimants and terminal security values,
expectations in all other nodes before are discounted at the risk-free
interest rate. This leads to values for the total firm value, the mar-
ket value of all debt issues, and equity, and finally the value of tax
payments.

The same procedure can be used to price options on equity, since
we have equity values at each single node. Call option values at option
maturity are

CT = max(ET − X, 0),

where ET denotes the price of equity at a specific node and X the
exercise price. From these terminal values, we move backwards through
the tree using the risk-free interest rate and the probabilities implied
by the EBIT-process in equations (3.94).

3.4.2 Numerical Integration Scheme

If only European derivatives are studied which depend solely on their
value at option maturity and if bankruptcy of the firm knocks out the
derivative, its prices can be calculate computationally more efficiently.

The value of a derivative Yt0(η, T ) as of time t0 with maturity T can
be calculated as its expected payoff at maturity under the risk-neutral
probability measure.28

28 See e.g. Cochrane (2001).
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Yt0(η, T ) = e−r(T−t0)EQ
t0 [YT (ηT , T )]

= e−r(T−t0)

∫ ∞

−∞
YT (ηT , T )

· (1 − φT (t0, T, ηt0 , ηT , ηB(T )))dηT , (3.95)

where φT (t0, T, ηt0 , ηT , ηB(T )) = P (ηT ∈ dη, τ > T )P (τ > T ) denotes
the joint probability of reaching a level of ηT at the derivative’s ma-
turity and the firm going bankrupt before T when starting today at
ηt0 . This probability is deduced in Subsection 3.2.3.1 as a byproduct of
the derivation of the bankruptcy probabilities (equation (3.43)). Recall
that this bankruptcy probability for the interval ]t0, tj = T ] is

Φ(t0, T, ηt0 , ηB(T )) = 1 − Pν(Xtj ≤ ztj ,Mtj < ytj ),

with29

Pν

(
(−1)pj(Ai)Xtj ≤ ztj − 2

j∑
i=1

(−1)pj(Ai)−1yti1{i∈Ai}

)

=ez∗n
ν

σ2 Nn

(
ztj − z∗j − Ωj,nν

σ
√

tj
, Ω(Ai)

)
.

Differentiating this equation with respect to zT , results in the desired
density

φT (t0, T, ηt0 , ηT , ηB(T )) =
∂Φ(t0, T, ηt0 , ηT )

∂zT
.

For the special case where the bankruptcy barrier is constant or
the derivative’s maturity lies before the first capital restructuring, the
density simplifies to30

φ(t0, T, a, b) =
exp
{

µa
σ2

η
− µ2T

2σ2
η

}
ση

√
T

[
n

(
−a

ση

√
T

)
− n

(
2b − a

ση

√
T

)]
.(3.96)

In equation (3.96), n(·) denotes the standard normal density, a the
starting value of the state variable and b its terminal value.

In general, the integral of equation (3.95) can only be solved an-
alytically if the payoff function YT (η, T ) is well behaved. For option
29 Respective definitions of variables, sets, and notational conventions are given in

Subsection 3.2.3.1.
30 See Harrison (1985).
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prices in the Corporate Securities Framework with several finite ma-
turity debt issues closed form solutions cannot be derived.31 However,
the value of the derivative at maturity YT (ηT , T ) can be calculated an-
alytically for each ηT since security values in the Corporate Securities
Framework can be calculated explicitly. Therefore, we use numerical
methods32 to evaluate the integral in equation (3.95). Using the call
option payoff YT (ηT , T ) = CT yields the desired call option prices on
the firm’s equity.

Note that it is easier to differentiate numerically equation (3.96)
because the resulting multivariate normal densities would include 2N

terms of both the multivariate normal distribution function and its
density where N denotes the number of barriers. Depending on the ac-
curacy of the approximation of the multivariate normal distribution, a
numerical differentiation of hitting probabilities can build up consider-
able approximation errors that prevent the numerical integration algo-
rithms for equation (3.95) from converging in reasonable time. To over-
come the numerical problems, the hitting probability of equation (3.43)
can be used to calculate sufficient data points to be able to spline the
distribution function. It is numerically more efficient to spline the dis-
tribution function because the error accumulating numerical differen-
tiation of the hitting probability is avoided. Moreover, the distribution
function is monotonously increasing and has therefore an easier shape
than the density. By differentiating the spline, equation (3.96) can be
extracted with much higher accuracy. The probabilities can be found
by evaluating the spline at the respective ending values.33

3.5 Summary

This chapter is devoted to demonstrate the flexibility of the Corpo-
rate Securities Framework developed in Chapter 2. Therefore, specific
31 Toft and Prucyk (1997) analyze call prices on leveraged equity in a setting where

only one perpetual debt issue is outstanding. This simplifies the analysis and
allows the derivation of explicit formulae.

32 Some numerical methods are sensitive to changes in the boundary values if the
integrand only has values different from zero over closed interval. We therefore
integrate from the bankruptcy-EBIT ηB to an upper bound of ηt0 + 8ση

√
T .

Above the upper bound probabilities φT (t0, T, ηt0 , ηT , ηB(T )) are virtually zero
and no value is added to the integral.

33 Note that a similar method is used to extract implied densities from traded op-
tion prices. There the strike/implied volatility function is splined to extract the
distribution function of equity prices at option maturity. See e.g. Brunner and
Hafner (2002) and the references therein.
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assumptions for the EBIT-process are made. In Section 3.1 it was ar-
gued that the process assumption has to be considered carefully and
that the standard assumption of geometric Brownian motion might be
economically debateable because it restricts EBIT-values considerably.
Arithmetic Brownian motion appears a more natural choice.

Section 3.2 illustrates the ABM-case. Thereby, results from the lit-
erature have been reproduced which have only been derived for the
GBM-case. In the perpetual debt ABM-model, the asset substitution
problem is shown to only affect firms whose firm value dropped below
the value of risk-free debt. Higher firm values allow equity holders to
optimize EBIT-risk. Furthermore, the model is extended to the case
of a complex capital structure. Subsection 3.2.3.1 derives closed form
solutions of bankruptcy probabilities and prices of bankruptcy claims if
the bankruptcy barrier changes deterministically over time. These new
results are needed to propose analytical solutions for debt and equity
prices.

To relate the ABM-setting to the existing literature, Section 3.3
reproduces well known results of the existing literature on GBM-firm
value models within the setting of this chapter. We would like to stress
that there is no reason to use GBM as the benchmark, although it has
favorable mathematical properties.

Finally, Section 3.4 discusses the valuation of derivatives on corpo-
rate securities in the Corporate Securities Framework. Two numerical
methods are proposed because closed form solutions are difficult to
find. Thereby, the traditional trinomial tree approach may act as a
benchmark method. Additionally to being able to price derivatives on
corporate securities, the trinomial lattice is flexible enough to consider
more complex tax structures such as Tax Regime 3 and to introduce op-
timal bankruptcy decisions by equity owners given the current capital
structure. As a second numerical method, a direct numerical integra-
tion procedure is proposed to evaluate the expected derivative value at
maturity under risk-neutral probability measure. The latter method is
usually faster and the approximation error can be controlled for.

An empirical implementation of our model can be applied to a much
wider range of firms than previous models. Allowing for a complex cap-
ital structure and deriving analytical solutions for debt and equity is-
sues, we can use time series of a range of corporate securities for which
market prices are readily available. Therefore, we are not dependent
upon accounting data or ad-hoc estimates of parameters to implement
the corporate finance framework. Elaborating on this insight, we pro-
pose a Kalman filter to estimate model parameters in Chapter 5.
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Numerical Illustration of the ABM- and
GBM-Model

This chapter is devoted to numerical illustrations of the analytical solu-
tions derived in Chapter 3. Learning about the sensitivity of the mod-
els to parameter changes may guide us to sort out model features that
might be important for empirical testing. Specifically, we illustrate the
sensitivity of corporate security prices of firms with a complex capital
structure where EBIT follows an arithmetic and geometric Brownian
motion. Section 4.1 exemplifies the base model that is analytically and
numerically solvable. Section 4.2 uses the numerical procedures pro-
posed in Section 3.4 to value options on the firm’s equity. Thereby, we
focus on the equity value, its return distribution, and the structure of
implied volatilities. The chapter is summarized in Section 4.3.

4.1 A Base Case Example

In this section we demonstrate the behavior of our model in detail and
provide evidence on how sensitively different claims react to parame-
ter changes. We start with a discussion of the base case parameters
in Subsection 4.1.1. The analytical ABM-EBIT-model of Sections 3.2
is illustrated in Subsection 4.1.2.1. Subsection 4.1.2.2 presents the nu-
merical extensions where bankruptcy is triggered optimally by equity
owners and the government does not refund taxes when corporate earn-
ings or dividends are negative (Tax Regime 3).

In Subsection 4.1.3, the exposition of the numerical example for
the GBM-EBIT-model of Section 3.3 follows the same structure as the
subsection on the ABM-version. However, we contrast the comparative
static analysis with the one conducted for the ABM-model to avoid
duplicate explanations.
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4.1.1 The Economic Environment and the Base Case Firm

Each firm in the economy faces a constant risk-free interest rate of
r = 5%, which is a widely used interest rate level in numerical examples
throughout the literature. The government is assumed to tax corporate
earnings at a tax rate τ c = 35%, income from equity investments and
coupon income at τd = τ e = 10%. The corporate tax rate is at the
upper edge of what is observed in the European Union. The personal
tax rates are chosen to reflect that smaller investors are tax exempt on
their investment income in many countries or evade taxes by shifting
capital abroad so that only the net effect of taxation on corporate
securities’ prices is modeled.

The firm specific factors that are common among GBM- and ABM-
firms are its current EBIT-level of ηt0 = 100, and its loss in the case
of bankruptcy of α = 50 %, i.e. only 1 − α = 50 % of the available
bankruptcy firm value VB(t) can be distributed to financial bankruptcy
claimants. Although the bankruptcy loss ratio α appears high1, con-
sider that α is measured with respect to total firm value in the case of
bankruptcy and does not refer to a loss rate of market value of firm’s
assets. The bankruptcy level VB(Tj) is chosen so as to recover 50% of
the outstanding notional of all debt issues.2 In the past, the firm has
chosen a financing structure as shown in Table 4.1. It has four debt
issues outstanding where the short-, medium-, and long-termed issues
have a maturity of 2, 4, and 10 years, respectively, and a notional of
600. Only the perpetual debt issue has a face value of 1,250.

The last column of Table 4.1 shows the bankruptcy level VB(Tj)
in the respective subperiod. Due to the parameter constellation and
the demand of a 50 % recovery in bankruptcy, bankruptcy levels and
cumulative debt outstanding coincide.3

The only missing parameters are those for the ABM- and GBM-
processes, respectively. If we choose a risk-neutral ABM-EBIT-drift
1 Alderson and Betker (1995) estimate the mean percentage of total values lost in

liquidation to be 36.5 % of a sample of 88 firms liquidated in the period from 1982
to 1993. Gilson (1997) reports a mean percentage liquidation cost of 44.4 %. His
sample contained 108 firms recontracting their debt either out-of-court or under
Chapter 11 in the period 1979-1989. Our α must be higher because it refers to
a firm value representing all value from future EBIT-payments in a bankruptcy
node.

2 This is in line with usual assumptions. A standard reference is Franks and Tourus
(1994) who report that on average 50.9 % of face value of total debt is recovered
by debt holders.

3 The bankruptcy level is calculated by VB(Tj) =
�

k Pk(Tj)1{Tk<Tj}ρ/(1 − α),
where ρ denotes the recovery fraction of a debt issue in bankruptcy.
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Table 4.1. Financing structure of the base case firm

j Pj In % of V Tj Cj VB(Tj)
4 1,250 20.83 % ∞ 6 % 1,250
3 600 10 % 10 5.5 % 1,850
2 600 10 % 4 5 % 2,450
1 600 10 % 2 4.5 % 3,050∑

3,050 50.83 %

under the measure Q of µ = 10 and a standard deviation of ση = 40, a
GBM-process with parameters µ̄ = 3 1/3 % and σ̄η = 18 % results in
approximately the same security values as the ABM-case.

4.1.2 The Arithmetic Brownian Motion Firm

With this parameter combination and using equation (3.4), we find
a total firm value of V = 6, 000. The values of securities before and
after taxes for the base case firm are shown in Table 4.2, Panel A.
The table displays for each issued claim the going concern values V +

{·}
(Columns 2 to 5), the bankruptcy values V −

{·} (Columns 6 to 8), and
the sum of the two (Columns 9 to 11).4 These claims are then split into
the government’s claim on taxes and the claim which remains with
the investors. The Column Tax Savings indicates the tax advantage to
interest payments on issued debt. The firm receives a tax credit at the
marginal tax rate τ c = 35% on the coupon payments, whose value is
implicit in DE

Cj ,Tj
of equation (3.70), but shown separately in the fourth

column. This tax credit is then deducted from the taxes paid by equity
owners.

Note that equity has no value in the case of bankruptcy. The maxi-
mum recovery value in each subperiod before tax (1 − α)VB(Tj) never
exceeds the total outstanding debt notional.

The value of the loss portion in default is∑
αVB(Tj)pB(Tj−1, Tj , ηt0 , ηTj ) = 28.99

(equation (3.68)). So we have a value to claimants of 6, 000 − 28.99 =
5, 971.01. If firms were allowed to report their financial statements at
4 The total values of debt, equity and government taxes are calculated according to

equations (3.61), (3.70), (3.71), respectively. The splitting into solvent, insolvent,
and respective taxes is straightforwardly calculated from these equations.
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Table 4.2. Security values in the ABM-Corporate Securities Framework. Panel A shows the splitting of values among solvent
(Columns 2 to 5) and insolvent values (Columns 6 to 8). Columns 9 to 11 contain the sum of both values, Column 10 market
values. Base case parameters: ηt0 = 100, µ = 10, ση = 40, r = 5%, τc = 35%, τd = τe = 10%, α = 50%, VB(Tj) is determined
that 50 % of the outstanding debt is recovered. Panel B shows changes in market prices when parameter values of the base
case are changed.

Panel A: Base Case

j V +
j Investors Tax Savings G+

j V −
j Investors G−

j V +
j + V −

j Investors G+
j + G−

j

4.5 %, 2 592.39 587.25 15.41 5.14 0.95 0.60 0.35 593.34 587.85 5.49
5 %, 4 594.94 584.10 32.53 10.84 2.53 1.59 0.94 597.47 585.69 11.78

5.5 %, 10 611.17 585.47 77.10 25.70 6.10 3.84 2.26 617.27 589.31 27.96
6 %, ∞ 1,453.41 1,308.07 436.02 145.34 19.41 12.23 7.18 1,472.82 1,320.30 152.52�

Debt 3,251.90 3,064.88 561.06 187.02 28.99 18.27 10.73 3,280.90 3,083.15 197.75
Equity 2,690.11 1,321.71 1,221.54 146.86 0.00 0.00 0.00 2,690.11 1,321.71 1,368.40

BC 28.99 28.99 28.99 28.99�

5,942.01 57.99 6,000.00 4,433.85 1,566.15

Panel B: Comparative Statics of Market Values
η0 µ ση r (in %) VB (in %) Number of Bonds

75 125 5.00 15.00 30.00 50.00 4.00 6.00 80 % 120 % 3 2 1
4.5 %, 2 584.06 588.87 456.44 589.15 589.12 581.62 600.57 548.43 588.94 583.06 0.00 0.00 0.00
5 %, 4 579.55 587.97 439.66 589.11 588.98 573.65 610.98 531.85 587.91 579.39 1,161.49 0.00 0.00

5.5 %, 10 580.61 593.53 427.25 597.50 597.02 568.67 645.66 510.50 592.58 582.18 585.40 1,716.99 0.00
6 %, ∞ 1,297.75 1,332.39 919.79 1,349.19 1,347.30 1,257.62 1,674.47 1,034.98 1,328.06 1,303.80 1,311.62 1,284.74 3,084.09�

Debt 3,041.97 3,102.76 2,243.14 3,124.96 3,122.41 2,981.56 3,531.67 2,625.75 3,097.49 3,048.44 3,058.52 3,001.73 3,084.09
Equity 1,016.85 1,632.11 275.31 2,572.44 1,312.98 1,345.47 2,741.24 590.83 1,322.12 1,317.80 1,339.15 1,397.70 1,508.77

BL 57.43 15.57 615.67 0.64 2.35 98.56 7.31 160.36 14.08 69.89 46.38 98.24 137.19
Taxes 1,383.75 1,749.56 865.88 2,301.97 1,562.26 1,574.41 2,469.77 1,067.51 1,566.32 1,563.87 1,555.95 1,502.33 1,269.94

Firm Value 5,500.00 6,500.00 4,000.00 8,000.00 6,000.00 6,000.00 8,750.00 4,444.44 6,000.00 6,000.00 6,000.00 6,000.00 6,000.00
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discounted future income flow values, we would see this figure as a mea-
sure for total assets and liabilities of the firm.5 In the last three columns
of Table 4.2, Panel A, this value is disentangled by the financing struc-
ture of the firm. The firm would report an equity value of 2,690.11
and a total debt value of 3,280.90 on the liability side of the balance
sheet. Future tax payments are not shown as separate liabilities. The
before-tax values would therefore be reported.

The before-tax leverage ratio of 54.95 %, as can be seen from Fig-
ure 4.1, differs from what we see in market prices. Market prices of debt
and equity account for the tax treatment of future claim payments. So
we find an after-tax leverage ratio of 70.00 %, which is substantially
higher than the before-tax leverage ratio. This asymmetry depends cru-
cially on the tax regime. The government’s claim absorbs much more
of the equity than of the debt value. In any case, the government has a
significant claim, that cannot be neglected for the valuation of a firm.

The leverage ratio after tax can be observed on markets if all securi-
ties on the liability side of a firm’s balance sheets are traded. However,
this is rarely the case. Most firms have bank debt and off-balance sheet
financing which must be valued under additional assumptions.6

4.1.2.1 Comparative Statics of the ABM-Firm

In Table 4.2, Panel B, we compare the market values of the base case
example in Panel A, Column 10 to the market values in different sce-
narios.

What would happen if parameters in the model change? We have
to disentangle two effects:

• Total firm value changes if one of the parameters in equation (3.4)
is changed.

• Additionally, total firm value is distributed differently among claimants.

As an example, we take a decrease in the current EBIT ηt0 which is
depicted in Columns 2 and 3 of Table 4.2’s Panel B. As a first result,
5 Accounting standards usually do not allow future value accounting. A historical

cost accounting of financial statements might look quite different depending on
past investments and depreciation rules.

6 Empirical studies try to solve this important problem by using either book values
(e.g. Delianedis and Geske (1999), Delianedis and Geske (2001)) or some ad-
hoc appraisal. E.g. Jones, Mason and Rosenfeld (1984) apply the ratio of the
notional of market valued debt to its value to non-traded debt classes thereby
disregarding coupon differentials. Both methods are unsatisfactory and might
lead to estimation biases. See also the discussion in Section 5.1.
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Fig. 4.1. Leverage ratios in the base case before and after taxes
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total firm value decreases. Since the bankruptcy barrier is unchanged,
the firm moves further towards bankruptcy. The value of bankruptcy
losses BC increases from 28.99 to 57.43 because the probability of going
bankrupt has risen. Since total firm value has fallen from 6,000 to 5,500
and the value of bankruptcy losses has risen, the value of all other
claims must decrease. We expect that short-maturity debt is affected
less than long-maturity debt and equity. In fact, the longer the debt
maturity the higher the change of market values. Note that debt holders
are hedged naturally because the solvent and insolvent security values
partly offset each other. Equity holders are affected most because the
incremental payments are passed directly to them. Their losses amount
to over 300 if EBIT decreases by 25. However, debt holders lose more
by a 25 decrease of EBIT than they gain from a 25 increase of EBIT.
Thus, security prices change asymmetrically. An increase of value is
less pronounced for finite maturity securities but much larger for the
perpetual and equity. The value of any debt issue has a reference value
given by an equivalent but risk-free security. So increases of EBIT let
debt values converge to their risk-free counterpart but contribute to
the value of the equity holders’ and the government’s claim.

The effects of changing the risk-neutral EBIT-drift µ are much more
pronounced compared to those of initial EBIT although they go into
the same directions (see Columns 4 and 5 of Table 4.2’s Panel B). First,
a substantial firm value effect can be observed. Second, the bankruptcy
probabilities change much more because not only the distance to de-
fault but also the parameters entering the formulas of Subsection 3.2.3.1
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amplify each other. A higher drift reduces long-term bankruptcy prob-
abilities. The value of the perpetual debt and equity gain most.

The following two columns display the comparative statics for EBIT-
volatility. A shift of EBIT-volatility does not affect total firm value
because the risk-neutral drift is left unchanged by assumption.7 There
exists an incentive for asset substitution for equity owners. Their claim
value increases with the volatility. This is surprising because of the well
known effect discussed in Subsection 2.1 that in the perpetual debt
case a debt covenant mitigates the agency problem between debt and
equity. In the case of a complex capital structure, there exist parameter
constellations which confute this finding.

Most interestingly, perpetual debt is more sensitive to shifts in the
volatility than equity itself. Recall that equity owners may abandon
operations if the EBIT falls sufficiently low but profit from the higher
upside potential. In contrast, debt holders lose higher coupon payments.
Debt holders can recover some of this loss in bankruptcy proceedings,
but in that case debt holders must pay full corporate and equity taxes.
So the insolvent debt value of longer running bonds cannot compensate
for the losses in the solvent value.

To better understand the dependence of equity value on the EBIT-
volatility, Figure 4.2 depicts the equity value of an ABM-firm as a func-
tion of initial EBIT and the EBIT-volatility.8 Given an initial EBIT,
an increase of the volatility from very low levels rises equity value at
first. The upward potential of gaining additional EBIT from higher risk
outweighs the firm’s bankruptcy cost value increase. If the volatility be-
comes too high, the threat of bankruptcy gets imminent and the value
of bankruptcy losses dominate equity values. Therefore, the effect of
a change of the EBIT-volatility on the equity value crucially depends
on the firm’s current state towards bankruptcy and its current risk
profile.9

The value of securities is particularly sensitive to changes in the
risk-free interest rate. As reported in Columns 8 and 9 of Panel B in
Table 4.2, slight changes in the interest rate result in high swings of
7 If we start with the physical process of equation (3.6), the risk-neutral drift will

change because it depends on the risk-premium θση. This would additionally in-
volve the same effects as discussed in the case when the risk-neutral drift changes.
For simplicity, this case is not considered here.

8 The GBM-firm exhibits the same kind of pattern at of course different equity
value levels. See Figure B.1 in Appendix B.

9 Note that there exists an optimal EBIT-volatility for equity owners at which for
a given initial EBIT equity value is maximized.
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Fig. 4.2. Equity values after tax as a function of EBIT-volatility and current
EBIT-value of an ABM-firm.
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total firm value. The effects are comparable to those of the risk-neutral
drift µ, however in the opposite direction.

A change of the level of the bankruptcy pattern documents minor
effects except for long term debt. Increasing the bankruptcy levels to
120 % of the initial levels as of Table 4.1 rises the probability of the
firm going bankrupt in the long run but less in the short run. However,
the recovery values for all debt issues increase. Again, long-term debt
issues suffer most.

In our framework the importance of modeling a complex capital
structure can be analyzed. As first evidence, we alter the capital struc-
ture by merging the two shortest-termed debt issues. Thereby, the
coupon of the longer lasting bond is maintained, thus increasing the
total amount of coupon payments of the firm, and the bankruptcy bar-
rier pattern is adjusted accordingly, i.e. is effectively increased in the
subperiod with the now increased debt volume. The last three columns
of Figure 4.2’s Panels B compare the market values to the base case and
show an interesting pattern. First, even those debt values that are not
directly involved in the debt merger change their value substantially.
Second, the total amount of debt value changes ambiguously because



4.1 A Base Case Example 83

two effects counteract. On the one hand, the bankruptcy probability
builds up because the bankruptcy barrier rises. On the other hand, the
higher coupon payments increase the solvent debt value. In the first two
debt mergers, the first effect dominates and total debt value decreases.
In the last merger the second effect outweighs the higher bankruptcy
probabilities. So all short-term debt holders would accept an offer to
convert their debt issues into a perpetual debt issue. Third, equity value
increases considerably throughout at the expense of the government’s
claim.10

4.1.2.2 Numerical Extensions of the ABM-EBIT-Model

The exercise of implementing the model numerically serves two pur-
poses. First, the importance of taxation can be analyzed. Second, we
want to answer the question of how important is an optimal bankruptcy
decision of equity owners.

Therefore, we approximate the EBIT-process of equation (3.6) by
a trinomial lattice11 and distribute EBIT among different claimants at
each node. The terminal values of the tree are set to the analytical
formulas derived in Section 3.2.3. We choose the maturity of the tree
to be 11 years, with 100 time steps per year.

Different Tax Regimes

Simulations12 show that taxes can have a major impact on the value of
the different securities. The equity value reduces little less than 20 % if
switching from the most favorable (Tax Regime 2) to the least favorable
(Tax Regime 3) tax regime, whereas switching from Tax Regimes 1 to
3 only induces a value reduction of around 7 %. Note that the tax
regimes only affect the corporate’s and equity investor’s tax burden,
debt holders are not concerned.

Therefore, we would like to stress the importance of modeling taxes
explicitly. In all our scenarios, between 20 % to 30 % of total firm value
is claimed by the government. Therefore, empirical tests of structural
10 So, in our base case firm there is room for optimizing the capital structure.
11 The method is the one proposed by Kamrad and Ritchken (1991) where the

step size parameter λ ≈ 1.25 is chosen such that the first bankruptcy barrier is
perfectly hit. Recall that this procedure coincides with Boyle and Lau (1994)’s
suggestion to overcome convergence problems of barrier option valuation. The
implementation of the lattice is explained in detail in Subsection 3.4.1.

12 Table B.1 is shifted to Appendix B because it does not increase the clarity of the
exposition.
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credit risk models should consider a tax regime. The precision of mod-
eling a realistic tax regime is an issue. Our Tax Regimes 1 and 2 are
analytically tractable and might give a good guideline.

Optimal Bankruptcy and Future Debt Issues

In the basic model, equity owners choose a bankruptcy pattern as a
function of total debt outstanding. It would now be interesting how the
analysis changes if bankruptcy is triggered optimally by equity holders.

Comparing the base case under each of the tax regimes with the
similar firm under optimal bankruptcy, market values of securities only
change by small amounts. Short-term debt values may decrease. This
implies that at some point in the future our base case bankruptcy
pattern was set too low. Long-term debt prices and the equity value
increases slightly as expected. However, our proposed modeling of the
bankruptcy barrier seems reasonably accurate.

Figure 4.3 illustrates the decision of equity owners within the tri-
nomial tree along the time line, where the different lines indicate the
total firm value and the EBIT at which equity owners would no longer
support the firm in the three tax regimes.

In a setting of a static capital structure and optimal bankruptcy
trigger, the bankruptcy barrier is not constant along the time line. In
the regions where the bankruptcy barrier appears relatively flat, cap-
ital outflows are determined by EBIT and coupon payments. Equity
holders are willing to accept moderate cash infusions into the firm to
meet the current obligations. Shortly before the repayment of a debt
issue, equity owners bankruptcy decision are dominated by cash needs
at debt maturity. As a result they need a sufficiently high level of EBIT,
to justify the repayment of the debt issue. After the repayment, optimal
bankruptcy levels fall to lower levels. Due to the reduced debt volume,
total coupon payments of the firm are lower than before. The tax sys-
tem influences the optimal bankruptcy levels. Tax Regime 2 is most
favorable for equity holders because even the capital repayments are
tax deductable. Therefore, the EBIT-level that equity holders demand
to compensate for the debt repayment is lower than under the other
tax regimes. In contrast, Tax Regime 3 which excludes the tax recovery
of corporate losses rises the optimal bankruptcy barrier considerably.

To assess if the current static capital structure setting is sufficient
for the valuation of debt and equity, we need to test whether a future
debt issue, instead of an equity issue, influences current values of the
respective securities to an extent that it is relevant for asset pricing.
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Fig. 4.3. Optimal bankruptcy level and corresponding EBIT-level within the
trinomial tree approximation under different tax regimes (ABM-Corporate
Securities Framework)
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To investigate the price impact, each bond issue is replaced at its
maturity by a new bond with a notional of the maturing debt and a
6 % coupon rate. The future bonds have almost zero present values. In
contrast, equity values are influenced significantly. The crucial change
concerns the future bankruptcy triggering of equity. Figure 4.4 indi-
cates that the more future bonds the firm issues the less fluctuates the
optimal bankruptcy level. One reason is that the notional amount of
debt is reissued at the repayment date shifting equity holders’ capi-
tal infusions due to debt repayments to times when the newly issued
bonds mature. However, the bankruptcy level is higher after the first
future debt issue due to higher coupon payments. The higher bank-
ruptcy probability offsets some of the present value effect. The major
component of the increase in equity value is future tax savings due to
coupon deductability and the realization of tax benefits in those states
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Fig. 4.4. Optimal bankruptcy level and corresponding EBIT-level within
the trinomial tree approximation with future bond issues (ABM-Corporate
Securities Framework)
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where the firm goes bankrupt in the optimal bankruptcy case without
a refinancing facility. Future bond issues reduce the present value of the
government’s claim. In general, the present value effect and corporate
tax savings dominate and equity value rises.

Not all bond holders gain from the flattening of the bankruptcy
barrier. In some cases, the unfavorable repayment schedule, i.e. the
shifting of the peak of the bankruptcy barrier to later points in time
harms existing bond holders. Equity holders are always better off.

In general, future debt issues cannot be ignored. However, we can
conclude that the assumption of a constant bankruptcy barrier is rea-
sonable if we allow for the refinancing of existing debt in the future. We
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have to account for the value of tax savings due to coupon payments
in investors’ equity value. Debt values are less affected by taxation.13

4.1.3 The Geometric Brownian Motion Firm

As mentioned in Subsection 4.1.1, a constant risk-neutral GBM-EBIT-
drift of µ̄ = 3 1/3 % and a constant GBM-volatility of σ̄η = 18 %
yields almost similar market values of securities as in the ABM-case.14

Comparing Panel A of Table 4.2 with Panel A of Table 4.3 shows
that all four outstanding bonds are more valuable in the GBM-case
than in the ABM-case. The small value gain can be attributed to a
lower value of bankruptcy costs BC (17.88 vs. 28.99). BC can only be
smaller in the GBM-case if bankruptcy probabilities are lower because
losses in bankruptcy α, the risk-free interest rate r, and the pattern of
bankruptcy barriers VB(Tj) are the same in both models. So the only
difference is the probabilities with which the bankruptcy event occurs.

4.1.3.1 Comparative Statics of the GBM-EBIT-Model

In general, security values change into the same direction in both the
analytical ABM- and GBM-EBIT-model if parameters are varied. How-
ever, there are differences in terms of the level of sensitivity.

Consider first the sensitivity to initial EBIT (Columns 2 and 3 of
Table 4.2’s and Table 4.3’s Panel B). Firm value itself is more sensitive
to EBIT-changes in the GBM-model as long as the risk-neutral EBIT-
drift is positive.

∂V

∂ηt0

=
1
r

<
∂V̄

∂ηt0

=
1

r − µ̄
⇔ 0 < µ̄ < r

The difference of sensitivity of total firm value directly translates into
much higher changes of security values in the GBM-case.

The same kind of reasoning is valid for changes of the risk-neutral
drift µ̄ and the risk-free interest rate r (Columns 4 and 5 as well as 8
and 9 of Table 4.2’s and Table 4.3’s Panel B). Note that the GBM-firm
13 Some of the effects of a future debt issue can be approximated analytically by

manipulating equations (3.70) and (3.71).
14 The GBM-parameter values can be determined by first choosing µ̄ so that firm

values match under both process assumptions. Then, one can search for a σ̄η that
generates security market prices close to those of the ABM-case.
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Table 4.3. Security values in the GBM-Corporate Securities Framework. Panel A shows the splitting of values among solvent
(Columns 2 to 5) and insolvent values (Columns 6 to 8). Columns 9 to 11 contain the sum of both values, Column 10 market
values. Base case parameters: ηt0 = 100, µ̄ = 3 1/3 %, σ̄η = 18 %, r = 5 %, τc = 35%, τd = τe = 10 %, α = 50 %, VB(Tj) is
determined that 50 % of the outstanding debt is recovered. Panel B shows changes in market prices when parameter values
of the base case are changed.

Panel A: Base Case

j V +
j Investors Tax Savings G+

j V −
j Investors G−

j V +
j + V −

j Investors G+
j + G−

j

4.5 %, 2 593.41 588.27 15.41 5.14 0.44 0.28 0.16 593.85 588.55 5.30
5 %, 4 597.68 586.81 32.59 10.86 1.16 0.73 0.43 598.84 587.55 11.29

5.5 %, 10 616.82 590.97 77.54 25.85 3.34 2.10 1.24 620.16 593.08 27.08
6 %, ∞ 1,459.40 1,313.46 437.82 145.94 16.92 10.66 6.26 1,476.32 1,324.12 152.20�

Debt 3,267.30 3,079.52 563.36 187.79 21.86 13.77 8.09 3,289.16 3,093.29 195.87
Equity 2,692.95 1,321.41 1,224.72 146.82 0.00 0.00 0.00 2,692.95 1,321.41 1,371.54

BC 17.88 17.88 17.88 17.88�

5,960.26 39.74 6,000.00 4,432.58 1,567.42

Panel B: Comparative Statics
η0 µ (in %) ση (in %) r (in %) VB (in %) Number of Bonds

75 125 3.00 3.67 13.00 23.00 4.00 6.00 80 % 120 % 3 2 1
4.5 %, 2 572.49 589.13 583.14 589.13 589.15 583.13 600.58 503.14 589.13 584.03 0.00 0.00 0.00
5 %, 4 566.64 588.98 579.35 589.00 589.11 576.57 611.09 486.34 588.96 580.88 1,163.54 0.00 0.00

5.5 %, 10 566.91 596.52 580.97 596.69 597.56 571.17 646.96 466.49 596.41 583.88 588.11 1,690.42 0.00
6 %, ∞ 1,256.24 1,337.26 1,286.71 1,339.97 1,349.12 1,238.03 1,682.87 943.01 1,336.16 1,299.13 1,313.09 1,261.24 2,917.63�

Debt 2,962.28 3,111.89 3,030.18 3,114.80 3,124.93 2,968.90 3,541.50 2,398.98 3,110.66 3,047.93 3,064.74 2,951.66 2,917.63
Equity 419.75 2,260.88 711.47 2,260.14 1,312.50 1,358.63 6,675.90 234.39 1,318.02 1,325.14 1,342.11 1,426.48 1,564.37

BL 92.21 7.58 53.35 6.01 0.53 86.92 1.84 281.40 6.09 57.13 34.29 108.83 201.27
Taxes 1,025.76 2,119.65 1,205.01 2,119.05 1,562.03 1,585.54 4,780.76 835.22 1,565.23 1,569.80 1,558.86 1,513.02 1,316.74

Firm Value 4,500.00 7,500.00 5,000.00 7,500.00 6,000.00 6,000.00 15,000.00 3,750.00 6,000.00 6,000.00 6,000.00 6,000.00 6,000.00
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value change is identical for an increase of the risk-neutral drift and a
decrease of the interest rate by the same amount.15

∂V̄

∂µ̄
=

ηt0

(r − µ̄)2
= −∂V̄

∂r

However, the probabilities of bankruptcy and bankruptcy prices are
both functions of µ and r and so are directly influenced as well.16 By
the effect of interest rates on the GBM-security prices we can therefore
conclude that the GBM-model is again more sensitive to parameter
changes where the major part of the value change is due to the firm
value effect. Especially long-term securities benefit from increases of
the risk-neutral drift and a decrease of risk-free interest rates. Note
further that the ABM-firm accepts much higher interest rates without
going bankrupt than the GBM-firm.

As in the ABM-model, the GBM-firm value is unaffected by chang-
ing the volatility (see Columns 6 and 7 of Table 4.2’s and Table 4.3’s
Panel B). The 5 % percentage point change of GBM-volatility affects
each security differently compared to the absolute move of 10 in the
ABM-case. Although the changes in the two models are on different
bases and not entirely comparable, note that the slope of the term struc-
ture of bankruptcy probabilities becomes much steeper in the GBM-
model if volatility is increased. Whereas bond prices for short term
bonds of the GBM-firm don’t fall as much as those of the ABM-firm
(583.13 vs. 581.62), the opposite is true for long-term bonds (1,238.03
vs. 1,257.63). The difference between two corporate bonds’ prices of
equal characteristics is only attributable to bankruptcy probabilities
over the life of the bond. As in the ABM-model, equity owners of the
GBM-firm have an incentive for asset substitution. Note that the low
risk ABM- and GBM-firms have almost identical security prices. Firm
values are identical and bond prices become nearly risk-free. Therefore,
equity prices converge given the same tax regime.

Columns 10 and 11 of Table 4.2’s and Table 4.3’s Panel B depict
the case of a change of the bankruptcy barrier. The effects on security
prices are similar to those of changes of the EBIT-volatility. Again, the
15 In contrast, the derivatives of the ABM-firm value with respect to the risk-neutral

drift is 1/r2, and with respect to the interest rate is −ηt0/r2 − 2µ/r3. Therefore,
the major difference of sensitivities with respect to the risk-neutral drift and the
risk-free interest rate between the ABM- and the GBM-firm is due to the firm
value effect.

16 Bankruptcy probabilities are a function of r because the pattern of bankruptcy
barrier is defined in terms of a value covenant for debt VB(T ). Changing r, changes
the equivalent EBIT-barrier ηB(T ) by equations (3.4) and (3.78).
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GBM-firm’s term-structure of bankruptcy probabilities steepens if the
bankruptcy barrier is increased compared to the ABM-case.

The last three columns of Table 4.2’s and Table 4.3’s Panel B display
the first qualitative dissimilarities of the comparative statics analysis
between ABM- and GBM-firms. Whereas the debt holders of the ABM-
firm would accept the offer of equity holders for an exchange of their
bond issues with the perpetual bond, debt holders of the GBM-firm
would unequivocally reject the offer. They demand a higher coupon
than the offered 6 %, implying that the term structure of credit spreads
in the GBM-model is steeper than in the ABM-model.

4.1.3.2 Numerical Extension of the GBM-EBIT-Model

Security values of the GBM-firm behave qualitatively similar to those
in the ABM-model under the different tax regimes and optimal bank-
ruptcy.17

• Taxes are an important part of firm value.
• The optimal bankruptcy barrier is not constant.
• The barrier becomes close to constant if future debt issues are con-

sidered.
• However, the structure of the optimal bankruptcy barrier is slightly

different. Comparing Figure 4.4 for the ABM-firm and Figure 4.5,
the GBM-EBIT cannot become negative. As such, the optimal
GBM-bankruptcy EBIT is much higher than the ABM one. In terms
of firm value, the optimal bankruptcy barrier is equal at the peaks
on the refinancing dates. Before the refinancing dates the GBM-firm
value barrier is lower but has the same exponentially growing shape
as the ABM-firm value barrier. The growth rate in the ABM-model
is higher than in the GBM-model.

4.2 Valuing Equity Options

One of the frequently discussed issues in the asset pricing literature is
why the theoretical option prices in the Black and Scholes (1973)/Mer-
ton (1974) framework cannot be observed empirically. Implied volatil-
ities of observed option prices calculated in the Black/Scholes setting
are not constant. They are higher for lower strike prices than for higher
17 The detailed figures can be found in Table B.2 in Appendix B.
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Fig. 4.5. Optimal bankruptcy level and corresponding EBIT-level within the
trinomial tree approximation with future bond issues under Tax Regime 1
(GBM-Corporate Securities Framework)
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ones. The convex relationship is commonly referred to as an option’s
volatility smile or smirk.18

18 The literature on implied option volatilities is huge. Early evidence of the exis-
tence of implied volatility smiles is MacBeth and Merville (1979) who base their
work on studies of Latané and Rendleman (1975) and Schmalensee and Trippi
(1978). Emanuel and MacBeth (1982) try to relax the stringent volatility assump-
tion of the Black and Scholes (1973) to account for the volatility smile but fail by
a constant elasticity of variance model of the stock price. More recent studies of
Rubinstein (1994), Jackwerth and Rubinstein (1996), and Jackwerth and Rubin-
stein (2001) take the volatility smile as given and exploit option prices to extract
implied densities of the underlying asset. See also Buraschi and Jackwerth (2001)
who report that after the 1987 market crash, the spanning properties of options
decreased. They conclude that more assets are needed for hedging option prices
which hints to additional risk factors such as stochastic volatility.
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Several extensions of the Black/Scholes framework have been sug-
gested to account for these empirical observations which can be cate-
gorized in two groups. First, a pragmatic stream of the literature intro-
duced volatility structures and thus changed the physical distributional
assumptions for the underlying. Although this procedure yields satisfy-
ing results for equity option trading, economic intuition is still lacking
which underpins the use of volatility structures.19

Second, an economic stream of the literature tried to explain why
the pricing kernel, defined as the state price function at option matu-
rity, is different to the one implied by the Black and Scholes (1973)
model. Arrow (1964) and Debreu (1959), Rubinstein (1976), Breeden
and Litzenberger (1978), Brennan (1979) and others relate state prices
to investor utility and the state dependent payoffs of securities and
disentangle the effect of the investor’s utility function from the proba-
bility distribution of the underlying asset. Therefore, the pricing kernel
– and the value of securities – depends on assumptions about the utility
function of the investor and on the distribution of the security.20 The
pricing kernel is valid for all securities in an economy. However, when
taking an individual firm’s perspective, the simple pricing kernel needs
to be augmented by additional risk factors such as default or liquidity.

Using the economic framework of Chapter 2 and the analytical solu-
tion of Chapter 3 a simpler economic explanation might be suggested:
The implied Black/Scholes-volatility smile of equity options can be ex-
plained as a result of the specific ability of equity holders to declare
bankruptcy. This feature introduces dependence on the particular path
of EBIT and changes the distribution of equity due to the conditioning
on survival until option maturity. Contract design of equity, especially
the limited liability, changes the local volatility of equity which in turn
depends on the current state of the firm and influences the pricing
kernel and equity option’s implied volatilities. Our approach is related
to Geske (1979)’s compound option approach. However, in contrast to
Geske (1979) whose underlying of the compound option might be inter-
preted as a Merton (1974)-like firm with only one finite maturity zero
19 See e.g. Rubinstein (1994) who adopts this procedure to the binomial model by

allowing an arbitrary distribution of the underlying at option maturity. Heston
and Nandi (2000) derive closed form solutions for options where the volatility of
the underlying which follows a GARCH process.

20 Franke, Stapleton and Subrahmanyam (1999) analyze the pricing kernel directly
by comparing pricing kernels of investors with changing degree of risk aversion
at different levels of investor’s wealth. Franke et al. (1999) find the pricing kernel
to be convex to accommodate for the dependence of risk aversion and investor’s
wealth leading to convex implied Black/Scholes-volatilities.
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bond outstanding, the framework of Chapter 2 allows for a complex
capital structure. As will be shown later, the debt structure influences
the slope and the level of the implied volatility smile.21

In a related empirical study, Bakshi, Kapadia and Madan (2003)
link the volatility smile to the distribution of equity returns. They show
that a higher skewness and a lower kurtosis of equity returns result in
steeper volatility smiles. Empirical evidence supports their hypothesis.
However, Bakshi et al. (2003) do not offer an economic explanation
why individual stock’s returns should be skewed. In our EBIT-based
firm value framework, the leverage ratio depends on the current state
of the firm with respect to bankruptcy. Firms far from bankruptcy and
with low leverage ratios exhibit a risk-neutral equity distribution that
reflects the properties of the assumed EBIT-process. The function of
implied equity option volatilities with respect to strike prices are at
a low level but steep. The closer the firm is to bankruptcy skewness
and kurtosis of equity values increase. The implied volatility level rises
significantly but the smile becomes flatter, at least in the ABM-case.
However, we stress that higher moments of equity returns might be
misinterpreted in the presence of bankruptcy probabilities. Moreover,
a key determinant of implied volatility structures is the firm’s capital
structure.

Toft and Prucyk (1997) value equity options in the restrictive Le-
land (1994) framework. The setting of Chapter 2 extends the Toft and
Prucyk (1997) analysis. Their model is a special case of our framework
if we restrict the capital structure to perpetual debt, the tax struc-
ture to corporate taxes only, and if we assume that free cash flow after
taxes follows a geometric Brownian motion instead of EBIT following
an arithmetic or geometric Brownian motion. We are able to analyze
the pricing of options under different assumptions for the EBIT-process
and of firms that have a complex capital structure. Toft and Prucyk
(1997) shed some light an complex capital structures when they proxy
a debt covenant in the perpetual debt case by the amount of a firm’s
short term debt. Our model allows to analyze firms with short term
debt and long term debt directly.

Although security prices have analytical solutions as shown in Chap-
ter 3, options written on the equity value can only be valued numeri-
21 One might argue that these observations do not carry over to index options be-

cause the index cannot go bankrupt. However, the index consists of firms that
can go bankrupt. The bankruptcy probability cannot be diversified away. E.g.
pick an index of two firms with uncorrelated bankruptcy probabilities of 1 % per
year. Only with a probability of 98.01 % both firm survive the next year. With
almost 2 % probability the index exhibits at least one bankruptcy.
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cally. Section 3.4 provides two numerical methods which will be used in
this section: first, a trinomial lattice is used to approximate the EBIT-
process and equity options are valued by backward induction. Second,
we calculate the expected option value at option maturity by numeri-
cal integration which is possible because we investigate European style
equity options. Additionally, both methods allow a fairly good approx-
imation of the first four central moments of the equity value and its
return distribution at option maturity. Therefore, we can directly com-
pare our simulation results to empirical findings of Bakshi et al. (2003).

In the following subsections, equity option prices in our Corporate
Securities Framework are compared to the Black/Scholes framework by
calculating implied Black/Scholes volatilities. Firms with EBIT follow-
ing an arithmetic and a geometric Brownian motion are analyzed, we
can show that the general structure of implied volatilities does not only
depend on the distributional assumption but primarily on the firms be-
ing allowed to go bankrupt and its capital structure.

A plot of implied volatilities against strike prices is used to visualize
the functional form of the option prices. A plot of the unconditional
partial equity density at option maturity helps for an in-depth analysis
of the implied volatility structures.22

A comparative static analysis is performed for the EBIT-volatility,
the risk-neutral EBIT-drift, the risk-free interest rate, the EBIT-
starting value, and the financing structure of the firm. The following
subsections summarize and interpret the results of the simulation.

To ease the exposition, the ABM- and GBM-firm is assumed to
have a simpler capital structure than in Subsection 4.1.1. Since short
term debt seems to have a major impact on option prices, both firms
have issued only one short term bond with a maturity of T1 = 1 year, a
notional of P1 = 1, 850, and a coupon of C1 = 4.5 %, and one perpetual
bond with a notional of P2 = 1, 250 paying a coupon of C2 = 6 %.
As well, the loss of firm value in default is changed to α = 70 %
(65 %) in the ABM-case (GBM-case) which yields bankruptcy barriers
of VB(T1) = 5, 083.33 (4, 375.14) and VB(T2) = 2, 083.33 (1, 785.71) if
50 % of the total notional of debt is to be recovered in the case of
bankruptcy. The other parameter values are those of the base case in
Subsection 4.1.1.
22 The equity density is called partial because it only starts at an equity value of

zero and the intensity of the zero value is not displayed in the graphs. As a result,
the shown densities need not integrate to one. The ”missing” probability mass is
attributable to bankruptcy.
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The tax structure is fixed. The way of determining the pattern of
bankruptcy levels in the subperiods is left constant throughout the
analysis.

4.2.1 Comparison of Numerical Methods

The trinomial lattice approach was implemented by using 900 steps23

until option maturity and λ ≈ 1.75. Due to the short option maturity
a higher step size was needed to better grasp the knock-out feature
of the option. Since the first bankruptcy barrier is most important, it
appeared useful to choose λ to hit the first barrier exactly. For firms
close to bankruptcy, λ is set close to 1.25 to get enough non-bankrupt
nodes.

For the numerical integration approach, the risk-neutral distribution
function was approximated by 200 points from the bankruptcy-EBIT
to 8 standard deviations above the expected EBIT at option maturity.
The accuracy of the multivariate normal distribution was set to 1e-
8 so that each point had a maximum accumulated error of not more
than 1e-6. The spline of the equity value distribution function at option
maturity has an even lower error because it tends to eliminate errors
of different sign. The numerical integration is performed with an error
of 1e-6.

The trinomial tree approach and the numerical integration method
give identical option prices up to minor approximation errors due to
the numerical methods. Table 4.4 summarizes the differences of option
prices and implied volatilities for the base case scenario of ηt0 = 100 and
the option maturity being 6 months. The table reports in Panel A the
relative option price difference and in Panel B the relative difference of
implied volatilities. We choose to report relative differences to account
for level effects.

Despite the fact that option prices and implied volatilities are very
sensitive to the approximation, the differences between option prices are
small given that they range from -0.0179 % to 0.2584 % of the respective
price of the numerical integration approach. The respective range for
implied volatilities is -2.1731 % and 0.1078 % of the implied volatilities
of the numerical integration approach. Especially the mean differences
MD are very comforting with only 0.0035 %. Comparing the maximum
and the minimum pricing differences in Panel A, both approaches tend
23 In the tree approach option prices were hard to approximate when the bankruptcy

barrier changed during the option’s life. If the option maturity falls after the
short-term debt maturity, 1,100 steps were needed to get reasonable accuracy.
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Table 4.4. Summary of relative differences of equity option prices (Panel
A) and implied volatilities (Panel B) of the η0 = 100, TO = 0.5 scenario sets
between the numerical integration and the lattice approach. The table reports
the minimum and maximum relative differences as well as the mean absolute
difference (MAD), the mean difference (MD), and the standard deviation
of the mean difference (SDev). All numbers are in % of the values of the
numerical integration approach.

Panel A: Relative Option Price Differences

Scenario Obs. Min Max MAD MD SDev.
All ABM and GBM scenarios 609 -0.0179 0.2584 0.0087 0.0035 0.0223
ABM only 315 -0.0151 0.1697 0.0079 0.0022 0.0182
GBM only 315 -0.0179 0.2584 0.0094 0.0048 0.0252
OTM-options 290 -0.0179 0.2584 0.0138 0.0072 0.0313
ITM-options 290 -0.0109 0.0366 0.0040 0.0002 0.0058

Panel B: Relative Implied Volatility Differences

Scenario Obs. Min Max MAD MD SDev.
All ABM and GBM scenarios 609 -2.1731 0.1078 0.0430 -0.0342 0.1408
ABM only 315 -0.0355 0.0559 0.0102 -0.0032 0.0133
GBM only 315 -2.1731 0.1078 0.0760 -0.0662 0.1904
OTM-options 290 -0.2532 0.0690 0.0248 -0.0175 0.0373
ITM-options 290 -2.1731 0.1078 0.0621 -0.0518 0.1985

to prices in-the-money options and options of the ABM-EBIT-model
equally well whereas higher price differences for the GBM-model and
out-of-the-money options can be observed. However, the worst mean
differences of 0.0072 % for out-of-the-money options is still remarkably
good.

Looking at implied volatilities in Panel B, the pattern of relative dif-
ferences is almost similar. ABM-option implied volatilities differences
are again smaller than those of GBM-option implied volatilities. How-
ever, in-the-money option implied volatilities show higher differences
than out-of-the-money implied volatilities. The effect is not surprising
because – in contrast to out-of-the-money options – implied volatilities
of in-the-money options tend to be particularly sensitive to the approx-
imated option price and the expected equity value. However note, that
the mean differences of implied volatilities are sufficiently low, as well.

4.2.2 Equity Values and Their Densities at Option Maturity

Analyzing the densities of equity values becomes quickly difficult if the
firm has a complex capital structure. To differentiate between different
effects and to compare different scenarios Tables 4.5 and 4.7 summarize
the first four moments of the equity distribution (Columns 9 to 12) and
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its return distribution (Columns 13 to 15) at option maturity24 for all
scenarios and for ABM- and GBM-firms, respectively. Panel A depicts
the case of a 6 month option, Panel B the one of a 9 month option. The
first three rows cover the base case firm with different initial EBITs η0.
Rows 4 and 5 illustrate the case of changes of the risk-neutral EBIT-
drift µ, followed by two rows of the case of changed EBIT-volatility ση,
risk-less interest rates r, and two rows of different option maturities
TO. The last four rows depict scenarios with different maturities for
the short-term bond T1. Figures 4.10 and 4.12 depict the equity value
densities of the ABM- and GBM-firm in the 6 scenarios: a shift of the
initial EBIT (Panel A), the risk-neutral drift (Panel B), the EBIT-
volatility (Panel C), the risk-free interest rate (Panel D), the option
maturity (Panel E), and the maturity of the short-term bond (Panel F).
In the accompanying Figures 4.11 and 4.13, the density plots of equity
values are translated into the corresponding equity return density plots.

4.2.2.1 General Comments

Equity is the residual contract to EBIT with a right to abandon future
obligations. This has several effects on the risk-neutral density of equity
values for a future point TO if a good-state firm approaches bankruptcy.
We start the discussion with the ABM-case.

One of the decisive elements of the moments of the equity value dis-
tribution is the position of the expected equity value. From Figure 4.6
we gain the insight that the expected equity value moves from the cen-
ter of the distribution further towards zero if initial EBIT approaches
zero. The position of the expected equity value in the partial density
influences equity value moments considerably. The change of the mo-
ments of the equity value distribution is illustrated in Figure 4.7. As
can be seen, the distribution and its moments undergo different phases.

(1)If an ABM-firm is far from bankruptcy, the density of equity is
almost normal. Given a capital structure, finite maturity debt val-
ues at option maturity are rather insensitive to changes of EBIT25

because debt has an upper value limit, i.e. its risk-free counterpart.
24 The first four central moments shown are calculated by numerical integration of

the respective expectation similar to option prices in equation (3.95). Without
loss of generality, we define the return distribution of equity values with respect
to its expected value. Therefore, the expected values of the return distribution
are zero in all scenarios.

25 The sensitivity of a security at option maturity with respect to the EBIT-level
is important because we integrate over the product of the equity values which
depends on the EBIT prevailing at option maturity, and the probability of oc-
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Table 4.5. Unconditional central moments of the equity and its return distribution at option maturity as well as LS-regression
results of the form ln(σ) = β0 + β1 ln (X/Et) in the ABM-Corporate Securities Framework. The base-EBIT η0 = 100 and
parameters are changed as displayed in the first 6 columns. The bankruptcy barrier is set such that the recovery of debt
holders is 50 % of total debt outstanding and losses in the case of bankruptcy are α = 70 %. T1 denotes the maturity of the
short bond, Φ(TO) the bankruptcy probability up to option maturity TO.

Panel A

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE (TO)) κ(rE (TO)) exp(β0) β1 p-value
75.0 10.00 40 5.00% 5083.33 1.00 0.500 40.2354% 640.63 453.47 1.7795 3.7381 49.79% 0.8273 4.0334 1.6562 -0.5396 0.00
100.0 7.8111% 1205.89 415.28 0.4427 2.9036 40.40% -2.0186 11.1134 0.6396 -0.9108 0.00
125.0 0.7781% 1625.25 403.06 -0.2763 3.4487 30.39% -2.4926 15.0766 0.3688 -0.8365 0.00
100.0 8.00 81.1339% 185.78 384.86 2.8430 8.7371 71.49% 2.4950 6.4728 3.7620 -0.2015 0.00
100.0 15.00 0.0000% 2662.99 358.18 -0.0118 3.0187 13.83% -0.6551 3.6748 0.1934 -0.5102 0.00
100.0 30 1.8075% 1311.98 319.59 -0.3454 3.6215 30.44% -2.7058 16.7824 0.3839 -1.0831 0.00
100.0 50 16.1224% 1101.28 487.79 1.1189 3.1794 45.03% -1.2774 8.3216 0.9108 -0.7493 0.00
100.0 4.00% 0.0000% 2761.85 448.08 -0.0091 3.0106 16.90% -0.8020 3.9919 0.2327 -0.5055 0.00
100.0 5.50% 92.3149% 81.74 292.62 4.2235 18.9662 69.87% 3.7564 14.3446 5.0367 -0.1265 0.00
100.0 1.000 18.5796% 1250.11 465.23 1.7271 4.0329 29.93% 1.1891 2.8677 0.6105 -0.8920 0.00
100.0 2.000 18.5988% 2230.36 768.89 1.5186 3.4094 29.37% 0.6149 4.4332 0.6818 -0.5958 0.00
100.0 0.25 1.6363% 2364.47 370.51 0.2903 3.0306 15.88% -0.4819 3.8408 0.5898 -1.0769 0.00
100.0 0.75 7.8111% 1231.06 390.92 0.4954 3.1376 36.47% -2.0377 12.5244 0.5971 -0.9953 0.00
100.0 1.50 7.8111% 1171.37 435.42 0.4780 2.7821 43.75% -1.9311 9.8993 0.6810 -0.8060 0.00
100.0 3.00 7.8111% 1126.61 447.80 0.5648 2.8050 46.44% -1.8343 9.0008 0.7166 -0.7134 0.00

Panel B

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE (TO)) κ(rE (TO)) exp(β0) β1 p-value
75.0 10.00 40 5.00% 5083.33 1.00 0.750 47.6579% 654.46 523.34 1.8376 3.8319 51.68% 1.3333 3.3410 1.5753 -0.4889 0.00
100.0 13.7522% 1228.50 446.94 1.0660 3.3341 37.03% -1.3127 10.2378 0.6298 -0.9340 0.00
125.0 2.5796% 1650.77 451.70 0.1342 3.2643 32.12% -2.1618 13.3058 0.3627 -0.8067 0.00
100.0 8.00 83.9805% 188.91 427.49 2.9499 9.3417 72.39% 2.6412 7.1579 3.2852 -0.1823 0.00
100.0 15.00 0.0006% 2705.31 438.66 -0.0135 3.0249 16.90% -0.8294 4.3224 0.1919 -0.5079 0.00
100.0 30 4.5342% 1337.25 342.38 0.2403 3.4897 29.56% -2.2579 15.7406 0.3760 -1.0760 0.00
100.0 50 23.9330% 1120.98 546.56 1.5499 3.7139 42.51% -0.3310 6.6534 0.8989 -0.7486 0.00
100.0 4.00% 0.0009% 2798.91 548.75 -0.0102 3.0119 20.87% -1.0339 4.9413 0.2312 -0.5045 0.00
100.0 5.50% 93.4312% 83.15 319.18 4.3925 20.3326 68.91% 4.0033 16.2126 4.2848 -0.1183 0.00
100.0 0.500 7.8111% 1205.89 415.28 0.4427 2.9036 40.40% -2.0185 11.1144 0.6396 -0.9108 0.00
100.0 1.000 18.5796% 1250.11 465.23 1.7271 4.0329 29.93% 1.1891 2.8677 0.6105 -0.8920 0.00
100.0 2.000 18.5988% 2230.36 768.89 1.5186 3.4094 29.38% 0.6147 4.4440 0.6818 -0.5958 0.00
100.0 0.25 1.6366% 2394.83 467.62 -0.0612 4.0098 19.89% -0.8657 5.1310 0.4958 -0.9898 0.00
100.0 0.75 13.7522% 1253.98 403.03 1.5582 3.8167 27.33% 0.8803 2.7616 0.5762 -0.9417 0.00
100.0 1.50 13.7522% 1193.54 480.26 0.9597 3.0557 42.37% -1.4494 9.1353 0.6789 -0.8137 0.00
100.0 3.00 13.7522% 1148.22 501.85 0.9993 3.0741 46.01% -1.4099 8.2204 0.7164 -0.7091 0.00
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Fig. 4.6. Equity value densities of 6 month equity options in the ABM-
Corporate Securities Framework as a function of η0. Expected equity values
are indicated by solid lines. Path probabilities are obtained by differentiating
the splined distribution function of EBIT at option maturity.
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Equity of firms far from bankruptcy gain with each increase of EBIT
a constant amount making the equity distribution symmetric and
driving excess-kurtosis to zero.
Taking the high risk-neutral drift and low interest rate scenarios
in Table 4.5 as an example, the skewness is slightly below 0 and
kurtosis slightly above 3.

(2)The abandonment option bounds the value of equity from below
at zero. The equity density will therefore exhibit a mass concen-
tration at zero which is equal to the bankruptcy probability for
a given time in the future. As a result, the continuous part of
the unconditional distribution of equity value only integrates to
1 − Φ(t0, T, ηt0 , ηB(T )) ≤ 1. The bankruptcy probability pulls the

currence which is a function of both the initial EBIT and the EBIT at option
maturity, from the bankruptcy barrier to infinity.
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Fig. 4.7. Equity value density moments of 6 month equity options in the
ABM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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expected equity value towards zero which implies that debt issues
leave the region where they are insensitive to bankruptcy. How-
ever, finite maturity debt is still a sticky claim despite the slightly
higher bankruptcy probability because they receive some recovery in
bankruptcy. The stickiness of a debt issue depends on its maturity.
Thereby, shorter maturity bonds are less sensitive than longer-term
bonds. As a result, equity value suffers higher losses than debt if
EBIT decreases but benefits more if EBIT increases. The asymme-
try increases when approaching bankruptcy. It causes equity value
skewness to decrease and excess-kurtosis to increase. The behavior
of equity value skewness directly depends on the redistribution of
assets for different realizations of EBIT at option maturity. If the
firm moves closer to bankruptcy, equity value suffers from higher
values of bankruptcy losses while finite maturity debt values are
less affected. The probability of low equity values increases more
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than the normal distribution would predict, which skews the equity
distribution to the right.26

This type of the equity value distribution is illustrated by the low
risk and the high EBIT-value scenarios in Table 4.5.

(3)If the firm moves further towards bankruptcy, the bankruptcy event
starts to dominate the shape and moments of the distribution. Eq-
uity skewness increases rapidly from its intermediate lower values.
Equity kurtosis decreases to values even below 3. These effects are
only driven by the mass concentration of the equity value distrib-
ution at 0 and have no direct economic interpretation. Pick as an
example the base case 100-EBIT-firm and the cases of the short-
term debt with longer maturities (Table 4.5). All these scenarios
have in common that they have a modest bankruptcy probability,
but a relatively high standard deviation.

(4)Close to bankruptcy, equity values are dominated by the bankruptcy
event. Since the left tail of the distribution is no longer existing, eq-
uity value standard deviation decreases, skewness increases further,
and kurtosis can reach levels significantly above 3. Good examples
of these cases are the low 75-EBIT, the low risk-neutral drift, the
high interest rate and the high risk firm (Table 4.5).

The risk-neutral density of continuous equity returns can be directly
gained from the equity value density.27 Figure 4.8 illustrates the equity
return densities for initial EBIT ranging from 50 to 150. The closer
the firm moves towards bankruptcy, the more moves the peak of the
return density into the positive quadrant although the return is defined
relative to its expected value.28 In contrast to the equity value distribu-
tion, the equity return distribution has support over the whole real line
because as the equity value at some future point approaches 0, its con-
tinuous return goes to minus infinity. However, the return distribution
integrates only to 1 − Φ(t0, T, ηt0 , ηB(T )) ≤ 1, as well. Therefore, bad
state firms (low initial EBIT, low risk-neutral drift, or high risk-less
interest rate) have a positive expected return given that they survive
26 Intuitively, we can argue directly within the trinomial tree: Fix the EBIT-tree’s

probabilities at each node. The vertical spacing of EBIT at one point in time is
constant. However, the equity values at adjacent nodes are not equally spaced.
The spacing of equity values relative to its current node’s value increases close to
the bankruptcy node because debt holders are senior claimants to the remaining
total firm value. Therefore, the local relative volatility of equity increases close to
bankruptcy. Economically this is intuitive since the equity value in a bankruptcy
node is 0 to which a positive value of equity is pulled to.

27 See the note on the conversion of densities in Appendix A.1.
28 See the zero-return line of each return density.
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Fig. 4.8. Equity return densities of 6 month equity options in the ABM-
Corporate Securities Framework as a function of η0. The 0-returns are in-
dicated by solid lines. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.
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until option maturity, and a positive skewness (see also Panels B and
E of Figures 4.11 and 4.13, respectively) alongside with high kurtosis.
It is exactly this bankruptcy probability that complicates the inter-
pretation of return distributions and its moments. In some cases, the
unconditional moments even become quite misleading if one compares
them to moments of a regular distributions.

Comparing Figures 4.7 and 4.9, the return moments follow an almost
similar pattern as the equity value moments described above although
at a different level and with changes at a different scale. However,
some additional notes might be warranted. The equity return standard
deviation depends directly on the relative level of expected equity value
and its standard deviation. The equity return standard deviation is
driven by two effects: (i) the equity standard deviation increases in
absolute terms and (ii) the expected equity value decreases. Both effects
increase return standard deviation until equity value standard deviation
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Fig. 4.9. Equity return density moments of 6 month equity options in the
ABM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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drops low enough to allow equity return standard deviation to fall as
well. Therefore, equity return standard deviation starts to drop much
closer to bankruptcy than the equity value standard deviation.

Return skewness is expected to be negative in general because a
decrease of EBIT always results in a relatively larger decrease of equity
value than an increase. Therefore, return skewness is much lower than
equity value skewness and only the bad state firms encounter positive
return skewness because of the missing left tail. By the same argument,
the tails of the return density are thicker than normal thus return kur-
tosis is much higher than the equity value kurtosis for good state firms.
The swings of equity return kurtosis are more pronounced. Close to
bankruptcy, the increase of return skewness and kurtosis is dampened
by the relatively higher return standard deviation.
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The equity value distribution of the GBM-firm runs through the
same four stages described for the ABM-firm.29 There are two distinct
differences, though: First, equity value skewness never decreases below
0. Second, equity value kurtosis always exceeds 3. Both moments show
the same swings the closer the firm moves towards bankruptcy. In fact,
the ABM- and GBM-firm are indistinguishable if they are close to
bankruptcy. Note further, that the equity return distributions show
much similarity so that it becomes difficult to tell which process drives
EBIT if the return distribution is the only kind of information.

Equity values are distributed neither normally nor log-normally in
the ABM- and GBM-case. However, all densities look normal for good-
state firms.

Table 4.6. The first four central moments of the equity value and its return
distribution depending on the current state of the firm with respect to bank-
ruptcy and the distributional assumption. The return distribution is centered
around its expected value.

Equity Value Distribution
Firm State (1) Excellent (2) Good (3) Medium (4) Bad

EBIT follows ABM GBM ABM GBM ABM GBM ABM GBM

EQ(ET ) very large large medium small
σ(E(T )) small rel. small medium rel. large
ζ(E(T )) ≈ 0 > 0 ≤ 0 > 0 > 0 >> 0 >> 0 >>> 0
κ(E(T )) ≈ 3 > 3 ≤ 3 > 3 ≥ 3 >> 3 >> 3 >>> 3

Equity Return Distribution
σ(rE(T )) very small small medium large
ζ(rE(T )) < 0 < 0 << 0 > 0
κ(rE(T )) > 3 >> 3 > 3 (decr.) >> 3

To summarize the general findings of this subsection, Table 4.6 gives
an overview of the first four central moments of the equity value and
its return distribution.

4.2.2.2 Comparative Statics

After the general discussion about equity value and return densities and
before going into details, recall from Section 4.1 that parameter changes
influence the equity density due to either a reduction of total firm value
and/or a redistribution of a constant total firm value among different
claimants. By equations (3.4) and (3.78), total firm value does not
29 See Figures B.2 and B.3 in the appendix for the equity value densities as a func-

tion of initial EBIT and its moments. Figures B.4 and B.5 display the respective
equity return densities and moment series.
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Table 4.7. Unconditional central moments of the equity and its return distribution at option maturity as well as LS-regression
results of the form ln(σ) = β0 + β1 ln (X/Et) in the GBM-Corporate Securities Framework. The base-EBIT η0 = 100 and
parameters are changed as displayed in the first 6 columns. The bankruptcy barrier is set such that the recovery of debt
holders is 50 % of total debt outstanding and losses in the case of bankruptcy are α = 65 %. T1 denotes the maturity of the
short bond, Φ(TO) the bankruptcy probability up to option maturity TO.

Panel A

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE (TO)) ζ(rE(TO)) κ(rE (TO)) exp(β0) β1 p-value
75.0 3.33% 18% 5.00% 4357.14 1.00 0.500 78.6057% 144.36 290.58 3.1360 12.8248 70.22% 2.4493 6.4458 3.5985 -0.2102 0.00
100.0 1.0069% 1323.58 504.69 0.4842 4.4591 45.73% -1.8564 8.4684 0.5634 -0.4179 0.00
125.0 0.0015% 2312.42 623.62 0.4734 5.1688 28.57% -0.9775 4.6390 0.3826 -0.2763 0.00
100.0 3.00% 26.3453% 580.39 376.12 1.9185 6.5375 53.45% -0.4574 5.9861 1.3027 -0.5139 0.00
100.0 3.67% 0.0014% 2323.50 624.04 0.4731 5.1476 28.43% -0.9680 4.6012 0.3813 -0.2751 0.00
100.0 13% 0.0310% 1364.97 361.03 0.2650 3.8795 29.02% -1.3621 7.2263 0.3786 -0.3665 0.00
100.0 23% 4.7142% 1272.28 617.97 1.0015 6.6668 56.75% -1.7032 7.1600 0.7669 -0.4233 0.00
100.0 4.00% 0.0000% 6789.70 1244.04 0.8086 10.6568 18.33% -0.3932 3.4415 0.2547 -0.1192 0.00
100.0 5.50% 63.1049% 285.36 371.07 2.4781 7.8316 63.15% 1.8390 4.4066 2.6452 -0.3150 0.00
100.0 1.000 6.3537% 1375.84 659.58 1.1645 4.3383 48.69% -0.8721 3.6766 0.5582 -0.4000 0.00
100.0 2.000 6.3623% 2511.92 1021.12 1.2887 4.9195 39.57% -0.6929 4.7161 0.4763 -0.6091 0.00
100.0 0.25 0.0319% 2405.18 502.35 0.3630 3.2449 21.39% -0.6037 3.4751 0.3716 -0.6644 0.00
100.0 0.75 1.0069% 1324.15 497.10 0.4528 3.3109 44.28% -1.7827 8.2907 0.5556 -0.3955 0.00
100.0 1.50 1.0069% 1321.51 512.43 0.3935 3.2055 47.09% -1.8875 8.3964 0.5757 -0.4317 0.00
100.0 3.00 1.0069% 1321.20 523.53 0.3973 3.1576 48.32% -1.8775 8.1756 0.5892 -0.4262 0.00

Panel B

η(0) µ ση r VB T1 TO Φ(TO) EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE (TO)) ζ(rE(TO)) κ(rE (TO)) exp(β0) β1 p-value
75.0 3.33% 18% 5.00% 4357.14 1.00 0.750 82.1484% 148.58 336.05 3.4339 17.1215 71.26% 2.6329 7.3133 3.1836 -0.1868 0.00
100.0 3.3795% 1349.92 594.06 0.8910 6.0670 50.56% -1.6599 7.4386 0.5603 -0.4092 0.00
125.0 0.0370% 2347.46 770.62 0.6018 6.2762 35.93% -1.2563 5.7652 0.3819 -0.2762 0.00
100.0 3.00% 35.5460% 593.90 447.57 2.2563 8.8675 52.62% 0.4202 5.0979 1.2833 -0.4877 0.00
100.0 3.67% 0.0349% 2362.69 771.83 0.6005 6.2314 35.69% -1.2421 5.7264 0.3805 -0.2749 0.00
100.0 13% 0.2768% 1392.10 441.14 0.4041 4.1405 35.62% -1.5152 7.5855 0.3766 -0.3580 0.00
100.0 23% 10.3782% 1297.22 719.96 1.6434 12.5294 57.68% -1.3839 6.5952 0.7651 -0.4225 0.00
100.0 4.00% 0.0000% 6867.45 1536.65 0.9031 12.2042 22.53% -0.5064 3.3914 0.2549 -0.1352 0.00
100.0 5.50% 68.9919% 292.03 433.74 2.6543 9.8096 65.84% 2.0388 4.7540 2.4232 -0.2772 0.00
100.0 0.500 1.0069% 1323.43 503.60 0.4160 3.2699 45.69% -1.8622 8.4936 0.5637 -0.4189 0.00
100.0 1.000 6.3537% 1375.84 659.58 1.1645 4.3383 48.69% -0.8721 3.6766 0.5582 -0.4000 0.00
100.0 2.000 6.3623% 2511.92 1021.12 1.2888 4.9192 39.56% -0.6937 4.7278 0.4763 -0.6090 0.00
100.0 0.25 0.0319% 2437.30 625.27 0.6554 7.6604 26.50% -0.7502 3.7543 0.3425 -0.2048 0.00
100.0 0.75 3.3795% 1350.65 585.25 0.9715 6.2502 46.16% -1.0368 3.8813 0.5528 -0.3836 0.00
100.0 1.50 3.3795% 1347.98 605.72 0.8322 5.7932 53.05% -1.7603 7.5811 0.5733 -0.4328 0.00
100.0 3.00 3.3795% 1347.66 620.26 0.8105 5.5245 54.87% -1.7673 7.3857 0.5883 -0.4292 0.00
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Fig. 4.10. Unconditional partial densities of equity in the ABM-Corporate
Securities Framework with η0 = 100 at TO = 0.5: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses
are α = 70 %. Path probabilities are obtained by differentiating the splined
distribution function of EBIT at option maturity.
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depend on the volatility of the EBIT-process if the risk-neutral drifts
are left unchanged.30 A change of the volatility that leads to a change of
30 Note that the risk-neutral EBIT-process under the measure Q is modeled directly.

If we had started with the EBIT-process under the physical measure P, µη would
be the drift of the physical EBIT-process and the risk premium θη is needed to
change the probability measure to the risk-neutral measure Q. Then, a change of
ση alters the risk-neutral drift by means of the risk premium. Here, we use the
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Fig. 4.11. Unconditional partial return densities of equity in the ABM-
Corporate Securities Framework with η0 = 100 at TO = 0.5: Parameter
changes are indicated in the legend. The bankruptcy barrier VB is set so that
50 % of the outstanding notional is recovered in bankruptcy and bankruptcy
losses are α = 70 %. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.
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equity value results from a redistribution of firm value, i.e. a change of
the probability of bankruptcy. A change of the financing structure does
not change total firm value either but has effects on the distribution

implicit assumption that a change of the volatility induces a change of the risk
premium so that the risk-neutral drift remains unaffected. See Subsection 2.1.1
for a detailed discussion.
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Fig. 4.12. Unconditional partial densities of equity in the GBM-Corporate
Securities Framework with η0 = 100 at TO = 0.5: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of
the outstanding notional is recovered in bankruptcy and bankruptcy losses
are α = 65 %. Path probabilities are obtained by differentiating the splined
distribution function of EBIT at option maturity.
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of value among different claimants. All other parameter changes, those
of the risk-neutral drift, interest rates, and initial EBIT-value, change
firm value and the firm’s stance towards bankruptcy.

Pick first the cases where total firm value does not change. An in-
crease of the EBIT-volatility decreases the expected equity values (see
Panel C of Figure 4.10). The skewness of equity values changes from
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Fig. 4.13. Unconditional partial return densities of equity in the GBM-
Corporate Securities Framework with η0 = 100 at TO = 0.5: Parameter
changes are indicated in the legend. The bankruptcy barrier VB is set so that
50 % of the outstanding notional is recovered in bankruptcy and bankruptcy
losses are α = 65 %. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.
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negative to positive. The kurtosis starts above 3 decreases to below
3 and increases again. Thus, we observe a firm that moves through
the first three types of equity densities described above. Skewness and
kurtosis change according to the discussion for the type (2) firm.

A change of the financing structure extends short-term bond ma-
turity and reduces the current and the expected equity value. For the
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ABM-case, Panel F of Figure 4.10 shows that financing structures with
T1 > 0.5 result in overlapping equity densities. In the T1 = 0.25-case,
the expected equity value shifts considerably to the right. Four effects
drive this result: First, the 3-month bond is repaid before option ma-
turity. Equity holders do not face this payment at option maturity
and so expected equity value rises. Second, due to the lower total debt
outstanding the firm faces a lower bankruptcy barrier at option ma-
turity than at t0. If the debt maturity is increased for more than the
option maturity, not only option holders have a higher probability of
being knocked out31 but also equity holders at option maturity face the
higher bankruptcy barrier. Third, longer-maturity bonds pay coupons
for a longer period, thus increasing debt value and decreasing equity
value. Fourth, higher coupon payments imply higher tax savings due
to the tax advantage of debt which shifts value from the government
to equity holders. The decreasing expected equity values in Table 4.5
demonstrate that the coupon and bankruptcy probability effect domi-
nate when the short-term bond maturity is increased.

The equity return standard deviations reflect exactly that behavior
(Column 13 Table 4.5). The longer the short-term bond maturity, the
higher becomes the return standard deviation. The higher moments of
the equity and its return distribution are driven by the lower sensitiv-
ity of short-term bonds to changes in EBIT and the higher bankruptcy
probability during the life of the short-term bond. Panel F of Figure
4.10 clearly displays that the bankruptcy effect dominates. For a given
density value, equity values are lower in the increasing part of the equity
densities the longer the maturity of the short-term bond. As a result,
the equity value standard deviation and skewness increase whereas kur-
tosis decreases. The return moments show the same pattern. However,
returns are skewed to the left and not to the right, as expected.

Table 4.7 and Panel F of Figures 4.12 and 4.13 depict the GBM-case
which show the same effects.

Changing the option maturity TO, i.e. the point in time at which
we investigate the equity densities in the future, gives further insights
into the dependence of the equity distribution on option maturity and
the capital structure. Table 4.8 summarizes the moments of the ABM-
equity value and its return distribution for maturities ranging from 3
months to 3 years where the standard deviations have been annualized
by the

√
T -rule (see also Rows 10 and 11 of Table 4.5 and Panel E of

31 Note that the probability of going bankrupt in the first three months is only
1.4385 %, whereas the bankruptcy probability until option maturity with longer
lasting bonds is 7.8111 %. See Table 4.5.



4.2 Valuing Equity Options 111

Figures 4.10 and 4.11 for the respective graphs of the equity value and
its return densities).

Table 4.8. ABM-equity value and its return moments of the equity distrib-
ution with maturities TO from 0.25 to 3. Standard deviations are annualized
by the

√
T -rule.

TO EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO))
0.25 1,182.12 702.77 -0.2432 2.9625 76.2450 % -2.4349 12.5044
0.50 1,205.89 587.29 0.4427 2.9036 57.1358 % -2.0185 11.1144
0.75 1,228.50 516.08 1.0661 3.3341 42.7505 % -1.3139 10.2492
1.00 1,250.11 465.23 1.7271 4.0329 29.9259 % 1.1891 2.8677
1.50 2,179.92 557.87 1.6068 3.3781 21.2804 % 1.1930 2.9633
2.00 2,230.36 543.69 1.5187 3.4095 20.7674 % 0.6154 4.4277
3.00 2,331.06 525.84 1.4349 3.4630 19.9796 % -0.1092 6.3654

The repayment of the short-term bond at T1 = 1 has a large impact
on the equity distribution. Expected equity value surges because the
debt burden is reduced. Although standard deviations increase in ab-
solute terms, the annualized standard deviations decreases but jumps
up after the repayment date. This discontinuity is driven by the pre-
vailing higher equity value and the fact that the left tail of the equity
value distribution is lengthened i.e. the distance of the expected value
to the bankruptcy level is extended. The return standard deviation
decreases monotonically meaning that the relative riskiness of the firm
decreases the longer it survives. In any case, scaling standard deviations
of distributions at different points in time by the

√
T -rule is impossible.

The higher moments of the ABM-equity value distribution are
clearly influenced by the proximity to bankruptcy. Skewness increases
at first because the left tail of the distribution continues to be cut
and probability mass is concentrated at 0 as bankruptcy becomes more
probable. After the debt repayment, the bankruptcy barrier falls and
the restitution of part of the left tail reduces skewness again. Kurto-
sis increases until the debt repayment date, jumps down at that date,
and starts growing again. The peculiar behavior of the higher moments
of the return distribution is experienced here as well. The last two
columns of Table 4.8 exhibit a good example. The sudden jump of the
bankruptcy level causes return skewness to change its sign and return
kurtosis to drop below 3. Inspection of Panel E of Figure 4.11 does not
reveal these facts!

Interpretation of the moments of the GBM-equity value and re-
turn distribution as a function of maturity can follow along the same
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Table 4.9. GBM-equity value and its return moments of the equity distrib-
ution with maturities TO from 0.25 to 3. Standard deviations are annualized
by the

√
T -rule.

TO EQ(E(TO)) σ(E(TO)) ζ(E(TO)) κ(E(TO)) σ(rE(TO)) ζ(rE(TO)) κ(rE(TO))
0.25 1,297.07 728.76 0.1512 3.1387 63.5196 % -1.5634 7.8315
0.50 1,323.43 712.20 0.4160 3.2699 64.6123 % -1.8622 8.4936
0.75 1,349.74 684.04 0.7829 3.7046 58.3691 % -1.6617 7.4388
1.00 1,375.84 659.58 1.1645 4.3383 48.6858 % -0.8721 3.6766
1.50 2,449.05 700.41 1.2914 4.6809 26.8249 % -0.2256 3.5146
2.00 2,511.92 722.04 1.2887 4.9194 27.9808 % -0.6931 4.7179
3.00 2,640.78 756.49 1.3994 5.5727 29.2571 % -1.1809 5.9715

lines as the ABM-case (see Table 4.9, Rows 10 and 11 of Table 4.5,
and Panel E of Figures 4.10 and 4.11). The same decrease of equity
value standard deviation at the debt repayment date can be experi-
enced. Thereafter, annualized equity value standard deviations increase
slightly as expected if EBIT follows a log-normal distribution. However,
equity value skewness and kurtosis increases continuously with matu-
rity. The equity return distribution shows a more interesting pattern. In
contrast to the ABM-case, equity return standard deviation increases
after debt repayment. However, higher return moments show an am-
biguous pattern but skewness stays negative and kurtosis above 3 for
all maturities.32

All other changes to the base case parameter set cause a change of
total firm value per se which forces a redistribution of claim values. A
reduction of the risk-neutral EBIT-drift, of the initial EBIT-level, and
an increase of the risk-less interest rate results in a reduction of firm
value and thus of the expected value of equity. The closer the firm moves
towards bankruptcy, the higher equity value skewness, the higher the
kurtosis, i.e. the firms are of type (3) and (4). Moves in the opposite
direction makes the equity densities look normal, i.e. firms approach
those of type (1). Panels B and D of Figure 4.10 for the ABM-case and
Figure 4.12 for the GBM-case illustrate this truncation of the density
on the left at bankruptcy.

Comparing our return moment pattern to those reported in Table
6 of Bakshi et al. (2003), the picture fits into our simulated moments:
(i) Our return distribution exhibits positive return skewness if the firm
32 Ait-Sahalia and Lo (1998) report in their Figure 7 moments of risk-neutral re-

turn distributions estimated non-parametrically from time series of option prices.
Higher return moments of the S&P-500 index are instable with respect to matu-
rity and show kinks. Effects that our simple example exhibits, as well.
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is close to bankruptcy. In Bakshi et al. (2003), IBM is not a convincing
candidate for this. However, ABM-equity return densities around debt
repayments dates have higher skewness as well. (ii) Our return kurtosis
is generally above 3. The exception again is the ABM-equity return den-
sity around debt repayment. American International, Hewlett Packard,
and IBM have average kurtosis below 3. (iii) There is a tendency that
an increase of skewness implies higher kurtosis, which Bakshi et al.
(2003)’s Table 6 shows, as well. Exceptions in our model are only firms
just before bankruptcy, which usually have no options traded on their
equity. (iv) Our volatility and skewness is generally higher.

As a final remark, differences might be due to the replication pro-
cedure used by Bakshi et al. (2003) who need to average across option
maturities to get a maturity-consistent time series of option prices.
Since we can resort to the whole unconditional distribution of equity
at maturity, Bakshi et al. (2003)’s results might be biased within our
framework and therefore be not the best comparison. Additionally, we
showed above that debt repayments before option maturity have a huge
impact on the equity return distribution which might distort the results
of Bakshi et al. (2003). However, it is the only study so far that analyzes
individual stock option.

4.2.3 Equity Option Prices and Implied Black/Scholes
Volatilities

In option markets it is observed that option’s implied Black/Scholes
volatility as a function of strike prices is monotonously falling. This
specific functional form is usually referred to as the option’s volatility
smile. The economic literature did not present an easy explanation
for this phenomenon but tried technical extensions such as stochastic
volatility models which produced observed volatility smiles.33

In the Corporate Securities Framework proposed in Chapter 2, an in-
version of the Black and Scholes (1973) formula is not possible because
the prices of all security values depend only on the size of EBIT and
the capital structure in a particular state at option maturity. Payments
33 See Jackwerth (1999) for a literature overview. Stochastic volatility models have

been studied before by e.g. Heston and Nandi (2000) and Heston (1993). Dumas,
Fleming and Whaley (1998) provide evidence that an implied volatility tree in
the sense of Rubinstein (1994) is not superior to the ad-hoc applied implied
volatility curve in a Black/Scholes model. See also Grünbichler and Longstaff
(1996) who analyze volatility derivatives where the volatility itself is assumed to
follow a mean-reverting process. Fleming, Ostdiek and Whaley (1995) describe
the properties of the quoted volatility index on the S&P 100.
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during the life of the option to debt and equity holders are irrelevant.
Therefore, we can calculate equity option prices by numerical integra-
tion and by finite difference methods. The implied volatilities of the
option can be backed out from the more general form of the Black and
Scholes (1973) option pricing formula which is based on the expected
future value of the underlying asset.34

Ct0 = e−r(TO−t0)EQ [max(ETO
− X, 0)]

= e−r(TO−t0)
[
EQ [ETO

]N(d1) − XN(d2)
]

(4.1)

where

d1 =
ln
(

EQ[ETO ]
X

)
+ σ2

IV
2 (TO − t0)

σIV

√
TO − t0

d2 = d1 − σIV

√
TO − t0,

and σIV is the annual implied volatility of the logarithm of the under-
lying equity value E over the period TO − t0.

When using implied Black/Scholes volatilities as a benchmark, we
compare each of our scenarios with the log-normal density of equity
which Black and Scholes (1973) assumed for the underlying. If the
Black and Scholes (1973) model were correct, the implied volatilities
for all options must be equal.

From equation (4.1) it follows that high option prices imply high
implied volatilities. If implied volatilities increase for lower strikes, the
equity densities have more probability mass left of the strike price than
the log-normal density. To see this, take a state contingent claim which
pays 1 currency unit if the equity price has a certain level at maturity.
As Breeden and Litzenberger (1978) point out, the price difference
of two of such claims with different strike levels are related to the
difference of the probability of the two states actually occurring. If the
claim with the lower strike is worth more than the other as implied by
the log-normal assumption implicit in the Black/Scholes model, this
probability must be higher. Thus, we can conclude that the probability
mass between the strikes of these two claims is higher than implied by
the Black/Scholes distributional assumption.35

Bakshi et al. (2003) analyze the connection between the physical eq-
uity return distribution, its risk-neutral counterpart, and the resulting
34 See, e.g. Hull (2000), p.268 ff.
35 See Appendix A.2 for a more formal exposition.
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equity option implied Black/Scholes volatilities on a single-stock basis.
The analytical and empirical results strongly support the hypothesis
that the more the risk-neutral return distribution is left-skewed, the
higher the curvature of implied volatility smile. Furthermore, a higher
kurtosis flattens the smile somewhat. Their Table 5 summarizes these
results.

The simulation results of equity option prices in our ABM-Corporate
Securities Framework support that behavior. The GBM-firm exhibits
exceptions to their rule if the bankruptcy probability rises very quickly.
However, we are able to give intuition to these findings. In our model,
the equity return distribution results from the specification of the equity
contract as being the residual claim to EBIT, a complex capital struc-
ture, and the distinct ability of equity owners to declare bankruptcy.
This is the primary economic interpretation of the results found by
Bakshi et al. (2003), and so completes their analysis on the economic
level.

In all our examples, we find a downward sloping implied volatil-
ity curve. The level of implied volatilities and the curvature of the
strike/volatility function depend on the current state of the firm to-
wards bankruptcy expressed by the equity return standard deviation.
If we detail the analysis by comparing our parameter settings, we find
several stylized facts: (i) Implied volatilities of the GBM-case are higher
than those of the comparable ABM-case if the firm is far from bank-
ruptcy. The opposite is true close to bankruptcy because the GBM-
volatility decreases with the EBIT-level thus changing the term struc-
ture of bankruptcy probabilities. (ii) The closer the firm is to bank-
ruptcy, the higher the implied volatility of at-the-money options. (iii)
The ABM-implied volatility structure gets flatter for higher at-the-
money implied volatility levels. These firms have a high return distrib-
ution skewness and kurtosis. (iv) The GBM-firm exhibits steeper slopes
at higher implied volatility levels.

It seems important to note that the linking of the level and shape
of the volatility smile to equity return moments seems only suitable for
good state firms. Following our discussion about higher moments of the
return distribution, the bankruptcy probability might bias the relation
detected by Bakshi et al. (2003). Their sample firms can be considered
as being far from bankruptcy.

Figures 4.14, 4.15 display implied volatility curves against money-
ness for ABM- and GBM-firms for 6 month option maturity. Hereby,
moneyness is defined as the fraction of the strike to the current equity
value. As expected, lower EBIT-starting values (Panels A), higher in-
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Fig. 4.14. Implied Black/Scholes volatilities of 6 month equity options in the
ABM-Corporate Securities Framework with η0 = 100: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of the
outstanding notional is recovered in bankruptcy and bankruptcy losses are
α = 70 %. Option prices are obtained by numerical integration.

0.8 0.9 1 1.1 1.2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel A

η
0
=75

η
0
=100

η
0
=125

0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel B

µ=8.00
µ=10.00
µ=15.00

0.8 0.9 1 1.1 1.2
0.2

0.4

0.6

0.8

1

1.2

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel C

ση=30.00

ση=40.00

ση=50.00

0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel D

r=4.00
r=5.00
r=5.50

0.8 0.9 1 1.1 1.2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel E

T
O

=0.50

T
O

=1.00

T
O

=2.00

0.8 0.9 1 1.1 1.2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Moneyness

B
la

ck
/S

ch
ol

es
Im

pl
ie

d 
V

ol
at

ili
tie

s

Panel F

T
1
 =1.00

T
1
=0.25

T
1
=0.75

T
1
=1.50

T
1
=3.00

terest rates (Panels D), lower risk-neutral drifts (Panels B), and higher
EBIT-volatility (Panels C) take the firm closer to bankruptcy and thus
show higher implied volatility levels.

The maturity of the option (Panels E) has only a major impact
on the volatility smile if debt is repaid during the option’s life. Then,
the implied volatility smile becomes much flatter in the ABM-case and
drops in the GBM-case. Recall from the last subsection that expected
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Fig. 4.15. Implied Black/Scholes volatilities of 6 month equity options in the
GBM-Corporate Securities Framework with η0 = 100: Parameter changes are
indicated in the legend. The bankruptcy barrier VB is set so that 50 % of the
outstanding notional is recovered in bankruptcy and bankruptcy losses are
α = 65 %. Option prices are obtained by numerical differentiation.
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equity values increase due to the capital infusion by equity owners to
repay debt.

The last three columns of Tables 4.5 and 4.7 are devoted to a re-
gression analysis as performed by Bakshi et al. (2003) in their Table 3.
The implied volatility is represented by the regression model

ln(σIV ) = β0 + β1 ln
(

X

E0

)
. (4.2)
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In equation (4.2), exp(β0) can be interpreted as the at-the-money im-
plied volatility. β1 is a measure of the steepness of the implied volatility
curve. For example, the figures of Rows 10 and 11 confirm that in-
creasing the option maturity continuously increases the ATM-implied
volatility, but the 2-year option has the lowest slope.

Note that the at-the-money implied volatility is always higher than
the standard deviation of the equity return density for good state firms.
This reflects the fact that the expected future equity value lies above
the current value of equity and so the at-the-money implied volatility
with respect to the expected future equity value is lower.

For firms closer to bankruptcy implied volatilities can become large.
At-the-money levels of 100 % and more are common.

The effects of changes of the financing structure need a more detailed
discussion. As mentioned in the last subsection, equity return standard
deviations depend on the schedule of debt maturities. Recall that the
earlier the short-term debt matures, the more imminent becomes debt
repayment. If the firm survives, the bankruptcy barrier is lowered and
the equity value jumps upwards. Extending short-term debt maturity
increases the period of coupon payments and the bankruptcy barrier in
the extension period which decreases current and future equity value.
As a result, equity return standard deviation and ATM-implied volatil-
ities increase. As can be seen from Figure 4.14 Panel F, the slope of
the implied volatility smile flattens. This graph also illustrates Toft and
Prucyk (1997)’s debt covenant effect although they interpret a higher
covenant, i.e. a higher bankruptcy barrier, as a substitute of the amount
of short-term debt. Effectively, we increase the bankruptcy barrier as
well. However, we have the additional effect of a reduced (expected)
equity value because the maturity of short-term debt is extended. As is
demonstrated here, the term structure of the corporate capital struc-
ture matters. The simple argument of a debt covenant is not enough to
explain the richness of implied volatility smiles. Again, our framework
gives a very intuitive and simple explanation.

4.3 Summary

This chapter illustrates the analytical solutions of Chapter 3 for an
EBIT following an arithmetic and geometric Brownian motion of the
Corporate Securities Framework of Chapter 2.

In Section 4.1 of this chapter, a standard comparative static analysis
of the Corporate Securities Framework is performed. The numerical
example shows the expected patterns of changes of security values with
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respect to parameter value changes. However, the behavior of security
prices becomes much richer the more securities are added to the capital
structure.

One of the interesting properties produces a rise of the EBIT-
volatility, which increases equity values although the debt covenant
employed in the analytical setting would have called for the opposite
result. So, in a multiple debt setting, the comforting Leland (1994) re-
sult that debt covenants overcome asset substitution effects does not
hold for all parameter settings. Additionally, there seems to be room
for equity holders to optimize EBIT-risk.

From our numerical examples, several suggestions for direct empiri-
cal testing of structural credit risk models can be drawn. First, we find
that taxes are an important part of firm value that cannot be neglected
in an empirical test. Second, in the extended numerical version of our
model where equity owners trigger optimal bankruptcy and where dif-
ferent tax regimes exist, we find that the three implemented tax regimes
lead to similar equity and debt values whereas the optimal bankruptcy
decision by equity holders increases the value of equity considerably.
Third, we demonstrate that the optimal bankruptcy level is not con-
stant but increases near the maturity of debt issues. Since in the basic
setting equity holders infuse capital in periods of cash outflows to other
claimants to keep invested capital constant, equity holders need a suf-
ficiently high expected firm and equity value to be willing to keep the
firm alive.

We do not analyze dynamic capital structure decisions. However,
in a static selling of future debt issues, we find that future debt issues
change the optimal bankruptcy behavior and cash flows of equity in-
vestors although the debt issue itself has no present value. A future
debt issue postpones equity capital infusions. As a result, the optimal
bankruptcy level flattens to an almost constant level that underpins
the assumption of a constant bankruptcy barrier with an economically
reasonable argument. Despite the higher bankruptcy level compared to
the scenario without refinancing, equity holders gain from tax savings
due to future coupon payments and tax loss recoveries. Therefore, fu-
ture debt issues - at least in a static form - need to be considered for
an empirical application.

In Section 4.2, we use a numerical implementation of the Corporate
Securities Framework to price options on equity in order to explain the
existence and the shape of volatility smiles. We compare our option
prices to the Black/Scholes setting by calculating implied volatilities.
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Since our distributional assumptions are different to those of the
Black/Scholes environment, differences in the shapes of implied volatil-
ity curves have to be expected. However, it is interesting that our eco-
nomically intuitive environment is sufficient to explain a behavior that
needed much more elaborate mathematical techniques before. We find
that the distributional assumption for EBIT is not crucial to the gen-
eral downward sloping shape of implied volatilities but the features of
the equity contract. Equity holders can stop infusing capital into the
firm and declare bankruptcy. The option on equity forgoes. As a result,
the unconditional distribution of equity values at option maturity is
skewed and exhibits excess kurtosis. ABM-firms and GBM-firms run
through several stages of distribution types. We categorized the stages
by four generic types of distributions when a firm in an excellent con-
dition moves towards bankruptcy. Equity return distributions of ABM-
and GBM-firms behave surprisingly similar except for the level and the
sensitivity. Good state firms exhibit small return standard deviation,
a slightly negative skewness and a small excess kurtosis. If the firm
moves towards bankruptcy the return standard deviation and kurtosis
increase, skewness decreases. Close to bankruptcy the skewness turns
positive at high levels of the standard deviation and kurtosis. The ef-
fects are due to the concentration of the probability mass of the equity
value distribution at zero. As a result, moments of equity value and
return distributions of firms close to bankruptcy must be interpreted
carefully because the levels of higher moments might be misleading
when compared to moments of regular distributions.

The effects on option prices are as follows: All curves of implied
volatilities as a function of moneyness are convex and monotonously
decreasing. Options on equity of firms close to bankruptcy generally
show very high at-the-money implied volatilities with a decent slope.
The further the firm’s distance to default, the lower implied volatility
levels and the steeper the slope. Financing decision can have a signifi-
cant impact on implied volatilities. Repayment of debt around option
maturities incurs sharp increases in implied volatilities due to the jumps
by equity values. Switching to longer debt maturities might decrease eq-
uity values due to higher coupon payments which outweighs the present
value effect of no immediate debt repayment. For good state firms, debt
repayment can effectively decrease implied volatilities of longer lasting
equity options because (i) expected equity value is increased (ii) and
bankruptcy becomes less imminent once the debt burden is lowered.



4.3 Summary 121

In the GBM-case, the term structure of bankruptcy probabilities
can influence equity values considerably and thus effectively increase
the slope of implied volatilities the higher its level.

Our explanation of equity smirks is simply and intuitively linked
to the economic condition of the firm and to its debt structure. We
argue this as a significant progress to other studies of option smirks
which use mathematically more elaborated but economically less intu-
itive concepts.



5

Empirical Test of the EBIT-Based Credit Risk
Model

This chapter proposes a direct empirical implementation of the class of
EBIT-based structural firm value models as discussed in Chapter 2. To
date, only a mixture of accounting data and time series of equity prices
have been used to estimate parameters of structural firm value models.
We develop a Kalman filter that incorporates time series of bond prices
which usually convey important information about a firm’s economic
condition. We suggest that the use of time series of all traded securities
in an empirical study will improve the quality of the estimators of the
latent EBIT-process.

In Section 5.1, we give a brief overview of empirical studies which are
based on firm value models. Section 5.2 discusses estimation procedures
used in the literature and proposes a suitable Kalman filter for the
Corporate Securities Framework. Section 5.3 raises practical issues for
the actual estimation. Finally, Section 5.4 collects the results of the
simulation study. A brief summary is given in Section 5.5.

5.1 Existing Literature and Shortcomings

Tests of reduced-form asset pricing models can be designed and per-
formed relatively easily. In contrast, direct implementations of struc-
tural credit risk models have been rare due to two reasons:

• Theoretical firm value models have been too restrictive to be applied
to corporate data. To fit real world firms into e.g. the model of Mer-
ton (1974) or Black and Cox (1976), several ad-hoc adjustments to
the firm’s debt structure are needed. In most cases the debt struc-
ture is artificially reduced to a single debt issue by constructing a
zero or coupon bond with a notional of the total debt outstanding
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and a maturity equal to the duration of the entire debt structure.1

Empirical results may therefore be influenced by the adjustments.
Only the proposed EBIT-based Corporate Securities Framework of
Chapter 2 and Ericsson and Reneby (1998) represent more general
frameworks for the valuation of corporate securities which seem ap-
propriate for direct estimation. These models allow to exploit trad-
ing data of corporate securities, i.e. time series of equity and corpo-
rate bond prices, that are abundantly available, and need not rely
solely on accounting data.

• Firm value models need more advanced econometric methods. Most
firm value models operate with a latent variable. The dependence
of corporate securities on the latent variable implies non-stationary
parameters of the processes of corporate securities.2

As a result, most of the empirical literature on firm value models has
been reduced to a test of stylized model behavior on aggregate levels
such as industry, rating classes, or firm sizes. Predictions of firm char-
acteristics such as leverage ratios, corporate bond coupons, corporate
bond issue discounts, credit spreads were regressed on time series of
equity and bond prices.

Fischer et al. (1989a) find that observed leverage ratio ranges can
be explained by a firm value model where dynamic recapitalization is
costly. Importantly, they point out that the current leverage ratio of a
firm might stem from an optimal decisions made several periods ago.
As a result, the observed leverage ratio might not be optimal but lie
in a range of inertia where high recapitalization cost prevent the firm
from adjusting the leverage.

Another aspect of corporate debt is the existence of call premia and
issue discounts. In a similar framework as in their first paper, Fischer
et al. (1989b) find empirical support that debt contracts are designed to
mitigate agency conflicts between debt and equity holders. Call premia
and issue discounts are related to firm risk, which the model predicts.

In a model with a constant capital structure, Longstaff and Schwartz
(1995) extend the pricing model for corporate debt to include stochastic
interest rates which are correlated with the firm value. Their empiri-
cal section strongly supports the incorporation of stochastic interest
1 See e.g. Jones et al. (1984).
2 See Section 5.2. Also Ericsson and Reneby (2002a) for a discussion of estimator

design. Duan (1994) describes a more general setting of latent variable estimation.
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rates in firm value models.3 However, Delianedis and Geske (2001) and
Huang and Huang (2003) report contradictory evidence.

One of the primary issues of the option pricing literature is the
source of implied Black and Scholes (1973) volatility smirks as ob-
served in option prices. Toft and Prucyk (1997) relate option prices
to the leverage ratio of firms in the Leland (1994) model. Despite the
simple capital structure, their regression results support a strong de-
pendence of the pricing bias of equity options on the leverage of the
firm. Interpreting short term debt as a kind of debt covenant they can
even relate steeper smirk functions to firms which are mainly financed
by short term debt.4

Recently, Brockman and Turtle (2003) contrast the performance of
a barrier option approach of pricing corporate debt which is used in
firm value models such as the framework of Chapter 2 and Ericsson
and Reneby (1998) with the Merton (1974)-like approach where bank-
ruptcy can only occur path-independently at the maturity of a debt
issue. The cross section of a large sample of US firms indicates that the
barrier option feature of corporate securities is statistically significant
and outperforms the traditional static approach.

Summarizing, most tests of stylized facts support firm value models
and attest predictive power with respect to distinct features.

Parameter estimation of firm value models until so far was restricted
to the simple Merton (1974)-model and with unsatisfactory empirical
methods.5 Jones et al. (1984) were the first to parameterize the Merton
(1974)-model by using accounting data and equity times series. They
are not able to reproduce observed bond prices. Apart from the crit-
icism of their parameter estimation methods, they have bond types
in their sample that clearly contradict the stringent assumptions of
the Merton (1974)-model, i.e. only a single zero-coupon bond is out-
standing. Subsequent studies tried to overcome some of the problems in
Jones et al. (1984). Delianedis and Geske (1999), Delianedis and Geske
(2001), Eom, Helwege and Huang (2004), and Huang and Huang (2003)
resort to a calibration method in order to extract the time series of as-
set values. Their primary focus was to explain why structural models
3 Longstaff and Schwartz (1995) approximate the hitting probabilities and the

hitting prices by an algorithm that extends Buonocore, Nobile and Ricciardi
(1987)’s one dimensional version to a two-dimensional stochastic process. As
Collin-Dufresne and Goldstein (2001) show, Longstaff and Schwartz (1995)’s ap-
proximations are incorrect which has an impact on the credit spreads shown in
their paper.

4 See also the critical remarks on the Toft and Prucyk (1997) in Section 4.2.
5 See Section 5.2 for details.
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fail to explain the whole credit spread. Other factors such as stochas-
tic interest rates, stochastic recovery rates, differential tax treatments,
illiquidity premia, and market risk factors were tried as explanatory
variables additional to default risk. However, none of the studies was
able to find a consistent and reasonable explanation.6

A very promising example of direct estimation of structural credit
risk models is Ericsson and Reneby (2004) who are able to parameterize
a structural model with a simple capital structure with Duan (1994)’s
latent variable approach. Their estimates for individual firm’s corporate
bonds are remarkably well. However, their estimation method only uses
time series of equity prices.

The Kalman filter suggested here is based on the idea to use as much
time series information as possible to estimate the model parameters.7

We will argue that our approach is simple but more accurate than any
estimation method suggested so far.8

5.2 Estimation of Parameters of the Corporate
Securities Framework

5.2.1 The Corporate Securities Framework Revisited

Recall from Chapter 3 that the state of the firm is assumed to be
described by the firm’s EBIT which is assumed to follow an arithmetic
Brownian motion:

dη = µdt + σηdzQ,

where µ is the risk-neutral drift of the EBIT-process under the equiv-
alent martingale measure Q, ση is the volatility of EBIT and dzQ de-
scribes a standard Brownian motion.
6 Similar results are reported in Collin-Dufresne, Goldstein and Martin (2001). In

a regression study they try to explain credit spreads by several economic and
market wide factors, but conclude that the most important explanatory factor as
of a principal component analysis is not among the variables tried out. In contrast
to this evidence, Longstaff et al. (2004) can attribute the majority of the observed
credit spread to default risk. However, they use credit default swap data and a
reduced form approach in their study.

7 Bruche (2004) suggests a more computationally demanding simulation approach
which also can incorporate all kind of corporate securities.

8 In financial applications, Kalman filters have primarily been used to estimate
interest rate processes where the short rate is treated as a latent variable. See e.g.
Geyer and Pichler (1999), Babbs and Nowman (1999).
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The firm is assumed to go bankrupt if EBIT hits a lower barrier ηB,
where a fraction α of the then available firm value VB is lost.

The firm and investors are exposed to a tax system with three dif-
ferent kind of taxes. Debt holders’ coupon payments are taxed at a tax
rate τd. A corporate tax rate τ c is applied to corporate earnings, i.e.
EBIT less coupon payments. Corporate earnings after tax are paid out
as a dividend, which in turn is taxed at the personal tax rate of equity
owners τ e.

The capital structure of the firm consists of J debt issues with model
prices DCj ,Tj , j = 1 . . . J , where Cj denotes the coupon level and Tj

the time of maturity of debt issue j, and equity with a model price
of E. Model prices of debt and equity are functions of a parameter
vector Θ = {µ, ση , α, ηB , τ c, τd, τ e}, the risk-less interest rate r, and
the current EBIT ηt0 .

Under the assumption that EBIT follows a geometric Brownian mo-
tion, only the process parameters µ̄ and σ̄η are exchanged for µ, ση, to
arrive at the parameter vector Θ̄. Without loss of generality, we restrict
the exposition to the case of arithmetic Brownian motion.

5.2.2 Estimation Approaches Using Accounting Data

A very intuitive way of implementing structural credit risk models was
first proposed by Jones et al. (1984). Jones et al. (1984) estimated pa-
rameter values of the classical Merton (1974)-model by using a mixture
of accounting and market, i.e. equity time series, data. In the Merton
(1974)-model, a time series of firm values V̂n, an estimate of the asset
volatility σ̂V , and the interest rates r̂n, are needed. Jones et al. (1984)
propose the following estimation procedures:

• The firm value time-series:
Given the total liabilities of a firm as of quarterly reports, its firm
value can be estimated as the sum of the market value of traded
debt and equity. The remaining market value of non-traded debt is
assumed to be valued proportionally to the value of traded debt.
Alternatively, book values of non-traded assets could be employed
with some netting of short-term liabilities with short-term assets.9

• Asset volatility:
As a first guess, the standard deviation of the firm’s asset can be
derived from the constructed firm value changes directly. Alterna-
tively, the theoretical relation

9 See e.g. Delianedis and Geske (1999) and Delianedis and Geske (2001) for the book
value approach and the netting of short-term assets with short-term liabilities.
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σ̂V = σ̂E
E

∂E
∂V V̂

(5.1)

can be used given an estimate of the equity volatility σ̂E and the es-
timate of the firm value time series V̂ . Equity volatility is estimated
from time series of stock prices.

• Interest Rates:
Forward par yields were extracted from government bond dirty
prices.

The estimation procedure has been criticized to have several drawbacks.
First, the construction of the firm value time series depends crucially
on the assumption on non-traded debt values. Any of the proposed
approximations can lead to biases of the general conclusion. Second,
a standard argument against estimating the firm value volatility di-
rectly from the constructed firm value time series is that the resulting
volatility estimate inherits the deficiencies of the construction process
and that it is strictly backward looking. The estimate of the firm value
volatility as of equation (5.1) is conceptually inconsistent because the
constant asset volatility σ̂V is calculated by assuming that σ̂E is con-
stant.10 However, σ̂E changes if V̂ and consecutively E and ∂E

∂V change.

5.2.3 Calibration Approach

A widely accepted procedure to come up with estimates of the time
series of the firm value and the asset volatility calibrates both para-
meters to data simultaneously. Instead of constructing a time series of
firm values from balance sheet data, a second equation together with
equation (5.1) is used, i.e. the theoretical equity value, to solve for the
two unknowns V̂n and σ̂V,n at each observation time.11 As Ericsson and
Reneby (2002a) point out, the system of two equations suffers the same
criticism as the approach using accounting data because equation (5.1)
is still applied as if σ̂E were constant.

5.2.4 Duan’s Latent Variable Approach

In a simulation study Ericsson and Reneby (2002a) find that a maximum-
likelihood estimator treating the firm value as a latent variable outper-
forms a least squares estimator used traditionally within the calibration
10 See Ericsson and Reneby (2002a) or Bruche (2004).
11 Delianedis and Geske (1999), Delianedis and Geske (2001), Eom et al. (2004), and

Huang and Huang (2003) apply the calibration method in an academic context.
Moodys/KMV is an example of commercial application, see Crosbie and Bohn
(2003).
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approach for the corporate security models suggested by Merton (1974),
Briys and de Varenne (1997), Leland and Toft (1996), and Ericsson and
Reneby (1998). Although the Ericsson and Reneby (1998) framework is
comparable to the Corporate Securities Framework, a direct implemen-
tation as suggested by Ericsson and Reneby (2002a) seems problematic
if more than the time series of equity prices is used to estimate the
latent variable process.12

Ericsson and Reneby (2004) estimate the Ericsson and Reneby
(2002a) model and propose an estimator for an equity time series
only. Denote the n-th observed market price of equity by en with
n = 1, . . . , N . The log-likelihood function for the observed market
prices is then

L(e;Θ) =
N∑

n=2

ln f (en|en−1; ηn, Θ) . (5.2)

The N -dimensional vector e denotes the time-series of observed equity
prices. f(·|·) is defined as the conditional density of the price observa-
tions.

Note that ηn is not directly observable, it must be calculated for
n = 1, . . . , N using the inverse function of equity prices given the
parameter vector Θ. Denote this inverse transformation function by
ηn = E−1(en, Θ). Since we model security prices in terms of a latent
EBIT-variable η, we need to change the variable of the conditional den-
sity from the observed equity price to the unobserved EBIT-levels.13

In our case of arithmetic Brownian motion, EBIT is normally dis-
tributed: ∆η = ηs − ηt ∼ N(µ∆t, σ2

η∆t) where ∆t = s − t is the time
between two observations. Therefore, the conditional density can be
transformed to

f (en| en−1, dn−1; η,Θ) = n(ηn−1 + µ∆t, σ2
η∆t)

∣∣
ηn

· dE

dη

∣∣∣∣
ηn

, (5.3)

where dn−1 collects the time series of debt prices until tn−1 and n(µ, σ2)
denotes the normal density with parameters µ and σ. Maximizing equa-
tion (5.2) with the specification made in equation (5.3) results in an
estimator for the time series of ηn and the parameter vector Θ.
12 Additionally, results from a simulation study might not directly apply to pricing

data where market forces such as trading strategies and liquidity issues may
reduce data quality.

13 The method was proposed by Duan (1994) in the context of deposit insurance.
The function E−1(en, Θ) represents Duan (1994)’s inverse transformation func-
tion necessary to calculate the transformed maximum-likelihood function.
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5.2.5 A Kalman Filter Approach

If more than one time series of corporate security prices is available
for estimation, the one-dimensional maximum-likelihood estimator of
equation (5.2) must be extended to allow for multi-dimensionality
which cannot be accomplished easily. The inverse transformation func-
tion used in equation (5.3) needs a more general concept of optimal
ηn(en, dn, Θ) with respect to equity price en, debt prices dn of the pe-
riod n and the parameter vector Θ. It is not obvious how to specify this
function, so that the maximum-likelihood estimator keeps its statistical
properties.

Therefore, the use of a Kalman filter approach14 seems more appro-
priate. A state representation seems especially suitable for EBIT-based
structural credit risk models. EBIT cannot be observed directly. How-
ever, observations of time series of equity and debt prices are available
which are in turn non-linear functions of the EBIT. The Kalman filter
extracts for each period the best estimate of the latent state variable
given the observed security prices of the period. In order to be ap-
plicable, the non-linear observation function must be linearized either
by a Taylor series expansion as proposed in the literature on extended
Kalman filters15 or a derivative free approximation algorithm16. Both
approaches are discussed next, starting with the Taylor series expan-
sion.

As before, consider N discrete observations of equity and corpo-
rate bond prices. The Kalman updating scheme has a simple one-
dimensional state vector ηn with a disturbance term ∆zQ

n ∼ N(0,∆t),
n = 1, . . . , N .

ηn = ηn−1 + µ∆t + ση∆zQ
n (5.4)

Given an estimate of last period’s estimated EBIT η̂n−1, the best pre-
diction of this period’s EBIT, i.e. the conditional expectation of the
n-th period’s EBIT, is17

14 See e.g. Maybeck (1979).
15 See e.g. Haykin (2002).
16 See Norgaard, Poulsen and Ravn (2000).
17 Note that in this subsection the firm’s equity E is denoted by the same letter

as the expectation operator. To distinguish between the two symbols and to be
precise on the information when taking expectations, En is reserved for the uncon-
ditional expectation in period n and En|n−1 denotes the expectation for period
n conditional on information up to period n − 1. The single letter E without
subscript refers to equity.
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η̄n|n−1 = En|n−1(ηn)
= η̂n−1 + µ∆t. (5.5)

Denote by Σ̂η(n−1) = En−1[(ηn−1−η̂n−1)2] the variance of last period’s
estimation error. Then, the variance of the prediction error of the n-th
period becomes

Σ̄η(n|n − 1) = En|n−1

[(
ηn − η̄n|n−1

)2]
= Σ̂η(n − 1) + σ2

η∆t, (5.6)

where the fact was used that ∆zQ
n−1 is uncorrelated with the prediction

error. Assume next that at each observation time tn, a stock price
en and J bond prices dn = {dj,n}, j = 1, . . . , J , are observed with
observation errors εe,n and εd,n = {εj,d,n}, respectively. Collect the
prices and observation errors in J + 1 × 1 vectors yn = (en, d′n)′ and
εn = (εe,n, ε′d,n)′ ∼ N(0, R). Since the equity and debt pricing functions
depend non-linearly on EBIT, a Taylor series expansion around the
predicted EBIT η̄n|n−1 is needed to linearize both functions for use in
a Kalman filter.

yn(ηn) = Y (ηn, η̄n|n−1, εn)

=
(

E(ηn, Θ, rn, tn)
D(ηn, Θ, rn, tn)

)
+
(

εe,n

εd,n

)

≈

⎛
⎜⎜⎝

E(η̄n|n−1, Θ, rn, tn) + ∂
∂ηE(·)

∣∣∣
η=η̄n|n−1

(ηn − η̄n|n−1)

D(η̄n|n−1, Θ, rn, tn) + ∂
∂ηD(·)

∣∣∣
η=η̄n|n−1

(ηn − η̄n|n−1)

⎞
⎟⎟⎠

+

⎛
⎝ εe,n

εd,n

⎞
⎠ (5.7)

In equation (5.7), the linearization of the observation error is addi-
tive because the derivative ∂Y/∂ε = I, have mean zero, and do not
aggregate over time.18 The interest rate rn and time tn change deter-
ministically while iterating through the filter implying that there is
no correlation between interest rate and EBIT-changes, i.e. time and
18 Note that more complicated observation error models can be implemented with-

out difficulty. If observation errors have non-linear impact on prices and interre-
late with other observation errors, or have non-zero means, the partial derivative
would no longer be equal to the identity matrix and the observation error is
linearized the same way as the latent state variable.
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interest rates have no stochastic effect on EBIT. Given the linearized
observation equation, the n-th period’s security prices would be pre-
dicted to be

En|n−1(Yn) = Ȳn|n−1(η̄n|n−1, η̄n|n−1,0) (5.8)

with an observation prediction error of

vn = yn − Ȳn|n−1(η̄n|n−1, η̄n|n−1,0)
= Gη(ηn − η̄n|n−1) + εn. (5.9)

In equation (5.9), the J + 1 × 1-vector Gη collects the derivatives of
the observation vector Y with respect to EBIT η. The observation
prediction error has a variance of

Σ̄Y (n|n − 1) = En|n−1

[(
yn − Ȳn|n−1(η̄n|n−1, η̄n|n−1,0)

)
(
yn − Ȳn|n−1(η̄n|n−1, η̄n|n−1,0)

)′]
= GηΣ̄η(n|n − 1)G′

η + R (5.10)

and a covariance with the EBIT-prediction error of

Σ̄Y η(n|n − 1) = En|n−1

[(
ηn − η̄n|n−1

)
(
yn − Ȳn|n−1(η̄n|n−1, η̄n|n−1,0)

)′]
= Σ̄η(n|n − 1)Gη . (5.11)

Having observed the new observation vector yn, the predictions of
equations (5.5) and (5.8) can be updated. The best estimator of the
current EBIT becomes

η̂n = En(ηn|yn)
= η̄n|n−1 + Knvn (5.12)

with the Kalman gain vector Kn defined by

Kn = Σ̄Y η(n|n − 1)Σ̄Y (n|n − 1)−1. (5.13)

The variance of the EBIT-estimator is

Σ̂η(n) = V ar(ηn|yn)
= Σ̄η(n|n − 1) − K ′

nΣ̄Y η(n|n − 1). (5.14)

The Kalman filter recursion begins with
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(1)an initial estimate of the state variable η̂0 and its variance Σ̂η(0).
(2)Next, the predictions η̄1, Ȳ1, Σ̄η(1|0), Σ̄Y (1|0), and Σ̄Y η(1|0) are

formed.
(3)With the observation y1, the predictions are updated to η̂1, and

Σ̂η(1|0). The observation estimates can then be calculated by

Ŷn =

⎛
⎝E(η̂n, Θ, rn, tn)

D(η̂n, Θ, rn, tn)

⎞
⎠ . (5.15)

(4)Steps (2) and (3) are repeated until n = N .

The extended Kalman filter depends on the linearization of the ob-
servation equation (5.7) by a first order Taylor series expansion. Nor-
gaard et al. (2000) criticize that the extended Kalman filter’s Taylor
series expansion is only accurate near the expansion point and that
optimizing the parameter vector Θ might suffer numerical difficulties.
In particular, approximation errors accumulate because in many appli-
cations analytical derivatives for Taylor series expansions are not avail-
able and numerical methods are employed. Moreover, a Taylor series
expansion cannot capture the stochasticity of the underlying functions.
Therefore, they propose a polynomial approximation of second order
which offers advantages for its implementation because no explicit an-
alytical derivative is needed but only function evaluations near but not
too close to the expansion point. As a result, the differences taken never
get so small as to cause numerical difficulties. This divided difference
approach eases the implementation of filtering schemes and improves
accuracy.

In particular, equation (5.7) is replaced by a second order Stirling
interpolation which yields for the equity value

en = E(η̄n|n−1, ·) +
1
2h

[E(η̄n|n−1 + h, ·) − E(η̄n|n−1 − h, ·)]∆η

+
1
h2

[
E

(
η̄n|n−1 +

h

2
, ·
)
− E

(
η̄n|n−1 −

h

2
, ·
)]

(∆η)2

+εe,n, (5.16)

where h is the step size of the approximation and ∆η = (ηn− η̄n|n−1).19

Alternatively, we could have used the linearly transformed variable

Z =
η

s
(5.17)

19 For more complicated observation error models, εe,n would be replaced by a sum
of approximation terms involving h around the expected observation error.
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with s being some constant for an approximation of the function

Ẽ(Z, ·) ≡ E(sZ, ·) = E(η, ·). (5.18)

This transformation changes the power series approximation of the orig-
inal function to

en = E(η̄n|n−1, ·) +
1
2h

[E(η̄n|n−1 + hs, ·) − E(η̄n|n−1 − hs, ·)]∆η

+
1
h2

[
E

(
η̄n|n−1 +

h

2
s, ·
)
− E

(
η̄n|n−1 −

h

2
s, ·
)]

(∆η)2

+εe, (5.19)

which is strictly different to equation (5.16).20 By picking s to be the
square root of Σ̄η and h = 3 as the kurtosis of the underlying distribu-
tion, the transformation optimally approximates the stochastic function
E(ηn, ·).21 Similarly, all model bond prices DCj ,Tj can be approximated.

In Subsection 5.4 evidence is presented that the Kalman filter out-
performs the estimation procedures proposed by Ericsson and Reneby
(2002a) because all observable variables are incorporated in the mea-
surement of the state variable whereas Ericsson and Reneby (2002a)
only use equity prices22.

5.2.6 Parameter Estimation and Inference

The Kalman filter framework of the last subsection is convenient be-
cause it provides the necessary information for a maximum-likelihood
estimator and inference. From equations (5.8) and (5.10), the observa-
tion error vn, n = 1, . . . , N is normally distributed with

vn ∼ N(0, Σ̄Y (n|n − 1)). (5.20)

Therefore, the density of the estimated observation given the true ob-
servation is

fȲn|n−1
(yn|Ŷn−1, η̂n−1, Θ) =

1√
2π

∣∣Σ̄Y (n|n − 1)
∣∣− 1

2

× exp
{
−1

2
v′nΣ̄Y (n|n − 1)−1vn

}
(5.21)

20 Note that due to equation (5.18), the Taylor series expansion around η̄n|n−1 is
invariant to linear transformations.

21 See Norgaard et al. (2000) for the argument of optimally choosing h and s in the
sense that the approximation error is minimized.

22 See also Ericsson and Reneby (2004).
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and the log likelihood23 of the whole filter becomes

L(Θ) =
N∑

n=1

log
[
fȲn|n−1

(yn|Ŷn−1, η̂n−1, Θ)
]
. (5.22)

All functions of equation (5.21) depend on the parameter vector Θ
which can be estimated by maximizing the likelihood function of equa-
tion (5.22).

Θ̂ML = sup
Θ

L(Θ). (5.23)

As an alternative to equation (5.23), another reasonable objective func-
tion can be used that has properties as to converge to a solution quicker
and more robustly, i.e. the minimum of the sum of squared or absolute
pricing errors

Θ̂SSQE = inf
Θ

N∑
n=1

v′nvn, (5.24)

Θ̂SAE = inf
Θ

N∑
n=1

|vn|′1 (5.25)

Since all three estimators belong to the class of extremum estimators
and as such to general method of moment estimators, they converge
to the true parameter values Θ0 as N → ∞.24 Therefore, irrespective
of the objective function, the maximum-likelihood function of equa-
tion (5.22) can be used for inference. By the fact that observation error
vn are Gaussian, the estimated parameter Θ̂ is

√
N(Θ̂ − Θ0) ∼ N(0, Ĥ−1) (5.26)

where the estimated information matrix

Ĥ = −
N∑

n=1

∂2logfȲn|n−1
(yn|Ŷn−1, η̂n−1, Θ)

∂Θ∂Θ′

∣∣∣∣∣
Θ=Θ̂

= −
N∑

n=1

Ĥn

23 See e.g. Hamilton (1994), Chapter 13 for the details.
24 See Mittelhammer, Judge and Miller (2000), Part III and Chapter 11.
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converges to its true value H0 in probability for N → ∞.25 For stock
and bond prices, similar asymptotic distributions can be derived by the
delta-method26

√
N(Ê(ηn, ·) − E(ηn, ·)) ∼ N(0, ĤE,n) (5.27)

with

ĤE,n = − ∂E(ηn, ·)
∂Θ̂′

∣∣∣∣
Θ=Θ̂

Ĥ−1
n

∂E(ηn, ·)
∂Θ̂

∣∣∣∣
Θ=Θ̂

and
√

N(D̂(ηn, ·) − D(ηn, ·)) ∼ N(0, ĤD,n) (5.28)

with

ĤD,n = − ∂D(ηn, ·)
∂Θ̂′

∣∣∣∣
Θ=Θ̂

Ĥ−1
n

∂D(ηn, ·)
∂Θ̂

∣∣∣∣
Θ=Θ̂

.

5.3 Implementing the Corporate Securities
Framework

The Corporate Securities Framework of Chapters 2 and 3 is structured
modular where the firm value is distributed among all claimants of
the firm’s EBIT. To be fully specified the whole financing structure is
needed to calculate security prices because the bankruptcy event inter-
relates all debt claims to one another. However, the value of all claims
is not observed on a regular basis. Therefore, the model has to be re-
stricted so that observations of only part of the issued securities suffices
to estimate parameter values. Additional assumptions are needed.

Consider first the assumption that the total amount of debt out-
standing is left unchanged, i.e. P̄ =

∑J
j=1 Pj for all outstanding debt

contracts j = 1, . . . , J and all future points in time. The constant to-
tal debt volume makes the recovery values of individual debt contracts
independent of the bankruptcy time since each outstanding debt issue
recovers a fraction of the firm value after bankruptcy losses and taxes,
that is proportional to total debt outstanding. So, the recovery frac-
tion depends only on the initial debt structure. Therefore, maturing
debt contracts are refinanced by issuing new debt. As shown in Subsec-
tion 4.1.2.2, future debt issues flatten the optimal bankruptcy barrier.
25 See Hamilton (1994), p. 389.
26 See e.g. Campbell, Lo and MacKinlay (1997), Appendix A4.
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It is safe to assume ηB to be time invariant which eases the calculation
of bankruptcy probabilities and prices considerably. The value of a debt
contract simplifies to

DCk ,Tk
= e−r(Tk−t0)

[
Pk − (1 − τd)

Ck

r

]
[1 − Φ(t0, Tk, ηt0 , ηB)]

+(1 − τd)
Ck

r
[1 − pB(t0, Tk, ηt0 , ηB)] + D−

Ck ,Tk
.

Recall from Chapter 2 that Φ(t, T, ηt, ηB) and pB(t, T, ηt, ηB) denote the
probability of going bankrupt in the period ]t, T ] when EBIT starts at
ηt facing the constant barrier ηB and the Arrow-Debreu price of a claim
that pays one currency unit in bankruptcy, respectively. The time t0-
value of the funds that bond holders are able to recover in bankruptcy
are

D−
Ck ,Tk

= (1 − τ eff )min
[
(1 − α)VB ; P̄

]
wkpB(t0, Tk, ηt0 , ηB).

where wk = Pk/P̄ represents the fraction of bond k with respect to
total debt P̄ .27

The original framework only allows for a single, constant risk-free
interest rate. Even if we abstract from the stochasticity of risk-free in-
terest rates, the daily change of interest rates should be considered in
the estimation process and a suitable maturity within the term struc-
ture has to be chosen. Denote by BCk,Tk

the value of a risk-free bond
with the same features and tax treatment as the corporate bond DCk,Tk

.
The corporate bond price can be restated as

DCk ,Tk
= BCk,Tk

[1 − Φ(t0, Tk, ηt0 , ηB)]
−BCk,∞ [pB(t0, Tk, ηt0 , ηB)
−Φ(t0, Tk, ηt0 , ηB)] + D−

Ck,Tk
. (5.29)

If we allow for future starting bond issues, its value would be

DCk,Sk,Tk
= BCk ,Sk,Tk

[1 − Φ(t0, Tk, ηt0 , ηB)]
−BCk,∞ [pB(Sk, Tk, ηt0 , ηB)
−Φ(Sk, Tk, ηt0 , ηB)B0,Sk

]
−Φ(Sk, Tk, ηt0 , ηB)B0,Sk

PkI{Sk>t}
+D−

Ck ,Tk
, (5.30)

27 See Chapters 2 and 3 for a detailed derivation of the formulas and the exact
definition of variables.
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where Sk denotes the bonds issue time. The default probability during
the bond’s life is

Φ(Sk, Tk, ηt0 , ηB) = Φ(t0, Tk, ηt0 , ηB) − Φ(t0, Sk, ηt0 , ηB),

and the Arrow-Debreu price of bankruptcy for the subperiod ]Sk, Tk] is

pB(Sk, Tk, ηt0 , ηB) = pB(t0, Tk, ηt0 , ηB) − pB(t0, Sk, ηt0 , ηB).

The dependence of the corporate bond price in equations (5.29) and
(5.30) on the choice of the term of the risk-free interest rate is reduced
considerably. Since the whole term-structure of risk-free interest rates
is known at each point in time, the price of the risk-free equivalent
bonds can be calculated easily. However, the risk-free interest rate r
still remains explicit when determining the equity value and might be
set to a term between five and ten years which should approximately
equal the average payback time of a firm’s investments.

A firm’s total liabilities P̄ can be set to the reported amount as of
the last available annual report. Note that this value usually represents
the notional amount of debt outstanding and not its current value as
of the balance sheet date. We might also consider P̄ to be a constant or
deterministically changing parameter determined within the estimation
process.

5.4 The Simulation Study

5.4.1 Experiment Design

To evaluate whether the Kalman filter proposed in Section 5.2.5 is able
to detect the parameters of the EBIT-process correctly, a simulation
study was conducted for the ABM- and the GBM base case firm intro-
duced in Section 4.1.1. With respect to the discussion in Subsection 5.3,
where it was proposed to allow for future debt issues to simplify and
speed up the Kalman filter evaluations, it is assumed that the firm
refinances each maturing debt issues by a 6 % coupon bond with an
identical notional and infinite maturity.28 The model parameters are
summarized in Table 5.1.

Using the drift and the volatility of the stochastic processes of
Panel A in Table 5.1, for both the ABM- and the GBM-firm, 500
EBIT-paths of 50 daily observations have been simulated. For each
28 As illustrated in Subsection 4.1.2.2, the refinancing bonds have a current value

of approximately zero.
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Table 5.1. Model parameters of the ABM- and GBM-firm in the Kalman
filter simulation study

Panel A: Model Parameters
Economic Variables
r 5 %
τc 35 %
τd 10 %
τe 10 %
εe,n N(0, 0.005)
εd,j,n N(0, 0.0025)

∀n, j

Firm Specific Variables
ABM GBM

ηt0 100
α 50 %
VB 3,050
µ 10 3.33 %
ση 40 18 %
� of issued stocks: 200

Panel B: Initial Financing Structure

j Pj In % of V Sj Tj Cj

7 600 10 % 10 ∞ 6 %
6 600 10 % 4 ∞ 6 %
5 600 10 % 2 ∞ 6 %
4 1,250 20.83 % -1 ∞ 6 %
3 600 10 % -1 10 5.5 %
2 600 10 % -1 4 5 %
1 600 10 % -1 2 4.5 %

EBIT-realization, the security values have been calculated according
to pricing equations as of Chapter 3 and Section 5.3. The security val-
ues have then been translated into price quotes, assuming that the firm
issued 200 stocks in total. All price quotes have been perturbed by an
observation error drawn from the distribution of εe,n and εd,j,n.

The stock price and the dirty prices of the currently issued bonds,
i.e. bonds j = 1, . . . 4, are observable. The parameter vector Θ was
reduced to contain the process parameters µ and ση only.

In principle, we could have included the bankruptcy barrier VB

and/or the refinancing coupons Cj , j > 4 in the parameter vector,
as well. If the bankruptcy barrier were included, we might have al-
lowed equity holders to pick the bankruptcy barrier optimally assum-
ing that the firm is already in the infinite maturity state. This appears
viable because it was shown in Subsection 4.1.2.2 that the inclusion
of future debt issues flattens the optimal bankruptcy barrier. How-
ever, for each pair of µ and ση, the flat optimal bankruptcy barrier is



140 5 Empirical Test of the EBIT-Based Credit Risk Model

equivalent to a deterministically set constant bankruptcy barrier with-
out the additional burden to calculate the optimal bankruptcy barrier.
Therefore, for estimating the Kalman filter, the optimization of the
bankruptcy barrier would only add complexity without making the
simulation study more accurate. A similar argument is true for the
refinancing coupons. If included in the parameter vector Θ, refinanc-
ing coupons would have to be determined by finding the par forward
yields of the refinancing bonds. The refinancing coupons change for
every single simulated EBIT due to changes of the term structure of
bankruptcy probabilities. However, for each parameter choice of µ and
ση, the Kalman filter delivers the best estimates of the latent EBIT
times series given that the par forward yields of the refinancing bond
issues have been determined by these best estimates. Due to the unique
relationship between EBIT and refinancing coupons, the refinancing
coupons can as well be fixed for the simulation study.

Preliminary tests have shown that the log-likelihood function of
equation (5.22) encounters problems with starting values for µ and
ση that are too far from the true parameters because the likelihood of
the filter becomes close to zero. In contrast, the sum of absolute pricing
differences of equation (5.25) is a less sensitive objective function for
arbitrary starting values. It converges quickly to the global solution, i.e.
the true parameters, as long as the starting parameters of the filter lie
above the true parameters. If the starting parameters are chosen below
the true parameters, the estimation procedure eventually converges to
a local minimum whereas only very few runs could actually identify
the true parameters. So, a two step estimation procedure seems appro-
priate: A first estimation run is performed by minimizing the sum of
absolute pricing errors with starting values far above the true parame-
ters. A second run maximizes the log-likelihood function by starting
the estimation at the estimates of the first run.

5.4.2 Parameter Estimation Results

Figure 5.1 collects the estimated ABM-risk-neutral drift and volatility
parameters of the first estimation step in histograms. In contrast to
Ericsson and Reneby (2004), we are able to identify both the volatil-
ity and the risk-neutral drift.29 Both estimators appear to be unbiased
and the true parameters lie within the 90 % confidence bounds of the
29 To overcome their difficulties, Ericsson and Reneby (2004) need to set the EBIT-

drift to the risk-less interest rate adjusted for an exogenously estimated constant
cash payout ratio per period.
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Fig. 5.1. Histogram of the estimated ABM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by minimizing
the sum of absolute pricing errors. True parameter values are µ = 10 and
ση = 40.
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simulated parameter distribution. The confidence bounds itself are suf-
ficiently small given that we only used 50 data points for each simula-
tion. The second round of estimation produced even closer confidence
bounds (see Figure 5.2).

Panels A and B of Table 5.2 compare the statistics of the parame-
ter, state variable and security price estimates of the two estimation
steps. The maximum-likelihood estimation improves parameter esti-
mates considerably. We observe that the second step not only reduces
the range of the estimates but also the mean errors and standard er-
rors. Furthermore, the Jarque-Bera statistic for testing normality of
the parameter estimation error distributions would reject the normal-
ity hypothesis for the risk-neutral drift in the first estimation step at
the 5 % level. The normality of the maximum-likelihood estimator can-
not be rejected. The mean estimation error and standard error of the
state variable and security prices are small although differences can
become large in single periods (see the MIN - and MAX-columns in
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Fig. 5.2. Histogram of the estimated ABM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by maximizing
the likelihood function. True parameter values are µ = 10 and ση = 40.
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Table 5.2). Tests for normality of estimation errors of the state variable
and long-term security must be rejected in the first estimation step at
the 1 % level. The maximum-likelihood estimation improves the situa-
tion. At least, the Jarque-Bera statistic of the equity pricing errors can
no longer reject normality.

The results for the GBM-simulation study are different. Figure 5.3
illustrates that the true parameters fall within the confidence bounds.
The parameter estimates are symmetrically distributed but slightly bi-
ased upwards. However, the maximum-likelihood estimation does not
improve the parameter estimates (Figure 5.4). The bias moves down-
wards and Table 5.3 confirms that standard errors increase substan-
tially. The same observation can be made for the state variable esti-
mates. Estimated security prices are less affected. Although normality
of the estimated parameters cannot be rejected in the first estimation
step, the Jarque-Bera statistic exceeds the critical value at all reason-
able confidence values in the second step.
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Table 5.2. Simulated distribution summary statistics of the estimated ABM-
Corporate Securities Framework. The table reports mean errors ME, mean
absolute errors MAE, maximum MAX and minimum errors MIN , as well
as standard errors STD, skewness SKEW and kurtosis KURT of the distri-
bution. The Jarque-Bera test statistics and its p-value are also provided. The
simulation comprised 500 runs á 50 periods.

Panel A: Minimizing Absolute Pricing Errors
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η -0.0017 0.0545 0.2132 -0.1904 0.0689 0.1732 3.0325 2.4921 0.2876
µ − µ̂ -0.0022 0.0330 0.1363 -0.1206 0.0413 0.2612 3.0598 5.6995 0.0579
η − η̂ -0.0363 0.7045 3.5273 -3.2213 0.8836 0.2089 3.0966 191.4799 0.0000

E − Ê 0.0009 0.0531 0.2783 -0.2794 0.0673 -0.0047 3.1220 15.5345 0.0004

D4.50 %,2 − D̂4.50 %,2 0.0003 0.0392 0.2122 -0.2047 0.0492 -0.0165 3.0479 3.4935 0.1743

D5.00 %,4 − D̂5.00 %,4 0.0014 0.0363 0.1791 -0.1767 0.0459 -0.0077 3.0632 4.3822 0.1118

D5.50 %,10 − D̂5.50 %,10 0.0016 0.0337 0.1969 -0.1674 0.0421 -0.0140 3.0012 0.8234 0.6625

D6.00 %,∞ − D̂6.00 %,∞ 0.0020 0.0313 0.1501 -0.1680 0.0394 0.0540 3.0307 13.1050 0.0014

Panel B: Maximizing Log Likelihood
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η -0.0037 0.0463 0.1669 -0.1730 0.0573 0.0755 2.8554 0.9789 0.6130
µ − µ̂ -0.0036 0.0279 0.1202 -0.1164 0.0349 0.1090 3.1212 1.2295 0.5408
η − η̂ -0.0634 0.6147 3.4626 -3.2222 0.7684 0.1173 3.1282 74.3952 0.0000

E − Ê 0.0009 0.0534 0.2712 -0.2746 0.0669 -0.0048 3.0440 2.0871 0.3522

D4.50 %,2 − D̂4.50 %,2 0.0002 0.0392 0.2120 -0.2034 0.0492 -0.0171 3.0466 3.4541 0.1778

D5.00 %,4 − D̂5.00 %,4 0.0012 0.0364 0.1800 -0.1740 0.0458 -0.0092 3.0181 0.6841 0.7103

D5.50 %,10 − D̂5.50 %,10 0.0016 0.0337 0.1945 -0.1683 0.0421 -0.0143 2.9985 0.8556 0.6520

D6.00 %,∞ − D̂6.00 %,∞ 0.0021 0.0314 0.1459 -0.1652 0.0393 0.0527 2.9983 11.5779 0.0031

The problems of the maximum-likelihood estimation in the GBM-
case are most likely due to the small sample size of 50 time steps per
simulation. In the GBM-case, the state variable η̄n is log-normally dis-
tributed. This non-linearity of the state variable translates Θ̂ of equa-
tion (5.23) into a quasi-maximum-likelihood estimator where normality
is achieved only asymptotically as N → ∞. Nevertheless, the proposed
Kalman filter seems to work well even for the GBM-EBIT model.

In a second experiment, we test whether the filter is sensitive to
a correctly specified observation error. The observation error of se-
curity prices is omitted. The two estimation steps are conducted as
described above including the assumption that prices are observed
with the indicated errors as of Table 5.1, Panel A.30 The estimators
of the risk-neutral EBIT-drift and EBIT-volatility of both the ABM-
and GBM-filter are biased. The confidence intervals of the parame-
ter estimates of the ABM-filter still contain the true values in both
30 See the Figures B.6 to B.9 and Tables B.3 to B.4 in the appendix.
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Fig. 5.3. Histogram of the estimated GBM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by minimizing
the sum of absolute pricing errors. True parameter values are µ̄ = 3.3̇ % and
σ̄η = 18 %.
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steps. Similarly to the first simulation experiment, the first step esti-
mation of the GBM-filter produces estimators biased upwards whereas
the maximum-likelihood estimators are biased downwards. Confidence
intervals do not contain the true values. The GBM-filter is sensitive to
a misspecification of observation errors in small samples. A preliminary
test of the GBM-filter for time series of N = 200 price observations per
security confirms that the distribution of the estimators moves closer to
normality with its center approaching the true parameter values. The
ABM-filter seems to be robust against misspecifications.

Although further research seems to be warranted on the small sam-
ple properties of the objective functions (5.23), (5.24), and (5.25), our
results are promising. The objective functions converge in a way that
the parameter estimators are close to the true parameters of the sam-
pled time series although we introduce a quite substantial pricing error
of several basis points in bond prices and several percent in equity
prices.
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Fig. 5.4. Histogram of the estimated GBM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by maximizing
the likelihood function. True parameter values are µ̄ = 3.3̇ % and σ̄η = 18 %.
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5.5 Summary

In this chapter a state-space representation of the Corporate Securities
Framework of Chapters 2 and 3 is proposed. In contrast to the exist-
ing literature, the estimation procedure is able to incorporate multiple
time series of corporate security prices. Since the EBIT-process can be
chosen freely, we can test which type of EBIT-process fits security price
movements best.

In a simulation study, we show that estimators based on the Kalman
filter can identify the true parameters of the EBIT-process. For the
ABM- and the GBM-filter, 500 time series of 50 daily observations of
stock and bond prices are simulated where each observation is mea-
sured with a zero-mean error. The estimation is performed in two step.
The first parameter estimates were achieved by minimizing the sum
of absolute pricing errors. This objective function allows for almost
arbitrary starting values as long as the estimation does not start in a
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Table 5.3. Simulated distribution summary statistics of the estimated GBM-
Corporate Securities Framework. The table reports mean errors ME, mean
absolute errors MAE, maximum MAX and minimum errors MIN , as well
as standard errors STD, skewness SKEW and kurtosis KURT of the distri-
bution. The Jarque-Bera test statistics and its p-value are also provided. The
simulation comprised 500 runs á 50 periods.

Panel A: Minimizing Absolute Pricing Errors
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η 0.0001 0.0002 0.0008 -0.0005 0.0002 -0.0543 3.2203 1.1408 0.5653
µ − µ̂ 0.0001 0.0001 0.0004 -0.0003 0.0001 0.0127 2.9627 0.0635 0.9687
η − η̂ 0.3521 0.6970 3.1401 -2.6597 0.8080 0.0501 3.0901 18.8744 0.0001

E − Ê -0.0033 0.0382 0.2688 -0.2273 0.0489 -0.0049 3.4543 214.8005 0.0000

D4.50 %,2 − D̂4.50 %,2 0.0009 0.0384 0.2020 -0.1838 0.0482 -0.0177 3.0325 2.3919 0.3024

D5.00 %,4 − D̂5.00 %,4 0.0023 0.0588 0.2992 -0.3393 0.0744 -0.0119 3.1024 11.4532 0.0033

D5.50 %,10 − D̂5.50 %,10 0.0002 0.0553 0.2907 -0.2657 0.0699 0.0112 3.1062 12.2205 0.0022

D6.00 %,∞ − D̂6.00 %,∞ -0.0029 0.0531 0.2871 -0.2715 0.0672 0.0048 3.1208 15.2239 0.0005

Panel B: Maximizing Log Likelihood
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η -0.0001 0.0005 0.0014 -0.0022 0.0006 -0.3128 3.3932 11.1065 0.0039
µ − µ̂ -0.0001 0.0002 0.0006 -0.0009 0.0003 -0.2992 3.3159 9.3247 0.0094
η − η̂ -0.4252 1.2506 4.3028 -5.9902 1.5576 -0.2781 3.2759 401.2455 0.0000

E − Ê -0.0035 0.0383 0.2644 -0.2255 0.0486 0.0086 3.3984 165.4339 0.0000

D4.50 %,2 − D̂4.50 %,2 -0.0001 0.0386 0.2062 -0.1837 0.0485 -0.0212 3.0364 3.2293 0.1990

D5.00 %,4 − D̂5.00 %,4 -0.0101 0.0635 0.3219 -0.3621 0.0792 -0.0289 3.1010 14.0665 0.0009

D5.50 %,10 − D̂5.50 %,10 -0.0134 0.0606 0.3347 -0.3153 0.0747 -0.0040 3.0146 0.2788 0.8699

D6.00 %,∞ − D̂6.00 %,∞ -0.0126 0.0590 0.2824 -0.3125 0.0732 -0.0326 3.0440 6.4222 0.0403

bankruptcy state and the starting values of EBIT-drift and volatility lie
above the true parameter values. A standard search algorithm is then
able to approach the true parameter values relatively quickly. Given
the first estimates, the log likelihood function of the filter is maximized
which is expected to refine the parameter estimates. The Kalman filter
is not only able to identify the EBIT-volatility but also the EBIT-risk-
neutral drift from the imprecisely observed security prices which no
other method was able to before. In previous empirical studies, the drift
has been arbitrarily set to the risk-free rate adjusted for an estimate of
a constant payout ratio disregarding the theoretical inconsistency that
the payout ratio changes together with EBIT in a dynamic way.

Both filters work remarkably well despite our small sample size
of only 50 data points per filter optimization. However, the GBM-
estimators do not improve in the second estimation step which is at-
tributable to the non-linearity of the state function. The small sample
properties of the GBM-model are therefore less favorable. Larger sam-
ple time-series are needed for better convergence.
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The filter even works under a second setting where security pric-
ing errors are misspecified. Although the estimators are biased, both
filters find optima close to the true parameter values. However, for
the GBM-filter more observations are needed to get reasonable sample
distributions.

Having succeeded in a simulation study, we can take the next step
and use time series of bond and equity prices of individual firms to
test the model directly. Section 5.3 discusses some of the practical is-
sues. Depending on the individual firm and the information available
about the firm, additional assumption might be needed. However, the
proposed model gives a sound foundation for reasonable and consistent
adjustments.
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Concluding Remarks

6.1 Summary

With the increased availability of disaggregated, high frequency cor-
porate bond data, structural credit models can be subjected to better
and more reliable econometric tests and thus have regained academic
interest. Earlier empirical studies reported the inability of firm value
models to price corporate bonds correctly. With more accurately and
more frequently recorded time series of bond prices, new econometric
analysis became feasible. However, recent evidence is not convincing
yet.

Exploring the empirical and the theoretical literature in detail, a
serious drawback of existing structural credit risk models became vis-
ible: its evident simplification of the financing structure of the firm.
Moreover, the economic assumptions behind the theory are disguised
so that empirical models have itself been applied inadequately and no
final results can be drawn from this empirical work.

In this thesis we offer a proposal to overcome some of the theoretical
deficiencies of structural credit risk models and to fill the gap between
the theory and the empirical literature. Chapter 2 develops a very gen-
eral economic framework for the pricing of corporate securities. The
firm’s earnings before interest and taxes, EBIT, are assumed to follow
an Itô-process and the Corporate Securities Framework allows a firm to
have multiple finite maturity debt issues. The complex capital struc-
ture requires a consistent model of bankruptcy proceedings because
the capital structure will eventually change in the future. As a result,
the recovery for an individual bond issue might change from subperiod
to subperiod. By the same argument, the bankruptcy barrier might
change. We show that the model can be solved analytically if there
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exists an explicit solution for the firm value, for all the bankruptcy
probabilities, and for the Arrow-Debreu bankruptcy prices. Despite its
technical representation, Chapter 2 concentrates on the economic as-
sumptions which are presented in a rigorous mathematical form. The
chapter offers two distinct extensions to the current literature: First, the
Corporate Securities Framework is developed from economic assump-
tions and mathematical formalism is used to keep the model consistent.
Therefore, important modeling decisions such as the choice of the sto-
chastic process for EBIT can be justified economically. Our approach
considerably increases the flexibility of the model. Second, the frame-
work is general enough to be extended for various refinements because
any model feature is independent of others. Stochastic interest rates
or strategic bankruptcy behavior of equity holders can be introduced
conceptually without difficulty. Our model also provides an interesting
setting to analyze refinancing strategies thoroughly. In particular, if a
firm must decide whether to replace an existing debt issue by reissuing
debt or by asking equity holders to infuse money, which strategy is
then optimal for equity holders? Which maturity, which notional, and
which coupon should be offered to potential debt holders? How does
the decision depend on the current state of the firm? Such questions
can be consistently addressed within our framework.

Chapter 3 demonstrates that the Corporate Securities Framework
is tractable if EBIT follows either an arithmetic or a geometric Brown-
ian motion. We emphasize the fact that the widely used but hardly
questioned standard assumption that state variables follow a geomet-
ric Brownian motion is no longer needed to solve the model analytically.
There is even a strong case in favor of EBIT following an arithmetic
Brownian motion because EBIT can then become negative and a much
wider class of firms can be covered in an empirical application. By
choosing arithmetic Brownian motion, we do not only extend the ex-
isting literature of credit risk models to this particular process type
but we also show that the geometric Brownian motion assumption is
one among many. Our framework offers the possibility of selecting a
suitable stochastic process on economic rather than on mathematical
considerations. For solving the bankruptcy probabilities with several
finite maturity debt issues, new hitting probabilities of a Brownian
motion facing a changing barrier are derived. The results should prove
useful for other applications in option pricing or real option analysis,
as well. The analytical solution speeds up the calculation for the sim-
ulation study conducted in Chapter 5.
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Additionally, we propose two numerical methods which enable us to
price derivatives on corporate securities and to extend the basic ana-
lytical model with more advanced decision rules. The standard trino-
mial lattice approach is capable of incorporating more complicated tax
regimes and optimal bankruptcy decision of equity owners. A numerical
integration approach can be used for pricing derivatives on corporate
securities of the European type, as well. The integration approach is
fast, accurate, and can be applied to comparable problems and more
complicated derivatives in practice.

In Chapter 4 the analytical solution for corporate securities is il-
lustrated by numerical examples. The Corporate Securities Framework
produces a rich set of comparative statics results which are open to
an intuitive explanation. Most interestingly, we document that in both
of our analytical examples equity value is a concave function of the
EBIT-volatility and therefore exhibits room for optimization given the
initial EBIT and the capital structure. This property propels further
explanations and a more general analysis of a firm’s choice of risk.

A distinct focus is laid on the detection of how the Corporate Se-
curities Framework can be applied in a direct empirical study. Several
features of the model prove important. The tax structure of EBIT-based
models cannot be neglected. As well, future debt issues are important.
However, a reasonable refinancing model can ease the computational
burden for an empirical analysis because the optimal bankruptcy bar-
rier becomes almost flat which facilitates the calculation of the hitting
probabilities and prices.

As a second application in Chapter 4, we investigate option prices on
equity if the firm has a complex capital structure. The Corporate Secu-
rities Framework offers the flexibility to change the capital structure in
the future and to show that the term structure of debt is an important
determinant of option prices. Since the density of equity values and
equity returns are obtainable directly in our framework, we are able to
link the current firm’s condition to the shape of equity densities and to
option implied volatilities. The level of the smile increases the closer the
firm is to bankruptcy. Debt repayments before option maturity tend to
shift implied volatility curves down. In contrast to the broad literature
on implied volatilities, we recommend to link the shape and level of im-
plied volatilities to the moments of the equity return distribution only
if the firm is currently in a good state. The examples in Subsection 4.2
indicate that higher moments of the distribution of equity returns can
be misleading for firms close to bankruptcy.
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In Chapter 5, the empirical literature on structural credit risk mod-
els is critically reviewed. As a result of the drawbacks of proposed esti-
mation procedures, we suggest a Kalman filter to estimate EBIT as a
latent state variable and the parameters of the models. In a simulation
study, we demonstrate that the Kalman filter allows to identify the true
parameters correctly. Convergence for the ABM- and GBM-model is
fast and the estimators seem to be unbiased even in small samples. The
estimators are robust against misspecified observation errors. However,
the GBM-model needs longer time series of security prices to obtain
reasonable estimator properties in this case. Most promisingly, we are
able to identify not only the EBIT-volatility but also the risk-neutral
EBIT-drift in both models. The latter finding is new to the literature
and of particular interest because without the risk-neutral EBIT-drift,
the structural credit risk models are likely to contain inconsistencies.

The thesis encompasses a broad scope of topics which are vigor-
ously discussed in academia and in practice. Our Corporate Securities
Framework allows for intuitive explanations without resorting to ad-hoc
mathematical assumptions which are difficult to justify economically.
Apart from its theoretical flexibility, the framework can be directly ap-
plied for estimates using a large sample of firms. The empirical tests are
not only helpful in academic discussion but also offer a tool to prac-
titioners who prefer working with structural models. To the best of
our knowledge, financial institutions favor reduced form models which
are primarily used for pricing securities. However, economic effects can
hardly be forecasted appropriately if one is restricted to purely statisti-
cal methods. A structural framework such as ours is able to capture the
essential economic patterns. A flexible structural framework which is
easy to handle and produces reliable estimates will eventually convince
practitioners to rethink their model choice.

6.2 Future Research

Our economic model of the firm provides a framework which should
prove useful for related and extended analysis. We want to highlight
three possible fields for further studies.

First, our model need not be restricted to simulations but could
be used to perform comprehensive empirical studies. The Corporate
Securities Framework is applicable to a much larger group of firms.
Compared to other models there no longer exist restrictions on the
capital structure. It is even possible to introduce additional debt con-
tracts with embedded options. Moreover, the EBIT-process assumption
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can be investigated directly and makes it possible to evaluate which of
the process assumptions performs better. It was shown in Chapter 5
that the GBM-Kalman filter is not unbiased in small samples. Although
time series of stock and bond prices are usually long, empirical studies
allow to further explore how the Kalman filter behaves if samples are
small and how many observations are necessary to get reliably results.
ABM-Kalman filters can be studied analogously.

Second, our model is open enough to analyze recommendations for
decision making. The interdependence of bond and stock prices of the
same firm is not only of special interest for the corporate budgeting
decision of which source of funds to choose from but also for financial
institutions or investors who want to measure the risk of their portfolios
if they are invested in both instruments. At first sight both problems
seem to be two different views of the same problem. This is correct
remembering that there is only one firm that managers as well as in-
vestors would like to research. But if information is taken into account,
managers have an advantage in answering their questions compared to
investors. This gives rise to an agency theoretic argument. Both views
can be analyzed in our EBIT-firm value framework. A Duffie and Lando
(2001)-like notion of incomplete information for outsiders which clari-
fies how information is processed and how this influences the estimation
and the perception of risk, might be an interesting starting point. Fi-
nancial investors are outsiders in the EBIT-model and have only access
to incomplete information. Is there a direct implication of the empir-
ical and theoretical results for them? How can they evaluate the risk
of portfolios invested in a firm’s equity and debt as well as in treasury
bonds correctly if they are exposed to market and credit risk at the
same time? Our EBIT-model accounts for these interdependencies and
therefore allows for an aggregation of credit and market risk. Simula-
tion studies can show how risk measurement errors distort investment
strategies.

Third, our model can be used as a device in integrated risk manage-
ment. In the last few years risk management in financial institutions
advanced considerably. Usually, risk management systems of banks are
based on two concepts. Market risks are measured with Value at Risk,
credit risks with models that are able to capture correlated defaults
of counterparties like CreditRisk+, CreditMetrics or Credit Portfolio
View. Due to different assumptions and objectives the two concepts
cannot be integrated easily. One of the critical theoretical (economic
and mathematical) issues is to combine the two approaches in one com-
prehensive model. In order to develop the comprehensive market and
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credit risk model, we can take either a mathematical or an economic
approach. The first strand of research tries to isolate the mathematical
building blocks of market and credit risk models and to use generalized
concepts of stochastic comovement like copulas and extreme value the-
ory to arrive at a meaningful and interpretable estimate of total bank
risk. The second economic approach, however, seems more promising.
In our economic model, we can keep the mathematics simple, resort to
classical stochastic concepts, and motivate the assumptions as well as
the derived results by economic intuition.

Our framework can be easily extended to multiple firms. We in-
troduce two correlated EBIT-processes which drive the values of two
firms. The interaction allows us to analyze correlated defaults and com-
pare those to observed default correlations. However, a more realistic
model of market structure might be warranted if both firms compete
directly so that the default of one firm actually improves the outlook
for the other firm. If stochastic interest rates are introduced, market
and credit risk factors are naturally combined in one model. Then, our
Corporate Securities Framework can be contrasted to the separate mea-
surement of two risk components, a VaR of market risk and a VaR of
credit risk which are combined by some statistical method, as e.g. pro-
posed by Jorion (2000). By the same argument as above, the problem
of the holding period assumptions inherent in the market/credit VaR
approach can be resolved. Usually, credit VaR is measured for a longer
time horizon than market VaR. Our approach models credit events in
an economically intuitive and time-consistent way.

We hope that the quality of the EBIT-model developed in this thesis
will be able to trigger research efforts in these fields and finally help to
design models which become reliable modules in a next generation of
internal risk evaluation tools of financial institutions.
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Notes on the Equity Option Valuation

A.1 A Note on the Change in Variable of Equity Value
and its Return Density Plots

The discussion in 4.2.2 relies heavily on the unconditional partial den-
sity plots displayed. The density as of equation (3.96) is defined heuris-
tically for a small interval dηT as explained in Section 3.4.2. Equity val-
ues at option maturity and the respective return values are functions
of the state variable ηT , the densities with respect to the stochastic
Variable η have to be translated into densities of the new variable.

If the distribution function of η for the ABM-case is denoted by
F (ηT ) = PQ(η ≤ ηT ;MT > ηB) with a density of f(ηT ) = ∂/∂η(Φ(·))
and equity values at maturity T are an invertible function of EBIT
ET = E(ηT ), the probabilities for the two events must therefore be the
same.

PQ(η ≤ ηT ;MT > ηB) = PQ(E ≤ ET ;MT > ηB)

For the density of equity values fE this requires that

fE(ET ) =
∂

∂η
F (ηT )

∂

∂η
E−1(ηT )

= f(ηT )

(
∂ET

∂η

∣∣∣∣
η=ηT

)−1

, (A.1)

since the invertible function is one dimensional in the stochastic para-
meter.

Transforming the equity density into a return density requires the
same transformation as above. Denote the equity return with respect to
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the expected value at the option maturity by rE(T ) = ln(ET /EQ(ET )).
So equity return density can be calculated by

f r(rE(T )) = fE(ET )ET , (A.2)

since ∂rE(T )/∂ET = ET .
The GBM-case is equivalent to the ABM-case if η is replaced by

ln(η̄) and ηB by ln(η̄B). The derivatives in equation A.1 are then taken
with respect to ln(ηT ). Equation A.2 does not change.

A.2 Distributional Assumptions and Option
Prices

To support the understanding of how distributional assumptions affect
option prices, it is necessary to decompose price differences of option
with different strikes. Writing the call option value as an expectation
under the risk-neutral measure Q

C(t, T,X) = EQ[e−r(T−t)(ET − X)+]

= e−r(T−t)

∫ ∞

0
(ET − X)+q(ET )dET

= e−r(T−t)

∫ ∞

X
(ET − X)q(ET )dET ,

where ET denotes the underlying value, X the strike, and T the time of
maturity of the call option C at time t, the price difference of a similar
call option but with a lower strike X − ∆X, where ∆X > 0 is

∆C(t, T,X,∆X) = e−r(T−t)

(∫ ∞

X
(ET − X)q(ET )dET

−
∫ ∞

X−∆X
(ET − X − ∆X)q(ET )dET

)

= e−r(T−t)

(
∆X

∫ ∞

X−∆X
q(ET )dET

+
∫ X

X−∆X
(ET − X)q(ET )dET

)
. (A.3)

Equation (A.3) can nicely be illustrated by Figure A.1, which shows
the payoffs at maturity of two options with strikes X and X − ∆X,
respectively. The lower strike option can be replicated as a portfolio
of the option with strike X (the area above the gray rectangle and
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Fig. A.1. Option price differences due to differences of strike prices

below the dashed line, the area due to the lower strike ∆X (the gray
rectangle), and the dotted triangle which the low-strike option holder
will not get.

Comparing implicit volatilities is equivalent to comparing the prob-
ability mass between X −∆X and X. If this probability mass is higher
than that of the log-normal distribution, the option price rises more
than the Black/Scholes option price leading to an increase in implied
volatilities. More generally, the option price difference must exceed

∆CN (t, T,X,∆X) = e−r(T−t)

[
X

(
N(d2) − N(d2 − γ

σ
√

T − t

)

−EQ(ET )
(

N(d1) − N(d1 − γ

σ
√

T − t

)

+∆XN(d2 − γ

σ
√

T − t
)
]

, (A.4)

where γ = 1 − (∆X)/X is the proportional decrease of the strike and
d1 and d2 are defined as in equation (4.1). In equation (A.4), the first
two lines represent the dotted triangle of figure A.1 and the third line
is equivalent to the gray rectangle.
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Fig. B.1. Equity values after tax as a function of EBIT-volatility and current
EBIT value of a GBM-firm.
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Table B.1. Security values in the ABM-Corporate Securities Framework. Panel A and B show comparative static market
values of debt.

Panel A
Tax Regimes Optimal Bankruptcy Future Bond Issues (TR 1)

None 1 3 None TR 1 TR 3 None 1 2 3
4.5 %, 2 593.58 588.21 588.21 588.21 580.26 574.98 580.26 587.59 588.48 588.99
5 %, 4 597.86 586.27 586.27 586.27 578.99 572.69 578.99 568.01 582.60 586.31

5.5 %, 10 617.75 590.02 590.02 590.02 584.31 577.72 584.31 575.67 566.76 582.79
6 %, ∞ 1,474.11 1,321.84 1,321.84 1,321.84 1,309.09 1,294.28 1,309.09 1,289.87 1,274.41 1,302.41
6 %, 2-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -15.61 -1.80 1.45
6 %, 4-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -29.45 -4.25
6 %, 10-∞ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 64.27

�

Debt 3,283.31 3,086.33 3,086.33 3,086.33 3,052.65 3,019.68 3,052.65 3,005.53 2,981.00 3,121.97
Equity 2,690.49 1,182.99 1,096.65 1,182.99 1,187.02 1,106.56 1,187.02 1,211.87 1,296.83 1,551.40

BL 26.06 26.06 26.06 26.06 53.35 94.61 53.35 98.03 122.36 48.60
Taxes 0.00 1,704.48 1,790.81 1,704.48 1,698.97 1,771.35 1,698.97 1,675.44 1,594.47 1,273.81

Firm Value 5,999.86 5,999.86 5,999.86 5,999.86 5,992.00 5,992.19 5,992.00 5,990.87 5,994.66 5,995.79

Panel B
Future Bond Issues (TR 1) Future Bond Issues (CBB, TR 1)

None 1 2 3 None 1 2 3
4.5 %, 2 574.98 584.40 585.64 587.53 588.21 588.21 588.21 588.21
5 %, 4 572.69 560.00 572.77 579.18 582.78 582.14 582.14 582.14

5.5 %, 10 577.72 567.65 556.44 572.17 579.98 579.33 574.86 574.86
6 %, ∞ 1,294.28 1,271.61 1,249.68 1,280.42 1,299.90 1,298.55 1,289.22 1,286.35
6 %, 2-4 0.00 -20.59 -8.97 -4.33 0.00 -2.00 -2.00 -2.00
6 %, 4-10 0.00 0.00 -31.17 -11.82 0.00 0.00 -12.19 -12.19
6 %, 10-∞ 0.00 0.00 0.00 65.71 0.00 0.00 0.00 65.76

�

Debt 3,019.68 2,963.09 2,924.39 3,068.86 3,050.88 3,046.22 3,020.24 3,083.13
Equity 1,106.56 1,121.74 1,168.83 1,408.31 1,162.96 1,184.18 1,288.83 1,548.47

BL 94.61 151.40 192.77 101.49 125.27 125.27 125.27 125.27
Taxes 1,771.35 1,754.76 1,709.83 1,417.68 1,696.56 1,679.98 1,601.31 1,278.80

Firm Value 5,992.19 5,990.98 5,995.83 5,996.35 6,035.67 6,035.65 6,035.65 6,035.66



B
A

dditional
T
ables

and
F
igures

161

Table B.2. Security values in the GBM-Corporate Securities Framework. Panel A and B show comparative static market
values of debt.

Panel A
Tax Regimes Optimal Bankruptcy Future Bond Issues (TR 1)

None 1 3 None TR 1 TR 3 None 1 2 3
4.5 %, 2 593.85 588.56 588.56 588.56 568.98 565.26 568.98 586.53 588.36 588.95
5 %, 4 598.94 587.68 587.68 587.68 567.42 560.85 567.42 546.66 579.10 584.35

5.5 %, 10 620.42 593.43 593.43 593.43 571.17 565.04 571.17 555.08 535.58 565.87
6 %, ∞ 1,476.85 1,324.71 1,324.71 1,324.71 1,276.18 1,261.78 1,276.18 1,239.63 1,201.59 1,247.85
6 %, 2-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -36.08 -5.21 -0.48
6 %, 4-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -85.90 -34.80
6 %, 10-∞ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.45

�

Debt 3,290.07 3,094.37 3,094.37 3,094.37 2,983.75 2,952.93 2,983.75 2,891.82 2,813.52 2,989.19
Equity 2,692.66 1,182.08 1,095.88 1,182.08 1,197.42 1,119.88 1,197.42 1,237.04 1,349.34 1,579.46

BL 17.25 17.25 17.25 17.25 112.37 150.05 112.37 187.77 236.32 121.66
Taxes 0.00 1,706.28 1,792.48 1,706.28 1,696.11 1,769.10 1,696.11 1,669.92 1,591.95 1,305.74

Firm Value 5,999.98 5,999.98 5,999.98 5,999.98 5,989.66 5,991.96 5,989.66 5,986.56 5,991.13 5,996.06

Panel B
Future Bond Issues (TR 1) Future Bond Issues (CBB, TR 1)

None 1 2 3 None 1 2 3
4.5 %, 2 565.26 582.79 584.90 587.36 588.56 588.56 588.56 588.56
5 %, 4 560.85 539.93 565.97 574.55 582.52 581.76 581.76 581.76

5.5 %, 10 565.04 548.33 524.80 551.43 572.27 571.50 563.49 563.49
6 %, ∞ 1,261.78 1,223.73 1,175.06 1,220.62 1,276.17 1,274.57 1,257.87 1,252.81
6 %, 2-4 0.00 -39.28 -15.13 -8.86 0.00 -2.72 -2.72 -2.72
6 %, 4-10 0.00 0.00 -82.18 -44.98 0.00 0.00 -34.60 -34.60
6 %, 10-∞ 0.00 0.00 0.00 43.41 0.00 0.00 0.00 52.20

�

Debt 2,952.93 2,855.49 2,753.43 2,923.53 3,019.52 3,013.66 2,954.36 3,001.50
Equity 1,119.88 1,143.49 1,191.01 1,401.44 1,161.32 1,183.75 1,320.17 1,577.23

BL 150.05 231.01 306.77 182.06 201.27 201.27 201.27 201.27
Taxes 1,769.10 1,757.15 1,741.58 1,489.31 1,700.97 1,684.38 1,607.25 1,303.08

Firm Value 5,991.96 5,987.14 5,992.78 5,996.33 6,083.08 6,083.06 6,083.04 6,083.07
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Fig. B.2. Equity value densities of 6 month equity options in the GBM-
Corporate Securities Framework as a function of η0. Expected equity values
are indicated by solid lines. Path probabilities are obtained by differentiating
the splined distribution function of EBIT at option maturity.
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Fig. B.3. Equity value density moments of 6 month equity options in the
GBM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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Fig. B.4. Equity return densities of 6 month equity options in the GBM-
Corporate Securities Framework as a function of η0. The 0-returns are in-
dicated by solid lines. Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity.
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Fig. B.5. Equity return density moments of 6 month equity options in the
GBM-Corporate Securities Framework as a function of η0. The moments are
obtained by numerical integration.
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Fig. B.6. Histogram of the estimated ABM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by minimizing
the sum of absolute pricing errors. True parameter values are µ = 10 and
ση = 40. Observation errors are assumed in the estimation although the ob-
servation matrix is free of measurement error.
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Fig. B.7. Histogram of the estimated ABM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by maximizing
the likelihood function. True parameter values are µ = 10 and ση = 40.
Observation errors are assumed in the estimation although the observation
matrix is free of measurement error.
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Table B.3. Simulated distribution summary statistics of the estimated ABM-
Corporate Securities Framework. The table reports mean errors ME, mean
absolute errors MAE, maximum MAX and minimum errors MIN , as well
as standard errors STD, skewness SKEW and kurtosis KURT of the distri-
bution. The Jarque-Bera test statistics and its p-value are also provided. The
simulation comprised 500 runs á 50 periods. Observation errors are assumed in
the estimation although the observation matrix is free of measurement error.

Panel A: Minimizing Absolute Mean Errors
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η 0.0018 0.0024 0.0125 -0.0094 0.0026 0.4098 4.2998 48.1858 0.0000
µ − µ̂ 0.0020 0.0027 0.0088 -0.0129 0.0026 -0.6440 5.4828 160.5245 0.0000
η − η̂ 0.0655 0.0943 0.8325 -0.4949 0.1161 1.0027 6.1845 14749 0.0000

E − Ê 0.0015 0.0043 0.0529 -0.0291 0.0063 1.7115 8.0112 38355 0.0000

D4.50 %,2 − D̂4.50 %,2 0.0003 0.0007 0.0127 -0.0017 0.0010 2.4963 14.9075 173628 0.0000

D5.00 %,4 − D̂5.00 %,4 0.0015 0.0044 0.0533 -0.0126 0.0062 1.7010 7.1668 30135 0.0000

D5.50 %,10 − D̂5.50 %,10 0.0017 0.0065 0.0767 -0.0231 0.0091 1.6580 6.8205 26652 0.0000

D6.00 %,∞ − D̂6.00 %,∞ 0.0017 0.0076 0.0882 -0.0275 0.0105 1.6508 6.7713 26163 0.0000

Panel B: Maximizing Log Likelihood
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η 0.0009 0.0009 0.0022 -0.0000 0.0004 0.5990 3.5747 36.2607 0.0000
µ − µ̂ 0.0000 0.0001 0.0007 -0.0003 0.0002 0.6690 3.5910 43.9954 0.0000
η − η̂ 0.0165 0.0728 0.8801 -0.4487 0.1050 1.7976 8.1432 41009 0.0000

E − Ê 0.0009 0.0044 0.0527 -0.0283 0.0064 1.7903 8.1469 40939 0.0000

D4.50 %,2 − D̂4.50 %,2 0.0002 0.0007 0.0126 -0.0020 0.0010 2.4091 14.3477 158287 0.0000

D5.00 %,4 − D̂5.00 %,4 0.0011 0.0045 0.0533 -0.0123 0.0062 1.6944 7.0870 29355 0.0000

D5.50 %,10 − D̂5.50 %,10 0.0017 0.0065 0.0768 -0.0233 0.0091 1.6576 6.8297 26721 0.0000

D6.00 %,∞ − D̂6.00 %,∞ 0.0020 0.0075 0.0884 -0.0278 0.0105 1.6563 6.8245 26660 0.0000
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Fig. B.8. Histogram of the estimated GBM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by minimizing
the sum of absolute pricing errors. True parameter values are µ̄ = 3.3̇ % and
σ̄η = 18 %. Observation errors are assumed in the estimation although the
observation matrix is free of measurement error.
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Fig. B.9. Histogram of the estimated GBM-EBIT risk-neutral drift and
volatility parameter from 500 simulation runs á 50 periods by maximizing
the likelihood function. True parameter values are µ̄ = 3.3̇ % and σ̄η = 18 %.
Observation errors are assumed in the estimation although the observation
matrix is free of measurement error.
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Table B.4. Simulated distribution summary statistics of the estimated GBM-
Corporate Securities Framework. The table reports mean errors ME, mean
absolute errors MAE, maximum MAX and minimum errors MIN , as well
as standard errors STD, skewness SKEW and kurtosis KURT of the distri-
bution. The Jarque-Bera test statistics and its p-value are also provided. The
simulation comprised 500 runs á 50 periods. Observation errors are assumed in
the estimation although the observation matrix is free of measurement error.

Panel A: Minimizing Absolute Mean Errors
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η 0.0001 0.0001 0.0001 -0.0000 0.0000 -1.9657 8.4905 940 0.0000
µ − µ̂ 0.0000 0.0000 0.0001 -0.0000 0.0000 -2.0622 9.9654 1351 0.0000
η − η̂ 0.2460 0.2469 0.4228 -0.1949 0.0618 -1.6091 7.8251 35031 0.0000

E − Ê -0.0040 0.0052 0.0288 -0.0257 0.0048 0.4695 4.3877 2923 0.0000

D4.50 %,2 − D̂4.50 %,2 0.0002 0.0004 0.0114 -0.0074 0.0006 2.4608 41.3900 1560162 0.0000

D5.00 %,4 − D̂5.00 %,4 0.0014 0.0036 0.0556 -0.0378 0.0051 0.4453 10.5203 59723 0.0000

D5.50 %,10 − D̂5.50 %,10 -0.0005 0.0053 0.0712 -0.0503 0.0075 0.2836 7.7022 23360 0.0000

D6.00 %,∞ − D̂6.00 %,∞ -0.0027 0.0065 0.0793 -0.0556 0.0085 0.3434 7.4780 21373 0.0000

Panel B: Maximizing Log Likelihood
Simulated Error Distribution Jarque/Bera

ME MAE MAX MIN STD SKEW KURT JBSTAT P-Val.
σ̂η − σ̂η -0.0001 0.0001 -0.0001 -0.0002 0.0000 -0.0868 2.3802 8.8748 0.0118
µ − µ̂ -0.0001 0.0001 -0.0000 -0.0001 0.0000 -0.1040 2.3806 9.1377 0.0104
η − η̂ -0.3467 0.3467 0.0034 -0.6120 0.0886 -0.0285 2.7346 76.8980 0.0000

E − Ê -0.0037 0.0050 0.0298 -0.0249 0.0047 0.4388 4.5383 3266 0.0000

D4.50 %,2 − D̂4.50 %,2 -0.0006 0.0007 0.0102 -0.0086 0.0006 0.6483 39.5534 1393332 0.0000

D5.00 %,4 − D̂5.00 %,4 -0.0085 0.0089 0.0527 -0.0420 0.0050 0.9109 11.6468 81322 0.0000

D5.50 %,10 − D̂5.50 %,10 -0.0118 0.0126 0.0683 -0.0546 0.0076 0.9467 8.2668 32621 0.0000

D6.00 %,∞ − D̂6.00 %,∞ -0.0113 0.0125 0.0767 -0.0593 0.0085 0.8631 7.9492 28612 0.0000
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Latané, H. and Rendleman, R.: 1975, Standard deviations of stock price ratios

implied in option prices, Journal of Finance 31(2), 369–381.
Leland, H.: 1994, Corporate debt value, bond covenants, and optimal capital

structure, Journal of Finance 49, 1213–1252.
Leland, H.: 1998, Agency costs, risk management, and capital structure, Jour-

nal of Finance 53(4), 1213–1243.
Leland, H. and Toft, K.: 1996, Optimal capital structure, endogenous bank-

ruptcy, and the term structure of credit spreads, Journal of Finance
51, 987–1019.

Longhofer, S. and Carlstrom, C.: 1995, Absolute priority rule - violations
in bankruptcy, Economic Review (Federal Reserve Bank of Cleveland)
31(4), 21–30.



174 References

Longstaff, F., Mithal, S. and Neis, E.: 2004, Corporate yield spreads: De-
fault risk or liquidity? new evidence from the credit-default swap market,
Working paper, University of California, Los Angeles.

Longstaff, F. and Schwartz, E.: 1995, A simple approach to valuing risky fixed
and floating rate debt, Journal of Finance 50, 789–819.

MacBeth, J. and Merville, L.: 1979, An empirical examination of the black-
scholes call option pricing model, Journal of Finance 34(5), 1173–1186.

Maybeck, P.: 1979, Stochastic Models, Estimation, and Control: Volume 1,
Academic Press, New York, San Francisco, London.

Mella-Barral, P.: 1999, The dynamics of default and debt reorganization, The
Review of Financial Studies 12, 535–578.

Merton, R.: 1974, On the pricing of corporate debt: The risk structur of in-
terest rates, Journal of Finance 29, 449–470.

Mittelhammer, R., Judge, G. and Miller, D.: 2000, Econometric Foundations,
Cambridge University Press, Cambridge.

Morellec, E.: 2001, Asset liquidity, capital structure, and secured debt, Journal
of Financial Economics 61(2), 173–206.

Morellec, E.: 2004, Can managerial discretion explain observed leverage ra-
tios?, The Review of Financial Studies 17(1), 257–294.

Musiela, M. and Rutkowski, M.: 1997, Martingale Methods in Financial Mod-
elling, Springer Verlag, Berlin, Heidelberg, New York.

Norgaard, M., Poulsen, N. and Ravn, O.: 2000, Advances in derivative-free
state estimation for nonlinear systems, Working paper, Technical Univer-
sity of Denmark.

Oeksendal, B.: 1998, Stochastic Differential Equations, 5 edn, Springer Verlag,
Berlin, Heidelberg, New York.

Rogers, L. and Stapleton, E.: 1998, Fast accurate binomial pricing, Finance
and Stochastics 2(1), 3–17.

Rubinstein, M.: 1976, The valuation of uncertain income streams and the
pricing of options, Bell Journal of Economics 76, 407–425.

Rubinstein, M.: 1994, Implied binomial trees, Journal of Finance 69, 771–818.
Rubinstein, M. and Reiner, E.: 1991, Breaking down the barriers, RISK 4, 28–

35.
Schmalensee, R. and Trippi, R.: 1978, Common stock volatility expectations

implied by option premia, Journal of Finance 33(1), 129–147.
Shimko, D.: 1992, Finance in Continuous Time - A Primer, Kolb Publishing

Company, Miami.
Stein, E. and Stein, J.: 1991, Stock price distributions with stochastic volatil-

ity: An analytical approach, The Review of Financial Studies 4(4), 727–
752.

Svensson, L.: 1994, Estimating and interpreting forward interest rates: Sweden
1992-1994, Working paper, National Bureau of Economic Research.

Toft, K. and Prucyk, B.: 1997, Options on leveraged equity: Theory and em-
pirical tests, Journal of Finance 52, 1151–1180.



References 175

Tse, W., Li, L. and Ng, K.: 2001, Pricing discrete barrier and hindsight op-
tions with the tridiagonal probability algorithm, Management Science
47(3), 383–393.

Uhrig-Homburg, M.: 2002, Valuation of defaultable claims - a survey,
Schmalenbachs Business Review 54, 24–57.

Vasicek, O.: 1977, An equilibrium characterization of the term structure, Jour-
nal of Financial Economics 5(2), 177–188.



List of Figures

2.1 Division of claim value within the corporate security
framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Time structure of barrier levels . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Illustration of a triple reflection: The thick black line is

the original path of the stochastic process Xt, which
faces three absorbing barriers yt1, yt2 , and yt3. In order
to calculate the probabilities of hitting all three barriers
and ending below zt1 , zt2 , and zt3 , the stochastic
process is reflected first at the first barrier (thick grey
line), second at the reflected second barrier (thin black
line), and third at the twice reflected barrier (thin grey
line). The limits of the tri-variate normal distribution
are indicated within the figure. . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Portfolio composition and interpretation of the first
debt issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Bankruptcy values for debt if the firm has issued more
than one bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Splitting the EBIT in a typical node among claimants . . 70

4.1 Leverage ratios in the base case before and after taxes . . 80
4.2 Equity values after tax as a function of EBIT-volatility

and current EBIT-value of an ABM-firm. . . . . . . . . . . . . . . 82
4.3 Optimal bankruptcy level and corresponding EBIT-level

within the trinomial tree approximation under different
tax regimes (ABM-Corporate Securities Framework) . . . . 85

4.4 Optimal bankruptcy level and corresponding EBIT-level
within the trinomial tree approximation with future
bond issues (ABM-Corporate Securities Framework) . . . . 86



178 List of Figures

4.5 Optimal bankruptcy level and corresponding EBIT-level
within the trinomial tree approximation with future
bond issues under Tax Regime 1 (GBM-Corporate
Securities Framework) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Equity value densities of 6 month equity options in the
ABM-Corporate Securities Framework as a function of
η0. Expected equity values are indicated by solid lines.
Path probabilities are obtained by differentiating the
splined distribution function of EBIT at option maturity. 99

4.7 Equity value density moments of 6 month equity
options in the ABM-Corporate Securities Framework
as a function of η0. The moments are obtained by
numerical integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Equity return densities of 6 month equity options in
the ABM-Corporate Securities Framework as a function
of η0. The 0-returns are indicated by solid lines. Path
probabilities are obtained by differentiating the splined
distribution function of EBIT at option maturity. . . . . . . . 102

4.9 Equity return density moments of 6 month equity
options in the ABM-Corporate Securities Framework
as a function of η0. The moments are obtained by
numerical integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.10 Unconditional partial densities of equity in the
ABM-Corporate Securities Framework with η0 = 100
at TO = 0.5: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 70 %. Path probabilities
are obtained by differentiating the splined distribution
function of EBIT at option maturity. . . . . . . . . . . . . . . . . . 106

4.11 Unconditional partial return densities of equity in the
ABM-Corporate Securities Framework with η0 = 100
at TO = 0.5: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 70 %. Path probabilities
are obtained by differentiating the splined distribution
function of EBIT at option maturity. . . . . . . . . . . . . . . . . . 107



List of Figures 179

4.12 Unconditional partial densities of equity in the
GBM-Corporate Securities Framework with η0 = 100
at TO = 0.5: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 65 %. Path probabilities
are obtained by differentiating the splined distribution
function of EBIT at option maturity. . . . . . . . . . . . . . . . . . 108

4.13 Unconditional partial return densities of equity in the
GBM-Corporate Securities Framework with η0 = 100
at TO = 0.5: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 65 %. Path probabilities
are obtained by differentiating the splined distribution
function of EBIT at option maturity. . . . . . . . . . . . . . . . . . 109

4.14 Implied Black/Scholes volatilities of 6 month equity
options in the ABM-Corporate Securities Framework
with η0 = 100: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 70 %. Option prices are
obtained by numerical integration. . . . . . . . . . . . . . . . . . . . . 116

4.15 Implied Black/Scholes volatilities of 6 month equity
options in the GBM-Corporate Securities Framework
with η0 = 100: Parameter changes are indicated in the
legend. The bankruptcy barrier VB is set so that 50 %
of the outstanding notional is recovered in bankruptcy
and bankruptcy losses are α = 65 %. Option prices are
obtained by numerical differentiation. . . . . . . . . . . . . . . . . . 117

5.1 Histogram of the estimated ABM-EBIT risk-neutral
drift and volatility parameter from 500 simulation runs
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